diff --git a/.devcontainer/devcontainer.json b/.devcontainer/devcontainer.json index 29e9515..9651d94 100644 --- a/.devcontainer/devcontainer.json +++ b/.devcontainer/devcontainer.json @@ -41,7 +41,7 @@ // "forwardPorts": [], // Use 'postCreateCommand' to run commands after the container is created. - // "postCreateCommand": "pip3 install --user -r requirements.txt", + "postCreateCommand": "pip3 install poetry==1.2.0; pip3 install -e .", // Comment out connect as root instead. More info: https://aka.ms/vscode-remote/containers/non-root. "remoteUser": "vscode" diff --git a/.github/workflows/python-package.yml b/.github/workflows/python-package.yml index a70f61f..0609f83 100755 --- a/.github/workflows/python-package.yml +++ b/.github/workflows/python-package.yml @@ -15,33 +15,30 @@ jobs: runs-on: ${{ matrix.os }} strategy: matrix: - os : [ubuntu-18.04, macos-11, macos-12, windows-2019] + os : [ubuntu-22.04, macos-11, macos-12, windows-2019] python-version: ['3.8', '3.9'] steps: - - uses: actions/checkout@v2 + - uses: actions/checkout@v3.5.0 - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v2 + uses: actions/setup-python@v3.1.3 with: python-version: ${{ matrix.python-version }} - name: Install dependencies run: | python -m pip install --upgrade pip - python -m pip install .[torch,docs] - - name: Lint with flake8 - if: ${{ matrix.os == 'ubuntu-18.04' && matrix.python-version == '3.8' }} + python -m pip install .[docs] + - name: Lint & test coverage + if: ${{ matrix.os == 'ubuntu-22.04' && matrix.python-version == '3.8' }} run: | pip install flake8 # stop the build if there are Python syntax errors or undefined names flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics - - name: Generate Report - if: ${{ matrix.os == 'ubuntu-18.04' && matrix.python-version == '3.8' }} - run: | pip install coverage coverage run -m unittest - name: Upload Coverage to Codecov - if: ${{ matrix.os == 'ubuntu-18.04' && matrix.python-version == '3.8' }} + if: ${{ matrix.os == 'ubuntu-22.04' && matrix.python-version == '3.8' }} uses: codecov/codecov-action@v1 with: fail_ci_if_error: true diff --git a/.gitignore b/.gitignore index 3f4c861..4695005 100755 --- a/.gitignore +++ b/.gitignore @@ -1,3 +1,6 @@ +# Poetry +poetry.lock + .vscode/ # Byte-compiled / optimized / DLL files @@ -132,3 +135,7 @@ dmypy.json # Pyre type checker .pyre/ docs/build.zip +tests/data/processed/data.pt +tests/data/processed/pre_filter.pt +tests/data/processed/pre_transform.pt +.DS_Store diff --git a/README.md b/README.md index f7d0617..9fa86ff 100755 --- a/README.md +++ b/README.md @@ -1,34 +1,15 @@ + [![PyPI version](https://badge.fury.io/py/bento-tools.svg)](https://badge.fury.io/py/bento-tools) [![codecov](https://codecov.io/gh/ckmah/bento-tools/branch/master/graph/badge.svg?token=XVHDKNDCDT)](https://codecov.io/gh/ckmah/bento-tools) [![Documentation Status](https://readthedocs.org/projects/bento-tools/badge/?version=latest)](https://bento-tools.readthedocs.io/en/latest/?badge=latest) ![PyPI - Downloads](https://img.shields.io/pypi/dm/bento-tools) [![GitHub stars](https://badgen.net/github/stars/ckmah/bento-tools)](https://GitHub.com/Naereen/ckmah/bento-tools) -> ### :warning: Significant upgrades coming soon, with additional analysis and data ingestion methods! - -Bento Logo - -Bento is a Python toolkit for performing subcellular analysis of spatial transcriptomics data. - -# Get started -Install with Python >=3.8 and <3.11: -```bash -pip install bento-tools -``` - -Check out the [documentation](https://bento-tools.readthedocs.io/en/latest/) for the installation guide, tutorials, API and more! Read and cite [our preprint](https://doi.org/10.1101/2022.06.10.495510) if you use Bento in your work. - - -# Main Features - -Bento Analysis Workflow +# Bento +Bento is a Python toolkit for performing subcellular analysis of spatial transcriptomics data. The package is part of the [Scverse ecosystem](https://scverse.org/packages/#ecosystem). Check out the [documentation](https://bento-tools.readthedocs.io/en/latest/) for installation instructions, tutorials, and API. Cite [our preprint](https://doi.org/10.1101/2022.06.10.495510) if you use Bento in your work. Thanks! -- Store molecular coordinates and segmentation masks -- Visualize spatial transcriptomics data at subcellular resolution -- Compute subcellular spatial features -- Predict localization patterns and signatures -- Factor decomposition for high-dimensional spatial feature sets +Bento Workflow --- [![GitHub license](https://img.shields.io/github/license/ckmah/bento-tools.svg)](https://github.com/ckmah/bento-tools/blob/master/LICENSE) diff --git a/bento/__init__.py b/bento/__init__.py index 32cbcfc..5f5b8c3 100755 --- a/bento/__init__.py +++ b/bento/__init__.py @@ -1,6 +1,8 @@ -from . import datasets +from . import datasets as ds from . import io from . import plotting as pl -from . import preprocessing as pp from . import tools as tl -from ._utils import PATTERN_NAMES, TENSOR_DIM_NAMES +from . import _utils as ut +from . import geometry as geo +from .plotting import _colors as colors +from ._utils import sync diff --git a/bento/_constants.py b/bento/_constants.py new file mode 100644 index 0000000..cdc5186 --- /dev/null +++ b/bento/_constants.py @@ -0,0 +1,18 @@ +PATTERN_COLORS = ["#17becf", "#1f77b4", "#7f7f7f", "#ff7f0e", "#d62728"] +PATTERN_NAMES = ["cell_edge", "cytoplasmic", "none", "nuclear", "nuclear_edge"] +PATTERN_PROBS = [f"{p}_p" for p in PATTERN_NAMES] +PATTERN_FEATURES = [ + "cell_inner_proximity", + "nucleus_inner_proximity", + "nucleus_outer_proximity", + "cell_inner_asymmetry", + "nucleus_inner_asymmetry", + "nucleus_outer_asymmetry", + "l_max", + "l_max_gradient", + "l_min_gradient", + "l_monotony", + "l_half_radius", + "point_dispersion_norm", + "nucleus_dispersion_norm", +] diff --git a/bento/_utils.py b/bento/_utils.py index 1507281..be6ba1f 100644 --- a/bento/_utils.py +++ b/bento/_utils.py @@ -1,20 +1,13 @@ import inspect -from functools import wraps - -from anndata import AnnData - +import warnings +import geopandas as gpd +import pandas as pd import seaborn as sns +from anndata import AnnData +from functools import wraps +from typing import Iterable +from shapely import wkt -PATTERN_NAMES = ["cell_edge", "cytoplasmic", "none", "nuclear", "nuclear_edge"] -PATTERN_PROBS = [f"{p}_p" for p in PATTERN_NAMES] -TENSOR_DIM_NAMES = ["layers", "cells", "genes"] - -# Colors correspond to order of PATTERN_NAMES: cyan, blue, gray, orange, red -PATTERN_COLORS = ['#17becf', '#1f77b4', '#7f7f7f', '#ff7f0e', '#d62728'] - -# Colors to represent each dimension (features, cells, genes); Set2 palette n_colors=3 -DIM_COLORS = ['#66c2a5', '#fc8d62', '#8da0cb'] -# ['#AD6A6C', '#f5b841', '#0cf2c9'] def get_default_args(func): signature = inspect.signature(func) @@ -28,7 +21,7 @@ def get_default_args(func): def track(func): """ Track changes in AnnData object after applying function. - + 1. First remembers a shallow list of AnnData attributes by listing keys from obs, var, etc. 2. Perform arbitrary task 3. List attributes again, perform simple diff between list of old and new attributes @@ -70,7 +63,6 @@ def wrapper(*args, **kwds): modified = False for attr in old_attr.keys(): - if attr == "n_obs" or attr == "n_vars": continue @@ -146,12 +138,8 @@ def pheno_to_color(pheno, palette): List of converted colors for each sample, formatted as RGBA tuples. """ - import seaborn as sns - - if type(palette) is str: + if isinstance(palette, str): palette = sns.color_palette(palette) - else: - palette = palette values = list(set(pheno)) values.sort() @@ -159,3 +147,176 @@ def pheno_to_color(pheno, palette): study2color = dict(zip(values, palette)) sample_colors = [study2color[v] for v in pheno] return study2color, sample_colors + + +def sync(data, copy=False): + """ + Sync existing point sets and associated metadata with data.obs_names and data.var_names + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData object + copy : bool, optional + """ + adata = data.copy() if copy else data + + if "point_sets" not in adata.uns.keys(): + adata.uns["point_sets"] = dict(points=[]) + + # Iterate over point sets + for point_key in adata.uns["point_sets"]: + points = adata.uns[point_key] + + # Subset for cells + cells = adata.obs_names.tolist() + in_cells = points["cell"].isin(cells) + + # Subset for genes + in_genes = [True] * points.shape[0] + if "gene" in points.columns: + genes = adata.var_names.tolist() + in_genes = points["gene"].isin(genes) + + # Combine boolean masks + valid_mask = (in_cells & in_genes).values + + # Sync points using mask + points = points.loc[valid_mask] + + # Remove unused categories for categorical columns + for col in points.columns: + if points[col].dtype == "category": + points[col].cat.remove_unused_categories(inplace=True) + + adata.uns[point_key] = points + + # Sync point metadata using mask + for metadata_key in adata.uns["point_sets"][point_key]: + if metadata_key not in adata.uns: + warnings.warn( + f"Skipping: metadata {metadata_key} not found in adata.uns" + ) + continue + + metadata = adata.uns[metadata_key] + # Slice DataFrame if not empty + if isinstance(metadata, pd.DataFrame) and not metadata.empty: + adata.uns[metadata_key] = metadata.loc[valid_mask, :] + + # Slice Iterable if not empty + elif isinstance(metadata, list) and any(metadata): + adata.uns[metadata_key] = [ + m for i, m in enumerate(metadata) if valid_mask[i] + ] + elif isinstance(metadata, Iterable) and metadata.shape[0] > 0: + adata.uns[metadata_key] = adata.uns[metadata_key][valid_mask] + else: + warnings.warn(f"Metadata {metadata_key} is not a DataFrame or Iterable") + + return adata if copy else None + + +def _register_points(data, point_key, metadata_keys): + required_cols = ["x", "y", "cell"] + + if point_key not in data.uns.keys(): + raise ValueError(f"Key {point_key} not found in data.uns") + + points = data.uns[point_key] + + if not all([col in points.columns for col in required_cols]): + raise ValueError( + f"Point DataFrame must have columns {', '.join(required_cols)}" + ) + + # Check for valid cells + cells = data.obs_names.tolist() + if not points["cell"].isin(cells).all(): + raise ValueError("Invalid cells in point DataFrame") + + # Initialize/add to point registry + if "point_sets" not in data.uns.keys(): + data.uns["point_sets"] = dict() + + if point_key not in data.uns["point_sets"].keys(): + data.uns["point_sets"][point_key] = [] + + if len(metadata_keys) < 0: + return + + # Register metadata + for key in metadata_keys: + # Check for valid metadata + if key not in data.uns.keys(): + raise ValueError(f"Key {key} not found in data.uns") + + n_points = data.uns[point_key].shape[0] + metadata_len = data.uns[key].shape[0] + if metadata_len != n_points: + raise ValueError( + f"Metadata {key} must have same length as points {point_key}" + ) + + # Add metadata key to registry + if key not in data.uns["point_sets"][point_key]: + data.uns["point_sets"][point_key].append(key) + + +def register_points(point_key: str, metadata_keys: list): + """Decorator function to register points to the current `AnnData` object. + This keeps track of point sets and keeps them in sync with `AnnData` object. + + Parameters + ---------- + point_key : str + Key where points are stored in `data.uns` + metadata_keys : list + Keys where point metadata are stored in `data.uns` + """ + + def decorator(func): + @wraps(func) + def wrapper(*args, **kwds): + kwargs = get_default_args(func) + kwargs.update(kwds) + + func(*args, **kwds) + data = args[0] + # Check for required columns + return _register_points(data, point_key, metadata_keys) + + return wrapper + + return decorator + + +def sc_format(data, copy=False): + """ + Convert data.obs GeoPandas columns to string for compatibility with scanpy. + """ + adata = data.copy() if copy else data + + shape_names = data.obs.columns.str.endswith("_shape") + + for col in data.obs.columns[shape_names]: + adata.obs[col] = adata.obs[col].astype(str) + + return adata if copy else None + + +def geo_format(data, copy=False): + """ + Convert data.obs scanpy columns to GeoPandas compatible types. + """ + adata = data.copy() if copy else data + + shape_names = adata.obs.columns[adata.obs.columns.str.endswith("_shape")] + + adata.obs[shape_names] = adata.obs[shape_names].apply( + lambda col: gpd.GeoSeries( + col.astype(str).apply(lambda val: wkt.loads(val) if val != "None" else None) + ) + ) + + return adata if copy else None diff --git a/bento/datasets/__init__.py b/bento/datasets/__init__.py index 8a55f37..55082a3 100755 --- a/bento/datasets/__init__.py +++ b/bento/datasets/__init__.py @@ -1 +1,5 @@ -from ._datasets import get_dataset_info, load_dataset, sample_data +from ._datasets import ( + get_dataset_info, + load_dataset, + sample_data, +) diff --git a/bento/datasets/_datasets.py b/bento/datasets/_datasets.py index bd44fbb..b098a60 100755 --- a/bento/datasets/_datasets.py +++ b/bento/datasets/_datasets.py @@ -1,6 +1,7 @@ import os import pandas as pd + pkg_resources = None from ..io import read_h5ad @@ -18,19 +19,30 @@ def get_dataset_info(): if pkg_resources is None: import pkg_resources - stream = pkg_resources.resource_stream(__name__, "datasets.csv") return pd.read_csv(stream, index_col=0) def load_dataset(name, cache=True, data_home="~/bento-data", **kws): - + """Load a builtin dataset. + + Parameters + ---------- + name : str + Name of the dataset to load. + cache : bool (default: True) + If True, try to load from local cache first, download as needed. + data_home : str (default: "~/bento-data") + Path to directory where datasets are stored. + **kws + Keyword arguments passed to :func:`bento.io.read_h5ad`. + """ datainfo = get_dataset_info() # Check if dataset name exists if name not in datainfo.index: raise KeyError( - f"No builtin dataset named '{name}'. Use :func:`get_dataset_info` to list info about available datasets." + f"No builtin dataset named '{name}'. Use :func:`bento.ds.get_dataset_info` to list info about available datasets." ) # Sanitize user path @@ -40,7 +52,6 @@ def load_dataset(name, cache=True, data_home="~/bento-data", **kws): if not os.path.exists(data_home): os.makedirs(data_home) - # Try to load from local cache first, download as needed url = datainfo.loc[name, "url"] cache_path = os.path.join(data_home, os.path.basename(url)) @@ -99,6 +110,6 @@ def sample_data(): global pkg_resources if pkg_resources is None: import pkg_resources - - stream = pkg_resources.resource_stream(__name__, "seqfish_sample.h5ad") - return read_h5ad(stream) \ No newline at end of file + + stream = pkg_resources.resource_stream(__name__, "merfish_sample.h5ad") + return read_h5ad(stream) diff --git a/bento/datasets/datasets.csv b/bento/datasets/datasets.csv index 49ecb7e..08fb8f5 100644 --- a/bento/datasets/datasets.csv +++ b/bento/datasets/datasets.csv @@ -1,5 +1,9 @@ name,n_cells,n_genes,n_points,url,description -merfish_raw,1153,135,16907948,https://ndownloader.figshare.com/files/29046861,U2-OS cell line profiled with MERFISH -merfish,1022,135,15315044,https://figshare.com/ndownloader/files/35596979,precomputed version of the U2-OS cell line profiled with MERFISH -seqfish_raw,211,9506,5306521,https://ndownloader.figshare.com/files/29046873,3T3 cell line profiled with seqFISH+ -seqfish,179,3726,4680210,https://figshare.com/ndownloader/files/35596982,precomputed version of the 3T3 cell line profiled with seqFISH+ \ No newline at end of file +merfish,1153,135,16907948,https://ndownloader.figshare.com/files/29046861,U2-OS cell line profiled with MERFISH +merfish_processed,1022,135,15315044,https://figshare.com/ndownloader/files/35596979,precomputed version of the U2-OS cell line profiled with MERFISH +seqfish,211,9506,5306521,https://ndownloader.figshare.com/files/29046873,3T3 cell line profiled with seqFISH+ +seqfish_processed,179,3726,4680210,https://figshare.com/ndownloader/files/35596982,precomputed version of the 3T3 cell line profiled with seqFISH+ +cardio_control1,,,,https://figshare.com/ndownloader/files/39850386,"vehicle replicate 1, iPSC-derived cardiomyocytes profiled with Molecular Cartography" +cardio_control2,,,,https://figshare.com/ndownloader/files/39850383,"vehicle replicate 2, iPSC-derived cardiomyocytes profiled with Molecular Cartography" +cardio_dox1,,,,https://figshare.com/ndownloader/files/39850470,"treatment replicate 1, doxorubicin-treated iPSC-derived cardiomyocytes profiled with Molecular Cartography" +cardio_dox2,,,,https://figshare.com/ndownloader/files/39850613,"treatment replicate 2, doxorubicin-treated iPSC-derived cardiomyocytes profiled with Molecular Cartography" \ No newline at end of file diff --git a/bento/datasets/merfish_sample.h5ad b/bento/datasets/merfish_sample.h5ad new file mode 100644 index 0000000..b1d1cb6 Binary files /dev/null and b/bento/datasets/merfish_sample.h5ad differ diff --git a/bento/geometry/__init__.py b/bento/geometry/__init__.py new file mode 100644 index 0000000..c0bc43a --- /dev/null +++ b/bento/geometry/__init__.py @@ -0,0 +1,9 @@ +from ._geometry import ( + count_points, + crop, + get_points, + get_points_metadata, + get_shape, + rename_shapes, + sindex_points, +) diff --git a/bento/geometry/_geometry.py b/bento/geometry/_geometry.py new file mode 100644 index 0000000..783d000 --- /dev/null +++ b/bento/geometry/_geometry.py @@ -0,0 +1,310 @@ +import re +from typing import Dict, List, Literal, Optional, Tuple, Union + +import geopandas as gpd +import pandas as pd +from anndata import AnnData +from scipy.sparse import coo_matrix +from shapely import wkt +from shapely.geometry import Polygon +from tqdm.auto import tqdm + +from .._utils import sync + + +def count_points( + data: AnnData, shape_names: List[str], copy: bool = False +) -> Optional[AnnData]: + """Count points in shapes and add as layers to `data`. Expects points to already be indexed to shapes. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData object + shape_names : str, list + List of shape names to index points to + copy : bool, optional + Whether to return a copy the AnnData object. Default False. + + Returns + ------- + AnnData + .layers: Updated layers with count of points in each shape + """ + adata = data.copy() if copy else data + + if isinstance(shape_names, str): + shape_names = [shape_names] + + points = get_points(data, asgeo=True) + + if shape_names[0].endswith("_shape"): + shape_prefixes = [ + "_".join(shp_name.split("_shape")[:-1]) for shp_name in shape_names + ] + else: + shape_prefixes = shape_names + + shape_counts = points.groupby(["cell", "gene"], observed=True)[shape_prefixes].sum() + + for shape in shape_counts.columns: + pos_counts = shape_counts[shape] + pos_counts = pos_counts[pos_counts > 0] + values = pos_counts + + row = adata.obs_names.get_indexer(pos_counts.index.get_level_values("cell")) + col = adata.var_names.get_indexer(pos_counts.index.get_level_values("gene")) + adata.layers[f"{shape}"] = coo_matrix((values, (row, col))) + + return adata if copy else None + + +def sindex_points( + data: AnnData, points_key: str, shape_names: List[str], copy: bool = False +) -> Optional[AnnData]: + """Index points to shapes and add as columns to `data.uns[points_key]`. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData object + points_key : str + Key for points DataFrame in `data.uns` + shape_names : str, list + List of shape names to index points to + copy : bool, optional + Whether to return a copy the AnnData object. Default False. + Returns + ------- + AnnData + .uns[points_key]: Updated points DataFrame with boolean column for each shape + """ + adata = data.copy() if copy else data + + if isinstance(shape_names, str): + shape_names = [shape_names] + + points = get_points(data, points_key, asgeo=True).sort_values("cell") + points = points.drop( + columns=shape_names, errors="ignore" + ) # Drop columns to overwrite + points_grouped = points.groupby("cell", observed=True) + cells = list(points_grouped.groups.keys()) + point_sindex = [] + + # Iterate over cells and index points to shapes + for cell in tqdm(cells, leave=False): + pt_group = points_grouped.get_group(cell) + + # Get shapes to index in current cell + cur_shapes = gpd.GeoDataFrame(geometry=data.obs.loc[cell, shape_names].T) + cur_sindex = ( + pt_group.reset_index() + .sjoin(cur_shapes, how="left", op="intersects") + .drop_duplicates(subset="index", keep="first") + .sort_index() + .reset_index()["index_right"] + .astype(str) + ) + point_sindex.append(cur_sindex) + + # TODO: concat is hella slow + point_sindex = ( + pd.concat(point_sindex, ignore_index=True).str.get_dummies() == 1 + ).fillna(False) + point_sindex.columns = [col.replace("_shape", "") for col in point_sindex.columns] + + # Add new columns to points + points[point_sindex.columns] = point_sindex.values + adata.uns[points_key] = points + + return adata if copy else None + + +def crop( + data: AnnData, + xlims: Tuple[int], + ylims: Tuple[int], + copy: bool = True, +) -> Optional[AnnData]: + """Returns a view of data within specified coordinates. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData object + xlims : list, optional + Upper and lower x limits, by default None + ylims : list, optional + Upper and lower y limits, by default None + copy : bool, optional + Whether to return a copy the AnnData object. Default True. + + Returns + ------- + AnnData + AnnData object with data cropped to specified coordinates + """ + adata = data.copy() if copy else data + + if len(xlims) < 1 and len(xlims) > 2: + return ValueError("Invalid xlims") + + if len(ylims) < 1 and len(ylims) > 2: + return ValueError("Invalid ylims") + + xmin, xmax = xlims[0], xlims[1] + ymin, ymax = ylims[0], ylims[1] + box = Polygon([[xmin, ymin], [xmin, ymax], [xmax, ymax], [xmax, ymin]]) + in_crop = get_shape(data, "cell_shape").within(box) + + adata = data[in_crop, :] + sync(adata, copy=False) + + return adata if copy else None + + +def get_shape(adata: AnnData, shape_name: str) -> gpd.GeoSeries: + """Get a GeoSeries of Polygon objects from an AnnData object. + + Parameters + ---------- + adata : AnnData + Spatial formatted AnnData object + shape_name : str + Name of shape column in adata.obs + + Returns + ------- + GeoSeries + GeoSeries of Polygon objects + """ + if shape_name not in adata.obs.columns: + raise ValueError(f"Shape {shape_name} not found in adata.obs.") + + if adata.obs[shape_name].astype(str).str.startswith("POLYGON").any(): + return gpd.GeoSeries( + adata.obs[shape_name] + .astype(str) + .apply(lambda val: wkt.loads(val) if val != "None" else None) + ) + + else: + return gpd.GeoSeries(adata.obs[shape_name]) + + +def rename_shapes( + data: AnnData, + mapping: Dict[str, str], + points_key: Optional[Union[List[str], None]] = None, + points_encoding: Union[List[Literal["label", "onehot"]], None] = None, + copy: bool = False, +) -> Optional[AnnData]: + """Rename shape columns in adata.obs and points columns in adata.uns. + + Parameters + ---------- + adata : AnnData + Spatial formatted AnnData object + mapping : Dict[str, str] + Mapping of old shape names to new shape names + points_key : list of str, optional + List of keys for points DataFrame in `adata.uns`, by default None + points_encoding : {"label", "onehot"}, optional + Encoding type for each specified points + copy : bool, optional + Whether to return a copy of the AnnData object. Default False. + + Returns + ------- + AnnData + .obs: Updated shape column names + .uns[points_key]: Updated points shape(s) columns according to encoding type + """ + adata = data.copy() if copy else data + adata.obs.rename(columns=mapping, inplace=True) + + # Map point columns + if points_key: + # Get mapping for points column names + prefix_map = { + _get_shape_prefix(shape_name): _get_shape_prefix(new_name) + for shape_name, new_name in mapping.items() + } + # Get mapping for label encoding + label_map = { + re.sub(r"\D", "", shape_name): re.sub(r"\D", "", new_name) + for shape_name, new_name in prefix_map.items() + } + + for p_key, p_encoding in zip(points_key, points_encoding): + if p_encoding == "label": + # Point column name with label encoding + col = re.sub(r"\d", "", list(prefix_map.keys())[0]) + adata.uns[p_key][col] = adata.uns[p_key][col].astype(str).map(label_map) + + elif p_encoding == "onehot": + # Remap column names + adata.uns[p_key].rename(columns=prefix_map, inplace=True) + + return adata if copy else None + + +def _get_shape_prefix(shape_name): + """Get prefix of shape name.""" + return "_".join(shape_name.split("_")[:-1]) + + +def get_points( + data: AnnData, key: str = "points", asgeo: bool = False +) -> Union[pd.DataFrame, gpd.GeoDataFrame]: + """Get points DataFrame synced to AnnData object. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData object + key : str, optional + Key for `data.uns` to use, by default "points" + asgeo : bool, optional + Cast as GeoDataFrame using columns x and y for geometry, by default False + + Returns + ------- + DataFrame or GeoDataFrame + Returns `data.uns[key]` as a `[Geo]DataFrame` + """ + points = sync(data, copy=True).uns[key] + + # Cast to GeoDataFrame + if asgeo: + points = gpd.GeoDataFrame( + points, geometry=gpd.points_from_xy(points.x, points.y) + ) + + return points + + +def get_points_metadata( + data: AnnData, + metadata_key: str, + points_key: str = "points", +): + """Get points metadata synced to AnnData object. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData object + metadata_key : str + Key for `data.uns[key]` to use + key : str, optional + Key for `data.uns` to use, by default "points" + + Returns + ------- + Series + Returns `data.uns[key][metadata_key]` as a `Series` + """ + metadata = sync(data, copy=True).uns[metadata_key] + return metadata diff --git a/bento/io/__init__.py b/bento/io/__init__.py index f1d52b9..411bba4 100755 --- a/bento/io/__init__.py +++ b/bento/io/__init__.py @@ -1 +1 @@ -from ._io import read_h5ad, write_h5ad, concatenate \ No newline at end of file +from ._io import read_h5ad, write_h5ad, concatenate, prepare \ No newline at end of file diff --git a/bento/io/_io.py b/bento/io/_io.py index ef24466..bad724a 100755 --- a/bento/io/_io.py +++ b/bento/io/_io.py @@ -9,10 +9,12 @@ from shapely.geometry import Polygon from tqdm.auto import tqdm import anndata -# import rasterio -# import rasterio.features +import rasterio +import rasterio.features import emoji +from .._utils import sc_format + def read_h5ad(filename, backed=None): """Load bento processed AnnData object from h5ad. @@ -32,14 +34,13 @@ def read_h5ad(filename, backed=None): """ adata = anndata.read_h5ad(filename, backed=backed) - # Load obs columns that are shapely geometries adata.obs = adata.obs.apply( lambda col: gpd.GeoSeries( col.astype(str).apply(lambda val: wkt.loads(val) if val != "None" else None) ) if col.astype(str).str.startswith("POLYGON").any() - else gpd.GeoSeries(col) + else pd.Series(col) ) adata.obs.index.name = "cell" @@ -49,7 +50,7 @@ def read_h5ad(filename, backed=None): def write_h5ad(data, filename): - """Write AnnData to h5ad. Casts each GeoDataFrame in adata.uns['masks'] for h5ad compatibility. + """Write AnnData to h5ad. Parameters ---------- @@ -61,13 +62,7 @@ def write_h5ad(data, filename): # Convert geometry from GeoSeries to list for h5ad serialization compatibility adata = data.copy() - adata.obs = adata.obs.apply( - lambda col: col.apply(lambda val: val.wkt if val is not None else val).astype( - str - ) - if col.astype(str).str.startswith("POLYGON").any() - else col - ) + sc_format(adata) adata.uns["points"] = adata.uns["points"].drop("geometry", axis=1, errors="ignore") @@ -75,202 +70,203 @@ def write_h5ad(data, filename): adata.write(filename) -# def prepare( -# molecules, -# cell_seg, -# x="x", -# y="y", -# gene="gene", -# other_seg=dict(), -# ): -# """Prepare AnnData with molecule-level spatial data. - -# Parameters -# ---------- -# molecules : DataFrame -# Molecule coordinates and annotations. -# cell_seg : np.array -# Cell segmentation masks represented as 2D numpy array where 1st and 2nd -# dimensions correspond to x and y respectively. Connected regions must -# have same value to be considered a valid shape. Data type must be one -# of rasterio.int16, rasterio.int32, rasterio.uint8, rasterio.uint16, or -# rasterio.float32. See rasterio.features.shapes for more details. -# x : str -# Column name for x coordinates, by default 'x'. -# y : str -# Column name for x coordinates, by default 'y'. -# gene : str -# Column name for gene name, by default 'gene'. -# other_seg -# Additional keyword arguments are interpreted as additional segmentation -# masks. The user specified parameter name is used to store these masks as -# {name}_shape in adata.obs. -# Returns -# ------- -# AnnData object -# """ -# for var in [x, y, gene]: -# if var not in molecules.columns: -# return - -# pbar = tqdm(total=6) -# pbar.set_description(emoji.emojize(":test_tube: Loading inputs")) -# points = molecules[[x, y, gene]] -# points.columns = ["x", "y", "gene"] -# points = gpd.GeoDataFrame( -# points, geometry=gpd.points_from_xy(x=points.x, y=points.y) -# ) -# points["gene"] = points["gene"].astype("category") # Save memory -# pbar.update() - -# # Load each set of masks as GeoDataFrame -# # shapes = Series where index = segs.keys() and values = GeoDataFrames -# segs_dict = {"cell": cell_seg, **other_seg} -# # Already formatted, select geometry column already -# if isinstance(cell_seg, gpd.GeoDataFrame): -# shapes_dict = { -# shape_name: shape_seg[["geometry"]] -# for shape_name, shape_seg in segs_dict.items() -# } -# # Load shapes from numpy array image -# elif isinstance(cell_seg, np.array): -# shapes_dict = { -# shape_name: _load_shapes_np(shape_seg) -# for shape_name, shape_seg in segs_dict.items() -# } -# else: -# print("Segmentation mask format not recognized.") -# pbar.close() -# return -# pbar.update() - -# # Index shapes to cell -# pbar.set_description(emoji.emojize(":open_book: Indexing")) -# obs_shapes = _index_shapes(shapes_dict, "cell") -# pbar.update() - -# # Index points for all shapes -# point_index = dict() -# for col in obs_shapes.columns: -# shp_gdf = gpd.GeoDataFrame(geometry=obs_shapes[col]) -# shp_name = '_'.join(str(col).split('_')[:-1]) -# point_index[shp_name] = _index_points(points, shp_gdf) -# point_index = pd.DataFrame.from_dict(point_index) -# pbar.update() - -# # Main long dataframe for reformatting -# pbar.set_description(emoji.emojize(":computer_disk: Formatting")) -# uns_points = pd.concat( -# [ -# points[["x", "y", "gene"]].reset_index(drop=True), -# point_index.reset_index(drop=True), -# ], -# axis=1, -# ) - -# # Remove extracellular points -# uns_points = uns_points.loc[uns_points["cell"] != "-1"] -# if len(uns_points) == 0: -# print("No molecules found within cells. Data not processed.") -# pbar.close() -# return -# uns_points[["cell", "gene"]] = uns_points[["cell", "gene"]].astype('category') - -# # Aggregate points to counts -# expression = ( -# uns_points[["cell", "gene"]] -# .groupby(["cell", "gene"]) -# .apply(lambda x: x.shape[0]) -# .reset_index() -# ) - -# # Create cell x gene matrix -# cellxgene = expression.pivot_table( -# index="cell", columns="gene", aggfunc="sum" -# ).fillna(0) -# cellxgene.columns = cellxgene.columns.get_level_values("gene") -# pbar.update() - -# # Create scanpy anndata object -# pbar.set_description(emoji.emojize(":package: Create AnnData")) -# adata = anndata.AnnData(X=cellxgene) -# obs_shapes = obs_shapes.reindex(index=adata.obs.index) -# adata.obs = pd.concat([adata.obs, obs_shapes], axis=1) -# adata.obs.index = adata.obs.index.astype(str) - -# # Save cell, gene, batch, and other shapes as categorical type to save memory -# uns_points["cell"] = uns_points["cell"].astype("category") -# uns_points["gene"] = uns_points["gene"].astype("category") -# for shape_name in list(other_seg.keys()): -# uns_points[shape_name] = uns_points[shape_name].astype('category') - -# adata.uns = {"points": uns_points} - -# pbar.set_description(emoji.emojize(":bento_box: Finished!")) -# pbar.update() -# pbar.close() -# return adata - - -# def _load_shapes_np(seg_img): -# """Extract shapes from segmentation image. - -# Parameters -# ---------- -# seg_img : np.array -# Segmentation masks represented as 2D numpy array where 1st and 2nd dimensions correspond to x and y respectively. - -# Returns -# ------- -# GeoDataFrame -# Single column GeoDataFrame where each row is a single Polygon. -# """ -# seg_img = seg_img.astype("uint16") -# contours = rasterio.features.shapes(seg_img) # rasterio to generate contours -# # Convert to shapely Polygons -# polygons = [Polygon(p["coordinates"][0]) for p, v in contours] -# shapes = gpd.GeoDataFrame(geometry=gpd.GeoSeries(polygons)) # Cast to GeoDataFrame -# shapes.drop( -# shapes.area.sort_values().tail(1).index, inplace=True -# ) # Remove extraneous shape -# shapes = shapes[shapes.geom_type != "MultiPolygon"] - -# shapes.index = shapes.index.astype(str) - -# # Cleanup polygons -# # mask.geometry = mask.geometry.buffer(2).buffer(-2) -# # mask.geometry = mask.geometry.apply(unary_union) - -# return shapes - - -# def _load_shapes_json(seg_json): -# """Extract shapes from python object loaded with json. - -# Parameters -# ---------- -# seg_json : list -# list loaded by json.load(file) - -# Returns -# ------- -# GeoDataFrame -# Each row represents a single shape, -# """ -# polys = [] -# for i in range(len(seg_json)): -# polys.append(Polygon(seg_json[i]["coordinates"][0])) - -# shapes = gpd.GeoDataFrame(geometry=gpd.GeoSeries(polys)) -# shapes = shapes[shapes.geom_type != "MultiPolygon"] - -# shapes.index = shapes.index.astype(str) - -# # Cleanup polygons -# # mask.geometry = mask.geometry.buffer(2).buffer(-2) -# # mask.geometry = mask.geometry.apply(unary_union) - -# return shapes +def prepare( + molecules, + cell_seg, + x="x", + y="y", + gene="gene", + other_seg=dict(), +): + """Prepare AnnData with molecule-level spatial data. + + Parameters + ---------- + molecules : DataFrame + Molecule coordinates and annotations. + cell_seg : np.array + Cell segmentation masks represented as 2D numpy array where 1st and 2nd + dimensions correspond to x and y respectively. Connected regions must + have same value to be considered a valid shape. Data type must be one + of rasterio.int16, rasterio.int32, rasterio.uint8, rasterio.uint16, or + rasterio.float32. See rasterio.features.shapes for more details. + x : str + Column name for x coordinates, by default 'x'. + y : str + Column name for x coordinates, by default 'y'. + gene : str + Column name for gene name, by default 'gene'. + other_seg + Additional keyword arguments are interpreted as additional segmentation + masks. The user specified parameter name is used to store these masks as + {name}_shape in adata.obs. + Returns + ------- + AnnData object + """ + for var in [x, y, gene]: + if var not in molecules.columns: + return + + pbar = tqdm(total=6) + pbar.set_description(emoji.emojize(":test_tube: Loading inputs")) + points = molecules[[x, y, gene]] + points.columns = ["x", "y", "gene"] + points = gpd.GeoDataFrame( + points, geometry=gpd.points_from_xy(x=points.x, y=points.y) + ) + points["gene"] = points["gene"].astype("category") # Save memory + pbar.update() + + # Load each set of masks as GeoDataFrame + # shapes = Series where index = segs.keys() and values = GeoDataFrames + segs_dict = {"cell": cell_seg, **other_seg} + # Already formatted, select geometry column already + if isinstance(cell_seg, gpd.GeoDataFrame): + shapes_dict = { + shape_name: shape_seg[["geometry"]] + for shape_name, shape_seg in segs_dict.items() + } + # Load shapes from numpy array image + elif isinstance(cell_seg, np.ndarray): + shapes_dict = { + shape_name: _load_shapes_np(shape_seg) + for shape_name, shape_seg in segs_dict.items() + } + else: + print("Segmentation mask format not recognized.") + pbar.close() + return + pbar.update() + + # Index shapes to cell + pbar.set_description(emoji.emojize(":open_book: Indexing")) + obs_shapes = _index_shapes(shapes_dict, "cell") + pbar.update() + + # Index points for all shapes + # TODO: refactor to use geometry.sindex_points + point_index = dict() + for col in obs_shapes.columns: + shp_gdf = gpd.GeoDataFrame(geometry=obs_shapes[col]) + shp_name = "_".join(str(col).split("_")[:-1]) + point_index[shp_name] = _index_points(points, shp_gdf) + point_index = pd.DataFrame.from_dict(point_index) + pbar.update() + + # Main long dataframe for reformatting + pbar.set_description(emoji.emojize(":computer_disk: Formatting")) + uns_points = pd.concat( + [ + points[["x", "y", "gene"]].reset_index(drop=True), + point_index.reset_index(drop=True), + ], + axis=1, + ) + + # Remove extracellular points + uns_points = uns_points.loc[uns_points["cell"] != "-1"] + if len(uns_points) == 0: + print("No molecules found within cells. Data not processed.") + pbar.close() + return + uns_points[["cell", "gene"]] = uns_points[["cell", "gene"]].astype("category") + + # Aggregate points to counts + expression = ( + uns_points[["cell", "gene"]] + .groupby(["cell", "gene"]) + .apply(lambda x: x.shape[0]) + .reset_index() + ) + + # Create cell x gene matrix + cellxgene = expression.pivot_table( + index="cell", columns="gene", aggfunc="sum" + ).fillna(0) + cellxgene.columns = cellxgene.columns.get_level_values("gene") + pbar.update() + + # Create scanpy anndata object + pbar.set_description(emoji.emojize(":package: Create AnnData")) + adata = anndata.AnnData(X=cellxgene) + obs_shapes = obs_shapes.reindex(index=adata.obs.index) + adata.obs = pd.concat([adata.obs, obs_shapes], axis=1) + adata.obs.index = adata.obs.index.astype(str) + + # Save cell, gene, batch, and other shapes as categorical type to save memory + uns_points["cell"] = uns_points["cell"].astype("category") + uns_points["gene"] = uns_points["gene"].astype("category") + for shape_name in list(other_seg.keys()): + uns_points[shape_name] = uns_points[shape_name].astype("category") + + adata.uns = {"points": uns_points} + + pbar.set_description(emoji.emojize(":bento_box: Finished!")) + pbar.update() + pbar.close() + return adata + + +def _load_shapes_np(seg_img): + """Extract shapes from segmentation image. + + Parameters + ---------- + seg_img : np.array + Segmentation masks represented as 2D numpy array where 1st and 2nd dimensions correspond to x and y respectively. + + Returns + ------- + GeoDataFrame + Single column GeoDataFrame where each row is a single Polygon. + """ + seg_img = seg_img.astype("uint16") + contours = rasterio.features.shapes(seg_img) # rasterio to generate contours + # Convert to shapely Polygons + polygons = [Polygon(p["coordinates"][0]) for p, v in contours] + shapes = gpd.GeoDataFrame(geometry=gpd.GeoSeries(polygons)) # Cast to GeoDataFrame + shapes.drop( + shapes.area.sort_values().tail(1).index, inplace=True + ) # Remove extraneous shape + shapes = shapes[shapes.geom_type != "MultiPolygon"] + + shapes.index = shapes.index.astype(str) + + # Cleanup polygons + # mask.geometry = mask.geometry.buffer(2).buffer(-2) + # mask.geometry = mask.geometry.apply(unary_union) + + return shapes + + +def _load_shapes_json(seg_json): + """Extract shapes from python object loaded with json. + + Parameters + ---------- + seg_json : list + list loaded by json.load(file) + + Returns + ------- + GeoDataFrame + Each row represents a single shape, + """ + polys = [] + for i in range(len(seg_json)): + polys.append(Polygon(seg_json[i]["coordinates"][0])) + + shapes = gpd.GeoDataFrame(geometry=gpd.GeoSeries(polys)) + shapes = shapes[shapes.geom_type != "MultiPolygon"] + + shapes.index = shapes.index.astype(str) + + # Cleanup polygons + # mask.geometry = mask.geometry.buffer(2).buffer(-2) + # mask.geometry = mask.geometry.apply(unary_union) + + return shapes def _index_shapes(shapes, cell_key): @@ -320,7 +316,6 @@ def _index_shapes(shapes, cell_key): # Add indexed shapes as new column in GeoDataFrame indexed_shapes[f"{shape_name}_shape"] = geometry - # Cells are rows, intersecting shape sets are columns indexed_shapes = indexed_shapes.rename(columns={"geometry": "cell_shape"}) indexed_shapes.index = indexed_shapes.index.astype(str) @@ -356,6 +351,9 @@ def _index_points(points, shapes): def concatenate(adatas): + # Read point registry to identify point sets to concatenate + # TODO + uns_points = [] for i, adata in enumerate(adatas): points = adata.uns["points"].copy() @@ -363,7 +361,7 @@ def concatenate(adatas): if "batch" not in points.columns: points["batch"] = i - points["cell"] = points["cell"].astype(str) + "-" + points["batch"].astype(str) + points["cell"] = points["cell"].astype(str) + "-" + str(i) uns_points.append(points) diff --git a/bento/plotting/__init__.py b/bento/plotting/__init__.py index 805cc9a..235a4a8 100755 --- a/bento/plotting/__init__.py +++ b/bento/plotting/__init__.py @@ -1,3 +1,5 @@ -from ._plotting import (lp_dist, lp_gene_dist, lp_genes, lp_diff, # umap, - cellplot, qc_metrics, sig_samples) -from ._tensor_tools import lp_signatures +from ._multidimensional import flux_summary, obs_stats + +from ._lp import lp_diff, lp_dist, lp_gene_dist, lp_genes +from ._plotting import points, density, shapes, flux, fluxmap, fe +from ._signatures import colocation, factor, signatures, signatures_error diff --git a/bento/plotting/_colors.py b/bento/plotting/_colors.py new file mode 100644 index 0000000..8597fd0 --- /dev/null +++ b/bento/plotting/_colors.py @@ -0,0 +1,21 @@ +import matplotlib as mpl +from matplotlib.colors import LinearSegmentedColormap +import numpy as np +import seaborn as sns + +blue_rgb = np.array([30, 136, 229]) / 255 +red_rgb = np.array([255, 13, 87]) / 255 +red2blue = LinearSegmentedColormap.from_list("red2blue", [blue_rgb, "white", red_rgb]) +red2blue_dark = LinearSegmentedColormap.from_list( + "red2blue_dark", [blue_rgb, "black", red_rgb] +) + +mpl.cm.register_cmap("red2blue", red2blue) +mpl.cm.register_cmap("red2blue_dark", red2blue_dark) + +red_light = sns.light_palette(red_rgb, as_cmap=True) +blue_light = sns.light_palette(blue_rgb, as_cmap=True) + +red_dark = sns.dark_palette(red_rgb, as_cmap=True) +red_dark = LinearSegmentedColormap.from_list("red_dark", [[0, 0, 0], red_rgb]) +blue_dark = LinearSegmentedColormap.from_list("blue_dark", [[0, 0, 0], blue_rgb]) diff --git a/bento/plotting/_layers.py b/bento/plotting/_layers.py new file mode 100644 index 0000000..f25d1d7 --- /dev/null +++ b/bento/plotting/_layers.py @@ -0,0 +1,154 @@ +import warnings + +warnings.filterwarnings("ignore") + +import geopandas as gpd +import matplotlib as mpl +import matplotlib.pyplot as plt +import numpy as np +import seaborn as sns +from scipy.interpolate import griddata +from shapely.geometry import Polygon +from mpl_toolkits.axes_grid1.inset_locator import inset_axes + +from ..geometry import get_points, get_shape, get_points_metadata + + +def _scatter(points, ax, hue=None, size=None, style=None, **kwargs): + semantic_vars = list(set([hue, size, style])) + semantic_vars = ( + None if semantic_vars == [] else [v for v in semantic_vars if v is not None] + ) + + if ax is None: + ax = plt.gca() + + scatter_kws = dict(s=2, c="grey", linewidth=0) + scatter_kws.update(kwargs) + + # Let matplotlib scatter handle color if it's in hex format + if hue and str(points[hue].iloc[0]).startswith("#"): + scatter_kws["c"] = points[hue] + hue = None + + sns.scatterplot( + data=points, x="x", y="y", hue=hue, size=size, style=style, ax=ax, **scatter_kws + ) + + +def _hist(points, ax, hue=None, **kwargs): + if ax is None: + ax = plt.gca() + + hist_kws = dict() + hist_kws.update(kwargs) + + sns.histplot(data=points, x="x", y="y", hue=hue, ax=ax, **hist_kws) + + +def _kde(points, ax, hue=None, **kwargs): + if ax is None: + ax = plt.gca() + + kde_kws = dict(zorder=1, fill=True) + kde_kws.update(kwargs) + + sns.kdeplot(data=points, x="x", y="y", hue=hue, ax=ax, **kde_kws) + + +def _polygons(adata, shape, ax, hue=None, hide_outside=False, **kwargs): + """Plot shapes with GeoSeries plot function.""" + + shapes = gpd.GeoDataFrame(geometry=get_shape(adata, shape)) + + edge_color = "none" + face_color = "none" + + # If hue is specified, use it to color faces + if hue: + shapes[hue] = adata.obs.reset_index()[hue].values + edge_color = sns.axes_style()["axes.edgecolor"] + face_color = "none" # let GeoDataFrame plot function handle facecolor + + style_kwds = dict( + linewidth=0.5, edgecolor=edge_color, facecolor=face_color, zorder=2 + ) + style_kwds.update(kwargs) + shapes.plot(ax=ax, column=hue, **style_kwds) + + if hide_outside: + # get axes limits + xmin, xmax = ax.get_xlim() + ymin, ymax = ax.get_ylim() + + # get min range + # min_range = min(xmax - xmin, ymax - ymin) + # buffer_size = 0.0 * (min_range) + + # Create shapely polygon from axes limits + axes_poly = gpd.GeoDataFrame( + geometry=gpd.GeoSeries( + [Polygon([(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)])] + ) + # .buffer(0) + ) + axes_poly.overlay(shapes, how="difference").plot( + ax=ax, + linewidth=0, + facecolor=sns.axes_style()["axes.facecolor"], + zorder=1.99, + ) + + +def _raster(adata, res, color, points_key="cell_raster", cbar=False, ax=None, **kwargs): + """Plot gradient.""" + + if ax is None: + ax = plt.gca() + + points = get_points(adata, key=points_key) + step = 1 / res + color_values = get_points_metadata(adata, metadata_key=color, points_key=points_key) + # Infer value format and convert values to rgb + # Handle color names and (r, g, b) tuples with matplotlib + v1 = color_values[0] + if isinstance(v1, str) or ( + isinstance(v1, tuple) and v1.min() >= 0 and v1.max() <= 1 + ): + rgb = np.array([mpl.colors.to_rgb(c) for c in color_values]) + else: + rgb = color_values.reshape(-1, 1) + + # Get subplot xy grid bounds + minx, maxx = points["x"].min(), points["x"].max() + miny, maxy = points["y"].min(), points["y"].max() + + # Define grid coordinates + grid_x, grid_y = np.mgrid[ + minx : maxx + step : step, + miny : maxy + step : step, + ] + + values = [] + for channel in range(rgb.shape[1]): + values.append( + griddata( + points[["x", "y"]].values, + rgb[:, channel], + (grid_x, grid_y), + method="nearest", + fill_value=0, + ).T + ) + img = np.stack(values, axis=-1) + + img_kws = dict(interpolation="none") + img_kws.update(kwargs) + + im = ax.imshow(img, extent=(minx, maxx, miny, maxy), origin="lower", **img_kws) + ax.autoscale(False) + + if cbar: + cax = inset_axes(ax, width="20%", height="4%", loc="upper right", borderpad=1.5) + cbar = plt.colorbar(im, orientation="horizontal", cax=cax) + # cbar.ax.tick_params(axis="x", direction="in", pad=-12) diff --git a/bento/plotting/_lp.py b/bento/plotting/_lp.py new file mode 100755 index 0000000..ac5689f --- /dev/null +++ b/bento/plotting/_lp.py @@ -0,0 +1,190 @@ +from typing import List, Tuple, Union +import warnings + +warnings.filterwarnings("ignore") + +import matplotlib.pyplot as plt +import numpy as np +import seaborn as sns +from anndata import AnnData +from upsetplot import UpSet, from_indicators + +from .._constants import PATTERN_COLORS, PATTERN_NAMES +from ..tools import lp_stats +from ._utils import savefig +from ._multidimensional import _radviz + + +@savefig +def lp_dist(data, percentage=False, scale=1, fname=None): + """Plot pattern combination frequencies as an UpSet plot. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + percentage : bool, optional + If True, label each bar as a percentage else label as a count, by default False + scale : int, optional + scale > 1 scales the plot larger, scale < 1 scales. the plot smaller, by default 1 + fname : str, optional + Save the figure to specified filename, by default None + """ + sample_labels = data.uns["lp"] + sample_labels = sample_labels == 1 + + # Sort by degree, then pattern name + sample_labels["degree"] = -sample_labels[PATTERN_NAMES].sum(axis=1) + sample_labels = ( + sample_labels.reset_index() + .sort_values(["degree"] + PATTERN_NAMES, ascending=False) + .drop("degree", axis=1) + ) + + upset = UpSet( + from_indicators(PATTERN_NAMES, data=sample_labels), + element_size=scale * 40, + min_subset_size=sample_labels.shape[0] * 0.001, + facecolor="lightgray", + sort_by=None, + show_counts=(not percentage), + show_percentages=percentage, + ) + + for p, color in zip(PATTERN_NAMES, PATTERN_COLORS): + if sample_labels[p].sum() > 0: + upset.style_subsets(present=p, max_degree=1, facecolor=color) + + upset.plot() + plt.suptitle(f"Localization Patterns\n{sample_labels.shape[0]} samples") + + +@savefig +def lp_gene_dist(data, fname=None): + """Plot the cell fraction distribution of each pattern as a density plot. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + fname : str, optional + Save the figure to specified filename, by default None + """ + lp_stats(data) + + col_names = [f"{p}_fraction" for p in PATTERN_NAMES] + gene_frac = data.var[col_names] + gene_frac.columns = PATTERN_NAMES + # Plot frequency distributions + sns.displot( + data=gene_frac, + kind="kde", + multiple="layer", + height=3, + palette=PATTERN_COLORS, + ) + plt.xlim(0, 1) + sns.despine() + + +@savefig +def lp_genes( + data: AnnData, + groupby: str = "gene", + annotate: Union[int, List[str], None] = None, + sizes: Tuple[int] = (2, 100), + size_norm: Tuple[int] = (0, 100), + ax: plt.Axes = None, + fname: str = None, + **kwargs, +): + """ + Plot the pattern distribution of each group in a RadViz plot. RadViz projects + an N-dimensional data set into a 2D space where the influence of each dimension + can be interpreted as a balance between the influence of all dimensions. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + groupby : str + Grouping variable, default "gene" + annotate : int, list of str, optional + Annotate the top n genes or a list of genes, by default None + sizes : tuple + Minimum and maximum point size to scale points, default (2, 100) + size_norm : tuple + Minimum and maximum data values to scale point size, default (0, 100) + ax : matplotlib.Axes, optional + Axis to plot on, by default None + fname : str, optional + Save the figure to specified filename, by default None + **kwargs + Options to pass to matplotlib plotting method. + """ + lp_stats(data, groupby) + + palette = dict(zip(PATTERN_NAMES, PATTERN_COLORS)) + + n_cells = data.n_obs + gene_frac = data.uns["lp_stats"][PATTERN_NAMES] / n_cells + + gene_logcount = data.X.mean(axis=0, where=data.X > 0) + gene_logcount = np.log2(gene_logcount + 1) + gene_frac["logcounts"] = gene_logcount + + cell_fraction = ( + 100 + * data.uns["points"].groupby("gene", observed=True)["cell"].nunique() + / n_cells + ) + gene_frac["cell_fraction"] = cell_fraction + + scatter_kws = dict(sizes=sizes, size_norm=size_norm) + scatter_kws.update(kwargs) + _radviz(gene_frac, annotate=annotate, ax=ax, **scatter_kws) + + +@savefig +def lp_diff(data: AnnData, phenotype: str, fname: str = None): + """Visualize gene pattern frequencies between groups of cells by plotting + log2 fold change and -log10p, similar to volcano plot. Run after :func:`bento.tl.lp_diff()` + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + phenotype : str + Variable used to group cells when calling :func:`bento.tl.lp_diff()`. + fname : str, optional + Save the figure to specified filename, by default None + """ + diff_stats = data.uns[f"diff_{phenotype}"] + + palette = dict(zip(PATTERN_NAMES, PATTERN_COLORS)) + g = sns.relplot( + data=diff_stats, + x="log2fc", + y="-log10padj", + size=4, + hue="pattern", + col="phenotype", + col_wrap=3, + height=2.5, + palette=palette, + s=20, + linewidth=0, + ) + + g.set_titles(col_template="{col_name}") + + for ax in g.axes: + ax.axvline(0, lw=0.5, c="grey") # -log2fc = 0 + ax.axvline(-2, lw=1, c="pink", ls="dotted") # log2fc = -2 + ax.axvline(2, lw=1, c="pink", ls="dotted") # log2fc = 2 + ax.axhline( + -np.log10(0.05), c="pink", ls="dotted", zorder=0 + ) # line where FDR = 0.05 + sns.despine() + + return g diff --git a/bento/plotting/_multidimensional.py b/bento/plotting/_multidimensional.py new file mode 100644 index 0000000..8878902 --- /dev/null +++ b/bento/plotting/_multidimensional.py @@ -0,0 +1,433 @@ +import warnings + +warnings.filterwarnings("ignore") + +import matplotlib as mpl +import matplotlib.patheffects as pe +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +import seaborn as sns +from adjustText import adjust_text +from sklearn.metrics.pairwise import cosine_similarity +from sklearn.preprocessing import quantile_transform + +from ._colors import red_light +from ._utils import savefig + + +def _quantiles(data: pd.DataFrame, x: str, **kwargs): + """Plot quantiles on top of a stripplot. + + Parameters + ---------- + data : pd.DataFrame + Dataframe with x column + x : str + Column to plot quantiles for + """ + ax = plt.gca() + + ylims = ax.get_ylim() + ymargin = 0.3 * (ylims[1] - ylims[0]) + quants = np.nanpercentile(data[x], [0, 25, 50, 75, 100]) + palette = sns.color_palette("red2blue", n_colors=len(quants) - 1) + linecolor = sns.axes_style()["axes.edgecolor"] + + xys = [(q, ylims[0]) for q in quants[:-1]] + widths = [quants[i + 1] - quants[i] for i in range(len(quants) - 1)] + height = ymargin + rects = [ + mpl.patches.Rectangle( + xy, + width=w, + height=height, + facecolor=c, + alpha=0.8, + linewidth=1, + edgecolor=linecolor, + clip_on=False, + ) + for xy, w, c in zip(xys, widths, palette) + ] + + for rect in rects: + ax.add_patch(rect) + + +@savefig +def obs_stats( + data, + obs_cols=[ + "cell_area", + "cell_aspect_ratio", + "cell_density", + "nucleus_area", + "nucleus_aspect_ratio", + "nucleus_density", + ], + s=3, + alpha=0.3, + rug=False, + fname=None, +): + """Plot shape statistic distributions for each cell. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + cols : list + List of obs columns to plot + groupby : str, optional + Column in obs to groupby, by default None + """ + stats_long = data.obs.melt(value_vars=obs_cols) + stats_long["quantile"] = stats_long.groupby("variable")["value"].transform( + lambda x: quantile_transform(x.values.reshape(-1, 1), n_quantiles=100).flatten() + ) + + stats_long["shape"] = stats_long["variable"].apply(lambda x: x.split("_")[0]) + stats_long["var"] = stats_long["variable"].apply( + lambda x: "_".join(x.split("_")[1:]) + ) + + linecolor = sns.axes_style()["axes.edgecolor"] + + g = sns.FacetGrid( + data=stats_long, + row="var", + col="shape", + height=1.2, + aspect=2, + sharex=False, + sharey=False, + margin_titles=True, + ) + g.map_dataframe( + sns.stripplot, + x="value", + color=linecolor, + s=s, + alpha=alpha, + rasterized=True, + ) + g.map_dataframe(_quantiles, x="value") + g.add_legend() + sns.move_legend(g, "upper left", bbox_to_anchor=(1, 1)) + + for ax, var in zip(g.axes.flat, stats_long["variable"].unique()): + ax.set_xlabel("") + ax.set_yticks([]) + ax.ticklabel_format(axis="x", style="sci", scilimits=(-2, 4)) + sns.despine(ax=ax, left=True) + g.set_titles(row_template="{row_name}", col_template="{col_name}") + + def plot_median(data, **kwargs): + plt.axvline(data.median(), **kwargs) + + g.map(plot_median, "value", c=linecolor, lw=1.5, zorder=3) + + +@savefig +def flux_summary( + data, + groupby=None, + group_order=None, + annotate=None, + adjust=True, + palette=red_light, + annot_color=None, + sizes=(5, 30), + size_norm=(10, 100), + dim_order=None, + legend=True, + height=5, + fname=None, +): + """ + Plot RNAflux summary with a radviz plot describing gene embedding across flux clusters. + """ + + comp_key = f"{groupby}_comp_stats" + if groupby and comp_key in data.uns.keys(): + comp_stats = data.uns[comp_key] + if group_order is None: + groups = list(comp_stats.keys()) + else: + groups = group_order + ngroups = len(groups) + fig, axes = plt.subplots(1, ngroups, figsize=(ngroups * height * 1.1, height)) + if axes is not np.ndarray: + axes = np.array([axes]) + + # Plot each group separately + for group, ax in zip(groups, axes.flat): + group_comp = comp_stats[group] + + show_legend = False + if legend and ax == axes.flat[-1]: + show_legend = True + + _radviz( + group_comp, + annotate=annotate, + adjust=adjust, + palette=palette, + annot_color=annot_color, + sizes=sizes, + size_norm=size_norm, + dim_order=dim_order, + legend=show_legend, + ax=ax, + ) + ax.set_title(group, fontsize=12) + else: + return _radviz( + comp_stats, + annotate=annotate, + adjust=adjust, + palette=palette, + annot_color=annot_color, + sizes=sizes, + size_norm=size_norm, + dim_order=dim_order, + legend=legend, + ) + + +def _radviz( + comp_stats, + annotate=None, + adjust=True, + palette=red_light, + annot_color=None, + sizes=None, + size_norm=None, + dim_order="auto", + legend=True, + ax=None, +): + """Plot a radviz plot of gene values across fields. + + Parameters + ---------- + comp_stats : DataFrame + Gene composition stats + palette : str, optional + Color palette, by default None + sizes : tuple, optional + Size range for scatter plot, by default None + size_norm : tuple, optional + Size range for scatter plot, by default None + dim_order : "auto", None, or list, optional + Sort dimensions for more intuitive visualization, by default "auto". + If "auto", sort dimensions by maximizing cosine similarity of adjacent + dimensions. If None, do not sort dimensions. If list, use provided order. + gridsize : int, optional + Gridsize for hexbin plot, by default 20 + ax : matplotlib.Axes, optional + Axes to plot on, by default None + """ + with plt.rc_context({"font.size": 14}): + # RADVIZ plot + if not ax: + figsize = (5, 5) + plt.figure(figsize=figsize) + ax = plt.gca() + + edgecolor = sns.axes_style()["axes.edgecolor"] + + # Infer annot_color from theme + if annot_color is None: + annot_color = edgecolor + + # Remove unexpressed genes + ndims = comp_stats.columns.get_loc("logcounts") - 1 + dims = comp_stats.columns[: ndims + 1] + stat_cols = comp_stats.columns[ndims + 1 :] + comp_stats = comp_stats[comp_stats[dims].sum(axis=1) > 0] + + # Determine best dimension ordering by maximizing cosine similarity of adjacent dimensions + if not dim_order: + dim_order = dims + elif dim_order == "auto": + dim_order = _sort_dimensions(comp_stats[dims]) + elif isinstance(dim_order, list): + dim_order = dim_order + else: + raise ValueError(f"Invalid dim_order: {dim_order}") + + comp_stats = comp_stats.reindex([*dim_order, *stat_cols], axis=1) + + # Plot the "circular" axis, labels and point positions + comp_stats["_"] = "" + pd.plotting.radviz(comp_stats[[*dim_order, "_"]], "_", s=0, ax=ax) + ax.get_legend().remove() + + # Get points + pts = [] + for c in ax.collections: + pts.extend(c.get_offsets().data) + + pts = np.array(pts).reshape(-1, 2) + xy = pd.DataFrame(pts, index=comp_stats.index) + + # Get vertices and origin + center = ax.patches[0] + vertices = ax.patches[1:] + + # Add polygon as background + poly = plt.Polygon( + [v.center for v in vertices], + facecolor="none", + edgecolor=edgecolor, + zorder=1, + ) + ax.add_patch(poly) + + # Add lines from origin to vertices + for v in vertices: + line_xy = np.array([center.center, v.center]) + ax.add_line( + plt.Line2D( + line_xy[:, 0], + line_xy[:, 1], + linestyle=":", + linewidth=1, + color=edgecolor, + zorder=1, + alpha=0.4, + ) + ) + v.remove() + + # Hide 2D axes + ax.axis(False) + + # Point size ~ percent of cells in group + cell_fraction = comp_stats["cell_fraction"] + cell_fraction = cell_fraction.apply(lambda x: round(x, 1)) + size_key = "Fraction of cells\n in group (%)" + xy[size_key] = cell_fraction + + # Hue ~ mean log2(count + 1) + log_count = comp_stats["logcounts"] + hue_key = "Mean log2(cnt + 1)\n in group" + xy[hue_key] = log_count + + # Remove phantom points + # ax.collections = ax.collections[1:] + + sns.kdeplot( + data=xy, + x=0, + y=1, + shade=True, + cmap="binary", + zorder=0.9, + ax=ax, + ) + + # Plot points + sns.scatterplot( + data=xy, + x=0, + y=1, + hue=hue_key, + palette=palette, + size=size_key, + sizes=sizes, + size_norm=size_norm, + linewidth=0.5, + # alpha=0.6, + edgecolor="white", + legend=legend, + ax=ax, + ) + scatter = ax.collections[0] + + if legend: + plt.legend(bbox_to_anchor=[1.1, 1], fontsize=10, frameon=False) + + # Annotate top points + if annotate: + if isinstance(annotate, int): + # Get top ranked genes by entropy + from scipy.stats import entropy + + top_genes = ( + comp_stats.loc[:, dims] + .apply(lambda gene_comp: entropy(gene_comp), axis=1) + .sort_values(ascending=True) + .index[:annotate] + ) + top_xy = xy.loc[top_genes] + else: + top_xy = xy.loc[[g for g in annotate if g in xy.index]] + + # Plot top points + sns.scatterplot( + data=top_xy, + x=0, + y=1, + hue=hue_key, + palette=palette, + size=size_key, + sizes=sizes, + size_norm=size_norm, + linewidth=1, + facecolor=None, + edgecolor=annot_color, + legend=False, + ax=ax, + ) + + # Add text labels + if annot_color == "black": + stroke_color = "white" + elif annot_color == "white": + stroke_color = "black" + else: + stroke_color = "black" + texts = [ + ax.text( + row[0], + row[1], + i, + fontsize=8, + weight="medium", + path_effects=[pe.withStroke(linewidth=2, foreground=stroke_color)], + ) + for i, row in top_xy.iterrows() + ] + + # Adjust text positions + if adjust: + print("Adjusting text positions...") + adjust_text( + texts, + expand_points=(2, 2), + add_objects=[scatter], + arrowprops=dict(arrowstyle="-", color=edgecolor, lw=1), + ax=ax, + ) + + +def _sort_dimensions(composition): + sim = cosine_similarity(composition.T, composition.T) + sim = pd.DataFrame(sim, index=composition.columns, columns=composition.columns) + dim_order = sim.sample(3, random_state=11).index.tolist() + + # Insert dimensions greedily + for dim in sim.columns: + if dim in dim_order: + continue + + insert_score = [] + for dim_i, dim_j in zip([dim_order[-1]] + dim_order[:-1], dim_order): + insert_score.append(np.mean(sim.loc[dim, [dim_i, dim_j]])) + + insert_pos = np.argmax(insert_score) + dim_order.insert(insert_pos, dim) + return dim_order diff --git a/bento/plotting/_plotting.py b/bento/plotting/_plotting.py index 5c625b6..0cf580f 100755 --- a/bento/plotting/_plotting.py +++ b/bento/plotting/_plotting.py @@ -2,533 +2,431 @@ warnings.filterwarnings("ignore") -import geopandas -import matplotlib as mpl import matplotlib.pyplot as plt -from matplotlib_scalebar.scalebar import ScaleBar -import numpy as np -import pandas as pd -from pandas.plotting import radviz import seaborn as sns -from upsetplot import UpSet, from_indicators - -from tqdm.auto import tqdm +from matplotlib_scalebar.scalebar import ScaleBar +from ..geometry import get_points +from ._layers import _raster, _scatter, _hist, _kde, _polygons from ._utils import savefig -from .._utils import PATTERN_NAMES, PATTERN_COLORS, TENSOR_DIM_NAMES -from ..preprocessing import get_points -from ..tools._lp import lp_stats +from .._utils import sync +from ._colors import red2blue, red2blue_dark -@savefig -def qc_metrics(adata, fname=None): +def _prepare_points_df(adata, semantic_vars=None): """ - Plot quality control metric distributions. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - fname : str, optional - Save the figure to specified filename, by default None + Prepare points DataFrame for plotting. This function will concatenate the appropriate semantic variables as columns to points data. """ - color = "lightseagreen" - - fig, axs = plt.subplots(2, 3, figsize=(8, 5)) + points = get_points(adata, key="points") + cols = list(set(["x", "y", "cell"])) - kde_params = dict(color=color, shade=True, legend=False) - - with sns.axes_style("ticks"): - sns.kdeplot(adata.obs["total_counts"], ax=axs[0][0], **kde_params) + if semantic_vars is None or len(semantic_vars) == 0: + return points[cols] + else: + vars = [v for v in semantic_vars if v is not None] + cols.extend(vars) + + # Add semantic variables to points; priority: points, obs, points metadata + for var in vars: + if var in points.columns: + continue + elif var in adata.obs.columns: + points[var] = adata.obs.reindex(points["cell"].values)[var].values + elif var in adata.uns["point_sets"]["points"]: + if len(adata.uns[var].shape) > 1: + raise ValueError(f"Variable {var} is not 1-dimensional") + points[var] = adata.uns[var] + else: + raise ValueError(f"Variable {var} not found in points or obs") - sns.distplot( - adata.X.flatten() + 1, - color=color, - kde=False, - hist_kws=dict(log=True), - ax=axs[0][1], - ) + return points[cols] - sns.kdeplot(adata.obs["n_genes_by_counts"], ax=axs[0][2], **kde_params) - - sns.kdeplot(adata.obs["cell_area"], ax=axs[1][0], **kde_params) - - sns.kdeplot(adata.obs["cell_density"], ax=axs[1][1], **kde_params) - - dual_colors = sns.light_palette(color, n_colors=2, reverse=True) - no_nucleus_count = (adata.obs["nucleus_shape"] == None).sum() - pie_values = [adata.n_obs - no_nucleus_count, no_nucleus_count] - pie_percents = np.array(pie_values) / adata.n_obs * 100 - pie_labels = [ - f"Yes\n{pie_values[0]} ({pie_percents[0]:.1f}%)", - f"No\n{pie_values[1]} ({pie_percents[1]:.1f}%)", - ] - axs[1][2].pie(pie_values, labels=pie_labels, colors=dual_colors) - pie_inner = plt.Circle((0, 0), 0.6, color="white") - axs[1][2].add_artist(pie_inner) - - sns.despine() - - titles = [ - "Transcripts per Cell", - "Transcripts per Gene", - "Genes per Cell", - "Cell Area", - "Transcript Density", - "Cell has Nucleus", - ] - xlabels = [ - "mRNA count", - "Gene count", - "Gene count", - "Pixels", - "Transcripts/pixel", - "", - ] - - for i, ax in enumerate(np.array(axs).reshape(-1)): - # ax.ticklabel_format(axis='y', style='sci', scilimits=(-2,2)) - ax.yaxis.set_major_formatter(mpl.ticker.FormatStrFormatter("%1.e")) - ax.set_xlabel(xlabels[i], fontsize=12) - ax.set_title(titles[i], fontsize=14) - ax.grid(False) - - plt.tight_layout() +def _setup_ax( + ax=None, + dx=0.1, + units="um", + square=False, + axis_visible=False, + frame_visible=True, + **kwargs, +): + """Setup axis for plotting. TODO make decorator?""" + if ax is None: + ax = plt.gca() -@savefig -def lp_dist(data, percentage=False, scale=1, fname=None): - """Plot pattern combination frequencies as an UpSet plot. + # Infer font color from theme + edgecolor = sns.axes_style()["axes.edgecolor"] - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - percentage : bool, optional - If True, label each bar as a percentage else label as a count, by default False - scale : int, optional - scale > 1 scales the plot larger, scale < 1 scales. the plot smaller, by default 1 - fname : str, optional - Save the figure to specified filename, by default None - """ - sample_labels = [] - for p in PATTERN_NAMES: - p_df = data.to_df(p).reset_index().melt(id_vars="cell") - p_df = p_df[~p_df["value"].isna()] - p_df = p_df.set_index(["cell", "gene"]) - sample_labels.append(p_df) - - sample_labels = pd.concat(sample_labels, axis=1) == 1 - sample_labels = sample_labels == 1 - sample_labels.columns = PATTERN_NAMES - - # Drop unlabeled samples - # sample_labels = sample_labels[sample_labels.sum(axis=1) > 0] - - # Sort by degree, then pattern name - sample_labels["degree"] = -sample_labels[PATTERN_NAMES].sum(axis=1) - sample_labels = ( - sample_labels.reset_index() - .sort_values(["degree"] + PATTERN_NAMES, ascending=False) - .drop("degree", axis=1) + scalebar = ScaleBar( + dx, + units, + location="lower right", + box_alpha=0, + color=edgecolor, + frameon=False, + scale_loc="top", ) + ax.add_artist(scalebar) - upset = UpSet( - from_indicators(PATTERN_NAMES, data=sample_labels), - element_size=scale * 40, - min_subset_size=sample_labels.shape[0] * 0.001, - facecolor="lightgray", - sort_by=None, - show_counts=(not percentage), - show_percentages=percentage, - ) + ax_kws = dict(aspect=1, box_aspect=None) + + if not axis_visible: + ax_kws.update( + dict( + xticks=[], + yticks=[], + xticklabels=[], + yticklabels=[], + ylabel=None, + xlabel=None, + xmargin=0.01, + ymargin=0.01, + ) + ) - for p, color in zip(PATTERN_NAMES, PATTERN_COLORS): - if sample_labels[p].sum() > 0: - upset.style_subsets(present=p, max_degree=1, facecolor=color) + if square: + ax_kws["box_aspect"] = 1 - upset.plot() - plt.suptitle(f"Localization Patterns\n{data.n_obs} cells, {data.n_vars} genes") + ax_kws.update(kwargs) + plt.setp(ax, **ax_kws) + ax.spines[["top", "right", "bottom", "left"]].set_visible(frame_visible) + return ax -@savefig -def lp_gene_dist(data, fname=None): - """Plot the cell fraction distribution of each pattern as a density plot. - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - fname : str, optional - Save the figure to specified filename, by default None - """ - lp_stats(data) - - col_names = [f"{p}_fraction" for p in PATTERN_NAMES] - gene_frac = data.var[col_names] - gene_frac.columns = PATTERN_NAMES - # Plot frequency distributions - sns.displot( - data=gene_frac, - kind="kde", - multiple="layer", - height=3, - palette=PATTERN_COLORS, +@savefig +def points( + data, + batch=None, + hue=None, + size=None, + style=None, + shapes=None, + hide_outside=True, + title=None, + dx=0.1, + units="um", + square=False, + axis_visible=False, + frame_visible=True, + ax=None, + shapes_kws=dict(), + fname=None, + **kwargs, +): + # Default use first obs batch + if batch is None: + batch = data.obs["batch"].iloc[0] + adata = data[data.obs["batch"] == batch] + title = f"batch {batch}" if not title else title + + ax = _setup_ax( + ax=ax, + dx=dx, + units=units, + square=square, + axis_visible=axis_visible, + frame_visible=frame_visible, + title=title, ) - plt.xlim(0, 1) - sns.despine() + + points = _prepare_points_df(adata, semantic_vars=[hue, size, style]) + _scatter(points, hue=hue, size=size, style=style, ax=ax, **kwargs) + _shapes(adata, shapes=shapes, hide_outside=hide_outside, ax=ax, **shapes_kws) @savefig -def lp_genes( +def density( data, - kind="scatter", - hue="Pattern", - sizes=(2, 100), - gridsize=20, - random_state=4, + batch=None, + kind="hist", + hue=None, + shapes=None, + hide_outside=True, + axis_visible=False, + frame_visible=True, + title=None, + dx=0.1, + units="um", + square=False, ax=None, + shape_kws=dict(), fname=None, **kwargs, ): - """ - Plot the pattern distribution of each gene in a RadViz plot. RadViz projects - an N-dimensional data set into a 2D space where the influence of each dimension - can be interpreted as a balance between the influence of all dimensions. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - kind : str - 'Scatter' for scatter plot, 'hex' for hex plot, default "scatter" - hue : str - Name of columns in data.obs to color points, default "Pattern" - sizes : tuple - Minimum and maximum point size to scale points, default (2, 100) - gridsize : int - Number of hex bins along each axis, default 20 - fname : str, optional - Save the figure to specified filename, by default None - **kwargs - Options to pass to matplotlib plotting method. - """ - lp_stats(data) - - palette = dict(zip(PATTERN_NAMES, PATTERN_COLORS)) + # Default use first obs batch + if batch is None: + batch = data.obs["batch"].iloc[0] + adata = data[data.obs["batch"] == batch] + title = f"batch {batch}" if title is None else title + + ax = _setup_ax( + ax=ax, + dx=dx, + units=units, + square=square, + axis_visible=axis_visible, + frame_visible=frame_visible, + title=title, + ) - # RADVIZ plot - if not ax: - figsize = (6, 6) - fig = plt.figure(figsize=figsize) + points = _prepare_points_df(adata, semantic_vars=[hue]) + if kind == "hist": + _hist(points, hue=hue, ax=ax, **kwargs) + elif kind == "kde": + _kde(points, hue=hue, ax=ax, **kwargs) - # Use Plot the "circular" axis and labels, hide points - # TODO move "pattern" computation to lp_stats - col_names = [f"{p}_fraction" for p in PATTERN_NAMES] - gene_frac = data.var[col_names] - gene_frac.columns = PATTERN_NAMES - gene_frac["Pattern"] = gene_frac.idxmax(axis=1) - gene_frac_copy = gene_frac.copy() - gene_frac_copy["Pattern"] = "" - - if hue and hue != "Pattern": - gene_frac = gene_frac.join(data.var[hue]) - - if not ax: - ax = radviz(gene_frac_copy, "Pattern", s=0) - else: - radviz(gene_frac_copy, "Pattern", s=0, ax=ax) - del gene_frac_copy - ax.get_legend().remove() - circle = plt.Circle((0, 0), radius=1, color="black", fill=False) - ax.add_patch(circle) - - # Hide 2D axes - ax.axis(False) - - # Get points - pts = [] - for c in ax.collections: - pts.extend(c.get_offsets().data) - - pts = np.array(pts).reshape(-1, 2) - xy = pd.DataFrame(pts, index=gene_frac.index) - xy["Pattern"] = gene_frac["Pattern"] - - # Plot points as scatter or hex - if kind == "scatter": - - del ax.collections[0] - - # Scale point size by max - xy["Fraction of cells"] = gene_frac.iloc[:, :5].max(axis=1) - - # Plot points - sns.scatterplot( - data=xy.sample(frac=1, random_state=random_state), - x=0, - y=1, - size="Fraction of cells", - hue=hue, - sizes=sizes, - linewidth=0, - palette=palette, - ax=ax, - **kwargs, - ) - plt.legend(bbox_to_anchor=(1.05, 0.5), loc="center left", frameon=False) - - elif kind == "hex": - # Hexbin - xy.plot.hexbin( - x=0, - y=1, - gridsize=gridsize, - extent=(-1, 1, -1, 1), - cmap=sns.light_palette("lightseagreen", as_cmap=True), - mincnt=1, - colorbar=False, - ax=ax, - **kwargs, - ) - # [left, bottom, width, height] - plt.colorbar( - ax.collections[-1], cax=fig.add_axes([1, 0.4, 0.05, 0.3]), label="genes" - ) + _shapes(adata, shapes=shapes, hide_outside=hide_outside, ax=ax, **shape_kws) @savefig -def lp_diff(data, phenotype, fname=None): - """Visualize gene pattern frequencies between groups of cells by plotting - log2 fold change and -log10p, similar to volcano plot. Run after `bento.tl.lp_diff()` - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - phenotype : str - Variable used to group cells when calling `bento.tl.lp_diff()`. - fname : str, optional - Save the figure to specified filename, by default None - """ - diff_stats = data.uns[f"diff_{phenotype}"] - - g = sns.relplot( - data=diff_stats, - x=f"log2fc", - y="-log10padj", - size=4, - hue="pattern", - col="phenotype", - col_wrap=3, - height=2.5, - palette="tab10", - s=20, - linewidth=0, +def flux( + data, + batch=None, + res=0.05, + shapes=None, + hide_outside=True, + axis_visible=False, + frame_visible=True, + title=None, + dx=0.1, + units="um", + square=False, + ax=None, + shape_kws=dict(), + fname=None, + **kwargs, +): + # Default use first obs batch + if batch is None: + batch = data.obs["batch"].iloc[0] + adata = data[data.obs["batch"] == batch] + title = f"batch {batch}" if not title else title + + ax = _setup_ax( + ax=ax, + dx=dx, + units=units, + square=square, + axis_visible=axis_visible, + frame_visible=frame_visible, + title=title, ) - for ax in g.axes: - ax.axvline(0, lw=0.5, c="grey") # -log2fc = 0 - ax.axvline(-2, lw=1, c="pink", ls="dotted") # log2fc = -2 - ax.axvline(2, lw=1, c="pink", ls="dotted") # log2fc = 2 - ax.axhline( - -np.log10(0.05), c="pink", ls="dotted", zorder=0 - ) # line where FDR = 0.05 - sns.despine() - - return g + _raster(adata, res=res, color="flux_color", ax=ax, **kwargs) + _shapes(adata, shapes=shapes, hide_outside=hide_outside, ax=ax, **shape_kws) @savefig -def cellplot( - adata, - hue=None, - kind="hist", - col="batch", - legend=True, - palette=None, - hue_order=None, - hue_norm=None, - col_wrap=None, - col_order=None, - shape_names=["cell_shape", "nucleus_shape"], +def fe( + data, + gs, + batch=None, + res=0.05, + shapes=None, + cmap=None, + cbar=True, + hide_outside=True, + axis_visible=False, + frame_visible=True, + title=None, dx=0.1, units="um", - height=6, - facet_kws=None, + square=False, + ax=None, + shape_kws=dict(), fname=None, **kwargs, ): - # Get points - points = get_points(adata, asgeo=False) - - # Add all shape_names if None - if shape_names == None: - shape_names = adata.obs.columns[adata.obs.columns.str.endswith("_shape")] + # Default use first obs batch + if batch is None: + batch = data.obs["batch"].iloc[0] + adata = data[data.obs["batch"] == batch] + sync(adata) + title = f"batch {batch}" if not title else title + + ax = _setup_ax( + ax=ax, + dx=dx, + units=units, + square=square, + axis_visible=axis_visible, + frame_visible=frame_visible, + title=title, + ) - # Convert shape_names to list - shape_names = [shape_names] if isinstance(shape_names, str) else shape_names + if cmap is None: + if sns.axes_style()["axes.facecolor"] == "white": + cmap = red2blue + elif sns.axes_style()["axes.facecolor"] == "black": + cmap = red2blue_dark - # Get obs attributes starting with shapes - obs_attrs = list(shape_names) + _raster(adata, res=res, color=gs, cmap=cmap, cbar=cbar, ax=ax, **kwargs) + _shapes(adata, shapes=shapes, hide_outside=hide_outside, ax=ax, **shape_kws) - # Include col if exists - if col and (col == "cell" or (col in adata.obs.columns and col in points.columns)): - obs_attrs.append(col) - else: - col = None - - obs_attrs = list(set(obs_attrs)) - - # Get shapes - shapes = adata.obs.reset_index()[obs_attrs] - - if col: - # Make sure col is same type across points and shapes - if points[col].dtype != shapes[col].dtype: - points[col] = points[col].astype(str) - shapes[col] = shapes[col].astype(str) - - # Subset to specified col values only; less filtering = faster plotting - if col_order: - points = points[points[col].isin(col_order)] - shapes = shapes[shapes[col].isin(col_order)] - - # Remove unused categories in points - if col or hue: - for cat in points.columns: - points[cat] = ( - points[cat].cat.remove_unused_categories() - if points[cat].dtype == "category" - else points[cat] - ) - # Convert shapes to GeoDataFrames AFTER filtering - shapes = geopandas.GeoDataFrame(shapes, geometry="cell_shape") - - # Get updated - kws = dict(sharex=False, sharey=False) - if isinstance(facet_kws, dict): - kws.update(facet_kws) - - # https://stackoverflow.com/questions/32633322/changing-aspect-ratio-of-subplots-in-matplotlib - g = sns.FacetGrid( - points, - col=col, - hue=hue, - legend_out=legend, - palette=palette, - hue_order=hue_order, - col_wrap=col_wrap, - col_order=col_order, - height=height, - aspect=1, - margin_titles=False, - **kws, +@savefig +def shapes( + data, + batch=None, + shapes=None, + color=None, + color_style="outline", + hide_outside=True, + dx=0.1, + units="um", + axis_visible=False, + frame_visible=True, + title=None, + square=False, + ax=None, + fname=None, + **kwargs, +): + # Default use first obs batch + if batch is None: + batch = data.obs["batch"].iloc[0] + adata = data[data.obs["batch"] == batch] + title = f"batch {batch}" if not title else title + + ax = _setup_ax( + ax=ax, + dx=dx, + units=units, + square=square, + axis_visible=axis_visible, + frame_visible=frame_visible, + title=title, ) - if kind == "scatter": - scatter_kws = dict(linewidth=0, s=5) - scatter_kws.update(**kwargs) - g.map_dataframe(sns.scatterplot, x="x", y="y", **scatter_kws) - elif kind == "hist": - hist_kws = dict(cmap="viridis", binwidth=15) - hist_kws.update(**kwargs) - g.map_dataframe(sns.histplot, x="x", y="y", **hist_kws) - elif kind == "hex": - hex_kws = dict(cmap="viridis", mincnt=1, linewidth=0, gridsize=100) - hex_kws.update(**kwargs) - g.map_dataframe(plt.hexbin, x="x", y="y", **hex_kws) - - if shapes.shape[0] > 0: - if col: - shapes = shapes.groupby(col) - - # Get max ax radius across groups - ax_radii = [] - for k, ax in g.axes_dict.items(): - s = shapes.get_group(k) - # Determine fixed radius of each subplot - cell_bounds = s.bounds - cell_maxw = cell_bounds["maxx"].max() - cell_bounds["minx"].min() - cell_maxh = cell_bounds["maxy"].max() - cell_bounds["miny"].min() - ax_radius = 1.1 * (max(cell_maxw, cell_maxh) / 2) - ax_radii.append(ax_radius) - - ax_radius = max(ax_radii) - - for k, ax in tqdm(g.axes_dict.items()): - s = shapes.get_group(k) - shape_subplot(s, shape_names, dx, units, ax_radius=ax_radius, ax=ax) - - else: - shape_subplot(shapes, shape_names, dx, units, ax=g.ax) - - if legend: - g.add_legend() - - g.set_titles(template="") - - # box_aspect for Axes, aspect for data - g.set( - xticks=[], - yticks=[], - xlabel=None, - ylabel=None, - xmargin=0, - ymargin=0, - facecolor="black", - box_aspect=1, - aspect=1, + if shapes and not isinstance(shapes, list): + shapes = [shapes] + + _shapes( + adata, + shapes=shapes, + color=color, + color_style=color_style, + hide_outside=hide_outside, + ax=ax, + **kwargs, ) - g.tight_layout() -def shape_subplot(data, shape_names, dx, units, ax, ax_radius=None): - # Gather all shapes and plot - all_shapes = geopandas.GeoSeries(data[shape_names].values.flatten()) - all_shapes.plot( - color=(0, 0, 0, 0), edgecolor=(1, 1, 1, 0.8), lw=1, aspect=None, ax=ax - ) +def _shapes( + data, + shapes=None, + color=None, + color_style="outline", + hide_outside=True, + ax=None, + **kwargs, +): + """Plot layer(s) of shapes. - # Set axes boundaries to be square; make sure size of cells are relative to one another - if ax_radius: - s_bound = data.bounds - centerx = np.mean([s_bound["minx"].min(), s_bound["maxx"].max()]) - centery = np.mean([s_bound["miny"].min(), s_bound["maxy"].max()]) - ax.set_xlim(centerx - ax_radius, centerx + ax_radius) - ax.set_ylim(centery - ax_radius, centery + ax_radius) + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + shapes : list, optional + List of shapes to plot, by default None. If None, will plot cell and nucleus shapes by default. + color : str, optional + Color name, by default None. If None, will use default theme color. + color_style : "outline" or "fill" + Whether to color the outline or fill of the shape, by default "outline". + hide_outside : bool, optional + Whether to hide molecules outside of cells, by default True. + ax : matplotlib.axes.Axes, optional + Axis to plot on, by default None. If None, will use current axis. + """ + if shapes is None: + shapes = ["cell", "nucleus"] - for spine in ax.spines.values(): - spine.set(edgecolor="white", linewidth=1) + shape_names = [] + for s in shapes: + if str(s).endswith("_shape"): + shape_names.append(s) + else: + shape_names.append(f"{s}_shape") + + # Save list of names to remove if not in data.obs + shape_names = [name for name in shape_names if name in data.obs.columns] + missing_names = [name for name in shape_names if name not in data.obs.columns] + + if len(missing_names) > 0: + warnings.warn("Shapes not found in data: " + ", ".join(missing_names)) + + geo_kws = dict(edgecolor="none", facecolor="none") + if color_style == "outline": + geo_kws["edgecolor"] = color + geo_kws["facecolor"] = "none" + elif color_style == "fill": + geo_kws["facecolor"] = color + geo_kws["edgecolor"] = "black" + geo_kws.update(**kwargs) + + for name in shape_names: + hide = False + if name == "cell_shape" and hide_outside: + hide = True + + _polygons( + data, + name, + hide_outside=hide, + ax=ax, + **geo_kws, + ) - # Create scale bar - scalebar = ScaleBar( - dx, units, location="lower right", color="white", box_alpha=0, scale_loc="top" - ) - ax.add_artist(scalebar) +def fluxmap( + data, + batch=None, + palette="tab10", + hide_outside=True, + ax=None, + fname=None, + **kwargs, +): + """Plot fluxmap shapes in different colors. Wrapper for :func:`bt.pl.shapes()`. -def sig_samples(data, n=5, col_wrap=2): - for f in data.uns["tensor_loadings"][TENSOR_DIM_NAMES[0]]: - top_genes = ( - data.uns["tensor_loadings"]["genes"] - .sort_values(f, ascending=False) - .index.tolist()[:n] - ) + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + batch : str, optional + Batch to plot, by default None. If None, will use first batch. + palette : str or dict, optional + Color palette, by default "tab10". If dict, will use dict to map shape names to colors. + ax : matplotlib.axes.Axes, optional + Axis to plot on, by default None. If None, will use current axis. + fname : str, optional + Filename to save figure to, by default None. If None, will not save figure. + """ - top_cells = ( - data.uns["tensor_loadings"]["cells"] - .sort_values(f, ascending=False) - .index.tolist()[:n] + # Plot fluxmap shapes + if isinstance(palette, dict): + colormap = palette + else: + fluxmap_shapes = [s for s in data.obs.columns if s.startswith("fluxmap")] + fluxmap_shapes.sort() + colors = sns.color_palette(palette, n_colors=len(fluxmap_shapes)) + colormap = dict(zip(fluxmap_shapes, colors)) + + shape_kws = dict(color_style="fill") + shape_kws.update(kwargs) + + for s, c in colormap.items(): + shapes( + data, + batch=batch, + shapes=s, + color=c, + hide_outside=hide_outside, + ax=ax, + **shape_kws, ) - cellplot( - data[top_cells, top_genes], - kind="scatter", - hue="gene", - col="cell", - col_wrap=col_wrap, - height=2, - ) - # plt.suptitle(f) + # Plot base cell and nucleus shapes + shapes(data, batch=batch, ax=ax, fname=fname) diff --git a/bento/plotting/_signatures.py b/bento/plotting/_signatures.py new file mode 100644 index 0000000..c96296a --- /dev/null +++ b/bento/plotting/_signatures.py @@ -0,0 +1,329 @@ +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +import seaborn as sns +from scipy.stats import zscore + +from .._constants import PATTERN_COLORS, PATTERN_PROBS +from ._colors import red2blue, red_light +from ._utils import savefig + + +@savefig +def signatures(adata, rank, fname=None): + """Plot signatures for specified rank across each dimension. + + bento.tl.signatures() must be run first. + + Parameters + ---------- + adata : anndata.AnnData + Spatial formatted AnnData + rank : int + Rank of signatures to plot + fname : str, optional + Path to save figure, by default None + """ + sig_key = f"r{rank}_signatures" + layer_g = sns.clustermap( + np.log2(adata.uns[sig_key] + 1).T, + col_cluster=False, + row_cluster=False, + col_colors=pd.Series(PATTERN_COLORS, index=PATTERN_PROBS), + standard_scale=0, + cmap=red_light, + linewidth=1, + linecolor="black", + figsize=(adata.uns[sig_key].shape[0], adata.uns[sig_key].shape[1] + 1), + ) + sns.despine(ax=layer_g.ax_heatmap, top=False, right=False) + plt.suptitle("Layers") + + gs_shape = adata.varm[sig_key].shape + gene_g = sns.clustermap( + np.log2(adata.varm[sig_key] + 1).T, + row_cluster=False, + cmap=red_light, + standard_scale=0, + figsize=(gs_shape[0], gs_shape[1] + 1), + ) + sns.despine(ax=gene_g.ax_heatmap, top=False, right=False) + plt.suptitle("Genes") + + os_shape = adata.obsm[sig_key].shape + cell_g = sns.clustermap( + np.log2(adata.obsm[sig_key] + 1).T, + row_cluster=False, + col_cluster=True, + standard_scale=0, + xticklabels=False, + # col_colors=pheno_to_color(adata.obs["leiden"], palette="tab20")[1], + cmap=red_light, + figsize=(os_shape[0], os_shape[1] + 1), + ) + sns.despine(ax=cell_g.ax_heatmap, top=False, right=False) + plt.suptitle("Cells") + + +@savefig +def signatures_error(adata, fname=None): + """Plot error for each rank. + + bento.tl.signatures() must be run first. + + Parameters + ---------- + adata : anndata.AnnData + Spatial formatted AnnData + fname : str, optional + Path to save figure, by default None + """ + errors = adata.uns["signatures_error"] + sns.lineplot(data=errors, x="rank", y="rmse", ci=95, marker="o") + sns.despine() + + return errors + + +def colocation( + adata, + rank, + n_top=[None, None, 5], + z_score=[False, True, True], + cut=None, + show_labels=[True, False, True], + cluster=[False, True, False], + self_pairs=False, + figsize=(8, 6), + fname=None, +): + """Plot colocation of signatures for specified rank across each dimension. + + Parameters + ---------- + adata : anndata.AnnData + Spatial formatted AnnData + rank : int + Rank of signatures to plot + n_top : int, optional + Number of top features to plot, by default 10 + z_score : bool, optional + Whether to z-score each column of the matrix, by default False + cut : float, optional + Max cut-off for z-score color mapping, by default None + show_labels : list, optional + Whether to show labels for each dimension, by default [True, False, False] + cluster : list, optional + Whether to cluster rows, by default [False, True, True] + self_pairs : [True, False, "only"], optional + Whether to include self-pairs, value "only" shows only self-pairs, by default True + fname : str, optional + Path to save figure, by default None + """ + factors = adata.uns["factors"][rank].copy() + labels = adata.uns["tensor_labels"].copy() + names = adata.uns["tensor_names"].copy() + + # Perform z-scaling upfront + for i in range(len(factors)): + if isinstance(z_score, list): + z = z_score[i] + else: + z = z_score + + if z: + factors[i] = zscore(factors[i], axis=0) + + pairs = [] + for p in labels["pair"]: + pair = p.split("_") + pairs.append(pair) + + # Filter out self-pairs appropriately + valid_pairs = [True] * len(pairs) + if self_pairs == "only": + valid_pairs = [True if p[0] == p[1] else False for p in pairs] + elif not self_pairs: + valid_pairs = [True if p[0] != p[1] else False for p in pairs] + + valid_pairs = np.array(valid_pairs) + + factors[2] = factors[2][valid_pairs] + labels["pair"] = labels["pair"][valid_pairs] + + if self_pairs == "only": + labels["pair"] = [p.split("_")[0] for p in labels["pair"]] + + factor( + factors, + labels, + names, + n_top=n_top, + cut=cut, + show_labels=show_labels, + cluster=cluster, + figsize=figsize, + fname=fname, + ) + + +@savefig +def factor( + factors, + labels, + names, + n_top=False, + cut=None, + show_labels=False, + cluster=True, + figsize=None, + fname=None, +): + """ + Plot a heatmap representation of a loadings matrix, optionally z-scored and subsetted to the n_top rows of each factor. + + Parameters + ---------- + factors : list of np.ndarray + List of factors to plot, in the order [layers, cells, *] + labels : dict + Dict of {name: labels} for each factor + names : list of str + List of names for each factor, in the order [layers, cells, *] + n_top : int or list of int, optional + Number of top features to plot, by default None. If None, all features are plotted. + show_labels : bool or list of bool, optional + Whether to show labels, by default None. If None, labels are shown. + cluster : bool or list of bool, optional + Whether to cluster rows, by default False. If False, rows are not clustered. + """ + n_factors = len(factors) + fig, axes = plt.subplots( + 1, + n_factors, + figsize=figsize, + gridspec_kw=dict( + width_ratios=[1] + [4] * (n_factors - 1), + wspace=0.05, + ), + layout="constrained", + ) + + for i, name in enumerate(names): + factor = factors[i] + feature_labels = labels[name] + factor = pd.DataFrame(factor, index=feature_labels) + factor.columns.name = "Factors" + + name = names[i] + + if isinstance(n_top, list): + n = n_top[i] + else: + n = n_top + + if isinstance(cut, list): + cu = cut[i] + else: + cu = cut + + if isinstance(show_labels, list): + show_l = show_labels[i] + else: + show_l = show_labels + + if isinstance(cluster, list): + c = cluster[i] + else: + c = cluster + + if i == 0: + factor = factor.T + square = True + else: + square = False + + _plot_loading( + factor, + name=name, + n_top=n, + cut=cu, + show_labels=show_l, + cluster=c, + ax=axes[i], + square=square, + ) + + +def _plot_loading(df, name, n_top, cut, show_labels, cluster, ax, **kwargs): + """ + Plot a heatmap representation of a loadings matrix, optionally z-scored and subsetted to the n_top rows of each factor. + + Parameters + ---------- + df : np.ndarray + Matrix to plot + name : str + Name of factor + n_top : int + Number of top features to plot + cut : float + Cut-off for z-score color mapping + show_labels : bool + Whether to show row labels + cluster : bool + Whether to cluster rows + ax : matplotlib.axes.Axes + Axes to plot heatmap on + cbar_ax : matplotlib.axes.Axes + Axes to plot colorbar on + kwargs : dict + Additional keyword arguments to pass to sns.heatmap + """ + + # Optionally z-score each column + cmap = red_light + center = None + vmin = None + vmax = None + if df.min().min() < 0: + cmap = red2blue + center = 0 + + # Optionally set cut-off for z-score color mapping + if cut: + vmin = max(-abs(cut), df.min().min()) + vmax = min(abs(cut), df.max().max()) + + # Subset to factor + if n_top: + top_indices = [] + for col in df.columns: + top_indices.extend( + df.sort_values(col, ascending=False).head(n_top).index.tolist() + ) + df = df.loc[top_indices] + + # Get hierarchical clustering row order + if cluster: + row_order = sns.clustermap(df, col_cluster=False).dendrogram_row.reordered_ind + plt.close() + df = df.iloc[row_order] + + # Plot heatmap + sns.heatmap( + df, + center=center, + cmap=cmap, + cbar_kws=dict(shrink=0.5, aspect=10), + yticklabels=show_labels, + vmin=vmin, + vmax=vmax, + ax=ax, + rasterized=True, + **kwargs, + ) + + ax.set_yticklabels(ax.get_yticklabels(), rotation=0) + ax.set_title(f"{name}: [{df.shape[0]} x {df.shape[1]}]") + sns.despine(ax=ax, right=False, top=False) diff --git a/bento/plotting/_tensor_tools.py b/bento/plotting/_tensor_tools.py deleted file mode 100644 index 31ac491..0000000 --- a/bento/plotting/_tensor_tools.py +++ /dev/null @@ -1,181 +0,0 @@ -from sklearn.preprocessing import LabelEncoder, MinMaxScaler - -import matplotlib.pyplot as plt -import seaborn as sns -import pandas as pd -import numpy as np - -from .._utils import TENSOR_DIM_NAMES, PATTERN_COLORS -from ._utils import savefig - - -def _get_loading(data, load, dim, scale): - - if dim == TENSOR_DIM_NAMES[0]: - cluster_labels = np.zeros(len(load)) - unit_order = load.index - - elif dim == TENSOR_DIM_NAMES[1]: - cluster_labels = data.obs["td_cluster"].sort_values().dropna() - unit_order = cluster_labels.index.tolist() - elif dim == TENSOR_DIM_NAMES[2]: - cluster_labels = data.var["td_cluster"].sort_values().dropna() - unit_order = cluster_labels.index.tolist() - - load_df = pd.DataFrame( - [ - range(load.shape[0]), - load.loc[unit_order], - cluster_labels, - load.index.tolist(), - ], - index=["index", "load", "group", "sample"], - ).T - load_df = load_df.astype({"index": int, "load": float, "group": str, "sample": str}) - - if scale: - load_df["load"] = MinMaxScaler().fit_transform(load_df[["load"]]) - - load_df["group"] = ( - load_df["group"].str.replace("Factor", "Group").astype("category") - ) - return load_df - - -@savefig -def lp_signatures(data, scale=True, fname=None): - factors = list(data.uns["tensor_loadings"][TENSOR_DIM_NAMES[0]].columns) - n_factors = len(factors) - n_dims = len(TENSOR_DIM_NAMES) - - fig = plt.figure(figsize=(3 * n_dims, n_factors)) - - # Create grid such that there is space between each row (factor), an extra row above and below everything, and an extra column for legends - gs = fig.add_gridspec( - n_factors, - n_dims + 1, - width_ratios=[0.5, 1, 1, 0.1], - hspace=0.2, - wspace=0.2 - ) - - PATTERN_COL = 0 - LEGEND_COL = n_dims - FACTOR_ROWS = [i for i in range(n_factors)] - - # Plot pattern loadings as barplot - for factor, row in zip(factors, FACTOR_ROWS): - if row == FACTOR_ROWS[0]: - ax = fig.add_subplot(gs[row, PATTERN_COL]) - else: - ax = fig.add_subplot(gs[row, PATTERN_COL], sharex=fig.axes[0]) - - pattern_dim = TENSOR_DIM_NAMES[0] - load = data.uns["tensor_loadings"][pattern_dim][factor] - load_df = _get_loading(data, load, pattern_dim, scale=False) - - # Feature barplots - ax.bar( - x=load.index.fillna("na").tolist(), - height=load_df["load"], - color=PATTERN_COLORS, - # alpha=0.5, - # ax=ax, - ) - - if row == FACTOR_ROWS[0]: - ax.set_title(str(pattern_dim).capitalize(), weight="600") - - # Set row labels - ax.set_ylabel(factor, labelpad=3.5*len(factor), rotation=0, weight="600") - - # Turn off xlabels except bottom row - if factor != factors[-1]: - ax.set(xlabel=None) - else: - ax.set(xlabel="loading") - - # Turn off yticks - ax.set(xticklabels=[]) - ax.tick_params(axis="x", which="both", length=3) - - # Format spines - sns.despine(ax=ax, left=True) - ax.spines["bottom"].set_color("#aaaaaa") - - # Plot cell and gene loadings as heatmaps - for factor, row in zip(factors, FACTOR_ROWS): - # Populate index 1 and 2 columns - for col, dim in zip(range(1, n_dims), TENSOR_DIM_NAMES[1:]): - - ax = fig.add_subplot(gs[row, col]) - load = data.uns["tensor_loadings"][dim][factor] - load_df = _get_loading(data, load, dim, scale) - - # Plot column title if first row - if row == FACTOR_ROWS[0]: - ax0 = fig.add_subplot(gs[0, col]) - ax0.set_title(f"{str(dim).capitalize()} ({len(load)})", weight="600") - ax0.axis("off") - - # Plot colorbar for cell column - if row == FACTOR_ROWS[0] and col == 1: - cbar = True - cbar_ax = fig.add_subplot(gs[FACTOR_ROWS[0], n_dims]) - cmap = 'Purples' - # Plot colorbar for gene column - elif row == FACTOR_ROWS[0] and col == 2 and not scale: - cbar = True - cbar_ax = fig.add_subplot(gs[FACTOR_ROWS[1], n_dims]) - else: - cbar = False - - # Set colormap for cell loadings - if col == 1: - cmap = 'Purples' - # Set colormap for gene loadings - elif col == 2: - cmap = 'Reds' - - # Colormap limits for zscoring - if scale: - vmin = 0 - vmax = 1 - - # Plot (z-scored) loadings as heatmap - sns.heatmap( - load_df[["load"]].T, - ax=ax, - xticklabels=False, - yticklabels=False, - cmap="RdBu_r", - center=0, - vmin=vmin, - vmax=vmax, - cbar=cbar, - cbar_ax=cbar_ax, - ) - else: - vmin = data.uns['tensor_loadings'][dim].min().min() - vmax = data.uns['tensor_loadings'][dim].max().max() - - # Plot (z-scored) loadings as heatmap - sns.heatmap( - load_df[["load"]].T, - ax=ax, - xticklabels=False, - yticklabels=False, - cmap=cmap, - vmin=vmin, - vmax=vmax, - cbar=cbar, - cbar_ax=cbar_ax, - ) - - # Format heatmap - ax.tick_params(axis="y", which="both", length=0) - ax.set(ylabel=None) - sns.despine(ax=ax, top=False, bottom=False, left=False, right=False) - - - \ No newline at end of file diff --git a/bento/plotting/_utils.py b/bento/plotting/_utils.py index 21ee0ea..ce996c4 100644 --- a/bento/plotting/_utils.py +++ b/bento/plotting/_utils.py @@ -1,7 +1,7 @@ -import matplotlib.pyplot as plt import inspect from functools import wraps +import matplotlib.pyplot as plt def get_default_args(func): @@ -24,14 +24,18 @@ def wrapper(*args, **kwds): kwargs.update(kwds) plot_fn(*args, **kwds) - - fname = kwargs['fname'] - rc = {'svg.fonttype': 'none', 'font.family':'Arial'} + + fname = kwargs["fname"] + rc = { + "svg.fonttype": "none", + "font.family": "sans-serif", + "font.sans-serif": "Arial", + "pdf.fonttype": 42, + } if fname: with plt.rc_context(rc): - plt.savefig(fname, dpi=400) + plt.savefig(fname, dpi=400, pad_inches=0, bbox_inches="tight") + + print(f"Saved to {fname}") - - print(f'Saved to {fname}') - - return wrapper \ No newline at end of file + return wrapper diff --git a/bento/preprocessing/__init__.py b/bento/preprocessing/__init__.py deleted file mode 100755 index 49d4726..0000000 --- a/bento/preprocessing/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from ._preprocessing import get_layers, get_points, set_points diff --git a/bento/preprocessing/_preprocessing.py b/bento/preprocessing/_preprocessing.py deleted file mode 100755 index 094a1de..0000000 --- a/bento/preprocessing/_preprocessing.py +++ /dev/null @@ -1,108 +0,0 @@ -import geopandas as gpd - -from .._utils import track - - -def get_points(data, asgeo=False): - """Get points DataFrame. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData object - asgeo : bool, optional - Cast as GeoDataFrame using columns x and y for geometry, by default False - - Returns - ------- - DataFrame or GeoDataFrame - Returns `data.uns['points']` as a `[Geo]DataFrame` - """ - points = data.uns["points"] - - cells = data.obs_names.tolist() - genes = data.var_names.tolist() - - # Subset for cells - in_cells = points["cell"].isin(cells) - in_genes = points["gene"].isin(genes) - - # Subset for genes - points = points.loc[in_cells & in_genes] - - # Remove unused categories for categorical columns - for col in points.columns: - if points[col].dtype == "category": - points[col].cat.remove_unused_categories(inplace=True) - - # Cast to GeoDataFrame - if asgeo: - points = gpd.GeoDataFrame( - points, geometry=gpd.points_from_xy(points.x, points.y) - ) - - return points - - -@track -def set_points(data, copy=False): - """Set points for the given `AnnData` object, data. Call this setter - to keep the points DataFrame in sync. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData object - copy : bool - Return a copy of `data` instead of writing to data, by default False. - Returns - ------- - _type_ - _description_ - """ - adata = data.copy() if copy else data - points = get_points(adata) - adata.uns["points"] = points - return adata if copy else None - - -def get_layers(data, layers, min_count=None): - """Get values of layers reformatted as a long-form dataframe. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData object - layers : list of str - all values must to be keys in data.layers - min_count : int, default None - minimum number of molecules (count) required to include in output - Returns - ------- - DataFrame - rows are samples indexed as (cell, gene) and columns are features - """ - sample_index = ( - data.to_df() - .reset_index() - .melt(id_vars="cell") - .dropna() - .set_index(["cell", "gene"]) - ) - - if min_count: - sample_index = sample_index[sample_index["value"] >= min_count].drop( - "value", axis=1 - ) - - for layer in layers: - values = ( - data.to_df(layer) - .reset_index() - .melt(id_vars="cell") - .set_index(["cell", "gene"]) - ) - values.columns = [layer] - sample_index = sample_index.join(values) - - return sample_index[layers] diff --git a/bento/tools/__init__.py b/bento/tools/__init__.py index 9fabd91..49495e3 100755 --- a/bento/tools/__init__.py +++ b/bento/tools/__init__.py @@ -1,38 +1,13 @@ -from ._cell_features import ( - analyze_cells, - cell_features, - cell_area, - cell_aspect_ratio, - cell_bounds, - cell_density, - cell_moments, - cell_morph_open, - cell_perimeter, - cell_radius, - cell_span, - is_nuclear, - nucleus_area_ratio, - nucleus_area, - nucleus_aspect_ratio, - nucleus_offset, - raster_cell, -) -from ._colocation import coloc_quotient -from ._lp import PATTERN_MODEL_FEATURE_NAMES, lp, lp_diff, lp_stats -from ._sample_features import ( - analyze_samples, - sample_features, - PointDispersion, - RipleyStats, - ShapeAsymmetry, - ShapeDispersion, - ShapeEnrichment, - ShapeProximity, -) -from ._shapes import inner_edge, outer_edge -from ._tensor_tools import ( - TENSOR_DIM_NAMES, - decompose_tensor, - lp_signatures, - select_tensor_rank, +from ._colocation import coloc_quotient, colocation +from ._composition import comp_diff +from ._flux import flux, fluxmap +from ._flux_enrichment import fe, fe_fazal2019, gene_sets, load_gene_sets +from ._lp import lp, lp_diff, lp_stats +from ._point_features import analyze_points, list_point_features, register_point_feature +from ._shape_features import ( + analyze_shapes, + obs_stats, + register_shape_feature, + list_shape_features, ) +from ._decomposition import decompose, to_tensor diff --git a/bento/tools/_cell_features.py b/bento/tools/_cell_features.py deleted file mode 100755 index 56a21bd..0000000 --- a/bento/tools/_cell_features.py +++ /dev/null @@ -1,506 +0,0 @@ -import geopandas as gpd -import matplotlib.path as mplPath -import numpy as np -from scipy.spatial import distance, distance_matrix -from shapely.geometry import Point -from tqdm.auto import tqdm - -from .._utils import track - - -@track -def analyze_cells(data, feature_names, progress=True, copy=False): - """Compute multiple cell features at once. Convenience function instead of making - separate calls to compute each feature. - - A list of available cell features and their names is stored in the dict `bento.tl.cell_features`. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - feature_names : list of str - list of feature names - copy : bool, optional - _description_, by default False - - Returns - ------- - _type_ - _description_ - """ - adata = data.copy() if copy else data - - if not isinstance(feature_names, list): - feature_names = [feature_names] - - feature_names = list(set(feature_names)) - - if progress: - for f in tqdm(feature_names): - cell_features[f].__wrapped__(adata) - else: - for f in feature_names: - cell_features[f].__wrapped__(adata) - - return adata if copy else None - - -@track -def cell_span(data, copy=False): - """Compute the length of the longest diagonal of each cell. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - copy : bool, optional - Return a copy of `data` instead of writing to data, by default False. - - Returns - ------- - adata : anndata.AnnData - Returns `adata` if `copy=True`, otherwise adds fields to `data`: - - `obs['cell_span']` : float - Length of longest diagonal for each polygon in `obs['cell_shape']` - """ - adata = data.copy() if copy else data - - def get_span(poly): - shape_coo = np.array(poly.coords.xy).T - return int(distance_matrix(shape_coo, shape_coo).max()) - - span = gpd.GeoSeries(data=adata.obs["cell_shape"]).exterior.apply(get_span) - - adata.obs["cell_span"] = span - - return adata if copy else None - - -@track -def cell_bounds(data, copy=False): - """Compute the minimum and maximum coordinate values that bound each cell. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - copy : bool, optional - Return a copy of `data` instead of writing to data, by default False. - - Returns - ------- - adata : anndata.AnnData - Returns `adata` if `copy=True`, otherwise adds fields to `data`: - - `obs['cell_minx']` : float - x-axis lower bound of each polygon in `obs['cell_shape']` - `obs['cell_miny']` : float - y-axis lower bound of each polygon in `obs['cell_shape']` - `obs['cell_maxx']` : float - x-axis upper bound of each polygon in `obs['cell_shape']` - `obs['cell_maxy']` : float - y-axis upper bound of each polygon in `obs['cell_shape']` - """ - adata = data.copy() if copy else data - - bounds = gpd.GeoSeries(data=adata.obs["cell_shape"]).bounds - adata.obs["cell_minx"] = bounds["minx"] - adata.obs["cell_miny"] = bounds["miny"] - adata.obs["cell_maxx"] = bounds["maxx"] - adata.obs["cell_maxy"] = bounds["maxy"] - - return adata if copy else None - - -@track -def cell_moments(data, copy=False): - """Compute the second moment of each cell. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - copy : bool, optional - Return a copy of `data` instead of writing to data, by default False. - - Returns - ------- - adata : anndata.AnnData - Returns `adata` if `copy=True`, otherwise adds fields to `data`: - - `obs['cell_moment']` : float - The second moment for each polygon in `obs['cell_shape']` - """ - adata = data.copy() if copy else data - - if "cell_raster" not in adata.obs: - raster_cell(adata) - - cell_rasters = adata.obs["cell_raster"] - shape_centroids = gpd.GeoSeries(adata.obs["cell_shape"]).centroid - moments = [ - _second_moment(np.array(centroid.xy).reshape(1, 2), cell_raster) - for centroid, cell_raster in zip(shape_centroids, cell_rasters) - ] - - adata.obs["cell_moment"] = moments - - return adata if copy else None - - -def _second_moment(centroid, pts): - """ - Calculate second moment of points with centroid as reference. - Parameters - ---------- - centroid : [1 x 2] float - pts : [n x 2] float - """ - centroid = np.array(centroid).reshape(1, 2) - radii = distance.cdist(centroid, pts) - second_moment = np.sum(radii * radii / len(pts)) - return second_moment - - -def _raster_polygon(poly): - """ - Generate a grid of points contained within the poly. The points lie on - a 2D grid, with vertices spaced 1 unit apart. - """ - minx, miny, maxx, maxy = poly.bounds - x, y = np.meshgrid( - np.arange(minx, maxx, step=float(1)), - np.arange(miny, maxy, step=float(1)), - ) - x = x.flatten() - y = y.flatten() - xy = np.array([x, y]).T - poly_path = mplPath.Path(np.array(poly.exterior.xy).T) - poly_cell_mask = poly_path.contains_points(xy) - xy = xy[poly_cell_mask] - return xy - - -@track -def raster_cell(data, copy=False): - """Generate a grid of points contained within each cell. The points lie on - a 2D grid, with vertices spaced 1 unit apart. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - copy : bool, optional - Return a copy of `data` instead of writing to data, by default False. - - Returns - ------- - adata : anndata.AnnData - Returns `adata` if `copy=True`, otherwise adds fields to `data`: - - `obs['raster']` : np.array - 2D array of grid points for each polygon in `obs['cell_shape']` - """ - adata = data.copy() if copy else data - - raster = adata.obs["cell_shape"].apply(_raster_polygon) - adata.obs["cell_raster"] = raster - - return adata if copy else None - - -def _aspect_ratio(poly): - # get coordinates of min bounding box vertices around polygon - x, y = poly.minimum_rotated_rectangle.exterior.coords.xy - - # get length of bound box sides - edge_length = ( - Point(x[0], y[0]).distance(Point(x[1], y[1])), - Point(x[1], y[1]).distance(Point(x[2], y[2])), - ) - - # length = longest side, width = shortest side - length, width = max(edge_length), min(edge_length) - - # return long / short ratio - return length / width - - -@track -def cell_aspect_ratio(data, copy=False): - """Compute the aspect ratio of the minimum rotated rectangle that contains each cell. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - copy : bool, optional - Return a copy of `data` instead of writing to data, by default False. - - Returns - ------- - adata : anndata.AnnData - Returns `adata` if `copy=True`, otherwise adds fields to `data`: - - `obs['cell_aspect_ratio']` : np.array - Ratio of long / short axis for each polygon in `obs['cell_shape']` - """ - - adata = data.copy() if copy else data - - ar = adata.obs["cell_shape"].apply(lambda poly: _aspect_ratio(poly)) - adata.obs["cell_aspect_ratio"] = ar - - return adata if copy else None - - -@track -def cell_density(data, copy=False): - """Compute the RNA density of each cell. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - copy : bool, optional - Return a copy of `data` instead of writing to data, by default False. - - Returns - ------- - adata : anndata.AnnData - Returns `adata` if `copy=True`, otherwise adds fields to `data`: - - `obs['cell_density']` : np.array - Density (total cell counts / cell area) of each polygon in `obs['cell_shape']` - """ - adata = data.copy() if copy else data - - cell_area.__wrapped__(adata) - - count = adata.X.sum(axis=1) - adata.obs["cell_density"] = count / adata.obs["cell_area"] - - return adata if copy else None - - -@track -def cell_area(data, copy=False): - """Compute the area of each cell. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - copy : bool, optional - Return a copy of `data` instead of writing to data, by default False. - - Returns - ------- - adata : anndata.AnnData - Returns `adata` if `copy=True`, otherwise adds fields to `data`: - - `obs['cell_area']` : np.array - Area of each polygon in `obs['cell_shape']` - """ - adata = data.copy() if copy else data - - # Calculate pixel-wise area - # TODO: unit scale? - area = gpd.GeoSeries(adata.obs["cell_shape"]).area - adata.obs["cell_area"] = area - - return adata if copy else None - - -@track -def cell_perimeter(data, copy=False): - """Compute the perimeter of each cell. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - copy : bool, optional - Return a copy of `data` instead of writing to data, by default False. - - Returns - ------- - adata : anndata.AnnData - Returns `adata` if `copy=True`, otherwise adds fields to `data`: - - `obs['cell_perimeter']` : np.array - Perimeter of each polygon in `obs['cell_shape']` - """ - adata = data.copy() if copy else data - - adata.obs["cell_perimeter"] = gpd.GeoSeries(adata.obs["cell_shape"]).length - - return adata if copy else None - - -@track -def cell_radius(data, overwrite=False, copy=False): - """Compute the radius of each cell. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - copy : bool, optional - Return a copy of `data` instead of writing to data, by default False. - - Returns - ------- - adata : anndata.AnnData - Returns `adata` if `copy=True`, otherwise adds fields to `data`: - - `obs['cell_radius']` : np.array - Radius of each polygon in `obs['cell_shape']` - """ - adata = data.copy() if copy else data - - if not overwrite and "cell_radius" in adata.obs.columns: - return adata if copy else None - - cells = gpd.GeoSeries(adata.obs["cell_shape"]) - - # Get average distance of cell boundary to centroid - cell_radius = cells.apply( - lambda c: distance.cdist( - np.array(c.centroid).reshape(1, 2), np.array(c.exterior.xy).T - ).mean() - ) - adata.obs["cell_radius"] = cell_radius - - return adata if copy else None - - -@track -def cell_morph_open(data, proportion, overwrite=False, copy=False): - """Compute the opening (morphological) of distance d for each cell. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - copy : bool, optional - Return a copy of `data` instead of writing to data, by default False. - - Returns - ------- - adata : anndata.AnnData - Returns `adata` if `copy=True`, otherwise adds fields to `data`: - - `obs['cell_open_{d}_shape']` : Polygons - Ratio of long / short axis for each polygon in `obs['cell_shape']` - """ - adata = data.copy() if copy else data - - shape_name = f"cell_open_{proportion}_shape" - - if not overwrite and shape_name in adata.obs.columns: - return adata if copy else None - - # Compute cell radius as needed - cell_radius.__wrapped__(adata) - - cells = gpd.GeoSeries(adata.obs["cell_shape"]) - d = proportion * data.obs["cell_radius"] - - # Opening - adata.obs[shape_name] = cells.buffer(-d).buffer(d) - - return adata if copy else None - - -@track -def nucleus_area_ratio(data, copy=False): - adata = data.copy() if copy else data - - cell_area.__wrapped__(adata) - nucleus_area.__wrapped__(adata) - adata.obs["nucleus_area_ratio"] = adata.obs["nucleus_area"] / adata.obs["cell_area"] - - return adata if copy else None - - -@track -def nucleus_offset(data, copy=False): - adata = data.copy() if copy else data - - cell_centroid = gpd.GeoSeries(adata.obs["cell_shape"]).centroid - nucleus_centroid = gpd.GeoSeries(adata.obs["nucleus_shape"]).centroid - - cell_radius.__wrapped__(adata) - offset = cell_centroid.distance(nucleus_centroid, align=False) - offset = offset.apply(abs) - - adata.obs["nucleus_offset"] = offset - - return adata if copy else None - - -@track -def nucleus_area(data, copy=False): - adata = data.copy() if copy else data - - adata.obs["nucleus_area"] = gpd.GeoSeries(adata.obs["nucleus_shape"]).area - - return adata if copy else None - - -@track -def nucleus_aspect_ratio(data, copy=False): - adata = data.copy() if copy else data - - ar = adata.obs["nucleus_shape"].apply(lambda poly: _aspect_ratio(poly)) - adata.obs["nucleus_aspect_ratio"] = ar - - return adata if copy else None - - -@track -def is_nuclear(data, shape_name, overwrite=False, copy=False): - """ - Check if shape_name is contained within the nucleus. - TODO speed up with sjoin - """ - adata = data.copy() if copy else data - - shape_prefix = shape_name.split("_shape")[0] - if not overwrite and f"{shape_prefix}_in_nucleus" in adata.obs.columns: - return adata if copy else None - - if shape_name == "nucleus_shape": - adata.obs["nucleus_in_nucleus"] = True - else: - shapes = gpd.GeoSeries(data.obs[shape_name]) - nuclei = gpd.GeoSeries(data.obs["nucleus_shape"]) - - shape_in_nucleus = shapes.within(nuclei) - adata.obs[f"{shape_prefix}_in_nucleus"] = shape_in_nucleus - - return adata if copy else None - - -cell_features = dict( - cell_span=cell_span, - cell_bounds=cell_bounds, - cell_moments=cell_moments, - raster_cell=raster_cell, - cell_aspect_ratio=cell_aspect_ratio, - cell_density=cell_density, - cell_area=cell_area, - cell_perimeter=cell_perimeter, - cell_radius=cell_radius, - cell_morph_open=cell_morph_open, - nucleus_area=nucleus_area, - nucleus_area_ratio=nucleus_area_ratio, - nucleus_aspect_ratio=nucleus_aspect_ratio, - nucleus_offset=nucleus_offset, -) -"""Dict of cell feature names : function. Pass a list of feature name(s) to -`bento.tl.analyze_cells()` to compute them. -""" diff --git a/bento/tools/_colocation.py b/bento/tools/_colocation.py index 6a3815f..142a952 100644 --- a/bento/tools/_colocation.py +++ b/bento/tools/_colocation.py @@ -1,232 +1,247 @@ +from typing import List + +import emoji import numpy as np import pandas as pd -from numpy.random import default_rng -from dask import dataframe as dd -from dask.diagnostics import ProgressBar -from sklearn.neighbors import NearestNeighbors +import seaborn as sns +import sparse +from anndata import AnnData +from kneed import KneeLocator +from tqdm.auto import tqdm + +from .._utils import track +from ..geometry import get_points +from ._neighborhoods import _count_neighbors +from ._decomposition import decompose + + +@track +def colocation( + data: AnnData, + ranks: List[int], + iterations: int = 3, + plot_error: bool = True, + copy: bool = False, +): + """Decompose a tensor of pairwise colocalization quotients into signatures. + + Parameters + ---------- + adata : AnnData + Spatial formatted AnnData object. + ranks : list + List of ranks to decompose the tensor. + iterations : int + Number of iterations to run the decomposition. + plot_error : bool + Whether to plot the error of the decomposition. + copy : bool + Whether to return a copy of the AnnData object. Default False. + Returns + ------- + adata : AnnData + .uns['factors']: Decomposed tensor factors. + .uns['factors_error']: Decomposition error. + """ + adata = data.copy() if copy else data + + print("Preparing tensor...") + _colocation_tensor(adata, copy=copy) + + tensor = adata.uns["tensor"] + + print(emoji.emojize(":running: Decomposing tensor...")) + factors, errors = decompose(tensor, ranks, iterations=iterations) + + if plot_error and errors.shape[0] > 1: + kl = KneeLocator( + errors["rank"], errors["rmse"], direction="decreasing", curve="convex" + ) + kl.plot_knee() + sns.lineplot(data=errors, x="rank", y="rmse", ci=95, marker="o") + + adata.uns["factors"] = factors + adata.uns["factors_error"] = errors + + print(emoji.emojize(":heavy_check_mark: Done.")) + return adata if copy else None + + +def _colocation_tensor(data: AnnData, copy: bool = False): + """ + Convert a dictionary of colocation quotient values in long format to a dense tensor. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData object. + copy : bool + Whether to return a copy of the AnnData object. Default False. + """ + adata = data.copy() if copy else data + + clqs = adata.uns["clq"] + + clq_long = [] + for shape, clq in clqs.items(): + clq["compartment"] = shape + clq_long.append(clq) + + clq_long = pd.concat(clq_long, axis=0) + clq_long["pair"] = ( + clq_long["gene"].astype(str) + "_" + clq_long["neighbor"].astype(str) + ) + + label_names = ["compartment", "cell", "pair"] + labels = dict() + label_orders = [] + for name in label_names: + label, order = np.unique(clq_long[name], return_inverse=True) + labels[name] = label + label_orders.append(order) + + label_orders = np.array(label_orders) + + s = sparse.COO(label_orders, data=clq_long["log_clq"].values) + tensor = s.todense() + print(tensor.shape) + adata.uns["tensor"] = tensor + adata.uns["tensor_labels"] = labels + adata.uns["tensor_names"] = label_names + return adata + + +@track def coloc_quotient( - data, n_neighbors=25, radius=None, min_count=5, permutations=10, copy=False + data: AnnData, + shapes: List[str] = ["cell_shape"], + radius: int = 20, + min_points: int = 10, + min_cells: int = 0, + copy: bool = False, ): - """Calculate pairwise gene colocalization quotient in each cell. Specify either n_neighbors or radius, for knn neighbors or radius neighbors. + """Calculate pairwise gene colocalization quotient in each cell. Parameters ---------- adata : AnnData - Anndata formatted spatial data. - n_neighbors : int - Number of nearest neighbors to consider, default 25 + Spatial formatted AnnData object. + shapes : list + Specify which shapes to compute colocalization separately. radius : int - Max radius to search for neighboring points, default None - min_count : int - Minimum points needed to be eligible for analysis. default 5 - permutations : int - Number of permutations to compute significance TODO account for multiple testing + Unit distance to count neighbors, default 20 + min_points : int + Minimum number of points for sample to be considered for colocalization, default 10 + min_cells : int + Minimum number of cells for gene to be considered for colocalization, default 0 + copy : bool + Whether to return a copy of the AnnData object. Default False. Returns ------- adata : AnnData - .uns['coloc_quotient']: Pairwise gene colocalization similarity within each cell formatted as a long dataframe. + .uns['clq']: Pairwise gene colocalization similarity within each cell formatted as a long dataframe. """ adata = data.copy() if copy else data - points = data.uns["points"][["x", "y", "gene", "cell"]] - points = points[ - points["cell"].isin(data.obs_names) & points["gene"].isin(data.var_names) - ] - - ngroups = points.groupby(["cell"]).ngroups - if ngroups > 0: - npartitions = min(100, ngroups) - - with ProgressBar(): - cell_metrics = ( - dd.from_pandas(points.set_index("cell"), npartitions=npartitions) - .groupby(["cell"]) - .apply( - lambda df: _cell_clq( - df, n_neighbors, radius, min_count, permutations - ), - meta=object, - ) - .compute() - ) - - colnames = { - "neighbor": str, - "neighbor_count": int, - "neighbor_fraction": float, - "quotient": float, - "pvalue": float, - "gene": str, - } - # cell_metrics = cell_metrics.drop('level_1', axis=1).astype(meta) - cell_labels = [ - [cell] * len(v) for cell, v in zip(cell_metrics.index, cell_metrics.values) - ] - cell_labels = np.concatenate(cell_labels) - - cell_metrics = pd.DataFrame(np.concatenate(cell_metrics.values), columns=list(colnames.keys())) - cell_metrics = cell_metrics.astype(colnames) - cell_metrics["cell"] = cell_labels - - - adata.uns["coloc_quotient"] = cell_metrics + all_clq = dict() + for shape in shapes: + shape_col = "_".join(str(shape).split("_")[:-1]) + points = get_points(adata, asgeo=False) + points[shape_col] = points[shape_col].astype(str) + points = ( + points.query(f"{shape_col} != '-1'") + .sort_values("cell")[["cell", "gene", "x", "y"]] + .reset_index(drop=True) + ) + + # Keep genes expressed in at least min_cells cells + gene_counts = points.groupby("gene").size() + valid_genes = gene_counts[gene_counts >= min_cells].index + points = points[points["gene"].isin(valid_genes)] + + # Partition so {chunksize} cells per partition + cells, group_loc = np.unique( + points["cell"].astype(str), + return_index=True, + ) + + end_loc = np.append(group_loc[1:], points.shape[0]) + + cell_clqs = [] + for cell, start, end in tqdm( + zip(cells, group_loc, end_loc), desc=shape, total=len(cells) + ): + cell_points = points.iloc[start:end] + cell_clq = _cell_clq(cell_points, adata.n_vars, radius, min_points) + cell_clq["cell"] = cell + + cell_clqs.append(cell_clq) + + cell_clqs = pd.concat(cell_clqs) + cell_clqs[["cell", "gene", "neighbor"]] = ( + cell_clqs[["cell", "gene", "neighbor"]].astype(str).astype("category") + ) + cell_clqs["log_clq"] = cell_clqs["clq"].replace(0, np.nan).apply(np.log2) + + # Save to uns['clq'] as adjacency list + all_clq[shape] = cell_clqs + + adata.uns["clq"] = all_clq return adata if copy else None -def _cell_clq(cell_points, n_neighbors, radius, min_count, permutations): +def _cell_clq(cell_points, n_genes, radius, min_points): # Count number of points for each gene - counts = cell_points["gene"].value_counts() + gene_counts = cell_points["gene"].value_counts() - # Only keep genes >= min_count - counts = counts[counts >= min_count] - valid_genes = counts.sort_index().index.tolist() - counts = counts[valid_genes] + # Keep genes with at least min_count + gene_counts = gene_counts[gene_counts >= min_points] + + if len(gene_counts) < 2: + return pd.DataFrame() # Get points - valid_points = cell_points[cell_points["gene"].isin(valid_genes)] - n_points = valid_points.shape[0] + valid_points = cell_points[cell_points["gene"].isin(gene_counts.index)] # Cleanup gene categories - valid_points["gene"] = valid_points["gene"].cat.remove_unused_categories() - - # Get neighbors within fixed outer_radius for every point - if n_neighbors: - nn = NearestNeighbors(n_neighbors=n_neighbors).fit(valid_points[["x", "y"]]) - point_index = nn.kneighbors(valid_points[["x", "y"]], return_distance=False) - elif radius: - nn = NearestNeighbors(radius=radius).fit(valid_points[["x", "y"]]) - point_index = nn.radius_neighbors( - valid_points[["x", "y"]], return_distance=False - ) + # valid_points["gene"] = valid_points["gene"].cat.remove_unused_categories() + + # Count number of source points that have neighbor gene + point_neighbors = _count_neighbors( + valid_points, n_genes, radius=radius, agg="binary" + ).toarray() + neighbor_counts = ( + pd.DataFrame(point_neighbors, columns=valid_points["gene"].cat.categories) + .groupby(valid_points["gene"].values) + .sum() + .reset_index() + .melt(id_vars="index") + .query("value > 0") + ) + neighbor_counts.columns = ["gene", "neighbor", "count"] + clq_df = _clq_statistic(neighbor_counts, gene_counts) + + return clq_df + + +def _clq_statistic(neighbor_counts, counts): + """ + Compute the colocation quotient for each gene pair. - # Flatten adjacency list to pairs - source_index = [] - neighbor_index = [] - for source, neighbors in zip(range(valid_points.shape[0]), point_index): - source_index.extend([source] * len(neighbors)) - neighbor_index.extend(neighbors) - - source_index = np.array(source_index) - neighbor_index = np.array(neighbor_index) - - # Remove self neighbors - is_self = source_index == neighbor_index - source_index = source_index[~is_self] - neighbor_index = neighbor_index[~is_self] - - # Remove duplicate neighbors - _, is_uniq = np.unique(neighbor_index, return_index=True) - source_index = source_index[is_uniq] - neighbor_index = neighbor_index[is_uniq] - - # Index to gene mapping; dict for fast lookup - index2gene = valid_points["gene"].reset_index(drop=True).to_dict() - - # Map to genes - source_genes = np.array([index2gene[i] for i in source_index]) - neighbor_genes = np.array([index2gene[i] for i in neighbor_index]) - - # Preshuffle neighbors for permutations - perm_neighbors = [] - if permutations > 0: - # Permute neighbors - rng = default_rng() - for i in range(permutations): - perm_neighbors.append(rng.permutation(neighbor_genes)) - - neighbor_space = {g: 0 for g in valid_genes} - - # Iterate across genes - stats_list = [] - - for cur_gene, cur_total in zip(valid_genes, counts[valid_genes]): - - # Select pairs where source = gene of interest - cur_neighbor_genes = neighbor_genes[source_genes == cur_gene] - - # Count neighbors - obs_genes, obs_count = np.unique(cur_neighbor_genes, return_counts=True) - - # Save counts and order with dict - obs_space = neighbor_space.copy() - obs_space.update(zip(obs_genes, obs_count)) - obs_count = np.array(list(obs_space.values())) - - # Calculate colocation quotient for all neighboring genes - # print(obs_count, counts) - obs_quotient = (obs_count / cur_total) / ((counts - 1) / (n_points - 1)) - obs_quotient = np.expand_dims(obs_quotient, 0) - - obs_fraction = obs_count / counts - - # Perform permutations for significance - if permutations > 0: - perm_counts = [] - for i in range(permutations): - # Count neighbors - perm_genes, perm_count = np.unique( - perm_neighbors[i], return_counts=True - ) - - # Save counts - perm_space = neighbor_space.copy() - perm_space.update(dict(zip(perm_genes, perm_count))) - perm_counts.append(np.array(list(perm_space.values()))) - - # (permutations, len(valid_genes)) array - perm_counts = np.array(perm_counts) - - # Calculate colocation quotient - perm_quotients = (perm_counts / cur_total) / ( - (counts.values - 1) / (n_points - 1) - ) - - # Fraction of times statistic is greater than permutations - pvalue = ( - 2 - * np.array( - [ - np.greater_equal(obs_quotient, perm_quotients).sum(axis=0), - np.less_equal(obs_quotient, perm_quotients).sum(axis=0), - ] - ).min(axis=0) - / permutations - ) - - stats_list.append( - np.array( - [ - obs_fraction.index, - obs_count, - obs_fraction.values, - obs_quotient[0], - pvalue, - [cur_gene] * len(obs_count), - ] - ) - ) - - else: - stats_list.append( - np.array( - [ - obs_fraction.index, - obs_count, - obs_fraction.values, - obs_quotient[0], - [1] * len(obs_count), - [cur_gene] * len(obs_count), - ] - ) - ) - - # stats_df = pd.DataFrame( - # np.concatenate(stats_list, axis=1).T, - # index=["neighbor", "neighbor_count", "neighbor_fraction", "quotient", "pvalue", "gene"], - # ).T - return np.concatenate(stats_list, axis=1).T + Parameters + ---------- + neighbor_counts : pd.DataFrame + Dataframe with columns "gene", "neighbor", and "count". + counts : pd.Series + Series of raw gene counts. + """ + clq_df = neighbor_counts.copy() + clq_df["clq"] = (clq_df["count"] / counts.loc[clq_df["gene"]].values) / ( + counts.loc[clq_df["neighbor"]].values / counts.sum() + ) + return clq_df.drop("count", axis=1) diff --git a/bento/tools/_composition.py b/bento/tools/_composition.py new file mode 100644 index 0000000..df9a364 --- /dev/null +++ b/bento/tools/_composition.py @@ -0,0 +1,112 @@ +from scipy.stats import wasserstein_distance +from sklearn.metrics.pairwise import paired_distances + +import pandas as pd +import numpy as np + +from ..geometry import get_points +from .._utils import track + +from anndata import AnnData + + +def _get_compositions(points: pd.DataFrame, shape_names: list) -> pd.DataFrame: + """Compute the mean composition of each gene across shapes. + + Parameters + ---------- + points : pandas.DataFrame + Points indexed to shape_names denoted by boolean columns. + shape_names : list of str + Names of shapes to calculate compositions for. + + Returns + ------- + comp_data : DataFrame + For every gene return the composition of each shape, mean log(counts) and cell fraction. + + """ + + dims = ["_".join(s.split("_")[:-1]) for s in shape_names] + + n_cells = points["cell"].nunique() + points_grouped = points.groupby(["cell", "gene"], observed=True) + counts = points_grouped[dims].sum() + total_counts = points_grouped.size() + comps = counts.divide(total_counts, axis=0).fillna(0) # Normalize rows + + genes = points["gene"].unique() + gene_comps = ( + comps.groupby("gene", observed=True).mean().reindex(genes, fill_value=0) + ) + + gene_logcount = ( + points.groupby("gene", observed=True).size().reindex(genes, fill_value=0) + ) + gene_logcount = np.log2(gene_logcount + 1) + cell_fraction = ( + 100 * points.groupby("gene", observed=True)["cell"].nunique() / n_cells + ) + + stats = pd.DataFrame( + [gene_logcount, cell_fraction], index=["logcounts", "cell_fraction"] + ).T + + comp_stats = pd.concat([gene_comps, stats], axis=1) + + return comp_stats + + +@track +def comp_diff( + data: AnnData, shape_names: list, groupby: str, ref_group: str, copy: bool = False +): + """Calculate the average difference in gene composition for shapes across batches of cells. Uses the Wasserstein distance. + + Parameters + ---------- + data : anndata.AnnData + Spatial formatted AnnData object. + shape_names : list of str + Names of shapes to calculate compositions for. + groupby : str + Key in `adata.obs` to group cells by. + ref_group : str + Reference group to compare other groups to. + copy : bool + Return a copy of `data` instead of writing to data, by default False. + + Returns + ------- + adata : anndata.AnnData + Returns `adata` if `copy=True`, otherwise adds fields to `data`: + + """ + + adata = data.copy() if copy else data + + points = get_points(data) + + # Get average gene compositions for each batch + comp_stats = dict() + for group, pt_group in points.groupby(groupby): + comp_stats[group] = _get_compositions(pt_group, shape_names) + + ref_comp = comp_stats[ref_group] + + dims = [s.replace("_shape", "") for s in shape_names] + for group in comp_stats.keys(): + if group == ref_group: + continue + + diff_key = f"{group}_diff" + comp_stats[group][diff_key] = pd.Series( + paired_distances( + comp_stats[group][dims].reindex(ref_comp.index, fill_value=1e-10), + ref_comp[dims], + metric=wasserstein_distance, + ), + index=ref_comp.index, + ) + + adata.uns[f"{groupby}_comp_stats"] = comp_stats diff --git a/bento/tools/_decomposition.py b/bento/tools/_decomposition.py new file mode 100644 index 0000000..1909fa1 --- /dev/null +++ b/bento/tools/_decomposition.py @@ -0,0 +1,157 @@ +from typing import List, Literal + +import numpy as np +import pandas as pd +import tensorly as tl +from anndata import AnnData +from scipy.stats import zscore +from tensorly.decomposition import non_negative_parafac +from tqdm.auto import tqdm + +from .._utils import track + + +def decompose( + tensor: np.ndarray, + ranks: List[int], + iterations: int = 3, + device: Literal["auto", "cpu", "cuda"] = "auto", + random_state: int = 11, +): + """ + Perform tensor decomposition on an input tensor, optionally automatically selecting the best rank across a list of ranks. + + Parameters + ---------- + tensor : np.ndarray + numpy array + ranks : int or list of int + Rank(s) to perform decomposition. + iterations : int, 3 by default + Number of times to run decomposition to compute confidence interval at each rank. Only the best iteration for each rank is saved. + device : str, optional + Device to use for decomposition. If "auto", will use GPU if available. By default "auto". + random_state : int, optional + Random state for decomposition. By default 11. + + Returns + ------- + factors_per_rank : dict + Dictionary of factors for each rank. + errors : pd.DataFrame + Dataframe of errors for each rank. + """ + # Replace nans with 0 for decomposition + tensor_mask = ~np.isnan(tensor) + tensor[~tensor_mask] = 0 + + if isinstance(ranks, int): + ranks = [ranks] + + # Use gpu if available + tensor = tl.tensor(tensor) + try: + import torch + + tl.set_backend("pytorch") + tensor = tl.tensor(tensor) + + if ((device == "auto") or (device == "cuda")) and torch.cuda.is_available(): + device = "cuda" + tensor = tensor.to("cuda") + else: + device = "cpu" + + except ImportError: + torch = None + device = "cpu" + + factors_per_rank = dict() + errors = [] + for rank in tqdm(ranks, desc=f"Device {device}"): + best_factor = None + best_error = np.inf + for i in range(iterations): + # non-negative parafac decomposition + + # TODO update to hals when random_state is supported + weights, factors = non_negative_parafac( + tensor, rank, init="random", random_state=random_state + ) + + if device == "cuda": + weights = weights.cpu() + factors = [f.cpu() for f in factors] + tensor = tensor.cpu() + + # calculate error ignoring missing values + tensor_mu = tl.cp_to_tensor((weights, factors)) + + if device == "cuda": + error = rmse(tensor, tensor_mu).numpy() + else: + error = rmse(tensor, tensor_mu) + + if error < best_error: + best_error = error + + if torch: + best_factor = [f.numpy() for f in factors] + else: + best_factor = factors + + factors_per_rank[rank] = best_factor + errors.append([best_error, rank]) + + errors = pd.DataFrame(errors, columns=["rmse", "rank"]) + errors["rmse"] = errors["rmse"].astype(float) + + return factors_per_rank, errors + + +def rmse(tensor, tensor_mu): + return np.sqrt((tensor[tensor != 0] - tensor_mu[tensor != 0]) ** 2).mean() + + +@track +def to_tensor( + data: AnnData, layers: List[str], scale: bool = False, copy: bool = False +): + """ + Generate tensor from data where dimensions are (layers, cells, genes). + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + layers : list of str + Keys in data.layers to build tensor. + scale : bool + Z scale across cells for each layer, by default False. + copy : bool + Return a copy of `data` instead of writing to data, by default False. + + Returns + ------- + adata : anndata.AnnData + `uns['tensor']` : np.ndarray + 3D numpy array of shape (len(layers), adata.n_obs, adata.n_vars) + """ + adata = data.copy() if copy else data + + # Build tensor from specified layers + tensor = [] + for l in layers: + tensor.append(adata.to_df(l).values) + + # Save tensor values + tensor = np.array(tensor) + + # Z scale across cells for each layer + if scale: + for i, layer in enumerate(tensor): + tensor[i] = zscore(layer, axis=1, nan_policy="omit") + + adata.uns["tensor"] = np.array(tensor) + + return adata diff --git a/bento/tools/_features.py b/bento/tools/_features.py deleted file mode 100755 index b7412c8..0000000 --- a/bento/tools/_features.py +++ /dev/null @@ -1,244 +0,0 @@ -import warnings - -import numpy as np -import pandas as pd -from joblib import Parallel, delayed -from sklearn.neighbors import NearestNeighbors -from tqdm.auto import tqdm - -from ..preprocessing import get_points - -warnings.simplefilter(action="ignore", category=FutureWarning) - - -def coloc_sim(data, radius=3, min_count=5, n_cores=1, copy=False): - """Calculate pairwise gene colocalization similarity with the cross L function. - - Parameters - ---------- - adata : AnnData - Anndata formatted spatial data. - radius : int - Max radius to search for neighboring points, by default 3 - min_count : int - Minimum points needed to be eligible for analysis. - Returns - ------- - adata : AnnData - .uns['coloc_sim']: Pairwise gene colocalization similarity within each cell formatted as a long dataframe. - """ - adata = data.copy() if copy else data - - # Filter points and counts by min_count - counts = adata.to_df() - - # Helper function to apply per cell - def cell_coloc_sim(p, g_density, name): - - # Get xy coordinates - xy = p[["x", "y"]].values - - # Get neighbors within fixed outer_radius for every point - nn = NearestNeighbors(radius=radius).fit(xy) - distances, point_index = nn.radius_neighbors(xy, return_distance=True) - - # Enumerate point-wise gene labels - gene_index = p["gene"].reset_index(drop=True).cat.remove_unused_categories() - - # Convert to adjacency list of points, no double counting - neighbor_pairs = [] - for g1, neighbors, n_dists in zip(gene_index.values, point_index, distances): - for g2, d in zip(neighbors, n_dists): - neighbor_pairs.append([g1, g2, d]) - - # Calculate pair-wise gene similarity - neighbor_pairs = pd.DataFrame(neighbor_pairs, columns=["g1", "g2", "p_dist"]) - - # Keep minimum distance to g2 point - neighbor_pairs = neighbor_pairs.groupby(["g1", "g2"]).agg("min").reset_index() - neighbor_pairs.columns = ["g1", "g2", "point_dist"] - - # Map to gene index - neighbor_pairs["g2"] = neighbor_pairs["g2"].map(gene_index) - - # Count number of points within distance of increasing radius - r_step = 0.5 - expected_counts = [ - lambda dists: (dists <= r).sum() - for r in np.arange(r_step, radius + r_step, r_step) - ] - metrics = ( - neighbor_pairs.groupby(["g1", "g2"]) - .agg({"point_dist": expected_counts}) - .reset_index() - ) - - # Colocalization metric: max of L_ij(r) for r <= radius - g2_density = g_density.loc[metrics["g2"].tolist()].values - metrics["sim"] = ( - (metrics["point_dist"].divide(g2_density * np.pi, axis=0)) - .pow(0.5) - .max(axis=1) - ) - metrics["cell"] = name - - # Ignore self colocalization - # metrics = metrics.loc[metrics["g1"] != metrics["g2"]] - - return metrics[["cell", "g1", "g2", "sim"]] - - # Only keep genes >= min_count in each cell - gene_densities = [] - counts.apply(lambda row: gene_densities.append(row[row >= min_count]), axis=1) - # Calculate point density per gene per cell - gene_densities /= adata.obs["cell_area"] - gene_densities = gene_densities.values - - # TODO dask - cell_metrics = Parallel(n_jobs=n_cores)( - delayed(cell_coloc_sim)( - get_points(adata, cells=g_density.name, genes=g_density.index.tolist(), asgeo=True), - g_density, - g_density.name, - ) - for g_density in tqdm(gene_densities) - ) - - cell_metrics = pd.concat(cell_metrics) - cell_metrics.columns = cell_metrics.columns.get_level_values(0) - - # Make symmetric (Lij = Lji) - cell_metrics["pair"] = cell_metrics.apply( - lambda row: "-".join(sorted([row["g1"], row["g2"]])), axis=1 - ) - cell_symmetric = cell_metrics.groupby(["cell", "pair"]).mean() - - # Retain gene pair names - cell_symmetric = ( - cell_metrics.set_index(["cell", "pair"]) - .drop("sim", axis=1) - .join(cell_symmetric) - .reset_index() - ) - - # Aggregate across cells - coloc_agg = cell_symmetric.groupby(["pair"])["sim"].mean().to_frame() - coloc_agg = ( - coloc_agg.join(cell_symmetric.set_index("pair").drop(["sim", "cell"], axis=1)) - .reset_index() - .drop_duplicates() - ) - - # Save coloc similarity - cell_metrics[["cell", "g1", "g2", "pair"]].astype("category", copy=False) - coloc_agg[["g1", "g2", "pair"]].astype("category", copy=False) - adata.uns["coloc_sim"] = cell_metrics - adata.uns["coloc_sim_agg"] = coloc_agg - - return adata if copy else None - - -def get_gene_set_coloc_agg(data, genes): - """ - For a list of genes, return their pairwise colocalization with each other. - - Parameters - ---------- - data : AnnData - AnnData formatted spatial data. - gene : list of str - The names of genes, must be present in data.var. - - Returns - ------- - pd.DataFrame - """ - sim = data.uns["coloc_sim_agg"] - return sim.loc[sim["g1"].isin(genes) & sim["g2"].isin(genes)] - - -def get_cell_coloc(data, cell): - """Get pair-wise gene colocalization for a given cell. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - cell : str - Name of cell present in data.obs_names. - - Returns - ------- - DataFrame - """ - cell_coloc_sim = data.uns["coloc_sim"][data.uns["coloc_sim"]["cell"] == cell] - cell_coloc_sim = cell_coloc_sim.sort_values(by=["sim"], ascending=False) - - return cell_coloc_sim - - -def get_gene_coloc(data, cell, gene): - """Get colocalization of a single gene with all other genes, for a particular cell. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - cell : str - Name of cell present in data.obs_names. - gene : str - Name of a gene present in data.var_names. - - Returns - ------- - DataFrame - """ - - cell_coloc_sim = data.uns["coloc_sim"][data.uns["coloc_sim"]["cell"] == cell] - gene_coloc_sim = cell_coloc_sim[cell_coloc_sim["g1"] == gene] - gene_coloc_sim = gene_coloc_sim.sort_values(by=["sim"], ascending=False) - - return gene_coloc_sim - - -def get_cell_coloc_agg(data): - """Get aggregated pairwise colocalization similarity across all cells. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - - Returns - ------- - DataFrame - """ - coloc_sim_agg = data.uns["coloc_sim_agg"] - coloc_sim_agg = coloc_sim_agg.sort_values(by=["sim"], ascending=False) - - return coloc_sim_agg - - -def get_gene_coloc_agg(data, gene): - """ - For a given gene, return its colocalization with all other genes sorted by highest similarity first. - - Assumes colocalization is precomputed with bento.tl.coloc_sim. - - Parameters - ---------- - data : AnnData - AnnData formatted spatial data. - gene : str - The name of a gene, must be present in data.var. - - Returns - ------- - pd.DataFrame - Sorted subset of data.uns['coloc_sim_agg']. - """ - coloc_sim_agg = data.uns["coloc_sim_agg"] - gene_coloc_agg = coloc_sim_agg[coloc_sim_agg["g1"] == gene] - gene_coloc_agg = gene_coloc_agg.sort_values(by=["sim"], ascending=False) - - return gene_coloc_agg diff --git a/bento/tools/_flux.py b/bento/tools/_flux.py new file mode 100644 index 0000000..907ad1f --- /dev/null +++ b/bento/tools/_flux.py @@ -0,0 +1,390 @@ +from typing import Iterable, Literal, Optional, Union + +import decoupler as dc +import emoji +import geopandas as gpd +import matplotlib as mpl +import matplotlib.pyplot as plt + +import numpy as np +import pandas as pd +import pkg_resources +import rasterio +import shapely +from anndata import AnnData +from kneed import KneeLocator +from minisom import MiniSom +from scipy.sparse import csr_matrix, vstack +from sklearn.decomposition import TruncatedSVD +from sklearn.preprocessing import StandardScaler, minmax_scale, quantile_transform +from sklearn.utils import resample +from tqdm.auto import tqdm + +from bento._utils import register_points, track +from bento.geometry import get_points, sindex_points +from bento.tools._neighborhoods import _count_neighbors +from bento.tools._shape_features import analyze_shapes + + +@track +@register_points("cell_raster", ["flux", "flux_embed", "flux_color"]) +def flux( + data: AnnData, + method: Literal["knn", "radius"] = "radius", + n_neighbors: Optional[int] = None, + radius: Optional[int] = 50, + res: int = 0.1, + random_state: int = 11, + copy: bool = False, +): + """ + RNAflux: Embedding each pixel as normalized local composition normalized by cell composition. + For k-nearest neighborhoods or "knn", method, specify n_neighbors. For radius neighborhoods, specify radius. + The default method is "radius" with radius=50. RNAflux requires a minimum of 4 genes per cell to compute all embeddings properly. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData object. + method: str + Method to use for local neighborhood. Either 'knn' or 'radius'. + n_neighbors : int + Number of neighbors to use for local neighborhood. + radius : float + Radius to use for local neighborhood. + res : float + Resolution to use for rendering embedding. Default 0.05 samples at 5% original resolution (5 units between pixels) + copy : bool + Whether to return a copy the AnnData object. Default False. + + Returns + ------- + adata : AnnData + .uns["flux"] : scipy.csr_matrix + [pixels x genes] sparse matrix of normalized local composition. + .uns["flux_embed"] : np.ndarray + [pixels x components] array of embedded flux values. + .uns["flux_color"] : np.ndarray + [pixels x 3] array of RGB values for visualization. + .uns["flux_genes"] : list + List of genes used for embedding. + .uns["flux_variance_ratio"] : np.ndarray + [components] array of explained variance ratio for each component. + """ + if n_neighbors is None and radius is None: + radius = 50 + + adata = data.copy() if copy else data + + adata.uns["points"] = get_points(adata).sort_values("cell") + + points = get_points(adata)[["cell", "gene", "x", "y"]] + + # embeds points on a uniform grid + pbar = tqdm(total=3) + pbar.set_description(emoji.emojize("Embedding")) + step = 1 / res + # Get grid rasters + analyze_shapes( + adata, + "cell_shape", + "raster", + progress=False, + feature_kws=dict(raster={"step": step}), + ) + # Long dataframe of raster points + adata.uns["cell_raster"] = adata.uns["cell_raster"].sort_values("cell") + raster_points = adata.uns["cell_raster"] + + # Extract gene names and codes + gene_names = points["gene"].cat.categories.tolist() + n_genes = len(gene_names) + + points_grouped = points.groupby("cell") + rpoints_grouped = raster_points.groupby("cell") + cells = list(points_grouped.groups.keys()) + + cell_composition = adata[cells, gene_names].X.toarray() + + # Compute cell composition + cell_composition = cell_composition / (cell_composition.sum(axis=1).reshape(-1, 1)) + cell_composition = np.nan_to_num(cell_composition) + + # Embed each cell neighborhood independently + cell_fluxs = [] + for i, cell in enumerate(tqdm(cells, leave=False)): + cell_points = points_grouped.get_group(cell) + rpoints = rpoints_grouped.get_group(cell) + if method == "knn": + gene_count = _count_neighbors( + cell_points, + n_genes, + rpoints, + n_neighbors=n_neighbors, + agg=None, + ) + elif method == "radius": + gene_count = _count_neighbors( + cell_points, + n_genes, + rpoints, + radius=radius, + agg=None, + ) + gene_count = gene_count.toarray() + # embedding: distance neighborhood composition and cell composition + # Compute composition of neighborhood + flux_composition = gene_count / (gene_count.sum(axis=1).reshape(-1, 1)) + cflux = flux_composition - cell_composition[i] + cflux = StandardScaler(with_mean=False).fit_transform(cflux) + + # Convert back to sparse matrix + cflux = csr_matrix(cflux) + + cell_fluxs.append(cflux) + + # Stack all cells + cell_fluxs = vstack(cell_fluxs) if len(cell_fluxs) > 1 else cell_fluxs[0] + cell_fluxs.data = np.nan_to_num(cell_fluxs.data) + pbar.update() + + # todo: Slow step, try algorithm="randomized" may be faster + pbar.set_description(emoji.emojize("Reducing")) + n_components = min(n_genes - 1, 10) + pca_model = TruncatedSVD( + n_components=n_components, algorithm="randomized", random_state=random_state + ).fit(cell_fluxs) + flux_embed = pca_model.transform(cell_fluxs) + variance_ratio = pca_model.explained_variance_ratio_ + + # For color visualization of flux embeddings + flux_color = vec2color(flux_embed, fmt="hex", vmin=0.1, vmax=0.9) + pbar.update() + + pbar.set_description(emoji.emojize("Saving")) + adata.uns["flux"] = cell_fluxs # sparse gene embedding + adata.uns["flux_genes"] = gene_names # gene names + adata.uns["flux_embed"] = flux_embed + adata.uns["flux_variance_ratio"] = variance_ratio + adata.uns["flux_color"] = flux_color + + pbar.set_description(emoji.emojize("Done. :bento_box:")) + pbar.update() + pbar.close() + + return adata if copy else None + + +def vec2color( + vec: np.ndarray, + fmt: Literal[ + "rgb", + "hex", + ] = "hex", + vmin: float = 0, + vmax: float = 1, +): + """Convert vector to color.""" + color = quantile_transform(vec[:, :3]) + color = minmax_scale(color, feature_range=(vmin, vmax)) + + if fmt == "rgb": + pass + elif fmt == "hex": + color = np.apply_along_axis(mpl.colors.to_hex, 1, color, keep_alpha=True) + return color + + +@track +def fluxmap( + data: AnnData, + n_clusters: Union[Iterable[int], int] = range(2, 9), + num_iterations: int = 1000, + train_size: float = 0.2, + res: float = 0.1, + random_state: int = 11, + plot_error: bool = True, + copy: bool = False, +): + """Cluster flux embeddings using self-organizing maps (SOMs) and vectorize clusters as Polygon shapes. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData object. + n_clusters : int or list + Number of clusters to use. If list, will pick best number of clusters + using the elbow heuristic evaluated on the quantization error. + num_iterations : int + Number of iterations to use for SOM training. + train_size : float + Fraction of cells to use for SOM training. Default 0.2. + res : float + Resolution used for rendering embedding. Default 0.05. + random_state : int + Random state to use for SOM training. Default 11. + plot_error : bool + Whether to plot quantization error. Default True. + copy : bool + Whether to return a copy the AnnData object. Default False. + + Returns + ------- + adata : AnnData + .uns["cell_raster"] : DataFrame + Adds "fluxmap" column denoting cluster membership. + .uns["points"] : DataFrame + Adds "fluxmap#" columns for each cluster. + .obs : GeoSeries + Adds "fluxmap#_shape" columns for each cluster rendered as (Multi)Polygon shapes. + """ + adata = data.copy() if copy else data + + # Check if flux embedding has been computed + if "flux_embed" not in adata.uns: + raise ValueError( + "Flux embedding has not been computed. Run `bento.tl.flux()` first." + ) + + flux_embed = adata.uns["flux_embed"] + raster_points = adata.uns["cell_raster"] + + if isinstance(n_clusters, int): + n_clusters = [n_clusters] + + if isinstance(n_clusters, range): + n_clusters = list(n_clusters) + + # Subsample flux embeddings for faster training + if train_size > 1: + raise ValueError("train_size must be less than 1.") + if train_size == 1: + flux_train = flux_embed + if train_size < 1: + flux_train = resample( + flux_embed, + n_samples=int(train_size * flux_embed.shape[0]), + random_state=random_state, + ) + + # Perform SOM clustering over n_clusters range and pick best number of clusters using elbow heuristic + pbar = tqdm(total=4) + pbar.set_description(emoji.emojize(f"Optimizing # of clusters")) + som_models = {} + quantization_errors = [] + for k in tqdm(n_clusters, leave=False): + som = MiniSom(1, k, flux_train.shape[1], random_seed=random_state) + som.random_weights_init(flux_train) + som.train(flux_train, num_iterations, random_order=False, verbose=False) + som_models[k] = som + quantization_errors.append(som.quantization_error(flux_embed)) + + # Use kneed to find elbow + if len(n_clusters) > 1: + kl = KneeLocator( + n_clusters, quantization_errors, curve="convex", direction="decreasing" + ) + best_k = kl.elbow + + if plot_error: + kl.plot_knee() + plt.show() + + if best_k is None: + print("No elbow found. Rerun with a fixed k or a different range.") + return + + else: + best_k = n_clusters[0] + pbar.update() + + # Use best k to assign each sample to a cluster + pbar.set_description(f"Assigning to {best_k} clusters") + som = som_models[best_k] + winner_coordinates = np.array([som.winner(x) for x in flux_embed]).T + + # Indices start at 0, so add 1 + qnt_index = np.ravel_multi_index(winner_coordinates, (1, best_k)) + 1 + raster_points["fluxmap"] = qnt_index + adata.uns["cell_raster"] = raster_points.copy() + + pbar.update() + + # Vectorize polygons in each cell + pbar.set_description(emoji.emojize("Vectorizing domains")) + cells = raster_points["cell"].unique().tolist() + # Scale down to render resolution + # raster_points[["x", "y"]] = raster_points[["x", "y"]] * res + + # Cast to int + raster_points[["x", "y", "fluxmap"]] = raster_points[["x", "y", "fluxmap"]].astype( + int + ) + + rpoints_grouped = raster_points.groupby("cell") + fluxmap_df = dict() + for cell in tqdm(cells, leave=False): + rpoints = rpoints_grouped.get_group(cell) + + # Fill in image at each point xy with fluxmap value by casting to dense matrix + image = ( + csr_matrix( + ( + rpoints["fluxmap"], + ( + (rpoints["y"] * res).astype(int), + (rpoints["x"] * res).astype(int), + ), + ) + ) + .todense() + .astype("int16") + ) + + # Find all the contours + contours = rasterio.features.shapes(image) + polygons = np.array([(shapely.geometry.shape(p), v) for p, v in contours]) + shapes = gpd.GeoDataFrame( + polygons[:, 1], + geometry=gpd.GeoSeries(polygons[:, 0]).T, + columns=["fluxmap"], + ) + + # Remove background shape + shapes["fluxmap"] = shapes["fluxmap"].astype(int) + shapes = shapes[shapes["fluxmap"] != 0] + + # Group same fields as MultiPolygons + shapes = shapes.dissolve("fluxmap")["geometry"] + + fluxmap_df[cell] = shapes + + fluxmap_df = pd.DataFrame.from_dict(fluxmap_df).T + fluxmap_df.columns = "fluxmap" + fluxmap_df.columns.astype(str) + "_shape" + + # Upscale to match original resolution + fluxmap_df = fluxmap_df.apply( + lambda col: gpd.GeoSeries(col).scale( + xfact=1 / res, yfact=1 / res, origin=(0, 0) + ) + ) + pbar.update() + + pbar.set_description("Saving") + old_cols = adata.obs.columns[adata.obs.columns.str.startswith("fluxmap")] + adata.obs = adata.obs.drop(old_cols, axis=1, errors="ignore") + + adata.obs[fluxmap_df.columns] = fluxmap_df.reindex(adata.obs_names) + + old_cols = adata.uns["points"].columns[ + adata.uns["points"].columns.str.startswith("fluxmap") + ] + adata.uns["points"] = adata.uns["points"].drop(old_cols, axis=1) + + # TODO SLOW + sindex_points(adata, "points", fluxmap_df.columns.tolist()) + pbar.update() + pbar.set_description("Done") + pbar.close() + + return adata if copy else None diff --git a/bento/tools/_flux_enrichment.py b/bento/tools/_flux_enrichment.py new file mode 100644 index 0000000..ddb63a7 --- /dev/null +++ b/bento/tools/_flux_enrichment.py @@ -0,0 +1,199 @@ +from typing import Optional + +import decoupler as dc + +import pandas as pd +import pkg_resources +from anndata import AnnData + +from bento._utils import track, _register_points + + +def fe_fazal2019(data: AnnData, copy: bool = False, **kwargs) -> Optional[AnnData]: + """Compute enrichment scores from subcellular compartment gene sets from Fazal et al. 2019 (APEX-seq). + See `bento.tl.fe` docs for parameter details. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData object. + copy : bool + Return a copy instead of writing to `adata`. Default False. + Returns + ------- + DataFrame + Enrichment scores for each gene set. + """ + adata = data.copy() if copy else data + + gene_sets = load_gene_sets("fazal2019") + fe(adata, net=gene_sets, **kwargs) + + return adata if copy else None + + +def fe_xia2019(data: AnnData, copy: bool = False, **kwargs) -> Optional[AnnData]: + """Compute enrichment scores from subcellular compartment gene sets from Xia et al. 2019 (MERFISH 10k U2-OS). + See `bento.tl.fe` docs for parameters details. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData object. + copy : bool + Return a copy instead of writing to `adata`. Default False. + Returns + ------- + DataFrame + Enrichment scores for each gene set. + """ + adata = data.copy() if copy else data + + gene_sets = load_gene_sets("xia2019") + fe(adata, gene_sets, **kwargs) + + return adata if copy else None + + +@track +def fe( + data: AnnData, + net: pd.DataFrame, + source: Optional[str] = "source", + target: Optional[str] = "target", + weight: Optional[str] = "weight", + batch_size: int = 10000, + min_n: int = 0, + copy: bool = False, +) -> Optional[AnnData]: + """ + Perform functional enrichment on point embeddings. Wrapper for decoupler wsum function. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData object. + net : DataFrame + DataFrame with columns "source", "target", and "weight". See decoupler API for more details. + source : str, optional + Column name for source nodes in `net`. Default "source". + target : str, optional + Column name for target nodes in `net`. Default "target". + weight : str, optional + Column name for weights in `net`. Default "weight". + batch_size : int + Number of points to process in each batch. Default 10000. + min_n : int + Minimum number of targets per source. If less, sources are removed. + copy : bool + Return a copy instead of writing to `adata`. Default False. + + Returns + ------- + adata : AnnData + uns["flux_fe"] : DataFrame + Enrichment scores for each gene set. + """ + + adata = data.copy() if copy else data + + # Make sure embedding is run first + if "flux" not in data.uns: + print("Run bento.tl.flux first.") + return + + mat = adata.uns["flux"] # sparse matrix in csr format + zero_rows = mat.getnnz(1) == 0 + + samples = adata.uns["cell_raster"].index.astype(str) + features = adata.uns["flux_genes"] + + enrichment = dc.run_wsum( + mat=[mat, samples, features], + net=net, + source=source, + target=target, + weight=weight, + batch_size=batch_size, + min_n=min_n, + verbose=True, + ) + + scores = enrichment[1].reindex(index=samples) + + for col in scores.columns: + score_key = f"flux_{col}" + adata.uns[score_key] = scores[col].values + + # Manually call register_points since it is dynamic + _register_points(adata, "cell_raster", [score_key]) + + _fe_stats(adata, net, source=source, target=target, copy=copy) + + return adata if copy else None + + +def _fe_stats( + data: AnnData, + net: pd.DataFrame, + source: str = "source", + target: str = "target", + copy: bool = False, +): + adata = data.copy() if copy else data + + # rows = cells, columns = pathways, values = count of genes in pathway + expr_binary = adata.to_df() >= 5 + # {cell : present gene list} + expr_genes = expr_binary.apply(lambda row: adata.var_names[row], axis=1) + + # Count number of genes present in each pathway + net_ngenes = net.groupby(source).size().to_frame().T.rename(index={0: "n_genes"}) + + sources = [] + # common_genes = {} # list of [cells: gene set overlaps] + common_ngenes = [] # list of [cells: overlap sizes] + for source, group in net.groupby(source): + sources.append(source) + common = expr_genes.apply(lambda genes: set(genes).intersection(group[target])) + # common_genes[source] = np.array(common) + common_ngenes.append(common.apply(len)) + + fe_stats = pd.concat(common_ngenes, axis=1) + fe_stats.columns = sources + + adata.uns["fe_stats"] = fe_stats + # adata.uns["fe_genes"] = common_genes + adata.uns["fe_ngenes"] = net_ngenes + + return adata if copy else None + + +gene_sets = dict( + fazal2019="fazal2019.csv", + xia2019="xia2019.csv", +) + + +def load_gene_sets(name): + """Load a gene set from bento. + + Parameters + ---------- + name : str + Name of gene set to load. + + Returns + ------- + DataFrame + Gene set. + """ + global pkg_resources + if pkg_resources is None: + import pkg_resources + + fname = gene_sets[name] + stream = pkg_resources.resource_stream(__name__, f"gene_sets/{fname}") + gs = pd.read_csv(stream) + + return gs diff --git a/bento/tools/_lp.py b/bento/tools/_lp.py index dd700f9..5df62c6 100755 --- a/bento/tools/_lp.py +++ b/bento/tools/_lp.py @@ -4,20 +4,18 @@ import numpy as np import pandas as pd import statsmodels.formula.api as sfm -from dask import dataframe as dd -from dask.diagnostics import ProgressBar from patsy import PatsyError from statsmodels.tools.sm_exceptions import PerfectSeparationError from tqdm.auto import tqdm - -from .._utils import PATTERN_NAMES, PATTERN_PROBS, track -from ..preprocessing import get_layers +from anndata import AnnData +from .._utils import track +from .._constants import PATTERN_NAMES, PATTERN_FEATURES tqdm.pandas() @track -def lp(data, min_count=5, copy=False): +def lp(data: AnnData, groupby: str = "gene", copy: bool = False): """Predict transcript subcellular localization patterns. Patterns include: cell edge, cytoplasmic, nuclear edge, nuclear, none @@ -25,116 +23,96 @@ def lp(data, min_count=5, copy=False): ---------- data : AnnData Spatial formatted AnnData object - min_count : int - Minimum expression count per sample; otherwise ignore sample + groupby : str or list of str, optional (default: None) + Key in `data.uns['points'] to groupby, by default None. Always treats each cell separately copy : bool Return a copy of `data` instead of writing to data, by default False. Returns ------- - Depending on `copy`, returns or updates `adata.layers` with the - `'cell_edge'`, `'cytoplasm'`, `'none'`, `'nuclear'`, and `'nuclear_edge'` - fields for their respective localization pattern labels. + adata : AnnData + .uns['lp']: DataFrame + Localization pattern indicator matrix. + .uns['lpp']: DataFrame + Localization pattern probabilities. """ adata = data.copy() if copy else data - # Compute features if missing TODO currently recomputes everything - if not all(f in data.layers.keys() for f in PATTERN_MODEL_FEATURE_NAMES): - features = [ - "cell_proximity", - "nucleus_proximity", - "cell_asymmetry", - "nucleus_asymmetry", - "ripley_stats", - "point_dispersion", - "nucleus_dispersion", - ] - bento.tl.analyze_samples(data, features) - - X_df = get_layers(adata, PATTERN_MODEL_FEATURE_NAMES, min_count) + if isinstance(groupby, str): + groupby = [groupby] + + # Compute features + feature_key = f"cell_{'_'.join(groupby)}_features" + if feature_key not in adata.uns.keys() or not all( + f in adata.uns[feature_key].columns for f in PATTERN_FEATURES + ): + bento.tl.analyze_points( + adata, + "cell_shape", + ["proximity", "asymmetry", "ripley", "point_dispersion_norm"], + groupby=groupby, + recompute=True, + ) + bento.tl.analyze_points( + adata, + "nucleus_shape", + ["proximity", "asymmetry", "shape_dispersion_norm"], + groupby=groupby, + recompute=True, + ) + X_df = adata.uns[feature_key][PATTERN_FEATURES] + # Load trained model model_dir = "/".join(bento.__file__.split("/")[:-1]) + "/models" model = pickle.load(open(f"{model_dir}/rf_calib_20220514.pkl", "rb")) + # Compatibility with newer versions of scikit-learn + for cls in model.calibrated_classifiers_: + cls.estimator = cls.base_estimator + + # Predict patterns pattern_prob = pd.DataFrame( - model.predict_proba(X_df.values), index=X_df.index, columns=PATTERN_NAMES + model.predict_proba(X_df.values), + columns=PATTERN_NAMES, ) - thresholds = [0.45300, 0.43400, 0.37900, 0.43700, 0.50500] - # Save each pattern to adata - for p, pp, thresh in zip(PATTERN_NAMES, PATTERN_PROBS, thresholds): - indicator_df = ( - (pattern_prob >= thresh) - .reset_index() - .pivot(index="cell", columns="gene", values=p) - .replace({True: 1, False: 0}) - .reindex(index=adata.obs_names, columns=adata.var_names) - .astype(float) - ) - indicator_df.columns.name = "gene" - - prob_df = ( - pattern_prob.reset_index() - .pivot(index="cell", columns="gene", values=p) - .reindex(index=adata.obs_names, columns=adata.var_names) - .astype(float) - ) - # Save to adata.layers - adata.layers[p] = indicator_df - adata.layers[pp] = prob_df + # Add cell and groupby identifiers + pattern_prob.index = adata.uns[feature_key].set_index(["cell", *groupby]).index - # Run without decorator - lp_stats.__wrapped__(adata) + # Threshold probabilities to get indicator matrix + thresholds = [0.45300, 0.43400, 0.37900, 0.43700, 0.50500] + indicator_df = (pattern_prob >= thresholds).replace({True: 1, False: 0}) + adata.uns["lp"] = indicator_df.reset_index() + adata.uns["lpp"] = pattern_prob.reset_index() return adata if copy else None @track -def lp_stats(data, copy=False): +def lp_stats(data: AnnData, copy: bool = False): """Computes frequencies of localization patterns across cells and genes. Parameters ---------- data : AnnData - Spatial formatted AnnData object + Spatial formatted AnnData object. copy : bool - Return a copy of `data` instead of writing to data, by default False. + Whether to return a copy of the AnnData object. Default False. Returns ------- - [type] - [description] + adata : AnnData + .uns['lp_stats']: DataFrame of localization pattern frequencies. """ adata = data.copy() if copy else data - detected = np.ones(adata.shape) - - for c in PATTERN_NAMES: - detected = detected & ~data.to_df(c).isna() - - adata.var["n_detected"] = detected.sum().astype(int) - adata.var[f"fraction_detected"] = (adata.var["n_detected"] / adata.n_obs).astype( - float - ) - - adata.obs["n_detected"] = detected.sum(axis=1).astype(int) - adata.obs[f"fraction_detected"] = (adata.obs["n_detected"] / adata.n_vars).astype( - float - ) + lp = adata.uns["lp"] - for c in PATTERN_NAMES: - counts = adata.to_df(c) + cols = lp.columns + groupby = list(cols[~cols.isin(PATTERN_NAMES)]) + groupby.remove("cell") - # Save frequencies across cells - adata.var[f"{c}_count"] = counts.fillna(0).sum(axis=0).astype(int) - adata.var[f"{c}_fraction"] = (adata.var[f"{c}_count"] / adata.n_obs).astype( - float - ) - - # Save frequencies across genes - adata.obs[f"{c}_count"] = counts.fillna(0).sum(axis=1).astype(int) - adata.obs[f"{c}_fraction"] = (adata.obs[f"{c}_count"] / adata.n_vars).astype( - float - ) + g_pattern_counts = lp.groupby(groupby).apply(lambda df: df[PATTERN_NAMES].sum()) + adata.uns["lp_stats"] = g_pattern_counts return adata if copy else None @@ -145,22 +123,33 @@ def _lp_logfc(data, phenotype=None): Parameters ---------- data : AnnData - Anndata formatted spatial data. + Spatial formatted AnnData object. phenotype : str Variable grouping cells for differential analysis. Must be in data.obs.columns. + + Returns + ------- + gene_fc_stats : DataFrame + log2 fold change of patterns between groups in phenotype. """ + stats = data.uns["lp_stats"] if phenotype not in data.obs.columns: raise ValueError("Phenotype is invalid.") phenotype_vector = data.obs[phenotype] + pattern_df = data.uns["lp"].copy() + groups_name = stats.index.name + pattern_df[["cell", groups_name]] = data.uns[f"cell_{groups_name}_features"][ + ["cell", groups_name] + ] + gene_fc_stats = [] for c in PATTERN_NAMES: - # save pattern frequency to new column, one for each group group_freq = ( - data.to_df(c) + pattern_df.pivot(index="cell", columns=groups_name, values=c) .replace("none", np.nan) .astype(float) .groupby(phenotype_vector) @@ -184,7 +173,7 @@ def log2fc(group_col): # log2fc(group frequency / mean other frequency) log2fc = np.log2((group_col + 1) / (rest_mean + 1)) results = log2fc.to_frame("log2fc") - results["phenotype"] = f"{phenotype}_{group_name}" + results["phenotype"] = group_name return results # Compute log2fc of group / mean(rest) for each group @@ -204,11 +193,16 @@ def log2fc(group_col): return gene_fc_stats -def _lp_diff_gene(cell_by_pattern, phenotype, phenotype_vector): +def _lp_diff_gene(cell_by_pattern, phenotype_vector): """Perform pairwise comparison between groupby and every class. Parameters ---------- + cell_by_pattern : DataFrame + Cell by pattern matrix. + phenotype_vector : Series + Series of cell groupings. + Returns ------- DataFrame @@ -218,7 +212,7 @@ def _lp_diff_gene(cell_by_pattern, phenotype, phenotype_vector): # One hot encode categories group_dummies = pd.get_dummies(pd.Series(phenotype_vector)) - group_dummies.columns = [f"{phenotype}_{g}" for g in group_dummies.columns] + # group_dummies.columns = [f"{phenotype}_{g}" for g in group_dummies.columns] group_names = group_dummies.columns.tolist() group_data = pd.concat([cell_by_pattern, group_dummies], axis=1) group_data.columns = group_data.columns.astype(str) @@ -247,7 +241,6 @@ def _lp_diff_gene(cell_by_pattern, phenotype, phenotype_vector): r = r.reset_index().rename({"index": "pattern"}, axis=1) results.append(r) - # except ( np.linalg.LinAlgError, ValueError, @@ -263,89 +256,67 @@ def _lp_diff_gene(cell_by_pattern, phenotype, phenotype_vector): @track -def lp_diff(data, phenotype=None, continuous=False, min_cells=10, copy=False): +def lp_diff( + data: AnnData, phenotype: str = None, continuous: bool = False, copy: bool = False +): """Gene-wise test for differential localization across phenotype of interest. Parameters ---------- data : AnnData - Anndata formatted spatial data. + Spatial formatted AnnData object. phenotype : str - Variable grouping cells for differential analysis. Must be in data.obs_names. + Variable grouping cells for differential analysis. Must be in data.obs.columns. continuous : bool Whether the phenotype is continuous or categorical. By default False. - n_cores : int, optional - cores used for multiprocessing, by default 1 copy : bool Return a copy of `data` instead of writing to data, by default False. + + Returns + ------- + adata : AnnData + Spatial formatted AnnData object. + .uns['diff_{phenotype}'] : DataFrame + Long DataFrame with differential localization test results across phenotype groups. """ adata = data.copy() if copy else data - # Note which samples were detected and classified - detected = np.ones(data.shape) - for c in PATTERN_NAMES: - detected = detected & ~data.to_df(c).isna() - - # Only look at genes detected in >= min_cells - valid_genes = detected.sum(axis=0) >= min_cells - print(f"{sum(valid_genes)} genes detected in at least {min_cells} cells.") + stats = adata.uns["lp_stats"] # Retrieve cell phenotype phenotype_vector = adata.obs[phenotype].tolist() + # TODO untested/incomplete if continuous: pattern_dfs = {} + + # Compute correlation for each point group along cells for p in PATTERN_NAMES: - p_df = adata.to_df(p).loc[:, valid_genes] - p_corr = p_df.corrwith(phenotype_vector, drop=True) - pattern_dfs[p] = p_df + p_labels = adata.uns["lp"][p] + groups_name = stats.index.name + p_labels[["cell", groups_name]] = adata.uns[f"cell_{groups_name}_features"][ + ["cell", groups_name] + ] + p_labels = p_labels.pivot(index="cell", columns="gene", values=p) + p_corr = p_labels.corrwith(phenotype_vector, drop=True) + pattern_dfs[p] = p_labels else: - # Load and flatten pattern layers - pattern_df = [] - for p in PATTERN_NAMES: - p_df = adata.to_df(p).loc[:, valid_genes].reset_index().melt(id_vars="cell") - p_df["pattern"] = p - pattern_df.append(p_df) - - # [Sample by patterns] where sample id = [cell, gene] pair - pattern_df = pd.concat(pattern_df) - pattern_df = pattern_df.pivot( - index=["cell", "gene"], columns="pattern", values="value" - ).reset_index() - - # Fit logit for each gene - meta = { - "pattern": str, - "dy/dx": float, - "std_err": float, - "z": float, - "pvalue": float, - "ci_low": float, - "ci_high": float, - "phenotype": str, - } - - # diff_output = pattern_df.groupby("gene").progress_apply( - # lambda gp: _lp_diff_gene(gp, phenotype, phenotype_vector) - # ) - - with ProgressBar(): - diff_output = ( - dd.from_pandas(pattern_df, chunksize=100) - .groupby("gene") - .apply( - lambda gp: _lp_diff_gene(gp, phenotype, phenotype_vector), meta=meta - ) - .reset_index() - .compute() - ) - - # Format pattern column - # diff_output = pd.concat(diff_output) + # [Sample by patterns] where sample id = [cell, group] pair + pattern_df = adata.uns["lp"].copy() + groups_name = stats.index.name + pattern_df[["cell", groups_name]] = adata.uns[f"cell_{groups_name}_features"][ + ["cell", groups_name] + ] + + diff_output = ( + pattern_df.groupby(groups_name) + .progress_apply(lambda gp: _lp_diff_gene(gp, phenotype_vector)) + .reset_index() + ) # FDR correction - diff_output["padj"] = diff_output["pvalue"] * diff_output["gene"].nunique() + diff_output["padj"] = diff_output["pvalue"] * diff_output[groups_name].nunique() results = diff_output.dropna() @@ -362,8 +333,8 @@ def lp_diff(data, phenotype=None, continuous=False, min_cells=10, copy=False): # Join log2fc results to p value df results = ( - results.set_index(["gene", "pattern", "phenotype"]) - .join(log2fc_stats.set_index(["gene", "pattern", "phenotype"])) + results.set_index([groups_name, "pattern", "phenotype"]) + .join(log2fc_stats.set_index([groups_name, "pattern", "phenotype"])) .reset_index() ) @@ -374,20 +345,3 @@ def lp_diff(data, phenotype=None, continuous=False, min_cells=10, copy=False): adata.uns[f"diff_{phenotype}"] = results return adata if copy else None - - -PATTERN_MODEL_FEATURE_NAMES = [ - "cell_inner_proximity", - "nucleus_inner_proximity", - "nucleus_outer_proximity", - "cell_inner_asymmetry", - "nucleus_inner_asymmetry", - "nucleus_outer_asymmetry", - "l_max", - "l_max_gradient", - "l_min_gradient", - "l_monotony", - "l_half_radius", - "point_dispersion", - "nucleus_dispersion", -] diff --git a/bento/tools/_neighborhoods.py b/bento/tools/_neighborhoods.py new file mode 100644 index 0000000..40a9ed6 --- /dev/null +++ b/bento/tools/_neighborhoods.py @@ -0,0 +1,114 @@ +import numpy as np +import pandas as pd +from scipy.sparse import csr_matrix +from sklearn.neighbors import NearestNeighbors + + +def _count_neighbors( + points, n_genes, query_points=None, n_neighbors=None, radius=None, agg="gene" +): + """Build nearest neighbor index for points. + + Parameters + ---------- + points : pd.DataFrame + Points dataframe. Must have columns "x", "y", and "gene". + n_genes : int + Number of genes in overall dataset. Used to initialize unique gene counts. + query_points : pd.DataFrame, optional + Points to query. If None, use points_df. Default None. + n_neighbors : int + Number of nearest neighbors to consider per gene. + agg : "gene", "binary", None + Whether to aggregate nearest neighbors counts. "Gene" aggregates counts by gene, whereas "binary" counts neighbors only once per point. If None, return neighbor counts for each point. + Default "gene". + Returns + ------- + DataFrame or dict of dicts + If agg is True, returns a DataFrame with columns "gene", "neighbor", and "count". + If agg is False, returns a list of dicts, one for each point. Dict keys are gene names, values are counts. + + """ + if n_neighbors and radius: + raise ValueError("Only specify one of n_neighbors or radius, not both.") + if not n_neighbors and not radius: + raise ValueError("Neither n_neighbors or radius is specified, one required.") + + if query_points is None: + query_points = points + + # Build knn index + if n_neighbors: + # Can't find more neighbors than total points + try: + n_neighbors = min(n_neighbors, points.shape[0]) + neighbor_index = ( + NearestNeighbors(n_neighbors=n_neighbors, n_jobs=-1) + .fit(points[["x", "y"]]) + .kneighbors(query_points[["x", "y"]], return_distance=False) + ) + except ValueError as e: + raise ValueError(e) + elif radius: + try: + neighbor_index = ( + NearestNeighbors(radius=radius, n_jobs=-1) + .fit(points[["x", "y"]]) + .radius_neighbors(query_points[["x", "y"]], return_distance=False) + ) + except ValueError: + print(points.shape, query_points.shape) + + # Get gene-level neighbor counts for each gene + if agg == "gene": + gene_code = points["gene"].values + source_genes, source_indices = np.unique(gene_code, return_index=True) + + gene_index = [] + + for g, gi in zip(source_genes, source_indices): + # First get all points for this gene + g_neighbors = np.unique(neighbor_index[gi].flatten()) + # get unique neighbor points + g_neighbors = gene_code[g_neighbors] # Get point gene names + neighbor_names, neighbor_counts = np.unique( + g_neighbors, return_counts=True + ) # aggregate neighbor gene counts + + for neighbor, count in zip(neighbor_names, neighbor_counts): + gene_index.append([g, neighbor, count]) + + gene_index = pd.DataFrame(gene_index, columns=["gene", "neighbor", "count"]) + + return gene_index + + else: + # Get gene-level neighbor counts for each point + gene_codes = points["gene"].cat.codes.values + neighborhood_sizes = np.array([len(n) for n in neighbor_index]) + flat_nindex = np.concatenate(neighbor_index) + # Get gene name for each neighbor + flat_ncodes = gene_codes[flat_nindex] + + point_ncounts = [] + cur_pos = 0 + # np.bincount only works on ints but much faster than np.unique + # https://stackoverflow.com/questions/66037744/2d-vectorization-of-unique-values-per-row-with-condition + for s in neighborhood_sizes: + cur_codes = flat_ncodes[cur_pos : cur_pos + s] + point_neighbor_counts = np.bincount(cur_codes, minlength=n_genes) + # Count number of times each gene is a neighbor of a given point + if agg == "binary": + n_indicator = (point_neighbor_counts > 0).astype(int) + point_ncounts.append(n_indicator) + + # Quantify abundance of each gene as a neighbor of a given point + elif agg is None: + point_ncounts.append(point_neighbor_counts) + + cur_pos += s + + point_ncounts = np.array(point_ncounts) + point_ncounts = csr_matrix(point_ncounts) + + return point_ncounts diff --git a/bento/tools/_point_features.py b/bento/tools/_point_features.py new file mode 100644 index 0000000..80d427d --- /dev/null +++ b/bento/tools/_point_features.py @@ -0,0 +1,842 @@ +import warnings +from shapely.errors import ShapelyDeprecationWarning + +warnings.filterwarnings("ignore", category=ShapelyDeprecationWarning) + + +from abc import ABCMeta, abstractmethod +from typing import List, Optional, Union + +import numpy as np +import pandas as pd +from anndata import AnnData +from astropy.stats.spatial import RipleysKEstimator +from scipy.spatial import distance +from scipy.stats.stats import spearmanr +from tqdm.auto import tqdm +import re + +from .. import tools as tl +from .._utils import track +from ..geometry import get_points + + +@track +def analyze_points( + data: AnnData, + shape_names: List[str], + feature_names: List[str], + groupby: Optional[Union[str, List[str]]] = None, + recompute=False, + progress: bool = False, + copy: bool = False, +): + """Calculate the set of specified `features` for each point group. Groups are within each cell. + + Parameters + ---------- + data : AnnData + Spatially formatted AnnData + shape_names : str or list of str + Names of the shapes to analyze. + feature_names : str or list of str + Names of the features to analyze. + groupby : str or list of str, optional + Key(s) in `data.uns['points'] to groupby, by default None. Always treats each cell separately + copy : bool + Return a copy of `data` instead of writing to data, by default False. + + Returns + ------- + adata : anndata.AnnData + .uns["point_featu] + See the output of each :class:`PointFeature` in `features` for keys added. + `.obsm[`cell_`]` + DataFrame with rows aligned to `adata.obs_names` and `features` as columns. + + """ + adata = data.copy() if copy else data + + # Cast to list if not already + if isinstance(shape_names, str): + shape_names = [shape_names] + + # Cast to list if not already + if isinstance(feature_names, str): + feature_names = [feature_names] + + # Make sure groupby is a list + if isinstance(groupby, str): + groupby = ["cell", groupby] + elif isinstance(groupby, list): + groupby = ["cell"] + groupby + else: + groupby = ["cell"] + + # Make sure all groupby keys are in point columns + for g in groupby: + if g not in get_points(adata).columns: + raise ValueError(f"Groupby key {g} not found in point columns.") + + # Generate feature x shape combinations + feature_combos = [point_features[f](s) for f in feature_names for s in shape_names] + + # Compile dependency set of features and attributes + cell_features = set() + obs_attrs = set() + for f in feature_combos: + cell_features.update(f.cell_features) + obs_attrs.update(f.attributes) + + cell_features = list(cell_features) + obs_attrs = list(obs_attrs) + + print("Crunching shape features...") + tl.analyze_shapes( + adata, "cell_shape", cell_features, progress=progress, recompute=recompute + ) + + # Make sure attributes are present + attrs_found = set(obs_attrs).intersection(set(adata.obs.columns.tolist())) + if len(attrs_found) != len(obs_attrs): + raise KeyError(f"df does not have all columns: {obs_attrs}.") + + # extract cell attributes + points_df = ( + get_points(adata, asgeo=True) + .set_index("cell") + .join(data.obs[obs_attrs]) + .reset_index() + ) + + for g in groupby: + points_df[g] = points_df[g].astype("category") + # Handle categories as strings to avoid ambiguous cat types + # for col in points_df.loc[:, (points_df.dtypes == "category").values]: + # points_df[col] = points_df[col].astype(str) + + # Handle shape indexes as strings to avoid ambiguous types + for shape_name in adata.obs.columns[adata.obs.columns.str.endswith("_shape")]: + shape_prefix = "_".join(shape_name.split("_")[:-1]) + if shape_prefix in points_df.columns: + points_df[shape_prefix] = points_df[shape_prefix].astype(str) + + # Calculate features for a sample + def process_sample(df): + sample_output = {} + for f in feature_combos: + sample_output.update(f.extract(df)) + return sample_output + + # Process all samples in a partition + def process_partition(partition_df): + # Groupby by cell and groupby keys and process each sample + out = partition_df.groupby(groupby, observed=True).apply(process_sample) + return pd.DataFrame.from_records(out.values, index=out.index) + + # Process points of each cell separately + cells, group_loc = np.unique( + points_df["cell"], + return_index=True, + ) + + end_loc = np.append(group_loc[1:], points_df.shape[0]) + + output = [] + print("Crunching point features...") + if progress: + group_locs = tqdm(zip(group_loc, end_loc), total=len(cells)) + else: + group_locs = zip(group_loc, end_loc) + for start, end in group_locs: + cell_points = points_df.iloc[start:end] + output.append(process_partition(cell_points)) + output = pd.concat(output) + + # Save and overwrite existing + print("Saving results...") + output_key = "_".join([*groupby, "features"]) + if output_key in adata.uns: + adata.uns[output_key][output.columns] = output.reset_index(drop=True) + else: + adata.uns[output_key] = output.reset_index() + + print("Done.") + return adata if copy else None + + +class PointFeature(metaclass=ABCMeta): + """Abstract class for calculating sample features. A sample is defined as the set of + molecules corresponding to a single cell-gene pair. + + Attributes + ---------- + cell_features : int + Set of cell-level features needed for computing sample-level features. + attributes : int + Names (keys) used to store computed cell-level features. + """ + + def __init__(self, shape_name): + self.cell_features = set() + self.attributes = set() + + if shape_name: + self.attributes.add(shape_name) + self.shape_name = shape_name + self.shape_prefix = "_".join(shape_name.split("_")[:-1]) + + @abstractmethod + def extract(self, df): + """Calculates this feature for a given sample. + + Parameters + ---------- + df : DataFrame + Assumes each row is a molecule and that columns `x`, `y`, `cell`, and `gene` are present. + """ + return df + + +class ShapeProximity(PointFeature): + """For a set of points, computes the proximity of points within `shape_name` + as well as the proximity of points outside `shape_name`. Proximity is defined as + the average absolute distance to the specified `shape_name` normalized by cell + radius. Values closer to 0 denote farther from the `shape_name`, values closer + to 1 denote closer to the `shape_name`. + + Attributes + ---------- + cell_features : int + Set of cell-level features needed for computing sample-level features + attributes : int + Names (keys) used to store computed cell-level features + + Returns + ------- + dict + `"{shape_prefix}_inner_proximity"`: proximity of points inside `shape_name` + `"{shape_prefix}_outer_proximity"`: proximity of points outside `shape_name` + """ + + def __init__(self, shape_name): + super().__init__(shape_name) + self.cell_features.add("radius") + self.attributes.add("cell_radius") + self.shape_name = shape_name + + def extract(self, df): + df = super().extract(df) + + # Get shape polygon + shape = df[self.shape_name].values[0] + + # Skip if no shape + if not shape: + return { + f"{self.shape_prefix}_inner_proximity": 0, + f"{self.shape_prefix}_outer_proximity": 0, + } + + # Get points + points_geo = df["geometry"] + + # Check for points within shape, assume all are intracellular + if self.shape_prefix == "cell": + inner = np.array([True] * len(df)) + else: + inner = df[self.shape_prefix] != "-1" + outer = ~inner + + inner_dist = np.nan + outer_dist = np.nan + + if inner.sum() > 0: + inner_dist = points_geo[inner].distance(shape.boundary).mean() + + if outer.sum() > 0: + outer_dist = points_geo[outer].distance(shape.boundary).mean() + + # Scale from [0, 1], where 1 is close and 0 is far. + cell_radius = df["cell_radius"].values[0] + inner_proximity = (cell_radius - inner_dist) / cell_radius + outer_proximity = (cell_radius - outer_dist) / cell_radius + + if np.isnan(inner_proximity): + inner_proximity = 0 + + if np.isnan(outer_proximity): + outer_proximity = 0 + + return { + f"{self.shape_prefix}_inner_proximity": inner_proximity, + f"{self.shape_prefix}_outer_proximity": outer_proximity, + } + + +class ShapeAsymmetry(PointFeature): + """For a set of points, computes the asymmetry of points within `shape_name` + as well as the asymmetry of points outside `shape_name`. Asymmetry is defined as + the offset between the centroid of points to the centroid of the specified + `shape_name`, normalized by cell radius. Values closer to 0 denote symmetry, + values closer to 1 denote asymmetry. + + Attributes + ---------- + cell_features : int + Set of cell-level features needed for computing sample-level features + cell_attributes : int + Names (keys) used to store computed cell-level features + shape_name : str + Name of shape to use, must be column name in input DataFrame + + Returns + ------- + dict + `"{shape_prefix}_inner_asymmetry"`: asymmetry of points inside `shape_name` + `"{shape_prefix}_outer_asymmetry"`: asymmetry of points outside `shape_name` + """ + + def __init__(self, shape_name): + super().__init__(shape_name) + self.cell_features.add("radius") + self.attributes.add("cell_radius") + self.shape_name = shape_name + + def extract(self, df): + df = super().extract(df) + + # Get shape polygon + shape = df[self.shape_name].values[0] + + # Skip if no shape + if shape is None: + return { + f"{self.shape_prefix}_inner_asymmetry": 0, + f"{self.shape_prefix}_outer_asymmetry": 0, + } + + # Get points + points_geo = df["geometry"] + + # Check for points within shape, assume all are intracellular + if self.shape_prefix == "cell": + inner = np.array([True] * len(df)) + else: + inner = df[self.shape_prefix] != "-1" + outer = ~inner + + inner_to_centroid = np.nan + outer_to_centroid = np.nan + + if inner.sum() > 0: + inner_to_centroid = points_geo[inner].distance(shape.centroid).mean() + + if outer.sum() > 0: + outer_to_centroid = points_geo[outer].distance(shape.centroid).mean() + + # Values [0, 1], where 1 is asymmetrical and 0 is symmetrical. + cell_radius = df["cell_radius"].values[0] + inner_asymmetry = inner_to_centroid / cell_radius + outer_asymmetry = outer_to_centroid / cell_radius + + if np.isnan(inner_asymmetry): + inner_asymmetry = 0 + + if np.isnan(outer_asymmetry): + outer_asymmetry = 0 + + return { + f"{self.shape_prefix}_inner_asymmetry": inner_asymmetry, + f"{self.shape_prefix}_outer_asymmetry": outer_asymmetry, + } + + +class PointDispersionNorm(PointFeature): + """For a set of points, calculates the second moment of all points in a cell + relative to the centroid of the total RNA signal. This value is normalized by + the second moment of a uniform distribution within the cell boundary. + + Attributes + ---------- + cell_features : int + Set of cell-level features needed for computing sample-level features + cell_attributes : int + Names (keys) used to store computed cell-level features + + Returns + ------- + dict + `"point_dispersion"`: measure of point dispersion + """ + + def __init__(self, shape_name): + super().__init__(shape_name) + self.cell_features.add("raster") + + attrs = ["cell_raster"] + self.attributes.update(attrs) + + def extract(self, df): + df = super().extract(df) + + # Get precomputed cell centroid and raster + pt_centroid = df[["x", "y"]].values.mean(axis=0).reshape(1, 2) + cell_raster = df["cell_raster"].values[0] + + # Skip if no raster + if not np.array(cell_raster).flatten().any(): + return {"point_dispersion_norm": np.nan} + + # calculate points moment + point_moment = _second_moment(pt_centroid, df[["x", "y"]].values) + cell_moment = _second_moment(pt_centroid, cell_raster) + + # Normalize by cell moment + norm_moment = point_moment / cell_moment + + return {"point_dispersion_norm": norm_moment} + + +class ShapeDispersionNorm(PointFeature): + """For a set of points, calculates the second moment of all points in a cell relative to the + centroid of `shape_name`. This value is normalized by the second moment of a uniform + distribution within the cell boundary. + + Attributes + ---------- + cell_features : int + Set of cell-level features needed for computing sample-level features + cell_attributes : int + Names (keys) used to store computed cell-level features + + Returns + ------- + dict + `"{shape_prefix}_dispersion"`: measure of point dispersion relative to `shape_name` + """ + + def __init__(self, shape_name): + super().__init__(shape_name) + + self.cell_features.add("raster") + attrs = ["cell_raster"] + self.attributes.update(attrs) + + def extract(self, df): + df = super().extract(df) + + # Get shape polygon + shape = df[self.shape_name].values[0] + + # Skip if no shape + if not shape: + return {f"{self.shape_prefix}_dispersion_norm": np.nan} + + # Get precomputed shape centroid and raster + cell_raster = df["cell_raster"].values[0] + + # calculate points moment + point_moment = _second_moment(shape.centroid, df[["x", "y"]].values) + cell_moment = _second_moment(shape.centroid, cell_raster) + + # Normalize by cell moment + norm_moment = point_moment / cell_moment + + return {f"{self.shape_prefix}_dispersion_norm": norm_moment} + + +class ShapeDistance(PointFeature): + """For a set of points, computes the distance of points within `shape_name` + as well as the distance of points outside `shape_name`. + + Attributes + ---------- + cell_features : int + Set of cell-level features needed for computing sample-level features + attributes : int + Names (keys) used to store computed cell-level features + + Returns + ------- + dict + `"{shape_prefix}_inner_distance"`: distance of points inside `shape_name` + `"{shape_prefix}_outer_distance"`: distance of points outside `shape_name` + """ + + # Cell-level features needed for computing sample-level features + def __init__(self, shape_name): + super().__init__(shape_name) + + def extract(self, df): + df = super().extract(df) + + # Get shape polygon + shape = df[self.shape_name].values[0] + + # Skip if no shape + if not shape: + return { + f"{self.shape_prefix}_inner_distance": np.nan, + f"{self.shape_prefix}_outer_distance": np.nan, + } + + # Get points + points_geo = df["geometry"].values + + # Check for points within shape, assume all are intracellular + if self.shape_prefix == "cell": + inner = np.array([True] * len(df)) + else: + inner = df[self.shape_prefix] != "-1" + outer = ~inner + + if inner.sum() > 0: + inner_dist = points_geo[inner].distance(shape.boundary).mean() + else: + inner_dist = np.nan + + if outer.sum() > 0: + outer_dist = points_geo[outer].distance(shape.boundary).mean() + else: + outer_dist = np.nan + + return { + f"{self.shape_prefix}_inner_distance": inner_dist, + f"{self.shape_prefix}_outer_distance": outer_dist, + } + + +class ShapeOffset(PointFeature): + """For a set of points, computes the offset of points within `shape_name` + as well as the offset of points outside `shape_name`. Offset is defined as + the offset between the centroid of points to the centroid of the specified + `shape_name`. + + Attributes + ---------- + cell_features : int + Set of cell-level features needed for computing sample-level features + attributes : int + Names (keys) used to store computed cell-level features + shape_name : str + Name of shape to use, must be column name in input DataFrame + + Returns + ------- + dict + `"{shape_prefix}_inner_offset"`: offset of points inside `shape_name` + `"{shape_prefix}_outer_offset"`: offset of points outside `shape_name` + """ + + def __init__(self, shape_name): + super().__init__(shape_name) + + def extract(self, df): + df = super().extract(df) + + # Get shape polygon + shape = df[self.shape_name].values[0] + + # Skip if no shape + if not shape: + return { + f"{self.shape_prefix}_inner_offset": np.nan, + f"{self.shape_prefix}_outer_offset": np.nan, + } + + # Get points + points_geo = df["geometry"].values + + # Check for points within shape, assume all are intracellular + if self.shape_prefix == "cell": + inner = np.array([True] * len(df)) + else: + inner = df[self.shape_prefix] != "-1" + outer = ~inner + + if inner.sum() > 0: + inner_to_centroid = points_geo[inner].distance(shape.centroid).mean() + else: + inner_to_centroid = np.nan + + if outer.sum() > 0: + outer_to_centroid = points_geo[outer].distance(shape.centroid).mean() + else: + outer_to_centroid = np.nan + + return { + f"{self.shape_prefix}_inner_offset": inner_to_centroid, + f"{self.shape_prefix}_outer_offset": outer_to_centroid, + } + + +class PointDispersion(PointFeature): + """For a set of points, calculates the second moment of all points in a cell + relative to the centroid of the total RNA signal. + + Attributes + ---------- + cell_features : int + Set of cell-level features needed for computing sample-level features + attributes : int + Names (keys) used to store computed cell-level features + + Returns + ------- + dict + `"point_dispersion"`: measure of point dispersion + """ + + # shape_name set to None to follow the same convention as other shape features + def __init__(self, shape_name=None): + super().__init__(shape_name) + + def extract(self, df): + df = super().extract(df) + + # Get precomputed cell centroid and raster + pt_centroid = df[["x", "y"]].values.mean(axis=0).reshape(1, 2) + + # calculate points moment + point_moment = _second_moment(pt_centroid, df[["x", "y"]].values) + + return {"point_dispersion": point_moment} + + +class ShapeDispersion(PointFeature): + """For a set of points, calculates the second moment of all points in a cell relative to the + centroid of `shape_name`. + + Attributes + ---------- + cell_features : int + Set of cell-level features needed for computing sample-level features + attributes : int + Names (keys) used to store computed cell-level features + + Returns + ------- + dict + `"{shape_prefix}_dispersion"`: measure of point dispersion relative to `shape_name` + """ + + def __init__(self, shape_name): + super().__init__(shape_name) + + def extract(self, df): + df = super().extract(df) + + # Get shape polygon + shape = df[self.shape_name].values[0] + + # Skip if no shape + if not shape: + return {f"{self.shape_prefix}_dispersion": np.nan} + + # calculate points moment + point_moment = _second_moment(shape.centroid, df[["x", "y"]].values) + + return {f"{self.shape_prefix}_dispersion": point_moment} + + +class RipleyStats(PointFeature): + """For a set of points, calculates properties of the L-function. The L-function + measures spatial clustering of a point pattern over the area of the cell. + + Attributes + ---------- + cell_features : int + Set of cell-level features needed for computing sample-level features + attributes : int + Names (keys) used to store computed cell-level features + + Returns + ------- + dict + `"l_max": The max value of the L-function evaluated at r=[1,d], where d is half the cell’s maximum diameter. + `"l_max_gradient"`: The max value of the gradient of the above L-function. + `"l_min_gradient"`: The min value of the gradient of the above L-function. + `"l_monotony"`: The correlation of the L-function and r=[1,d]. + `"l_half_radius"`: The value of the L-function evaluated at 1/4 of the maximum cell diameter. + + """ + + def __init__(self, shape_name=None): + super().__init__(shape_name) + self.cell_features.update(["span", "bounds", "area"]) + + self.attributes.update( + [ + "cell_span", + "cell_minx", + "cell_miny", + "cell_maxx", + "cell_maxy", + "cell_area", + ] + ) + + def extract(self, df): + df = super().extract(df) + + # Get precomputed centroid and cell moment + cell_span = df["cell_span"].values[0] + cell_minx = df["cell_minx"].values[0] + cell_miny = df["cell_miny"].values[0] + cell_maxx = df["cell_maxx"].values[0] + cell_maxy = df["cell_maxy"].values[0] + cell_area = df["cell_area"].values[0] + + estimator = RipleysKEstimator( + area=cell_area, + x_min=cell_minx, + y_min=cell_miny, + x_max=cell_maxx, + y_max=cell_maxy, + ) + + quarter_span = cell_span / 4 + radii = np.linspace(1, quarter_span * 2, num=int(quarter_span * 2)) + + # Get points + points_geo = df["geometry"].values + points_geo = np.array([points_geo.x, points_geo.y]).T + + # Compute ripley function stats + stats = estimator.Hfunction(data=points_geo, radii=radii, mode="none") + + # Max value of the L-function + l_max = max(stats) + + # Max and min value of the gradient of L + ripley_smooth = pd.Series(stats).rolling(5).mean() + ripley_smooth.dropna(inplace=True) + + # Can't take gradient of single number + if len(ripley_smooth) < 2: + ripley_smooth = np.array([0, 0]) + + ripley_gradient = np.gradient(ripley_smooth) + l_max_gradient = ripley_gradient.max() + l_min_gradient = ripley_gradient.min() + + # Monotony of L-function in the interval + l_monotony = spearmanr(radii, stats)[0] + + # L-function at L/4 where length of the cell L is max dist between 2 points on polygon defining cell border + l_half_radius = estimator.Hfunction( + data=points_geo, radii=[quarter_span], mode="none" + )[0] + + result = { + "l_max": l_max, + "l_max_gradient": l_max_gradient, + "l_min_gradient": l_min_gradient, + "l_monotony": l_monotony, + "l_half_radius": l_half_radius, + } + + return result + + +class ShapeEnrichment(PointFeature): + """For a set of points, calculates the fraction of points within `shape_name` + out of all points in the cell. + + Attributes + ---------- + cell_features : int + Set of cell-level features needed for computing sample-level features + attributes : int + Names (keys) used to store computed cell-level features + shape_name : str + Name of shape to use, must be column name in input DataFrame + + Returns + ------- + dict + `"{shape_prefix}_enrichment"`: enrichment fraction of points in `shape_name` + """ + + def __init__(self, shape_name): + super().__init__(shape_name) + + def extract(self, df): + df = super().extract(df) + + # Get points outside shape + points_geo = df["geometry"] + + # Check for points within shape, assume all are intracellular + if self.shape_prefix == "cell": + enrichment = 1.0 + else: + inner_count = (df[self.shape_prefix] != "-1").sum() + enrichment = inner_count / float(len(points_geo)) + + return {f"{self.shape_prefix}_enrichment": enrichment} + + +def _second_moment(centroid, pts): + """ + Calculate second moment of points with centroid as reference. + + Parameters + ---------- + centroid : [1 x 2] float + pts : [n x 2] float + """ + centroid = np.array(centroid).reshape(1, 2) + radii = distance.cdist(centroid, pts) + second_moment = np.sum(radii * radii / len(pts)) + return second_moment + + +def list_point_features(): + """Return a DataFrame of available point features. Pulls descriptions from function docstrings. + + Returns + ------- + list + List of available point features. + """ + + # Get point feature descriptions from docstrings + df = dict() + for k, v in point_features.items(): + description = v.__doc__.split("Attributes")[0].strip() + description = re.sub("\s +", " ", description) + df[k] = description + + return df + + +point_features = dict( + proximity=ShapeProximity, + asymmetry=ShapeAsymmetry, + point_dispersion_norm=PointDispersionNorm, + shape_dispersion_norm=ShapeDispersionNorm, + distance=ShapeDistance, + offset=ShapeOffset, + point_dispersion=PointDispersion, + shape_dispersion=ShapeDispersion, + ripley=RipleyStats, + shape_enrichment=ShapeEnrichment, +) + + +def register_point_feature(name: str, FeatureClass: PointFeature): + """Register a new point feature function. + + Parameters + ---------- + name : str + Name of feature function + func : class + Class that extends PointFeature. Needs to override abstract functions. + """ + + point_features[name] = FeatureClass + + print(f"Registered point feature '{name}' to `bento.tl.shape_features`.") diff --git a/bento/tools/_sample_features.py b/bento/tools/_sample_features.py deleted file mode 100644 index 148294e..0000000 --- a/bento/tools/_sample_features.py +++ /dev/null @@ -1,589 +0,0 @@ -from abc import ABCMeta, abstractmethod - -from astropy.stats.spatial import RipleysKEstimator -from scipy.stats.stats import spearmanr -from scipy.spatial import distance - -import dask_geopandas -import geopandas as gpd -import numpy as np -import pandas as pd -from dask.diagnostics import ProgressBar -from tqdm.auto import tqdm - -from .. import tools as tl -from .._utils import track -from ..preprocessing import get_points - - -def analyze_samples(data, features, copy=False): - """Calculate the set of specified `features` for every sample, defined as the set of - molecules corresponding to every cell-gene pair. - - Parameters - ---------- - data : AnnData - Spatially formatted AnnData - features : list of :class:`SampleFeature` - List of :class:`SampleFeature` to compute. - chunks : int, optional - Number of partitions to use, passed to `dask`, by default None. - chunksize : int, optional - Size of partitions, passed to `dask`, by default None. - copy : bool - Return a copy of `data` instead of writing to data, by default False. - - Returns - ------- - adata : anndata.AnnData - Returns `adata` if `copy=True`, otherwise adds fields to `data`: - `.layers[`keys`]` - See the output of each :class:`SampleFeature` in `features` for keys added. - """ - adata = data.copy() if copy else data - - pbar = tqdm(desc="Cell features", total=3) - # Cast features to type list - if not isinstance(features, list): - features = [features] - features = [sample_features[f] for f in features] - - cell_features = set() # Cell-level fns to run - cell_attributes = set() # Cell-level attributes needed to compute sample features - for f in features: - cell_features.update(f.cell_features) - cell_attributes.update(f.cell_attributes) - - cell_features = list(cell_features) - cell_attributes = list(cell_attributes) - - tl.analyze_cells(adata, cell_features, progress=False) - - # Make sure attributes are present - attrs_found = set(cell_attributes).intersection(set(adata.obs.columns.tolist())) - if len(attrs_found) != len(cell_attributes): - raise KeyError(f"df does not have all columns: {cell_attributes}.") - - pbar.update() - - pbar.set_description("Sample features") - # extract cell attributes - points_df = ( - get_points(adata, asgeo=True) - .set_index("cell") - .join(data.obs[cell_attributes]) - .reset_index() - .sort_values(["cell", "gene"]) - .reset_index(drop=True) - ) - - # Handle categories as strings to avoid ambiguous cat types - for col in points_df.loc[:,(points_df.dtypes == 'category').values]: - points_df[col] = points_df[col].astype(str) - - # Handle shape indexes as strings to avoid ambiguous types - for shape_name in adata.obs.columns[adata.obs.columns.str.endswith('_shape')]: - shape_prefix = '_'.join(shape_name.split('_')[:-1]) - if shape_prefix in points_df.columns: - points_df[shape_prefix] = points_df[shape_prefix].astype(str) - - # Calculate features for a sample - def process_sample(df): - sample_output = {} - for f in features: - sample_output.update(f.extract(df)) - return sample_output - - # Process all samples in a partition - def process_partition(partition_df): - return partition_df.groupby(["cell", "gene"], observed=True).apply( - process_sample - ) - - # Cast to dask dataframe - ddf = dask_geopandas.from_geopandas(points_df, npartitions=1) - - # Partition so only 1000 groups per groupby - _, group_loc = np.unique( - points_df["cell"].astype(str) + "-" + points_df["gene"].astype(str), - return_index=True, - ) - divisions = [group_loc[loc] for loc in range(0, len(group_loc), 1000)] - divisions.append(len(points_df) - 1) - ddf = ddf.repartition(divisions=divisions) - - # Parallel process each partition - with ProgressBar(): - # Run on a single sample to get output metadata - meta_output = process_partition(points_df.head()) - meta = pd.DataFrame(meta_output.tolist(), index=meta_output.index) - output = ddf.map_partitions(process_partition, meta=meta.dtypes).compute() - - pbar.update() - pbar.set_description("Saving to AnnData") - - # Format from Series of dicts to DataFrame - output = pd.DataFrame(output.tolist(), index=output.index).reset_index() - - # Save results to data layers - feature_names = output.columns[~output.columns.isin(["cell", "gene"])] - for feature_name in feature_names: - adata.layers[feature_name] = ( - output.pivot(index="cell", columns="gene", values=feature_name) - .reindex(index=adata.obs_names, columns=adata.var_names) - .astype(float) - ) - - pbar.update() - pbar.set_description('Done!') - pbar.close() - - -class SampleFeature(metaclass=ABCMeta): - """Abstract class for calculating sample features. A sample is defined as the set of - molecules corresponding to a single cell-gene pair. - - Parameters - ---------- - metaclass : _type_, optional - _description_, by default ABCMeta - - Attributes - ---------- - cell_features : int - Set of cell-level features needed for computing sample-level features. - cell_attributes : int - Names (keys) used to store computed cell-level features. - """ - - @abstractmethod - def __init__(self): - self.cell_features = set() - self.cell_attributes = set() - - @abstractmethod - def extract(self, df): - """Calculates this feature for a given sample. - - Parameters - ---------- - df : DataFrame - Assumes each row is a molecule and that columns `x`, `y`, `cell`, and `gene` are present. - """ - - return df - - -class ShapeProximity(SampleFeature): - """For a set of points, computes the proximity of points within `shape_name` - as well as the proximity of points outside `shape_name`. Proximity is defined as - the average absolute distance to the specified `shape_name` normalized by cell - radius. Values closer to 0 denote farther from the `shape_name`, values closer - to 1 denote closer to the `shape_name`. - - Attributes - ---------- - cell_features : int - Set of cell-level features needed for computing sample-level features - cell_attributes : int - Names (keys) used to store computed cell-level features - - Returns - ------- - dict - `"{shape_prefix}_inner_proximity"`: proximity of points inside `shape_name` - `"{shape_prefix}_outer_proximity"`: proximity of points outside `shape_name` - """ - - def __init__(self, shape_name): - super().__init__() - self.cell_features.add("cell_radius") - - attrs = [shape_name, "cell_radius"] - self.cell_attributes.update(attrs) - - self.shape_name = shape_name - - def extract(self, df): - df = super().extract(df) - - shape_prefix = self.shape_name.split("_shape")[0] - - # Get shape polygon - shape = df[self.shape_name].values[0] - - # Get points - points_geo = df["geometry"].values - - # Check for points within shape, assume all are intracellular - if shape_prefix == "cell": - inner = np.array([True] * len(df)) - else: - inner = df[shape_prefix] != "-1" - outer = ~inner - - inner_dist = np.nan - outer_dist = np.nan - - if inner.sum() > 0: - inner_dist = points_geo[inner].distance(shape.boundary).mean() - - if outer.sum() > 0: - outer_dist = points_geo[outer].distance(shape.boundary).mean() - - # Scale from [0, 1], where 1 is close and 0 is far. - cell_radius = df["cell_radius"].values[0] - inner_proximity = (cell_radius - inner_dist) / cell_radius - outer_proximity = (cell_radius - outer_dist) / cell_radius - - if np.isnan(inner_proximity): - inner_proximity = 0 - - if np.isnan(outer_proximity): - outer_proximity = 0 - - return { - f"{shape_prefix}_inner_proximity": inner_proximity, - f"{shape_prefix}_outer_proximity": outer_proximity, - } - - -class ShapeAsymmetry(SampleFeature): - """For a set of points, computes the asymmetry of points within `shape_name` - as well as the asymmetry of points outside `shape_name`. Asymmetry is defined as - the offset between the centroid of points to the centroid of the specified - `shape_name`, normalized by cell radius. Values closer to 0 denote symmetry, - values closer to 1 denote asymmetry. - - Attributes - ---------- - cell_features : int - Set of cell-level features needed for computing sample-level features - cell_attributes : int - Names (keys) used to store computed cell-level features - shape_name : str - Name of shape to use, must be column name in input DataFrame - - Returns - ------- - dict - `"{shape_prefix}_inner_asymmetry"`: asymmetry of points inside `shape_name` - `"{shape_prefix}_outer_asymmetry"`: asymmetry of points outside `shape_name` - """ - - def __init__(self, shape_name): - super().__init__() - self.cell_features.add("cell_radius") - - attrs = [shape_name, "cell_radius"] - self.cell_attributes.update(attrs) - - self.shape_name = shape_name - - def extract(self, df): - df = super().extract(df) - - shape_prefix = self.shape_name.split("_shape")[0] - - # Get shape polygon - shape = df[self.shape_name].values[0] - - # Get points - points_geo = df["geometry"].values - - # Check for points within shape, assume all are intracellular - if shape_prefix == "cell": - inner = np.array([True] * len(df)) - else: - inner = df[shape_prefix] != "-1" - outer = ~inner - - inner_to_centroid = np.nan - outer_to_centroid = np.nan - - if inner.sum() > 0: - inner_to_centroid = points_geo[inner].distance(shape.centroid).mean() - - if outer.sum() > 0: - outer_to_centroid = points_geo[outer].distance(shape.centroid).mean() - - # Values [0, 1], where 1 is asymmetrical and 0 is symmetrical. - cell_radius = df["cell_radius"].values[0] - inner_asymmetry = inner_to_centroid / cell_radius - outer_asymmetry = outer_to_centroid / cell_radius - - if np.isnan(inner_asymmetry): - inner_asymmetry = 0 - - if np.isnan(outer_asymmetry): - outer_asymmetry = 0 - - return { - f"{shape_prefix}_inner_asymmetry": inner_asymmetry, - f"{shape_prefix}_outer_asymmetry": outer_asymmetry, - } - - -class PointDispersion(SampleFeature): - """For a set of points, calculates the second moment of all points in a cell - relative to the centroid of the total RNA signal. This value is normalized by - the second moment of a uniform distribution within the cell boundary. - - Attributes - ---------- - cell_features : int - Set of cell-level features needed for computing sample-level features - cell_attributes : int - Names (keys) used to store computed cell-level features - - Returns - ------- - dict - `"point_dispersion"`: measure of point dispersion - """ - - def __init__(self): - super().__init__() - self.cell_features.add("raster_cell") - - attrs = ["cell_raster"] - self.cell_attributes.update(attrs) - - def extract(self, df): - df = super().extract(df) - - # Get precomputed cell centroid and raster - pt_centroid = df[["x", "y"]].values.mean(axis=0).reshape(1, 2) - cell_raster = df["cell_raster"].values[0] - - # calculate points moment - point_moment = _second_moment(pt_centroid, df[["x", "y"]].values) - cell_moment = _second_moment(pt_centroid, cell_raster) - - # Normalize by cell moment - norm_moment = point_moment / cell_moment - - return {"point_dispersion": norm_moment} - - -class ShapeDispersion(SampleFeature): - """For a set of points, calculates the second moment of all points in a cell relative to the - centroid of `shape_name`. This value is normalized by the second moment of a uniform - distribution within the cell boundary. - - Attributes - ---------- - cell_features : int - Set of cell-level features needed for computing sample-level features - cell_attributes : int - Names (keys) used to store computed cell-level features - - Returns - ------- - dict - `"{shape_prefix}_dispersion"`: measure of point dispersion relative to `shape_name` - """ - - def __init__(self, shape_name): - super().__init__() - - self.cell_features.add("raster_cell") - attrs = [shape_name, "cell_raster"] - self.cell_attributes.update(attrs) - - self.shape_name = shape_name - - def extract(self, df): - df = super().extract(df) - - # Get shape polygon - shape = df[self.shape_name].values[0] - - # Get precomputed shape centroid and raster - cell_raster = df["cell_raster"].values[0] - - # calculate points moment - point_moment = _second_moment(shape.centroid, df[["x", "y"]].values) - cell_moment = _second_moment(shape.centroid, cell_raster) - - # Normalize by cell moment - norm_moment = point_moment / cell_moment - - shape_prefix = self.shape_name.split("_shape")[0] - - return {f"{shape_prefix}_dispersion": norm_moment} - - -class RipleyStats(SampleFeature): - """For a set of points, calculates properties of the L-function. The L-function - measures spatial clustering of a point pattern over the area of the cell. - - Attributes - ---------- - cell_features : int - Set of cell-level features needed for computing sample-level features - cell_attributes : int - Names (keys) used to store computed cell-level features - - Returns - ------- - dict - `"l_max": The max value of the L-function evaluated at r=[1,d], where d is half the cell’s maximum diameter. - `"l_max_gradient"`: The max value of the gradient of the above L-function. - `"l_min_gradient"`: The min value of the gradient of the above L-function. - `"l_monotony"`: The correlation of the L-function and r=[1,d]. - `"l_half_radius"`: The value of the L-function evaluated at 1/4 of the maximum cell diameter. - - """ - - def __init__(self): - super().__init__() - self.cell_features.update(["cell_span", "cell_bounds", "cell_area"]) - - self.cell_attributes.update( - [ - "cell_span", - "cell_minx", - "cell_miny", - "cell_maxx", - "cell_maxy", - "cell_area", - ] - ) - - def extract(self, df): - df = super().extract(df) - - # Get precomputed centroid and cell moment - cell_span = df["cell_span"].values[0] - cell_minx = df["cell_minx"].values[0] - cell_miny = df["cell_miny"].values[0] - cell_maxx = df["cell_maxx"].values[0] - cell_maxy = df["cell_maxy"].values[0] - cell_area = df["cell_area"].values[0] - - estimator = RipleysKEstimator( - area=cell_area, - x_min=cell_minx, - y_min=cell_miny, - x_max=cell_maxx, - y_max=cell_maxy, - ) - - quarter_span = cell_span / 4 - radii = np.linspace(1, quarter_span * 2, num=int(quarter_span * 2)) - - # Get points - points_geo = df["geometry"].values - points_geo = np.array([points_geo.x, points_geo.y]).T - - # Compute ripley function stats - stats = estimator.Hfunction(data=points_geo, radii=radii, mode="none") - - # Max value of the L-function - l_max = max(stats) - - # Max and min value of the gradient of L - ripley_smooth = pd.Series(stats).rolling(5).mean() - ripley_smooth.dropna(inplace=True) - - # Can't take gradient of single number - if len(ripley_smooth) < 2: - ripley_smooth = np.array([0, 0]) - - ripley_gradient = np.gradient(ripley_smooth) - l_max_gradient = ripley_gradient.max() - l_min_gradient = ripley_gradient.min() - - # Monotony of L-function in the interval - l_monotony = spearmanr(radii, stats)[0] - - # L-function at L/4 where length of the cell L is max dist between 2 points on polygon defining cell border - l_half_radius = estimator.Hfunction( - data=points_geo, radii=[quarter_span], mode="none" - )[0] - - result = { - "l_max": l_max, - "l_max_gradient": l_max_gradient, - "l_min_gradient": l_min_gradient, - "l_monotony": l_monotony, - "l_half_radius": l_half_radius, - } - - return result - - -class ShapeEnrichment(SampleFeature): - """For a set of points, calculates the fraction of points within `shape_name` - out of all points in the cell. - - Attributes - ---------- - cell_features : int - Set of cell-level features needed for computing sample-level features - cell_attributes : int - Names (keys) used to store computed cell-level features - shape_name : str - Name of shape to use, must be column name in input DataFrame - - Returns - ------- - dict - `"{shape_prefix}_enrichment"`: enrichment fraction of points in `shape_name` - """ - - def __init__(self, shape_name): - super().__init__() - - attrs = [shape_name] - self.cell_attributes.update(attrs) - - self.shape_name = shape_name - - def extract(self, df): - df = super().extract(df) - - shape_prefix = self.shape_name.split("_shape")[0] - - # Get points outside shape - points_geo = df["geometry"] - - # Check for points within shape, assume all are intracellular - if shape_prefix == "cell": - enrichment = 1.0 - else: - inner_count = (df[shape_prefix] != "-1").sum() - enrichment = inner_count / float(len(points_geo)) - - return {f"{shape_prefix}_enrichment": enrichment} - - -def _second_moment(centroid, pts): - """ - Calculate second moment of points with centroid as reference. - - Parameters - ---------- - centroid : [1 x 2] float - pts : [n x 2] float - """ - centroid = np.array(centroid).reshape(1, 2) - radii = distance.cdist(centroid, pts) - second_moment = np.sum(radii * radii / len(pts)) - return second_moment - - -sample_features = dict( - cell_proximity=ShapeProximity("cell_shape"), - nucleus_proximity=ShapeProximity("nucleus_shape"), - cell_asymmetry=ShapeAsymmetry("cell_shape"), - nucleus_asymmetry=ShapeAsymmetry("nucleus_shape"), - point_dispersion=PointDispersion(), - nucleus_dispersion=ShapeDispersion("nucleus_shape"), - ripley_stats=RipleyStats(), - nucleus_enrichment=ShapeEnrichment("nucleus_shape"), -) -"""Dict of sample feature names : function. Pass a list of feature name(s) to -`bento.tl.analyze_samples()` to compute them. -""" diff --git a/bento/tools/_shape_features.py b/bento/tools/_shape_features.py new file mode 100755 index 0000000..a06f005 --- /dev/null +++ b/bento/tools/_shape_features.py @@ -0,0 +1,560 @@ +import warnings +from shapely.errors import ShapelyDeprecationWarning + +warnings.filterwarnings("ignore", category=ShapelyDeprecationWarning) + + +from typing import Callable, Dict, List, Union + +import matplotlib.path as mplPath +import numpy as np +import pandas as pd +from anndata import AnnData +from scipy.spatial import distance, distance_matrix +from shapely.geometry import MultiPolygon, Point +from tqdm.auto import tqdm + +from .._utils import sync, track +from ..geometry import get_points, get_shape + + +def _area(data: AnnData, shape_name: str, recompute: bool = False): + """Compute the area of each shape. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + shape_name : str + Key in `data.obs` that contains the shape information. + + Fields + ------ + .obs['{shape}_area'] : float + Area of each polygon + """ + + feature_key = f"{shape_name.split('_')[0]}_area" + if feature_key in data.obs.keys() and not recompute: + return + + # Calculate pixel-wise area + area = get_shape(data, shape_name).area + + data.obs[feature_key] = area + + +def _poly_aspect_ratio(poly): + """Compute the aspect ratio of the minimum rotated rectangle that contains a polygon.""" + + if not poly: + return np.nan + + # get coordinates of min bounding box vertices around polygon + x, y = poly.minimum_rotated_rectangle.exterior.coords.xy + + # get length of bound box sides + edge_length = ( + Point(x[0], y[0]).distance(Point(x[1], y[1])), + Point(x[1], y[1]).distance(Point(x[2], y[2])), + ) + + # length = longest side, width = shortest side + length, width = max(edge_length), min(edge_length) + + # return long / short ratio + return length / width + + +def _aspect_ratio(data: AnnData, shape_name: str, recompute: bool = False): + """Compute the aspect ratio of the minimum rotated rectangle that contains each shape. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + shape_name : str + Key in `data.obs` that contains the shape information. + + Fields + ------ + .obs['{shape}_aspect_ratio'] : float + Ratio of major to minor axis for each polygon + """ + + feature_key = f"{shape_name.split('_')[0]}_aspect_ratio" + if feature_key in data.obs.keys() and not recompute: + return + + ar = get_shape(data, shape_name).apply(_poly_aspect_ratio) + data.obs[feature_key] = ar + + +def _bounds(data: AnnData, shape_name: str, recompute: bool = False): + """Compute the minimum and maximum coordinate values that bound each shape. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + shape_name : str + Key in `data.obs` that contains the shape information. + + Fields + ------ + .obs['{shape}_minx'] : float + x-axis lower bound of each polygon + .obs['{shape}_miny'] : float + y-axis lower bound of each polygon + .obs['{shape}_maxx'] : float + x-axis upper bound of each polygon + .obs['{shape}_maxy'] : float + y-axis upper bound of each polygon + """ + + feature_keys = [ + f"{shape_name.split('_')[0]}_{k}" for k in ["minx", "miny", "maxx", "maxy"] + ] + if all([k in data.obs.keys() for k in feature_keys]) and not recompute: + return + + bounds = get_shape(data, shape_name).bounds + + data.obs[feature_keys[0]] = bounds["minx"] + data.obs[feature_keys[1]] = bounds["miny"] + data.obs[feature_keys[2]] = bounds["maxx"] + data.obs[feature_keys[3]] = bounds["maxy"] + + +# TODO move to point_features +def _density(data: AnnData, shape_name: str, recompute: bool = False): + """Compute the RNA density of each shape. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + shape_name : str + Key in `data.obs` that contains the shape information. + + Fields + ------ + .obs['{shape}_density'] : float + Density (molecules / shape area) of each polygon + """ + + shape_prefix = shape_name.split("_")[0] + feature_key = f"{shape_prefix}_density" + if feature_key in data.obs.keys() and not recompute: + return + + count = get_points(data).query(f"{shape_prefix} != '-1'")["cell"].value_counts() + _area(data, shape_name) + + data.obs[feature_key] = count / data.obs[f"{shape_prefix}_area"] + + +def _opening(data: AnnData, proportion: float, recompute: bool = False): + """Compute the opening (morphological) of distance d for each cell. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + + Returns + ------- + data : anndata.AnnData + Returns `data` if `copy=True`, otherwise adds fields to `data`: + + `obs['cell_open_{d}_shape']` : Polygons + Ratio of long / short axis for each polygon in `obs['cell_shape']` + """ + + shape_name = f"cell_open_{proportion}_shape" + + if shape_name in data.obs.keys() and not recompute: + return + + _radius(data, "cell_shape") + + cells = get_shape(data, "cell_shape") + d = proportion * data.obs["cell_radius"] + + # Opening + data.obs[shape_name] = cells.buffer(-d).buffer(d) + + +def _second_moment_polygon(centroid, pts): + """ + Calculate second moment of points with centroid as reference. + + Parameters + ---------- + centroid : 2D Point object + pts : [n x 2] float + """ + if not centroid or isinstance(pts, np.ndarray): + return + centroid = np.array(centroid).reshape(1, 2) + radii = distance.cdist(centroid, pts) + second_moment = np.sum(radii * radii / len(pts)) + return second_moment + + +def _second_moment(data: AnnData, shape_name: str, recompute: bool = False): + """Compute the second moment of each shape. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + + Returns + ------- + data : anndata.AnnData + Returns `data` if `copy=True`, otherwise adds fields to `data`: + + `obs['{shape}_moment']` : float + The second moment for each polygon + """ + + shape_prefix = shape_name.split("_")[0] + feature_key = f"{shape_prefix}_moment" + if feature_key in data.obs.keys() and not recompute: + return + + _raster(data, shape_name, recompute=recompute) + + rasters = data.obs[f"{shape_prefix}_raster"] + shape_centroids = get_shape(data, shape_name).centroid + + moments = [ + _second_moment_polygon(centroid, r) + for centroid, r in zip(shape_centroids, rasters) + ] + + data.obs[f"{shape_prefix}_moment"] = moments + + +def _raster_polygon(poly, step=1): + """ + Generate a grid of points contained within the poly. The points lie on + a 2D grid, with vertices spaced step distance apart. + """ + if not poly: + return + minx, miny, maxx, maxy = [int(i) for i in poly.bounds] + x, y = np.meshgrid( + np.arange(minx, maxx + step, step=step), + np.arange(miny, maxy + step, step=step), + ) + x = x.flatten() + y = y.flatten() + xy = np.array([x, y]).T + + poly_cell_mask = np.ones(xy.shape[0], dtype=bool) + + # Add all points within the polygon; handle MultiPolygons + if isinstance(poly, MultiPolygon): + for p in poly: + poly_path = mplPath.Path(np.array(p.exterior.xy).T) + poly_cell_mask = poly_cell_mask & poly_path.contains_points(xy) + else: + poly_path = mplPath.Path(np.array(poly.exterior.xy).T) + poly_cell_mask = poly_path.contains_points(xy) + xy = xy[poly_cell_mask] + + # Make sure at least a single point is returned + if xy.shape[0] == 0: + return np.array(poly.centroid.xy).reshape(1, 2) + return xy + + +def _raster(data: AnnData, shape_name: str, step: int = 1, recompute: bool = False): + """Generate a grid of points contained within each shape. The points lie on + a 2D grid, with vertices spaced `step` distance apart. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + + Returns + ------- + data : anndata.AnnData + Returns `data` if `copy=True`, otherwise adds fields to `data`: + + `uns['{shape}_raster']` : np.array + Long DataFrame of points annotated by shape from `obs['{shape_name}']` + """ + + shape_prefix = shape_name.split("_")[0] + feature_key = f"{shape_prefix}_raster" + + if feature_key in data.obs.keys() and not recompute: + return + + raster = data.obs[f"{shape_name}"].apply( + lambda poly: _raster_polygon(poly, step=step) + ) + + raster_all = [] + for s, r in raster.items(): + raster_df = pd.DataFrame(r, columns=["x", "y"]) + raster_df[shape_prefix] = s + raster_all.append(raster_df) + + # Add raster to data.obs as 2d array per cell (for point_features compatibility) + data.obs[feature_key] = [df[["x", "y"]].values for df in raster_all] + + # Add raster to data.uns as long dataframe (for flux compatibility) + raster_all = pd.concat(raster_all).reset_index(drop=True) + data.uns[feature_key] = raster_all + + +def _perimeter(data: AnnData, shape_name: str, recompute: bool = False): + """Compute the perimeter of each shape. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + + Returns + ------- + data : anndata.AnnData + Returns `data` if `copy=True`, otherwise adds fields to `data`: + + `obs['{shape}_perimeter']` : np.array + Perimeter of each polygon + """ + + shape_prefix = shape_name.split("_")[0] + feature_key = f"{shape_prefix}_perimeter" + + if feature_key in data.obs.keys() and not recompute: + return + + data.obs[feature_key] = get_shape(data, shape_name).length + + +def _radius(data: AnnData, shape_name: str, recompute: bool = False): + """Compute the radius of each cell. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + + Returns + ------- + data : anndata.AnnData + Returns `data` if `copy=True`, otherwise adds fields to `data`: + + `obs['{shape}_radius']` : np.array + Radius of each polygon in `obs['cell_shape']` + """ + + shape_prefix = shape_name.split("_")[0] + feature_key = f"{shape_prefix}_radius" + + if feature_key in data.obs.keys() and not recompute: + return + + shapes = get_shape(data, shape_name) + + # Get average distance from boundary to centroid + shape_radius = shapes.apply(_shape_radius) + + data.obs[feature_key] = shape_radius + + +def _shape_radius(poly): + if not poly: + return np.nan + + return distance.cdist( + np.array(poly.centroid).reshape(1, 2), np.array(poly.exterior.xy).T + ).mean() + + +def _span(data: AnnData, shape_name: str, recompute: bool = False): + """Compute the length of the longest diagonal of each shape. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + + Returns + ------- + data : anndata.AnnData + Returns `data` if `copy=True`, otherwise adds fields to `data`: + + `obs['{shape}_span']` : float + Length of longest diagonal for each polygon + """ + + shape_prefix = shape_name.split("_")[0] + feature_key = f"{shape_prefix}_span" + + if feature_key in data.obs.keys() and not recompute: + return + + def get_span(poly): + if not poly: + return np.nan + + shape_coo = np.array(poly.coords.xy).T + return int(distance_matrix(shape_coo, shape_coo).max()) + + span = get_shape(data, shape_name).exterior.apply(get_span) + + data.obs[feature_key] = span + + +def list_shape_features(): + """Return a DataFrame of available shape features. Pulls descriptions from function docstrings. + + Returns + ------- + list + List of available shape features. + """ + + # Get shape feature descriptions from docstrings + df = dict() + for k, v in shape_features.items(): + description = v.__doc__.split("Parameters")[0].strip() + df[k] = description + + return df + + +shape_features = dict( + area=_area, + aspect_ratio=_aspect_ratio, + bounds=_bounds, + density=_density, + perimeter=_perimeter, + radius=_radius, + raster=_raster, + second_moment=_second_moment, + span=_span, +) + + +def obs_stats( + data: AnnData, + feature_names: List[str] = ["area", "aspect_ratio", "density"], + copy=False, +): + """Compute features for each cell shape. Convenient wrapper for `bento.tl.shape_features`. + See list of available features in `bento.tl.shape_features`. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + feature_names : list + List of features to compute. See list of available features in `bento.tl.shape_features`. + copy : bool, optional + Return a copy of `data` instead of writing to data, by default False. + + Returns + ------- + data : anndata.AnnData + Returns `data` if `copy=True`, otherwise adds fields to `data`: + + `obs['{shape}_{feature}']` : np.array + Feature of each polygon + """ + adata = data.copy() if copy else data + + # Compute features + analyze_shapes(adata, "cell_shape", feature_names, copy=copy) + if "nucleus_shape" in adata.obs.columns: + analyze_shapes(adata, "nucleus_shape", feature_names, copy=copy) + + return adata if copy else None + + +@track +def analyze_shapes( + data: AnnData, + shape_names: Union[str, List[str]], + feature_names: Union[str, List[str]], + feature_kws: Dict[str, Dict] = None, + recompute: bool = False, + progress: bool = True, + copy: bool = False, +): + """Analyze features of shapes. + + Parameters + ---------- + data : AnnData + Spatial formatted AnnData + shape_names : list of str + List of shapes to analyze. + feature_names : list of str + List of features to analyze. + feature_kws : dict, optional (default: None) + Keyword arguments for each feature. + copy : bool, optional + Return a copy of `data` instead of writing to data, by default False. + + Returns + ------- + adata : AnnData + See specific feature function docs for fields added. + + """ + adata = data.copy() if copy else data + + # Cast to list if not already + if isinstance(shape_names, str): + shape_names = [shape_names] + + # Add _shape suffix if shape names don't have it + shape_names = [s if s.endswith("_shape") else f"{s}_shape" for s in shape_names] + + # Cast to list if not already + if isinstance(feature_names, str): + feature_names = [feature_names] + + # Generate feature x shape combinations + combos = [(f, s) for f in feature_names for s in shape_names] + + # Set up progress bar + if progress: + combos = tqdm(combos) + + # Analyze each feature x shape combination + for feature, shape in combos: + kws = dict(recompute=recompute) + if feature_kws and feature in feature_kws: + kws.update(feature_kws[feature]) + + shape_features[feature](adata, shape, **kws) + + return adata if copy else None + + +def register_shape_feature(name: str, func: Callable): + """Register a shape feature function. The function should take an AnnData object and a shape name as input. + The function should add the feature to the AnnData object as a column in AnnData.obs. This should be done in place and not return anything. + + Parameters + ---------- + name : str + Name of the feature function. + func : function + Function that takes an AnnData object and a shape name as arguments. + """ + shape_features[name] = func + + # TODO perform some checks on the function + + print(f"Registered shape feature '{name}' to `bento.tl.shape_features`.") diff --git a/bento/tools/_shapes.py b/bento/tools/_shapes.py deleted file mode 100644 index 0373e62..0000000 --- a/bento/tools/_shapes.py +++ /dev/null @@ -1,51 +0,0 @@ -import geopandas as gpd - -from .._utils import track - - -@track -def outer_edge(data, shape_name, distance=30, copy=False): - - adata = data.copy() if copy else data - - if distance <= 0: - print("Distance must be positive.") - return - - # Get region that is distance outside of specified shape but within the cell - cell_shapes = gpd.GeoSeries(adata.obs["cell_shape"]) - query_shapes = gpd.GeoSeries(adata.obs[shape_name]) - outer_shapes = cell_shapes & (query_shapes.buffer(distance) - query_shapes) - - if outer_shapes[0].type == "MultiLineString": - print("Invalid region, no area within cell.") - return - - name_prefix = shape_name.split("_shape")[0] - adata.obs[f"{name_prefix}_outer_edge_shape"] = outer_shapes - - return adata if copy else None - - -@track -def inner_edge(data, shape_name, distance=30, copy=False): - - adata = data.copy() if copy else data - - if distance <= 0: - print("Distance must be positive.") - return - - # Get region that is distance inside of specified shape but within the cell - cell_shapes = gpd.GeoSeries(adata.obs["cell_shape"]) - query_shapes = gpd.GeoSeries(adata.obs[shape_name]) - inner_shapes = cell_shapes & (query_shapes - query_shapes.buffer(-distance)) - - if inner_shapes[0].type == "MultiLineString": - print("Invalid region, no area within cell.") - return - - name_prefix = shape_name.split("_shape")[0] - adata.obs[f"{name_prefix}_inner_edge_shape"] = inner_shapes - - return adata if copy else None diff --git a/bento/tools/_tensor_tools.py b/bento/tools/_tensor_tools.py deleted file mode 100644 index 502e4a7..0000000 --- a/bento/tools/_tensor_tools.py +++ /dev/null @@ -1,269 +0,0 @@ -import cell2cell as c2c -import matplotlib.pyplot as plt -import numpy as np -import pandas as pd -import seaborn as sns -from sklearn.preprocessing import MinMaxScaler, StandardScaler - -from .._utils import track, PATTERN_NAMES, TENSOR_DIM_NAMES - - -@track -def to_tensor(data, layers, mask=False, copy=False): - """ - Generate tensor from data where dimensions are (layers, cells, genes). - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData - layers : list of str - Keys in data.layers to build tensor. - mask : bool - Whether to replace nans with 0, default False. - copy : bool - Return a copy of `data` instead of writing to data, by default False. - - Returns - ------- - adata : anndata.AnnData - Returns `adata` if `copy=True`, otherwise adds fields to `data`: - - `uns['tensor']` : np.ndarray - 3D numpy array of shape (len(layers), adata.n_obs, adata.n_vars) - - `uns['tensor_labels'] : dict - Element labels across each dimension. Keys are dimension names (layers, cells, genes), - values are lists of str - - """ - adata = data.copy() if copy else data - - cells = data.obs_names.tolist() - genes = adata.var_names.tolist() - - # Build tensor from specified layers - tensor = [] - for l in layers: - tensor.append(adata.to_df(l).values) - tensor = np.array(tensor) - - # Replace nans with 0 if mask == True - if mask: - tensor_mask = ~np.isnan(tensor) - tensor[~tensor_mask] = 0 - - # Save tensor values - adata.uns["tensor"] = tensor - - # Save tensor dimension indexes - adata.uns["tensor_labels"] = dict(zip(TENSOR_DIM_NAMES, [layers, cells, genes])) - - return adata - - -def select_tensor_rank(data, layers, upper_rank=5, runs=3, device="auto", random_state=888, copy=False): - """Perform `bento.tl.decompose_tensor()` up to rank `upper_rank` repeating each decomposition - `runs` times to compute a 95% confidence interval, plotting reconstruction error for each rank. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData. - layers : list of str - Keys in data.layers to build tensor. - upper_rank : int - Maximum rank to perform decomposition, by default 10. - runs : int - Number of times to run decomposition for calculating the confidence interval, by default 5. - device : str, optional - Type of device to use, valid options include `cpu`, `gpu`, and `auto`, by default `auto`. - Option `auto` prefers `gpu` over `cpu` if available. - random_state : int, optional - Random seed used for reproducibility, by default 888 - copy : bool - Return a copy of `data` instead of writing to data, by default False. - - Returns - ------- - adata : anndata.AnnData - Returns `adata` if `copy=True`, otherwise adds fields to `data`: - - `uns['tensor']` : np.ndarray - 3D numpy array of shape (len(layers), adata.n_obs, adata.n_vars) - - `uns['tensor_labels'] : dict - Element labels across each dimension. Keys are dimension names (layers, cells, genes), - values are lists of str - """ - adata = data.copy() if copy else data - - to_tensor(adata, layers=layers, mask=True) - tensor_c2c = init_c2c_tensor(adata, device=device) - - fig, error = tensor_c2c.elbow_rank_selection( - upper_rank=upper_rank, - runs=runs, - init="random", - automatic_elbow=True, - random_state=random_state, - ) - - plt.tight_layout() - - -def lp_signatures(data, rank, device="auto", random_state=888, copy=False): - """Calculate localization signatures by performing tensor decomposition on the dataset tensor. - Wrapper for `bento.tl.decompose_tensor()`. - - Parameters - ---------- - data : AnnData - Spatial formatted AnnData. - rank : int - Rank to perform decomposition. - device : str, optional - Type of device to use, valid options include `cpu`, `gpu`, and `auto`, by default `auto`. - Option `auto` prefers `gpu` over `cpu` if available. - random_state : int, optional - Random seed used for reproducibility, by default 888. - copy : bool - Return a copy of `data` instead of writing to data, by default False. - - Returns - ------- - _type_ - _description_ - """ - return decompose_tensor( - data, PATTERN_NAMES, rank, device=device, random_state=random_state, copy=copy - ) - - -@track -def decompose_tensor(data, layers, rank, device="auto", random_state=888, copy=False): - """Perform tensor decomposition on the 3-dimensional tensor built from `[cell, gene, layers]`. - - Parameters - ---------- - data : _type_ - _description_ - layers : _type_ - _description_ - rank : _type_ - _description_ - device : str, optional - _description_, by default "auto" - random_state : int, optional - _description_, by default 888 - copy : bool, optional - _description_, by default False - - Returns - ------- - _type_ - _description_ - """ - adata = data.copy() if copy else data - - to_tensor(data, layers=layers, mask=True) - tensor_c2c = init_c2c_tensor(data, device=device) - - tensor_c2c.compute_tensor_factorization( - rank=rank, - init="random", - random_state=random_state, - ) - - tensor_loadings = {} - for layer, df in tensor_c2c.factors.items(): - df.columns = df.columns.str.replace("Factor", "Signature") - tensor_loadings[layer] = df - - adata.uns["tensor_loadings"] = tensor_loadings - - _assign_factors(data) - - return adata - - -def _assign_factors(data, n_clusters=None, copy=False): - adata = data.copy() if copy else data - - # Get tensor dimension names - dim_names = list(adata.uns["tensor_labels"].keys()) - cell_load = adata.uns["tensor_loadings"][dim_names[1]] - gene_load = adata.uns["tensor_loadings"][dim_names[2]] - - # If 1 component decomposition, don't cluster later - cluster_factors = True - if cell_load.shape[1] == 1: - cluster_factors = False - - # Zscale for clustering - cell_load = pd.DataFrame( - StandardScaler().fit_transform(cell_load), - index=cell_load.index, - columns=cell_load.columns, - ) - gene_load = pd.DataFrame( - StandardScaler().fit_transform(gene_load), - index=gene_load.index, - columns=gene_load.columns, - ) - - # Get sorted cell order from clustermap - - iorder = sns.clustermap( - cell_load.T, row_cluster=cluster_factors, cmap="RdBu_r", center=0 - ).dendrogram_col.reordered_ind - plt.close() - - # Reorder cell names - iorder = pd.Series( - range(len(cell_load)), index=cell_load.index[iorder], name="td_cluster" - ) - cell_to_factor = cell_load.join(iorder)["td_cluster"].tolist() - - # Save associated tensor decomposition factor to adata.obs - adata.obs["td_cluster"] = cell_to_factor - - # Get sorted cell order from clustermap - iorder = sns.clustermap( - gene_load.T, row_cluster=cluster_factors, cmap="RdBu_r", center=0 - ).dendrogram_col.reordered_ind - plt.close() - - # Reorder cell names - iorder = pd.Series( - range(len(gene_load)), index=gene_load.index[iorder], name="td_cluster" - ) - gene_to_factor = gene_load.join(iorder)["td_cluster"].tolist() - - # Save associated tensor decomposition factor to adata.var - adata.var["td_cluster"] = gene_to_factor - return adata - - -def init_c2c_tensor(data, device="auto"): - - try: - import torch - - device = "cuda" if torch.cuda.is_available() else "cpu" - except ImportError: - device = None - - print(f"Device: {device}") - - order_labels = list(data.uns["tensor_labels"].keys()) - order_names = list(data.uns["tensor_labels"].values()) - - tensor_c2c = c2c.tensor.PreBuiltTensor( - data.uns["tensor"], - order_names=order_names, - order_labels=order_labels, - device=device, - ) - - return tensor_c2c diff --git a/bento/tools/gene_sets/__init__.py b/bento/tools/gene_sets/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/bento/tools/gene_sets/fazal2019.csv b/bento/tools/gene_sets/fazal2019.csv new file mode 100644 index 0000000..d542e88 --- /dev/null +++ b/bento/tools/gene_sets/fazal2019.csv @@ -0,0 +1,26305 @@ +target,source,weight +GCLC,Nucleus,0.846217713 +NFYA,Nucleus,0.317604203 +NIPAL3,Nucleus,-0.388236784 +ENPP4,Nucleus,0.167408603 +SEMA3F,Nucleus,0.331924384 +CD99,Nucleus,-0.894381539 +LASP1,Nucleus,-0.481626953 +M6PR,Nucleus,0.047576545 +CFLAR,Nucleus,0.900405547 +NDUFAF7,Nucleus,0.66322515 +RBM5,Nucleus,1.760755983 +SLC7A2,Nucleus,0.686737912 +SARM1,Nucleus,0.724724678 +CAMKK1,Nucleus,0.940083255 +RECQL,Nucleus,-0.355294863 +ARHGAP33,Nucleus,0.996317937 +CDC27,Nucleus,-0.129754471 +SPPL2B,Nucleus,2.125245216 +CREBBP,Nucleus,0.351721442 +GCFC2,Nucleus,0.022367422 +RHBDD2,Nucleus,-0.866408118 +IBTK,Nucleus,0.049407747 +ZNF195,Nucleus,1.452772311 +MYCBP2,Nucleus,0.317310398 +ZFX,Nucleus,0.472161452 +LAMP2,Nucleus,-0.534182572 +GDE1,Nucleus,-0.719682523 +TMEM98,Nucleus,-0.926017158 +TMEM132A,Nucleus,0.943999541 +ZNF263,Nucleus,0.67216026 +MAP3K9,Nucleus,0.857719835 +JHDM1D,Nucleus,1.106052437 +PHTF2,Nucleus,0.250274449 +FARP2,Nucleus,0.782347494 +IFRD1,Nucleus,1.054913434 +ARHGAP44,Nucleus,0.458779292 +ELAC2,Nucleus,-0.376053312 +ADIPOR2,Nucleus,-0.261249321 +PAFAH1B1,Nucleus,0.287627368 +KIAA0100,Nucleus,-0.604437451 +PAX6,Nucleus,0.986641605 +LUC7L,Nucleus,1.136883994 +CACNA2D2,Nucleus,-0.107551161 +PIGQ,Nucleus,1.14700461 +CRAMP1L,Nucleus,1.064421787 +JARID2,Nucleus,0.68585775 +ADAM22,Nucleus,0.971205462 +CYB561,Nucleus,-0.502831213 +SPAG9,Nucleus,0.001792004 +CELSR3,Nucleus,0.989502677 +AASS,Nucleus,0.30224851 +PKD1,Nucleus,1.479786424 +SEC62,Nucleus,-0.353635532 +REV3L,Nucleus,0.368421291 +POMT2,Nucleus,0.459642969 +BAZ1B,Nucleus,0.200535268 +ZNF207,Nucleus,0.644596817 +IFFO1,Nucleus,0.88888164 +NISCH,Nucleus,1.83390133 +IDS,Nucleus,0.146370883 +CLCN6,Nucleus,1.703016742 +MRC2,Nucleus,0.369987959 +TSPAN9,Nucleus,0.234395256 +BTBD7,Nucleus,0.371760309 +MBTD1,Nucleus,0.600964378 +LARS2,Nucleus,-0.388845628 +PIK3C2A,Nucleus,0.384641212 +ANLN,Nucleus,-0.18266804 +QPCTL,Nucleus,0.885235811 +MAP4K3,Nucleus,0.262865963 +BRCA1,Nucleus,-0.161551976 +MBTPS2,Nucleus,-0.697781761 +EXTL3,Nucleus,-0.478933496 +ELOVL5,Nucleus,-0.438757844 +MAP4K5,Nucleus,0.49732957 +MAN2B2,Nucleus,0.184717637 +CLK1,Nucleus,1.683731157 +ANGEL1,Nucleus,0.138726347 +DDX11,Nucleus,1.400537661 +UFL1,Nucleus,0.263042822 +SLC30A9,Nucleus,-0.327744598 +COX15,Nucleus,-0.275994654 +ZMYND11,Nucleus,0.531140188 +XYLT2,Nucleus,0.66174516 +NUDCD3,Nucleus,0.315238148 +CHDH,Nucleus,0.492720118 +GLT8D1,Nucleus,0.019789263 +ATP2C1,Nucleus,-0.689616721 +RALBP1,Nucleus,-0.077679397 +CNTN1,Nucleus,-1.190984278 +PHLDB1,Nucleus,0.188652401 +MRE11A,Nucleus,0.90043898 +SPAST,Nucleus,-0.706444426 +NRXN3,Nucleus,-0.103341715 +CPS1,Nucleus,-1.00069079 +SLC45A4,Nucleus,0.354369431 +ZNF839,Nucleus,1.574794251 +ZDHHC6,Nucleus,0.52068845 +RNH1,Nucleus,0.498081174 +RB1CC1,Nucleus,-0.225759091 +ERP44,Nucleus,-0.805539843 +AKAP11,Nucleus,0.330707233 +GCLM,Nucleus,0.26782355 +DEPDC1,Nucleus,0.038624272 +SEC63,Nucleus,-0.266881367 +FAS,Nucleus,-1.430007996 +RNASET2,Nucleus,0.98534833 +AGPAT4,Nucleus,1.204664416 +MIPEP,Nucleus,-0.561404105 +VEZT,Nucleus,-0.454297915 +BRD9,Nucleus,1.543506759 +SNX1,Nucleus,0.758458893 +BCLAF1,Nucleus,0.34467479 +SLC39A9,Nucleus,-0.091666708 +RABEP1,Nucleus,-0.009572738 +FAM13B,Nucleus,0.297245981 +PNPLA6,Nucleus,-0.795320642 +ZCCHC8,Nucleus,1.079944769 +CHPF2,Nucleus,0.764739411 +FUT8,Nucleus,-0.801692745 +UBA6,Nucleus,-0.123733973 +ATP6V0A1,Nucleus,0.339817914 +SLC4A7,Nucleus,0.816873073 +VCL,Nucleus,-0.385330971 +ADSS,Nucleus,-0.18096599 +TIMP2,Nucleus,-0.431841647 +RFC1,Nucleus,-0.051305764 +ZZZ3,Nucleus,0.028363381 +MFAP3,Nucleus,-0.270903702 +MRI1,Nucleus,1.332033523 +AGA,Nucleus,-0.567250595 +BOD1L1,Nucleus,0.637930208 +TRIO,Nucleus,0.795596739 +VCAN,Nucleus,-0.716156533 +CLEC16A,Nucleus,0.03213073 +ZFYVE16,Nucleus,0.36268231 +RAI14,Nucleus,-0.102623472 +PNKP,Nucleus,1.532711072 +PQLC2,Nucleus,-0.392659035 +CTNS,Nucleus,-0.146329477 +INPP4A,Nucleus,0.735244999 +RETSAT,Nucleus,0.155454171 +CUL7,Nucleus,0.252819783 +PHKA2,Nucleus,1.159886976 +DSG2,Nucleus,-0.427782353 +OFD1,Nucleus,0.801487241 +GPM6B,Nucleus,-0.752619729 +YTHDC2,Nucleus,0.882597479 +TPR,Nucleus,0.178197504 +SCML1,Nucleus,1.151608394 +MAP4,Nucleus,0.251515267 +GOPC,Nucleus,0.37290344 +ZNF800,Nucleus,0.169917042 +SNX29,Nucleus,-0.367004543 +KITLG,Nucleus,-0.359318019 +H6PD,Nucleus,0.802974928 +LTBP1,Nucleus,-1.054945531 +RCN1,Nucleus,-0.357873444 +PTCD2,Nucleus,1.95216501 +LIMA1,Nucleus,-0.354496115 +LETMD1,Nucleus,1.368759764 +POLQ,Nucleus,0.453721518 +MPHOSPH9,Nucleus,0.9301328 +PLEKHA5,Nucleus,-0.185811995 +SIKE1,Nucleus,0.801930551 +MSMO1,Nucleus,-0.578589949 +TTC17,Nucleus,0.343519419 +LAMA3,Nucleus,0.425998226 +AP5M1,Nucleus,0.478232728 +ANAPC4,Nucleus,0.819665718 +ARID4B,Nucleus,0.130519624 +SDCCAG8,Nucleus,-0.095860807 +FOXC1,Nucleus,-0.087891584 +PLEKHH1,Nucleus,1.001477944 +ATP9A,Nucleus,-0.22530223 +FAM168A,Nucleus,0.780970148 +RELT,Nucleus,1.624798692 +NOP58,Nucleus,0.780905308 +TAB2,Nucleus,-0.452940354 +USP36,Nucleus,1.095997787 +KMT2C,Nucleus,0.792154107 +MCOLN3,Nucleus,1.729775168 +PUM2,Nucleus,0.396262597 +RC3H2,Nucleus,0.229665933 +DCBLD2,Nucleus,-0.211885324 +SOAT1,Nucleus,-0.323403409 +ATP11B,Nucleus,0.204163226 +SEC61A1,Nucleus,-0.414048681 +PPP1R12A,Nucleus,0.353513921 +POLR3E,Nucleus,0.879157291 +ATP2B4,Nucleus,0.129481408 +ZC3H11A,Nucleus,0.407237182 +NDC1,Nucleus,-0.42928924 +UNKL,Nucleus,1.841533243 +ALDH18A1,Nucleus,-0.550217003 +TARBP1,Nucleus,1.5386848 +WNK1,Nucleus,-0.09594146 +CCAR1,Nucleus,0.535255504 +PTPRU,Nucleus,-0.398558075 +QSER1,Nucleus,0.141867347 +BCAT1,Nucleus,0.291945349 +PRDM6,Nucleus,1.70200678 +TNK2,Nucleus,1.536835321 +MON2,Nucleus,0.340816832 +GPBP1,Nucleus,0.256064742 +WAPAL,Nucleus,-0.112172993 +VMP1,Nucleus,-0.992696412 +APPBP2,Nucleus,0.095187461 +AHRR,Nucleus,1.426746661 +ZNF275,Nucleus,1.18033558 +MTMR1,Nucleus,0.281548071 +GPC1,Nucleus,0.176880621 +TM7SF3,Nucleus,-0.86081536 +CDON,Nucleus,0.143055482 +HIPK2,Nucleus,0.557315079 +SUGP2,Nucleus,1.529150558 +SLC12A2,Nucleus,0.004210534 +HMG20B,Nucleus,1.027594504 +UHRF1BP1,Nucleus,0.469283094 +PKN2,Nucleus,0.104567118 +TRAM2,Nucleus,0.563893904 +NTN1,Nucleus,0.101992123 +ADAT1,Nucleus,0.45048627 +SPEN,Nucleus,0.504681985 +MAP2K4,Nucleus,-0.31544436 +SLK,Nucleus,-0.02901927 +CYB5R4,Nucleus,-0.384182123 +ASB1,Nucleus,1.341294567 +FAM107B,Nucleus,-0.042597014 +SLC9A7,Nucleus,0.321394818 +FOXJ2,Nucleus,0.266052024 +PPP2R5A,Nucleus,-0.304138265 +ASPM,Nucleus,0.464736683 +ZBTB11,Nucleus,0.693597568 +ATXN3,Nucleus,0.858627182 +FGFR2,Nucleus,0.058661165 +LRRC40,Nucleus,-0.13611794 +ATG2B,Nucleus,0.533634927 +ARFGEF1,Nucleus,-0.674263637 +KLF6,Nucleus,0.554560754 +NEO1,Nucleus,-0.737777582 +TRAM1,Nucleus,-0.909719781 +TP53BP1,Nucleus,-0.090254609 +IARS2,Nucleus,-0.64184283 +ROCK1,Nucleus,0.088474384 +HYAL2,Nucleus,-0.706270712 +FGFR3,Nucleus,1.419012611 +MEF2A,Nucleus,0.290519154 +ACSL4,Nucleus,-0.166179106 +PRR11,Nucleus,-0.152291055 +REEP1,Nucleus,-0.494073682 +ATP11A,Nucleus,1.142405093 +POLR1A,Nucleus,0.403130674 +IP6K2,Nucleus,0.938284282 +KIF2A,Nucleus,-0.195700061 +TGFBR3,Nucleus,-0.606432704 +NEDD4,Nucleus,-0.607519146 +MAPK6,Nucleus,-0.293486357 +UFD1L,Nucleus,1.013367065 +LRP6,Nucleus,0.682001788 +NUCB2,Nucleus,-0.710961253 +SLC44A1,Nucleus,-0.603635889 +TMEM260,Nucleus,0.313829322 +SMG6,Nucleus,-0.039986711 +CLTCL1,Nucleus,1.496292637 +DGCR2,Nucleus,-0.190497108 +MNT,Nucleus,1.858093337 +ZXDC,Nucleus,1.777364718 +NDST1,Nucleus,0.378107849 +AP3M2,Nucleus,0.803836317 +RAD18,Nucleus,0.879451313 +ATP2B1,Nucleus,0.036776708 +MGAT4A,Nucleus,0.18306298 +SNX13,Nucleus,0.351547889 +VASH1,Nucleus,0.694506186 +SEL1L,Nucleus,-0.33734212 +ATP6AP1,Nucleus,-0.581835062 +DAZAP1,Nucleus,0.924737912 +CPSF1,Nucleus,0.933925775 +SLC6A15,Nucleus,-0.078621633 +RDH11,Nucleus,-0.347709332 +PRKACA,Nucleus,-0.543395286 +LPHN1,Nucleus,0.768194467 +RPS6KA6,Nucleus,0.307325087 +EPN2,Nucleus,0.548691151 +PTPN18,Nucleus,0.75336665 +TFRC,Nucleus,-0.181467359 +AFF4,Nucleus,0.573624509 +MPP5,Nucleus,-0.272478991 +HMMR,Nucleus,-0.704678582 +P4HA2,Nucleus,-0.849191769 +TRNT1,Nucleus,0.821493465 +ACADVL,Nucleus,0.713249452 +EVC,Nucleus,0.05475477 +DERL2,Nucleus,-0.086783806 +NDE1,Nucleus,-0.231696748 +PVR,Nucleus,0.201183842 +SCARB1,Nucleus,1.024363903 +SELO,Nucleus,2.30830846 +LLGL2,Nucleus,1.601657534 +PDE8A,Nucleus,0.293769007 +SDHA,Nucleus,-0.366219306 +KDM5A,Nucleus,-0.037785262 +ADAM11,Nucleus,1.111789582 +ST6GAL1,Nucleus,-0.617110134 +GLI2,Nucleus,0.985183384 +NOTCH3,Nucleus,-0.50923819 +BCS1L,Nucleus,1.059506959 +DPP8,Nucleus,0.772812999 +SLC24A1,Nucleus,0.040584311 +LMAN1,Nucleus,-0.356039651 +PTPLAD1,Nucleus,-0.553294461 +TUBE1,Nucleus,1.06877964 +SEMA3C,Nucleus,-0.519408302 +TTC38,Nucleus,0.808528246 +CELSR1,Nucleus,0.06180832 +ZNF638,Nucleus,0.187079672 +SLC25A40,Nucleus,0.845037372 +RASAL2,Nucleus,0.714305027 +ZNF37A,Nucleus,1.266357832 +FNDC3B,Nucleus,0.243167826 +FRYL,Nucleus,0.26391969 +TMEM131,Nucleus,-0.055987426 +WDR62,Nucleus,1.000182302 +BCAP29,Nucleus,-0.200624182 +SEC31B,Nucleus,1.659884261 +RBMS2,Nucleus,0.750768934 +SLC46A1,Nucleus,0.159414381 +PLXNA2,Nucleus,-1.201507692 +ANKRD13A,Nucleus,0.191212833 +PAG1,Nucleus,0.696852247 +MCAM,Nucleus,-0.113588055 +GPC4,Nucleus,-0.906475829 +MBNL3,Nucleus,0.46870208 +DGKD,Nucleus,1.044295552 +TM9SF3,Nucleus,-0.266305519 +PPP1R12B,Nucleus,1.359702752 +DNAJC10,Nucleus,-0.017695433 +GTF3C1,Nucleus,-0.126394439 +IL4R,Nucleus,0.041934191 +LRCH4,Nucleus,1.305797278 +FAM76B,Nucleus,1.515730444 +SIRT6,Nucleus,0.312060773 +POLD3,Nucleus,0.809068504 +PHF17,Nucleus,0.251591579 +FBLN1,Nucleus,-1.246901832 +ITGA8,Nucleus,-1.255237933 +MCCC1,Nucleus,-0.552051598 +ACER3,Nucleus,0.82714798 +N4BP2,Nucleus,0.381557542 +HOXA9,Nucleus,1.33265715 +PCM1,Nucleus,0.243309132 +TNRC6C,Nucleus,0.87143647 +ITCH,Nucleus,-0.041951632 +SDF4,Nucleus,0.263979932 +FKBP7,Nucleus,-0.632355668 +SLC1A3,Nucleus,-0.000411806 +SAR1A,Nucleus,-0.340013219 +PAFAH1B3,Nucleus,-0.496172561 +MOXD1,Nucleus,-1.267686491 +STX7,Nucleus,0.542513252 +RABL2B,Nucleus,0.928476599 +SLC35C2,Nucleus,0.936579208 +CRYBG3,Nucleus,0.650663201 +RIF1,Nucleus,0.503218834 +PSEN1,Nucleus,-0.65045075 +RBL1,Nucleus,-0.095027995 +RSBN1,Nucleus,-0.139494422 +MAGI3,Nucleus,0.409800721 +OSTM1,Nucleus,-0.651915376 +EXD2,Nucleus,-0.512102381 +MEF2C,Nucleus,0.359979908 +UBA5,Nucleus,0.706284367 +STK17B,Nucleus,0.387535054 +ZNF510,Nucleus,0.695336723 +LRP2,Nucleus,-0.41261898 +DUSP12,Nucleus,0.756487125 +KIAA0141,Nucleus,0.982969696 +PHLPP1,Nucleus,-0.17619711 +SMARCD3,Nucleus,1.142489442 +C5orf22,Nucleus,0.079972361 +CCNT2,Nucleus,1.537979044 +NFE2L1,Nucleus,-0.560216581 +GSK3B,Nucleus,-0.119399469 +ITGB5,Nucleus,-0.905212288 +ERC1,Nucleus,-0.466918731 +RNF13,Nucleus,-0.68804037 +LYRM2,Nucleus,-0.310257994 +KAT6A,Nucleus,0.133337881 +PLOD1,Nucleus,-0.770879882 +TDRD3,Nucleus,-0.149016936 +PDS5B,Nucleus,0.015559822 +OXCT1,Nucleus,-0.233742973 +RRAGB,Nucleus,0.172909999 +FAT1,Nucleus,-0.170065787 +YTHDC1,Nucleus,0.3799096 +ZMPSTE24,Nucleus,-0.64470498 +REST,Nucleus,0.152289164 +APLP2,Nucleus,-0.494796617 +KIAA1467,Nucleus,-0.272129878 +TXLNA,Nucleus,0.882102417 +NCOA1,Nucleus,-0.482105335 +AGBL5,Nucleus,-0.728980868 +CD59,Nucleus,-0.734606336 +ATRX,Nucleus,0.352087003 +SCAMP1,Nucleus,-0.70887847 +HACE1,Nucleus,0.652119665 +WDFY1,Nucleus,-0.031535225 +MTIF2,Nucleus,0.01793534 +ATG16L1,Nucleus,0.822380509 +POMGNT1,Nucleus,-0.057341953 +B4GALT1,Nucleus,-0.526650229 +IPO11,Nucleus,-0.520908182 +TMED2,Nucleus,-0.537290925 +ERO1LB,Nucleus,0.042024528 +PPP1R15A,Nucleus,-0.704614529 +NLK,Nucleus,0.045761624 +PIGS,Nucleus,-0.725207848 +ATXN7L3,Nucleus,0.017083362 +PGS1,Nucleus,1.24750382 +SH3BP2,Nucleus,1.607120678 +ADD1,Nucleus,0.179288225 +TXNDC16,Nucleus,-0.055104456 +NID2,Nucleus,-0.520503585 +KLHL42,Nucleus,1.123187908 +ERGIC2,Nucleus,0.014219867 +METTL2A,Nucleus,-0.150142259 +PTPN4,Nucleus,0.949288034 +KHSRP,Nucleus,0.117974595 +EPB41L1,Nucleus,-0.43786433 +ANKRD10,Nucleus,1.902914808 +DOCK3,Nucleus,1.155367011 +PPP1R13B,Nucleus,1.120794982 +ATRN,Nucleus,-0.272009288 +ZNF343,Nucleus,0.67510845 +MAVS,Nucleus,1.031126276 +LZTS3,Nucleus,0.992362608 +SNX5,Nucleus,1.510794794 +MAPKAPK5,Nucleus,0.6256982 +ESF1,Nucleus,0.655404018 +SLC23A2,Nucleus,0.297813303 +KIF16B,Nucleus,-0.234195972 +ERP29,Nucleus,-0.725729974 +FUS,Nucleus,1.85004957 +ZNF302,Nucleus,0.886259127 +GRAMD1A,Nucleus,0.712918199 +GANAB,Nucleus,-0.932319021 +RBM41,Nucleus,1.352117008 +GPATCH2L,Nucleus,1.203434391 +SLC9A1,Nucleus,0.134090555 +SPTLC1,Nucleus,-0.633404979 +PAPOLA,Nucleus,-0.141579598 +MUL1,Nucleus,-0.753040705 +RAB11FIP3,Nucleus,0.83492782 +GOLGA3,Nucleus,0.776430509 +EFNB1,Nucleus,-0.275307522 +PDPR,Nucleus,0.783821944 +GLG1,Nucleus,-0.506228979 +TNRC6A,Nucleus,0.656263869 +PLEKHG2,Nucleus,0.485220188 +NAT14,Nucleus,-0.131589286 +RBM27,Nucleus,-0.085942358 +OSBPL8,Nucleus,0.221926631 +NRCAM,Nucleus,-0.592537125 +LAMB1,Nucleus,-0.348578229 +CMTM6,Nucleus,-0.692152634 +ITGA6,Nucleus,-0.170050138 +SEL1L3,Nucleus,-0.744950195 +ORC6,Nucleus,1.440757124 +TMEM101,Nucleus,-0.935651218 +OSGEP,Nucleus,1.296357987 +G2E3,Nucleus,0.409304506 +HECTD1,Nucleus,0.383207457 +SEMA6A,Nucleus,0.18339088 +TRPM7,Nucleus,-0.031790125 +TYRO3,Nucleus,-0.217160095 +AGO1,Nucleus,0.984643473 +MFSD11,Nucleus,-0.235429347 +GPATCH2,Nucleus,0.612794453 +NUP50,Nucleus,0.599629258 +LRRFIP2,Nucleus,0.724904084 +SEC22C,Nucleus,0.946573127 +XYLB,Nucleus,1.070292229 +HDAC6,Nucleus,0.231321742 +CBX5,Nucleus,0.345075365 +SUCO,Nucleus,0.104055771 +HOOK2,Nucleus,0.973276243 +ARCN1,Nucleus,-0.338165095 +TMEM38B,Nucleus,-0.576012598 +BTAF1,Nucleus,0.611559095 +IKZF5,Nucleus,0.585580171 +WAC,Nucleus,0.04862187 +CREM,Nucleus,-0.384649736 +BRPF3,Nucleus,0.364989045 +EFHC1,Nucleus,1.285654348 +ABL1,Nucleus,-0.129529186 +SH3GLB1,Nucleus,0.124466239 +SCD,Nucleus,-0.218850608 +ABLIM1,Nucleus,0.194398347 +ERMP1,Nucleus,-0.531403422 +NRP1,Nucleus,-0.47070184 +MZF1,Nucleus,2.723700768 +FBXL19,Nucleus,0.410362103 +MTAP,Nucleus,0.516407481 +CEP170B,Nucleus,1.382940587 +POLRMT,Nucleus,0.545642011 +ARVCF,Nucleus,1.542840002 +TRMT2A,Nucleus,1.026294666 +ZDHHC8,Nucleus,1.350691449 +KLHL22,Nucleus,1.036380649 +CRKL,Nucleus,0.044978402 +LZTR1,Nucleus,0.865495812 +CECR2,Nucleus,0.785769972 +DERL3,Nucleus,1.347732355 +PPM1F,Nucleus,1.122806142 +TOP3B,Nucleus,1.706769985 +CRYBB2P1,Nucleus,1.413432079 +ADRBK2,Nucleus,0.540927613 +GGA1,Nucleus,1.158558304 +HPS4,Nucleus,0.796379668 +TTC28,Nucleus,0.409192944 +SEPT3,Nucleus,0.071027704 +KDELR3,Nucleus,-1.188003938 +DDX17,Nucleus,2.019032911 +TCF20,Nucleus,0.113949708 +TIMP3,Nucleus,0.163841621 +PPP6R2,Nucleus,1.401056699 +SUN2,Nucleus,-0.350954266 +ARSA,Nucleus,1.004451626 +MYH9,Nucleus,0.046417373 +FOXRED2,Nucleus,-0.315234239 +TNRC6B,Nucleus,0.647455409 +SGSM3,Nucleus,0.796268396 +IFT27,Nucleus,1.618871818 +KIAA0930,Nucleus,-0.273065263 +EP300,Nucleus,0.441510208 +ZC3H7B,Nucleus,0.50131575 +ACO2,Nucleus,-0.809626478 +TRMU,Nucleus,1.659835551 +ZBED4,Nucleus,-0.063748466 +ABHD4,Nucleus,-0.845877391 +KHNYN,Nucleus,0.184145711 +NIN,Nucleus,0.450242748 +GNPNAT1,Nucleus,-0.048071542 +DDHD1,Nucleus,1.226146456 +CNIH1,Nucleus,-0.606501021 +TMED8,Nucleus,0.52366767 +SPTLC2,Nucleus,-0.690469 +PPM1A,Nucleus,0.628679111 +SIX4,Nucleus,0.614670785 +GALNT16,Nucleus,0.727661768 +KIAA0247,Nucleus,0.362896717 +SRSF5,Nucleus,0.878533239 +DICER1,Nucleus,0.709026622 +ZFYVE21,Nucleus,1.634950098 +TELO2,Nucleus,0.998151094 +PCNX,Nucleus,0.093936772 +GSKIP,Nucleus,-0.728064009 +SMEK1,Nucleus,-0.040416734 +TRIP11,Nucleus,0.183528909 +PABPN1,Nucleus,1.324314107 +ARHGAP5,Nucleus,0.424464575 +CHD8,Nucleus,0.038239848 +PCK2,Nucleus,-0.702121509 +PNN,Nucleus,1.194917319 +PLTP,Nucleus,-0.600559667 +ABHD12,Nucleus,-0.12789809 +GINS1,Nucleus,-0.012259655 +RIMS4,Nucleus,0.497072661 +PABPC1L,Nucleus,1.722026944 +STK4,Nucleus,0.306472687 +BMP7,Nucleus,-0.373171418 +DNAJC5,Nucleus,0.256232586 +SLCO4A1,Nucleus,1.478671649 +DIDO1,Nucleus,1.380697564 +ARFGAP1,Nucleus,1.921889164 +ARFRP1,Nucleus,2.204192381 +CDS2,Nucleus,-0.396026738 +TM9SF4,Nucleus,-0.494085861 +POFUT1,Nucleus,-0.16499028 +SAMHD1,Nucleus,-0.379312922 +KIF3B,Nucleus,0.0214782 +E2F1,Nucleus,0.773143955 +APMAP,Nucleus,-0.469928869 +ZNF516,Nucleus,1.220476871 +LPIN2,Nucleus,0.117122742 +SMCHD1,Nucleus,0.264623214 +LAMA1,Nucleus,0.030773733 +RNF125,Nucleus,0.999783356 +ANKRD12,Nucleus,1.053992516 +MIB1,Nucleus,0.162965421 +MID1,Nucleus,0.627576235 +WDR13,Nucleus,0.02428866 +XIAP,Nucleus,0.369734357 +ATP11C,Nucleus,0.011410738 +SYP,Nucleus,-0.004784482 +FMR1,Nucleus,0.342293681 +SLC35A2,Nucleus,-0.100330788 +TAZ,Nucleus,0.752508695 +MAGT1,Nucleus,-0.37175811 +CD99L2,Nucleus,-0.922327621 +EEA1,Nucleus,0.254948322 +NDFIP2,Nucleus,-0.221946156 +DNAJC3,Nucleus,-0.238855861 +UGGT2,Nucleus,0.227668674 +ARHGEF7,Nucleus,0.531252947 +PARP4,Nucleus,-0.190072164 +FLT1,Nucleus,-0.618404811 +VWA8,Nucleus,-0.137241314 +DGKH,Nucleus,1.845697358 +INTS6,Nucleus,0.265116556 +CLN5,Nucleus,-0.372364384 +MGRN1,Nucleus,1.208341626 +ZNF629,Nucleus,0.165722424 +CENPT,Nucleus,1.171870365 +NFAT5,Nucleus,1.276473073 +SETD6,Nucleus,1.94768189 +SLC38A7,Nucleus,0.486392992 +SLC7A6OS,Nucleus,1.14949252 +SLC7A6,Nucleus,0.79960467 +WDR59,Nucleus,0.871171874 +TAF1C,Nucleus,1.500661084 +TSC2,Nucleus,0.828417773 +ZNF500,Nucleus,1.495429269 +ABCC1,Nucleus,-0.216980129 +NOMO3,Nucleus,-0.991151828 +NARFL,Nucleus,1.008535843 +MTHFSD,Nucleus,0.944408687 +CLCN7,Nucleus,0.953055436 +SLC7A5,Nucleus,0.030534199 +FBXO31,Nucleus,0.739354057 +EEF2K,Nucleus,0.779951903 +CAPN15,Nucleus,1.778663248 +PIEZO1,Nucleus,0.939496805 +BFAR,Nucleus,-0.505093068 +NOMO1,Nucleus,-0.332971549 +CCP110,Nucleus,0.411557287 +RNF40,Nucleus,-0.077945896 +LACTB,Nucleus,-0.344730347 +CD276,Nucleus,-0.481932613 +HOMER2,Nucleus,0.406108117 +TMEM87A,Nucleus,-0.254281575 +ZNF106,Nucleus,0.319029383 +CEP152,Nucleus,0.713954069 +TJP1,Nucleus,0.041555278 +VPS18,Nucleus,-0.411048243 +MYEF2,Nucleus,0.775437298 +CSPP1,Nucleus,1.026407844 +ZFAND1,Nucleus,0.271652717 +FZD3,Nucleus,0.696270861 +EYA1,Nucleus,-0.148648882 +NBN,Nucleus,0.037755592 +IMPAD1,Nucleus,0.125109911 +UBE2W,Nucleus,0.722662857 +IKBKB,Nucleus,1.183842178 +PLAT,Nucleus,-1.318809282 +JPH1,Nucleus,0.57945457 +TRPS1,Nucleus,0.75003003 +PYCRL,Nucleus,0.078446332 +EEF1D,Nucleus,1.317716243 +SQLE,Nucleus,-0.394238657 +SLC39A14,Nucleus,-0.27448957 +MTMR9,Nucleus,1.070720879 +LEPROTL1,Nucleus,-0.367428076 +PPP2CB,Nucleus,-0.100814935 +KLHDC4,Nucleus,1.391141818 +KCTD9,Nucleus,0.01943471 +MAN2B1,Nucleus,-0.188685753 +NUCB1,Nucleus,-0.844266735 +SARS2,Nucleus,1.315215906 +SNRNP70,Nucleus,1.526292971 +CLPTM1,Nucleus,-0.014326614 +CLASRP,Nucleus,1.140159711 +FCGRT,Nucleus,-0.806398443 +ERCC2,Nucleus,0.858914255 +DOT1L,Nucleus,1.242672773 +SF3A2,Nucleus,1.237394667 +AMH,Nucleus,3.076277435 +DMPK,Nucleus,2.098176236 +TIMM44,Nucleus,0.954397864 +AKAP8,Nucleus,0.773577742 +AKT2,Nucleus,0.866170099 +PLD3,Nucleus,-0.589781788 +FSD1,Nucleus,0.465544735 +APLP1,Nucleus,-1.357786934 +CACTIN,Nucleus,1.050666138 +TYK2,Nucleus,1.276786536 +PTPRS,Nucleus,0.059186944 +MEGF8,Nucleus,0.010468394 +KDELR1,Nucleus,-0.676022157 +CYTH2,Nucleus,1.394350832 +LIG1,Nucleus,0.908704065 +BCAT2,Nucleus,0.227925425 +TNPO2,Nucleus,1.039348501 +DNASE2,Nucleus,-1.191644919 +ISYNA1,Nucleus,0.778997226 +CRTC1,Nucleus,2.003018772 +SUGP1,Nucleus,1.077893354 +SIPA1L3,Nucleus,0.374741618 +CADM4,Nucleus,-0.677866135 +SMG9,Nucleus,1.364131484 +AVL9,Nucleus,0.287299618 +CDK6,Nucleus,0.465628534 +DNAJC2,Nucleus,0.784322865 +WDR91,Nucleus,0.780952053 +CBLL1,Nucleus,0.352383705 +MTPN,Nucleus,-0.422502929 +ZC3HAV1,Nucleus,0.078440087 +OGDH,Nucleus,-0.8290997 +MET,Nucleus,-0.329787959 +LMBR1,Nucleus,-0.407828485 +HOXA3,Nucleus,1.463487737 +HOXA6,Nucleus,1.692769929 +BRAT1,Nucleus,1.039345319 +FKBP14,Nucleus,0.422644292 +NSUN5P2,Nucleus,1.956501758 +CASP2,Nucleus,0.596239087 +HSPB1,Nucleus,-1.117825265 +ZKSCAN1,Nucleus,0.194785596 +WASL,Nucleus,0.043702188 +RBM28,Nucleus,0.877008026 +C1GALT1,Nucleus,-0.542275246 +PLOD3,Nucleus,0.035549743 +CLDN15,Nucleus,2.333074153 +TMEM106B,Nucleus,-0.093125645 +CEP41,Nucleus,-0.340786461 +GLI3,Nucleus,-0.079148174 +TMEM248,Nucleus,-0.212668538 +TBL2,Nucleus,-0.351569382 +FKTN,Nucleus,0.960242161 +TMEM245,Nucleus,0.46029845 +MEGF9,Nucleus,-0.28734537 +TGFBR1,Nucleus,-0.341326814 +DNM1,Nucleus,2.046085979 +KANK1,Nucleus,0.248259506 +RAPGEF1,Nucleus,0.264362392 +NPDC1,Nucleus,2.421287849 +SETX,Nucleus,0.236802357 +CCNJ,Nucleus,0.043863702 +RAB11FIP2,Nucleus,0.358085439 +ERLIN1,Nucleus,-0.102342006 +MAPK8,Nucleus,0.688929648 +ATE1,Nucleus,-0.342110245 +PLEKHA1,Nucleus,0.734537623 +UNC5B,Nucleus,0.294448425 +BMPR1A,Nucleus,-0.461190591 +ACTA2,Nucleus,-4.868820133 +LIPA,Nucleus,-1.178268263 +LZTS2,Nucleus,1.185991934 +ARHGAP21,Nucleus,0.014486277 +ANKRD26,Nucleus,0.223945696 +LARP4B,Nucleus,0.438399535 +C10orf137,Nucleus,0.784322393 +MTPAP,Nucleus,0.276840819 +SH3PXD2A,Nucleus,0.839212881 +PITRM1,Nucleus,-0.144607269 +FAM208B,Nucleus,0.522259787 +TSPAN14,Nucleus,-0.199536031 +NUFIP2,Nucleus,1.475736278 +DHX40,Nucleus,-0.338346708 +CDK5RAP3,Nucleus,0.983278154 +RECQL5,Nucleus,0.398572686 +INTS2,Nucleus,-0.088051773 +CAMTA2,Nucleus,1.014492473 +MED13,Nucleus,0.207050315 +HOXB6,Nucleus,1.502837368 +CPD,Nucleus,-0.961972881 +GOSR1,Nucleus,-0.130683095 +CCDC47,Nucleus,-0.417992833 +AKAP10,Nucleus,0.876254337 +CYTH1,Nucleus,1.489749576 +LGALS3BP,Nucleus,-1.381282504 +EZH1,Nucleus,1.456209358 +PPP1R9B,Nucleus,-0.090220014 +LUC7L3,Nucleus,1.557681223 +DUSP3,Nucleus,-0.129503719 +EFNB3,Nucleus,-0.273255902 +DPH1,Nucleus,0.576991916 +NAT9,Nucleus,0.778432149 +TMEM104,Nucleus,0.018230108 +TMEM97,Nucleus,-0.92609798 +UNC119,Nucleus,1.009332366 +TMEM33,Nucleus,-0.107383605 +DCUN1D4,Nucleus,0.741976344 +MANBA,Nucleus,0.2664671 +ELF2,Nucleus,-0.124928948 +WFS1,Nucleus,0.196632079 +FRG1,Nucleus,-0.303754622 +CLCN3,Nucleus,-0.422639785 +GALNT7,Nucleus,-0.312026509 +TRIM2,Nucleus,0.348454749 +NEIL3,Nucleus,0.525278673 +SH3D19,Nucleus,0.141816743 +STIM2,Nucleus,0.656337153 +RAPGEF2,Nucleus,0.399793166 +UGDH,Nucleus,-0.666658588 +CCDC34,Nucleus,-0.482392181 +FNBP4,Nucleus,1.66611046 +SC5D,Nucleus,-0.520770361 +SIAE,Nucleus,-0.58228815 +EHD1,Nucleus,-0.584224722 +FOXRED1,Nucleus,1.038446229 +ST3GAL4,Nucleus,-0.38520127 +CPT1A,Nucleus,-1.169798819 +TMEM109,Nucleus,-0.657015838 +PANX1,Nucleus,-0.808810066 +UBE4A,Nucleus,-0.226523491 +DDX6,Nucleus,-0.405125293 +PVRL1,Nucleus,-0.040169579 +HIPK3,Nucleus,0.043182336 +MDK,Nucleus,-0.450746734 +AMBRA1,Nucleus,-0.237238618 +NAA40,Nucleus,0.801435175 +SLC35F2,Nucleus,-0.315072137 +LEPREL2,Nucleus,0.61359069 +CORO1C,Nucleus,-0.462153224 +ASIC1,Nucleus,1.167308997 +CAPRIN2,Nucleus,1.913530193 +SLC11A2,Nucleus,0.367121423 +MLEC,Nucleus,-0.090687596 +BCL7A,Nucleus,0.013363488 +RSRC2,Nucleus,1.251046047 +PPM1H,Nucleus,-0.232951569 +ELK3,Nucleus,-0.631546022 +MAGOHB,Nucleus,0.602178382 +ITFG2,Nucleus,1.498917548 +PARP11,Nucleus,0.239600518 +DUSP16,Nucleus,-0.228434025 +ACAD10,Nucleus,0.84136716 +NAA25,Nucleus,0.920862494 +DDX55,Nucleus,1.224474616 +SLC38A1,Nucleus,0.141673875 +C12orf49,Nucleus,-0.310024415 +MDM1,Nucleus,0.816486016 +CPSF6,Nucleus,0.778517316 +GNPTAB,Nucleus,-0.490064804 +ATN1,Nucleus,0.797216641 +C12orf57,Nucleus,-0.79223432 +LPCAT3,Nucleus,-0.281024132 +SUDS3,Nucleus,0.114891554 +GOLT1B,Nucleus,-0.27104431 +C2CD5,Nucleus,0.494621288 +RAB35,Nucleus,0.18493499 +RIC8B,Nucleus,0.786261098 +RP11-22B23.1,Nucleus,2.216410221 +DSE,Nucleus,-0.281701745 +MAN1A1,Nucleus,-0.279367353 +SERINC1,Nucleus,-0.797295945 +UST,Nucleus,-0.262149203 +KCTD20,Nucleus,-0.043603077 +RNF8,Nucleus,-0.265516042 +ICK,Nucleus,0.122657318 +RAB23,Nucleus,-0.086415982 +FBXL4,Nucleus,-0.417370555 +CCNC,Nucleus,0.094217125 +ALDH5A1,Nucleus,-0.075159916 +EYA4,Nucleus,1.007125523 +PERP,Nucleus,-0.706075481 +SLC16A10,Nucleus,0.177284172 +PHACTR2,Nucleus,0.370918149 +SLC39A7,Nucleus,-0.382761326 +PPP2R5D,Nucleus,-0.330516151 +PTK7,Nucleus,-0.029403951 +CUL9,Nucleus,0.053736555 +TMEM30A,Nucleus,-0.169761909 +SENP6,Nucleus,0.676086038 +VEGFA,Nucleus,1.701307109 +PRPF4B,Nucleus,0.884945744 +BTN2A1,Nucleus,0.451940896 +LAMA4,Nucleus,-0.208900603 +ERBB2IP,Nucleus,-0.213104182 +HARS2,Nucleus,0.3278442 +MAN2A1,Nucleus,0.241521348 +PAPD7,Nucleus,0.937446842 +NNT,Nucleus,-0.527267315 +APBB3,Nucleus,1.359708502 +SPARC,Nucleus,-2.191800433 +HMGCR,Nucleus,-0.518405688 +FAF2,Nucleus,-0.234233275 +CLK4,Nucleus,1.726998836 +ARSB,Nucleus,-0.485567923 +CNOT6,Nucleus,-0.013732613 +DROSHA,Nucleus,0.236012461 +FAM172A,Nucleus,-0.084412486 +LNPEP,Nucleus,-0.019915157 +SLC12A7,Nucleus,0.249212095 +NR3C1,Nucleus,-0.210873725 +C5orf15,Nucleus,-0.420589611 +LIFR,Nucleus,0.118060242 +TRAPPC13,Nucleus,0.634574687 +TXNDC15,Nucleus,0.137903793 +H2AFY,Nucleus,0.492468065 +TCERG1,Nucleus,0.836928186 +SMAD5,Nucleus,0.384606162 +ERGIC1,Nucleus,-0.37225579 +STC2,Nucleus,0.838364399 +ARL6,Nucleus,0.271365552 +NIT2,Nucleus,0.231950589 +UBE3A,Nucleus,0.327858232 +SLC25A36,Nucleus,1.969877643 +TFDP2,Nucleus,0.77291731 +XRN1,Nucleus,0.262463937 +WNT5A,Nucleus,0.309819257 +PFKFB4,Nucleus,0.102921438 +PRKAR2A,Nucleus,-0.143323576 +ACAP2,Nucleus,0.287335923 +CBLB,Nucleus,-0.032761141 +BBX,Nucleus,0.355637496 +GNB4,Nucleus,-0.130530718 +C3orf52,Nucleus,0.40820838 +PLXNA1,Nucleus,0.875792765 +CSPG5,Nucleus,-0.301146442 +SCAP,Nucleus,0.005438016 +HEMK1,Nucleus,1.495383438 +ACVR2B,Nucleus,0.422925208 +ABCC5,Nucleus,1.29879008 +SSR3,Nucleus,-0.424894141 +NKTR,Nucleus,2.195654705 +FOXP1,Nucleus,0.086599628 +INO80D,Nucleus,1.518383748 +ADAM23,Nucleus,-0.033221589 +MOB1A,Nucleus,-0.030462213 +LMAN2L,Nucleus,-0.509217668 +RTKN,Nucleus,0.946937184 +PIKFYVE,Nucleus,0.486343673 +FAHD2A,Nucleus,1.097909089 +SLC35F5,Nucleus,-0.390186466 +STEAP3,Nucleus,-0.208619004 +EPB41L5,Nucleus,0.433536796 +GPD2,Nucleus,-0.819893302 +ACVR1,Nucleus,-0.842702878 +MPV17,Nucleus,0.856461293 +TTC31,Nucleus,0.882904594 +NDUFS7,Nucleus,0.772168166 +SPTBN1,Nucleus,-0.044112469 +CCDC88A,Nucleus,0.236394408 +FN1,Nucleus,-0.562737491 +ELMOD3,Nucleus,1.277268601 +IGFBP5,Nucleus,-0.371560056 +USP34,Nucleus,0.080435654 +GGCX,Nucleus,-0.200076939 +CHST10,Nucleus,0.182418054 +MOB4,Nucleus,-0.065879669 +UXS1,Nucleus,-0.028120818 +PASK,Nucleus,1.621677416 +TAF1B,Nucleus,-0.025171713 +DCAF17,Nucleus,1.210533229 +SDC1,Nucleus,-1.229456477 +SLC1A4,Nucleus,-0.377875425 +SOS1,Nucleus,0.507621496 +WIPF1,Nucleus,-0.223592914 +THADA,Nucleus,-0.381642663 +TRAK2,Nucleus,0.036402169 +TIA1,Nucleus,0.461331733 +PCYOX1,Nucleus,-0.794970144 +ARID3A,Nucleus,-0.024607343 +EPHA4,Nucleus,0.264114913 +ALMS1,Nucleus,-0.242736913 +BCL9,Nucleus,0.45215343 +DHCR24,Nucleus,-0.534504889 +DNAJC16,Nucleus,-0.111004168 +RALGPS2,Nucleus,0.234769335 +CEP104,Nucleus,0.508558948 +FAM20B,Nucleus,-0.334575899 +TCEANC2,Nucleus,0.715245411 +WRAP73,Nucleus,0.850799051 +ICMT,Nucleus,-0.347005631 +QSOX1,Nucleus,-0.353102679 +AMPD2,Nucleus,1.108953063 +EDEM3,Nucleus,0.091793343 +RAP1A,Nucleus,-0.088782349 +S100PBP,Nucleus,0.041112805 +ASH1L,Nucleus,0.54833311 +SFPQ,Nucleus,1.031090732 +MEF2D,Nucleus,0.775833076 +C1orf21,Nucleus,0.805528105 +LEPR,Nucleus,0.03224301 +IVNS1ABP,Nucleus,0.703106184 +KIAA2013,Nucleus,-0.157886128 +MIIP,Nucleus,0.497860316 +SLC35D1,Nucleus,0.338705741 +WLS,Nucleus,-1.014921206 +PRDM2,Nucleus,0.746019942 +TROVE2,Nucleus,0.440179747 +SRSF11,Nucleus,1.926842147 +PHTF1,Nucleus,-0.33854559 +TMEM9,Nucleus,-0.317761 +EXOC8,Nucleus,1.205726029 +NID1,Nucleus,-0.607284065 +MTR,Nucleus,0.412108063 +BMP8B,Nucleus,-0.256560533 +RIMS3,Nucleus,1.14927281 +AKT3,Nucleus,-0.010459625 +ETV3,Nucleus,0.177742482 +LPHN2,Nucleus,-0.170317439 +RBBP5,Nucleus,-0.452035705 +ECE1,Nucleus,-0.513402729 +CD46,Nucleus,0.903813577 +APH1A,Nucleus,-0.671852058 +LEPRE1,Nucleus,-0.505416148 +SLC2A1,Nucleus,-1.041220716 +SLC19A2,Nucleus,0.594308377 +NSUN4,Nucleus,0.787403073 +TMED5,Nucleus,-0.136094554 +DR1,Nucleus,0.034973227 +PTBP2,Nucleus,1.353603168 +DARS2,Nucleus,-0.756883747 +DIEXF,Nucleus,0.520123327 +RCAN3,Nucleus,-0.110337579 +C1orf63,Nucleus,1.539960676 +SLC35A3,Nucleus,0.796022929 +RCOR3,Nucleus,1.155949351 +ARID1A,Nucleus,0.288356612 +CENPF,Nucleus,0.287544627 +ESYT2,Nucleus,-0.143802358 +CD3EAP,Nucleus,0.424594437 +MESDC2,Nucleus,-0.315721348 +CTSD,Nucleus,-0.844683174 +STK11,Nucleus,1.03712321 +KMT2A,Nucleus,0.616112962 +KPTN,Nucleus,0.816083883 +KIF14,Nucleus,0.236677103 +ATF6,Nucleus,-0.736609343 +FASTKD2,Nucleus,-0.221091138 +NRP2,Nucleus,-0.124133659 +CREB1,Nucleus,0.343154037 +B4GALT6,Nucleus,0.491801903 +ELOVL4,Nucleus,-0.488735781 +CASP8AP2,Nucleus,0.207608706 +PHF3,Nucleus,-0.116539355 +PLAGL1,Nucleus,1.096569355 +FBXO30,Nucleus,0.666935205 +TMEM5,Nucleus,-0.049541538 +ZNF430,Nucleus,0.033120888 +DCLRE1B,Nucleus,-0.32440171 +PKD2,Nucleus,1.40062111 +UBN1,Nucleus,0.526772413 +KLF12,Nucleus,0.98925253 +WDR35,Nucleus,0.371154074 +CCND2,Nucleus,0.878740471 +SATB2,Nucleus,-0.137715279 +SENP5,Nucleus,0.766459139 +C1orf198,Nucleus,-0.228188418 +HEATR1,Nucleus,0.24738893 +PTBP3,Nucleus,-0.176873297 +FAM206A,Nucleus,-0.038778362 +RBM18,Nucleus,-0.302219881 +MAPKAP1,Nucleus,-0.439365193 +KDSR,Nucleus,-0.248317889 +ONECUT2,Nucleus,1.818195336 +IRF2BPL,Nucleus,-0.076896545 +AREL1,Nucleus,-0.0947543 +ABCD4,Nucleus,1.484643899 +RBM25,Nucleus,1.463598934 +NRDE2,Nucleus,1.115015398 +KLHL29,Nucleus,1.940472079 +DNMT3A,Nucleus,1.297293154 +ATAD2B,Nucleus,0.796074414 +ATL2,Nucleus,0.376820829 +YIPF4,Nucleus,0.283599703 +AFTPH,Nucleus,0.129618713 +BCL11A,Nucleus,0.123276107 +SLC17A5,Nucleus,-0.366085747 +FAM178A,Nucleus,0.660605942 +GPAM,Nucleus,-0.231877618 +HELLS,Nucleus,0.951260421 +TCTN3,Nucleus,-0.968193649 +C10orf76,Nucleus,-0.262270558 +HOXB8,Nucleus,1.208354683 +HOXB3,Nucleus,1.901945289 +PANK3,Nucleus,1.307999179 +NUP43,Nucleus,0.660615058 +LRP11,Nucleus,-0.583401038 +MASTL,Nucleus,0.505943809 +ELF1,Nucleus,-0.25083405 +EGR1,Nucleus,-0.456042773 +NR2C1,Nucleus,0.802483156 +MTERFD3,Nucleus,1.406674782 +CLU,Nucleus,-2.994099148 +TNFRSF10B,Nucleus,-0.951108027 +TARDBP,Nucleus,0.78196669 +CRISPLD1,Nucleus,-0.13025418 +AKAP1,Nucleus,0.338427831 +TRIM25,Nucleus,0.407232726 +KIAA0922,Nucleus,-0.082948962 +PAPD5,Nucleus,0.366314241 +CEP89,Nucleus,0.634729362 +B4GALT4,Nucleus,0.27084459 +KIF18A,Nucleus,0.379305217 +CRY2,Nucleus,0.730023 +ZNF639,Nucleus,-0.203819124 +PDS5A,Nucleus,-0.158156864 +CLCC1,Nucleus,-0.072697213 +ACVR2A,Nucleus,0.015401866 +RPL21,Nucleus,1.298663625 +MTERFD2,Nucleus,0.958818286 +KIAA1191,Nucleus,-0.325752725 +RBBP6,Nucleus,0.505820031 +ZC3H7A,Nucleus,0.219956487 +FAM35A,Nucleus,0.211000512 +FAM213A,Nucleus,-0.368024617 +ODF2L,Nucleus,0.993375732 +TRMT13,Nucleus,1.229596292 +RPAP2,Nucleus,0.714057117 +FAM126A,Nucleus,0.27972342 +FKBP9,Nucleus,-0.595914688 +POLM,Nucleus,1.615946307 +SLC25A51,Nucleus,0.679623428 +DCAF10,Nucleus,0.232894393 +KIAA1549,Nucleus,0.273317577 +CALD1,Nucleus,0.283984426 +CHST3,Nucleus,0.131795841 +P4HA1,Nucleus,-0.870665163 +RBM19,Nucleus,0.815367623 +GIPC1,Nucleus,-0.23215172 +ATP7B,Nucleus,-0.012678041 +ZC3H13,Nucleus,-0.028738259 +NLN,Nucleus,0.156843984 +CENPK,Nucleus,0.559922026 +OPTN,Nucleus,-1.208054472 +SPATS2,Nucleus,0.033288029 +LRP1,Nucleus,-1.080400153 +HJURP,Nucleus,0.633700749 +USP45,Nucleus,1.346772725 +SLC36A1,Nucleus,0.514020738 +LPGAT1,Nucleus,0.043905635 +EXOSC9,Nucleus,0.742513928 +PLA2G12A,Nucleus,0.413024042 +ADCK4,Nucleus,0.060240411 +PFKFB2,Nucleus,0.80413478 +AGO2,Nucleus,0.817015027 +MXD4,Nucleus,1.040499889 +ACSL3,Nucleus,-0.543808124 +SLC12A4,Nucleus,-0.764104525 +FAM210B,Nucleus,-0.857174172 +SDC4,Nucleus,-0.741988895 +NCOA3,Nucleus,0.877336375 +PIGT,Nucleus,-0.77120191 +VAPB,Nucleus,0.276810612 +CHD6,Nucleus,0.343603963 +SRSF6,Nucleus,1.252469657 +RAB22A,Nucleus,0.722477834 +STX16,Nucleus,1.264279741 +STAMBP,Nucleus,-0.119474281 +NAGK,Nucleus,1.182288428 +PAIP2B,Nucleus,0.178728723 +ATP8A1,Nucleus,0.474543071 +BTN2A2,Nucleus,0.398830414 +ABCC10,Nucleus,0.922652448 +AARS2,Nucleus,0.179870875 +ZNF391,Nucleus,0.947466202 +CDKN1A,Nucleus,-3.210518166 +SSR1,Nucleus,-0.353827473 +NRN1,Nucleus,-0.258878781 +ATXN1,Nucleus,1.087413762 +EEF1E1,Nucleus,0.698604572 +LRRFIP1,Nucleus,0.807741218 +AHNAK,Nucleus,0.257929267 +ABCC4,Nucleus,-0.443535899 +EFNB2,Nucleus,-0.224842221 +ATP5S,Nucleus,0.93658577 +FAM193A,Nucleus,1.076989828 +GGA3,Nucleus,0.627199892 +GTF3C4,Nucleus,0.15895764 +PPP1R12C,Nucleus,1.205947043 +MBOAT7,Nucleus,0.043622228 +CCDC93,Nucleus,0.846153106 +THOC2,Nucleus,0.215154341 +MED1,Nucleus,0.100567623 +GPR108,Nucleus,-0.13406512 +GPCPD1,Nucleus,0.750034596 +PANK2,Nucleus,1.079128797 +NAPB,Nucleus,1.601166073 +TMX4,Nucleus,-0.605492339 +RRBP1,Nucleus,-0.028763511 +ZNF133,Nucleus,1.505315029 +MCM8,Nucleus,0.678895285 +NCLN,Nucleus,0.665628229 +ZNF436,Nucleus,-0.080205168 +AMOT,Nucleus,-0.689793837 +TMEM115,Nucleus,-0.540257182 +AGO3,Nucleus,1.800746606 +HECTD3,Nucleus,0.053854186 +KLC1,Nucleus,1.65870362 +XRCC3,Nucleus,1.63845235 +TUBGCP3,Nucleus,0.060972949 +PCID2,Nucleus,0.946778097 +FRMD8,Nucleus,0.400582583 +PCNXL4,Nucleus,0.28979138 +ATG14,Nucleus,1.16360453 +KTN1,Nucleus,-0.038040409 +PLEKHG3,Nucleus,1.073377452 +WDR60,Nucleus,0.97786998 +AIF1L,Nucleus,-0.108754275 +SLC10A3,Nucleus,-0.746648782 +CANX,Nucleus,-0.589718948 +CPSF3L,Nucleus,0.944150013 +TRAF2,Nucleus,0.240933766 +HELB,Nucleus,0.628472504 +DYRK2,Nucleus,0.813437588 +LRRC61,Nucleus,-0.036029641 +FGFRL1,Nucleus,0.036809753 +EMC1,Nucleus,-0.267263831 +HP1BP3,Nucleus,0.984468398 +SIN3B,Nucleus,0.924942792 +SLC35E1,Nucleus,-0.043826719 +GFER,Nucleus,0.757807075 +PKMYT1,Nucleus,1.255203377 +CHTF18,Nucleus,1.996000114 +MACF1,Nucleus,-0.095224786 +RNF6,Nucleus,0.036814553 +AKAP9,Nucleus,0.400373569 +HIP1,Nucleus,-0.291265279 +POR,Nucleus,-0.591092406 +PEX1,Nucleus,0.181141562 +LRFN1,Nucleus,0.290537043 +SRD5A3,Nucleus,-0.694710709 +PPAT,Nucleus,0.529109065 +TUBGCP6,Nucleus,1.558130408 +DGCR8,Nucleus,1.829071219 +TPST2,Nucleus,-0.321406798 +MPST,Nucleus,0.782646845 +SPECC1,Nucleus,-0.420492293 +NAA38,Nucleus,0.820701364 +PRKRIP1,Nucleus,0.826185614 +PODXL,Nucleus,0.126458624 +STRIP2,Nucleus,1.27407772 +MKLN1,Nucleus,0.575463113 +CALU,Nucleus,-0.642383236 +CCDC136,Nucleus,1.14546131 +SMO,Nucleus,0.319508675 +KLHDC10,Nucleus,0.436748707 +OSGEPL1,Nucleus,0.18976083 +HOXD10,Nucleus,2.821928279 +HOXD11,Nucleus,1.12067109 +HERC2,Nucleus,0.163275107 +TWSG1,Nucleus,-0.352740655 +MYO5C,Nucleus,0.25186714 +TMOD2,Nucleus,0.622566144 +TTBK2,Nucleus,0.751884261 +IVD,Nucleus,0.759042748 +CLN6,Nucleus,0.577812434 +ARPP19,Nucleus,0.134490001 +VPS13C,Nucleus,0.164882974 +SUMF2,Nucleus,-0.310034652 +SPCS3,Nucleus,-0.305861265 +RPAIN,Nucleus,1.16965041 +PLD2,Nucleus,0.396983406 +MPDU1,Nucleus,-0.537302084 +CCNT1,Nucleus,0.351617489 +PUS7L,Nucleus,1.321808929 +KRI1,Nucleus,0.669039441 +SLC44A2,Nucleus,-0.863984532 +BCL2L2,Nucleus,1.289995417 +PARP2,Nucleus,0.439609424 +TEP1,Nucleus,0.925844684 +MAP7D3,Nucleus,0.07584056 +ABHD17A,Nucleus,2.670958242 +ERMARD,Nucleus,0.787880413 +SAT1,Nucleus,1.294394631 +GNL3L,Nucleus,0.711096545 +SH3BP4,Nucleus,0.026925792 +LDLR,Nucleus,0.245571813 +PRKCSH,Nucleus,-0.395253233 +THEM6,Nucleus,-0.485448353 +PVRL2,Nucleus,-1.09334729 +SAFB2,Nucleus,1.075381406 +KIF1A,Nucleus,0.106932897 +COLGALT1,Nucleus,0.139997627 +MLLT1,Nucleus,0.710484088 +MLLT4,Nucleus,0.860471422 +ACTN4,Nucleus,0.087741051 +NDUFA10,Nucleus,1.068626735 +ZSWIM6,Nucleus,0.873633021 +PXDN,Nucleus,-0.961120813 +COL5A1,Nucleus,-0.915493199 +ZNF337,Nucleus,1.59545553 +TAF4,Nucleus,0.340797951 +LAMA5,Nucleus,0.508734501 +EXOSC2,Nucleus,0.756205741 +POMT1,Nucleus,1.243731896 +PRRC2B,Nucleus,0.393174871 +YIPF2,Nucleus,-0.341343987 +ZC3H4,Nucleus,0.351931969 +CLIP1,Nucleus,0.225347371 +HIP1R,Nucleus,0.677175956 +PPAN,Nucleus,1.717997388 +SLC6A8,Nucleus,1.06329231 +PLXNA3,Nucleus,1.198561417 +PRRG1,Nucleus,-0.144524585 +AKAP12,Nucleus,-0.017131541 +RBM39,Nucleus,1.035469169 +GGT7,Nucleus,1.116174903 +PPT1,Nucleus,-1.158221888 +RLIM,Nucleus,0.76176067 +ABCB7,Nucleus,-0.28646465 +MRPS25,Nucleus,1.890706571 +CAPN7,Nucleus,0.316730284 +ZFYVE20,Nucleus,0.43977221 +SLC6A6,Nucleus,1.388371123 +MGAT1,Nucleus,-0.274820264 +PSMC3IP,Nucleus,0.807160406 +DIAPH1,Nucleus,-0.320296736 +NDFIP1,Nucleus,-0.598175358 +ACAP3,Nucleus,1.941350721 +C1orf159,Nucleus,1.459135362 +MAP1B,Nucleus,0.456977104 +IL13RA1,Nucleus,-0.782768617 +WDR44,Nucleus,-0.250834784 +PRKAB2,Nucleus,0.989197795 +CLUHP3,Nucleus,2.783590515 +CHSY1,Nucleus,-0.523448521 +SNRPA1,Nucleus,1.320322551 +FBXW9,Nucleus,1.134085312 +RFX1,Nucleus,0.516321513 +CC2D1A,Nucleus,1.136592218 +NUP210,Nucleus,0.006348717 +ENOSF1,Nucleus,1.931658838 +EMILIN2,Nucleus,-2.782435487 +PRKAA1,Nucleus,1.405570335 +PNISR,Nucleus,1.989111135 +ZRANB2,Nucleus,1.613464327 +KDM6B,Nucleus,0.84673742 +GPS2,Nucleus,0.594536693 +VPS13B,Nucleus,0.501740495 +REEP2,Nucleus,-0.389389672 +PRMT7,Nucleus,1.254800417 +PCED1A,Nucleus,1.135852898 +PTPRA,Nucleus,-0.559729594 +KIAA0907,Nucleus,2.455287595 +DCAF8,Nucleus,2.194727429 +IGHMBP2,Nucleus,1.331966033 +LPIN3,Nucleus,1.287333252 +SERINC3,Nucleus,-0.522712904 +FBXO44,Nucleus,1.228666435 +USPL1,Nucleus,0.801243212 +XPO4,Nucleus,0.721656525 +SCO1,Nucleus,0.965584454 +MPRIP,Nucleus,0.794139649 +DSTYK,Nucleus,0.357660372 +SLC41A1,Nucleus,0.436229322 +GPALPP1,Nucleus,0.493516653 +IRS4,Nucleus,0.468045174 +FAM104A,Nucleus,0.064060346 +SLC39A11,Nucleus,-0.845719887 +EPHB2,Nucleus,-1.058063888 +SRRM1,Nucleus,0.277928817 +SUV420H2,Nucleus,0.784694942 +WDR74,Nucleus,0.903961711 +RTN3,Nucleus,-0.801092998 +MORC2,Nucleus,0.23082475 +LARGE,Nucleus,-0.29836643 +ADCK2,Nucleus,-1.07475662 +AGAP3,Nucleus,0.984822855 +KRBA1,Nucleus,1.500536671 +ZNF767,Nucleus,2.694905891 +ATP13A3,Nucleus,0.218550746 +TMEM254,Nucleus,-0.409046641 +TMTC1,Nucleus,-0.579226017 +KRAS,Nucleus,0.150961476 +SWAP70,Nucleus,-0.211878016 +ZFC3H1,Nucleus,0.793304753 +TEX15,Nucleus,1.044058485 +CTIF,Nucleus,0.915264616 +VHL,Nucleus,0.839647209 +ARL8B,Nucleus,-0.295517187 +EDEM1,Nucleus,0.966234835 +PRPF38B,Nucleus,1.528122217 +SORT1,Nucleus,-0.536767657 +PTGFRN,Nucleus,-0.672439558 +NOTCH2,Nucleus,-0.326395913 +CEPT1,Nucleus,0.457739035 +AP4B1,Nucleus,1.155260431 +SPIRE1,Nucleus,0.569404706 +SLC38A2,Nucleus,-0.040434436 +KIDINS220,Nucleus,-0.389413121 +ROCK2,Nucleus,0.113464492 +LPIN1,Nucleus,0.176533299 +IL6ST,Nucleus,-0.292568389 +TMEM241,Nucleus,-0.509244034 +LRP4,Nucleus,-0.112909561 +DDB2,Nucleus,-0.413353791 +ACP2,Nucleus,-0.545109301 +AGO4,Nucleus,0.743510738 +HOOK1,Nucleus,0.4435987 +DSC2,Nucleus,-0.8317792 +DSC3,Nucleus,-0.465400643 +DTNA,Nucleus,0.520512307 +FHOD3,Nucleus,0.073138235 +FADS2,Nucleus,-0.499738635 +CLOCK,Nucleus,1.03576465 +COL4A2,Nucleus,-0.368858444 +DZIP1,Nucleus,0.623736651 +UBAC2,Nucleus,-0.876065435 +ARGLU1,Nucleus,1.783470799 +BIVM,Nucleus,0.824458998 +ARHGAP32,Nucleus,0.19480363 +TMED7,Nucleus,-0.749188042 +APC,Nucleus,0.124378907 +WDR36,Nucleus,0.727851057 +NAA35,Nucleus,0.115994501 +TMEM2,Nucleus,-0.675754317 +GOLM1,Nucleus,-0.402433252 +TAOK3,Nucleus,0.082836889 +DMTF1,Nucleus,1.952997585 +TMEM243,Nucleus,0.287295076 +PNPLA8,Nucleus,-0.742785792 +MDFIC,Nucleus,-0.436179664 +ANKRD6,Nucleus,0.325719345 +KIAA1009,Nucleus,0.851240747 +SNX14,Nucleus,-0.619745227 +EPHA7,Nucleus,0.223956702 +DNAJC14,Nucleus,-0.541566456 +GDF11,Nucleus,0.334861992 +TROAP,Nucleus,1.027343096 +TSPAN31,Nucleus,-1.064868217 +TFCP2,Nucleus,0.000117913 +PAN2,Nucleus,0.58096336 +HNRNPA1,Nucleus,1.386149358 +ACVR1B,Nucleus,0.327201854 +OS9,Nucleus,-0.703496924 +MAP7,Nucleus,-0.147279097 +CD164,Nucleus,-0.158635793 +NHSL1,Nucleus,0.385844288 +AHI1,Nucleus,0.420694568 +SEMA4F,Nucleus,-0.516955832 +RAB11FIP5,Nucleus,0.977351557 +CCDC142,Nucleus,1.678476731 +GNS,Nucleus,-0.800781633 +MDM2,Nucleus,0.058172197 +KLHL36,Nucleus,0.579556533 +DYNC1LI2,Nucleus,1.358613174 +EGLN1,Nucleus,-0.043586649 +ABCB10,Nucleus,-0.144214382 +TAF5L,Nucleus,0.341057415 +STX6,Nucleus,-0.184025626 +CEP350,Nucleus,0.099435307 +LAMC1,Nucleus,-0.577604612 +RC3H1,Nucleus,0.947691805 +TTLL4,Nucleus,0.430121898 +USP37,Nucleus,0.011636688 +ITM2C,Nucleus,-0.720771445 +SERPINE2,Nucleus,-0.495230201 +TMEM127,Nucleus,-0.645288309 +GCC2,Nucleus,0.025721139 +C2orf49,Nucleus,0.059566085 +EPC2,Nucleus,0.02785397 +ARHGEF4,Nucleus,1.043976272 +ALDH1L2,Nucleus,0.547666932 +CKAP4,Nucleus,-0.889938946 +NEK3,Nucleus,0.605779787 +RCBTB1,Nucleus,0.532239674 +COG3,Nucleus,0.679465524 +SCRN1,Nucleus,-0.184287252 +CHST12,Nucleus,0.889385492 +KDELR2,Nucleus,-0.604694127 +NUPL2,Nucleus,1.051563826 +DBNL,Nucleus,0.864070625 +TTYH3,Nucleus,0.141191323 +IREB2,Nucleus,0.229904885 +RSAD1,Nucleus,0.88734485 +VEZF1,Nucleus,0.296315326 +TEX2,Nucleus,-0.125351825 +BRIP1,Nucleus,0.818037953 +SKIL,Nucleus,0.776449676 +RPS6KC1,Nucleus,-0.560490519 +BIN1,Nucleus,0.704411848 +HS6ST1,Nucleus,0.013025079 +UGGT1,Nucleus,-0.084822225 +DNAJC1,Nucleus,-1.33750182 +LRRC8A,Nucleus,-0.523474735 +CDK9,Nucleus,-0.106956805 +TOR1B,Nucleus,-0.168707857 +SMC2,Nucleus,-0.218047295 +TOR1A,Nucleus,-0.474286995 +RALGPS1,Nucleus,1.367251254 +FAM129B,Nucleus,0.35005151 +SLC2A8,Nucleus,1.064932329 +SLC31A1,Nucleus,-0.308391631 +ZNF189,Nucleus,0.362361398 +STX17,Nucleus,0.697763852 +TSTD2,Nucleus,0.771696535 +LMX1B,Nucleus,0.751288552 +RANBP6,Nucleus,0.340450157 +TLN1,Nucleus,-0.31265593 +ALDH1B1,Nucleus,-0.696142448 +CNPY3,Nucleus,-0.769971287 +TMEM63B,Nucleus,0.079728852 +TJAP1,Nucleus,0.894869335 +SLC22A23,Nucleus,0.465890064 +FOXF2,Nucleus,0.023616204 +RIPK1,Nucleus,-0.269520714 +ATAT1,Nucleus,1.676200763 +NRM,Nucleus,-0.764698073 +VARS2,Nucleus,1.130266907 +FAM8A1,Nucleus,-0.130466969 +PRKRIR,Nucleus,-0.070546079 +CREBZF,Nucleus,1.91674105 +PRCP,Nucleus,-1.119610528 +RNF121,Nucleus,0.019219107 +SULF1,Nucleus,-0.199012276 +SORL1,Nucleus,-0.083425991 +YAP1,Nucleus,-0.409091912 +RDX,Nucleus,-0.477977082 +MAP2K5,Nucleus,-0.68175487 +MAPKBP1,Nucleus,1.253343151 +CASC5,Nucleus,0.146153117 +HAUS2,Nucleus,0.293531719 +PARP6,Nucleus,1.261504781 +TUBGCP4,Nucleus,0.812474276 +RMDN3,Nucleus,0.335064999 +UACA,Nucleus,0.606127351 +SMAD6,Nucleus,1.96723164 +ADAM10,Nucleus,-0.474918699 +TTLL7,Nucleus,0.211634947 +FNBP1L,Nucleus,0.657015839 +RABGGTB,Nucleus,1.580629602 +ARHGAP29,Nucleus,0.354333386 +SLC44A5,Nucleus,1.184297404 +DBT,Nucleus,0.337898195 +EPT1,Nucleus,0.46666589 +ADCY3,Nucleus,0.538070605 +PNPT1,Nucleus,0.170711633 +THUMPD2,Nucleus,0.932185999 +PREPL,Nucleus,-0.194229509 +ACTR1A,Nucleus,-0.568948335 +TMEM180,Nucleus,1.076876576 +ATAD1,Nucleus,-0.085636914 +KIF20B,Nucleus,0.143519989 +TET1,Nucleus,-0.136311797 +DNA2,Nucleus,0.165128833 +BARD1,Nucleus,0.566140218 +NAB1,Nucleus,0.636460316 +PPIG,Nucleus,0.475303643 +FASTKD1,Nucleus,0.518140163 +SSFA2,Nucleus,0.198403837 +ITGAV,Nucleus,0.164974224 +SLC35A5,Nucleus,-0.723618302 +SECISBP2L,Nucleus,-0.02336187 +SPPL2A,Nucleus,-0.252284328 +GLCE,Nucleus,-0.284007217 +PPCDC,Nucleus,0.791268694 +PCDH10,Nucleus,-1.16291604 +AP1AR,Nucleus,0.309665713 +FGF2,Nucleus,0.961083665 +KIAA1109,Nucleus,0.346681891 +LARP1B,Nucleus,0.226511966 +BMP2K,Nucleus,0.929657801 +FRAS1,Nucleus,0.027095817 +SCARB2,Nucleus,-0.682251507 +USO1,Nucleus,-0.45421138 +CENPE,Nucleus,0.716587747 +GSTCD,Nucleus,0.107625302 +LEF1,Nucleus,0.236299203 +PPP3CA,Nucleus,-0.378319847 +FBN2,Nucleus,-0.531643752 +MAPK8IP3,Nucleus,2.243438978 +B4GALNT3,Nucleus,0.599677339 +AEBP2,Nucleus,0.012837332 +ETNK1,Nucleus,0.598487911 +CLSTN3,Nucleus,-0.945446412 +SCAF11,Nucleus,0.534039681 +COL2A1,Nucleus,-0.325842287 +LRIG3,Nucleus,0.533091289 +TMEM19,Nucleus,-0.778833371 +POC1B,Nucleus,-0.551683711 +TMTC3,Nucleus,-0.067013597 +GAS2L3,Nucleus,0.491467242 +SLC15A4,Nucleus,0.55514533 +TDG,Nucleus,0.231693629 +NUPL1,Nucleus,0.479065748 +MTMR6,Nucleus,-0.159436778 +SLC7A1,Nucleus,0.195129607 +BRCA2,Nucleus,0.766537698 +CERS5,Nucleus,-0.705375382 +ESYT1,Nucleus,-0.771993769 +TMBIM6,Nucleus,-0.837862772 +ANKRD52,Nucleus,1.044629623 +ZNF740,Nucleus,0.646329551 +HNRNPA1L2,Nucleus,0.81012717 +SBNO1,Nucleus,0.158866914 +SETD1B,Nucleus,0.716575449 +RBM26,Nucleus,1.112847025 +ZIC5,Nucleus,0.82502329 +TMX1,Nucleus,-0.314447249 +NAA30,Nucleus,0.030042011 +DCAF5,Nucleus,-0.113092238 +RAB15,Nucleus,0.070480829 +NIPA2,Nucleus,-0.065403601 +ZSCAN29,Nucleus,0.640010783 +BNIP2,Nucleus,0.139034757 +MAN2C1,Nucleus,2.129014319 +MESDC1,Nucleus,-0.615328263 +IGF1R,Nucleus,0.322088772 +ARRDC4,Nucleus,0.096081352 +PML,Nucleus,0.324827518 +LINS,Nucleus,1.142722388 +PCSK6,Nucleus,-0.079190292 +SCAMP2,Nucleus,-0.503063119 +POLG,Nucleus,0.453945531 +ABHD2,Nucleus,-0.205312772 +TICRR,Nucleus,0.665445715 +MFGE8,Nucleus,0.518410894 +FURIN,Nucleus,-0.329074806 +IQGAP1,Nucleus,-0.645619903 +CRTC3,Nucleus,0.539063989 +FTO,Nucleus,-0.865344666 +MBTPS1,Nucleus,0.15829579 +RHOT2,Nucleus,1.19412673 +PDPK1,Nucleus,0.654553169 +TCF25,Nucleus,1.224630036 +GALNS,Nucleus,0.60314036 +GAS8,Nucleus,1.370199855 +MED9,Nucleus,0.00721139 +GID4,Nucleus,0.041974092 +KSR1,Nucleus,-0.197093641 +SGSM2,Nucleus,1.201337497 +SSH2,Nucleus,0.454695496 +PTRH2,Nucleus,0.984019361 +SS18,Nucleus,0.782795723 +SLC39A6,Nucleus,-0.462249301 +GALNT1,Nucleus,-0.413185233 +ESCO1,Nucleus,-0.127300132 +GREB1L,Nucleus,0.079417179 +NPC1,Nucleus,-0.398184897 +MINK1,Nucleus,0.753238356 +TTYH2,Nucleus,0.792473585 +CSNK1D,Nucleus,1.126374311 +FOXK2,Nucleus,0.332933091 +TRIM65,Nucleus,1.187242009 +RNF157,Nucleus,-0.232782234 +CBX4,Nucleus,0.364609655 +MBD1,Nucleus,0.779170037 +ZCCHC2,Nucleus,0.564737827 +LEPREL4,Nucleus,-0.457643695 +FAM134C,Nucleus,-0.735138216 +ERBB2,Nucleus,-0.966490147 +FKBP10,Nucleus,0.562537817 +PRDM15,Nucleus,1.451951835 +DUS3L,Nucleus,1.072715283 +ATHL1,Nucleus,1.899203142 +COL6A1,Nucleus,-0.072085578 +IFNAR1,Nucleus,-0.425318802 +COL6A2,Nucleus,-0.445217295 +TMEM50B,Nucleus,0.528193768 +APP,Nucleus,-0.816039293 +URB1,Nucleus,0.192549115 +CAPN10,Nucleus,1.666374943 +ERVK3-1,Nucleus,2.790781568 +SLC47A1,Nucleus,-0.075069729 +RERE,Nucleus,0.750773803 +EPHA2,Nucleus,-0.062564465 +KIAA0319L,Nucleus,-0.07410354 +PLK4,Nucleus,0.527973699 +GPN2,Nucleus,1.164123652 +PIGK,Nucleus,-0.838509825 +PTPRF,Nucleus,-0.027422842 +SYPL2,Nucleus,0.021714373 +IGSF3,Nucleus,-0.540435297 +CELSR2,Nucleus,0.018856693 +ATP1B1,Nucleus,-0.878327999 +CREG1,Nucleus,-0.653245601 +POU2F1,Nucleus,1.124883106 +PPOX,Nucleus,1.282745064 +USP21,Nucleus,0.982066577 +PIGM,Nucleus,0.448460079 +ABL2,Nucleus,0.570092724 +XPR1,Nucleus,-0.722962773 +TOR1AIP1,Nucleus,-0.630259766 +TUFT1,Nucleus,0.79660866 +TARS2,Nucleus,-0.251459268 +CERS2,Nucleus,-0.80302169 +SEMA6C,Nucleus,1.24712044 +ATP8B2,Nucleus,-0.142935249 +ADAM15,Nucleus,0.502820498 +SLC39A1,Nucleus,-0.576868275 +GATAD2B,Nucleus,0.11449678 +HCN3,Nucleus,1.389392174 +GALNT2,Nucleus,-0.475005164 +TTC13,Nucleus,0.369592083 +MLK4,Nucleus,1.068409267 +CEP170,Nucleus,0.111190453 +SDE2,Nucleus,-0.399307338 +FBXO28,Nucleus,0.181170937 +CDC42BPA,Nucleus,0.262428391 +MBOAT2,Nucleus,0.529935763 +PSEN2,Nucleus,-0.039806948 +LBR,Nucleus,-0.421024788 +RHOB,Nucleus,-0.378141963 +ASXL2,Nucleus,0.625899483 +ETAA1,Nucleus,0.679859196 +ZNF514,Nucleus,1.753987725 +SFXN5,Nucleus,1.050215853 +TEX261,Nucleus,0.025341255 +RALB,Nucleus,-0.58476605 +SLC20A1,Nucleus,-0.012196545 +ZC3H8,Nucleus,0.95550973 +UBXN4,Nucleus,0.162724925 +AMMECR1L,Nucleus,0.163564255 +GALNT13,Nucleus,0.076726915 +SCRN3,Nucleus,0.428674853 +KIAA1715,Nucleus,-0.485539789 +CDCA7,Nucleus,0.750253498 +DLX1,Nucleus,0.886523748 +GULP1,Nucleus,0.578860655 +FAM171B,Nucleus,-0.272674866 +CCDC150,Nucleus,1.474582622 +SUMF1,Nucleus,-0.868133365 +RHBDD1,Nucleus,-0.105290774 +FAM134A,Nucleus,-0.34671338 +CTDSP1,Nucleus,-0.136281028 +EAF1,Nucleus,0.510393882 +GOLGA4,Nucleus,0.89340867 +IQSEC1,Nucleus,0.709810182 +PTPRG,Nucleus,-0.500967224 +IL17RD,Nucleus,-0.417343835 +ARL6IP5,Nucleus,-1.050950777 +TMF1,Nucleus,0.498189972 +LRIG1,Nucleus,0.057893838 +LIMD1,Nucleus,0.922520342 +NXPE3,Nucleus,-0.485013544 +SRPRB,Nucleus,-0.648143077 +TCTA,Nucleus,-0.678157969 +VPRBP,Nucleus,0.241826285 +SLIT2,Nucleus,-0.574356139 +DGKQ,Nucleus,1.919136272 +ATP10D,Nucleus,-0.447241433 +SCD5,Nucleus,-1.081388525 +ENOPH1,Nucleus,-0.123022817 +TRMT10A,Nucleus,-0.056777476 +KLHL8,Nucleus,-0.00174377 +USP53,Nucleus,0.786329459 +MARCH6,Nucleus,0.287008525 +FAM105A,Nucleus,-0.893316269 +PIK3R1,Nucleus,0.312618204 +LHFPL2,Nucleus,-0.092516752 +IQGAP2,Nucleus,-0.919360062 +PPIP5K2,Nucleus,0.268457703 +PAM,Nucleus,-0.945792956 +BDP1,Nucleus,0.550641124 +SLC30A5,Nucleus,-0.12918507 +ATG12,Nucleus,0.773041504 +YIPF5,Nucleus,-0.564767171 +RNF145,Nucleus,-0.0337138 +FBXO38,Nucleus,0.513028475 +PCYOX1L,Nucleus,0.524006722 +TNIP1,Nucleus,-0.352880375 +ZNF300,Nucleus,0.785813588 +GFOD1,Nucleus,1.713697282 +TRIM41,Nucleus,1.2286502 +FAM193B,Nucleus,1.337626533 +RNF44,Nucleus,1.323297357 +MUT,Nucleus,-0.704121592 +PHIP,Nucleus,0.801116929 +MMS22L,Nucleus,1.126472953 +PM20D2,Nucleus,0.019916318 +RNF217,Nucleus,1.642063027 +AIG1,Nucleus,-0.769460184 +TMEM181,Nucleus,0.689267363 +SDK1,Nucleus,-0.627742128 +RBAK,Nucleus,1.167999678 +CREB5,Nucleus,1.592164316 +PURB,Nucleus,1.194953573 +GBAS,Nucleus,-0.090911538 +ZNF92,Nucleus,0.419867314 +TMEM168,Nucleus,-0.026205165 +C7orf43,Nucleus,0.990910356 +SLC12A9,Nucleus,0.480070712 +GIGYF1,Nucleus,1.978612739 +TMEM209,Nucleus,-0.422756887 +NOM1,Nucleus,1.397910963 +SH3KBP1,Nucleus,-0.154429322 +CASK,Nucleus,-0.233705893 +SLC16A2,Nucleus,-1.28761352 +OGT,Nucleus,1.977021753 +ZNF711,Nucleus,0.689490625 +DIAPH2,Nucleus,-0.20443781 +CXorf57,Nucleus,0.898395557 +GPC3,Nucleus,-0.995932458 +BIN3,Nucleus,0.883288007 +SLC25A37,Nucleus,2.169335298 +CHMP7,Nucleus,-0.080341819 +ERLIN2,Nucleus,-0.453444177 +TACC1,Nucleus,0.503694875 +WHSC1L1,Nucleus,0.47162347 +TERF1,Nucleus,-0.056825745 +MTDH,Nucleus,-0.354018881 +LRP12,Nucleus,-0.879424773 +EBAG9,Nucleus,-0.101110445 +UTP23,Nucleus,0.094560568 +ZNF7,Nucleus,1.272416173 +ARHGAP39,Nucleus,1.197624833 +NAPRT1,Nucleus,1.200237754 +UHRF2,Nucleus,1.545660005 +ZCCHC7,Nucleus,-0.387576542 +SIGMAR1,Nucleus,-0.662543639 +CEP78,Nucleus,0.693912068 +HIATL1,Nucleus,-0.172252937 +INIP,Nucleus,-0.43946187 +UGCG,Nucleus,-0.412875303 +STOM,Nucleus,-0.656321119 +MRRF,Nucleus,0.836823729 +NR6A1,Nucleus,1.185176548 +SURF4,Nucleus,-0.508777651 +MED22,Nucleus,0.933223987 +SH3GLB2,Nucleus,1.46068961 +FAM73B,Nucleus,1.20390715 +GPR107,Nucleus,-0.295861448 +C9orf142,Nucleus,0.242118516 +INPP5E,Nucleus,1.626635613 +DPH7,Nucleus,0.894913182 +NOTCH1,Nucleus,0.487323114 +NACC2,Nucleus,1.13697543 +USP6NL,Nucleus,-0.030609686 +FAM171A1,Nucleus,-0.152701242 +PARD3,Nucleus,-0.420207098 +POLR3A,Nucleus,-0.055995547 +FRA10AC1,Nucleus,0.625403278 +ADD3,Nucleus,-0.104570962 +DNAJB12,Nucleus,0.412263379 +EIF4EBP2,Nucleus,-0.281423452 +MKI67,Nucleus,0.769532415 +MTG1,Nucleus,1.857999023 +PPRC1,Nucleus,1.23486668 +ITPRIP,Nucleus,-0.656306153 +CNNM2,Nucleus,-0.325992694 +PDCD11,Nucleus,-0.090704774 +LIN7C,Nucleus,0.427994703 +DGKZ,Nucleus,1.267975375 +TNKS1BP1,Nucleus,0.871329252 +SLC43A1,Nucleus,0.649092162 +PTPRJ,Nucleus,-0.416161923 +CELF1,Nucleus,1.134499707 +SESN3,Nucleus,0.594205413 +ENDOD1,Nucleus,-0.773252693 +SERPINH1,Nucleus,-1.296009903 +NCAM1,Nucleus,-0.058790377 +NPAT,Nucleus,0.325279568 +ATM,Nucleus,0.907314491 +GLB1L2,Nucleus,0.535379985 +HYOU1,Nucleus,-0.359374286 +DAK,Nucleus,0.362547729 +TMEM138,Nucleus,1.282043738 +FADS1,Nucleus,-0.643993868 +EML3,Nucleus,1.250698308 +B3GAT3,Nucleus,0.103263032 +SIDT2,Nucleus,0.627857873 +SOGA1,Nucleus,0.209876455 +LSM14B,Nucleus,0.832707826 +ORAOV1,Nucleus,2.19653468 +TAOK2,Nucleus,1.293172263 +ITGB1,Nucleus,-1.078933232 +ARID5B,Nucleus,-0.359380023 +TMCO3,Nucleus,0.130277261 +LATS2,Nucleus,-0.317769171 +LPHN3,Nucleus,-0.808297782 +PRSS23,Nucleus,-0.731126663 +PIP4K2A,Nucleus,-0.575957953 +FREM2,Nucleus,-0.071308437 +CRIM1,Nucleus,-0.318564881 +IPMK,Nucleus,0.16984373 +PLBD2,Nucleus,0.026699216 +GXYLT1,Nucleus,-0.27737595 +CSNK1G3,Nucleus,-0.123483952 +MIPOL1,Nucleus,-0.129389102 +EXT2,Nucleus,-1.083734554 +TMEM18,Nucleus,0.998762318 +NEK7,Nucleus,0.059397085 +FER,Nucleus,0.55178046 +VIPAS39,Nucleus,-0.600952009 +ANKRD50,Nucleus,0.43865617 +UPF2,Nucleus,-0.080069444 +EPS8,Nucleus,-0.08309161 +FAM160B1,Nucleus,1.24136166 +ADAM17,Nucleus,-0.350971981 +WWC2,Nucleus,0.048373592 +BICD1,Nucleus,0.712295046 +NBAS,Nucleus,-0.762102649 +GUF1,Nucleus,0.611101091 +SACS,Nucleus,1.147279813 +PABPC3,Nucleus,-0.228217747 +DST,Nucleus,0.318158965 +TIAL1,Nucleus,0.948340971 +TMEM56,Nucleus,-0.281499447 +FAM168B,Nucleus,0.150484359 +AC093838.4,Nucleus,2.261334873 +MGAT5,Nucleus,0.075838521 +GPATCH11,Nucleus,0.148089238 +POU4F1,Nucleus,1.071488344 +RNF219,Nucleus,0.039585004 +EPG5,Nucleus,0.563542968 +C18orf25,Nucleus,0.883893095 +PDK1,Nucleus,0.535522261 +PDE3B,Nucleus,-0.045190279 +TGOLN2,Nucleus,0.158679022 +UHMK1,Nucleus,1.004703255 +TADA1,Nucleus,0.284093224 +CWF19L2,Nucleus,-0.215773029 +JMY,Nucleus,0.85641908 +HOMER1,Nucleus,0.142500964 +USP12,Nucleus,-0.089300901 +CCDC50,Nucleus,0.172489608 +PAN3,Nucleus,0.465789887 +TMEM123,Nucleus,-0.313440897 +GJA1,Nucleus,-0.591539767 +SLC30A6,Nucleus,-0.346321338 +SAR1B,Nucleus,-0.186821125 +GPR180,Nucleus,0.127062198 +UTRN,Nucleus,-0.296922312 +PTPRK,Nucleus,-0.529366894 +PLOD2,Nucleus,-0.64957453 +GPR125,Nucleus,0.051674427 +SREK1IP1,Nucleus,0.576639409 +TXNDC11,Nucleus,-0.287493708 +BCL2L11,Nucleus,1.201605232 +CLGN,Nucleus,-0.732717841 +RASSF3,Nucleus,-0.392900443 +RANBP2,Nucleus,0.094155909 +TMEM87B,Nucleus,-0.069604107 +RBMS1,Nucleus,0.509725575 +LPCAT1,Nucleus,0.029626685 +UBALD1,Nucleus,2.535568917 +RMND5A,Nucleus,-0.275435347 +ZDHHC7,Nucleus,-0.189580121 +TRIP12,Nucleus,-0.067663541 +CEBPG,Nucleus,0.214976076 +SREK1,Nucleus,1.71179846 +CHD1,Nucleus,0.643769366 +DGKE,Nucleus,1.803994466 +HS2ST1,Nucleus,-0.397764823 +MSI2,Nucleus,0.81407171 +CACNA2D1,Nucleus,0.216290153 +NUS1,Nucleus,-0.032532286 +IMPACT,Nucleus,0.043752766 +TBCEL,Nucleus,0.571882702 +FAM105B,Nucleus,0.490190617 +TBRG1,Nucleus,1.526161223 +CC2D1B,Nucleus,0.752271967 +MIA3,Nucleus,0.019359776 +TRIM11,Nucleus,1.115746492 +CCSAP,Nucleus,-0.272342048 +CXADR,Nucleus,-0.5528504 +GABPA,Nucleus,0.409049493 +ADAMTS1,Nucleus,0.078445898 +TSEN2,Nucleus,1.390560644 +FLCN,Nucleus,0.778937345 +SKA1,Nucleus,-0.488860214 +RAB6B,Nucleus,0.566438862 +ACSS1,Nucleus,0.224097751 +ANKRD40,Nucleus,0.220908367 +VOPP1,Nucleus,-0.770277365 +APOOL,Nucleus,0.157087779 +CYP2U1,Nucleus,-0.701154366 +AGPAT5,Nucleus,-0.013049031 +MARVELD1,Nucleus,-0.211148102 +ZFYVE27,Nucleus,0.715839694 +SLC25A28,Nucleus,1.552539632 +HSPA13,Nucleus,-0.769199999 +USP25,Nucleus,0.428537332 +RHOC,Nucleus,-1.333561884 +SLC16A1,Nucleus,-0.621351755 +LARP1,Nucleus,-0.003131441 +MIER3,Nucleus,0.425402703 +ZKSCAN2,Nucleus,0.18575291 +PDIA4,Nucleus,-0.47355107 +FAM126B,Nucleus,1.271970224 +FZD7,Nucleus,-0.397710494 +FMN2,Nucleus,-0.599639186 +PPARGC1B,Nucleus,1.699475102 +SLC26A2,Nucleus,0.136834978 +LSM11,Nucleus,1.101583064 +PSD3,Nucleus,0.428053948 +DCK,Nucleus,-0.425003391 +ADAMTS3,Nucleus,0.717081111 +DPY19L4,Nucleus,-0.071049356 +NDUFAF6,Nucleus,1.021921018 +N6AMT1,Nucleus,1.1577933 +CDK20,Nucleus,0.99446517 +PCGF6,Nucleus,-0.077077991 +ANKRD9,Nucleus,1.389225107 +SFXN2,Nucleus,0.861000819 +PTDSS1,Nucleus,-0.674611173 +SUPV3L1,Nucleus,0.465540229 +TYSND1,Nucleus,1.252282912 +CD109,Nucleus,-0.307648777 +ZDHHC5,Nucleus,-0.308280682 +ZFAND3,Nucleus,-0.529956813 +NPTN,Nucleus,-0.403448001 +KAT6B,Nucleus,-0.063649467 +SAMD8,Nucleus,0.282713029 +BAG4,Nucleus,-0.341176224 +ATAD2,Nucleus,0.060678748 +PHKG2,Nucleus,1.160662885 +SASS6,Nucleus,0.344352897 +ZIC3,Nucleus,0.587925933 +EXOG,Nucleus,1.880173469 +SMG1,Nucleus,0.959243803 +FCHO2,Nucleus,0.099407423 +C1orf27,Nucleus,0.655754576 +LRP8,Nucleus,1.557235604 +PAXIP1,Nucleus,0.842791496 +SSBP3,Nucleus,0.227741099 +CLDN12,Nucleus,-0.083695368 +GATAD1,Nucleus,0.513150803 +ST3GAL2,Nucleus,0.300346396 +FUK,Nucleus,1.539612765 +KIT,Nucleus,0.080194373 +AASDH,Nucleus,0.418621878 +DYRK1A,Nucleus,-0.127980316 +TSPAN18,Nucleus,-0.525261815 +SLC35B2,Nucleus,-0.649826468 +TMEM164,Nucleus,-0.024783695 +TAB3,Nucleus,0.855999152 +SLC38A10,Nucleus,-0.159792909 +ZNF618,Nucleus,0.597361324 +C9orf91,Nucleus,0.075494211 +UBN2,Nucleus,1.778397568 +BRAF,Nucleus,0.686849901 +SLC37A3,Nucleus,0.159892817 +DPYSL5,Nucleus,-0.006046752 +FAM213B,Nucleus,0.173125495 +C12orf43,Nucleus,-0.422946031 +RER1,Nucleus,0.766957535 +UBXN11,Nucleus,0.992963022 +RHPN1,Nucleus,2.040403253 +CNNM4,Nucleus,-0.288734525 +EYA3,Nucleus,0.426171707 +MRAS,Nucleus,-0.647798713 +COLEC12,Nucleus,-0.357461576 +CUL4B,Nucleus,-0.421929304 +MITD1,Nucleus,0.790058463 +EIF5B,Nucleus,0.188062322 +TSPAN33,Nucleus,-0.78819685 +AHCYL2,Nucleus,-0.055916084 +B4GALT5,Nucleus,-0.163088978 +TSR2,Nucleus,0.192556699 +ZC3H18,Nucleus,0.489788386 +TMED4,Nucleus,0.253772127 +PPP1R15B,Nucleus,-0.174607113 +AGPAT6,Nucleus,0.086493353 +ZSCAN12,Nucleus,0.953054706 +ELK4,Nucleus,1.983278501 +F11R,Nucleus,-0.759940371 +ZNF276,Nucleus,2.315877369 +PINK1,Nucleus,-1.154196312 +B4GALT3,Nucleus,-0.330800481 +FAM160B2,Nucleus,1.208748262 +CACHD1,Nucleus,-0.005004952 +PAXBP1,Nucleus,1.960919121 +IFNAR2,Nucleus,0.123385169 +SON,Nucleus,0.752672714 +SV2A,Nucleus,-0.136045417 +HLCS,Nucleus,0.063468184 +ADPGK,Nucleus,0.870645025 +ALDH4A1,Nucleus,0.330575758 +STARD9,Nucleus,0.985588052 +UBR1,Nucleus,0.231087083 +AMFR,Nucleus,-0.717152207 +RSPRY1,Nucleus,-0.140887829 +ARHGAP35,Nucleus,0.089318043 +CALM3,Nucleus,-0.550682483 +IQCC,Nucleus,0.231882141 +BSDC1,Nucleus,1.237973176 +ATAD3B,Nucleus,1.331895711 +VMA21,Nucleus,0.128712156 +WDR4,Nucleus,0.858911336 +CBS,Nucleus,1.629852677 +PDXK,Nucleus,1.188908933 +G6PD,Nucleus,-0.281662913 +AGPAT3,Nucleus,0.764790444 +C21orf2,Nucleus,1.78490997 +LRRC3,Nucleus,0.440426651 +LSS,Nucleus,1.174443033 +VAV2,Nucleus,0.772340423 +MCM3AP,Nucleus,0.599735154 +C21orf58,Nucleus,1.653314148 +PCNT,Nucleus,0.61184612 +DIP2A,Nucleus,0.648672112 +ZNF714,Nucleus,0.825404589 +PKN3,Nucleus,1.244677224 +TAOK1,Nucleus,0.532262443 +SIK3,Nucleus,0.619517699 +PCSK7,Nucleus,1.148547481 +CHTOP,Nucleus,1.239151443 +ZBTB7B,Nucleus,0.624533746 +NLRX1,Nucleus,0.303937002 +ANO10,Nucleus,-1.250273803 +SLC25A44,Nucleus,0.405211211 +NBEAL2,Nucleus,1.907857608 +IER2,Nucleus,0.299073145 +ZNF394,Nucleus,0.427258268 +CPSF4,Nucleus,1.118992962 +TONSL,Nucleus,1.497024574 +MUM1,Nucleus,1.113933686 +RECQL4,Nucleus,1.411571661 +LRRC14,Nucleus,1.462914015 +PPP1R16A,Nucleus,1.266223362 +C5orf45,Nucleus,2.40618907 +MFSD12,Nucleus,1.227404183 +FDXR,Nucleus,-0.360016355 +ALDH16A1,Nucleus,0.775208529 +ITGA5,Nucleus,-0.644135992 +ZNF385A,Nucleus,-0.38917716 +MPP3,Nucleus,1.985267591 +EMC10,Nucleus,-0.239602509 +FAM171A2,Nucleus,-0.550249652 +DBF4B,Nucleus,1.303723755 +LARP4,Nucleus,0.248271155 +LEMD2,Nucleus,0.798345028 +WDR90,Nucleus,2.492325701 +C16orf59,Nucleus,0.343686056 +AMDHD2,Nucleus,2.075867548 +PAQR4,Nucleus,0.105847761 +ADCY9,Nucleus,-0.138295284 +CLPB,Nucleus,-0.416719953 +NEU3,Nucleus,1.018107696 +CYB561A3,Nucleus,0.082768457 +TAF6L,Nucleus,0.768415771 +LRP5,Nucleus,0.213180507 +ZYG11B,Nucleus,0.251005479 +PPAP2B,Nucleus,-0.60461316 +PRKAA2,Nucleus,0.583717782 +KLHL21,Nucleus,0.905554832 +GMEB1,Nucleus,-0.15303601 +SEPN1,Nucleus,-0.206750511 +AK4,Nucleus,-0.03602182 +RAVER2,Nucleus,0.754077637 +PDPN,Nucleus,-0.847580372 +SDC3,Nucleus,0.202593766 +KIAA1522,Nucleus,0.403893802 +C1orf86,Nucleus,1.521836474 +NFIA,Nucleus,0.103274308 +OMA1,Nucleus,-0.524402908 +MYSM1,Nucleus,2.186046071 +FUBP1,Nucleus,1.324639188 +DNAJB4,Nucleus,0.050639098 +FAM102B,Nucleus,-0.224865866 +ATXN7L2,Nucleus,1.644498069 +ZNF326,Nucleus,0.867384697 +EXTL2,Nucleus,0.186081603 +SLC30A7,Nucleus,0.183091813 +PEA15,Nucleus,-0.024600113 +NCSTN,Nucleus,-0.384748125 +VANGL2,Nucleus,0.026092228 +FLVCR1,Nucleus,0.908766923 +RBM15,Nucleus,0.519314188 +BPNT1,Nucleus,-0.309251171 +BROX,Nucleus,-0.43711824 +ACP6,Nucleus,1.174607493 +PPP1R21,Nucleus,-0.168635815 +B3GALNT2,Nucleus,0.612816221 +C2orf47,Nucleus,-0.293034052 +ARL5A,Nucleus,0.053052244 +SGCB,Nucleus,-0.744800854 +SMARCAD1,Nucleus,-0.116536219 +RNF149,Nucleus,0.841298734 +FZD5,Nucleus,0.492514861 +DCAF16,Nucleus,1.280933912 +PAQR3,Nucleus,-0.192963615 +ANTXR2,Nucleus,-1.172568232 +PBXIP1,Nucleus,-0.583631615 +PYGO2,Nucleus,0.245028711 +HIPK1,Nucleus,0.13866882 +KBTBD8,Nucleus,-0.140020127 +EOGT,Nucleus,0.731138813 +POGLUT1,Nucleus,0.717628895 +ATP1A1,Nucleus,-0.918864296 +EIF4E3,Nucleus,-0.387318391 +LRRC58,Nucleus,0.729694655 +FSTL1,Nucleus,-0.970990695 +KRTCAP2,Nucleus,0.969752157 +KIAA1524,Nucleus,0.294224841 +TGFBR2,Nucleus,-0.563731645 +ANKZF1,Nucleus,1.431146556 +STT3B,Nucleus,-0.149330812 +PPM1L,Nucleus,1.056311819 +RYBP,Nucleus,0.020160314 +PPP4R2,Nucleus,0.097544364 +C3orf17,Nucleus,0.5069702 +SPICE1,Nucleus,0.468452059 +WDFY3,Nucleus,0.242369407 +ATXN7,Nucleus,1.131010007 +PPM1K,Nucleus,0.713771911 +CCNL1,Nucleus,2.29255782 +RPP14,Nucleus,0.990709831 +ABHD6,Nucleus,-0.567928626 +CRELD1,Nucleus,0.1310995 +U2SURP,Nucleus,0.719453486 +TTC14,Nucleus,0.971128882 +SNRK,Nucleus,0.216912999 +SLC4A1AP,Nucleus,0.096635609 +ZDHHC3,Nucleus,0.37153765 +FYCO1,Nucleus,0.516990421 +YEATS2,Nucleus,0.285895896 +SNIP1,Nucleus,0.183065331 +TMEM41A,Nucleus,0.071586314 +RPN1,Nucleus,-1.18563316 +SFMBT1,Nucleus,0.361119738 +PBRM1,Nucleus,-0.21776574 +FAM208A,Nucleus,0.043438523 +ARHGEF3,Nucleus,-0.500739637 +UBXN7,Nucleus,0.647098577 +ZNF691,Nucleus,0.660604885 +SGMS2,Nucleus,-0.130766403 +DNAJB14,Nucleus,0.738475445 +ZNF589,Nucleus,1.473563991 +SHISA5,Nucleus,-0.81009852 +INTU,Nucleus,0.396151842 +RNF123,Nucleus,0.776142855 +MFSD8,Nucleus,0.859161029 +C4orf29,Nucleus,0.944659127 +RAD54L2,Nucleus,0.618230536 +MAP9,Nucleus,0.250736783 +CEP44,Nucleus,0.701775602 +ABCE1,Nucleus,-0.017351575 +TMEM184C,Nucleus,-0.283010176 +TMEM161B,Nucleus,1.478654106 +ELOVL7,Nucleus,-0.05492927 +LMBRD2,Nucleus,-0.009011134 +NIPBL,Nucleus,-0.062619035 +SLC25A46,Nucleus,-0.04783326 +STARD4,Nucleus,0.453710253 +PGGT1B,Nucleus,1.018892929 +NDUFS4,Nucleus,-0.810897334 +ARSK,Nucleus,-0.266223771 +GPX8,Nucleus,-0.725177534 +SERINC5,Nucleus,0.087112427 +GFM2,Nucleus,-0.103798587 +CCDC127,Nucleus,0.349673811 +SEPT8,Nucleus,0.155069441 +DCBLD1,Nucleus,-0.25693167 +PDSS2,Nucleus,-0.29888952 +STXBP5,Nucleus,0.610401677 +DAGLB,Nucleus,0.32906773 +GALNT10,Nucleus,0.004708732 +ZNF12,Nucleus,1.16215888 +USP49,Nucleus,1.892515358 +ZNF704,Nucleus,1.12319313 +LMTK2,Nucleus,0.195303173 +CTSB,Nucleus,-1.214502402 +ADCY1,Nucleus,0.515833971 +EN2,Nucleus,0.431514876 +SUN1,Nucleus,0.761066195 +OXR1,Nucleus,-0.059177522 +SLC4A2,Nucleus,-0.234702033 +FASTK,Nucleus,1.635153196 +TMUB1,Nucleus,0.315979644 +C7orf55,Nucleus,-0.780588086 +FOXK1,Nucleus,1.417354374 +FZD6,Nucleus,0.036270113 +KIAA1429,Nucleus,-0.340789183 +TMEM67,Nucleus,0.362496753 +SNAPC3,Nucleus,0.271941015 +KIAA1161,Nucleus,-0.60853107 +METTL2B,Nucleus,0.438830901 +HGSNAT,Nucleus,0.45653585 +RASEF,Nucleus,0.526261838 +ANKS6,Nucleus,1.274072422 +TMEM246,Nucleus,-0.812114164 +ZHX1,Nucleus,0.056039541 +KIAA1958,Nucleus,1.245693504 +PIGA,Nucleus,0.72050835 +WNK2,Nucleus,1.182452382 +ATP7A,Nucleus,-0.70118303 +PIGO,Nucleus,-0.246877694 +BRWD3,Nucleus,0.212344704 +SLITRK5,Nucleus,0.746013259 +DDX26B,Nucleus,1.009391522 +MARCH8,Nucleus,-0.231165118 +GTF2A1,Nucleus,-0.24556737 +ZCCHC24,Nucleus,-0.218711967 +REEP3,Nucleus,-0.227238837 +MICU2,Nucleus,-0.182762919 +PCF11,Nucleus,1.047469158 +PKNOX2,Nucleus,0.176162872 +ZNF22,Nucleus,-0.424867206 +RPUSD4,Nucleus,1.111469589 +ARF6,Nucleus,-0.140666486 +TTC8,Nucleus,-0.11746287 +CDX2,Nucleus,-0.139736477 +BEND7,Nucleus,0.909310189 +TAF3,Nucleus,-0.158719571 +PDZD8,Nucleus,0.105497834 +ZNF503,Nucleus,-0.309604377 +FAM175B,Nucleus,-0.045813467 +QSOX2,Nucleus,1.001248405 +NSD1,Nucleus,0.267724147 +SNAPC4,Nucleus,1.562971332 +PMPCA,Nucleus,-0.090529404 +SDCCAG3,Nucleus,1.05599293 +TSC1,Nucleus,0.709269249 +FAM69B,Nucleus,1.56203426 +KIAA1462,Nucleus,-0.236694937 +ZNF219,Nucleus,0.099065891 +METTL3,Nucleus,0.971920971 +HSPA12A,Nucleus,1.129349322 +TC2N,Nucleus,0.196981124 +CPSF2,Nucleus,-0.103047061 +ARL5B,Nucleus,0.555280843 +TAF1D,Nucleus,1.407969566 +HTRA1,Nucleus,-1.110595845 +CEP57,Nucleus,0.480272031 +JAM3,Nucleus,-0.134475781 +HIF1AN,Nucleus,0.689194802 +ZFYVE19,Nucleus,1.152533467 +FBN1,Nucleus,0.01845551 +BAG5,Nucleus,0.589870736 +GABRB3,Nucleus,-0.127482396 +SGPL1,Nucleus,-0.397334472 +FRS2,Nucleus,0.379822264 +ZNF202,Nucleus,1.192903968 +STXBP4,Nucleus,0.543563234 +CUL5,Nucleus,0.46370587 +WBP1L,Nucleus,-1.325954023 +TRIM44,Nucleus,0.60006949 +TPP1,Nucleus,-0.473310008 +C11orf74,Nucleus,-0.370391224 +TUB,Nucleus,2.185133768 +RNF169,Nucleus,1.651044141 +PRTG,Nucleus,0.965503592 +TMEM41B,Nucleus,0.219315279 +TMX3,Nucleus,0.224751589 +WEE1,Nucleus,0.666584735 +ZNF3,Nucleus,0.84496263 +RIMKLB,Nucleus,1.808429866 +TMED3,Nucleus,-0.251378887 +NDEL1,Nucleus,0.929882794 +BLCAP,Nucleus,0.245727577 +CASC4,Nucleus,-0.628755081 +AP1G1,Nucleus,-0.260765221 +KIF7,Nucleus,0.80911529 +PEX11A,Nucleus,-0.037249512 +ZBTB39,Nucleus,0.714515379 +TMEM194A,Nucleus,0.399611323 +SMAD3,Nucleus,0.613036271 +MAP1A,Nucleus,-0.258245254 +MBD6,Nucleus,0.901325363 +PDIA3,Nucleus,-0.833260726 +ACSF2,Nucleus,0.159861424 +COQ4,Nucleus,1.870459099 +SLC27A4,Nucleus,-0.164535656 +CERCAM,Nucleus,0.947859179 +DOLPP1,Nucleus,-0.469268548 +GPRC5B,Nucleus,-0.621430815 +CRK,Nucleus,-0.110712494 +FBXO22,Nucleus,1.171156295 +TBC1D2B,Nucleus,1.059084549 +CDK12,Nucleus,0.211115241 +ENGASE,Nucleus,1.833797905 +TBC1D16,Nucleus,0.608870139 +ENTHD2,Nucleus,1.351049256 +STIM1,Nucleus,-0.329005738 +IRGQ,Nucleus,1.003439687 +PPP2R3B,Nucleus,1.444391434 +ZNF646,Nucleus,0.929692033 +MIDN,Nucleus,0.764993137 +MVD,Nucleus,0.816360244 +ANKRD11,Nucleus,0.980540937 +SPATA33,Nucleus,1.093321585 +ZNF641,Nucleus,0.969709656 +DHRS13,Nucleus,-1.159522808 +TP53I13,Nucleus,-0.452445412 +KMT2D,Nucleus,0.967634535 +C19orf55,Nucleus,1.272020657 +LENG8,Nucleus,2.618614083 +ZNF146,Nucleus,0.198263014 +ZNF444,Nucleus,1.922446183 +FAM57A,Nucleus,-0.665679087 +SLC43A2,Nucleus,0.123374351 +SRR,Nucleus,-1.085102939 +GHDC,Nucleus,-0.792306038 +ITFG3,Nucleus,-0.857738081 +ZNF598,Nucleus,1.182594582 +E4F1,Nucleus,1.819177416 +ABCA3,Nucleus,-0.308186387 +SRRM2,Nucleus,1.18923281 +LTBP3,Nucleus,1.011668009 +SAC3D1,Nucleus,-0.739681444 +SF1,Nucleus,0.970598481 +PAFAH1B2,Nucleus,-0.223892697 +ANKS3,Nucleus,1.345742696 +SETD5,Nucleus,0.946383748 +HOOK3,Nucleus,0.6634523 +RBPJ,Nucleus,-0.027962347 +TTC39C,Nucleus,0.399510903 +KIF5C,Nucleus,-0.861636507 +MGAT2,Nucleus,-0.576591105 +BMI1,Nucleus,-0.129008762 +KCTD6,Nucleus,0.206089865 +TAP1,Nucleus,-0.905016685 +ING5,Nucleus,0.893507215 +ATG4B,Nucleus,0.928668181 +SOGA2,Nucleus,0.6307921 +SNRNP48,Nucleus,0.844218166 +SLC20A2,Nucleus,-0.003078814 +TMUB2,Nucleus,-0.051607638 +STAT3,Nucleus,-0.735167815 +ADAM9,Nucleus,-0.598539052 +PKIG,Nucleus,-0.342717591 +SEMA4C,Nucleus,0.955403443 +CNNM3,Nucleus,0.046057404 +TET2,Nucleus,0.477369888 +TCTN2,Nucleus,-0.479822642 +TSPAN5,Nucleus,-0.478843899 +ZBTB5,Nucleus,0.936094544 +SNTB2,Nucleus,1.068271269 +ZNF507,Nucleus,0.902899403 +STX18,Nucleus,0.589328861 +GFM1,Nucleus,-0.294473979 +ANKRD49,Nucleus,0.830643607 +MAT2A,Nucleus,1.912216751 +ZNF608,Nucleus,-0.134847137 +LETM1,Nucleus,0.491085736 +TMEM129,Nucleus,0.469488265 +FEM1B,Nucleus,0.357915436 +HNRNPH1,Nucleus,1.655738918 +MECP2,Nucleus,1.281733967 +UPF3A,Nucleus,2.026810711 +CHST14,Nucleus,-0.906534015 +PARM1,Nucleus,-0.241478883 +CSNK1G1,Nucleus,0.653684752 +ZBTB43,Nucleus,0.980400914 +GPRIN1,Nucleus,-0.187316684 +MRPL1,Nucleus,-0.303173667 +SLC33A1,Nucleus,-0.008122273 +SDC2,Nucleus,-0.814727437 +MMGT1,Nucleus,-0.600058546 +CLIC4,Nucleus,-0.570394831 +CCDC8,Nucleus,-0.075972457 +INO80E,Nucleus,1.374516093 +DFFB,Nucleus,0.810256728 +ANTXR1,Nucleus,-0.524579627 +CKAP2L,Nucleus,-0.402689297 +C15orf40,Nucleus,0.97169734 +HIC2,Nucleus,0.919893184 +LUZP1,Nucleus,0.581387865 +HEXDC,Nucleus,2.083483838 +LRRC45,Nucleus,1.474229245 +ASPSCR1,Nucleus,1.808041337 +TAPT1,Nucleus,-0.014723532 +CSGALNACT2,Nucleus,0.468814124 +PCDH7,Nucleus,-0.192566347 +ROBO1,Nucleus,-0.308813259 +P2RY1,Nucleus,1.091967246 +TPST1,Nucleus,-0.254724527 +TOR1AIP2,Nucleus,0.165489006 +OTUD3,Nucleus,1.558610311 +GUSB,Nucleus,0.755152299 +BRD3,Nucleus,0.355968698 +MAP3K2,Nucleus,1.198140901 +NLGN2,Nucleus,1.09106324 +ALCAM,Nucleus,-0.223928903 +YWHAG,Nucleus,-0.204576067 +TMEM192,Nucleus,0.063842225 +ZNF778,Nucleus,0.209891062 +NIPA1,Nucleus,0.835192881 +SIK2,Nucleus,0.289760008 +RNF150,Nucleus,0.899915986 +ZNF212,Nucleus,0.761682034 +FAM161A,Nucleus,0.663192662 +CRTAP,Nucleus,-0.487457218 +PRDM10,Nucleus,0.498930373 +FOS,Nucleus,-0.967085325 +TMED10,Nucleus,-0.957806985 +SLC30A1,Nucleus,-0.184640825 +DNAJC18,Nucleus,-0.360003242 +RALGAPB,Nucleus,0.723867861 +LONRF2,Nucleus,1.493806502 +ELOVL6,Nucleus,0.38897755 +ARL6IP1,Nucleus,-0.614217632 +CDH2,Nucleus,-0.549022863 +EMB,Nucleus,0.024036094 +STAT2,Nucleus,1.173687528 +TRABD,Nucleus,0.909321508 +POLH,Nucleus,-0.035039079 +KIF5B,Nucleus,-0.151859435 +AKAP13,Nucleus,0.393100408 +CHCHD7,Nucleus,0.562841034 +GPR27,Nucleus,-0.404748804 +KBTBD2,Nucleus,0.211474288 +KIAA0232,Nucleus,0.343325046 +TMEM43,Nucleus,0.221227 +RNF139,Nucleus,-0.665992947 +PAQR8,Nucleus,-1.240555133 +TANC2,Nucleus,0.484242025 +DNAJC24,Nucleus,1.239381703 +HS6ST2,Nucleus,-0.401810113 +INSR,Nucleus,-0.506293127 +ATP6V0E2,Nucleus,-0.468234488 +ZNF692,Nucleus,1.745562037 +NETO2,Nucleus,-0.327245807 +NPTX1,Nucleus,1.061493386 +FAM98B,Nucleus,0.899107193 +GAA,Nucleus,1.218313487 +CANT1,Nucleus,-0.338616799 +CHST11,Nucleus,-0.379319836 +CLCN5,Nucleus,0.062326789 +ZBTB26,Nucleus,0.798263844 +ZNF562,Nucleus,1.18701501 +ZNF318,Nucleus,0.187440897 +WIPF2,Nucleus,-0.109878049 +LRRC8C,Nucleus,-0.311685023 +LRRC8D,Nucleus,-0.292114124 +ETFDH,Nucleus,0.075548446 +LPAR3,Nucleus,-0.026392545 +CLSTN1,Nucleus,-0.063476871 +BPTF,Nucleus,0.295835567 +ATF7IP,Nucleus,0.076909077 +TCEA2,Nucleus,1.155834086 +ANO5,Nucleus,0.024113159 +MLLT3,Nucleus,-0.392117935 +PRNP,Nucleus,-0.460973494 +ZNF217,Nucleus,0.197497598 +JMJD1C,Nucleus,0.377813252 +THOP1,Nucleus,0.881593112 +ORMDL3,Nucleus,-0.009515227 +KLF11,Nucleus,0.242399627 +MTBP,Nucleus,0.870392483 +ZNF131,Nucleus,0.402851216 +BSG,Nucleus,-0.736698521 +CERS6,Nucleus,-0.219454539 +TP53RK,Nucleus,0.122328387 +FAM195A,Nucleus,1.414273882 +GTPBP2,Nucleus,0.841392923 +ZNF24,Nucleus,0.9805414 +MANEA,Nucleus,-0.438628073 +RAD9A,Nucleus,1.082968712 +FAM21C,Nucleus,0.317735098 +CORO1B,Nucleus,-0.516098384 +LRRC20,Nucleus,-0.796536798 +NAA16,Nucleus,1.798874204 +DCP2,Nucleus,0.047774764 +CES3,Nucleus,1.493110799 +CES2,Nucleus,0.416097657 +PDP2,Nucleus,0.548950108 +SP3,Nucleus,-0.064555992 +METAP1D,Nucleus,1.366206837 +ZNF621,Nucleus,2.080463139 +NADSYN1,Nucleus,1.054381218 +DHCR7,Nucleus,-0.348211918 +NBEA,Nucleus,-0.27235369 +ANKRD13D,Nucleus,1.536962298 +LCLAT1,Nucleus,-0.322326532 +TADA2B,Nucleus,0.07256525 +HECTD4,Nucleus,0.756449314 +ESRRA,Nucleus,0.644818505 +AHSA2,Nucleus,2.306755017 +VANGL1,Nucleus,-0.457214962 +IQCB1,Nucleus,0.983407288 +GOLGB1,Nucleus,0.579402221 +TNKS,Nucleus,1.034643049 +ZBTB21,Nucleus,0.580441635 +STOX2,Nucleus,0.805667404 +DAG1,Nucleus,-0.701484096 +RNF26,Nucleus,-0.453129507 +PEAK1,Nucleus,0.672645293 +TNFRSF10D,Nucleus,-1.112870353 +MOB1B,Nucleus,0.832473835 +SNX33,Nucleus,0.378474772 +CHD2,Nucleus,1.293834818 +CCDC41,Nucleus,1.067391911 +PC,Nucleus,-0.332484207 +SUSD5,Nucleus,-0.43401367 +HEG1,Nucleus,-0.226997656 +TOMM20,Nucleus,-0.24428152 +CNP,Nucleus,-0.763543128 +DPY19L1,Nucleus,-0.582372859 +ZNF791,Nucleus,1.280568084 +PHC3,Nucleus,1.72042915 +GOLIM4,Nucleus,-0.253873201 +XXYLT1,Nucleus,-0.58790978 +UBXN2A,Nucleus,0.150762608 +CCS,Nucleus,0.509674434 +FAM3C2,Nucleus,-0.131964809 +CTSF,Nucleus,-0.806918366 +MSRB3,Nucleus,-0.121712313 +LEMD3,Nucleus,-0.238863185 +RGMB,Nucleus,0.347962822 +ZDHHC24,Nucleus,-1.10106614 +MGA,Nucleus,0.382661192 +PIGG,Nucleus,1.32783478 +ADCY6,Nucleus,0.297851135 +ZBTB4,Nucleus,0.762556708 +ZHX3,Nucleus,1.177293937 +RALGAPA1,Nucleus,0.670176437 +ATP2A2,Nucleus,0.383463182 +CNTNAP2,Nucleus,0.002163451 +DENND4A,Nucleus,0.056442538 +MSL2,Nucleus,0.366027801 +UGT8,Nucleus,-0.922557091 +ZNF266,Nucleus,1.356986303 +SLC29A2,Nucleus,1.353527956 +BRSK2,Nucleus,1.32121727 +B3GNT1,Nucleus,-0.718191313 +TMEM167A,Nucleus,0.240421028 +CEP135,Nucleus,0.70280114 +FZD4,Nucleus,0.369447899 +PDE12,Nucleus,-0.103956672 +GLMN,Nucleus,0.610508102 +SEZ6L2,Nucleus,-0.735426511 +KLC2,Nucleus,0.616808053 +GK5,Nucleus,1.373313896 +VCPIP1,Nucleus,0.401265346 +PCCA,Nucleus,-0.955152944 +GOLGA8A,Nucleus,2.056274951 +TP53I11,Nucleus,0.376986043 +PHYKPL,Nucleus,1.959716064 +ARL10,Nucleus,1.018822893 +CCDC14,Nucleus,1.635240334 +ALG10B,Nucleus,0.960256619 +RAB6A,Nucleus,-0.260071386 +ERCC4,Nucleus,0.390283765 +RMI2,Nucleus,-0.488522298 +TOM1L2,Nucleus,0.076613846 +MLXIP,Nucleus,1.005184121 +SLC35E3,Nucleus,0.926817827 +ARL4D,Nucleus,-1.367982129 +LYSMD3,Nucleus,0.18335448 +B3GALT6,Nucleus,-0.550489367 +MBLAC2,Nucleus,0.245261858 +TPRN,Nucleus,1.365457738 +YES1,Nucleus,-0.027314344 +TMEM39A,Nucleus,0.273872297 +CCDC57,Nucleus,2.116060313 +FOXG1,Nucleus,0.406436286 +ATAD5,Nucleus,-0.013215701 +ANAPC2,Nucleus,1.897335179 +SPRYD4,Nucleus,1.027352457 +CLK2,Nucleus,1.432852853 +LPCAT4,Nucleus,1.472438583 +B3GNT5,Nucleus,0.245249627 +LMNB2,Nucleus,0.085482183 +RMDN1,Nucleus,0.484199997 +ACSF3,Nucleus,1.296001598 +ANKLE2,Nucleus,0.962681023 +NFATC2IP,Nucleus,1.561286079 +SMCR8,Nucleus,0.758462505 +MTX3,Nucleus,1.561992933 +FBXO46,Nucleus,0.732585325 +WDR73,Nucleus,0.851584011 +ANO6,Nucleus,-0.297484284 +ZBTB34,Nucleus,0.577275574 +FAM210A,Nucleus,-0.300020852 +ULK1,Nucleus,1.53399258 +RPS6KA3,Nucleus,0.120390972 +PUS1,Nucleus,1.284442416 +CHD9,Nucleus,0.512455015 +PDDC1,Nucleus,2.249083094 +TOP3A,Nucleus,0.589318937 +NR2C2,Nucleus,1.329664164 +ZBTB33,Nucleus,0.380930517 +SLC25A22,Nucleus,0.861539756 +PIDD,Nucleus,1.349505059 +GBA,Nucleus,-0.994301372 +IL17RA,Nucleus,-0.120213981 +THAP5,Nucleus,0.112931423 +PVRL3,Nucleus,-0.731012365 +KIAA0195,Nucleus,0.203436776 +SOX12,Nucleus,0.539489474 +CHID1,Nucleus,-0.48663147 +ZNF518A,Nucleus,0.547677953 +ZBTB41,Nucleus,0.147111612 +DMAP1,Nucleus,1.613366618 +C2orf69,Nucleus,0.551341367 +SH2B1,Nucleus,1.537207362 +KDELC2,Nucleus,-0.468548198 +GALNT11,Nucleus,-0.319303682 +WDR6,Nucleus,1.240775776 +GEN1,Nucleus,2.223568628 +GLDC,Nucleus,-0.748980976 +CTNNBIP1,Nucleus,-0.364608539 +ERN1,Nucleus,0.446965919 +KCTD12,Nucleus,-0.194807264 +DHFRL1,Nucleus,0.09242231 +FAM132B,Nucleus,1.494164145 +FAM219B,Nucleus,1.544147098 +DPY19L3,Nucleus,0.844804065 +PFAS,Nucleus,0.286285083 +C17orf62,Nucleus,1.100346834 +ZBTB7A,Nucleus,1.655037852 +SPTY2D1,Nucleus,-0.180364441 +FUCA1,Nucleus,-1.381133275 +CALR,Nucleus,-1.007704947 +LDLRAD3,Nucleus,-0.288037192 +CLK3,Nucleus,1.249345094 +PACS2,Nucleus,1.560341001 +ELMOD2,Nucleus,-0.05443424 +FJX1,Nucleus,-0.255737991 +ZBTB18,Nucleus,0.750923384 +GCC1,Nucleus,-0.28358873 +PLD6,Nucleus,0.693393328 +CDC42EP4,Nucleus,-0.670505698 +PCBP1-AS1,Nucleus,1.971348621 +MYADM,Nucleus,-0.523043747 +SERTAD2,Nucleus,0.531725304 +BBS10,Nucleus,0.123598473 +SOCS4,Nucleus,1.378333475 +ZADH2,Nucleus,0.460221898 +EXOC3,Nucleus,0.982528283 +C7orf41,Nucleus,0.401101935 +ZNF609,Nucleus,0.199413496 +CCDC66,Nucleus,1.309315383 +MCFD2,Nucleus,-0.30565285 +GAS1,Nucleus,-0.963611639 +FAM73A,Nucleus,0.371712766 +NRIP1,Nucleus,0.490726474 +PCGF5,Nucleus,0.072791951 +YOD1,Nucleus,0.786578605 +SLC36A4,Nucleus,0.579320895 +ZDHHC20,Nucleus,-0.201935716 +PSMG4,Nucleus,2.019269319 +PDIA3P,Nucleus,-0.740305206 +CUEDC1,Nucleus,1.021360307 +KCTD2,Nucleus,-0.233458265 +D2HGDH,Nucleus,1.838026615 +FKRP,Nucleus,0.602918576 +SLC26A11,Nucleus,0.788831302 +F2R,Nucleus,-0.291423053 +DHTKD1,Nucleus,-0.578268288 +ZNF746,Nucleus,0.605621074 +TMEM136,Nucleus,0.478830902 +ZNF322,Nucleus,-0.142130661 +OGFOD3,Nucleus,0.417082743 +ZNF678,Nucleus,0.549290091 +ZBTB2,Nucleus,0.029997738 +SGSH,Nucleus,1.019480348 +SETD2,Nucleus,0.069296176 +YIPF6,Nucleus,0.194563212 +IBA57,Nucleus,1.659057164 +C5orf24,Nucleus,0.893063725 +ADO,Nucleus,-0.158459799 +CREB3L2,Nucleus,0.046089422 +UNC5C,Nucleus,0.375938176 +RGMA,Nucleus,-0.347843091 +EXT1,Nucleus,-0.666288701 +ATP6AP2,Nucleus,-0.906171964 +BACE2,Nucleus,-0.779847142 +FIGN,Nucleus,0.736133274 +B4GALNT4,Nucleus,1.553187614 +AP1S2,Nucleus,0.558542495 +FBXL6,Nucleus,1.73358931 +YBEY,Nucleus,-0.094802264 +CLN8,Nucleus,1.25114667 +PLCXD1,Nucleus,1.545473407 +EXOC7,Nucleus,0.631987844 +CEP97,Nucleus,0.934436266 +MXRA7,Nucleus,-0.635955649 +SATB1,Nucleus,0.199443709 +PLCB1,Nucleus,0.080971308 +TTC3,Nucleus,-0.022066525 +COL18A1,Nucleus,0.039113347 +ZNF721,Nucleus,1.229024323 +SRPR,Nucleus,-0.247658583 +EWSR1,Nucleus,1.803846015 +GJC1,Nucleus,0.52540521 +MTA1,Nucleus,1.768946278 +CADM1,Nucleus,-0.697536618 +LYSMD4,Nucleus,1.433418615 +NKX2-5,Nucleus,-0.107772092 +GPC6,Nucleus,-0.789514685 +PTTG1IP,Nucleus,-0.574775909 +ZNF623,Nucleus,0.714336044 +BCOR,Nucleus,-0.054936436 +ASB7,Nucleus,-0.012624389 +EP400,Nucleus,0.482454732 +COA5,Nucleus,1.100923328 +PRR14L,Nucleus,0.391443792 +ZNRF3,Nucleus,0.447249491 +TRMT12,Nucleus,-0.215756722 +FAM101B,Nucleus,-0.178311854 +TRIM52,Nucleus,1.882582206 +CMTM4,Nucleus,0.816286945 +TMEM50A,Nucleus,-0.727111307 +CBX6,Nucleus,1.678043597 +KREMEN1,Nucleus,-0.173414908 +TRAIP,Nucleus,0.755371123 +EMILIN3,Nucleus,-0.465064267 +RBM12B,Nucleus,1.00296103 +BTBD9,Nucleus,-0.260534221 +KIRREL,Nucleus,0.573865779 +IQGAP3,Nucleus,0.657171639 +PRKX,Nucleus,0.543673375 +SMTN,Nucleus,0.451964558 +TBX1,Nucleus,1.324688672 +TSPYL2,Nucleus,1.157385479 +C22orf46,Nucleus,0.495060675 +PCDH9,Nucleus,0.645215569 +OAF,Nucleus,0.521095986 +ZDHHC23,Nucleus,1.276770912 +EFNA5,Nucleus,-0.300903777 +SS18L1,Nucleus,1.236046282 +KNTC1,Nucleus,0.746083789 +WDR27,Nucleus,2.581258289 +FOXO4,Nucleus,-0.391815816 +POU3F2,Nucleus,0.169704608 +PROS1,Nucleus,-0.850434467 +ZFP1,Nucleus,-0.7787374 +XPOT,Nucleus,0.251198941 +SNN,Nucleus,-0.322481588 +AMER1,Nucleus,0.900900373 +ZBTB40,Nucleus,1.328039383 +ATL3,Nucleus,-0.423751769 +UBE2G2,Nucleus,1.163501593 +TMED9,Nucleus,-0.724368898 +RBM33,Nucleus,1.954445356 +JAG2,Nucleus,1.267797953 +ZFP90,Nucleus,0.467380423 +SIVA1,Nucleus,0.788518624 +BRI3BP,Nucleus,-0.176920027 +ROBO2,Nucleus,-0.49191637 +BRF1,Nucleus,0.349823296 +MANEAL,Nucleus,-0.548650636 +PURA,Nucleus,0.548243675 +DDX51,Nucleus,1.393722672 +NOMO2,Nucleus,-0.891859941 +NRBP2,Nucleus,1.868012907 +ZNF445,Nucleus,1.592467426 +PRPF39,Nucleus,1.082885993 +CDK10,Nucleus,2.14292214 +ATP6V0A2,Nucleus,0.703289402 +C14orf80,Nucleus,2.224302481 +HGS,Nucleus,0.910063248 +MRPL30,Nucleus,-0.183988744 +METTL7A,Nucleus,-1.620740715 +NR2F2,Nucleus,0.110391745 +SP1,Nucleus,0.545246526 +PCGF3,Nucleus,0.628237519 +P4HB,Nucleus,-0.458249008 +PBX1,Nucleus,0.004305809 +BRWD1,Nucleus,1.164295552 +EP400NL,Nucleus,1.853088836 +MYBL1,Nucleus,1.364003836 +DMWD,Nucleus,1.136491742 +SLC52A2,Nucleus,-0.646941368 +NAT8L,Nucleus,1.416094428 +GNB1L,Nucleus,0.633469262 +LAMP1,Nucleus,-0.371916371 +KLHDC8B,Nucleus,-0.064570536 +SETD4,Nucleus,1.651961676 +RNPC3,Nucleus,1.704279504 +BICD2,Nucleus,0.36543568 +LRCH3,Nucleus,0.61245636 +ZNF529,Nucleus,1.840454872 +AIDA,Nucleus,-0.135295832 +ZBTB6,Nucleus,0.485420292 +BCL9L,Nucleus,0.525509063 +KIF18B,Nucleus,0.759272937 +MKL2,Nucleus,0.843654128 +CA5BP1,Nucleus,0.998535907 +BACE1,Nucleus,-0.134333639 +KPNA4,Nucleus,-0.256461165 +ZNF197,Nucleus,0.381522223 +BTN3A2,Nucleus,0.154051859 +INSIG1,Nucleus,0.071372892 +TMEM222,Nucleus,0.653211711 +SMYD4,Nucleus,1.493454364 +GPATCH8,Nucleus,0.443612367 +LYRM7,Nucleus,0.456783868 +ZNF397,Nucleus,1.729619776 +ZSCAN30,Nucleus,1.290179327 +TPCN1,Nucleus,1.015849234 +POFUT2,Nucleus,1.1889686 +ZDHHC17,Nucleus,1.112410968 +PPARA,Nucleus,0.446372188 +TEAD1,Nucleus,0.49350697 +ENTPD5,Nucleus,0.678760744 +KIAA1598,Nucleus,0.787983426 +TSPYL4,Nucleus,0.687936957 +FNBP1,Nucleus,-0.045832565 +BCAM,Nucleus,0.601719696 +COL4A1,Nucleus,-0.521840004 +SIRT7,Nucleus,2.10235145 +TET3,Nucleus,1.063960183 +ZNF286A,Nucleus,0.818850101 +SAMD11,Nucleus,0.566226077 +B3GALTL,Nucleus,-0.617776465 +TCEA1,Nucleus,-0.365157293 +FANCA,Nucleus,0.807421673 +SEMA4D,Nucleus,1.343461764 +LIN28B,Nucleus,-0.094400847 +FANCM,Nucleus,0.333808787 +FAM122A,Nucleus,0.333228331 +ARHGAP11B,Nucleus,2.189499163 +CYHR1,Nucleus,2.555291748 +KLHL17,Nucleus,1.67808969 +ANKRD19P,Nucleus,1.714100141 +ARL4C,Nucleus,-0.415397758 +C11orf95,Nucleus,1.10519332 +MAPK12,Nucleus,1.261204068 +COL4A5,Nucleus,-0.115606744 +NCR3LG1,Nucleus,1.34784761 +HES4,Nucleus,1.10788637 +CHM,Nucleus,0.014227402 +H2AFX,Nucleus,-0.527738176 +SRSF10,Nucleus,1.048208901 +NDOR1,Nucleus,1.6822558 +FAM72B,Nucleus,0.113014576 +LDOC1L,Nucleus,-0.443885802 +PTAR1,Nucleus,2.093677651 +ZDHHC9,Nucleus,-0.546909146 +ZBED6CL,Nucleus,1.022549227 +TMEM120B,Nucleus,1.788137232 +MTF1,Nucleus,0.800206744 +TMEM201,Nucleus,0.363247709 +NHLRC3,Nucleus,1.982264881 +BEND4,Nucleus,0.521799243 +MSL1,Nucleus,0.669054793 +DHFRP1,Nucleus,-0.465540121 +ZNF292,Nucleus,1.010670409 +ADAT2,Nucleus,1.927096337 +H1F0,Nucleus,-0.799982163 +LITAF,Nucleus,-0.741530104 +ARID2,Nucleus,0.055875419 +S100A13,Nucleus,0.759923811 +ZNF33A,Nucleus,1.303001914 +LIN54,Nucleus,-0.018335092 +KAZN,Nucleus,1.171096012 +SLC35E2B,Nucleus,0.081097897 +KIAA0895L,Nucleus,1.267054279 +PLEKHG4,Nucleus,0.838311453 +ACADSB,Nucleus,0.626466184 +TMEM63A,Nucleus,1.192410292 +MPHOSPH8,Nucleus,0.417743463 +FAM217B,Nucleus,0.070378279 +LCOR,Nucleus,1.003266875 +POM121,Nucleus,0.258330035 +ZBTB44,Nucleus,1.017071295 +SLC35F1,Nucleus,-0.490136936 +PTPN1,Nucleus,-0.043155493 +EVL,Nucleus,1.661241298 +EPHB4,Nucleus,-0.092836798 +PPP1R26,Nucleus,0.17437377 +TSC22D2,Nucleus,0.698551944 +PIK3R4,Nucleus,-0.20457963 +GDAP2,Nucleus,-0.394289359 +AFAP1,Nucleus,0.597284248 +MAN2A2,Nucleus,1.012569609 +CACNA1H,Nucleus,0.567148335 +SULF2,Nucleus,-0.776362915 +PLXNB2,Nucleus,-0.203844236 +XRCC2,Nucleus,2.684314697 +MYO6,Nucleus,0.065483414 +TCF4,Nucleus,0.56418575 +RABL6,Nucleus,2.03349474 +ZKSCAN5,Nucleus,0.104986726 +ZFP62,Nucleus,0.959912815 +ERI2,Nucleus,0.116830003 +ZNF33B,Nucleus,1.121469472 +ZNF512B,Nucleus,1.58912255 +ZNF431,Nucleus,2.03714416 +NF1,Nucleus,0.127085865 +VKORC1L1,Nucleus,0.161060414 +COL27A1,Nucleus,1.584435553 +GM2A,Nucleus,-0.880920277 +SNHG17,Nucleus,2.189396841 +CD47,Nucleus,-0.116240135 +CTBP1-AS2,Nucleus,0.448959771 +C6orf106,Nucleus,-0.072859577 +NHLRC2,Nucleus,1.282281941 +KPNA5,Nucleus,0.485285366 +ZNF252P,Nucleus,0.166392662 +PDLIM7,Nucleus,0.955362792 +SLC39A10,Nucleus,-0.587597251 +ZNF100,Nucleus,0.666144867 +ZNF398,Nucleus,1.001029407 +GMFB,Nucleus,-0.235816771 +ZMYM1,Nucleus,0.531668946 +MAFG,Nucleus,2.060944692 +ARRDC1,Nucleus,1.298255213 +KIAA1671,Nucleus,0.258979917 +IGF2R,Nucleus,-0.445044246 +SLC25A29,Nucleus,1.110830179 +PGAP1,Nucleus,0.977620924 +SRC,Nucleus,0.333759646 +PCNXL3,Nucleus,0.64474686 +LRRC8B,Nucleus,0.379898694 +ABCB8,Nucleus,0.913030339 +SND1,Nucleus,-0.608537385 +ENTPD4,Nucleus,0.865344469 +KANK2,Nucleus,-0.408098065 +FITM2,Nucleus,-0.134556918 +DDI2,Nucleus,0.520560649 +TRIM33,Nucleus,0.564595774 +LRP10,Nucleus,-0.520282063 +ZNF655,Nucleus,1.20769559 +SLC22A5,Nucleus,1.055818309 +ADARB1,Nucleus,1.710409304 +OGDHL,Nucleus,1.407011188 +STMN3,Nucleus,-0.133453204 +SIPA1L1,Nucleus,0.042361596 +PIGN,Nucleus,-0.805032768 +COL4A6,Nucleus,0.17034462 +GPX1P1,Nucleus,-0.619668416 +ENTPD6,Nucleus,0.940144671 +ENPP1,Nucleus,-0.011978096 +PHF2,Nucleus,0.282131123 +RPS26,Nucleus,0.956200212 +PSAP,Nucleus,-1.015588274 +HOXC6,Nucleus,0.948135797 +EME2,Nucleus,3.032342845 +ZNF780A,Nucleus,0.768795095 +SLC9A8,Nucleus,1.095886222 +OCLN,Nucleus,-0.608232688 +GPAA1,Nucleus,-0.401123931 +SPG7,Nucleus,1.447787041 +ERO1L,Nucleus,-0.350732269 +ZNF121,Nucleus,2.220283635 +MPZL1,Nucleus,-0.338105398 +VPS13A,Nucleus,1.182137534 +AKAP17A,Nucleus,1.194732351 +ELOVL2,Nucleus,0.044307375 +SNHG12,Nucleus,0.68082267 +NOL8,Nucleus,0.865859925 +MRPL42,Nucleus,0.173042601 +ENTPD7,Nucleus,-0.914142299 +ZNF84,Nucleus,1.161631154 +SIRPA,Nucleus,0.110358753 +CD2AP,Nucleus,0.140246895 +NUP62CL,Nucleus,0.212294935 +SFI1,Nucleus,1.888925508 +ZNF248,Nucleus,1.005702427 +ZNF770,Nucleus,0.351909793 +HMGN5,Nucleus,0.390430634 +MIER1,Nucleus,0.298078867 +MAN1A2,Nucleus,0.106670513 +RPS6KL1,Nucleus,1.904214542 +DDX42,Nucleus,1.041080223 +STYX,Nucleus,0.222141262 +UCKL1,Nucleus,1.139823668 +ZKSCAN8,Nucleus,1.687247003 +HOXC4,Nucleus,0.964098083 +ASPH,Nucleus,-0.266193781 +WWP2,Nucleus,-0.447553355 +GFPT1,Nucleus,0.143887919 +ITSN2,Nucleus,-0.099996585 +MGEA5,Nucleus,0.937587833 +FAM115A,Nucleus,-0.235992397 +ZNF587,Nucleus,2.460019184 +MAFK,Nucleus,2.00706937 +DDX39B,Nucleus,2.119045878 +NUDT16,Nucleus,0.647708881 +TLK1,Nucleus,-0.225573932 +MDM4,Nucleus,2.158566028 +KLHL9,Nucleus,0.085831245 +C6orf89,Nucleus,0.078365817 +SLC9A6,Nucleus,-0.39133393 +FAN1,Nucleus,1.050537853 +CEP290,Nucleus,0.712884515 +C1orf85,Nucleus,-0.55115934 +SMOC1,Nucleus,-0.486449579 +ZNF652,Nucleus,0.992652784 +SMURF1,Nucleus,1.039291414 +SLC5A3,Nucleus,0.387180303 +COLGALT2,Nucleus,0.679725997 +TMEM184B,Nucleus,0.636315453 +LRIG2,Nucleus,0.914497654 +FOXJ3,Nucleus,1.037531422 +ARHGAP11A,Nucleus,0.211247737 +DENND4B,Nucleus,0.950424441 +R3HDM4,Nucleus,0.089512576 +RUNDC1,Nucleus,0.73207004 +TYW1,Nucleus,-0.565988855 +SFMBT2,Nucleus,1.231793844 +ITPRIPL1,Nucleus,-0.360785848 +SMC5,Nucleus,0.595973362 +SREBF2,Nucleus,-0.143285508 +DZIP3,Nucleus,0.031648862 +KIAA0753,Nucleus,0.705656847 +ATG9A,Nucleus,-0.292318521 +TBKBP1,Nucleus,1.57047263 +NAGA,Nucleus,-0.764079096 +SGMS1,Nucleus,-0.192366883 +COX20,Nucleus,1.056126545 +CHML,Nucleus,0.5171659 +TATDN3,Nucleus,-0.128029873 +RBM20,Nucleus,1.223155949 +PCMTD2,Nucleus,0.849349969 +EFCAB7,Nucleus,0.232040491 +ZYG11A,Nucleus,1.323352953 +SYS1,Nucleus,-0.531534897 +TRAF3IP1,Nucleus,0.235957756 +PHACTR4,Nucleus,0.212485714 +ZDHHC18,Nucleus,0.184813078 +TMEM57,Nucleus,-0.230116646 +ZDBF2,Nucleus,1.131674705 +BMPR2,Nucleus,-0.051227292 +OXLD1,Nucleus,0.705844379 +MRPL38,Nucleus,1.550173946 +SDHD,Nucleus,-0.378702888 +NEU1,Nucleus,-1.152641822 +HSPA1B,Nucleus,-0.233302368 +HLA-C,Nucleus,-1.24794407 +DDR1,Nucleus,-1.134736848 +HLA-E,Nucleus,-0.512323127 +ZNF616,Nucleus,-0.286306348 +CRHR1-IT1,Nucleus,1.160314242 +GABBR1,Nucleus,2.164956351 +RANBP17,Nucleus,0.916239526 +ZNF204P,Nucleus,0.697475285 +TCTN1,Nucleus,0.665106152 +ZBTB48,Nucleus,1.650948454 +C11orf83,Nucleus,-0.435794463 +ZNF783,Nucleus,1.063285307 +SLC35B4,Nucleus,0.280542715 +TRIQK,Nucleus,-0.870164974 +PSENEN,Nucleus,-0.838883555 +LGR4,Nucleus,0.019892839 +PDE7A,Nucleus,0.490633412 +TMEM170B,Nucleus,0.268353755 +TECPR1,Nucleus,0.39675922 +ITPRIPL2,Nucleus,1.042464642 +CRYZL1,Nucleus,0.280100159 +C5orf51,Nucleus,0.223051201 +ZNF316,Nucleus,0.914436764 +NYNRIN,Nucleus,-0.158696399 +AP000525.9,Nucleus,1.52898313 +PTPLB,Nucleus,-0.187320283 +WDR52,Nucleus,1.81252833 +SETD5-AS1,Nucleus,2.179637919 +SACM1L,Nucleus,0.301214615 +C17orf51,Nucleus,1.896874785 +ZNF580,Nucleus,1.151399583 +DENND1B,Nucleus,0.695982919 +SFT2D2,Nucleus,0.253230146 +FGFR1OP,Nucleus,1.638249976 +KLHL23,Nucleus,0.179289709 +TRIM59,Nucleus,0.268608485 +NRAS,Nucleus,-0.401416029 +QTRT1,Nucleus,1.389315071 +CHUK,Nucleus,0.544067606 +COG8,Nucleus,1.128743899 +RBMXL1,Nucleus,-0.174157277 +LEPROT,Nucleus,0.61269315 +ATF6B,Nucleus,0.072332784 +SLC35F6,Nucleus,-0.762921158 +ZNF134,Nucleus,0.700897235 +EMP2,Nucleus,-0.682221728 +DNASE1,Nucleus,0.473607246 +CSNK1E,Nucleus,0.789793868 +GALT,Nucleus,1.244898706 +ITGA1,Nucleus,-0.127747211 +AP1G2,Nucleus,1.307316284 +CARKD,Nucleus,1.507336587 +TTLL3,Nucleus,2.690828773 +CPNE1,Nucleus,0.034490187 +RCN1P2,Nucleus,-0.896150577 +ZBED1,Nucleus,-0.144148501 +DDX12P,Nucleus,2.041073448 +C22orf29,Nucleus,1.990873091 +NEURL4,Nucleus,0.891531444 +TTC3P1,Nucleus,-0.294865233 +PEX26,Nucleus,0.886814405 +GOLGA8B,Nucleus,1.816355604 +MIR17HG,Nucleus,2.726577989 +TMEM242,Nucleus,0.102468575 +TMEM167B,Nucleus,0.269853146 +CYB5RL,Nucleus,1.237607731 +CROCCP2,Nucleus,3.27696104 +FNIP1,Nucleus,0.703355055 +RP11-204C16.4,Nucleus,-0.539386203 +TENM3,Nucleus,-0.496984194 +AC007390.5,Nucleus,0.059896428 +NBPF1,Nucleus,0.875139441 +CCNL2,Nucleus,2.188910788 +PPT2,Nucleus,0.013115839 +CKMT1A,Nucleus,0.465115002 +NSUN5P1,Nucleus,2.453209025 +RP11-54O7.3,Nucleus,2.897770792 +AFG3L1P,Nucleus,2.33028944 +EPB41L4A-AS1,Nucleus,0.88947965 +ATXN1L,Nucleus,1.729992185 +SMIM13,Nucleus,0.048843021 +CTD-2228K2.7,Nucleus,3.202888889 +PLEKHM1,Nucleus,0.366713388 +FAM195B,Nucleus,-0.349324379 +IPO7P2,Nucleus,-0.51992799 +SLC26A6,Nucleus,1.350263405 +FGD5-AS1,Nucleus,0.669167895 +TLK2P1,Nucleus,0.074547832 +BAIAP2-AS1,Nucleus,-0.036976734 +RP11-31F15.1,Nucleus,2.409155728 +TMEM185B,Nucleus,-0.151481099 +C14orf132,Nucleus,0.970771863 +PARG,Nucleus,-0.11156937 +TP73-AS1,Nucleus,1.026282893 +SCAMP4,Nucleus,0.352670535 +SEC63P1,Nucleus,-0.357445687 +HCG11,Nucleus,0.248414602 +DHFR,Nucleus,-0.244770297 +RP11-206L10.11,Nucleus,1.089075497 +XIST,Nucleus,3.128981268 +RP5-1180C10.2,Nucleus,0.88056738 +HCG18,Nucleus,1.015203107 +CTD-2619J13.14,Nucleus,1.186161791 +SNHG15,Nucleus,1.693404564 +SNHG7,Nucleus,0.959647807 +HOTAIRM1,Nucleus,1.706069444 +RP4-775C13.1,Nucleus,-0.4297231 +ZNF37BP,Nucleus,1.711259582 +ZNF736,Nucleus,1.557571517 +MAGI2-AS3,Nucleus,0.888336057 +JRK,Nucleus,2.647388513 +GAS5,Nucleus,1.273542611 +LINC00338,Nucleus,1.754900326 +PPP1R3E,Nucleus,2.456618719 +RP5-827C21.1,Nucleus,-0.715928288 +NUS1P1,Nucleus,-0.345477721 +ZBTB22,Nucleus,0.143861626 +AD000090.2,Nucleus,2.17895316 +ZBED5,Nucleus,1.141894307 +RNF103,Nucleus,0.92951049 +TMEM189,Nucleus,0.049814061 +RPL36A,Nucleus,2.582466229 +CD302,Nucleus,-0.674912188 +SNHG3,Nucleus,1.2235952 +C15orf38,Nucleus,0.130181231 +AP5Z1,Nucleus,1.583806673 +MICAL3,Nucleus,0.295660113 +KCTD7,Nucleus,1.024352449 +SCARF2,Nucleus,1.223255157 +APOBEC3C,Nucleus,-0.623289673 +N4BP2L2,Nucleus,0.798210114 +NEAT1,Nucleus,2.742054077 +CRNDE,Nucleus,1.070797015 +OIP5-AS1,Nucleus,0.4918 +MARS2,Nucleus,0.16447254 +HAUS5,Nucleus,0.818737729 +PDCD6,Nucleus,1.063163425 +THAP9-AS1,Nucleus,2.04178026 +SHANK3,Nucleus,1.672407002 +RTN3P1,Nucleus,-0.97165033 +MALAT1,Nucleus,2.270640544 +TUG1,Nucleus,1.052586921 +GS1-251I9.4,Nucleus,0.038738184 +UTP14C,Nucleus,-0.078775894 +ZNF260,Nucleus,0.740217698 +PABPC4L,Nucleus,0.708844803 +FPGT,Nucleus,0.090335169 +MEX3A,Nucleus,1.165024449 +POLR2M,Nucleus,-0.377396071 +SNHG1,Nucleus,1.22191254 +POLG2,Nucleus,2.009705224 +KIAA1147,Nucleus,0.961927538 +RP11-349A22.5,Nucleus,2.079908701 +LINC00641,Nucleus,1.609092458 +RP4-773N10.4,Nucleus,2.15349162 +CEP95,Nucleus,1.593950628 +LINC00657,Nucleus,0.532861334 +RP1-239B22.5,Nucleus,1.432060729 +RP6-24A23.6,Nucleus,-0.305658328 +ERVK13-1,Nucleus,2.60731306 +GS1-358P8.4,Nucleus,0.493226272 +VPS9D1-AS1,Nucleus,1.148508817 +RP6-24A23.7,Nucleus,2.035204644 +GAN,Nucleus,1.140276891 +SPON1,Nucleus,-0.603828378 +RP11-159D12.2,Nucleus,2.644292439 +OTUD7B,Nucleus,0.218141758 +RNF115,Nucleus,1.002602491 +BAHCC1,Nucleus,1.330461339 +NBPF15,Nucleus,1.957548923 +RP11-242D8.1,Nucleus,2.42348371 +RP11-18I14.10,Nucleus,1.603835761 +NBPF9,Nucleus,0.999182828 +EGLN2,Nucleus,1.691792683 +NUDT3,Nucleus,1.062108758 +KMT2B,Nucleus,1.23736839 +POM121C,Nucleus,0.261729908 +RP11-504P24.8,Nucleus,2.067277882 +DCP1A,Nucleus,0.671402769 +EPOP,Nucleus,-0.555983636 +NOL12,Nucleus,2.188891713 +SOCS7,Nucleus,0.866069322 +PI4KAP1,Nucleus,2.321454934 +ZNF280B,Nucleus,0.51913608 +MLLT6,Nucleus,1.092475622 +SYNRG,Nucleus,-0.668929183 +TADA2A,Nucleus,0.114912889 +PIP4K2B,Nucleus,-0.343501121 +AL133325.3,Nucleus,3.353893448 +DDX52,Nucleus,0.33340888 +MYO19,Nucleus,0.881258683 +DHRS11,Nucleus,1.340386765 +ACACA,Nucleus,-0.172745557 +AC005332.6,Nucleus,0.240529047 +RP11-574K11,Nucleus,0.983359099 +AL035425.4,Nucleus,3.916195435 +EBLN3P,Nucleus,0.484352823 +GCLC,Nucleolus,0.55266492 +NFYA,Nucleolus,0.760535411 +NIPAL3,Nucleolus,0.348581394 +ENPP4,Nucleolus,-0.870506896 +SEMA3F,Nucleolus,1.144999435 +CD99,Nucleolus,-1.070904049 +LASP1,Nucleolus,0.500574644 +M6PR,Nucleolus,-1.137941405 +CFLAR,Nucleolus,0.877963204 +NDUFAF7,Nucleolus,1.229705474 +RBM5,Nucleolus,1.172042535 +SLC7A2,Nucleolus,0.748067649 +SARM1,Nucleolus,0.574644643 +CAMKK1,Nucleolus,0.158223431 +RECQL,Nucleolus,0.836649765 +ARHGAP33,Nucleolus,-0.290297552 +CDC27,Nucleolus,0.762420091 +SPPL2B,Nucleolus,1.23818981 +CREBBP,Nucleolus,0.695239107 +GCFC2,Nucleolus,1.417824604 +RHBDD2,Nucleolus,-0.811651871 +IBTK,Nucleolus,0.670927938 +ZNF195,Nucleolus,0.968341722 +MYCBP2,Nucleolus,0.887339421 +ZFX,Nucleolus,0.837205981 +LAMP2,Nucleolus,-0.262306208 +GDE1,Nucleolus,-0.707873963 +TMEM98,Nucleolus,-0.687288246 +TMEM132A,Nucleolus,0.537683652 +ZNF263,Nucleolus,0.286304761 +MAP3K9,Nucleolus,0.409668503 +JHDM1D,Nucleolus,0.751531965 +PHTF2,Nucleolus,1.173522011 +FARP2,Nucleolus,-0.05243891 +IFRD1,Nucleolus,0.61817939 +ARHGAP44,Nucleolus,0.318449436 +ELAC2,Nucleolus,-0.319612803 +ADIPOR2,Nucleolus,-0.190353054 +PAFAH1B1,Nucleolus,0.933075338 +KIAA0100,Nucleolus,-0.226133102 +PAX6,Nucleolus,1.044655972 +LUC7L,Nucleolus,0.418785356 +CACNA2D2,Nucleolus,-0.229310149 +PIGQ,Nucleolus,0.583129929 +CRAMP1L,Nucleolus,0.679230594 +JARID2,Nucleolus,-0.340625827 +ADAM22,Nucleolus,0.32424183 +CYB561,Nucleolus,0.205489859 +SPAG9,Nucleolus,0.512924651 +CELSR3,Nucleolus,1.051344229 +AASS,Nucleolus,0.86456917 +PKD1,Nucleolus,0.750518939 +SEC62,Nucleolus,-0.02973419 +REV3L,Nucleolus,-0.262451876 +POMT2,Nucleolus,-0.419403627 +BAZ1B,Nucleolus,0.246180457 +ZNF207,Nucleolus,0.849587067 +IFFO1,Nucleolus,0.124078782 +NISCH,Nucleolus,0.54799335 +IDS,Nucleolus,0.510765265 +CLCN6,Nucleolus,1.468213061 +MRC2,Nucleolus,-0.415991286 +TSPAN9,Nucleolus,0.678424933 +BTBD7,Nucleolus,1.347994329 +MBTD1,Nucleolus,0.103549141 +LARS2,Nucleolus,0.036883782 +PIK3C2A,Nucleolus,0.868265025 +ANLN,Nucleolus,0.343030056 +QPCTL,Nucleolus,0.975835654 +MAP4K3,Nucleolus,1.111013703 +BRCA1,Nucleolus,0.954209027 +MBTPS2,Nucleolus,-0.026348571 +EXTL3,Nucleolus,-0.136027562 +ELOVL5,Nucleolus,-0.498307025 +MAP4K5,Nucleolus,0.921313541 +MAN2B2,Nucleolus,1.175483139 +CLK1,Nucleolus,0.667858104 +ANGEL1,Nucleolus,0.543677614 +DDX11,Nucleolus,0.845245802 +UFL1,Nucleolus,0.321761089 +SLC30A9,Nucleolus,0.05918813 +COX15,Nucleolus,-0.240125351 +ZMYND11,Nucleolus,1.004978118 +XYLT2,Nucleolus,-0.337437722 +NUDCD3,Nucleolus,-0.405908414 +CHDH,Nucleolus,0.147527559 +GLT8D1,Nucleolus,0.363702894 +ATP2C1,Nucleolus,-0.037954517 +RALBP1,Nucleolus,0.031584512 +CNTN1,Nucleolus,0.276607003 +PHLDB1,Nucleolus,-0.464454105 +MRE11A,Nucleolus,0.955632495 +SPAST,Nucleolus,1.136050019 +NRXN3,Nucleolus,0.948898629 +CPS1,Nucleolus,-0.365515115 +SLC45A4,Nucleolus,-1.464050539 +ZNF839,Nucleolus,0.68918034 +ZDHHC6,Nucleolus,0.713370668 +RNH1,Nucleolus,-0.947969482 +RB1CC1,Nucleolus,0.98553661 +ERP44,Nucleolus,-0.228273723 +AKAP11,Nucleolus,0.174195863 +GCLM,Nucleolus,0.594378222 +DEPDC1,Nucleolus,0.298342724 +SEC63,Nucleolus,-0.037540549 +FAS,Nucleolus,-2.936326233 +RNASET2,Nucleolus,-0.24371448 +AGPAT4,Nucleolus,0.963777932 +MIPEP,Nucleolus,-1.061630129 +VEZT,Nucleolus,-0.561793828 +BRD9,Nucleolus,0.656067962 +SNX1,Nucleolus,0.175344673 +BCLAF1,Nucleolus,0.871712864 +SLC39A9,Nucleolus,0.105702464 +RABEP1,Nucleolus,0.839048728 +FAM13B,Nucleolus,0.238775886 +PNPLA6,Nucleolus,-0.969890775 +ZCCHC8,Nucleolus,1.085461532 +CHPF2,Nucleolus,-0.943602264 +FUT8,Nucleolus,-1.36515182 +UBA6,Nucleolus,0.855591798 +ATP6V0A1,Nucleolus,0.405161867 +SLC4A7,Nucleolus,0.599716603 +VCL,Nucleolus,0.071935314 +ADSS,Nucleolus,0.765532234 +TIMP2,Nucleolus,-0.998965041 +RFC1,Nucleolus,0.109351544 +ZZZ3,Nucleolus,0.804789534 +MFAP3,Nucleolus,0.143624073 +MRI1,Nucleolus,0.292698356 +AGA,Nucleolus,0.814859068 +BOD1L1,Nucleolus,1.222935753 +TRIO,Nucleolus,0.269890397 +VCAN,Nucleolus,0.007351323 +CLEC16A,Nucleolus,-0.074457285 +ZFYVE16,Nucleolus,0.723091677 +RAI14,Nucleolus,0.53131568 +PNKP,Nucleolus,0.612901304 +PQLC2,Nucleolus,-1.455020271 +CTNS,Nucleolus,-0.433426399 +INPP4A,Nucleolus,0.705468898 +RETSAT,Nucleolus,-0.414580649 +CUL7,Nucleolus,-0.753568478 +PHKA2,Nucleolus,0.723152748 +DSG2,Nucleolus,-0.131364033 +OFD1,Nucleolus,-0.471270378 +GPM6B,Nucleolus,-0.188035844 +YTHDC2,Nucleolus,1.01562478 +TPR,Nucleolus,0.86882352 +SCML1,Nucleolus,0.698275922 +MAP4,Nucleolus,0.206172538 +GOPC,Nucleolus,0.784822985 +ZNF800,Nucleolus,0.022281754 +SNX29,Nucleolus,-1.967843626 +KITLG,Nucleolus,-1.385051307 +H6PD,Nucleolus,1.283637484 +LTBP1,Nucleolus,-0.716634073 +RCN1,Nucleolus,0.07885123 +PTCD2,Nucleolus,1.237882578 +LIMA1,Nucleolus,-0.389753463 +LETMD1,Nucleolus,1.220626268 +POLQ,Nucleolus,0.733502163 +MPHOSPH9,Nucleolus,0.572549452 +PLEKHA5,Nucleolus,-1.495122424 +SIKE1,Nucleolus,0.966350614 +MSMO1,Nucleolus,-0.879384564 +TTC17,Nucleolus,-0.140171787 +LAMA3,Nucleolus,0.100762865 +AP5M1,Nucleolus,0.626206021 +ANAPC4,Nucleolus,-0.469621986 +ARID4B,Nucleolus,1.192074089 +SDCCAG8,Nucleolus,0.997348468 +FOXC1,Nucleolus,0.315161774 +PLEKHH1,Nucleolus,0.557852796 +ATP9A,Nucleolus,0.064595526 +FAM168A,Nucleolus,0.228127591 +RELT,Nucleolus,-0.368106478 +NOP58,Nucleolus,0.404458754 +TAB2,Nucleolus,0.57293632 +USP36,Nucleolus,0.294467425 +KMT2C,Nucleolus,0.709949144 +MCOLN3,Nucleolus,1.937523639 +PUM2,Nucleolus,0.77061146 +RC3H2,Nucleolus,0.989176645 +DCBLD2,Nucleolus,0.157039631 +SOAT1,Nucleolus,-0.252112126 +ATP11B,Nucleolus,0.363894669 +SEC61A1,Nucleolus,-0.560209329 +PPP1R12A,Nucleolus,0.845835319 +POLR3E,Nucleolus,0.328680887 +ATP2B4,Nucleolus,0.366258838 +ZC3H11A,Nucleolus,0.85363215 +NDC1,Nucleolus,-0.283523274 +UNKL,Nucleolus,0.735077548 +ALDH18A1,Nucleolus,-0.741070933 +TARBP1,Nucleolus,1.276251007 +WNK1,Nucleolus,0.380376574 +CCAR1,Nucleolus,1.007588773 +PTPRU,Nucleolus,-0.548469851 +QSER1,Nucleolus,0.412936146 +BCAT1,Nucleolus,1.1581262 +PRDM6,Nucleolus,0.712475865 +TNK2,Nucleolus,0.74063069 +MON2,Nucleolus,0.333742997 +GPBP1,Nucleolus,0.88925865 +WAPAL,Nucleolus,0.250233347 +VMP1,Nucleolus,-0.517870417 +APPBP2,Nucleolus,0.863769988 +AHRR,Nucleolus,0.894654627 +ZNF275,Nucleolus,0.394747609 +MTMR1,Nucleolus,0.300383392 +GPC1,Nucleolus,-1.779827289 +TM7SF3,Nucleolus,-0.273823832 +CDON,Nucleolus,0.575132855 +HIPK2,Nucleolus,1.15949009 +SUGP2,Nucleolus,0.690279797 +SLC12A2,Nucleolus,-0.447530999 +HMG20B,Nucleolus,-0.030145919 +UHRF1BP1,Nucleolus,0.833985853 +PKN2,Nucleolus,0.514494228 +TRAM2,Nucleolus,0.965396728 +NTN1,Nucleolus,-1.458109516 +ADAT1,Nucleolus,1.477128418 +SPEN,Nucleolus,0.710156608 +MAP2K4,Nucleolus,0.190333225 +SLK,Nucleolus,0.356147608 +CYB5R4,Nucleolus,1.163051608 +ASB1,Nucleolus,1.155500702 +FAM107B,Nucleolus,-0.588500112 +SLC9A7,Nucleolus,-0.451622751 +FOXJ2,Nucleolus,1.237313996 +PPP2R5A,Nucleolus,0.776025111 +ASPM,Nucleolus,0.868776688 +ZBTB11,Nucleolus,1.160969906 +ATXN3,Nucleolus,1.488640568 +FGFR2,Nucleolus,-0.281394085 +LRRC40,Nucleolus,0.92623725 +ATG2B,Nucleolus,0.935504407 +ARFGEF1,Nucleolus,0.3982695 +KLF6,Nucleolus,0.561475126 +NEO1,Nucleolus,0.130849096 +TRAM1,Nucleolus,-0.087842943 +TP53BP1,Nucleolus,0.442033879 +IARS2,Nucleolus,-0.031774805 +ROCK1,Nucleolus,1.182366188 +HYAL2,Nucleolus,-1.567685019 +FGFR3,Nucleolus,0.846373269 +MEF2A,Nucleolus,0.191125852 +ACSL4,Nucleolus,0.953308822 +PRR11,Nucleolus,0.813573964 +REEP1,Nucleolus,-0.193525701 +ATP11A,Nucleolus,-0.05416616 +POLR1A,Nucleolus,1.150333566 +IP6K2,Nucleolus,0.496330399 +KIF2A,Nucleolus,0.805792827 +TGFBR3,Nucleolus,0.768170715 +NEDD4,Nucleolus,-0.655785066 +MAPK6,Nucleolus,-0.097821611 +UFD1L,Nucleolus,0.615906098 +LRP6,Nucleolus,0.695053594 +NUCB2,Nucleolus,-0.77545367 +SLC44A1,Nucleolus,0.329127843 +TMEM260,Nucleolus,0.78529969 +SMG6,Nucleolus,0.23859945 +CLTCL1,Nucleolus,-0.273823447 +DGCR2,Nucleolus,-0.467181958 +MNT,Nucleolus,0.75548449 +ZXDC,Nucleolus,1.024291574 +NDST1,Nucleolus,0.213044236 +AP3M2,Nucleolus,-0.203512761 +RAD18,Nucleolus,0.913230208 +ATP2B1,Nucleolus,0.722747167 +MGAT4A,Nucleolus,1.098397587 +SNX13,Nucleolus,0.173511583 +VASH1,Nucleolus,0.038434082 +SEL1L,Nucleolus,0.745443168 +ATP6AP1,Nucleolus,-1.253225947 +DAZAP1,Nucleolus,0.189995871 +CPSF1,Nucleolus,0.061253285 +SLC6A15,Nucleolus,0.313831012 +RDH11,Nucleolus,-0.103956273 +PRKACA,Nucleolus,-1.124470014 +LPHN1,Nucleolus,0.443767178 +RPS6KA6,Nucleolus,1.380152925 +EPN2,Nucleolus,0.800853874 +PTPN18,Nucleolus,0.52918293 +TFRC,Nucleolus,0.661916392 +AFF4,Nucleolus,1.022288184 +MPP5,Nucleolus,1.150007838 +HMMR,Nucleolus,0.393485028 +P4HA2,Nucleolus,-0.225276487 +TRNT1,Nucleolus,1.729764946 +ACADVL,Nucleolus,0.168115754 +EVC,Nucleolus,-1.964185832 +DERL2,Nucleolus,0.105161028 +NDE1,Nucleolus,-0.374264321 +PVR,Nucleolus,-0.272401533 +SCARB1,Nucleolus,0.177481913 +SELO,Nucleolus,0.427183507 +LLGL2,Nucleolus,0.349443052 +PDE8A,Nucleolus,1.080386773 +SDHA,Nucleolus,-0.474184877 +KDM5A,Nucleolus,0.20442605 +ADAM11,Nucleolus,1.064466107 +ST6GAL1,Nucleolus,0.098222224 +GLI2,Nucleolus,0.312588625 +NOTCH3,Nucleolus,-0.464317586 +BCS1L,Nucleolus,-0.446156454 +DPP8,Nucleolus,1.071593533 +SLC24A1,Nucleolus,-0.337740059 +LMAN1,Nucleolus,0.574353304 +PTPLAD1,Nucleolus,-0.300047391 +TUBE1,Nucleolus,1.57437927 +SEMA3C,Nucleolus,0.672053676 +TTC38,Nucleolus,-0.442353482 +CELSR1,Nucleolus,-0.026153531 +ZNF638,Nucleolus,0.353726608 +SLC25A40,Nucleolus,1.10332726 +RASAL2,Nucleolus,-0.639161321 +ZNF37A,Nucleolus,1.828339016 +FNDC3B,Nucleolus,-3.429702366 +FRYL,Nucleolus,0.483778012 +TMEM131,Nucleolus,0.004629519 +WDR62,Nucleolus,0.725638349 +BCAP29,Nucleolus,-0.063206672 +SEC31B,Nucleolus,1.045714633 +RBMS2,Nucleolus,1.052499776 +SLC46A1,Nucleolus,-0.95504953 +PLXNA2,Nucleolus,-1.301743771 +ANKRD13A,Nucleolus,0.868412722 +PAG1,Nucleolus,1.246968953 +MCAM,Nucleolus,-1.442248132 +GPC4,Nucleolus,-0.055156124 +MBNL3,Nucleolus,1.116518068 +DGKD,Nucleolus,-0.824619367 +TM9SF3,Nucleolus,0.523318258 +PPP1R12B,Nucleolus,1.535392218 +DNAJC10,Nucleolus,0.329586284 +GTF3C1,Nucleolus,0.107212607 +IL4R,Nucleolus,0.832990142 +LRCH4,Nucleolus,-0.096735904 +FAM76B,Nucleolus,1.952104163 +SIRT6,Nucleolus,-0.905272728 +POLD3,Nucleolus,0.397085188 +PHF17,Nucleolus,0.83057487 +FBLN1,Nucleolus,-1.547087656 +ITGA8,Nucleolus,-0.415806549 +MCCC1,Nucleolus,0.861873395 +ACER3,Nucleolus,0.540603654 +N4BP2,Nucleolus,1.214580118 +HOXA9,Nucleolus,0.614958956 +PCM1,Nucleolus,0.80209668 +TNRC6C,Nucleolus,1.125519301 +ITCH,Nucleolus,0.948717953 +SDF4,Nucleolus,-0.467273095 +FKBP7,Nucleolus,-1.125557974 +SLC1A3,Nucleolus,-0.212955246 +SAR1A,Nucleolus,0.060719795 +PAFAH1B3,Nucleolus,-1.612755196 +MOXD1,Nucleolus,-0.244260598 +STX7,Nucleolus,0.524006556 +RABL2B,Nucleolus,0.55463957 +SLC35C2,Nucleolus,-0.413011923 +CRYBG3,Nucleolus,1.149062406 +RIF1,Nucleolus,0.912741531 +PSEN1,Nucleolus,-0.003119906 +RBL1,Nucleolus,0.433839299 +RSBN1,Nucleolus,1.621057691 +MAGI3,Nucleolus,0.754967446 +OSTM1,Nucleolus,-0.588594574 +EXD2,Nucleolus,-1.396361894 +MEF2C,Nucleolus,1.194112687 +UBA5,Nucleolus,0.739724188 +STK17B,Nucleolus,-0.50707639 +ZNF510,Nucleolus,0.981814561 +LRP2,Nucleolus,-1.588365701 +DUSP12,Nucleolus,-0.080617678 +KIAA0141,Nucleolus,0.299007788 +PHLPP1,Nucleolus,-0.344592036 +SMARCD3,Nucleolus,0.508550993 +C5orf22,Nucleolus,0.951729593 +CCNT2,Nucleolus,0.76996199 +NFE2L1,Nucleolus,-0.263997582 +GSK3B,Nucleolus,0.37967597 +ITGB5,Nucleolus,-0.824272146 +ERC1,Nucleolus,-0.112692511 +RNF13,Nucleolus,0.08615184 +LYRM2,Nucleolus,0.202360954 +KAT6A,Nucleolus,0.193516286 +PLOD1,Nucleolus,-0.58359791 +TDRD3,Nucleolus,-1.317939114 +PDS5B,Nucleolus,1.255940941 +OXCT1,Nucleolus,-0.467655223 +RRAGB,Nucleolus,1.254126915 +FAT1,Nucleolus,-0.123442948 +YTHDC1,Nucleolus,0.996772639 +ZMPSTE24,Nucleolus,-0.535766536 +REST,Nucleolus,0.197665009 +APLP2,Nucleolus,-0.160609019 +KIAA1467,Nucleolus,0.253995002 +TXLNA,Nucleolus,0.578815954 +NCOA1,Nucleolus,0.809504832 +AGBL5,Nucleolus,-0.594952048 +CD59,Nucleolus,-1.036284223 +ATRX,Nucleolus,0.928378603 +SCAMP1,Nucleolus,0.270536774 +HACE1,Nucleolus,-1.396856799 +WDFY1,Nucleolus,-0.113742786 +MTIF2,Nucleolus,0.729325853 +ATG16L1,Nucleolus,-0.311556674 +POMGNT1,Nucleolus,-0.032077498 +B4GALT1,Nucleolus,-0.115317495 +IPO11,Nucleolus,0.886675486 +TMED2,Nucleolus,-0.255877406 +ERO1LB,Nucleolus,0.309283995 +PPP1R15A,Nucleolus,-0.948315164 +NLK,Nucleolus,0.926909671 +PIGS,Nucleolus,-0.401563219 +ATXN7L3,Nucleolus,0.384168293 +PGS1,Nucleolus,-0.202969478 +SH3BP2,Nucleolus,-0.24822445 +ADD1,Nucleolus,-0.29289305 +TXNDC16,Nucleolus,0.432943612 +NID2,Nucleolus,-1.599409489 +KLHL42,Nucleolus,0.671828501 +ERGIC2,Nucleolus,0.297470604 +METTL2A,Nucleolus,0.408072785 +PTPN4,Nucleolus,1.020580505 +KHSRP,Nucleolus,-0.056506633 +EPB41L1,Nucleolus,0.558319836 +ANKRD10,Nucleolus,0.952143361 +DOCK3,Nucleolus,1.011319172 +PPP1R13B,Nucleolus,0.554342945 +ATRN,Nucleolus,0.592166362 +ZNF343,Nucleolus,-1.9699837 +MAVS,Nucleolus,1.033180656 +LZTS3,Nucleolus,0.289515746 +SNX5,Nucleolus,0.936024418 +MAPKAPK5,Nucleolus,0.772336377 +ESF1,Nucleolus,0.88818375 +SLC23A2,Nucleolus,-0.145398191 +KIF16B,Nucleolus,1.180980635 +ERP29,Nucleolus,-1.713617645 +FUS,Nucleolus,0.344915104 +ZNF302,Nucleolus,0.272263613 +GRAMD1A,Nucleolus,-0.249034659 +GANAB,Nucleolus,-0.51470151 +RBM41,Nucleolus,0.425939701 +GPATCH2L,Nucleolus,0.935775693 +SLC9A1,Nucleolus,0.750862766 +SPTLC1,Nucleolus,-0.569121621 +PAPOLA,Nucleolus,0.617644183 +MUL1,Nucleolus,-0.961696122 +RAB11FIP3,Nucleolus,0.276436407 +GOLGA3,Nucleolus,1.107416129 +EFNB1,Nucleolus,-1.059595481 +PDPR,Nucleolus,0.576966021 +GLG1,Nucleolus,-0.039296895 +TNRC6A,Nucleolus,0.143122556 +PLEKHG2,Nucleolus,-0.858577027 +NAT14,Nucleolus,-1.993174433 +RBM27,Nucleolus,1.201818175 +OSBPL8,Nucleolus,0.488646483 +NRCAM,Nucleolus,0.305294742 +LAMB1,Nucleolus,0.416863314 +CMTM6,Nucleolus,-0.954495281 +ITGA6,Nucleolus,-0.961820089 +SEL1L3,Nucleolus,-11.38748956 +ORC6,Nucleolus,1.341361936 +TMEM101,Nucleolus,-0.49149507 +OSGEP,Nucleolus,0.245954635 +G2E3,Nucleolus,0.77852115 +HECTD1,Nucleolus,0.457184528 +SEMA6A,Nucleolus,-0.364427673 +TRPM7,Nucleolus,0.462252461 +TYRO3,Nucleolus,-1.179390729 +AGO1,Nucleolus,0.499121195 +MFSD11,Nucleolus,0.878036094 +GPATCH2,Nucleolus,0.327605133 +NUP50,Nucleolus,0.64246813 +LRRFIP2,Nucleolus,0.768043656 +SEC22C,Nucleolus,0.712427125 +XYLB,Nucleolus,0.628705881 +HDAC6,Nucleolus,0.087209304 +CBX5,Nucleolus,0.873025755 +SUCO,Nucleolus,0.738285551 +HOOK2,Nucleolus,0.323973798 +ARCN1,Nucleolus,0.034402047 +TMEM38B,Nucleolus,-0.364646614 +BTAF1,Nucleolus,0.839953842 +IKZF5,Nucleolus,1.262920044 +WAC,Nucleolus,0.734230264 +CREM,Nucleolus,0.862052256 +BRPF3,Nucleolus,-0.246117536 +EFHC1,Nucleolus,0.724178838 +ABL1,Nucleolus,-0.424123091 +SH3GLB1,Nucleolus,0.801169731 +SCD,Nucleolus,0.122077712 +ABLIM1,Nucleolus,0.806130661 +ERMP1,Nucleolus,0.336622217 +NRP1,Nucleolus,-0.026014451 +MZF1,Nucleolus,2.341296039 +FBXL19,Nucleolus,-0.947538519 +MTAP,Nucleolus,0.730846874 +CEP170B,Nucleolus,0.222556107 +POLRMT,Nucleolus,-0.22305698 +ARVCF,Nucleolus,0.138236651 +TRMT2A,Nucleolus,-0.113931778 +ZDHHC8,Nucleolus,0.540461913 +KLHL22,Nucleolus,0.797301879 +CRKL,Nucleolus,0.456495485 +LZTR1,Nucleolus,0.549387738 +CECR2,Nucleolus,0.274988066 +DERL3,Nucleolus,0.889143545 +PPM1F,Nucleolus,0.508394898 +TOP3B,Nucleolus,1.217605165 +CRYBB2P1,Nucleolus,1.625484761 +ADRBK2,Nucleolus,0.468203041 +GGA1,Nucleolus,0.380141221 +HPS4,Nucleolus,0.529904886 +TTC28,Nucleolus,1.075327042 +SEPT3,Nucleolus,0.571316758 +KDELR3,Nucleolus,0.587110599 +DDX17,Nucleolus,1.507201994 +TCF20,Nucleolus,1.091988084 +TIMP3,Nucleolus,0.409625861 +PPP6R2,Nucleolus,1.211437588 +SUN2,Nucleolus,-0.380264247 +ARSA,Nucleolus,-0.995852454 +MYH9,Nucleolus,0.097945904 +FOXRED2,Nucleolus,-0.512260927 +TNRC6B,Nucleolus,0.996704192 +SGSM3,Nucleolus,-0.417271993 +IFT27,Nucleolus,1.069010358 +KIAA0930,Nucleolus,-0.190017611 +EP300,Nucleolus,-0.047041932 +ZC3H7B,Nucleolus,-0.386129226 +ACO2,Nucleolus,-1.089346987 +TRMU,Nucleolus,0.541454302 +ZBED4,Nucleolus,-0.110026491 +ABHD4,Nucleolus,-1.036584885 +KHNYN,Nucleolus,-1.521592968 +NIN,Nucleolus,1.236568216 +GNPNAT1,Nucleolus,0.752969708 +DDHD1,Nucleolus,1.073682048 +CNIH1,Nucleolus,-0.234666003 +TMED8,Nucleolus,1.139649099 +SPTLC2,Nucleolus,0.084006089 +PPM1A,Nucleolus,0.300748748 +SIX4,Nucleolus,1.05639336 +GALNT16,Nucleolus,-1.156600279 +KIAA0247,Nucleolus,-1.184387721 +SRSF5,Nucleolus,0.036737565 +DICER1,Nucleolus,0.485049321 +ZFYVE21,Nucleolus,0.491107944 +TELO2,Nucleolus,-0.563879447 +PCNX,Nucleolus,0.503044975 +GSKIP,Nucleolus,1.000345219 +SMEK1,Nucleolus,0.374458338 +TRIP11,Nucleolus,0.446458832 +PABPN1,Nucleolus,-0.060205259 +ARHGAP5,Nucleolus,0.825299766 +CHD8,Nucleolus,0.007180934 +PCK2,Nucleolus,-0.976538728 +PNN,Nucleolus,0.92688779 +PLTP,Nucleolus,-1.998150439 +ABHD12,Nucleolus,-0.601526395 +GINS1,Nucleolus,0.722345642 +RIMS4,Nucleolus,-0.59797282 +PABPC1L,Nucleolus,0.295139517 +STK4,Nucleolus,0.760397516 +BMP7,Nucleolus,-0.814164179 +DNAJC5,Nucleolus,0.398039043 +SLCO4A1,Nucleolus,-2.393204466 +DIDO1,Nucleolus,1.16523188 +ARFGAP1,Nucleolus,1.327690366 +ARFRP1,Nucleolus,1.680091959 +CDS2,Nucleolus,-0.778171633 +TM9SF4,Nucleolus,-0.061825514 +POFUT1,Nucleolus,-0.332338066 +SAMHD1,Nucleolus,-0.058803579 +KIF3B,Nucleolus,0.595772816 +E2F1,Nucleolus,-0.400560235 +APMAP,Nucleolus,-0.897385661 +ZNF516,Nucleolus,1.645649271 +LPIN2,Nucleolus,0.316683554 +SMCHD1,Nucleolus,1.027836587 +LAMA1,Nucleolus,-0.056726976 +RNF125,Nucleolus,1.355381903 +ANKRD12,Nucleolus,1.297967322 +MIB1,Nucleolus,1.12764238 +MID1,Nucleolus,0.571978245 +WDR13,Nucleolus,-1.564238632 +XIAP,Nucleolus,0.969882721 +ATP11C,Nucleolus,0.50114402 +SYP,Nucleolus,-0.797878555 +FMR1,Nucleolus,1.034256878 +SLC35A2,Nucleolus,-1.640937851 +TAZ,Nucleolus,0.302628867 +MAGT1,Nucleolus,-0.041015502 +CD99L2,Nucleolus,-0.699031435 +EEA1,Nucleolus,0.596127593 +NDFIP2,Nucleolus,-0.015621892 +DNAJC3,Nucleolus,-0.036439477 +UGGT2,Nucleolus,0.184086602 +ARHGEF7,Nucleolus,0.931300535 +PARP4,Nucleolus,0.315482487 +FLT1,Nucleolus,-0.272890222 +VWA8,Nucleolus,-0.405425239 +DGKH,Nucleolus,1.42087784 +INTS6,Nucleolus,0.913561146 +CLN5,Nucleolus,-0.93466859 +MGRN1,Nucleolus,0.523399598 +ZNF629,Nucleolus,-0.118575259 +CENPT,Nucleolus,0.198613479 +NFAT5,Nucleolus,1.50684214 +SETD6,Nucleolus,1.505879088 +SLC38A7,Nucleolus,0.289815286 +SLC7A6OS,Nucleolus,0.279871084 +SLC7A6,Nucleolus,0.491633031 +WDR59,Nucleolus,0.97267088 +TAF1C,Nucleolus,0.246075914 +TSC2,Nucleolus,-0.022643885 +ZNF500,Nucleolus,0.558132959 +ABCC1,Nucleolus,-0.157697367 +NOMO3,Nucleolus,-1.030384179 +NARFL,Nucleolus,-0.024471677 +MTHFSD,Nucleolus,-0.637982518 +CLCN7,Nucleolus,0.303359515 +SLC7A5,Nucleolus,-0.767862574 +FBXO31,Nucleolus,1.159615801 +EEF2K,Nucleolus,0.356558592 +CAPN15,Nucleolus,-0.481198888 +PIEZO1,Nucleolus,0.178670661 +BFAR,Nucleolus,-1.49724724 +NOMO1,Nucleolus,-0.469558886 +CCP110,Nucleolus,0.548641522 +RNF40,Nucleolus,-0.265698962 +LACTB,Nucleolus,0.824835441 +CD276,Nucleolus,-1.77425381 +HOMER2,Nucleolus,0.073350962 +TMEM87A,Nucleolus,-0.509160979 +ZNF106,Nucleolus,0.636844562 +CEP152,Nucleolus,-0.642098584 +TJP1,Nucleolus,0.110105699 +VPS18,Nucleolus,-0.650174494 +MYEF2,Nucleolus,1.265460116 +CSPP1,Nucleolus,0.777840478 +ZFAND1,Nucleolus,0.089874311 +FZD3,Nucleolus,0.671610187 +EYA1,Nucleolus,-0.904288913 +NBN,Nucleolus,0.795749808 +IMPAD1,Nucleolus,0.444441634 +UBE2W,Nucleolus,-0.485939212 +IKBKB,Nucleolus,-0.035954876 +PLAT,Nucleolus,-1.267963506 +JPH1,Nucleolus,0.476528211 +TRPS1,Nucleolus,1.312312796 +PYCRL,Nucleolus,-2.17112394 +EEF1D,Nucleolus,0.031614453 +SQLE,Nucleolus,-0.373325492 +SLC39A14,Nucleolus,0.151498775 +MTMR9,Nucleolus,0.473844428 +LEPROTL1,Nucleolus,-0.053612342 +PPP2CB,Nucleolus,0.79985186 +KLHDC4,Nucleolus,1.057195745 +KCTD9,Nucleolus,1.035941512 +MAN2B1,Nucleolus,-0.273251556 +NUCB1,Nucleolus,-0.596258927 +SARS2,Nucleolus,1.348108506 +SNRNP70,Nucleolus,0.530443822 +CLPTM1,Nucleolus,-0.370461491 +CLASRP,Nucleolus,0.326608279 +FCGRT,Nucleolus,0.121816993 +ERCC2,Nucleolus,0.149885667 +DOT1L,Nucleolus,0.97910476 +SF3A2,Nucleolus,-0.138254524 +AMH,Nucleolus,1.172373543 +DMPK,Nucleolus,0.122060227 +TIMM44,Nucleolus,0.441547371 +AKAP8,Nucleolus,0.622049433 +AKT2,Nucleolus,-0.005181488 +PLD3,Nucleolus,-0.615137291 +FSD1,Nucleolus,-0.539271138 +APLP1,Nucleolus,-2.751485887 +CACTIN,Nucleolus,0.702100455 +TYK2,Nucleolus,0.140321272 +PTPRS,Nucleolus,-0.059198202 +MEGF8,Nucleolus,0.211710928 +KDELR1,Nucleolus,-0.84683617 +CYTH2,Nucleolus,0.493031611 +LIG1,Nucleolus,0.057839788 +BCAT2,Nucleolus,-0.419693599 +TNPO2,Nucleolus,0.108066368 +DNASE2,Nucleolus,-1.19104206 +ISYNA1,Nucleolus,-0.158160099 +CRTC1,Nucleolus,1.214120306 +SUGP1,Nucleolus,-0.050439472 +SIPA1L3,Nucleolus,1.712055386 +CADM4,Nucleolus,-3.461333314 +SMG9,Nucleolus,0.155810034 +AVL9,Nucleolus,0.206348321 +CDK6,Nucleolus,0.920554334 +DNAJC2,Nucleolus,0.714091445 +WDR91,Nucleolus,-1.016280725 +CBLL1,Nucleolus,0.91461054 +MTPN,Nucleolus,0.453326764 +ZC3HAV1,Nucleolus,0.581244537 +OGDH,Nucleolus,-0.838564123 +MET,Nucleolus,0.080673265 +LMBR1,Nucleolus,0.052283416 +HOXA3,Nucleolus,0.263332192 +HOXA6,Nucleolus,0.934743018 +BRAT1,Nucleolus,-0.266157653 +FKBP14,Nucleolus,0.057755947 +NSUN5P2,Nucleolus,1.390820932 +CASP2,Nucleolus,0.063688639 +HSPB1,Nucleolus,-2.4800486 +ZKSCAN1,Nucleolus,0.667458155 +WASL,Nucleolus,0.208669503 +RBM28,Nucleolus,0.781714218 +C1GALT1,Nucleolus,-0.84468518 +PLOD3,Nucleolus,-1.238753941 +CLDN15,Nucleolus,1.523473923 +TMEM106B,Nucleolus,0.994542823 +CEP41,Nucleolus,-1.313212749 +GLI3,Nucleolus,0.411043109 +TMEM248,Nucleolus,0.305252362 +TBL2,Nucleolus,-0.528695602 +FKTN,Nucleolus,0.668021266 +TMEM245,Nucleolus,0.371701948 +MEGF9,Nucleolus,0.742724013 +TGFBR1,Nucleolus,0.686813258 +DNM1,Nucleolus,1.749835703 +KANK1,Nucleolus,-1.437897739 +RAPGEF1,Nucleolus,-0.99592759 +NPDC1,Nucleolus,0.728847719 +SETX,Nucleolus,0.735240781 +CCNJ,Nucleolus,0.265253695 +RAB11FIP2,Nucleolus,0.603951441 +ERLIN1,Nucleolus,-0.263921748 +MAPK8,Nucleolus,0.040117884 +ATE1,Nucleolus,-0.443426728 +PLEKHA1,Nucleolus,0.918798907 +UNC5B,Nucleolus,0.332630663 +BMPR1A,Nucleolus,0.673913997 +ACTA2,Nucleolus,-1.892779029 +LIPA,Nucleolus,-0.274636932 +LZTS2,Nucleolus,1.069192947 +ARHGAP21,Nucleolus,0.644655056 +ANKRD26,Nucleolus,1.019360838 +LARP4B,Nucleolus,0.814210188 +C10orf137,Nucleolus,-0.060155573 +MTPAP,Nucleolus,1.286123964 +SH3PXD2A,Nucleolus,0.472756092 +PITRM1,Nucleolus,-0.465707004 +FAM208B,Nucleolus,0.293807594 +TSPAN14,Nucleolus,-1.352973284 +NUFIP2,Nucleolus,1.213949427 +DHX40,Nucleolus,0.892959628 +CDK5RAP3,Nucleolus,0.532485562 +RECQL5,Nucleolus,0.967471427 +INTS2,Nucleolus,0.940225262 +CAMTA2,Nucleolus,0.899166294 +MED13,Nucleolus,0.540579329 +HOXB6,Nucleolus,0.877491377 +CPD,Nucleolus,0.482392374 +GOSR1,Nucleolus,0.244985444 +CCDC47,Nucleolus,-0.121990992 +AKAP10,Nucleolus,0.570602121 +CYTH1,Nucleolus,0.581156523 +LGALS3BP,Nucleolus,-0.508732265 +EZH1,Nucleolus,0.811838341 +PPP1R9B,Nucleolus,0.385775752 +LUC7L3,Nucleolus,1.446820499 +DUSP3,Nucleolus,0.171656377 +EFNB3,Nucleolus,-0.929043346 +DPH1,Nucleolus,0.049125142 +NAT9,Nucleolus,-0.07960161 +TMEM104,Nucleolus,-0.697592478 +TMEM97,Nucleolus,-0.417975604 +UNC119,Nucleolus,0.321616329 +TMEM33,Nucleolus,0.676793813 +DCUN1D4,Nucleolus,0.459859515 +MANBA,Nucleolus,0.556120694 +ELF2,Nucleolus,0.906301085 +WFS1,Nucleolus,-0.93140174 +FRG1,Nucleolus,0.907634717 +CLCN3,Nucleolus,0.082464279 +GALNT7,Nucleolus,-0.114931998 +TRIM2,Nucleolus,1.163013649 +NEIL3,Nucleolus,0.305218451 +SH3D19,Nucleolus,0.34134972 +STIM2,Nucleolus,0.180708731 +RAPGEF2,Nucleolus,0.9500633 +UGDH,Nucleolus,0.91821345 +CCDC34,Nucleolus,1.247163898 +FNBP4,Nucleolus,1.129417675 +SC5D,Nucleolus,-0.718757566 +SIAE,Nucleolus,-0.716255127 +EHD1,Nucleolus,0.385035955 +FOXRED1,Nucleolus,0.132575312 +ST3GAL4,Nucleolus,-1.775766799 +CPT1A,Nucleolus,-0.577784698 +TMEM109,Nucleolus,-0.767131923 +PANX1,Nucleolus,-0.431669677 +UBE4A,Nucleolus,-0.031263237 +DDX6,Nucleolus,0.804175202 +PVRL1,Nucleolus,0.091139316 +HIPK3,Nucleolus,1.188227299 +MDK,Nucleolus,-1.438103604 +AMBRA1,Nucleolus,-0.256444304 +NAA40,Nucleolus,0.324377856 +SLC35F2,Nucleolus,0.397262617 +LEPREL2,Nucleolus,-2.203922042 +CORO1C,Nucleolus,-0.297211163 +ASIC1,Nucleolus,1.193270483 +CAPRIN2,Nucleolus,-0.332932013 +SLC11A2,Nucleolus,0.215076106 +MLEC,Nucleolus,-0.153626484 +BCL7A,Nucleolus,0.138635774 +RSRC2,Nucleolus,1.201811695 +PPM1H,Nucleolus,1.232758945 +ELK3,Nucleolus,-0.527908146 +MAGOHB,Nucleolus,0.757999114 +ITFG2,Nucleolus,-0.081417045 +PARP11,Nucleolus,-2.568683948 +DUSP16,Nucleolus,0.336165265 +ACAD10,Nucleolus,0.795273998 +NAA25,Nucleolus,1.229698203 +DDX55,Nucleolus,0.469350528 +SLC38A1,Nucleolus,0.718571571 +C12orf49,Nucleolus,-0.232824755 +MDM1,Nucleolus,1.435940457 +CPSF6,Nucleolus,0.484815639 +GNPTAB,Nucleolus,0.11620158 +ATN1,Nucleolus,0.143191652 +C12orf57,Nucleolus,-1.43453284 +LPCAT3,Nucleolus,-1.834731883 +SUDS3,Nucleolus,0.411141142 +GOLT1B,Nucleolus,0.55507424 +C2CD5,Nucleolus,1.098035881 +RAB35,Nucleolus,0.014656935 +RIC8B,Nucleolus,0.603820449 +RP11-22B23.1,Nucleolus,1.569117342 +DSE,Nucleolus,-0.227744591 +MAN1A1,Nucleolus,0.559323292 +SERINC1,Nucleolus,-0.194102365 +UST,Nucleolus,0.47607404 +KCTD20,Nucleolus,0.601649388 +RNF8,Nucleolus,1.086634233 +ICK,Nucleolus,1.348739582 +RAB23,Nucleolus,0.94303601 +FBXL4,Nucleolus,0.30616489 +CCNC,Nucleolus,0.971414015 +ALDH5A1,Nucleolus,-0.188635107 +EYA4,Nucleolus,0.460331996 +PERP,Nucleolus,-0.015978613 +SLC16A10,Nucleolus,0.451777961 +PHACTR2,Nucleolus,0.486875402 +SLC39A7,Nucleolus,-0.912878797 +PPP2R5D,Nucleolus,-0.470621301 +PTK7,Nucleolus,-0.542649553 +CUL9,Nucleolus,-0.347920004 +TMEM30A,Nucleolus,0.193698065 +SENP6,Nucleolus,0.988560545 +VEGFA,Nucleolus,1.024874894 +PRPF4B,Nucleolus,0.396160965 +BTN2A1,Nucleolus,-0.201591103 +LAMA4,Nucleolus,0.904343158 +ERBB2IP,Nucleolus,0.279436812 +HARS2,Nucleolus,0.757864933 +MAN2A1,Nucleolus,-0.028575885 +PAPD7,Nucleolus,-0.195675589 +NNT,Nucleolus,0.04493996 +APBB3,Nucleolus,0.501942757 +SPARC,Nucleolus,-11.05293609 +HMGCR,Nucleolus,-0.161130983 +FAF2,Nucleolus,-0.377198827 +CLK4,Nucleolus,1.916716497 +ARSB,Nucleolus,0.251593619 +CNOT6,Nucleolus,0.778977294 +DROSHA,Nucleolus,0.782376676 +FAM172A,Nucleolus,0.560776876 +LNPEP,Nucleolus,1.173574476 +SLC12A7,Nucleolus,-1.086526938 +NR3C1,Nucleolus,0.415129496 +C5orf15,Nucleolus,-0.185865374 +LIFR,Nucleolus,1.03466261 +TRAPPC13,Nucleolus,0.317401364 +TXNDC15,Nucleolus,-0.254442929 +H2AFY,Nucleolus,0.127174813 +TCERG1,Nucleolus,0.974432146 +SMAD5,Nucleolus,0.386973666 +ERGIC1,Nucleolus,-0.473741223 +STC2,Nucleolus,0.730458107 +ARL6,Nucleolus,1.278422486 +NIT2,Nucleolus,1.017869804 +UBE3A,Nucleolus,1.070809815 +SLC25A36,Nucleolus,1.091196123 +TFDP2,Nucleolus,0.400346029 +XRN1,Nucleolus,1.1233458 +WNT5A,Nucleolus,0.378806194 +PFKFB4,Nucleolus,0.843532939 +PRKAR2A,Nucleolus,0.195467888 +ACAP2,Nucleolus,0.003070136 +CBLB,Nucleolus,-2.988917704 +BBX,Nucleolus,0.294418725 +GNB4,Nucleolus,0.960071569 +C3orf52,Nucleolus,-0.353474532 +PLXNA1,Nucleolus,0.077396607 +CSPG5,Nucleolus,-0.601738258 +SCAP,Nucleolus,-0.08198334 +HEMK1,Nucleolus,1.63463373 +ACVR2B,Nucleolus,0.064596011 +ABCC5,Nucleolus,0.080446281 +SSR3,Nucleolus,0.31475214 +NKTR,Nucleolus,1.766407347 +FOXP1,Nucleolus,1.057632806 +INO80D,Nucleolus,-0.463817456 +ADAM23,Nucleolus,-0.688291372 +MOB1A,Nucleolus,0.509162632 +LMAN2L,Nucleolus,-1.609314976 +RTKN,Nucleolus,-0.717243676 +PIKFYVE,Nucleolus,1.169958176 +FAHD2A,Nucleolus,0.588093957 +SLC35F5,Nucleolus,0.530640009 +STEAP3,Nucleolus,-0.128690996 +EPB41L5,Nucleolus,-0.470663664 +GPD2,Nucleolus,-0.782907863 +ACVR1,Nucleolus,-0.262281146 +MPV17,Nucleolus,0.495734473 +TTC31,Nucleolus,0.853212483 +NDUFS7,Nucleolus,0.089897517 +SPTBN1,Nucleolus,0.474031504 +CCDC88A,Nucleolus,0.5706379 +FN1,Nucleolus,-0.064522295 +ELMOD3,Nucleolus,0.457921768 +IGFBP5,Nucleolus,0.576690202 +USP34,Nucleolus,0.906429982 +GGCX,Nucleolus,-0.944264232 +CHST10,Nucleolus,-1.961511922 +MOB4,Nucleolus,0.919313724 +UXS1,Nucleolus,0.12942812 +PASK,Nucleolus,1.129726447 +TAF1B,Nucleolus,0.832168094 +DCAF17,Nucleolus,0.925423842 +SDC1,Nucleolus,-0.55641813 +SLC1A4,Nucleolus,-0.498182328 +SOS1,Nucleolus,0.179176279 +WIPF1,Nucleolus,1.183925178 +THADA,Nucleolus,1.067800749 +TRAK2,Nucleolus,0.740806887 +TIA1,Nucleolus,0.335455661 +PCYOX1,Nucleolus,-0.167043054 +ARID3A,Nucleolus,0.153139908 +EPHA4,Nucleolus,0.347745624 +ALMS1,Nucleolus,0.059852583 +BCL9,Nucleolus,-0.305774208 +DHCR24,Nucleolus,-0.835839003 +DNAJC16,Nucleolus,0.277345254 +RALGPS2,Nucleolus,1.159403722 +CEP104,Nucleolus,1.119652762 +FAM20B,Nucleolus,0.311416057 +TCEANC2,Nucleolus,0.869917264 +WRAP73,Nucleolus,0.403199196 +ICMT,Nucleolus,-0.333853373 +QSOX1,Nucleolus,-0.361902181 +AMPD2,Nucleolus,0.561995401 +EDEM3,Nucleolus,0.56415913 +RAP1A,Nucleolus,0.832105089 +S100PBP,Nucleolus,1.015374686 +ASH1L,Nucleolus,0.801285125 +SFPQ,Nucleolus,0.524722683 +MEF2D,Nucleolus,-0.057943976 +C1orf21,Nucleolus,0.48972224 +LEPR,Nucleolus,0.545246627 +IVNS1ABP,Nucleolus,0.487675074 +KIAA2013,Nucleolus,-0.380316424 +MIIP,Nucleolus,0.226401899 +SLC35D1,Nucleolus,0.499185565 +WLS,Nucleolus,-0.598217163 +PRDM2,Nucleolus,0.816859741 +TROVE2,Nucleolus,1.143582035 +SRSF11,Nucleolus,1.398489505 +PHTF1,Nucleolus,0.528352438 +TMEM9,Nucleolus,-0.469838641 +EXOC8,Nucleolus,0.570885042 +NID1,Nucleolus,-0.219883755 +MTR,Nucleolus,1.094211154 +BMP8B,Nucleolus,0.380425654 +RIMS3,Nucleolus,-0.006408814 +AKT3,Nucleolus,0.963050397 +ETV3,Nucleolus,1.169106913 +LPHN2,Nucleolus,0.470532128 +RBBP5,Nucleolus,-0.068076199 +ECE1,Nucleolus,-0.42690886 +CD46,Nucleolus,0.620747105 +APH1A,Nucleolus,-0.691662303 +LEPRE1,Nucleolus,-1.766881389 +SLC2A1,Nucleolus,-0.9607556 +SLC19A2,Nucleolus,1.195644852 +NSUN4,Nucleolus,0.626268211 +TMED5,Nucleolus,0.013975919 +DR1,Nucleolus,0.782546454 +PTBP2,Nucleolus,1.737356387 +DARS2,Nucleolus,0.200529309 +DIEXF,Nucleolus,0.843339774 +RCAN3,Nucleolus,0.310230251 +C1orf63,Nucleolus,0.576161677 +SLC35A3,Nucleolus,0.530744844 +RCOR3,Nucleolus,0.549921578 +ARID1A,Nucleolus,0.296681543 +CENPF,Nucleolus,0.808180802 +ESYT2,Nucleolus,-0.361302565 +CD3EAP,Nucleolus,0.125826914 +MESDC2,Nucleolus,-0.280268437 +CTSD,Nucleolus,-1.617158405 +STK11,Nucleolus,0.894337682 +KMT2A,Nucleolus,0.611726303 +KPTN,Nucleolus,0.40410278 +KIF14,Nucleolus,1.106935355 +ATF6,Nucleolus,-0.631106548 +FASTKD2,Nucleolus,0.797118068 +NRP2,Nucleolus,-1.156334799 +CREB1,Nucleolus,0.761770792 +B4GALT6,Nucleolus,0.212648175 +ELOVL4,Nucleolus,-0.555563059 +CASP8AP2,Nucleolus,1.010844224 +PHF3,Nucleolus,1.11553838 +PLAGL1,Nucleolus,0.874280755 +FBXO30,Nucleolus,0.363024815 +TMEM5,Nucleolus,1.645985549 +ZNF430,Nucleolus,0.581529312 +DCLRE1B,Nucleolus,-1.319299652 +PKD2,Nucleolus,1.274632238 +UBN1,Nucleolus,0.497639069 +KLF12,Nucleolus,0.209193013 +WDR35,Nucleolus,1.055248692 +CCND2,Nucleolus,1.141700523 +SATB2,Nucleolus,-0.195347259 +SENP5,Nucleolus,0.970552284 +C1orf198,Nucleolus,-1.050953087 +HEATR1,Nucleolus,0.873066144 +PTBP3,Nucleolus,1.035614621 +FAM206A,Nucleolus,0.924471841 +RBM18,Nucleolus,-0.785300278 +MAPKAP1,Nucleolus,0.202662026 +KDSR,Nucleolus,-0.439550796 +ONECUT2,Nucleolus,0.834917796 +IRF2BPL,Nucleolus,-1.569927593 +AREL1,Nucleolus,0.238026295 +ABCD4,Nucleolus,-0.072820469 +RBM25,Nucleolus,1.346292217 +NRDE2,Nucleolus,0.711902314 +KLHL29,Nucleolus,0.962635075 +DNMT3A,Nucleolus,1.918248982 +ATAD2B,Nucleolus,0.57261033 +ATL2,Nucleolus,0.407760254 +YIPF4,Nucleolus,0.788236772 +AFTPH,Nucleolus,1.072479989 +BCL11A,Nucleolus,0.878166057 +SLC17A5,Nucleolus,-0.020704074 +FAM178A,Nucleolus,0.023534399 +GPAM,Nucleolus,-0.588011321 +HELLS,Nucleolus,0.896682663 +TCTN3,Nucleolus,-1.379575665 +C10orf76,Nucleolus,-0.4266106 +HOXB8,Nucleolus,-0.810248244 +HOXB3,Nucleolus,1.274156149 +PANK3,Nucleolus,1.460880398 +NUP43,Nucleolus,0.923000388 +LRP11,Nucleolus,-0.54778116 +MASTL,Nucleolus,0.486796173 +ELF1,Nucleolus,0.34995435 +EGR1,Nucleolus,-2.266084072 +NR2C1,Nucleolus,0.373611419 +MTERFD3,Nucleolus,1.326017883 +CLU,Nucleolus,-2.55134513 +TNFRSF10B,Nucleolus,-1.176531618 +TARDBP,Nucleolus,0.386302701 +CRISPLD1,Nucleolus,1.070966876 +AKAP1,Nucleolus,-0.035763924 +TRIM25,Nucleolus,0.394323721 +KIAA0922,Nucleolus,-0.386496833 +PAPD5,Nucleolus,0.704882569 +CEP89,Nucleolus,0.655091422 +B4GALT4,Nucleolus,0.159423484 +KIF18A,Nucleolus,1.290827803 +CRY2,Nucleolus,-6.850937775 +ZNF639,Nucleolus,1.27570932 +PDS5A,Nucleolus,0.646912785 +CLCC1,Nucleolus,0.291309927 +ACVR2A,Nucleolus,0.361170227 +RPL21,Nucleolus,-0.110495929 +MTERFD2,Nucleolus,0.606268084 +KIAA1191,Nucleolus,-0.281373048 +RBBP6,Nucleolus,0.978314078 +ZC3H7A,Nucleolus,1.040858513 +FAM35A,Nucleolus,0.360021164 +FAM213A,Nucleolus,-0.671988078 +ODF2L,Nucleolus,1.189710424 +TRMT13,Nucleolus,1.175793401 +RPAP2,Nucleolus,0.862017175 +FAM126A,Nucleolus,-0.017438303 +FKBP9,Nucleolus,0.010334314 +POLM,Nucleolus,-0.13317147 +SLC25A51,Nucleolus,0.8471395 +DCAF10,Nucleolus,0.838624272 +KIAA1549,Nucleolus,0.407814948 +CALD1,Nucleolus,0.074035847 +CHST3,Nucleolus,-2.03521787 +P4HA1,Nucleolus,-0.598311599 +RBM19,Nucleolus,0.527939185 +GIPC1,Nucleolus,-1.332409668 +ATP7B,Nucleolus,0.335868783 +ZC3H13,Nucleolus,0.702773617 +NLN,Nucleolus,0.944786462 +CENPK,Nucleolus,0.796286244 +OPTN,Nucleolus,-5.358128353 +SPATS2,Nucleolus,0.848684494 +LRP1,Nucleolus,-1.660060952 +HJURP,Nucleolus,-0.301803649 +USP45,Nucleolus,0.913300859 +SLC36A1,Nucleolus,0.076977428 +LPGAT1,Nucleolus,0.897328178 +EXOSC9,Nucleolus,1.1071098 +PLA2G12A,Nucleolus,0.606266728 +ADCK4,Nucleolus,-0.515231901 +PFKFB2,Nucleolus,1.066645798 +AGO2,Nucleolus,0.742566215 +MXD4,Nucleolus,0.27981196 +ACSL3,Nucleolus,-0.022413529 +SLC12A4,Nucleolus,-0.78392326 +FAM210B,Nucleolus,-0.45915786 +SDC4,Nucleolus,-1.008574936 +NCOA3,Nucleolus,1.139564211 +PIGT,Nucleolus,-0.744209225 +VAPB,Nucleolus,0.229024956 +CHD6,Nucleolus,0.769143081 +SRSF6,Nucleolus,0.754452305 +RAB22A,Nucleolus,1.366309627 +STX16,Nucleolus,0.879813988 +STAMBP,Nucleolus,0.769776783 +NAGK,Nucleolus,-0.868517632 +PAIP2B,Nucleolus,0.569886514 +ATP8A1,Nucleolus,0.909066881 +BTN2A2,Nucleolus,0.345153962 +ABCC10,Nucleolus,-0.520854901 +AARS2,Nucleolus,-1.225867457 +ZNF391,Nucleolus,-0.10864286 +CDKN1A,Nucleolus,-3.16503486 +SSR1,Nucleolus,0.204912297 +NRN1,Nucleolus,0.397246399 +ATXN1,Nucleolus,0.534856455 +EEF1E1,Nucleolus,0.248386723 +LRRFIP1,Nucleolus,0.615483004 +AHNAK,Nucleolus,0.150832419 +ABCC4,Nucleolus,-0.175054482 +EFNB2,Nucleolus,-0.341046155 +ATP5S,Nucleolus,1.213617353 +FAM193A,Nucleolus,0.647740017 +GGA3,Nucleolus,-0.314737344 +GTF3C4,Nucleolus,0.553898599 +PPP1R12C,Nucleolus,-0.288302794 +MBOAT7,Nucleolus,-0.681985398 +CCDC93,Nucleolus,0.80209123 +THOC2,Nucleolus,0.756591937 +MED1,Nucleolus,0.045705669 +GPR108,Nucleolus,-1.469354331 +GPCPD1,Nucleolus,0.738713037 +PANK2,Nucleolus,0.514546921 +NAPB,Nucleolus,1.67112543 +TMX4,Nucleolus,0.133177553 +RRBP1,Nucleolus,-0.086181994 +ZNF133,Nucleolus,0.397670178 +MCM8,Nucleolus,0.166078195 +NCLN,Nucleolus,-0.745198288 +ZNF436,Nucleolus,0.49857668 +AMOT,Nucleolus,0.070672748 +TMEM115,Nucleolus,-0.357239557 +AGO3,Nucleolus,1.828388033 +HECTD3,Nucleolus,0.044269813 +KLC1,Nucleolus,1.025956032 +XRCC3,Nucleolus,0.640651791 +TUBGCP3,Nucleolus,0.821713423 +PCID2,Nucleolus,0.690361835 +FRMD8,Nucleolus,-0.904379273 +PCNXL4,Nucleolus,0.85001955 +ATG14,Nucleolus,1.29723796 +KTN1,Nucleolus,0.549853669 +PLEKHG3,Nucleolus,0.686457388 +WDR60,Nucleolus,1.255336823 +AIF1L,Nucleolus,0.032451689 +SLC10A3,Nucleolus,-3.839349501 +CANX,Nucleolus,0.450254759 +CPSF3L,Nucleolus,1.183588499 +TRAF2,Nucleolus,-2.172343593 +HELB,Nucleolus,1.201978576 +DYRK2,Nucleolus,0.472000247 +LRRC61,Nucleolus,0.257539255 +FGFRL1,Nucleolus,-0.215197375 +EMC1,Nucleolus,-0.436154116 +HP1BP3,Nucleolus,0.411135274 +SIN3B,Nucleolus,0.087486817 +SLC35E1,Nucleolus,0.155221032 +GFER,Nucleolus,-0.3446325 +PKMYT1,Nucleolus,0.438702334 +CHTF18,Nucleolus,0.784015733 +MACF1,Nucleolus,-0.435241966 +RNF6,Nucleolus,0.192556449 +AKAP9,Nucleolus,0.881533704 +HIP1,Nucleolus,-0.4432705 +POR,Nucleolus,-0.93603078 +PEX1,Nucleolus,1.152616611 +LRFN1,Nucleolus,-0.726691607 +SRD5A3,Nucleolus,0.927632371 +PPAT,Nucleolus,0.82486349 +TUBGCP6,Nucleolus,1.357114894 +DGCR8,Nucleolus,1.201717593 +TPST2,Nucleolus,-1.607188537 +MPST,Nucleolus,0.023045037 +SPECC1,Nucleolus,-0.451849174 +NAA38,Nucleolus,-0.524745117 +PRKRIP1,Nucleolus,0.278878321 +PODXL,Nucleolus,0.009582794 +STRIP2,Nucleolus,-1.384437438 +MKLN1,Nucleolus,1.060355276 +CALU,Nucleolus,-0.189696278 +CCDC136,Nucleolus,-0.239084543 +SMO,Nucleolus,-0.537071541 +KLHDC10,Nucleolus,0.558653358 +OSGEPL1,Nucleolus,1.025242389 +HOXD10,Nucleolus,2.144383975 +HOXD11,Nucleolus,0.486509506 +HERC2,Nucleolus,0.760241637 +TWSG1,Nucleolus,0.31760173 +MYO5C,Nucleolus,1.048552861 +TMOD2,Nucleolus,-1.473590173 +TTBK2,Nucleolus,0.61117121 +IVD,Nucleolus,0.526374328 +CLN6,Nucleolus,-0.139793105 +ARPP19,Nucleolus,0.258492909 +VPS13C,Nucleolus,0.974532113 +SUMF2,Nucleolus,0.232122316 +SPCS3,Nucleolus,0.230787517 +RPAIN,Nucleolus,0.636773112 +PLD2,Nucleolus,-0.502707946 +MPDU1,Nucleolus,-1.304500156 +CCNT1,Nucleolus,0.42886468 +PUS7L,Nucleolus,1.449626125 +KRI1,Nucleolus,-0.191753406 +SLC44A2,Nucleolus,-0.561861759 +BCL2L2,Nucleolus,1.083573801 +PARP2,Nucleolus,0.869489281 +TEP1,Nucleolus,-0.693647509 +MAP7D3,Nucleolus,0.496449 +ABHD17A,Nucleolus,1.54249005 +ERMARD,Nucleolus,0.906267278 +SAT1,Nucleolus,0.952936586 +GNL3L,Nucleolus,1.137125259 +SH3BP4,Nucleolus,0.699961164 +LDLR,Nucleolus,0.630893193 +PRKCSH,Nucleolus,-0.684152227 +THEM6,Nucleolus,-0.64315137 +PVRL2,Nucleolus,-0.470960645 +SAFB2,Nucleolus,0.31608442 +KIF1A,Nucleolus,-0.380345017 +COLGALT1,Nucleolus,-0.466713562 +MLLT1,Nucleolus,-0.021316236 +MLLT4,Nucleolus,0.951704805 +ACTN4,Nucleolus,-0.330095246 +NDUFA10,Nucleolus,0.210768309 +ZSWIM6,Nucleolus,0.690510732 +PXDN,Nucleolus,-0.145418001 +COL5A1,Nucleolus,-0.252550777 +ZNF337,Nucleolus,1.303286233 +TAF4,Nucleolus,1.142906243 +LAMA5,Nucleolus,-0.268615108 +EXOSC2,Nucleolus,0.24293452 +POMT1,Nucleolus,0.806753373 +PRRC2B,Nucleolus,0.187050557 +YIPF2,Nucleolus,-0.816044622 +ZC3H4,Nucleolus,0.518863409 +CLIP1,Nucleolus,0.226549188 +HIP1R,Nucleolus,-1.319339768 +PPAN,Nucleolus,1.050135656 +SLC6A8,Nucleolus,0.047030379 +PLXNA3,Nucleolus,1.233936066 +PRRG1,Nucleolus,0.670633229 +AKAP12,Nucleolus,0.49780253 +RBM39,Nucleolus,0.617911067 +GGT7,Nucleolus,0.645600875 +PPT1,Nucleolus,-0.313384372 +RLIM,Nucleolus,0.661300163 +ABCB7,Nucleolus,0.302506286 +MRPS25,Nucleolus,0.52205704 +CAPN7,Nucleolus,0.973902303 +ZFYVE20,Nucleolus,0.925914388 +SLC6A6,Nucleolus,0.779690518 +MGAT1,Nucleolus,-0.356062363 +PSMC3IP,Nucleolus,1.025335299 +DIAPH1,Nucleolus,-0.134648129 +NDFIP1,Nucleolus,-0.736500954 +ACAP3,Nucleolus,0.507332219 +C1orf159,Nucleolus,0.240685715 +MAP1B,Nucleolus,0.416745597 +IL13RA1,Nucleolus,-0.086846121 +WDR44,Nucleolus,0.331274997 +PRKAB2,Nucleolus,0.092062516 +CLUHP3,Nucleolus,1.733488439 +CHSY1,Nucleolus,0.138317006 +SNRPA1,Nucleolus,1.388772922 +FBXW9,Nucleolus,1.106516393 +RFX1,Nucleolus,-1.586834747 +CC2D1A,Nucleolus,-0.569859142 +NUP210,Nucleolus,-0.212467545 +ENOSF1,Nucleolus,1.770339849 +EMILIN2,Nucleolus,-2.920723588 +PRKAA1,Nucleolus,1.126392016 +PNISR,Nucleolus,1.644423972 +ZRANB2,Nucleolus,1.239740161 +KDM6B,Nucleolus,0.173965098 +GPS2,Nucleolus,1.53733504 +VPS13B,Nucleolus,0.47714373 +REEP2,Nucleolus,0.193580522 +PRMT7,Nucleolus,0.282538168 +PCED1A,Nucleolus,0.203156309 +PTPRA,Nucleolus,-0.37364919 +KIAA0907,Nucleolus,1.727392324 +DCAF8,Nucleolus,1.802630296 +IGHMBP2,Nucleolus,-0.420566772 +LPIN3,Nucleolus,-1.554592047 +SERINC3,Nucleolus,0.273891011 +FBXO44,Nucleolus,-0.935288771 +USPL1,Nucleolus,1.030137916 +XPO4,Nucleolus,0.762971927 +SCO1,Nucleolus,0.958584717 +MPRIP,Nucleolus,0.557216975 +DSTYK,Nucleolus,0.43998099 +SLC41A1,Nucleolus,-0.453423447 +GPALPP1,Nucleolus,1.490378656 +IRS4,Nucleolus,0.095038735 +FAM104A,Nucleolus,1.787304671 +SLC39A11,Nucleolus,-1.347525947 +EPHB2,Nucleolus,-0.658178329 +SRRM1,Nucleolus,1.123437392 +SUV420H2,Nucleolus,-0.495424938 +WDR74,Nucleolus,0.470629324 +RTN3,Nucleolus,-0.325879076 +MORC2,Nucleolus,0.790932642 +LARGE,Nucleolus,0.427050995 +ADCK2,Nucleolus,-1.512402749 +AGAP3,Nucleolus,0.035882086 +KRBA1,Nucleolus,0.760626004 +ZNF767,Nucleolus,1.299636053 +ATP13A3,Nucleolus,0.604163654 +TMEM254,Nucleolus,-0.521494203 +TMTC1,Nucleolus,0.047018885 +KRAS,Nucleolus,0.83596992 +SWAP70,Nucleolus,0.923626608 +ZFC3H1,Nucleolus,1.038138734 +TEX15,Nucleolus,1.083923817 +CTIF,Nucleolus,0.378354507 +VHL,Nucleolus,0.519158325 +ARL8B,Nucleolus,-0.576019753 +EDEM1,Nucleolus,0.115397497 +PRPF38B,Nucleolus,0.850982886 +SORT1,Nucleolus,-0.489243251 +PTGFRN,Nucleolus,-0.061581791 +NOTCH2,Nucleolus,0.215695146 +CEPT1,Nucleolus,0.67647869 +AP4B1,Nucleolus,0.648975776 +SPIRE1,Nucleolus,0.488711795 +SLC38A2,Nucleolus,0.254492998 +KIDINS220,Nucleolus,0.034216303 +ROCK2,Nucleolus,0.610796722 +LPIN1,Nucleolus,0.288107686 +IL6ST,Nucleolus,-0.216056503 +TMEM241,Nucleolus,1.198622754 +LRP4,Nucleolus,0.588141714 +DDB2,Nucleolus,-1.102011059 +ACP2,Nucleolus,-1.248289545 +AGO4,Nucleolus,0.136331725 +HOOK1,Nucleolus,0.605967037 +DSC2,Nucleolus,0.541451933 +DSC3,Nucleolus,0.320660625 +DTNA,Nucleolus,0.431096865 +FHOD3,Nucleolus,1.068566273 +FADS2,Nucleolus,-0.50246354 +CLOCK,Nucleolus,-0.191344779 +COL4A2,Nucleolus,-0.51711284 +DZIP1,Nucleolus,0.891684017 +UBAC2,Nucleolus,-1.04753599 +ARGLU1,Nucleolus,1.411872642 +BIVM,Nucleolus,1.34426173 +ARHGAP32,Nucleolus,0.305002364 +TMED7,Nucleolus,0.431773654 +APC,Nucleolus,0.533046693 +WDR36,Nucleolus,0.860951381 +NAA35,Nucleolus,0.8959681 +TMEM2,Nucleolus,0.222366945 +GOLM1,Nucleolus,-0.128874922 +TAOK3,Nucleolus,1.477342915 +DMTF1,Nucleolus,1.521097894 +TMEM243,Nucleolus,0.825168652 +PNPLA8,Nucleolus,0.260266216 +MDFIC,Nucleolus,-0.417779372 +ANKRD6,Nucleolus,1.615665924 +KIAA1009,Nucleolus,1.554467939 +SNX14,Nucleolus,-0.878785623 +EPHA7,Nucleolus,-0.324142431 +DNAJC14,Nucleolus,-0.419156894 +GDF11,Nucleolus,-0.095813659 +TROAP,Nucleolus,0.585032122 +TSPAN31,Nucleolus,-0.353655408 +TFCP2,Nucleolus,1.11934915 +PAN2,Nucleolus,1.040709055 +HNRNPA1,Nucleolus,0.802347071 +ACVR1B,Nucleolus,0.222771674 +OS9,Nucleolus,-1.358371156 +MAP7,Nucleolus,-0.353983933 +CD164,Nucleolus,0.16642099 +NHSL1,Nucleolus,1.266596578 +AHI1,Nucleolus,1.098618477 +SEMA4F,Nucleolus,-1.060960041 +RAB11FIP5,Nucleolus,-0.487682574 +CCDC142,Nucleolus,0.481572382 +GNS,Nucleolus,0.34819076 +MDM2,Nucleolus,0.265150842 +KLHL36,Nucleolus,0.32083656 +DYNC1LI2,Nucleolus,0.80937517 +EGLN1,Nucleolus,0.781270206 +ABCB10,Nucleolus,0.247001958 +TAF5L,Nucleolus,0.535568171 +STX6,Nucleolus,0.540097079 +CEP350,Nucleolus,0.644448758 +LAMC1,Nucleolus,0.231352848 +RC3H1,Nucleolus,1.128487501 +TTLL4,Nucleolus,0.740269511 +USP37,Nucleolus,0.396626804 +ITM2C,Nucleolus,-0.99850203 +SERPINE2,Nucleolus,-0.850889662 +TMEM127,Nucleolus,0.312483516 +GCC2,Nucleolus,0.511190623 +C2orf49,Nucleolus,0.343529851 +EPC2,Nucleolus,1.083592121 +ARHGEF4,Nucleolus,1.050999079 +ALDH1L2,Nucleolus,0.952476648 +CKAP4,Nucleolus,-0.593928136 +NEK3,Nucleolus,0.573917278 +RCBTB1,Nucleolus,0.375356887 +COG3,Nucleolus,-0.06093385 +SCRN1,Nucleolus,-0.293146199 +CHST12,Nucleolus,0.358365481 +KDELR2,Nucleolus,-0.379349794 +NUPL2,Nucleolus,0.313670297 +DBNL,Nucleolus,0.199177222 +TTYH3,Nucleolus,-0.37372738 +IREB2,Nucleolus,1.026770693 +RSAD1,Nucleolus,0.794025349 +VEZF1,Nucleolus,0.545492075 +TEX2,Nucleolus,-0.321307055 +BRIP1,Nucleolus,1.031732524 +SKIL,Nucleolus,1.068972797 +RPS6KC1,Nucleolus,-0.657002965 +BIN1,Nucleolus,-1.068538647 +HS6ST1,Nucleolus,-0.227867875 +UGGT1,Nucleolus,0.259318794 +DNAJC1,Nucleolus,-0.512515668 +LRRC8A,Nucleolus,-0.440590656 +CDK9,Nucleolus,-1.122387175 +TOR1B,Nucleolus,-0.757936238 +SMC2,Nucleolus,0.794558683 +TOR1A,Nucleolus,-0.200581996 +RALGPS1,Nucleolus,1.389557446 +FAM129B,Nucleolus,-0.249767035 +SLC2A8,Nucleolus,0.447250764 +SLC31A1,Nucleolus,0.253237952 +ZNF189,Nucleolus,1.11384538 +STX17,Nucleolus,0.541102173 +TSTD2,Nucleolus,0.336888989 +LMX1B,Nucleolus,0.866271729 +RANBP6,Nucleolus,0.343681672 +TLN1,Nucleolus,-0.490355599 +ALDH1B1,Nucleolus,-0.445197603 +CNPY3,Nucleolus,-0.112396641 +TMEM63B,Nucleolus,-0.04529481 +TJAP1,Nucleolus,-0.010577676 +SLC22A23,Nucleolus,-0.058997519 +FOXF2,Nucleolus,-0.178795834 +RIPK1,Nucleolus,-0.131945323 +ATAT1,Nucleolus,1.11654703 +NRM,Nucleolus,-0.791687336 +VARS2,Nucleolus,0.438446366 +FAM8A1,Nucleolus,0.167858732 +PRKRIR,Nucleolus,0.512794909 +CREBZF,Nucleolus,1.417807876 +PRCP,Nucleolus,-0.276109318 +RNF121,Nucleolus,-0.26353332 +SULF1,Nucleolus,0.585471719 +SORL1,Nucleolus,-1.268493674 +YAP1,Nucleolus,-0.120221666 +RDX,Nucleolus,0.539858603 +MAP2K5,Nucleolus,1.044629517 +MAPKBP1,Nucleolus,0.664361415 +CASC5,Nucleolus,0.122737868 +HAUS2,Nucleolus,-0.363478533 +PARP6,Nucleolus,1.036126437 +TUBGCP4,Nucleolus,1.035792806 +RMDN3,Nucleolus,-0.410382809 +UACA,Nucleolus,0.904541689 +SMAD6,Nucleolus,1.9001454 +ADAM10,Nucleolus,0.906239183 +TTLL7,Nucleolus,1.45195989 +FNBP1L,Nucleolus,-0.033771918 +RABGGTB,Nucleolus,0.547794999 +ARHGAP29,Nucleolus,1.248554124 +SLC44A5,Nucleolus,0.044011282 +DBT,Nucleolus,0.730144476 +EPT1,Nucleolus,0.342044351 +ADCY3,Nucleolus,0.200420418 +PNPT1,Nucleolus,-0.080570233 +THUMPD2,Nucleolus,0.417835504 +PREPL,Nucleolus,0.304371941 +ACTR1A,Nucleolus,-0.234825323 +TMEM180,Nucleolus,-0.089535841 +ATAD1,Nucleolus,0.727209104 +KIF20B,Nucleolus,1.168131825 +TET1,Nucleolus,-0.072818302 +DNA2,Nucleolus,1.126311325 +BARD1,Nucleolus,0.402566368 +NAB1,Nucleolus,0.122827706 +PPIG,Nucleolus,0.820179938 +FASTKD1,Nucleolus,1.33619839 +SSFA2,Nucleolus,0.974933887 +ITGAV,Nucleolus,0.217383734 +SLC35A5,Nucleolus,0.453716767 +SECISBP2L,Nucleolus,0.612893261 +SPPL2A,Nucleolus,-0.717066517 +GLCE,Nucleolus,0.326102055 +PPCDC,Nucleolus,0.115868241 +PCDH10,Nucleolus,-0.354370845 +AP1AR,Nucleolus,0.895985806 +FGF2,Nucleolus,0.860522276 +KIAA1109,Nucleolus,0.726243117 +LARP1B,Nucleolus,0.873359794 +BMP2K,Nucleolus,0.912868226 +FRAS1,Nucleolus,0.306495539 +SCARB2,Nucleolus,-0.253738906 +USO1,Nucleolus,0.498657065 +CENPE,Nucleolus,1.234574084 +GSTCD,Nucleolus,0.121546467 +LEF1,Nucleolus,0.611042488 +PPP3CA,Nucleolus,1.02398351 +FBN2,Nucleolus,-0.355601516 +MAPK8IP3,Nucleolus,1.634926253 +B4GALNT3,Nucleolus,0.307214755 +AEBP2,Nucleolus,1.148525576 +ETNK1,Nucleolus,0.563328069 +CLSTN3,Nucleolus,-0.574927933 +SCAF11,Nucleolus,1.039118906 +COL2A1,Nucleolus,-0.575214184 +LRIG3,Nucleolus,0.362329599 +TMEM19,Nucleolus,-0.676221928 +POC1B,Nucleolus,1.257981889 +TMTC3,Nucleolus,0.856648162 +GAS2L3,Nucleolus,1.816859317 +SLC15A4,Nucleolus,0.374920669 +TDG,Nucleolus,0.90119641 +NUPL1,Nucleolus,0.813526493 +MTMR6,Nucleolus,-0.076571459 +SLC7A1,Nucleolus,0.527728048 +BRCA2,Nucleolus,1.651720408 +CERS5,Nucleolus,-0.633990881 +ESYT1,Nucleolus,-0.744382523 +TMBIM6,Nucleolus,-0.549269893 +ANKRD52,Nucleolus,0.369391151 +ZNF740,Nucleolus,0.293163132 +HNRNPA1L2,Nucleolus,-0.690826077 +SBNO1,Nucleolus,1.115426571 +SETD1B,Nucleolus,-0.406532997 +RBM26,Nucleolus,1.210012488 +ZIC5,Nucleolus,0.583049148 +TMX1,Nucleolus,0.623995915 +NAA30,Nucleolus,0.950717793 +DCAF5,Nucleolus,0.539252039 +RAB15,Nucleolus,-0.558788265 +NIPA2,Nucleolus,0.244649996 +ZSCAN29,Nucleolus,-1.00329634 +BNIP2,Nucleolus,0.782963149 +MAN2C1,Nucleolus,1.236572642 +MESDC1,Nucleolus,0.376137068 +IGF1R,Nucleolus,0.567973977 +ARRDC4,Nucleolus,1.109488295 +PML,Nucleolus,-3.120519721 +LINS,Nucleolus,1.269633514 +PCSK6,Nucleolus,-0.248120042 +SCAMP2,Nucleolus,-1.357479205 +POLG,Nucleolus,0.41997438 +ABHD2,Nucleolus,-0.236912191 +TICRR,Nucleolus,-0.357328026 +MFGE8,Nucleolus,0.826903789 +FURIN,Nucleolus,-0.916461799 +IQGAP1,Nucleolus,0.252082637 +CRTC3,Nucleolus,0.106484452 +FTO,Nucleolus,-0.35393459 +MBTPS1,Nucleolus,-0.298242051 +RHOT2,Nucleolus,-0.022996577 +PDPK1,Nucleolus,0.292179476 +TCF25,Nucleolus,0.716920068 +GALNS,Nucleolus,-0.5782657 +GAS8,Nucleolus,1.405043643 +MED9,Nucleolus,0.373609737 +GID4,Nucleolus,1.011344125 +KSR1,Nucleolus,-0.554490211 +SGSM2,Nucleolus,0.963017616 +SSH2,Nucleolus,0.900832613 +PTRH2,Nucleolus,0.568145764 +SS18,Nucleolus,0.556048883 +SLC39A6,Nucleolus,0.05823821 +GALNT1,Nucleolus,0.243453074 +ESCO1,Nucleolus,1.009310592 +GREB1L,Nucleolus,0.718040069 +NPC1,Nucleolus,-1.286126717 +MINK1,Nucleolus,0.330423161 +TTYH2,Nucleolus,0.846868687 +CSNK1D,Nucleolus,0.885295228 +FOXK2,Nucleolus,-0.147564694 +TRIM65,Nucleolus,0.798387977 +RNF157,Nucleolus,-0.310170415 +CBX4,Nucleolus,-0.643240832 +MBD1,Nucleolus,0.183562793 +ZCCHC2,Nucleolus,0.329132103 +LEPREL4,Nucleolus,0.199495634 +FAM134C,Nucleolus,0.012574471 +ERBB2,Nucleolus,-0.833813778 +FKBP10,Nucleolus,-0.016451374 +PRDM15,Nucleolus,0.573579524 +DUS3L,Nucleolus,-0.910341636 +ATHL1,Nucleolus,1.333474514 +COL6A1,Nucleolus,-0.750211581 +IFNAR1,Nucleolus,-0.047295344 +COL6A2,Nucleolus,-0.394018797 +TMEM50B,Nucleolus,0.415072648 +APP,Nucleolus,-0.256834849 +URB1,Nucleolus,0.547740901 +CAPN10,Nucleolus,0.493189027 +ERVK3-1,Nucleolus,1.429404551 +SLC47A1,Nucleolus,-0.036270526 +RERE,Nucleolus,0.5380102 +EPHA2,Nucleolus,-0.14379985 +KIAA0319L,Nucleolus,-0.175497979 +PLK4,Nucleolus,1.293463151 +GPN2,Nucleolus,0.614636311 +PIGK,Nucleolus,-0.067007543 +PTPRF,Nucleolus,-0.403809893 +SYPL2,Nucleolus,0.518434566 +IGSF3,Nucleolus,-0.300135611 +CELSR2,Nucleolus,-0.187264454 +ATP1B1,Nucleolus,-0.835206687 +CREG1,Nucleolus,-0.467900526 +POU2F1,Nucleolus,0.734260693 +PPOX,Nucleolus,0.333475629 +USP21,Nucleolus,0.350280095 +PIGM,Nucleolus,0.607926905 +ABL2,Nucleolus,0.445392476 +XPR1,Nucleolus,0.23111406 +TOR1AIP1,Nucleolus,-0.582463006 +TUFT1,Nucleolus,-0.693008732 +TARS2,Nucleolus,-0.006830229 +CERS2,Nucleolus,-0.942733353 +SEMA6C,Nucleolus,0.74548701 +ATP8B2,Nucleolus,0.0178811 +ADAM15,Nucleolus,-1.26605848 +SLC39A1,Nucleolus,-1.03692814 +GATAD2B,Nucleolus,0.84605476 +HCN3,Nucleolus,-0.804603859 +GALNT2,Nucleolus,-0.12049374 +TTC13,Nucleolus,0.223937365 +MLK4,Nucleolus,1.041291984 +CEP170,Nucleolus,1.142856738 +SDE2,Nucleolus,0.4519192 +FBXO28,Nucleolus,0.721012372 +CDC42BPA,Nucleolus,1.021057717 +MBOAT2,Nucleolus,0.430235564 +PSEN2,Nucleolus,-0.536181153 +LBR,Nucleolus,-0.303930928 +RHOB,Nucleolus,-0.185944613 +ASXL2,Nucleolus,0.852096405 +ETAA1,Nucleolus,1.048339175 +ZNF514,Nucleolus,1.32060723 +SFXN5,Nucleolus,0.207701447 +TEX261,Nucleolus,-0.33924723 +RALB,Nucleolus,-2.256866559 +SLC20A1,Nucleolus,-0.334498443 +ZC3H8,Nucleolus,1.519428554 +UBXN4,Nucleolus,0.146185722 +AMMECR1L,Nucleolus,0.256223684 +GALNT13,Nucleolus,1.141162286 +SCRN3,Nucleolus,0.55140868 +KIAA1715,Nucleolus,0.265699791 +CDCA7,Nucleolus,0.152295245 +DLX1,Nucleolus,0.087703674 +GULP1,Nucleolus,-0.889157974 +FAM171B,Nucleolus,1.33608128 +CCDC150,Nucleolus,0.650403481 +SUMF1,Nucleolus,-0.667185677 +RHBDD1,Nucleolus,0.867599289 +FAM134A,Nucleolus,-0.682461898 +CTDSP1,Nucleolus,-0.95033757 +EAF1,Nucleolus,0.464918878 +GOLGA4,Nucleolus,0.671914502 +IQSEC1,Nucleolus,-0.023485197 +PTPRG,Nucleolus,0.122593956 +IL17RD,Nucleolus,-0.726815423 +ARL6IP5,Nucleolus,-0.51949491 +TMF1,Nucleolus,1.274220842 +LRIG1,Nucleolus,0.722580332 +LIMD1,Nucleolus,0.341728738 +NXPE3,Nucleolus,0.328886446 +SRPRB,Nucleolus,-0.085794091 +TCTA,Nucleolus,-0.546281256 +VPRBP,Nucleolus,1.005906989 +SLIT2,Nucleolus,0.076785093 +DGKQ,Nucleolus,0.608026129 +ATP10D,Nucleolus,0.790296056 +SCD5,Nucleolus,-1.600278491 +ENOPH1,Nucleolus,0.821011508 +TRMT10A,Nucleolus,1.043255238 +KLHL8,Nucleolus,0.090128119 +USP53,Nucleolus,1.023094844 +MARCH6,Nucleolus,0.287606374 +FAM105A,Nucleolus,-0.212587118 +PIK3R1,Nucleolus,0.697261115 +LHFPL2,Nucleolus,0.653350802 +IQGAP2,Nucleolus,0.673544633 +PPIP5K2,Nucleolus,0.7991488 +PAM,Nucleolus,-0.699244266 +BDP1,Nucleolus,0.780874727 +SLC30A5,Nucleolus,0.181042489 +ATG12,Nucleolus,0.357623051 +YIPF5,Nucleolus,-1.108156673 +RNF145,Nucleolus,-1.254504933 +FBXO38,Nucleolus,0.913298739 +PCYOX1L,Nucleolus,1.288831494 +TNIP1,Nucleolus,-0.744241728 +ZNF300,Nucleolus,0.431823707 +GFOD1,Nucleolus,0.631367382 +TRIM41,Nucleolus,0.640147316 +FAM193B,Nucleolus,0.656747505 +RNF44,Nucleolus,0.342069044 +MUT,Nucleolus,-1.304999051 +PHIP,Nucleolus,0.624166263 +MMS22L,Nucleolus,1.10207722 +PM20D2,Nucleolus,0.876006783 +RNF217,Nucleolus,1.120894698 +AIG1,Nucleolus,-1.31759202 +TMEM181,Nucleolus,0.52514123 +SDK1,Nucleolus,-1.144234668 +RBAK,Nucleolus,1.38831386 +CREB5,Nucleolus,1.170973351 +PURB,Nucleolus,1.490080655 +GBAS,Nucleolus,0.771601822 +ZNF92,Nucleolus,1.551567236 +TMEM168,Nucleolus,-0.282110235 +C7orf43,Nucleolus,0.076190666 +SLC12A9,Nucleolus,-1.153732896 +GIGYF1,Nucleolus,0.854206988 +TMEM209,Nucleolus,0.284699593 +NOM1,Nucleolus,0.902371426 +SH3KBP1,Nucleolus,1.001798826 +CASK,Nucleolus,0.212375971 +SLC16A2,Nucleolus,-0.311391613 +OGT,Nucleolus,1.258565819 +ZNF711,Nucleolus,0.441193826 +DIAPH2,Nucleolus,0.443342603 +CXorf57,Nucleolus,0.765764346 +GPC3,Nucleolus,-1.462867094 +BIN3,Nucleolus,-0.009879037 +SLC25A37,Nucleolus,1.343698994 +CHMP7,Nucleolus,0.77572201 +ERLIN2,Nucleolus,0.324159324 +TACC1,Nucleolus,0.147639511 +WHSC1L1,Nucleolus,0.773111781 +TERF1,Nucleolus,0.22559604 +MTDH,Nucleolus,0.384256875 +LRP12,Nucleolus,0.141086987 +EBAG9,Nucleolus,0.770440757 +UTP23,Nucleolus,1.273871567 +ZNF7,Nucleolus,1.042805233 +ARHGAP39,Nucleolus,-0.71520994 +NAPRT1,Nucleolus,0.323172668 +UHRF2,Nucleolus,1.308284073 +ZCCHC7,Nucleolus,1.036785512 +SIGMAR1,Nucleolus,-0.787759805 +CEP78,Nucleolus,0.803662007 +HIATL1,Nucleolus,-0.504567163 +INIP,Nucleolus,0.219927405 +UGCG,Nucleolus,0.763103805 +STOM,Nucleolus,-0.594648359 +MRRF,Nucleolus,0.268886547 +NR6A1,Nucleolus,0.545924871 +SURF4,Nucleolus,-0.267898095 +MED22,Nucleolus,-0.187196458 +SH3GLB2,Nucleolus,-0.095027171 +FAM73B,Nucleolus,-0.151694988 +GPR107,Nucleolus,0.286709605 +C9orf142,Nucleolus,-1.960697561 +INPP5E,Nucleolus,0.363064552 +DPH7,Nucleolus,-0.956626719 +NOTCH1,Nucleolus,-0.497432237 +NACC2,Nucleolus,0.632773976 +USP6NL,Nucleolus,0.25440428 +FAM171A1,Nucleolus,-0.125820993 +PARD3,Nucleolus,-0.025797512 +POLR3A,Nucleolus,0.497064734 +FRA10AC1,Nucleolus,1.021412145 +ADD3,Nucleolus,0.788797416 +DNAJB12,Nucleolus,0.154757638 +EIF4EBP2,Nucleolus,0.266511179 +MKI67,Nucleolus,1.031229705 +MTG1,Nucleolus,1.234328952 +PPRC1,Nucleolus,0.602224653 +ITPRIP,Nucleolus,0.493010405 +CNNM2,Nucleolus,-3.087222405 +PDCD11,Nucleolus,0.381764483 +LIN7C,Nucleolus,1.177882745 +DGKZ,Nucleolus,0.736862263 +TNKS1BP1,Nucleolus,0.393492361 +SLC43A1,Nucleolus,1.296826565 +PTPRJ,Nucleolus,-0.344115544 +CELF1,Nucleolus,0.636806258 +SESN3,Nucleolus,0.329338119 +ENDOD1,Nucleolus,-1.689741396 +SERPINH1,Nucleolus,-2.557386003 +NCAM1,Nucleolus,0.569180423 +NPAT,Nucleolus,1.150337918 +ATM,Nucleolus,1.124030824 +GLB1L2,Nucleolus,0.410329851 +HYOU1,Nucleolus,-0.256195449 +DAK,Nucleolus,0.351172886 +TMEM138,Nucleolus,0.724927343 +FADS1,Nucleolus,0.080474651 +EML3,Nucleolus,1.25551504 +B3GAT3,Nucleolus,-0.355658833 +SIDT2,Nucleolus,-1.560565568 +SOGA1,Nucleolus,1.649874399 +LSM14B,Nucleolus,0.35547769 +ORAOV1,Nucleolus,1.394653053 +TAOK2,Nucleolus,0.832259402 +ITGB1,Nucleolus,0.240798664 +ARID5B,Nucleolus,-4.444562829 +TMCO3,Nucleolus,0.148504534 +LATS2,Nucleolus,1.048982055 +LPHN3,Nucleolus,0.744721002 +PRSS23,Nucleolus,-1.71987457 +PIP4K2A,Nucleolus,0.458902247 +FREM2,Nucleolus,0.642499449 +CRIM1,Nucleolus,0.483678328 +IPMK,Nucleolus,0.503628803 +PLBD2,Nucleolus,0.205184444 +GXYLT1,Nucleolus,0.084010398 +CSNK1G3,Nucleolus,1.082830105 +MIPOL1,Nucleolus,1.331386588 +EXT2,Nucleolus,-1.113669113 +TMEM18,Nucleolus,1.029496698 +NEK7,Nucleolus,0.39373959 +FER,Nucleolus,0.710787138 +VIPAS39,Nucleolus,1.008604542 +ANKRD50,Nucleolus,0.668730787 +UPF2,Nucleolus,0.359981617 +EPS8,Nucleolus,0.781278293 +FAM160B1,Nucleolus,1.697835755 +ADAM17,Nucleolus,-0.023359859 +WWC2,Nucleolus,1.008590914 +BICD1,Nucleolus,0.558378168 +NBAS,Nucleolus,0.334215805 +GUF1,Nucleolus,0.866744081 +SACS,Nucleolus,1.409109533 +PABPC3,Nucleolus,0.353493265 +DST,Nucleolus,0.40434475 +TIAL1,Nucleolus,0.867823161 +TMEM56,Nucleolus,-0.924333127 +FAM168B,Nucleolus,0.168408983 +AC093838.4,Nucleolus,1.721307894 +MGAT5,Nucleolus,0.731196742 +GPATCH11,Nucleolus,0.167951901 +POU4F1,Nucleolus,0.604238219 +RNF219,Nucleolus,0.221616336 +EPG5,Nucleolus,0.342421814 +C18orf25,Nucleolus,0.847992299 +PDK1,Nucleolus,1.020211962 +PDE3B,Nucleolus,0.746931273 +TGOLN2,Nucleolus,0.21987448 +UHMK1,Nucleolus,0.843715579 +TADA1,Nucleolus,0.8172027 +CWF19L2,Nucleolus,1.110053291 +JMY,Nucleolus,0.257535076 +HOMER1,Nucleolus,1.261982494 +USP12,Nucleolus,0.485226609 +CCDC50,Nucleolus,1.323138561 +PAN3,Nucleolus,0.756991109 +TMEM123,Nucleolus,0.381364754 +GJA1,Nucleolus,-0.256979773 +SLC30A6,Nucleolus,-0.129327829 +SAR1B,Nucleolus,-0.751522226 +GPR180,Nucleolus,0.421325189 +UTRN,Nucleolus,0.286765328 +PTPRK,Nucleolus,-0.263929134 +PLOD2,Nucleolus,0.128704084 +GPR125,Nucleolus,0.303252635 +SREK1IP1,Nucleolus,0.881120244 +TXNDC11,Nucleolus,0.131097854 +BCL2L11,Nucleolus,0.439726793 +CLGN,Nucleolus,0.003688379 +RASSF3,Nucleolus,0.387070239 +RANBP2,Nucleolus,0.891289412 +TMEM87B,Nucleolus,0.084683118 +RBMS1,Nucleolus,0.179004587 +LPCAT1,Nucleolus,-0.208359439 +UBALD1,Nucleolus,1.442275221 +RMND5A,Nucleolus,0.485864308 +ZDHHC7,Nucleolus,-0.193134422 +TRIP12,Nucleolus,0.387911869 +CEBPG,Nucleolus,0.626727854 +SREK1,Nucleolus,1.269316145 +CHD1,Nucleolus,0.878724718 +DGKE,Nucleolus,1.002830973 +HS2ST1,Nucleolus,0.514915413 +MSI2,Nucleolus,0.643121476 +CACNA2D1,Nucleolus,0.813077352 +NUS1,Nucleolus,0.933551155 +IMPACT,Nucleolus,1.231811298 +TBCEL,Nucleolus,-0.031900352 +FAM105B,Nucleolus,0.357670244 +TBRG1,Nucleolus,1.315428704 +CC2D1B,Nucleolus,-1.069545861 +MIA3,Nucleolus,0.555167734 +TRIM11,Nucleolus,0.389585506 +CCSAP,Nucleolus,1.157823639 +CXADR,Nucleolus,0.521157661 +GABPA,Nucleolus,-0.0657086 +ADAMTS1,Nucleolus,0.112298733 +TSEN2,Nucleolus,0.720481705 +FLCN,Nucleolus,1.035453845 +SKA1,Nucleolus,0.04620718 +RAB6B,Nucleolus,0.218535725 +ACSS1,Nucleolus,0.828126187 +ANKRD40,Nucleolus,0.772302736 +VOPP1,Nucleolus,-1.415585566 +APOOL,Nucleolus,0.865925758 +CYP2U1,Nucleolus,0.84650341 +AGPAT5,Nucleolus,0.41735065 +MARVELD1,Nucleolus,-0.75845835 +ZFYVE27,Nucleolus,0.149971692 +SLC25A28,Nucleolus,1.310020843 +HSPA13,Nucleolus,0.595759747 +USP25,Nucleolus,1.216973812 +RHOC,Nucleolus,-1.176854286 +SLC16A1,Nucleolus,-0.168891725 +LARP1,Nucleolus,0.607608892 +MIER3,Nucleolus,0.345244071 +ZKSCAN2,Nucleolus,0.733044103 +PDIA4,Nucleolus,-0.441708039 +FAM126B,Nucleolus,-0.066661353 +FZD7,Nucleolus,1.124669467 +FMN2,Nucleolus,0.578344298 +PPARGC1B,Nucleolus,1.532309606 +SLC26A2,Nucleolus,0.355331781 +LSM11,Nucleolus,1.602999054 +PSD3,Nucleolus,-0.637168932 +DCK,Nucleolus,0.762924801 +ADAMTS3,Nucleolus,-0.761179306 +DPY19L4,Nucleolus,0.480177473 +NDUFAF6,Nucleolus,1.012368355 +N6AMT1,Nucleolus,1.37177572 +CDK20,Nucleolus,0.208640014 +PCGF6,Nucleolus,0.863483651 +ANKRD9,Nucleolus,0.335327244 +SFXN2,Nucleolus,0.535696755 +PTDSS1,Nucleolus,-0.309121031 +SUPV3L1,Nucleolus,0.297813253 +TYSND1,Nucleolus,-0.092645084 +CD109,Nucleolus,0.697347465 +ZDHHC5,Nucleolus,0.202758629 +ZFAND3,Nucleolus,-0.611757446 +NPTN,Nucleolus,-0.222657547 +KAT6B,Nucleolus,0.190676271 +SAMD8,Nucleolus,0.859745089 +BAG4,Nucleolus,0.195575285 +ATAD2,Nucleolus,0.836815439 +PHKG2,Nucleolus,0.374555583 +SASS6,Nucleolus,0.31932341 +ZIC3,Nucleolus,-1.805583758 +EXOG,Nucleolus,0.524657312 +SMG1,Nucleolus,0.789434523 +FCHO2,Nucleolus,1.321250788 +C1orf27,Nucleolus,1.258512544 +LRP8,Nucleolus,0.786074258 +PAXIP1,Nucleolus,0.736724301 +SSBP3,Nucleolus,-1.239987174 +CLDN12,Nucleolus,0.46510663 +GATAD1,Nucleolus,1.266371841 +ST3GAL2,Nucleolus,0.54506616 +FUK,Nucleolus,-1.296077411 +KIT,Nucleolus,-0.499763409 +AASDH,Nucleolus,1.096524567 +DYRK1A,Nucleolus,1.046335425 +TSPAN18,Nucleolus,0.6203193 +SLC35B2,Nucleolus,-1.078675467 +TMEM164,Nucleolus,0.423063747 +TAB3,Nucleolus,0.632374168 +SLC38A10,Nucleolus,-0.595600337 +ZNF618,Nucleolus,0.276270774 +C9orf91,Nucleolus,0.682839806 +UBN2,Nucleolus,1.501374644 +BRAF,Nucleolus,0.79669638 +SLC37A3,Nucleolus,0.023906425 +DPYSL5,Nucleolus,-0.155766208 +FAM213B,Nucleolus,-0.954815176 +C12orf43,Nucleolus,0.247485725 +RER1,Nucleolus,-0.496117518 +UBXN11,Nucleolus,-0.673427026 +RHPN1,Nucleolus,1.629872348 +CNNM4,Nucleolus,-0.300916306 +EYA3,Nucleolus,0.885667596 +MRAS,Nucleolus,-0.281868254 +COLEC12,Nucleolus,0.008431114 +CUL4B,Nucleolus,0.869913186 +MITD1,Nucleolus,-0.096007443 +EIF5B,Nucleolus,0.814272435 +TSPAN33,Nucleolus,-1.554421993 +AHCYL2,Nucleolus,0.289759204 +B4GALT5,Nucleolus,-0.208986328 +TSR2,Nucleolus,-0.376253305 +ZC3H18,Nucleolus,0.238414504 +TMED4,Nucleolus,-0.225644001 +PPP1R15B,Nucleolus,0.453601567 +AGPAT6,Nucleolus,0.265992428 +ZSCAN12,Nucleolus,1.473142418 +ELK4,Nucleolus,1.428088863 +F11R,Nucleolus,-2.268242156 +ZNF276,Nucleolus,1.269737646 +PINK1,Nucleolus,-0.721045084 +B4GALT3,Nucleolus,-0.892492482 +FAM160B2,Nucleolus,0.390290087 +CACHD1,Nucleolus,-0.453300589 +PAXBP1,Nucleolus,1.612212036 +IFNAR2,Nucleolus,0.029586284 +SON,Nucleolus,0.588407573 +SV2A,Nucleolus,0.246303442 +HLCS,Nucleolus,0.339437877 +ADPGK,Nucleolus,0.75992682 +ALDH4A1,Nucleolus,0.289601604 +STARD9,Nucleolus,0.62364486 +UBR1,Nucleolus,0.134811658 +AMFR,Nucleolus,-0.144292311 +RSPRY1,Nucleolus,0.836827524 +ARHGAP35,Nucleolus,-0.093921454 +CALM3,Nucleolus,-0.67034695 +IQCC,Nucleolus,1.121257348 +BSDC1,Nucleolus,1.174206325 +ATAD3B,Nucleolus,0.309499729 +VMA21,Nucleolus,0.30527603 +WDR4,Nucleolus,0.071030306 +CBS,Nucleolus,0.425533785 +PDXK,Nucleolus,1.032911247 +G6PD,Nucleolus,-1.586864844 +AGPAT3,Nucleolus,0.488127115 +C21orf2,Nucleolus,1.528048849 +LRRC3,Nucleolus,0.01390123 +LSS,Nucleolus,0.041055566 +VAV2,Nucleolus,-0.119928082 +MCM3AP,Nucleolus,0.85223974 +C21orf58,Nucleolus,1.465595369 +PCNT,Nucleolus,-0.224700606 +DIP2A,Nucleolus,0.020258999 +ZNF714,Nucleolus,1.342421355 +PKN3,Nucleolus,0.686259548 +TAOK1,Nucleolus,0.929606263 +SIK3,Nucleolus,0.896609428 +PCSK7,Nucleolus,1.003107285 +CHTOP,Nucleolus,-0.016508076 +ZBTB7B,Nucleolus,-0.459257178 +NLRX1,Nucleolus,-0.247254066 +ANO10,Nucleolus,-0.611017077 +SLC25A44,Nucleolus,-0.223326949 +NBEAL2,Nucleolus,0.573674824 +IER2,Nucleolus,-1.223499933 +ZNF394,Nucleolus,1.206903948 +CPSF4,Nucleolus,0.033721621 +TONSL,Nucleolus,0.258905685 +MUM1,Nucleolus,0.513259842 +RECQL4,Nucleolus,0.593187532 +LRRC14,Nucleolus,1.089702771 +PPP1R16A,Nucleolus,-3.583177173 +C5orf45,Nucleolus,1.092810271 +MFSD12,Nucleolus,-0.485047815 +FDXR,Nucleolus,-1.340405551 +ALDH16A1,Nucleolus,-0.803749535 +ITGA5,Nucleolus,-4.309184582 +ZNF385A,Nucleolus,-0.428334205 +MPP3,Nucleolus,1.791872787 +EMC10,Nucleolus,-0.73122206 +FAM171A2,Nucleolus,-2.702149975 +DBF4B,Nucleolus,0.532471604 +LARP4,Nucleolus,1.39837315 +LEMD2,Nucleolus,0.081449749 +WDR90,Nucleolus,1.325238431 +C16orf59,Nucleolus,-0.143499225 +AMDHD2,Nucleolus,1.427331217 +PAQR4,Nucleolus,-0.806937676 +ADCY9,Nucleolus,-0.713292253 +CLPB,Nucleolus,-0.267892506 +NEU3,Nucleolus,0.736970939 +CYB561A3,Nucleolus,-0.128132721 +TAF6L,Nucleolus,0.30232692 +LRP5,Nucleolus,-0.926789958 +ZYG11B,Nucleolus,0.490008665 +PPAP2B,Nucleolus,0.111020351 +PRKAA2,Nucleolus,1.14203867 +KLHL21,Nucleolus,0.390748452 +GMEB1,Nucleolus,0.523292973 +SEPN1,Nucleolus,-0.693250456 +AK4,Nucleolus,0.83132357 +RAVER2,Nucleolus,0.512895634 +PDPN,Nucleolus,-0.570212531 +SDC3,Nucleolus,0.263054552 +KIAA1522,Nucleolus,0.265885093 +C1orf86,Nucleolus,0.662482047 +NFIA,Nucleolus,0.630023591 +OMA1,Nucleolus,0.532606844 +MYSM1,Nucleolus,1.649162384 +FUBP1,Nucleolus,0.876165352 +DNAJB4,Nucleolus,-1.083778026 +FAM102B,Nucleolus,0.601287811 +ATXN7L2,Nucleolus,-0.426049548 +ZNF326,Nucleolus,0.341174531 +EXTL2,Nucleolus,-0.705113947 +SLC30A7,Nucleolus,-0.30126071 +PEA15,Nucleolus,-0.285804784 +NCSTN,Nucleolus,-0.533464965 +VANGL2,Nucleolus,-0.044255568 +FLVCR1,Nucleolus,0.716590791 +RBM15,Nucleolus,0.149658708 +BPNT1,Nucleolus,0.784808932 +BROX,Nucleolus,0.780248657 +ACP6,Nucleolus,-0.266871382 +PPP1R21,Nucleolus,1.417168466 +B3GALNT2,Nucleolus,1.209566078 +C2orf47,Nucleolus,1.080515975 +ARL5A,Nucleolus,0.459407123 +SGCB,Nucleolus,-0.517847893 +SMARCAD1,Nucleolus,0.981607913 +RNF149,Nucleolus,0.723974289 +FZD5,Nucleolus,0.645222448 +DCAF16,Nucleolus,0.987735483 +PAQR3,Nucleolus,0.762713254 +ANTXR2,Nucleolus,0.23024891 +PBXIP1,Nucleolus,0.028874084 +PYGO2,Nucleolus,0.35926623 +HIPK1,Nucleolus,-0.436058691 +KBTBD8,Nucleolus,0.594922741 +EOGT,Nucleolus,0.95680201 +POGLUT1,Nucleolus,1.126150783 +ATP1A1,Nucleolus,-0.207717257 +EIF4E3,Nucleolus,0.105591989 +LRRC58,Nucleolus,1.084742318 +FSTL1,Nucleolus,-0.022118729 +KRTCAP2,Nucleolus,-0.516643539 +KIAA1524,Nucleolus,0.865722038 +TGFBR2,Nucleolus,-1.464839195 +ANKZF1,Nucleolus,0.521124981 +STT3B,Nucleolus,-0.20335471 +PPM1L,Nucleolus,1.02052586 +RYBP,Nucleolus,0.20134527 +PPP4R2,Nucleolus,1.113942839 +C3orf17,Nucleolus,-0.231297801 +SPICE1,Nucleolus,-0.16878966 +WDFY3,Nucleolus,0.535837365 +ATXN7,Nucleolus,1.272294015 +PPM1K,Nucleolus,0.457249153 +CCNL1,Nucleolus,1.567091773 +RPP14,Nucleolus,0.719859381 +ABHD6,Nucleolus,-2.502039638 +CRELD1,Nucleolus,-1.042021454 +U2SURP,Nucleolus,1.013132877 +TTC14,Nucleolus,0.699285519 +SNRK,Nucleolus,0.736819453 +SLC4A1AP,Nucleolus,0.804276406 +ZDHHC3,Nucleolus,-0.006545916 +FYCO1,Nucleolus,0.936303262 +YEATS2,Nucleolus,0.313946597 +SNIP1,Nucleolus,0.861704079 +TMEM41A,Nucleolus,-0.005168329 +RPN1,Nucleolus,-0.799010821 +SFMBT1,Nucleolus,-0.483690419 +PBRM1,Nucleolus,0.075568799 +FAM208A,Nucleolus,1.135223864 +ARHGEF3,Nucleolus,-2.061666972 +UBXN7,Nucleolus,0.757550752 +ZNF691,Nucleolus,-7.00331692 +SGMS2,Nucleolus,0.086697901 +DNAJB14,Nucleolus,0.538580063 +ZNF589,Nucleolus,0.749573493 +SHISA5,Nucleolus,-0.272113163 +INTU,Nucleolus,-0.926652601 +RNF123,Nucleolus,0.268134534 +MFSD8,Nucleolus,-0.735459165 +C4orf29,Nucleolus,1.254174632 +RAD54L2,Nucleolus,0.764303687 +MAP9,Nucleolus,0.693399116 +CEP44,Nucleolus,0.456532709 +ABCE1,Nucleolus,0.775270734 +TMEM184C,Nucleolus,0.578028311 +TMEM161B,Nucleolus,-0.091101234 +ELOVL7,Nucleolus,-0.07815708 +LMBRD2,Nucleolus,1.363002658 +NIPBL,Nucleolus,0.484786642 +SLC25A46,Nucleolus,0.204167112 +STARD4,Nucleolus,0.441371671 +PGGT1B,Nucleolus,0.901054962 +NDUFS4,Nucleolus,0.772951342 +ARSK,Nucleolus,0.921047585 +GPX8,Nucleolus,0.104996244 +SERINC5,Nucleolus,-3.336234489 +GFM2,Nucleolus,0.351047832 +CCDC127,Nucleolus,0.225836897 +SEPT8,Nucleolus,-0.186699633 +DCBLD1,Nucleolus,-0.732382016 +PDSS2,Nucleolus,0.978432251 +STXBP5,Nucleolus,1.962773089 +DAGLB,Nucleolus,0.196107467 +GALNT10,Nucleolus,-0.171454931 +ZNF12,Nucleolus,1.539999842 +USP49,Nucleolus,1.316099824 +ZNF704,Nucleolus,0.625533433 +LMTK2,Nucleolus,0.477917969 +CTSB,Nucleolus,-0.860391079 +ADCY1,Nucleolus,0.622372985 +EN2,Nucleolus,0.783869148 +SUN1,Nucleolus,0.129881959 +OXR1,Nucleolus,0.327314118 +SLC4A2,Nucleolus,-0.732861086 +FASTK,Nucleolus,0.677633001 +TMUB1,Nucleolus,-1.454456149 +C7orf55,Nucleolus,-0.159925331 +FOXK1,Nucleolus,1.258490317 +FZD6,Nucleolus,-0.261355243 +KIAA1429,Nucleolus,0.94200368 +TMEM67,Nucleolus,1.584957122 +SNAPC3,Nucleolus,1.12258624 +KIAA1161,Nucleolus,-0.402890024 +METTL2B,Nucleolus,0.489672399 +HGSNAT,Nucleolus,0.231763823 +RASEF,Nucleolus,0.556186911 +ANKS6,Nucleolus,0.245603314 +TMEM246,Nucleolus,0.328516837 +ZHX1,Nucleolus,0.427769863 +KIAA1958,Nucleolus,0.910665017 +PIGA,Nucleolus,1.263197209 +WNK2,Nucleolus,0.186105736 +ATP7A,Nucleolus,0.285225736 +PIGO,Nucleolus,-0.153213603 +BRWD3,Nucleolus,0.752896446 +SLITRK5,Nucleolus,0.063089943 +DDX26B,Nucleolus,1.170192186 +MARCH8,Nucleolus,-0.120195897 +GTF2A1,Nucleolus,1.013476161 +ZCCHC24,Nucleolus,0.106687741 +REEP3,Nucleolus,-0.189812755 +MICU2,Nucleolus,0.81028455 +PCF11,Nucleolus,1.047235326 +PKNOX2,Nucleolus,-3.822361319 +ZNF22,Nucleolus,1.017857405 +RPUSD4,Nucleolus,-0.976766774 +ARF6,Nucleolus,0.7564025 +TTC8,Nucleolus,0.769202201 +CDX2,Nucleolus,0.60694435 +BEND7,Nucleolus,-0.042008355 +TAF3,Nucleolus,0.265262531 +PDZD8,Nucleolus,1.06897061 +ZNF503,Nucleolus,-0.919971375 +FAM175B,Nucleolus,0.668511393 +QSOX2,Nucleolus,0.375341289 +NSD1,Nucleolus,0.71968455 +SNAPC4,Nucleolus,0.326243634 +PMPCA,Nucleolus,0.013731198 +SDCCAG3,Nucleolus,0.759696386 +TSC1,Nucleolus,1.309270234 +FAM69B,Nucleolus,0.374795404 +KIAA1462,Nucleolus,-0.099025701 +ZNF219,Nucleolus,-0.427780771 +METTL3,Nucleolus,0.53235941 +HSPA12A,Nucleolus,1.349241368 +TC2N,Nucleolus,1.241172182 +CPSF2,Nucleolus,0.775919293 +ARL5B,Nucleolus,1.016157301 +TAF1D,Nucleolus,0.694226779 +HTRA1,Nucleolus,0.213044231 +CEP57,Nucleolus,0.382032023 +JAM3,Nucleolus,-0.272403966 +HIF1AN,Nucleolus,0.676342485 +ZFYVE19,Nucleolus,0.638996159 +FBN1,Nucleolus,-0.190265575 +BAG5,Nucleolus,0.434222542 +GABRB3,Nucleolus,0.846268403 +SGPL1,Nucleolus,-0.503711354 +FRS2,Nucleolus,0.454012808 +ZNF202,Nucleolus,-1.828786255 +STXBP4,Nucleolus,1.095530708 +CUL5,Nucleolus,1.16002057 +WBP1L,Nucleolus,-0.922583587 +TRIM44,Nucleolus,0.34929885 +TPP1,Nucleolus,-0.357853601 +C11orf74,Nucleolus,0.974270417 +TUB,Nucleolus,1.430025108 +RNF169,Nucleolus,1.141176389 +PRTG,Nucleolus,0.532276635 +TMEM41B,Nucleolus,0.517862321 +TMX3,Nucleolus,0.731061513 +WEE1,Nucleolus,1.09015504 +ZNF3,Nucleolus,0.798873307 +RIMKLB,Nucleolus,1.222175859 +TMED3,Nucleolus,-0.41898825 +NDEL1,Nucleolus,-0.308360053 +BLCAP,Nucleolus,0.241725453 +CASC4,Nucleolus,-0.054432172 +AP1G1,Nucleolus,0.341560402 +KIF7,Nucleolus,0.101586498 +PEX11A,Nucleolus,1.01277314 +ZBTB39,Nucleolus,0.754021478 +TMEM194A,Nucleolus,0.780352835 +SMAD3,Nucleolus,0.317494125 +MAP1A,Nucleolus,0.036136591 +MBD6,Nucleolus,0.169427874 +PDIA3,Nucleolus,-0.246219983 +ACSF2,Nucleolus,0.423783404 +COQ4,Nucleolus,0.31470315 +SLC27A4,Nucleolus,-1.004609617 +CERCAM,Nucleolus,-0.723655341 +DOLPP1,Nucleolus,-0.086473739 +GPRC5B,Nucleolus,0.719890302 +CRK,Nucleolus,0.547358656 +FBXO22,Nucleolus,0.900199745 +TBC1D2B,Nucleolus,0.67562919 +CDK12,Nucleolus,0.698599042 +ENGASE,Nucleolus,0.63089596 +TBC1D16,Nucleolus,-0.177278376 +ENTHD2,Nucleolus,0.12012216 +STIM1,Nucleolus,-0.495818068 +IRGQ,Nucleolus,1.416235767 +PPP2R3B,Nucleolus,0.080902941 +ZNF646,Nucleolus,0.389226709 +MIDN,Nucleolus,-0.289158077 +MVD,Nucleolus,-1.532434662 +ANKRD11,Nucleolus,0.218471135 +SPATA33,Nucleolus,-0.256348949 +ZNF641,Nucleolus,0.618747658 +DHRS13,Nucleolus,-0.051025459 +TP53I13,Nucleolus,-1.167444935 +KMT2D,Nucleolus,0.720824334 +C19orf55,Nucleolus,0.827050269 +LENG8,Nucleolus,1.624358014 +ZNF146,Nucleolus,0.895380782 +ZNF444,Nucleolus,1.124437774 +FAM57A,Nucleolus,-1.181270626 +SLC43A2,Nucleolus,-0.846970114 +SRR,Nucleolus,1.431582524 +GHDC,Nucleolus,-0.828141927 +ITFG3,Nucleolus,-0.953770999 +ZNF598,Nucleolus,0.135925441 +E4F1,Nucleolus,1.176141046 +ABCA3,Nucleolus,-0.427571311 +SRRM2,Nucleolus,0.8965995 +LTBP3,Nucleolus,0.748794218 +SAC3D1,Nucleolus,-1.851338791 +SF1,Nucleolus,-0.046194881 +PAFAH1B2,Nucleolus,0.340694377 +ANKS3,Nucleolus,1.281444687 +SETD5,Nucleolus,0.536307585 +HOOK3,Nucleolus,1.649573775 +RBPJ,Nucleolus,1.417286075 +TTC39C,Nucleolus,1.348071748 +KIF5C,Nucleolus,-0.941683086 +MGAT2,Nucleolus,-0.126133514 +BMI1,Nucleolus,0.763386226 +KCTD6,Nucleolus,1.424614838 +TAP1,Nucleolus,-0.794106869 +ING5,Nucleolus,0.546893117 +ATG4B,Nucleolus,-0.137494667 +SOGA2,Nucleolus,0.464867896 +SNRNP48,Nucleolus,0.621524322 +SLC20A2,Nucleolus,-0.410546381 +TMUB2,Nucleolus,0.611063455 +STAT3,Nucleolus,-0.490010548 +ADAM9,Nucleolus,-0.103735926 +PKIG,Nucleolus,-5.072867205 +SEMA4C,Nucleolus,0.619765728 +CNNM3,Nucleolus,-0.744002187 +TET2,Nucleolus,1.138468746 +TCTN2,Nucleolus,-0.340339085 +TSPAN5,Nucleolus,-0.299749291 +ZBTB5,Nucleolus,0.736639002 +SNTB2,Nucleolus,1.138209926 +ZNF507,Nucleolus,1.166730791 +STX18,Nucleolus,0.354262225 +GFM1,Nucleolus,0.216209714 +ANKRD49,Nucleolus,-0.7130385 +MAT2A,Nucleolus,1.234220619 +ZNF608,Nucleolus,-1.834150369 +LETM1,Nucleolus,0.00112151 +TMEM129,Nucleolus,0.317063565 +FEM1B,Nucleolus,1.014265787 +HNRNPH1,Nucleolus,0.811048517 +MECP2,Nucleolus,0.279670071 +UPF3A,Nucleolus,1.69742118 +CHST14,Nucleolus,-0.50472387 +PARM1,Nucleolus,0.206177645 +CSNK1G1,Nucleolus,0.409432262 +ZBTB43,Nucleolus,-0.166902902 +GPRIN1,Nucleolus,-1.19456679 +MRPL1,Nucleolus,0.837500874 +SLC33A1,Nucleolus,0.00905179 +SDC2,Nucleolus,0.688466233 +MMGT1,Nucleolus,0.133702062 +CLIC4,Nucleolus,0.368675051 +CCDC8,Nucleolus,-0.283151721 +INO80E,Nucleolus,0.612184184 +DFFB,Nucleolus,-0.272518655 +ANTXR1,Nucleolus,0.298990687 +CKAP2L,Nucleolus,0.46258371 +C15orf40,Nucleolus,-0.013970426 +HIC2,Nucleolus,0.33747684 +LUZP1,Nucleolus,1.325099485 +HEXDC,Nucleolus,1.942981422 +LRRC45,Nucleolus,0.787919701 +ASPSCR1,Nucleolus,1.299354708 +TAPT1,Nucleolus,-0.042557309 +CSGALNACT2,Nucleolus,0.469259749 +PCDH7,Nucleolus,-0.105531419 +ROBO1,Nucleolus,-0.21935146 +P2RY1,Nucleolus,1.453343119 +TPST1,Nucleolus,-2.422214892 +TOR1AIP2,Nucleolus,0.63123952 +OTUD3,Nucleolus,0.685114303 +GUSB,Nucleolus,0.101354887 +BRD3,Nucleolus,0.29884612 +MAP3K2,Nucleolus,1.436623591 +NLGN2,Nucleolus,-0.221759019 +ALCAM,Nucleolus,0.141394484 +YWHAG,Nucleolus,0.011972449 +TMEM192,Nucleolus,0.358110558 +ZNF778,Nucleolus,-1.153074688 +NIPA1,Nucleolus,0.391802377 +SIK2,Nucleolus,0.996545383 +RNF150,Nucleolus,0.020272279 +ZNF212,Nucleolus,0.534102036 +FAM161A,Nucleolus,1.482121958 +CRTAP,Nucleolus,0.063821414 +PRDM10,Nucleolus,0.741984603 +FOS,Nucleolus,-11.0353118 +TMED10,Nucleolus,-0.35387073 +SLC30A1,Nucleolus,-0.267033505 +DNAJC18,Nucleolus,-2.079141529 +RALGAPB,Nucleolus,0.705090796 +LONRF2,Nucleolus,0.947711342 +ELOVL6,Nucleolus,0.681737193 +ARL6IP1,Nucleolus,-0.22559642 +CDH2,Nucleolus,-0.2935502 +EMB,Nucleolus,0.930165351 +STAT2,Nucleolus,0.898851747 +TRABD,Nucleolus,-0.311442991 +POLH,Nucleolus,0.386850094 +KIF5B,Nucleolus,0.732343326 +AKAP13,Nucleolus,0.689980693 +CHCHD7,Nucleolus,0.821823518 +GPR27,Nucleolus,0.260909047 +KBTBD2,Nucleolus,0.837831523 +KIAA0232,Nucleolus,0.290680738 +TMEM43,Nucleolus,-0.792817032 +RNF139,Nucleolus,-0.263698587 +PAQR8,Nucleolus,-1.510220974 +TANC2,Nucleolus,0.537878923 +DNAJC24,Nucleolus,0.903718685 +HS6ST2,Nucleolus,-0.001082244 +INSR,Nucleolus,-0.323587399 +ATP6V0E2,Nucleolus,-1.654954466 +ZNF692,Nucleolus,-0.16941576 +NETO2,Nucleolus,0.332070378 +NPTX1,Nucleolus,0.996569832 +FAM98B,Nucleolus,0.907777005 +GAA,Nucleolus,0.051880929 +CANT1,Nucleolus,-0.314403809 +CHST11,Nucleolus,0.615785995 +CLCN5,Nucleolus,0.160249471 +ZBTB26,Nucleolus,-0.643952165 +ZNF562,Nucleolus,0.434664122 +ZNF318,Nucleolus,0.870451649 +WIPF2,Nucleolus,-0.631872134 +LRRC8C,Nucleolus,0.686764836 +LRRC8D,Nucleolus,0.273846701 +ETFDH,Nucleolus,0.743964682 +LPAR3,Nucleolus,-0.760225318 +CLSTN1,Nucleolus,-0.131707988 +BPTF,Nucleolus,0.791745848 +ATF7IP,Nucleolus,0.272307844 +TCEA2,Nucleolus,-0.263563901 +ANO5,Nucleolus,1.046224704 +MLLT3,Nucleolus,-0.156366709 +PRNP,Nucleolus,-0.108493877 +ZNF217,Nucleolus,0.990263102 +JMJD1C,Nucleolus,0.720267825 +THOP1,Nucleolus,-0.074325693 +ORMDL3,Nucleolus,0.015578865 +KLF11,Nucleolus,1.281955427 +MTBP,Nucleolus,0.993768482 +ZNF131,Nucleolus,1.227674891 +BSG,Nucleolus,-0.942737929 +CERS6,Nucleolus,-0.015207628 +TP53RK,Nucleolus,0.013305788 +FAM195A,Nucleolus,0.612368695 +GTPBP2,Nucleolus,0.058714096 +ZNF24,Nucleolus,0.735818405 +MANEA,Nucleolus,0.296407239 +RAD9A,Nucleolus,0.910492388 +FAM21C,Nucleolus,0.7812174 +CORO1B,Nucleolus,-0.594730528 +LRRC20,Nucleolus,-0.317238458 +NAA16,Nucleolus,0.930438831 +DCP2,Nucleolus,0.985751173 +CES3,Nucleolus,-0.379634836 +CES2,Nucleolus,0.320725599 +PDP2,Nucleolus,0.985032972 +SP3,Nucleolus,1.038431311 +METAP1D,Nucleolus,1.007709046 +ZNF621,Nucleolus,1.818404399 +NADSYN1,Nucleolus,-0.107471669 +DHCR7,Nucleolus,-0.714267377 +NBEA,Nucleolus,1.23752691 +ANKRD13D,Nucleolus,1.001578434 +LCLAT1,Nucleolus,0.383912721 +TADA2B,Nucleolus,-0.35878058 +HECTD4,Nucleolus,0.051177721 +ESRRA,Nucleolus,1.16784806 +AHSA2,Nucleolus,2.033330682 +VANGL1,Nucleolus,-0.176903847 +IQCB1,Nucleolus,0.860002127 +GOLGB1,Nucleolus,0.73802919 +TNKS,Nucleolus,1.088758215 +ZBTB21,Nucleolus,0.855908452 +STOX2,Nucleolus,0.185413781 +DAG1,Nucleolus,-0.622283854 +RNF26,Nucleolus,-0.867246268 +PEAK1,Nucleolus,0.990474916 +TNFRSF10D,Nucleolus,-1.585385431 +MOB1B,Nucleolus,1.160980537 +SNX33,Nucleolus,0.166011088 +CHD2,Nucleolus,0.546416126 +CCDC41,Nucleolus,1.536529409 +PC,Nucleolus,0.382476692 +SUSD5,Nucleolus,-0.527972015 +HEG1,Nucleolus,-0.929494042 +TOMM20,Nucleolus,0.052594894 +CNP,Nucleolus,-0.571631593 +DPY19L1,Nucleolus,-0.409387946 +ZNF791,Nucleolus,1.008060367 +PHC3,Nucleolus,1.341251344 +GOLIM4,Nucleolus,0.340072966 +XXYLT1,Nucleolus,-1.301453336 +UBXN2A,Nucleolus,0.773487083 +CCS,Nucleolus,-0.566000717 +FAM3C2,Nucleolus,-0.551264553 +CTSF,Nucleolus,-10.10314678 +MSRB3,Nucleolus,0.462138337 +LEMD3,Nucleolus,-0.228106374 +RGMB,Nucleolus,-0.261686143 +ZDHHC24,Nucleolus,-2.450517297 +MGA,Nucleolus,1.267240168 +PIGG,Nucleolus,0.894545457 +ADCY6,Nucleolus,0.272188838 +ZBTB4,Nucleolus,0.970120874 +ZHX3,Nucleolus,0.766929517 +RALGAPA1,Nucleolus,0.89365679 +ATP2A2,Nucleolus,-0.031570294 +CNTNAP2,Nucleolus,-0.0021282 +DENND4A,Nucleolus,0.951993743 +MSL2,Nucleolus,-0.085333538 +UGT8,Nucleolus,-0.629887088 +ZNF266,Nucleolus,0.937223256 +SLC29A2,Nucleolus,0.469650255 +BRSK2,Nucleolus,0.932273682 +B3GNT1,Nucleolus,-1.221280625 +TMEM167A,Nucleolus,0.239886759 +CEP135,Nucleolus,1.378960806 +FZD4,Nucleolus,-0.875565944 +PDE12,Nucleolus,0.226323479 +GLMN,Nucleolus,0.056624808 +SEZ6L2,Nucleolus,-1.74366505 +KLC2,Nucleolus,-0.081537468 +GK5,Nucleolus,1.265512837 +VCPIP1,Nucleolus,1.467652358 +PCCA,Nucleolus,-0.245041686 +GOLGA8A,Nucleolus,1.823384094 +TP53I11,Nucleolus,0.002701828 +PHYKPL,Nucleolus,1.656336499 +ARL10,Nucleolus,1.135435399 +CCDC14,Nucleolus,1.123259513 +ALG10B,Nucleolus,1.584603705 +RAB6A,Nucleolus,0.986900451 +ERCC4,Nucleolus,0.956347507 +RMI2,Nucleolus,0.809440934 +TOM1L2,Nucleolus,0.283921625 +MLXIP,Nucleolus,0.38767469 +SLC35E3,Nucleolus,1.273323979 +ARL4D,Nucleolus,-3.119506049 +LYSMD3,Nucleolus,0.877032981 +B3GALT6,Nucleolus,-1.705621631 +MBLAC2,Nucleolus,0.465219341 +TPRN,Nucleolus,0.286884416 +YES1,Nucleolus,1.077506085 +TMEM39A,Nucleolus,0.637500066 +CCDC57,Nucleolus,1.587716416 +FOXG1,Nucleolus,-0.629705339 +ATAD5,Nucleolus,0.936963034 +ANAPC2,Nucleolus,0.311019431 +SPRYD4,Nucleolus,0.063666327 +CLK2,Nucleolus,1.110544605 +LPCAT4,Nucleolus,1.167325788 +B3GNT5,Nucleolus,0.241258626 +LMNB2,Nucleolus,-0.358479241 +RMDN1,Nucleolus,1.000699874 +ACSF3,Nucleolus,0.74603667 +ANKLE2,Nucleolus,0.884695922 +NFATC2IP,Nucleolus,0.943513861 +SMCR8,Nucleolus,1.116186855 +MTX3,Nucleolus,1.183527458 +FBXO46,Nucleolus,0.668593077 +WDR73,Nucleolus,0.562025023 +ANO6,Nucleolus,-0.035417666 +ZBTB34,Nucleolus,1.357477241 +FAM210A,Nucleolus,1.589745784 +ULK1,Nucleolus,0.540559958 +RPS6KA3,Nucleolus,0.788919816 +PUS1,Nucleolus,0.172855814 +CHD9,Nucleolus,-0.277943435 +PDDC1,Nucleolus,1.364121526 +TOP3A,Nucleolus,0.371037802 +NR2C2,Nucleolus,0.970307031 +ZBTB33,Nucleolus,0.946186188 +SLC25A22,Nucleolus,-0.541456829 +PIDD,Nucleolus,0.797103861 +GBA,Nucleolus,0.259106666 +IL17RA,Nucleolus,-0.110858117 +THAP5,Nucleolus,0.92733646 +PVRL3,Nucleolus,-0.66250419 +KIAA0195,Nucleolus,-0.19921159 +SOX12,Nucleolus,-0.96445672 +CHID1,Nucleolus,-0.465721585 +ZNF518A,Nucleolus,1.691175 +ZBTB41,Nucleolus,0.603768862 +DMAP1,Nucleolus,1.215383551 +C2orf69,Nucleolus,0.343691658 +SH2B1,Nucleolus,0.307629446 +KDELC2,Nucleolus,0.933041216 +GALNT11,Nucleolus,-0.456724809 +WDR6,Nucleolus,0.386317357 +GEN1,Nucleolus,1.165570113 +GLDC,Nucleolus,0.340393425 +CTNNBIP1,Nucleolus,-2.26459654 +ERN1,Nucleolus,-0.450834386 +KCTD12,Nucleolus,0.842445557 +DHFRL1,Nucleolus,-0.885174094 +FAM132B,Nucleolus,-0.003191086 +FAM219B,Nucleolus,0.108221535 +DPY19L3,Nucleolus,0.986165821 +PFAS,Nucleolus,0.076094972 +C17orf62,Nucleolus,0.178075442 +ZBTB7A,Nucleolus,-0.266987147 +SPTY2D1,Nucleolus,0.068595313 +FUCA1,Nucleolus,0.682390154 +CALR,Nucleolus,-0.915551237 +LDLRAD3,Nucleolus,-0.559193582 +CLK3,Nucleolus,0.401153627 +PACS2,Nucleolus,1.040239469 +ELMOD2,Nucleolus,0.922769962 +FJX1,Nucleolus,2.123881052 +ZBTB18,Nucleolus,0.307695221 +GCC1,Nucleolus,0.44968788 +PLD6,Nucleolus,0.736156015 +CDC42EP4,Nucleolus,-0.090308581 +PCBP1-AS1,Nucleolus,0.940877096 +MYADM,Nucleolus,-1.769510955 +SERTAD2,Nucleolus,1.125726557 +BBS10,Nucleolus,0.075509935 +SOCS4,Nucleolus,2.182527634 +ZADH2,Nucleolus,0.116849156 +EXOC3,Nucleolus,-0.036360637 +C7orf41,Nucleolus,-0.272456093 +ZNF609,Nucleolus,-0.117778662 +CCDC66,Nucleolus,1.579655625 +MCFD2,Nucleolus,-0.107134382 +GAS1,Nucleolus,-0.323726158 +FAM73A,Nucleolus,0.809855773 +NRIP1,Nucleolus,1.150985575 +PCGF5,Nucleolus,0.771383163 +YOD1,Nucleolus,0.818289069 +SLC36A4,Nucleolus,0.930367403 +ZDHHC20,Nucleolus,0.583796457 +PSMG4,Nucleolus,1.028022676 +PDIA3P,Nucleolus,-0.222063583 +CUEDC1,Nucleolus,-0.111957955 +KCTD2,Nucleolus,0.253621422 +D2HGDH,Nucleolus,0.039192745 +FKRP,Nucleolus,0.271425536 +SLC26A11,Nucleolus,-1.566174032 +F2R,Nucleolus,0.684846064 +DHTKD1,Nucleolus,-0.733905095 +ZNF746,Nucleolus,-0.404313922 +TMEM136,Nucleolus,0.753811112 +ZNF322,Nucleolus,0.680698756 +OGFOD3,Nucleolus,0.223122373 +ZNF678,Nucleolus,0.72993086 +ZBTB2,Nucleolus,-0.824431656 +SGSH,Nucleolus,0.692979504 +SETD2,Nucleolus,0.902219912 +YIPF6,Nucleolus,-0.424778441 +IBA57,Nucleolus,0.955965186 +C5orf24,Nucleolus,1.341079087 +ADO,Nucleolus,1.175639902 +CREB3L2,Nucleolus,0.210337484 +UNC5C,Nucleolus,-0.569121289 +RGMA,Nucleolus,-0.725993437 +EXT1,Nucleolus,-0.747163959 +ATP6AP2,Nucleolus,-0.334370695 +BACE2,Nucleolus,-2.23572928 +FIGN,Nucleolus,0.291212823 +B4GALNT4,Nucleolus,-0.573374335 +AP1S2,Nucleolus,0.851603016 +FBXL6,Nucleolus,0.102473701 +YBEY,Nucleolus,-7.653004324 +CLN8,Nucleolus,-0.191371436 +PLCXD1,Nucleolus,0.618260306 +EXOC7,Nucleolus,-0.405395475 +CEP97,Nucleolus,1.35693312 +MXRA7,Nucleolus,-0.081379805 +SATB1,Nucleolus,1.43472269 +PLCB1,Nucleolus,1.748653416 +TTC3,Nucleolus,0.623930002 +COL18A1,Nucleolus,-0.378496426 +ZNF721,Nucleolus,0.445543103 +SRPR,Nucleolus,-0.638324843 +EWSR1,Nucleolus,0.599674947 +GJC1,Nucleolus,0.558236146 +MTA1,Nucleolus,0.879319276 +CADM1,Nucleolus,-0.300340608 +LYSMD4,Nucleolus,1.336403975 +NKX2-5,Nucleolus,-2.149943002 +GPC6,Nucleolus,0.305038522 +PTTG1IP,Nucleolus,-0.578797614 +ZNF623,Nucleolus,0.910865818 +BCOR,Nucleolus,0.089577326 +ASB7,Nucleolus,1.257466917 +EP400,Nucleolus,0.9942076 +COA5,Nucleolus,1.926236215 +PRR14L,Nucleolus,0.934193384 +ZNRF3,Nucleolus,-0.599986432 +TRMT12,Nucleolus,-1.059176157 +FAM101B,Nucleolus,0.624470679 +TRIM52,Nucleolus,1.569563712 +CMTM4,Nucleolus,0.686288997 +TMEM50A,Nucleolus,-0.785193725 +CBX6,Nucleolus,0.559045205 +KREMEN1,Nucleolus,-0.264197604 +TRAIP,Nucleolus,-0.017598564 +EMILIN3,Nucleolus,-1.126593114 +RBM12B,Nucleolus,0.921873839 +BTBD9,Nucleolus,-0.525856068 +KIRREL,Nucleolus,-0.099213575 +IQGAP3,Nucleolus,0.829762095 +PRKX,Nucleolus,0.850811407 +SMTN,Nucleolus,0.614422855 +TBX1,Nucleolus,-0.448082413 +TSPYL2,Nucleolus,0.066235279 +C22orf46,Nucleolus,0.806015753 +PCDH9,Nucleolus,-0.105655302 +OAF,Nucleolus,0.276385572 +ZDHHC23,Nucleolus,0.979212939 +EFNA5,Nucleolus,-1.538000445 +SS18L1,Nucleolus,-0.277675353 +KNTC1,Nucleolus,0.796702206 +WDR27,Nucleolus,1.704314521 +FOXO4,Nucleolus,-0.889741212 +POU3F2,Nucleolus,-0.504205643 +PROS1,Nucleolus,-0.158858318 +ZFP1,Nucleolus,1.22926056 +XPOT,Nucleolus,0.804196535 +SNN,Nucleolus,-1.498453817 +AMER1,Nucleolus,0.099626294 +ZBTB40,Nucleolus,0.613264925 +ATL3,Nucleolus,0.36470406 +UBE2G2,Nucleolus,0.690439102 +TMED9,Nucleolus,-1.086683986 +RBM33,Nucleolus,0.940245408 +JAG2,Nucleolus,0.81195747 +ZFP90,Nucleolus,1.577824802 +SIVA1,Nucleolus,-1.284700919 +BRI3BP,Nucleolus,0.132007879 +ROBO2,Nucleolus,-0.548438088 +BRF1,Nucleolus,-0.11026265 +MANEAL,Nucleolus,-0.933967812 +PURA,Nucleolus,0.678894632 +DDX51,Nucleolus,0.208700695 +NOMO2,Nucleolus,-0.10422511 +NRBP2,Nucleolus,0.476035588 +ZNF445,Nucleolus,1.623905128 +PRPF39,Nucleolus,1.521418696 +CDK10,Nucleolus,1.119800694 +ATP6V0A2,Nucleolus,0.396877195 +C14orf80,Nucleolus,1.145923403 +HGS,Nucleolus,0.56218777 +MRPL30,Nucleolus,0.805288654 +METTL7A,Nucleolus,-0.082437005 +NR2F2,Nucleolus,0.431678548 +SP1,Nucleolus,0.377188781 +PCGF3,Nucleolus,0.850211867 +P4HB,Nucleolus,-0.671282466 +PBX1,Nucleolus,0.43529263 +BRWD1,Nucleolus,0.79752768 +EP400NL,Nucleolus,0.696593883 +MYBL1,Nucleolus,0.913538638 +DMWD,Nucleolus,-0.109108348 +SLC52A2,Nucleolus,-0.407088224 +NAT8L,Nucleolus,0.737503482 +GNB1L,Nucleolus,-0.617567907 +LAMP1,Nucleolus,-1.115128674 +KLHDC8B,Nucleolus,-2.678196433 +SETD4,Nucleolus,1.591335375 +RNPC3,Nucleolus,1.409117096 +BICD2,Nucleolus,-0.225542359 +LRCH3,Nucleolus,0.74130049 +ZNF529,Nucleolus,1.09674137 +AIDA,Nucleolus,-3.749933415 +ZBTB6,Nucleolus,0.00503295 +BCL9L,Nucleolus,-4.106341454 +KIF18B,Nucleolus,0.312316319 +MKL2,Nucleolus,0.589401689 +CA5BP1,Nucleolus,0.730868676 +BACE1,Nucleolus,-1.416938877 +KPNA4,Nucleolus,0.015179859 +ZNF197,Nucleolus,0.92662556 +BTN3A2,Nucleolus,1.421828063 +INSIG1,Nucleolus,0.182117745 +TMEM222,Nucleolus,0.516632774 +SMYD4,Nucleolus,1.269393583 +GPATCH8,Nucleolus,0.7612558 +LYRM7,Nucleolus,1.033158056 +ZNF397,Nucleolus,1.983616633 +ZSCAN30,Nucleolus,1.125979925 +TPCN1,Nucleolus,0.084352712 +POFUT2,Nucleolus,-0.166764249 +ZDHHC17,Nucleolus,0.531688905 +PPARA,Nucleolus,-0.073606346 +TEAD1,Nucleolus,0.787193476 +ENTPD5,Nucleolus,0.246044744 +KIAA1598,Nucleolus,0.33057466 +TSPYL4,Nucleolus,-0.205674959 +FNBP1,Nucleolus,0.409331569 +BCAM,Nucleolus,0.184265063 +COL4A1,Nucleolus,-0.295438541 +SIRT7,Nucleolus,1.277167714 +TET3,Nucleolus,0.404629405 +ZNF286A,Nucleolus,-0.171443259 +SAMD11,Nucleolus,0.119575002 +B3GALTL,Nucleolus,-0.304651959 +TCEA1,Nucleolus,0.993857127 +FANCA,Nucleolus,0.127942806 +SEMA4D,Nucleolus,0.233543686 +LIN28B,Nucleolus,0.344828713 +FANCM,Nucleolus,0.946027731 +FAM122A,Nucleolus,-0.392871871 +ARHGAP11B,Nucleolus,1.286525659 +CYHR1,Nucleolus,0.725361098 +KLHL17,Nucleolus,1.053784616 +ANKRD19P,Nucleolus,0.780740293 +ARL4C,Nucleolus,-1.564339917 +C11orf95,Nucleolus,0.469484826 +MAPK12,Nucleolus,0.493208431 +COL4A5,Nucleolus,-0.932678311 +NCR3LG1,Nucleolus,1.054751828 +HES4,Nucleolus,0.491447891 +CHM,Nucleolus,0.477403126 +H2AFX,Nucleolus,-1.230137413 +SRSF10,Nucleolus,0.674225485 +NDOR1,Nucleolus,0.692096039 +FAM72B,Nucleolus,1.029591845 +LDOC1L,Nucleolus,-0.140362643 +PTAR1,Nucleolus,0.937843741 +ZDHHC9,Nucleolus,-0.366966079 +ZBED6CL,Nucleolus,0.740394213 +TMEM120B,Nucleolus,1.116967665 +MTF1,Nucleolus,1.396526995 +TMEM201,Nucleolus,0.422883637 +NHLRC3,Nucleolus,1.309775121 +BEND4,Nucleolus,0.995671059 +MSL1,Nucleolus,0.941166724 +DHFRP1,Nucleolus,-0.157349126 +ZNF292,Nucleolus,1.235252494 +ADAT2,Nucleolus,1.542196044 +H1F0,Nucleolus,-1.295950779 +LITAF,Nucleolus,-0.178044102 +ARID2,Nucleolus,0.452284712 +S100A13,Nucleolus,0.619527461 +ZNF33A,Nucleolus,1.079535058 +LIN54,Nucleolus,0.891552939 +KAZN,Nucleolus,0.849634809 +SLC35E2B,Nucleolus,-1.442228735 +KIAA0895L,Nucleolus,0.841668993 +PLEKHG4,Nucleolus,0.73277958 +ACADSB,Nucleolus,0.582462952 +TMEM63A,Nucleolus,-0.157258166 +MPHOSPH8,Nucleolus,1.063975605 +FAM217B,Nucleolus,-0.292187416 +LCOR,Nucleolus,1.750285208 +POM121,Nucleolus,-0.232241827 +ZBTB44,Nucleolus,0.820348096 +SLC35F1,Nucleolus,-0.911579125 +PTPN1,Nucleolus,-0.203996421 +EVL,Nucleolus,1.306933384 +EPHB4,Nucleolus,-1.368658704 +PPP1R26,Nucleolus,0.990008912 +TSC22D2,Nucleolus,1.005184723 +PIK3R4,Nucleolus,0.150983245 +GDAP2,Nucleolus,1.013164293 +AFAP1,Nucleolus,0.974374652 +MAN2A2,Nucleolus,0.533566997 +CACNA1H,Nucleolus,-0.111026288 +SULF2,Nucleolus,-0.477609191 +PLXNB2,Nucleolus,-0.21689555 +XRCC2,Nucleolus,2.512201131 +MYO6,Nucleolus,0.850275999 +TCF4,Nucleolus,0.919835675 +RABL6,Nucleolus,1.425545718 +ZKSCAN5,Nucleolus,0.905212304 +ZFP62,Nucleolus,1.084143802 +ERI2,Nucleolus,0.204998432 +ZNF33B,Nucleolus,0.567777307 +ZNF512B,Nucleolus,0.881266705 +ZNF431,Nucleolus,1.276630662 +NF1,Nucleolus,1.212130522 +VKORC1L1,Nucleolus,0.104249833 +COL27A1,Nucleolus,1.364018053 +GM2A,Nucleolus,0.05956042 +SNHG17,Nucleolus,1.163731262 +CD47,Nucleolus,0.188893801 +CTBP1-AS2,Nucleolus,1.249307461 +C6orf106,Nucleolus,-0.396245096 +NHLRC2,Nucleolus,1.379311016 +KPNA5,Nucleolus,0.998405229 +ZNF252P,Nucleolus,1.169905667 +PDLIM7,Nucleolus,0.049967253 +SLC39A10,Nucleolus,-0.201952832 +ZNF100,Nucleolus,1.78348596 +ZNF398,Nucleolus,0.577376563 +GMFB,Nucleolus,-0.357273686 +ZMYM1,Nucleolus,1.287389515 +MAFG,Nucleolus,0.950323034 +ARRDC1,Nucleolus,0.894132361 +KIAA1671,Nucleolus,1.096639755 +IGF2R,Nucleolus,0.062377129 +SLC25A29,Nucleolus,0.253115262 +PGAP1,Nucleolus,0.994851986 +SRC,Nucleolus,-0.343470922 +PCNXL3,Nucleolus,0.146238056 +LRRC8B,Nucleolus,0.756774426 +ABCB8,Nucleolus,0.313652753 +SND1,Nucleolus,-0.085978106 +ENTPD4,Nucleolus,1.202407018 +KANK2,Nucleolus,0.282428574 +FITM2,Nucleolus,0.607093251 +DDI2,Nucleolus,0.556294883 +TRIM33,Nucleolus,0.95998041 +LRP10,Nucleolus,-0.686950419 +ZNF655,Nucleolus,1.359804334 +SLC22A5,Nucleolus,-0.327161087 +ADARB1,Nucleolus,1.187672057 +OGDHL,Nucleolus,0.517905017 +STMN3,Nucleolus,-0.580217499 +SIPA1L1,Nucleolus,-0.327262461 +PIGN,Nucleolus,-0.224061573 +COL4A6,Nucleolus,0.469097513 +GPX1P1,Nucleolus,-3.212247967 +ENTPD6,Nucleolus,0.054633963 +ENPP1,Nucleolus,0.445788639 +PHF2,Nucleolus,-0.406671924 +RPS26,Nucleolus,-0.335276909 +PSAP,Nucleolus,-1.15907686 +HOXC6,Nucleolus,-1.357310249 +EME2,Nucleolus,1.446506263 +ZNF780A,Nucleolus,0.595132344 +SLC9A8,Nucleolus,-0.597004681 +OCLN,Nucleolus,0.054634388 +GPAA1,Nucleolus,-1.346262589 +SPG7,Nucleolus,0.994446545 +ERO1L,Nucleolus,0.837388097 +ZNF121,Nucleolus,2.086389651 +MPZL1,Nucleolus,-0.023380754 +VPS13A,Nucleolus,0.950048403 +AKAP17A,Nucleolus,0.491700408 +ELOVL2,Nucleolus,0.238101008 +SNHG12,Nucleolus,-1.369201832 +NOL8,Nucleolus,0.759824229 +MRPL42,Nucleolus,1.055471866 +ENTPD7,Nucleolus,-0.361509724 +ZNF84,Nucleolus,0.854422608 +SIRPA,Nucleolus,0.370563722 +CD2AP,Nucleolus,0.648988232 +NUP62CL,Nucleolus,1.086837893 +SFI1,Nucleolus,1.520964994 +ZNF248,Nucleolus,0.39768952 +ZNF770,Nucleolus,0.718709333 +HMGN5,Nucleolus,1.016395211 +MIER1,Nucleolus,0.79192931 +MAN1A2,Nucleolus,0.50183097 +RPS6KL1,Nucleolus,0.308433519 +DDX42,Nucleolus,0.721971983 +STYX,Nucleolus,0.452898342 +UCKL1,Nucleolus,0.01383715 +ZKSCAN8,Nucleolus,1.565588072 +HOXC4,Nucleolus,1.52576639 +ASPH,Nucleolus,0.334116398 +WWP2,Nucleolus,0.20491859 +GFPT1,Nucleolus,1.380890143 +ITSN2,Nucleolus,-0.347150922 +MGEA5,Nucleolus,0.889285545 +FAM115A,Nucleolus,0.315172399 +ZNF587,Nucleolus,2.483086067 +MAFK,Nucleolus,0.592474291 +DDX39B,Nucleolus,0.967434913 +NUDT16,Nucleolus,0.331377583 +TLK1,Nucleolus,0.822328673 +MDM4,Nucleolus,1.814665863 +KLHL9,Nucleolus,0.943472567 +C6orf89,Nucleolus,0.179729622 +SLC9A6,Nucleolus,-0.072968815 +FAN1,Nucleolus,1.00321203 +CEP290,Nucleolus,1.255213527 +C1orf85,Nucleolus,-0.422457818 +SMOC1,Nucleolus,-0.169423114 +ZNF652,Nucleolus,1.58075078 +SMURF1,Nucleolus,0.570366665 +SLC5A3,Nucleolus,0.432370066 +COLGALT2,Nucleolus,0.748013528 +TMEM184B,Nucleolus,0.198710377 +LRIG2,Nucleolus,0.313062708 +FOXJ3,Nucleolus,0.455949855 +ARHGAP11A,Nucleolus,0.105463656 +DENND4B,Nucleolus,-0.214072488 +R3HDM4,Nucleolus,-1.327309524 +RUNDC1,Nucleolus,1.074184265 +TYW1,Nucleolus,-0.137571629 +SFMBT2,Nucleolus,0.840539057 +ITPRIPL1,Nucleolus,-0.068620607 +SMC5,Nucleolus,0.006468662 +SREBF2,Nucleolus,-1.38731429 +DZIP3,Nucleolus,0.988591142 +KIAA0753,Nucleolus,0.978081341 +ATG9A,Nucleolus,-0.369887077 +TBKBP1,Nucleolus,1.026316252 +NAGA,Nucleolus,-0.254327143 +SGMS1,Nucleolus,0.117379206 +COX20,Nucleolus,0.894740627 +CHML,Nucleolus,1.423846734 +TATDN3,Nucleolus,0.838088642 +RBM20,Nucleolus,0.521793934 +PCMTD2,Nucleolus,1.230133902 +EFCAB7,Nucleolus,0.850077602 +ZYG11A,Nucleolus,2.127806755 +SYS1,Nucleolus,-1.596660753 +TRAF3IP1,Nucleolus,1.030762185 +PHACTR4,Nucleolus,0.913715698 +ZDHHC18,Nucleolus,-0.566465436 +TMEM57,Nucleolus,-0.609530583 +ZDBF2,Nucleolus,0.790907294 +BMPR2,Nucleolus,0.431570634 +OXLD1,Nucleolus,0.934740758 +MRPL38,Nucleolus,0.691664339 +SDHD,Nucleolus,0.90084678 +NEU1,Nucleolus,-1.369052248 +HSPA1B,Nucleolus,-0.766902398 +HLA-C,Nucleolus,-1.584665635 +DDR1,Nucleolus,-1.618357733 +HLA-E,Nucleolus,-0.28385975 +ZNF616,Nucleolus,1.922474678 +CRHR1-IT1,Nucleolus,0.673480217 +GABBR1,Nucleolus,1.33730108 +RANBP17,Nucleolus,-0.866638919 +ZNF204P,Nucleolus,1.158310904 +TCTN1,Nucleolus,-0.001490137 +ZBTB48,Nucleolus,1.685918308 +C11orf83,Nucleolus,-2.281055785 +ZNF783,Nucleolus,1.029193597 +SLC35B4,Nucleolus,0.717045805 +TRIQK,Nucleolus,1.009600025 +PSENEN,Nucleolus,-1.395870529 +LGR4,Nucleolus,0.040476572 +PDE7A,Nucleolus,1.357498173 +TMEM170B,Nucleolus,0.679355912 +TECPR1,Nucleolus,0.880425337 +ITPRIPL2,Nucleolus,-0.076986295 +CRYZL1,Nucleolus,1.000915088 +C5orf51,Nucleolus,1.047349377 +ZNF316,Nucleolus,0.525065756 +NYNRIN,Nucleolus,-0.53814008 +AP000525.9,Nucleolus,1.399336596 +PTPLB,Nucleolus,-0.352459605 +WDR52,Nucleolus,2.037956978 +SETD5-AS1,Nucleolus,1.311234957 +SACM1L,Nucleolus,0.198340461 +C17orf51,Nucleolus,0.947542426 +ZNF580,Nucleolus,0.640807303 +DENND1B,Nucleolus,1.250262867 +SFT2D2,Nucleolus,0.58814633 +FGFR1OP,Nucleolus,1.578450826 +KLHL23,Nucleolus,0.885868563 +TRIM59,Nucleolus,0.943904798 +NRAS,Nucleolus,0.383577556 +QTRT1,Nucleolus,1.055181632 +CHUK,Nucleolus,0.767422656 +COG8,Nucleolus,0.844732474 +RBMXL1,Nucleolus,0.321028906 +LEPROT,Nucleolus,-0.096506622 +ATF6B,Nucleolus,0.06054106 +SLC35F6,Nucleolus,0.67135226 +ZNF134,Nucleolus,0.659688202 +EMP2,Nucleolus,-0.438854238 +DNASE1,Nucleolus,0.14512113 +CSNK1E,Nucleolus,0.325236 +GALT,Nucleolus,-0.115011726 +ITGA1,Nucleolus,0.165873604 +AP1G2,Nucleolus,0.888993511 +CARKD,Nucleolus,1.303651543 +TTLL3,Nucleolus,2.044508779 +CPNE1,Nucleolus,0.757624708 +RCN1P2,Nucleolus,-0.126919793 +ZBED1,Nucleolus,-0.239836946 +DDX12P,Nucleolus,1.487319399 +C22orf29,Nucleolus,1.000783611 +NEURL4,Nucleolus,-0.060728333 +TTC3P1,Nucleolus,-0.613688368 +PEX26,Nucleolus,0.924960216 +GOLGA8B,Nucleolus,1.468582398 +MIR17HG,Nucleolus,1.232149141 +TMEM242,Nucleolus,0.641784206 +TMEM167B,Nucleolus,-0.37793189 +CYB5RL,Nucleolus,0.788770905 +CROCCP2,Nucleolus,1.745885889 +FNIP1,Nucleolus,1.216122569 +RP11-204C16.4,Nucleolus,1.139582627 +TENM3,Nucleolus,0.306628498 +AC007390.5,Nucleolus,0.112759311 +NBPF1,Nucleolus,0.344937153 +CCNL2,Nucleolus,1.569480239 +PPT2,Nucleolus,-1.212662682 +CKMT1A,Nucleolus,0.893027696 +NSUN5P1,Nucleolus,1.695199662 +RP11-54O7.3,Nucleolus,1.624730462 +AFG3L1P,Nucleolus,1.578457108 +EPB41L4A-AS1,Nucleolus,-0.123739465 +ATXN1L,Nucleolus,0.748073774 +SMIM13,Nucleolus,0.305515489 +CTD-2228K2.7,Nucleolus,2.295053464 +PLEKHM1,Nucleolus,-1.515859841 +FAM195B,Nucleolus,-1.186958716 +IPO7P2,Nucleolus,1.316714409 +SLC26A6,Nucleolus,-0.022662832 +FGD5-AS1,Nucleolus,0.720805985 +TLK2P1,Nucleolus,0.579812426 +BAIAP2-AS1,Nucleolus,-1.410368291 +RP11-31F15.1,Nucleolus,1.463671449 +TMEM185B,Nucleolus,-0.586170454 +C14orf132,Nucleolus,0.933947303 +PARG,Nucleolus,0.908525733 +TP73-AS1,Nucleolus,0.094278881 +SCAMP4,Nucleolus,-0.423422339 +SEC63P1,Nucleolus,1.165866546 +HCG11,Nucleolus,0.296738867 +DHFR,Nucleolus,0.022736397 +RP11-206L10.11,Nucleolus,1.220700521 +XIST,Nucleolus,2.152473648 +RP5-1180C10.2,Nucleolus,0.260576975 +HCG18,Nucleolus,0.514016889 +CTD-2619J13.14,Nucleolus,1.583410692 +SNHG15,Nucleolus,0.793009335 +SNHG7,Nucleolus,-0.089489735 +HOTAIRM1,Nucleolus,0.827609445 +RP4-775C13.1,Nucleolus,1.179599436 +ZNF37BP,Nucleolus,1.703809228 +ZNF736,Nucleolus,1.180980329 +MAGI2-AS3,Nucleolus,0.971779941 +JRK,Nucleolus,1.473455186 +GAS5,Nucleolus,0.172369194 +LINC00338,Nucleolus,1.605819308 +PPP1R3E,Nucleolus,1.627856714 +RP5-827C21.1,Nucleolus,-1.774393041 +NUS1P1,Nucleolus,1.080480126 +ZBTB22,Nucleolus,-2.218733351 +AD000090.2,Nucleolus,1.59744343 +ZBED5,Nucleolus,0.438112157 +RNF103,Nucleolus,0.104442341 +TMEM189,Nucleolus,-0.348460136 +RPL36A,Nucleolus,2.224599632 +CD302,Nucleolus,-1.84744037 +SNHG3,Nucleolus,0.780640333 +C15orf38,Nucleolus,-0.0103522 +AP5Z1,Nucleolus,0.841943251 +MICAL3,Nucleolus,0.774224679 +KCTD7,Nucleolus,0.35205029 +SCARF2,Nucleolus,-1.119502338 +APOBEC3C,Nucleolus,0.201963824 +N4BP2L2,Nucleolus,1.448422665 +NEAT1,Nucleolus,1.864516865 +CRNDE,Nucleolus,-0.150563527 +OIP5-AS1,Nucleolus,0.543100864 +MARS2,Nucleolus,0.142521672 +HAUS5,Nucleolus,0.044366381 +PDCD6,Nucleolus,-0.206490836 +THAP9-AS1,Nucleolus,1.325974078 +SHANK3,Nucleolus,0.429472918 +RTN3P1,Nucleolus,-0.82860098 +MALAT1,Nucleolus,1.847984223 +TUG1,Nucleolus,1.046912636 +GS1-251I9.4,Nucleolus,1.243008782 +UTP14C,Nucleolus,1.025262171 +ZNF260,Nucleolus,1.301103824 +PABPC4L,Nucleolus,1.314497031 +FPGT,Nucleolus,0.845986845 +MEX3A,Nucleolus,1.233005567 +POLR2M,Nucleolus,1.173923041 +SNHG1,Nucleolus,-0.017216284 +POLG2,Nucleolus,1.814370784 +KIAA1147,Nucleolus,0.734656539 +RP11-349A22.5,Nucleolus,1.086451776 +LINC00641,Nucleolus,0.655154827 +RP4-773N10.4,Nucleolus,1.899656526 +CEP95,Nucleolus,0.408981586 +LINC00657,Nucleolus,0.913436904 +RP1-239B22.5,Nucleolus,1.764725894 +RP6-24A23.6,Nucleolus,1.371216317 +ERVK13-1,Nucleolus,1.469767192 +GS1-358P8.4,Nucleolus,1.748836492 +VPS9D1-AS1,Nucleolus,-0.181257477 +RP6-24A23.7,Nucleolus,1.310104051 +GAN,Nucleolus,1.264767458 +SPON1,Nucleolus,0.41913083 +RP11-159D12.2,Nucleolus,2.029559943 +OTUD7B,Nucleolus,0.061727534 +RNF115,Nucleolus,0.9774747 +BAHCC1,Nucleolus,0.582812463 +NBPF15,Nucleolus,1.958751674 +RP11-242D8.1,Nucleolus,2.368555584 +RP11-18I14.10,Nucleolus,1.842228585 +NBPF9,Nucleolus,1.325573865 +EGLN2,Nucleolus,1.453319918 +NUDT3,Nucleolus,1.323924913 +KMT2B,Nucleolus,0.452509291 +POM121C,Nucleolus,-0.224114957 +RP11-504P24.8,Nucleolus,1.742904506 +DCP1A,Nucleolus,0.849613343 +EPOP,Nucleolus,-0.812611208 +NOL12,Nucleolus,1.371133709 +SOCS7,Nucleolus,0.5314399 +PI4KAP1,Nucleolus,1.860263519 +ZNF280B,Nucleolus,1.040657444 +MLLT6,Nucleolus,0.970464398 +SYNRG,Nucleolus,-0.235480532 +TADA2A,Nucleolus,1.067138678 +PIP4K2B,Nucleolus,-0.125289807 +AL133325.3,Nucleolus,2.315770207 +DDX52,Nucleolus,1.062837347 +MYO19,Nucleolus,0.569895502 +DHRS11,Nucleolus,0.444274404 +ACACA,Nucleolus,0.269882594 +AC005332.6,Nucleolus,-0.147554787 +RP11-574K11,Nucleolus,1.034940292 +AL035425.4,Nucleolus,2.421027524 +EBLN3P,Nucleolus,0.934240479 +GCLC,Lamina,0.792826826 +NFYA,Lamina,0.05603596 +NIPAL3,Lamina,0.411312938 +ENPP4,Lamina,0.558327187 +SEMA3F,Lamina,0.065755877 +CD99,Lamina,-0.811157109 +LASP1,Lamina,-0.781575095 +M6PR,Lamina,0.152332279 +CFLAR,Lamina,1.316672054 +NDUFAF7,Lamina,0.842292677 +RBM5,Lamina,1.853688158 +SLC7A2,Lamina,0.820220305 +SARM1,Lamina,0.726036972 +CAMKK1,Lamina,0.560787281 +RECQL,Lamina,-0.149653763 +ARHGAP33,Lamina,0.544020775 +CDC27,Lamina,0.042354969 +SPPL2B,Lamina,1.52459368 +CREBBP,Lamina,0.041826575 +GCFC2,Lamina,-0.098888156 +RHBDD2,Lamina,-0.947563948 +IBTK,Lamina,0.485198168 +ZNF195,Lamina,0.734671041 +MYCBP2,Lamina,0.584352314 +ZFX,Lamina,0.438515298 +LAMP2,Lamina,-0.510394638 +GDE1,Lamina,-0.784567069 +TMEM98,Lamina,-0.485754175 +TMEM132A,Lamina,0.361301319 +ZNF263,Lamina,0.426693049 +MAP3K9,Lamina,1.550475164 +JHDM1D,Lamina,1.268163449 +PHTF2,Lamina,0.871460726 +FARP2,Lamina,0.592383846 +IFRD1,Lamina,1.191606469 +ARHGAP44,Lamina,0.680512426 +ELAC2,Lamina,-0.754945994 +ADIPOR2,Lamina,-0.121163389 +PAFAH1B1,Lamina,0.218974659 +KIAA0100,Lamina,-0.800208611 +PAX6,Lamina,0.75474322 +LUC7L,Lamina,0.806396546 +CACNA2D2,Lamina,0.052337623 +PIGQ,Lamina,0.471399025 +CRAMP1L,Lamina,0.869869349 +JARID2,Lamina,0.537274543 +ADAM22,Lamina,1.475647778 +CYB561,Lamina,-0.112999147 +SPAG9,Lamina,0.175343206 +CELSR3,Lamina,1.017064532 +AASS,Lamina,0.44397838 +PKD1,Lamina,1.161378944 +SEC62,Lamina,-0.355833221 +REV3L,Lamina,0.796332938 +POMT2,Lamina,0.199979936 +BAZ1B,Lamina,0.054423005 +ZNF207,Lamina,0.503307379 +IFFO1,Lamina,0.809307297 +NISCH,Lamina,1.466353634 +IDS,Lamina,0.155178254 +CLCN6,Lamina,1.403079064 +MRC2,Lamina,0.397626976 +TSPAN9,Lamina,0.157770857 +BTBD7,Lamina,0.603871731 +MBTD1,Lamina,0.831143513 +LARS2,Lamina,-0.401830269 +PIK3C2A,Lamina,0.402890289 +ANLN,Lamina,-0.156346773 +QPCTL,Lamina,0.658141624 +MAP4K3,Lamina,0.564568482 +BRCA1,Lamina,0.205574753 +MBTPS2,Lamina,-0.226971725 +EXTL3,Lamina,-0.315953824 +ELOVL5,Lamina,-0.286362637 +MAP4K5,Lamina,0.655051542 +MAN2B2,Lamina,0.140375252 +CLK1,Lamina,1.325973874 +ANGEL1,Lamina,0.245478691 +DDX11,Lamina,0.777902992 +UFL1,Lamina,0.332386201 +SLC30A9,Lamina,-0.2866759 +COX15,Lamina,-0.054444591 +ZMYND11,Lamina,0.803305626 +XYLT2,Lamina,0.719485233 +NUDCD3,Lamina,0.422743188 +CHDH,Lamina,0.771726024 +GLT8D1,Lamina,0.034142933 +ATP2C1,Lamina,-0.523395521 +RALBP1,Lamina,-0.314081803 +CNTN1,Lamina,-0.559150092 +PHLDB1,Lamina,0.249048548 +MRE11A,Lamina,0.754268383 +SPAST,Lamina,-0.481915762 +NRXN3,Lamina,0.277120766 +CPS1,Lamina,-1.059692178 +SLC45A4,Lamina,-0.010985547 +ZNF839,Lamina,1.708308121 +ZDHHC6,Lamina,0.57645863 +RNH1,Lamina,-0.204982998 +RB1CC1,Lamina,0.011338666 +ERP44,Lamina,-0.538296588 +AKAP11,Lamina,1.05738876 +GCLM,Lamina,0.249391407 +DEPDC1,Lamina,0.347290608 +SEC63,Lamina,-0.109750198 +FAS,Lamina,-1.082130209 +RNASET2,Lamina,1.059450776 +AGPAT4,Lamina,2.008651407 +MIPEP,Lamina,-0.29077926 +VEZT,Lamina,-0.261209106 +BRD9,Lamina,1.052981301 +SNX1,Lamina,0.612924215 +BCLAF1,Lamina,0.223011452 +SLC39A9,Lamina,0.480038587 +RABEP1,Lamina,-0.073680271 +FAM13B,Lamina,-0.004282208 +PNPLA6,Lamina,-0.647827528 +ZCCHC8,Lamina,0.913002622 +CHPF2,Lamina,0.541318269 +FUT8,Lamina,-0.662179159 +UBA6,Lamina,0.07319229 +ATP6V0A1,Lamina,0.589593214 +SLC4A7,Lamina,1.310447102 +VCL,Lamina,-0.350463493 +ADSS,Lamina,0.089183224 +TIMP2,Lamina,-1.023117878 +RFC1,Lamina,-0.136099042 +ZZZ3,Lamina,0.13609831 +MFAP3,Lamina,0.308263133 +MRI1,Lamina,0.891757842 +AGA,Lamina,-0.583263349 +BOD1L1,Lamina,0.925651606 +TRIO,Lamina,0.856894152 +VCAN,Lamina,-0.180332752 +CLEC16A,Lamina,0.037253586 +ZFYVE16,Lamina,0.430069827 +RAI14,Lamina,-0.017487533 +PNKP,Lamina,0.816867083 +PQLC2,Lamina,-0.300451777 +CTNS,Lamina,-0.337149432 +INPP4A,Lamina,0.918381814 +RETSAT,Lamina,0.343255808 +CUL7,Lamina,0.027646555 +PHKA2,Lamina,0.874693859 +DSG2,Lamina,-0.093784479 +OFD1,Lamina,0.708587879 +GPM6B,Lamina,-0.032291221 +YTHDC2,Lamina,0.860925713 +TPR,Lamina,0.379647519 +SCML1,Lamina,1.831040122 +MAP4,Lamina,-0.108535577 +GOPC,Lamina,0.642225821 +ZNF800,Lamina,0.413692338 +SNX29,Lamina,-0.019209654 +KITLG,Lamina,-0.51240957 +H6PD,Lamina,1.51983464 +LTBP1,Lamina,-0.749441385 +RCN1,Lamina,-0.02163399 +PTCD2,Lamina,2.40791227 +LIMA1,Lamina,-0.305936308 +LETMD1,Lamina,1.466280992 +POLQ,Lamina,0.81751714 +MPHOSPH9,Lamina,0.958299931 +PLEKHA5,Lamina,0.053127753 +SIKE1,Lamina,1.143928756 +MSMO1,Lamina,-0.549536402 +TTC17,Lamina,0.959908444 +LAMA3,Lamina,0.941083333 +AP5M1,Lamina,0.792711004 +ANAPC4,Lamina,0.806563532 +ARID4B,Lamina,0.611655364 +SDCCAG8,Lamina,0.172940577 +FOXC1,Lamina,0.039087452 +PLEKHH1,Lamina,1.166769762 +ATP9A,Lamina,-0.242667061 +FAM168A,Lamina,1.199559783 +RELT,Lamina,1.060043076 +NOP58,Lamina,0.258951382 +TAB2,Lamina,-0.072290098 +USP36,Lamina,0.36609101 +KMT2C,Lamina,0.965029825 +MCOLN3,Lamina,1.91429891 +PUM2,Lamina,0.46592831 +RC3H2,Lamina,0.683347725 +DCBLD2,Lamina,0.093458549 +SOAT1,Lamina,-0.160611836 +ATP11B,Lamina,0.481906738 +SEC61A1,Lamina,-0.779561512 +PPP1R12A,Lamina,0.336821478 +POLR3E,Lamina,0.539083337 +ATP2B4,Lamina,0.541983617 +ZC3H11A,Lamina,1.060802426 +NDC1,Lamina,-0.345860863 +UNKL,Lamina,1.19265557 +ALDH18A1,Lamina,-0.789264966 +TARBP1,Lamina,2.012612351 +WNK1,Lamina,0.012463396 +CCAR1,Lamina,0.603028465 +PTPRU,Lamina,-0.018234529 +QSER1,Lamina,0.229385598 +BCAT1,Lamina,0.520174488 +PRDM6,Lamina,2.325332803 +TNK2,Lamina,1.50268266 +MON2,Lamina,0.825316529 +GPBP1,Lamina,0.324858808 +WAPAL,Lamina,-0.056865119 +VMP1,Lamina,-0.840223404 +APPBP2,Lamina,-0.026715056 +AHRR,Lamina,1.420539872 +ZNF275,Lamina,1.435509887 +MTMR1,Lamina,0.252303332 +GPC1,Lamina,0.108765434 +TM7SF3,Lamina,-0.598548494 +CDON,Lamina,0.501061384 +HIPK2,Lamina,0.786649868 +SUGP2,Lamina,1.545465164 +SLC12A2,Lamina,0.043045688 +HMG20B,Lamina,0.566028075 +UHRF1BP1,Lamina,0.888630693 +PKN2,Lamina,0.266674733 +TRAM2,Lamina,0.791806139 +NTN1,Lamina,0.095456478 +ADAT1,Lamina,0.648947169 +SPEN,Lamina,0.912336294 +MAP2K4,Lamina,-0.140859928 +SLK,Lamina,-0.01110268 +CYB5R4,Lamina,0.243794343 +ASB1,Lamina,1.761944645 +FAM107B,Lamina,0.063511664 +SLC9A7,Lamina,0.642799122 +FOXJ2,Lamina,0.370802164 +PPP2R5A,Lamina,0.003606342 +ASPM,Lamina,1.2055256 +ZBTB11,Lamina,1.014085428 +ATXN3,Lamina,1.077645488 +FGFR2,Lamina,0.238205979 +LRRC40,Lamina,0.076778977 +ATG2B,Lamina,1.01651691 +ARFGEF1,Lamina,-0.204623375 +KLF6,Lamina,1.059879391 +NEO1,Lamina,-0.45125103 +TRAM1,Lamina,-0.813458992 +TP53BP1,Lamina,-0.145890412 +IARS2,Lamina,-0.459397897 +ROCK1,Lamina,0.096585197 +HYAL2,Lamina,-0.947498719 +FGFR3,Lamina,0.917948606 +MEF2A,Lamina,0.345276655 +ACSL4,Lamina,0.098755915 +PRR11,Lamina,-0.378124705 +REEP1,Lamina,-0.655593098 +ATP11A,Lamina,1.186289968 +POLR1A,Lamina,0.374819667 +IP6K2,Lamina,0.717491419 +KIF2A,Lamina,-0.005796832 +TGFBR3,Lamina,0.119990807 +NEDD4,Lamina,-0.182304688 +MAPK6,Lamina,-0.380412017 +UFD1L,Lamina,0.809764334 +LRP6,Lamina,0.941992021 +NUCB2,Lamina,-0.451977345 +SLC44A1,Lamina,-0.207299168 +TMEM260,Lamina,1.078085856 +SMG6,Lamina,-0.112895624 +CLTCL1,Lamina,1.31709017 +DGCR2,Lamina,-0.21415379 +MNT,Lamina,1.931411332 +ZXDC,Lamina,1.504659048 +NDST1,Lamina,0.29711593 +AP3M2,Lamina,0.853071458 +RAD18,Lamina,0.701419843 +ATP2B1,Lamina,0.238214878 +MGAT4A,Lamina,0.682067228 +SNX13,Lamina,0.807426653 +VASH1,Lamina,1.333699914 +SEL1L,Lamina,-0.031732261 +ATP6AP1,Lamina,-0.639873244 +DAZAP1,Lamina,0.658361434 +CPSF1,Lamina,0.209190208 +SLC6A15,Lamina,0.221469658 +RDH11,Lamina,-0.264721662 +PRKACA,Lamina,-0.686110806 +LPHN1,Lamina,0.395043213 +RPS6KA6,Lamina,0.593505891 +EPN2,Lamina,0.635961279 +PTPN18,Lamina,0.49778495 +TFRC,Lamina,-0.181450172 +AFF4,Lamina,0.812730679 +MPP5,Lamina,-0.054946336 +HMMR,Lamina,-0.33994075 +P4HA2,Lamina,-0.919550488 +TRNT1,Lamina,1.016612561 +ACADVL,Lamina,0.054144646 +EVC,Lamina,0.495242448 +DERL2,Lamina,-0.050691422 +NDE1,Lamina,-0.314735415 +PVR,Lamina,0.530686775 +SCARB1,Lamina,0.633912198 +SELO,Lamina,1.989398863 +LLGL2,Lamina,1.379862618 +PDE8A,Lamina,0.895811717 +SDHA,Lamina,-0.378328527 +KDM5A,Lamina,-0.035505984 +ADAM11,Lamina,0.530041187 +ST6GAL1,Lamina,0.165430804 +GLI2,Lamina,1.163718423 +NOTCH3,Lamina,0.066357884 +BCS1L,Lamina,0.530666216 +DPP8,Lamina,1.249023625 +SLC24A1,Lamina,0.863850502 +LMAN1,Lamina,0.044175758 +PTPLAD1,Lamina,-0.307663645 +TUBE1,Lamina,1.731298464 +SEMA3C,Lamina,-0.421514423 +TTC38,Lamina,0.161750372 +CELSR1,Lamina,0.322221111 +ZNF638,Lamina,0.29856108 +SLC25A40,Lamina,1.121603022 +RASAL2,Lamina,1.164405318 +ZNF37A,Lamina,2.020691715 +FNDC3B,Lamina,0.305733834 +FRYL,Lamina,0.377471217 +TMEM131,Lamina,0.059417824 +WDR62,Lamina,0.328281526 +BCAP29,Lamina,0.246168939 +SEC31B,Lamina,1.273452844 +RBMS2,Lamina,0.534077192 +SLC46A1,Lamina,0.398661268 +PLXNA2,Lamina,-0.628077243 +ANKRD13A,Lamina,0.073882215 +PAG1,Lamina,1.516728554 +MCAM,Lamina,-0.110330319 +GPC4,Lamina,-0.643522589 +MBNL3,Lamina,1.247651611 +DGKD,Lamina,0.794118597 +TM9SF3,Lamina,-0.094122764 +PPP1R12B,Lamina,2.157243461 +DNAJC10,Lamina,0.021572074 +GTF3C1,Lamina,-0.368603481 +IL4R,Lamina,0.550503197 +LRCH4,Lamina,0.725135191 +FAM76B,Lamina,1.390510382 +SIRT6,Lamina,-0.135222887 +POLD3,Lamina,0.550912261 +PHF17,Lamina,0.715038222 +FBLN1,Lamina,-0.742400723 +ITGA8,Lamina,-0.360085463 +MCCC1,Lamina,0.145615775 +ACER3,Lamina,0.995085106 +N4BP2,Lamina,0.649960432 +HOXA9,Lamina,1.372001674 +PCM1,Lamina,0.314680381 +TNRC6C,Lamina,0.604454537 +ITCH,Lamina,-0.050920311 +SDF4,Lamina,0.013239455 +FKBP7,Lamina,-0.535385055 +SLC1A3,Lamina,0.230323783 +SAR1A,Lamina,-0.40847071 +PAFAH1B3,Lamina,-0.370227098 +MOXD1,Lamina,-0.903123002 +STX7,Lamina,0.824075674 +RABL2B,Lamina,0.741517274 +SLC35C2,Lamina,0.324184728 +CRYBG3,Lamina,1.412067061 +RIF1,Lamina,0.848777214 +PSEN1,Lamina,-0.379927607 +RBL1,Lamina,0.162702109 +RSBN1,Lamina,0.717808358 +MAGI3,Lamina,0.579370967 +OSTM1,Lamina,-0.5555750779999999 +EXD2,Lamina,-0.231446736 +MEF2C,Lamina,0.255254445 +UBA5,Lamina,1.037965841 +STK17B,Lamina,0.79939927 +ZNF510,Lamina,1.447101304 +LRP2,Lamina,0.282945215 +DUSP12,Lamina,0.439005626 +KIAA0141,Lamina,0.88075135 +PHLPP1,Lamina,-0.722292892 +SMARCD3,Lamina,0.185092293 +C5orf22,Lamina,0.194354052 +CCNT2,Lamina,1.70492655 +NFE2L1,Lamina,-0.410277002 +GSK3B,Lamina,0.191619989 +ITGB5,Lamina,-0.750690184 +ERC1,Lamina,-0.173636906 +RNF13,Lamina,-0.291111886 +LYRM2,Lamina,-0.244298404 +KAT6A,Lamina,-0.028051831 +PLOD1,Lamina,-0.939989175 +TDRD3,Lamina,-0.278682061 +PDS5B,Lamina,0.020858109 +OXCT1,Lamina,-0.10696658 +RRAGB,Lamina,0.661354972 +FAT1,Lamina,-0.427605184 +YTHDC1,Lamina,0.3703978 +ZMPSTE24,Lamina,-0.479087174 +REST,Lamina,0.867467236 +APLP2,Lamina,-0.426240181 +KIAA1467,Lamina,0.428636939 +TXLNA,Lamina,0.507795633 +NCOA1,Lamina,-0.381741209 +AGBL5,Lamina,-0.816951096 +CD59,Lamina,-0.491302845 +ATRX,Lamina,0.586752412 +SCAMP1,Lamina,-0.708763915 +HACE1,Lamina,1.145807963 +WDFY1,Lamina,0.086393017 +MTIF2,Lamina,-0.100429631 +ATG16L1,Lamina,0.371186746 +POMGNT1,Lamina,-0.388325618 +B4GALT1,Lamina,-0.139269997 +IPO11,Lamina,-0.621022327 +TMED2,Lamina,-0.545438761 +ERO1LB,Lamina,0.643952335 +PPP1R15A,Lamina,-1.146307709 +NLK,Lamina,-0.028222526 +PIGS,Lamina,-0.600091229 +ATXN7L3,Lamina,-0.161249385 +PGS1,Lamina,1.021668876 +SH3BP2,Lamina,1.131988342 +ADD1,Lamina,0.093550835 +TXNDC16,Lamina,0.183124503 +NID2,Lamina,0.082562207 +KLHL42,Lamina,1.724841342 +ERGIC2,Lamina,-0.00110545 +METTL2A,Lamina,-0.258723911 +PTPN4,Lamina,1.429513404 +KHSRP,Lamina,-0.525074988 +EPB41L1,Lamina,-0.462437382 +ANKRD10,Lamina,2.474603539 +DOCK3,Lamina,1.613306761 +PPP1R13B,Lamina,0.957902324 +ATRN,Lamina,0.163835601 +ZNF343,Lamina,0.794626164 +MAVS,Lamina,1.368271223 +LZTS3,Lamina,0.423795274 +SNX5,Lamina,1.198911105 +MAPKAPK5,Lamina,0.648404215 +ESF1,Lamina,0.243395524 +SLC23A2,Lamina,0.385556899 +KIF16B,Lamina,0.223435127 +ERP29,Lamina,-0.597920864 +FUS,Lamina,1.183754842 +ZNF302,Lamina,1.171524851 +GRAMD1A,Lamina,0.281165034 +GANAB,Lamina,-0.778276109 +RBM41,Lamina,1.500913427 +GPATCH2L,Lamina,1.777179724 +SLC9A1,Lamina,-0.103352439 +SPTLC1,Lamina,-0.493974541 +PAPOLA,Lamina,-0.328025605 +MUL1,Lamina,-0.417960442 +RAB11FIP3,Lamina,0.599822194 +GOLGA3,Lamina,0.621287464 +EFNB1,Lamina,-0.382740463 +PDPR,Lamina,1.167897091 +GLG1,Lamina,-0.411794427 +TNRC6A,Lamina,0.686247355 +PLEKHG2,Lamina,0.080319385 +NAT14,Lamina,-0.386128104 +RBM27,Lamina,-0.159327509 +OSBPL8,Lamina,0.099268009 +NRCAM,Lamina,0.063635094 +LAMB1,Lamina,0.037238719 +CMTM6,Lamina,-0.745323992 +ITGA6,Lamina,-0.185360855 +SEL1L3,Lamina,-0.310074739 +ORC6,Lamina,0.950871396 +TMEM101,Lamina,-0.660792197 +OSGEP,Lamina,0.73929388 +G2E3,Lamina,0.520677691 +HECTD1,Lamina,0.180678095 +SEMA6A,Lamina,0.810618842 +TRPM7,Lamina,0.451638054 +TYRO3,Lamina,-0.238113421 +AGO1,Lamina,1.073349624 +MFSD11,Lamina,0.197537621 +GPATCH2,Lamina,0.904592004 +NUP50,Lamina,0.485061671 +LRRFIP2,Lamina,0.284871535 +SEC22C,Lamina,1.06473341 +XYLB,Lamina,0.840821264 +HDAC6,Lamina,-0.150586298 +CBX5,Lamina,1.239116259 +SUCO,Lamina,0.039422249 +HOOK2,Lamina,0.543679103 +ARCN1,Lamina,-0.560955137 +TMEM38B,Lamina,-0.35626597 +BTAF1,Lamina,0.99177635 +IKZF5,Lamina,0.766231912 +WAC,Lamina,0.234254541 +CREM,Lamina,-0.685742232 +BRPF3,Lamina,0.038243293 +EFHC1,Lamina,1.832901903 +ABL1,Lamina,-0.384203571 +SH3GLB1,Lamina,0.485120346 +SCD,Lamina,-0.091191226 +ABLIM1,Lamina,0.637617239 +ERMP1,Lamina,-0.13441829 +NRP1,Lamina,-0.173889182 +MZF1,Lamina,2.180312801 +FBXL19,Lamina,0.082182074 +MTAP,Lamina,0.776773197 +CEP170B,Lamina,0.66941128 +POLRMT,Lamina,0.003643856 +ARVCF,Lamina,1.07918924 +TRMT2A,Lamina,0.556510917 +ZDHHC8,Lamina,1.189562048 +KLHL22,Lamina,1.204246486 +CRKL,Lamina,0.539907924 +LZTR1,Lamina,0.276545734 +CECR2,Lamina,1.069427101 +DERL3,Lamina,0.881555627 +PPM1F,Lamina,0.995993183 +TOP3B,Lamina,1.071187372 +CRYBB2P1,Lamina,1.302956296 +ADRBK2,Lamina,0.664931157 +GGA1,Lamina,0.999649944 +HPS4,Lamina,0.693993361 +TTC28,Lamina,0.509552721 +SEPT3,Lamina,-0.001403059 +KDELR3,Lamina,-0.162200159 +DDX17,Lamina,2.305871441 +TCF20,Lamina,0.270472946 +TIMP3,Lamina,0.344473431 +PPP6R2,Lamina,0.521282771 +SUN2,Lamina,-0.088782006 +ARSA,Lamina,0.744345744 +MYH9,Lamina,-0.399888075 +FOXRED2,Lamina,-0.412303271 +TNRC6B,Lamina,1.062553553 +SGSM3,Lamina,0.261359546 +IFT27,Lamina,2.192883313 +KIAA0930,Lamina,-0.787817121 +EP300,Lamina,0.232710879 +ZC3H7B,Lamina,0.160436318 +ACO2,Lamina,-1.208452808 +TRMU,Lamina,0.58555663 +ZBED4,Lamina,0.293329344 +ABHD4,Lamina,-0.450368103 +KHNYN,Lamina,0.803166473 +NIN,Lamina,0.621868777 +GNPNAT1,Lamina,-0.059460693 +DDHD1,Lamina,1.338572614 +CNIH1,Lamina,-0.477344877 +TMED8,Lamina,1.37093634 +SPTLC2,Lamina,-0.139874661 +PPM1A,Lamina,0.800745876 +SIX4,Lamina,0.75831478 +GALNT16,Lamina,1.272109682 +KIAA0247,Lamina,0.73952257 +SRSF5,Lamina,0.752939374 +DICER1,Lamina,0.6855736 +ZFYVE21,Lamina,1.13643477 +TELO2,Lamina,0.290021787 +PCNX,Lamina,0.309021242 +GSKIP,Lamina,-0.112286987 +SMEK1,Lamina,0.049242664 +TRIP11,Lamina,0.353581496 +PABPN1,Lamina,0.782528029 +ARHGAP5,Lamina,0.797842406 +CHD8,Lamina,-0.161792718 +PCK2,Lamina,-0.412690552 +PNN,Lamina,1.139922564 +PLTP,Lamina,-1.166934764 +ABHD12,Lamina,-0.252369126 +GINS1,Lamina,-0.282064977 +RIMS4,Lamina,0.349499817 +PABPC1L,Lamina,1.617727604 +STK4,Lamina,0.406196256 +BMP7,Lamina,-0.421666397 +DNAJC5,Lamina,0.006329266 +SLCO4A1,Lamina,0.39394275 +DIDO1,Lamina,1.441816288 +ARFGAP1,Lamina,1.035650502 +ARFRP1,Lamina,1.403428055 +CDS2,Lamina,0.07508018 +TM9SF4,Lamina,-0.293450531 +POFUT1,Lamina,-0.041616821 +SAMHD1,Lamina,-0.723732735 +KIF3B,Lamina,-0.067920637 +E2F1,Lamina,0.106709748 +APMAP,Lamina,-0.46337302 +ZNF516,Lamina,1.385323364 +LPIN2,Lamina,0.470212808 +SMCHD1,Lamina,0.429519957 +LAMA1,Lamina,0.370364692 +RNF125,Lamina,1.151392315 +ANKRD12,Lamina,1.621368911 +MIB1,Lamina,0.639864209 +MID1,Lamina,1.66303919 +WDR13,Lamina,-0.024236872 +XIAP,Lamina,0.725069124 +ATP11C,Lamina,0.403537104 +SYP,Lamina,0.26765203 +FMR1,Lamina,0.268924304 +SLC35A2,Lamina,-0.207991209 +TAZ,Lamina,0.92165665 +MAGT1,Lamina,-0.417633043 +CD99L2,Lamina,-0.098424654 +EEA1,Lamina,0.721347023 +NDFIP2,Lamina,-0.192859778 +DNAJC3,Lamina,-0.221916849 +UGGT2,Lamina,0.798676301 +ARHGEF7,Lamina,0.289041228 +PARP4,Lamina,0.252819752 +FLT1,Lamina,-0.572998157 +VWA8,Lamina,0.379470583 +DGKH,Lamina,2.620274489 +INTS6,Lamina,0.142954331 +CLN5,Lamina,-0.004805578 +MGRN1,Lamina,0.431858377 +ZNF629,Lamina,0.431013257 +CENPT,Lamina,0.559115729 +NFAT5,Lamina,1.855368359 +SETD6,Lamina,1.653733894 +SLC38A7,Lamina,0.356183806 +SLC7A6OS,Lamina,1.333459691 +SLC7A6,Lamina,0.700777336 +WDR59,Lamina,0.801222156 +TAF1C,Lamina,1.026660099 +TSC2,Lamina,-0.006687429 +ZNF500,Lamina,1.587516783 +ABCC1,Lamina,-0.052167075 +NOMO3,Lamina,-1.280181858 +NARFL,Lamina,0.386536184 +MTHFSD,Lamina,1.319231041 +CLCN7,Lamina,0.4276417 +SLC7A5,Lamina,-0.209882183 +FBXO31,Lamina,0.4633061 +EEF2K,Lamina,0.705840952 +CAPN15,Lamina,0.880699894 +PIEZO1,Lamina,0.842847328 +BFAR,Lamina,-0.346759382 +NOMO1,Lamina,-0.658077799 +CCP110,Lamina,0.689222577 +RNF40,Lamina,-0.491292512 +LACTB,Lamina,-0.069124154 +CD276,Lamina,-0.325792657 +HOMER2,Lamina,0.662601288 +TMEM87A,Lamina,-0.242536866 +ZNF106,Lamina,0.673863151 +CEP152,Lamina,0.98992366 +TJP1,Lamina,-0.29848777 +VPS18,Lamina,-0.673378615 +MYEF2,Lamina,0.771314793 +CSPP1,Lamina,1.029064421 +ZFAND1,Lamina,0.756117062 +FZD3,Lamina,1.396712834 +EYA1,Lamina,-0.605152641 +NBN,Lamina,0.110867639 +IMPAD1,Lamina,0.384894128 +UBE2W,Lamina,0.916695881 +IKBKB,Lamina,0.726679272 +PLAT,Lamina,-0.695691328 +JPH1,Lamina,1.162385848 +TRPS1,Lamina,1.556573467 +PYCRL,Lamina,-0.358182354 +EEF1D,Lamina,0.406172378 +SQLE,Lamina,-0.439146415 +SLC39A14,Lamina,-0.076442433 +MTMR9,Lamina,1.397152154 +LEPROTL1,Lamina,-0.365565602 +PPP2CB,Lamina,-0.236448979 +KLHDC4,Lamina,0.879769043 +KCTD9,Lamina,0.454286363 +MAN2B1,Lamina,0.045640504 +NUCB1,Lamina,-0.711941854 +SARS2,Lamina,0.594923272 +SNRNP70,Lamina,0.521351774 +CLPTM1,Lamina,-0.432524939 +CLASRP,Lamina,0.376401254 +FCGRT,Lamina,-0.657235347 +ERCC2,Lamina,0.136742881 +DOT1L,Lamina,0.693954089 +SF3A2,Lamina,0.164895868 +AMH,Lamina,1.615793061 +DMPK,Lamina,1.414043979 +TIMM44,Lamina,0.070392309 +AKAP8,Lamina,0.390395998 +AKT2,Lamina,0.557086314 +PLD3,Lamina,-0.383555308 +FSD1,Lamina,0.151351188 +APLP1,Lamina,-1.259439949 +CACTIN,Lamina,0.447357787 +TYK2,Lamina,0.549415138 +PTPRS,Lamina,0.12482541 +MEGF8,Lamina,-0.123791392 +KDELR1,Lamina,-0.774209187 +CYTH2,Lamina,0.888877005 +LIG1,Lamina,0.573112635 +BCAT2,Lamina,0.025529029 +TNPO2,Lamina,0.433136515 +DNASE2,Lamina,-0.633638522 +ISYNA1,Lamina,0.289342934 +CRTC1,Lamina,1.57375245 +SUGP1,Lamina,0.718455862 +SIPA1L3,Lamina,0.200659198 +CADM4,Lamina,-0.32192732 +SMG9,Lamina,0.995556834 +AVL9,Lamina,0.596866323 +CDK6,Lamina,0.775880569 +DNAJC2,Lamina,0.577756927 +WDR91,Lamina,0.571123003 +CBLL1,Lamina,0.364281717 +MTPN,Lamina,-0.527094865 +ZC3HAV1,Lamina,-0.194858107 +OGDH,Lamina,-0.912413019 +MET,Lamina,-0.303890554 +LMBR1,Lamina,-0.327386816 +HOXA3,Lamina,1.333291166 +HOXA6,Lamina,1.702964535 +BRAT1,Lamina,0.202488257 +FKBP14,Lamina,0.328081505 +NSUN5P2,Lamina,1.294035591 +CASP2,Lamina,0.066133305 +HSPB1,Lamina,-0.79185684 +ZKSCAN1,Lamina,0.575243819 +WASL,Lamina,-0.213367192 +RBM28,Lamina,0.75295898 +C1GALT1,Lamina,0.29403784 +PLOD3,Lamina,-0.042790712 +CLDN15,Lamina,1.653175326 +TMEM106B,Lamina,0.504540021 +CEP41,Lamina,-0.325740888 +GLI3,Lamina,0.141849613 +TMEM248,Lamina,-0.439036576 +TBL2,Lamina,-0.368103134 +FKTN,Lamina,1.473714086 +TMEM245,Lamina,0.964627918 +MEGF9,Lamina,-0.028836427 +TGFBR1,Lamina,-0.132265365 +DNM1,Lamina,1.77480044 +KANK1,Lamina,0.336010314 +RAPGEF1,Lamina,0.280383792 +NPDC1,Lamina,1.75814819 +SETX,Lamina,0.434877573 +CCNJ,Lamina,0.567130226 +RAB11FIP2,Lamina,1.012892558 +ERLIN1,Lamina,0.088766007 +MAPK8,Lamina,0.881045381 +ATE1,Lamina,0.223006516 +PLEKHA1,Lamina,1.1461879 +UNC5B,Lamina,0.686270348 +BMPR1A,Lamina,-0.395862395 +ACTA2,Lamina,-4.118160538 +LIPA,Lamina,-0.48548067 +LZTS2,Lamina,1.335584827 +ARHGAP21,Lamina,0.348603342 +ANKRD26,Lamina,0.59852827 +LARP4B,Lamina,0.398132324 +C10orf137,Lamina,0.717293884 +MTPAP,Lamina,0.583048061 +SH3PXD2A,Lamina,1.3478475 +PITRM1,Lamina,-0.474471946 +FAM208B,Lamina,0.475308465 +TSPAN14,Lamina,0.089200267 +NUFIP2,Lamina,2.473190144 +DHX40,Lamina,-0.084468558 +CDK5RAP3,Lamina,0.664331427 +RECQL5,Lamina,0.411675314 +INTS2,Lamina,-0.177171673 +CAMTA2,Lamina,0.734039497 +MED13,Lamina,0.332444196 +HOXB6,Lamina,1.594536315 +CPD,Lamina,-0.780904707 +GOSR1,Lamina,-0.244445261 +CCDC47,Lamina,-0.61281013 +AKAP10,Lamina,0.932803747 +CYTH1,Lamina,1.488336273 +LGALS3BP,Lamina,-1.054646077 +EZH1,Lamina,1.805732547 +PPP1R9B,Lamina,-0.396235619 +LUC7L3,Lamina,1.386327701 +DUSP3,Lamina,0.041937039 +EFNB3,Lamina,-0.108668504 +DPH1,Lamina,-0.001601101 +NAT9,Lamina,0.075046281 +TMEM104,Lamina,-0.100574238 +TMEM97,Lamina,-0.696803693 +UNC119,Lamina,0.692806393 +TMEM33,Lamina,-0.101851702 +DCUN1D4,Lamina,1.144282611 +MANBA,Lamina,0.739999835 +ELF2,Lamina,0.080486319 +WFS1,Lamina,0.173329072 +FRG1,Lamina,-0.509478277 +CLCN3,Lamina,-0.269077868 +GALNT7,Lamina,-0.057221745 +TRIM2,Lamina,0.463036853 +NEIL3,Lamina,0.980060187 +SH3D19,Lamina,0.555649618 +STIM2,Lamina,0.563487079 +RAPGEF2,Lamina,0.40286493 +UGDH,Lamina,-1.285581803 +CCDC34,Lamina,-0.522214011 +FNBP4,Lamina,1.687093575 +SC5D,Lamina,-0.518289311 +SIAE,Lamina,0.094095012 +EHD1,Lamina,-0.411955971 +FOXRED1,Lamina,0.288586228 +ST3GAL4,Lamina,-0.310295882 +CPT1A,Lamina,-1.046218763 +TMEM109,Lamina,-0.593146461 +PANX1,Lamina,-0.47093855 +UBE4A,Lamina,-0.15725139 +DDX6,Lamina,-0.245736953 +PVRL1,Lamina,-0.080038366 +HIPK3,Lamina,0.153431665 +MDK,Lamina,-0.786047049 +AMBRA1,Lamina,-0.512468449 +NAA40,Lamina,0.531894234 +SLC35F2,Lamina,-0.403151745 +LEPREL2,Lamina,0.232219135 +CORO1C,Lamina,-0.680314128 +ASIC1,Lamina,0.948830186 +CAPRIN2,Lamina,1.753756144 +SLC11A2,Lamina,0.46795277 +MLEC,Lamina,0.047528358 +BCL7A,Lamina,0.053971113 +RSRC2,Lamina,1.112284013 +PPM1H,Lamina,0.464925492 +ELK3,Lamina,0.048379694 +MAGOHB,Lamina,0.340258497 +ITFG2,Lamina,1.111173417 +PARP11,Lamina,0.399847233 +DUSP16,Lamina,0.019716871 +ACAD10,Lamina,0.532612765 +NAA25,Lamina,0.776278164 +DDX55,Lamina,0.767693712 +SLC38A1,Lamina,0.642781857 +C12orf49,Lamina,-0.231008253 +MDM1,Lamina,1.146088422 +CPSF6,Lamina,0.570689251 +GNPTAB,Lamina,-0.064051319 +ATN1,Lamina,0.394985346 +C12orf57,Lamina,-1.389279976 +LPCAT3,Lamina,-0.171213247 +SUDS3,Lamina,0.195607042 +GOLT1B,Lamina,-0.001733211 +C2CD5,Lamina,1.104948775 +RAB35,Lamina,-0.289727503 +RIC8B,Lamina,1.241434698 +RP11-22B23.1,Lamina,1.526583498 +DSE,Lamina,0.340469622 +MAN1A1,Lamina,0.020808586 +SERINC1,Lamina,-0.367358841 +UST,Lamina,-0.42725103 +KCTD20,Lamina,0.089232541 +RNF8,Lamina,-0.022129615 +ICK,Lamina,0.38878728 +RAB23,Lamina,-0.029618399 +FBXL4,Lamina,0.211345194 +CCNC,Lamina,-0.006282969 +ALDH5A1,Lamina,0.307043286 +EYA4,Lamina,1.312431432 +PERP,Lamina,-0.670730562 +SLC16A10,Lamina,0.971183304 +PHACTR2,Lamina,0.874860637 +SLC39A7,Lamina,-0.636798358 +PPP2R5D,Lamina,-0.653271233 +PTK7,Lamina,-0.208046684 +CUL9,Lamina,-0.083403071 +TMEM30A,Lamina,-0.208018961 +SENP6,Lamina,0.503737399 +VEGFA,Lamina,1.707517193 +PRPF4B,Lamina,0.614674235 +BTN2A1,Lamina,0.46115507 +LAMA4,Lamina,0.11705835 +ERBB2IP,Lamina,-0.135621437 +HARS2,Lamina,0.229826708 +MAN2A1,Lamina,0.493445593 +PAPD7,Lamina,1.05167809 +NNT,Lamina,-0.129764562 +APBB3,Lamina,1.243550546 +SPARC,Lamina,-1.260295045 +HMGCR,Lamina,-0.630182683 +FAF2,Lamina,-0.265704146 +CLK4,Lamina,1.895281959 +ARSB,Lamina,-0.22033203 +CNOT6,Lamina,-0.006528221 +DROSHA,Lamina,0.293974178 +FAM172A,Lamina,0.081476103 +LNPEP,Lamina,0.448632036 +SLC12A7,Lamina,-0.04767095 +NR3C1,Lamina,0.283324093 +C5orf15,Lamina,-0.266154751 +LIFR,Lamina,0.626077025 +TRAPPC13,Lamina,0.815282368 +TXNDC15,Lamina,0.193183906 +H2AFY,Lamina,0.855938367 +TCERG1,Lamina,0.809963422 +SMAD5,Lamina,0.699196704 +ERGIC1,Lamina,-0.432564167 +STC2,Lamina,1.192828485 +ARL6,Lamina,0.732982314 +NIT2,Lamina,0.461725653 +UBE3A,Lamina,0.002473357 +SLC25A36,Lamina,2.53339976 +TFDP2,Lamina,1.119539239 +XRN1,Lamina,0.936284056 +WNT5A,Lamina,0.748334037 +PFKFB4,Lamina,0.180572469 +PRKAR2A,Lamina,-0.279085363 +ACAP2,Lamina,0.866914872 +CBLB,Lamina,0.844589283 +BBX,Lamina,0.635142119 +GNB4,Lamina,-0.037641401 +C3orf52,Lamina,0.575975517 +PLXNA1,Lamina,0.543057036 +CSPG5,Lamina,-0.0082569 +SCAP,Lamina,-0.373711923 +HEMK1,Lamina,0.706446886 +ACVR2B,Lamina,0.881192184 +ABCC5,Lamina,1.283770592 +SSR3,Lamina,-0.566708009 +NKTR,Lamina,2.302548899 +FOXP1,Lamina,-0.045899053 +INO80D,Lamina,1.977442074 +ADAM23,Lamina,0.25495724 +MOB1A,Lamina,-0.021076207 +LMAN2L,Lamina,-0.758190345 +RTKN,Lamina,0.215896837 +PIKFYVE,Lamina,0.637816161 +FAHD2A,Lamina,1.334443619 +SLC35F5,Lamina,0.188109533 +STEAP3,Lamina,0.304161879 +EPB41L5,Lamina,0.232877674 +GPD2,Lamina,-0.713531777 +ACVR1,Lamina,-0.625039392 +MPV17,Lamina,0.3676319 +TTC31,Lamina,0.732199347 +NDUFS7,Lamina,0.138135695 +SPTBN1,Lamina,-0.261412817 +CCDC88A,Lamina,0.326127325 +FN1,Lamina,-0.665755582 +ELMOD3,Lamina,1.560937948 +IGFBP5,Lamina,0.004204176 +USP34,Lamina,0.339915019 +GGCX,Lamina,-0.110416331 +CHST10,Lamina,0.16918309 +MOB4,Lamina,-0.241707336 +UXS1,Lamina,0.137960154 +PASK,Lamina,1.24699627 +TAF1B,Lamina,0.153820305 +DCAF17,Lamina,1.619587159 +SDC1,Lamina,-0.604625624 +SLC1A4,Lamina,-0.365704454 +SOS1,Lamina,0.757712329 +WIPF1,Lamina,0.24603484 +THADA,Lamina,-0.553321893 +TRAK2,Lamina,0.282506627 +TIA1,Lamina,0.762544947 +PCYOX1,Lamina,-0.442979441 +ARID3A,Lamina,0.304812774 +EPHA4,Lamina,0.630234555 +ALMS1,Lamina,-0.159266742 +BCL9,Lamina,0.128507921 +DHCR24,Lamina,-0.757763652 +DNAJC16,Lamina,0.151828969 +RALGPS2,Lamina,0.525546033 +CEP104,Lamina,0.272119704 +FAM20B,Lamina,-0.140065585 +TCEANC2,Lamina,1.538438805 +WRAP73,Lamina,0.446745472 +ICMT,Lamina,-0.560121628 +QSOX1,Lamina,-0.18002581 +AMPD2,Lamina,0.698903097 +EDEM3,Lamina,0.304192133 +RAP1A,Lamina,-0.068605638 +S100PBP,Lamina,0.41897325 +ASH1L,Lamina,1.067342264 +SFPQ,Lamina,0.737023616 +MEF2D,Lamina,0.920989833 +C1orf21,Lamina,1.344973034 +LEPR,Lamina,0.517342583 +IVNS1ABP,Lamina,0.816642653 +KIAA2013,Lamina,-0.41774242 +MIIP,Lamina,0.152527117 +SLC35D1,Lamina,0.813276743 +WLS,Lamina,-0.612263681 +PRDM2,Lamina,1.007600142 +TROVE2,Lamina,0.636408335 +SRSF11,Lamina,1.823436616 +PHTF1,Lamina,0.129157594 +TMEM9,Lamina,-0.155276686 +EXOC8,Lamina,2.129532653 +NID1,Lamina,-0.320651862 +MTR,Lamina,0.599647385 +BMP8B,Lamina,0.041984506 +RIMS3,Lamina,1.896782404 +AKT3,Lamina,0.105457355 +ETV3,Lamina,0.582366729 +LPHN2,Lamina,0.01399608 +RBBP5,Lamina,-0.257595762 +ECE1,Lamina,-0.444735803 +CD46,Lamina,1.19027801 +APH1A,Lamina,-0.626627935 +LEPRE1,Lamina,-0.697726609 +SLC2A1,Lamina,-0.555848989 +SLC19A2,Lamina,0.89053186 +NSUN4,Lamina,0.893724827 +TMED5,Lamina,-0.08673556 +DR1,Lamina,0.35964227 +PTBP2,Lamina,1.355367783 +DARS2,Lamina,-0.786215672 +DIEXF,Lamina,0.736204726 +RCAN3,Lamina,0.045147517 +C1orf63,Lamina,1.858350223 +SLC35A3,Lamina,1.197786389 +RCOR3,Lamina,1.347208317 +ARID1A,Lamina,0.165954746 +CENPF,Lamina,0.81921909 +ESYT2,Lamina,0.050399928 +CD3EAP,Lamina,-0.035881772 +MESDC2,Lamina,-0.143877065 +CTSD,Lamina,-0.675359324 +STK11,Lamina,0.599175503 +KMT2A,Lamina,0.873315245 +KPTN,Lamina,0.069154948 +KIF14,Lamina,0.583138968 +ATF6,Lamina,-0.39364553 +FASTKD2,Lamina,-0.131876311 +NRP2,Lamina,0.312124239 +CREB1,Lamina,0.856956038 +B4GALT6,Lamina,0.670630914 +ELOVL4,Lamina,-0.432570997 +CASP8AP2,Lamina,0.452530471 +PHF3,Lamina,0.110865126 +PLAGL1,Lamina,1.830361682 +FBXO30,Lamina,1.471578678 +TMEM5,Lamina,0.056804884 +ZNF430,Lamina,0.435893283 +DCLRE1B,Lamina,-0.962810936 +PKD2,Lamina,2.024037526 +UBN1,Lamina,0.366426169 +KLF12,Lamina,1.693967316 +WDR35,Lamina,0.743258455 +CCND2,Lamina,1.466175468 +SATB2,Lamina,0.133151642 +SENP5,Lamina,0.978131568 +C1orf198,Lamina,-0.335015332 +HEATR1,Lamina,0.15446282 +PTBP3,Lamina,0.093057768 +FAM206A,Lamina,-0.144784684 +RBM18,Lamina,-0.215493633 +MAPKAP1,Lamina,-0.547147029 +KDSR,Lamina,0.101898307 +ONECUT2,Lamina,2.945961786 +IRF2BPL,Lamina,0.415348784 +AREL1,Lamina,-0.200705754 +ABCD4,Lamina,1.101998731 +RBM25,Lamina,1.318308191 +NRDE2,Lamina,1.186133605 +KLHL29,Lamina,1.574176164 +DNMT3A,Lamina,1.227987343 +ATAD2B,Lamina,0.782746112 +ATL2,Lamina,0.342082511 +YIPF4,Lamina,0.366719214 +AFTPH,Lamina,0.297421258 +BCL11A,Lamina,0.889574573 +SLC17A5,Lamina,-0.069247959 +FAM178A,Lamina,0.742741299 +GPAM,Lamina,-0.07566756 +HELLS,Lamina,1.246272161 +TCTN3,Lamina,-0.618037205 +C10orf76,Lamina,-0.602076841 +HOXB8,Lamina,1.506313554 +HOXB3,Lamina,1.862032792 +PANK3,Lamina,1.86522809 +NUP43,Lamina,0.59278039 +LRP11,Lamina,0.075206098 +MASTL,Lamina,1.019175942 +ELF1,Lamina,-0.335296914 +EGR1,Lamina,0.036569169 +NR2C1,Lamina,1.248613181 +MTERFD3,Lamina,1.809157937 +CLU,Lamina,-2.057276735 +TNFRSF10B,Lamina,-0.748847082 +TARDBP,Lamina,0.523416724 +CRISPLD1,Lamina,0.014688354 +AKAP1,Lamina,0.24827301 +TRIM25,Lamina,0.269213009 +KIAA0922,Lamina,0.073229578 +PAPD5,Lamina,0.507055971 +CEP89,Lamina,0.988331429 +B4GALT4,Lamina,0.357435087 +KIF18A,Lamina,0.644590506 +CRY2,Lamina,1.009422231 +ZNF639,Lamina,0.063436087 +PDS5A,Lamina,-0.188620279 +CLCC1,Lamina,0.05084933 +ACVR2A,Lamina,0.297029927 +RPL21,Lamina,0.359714259 +MTERFD2,Lamina,1.023634917 +KIAA1191,Lamina,-0.358348413 +RBBP6,Lamina,0.568861641 +ZC3H7A,Lamina,0.037487022 +FAM35A,Lamina,0.234460179 +FAM213A,Lamina,-0.034981277 +ODF2L,Lamina,1.507798461 +TRMT13,Lamina,1.42653851 +RPAP2,Lamina,1.135954431 +FAM126A,Lamina,0.289005729 +FKBP9,Lamina,-0.587754493 +POLM,Lamina,1.415962681 +SLC25A51,Lamina,1.19724018 +DCAF10,Lamina,0.859426963 +KIAA1549,Lamina,0.416163457 +CALD1,Lamina,0.662562244 +CHST3,Lamina,0.469778349 +P4HA1,Lamina,-0.633812813 +RBM19,Lamina,0.412542909 +GIPC1,Lamina,-0.647004721 +ATP7B,Lamina,0.136876752 +ZC3H13,Lamina,0.060824518 +NLN,Lamina,0.1126037 +CENPK,Lamina,0.942143212 +OPTN,Lamina,-0.727453806 +SPATS2,Lamina,0.076052272 +LRP1,Lamina,-0.345071684 +HJURP,Lamina,0.837980434 +USP45,Lamina,1.675120503 +SLC36A1,Lamina,0.930007992 +LPGAT1,Lamina,0.291274186 +EXOSC9,Lamina,0.480519019 +PLA2G12A,Lamina,0.844057562 +ADCK4,Lamina,0.069252018 +PFKFB2,Lamina,1.277830328 +AGO2,Lamina,1.302453578 +MXD4,Lamina,0.511036467 +ACSL3,Lamina,-0.384654833 +SLC12A4,Lamina,-0.486705752 +FAM210B,Lamina,-0.350790768 +SDC4,Lamina,-0.320668309 +NCOA3,Lamina,0.829871507 +PIGT,Lamina,-0.605670861 +VAPB,Lamina,0.66850469 +CHD6,Lamina,0.569114391 +SRSF6,Lamina,0.961578769 +RAB22A,Lamina,0.764572327 +STX16,Lamina,1.481476222 +STAMBP,Lamina,-0.342376709 +NAGK,Lamina,0.839233881 +PAIP2B,Lamina,0.901433147 +ATP8A1,Lamina,1.240632175 +BTN2A2,Lamina,0.687929898 +ABCC10,Lamina,0.455380003 +AARS2,Lamina,-0.195066313 +ZNF391,Lamina,1.484776557 +CDKN1A,Lamina,-2.668847284 +SSR1,Lamina,-0.11318953 +NRN1,Lamina,0.34085478 +ATXN1,Lamina,1.683398212 +EEF1E1,Lamina,0.850578186 +LRRFIP1,Lamina,0.843438593 +AHNAK,Lamina,1.504471677 +ABCC4,Lamina,-0.103394711 +EFNB2,Lamina,0.001331245 +ATP5S,Lamina,1.59380367 +FAM193A,Lamina,0.796223981 +GGA3,Lamina,0.272485082 +GTF3C4,Lamina,0.563714575 +PPP1R12C,Lamina,0.457703661 +MBOAT7,Lamina,-0.174683438 +CCDC93,Lamina,1.412704822 +THOC2,Lamina,0.246987817 +MED1,Lamina,0.404034415 +GPR108,Lamina,-0.569824463 +GPCPD1,Lamina,1.092177933 +PANK2,Lamina,0.900630344 +NAPB,Lamina,1.797122295 +TMX4,Lamina,-0.294016025 +RRBP1,Lamina,0.070883594 +ZNF133,Lamina,1.999494324 +MCM8,Lamina,0.871550342 +NCLN,Lamina,0.165878291 +ZNF436,Lamina,0.21222618 +AMOT,Lamina,-0.345104421 +TMEM115,Lamina,-0.497405682 +AGO3,Lamina,2.136511207 +HECTD3,Lamina,-0.454835538 +KLC1,Lamina,1.662876844 +XRCC3,Lamina,1.215969379 +TUBGCP3,Lamina,0.197137236 +PCID2,Lamina,0.847315215 +FRMD8,Lamina,0.041599832 +PCNXL4,Lamina,0.595224251 +ATG14,Lamina,1.293309174 +KTN1,Lamina,-0.135177233 +PLEKHG3,Lamina,0.823077175 +WDR60,Lamina,1.205220703 +AIF1L,Lamina,-0.275898328 +SLC10A3,Lamina,-0.742118292 +CANX,Lamina,-0.592530296 +CPSF3L,Lamina,0.238859874 +TRAF2,Lamina,0.417855895 +HELB,Lamina,1.411910058 +DYRK2,Lamina,1.537420752 +LRRC61,Lamina,-0.10993959 +FGFRL1,Lamina,0.051758525 +EMC1,Lamina,-0.449807797 +HP1BP3,Lamina,1.071383983 +SIN3B,Lamina,0.799440796 +SLC35E1,Lamina,0.121442081 +GFER,Lamina,0.379571539 +PKMYT1,Lamina,0.564604997 +CHTF18,Lamina,0.916305953 +MACF1,Lamina,0.223322823 +RNF6,Lamina,-0.144596306 +AKAP9,Lamina,0.865020624 +HIP1,Lamina,-0.056383553 +POR,Lamina,-0.843655228 +PEX1,Lamina,0.465673918 +LRFN1,Lamina,-0.474574702 +SRD5A3,Lamina,-0.268437555 +PPAT,Lamina,0.310877383 +TUBGCP6,Lamina,1.079951353 +DGCR8,Lamina,1.43240185 +TPST2,Lamina,-0.05867191 +MPST,Lamina,0.823366651 +SPECC1,Lamina,-0.300694883 +NAA38,Lamina,0.780894577 +PRKRIP1,Lamina,0.82266772 +PODXL,Lamina,-0.011215262 +STRIP2,Lamina,0.991582647 +MKLN1,Lamina,1.167654948 +CALU,Lamina,-0.567549908 +CCDC136,Lamina,1.35646089 +SMO,Lamina,0.029880873 +KLHDC10,Lamina,1.054198025 +OSGEPL1,Lamina,0.338310354 +HOXD10,Lamina,3.243284387 +HOXD11,Lamina,1.31391594 +HERC2,Lamina,0.549966383 +TWSG1,Lamina,-0.171465378 +MYO5C,Lamina,0.287118177 +TMOD2,Lamina,1.55854475 +TTBK2,Lamina,1.520233204 +IVD,Lamina,0.365309699 +CLN6,Lamina,0.419250974 +ARPP19,Lamina,0.27447858 +VPS13C,Lamina,0.828648 +SUMF2,Lamina,-0.259644126 +SPCS3,Lamina,-0.123718968 +RPAIN,Lamina,0.962606225 +PLD2,Lamina,0.117335933 +MPDU1,Lamina,-0.805654786 +CCNT1,Lamina,0.802751824 +PUS7L,Lamina,1.951643003 +KRI1,Lamina,0.246523657 +SLC44A2,Lamina,-0.641156478 +BCL2L2,Lamina,1.421021932 +PARP2,Lamina,0.384133495 +TEP1,Lamina,1.016643682 +MAP7D3,Lamina,0.192334445 +ABHD17A,Lamina,1.32803378 +ERMARD,Lamina,1.464346664 +SAT1,Lamina,0.70030152 +GNL3L,Lamina,0.794907091 +SH3BP4,Lamina,-0.22434223 +LDLR,Lamina,-0.288607647 +PRKCSH,Lamina,-0.467605686 +THEM6,Lamina,-0.350642337 +PVRL2,Lamina,-0.735810524 +SAFB2,Lamina,0.154119099 +KIF1A,Lamina,-0.101229629 +COLGALT1,Lamina,-0.25500244 +MLLT1,Lamina,0.325850512 +MLLT4,Lamina,0.706573779 +ACTN4,Lamina,-0.388345762 +NDUFA10,Lamina,0.878102493 +ZSWIM6,Lamina,0.828767968 +PXDN,Lamina,0.129323336 +COL5A1,Lamina,-0.172924091 +ZNF337,Lamina,2.025198847 +TAF4,Lamina,0.140577536 +LAMA5,Lamina,0.347718986 +EXOSC2,Lamina,0.364974907 +POMT1,Lamina,0.880843631 +PRRC2B,Lamina,0.343406928 +YIPF2,Lamina,-0.293574081 +ZC3H4,Lamina,-0.189326091 +CLIP1,Lamina,0.12381292 +HIP1R,Lamina,0.105989416 +PPAN,Lamina,0.770095221 +SLC6A8,Lamina,0.371137778 +PLXNA3,Lamina,0.670800701 +PRRG1,Lamina,0.84136201 +AKAP12,Lamina,0.859440091 +RBM39,Lamina,0.943413773 +GGT7,Lamina,0.490789144 +PPT1,Lamina,-0.753980778 +RLIM,Lamina,1.224170359 +ABCB7,Lamina,-0.139070588 +MRPS25,Lamina,2.011781703 +CAPN7,Lamina,0.182995315 +ZFYVE20,Lamina,0.207894548 +SLC6A6,Lamina,1.628559427 +MGAT1,Lamina,-0.135779894 +PSMC3IP,Lamina,0.21886638 +DIAPH1,Lamina,-0.620347706 +NDFIP1,Lamina,-0.498325594 +ACAP3,Lamina,1.159544028 +C1orf159,Lamina,1.033124262 +MAP1B,Lamina,1.192451006 +IL13RA1,Lamina,-0.488538086 +WDR44,Lamina,-0.316860918 +PRKAB2,Lamina,1.286082621 +CLUHP3,Lamina,2.8646668 +CHSY1,Lamina,-0.05078976 +SNRPA1,Lamina,1.047870896 +FBXW9,Lamina,0.702002789 +RFX1,Lamina,0.202898997 +CC2D1A,Lamina,0.916522216 +NUP210,Lamina,0.060998435 +ENOSF1,Lamina,2.194489688 +EMILIN2,Lamina,-1.267901067 +PRKAA1,Lamina,1.591760274 +PNISR,Lamina,1.973628506 +ZRANB2,Lamina,1.603692303 +KDM6B,Lamina,0.626766369 +GPS2,Lamina,0.305797766 +VPS13B,Lamina,0.817598808 +REEP2,Lamina,-0.267666604 +PRMT7,Lamina,0.672208862 +PCED1A,Lamina,1.02914038 +PTPRA,Lamina,-0.317769421 +KIAA0907,Lamina,2.022091835 +DCAF8,Lamina,1.937652961 +IGHMBP2,Lamina,0.909168938 +LPIN3,Lamina,0.607339342 +SERINC3,Lamina,-0.288143832 +FBXO44,Lamina,0.807494249 +USPL1,Lamina,1.081228092 +XPO4,Lamina,0.774929274 +SCO1,Lamina,1.189914485 +MPRIP,Lamina,0.980963452 +DSTYK,Lamina,1.118225087 +SLC41A1,Lamina,0.381469027 +GPALPP1,Lamina,0.80513505 +IRS4,Lamina,1.024599536 +FAM104A,Lamina,0.22165129 +SLC39A11,Lamina,-0.598018414 +EPHB2,Lamina,-0.332769117 +SRRM1,Lamina,-0.056458866 +SUV420H2,Lamina,0.465999539 +WDR74,Lamina,-0.344163331 +RTN3,Lamina,-0.717365834 +MORC2,Lamina,0.835529754 +LARGE,Lamina,-0.102967233 +ADCK2,Lamina,-0.798574987 +AGAP3,Lamina,0.515556899 +KRBA1,Lamina,0.951303002 +ZNF767,Lamina,2.356524146 +ATP13A3,Lamina,0.248440445 +TMEM254,Lamina,0.176770868 +TMTC1,Lamina,-0.04588681 +KRAS,Lamina,0.355691341 +SWAP70,Lamina,-0.253535733 +ZFC3H1,Lamina,0.891776831 +TEX15,Lamina,2.191676622 +CTIF,Lamina,1.257402269 +VHL,Lamina,0.845902687 +ARL8B,Lamina,-0.263757667 +EDEM1,Lamina,0.918213191 +PRPF38B,Lamina,1.338436121 +SORT1,Lamina,-0.372205526 +PTGFRN,Lamina,-0.442012691 +NOTCH2,Lamina,-0.288864634 +CEPT1,Lamina,0.816579215 +AP4B1,Lamina,0.996435504 +SPIRE1,Lamina,0.818945259 +SLC38A2,Lamina,0.105773581 +KIDINS220,Lamina,0.041796525 +ROCK2,Lamina,0.236692613 +LPIN1,Lamina,0.767005482 +IL6ST,Lamina,-0.064087466 +TMEM241,Lamina,-0.747281083 +LRP4,Lamina,0.235616183 +DDB2,Lamina,-0.388913754 +ACP2,Lamina,-0.76847719 +AGO4,Lamina,1.022386467 +HOOK1,Lamina,0.58750037 +DSC2,Lamina,-0.547306639 +DSC3,Lamina,-0.133436556 +DTNA,Lamina,0.981521585 +FHOD3,Lamina,0.040774245 +FADS2,Lamina,-0.478852516 +CLOCK,Lamina,1.574959005 +COL4A2,Lamina,-0.376315369 +DZIP1,Lamina,0.812030558 +UBAC2,Lamina,-0.460058381 +ARGLU1,Lamina,1.77834926 +BIVM,Lamina,1.101044234 +ARHGAP32,Lamina,0.912455788 +TMED7,Lamina,-0.583047974 +APC,Lamina,0.753495415 +WDR36,Lamina,0.540028823 +NAA35,Lamina,0.06143568 +TMEM2,Lamina,-0.447432907 +GOLM1,Lamina,-0.25326435 +TAOK3,Lamina,0.494149874 +DMTF1,Lamina,1.8044219 +TMEM243,Lamina,0.604903063 +PNPLA8,Lamina,-0.364953439 +MDFIC,Lamina,-0.353131838 +ANKRD6,Lamina,0.864930878 +KIAA1009,Lamina,1.173751265 +SNX14,Lamina,0.204104483 +EPHA7,Lamina,0.399587987 +DNAJC14,Lamina,-0.580272863 +GDF11,Lamina,0.749769347 +TROAP,Lamina,0.629729573 +TSPAN31,Lamina,-0.625573828 +TFCP2,Lamina,-0.3719755 +PAN2,Lamina,0.275685624 +HNRNPA1,Lamina,0.85327661 +ACVR1B,Lamina,0.487312025 +OS9,Lamina,-0.683395628 +MAP7,Lamina,0.013709945 +CD164,Lamina,-0.078257104 +NHSL1,Lamina,0.342632535 +AHI1,Lamina,0.580092495 +SEMA4F,Lamina,-0.463758508 +RAB11FIP5,Lamina,1.242727992 +CCDC142,Lamina,0.886521104 +GNS,Lamina,-0.502417313 +MDM2,Lamina,0.06019236 +KLHL36,Lamina,1.038297356 +DYNC1LI2,Lamina,1.341620282 +EGLN1,Lamina,-0.043662709 +ABCB10,Lamina,0.272037641 +TAF5L,Lamina,0.414647446 +STX6,Lamina,0.062805435 +CEP350,Lamina,0.779065331 +LAMC1,Lamina,-0.474499167 +RC3H1,Lamina,1.411710335 +TTLL4,Lamina,0.062044015 +USP37,Lamina,0.683166576 +ITM2C,Lamina,-0.840151991 +SERPINE2,Lamina,-0.038679641 +TMEM127,Lamina,-0.610376839 +GCC2,Lamina,0.16021847 +C2orf49,Lamina,0.598076769 +EPC2,Lamina,0.174520382 +ARHGEF4,Lamina,0.77054409 +ALDH1L2,Lamina,0.917568021 +CKAP4,Lamina,-0.657315007 +NEK3,Lamina,0.812828076 +RCBTB1,Lamina,0.805935146 +COG3,Lamina,0.84549643 +SCRN1,Lamina,-0.042299452 +CHST12,Lamina,0.763582151 +KDELR2,Lamina,-0.631373106 +NUPL2,Lamina,0.895250513 +DBNL,Lamina,0.226879067 +TTYH3,Lamina,-0.049836549 +IREB2,Lamina,0.082848438 +RSAD1,Lamina,0.519542514 +VEZF1,Lamina,0.306122767 +TEX2,Lamina,-0.340342435 +BRIP1,Lamina,0.635730013 +SKIL,Lamina,1.209890927 +RPS6KC1,Lamina,-0.111229871 +BIN1,Lamina,0.811324189 +HS6ST1,Lamina,-0.276677632 +UGGT1,Lamina,-0.050338633 +DNAJC1,Lamina,-0.889110023 +LRRC8A,Lamina,-0.465910236 +CDK9,Lamina,0.128026407 +TOR1B,Lamina,0.312808416 +SMC2,Lamina,-0.035586721 +TOR1A,Lamina,-0.631368166 +RALGPS1,Lamina,1.840536241 +FAM129B,Lamina,0.14497317 +SLC2A8,Lamina,0.360847457 +SLC31A1,Lamina,-0.12320505 +ZNF189,Lamina,0.914023109 +STX17,Lamina,0.754397964 +TSTD2,Lamina,0.998074764 +LMX1B,Lamina,0.746793611 +RANBP6,Lamina,1.760265251 +TLN1,Lamina,-0.447541956 +ALDH1B1,Lamina,-1.037699864 +CNPY3,Lamina,-0.716486612 +TMEM63B,Lamina,-0.018430425 +TJAP1,Lamina,0.462110084 +SLC22A23,Lamina,0.703716778 +FOXF2,Lamina,0.003205882 +RIPK1,Lamina,-0.107262612 +ATAT1,Lamina,1.448451863 +NRM,Lamina,-0.655705369 +VARS2,Lamina,0.419099713 +FAM8A1,Lamina,0.223743675 +PRKRIR,Lamina,0.119049949 +CREBZF,Lamina,1.735429126 +PRCP,Lamina,-0.847933696 +RNF121,Lamina,-0.390720912 +SULF1,Lamina,-0.279387955 +SORL1,Lamina,-0.051129644 +YAP1,Lamina,-0.165397917 +RDX,Lamina,-0.364522117 +MAP2K5,Lamina,-0.398970468 +MAPKBP1,Lamina,0.740265471 +CASC5,Lamina,0.154497592 +HAUS2,Lamina,0.440453881 +PARP6,Lamina,1.114458652 +TUBGCP4,Lamina,1.047842606 +RMDN3,Lamina,0.297854012 +UACA,Lamina,0.699674068 +SMAD6,Lamina,2.610205602 +ADAM10,Lamina,-0.111867012 +TTLL7,Lamina,0.761044039 +FNBP1L,Lamina,0.820212311 +RABGGTB,Lamina,1.098435391 +ARHGAP29,Lamina,0.345967512 +SLC44A5,Lamina,1.979500763 +DBT,Lamina,0.650088861 +EPT1,Lamina,0.666141613 +ADCY3,Lamina,0.345590116 +PNPT1,Lamina,0.008133253 +THUMPD2,Lamina,0.947678469 +PREPL,Lamina,-0.136636947 +ACTR1A,Lamina,-0.613053853 +TMEM180,Lamina,0.70381641 +ATAD1,Lamina,0.28664724 +KIF20B,Lamina,0.274717214 +TET1,Lamina,0.436177561 +DNA2,Lamina,0.499944506 +BARD1,Lamina,1.031770916 +NAB1,Lamina,1.359403179 +PPIG,Lamina,0.643276483 +FASTKD1,Lamina,0.785357281 +SSFA2,Lamina,0.319541537 +ITGAV,Lamina,0.572490793 +SLC35A5,Lamina,-0.38871131 +SECISBP2L,Lamina,0.459155918 +SPPL2A,Lamina,-0.41301598 +GLCE,Lamina,0.166328421 +PPCDC,Lamina,0.956446024 +PCDH10,Lamina,-0.670007046 +AP1AR,Lamina,0.11340417 +FGF2,Lamina,1.708601212 +KIAA1109,Lamina,0.94071757 +LARP1B,Lamina,0.144395412 +BMP2K,Lamina,1.073508408 +FRAS1,Lamina,0.618142953 +SCARB2,Lamina,-0.208340535 +USO1,Lamina,-0.464400541 +CENPE,Lamina,0.803330343 +GSTCD,Lamina,0.062299602 +LEF1,Lamina,0.07797128 +PPP3CA,Lamina,-0.274706982 +FBN2,Lamina,-0.352041391 +MAPK8IP3,Lamina,1.893449224 +B4GALNT3,Lamina,0.297853345 +AEBP2,Lamina,0.116938733 +ETNK1,Lamina,1.104752596 +CLSTN3,Lamina,-0.832650793 +SCAF11,Lamina,0.579567839 +COL2A1,Lamina,-0.59603058 +LRIG3,Lamina,0.279452022 +TMEM19,Lamina,-0.209403088 +POC1B,Lamina,-0.233248269 +TMTC3,Lamina,0.491219416 +GAS2L3,Lamina,0.94908368 +SLC15A4,Lamina,0.665729854 +TDG,Lamina,0.141523636 +NUPL1,Lamina,0.380618976 +MTMR6,Lamina,-0.3841882 +SLC7A1,Lamina,0.246123315 +BRCA2,Lamina,1.504820986 +CERS5,Lamina,-0.302547113 +ESYT1,Lamina,-0.822156564 +TMBIM6,Lamina,-0.729665841 +ANKRD52,Lamina,0.801104029 +ZNF740,Lamina,0.859835276 +HNRNPA1L2,Lamina,0.941192896 +SBNO1,Lamina,0.27313516 +SETD1B,Lamina,0.442948438 +RBM26,Lamina,1.088358285 +ZIC5,Lamina,0.866377204 +TMX1,Lamina,-0.492079703 +NAA30,Lamina,0.352890977 +DCAF5,Lamina,0.298031925 +RAB15,Lamina,-0.014069036 +NIPA2,Lamina,-0.091526426 +ZSCAN29,Lamina,0.873570452 +BNIP2,Lamina,0.227369771 +MAN2C1,Lamina,1.367694934 +MESDC1,Lamina,-0.442112029 +IGF1R,Lamina,0.69854253 +ARRDC4,Lamina,0.285913121 +PML,Lamina,0.107589915 +LINS,Lamina,1.40052382 +PCSK6,Lamina,0.24511908 +SCAMP2,Lamina,-0.512301889 +POLG,Lamina,0.239524323 +ABHD2,Lamina,0.193531274 +TICRR,Lamina,0.662375154 +MFGE8,Lamina,0.683424661 +FURIN,Lamina,-0.370238821 +IQGAP1,Lamina,-0.532962082 +CRTC3,Lamina,0.860027508 +FTO,Lamina,-0.499211181 +MBTPS1,Lamina,-0.017358294 +RHOT2,Lamina,0.320639911 +PDPK1,Lamina,0.488098632 +TCF25,Lamina,0.746523452 +GALNS,Lamina,0.643758697 +GAS8,Lamina,1.40154016 +MED9,Lamina,0.288905472 +GID4,Lamina,-0.09974684 +KSR1,Lamina,0.031328736 +SGSM2,Lamina,0.88537717 +SSH2,Lamina,0.932992323 +PTRH2,Lamina,0.809623714 +SS18,Lamina,0.572695476 +SLC39A6,Lamina,-0.285243242 +GALNT1,Lamina,-0.409460996 +ESCO1,Lamina,0.088699791 +GREB1L,Lamina,0.408374382 +NPC1,Lamina,-0.176416403 +MINK1,Lamina,0.395103292 +TTYH2,Lamina,1.234456708 +CSNK1D,Lamina,0.28555483 +FOXK2,Lamina,-0.001276174 +TRIM65,Lamina,0.77898866 +RNF157,Lamina,-0.004371714 +CBX4,Lamina,0.308775301 +MBD1,Lamina,0.356857064 +ZCCHC2,Lamina,0.449447781 +LEPREL4,Lamina,-0.218114438 +FAM134C,Lamina,-0.473668837 +ERBB2,Lamina,-0.537164959 +FKBP10,Lamina,0.206997771 +PRDM15,Lamina,1.086315186 +DUS3L,Lamina,-0.144189556 +ATHL1,Lamina,1.21205492 +COL6A1,Lamina,-0.03463828 +IFNAR1,Lamina,-0.058703633 +COL6A2,Lamina,-0.089763115 +TMEM50B,Lamina,0.46465483 +APP,Lamina,-0.578134688 +URB1,Lamina,0.01367911 +CAPN10,Lamina,0.94936821 +ERVK3-1,Lamina,3.014518654 +SLC47A1,Lamina,0.062681412 +RERE,Lamina,0.231075989 +EPHA2,Lamina,-0.134197808 +KIAA0319L,Lamina,0.268889054 +PLK4,Lamina,0.551585606 +GPN2,Lamina,1.250562329 +PIGK,Lamina,-0.65065598 +PTPRF,Lamina,-0.014846499 +SYPL2,Lamina,-0.158607392 +IGSF3,Lamina,-0.329897926 +CELSR2,Lamina,-0.043482327 +ATP1B1,Lamina,-0.581525862 +CREG1,Lamina,-0.234981254 +POU2F1,Lamina,1.380479066 +PPOX,Lamina,0.739014031 +USP21,Lamina,0.55203285 +PIGM,Lamina,1.090695437 +ABL2,Lamina,1.413247694 +XPR1,Lamina,-0.087984215 +TOR1AIP1,Lamina,-0.761478226 +TUFT1,Lamina,0.252062128 +TARS2,Lamina,-0.678566824 +CERS2,Lamina,-0.779700385 +SEMA6C,Lamina,0.814932406 +ATP8B2,Lamina,-0.145772745 +ADAM15,Lamina,-0.116712405 +SLC39A1,Lamina,-0.559187706 +GATAD2B,Lamina,0.497496028 +HCN3,Lamina,1.294018606 +GALNT2,Lamina,-0.357446985 +TTC13,Lamina,0.961137812 +MLK4,Lamina,1.559975583 +CEP170,Lamina,0.476481736 +SDE2,Lamina,-0.602151557 +FBXO28,Lamina,0.668253219 +CDC42BPA,Lamina,0.55975721 +MBOAT2,Lamina,0.813304773 +PSEN2,Lamina,-0.492118092 +LBR,Lamina,-0.160353632 +RHOB,Lamina,-0.291967622 +ASXL2,Lamina,1.218997647 +ETAA1,Lamina,1.072666474 +ZNF514,Lamina,2.019808909 +SFXN5,Lamina,1.181534466 +TEX261,Lamina,0.065313899 +RALB,Lamina,0.050974152 +SLC20A1,Lamina,-0.11576475 +ZC3H8,Lamina,1.289018699 +UBXN4,Lamina,0.20955966 +AMMECR1L,Lamina,0.055548525 +GALNT13,Lamina,-0.047718724 +SCRN3,Lamina,-0.034234992 +KIAA1715,Lamina,-0.015005595 +CDCA7,Lamina,0.645861104 +DLX1,Lamina,0.731147214 +GULP1,Lamina,0.905322875 +FAM171B,Lamina,0.315613733 +CCDC150,Lamina,1.662171658 +SUMF1,Lamina,-1.722513421 +RHBDD1,Lamina,-0.102596295 +FAM134A,Lamina,-0.434448264 +CTDSP1,Lamina,-0.035105157 +EAF1,Lamina,0.396692244 +GOLGA4,Lamina,1.125634604 +IQSEC1,Lamina,0.899136427 +PTPRG,Lamina,-0.284676755 +IL17RD,Lamina,0.575204722 +ARL6IP5,Lamina,-0.900410619 +TMF1,Lamina,0.582056116 +LRIG1,Lamina,0.253818028 +LIMD1,Lamina,0.705924727 +NXPE3,Lamina,-0.04339626 +SRPRB,Lamina,-0.861282083 +TCTA,Lamina,-0.259660033 +VPRBP,Lamina,0.089508017 +SLIT2,Lamina,-0.142525783 +DGKQ,Lamina,0.719109083 +ATP10D,Lamina,-0.405234768 +SCD5,Lamina,-0.831512219 +ENOPH1,Lamina,-0.267348967 +TRMT10A,Lamina,-0.165606645 +KLHL8,Lamina,0.009397295 +USP53,Lamina,0.899908683 +MARCH6,Lamina,0.566070127 +FAM105A,Lamina,-0.167350268 +PIK3R1,Lamina,0.529573038 +LHFPL2,Lamina,0.243367129 +IQGAP2,Lamina,-0.091314643 +PPIP5K2,Lamina,0.443077563 +PAM,Lamina,-0.508316274 +BDP1,Lamina,0.897088541 +SLC30A5,Lamina,-0.127431491 +ATG12,Lamina,1.025018378 +YIPF5,Lamina,-0.369045734 +RNF145,Lamina,0.154923429 +FBXO38,Lamina,0.625083777 +PCYOX1L,Lamina,1.036947262 +TNIP1,Lamina,-0.410471223 +ZNF300,Lamina,1.119184454 +GFOD1,Lamina,2.73343456 +TRIM41,Lamina,0.732556218 +FAM193B,Lamina,1.14349123 +RNF44,Lamina,0.935082983 +MUT,Lamina,-0.3514453 +PHIP,Lamina,1.066396279 +MMS22L,Lamina,1.204665554 +PM20D2,Lamina,0.150779076 +RNF217,Lamina,2.342851536 +AIG1,Lamina,-0.381571669 +TMEM181,Lamina,1.107246986 +SDK1,Lamina,-0.32172525 +RBAK,Lamina,2.068196088 +CREB5,Lamina,2.233485901 +PURB,Lamina,2.639903632 +GBAS,Lamina,-0.000817822 +ZNF92,Lamina,0.91583818 +TMEM168,Lamina,0.526256177 +C7orf43,Lamina,0.759698341 +SLC12A9,Lamina,0.110927058 +GIGYF1,Lamina,1.401169736 +TMEM209,Lamina,-0.603977737 +NOM1,Lamina,1.294306363 +SH3KBP1,Lamina,-0.389735482 +CASK,Lamina,-0.186250974 +SLC16A2,Lamina,-0.380796158 +OGT,Lamina,1.504817817 +ZNF711,Lamina,1.043279992 +DIAPH2,Lamina,0.280260428 +CXorf57,Lamina,0.884538877 +GPC3,Lamina,-1.296461116 +BIN3,Lamina,1.341641198 +SLC25A37,Lamina,2.690270597 +CHMP7,Lamina,-0.25377099 +ERLIN2,Lamina,-0.204383615 +TACC1,Lamina,0.580646062 +WHSC1L1,Lamina,1.072477715 +TERF1,Lamina,-0.202504284 +MTDH,Lamina,-0.338716662 +LRP12,Lamina,-0.24104532 +EBAG9,Lamina,-0.473100078 +UTP23,Lamina,0.072269288 +ZNF7,Lamina,0.914166275 +ARHGAP39,Lamina,0.820254694 +NAPRT1,Lamina,0.242783268 +UHRF2,Lamina,1.850668451 +ZCCHC7,Lamina,0.120968787 +SIGMAR1,Lamina,-0.433127053 +CEP78,Lamina,0.775984616 +HIATL1,Lamina,-0.15978134 +INIP,Lamina,-0.049584693 +UGCG,Lamina,0.070201072 +STOM,Lamina,-0.582651406 +MRRF,Lamina,1.340900528 +NR6A1,Lamina,1.307186814 +SURF4,Lamina,-0.489536738 +MED22,Lamina,1.09146299 +SH3GLB2,Lamina,1.14548323 +FAM73B,Lamina,0.849766802 +GPR107,Lamina,0.302211083 +C9orf142,Lamina,-0.022821493 +INPP5E,Lamina,1.057761721 +DPH7,Lamina,0.513618699 +NOTCH1,Lamina,0.199137746 +NACC2,Lamina,1.273747879 +USP6NL,Lamina,-0.010988949 +FAM171A1,Lamina,-0.020707175 +PARD3,Lamina,-0.505800211 +POLR3A,Lamina,-0.182879137 +FRA10AC1,Lamina,0.737284557 +ADD3,Lamina,0.155666832 +DNAJB12,Lamina,0.228727149 +EIF4EBP2,Lamina,0.092961769 +MKI67,Lamina,1.914863382 +MTG1,Lamina,1.489697825 +PPRC1,Lamina,0.734169427 +ITPRIP,Lamina,-0.076460594 +CNNM2,Lamina,0.659711595 +PDCD11,Lamina,-0.310357634 +LIN7C,Lamina,0.56273545 +DGKZ,Lamina,0.390380264 +TNKS1BP1,Lamina,0.689436013 +SLC43A1,Lamina,0.467564527 +PTPRJ,Lamina,0.131381138 +CELF1,Lamina,1.080751357 +SESN3,Lamina,1.526787956 +ENDOD1,Lamina,-0.364005008 +SERPINH1,Lamina,-1.108369345 +NCAM1,Lamina,0.493200185 +NPAT,Lamina,0.371320024 +ATM,Lamina,1.423699667 +GLB1L2,Lamina,0.159403083 +HYOU1,Lamina,-0.5474597 +DAK,Lamina,0.064686162 +TMEM138,Lamina,0.822934295 +FADS1,Lamina,-0.421840938 +EML3,Lamina,0.737473052 +B3GAT3,Lamina,-0.445548816 +SIDT2,Lamina,0.061430181 +SOGA1,Lamina,0.921096445 +LSM14B,Lamina,0.86674528 +ORAOV1,Lamina,2.099955248 +TAOK2,Lamina,0.728053487 +ITGB1,Lamina,-0.514878378 +ARID5B,Lamina,-0.075937215 +TMCO3,Lamina,-0.151553456 +LATS2,Lamina,-0.393533202 +LPHN3,Lamina,-0.509779733 +PRSS23,Lamina,-0.612858472 +PIP4K2A,Lamina,-0.781151845 +FREM2,Lamina,0.207170599 +CRIM1,Lamina,-0.322194838 +IPMK,Lamina,0.900952978 +PLBD2,Lamina,-0.482470257 +GXYLT1,Lamina,0.333773439 +CSNK1G3,Lamina,0.008175501 +MIPOL1,Lamina,0.552286449 +EXT2,Lamina,-0.76155158 +TMEM18,Lamina,0.840591191 +NEK7,Lamina,0.434423389 +FER,Lamina,1.483316855 +VIPAS39,Lamina,-0.167889822 +ANKRD50,Lamina,0.893303858 +UPF2,Lamina,0.117419706 +EPS8,Lamina,0.388071281 +FAM160B1,Lamina,1.516293836 +ADAM17,Lamina,-0.005917582 +WWC2,Lamina,0.132509876 +BICD1,Lamina,0.935736447 +NBAS,Lamina,-0.562562936 +GUF1,Lamina,0.677651292 +SACS,Lamina,2.057134245 +PABPC3,Lamina,-0.288090249 +DST,Lamina,0.525862449 +TIAL1,Lamina,0.780077162 +TMEM56,Lamina,0.381829147 +FAM168B,Lamina,0.240327368 +AC093838.4,Lamina,1.878362113 +MGAT5,Lamina,0.308537226 +GPATCH11,Lamina,0.315033496 +POU4F1,Lamina,1.234587277 +RNF219,Lamina,0.169893265 +EPG5,Lamina,1.18427051 +C18orf25,Lamina,1.074344657 +PDK1,Lamina,0.644417002 +PDE3B,Lamina,0.459818964 +TGOLN2,Lamina,0.515405572 +UHMK1,Lamina,1.725543896 +TADA1,Lamina,0.230751086 +CWF19L2,Lamina,-0.509870551 +JMY,Lamina,1.4073292 +HOMER1,Lamina,-0.19416907 +USP12,Lamina,0.272201521 +CCDC50,Lamina,0.603064926 +PAN3,Lamina,0.80785217 +TMEM123,Lamina,-0.187873765 +GJA1,Lamina,-0.433972902 +SLC30A6,Lamina,-0.340434285 +SAR1B,Lamina,0.214982368 +GPR180,Lamina,0.531380038 +UTRN,Lamina,0.204910141 +PTPRK,Lamina,-0.361982157 +PLOD2,Lamina,-0.514785327 +GPR125,Lamina,0.198836988 +SREK1IP1,Lamina,1.154529437 +TXNDC11,Lamina,-0.15625039 +BCL2L11,Lamina,1.508020695 +CLGN,Lamina,-0.267655357 +RASSF3,Lamina,-0.638537834 +RANBP2,Lamina,0.279500647 +TMEM87B,Lamina,0.42937312 +RBMS1,Lamina,0.60770008 +LPCAT1,Lamina,-0.247517325 +UBALD1,Lamina,1.745803177 +RMND5A,Lamina,-0.396546885 +ZDHHC7,Lamina,-0.253961506 +TRIP12,Lamina,-0.159265042 +CEBPG,Lamina,0.521144016 +SREK1,Lamina,1.559340716 +CHD1,Lamina,0.515596295 +DGKE,Lamina,2.084826894 +HS2ST1,Lamina,-0.073511587 +MSI2,Lamina,0.546985647 +CACNA2D1,Lamina,0.536200711 +NUS1,Lamina,-0.012246163 +IMPACT,Lamina,0.242156523 +TBCEL,Lamina,1.076437631 +FAM105B,Lamina,0.818828127 +TBRG1,Lamina,1.605455193 +CC2D1B,Lamina,0.085343902 +MIA3,Lamina,0.307586309 +TRIM11,Lamina,1.180391131 +CCSAP,Lamina,0.359842493 +CXADR,Lamina,-0.278872964 +GABPA,Lamina,0.919396449 +ADAMTS1,Lamina,0.128478139 +TSEN2,Lamina,1.482777085 +FLCN,Lamina,0.279064643 +SKA1,Lamina,-0.534145584 +RAB6B,Lamina,1.038599824 +ACSS1,Lamina,0.385763459 +ANKRD40,Lamina,-0.074739073 +VOPP1,Lamina,-0.541217424 +APOOL,Lamina,0.311684492 +CYP2U1,Lamina,-0.134076908 +AGPAT5,Lamina,0.152492141 +MARVELD1,Lamina,0.194955415 +ZFYVE27,Lamina,0.871495766 +SLC25A28,Lamina,1.851423609 +HSPA13,Lamina,-0.370837019 +USP25,Lamina,0.352734932 +RHOC,Lamina,-1.170690569 +SLC16A1,Lamina,-0.719622361 +LARP1,Lamina,-0.236828769 +MIER3,Lamina,0.641806331 +ZKSCAN2,Lamina,0.893845396 +PDIA4,Lamina,-0.722077078 +FAM126B,Lamina,1.869768961 +FZD7,Lamina,-0.016236999 +FMN2,Lamina,0.054678509 +PPARGC1B,Lamina,2.103910485 +SLC26A2,Lamina,1.188162853 +LSM11,Lamina,1.598897607 +PSD3,Lamina,1.291331333 +DCK,Lamina,-0.340120168 +ADAMTS3,Lamina,0.905149861 +DPY19L4,Lamina,0.310728315 +NDUFAF6,Lamina,1.02576966 +N6AMT1,Lamina,1.39116332 +CDK20,Lamina,0.829249192 +PCGF6,Lamina,-0.051802604 +ANKRD9,Lamina,0.914201663 +SFXN2,Lamina,0.551178984 +PTDSS1,Lamina,-0.592946577 +SUPV3L1,Lamina,0.267719845 +TYSND1,Lamina,1.856374535 +CD109,Lamina,0.270676965 +ZDHHC5,Lamina,-0.488621116 +ZFAND3,Lamina,-0.582278932 +NPTN,Lamina,-0.23531057 +KAT6B,Lamina,0.101017854 +SAMD8,Lamina,1.224960808 +BAG4,Lamina,-0.458986756 +ATAD2,Lamina,-0.006570042 +PHKG2,Lamina,0.366089388 +SASS6,Lamina,0.483019717 +ZIC3,Lamina,0.943610099 +EXOG,Lamina,1.297208861 +SMG1,Lamina,1.142505071 +FCHO2,Lamina,0.315025821 +C1orf27,Lamina,0.807133585 +LRP8,Lamina,1.355919307 +PAXIP1,Lamina,0.599936035 +SSBP3,Lamina,-0.126062425 +CLDN12,Lamina,0.511888906 +GATAD1,Lamina,0.754369105 +ST3GAL2,Lamina,-0.139824565 +FUK,Lamina,1.240273405 +KIT,Lamina,0.227415137 +AASDH,Lamina,0.753355953 +DYRK1A,Lamina,-0.234220194 +TSPAN18,Lamina,0.261703479 +SLC35B2,Lamina,-0.813113101 +TMEM164,Lamina,0.299733199 +TAB3,Lamina,1.309030823 +SLC38A10,Lamina,-0.487929267 +ZNF618,Lamina,0.856377457 +C9orf91,Lamina,0.231630809 +UBN2,Lamina,2.520469626 +BRAF,Lamina,1.562468106 +SLC37A3,Lamina,0.160089329 +DPYSL5,Lamina,-0.12331495 +FAM213B,Lamina,0.009704585 +C12orf43,Lamina,-0.594166136 +RER1,Lamina,0.368129131 +UBXN11,Lamina,0.914349229 +RHPN1,Lamina,1.262172226 +CNNM4,Lamina,-0.444124923 +EYA3,Lamina,0.82222248 +MRAS,Lamina,-0.126156155 +COLEC12,Lamina,-0.328705922 +CUL4B,Lamina,-0.212588837 +MITD1,Lamina,0.97490685 +EIF5B,Lamina,-0.282542312 +TSPAN33,Lamina,-0.938859498 +AHCYL2,Lamina,0.039497917 +B4GALT5,Lamina,-0.345318757 +TSR2,Lamina,-0.048596452 +ZC3H18,Lamina,-0.09017251 +TMED4,Lamina,-0.004190247 +PPP1R15B,Lamina,0.423439408 +AGPAT6,Lamina,-0.076175236 +ZSCAN12,Lamina,1.524670083 +ELK4,Lamina,2.681891015 +F11R,Lamina,-0.480905965 +ZNF276,Lamina,1.128806967 +PINK1,Lamina,-0.525786988 +B4GALT3,Lamina,-0.417931409 +FAM160B2,Lamina,0.542663572 +CACHD1,Lamina,0.13841885 +PAXBP1,Lamina,2.185396913 +IFNAR2,Lamina,0.430278447 +SON,Lamina,0.434178846 +SV2A,Lamina,-0.180271461 +HLCS,Lamina,0.220355126 +ADPGK,Lamina,1.123997019 +ALDH4A1,Lamina,0.190043149 +STARD9,Lamina,1.33480153 +UBR1,Lamina,0.102211305 +AMFR,Lamina,-0.50760465 +RSPRY1,Lamina,-0.416062006 +ARHGAP35,Lamina,0.342789796 +CALM3,Lamina,-0.847711308 +IQCC,Lamina,0.204616348 +BSDC1,Lamina,1.171020634 +ATAD3B,Lamina,0.361538678 +VMA21,Lamina,0.207990808 +WDR4,Lamina,0.424515591 +CBS,Lamina,0.982053626 +PDXK,Lamina,0.917875237 +G6PD,Lamina,-0.541168814 +AGPAT3,Lamina,0.651537377 +C21orf2,Lamina,1.410379007 +LRRC3,Lamina,0.682759864 +LSS,Lamina,0.89156582 +VAV2,Lamina,0.254359219 +MCM3AP,Lamina,0.332323764 +C21orf58,Lamina,1.582233232 +PCNT,Lamina,0.486479698 +DIP2A,Lamina,0.876871754 +ZNF714,Lamina,1.097703349 +PKN3,Lamina,0.802857797 +TAOK1,Lamina,1.327900344 +SIK3,Lamina,0.561899248 +PCSK7,Lamina,0.88603993 +CHTOP,Lamina,1.114614983 +ZBTB7B,Lamina,1.029446085 +NLRX1,Lamina,0.392429887 +ANO10,Lamina,-1.006261628 +SLC25A44,Lamina,0.349962493 +NBEAL2,Lamina,0.962417273 +IER2,Lamina,0.987302427 +ZNF394,Lamina,0.29119628 +CPSF4,Lamina,0.717456413 +TONSL,Lamina,0.742902004 +MUM1,Lamina,0.657919916 +RECQL4,Lamina,0.809834418 +LRRC14,Lamina,0.913681525 +PPP1R16A,Lamina,0.409223446 +C5orf45,Lamina,2.102726377 +MFSD12,Lamina,0.313198764 +FDXR,Lamina,-0.804660359 +ALDH16A1,Lamina,0.187885622 +ITGA5,Lamina,-0.518693318 +ZNF385A,Lamina,-0.707948104 +MPP3,Lamina,1.374721746 +EMC10,Lamina,-0.479152526 +FAM171A2,Lamina,-0.025565088 +DBF4B,Lamina,1.301260657 +LARP4,Lamina,0.211259376 +LEMD2,Lamina,0.993103515 +WDR90,Lamina,1.514784313 +C16orf59,Lamina,-0.009298391 +AMDHD2,Lamina,1.496324265 +PAQR4,Lamina,0.008547274 +ADCY9,Lamina,0.039219666 +CLPB,Lamina,-0.589894825 +NEU3,Lamina,1.533686435 +CYB561A3,Lamina,-0.024724825 +TAF6L,Lamina,0.430150275 +LRP5,Lamina,0.081472834 +ZYG11B,Lamina,0.793796349 +PPAP2B,Lamina,-0.209917852 +PRKAA2,Lamina,1.650880603 +KLHL21,Lamina,0.770069039 +GMEB1,Lamina,0.020060497 +SEPN1,Lamina,-0.246669665 +AK4,Lamina,0.430148545 +RAVER2,Lamina,1.005531065 +PDPN,Lamina,-0.700449152 +SDC3,Lamina,0.530553131 +KIAA1522,Lamina,0.448372202 +C1orf86,Lamina,0.756465898 +NFIA,Lamina,0.735209704 +OMA1,Lamina,0.156177423 +MYSM1,Lamina,2.364769696 +FUBP1,Lamina,0.949376273 +DNAJB4,Lamina,0.478298575 +FAM102B,Lamina,0.128789897 +ATXN7L2,Lamina,1.007217948 +ZNF326,Lamina,0.617231751 +EXTL2,Lamina,0.43436535 +SLC30A7,Lamina,0.898991913 +PEA15,Lamina,-0.241509171 +NCSTN,Lamina,-0.398760721 +VANGL2,Lamina,0.285114261 +FLVCR1,Lamina,1.247201717 +RBM15,Lamina,1.440623761 +BPNT1,Lamina,-0.332291307 +BROX,Lamina,-0.052019984 +ACP6,Lamina,1.797657406 +PPP1R21,Lamina,0.553491468 +B3GALNT2,Lamina,0.671851893 +C2orf47,Lamina,-0.652490203 +ARL5A,Lamina,0.12710054 +SGCB,Lamina,-0.476498048 +SMARCAD1,Lamina,0.109237887 +RNF149,Lamina,1.113691777 +FZD5,Lamina,0.443986559 +DCAF16,Lamina,1.341172708 +PAQR3,Lamina,0.454505956 +ANTXR2,Lamina,-1.042548267 +PBXIP1,Lamina,-0.03214118 +PYGO2,Lamina,-0.152846036 +HIPK1,Lamina,0.285217924 +KBTBD8,Lamina,0.552605808 +EOGT,Lamina,0.918541237 +POGLUT1,Lamina,0.86106652 +ATP1A1,Lamina,-0.954524861 +EIF4E3,Lamina,0.148811515 +LRRC58,Lamina,1.133231464 +FSTL1,Lamina,-0.504514596 +KRTCAP2,Lamina,0.391717976 +KIAA1524,Lamina,0.188474657 +TGFBR2,Lamina,-0.173826084 +ANKZF1,Lamina,1.025517084 +STT3B,Lamina,-0.355900594 +PPM1L,Lamina,1.824357026 +RYBP,Lamina,0.350703677 +PPP4R2,Lamina,2.15e-05 +C3orf17,Lamina,0.49512622 +SPICE1,Lamina,0.895324588 +WDFY3,Lamina,0.65841874 +ATXN7,Lamina,1.416047037 +PPM1K,Lamina,1.326079885 +CCNL1,Lamina,1.810098003 +RPP14,Lamina,1.058498247 +ABHD6,Lamina,-0.189049234 +CRELD1,Lamina,-0.432643272 +U2SURP,Lamina,0.697376498 +TTC14,Lamina,1.267096904 +SNRK,Lamina,0.600777226 +SLC4A1AP,Lamina,-0.245020082 +ZDHHC3,Lamina,0.644310389 +FYCO1,Lamina,1.094310552 +YEATS2,Lamina,0.52875846 +SNIP1,Lamina,-0.067062283 +TMEM41A,Lamina,0.229469508 +RPN1,Lamina,-1.007073837 +SFMBT1,Lamina,0.724871321 +PBRM1,Lamina,-0.346903725 +FAM208A,Lamina,0.242397839 +ARHGEF3,Lamina,-0.250973548 +UBXN7,Lamina,1.229344799 +ZNF691,Lamina,1.017044789 +SGMS2,Lamina,0.112243677 +DNAJB14,Lamina,1.471177209 +ZNF589,Lamina,1.778482152 +SHISA5,Lamina,-0.509273007 +INTU,Lamina,1.052680034 +RNF123,Lamina,0.161421858 +MFSD8,Lamina,0.771151724 +C4orf29,Lamina,1.269324725 +RAD54L2,Lamina,0.363100408 +MAP9,Lamina,0.576473035 +CEP44,Lamina,1.258207272 +ABCE1,Lamina,-0.170311563 +TMEM184C,Lamina,-0.122297962 +TMEM161B,Lamina,1.645493965 +ELOVL7,Lamina,0.044594641 +LMBRD2,Lamina,0.808236737 +NIPBL,Lamina,-0.089492095 +SLC25A46,Lamina,0.099075722 +STARD4,Lamina,0.91846062 +PGGT1B,Lamina,1.485782488 +NDUFS4,Lamina,-0.776043758 +ARSK,Lamina,0.359636812 +GPX8,Lamina,-0.115994676 +SERINC5,Lamina,0.156003699 +GFM2,Lamina,-0.055474724 +CCDC127,Lamina,1.170287376 +SEPT8,Lamina,0.212515177 +DCBLD1,Lamina,0.311345185 +PDSS2,Lamina,-0.354626782 +STXBP5,Lamina,1.106616103 +DAGLB,Lamina,-0.162336319 +GALNT10,Lamina,0.451164938 +ZNF12,Lamina,1.179974353 +USP49,Lamina,2.807590105 +ZNF704,Lamina,1.935870658 +LMTK2,Lamina,0.144794142 +CTSB,Lamina,-0.818760531 +ADCY1,Lamina,1.31537995 +EN2,Lamina,0.30887973 +SUN1,Lamina,0.450110556 +OXR1,Lamina,0.17858047 +SLC4A2,Lamina,-0.408087705 +FASTK,Lamina,0.769408158 +TMUB1,Lamina,0.064835712 +C7orf55,Lamina,-0.969584271 +FOXK1,Lamina,1.617753305 +FZD6,Lamina,0.6351968 +KIAA1429,Lamina,-0.208519086 +TMEM67,Lamina,0.766456223 +SNAPC3,Lamina,0.632117672 +KIAA1161,Lamina,0.345055341 +METTL2B,Lamina,0.254946801 +HGSNAT,Lamina,0.648507946 +RASEF,Lamina,0.461304677 +ANKS6,Lamina,1.609243331 +TMEM246,Lamina,-0.20183778 +ZHX1,Lamina,-0.321769877 +KIAA1958,Lamina,2.304911154 +PIGA,Lamina,0.760799417 +WNK2,Lamina,1.028309323 +ATP7A,Lamina,-0.100789373 +PIGO,Lamina,0.031330246 +BRWD3,Lamina,0.174965718 +SLITRK5,Lamina,1.266499384 +DDX26B,Lamina,1.261830146 +MARCH8,Lamina,0.223845751 +GTF2A1,Lamina,0.043802964 +ZCCHC24,Lamina,0.351182417 +REEP3,Lamina,0.182065841 +MICU2,Lamina,-0.023524516 +PCF11,Lamina,1.138715051 +PKNOX2,Lamina,0.640308211 +ZNF22,Lamina,0.068020901 +RPUSD4,Lamina,0.978403101 +ARF6,Lamina,-0.092590648 +TTC8,Lamina,0.222990177 +CDX2,Lamina,-0.402068789 +BEND7,Lamina,1.604854428 +TAF3,Lamina,-0.095389322 +PDZD8,Lamina,0.273673169 +ZNF503,Lamina,-0.484876493 +FAM175B,Lamina,0.083008592 +QSOX2,Lamina,0.980757008 +NSD1,Lamina,0.591890274 +SNAPC4,Lamina,0.776124351 +PMPCA,Lamina,-0.510114731 +SDCCAG3,Lamina,0.654826373 +TSC1,Lamina,0.841622166 +FAM69B,Lamina,0.698827342 +KIAA1462,Lamina,0.217840666 +ZNF219,Lamina,-0.136497968 +METTL3,Lamina,0.734738303 +HSPA12A,Lamina,1.556846458 +TC2N,Lamina,0.695578028 +CPSF2,Lamina,-0.148768758 +ARL5B,Lamina,1.072616746 +TAF1D,Lamina,0.99470086 +HTRA1,Lamina,-0.296577737 +CEP57,Lamina,0.849788073 +JAM3,Lamina,0.13491209 +HIF1AN,Lamina,1.182673348 +ZFYVE19,Lamina,0.761141045 +FBN1,Lamina,0.295788519 +BAG5,Lamina,0.97288685 +GABRB3,Lamina,-0.17927995 +SGPL1,Lamina,-0.352425017 +FRS2,Lamina,0.762667139 +ZNF202,Lamina,0.916052853 +STXBP4,Lamina,0.722775335 +CUL5,Lamina,0.600376368 +WBP1L,Lamina,-0.597551732 +TRIM44,Lamina,1.352190526 +TPP1,Lamina,-0.343831422 +C11orf74,Lamina,-0.289589543 +TUB,Lamina,1.82692123 +RNF169,Lamina,2.329557906 +PRTG,Lamina,1.497227157 +TMEM41B,Lamina,0.261510578 +TMX3,Lamina,0.510616706 +WEE1,Lamina,0.614517383 +ZNF3,Lamina,0.814921455 +RIMKLB,Lamina,1.113084738 +TMED3,Lamina,0.160666932 +NDEL1,Lamina,0.633810189 +BLCAP,Lamina,0.264614271 +CASC4,Lamina,-0.354314319 +AP1G1,Lamina,-0.14561883 +KIF7,Lamina,0.751144104 +PEX11A,Lamina,0.73229856 +ZBTB39,Lamina,1.433619243 +TMEM194A,Lamina,0.755968039 +SMAD3,Lamina,0.79241447 +MAP1A,Lamina,-0.201206588 +MBD6,Lamina,0.664393534 +PDIA3,Lamina,-0.706335639 +ACSF2,Lamina,0.279998396 +COQ4,Lamina,1.518351058 +SLC27A4,Lamina,-0.572341321 +CERCAM,Lamina,0.468548509 +DOLPP1,Lamina,-0.690954825 +GPRC5B,Lamina,-0.227169438 +CRK,Lamina,-0.184713368 +FBXO22,Lamina,1.498317206 +TBC1D2B,Lamina,1.133243347 +CDK12,Lamina,-0.037147053 +ENGASE,Lamina,0.839272919 +TBC1D16,Lamina,0.644213191 +ENTHD2,Lamina,0.440799871 +STIM1,Lamina,-0.34631041 +IRGQ,Lamina,1.147901611 +PPP2R3B,Lamina,0.410710417 +ZNF646,Lamina,1.566024999 +MIDN,Lamina,0.498657274 +MVD,Lamina,-0.149255073 +ANKRD11,Lamina,1.176468956 +SPATA33,Lamina,1.145080137 +ZNF641,Lamina,1.480881627 +DHRS13,Lamina,-0.949421564 +TP53I13,Lamina,-0.535793777 +KMT2D,Lamina,1.281883835 +C19orf55,Lamina,0.704570767 +LENG8,Lamina,2.054756241 +ZNF146,Lamina,0.210388746 +ZNF444,Lamina,1.647813358 +FAM57A,Lamina,-0.221726987 +SLC43A2,Lamina,0.030902622 +SRR,Lamina,-0.509256359 +GHDC,Lamina,-0.546422705 +ITFG3,Lamina,-0.466707218 +ZNF598,Lamina,0.399569714 +E4F1,Lamina,0.610214387 +ABCA3,Lamina,-0.109083338 +SRRM2,Lamina,0.791112276 +LTBP3,Lamina,0.681571762 +SAC3D1,Lamina,-1.110620763 +SF1,Lamina,0.243046673 +PAFAH1B2,Lamina,-0.598501474 +ANKS3,Lamina,1.213548477 +SETD5,Lamina,0.902251764 +HOOK3,Lamina,1.089448552 +RBPJ,Lamina,0.369561745 +TTC39C,Lamina,0.609341343 +KIF5C,Lamina,-0.264433262 +MGAT2,Lamina,-0.360277267 +BMI1,Lamina,-0.011947033 +KCTD6,Lamina,0.321880415 +TAP1,Lamina,-0.910995466 +ING5,Lamina,0.487673228 +ATG4B,Lamina,0.324234567 +SOGA2,Lamina,1.081517589 +SNRNP48,Lamina,0.812745629 +SLC20A2,Lamina,0.164773431 +TMUB2,Lamina,-0.123999837 +STAT3,Lamina,-0.652339623 +ADAM9,Lamina,-0.441066672 +PKIG,Lamina,-0.291253283 +SEMA4C,Lamina,1.027324628 +CNNM3,Lamina,-0.09342364 +TET2,Lamina,0.994179973 +TCTN2,Lamina,0.106366977 +TSPAN5,Lamina,-0.128775088 +ZBTB5,Lamina,1.798452043 +SNTB2,Lamina,1.573311697 +ZNF507,Lamina,1.566341348 +STX18,Lamina,0.891329477 +GFM1,Lamina,-0.37739249 +ANKRD49,Lamina,1.29544816 +MAT2A,Lamina,1.736752302 +ZNF608,Lamina,0.008378009 +LETM1,Lamina,-0.034772692 +TMEM129,Lamina,0.399098589 +FEM1B,Lamina,0.970935941 +HNRNPH1,Lamina,0.827290518 +MECP2,Lamina,2.043410062 +UPF3A,Lamina,1.470711035 +CHST14,Lamina,-0.411275888 +PARM1,Lamina,0.057958241 +CSNK1G1,Lamina,0.979025899 +ZBTB43,Lamina,1.831447904 +GPRIN1,Lamina,-0.260558736 +MRPL1,Lamina,-0.473960485 +SLC33A1,Lamina,0.254390232 +SDC2,Lamina,-0.772705008 +MMGT1,Lamina,-0.390771529 +CLIC4,Lamina,-0.525531406 +CCDC8,Lamina,0.243881202 +INO80E,Lamina,1.194062183 +DFFB,Lamina,0.725663728 +ANTXR1,Lamina,-0.517626755 +CKAP2L,Lamina,-0.205265134 +C15orf40,Lamina,1.645660272 +HIC2,Lamina,1.180202897 +LUZP1,Lamina,1.33510379 +HEXDC,Lamina,0.801412423 +LRRC45,Lamina,0.32420168 +ASPSCR1,Lamina,0.704974972 +TAPT1,Lamina,0.217369673 +CSGALNACT2,Lamina,0.844956041 +PCDH7,Lamina,-0.189029466 +ROBO1,Lamina,-0.194022546 +P2RY1,Lamina,2.250640475 +TPST1,Lamina,-0.309981865 +TOR1AIP2,Lamina,0.276882109 +OTUD3,Lamina,2.211378598 +GUSB,Lamina,0.342766351 +BRD3,Lamina,0.453148937 +MAP3K2,Lamina,1.810344371 +NLGN2,Lamina,0.546658235 +ALCAM,Lamina,0.232827663 +YWHAG,Lamina,-0.369103754 +TMEM192,Lamina,0.232945647 +ZNF778,Lamina,0.367837848 +NIPA1,Lamina,1.178816666 +SIK2,Lamina,0.650595893 +RNF150,Lamina,1.893749769 +ZNF212,Lamina,0.651541115 +FAM161A,Lamina,0.926850822 +CRTAP,Lamina,-0.36363685 +PRDM10,Lamina,1.141871611 +FOS,Lamina,-0.976947625 +TMED10,Lamina,-0.691295339 +SLC30A1,Lamina,0.197696951 +DNAJC18,Lamina,0.349542329 +RALGAPB,Lamina,0.753349125 +LONRF2,Lamina,2.068173551 +ELOVL6,Lamina,0.558609051 +ARL6IP1,Lamina,-0.466494151 +CDH2,Lamina,-0.588831364 +EMB,Lamina,0.374679564 +STAT2,Lamina,0.739961305 +TRABD,Lamina,0.393675004 +POLH,Lamina,0.076963305 +KIF5B,Lamina,-0.049269928 +AKAP13,Lamina,0.769771962 +CHCHD7,Lamina,0.558051238 +GPR27,Lamina,-0.057595367 +KBTBD2,Lamina,0.523286484 +KIAA0232,Lamina,0.876857214 +TMEM43,Lamina,-0.031003155 +RNF139,Lamina,-0.373850769 +PAQR8,Lamina,-0.009828607 +TANC2,Lamina,1.229077521 +DNAJC24,Lamina,1.379295894 +HS6ST2,Lamina,-0.457694462 +INSR,Lamina,-0.126316179 +ATP6V0E2,Lamina,-0.841983779 +ZNF692,Lamina,1.637070486 +NETO2,Lamina,0.24312916 +NPTX1,Lamina,0.701057942 +FAM98B,Lamina,-0.025048192 +GAA,Lamina,0.326819286 +CANT1,Lamina,-0.715154653 +CHST11,Lamina,-0.133324511 +CLCN5,Lamina,0.395644443 +ZBTB26,Lamina,1.828415027 +ZNF562,Lamina,1.646405405 +ZNF318,Lamina,0.198041442 +WIPF2,Lamina,0.242055025 +LRRC8C,Lamina,0.006345624 +LRRC8D,Lamina,-0.012182478 +ETFDH,Lamina,0.467577714 +LPAR3,Lamina,0.395952338 +CLSTN1,Lamina,-0.163014185 +BPTF,Lamina,0.095556618 +ATF7IP,Lamina,0.112634693 +TCEA2,Lamina,0.481824135 +ANO5,Lamina,0.288771651 +MLLT3,Lamina,-0.377159374 +PRNP,Lamina,-0.233997252 +ZNF217,Lamina,0.287292324 +JMJD1C,Lamina,0.656137281 +THOP1,Lamina,0.033308196 +ORMDL3,Lamina,-0.212272474 +KLF11,Lamina,0.208575898 +MTBP,Lamina,1.533711227 +ZNF131,Lamina,0.503090515 +BSG,Lamina,-0.720806273 +CERS6,Lamina,0.059112727 +TP53RK,Lamina,0.01522695 +FAM195A,Lamina,0.795106309 +GTPBP2,Lamina,0.67566679 +ZNF24,Lamina,1.21527637 +MANEA,Lamina,0.166183825 +RAD9A,Lamina,0.25974256 +FAM21C,Lamina,0.462055786 +CORO1B,Lamina,-0.634318961 +LRRC20,Lamina,-0.123530146 +NAA16,Lamina,1.504097772 +DCP2,Lamina,0.392192011 +CES3,Lamina,1.268763402 +CES2,Lamina,0.194725812 +PDP2,Lamina,1.667398003 +SP3,Lamina,-0.23835075 +METAP1D,Lamina,0.954633382 +ZNF621,Lamina,2.770145204 +NADSYN1,Lamina,0.643550164 +DHCR7,Lamina,-0.523436994 +NBEA,Lamina,0.24086085 +ANKRD13D,Lamina,0.966705491 +LCLAT1,Lamina,-0.032848622 +TADA2B,Lamina,0.116797204 +HECTD4,Lamina,0.613734013 +ESRRA,Lamina,0.51104343 +AHSA2,Lamina,2.189357287 +VANGL1,Lamina,0.093182368 +IQCB1,Lamina,1.197735819 +GOLGB1,Lamina,1.406747129 +TNKS,Lamina,0.781107435 +ZBTB21,Lamina,1.444346375 +STOX2,Lamina,2.028640935 +DAG1,Lamina,-0.857504709 +RNF26,Lamina,-0.447127596 +PEAK1,Lamina,1.425126199 +TNFRSF10D,Lamina,-1.351860471 +MOB1B,Lamina,0.960282954 +SNX33,Lamina,1.248292944 +CHD2,Lamina,1.594985853 +CCDC41,Lamina,1.288257303 +PC,Lamina,-0.155088129 +SUSD5,Lamina,-0.506713371 +HEG1,Lamina,0.445708871 +TOMM20,Lamina,-0.1523298 +CNP,Lamina,-1.009518016 +DPY19L1,Lamina,-0.094725144 +ZNF791,Lamina,1.51417258 +PHC3,Lamina,2.327746031 +GOLIM4,Lamina,-0.342636864 +XXYLT1,Lamina,-0.891291576 +UBXN2A,Lamina,0.022545852 +CCS,Lamina,0.547337153 +FAM3C2,Lamina,-0.102214996 +CTSF,Lamina,-0.886977737 +MSRB3,Lamina,0.297495828 +LEMD3,Lamina,-0.153091547 +RGMB,Lamina,0.8418004 +ZDHHC24,Lamina,-0.436108878 +MGA,Lamina,0.689543681 +PIGG,Lamina,1.044907137 +ADCY6,Lamina,0.514539526 +ZBTB4,Lamina,1.079401004 +ZHX3,Lamina,2.282757341 +RALGAPA1,Lamina,0.87901313 +ATP2A2,Lamina,0.098815539 +CNTNAP2,Lamina,0.143434303 +DENND4A,Lamina,0.444680274 +MSL2,Lamina,1.595555421 +UGT8,Lamina,-0.892093858 +ZNF266,Lamina,1.393425064 +SLC29A2,Lamina,0.781246179 +BRSK2,Lamina,0.680754906 +B3GNT1,Lamina,-0.578456586 +TMEM167A,Lamina,0.625838726 +CEP135,Lamina,1.124274818 +FZD4,Lamina,1.779977413 +PDE12,Lamina,-0.298534421 +GLMN,Lamina,0.955508389 +SEZ6L2,Lamina,-0.744821591 +KLC2,Lamina,0.212876943 +GK5,Lamina,1.506207212 +VCPIP1,Lamina,0.867326123 +PCCA,Lamina,-0.245876215 +GOLGA8A,Lamina,1.790082851 +TP53I11,Lamina,0.301255149 +PHYKPL,Lamina,1.91075947 +ARL10,Lamina,1.683607572 +CCDC14,Lamina,1.713316282 +ALG10B,Lamina,1.539780001 +RAB6A,Lamina,-0.326282908 +ERCC4,Lamina,0.676663048 +RMI2,Lamina,0.34100507 +TOM1L2,Lamina,0.626938105 +MLXIP,Lamina,0.73794516 +SLC35E3,Lamina,1.134289506 +ARL4D,Lamina,-1.029070689 +LYSMD3,Lamina,0.921793383 +B3GALT6,Lamina,-0.707247885 +MBLAC2,Lamina,1.188452445 +TPRN,Lamina,0.93852308 +YES1,Lamina,-0.069343819 +TMEM39A,Lamina,0.3008569 +CCDC57,Lamina,1.998228442 +FOXG1,Lamina,0.704736343 +ATAD5,Lamina,0.521463616 +ANAPC2,Lamina,1.117497334 +SPRYD4,Lamina,1.090864995 +CLK2,Lamina,0.96550304 +LPCAT4,Lamina,1.00383628 +B3GNT5,Lamina,0.627323612 +LMNB2,Lamina,-0.31449213 +RMDN1,Lamina,0.671758461 +ACSF3,Lamina,1.039769502 +ANKLE2,Lamina,0.607071889 +NFATC2IP,Lamina,1.17631435 +SMCR8,Lamina,1.599058639 +MTX3,Lamina,1.736445888 +FBXO46,Lamina,0.956317822 +WDR73,Lamina,0.567112062 +ANO6,Lamina,0.165295228 +ZBTB34,Lamina,1.707483602 +FAM210A,Lamina,-0.046548744 +ULK1,Lamina,0.762065159 +RPS6KA3,Lamina,0.322262995 +PUS1,Lamina,0.6731626 +CHD9,Lamina,0.923624184 +PDDC1,Lamina,1.65577553 +TOP3A,Lamina,0.359909072 +NR2C2,Lamina,1.870574164 +ZBTB33,Lamina,1.080866676 +SLC25A22,Lamina,-0.1881044 +PIDD,Lamina,0.759891796 +GBA,Lamina,-1.088734961 +IL17RA,Lamina,0.269727233 +THAP5,Lamina,0.428640418 +PVRL3,Lamina,-0.711542089 +KIAA0195,Lamina,0.093869821 +SOX12,Lamina,0.773641773 +CHID1,Lamina,-0.879037985 +ZNF518A,Lamina,1.111535137 +ZBTB41,Lamina,1.358792793 +DMAP1,Lamina,1.599104896 +C2orf69,Lamina,1.351526032 +SH2B1,Lamina,1.085268934 +KDELC2,Lamina,0.066183894 +GALNT11,Lamina,-0.015116938 +WDR6,Lamina,0.543463067 +GEN1,Lamina,2.52920086 +GLDC,Lamina,-0.669248775 +CTNNBIP1,Lamina,-0.071568521 +ERN1,Lamina,0.341118019 +KCTD12,Lamina,0.171608696 +DHFRL1,Lamina,0.016670191 +FAM132B,Lamina,1.249280443 +FAM219B,Lamina,1.481547841 +DPY19L3,Lamina,1.320189664 +PFAS,Lamina,-0.233884847 +C17orf62,Lamina,0.719993173 +ZBTB7A,Lamina,1.884296427 +SPTY2D1,Lamina,0.096442085 +FUCA1,Lamina,-0.757332775 +CALR,Lamina,-1.368476954 +LDLRAD3,Lamina,0.275041453 +CLK3,Lamina,0.876749864 +PACS2,Lamina,0.979411297 +ELMOD2,Lamina,0.376653495 +FJX1,Lamina,-0.181668267 +ZBTB18,Lamina,1.337094569 +GCC1,Lamina,-0.447506364 +PLD6,Lamina,0.549265953 +CDC42EP4,Lamina,-0.649887434 +PCBP1-AS1,Lamina,1.878389987 +MYADM,Lamina,-0.375166128 +SERTAD2,Lamina,1.2553666 +BBS10,Lamina,1.180946715 +SOCS4,Lamina,2.545230871 +ZADH2,Lamina,0.885541987 +EXOC3,Lamina,0.418790081 +C7orf41,Lamina,0.850523763 +ZNF609,Lamina,0.530926497 +CCDC66,Lamina,1.044447823 +MCFD2,Lamina,-0.056534744 +GAS1,Lamina,-0.661399601 +FAM73A,Lamina,0.632447213 +NRIP1,Lamina,0.929014616 +PCGF5,Lamina,0.527706712 +YOD1,Lamina,1.563908584 +SLC36A4,Lamina,0.935790517 +ZDHHC20,Lamina,0.023821978 +PSMG4,Lamina,1.899856956 +PDIA3P,Lamina,-0.712107961 +CUEDC1,Lamina,0.80151541 +KCTD2,Lamina,-0.370016283 +D2HGDH,Lamina,1.293775236 +FKRP,Lamina,0.624776518 +SLC26A11,Lamina,0.042966217 +F2R,Lamina,0.355702349 +DHTKD1,Lamina,0.038281907 +ZNF746,Lamina,0.050525954 +TMEM136,Lamina,1.160311778 +ZNF322,Lamina,0.280477421 +OGFOD3,Lamina,-0.086946146 +ZNF678,Lamina,1.280052922 +ZBTB2,Lamina,-0.25277847 +SGSH,Lamina,0.565184805 +SETD2,Lamina,0.2102918 +YIPF6,Lamina,0.354081065 +IBA57,Lamina,1.587555947 +C5orf24,Lamina,0.768307364 +ADO,Lamina,0.649160175 +CREB3L2,Lamina,0.122331528 +UNC5C,Lamina,0.991020077 +RGMA,Lamina,0.241020592 +EXT1,Lamina,-0.664116128 +ATP6AP2,Lamina,-0.549591065 +BACE2,Lamina,-0.370710189 +FIGN,Lamina,2.273272359 +B4GALNT4,Lamina,0.475847925 +AP1S2,Lamina,0.96746657 +FBXL6,Lamina,1.112444913 +YBEY,Lamina,0.184257133 +CLN8,Lamina,1.971547983 +PLCXD1,Lamina,1.568007614 +EXOC7,Lamina,-0.051538705 +CEP97,Lamina,1.283459924 +MXRA7,Lamina,-0.853570808 +SATB1,Lamina,0.38617664 +PLCB1,Lamina,0.408633548 +TTC3,Lamina,0.298792045 +COL18A1,Lamina,-0.307420412 +ZNF721,Lamina,1.441289001 +SRPR,Lamina,-0.29241603 +EWSR1,Lamina,1.137851373 +GJC1,Lamina,1.210995525 +MTA1,Lamina,1.176528138 +CADM1,Lamina,-0.465268236 +LYSMD4,Lamina,1.491920755 +NKX2-5,Lamina,-0.232539738 +GPC6,Lamina,-0.311384079 +PTTG1IP,Lamina,-0.349943403 +ZNF623,Lamina,1.572083323 +BCOR,Lamina,0.003133611 +ASB7,Lamina,0.485208552 +EP400,Lamina,0.51589474 +COA5,Lamina,1.812511298 +PRR14L,Lamina,1.104483661 +ZNRF3,Lamina,0.274541947 +TRMT12,Lamina,0.205067302 +FAM101B,Lamina,-0.311412017 +TRIM52,Lamina,2.631958588 +CMTM4,Lamina,1.447430219 +TMEM50A,Lamina,-0.578602058 +CBX6,Lamina,1.378387512 +KREMEN1,Lamina,0.308277049 +TRAIP,Lamina,0.339734251 +EMILIN3,Lamina,-0.001053499 +RBM12B,Lamina,1.604798525 +BTBD9,Lamina,-0.443426463 +KIRREL,Lamina,0.963323251 +IQGAP3,Lamina,0.471285726 +PRKX,Lamina,1.170129219 +SMTN,Lamina,0.094372318 +TBX1,Lamina,0.67742865 +TSPYL2,Lamina,0.613272706 +C22orf46,Lamina,1.671549157 +PCDH9,Lamina,1.257459482 +OAF,Lamina,0.871811448 +ZDHHC23,Lamina,1.512064006 +EFNA5,Lamina,0.204974627 +SS18L1,Lamina,1.23532891 +KNTC1,Lamina,0.686786293 +WDR27,Lamina,2.269600459 +FOXO4,Lamina,-0.033383755 +POU3F2,Lamina,1.108243085 +PROS1,Lamina,0.032145422 +ZFP1,Lamina,-0.208736995 +XPOT,Lamina,0.169484702 +SNN,Lamina,-0.041445166 +AMER1,Lamina,1.533350908 +ZBTB40,Lamina,1.016307585 +ATL3,Lamina,0.043502665 +UBE2G2,Lamina,0.895014777 +TMED9,Lamina,-0.802463495 +RBM33,Lamina,2.258584214 +JAG2,Lamina,0.85931196 +ZFP90,Lamina,1.219397952 +SIVA1,Lamina,0.129645913 +BRI3BP,Lamina,0.093930179 +ROBO2,Lamina,0.029089289 +BRF1,Lamina,0.237147318 +MANEAL,Lamina,-0.593793583 +PURA,Lamina,1.197777665 +DDX51,Lamina,0.83911488 +NOMO2,Lamina,-1.093644025 +NRBP2,Lamina,1.24501724 +ZNF445,Lamina,1.928387961 +PRPF39,Lamina,1.175537263 +CDK10,Lamina,1.539957648 +ATP6V0A2,Lamina,0.78740731 +C14orf80,Lamina,1.208949996 +HGS,Lamina,0.285067173 +MRPL30,Lamina,-0.216000751 +METTL7A,Lamina,-1.282760467 +NR2F2,Lamina,0.135356197 +SP1,Lamina,1.161188998 +PCGF3,Lamina,0.460564143 +P4HB,Lamina,-0.897679347 +PBX1,Lamina,0.06032014 +BRWD1,Lamina,1.665726494 +EP400NL,Lamina,2.031158614 +MYBL1,Lamina,1.521836856 +DMWD,Lamina,0.42150786 +SLC52A2,Lamina,-1.01256106 +NAT8L,Lamina,1.049879321 +GNB1L,Lamina,0.280864981 +LAMP1,Lamina,-0.458507678 +KLHDC8B,Lamina,-0.262734835 +SETD4,Lamina,1.433689147 +RNPC3,Lamina,1.838555204 +BICD2,Lamina,0.404549766 +LRCH3,Lamina,0.898856189 +ZNF529,Lamina,1.723733725 +AIDA,Lamina,-0.438412141 +ZBTB6,Lamina,1.443827962 +BCL9L,Lamina,0.560906153 +KIF18B,Lamina,0.594403444 +MKL2,Lamina,1.086102209 +CA5BP1,Lamina,1.313401179 +BACE1,Lamina,-0.288837821 +KPNA4,Lamina,-0.537984572 +ZNF197,Lamina,0.687677841 +BTN3A2,Lamina,0.324109703 +INSIG1,Lamina,-0.172947593 +TMEM222,Lamina,0.1857639 +SMYD4,Lamina,1.426165777 +GPATCH8,Lamina,0.738293162 +LYRM7,Lamina,0.537052665 +ZNF397,Lamina,2.252214105 +ZSCAN30,Lamina,1.805306307 +TPCN1,Lamina,0.759504615 +POFUT2,Lamina,0.691224209 +ZDHHC17,Lamina,1.513815973 +PPARA,Lamina,1.376555363 +TEAD1,Lamina,1.143125207 +ENTPD5,Lamina,0.839084707 +KIAA1598,Lamina,1.367336097 +TSPYL4,Lamina,1.664328958 +FNBP1,Lamina,-0.026640635 +BCAM,Lamina,0.103441813 +COL4A1,Lamina,0.142026186 +SIRT7,Lamina,1.145753242 +TET3,Lamina,1.23394738 +ZNF286A,Lamina,0.747991519 +SAMD11,Lamina,0.313079021 +B3GALTL,Lamina,-0.299844781 +TCEA1,Lamina,-0.204336912 +FANCA,Lamina,0.468690781 +SEMA4D,Lamina,0.821203414 +LIN28B,Lamina,0.075476129 +FANCM,Lamina,0.744218283 +FAM122A,Lamina,1.173157079 +ARHGAP11B,Lamina,2.748187847 +CYHR1,Lamina,2.139422778 +KLHL17,Lamina,1.036171079 +ANKRD19P,Lamina,1.662010336 +ARL4C,Lamina,0.123164314 +C11orf95,Lamina,0.74131687 +MAPK12,Lamina,0.510534174 +COL4A5,Lamina,0.369723411 +NCR3LG1,Lamina,2.159012136 +HES4,Lamina,1.001346888 +CHM,Lamina,0.56376147 +H2AFX,Lamina,-0.631929672 +SRSF10,Lamina,1.085857455 +NDOR1,Lamina,0.796836003 +FAM72B,Lamina,0.222143039 +LDOC1L,Lamina,-0.178657386 +PTAR1,Lamina,2.877439855 +ZDHHC9,Lamina,-0.477526725 +ZBED6CL,Lamina,1.06900491 +TMEM120B,Lamina,1.430733754 +MTF1,Lamina,1.672498179 +TMEM201,Lamina,-0.121511764 +NHLRC3,Lamina,2.191525893 +BEND4,Lamina,1.431408707 +MSL1,Lamina,0.664046729 +DHFRP1,Lamina,-0.663355919 +ZNF292,Lamina,1.669495761 +ADAT2,Lamina,2.231037771 +H1F0,Lamina,-0.739608689 +LITAF,Lamina,-0.755417534 +ARID2,Lamina,0.184869884 +S100A13,Lamina,-0.472504657 +ZNF33A,Lamina,1.819992202 +LIN54,Lamina,0.11369182 +KAZN,Lamina,0.98455641 +SLC35E2B,Lamina,0.28622704 +KIAA0895L,Lamina,0.997731564 +PLEKHG4,Lamina,0.456740355 +ACADSB,Lamina,0.642949218 +TMEM63A,Lamina,1.219142826 +MPHOSPH8,Lamina,-0.061516717 +FAM217B,Lamina,-0.052662269 +LCOR,Lamina,1.791362803 +POM121,Lamina,-0.03519196 +ZBTB44,Lamina,1.244502505 +SLC35F1,Lamina,-0.090478817 +PTPN1,Lamina,-0.281466796 +EVL,Lamina,1.557164403 +EPHB4,Lamina,-0.161995333 +PPP1R26,Lamina,0.545705042 +TSC22D2,Lamina,0.916047503 +PIK3R4,Lamina,-0.234987117 +GDAP2,Lamina,-0.029783521 +AFAP1,Lamina,0.801348843 +MAN2A2,Lamina,0.646883428 +CACNA1H,Lamina,0.73325821 +SULF2,Lamina,-0.620314702 +PLXNB2,Lamina,-0.380937539 +XRCC2,Lamina,3.215327992 +MYO6,Lamina,0.093336793 +TCF4,Lamina,0.797094527 +RABL6,Lamina,1.155697768 +ZKSCAN5,Lamina,-0.001417816 +ZFP62,Lamina,1.811678754 +ERI2,Lamina,0.117467621 +ZNF33B,Lamina,1.607448766 +ZNF512B,Lamina,0.689151706 +ZNF431,Lamina,2.19130267 +NF1,Lamina,0.189746059 +VKORC1L1,Lamina,0.323682847 +COL27A1,Lamina,1.952325545 +GM2A,Lamina,-0.986131319 +SNHG17,Lamina,1.502671577 +CD47,Lamina,0.40179738 +CTBP1-AS2,Lamina,0.614465967 +C6orf106,Lamina,-0.154067829 +NHLRC2,Lamina,1.845227008 +KPNA5,Lamina,0.447404327 +ZNF252P,Lamina,0.506615273 +PDLIM7,Lamina,0.221988727 +SLC39A10,Lamina,-0.549093799 +ZNF100,Lamina,0.435704423 +ZNF398,Lamina,1.401646833 +GMFB,Lamina,-0.266573373 +ZMYM1,Lamina,0.882596836 +MAFG,Lamina,1.999363371 +ARRDC1,Lamina,0.411238936 +KIAA1671,Lamina,0.74208063 +IGF2R,Lamina,-0.242644196 +SLC25A29,Lamina,1.934229287 +PGAP1,Lamina,1.318910274 +SRC,Lamina,-0.506090786 +PCNXL3,Lamina,0.054271844 +LRRC8B,Lamina,0.238869559 +ABCB8,Lamina,0.523183972 +SND1,Lamina,-0.850999658 +ENTPD4,Lamina,1.061627248 +KANK2,Lamina,-0.796264704 +FITM2,Lamina,0.53632525 +DDI2,Lamina,0.868395351 +TRIM33,Lamina,0.758548745 +LRP10,Lamina,-0.305483067 +ZNF655,Lamina,1.292336944 +SLC22A5,Lamina,1.527938124 +ADARB1,Lamina,1.565214415 +OGDHL,Lamina,1.326820202 +STMN3,Lamina,-0.510194211 +SIPA1L1,Lamina,0.021999323 +PIGN,Lamina,-0.534554207 +COL4A6,Lamina,0.344783792 +GPX1P1,Lamina,-1.158284681 +ENTPD6,Lamina,0.517780031 +ENPP1,Lamina,0.090029806 +PHF2,Lamina,0.171317744 +RPS26,Lamina,0.392228593 +PSAP,Lamina,-0.634036189 +HOXC6,Lamina,1.286950169 +EME2,Lamina,1.688837701 +ZNF780A,Lamina,1.541157026 +SLC9A8,Lamina,1.442193137 +OCLN,Lamina,-0.263127821 +GPAA1,Lamina,-0.313020602 +SPG7,Lamina,1.075298904 +ERO1L,Lamina,-0.22375096 +ZNF121,Lamina,2.610348984 +MPZL1,Lamina,-0.300960606 +VPS13A,Lamina,1.555562567 +AKAP17A,Lamina,1.017464518 +ELOVL2,Lamina,0.480073224 +SNHG12,Lamina,0.031176558 +NOL8,Lamina,0.476880783 +MRPL42,Lamina,0.419961597 +ENTPD7,Lamina,-0.808160552 +ZNF84,Lamina,1.471062367 +SIRPA,Lamina,0.30019523 +CD2AP,Lamina,0.140160132 +NUP62CL,Lamina,0.510642778 +SFI1,Lamina,1.171981504 +ZNF248,Lamina,1.498573999 +ZNF770,Lamina,0.61293277 +HMGN5,Lamina,0.266276862 +MIER1,Lamina,0.480574711 +MAN1A2,Lamina,0.351012576 +RPS6KL1,Lamina,1.677528034 +DDX42,Lamina,0.720937072 +STYX,Lamina,-0.304202799 +UCKL1,Lamina,0.849167886 +ZKSCAN8,Lamina,2.271450436 +HOXC4,Lamina,0.971176633 +ASPH,Lamina,0.085695434 +WWP2,Lamina,-0.687162052 +GFPT1,Lamina,0.061995802 +ITSN2,Lamina,0.015971021 +MGEA5,Lamina,0.81984077 +FAM115A,Lamina,-0.288169372 +ZNF587,Lamina,2.709871331 +MAFK,Lamina,1.317680056 +DDX39B,Lamina,1.985292383 +NUDT16,Lamina,0.927346992 +TLK1,Lamina,-0.069181981 +MDM4,Lamina,2.663602707 +KLHL9,Lamina,1.144231212 +C6orf89,Lamina,0.422190002 +SLC9A6,Lamina,0.136234548 +FAN1,Lamina,1.140412395 +CEP290,Lamina,1.05731731 +C1orf85,Lamina,-0.451388115 +SMOC1,Lamina,-0.327201045 +ZNF652,Lamina,1.80942346 +SMURF1,Lamina,0.816661323 +SLC5A3,Lamina,1.183790682 +COLGALT2,Lamina,0.852792099 +TMEM184B,Lamina,0.496986485 +LRIG2,Lamina,1.399102441 +FOXJ3,Lamina,1.192064981 +ARHGAP11A,Lamina,0.252264948 +DENND4B,Lamina,0.572614778 +R3HDM4,Lamina,-0.120974983 +RUNDC1,Lamina,0.53082496 +TYW1,Lamina,-0.434095315 +SFMBT2,Lamina,1.35891288 +ITPRIPL1,Lamina,-0.420840369 +SMC5,Lamina,0.787183034 +SREBF2,Lamina,-0.179558164 +DZIP3,Lamina,0.387044806 +KIAA0753,Lamina,1.034659863 +ATG9A,Lamina,-0.379339192 +TBKBP1,Lamina,1.663369622 +NAGA,Lamina,-1.033232005 +SGMS1,Lamina,0.341791646 +COX20,Lamina,1.212785394 +CHML,Lamina,1.479070525 +TATDN3,Lamina,0.060483321 +RBM20,Lamina,1.847363119 +PCMTD2,Lamina,1.356633636 +EFCAB7,Lamina,0.717719159 +ZYG11A,Lamina,1.643414569 +SYS1,Lamina,-0.512837967 +TRAF3IP1,Lamina,0.094016955 +PHACTR4,Lamina,0.311798515 +ZDHHC18,Lamina,-0.26110179 +TMEM57,Lamina,-0.407870156 +ZDBF2,Lamina,2.118918981 +BMPR2,Lamina,0.262058341 +OXLD1,Lamina,1.010751862 +MRPL38,Lamina,0.400455594 +SDHD,Lamina,-0.465227658 +NEU1,Lamina,-1.077363752 +HSPA1B,Lamina,-1.047031655 +HLA-C,Lamina,-0.945384416 +DDR1,Lamina,-0.528036119 +HLA-E,Lamina,-0.38149245 +ZNF616,Lamina,0.08190782 +CRHR1-IT1,Lamina,1.435998752 +GABBR1,Lamina,1.713891256 +RANBP17,Lamina,1.110832256 +ZNF204P,Lamina,1.319983176 +TCTN1,Lamina,0.537040835 +ZBTB48,Lamina,1.209563588 +C11orf83,Lamina,-0.769907867 +ZNF783,Lamina,0.849124965 +SLC35B4,Lamina,0.467868974 +TRIQK,Lamina,-0.195305349 +PSENEN,Lamina,-1.290895623 +LGR4,Lamina,-0.072052009 +PDE7A,Lamina,0.719881445 +TMEM170B,Lamina,1.001986696 +TECPR1,Lamina,0.28457686 +ITPRIPL2,Lamina,2.21065697 +CRYZL1,Lamina,0.378779816 +C5orf51,Lamina,0.361442414 +ZNF316,Lamina,0.615124621 +NYNRIN,Lamina,0.360196093 +AP000525.9,Lamina,1.275477442 +PTPLB,Lamina,-0.3404731 +WDR52,Lamina,1.724638349 +SETD5-AS1,Lamina,2.249681618 +SACM1L,Lamina,0.30245884 +C17orf51,Lamina,2.483383715 +ZNF580,Lamina,1.03187531 +DENND1B,Lamina,1.578149032 +SFT2D2,Lamina,0.495939435 +FGFR1OP,Lamina,1.626689265 +KLHL23,Lamina,0.15727285 +TRIM59,Lamina,0.567258585 +NRAS,Lamina,-0.437085477 +QTRT1,Lamina,0.671017588 +CHUK,Lamina,0.548326724 +COG8,Lamina,1.396219405 +RBMXL1,Lamina,0.071369995 +LEPROT,Lamina,1.067576253 +ATF6B,Lamina,-0.18073264 +SLC35F6,Lamina,-0.701430043 +ZNF134,Lamina,0.837687685 +EMP2,Lamina,-0.217490316 +DNASE1,Lamina,1.269219266 +CSNK1E,Lamina,0.432144908 +GALT,Lamina,0.672343639 +ITGA1,Lamina,0.144939113 +AP1G2,Lamina,1.001433907 +CARKD,Lamina,1.173736344 +TTLL3,Lamina,2.507982179 +CPNE1,Lamina,-0.020780335 +RCN1P2,Lamina,-0.905464317 +ZBED1,Lamina,-0.337812361 +DDX12P,Lamina,1.40248848 +C22orf29,Lamina,2.196262709 +NEURL4,Lamina,0.470528463 +TTC3P1,Lamina,0.447090463 +PEX26,Lamina,0.973016751 +GOLGA8B,Lamina,1.650383922 +MIR17HG,Lamina,2.424974793 +TMEM242,Lamina,0.624466472 +TMEM167B,Lamina,0.558159017 +CYB5RL,Lamina,1.25822175 +CROCCP2,Lamina,3.111988578 +FNIP1,Lamina,1.227883583 +RP11-204C16.4,Lamina,-1.041850357 +TENM3,Lamina,-0.436668015 +AC007390.5,Lamina,0.191867283 +NBPF1,Lamina,1.088143966 +CCNL2,Lamina,1.760716478 +PPT2,Lamina,-0.007326128 +CKMT1A,Lamina,0.038236916 +NSUN5P1,Lamina,1.83095078 +RP11-54O7.3,Lamina,2.060449602 +AFG3L1P,Lamina,2.095314806 +EPB41L4A-AS1,Lamina,0.734930451 +ATXN1L,Lamina,2.456098954 +SMIM13,Lamina,0.324421463 +CTD-2228K2.7,Lamina,2.758483677 +PLEKHM1,Lamina,0.752419087 +FAM195B,Lamina,-0.614643487 +IPO7P2,Lamina,0.016580154 +SLC26A6,Lamina,0.412542794 +FGD5-AS1,Lamina,0.785458922 +TLK2P1,Lamina,-0.501567423 +BAIAP2-AS1,Lamina,-0.06876116 +RP11-31F15.1,Lamina,2.74436021 +TMEM185B,Lamina,0.420408043 +C14orf132,Lamina,2.162503668 +PARG,Lamina,-0.003774541 +TP73-AS1,Lamina,1.024467853 +SCAMP4,Lamina,0.053313749 +SEC63P1,Lamina,-0.154712916 +HCG11,Lamina,1.311782949 +DHFR,Lamina,-0.292728403 +RP11-206L10.11,Lamina,0.627221979 +XIST,Lamina,3.184490832 +RP5-1180C10.2,Lamina,0.846925984 +HCG18,Lamina,1.405218072 +CTD-2619J13.14,Lamina,1.390794379 +SNHG15,Lamina,0.845503626 +SNHG7,Lamina,0.609839904 +HOTAIRM1,Lamina,1.389770039 +RP4-775C13.1,Lamina,-0.506847949 +ZNF37BP,Lamina,2.043331689 +ZNF736,Lamina,2.354762109 +MAGI2-AS3,Lamina,1.38519827 +JRK,Lamina,3.250200823 +GAS5,Lamina,0.767193323 +LINC00338,Lamina,1.373161293 +PPP1R3E,Lamina,2.533821273 +RP5-827C21.1,Lamina,-1.217055944 +NUS1P1,Lamina,-0.477893246 +ZBTB22,Lamina,0.128480135 +AD000090.2,Lamina,1.754272585 +ZBED5,Lamina,1.216304821 +RNF103,Lamina,1.272742928 +TMEM189,Lamina,0.206584568 +RPL36A,Lamina,2.080568423 +CD302,Lamina,0.217291984 +SNHG3,Lamina,0.923578679 +C15orf38,Lamina,0.769349972 +AP5Z1,Lamina,0.953118309 +MICAL3,Lamina,0.373814239 +KCTD7,Lamina,1.518994437 +SCARF2,Lamina,0.432421724 +APOBEC3C,Lamina,-0.405935812 +N4BP2L2,Lamina,1.06073589 +NEAT1,Lamina,2.586249077 +CRNDE,Lamina,1.573005221 +OIP5-AS1,Lamina,1.455743272 +MARS2,Lamina,0.440141741 +HAUS5,Lamina,0.447858041 +PDCD6,Lamina,0.628737694 +THAP9-AS1,Lamina,1.815326801 +SHANK3,Lamina,1.172601001 +RTN3P1,Lamina,-0.910539477 +MALAT1,Lamina,2.063992057 +TUG1,Lamina,1.668908264 +GS1-251I9.4,Lamina,0.286799153 +UTP14C,Lamina,0.476626895 +ZNF260,Lamina,0.98050821 +PABPC4L,Lamina,1.799694788 +FPGT,Lamina,0.290266468 +MEX3A,Lamina,1.643592969 +POLR2M,Lamina,-0.158271589 +SNHG1,Lamina,0.497532501 +POLG2,Lamina,1.60853927 +KIAA1147,Lamina,1.319331191 +RP11-349A22.5,Lamina,2.6146345 +LINC00641,Lamina,1.534259432 +RP4-773N10.4,Lamina,2.643489352 +CEP95,Lamina,1.251564473 +LINC00657,Lamina,1.04964291 +RP1-239B22.5,Lamina,2.500710642 +RP6-24A23.6,Lamina,0.545388688 +ERVK13-1,Lamina,2.984664118 +GS1-358P8.4,Lamina,0.970644905 +VPS9D1-AS1,Lamina,0.47593584 +RP6-24A23.7,Lamina,2.726679221 +GAN,Lamina,1.910077854 +SPON1,Lamina,-0.292147212 +RP11-159D12.2,Lamina,1.793449389 +OTUD7B,Lamina,0.321728852 +RNF115,Lamina,0.813467139 +BAHCC1,Lamina,0.733345581 +NBPF15,Lamina,2.084425577 +RP11-242D8.1,Lamina,3.4016264 +RP11-18I14.10,Lamina,1.719171636 +NBPF9,Lamina,1.379694078 +EGLN2,Lamina,1.205736343 +NUDT3,Lamina,1.705287389 +KMT2B,Lamina,0.941916422 +POM121C,Lamina,0.033465365 +RP11-504P24.8,Lamina,2.089126999 +DCP1A,Lamina,0.82885772 +EPOP,Lamina,-0.509110301 +NOL12,Lamina,1.389118468 +SOCS7,Lamina,1.429133296 +PI4KAP1,Lamina,1.852786961 +ZNF280B,Lamina,1.475394193 +MLLT6,Lamina,0.864407568 +SYNRG,Lamina,-0.116061966 +TADA2A,Lamina,0.239198836 +PIP4K2B,Lamina,-0.359169294 +AL133325.3,Lamina,3.024265838 +DDX52,Lamina,0.030889412 +MYO19,Lamina,0.498590028 +DHRS11,Lamina,0.995883852 +ACACA,Lamina,0.021794832 +AC005332.6,Lamina,0.364251062 +RP11-574K11,Lamina,1.189879935 +AL035425.4,Lamina,4.34468924 +EBLN3P,Lamina,0.927134917 +GCLC,Nuclear Pore,-0.769937448 +NFYA,Nuclear Pore,-0.327345831 +NIPAL3,Nuclear Pore,-0.087370787 +ENPP4,Nuclear Pore,-0.631704421 +SEMA3F,Nuclear Pore,0.275560444 +CD99,Nuclear Pore,0.098430837 +LASP1,Nuclear Pore,0.759169841 +M6PR,Nuclear Pore,-0.113955472 +CFLAR,Nuclear Pore,-0.134199676 +NDUFAF7,Nuclear Pore,0.121622375 +RBM5,Nuclear Pore,0.357172672 +SLC7A2,Nuclear Pore,-0.683437149 +SARM1,Nuclear Pore,0.701814032 +CAMKK1,Nuclear Pore,0.795417828 +RECQL,Nuclear Pore,-0.924135243 +ARHGAP33,Nuclear Pore,1.624740306 +CDC27,Nuclear Pore,0.08424114 +SPPL2B,Nuclear Pore,1.225629887 +CREBBP,Nuclear Pore,0.199014935 +GCFC2,Nuclear Pore,-0.100251456 +RHBDD2,Nuclear Pore,0.459995936 +IBTK,Nuclear Pore,0.533140218 +ZNF195,Nuclear Pore,0.059979761 +MYCBP2,Nuclear Pore,-0.12594951 +ZFX,Nuclear Pore,0.097931683 +LAMP2,Nuclear Pore,-0.407188704 +GDE1,Nuclear Pore,0.075715082 +TMEM98,Nuclear Pore,0.498032562 +TMEM132A,Nuclear Pore,1.03605955 +ZNF263,Nuclear Pore,0.81731504 +MAP3K9,Nuclear Pore,0.076057946 +JHDM1D,Nuclear Pore,-0.210773832 +PHTF2,Nuclear Pore,-0.116088592 +FARP2,Nuclear Pore,0.122797958 +IFRD1,Nuclear Pore,-0.223469331 +ARHGAP44,Nuclear Pore,-0.156091841 +ELAC2,Nuclear Pore,0.182814287 +ADIPOR2,Nuclear Pore,-0.438220138 +PAFAH1B1,Nuclear Pore,0.089640393 +KIAA0100,Nuclear Pore,-0.068196145 +PAX6,Nuclear Pore,0.600414662 +LUC7L,Nuclear Pore,0.388215977 +CACNA2D2,Nuclear Pore,-1.409412321 +PIGQ,Nuclear Pore,-0.319302425 +CRAMP1L,Nuclear Pore,0.324379385 +JARID2,Nuclear Pore,0.469567213 +ADAM22,Nuclear Pore,-0.566292029 +CYB561,Nuclear Pore,0.163413871 +SPAG9,Nuclear Pore,-0.152140675 +CELSR3,Nuclear Pore,1.288260246 +AASS,Nuclear Pore,0.529793138 +PKD1,Nuclear Pore,1.416566976 +SEC62,Nuclear Pore,-0.440091799 +REV3L,Nuclear Pore,-0.194440232 +POMT2,Nuclear Pore,-0.077829395 +BAZ1B,Nuclear Pore,-0.04876328 +ZNF207,Nuclear Pore,0.261237297 +IFFO1,Nuclear Pore,0.612101074 +NISCH,Nuclear Pore,1.009211248 +IDS,Nuclear Pore,-0.285200117 +CLCN6,Nuclear Pore,0.23559914 +MRC2,Nuclear Pore,1.065171998 +TSPAN9,Nuclear Pore,0.443722478 +BTBD7,Nuclear Pore,-0.352174024 +MBTD1,Nuclear Pore,0.390537354 +LARS2,Nuclear Pore,-0.057105165 +PIK3C2A,Nuclear Pore,-0.30030784 +ANLN,Nuclear Pore,-0.191373957 +QPCTL,Nuclear Pore,0.68858355 +MAP4K3,Nuclear Pore,-0.121273705 +BRCA1,Nuclear Pore,-0.254607325 +MBTPS2,Nuclear Pore,-0.508297784 +EXTL3,Nuclear Pore,0.049003092 +ELOVL5,Nuclear Pore,-0.513836027 +MAP4K5,Nuclear Pore,0.080563597 +MAN2B2,Nuclear Pore,0.666419085 +CLK1,Nuclear Pore,0.59569558 +ANGEL1,Nuclear Pore,-0.340639728 +DDX11,Nuclear Pore,1.080644753 +UFL1,Nuclear Pore,-0.292320684 +SLC30A9,Nuclear Pore,-0.609516916 +COX15,Nuclear Pore,-0.188418951 +ZMYND11,Nuclear Pore,-0.278057212 +XYLT2,Nuclear Pore,0.131342598 +NUDCD3,Nuclear Pore,0.177070171 +CHDH,Nuclear Pore,0.182952486 +GLT8D1,Nuclear Pore,0.481505018 +ATP2C1,Nuclear Pore,-0.451495993 +RALBP1,Nuclear Pore,-0.078403611 +CNTN1,Nuclear Pore,-0.213903214 +PHLDB1,Nuclear Pore,1.06947558 +MRE11A,Nuclear Pore,0.159495982 +SPAST,Nuclear Pore,-0.479817774 +NRXN3,Nuclear Pore,-0.139923419 +CPS1,Nuclear Pore,-0.473144192 +SLC45A4,Nuclear Pore,0.832327012 +ZNF839,Nuclear Pore,0.50538884 +ZDHHC6,Nuclear Pore,-0.879565739 +RNH1,Nuclear Pore,0.769916005 +RB1CC1,Nuclear Pore,-0.356185359 +ERP44,Nuclear Pore,-0.509822388 +AKAP11,Nuclear Pore,-0.839303893 +GCLM,Nuclear Pore,-1.338125686 +DEPDC1,Nuclear Pore,-0.236647037 +SEC63,Nuclear Pore,-0.516987366 +FAS,Nuclear Pore,-0.213817314 +RNASET2,Nuclear Pore,0.905133426 +AGPAT4,Nuclear Pore,0.038644371 +MIPEP,Nuclear Pore,-0.858386181 +VEZT,Nuclear Pore,-0.40480587 +BRD9,Nuclear Pore,0.503485486 +SNX1,Nuclear Pore,0.067931832 +BCLAF1,Nuclear Pore,-0.256787816 +SLC39A9,Nuclear Pore,0.486279083 +RABEP1,Nuclear Pore,-0.252489765 +FAM13B,Nuclear Pore,-0.228632552 +PNPLA6,Nuclear Pore,0.767499642 +ZCCHC8,Nuclear Pore,0.65280195 +CHPF2,Nuclear Pore,0.509000822 +FUT8,Nuclear Pore,-0.325180694 +UBA6,Nuclear Pore,-0.289703259 +ATP6V0A1,Nuclear Pore,0.143326091 +SLC4A7,Nuclear Pore,-0.157378151 +VCL,Nuclear Pore,-0.202279137 +ADSS,Nuclear Pore,-0.403228168 +TIMP2,Nuclear Pore,-0.155251986 +RFC1,Nuclear Pore,-0.174694795 +ZZZ3,Nuclear Pore,-0.404843666 +MFAP3,Nuclear Pore,-0.445732285 +MRI1,Nuclear Pore,0.457108074 +AGA,Nuclear Pore,-0.792002029 +BOD1L1,Nuclear Pore,0.240443071 +TRIO,Nuclear Pore,0.887164296 +VCAN,Nuclear Pore,0.158892513 +CLEC16A,Nuclear Pore,0.074246664 +ZFYVE16,Nuclear Pore,-0.349867589 +RAI14,Nuclear Pore,-0.173576281 +PNKP,Nuclear Pore,0.536419588 +PQLC2,Nuclear Pore,0.51352525 +CTNS,Nuclear Pore,0.266053789 +INPP4A,Nuclear Pore,0.063467207 +RETSAT,Nuclear Pore,0.304546047 +CUL7,Nuclear Pore,0.850462717 +PHKA2,Nuclear Pore,0.638200153 +DSG2,Nuclear Pore,-0.266894971 +OFD1,Nuclear Pore,0.061628262 +GPM6B,Nuclear Pore,-0.830631959 +YTHDC2,Nuclear Pore,0.277432426 +TPR,Nuclear Pore,0.021002587 +SCML1,Nuclear Pore,0.488941038 +MAP4,Nuclear Pore,0.24438868 +GOPC,Nuclear Pore,-0.378149949 +ZNF800,Nuclear Pore,-0.067285061 +SNX29,Nuclear Pore,0.337660349 +KITLG,Nuclear Pore,0.060239186 +H6PD,Nuclear Pore,0.105110773 +LTBP1,Nuclear Pore,-0.887026955 +RCN1,Nuclear Pore,-0.472531298 +PTCD2,Nuclear Pore,0.381302085 +LIMA1,Nuclear Pore,-0.074468731 +LETMD1,Nuclear Pore,-0.093120314 +POLQ,Nuclear Pore,-0.313684148 +MPHOSPH9,Nuclear Pore,0.230709777 +PLEKHA5,Nuclear Pore,-0.877015155 +SIKE1,Nuclear Pore,0.105371726 +MSMO1,Nuclear Pore,0.049186325 +TTC17,Nuclear Pore,-0.248883942 +LAMA3,Nuclear Pore,0.982512702 +AP5M1,Nuclear Pore,-0.925610988 +ANAPC4,Nuclear Pore,-0.097075619 +ARID4B,Nuclear Pore,0.224924237 +SDCCAG8,Nuclear Pore,-0.002902188 +FOXC1,Nuclear Pore,0.14218517 +PLEKHH1,Nuclear Pore,0.421995718 +ATP9A,Nuclear Pore,0.435373366 +FAM168A,Nuclear Pore,-0.253656013 +RELT,Nuclear Pore,0.785977252 +NOP58,Nuclear Pore,-0.486843071 +TAB2,Nuclear Pore,-0.15723036 +USP36,Nuclear Pore,0.159532692 +KMT2C,Nuclear Pore,0.45032129 +MCOLN3,Nuclear Pore,0.882630003 +PUM2,Nuclear Pore,-0.374328927 +RC3H2,Nuclear Pore,-0.161147652 +DCBLD2,Nuclear Pore,0.046999087 +SOAT1,Nuclear Pore,-0.735517384 +ATP11B,Nuclear Pore,-0.418878617 +SEC61A1,Nuclear Pore,-0.164194912 +PPP1R12A,Nuclear Pore,0.014061 +POLR3E,Nuclear Pore,0.20907169 +ATP2B4,Nuclear Pore,0.21443815 +ZC3H11A,Nuclear Pore,0.056975914 +NDC1,Nuclear Pore,-0.501889764 +UNKL,Nuclear Pore,1.091445632 +ALDH18A1,Nuclear Pore,-0.121017891 +TARBP1,Nuclear Pore,0.121167823 +WNK1,Nuclear Pore,0.062976095 +CCAR1,Nuclear Pore,-0.225900689 +PTPRU,Nuclear Pore,0.44538568 +QSER1,Nuclear Pore,-0.508129481 +BCAT1,Nuclear Pore,-0.256965106 +PRDM6,Nuclear Pore,0.642332575 +TNK2,Nuclear Pore,1.244646184 +MON2,Nuclear Pore,-0.209978487 +GPBP1,Nuclear Pore,-0.005290978 +WAPAL,Nuclear Pore,-0.853441429 +VMP1,Nuclear Pore,-0.060720758 +APPBP2,Nuclear Pore,0.150135536 +AHRR,Nuclear Pore,0.710210588 +ZNF275,Nuclear Pore,0.358836678 +MTMR1,Nuclear Pore,-0.008376816 +GPC1,Nuclear Pore,-0.107088156 +TM7SF3,Nuclear Pore,-0.169525083 +CDON,Nuclear Pore,-0.134863824 +HIPK2,Nuclear Pore,-0.035144866 +SUGP2,Nuclear Pore,0.851364431 +SLC12A2,Nuclear Pore,-0.091804769 +HMG20B,Nuclear Pore,0.511810783 +UHRF1BP1,Nuclear Pore,0.161862825 +PKN2,Nuclear Pore,-0.059720673 +TRAM2,Nuclear Pore,0.86091761 +NTN1,Nuclear Pore,0.287104139 +ADAT1,Nuclear Pore,0.333737006 +SPEN,Nuclear Pore,0.240914033 +MAP2K4,Nuclear Pore,0.161990244 +SLK,Nuclear Pore,-0.546266963 +CYB5R4,Nuclear Pore,-0.49792885 +ASB1,Nuclear Pore,0.244938319 +FAM107B,Nuclear Pore,-0.656005617 +SLC9A7,Nuclear Pore,-0.931407785 +FOXJ2,Nuclear Pore,0.253879191 +PPP2R5A,Nuclear Pore,-0.737784597 +ASPM,Nuclear Pore,0.328925804 +ZBTB11,Nuclear Pore,0.199526497 +ATXN3,Nuclear Pore,-0.958082129 +FGFR2,Nuclear Pore,0.015733221 +LRRC40,Nuclear Pore,-0.396179537 +ATG2B,Nuclear Pore,0.384153592 +ARFGEF1,Nuclear Pore,-0.932711937 +KLF6,Nuclear Pore,0.518713106 +NEO1,Nuclear Pore,0.050620644 +TRAM1,Nuclear Pore,-0.231952421 +TP53BP1,Nuclear Pore,-0.076571516 +IARS2,Nuclear Pore,-0.267918856 +ROCK1,Nuclear Pore,-0.051559264 +HYAL2,Nuclear Pore,-0.480322464 +FGFR3,Nuclear Pore,0.608977542 +MEF2A,Nuclear Pore,-0.412995671 +ACSL4,Nuclear Pore,-0.726523191 +PRR11,Nuclear Pore,0.175500162 +REEP1,Nuclear Pore,-0.686876107 +ATP11A,Nuclear Pore,0.137377785 +POLR1A,Nuclear Pore,0.058037549 +IP6K2,Nuclear Pore,0.36134509 +KIF2A,Nuclear Pore,-0.272047716 +TGFBR3,Nuclear Pore,0.06678458 +NEDD4,Nuclear Pore,-0.523786619 +MAPK6,Nuclear Pore,-0.296651463 +UFD1L,Nuclear Pore,-0.034850058 +LRP6,Nuclear Pore,-0.574180991 +NUCB2,Nuclear Pore,-0.658853602 +SLC44A1,Nuclear Pore,-0.206898701 +TMEM260,Nuclear Pore,-0.140064299 +SMG6,Nuclear Pore,0.251429615 +CLTCL1,Nuclear Pore,0.743133795 +DGCR2,Nuclear Pore,0.431050164 +MNT,Nuclear Pore,0.89276002 +ZXDC,Nuclear Pore,0.593940798 +NDST1,Nuclear Pore,-0.072362555 +AP3M2,Nuclear Pore,0.055670472 +RAD18,Nuclear Pore,-0.036958357 +ATP2B1,Nuclear Pore,-0.202970314 +MGAT4A,Nuclear Pore,-0.082480621 +SNX13,Nuclear Pore,-0.321787196 +VASH1,Nuclear Pore,0.005434639 +SEL1L,Nuclear Pore,-0.74771705 +ATP6AP1,Nuclear Pore,0.114051107 +DAZAP1,Nuclear Pore,0.65920313 +CPSF1,Nuclear Pore,0.431861381 +SLC6A15,Nuclear Pore,-0.34197052 +RDH11,Nuclear Pore,-0.343882383 +PRKACA,Nuclear Pore,0.357933731 +LPHN1,Nuclear Pore,0.683184262 +RPS6KA6,Nuclear Pore,0.168703942 +EPN2,Nuclear Pore,0.070574004 +PTPN18,Nuclear Pore,0.845485457 +TFRC,Nuclear Pore,-0.484085528 +AFF4,Nuclear Pore,0.418892425 +MPP5,Nuclear Pore,0.084253282 +HMMR,Nuclear Pore,-0.666991871 +P4HA2,Nuclear Pore,0.083284891 +TRNT1,Nuclear Pore,0.110655825 +ACADVL,Nuclear Pore,0.913231857 +EVC,Nuclear Pore,0.004136021 +DERL2,Nuclear Pore,-0.322130101 +NDE1,Nuclear Pore,0.249285667 +PVR,Nuclear Pore,0.52604473 +SCARB1,Nuclear Pore,0.196108894 +SELO,Nuclear Pore,1.055771851 +LLGL2,Nuclear Pore,1.246885317 +PDE8A,Nuclear Pore,-0.240646634 +SDHA,Nuclear Pore,-0.062268467 +KDM5A,Nuclear Pore,-0.309428188 +ADAM11,Nuclear Pore,0.959248336 +ST6GAL1,Nuclear Pore,-0.830742648 +GLI2,Nuclear Pore,1.080506182 +NOTCH3,Nuclear Pore,1.174381185 +BCS1L,Nuclear Pore,0.245526287 +DPP8,Nuclear Pore,0.16312351 +SLC24A1,Nuclear Pore,-0.737511339 +LMAN1,Nuclear Pore,-0.101321177 +PTPLAD1,Nuclear Pore,-0.614137367 +TUBE1,Nuclear Pore,0.785402066 +SEMA3C,Nuclear Pore,-0.433536555 +TTC38,Nuclear Pore,0.028922882 +CELSR1,Nuclear Pore,-0.445630581 +ZNF638,Nuclear Pore,-0.262506369 +SLC25A40,Nuclear Pore,0.52056426 +RASAL2,Nuclear Pore,-0.373882327 +ZNF37A,Nuclear Pore,-0.258842409 +FNDC3B,Nuclear Pore,0.831690371 +FRYL,Nuclear Pore,0.227297264 +TMEM131,Nuclear Pore,-0.071804804 +WDR62,Nuclear Pore,0.272851756 +BCAP29,Nuclear Pore,0.076232857 +SEC31B,Nuclear Pore,0.966597014 +RBMS2,Nuclear Pore,0.466582228 +SLC46A1,Nuclear Pore,-0.106294048 +PLXNA2,Nuclear Pore,0.38903582 +ANKRD13A,Nuclear Pore,-0.424452697 +PAG1,Nuclear Pore,-0.457463853 +MCAM,Nuclear Pore,0.666701878 +GPC4,Nuclear Pore,-0.266698673 +MBNL3,Nuclear Pore,-1.197588729 +DGKD,Nuclear Pore,0.090186056 +TM9SF3,Nuclear Pore,-0.214427148 +PPP1R12B,Nuclear Pore,-0.385339404 +DNAJC10,Nuclear Pore,-0.497062603 +GTF3C1,Nuclear Pore,0.026921629 +IL4R,Nuclear Pore,0.348226111 +LRCH4,Nuclear Pore,1.355716051 +FAM76B,Nuclear Pore,0.094421115 +SIRT6,Nuclear Pore,0.998867462 +POLD3,Nuclear Pore,0.116072775 +PHF17,Nuclear Pore,-0.156377618 +FBLN1,Nuclear Pore,-0.705177396 +ITGA8,Nuclear Pore,-0.170446129 +MCCC1,Nuclear Pore,-1.466984745 +ACER3,Nuclear Pore,-0.24156015 +N4BP2,Nuclear Pore,0.102244151 +HOXA9,Nuclear Pore,0.485188789 +PCM1,Nuclear Pore,-0.720784619 +TNRC6C,Nuclear Pore,0.814775603 +ITCH,Nuclear Pore,-0.115589471 +SDF4,Nuclear Pore,0.579561842 +FKBP7,Nuclear Pore,-0.067966482 +SLC1A3,Nuclear Pore,-0.485796012 +SAR1A,Nuclear Pore,-0.338109728 +PAFAH1B3,Nuclear Pore,0.82205348 +MOXD1,Nuclear Pore,0.43684318 +STX7,Nuclear Pore,-0.224529891 +RABL2B,Nuclear Pore,0.181431796 +SLC35C2,Nuclear Pore,0.106584492 +CRYBG3,Nuclear Pore,-0.283823486 +RIF1,Nuclear Pore,-0.410347431 +PSEN1,Nuclear Pore,-0.40818434 +RBL1,Nuclear Pore,-0.054051347 +RSBN1,Nuclear Pore,0.228804547 +MAGI3,Nuclear Pore,-0.246752506 +OSTM1,Nuclear Pore,-0.781306977 +EXD2,Nuclear Pore,-1.084411359 +MEF2C,Nuclear Pore,-0.457909987 +UBA5,Nuclear Pore,-0.250676243 +STK17B,Nuclear Pore,-0.404846272 +ZNF510,Nuclear Pore,-2.241082618 +LRP2,Nuclear Pore,0.498009786 +DUSP12,Nuclear Pore,0.170392848 +KIAA0141,Nuclear Pore,0.452214372 +PHLPP1,Nuclear Pore,0.392936319 +SMARCD3,Nuclear Pore,0.794220971 +C5orf22,Nuclear Pore,-0.413518037 +CCNT2,Nuclear Pore,0.307225224 +NFE2L1,Nuclear Pore,0.145236181 +GSK3B,Nuclear Pore,-0.09922387 +ITGB5,Nuclear Pore,0.07554486 +ERC1,Nuclear Pore,0.007723403 +RNF13,Nuclear Pore,-0.890929432 +LYRM2,Nuclear Pore,-0.294290612 +KAT6A,Nuclear Pore,0.000552289 +PLOD1,Nuclear Pore,-0.091055704 +TDRD3,Nuclear Pore,0.948248469 +PDS5B,Nuclear Pore,-0.374241169 +OXCT1,Nuclear Pore,0.017586821 +RRAGB,Nuclear Pore,0.560975263 +FAT1,Nuclear Pore,0.067776415 +YTHDC1,Nuclear Pore,0.018811957 +ZMPSTE24,Nuclear Pore,-0.536189482 +REST,Nuclear Pore,-0.005356187 +APLP2,Nuclear Pore,-0.132456935 +KIAA1467,Nuclear Pore,-0.044332964 +TXLNA,Nuclear Pore,0.454819305 +NCOA1,Nuclear Pore,0.046477588 +AGBL5,Nuclear Pore,0.004827616 +CD59,Nuclear Pore,0.125318341 +ATRX,Nuclear Pore,-0.594712173 +SCAMP1,Nuclear Pore,-0.265797777 +HACE1,Nuclear Pore,0.635170629 +WDFY1,Nuclear Pore,-0.57588595 +MTIF2,Nuclear Pore,-0.187246639 +ATG16L1,Nuclear Pore,0.527911547 +POMGNT1,Nuclear Pore,-0.070197866 +B4GALT1,Nuclear Pore,0.021798938 +IPO11,Nuclear Pore,-0.741055715 +TMED2,Nuclear Pore,-0.128793785 +ERO1LB,Nuclear Pore,0.011974365 +PPP1R15A,Nuclear Pore,0.617568046 +NLK,Nuclear Pore,0.112847583 +PIGS,Nuclear Pore,0.182017089 +ATXN7L3,Nuclear Pore,0.434918351 +PGS1,Nuclear Pore,0.538743424 +SH3BP2,Nuclear Pore,0.721003477 +ADD1,Nuclear Pore,0.26004183 +TXNDC16,Nuclear Pore,-0.824704142 +NID2,Nuclear Pore,0.895786147 +KLHL42,Nuclear Pore,0.112791676 +ERGIC2,Nuclear Pore,-0.495635663 +METTL2A,Nuclear Pore,-0.26196319 +PTPN4,Nuclear Pore,-0.496478855 +KHSRP,Nuclear Pore,0.283865331 +EPB41L1,Nuclear Pore,0.106267948 +ANKRD10,Nuclear Pore,0.753998365 +DOCK3,Nuclear Pore,1.013314757 +PPP1R13B,Nuclear Pore,0.457767527 +ATRN,Nuclear Pore,0.148040973 +ZNF343,Nuclear Pore,0.274847889 +MAVS,Nuclear Pore,0.380452576 +LZTS3,Nuclear Pore,1.328927702 +SNX5,Nuclear Pore,0.132899951 +MAPKAPK5,Nuclear Pore,0.604294988 +ESF1,Nuclear Pore,-0.919940842 +SLC23A2,Nuclear Pore,0.262354636 +KIF16B,Nuclear Pore,0.214073299 +ERP29,Nuclear Pore,0.334389598 +FUS,Nuclear Pore,0.22890242 +ZNF302,Nuclear Pore,0.208740425 +GRAMD1A,Nuclear Pore,1.02127492 +GANAB,Nuclear Pore,-0.040643196 +RBM41,Nuclear Pore,-0.370048658 +GPATCH2L,Nuclear Pore,0.377989539 +SLC9A1,Nuclear Pore,-0.662889222 +SPTLC1,Nuclear Pore,-0.355780752 +PAPOLA,Nuclear Pore,-0.485427297 +MUL1,Nuclear Pore,-0.101681725 +RAB11FIP3,Nuclear Pore,0.427793021 +GOLGA3,Nuclear Pore,0.682979245 +EFNB1,Nuclear Pore,0.697076976 +PDPR,Nuclear Pore,0.243114819 +GLG1,Nuclear Pore,-0.642312508 +TNRC6A,Nuclear Pore,0.085164729 +PLEKHG2,Nuclear Pore,1.117957406 +NAT14,Nuclear Pore,-0.040151665 +RBM27,Nuclear Pore,-0.092224231 +OSBPL8,Nuclear Pore,-0.14756041 +NRCAM,Nuclear Pore,-0.051676647 +LAMB1,Nuclear Pore,-0.054118719 +CMTM6,Nuclear Pore,-0.231092322 +ITGA6,Nuclear Pore,-0.185059576 +SEL1L3,Nuclear Pore,-1.539626561 +ORC6,Nuclear Pore,0.486617811 +TMEM101,Nuclear Pore,0.642471846 +OSGEP,Nuclear Pore,0.685061658 +G2E3,Nuclear Pore,-0.145349141 +HECTD1,Nuclear Pore,-0.078923664 +SEMA6A,Nuclear Pore,0.520764444 +TRPM7,Nuclear Pore,-0.855039463 +TYRO3,Nuclear Pore,-0.222915226 +AGO1,Nuclear Pore,0.271503439 +MFSD11,Nuclear Pore,-0.175226116 +GPATCH2,Nuclear Pore,-1.219885981 +NUP50,Nuclear Pore,0.09144715 +LRRFIP2,Nuclear Pore,0.295216302 +SEC22C,Nuclear Pore,0.070474924 +XYLB,Nuclear Pore,0.145036784 +HDAC6,Nuclear Pore,1.240522222 +CBX5,Nuclear Pore,0.02942204 +SUCO,Nuclear Pore,0.119641253 +HOOK2,Nuclear Pore,0.92708025 +ARCN1,Nuclear Pore,-0.3337645 +TMEM38B,Nuclear Pore,-0.510003854 +BTAF1,Nuclear Pore,-0.245047908 +IKZF5,Nuclear Pore,0.142118312 +WAC,Nuclear Pore,-0.022336175 +CREM,Nuclear Pore,0.037541328 +BRPF3,Nuclear Pore,0.511124079 +EFHC1,Nuclear Pore,1.121703992 +ABL1,Nuclear Pore,0.219400859 +SH3GLB1,Nuclear Pore,-0.766607127 +SCD,Nuclear Pore,-0.305689094 +ABLIM1,Nuclear Pore,-0.221046982 +ERMP1,Nuclear Pore,-0.108200869 +NRP1,Nuclear Pore,-0.496625279 +MZF1,Nuclear Pore,1.554791434 +FBXL19,Nuclear Pore,0.671484167 +MTAP,Nuclear Pore,-0.164944143 +CEP170B,Nuclear Pore,0.943594048 +POLRMT,Nuclear Pore,0.315766172 +ARVCF,Nuclear Pore,0.984220539 +TRMT2A,Nuclear Pore,0.93589034 +ZDHHC8,Nuclear Pore,0.865386529 +KLHL22,Nuclear Pore,0.512223395 +CRKL,Nuclear Pore,-0.026079315 +LZTR1,Nuclear Pore,0.458593536 +CECR2,Nuclear Pore,0.320394157 +DERL3,Nuclear Pore,-0.779714632 +PPM1F,Nuclear Pore,0.235162988 +TOP3B,Nuclear Pore,0.851281228 +CRYBB2P1,Nuclear Pore,0.401391548 +ADRBK2,Nuclear Pore,0.115808033 +GGA1,Nuclear Pore,0.856971359 +HPS4,Nuclear Pore,0.096716217 +TTC28,Nuclear Pore,0.267784943 +SEPT3,Nuclear Pore,0.665763849 +KDELR3,Nuclear Pore,-0.885546507 +DDX17,Nuclear Pore,0.535455639 +TCF20,Nuclear Pore,0.453091451 +TIMP3,Nuclear Pore,-0.658716791 +PPP6R2,Nuclear Pore,0.932996898 +SUN2,Nuclear Pore,0.934118925 +ARSA,Nuclear Pore,1.073649628 +MYH9,Nuclear Pore,0.348045512 +FOXRED2,Nuclear Pore,0.338004895 +TNRC6B,Nuclear Pore,-0.121256301 +SGSM3,Nuclear Pore,0.351641442 +IFT27,Nuclear Pore,0.875058809 +KIAA0930,Nuclear Pore,-0.106129447 +EP300,Nuclear Pore,0.24643131 +ZC3H7B,Nuclear Pore,0.274815506 +ACO2,Nuclear Pore,-0.136738693 +TRMU,Nuclear Pore,0.027570177 +ZBED4,Nuclear Pore,0.174799383 +ABHD4,Nuclear Pore,0.137197025 +KHNYN,Nuclear Pore,0.668004344 +NIN,Nuclear Pore,-0.215070097 +GNPNAT1,Nuclear Pore,-0.378575726 +DDHD1,Nuclear Pore,0.191425085 +CNIH1,Nuclear Pore,-0.475649177 +TMED8,Nuclear Pore,-0.371399151 +SPTLC2,Nuclear Pore,-0.898630019 +PPM1A,Nuclear Pore,-0.767856512 +SIX4,Nuclear Pore,-0.0477053 +GALNT16,Nuclear Pore,0.215669684 +KIAA0247,Nuclear Pore,-0.013911063 +SRSF5,Nuclear Pore,0.182380319 +DICER1,Nuclear Pore,-0.021642932 +ZFYVE21,Nuclear Pore,0.726817393 +TELO2,Nuclear Pore,1.064856645 +PCNX,Nuclear Pore,-0.141571015 +GSKIP,Nuclear Pore,-1.252262523 +SMEK1,Nuclear Pore,-0.433166574 +TRIP11,Nuclear Pore,-1.038360785 +PABPN1,Nuclear Pore,0.923797483 +ARHGAP5,Nuclear Pore,-0.395293238 +CHD8,Nuclear Pore,0.141158152 +PCK2,Nuclear Pore,0.543088344 +PNN,Nuclear Pore,0.149756394 +PLTP,Nuclear Pore,0.496345846 +ABHD12,Nuclear Pore,0.188088059 +GINS1,Nuclear Pore,-0.238780211 +RIMS4,Nuclear Pore,-0.470342559 +PABPC1L,Nuclear Pore,0.907615327 +STK4,Nuclear Pore,-0.276082799 +BMP7,Nuclear Pore,-0.432483594 +DNAJC5,Nuclear Pore,0.379980728 +SLCO4A1,Nuclear Pore,0.84712376 +DIDO1,Nuclear Pore,0.609788095 +ARFGAP1,Nuclear Pore,0.675848857 +ARFRP1,Nuclear Pore,0.894264888 +CDS2,Nuclear Pore,0.036312309 +TM9SF4,Nuclear Pore,0.158779892 +POFUT1,Nuclear Pore,-0.33194062 +SAMHD1,Nuclear Pore,-0.482185592 +KIF3B,Nuclear Pore,-0.153503702 +E2F1,Nuclear Pore,0.578154814 +APMAP,Nuclear Pore,-0.155784621 +ZNF516,Nuclear Pore,0.273432243 +LPIN2,Nuclear Pore,-0.446498474 +SMCHD1,Nuclear Pore,-0.026016986 +LAMA1,Nuclear Pore,0.156583563 +RNF125,Nuclear Pore,-0.280416103 +ANKRD12,Nuclear Pore,-1.097712283 +MIB1,Nuclear Pore,-0.164037186 +MID1,Nuclear Pore,0.410978774 +WDR13,Nuclear Pore,0.76775122 +XIAP,Nuclear Pore,0.053961794 +ATP11C,Nuclear Pore,-0.220282714 +SYP,Nuclear Pore,-0.254936124 +FMR1,Nuclear Pore,0.010661466 +SLC35A2,Nuclear Pore,-0.515353185 +TAZ,Nuclear Pore,0.903381425 +MAGT1,Nuclear Pore,-0.469037782 +CD99L2,Nuclear Pore,-0.054162718 +EEA1,Nuclear Pore,-0.319533998 +NDFIP2,Nuclear Pore,-0.12683896 +DNAJC3,Nuclear Pore,0.072762642 +UGGT2,Nuclear Pore,-0.427171494 +ARHGEF7,Nuclear Pore,0.108649137 +PARP4,Nuclear Pore,0.361788822 +FLT1,Nuclear Pore,0.279217968 +VWA8,Nuclear Pore,-0.415389243 +DGKH,Nuclear Pore,0.044220158 +INTS6,Nuclear Pore,0.070541157 +CLN5,Nuclear Pore,-0.770804241 +MGRN1,Nuclear Pore,0.657002374 +ZNF629,Nuclear Pore,0.37003129 +CENPT,Nuclear Pore,0.52403707 +NFAT5,Nuclear Pore,0.11883054 +SETD6,Nuclear Pore,0.419779128 +SLC38A7,Nuclear Pore,0.343910624 +SLC7A6OS,Nuclear Pore,-0.411230436 +SLC7A6,Nuclear Pore,-0.168320057 +WDR59,Nuclear Pore,0.662505036 +TAF1C,Nuclear Pore,0.797189867 +TSC2,Nuclear Pore,0.573326354 +ZNF500,Nuclear Pore,1.27630849 +ABCC1,Nuclear Pore,-0.093887707 +NOMO3,Nuclear Pore,-0.445716669 +NARFL,Nuclear Pore,-0.025696511 +MTHFSD,Nuclear Pore,0.041815549 +CLCN7,Nuclear Pore,0.759040494 +SLC7A5,Nuclear Pore,-0.04393538 +FBXO31,Nuclear Pore,0.126284379 +EEF2K,Nuclear Pore,0.196989536 +CAPN15,Nuclear Pore,0.558989633 +PIEZO1,Nuclear Pore,1.098856308 +BFAR,Nuclear Pore,-0.022485192 +NOMO1,Nuclear Pore,-0.345068198 +CCP110,Nuclear Pore,-0.442574985 +RNF40,Nuclear Pore,0.231318746 +LACTB,Nuclear Pore,-0.40194266 +CD276,Nuclear Pore,0.166710043 +HOMER2,Nuclear Pore,0.336695101 +TMEM87A,Nuclear Pore,-0.911062648 +ZNF106,Nuclear Pore,-0.056796054 +CEP152,Nuclear Pore,0.109398578 +TJP1,Nuclear Pore,0.444642206 +VPS18,Nuclear Pore,-0.106348898 +MYEF2,Nuclear Pore,0.039561154 +CSPP1,Nuclear Pore,0.019702528 +ZFAND1,Nuclear Pore,0.109452531 +FZD3,Nuclear Pore,0.108040394 +EYA1,Nuclear Pore,0.224619972 +NBN,Nuclear Pore,-0.352492406 +IMPAD1,Nuclear Pore,-0.110855481 +UBE2W,Nuclear Pore,0.551211556 +IKBKB,Nuclear Pore,0.709001893 +PLAT,Nuclear Pore,0.690855772 +JPH1,Nuclear Pore,0.227178769 +TRPS1,Nuclear Pore,-0.061512785 +PYCRL,Nuclear Pore,0.8197007 +EEF1D,Nuclear Pore,0.141360792 +SQLE,Nuclear Pore,-0.602997872 +SLC39A14,Nuclear Pore,-0.324490819 +MTMR9,Nuclear Pore,0.36278644 +LEPROTL1,Nuclear Pore,-0.673656987 +PPP2CB,Nuclear Pore,-0.661884799 +KLHDC4,Nuclear Pore,0.691699104 +KCTD9,Nuclear Pore,-1.443419441 +MAN2B1,Nuclear Pore,0.215285872 +NUCB1,Nuclear Pore,0.289325494 +SARS2,Nuclear Pore,0.429632991 +SNRNP70,Nuclear Pore,0.92368226 +CLPTM1,Nuclear Pore,0.471076351 +CLASRP,Nuclear Pore,0.748994709 +FCGRT,Nuclear Pore,0.57863799 +ERCC2,Nuclear Pore,0.616330839 +DOT1L,Nuclear Pore,0.799064787 +SF3A2,Nuclear Pore,0.485338067 +AMH,Nuclear Pore,1.285623523 +DMPK,Nuclear Pore,1.091053526 +TIMM44,Nuclear Pore,0.128803781 +AKAP8,Nuclear Pore,0.189392058 +AKT2,Nuclear Pore,0.454217919 +PLD3,Nuclear Pore,0.312313926 +FSD1,Nuclear Pore,0.990557489 +APLP1,Nuclear Pore,0.474930268 +CACTIN,Nuclear Pore,0.355465224 +TYK2,Nuclear Pore,0.604781026 +PTPRS,Nuclear Pore,0.408156282 +MEGF8,Nuclear Pore,0.447186485 +KDELR1,Nuclear Pore,0.157520377 +CYTH2,Nuclear Pore,1.282920948 +LIG1,Nuclear Pore,0.335863155 +BCAT2,Nuclear Pore,0.751178389 +TNPO2,Nuclear Pore,0.235934308 +DNASE2,Nuclear Pore,0.650741339 +ISYNA1,Nuclear Pore,0.604649228 +CRTC1,Nuclear Pore,0.360036341 +SUGP1,Nuclear Pore,0.71852894 +SIPA1L3,Nuclear Pore,0.503236126 +CADM4,Nuclear Pore,0.854451623 +SMG9,Nuclear Pore,0.427534838 +AVL9,Nuclear Pore,-0.043140154 +CDK6,Nuclear Pore,-0.402529271 +DNAJC2,Nuclear Pore,-0.296496498 +WDR91,Nuclear Pore,0.524345742 +CBLL1,Nuclear Pore,-0.707739579 +MTPN,Nuclear Pore,-0.456876388 +ZC3HAV1,Nuclear Pore,-0.571956844 +OGDH,Nuclear Pore,0.068848028 +MET,Nuclear Pore,-0.521727695 +LMBR1,Nuclear Pore,-0.4939003 +HOXA3,Nuclear Pore,1.195302304 +HOXA6,Nuclear Pore,1.47649646 +BRAT1,Nuclear Pore,0.591747195 +FKBP14,Nuclear Pore,-1.011071054 +NSUN5P2,Nuclear Pore,1.05547859 +CASP2,Nuclear Pore,0.111045859 +HSPB1,Nuclear Pore,1.069581575 +ZKSCAN1,Nuclear Pore,-0.258824734 +WASL,Nuclear Pore,-0.734227498 +RBM28,Nuclear Pore,0.11527769 +C1GALT1,Nuclear Pore,-0.944512529 +PLOD3,Nuclear Pore,0.261435936 +CLDN15,Nuclear Pore,1.089206758 +TMEM106B,Nuclear Pore,-0.247249023 +CEP41,Nuclear Pore,-0.705903495 +GLI3,Nuclear Pore,0.818594053 +TMEM248,Nuclear Pore,0.273237602 +TBL2,Nuclear Pore,-0.031981954 +FKTN,Nuclear Pore,-0.100058102 +TMEM245,Nuclear Pore,-0.490369608 +MEGF9,Nuclear Pore,-0.54457372 +TGFBR1,Nuclear Pore,-0.275639102 +DNM1,Nuclear Pore,1.065830337 +KANK1,Nuclear Pore,0.315173334 +RAPGEF1,Nuclear Pore,0.225750858 +NPDC1,Nuclear Pore,1.483713139 +SETX,Nuclear Pore,-0.049514162 +CCNJ,Nuclear Pore,-0.563377016 +RAB11FIP2,Nuclear Pore,-0.206915091 +ERLIN1,Nuclear Pore,-0.629949306 +MAPK8,Nuclear Pore,0.190077739 +ATE1,Nuclear Pore,-0.135781237 +PLEKHA1,Nuclear Pore,-0.040524825 +UNC5B,Nuclear Pore,0.551782723 +BMPR1A,Nuclear Pore,0.063863041 +ACTA2,Nuclear Pore,0.33079752 +LIPA,Nuclear Pore,-0.644710899 +LZTS2,Nuclear Pore,1.434297088 +ARHGAP21,Nuclear Pore,-0.299683452 +ANKRD26,Nuclear Pore,-0.447021929 +LARP4B,Nuclear Pore,0.418754384 +C10orf137,Nuclear Pore,0.435346302 +MTPAP,Nuclear Pore,0.211256337 +SH3PXD2A,Nuclear Pore,0.152244965 +PITRM1,Nuclear Pore,-0.433033516 +FAM208B,Nuclear Pore,-0.192512709 +TSPAN14,Nuclear Pore,-0.205114546 +NUFIP2,Nuclear Pore,0.250094617 +DHX40,Nuclear Pore,-0.178053655 +CDK5RAP3,Nuclear Pore,0.317522566 +RECQL5,Nuclear Pore,0.785556402 +INTS2,Nuclear Pore,-0.3884808 +CAMTA2,Nuclear Pore,0.281067447 +MED13,Nuclear Pore,-0.222229817 +HOXB6,Nuclear Pore,0.782230073 +CPD,Nuclear Pore,-0.332837757 +GOSR1,Nuclear Pore,-0.381609757 +CCDC47,Nuclear Pore,-0.164028091 +AKAP10,Nuclear Pore,0.074952699 +CYTH1,Nuclear Pore,0.124009209 +LGALS3BP,Nuclear Pore,0.46605079 +EZH1,Nuclear Pore,0.802619209 +PPP1R9B,Nuclear Pore,0.483062375 +LUC7L3,Nuclear Pore,0.469170179 +DUSP3,Nuclear Pore,0.204852083 +EFNB3,Nuclear Pore,0.646771606 +DPH1,Nuclear Pore,0.826891387 +NAT9,Nuclear Pore,0.696281905 +TMEM104,Nuclear Pore,0.73636096 +TMEM97,Nuclear Pore,-0.69691539 +UNC119,Nuclear Pore,0.972705489 +TMEM33,Nuclear Pore,-0.357407045 +DCUN1D4,Nuclear Pore,-0.532543505 +MANBA,Nuclear Pore,0.162651597 +ELF2,Nuclear Pore,-0.013650751 +WFS1,Nuclear Pore,0.705150535 +FRG1,Nuclear Pore,-0.342468378 +CLCN3,Nuclear Pore,-0.109350666 +GALNT7,Nuclear Pore,0.009621398 +TRIM2,Nuclear Pore,-0.070833788 +NEIL3,Nuclear Pore,-0.157431605 +SH3D19,Nuclear Pore,0.132612346 +STIM2,Nuclear Pore,-0.101518519 +RAPGEF2,Nuclear Pore,0.108378174 +UGDH,Nuclear Pore,-0.586108124 +CCDC34,Nuclear Pore,0.116632228 +FNBP4,Nuclear Pore,0.655417439 +SC5D,Nuclear Pore,-0.392450829 +SIAE,Nuclear Pore,-0.978711545 +EHD1,Nuclear Pore,0.10202279 +FOXRED1,Nuclear Pore,-0.363244985 +ST3GAL4,Nuclear Pore,-0.070875641 +CPT1A,Nuclear Pore,0.38747471 +TMEM109,Nuclear Pore,0.246990074 +PANX1,Nuclear Pore,0.027066206 +UBE4A,Nuclear Pore,-0.273975191 +DDX6,Nuclear Pore,-0.037668466 +PVRL1,Nuclear Pore,0.467960492 +HIPK3,Nuclear Pore,-0.306206586 +MDK,Nuclear Pore,0.898139429 +AMBRA1,Nuclear Pore,-0.020737978 +NAA40,Nuclear Pore,0.476059989 +SLC35F2,Nuclear Pore,-0.249616295 +LEPREL2,Nuclear Pore,0.872490437 +CORO1C,Nuclear Pore,-0.051534336 +ASIC1,Nuclear Pore,0.184462296 +CAPRIN2,Nuclear Pore,1.268314423 +SLC11A2,Nuclear Pore,-0.62613627 +MLEC,Nuclear Pore,-0.027609368 +BCL7A,Nuclear Pore,0.098845569 +RSRC2,Nuclear Pore,0.168497607 +PPM1H,Nuclear Pore,-0.118403482 +ELK3,Nuclear Pore,0.188176378 +MAGOHB,Nuclear Pore,-0.608971486 +ITFG2,Nuclear Pore,0.943467363 +PARP11,Nuclear Pore,0.007820318 +DUSP16,Nuclear Pore,0.401134435 +ACAD10,Nuclear Pore,0.490151687 +NAA25,Nuclear Pore,-0.148931105 +DDX55,Nuclear Pore,-0.076356878 +SLC38A1,Nuclear Pore,-0.249803593 +C12orf49,Nuclear Pore,-0.211942054 +MDM1,Nuclear Pore,-0.165700009 +CPSF6,Nuclear Pore,0.111314894 +GNPTAB,Nuclear Pore,-0.141734291 +ATN1,Nuclear Pore,0.973539465 +C12orf57,Nuclear Pore,0.270213324 +LPCAT3,Nuclear Pore,0.626427145 +SUDS3,Nuclear Pore,-0.020403059 +GOLT1B,Nuclear Pore,-0.430396101 +C2CD5,Nuclear Pore,0.052009689 +RAB35,Nuclear Pore,0.062235123 +RIC8B,Nuclear Pore,0.374065913 +RP11-22B23.1,Nuclear Pore,0.809309383 +DSE,Nuclear Pore,-0.131042883 +MAN1A1,Nuclear Pore,-0.059624579 +SERINC1,Nuclear Pore,-0.456446555 +UST,Nuclear Pore,-0.933279785 +KCTD20,Nuclear Pore,-0.702988577 +RNF8,Nuclear Pore,0.252409335 +ICK,Nuclear Pore,1.031537424 +RAB23,Nuclear Pore,-0.948148428 +FBXL4,Nuclear Pore,0.079690313 +CCNC,Nuclear Pore,-0.338820433 +ALDH5A1,Nuclear Pore,-0.019804311 +EYA4,Nuclear Pore,0.357835923 +PERP,Nuclear Pore,-0.860386455 +SLC16A10,Nuclear Pore,-0.33072804 +PHACTR2,Nuclear Pore,0.302027143 +SLC39A7,Nuclear Pore,0.077071632 +PPP2R5D,Nuclear Pore,0.212742959 +PTK7,Nuclear Pore,0.594908831 +CUL9,Nuclear Pore,1.40678985 +TMEM30A,Nuclear Pore,0.149498444 +SENP6,Nuclear Pore,-0.198689348 +VEGFA,Nuclear Pore,0.458872291 +PRPF4B,Nuclear Pore,-0.205259595 +BTN2A1,Nuclear Pore,0.199522673 +LAMA4,Nuclear Pore,-0.361026268 +ERBB2IP,Nuclear Pore,-0.079001777 +HARS2,Nuclear Pore,-1.318190579 +MAN2A1,Nuclear Pore,0.245057186 +PAPD7,Nuclear Pore,0.209106454 +NNT,Nuclear Pore,-0.035508006 +APBB3,Nuclear Pore,0.545923911 +SPARC,Nuclear Pore,-0.285157535 +HMGCR,Nuclear Pore,-0.432246041 +FAF2,Nuclear Pore,-0.347641599 +CLK4,Nuclear Pore,0.575910503 +ARSB,Nuclear Pore,0.144637339 +CNOT6,Nuclear Pore,-0.002203049 +DROSHA,Nuclear Pore,-0.039570664 +FAM172A,Nuclear Pore,-0.688637625 +LNPEP,Nuclear Pore,-0.000116916 +SLC12A7,Nuclear Pore,0.924659787 +NR3C1,Nuclear Pore,-0.407788952 +C5orf15,Nuclear Pore,-0.072843979 +LIFR,Nuclear Pore,-0.079424311 +TRAPPC13,Nuclear Pore,-0.376591933 +TXNDC15,Nuclear Pore,0.187166382 +H2AFY,Nuclear Pore,-0.000721856 +TCERG1,Nuclear Pore,0.016870621 +SMAD5,Nuclear Pore,-0.154518599 +ERGIC1,Nuclear Pore,-0.481935143 +STC2,Nuclear Pore,0.634305571 +ARL6,Nuclear Pore,-0.241422976 +NIT2,Nuclear Pore,-0.146954085 +UBE3A,Nuclear Pore,-0.597760181 +SLC25A36,Nuclear Pore,0.52613671 +TFDP2,Nuclear Pore,0.154648429 +XRN1,Nuclear Pore,0.332387903 +WNT5A,Nuclear Pore,-0.380275987 +PFKFB4,Nuclear Pore,0.39036358 +PRKAR2A,Nuclear Pore,-0.140600447 +ACAP2,Nuclear Pore,0.707085045 +CBLB,Nuclear Pore,-0.758561291 +BBX,Nuclear Pore,0.265886013 +GNB4,Nuclear Pore,-0.187496767 +C3orf52,Nuclear Pore,-0.519159983 +PLXNA1,Nuclear Pore,0.732340717 +CSPG5,Nuclear Pore,-0.454074784 +SCAP,Nuclear Pore,0.197176779 +HEMK1,Nuclear Pore,1.026780217 +ACVR2B,Nuclear Pore,-0.069402199 +ABCC5,Nuclear Pore,0.530334752 +SSR3,Nuclear Pore,-0.695934807 +NKTR,Nuclear Pore,0.893687062 +FOXP1,Nuclear Pore,0.284096127 +INO80D,Nuclear Pore,0.763248049 +ADAM23,Nuclear Pore,-0.671250391 +MOB1A,Nuclear Pore,-0.298277678 +LMAN2L,Nuclear Pore,0.050306561 +RTKN,Nuclear Pore,0.366112857 +PIKFYVE,Nuclear Pore,-0.421332693 +FAHD2A,Nuclear Pore,0.065395356 +SLC35F5,Nuclear Pore,-0.296729035 +STEAP3,Nuclear Pore,-0.043753952 +EPB41L5,Nuclear Pore,0.130775795 +GPD2,Nuclear Pore,-0.431162014 +ACVR1,Nuclear Pore,0.281438073 +MPV17,Nuclear Pore,-0.004023738 +TTC31,Nuclear Pore,-0.63911701 +NDUFS7,Nuclear Pore,0.385021209 +SPTBN1,Nuclear Pore,0.13404817 +CCDC88A,Nuclear Pore,-0.284904671 +FN1,Nuclear Pore,0.048723977 +ELMOD3,Nuclear Pore,1.484826491 +IGFBP5,Nuclear Pore,0.28819452 +USP34,Nuclear Pore,-0.674267208 +GGCX,Nuclear Pore,0.550476498 +CHST10,Nuclear Pore,0.08544797 +MOB4,Nuclear Pore,-1.948043357 +UXS1,Nuclear Pore,0.045933796 +PASK,Nuclear Pore,0.289157188 +TAF1B,Nuclear Pore,-0.405526246 +DCAF17,Nuclear Pore,-0.612677681 +SDC1,Nuclear Pore,0.918542359 +SLC1A4,Nuclear Pore,-0.733233799 +SOS1,Nuclear Pore,-0.0637606 +WIPF1,Nuclear Pore,0.433264582 +THADA,Nuclear Pore,-0.103703006 +TRAK2,Nuclear Pore,0.083026094 +TIA1,Nuclear Pore,0.215655454 +PCYOX1,Nuclear Pore,-0.489879123 +ARID3A,Nuclear Pore,0.947483041 +EPHA4,Nuclear Pore,-0.763097061 +ALMS1,Nuclear Pore,-0.421294526 +BCL9,Nuclear Pore,0.318539587 +DHCR24,Nuclear Pore,-0.090975489 +DNAJC16,Nuclear Pore,-0.34739524 +RALGPS2,Nuclear Pore,-0.775967676 +CEP104,Nuclear Pore,0.536060366 +FAM20B,Nuclear Pore,-0.201406859 +TCEANC2,Nuclear Pore,0.1394358 +WRAP73,Nuclear Pore,0.511460935 +ICMT,Nuclear Pore,-0.408985494 +QSOX1,Nuclear Pore,0.17610679 +AMPD2,Nuclear Pore,0.162212939 +EDEM3,Nuclear Pore,-0.044629278 +RAP1A,Nuclear Pore,-0.733123602 +S100PBP,Nuclear Pore,-0.29716598 +ASH1L,Nuclear Pore,0.106174654 +SFPQ,Nuclear Pore,-0.000222037 +MEF2D,Nuclear Pore,0.465993523 +C1orf21,Nuclear Pore,-0.084828567 +LEPR,Nuclear Pore,-0.775534778 +IVNS1ABP,Nuclear Pore,0.013419385 +KIAA2013,Nuclear Pore,-0.036035834 +MIIP,Nuclear Pore,0.946129084 +SLC35D1,Nuclear Pore,0.442555369 +WLS,Nuclear Pore,-0.184671609 +PRDM2,Nuclear Pore,0.288685003 +TROVE2,Nuclear Pore,0.075853813 +SRSF11,Nuclear Pore,0.540874569 +PHTF1,Nuclear Pore,0.286282836 +TMEM9,Nuclear Pore,0.480048129 +EXOC8,Nuclear Pore,0.06030365 +NID1,Nuclear Pore,-0.202310445 +MTR,Nuclear Pore,-0.170800269 +BMP8B,Nuclear Pore,0.494568779 +RIMS3,Nuclear Pore,0.692451025 +AKT3,Nuclear Pore,-0.276274028 +ETV3,Nuclear Pore,-0.589422493 +LPHN2,Nuclear Pore,-0.321747258 +RBBP5,Nuclear Pore,-0.136720322 +ECE1,Nuclear Pore,0.289437734 +CD46,Nuclear Pore,0.327155646 +APH1A,Nuclear Pore,0.285472974 +LEPRE1,Nuclear Pore,-0.010076544 +SLC2A1,Nuclear Pore,0.037971454 +SLC19A2,Nuclear Pore,-0.584512049 +NSUN4,Nuclear Pore,0.048230337 +TMED5,Nuclear Pore,-0.26839594 +DR1,Nuclear Pore,-0.2819683 +PTBP2,Nuclear Pore,0.62057577 +DARS2,Nuclear Pore,-0.302020181 +DIEXF,Nuclear Pore,-0.799569296 +RCAN3,Nuclear Pore,-0.085373129 +C1orf63,Nuclear Pore,0.710360233 +SLC35A3,Nuclear Pore,-0.074680725 +RCOR3,Nuclear Pore,0.713027032 +ARID1A,Nuclear Pore,0.592963371 +CENPF,Nuclear Pore,0.03208416 +ESYT2,Nuclear Pore,-0.012360644 +CD3EAP,Nuclear Pore,-0.300472491 +MESDC2,Nuclear Pore,-0.229801212 +CTSD,Nuclear Pore,-0.000822878 +STK11,Nuclear Pore,0.600090104 +KMT2A,Nuclear Pore,0.075858587 +KPTN,Nuclear Pore,0.369694542 +KIF14,Nuclear Pore,0.086961663 +ATF6,Nuclear Pore,0.030848722 +FASTKD2,Nuclear Pore,-0.034036051 +NRP2,Nuclear Pore,0.094976514 +CREB1,Nuclear Pore,0.039589878 +B4GALT6,Nuclear Pore,-0.899226417 +ELOVL4,Nuclear Pore,0.187137704 +CASP8AP2,Nuclear Pore,0.014891456 +PHF3,Nuclear Pore,-0.026213212 +PLAGL1,Nuclear Pore,0.536979433 +FBXO30,Nuclear Pore,0.430471482 +TMEM5,Nuclear Pore,-0.690514549 +ZNF430,Nuclear Pore,0.097127735 +DCLRE1B,Nuclear Pore,-0.429542367 +PKD2,Nuclear Pore,0.250140482 +UBN1,Nuclear Pore,0.083736085 +KLF12,Nuclear Pore,0.076977798 +WDR35,Nuclear Pore,0.10986832 +CCND2,Nuclear Pore,0.167922655 +SATB2,Nuclear Pore,0.472833409 +SENP5,Nuclear Pore,-0.16432357 +C1orf198,Nuclear Pore,0.417776896 +HEATR1,Nuclear Pore,-0.095119209 +PTBP3,Nuclear Pore,-0.231554818 +FAM206A,Nuclear Pore,-1.392155123 +RBM18,Nuclear Pore,-0.443302725 +MAPKAP1,Nuclear Pore,0.013810621 +KDSR,Nuclear Pore,-0.266759028 +ONECUT2,Nuclear Pore,0.380254905 +IRF2BPL,Nuclear Pore,1.078268207 +AREL1,Nuclear Pore,-0.870014659 +ABCD4,Nuclear Pore,0.96647303 +RBM25,Nuclear Pore,0.187484925 +NRDE2,Nuclear Pore,-0.034605938 +KLHL29,Nuclear Pore,-0.904959759 +DNMT3A,Nuclear Pore,0.432562972 +ATAD2B,Nuclear Pore,-0.341242604 +ATL2,Nuclear Pore,0.060556328 +YIPF4,Nuclear Pore,-0.871729672 +AFTPH,Nuclear Pore,0.145190563 +BCL11A,Nuclear Pore,0.921871148 +SLC17A5,Nuclear Pore,-0.465642939 +FAM178A,Nuclear Pore,0.140035034 +GPAM,Nuclear Pore,-0.283549225 +HELLS,Nuclear Pore,0.335565418 +TCTN3,Nuclear Pore,-0.232116413 +C10orf76,Nuclear Pore,-0.11174188 +HOXB8,Nuclear Pore,0.710987358 +HOXB3,Nuclear Pore,0.855540237 +PANK3,Nuclear Pore,0.278309916 +NUP43,Nuclear Pore,-0.031172156 +LRP11,Nuclear Pore,-0.478730222 +MASTL,Nuclear Pore,-0.06557683 +ELF1,Nuclear Pore,-0.42710268 +EGR1,Nuclear Pore,1.102467061 +NR2C1,Nuclear Pore,0.043869304 +MTERFD3,Nuclear Pore,0.545679327 +CLU,Nuclear Pore,0.71755762 +TNFRSF10B,Nuclear Pore,0.31360771 +TARDBP,Nuclear Pore,-0.28312697 +CRISPLD1,Nuclear Pore,-1.28035482 +AKAP1,Nuclear Pore,0.10751747 +TRIM25,Nuclear Pore,-0.121407077 +KIAA0922,Nuclear Pore,-0.508585155 +PAPD5,Nuclear Pore,-0.392200496 +CEP89,Nuclear Pore,0.28135569 +B4GALT4,Nuclear Pore,0.086347982 +KIF18A,Nuclear Pore,-0.059502764 +CRY2,Nuclear Pore,0.37953335 +ZNF639,Nuclear Pore,-0.517570648 +PDS5A,Nuclear Pore,0.039929346 +CLCC1,Nuclear Pore,0.067060441 +ACVR2A,Nuclear Pore,0.446024108 +RPL21,Nuclear Pore,0.772286564 +MTERFD2,Nuclear Pore,0.266309213 +KIAA1191,Nuclear Pore,-0.370950302 +RBBP6,Nuclear Pore,-0.151243394 +ZC3H7A,Nuclear Pore,-0.37383762 +FAM35A,Nuclear Pore,-1.243207092 +FAM213A,Nuclear Pore,0.343611312 +ODF2L,Nuclear Pore,0.229184464 +TRMT13,Nuclear Pore,0.018567318 +RPAP2,Nuclear Pore,-0.139894006 +FAM126A,Nuclear Pore,-0.092689804 +FKBP9,Nuclear Pore,0.185798978 +POLM,Nuclear Pore,1.490608844 +SLC25A51,Nuclear Pore,-0.324368097 +DCAF10,Nuclear Pore,-0.426566524 +KIAA1549,Nuclear Pore,0.447291213 +CALD1,Nuclear Pore,-0.295689688 +CHST3,Nuclear Pore,0.377988225 +P4HA1,Nuclear Pore,-0.538575785 +RBM19,Nuclear Pore,0.075719503 +GIPC1,Nuclear Pore,0.914070152 +ATP7B,Nuclear Pore,0.489463396 +ZC3H13,Nuclear Pore,-0.33773751 +NLN,Nuclear Pore,-0.191244639 +CENPK,Nuclear Pore,-0.812308258 +OPTN,Nuclear Pore,0.187644483 +SPATS2,Nuclear Pore,-0.186408275 +LRP1,Nuclear Pore,0.546178656 +HJURP,Nuclear Pore,-0.009849547 +USP45,Nuclear Pore,0.094196396 +SLC36A1,Nuclear Pore,-0.158276312 +LPGAT1,Nuclear Pore,-0.551242277 +EXOSC9,Nuclear Pore,-0.14749532 +PLA2G12A,Nuclear Pore,-0.472968013 +ADCK4,Nuclear Pore,1.01351584 +PFKFB2,Nuclear Pore,-0.023107903 +AGO2,Nuclear Pore,-0.483527098 +MXD4,Nuclear Pore,1.077466508 +ACSL3,Nuclear Pore,-0.451871607 +SLC12A4,Nuclear Pore,1.106501027 +FAM210B,Nuclear Pore,-0.363668687 +SDC4,Nuclear Pore,0.44357775 +NCOA3,Nuclear Pore,0.408560877 +PIGT,Nuclear Pore,0.06096939 +VAPB,Nuclear Pore,-0.161385663 +CHD6,Nuclear Pore,-0.225839578 +SRSF6,Nuclear Pore,0.206838392 +RAB22A,Nuclear Pore,-0.928937808 +STX16,Nuclear Pore,0.484976512 +STAMBP,Nuclear Pore,-0.664927265 +NAGK,Nuclear Pore,1.059164289 +PAIP2B,Nuclear Pore,0.921165153 +ATP8A1,Nuclear Pore,0.26750004 +BTN2A2,Nuclear Pore,0.289402187 +ABCC10,Nuclear Pore,0.762864284 +AARS2,Nuclear Pore,0.291703603 +ZNF391,Nuclear Pore,0.316391223 +CDKN1A,Nuclear Pore,1.114413723 +SSR1,Nuclear Pore,-0.477385647 +NRN1,Nuclear Pore,-0.132497058 +ATXN1,Nuclear Pore,0.822802194 +EEF1E1,Nuclear Pore,-0.540903458 +LRRFIP1,Nuclear Pore,-0.255778379 +AHNAK,Nuclear Pore,0.816624688 +ABCC4,Nuclear Pore,-0.099470478 +EFNB2,Nuclear Pore,-0.086534941 +ATP5S,Nuclear Pore,0.733869449 +FAM193A,Nuclear Pore,0.261250858 +GGA3,Nuclear Pore,0.867885707 +GTF3C4,Nuclear Pore,-0.674850318 +PPP1R12C,Nuclear Pore,0.762985214 +MBOAT7,Nuclear Pore,0.096348847 +CCDC93,Nuclear Pore,-0.242827888 +THOC2,Nuclear Pore,-0.011878709 +MED1,Nuclear Pore,0.136628544 +GPR108,Nuclear Pore,0.584578989 +GPCPD1,Nuclear Pore,-0.839653495 +PANK2,Nuclear Pore,0.311408271 +NAPB,Nuclear Pore,-0.06805347 +TMX4,Nuclear Pore,-0.651080281 +RRBP1,Nuclear Pore,0.027884663 +ZNF133,Nuclear Pore,0.82310656 +MCM8,Nuclear Pore,0.137875319 +NCLN,Nuclear Pore,0.558409818 +ZNF436,Nuclear Pore,0.180735392 +AMOT,Nuclear Pore,0.154085879 +TMEM115,Nuclear Pore,0.489587623 +AGO3,Nuclear Pore,1.080880805 +HECTD3,Nuclear Pore,0.621544239 +KLC1,Nuclear Pore,1.592232391 +XRCC3,Nuclear Pore,1.080829271 +TUBGCP3,Nuclear Pore,-0.857738514 +PCID2,Nuclear Pore,0.011210687 +FRMD8,Nuclear Pore,0.624338445 +PCNXL4,Nuclear Pore,-0.675980796 +ATG14,Nuclear Pore,-0.515677294 +KTN1,Nuclear Pore,-0.297240901 +PLEKHG3,Nuclear Pore,0.088571386 +WDR60,Nuclear Pore,-0.068725622 +AIF1L,Nuclear Pore,-0.266386957 +SLC10A3,Nuclear Pore,0.58748531 +CANX,Nuclear Pore,-0.611585362 +CPSF3L,Nuclear Pore,0.434239865 +TRAF2,Nuclear Pore,0.928240858 +HELB,Nuclear Pore,-0.462024175 +DYRK2,Nuclear Pore,-0.173741312 +LRRC61,Nuclear Pore,0.777705458 +FGFRL1,Nuclear Pore,0.263054353 +EMC1,Nuclear Pore,-0.191578099 +HP1BP3,Nuclear Pore,0.389894848 +SIN3B,Nuclear Pore,0.532046768 +SLC35E1,Nuclear Pore,0.290208443 +GFER,Nuclear Pore,0.480883142 +PKMYT1,Nuclear Pore,1.010742324 +CHTF18,Nuclear Pore,1.208869404 +MACF1,Nuclear Pore,0.109089124 +RNF6,Nuclear Pore,-0.508245472 +AKAP9,Nuclear Pore,0.18317041 +HIP1,Nuclear Pore,-0.262974214 +POR,Nuclear Pore,-0.191478869 +PEX1,Nuclear Pore,0.090604614 +LRFN1,Nuclear Pore,0.86895577 +SRD5A3,Nuclear Pore,-0.45635793 +PPAT,Nuclear Pore,-0.457685311 +TUBGCP6,Nuclear Pore,0.83979427 +DGCR8,Nuclear Pore,0.526939962 +TPST2,Nuclear Pore,-0.098242445 +MPST,Nuclear Pore,0.794080605 +SPECC1,Nuclear Pore,-0.02798408 +NAA38,Nuclear Pore,-0.201433317 +PRKRIP1,Nuclear Pore,0.305059217 +PODXL,Nuclear Pore,-0.09967885 +STRIP2,Nuclear Pore,-0.290897966 +MKLN1,Nuclear Pore,-0.738078119 +CALU,Nuclear Pore,-0.326497864 +CCDC136,Nuclear Pore,0.15707605 +SMO,Nuclear Pore,0.28552811 +KLHDC10,Nuclear Pore,-0.080423204 +OSGEPL1,Nuclear Pore,-0.144314193 +HOXD10,Nuclear Pore,0.944091544 +HOXD11,Nuclear Pore,0.869458897 +HERC2,Nuclear Pore,0.343099688 +TWSG1,Nuclear Pore,0.024215185 +MYO5C,Nuclear Pore,-0.145648473 +TMOD2,Nuclear Pore,-0.996753844 +TTBK2,Nuclear Pore,0.837798945 +IVD,Nuclear Pore,0.021044339 +CLN6,Nuclear Pore,0.047132493 +ARPP19,Nuclear Pore,-0.299420552 +VPS13C,Nuclear Pore,0.388395855 +SUMF2,Nuclear Pore,-0.047712606 +SPCS3,Nuclear Pore,-0.578489667 +RPAIN,Nuclear Pore,0.26197483 +PLD2,Nuclear Pore,1.10263322 +MPDU1,Nuclear Pore,0.144225643 +CCNT1,Nuclear Pore,0.097240931 +PUS7L,Nuclear Pore,-0.504853506 +KRI1,Nuclear Pore,0.788025147 +SLC44A2,Nuclear Pore,0.286181705 +BCL2L2,Nuclear Pore,0.671937813 +PARP2,Nuclear Pore,0.041012366 +TEP1,Nuclear Pore,0.283976079 +MAP7D3,Nuclear Pore,-0.225570184 +ABHD17A,Nuclear Pore,1.355954791 +ERMARD,Nuclear Pore,-0.051265922 +SAT1,Nuclear Pore,0.744898052 +GNL3L,Nuclear Pore,-0.6140622 +SH3BP4,Nuclear Pore,0.786077748 +LDLR,Nuclear Pore,-0.073499272 +PRKCSH,Nuclear Pore,0.227040074 +THEM6,Nuclear Pore,0.319679904 +PVRL2,Nuclear Pore,0.079745251 +SAFB2,Nuclear Pore,0.417496037 +KIF1A,Nuclear Pore,0.34095173 +COLGALT1,Nuclear Pore,0.233276336 +MLLT1,Nuclear Pore,0.695519563 +MLLT4,Nuclear Pore,0.455983995 +ACTN4,Nuclear Pore,0.196337484 +NDUFA10,Nuclear Pore,0.143123999 +ZSWIM6,Nuclear Pore,0.446104146 +PXDN,Nuclear Pore,-0.223131372 +COL5A1,Nuclear Pore,0.992062699 +ZNF337,Nuclear Pore,0.760453799 +TAF4,Nuclear Pore,-0.66459458 +LAMA5,Nuclear Pore,1.29481248 +EXOSC2,Nuclear Pore,-0.184730124 +POMT1,Nuclear Pore,0.186594648 +PRRC2B,Nuclear Pore,0.304439178 +YIPF2,Nuclear Pore,0.054921817 +ZC3H4,Nuclear Pore,0.926948567 +CLIP1,Nuclear Pore,-0.643947521 +HIP1R,Nuclear Pore,0.935019192 +PPAN,Nuclear Pore,1.082630814 +SLC6A8,Nuclear Pore,0.332398366 +PLXNA3,Nuclear Pore,1.090152599 +PRRG1,Nuclear Pore,-0.100690534 +AKAP12,Nuclear Pore,-0.137640796 +RBM39,Nuclear Pore,0.076976644 +GGT7,Nuclear Pore,0.348112779 +PPT1,Nuclear Pore,-0.41753025 +RLIM,Nuclear Pore,-0.372440683 +ABCB7,Nuclear Pore,-0.970405901 +MRPS25,Nuclear Pore,0.107934195 +CAPN7,Nuclear Pore,-0.473848725 +ZFYVE20,Nuclear Pore,0.11611961 +SLC6A6,Nuclear Pore,-0.388713017 +MGAT1,Nuclear Pore,0.515727265 +PSMC3IP,Nuclear Pore,-0.28752971 +DIAPH1,Nuclear Pore,-0.569402359 +NDFIP1,Nuclear Pore,-0.343517099 +ACAP3,Nuclear Pore,1.166142986 +C1orf159,Nuclear Pore,0.875993706 +MAP1B,Nuclear Pore,0.500139587 +IL13RA1,Nuclear Pore,-0.721421728 +WDR44,Nuclear Pore,-0.134755556 +PRKAB2,Nuclear Pore,0.041644174 +CLUHP3,Nuclear Pore,0.779406096 +CHSY1,Nuclear Pore,-0.456349675 +SNRPA1,Nuclear Pore,-0.149934115 +FBXW9,Nuclear Pore,-0.072788682 +RFX1,Nuclear Pore,1.259978826 +CC2D1A,Nuclear Pore,1.252876117 +NUP210,Nuclear Pore,0.14075492 +ENOSF1,Nuclear Pore,-1.046654557 +EMILIN2,Nuclear Pore,0.05691295 +PRKAA1,Nuclear Pore,0.250430041 +PNISR,Nuclear Pore,0.679049177 +ZRANB2,Nuclear Pore,0.23163142 +KDM6B,Nuclear Pore,1.364330125 +GPS2,Nuclear Pore,0.714355895 +VPS13B,Nuclear Pore,-0.070536247 +REEP2,Nuclear Pore,0.910118402 +PRMT7,Nuclear Pore,0.876860274 +PCED1A,Nuclear Pore,0.691523928 +PTPRA,Nuclear Pore,-0.493307746 +KIAA0907,Nuclear Pore,1.019287175 +DCAF8,Nuclear Pore,0.396648667 +IGHMBP2,Nuclear Pore,0.41020695 +LPIN3,Nuclear Pore,0.604871992 +SERINC3,Nuclear Pore,-0.243416355 +FBXO44,Nuclear Pore,1.209216597 +USPL1,Nuclear Pore,0.46540786 +XPO4,Nuclear Pore,-0.12278049 +SCO1,Nuclear Pore,0.075978296 +MPRIP,Nuclear Pore,0.467405156 +DSTYK,Nuclear Pore,-0.275542536 +SLC41A1,Nuclear Pore,0.222770827 +GPALPP1,Nuclear Pore,-0.718434207 +IRS4,Nuclear Pore,0.327896486 +FAM104A,Nuclear Pore,0.10286924 +SLC39A11,Nuclear Pore,-0.34481718 +EPHB2,Nuclear Pore,0.640399683 +SRRM1,Nuclear Pore,0.062132137 +SUV420H2,Nuclear Pore,1.003869045 +WDR74,Nuclear Pore,-0.113389893 +RTN3,Nuclear Pore,-0.681203106 +MORC2,Nuclear Pore,0.093293662 +LARGE,Nuclear Pore,-0.952814155 +ADCK2,Nuclear Pore,0.143817766 +AGAP3,Nuclear Pore,0.082128463 +KRBA1,Nuclear Pore,0.986390597 +ZNF767,Nuclear Pore,1.059993059 +ATP13A3,Nuclear Pore,-0.412238796 +TMEM254,Nuclear Pore,-0.123999858 +TMTC1,Nuclear Pore,-0.648299102 +KRAS,Nuclear Pore,-0.582009354 +SWAP70,Nuclear Pore,-0.360743023 +ZFC3H1,Nuclear Pore,0.688890327 +TEX15,Nuclear Pore,0.091245313 +CTIF,Nuclear Pore,0.499910714 +VHL,Nuclear Pore,0.156149784 +ARL8B,Nuclear Pore,-0.157922105 +EDEM1,Nuclear Pore,0.095372231 +PRPF38B,Nuclear Pore,0.41477794 +SORT1,Nuclear Pore,-0.188206298 +PTGFRN,Nuclear Pore,0.50019361 +NOTCH2,Nuclear Pore,0.042884506 +CEPT1,Nuclear Pore,-0.343247488 +AP4B1,Nuclear Pore,0.117731615 +SPIRE1,Nuclear Pore,-0.115450273 +SLC38A2,Nuclear Pore,-0.127627341 +KIDINS220,Nuclear Pore,-0.065437508 +ROCK2,Nuclear Pore,0.055434737 +LPIN1,Nuclear Pore,0.748198038 +IL6ST,Nuclear Pore,-0.065212255 +TMEM241,Nuclear Pore,0.502325992 +LRP4,Nuclear Pore,1.249395652 +DDB2,Nuclear Pore,0.933751455 +ACP2,Nuclear Pore,-0.413127673 +AGO4,Nuclear Pore,0.478266395 +HOOK1,Nuclear Pore,-0.178056902 +DSC2,Nuclear Pore,-0.224681587 +DSC3,Nuclear Pore,-0.590885855 +DTNA,Nuclear Pore,-0.368551302 +FHOD3,Nuclear Pore,0.13004875 +FADS2,Nuclear Pore,0.20481173 +CLOCK,Nuclear Pore,0.040553006 +COL4A2,Nuclear Pore,0.145261202 +DZIP1,Nuclear Pore,-0.012859897 +UBAC2,Nuclear Pore,0.346424306 +ARGLU1,Nuclear Pore,0.457707576 +BIVM,Nuclear Pore,0.564509603 +ARHGAP32,Nuclear Pore,-0.626926954 +TMED7,Nuclear Pore,-1.005280853 +APC,Nuclear Pore,-0.208045029 +WDR36,Nuclear Pore,-0.372134504 +NAA35,Nuclear Pore,-0.343215281 +TMEM2,Nuclear Pore,-1.058387672 +GOLM1,Nuclear Pore,-0.520229949 +TAOK3,Nuclear Pore,0.862721574 +DMTF1,Nuclear Pore,0.731841384 +TMEM243,Nuclear Pore,0.315090349 +PNPLA8,Nuclear Pore,-1.496276764 +MDFIC,Nuclear Pore,0.419207072 +ANKRD6,Nuclear Pore,-0.405732211 +KIAA1009,Nuclear Pore,0.597437271 +SNX14,Nuclear Pore,-0.403506517 +EPHA7,Nuclear Pore,-0.23333684 +DNAJC14,Nuclear Pore,0.284324168 +GDF11,Nuclear Pore,0.436922083 +TROAP,Nuclear Pore,0.888133375 +TSPAN31,Nuclear Pore,-0.363398207 +TFCP2,Nuclear Pore,-0.196629509 +PAN2,Nuclear Pore,0.323326526 +HNRNPA1,Nuclear Pore,-0.009734974 +ACVR1B,Nuclear Pore,-0.447051416 +OS9,Nuclear Pore,0.197439884 +MAP7,Nuclear Pore,-0.436851591 +CD164,Nuclear Pore,-0.196815547 +NHSL1,Nuclear Pore,1.151060006 +AHI1,Nuclear Pore,-0.755049349 +SEMA4F,Nuclear Pore,-0.172524982 +RAB11FIP5,Nuclear Pore,0.687030886 +CCDC142,Nuclear Pore,1.310373858 +GNS,Nuclear Pore,-0.036626718 +MDM2,Nuclear Pore,0.051436535 +KLHL36,Nuclear Pore,0.418795423 +DYNC1LI2,Nuclear Pore,0.063990765 +EGLN1,Nuclear Pore,-0.383089578 +ABCB10,Nuclear Pore,-0.602547884 +TAF5L,Nuclear Pore,-0.287718821 +STX6,Nuclear Pore,-0.638866871 +CEP350,Nuclear Pore,0.093841837 +LAMC1,Nuclear Pore,-0.137285562 +RC3H1,Nuclear Pore,0.069584937 +TTLL4,Nuclear Pore,0.118777471 +USP37,Nuclear Pore,-0.390246347 +ITM2C,Nuclear Pore,0.431297417 +SERPINE2,Nuclear Pore,-0.464806785 +TMEM127,Nuclear Pore,-0.228276874 +GCC2,Nuclear Pore,-0.330303537 +C2orf49,Nuclear Pore,0.241480965 +EPC2,Nuclear Pore,-0.126819867 +ARHGEF4,Nuclear Pore,0.379895936 +ALDH1L2,Nuclear Pore,-0.278510436 +CKAP4,Nuclear Pore,0.027946949 +NEK3,Nuclear Pore,-0.090406545 +RCBTB1,Nuclear Pore,0.316866644 +COG3,Nuclear Pore,0.678440489 +SCRN1,Nuclear Pore,-0.245488969 +CHST12,Nuclear Pore,1.179461789 +KDELR2,Nuclear Pore,-0.285522838 +NUPL2,Nuclear Pore,-0.164291602 +DBNL,Nuclear Pore,0.50973008 +TTYH3,Nuclear Pore,0.654232672 +IREB2,Nuclear Pore,-0.526973586 +RSAD1,Nuclear Pore,0.256704785 +VEZF1,Nuclear Pore,-0.233768496 +TEX2,Nuclear Pore,-0.084997129 +BRIP1,Nuclear Pore,0.368746251 +SKIL,Nuclear Pore,0.079961249 +RPS6KC1,Nuclear Pore,0.243644914 +BIN1,Nuclear Pore,0.525184324 +HS6ST1,Nuclear Pore,0.167524909 +UGGT1,Nuclear Pore,0.065123637 +DNAJC1,Nuclear Pore,-0.316635571 +LRRC8A,Nuclear Pore,0.511199658 +CDK9,Nuclear Pore,0.82295781 +TOR1B,Nuclear Pore,0.402506337 +SMC2,Nuclear Pore,-0.558717573 +TOR1A,Nuclear Pore,-0.432095271 +RALGPS1,Nuclear Pore,-0.008295207 +FAM129B,Nuclear Pore,0.44859804 +SLC2A8,Nuclear Pore,0.06227557 +SLC31A1,Nuclear Pore,-0.218281251 +ZNF189,Nuclear Pore,-0.04217383 +STX17,Nuclear Pore,0.81431502 +TSTD2,Nuclear Pore,-0.017140319 +LMX1B,Nuclear Pore,0.817275655 +RANBP6,Nuclear Pore,0.287965153 +TLN1,Nuclear Pore,0.136813776 +ALDH1B1,Nuclear Pore,0.124392377 +CNPY3,Nuclear Pore,0.389790685 +TMEM63B,Nuclear Pore,0.467845032 +TJAP1,Nuclear Pore,0.790972129 +SLC22A23,Nuclear Pore,0.713789532 +FOXF2,Nuclear Pore,-0.416844533 +RIPK1,Nuclear Pore,-0.467496031 +ATAT1,Nuclear Pore,0.818791096 +NRM,Nuclear Pore,0.086625894 +VARS2,Nuclear Pore,0.968430934 +FAM8A1,Nuclear Pore,-0.39865386 +PRKRIR,Nuclear Pore,-0.493544008 +CREBZF,Nuclear Pore,0.516523581 +PRCP,Nuclear Pore,-0.232959978 +RNF121,Nuclear Pore,0.21140885 +SULF1,Nuclear Pore,-0.57687343 +SORL1,Nuclear Pore,-0.014772713 +YAP1,Nuclear Pore,-0.359425786 +RDX,Nuclear Pore,-0.496837112 +MAP2K5,Nuclear Pore,-0.374680529 +MAPKBP1,Nuclear Pore,-0.145850625 +CASC5,Nuclear Pore,-0.580417588 +HAUS2,Nuclear Pore,0.493666236 +PARP6,Nuclear Pore,0.381173887 +TUBGCP4,Nuclear Pore,0.334606997 +RMDN3,Nuclear Pore,0.307429013 +UACA,Nuclear Pore,-0.266273082 +SMAD6,Nuclear Pore,0.314412054 +ADAM10,Nuclear Pore,-0.339425816 +TTLL7,Nuclear Pore,0.361153863 +FNBP1L,Nuclear Pore,0.164383531 +RABGGTB,Nuclear Pore,0.238202277 +ARHGAP29,Nuclear Pore,-0.028562326 +SLC44A5,Nuclear Pore,0.908563604 +DBT,Nuclear Pore,-0.260657227 +EPT1,Nuclear Pore,-1.019309842 +ADCY3,Nuclear Pore,0.219639013 +PNPT1,Nuclear Pore,-0.255149091 +THUMPD2,Nuclear Pore,0.263870355 +PREPL,Nuclear Pore,-0.477169707 +ACTR1A,Nuclear Pore,-0.116032924 +TMEM180,Nuclear Pore,-0.186765418 +ATAD1,Nuclear Pore,-0.731927973 +KIF20B,Nuclear Pore,-0.293966711 +TET1,Nuclear Pore,0.108848274 +DNA2,Nuclear Pore,-0.002921387 +BARD1,Nuclear Pore,-0.776911312 +NAB1,Nuclear Pore,0.023951651 +PPIG,Nuclear Pore,-0.085569597 +FASTKD1,Nuclear Pore,-0.553552863 +SSFA2,Nuclear Pore,-0.099307337 +ITGAV,Nuclear Pore,-0.102284742 +SLC35A5,Nuclear Pore,-0.411710386 +SECISBP2L,Nuclear Pore,0.007707645 +SPPL2A,Nuclear Pore,0.05172453 +GLCE,Nuclear Pore,-0.675888819 +PPCDC,Nuclear Pore,0.274149162 +PCDH10,Nuclear Pore,0.309878414 +AP1AR,Nuclear Pore,-0.54265856 +FGF2,Nuclear Pore,-0.402952921 +KIAA1109,Nuclear Pore,0.658826581 +LARP1B,Nuclear Pore,0.184582672 +BMP2K,Nuclear Pore,0.698523921 +FRAS1,Nuclear Pore,0.180808589 +SCARB2,Nuclear Pore,-0.457668108 +USO1,Nuclear Pore,-0.422313548 +CENPE,Nuclear Pore,-0.053918531 +GSTCD,Nuclear Pore,-0.333203559 +LEF1,Nuclear Pore,1.191187392 +PPP3CA,Nuclear Pore,0.224517184 +FBN2,Nuclear Pore,-0.347105332 +MAPK8IP3,Nuclear Pore,1.487063023 +B4GALNT3,Nuclear Pore,-0.261703885 +AEBP2,Nuclear Pore,-0.802778821 +ETNK1,Nuclear Pore,0.018178602 +CLSTN3,Nuclear Pore,0.428261343 +SCAF11,Nuclear Pore,-0.396319419 +COL2A1,Nuclear Pore,0.358039185 +LRIG3,Nuclear Pore,0.069118194 +TMEM19,Nuclear Pore,-0.070019799 +POC1B,Nuclear Pore,-1.032722984 +TMTC3,Nuclear Pore,0.025618256 +GAS2L3,Nuclear Pore,0.19494783 +SLC15A4,Nuclear Pore,0.154439544 +TDG,Nuclear Pore,-0.576703224 +NUPL1,Nuclear Pore,-0.392028131 +MTMR6,Nuclear Pore,-0.426245435 +SLC7A1,Nuclear Pore,0.273370747 +BRCA2,Nuclear Pore,0.156221213 +CERS5,Nuclear Pore,-0.378441962 +ESYT1,Nuclear Pore,0.333913294 +TMBIM6,Nuclear Pore,-0.156385151 +ANKRD52,Nuclear Pore,0.614294138 +ZNF740,Nuclear Pore,-0.078801203 +HNRNPA1L2,Nuclear Pore,-0.454896121 +SBNO1,Nuclear Pore,-0.355490795 +SETD1B,Nuclear Pore,1.167555704 +RBM26,Nuclear Pore,0.384133884 +ZIC5,Nuclear Pore,0.310806966 +TMX1,Nuclear Pore,-0.47663505 +NAA30,Nuclear Pore,-0.256656871 +DCAF5,Nuclear Pore,0.390769882 +RAB15,Nuclear Pore,0.100664944 +NIPA2,Nuclear Pore,-0.797834986 +ZSCAN29,Nuclear Pore,0.385917646 +BNIP2,Nuclear Pore,0.063501961 +MAN2C1,Nuclear Pore,0.949846701 +MESDC1,Nuclear Pore,0.290346095 +IGF1R,Nuclear Pore,0.260680887 +ARRDC4,Nuclear Pore,-0.689685797 +PML,Nuclear Pore,0.964043639 +LINS,Nuclear Pore,0.379946776 +PCSK6,Nuclear Pore,-0.252114869 +SCAMP2,Nuclear Pore,-0.223056417 +POLG,Nuclear Pore,0.63275121 +ABHD2,Nuclear Pore,-0.206606716 +TICRR,Nuclear Pore,0.34365122 +MFGE8,Nuclear Pore,0.310152183 +FURIN,Nuclear Pore,0.58497037 +IQGAP1,Nuclear Pore,-0.34310767 +CRTC3,Nuclear Pore,0.22885482 +FTO,Nuclear Pore,0.101851446 +MBTPS1,Nuclear Pore,0.09301757 +RHOT2,Nuclear Pore,0.916774244 +PDPK1,Nuclear Pore,0.220575171 +TCF25,Nuclear Pore,0.455652373 +GALNS,Nuclear Pore,0.628688377 +GAS8,Nuclear Pore,0.711192162 +MED9,Nuclear Pore,0.457360991 +GID4,Nuclear Pore,0.227088058 +KSR1,Nuclear Pore,0.150027886 +SGSM2,Nuclear Pore,0.97584621 +SSH2,Nuclear Pore,0.647251454 +PTRH2,Nuclear Pore,-0.724800906 +SS18,Nuclear Pore,-0.038693551 +SLC39A6,Nuclear Pore,-0.068982984 +GALNT1,Nuclear Pore,-0.780364462 +ESCO1,Nuclear Pore,-1.061826574 +GREB1L,Nuclear Pore,-0.287842007 +NPC1,Nuclear Pore,0.076156344 +MINK1,Nuclear Pore,0.77871514 +TTYH2,Nuclear Pore,0.270934068 +CSNK1D,Nuclear Pore,0.856857438 +FOXK2,Nuclear Pore,0.593382175 +TRIM65,Nuclear Pore,0.214459168 +RNF157,Nuclear Pore,-0.018695624 +CBX4,Nuclear Pore,1.065235151 +MBD1,Nuclear Pore,0.380736976 +ZCCHC2,Nuclear Pore,0.548942594 +LEPREL4,Nuclear Pore,0.244117413 +FAM134C,Nuclear Pore,0.423548213 +ERBB2,Nuclear Pore,0.004317885 +FKBP10,Nuclear Pore,0.344749847 +PRDM15,Nuclear Pore,0.240652372 +DUS3L,Nuclear Pore,0.179122675 +ATHL1,Nuclear Pore,1.196592457 +COL6A1,Nuclear Pore,0.574664809 +IFNAR1,Nuclear Pore,-0.051322409 +COL6A2,Nuclear Pore,1.199679413 +TMEM50B,Nuclear Pore,0.26312767 +APP,Nuclear Pore,-0.080528365 +URB1,Nuclear Pore,-0.159627755 +CAPN10,Nuclear Pore,1.163017856 +ERVK3-1,Nuclear Pore,0.555851086 +SLC47A1,Nuclear Pore,-1.742791963 +RERE,Nuclear Pore,0.125811774 +EPHA2,Nuclear Pore,0.673392001 +KIAA0319L,Nuclear Pore,-0.042618038 +PLK4,Nuclear Pore,0.158484708 +GPN2,Nuclear Pore,-0.008689842 +PIGK,Nuclear Pore,-0.614085659 +PTPRF,Nuclear Pore,0.387633899 +SYPL2,Nuclear Pore,-0.169085415 +IGSF3,Nuclear Pore,0.056119187 +CELSR2,Nuclear Pore,0.337706763 +ATP1B1,Nuclear Pore,0.061949187 +CREG1,Nuclear Pore,-0.31771114 +POU2F1,Nuclear Pore,0.010801557 +PPOX,Nuclear Pore,0.524458132 +USP21,Nuclear Pore,0.971681751 +PIGM,Nuclear Pore,0.575955913 +ABL2,Nuclear Pore,-0.224622009 +XPR1,Nuclear Pore,-0.458088279 +TOR1AIP1,Nuclear Pore,-0.445688201 +TUFT1,Nuclear Pore,0.128359673 +TARS2,Nuclear Pore,0.191420779 +CERS2,Nuclear Pore,-0.157889439 +SEMA6C,Nuclear Pore,0.953033681 +ATP8B2,Nuclear Pore,0.063475724 +ADAM15,Nuclear Pore,-0.011948338 +SLC39A1,Nuclear Pore,0.279638346 +GATAD2B,Nuclear Pore,0.608423777 +HCN3,Nuclear Pore,0.991325683 +GALNT2,Nuclear Pore,0.145463843 +TTC13,Nuclear Pore,-0.206820527 +MLK4,Nuclear Pore,0.354143792 +CEP170,Nuclear Pore,0.010700097 +SDE2,Nuclear Pore,-0.171895429 +FBXO28,Nuclear Pore,-0.460674912 +CDC42BPA,Nuclear Pore,0.036818513 +MBOAT2,Nuclear Pore,-0.102341914 +PSEN2,Nuclear Pore,0.362399647 +LBR,Nuclear Pore,-0.43889835 +RHOB,Nuclear Pore,0.846793853 +ASXL2,Nuclear Pore,0.062642022 +ETAA1,Nuclear Pore,-0.739124845 +ZNF514,Nuclear Pore,0.892735664 +SFXN5,Nuclear Pore,-0.040720753 +TEX261,Nuclear Pore,-0.257289118 +RALB,Nuclear Pore,-0.163609275 +SLC20A1,Nuclear Pore,-0.29159594 +ZC3H8,Nuclear Pore,-0.745103713 +UBXN4,Nuclear Pore,-0.517932052 +AMMECR1L,Nuclear Pore,0.081652329 +GALNT13,Nuclear Pore,-1.072101747 +SCRN3,Nuclear Pore,-0.247618124 +KIAA1715,Nuclear Pore,-0.24873972 +CDCA7,Nuclear Pore,-0.351103379 +DLX1,Nuclear Pore,0.470651157 +GULP1,Nuclear Pore,-1.446926217 +FAM171B,Nuclear Pore,1.184440792 +CCDC150,Nuclear Pore,0.832651626 +SUMF1,Nuclear Pore,-0.96919468 +RHBDD1,Nuclear Pore,-0.129366497 +FAM134A,Nuclear Pore,0.622450043 +CTDSP1,Nuclear Pore,0.760481713 +EAF1,Nuclear Pore,-0.022551069 +GOLGA4,Nuclear Pore,-0.322007955 +IQSEC1,Nuclear Pore,0.52646297 +PTPRG,Nuclear Pore,-0.283601415 +IL17RD,Nuclear Pore,0.467277296 +ARL6IP5,Nuclear Pore,-0.65005079 +TMF1,Nuclear Pore,-0.396867512 +LRIG1,Nuclear Pore,0.062510041 +LIMD1,Nuclear Pore,-0.19149678 +NXPE3,Nuclear Pore,0.07023398 +SRPRB,Nuclear Pore,-0.505416677 +TCTA,Nuclear Pore,-0.09313324 +VPRBP,Nuclear Pore,-0.400307697 +SLIT2,Nuclear Pore,0.151794748 +DGKQ,Nuclear Pore,1.103055436 +ATP10D,Nuclear Pore,-0.815356317 +SCD5,Nuclear Pore,0.1948291 +ENOPH1,Nuclear Pore,-0.086880263 +TRMT10A,Nuclear Pore,-0.975599327 +KLHL8,Nuclear Pore,-0.755378806 +USP53,Nuclear Pore,-0.055201912 +MARCH6,Nuclear Pore,0.027528636 +FAM105A,Nuclear Pore,-0.470067283 +PIK3R1,Nuclear Pore,0.206846515 +LHFPL2,Nuclear Pore,-0.302059222 +IQGAP2,Nuclear Pore,0.137682972 +PPIP5K2,Nuclear Pore,-0.785947394 +PAM,Nuclear Pore,-0.413283474 +BDP1,Nuclear Pore,0.152494747 +SLC30A5,Nuclear Pore,0.104650403 +ATG12,Nuclear Pore,-0.438724348 +YIPF5,Nuclear Pore,-0.716100181 +RNF145,Nuclear Pore,-0.226310441 +FBXO38,Nuclear Pore,0.006366921 +PCYOX1L,Nuclear Pore,0.566559025 +TNIP1,Nuclear Pore,0.979422569 +ZNF300,Nuclear Pore,1.016850981 +GFOD1,Nuclear Pore,0.454506336 +TRIM41,Nuclear Pore,0.78741324 +FAM193B,Nuclear Pore,0.527072235 +RNF44,Nuclear Pore,0.776091963 +MUT,Nuclear Pore,-0.415105069 +PHIP,Nuclear Pore,-0.094211274 +MMS22L,Nuclear Pore,0.22256147 +PM20D2,Nuclear Pore,-0.067354494 +RNF217,Nuclear Pore,0.586662478 +AIG1,Nuclear Pore,-0.602669555 +TMEM181,Nuclear Pore,-0.61556736 +SDK1,Nuclear Pore,0.679321894 +RBAK,Nuclear Pore,-0.315246505 +CREB5,Nuclear Pore,-0.001516554 +PURB,Nuclear Pore,-0.171717276 +GBAS,Nuclear Pore,-0.096878081 +ZNF92,Nuclear Pore,-0.283051417 +TMEM168,Nuclear Pore,0.465616097 +C7orf43,Nuclear Pore,0.336315323 +SLC12A9,Nuclear Pore,0.946306633 +GIGYF1,Nuclear Pore,1.421040172 +TMEM209,Nuclear Pore,-0.362061333 +NOM1,Nuclear Pore,-0.266691022 +SH3KBP1,Nuclear Pore,-0.445222763 +CASK,Nuclear Pore,-0.081889191 +SLC16A2,Nuclear Pore,-0.431464267 +OGT,Nuclear Pore,0.66536086 +ZNF711,Nuclear Pore,0.118763912 +DIAPH2,Nuclear Pore,-0.306213431 +CXorf57,Nuclear Pore,-0.180361123 +GPC3,Nuclear Pore,-0.172908354 +BIN3,Nuclear Pore,0.591427941 +SLC25A37,Nuclear Pore,0.778186622 +CHMP7,Nuclear Pore,-0.744756296 +ERLIN2,Nuclear Pore,-0.472572875 +TACC1,Nuclear Pore,-0.077898378 +WHSC1L1,Nuclear Pore,0.314638925 +TERF1,Nuclear Pore,-0.463034403 +MTDH,Nuclear Pore,-0.254904975 +LRP12,Nuclear Pore,-1.511533106 +EBAG9,Nuclear Pore,-0.656556697 +UTP23,Nuclear Pore,-0.213679732 +ZNF7,Nuclear Pore,-0.240775638 +ARHGAP39,Nuclear Pore,1.046432741 +NAPRT1,Nuclear Pore,0.081349461 +UHRF2,Nuclear Pore,0.403420224 +ZCCHC7,Nuclear Pore,-0.881337605 +SIGMAR1,Nuclear Pore,-0.043038254 +CEP78,Nuclear Pore,0.211422282 +HIATL1,Nuclear Pore,-0.022658516 +INIP,Nuclear Pore,-0.682871495 +UGCG,Nuclear Pore,-0.443320005 +STOM,Nuclear Pore,0.165336915 +MRRF,Nuclear Pore,-0.18885724 +NR6A1,Nuclear Pore,0.4112267 +SURF4,Nuclear Pore,-0.076433428 +MED22,Nuclear Pore,0.583075693 +SH3GLB2,Nuclear Pore,1.301373962 +FAM73B,Nuclear Pore,1.062344605 +GPR107,Nuclear Pore,0.09201829 +C9orf142,Nuclear Pore,0.697089055 +INPP5E,Nuclear Pore,0.843813125 +DPH7,Nuclear Pore,0.408684096 +NOTCH1,Nuclear Pore,0.82700872 +NACC2,Nuclear Pore,0.423866499 +USP6NL,Nuclear Pore,-0.555951823 +FAM171A1,Nuclear Pore,-0.31758012 +PARD3,Nuclear Pore,0.149772386 +POLR3A,Nuclear Pore,0.393029548 +FRA10AC1,Nuclear Pore,0.452167747 +ADD3,Nuclear Pore,0.273615952 +DNAJB12,Nuclear Pore,0.423243008 +EIF4EBP2,Nuclear Pore,-0.631509346 +MKI67,Nuclear Pore,-0.033950837 +MTG1,Nuclear Pore,0.738387757 +PPRC1,Nuclear Pore,0.365290396 +ITPRIP,Nuclear Pore,0.250342899 +CNNM2,Nuclear Pore,-0.257363099 +PDCD11,Nuclear Pore,-0.381086798 +LIN7C,Nuclear Pore,-0.055888138 +DGKZ,Nuclear Pore,0.85803663 +TNKS1BP1,Nuclear Pore,0.549053733 +SLC43A1,Nuclear Pore,0.33596079 +PTPRJ,Nuclear Pore,0.51121753 +CELF1,Nuclear Pore,0.267066509 +SESN3,Nuclear Pore,0.676743187 +ENDOD1,Nuclear Pore,-0.667345244 +SERPINH1,Nuclear Pore,0.543209757 +NCAM1,Nuclear Pore,0.321336543 +NPAT,Nuclear Pore,-1.053214024 +ATM,Nuclear Pore,0.807453939 +GLB1L2,Nuclear Pore,-0.297729927 +HYOU1,Nuclear Pore,0.17990195 +DAK,Nuclear Pore,0.992098661 +TMEM138,Nuclear Pore,0.494586546 +FADS1,Nuclear Pore,-0.391314917 +EML3,Nuclear Pore,0.727563717 +B3GAT3,Nuclear Pore,0.441834914 +SIDT2,Nuclear Pore,0.601665389 +SOGA1,Nuclear Pore,0.457315184 +LSM14B,Nuclear Pore,0.718185594 +ORAOV1,Nuclear Pore,1.350663602 +TAOK2,Nuclear Pore,0.671580975 +ITGB1,Nuclear Pore,-0.846871241 +ARID5B,Nuclear Pore,0.468288972 +TMCO3,Nuclear Pore,-0.016299388 +LATS2,Nuclear Pore,0.244689353 +LPHN3,Nuclear Pore,-0.036722365 +PRSS23,Nuclear Pore,-0.360618199 +PIP4K2A,Nuclear Pore,-0.555749373 +FREM2,Nuclear Pore,-0.339859735 +CRIM1,Nuclear Pore,-0.101204666 +IPMK,Nuclear Pore,0.260286661 +PLBD2,Nuclear Pore,-0.653569995 +GXYLT1,Nuclear Pore,-0.673488173 +CSNK1G3,Nuclear Pore,-0.068560691 +MIPOL1,Nuclear Pore,0.048820081 +EXT2,Nuclear Pore,-0.032634662 +TMEM18,Nuclear Pore,-0.111535031 +NEK7,Nuclear Pore,-0.330831092 +FER,Nuclear Pore,-0.616944427 +VIPAS39,Nuclear Pore,-0.707691107 +ANKRD50,Nuclear Pore,0.7165741 +UPF2,Nuclear Pore,-0.937165407 +EPS8,Nuclear Pore,-0.070915939 +FAM160B1,Nuclear Pore,0.37625374 +ADAM17,Nuclear Pore,-0.695647366 +WWC2,Nuclear Pore,-0.532892058 +BICD1,Nuclear Pore,0.065137319 +NBAS,Nuclear Pore,-0.926787057 +GUF1,Nuclear Pore,-0.358574539 +SACS,Nuclear Pore,0.049017186 +PABPC3,Nuclear Pore,0.101637269 +DST,Nuclear Pore,-0.056956383 +TIAL1,Nuclear Pore,0.135768295 +TMEM56,Nuclear Pore,-0.650710848 +FAM168B,Nuclear Pore,-0.181957346 +AC093838.4,Nuclear Pore,0.755458124 +MGAT5,Nuclear Pore,-0.264349789 +GPATCH11,Nuclear Pore,-0.779511654 +POU4F1,Nuclear Pore,0.31138597 +RNF219,Nuclear Pore,0.025780263 +EPG5,Nuclear Pore,0.632228417 +C18orf25,Nuclear Pore,0.189607946 +PDK1,Nuclear Pore,0.351974811 +PDE3B,Nuclear Pore,-0.125871881 +TGOLN2,Nuclear Pore,-0.01614354 +UHMK1,Nuclear Pore,0.108763038 +TADA1,Nuclear Pore,0.187319303 +CWF19L2,Nuclear Pore,-1.494481611 +JMY,Nuclear Pore,0.361814471 +HOMER1,Nuclear Pore,0.214986443 +USP12,Nuclear Pore,0.025400462 +CCDC50,Nuclear Pore,-1.453704545 +PAN3,Nuclear Pore,0.182418108 +TMEM123,Nuclear Pore,-0.288544099 +GJA1,Nuclear Pore,-0.417401898 +SLC30A6,Nuclear Pore,-0.241011145 +SAR1B,Nuclear Pore,-0.949522578 +GPR180,Nuclear Pore,-0.16024434 +UTRN,Nuclear Pore,0.031895412 +PTPRK,Nuclear Pore,0.046136586 +PLOD2,Nuclear Pore,-0.124434947 +GPR125,Nuclear Pore,-0.464256684 +SREK1IP1,Nuclear Pore,0.088878594 +TXNDC11,Nuclear Pore,0.173425053 +BCL2L11,Nuclear Pore,0.114995971 +CLGN,Nuclear Pore,-0.402938565 +RASSF3,Nuclear Pore,-0.014607311 +RANBP2,Nuclear Pore,0.000514209 +TMEM87B,Nuclear Pore,-0.192267497 +RBMS1,Nuclear Pore,0.270834198 +LPCAT1,Nuclear Pore,0.016805845 +UBALD1,Nuclear Pore,0.702767438 +RMND5A,Nuclear Pore,-0.186021699 +ZDHHC7,Nuclear Pore,0.838992776 +TRIP12,Nuclear Pore,-0.110592568 +CEBPG,Nuclear Pore,0.085524384 +SREK1,Nuclear Pore,0.477593163 +CHD1,Nuclear Pore,0.049205406 +DGKE,Nuclear Pore,0.503047252 +HS2ST1,Nuclear Pore,-0.596815689 +MSI2,Nuclear Pore,0.350267562 +CACNA2D1,Nuclear Pore,0.290808634 +NUS1,Nuclear Pore,-0.038072859 +IMPACT,Nuclear Pore,-0.783332043 +TBCEL,Nuclear Pore,-0.14510136 +FAM105B,Nuclear Pore,0.197592138 +TBRG1,Nuclear Pore,0.175174337 +CC2D1B,Nuclear Pore,0.357219344 +MIA3,Nuclear Pore,-0.729980705 +TRIM11,Nuclear Pore,0.226747627 +CCSAP,Nuclear Pore,0.029614717 +CXADR,Nuclear Pore,-0.19955815 +GABPA,Nuclear Pore,-0.325489098 +ADAMTS1,Nuclear Pore,0.278226355 +TSEN2,Nuclear Pore,-0.573933079 +FLCN,Nuclear Pore,0.520603929 +SKA1,Nuclear Pore,-0.368015768 +RAB6B,Nuclear Pore,-0.003338099 +ACSS1,Nuclear Pore,0.292750532 +ANKRD40,Nuclear Pore,0.323146884 +VOPP1,Nuclear Pore,-0.273147791 +APOOL,Nuclear Pore,-0.172225284 +CYP2U1,Nuclear Pore,-0.549454387 +AGPAT5,Nuclear Pore,-0.1673626 +MARVELD1,Nuclear Pore,-0.224959944 +ZFYVE27,Nuclear Pore,0.160728249 +SLC25A28,Nuclear Pore,1.352679866 +HSPA13,Nuclear Pore,-0.530880544 +USP25,Nuclear Pore,-0.314808973 +RHOC,Nuclear Pore,0.861834986 +SLC16A1,Nuclear Pore,-0.54458165 +LARP1,Nuclear Pore,0.215125509 +MIER3,Nuclear Pore,-0.056279556 +ZKSCAN2,Nuclear Pore,0.648270256 +PDIA4,Nuclear Pore,-0.080442229 +FAM126B,Nuclear Pore,0.052887196 +FZD7,Nuclear Pore,-0.32917027 +FMN2,Nuclear Pore,0.668681377 +PPARGC1B,Nuclear Pore,0.533522805 +SLC26A2,Nuclear Pore,0.058957956 +LSM11,Nuclear Pore,0.086030604 +PSD3,Nuclear Pore,-0.65629096 +DCK,Nuclear Pore,0.004185601 +ADAMTS3,Nuclear Pore,0.488339952 +DPY19L4,Nuclear Pore,-0.2929643 +NDUFAF6,Nuclear Pore,-0.193701725 +N6AMT1,Nuclear Pore,0.813845747 +CDK20,Nuclear Pore,1.214137064 +PCGF6,Nuclear Pore,-0.43130084 +ANKRD9,Nuclear Pore,0.786071791 +SFXN2,Nuclear Pore,0.300034821 +PTDSS1,Nuclear Pore,-0.044411458 +SUPV3L1,Nuclear Pore,-0.286643656 +TYSND1,Nuclear Pore,0.569094342 +CD109,Nuclear Pore,-0.65325165 +ZDHHC5,Nuclear Pore,0.34103001 +ZFAND3,Nuclear Pore,-0.018722647 +NPTN,Nuclear Pore,0.137520097 +KAT6B,Nuclear Pore,-0.580228039 +SAMD8,Nuclear Pore,-0.218996641 +BAG4,Nuclear Pore,-0.067589862 +ATAD2,Nuclear Pore,-0.509256077 +PHKG2,Nuclear Pore,0.783282808 +SASS6,Nuclear Pore,-0.079330994 +ZIC3,Nuclear Pore,0.87814575 +EXOG,Nuclear Pore,-0.108230038 +SMG1,Nuclear Pore,0.446868231 +FCHO2,Nuclear Pore,-0.309065941 +C1orf27,Nuclear Pore,0.454084049 +LRP8,Nuclear Pore,0.729542117 +PAXIP1,Nuclear Pore,-0.150563615 +SSBP3,Nuclear Pore,-0.073036377 +CLDN12,Nuclear Pore,0.301055486 +GATAD1,Nuclear Pore,-0.16930693 +ST3GAL2,Nuclear Pore,-0.383848905 +FUK,Nuclear Pore,0.064159002 +KIT,Nuclear Pore,-0.256296063 +AASDH,Nuclear Pore,-0.602656913 +DYRK1A,Nuclear Pore,0.172397348 +TSPAN18,Nuclear Pore,0.183186126 +SLC35B2,Nuclear Pore,0.319171163 +TMEM164,Nuclear Pore,0.28023617 +TAB3,Nuclear Pore,0.098458914 +SLC38A10,Nuclear Pore,0.391276216 +ZNF618,Nuclear Pore,0.472306546 +C9orf91,Nuclear Pore,-0.073325492 +UBN2,Nuclear Pore,0.198223547 +BRAF,Nuclear Pore,0.264878952 +SLC37A3,Nuclear Pore,0.386294491 +DPYSL5,Nuclear Pore,0.158069288 +FAM213B,Nuclear Pore,0.17327958 +C12orf43,Nuclear Pore,0.212862394 +RER1,Nuclear Pore,0.048127207 +UBXN11,Nuclear Pore,0.776461018 +RHPN1,Nuclear Pore,1.086149774 +CNNM4,Nuclear Pore,0.513621897 +EYA3,Nuclear Pore,0.223287284 +MRAS,Nuclear Pore,0.592945237 +COLEC12,Nuclear Pore,-0.221361255 +CUL4B,Nuclear Pore,-0.543281636 +MITD1,Nuclear Pore,-0.351084693 +EIF5B,Nuclear Pore,-0.710756426 +TSPAN33,Nuclear Pore,-0.010482281 +AHCYL2,Nuclear Pore,-0.086874354 +B4GALT5,Nuclear Pore,0.183263151 +TSR2,Nuclear Pore,-0.069830451 +ZC3H18,Nuclear Pore,0.630967934 +TMED4,Nuclear Pore,0.324537446 +PPP1R15B,Nuclear Pore,0.0240105 +AGPAT6,Nuclear Pore,0.168575706 +ZSCAN12,Nuclear Pore,0.046749865 +ELK4,Nuclear Pore,0.768168546 +F11R,Nuclear Pore,-0.170057497 +ZNF276,Nuclear Pore,0.228330438 +PINK1,Nuclear Pore,0.111532669 +B4GALT3,Nuclear Pore,0.620476533 +FAM160B2,Nuclear Pore,0.646800149 +CACHD1,Nuclear Pore,-0.11360329 +PAXBP1,Nuclear Pore,0.688746893 +IFNAR2,Nuclear Pore,-0.331843017 +SON,Nuclear Pore,0.108421112 +SV2A,Nuclear Pore,0.481425441 +HLCS,Nuclear Pore,-0.751392647 +ADPGK,Nuclear Pore,-0.060900475 +ALDH4A1,Nuclear Pore,0.618624257 +STARD9,Nuclear Pore,0.457591458 +UBR1,Nuclear Pore,0.17810938 +AMFR,Nuclear Pore,-0.053898196 +RSPRY1,Nuclear Pore,-0.171518401 +ARHGAP35,Nuclear Pore,-0.067838872 +CALM3,Nuclear Pore,0.279078716 +IQCC,Nuclear Pore,0.415830636 +BSDC1,Nuclear Pore,0.590459583 +ATAD3B,Nuclear Pore,1.025698605 +VMA21,Nuclear Pore,-0.055999249 +WDR4,Nuclear Pore,-0.011612982 +CBS,Nuclear Pore,0.755750407 +PDXK,Nuclear Pore,0.25895769 +G6PD,Nuclear Pore,0.898442635 +AGPAT3,Nuclear Pore,0.509598501 +C21orf2,Nuclear Pore,0.426864564 +LRRC3,Nuclear Pore,0.164864914 +LSS,Nuclear Pore,0.559641425 +VAV2,Nuclear Pore,0.413744563 +MCM3AP,Nuclear Pore,0.178814954 +C21orf58,Nuclear Pore,1.234973563 +PCNT,Nuclear Pore,0.125327567 +DIP2A,Nuclear Pore,0.856264556 +ZNF714,Nuclear Pore,-0.30885324 +PKN3,Nuclear Pore,0.944878252 +TAOK1,Nuclear Pore,0.275517231 +SIK3,Nuclear Pore,-0.310840197 +PCSK7,Nuclear Pore,0.597458996 +CHTOP,Nuclear Pore,0.128832546 +ZBTB7B,Nuclear Pore,1.284004567 +NLRX1,Nuclear Pore,0.03845734 +ANO10,Nuclear Pore,-0.212349334 +SLC25A44,Nuclear Pore,0.003267616 +NBEAL2,Nuclear Pore,0.774886317 +IER2,Nuclear Pore,0.524414286 +ZNF394,Nuclear Pore,-0.358925704 +CPSF4,Nuclear Pore,0.459032747 +TONSL,Nuclear Pore,1.096624618 +MUM1,Nuclear Pore,1.057016526 +RECQL4,Nuclear Pore,0.940583244 +LRRC14,Nuclear Pore,1.047973627 +PPP1R16A,Nuclear Pore,1.291891662 +C5orf45,Nuclear Pore,1.089502186 +MFSD12,Nuclear Pore,0.924422945 +FDXR,Nuclear Pore,0.837472328 +ALDH16A1,Nuclear Pore,0.074370416 +ITGA5,Nuclear Pore,0.496854676 +ZNF385A,Nuclear Pore,1.416262082 +MPP3,Nuclear Pore,-0.758657199 +EMC10,Nuclear Pore,0.260599833 +FAM171A2,Nuclear Pore,0.426422052 +DBF4B,Nuclear Pore,0.871232155 +LARP4,Nuclear Pore,-0.852314028 +LEMD2,Nuclear Pore,0.33732429 +WDR90,Nuclear Pore,1.402581674 +C16orf59,Nuclear Pore,0.767275989 +AMDHD2,Nuclear Pore,0.344985256 +PAQR4,Nuclear Pore,0.556015319 +ADCY9,Nuclear Pore,0.224526137 +CLPB,Nuclear Pore,0.15450573 +NEU3,Nuclear Pore,0.383477033 +CYB561A3,Nuclear Pore,0.220395008 +TAF6L,Nuclear Pore,0.164606576 +LRP5,Nuclear Pore,0.389653455 +ZYG11B,Nuclear Pore,-0.024568923 +PPAP2B,Nuclear Pore,0.219900453 +PRKAA2,Nuclear Pore,-0.490492048 +KLHL21,Nuclear Pore,0.493532744 +GMEB1,Nuclear Pore,0.338528047 +SEPN1,Nuclear Pore,0.60111468 +AK4,Nuclear Pore,-0.543908794 +RAVER2,Nuclear Pore,-0.4568267 +PDPN,Nuclear Pore,0.026555659 +SDC3,Nuclear Pore,0.041529495 +KIAA1522,Nuclear Pore,0.926203646 +C1orf86,Nuclear Pore,1.061771582 +NFIA,Nuclear Pore,0.190303821 +OMA1,Nuclear Pore,-0.378098033 +MYSM1,Nuclear Pore,0.799507449 +FUBP1,Nuclear Pore,-0.053821047 +DNAJB4,Nuclear Pore,0.17701883 +FAM102B,Nuclear Pore,-0.471355755 +ATXN7L2,Nuclear Pore,0.564364981 +ZNF326,Nuclear Pore,-0.072346007 +EXTL2,Nuclear Pore,-0.427976429 +SLC30A7,Nuclear Pore,-0.276255295 +PEA15,Nuclear Pore,-0.017168441 +NCSTN,Nuclear Pore,0.282706844 +VANGL2,Nuclear Pore,0.459199173 +FLVCR1,Nuclear Pore,0.017494072 +RBM15,Nuclear Pore,0.870296004 +BPNT1,Nuclear Pore,-0.031937845 +BROX,Nuclear Pore,-0.342465777 +ACP6,Nuclear Pore,0.125908323 +PPP1R21,Nuclear Pore,0.209964427 +B3GALNT2,Nuclear Pore,-0.368618695 +C2orf47,Nuclear Pore,-0.632282388 +ARL5A,Nuclear Pore,-0.355489882 +SGCB,Nuclear Pore,-0.983346125 +SMARCAD1,Nuclear Pore,-0.03042448 +RNF149,Nuclear Pore,-0.344986155 +FZD5,Nuclear Pore,-0.881926342 +DCAF16,Nuclear Pore,0.024783477 +PAQR3,Nuclear Pore,-0.493282224 +ANTXR2,Nuclear Pore,-1.615433253 +PBXIP1,Nuclear Pore,0.661434787 +PYGO2,Nuclear Pore,0.298835925 +HIPK1,Nuclear Pore,-0.039390486 +KBTBD8,Nuclear Pore,-0.138606604 +EOGT,Nuclear Pore,0.461415444 +POGLUT1,Nuclear Pore,-0.245767344 +ATP1A1,Nuclear Pore,-0.271223039 +EIF4E3,Nuclear Pore,-0.161875987 +LRRC58,Nuclear Pore,-0.757520194 +FSTL1,Nuclear Pore,-0.580959628 +KRTCAP2,Nuclear Pore,0.520935328 +KIAA1524,Nuclear Pore,-0.029920628 +TGFBR2,Nuclear Pore,-1.118284525 +ANKZF1,Nuclear Pore,0.664656296 +STT3B,Nuclear Pore,-0.486043493 +PPM1L,Nuclear Pore,0.850638402 +RYBP,Nuclear Pore,-0.221494601 +PPP4R2,Nuclear Pore,-0.505829826 +C3orf17,Nuclear Pore,-0.31336404 +SPICE1,Nuclear Pore,-0.041165138 +WDFY3,Nuclear Pore,0.466611434 +ATXN7,Nuclear Pore,0.096220138 +PPM1K,Nuclear Pore,0.17111066 +CCNL1,Nuclear Pore,0.724497682 +RPP14,Nuclear Pore,0.26215317 +ABHD6,Nuclear Pore,-0.158234558 +CRELD1,Nuclear Pore,0.604045342 +U2SURP,Nuclear Pore,-0.242426603 +TTC14,Nuclear Pore,-0.230559642 +SNRK,Nuclear Pore,-0.034969733 +SLC4A1AP,Nuclear Pore,-0.662679797 +ZDHHC3,Nuclear Pore,-0.140376774 +FYCO1,Nuclear Pore,0.074779923 +YEATS2,Nuclear Pore,0.343179697 +SNIP1,Nuclear Pore,0.476593868 +TMEM41A,Nuclear Pore,-0.31405219 +RPN1,Nuclear Pore,-0.160793629 +SFMBT1,Nuclear Pore,0.046711318 +PBRM1,Nuclear Pore,-0.205970178 +FAM208A,Nuclear Pore,-0.409407817 +ARHGEF3,Nuclear Pore,0.821403959 +UBXN7,Nuclear Pore,-0.122635267 +ZNF691,Nuclear Pore,-0.227170957 +SGMS2,Nuclear Pore,0.329658621 +DNAJB14,Nuclear Pore,-0.067583472 +ZNF589,Nuclear Pore,0.181746055 +SHISA5,Nuclear Pore,0.331637947 +INTU,Nuclear Pore,0.114903021 +RNF123,Nuclear Pore,0.389589365 +MFSD8,Nuclear Pore,0.277739304 +C4orf29,Nuclear Pore,0.330641552 +RAD54L2,Nuclear Pore,0.069309599 +MAP9,Nuclear Pore,-0.167434135 +CEP44,Nuclear Pore,0.430467508 +ABCE1,Nuclear Pore,-0.53976441 +TMEM184C,Nuclear Pore,0.104950429 +TMEM161B,Nuclear Pore,0.711679733 +ELOVL7,Nuclear Pore,-0.317330816 +LMBRD2,Nuclear Pore,-0.173290591 +NIPBL,Nuclear Pore,-0.236315091 +SLC25A46,Nuclear Pore,-0.372386969 +STARD4,Nuclear Pore,0.081680581 +PGGT1B,Nuclear Pore,-0.050859221 +NDUFS4,Nuclear Pore,-0.696954861 +ARSK,Nuclear Pore,-0.157922186 +GPX8,Nuclear Pore,-0.814421005 +SERINC5,Nuclear Pore,0.395505686 +GFM2,Nuclear Pore,-0.337316087 +CCDC127,Nuclear Pore,-0.048432783 +SEPT8,Nuclear Pore,-0.055600715 +DCBLD1,Nuclear Pore,0.028069599 +PDSS2,Nuclear Pore,-0.401975064 +STXBP5,Nuclear Pore,-0.553131148 +DAGLB,Nuclear Pore,0.490930349 +GALNT10,Nuclear Pore,0.408802603 +ZNF12,Nuclear Pore,-0.546238432 +USP49,Nuclear Pore,1.206506695 +ZNF704,Nuclear Pore,-0.211130916 +LMTK2,Nuclear Pore,0.041292509 +CTSB,Nuclear Pore,-0.154217556 +ADCY1,Nuclear Pore,0.61478059 +EN2,Nuclear Pore,0.47260687 +SUN1,Nuclear Pore,0.417964459 +OXR1,Nuclear Pore,0.554552245 +SLC4A2,Nuclear Pore,0.234924893 +FASTK,Nuclear Pore,1.153338058 +TMUB1,Nuclear Pore,0.952023178 +C7orf55,Nuclear Pore,0.915975326 +FOXK1,Nuclear Pore,0.605443982 +FZD6,Nuclear Pore,0.154258251 +KIAA1429,Nuclear Pore,0.22327127 +TMEM67,Nuclear Pore,0.384105163 +SNAPC3,Nuclear Pore,-0.389435195 +KIAA1161,Nuclear Pore,-0.16810544 +METTL2B,Nuclear Pore,-0.344471323 +HGSNAT,Nuclear Pore,0.223094168 +RASEF,Nuclear Pore,-0.089079672 +ANKS6,Nuclear Pore,0.365468154 +TMEM246,Nuclear Pore,-0.088068378 +ZHX1,Nuclear Pore,0.069764924 +KIAA1958,Nuclear Pore,0.531855893 +PIGA,Nuclear Pore,-0.305743814 +WNK2,Nuclear Pore,-0.111498907 +ATP7A,Nuclear Pore,-0.587207284 +PIGO,Nuclear Pore,-0.073982304 +BRWD3,Nuclear Pore,0.650720157 +SLITRK5,Nuclear Pore,0.185570951 +DDX26B,Nuclear Pore,-0.733979797 +MARCH8,Nuclear Pore,-0.501058523 +GTF2A1,Nuclear Pore,-0.479622643 +ZCCHC24,Nuclear Pore,-0.12797941 +REEP3,Nuclear Pore,-0.085248547 +MICU2,Nuclear Pore,-0.695120611 +PCF11,Nuclear Pore,0.240417608 +PKNOX2,Nuclear Pore,-0.020376305 +ZNF22,Nuclear Pore,-1.162026354 +RPUSD4,Nuclear Pore,0.026501207 +ARF6,Nuclear Pore,-0.081614603 +TTC8,Nuclear Pore,-0.019606929 +CDX2,Nuclear Pore,-0.490185498 +BEND7,Nuclear Pore,-0.01339955 +TAF3,Nuclear Pore,0.11494844 +PDZD8,Nuclear Pore,-0.80634129 +ZNF503,Nuclear Pore,0.811379754 +FAM175B,Nuclear Pore,0.055010754 +QSOX2,Nuclear Pore,0.503188806 +NSD1,Nuclear Pore,0.108120887 +SNAPC4,Nuclear Pore,0.469997034 +PMPCA,Nuclear Pore,0.053252429 +SDCCAG3,Nuclear Pore,0.806259515 +TSC1,Nuclear Pore,0.410155832 +FAM69B,Nuclear Pore,0.315689496 +KIAA1462,Nuclear Pore,-1.002464687 +ZNF219,Nuclear Pore,-0.527370769 +METTL3,Nuclear Pore,0.347061377 +HSPA12A,Nuclear Pore,-0.080002069 +TC2N,Nuclear Pore,-0.350658549 +CPSF2,Nuclear Pore,-0.028850438 +ARL5B,Nuclear Pore,-0.403967379 +TAF1D,Nuclear Pore,0.380896305 +HTRA1,Nuclear Pore,-1.049109335 +CEP57,Nuclear Pore,-0.199128627 +JAM3,Nuclear Pore,0.021023478 +HIF1AN,Nuclear Pore,-0.12574423 +ZFYVE19,Nuclear Pore,-0.721448762 +FBN1,Nuclear Pore,-0.453122295 +BAG5,Nuclear Pore,0.081091189 +GABRB3,Nuclear Pore,-0.39236826 +SGPL1,Nuclear Pore,0.184571373 +FRS2,Nuclear Pore,0.375495252 +ZNF202,Nuclear Pore,0.574642805 +STXBP4,Nuclear Pore,-0.213131202 +CUL5,Nuclear Pore,-0.678190804 +WBP1L,Nuclear Pore,0.153294522 +TRIM44,Nuclear Pore,-0.400333046 +TPP1,Nuclear Pore,0.078395005 +C11orf74,Nuclear Pore,-0.380751801 +TUB,Nuclear Pore,0.190629184 +RNF169,Nuclear Pore,0.016789496 +PRTG,Nuclear Pore,-0.15247993 +TMEM41B,Nuclear Pore,-0.047911257 +TMX3,Nuclear Pore,-0.234397786 +WEE1,Nuclear Pore,0.195084508 +ZNF3,Nuclear Pore,0.002190408 +RIMKLB,Nuclear Pore,0.313408877 +TMED3,Nuclear Pore,-0.253129641 +NDEL1,Nuclear Pore,0.429062928 +BLCAP,Nuclear Pore,0.029932733 +CASC4,Nuclear Pore,0.006173138 +AP1G1,Nuclear Pore,-0.6465209 +KIF7,Nuclear Pore,0.558521314 +PEX11A,Nuclear Pore,0.060515086 +ZBTB39,Nuclear Pore,-0.191932716 +TMEM194A,Nuclear Pore,-0.141213616 +SMAD3,Nuclear Pore,0.156735913 +MAP1A,Nuclear Pore,-0.197062023 +MBD6,Nuclear Pore,0.202185467 +PDIA3,Nuclear Pore,-0.544139574 +ACSF2,Nuclear Pore,0.549229453 +COQ4,Nuclear Pore,0.431113639 +SLC27A4,Nuclear Pore,0.02124236 +CERCAM,Nuclear Pore,0.52304245 +DOLPP1,Nuclear Pore,-0.127016924 +GPRC5B,Nuclear Pore,-0.15654347 +CRK,Nuclear Pore,0.034559291 +FBXO22,Nuclear Pore,0.189871475 +TBC1D2B,Nuclear Pore,0.260801456 +CDK12,Nuclear Pore,-0.084014019 +ENGASE,Nuclear Pore,0.802201267 +TBC1D16,Nuclear Pore,0.113636996 +ENTHD2,Nuclear Pore,0.914305228 +STIM1,Nuclear Pore,-0.131223706 +IRGQ,Nuclear Pore,0.631215078 +PPP2R3B,Nuclear Pore,0.712924359 +ZNF646,Nuclear Pore,0.532906276 +MIDN,Nuclear Pore,0.681336711 +MVD,Nuclear Pore,0.686974991 +ANKRD11,Nuclear Pore,0.490645725 +SPATA33,Nuclear Pore,-0.477897959 +ZNF641,Nuclear Pore,0.701401456 +DHRS13,Nuclear Pore,0.616211208 +TP53I13,Nuclear Pore,0.256755301 +KMT2D,Nuclear Pore,0.977223948 +C19orf55,Nuclear Pore,0.793147264 +LENG8,Nuclear Pore,1.321870859 +ZNF146,Nuclear Pore,-0.42699762 +ZNF444,Nuclear Pore,1.376188142 +FAM57A,Nuclear Pore,0.325374117 +SLC43A2,Nuclear Pore,-0.435781347 +SRR,Nuclear Pore,-0.974625229 +GHDC,Nuclear Pore,0.026136507 +ITFG3,Nuclear Pore,0.265821369 +ZNF598,Nuclear Pore,0.78489705 +E4F1,Nuclear Pore,0.8809765 +ABCA3,Nuclear Pore,0.119326698 +SRRM2,Nuclear Pore,0.427257079 +LTBP3,Nuclear Pore,1.213286674 +SAC3D1,Nuclear Pore,0.836335606 +SF1,Nuclear Pore,0.534676569 +PAFAH1B2,Nuclear Pore,-0.633851904 +ANKS3,Nuclear Pore,-0.019394451 +SETD5,Nuclear Pore,0.37731364 +HOOK3,Nuclear Pore,0.045350927 +RBPJ,Nuclear Pore,-0.082465799 +TTC39C,Nuclear Pore,0.433260668 +KIF5C,Nuclear Pore,-0.257875728 +MGAT2,Nuclear Pore,-0.509678494 +BMI1,Nuclear Pore,-0.318504958 +KCTD6,Nuclear Pore,0.286238101 +TAP1,Nuclear Pore,0.059828555 +ING5,Nuclear Pore,0.451438319 +ATG4B,Nuclear Pore,0.797464539 +SOGA2,Nuclear Pore,0.393828208 +SNRNP48,Nuclear Pore,-0.14848555 +SLC20A2,Nuclear Pore,-0.372405777 +TMUB2,Nuclear Pore,0.65460393 +STAT3,Nuclear Pore,0.171522622 +ADAM9,Nuclear Pore,-0.319514227 +PKIG,Nuclear Pore,0.779136759 +SEMA4C,Nuclear Pore,0.985395623 +CNNM3,Nuclear Pore,0.275138026 +TET2,Nuclear Pore,0.142350515 +TCTN2,Nuclear Pore,0.353840503 +TSPAN5,Nuclear Pore,-0.581736931 +ZBTB5,Nuclear Pore,0.104897707 +SNTB2,Nuclear Pore,-0.378446213 +ZNF507,Nuclear Pore,0.200378944 +STX18,Nuclear Pore,-0.053206107 +GFM1,Nuclear Pore,-0.596362384 +ANKRD49,Nuclear Pore,0.057701337 +MAT2A,Nuclear Pore,0.795518213 +ZNF608,Nuclear Pore,0.686238653 +LETM1,Nuclear Pore,0.19768585 +TMEM129,Nuclear Pore,-0.138446008 +FEM1B,Nuclear Pore,0.098712363 +HNRNPH1,Nuclear Pore,0.59849495 +MECP2,Nuclear Pore,0.439482967 +UPF3A,Nuclear Pore,1.323384447 +CHST14,Nuclear Pore,0.107927837 +PARM1,Nuclear Pore,0.115192608 +CSNK1G1,Nuclear Pore,-0.174481415 +ZBTB43,Nuclear Pore,0.487869138 +GPRIN1,Nuclear Pore,0.067567815 +MRPL1,Nuclear Pore,-0.10053285 +SLC33A1,Nuclear Pore,0.447997805 +SDC2,Nuclear Pore,-0.569672154 +MMGT1,Nuclear Pore,-0.556200648 +CLIC4,Nuclear Pore,-0.580510534 +CCDC8,Nuclear Pore,0.183316875 +INO80E,Nuclear Pore,0.586151554 +DFFB,Nuclear Pore,0.73980031 +ANTXR1,Nuclear Pore,-0.15697321 +CKAP2L,Nuclear Pore,-0.596336559 +C15orf40,Nuclear Pore,-0.698140341 +HIC2,Nuclear Pore,0.858468971 +LUZP1,Nuclear Pore,-0.522274572 +HEXDC,Nuclear Pore,1.745231685 +LRRC45,Nuclear Pore,0.478051415 +ASPSCR1,Nuclear Pore,0.551430707 +TAPT1,Nuclear Pore,-1.220876579 +CSGALNACT2,Nuclear Pore,-0.161969518 +PCDH7,Nuclear Pore,-0.026824022 +ROBO1,Nuclear Pore,-0.34897611 +P2RY1,Nuclear Pore,1.145300205 +TPST1,Nuclear Pore,0.05893386 +TOR1AIP2,Nuclear Pore,-0.225127647 +OTUD3,Nuclear Pore,0.288893072 +GUSB,Nuclear Pore,0.10086538 +BRD3,Nuclear Pore,0.139069525 +MAP3K2,Nuclear Pore,0.312451512 +NLGN2,Nuclear Pore,0.99456124 +ALCAM,Nuclear Pore,0.069430195 +YWHAG,Nuclear Pore,-0.031251522 +TMEM192,Nuclear Pore,0.256439909 +ZNF778,Nuclear Pore,-0.18606449 +NIPA1,Nuclear Pore,-0.303917684 +SIK2,Nuclear Pore,0.328916098 +RNF150,Nuclear Pore,-0.616649581 +ZNF212,Nuclear Pore,0.263899919 +FAM161A,Nuclear Pore,-0.231663497 +CRTAP,Nuclear Pore,-0.311168305 +PRDM10,Nuclear Pore,-0.29749997 +FOS,Nuclear Pore,0.092333571 +TMED10,Nuclear Pore,-0.302040559 +SLC30A1,Nuclear Pore,-0.502163684 +DNAJC18,Nuclear Pore,0.03327778 +RALGAPB,Nuclear Pore,0.014429831 +LONRF2,Nuclear Pore,-0.489917032 +ELOVL6,Nuclear Pore,0.308641078 +ARL6IP1,Nuclear Pore,-0.348574081 +CDH2,Nuclear Pore,-0.113012274 +EMB,Nuclear Pore,-0.713191717 +STAT2,Nuclear Pore,0.974815759 +TRABD,Nuclear Pore,0.944800006 +POLH,Nuclear Pore,0.278896601 +KIF5B,Nuclear Pore,-0.415470984 +AKAP13,Nuclear Pore,0.224776304 +CHCHD7,Nuclear Pore,0.130287172 +GPR27,Nuclear Pore,-0.23552724 +KBTBD2,Nuclear Pore,-0.137177067 +KIAA0232,Nuclear Pore,-0.077217968 +TMEM43,Nuclear Pore,-0.006109376 +RNF139,Nuclear Pore,-0.28282054 +PAQR8,Nuclear Pore,0.190402012 +TANC2,Nuclear Pore,-0.320035932 +DNAJC24,Nuclear Pore,0.210844346 +HS6ST2,Nuclear Pore,-0.451320997 +INSR,Nuclear Pore,0.457793133 +ATP6V0E2,Nuclear Pore,0.180217001 +ZNF692,Nuclear Pore,1.223799204 +NETO2,Nuclear Pore,-0.437897966 +NPTX1,Nuclear Pore,0.648319457 +FAM98B,Nuclear Pore,-0.756081771 +GAA,Nuclear Pore,0.330627605 +CANT1,Nuclear Pore,0.460325678 +CHST11,Nuclear Pore,-0.251768458 +CLCN5,Nuclear Pore,0.075248389 +ZBTB26,Nuclear Pore,-0.249346487 +ZNF562,Nuclear Pore,-0.257706316 +ZNF318,Nuclear Pore,-0.024934673 +WIPF2,Nuclear Pore,0.393306352 +LRRC8C,Nuclear Pore,-0.459641207 +LRRC8D,Nuclear Pore,-0.303183354 +ETFDH,Nuclear Pore,-0.917959422 +LPAR3,Nuclear Pore,0.222221555 +CLSTN1,Nuclear Pore,0.351722493 +BPTF,Nuclear Pore,0.064918215 +ATF7IP,Nuclear Pore,-0.123699365 +TCEA2,Nuclear Pore,0.444414259 +ANO5,Nuclear Pore,-0.324973118 +MLLT3,Nuclear Pore,-0.249748495 +PRNP,Nuclear Pore,0.153139659 +ZNF217,Nuclear Pore,-0.380598445 +JMJD1C,Nuclear Pore,0.400739042 +THOP1,Nuclear Pore,0.633645233 +ORMDL3,Nuclear Pore,0.470687761 +KLF11,Nuclear Pore,0.858726347 +MTBP,Nuclear Pore,0.513555013 +ZNF131,Nuclear Pore,0.17279011 +BSG,Nuclear Pore,0.271287349 +CERS6,Nuclear Pore,-0.102754226 +TP53RK,Nuclear Pore,-0.137576602 +FAM195A,Nuclear Pore,0.818043728 +GTPBP2,Nuclear Pore,0.505636043 +ZNF24,Nuclear Pore,-0.283447797 +MANEA,Nuclear Pore,-0.19324722 +RAD9A,Nuclear Pore,0.768573586 +FAM21C,Nuclear Pore,-0.092347263 +CORO1B,Nuclear Pore,0.842415089 +LRRC20,Nuclear Pore,0.685976222 +NAA16,Nuclear Pore,0.625711704 +DCP2,Nuclear Pore,-0.050898659 +CES3,Nuclear Pore,1.22294188 +CES2,Nuclear Pore,0.206610383 +PDP2,Nuclear Pore,0.009156733 +SP3,Nuclear Pore,-0.070694877 +METAP1D,Nuclear Pore,0.422457178 +ZNF621,Nuclear Pore,0.185903595 +NADSYN1,Nuclear Pore,0.604364408 +DHCR7,Nuclear Pore,0.23811947 +NBEA,Nuclear Pore,0.228428647 +ANKRD13D,Nuclear Pore,1.335835355 +LCLAT1,Nuclear Pore,-0.113434147 +TADA2B,Nuclear Pore,0.707567785 +HECTD4,Nuclear Pore,1.064577096 +ESRRA,Nuclear Pore,0.267513738 +AHSA2,Nuclear Pore,1.219031507 +VANGL1,Nuclear Pore,-0.022919494 +IQCB1,Nuclear Pore,-0.162498249 +GOLGB1,Nuclear Pore,-0.211199477 +TNKS,Nuclear Pore,-0.212169376 +ZBTB21,Nuclear Pore,-0.04288631 +STOX2,Nuclear Pore,0.023986043 +DAG1,Nuclear Pore,0.282144608 +RNF26,Nuclear Pore,0.042097416 +PEAK1,Nuclear Pore,-0.403156876 +TNFRSF10D,Nuclear Pore,-0.0511877 +MOB1B,Nuclear Pore,0.010863413 +SNX33,Nuclear Pore,0.292464596 +CHD2,Nuclear Pore,0.242312614 +CCDC41,Nuclear Pore,0.139132098 +PC,Nuclear Pore,0.850204613 +SUSD5,Nuclear Pore,-0.33051193 +HEG1,Nuclear Pore,-0.804794374 +TOMM20,Nuclear Pore,-0.295913263 +CNP,Nuclear Pore,0.123029762 +DPY19L1,Nuclear Pore,-0.7330561 +ZNF791,Nuclear Pore,0.162510703 +PHC3,Nuclear Pore,0.217833951 +GOLIM4,Nuclear Pore,-0.391679239 +XXYLT1,Nuclear Pore,0.145905715 +UBXN2A,Nuclear Pore,-0.571912895 +CCS,Nuclear Pore,1.038892288 +FAM3C2,Nuclear Pore,-0.777229522 +CTSF,Nuclear Pore,-0.204818274 +MSRB3,Nuclear Pore,-0.58160372 +LEMD3,Nuclear Pore,-0.609433493 +RGMB,Nuclear Pore,-0.822759393 +ZDHHC24,Nuclear Pore,0.778961908 +MGA,Nuclear Pore,-0.318138633 +PIGG,Nuclear Pore,0.808999338 +ADCY6,Nuclear Pore,0.503786148 +ZBTB4,Nuclear Pore,0.537521776 +ZHX3,Nuclear Pore,-0.348601155 +RALGAPA1,Nuclear Pore,0.385453996 +ATP2A2,Nuclear Pore,0.062955102 +CNTNAP2,Nuclear Pore,-1.185631517 +DENND4A,Nuclear Pore,-0.813285276 +MSL2,Nuclear Pore,0.003195732 +UGT8,Nuclear Pore,-0.465884135 +ZNF266,Nuclear Pore,0.327611819 +SLC29A2,Nuclear Pore,1.04803302 +BRSK2,Nuclear Pore,1.1674779 +B3GNT1,Nuclear Pore,-0.238323083 +TMEM167A,Nuclear Pore,-0.190395754 +CEP135,Nuclear Pore,0.134516173 +FZD4,Nuclear Pore,1.080835522 +PDE12,Nuclear Pore,-0.20867467 +GLMN,Nuclear Pore,-0.215277939 +SEZ6L2,Nuclear Pore,0.431941147 +KLC2,Nuclear Pore,0.813398336 +GK5,Nuclear Pore,0.223786598 +VCPIP1,Nuclear Pore,0.658601658 +PCCA,Nuclear Pore,-0.89277713 +GOLGA8A,Nuclear Pore,0.646809851 +TP53I11,Nuclear Pore,-0.134874693 +PHYKPL,Nuclear Pore,0.75744493 +ARL10,Nuclear Pore,0.058802952 +CCDC14,Nuclear Pore,-0.050977464 +ALG10B,Nuclear Pore,-0.143546533 +RAB6A,Nuclear Pore,-0.045958511 +ERCC4,Nuclear Pore,-0.165271164 +RMI2,Nuclear Pore,-0.568758159 +TOM1L2,Nuclear Pore,0.680217299 +MLXIP,Nuclear Pore,0.729534923 +SLC35E3,Nuclear Pore,-0.406883292 +ARL4D,Nuclear Pore,0.761754473 +LYSMD3,Nuclear Pore,0.220433813 +B3GALT6,Nuclear Pore,-0.255009063 +MBLAC2,Nuclear Pore,-1.311959413 +TPRN,Nuclear Pore,0.251322082 +YES1,Nuclear Pore,-0.412533337 +TMEM39A,Nuclear Pore,-0.107848271 +CCDC57,Nuclear Pore,1.05374454 +FOXG1,Nuclear Pore,1.330531107 +ATAD5,Nuclear Pore,0.149485288 +ANAPC2,Nuclear Pore,1.211436306 +SPRYD4,Nuclear Pore,-0.103661928 +CLK2,Nuclear Pore,0.703062084 +LPCAT4,Nuclear Pore,1.268988045 +B3GNT5,Nuclear Pore,0.8008311 +LMNB2,Nuclear Pore,0.569067578 +RMDN1,Nuclear Pore,0.055770351 +ACSF3,Nuclear Pore,0.033696369 +ANKLE2,Nuclear Pore,0.508379054 +NFATC2IP,Nuclear Pore,0.426218039 +SMCR8,Nuclear Pore,0.184910597 +MTX3,Nuclear Pore,0.161929454 +FBXO46,Nuclear Pore,1.163745334 +WDR73,Nuclear Pore,0.360809478 +ANO6,Nuclear Pore,-0.530439561 +ZBTB34,Nuclear Pore,-0.029318853 +FAM210A,Nuclear Pore,-0.140982437 +ULK1,Nuclear Pore,1.184695937 +RPS6KA3,Nuclear Pore,-0.545796525 +PUS1,Nuclear Pore,0.28511149 +CHD9,Nuclear Pore,0.192780177 +PDDC1,Nuclear Pore,0.86338571 +TOP3A,Nuclear Pore,0.141011145 +NR2C2,Nuclear Pore,1.030677393 +ZBTB33,Nuclear Pore,0.139048717 +SLC25A22,Nuclear Pore,0.530747145 +PIDD,Nuclear Pore,1.684907468 +GBA,Nuclear Pore,-0.438939466 +IL17RA,Nuclear Pore,0.572033075 +THAP5,Nuclear Pore,-0.903436684 +PVRL3,Nuclear Pore,0.082951123 +KIAA0195,Nuclear Pore,0.809080573 +SOX12,Nuclear Pore,0.353628271 +CHID1,Nuclear Pore,0.021806088 +ZNF518A,Nuclear Pore,-0.586118118 +ZBTB41,Nuclear Pore,-0.137932607 +DMAP1,Nuclear Pore,1.327884395 +C2orf69,Nuclear Pore,-1.441864369 +SH2B1,Nuclear Pore,1.052867523 +KDELC2,Nuclear Pore,-0.204224954 +GALNT11,Nuclear Pore,-0.019419575 +WDR6,Nuclear Pore,0.65999245 +GEN1,Nuclear Pore,0.213894436 +GLDC,Nuclear Pore,-0.923730552 +CTNNBIP1,Nuclear Pore,0.207943878 +ERN1,Nuclear Pore,0.239928887 +KCTD12,Nuclear Pore,-0.043193095 +DHFRL1,Nuclear Pore,-0.895996365 +FAM132B,Nuclear Pore,1.154234304 +FAM219B,Nuclear Pore,0.689039827 +DPY19L3,Nuclear Pore,-0.251135077 +PFAS,Nuclear Pore,0.781130902 +C17orf62,Nuclear Pore,1.010589998 +ZBTB7A,Nuclear Pore,1.229709393 +SPTY2D1,Nuclear Pore,-0.371507613 +FUCA1,Nuclear Pore,-0.055232055 +CALR,Nuclear Pore,-0.156797316 +LDLRAD3,Nuclear Pore,-0.51682083 +CLK3,Nuclear Pore,0.738942733 +PACS2,Nuclear Pore,0.697118627 +ELMOD2,Nuclear Pore,-0.169848659 +FJX1,Nuclear Pore,0.646453286 +ZBTB18,Nuclear Pore,0.730414085 +GCC1,Nuclear Pore,-0.091971032 +PLD6,Nuclear Pore,-0.110693588 +CDC42EP4,Nuclear Pore,0.775311691 +PCBP1-AS1,Nuclear Pore,0.445781721 +MYADM,Nuclear Pore,0.629783104 +SERTAD2,Nuclear Pore,-0.356884748 +BBS10,Nuclear Pore,0.401998502 +SOCS4,Nuclear Pore,0.599544878 +ZADH2,Nuclear Pore,0.055699609 +EXOC3,Nuclear Pore,-0.041430905 +C7orf41,Nuclear Pore,-0.557337009 +ZNF609,Nuclear Pore,0.58709869 +CCDC66,Nuclear Pore,0.311043149 +MCFD2,Nuclear Pore,-0.239282939 +GAS1,Nuclear Pore,0.015530462 +FAM73A,Nuclear Pore,0.169792722 +NRIP1,Nuclear Pore,-0.165492197 +PCGF5,Nuclear Pore,-0.134047478 +YOD1,Nuclear Pore,-0.039159251 +SLC36A4,Nuclear Pore,-0.709649301 +ZDHHC20,Nuclear Pore,-0.447225126 +PSMG4,Nuclear Pore,-0.053846717 +PDIA3P,Nuclear Pore,-0.508389677 +CUEDC1,Nuclear Pore,-0.24292825 +KCTD2,Nuclear Pore,-0.498451162 +D2HGDH,Nuclear Pore,0.264168085 +FKRP,Nuclear Pore,-0.304684151 +SLC26A11,Nuclear Pore,0.572768228 +F2R,Nuclear Pore,-0.813764834 +DHTKD1,Nuclear Pore,0.001960993 +ZNF746,Nuclear Pore,0.914349637 +TMEM136,Nuclear Pore,-1.467462451 +ZNF322,Nuclear Pore,-0.325638569 +OGFOD3,Nuclear Pore,0.850547923 +ZNF678,Nuclear Pore,0.160836024 +ZBTB2,Nuclear Pore,-0.35087373 +SGSH,Nuclear Pore,0.690227445 +SETD2,Nuclear Pore,0.220853794 +YIPF6,Nuclear Pore,-0.441525385 +IBA57,Nuclear Pore,1.153860537 +C5orf24,Nuclear Pore,0.155447106 +ADO,Nuclear Pore,0.052262737 +CREB3L2,Nuclear Pore,0.036064426 +UNC5C,Nuclear Pore,-1.651138679 +RGMA,Nuclear Pore,0.500162564 +EXT1,Nuclear Pore,-0.758088176 +ATP6AP2,Nuclear Pore,0.149619614 +BACE2,Nuclear Pore,-0.459587268 +FIGN,Nuclear Pore,0.710210265 +B4GALNT4,Nuclear Pore,0.453491315 +AP1S2,Nuclear Pore,-0.299142717 +FBXL6,Nuclear Pore,0.821122004 +YBEY,Nuclear Pore,0.922543124 +CLN8,Nuclear Pore,0.066220232 +PLCXD1,Nuclear Pore,1.093297287 +EXOC7,Nuclear Pore,0.584495273 +CEP97,Nuclear Pore,0.449295433 +MXRA7,Nuclear Pore,-0.299223316 +SATB1,Nuclear Pore,0.757381594 +PLCB1,Nuclear Pore,0.621371721 +TTC3,Nuclear Pore,0.009956393 +COL18A1,Nuclear Pore,0.386800345 +ZNF721,Nuclear Pore,-1.032660375 +SRPR,Nuclear Pore,-0.46277931 +EWSR1,Nuclear Pore,0.351888763 +GJC1,Nuclear Pore,0.404016557 +MTA1,Nuclear Pore,0.83008056 +CADM1,Nuclear Pore,-0.300341125 +LYSMD4,Nuclear Pore,0.462481633 +NKX2-5,Nuclear Pore,0.688248349 +GPC6,Nuclear Pore,-0.138578566 +PTTG1IP,Nuclear Pore,0.15127223 +ZNF623,Nuclear Pore,0.333535235 +BCOR,Nuclear Pore,-0.121418031 +ASB7,Nuclear Pore,0.378151817 +EP400,Nuclear Pore,0.100799758 +COA5,Nuclear Pore,0.063266902 +PRR14L,Nuclear Pore,0.194338804 +ZNRF3,Nuclear Pore,0.273261399 +TRMT12,Nuclear Pore,-1.287440276 +FAM101B,Nuclear Pore,0.068728785 +TRIM52,Nuclear Pore,0.40810903 +CMTM4,Nuclear Pore,0.30100456 +TMEM50A,Nuclear Pore,-0.940186002 +CBX6,Nuclear Pore,0.830552392 +KREMEN1,Nuclear Pore,0.307765393 +TRAIP,Nuclear Pore,0.249193145 +EMILIN3,Nuclear Pore,0.147561418 +RBM12B,Nuclear Pore,-0.031728844 +BTBD9,Nuclear Pore,-0.036274041 +KIRREL,Nuclear Pore,0.141927866 +IQGAP3,Nuclear Pore,0.881696099 +PRKX,Nuclear Pore,0.372586772 +SMTN,Nuclear Pore,0.898186271 +TBX1,Nuclear Pore,0.683849053 +TSPYL2,Nuclear Pore,1.214820619 +C22orf46,Nuclear Pore,0.240751872 +PCDH9,Nuclear Pore,-0.04590763 +OAF,Nuclear Pore,0.750746785 +ZDHHC23,Nuclear Pore,0.882140133 +EFNA5,Nuclear Pore,0.250862449 +SS18L1,Nuclear Pore,0.477210916 +KNTC1,Nuclear Pore,0.341774433 +WDR27,Nuclear Pore,1.374835027 +FOXO4,Nuclear Pore,0.081346012 +POU3F2,Nuclear Pore,-0.354725502 +PROS1,Nuclear Pore,-1.055761552 +ZFP1,Nuclear Pore,-0.502133679 +XPOT,Nuclear Pore,-0.534082234 +SNN,Nuclear Pore,-0.257390067 +AMER1,Nuclear Pore,0.317119235 +ZBTB40,Nuclear Pore,0.1868014 +ATL3,Nuclear Pore,-0.452832414 +UBE2G2,Nuclear Pore,-0.068486263 +TMED9,Nuclear Pore,-0.049113266 +RBM33,Nuclear Pore,0.587387141 +JAG2,Nuclear Pore,1.279136712 +ZFP90,Nuclear Pore,0.721491169 +SIVA1,Nuclear Pore,0.757638744 +BRI3BP,Nuclear Pore,-0.321881028 +ROBO2,Nuclear Pore,-0.743106244 +BRF1,Nuclear Pore,0.136602082 +MANEAL,Nuclear Pore,-0.59216755 +PURA,Nuclear Pore,0.089435658 +DDX51,Nuclear Pore,0.413609137 +NOMO2,Nuclear Pore,0.06853979 +NRBP2,Nuclear Pore,0.706124953 +ZNF445,Nuclear Pore,0.168388256 +PRPF39,Nuclear Pore,0.519081447 +CDK10,Nuclear Pore,0.997922558 +ATP6V0A2,Nuclear Pore,0.156701617 +C14orf80,Nuclear Pore,1.426819323 +HGS,Nuclear Pore,0.700916663 +MRPL30,Nuclear Pore,-0.452952894 +METTL7A,Nuclear Pore,0.207437416 +NR2F2,Nuclear Pore,0.548156933 +SP1,Nuclear Pore,0.145875486 +PCGF3,Nuclear Pore,0.550837183 +P4HB,Nuclear Pore,0.069006227 +PBX1,Nuclear Pore,-0.202235836 +BRWD1,Nuclear Pore,0.277019469 +EP400NL,Nuclear Pore,0.7067796 +MYBL1,Nuclear Pore,0.660674309 +DMWD,Nuclear Pore,0.828999838 +SLC52A2,Nuclear Pore,0.078598519 +NAT8L,Nuclear Pore,0.634938873 +GNB1L,Nuclear Pore,1.451667004 +LAMP1,Nuclear Pore,-0.271139767 +KLHDC8B,Nuclear Pore,1.437882082 +SETD4,Nuclear Pore,0.510721773 +RNPC3,Nuclear Pore,-0.379459153 +BICD2,Nuclear Pore,0.323030444 +LRCH3,Nuclear Pore,-0.254047411 +ZNF529,Nuclear Pore,0.762293571 +AIDA,Nuclear Pore,-0.039447916 +ZBTB6,Nuclear Pore,-0.110296913 +BCL9L,Nuclear Pore,1.123627012 +KIF18B,Nuclear Pore,0.958779487 +MKL2,Nuclear Pore,0.420467028 +CA5BP1,Nuclear Pore,0.787375164 +BACE1,Nuclear Pore,-0.311927037 +KPNA4,Nuclear Pore,-0.485526697 +ZNF197,Nuclear Pore,0.254366187 +BTN3A2,Nuclear Pore,0.91308102 +INSIG1,Nuclear Pore,-0.013638035 +TMEM222,Nuclear Pore,0.664913229 +SMYD4,Nuclear Pore,0.968094419 +GPATCH8,Nuclear Pore,0.059903311 +LYRM7,Nuclear Pore,0.035407536 +ZNF397,Nuclear Pore,0.251667398 +ZSCAN30,Nuclear Pore,0.295460548 +TPCN1,Nuclear Pore,0.439699482 +POFUT2,Nuclear Pore,0.772703034 +ZDHHC17,Nuclear Pore,-0.419626253 +PPARA,Nuclear Pore,-0.069978607 +TEAD1,Nuclear Pore,-0.474384537 +ENTPD5,Nuclear Pore,0.164472322 +KIAA1598,Nuclear Pore,-0.166226011 +TSPYL4,Nuclear Pore,0.669489685 +FNBP1,Nuclear Pore,0.193484212 +BCAM,Nuclear Pore,0.881992525 +COL4A1,Nuclear Pore,-0.254759362 +SIRT7,Nuclear Pore,1.126348698 +TET3,Nuclear Pore,0.468212499 +ZNF286A,Nuclear Pore,-0.319765385 +SAMD11,Nuclear Pore,1.212856212 +B3GALTL,Nuclear Pore,-0.492242461 +TCEA1,Nuclear Pore,-0.823593225 +FANCA,Nuclear Pore,0.730809131 +SEMA4D,Nuclear Pore,0.987061126 +LIN28B,Nuclear Pore,-0.38552468 +FANCM,Nuclear Pore,0.202236704 +FAM122A,Nuclear Pore,0.04542935 +ARHGAP11B,Nuclear Pore,0.51585394 +CYHR1,Nuclear Pore,1.191424699 +KLHL17,Nuclear Pore,1.448698422 +ANKRD19P,Nuclear Pore,0.549297311 +ARL4C,Nuclear Pore,0.644016235 +C11orf95,Nuclear Pore,0.46482674 +MAPK12,Nuclear Pore,0.490782881 +COL4A5,Nuclear Pore,0.156329699 +NCR3LG1,Nuclear Pore,-0.029478174 +HES4,Nuclear Pore,1.221558386 +CHM,Nuclear Pore,-0.010099236 +H2AFX,Nuclear Pore,0.422896045 +SRSF10,Nuclear Pore,0.187850513 +NDOR1,Nuclear Pore,1.461091848 +FAM72B,Nuclear Pore,0.040463264 +LDOC1L,Nuclear Pore,-0.485254445 +PTAR1,Nuclear Pore,0.266441287 +ZDHHC9,Nuclear Pore,-0.057121016 +ZBED6CL,Nuclear Pore,-0.376562874 +TMEM120B,Nuclear Pore,0.715831895 +MTF1,Nuclear Pore,-0.212631229 +TMEM201,Nuclear Pore,0.552296623 +NHLRC3,Nuclear Pore,0.513450064 +BEND4,Nuclear Pore,0.281458582 +MSL1,Nuclear Pore,0.182118792 +DHFRP1,Nuclear Pore,-0.326591944 +ZNF292,Nuclear Pore,-0.102594279 +ADAT2,Nuclear Pore,0.329546001 +H1F0,Nuclear Pore,0.766525081 +LITAF,Nuclear Pore,-0.454695621 +ARID2,Nuclear Pore,-0.166561235 +S100A13,Nuclear Pore,-0.316040844 +ZNF33A,Nuclear Pore,0.351857008 +LIN54,Nuclear Pore,-0.665107741 +KAZN,Nuclear Pore,0.138111115 +SLC35E2B,Nuclear Pore,0.200817201 +KIAA0895L,Nuclear Pore,1.065914083 +PLEKHG4,Nuclear Pore,1.546277052 +ACADSB,Nuclear Pore,0.051197589 +TMEM63A,Nuclear Pore,0.562237553 +MPHOSPH8,Nuclear Pore,-0.41573675 +FAM217B,Nuclear Pore,-0.504613637 +LCOR,Nuclear Pore,-0.262638952 +POM121,Nuclear Pore,0.12030513 +ZBTB44,Nuclear Pore,-0.656338896 +SLC35F1,Nuclear Pore,-0.802582812 +PTPN1,Nuclear Pore,-0.079350666 +EVL,Nuclear Pore,0.698477309 +EPHB4,Nuclear Pore,0.295130007 +PPP1R26,Nuclear Pore,0.723701851 +TSC22D2,Nuclear Pore,-0.10069874 +PIK3R4,Nuclear Pore,-0.533213216 +GDAP2,Nuclear Pore,-0.50014388 +AFAP1,Nuclear Pore,0.245048804 +MAN2A2,Nuclear Pore,0.2228478 +CACNA1H,Nuclear Pore,1.151628939 +SULF2,Nuclear Pore,-0.151190981 +PLXNB2,Nuclear Pore,0.50999671 +XRCC2,Nuclear Pore,0.309442486 +MYO6,Nuclear Pore,-0.515192533 +TCF4,Nuclear Pore,-0.169634403 +RABL6,Nuclear Pore,0.880362458 +ZKSCAN5,Nuclear Pore,0.127250312 +ZFP62,Nuclear Pore,-0.1639492 +ERI2,Nuclear Pore,-0.221938788 +ZNF33B,Nuclear Pore,-0.051994865 +ZNF512B,Nuclear Pore,1.074497343 +ZNF431,Nuclear Pore,0.421211629 +NF1,Nuclear Pore,-0.047906738 +VKORC1L1,Nuclear Pore,-0.045719403 +COL27A1,Nuclear Pore,0.763289174 +GM2A,Nuclear Pore,0.063493258 +SNHG17,Nuclear Pore,0.47724877 +CD47,Nuclear Pore,-0.239615988 +CTBP1-AS2,Nuclear Pore,-0.330576634 +C6orf106,Nuclear Pore,-0.269175649 +NHLRC2,Nuclear Pore,-0.347087558 +KPNA5,Nuclear Pore,-0.264307724 +ZNF252P,Nuclear Pore,-0.185682631 +PDLIM7,Nuclear Pore,0.078734138 +SLC39A10,Nuclear Pore,-0.308445037 +ZNF100,Nuclear Pore,0.428834391 +ZNF398,Nuclear Pore,-0.389970532 +GMFB,Nuclear Pore,-0.38888303 +ZMYM1,Nuclear Pore,0.708397626 +MAFG,Nuclear Pore,1.064905652 +ARRDC1,Nuclear Pore,0.737048098 +KIAA1671,Nuclear Pore,0.31922782 +IGF2R,Nuclear Pore,-0.071289324 +SLC25A29,Nuclear Pore,1.0793268 +PGAP1,Nuclear Pore,-1.208621893 +SRC,Nuclear Pore,0.546281397 +PCNXL3,Nuclear Pore,0.663289391 +LRRC8B,Nuclear Pore,-0.516240786 +ABCB8,Nuclear Pore,0.995815507 +SND1,Nuclear Pore,0.046456389 +ENTPD4,Nuclear Pore,-0.111203651 +KANK2,Nuclear Pore,0.385840452 +FITM2,Nuclear Pore,-0.417365151 +DDI2,Nuclear Pore,0.021024914 +TRIM33,Nuclear Pore,-0.371986655 +LRP10,Nuclear Pore,0.352459713 +ZNF655,Nuclear Pore,0.110580071 +SLC22A5,Nuclear Pore,0.225995497 +ADARB1,Nuclear Pore,0.723421234 +OGDHL,Nuclear Pore,0.601621074 +STMN3,Nuclear Pore,0.494751818 +SIPA1L1,Nuclear Pore,0.704761584 +PIGN,Nuclear Pore,-0.679320818 +COL4A6,Nuclear Pore,0.355867862 +GPX1P1,Nuclear Pore,0.900744736 +ENTPD6,Nuclear Pore,0.503552479 +ENPP1,Nuclear Pore,-0.007447701 +PHF2,Nuclear Pore,0.514648361 +RPS26,Nuclear Pore,0.183502874 +PSAP,Nuclear Pore,-0.021513499 +HOXC6,Nuclear Pore,0.749221642 +EME2,Nuclear Pore,1.124313214 +ZNF780A,Nuclear Pore,0.280411241 +SLC9A8,Nuclear Pore,1.117304023 +OCLN,Nuclear Pore,-0.500587296 +GPAA1,Nuclear Pore,0.765851433 +SPG7,Nuclear Pore,0.599275216 +ERO1L,Nuclear Pore,-0.059803943 +ZNF121,Nuclear Pore,0.837654406 +MPZL1,Nuclear Pore,-0.195770005 +VPS13A,Nuclear Pore,0.511801244 +AKAP17A,Nuclear Pore,0.625180831 +ELOVL2,Nuclear Pore,-0.662768321 +SNHG12,Nuclear Pore,0.958164728 +NOL8,Nuclear Pore,0.514445915 +MRPL42,Nuclear Pore,-0.204588655 +ENTPD7,Nuclear Pore,-0.354041992 +ZNF84,Nuclear Pore,-0.144250795 +SIRPA,Nuclear Pore,-1.220553214 +CD2AP,Nuclear Pore,-0.431407926 +NUP62CL,Nuclear Pore,-0.604498471 +SFI1,Nuclear Pore,0.80007572 +ZNF248,Nuclear Pore,0.166716275 +ZNF770,Nuclear Pore,-0.241838687 +HMGN5,Nuclear Pore,-0.536796234 +MIER1,Nuclear Pore,0.268585689 +MAN1A2,Nuclear Pore,-0.326860286 +RPS6KL1,Nuclear Pore,-0.258014345 +DDX42,Nuclear Pore,0.022244732 +STYX,Nuclear Pore,-0.520898837 +UCKL1,Nuclear Pore,0.218236036 +ZKSCAN8,Nuclear Pore,0.304206511 +HOXC4,Nuclear Pore,0.826692398 +ASPH,Nuclear Pore,-0.078761485 +WWP2,Nuclear Pore,-0.471887594 +GFPT1,Nuclear Pore,0.175047253 +ITSN2,Nuclear Pore,-0.49742863 +MGEA5,Nuclear Pore,0.077557398 +FAM115A,Nuclear Pore,-0.090550089 +ZNF587,Nuclear Pore,1.031470627 +MAFK,Nuclear Pore,0.559537208 +DDX39B,Nuclear Pore,0.781602449 +NUDT16,Nuclear Pore,-0.761197475 +TLK1,Nuclear Pore,-0.684174459 +MDM4,Nuclear Pore,0.598531089 +KLHL9,Nuclear Pore,-0.072183398 +C6orf89,Nuclear Pore,0.111357308 +SLC9A6,Nuclear Pore,-0.057959993 +FAN1,Nuclear Pore,0.625128772 +CEP290,Nuclear Pore,-0.481424931 +C1orf85,Nuclear Pore,0.094665027 +SMOC1,Nuclear Pore,0.059371226 +ZNF652,Nuclear Pore,0.326826691 +SMURF1,Nuclear Pore,0.377650355 +SLC5A3,Nuclear Pore,0.095583461 +COLGALT2,Nuclear Pore,0.079405457 +TMEM184B,Nuclear Pore,0.203435481 +LRIG2,Nuclear Pore,-0.677353381 +FOXJ3,Nuclear Pore,0.398483423 +ARHGAP11A,Nuclear Pore,0.025773241 +DENND4B,Nuclear Pore,0.473799722 +R3HDM4,Nuclear Pore,0.504279703 +RUNDC1,Nuclear Pore,0.472523559 +TYW1,Nuclear Pore,0.016735338 +SFMBT2,Nuclear Pore,-0.335265397 +ITPRIPL1,Nuclear Pore,0.110392354 +SMC5,Nuclear Pore,-0.454729405 +SREBF2,Nuclear Pore,0.397786323 +DZIP3,Nuclear Pore,0.227595457 +KIAA0753,Nuclear Pore,-0.545997828 +ATG9A,Nuclear Pore,0.14931536 +TBKBP1,Nuclear Pore,1.604477803 +NAGA,Nuclear Pore,0.1311724 +SGMS1,Nuclear Pore,-0.13360578 +COX20,Nuclear Pore,0.683060173 +CHML,Nuclear Pore,-0.211457644 +TATDN3,Nuclear Pore,-1.369937605 +RBM20,Nuclear Pore,0.291420046 +PCMTD2,Nuclear Pore,-0.486559674 +EFCAB7,Nuclear Pore,-0.306760163 +ZYG11A,Nuclear Pore,0.053494682 +SYS1,Nuclear Pore,-0.80742875 +TRAF3IP1,Nuclear Pore,-0.797621286 +PHACTR4,Nuclear Pore,0.177825771 +ZDHHC18,Nuclear Pore,0.552707098 +TMEM57,Nuclear Pore,-0.337110734 +ZDBF2,Nuclear Pore,0.573160408 +BMPR2,Nuclear Pore,-0.534092425 +OXLD1,Nuclear Pore,0.1300292 +MRPL38,Nuclear Pore,0.848804643 +SDHD,Nuclear Pore,-0.918376664 +NEU1,Nuclear Pore,0.40496688 +HSPA1B,Nuclear Pore,0.444425496 +HLA-C,Nuclear Pore,0.090830086 +DDR1,Nuclear Pore,1.066482522 +HLA-E,Nuclear Pore,0.405988266 +ZNF616,Nuclear Pore,-0.466170197 +CRHR1-IT1,Nuclear Pore,0.061212774 +GABBR1,Nuclear Pore,0.587429836 +RANBP17,Nuclear Pore,-0.840971205 +ZNF204P,Nuclear Pore,0.433089855 +TCTN1,Nuclear Pore,0.573427202 +ZBTB48,Nuclear Pore,0.293309814 +C11orf83,Nuclear Pore,0.82592019 +ZNF783,Nuclear Pore,0.234585232 +SLC35B4,Nuclear Pore,-0.18600367 +TRIQK,Nuclear Pore,-0.407030477 +PSENEN,Nuclear Pore,0.751009499 +LGR4,Nuclear Pore,0.03586871 +PDE7A,Nuclear Pore,-0.426311456 +TMEM170B,Nuclear Pore,0.018648969 +TECPR1,Nuclear Pore,0.888345839 +ITPRIPL2,Nuclear Pore,0.6671037 +CRYZL1,Nuclear Pore,-0.1875732 +C5orf51,Nuclear Pore,-0.123600401 +ZNF316,Nuclear Pore,0.857051572 +NYNRIN,Nuclear Pore,1.040046692 +AP000525.9,Nuclear Pore,0.05124926 +PTPLB,Nuclear Pore,-0.422300483 +WDR52,Nuclear Pore,0.526480918 +SETD5-AS1,Nuclear Pore,0.705378462 +SACM1L,Nuclear Pore,-0.480200967 +C17orf51,Nuclear Pore,0.293538303 +ZNF580,Nuclear Pore,0.921278123 +DENND1B,Nuclear Pore,-0.26336434 +SFT2D2,Nuclear Pore,-0.040724321 +FGFR1OP,Nuclear Pore,0.300919495 +KLHL23,Nuclear Pore,0.001698288 +TRIM59,Nuclear Pore,0.075495581 +NRAS,Nuclear Pore,-0.077968288 +QTRT1,Nuclear Pore,-0.00026842 +CHUK,Nuclear Pore,-0.091747903 +COG8,Nuclear Pore,0.47204971 +RBMXL1,Nuclear Pore,-0.563982387 +LEPROT,Nuclear Pore,-0.039428751 +ATF6B,Nuclear Pore,0.712778216 +SLC35F6,Nuclear Pore,-0.030224368 +ZNF134,Nuclear Pore,-0.024220886 +EMP2,Nuclear Pore,-0.209766902 +DNASE1,Nuclear Pore,1.300438388 +CSNK1E,Nuclear Pore,0.735602455 +GALT,Nuclear Pore,0.774023799 +ITGA1,Nuclear Pore,0.106175651 +AP1G2,Nuclear Pore,0.671216809 +CARKD,Nuclear Pore,0.660876842 +TTLL3,Nuclear Pore,0.991507428 +CPNE1,Nuclear Pore,0.002405881 +RCN1P2,Nuclear Pore,-0.799439241 +ZBED1,Nuclear Pore,-0.265841181 +DDX12P,Nuclear Pore,0.804971336 +C22orf29,Nuclear Pore,0.734203524 +NEURL4,Nuclear Pore,1.011420697 +TTC3P1,Nuclear Pore,-0.18373762 +PEX26,Nuclear Pore,0.529778826 +GOLGA8B,Nuclear Pore,0.226804394 +MIR17HG,Nuclear Pore,1.03361201 +TMEM242,Nuclear Pore,-0.550102977 +TMEM167B,Nuclear Pore,-0.303826768 +CYB5RL,Nuclear Pore,-0.189787004 +CROCCP2,Nuclear Pore,1.192752455 +FNIP1,Nuclear Pore,0.489411701 +RP11-204C16.4,Nuclear Pore,-0.392656485 +TENM3,Nuclear Pore,-0.502907298 +AC007390.5,Nuclear Pore,0.072410721 +NBPF1,Nuclear Pore,0.301227491 +CCNL2,Nuclear Pore,1.08909866 +PPT2,Nuclear Pore,-0.313129649 +CKMT1A,Nuclear Pore,0.27751381 +NSUN5P1,Nuclear Pore,0.811293915 +RP11-54O7.3,Nuclear Pore,1.162211304 +AFG3L1P,Nuclear Pore,0.80422441 +EPB41L4A-AS1,Nuclear Pore,-0.527595839 +ATXN1L,Nuclear Pore,0.63718833 +SMIM13,Nuclear Pore,-0.099020581 +CTD-2228K2.7,Nuclear Pore,1.842283833 +PLEKHM1,Nuclear Pore,0.270835345 +FAM195B,Nuclear Pore,0.932183199 +IPO7P2,Nuclear Pore,-0.610505235 +SLC26A6,Nuclear Pore,1.291800631 +FGD5-AS1,Nuclear Pore,0.238779689 +TLK2P1,Nuclear Pore,-0.093374489 +BAIAP2-AS1,Nuclear Pore,0.208331519 +RP11-31F15.1,Nuclear Pore,0.522740574 +TMEM185B,Nuclear Pore,-0.819304226 +C14orf132,Nuclear Pore,0.716826509 +PARG,Nuclear Pore,0.291829284 +TP73-AS1,Nuclear Pore,0.611889221 +SCAMP4,Nuclear Pore,0.531693351 +SEC63P1,Nuclear Pore,-0.00053184 +HCG11,Nuclear Pore,0.021550982 +DHFR,Nuclear Pore,-0.225787336 +RP11-206L10.11,Nuclear Pore,-1.3679462 +XIST,Nuclear Pore,0.63348449 +RP5-1180C10.2,Nuclear Pore,0.110862939 +HCG18,Nuclear Pore,0.052981847 +CTD-2619J13.14,Nuclear Pore,1.655960247 +SNHG15,Nuclear Pore,0.59860563 +SNHG7,Nuclear Pore,-0.609081406 +HOTAIRM1,Nuclear Pore,1.084976638 +RP4-775C13.1,Nuclear Pore,-0.301705478 +ZNF37BP,Nuclear Pore,-0.149275919 +ZNF736,Nuclear Pore,0.951506425 +MAGI2-AS3,Nuclear Pore,-0.062535951 +JRK,Nuclear Pore,0.725553926 +GAS5,Nuclear Pore,0.787000906 +LINC00338,Nuclear Pore,0.244160392 +PPP1R3E,Nuclear Pore,0.496282185 +RP5-827C21.1,Nuclear Pore,-0.205484981 +NUS1P1,Nuclear Pore,-0.186597405 +ZBTB22,Nuclear Pore,1.127429777 +AD000090.2,Nuclear Pore,0.302339466 +ZBED5,Nuclear Pore,0.555382576 +RNF103,Nuclear Pore,0.892651202 +TMEM189,Nuclear Pore,-0.000352293 +RPL36A,Nuclear Pore,0.749744273 +CD302,Nuclear Pore,-0.672988134 +SNHG3,Nuclear Pore,0.567445889 +C15orf38,Nuclear Pore,0.366828559 +AP5Z1,Nuclear Pore,1.204601377 +MICAL3,Nuclear Pore,0.547305307 +KCTD7,Nuclear Pore,-0.343538189 +SCARF2,Nuclear Pore,0.231090043 +APOBEC3C,Nuclear Pore,0.01458905 +N4BP2L2,Nuclear Pore,-0.230447239 +NEAT1,Nuclear Pore,1.33320342 +CRNDE,Nuclear Pore,0.315396039 +OIP5-AS1,Nuclear Pore,-0.365862366 +MARS2,Nuclear Pore,-0.954054898 +HAUS5,Nuclear Pore,0.476292588 +PDCD6,Nuclear Pore,-0.247297501 +THAP9-AS1,Nuclear Pore,0.674853838 +SHANK3,Nuclear Pore,0.702202494 +RTN3P1,Nuclear Pore,-1.192256145 +MALAT1,Nuclear Pore,1.721283123 +TUG1,Nuclear Pore,0.033839498 +GS1-251I9.4,Nuclear Pore,-0.321689311 +UTP14C,Nuclear Pore,-0.080017732 +ZNF260,Nuclear Pore,-0.787439512 +PABPC4L,Nuclear Pore,1.093392265 +FPGT,Nuclear Pore,-0.177902187 +MEX3A,Nuclear Pore,0.44463729 +POLR2M,Nuclear Pore,-0.109420987 +SNHG1,Nuclear Pore,0.409815332 +POLG2,Nuclear Pore,0.302936961 +KIAA1147,Nuclear Pore,0.291100462 +RP11-349A22.5,Nuclear Pore,-0.113088483 +LINC00641,Nuclear Pore,-0.008086232 +RP4-773N10.4,Nuclear Pore,1.071476654 +CEP95,Nuclear Pore,0.229065308 +LINC00657,Nuclear Pore,0.050764105 +RP1-239B22.5,Nuclear Pore,-0.418635717 +RP6-24A23.6,Nuclear Pore,-0.829997053 +ERVK13-1,Nuclear Pore,0.183719182 +GS1-358P8.4,Nuclear Pore,-0.033257091 +VPS9D1-AS1,Nuclear Pore,0.170802859 +RP6-24A23.7,Nuclear Pore,0.426872315 +GAN,Nuclear Pore,0.320544785 +SPON1,Nuclear Pore,-2.758137889 +RP11-159D12.2,Nuclear Pore,1.02438651 +OTUD7B,Nuclear Pore,-0.974011023 +RNF115,Nuclear Pore,-0.63571119 +BAHCC1,Nuclear Pore,0.536711294 +NBPF15,Nuclear Pore,1.065089222 +RP11-242D8.1,Nuclear Pore,0.146898202 +RP11-18I14.10,Nuclear Pore,-0.612656074 +NBPF9,Nuclear Pore,0.999328049 +EGLN2,Nuclear Pore,0.753596441 +NUDT3,Nuclear Pore,-0.267338023 +KMT2B,Nuclear Pore,1.043114039 +POM121C,Nuclear Pore,0.071350381 +RP11-504P24.8,Nuclear Pore,1.170109395 +DCP1A,Nuclear Pore,0.148772041 +EPOP,Nuclear Pore,-0.192136485 +NOL12,Nuclear Pore,1.057915341 +SOCS7,Nuclear Pore,0.711682569 +PI4KAP1,Nuclear Pore,1.103892383 +ZNF280B,Nuclear Pore,1.078270524 +MLLT6,Nuclear Pore,0.996283365 +SYNRG,Nuclear Pore,0.238036728 +TADA2A,Nuclear Pore,0.59814958 +PIP4K2B,Nuclear Pore,0.127486548 +AL133325.3,Nuclear Pore,0.30735742 +DDX52,Nuclear Pore,-0.287923575 +MYO19,Nuclear Pore,0.463458379 +DHRS11,Nuclear Pore,1.041839015 +ACACA,Nuclear Pore,-0.100114593 +AC005332.6,Nuclear Pore,0.124210071 +RP11-574K11,Nuclear Pore,0.512784649 +AL035425.4,Nuclear Pore,1.309426528 +EBLN3P,Nuclear Pore,-0.1392595 +GCLC,Cytosol,0.01540649 +NFYA,Cytosol,0.366742127 +NIPAL3,Cytosol,0.458413746 +ENPP4,Cytosol,-0.7962733 +SEMA3F,Cytosol,0.037640617 +CD99,Cytosol,-0.399164293 +LASP1,Cytosol,1.346663757 +M6PR,Cytosol,-0.397579323 +CFLAR,Cytosol,0.442018322 +NDUFAF7,Cytosol,-0.553627564 +RBM5,Cytosol,-0.365167793 +SLC7A2,Cytosol,0.067409511 +SARM1,Cytosol,0.535253399 +CAMKK1,Cytosol,0.543916548 +RECQL,Cytosol,-0.343332638 +ARHGAP33,Cytosol,0.049455192 +CDC27,Cytosol,0.409569105 +SPPL2B,Cytosol,-0.613135069 +CREBBP,Cytosol,0.447492716 +GCFC2,Cytosol,-0.404505369 +RHBDD2,Cytosol,-0.557634134 +IBTK,Cytosol,0.350302754 +ZNF195,Cytosol,-0.591389069 +MYCBP2,Cytosol,0.275336515 +ZFX,Cytosol,0.02432748 +LAMP2,Cytosol,-0.514378505 +GDE1,Cytosol,-0.192398086 +TMEM98,Cytosol,-0.286951761 +TMEM132A,Cytosol,-0.337702368 +ZNF263,Cytosol,0.510820786 +MAP3K9,Cytosol,0.477431351 +JHDM1D,Cytosol,0.434655945 +PHTF2,Cytosol,-0.270217045 +FARP2,Cytosol,0.67918839 +IFRD1,Cytosol,-0.731476524 +ARHGAP44,Cytosol,0.755742128 +ELAC2,Cytosol,-0.267293231 +ADIPOR2,Cytosol,0.447198948 +PAFAH1B1,Cytosol,0.460586471 +KIAA0100,Cytosol,0.187472738 +PAX6,Cytosol,-0.195482298 +LUC7L,Cytosol,-0.578038055 +CACNA2D2,Cytosol,-0.446894241 +PIGQ,Cytosol,-0.280373522 +CRAMP1L,Cytosol,0.141985781 +JARID2,Cytosol,0.771816041 +ADAM22,Cytosol,-0.171628247 +CYB561,Cytosol,0.044820207 +SPAG9,Cytosol,0.020656106 +CELSR3,Cytosol,0.019128591 +AASS,Cytosol,0.016639157 +PKD1,Cytosol,-0.28652617 +SEC62,Cytosol,-0.331533987 +REV3L,Cytosol,0.377191991 +POMT2,Cytosol,-0.07939883 +BAZ1B,Cytosol,0.894280837 +ZNF207,Cytosol,-0.471188682 +IFFO1,Cytosol,-0.20044896 +NISCH,Cytosol,0.038181916 +IDS,Cytosol,0.271949989 +CLCN6,Cytosol,-0.315033309 +MRC2,Cytosol,0.047460318 +TSPAN9,Cytosol,0.602045896 +BTBD7,Cytosol,0.492575015 +MBTD1,Cytosol,0.095273751 +LARS2,Cytosol,0.186324159 +PIK3C2A,Cytosol,0.164583836 +ANLN,Cytosol,0.527534166 +QPCTL,Cytosol,-0.314748443 +MAP4K3,Cytosol,-0.125668903 +BRCA1,Cytosol,0.562991418 +MBTPS2,Cytosol,-0.589184536 +EXTL3,Cytosol,0.331824897 +ELOVL5,Cytosol,-0.725340186 +MAP4K5,Cytosol,0.36524139 +MAN2B2,Cytosol,-0.271921249 +CLK1,Cytosol,-1.413994799 +ANGEL1,Cytosol,-0.595763102 +DDX11,Cytosol,0.071019629 +UFL1,Cytosol,-0.64802489 +SLC30A9,Cytosol,0.035744105 +COX15,Cytosol,0.460405072 +ZMYND11,Cytosol,0.426446042 +XYLT2,Cytosol,-0.267869212 +NUDCD3,Cytosol,0.967920708 +CHDH,Cytosol,0.631515815 +GLT8D1,Cytosol,-0.258295133 +ATP2C1,Cytosol,-0.597059646 +RALBP1,Cytosol,0.807253599 +CNTN1,Cytosol,-0.438790102 +PHLDB1,Cytosol,0.664803991 +MRE11A,Cytosol,0.452439292 +SPAST,Cytosol,-0.087906606 +NRXN3,Cytosol,0.27709724 +CPS1,Cytosol,0.224934093 +SLC45A4,Cytosol,0.437567242 +ZNF839,Cytosol,0.247049638 +ZDHHC6,Cytosol,-0.12274632 +RNH1,Cytosol,-0.258379499 +RB1CC1,Cytosol,0.26748416 +ERP44,Cytosol,-0.873905782 +AKAP11,Cytosol,0.460558485 +GCLM,Cytosol,0.057793839 +DEPDC1,Cytosol,0.110045587 +SEC63,Cytosol,-0.588715304 +FAS,Cytosol,-0.306419459 +RNASET2,Cytosol,-0.644163634 +AGPAT4,Cytosol,-0.16339469 +MIPEP,Cytosol,-0.156738236 +VEZT,Cytosol,-0.168573681 +BRD9,Cytosol,0.429251241 +SNX1,Cytosol,0.09751064 +BCLAF1,Cytosol,0.106805512 +SLC39A9,Cytosol,0.297524921 +RABEP1,Cytosol,0.234732473 +FAM13B,Cytosol,0.639865897 +PNPLA6,Cytosol,-0.330566334 +ZCCHC8,Cytosol,0.002546493 +CHPF2,Cytosol,0.46523451 +FUT8,Cytosol,-0.21335441 +UBA6,Cytosol,0.389903419 +ATP6V0A1,Cytosol,-0.289388716 +SLC4A7,Cytosol,-0.40311773 +VCL,Cytosol,0.155314612 +ADSS,Cytosol,-0.28970413 +TIMP2,Cytosol,0.298429624 +RFC1,Cytosol,0.299540546 +ZZZ3,Cytosol,0.252267586 +MFAP3,Cytosol,-0.491829519 +MRI1,Cytosol,0.30202133 +AGA,Cytosol,-1.1996691 +BOD1L1,Cytosol,0.495450052 +TRIO,Cytosol,0.410578489 +VCAN,Cytosol,-0.226972091 +CLEC16A,Cytosol,0.789135465 +ZFYVE16,Cytosol,0.110030536 +RAI14,Cytosol,0.826861568 +PNKP,Cytosol,-0.564004625 +PQLC2,Cytosol,-0.140022619 +CTNS,Cytosol,-0.380123887 +INPP4A,Cytosol,0.508081167 +RETSAT,Cytosol,-0.561626895 +CUL7,Cytosol,0.174162026 +PHKA2,Cytosol,0.170098435 +DSG2,Cytosol,-0.470853144 +OFD1,Cytosol,-0.135450832 +GPM6B,Cytosol,-0.489521975 +YTHDC2,Cytosol,0.24623936 +TPR,Cytosol,0.543516062 +SCML1,Cytosol,-0.335162447 +MAP4,Cytosol,0.941594314 +GOPC,Cytosol,0.076008743 +ZNF800,Cytosol,-0.219750637 +SNX29,Cytosol,0.77470219 +KITLG,Cytosol,-0.010131777 +H6PD,Cytosol,0.317382759 +LTBP1,Cytosol,-0.626461159 +RCN1,Cytosol,-0.632982323 +PTCD2,Cytosol,-0.283321338 +LIMA1,Cytosol,0.46663056 +LETMD1,Cytosol,-0.651707351 +POLQ,Cytosol,0.528167139 +MPHOSPH9,Cytosol,0.148656908 +PLEKHA5,Cytosol,0.096543705 +SIKE1,Cytosol,0.786967027 +MSMO1,Cytosol,-1.250260502 +TTC17,Cytosol,-0.23754864 +LAMA3,Cytosol,-0.337777721 +AP5M1,Cytosol,0.001956441 +ANAPC4,Cytosol,-0.434449419 +ARID4B,Cytosol,0.505509463 +SDCCAG8,Cytosol,0.014880318 +FOXC1,Cytosol,0.520808962 +PLEKHH1,Cytosol,0.109066495 +ATP9A,Cytosol,0.428995875 +FAM168A,Cytosol,1.05605424 +RELT,Cytosol,-0.086921112 +NOP58,Cytosol,-0.685351238 +TAB2,Cytosol,0.509367914 +USP36,Cytosol,0.418191335 +KMT2C,Cytosol,0.382751551 +MCOLN3,Cytosol,-1.146204578 +PUM2,Cytosol,0.18491274 +RC3H2,Cytosol,0.284331715 +DCBLD2,Cytosol,-0.123097901 +SOAT1,Cytosol,-0.151574635 +ATP11B,Cytosol,0.085527159 +SEC61A1,Cytosol,-0.266876822 +PPP1R12A,Cytosol,0.411209245 +POLR3E,Cytosol,-0.200751283 +ATP2B4,Cytosol,-0.059886112 +ZC3H11A,Cytosol,0.435216201 +NDC1,Cytosol,-0.705840273 +UNKL,Cytosol,0.481390738 +ALDH18A1,Cytosol,-0.418548981 +TARBP1,Cytosol,-0.135602564 +WNK1,Cytosol,0.538446364 +CCAR1,Cytosol,0.289825136 +PTPRU,Cytosol,-0.269821064 +QSER1,Cytosol,0.335676647 +BCAT1,Cytosol,-0.024832301 +PRDM6,Cytosol,0.363956434 +TNK2,Cytosol,0.489962496 +MON2,Cytosol,0.223272945 +GPBP1,Cytosol,0.027412622 +WAPAL,Cytosol,0.376299473 +VMP1,Cytosol,-0.764286227 +APPBP2,Cytosol,0.482476705 +AHRR,Cytosol,0.542683715 +ZNF275,Cytosol,0.621526543 +MTMR1,Cytosol,0.782461002 +GPC1,Cytosol,0.216848966 +TM7SF3,Cytosol,-0.412309112 +CDON,Cytosol,0.07238098 +HIPK2,Cytosol,0.521237906 +SUGP2,Cytosol,0.257154518 +SLC12A2,Cytosol,-0.667925998 +HMG20B,Cytosol,-0.13600863 +UHRF1BP1,Cytosol,0.534077027 +PKN2,Cytosol,-0.232990115 +TRAM2,Cytosol,0.141829185 +NTN1,Cytosol,0.308133347 +ADAT1,Cytosol,0.573947013 +SPEN,Cytosol,0.363810006 +MAP2K4,Cytosol,0.341603495 +SLK,Cytosol,0.379472345 +CYB5R4,Cytosol,-0.646167847 +ASB1,Cytosol,0.616332192 +FAM107B,Cytosol,0.222067954 +SLC9A7,Cytosol,0.03996969 +FOXJ2,Cytosol,0.593198748 +PPP2R5A,Cytosol,-0.159778315 +ASPM,Cytosol,0.11046812 +ZBTB11,Cytosol,-0.035089506 +ATXN3,Cytosol,0.444902725 +FGFR2,Cytosol,0.133786689 +LRRC40,Cytosol,-0.901674336 +ATG2B,Cytosol,0.334610756 +ARFGEF1,Cytosol,0.293127846 +KLF6,Cytosol,-0.057376201 +NEO1,Cytosol,-0.308461923 +TRAM1,Cytosol,-1.12628226 +TP53BP1,Cytosol,0.818128767 +IARS2,Cytosol,-0.597433181 +ROCK1,Cytosol,0.684368782 +HYAL2,Cytosol,-0.44737766 +FGFR3,Cytosol,-0.227700204 +MEF2A,Cytosol,0.436629498 +ACSL4,Cytosol,0.091735131 +PRR11,Cytosol,0.989549218 +REEP1,Cytosol,-0.112764263 +ATP11A,Cytosol,0.025053483 +POLR1A,Cytosol,0.727475351 +IP6K2,Cytosol,-0.539972426 +KIF2A,Cytosol,0.248202003 +TGFBR3,Cytosol,-0.205046344 +NEDD4,Cytosol,0.604812092 +MAPK6,Cytosol,-0.097552078 +UFD1L,Cytosol,-0.782213254 +LRP6,Cytosol,-0.074710213 +NUCB2,Cytosol,-0.51868005 +SLC44A1,Cytosol,-0.216505559 +TMEM260,Cytosol,-0.373094071 +SMG6,Cytosol,1.064778075 +CLTCL1,Cytosol,0.175762746 +DGCR2,Cytosol,0.531635607 +MNT,Cytosol,0.135138343 +ZXDC,Cytosol,0.090538336 +NDST1,Cytosol,0.483600497 +AP3M2,Cytosol,0.168427283 +RAD18,Cytosol,0.014665053 +ATP2B1,Cytosol,-0.394219127 +MGAT4A,Cytosol,0.25169003 +SNX13,Cytosol,-0.22318057 +VASH1,Cytosol,0.805294999 +SEL1L,Cytosol,-0.418171322 +ATP6AP1,Cytosol,-0.585532192 +DAZAP1,Cytosol,0.208330252 +CPSF1,Cytosol,-0.131516074 +SLC6A15,Cytosol,-0.670739612 +RDH11,Cytosol,-0.518438974 +PRKACA,Cytosol,0.82982581 +LPHN1,Cytosol,0.21203075 +RPS6KA6,Cytosol,0.211281514 +EPN2,Cytosol,0.350997124 +PTPN18,Cytosol,0.749991192 +TFRC,Cytosol,-0.83339607 +AFF4,Cytosol,0.680889271 +MPP5,Cytosol,0.422706598 +HMMR,Cytosol,-0.022751228 +P4HA2,Cytosol,-0.702850026 +TRNT1,Cytosol,-0.493853526 +ACADVL,Cytosol,-0.304025541 +EVC,Cytosol,0.61797877 +DERL2,Cytosol,-0.523963908 +NDE1,Cytosol,0.886483676 +PVR,Cytosol,0.243379669 +SCARB1,Cytosol,-0.642891257 +SELO,Cytosol,-0.219543161 +LLGL2,Cytosol,0.023639327 +PDE8A,Cytosol,-0.008282091 +SDHA,Cytosol,-0.27818134 +KDM5A,Cytosol,0.539636196 +ADAM11,Cytosol,-0.074986518 +ST6GAL1,Cytosol,0.407786489 +GLI2,Cytosol,0.489837008 +NOTCH3,Cytosol,-0.001345016 +BCS1L,Cytosol,-0.536061002 +DPP8,Cytosol,0.626662769 +SLC24A1,Cytosol,0.65175652 +LMAN1,Cytosol,-0.522027907 +PTPLAD1,Cytosol,-0.289406458 +TUBE1,Cytosol,-0.823973519 +SEMA3C,Cytosol,-0.631580058 +TTC38,Cytosol,0.204748882 +CELSR1,Cytosol,0.033828141 +ZNF638,Cytosol,0.277001109 +SLC25A40,Cytosol,-0.533205594 +RASAL2,Cytosol,0.296616202 +ZNF37A,Cytosol,0.364325566 +FNDC3B,Cytosol,0.538664849 +FRYL,Cytosol,0.633654995 +TMEM131,Cytosol,-0.215277767 +WDR62,Cytosol,-0.096578316 +BCAP29,Cytosol,-0.25126725 +SEC31B,Cytosol,-0.788301369 +RBMS2,Cytosol,0.567882479 +SLC46A1,Cytosol,0.030871074 +PLXNA2,Cytosol,-0.108348676 +ANKRD13A,Cytosol,0.312920147 +PAG1,Cytosol,0.231019441 +MCAM,Cytosol,-0.291760162 +GPC4,Cytosol,-0.440466491 +MBNL3,Cytosol,0.316881138 +DGKD,Cytosol,0.377131686 +TM9SF3,Cytosol,-0.668059239 +PPP1R12B,Cytosol,0.204052443 +DNAJC10,Cytosol,-0.354749365 +GTF3C1,Cytosol,0.216850499 +IL4R,Cytosol,0.562756988 +LRCH4,Cytosol,-0.050203948 +FAM76B,Cytosol,0.249322343 +SIRT6,Cytosol,-0.203828267 +POLD3,Cytosol,0.383401219 +PHF17,Cytosol,0.415102377 +FBLN1,Cytosol,-0.789986769 +ITGA8,Cytosol,-0.131105689 +MCCC1,Cytosol,-0.373974717 +ACER3,Cytosol,0.091789411 +N4BP2,Cytosol,0.516587353 +HOXA9,Cytosol,-0.234105278 +PCM1,Cytosol,0.584072797 +TNRC6C,Cytosol,0.63426393 +ITCH,Cytosol,0.441440772 +SDF4,Cytosol,-0.084736864 +FKBP7,Cytosol,-0.595123587 +SLC1A3,Cytosol,-0.568806127 +SAR1A,Cytosol,0.125641709 +PAFAH1B3,Cytosol,-0.437132581 +MOXD1,Cytosol,-0.428981972 +STX7,Cytosol,0.136265349 +RABL2B,Cytosol,0.081546668 +SLC35C2,Cytosol,0.040071796 +CRYBG3,Cytosol,0.235990501 +RIF1,Cytosol,0.340763013 +PSEN1,Cytosol,0.065475403 +RBL1,Cytosol,0.401117742 +RSBN1,Cytosol,-0.037388955 +MAGI3,Cytosol,0.397570603 +OSTM1,Cytosol,-0.485514224 +EXD2,Cytosol,-0.156781334 +MEF2C,Cytosol,0.526467817 +UBA5,Cytosol,-0.464637286 +STK17B,Cytosol,0.349916346 +ZNF510,Cytosol,0.007887824 +LRP2,Cytosol,-0.42771502 +DUSP12,Cytosol,-1.045236404 +KIAA0141,Cytosol,-0.013124076 +PHLPP1,Cytosol,0.30415083 +SMARCD3,Cytosol,-0.360975623 +C5orf22,Cytosol,0.583676399 +CCNT2,Cytosol,-0.005847091 +NFE2L1,Cytosol,0.343697517 +GSK3B,Cytosol,0.641252646 +ITGB5,Cytosol,0.09193412 +ERC1,Cytosol,0.877785587 +RNF13,Cytosol,-0.974177643 +LYRM2,Cytosol,0.281570072 +KAT6A,Cytosol,0.720703923 +PLOD1,Cytosol,-0.318966712 +TDRD3,Cytosol,-0.282924677 +PDS5B,Cytosol,0.201262602 +OXCT1,Cytosol,0.18283102 +RRAGB,Cytosol,-0.377919174 +FAT1,Cytosol,-0.316770448 +YTHDC1,Cytosol,0.159485634 +ZMPSTE24,Cytosol,-0.903754543 +REST,Cytosol,0.388986251 +APLP2,Cytosol,-0.190350886 +KIAA1467,Cytosol,-0.140640578 +TXLNA,Cytosol,0.709110496 +NCOA1,Cytosol,0.702078855 +AGBL5,Cytosol,0.256041564 +CD59,Cytosol,-0.34076645 +ATRX,Cytosol,0.402569366 +SCAMP1,Cytosol,-0.571142055 +HACE1,Cytosol,-0.056743096 +WDFY1,Cytosol,0.606072481 +MTIF2,Cytosol,-0.074556662 +ATG16L1,Cytosol,0.015535594 +POMGNT1,Cytosol,-0.117530117 +B4GALT1,Cytosol,0.173907059 +IPO11,Cytosol,0.215763576 +TMED2,Cytosol,-0.652841798 +ERO1LB,Cytosol,-0.272305973 +PPP1R15A,Cytosol,0.427384644 +NLK,Cytosol,0.321386443 +PIGS,Cytosol,-0.133061411 +ATXN7L3,Cytosol,0.795086242 +PGS1,Cytosol,-0.295552686 +SH3BP2,Cytosol,0.115143885 +ADD1,Cytosol,0.924288378 +TXNDC16,Cytosol,-0.333317644 +NID2,Cytosol,-0.769030353 +KLHL42,Cytosol,0.563732248 +ERGIC2,Cytosol,-0.609481679 +METTL2A,Cytosol,-0.34691578 +PTPN4,Cytosol,-0.047252231 +KHSRP,Cytosol,0.817775993 +EPB41L1,Cytosol,0.782476249 +ANKRD10,Cytosol,-0.450621769 +DOCK3,Cytosol,0.014296449 +PPP1R13B,Cytosol,0.139284784 +ATRN,Cytosol,-0.235784386 +ZNF343,Cytosol,0.137929713 +MAVS,Cytosol,0.671903664 +LZTS3,Cytosol,0.747063772 +SNX5,Cytosol,-0.7095118 +MAPKAPK5,Cytosol,-0.275140085 +ESF1,Cytosol,-0.150661096 +SLC23A2,Cytosol,-0.024958967 +KIF16B,Cytosol,0.44434053 +ERP29,Cytosol,-0.523571093 +FUS,Cytosol,-0.411057617 +ZNF302,Cytosol,-0.814515903 +GRAMD1A,Cytosol,-0.316847934 +GANAB,Cytosol,-0.526081257 +RBM41,Cytosol,-0.086893486 +GPATCH2L,Cytosol,0.407264607 +SLC9A1,Cytosol,0.128086493 +SPTLC1,Cytosol,-0.510698092 +PAPOLA,Cytosol,0.300607419 +MUL1,Cytosol,0.047347951 +RAB11FIP3,Cytosol,0.573784339 +GOLGA3,Cytosol,0.686031323 +EFNB1,Cytosol,0.362337406 +PDPR,Cytosol,-0.253917681 +GLG1,Cytosol,-0.445653351 +TNRC6A,Cytosol,0.52628732 +PLEKHG2,Cytosol,0.391021525 +NAT14,Cytosol,0.219706049 +RBM27,Cytosol,0.450547146 +OSBPL8,Cytosol,0.472320349 +NRCAM,Cytosol,-0.506567838 +LAMB1,Cytosol,-0.559340907 +CMTM6,Cytosol,0.014121484 +ITGA6,Cytosol,-0.464633427 +SEL1L3,Cytosol,-0.401867964 +ORC6,Cytosol,-0.502780418 +TMEM101,Cytosol,-0.542469058 +OSGEP,Cytosol,-0.739504378 +G2E3,Cytosol,-0.216682065 +HECTD1,Cytosol,0.399050452 +SEMA6A,Cytosol,0.371785068 +TRPM7,Cytosol,0.097646876 +TYRO3,Cytosol,-0.185093297 +AGO1,Cytosol,0.399004506 +MFSD11,Cytosol,-0.653878464 +GPATCH2,Cytosol,0.172740728 +NUP50,Cytosol,0.63649965 +LRRFIP2,Cytosol,0.168760077 +SEC22C,Cytosol,0.335960844 +XYLB,Cytosol,0.513375797 +HDAC6,Cytosol,-0.025276978 +CBX5,Cytosol,0.435035163 +SUCO,Cytosol,-0.109586465 +HOOK2,Cytosol,-0.366973426 +ARCN1,Cytosol,0.895508815 +TMEM38B,Cytosol,-0.870106198 +BTAF1,Cytosol,-0.010464561 +IKZF5,Cytosol,-0.230106553 +WAC,Cytosol,0.380241245 +CREM,Cytosol,-0.913809712 +BRPF3,Cytosol,0.358189181 +EFHC1,Cytosol,-0.686629978 +ABL1,Cytosol,0.893051745 +SH3GLB1,Cytosol,0.179774265 +SCD,Cytosol,0.028343769 +ABLIM1,Cytosol,0.588750527 +ERMP1,Cytosol,-0.170013005 +NRP1,Cytosol,-0.027241158 +MZF1,Cytosol,-0.379860541 +FBXL19,Cytosol,0.918987892 +MTAP,Cytosol,0.113078286 +CEP170B,Cytosol,0.407644387 +POLRMT,Cytosol,-0.206806354 +ARVCF,Cytosol,0.161036691 +TRMT2A,Cytosol,-0.194514111 +ZDHHC8,Cytosol,-0.210167533 +KLHL22,Cytosol,0.397916004 +CRKL,Cytosol,0.71341594 +LZTR1,Cytosol,0.261133948 +CECR2,Cytosol,0.486349581 +DERL3,Cytosol,-0.77405701 +PPM1F,Cytosol,0.77809568 +TOP3B,Cytosol,-0.461748215 +CRYBB2P1,Cytosol,-0.295455714 +ADRBK2,Cytosol,0.739383785 +GGA1,Cytosol,0.204914472 +HPS4,Cytosol,0.39300486 +TTC28,Cytosol,0.644705432 +SEPT3,Cytosol,0.734819111 +KDELR3,Cytosol,-0.39303927 +DDX17,Cytosol,0.152104792 +TCF20,Cytosol,0.901058122 +TIMP3,Cytosol,-0.471978098 +PPP6R2,Cytosol,0.086612323 +SUN2,Cytosol,-0.035408289 +ARSA,Cytosol,-0.534837222 +MYH9,Cytosol,0.795429524 +FOXRED2,Cytosol,0.389793375 +TNRC6B,Cytosol,0.534258808 +SGSM3,Cytosol,-0.102065809 +IFT27,Cytosol,-0.634079781 +KIAA0930,Cytosol,0.778687936 +EP300,Cytosol,0.597558102 +ZC3H7B,Cytosol,0.752556539 +ACO2,Cytosol,-0.516126167 +TRMU,Cytosol,-0.145260019 +ZBED4,Cytosol,0.514938385 +ABHD4,Cytosol,1.056281021 +KHNYN,Cytosol,0.667921596 +NIN,Cytosol,0.167171382 +GNPNAT1,Cytosol,0.384810527 +DDHD1,Cytosol,0.313076399 +CNIH1,Cytosol,-0.676736663 +TMED8,Cytosol,0.709531393 +SPTLC2,Cytosol,0.087246234 +PPM1A,Cytosol,0.136608109 +SIX4,Cytosol,0.057312896 +GALNT16,Cytosol,0.03258943 +KIAA0247,Cytosol,0.161718686 +SRSF5,Cytosol,-0.598098341 +DICER1,Cytosol,0.480734686 +ZFYVE21,Cytosol,-0.520828808 +TELO2,Cytosol,-0.075663568 +PCNX,Cytosol,-0.021572003 +GSKIP,Cytosol,-0.923843116 +SMEK1,Cytosol,0.275696756 +TRIP11,Cytosol,0.089808472 +PABPN1,Cytosol,0.254651043 +ARHGAP5,Cytosol,0.23016856 +CHD8,Cytosol,0.510555335 +PCK2,Cytosol,-1.034686521 +PNN,Cytosol,-0.391940302 +PLTP,Cytosol,-0.509068379 +ABHD12,Cytosol,-0.208096692 +GINS1,Cytosol,0.578389842 +RIMS4,Cytosol,0.94554575 +PABPC1L,Cytosol,-0.906137356 +STK4,Cytosol,0.618045026 +BMP7,Cytosol,0.198315994 +DNAJC5,Cytosol,0.88393685 +SLCO4A1,Cytosol,-0.633201501 +DIDO1,Cytosol,0.485256888 +ARFGAP1,Cytosol,0.463216314 +ARFRP1,Cytosol,-0.202832619 +CDS2,Cytosol,-0.181123924 +TM9SF4,Cytosol,-0.27185838 +POFUT1,Cytosol,0.113476004 +SAMHD1,Cytosol,0.979774224 +KIF3B,Cytosol,0.618894233 +E2F1,Cytosol,0.04329577 +APMAP,Cytosol,-0.607242877 +ZNF516,Cytosol,0.592297044 +LPIN2,Cytosol,0.840696954 +SMCHD1,Cytosol,0.431157545 +LAMA1,Cytosol,-0.536794103 +RNF125,Cytosol,0.608285843 +ANKRD12,Cytosol,0.229794397 +MIB1,Cytosol,0.051720715 +MID1,Cytosol,0.436083702 +WDR13,Cytosol,-0.214425757 +XIAP,Cytosol,0.385697707 +ATP11C,Cytosol,-0.449608337 +SYP,Cytosol,-0.3718833 +FMR1,Cytosol,-0.028743613 +SLC35A2,Cytosol,-0.158935236 +TAZ,Cytosol,-0.605497635 +MAGT1,Cytosol,-0.294629535 +CD99L2,Cytosol,0.219579527 +EEA1,Cytosol,0.139685621 +NDFIP2,Cytosol,-0.722815758 +DNAJC3,Cytosol,0.138861289 +UGGT2,Cytosol,-0.79097789 +ARHGEF7,Cytosol,0.40813327 +PARP4,Cytosol,0.767541645 +FLT1,Cytosol,0.101171273 +VWA8,Cytosol,0.122146535 +DGKH,Cytosol,0.202697939 +INTS6,Cytosol,-0.254947925 +CLN5,Cytosol,-0.858467848 +MGRN1,Cytosol,0.432501175 +ZNF629,Cytosol,0.83879455 +CENPT,Cytosol,-0.230848426 +NFAT5,Cytosol,0.169548276 +SETD6,Cytosol,-0.526192169 +SLC38A7,Cytosol,0.148125562 +SLC7A6OS,Cytosol,0.190770382 +SLC7A6,Cytosol,-0.145216252 +WDR59,Cytosol,0.195319269 +TAF1C,Cytosol,0.05181973 +TSC2,Cytosol,0.090206158 +ZNF500,Cytosol,0.35075151 +ABCC1,Cytosol,-0.56755403 +NOMO3,Cytosol,-0.795828931 +NARFL,Cytosol,0.123449827 +MTHFSD,Cytosol,0.284272592 +CLCN7,Cytosol,-0.042715671 +SLC7A5,Cytosol,-0.316928988 +FBXO31,Cytosol,0.704405582 +EEF2K,Cytosol,0.166829282 +CAPN15,Cytosol,0.043592396 +PIEZO1,Cytosol,-0.572859947 +BFAR,Cytosol,-0.190726468 +NOMO1,Cytosol,-0.756267425 +CCP110,Cytosol,0.200974365 +RNF40,Cytosol,0.760022815 +LACTB,Cytosol,-0.386171336 +CD276,Cytosol,-0.098265573 +HOMER2,Cytosol,0.250318766 +TMEM87A,Cytosol,-0.865152841 +ZNF106,Cytosol,0.610881676 +CEP152,Cytosol,0.28932731 +TJP1,Cytosol,0.717392449 +VPS18,Cytosol,0.853852243 +MYEF2,Cytosol,0.582842401 +CSPP1,Cytosol,0.221461571 +ZFAND1,Cytosol,-1.038063252 +FZD3,Cytosol,-0.062474069 +EYA1,Cytosol,0.417464977 +NBN,Cytosol,0.42638145 +IMPAD1,Cytosol,0.254910523 +UBE2W,Cytosol,0.027899013 +IKBKB,Cytosol,0.504135475 +PLAT,Cytosol,-0.117752093 +JPH1,Cytosol,0.314018914 +TRPS1,Cytosol,0.511596556 +PYCRL,Cytosol,0.137645476 +EEF1D,Cytosol,-0.477076666 +SQLE,Cytosol,-0.892166652 +SLC39A14,Cytosol,-0.443809689 +MTMR9,Cytosol,0.380969379 +LEPROTL1,Cytosol,0.001526275 +PPP2CB,Cytosol,-0.301938757 +KLHDC4,Cytosol,0.092227806 +KCTD9,Cytosol,-0.03972275 +MAN2B1,Cytosol,-0.532410478 +NUCB1,Cytosol,0.034169709 +SARS2,Cytosol,-0.755817604 +SNRNP70,Cytosol,-0.574869275 +CLPTM1,Cytosol,-0.531095632 +CLASRP,Cytosol,-0.306629982 +FCGRT,Cytosol,-0.248410094 +ERCC2,Cytosol,0.538368061 +DOT1L,Cytosol,0.284616082 +SF3A2,Cytosol,-0.784725308 +AMH,Cytosol,-0.771933678 +DMPK,Cytosol,0.125522056 +TIMM44,Cytosol,-0.287043876 +AKAP8,Cytosol,-0.038990788 +AKT2,Cytosol,0.388512627 +PLD3,Cytosol,-0.308601962 +FSD1,Cytosol,-0.088714984 +APLP1,Cytosol,0.344685922 +CACTIN,Cytosol,0.442150894 +TYK2,Cytosol,0.23505439 +PTPRS,Cytosol,-0.229271291 +MEGF8,Cytosol,0.05662073 +KDELR1,Cytosol,-0.335468082 +CYTH2,Cytosol,0.221188841 +LIG1,Cytosol,-0.011335382 +BCAT2,Cytosol,-0.444304398 +TNPO2,Cytosol,0.40869725 +DNASE2,Cytosol,-0.290310989 +ISYNA1,Cytosol,-0.564914533 +CRTC1,Cytosol,0.361927651 +SUGP1,Cytosol,-0.060483379 +SIPA1L3,Cytosol,0.732771734 +CADM4,Cytosol,0.286317395 +SMG9,Cytosol,-0.175410557 +AVL9,Cytosol,0.413204089 +CDK6,Cytosol,0.388667393 +DNAJC2,Cytosol,-0.442987863 +WDR91,Cytosol,0.158089347 +CBLL1,Cytosol,0.298168519 +MTPN,Cytosol,0.507029791 +ZC3HAV1,Cytosol,0.877974911 +OGDH,Cytosol,0.722728794 +MET,Cytosol,-0.104447131 +LMBR1,Cytosol,-0.34114597 +HOXA3,Cytosol,-0.017178478 +HOXA6,Cytosol,0.368703276 +BRAT1,Cytosol,-0.406313873 +FKBP14,Cytosol,-0.344947959 +NSUN5P2,Cytosol,-0.705071505 +CASP2,Cytosol,0.639184702 +HSPB1,Cytosol,-0.497747447 +ZKSCAN1,Cytosol,0.628990865 +WASL,Cytosol,0.138798734 +RBM28,Cytosol,0.188865966 +C1GALT1,Cytosol,-0.542566233 +PLOD3,Cytosol,-0.496871759 +CLDN15,Cytosol,-0.312884223 +TMEM106B,Cytosol,-0.39680359 +CEP41,Cytosol,0.521337264 +GLI3,Cytosol,0.259525555 +TMEM248,Cytosol,0.169851816 +TBL2,Cytosol,-0.607940168 +FKTN,Cytosol,-0.167229009 +TMEM245,Cytosol,0.094551958 +MEGF9,Cytosol,0.426707236 +TGFBR1,Cytosol,-0.082082831 +DNM1,Cytosol,0.152345226 +KANK1,Cytosol,0.393865671 +RAPGEF1,Cytosol,0.76347974 +NPDC1,Cytosol,-0.680782545 +SETX,Cytosol,0.547599239 +CCNJ,Cytosol,0.437335889 +RAB11FIP2,Cytosol,0.286002931 +ERLIN1,Cytosol,-0.298011531 +MAPK8,Cytosol,0.195174721 +ATE1,Cytosol,0.278101748 +PLEKHA1,Cytosol,0.162288457 +UNC5B,Cytosol,-0.044218741 +BMPR1A,Cytosol,-0.344770263 +ACTA2,Cytosol,0.384220286 +LIPA,Cytosol,-0.833833119 +LZTS2,Cytosol,0.276973759 +ARHGAP21,Cytosol,0.082172174 +ANKRD26,Cytosol,0.649531469 +LARP4B,Cytosol,0.542579136 +C10orf137,Cytosol,0.389002753 +MTPAP,Cytosol,-0.169641139 +SH3PXD2A,Cytosol,0.744288925 +PITRM1,Cytosol,-0.082293581 +FAM208B,Cytosol,0.238650664 +TSPAN14,Cytosol,0.347355524 +NUFIP2,Cytosol,0.176380636 +DHX40,Cytosol,0.272653828 +CDK5RAP3,Cytosol,-0.8710997 +RECQL5,Cytosol,-0.288174653 +INTS2,Cytosol,0.060469238 +CAMTA2,Cytosol,0.155458545 +MED13,Cytosol,0.067762776 +HOXB6,Cytosol,0.047114242 +CPD,Cytosol,-0.518941726 +GOSR1,Cytosol,0.480694883 +CCDC47,Cytosol,-0.704975869 +AKAP10,Cytosol,0.292165399 +CYTH1,Cytosol,0.134611804 +LGALS3BP,Cytosol,-1.163354965 +EZH1,Cytosol,-0.35467882 +PPP1R9B,Cytosol,0.940482053 +LUC7L3,Cytosol,-0.528271093 +DUSP3,Cytosol,0.615879286 +EFNB3,Cytosol,0.570678422 +DPH1,Cytosol,-0.045882814 +NAT9,Cytosol,-0.096816714 +TMEM104,Cytosol,0.284795857 +TMEM97,Cytosol,-0.27087874 +UNC119,Cytosol,-0.206484525 +TMEM33,Cytosol,-0.319594034 +DCUN1D4,Cytosol,0.053985649 +MANBA,Cytosol,-0.687923257 +ELF2,Cytosol,0.262253114 +WFS1,Cytosol,-0.321265707 +FRG1,Cytosol,-1.173298541 +CLCN3,Cytosol,0.152909807 +GALNT7,Cytosol,-0.669594469 +TRIM2,Cytosol,0.347068537 +NEIL3,Cytosol,-0.11754333 +SH3D19,Cytosol,0.301278107 +STIM2,Cytosol,-0.188083941 +RAPGEF2,Cytosol,0.236419293 +UGDH,Cytosol,0.089880293 +CCDC34,Cytosol,-0.290805914 +FNBP4,Cytosol,0.222749193 +SC5D,Cytosol,-1.217894476 +SIAE,Cytosol,-0.408989087 +EHD1,Cytosol,0.807912253 +FOXRED1,Cytosol,-0.425646013 +ST3GAL4,Cytosol,-0.149070734 +CPT1A,Cytosol,0.114392182 +TMEM109,Cytosol,-0.426436592 +PANX1,Cytosol,0.082601894 +UBE4A,Cytosol,-0.362837814 +DDX6,Cytosol,0.602663927 +PVRL1,Cytosol,0.16185882 +HIPK3,Cytosol,0.280436792 +MDK,Cytosol,-0.421100047 +AMBRA1,Cytosol,0.766533562 +NAA40,Cytosol,0.507338617 +SLC35F2,Cytosol,-0.369453391 +LEPREL2,Cytosol,-0.077098929 +CORO1C,Cytosol,0.81677614 +ASIC1,Cytosol,-0.257771728 +CAPRIN2,Cytosol,-0.45720112 +SLC11A2,Cytosol,-0.313761688 +MLEC,Cytosol,0.479243454 +BCL7A,Cytosol,0.850861662 +RSRC2,Cytosol,-0.465138436 +PPM1H,Cytosol,0.588192902 +ELK3,Cytosol,0.631643937 +MAGOHB,Cytosol,-0.613018473 +ITFG2,Cytosol,0.209503561 +PARP11,Cytosol,0.717860922 +DUSP16,Cytosol,0.679374734 +ACAD10,Cytosol,-0.298193736 +NAA25,Cytosol,0.185343543 +DDX55,Cytosol,-0.345086459 +SLC38A1,Cytosol,-0.15536281 +C12orf49,Cytosol,0.379047123 +MDM1,Cytosol,-0.300176309 +CPSF6,Cytosol,-0.178320997 +GNPTAB,Cytosol,-0.117590036 +ATN1,Cytosol,0.49031423 +C12orf57,Cytosol,-1.210561646 +LPCAT3,Cytosol,-0.504652032 +SUDS3,Cytosol,1.080309532 +GOLT1B,Cytosol,-0.987572843 +C2CD5,Cytosol,0.311244788 +RAB35,Cytosol,0.79920689 +RIC8B,Cytosol,0.335281841 +RP11-22B23.1,Cytosol,-0.234090199 +DSE,Cytosol,-0.168914161 +MAN1A1,Cytosol,-0.189518411 +SERINC1,Cytosol,-0.542274449 +UST,Cytosol,0.058743908 +KCTD20,Cytosol,0.675363661 +RNF8,Cytosol,0.381406952 +ICK,Cytosol,0.653176989 +RAB23,Cytosol,0.427644743 +FBXL4,Cytosol,-0.064803579 +CCNC,Cytosol,-0.879654997 +ALDH5A1,Cytosol,0.491768622 +EYA4,Cytosol,0.498464455 +PERP,Cytosol,-0.227666573 +SLC16A10,Cytosol,-0.527752674 +PHACTR2,Cytosol,0.411111348 +SLC39A7,Cytosol,-0.236975781 +PPP2R5D,Cytosol,0.777331799 +PTK7,Cytosol,-0.448594064 +CUL9,Cytosol,0.085033091 +TMEM30A,Cytosol,-0.148388156 +SENP6,Cytosol,0.085165613 +VEGFA,Cytosol,-0.032826233 +PRPF4B,Cytosol,0.036847943 +BTN2A1,Cytosol,-0.071790875 +LAMA4,Cytosol,-0.27923443 +ERBB2IP,Cytosol,0.582564313 +HARS2,Cytosol,-0.036225106 +MAN2A1,Cytosol,-0.523632074 +PAPD7,Cytosol,0.214588305 +NNT,Cytosol,0.047976257 +APBB3,Cytosol,-0.582955987 +SPARC,Cytosol,-0.227855484 +HMGCR,Cytosol,-0.701005553 +FAF2,Cytosol,-0.204609159 +CLK4,Cytosol,-1.078826075 +ARSB,Cytosol,0.048823105 +CNOT6,Cytosol,0.301324989 +DROSHA,Cytosol,0.372519796 +FAM172A,Cytosol,0.21828741 +LNPEP,Cytosol,-0.107767388 +SLC12A7,Cytosol,-0.033781321 +NR3C1,Cytosol,0.517391364 +C5orf15,Cytosol,-0.439860749 +LIFR,Cytosol,-0.174302943 +TRAPPC13,Cytosol,-0.27888834 +TXNDC15,Cytosol,-0.142696792 +H2AFY,Cytosol,-0.180665796 +TCERG1,Cytosol,0.27003033 +SMAD5,Cytosol,0.100253902 +ERGIC1,Cytosol,0.371237124 +STC2,Cytosol,-0.371204826 +ARL6,Cytosol,0.062785995 +NIT2,Cytosol,-1.044869827 +UBE3A,Cytosol,0.285894588 +SLC25A36,Cytosol,-0.0240708 +TFDP2,Cytosol,0.446832699 +XRN1,Cytosol,0.430554771 +WNT5A,Cytosol,0.377430445 +PFKFB4,Cytosol,0.056482425 +PRKAR2A,Cytosol,0.656001308 +ACAP2,Cytosol,0.505614185 +CBLB,Cytosol,-0.07508551 +BBX,Cytosol,0.747964015 +GNB4,Cytosol,0.592521094 +C3orf52,Cytosol,-0.403149442 +PLXNA1,Cytosol,0.067620908 +CSPG5,Cytosol,-0.368090656 +SCAP,Cytosol,-0.439635039 +HEMK1,Cytosol,-0.451304545 +ACVR2B,Cytosol,0.153008906 +ABCC5,Cytosol,-0.008994089 +SSR3,Cytosol,-0.275356893 +NKTR,Cytosol,-0.121786186 +FOXP1,Cytosol,0.754537724 +INO80D,Cytosol,-0.022434438 +ADAM23,Cytosol,0.113460584 +MOB1A,Cytosol,0.506445344 +LMAN2L,Cytosol,-0.306805852 +RTKN,Cytosol,0.196442777 +PIKFYVE,Cytosol,0.460973036 +FAHD2A,Cytosol,-0.551517739 +SLC35F5,Cytosol,-0.633922233 +STEAP3,Cytosol,-0.164860959 +EPB41L5,Cytosol,0.862138807 +GPD2,Cytosol,0.11582255 +ACVR1,Cytosol,-0.234483553 +MPV17,Cytosol,-0.605361433 +TTC31,Cytosol,0.093351717 +NDUFS7,Cytosol,-0.985503643 +SPTBN1,Cytosol,0.658041717 +CCDC88A,Cytosol,0.38526059 +FN1,Cytosol,-0.116118334 +ELMOD3,Cytosol,0.460570435 +IGFBP5,Cytosol,0.656121242 +USP34,Cytosol,0.285605873 +GGCX,Cytosol,-0.250033567 +CHST10,Cytosol,0.321432505 +MOB4,Cytosol,-0.461298519 +UXS1,Cytosol,-0.38372038 +PASK,Cytosol,0.090647 +TAF1B,Cytosol,-0.176553395 +DCAF17,Cytosol,0.329544714 +SDC1,Cytosol,0.531439919 +SLC1A4,Cytosol,-0.470198683 +SOS1,Cytosol,0.233737787 +WIPF1,Cytosol,0.668944572 +THADA,Cytosol,0.089964798 +TRAK2,Cytosol,0.752822082 +TIA1,Cytosol,-0.07655114 +PCYOX1,Cytosol,-0.28358398 +ARID3A,Cytosol,0.991476944 +EPHA4,Cytosol,-0.384637674 +ALMS1,Cytosol,0.557752985 +BCL9,Cytosol,0.725405935 +DHCR24,Cytosol,-0.04242983 +DNAJC16,Cytosol,-0.47345261 +RALGPS2,Cytosol,0.56374555 +CEP104,Cytosol,0.187692563 +FAM20B,Cytosol,0.442698583 +TCEANC2,Cytosol,0.564077575 +WRAP73,Cytosol,-0.438777936 +ICMT,Cytosol,0.31784728 +QSOX1,Cytosol,-0.343964464 +AMPD2,Cytosol,-0.165142671 +EDEM3,Cytosol,-0.071938588 +RAP1A,Cytosol,-0.314340815 +S100PBP,Cytosol,0.333961848 +ASH1L,Cytosol,0.503784194 +SFPQ,Cytosol,-0.161327526 +MEF2D,Cytosol,0.532159933 +C1orf21,Cytosol,0.306928313 +LEPR,Cytosol,-0.399836866 +IVNS1ABP,Cytosol,0.109881755 +KIAA2013,Cytosol,0.081447439 +MIIP,Cytosol,-0.575883773 +SLC35D1,Cytosol,0.386256192 +WLS,Cytosol,-0.925725512 +PRDM2,Cytosol,0.414262622 +TROVE2,Cytosol,0.283433772 +SRSF11,Cytosol,-0.592018005 +PHTF1,Cytosol,0.095601555 +TMEM9,Cytosol,-0.393836118 +EXOC8,Cytosol,0.003149989 +NID1,Cytosol,-0.414532687 +MTR,Cytosol,0.559780621 +BMP8B,Cytosol,0.226819371 +RIMS3,Cytosol,0.360271507 +AKT3,Cytosol,0.519669373 +ETV3,Cytosol,0.579684142 +LPHN2,Cytosol,-0.138587876 +RBBP5,Cytosol,0.652242218 +ECE1,Cytosol,0.209322252 +CD46,Cytosol,-0.872291871 +APH1A,Cytosol,0.197143686 +LEPRE1,Cytosol,-1.03420288 +SLC2A1,Cytosol,-0.844286527 +SLC19A2,Cytosol,-0.484921682 +NSUN4,Cytosol,0.115732543 +TMED5,Cytosol,-0.491083662 +DR1,Cytosol,-0.236661609 +PTBP2,Cytosol,-0.623336465 +DARS2,Cytosol,0.120232023 +DIEXF,Cytosol,-0.109582226 +RCAN3,Cytosol,0.745231813 +C1orf63,Cytosol,-1.325485914 +SLC35A3,Cytosol,-0.431122 +RCOR3,Cytosol,-0.167818566 +ARID1A,Cytosol,0.686332147 +CENPF,Cytosol,0.561576679 +ESYT2,Cytosol,-0.176110812 +CD3EAP,Cytosol,1.01197511 +MESDC2,Cytosol,-0.380826534 +CTSD,Cytosol,-0.465079827 +STK11,Cytosol,0.389564453 +KMT2A,Cytosol,0.245247188 +KPTN,Cytosol,-0.446808077 +KIF14,Cytosol,0.72587486 +ATF6,Cytosol,-0.231308898 +FASTKD2,Cytosol,-0.618375741 +NRP2,Cytosol,-0.009186997 +CREB1,Cytosol,0.477913389 +B4GALT6,Cytosol,-0.176432812 +ELOVL4,Cytosol,-0.450924968 +CASP8AP2,Cytosol,0.309563037 +PHF3,Cytosol,0.563815241 +PLAGL1,Cytosol,-0.286672402 +FBXO30,Cytosol,0.209359035 +TMEM5,Cytosol,-0.646648529 +ZNF430,Cytosol,0.203658324 +DCLRE1B,Cytosol,0.580905693 +PKD2,Cytosol,-0.002598217 +UBN1,Cytosol,0.771414755 +KLF12,Cytosol,0.459280084 +WDR35,Cytosol,0.20322548 +CCND2,Cytosol,-0.223429028 +SATB2,Cytosol,0.333120533 +SENP5,Cytosol,0.45461916 +C1orf198,Cytosol,0.931916162 +HEATR1,Cytosol,0.28740301 +PTBP3,Cytosol,0.661564024 +FAM206A,Cytosol,-0.613816674 +RBM18,Cytosol,0.23115548 +MAPKAP1,Cytosol,0.313737722 +KDSR,Cytosol,-0.223842373 +ONECUT2,Cytosol,0.132915107 +IRF2BPL,Cytosol,0.502147474 +AREL1,Cytosol,0.012483153 +ABCD4,Cytosol,-0.385729413 +RBM25,Cytosol,0.167665491 +NRDE2,Cytosol,0.206211332 +KLHL29,Cytosol,-0.031181105 +DNMT3A,Cytosol,0.261728247 +ATAD2B,Cytosol,0.637040072 +ATL2,Cytosol,0.010472932 +YIPF4,Cytosol,-0.147368349 +AFTPH,Cytosol,0.618481098 +BCL11A,Cytosol,0.033100415 +SLC17A5,Cytosol,-0.096368138 +FAM178A,Cytosol,0.509394899 +GPAM,Cytosol,0.041429073 +HELLS,Cytosol,0.108011768 +TCTN3,Cytosol,-0.591807159 +C10orf76,Cytosol,0.946710868 +HOXB8,Cytosol,0.473543362 +HOXB3,Cytosol,-0.628895345 +PANK3,Cytosol,0.05869723 +NUP43,Cytosol,0.584521102 +LRP11,Cytosol,-0.325838117 +MASTL,Cytosol,0.193129896 +ELF1,Cytosol,0.538252251 +EGR1,Cytosol,1.050309042 +NR2C1,Cytosol,-0.70431831 +MTERFD3,Cytosol,-0.536000441 +CLU,Cytosol,-0.988804093 +TNFRSF10B,Cytosol,0.218198703 +TARDBP,Cytosol,0.234757042 +CRISPLD1,Cytosol,-0.688476323 +AKAP1,Cytosol,-0.270665798 +TRIM25,Cytosol,0.723500632 +KIAA0922,Cytosol,-0.468288761 +PAPD5,Cytosol,0.194484854 +CEP89,Cytosol,0.643053673 +B4GALT4,Cytosol,-0.116756568 +KIF18A,Cytosol,0.10909086 +CRY2,Cytosol,0.222035569 +ZNF639,Cytosol,-0.643358077 +PDS5A,Cytosol,0.376632769 +CLCC1,Cytosol,-0.120747613 +ACVR2A,Cytosol,-0.449014915 +RPL21,Cytosol,-1.231637487 +MTERFD2,Cytosol,-0.345424444 +KIAA1191,Cytosol,0.515690625 +RBBP6,Cytosol,0.246380372 +ZC3H7A,Cytosol,0.207476825 +FAM35A,Cytosol,0.093196788 +FAM213A,Cytosol,0.007709792 +ODF2L,Cytosol,-0.33428929 +TRMT13,Cytosol,-0.138185867 +RPAP2,Cytosol,-0.045141926 +FAM126A,Cytosol,0.609110081 +FKBP9,Cytosol,0.13670567 +POLM,Cytosol,-0.316572968 +SLC25A51,Cytosol,0.234173997 +DCAF10,Cytosol,0.182995483 +KIAA1549,Cytosol,-0.036391351 +CALD1,Cytosol,0.801024243 +CHST3,Cytosol,0.712961192 +P4HA1,Cytosol,-0.570545741 +RBM19,Cytosol,0.529734941 +GIPC1,Cytosol,0.236857773 +ATP7B,Cytosol,-0.01501278 +ZC3H13,Cytosol,0.293572596 +NLN,Cytosol,0.707510091 +CENPK,Cytosol,-0.721224033 +OPTN,Cytosol,0.726340612 +SPATS2,Cytosol,0.42621354 +LRP1,Cytosol,-0.124211801 +HJURP,Cytosol,0.186222453 +USP45,Cytosol,-0.2460131 +SLC36A1,Cytosol,0.080638245 +LPGAT1,Cytosol,0.283845865 +EXOSC9,Cytosol,-0.810713068 +PLA2G12A,Cytosol,0.149920658 +ADCK4,Cytosol,-0.059077082 +PFKFB2,Cytosol,0.414318494 +AGO2,Cytosol,0.197400808 +MXD4,Cytosol,0.40187191 +ACSL3,Cytosol,-0.917488225 +SLC12A4,Cytosol,-0.031106922 +FAM210B,Cytosol,0.373001114 +SDC4,Cytosol,0.543367084 +NCOA3,Cytosol,0.542452947 +PIGT,Cytosol,-0.488173549 +VAPB,Cytosol,0.681062776 +CHD6,Cytosol,0.133777721 +SRSF6,Cytosol,0.075808719 +RAB22A,Cytosol,0.297483284 +STX16,Cytosol,0.414717532 +STAMBP,Cytosol,-0.049169385 +NAGK,Cytosol,-0.338390272 +PAIP2B,Cytosol,0.557332671 +ATP8A1,Cytosol,-0.209092406 +BTN2A2,Cytosol,-0.137458746 +ABCC10,Cytosol,-0.290083448 +AARS2,Cytosol,-0.280999321 +ZNF391,Cytosol,0.227896181 +CDKN1A,Cytosol,0.618401632 +SSR1,Cytosol,-0.450185356 +NRN1,Cytosol,-0.041909544 +ATXN1,Cytosol,0.176694479 +EEF1E1,Cytosol,-0.976843951 +LRRFIP1,Cytosol,0.112334489 +AHNAK,Cytosol,0.776476827 +ABCC4,Cytosol,-0.511154834 +EFNB2,Cytosol,0.291130599 +ATP5S,Cytosol,0.107772341 +FAM193A,Cytosol,0.487036622 +GGA3,Cytosol,0.104483481 +GTF3C4,Cytosol,0.466887238 +PPP1R12C,Cytosol,0.157584117 +MBOAT7,Cytosol,-0.175254705 +CCDC93,Cytosol,0.536910492 +THOC2,Cytosol,0.478566713 +MED1,Cytosol,0.712002633 +GPR108,Cytosol,0.064056443 +GPCPD1,Cytosol,0.306264371 +PANK2,Cytosol,-0.255409883 +NAPB,Cytosol,0.243444001 +TMX4,Cytosol,0.148093167 +RRBP1,Cytosol,-0.045550354 +ZNF133,Cytosol,-0.330143922 +MCM8,Cytosol,0.275990989 +NCLN,Cytosol,-0.052743864 +ZNF436,Cytosol,0.438073565 +AMOT,Cytosol,0.418992253 +TMEM115,Cytosol,0.069613135 +AGO3,Cytosol,0.247816009 +HECTD3,Cytosol,0.752880771 +KLC1,Cytosol,0.402799774 +XRCC3,Cytosol,0.24982427 +TUBGCP3,Cytosol,0.064163805 +PCID2,Cytosol,-0.783750412 +FRMD8,Cytosol,0.751005561 +PCNXL4,Cytosol,0.054083439 +ATG14,Cytosol,-0.329368062 +KTN1,Cytosol,0.01195932 +PLEKHG3,Cytosol,0.522855259 +WDR60,Cytosol,0.2996545 +AIF1L,Cytosol,0.794099638 +SLC10A3,Cytosol,0.337075663 +CANX,Cytosol,-0.393348856 +CPSF3L,Cytosol,-0.299454112 +TRAF2,Cytosol,0.42510114 +HELB,Cytosol,-0.017374357 +DYRK2,Cytosol,0.342116561 +LRRC61,Cytosol,0.436893147 +FGFRL1,Cytosol,-0.052695772 +EMC1,Cytosol,-0.577546973 +HP1BP3,Cytosol,0.170255312 +SIN3B,Cytosol,0.39754778 +SLC35E1,Cytosol,0.581343121 +GFER,Cytosol,0.604801567 +PKMYT1,Cytosol,-0.513332472 +CHTF18,Cytosol,-0.537917371 +MACF1,Cytosol,0.387308173 +RNF6,Cytosol,-0.004308116 +AKAP9,Cytosol,-0.072745473 +HIP1,Cytosol,0.841170623 +POR,Cytosol,-0.730513774 +PEX1,Cytosol,0.192908074 +LRFN1,Cytosol,0.123335516 +SRD5A3,Cytosol,-0.653921952 +PPAT,Cytosol,0.194996929 +TUBGCP6,Cytosol,-0.352125292 +DGCR8,Cytosol,0.250510935 +TPST2,Cytosol,-0.192869894 +MPST,Cytosol,-0.336550226 +SPECC1,Cytosol,0.295035577 +NAA38,Cytosol,-0.981912278 +PRKRIP1,Cytosol,0.370288834 +PODXL,Cytosol,-0.062949034 +STRIP2,Cytosol,0.243850627 +MKLN1,Cytosol,0.13581035 +CALU,Cytosol,-0.146870927 +CCDC136,Cytosol,0.244061037 +SMO,Cytosol,0.32702299 +KLHDC10,Cytosol,0.54830242 +OSGEPL1,Cytosol,-0.616752434 +HOXD10,Cytosol,0.510724474 +HOXD11,Cytosol,0.244403534 +HERC2,Cytosol,0.331688993 +TWSG1,Cytosol,-0.357269764 +MYO5C,Cytosol,0.679706204 +TMOD2,Cytosol,0.332742098 +TTBK2,Cytosol,0.38432921 +IVD,Cytosol,0.56587682 +CLN6,Cytosol,-0.26508111 +ARPP19,Cytosol,0.552047974 +VPS13C,Cytosol,0.24849473 +SUMF2,Cytosol,-0.236034642 +SPCS3,Cytosol,-0.17473408 +RPAIN,Cytosol,-1.08259032 +PLD2,Cytosol,0.278259448 +MPDU1,Cytosol,-0.080763382 +CCNT1,Cytosol,0.277479162 +PUS7L,Cytosol,0.350413282 +KRI1,Cytosol,0.290565142 +SLC44A2,Cytosol,-0.045307654 +BCL2L2,Cytosol,0.300727147 +PARP2,Cytosol,-0.140093591 +TEP1,Cytosol,0.161679563 +MAP7D3,Cytosol,-0.243691166 +ABHD17A,Cytosol,-0.367422186 +ERMARD,Cytosol,-0.933249166 +SAT1,Cytosol,-0.930194229 +GNL3L,Cytosol,0.7536638 +SH3BP4,Cytosol,0.467180791 +LDLR,Cytosol,-0.771813459 +PRKCSH,Cytosol,-0.606535559 +THEM6,Cytosol,0.115765242 +PVRL2,Cytosol,-0.229360941 +SAFB2,Cytosol,0.121001745 +KIF1A,Cytosol,0.304787597 +COLGALT1,Cytosol,-0.287074722 +MLLT1,Cytosol,0.937989252 +MLLT4,Cytosol,0.445798652 +ACTN4,Cytosol,0.816293937 +NDUFA10,Cytosol,-0.32581087 +ZSWIM6,Cytosol,0.157594695 +PXDN,Cytosol,0.133445266 +COL5A1,Cytosol,0.249731788 +ZNF337,Cytosol,-0.072321157 +TAF4,Cytosol,0.029954624 +LAMA5,Cytosol,-0.513112145 +EXOSC2,Cytosol,-0.136019089 +POMT1,Cytosol,-0.487470712 +PRRC2B,Cytosol,0.689117115 +YIPF2,Cytosol,0.26079698 +ZC3H4,Cytosol,0.862197733 +CLIP1,Cytosol,0.28347428 +HIP1R,Cytosol,0.443525177 +PPAN,Cytosol,0.214898086 +SLC6A8,Cytosol,-0.067566874 +PLXNA3,Cytosol,-0.090347948 +PRRG1,Cytosol,0.175167332 +AKAP12,Cytosol,0.52607157 +RBM39,Cytosol,-0.628566173 +GGT7,Cytosol,-0.647251374 +PPT1,Cytosol,-0.786207499 +RLIM,Cytosol,0.330910358 +ABCB7,Cytosol,-0.302442713 +MRPS25,Cytosol,-0.51718388 +CAPN7,Cytosol,-0.150743116 +ZFYVE20,Cytosol,0.288266697 +SLC6A6,Cytosol,-0.400562667 +MGAT1,Cytosol,0.418331032 +PSMC3IP,Cytosol,-0.222398562 +DIAPH1,Cytosol,0.526645953 +NDFIP1,Cytosol,-0.481972071 +ACAP3,Cytosol,-0.07908953 +C1orf159,Cytosol,-0.226767811 +MAP1B,Cytosol,0.901931074 +IL13RA1,Cytosol,-0.017743664 +WDR44,Cytosol,0.244595875 +PRKAB2,Cytosol,0.318819336 +CLUHP3,Cytosol,-0.395857965 +CHSY1,Cytosol,0.024799606 +SNRPA1,Cytosol,-0.9736037 +FBXW9,Cytosol,-0.661458838 +RFX1,Cytosol,-0.197453411 +CC2D1A,Cytosol,0.474419043 +NUP210,Cytosol,-0.412297152 +ENOSF1,Cytosol,-0.76029392 +EMILIN2,Cytosol,0.434914394 +PRKAA1,Cytosol,0.216894742 +PNISR,Cytosol,-0.379029313 +ZRANB2,Cytosol,-0.313066794 +KDM6B,Cytosol,0.418553898 +GPS2,Cytosol,-0.351649407 +VPS13B,Cytosol,0.401433102 +REEP2,Cytosol,0.681858823 +PRMT7,Cytosol,-0.21197902 +PCED1A,Cytosol,-0.173288244 +PTPRA,Cytosol,-0.247099865 +KIAA0907,Cytosol,-0.477059812 +DCAF8,Cytosol,-0.016907507 +IGHMBP2,Cytosol,0.35107031 +LPIN3,Cytosol,-0.028227625 +SERINC3,Cytosol,-0.13947721 +FBXO44,Cytosol,0.516128281 +USPL1,Cytosol,0.266579715 +XPO4,Cytosol,0.13397736 +SCO1,Cytosol,-0.047340267 +MPRIP,Cytosol,0.610884129 +DSTYK,Cytosol,0.75773294 +SLC41A1,Cytosol,0.090371806 +GPALPP1,Cytosol,0.043158505 +IRS4,Cytosol,0.316160522 +FAM104A,Cytosol,0.450533375 +SLC39A11,Cytosol,-0.041335474 +EPHB2,Cytosol,0.042283745 +SRRM1,Cytosol,0.278583009 +SUV420H2,Cytosol,0.589388479 +WDR74,Cytosol,-0.65505097 +RTN3,Cytosol,-0.281890327 +MORC2,Cytosol,0.704630021 +LARGE,Cytosol,0.266173279 +ADCK2,Cytosol,0.112236111 +AGAP3,Cytosol,0.1182404 +KRBA1,Cytosol,0.344555925 +ZNF767,Cytosol,-0.5180155 +ATP13A3,Cytosol,-0.128144617 +TMEM254,Cytosol,-0.586712976 +TMTC1,Cytosol,0.133730212 +KRAS,Cytosol,0.348799236 +SWAP70,Cytosol,0.551290171 +ZFC3H1,Cytosol,0.250892898 +TEX15,Cytosol,0.267159026 +CTIF,Cytosol,0.617182561 +VHL,Cytosol,0.725829658 +ARL8B,Cytosol,-0.131603033 +EDEM1,Cytosol,-0.222898308 +PRPF38B,Cytosol,-0.071984485 +SORT1,Cytosol,0.19435539 +PTGFRN,Cytosol,0.279650706 +NOTCH2,Cytosol,-0.28002148 +CEPT1,Cytosol,-1.097946355 +AP4B1,Cytosol,-0.604612474 +SPIRE1,Cytosol,0.36649795 +SLC38A2,Cytosol,-0.909451963 +KIDINS220,Cytosol,0.109523932 +ROCK2,Cytosol,0.7332221 +LPIN1,Cytosol,0.253484174 +IL6ST,Cytosol,0.062130963 +TMEM241,Cytosol,0.197391334 +LRP4,Cytosol,-0.042497846 +DDB2,Cytosol,0.016365891 +ACP2,Cytosol,-0.414515309 +AGO4,Cytosol,0.309508198 +HOOK1,Cytosol,0.007372097 +DSC2,Cytosol,-0.083577342 +DSC3,Cytosol,0.197861265 +DTNA,Cytosol,0.265504534 +FHOD3,Cytosol,0.224221894 +FADS2,Cytosol,0.23960236 +CLOCK,Cytosol,0.340179626 +COL4A2,Cytosol,-0.497169789 +DZIP1,Cytosol,0.241326424 +UBAC2,Cytosol,-0.28218027 +ARGLU1,Cytosol,-0.557944196 +BIVM,Cytosol,0.019014829 +ARHGAP32,Cytosol,0.60934549 +TMED7,Cytosol,-0.791133633 +APC,Cytosol,0.596049663 +WDR36,Cytosol,0.12074036 +NAA35,Cytosol,-0.047701516 +TMEM2,Cytosol,-0.209977761 +GOLM1,Cytosol,-0.052713659 +TAOK3,Cytosol,0.84060824 +DMTF1,Cytosol,-0.198672096 +TMEM243,Cytosol,-1.164246662 +PNPLA8,Cytosol,-0.022176508 +MDFIC,Cytosol,0.172046022 +ANKRD6,Cytosol,0.151766365 +KIAA1009,Cytosol,0.657498289 +SNX14,Cytosol,-0.834771864 +EPHA7,Cytosol,-0.12695159 +DNAJC14,Cytosol,0.278166814 +GDF11,Cytosol,0.466939306 +TROAP,Cytosol,-0.417197346 +TSPAN31,Cytosol,-0.363824773 +TFCP2,Cytosol,0.41184428 +PAN2,Cytosol,-0.277816261 +HNRNPA1,Cytosol,-0.874266016 +ACVR1B,Cytosol,0.399451383 +OS9,Cytosol,-0.410350193 +MAP7,Cytosol,-0.1347163 +CD164,Cytosol,-0.836560223 +NHSL1,Cytosol,0.06771217 +AHI1,Cytosol,0.102521532 +SEMA4F,Cytosol,0.008306818 +RAB11FIP5,Cytosol,0.666105932 +CCDC142,Cytosol,0.372362394 +GNS,Cytosol,-0.293409432 +MDM2,Cytosol,0.757190721 +KLHL36,Cytosol,0.318801102 +DYNC1LI2,Cytosol,0.442786015 +EGLN1,Cytosol,0.067875333 +ABCB10,Cytosol,-0.950673954 +TAF5L,Cytosol,0.574180523 +STX6,Cytosol,0.536698977 +CEP350,Cytosol,0.151535353 +LAMC1,Cytosol,-0.232879353 +RC3H1,Cytosol,0.373810475 +TTLL4,Cytosol,0.262825422 +USP37,Cytosol,0.259406604 +ITM2C,Cytosol,0.288642472 +SERPINE2,Cytosol,-0.490087199 +TMEM127,Cytosol,0.635765749 +GCC2,Cytosol,0.436349436 +C2orf49,Cytosol,0.13128847 +EPC2,Cytosol,0.32719935 +ARHGEF4,Cytosol,-0.203760924 +ALDH1L2,Cytosol,-0.12954531 +CKAP4,Cytosol,-0.193021475 +NEK3,Cytosol,-0.20789238 +RCBTB1,Cytosol,-0.192542026 +COG3,Cytosol,0.170075673 +SCRN1,Cytosol,0.938561721 +CHST12,Cytosol,0.177969723 +KDELR2,Cytosol,-0.318063572 +NUPL2,Cytosol,-0.577425494 +DBNL,Cytosol,0.279611949 +TTYH3,Cytosol,0.327915365 +IREB2,Cytosol,0.302448842 +RSAD1,Cytosol,0.348948125 +VEZF1,Cytosol,0.370105988 +TEX2,Cytosol,0.05378932 +BRIP1,Cytosol,0.281676242 +SKIL,Cytosol,0.427479056 +RPS6KC1,Cytosol,0.288560284 +BIN1,Cytosol,0.069346714 +HS6ST1,Cytosol,1.007161477 +UGGT1,Cytosol,0.019279204 +DNAJC1,Cytosol,-0.641134904 +LRRC8A,Cytosol,0.345501646 +CDK9,Cytosol,0.017588403 +TOR1B,Cytosol,-0.27397135 +SMC2,Cytosol,0.326403397 +TOR1A,Cytosol,-0.406486844 +RALGPS1,Cytosol,0.233894113 +FAM129B,Cytosol,0.893229037 +SLC2A8,Cytosol,-0.687387281 +SLC31A1,Cytosol,0.054741388 +ZNF189,Cytosol,0.087003817 +STX17,Cytosol,0.654405238 +TSTD2,Cytosol,0.04285607 +LMX1B,Cytosol,0.549580106 +RANBP6,Cytosol,-0.028867012 +TLN1,Cytosol,0.788911578 +ALDH1B1,Cytosol,0.121338081 +CNPY3,Cytosol,0.138605034 +TMEM63B,Cytosol,0.128642282 +TJAP1,Cytosol,0.010897986 +SLC22A23,Cytosol,0.473486061 +FOXF2,Cytosol,-0.068209348 +RIPK1,Cytosol,0.809854304 +ATAT1,Cytosol,-0.021068544 +NRM,Cytosol,-0.25580436 +VARS2,Cytosol,-0.245205851 +FAM8A1,Cytosol,-0.083509743 +PRKRIR,Cytosol,0.087767472 +CREBZF,Cytosol,-0.904692315 +PRCP,Cytosol,-0.878437502 +RNF121,Cytosol,-0.133734554 +SULF1,Cytosol,-0.666602447 +SORL1,Cytosol,-0.437009901 +YAP1,Cytosol,0.496982459 +RDX,Cytosol,0.754720375 +MAP2K5,Cytosol,0.086968483 +MAPKBP1,Cytosol,0.211706884 +CASC5,Cytosol,0.445154719 +HAUS2,Cytosol,0.736723381 +PARP6,Cytosol,-0.546039977 +TUBGCP4,Cytosol,0.409539595 +RMDN3,Cytosol,-0.275362005 +UACA,Cytosol,0.516257524 +SMAD6,Cytosol,0.842226012 +ADAM10,Cytosol,-0.325401829 +TTLL7,Cytosol,0.107611774 +FNBP1L,Cytosol,0.746279436 +RABGGTB,Cytosol,-1.218171366 +ARHGAP29,Cytosol,0.193870846 +SLC44A5,Cytosol,-0.228726142 +DBT,Cytosol,0.678715565 +EPT1,Cytosol,-0.162880374 +ADCY3,Cytosol,-0.215489507 +PNPT1,Cytosol,-0.072624091 +THUMPD2,Cytosol,-0.968754658 +PREPL,Cytosol,0.469414395 +ACTR1A,Cytosol,0.783422938 +TMEM180,Cytosol,-0.088710634 +ATAD1,Cytosol,-0.354216586 +KIF20B,Cytosol,0.447641163 +TET1,Cytosol,0.26796224 +DNA2,Cytosol,0.213644715 +BARD1,Cytosol,0.20174626 +NAB1,Cytosol,0.031293349 +PPIG,Cytosol,0.162795664 +FASTKD1,Cytosol,-0.087366656 +SSFA2,Cytosol,0.011402609 +ITGAV,Cytosol,0.056542714 +SLC35A5,Cytosol,-0.599075988 +SECISBP2L,Cytosol,0.719679491 +SPPL2A,Cytosol,-0.068884211 +GLCE,Cytosol,-0.261553439 +PPCDC,Cytosol,-0.320146564 +PCDH10,Cytosol,-0.020374099 +AP1AR,Cytosol,-0.702377568 +FGF2,Cytosol,-0.209799563 +KIAA1109,Cytosol,-0.244771367 +LARP1B,Cytosol,0.069955258 +BMP2K,Cytosol,0.438620609 +FRAS1,Cytosol,0.069730955 +SCARB2,Cytosol,0.071613624 +USO1,Cytosol,0.13674644 +CENPE,Cytosol,0.746627539 +GSTCD,Cytosol,0.73585416 +LEF1,Cytosol,0.367622602 +PPP3CA,Cytosol,0.336969525 +FBN2,Cytosol,-0.286786746 +MAPK8IP3,Cytosol,-0.501430748 +B4GALNT3,Cytosol,0.164441531 +AEBP2,Cytosol,-0.38655954 +ETNK1,Cytosol,0.023843282 +CLSTN3,Cytosol,-0.203476483 +SCAF11,Cytosol,0.425967775 +COL2A1,Cytosol,-0.327898316 +LRIG3,Cytosol,-0.962898849 +TMEM19,Cytosol,-0.425505761 +POC1B,Cytosol,-0.192306746 +TMTC3,Cytosol,-0.033262378 +GAS2L3,Cytosol,0.715783761 +SLC15A4,Cytosol,-0.892296099 +TDG,Cytosol,0.248663594 +NUPL1,Cytosol,0.169693911 +MTMR6,Cytosol,0.329568206 +SLC7A1,Cytosol,-0.019011977 +BRCA2,Cytosol,0.263953131 +CERS5,Cytosol,-0.728117609 +ESYT1,Cytosol,-0.438436254 +TMBIM6,Cytosol,0.086653111 +ANKRD52,Cytosol,0.733506586 +ZNF740,Cytosol,0.451860784 +HNRNPA1L2,Cytosol,-0.077894899 +SBNO1,Cytosol,0.44078494 +SETD1B,Cytosol,0.244307123 +RBM26,Cytosol,0.177043521 +ZIC5,Cytosol,-0.15110035 +TMX1,Cytosol,-0.997170045 +NAA30,Cytosol,-0.039083702 +DCAF5,Cytosol,0.800131958 +RAB15,Cytosol,0.759518448 +NIPA2,Cytosol,-0.138469543 +ZSCAN29,Cytosol,0.52382326 +BNIP2,Cytosol,-0.069120834 +MAN2C1,Cytosol,-0.630308335 +MESDC1,Cytosol,0.616681456 +IGF1R,Cytosol,0.246185369 +ARRDC4,Cytosol,0.49732024 +PML,Cytosol,0.366164658 +LINS,Cytosol,-0.273084507 +PCSK6,Cytosol,-0.082261792 +SCAMP2,Cytosol,-0.095835912 +POLG,Cytosol,0.012143416 +ABHD2,Cytosol,0.27662357 +TICRR,Cytosol,0.341279 +MFGE8,Cytosol,-0.45355814 +FURIN,Cytosol,0.349648415 +IQGAP1,Cytosol,0.760018392 +CRTC3,Cytosol,0.36699882 +FTO,Cytosol,0.855992087 +MBTPS1,Cytosol,-0.088210999 +RHOT2,Cytosol,-0.208775666 +PDPK1,Cytosol,0.851020943 +TCF25,Cytosol,0.244088137 +GALNS,Cytosol,-0.105279828 +GAS8,Cytosol,0.538312138 +MED9,Cytosol,0.829114718 +GID4,Cytosol,0.379200482 +KSR1,Cytosol,0.530959556 +SGSM2,Cytosol,0.133943669 +SSH2,Cytosol,0.364649464 +PTRH2,Cytosol,-1.046542925 +SS18,Cytosol,0.523299312 +SLC39A6,Cytosol,-0.246796101 +GALNT1,Cytosol,-0.661511563 +ESCO1,Cytosol,0.169265349 +GREB1L,Cytosol,0.430824644 +NPC1,Cytosol,-0.872225083 +MINK1,Cytosol,0.214285204 +TTYH2,Cytosol,-0.168433505 +CSNK1D,Cytosol,0.494302735 +FOXK2,Cytosol,0.607227523 +TRIM65,Cytosol,0.52516756 +RNF157,Cytosol,0.532812628 +CBX4,Cytosol,0.069583455 +MBD1,Cytosol,0.163376179 +ZCCHC2,Cytosol,0.412188593 +LEPREL4,Cytosol,-0.124996453 +FAM134C,Cytosol,0.198199415 +ERBB2,Cytosol,0.172782033 +FKBP10,Cytosol,-0.332173812 +PRDM15,Cytosol,0.30885735 +DUS3L,Cytosol,-0.443142088 +ATHL1,Cytosol,-0.624073303 +COL6A1,Cytosol,-0.743099037 +IFNAR1,Cytosol,-0.214280266 +COL6A2,Cytosol,-0.368431767 +TMEM50B,Cytosol,-0.416293536 +APP,Cytosol,-0.477260159 +URB1,Cytosol,0.192321828 +CAPN10,Cytosol,0.1508935 +ERVK3-1,Cytosol,-0.366020807 +SLC47A1,Cytosol,-0.549315241 +RERE,Cytosol,0.321881216 +EPHA2,Cytosol,0.022148091 +KIAA0319L,Cytosol,0.001621497 +PLK4,Cytosol,-0.619922152 +GPN2,Cytosol,0.05940763 +PIGK,Cytosol,-0.667248571 +PTPRF,Cytosol,-0.167069858 +SYPL2,Cytosol,0.208585487 +IGSF3,Cytosol,0.029237432 +CELSR2,Cytosol,0.180440414 +ATP1B1,Cytosol,-0.617865171 +CREG1,Cytosol,-0.405880223 +POU2F1,Cytosol,0.691784027 +PPOX,Cytosol,-0.488453393 +USP21,Cytosol,-0.006249028 +PIGM,Cytosol,0.239115469 +ABL2,Cytosol,0.352509306 +XPR1,Cytosol,-0.09858914 +TOR1AIP1,Cytosol,-0.432837674 +TUFT1,Cytosol,1.272471592 +TARS2,Cytosol,0.012616611 +CERS2,Cytosol,-0.526413555 +SEMA6C,Cytosol,-0.137151064 +ATP8B2,Cytosol,0.275626434 +ADAM15,Cytosol,-0.574218212 +SLC39A1,Cytosol,-0.335022582 +GATAD2B,Cytosol,0.399691961 +HCN3,Cytosol,-0.566021272 +GALNT2,Cytosol,0.17894552 +TTC13,Cytosol,-0.750979336 +MLK4,Cytosol,0.279978167 +CEP170,Cytosol,0.654029107 +SDE2,Cytosol,0.626636932 +FBXO28,Cytosol,0.020832072 +CDC42BPA,Cytosol,0.692290152 +MBOAT2,Cytosol,0.00525518 +PSEN2,Cytosol,-0.030564963 +LBR,Cytosol,-0.440544459 +RHOB,Cytosol,0.234514129 +ASXL2,Cytosol,0.486167913 +ETAA1,Cytosol,-0.020481935 +ZNF514,Cytosol,-0.020601027 +SFXN5,Cytosol,0.857697977 +TEX261,Cytosol,0.313054173 +RALB,Cytosol,0.866080267 +SLC20A1,Cytosol,-0.330592684 +ZC3H8,Cytosol,0.079074602 +UBXN4,Cytosol,0.03059265 +AMMECR1L,Cytosol,0.508427678 +GALNT13,Cytosol,-0.343072981 +SCRN3,Cytosol,0.301175358 +KIAA1715,Cytosol,-0.003858295 +CDCA7,Cytosol,-0.223795046 +DLX1,Cytosol,0.257503695 +GULP1,Cytosol,-0.612006927 +FAM171B,Cytosol,-0.220394997 +CCDC150,Cytosol,-0.890176533 +SUMF1,Cytosol,-0.609943309 +RHBDD1,Cytosol,0.442970218 +FAM134A,Cytosol,0.351761255 +CTDSP1,Cytosol,0.808990515 +EAF1,Cytosol,0.692151325 +GOLGA4,Cytosol,0.08678385 +IQSEC1,Cytosol,0.334712756 +PTPRG,Cytosol,0.306516094 +IL17RD,Cytosol,0.088293901 +ARL6IP5,Cytosol,-0.568412424 +TMF1,Cytosol,0.402144279 +LRIG1,Cytosol,-0.045849278 +LIMD1,Cytosol,0.466462961 +NXPE3,Cytosol,0.394746372 +SRPRB,Cytosol,-0.523612023 +TCTA,Cytosol,0.392290183 +VPRBP,Cytosol,0.470174337 +SLIT2,Cytosol,0.272230171 +DGKQ,Cytosol,-0.336136974 +ATP10D,Cytosol,-0.345564134 +SCD5,Cytosol,-0.030366111 +ENOPH1,Cytosol,-0.127380471 +TRMT10A,Cytosol,0.101968997 +KLHL8,Cytosol,0.511085141 +USP53,Cytosol,0.349638019 +MARCH6,Cytosol,-0.433068314 +FAM105A,Cytosol,-0.294297941 +PIK3R1,Cytosol,0.714759748 +LHFPL2,Cytosol,0.345413276 +IQGAP2,Cytosol,0.656144238 +PPIP5K2,Cytosol,0.301755312 +PAM,Cytosol,-0.512788797 +BDP1,Cytosol,0.422328909 +SLC30A5,Cytosol,-0.631485253 +ATG12,Cytosol,-0.10225956 +YIPF5,Cytosol,-0.418848182 +RNF145,Cytosol,0.158678227 +FBXO38,Cytosol,0.073704497 +PCYOX1L,Cytosol,-0.299685022 +TNIP1,Cytosol,0.512294194 +ZNF300,Cytosol,-0.035266078 +GFOD1,Cytosol,0.029410882 +TRIM41,Cytosol,0.396681096 +FAM193B,Cytosol,0.043133843 +RNF44,Cytosol,0.055331383 +MUT,Cytosol,-0.326703655 +PHIP,Cytosol,0.240415074 +MMS22L,Cytosol,0.048204206 +PM20D2,Cytosol,0.17205624 +RNF217,Cytosol,0.009717433 +AIG1,Cytosol,-0.674894596 +TMEM181,Cytosol,0.025822216 +SDK1,Cytosol,-0.008479419 +RBAK,Cytosol,0.176933668 +CREB5,Cytosol,0.227161803 +PURB,Cytosol,-0.30906354 +GBAS,Cytosol,-0.205613786 +ZNF92,Cytosol,-0.740536371 +TMEM168,Cytosol,-0.608972563 +C7orf43,Cytosol,-0.259099355 +SLC12A9,Cytosol,-0.358826326 +GIGYF1,Cytosol,-0.25118113 +TMEM209,Cytosol,-0.58193202 +NOM1,Cytosol,0.140997822 +SH3KBP1,Cytosol,0.575402876 +CASK,Cytosol,0.057766216 +SLC16A2,Cytosol,-0.248175589 +OGT,Cytosol,-0.306156262 +ZNF711,Cytosol,-0.316373826 +DIAPH2,Cytosol,0.550463262 +CXorf57,Cytosol,-0.280145907 +GPC3,Cytosol,-1.02602161 +BIN3,Cytosol,0.148328298 +SLC25A37,Cytosol,0.229404303 +CHMP7,Cytosol,0.221144187 +ERLIN2,Cytosol,-0.124741426 +TACC1,Cytosol,0.373352833 +WHSC1L1,Cytosol,0.304263161 +TERF1,Cytosol,-0.250984395 +MTDH,Cytosol,-0.386579262 +LRP12,Cytosol,-0.566561622 +EBAG9,Cytosol,-0.957529812 +UTP23,Cytosol,-0.488064788 +ZNF7,Cytosol,-0.158666661 +ARHGAP39,Cytosol,0.398874114 +NAPRT1,Cytosol,-0.543094906 +UHRF2,Cytosol,-0.510375654 +ZCCHC7,Cytosol,-0.160233272 +SIGMAR1,Cytosol,-0.466994241 +CEP78,Cytosol,0.135609446 +HIATL1,Cytosol,-0.287808553 +INIP,Cytosol,0.594008352 +UGCG,Cytosol,0.1042351 +STOM,Cytosol,-0.259945206 +MRRF,Cytosol,-0.501612853 +NR6A1,Cytosol,0.340392811 +SURF4,Cytosol,0.188867902 +MED22,Cytosol,0.886385205 +SH3GLB2,Cytosol,0.052727106 +FAM73B,Cytosol,-0.122026301 +GPR107,Cytosol,0.304638089 +C9orf142,Cytosol,-0.615999214 +INPP5E,Cytosol,-0.005621138 +DPH7,Cytosol,-0.298957289 +NOTCH1,Cytosol,-0.134987023 +NACC2,Cytosol,0.518811154 +USP6NL,Cytosol,0.298892544 +FAM171A1,Cytosol,0.195780371 +PARD3,Cytosol,0.410634334 +POLR3A,Cytosol,0.651887693 +FRA10AC1,Cytosol,-0.331121024 +ADD3,Cytosol,0.419471241 +DNAJB12,Cytosol,0.4849999219999999 +EIF4EBP2,Cytosol,0.424107871 +MKI67,Cytosol,0.67214927 +MTG1,Cytosol,-0.225124468 +PPRC1,Cytosol,0.167887656 +ITPRIP,Cytosol,0.427003769 +CNNM2,Cytosol,0.075354048 +PDCD11,Cytosol,0.216407722 +LIN7C,Cytosol,0.52195457 +DGKZ,Cytosol,0.160261264 +TNKS1BP1,Cytosol,0.73850356 +SLC43A1,Cytosol,-1.018388349 +PTPRJ,Cytosol,-0.264596583 +CELF1,Cytosol,0.483265778 +SESN3,Cytosol,0.403613063 +ENDOD1,Cytosol,0.040057115 +SERPINH1,Cytosol,-0.402439521 +NCAM1,Cytosol,-0.082555278 +NPAT,Cytosol,0.375142281 +ATM,Cytosol,0.284566679 +GLB1L2,Cytosol,-0.342348505 +HYOU1,Cytosol,-0.001722105 +DAK,Cytosol,0.210645618 +TMEM138,Cytosol,-0.301809913 +FADS1,Cytosol,0.102963657 +EML3,Cytosol,0.103194044 +B3GAT3,Cytosol,-0.12993756 +SIDT2,Cytosol,-0.13117898 +SOGA1,Cytosol,0.736436377 +LSM14B,Cytosol,0.534099468 +ORAOV1,Cytosol,0.211872907 +TAOK2,Cytosol,0.408078563 +ITGB1,Cytosol,-0.564491938 +ARID5B,Cytosol,0.672676086 +TMCO3,Cytosol,-0.114019362 +LATS2,Cytosol,0.069111753 +LPHN3,Cytosol,0.07985012 +PRSS23,Cytosol,0.300824167 +PIP4K2A,Cytosol,0.649616592 +FREM2,Cytosol,-0.151651543 +CRIM1,Cytosol,-0.043175179 +IPMK,Cytosol,0.367869374 +PLBD2,Cytosol,-0.131572838 +GXYLT1,Cytosol,0.055605318 +CSNK1G3,Cytosol,0.114498057 +MIPOL1,Cytosol,-0.251891819 +EXT2,Cytosol,-0.458436061 +TMEM18,Cytosol,-0.56899005 +NEK7,Cytosol,0.161807422 +FER,Cytosol,0.629576698 +VIPAS39,Cytosol,0.284519556 +ANKRD50,Cytosol,0.36868904 +UPF2,Cytosol,0.749842894 +EPS8,Cytosol,0.272796757 +FAM160B1,Cytosol,-0.049870063 +ADAM17,Cytosol,-0.263259375 +WWC2,Cytosol,0.504505814 +BICD1,Cytosol,0.105949663 +NBAS,Cytosol,0.376008265 +GUF1,Cytosol,-0.150477254 +SACS,Cytosol,0.081781023 +PABPC3,Cytosol,-0.369724606 +DST,Cytosol,0.541171759 +TIAL1,Cytosol,-0.209569965 +TMEM56,Cytosol,0.228219305 +FAM168B,Cytosol,0.753352681 +AC093838.4,Cytosol,-0.407137477 +MGAT5,Cytosol,0.404568018 +GPATCH11,Cytosol,0.72858671 +POU4F1,Cytosol,0.052174142 +RNF219,Cytosol,0.317773105 +EPG5,Cytosol,0.411116749 +C18orf25,Cytosol,0.491216587 +PDK1,Cytosol,0.049805114 +PDE3B,Cytosol,0.040357236 +TGOLN2,Cytosol,0.320104678 +UHMK1,Cytosol,0.144334275 +TADA1,Cytosol,-0.475746783 +CWF19L2,Cytosol,0.231077797 +JMY,Cytosol,0.09278229 +HOMER1,Cytosol,0.259436507 +USP12,Cytosol,0.417504472 +CCDC50,Cytosol,-0.000452316 +PAN3,Cytosol,0.227044989 +TMEM123,Cytosol,-0.354220316 +GJA1,Cytosol,-0.747724922 +SLC30A6,Cytosol,-0.394803414 +SAR1B,Cytosol,-0.416851442 +GPR180,Cytosol,-0.239799919 +UTRN,Cytosol,0.542860137 +PTPRK,Cytosol,-0.515623351 +PLOD2,Cytosol,-0.742931528 +GPR125,Cytosol,-0.389698452 +SREK1IP1,Cytosol,0.433584254 +TXNDC11,Cytosol,-0.018126987 +BCL2L11,Cytosol,0.313455843 +CLGN,Cytosol,-1.04679384 +RASSF3,Cytosol,0.518577095 +RANBP2,Cytosol,0.369017063 +TMEM87B,Cytosol,0.001608397 +RBMS1,Cytosol,0.645744985 +LPCAT1,Cytosol,0.389993751 +UBALD1,Cytosol,-0.234673936 +RMND5A,Cytosol,0.312420235 +ZDHHC7,Cytosol,0.397417094 +TRIP12,Cytosol,0.579394563 +CEBPG,Cytosol,0.146717314 +SREK1,Cytosol,-0.387828431 +CHD1,Cytosol,0.548492709 +DGKE,Cytosol,-0.207768739 +HS2ST1,Cytosol,0.008865727 +MSI2,Cytosol,0.721142402 +CACNA2D1,Cytosol,-0.740580205 +NUS1,Cytosol,-0.204447463 +IMPACT,Cytosol,-0.223103831 +TBCEL,Cytosol,0.405672257 +FAM105B,Cytosol,0.631175482 +TBRG1,Cytosol,0.113219698 +CC2D1B,Cytosol,0.429265947 +MIA3,Cytosol,-0.47344022 +TRIM11,Cytosol,0.311908887 +CCSAP,Cytosol,0.338184355 +CXADR,Cytosol,-0.371947282 +GABPA,Cytosol,-0.090254904 +ADAMTS1,Cytosol,-0.588573851 +TSEN2,Cytosol,-0.451159343 +FLCN,Cytosol,0.095686021 +SKA1,Cytosol,0.861374601 +RAB6B,Cytosol,0.58405914 +ACSS1,Cytosol,0.596943052 +ANKRD40,Cytosol,0.635948712 +VOPP1,Cytosol,0.295835966 +APOOL,Cytosol,0.347320531 +CYP2U1,Cytosol,-0.153618644 +AGPAT5,Cytosol,-0.379518866 +MARVELD1,Cytosol,0.437782175 +ZFYVE27,Cytosol,0.070725676 +SLC25A28,Cytosol,0.149134419 +HSPA13,Cytosol,-0.833278699 +USP25,Cytosol,0.040330714 +RHOC,Cytosol,0.061471786 +SLC16A1,Cytosol,-0.659171379 +LARP1,Cytosol,0.808708825 +MIER3,Cytosol,0.110177751 +ZKSCAN2,Cytosol,0.496913823 +PDIA4,Cytosol,-0.453530294 +FAM126B,Cytosol,0.350076773 +FZD7,Cytosol,-0.087870751 +FMN2,Cytosol,0.49031914 +PPARGC1B,Cytosol,-0.03006821 +SLC26A2,Cytosol,0.250789727 +LSM11,Cytosol,0.571636094 +PSD3,Cytosol,0.423843536 +DCK,Cytosol,-0.499282332 +ADAMTS3,Cytosol,-0.357732759 +DPY19L4,Cytosol,-0.459367943 +NDUFAF6,Cytosol,-0.440334251 +N6AMT1,Cytosol,-0.044700737 +CDK20,Cytosol,0.075460162 +PCGF6,Cytosol,-0.867308778 +ANKRD9,Cytosol,0.814219772 +SFXN2,Cytosol,0.192988437 +PTDSS1,Cytosol,-0.576958359 +SUPV3L1,Cytosol,-0.066227874 +TYSND1,Cytosol,0.120274583 +CD109,Cytosol,0.086665579 +ZDHHC5,Cytosol,0.632638057 +ZFAND3,Cytosol,0.840785077 +NPTN,Cytosol,-0.681045565 +KAT6B,Cytosol,0.438530105 +SAMD8,Cytosol,0.143112482 +BAG4,Cytosol,0.481747953 +ATAD2,Cytosol,0.658163625 +PHKG2,Cytosol,-0.409027906 +SASS6,Cytosol,-0.131701201 +ZIC3,Cytosol,-0.266125444 +EXOG,Cytosol,-0.238369444 +SMG1,Cytosol,0.361106557 +FCHO2,Cytosol,-0.132490075 +C1orf27,Cytosol,-0.497254621 +LRP8,Cytosol,-0.480050153 +PAXIP1,Cytosol,0.288292853 +SSBP3,Cytosol,0.80845922 +CLDN12,Cytosol,-0.6258789 +GATAD1,Cytosol,0.171426248 +ST3GAL2,Cytosol,1.020200141 +FUK,Cytosol,-0.20524783 +KIT,Cytosol,-0.326892501 +AASDH,Cytosol,-0.290856734 +DYRK1A,Cytosol,0.401378146 +TSPAN18,Cytosol,0.302414498 +SLC35B2,Cytosol,-0.200226598 +TMEM164,Cytosol,0.575428112 +TAB3,Cytosol,0.758023189 +SLC38A10,Cytosol,-0.082083814 +ZNF618,Cytosol,0.466147322 +C9orf91,Cytosol,0.334610345 +UBN2,Cytosol,0.329771557 +BRAF,Cytosol,0.313011152 +SLC37A3,Cytosol,-0.464533846 +DPYSL5,Cytosol,0.921258043 +FAM213B,Cytosol,1.013299991 +C12orf43,Cytosol,0.842455092 +RER1,Cytosol,-0.24646681 +UBXN11,Cytosol,-0.705249572 +RHPN1,Cytosol,-0.245962557 +CNNM4,Cytosol,-0.154401229 +EYA3,Cytosol,0.37749163 +MRAS,Cytosol,1.149654246 +COLEC12,Cytosol,-0.32031629 +CUL4B,Cytosol,0.487394001 +MITD1,Cytosol,-1.299952441 +EIF5B,Cytosol,0.595678512 +TSPAN33,Cytosol,0.013220794 +AHCYL2,Cytosol,0.104151441 +B4GALT5,Cytosol,0.544295837 +TSR2,Cytosol,0.489749592 +ZC3H18,Cytosol,0.890867737 +TMED4,Cytosol,-0.430492658 +PPP1R15B,Cytosol,-0.026153126 +AGPAT6,Cytosol,0.106474913 +ZSCAN12,Cytosol,0.318927282 +ELK4,Cytosol,0.0993811 +F11R,Cytosol,0.566519388 +ZNF276,Cytosol,-0.095068011 +PINK1,Cytosol,0.399845359 +B4GALT3,Cytosol,-0.021579388 +FAM160B2,Cytosol,0.316072198 +CACHD1,Cytosol,-0.175013877 +PAXBP1,Cytosol,-0.429037845 +IFNAR2,Cytosol,-0.038374189 +SON,Cytosol,0.270654344 +SV2A,Cytosol,0.311186564 +HLCS,Cytosol,0.35376772 +ADPGK,Cytosol,-0.361458085 +ALDH4A1,Cytosol,0.612637186 +STARD9,Cytosol,-0.200030344 +UBR1,Cytosol,0.527857514 +AMFR,Cytosol,-0.480223661 +RSPRY1,Cytosol,0.103388527 +ARHGAP35,Cytosol,0.861219613 +CALM3,Cytosol,0.827984241 +IQCC,Cytosol,0.073707862 +BSDC1,Cytosol,0.387549115 +ATAD3B,Cytosol,-0.300637614 +VMA21,Cytosol,0.039961047 +WDR4,Cytosol,-0.029077519 +CBS,Cytosol,0.018470644 +PDXK,Cytosol,0.354222293 +G6PD,Cytosol,0.307018347 +AGPAT3,Cytosol,0.504460632 +C21orf2,Cytosol,-0.4198693 +LRRC3,Cytosol,0.40134753 +LSS,Cytosol,0.161446412 +VAV2,Cytosol,0.999884022 +MCM3AP,Cytosol,0.298958007 +C21orf58,Cytosol,0.441704759 +PCNT,Cytosol,0.164729731 +DIP2A,Cytosol,0.178557766 +ZNF714,Cytosol,0.539341296 +PKN3,Cytosol,0.272046272 +TAOK1,Cytosol,0.311732177 +SIK3,Cytosol,0.316532168 +PCSK7,Cytosol,0.256388344 +CHTOP,Cytosol,-0.45342057 +ZBTB7B,Cytosol,0.812556713 +NLRX1,Cytosol,0.237805965 +ANO10,Cytosol,-0.251128821 +SLC25A44,Cytosol,0.491906951 +NBEAL2,Cytosol,-0.213832896 +IER2,Cytosol,0.36871428 +ZNF394,Cytosol,0.006379421 +CPSF4,Cytosol,-0.065866879 +TONSL,Cytosol,-0.163572538 +MUM1,Cytosol,0.262349716 +RECQL4,Cytosol,-0.017672173 +LRRC14,Cytosol,0.473872752 +PPP1R16A,Cytosol,0.420192349 +C5orf45,Cytosol,-0.255702596 +MFSD12,Cytosol,-0.171127838 +FDXR,Cytosol,0.093780196 +ALDH16A1,Cytosol,-0.597024313 +ITGA5,Cytosol,-0.223188137 +ZNF385A,Cytosol,0.388527317 +MPP3,Cytosol,-1.029362816 +EMC10,Cytosol,-0.27618284 +FAM171A2,Cytosol,0.05012972 +DBF4B,Cytosol,0.453112992 +LARP4,Cytosol,0.353129418 +LEMD2,Cytosol,0.100478662 +WDR90,Cytosol,-0.806991565 +C16orf59,Cytosol,-0.294739464 +AMDHD2,Cytosol,0.025095468 +PAQR4,Cytosol,0.598517011 +ADCY9,Cytosol,0.322215635 +CLPB,Cytosol,0.386220297 +NEU3,Cytosol,0.437775667 +CYB561A3,Cytosol,0.285234703 +TAF6L,Cytosol,-0.275641359 +LRP5,Cytosol,-0.196551099 +ZYG11B,Cytosol,0.350245657 +PPAP2B,Cytosol,-0.175223076 +PRKAA2,Cytosol,0.243747893 +KLHL21,Cytosol,0.236046791 +GMEB1,Cytosol,0.369959381 +SEPN1,Cytosol,-0.073163958 +AK4,Cytosol,0.455020941 +RAVER2,Cytosol,-0.222083493 +PDPN,Cytosol,0.024933447 +SDC3,Cytosol,0.566058985 +KIAA1522,Cytosol,0.730494563 +C1orf86,Cytosol,-0.185388728 +NFIA,Cytosol,0.0791916 +OMA1,Cytosol,-0.652156409 +MYSM1,Cytosol,0.092691871 +FUBP1,Cytosol,-0.090577481 +DNAJB4,Cytosol,-0.051885391 +FAM102B,Cytosol,0.492797171 +ATXN7L2,Cytosol,-0.047442345 +ZNF326,Cytosol,0.015625838 +EXTL2,Cytosol,-0.604742878 +SLC30A7,Cytosol,-0.635148319 +PEA15,Cytosol,1.104477763 +NCSTN,Cytosol,-0.611172618 +VANGL2,Cytosol,0.386138588 +FLVCR1,Cytosol,-0.392132048 +RBM15,Cytosol,0.418551173 +BPNT1,Cytosol,0.340413295 +BROX,Cytosol,0.0519334 +ACP6,Cytosol,-0.093999625 +PPP1R21,Cytosol,0.477586138 +B3GALNT2,Cytosol,0.214567164 +C2orf47,Cytosol,-1.363807635 +ARL5A,Cytosol,-0.222416507 +SGCB,Cytosol,-0.012143945 +SMARCAD1,Cytosol,0.321423745 +RNF149,Cytosol,-0.912764293 +FZD5,Cytosol,0.28797364 +DCAF16,Cytosol,0.343271579 +PAQR3,Cytosol,-0.463018677 +ANTXR2,Cytosol,-0.313196023 +PBXIP1,Cytosol,-0.25937748 +PYGO2,Cytosol,0.759626729 +HIPK1,Cytosol,0.575281499 +KBTBD8,Cytosol,0.290251256 +EOGT,Cytosol,-0.463323013 +POGLUT1,Cytosol,-0.525272971 +ATP1A1,Cytosol,-0.505324347 +EIF4E3,Cytosol,0.208494622 +LRRC58,Cytosol,0.235068463 +FSTL1,Cytosol,0.360052499 +KRTCAP2,Cytosol,-0.888087943 +KIAA1524,Cytosol,0.014629061 +TGFBR2,Cytosol,-0.31514593 +ANKZF1,Cytosol,-0.460563635 +STT3B,Cytosol,-0.648491683 +PPM1L,Cytosol,0.422170908 +RYBP,Cytosol,0.507200444 +PPP4R2,Cytosol,-0.183652113 +C3orf17,Cytosol,-0.200727622 +SPICE1,Cytosol,0.12742872 +WDFY3,Cytosol,0.528024373 +ATXN7,Cytosol,0.171608466 +PPM1K,Cytosol,0.117450544 +CCNL1,Cytosol,-1.033638234 +RPP14,Cytosol,0.556637585 +ABHD6,Cytosol,-0.084583914 +CRELD1,Cytosol,-0.2173184 +U2SURP,Cytosol,0.210447648 +TTC14,Cytosol,-0.676157882 +SNRK,Cytosol,0.310434518 +SLC4A1AP,Cytosol,0.115878519 +ZDHHC3,Cytosol,0.261227819 +FYCO1,Cytosol,0.369203408 +YEATS2,Cytosol,0.537966411 +SNIP1,Cytosol,-0.101451177 +TMEM41A,Cytosol,-0.09294228 +RPN1,Cytosol,-0.890797841 +SFMBT1,Cytosol,0.614695594 +PBRM1,Cytosol,0.488438342 +FAM208A,Cytosol,0.311379178 +ARHGEF3,Cytosol,0.710899268 +UBXN7,Cytosol,0.503430773 +ZNF691,Cytosol,0.055580403 +SGMS2,Cytosol,0.15950163 +DNAJB14,Cytosol,0.103682731 +ZNF589,Cytosol,0.377865316 +SHISA5,Cytosol,0.43879703 +INTU,Cytosol,-0.048216891 +RNF123,Cytosol,-0.007594707 +MFSD8,Cytosol,-0.304716724 +C4orf29,Cytosol,0.361010283 +RAD54L2,Cytosol,0.48256598 +MAP9,Cytosol,-0.010572307 +CEP44,Cytosol,-0.046610455 +ABCE1,Cytosol,0.056395242 +TMEM184C,Cytosol,0.28729027 +TMEM161B,Cytosol,-1.253523112 +ELOVL7,Cytosol,-0.355678015 +LMBRD2,Cytosol,-0.451638713 +NIPBL,Cytosol,0.327899232 +SLC25A46,Cytosol,-0.09679343 +STARD4,Cytosol,0.031907084 +PGGT1B,Cytosol,0.004480659 +NDUFS4,Cytosol,-1.233045683 +ARSK,Cytosol,-0.560931445 +GPX8,Cytosol,0.044384241 +SERINC5,Cytosol,0.310003146 +GFM2,Cytosol,-0.2006284 +CCDC127,Cytosol,0.027364511 +SEPT8,Cytosol,0.864547342 +DCBLD1,Cytosol,-0.065696866 +PDSS2,Cytosol,0.176135196 +STXBP5,Cytosol,0.216228627 +DAGLB,Cytosol,-0.331896668 +GALNT10,Cytosol,0.319926551 +ZNF12,Cytosol,-0.047424765 +USP49,Cytosol,0.090315688 +ZNF704,Cytosol,0.297758876 +LMTK2,Cytosol,0.097739825 +CTSB,Cytosol,-0.221867771 +ADCY1,Cytosol,0.669337387 +EN2,Cytosol,0.573314363 +SUN1,Cytosol,-0.289163818 +OXR1,Cytosol,-0.137971414 +SLC4A2,Cytosol,0.008310063 +FASTK,Cytosol,-0.342268509 +TMUB1,Cytosol,0.261930099 +C7orf55,Cytosol,-1.128199036 +FOXK1,Cytosol,0.609819742 +FZD6,Cytosol,-0.513007817 +KIAA1429,Cytosol,0.534118702 +TMEM67,Cytosol,-0.976659733 +SNAPC3,Cytosol,-0.039022632 +KIAA1161,Cytosol,0.528678279 +METTL2B,Cytosol,0.305864144 +HGSNAT,Cytosol,0.011151157 +RASEF,Cytosol,0.613285713 +ANKS6,Cytosol,0.19556302 +TMEM246,Cytosol,-0.008655473 +ZHX1,Cytosol,0.467365524 +KIAA1958,Cytosol,0.350349945 +PIGA,Cytosol,-0.039124008 +WNK2,Cytosol,0.167022304 +ATP7A,Cytosol,-0.05311781 +PIGO,Cytosol,-0.967223745 +BRWD3,Cytosol,0.824704965 +SLITRK5,Cytosol,0.283365597 +DDX26B,Cytosol,-0.132609237 +MARCH8,Cytosol,0.5716342 +GTF2A1,Cytosol,0.583299347 +ZCCHC24,Cytosol,0.82358451 +REEP3,Cytosol,-0.202305255 +MICU2,Cytosol,-0.913602536 +PCF11,Cytosol,0.362898491 +PKNOX2,Cytosol,1.067554325 +ZNF22,Cytosol,-0.487380154 +RPUSD4,Cytosol,-0.041940492 +ARF6,Cytosol,0.375094377 +TTC8,Cytosol,-0.515484503 +CDX2,Cytosol,0.903711633 +BEND7,Cytosol,0.258183335 +TAF3,Cytosol,0.616651365 +PDZD8,Cytosol,0.25080654 +ZNF503,Cytosol,0.264324058 +FAM175B,Cytosol,0.264003973 +QSOX2,Cytosol,-0.292093688 +NSD1,Cytosol,0.700114484 +SNAPC4,Cytosol,-0.007308809 +PMPCA,Cytosol,-0.221803317 +SDCCAG3,Cytosol,0.283763442 +TSC1,Cytosol,0.426546886 +FAM69B,Cytosol,-0.184049158 +KIAA1462,Cytosol,0.694045681 +ZNF219,Cytosol,0.231055502 +METTL3,Cytosol,-0.476231114 +HSPA12A,Cytosol,0.285344197 +TC2N,Cytosol,0.56998219 +CPSF2,Cytosol,0.487418264 +ARL5B,Cytosol,0.17319183 +TAF1D,Cytosol,-1.15059031 +HTRA1,Cytosol,-0.678725419 +CEP57,Cytosol,-0.341810548 +JAM3,Cytosol,0.187014504 +HIF1AN,Cytosol,0.355277886 +ZFYVE19,Cytosol,0.404402858 +FBN1,Cytosol,-0.444693603 +BAG5,Cytosol,0.276687753 +GABRB3,Cytosol,0.066042645 +SGPL1,Cytosol,0.346896882 +FRS2,Cytosol,0.463054964 +ZNF202,Cytosol,0.056238187 +STXBP4,Cytosol,0.216091151 +CUL5,Cytosol,0.294773656 +WBP1L,Cytosol,0.785549435 +TRIM44,Cytosol,0.917645373 +TPP1,Cytosol,-0.655560199 +C11orf74,Cytosol,-0.731197894 +TUB,Cytosol,0.370781916 +RNF169,Cytosol,0.392186438 +PRTG,Cytosol,-0.019120372 +TMEM41B,Cytosol,-0.252608154 +TMX3,Cytosol,-0.55836233 +WEE1,Cytosol,-0.360773421 +ZNF3,Cytosol,0.032442561 +RIMKLB,Cytosol,-0.172267923 +TMED3,Cytosol,-0.408872724 +NDEL1,Cytosol,0.293353974 +BLCAP,Cytosol,0.051185924 +CASC4,Cytosol,0.059810369 +AP1G1,Cytosol,0.590738299 +KIF7,Cytosol,0.000615861 +PEX11A,Cytosol,0.315799801 +ZBTB39,Cytosol,0.497565511 +TMEM194A,Cytosol,0.13752213 +SMAD3,Cytosol,0.631572392 +MAP1A,Cytosol,1.376187468 +MBD6,Cytosol,0.03136846 +PDIA3,Cytosol,-0.702729242 +ACSF2,Cytosol,-0.348416138 +COQ4,Cytosol,-0.450530924 +SLC27A4,Cytosol,-0.069617749 +CERCAM,Cytosol,-0.178082457 +DOLPP1,Cytosol,0.074390767 +GPRC5B,Cytosol,0.243782657 +CRK,Cytosol,0.478679492 +FBXO22,Cytosol,-0.553798704 +TBC1D2B,Cytosol,0.723164626 +CDK12,Cytosol,0.488107043 +ENGASE,Cytosol,-0.086079541 +TBC1D16,Cytosol,0.456437335 +ENTHD2,Cytosol,-0.504779709 +STIM1,Cytosol,0.173989216 +IRGQ,Cytosol,0.621575831 +PPP2R3B,Cytosol,-0.329078002 +ZNF646,Cytosol,0.514256947 +MIDN,Cytosol,0.598635201 +MVD,Cytosol,0.023367528 +ANKRD11,Cytosol,0.203012775 +SPATA33,Cytosol,0.305133079 +ZNF641,Cytosol,0.76847172 +DHRS13,Cytosol,-0.187527428 +TP53I13,Cytosol,-0.849769208 +KMT2D,Cytosol,0.58872134 +C19orf55,Cytosol,0.236743755 +LENG8,Cytosol,-0.542543549 +ZNF146,Cytosol,0.066865334 +ZNF444,Cytosol,0.444330041 +FAM57A,Cytosol,-0.171007904 +SLC43A2,Cytosol,0.379890188 +SRR,Cytosol,-0.050569569 +GHDC,Cytosol,-0.616415451 +ITFG3,Cytosol,0.272268359 +ZNF598,Cytosol,0.014860419 +E4F1,Cytosol,-0.436811848 +ABCA3,Cytosol,-0.011080647 +SRRM2,Cytosol,0.244399944 +LTBP3,Cytosol,0.019072346 +SAC3D1,Cytosol,-0.156591182 +SF1,Cytosol,0.371737153 +PAFAH1B2,Cytosol,0.696599449 +ANKS3,Cytosol,-0.11406314 +SETD5,Cytosol,0.56478759 +HOOK3,Cytosol,0.279414075 +RBPJ,Cytosol,0.329997438 +TTC39C,Cytosol,0.096674456 +KIF5C,Cytosol,0.183521826 +MGAT2,Cytosol,-0.231418758 +BMI1,Cytosol,-0.677795158 +KCTD6,Cytosol,-0.857666595 +TAP1,Cytosol,-0.256579479 +ING5,Cytosol,0.422927138 +ATG4B,Cytosol,0.040767175 +SOGA2,Cytosol,0.390131148 +SNRNP48,Cytosol,0.512892172 +SLC20A2,Cytosol,-0.308968318 +TMUB2,Cytosol,-0.199344374 +STAT3,Cytosol,0.988672376 +ADAM9,Cytosol,-0.667059155 +PKIG,Cytosol,-0.200260152 +SEMA4C,Cytosol,0.127509204 +CNNM3,Cytosol,-0.210288179 +TET2,Cytosol,0.446925443 +TCTN2,Cytosol,-0.326728299 +TSPAN5,Cytosol,-0.131198341 +ZBTB5,Cytosol,0.496556745 +SNTB2,Cytosol,0.287674642 +ZNF507,Cytosol,0.403722523 +STX18,Cytosol,0.006628685 +GFM1,Cytosol,-0.642271629 +ANKRD49,Cytosol,-0.540937656 +MAT2A,Cytosol,-0.29451621 +ZNF608,Cytosol,0.722079272 +LETM1,Cytosol,0.271527762 +TMEM129,Cytosol,0.555422589 +FEM1B,Cytosol,0.247447635 +HNRNPH1,Cytosol,-0.891750688 +MECP2,Cytosol,0.676850701 +UPF3A,Cytosol,-0.392900253 +CHST14,Cytosol,-0.104590843 +PARM1,Cytosol,0.242938374 +CSNK1G1,Cytosol,0.64213047 +ZBTB43,Cytosol,0.147648158 +GPRIN1,Cytosol,0.751548719 +MRPL1,Cytosol,-0.770597872 +SLC33A1,Cytosol,-0.548703448 +SDC2,Cytosol,-0.470941857 +MMGT1,Cytosol,-0.519563608 +CLIC4,Cytosol,0.03966411 +CCDC8,Cytosol,0.829280478 +INO80E,Cytosol,-0.053235953 +DFFB,Cytosol,-0.016267512 +ANTXR1,Cytosol,-0.169451168 +CKAP2L,Cytosol,0.459288779 +C15orf40,Cytosol,-0.650509935 +HIC2,Cytosol,0.706896122 +LUZP1,Cytosol,0.741915329 +HEXDC,Cytosol,-0.56609041 +LRRC45,Cytosol,-0.164875867 +ASPSCR1,Cytosol,-0.454379652 +TAPT1,Cytosol,-0.444976425 +CSGALNACT2,Cytosol,0.154561858 +PCDH7,Cytosol,0.204914773 +ROBO1,Cytosol,-0.188826309 +P2RY1,Cytosol,0.167977336 +TPST1,Cytosol,0.046303815 +TOR1AIP2,Cytosol,0.308507439 +OTUD3,Cytosol,0.299625814 +GUSB,Cytosol,-1.028482319 +BRD3,Cytosol,0.889411295 +MAP3K2,Cytosol,0.33140818 +NLGN2,Cytosol,0.128491026 +ALCAM,Cytosol,-0.305268377 +YWHAG,Cytosol,0.787295707 +TMEM192,Cytosol,0.40835185 +ZNF778,Cytosol,0.502875056 +NIPA1,Cytosol,0.216386677 +SIK2,Cytosol,0.609789581 +RNF150,Cytosol,0.215613906 +ZNF212,Cytosol,0.223857109 +FAM161A,Cytosol,0.419292751 +CRTAP,Cytosol,-0.297973973 +PRDM10,Cytosol,0.445550692 +FOS,Cytosol,0.841401209 +TMED10,Cytosol,-0.605039462 +SLC30A1,Cytosol,-0.580032875 +DNAJC18,Cytosol,0.434868132 +RALGAPB,Cytosol,0.452819446 +LONRF2,Cytosol,0.67503588 +ELOVL6,Cytosol,0.045511983 +ARL6IP1,Cytosol,-0.380136132 +CDH2,Cytosol,-0.282678637 +EMB,Cytosol,-0.352988321 +STAT2,Cytosol,0.552092979 +TRABD,Cytosol,-0.30573058 +POLH,Cytosol,0.654782368 +KIF5B,Cytosol,0.6908251 +AKAP13,Cytosol,0.739268942 +CHCHD7,Cytosol,-0.351890217 +GPR27,Cytosol,-0.115135544 +KBTBD2,Cytosol,0.537344899 +KIAA0232,Cytosol,0.463199516 +TMEM43,Cytosol,-0.315336221 +RNF139,Cytosol,-0.594652056 +PAQR8,Cytosol,0.176106034 +TANC2,Cytosol,0.359346759 +DNAJC24,Cytosol,0.042591129 +HS6ST2,Cytosol,-0.741540048 +INSR,Cytosol,-0.309717351 +ATP6V0E2,Cytosol,0.359776487 +ZNF692,Cytosol,-0.614049259 +NETO2,Cytosol,-0.202703361 +NPTX1,Cytosol,0.057704774 +FAM98B,Cytosol,-0.541576985 +GAA,Cytosol,-0.776834197 +CANT1,Cytosol,0.349045302 +CHST11,Cytosol,0.17284942 +CLCN5,Cytosol,-0.370756715 +ZBTB26,Cytosol,-0.213143872 +ZNF562,Cytosol,0.086761332 +ZNF318,Cytosol,0.329457274 +WIPF2,Cytosol,1.060220165 +LRRC8C,Cytosol,-0.139318374 +LRRC8D,Cytosol,-0.049840691 +ETFDH,Cytosol,0.037728005 +LPAR3,Cytosol,-0.037068983 +CLSTN1,Cytosol,-0.11413224 +BPTF,Cytosol,0.530728818 +ATF7IP,Cytosol,0.409420993 +TCEA2,Cytosol,-0.269402411 +ANO5,Cytosol,-0.055218376 +MLLT3,Cytosol,0.589929786 +PRNP,Cytosol,-0.873821238 +ZNF217,Cytosol,0.835316428 +JMJD1C,Cytosol,0.27427307 +THOP1,Cytosol,0.028868089 +ORMDL3,Cytosol,0.898564393 +KLF11,Cytosol,0.203072873 +MTBP,Cytosol,-0.124077525 +ZNF131,Cytosol,-0.113151468 +BSG,Cytosol,-0.463144393 +CERS6,Cytosol,0.104788936 +TP53RK,Cytosol,0.055612126 +FAM195A,Cytosol,-0.826384092 +GTPBP2,Cytosol,0.199327792 +ZNF24,Cytosol,0.609254324 +MANEA,Cytosol,-0.73596448 +RAD9A,Cytosol,-0.23413051 +FAM21C,Cytosol,0.329207708 +CORO1B,Cytosol,-0.120891681 +LRRC20,Cytosol,0.778249685 +NAA16,Cytosol,-0.174498804 +DCP2,Cytosol,0.35871889 +CES3,Cytosol,-0.036439706 +CES2,Cytosol,0.928659485 +PDP2,Cytosol,0.586503368 +SP3,Cytosol,0.196115721 +METAP1D,Cytosol,0.197340152 +ZNF621,Cytosol,0.260350763 +NADSYN1,Cytosol,-0.295016389 +DHCR7,Cytosol,-0.811392975 +NBEA,Cytosol,0.547781023 +ANKRD13D,Cytosol,0.169707219 +LCLAT1,Cytosol,0.202516466 +TADA2B,Cytosol,0.68979016 +HECTD4,Cytosol,0.426219707 +ESRRA,Cytosol,0.034442085 +AHSA2,Cytosol,-0.821328315 +VANGL1,Cytosol,-0.069518057 +IQCB1,Cytosol,-0.243304081 +GOLGB1,Cytosol,0.216747967 +TNKS,Cytosol,0.518298218 +ZBTB21,Cytosol,0.326787752 +STOX2,Cytosol,0.155477142 +DAG1,Cytosol,-0.094440926 +RNF26,Cytosol,0.500937204 +PEAK1,Cytosol,0.518445242 +TNFRSF10D,Cytosol,-0.408092299 +MOB1B,Cytosol,0.501130132 +SNX33,Cytosol,1.146117235 +CHD2,Cytosol,0.42738287 +CCDC41,Cytosol,-0.197223713 +PC,Cytosol,0.01495864 +SUSD5,Cytosol,-0.211018332 +HEG1,Cytosol,0.053064735 +TOMM20,Cytosol,-0.213388725 +CNP,Cytosol,0.814053542 +DPY19L1,Cytosol,-0.258701823 +ZNF791,Cytosol,-0.042217537 +PHC3,Cytosol,-0.331520361 +GOLIM4,Cytosol,-0.048616667 +XXYLT1,Cytosol,-0.250799473 +UBXN2A,Cytosol,0.085598035 +CCS,Cytosol,-0.572340598 +FAM3C2,Cytosol,-0.327435271 +CTSF,Cytosol,-0.923289367 +MSRB3,Cytosol,0.343336815 +LEMD3,Cytosol,-0.630550428 +RGMB,Cytosol,-0.088360054 +ZDHHC24,Cytosol,-0.275855128 +MGA,Cytosol,0.547142283 +PIGG,Cytosol,-0.871522307 +ADCY6,Cytosol,0.155930405 +ZBTB4,Cytosol,0.415096656 +ZHX3,Cytosol,0.799918293 +RALGAPA1,Cytosol,0.394272856 +ATP2A2,Cytosol,-0.313046886 +CNTNAP2,Cytosol,0.482753272 +DENND4A,Cytosol,0.389958057 +MSL2,Cytosol,0.271975411 +UGT8,Cytosol,-0.593803623 +ZNF266,Cytosol,-0.075811594 +SLC29A2,Cytosol,-0.376084173 +BRSK2,Cytosol,0.682199906 +B3GNT1,Cytosol,-0.650017563 +TMEM167A,Cytosol,0.1185384 +CEP135,Cytosol,0.337552358 +FZD4,Cytosol,-0.200324447 +PDE12,Cytosol,-0.279472367 +GLMN,Cytosol,-0.96567427 +SEZ6L2,Cytosol,-0.43678946 +KLC2,Cytosol,0.601260949 +GK5,Cytosol,0.449130684 +VCPIP1,Cytosol,0.350391196 +PCCA,Cytosol,-0.637166284 +GOLGA8A,Cytosol,-0.972943499 +TP53I11,Cytosol,0.483650272 +PHYKPL,Cytosol,-0.446697446 +ARL10,Cytosol,0.224491118 +CCDC14,Cytosol,-0.256439784 +ALG10B,Cytosol,-0.197140881 +RAB6A,Cytosol,0.431461253 +ERCC4,Cytosol,0.49039778 +RMI2,Cytosol,-0.611249777 +TOM1L2,Cytosol,0.909838526 +MLXIP,Cytosol,0.734906412 +SLC35E3,Cytosol,0.081525592 +ARL4D,Cytosol,-0.340203925 +LYSMD3,Cytosol,0.277216689 +B3GALT6,Cytosol,0.593737731 +MBLAC2,Cytosol,0.105712055 +TPRN,Cytosol,0.190217505 +YES1,Cytosol,0.33901491 +TMEM39A,Cytosol,-0.373118449 +CCDC57,Cytosol,-0.530461524 +FOXG1,Cytosol,-0.217701149 +ATAD5,Cytosol,0.067961434 +ANAPC2,Cytosol,-0.000321895 +SPRYD4,Cytosol,-0.359947659 +CLK2,Cytosol,-0.245082649 +LPCAT4,Cytosol,-0.16350613 +B3GNT5,Cytosol,0.147195724 +LMNB2,Cytosol,0.937583221 +RMDN1,Cytosol,-0.01242513 +ACSF3,Cytosol,-0.08612737 +ANKLE2,Cytosol,-0.027497318 +NFATC2IP,Cytosol,-0.018160261 +SMCR8,Cytosol,0.601166274 +MTX3,Cytosol,0.3108566 +FBXO46,Cytosol,0.419524951 +WDR73,Cytosol,-0.195022104 +ANO6,Cytosol,-0.001796298 +ZBTB34,Cytosol,0.620977963 +FAM210A,Cytosol,0.144840414 +ULK1,Cytosol,0.201253474 +RPS6KA3,Cytosol,0.243571412 +PUS1,Cytosol,-0.141831048 +CHD9,Cytosol,0.048516163 +PDDC1,Cytosol,0.307636032 +TOP3A,Cytosol,0.549576986 +NR2C2,Cytosol,0.306373761 +ZBTB33,Cytosol,0.63720041 +SLC25A22,Cytosol,0.249238351 +PIDD,Cytosol,-0.139023438 +GBA,Cytosol,-0.178726985 +IL17RA,Cytosol,0.023335946 +THAP5,Cytosol,-0.178757365 +PVRL3,Cytosol,-0.790793424 +KIAA0195,Cytosol,-0.210823462 +SOX12,Cytosol,0.596601432 +CHID1,Cytosol,-0.179204624 +ZNF518A,Cytosol,0.29966232 +ZBTB41,Cytosol,-0.083090156 +DMAP1,Cytosol,-0.536322323 +C2orf69,Cytosol,-0.300503237 +SH2B1,Cytosol,0.552651767 +KDELC2,Cytosol,-0.448103606 +GALNT11,Cytosol,-0.000662104 +WDR6,Cytosol,0.195418426 +GEN1,Cytosol,-0.13380939 +GLDC,Cytosol,-0.20305758 +CTNNBIP1,Cytosol,0.653735835 +ERN1,Cytosol,-0.130204102 +KCTD12,Cytosol,0.561752975 +DHFRL1,Cytosol,0.424446657 +FAM132B,Cytosol,0.057889158 +FAM219B,Cytosol,-0.363887715 +DPY19L3,Cytosol,-0.112007387 +PFAS,Cytosol,-0.051933106 +C17orf62,Cytosol,0.255788565 +ZBTB7A,Cytosol,0.531282735 +SPTY2D1,Cytosol,0.920391862 +FUCA1,Cytosol,-0.90232305 +CALR,Cytosol,-0.312966582 +LDLRAD3,Cytosol,0.013997585 +CLK3,Cytosol,-0.114834562 +PACS2,Cytosol,0.477189746 +ELMOD2,Cytosol,-0.877602513 +FJX1,Cytosol,-0.038904287 +ZBTB18,Cytosol,0.425055387 +GCC1,Cytosol,0.515114433 +PLD6,Cytosol,-0.041519314 +CDC42EP4,Cytosol,0.983092594 +PCBP1-AS1,Cytosol,-0.364638244 +MYADM,Cytosol,-0.138495843 +SERTAD2,Cytosol,0.512495403 +BBS10,Cytosol,-0.388575249 +SOCS4,Cytosol,0.481100844 +ZADH2,Cytosol,0.233605685 +EXOC3,Cytosol,0.506561979 +C7orf41,Cytosol,0.724602176 +ZNF609,Cytosol,0.958027843 +CCDC66,Cytosol,-0.535530354 +MCFD2,Cytosol,0.105768495 +GAS1,Cytosol,-0.177271204 +FAM73A,Cytosol,0.043056726 +NRIP1,Cytosol,0.242398474 +PCGF5,Cytosol,-0.003328929 +YOD1,Cytosol,-0.047491692 +SLC36A4,Cytosol,-0.725986919 +ZDHHC20,Cytosol,0.21672136 +PSMG4,Cytosol,-1.045411314 +PDIA3P,Cytosol,-0.633568351 +CUEDC1,Cytosol,0.509392145 +KCTD2,Cytosol,0.836348285 +D2HGDH,Cytosol,-0.300339611 +FKRP,Cytosol,0.338042245 +SLC26A11,Cytosol,-0.524124975 +F2R,Cytosol,-0.213438233 +DHTKD1,Cytosol,0.544060794 +ZNF746,Cytosol,0.33242653 +TMEM136,Cytosol,-0.249658122 +ZNF322,Cytosol,0.347958479 +OGFOD3,Cytosol,0.005734681 +ZNF678,Cytosol,0.28438356 +ZBTB2,Cytosol,0.2837985 +SGSH,Cytosol,-0.335972016 +SETD2,Cytosol,0.551394136 +YIPF6,Cytosol,-0.000716858 +IBA57,Cytosol,0.488493542 +C5orf24,Cytosol,0.182580876 +ADO,Cytosol,-0.112133122 +CREB3L2,Cytosol,0.484729919 +UNC5C,Cytosol,0.058001335 +RGMA,Cytosol,0.54099386 +EXT1,Cytosol,0.130383968 +ATP6AP2,Cytosol,-0.791700741 +BACE2,Cytosol,-0.256374296 +FIGN,Cytosol,0.507406617 +B4GALNT4,Cytosol,-0.295919845 +AP1S2,Cytosol,-0.524889813 +FBXL6,Cytosol,-0.668586823 +YBEY,Cytosol,-0.886712443 +CLN8,Cytosol,0.251363424 +PLCXD1,Cytosol,0.191474605 +EXOC7,Cytosol,0.828841555 +CEP97,Cytosol,0.342425534 +MXRA7,Cytosol,-0.145181107 +SATB1,Cytosol,0.384442684 +PLCB1,Cytosol,0.596542031 +TTC3,Cytosol,0.583151423 +COL18A1,Cytosol,-0.767199167 +ZNF721,Cytosol,-0.018466796 +SRPR,Cytosol,-0.307028236 +EWSR1,Cytosol,-0.132856298 +GJC1,Cytosol,0.307272792 +MTA1,Cytosol,0.041144507 +CADM1,Cytosol,-0.139468197 +LYSMD4,Cytosol,0.294558828 +NKX2-5,Cytosol,0.209767778 +GPC6,Cytosol,-0.820050433 +PTTG1IP,Cytosol,0.45293103 +ZNF623,Cytosol,0.460905148 +BCOR,Cytosol,0.488805216 +ASB7,Cytosol,0.741907012 +EP400,Cytosol,0.460611104 +COA5,Cytosol,-0.573134404 +PRR14L,Cytosol,0.552738968 +ZNRF3,Cytosol,-0.031301421 +TRMT12,Cytosol,-0.037410112 +FAM101B,Cytosol,0.552285422 +TRIM52,Cytosol,-0.388502455 +CMTM4,Cytosol,0.52600275 +TMEM50A,Cytosol,-0.091303475 +CBX6,Cytosol,0.547526864 +KREMEN1,Cytosol,0.508829757 +TRAIP,Cytosol,-0.303680211 +EMILIN3,Cytosol,0.018839001 +RBM12B,Cytosol,0.140558793 +BTBD9,Cytosol,0.941326433 +KIRREL,Cytosol,-0.239131977 +IQGAP3,Cytosol,0.396206774 +PRKX,Cytosol,0.734230473 +SMTN,Cytosol,0.174848191 +TBX1,Cytosol,-0.367941811 +TSPYL2,Cytosol,-0.061079775 +C22orf46,Cytosol,0.647975192 +PCDH9,Cytosol,0.035129043 +OAF,Cytosol,-0.013488069 +ZDHHC23,Cytosol,0.200082611 +EFNA5,Cytosol,0.073697988 +SS18L1,Cytosol,0.231205634 +KNTC1,Cytosol,0.260445448 +WDR27,Cytosol,-0.416484482 +FOXO4,Cytosol,0.766677681 +POU3F2,Cytosol,0.190429452 +PROS1,Cytosol,-0.3717007 +ZFP1,Cytosol,-0.119788863 +XPOT,Cytosol,0.222749249 +SNN,Cytosol,0.947832529 +AMER1,Cytosol,0.517664405 +ZBTB40,Cytosol,0.542989125 +ATL3,Cytosol,0.157413189 +UBE2G2,Cytosol,0.584383952 +TMED9,Cytosol,-0.351105289 +RBM33,Cytosol,-0.022751964 +JAG2,Cytosol,-0.69025225 +ZFP90,Cytosol,0.564932053 +SIVA1,Cytosol,-1.19378816 +BRI3BP,Cytosol,0.031122427 +ROBO2,Cytosol,-0.225692376 +BRF1,Cytosol,0.772274338 +MANEAL,Cytosol,0.073277317 +PURA,Cytosol,0.019790244 +DDX51,Cytosol,-0.033083349 +NOMO2,Cytosol,-0.753461951 +NRBP2,Cytosol,-0.214375485 +ZNF445,Cytosol,0.49898902 +PRPF39,Cytosol,-0.674573778 +CDK10,Cytosol,-0.441151126 +ATP6V0A2,Cytosol,-0.195663645 +C14orf80,Cytosol,-0.028255708 +HGS,Cytosol,0.052918145 +MRPL30,Cytosol,0.345680412 +METTL7A,Cytosol,0.808734166 +NR2F2,Cytosol,0.335541277 +SP1,Cytosol,0.828829408 +PCGF3,Cytosol,0.318698824 +P4HB,Cytosol,-0.413349086 +PBX1,Cytosol,0.708182458 +BRWD1,Cytosol,0.154132835 +EP400NL,Cytosol,-0.125571698 +MYBL1,Cytosol,0.187309797 +DMWD,Cytosol,0.463290181 +SLC52A2,Cytosol,-0.421672291 +NAT8L,Cytosol,0.327441383 +GNB1L,Cytosol,-0.236588783 +LAMP1,Cytosol,-0.500292487 +KLHDC8B,Cytosol,0.33057069 +SETD4,Cytosol,-0.33630327 +RNPC3,Cytosol,-1.093507444 +BICD2,Cytosol,0.100611489 +LRCH3,Cytosol,0.595878819 +ZNF529,Cytosol,-0.239576403 +AIDA,Cytosol,-0.04449447 +ZBTB6,Cytosol,-0.251835388 +BCL9L,Cytosol,0.84927971 +KIF18B,Cytosol,0.19802425 +MKL2,Cytosol,0.545681326 +CA5BP1,Cytosol,0.401213403 +BACE1,Cytosol,0.331797912 +KPNA4,Cytosol,0.165396064 +ZNF197,Cytosol,0.248768116 +BTN3A2,Cytosol,0.898807157 +INSIG1,Cytosol,-1.108738931 +TMEM222,Cytosol,0.201807078 +SMYD4,Cytosol,0.452545521 +GPATCH8,Cytosol,0.669008244 +LYRM7,Cytosol,0.599129173 +ZNF397,Cytosol,0.12487854 +ZSCAN30,Cytosol,0.584797922 +TPCN1,Cytosol,0.066029611 +POFUT2,Cytosol,-0.19801108 +ZDHHC17,Cytosol,-0.13807449 +PPARA,Cytosol,0.75036028 +TEAD1,Cytosol,0.395475342 +ENTPD5,Cytosol,0.488022149 +KIAA1598,Cytosol,0.492501023 +TSPYL4,Cytosol,0.624406536 +FNBP1,Cytosol,0.909785832 +BCAM,Cytosol,-0.24649625 +COL4A1,Cytosol,-0.423533641 +SIRT7,Cytosol,-0.232973958 +TET3,Cytosol,0.627320166 +ZNF286A,Cytosol,0.300913856 +SAMD11,Cytosol,0.518299938 +B3GALTL,Cytosol,0.003024034 +TCEA1,Cytosol,-0.439292176 +FANCA,Cytosol,-0.107682711 +SEMA4D,Cytosol,0.293376376 +LIN28B,Cytosol,0.380156415 +FANCM,Cytosol,0.118587898 +FAM122A,Cytosol,-0.011710464 +ARHGAP11B,Cytosol,0.259135525 +CYHR1,Cytosol,0.265508329 +KLHL17,Cytosol,-1.033309456 +ANKRD19P,Cytosol,-0.839023334 +ARL4C,Cytosol,0.613550938 +C11orf95,Cytosol,0.684543589 +MAPK12,Cytosol,-0.205473856 +COL4A5,Cytosol,-0.285378423 +NCR3LG1,Cytosol,0.198059248 +HES4,Cytosol,-0.856983692 +CHM,Cytosol,0.329570612 +H2AFX,Cytosol,0.300431193 +SRSF10,Cytosol,-0.461990628 +NDOR1,Cytosol,0.241827059 +FAM72B,Cytosol,0.195867654 +LDOC1L,Cytosol,0.877244371 +PTAR1,Cytosol,0.217281634 +ZDHHC9,Cytosol,0.177896067 +ZBED6CL,Cytosol,0.469574695 +TMEM120B,Cytosol,0.010379803 +MTF1,Cytosol,0.360942357 +TMEM201,Cytosol,0.086155649 +NHLRC3,Cytosol,-0.61954891 +BEND4,Cytosol,0.293122858 +MSL1,Cytosol,0.308629985 +DHFRP1,Cytosol,0.562548142 +ZNF292,Cytosol,0.076700899 +ADAT2,Cytosol,-0.298702656 +H1F0,Cytosol,0.889393105 +LITAF,Cytosol,0.115270811 +ARID2,Cytosol,0.402755719 +S100A13,Cytosol,-0.497685932 +ZNF33A,Cytosol,0.408229985 +LIN54,Cytosol,0.250909482 +KAZN,Cytosol,0.207822038 +SLC35E2B,Cytosol,0.547170191 +KIAA0895L,Cytosol,-0.127505434 +PLEKHG4,Cytosol,0.003399178 +ACADSB,Cytosol,0.558159083 +TMEM63A,Cytosol,-0.123059127 +MPHOSPH8,Cytosol,0.853323256 +FAM217B,Cytosol,0.32616592 +LCOR,Cytosol,0.425437339 +POM121,Cytosol,0.113849754 +ZBTB44,Cytosol,0.415904457 +SLC35F1,Cytosol,-0.125754704 +PTPN1,Cytosol,0.769401959 +EVL,Cytosol,-0.291478224 +EPHB4,Cytosol,0.017455016 +PPP1R26,Cytosol,0.747830217 +TSC22D2,Cytosol,0.318063505 +PIK3R4,Cytosol,-0.258398091 +GDAP2,Cytosol,-0.055255281 +AFAP1,Cytosol,0.656229049 +MAN2A2,Cytosol,-0.364578526 +CACNA1H,Cytosol,-0.033237608 +SULF2,Cytosol,-0.18738937 +PLXNB2,Cytosol,-0.188913504 +XRCC2,Cytosol,-0.073506187 +MYO6,Cytosol,0.623277834 +TCF4,Cytosol,0.445968861 +RABL6,Cytosol,0.016089381 +ZKSCAN5,Cytosol,0.427868368 +ZFP62,Cytosol,0.272609076 +ERI2,Cytosol,-0.058290136 +ZNF33B,Cytosol,0.416272468 +ZNF512B,Cytosol,0.563670479 +ZNF431,Cytosol,0.281877958 +NF1,Cytosol,0.490953869 +VKORC1L1,Cytosol,0.187218053 +COL27A1,Cytosol,0.287935192 +GM2A,Cytosol,0.410549164 +SNHG17,Cytosol,-1.028437003 +CD47,Cytosol,-0.597177315 +CTBP1-AS2,Cytosol,0.570379705 +C6orf106,Cytosol,0.930619754 +NHLRC2,Cytosol,0.593727278 +KPNA5,Cytosol,-0.389139666 +ZNF252P,Cytosol,0.265371979 +PDLIM7,Cytosol,-0.361744971 +SLC39A10,Cytosol,-0.012241163 +ZNF100,Cytosol,-0.240880823 +ZNF398,Cytosol,0.134521835 +GMFB,Cytosol,-0.535182484 +ZMYM1,Cytosol,-0.219852801 +MAFG,Cytosol,0.362868819 +ARRDC1,Cytosol,-0.753202815 +KIAA1671,Cytosol,0.690698638 +IGF2R,Cytosol,-0.256231191 +SLC25A29,Cytosol,0.533779516 +PGAP1,Cytosol,-0.433202362 +SRC,Cytosol,0.953044457 +PCNXL3,Cytosol,-0.129163208 +LRRC8B,Cytosol,0.351718761 +ABCB8,Cytosol,-0.290085492 +SND1,Cytosol,-0.11091582 +ENTPD4,Cytosol,0.229266988 +KANK2,Cytosol,0.808824017 +FITM2,Cytosol,0.130239974 +DDI2,Cytosol,0.688424692 +TRIM33,Cytosol,0.210103676 +LRP10,Cytosol,-0.001568832 +ZNF655,Cytosol,0.039688198 +SLC22A5,Cytosol,-0.562353249 +ADARB1,Cytosol,0.275034018 +OGDHL,Cytosol,-0.156014467 +STMN3,Cytosol,0.897526392 +SIPA1L1,Cytosol,0.350384305 +PIGN,Cytosol,-0.565144181 +COL4A6,Cytosol,-0.208107666 +GPX1P1,Cytosol,-0.39562292 +ENTPD6,Cytosol,0.063356352 +ENPP1,Cytosol,-0.124181867 +PHF2,Cytosol,0.771037544 +RPS26,Cytosol,-1.130413272 +PSAP,Cytosol,-0.51740109 +HOXC6,Cytosol,0.240036302 +EME2,Cytosol,-0.202489384 +ZNF780A,Cytosol,0.465467494 +SLC9A8,Cytosol,0.097461251 +OCLN,Cytosol,-0.225819865 +GPAA1,Cytosol,-0.791943543 +SPG7,Cytosol,-0.10285527 +ERO1L,Cytosol,-0.039479176 +ZNF121,Cytosol,-0.548961205 +MPZL1,Cytosol,-0.207806107 +VPS13A,Cytosol,0.167264269 +AKAP17A,Cytosol,0.287715837 +ELOVL2,Cytosol,0.06246341 +SNHG12,Cytosol,-1.271630596 +NOL8,Cytosol,0.072700291 +MRPL42,Cytosol,-0.559164604 +ENTPD7,Cytosol,-0.018501549 +ZNF84,Cytosol,-0.347497195 +SIRPA,Cytosol,0.128302907 +CD2AP,Cytosol,0.314310031 +NUP62CL,Cytosol,-0.655217347 +SFI1,Cytosol,-0.467073214 +ZNF248,Cytosol,0.061506385 +ZNF770,Cytosol,0.307885752 +HMGN5,Cytosol,-0.533032567 +MIER1,Cytosol,0.636193037 +MAN1A2,Cytosol,0.18777218 +RPS6KL1,Cytosol,0.387763743 +DDX42,Cytosol,0.621103419 +STYX,Cytosol,0.308225495 +UCKL1,Cytosol,-0.663115371 +ZKSCAN8,Cytosol,0.500830861 +HOXC4,Cytosol,0.476658943 +ASPH,Cytosol,-0.349040272 +WWP2,Cytosol,0.81713354 +GFPT1,Cytosol,0.466866903 +ITSN2,Cytosol,0.142562651 +MGEA5,Cytosol,0.311853708 +FAM115A,Cytosol,0.904391714 +ZNF587,Cytosol,-0.053309549 +MAFK,Cytosol,0.399327377 +DDX39B,Cytosol,-0.811869465 +NUDT16,Cytosol,0.109437845 +TLK1,Cytosol,0.052465727 +MDM4,Cytosol,-0.543954244 +KLHL9,Cytosol,0.164254223 +C6orf89,Cytosol,0.544849092 +SLC9A6,Cytosol,-0.321096844 +FAN1,Cytosol,0.301377 +CEP290,Cytosol,-0.185133046 +C1orf85,Cytosol,-0.499592579 +SMOC1,Cytosol,-0.153774116 +ZNF652,Cytosol,0.388191905 +SMURF1,Cytosol,0.48296544 +SLC5A3,Cytosol,-0.26103903 +COLGALT2,Cytosol,-0.215623094 +TMEM184B,Cytosol,-0.06695435 +LRIG2,Cytosol,-0.499282973 +FOXJ3,Cytosol,0.506494202 +ARHGAP11A,Cytosol,0.376062522 +DENND4B,Cytosol,0.128942637 +R3HDM4,Cytosol,0.18393064 +RUNDC1,Cytosol,0.655816571 +TYW1,Cytosol,-0.336929717 +SFMBT2,Cytosol,0.39572264 +ITPRIPL1,Cytosol,0.37887057 +SMC5,Cytosol,0.497682231 +SREBF2,Cytosol,0.005413433 +DZIP3,Cytosol,0.108514187 +KIAA0753,Cytosol,0.219933623 +ATG9A,Cytosol,-0.256449619 +TBKBP1,Cytosol,0.147311644 +NAGA,Cytosol,-0.096782138 +SGMS1,Cytosol,0.15394434 +COX20,Cytosol,-0.187518771 +CHML,Cytosol,0.249073354 +TATDN3,Cytosol,-0.165988871 +RBM20,Cytosol,0.307249891 +PCMTD2,Cytosol,0.162411849 +EFCAB7,Cytosol,-0.857734594 +ZYG11A,Cytosol,0.488169583 +SYS1,Cytosol,0.108838616 +TRAF3IP1,Cytosol,0.340479331 +PHACTR4,Cytosol,0.62830007 +ZDHHC18,Cytosol,0.459171922 +TMEM57,Cytosol,-0.347736802 +ZDBF2,Cytosol,0.283110949 +BMPR2,Cytosol,0.160920808 +OXLD1,Cytosol,-0.297615051 +MRPL38,Cytosol,-0.741836416 +SDHD,Cytosol,-1.21094098 +NEU1,Cytosol,-0.449867489 +HSPA1B,Cytosol,-0.72718275 +HLA-C,Cytosol,-0.753169884 +DDR1,Cytosol,0.354481316 +HLA-E,Cytosol,-0.296875503 +ZNF616,Cytosol,-0.072749155 +CRHR1-IT1,Cytosol,0.122788366 +GABBR1,Cytosol,-0.48897464 +RANBP17,Cytosol,-0.338775667 +ZNF204P,Cytosol,-0.555452167 +TCTN1,Cytosol,-0.715487304 +ZBTB48,Cytosol,-0.169384463 +C11orf83,Cytosol,-0.728778138 +ZNF783,Cytosol,0.355096091 +SLC35B4,Cytosol,0.080619461 +TRIQK,Cytosol,-0.572692225 +PSENEN,Cytosol,-0.799736066 +LGR4,Cytosol,-0.192190181 +PDE7A,Cytosol,-0.004500551 +TMEM170B,Cytosol,-0.077208501 +TECPR1,Cytosol,0.354716901 +ITPRIPL2,Cytosol,0.221769508 +CRYZL1,Cytosol,-0.785630059 +C5orf51,Cytosol,0.314928219 +ZNF316,Cytosol,0.661728419 +NYNRIN,Cytosol,1.042627765 +AP000525.9,Cytosol,0.459623031 +PTPLB,Cytosol,-0.318064239 +WDR52,Cytosol,-0.398668445 +SETD5-AS1,Cytosol,-0.999622032 +SACM1L,Cytosol,0.140325368 +C17orf51,Cytosol,0.763211404 +ZNF580,Cytosol,-0.374777557 +DENND1B,Cytosol,-0.240683836 +SFT2D2,Cytosol,0.291253418 +FGFR1OP,Cytosol,-0.221453613 +KLHL23,Cytosol,0.318305246 +TRIM59,Cytosol,-0.399571907 +NRAS,Cytosol,0.391813538 +QTRT1,Cytosol,-1.024636883 +CHUK,Cytosol,-0.085299856 +COG8,Cytosol,0.248099578 +RBMXL1,Cytosol,0.036691383 +LEPROT,Cytosol,-0.114863867 +ATF6B,Cytosol,0.254266274 +SLC35F6,Cytosol,-0.003451936 +ZNF134,Cytosol,-0.308173082 +EMP2,Cytosol,-0.078357645 +DNASE1,Cytosol,0.558833023 +CSNK1E,Cytosol,0.47388116 +GALT,Cytosol,-0.545143695 +ITGA1,Cytosol,-0.605991703 +AP1G2,Cytosol,-0.589435943 +CARKD,Cytosol,0.170011109 +TTLL3,Cytosol,-1.057856601 +CPNE1,Cytosol,-0.326287453 +RCN1P2,Cytosol,-0.622419162 +ZBED1,Cytosol,0.823038781 +DDX12P,Cytosol,-0.548487711 +C22orf29,Cytosol,0.466578281 +NEURL4,Cytosol,0.029037003 +TTC3P1,Cytosol,0.390330297 +PEX26,Cytosol,0.744818046 +GOLGA8B,Cytosol,-1.243904479 +MIR17HG,Cytosol,-1.885363459 +TMEM242,Cytosol,-0.234498459 +TMEM167B,Cytosol,0.308701797 +CYB5RL,Cytosol,0.371705853 +CROCCP2,Cytosol,-0.484299507 +FNIP1,Cytosol,0.26624531 +RP11-204C16.4,Cytosol,0.311140489 +TENM3,Cytosol,-0.360938762 +AC007390.5,Cytosol,0.622893579 +NBPF1,Cytosol,0.30919689 +CCNL2,Cytosol,-0.81373013 +PPT2,Cytosol,-0.143462945 +CKMT1A,Cytosol,-0.664385841 +NSUN5P1,Cytosol,-0.947189079 +RP11-54O7.3,Cytosol,0.309245846 +AFG3L1P,Cytosol,-0.218432631 +EPB41L4A-AS1,Cytosol,-1.00639578 +ATXN1L,Cytosol,0.42556881 +SMIM13,Cytosol,-0.049674862 +CTD-2228K2.7,Cytosol,-0.277751418 +PLEKHM1,Cytosol,0.572991026 +FAM195B,Cytosol,0.039357402 +IPO7P2,Cytosol,0.667312519 +SLC26A6,Cytosol,-0.615470755 +FGD5-AS1,Cytosol,0.372377057 +TLK2P1,Cytosol,0.433938747 +BAIAP2-AS1,Cytosol,0.830502537 +RP11-31F15.1,Cytosol,-0.05287993 +TMEM185B,Cytosol,-0.329137171 +C14orf132,Cytosol,0.876901225 +PARG,Cytosol,0.335037372 +TP73-AS1,Cytosol,0.176935234 +SCAMP4,Cytosol,-0.022721593 +SEC63P1,Cytosol,-0.331079012 +HCG11,Cytosol,0.350125079 +DHFR,Cytosol,0.714068279 +RP11-206L10.11,Cytosol,0.34532381 +XIST,Cytosol,-0.973893627 +RP5-1180C10.2,Cytosol,-0.663056337 +HCG18,Cytosol,0.064074759 +CTD-2619J13.14,Cytosol,0.484140707 +SNHG15,Cytosol,-1.061091646 +SNHG7,Cytosol,-1.075633756 +HOTAIRM1,Cytosol,-0.771783281 +RP4-775C13.1,Cytosol,-0.060855035 +ZNF37BP,Cytosol,-0.108646311 +ZNF736,Cytosol,-0.269466458 +MAGI2-AS3,Cytosol,-0.289325439 +JRK,Cytosol,0.309983571 +GAS5,Cytosol,-1.298187348 +LINC00338,Cytosol,-1.081931198 +PPP1R3E,Cytosol,0.195991224 +RP5-827C21.1,Cytosol,-1.176498363 +NUS1P1,Cytosol,-0.066675217 +ZBTB22,Cytosol,0.866302669 +AD000090.2,Cytosol,0.137579071 +ZBED5,Cytosol,-0.377243765 +RNF103,Cytosol,0.150357476 +TMEM189,Cytosol,0.106498575 +RPL36A,Cytosol,-1.427360761 +CD302,Cytosol,-0.156388134 +SNHG3,Cytosol,-1.160317432 +C15orf38,Cytosol,0.946498624 +AP5Z1,Cytosol,-0.157218377 +MICAL3,Cytosol,0.540528124 +KCTD7,Cytosol,1.000756438 +SCARF2,Cytosol,-0.448516672 +APOBEC3C,Cytosol,1.002484596 +N4BP2L2,Cytosol,-0.158486025 +NEAT1,Cytosol,-0.812168086 +CRNDE,Cytosol,-1.085922292 +OIP5-AS1,Cytosol,0.16531807 +MARS2,Cytosol,-0.229095994 +HAUS5,Cytosol,0.097464819 +PDCD6,Cytosol,-0.987515757 +THAP9-AS1,Cytosol,-0.935710547 +SHANK3,Cytosol,0.246146814 +RTN3P1,Cytosol,-0.266818275 +MALAT1,Cytosol,-1.132582859 +TUG1,Cytosol,0.156407927 +GS1-251I9.4,Cytosol,-0.760700726 +UTP14C,Cytosol,-0.014860118 +ZNF260,Cytosol,0.465259325 +PABPC4L,Cytosol,0.040797812 +FPGT,Cytosol,-0.265911347 +MEX3A,Cytosol,0.88396339 +POLR2M,Cytosol,0.191355083 +SNHG1,Cytosol,-1.259388912 +POLG2,Cytosol,-0.673628718 +KIAA1147,Cytosol,0.622458777 +RP11-349A22.5,Cytosol,-0.362069595 +LINC00641,Cytosol,0.389780958 +RP4-773N10.4,Cytosol,0.245277257 +CEP95,Cytosol,-0.178576991 +LINC00657,Cytosol,0.219831265 +RP1-239B22.5,Cytosol,0.438021559 +RP6-24A23.6,Cytosol,0.031102336 +ERVK13-1,Cytosol,-0.210301033 +GS1-358P8.4,Cytosol,0.472406378 +VPS9D1-AS1,Cytosol,0.351272533 +RP6-24A23.7,Cytosol,-0.31549732 +GAN,Cytosol,0.249150923 +SPON1,Cytosol,-0.623905137 +RP11-159D12.2,Cytosol,-1.018197386 +OTUD7B,Cytosol,0.677335537 +RNF115,Cytosol,0.340054663 +BAHCC1,Cytosol,0.347739543 +NBPF15,Cytosol,0.081544076 +RP11-242D8.1,Cytosol,-0.762029509 +RP11-18I14.10,Cytosol,-0.569785459 +NBPF9,Cytosol,-0.092333881 +EGLN2,Cytosol,0.244625955 +NUDT3,Cytosol,0.614205162 +KMT2B,Cytosol,0.065460879 +POM121C,Cytosol,0.161190815 +RP11-504P24.8,Cytosol,-0.532760124 +DCP1A,Cytosol,0.386372337 +EPOP,Cytosol,0.880292902 +NOL12,Cytosol,-0.344695787 +SOCS7,Cytosol,0.645025361 +PI4KAP1,Cytosol,-0.44263779 +ZNF280B,Cytosol,0.262183123 +MLLT6,Cytosol,0.539484529 +SYNRG,Cytosol,0.522192368 +TADA2A,Cytosol,0.520898729 +PIP4K2B,Cytosol,0.740941334 +AL133325.3,Cytosol,-1.1466871 +DDX52,Cytosol,0.24513946 +MYO19,Cytosol,0.057766717 +DHRS11,Cytosol,-0.185128889 +ACACA,Cytosol,0.313589013 +AC005332.6,Cytosol,0.442321173 +RP11-574K11,Cytosol,-1.625086848 +AL035425.4,Cytosol,-1.116129893 +EBLN3P,Cytosol,0.065630044 +GCLC,ERM,0.366242675 +NFYA,ERM,0.366740419 +NIPAL3,ERM,1.529406239 +ENPP4,ERM,1.259570979 +SEMA3F,ERM,1.028073312 +CD99,ERM,-0.013225855 +LASP1,ERM,0.907025706 +M6PR,ERM,0.847953779 +CFLAR,ERM,0.501770293 +NDUFAF7,ERM,-0.722028305 +RBM5,ERM,-0.876321052 +SLC7A2,ERM,2.206454513 +SARM1,ERM,0.807597199 +CAMKK1,ERM,-0.182034571 +RECQL,ERM,-0.06802566 +ARHGAP33,ERM,-0.143270778 +CDC27,ERM,1.037314971 +SPPL2B,ERM,-0.030494464 +CREBBP,ERM,0.999671573 +GCFC2,ERM,0.562982499 +RHBDD2,ERM,-0.009818639 +IBTK,ERM,0.829199067 +ZNF195,ERM,0.301899746 +MYCBP2,ERM,0.01743362 +ZFX,ERM,0.795950858 +LAMP2,ERM,1.717824657 +GDE1,ERM,1.250941994 +TMEM98,ERM,0.833985021 +TMEM132A,ERM,0.275314164 +ZNF263,ERM,1.017262229 +MAP3K9,ERM,0.094892298 +JHDM1D,ERM,0.352319984 +PHTF2,ERM,2.001794466 +FARP2,ERM,0.494309614 +IFRD1,ERM,-0.507587008 +ARHGAP44,ERM,-1.084392472 +ELAC2,ERM,-0.199141971 +ADIPOR2,ERM,1.959500448 +PAFAH1B1,ERM,0.860207328 +KIAA0100,ERM,1.345010961 +PAX6,ERM,0.060551136 +LUC7L,ERM,-1.530791146 +CACNA2D2,ERM,0.602253549 +PIGQ,ERM,0.714182443 +CRAMP1L,ERM,-0.387778816 +JARID2,ERM,1.029906228 +ADAM22,ERM,0.703305278 +CYB561,ERM,1.011646246 +SPAG9,ERM,1.277527733 +CELSR3,ERM,0.821784173 +AASS,ERM,1.740125786 +PKD1,ERM,0.224709214 +SEC62,ERM,1.611019147 +REV3L,ERM,1.038373766 +POMT2,ERM,1.250207452 +BAZ1B,ERM,0.925251645 +ZNF207,ERM,-0.747479276 +IFFO1,ERM,-1.295366532 +NISCH,ERM,0.099941348 +IDS,ERM,0.368508684 +CLCN6,ERM,0.969761921 +MRC2,ERM,1.005481631 +TSPAN9,ERM,2.131844951 +BTBD7,ERM,1.345494863 +MBTD1,ERM,0.605570549 +LARS2,ERM,1.014376012 +PIK3C2A,ERM,0.621292057 +ANLN,ERM,1.111869353 +QPCTL,ERM,1.118480988 +MAP4K3,ERM,-0.419004437 +BRCA1,ERM,0.990500616 +MBTPS2,ERM,1.628918122 +EXTL3,ERM,1.465203185 +ELOVL5,ERM,1.342938564 +MAP4K5,ERM,0.527991933 +MAN2B2,ERM,1.197140626 +CLK1,ERM,-0.74278925 +ANGEL1,ERM,1.551593155 +DDX11,ERM,-0.89864265 +UFL1,ERM,2.425819348 +SLC30A9,ERM,0.769629494 +COX15,ERM,0.848850596 +ZMYND11,ERM,1.146913426 +XYLT2,ERM,0.954279915 +NUDCD3,ERM,0.697503037 +CHDH,ERM,0.005493655 +GLT8D1,ERM,0.446200343 +ATP2C1,ERM,1.071038389 +RALBP1,ERM,0.651497768 +CNTN1,ERM,1.266096714 +PHLDB1,ERM,0.08897167 +MRE11A,ERM,0.548293025 +SPAST,ERM,1.673922806 +NRXN3,ERM,1.156910234 +CPS1,ERM,1.500152926 +SLC45A4,ERM,0.788645194 +ZNF839,ERM,0.300626252 +ZDHHC6,ERM,1.277986939 +RNH1,ERM,-2.330754735 +RB1CC1,ERM,0.792813613 +ERP44,ERM,0.755101503 +AKAP11,ERM,0.814619109 +GCLM,ERM,1.061046328 +DEPDC1,ERM,1.054897089 +SEC63,ERM,1.54287054 +FAS,ERM,1.612932194 +RNASET2,ERM,-1.464076018 +AGPAT4,ERM,0.660807094 +MIPEP,ERM,-0.392485769 +VEZT,ERM,1.022933252 +BRD9,ERM,0.092480813 +SNX1,ERM,-0.86736273 +BCLAF1,ERM,0.437373436 +SLC39A9,ERM,1.651783972 +RABEP1,ERM,0.687480143 +FAM13B,ERM,1.156782352 +PNPLA6,ERM,1.448676102 +ZCCHC8,ERM,0.125784343 +CHPF2,ERM,1.980288245 +FUT8,ERM,1.041109524 +UBA6,ERM,0.548233639 +ATP6V0A1,ERM,1.200006827 +SLC4A7,ERM,1.640194346 +VCL,ERM,1.823943822 +ADSS,ERM,-0.224666349 +TIMP2,ERM,1.894077645 +RFC1,ERM,0.826818473 +ZZZ3,ERM,1.128985306 +MFAP3,ERM,1.987940411 +MRI1,ERM,-0.216407078 +AGA,ERM,-0.230482761 +BOD1L1,ERM,0.718431898 +TRIO,ERM,0.28108657 +VCAN,ERM,1.616194333 +CLEC16A,ERM,0.855633634 +ZFYVE16,ERM,1.723914063 +RAI14,ERM,0.382301625 +PNKP,ERM,-1.547587039 +PQLC2,ERM,1.08429401 +CTNS,ERM,1.042595824 +INPP4A,ERM,0.405944248 +RETSAT,ERM,1.207189365 +CUL7,ERM,-1.734323809 +PHKA2,ERM,-0.125064841 +DSG2,ERM,1.69862373 +OFD1,ERM,-0.512741155 +GPM6B,ERM,1.056225087 +YTHDC2,ERM,0.254522902 +TPR,ERM,0.416779014 +SCML1,ERM,0.208763963 +MAP4,ERM,0.4236468 +GOPC,ERM,0.225441278 +ZNF800,ERM,1.024448831 +SNX29,ERM,0.565013244 +KITLG,ERM,0.942050415 +H6PD,ERM,1.332669218 +LTBP1,ERM,0.577168553 +RCN1,ERM,0.728612544 +PTCD2,ERM,0.92632362 +LIMA1,ERM,1.028092969 +LETMD1,ERM,-0.329999727 +POLQ,ERM,0.738565247 +MPHOSPH9,ERM,1.029192525 +PLEKHA5,ERM,1.328014545 +SIKE1,ERM,1.238355573 +MSMO1,ERM,0.944761637 +TTC17,ERM,1.430056998 +LAMA3,ERM,0.672417801 +AP5M1,ERM,0.061670677 +ANAPC4,ERM,-1.674301869 +ARID4B,ERM,0.788991853 +SDCCAG8,ERM,0.247617212 +FOXC1,ERM,0.841359456 +PLEKHH1,ERM,0.607922469 +ATP9A,ERM,1.93834315 +FAM168A,ERM,0.879622993 +RELT,ERM,1.112179369 +NOP58,ERM,-0.692986431 +TAB2,ERM,0.848789798 +USP36,ERM,0.75796638 +KMT2C,ERM,0.909781156 +MCOLN3,ERM,-0.449071326 +PUM2,ERM,0.445065068 +RC3H2,ERM,0.830481219 +DCBLD2,ERM,1.783101636 +SOAT1,ERM,1.637042149 +ATP11B,ERM,1.697370384 +SEC61A1,ERM,1.557991153 +PPP1R12A,ERM,0.614627834 +POLR3E,ERM,-0.20094181 +ATP2B4,ERM,2.145802856 +ZC3H11A,ERM,0.621837172 +NDC1,ERM,0.900486488 +UNKL,ERM,0.515656543 +ALDH18A1,ERM,0.394626134 +TARBP1,ERM,-0.482739495 +WNK1,ERM,0.826499323 +CCAR1,ERM,0.207295921 +PTPRU,ERM,1.027870738 +QSER1,ERM,0.985264312 +BCAT1,ERM,0.56436065 +PRDM6,ERM,-1.53903804 +TNK2,ERM,-0.728472777 +MON2,ERM,0.382315147 +GPBP1,ERM,0.429939427 +WAPAL,ERM,0.954589648 +VMP1,ERM,1.368931165 +APPBP2,ERM,0.994858247 +AHRR,ERM,0.116519117 +ZNF275,ERM,0.595154531 +MTMR1,ERM,0.635591848 +GPC1,ERM,1.382663005 +TM7SF3,ERM,0.181258242 +CDON,ERM,1.289617664 +HIPK2,ERM,0.873452714 +SUGP2,ERM,-0.29776426 +SLC12A2,ERM,1.994135129 +HMG20B,ERM,-1.412143333 +UHRF1BP1,ERM,0.802514022 +PKN2,ERM,2.160764875 +TRAM2,ERM,2.035913511 +NTN1,ERM,1.669569623 +ADAT1,ERM,0.860149547 +SPEN,ERM,1.0995228 +MAP2K4,ERM,1.213348278 +SLK,ERM,1.528000645 +CYB5R4,ERM,-0.34693406 +ASB1,ERM,0.428541594 +FAM107B,ERM,0.759837119 +SLC9A7,ERM,1.773680801 +FOXJ2,ERM,0.542874733 +PPP2R5A,ERM,0.084884506 +ASPM,ERM,1.744084523 +ZBTB11,ERM,-0.242335364 +ATXN3,ERM,1.463764767 +FGFR2,ERM,1.474172838 +LRRC40,ERM,-0.836796815 +ATG2B,ERM,0.402519576 +ARFGEF1,ERM,0.756538422 +KLF6,ERM,0.475802725 +NEO1,ERM,1.941566451 +TRAM1,ERM,1.055527889 +TP53BP1,ERM,0.263075729 +IARS2,ERM,0.600777726 +ROCK1,ERM,0.795133108 +HYAL2,ERM,0.627540784 +FGFR3,ERM,1.009294836 +MEF2A,ERM,0.993601548 +ACSL4,ERM,0.811022831 +PRR11,ERM,1.425659245 +REEP1,ERM,1.535325096 +ATP11A,ERM,1.59160213 +POLR1A,ERM,0.1772585 +IP6K2,ERM,-0.912616393 +KIF2A,ERM,0.20997164 +TGFBR3,ERM,1.598385016 +NEDD4,ERM,1.170576501 +MAPK6,ERM,0.791368717 +UFD1L,ERM,-1.165802742 +LRP6,ERM,1.665656042 +NUCB2,ERM,0.895071633 +SLC44A1,ERM,1.405946011 +TMEM260,ERM,1.303904353 +SMG6,ERM,0.770706561 +CLTCL1,ERM,-0.963492892 +DGCR2,ERM,2.122804841 +MNT,ERM,-0.382310448 +ZXDC,ERM,0.401406737 +NDST1,ERM,1.682348987 +AP3M2,ERM,0.165085685 +RAD18,ERM,0.025932915 +ATP2B1,ERM,1.831612669 +MGAT4A,ERM,1.671708875 +SNX13,ERM,1.652937038 +VASH1,ERM,0.738294587 +SEL1L,ERM,1.60545491 +ATP6AP1,ERM,0.34907296 +DAZAP1,ERM,-0.239220793 +CPSF1,ERM,-0.977817564 +SLC6A15,ERM,0.832677 +RDH11,ERM,1.917390769 +PRKACA,ERM,0.517639533 +LPHN1,ERM,0.82934094 +RPS6KA6,ERM,0.388813354 +EPN2,ERM,0.224881459 +PTPN18,ERM,-0.164101047 +TFRC,ERM,1.60812455 +AFF4,ERM,0.948568818 +MPP5,ERM,0.690097526 +HMMR,ERM,1.611938087 +P4HA2,ERM,0.298471424 +TRNT1,ERM,-0.424182266 +ACADVL,ERM,-2.174876156 +EVC,ERM,1.367206319 +DERL2,ERM,1.18643082 +NDE1,ERM,0.424251125 +PVR,ERM,1.936046973 +SCARB1,ERM,-0.120162424 +SELO,ERM,-0.322750621 +LLGL2,ERM,-0.917386252 +PDE8A,ERM,0.039161781 +SDHA,ERM,-0.790381634 +KDM5A,ERM,1.020354852 +ADAM11,ERM,0.87651732 +ST6GAL1,ERM,1.230823729 +GLI2,ERM,-0.092358756 +NOTCH3,ERM,1.089281766 +BCS1L,ERM,-1.464990364 +DPP8,ERM,1.208303161 +SLC24A1,ERM,1.104745152 +LMAN1,ERM,1.892421232 +PTPLAD1,ERM,1.626480323 +TUBE1,ERM,-0.979598622 +SEMA3C,ERM,1.690679754 +TTC38,ERM,-0.551210309 +CELSR1,ERM,1.039245194 +ZNF638,ERM,1.244065225 +SLC25A40,ERM,-0.352506521 +RASAL2,ERM,-0.331523862 +ZNF37A,ERM,0.5122205 +FNDC3B,ERM,1.447794607 +FRYL,ERM,0.897707978 +TMEM131,ERM,1.537667149 +WDR62,ERM,-0.586870811 +BCAP29,ERM,1.137999744 +SEC31B,ERM,-0.687596122 +RBMS2,ERM,1.327743425 +SLC46A1,ERM,1.687358691 +PLXNA2,ERM,1.377520169 +ANKRD13A,ERM,-0.085044666 +PAG1,ERM,1.915100376 +MCAM,ERM,0.363401525 +GPC4,ERM,0.665326353 +MBNL3,ERM,0.559634701 +DGKD,ERM,0.279550865 +TM9SF3,ERM,1.333627856 +PPP1R12B,ERM,0.058867815 +DNAJC10,ERM,1.506095798 +GTF3C1,ERM,0.654362278 +IL4R,ERM,1.901515006 +LRCH4,ERM,-0.882314235 +FAM76B,ERM,0.568473391 +SIRT6,ERM,-1.833621569 +POLD3,ERM,0.252976649 +PHF17,ERM,0.136430374 +FBLN1,ERM,-0.650812151 +ITGA8,ERM,1.340212317 +MCCC1,ERM,-0.570521776 +ACER3,ERM,2.278701515 +N4BP2,ERM,0.939460668 +HOXA9,ERM,-0.578235083 +PCM1,ERM,0.670555781 +TNRC6C,ERM,0.730735633 +ITCH,ERM,1.051350299 +SDF4,ERM,0.394334719 +FKBP7,ERM,1.012937152 +SLC1A3,ERM,1.555676425 +SAR1A,ERM,0.8429219 +PAFAH1B3,ERM,-0.909683462 +MOXD1,ERM,0.95832528 +STX7,ERM,0.841573373 +RABL2B,ERM,-0.65221105 +SLC35C2,ERM,0.390038275 +CRYBG3,ERM,1.740784142 +RIF1,ERM,0.694264113 +PSEN1,ERM,1.553104971 +RBL1,ERM,1.203277944 +RSBN1,ERM,0.338495342 +MAGI3,ERM,0.875109743 +OSTM1,ERM,1.342849869 +EXD2,ERM,1.521430796 +MEF2C,ERM,-0.295230231 +UBA5,ERM,-0.124723661 +STK17B,ERM,0.981913966 +ZNF510,ERM,0.162919789 +LRP2,ERM,0.196410472 +DUSP12,ERM,-1.854173889 +KIAA0141,ERM,-0.181242681 +PHLPP1,ERM,0.799941468 +SMARCD3,ERM,-1.176638612 +C5orf22,ERM,0.844100158 +CCNT2,ERM,1.33846717 +NFE2L1,ERM,1.868577225 +GSK3B,ERM,0.893018487 +ITGB5,ERM,0.693376558 +ERC1,ERM,0.981304366 +RNF13,ERM,0.978834578 +LYRM2,ERM,0.885237489 +KAT6A,ERM,1.259664263 +PLOD1,ERM,0.84952675 +TDRD3,ERM,0.058541995 +PDS5B,ERM,0.381888649 +OXCT1,ERM,-0.179346544 +RRAGB,ERM,-2.009384983 +FAT1,ERM,1.39081218 +YTHDC1,ERM,0.030155125 +ZMPSTE24,ERM,1.398613018 +REST,ERM,1.483044155 +APLP2,ERM,1.244034118 +KIAA1467,ERM,1.274148205 +TXLNA,ERM,0.604626823 +NCOA1,ERM,0.902863437 +AGBL5,ERM,-0.572778939 +CD59,ERM,1.396282801 +ATRX,ERM,1.131430254 +SCAMP1,ERM,1.29456263 +HACE1,ERM,0.026077389 +WDFY1,ERM,0.940870263 +MTIF2,ERM,0.264341545 +ATG16L1,ERM,0.156192193 +POMGNT1,ERM,0.652067891 +B4GALT1,ERM,2.277240477 +IPO11,ERM,0.276367193 +TMED2,ERM,1.195379357 +ERO1LB,ERM,1.421490055 +PPP1R15A,ERM,0.721447896 +NLK,ERM,0.995797219 +PIGS,ERM,0.388398151 +ATXN7L3,ERM,0.633400608 +PGS1,ERM,-1.048491592 +SH3BP2,ERM,0.018573144 +ADD1,ERM,0.463826833 +TXNDC16,ERM,1.356975289 +NID2,ERM,0.899198354 +KLHL42,ERM,0.420287583 +ERGIC2,ERM,0.848508605 +METTL2A,ERM,0.972237454 +PTPN4,ERM,0.120138722 +KHSRP,ERM,0.337737416 +EPB41L1,ERM,0.868229176 +ANKRD10,ERM,-1.086772346 +DOCK3,ERM,-0.566265184 +PPP1R13B,ERM,0.054463191 +ATRN,ERM,1.410146127 +ZNF343,ERM,0.962300203 +MAVS,ERM,0.168312583 +LZTS3,ERM,0.350094597 +SNX5,ERM,-0.755505556 +MAPKAPK5,ERM,-0.221493063 +ESF1,ERM,0.379461711 +SLC23A2,ERM,1.703417182 +KIF16B,ERM,1.107950809 +ERP29,ERM,-0.586790866 +FUS,ERM,-1.392731606 +ZNF302,ERM,-1.93046882 +GRAMD1A,ERM,-0.378889801 +GANAB,ERM,1.362448883 +RBM41,ERM,0.270813447 +GPATCH2L,ERM,1.034775304 +SLC9A1,ERM,0.719806672 +SPTLC1,ERM,1.224721356 +PAPOLA,ERM,0.76330131 +MUL1,ERM,1.48753043 +RAB11FIP3,ERM,0.316880719 +GOLGA3,ERM,0.583489491 +EFNB1,ERM,1.254445798 +PDPR,ERM,0.707141434 +GLG1,ERM,1.142871716 +TNRC6A,ERM,0.822199295 +PLEKHG2,ERM,-0.007110946 +NAT14,ERM,-0.126480187 +RBM27,ERM,1.032875566 +OSBPL8,ERM,1.273887256 +NRCAM,ERM,1.381934223 +LAMB1,ERM,0.614810975 +CMTM6,ERM,1.15901087 +ITGA6,ERM,1.243407894 +SEL1L3,ERM,-0.091079661 +ORC6,ERM,-0.69320409 +TMEM101,ERM,0.282658446 +OSGEP,ERM,-1.221544539 +G2E3,ERM,0.876750966 +HECTD1,ERM,0.958119243 +SEMA6A,ERM,1.792879181 +TRPM7,ERM,1.070144913 +TYRO3,ERM,0.962803587 +AGO1,ERM,0.722872324 +MFSD11,ERM,-0.164777897 +GPATCH2,ERM,0.759426108 +NUP50,ERM,1.158151517 +LRRFIP2,ERM,0.369187453 +SEC22C,ERM,1.292974861 +XYLB,ERM,-0.477402027 +HDAC6,ERM,-0.679300118 +CBX5,ERM,0.559936332 +SUCO,ERM,1.954948307 +HOOK2,ERM,-1.350828379 +ARCN1,ERM,0.643467761 +TMEM38B,ERM,1.026955792 +BTAF1,ERM,0.310790923 +IKZF5,ERM,0.657456783 +WAC,ERM,0.805851466 +CREM,ERM,-1.412405295 +BRPF3,ERM,0.750785958 +EFHC1,ERM,-0.996296558 +ABL1,ERM,0.678505028 +SH3GLB1,ERM,0.194121695 +SCD,ERM,2.2998092 +ABLIM1,ERM,0.44593089 +ERMP1,ERM,1.567518498 +NRP1,ERM,1.478501791 +MZF1,ERM,0.308324109 +FBXL19,ERM,0.556270595 +MTAP,ERM,0.041281568 +CEP170B,ERM,1.044797753 +POLRMT,ERM,-0.204694344 +ARVCF,ERM,-0.601832306 +TRMT2A,ERM,-0.895247789 +ZDHHC8,ERM,0.71639569 +KLHL22,ERM,-0.342394446 +CRKL,ERM,0.851110176 +LZTR1,ERM,-0.272590855 +CECR2,ERM,0.74513115 +DERL3,ERM,-0.733926855 +PPM1F,ERM,-0.096751383 +TOP3B,ERM,-1.205125811 +CRYBB2P1,ERM,-1.362756719 +ADRBK2,ERM,0.926219974 +GGA1,ERM,-0.137486302 +HPS4,ERM,0.13401488 +TTC28,ERM,0.360848113 +SEPT3,ERM,0.919714943 +KDELR3,ERM,1.207331957 +DDX17,ERM,-0.036023254 +TCF20,ERM,1.006604317 +TIMP3,ERM,1.271386226 +PPP6R2,ERM,-0.128743718 +SUN2,ERM,0.733440345 +ARSA,ERM,-0.700710577 +MYH9,ERM,0.053670274 +FOXRED2,ERM,1.046660461 +TNRC6B,ERM,0.575852412 +SGSM3,ERM,-1.564460657 +IFT27,ERM,-0.937772455 +KIAA0930,ERM,0.427487016 +EP300,ERM,1.140858213 +ZC3H7B,ERM,0.562999815 +ACO2,ERM,-0.563652569 +TRMU,ERM,-0.367890721 +ZBED4,ERM,0.826879569 +ABHD4,ERM,0.538049555 +KHNYN,ERM,0.146672722 +NIN,ERM,1.722479748 +GNPNAT1,ERM,1.17061418 +DDHD1,ERM,0.49946356 +CNIH1,ERM,1.606255885 +TMED8,ERM,0.987461221 +SPTLC2,ERM,1.973457195 +PPM1A,ERM,0.317544896 +SIX4,ERM,0.851309443 +GALNT16,ERM,0.789104509 +KIAA0247,ERM,1.242410888 +SRSF5,ERM,-1.341629711 +DICER1,ERM,0.795603964 +ZFYVE21,ERM,-2.259786898 +TELO2,ERM,-1.290708508 +PCNX,ERM,1.783672952 +GSKIP,ERM,-0.330412056 +SMEK1,ERM,0.909682737 +TRIP11,ERM,1.335958111 +PABPN1,ERM,-0.387303698 +ARHGAP5,ERM,1.011149904 +CHD8,ERM,0.923893014 +PCK2,ERM,-1.833091527 +PNN,ERM,-0.459567163 +PLTP,ERM,-2.361006191 +ABHD12,ERM,0.018172174 +GINS1,ERM,0.878716339 +RIMS4,ERM,0.459237567 +PABPC1L,ERM,-1.946703271 +STK4,ERM,1.103063198 +BMP7,ERM,1.04500783 +DNAJC5,ERM,0.989827844 +SLCO4A1,ERM,-0.548164254 +DIDO1,ERM,0.964403206 +ARFGAP1,ERM,-0.514863085 +ARFRP1,ERM,-1.393036912 +CDS2,ERM,1.217515776 +TM9SF4,ERM,1.217464385 +POFUT1,ERM,1.665685159 +SAMHD1,ERM,0.927993838 +KIF3B,ERM,0.936767574 +E2F1,ERM,-0.322961785 +APMAP,ERM,0.432223843 +ZNF516,ERM,0.957283719 +LPIN2,ERM,0.355174142 +SMCHD1,ERM,0.538760425 +LAMA1,ERM,1.110821509 +RNF125,ERM,0.327535108 +ANKRD12,ERM,0.94250911 +MIB1,ERM,0.120423401 +MID1,ERM,0.723965403 +WDR13,ERM,-1.295930029 +XIAP,ERM,0.365493203 +ATP11C,ERM,1.799247405 +SYP,ERM,0.488095572 +FMR1,ERM,-0.103902102 +SLC35A2,ERM,1.21006554 +TAZ,ERM,-0.394616123 +MAGT1,ERM,2.186031861 +CD99L2,ERM,1.681743656 +EEA1,ERM,2.207073278 +NDFIP2,ERM,0.838485022 +DNAJC3,ERM,1.988188864 +UGGT2,ERM,1.32031396 +ARHGEF7,ERM,0.283570012 +PARP4,ERM,-0.123988971 +FLT1,ERM,1.570522068 +VWA8,ERM,0.351799963 +DGKH,ERM,0.980506961 +INTS6,ERM,-0.177658467 +CLN5,ERM,0.444623271 +MGRN1,ERM,0.340745996 +ZNF629,ERM,0.870762002 +CENPT,ERM,-1.789033999 +NFAT5,ERM,1.192411598 +SETD6,ERM,-1.264165754 +SLC38A7,ERM,1.295052521 +SLC7A6OS,ERM,-0.348537169 +SLC7A6,ERM,1.531183148 +WDR59,ERM,-0.514317383 +TAF1C,ERM,-1.100378019 +TSC2,ERM,-0.585964734 +ZNF500,ERM,-0.077374318 +ABCC1,ERM,1.131361574 +NOMO3,ERM,0.689925618 +NARFL,ERM,-0.674029002 +MTHFSD,ERM,0.087852807 +CLCN7,ERM,1.364033645 +SLC7A5,ERM,1.207725882 +FBXO31,ERM,0.486051764 +EEF2K,ERM,-0.286501882 +CAPN15,ERM,-0.223504617 +PIEZO1,ERM,0.451719924 +BFAR,ERM,0.987640442 +NOMO1,ERM,0.760196946 +CCP110,ERM,0.770180901 +RNF40,ERM,0.285970393 +LACTB,ERM,-1.009444901 +CD276,ERM,1.174224203 +HOMER2,ERM,0.127979857 +TMEM87A,ERM,0.868813982 +ZNF106,ERM,1.079651151 +CEP152,ERM,0.808626609 +TJP1,ERM,0.788106179 +VPS18,ERM,-0.106160848 +MYEF2,ERM,0.997286753 +CSPP1,ERM,0.695172943 +ZFAND1,ERM,-1.070381021 +FZD3,ERM,1.859923618 +EYA1,ERM,1.459065868 +NBN,ERM,0.673280888 +IMPAD1,ERM,1.94588087 +UBE2W,ERM,1.302049732 +IKBKB,ERM,-0.057545737 +PLAT,ERM,-0.156404616 +JPH1,ERM,-0.136181224 +TRPS1,ERM,0.80042432 +PYCRL,ERM,-0.578187713 +EEF1D,ERM,-1.411398899 +SQLE,ERM,1.884253753 +SLC39A14,ERM,1.427171159 +MTMR9,ERM,0.826041427 +LEPROTL1,ERM,1.811272173 +PPP2CB,ERM,-0.231330387 +KLHDC4,ERM,-0.403645043 +KCTD9,ERM,0.835520363 +MAN2B1,ERM,0.252683326 +NUCB1,ERM,1.079425609 +SARS2,ERM,-1.888823347 +SNRNP70,ERM,-1.512772573 +CLPTM1,ERM,0.156698325 +CLASRP,ERM,-0.855129548 +FCGRT,ERM,0.617852448 +ERCC2,ERM,-0.126593853 +DOT1L,ERM,0.37205742 +SF3A2,ERM,-1.354194302 +AMH,ERM,-0.640358339 +DMPK,ERM,-0.318206443 +TIMM44,ERM,-1.159540996 +AKAP8,ERM,-0.520757932 +AKT2,ERM,0.044100936 +PLD3,ERM,-0.069347653 +FSD1,ERM,-0.885653464 +APLP1,ERM,0.661756871 +CACTIN,ERM,-0.195437742 +TYK2,ERM,-0.332785261 +PTPRS,ERM,1.108543107 +MEGF8,ERM,1.460769627 +KDELR1,ERM,0.663649515 +CYTH2,ERM,-0.328791457 +LIG1,ERM,-1.045621482 +BCAT2,ERM,-1.882614955 +TNPO2,ERM,0.194090025 +DNASE2,ERM,-0.121558401 +ISYNA1,ERM,-2.491836616 +CRTC1,ERM,-0.675200328 +SUGP1,ERM,-0.142301915 +SIPA1L3,ERM,0.194300084 +CADM4,ERM,1.352104632 +SMG9,ERM,-1.528518025 +AVL9,ERM,0.962416918 +CDK6,ERM,0.380133771 +DNAJC2,ERM,-0.707227353 +WDR91,ERM,-0.698554437 +CBLL1,ERM,0.029446684 +MTPN,ERM,0.7996362 +ZC3HAV1,ERM,0.708625177 +OGDH,ERM,0.022703882 +MET,ERM,1.551118817 +LMBR1,ERM,1.348759495 +HOXA3,ERM,0.503349067 +HOXA6,ERM,1.668792935 +BRAT1,ERM,-0.945504198 +FKBP14,ERM,2.003930557 +NSUN5P2,ERM,-1.494127994 +CASP2,ERM,0.860122092 +HSPB1,ERM,-1.292951763 +ZKSCAN1,ERM,0.886380538 +WASL,ERM,0.94598373 +RBM28,ERM,-0.420485847 +C1GALT1,ERM,1.526805851 +PLOD3,ERM,0.683644807 +CLDN15,ERM,-0.424055718 +TMEM106B,ERM,2.056497675 +CEP41,ERM,0.931112161 +GLI3,ERM,0.616605941 +TMEM248,ERM,1.393038552 +TBL2,ERM,0.922177 +FKTN,ERM,1.149722188 +TMEM245,ERM,2.237029067 +MEGF9,ERM,1.919703298 +TGFBR1,ERM,2.032690068 +DNM1,ERM,-0.181315133 +KANK1,ERM,1.365799279 +RAPGEF1,ERM,0.757036902 +NPDC1,ERM,-0.569175499 +SETX,ERM,0.985912 +CCNJ,ERM,0.868390638 +RAB11FIP2,ERM,0.400413023 +ERLIN1,ERM,0.897793478 +MAPK8,ERM,0.105896049 +ATE1,ERM,0.99255306 +PLEKHA1,ERM,0.44026152 +UNC5B,ERM,1.30991092 +BMPR1A,ERM,1.729435509 +ACTA2,ERM,-0.422614171 +LIPA,ERM,1.268111139 +LZTS2,ERM,-0.449330334 +ARHGAP21,ERM,1.052119181 +ANKRD26,ERM,1.771389822 +LARP4B,ERM,0.648591181 +C10orf137,ERM,-0.18840948 +MTPAP,ERM,0.130563086 +SH3PXD2A,ERM,0.808486016 +PITRM1,ERM,-0.15266307 +FAM208B,ERM,1.046368151 +TSPAN14,ERM,1.273974714 +NUFIP2,ERM,1.17832128 +DHX40,ERM,0.430718533 +CDK5RAP3,ERM,-1.768755891 +RECQL5,ERM,-0.960277018 +INTS2,ERM,0.848895053 +CAMTA2,ERM,-0.141269929 +MED13,ERM,0.993644198 +HOXB6,ERM,0.075304943 +CPD,ERM,1.982297276 +GOSR1,ERM,0.87878129 +CCDC47,ERM,1.32219379 +AKAP10,ERM,0.497189161 +CYTH1,ERM,-0.315522692 +LGALS3BP,ERM,-0.250294512 +EZH1,ERM,-0.94622951 +PPP1R9B,ERM,0.777082865 +LUC7L3,ERM,-0.61034303 +DUSP3,ERM,0.440658156 +EFNB3,ERM,1.342774883 +DPH1,ERM,-0.067235214 +NAT9,ERM,-1.29174694 +TMEM104,ERM,2.108916223 +TMEM97,ERM,1.605025898 +UNC119,ERM,-2.059932922 +TMEM33,ERM,1.75987541 +DCUN1D4,ERM,0.459922303 +MANBA,ERM,0.391153905 +ELF2,ERM,0.288869557 +WFS1,ERM,1.104106421 +FRG1,ERM,-1.506070597 +CLCN3,ERM,1.575326922 +GALNT7,ERM,0.973867782 +TRIM2,ERM,0.265686381 +NEIL3,ERM,-0.215690216 +SH3D19,ERM,0.904427099 +STIM2,ERM,1.750010828 +RAPGEF2,ERM,0.489649053 +UGDH,ERM,0.02344492 +CCDC34,ERM,-0.110738069 +FNBP4,ERM,0.470113876 +SC5D,ERM,0.85250475 +SIAE,ERM,0.846590252 +EHD1,ERM,0.113310006 +FOXRED1,ERM,-2.127291972 +ST3GAL4,ERM,-1.86009608 +CPT1A,ERM,1.055751557 +TMEM109,ERM,1.151381223 +PANX1,ERM,1.279413022 +UBE4A,ERM,2.076155207 +DDX6,ERM,0.87422102 +PVRL1,ERM,1.511730471 +HIPK3,ERM,0.99753992 +MDK,ERM,-0.592508579 +AMBRA1,ERM,0.443433085 +NAA40,ERM,0.030716289 +SLC35F2,ERM,1.149826866 +LEPREL2,ERM,0.657658467 +CORO1C,ERM,0.461899301 +ASIC1,ERM,0.409734716 +CAPRIN2,ERM,-0.777576091 +SLC11A2,ERM,0.991026341 +MLEC,ERM,2.066855472 +BCL7A,ERM,0.613661188 +RSRC2,ERM,-0.382794139 +PPM1H,ERM,0.668540632 +ELK3,ERM,0.660755932 +MAGOHB,ERM,-0.186576859 +ITFG2,ERM,-1.993217068 +PARP11,ERM,1.11303096 +DUSP16,ERM,1.115434726 +ACAD10,ERM,-0.245150696 +NAA25,ERM,0.846479607 +DDX55,ERM,-0.250233386 +SLC38A1,ERM,1.607026192 +C12orf49,ERM,0.836548331 +MDM1,ERM,-0.473605832 +CPSF6,ERM,0.039282643 +GNPTAB,ERM,0.870411538 +ATN1,ERM,0.079817693 +C12orf57,ERM,-3.632093151 +LPCAT3,ERM,0.122127525 +SUDS3,ERM,0.786671508 +GOLT1B,ERM,1.590876126 +C2CD5,ERM,0.846765037 +RAB35,ERM,0.512525888 +RIC8B,ERM,1.576365757 +RP11-22B23.1,ERM,-0.66353257 +DSE,ERM,1.379300176 +MAN1A1,ERM,1.933632659 +SERINC1,ERM,1.883852395 +UST,ERM,1.272790881 +KCTD20,ERM,0.808508417 +RNF8,ERM,0.071681886 +ICK,ERM,0.73741801 +RAB23,ERM,0.48045805 +FBXL4,ERM,1.27781255 +CCNC,ERM,-0.107321792 +ALDH5A1,ERM,0.59839609 +EYA4,ERM,0.687768689 +PERP,ERM,1.112671996 +SLC16A10,ERM,0.86701732 +PHACTR2,ERM,0.947731578 +SLC39A7,ERM,0.837374517 +PPP2R5D,ERM,0.274882813 +PTK7,ERM,0.851975404 +CUL9,ERM,-1.212417143 +TMEM30A,ERM,2.211710485 +SENP6,ERM,0.817295391 +VEGFA,ERM,0.660559186 +PRPF4B,ERM,0.139322105 +BTN2A1,ERM,1.106317273 +LAMA4,ERM,1.437251186 +ERBB2IP,ERM,1.03368041 +HARS2,ERM,-1.159070212 +MAN2A1,ERM,1.874702732 +PAPD7,ERM,0.283284453 +NNT,ERM,0.318737517 +APBB3,ERM,-2.223411423 +SPARC,ERM,0.577192412 +HMGCR,ERM,2.007919878 +FAF2,ERM,2.050220088 +CLK4,ERM,-2.084047032 +ARSB,ERM,1.854286802 +CNOT6,ERM,0.471838803 +DROSHA,ERM,0.052564838 +FAM172A,ERM,1.046253772 +LNPEP,ERM,1.723319519 +SLC12A7,ERM,1.961155639 +NR3C1,ERM,0.801783378 +C5orf15,ERM,1.333226989 +LIFR,ERM,2.147527272 +TRAPPC13,ERM,0.375403715 +TXNDC15,ERM,1.360845909 +H2AFY,ERM,-0.646064914 +TCERG1,ERM,0.222720198 +SMAD5,ERM,0.781960723 +ERGIC1,ERM,1.051305631 +STC2,ERM,0.772834704 +ARL6,ERM,0.094410114 +NIT2,ERM,-3.368533239 +UBE3A,ERM,0.53650172 +SLC25A36,ERM,0.584347196 +TFDP2,ERM,0.244564959 +XRN1,ERM,0.396104808 +WNT5A,ERM,1.336141558 +PFKFB4,ERM,-1.954880982 +PRKAR2A,ERM,1.037035714 +ACAP2,ERM,0.994382498 +CBLB,ERM,-0.392669793 +BBX,ERM,1.144352969 +GNB4,ERM,0.65286838 +C3orf52,ERM,0.945226914 +PLXNA1,ERM,1.658011229 +CSPG5,ERM,0.525104042 +SCAP,ERM,0.866106508 +HEMK1,ERM,-0.456189688 +ACVR2B,ERM,1.284344959 +ABCC5,ERM,1.728134736 +SSR3,ERM,1.758012665 +NKTR,ERM,0.150614054 +FOXP1,ERM,0.709122954 +INO80D,ERM,1.111040337 +ADAM23,ERM,1.883599145 +MOB1A,ERM,0.873588191 +LMAN2L,ERM,1.121890221 +RTKN,ERM,-0.567595584 +PIKFYVE,ERM,0.794931609 +FAHD2A,ERM,-1.291113951 +SLC35F5,ERM,1.476595127 +STEAP3,ERM,0.557627009 +EPB41L5,ERM,1.058317373 +GPD2,ERM,1.096636449 +ACVR1,ERM,1.449994886 +MPV17,ERM,-1.39516959 +TTC31,ERM,-1.296522459 +NDUFS7,ERM,-1.66320632 +SPTBN1,ERM,0.961600841 +CCDC88A,ERM,0.979363138 +FN1,ERM,0.62540446 +ELMOD3,ERM,0.594574698 +IGFBP5,ERM,0.938186675 +USP34,ERM,0.424027545 +GGCX,ERM,1.384513996 +CHST10,ERM,1.349599108 +MOB4,ERM,0.152642044 +UXS1,ERM,1.411580969 +PASK,ERM,-0.779071381 +TAF1B,ERM,0.217504348 +DCAF17,ERM,0.908728199 +SDC1,ERM,0.933982819 +SLC1A4,ERM,1.403326306 +SOS1,ERM,0.886396077 +WIPF1,ERM,0.150370343 +THADA,ERM,0.390380438 +TRAK2,ERM,1.180806456 +TIA1,ERM,0.342336412 +PCYOX1,ERM,1.572196291 +ARID3A,ERM,0.900589897 +EPHA4,ERM,1.371368083 +ALMS1,ERM,1.087615478 +BCL9,ERM,1.12708894 +DHCR24,ERM,2.280868039 +DNAJC16,ERM,1.84630175 +RALGPS2,ERM,0.660007464 +CEP104,ERM,0.346260784 +FAM20B,ERM,1.470864458 +TCEANC2,ERM,0.400203873 +WRAP73,ERM,-1.445082589 +ICMT,ERM,1.350277796 +QSOX1,ERM,0.561604593 +AMPD2,ERM,-0.188765872 +EDEM3,ERM,2.064298595 +RAP1A,ERM,0.056216781 +S100PBP,ERM,0.328243632 +ASH1L,ERM,0.986274204 +SFPQ,ERM,-0.330260884 +MEF2D,ERM,0.62478407 +C1orf21,ERM,0.415968222 +LEPR,ERM,1.300973796 +IVNS1ABP,ERM,0.338964272 +KIAA2013,ERM,1.333878485 +MIIP,ERM,-1.138281195 +SLC35D1,ERM,2.131710591 +WLS,ERM,0.497603232 +PRDM2,ERM,0.434130537 +TROVE2,ERM,1.227770912 +SRSF11,ERM,-0.216880457 +PHTF1,ERM,1.422631135 +TMEM9,ERM,0.41019671 +EXOC8,ERM,0.577140336 +NID1,ERM,0.993816695 +MTR,ERM,0.207071519 +BMP8B,ERM,1.738135155 +RIMS3,ERM,0.274397512 +AKT3,ERM,0.690788989 +ETV3,ERM,1.129353305 +LPHN2,ERM,1.815494469 +RBBP5,ERM,0.789893574 +ECE1,ERM,1.760150863 +CD46,ERM,0.959820934 +APH1A,ERM,0.655161202 +LEPRE1,ERM,0.180496274 +SLC2A1,ERM,0.446112419 +SLC19A2,ERM,0.764121362 +NSUN4,ERM,0.132175379 +TMED5,ERM,1.894030288 +DR1,ERM,0.362220409 +PTBP2,ERM,-0.159390224 +DARS2,ERM,0.332551024 +DIEXF,ERM,0.577286753 +RCAN3,ERM,1.463340199 +C1orf63,ERM,-4.048196357 +SLC35A3,ERM,1.477906015 +RCOR3,ERM,0.442410766 +ARID1A,ERM,0.930382041 +CENPF,ERM,0.973218015 +ESYT2,ERM,1.874174689 +CD3EAP,ERM,0.697091531 +MESDC2,ERM,1.062808226 +CTSD,ERM,0.66407495 +STK11,ERM,0.144299427 +KMT2A,ERM,0.915408686 +KPTN,ERM,-1.969410399 +KIF14,ERM,1.075101097 +ATF6,ERM,1.336052989 +FASTKD2,ERM,0.200964904 +NRP2,ERM,1.379033875 +CREB1,ERM,0.712006877 +B4GALT6,ERM,1.168468615 +ELOVL4,ERM,1.829039209 +CASP8AP2,ERM,0.736533201 +PHF3,ERM,0.690318974 +PLAGL1,ERM,-0.368528777 +FBXO30,ERM,0.44240092 +TMEM5,ERM,0.358170048 +ZNF430,ERM,1.016050529 +DCLRE1B,ERM,0.944534827 +PKD2,ERM,1.358690038 +UBN1,ERM,0.81034661 +KLF12,ERM,0.749144927 +WDR35,ERM,-0.427627613 +CCND2,ERM,-0.640834673 +SATB2,ERM,0.958255773 +SENP5,ERM,0.54484084 +C1orf198,ERM,0.67804457 +HEATR1,ERM,0.534580804 +PTBP3,ERM,0.897443028 +FAM206A,ERM,-0.95190697 +RBM18,ERM,0.773445129 +MAPKAP1,ERM,0.221545448 +KDSR,ERM,1.100475877 +ONECUT2,ERM,0.931923546 +IRF2BPL,ERM,0.496749086 +AREL1,ERM,0.713703814 +ABCD4,ERM,-0.742594914 +RBM25,ERM,-0.036603479 +NRDE2,ERM,-0.054160734 +KLHL29,ERM,0.715591647 +DNMT3A,ERM,0.478919599 +ATAD2B,ERM,0.481063042 +ATL2,ERM,1.301499504 +YIPF4,ERM,1.337488945 +AFTPH,ERM,0.462922978 +BCL11A,ERM,0.516040924 +SLC17A5,ERM,1.045037104 +FAM178A,ERM,1.320018999 +GPAM,ERM,1.13073979 +HELLS,ERM,0.543779171 +TCTN3,ERM,0.568692124 +C10orf76,ERM,0.462504315 +HOXB8,ERM,-0.165283028 +HOXB3,ERM,-0.373284338 +PANK3,ERM,0.708029406 +NUP43,ERM,0.442420174 +LRP11,ERM,1.263223561 +MASTL,ERM,0.568667851 +ELF1,ERM,1.002801455 +EGR1,ERM,1.100909148 +NR2C1,ERM,-0.454473698 +MTERFD3,ERM,-1.444327754 +CLU,ERM,0.397742778 +TNFRSF10B,ERM,1.501152064 +TARDBP,ERM,0.282364009 +CRISPLD1,ERM,1.216069372 +AKAP1,ERM,1.691438904 +TRIM25,ERM,0.840702861 +KIAA0922,ERM,1.064813037 +PAPD5,ERM,0.846087033 +CEP89,ERM,0.007953589 +B4GALT4,ERM,0.687682136 +KIF18A,ERM,0.822476309 +CRY2,ERM,0.028361212 +ZNF639,ERM,0.028233087 +PDS5A,ERM,0.759015217 +CLCC1,ERM,1.482615709 +ACVR2A,ERM,1.705079606 +RPL21,ERM,-1.921050105 +MTERFD2,ERM,-0.350951158 +KIAA1191,ERM,0.411444636 +RBBP6,ERM,1.255542381 +ZC3H7A,ERM,0.266579769 +FAM35A,ERM,0.841160807 +FAM213A,ERM,0.791173989 +ODF2L,ERM,-0.240966472 +TRMT13,ERM,0.20735863 +RPAP2,ERM,0.420812604 +FAM126A,ERM,1.37019846 +FKBP9,ERM,1.612592414 +POLM,ERM,-1.062088267 +SLC25A51,ERM,0.853535379 +DCAF10,ERM,0.189699237 +KIAA1549,ERM,1.318587592 +CALD1,ERM,0.141171733 +CHST3,ERM,2.111129415 +P4HA1,ERM,1.409558204 +RBM19,ERM,0.278954319 +GIPC1,ERM,-0.485357384 +ATP7B,ERM,1.252764514 +ZC3H13,ERM,0.816260545 +NLN,ERM,0.859523482 +CENPK,ERM,-1.757169562 +OPTN,ERM,0.967957954 +SPATS2,ERM,0.278487951 +LRP1,ERM,0.95995787 +HJURP,ERM,-0.108196637 +USP45,ERM,0.558908971 +SLC36A1,ERM,1.633861673 +LPGAT1,ERM,1.656613302 +EXOSC9,ERM,-1.489374302 +PLA2G12A,ERM,0.967367283 +ADCK4,ERM,-0.09108104 +PFKFB2,ERM,0.535176278 +AGO2,ERM,0.167256656 +MXD4,ERM,0.112417553 +ACSL3,ERM,1.646799608 +SLC12A4,ERM,0.954681122 +FAM210B,ERM,0.16841421 +SDC4,ERM,2.057901754 +NCOA3,ERM,0.752405024 +PIGT,ERM,0.397231301 +VAPB,ERM,0.908392721 +CHD6,ERM,1.281785852 +SRSF6,ERM,0.420922375 +RAB22A,ERM,0.481186619 +STX16,ERM,0.607221947 +STAMBP,ERM,-0.387411616 +NAGK,ERM,-1.056314418 +PAIP2B,ERM,0.886306096 +ATP8A1,ERM,2.347551946 +BTN2A2,ERM,1.343285573 +ABCC10,ERM,1.05071203 +AARS2,ERM,0.357659346 +ZNF391,ERM,0.387218251 +CDKN1A,ERM,-0.359159414 +SSR1,ERM,1.860640952 +NRN1,ERM,0.21822978 +ATXN1,ERM,0.642126942 +EEF1E1,ERM,-1.814187866 +LRRFIP1,ERM,-0.238399764 +AHNAK,ERM,0.694075318 +ABCC4,ERM,1.31745778 +EFNB2,ERM,1.882866002 +ATP5S,ERM,-0.192859759 +FAM193A,ERM,0.486087582 +GGA3,ERM,-0.122428405 +GTF3C4,ERM,0.977217426 +PPP1R12C,ERM,-0.335381639 +MBOAT7,ERM,0.700688259 +CCDC93,ERM,0.504223172 +THOC2,ERM,0.491015885 +MED1,ERM,1.235116906 +GPR108,ERM,-0.20942999 +GPCPD1,ERM,-0.295014026 +PANK2,ERM,-0.646389981 +NAPB,ERM,-0.42466879 +TMX4,ERM,1.91623462 +RRBP1,ERM,2.241850728 +ZNF133,ERM,-1.897406971 +MCM8,ERM,0.548024708 +NCLN,ERM,1.529931777 +ZNF436,ERM,1.127835627 +AMOT,ERM,0.474431327 +TMEM115,ERM,1.196026415 +AGO3,ERM,0.527803858 +HECTD3,ERM,-0.084173283 +KLC1,ERM,0.174917065 +XRCC3,ERM,0.057515581 +TUBGCP3,ERM,-0.174690711 +PCID2,ERM,-1.960150489 +FRMD8,ERM,0.800733015 +PCNXL4,ERM,1.385574853 +ATG14,ERM,0.293656176 +KTN1,ERM,2.494961545 +PLEKHG3,ERM,0.074657617 +WDR60,ERM,-0.697681116 +AIF1L,ERM,0.389846249 +SLC10A3,ERM,0.688416289 +CANX,ERM,2.121535313 +CPSF3L,ERM,-2.298135553 +TRAF2,ERM,-0.325733595 +HELB,ERM,0.931692945 +DYRK2,ERM,0.802615746 +LRRC61,ERM,-1.78822581 +FGFRL1,ERM,1.425480215 +EMC1,ERM,1.298004763 +HP1BP3,ERM,-0.184901369 +SIN3B,ERM,-0.204283434 +SLC35E1,ERM,2.007632915 +GFER,ERM,0.061432139 +PKMYT1,ERM,-0.323092325 +CHTF18,ERM,-1.048176053 +MACF1,ERM,0.997066211 +RNF6,ERM,1.421084995 +AKAP9,ERM,1.712332755 +HIP1,ERM,0.194547117 +POR,ERM,1.188301224 +PEX1,ERM,-1.045093039 +LRFN1,ERM,1.746968208 +SRD5A3,ERM,0.279254584 +PPAT,ERM,0.484345442 +TUBGCP6,ERM,-1.713717646 +DGCR8,ERM,-0.328226528 +TPST2,ERM,0.970391952 +MPST,ERM,-1.275502109 +SPECC1,ERM,1.561560282 +NAA38,ERM,-1.940301661 +PRKRIP1,ERM,-0.482855001 +PODXL,ERM,1.545827359 +STRIP2,ERM,-0.78831038 +MKLN1,ERM,0.437796996 +CALU,ERM,2.226408119 +CCDC136,ERM,0.042377387 +SMO,ERM,1.000563909 +KLHDC10,ERM,0.59890827 +OSGEPL1,ERM,-2.336199821 +HOXD10,ERM,0.982568258 +HOXD11,ERM,-0.282362055 +HERC2,ERM,0.314752302 +TWSG1,ERM,1.458856373 +MYO5C,ERM,0.366617649 +TMOD2,ERM,0.355572568 +TTBK2,ERM,0.858274561 +IVD,ERM,-0.216430132 +CLN6,ERM,0.938955391 +ARPP19,ERM,0.899654316 +VPS13C,ERM,1.150929878 +SUMF2,ERM,0.663807622 +SPCS3,ERM,2.037479621 +RPAIN,ERM,-1.517668207 +PLD2,ERM,-1.093261929 +MPDU1,ERM,1.279482927 +CCNT1,ERM,1.536958565 +PUS7L,ERM,1.148791034 +KRI1,ERM,0.515250831 +SLC44A2,ERM,0.994621506 +BCL2L2,ERM,-0.685177334 +PARP2,ERM,-0.653394178 +TEP1,ERM,0.139969764 +MAP7D3,ERM,1.769121231 +ABHD17A,ERM,-0.584450434 +ERMARD,ERM,-0.506330294 +SAT1,ERM,-0.661545835 +GNL3L,ERM,0.350848765 +SH3BP4,ERM,-0.255254162 +LDLR,ERM,1.636711632 +PRKCSH,ERM,0.922444385 +THEM6,ERM,1.348881228 +PVRL2,ERM,0.743937053 +SAFB2,ERM,-0.628846128 +KIF1A,ERM,0.80948255 +COLGALT1,ERM,1.260770949 +MLLT1,ERM,0.702346412 +MLLT4,ERM,0.236250172 +ACTN4,ERM,0.106892057 +NDUFA10,ERM,-1.059167856 +ZSWIM6,ERM,0.312520038 +PXDN,ERM,1.770649015 +COL5A1,ERM,1.146843869 +ZNF337,ERM,-0.487624572 +TAF4,ERM,0.27985603 +LAMA5,ERM,0.260414061 +EXOSC2,ERM,-0.586149679 +POMT1,ERM,0.325089037 +PRRC2B,ERM,0.757653366 +YIPF2,ERM,0.775265352 +ZC3H4,ERM,0.87158631 +CLIP1,ERM,0.832871681 +HIP1R,ERM,-0.772721437 +PPAN,ERM,0.49167498 +SLC6A8,ERM,0.082281341 +PLXNA3,ERM,0.810955269 +PRRG1,ERM,2.063710334 +AKAP12,ERM,1.111658491 +RBM39,ERM,-0.901452892 +GGT7,ERM,-0.402657885 +PPT1,ERM,1.216195952 +RLIM,ERM,0.897228073 +ABCB7,ERM,0.072785709 +MRPS25,ERM,-0.815653149 +CAPN7,ERM,0.091595805 +ZFYVE20,ERM,0.542934771 +SLC6A6,ERM,0.808374942 +MGAT1,ERM,1.381409026 +PSMC3IP,ERM,-0.147823181 +DIAPH1,ERM,1.219086055 +NDFIP1,ERM,0.796222665 +ACAP3,ERM,-0.977893227 +C1orf159,ERM,-0.253629702 +MAP1B,ERM,0.99281595 +IL13RA1,ERM,1.669284101 +WDR44,ERM,1.029296332 +PRKAB2,ERM,0.801342086 +CLUHP3,ERM,0.854448853 +CHSY1,ERM,1.807284845 +SNRPA1,ERM,-0.714827323 +FBXW9,ERM,-1.441647377 +RFX1,ERM,-0.320529795 +CC2D1A,ERM,0.015670642 +NUP210,ERM,0.593559085 +ENOSF1,ERM,-1.148449173 +EMILIN2,ERM,1.176991914 +PRKAA1,ERM,0.673992063 +PNISR,ERM,-0.727331962 +ZRANB2,ERM,-0.185426728 +KDM6B,ERM,0.798508964 +GPS2,ERM,0.012802572 +VPS13B,ERM,0.918273789 +REEP2,ERM,1.042777497 +PRMT7,ERM,-0.893011222 +PCED1A,ERM,-1.662797988 +PTPRA,ERM,0.972353667 +KIAA0907,ERM,-0.086112402 +DCAF8,ERM,-1.039328168 +IGHMBP2,ERM,-0.250253035 +LPIN3,ERM,-1.238106385 +SERINC3,ERM,1.267246504 +FBXO44,ERM,-0.563669994 +USPL1,ERM,1.242350535 +XPO4,ERM,0.047344239 +SCO1,ERM,0.157507534 +MPRIP,ERM,0.61697027 +DSTYK,ERM,0.483684626 +SLC41A1,ERM,0.778826202 +GPALPP1,ERM,0.107101209 +IRS4,ERM,0.243939848 +FAM104A,ERM,0.705360217 +SLC39A11,ERM,1.149021459 +EPHB2,ERM,1.476050064 +SRRM1,ERM,0.533339689 +SUV420H2,ERM,-1.142827148 +WDR74,ERM,-0.994197131 +RTN3,ERM,1.219310924 +MORC2,ERM,0.17668779 +LARGE,ERM,1.124429953 +ADCK2,ERM,0.961410172 +AGAP3,ERM,-0.633040391 +KRBA1,ERM,-1.242096097 +ZNF767,ERM,-0.565366489 +ATP13A3,ERM,1.681535801 +TMEM254,ERM,0.211776017 +TMTC1,ERM,1.509064955 +KRAS,ERM,0.583449849 +SWAP70,ERM,0.493532656 +ZFC3H1,ERM,0.414312415 +TEX15,ERM,1.07842865 +CTIF,ERM,1.905083765 +VHL,ERM,0.52904901 +ARL8B,ERM,0.879875335 +EDEM1,ERM,1.220340667 +PRPF38B,ERM,0.523263605 +SORT1,ERM,2.041571402 +PTGFRN,ERM,1.873116039 +NOTCH2,ERM,1.904904094 +CEPT1,ERM,0.332593481 +AP4B1,ERM,-1.243675666 +SPIRE1,ERM,0.34126516 +SLC38A2,ERM,1.057573522 +KIDINS220,ERM,2.363735772 +ROCK2,ERM,1.334928819 +LPIN1,ERM,0.621751952 +IL6ST,ERM,2.285988632 +TMEM241,ERM,0.622150898 +LRP4,ERM,2.019352634 +DDB2,ERM,-1.699489761 +ACP2,ERM,0.023131209 +AGO4,ERM,0.174502878 +HOOK1,ERM,1.257801547 +DSC2,ERM,1.463062379 +DSC3,ERM,2.211201869 +DTNA,ERM,0.53204481 +FHOD3,ERM,-0.006901652 +FADS2,ERM,1.902175377 +CLOCK,ERM,0.375051888 +COL4A2,ERM,0.881571857 +DZIP1,ERM,0.305313041 +UBAC2,ERM,0.374229908 +ARGLU1,ERM,0.121039609 +BIVM,ERM,0.502987869 +ARHGAP32,ERM,0.776665214 +TMED7,ERM,1.877709424 +APC,ERM,1.443295533 +WDR36,ERM,0.232871781 +NAA35,ERM,0.540012739 +TMEM2,ERM,1.412641037 +GOLM1,ERM,1.304467775 +TAOK3,ERM,0.675603346 +DMTF1,ERM,0.322886691 +TMEM243,ERM,-0.677675473 +PNPLA8,ERM,0.773778258 +MDFIC,ERM,1.211789571 +ANKRD6,ERM,0.336287651 +KIAA1009,ERM,1.439084686 +SNX14,ERM,1.244714962 +EPHA7,ERM,2.062316828 +DNAJC14,ERM,0.931761983 +GDF11,ERM,0.929004765 +TROAP,ERM,-1.321229195 +TSPAN31,ERM,0.355276152 +TFCP2,ERM,0.650106176 +PAN2,ERM,-0.953179203 +HNRNPA1,ERM,-1.307045095 +ACVR1B,ERM,1.563350819 +OS9,ERM,1.07841478 +MAP7,ERM,0.965626063 +CD164,ERM,1.283253514 +NHSL1,ERM,0.364522641 +AHI1,ERM,-0.24796818 +SEMA4F,ERM,0.615088239 +RAB11FIP5,ERM,0.582732361 +CCDC142,ERM,-0.185172602 +GNS,ERM,1.738593872 +MDM2,ERM,1.140649018 +KLHL36,ERM,0.079568391 +DYNC1LI2,ERM,0.553530728 +EGLN1,ERM,0.409121802 +ABCB10,ERM,-0.726714436 +TAF5L,ERM,1.064567213 +STX6,ERM,1.038217307 +CEP350,ERM,1.716086595 +LAMC1,ERM,1.665225244 +RC3H1,ERM,1.636457043 +TTLL4,ERM,0.140967998 +USP37,ERM,1.208094169 +ITM2C,ERM,1.236496197 +SERPINE2,ERM,0.115684239 +TMEM127,ERM,2.142813881 +GCC2,ERM,0.919399904 +C2orf49,ERM,0.771788325 +EPC2,ERM,0.752183413 +ARHGEF4,ERM,0.441731911 +ALDH1L2,ERM,0.232504906 +CKAP4,ERM,0.868599331 +NEK3,ERM,-1.013951226 +RCBTB1,ERM,0.167104103 +COG3,ERM,0.64005683 +SCRN1,ERM,0.934182673 +CHST12,ERM,0.967088219 +KDELR2,ERM,1.074767592 +NUPL2,ERM,-0.218134866 +DBNL,ERM,-0.633234303 +TTYH3,ERM,1.211263961 +IREB2,ERM,0.815396062 +RSAD1,ERM,0.093023765 +VEZF1,ERM,1.074685045 +TEX2,ERM,1.792302416 +BRIP1,ERM,0.767613413 +SKIL,ERM,1.365012959 +RPS6KC1,ERM,1.250474493 +BIN1,ERM,-1.219754353 +HS6ST1,ERM,1.874865118 +UGGT1,ERM,2.163777619 +DNAJC1,ERM,0.194793808 +LRRC8A,ERM,1.90801632 +CDK9,ERM,-0.317153105 +TOR1B,ERM,1.513111618 +SMC2,ERM,0.254756434 +TOR1A,ERM,0.917176095 +RALGPS1,ERM,-0.044369346 +FAM129B,ERM,-0.180976927 +SLC2A8,ERM,-0.729644987 +SLC31A1,ERM,1.986107302 +ZNF189,ERM,0.592790162 +STX17,ERM,1.15757565 +TSTD2,ERM,0.19479405 +LMX1B,ERM,0.823592487 +RANBP6,ERM,0.650819232 +TLN1,ERM,-0.096006626 +ALDH1B1,ERM,0.479542971 +CNPY3,ERM,0.788033657 +TMEM63B,ERM,1.363209257 +TJAP1,ERM,-0.862276561 +SLC22A23,ERM,1.532545522 +FOXF2,ERM,1.007334333 +RIPK1,ERM,0.731443038 +ATAT1,ERM,-1.147634465 +NRM,ERM,-0.015733397 +VARS2,ERM,-0.921987623 +FAM8A1,ERM,1.396857777 +PRKRIR,ERM,0.772199321 +CREBZF,ERM,-0.930185849 +PRCP,ERM,0.154251896 +RNF121,ERM,0.973989234 +SULF1,ERM,1.17849578 +SORL1,ERM,1.996578721 +YAP1,ERM,0.824961705 +RDX,ERM,0.865296541 +MAP2K5,ERM,0.267745299 +MAPKBP1,ERM,-1.30538039 +CASC5,ERM,0.909910795 +HAUS2,ERM,0.911942676 +PARP6,ERM,-0.695771016 +TUBGCP4,ERM,0.531648002 +RMDN3,ERM,0.360597413 +UACA,ERM,0.951839939 +SMAD6,ERM,0.658448121 +ADAM10,ERM,1.440827638 +TTLL7,ERM,1.047496119 +FNBP1L,ERM,0.696365038 +RABGGTB,ERM,-1.446836872 +ARHGAP29,ERM,0.626195146 +SLC44A5,ERM,1.269918246 +DBT,ERM,1.047668183 +EPT1,ERM,2.042499467 +ADCY3,ERM,1.221752263 +PNPT1,ERM,-0.42008503 +THUMPD2,ERM,-0.934700593 +PREPL,ERM,0.796326275 +ACTR1A,ERM,0.007447808 +TMEM180,ERM,0.514621998 +ATAD1,ERM,1.847155429 +KIF20B,ERM,1.136575805 +TET1,ERM,1.359006184 +DNA2,ERM,0.057157008 +BARD1,ERM,0.945334527 +NAB1,ERM,0.751587074 +PPIG,ERM,0.137532497 +FASTKD1,ERM,0.210434128 +SSFA2,ERM,0.765278379 +ITGAV,ERM,1.619222791 +SLC35A5,ERM,1.125578814 +SECISBP2L,ERM,1.233261226 +SPPL2A,ERM,2.287649514 +GLCE,ERM,1.580201518 +PPCDC,ERM,-1.930461541 +PCDH10,ERM,2.869469331 +AP1AR,ERM,0.698157324 +FGF2,ERM,0.768554841 +KIAA1109,ERM,1.748684027 +LARP1B,ERM,-0.030792594 +BMP2K,ERM,0.825821023 +FRAS1,ERM,1.417032341 +SCARB2,ERM,1.863878801 +USO1,ERM,0.794953597 +CENPE,ERM,1.020654426 +GSTCD,ERM,1.155565711 +LEF1,ERM,0.068975577 +PPP3CA,ERM,0.654569081 +FBN2,ERM,1.11986159 +MAPK8IP3,ERM,-0.481252771 +B4GALNT3,ERM,1.212323336 +AEBP2,ERM,-0.247954739 +ETNK1,ERM,1.337320723 +CLSTN3,ERM,1.353671596 +SCAF11,ERM,0.38485808 +COL2A1,ERM,-0.21356354 +LRIG3,ERM,0.947084501 +TMEM19,ERM,1.471760863 +POC1B,ERM,0.117518039 +TMTC3,ERM,2.171731769 +GAS2L3,ERM,1.009840376 +SLC15A4,ERM,-0.255195094 +TDG,ERM,0.36132585 +NUPL1,ERM,0.339014188 +MTMR6,ERM,1.09191969 +SLC7A1,ERM,1.706835808 +BRCA2,ERM,1.222051525 +CERS5,ERM,0.500843083 +ESYT1,ERM,2.170803894 +TMBIM6,ERM,1.935975554 +ANKRD52,ERM,0.624497677 +ZNF740,ERM,0.380547593 +HNRNPA1L2,ERM,-0.780908919 +SBNO1,ERM,0.636462758 +SETD1B,ERM,0.764943043 +RBM26,ERM,0.390370951 +ZIC5,ERM,0.523498288 +TMX1,ERM,0.83322097 +NAA30,ERM,0.276087013 +DCAF5,ERM,0.578636005 +RAB15,ERM,0.484712667 +NIPA2,ERM,0.820868468 +ZSCAN29,ERM,1.054080687 +BNIP2,ERM,0.649034472 +MAN2C1,ERM,-1.666458068 +MESDC1,ERM,0.836386164 +IGF1R,ERM,1.504846155 +ARRDC4,ERM,1.139098404 +PML,ERM,-0.014442337 +LINS,ERM,0.529432498 +PCSK6,ERM,0.900168048 +SCAMP2,ERM,0.820147613 +POLG,ERM,-0.147927083 +ABHD2,ERM,1.716582189 +TICRR,ERM,1.022818146 +MFGE8,ERM,0.644147095 +FURIN,ERM,1.275897665 +IQGAP1,ERM,1.362633497 +CRTC3,ERM,0.649973563 +FTO,ERM,0.659539991 +MBTPS1,ERM,0.771626728 +RHOT2,ERM,-1.30804751 +PDPK1,ERM,0.517324614 +TCF25,ERM,-1.273559135 +GALNS,ERM,1.361101661 +GAS8,ERM,-2.013150879 +MED9,ERM,0.33135258 +GID4,ERM,0.84884987 +KSR1,ERM,0.921898312 +SGSM2,ERM,-0.432583601 +SSH2,ERM,0.973258586 +PTRH2,ERM,-0.850187493 +SS18,ERM,0.463999075 +SLC39A6,ERM,1.290569463 +GALNT1,ERM,0.973986965 +ESCO1,ERM,0.784252675 +GREB1L,ERM,0.977602547 +NPC1,ERM,0.509000746 +MINK1,ERM,-0.119481716 +TTYH2,ERM,0.523929381 +CSNK1D,ERM,0.112193566 +FOXK2,ERM,0.798814545 +TRIM65,ERM,0.299163971 +RNF157,ERM,0.459770097 +CBX4,ERM,0.034567674 +MBD1,ERM,-0.332099959 +ZCCHC2,ERM,1.358189494 +LEPREL4,ERM,0.690959395 +FAM134C,ERM,2.114196835 +ERBB2,ERM,1.706037013 +FKBP10,ERM,0.495261496 +PRDM15,ERM,-0.244642285 +DUS3L,ERM,-0.516718754 +ATHL1,ERM,-1.609636649 +COL6A1,ERM,0.530444396 +IFNAR1,ERM,1.540006665 +COL6A2,ERM,0.710028966 +TMEM50B,ERM,0.945668203 +APP,ERM,0.990963381 +URB1,ERM,1.022171854 +CAPN10,ERM,-0.531471265 +ERVK3-1,ERM,-1.141658956 +SLC47A1,ERM,0.601250615 +RERE,ERM,-0.469843028 +EPHA2,ERM,1.069957746 +KIAA0319L,ERM,1.357278333 +PLK4,ERM,-0.867518268 +GPN2,ERM,0.014115757 +PIGK,ERM,1.427044694 +PTPRF,ERM,1.546698367 +SYPL2,ERM,0.836357573 +IGSF3,ERM,1.659687907 +CELSR2,ERM,1.598403435 +ATP1B1,ERM,0.802735787 +CREG1,ERM,1.796152453 +POU2F1,ERM,0.641822218 +PPOX,ERM,-3.040169995 +USP21,ERM,-0.605561119 +PIGM,ERM,1.603871265 +ABL2,ERM,0.551906815 +XPR1,ERM,1.423556453 +TOR1AIP1,ERM,1.212382784 +TUFT1,ERM,0.736905539 +TARS2,ERM,-0.715816588 +CERS2,ERM,0.599263886 +SEMA6C,ERM,-0.016257146 +ATP8B2,ERM,0.902648187 +ADAM15,ERM,0.230776204 +SLC39A1,ERM,0.803244569 +GATAD2B,ERM,0.529618655 +HCN3,ERM,0.203866336 +GALNT2,ERM,1.568028187 +TTC13,ERM,0.702457034 +MLK4,ERM,0.466061151 +CEP170,ERM,0.855056463 +SDE2,ERM,1.027222308 +FBXO28,ERM,0.906664473 +CDC42BPA,ERM,0.947035931 +MBOAT2,ERM,1.557024558 +PSEN2,ERM,0.277507384 +LBR,ERM,1.426560474 +RHOB,ERM,-0.29360975 +ASXL2,ERM,0.270886733 +ETAA1,ERM,0.293515462 +ZNF514,ERM,-0.020426163 +SFXN5,ERM,0.510640401 +TEX261,ERM,1.584119461 +RALB,ERM,1.042375688 +SLC20A1,ERM,1.186395721 +ZC3H8,ERM,0.070431412 +UBXN4,ERM,0.856803143 +AMMECR1L,ERM,0.877149917 +GALNT13,ERM,1.629160615 +SCRN3,ERM,1.110623695 +KIAA1715,ERM,2.122778102 +CDCA7,ERM,-0.990346794 +DLX1,ERM,0.582067877 +GULP1,ERM,-0.204879286 +FAM171B,ERM,2.179914548 +CCDC150,ERM,-2.759607975 +SUMF1,ERM,0.585883921 +RHBDD1,ERM,1.643876871 +FAM134A,ERM,1.214817639 +CTDSP1,ERM,0.771572769 +EAF1,ERM,0.82267189 +GOLGA4,ERM,1.636725509 +IQSEC1,ERM,0.184081742 +PTPRG,ERM,1.947365281 +IL17RD,ERM,1.44732502 +ARL6IP5,ERM,1.091422614 +TMF1,ERM,1.278878283 +LRIG1,ERM,1.415906394 +LIMD1,ERM,0.56409299 +NXPE3,ERM,1.379737224 +SRPRB,ERM,1.145416493 +TCTA,ERM,0.542394442 +VPRBP,ERM,-0.13209391 +SLIT2,ERM,2.064969064 +DGKQ,ERM,-0.459030213 +ATP10D,ERM,2.502416754 +SCD5,ERM,1.676700053 +ENOPH1,ERM,-0.370130763 +TRMT10A,ERM,0.847521656 +KLHL8,ERM,0.833951834 +USP53,ERM,0.846780777 +MARCH6,ERM,1.532321144 +FAM105A,ERM,1.517627906 +PIK3R1,ERM,1.05039612 +LHFPL2,ERM,1.183468107 +IQGAP2,ERM,0.931657659 +PPIP5K2,ERM,0.952062158 +PAM,ERM,1.087389781 +BDP1,ERM,0.756530146 +SLC30A5,ERM,0.868452134 +ATG12,ERM,0.512313706 +YIPF5,ERM,1.212694483 +RNF145,ERM,1.139205516 +FBXO38,ERM,0.157273786 +PCYOX1L,ERM,0.863721061 +TNIP1,ERM,-0.194753087 +ZNF300,ERM,0.196414398 +GFOD1,ERM,1.155413218 +TRIM41,ERM,-0.054344336 +FAM193B,ERM,-0.487508132 +RNF44,ERM,-0.792812422 +MUT,ERM,0.404995777 +PHIP,ERM,-0.009206957 +MMS22L,ERM,1.071002231 +PM20D2,ERM,0.652041526 +RNF217,ERM,0.113255636 +AIG1,ERM,0.526163202 +TMEM181,ERM,1.258405734 +SDK1,ERM,1.031080179 +RBAK,ERM,0.514653911 +CREB5,ERM,-0.423104911 +PURB,ERM,0.383079371 +GBAS,ERM,-0.59146191 +ZNF92,ERM,-0.489694252 +TMEM168,ERM,1.576194193 +C7orf43,ERM,-3.501310478 +SLC12A9,ERM,0.119234366 +GIGYF1,ERM,-0.632766843 +TMEM209,ERM,1.769938605 +NOM1,ERM,0.46246713 +SH3KBP1,ERM,0.605269937 +CASK,ERM,0.445325433 +SLC16A2,ERM,1.224881742 +OGT,ERM,-0.296895011 +ZNF711,ERM,0.071168847 +DIAPH2,ERM,1.444443183 +CXorf57,ERM,-0.294461148 +GPC3,ERM,-0.135558552 +BIN3,ERM,0.135928723 +SLC25A37,ERM,-0.221115248 +CHMP7,ERM,-0.872209569 +ERLIN2,ERM,1.921587976 +TACC1,ERM,2.275594344 +WHSC1L1,ERM,1.110654683 +TERF1,ERM,0.943752577 +MTDH,ERM,1.897096106 +LRP12,ERM,0.373913616 +EBAG9,ERM,-0.026003927 +UTP23,ERM,0.480346316 +ZNF7,ERM,-0.721888031 +ARHGAP39,ERM,0.286395407 +NAPRT1,ERM,-0.647255108 +UHRF2,ERM,-0.139964137 +ZCCHC7,ERM,0.155951701 +SIGMAR1,ERM,0.397383016 +CEP78,ERM,0.725440059 +HIATL1,ERM,0.946912662 +INIP,ERM,1.080930803 +UGCG,ERM,2.042453586 +STOM,ERM,1.170486355 +MRRF,ERM,-0.403429556 +NR6A1,ERM,0.705341612 +SURF4,ERM,1.82786199 +MED22,ERM,0.431304902 +SH3GLB2,ERM,-1.515098575 +FAM73B,ERM,-0.35451772 +GPR107,ERM,2.151445412 +C9orf142,ERM,-0.957685261 +INPP5E,ERM,-0.974570211 +DPH7,ERM,-1.161479421 +NOTCH1,ERM,1.574262071 +NACC2,ERM,0.295364706 +USP6NL,ERM,0.956801113 +FAM171A1,ERM,1.199909055 +PARD3,ERM,0.814066213 +POLR3A,ERM,0.855163348 +FRA10AC1,ERM,0.129803665 +ADD3,ERM,0.750738048 +DNAJB12,ERM,1.693133581 +EIF4EBP2,ERM,0.794999481 +MKI67,ERM,1.711063782 +MTG1,ERM,-0.488323787 +PPRC1,ERM,0.085428838 +ITPRIP,ERM,2.029004306 +CNNM2,ERM,1.914484946 +PDCD11,ERM,1.235452237 +LIN7C,ERM,1.254893843 +DGKZ,ERM,0.064806102 +TNKS1BP1,ERM,0.945868657 +SLC43A1,ERM,0.456167545 +PTPRJ,ERM,1.105684205 +CELF1,ERM,0.425778359 +SESN3,ERM,0.647934635 +ENDOD1,ERM,2.078724964 +SERPINH1,ERM,0.614933481 +NCAM1,ERM,2.026628831 +NPAT,ERM,0.650509338 +ATM,ERM,0.481218325 +GLB1L2,ERM,1.156466879 +HYOU1,ERM,1.6456008 +DAK,ERM,-1.007875226 +TMEM138,ERM,-0.611003016 +FADS1,ERM,1.833052602 +EML3,ERM,-0.436588911 +B3GAT3,ERM,-0.149814692 +SIDT2,ERM,-0.279048513 +SOGA1,ERM,1.050406454 +LSM14B,ERM,0.668478508 +ORAOV1,ERM,-0.672932679 +TAOK2,ERM,0.543258642 +ITGB1,ERM,1.579751814 +ARID5B,ERM,1.104663233 +TMCO3,ERM,1.197455346 +LATS2,ERM,0.568738741 +LPHN3,ERM,1.960081987 +PRSS23,ERM,1.503221697 +PIP4K2A,ERM,0.919062344 +FREM2,ERM,1.65802592 +CRIM1,ERM,1.343638706 +IPMK,ERM,1.804389613 +PLBD2,ERM,1.66225287 +GXYLT1,ERM,1.730002566 +CSNK1G3,ERM,0.6844357 +MIPOL1,ERM,-0.240758536 +EXT2,ERM,0.871484665 +TMEM18,ERM,-0.030548858 +NEK7,ERM,1.033228488 +FER,ERM,1.53537918 +VIPAS39,ERM,0.38583325 +ANKRD50,ERM,0.745059166 +UPF2,ERM,0.878184852 +EPS8,ERM,0.632868247 +FAM160B1,ERM,0.503845005 +ADAM17,ERM,1.259442858 +WWC2,ERM,0.333193617 +BICD1,ERM,1.163909311 +NBAS,ERM,1.029145982 +GUF1,ERM,0.854922891 +SACS,ERM,0.272990291 +PABPC3,ERM,-0.70106243 +DST,ERM,1.738528263 +TIAL1,ERM,0.013153513 +TMEM56,ERM,2.048711027 +FAM168B,ERM,0.874590309 +AC093838.4,ERM,-0.943371797 +MGAT5,ERM,2.089230007 +GPATCH11,ERM,0.899861737 +POU4F1,ERM,0.061533809 +RNF219,ERM,1.215160456 +EPG5,ERM,-0.278304216 +C18orf25,ERM,0.881854683 +PDK1,ERM,-0.210324674 +PDE3B,ERM,1.968890002 +TGOLN2,ERM,1.963064856 +UHMK1,ERM,0.948536837 +TADA1,ERM,-0.774929698 +CWF19L2,ERM,0.564675745 +JMY,ERM,0.088788106 +HOMER1,ERM,1.068416792 +USP12,ERM,0.758335355 +CCDC50,ERM,-0.088756208 +PAN3,ERM,0.543039232 +TMEM123,ERM,1.70648292 +GJA1,ERM,0.917473301 +SLC30A6,ERM,1.606300934 +SAR1B,ERM,1.11410783 +GPR180,ERM,1.614840851 +UTRN,ERM,1.033235868 +PTPRK,ERM,1.555501161 +PLOD2,ERM,1.403008705 +GPR125,ERM,1.124595711 +SREK1IP1,ERM,0.993032165 +TXNDC11,ERM,0.930341813 +BCL2L11,ERM,1.03909594 +CLGN,ERM,1.166765029 +RASSF3,ERM,0.94149639 +RANBP2,ERM,1.025141913 +TMEM87B,ERM,1.773104458 +RBMS1,ERM,0.854670445 +LPCAT1,ERM,1.60626944 +UBALD1,ERM,-0.280623948 +RMND5A,ERM,0.929847677 +ZDHHC7,ERM,1.213580574 +TRIP12,ERM,0.933986326 +CEBPG,ERM,0.89717719 +SREK1,ERM,-0.007254537 +CHD1,ERM,0.802013489 +DGKE,ERM,2.197930689 +HS2ST1,ERM,2.067565806 +MSI2,ERM,0.957834314 +CACNA2D1,ERM,0.923133424 +NUS1,ERM,1.145527628 +IMPACT,ERM,-0.132061385 +TBCEL,ERM,0.465390411 +FAM105B,ERM,0.639738518 +TBRG1,ERM,0.233649933 +CC2D1B,ERM,-0.496935551 +MIA3,ERM,1.588577957 +TRIM11,ERM,-0.412687958 +CCSAP,ERM,0.952154549 +CXADR,ERM,1.967256856 +GABPA,ERM,0.442675262 +ADAMTS1,ERM,1.363535553 +TSEN2,ERM,0.619826802 +FLCN,ERM,-0.113095613 +SKA1,ERM,1.176108495 +RAB6B,ERM,0.021563636 +ACSS1,ERM,-1.893724627 +ANKRD40,ERM,0.976018182 +VOPP1,ERM,1.232536647 +APOOL,ERM,0.961894473 +CYP2U1,ERM,1.769883028 +AGPAT5,ERM,1.347640709 +MARVELD1,ERM,0.829637078 +ZFYVE27,ERM,1.194514149 +SLC25A28,ERM,0.420643291 +HSPA13,ERM,1.396564919 +USP25,ERM,0.070355323 +RHOC,ERM,-1.288645091 +SLC16A1,ERM,1.504150586 +LARP1,ERM,0.661341689 +MIER3,ERM,0.786439516 +ZKSCAN2,ERM,1.501803277 +PDIA4,ERM,0.639455786 +FAM126B,ERM,1.09101497 +FZD7,ERM,1.10014351 +FMN2,ERM,1.373415463 +PPARGC1B,ERM,0.669854982 +SLC26A2,ERM,2.325166046 +LSM11,ERM,0.83281991 +PSD3,ERM,0.722036465 +DCK,ERM,-1.38293987 +ADAMTS3,ERM,2.072232463 +DPY19L4,ERM,1.461900221 +NDUFAF6,ERM,-0.66009546 +N6AMT1,ERM,0.445103322 +CDK20,ERM,-1.007388052 +PCGF6,ERM,-1.877703901 +ANKRD9,ERM,0.975752485 +SFXN2,ERM,-0.222120055 +PTDSS1,ERM,1.289779501 +SUPV3L1,ERM,0.032428935 +TYSND1,ERM,-0.874935989 +CD109,ERM,1.61822603 +ZDHHC5,ERM,1.777877783 +ZFAND3,ERM,0.9617697 +NPTN,ERM,0.512689074 +KAT6B,ERM,0.828454738 +SAMD8,ERM,1.746683044 +BAG4,ERM,1.0641559 +ATAD2,ERM,0.635262549 +PHKG2,ERM,-1.255164191 +SASS6,ERM,0.791608214 +ZIC3,ERM,-0.644321687 +EXOG,ERM,-0.737615841 +SMG1,ERM,0.123994138 +FCHO2,ERM,0.394727754 +C1orf27,ERM,1.285506688 +LRP8,ERM,0.64836255 +PAXIP1,ERM,0.101584842 +SSBP3,ERM,-0.235567222 +CLDN12,ERM,1.21616577 +GATAD1,ERM,0.110180176 +ST3GAL2,ERM,1.25370573 +FUK,ERM,-0.687856387 +KIT,ERM,1.227542305 +AASDH,ERM,-0.616271498 +DYRK1A,ERM,0.730804302 +TSPAN18,ERM,0.393602564 +SLC35B2,ERM,0.247223721 +TMEM164,ERM,1.257266402 +TAB3,ERM,0.879758839 +SLC38A10,ERM,1.440689308 +ZNF618,ERM,0.753875364 +C9orf91,ERM,1.269040506 +UBN2,ERM,1.338531148 +BRAF,ERM,0.365794389 +SLC37A3,ERM,1.236468717 +DPYSL5,ERM,0.714640972 +FAM213B,ERM,-0.165963557 +C12orf43,ERM,0.655851156 +RER1,ERM,0.735781266 +UBXN11,ERM,-1.199030888 +RHPN1,ERM,-1.213043624 +CNNM4,ERM,1.28635142 +EYA3,ERM,0.703021598 +MRAS,ERM,0.004117809 +COLEC12,ERM,0.446928838 +CUL4B,ERM,0.451211139 +MITD1,ERM,-2.986620766 +EIF5B,ERM,0.214887643 +TSPAN33,ERM,1.01735799 +AHCYL2,ERM,1.065489596 +B4GALT5,ERM,1.892909249 +TSR2,ERM,-0.117463714 +ZC3H18,ERM,0.166980571 +TMED4,ERM,0.625021842 +PPP1R15B,ERM,1.663426713 +AGPAT6,ERM,0.961453633 +ZSCAN12,ERM,1.140016721 +ELK4,ERM,0.807544282 +F11R,ERM,2.178252245 +ZNF276,ERM,0.554633891 +PINK1,ERM,-0.910553293 +B4GALT3,ERM,0.496957813 +FAM160B2,ERM,0.296982233 +CACHD1,ERM,1.423413384 +PAXBP1,ERM,-0.573175587 +IFNAR2,ERM,1.462408941 +SON,ERM,0.106529307 +SV2A,ERM,1.538275075 +HLCS,ERM,0.896588467 +ADPGK,ERM,0.801020722 +ALDH4A1,ERM,-0.156298992 +STARD9,ERM,-1.210982439 +UBR1,ERM,1.264239261 +AMFR,ERM,0.649134014 +RSPRY1,ERM,0.591568509 +ARHGAP35,ERM,0.814153345 +CALM3,ERM,0.302407896 +IQCC,ERM,-0.499860933 +BSDC1,ERM,-0.244327478 +ATAD3B,ERM,-0.224154879 +VMA21,ERM,1.091481737 +WDR4,ERM,0.289465797 +CBS,ERM,-0.135373674 +PDXK,ERM,0.311699893 +G6PD,ERM,-0.156893652 +AGPAT3,ERM,1.259719868 +C21orf2,ERM,-1.70191936 +LRRC3,ERM,1.94713147 +LSS,ERM,-0.341209535 +VAV2,ERM,0.305057612 +MCM3AP,ERM,0.212927003 +C21orf58,ERM,0.281780211 +PCNT,ERM,0.884605277 +DIP2A,ERM,-0.263760158 +ZNF714,ERM,0.983349636 +PKN3,ERM,-0.457698622 +TAOK1,ERM,1.006820654 +SIK3,ERM,0.391660506 +PCSK7,ERM,0.900675455 +CHTOP,ERM,-0.930035252 +ZBTB7B,ERM,0.403178242 +NLRX1,ERM,0.243627959 +ANO10,ERM,1.175612202 +SLC25A44,ERM,1.191073771 +NBEAL2,ERM,-1.692597281 +IER2,ERM,-0.382983757 +ZNF394,ERM,0.116869391 +CPSF4,ERM,-0.493013943 +TONSL,ERM,-0.638926742 +MUM1,ERM,-0.151380824 +RECQL4,ERM,-0.677448737 +LRRC14,ERM,0.422967497 +PPP1R16A,ERM,-0.826238473 +C5orf45,ERM,-0.616361842 +MFSD12,ERM,0.658264568 +FDXR,ERM,-1.205178543 +ALDH16A1,ERM,-1.751852741 +ITGA5,ERM,1.075694941 +ZNF385A,ERM,-0.658077155 +MPP3,ERM,-1.085384584 +EMC10,ERM,0.668175043 +FAM171A2,ERM,1.328737561 +DBF4B,ERM,-0.285719677 +LARP4,ERM,1.014993323 +LEMD2,ERM,0.831352727 +WDR90,ERM,-0.727560295 +C16orf59,ERM,-1.436981145 +AMDHD2,ERM,-1.132380713 +PAQR4,ERM,1.037695469 +ADCY9,ERM,1.662511144 +CLPB,ERM,0.623127495 +NEU3,ERM,0.761807919 +CYB561A3,ERM,0.33475748 +TAF6L,ERM,-1.995392452 +LRP5,ERM,1.176482266 +ZYG11B,ERM,0.874694679 +PPAP2B,ERM,1.110243768 +PRKAA2,ERM,0.973269413 +KLHL21,ERM,0.167890356 +GMEB1,ERM,0.921566883 +SEPN1,ERM,0.81815862 +AK4,ERM,0.080839011 +RAVER2,ERM,-0.328768381 +PDPN,ERM,1.578970664 +SDC3,ERM,1.455297934 +KIAA1522,ERM,0.698777133 +C1orf86,ERM,-0.809188 +NFIA,ERM,1.161794307 +OMA1,ERM,-0.460876178 +MYSM1,ERM,0.483120474 +FUBP1,ERM,-0.090582126 +DNAJB4,ERM,1.105318852 +FAM102B,ERM,0.87035892 +ATXN7L2,ERM,-0.120190543 +ZNF326,ERM,0.113879709 +EXTL2,ERM,1.061741187 +SLC30A7,ERM,1.350856817 +PEA15,ERM,1.045383141 +NCSTN,ERM,0.398360173 +VANGL2,ERM,1.469773289 +FLVCR1,ERM,1.749889825 +RBM15,ERM,0.963560547 +BPNT1,ERM,-0.106688748 +BROX,ERM,0.470291209 +ACP6,ERM,-0.756116025 +PPP1R21,ERM,-0.260125658 +B3GALNT2,ERM,1.542218121 +C2orf47,ERM,-1.739543368 +ARL5A,ERM,0.878461497 +SGCB,ERM,1.613756988 +SMARCAD1,ERM,0.641128497 +RNF149,ERM,0.679631956 +FZD5,ERM,2.226088522 +DCAF16,ERM,0.585268836 +PAQR3,ERM,1.088348552 +ANTXR2,ERM,1.883028198 +PBXIP1,ERM,0.936666544 +PYGO2,ERM,0.329391905 +HIPK1,ERM,0.817377944 +KBTBD8,ERM,1.428525126 +EOGT,ERM,1.664264141 +POGLUT1,ERM,1.041841193 +ATP1A1,ERM,0.863558409 +EIF4E3,ERM,0.362054904 +LRRC58,ERM,0.731101349 +FSTL1,ERM,1.729826768 +KRTCAP2,ERM,-0.85081873 +KIAA1524,ERM,0.358456856 +TGFBR2,ERM,1.130823776 +ANKZF1,ERM,-2.627292862 +STT3B,ERM,1.155871658 +PPM1L,ERM,2.135516318 +RYBP,ERM,1.051079879 +PPP4R2,ERM,0.470861363 +C3orf17,ERM,0.772127685 +SPICE1,ERM,-0.978663898 +WDFY3,ERM,1.415046672 +ATXN7,ERM,0.931267932 +PPM1K,ERM,0.697045318 +CCNL1,ERM,-1.365679844 +RPP14,ERM,0.83069898 +ABHD6,ERM,1.010639241 +CRELD1,ERM,-0.02824622 +U2SURP,ERM,0.469417038 +TTC14,ERM,0.315561962 +SNRK,ERM,1.194863637 +SLC4A1AP,ERM,-0.183017173 +ZDHHC3,ERM,0.813718372 +FYCO1,ERM,1.137702161 +YEATS2,ERM,1.295570696 +SNIP1,ERM,0.550434068 +TMEM41A,ERM,1.55131186 +RPN1,ERM,0.538825075 +SFMBT1,ERM,0.848412705 +PBRM1,ERM,0.870471621 +FAM208A,ERM,0.320081273 +ARHGEF3,ERM,0.133662885 +UBXN7,ERM,0.75487129 +ZNF691,ERM,-0.379564497 +SGMS2,ERM,1.5950153 +DNAJB14,ERM,1.927223783 +ZNF589,ERM,0.394035342 +SHISA5,ERM,0.673667671 +INTU,ERM,0.173513483 +RNF123,ERM,-0.731685888 +MFSD8,ERM,1.506859816 +C4orf29,ERM,0.99324349 +RAD54L2,ERM,0.618980775 +MAP9,ERM,0.965801641 +CEP44,ERM,0.594514602 +ABCE1,ERM,0.364777314 +TMEM184C,ERM,1.789219592 +TMEM161B,ERM,0.794855109 +ELOVL7,ERM,1.735005158 +LMBRD2,ERM,1.92508445 +NIPBL,ERM,0.765840239 +SLC25A46,ERM,0.968520988 +STARD4,ERM,0.646307832 +PGGT1B,ERM,0.721621501 +NDUFS4,ERM,-1.058224136 +ARSK,ERM,1.364582153 +GPX8,ERM,1.785826693 +SERINC5,ERM,1.829791159 +GFM2,ERM,0.039762297 +CCDC127,ERM,0.775925913 +SEPT8,ERM,0.326709723 +DCBLD1,ERM,1.741050755 +PDSS2,ERM,0.212753689 +STXBP5,ERM,0.694318495 +DAGLB,ERM,1.685662779 +GALNT10,ERM,1.893895905 +ZNF12,ERM,1.096929767 +USP49,ERM,0.327484856 +ZNF704,ERM,0.465213017 +LMTK2,ERM,2.223736446 +CTSB,ERM,1.278085492 +ADCY1,ERM,1.211421101 +EN2,ERM,0.692369179 +SUN1,ERM,1.09606236 +OXR1,ERM,0.900631614 +SLC4A2,ERM,0.880823563 +FASTK,ERM,-0.930299824 +TMUB1,ERM,0.873573646 +C7orf55,ERM,-1.934657966 +FOXK1,ERM,0.860993551 +FZD6,ERM,1.399129539 +KIAA1429,ERM,0.793818197 +TMEM67,ERM,0.14802878 +SNAPC3,ERM,-0.58651714 +KIAA1161,ERM,2.331605805 +METTL2B,ERM,0.998936526 +HGSNAT,ERM,1.080995316 +RASEF,ERM,0.909021856 +ANKS6,ERM,0.034296526 +TMEM246,ERM,1.102437597 +ZHX1,ERM,0.937462998 +KIAA1958,ERM,1.171757754 +PIGA,ERM,0.299082967 +WNK2,ERM,0.078928004 +ATP7A,ERM,1.808049003 +PIGO,ERM,-0.166807475 +BRWD3,ERM,1.529029094 +SLITRK5,ERM,1.6806171 +DDX26B,ERM,0.030072051 +MARCH8,ERM,1.017845945 +GTF2A1,ERM,1.202996776 +ZCCHC24,ERM,0.630279316 +REEP3,ERM,1.878291117 +MICU2,ERM,-1.065417998 +PCF11,ERM,0.408087356 +PKNOX2,ERM,0.233093162 +ZNF22,ERM,-0.143507139 +RPUSD4,ERM,-0.58615517 +ARF6,ERM,0.73172684 +TTC8,ERM,-2.498789104 +CDX2,ERM,0.029170922 +BEND7,ERM,0.596139545 +TAF3,ERM,1.470765417 +PDZD8,ERM,1.915496425 +ZNF503,ERM,0.272304474 +FAM175B,ERM,0.917523026 +QSOX2,ERM,1.353351539 +NSD1,ERM,0.790780397 +SNAPC4,ERM,-0.505663095 +PMPCA,ERM,-0.58304944 +SDCCAG3,ERM,-0.035016919 +TSC1,ERM,1.207718762 +FAM69B,ERM,0.279688086 +KIAA1462,ERM,0.86855068 +ZNF219,ERM,-1.788335939 +METTL3,ERM,-2.062754716 +HSPA12A,ERM,0.806177988 +TC2N,ERM,0.22648414 +CPSF2,ERM,0.777440951 +ARL5B,ERM,1.405467334 +TAF1D,ERM,-1.480149188 +HTRA1,ERM,-0.103355026 +CEP57,ERM,0.037547435 +JAM3,ERM,2.021694922 +HIF1AN,ERM,0.016846879 +ZFYVE19,ERM,0.420856815 +FBN1,ERM,0.414785347 +BAG5,ERM,0.636784094 +GABRB3,ERM,2.236478195 +SGPL1,ERM,2.054979458 +FRS2,ERM,1.274843105 +ZNF202,ERM,-0.664271648 +STXBP4,ERM,0.747576436 +CUL5,ERM,0.773922223 +WBP1L,ERM,1.764081448 +TRIM44,ERM,1.383331983 +TPP1,ERM,-0.030201027 +C11orf74,ERM,-2.113617956 +TUB,ERM,0.530599611 +RNF169,ERM,0.820199264 +PRTG,ERM,1.799228162 +TMEM41B,ERM,1.679864487 +TMX3,ERM,1.799321016 +WEE1,ERM,-0.112452263 +ZNF3,ERM,-0.02739452 +RIMKLB,ERM,-0.212130759 +TMED3,ERM,0.264776633 +NDEL1,ERM,0.493147595 +BLCAP,ERM,0.55601627 +CASC4,ERM,1.649198796 +AP1G1,ERM,0.951387421 +KIF7,ERM,-0.042779798 +PEX11A,ERM,1.054795693 +ZBTB39,ERM,0.511932971 +TMEM194A,ERM,2.341727381 +SMAD3,ERM,0.002227778 +MAP1A,ERM,1.640129404 +MBD6,ERM,0.067177503 +PDIA3,ERM,0.715883148 +ACSF2,ERM,-0.695777989 +COQ4,ERM,-2.33481479 +SLC27A4,ERM,1.238594046 +CERCAM,ERM,0.002156888 +DOLPP1,ERM,1.303876934 +GPRC5B,ERM,2.310075507 +CRK,ERM,0.754276482 +FBXO22,ERM,0.145229127 +TBC1D2B,ERM,0.749216672 +CDK12,ERM,1.092389075 +ENGASE,ERM,-0.712338572 +TBC1D16,ERM,0.950134919 +ENTHD2,ERM,-0.67795713 +STIM1,ERM,1.700409527 +IRGQ,ERM,0.897496961 +PPP2R3B,ERM,-0.882550551 +ZNF646,ERM,0.476339527 +MIDN,ERM,0.054125951 +MVD,ERM,-1.75131932 +ANKRD11,ERM,1.0851378 +SPATA33,ERM,-1.233997212 +ZNF641,ERM,0.402731769 +DHRS13,ERM,0.105105267 +TP53I13,ERM,-0.135078394 +KMT2D,ERM,1.001339553 +C19orf55,ERM,0.475780765 +LENG8,ERM,-1.238298138 +ZNF146,ERM,0.535523953 +ZNF444,ERM,-0.231028025 +FAM57A,ERM,0.955200961 +SLC43A2,ERM,1.086146946 +SRR,ERM,0.570920114 +GHDC,ERM,0.777845081 +ITFG3,ERM,0.875070005 +ZNF598,ERM,-0.282175319 +E4F1,ERM,-0.891432798 +ABCA3,ERM,1.117784621 +SRRM2,ERM,0.785135619 +LTBP3,ERM,0.402272282 +SAC3D1,ERM,-0.211852857 +SF1,ERM,-0.069639687 +PAFAH1B2,ERM,0.756353197 +ANKS3,ERM,-1.319598952 +SETD5,ERM,0.809192868 +HOOK3,ERM,2.002268872 +RBPJ,ERM,0.366086784 +TTC39C,ERM,0.143580879 +KIF5C,ERM,1.343426822 +MGAT2,ERM,1.344086995 +BMI1,ERM,0.189713396 +KCTD6,ERM,-0.841105601 +TAP1,ERM,0.413345321 +ING5,ERM,0.174729749 +ATG4B,ERM,-0.623797785 +SOGA2,ERM,0.707371247 +SNRNP48,ERM,1.006483773 +SLC20A2,ERM,0.862185235 +TMUB2,ERM,1.304913028 +STAT3,ERM,0.969088025 +ADAM9,ERM,0.641679085 +PKIG,ERM,-0.279117517 +SEMA4C,ERM,0.788626439 +CNNM3,ERM,0.977938672 +TET2,ERM,0.979134765 +TCTN2,ERM,0.726907623 +TSPAN5,ERM,0.967829301 +ZBTB5,ERM,-0.17008813 +SNTB2,ERM,0.426376869 +ZNF507,ERM,1.149306171 +STX18,ERM,0.010089935 +GFM1,ERM,-0.352719213 +ANKRD49,ERM,0.194183038 +MAT2A,ERM,-0.65617442 +ZNF608,ERM,0.876587701 +LETM1,ERM,0.080980392 +TMEM129,ERM,0.21899114 +FEM1B,ERM,1.113987187 +HNRNPH1,ERM,-1.117773748 +MECP2,ERM,0.566723264 +UPF3A,ERM,-0.65896281 +CHST14,ERM,0.688248672 +PARM1,ERM,1.334408116 +CSNK1G1,ERM,1.601382102 +ZBTB43,ERM,0.414907482 +GPRIN1,ERM,0.039496175 +MRPL1,ERM,-0.446303043 +SLC33A1,ERM,1.471019524 +SDC2,ERM,1.188358454 +MMGT1,ERM,1.490543104 +CLIC4,ERM,0.887625288 +CCDC8,ERM,0.064899843 +INO80E,ERM,-1.207235161 +DFFB,ERM,0.186482268 +ANTXR1,ERM,1.736982118 +CKAP2L,ERM,0.811503014 +C15orf40,ERM,-0.599660905 +HIC2,ERM,0.851541984 +LUZP1,ERM,0.878616664 +HEXDC,ERM,-0.940611938 +LRRC45,ERM,-0.803993057 +ASPSCR1,ERM,-1.06877708 +TAPT1,ERM,1.367202301 +CSGALNACT2,ERM,2.105747316 +PCDH7,ERM,2.233848743 +ROBO1,ERM,1.817074456 +P2RY1,ERM,1.534934162 +TPST1,ERM,1.03103426 +TOR1AIP2,ERM,1.363345881 +OTUD3,ERM,0.870929503 +GUSB,ERM,-0.550390154 +BRD3,ERM,0.480927076 +MAP3K2,ERM,0.773670336 +NLGN2,ERM,0.778805768 +ALCAM,ERM,1.799440109 +YWHAG,ERM,0.675883768 +TMEM192,ERM,1.950668089 +ZNF778,ERM,0.893396787 +NIPA1,ERM,1.466786629 +SIK2,ERM,0.665883948 +RNF150,ERM,1.024069226 +ZNF212,ERM,-1.034811663 +FAM161A,ERM,0.505303115 +CRTAP,ERM,0.753699126 +PRDM10,ERM,0.899177079 +FOS,ERM,-0.88048906 +TMED10,ERM,1.422256163 +SLC30A1,ERM,1.645664754 +DNAJC18,ERM,1.902289774 +RALGAPB,ERM,0.555393825 +LONRF2,ERM,0.626155442 +ELOVL6,ERM,1.399136812 +ARL6IP1,ERM,1.320019078 +CDH2,ERM,1.519508353 +EMB,ERM,1.467322073 +STAT2,ERM,0.245131475 +TRABD,ERM,-1.003142103 +POLH,ERM,0.4852712 +KIF5B,ERM,1.340709959 +AKAP13,ERM,0.669158741 +CHCHD7,ERM,-0.370772263 +GPR27,ERM,0.910394159 +KBTBD2,ERM,1.219233995 +KIAA0232,ERM,0.806293664 +TMEM43,ERM,1.088673985 +RNF139,ERM,1.208992264 +PAQR8,ERM,0.99209881 +TANC2,ERM,0.462321003 +DNAJC24,ERM,0.329304356 +HS6ST2,ERM,1.055210648 +INSR,ERM,1.463216738 +ATP6V0E2,ERM,0.211734007 +ZNF692,ERM,-3.255634505 +NETO2,ERM,0.862629875 +NPTX1,ERM,1.135791891 +FAM98B,ERM,-0.516761774 +GAA,ERM,0.035167787 +CANT1,ERM,1.931249305 +CHST11,ERM,1.606343733 +CLCN5,ERM,0.933942475 +ZBTB26,ERM,0.19736875 +ZNF562,ERM,0.208665373 +ZNF318,ERM,0.992135222 +WIPF2,ERM,1.205420065 +LRRC8C,ERM,2.103665012 +LRRC8D,ERM,0.938363844 +ETFDH,ERM,-0.194256263 +LPAR3,ERM,1.404066015 +CLSTN1,ERM,1.28951636 +BPTF,ERM,1.046892832 +ATF7IP,ERM,0.811269193 +TCEA2,ERM,-1.629992174 +ANO5,ERM,2.062825399 +MLLT3,ERM,1.196974692 +PRNP,ERM,0.752875225 +ZNF217,ERM,1.495406179 +JMJD1C,ERM,1.056732918 +THOP1,ERM,-0.85533299 +ORMDL3,ERM,1.903126448 +KLF11,ERM,0.201743406 +MTBP,ERM,0.391150673 +ZNF131,ERM,-0.245376081 +BSG,ERM,0.510429276 +CERS6,ERM,2.077266007 +TP53RK,ERM,0.955283723 +FAM195A,ERM,-2.918974006 +GTPBP2,ERM,-0.365585118 +ZNF24,ERM,0.851408454 +MANEA,ERM,1.509431262 +RAD9A,ERM,-1.341799864 +FAM21C,ERM,-0.182063989 +CORO1B,ERM,-1.140592255 +LRRC20,ERM,0.456756097 +NAA16,ERM,0.315631251 +DCP2,ERM,0.71263407 +CES3,ERM,-0.672999667 +CES2,ERM,0.659168704 +PDP2,ERM,0.374515006 +SP3,ERM,0.618233238 +METAP1D,ERM,-0.148637276 +ZNF621,ERM,0.604215116 +NADSYN1,ERM,-0.959113634 +DHCR7,ERM,0.24554877 +NBEA,ERM,1.176658562 +ANKRD13D,ERM,-1.050665458 +LCLAT1,ERM,2.376725862 +TADA2B,ERM,1.059841322 +HECTD4,ERM,0.121280357 +ESRRA,ERM,-0.509877293 +AHSA2,ERM,-1.423842485 +VANGL1,ERM,1.492125695 +IQCB1,ERM,-0.760410884 +GOLGB1,ERM,1.684014152 +TNKS,ERM,0.81701267 +ZBTB21,ERM,0.308374337 +STOX2,ERM,-0.431129998 +DAG1,ERM,1.598894313 +RNF26,ERM,1.141879391 +PEAK1,ERM,0.979184032 +TNFRSF10D,ERM,1.03565531 +MOB1B,ERM,0.843776383 +SNX33,ERM,0.63715117 +CHD2,ERM,0.688522265 +CCDC41,ERM,-0.246614388 +PC,ERM,-0.211511791 +SUSD5,ERM,1.846913521 +HEG1,ERM,1.781637506 +TOMM20,ERM,1.148820114 +CNP,ERM,0.055247116 +DPY19L1,ERM,1.966887429 +ZNF791,ERM,0.807151721 +PHC3,ERM,0.487922151 +GOLIM4,ERM,1.100026156 +XXYLT1,ERM,1.018651682 +UBXN2A,ERM,0.741841848 +CCS,ERM,-3.373821572 +FAM3C2,ERM,0.969450467 +CTSF,ERM,-0.98705066 +MSRB3,ERM,1.247536172 +LEMD3,ERM,0.848121596 +RGMB,ERM,1.319377471 +ZDHHC24,ERM,0.830401767 +MGA,ERM,1.005430593 +PIGG,ERM,0.104121509 +ADCY6,ERM,1.60015329 +ZBTB4,ERM,0.673099191 +ZHX3,ERM,0.88235384 +RALGAPA1,ERM,1.220893542 +ATP2A2,ERM,1.527978382 +CNTNAP2,ERM,1.250289644 +DENND4A,ERM,0.405550588 +MSL2,ERM,1.228695683 +UGT8,ERM,1.475141504 +ZNF266,ERM,0.889394422 +SLC29A2,ERM,-0.036574439 +BRSK2,ERM,0.192093729 +B3GNT1,ERM,0.124046143 +TMEM167A,ERM,0.848205053 +CEP135,ERM,0.489032817 +FZD4,ERM,1.236157625 +PDE12,ERM,0.421447216 +GLMN,ERM,-0.474859459 +SEZ6L2,ERM,0.807432836 +KLC2,ERM,-0.137129289 +GK5,ERM,0.489727458 +VCPIP1,ERM,1.129576862 +PCCA,ERM,-0.167752083 +GOLGA8A,ERM,-1.978428326 +TP53I11,ERM,1.236827408 +PHYKPL,ERM,-1.127056597 +ARL10,ERM,1.650208018 +CCDC14,ERM,-0.245844124 +ALG10B,ERM,1.95985489 +RAB6A,ERM,0.183774461 +ERCC4,ERM,0.701618961 +RMI2,ERM,-0.60179878 +TOM1L2,ERM,0.681142516 +MLXIP,ERM,0.880748934 +SLC35E3,ERM,1.074921529 +ARL4D,ERM,-0.015625697 +LYSMD3,ERM,1.550919902 +B3GALT6,ERM,1.55608136 +MBLAC2,ERM,0.512718518 +TPRN,ERM,0.273632371 +YES1,ERM,1.324141967 +TMEM39A,ERM,1.552081648 +CCDC57,ERM,-0.96344959 +FOXG1,ERM,-0.559974117 +ATAD5,ERM,0.983317479 +ANAPC2,ERM,-1.168700173 +SPRYD4,ERM,-1.589401652 +CLK2,ERM,-1.21295221 +LPCAT4,ERM,-0.348563081 +B3GNT5,ERM,1.327474759 +LMNB2,ERM,0.416381799 +RMDN1,ERM,0.054272725 +ACSF3,ERM,-0.772755193 +ANKLE2,ERM,1.5642474 +NFATC2IP,ERM,-0.269766329 +SMCR8,ERM,1.294258992 +MTX3,ERM,1.050128223 +FBXO46,ERM,1.141444116 +WDR73,ERM,-0.747373826 +ANO6,ERM,0.914660425 +ZBTB34,ERM,0.862106618 +FAM210A,ERM,1.181615905 +ULK1,ERM,-0.108303444 +RPS6KA3,ERM,0.347312471 +PUS1,ERM,-0.65769913 +CHD9,ERM,0.668254868 +PDDC1,ERM,0.063368432 +TOP3A,ERM,0.940393566 +NR2C2,ERM,0.50753783 +ZBTB33,ERM,0.926276657 +SLC25A22,ERM,-0.177029885 +PIDD,ERM,-0.987454945 +GBA,ERM,1.189216523 +IL17RA,ERM,1.858510444 +THAP5,ERM,1.012265679 +PVRL3,ERM,1.192600366 +KIAA0195,ERM,0.535805872 +SOX12,ERM,-0.110510421 +CHID1,ERM,0.499925499 +ZNF518A,ERM,1.111205206 +ZBTB41,ERM,1.00261227 +DMAP1,ERM,-0.984075475 +C2orf69,ERM,0.773312 +SH2B1,ERM,0.114917902 +KDELC2,ERM,1.098637126 +GALNT11,ERM,0.521235542 +WDR6,ERM,-0.627959285 +GEN1,ERM,-0.052467331 +GLDC,ERM,0.154415135 +CTNNBIP1,ERM,-0.27949337 +ERN1,ERM,1.805212496 +KCTD12,ERM,1.212719764 +DHFRL1,ERM,1.8208153 +FAM132B,ERM,1.592143973 +FAM219B,ERM,-0.80896012 +DPY19L3,ERM,1.292861803 +PFAS,ERM,-1.175628149 +C17orf62,ERM,0.277569807 +ZBTB7A,ERM,1.088488853 +SPTY2D1,ERM,1.009787393 +FUCA1,ERM,0.33027176 +CALR,ERM,0.732540058 +LDLRAD3,ERM,1.252817075 +CLK3,ERM,-0.731711043 +PACS2,ERM,0.250045429 +ELMOD2,ERM,2.027785524 +FJX1,ERM,1.485816716 +ZBTB18,ERM,1.169244967 +GCC1,ERM,0.986017728 +PLD6,ERM,1.523717761 +CDC42EP4,ERM,0.509602957 +PCBP1-AS1,ERM,-0.592803735 +MYADM,ERM,1.344860238 +SERTAD2,ERM,1.413971628 +BBS10,ERM,0.361888456 +SOCS4,ERM,0.969754807 +ZADH2,ERM,-0.345083974 +EXOC3,ERM,0.308883572 +C7orf41,ERM,0.635757218 +ZNF609,ERM,0.555032824 +CCDC66,ERM,0.608174587 +MCFD2,ERM,2.084480944 +GAS1,ERM,1.230449228 +FAM73A,ERM,2.20631738 +NRIP1,ERM,1.542997568 +PCGF5,ERM,0.900201463 +YOD1,ERM,0.568905133 +SLC36A4,ERM,0.982688052 +ZDHHC20,ERM,2.131633208 +PSMG4,ERM,-1.654573814 +PDIA3P,ERM,0.450980712 +CUEDC1,ERM,-0.843378264 +KCTD2,ERM,0.570061499 +D2HGDH,ERM,-0.945254885 +FKRP,ERM,1.680800823 +SLC26A11,ERM,-0.448525107 +F2R,ERM,1.507097027 +DHTKD1,ERM,0.487980677 +ZNF746,ERM,0.195113899 +TMEM136,ERM,0.995180017 +ZNF322,ERM,0.874085408 +OGFOD3,ERM,1.141472593 +ZNF678,ERM,1.11831226 +ZBTB2,ERM,0.989966843 +SGSH,ERM,0.897761353 +SETD2,ERM,1.265192452 +YIPF6,ERM,1.748075064 +IBA57,ERM,0.674069477 +C5orf24,ERM,0.487796164 +ADO,ERM,-0.142546071 +CREB3L2,ERM,1.365554252 +UNC5C,ERM,1.945597592 +RGMA,ERM,1.224640767 +EXT1,ERM,1.44304485 +ATP6AP2,ERM,1.08455986 +BACE2,ERM,0.68254849 +FIGN,ERM,1.39091736 +B4GALNT4,ERM,-0.567395659 +AP1S2,ERM,0.154686399 +FBXL6,ERM,-2.837893046 +YBEY,ERM,-0.487636824 +CLN8,ERM,1.231019884 +PLCXD1,ERM,-0.269601859 +EXOC7,ERM,0.291117228 +CEP97,ERM,1.053543457 +MXRA7,ERM,0.785950186 +SATB1,ERM,0.28173945 +PLCB1,ERM,1.178589269 +TTC3,ERM,0.889198286 +COL18A1,ERM,0.520905702 +ZNF721,ERM,0.823585421 +SRPR,ERM,0.922687762 +EWSR1,ERM,-0.828746937 +GJC1,ERM,2.25203528 +MTA1,ERM,-0.675021194 +CADM1,ERM,1.58235005 +LYSMD4,ERM,1.275652828 +NKX2-5,ERM,-0.944299486 +GPC6,ERM,0.458705229 +PTTG1IP,ERM,2.137599766 +ZNF623,ERM,0.46764655 +BCOR,ERM,0.518024923 +ASB7,ERM,1.224012164 +EP400,ERM,0.164898057 +COA5,ERM,-0.084925795 +PRR14L,ERM,1.128346362 +ZNRF3,ERM,1.510257573 +TRMT12,ERM,0.860362981 +FAM101B,ERM,0.82055488 +TRIM52,ERM,0.711073083 +CMTM4,ERM,1.284255615 +TMEM50A,ERM,0.951119721 +CBX6,ERM,0.713184546 +KREMEN1,ERM,0.766771545 +TRAIP,ERM,-0.091978891 +EMILIN3,ERM,1.471686273 +RBM12B,ERM,0.237944113 +BTBD9,ERM,1.368241397 +KIRREL,ERM,1.620121543 +IQGAP3,ERM,0.290490429 +PRKX,ERM,0.356884011 +SMTN,ERM,-1.241178256 +TBX1,ERM,-1.065409246 +TSPYL2,ERM,-0.832961548 +C22orf46,ERM,0.484173671 +PCDH9,ERM,2.228876959 +OAF,ERM,-0.10124093 +ZDHHC23,ERM,1.21516855 +EFNA5,ERM,1.78905311 +SS18L1,ERM,0.393979793 +KNTC1,ERM,0.140320496 +WDR27,ERM,-0.803940014 +FOXO4,ERM,-0.057011848 +POU3F2,ERM,0.833611334 +PROS1,ERM,1.125516796 +ZFP1,ERM,-1.708196783 +XPOT,ERM,0.557828638 +SNN,ERM,0.851085181 +AMER1,ERM,1.199173474 +ZBTB40,ERM,0.503184558 +ATL3,ERM,0.813333032 +UBE2G2,ERM,0.159216736 +TMED9,ERM,0.286589078 +RBM33,ERM,-0.132299494 +JAG2,ERM,0.564166524 +ZFP90,ERM,-0.357494291 +SIVA1,ERM,-1.556721624 +BRI3BP,ERM,1.54796101 +ROBO2,ERM,1.291282283 +BRF1,ERM,0.591041737 +MANEAL,ERM,0.712767896 +PURA,ERM,0.709244266 +DDX51,ERM,-0.036941164 +NOMO2,ERM,0.744336455 +NRBP2,ERM,-1.299354827 +ZNF445,ERM,0.534608553 +PRPF39,ERM,-1.11269133 +CDK10,ERM,-2.080889722 +ATP6V0A2,ERM,1.645169133 +C14orf80,ERM,-0.534738791 +HGS,ERM,-0.628310055 +MRPL30,ERM,0.383991303 +METTL7A,ERM,2.364072503 +NR2F2,ERM,0.891222285 +SP1,ERM,0.712061902 +PCGF3,ERM,0.044317403 +P4HB,ERM,0.694407703 +PBX1,ERM,1.128974358 +BRWD1,ERM,0.256222193 +EP400NL,ERM,-0.123258992 +MYBL1,ERM,0.86801642 +DMWD,ERM,0.540135329 +SLC52A2,ERM,0.808861725 +NAT8L,ERM,1.239777379 +GNB1L,ERM,-2.500364186 +LAMP1,ERM,0.576486853 +KLHDC8B,ERM,-0.471503353 +SETD4,ERM,-0.357326786 +RNPC3,ERM,-0.617421352 +BICD2,ERM,1.574695007 +LRCH3,ERM,0.448314384 +ZNF529,ERM,-0.06553611 +AIDA,ERM,1.112783412 +ZBTB6,ERM,0.937498286 +BCL9L,ERM,0.644428329 +KIF18B,ERM,-0.494171691 +MKL2,ERM,0.853255092 +CA5BP1,ERM,0.92344894 +BACE1,ERM,1.185607234 +KPNA4,ERM,0.772212204 +ZNF197,ERM,0.483957458 +BTN3A2,ERM,0.059281206 +INSIG1,ERM,0.917052538 +TMEM222,ERM,0.385520803 +SMYD4,ERM,0.470922672 +GPATCH8,ERM,0.345858813 +LYRM7,ERM,1.238964012 +ZNF397,ERM,0.159614469 +ZSCAN30,ERM,0.603588849 +TPCN1,ERM,0.781677694 +POFUT2,ERM,1.334191267 +ZDHHC17,ERM,1.686201997 +PPARA,ERM,1.153774808 +TEAD1,ERM,0.408153733 +ENTPD5,ERM,0.977538701 +KIAA1598,ERM,0.724261701 +TSPYL4,ERM,-1.176518073 +FNBP1,ERM,0.525717701 +BCAM,ERM,-2.406186147 +COL4A1,ERM,0.736335474 +SIRT7,ERM,-1.305124251 +TET3,ERM,0.990113766 +ZNF286A,ERM,1.226452522 +SAMD11,ERM,-0.382343806 +B3GALTL,ERM,1.646419369 +TCEA1,ERM,0.556861411 +FANCA,ERM,-0.469239619 +SEMA4D,ERM,1.584123988 +LIN28B,ERM,0.997038012 +FANCM,ERM,1.697879012 +FAM122A,ERM,0.16581 +ARHGAP11B,ERM,0.717053904 +CYHR1,ERM,-0.56290476 +KLHL17,ERM,-0.417302998 +ANKRD19P,ERM,-2.511293672 +ARL4C,ERM,1.025969263 +C11orf95,ERM,0.94433975 +MAPK12,ERM,-1.308222986 +COL4A5,ERM,0.923751328 +NCR3LG1,ERM,2.034789726 +HES4,ERM,-2.475689961 +CHM,ERM,0.888034377 +H2AFX,ERM,-0.453127432 +SRSF10,ERM,0.010739233 +NDOR1,ERM,-0.051918728 +FAM72B,ERM,0.249956255 +LDOC1L,ERM,0.9514354 +PTAR1,ERM,0.858811401 +ZDHHC9,ERM,1.683847491 +ZBED6CL,ERM,-0.095646276 +TMEM120B,ERM,0.792672154 +MTF1,ERM,1.016209589 +TMEM201,ERM,1.263539488 +NHLRC3,ERM,-0.217559694 +BEND4,ERM,0.499476499 +MSL1,ERM,0.758718315 +DHFRP1,ERM,0.312929653 +ZNF292,ERM,0.712864985 +ADAT2,ERM,0.026012329 +H1F0,ERM,0.135447446 +LITAF,ERM,-0.434197269 +ARID2,ERM,0.951393968 +S100A13,ERM,-2.214169152 +ZNF33A,ERM,1.077893935 +LIN54,ERM,0.621585388 +KAZN,ERM,-0.501568325 +SLC35E2B,ERM,1.229819061 +KIAA0895L,ERM,-0.013598083 +PLEKHG4,ERM,-0.638130379 +ACADSB,ERM,0.936791636 +TMEM63A,ERM,0.957692216 +MPHOSPH8,ERM,0.815981985 +FAM217B,ERM,0.949089634 +LCOR,ERM,1.490793904 +POM121,ERM,1.028135315 +ZBTB44,ERM,1.337574381 +SLC35F1,ERM,1.30855873 +PTPN1,ERM,0.524902328 +EVL,ERM,-0.694451547 +EPHB4,ERM,0.876062159 +PPP1R26,ERM,0.56926152 +TSC22D2,ERM,1.127775688 +PIK3R4,ERM,1.181546582 +GDAP2,ERM,0.468885595 +AFAP1,ERM,0.227910469 +MAN2A2,ERM,0.905407812 +CACNA1H,ERM,1.122856639 +SULF2,ERM,0.688531655 +PLXNB2,ERM,0.816279406 +XRCC2,ERM,0.96517966 +MYO6,ERM,0.94049118 +TCF4,ERM,0.905404861 +RABL6,ERM,-0.641995686 +ZKSCAN5,ERM,0.815757148 +ZFP62,ERM,0.177251986 +ERI2,ERM,1.363004914 +ZNF33B,ERM,0.839465143 +ZNF512B,ERM,-0.127675027 +ZNF431,ERM,0.964816401 +NF1,ERM,0.721403123 +VKORC1L1,ERM,1.291846464 +COL27A1,ERM,0.14747798 +GM2A,ERM,1.746476997 +SNHG17,ERM,-1.601381589 +CD47,ERM,1.433696735 +CTBP1-AS2,ERM,0.156918645 +C6orf106,ERM,0.685482428 +NHLRC2,ERM,0.882267331 +KPNA5,ERM,0.128452965 +ZNF252P,ERM,0.327667065 +PDLIM7,ERM,-1.245327498 +SLC39A10,ERM,2.428638393 +ZNF100,ERM,0.427394809 +ZNF398,ERM,0.278902706 +GMFB,ERM,0.761023527 +ZMYM1,ERM,0.917238903 +MAFG,ERM,0.183765563 +ARRDC1,ERM,-1.102905921 +KIAA1671,ERM,0.848816137 +IGF2R,ERM,1.489178629 +SLC25A29,ERM,0.192777438 +PGAP1,ERM,1.422295994 +SRC,ERM,0.52715453 +PCNXL3,ERM,1.117845801 +LRRC8B,ERM,1.737076714 +ABCB8,ERM,0.115191959 +SND1,ERM,-0.097649311 +ENTPD4,ERM,1.957981268 +KANK2,ERM,1.113261656 +FITM2,ERM,2.485276331 +DDI2,ERM,0.979838252 +TRIM33,ERM,0.512098969 +LRP10,ERM,0.796187251 +ZNF655,ERM,0.996668315 +SLC22A5,ERM,0.908198007 +ADARB1,ERM,0.164803565 +OGDHL,ERM,-2.589591637 +STMN3,ERM,-0.242513859 +SIPA1L1,ERM,0.785913065 +PIGN,ERM,1.611404118 +COL4A6,ERM,0.007745346 +GPX1P1,ERM,-1.620359148 +ENTPD6,ERM,0.960744735 +ENPP1,ERM,1.423489581 +PHF2,ERM,0.226557084 +RPS26,ERM,-1.760675852 +PSAP,ERM,0.91129308 +HOXC6,ERM,-0.22826874 +EME2,ERM,0.058727431 +ZNF780A,ERM,0.896968566 +SLC9A8,ERM,1.445917148 +OCLN,ERM,1.933528919 +GPAA1,ERM,-0.28027449 +SPG7,ERM,-0.110422937 +ERO1L,ERM,1.781262374 +ZNF121,ERM,0.492329576 +MPZL1,ERM,1.670972051 +VPS13A,ERM,0.681845014 +AKAP17A,ERM,0.140454576 +ELOVL2,ERM,1.743126513 +SNHG12,ERM,-2.032242091 +NOL8,ERM,0.440126876 +MRPL42,ERM,-0.282871636 +ENTPD7,ERM,1.440184455 +ZNF84,ERM,0.75724138 +SIRPA,ERM,1.083833311 +CD2AP,ERM,1.054769203 +NUP62CL,ERM,-0.565426155 +SFI1,ERM,-2.7162514 +ZNF248,ERM,0.509037896 +ZNF770,ERM,1.186219816 +HMGN5,ERM,-1.250808648 +MIER1,ERM,1.689137037 +MAN1A2,ERM,1.947734898 +RPS6KL1,ERM,-0.298312605 +DDX42,ERM,0.104965509 +STYX,ERM,1.08037376 +UCKL1,ERM,-3.349967269 +ZKSCAN8,ERM,1.052664625 +HOXC4,ERM,-0.160195457 +ASPH,ERM,1.347247054 +WWP2,ERM,0.32968291 +GFPT1,ERM,0.803264961 +ITSN2,ERM,0.817243816 +MGEA5,ERM,0.675656805 +FAM115A,ERM,0.32556314 +ZNF587,ERM,0.153260888 +MAFK,ERM,-0.439616773 +DDX39B,ERM,-0.890011846 +NUDT16,ERM,0.003876516 +TLK1,ERM,0.843498484 +MDM4,ERM,0.177048531 +KLHL9,ERM,0.138794903 +C6orf89,ERM,2.343538678 +SLC9A6,ERM,1.01747818 +FAN1,ERM,1.297595073 +CEP290,ERM,-0.220592603 +C1orf85,ERM,-0.966336297 +SMOC1,ERM,1.27070803 +ZNF652,ERM,0.121642761 +SMURF1,ERM,0.428181044 +SLC5A3,ERM,1.801794349 +COLGALT2,ERM,1.358298491 +TMEM184B,ERM,1.03109355 +LRIG2,ERM,1.02849267 +FOXJ3,ERM,0.581942531 +ARHGAP11A,ERM,0.829665049 +DENND4B,ERM,-0.320257377 +R3HDM4,ERM,0.143164393 +RUNDC1,ERM,0.546926414 +TYW1,ERM,1.759353454 +SFMBT2,ERM,1.046403657 +ITPRIPL1,ERM,1.790365006 +SMC5,ERM,0.830214465 +SREBF2,ERM,0.948810962 +DZIP3,ERM,0.70863502 +KIAA0753,ERM,0.662794122 +ATG9A,ERM,1.06404352 +TBKBP1,ERM,-0.134877685 +NAGA,ERM,0.987316798 +SGMS1,ERM,1.95898264 +COX20,ERM,-0.070042042 +CHML,ERM,1.090962747 +TATDN3,ERM,-0.904544885 +RBM20,ERM,0.107803445 +PCMTD2,ERM,-0.164546437 +EFCAB7,ERM,-0.375761965 +ZYG11A,ERM,0.755216047 +SYS1,ERM,1.232583281 +TRAF3IP1,ERM,0.430339208 +PHACTR4,ERM,0.79580071 +ZDHHC18,ERM,0.992532262 +TMEM57,ERM,1.992809123 +ZDBF2,ERM,1.255005632 +BMPR2,ERM,1.714431604 +OXLD1,ERM,-1.160256013 +MRPL38,ERM,-1.150825395 +SDHD,ERM,-1.599895972 +NEU1,ERM,0.445436689 +HSPA1B,ERM,-1.303134483 +HLA-C,ERM,-0.458049416 +DDR1,ERM,1.155063083 +HLA-E,ERM,0.372547457 +ZNF616,ERM,-0.02207897 +CRHR1-IT1,ERM,0.504171022 +GABBR1,ERM,-1.119547153 +RANBP17,ERM,-0.458599135 +ZNF204P,ERM,0.0284495 +TCTN1,ERM,0.851601909 +ZBTB48,ERM,-0.235797718 +C11orf83,ERM,-2.282165975 +ZNF783,ERM,0.176747725 +SLC35B4,ERM,1.81794765 +TRIQK,ERM,-0.991514015 +PSENEN,ERM,-1.344096832 +LGR4,ERM,1.953006793 +PDE7A,ERM,-0.14282379 +TMEM170B,ERM,0.560044454 +TECPR1,ERM,0.353065316 +ITPRIPL2,ERM,1.616864026 +CRYZL1,ERM,-0.956849541 +C5orf51,ERM,0.469563647 +ZNF316,ERM,0.275117588 +NYNRIN,ERM,0.532177596 +AP000525.9,ERM,0.345837944 +PTPLB,ERM,1.850204655 +WDR52,ERM,-0.089612654 +SETD5-AS1,ERM,-0.908193162 +SACM1L,ERM,0.815696102 +C17orf51,ERM,0.929197378 +ZNF580,ERM,-0.415472775 +DENND1B,ERM,0.72645946 +SFT2D2,ERM,1.874725628 +FGFR1OP,ERM,-0.428750853 +KLHL23,ERM,0.27719112 +TRIM59,ERM,1.634513954 +NRAS,ERM,0.930601729 +QTRT1,ERM,-1.564171233 +CHUK,ERM,-0.000422903 +COG8,ERM,0.670014987 +RBMXL1,ERM,0.935980143 +LEPROT,ERM,1.252268333 +ATF6B,ERM,0.556633664 +SLC35F6,ERM,1.609057479 +ZNF134,ERM,1.114512457 +EMP2,ERM,1.665236606 +DNASE1,ERM,1.195146708 +CSNK1E,ERM,0.19924336 +GALT,ERM,-2.134532141 +ITGA1,ERM,1.629167674 +AP1G2,ERM,-1.834842807 +CARKD,ERM,-1.033882641 +TTLL3,ERM,-2.733843244 +CPNE1,ERM,-0.915136295 +RCN1P2,ERM,1.173788939 +ZBED1,ERM,0.867900317 +DDX12P,ERM,-0.385942327 +C22orf29,ERM,0.424599585 +NEURL4,ERM,-0.2145045 +TTC3P1,ERM,1.268690808 +PEX26,ERM,0.794818838 +GOLGA8B,ERM,-1.021664746 +MIR17HG,ERM,-1.521535166 +TMEM242,ERM,1.343312148 +TMEM167B,ERM,1.028583743 +CYB5RL,ERM,0.856704292 +CROCCP2,ERM,-0.783655762 +FNIP1,ERM,1.849345719 +RP11-204C16.4,ERM,0.974616307 +TENM3,ERM,1.02820964 +AC007390.5,ERM,1.163567335 +NBPF1,ERM,-0.170060021 +CCNL2,ERM,-1.11785122 +PPT2,ERM,0.706282168 +CKMT1A,ERM,-2.446063142 +NSUN5P1,ERM,-2.188529226 +RP11-54O7.3,ERM,-0.115373702 +AFG3L1P,ERM,-0.732860474 +EPB41L4A-AS1,ERM,-2.044268114 +ATXN1L,ERM,1.047126945 +SMIM13,ERM,1.338093514 +CTD-2228K2.7,ERM,-1.297775423 +PLEKHM1,ERM,-0.188682283 +FAM195B,ERM,-0.201112226 +IPO7P2,ERM,0.794091318 +SLC26A6,ERM,-0.191877402 +FGD5-AS1,ERM,0.590746365 +TLK2P1,ERM,1.035989033 +BAIAP2-AS1,ERM,0.89842955 +RP11-31F15.1,ERM,0.041280272 +TMEM185B,ERM,1.196290635 +C14orf132,ERM,0.844236206 +PARG,ERM,0.091851714 +TP73-AS1,ERM,0.289356433 +SCAMP4,ERM,1.078035487 +SEC63P1,ERM,1.172400081 +HCG11,ERM,0.659113395 +DHFR,ERM,0.60564364 +RP11-206L10.11,ERM,-0.511751604 +XIST,ERM,-0.662652275 +RP5-1180C10.2,ERM,-1.624760335 +HCG18,ERM,0.193132854 +CTD-2619J13.14,ERM,0.343200607 +SNHG15,ERM,-1.544270007 +SNHG7,ERM,-1.712033191 +HOTAIRM1,ERM,-0.325180492 +RP4-775C13.1,ERM,-0.276061757 +ZNF37BP,ERM,-0.191516348 +ZNF736,ERM,-0.244746968 +MAGI2-AS3,ERM,-0.037420856 +JRK,ERM,0.249723288 +GAS5,ERM,-2.031630638 +LINC00338,ERM,-0.821994938 +PPP1R3E,ERM,-0.19671922 +RP5-827C21.1,ERM,-2.029212491 +NUS1P1,ERM,0.715682064 +ZBTB22,ERM,-0.221008605 +AD000090.2,ERM,-0.201406596 +ZBED5,ERM,0.467590636 +RNF103,ERM,2.252805819 +TMEM189,ERM,0.633238917 +RPL36A,ERM,-1.395083199 +CD302,ERM,2.107740154 +SNHG3,ERM,-2.228576367 +C15orf38,ERM,0.663947222 +AP5Z1,ERM,-0.772278609 +MICAL3,ERM,0.594078464 +KCTD7,ERM,0.638709335 +SCARF2,ERM,0.695891164 +APOBEC3C,ERM,-0.407432884 +N4BP2L2,ERM,-0.37879652 +NEAT1,ERM,-1.270808481 +CRNDE,ERM,-1.853776751 +OIP5-AS1,ERM,0.500925853 +MARS2,ERM,0.18773576 +HAUS5,ERM,-1.121769287 +PDCD6,ERM,-1.648875396 +THAP9-AS1,ERM,-0.192692151 +SHANK3,ERM,-0.394381614 +RTN3P1,ERM,1.850821742 +MALAT1,ERM,0.050027532 +TUG1,ERM,1.179597821 +GS1-251I9.4,ERM,-1.308346345 +UTP14C,ERM,1.840920677 +ZNF260,ERM,1.141102479 +PABPC4L,ERM,0.15896164 +FPGT,ERM,-0.834528658 +MEX3A,ERM,0.523949803 +POLR2M,ERM,0.737063845 +SNHG1,ERM,-1.722218657 +POLG2,ERM,0.628714518 +KIAA1147,ERM,0.727381954 +RP11-349A22.5,ERM,0.15468537 +LINC00641,ERM,0.643708244 +RP4-773N10.4,ERM,0.472146669 +CEP95,ERM,-0.230346663 +LINC00657,ERM,1.143268662 +RP1-239B22.5,ERM,1.892366495 +RP6-24A23.6,ERM,-0.672888773 +ERVK13-1,ERM,-0.373934423 +GS1-358P8.4,ERM,0.140464458 +VPS9D1-AS1,ERM,0.215396844 +RP6-24A23.7,ERM,-0.253211665 +GAN,ERM,1.466141261 +SPON1,ERM,1.203498509 +RP11-159D12.2,ERM,-2.02389197 +OTUD7B,ERM,0.764078352 +RNF115,ERM,0.110026318 +BAHCC1,ERM,0.499382914 +NBPF15,ERM,-1.064837262 +RP11-242D8.1,ERM,-1.175196682 +RP11-18I14.10,ERM,-1.512121042 +NBPF9,ERM,-0.104022012 +EGLN2,ERM,-1.022063634 +NUDT3,ERM,0.672156423 +KMT2B,ERM,0.573868392 +POM121C,ERM,1.460333513 +RP11-504P24.8,ERM,-0.502655969 +DCP1A,ERM,0.073649415 +EPOP,ERM,1.212633726 +NOL12,ERM,-1.649211134 +SOCS7,ERM,1.155326324 +PI4KAP1,ERM,-1.02441986 +ZNF280B,ERM,1.061843451 +MLLT6,ERM,0.523266065 +SYNRG,ERM,1.000772472 +TADA2A,ERM,0.592193136 +PIP4K2B,ERM,0.894138738 +AL133325.3,ERM,-2.158268207 +DDX52,ERM,0.614905589 +MYO19,ERM,-0.289374962 +DHRS11,ERM,-0.514625338 +ACACA,ERM,1.477629513 +AC005332.6,ERM,0.551812696 +RP11-574K11,ERM,-4.53748372 +AL035425.4,ERM,0.151599068 +EBLN3P,ERM,0.725203002 +GCLC,OMM,0.053641506 +NFYA,OMM,0.161656173 +NIPAL3,OMM,1.33578695 +ENPP4,OMM,1.17399226 +SEMA3F,OMM,1.24657214 +CD99,OMM,0.887834226 +LASP1,OMM,0.71982391 +M6PR,OMM,1.043729848 +CFLAR,OMM,0.204581759 +NDUFAF7,OMM,-0.834018702 +RBM5,OMM,-0.311445113 +SLC7A2,OMM,1.60959935 +SARM1,OMM,0.241735161 +CAMKK1,OMM,0.097209541 +RECQL,OMM,-0.764184981 +ARHGAP33,OMM,-0.422813843 +CDC27,OMM,0.092166921 +SPPL2B,OMM,0.553836003 +CREBBP,OMM,0.182775624 +GCFC2,OMM,-0.242279797 +RHBDD2,OMM,0.767375516 +IBTK,OMM,0.499405823 +ZNF195,OMM,-0.804273852 +MYCBP2,OMM,0.260200054 +ZFX,OMM,-0.067521723 +LAMP2,OMM,1.404689926 +GDE1,OMM,0.896681887 +TMEM98,OMM,0.937653508 +TMEM132A,OMM,1.440058402 +ZNF263,OMM,0.187536917 +MAP3K9,OMM,0.396395313 +JHDM1D,OMM,0.371242754 +PHTF2,OMM,1.18378218 +FARP2,OMM,0.169105189 +IFRD1,OMM,-0.150884897 +ARHGAP44,OMM,0.446870188 +ELAC2,OMM,2.094881318 +ADIPOR2,OMM,1.353383258 +PAFAH1B1,OMM,0.247026384 +KIAA0100,OMM,0.968648391 +PAX6,OMM,-0.666806441 +LUC7L,OMM,-1.235788253 +CACNA2D2,OMM,0.808129621 +PIGQ,OMM,0.547934486 +CRAMP1L,OMM,-0.081601875 +JARID2,OMM,0.808508786 +ADAM22,OMM,1.251717359 +CYB561,OMM,1.211234357 +SPAG9,OMM,0.666256747 +CELSR3,OMM,1.104317315 +AASS,OMM,4.236737036 +PKD1,OMM,0.461017563 +SEC62,OMM,0.778030855 +REV3L,OMM,0.678309964 +POMT2,OMM,1.28701387 +BAZ1B,OMM,0.179555469 +ZNF207,OMM,-0.894423182 +IFFO1,OMM,-0.511347896 +NISCH,OMM,-0.025313548 +IDS,OMM,0.832484447 +CLCN6,OMM,0.779344381 +MRC2,OMM,2.330365143 +TSPAN9,OMM,1.810601228 +BTBD7,OMM,0.275409835 +MBTD1,OMM,0.232111283 +LARS2,OMM,3.095686614 +PIK3C2A,OMM,-0.187307788 +ANLN,OMM,0.06003242 +QPCTL,OMM,1.797224087 +MAP4K3,OMM,-0.594812381 +BRCA1,OMM,0.363608991 +MBTPS2,OMM,1.352790089 +EXTL3,OMM,1.122373784 +ELOVL5,OMM,1.169850994 +MAP4K5,OMM,0.253389578 +MAN2B2,OMM,1.7781065 +CLK1,OMM,-0.748364133 +ANGEL1,OMM,1.869428844 +DDX11,OMM,-0.254135942 +UFL1,OMM,0.63780798 +SLC30A9,OMM,0.478276399 +COX15,OMM,0.060873968 +ZMYND11,OMM,0.397363163 +XYLT2,OMM,1.264167052 +NUDCD3,OMM,0.601665028 +CHDH,OMM,0.529383091 +GLT8D1,OMM,0.822866221 +ATP2C1,OMM,0.992871967 +RALBP1,OMM,0.55691607 +CNTN1,OMM,1.28408896 +PHLDB1,OMM,0.238659979 +MRE11A,OMM,0.268555489 +SPAST,OMM,0.405938879 +NRXN3,OMM,1.227609818 +CPS1,OMM,3.715699881 +SLC45A4,OMM,0.859318698 +ZNF839,OMM,-0.046578646 +ZDHHC6,OMM,0.393857953 +RNH1,OMM,-0.887903867 +RB1CC1,OMM,-0.03033837 +ERP44,OMM,0.768999021 +AKAP11,OMM,0.258855423 +GCLM,OMM,-0.440909292 +DEPDC1,OMM,0.074874859 +SEC63,OMM,1.047062279 +FAS,OMM,0.751095952 +RNASET2,OMM,0.61051293 +AGPAT4,OMM,0.901147084 +MIPEP,OMM,1.803489642 +VEZT,OMM,0.573830859 +BRD9,OMM,-0.132295796 +SNX1,OMM,0.021966744 +BCLAF1,OMM,-0.220751522 +SLC39A9,OMM,1.145206465 +RABEP1,OMM,0.253018148 +FAM13B,OMM,0.018711049 +PNPLA6,OMM,1.02410523 +ZCCHC8,OMM,-0.480906345 +CHPF2,OMM,1.119020927 +FUT8,OMM,0.886714245 +UBA6,OMM,-0.188496004 +ATP6V0A1,OMM,0.953114192 +SLC4A7,OMM,0.833268937 +VCL,OMM,1.534304275 +ADSS,OMM,-0.505333893 +TIMP2,OMM,2.023414446 +RFC1,OMM,0.166604929 +ZZZ3,OMM,0.089797438 +MFAP3,OMM,1.255665131 +MRI1,OMM,-0.160416267 +AGA,OMM,0.285769703 +BOD1L1,OMM,0.082410627 +TRIO,OMM,0.025413225 +VCAN,OMM,1.662104122 +CLEC16A,OMM,0.606320524 +ZFYVE16,OMM,0.744364935 +RAI14,OMM,-0.018098627 +PNKP,OMM,-0.318860389 +PQLC2,OMM,0.65045945 +CTNS,OMM,1.216297437 +INPP4A,OMM,0.367426266 +RETSAT,OMM,1.588595693 +CUL7,OMM,0.174111363 +PHKA2,OMM,-0.030687959 +DSG2,OMM,1.421262365 +OFD1,OMM,-0.289884714 +GPM6B,OMM,1.325371844 +YTHDC2,OMM,-0.096734614 +TPR,OMM,0.04417689 +SCML1,OMM,-0.130091274 +MAP4,OMM,0.002896841 +GOPC,OMM,-0.179535147 +ZNF800,OMM,0.00937971 +SNX29,OMM,0.674413979 +KITLG,OMM,0.801911896 +H6PD,OMM,1.974961455 +LTBP1,OMM,1.432719054 +RCN1,OMM,0.964671383 +PTCD2,OMM,0.089903249 +LIMA1,OMM,0.380269578 +LETMD1,OMM,0.50091552 +POLQ,OMM,0.218023054 +MPHOSPH9,OMM,0.038691848 +PLEKHA5,OMM,0.332916051 +SIKE1,OMM,0.642980729 +MSMO1,OMM,-0.070585665 +TTC17,OMM,1.241688841 +LAMA3,OMM,1.633478376 +AP5M1,OMM,0.028474228 +ANAPC4,OMM,-0.88466524 +ARID4B,OMM,0.076570601 +SDCCAG8,OMM,-0.456965938 +FOXC1,OMM,0.301009051 +PLEKHH1,OMM,-0.085976552 +ATP9A,OMM,1.676155683 +FAM168A,OMM,1.493533232 +RELT,OMM,0.662182635 +NOP58,OMM,-0.654041633 +TAB2,OMM,0.398086875 +USP36,OMM,0.001591246 +KMT2C,OMM,0.399229487 +MCOLN3,OMM,0.577893903 +PUM2,OMM,-0.005198683 +RC3H2,OMM,0.542692233 +DCBLD2,OMM,1.239359729 +SOAT1,OMM,1.215670056 +ATP11B,OMM,1.427018279 +SEC61A1,OMM,1.420983712 +PPP1R12A,OMM,-0.030427033 +POLR3E,OMM,-0.570146047 +ATP2B4,OMM,1.656313134 +ZC3H11A,OMM,0.393404282 +NDC1,OMM,0.769284451 +UNKL,OMM,0.241591668 +ALDH18A1,OMM,3.395553873 +TARBP1,OMM,-0.271304349 +WNK1,OMM,0.226333236 +CCAR1,OMM,0.141889631 +PTPRU,OMM,1.119743633 +QSER1,OMM,0.211819406 +BCAT1,OMM,-0.543973547 +PRDM6,OMM,0.364388553 +TNK2,OMM,-0.045793862 +MON2,OMM,-0.058047332 +GPBP1,OMM,-0.006500008 +WAPAL,OMM,-0.051169796 +VMP1,OMM,1.157912913 +APPBP2,OMM,0.212157606 +AHRR,OMM,0.071321513 +ZNF275,OMM,0.159808208 +MTMR1,OMM,0.27713004 +GPC1,OMM,1.806312149 +TM7SF3,OMM,1.102165151 +CDON,OMM,1.332875438 +HIPK2,OMM,0.462830076 +SUGP2,OMM,-0.052418036 +SLC12A2,OMM,0.921908983 +HMG20B,OMM,0.033891893 +UHRF1BP1,OMM,0.362440325 +PKN2,OMM,1.039590326 +TRAM2,OMM,1.468214522 +NTN1,OMM,1.741054493 +ADAT1,OMM,0.389442164 +SPEN,OMM,0.52100509 +MAP2K4,OMM,0.344420628 +SLK,OMM,0.573571293 +CYB5R4,OMM,-0.232436479 +ASB1,OMM,0.540001928 +FAM107B,OMM,0.229581929 +SLC9A7,OMM,1.426795713 +FOXJ2,OMM,0.252048228 +PPP2R5A,OMM,-0.194340878 +ASPM,OMM,0.397921541 +ZBTB11,OMM,-0.426731881 +ATXN3,OMM,0.765829978 +FGFR2,OMM,1.215432076 +LRRC40,OMM,-1.116822269 +ATG2B,OMM,0.005473879 +ARFGEF1,OMM,0.78637998 +KLF6,OMM,0.146747575 +NEO1,OMM,1.670129414 +TRAM1,OMM,0.548967984 +TP53BP1,OMM,-0.083564123 +IARS2,OMM,3.206144097 +ROCK1,OMM,0.521064574 +HYAL2,OMM,0.912348978 +FGFR3,OMM,0.684349908 +MEF2A,OMM,0.270188316 +ACSL4,OMM,-0.228314364 +PRR11,OMM,1.270093629 +REEP1,OMM,1.065435556 +ATP11A,OMM,1.18943025 +POLR1A,OMM,0.181374715 +IP6K2,OMM,-0.753405328 +KIF2A,OMM,-0.059425665 +TGFBR3,OMM,1.416477434 +NEDD4,OMM,0.391311448 +MAPK6,OMM,0.220105412 +UFD1L,OMM,-0.946023983 +LRP6,OMM,1.463750417 +NUCB2,OMM,0.794158591 +SLC44A1,OMM,1.184509515 +TMEM260,OMM,1.52594392 +SMG6,OMM,0.451973329 +CLTCL1,OMM,-0.151533795 +DGCR2,OMM,1.639697177 +MNT,OMM,-0.045951375 +ZXDC,OMM,-0.443485284 +NDST1,OMM,0.982918964 +AP3M2,OMM,-0.150481916 +RAD18,OMM,0.018455848 +ATP2B1,OMM,1.12219864 +MGAT4A,OMM,1.006362865 +SNX13,OMM,0.754582403 +VASH1,OMM,0.605110952 +SEL1L,OMM,1.592054367 +ATP6AP1,OMM,1.025941725 +DAZAP1,OMM,0.075874741 +CPSF1,OMM,-0.786705828 +SLC6A15,OMM,0.718731928 +RDH11,OMM,1.259702043 +PRKACA,OMM,0.447557714 +LPHN1,OMM,0.584397582 +RPS6KA6,OMM,0.682669606 +EPN2,OMM,-0.047929841 +PTPN18,OMM,0.792503552 +TFRC,OMM,1.438348035 +AFF4,OMM,0.384286996 +MPP5,OMM,0.313593991 +HMMR,OMM,0.226419312 +P4HA2,OMM,1.442674533 +TRNT1,OMM,-1.040431481 +ACADVL,OMM,0.392247346 +EVC,OMM,1.175569718 +DERL2,OMM,0.822641643 +NDE1,OMM,0.71796176 +PVR,OMM,2.0030187 +SCARB1,OMM,0.712408017 +SELO,OMM,1.220806044 +LLGL2,OMM,-0.756829023 +PDE8A,OMM,0.27494828 +SDHA,OMM,1.406555549 +KDM5A,OMM,0.321164532 +ADAM11,OMM,0.881838778 +ST6GAL1,OMM,1.604370661 +GLI2,OMM,0.382211895 +NOTCH3,OMM,1.605082365 +BCS1L,OMM,-0.495795658 +DPP8,OMM,0.271007479 +SLC24A1,OMM,1.071910345 +LMAN1,OMM,1.744431913 +PTPLAD1,OMM,1.245024073 +TUBE1,OMM,-1.03595319 +SEMA3C,OMM,1.169839331 +TTC38,OMM,-0.72421339 +CELSR1,OMM,1.510650244 +ZNF638,OMM,1.886030397 +SLC25A40,OMM,-0.135541051 +RASAL2,OMM,-0.144243616 +ZNF37A,OMM,0.587853237 +FNDC3B,OMM,-0.002006503 +FRYL,OMM,0.400054298 +TMEM131,OMM,1.600555346 +WDR62,OMM,-0.537074049 +BCAP29,OMM,0.936756125 +SEC31B,OMM,-0.818562295 +RBMS2,OMM,0.459388432 +SLC46A1,OMM,1.595231226 +PLXNA2,OMM,1.585229435 +ANKRD13A,OMM,0.16432472 +PAG1,OMM,1.457348892 +MCAM,OMM,1.450850976 +GPC4,OMM,1.555640088 +MBNL3,OMM,0.18136815 +DGKD,OMM,0.1462944 +TM9SF3,OMM,0.940393952 +PPP1R12B,OMM,0.416687499 +DNAJC10,OMM,0.909511278 +GTF3C1,OMM,0.754415209 +IL4R,OMM,1.579322156 +LRCH4,OMM,-0.444112221 +FAM76B,OMM,0.013596407 +SIRT6,OMM,-0.196787614 +POLD3,OMM,-0.028373906 +PHF17,OMM,-0.011746842 +FBLN1,OMM,1.137616893 +ITGA8,OMM,2.009710043 +MCCC1,OMM,2.252552328 +ACER3,OMM,1.607708656 +N4BP2,OMM,0.458481142 +HOXA9,OMM,-0.623162151 +PCM1,OMM,0.082273531 +TNRC6C,OMM,0.391016858 +ITCH,OMM,0.307617574 +SDF4,OMM,1.075357913 +FKBP7,OMM,0.902405893 +SLC1A3,OMM,1.225548037 +SAR1A,OMM,0.292240374 +PAFAH1B3,OMM,-0.831427167 +MOXD1,OMM,1.462874416 +STX7,OMM,0.038849663 +RABL2B,OMM,0.101741135 +SLC35C2,OMM,0.669680051 +CRYBG3,OMM,1.522691859 +RIF1,OMM,-0.124520293 +PSEN1,OMM,1.431553162 +RBL1,OMM,0.549593824 +RSBN1,OMM,-0.003736494 +MAGI3,OMM,0.151436157 +OSTM1,OMM,1.020403487 +EXD2,OMM,2.030138467 +MEF2C,OMM,-0.697821724 +UBA5,OMM,-0.329508649 +STK17B,OMM,-0.320904877 +ZNF510,OMM,-0.05813153 +LRP2,OMM,1.111136634 +DUSP12,OMM,-0.28956693 +KIAA0141,OMM,0.512091518 +PHLPP1,OMM,0.018834828 +SMARCD3,OMM,-0.432126777 +C5orf22,OMM,0.136847374 +CCNT2,OMM,0.231605319 +NFE2L1,OMM,2.075541112 +GSK3B,OMM,0.521968842 +ITGB5,OMM,1.328738511 +ERC1,OMM,0.504626323 +RNF13,OMM,0.72398508 +LYRM2,OMM,0.471142874 +KAT6A,OMM,0.613701988 +PLOD1,OMM,1.581692009 +TDRD3,OMM,0.011520554 +PDS5B,OMM,-0.357834658 +OXCT1,OMM,1.404362492 +RRAGB,OMM,-0.683626971 +FAT1,OMM,1.424179656 +YTHDC1,OMM,-0.368510379 +ZMPSTE24,OMM,0.619197054 +REST,OMM,0.142647733 +APLP2,OMM,1.573604398 +KIAA1467,OMM,1.689536853 +TXLNA,OMM,0.093592067 +NCOA1,OMM,0.475008181 +AGBL5,OMM,0.785133043 +CD59,OMM,0.904367169 +ATRX,OMM,0.449857814 +SCAMP1,OMM,0.53192021 +HACE1,OMM,-0.162837707 +WDFY1,OMM,0.421282488 +MTIF2,OMM,0.967172878 +ATG16L1,OMM,-0.471165852 +POMGNT1,OMM,0.839876422 +B4GALT1,OMM,1.812715085 +IPO11,OMM,-0.374698045 +TMED2,OMM,0.549653736 +ERO1LB,OMM,1.247792765 +PPP1R15A,OMM,1.461865499 +NLK,OMM,0.666897128 +PIGS,OMM,1.267300002 +ATXN7L3,OMM,0.501652837 +PGS1,OMM,-0.32648665 +SH3BP2,OMM,-0.051657591 +ADD1,OMM,0.158902351 +TXNDC16,OMM,1.498428112 +NID2,OMM,1.017062405 +KLHL42,OMM,0.291836221 +ERGIC2,OMM,0.33070166 +METTL2A,OMM,0.027984966 +PTPN4,OMM,0.09519854 +KHSRP,OMM,0.03997604 +EPB41L1,OMM,0.751797761 +ANKRD10,OMM,-0.929485854 +DOCK3,OMM,-0.206806184 +PPP1R13B,OMM,-0.424191988 +ATRN,OMM,1.640684197 +ZNF343,OMM,-0.196156214 +MAVS,OMM,0.844772305 +LZTS3,OMM,0.527421981 +SNX5,OMM,-0.619017698 +MAPKAPK5,OMM,-0.19688417 +ESF1,OMM,-0.603107251 +SLC23A2,OMM,1.460327326 +KIF16B,OMM,0.323517931 +ERP29,OMM,0.86235228 +FUS,OMM,-0.828916656 +ZNF302,OMM,-0.245048662 +GRAMD1A,OMM,-0.035152958 +GANAB,OMM,1.665628502 +RBM41,OMM,-0.229298215 +GPATCH2L,OMM,0.325400285 +SLC9A1,OMM,1.146857234 +SPTLC1,OMM,0.79140944 +PAPOLA,OMM,0.091517838 +MUL1,OMM,1.250232594 +RAB11FIP3,OMM,0.148833074 +GOLGA3,OMM,0.413309736 +EFNB1,OMM,0.843922009 +PDPR,OMM,3.814888257 +GLG1,OMM,1.62120043 +TNRC6A,OMM,-0.064390969 +PLEKHG2,OMM,0.261107796 +NAT14,OMM,0.981477525 +RBM27,OMM,-0.258534897 +OSBPL8,OMM,0.434078514 +NRCAM,OMM,1.118465289 +LAMB1,OMM,1.187889801 +CMTM6,OMM,0.944068441 +ITGA6,OMM,1.300336906 +SEL1L3,OMM,0.818307046 +ORC6,OMM,-0.497131736 +TMEM101,OMM,1.189575755 +OSGEP,OMM,-0.967290418 +G2E3,OMM,-0.219679022 +HECTD1,OMM,0.494424451 +SEMA6A,OMM,1.394846141 +TRPM7,OMM,0.918810713 +TYRO3,OMM,1.25398194 +AGO1,OMM,0.093929967 +MFSD11,OMM,1.258228829 +GPATCH2,OMM,-0.099573796 +NUP50,OMM,0.349157326 +LRRFIP2,OMM,-0.01203541 +SEC22C,OMM,0.82924825 +XYLB,OMM,0.422326454 +HDAC6,OMM,-0.277883691 +CBX5,OMM,0.328160374 +SUCO,OMM,1.528121285 +HOOK2,OMM,0.076931865 +ARCN1,OMM,0.194487635 +TMEM38B,OMM,0.538446239 +BTAF1,OMM,-0.002236526 +IKZF5,OMM,-0.218744217 +WAC,OMM,0.362201319 +CREM,OMM,-1.323720096 +BRPF3,OMM,0.005381657 +EFHC1,OMM,-0.758134381 +ABL1,OMM,0.557524945 +SH3GLB1,OMM,-0.01560021 +SCD,OMM,1.672871489 +ABLIM1,OMM,0.658443531 +ERMP1,OMM,1.88252217 +NRP1,OMM,1.494128974 +MZF1,OMM,-0.692115106 +FBXL19,OMM,0.150632227 +MTAP,OMM,0.035293214 +CEP170B,OMM,0.002145784 +POLRMT,OMM,1.550700065 +ARVCF,OMM,0.185816016 +TRMT2A,OMM,-0.58037357 +ZDHHC8,OMM,0.239749166 +KLHL22,OMM,0.075027276 +CRKL,OMM,0.172978578 +LZTR1,OMM,-0.086105649 +CECR2,OMM,0.2665102 +DERL3,OMM,-0.100981476 +PPM1F,OMM,0.280811706 +TOP3B,OMM,-0.646278694 +CRYBB2P1,OMM,-0.352582623 +ADRBK2,OMM,0.732200299 +GGA1,OMM,-0.154844534 +HPS4,OMM,0.243445082 +TTC28,OMM,0.340500536 +SEPT3,OMM,0.19722775 +KDELR3,OMM,0.883030308 +DDX17,OMM,-0.161210484 +TCF20,OMM,0.699624945 +TIMP3,OMM,1.288434357 +PPP6R2,OMM,0.079326807 +SUN2,OMM,1.493997531 +ARSA,OMM,0.703145185 +MYH9,OMM,-0.17375559 +FOXRED2,OMM,1.401556254 +TNRC6B,OMM,0.070407799 +SGSM3,OMM,-0.410854015 +IFT27,OMM,-0.375191958 +KIAA0930,OMM,0.542656506 +EP300,OMM,0.37257966 +ZC3H7B,OMM,0.363567098 +ACO2,OMM,2.177831641 +TRMU,OMM,-0.79979526 +ZBED4,OMM,0.254426984 +ABHD4,OMM,0.682878055 +KHNYN,OMM,0.640643899 +NIN,OMM,0.556887708 +GNPNAT1,OMM,0.235447902 +DDHD1,OMM,0.130899933 +CNIH1,OMM,1.011718627 +TMED8,OMM,0.601044757 +SPTLC2,OMM,1.357454232 +PPM1A,OMM,0.187865308 +SIX4,OMM,-0.380493848 +GALNT16,OMM,1.966524163 +KIAA0247,OMM,1.157983129 +SRSF5,OMM,-0.639191756 +DICER1,OMM,0.094073803 +ZFYVE21,OMM,-0.203131505 +TELO2,OMM,-0.714736926 +PCNX,OMM,1.247777207 +GSKIP,OMM,-0.939400629 +SMEK1,OMM,0.021418044 +TRIP11,OMM,0.679027102 +PABPN1,OMM,0.127296974 +ARHGAP5,OMM,0.30608878 +CHD8,OMM,0.044004396 +PCK2,OMM,1.66766753 +PNN,OMM,-0.286642642 +PLTP,OMM,0.859517514 +ABHD12,OMM,0.785130754 +GINS1,OMM,0.438175552 +RIMS4,OMM,0.477306943 +PABPC1L,OMM,-1.042698968 +STK4,OMM,0.224989927 +BMP7,OMM,1.008788755 +DNAJC5,OMM,0.413446538 +SLCO4A1,OMM,0.001960343 +DIDO1,OMM,0.177131884 +ARFGAP1,OMM,-0.347532957 +ARFRP1,OMM,-0.68224206 +CDS2,OMM,0.994359732 +TM9SF4,OMM,1.479902586 +POFUT1,OMM,1.744241564 +SAMHD1,OMM,0.341586047 +KIF3B,OMM,0.611833864 +E2F1,OMM,0.116922099 +APMAP,OMM,1.084954129 +ZNF516,OMM,0.043067154 +LPIN2,OMM,0.533021667 +SMCHD1,OMM,0.099011561 +LAMA1,OMM,1.523701982 +RNF125,OMM,0.473810306 +ANKRD12,OMM,0.312207741 +MIB1,OMM,0.135572154 +MID1,OMM,0.196831414 +WDR13,OMM,-0.082137209 +XIAP,OMM,0.283215819 +ATP11C,OMM,1.238943891 +SYP,OMM,1.021861509 +FMR1,OMM,0.073216741 +SLC35A2,OMM,1.087970887 +TAZ,OMM,0.211683288 +MAGT1,OMM,1.676801625 +CD99L2,OMM,2.037899521 +EEA1,OMM,0.646006979 +NDFIP2,OMM,-0.050195238 +DNAJC3,OMM,1.474766245 +UGGT2,OMM,0.969410953 +ARHGEF7,OMM,0.115455082 +PARP4,OMM,-0.109450147 +FLT1,OMM,1.973484562 +VWA8,OMM,2.651887332 +DGKH,OMM,0.061527787 +INTS6,OMM,-0.133028622 +CLN5,OMM,1.137978183 +MGRN1,OMM,-0.034337012 +ZNF629,OMM,0.257395441 +CENPT,OMM,-0.757364072 +NFAT5,OMM,0.143578229 +SETD6,OMM,-0.379865531 +SLC38A7,OMM,1.29325394 +SLC7A6OS,OMM,-0.24846046 +SLC7A6,OMM,0.778864785 +WDR59,OMM,-0.145879561 +TAF1C,OMM,-0.443949994 +TSC2,OMM,-0.266075996 +ZNF500,OMM,0.102125708 +ABCC1,OMM,0.939063271 +NOMO3,OMM,1.013867613 +NARFL,OMM,-0.537648842 +MTHFSD,OMM,-0.053086146 +CLCN7,OMM,1.417575691 +SLC7A5,OMM,0.743222483 +FBXO31,OMM,0.455770198 +EEF2K,OMM,1.056698928 +CAPN15,OMM,-0.32256914 +PIEZO1,OMM,0.724784585 +BFAR,OMM,0.730833634 +NOMO1,OMM,1.001137654 +CCP110,OMM,0.260771097 +RNF40,OMM,-0.168926144 +LACTB,OMM,-0.189678344 +CD276,OMM,1.59832436 +HOMER2,OMM,0.798587295 +TMEM87A,OMM,1.06280211 +ZNF106,OMM,0.1292489 +CEP152,OMM,0.437006331 +TJP1,OMM,0.315129352 +VPS18,OMM,-0.277795955 +MYEF2,OMM,0.295553588 +CSPP1,OMM,0.373592855 +ZFAND1,OMM,-0.66699561 +FZD3,OMM,1.296317272 +EYA1,OMM,0.223421185 +NBN,OMM,0.113260835 +IMPAD1,OMM,1.3802755 +UBE2W,OMM,0.275694645 +IKBKB,OMM,0.037643443 +PLAT,OMM,1.595679394 +JPH1,OMM,-0.015400566 +TRPS1,OMM,-0.015274287 +PYCRL,OMM,-0.212723056 +EEF1D,OMM,-0.612780172 +SQLE,OMM,0.368858871 +SLC39A14,OMM,1.382496892 +MTMR9,OMM,0.224996901 +LEPROTL1,OMM,0.952998963 +PPP2CB,OMM,-0.241236971 +KLHDC4,OMM,-0.595904512 +KCTD9,OMM,-0.204396522 +MAN2B1,OMM,1.231189726 +NUCB1,OMM,1.892125282 +SARS2,OMM,-1.209849717 +SNRNP70,OMM,-0.980414377 +CLPTM1,OMM,0.789771536 +CLASRP,OMM,-0.648995644 +FCGRT,OMM,1.349709173 +ERCC2,OMM,-0.112443628 +DOT1L,OMM,-0.003435384 +SF3A2,OMM,-1.17581575 +AMH,OMM,-0.908036206 +DMPK,OMM,-0.327710426 +TIMM44,OMM,-0.683865071 +AKAP8,OMM,-0.682915681 +AKT2,OMM,-0.10778848 +PLD3,OMM,0.820302629 +FSD1,OMM,0.82202292 +APLP1,OMM,1.801574881 +CACTIN,OMM,-0.136683238 +TYK2,OMM,-0.155968805 +PTPRS,OMM,1.279317906 +MEGF8,OMM,1.677216411 +KDELR1,OMM,1.329554575 +CYTH2,OMM,0.210555169 +LIG1,OMM,-0.615333042 +BCAT2,OMM,-0.741192323 +TNPO2,OMM,0.069091636 +DNASE2,OMM,1.31622865 +ISYNA1,OMM,-0.768870933 +CRTC1,OMM,-0.3615105 +SUGP1,OMM,-0.287182858 +SIPA1L3,OMM,0.057952923 +CADM4,OMM,1.927563709 +SMG9,OMM,-0.659426183 +AVL9,OMM,0.269873923 +CDK6,OMM,-0.195785409 +DNAJC2,OMM,-0.761233998 +WDR91,OMM,-0.498932959 +CBLL1,OMM,0.094949327 +MTPN,OMM,0.319509902 +ZC3HAV1,OMM,0.305737128 +OGDH,OMM,1.353100049 +MET,OMM,0.930756121 +LMBR1,OMM,0.722857963 +HOXA3,OMM,-0.034849372 +HOXA6,OMM,0.064077006 +BRAT1,OMM,-1.15860924 +FKBP14,OMM,1.706707272 +NSUN5P2,OMM,-0.741338182 +CASP2,OMM,0.279194971 +HSPB1,OMM,-0.464243806 +ZKSCAN1,OMM,0.68052583 +WASL,OMM,-0.213129391 +RBM28,OMM,-0.33038894 +C1GALT1,OMM,0.770976077 +PLOD3,OMM,1.16667518 +CLDN15,OMM,-0.185649118 +TMEM106B,OMM,1.311023592 +CEP41,OMM,0.752432718 +GLI3,OMM,0.502869698 +TMEM248,OMM,1.137959889 +TBL2,OMM,0.906207998 +FKTN,OMM,0.865669501 +TMEM245,OMM,1.64519853 +MEGF9,OMM,1.291216071 +TGFBR1,OMM,1.271165565 +DNM1,OMM,-0.294390345 +KANK1,OMM,-0.414749733 +RAPGEF1,OMM,0.418382351 +NPDC1,OMM,-0.365191564 +SETX,OMM,0.360517491 +CCNJ,OMM,0.564419959 +RAB11FIP2,OMM,0.408715604 +ERLIN1,OMM,1.746657571 +MAPK8,OMM,-0.051761783 +ATE1,OMM,0.1829467 +PLEKHA1,OMM,0.157173587 +UNC5B,OMM,1.216720919 +BMPR1A,OMM,0.836529251 +ACTA2,OMM,0.788475756 +LIPA,OMM,1.538179528 +LZTS2,OMM,0.078126847 +ARHGAP21,OMM,0.187510031 +ANKRD26,OMM,0.341157783 +LARP4B,OMM,0.088033589 +C10orf137,OMM,-0.387075674 +MTPAP,OMM,0.151158181 +SH3PXD2A,OMM,0.437703776 +PITRM1,OMM,1.239834164 +FAM208B,OMM,0.205716899 +TSPAN14,OMM,1.308159357 +NUFIP2,OMM,0.220048517 +DHX40,OMM,-0.173243888 +CDK5RAP3,OMM,-0.64629698 +RECQL5,OMM,-0.370817577 +INTS2,OMM,0.466202669 +CAMTA2,OMM,0.280468856 +MED13,OMM,0.08142672 +HOXB6,OMM,-0.005970495 +CPD,OMM,1.786022504 +GOSR1,OMM,0.412776101 +CCDC47,OMM,1.275977813 +AKAP10,OMM,0.144093531 +CYTH1,OMM,0.212356763 +LGALS3BP,OMM,1.015862195 +EZH1,OMM,-0.060766593 +PPP1R9B,OMM,0.61799084 +LUC7L3,OMM,-0.431879022 +DUSP3,OMM,0.926519229 +EFNB3,OMM,1.540506602 +DPH1,OMM,-0.464493507 +NAT9,OMM,0.086065577 +TMEM104,OMM,1.48833704 +TMEM97,OMM,1.558859088 +UNC119,OMM,-0.096980164 +TMEM33,OMM,1.02249411 +DCUN1D4,OMM,-0.278985754 +MANBA,OMM,1.314032575 +ELF2,OMM,0.179280529 +WFS1,OMM,0.892126411 +FRG1,OMM,-1.192102331 +CLCN3,OMM,1.204629335 +GALNT7,OMM,1.433350037 +TRIM2,OMM,0.061161293 +NEIL3,OMM,-0.601351803 +SH3D19,OMM,0.126945958 +STIM2,OMM,0.555921514 +RAPGEF2,OMM,0.03206264 +UGDH,OMM,-0.318553924 +CCDC34,OMM,-0.348074959 +FNBP4,OMM,-0.206283387 +SC5D,OMM,0.341986529 +SIAE,OMM,2.35741856 +EHD1,OMM,-0.0263846 +FOXRED1,OMM,-0.509217792 +ST3GAL4,OMM,1.02036263 +CPT1A,OMM,2.471203867 +TMEM109,OMM,1.202207876 +PANX1,OMM,0.861301335 +UBE4A,OMM,1.541957521 +DDX6,OMM,0.091592501 +PVRL1,OMM,1.089453208 +HIPK3,OMM,0.107131546 +MDK,OMM,-0.164651047 +AMBRA1,OMM,-0.256602574 +NAA40,OMM,-0.182760247 +SLC35F2,OMM,0.778655302 +LEPREL2,OMM,0.717327659 +CORO1C,OMM,0.244594026 +ASIC1,OMM,1.114681466 +CAPRIN2,OMM,-0.79931563 +SLC11A2,OMM,0.941680458 +MLEC,OMM,1.599511775 +BCL7A,OMM,0.352718618 +RSRC2,OMM,-0.27298037 +PPM1H,OMM,0.491709137 +ELK3,OMM,1.040379102 +MAGOHB,OMM,-1.20595505 +ITFG2,OMM,-0.066749759 +PARP11,OMM,0.590811536 +DUSP16,OMM,0.553264519 +ACAD10,OMM,2.950848332 +NAA25,OMM,0.082394307 +DDX55,OMM,-0.689186219 +SLC38A1,OMM,0.961200017 +C12orf49,OMM,0.733161891 +MDM1,OMM,-0.047076617 +CPSF6,OMM,-0.343706285 +GNPTAB,OMM,0.866939947 +ATN1,OMM,0.129072162 +C12orf57,OMM,-1.023667232 +LPCAT3,OMM,0.862616992 +SUDS3,OMM,0.66556611 +GOLT1B,OMM,0.372247241 +C2CD5,OMM,0.11430302 +RAB35,OMM,0.420574846 +RIC8B,OMM,0.226014178 +RP11-22B23.1,OMM,-0.618504789 +DSE,OMM,0.714552288 +MAN1A1,OMM,1.39115405 +SERINC1,OMM,1.423903361 +UST,OMM,0.811758309 +KCTD20,OMM,0.530967973 +RNF8,OMM,0.206616384 +ICK,OMM,0.049727502 +RAB23,OMM,-0.242001576 +FBXL4,OMM,0.872875848 +CCNC,OMM,-0.709847461 +ALDH5A1,OMM,2.084770348 +EYA4,OMM,0.2141369 +PERP,OMM,0.971600072 +SLC16A10,OMM,0.6884231 +PHACTR2,OMM,0.225866933 +SLC39A7,OMM,0.711423768 +PPP2R5D,OMM,0.347565802 +PTK7,OMM,1.509703119 +CUL9,OMM,0.151044879 +TMEM30A,OMM,1.759319592 +SENP6,OMM,0.193498451 +VEGFA,OMM,0.073896934 +PRPF4B,OMM,-0.26634991 +BTN2A1,OMM,1.169157414 +LAMA4,OMM,1.486365896 +ERBB2IP,OMM,0.123849256 +HARS2,OMM,-0.100069048 +MAN2A1,OMM,1.617753512 +PAPD7,OMM,0.242900687 +NNT,OMM,2.266343067 +APBB3,OMM,-0.474513294 +SPARC,OMM,1.842113458 +HMGCR,OMM,0.679871808 +FAF2,OMM,1.140460001 +CLK4,OMM,-1.409378483 +ARSB,OMM,1.942050021 +CNOT6,OMM,0.31859325 +DROSHA,OMM,0.268595075 +FAM172A,OMM,0.889635846 +LNPEP,OMM,1.241319534 +SLC12A7,OMM,1.274953958 +NR3C1,OMM,0.564638699 +C5orf15,OMM,1.380204799 +LIFR,OMM,1.47393204 +TRAPPC13,OMM,-0.248189549 +TXNDC15,OMM,1.045373152 +H2AFY,OMM,-0.451473102 +TCERG1,OMM,-0.126093099 +SMAD5,OMM,-0.082787535 +ERGIC1,OMM,1.198167007 +STC2,OMM,0.983774242 +ARL6,OMM,0.315694919 +NIT2,OMM,-0.863202491 +UBE3A,OMM,0.070261819 +SLC25A36,OMM,-0.042552674 +TFDP2,OMM,0.460050115 +XRN1,OMM,-0.068819787 +WNT5A,OMM,1.310380741 +PFKFB4,OMM,0.173924722 +PRKAR2A,OMM,0.479865201 +ACAP2,OMM,0.70789717 +CBLB,OMM,-0.385021216 +BBX,OMM,0.441714414 +GNB4,OMM,0.188068623 +C3orf52,OMM,0.478255112 +PLXNA1,OMM,1.21120542 +CSPG5,OMM,1.058567605 +SCAP,OMM,1.137208892 +HEMK1,OMM,-0.609932173 +ACVR2B,OMM,0.914857818 +ABCC5,OMM,0.998414557 +SSR3,OMM,1.000110054 +NKTR,OMM,0.020388113 +FOXP1,OMM,0.234849264 +INO80D,OMM,0.229264595 +ADAM23,OMM,1.745593362 +MOB1A,OMM,0.44183571 +LMAN2L,OMM,1.359476009 +RTKN,OMM,-0.61924169 +PIKFYVE,OMM,1.084245658 +FAHD2A,OMM,-0.711903051 +SLC35F5,OMM,0.832812721 +STEAP3,OMM,1.141796146 +EPB41L5,OMM,0.208503259 +GPD2,OMM,2.473637801 +ACVR1,OMM,0.655073012 +MPV17,OMM,-0.821948689 +TTC31,OMM,-0.072646482 +NDUFS7,OMM,-1.105337179 +SPTBN1,OMM,0.213548179 +CCDC88A,OMM,0.537575069 +FN1,OMM,2.104211446 +ELMOD3,OMM,0.279441574 +IGFBP5,OMM,2.012797129 +USP34,OMM,0.221955355 +GGCX,OMM,1.19205575 +CHST10,OMM,1.042825512 +MOB4,OMM,-0.448755178 +UXS1,OMM,1.099392685 +PASK,OMM,-0.649102954 +TAF1B,OMM,-0.240230085 +DCAF17,OMM,0.408716521 +SDC1,OMM,2.190937742 +SLC1A4,OMM,1.069274758 +SOS1,OMM,0.11666607 +WIPF1,OMM,0.727143741 +THADA,OMM,-0.246120095 +TRAK2,OMM,0.773693151 +TIA1,OMM,-0.350238992 +PCYOX1,OMM,1.463732995 +ARID3A,OMM,0.776548757 +EPHA4,OMM,1.126615587 +ALMS1,OMM,0.49635329 +BCL9,OMM,0.150934569 +DHCR24,OMM,1.55036332 +DNAJC16,OMM,0.854998585 +RALGPS2,OMM,0.385879409 +CEP104,OMM,0.555971933 +FAM20B,OMM,1.438480827 +TCEANC2,OMM,0.467132932 +WRAP73,OMM,-0.70070255 +ICMT,OMM,1.147848903 +QSOX1,OMM,1.729887263 +AMPD2,OMM,-0.566293306 +EDEM3,OMM,1.513346512 +RAP1A,OMM,-0.364234221 +S100PBP,OMM,0.10793185 +ASH1L,OMM,0.809623447 +SFPQ,OMM,-0.684025484 +MEF2D,OMM,-0.074226205 +C1orf21,OMM,0.561100278 +LEPR,OMM,0.997531293 +IVNS1ABP,OMM,0.159161929 +KIAA2013,OMM,1.105220203 +MIIP,OMM,-0.805952686 +SLC35D1,OMM,1.283751613 +WLS,OMM,0.944855839 +PRDM2,OMM,0.246977923 +TROVE2,OMM,0.007963899 +SRSF11,OMM,-0.554553083 +PHTF1,OMM,0.747756893 +TMEM9,OMM,1.194268224 +EXOC8,OMM,0.006402353 +NID1,OMM,1.919280648 +MTR,OMM,0.429601161 +BMP8B,OMM,1.46753562 +RIMS3,OMM,0.328400848 +AKT3,OMM,0.759369133 +ETV3,OMM,0.127153501 +LPHN2,OMM,1.222883771 +RBBP5,OMM,-0.063290425 +ECE1,OMM,2.157636999 +CD46,OMM,1.122346186 +APH1A,OMM,1.066341754 +LEPRE1,OMM,0.785524614 +SLC2A1,OMM,0.881468771 +SLC19A2,OMM,0.964939045 +NSUN4,OMM,0.013686711 +TMED5,OMM,1.107293378 +DR1,OMM,-0.22738169 +PTBP2,OMM,-0.652967338 +DARS2,OMM,0.848171327 +DIEXF,OMM,-0.417317036 +RCAN3,OMM,0.981094144 +C1orf63,OMM,-1.394134 +SLC35A3,OMM,0.83589236 +RCOR3,OMM,-0.157636071 +ARID1A,OMM,0.24045945 +CENPF,OMM,0.599143583 +ESYT2,OMM,1.291170959 +CD3EAP,OMM,0.095522761 +MESDC2,OMM,1.187455175 +CTSD,OMM,1.937630082 +STK11,OMM,-0.040726275 +KMT2A,OMM,0.628787312 +KPTN,OMM,-0.837074774 +KIF14,OMM,0.447512788 +ATF6,OMM,0.964621664 +FASTKD2,OMM,0.506020159 +NRP2,OMM,1.780312833 +CREB1,OMM,0.188493857 +B4GALT6,OMM,0.663097411 +ELOVL4,OMM,1.412477544 +CASP8AP2,OMM,0.097042902 +PHF3,OMM,0.001865762 +PLAGL1,OMM,-0.341882853 +FBXO30,OMM,-0.101058796 +TMEM5,OMM,0.024202571 +ZNF430,OMM,0.090971091 +DCLRE1B,OMM,0.283200929 +PKD2,OMM,1.279168588 +UBN1,OMM,0.309026649 +KLF12,OMM,0.752216637 +WDR35,OMM,-0.218190245 +CCND2,OMM,-0.924298554 +SATB2,OMM,0.029760385 +SENP5,OMM,0.202473603 +C1orf198,OMM,0.46608474 +HEATR1,OMM,-0.111678029 +PTBP3,OMM,0.537787293 +FAM206A,OMM,-0.090133495 +RBM18,OMM,0.178296811 +MAPKAP1,OMM,0.92489851 +KDSR,OMM,0.999840211 +ONECUT2,OMM,0.434562024 +IRF2BPL,OMM,-0.056461939 +AREL1,OMM,0.752227023 +ABCD4,OMM,0.24675602 +RBM25,OMM,-0.346998343 +NRDE2,OMM,-0.131359077 +KLHL29,OMM,0.420941678 +DNMT3A,OMM,0.045429966 +ATAD2B,OMM,0.245249454 +ATL2,OMM,0.381539362 +YIPF4,OMM,0.686146171 +AFTPH,OMM,0.40081008 +BCL11A,OMM,-0.538243427 +SLC17A5,OMM,1.345191398 +FAM178A,OMM,0.464324721 +GPAM,OMM,1.646252889 +HELLS,OMM,0.175264581 +TCTN3,OMM,0.813869263 +C10orf76,OMM,0.699505723 +HOXB8,OMM,0.013208008 +HOXB3,OMM,-0.729848431 +PANK3,OMM,0.170060846 +NUP43,OMM,0.393448249 +LRP11,OMM,1.443247563 +MASTL,OMM,0.079146332 +ELF1,OMM,0.279849475 +EGR1,OMM,-0.763933857 +NR2C1,OMM,-0.432397167 +MTERFD3,OMM,0.13036985 +CLU,OMM,1.264803576 +TNFRSF10B,OMM,1.959296647 +TARDBP,OMM,-0.24400678 +CRISPLD1,OMM,1.104200351 +AKAP1,OMM,2.216686215 +TRIM25,OMM,-0.06363779 +KIAA0922,OMM,1.085447709 +PAPD5,OMM,0.174853309 +CEP89,OMM,0.890803735 +B4GALT4,OMM,0.841318707 +KIF18A,OMM,-0.379172072 +CRY2,OMM,-0.303363492 +ZNF639,OMM,-0.68991278 +PDS5A,OMM,-0.05905904 +CLCC1,OMM,1.611814604 +ACVR2A,OMM,0.451104645 +RPL21,OMM,-0.864711876 +MTERFD2,OMM,-0.171204212 +KIAA1191,OMM,1.199824595 +RBBP6,OMM,0.50717145 +ZC3H7A,OMM,-0.314483667 +FAM35A,OMM,0.156207031 +FAM213A,OMM,1.003548739 +ODF2L,OMM,-0.547528337 +TRMT13,OMM,-0.433355152 +RPAP2,OMM,-0.091442994 +FAM126A,OMM,0.766279175 +FKBP9,OMM,2.266229616 +POLM,OMM,-0.840137116 +SLC25A51,OMM,0.276412603 +DCAF10,OMM,0.30100984 +KIAA1549,OMM,1.290548707 +CALD1,OMM,0.282819567 +CHST3,OMM,1.205434736 +P4HA1,OMM,2.019563722 +RBM19,OMM,-0.240963635 +GIPC1,OMM,-0.097326517 +ATP7B,OMM,0.746303482 +ZC3H13,OMM,0.29916834 +NLN,OMM,1.165796253 +CENPK,OMM,-0.382243745 +OPTN,OMM,0.723366366 +SPATS2,OMM,0.419842704 +LRP1,OMM,1.882933638 +HJURP,OMM,-0.029874678 +USP45,OMM,-0.733746681 +SLC36A1,OMM,1.117241879 +LPGAT1,OMM,1.2489799 +EXOSC9,OMM,-0.761197317 +PLA2G12A,OMM,0.573901316 +ADCK4,OMM,1.800352228 +PFKFB2,OMM,-0.145830173 +AGO2,OMM,0.222917874 +MXD4,OMM,0.13231393 +ACSL3,OMM,0.655547256 +SLC12A4,OMM,1.481056294 +FAM210B,OMM,1.222023124 +SDC4,OMM,1.832182085 +NCOA3,OMM,0.125593529 +PIGT,OMM,1.288621079 +VAPB,OMM,0.424517211 +CHD6,OMM,0.30333703 +SRSF6,OMM,-0.250517809 +RAB22A,OMM,0.162502811 +STX16,OMM,0.539605479 +STAMBP,OMM,0.189473986 +NAGK,OMM,-0.475066057 +PAIP2B,OMM,1.017336478 +ATP8A1,OMM,1.257330271 +BTN2A2,OMM,1.014594499 +ABCC10,OMM,1.079094807 +AARS2,OMM,2.715642552 +ZNF391,OMM,0.081570309 +CDKN1A,OMM,0.964231929 +SSR1,OMM,1.245672741 +NRN1,OMM,0.834942065 +ATXN1,OMM,0.349836646 +EEF1E1,OMM,-1.098351159 +LRRFIP1,OMM,-0.216184862 +AHNAK,OMM,0.559421514 +ABCC4,OMM,0.917878483 +EFNB2,OMM,1.014219699 +ATP5S,OMM,-0.140152665 +FAM193A,OMM,-0.034348818 +GGA3,OMM,-0.015789166 +GTF3C4,OMM,0.146717642 +PPP1R12C,OMM,-0.160690786 +MBOAT7,OMM,0.82050136 +CCDC93,OMM,0.401771332 +THOC2,OMM,0.047877998 +MED1,OMM,0.431744221 +GPR108,OMM,0.857597603 +GPCPD1,OMM,-0.058803199 +PANK2,OMM,-0.007028671 +NAPB,OMM,0.096922159 +TMX4,OMM,1.702772251 +RRBP1,OMM,1.144094539 +ZNF133,OMM,-0.26118261 +MCM8,OMM,0.340550248 +NCLN,OMM,1.296476022 +ZNF436,OMM,0.071265387 +AMOT,OMM,0.779051097 +TMEM115,OMM,0.930853348 +AGO3,OMM,0.277001873 +HECTD3,OMM,0.177576677 +KLC1,OMM,-0.169932395 +XRCC3,OMM,0.082463926 +TUBGCP3,OMM,-0.267543516 +PCID2,OMM,-1.178173204 +FRMD8,OMM,0.434784506 +PCNXL4,OMM,0.848618664 +ATG14,OMM,-0.278067974 +KTN1,OMM,1.554688698 +PLEKHG3,OMM,-0.040851259 +WDR60,OMM,0.004055245 +AIF1L,OMM,0.721195646 +SLC10A3,OMM,0.858491838 +CANX,OMM,1.601059559 +CPSF3L,OMM,-0.652302562 +TRAF2,OMM,-0.565778233 +HELB,OMM,0.632781728 +DYRK2,OMM,0.451503707 +LRRC61,OMM,-0.114850653 +FGFRL1,OMM,0.848968195 +EMC1,OMM,1.527061281 +HP1BP3,OMM,0.109639001 +SIN3B,OMM,-0.279909601 +SLC35E1,OMM,1.62995916 +GFER,OMM,0.238773279 +PKMYT1,OMM,-0.451431427 +CHTF18,OMM,-0.901458178 +MACF1,OMM,0.376279358 +RNF6,OMM,-0.099502291 +AKAP9,OMM,0.446477561 +HIP1,OMM,0.340545116 +POR,OMM,0.259170606 +PEX1,OMM,-0.253515246 +LRFN1,OMM,0.729896736 +SRD5A3,OMM,0.683899879 +PPAT,OMM,-0.29647606 +TUBGCP6,OMM,-0.682656992 +DGCR8,OMM,-0.212709398 +TPST2,OMM,0.708118335 +MPST,OMM,-0.153304513 +SPECC1,OMM,0.532879592 +NAA38,OMM,-0.784025386 +PRKRIP1,OMM,0.150738271 +PODXL,OMM,1.774179269 +STRIP2,OMM,0.107550231 +MKLN1,OMM,0.245237332 +CALU,OMM,1.976893048 +CCDC136,OMM,-0.256594654 +SMO,OMM,0.66256279 +KLHDC10,OMM,0.109392036 +OSGEPL1,OMM,0.00674548 +HOXD10,OMM,0.421640547 +HOXD11,OMM,0.07092902 +HERC2,OMM,0.251879354 +TWSG1,OMM,1.079376366 +MYO5C,OMM,0.392324939 +TMOD2,OMM,0.281712278 +TTBK2,OMM,0.572367205 +IVD,OMM,0.013648308 +CLN6,OMM,0.718390855 +ARPP19,OMM,0.490415569 +VPS13C,OMM,0.959028293 +SUMF2,OMM,1.83207913 +SPCS3,OMM,1.700421868 +RPAIN,OMM,-0.696166456 +PLD2,OMM,0.32187342 +MPDU1,OMM,0.967584852 +CCNT1,OMM,0.678266275 +PUS7L,OMM,0.111290803 +KRI1,OMM,-0.649872543 +SLC44A2,OMM,1.517133423 +BCL2L2,OMM,0.711646999 +PARP2,OMM,-0.658715822 +TEP1,OMM,-0.430246098 +MAP7D3,OMM,0.702015285 +ABHD17A,OMM,-0.594136986 +ERMARD,OMM,-0.892616681 +SAT1,OMM,-1.043308158 +GNL3L,OMM,0.628951367 +SH3BP4,OMM,0.334234343 +LDLR,OMM,0.881463105 +PRKCSH,OMM,1.104507315 +THEM6,OMM,1.738045765 +PVRL2,OMM,1.048599555 +SAFB2,OMM,-0.408491525 +KIF1A,OMM,2.672743329 +COLGALT1,OMM,1.522138472 +MLLT1,OMM,0.48044622 +MLLT4,OMM,0.094623337 +ACTN4,OMM,0.084378025 +NDUFA10,OMM,-0.6615918 +ZSWIM6,OMM,-0.331006758 +PXDN,OMM,2.148987171 +COL5A1,OMM,1.939893107 +ZNF337,OMM,-0.404577314 +TAF4,OMM,-0.066305505 +LAMA5,OMM,1.239518075 +EXOSC2,OMM,-0.383653455 +POMT1,OMM,0.862075768 +PRRC2B,OMM,0.599618666 +YIPF2,OMM,1.299280875 +ZC3H4,OMM,0.345138069 +CLIP1,OMM,0.590554997 +HIP1R,OMM,-0.196311874 +PPAN,OMM,-0.835538054 +SLC6A8,OMM,-0.004712439 +PLXNA3,OMM,0.779253653 +PRRG1,OMM,0.978388011 +AKAP12,OMM,0.183488584 +RBM39,OMM,-0.880009715 +GGT7,OMM,0.872670652 +PPT1,OMM,1.426663701 +RLIM,OMM,0.195035323 +ABCB7,OMM,1.057108927 +MRPS25,OMM,-0.418692557 +CAPN7,OMM,-0.174224539 +ZFYVE20,OMM,0.237514361 +SLC6A6,OMM,0.586837797 +MGAT1,OMM,1.033768186 +PSMC3IP,OMM,0.260506376 +DIAPH1,OMM,0.083301983 +NDFIP1,OMM,0.413525941 +ACAP3,OMM,-0.61461416 +C1orf159,OMM,0.279744853 +MAP1B,OMM,0.194972315 +IL13RA1,OMM,2.080836648 +WDR44,OMM,0.156427333 +PRKAB2,OMM,0.466182555 +CLUHP3,OMM,-0.262779569 +CHSY1,OMM,0.89933397 +SNRPA1,OMM,-0.846993628 +FBXW9,OMM,-1.019036211 +RFX1,OMM,-0.462924858 +CC2D1A,OMM,-0.195780373 +NUP210,OMM,1.471395626 +ENOSF1,OMM,-0.497535682 +EMILIN2,OMM,1.627566204 +PRKAA1,OMM,-0.269880537 +PNISR,OMM,-0.275724302 +ZRANB2,OMM,-0.433928041 +KDM6B,OMM,0.130196805 +GPS2,OMM,-0.274723338 +VPS13B,OMM,0.222287073 +REEP2,OMM,1.475839503 +PRMT7,OMM,-0.990757085 +PCED1A,OMM,-0.378530759 +PTPRA,OMM,0.776666968 +KIAA0907,OMM,-0.578580624 +DCAF8,OMM,-0.229868651 +IGHMBP2,OMM,-0.344754112 +LPIN3,OMM,-0.542432324 +SERINC3,OMM,1.226567257 +FBXO44,OMM,0.022664902 +USPL1,OMM,-0.060361139 +XPO4,OMM,0.099228013 +SCO1,OMM,0.055599303 +MPRIP,OMM,0.521878766 +DSTYK,OMM,0.246690336 +SLC41A1,OMM,0.851922315 +GPALPP1,OMM,-0.021708591 +IRS4,OMM,0.040911376 +FAM104A,OMM,0.367319239 +SLC39A11,OMM,1.698965718 +EPHB2,OMM,1.391112708 +SRRM1,OMM,0.080846625 +SUV420H2,OMM,0.096854152 +WDR74,OMM,-1.179272359 +RTN3,OMM,1.212108446 +MORC2,OMM,0.437911185 +LARGE,OMM,1.080743352 +ADCK2,OMM,1.164245752 +AGAP3,OMM,-0.414617318 +KRBA1,OMM,-0.158365033 +ZNF767,OMM,-0.207567375 +ATP13A3,OMM,0.995081384 +TMEM254,OMM,0.805399839 +TMTC1,OMM,0.69277851 +KRAS,OMM,0.072061597 +SWAP70,OMM,0.20863735 +ZFC3H1,OMM,0.283146092 +TEX15,OMM,-0.334686242 +CTIF,OMM,0.889390432 +VHL,OMM,0.73321526 +ARL8B,OMM,0.596888032 +EDEM1,OMM,0.620017221 +PRPF38B,OMM,-0.19435904 +SORT1,OMM,1.884346452 +PTGFRN,OMM,1.916981159 +NOTCH2,OMM,1.456150878 +CEPT1,OMM,-0.02105657 +AP4B1,OMM,-0.855091993 +SPIRE1,OMM,0.200982755 +SLC38A2,OMM,0.617946009 +KIDINS220,OMM,1.469786955 +ROCK2,OMM,0.296759925 +LPIN1,OMM,-0.152826457 +IL6ST,OMM,1.531238008 +TMEM241,OMM,0.964226372 +LRP4,OMM,1.480241258 +DDB2,OMM,-0.156178249 +ACP2,OMM,0.788946571 +AGO4,OMM,0.640985899 +HOOK1,OMM,0.366148616 +DSC2,OMM,1.907999842 +DSC3,OMM,2.24448009 +DTNA,OMM,0.272394964 +FHOD3,OMM,-0.071938934 +FADS2,OMM,1.854746651 +CLOCK,OMM,0.204194575 +COL4A2,OMM,1.391817912 +DZIP1,OMM,0.638201294 +UBAC2,OMM,1.274156301 +ARGLU1,OMM,-0.41417391 +BIVM,OMM,-0.157446868 +ARHGAP32,OMM,0.439696369 +TMED7,OMM,1.052260666 +APC,OMM,0.75460612 +WDR36,OMM,0.04309816 +NAA35,OMM,0.222919481 +TMEM2,OMM,1.332326752 +GOLM1,OMM,1.57308904 +TAOK3,OMM,0.186949447 +DMTF1,OMM,-0.390393429 +TMEM243,OMM,-0.784761454 +PNPLA8,OMM,0.933099466 +MDFIC,OMM,0.528115467 +ANKRD6,OMM,0.477730161 +KIAA1009,OMM,0.53013408 +SNX14,OMM,0.77745298 +EPHA7,OMM,1.443903822 +DNAJC14,OMM,0.917817922 +GDF11,OMM,0.996171639 +TROAP,OMM,-0.896752169 +TSPAN31,OMM,1.191460903 +TFCP2,OMM,0.21043025 +PAN2,OMM,-0.282956188 +HNRNPA1,OMM,-0.873657315 +ACVR1B,OMM,1.554212996 +OS9,OMM,1.388610291 +MAP7,OMM,0.118515829 +CD164,OMM,0.893254009 +NHSL1,OMM,-0.125743269 +AHI1,OMM,0.008017798 +SEMA4F,OMM,1.634395569 +RAB11FIP5,OMM,0.646714152 +CCDC142,OMM,-0.007011479 +GNS,OMM,2.178143209 +MDM2,OMM,0.775949816 +KLHL36,OMM,0.498168926 +DYNC1LI2,OMM,0.267218041 +EGLN1,OMM,0.159919125 +ABCB10,OMM,1.350952662 +TAF5L,OMM,0.346717896 +STX6,OMM,0.229819998 +CEP350,OMM,0.563997157 +LAMC1,OMM,1.791358176 +RC3H1,OMM,0.178386033 +TTLL4,OMM,1.116032927 +USP37,OMM,-0.185217788 +ITM2C,OMM,1.457841721 +SERPINE2,OMM,0.777066834 +TMEM127,OMM,1.377512042 +GCC2,OMM,0.130847412 +C2orf49,OMM,-0.051077334 +EPC2,OMM,0.236989518 +ARHGEF4,OMM,2.267338404 +ALDH1L2,OMM,2.240336926 +CKAP4,OMM,1.487285137 +NEK3,OMM,-0.530390761 +RCBTB1,OMM,-0.060992762 +COG3,OMM,-0.206986956 +SCRN1,OMM,0.677620818 +CHST12,OMM,1.093434976 +KDELR2,OMM,0.834904381 +NUPL2,OMM,-1.094896761 +DBNL,OMM,-0.483328175 +TTYH3,OMM,1.488225561 +IREB2,OMM,-0.066390215 +RSAD1,OMM,0.381340847 +VEZF1,OMM,0.341644409 +TEX2,OMM,1.109612829 +BRIP1,OMM,1.015187773 +SKIL,OMM,0.319232641 +RPS6KC1,OMM,0.331194316 +BIN1,OMM,-0.373131415 +HS6ST1,OMM,1.22250637 +UGGT1,OMM,1.915084865 +DNAJC1,OMM,0.988928483 +LRRC8A,OMM,1.346331612 +CDK9,OMM,-0.738235372 +TOR1B,OMM,1.483057913 +SMC2,OMM,-0.103493843 +TOR1A,OMM,0.976507692 +RALGPS1,OMM,0.300967369 +FAM129B,OMM,0.053283606 +SLC2A8,OMM,0.687295058 +SLC31A1,OMM,1.285139345 +ZNF189,OMM,-0.479650458 +STX17,OMM,0.842525906 +TSTD2,OMM,-0.588702262 +LMX1B,OMM,0.052234977 +RANBP6,OMM,-0.302170191 +TLN1,OMM,-0.169575114 +ALDH1B1,OMM,1.324807838 +CNPY3,OMM,1.108155405 +TMEM63B,OMM,1.455279098 +TJAP1,OMM,-0.585360133 +SLC22A23,OMM,1.316166286 +FOXF2,OMM,-0.060946582 +RIPK1,OMM,0.024563344 +ATAT1,OMM,0.567109293 +NRM,OMM,1.18951158 +VARS2,OMM,2.010815102 +FAM8A1,OMM,0.666801054 +PRKRIR,OMM,0.080609683 +CREBZF,OMM,-0.730102267 +PRCP,OMM,0.916696121 +RNF121,OMM,0.870540973 +SULF1,OMM,2.119937987 +SORL1,OMM,1.483113521 +YAP1,OMM,0.272188443 +RDX,OMM,0.263215046 +MAP2K5,OMM,0.260678088 +MAPKBP1,OMM,-0.128698308 +CASC5,OMM,-0.254113485 +HAUS2,OMM,0.548174546 +PARP6,OMM,-0.240694699 +TUBGCP4,OMM,0.143344798 +RMDN3,OMM,1.099743898 +UACA,OMM,0.132045993 +SMAD6,OMM,0.249436515 +ADAM10,OMM,1.359863735 +TTLL7,OMM,0.418319296 +FNBP1L,OMM,0.224007503 +RABGGTB,OMM,-0.84226111 +ARHGAP29,OMM,-0.059752532 +SLC44A5,OMM,1.07820202 +DBT,OMM,0.892204941 +EPT1,OMM,1.34453717 +ADCY3,OMM,0.967728356 +PNPT1,OMM,1.133381482 +THUMPD2,OMM,-1.19750704 +PREPL,OMM,0.310681966 +ACTR1A,OMM,0.042448 +TMEM180,OMM,0.507779334 +ATAD1,OMM,1.442247664 +KIF20B,OMM,0.081107055 +TET1,OMM,0.218995923 +DNA2,OMM,-0.192271572 +BARD1,OMM,-0.371797492 +NAB1,OMM,0.136988241 +PPIG,OMM,0.084643973 +FASTKD1,OMM,0.070881283 +SSFA2,OMM,0.033361192 +ITGAV,OMM,1.84378143 +SLC35A5,OMM,0.609667482 +SECISBP2L,OMM,0.558352905 +SPPL2A,OMM,1.388531163 +GLCE,OMM,1.475713937 +PPCDC,OMM,-0.636997111 +PCDH10,OMM,1.010168347 +AP1AR,OMM,-0.357153689 +FGF2,OMM,-0.029113347 +KIAA1109,OMM,1.120936829 +LARP1B,OMM,-0.01926415 +BMP2K,OMM,0.287727898 +FRAS1,OMM,1.807406838 +SCARB2,OMM,2.046013856 +USO1,OMM,0.191478655 +CENPE,OMM,0.477720437 +GSTCD,OMM,0.26772546 +LEF1,OMM,-0.118339609 +PPP3CA,OMM,-0.169560649 +FBN2,OMM,1.429229784 +MAPK8IP3,OMM,-0.824445782 +B4GALNT3,OMM,1.097309705 +AEBP2,OMM,0.061934055 +ETNK1,OMM,0.024008475 +CLSTN3,OMM,1.766460429 +SCAF11,OMM,-0.078390884 +COL2A1,OMM,1.256795799 +LRIG3,OMM,0.155382684 +TMEM19,OMM,0.849758221 +POC1B,OMM,0.060038323 +TMTC3,OMM,1.611556074 +GAS2L3,OMM,0.853097811 +SLC15A4,OMM,0.845643519 +TDG,OMM,-0.268162049 +NUPL1,OMM,-0.064262692 +MTMR6,OMM,-0.572169139 +SLC7A1,OMM,1.207908831 +BRCA2,OMM,0.582992959 +CERS5,OMM,0.76660666 +ESYT1,OMM,1.027356456 +TMBIM6,OMM,1.848963115 +ANKRD52,OMM,-0.016293524 +ZNF740,OMM,0.61543409 +HNRNPA1L2,OMM,0.02788851 +SBNO1,OMM,0.202951265 +SETD1B,OMM,0.022910806 +RBM26,OMM,-0.028097396 +ZIC5,OMM,-0.321260837 +TMX1,OMM,0.475699345 +NAA30,OMM,-0.013435824 +DCAF5,OMM,0.301390355 +RAB15,OMM,1.105175769 +NIPA2,OMM,0.450497378 +ZSCAN29,OMM,0.381803721 +BNIP2,OMM,0.254160515 +MAN2C1,OMM,-0.863695428 +MESDC1,OMM,0.12111612 +IGF1R,OMM,1.297328077 +ARRDC4,OMM,-0.18575143 +PML,OMM,-0.052864601 +LINS,OMM,-0.075316416 +PCSK6,OMM,1.384996159 +SCAMP2,OMM,0.800904345 +POLG,OMM,1.47883605 +ABHD2,OMM,1.732517479 +TICRR,OMM,0.284762816 +MFGE8,OMM,1.32977574 +FURIN,OMM,1.145013462 +IQGAP1,OMM,0.845664862 +CRTC3,OMM,0.177234584 +FTO,OMM,0.170216583 +MBTPS1,OMM,1.025126631 +RHOT2,OMM,-0.875999648 +PDPK1,OMM,0.476254375 +TCF25,OMM,-0.321463377 +GALNS,OMM,1.376850071 +GAS8,OMM,0.055793608 +MED9,OMM,0.260736158 +GID4,OMM,0.381830248 +KSR1,OMM,0.427972812 +SGSM2,OMM,0.140016331 +SSH2,OMM,0.275279722 +PTRH2,OMM,-0.90520671 +SS18,OMM,0.261688029 +SLC39A6,OMM,1.343159962 +GALNT1,OMM,0.711064606 +ESCO1,OMM,0.179144972 +GREB1L,OMM,0.932337522 +NPC1,OMM,0.834874108 +MINK1,OMM,-0.443707771 +TTYH2,OMM,1.707028526 +CSNK1D,OMM,0.206473458 +FOXK2,OMM,0.47343402 +TRIM65,OMM,0.334032592 +RNF157,OMM,0.974210143 +CBX4,OMM,-0.929075416 +MBD1,OMM,-0.279166296 +ZCCHC2,OMM,0.463965093 +LEPREL4,OMM,1.135975233 +FAM134C,OMM,1.468829372 +ERBB2,OMM,1.275679368 +FKBP10,OMM,1.455276533 +PRDM15,OMM,0.033077627 +DUS3L,OMM,-0.810963494 +ATHL1,OMM,-0.30699083 +COL6A1,OMM,1.008177463 +IFNAR1,OMM,1.128996212 +COL6A2,OMM,1.517606919 +TMEM50B,OMM,0.286604074 +APP,OMM,1.474978322 +URB1,OMM,0.082775849 +CAPN10,OMM,0.457506234 +ERVK3-1,OMM,-0.815855263 +SLC47A1,OMM,1.129515657 +RERE,OMM,0.199898629 +EPHA2,OMM,1.405849819 +KIAA0319L,OMM,1.79327604 +PLK4,OMM,-0.484423782 +GPN2,OMM,-0.223551189 +PIGK,OMM,1.438527687 +PTPRF,OMM,1.713411572 +SYPL2,OMM,1.159412792 +IGSF3,OMM,1.59257612 +CELSR2,OMM,1.358001382 +ATP1B1,OMM,0.90143413 +CREG1,OMM,2.125834686 +POU2F1,OMM,0.489658524 +PPOX,OMM,-0.416961236 +USP21,OMM,-0.349990187 +PIGM,OMM,1.422353991 +ABL2,OMM,0.397623751 +XPR1,OMM,1.324621269 +TOR1AIP1,OMM,0.703289086 +TUFT1,OMM,0.595379315 +TARS2,OMM,1.3613136 +CERS2,OMM,0.868394528 +SEMA6C,OMM,0.385373121 +ATP8B2,OMM,0.979622879 +ADAM15,OMM,1.078703604 +SLC39A1,OMM,1.135800276 +GATAD2B,OMM,-0.142380272 +HCN3,OMM,-0.233845359 +GALNT2,OMM,2.209109166 +TTC13,OMM,0.717582329 +MLK4,OMM,0.373725638 +CEP170,OMM,0.189299338 +SDE2,OMM,-0.090769872 +FBXO28,OMM,-0.211398536 +CDC42BPA,OMM,0.536981027 +MBOAT2,OMM,1.234250665 +PSEN2,OMM,0.830180902 +LBR,OMM,0.860912815 +RHOB,OMM,0.258040043 +ASXL2,OMM,0.242700358 +ETAA1,OMM,-0.0022007 +ZNF514,OMM,0.138644094 +SFXN5,OMM,0.524023484 +TEX261,OMM,1.732840639 +RALB,OMM,0.995172935 +SLC20A1,OMM,1.016619918 +ZC3H8,OMM,0.06291147 +UBXN4,OMM,0.437827989 +AMMECR1L,OMM,0.420642117 +GALNT13,OMM,0.964476439 +SCRN3,OMM,0.126762229 +KIAA1715,OMM,1.29542434 +CDCA7,OMM,-0.54064723 +DLX1,OMM,-0.278471108 +GULP1,OMM,-0.421635712 +FAM171B,OMM,1.364328604 +CCDC150,OMM,-0.867899687 +SUMF1,OMM,0.988157313 +RHBDD1,OMM,1.425628417 +FAM134A,OMM,0.981843662 +CTDSP1,OMM,0.488074367 +EAF1,OMM,0.176697637 +GOLGA4,OMM,0.75070812 +IQSEC1,OMM,-0.062957081 +PTPRG,OMM,1.709718034 +IL17RD,OMM,1.625653447 +ARL6IP5,OMM,0.611585411 +TMF1,OMM,0.353526857 +LRIG1,OMM,1.266836976 +LIMD1,OMM,0.345767455 +NXPE3,OMM,0.934875694 +SRPRB,OMM,0.853363335 +TCTA,OMM,0.959684216 +VPRBP,OMM,0.118376796 +SLIT2,OMM,1.672021016 +DGKQ,OMM,-0.672080785 +ATP10D,OMM,1.15674358 +SCD5,OMM,1.518837492 +ENOPH1,OMM,-0.145607571 +TRMT10A,OMM,-0.080612583 +KLHL8,OMM,0.212108786 +USP53,OMM,0.26876929 +MARCH6,OMM,0.987080409 +FAM105A,OMM,0.493807683 +PIK3R1,OMM,0.488543541 +LHFPL2,OMM,1.097175407 +IQGAP2,OMM,0.268074977 +PPIP5K2,OMM,0.505580722 +PAM,OMM,1.397314847 +BDP1,OMM,0.309284325 +SLC30A5,OMM,0.591223435 +ATG12,OMM,-0.203537631 +YIPF5,OMM,0.177210033 +RNF145,OMM,0.94843735 +FBXO38,OMM,-0.465225963 +PCYOX1L,OMM,1.754445048 +TNIP1,OMM,0.39698452 +ZNF300,OMM,-0.26769673 +GFOD1,OMM,0.085023814 +TRIM41,OMM,0.029492411 +FAM193B,OMM,-0.621104845 +RNF44,OMM,-0.34382744 +MUT,OMM,2.783011258 +PHIP,OMM,0.14740152 +MMS22L,OMM,-0.145119356 +PM20D2,OMM,0.102484734 +RNF217,OMM,0.06571799 +AIG1,OMM,0.874663195 +TMEM181,OMM,1.516131125 +SDK1,OMM,1.674418867 +RBAK,OMM,-0.237373538 +CREB5,OMM,0.299853728 +PURB,OMM,0.177088539 +GBAS,OMM,-0.189641306 +ZNF92,OMM,-1.018617957 +TMEM168,OMM,1.104416486 +C7orf43,OMM,-0.820826209 +SLC12A9,OMM,0.916720798 +GIGYF1,OMM,-0.776377556 +TMEM209,OMM,1.07403954 +NOM1,OMM,0.005344936 +SH3KBP1,OMM,0.497724839 +CASK,OMM,0.802695571 +SLC16A2,OMM,1.275469126 +OGT,OMM,-0.248885223 +ZNF711,OMM,-0.160870081 +DIAPH2,OMM,0.491615926 +CXorf57,OMM,-0.631000672 +GPC3,OMM,0.779666537 +BIN3,OMM,-0.170736114 +SLC25A37,OMM,0.37895618 +CHMP7,OMM,0.086495191 +ERLIN2,OMM,2.206140004 +TACC1,OMM,1.691694863 +WHSC1L1,OMM,0.452188741 +TERF1,OMM,0.043391964 +MTDH,OMM,0.899370193 +LRP12,OMM,0.892304159 +EBAG9,OMM,0.010595841 +UTP23,OMM,0.003403489 +ZNF7,OMM,-0.610988964 +ARHGAP39,OMM,-0.002634502 +NAPRT1,OMM,-1.284052131 +UHRF2,OMM,-0.44055267 +ZCCHC7,OMM,-0.639761521 +SIGMAR1,OMM,1.023208759 +CEP78,OMM,0.08112568 +HIATL1,OMM,0.348929993 +INIP,OMM,0.856651342 +UGCG,OMM,1.207078955 +STOM,OMM,0.727270462 +MRRF,OMM,-0.374167879 +NR6A1,OMM,-0.093861869 +SURF4,OMM,1.903749828 +MED22,OMM,0.074820081 +SH3GLB2,OMM,-0.416945288 +FAM73B,OMM,0.165710489 +GPR107,OMM,1.830467056 +C9orf142,OMM,-0.833646365 +INPP5E,OMM,-0.190498418 +DPH7,OMM,-0.490714705 +NOTCH1,OMM,0.861004396 +NACC2,OMM,-0.07307088 +USP6NL,OMM,0.424573612 +FAM171A1,OMM,1.033937052 +PARD3,OMM,0.353322704 +POLR3A,OMM,0.227246058 +FRA10AC1,OMM,0.220643014 +ADD3,OMM,0.334948763 +DNAJB12,OMM,0.987277789 +EIF4EBP2,OMM,0.520061853 +MKI67,OMM,0.682802763 +MTG1,OMM,-0.910389052 +PPRC1,OMM,-0.513296087 +ITPRIP,OMM,1.518575056 +CNNM2,OMM,1.749484252 +PDCD11,OMM,-0.032977046 +LIN7C,OMM,0.47327072 +DGKZ,OMM,0.211935125 +TNKS1BP1,OMM,0.207421128 +SLC43A1,OMM,0.387663321 +PTPRJ,OMM,1.078600249 +CELF1,OMM,0.229396711 +SESN3,OMM,0.22669258 +ENDOD1,OMM,1.712501086 +SERPINH1,OMM,1.683387825 +NCAM1,OMM,2.291052719 +NPAT,OMM,0.461733902 +ATM,OMM,0.161740319 +GLB1L2,OMM,1.51104847 +HYOU1,OMM,1.716801749 +DAK,OMM,-0.218149802 +TMEM138,OMM,-0.192469481 +FADS1,OMM,1.847512526 +EML3,OMM,-0.401021586 +B3GAT3,OMM,0.996942491 +SIDT2,OMM,1.232317616 +SOGA1,OMM,0.360020736 +LSM14B,OMM,0.152923672 +ORAOV1,OMM,0.165448884 +TAOK2,OMM,0.138914416 +ITGB1,OMM,1.386028499 +ARID5B,OMM,0.004098415 +TMCO3,OMM,1.229425287 +LATS2,OMM,-0.050377639 +LPHN3,OMM,1.348598213 +PRSS23,OMM,1.523916833 +PIP4K2A,OMM,0.344464749 +FREM2,OMM,1.915180963 +CRIM1,OMM,1.252901908 +IPMK,OMM,0.391860611 +PLBD2,OMM,1.783010238 +GXYLT1,OMM,1.701464147 +CSNK1G3,OMM,0.160241054 +MIPOL1,OMM,-0.666719944 +EXT2,OMM,1.639662307 +TMEM18,OMM,0.157059697 +NEK7,OMM,0.086385951 +FER,OMM,0.688789578 +VIPAS39,OMM,0.039652278 +ANKRD50,OMM,0.440919803 +UPF2,OMM,0.338097232 +EPS8,OMM,0.166028096 +FAM160B1,OMM,-0.189825609 +ADAM17,OMM,1.184909809 +WWC2,OMM,0.3208708 +BICD1,OMM,0.436586806 +NBAS,OMM,0.584581335 +GUF1,OMM,2.344642469 +SACS,OMM,0.162782228 +PABPC3,OMM,1.062783141 +DST,OMM,1.216929207 +TIAL1,OMM,-0.236340882 +TMEM56,OMM,1.246483103 +FAM168B,OMM,0.498816579 +AC093838.4,OMM,-0.622186814 +MGAT5,OMM,1.43987351 +GPATCH11,OMM,0.376078191 +POU4F1,OMM,0.016579363 +RNF219,OMM,0.089116565 +EPG5,OMM,0.289999483 +C18orf25,OMM,0.348883496 +PDK1,OMM,0.495962822 +PDE3B,OMM,1.203637157 +TGOLN2,OMM,2.264569271 +UHMK1,OMM,0.145927139 +TADA1,OMM,-0.842581285 +CWF19L2,OMM,-0.277017229 +JMY,OMM,-0.373793525 +HOMER1,OMM,0.324260242 +USP12,OMM,0.559970564 +CCDC50,OMM,0.159228416 +PAN3,OMM,0.051455061 +TMEM123,OMM,1.259357026 +GJA1,OMM,0.882422844 +SLC30A6,OMM,1.033505842 +SAR1B,OMM,0.410681126 +GPR180,OMM,1.004241396 +UTRN,OMM,0.482173585 +PTPRK,OMM,1.239284604 +PLOD2,OMM,1.371060691 +GPR125,OMM,0.931327029 +SREK1IP1,OMM,0.102714635 +TXNDC11,OMM,0.902801903 +BCL2L11,OMM,0.068768193 +CLGN,OMM,0.860454748 +RASSF3,OMM,0.803982325 +RANBP2,OMM,0.229631874 +TMEM87B,OMM,1.6935277 +RBMS1,OMM,0.426191359 +LPCAT1,OMM,1.356589636 +UBALD1,OMM,-0.378169632 +RMND5A,OMM,0.104955994 +ZDHHC7,OMM,0.981998516 +TRIP12,OMM,0.213383378 +CEBPG,OMM,-0.07052841 +SREK1,OMM,-0.393279529 +CHD1,OMM,0.143758046 +DGKE,OMM,0.898225462 +HS2ST1,OMM,1.386611405 +MSI2,OMM,0.647537566 +CACNA2D1,OMM,1.171288118 +NUS1,OMM,0.643820304 +IMPACT,OMM,0.252344382 +TBCEL,OMM,0.083550388 +FAM105B,OMM,0.240150465 +TBRG1,OMM,-0.049932817 +CC2D1B,OMM,-0.090295214 +MIA3,OMM,1.06650535 +TRIM11,OMM,-0.369668213 +CCSAP,OMM,0.450933789 +CXADR,OMM,1.18306873 +GABPA,OMM,-0.402577392 +ADAMTS1,OMM,0.520526144 +TSEN2,OMM,-0.389882627 +FLCN,OMM,-0.125711954 +SKA1,OMM,0.323022173 +RAB6B,OMM,0.444311163 +ACSS1,OMM,1.068784688 +ANKRD40,OMM,0.676786631 +VOPP1,OMM,1.466084431 +APOOL,OMM,0.104062905 +CYP2U1,OMM,1.274421881 +AGPAT5,OMM,0.668935375 +MARVELD1,OMM,0.951018519 +ZFYVE27,OMM,1.495167848 +SLC25A28,OMM,0.281789104 +HSPA13,OMM,1.02629669 +USP25,OMM,0.168543199 +RHOC,OMM,0.052975241 +SLC16A1,OMM,1.160800564 +LARP1,OMM,0.349088648 +MIER3,OMM,-0.2038406 +ZKSCAN2,OMM,0.396573439 +PDIA4,OMM,0.855672447 +FAM126B,OMM,0.484020478 +FZD7,OMM,1.138075642 +FMN2,OMM,0.644133288 +PPARGC1B,OMM,-0.416461491 +SLC26A2,OMM,1.562242566 +LSM11,OMM,0.350325945 +PSD3,OMM,0.320206761 +DCK,OMM,-0.435338727 +ADAMTS3,OMM,1.264455726 +DPY19L4,OMM,1.09501357 +NDUFAF6,OMM,0.337187536 +N6AMT1,OMM,-0.279658622 +CDK20,OMM,-0.370606065 +PCGF6,OMM,-1.028789633 +ANKRD9,OMM,0.423792671 +SFXN2,OMM,0.223002831 +PTDSS1,OMM,1.289761964 +SUPV3L1,OMM,0.901330323 +TYSND1,OMM,-0.263905277 +CD109,OMM,2.2289393 +ZDHHC5,OMM,1.252748996 +ZFAND3,OMM,0.385206728 +NPTN,OMM,0.7984988 +KAT6B,OMM,0.260396826 +SAMD8,OMM,0.898308121 +BAG4,OMM,-0.348752544 +ATAD2,OMM,-0.276620687 +PHKG2,OMM,-0.778032592 +SASS6,OMM,-0.326003311 +ZIC3,OMM,-0.576580976 +EXOG,OMM,-0.607104443 +SMG1,OMM,-0.137525438 +FCHO2,OMM,-0.024990141 +C1orf27,OMM,0.953011512 +LRP8,OMM,0.853382059 +PAXIP1,OMM,0.184341483 +SSBP3,OMM,-0.001812514 +CLDN12,OMM,0.708175638 +GATAD1,OMM,0.318186317 +ST3GAL2,OMM,0.776708128 +FUK,OMM,-0.622049107 +KIT,OMM,1.154309265 +AASDH,OMM,-0.845593084 +DYRK1A,OMM,0.013266877 +TSPAN18,OMM,1.138821562 +SLC35B2,OMM,1.203392462 +TMEM164,OMM,1.320225059 +TAB3,OMM,0.700107581 +SLC38A10,OMM,1.509250523 +ZNF618,OMM,0.240573411 +C9orf91,OMM,0.891745981 +UBN2,OMM,0.506030491 +BRAF,OMM,0.426431048 +SLC37A3,OMM,0.832826855 +DPYSL5,OMM,0.044376832 +FAM213B,OMM,0.87024469 +C12orf43,OMM,0.0976359 +RER1,OMM,0.732634856 +UBXN11,OMM,-1.13219616 +RHPN1,OMM,-0.49361212 +CNNM4,OMM,1.257834454 +EYA3,OMM,-0.062918347 +MRAS,OMM,1.132142741 +COLEC12,OMM,1.306751794 +CUL4B,OMM,0.03881675 +MITD1,OMM,-0.881125211 +EIF5B,OMM,-0.255721219 +TSPAN33,OMM,0.780218311 +AHCYL2,OMM,-0.304932662 +B4GALT5,OMM,1.539200858 +TSR2,OMM,0.98472109 +ZC3H18,OMM,0.039066923 +TMED4,OMM,1.294879912 +PPP1R15B,OMM,0.920137144 +AGPAT6,OMM,0.836573205 +ZSCAN12,OMM,0.047750897 +ELK4,OMM,0.038019063 +F11R,OMM,2.744479645 +ZNF276,OMM,-0.113218494 +PINK1,OMM,0.765718868 +B4GALT3,OMM,0.834296674 +FAM160B2,OMM,-0.121888321 +CACHD1,OMM,1.133253328 +PAXBP1,OMM,-0.602705558 +IFNAR2,OMM,0.724070548 +SON,OMM,-0.300816959 +SV2A,OMM,1.344922151 +HLCS,OMM,0.76988103 +ADPGK,OMM,1.100939871 +ALDH4A1,OMM,1.621131826 +STARD9,OMM,-0.279040984 +UBR1,OMM,0.22064716 +AMFR,OMM,1.094699813 +RSPRY1,OMM,0.646137998 +ARHGAP35,OMM,0.387494113 +CALM3,OMM,0.745113014 +IQCC,OMM,-0.071155817 +BSDC1,OMM,0.104719294 +ATAD3B,OMM,-0.796563419 +VMA21,OMM,0.40753011 +WDR4,OMM,-0.573917135 +CBS,OMM,-0.723951514 +PDXK,OMM,0.18309692 +G6PD,OMM,-0.191564146 +AGPAT3,OMM,1.181335353 +C21orf2,OMM,-1.064658768 +LRRC3,OMM,1.240783671 +LSS,OMM,-0.310088126 +VAV2,OMM,0.939041419 +MCM3AP,OMM,-0.195318825 +C21orf58,OMM,-0.104229792 +PCNT,OMM,0.246646586 +DIP2A,OMM,0.171513325 +ZNF714,OMM,0.288634211 +PKN3,OMM,-0.064445122 +TAOK1,OMM,0.533399867 +SIK3,OMM,0.17364885 +PCSK7,OMM,1.047567621 +CHTOP,OMM,-0.7435022 +ZBTB7B,OMM,0.221211753 +NLRX1,OMM,2.370340461 +ANO10,OMM,1.087729428 +SLC25A44,OMM,0.695565983 +NBEAL2,OMM,-0.679087765 +IER2,OMM,-0.488329633 +ZNF394,OMM,-0.501289398 +CPSF4,OMM,-0.120339812 +TONSL,OMM,-0.411309291 +MUM1,OMM,-0.132479161 +RECQL4,OMM,-0.476513735 +LRRC14,OMM,0.156100888 +PPP1R16A,OMM,-0.311032845 +C5orf45,OMM,-0.429393751 +MFSD12,OMM,0.825725182 +FDXR,OMM,0.147609216 +ALDH16A1,OMM,-1.030471207 +ITGA5,OMM,1.240890594 +ZNF385A,OMM,0.20671159 +MPP3,OMM,-0.492606631 +EMC10,OMM,1.041647518 +FAM171A2,OMM,0.918121109 +DBF4B,OMM,0.210065696 +LARP4,OMM,1.177207499 +LEMD2,OMM,1.167965388 +WDR90,OMM,-1.119603342 +C16orf59,OMM,0.086802983 +AMDHD2,OMM,-0.079041506 +PAQR4,OMM,0.940884389 +ADCY9,OMM,1.140995773 +CLPB,OMM,1.611152656 +NEU3,OMM,-0.187566588 +CYB561A3,OMM,0.862520436 +TAF6L,OMM,-0.555138914 +LRP5,OMM,1.065078571 +ZYG11B,OMM,0.20512802 +PPAP2B,OMM,1.23237081 +PRKAA2,OMM,0.097257182 +KLHL21,OMM,-0.488854981 +GMEB1,OMM,0.212936328 +SEPN1,OMM,1.290879989 +AK4,OMM,0.602912578 +RAVER2,OMM,0.057142933 +PDPN,OMM,1.294575207 +SDC3,OMM,1.660589383 +KIAA1522,OMM,0.52533621 +C1orf86,OMM,-0.718473628 +NFIA,OMM,0.036490513 +OMA1,OMM,1.473455674 +MYSM1,OMM,0.053534555 +FUBP1,OMM,-0.647238292 +DNAJB4,OMM,-0.614148692 +FAM102B,OMM,0.436337611 +ATXN7L2,OMM,-0.426377487 +ZNF326,OMM,-0.359577497 +EXTL2,OMM,0.334494218 +SLC30A7,OMM,1.004151672 +PEA15,OMM,0.553025072 +NCSTN,OMM,1.199621245 +VANGL2,OMM,1.458773501 +FLVCR1,OMM,1.147006421 +RBM15,OMM,0.041582539 +BPNT1,OMM,0.214790362 +BROX,OMM,-0.012545488 +ACP6,OMM,0.230709694 +PPP1R21,OMM,0.087941268 +B3GALNT2,OMM,0.871645116 +C2orf47,OMM,-0.866203892 +ARL5A,OMM,-0.032461527 +SGCB,OMM,1.278634852 +SMARCAD1,OMM,-0.031552394 +RNF149,OMM,0.546528902 +FZD5,OMM,1.509332752 +DCAF16,OMM,0.170770323 +PAQR3,OMM,0.468499439 +ANTXR2,OMM,1.508987206 +PBXIP1,OMM,1.545746839 +PYGO2,OMM,0.373734218 +HIPK1,OMM,0.233211913 +KBTBD8,OMM,-0.751540344 +EOGT,OMM,1.420392505 +POGLUT1,OMM,0.947157593 +ATP1A1,OMM,0.854803453 +EIF4E3,OMM,0.857135389 +LRRC58,OMM,0.072897768 +FSTL1,OMM,2.251179307 +KRTCAP2,OMM,-0.919045457 +KIAA1524,OMM,-0.19496758 +TGFBR2,OMM,1.202634188 +ANKZF1,OMM,-0.128118324 +STT3B,OMM,0.828591654 +PPM1L,OMM,1.755476446 +RYBP,OMM,0.157716611 +PPP4R2,OMM,-0.128719664 +C3orf17,OMM,0.121689035 +SPICE1,OMM,-0.135276627 +WDFY3,OMM,0.81231144 +ATXN7,OMM,-0.178164397 +PPM1K,OMM,0.425431216 +CCNL1,OMM,-0.947523712 +RPP14,OMM,0.252349459 +ABHD6,OMM,0.378049026 +CRELD1,OMM,1.134312469 +U2SURP,OMM,-0.266283845 +TTC14,OMM,0.436354568 +SNRK,OMM,0.272293055 +SLC4A1AP,OMM,-0.560533685 +ZDHHC3,OMM,0.5787293 +FYCO1,OMM,0.536717708 +YEATS2,OMM,0.42681008 +SNIP1,OMM,-0.886498557 +TMEM41A,OMM,1.350537648 +RPN1,OMM,0.750813447 +SFMBT1,OMM,0.30499926 +PBRM1,OMM,0.311735177 +FAM208A,OMM,0.200995897 +ARHGEF3,OMM,-0.099045703 +UBXN7,OMM,0.322371705 +ZNF691,OMM,-0.488308414 +SGMS2,OMM,1.230806807 +DNAJB14,OMM,0.822236733 +ZNF589,OMM,-0.119346559 +SHISA5,OMM,1.085247624 +INTU,OMM,0.184123285 +RNF123,OMM,0.44605087 +MFSD8,OMM,0.918765969 +C4orf29,OMM,0.087479016 +RAD54L2,OMM,-0.16918403 +MAP9,OMM,-0.335827056 +CEP44,OMM,0.270936186 +ABCE1,OMM,-0.311000662 +TMEM184C,OMM,0.987556142 +TMEM161B,OMM,0.220787166 +ELOVL7,OMM,1.247871579 +LMBRD2,OMM,1.336658929 +NIPBL,OMM,0.180476247 +SLC25A46,OMM,-0.082569229 +STARD4,OMM,0.105328799 +PGGT1B,OMM,-0.227968157 +NDUFS4,OMM,-1.031447653 +ARSK,OMM,1.511376246 +GPX8,OMM,1.311352559 +SERINC5,OMM,1.985905464 +GFM2,OMM,2.43840988 +CCDC127,OMM,1.007567876 +SEPT8,OMM,0.466587057 +DCBLD1,OMM,1.278877836 +PDSS2,OMM,0.102501755 +STXBP5,OMM,0.153983534 +DAGLB,OMM,1.030087587 +GALNT10,OMM,1.753378606 +ZNF12,OMM,0.03950021 +USP49,OMM,-0.012524372 +ZNF704,OMM,0.588652628 +LMTK2,OMM,1.108038768 +CTSB,OMM,1.751946426 +ADCY1,OMM,1.412665456 +EN2,OMM,0.122996923 +SUN1,OMM,1.138891314 +OXR1,OMM,-0.036173725 +SLC4A2,OMM,0.761952991 +FASTK,OMM,-0.455305231 +TMUB1,OMM,0.70289137 +C7orf55,OMM,-0.362228929 +FOXK1,OMM,0.642273304 +FZD6,OMM,0.95895293 +KIAA1429,OMM,-0.174725916 +TMEM67,OMM,0.990699941 +SNAPC3,OMM,0.015383894 +KIAA1161,OMM,2.204112312 +METTL2B,OMM,0.445583168 +HGSNAT,OMM,1.321186078 +RASEF,OMM,0.219455824 +ANKS6,OMM,-0.298179048 +TMEM246,OMM,1.438867452 +ZHX1,OMM,0.210909803 +KIAA1958,OMM,0.933819586 +PIGA,OMM,-0.394696674 +WNK2,OMM,-0.445875331 +ATP7A,OMM,1.165993768 +PIGO,OMM,1.002242272 +BRWD3,OMM,0.46357672 +SLITRK5,OMM,0.998771027 +DDX26B,OMM,-0.509725854 +MARCH8,OMM,0.720146099 +GTF2A1,OMM,0.190686547 +ZCCHC24,OMM,0.602575457 +REEP3,OMM,0.78536428 +MICU2,OMM,-1.0421023 +PCF11,OMM,0.022487358 +PKNOX2,OMM,1.110028124 +ZNF22,OMM,-0.282421345 +RPUSD4,OMM,-0.329203716 +ARF6,OMM,0.176317194 +TTC8,OMM,-0.669917452 +CDX2,OMM,0.084254307 +BEND7,OMM,0.038930242 +TAF3,OMM,0.199912775 +PDZD8,OMM,0.93421365 +ZNF503,OMM,-0.356976802 +FAM175B,OMM,0.122440374 +QSOX2,OMM,1.510601262 +NSD1,OMM,0.482890849 +SNAPC4,OMM,-0.555861848 +PMPCA,OMM,1.456897817 +SDCCAG3,OMM,-0.013446929 +TSC1,OMM,0.252391901 +FAM69B,OMM,-0.168481386 +KIAA1462,OMM,0.333464948 +ZNF219,OMM,0.81045452 +METTL3,OMM,-0.70128859 +HSPA12A,OMM,-0.603575281 +TC2N,OMM,-0.232076325 +CPSF2,OMM,0.008569058 +ARL5B,OMM,0.139628529 +TAF1D,OMM,-0.749048423 +HTRA1,OMM,1.362178687 +CEP57,OMM,-0.15997192 +JAM3,OMM,1.88194138 +HIF1AN,OMM,0.077628172 +ZFYVE19,OMM,-0.0408205 +FBN1,OMM,1.451247331 +BAG5,OMM,-0.159779803 +GABRB3,OMM,1.555466533 +SGPL1,OMM,1.492003071 +FRS2,OMM,0.398342074 +ZNF202,OMM,-0.17855726 +STXBP4,OMM,-0.22312363 +CUL5,OMM,0.226402816 +WBP1L,OMM,1.332669013 +TRIM44,OMM,1.126724908 +TPP1,OMM,1.241067783 +C11orf74,OMM,-0.38191266 +TUB,OMM,-0.103770801 +RNF169,OMM,0.577740241 +PRTG,OMM,1.00049308 +TMEM41B,OMM,0.970578203 +TMX3,OMM,1.297183806 +WEE1,OMM,-0.582457618 +ZNF3,OMM,-0.216843627 +RIMKLB,OMM,-0.394253718 +TMED3,OMM,0.761471926 +NDEL1,OMM,0.256702196 +BLCAP,OMM,0.819438536 +CASC4,OMM,1.112412408 +AP1G1,OMM,0.079714343 +KIF7,OMM,-0.352009395 +PEX11A,OMM,1.227426075 +ZBTB39,OMM,0.630306874 +TMEM194A,OMM,2.133940959 +SMAD3,OMM,0.240786307 +MAP1A,OMM,0.21844503 +MBD6,OMM,0.066722547 +PDIA3,OMM,1.046102845 +ACSF2,OMM,2.215897518 +COQ4,OMM,-0.935446483 +SLC27A4,OMM,0.905207637 +CERCAM,OMM,0.815301957 +DOLPP1,OMM,1.645158587 +GPRC5B,OMM,1.457215922 +CRK,OMM,0.448743962 +FBXO22,OMM,-0.2899118 +TBC1D2B,OMM,0.720351842 +CDK12,OMM,0.114307751 +ENGASE,OMM,-0.362707375 +TBC1D16,OMM,0.259719046 +ENTHD2,OMM,-0.570988315 +STIM1,OMM,1.543729055 +IRGQ,OMM,0.607079698 +PPP2R3B,OMM,-0.59212961 +ZNF646,OMM,0.166095068 +MIDN,OMM,-0.212045592 +MVD,OMM,-0.859250454 +ANKRD11,OMM,0.177345201 +SPATA33,OMM,-0.083627189 +ZNF641,OMM,0.690480827 +DHRS13,OMM,1.218441342 +TP53I13,OMM,0.849598768 +KMT2D,OMM,0.113519198 +C19orf55,OMM,0.103923369 +LENG8,OMM,-0.793683689 +ZNF146,OMM,-0.044237242 +ZNF444,OMM,-0.073097852 +FAM57A,OMM,1.099596414 +SLC43A2,OMM,1.416582789 +SRR,OMM,0.192017316 +GHDC,OMM,0.704933536 +ITFG3,OMM,1.438513256 +ZNF598,OMM,-0.367283072 +E4F1,OMM,-1.133195406 +ABCA3,OMM,1.289387273 +SRRM2,OMM,0.287537686 +LTBP3,OMM,1.49644025 +SAC3D1,OMM,-0.344946297 +SF1,OMM,-0.270752715 +PAFAH1B2,OMM,0.198003996 +ANKS3,OMM,-0.590333672 +SETD5,OMM,0.381635048 +HOOK3,OMM,0.837847605 +RBPJ,OMM,0.049538993 +TTC39C,OMM,-0.410253264 +KIF5C,OMM,2.580351043 +MGAT2,OMM,0.306116651 +BMI1,OMM,-0.4406595 +KCTD6,OMM,-0.548718602 +TAP1,OMM,1.551823812 +ING5,OMM,-0.0762295 +ATG4B,OMM,-0.686894228 +SOGA2,OMM,0.631070354 +SNRNP48,OMM,0.098108793 +SLC20A2,OMM,0.68388576 +TMUB2,OMM,0.903079723 +STAT3,OMM,0.284038322 +ADAM9,OMM,0.91647101 +PKIG,OMM,-0.290498544 +SEMA4C,OMM,0.756953111 +CNNM3,OMM,1.696681273 +TET2,OMM,0.649263954 +TCTN2,OMM,1.283729653 +TSPAN5,OMM,1.036651855 +ZBTB5,OMM,0.231770006 +SNTB2,OMM,0.246749357 +ZNF507,OMM,0.207732223 +STX18,OMM,-0.360509933 +GFM1,OMM,1.998508074 +ANKRD49,OMM,-0.15442867 +MAT2A,OMM,-0.794809988 +ZNF608,OMM,0.2639434 +LETM1,OMM,0.768205333 +TMEM129,OMM,0.910574407 +FEM1B,OMM,0.452728483 +HNRNPH1,OMM,-0.95800007 +MECP2,OMM,0.433694781 +UPF3A,OMM,-0.333994288 +CHST14,OMM,1.499949097 +PARM1,OMM,1.979013444 +CSNK1G1,OMM,0.38477215 +ZBTB43,OMM,-0.323518378 +GPRIN1,OMM,0.37962554 +MRPL1,OMM,-1.068588615 +SLC33A1,OMM,0.730462274 +SDC2,OMM,0.917381072 +MMGT1,OMM,0.938160246 +CLIC4,OMM,0.403016149 +CCDC8,OMM,0.213292545 +INO80E,OMM,-0.527572462 +DFFB,OMM,-0.517884777 +ANTXR1,OMM,1.455886154 +CKAP2L,OMM,0.235338989 +C15orf40,OMM,-0.530773098 +HIC2,OMM,0.498364874 +LUZP1,OMM,0.228122688 +HEXDC,OMM,-0.786637072 +LRRC45,OMM,-0.537168092 +ASPSCR1,OMM,-0.67553626 +TAPT1,OMM,0.631035592 +CSGALNACT2,OMM,1.164206084 +PCDH7,OMM,1.23180225 +ROBO1,OMM,1.19391396 +P2RY1,OMM,0.646203616 +TPST1,OMM,1.064104204 +TOR1AIP2,OMM,0.604041914 +OTUD3,OMM,0.395126308 +GUSB,OMM,0.539879778 +BRD3,OMM,0.531208954 +MAP3K2,OMM,0.056756119 +NLGN2,OMM,0.660412302 +ALCAM,OMM,1.520438487 +YWHAG,OMM,0.186360744 +TMEM192,OMM,1.647000541 +ZNF778,OMM,0.020303033 +NIPA1,OMM,1.021821007 +SIK2,OMM,0.379081703 +RNF150,OMM,1.115605895 +ZNF212,OMM,0.150085635 +FAM161A,OMM,-0.273589027 +CRTAP,OMM,1.19632428 +PRDM10,OMM,-0.690526332 +FOS,OMM,-1.05703377 +TMED10,OMM,0.926083954 +SLC30A1,OMM,1.23718548 +DNAJC18,OMM,1.692399966 +RALGAPB,OMM,0.307246332 +LONRF2,OMM,0.216233331 +ELOVL6,OMM,1.192464541 +ARL6IP1,OMM,0.740382509 +CDH2,OMM,1.514241757 +EMB,OMM,0.965892876 +STAT2,OMM,0.445324804 +TRABD,OMM,-0.300353423 +POLH,OMM,0.760473738 +KIF5B,OMM,0.332135265 +AKAP13,OMM,0.279460852 +CHCHD7,OMM,0.049801438 +GPR27,OMM,0.646591078 +KBTBD2,OMM,0.259292433 +KIAA0232,OMM,0.404663113 +TMEM43,OMM,1.392031952 +RNF139,OMM,0.662843625 +PAQR8,OMM,1.805744741 +TANC2,OMM,0.872525905 +DNAJC24,OMM,0.040785102 +HS6ST2,OMM,1.091084489 +INSR,OMM,1.45687622 +ATP6V0E2,OMM,0.857227406 +ZNF692,OMM,-0.205039735 +NETO2,OMM,0.74278234 +NPTX1,OMM,1.034720702 +FAM98B,OMM,-0.640423921 +GAA,OMM,1.150515878 +CANT1,OMM,1.042851847 +CHST11,OMM,1.573263704 +CLCN5,OMM,1.164570775 +ZBTB26,OMM,0.009398028 +ZNF562,OMM,0.126994183 +ZNF318,OMM,0.590270192 +WIPF2,OMM,0.92843645 +LRRC8C,OMM,1.276243081 +LRRC8D,OMM,-0.147811298 +ETFDH,OMM,1.570078336 +LPAR3,OMM,1.083553049 +CLSTN1,OMM,1.4825176 +BPTF,OMM,0.304812675 +ATF7IP,OMM,-0.080363423 +TCEA2,OMM,0.058300673 +ANO5,OMM,1.578377755 +MLLT3,OMM,0.577474468 +PRNP,OMM,0.686022085 +ZNF217,OMM,-0.120023289 +JMJD1C,OMM,0.180958447 +THOP1,OMM,-0.292687772 +ORMDL3,OMM,1.686800393 +KLF11,OMM,-0.072491531 +MTBP,OMM,-0.188212039 +ZNF131,OMM,-0.10452338 +BSG,OMM,1.241226467 +CERS6,OMM,1.793680006 +TP53RK,OMM,-0.190924016 +FAM195A,OMM,-0.736336629 +GTPBP2,OMM,0.048905625 +ZNF24,OMM,0.304002635 +MANEA,OMM,0.806455216 +RAD9A,OMM,-0.355576718 +FAM21C,OMM,0.214280971 +CORO1B,OMM,-0.367516219 +LRRC20,OMM,1.084076991 +NAA16,OMM,-0.456263281 +DCP2,OMM,0.259507119 +CES3,OMM,1.080078965 +CES2,OMM,1.054600101 +PDP2,OMM,0.339414937 +SP3,OMM,0.170604543 +METAP1D,OMM,-0.412752951 +ZNF621,OMM,0.514504781 +NADSYN1,OMM,-0.503362501 +DHCR7,OMM,0.890405847 +NBEA,OMM,0.799191637 +ANKRD13D,OMM,-0.1989041 +LCLAT1,OMM,1.825683745 +TADA2B,OMM,0.573371406 +HECTD4,OMM,0.370519676 +ESRRA,OMM,-0.024044264 +AHSA2,OMM,0.153129324 +VANGL1,OMM,1.191258727 +IQCB1,OMM,-0.062044127 +GOLGB1,OMM,0.87426247 +TNKS,OMM,0.43367811 +ZBTB21,OMM,0.169879742 +STOX2,OMM,-0.112758621 +DAG1,OMM,1.844732804 +RNF26,OMM,0.987045187 +PEAK1,OMM,0.675892996 +TNFRSF10D,OMM,1.857505262 +MOB1B,OMM,0.552693095 +SNX33,OMM,0.82723786 +CHD2,OMM,0.245710952 +CCDC41,OMM,-0.127848128 +PC,OMM,1.31959295 +SUSD5,OMM,1.805830918 +HEG1,OMM,1.35866093 +TOMM20,OMM,0.541263937 +CNP,OMM,0.178393205 +DPY19L1,OMM,1.09521862 +ZNF791,OMM,-0.093189057 +PHC3,OMM,-0.479858814 +GOLIM4,OMM,1.199181257 +XXYLT1,OMM,0.93499534 +UBXN2A,OMM,0.63450349 +CCS,OMM,-0.566513408 +FAM3C2,OMM,0.652358507 +CTSF,OMM,0.912868391 +MSRB3,OMM,0.863132773 +LEMD3,OMM,0.408029191 +RGMB,OMM,0.522053517 +ZDHHC24,OMM,1.140079628 +MGA,OMM,0.57885481 +PIGG,OMM,0.206910176 +ADCY6,OMM,1.492020167 +ZBTB4,OMM,0.651276722 +ZHX3,OMM,0.444747637 +RALGAPA1,OMM,0.156674259 +ATP2A2,OMM,1.024627034 +CNTNAP2,OMM,0.382340507 +DENND4A,OMM,0.126489598 +MSL2,OMM,0.128455266 +UGT8,OMM,1.410205896 +ZNF266,OMM,-0.161509716 +SLC29A2,OMM,0.427268228 +BRSK2,OMM,0.341072004 +B3GNT1,OMM,1.119289781 +TMEM167A,OMM,0.44858729 +CEP135,OMM,-0.185980411 +FZD4,OMM,0.882410498 +PDE12,OMM,1.004930478 +GLMN,OMM,-0.951971666 +SEZ6L2,OMM,0.97893077 +KLC2,OMM,0.309702143 +GK5,OMM,0.282353187 +VCPIP1,OMM,-0.180753423 +PCCA,OMM,1.965148267 +GOLGA8A,OMM,-0.41022975 +TP53I11,OMM,0.853236139 +PHYKPL,OMM,-0.328051495 +ARL10,OMM,1.244219707 +CCDC14,OMM,-0.024938367 +ALG10B,OMM,1.554377502 +RAB6A,OMM,-0.035854616 +ERCC4,OMM,0.307129455 +RMI2,OMM,-0.371319983 +TOM1L2,OMM,0.575374381 +MLXIP,OMM,0.540670165 +SLC35E3,OMM,1.065849994 +ARL4D,OMM,-0.416531513 +LYSMD3,OMM,0.222278879 +B3GALT6,OMM,0.987183634 +MBLAC2,OMM,-0.337473861 +TPRN,OMM,-0.108075444 +YES1,OMM,0.988783034 +TMEM39A,OMM,1.001296975 +CCDC57,OMM,-0.635434375 +FOXG1,OMM,-0.650533672 +ATAD5,OMM,-0.001156424 +ANAPC2,OMM,-0.323441213 +SPRYD4,OMM,-0.771044632 +CLK2,OMM,-0.273706502 +LPCAT4,OMM,0.458184047 +B3GNT5,OMM,1.177964153 +LMNB2,OMM,0.373188473 +RMDN1,OMM,-0.019900113 +ACSF3,OMM,-0.510721089 +ANKLE2,OMM,0.810036969 +NFATC2IP,OMM,-0.072977263 +SMCR8,OMM,0.422805848 +MTX3,OMM,0.489063801 +FBXO46,OMM,0.86068892 +WDR73,OMM,-0.325708037 +ANO6,OMM,1.103862281 +ZBTB34,OMM,0.09348935 +FAM210A,OMM,0.217876524 +ULK1,OMM,-0.147972879 +RPS6KA3,OMM,0.019589144 +PUS1,OMM,-0.550464192 +CHD9,OMM,-0.009063328 +PDDC1,OMM,0.152935869 +TOP3A,OMM,1.873429362 +NR2C2,OMM,0.275804564 +ZBTB33,OMM,0.340987219 +SLC25A22,OMM,-0.279309845 +PIDD,OMM,-0.171940879 +GBA,OMM,1.221221688 +IL17RA,OMM,1.578739137 +THAP5,OMM,-0.024950913 +PVRL3,OMM,0.934577984 +KIAA0195,OMM,1.075867127 +SOX12,OMM,0.312873607 +CHID1,OMM,1.043173753 +ZNF518A,OMM,-0.067639726 +ZBTB41,OMM,-0.080140651 +DMAP1,OMM,-1.120765385 +C2orf69,OMM,0.513650283 +SH2B1,OMM,-0.045766434 +KDELC2,OMM,1.368714523 +GALNT11,OMM,1.116666479 +WDR6,OMM,-0.385382749 +GEN1,OMM,-0.317700474 +GLDC,OMM,3.667414792 +CTNNBIP1,OMM,0.840596071 +ERN1,OMM,1.154577757 +KCTD12,OMM,0.11203911 +DHFRL1,OMM,1.805681298 +FAM132B,OMM,1.830829489 +FAM219B,OMM,0.292109894 +DPY19L3,OMM,1.244379133 +PFAS,OMM,-0.713297883 +C17orf62,OMM,0.896112877 +ZBTB7A,OMM,-0.294789486 +SPTY2D1,OMM,0.42185981 +FUCA1,OMM,0.840498476 +CALR,OMM,1.196068185 +LDLRAD3,OMM,1.161953756 +CLK3,OMM,-0.681086795 +PACS2,OMM,0.213360983 +ELMOD2,OMM,1.332341796 +FJX1,OMM,0.439105092 +ZBTB18,OMM,0.377042297 +GCC1,OMM,-0.088653915 +PLD6,OMM,1.308768403 +CDC42EP4,OMM,0.426489572 +PCBP1-AS1,OMM,-0.247321288 +MYADM,OMM,1.064142168 +SERTAD2,OMM,0.560718205 +BBS10,OMM,0.327122266 +SOCS4,OMM,0.277533743 +ZADH2,OMM,-0.09833753 +EXOC3,OMM,0.110661794 +C7orf41,OMM,0.781616476 +ZNF609,OMM,0.774387034 +CCDC66,OMM,-0.421772359 +MCFD2,OMM,1.608562749 +GAS1,OMM,0.78633571 +FAM73A,OMM,1.380613879 +NRIP1,OMM,1.401165955 +PCGF5,OMM,0.167779738 +YOD1,OMM,-0.495769055 +SLC36A4,OMM,0.296429494 +ZDHHC20,OMM,1.483456549 +PSMG4,OMM,-1.04991287 +PDIA3P,OMM,1.005431826 +CUEDC1,OMM,0.540180499 +KCTD2,OMM,0.606813182 +D2HGDH,OMM,-0.152957559 +FKRP,OMM,1.139780828 +SLC26A11,OMM,0.337701907 +F2R,OMM,1.183738174 +DHTKD1,OMM,2.212289295 +ZNF746,OMM,-0.416931221 +TMEM136,OMM,0.643271344 +ZNF322,OMM,-0.17997472 +OGFOD3,OMM,1.177963115 +ZNF678,OMM,0.435252782 +ZBTB2,OMM,0.161699361 +SGSH,OMM,1.322141838 +SETD2,OMM,0.579566096 +YIPF6,OMM,1.166233405 +IBA57,OMM,0.099122565 +C5orf24,OMM,0.087975797 +ADO,OMM,0.103862867 +CREB3L2,OMM,0.911919931 +UNC5C,OMM,1.589133007 +RGMA,OMM,0.572132605 +EXT1,OMM,0.8881716 +ATP6AP2,OMM,1.13508354 +BACE2,OMM,1.077336508 +FIGN,OMM,-0.486086055 +B4GALNT4,OMM,0.494822926 +AP1S2,OMM,0.12343873 +FBXL6,OMM,-0.840872564 +YBEY,OMM,-1.394665666 +CLN8,OMM,1.425417121 +PLCXD1,OMM,-0.238662749 +EXOC7,OMM,0.131756179 +CEP97,OMM,0.075042717 +MXRA7,OMM,1.328152039 +SATB1,OMM,-0.114118226 +PLCB1,OMM,0.189417375 +TTC3,OMM,0.740047279 +COL18A1,OMM,1.312421272 +ZNF721,OMM,-0.135036864 +SRPR,OMM,1.094138561 +EWSR1,OMM,-0.535964086 +GJC1,OMM,1.575173708 +MTA1,OMM,0.039165172 +CADM1,OMM,1.744775419 +LYSMD4,OMM,0.145917786 +NKX2-5,OMM,-0.082417429 +GPC6,OMM,1.06081899 +PTTG1IP,OMM,2.189372533 +ZNF623,OMM,0.027553158 +BCOR,OMM,1.479203975 +ASB7,OMM,0.208720958 +EP400,OMM,0.257328925 +COA5,OMM,0.000254209 +PRR14L,OMM,-0.008573789 +ZNRF3,OMM,1.207927749 +TRMT12,OMM,-0.07717092 +FAM101B,OMM,0.498004881 +TRIM52,OMM,-0.533854675 +CMTM4,OMM,0.993952525 +TMEM50A,OMM,0.961641588 +CBX6,OMM,0.099096143 +KREMEN1,OMM,0.871287605 +TRAIP,OMM,-0.75837478 +EMILIN3,OMM,1.662960827 +RBM12B,OMM,0.181396254 +BTBD9,OMM,0.13431493 +KIRREL,OMM,1.506691759 +IQGAP3,OMM,0.524443499 +PRKX,OMM,0.780748231 +SMTN,OMM,-0.846431893 +TBX1,OMM,-0.77894389 +TSPYL2,OMM,-0.504846595 +C22orf46,OMM,0.885473084 +PCDH9,OMM,0.884975406 +OAF,OMM,1.085320972 +ZDHHC23,OMM,1.141779236 +EFNA5,OMM,0.922469494 +SS18L1,OMM,0.335101844 +KNTC1,OMM,0.030502051 +WDR27,OMM,0.096087261 +FOXO4,OMM,-0.078947539 +POU3F2,OMM,-0.398157902 +PROS1,OMM,1.472575477 +ZFP1,OMM,-0.280271664 +XPOT,OMM,0.051398744 +SNN,OMM,0.485639758 +AMER1,OMM,0.215754941 +ZBTB40,OMM,-0.080597841 +ATL3,OMM,0.228910699 +UBE2G2,OMM,0.179798679 +TMED9,OMM,0.922302032 +RBM33,OMM,-0.025564969 +JAG2,OMM,0.409820651 +ZFP90,OMM,0.54026584 +SIVA1,OMM,-0.704734407 +BRI3BP,OMM,1.133757999 +ROBO2,OMM,1.612285862 +BRF1,OMM,0.126392169 +MANEAL,OMM,0.921581647 +PURA,OMM,-0.18904763 +DDX51,OMM,-0.503894317 +NOMO2,OMM,0.899997475 +NRBP2,OMM,-0.511978826 +ZNF445,OMM,0.29098647 +PRPF39,OMM,-0.632802403 +CDK10,OMM,-0.457024053 +ATP6V0A2,OMM,0.974151796 +C14orf80,OMM,-0.358962327 +HGS,OMM,-0.475613087 +MRPL30,OMM,0.363468272 +METTL7A,OMM,2.941404501 +NR2F2,OMM,0.136330439 +SP1,OMM,0.429990676 +PCGF3,OMM,0.449359069 +P4HB,OMM,1.3311746 +PBX1,OMM,0.438833833 +BRWD1,OMM,-0.035085498 +EP400NL,OMM,-0.682840146 +MYBL1,OMM,0.37587957 +DMWD,OMM,-0.243101122 +SLC52A2,OMM,0.446702199 +NAT8L,OMM,0.744483409 +GNB1L,OMM,-1.004372236 +LAMP1,OMM,1.391020586 +KLHDC8B,OMM,0.061209707 +SETD4,OMM,-0.033393555 +RNPC3,OMM,-0.559380842 +BICD2,OMM,0.435763886 +LRCH3,OMM,0.013560497 +ZNF529,OMM,-0.108451136 +AIDA,OMM,0.354225243 +ZBTB6,OMM,-0.523924037 +BCL9L,OMM,0.142475667 +KIF18B,OMM,-0.432088098 +MKL2,OMM,0.479261926 +CA5BP1,OMM,-0.20893398 +BACE1,OMM,0.821812578 +KPNA4,OMM,-0.073284262 +ZNF197,OMM,-0.114114445 +BTN3A2,OMM,1.006107272 +INSIG1,OMM,0.33132872 +TMEM222,OMM,1.038346076 +SMYD4,OMM,0.012982097 +GPATCH8,OMM,0.382700297 +LYRM7,OMM,0.404784972 +ZNF397,OMM,0.061755963 +ZSCAN30,OMM,0.212115016 +TPCN1,OMM,0.975923986 +POFUT2,OMM,1.507881351 +ZDHHC17,OMM,0.976701625 +PPARA,OMM,0.936879778 +TEAD1,OMM,0.198156061 +ENTPD5,OMM,1.349954587 +KIAA1598,OMM,0.303347908 +TSPYL4,OMM,-0.075263315 +FNBP1,OMM,0.44719632 +BCAM,OMM,0.355325374 +COL4A1,OMM,1.066480611 +SIRT7,OMM,-0.249113904 +TET3,OMM,0.321405452 +ZNF286A,OMM,-0.267336158 +SAMD11,OMM,0.052533624 +B3GALTL,OMM,1.549704035 +TCEA1,OMM,-0.761338604 +FANCA,OMM,-0.157098255 +SEMA4D,OMM,1.60050265 +LIN28B,OMM,0.169988876 +FANCM,OMM,0.695578189 +FAM122A,OMM,0.109165375 +ARHGAP11B,OMM,0.240139714 +CYHR1,OMM,0.030630914 +KLHL17,OMM,-1.048828438 +ANKRD19P,OMM,-1.06739906 +ARL4C,OMM,0.754729811 +C11orf95,OMM,0.105459854 +MAPK12,OMM,-0.665066702 +COL4A5,OMM,1.340223135 +NCR3LG1,OMM,1.401248624 +HES4,OMM,-0.700270128 +CHM,OMM,0.167411799 +H2AFX,OMM,-0.076414335 +SRSF10,OMM,-0.441847439 +NDOR1,OMM,-0.455618731 +FAM72B,OMM,-0.023811675 +LDOC1L,OMM,0.382921895 +PTAR1,OMM,0.090357804 +ZDHHC9,OMM,1.626280204 +ZBED6CL,OMM,0.647517746 +TMEM120B,OMM,0.534317487 +MTF1,OMM,0.083470051 +TMEM201,OMM,1.182604826 +NHLRC3,OMM,0.59798148 +BEND4,OMM,-0.385013876 +MSL1,OMM,0.349030877 +DHFRP1,OMM,0.927094569 +ZNF292,OMM,0.166800776 +ADAT2,OMM,-0.231545171 +H1F0,OMM,0.412399623 +LITAF,OMM,0.753584218 +ARID2,OMM,0.216405745 +S100A13,OMM,-0.533533819 +ZNF33A,OMM,0.198316085 +LIN54,OMM,-0.283183143 +KAZN,OMM,0.201191878 +SLC35E2B,OMM,1.008600714 +KIAA0895L,OMM,0.060675558 +PLEKHG4,OMM,-0.211893135 +ACADSB,OMM,0.431159512 +TMEM63A,OMM,0.916539956 +MPHOSPH8,OMM,0.009166661 +FAM217B,OMM,0.137363652 +LCOR,OMM,0.454993864 +POM121,OMM,0.611741336 +ZBTB44,OMM,0.345807514 +SLC35F1,OMM,0.926573819 +PTPN1,OMM,0.17304243 +EVL,OMM,0.02450454 +EPHB4,OMM,1.006316449 +PPP1R26,OMM,0.477790648 +TSC22D2,OMM,0.252109396 +PIK3R4,OMM,0.815726141 +GDAP2,OMM,-0.087048879 +AFAP1,OMM,0.346262231 +MAN2A2,OMM,0.981073241 +CACNA1H,OMM,0.692748714 +SULF2,OMM,1.541708396 +PLXNB2,OMM,1.779910414 +XRCC2,OMM,0.094684719 +MYO6,OMM,0.181936491 +TCF4,OMM,0.230375888 +RABL6,OMM,0.05894666 +ZKSCAN5,OMM,-0.022234742 +ZFP62,OMM,0.232652315 +ERI2,OMM,0.160626625 +ZNF33B,OMM,0.468513309 +ZNF512B,OMM,0.044040419 +ZNF431,OMM,-0.130594522 +NF1,OMM,0.352750349 +VKORC1L1,OMM,1.059899149 +COL27A1,OMM,0.304459008 +GM2A,OMM,2.038746642 +SNHG17,OMM,-1.096026868 +CD47,OMM,0.745956519 +CTBP1-AS2,OMM,0.162700235 +C6orf106,OMM,0.510047356 +NHLRC2,OMM,0.597626793 +KPNA5,OMM,-0.513698241 +ZNF252P,OMM,0.032660068 +PDLIM7,OMM,-1.063115505 +SLC39A10,OMM,1.868834203 +ZNF100,OMM,-0.329330638 +ZNF398,OMM,-0.111890471 +GMFB,OMM,-0.339356149 +ZMYM1,OMM,-0.269894067 +MAFG,OMM,0.322201995 +ARRDC1,OMM,-1.527579059 +KIAA1671,OMM,0.54714873 +IGF2R,OMM,1.692645593 +SLC25A29,OMM,0.318111456 +PGAP1,OMM,1.025638123 +SRC,OMM,0.292604709 +PCNXL3,OMM,0.611524304 +LRRC8B,OMM,0.840493331 +ABCB8,OMM,1.676149246 +SND1,OMM,1.084904985 +ENTPD4,OMM,1.478336352 +KANK2,OMM,0.283535367 +FITM2,OMM,1.932803222 +DDI2,OMM,0.428912066 +TRIM33,OMM,-0.079087676 +LRP10,OMM,1.536236483 +ZNF655,OMM,-0.10695798 +SLC22A5,OMM,0.886635204 +ADARB1,OMM,-0.037768875 +OGDHL,OMM,-0.608999384 +STMN3,OMM,-0.059278718 +SIPA1L1,OMM,0.473173158 +PIGN,OMM,1.017688951 +COL4A6,OMM,1.326581199 +GPX1P1,OMM,-0.144385984 +ENTPD6,OMM,0.923469084 +ENPP1,OMM,1.507740532 +PHF2,OMM,0.200535385 +RPS26,OMM,-1.772976425 +PSAP,OMM,1.674728887 +HOXC6,OMM,-0.11697075 +EME2,OMM,-0.787067291 +ZNF780A,OMM,0.229774829 +SLC9A8,OMM,1.290088629 +OCLN,OMM,0.967960307 +GPAA1,OMM,0.392450686 +SPG7,OMM,0.767841398 +ERO1L,OMM,1.457021489 +ZNF121,OMM,-0.545862098 +MPZL1,OMM,1.570929305 +VPS13A,OMM,0.429325935 +AKAP17A,OMM,-0.100253251 +ELOVL2,OMM,1.300771912 +SNHG12,OMM,-0.992697334 +NOL8,OMM,0.044140689 +MRPL42,OMM,-0.438521971 +ENTPD7,OMM,0.928424961 +ZNF84,OMM,-0.342014393 +SIRPA,OMM,1.334361848 +CD2AP,OMM,0.13601029 +NUP62CL,OMM,-0.849824763 +SFI1,OMM,-0.203947877 +ZNF248,OMM,-0.309813893 +ZNF770,OMM,0.152939072 +HMGN5,OMM,-0.325848734 +MIER1,OMM,0.755614751 +MAN1A2,OMM,1.145882421 +RPS6KL1,OMM,-0.159646203 +DDX42,OMM,0.120641106 +STYX,OMM,0.539416189 +UCKL1,OMM,-0.372176193 +ZKSCAN8,OMM,0.191392616 +HOXC4,OMM,0.708462651 +ASPH,OMM,1.57883737 +WWP2,OMM,-0.048819957 +GFPT1,OMM,0.33918161 +ITSN2,OMM,-0.024134365 +MGEA5,OMM,-0.016937238 +FAM115A,OMM,0.16661701 +ZNF587,OMM,-0.288605177 +MAFK,OMM,-0.022057515 +DDX39B,OMM,-0.727122062 +NUDT16,OMM,0.23682315 +TLK1,OMM,0.097353978 +MDM4,OMM,-0.045360692 +KLHL9,OMM,-0.21450242 +C6orf89,OMM,1.954201169 +SLC9A6,OMM,1.301292396 +FAN1,OMM,0.657743444 +CEP290,OMM,0.018975132 +C1orf85,OMM,0.984003426 +SMOC1,OMM,1.599136543 +ZNF652,OMM,0.503903468 +SMURF1,OMM,-0.263689647 +SLC5A3,OMM,1.23156178 +COLGALT2,OMM,1.201211671 +TMEM184B,OMM,0.817324434 +LRIG2,OMM,1.090511134 +FOXJ3,OMM,0.002062911 +ARHGAP11A,OMM,0.278764718 +DENND4B,OMM,0.123916565 +R3HDM4,OMM,1.372490067 +RUNDC1,OMM,0.389118451 +TYW1,OMM,0.958491521 +SFMBT2,OMM,0.370936559 +ITPRIPL1,OMM,0.793342099 +SMC5,OMM,-0.192901902 +SREBF2,OMM,1.321433677 +DZIP3,OMM,0.741281686 +KIAA0753,OMM,0.198245962 +ATG9A,OMM,1.086443068 +TBKBP1,OMM,-0.281516901 +NAGA,OMM,1.226135383 +SGMS1,OMM,0.941386058 +COX20,OMM,0.063403521 +CHML,OMM,0.406268768 +TATDN3,OMM,-0.281392014 +RBM20,OMM,0.290178838 +PCMTD2,OMM,0.228733128 +EFCAB7,OMM,-0.475693758 +ZYG11A,OMM,0.326153942 +SYS1,OMM,1.188045004 +TRAF3IP1,OMM,0.103615192 +PHACTR4,OMM,0.465875122 +ZDHHC18,OMM,0.995208236 +TMEM57,OMM,1.072592701 +ZDBF2,OMM,0.66537117 +BMPR2,OMM,1.222825476 +OXLD1,OMM,-0.16915982 +MRPL38,OMM,-1.014965128 +SDHD,OMM,-1.287007736 +NEU1,OMM,1.083204913 +HSPA1B,OMM,-2.096533355 +HLA-C,OMM,0.904432516 +DDR1,OMM,1.643784906 +HLA-E,OMM,1.296645547 +ZNF616,OMM,-0.722285033 +CRHR1-IT1,OMM,0.47920493 +GABBR1,OMM,0.019290135 +RANBP17,OMM,-0.188180707 +ZNF204P,OMM,-0.218908152 +TCTN1,OMM,0.9853201 +ZBTB48,OMM,-0.534692262 +C11orf83,OMM,-0.538084626 +ZNF783,OMM,-0.215337229 +SLC35B4,OMM,1.383898159 +TRIQK,OMM,0.207986495 +PSENEN,OMM,-0.529963814 +LGR4,OMM,0.78734804 +PDE7A,OMM,0.090318571 +TMEM170B,OMM,0.045405647 +TECPR1,OMM,-0.080120959 +ITPRIPL2,OMM,1.114683718 +CRYZL1,OMM,-0.380295727 +C5orf51,OMM,0.287472506 +ZNF316,OMM,0.320859042 +NYNRIN,OMM,1.325060182 +AP000525.9,OMM,-0.113818388 +PTPLB,OMM,1.127334847 +WDR52,OMM,-0.177680993 +SETD5-AS1,OMM,-1.317150128 +SACM1L,OMM,-0.044063943 +C17orf51,OMM,0.468972078 +ZNF580,OMM,-0.447621205 +DENND1B,OMM,-0.149152326 +SFT2D2,OMM,1.348142678 +FGFR1OP,OMM,-0.145655961 +KLHL23,OMM,0.071787281 +TRIM59,OMM,-0.01725503 +NRAS,OMM,0.226293551 +QTRT1,OMM,-1.217170688 +CHUK,OMM,-0.134777639 +COG8,OMM,0.011574853 +RBMXL1,OMM,-0.334663043 +LEPROT,OMM,1.189605239 +ATF6B,OMM,0.881699419 +SLC35F6,OMM,1.195786379 +ZNF134,OMM,-0.683245399 +EMP2,OMM,1.664014526 +DNASE1,OMM,0.979216719 +CSNK1E,OMM,0.193320184 +GALT,OMM,-0.74241215 +ITGA1,OMM,1.410726816 +AP1G2,OMM,-0.445713864 +CARKD,OMM,0.011554874 +TTLL3,OMM,-0.803520763 +CPNE1,OMM,-0.800860032 +RCN1P2,OMM,1.024404678 +ZBED1,OMM,0.540051037 +DDX12P,OMM,-1.055208662 +C22orf29,OMM,0.044389935 +NEURL4,OMM,-0.175064075 +TTC3P1,OMM,0.54597354 +PEX26,OMM,0.649876009 +GOLGA8B,OMM,-0.618743997 +MIR17HG,OMM,-1.104959585 +TMEM242,OMM,0.845010803 +TMEM167B,OMM,0.905928356 +CYB5RL,OMM,0.218170607 +CROCCP2,OMM,-0.753029911 +FNIP1,OMM,0.068357972 +RP11-204C16.4,OMM,-0.39224499 +TENM3,OMM,1.262678521 +AC007390.5,OMM,0.919523538 +NBPF1,OMM,0.623659059 +CCNL2,OMM,-0.644063526 +PPT2,OMM,1.186995549 +CKMT1A,OMM,-1.090214175 +NSUN5P1,OMM,-1.107609504 +RP11-54O7.3,OMM,0.124773989 +AFG3L1P,OMM,-0.24513108 +EPB41L4A-AS1,OMM,-0.21475773 +ATXN1L,OMM,0.19710162 +SMIM13,OMM,0.375356611 +CTD-2228K2.7,OMM,-0.204115505 +PLEKHM1,OMM,0.176045314 +FAM195B,OMM,0.029209703 +IPO7P2,OMM,0.19866689 +SLC26A6,OMM,0.241920406 +FGD5-AS1,OMM,0.440367851 +TLK2P1,OMM,0.061059913 +BAIAP2-AS1,OMM,0.777405361 +RP11-31F15.1,OMM,0.804531945 +TMEM185B,OMM,1.435919303 +C14orf132,OMM,0.586690507 +PARG,OMM,0.073262512 +TP73-AS1,OMM,0.14740892 +SCAMP4,OMM,1.183731225 +SEC63P1,OMM,1.573685646 +HCG11,OMM,0.760718438 +DHFR,OMM,1.070208787 +RP11-206L10.11,OMM,0.288975858 +XIST,OMM,-0.404049435 +RP5-1180C10.2,OMM,-0.638974361 +HCG18,OMM,0.311894616 +CTD-2619J13.14,OMM,0.415110926 +SNHG15,OMM,-0.806740984 +SNHG7,OMM,-0.872313094 +HOTAIRM1,OMM,-0.674051165 +RP4-775C13.1,OMM,-0.845006238 +ZNF37BP,OMM,-0.205377493 +ZNF736,OMM,-0.019807849 +MAGI2-AS3,OMM,0.402028053 +JRK,OMM,0.138149927 +GAS5,OMM,-1.178332551 +LINC00338,OMM,-0.986353215 +PPP1R3E,OMM,0.339765142 +RP5-827C21.1,OMM,-1.407477578 +NUS1P1,OMM,0.670604674 +ZBTB22,OMM,0.362589454 +AD000090.2,OMM,0.093004969 +ZBED5,OMM,-0.406631772 +RNF103,OMM,0.975410746 +TMEM189,OMM,0.767520353 +RPL36A,OMM,-1.195564612 +CD302,OMM,1.942837053 +SNHG3,OMM,-1.058155098 +C15orf38,OMM,1.227118507 +AP5Z1,OMM,-0.821782954 +MICAL3,OMM,0.17655754 +KCTD7,OMM,0.978271549 +SCARF2,OMM,0.825310742 +APOBEC3C,OMM,0.809600017 +N4BP2L2,OMM,-0.219920986 +NEAT1,OMM,-0.112141512 +CRNDE,OMM,-0.944510029 +OIP5-AS1,OMM,0.651961309 +MARS2,OMM,1.225800666 +HAUS5,OMM,-0.116469815 +PDCD6,OMM,-1.168220182 +THAP9-AS1,OMM,-1.1262543 +SHANK3,OMM,0.301329502 +RTN3P1,OMM,1.300229118 +MALAT1,OMM,-0.764267205 +TUG1,OMM,1.005948017 +GS1-251I9.4,OMM,-0.362638925 +UTP14C,OMM,1.168771374 +ZNF260,OMM,0.348252088 +PABPC4L,OMM,-0.086600135 +FPGT,OMM,-0.38045044 +MEX3A,OMM,0.79821879 +POLR2M,OMM,0.395693386 +SNHG1,OMM,-1.040702291 +POLG2,OMM,-0.435328783 +KIAA1147,OMM,0.555372954 +RP11-349A22.5,OMM,0.246994413 +LINC00641,OMM,0.081577 +RP4-773N10.4,OMM,0.183072428 +CEP95,OMM,0.213031081 +LINC00657,OMM,0.754508183 +RP1-239B22.5,OMM,1.561073237 +RP6-24A23.6,OMM,0.035968211 +ERVK13-1,OMM,0.505873872 +GS1-358P8.4,OMM,0.48150975 +VPS9D1-AS1,OMM,-0.1556317 +RP6-24A23.7,OMM,-0.210642817 +GAN,OMM,1.074649507 +SPON1,OMM,1.429190508 +RP11-159D12.2,OMM,-0.194189827 +OTUD7B,OMM,0.25059913 +RNF115,OMM,0.150151699 +BAHCC1,OMM,1.261189563 +NBPF15,OMM,-0.029241923 +RP11-242D8.1,OMM,-0.34677183 +RP11-18I14.10,OMM,-0.263564897 +NBPF9,OMM,-0.199790379 +EGLN2,OMM,-0.232649064 +NUDT3,OMM,0.403802287 +KMT2B,OMM,-0.159733287 +POM121C,OMM,0.745395716 +RP11-504P24.8,OMM,0.213505122 +DCP1A,OMM,0.063463039 +EPOP,OMM,0.652146869 +NOL12,OMM,-0.556232394 +SOCS7,OMM,0.797087068 +PI4KAP1,OMM,-0.645621694 +ZNF280B,OMM,-0.048837944 +MLLT6,OMM,0.454127964 +SYNRG,OMM,0.53791119 +TADA2A,OMM,0.509935901 +PIP4K2B,OMM,0.542292707 +AL133325.3,OMM,-0.968340432 +DDX52,OMM,-0.218152145 +MYO19,OMM,0.124968667 +DHRS11,OMM,-0.249074088 +ACACA,OMM,1.16102166 +AC005332.6,OMM,0.936570013 +RP11-574K11,OMM,-0.558565195 +AL035425.4,OMM,-0.186812281 +EBLN3P,OMM,0.206559987 +GCLC,ER Lumen,-0.193562611 +NFYA,ER Lumen,-0.02202352 +NIPAL3,ER Lumen,0.038574891 +ENPP4,ER Lumen,-0.284606752 +SEMA3F,ER Lumen,0.493676996 +CD99,ER Lumen,0.05959424 +LASP1,ER Lumen,-0.020595227 +M6PR,ER Lumen,-0.099393063 +CFLAR,ER Lumen,0.141812301 +NDUFAF7,ER Lumen,-0.269324829 +RBM5,ER Lumen,0.145249551 +SLC7A2,ER Lumen,0.044484543 +SARM1,ER Lumen,0.068130148 +CAMKK1,ER Lumen,0.175991661 +RECQL,ER Lumen,-0.395183094 +ARHGAP33,ER Lumen,0.67265421 +CDC27,ER Lumen,-0.277027903 +SPPL2B,ER Lumen,0.75286678 +CREBBP,ER Lumen,0.243588937 +GCFC2,ER Lumen,-0.208504767 +RHBDD2,ER Lumen,0.299391497 +IBTK,ER Lumen,-0.122698835 +ZNF195,ER Lumen,-0.195706484 +MYCBP2,ER Lumen,-0.301570773 +ZFX,ER Lumen,-0.152901878 +LAMP2,ER Lumen,0.028174007 +GDE1,ER Lumen,-0.082582261 +TMEM98,ER Lumen,-0.031899189 +TMEM132A,ER Lumen,0.590603811 +ZNF263,ER Lumen,0.087000101 +MAP3K9,ER Lumen,-0.054645225 +JHDM1D,ER Lumen,-0.368133907 +PHTF2,ER Lumen,-0.292447146 +FARP2,ER Lumen,-0.065897243 +IFRD1,ER Lumen,-0.002257873 +ARHGAP44,ER Lumen,-0.257849544 +ELAC2,ER Lumen,-0.176383124 +ADIPOR2,ER Lumen,-0.044882634 +PAFAH1B1,ER Lumen,-0.227494374 +KIAA0100,ER Lumen,-0.159933764 +PAX6,ER Lumen,-0.050967554 +LUC7L,ER Lumen,0.102552267 +CACNA2D2,ER Lumen,0.233302594 +PIGQ,ER Lumen,0.59549043 +CRAMP1L,ER Lumen,0.035816608 +JARID2,ER Lumen,0.209793169 +ADAM22,ER Lumen,-0.279072841 +CYB561,ER Lumen,-0.00657844 +SPAG9,ER Lumen,-0.172580953 +CELSR3,ER Lumen,0.269999077 +AASS,ER Lumen,-0.131916651 +PKD1,ER Lumen,1.060941159 +SEC62,ER Lumen,-0.252045727 +REV3L,ER Lumen,0.07836715 +POMT2,ER Lumen,0.077527877 +BAZ1B,ER Lumen,-0.063603912 +ZNF207,ER Lumen,-0.169473605 +IFFO1,ER Lumen,0.585069245 +NISCH,ER Lumen,0.582346209 +IDS,ER Lumen,0.238743365 +CLCN6,ER Lumen,0.344317619 +MRC2,ER Lumen,0.170542652 +TSPAN9,ER Lumen,0.072871491 +BTBD7,ER Lumen,-0.106803904 +MBTD1,ER Lumen,-0.114208555 +LARS2,ER Lumen,-0.117742067 +PIK3C2A,ER Lumen,-0.266407918 +ANLN,ER Lumen,-0.207565337 +QPCTL,ER Lumen,0.326865609 +MAP4K3,ER Lumen,-0.035497289 +BRCA1,ER Lumen,-0.440367404 +MBTPS2,ER Lumen,-0.082357548 +EXTL3,ER Lumen,-0.095528884 +ELOVL5,ER Lumen,-0.032778797 +MAP4K5,ER Lumen,-0.110480256 +MAN2B2,ER Lumen,0.634151112 +CLK1,ER Lumen,-0.098736593 +ANGEL1,ER Lumen,-0.106658838 +DDX11,ER Lumen,0.440463006 +UFL1,ER Lumen,-0.469926275 +SLC30A9,ER Lumen,-0.255180598 +COX15,ER Lumen,-0.264357543 +ZMYND11,ER Lumen,0.008118971 +XYLT2,ER Lumen,0.472060255 +NUDCD3,ER Lumen,0.182132205 +CHDH,ER Lumen,0.000582802 +GLT8D1,ER Lumen,0.125269009 +ATP2C1,ER Lumen,-0.161090293 +RALBP1,ER Lumen,-0.280893722 +CNTN1,ER Lumen,-0.795241625 +PHLDB1,ER Lumen,0.010433295 +MRE11A,ER Lumen,-0.22619347 +SPAST,ER Lumen,-0.382509889 +NRXN3,ER Lumen,-0.075902571 +CPS1,ER Lumen,-0.235235519 +SLC45A4,ER Lumen,0.119094249 +ZNF839,ER Lumen,0.16237172 +ZDHHC6,ER Lumen,-0.379386633 +RNH1,ER Lumen,0.504622183 +RB1CC1,ER Lumen,-0.303770207 +ERP44,ER Lumen,-0.261220381 +AKAP11,ER Lumen,-0.288750293 +GCLM,ER Lumen,-0.096747334 +DEPDC1,ER Lumen,-0.113188971 +SEC63,ER Lumen,-0.115536406 +FAS,ER Lumen,-0.249497896 +RNASET2,ER Lumen,-0.018720103 +AGPAT4,ER Lumen,-0.0152397 +MIPEP,ER Lumen,-0.441919158 +VEZT,ER Lumen,-0.2304095 +BRD9,ER Lumen,0.256458903 +SNX1,ER Lumen,-0.073229625 +BCLAF1,ER Lumen,-0.448410083 +SLC39A9,ER Lumen,0.034152804 +RABEP1,ER Lumen,-0.469131826 +FAM13B,ER Lumen,0.099745912 +PNPLA6,ER Lumen,0.358672015 +ZCCHC8,ER Lumen,0.245400941 +CHPF2,ER Lumen,0.670201475 +FUT8,ER Lumen,-0.117162797 +UBA6,ER Lumen,-0.257141568 +ATP6V0A1,ER Lumen,-0.133818236 +SLC4A7,ER Lumen,-0.129464008 +VCL,ER Lumen,-0.047416369 +ADSS,ER Lumen,-0.417271068 +TIMP2,ER Lumen,-0.000246942 +RFC1,ER Lumen,-0.286548123 +ZZZ3,ER Lumen,-0.197745158 +MFAP3,ER Lumen,0.143403851 +MRI1,ER Lumen,0.344350458 +AGA,ER Lumen,-0.590528805 +BOD1L1,ER Lumen,-0.382819912 +TRIO,ER Lumen,0.287422289 +VCAN,ER Lumen,-0.08808993 +CLEC16A,ER Lumen,0.304171755 +ZFYVE16,ER Lumen,-0.181834146 +RAI14,ER Lumen,-0.273733395 +PNKP,ER Lumen,0.611288921 +PQLC2,ER Lumen,0.293246264 +CTNS,ER Lumen,-0.037225165 +INPP4A,ER Lumen,0.185434051 +RETSAT,ER Lumen,0.229313849 +CUL7,ER Lumen,0.295691617 +PHKA2,ER Lumen,0.341827553 +DSG2,ER Lumen,-0.12407613 +OFD1,ER Lumen,-0.275134375 +GPM6B,ER Lumen,-0.081644174 +YTHDC2,ER Lumen,-0.11850963 +TPR,ER Lumen,-0.327782552 +SCML1,ER Lumen,0.174516459 +MAP4,ER Lumen,-0.051015357 +GOPC,ER Lumen,-0.232792198 +ZNF800,ER Lumen,-0.175798604 +SNX29,ER Lumen,-0.109257983 +KITLG,ER Lumen,0.308578536 +H6PD,ER Lumen,0.063074917 +LTBP1,ER Lumen,-0.225938011 +RCN1,ER Lumen,-0.088666469 +PTCD2,ER Lumen,-0.15079397 +LIMA1,ER Lumen,-0.539835205 +LETMD1,ER Lumen,-0.022052372 +POLQ,ER Lumen,0.003859159 +MPHOSPH9,ER Lumen,-0.249036378 +PLEKHA5,ER Lumen,-0.114514596 +SIKE1,ER Lumen,0.06221651 +MSMO1,ER Lumen,0.366342357 +TTC17,ER Lumen,-0.173125061 +LAMA3,ER Lumen,0.251590048 +AP5M1,ER Lumen,-0.338164929 +ANAPC4,ER Lumen,-0.310843826 +ARID4B,ER Lumen,-0.17387775 +SDCCAG8,ER Lumen,-0.297894821 +FOXC1,ER Lumen,-0.026632879 +PLEKHH1,ER Lumen,0.036232754 +ATP9A,ER Lumen,0.107647888 +FAM168A,ER Lumen,0.216952111 +RELT,ER Lumen,0.584113128 +NOP58,ER Lumen,-0.323061945 +TAB2,ER Lumen,-0.158124307 +USP36,ER Lumen,0.128557689 +KMT2C,ER Lumen,-0.006687176 +MCOLN3,ER Lumen,0.281711405 +PUM2,ER Lumen,-0.234344225 +RC3H2,ER Lumen,-0.106650535 +DCBLD2,ER Lumen,-0.023070011 +SOAT1,ER Lumen,-0.165049488 +ATP11B,ER Lumen,-0.065722805 +SEC61A1,ER Lumen,0.135653383 +PPP1R12A,ER Lumen,-0.115377516 +POLR3E,ER Lumen,0.096873029 +ATP2B4,ER Lumen,-0.251526947 +ZC3H11A,ER Lumen,-0.144208339 +NDC1,ER Lumen,-0.16270768 +UNKL,ER Lumen,0.736384265 +ALDH18A1,ER Lumen,-0.067527026 +TARBP1,ER Lumen,-0.153081963 +WNK1,ER Lumen,-0.022018467 +CCAR1,ER Lumen,-0.28802186 +PTPRU,ER Lumen,0.05735604 +QSER1,ER Lumen,-0.030360697 +BCAT1,ER Lumen,-0.305226627 +PRDM6,ER Lumen,0.194881087 +TNK2,ER Lumen,0.529050945 +MON2,ER Lumen,0.086351288 +GPBP1,ER Lumen,-0.166314642 +WAPAL,ER Lumen,-0.194673031 +VMP1,ER Lumen,-0.163871043 +APPBP2,ER Lumen,-0.083104101 +AHRR,ER Lumen,0.193207964 +ZNF275,ER Lumen,-0.016303292 +MTMR1,ER Lumen,0.030627519 +GPC1,ER Lumen,0.745234735 +TM7SF3,ER Lumen,-0.210485426 +CDON,ER Lumen,0.003927509 +HIPK2,ER Lumen,0.003052262 +SUGP2,ER Lumen,0.144546619 +SLC12A2,ER Lumen,-0.256274724 +HMG20B,ER Lumen,0.562226684 +UHRF1BP1,ER Lumen,-0.075097497 +PKN2,ER Lumen,-0.288846611 +TRAM2,ER Lumen,-0.026515924 +NTN1,ER Lumen,0.296746061 +ADAT1,ER Lumen,-0.309960708 +SPEN,ER Lumen,0.103115638 +MAP2K4,ER Lumen,-0.104263881 +SLK,ER Lumen,-0.290616115 +CYB5R4,ER Lumen,0.025870752 +ASB1,ER Lumen,0.283529656 +FAM107B,ER Lumen,-0.011478421 +SLC9A7,ER Lumen,0.012553803 +FOXJ2,ER Lumen,0.083906652 +PPP2R5A,ER Lumen,-0.277876181 +ASPM,ER Lumen,-0.136193407 +ZBTB11,ER Lumen,-0.1051115 +ATXN3,ER Lumen,-0.025788441 +FGFR2,ER Lumen,0.180240587 +LRRC40,ER Lumen,-0.44718001 +ATG2B,ER Lumen,-0.114120838 +ARFGEF1,ER Lumen,-0.430477326 +KLF6,ER Lumen,0.07731155 +NEO1,ER Lumen,-0.133238826 +TRAM1,ER Lumen,-0.059062056 +TP53BP1,ER Lumen,-0.149923427 +IARS2,ER Lumen,-0.478972044 +ROCK1,ER Lumen,-0.332556199 +HYAL2,ER Lumen,0.412114932 +FGFR3,ER Lumen,0.609273082 +MEF2A,ER Lumen,-0.271653662 +ACSL4,ER Lumen,-0.282664995 +PRR11,ER Lumen,-0.259308223 +REEP1,ER Lumen,-0.285759112 +ATP11A,ER Lumen,0.392315905 +POLR1A,ER Lumen,0.043304703 +IP6K2,ER Lumen,0.317968909 +KIF2A,ER Lumen,-0.309431525 +TGFBR3,ER Lumen,-0.118395962 +NEDD4,ER Lumen,-0.42864742 +MAPK6,ER Lumen,-0.240811436 +UFD1L,ER Lumen,0.219308623 +LRP6,ER Lumen,0.045261064 +NUCB2,ER Lumen,-0.163323857 +SLC44A1,ER Lumen,-0.115793566 +TMEM260,ER Lumen,-0.016575668 +SMG6,ER Lumen,-0.167518029 +CLTCL1,ER Lumen,0.151778042 +DGCR2,ER Lumen,0.43457963 +MNT,ER Lumen,0.238814515 +ZXDC,ER Lumen,0.312415554 +NDST1,ER Lumen,0.029870141 +AP3M2,ER Lumen,-0.237067478 +RAD18,ER Lumen,-0.336067457 +ATP2B1,ER Lumen,-0.258630596 +MGAT4A,ER Lumen,-0.128361208 +SNX13,ER Lumen,-0.021145557 +VASH1,ER Lumen,0.075108093 +SEL1L,ER Lumen,-0.080213862 +ATP6AP1,ER Lumen,0.235017457 +DAZAP1,ER Lumen,0.213044718 +CPSF1,ER Lumen,0.627633982 +SLC6A15,ER Lumen,-0.254495244 +RDH11,ER Lumen,-0.095032564 +PRKACA,ER Lumen,0.073573068 +LPHN1,ER Lumen,0.177488593 +RPS6KA6,ER Lumen,-0.281654753 +EPN2,ER Lumen,-0.154797251 +PTPN18,ER Lumen,0.307858174 +TFRC,ER Lumen,-0.341163772 +AFF4,ER Lumen,-0.062109761 +MPP5,ER Lumen,-0.131437327 +HMMR,ER Lumen,-0.527479021 +P4HA2,ER Lumen,-0.037669283 +TRNT1,ER Lumen,-0.348354212 +ACADVL,ER Lumen,0.614788753 +EVC,ER Lumen,0.244028219 +DERL2,ER Lumen,-0.093409367 +NDE1,ER Lumen,0.073164258 +PVR,ER Lumen,0.388548095 +SCARB1,ER Lumen,0.013458736 +SELO,ER Lumen,0.82196656 +LLGL2,ER Lumen,0.749888551 +PDE8A,ER Lumen,-0.064550638 +SDHA,ER Lumen,0.010908061 +KDM5A,ER Lumen,-0.085267219 +ADAM11,ER Lumen,0.294711271 +ST6GAL1,ER Lumen,-0.460327008 +GLI2,ER Lumen,0.063370177 +NOTCH3,ER Lumen,0.41274234 +BCS1L,ER Lumen,0.30493457 +DPP8,ER Lumen,-0.10925307 +SLC24A1,ER Lumen,-0.380063881 +LMAN1,ER Lumen,-0.250744746 +PTPLAD1,ER Lumen,-0.263553083 +TUBE1,ER Lumen,-0.148231351 +SEMA3C,ER Lumen,-0.005696222 +TTC38,ER Lumen,0.133998996 +CELSR1,ER Lumen,0.471235875 +ZNF638,ER Lumen,-0.195978164 +SLC25A40,ER Lumen,-0.234247657 +RASAL2,ER Lumen,-0.208495675 +ZNF37A,ER Lumen,-0.090230239 +FNDC3B,ER Lumen,0.000192249 +FRYL,ER Lumen,0.210204625 +TMEM131,ER Lumen,0.061691967 +WDR62,ER Lumen,0.252490845 +BCAP29,ER Lumen,-0.175267514 +SEC31B,ER Lumen,0.957659708 +RBMS2,ER Lumen,-0.066313753 +SLC46A1,ER Lumen,0.133509792 +PLXNA2,ER Lumen,-0.006757336 +ANKRD13A,ER Lumen,-0.298255078 +PAG1,ER Lumen,-0.098997661 +MCAM,ER Lumen,0.017446126 +GPC4,ER Lumen,-0.158882678 +MBNL3,ER Lumen,-0.292091736 +DGKD,ER Lumen,0.173038197 +TM9SF3,ER Lumen,-0.118352582 +PPP1R12B,ER Lumen,-0.208109128 +DNAJC10,ER Lumen,-0.182524224 +GTF3C1,ER Lumen,0.071437067 +IL4R,ER Lumen,0.282259373 +LRCH4,ER Lumen,0.660259963 +FAM76B,ER Lumen,-0.118500645 +SIRT6,ER Lumen,0.365741258 +POLD3,ER Lumen,-0.171294493 +PHF17,ER Lumen,-0.130971229 +FBLN1,ER Lumen,0.398661453 +ITGA8,ER Lumen,-0.192583715 +MCCC1,ER Lumen,-0.496737546 +ACER3,ER Lumen,-0.094794187 +N4BP2,ER Lumen,-0.308984406 +HOXA9,ER Lumen,0.302798609 +PCM1,ER Lumen,-0.230205789 +TNRC6C,ER Lumen,0.26640573 +ITCH,ER Lumen,0.002475394 +SDF4,ER Lumen,0.405088035 +FKBP7,ER Lumen,-0.167077714 +SLC1A3,ER Lumen,-0.187732907 +SAR1A,ER Lumen,-0.267625398 +PAFAH1B3,ER Lumen,0.356238888 +MOXD1,ER Lumen,-0.156724731 +STX7,ER Lumen,-0.218891815 +RABL2B,ER Lumen,-0.223676765 +SLC35C2,ER Lumen,0.330139763 +CRYBG3,ER Lumen,0.280864414 +RIF1,ER Lumen,-0.214626952 +PSEN1,ER Lumen,-0.26923445 +RBL1,ER Lumen,-0.185289408 +RSBN1,ER Lumen,-0.148113733 +MAGI3,ER Lumen,-0.123405191 +OSTM1,ER Lumen,-0.300132959 +EXD2,ER Lumen,-0.060551434 +MEF2C,ER Lumen,-0.261728931 +UBA5,ER Lumen,-0.218740749 +STK17B,ER Lumen,-0.056012546 +ZNF510,ER Lumen,-0.410126349 +LRP2,ER Lumen,-0.145140409 +DUSP12,ER Lumen,-0.029130274 +KIAA0141,ER Lumen,-0.074938932 +PHLPP1,ER Lumen,0.052830063 +SMARCD3,ER Lumen,-0.001936394 +C5orf22,ER Lumen,-0.114278169 +CCNT2,ER Lumen,-0.12937803 +NFE2L1,ER Lumen,0.107558547 +GSK3B,ER Lumen,-0.148620761 +ITGB5,ER Lumen,0.098726736 +ERC1,ER Lumen,-0.021281033 +RNF13,ER Lumen,-0.130732829 +LYRM2,ER Lumen,-0.435511151 +KAT6A,ER Lumen,-0.175968932 +PLOD1,ER Lumen,0.324678286 +TDRD3,ER Lumen,-0.714899594 +PDS5B,ER Lumen,-0.165441383 +OXCT1,ER Lumen,-0.354168029 +RRAGB,ER Lumen,-0.171019928 +FAT1,ER Lumen,0.081502639 +YTHDC1,ER Lumen,-0.042588247 +ZMPSTE24,ER Lumen,0.108256342 +REST,ER Lumen,-0.020194508 +APLP2,ER Lumen,0.072447667 +KIAA1467,ER Lumen,-0.241629324 +TXLNA,ER Lumen,0.220135365 +NCOA1,ER Lumen,-0.166043397 +AGBL5,ER Lumen,-0.19599823 +CD59,ER Lumen,0.002527921 +ATRX,ER Lumen,-0.234742983 +SCAMP1,ER Lumen,-0.25241185 +HACE1,ER Lumen,0.2470523 +WDFY1,ER Lumen,-0.207620037 +MTIF2,ER Lumen,-0.480094918 +ATG16L1,ER Lumen,0.128099177 +POMGNT1,ER Lumen,0.321263071 +B4GALT1,ER Lumen,0.182157386 +IPO11,ER Lumen,-0.316994102 +TMED2,ER Lumen,-0.19510063 +ERO1LB,ER Lumen,-0.189073842 +PPP1R15A,ER Lumen,0.363400355 +NLK,ER Lumen,-0.168307562 +PIGS,ER Lumen,-0.00345617 +ATXN7L3,ER Lumen,-0.025518404 +PGS1,ER Lumen,0.173519118 +SH3BP2,ER Lumen,0.321518348 +ADD1,ER Lumen,0.225038214 +TXNDC16,ER Lumen,-0.104317962 +NID2,ER Lumen,-0.328296676 +KLHL42,ER Lumen,0.141841374 +ERGIC2,ER Lumen,-0.198764877 +METTL2A,ER Lumen,-0.111225171 +PTPN4,ER Lumen,-0.151008121 +KHSRP,ER Lumen,0.179543997 +EPB41L1,ER Lumen,0.245408898 +ANKRD10,ER Lumen,0.018292379 +DOCK3,ER Lumen,0.042419682 +PPP1R13B,ER Lumen,0.115337975 +ATRN,ER Lumen,-0.028619404 +ZNF343,ER Lumen,-0.231611756 +MAVS,ER Lumen,0.037362284 +LZTS3,ER Lumen,0.26149111 +SNX5,ER Lumen,-0.198448795 +MAPKAPK5,ER Lumen,-0.253583406 +ESF1,ER Lumen,-0.390107253 +SLC23A2,ER Lumen,0.003076149 +KIF16B,ER Lumen,-0.433340678 +ERP29,ER Lumen,-0.062347225 +FUS,ER Lumen,-0.163292191 +ZNF302,ER Lumen,0.08181424 +GRAMD1A,ER Lumen,0.237479004 +GANAB,ER Lumen,0.040584484 +RBM41,ER Lumen,-0.188495938 +GPATCH2L,ER Lumen,0.289058967 +SLC9A1,ER Lumen,0.413979011 +SPTLC1,ER Lumen,-0.092334002 +PAPOLA,ER Lumen,-0.183217201 +MUL1,ER Lumen,0.414791626 +RAB11FIP3,ER Lumen,0.41508981 +GOLGA3,ER Lumen,0.20048646 +EFNB1,ER Lumen,0.386607803 +PDPR,ER Lumen,-0.113565823 +GLG1,ER Lumen,-0.211364283 +TNRC6A,ER Lumen,-0.191374993 +PLEKHG2,ER Lumen,0.444117653 +NAT14,ER Lumen,0.223235196 +RBM27,ER Lumen,-0.231045288 +OSBPL8,ER Lumen,-0.343075932 +NRCAM,ER Lumen,0.056885878 +LAMB1,ER Lumen,-0.084955963 +CMTM6,ER Lumen,-0.0516369 +ITGA6,ER Lumen,-0.313518365 +SEL1L3,ER Lumen,-0.580604021 +ORC6,ER Lumen,-0.012385749 +TMEM101,ER Lumen,0.28369672 +OSGEP,ER Lumen,-0.172972222 +G2E3,ER Lumen,-0.04057178 +HECTD1,ER Lumen,-0.14534904 +SEMA6A,ER Lumen,0.101181035 +TRPM7,ER Lumen,-0.127915237 +TYRO3,ER Lumen,0.157143117 +AGO1,ER Lumen,-0.197681342 +MFSD11,ER Lumen,0.023276117 +GPATCH2,ER Lumen,-0.013574051 +NUP50,ER Lumen,-0.308764887 +LRRFIP2,ER Lumen,-0.203642677 +SEC22C,ER Lumen,-0.049517464 +XYLB,ER Lumen,0.174886666 +HDAC6,ER Lumen,0.336432442 +CBX5,ER Lumen,-0.189176539 +SUCO,ER Lumen,-0.194437969 +HOOK2,ER Lumen,0.39829997 +ARCN1,ER Lumen,-0.138874377 +TMEM38B,ER Lumen,0.139371198 +BTAF1,ER Lumen,0.077063878 +IKZF5,ER Lumen,0.04227174 +WAC,ER Lumen,-0.146103016 +CREM,ER Lumen,-0.291603136 +BRPF3,ER Lumen,0.141800323 +EFHC1,ER Lumen,-0.013355488 +ABL1,ER Lumen,0.130080318 +SH3GLB1,ER Lumen,-0.17150065 +SCD,ER Lumen,-0.010549176 +ABLIM1,ER Lumen,-0.302449212 +ERMP1,ER Lumen,-0.23902587 +NRP1,ER Lumen,-0.033810895 +MZF1,ER Lumen,0.872256025 +FBXL19,ER Lumen,0.297576121 +MTAP,ER Lumen,-0.262989874 +CEP170B,ER Lumen,0.579349513 +POLRMT,ER Lumen,0.404899885 +ARVCF,ER Lumen,0.836388295 +TRMT2A,ER Lumen,0.375207149 +ZDHHC8,ER Lumen,0.911180875 +KLHL22,ER Lumen,0.361712181 +CRKL,ER Lumen,-0.037560236 +LZTR1,ER Lumen,0.589570429 +CECR2,ER Lumen,-0.234770424 +DERL3,ER Lumen,0.336113891 +PPM1F,ER Lumen,0.085849516 +TOP3B,ER Lumen,0.382769458 +CRYBB2P1,ER Lumen,-0.063431988 +ADRBK2,ER Lumen,0.093484034 +GGA1,ER Lumen,0.346192206 +HPS4,ER Lumen,0.152177939 +TTC28,ER Lumen,0.201682941 +SEPT3,ER Lumen,-0.049403924 +KDELR3,ER Lumen,-0.102976169 +DDX17,ER Lumen,0.1232513 +TCF20,ER Lumen,-0.04743866 +TIMP3,ER Lumen,0.038128901 +PPP6R2,ER Lumen,0.267819794 +SUN2,ER Lumen,0.290556362 +ARSA,ER Lumen,0.523117536 +MYH9,ER Lumen,0.217250461 +FOXRED2,ER Lumen,0.197907112 +TNRC6B,ER Lumen,-0.172151151 +SGSM3,ER Lumen,0.547518918 +IFT27,ER Lumen,0.209213658 +KIAA0930,ER Lumen,0.10268481 +EP300,ER Lumen,0.086592675 +ZC3H7B,ER Lumen,0.225252425 +ACO2,ER Lumen,0.118328161 +TRMU,ER Lumen,0.077110358 +ZBED4,ER Lumen,0.083523494 +ABHD4,ER Lumen,0.218940343 +KHNYN,ER Lumen,0.033808383 +NIN,ER Lumen,-0.236462562 +GNPNAT1,ER Lumen,-0.227069928 +DDHD1,ER Lumen,-0.051592592 +CNIH1,ER Lumen,0.088200382 +TMED8,ER Lumen,-0.197856571 +SPTLC2,ER Lumen,-0.295547461 +PPM1A,ER Lumen,-0.158259089 +SIX4,ER Lumen,-0.083886546 +GALNT16,ER Lumen,0.316578656 +KIAA0247,ER Lumen,0.105493832 +SRSF5,ER Lumen,-0.092788897 +DICER1,ER Lumen,-0.114151288 +ZFYVE21,ER Lumen,0.455573966 +TELO2,ER Lumen,0.552872466 +PCNX,ER Lumen,0.060497035 +GSKIP,ER Lumen,0.117963372 +SMEK1,ER Lumen,-0.204706011 +TRIP11,ER Lumen,-0.1743882 +PABPN1,ER Lumen,0.227263687 +ARHGAP5,ER Lumen,-0.131669183 +CHD8,ER Lumen,-0.173413525 +PCK2,ER Lumen,0.202802995 +PNN,ER Lumen,0.034625711 +PLTP,ER Lumen,0.047700993 +ABHD12,ER Lumen,-0.068814374 +GINS1,ER Lumen,-0.217340956 +RIMS4,ER Lumen,0.091393943 +PABPC1L,ER Lumen,0.505597521 +STK4,ER Lumen,-0.278218663 +BMP7,ER Lumen,0.114108409 +DNAJC5,ER Lumen,0.159914496 +SLCO4A1,ER Lumen,0.727047987 +DIDO1,ER Lumen,0.14261859 +ARFGAP1,ER Lumen,0.507673022 +ARFRP1,ER Lumen,0.489232216 +CDS2,ER Lumen,-0.067003862 +TM9SF4,ER Lumen,0.057860515 +POFUT1,ER Lumen,-0.043075261 +SAMHD1,ER Lumen,-0.338458282 +KIF3B,ER Lumen,-0.203247903 +E2F1,ER Lumen,0.525608287 +APMAP,ER Lumen,0.065807768 +ZNF516,ER Lumen,0.095726216 +LPIN2,ER Lumen,-0.015519706 +SMCHD1,ER Lumen,-0.162560372 +LAMA1,ER Lumen,0.087098381 +RNF125,ER Lumen,-0.284491516 +ANKRD12,ER Lumen,-0.260171482 +MIB1,ER Lumen,-0.446441469 +MID1,ER Lumen,-0.203059487 +WDR13,ER Lumen,0.402989158 +XIAP,ER Lumen,-0.270571361 +ATP11C,ER Lumen,-0.162081959 +SYP,ER Lumen,-0.193939736 +FMR1,ER Lumen,-0.156510339 +SLC35A2,ER Lumen,0.376985057 +TAZ,ER Lumen,0.263752303 +MAGT1,ER Lumen,0.009127763 +CD99L2,ER Lumen,0.181700354 +EEA1,ER Lumen,-0.357247389 +NDFIP2,ER Lumen,-0.037081624 +DNAJC3,ER Lumen,-0.1724498 +UGGT2,ER Lumen,-0.29537408 +ARHGEF7,ER Lumen,0.060285223 +PARP4,ER Lumen,-0.100105241 +FLT1,ER Lumen,-0.216365781 +VWA8,ER Lumen,-0.123181803 +DGKH,ER Lumen,0.270611673 +INTS6,ER Lumen,-0.248032795 +CLN5,ER Lumen,-0.166757666 +MGRN1,ER Lumen,0.488119025 +ZNF629,ER Lumen,0.109986427 +CENPT,ER Lumen,0.64498713 +NFAT5,ER Lumen,-0.093719902 +SETD6,ER Lumen,0.215452406 +SLC38A7,ER Lumen,-0.012354427 +SLC7A6OS,ER Lumen,0.10455256 +SLC7A6,ER Lumen,0.08937998 +WDR59,ER Lumen,0.039763172 +TAF1C,ER Lumen,0.675470726 +TSC2,ER Lumen,0.337113552 +ZNF500,ER Lumen,0.271849354 +ABCC1,ER Lumen,0.037187625 +NOMO3,ER Lumen,-0.388836115 +NARFL,ER Lumen,0.370726641 +MTHFSD,ER Lumen,0.047953044 +CLCN7,ER Lumen,0.511684844 +SLC7A5,ER Lumen,0.280998564 +FBXO31,ER Lumen,0.190364477 +EEF2K,ER Lumen,-0.027058876 +CAPN15,ER Lumen,0.540215309 +PIEZO1,ER Lumen,0.767417646 +BFAR,ER Lumen,-0.12364206 +NOMO1,ER Lumen,-0.164307395 +CCP110,ER Lumen,-0.202343586 +RNF40,ER Lumen,0.106321978 +LACTB,ER Lumen,-0.209305249 +CD276,ER Lumen,0.219091887 +HOMER2,ER Lumen,-0.254810447 +TMEM87A,ER Lumen,-0.141204937 +ZNF106,ER Lumen,-0.273039136 +CEP152,ER Lumen,-0.008188082 +TJP1,ER Lumen,-0.021417938 +VPS18,ER Lumen,0.058442246 +MYEF2,ER Lumen,0.015460162 +CSPP1,ER Lumen,0.02957891 +ZFAND1,ER Lumen,-0.44984122 +FZD3,ER Lumen,-0.152319403 +EYA1,ER Lumen,0.11112737 +NBN,ER Lumen,-0.604217429 +IMPAD1,ER Lumen,-0.122639365 +UBE2W,ER Lumen,0.028246101 +IKBKB,ER Lumen,0.193655013 +PLAT,ER Lumen,0.255443476 +JPH1,ER Lumen,0.057103976 +TRPS1,ER Lumen,-0.193056943 +PYCRL,ER Lumen,0.337870465 +EEF1D,ER Lumen,0.331980159 +SQLE,ER Lumen,0.079756552 +SLC39A14,ER Lumen,-0.110416274 +MTMR9,ER Lumen,0.304814719 +LEPROTL1,ER Lumen,0.035675954 +PPP2CB,ER Lumen,-0.004430753 +KLHDC4,ER Lumen,0.11399495 +KCTD9,ER Lumen,-0.266461062 +MAN2B1,ER Lumen,0.293237062 +NUCB1,ER Lumen,0.292395502 +SARS2,ER Lumen,0.100937497 +SNRNP70,ER Lumen,0.410592382 +CLPTM1,ER Lumen,0.345556221 +CLASRP,ER Lumen,0.168770858 +FCGRT,ER Lumen,0.461282958 +ERCC2,ER Lumen,0.229459188 +DOT1L,ER Lumen,0.691276341 +SF3A2,ER Lumen,0.454046665 +AMH,ER Lumen,1.446611286 +DMPK,ER Lumen,0.61099074 +TIMM44,ER Lumen,0.223311008 +AKAP8,ER Lumen,0.014231367 +AKT2,ER Lumen,0.261315443 +PLD3,ER Lumen,0.368146835 +FSD1,ER Lumen,0.46033832 +APLP1,ER Lumen,0.356023722 +CACTIN,ER Lumen,0.318811896 +TYK2,ER Lumen,0.587106157 +PTPRS,ER Lumen,0.283893103 +MEGF8,ER Lumen,0.223006587 +KDELR1,ER Lumen,0.033256133 +CYTH2,ER Lumen,0.473055624 +LIG1,ER Lumen,0.092668621 +BCAT2,ER Lumen,0.148601689 +TNPO2,ER Lumen,0.397392279 +DNASE2,ER Lumen,0.129729894 +ISYNA1,ER Lumen,0.522671922 +CRTC1,ER Lumen,0.639790823 +SUGP1,ER Lumen,0.245421577 +SIPA1L3,ER Lumen,0.337610872 +CADM4,ER Lumen,0.44203677 +SMG9,ER Lumen,0.347769017 +AVL9,ER Lumen,-0.571908467 +CDK6,ER Lumen,-0.269333388 +DNAJC2,ER Lumen,-0.401458111 +WDR91,ER Lumen,0.05199678 +CBLL1,ER Lumen,0.021506211 +MTPN,ER Lumen,-0.18882671 +ZC3HAV1,ER Lumen,-0.143967025 +OGDH,ER Lumen,0.006350501 +MET,ER Lumen,-0.241158788 +LMBR1,ER Lumen,-0.22332804 +HOXA3,ER Lumen,0.597297573 +HOXA6,ER Lumen,0.709585323 +BRAT1,ER Lumen,0.532852144 +FKBP14,ER Lumen,-0.125525034 +NSUN5P2,ER Lumen,0.662489679 +CASP2,ER Lumen,-0.039500118 +HSPB1,ER Lumen,0.272376697 +ZKSCAN1,ER Lumen,-0.151089777 +WASL,ER Lumen,-0.093384853 +RBM28,ER Lumen,-0.253405387 +C1GALT1,ER Lumen,-0.314918268 +PLOD3,ER Lumen,0.311088121 +CLDN15,ER Lumen,0.499726866 +TMEM106B,ER Lumen,-0.068924193 +CEP41,ER Lumen,-0.123315446 +GLI3,ER Lumen,0.082555834 +TMEM248,ER Lumen,0.200354125 +TBL2,ER Lumen,0.213390232 +FKTN,ER Lumen,-0.117499359 +TMEM245,ER Lumen,0.093636309 +MEGF9,ER Lumen,-0.342525729 +TGFBR1,ER Lumen,-0.071912701 +DNM1,ER Lumen,0.499920524 +KANK1,ER Lumen,0.076931448 +RAPGEF1,ER Lumen,0.139758506 +NPDC1,ER Lumen,1.001859546 +SETX,ER Lumen,-0.118098769 +CCNJ,ER Lumen,-0.21894036 +RAB11FIP2,ER Lumen,-0.354724063 +ERLIN1,ER Lumen,-0.151317161 +MAPK8,ER Lumen,-0.322562498 +ATE1,ER Lumen,-0.223627163 +PLEKHA1,ER Lumen,-0.086978824 +UNC5B,ER Lumen,0.246267671 +BMPR1A,ER Lumen,-0.265303295 +ACTA2,ER Lumen,0.053575821 +LIPA,ER Lumen,-0.246215108 +LZTS2,ER Lumen,0.598769947 +ARHGAP21,ER Lumen,-0.117761173 +ANKRD26,ER Lumen,-0.229161477 +LARP4B,ER Lumen,0.096095749 +C10orf137,ER Lumen,0.077430157 +MTPAP,ER Lumen,-0.073275438 +SH3PXD2A,ER Lumen,0.123089039 +PITRM1,ER Lumen,-0.064968397 +FAM208B,ER Lumen,-0.121539063 +TSPAN14,ER Lumen,0.131274626 +NUFIP2,ER Lumen,-0.064706617 +DHX40,ER Lumen,-0.273713897 +CDK5RAP3,ER Lumen,0.488742686 +RECQL5,ER Lumen,0.234357105 +INTS2,ER Lumen,-0.199037533 +CAMTA2,ER Lumen,0.260019858 +MED13,ER Lumen,-0.310223122 +HOXB6,ER Lumen,0.571833519 +CPD,ER Lumen,-0.285655467 +GOSR1,ER Lumen,-0.086196486 +CCDC47,ER Lumen,-0.224691624 +AKAP10,ER Lumen,-0.112985414 +CYTH1,ER Lumen,0.147239505 +LGALS3BP,ER Lumen,0.440198859 +EZH1,ER Lumen,-0.137425622 +PPP1R9B,ER Lumen,0.148815477 +LUC7L3,ER Lumen,-0.083001664 +DUSP3,ER Lumen,-0.249188277 +EFNB3,ER Lumen,0.115624352 +DPH1,ER Lumen,0.099815029 +NAT9,ER Lumen,0.268823137 +TMEM104,ER Lumen,0.546927201 +TMEM97,ER Lumen,-0.080943881 +UNC119,ER Lumen,0.356489748 +TMEM33,ER Lumen,-0.055466304 +DCUN1D4,ER Lumen,-0.102089644 +MANBA,ER Lumen,-0.161016706 +ELF2,ER Lumen,-0.025419763 +WFS1,ER Lumen,0.591285693 +FRG1,ER Lumen,-0.290263626 +CLCN3,ER Lumen,-0.118644529 +GALNT7,ER Lumen,0.120649473 +TRIM2,ER Lumen,-0.120027095 +NEIL3,ER Lumen,-0.014994156 +SH3D19,ER Lumen,0.010074977 +STIM2,ER Lumen,-0.058266601 +RAPGEF2,ER Lumen,-0.299690988 +UGDH,ER Lumen,-0.387871982 +CCDC34,ER Lumen,-0.365588678 +FNBP4,ER Lumen,0.121740606 +SC5D,ER Lumen,-0.080121648 +SIAE,ER Lumen,-0.026593032 +EHD1,ER Lumen,0.402195434 +FOXRED1,ER Lumen,-0.012199392 +ST3GAL4,ER Lumen,0.284232099 +CPT1A,ER Lumen,-0.213254184 +TMEM109,ER Lumen,0.206975911 +PANX1,ER Lumen,-0.13581931 +UBE4A,ER Lumen,-0.180622077 +DDX6,ER Lumen,-0.324070705 +PVRL1,ER Lumen,0.227208586 +HIPK3,ER Lumen,0.175879472 +MDK,ER Lumen,0.570113047 +AMBRA1,ER Lumen,0.069471992 +NAA40,ER Lumen,-0.000429416 +SLC35F2,ER Lumen,-0.027961264 +LEPREL2,ER Lumen,0.561540077 +CORO1C,ER Lumen,-0.285809876 +ASIC1,ER Lumen,-0.161590658 +CAPRIN2,ER Lumen,0.104415726 +SLC11A2,ER Lumen,0.283271388 +MLEC,ER Lumen,-0.031190598 +BCL7A,ER Lumen,0.010788857 +RSRC2,ER Lumen,-0.099323389 +PPM1H,ER Lumen,-0.286533471 +ELK3,ER Lumen,-0.137560516 +MAGOHB,ER Lumen,-0.133491873 +ITFG2,ER Lumen,0.166403838 +PARP11,ER Lumen,-0.156740082 +DUSP16,ER Lumen,-0.264529953 +ACAD10,ER Lumen,0.146954495 +NAA25,ER Lumen,-0.143586428 +DDX55,ER Lumen,-0.165330774 +SLC38A1,ER Lumen,-0.026997901 +C12orf49,ER Lumen,-0.037356171 +MDM1,ER Lumen,-0.225935402 +CPSF6,ER Lumen,-0.129512848 +GNPTAB,ER Lumen,-0.389885712 +ATN1,ER Lumen,0.497404005 +C12orf57,ER Lumen,0.863534412 +LPCAT3,ER Lumen,0.091067298 +SUDS3,ER Lumen,-0.074167322 +GOLT1B,ER Lumen,-0.036220473 +C2CD5,ER Lumen,-0.098230499 +RAB35,ER Lumen,0.056550756 +RIC8B,ER Lumen,0.173376838 +RP11-22B23.1,ER Lumen,0.8220012 +DSE,ER Lumen,-0.16996017 +MAN1A1,ER Lumen,-0.022788367 +SERINC1,ER Lumen,-0.24787418 +UST,ER Lumen,-0.292044535 +KCTD20,ER Lumen,-0.108930358 +RNF8,ER Lumen,-0.33824812 +ICK,ER Lumen,0.111732775 +RAB23,ER Lumen,-0.111711176 +FBXL4,ER Lumen,-0.021322894 +CCNC,ER Lumen,-0.221818773 +ALDH5A1,ER Lumen,-0.194456271 +EYA4,ER Lumen,0.046094747 +PERP,ER Lumen,0.058682646 +SLC16A10,ER Lumen,0.008009062 +PHACTR2,ER Lumen,-0.157084594 +SLC39A7,ER Lumen,0.274682916 +PPP2R5D,ER Lumen,-0.086721951 +PTK7,ER Lumen,0.22045893 +CUL9,ER Lumen,0.314183703 +TMEM30A,ER Lumen,0.008877085 +SENP6,ER Lumen,-0.216467001 +VEGFA,ER Lumen,0.535889026 +PRPF4B,ER Lumen,-0.217817116 +BTN2A1,ER Lumen,0.187015412 +LAMA4,ER Lumen,0.011463866 +ERBB2IP,ER Lumen,-0.176994099 +HARS2,ER Lumen,0.137855455 +MAN2A1,ER Lumen,0.02087638 +PAPD7,ER Lumen,-0.091927675 +NNT,ER Lumen,-0.074632788 +APBB3,ER Lumen,0.287765654 +SPARC,ER Lumen,-0.444489376 +HMGCR,ER Lumen,-0.133464498 +FAF2,ER Lumen,-0.057993345 +CLK4,ER Lumen,-0.086956232 +ARSB,ER Lumen,0.053336324 +CNOT6,ER Lumen,-0.274817579 +DROSHA,ER Lumen,-0.037639024 +FAM172A,ER Lumen,0.043764644 +LNPEP,ER Lumen,-0.293311052 +SLC12A7,ER Lumen,0.579544624 +NR3C1,ER Lumen,-0.005320885 +C5orf15,ER Lumen,-0.184014551 +LIFR,ER Lumen,-0.19700868 +TRAPPC13,ER Lumen,-0.338105801 +TXNDC15,ER Lumen,-0.317508468 +H2AFY,ER Lumen,0.091799564 +TCERG1,ER Lumen,-0.317604329 +SMAD5,ER Lumen,-0.076263263 +ERGIC1,ER Lumen,-0.002131339 +STC2,ER Lumen,0.437208995 +ARL6,ER Lumen,-0.201482166 +NIT2,ER Lumen,0.03951078 +UBE3A,ER Lumen,-0.211773283 +SLC25A36,ER Lumen,0.150914205 +TFDP2,ER Lumen,-0.279754415 +XRN1,ER Lumen,-0.221085325 +WNT5A,ER Lumen,0.198794981 +PFKFB4,ER Lumen,-0.07482381 +PRKAR2A,ER Lumen,-0.198293473 +ACAP2,ER Lumen,0.051229283 +CBLB,ER Lumen,-0.525801135 +BBX,ER Lumen,-0.093268241 +GNB4,ER Lumen,-0.336262165 +C3orf52,ER Lumen,0.091878487 +PLXNA1,ER Lumen,0.572934663 +CSPG5,ER Lumen,0.247512791 +SCAP,ER Lumen,0.249258449 +HEMK1,ER Lumen,0.246100689 +ACVR2B,ER Lumen,-0.273489568 +ABCC5,ER Lumen,0.297689046 +SSR3,ER Lumen,-0.18182705 +NKTR,ER Lumen,-0.014982874 +FOXP1,ER Lumen,-0.033765893 +INO80D,ER Lumen,-0.116959845 +ADAM23,ER Lumen,-0.172571715 +MOB1A,ER Lumen,-0.186203465 +LMAN2L,ER Lumen,0.251689205 +RTKN,ER Lumen,0.277297857 +PIKFYVE,ER Lumen,-0.024544567 +FAHD2A,ER Lumen,-0.01421809 +SLC35F5,ER Lumen,-0.156030509 +STEAP3,ER Lumen,0.072742508 +EPB41L5,ER Lumen,0.070651566 +GPD2,ER Lumen,-0.185177212 +ACVR1,ER Lumen,0.421203176 +MPV17,ER Lumen,0.199195265 +TTC31,ER Lumen,0.288542779 +NDUFS7,ER Lumen,0.6401037 +SPTBN1,ER Lumen,0.015941218 +CCDC88A,ER Lumen,-0.263630781 +FN1,ER Lumen,-0.12566584 +ELMOD3,ER Lumen,0.339144305 +IGFBP5,ER Lumen,-0.012913789 +USP34,ER Lumen,-0.15504808 +GGCX,ER Lumen,0.150206828 +CHST10,ER Lumen,0.076591467 +MOB4,ER Lumen,-0.28004808 +UXS1,ER Lumen,-0.023989778 +PASK,ER Lumen,0.104592659 +TAF1B,ER Lumen,-0.209239805 +DCAF17,ER Lumen,-0.253116608 +SDC1,ER Lumen,0.455027455 +SLC1A4,ER Lumen,0.41199397 +SOS1,ER Lumen,-0.165787111 +WIPF1,ER Lumen,0.055376046 +THADA,ER Lumen,-0.03621655 +TRAK2,ER Lumen,-0.164548911 +TIA1,ER Lumen,0.080902051 +PCYOX1,ER Lumen,-0.167725474 +ARID3A,ER Lumen,0.272391659 +EPHA4,ER Lumen,0.098210078 +ALMS1,ER Lumen,-0.188203493 +BCL9,ER Lumen,0.154582402 +DHCR24,ER Lumen,0.205477343 +DNAJC16,ER Lumen,0.074135314 +RALGPS2,ER Lumen,-0.280817652 +CEP104,ER Lumen,0.052213484 +FAM20B,ER Lumen,-0.205364805 +TCEANC2,ER Lumen,-0.194121358 +WRAP73,ER Lumen,0.292842271 +ICMT,ER Lumen,0.051080492 +QSOX1,ER Lumen,0.19092759 +AMPD2,ER Lumen,0.300123207 +EDEM3,ER Lumen,-0.156933786 +RAP1A,ER Lumen,-0.225980219 +S100PBP,ER Lumen,-0.138277621 +ASH1L,ER Lumen,-0.104258527 +SFPQ,ER Lumen,-0.020220177 +MEF2D,ER Lumen,0.041878482 +C1orf21,ER Lumen,-0.139165348 +LEPR,ER Lumen,0.168942397 +IVNS1ABP,ER Lumen,-0.268410773 +KIAA2013,ER Lumen,0.43060201 +MIIP,ER Lumen,0.645156812 +SLC35D1,ER Lumen,-0.088181757 +WLS,ER Lumen,-0.003678088 +PRDM2,ER Lumen,0.189287252 +TROVE2,ER Lumen,-0.377857605 +SRSF11,ER Lumen,0.049134994 +PHTF1,ER Lumen,0.170303531 +TMEM9,ER Lumen,0.033887987 +EXOC8,ER Lumen,-0.076568458 +NID1,ER Lumen,-0.251757568 +MTR,ER Lumen,-0.399826171 +BMP8B,ER Lumen,0.25313667 +RIMS3,ER Lumen,0.194880586 +AKT3,ER Lumen,0.057199205 +ETV3,ER Lumen,-0.333019142 +LPHN2,ER Lumen,0.104412132 +RBBP5,ER Lumen,-0.398169651 +ECE1,ER Lumen,0.308652577 +CD46,ER Lumen,-0.135592569 +APH1A,ER Lumen,0.099868514 +LEPRE1,ER Lumen,0.115365759 +SLC2A1,ER Lumen,0.333680748 +SLC19A2,ER Lumen,-0.275092455 +NSUN4,ER Lumen,0.153529342 +TMED5,ER Lumen,0.075278021 +DR1,ER Lumen,-0.147592193 +PTBP2,ER Lumen,-0.356677547 +DARS2,ER Lumen,-0.423162578 +DIEXF,ER Lumen,-0.46639888 +RCAN3,ER Lumen,-0.153461793 +C1orf63,ER Lumen,0.219549796 +SLC35A3,ER Lumen,-0.204809751 +RCOR3,ER Lumen,0.124974775 +ARID1A,ER Lumen,0.174195974 +CENPF,ER Lumen,-0.466645183 +ESYT2,ER Lumen,-0.111397575 +CD3EAP,ER Lumen,0.206489126 +MESDC2,ER Lumen,-0.017953065 +CTSD,ER Lumen,0.260599049 +STK11,ER Lumen,0.46706103 +KMT2A,ER Lumen,-0.15604264 +KPTN,ER Lumen,0.634221322 +KIF14,ER Lumen,-0.373863234 +ATF6,ER Lumen,-0.275572851 +FASTKD2,ER Lumen,0.034223452 +NRP2,ER Lumen,-0.310779269 +CREB1,ER Lumen,-0.124891376 +B4GALT6,ER Lumen,-0.497017395 +ELOVL4,ER Lumen,-0.205319242 +CASP8AP2,ER Lumen,-0.143673703 +PHF3,ER Lumen,-0.33246726 +PLAGL1,ER Lumen,0.108016889 +FBXO30,ER Lumen,-0.077515312 +TMEM5,ER Lumen,-0.026279992 +ZNF430,ER Lumen,-0.042716708 +DCLRE1B,ER Lumen,-0.135656408 +PKD2,ER Lumen,0.228231984 +UBN1,ER Lumen,-0.087754049 +KLF12,ER Lumen,-0.028384766 +WDR35,ER Lumen,-0.24596603 +CCND2,ER Lumen,-0.11570064 +SATB2,ER Lumen,-0.028493678 +SENP5,ER Lumen,-0.185116977 +C1orf198,ER Lumen,-0.009231038 +HEATR1,ER Lumen,-0.216521302 +PTBP3,ER Lumen,-0.16142335 +FAM206A,ER Lumen,-0.468539843 +RBM18,ER Lumen,-0.153466108 +MAPKAP1,ER Lumen,0.039357297 +KDSR,ER Lumen,0.015935545 +ONECUT2,ER Lumen,-0.08864349 +IRF2BPL,ER Lumen,0.408980992 +AREL1,ER Lumen,-0.172468641 +ABCD4,ER Lumen,0.370829243 +RBM25,ER Lumen,-0.120498736 +NRDE2,ER Lumen,-0.026114108 +KLHL29,ER Lumen,0.175886812 +DNMT3A,ER Lumen,0.306280126 +ATAD2B,ER Lumen,0.102234773 +ATL2,ER Lumen,-0.025738666 +YIPF4,ER Lumen,-0.064065415 +AFTPH,ER Lumen,0.244697884 +BCL11A,ER Lumen,-0.006787564 +SLC17A5,ER Lumen,-0.226173471 +FAM178A,ER Lumen,0.071636541 +GPAM,ER Lumen,-0.216625028 +HELLS,ER Lumen,0.073334429 +TCTN3,ER Lumen,-0.09707102 +C10orf76,ER Lumen,0.117358634 +HOXB8,ER Lumen,0.327771843 +HOXB3,ER Lumen,0.428066948 +PANK3,ER Lumen,-0.17484198 +NUP43,ER Lumen,-0.230782925 +LRP11,ER Lumen,-0.102512763 +MASTL,ER Lumen,-0.179963176 +ELF1,ER Lumen,-0.341470225 +EGR1,ER Lumen,1.313338739 +NR2C1,ER Lumen,0.037774704 +MTERFD3,ER Lumen,-3.03e-05 +CLU,ER Lumen,0.321849198 +TNFRSF10B,ER Lumen,0.148942573 +TARDBP,ER Lumen,0.030770895 +CRISPLD1,ER Lumen,-0.133691944 +AKAP1,ER Lumen,0.143430415 +TRIM25,ER Lumen,0.020104744 +KIAA0922,ER Lumen,-0.346336181 +PAPD5,ER Lumen,-0.15134127 +CEP89,ER Lumen,0.236928659 +B4GALT4,ER Lumen,-0.108015588 +KIF18A,ER Lumen,-0.070213352 +CRY2,ER Lumen,0.201621928 +ZNF639,ER Lumen,-0.096359307 +PDS5A,ER Lumen,-0.260490687 +CLCC1,ER Lumen,-0.046315608 +ACVR2A,ER Lumen,-0.026826902 +RPL21,ER Lumen,0.521071115 +MTERFD2,ER Lumen,-0.038823386 +KIAA1191,ER Lumen,-0.157172457 +RBBP6,ER Lumen,-0.191743862 +ZC3H7A,ER Lumen,-0.210292934 +FAM35A,ER Lumen,-0.243022101 +FAM213A,ER Lumen,-0.055499183 +ODF2L,ER Lumen,0.129989238 +TRMT13,ER Lumen,-0.214498937 +RPAP2,ER Lumen,-0.206545762 +FAM126A,ER Lumen,-0.148639164 +FKBP9,ER Lumen,-0.132857989 +POLM,ER Lumen,0.343496487 +SLC25A51,ER Lumen,-0.223603272 +DCAF10,ER Lumen,0.013831977 +KIAA1549,ER Lumen,0.062626713 +CALD1,ER Lumen,-0.070816317 +CHST3,ER Lumen,0.198353069 +P4HA1,ER Lumen,-0.070168059 +RBM19,ER Lumen,0.022522011 +GIPC1,ER Lumen,0.330506531 +ATP7B,ER Lumen,-0.114006003 +ZC3H13,ER Lumen,-0.293547548 +NLN,ER Lumen,-0.357251395 +CENPK,ER Lumen,-0.414817502 +OPTN,ER Lumen,-0.24211749 +SPATS2,ER Lumen,-0.161781901 +LRP1,ER Lumen,0.287843618 +HJURP,ER Lumen,0.01387833 +USP45,ER Lumen,-0.014916398 +SLC36A1,ER Lumen,0.245106453 +LPGAT1,ER Lumen,-0.231818735 +EXOSC9,ER Lumen,-0.486073024 +PLA2G12A,ER Lumen,-0.122688071 +ADCK4,ER Lumen,0.128043311 +PFKFB2,ER Lumen,-0.587262943 +AGO2,ER Lumen,-0.075897491 +MXD4,ER Lumen,0.501799357 +ACSL3,ER Lumen,-0.321075878 +SLC12A4,ER Lumen,0.452320856 +FAM210B,ER Lumen,-0.302842864 +SDC4,ER Lumen,0.577047344 +NCOA3,ER Lumen,0.104846751 +PIGT,ER Lumen,0.278632574 +VAPB,ER Lumen,-0.1103497 +CHD6,ER Lumen,-0.142426715 +SRSF6,ER Lumen,-0.038771249 +RAB22A,ER Lumen,0.152884321 +STX16,ER Lumen,0.258699925 +STAMBP,ER Lumen,-0.271462449 +NAGK,ER Lumen,0.273472177 +PAIP2B,ER Lumen,0.054012749 +ATP8A1,ER Lumen,0.017391127 +BTN2A2,ER Lumen,-0.052879785 +ABCC10,ER Lumen,0.566196148 +AARS2,ER Lumen,0.044632577 +ZNF391,ER Lumen,-0.221939348 +CDKN1A,ER Lumen,0.732227305 +SSR1,ER Lumen,-0.034570955 +NRN1,ER Lumen,-0.164594383 +ATXN1,ER Lumen,0.072887776 +EEF1E1,ER Lumen,-0.211479258 +LRRFIP1,ER Lumen,-0.34682606 +AHNAK,ER Lumen,0.095805762 +ABCC4,ER Lumen,-0.269742339 +EFNB2,ER Lumen,0.028135853 +ATP5S,ER Lumen,-0.474102505 +FAM193A,ER Lumen,0.456747415 +GGA3,ER Lumen,0.228575043 +GTF3C4,ER Lumen,-0.163423001 +PPP1R12C,ER Lumen,0.702374797 +MBOAT7,ER Lumen,0.173596991 +CCDC93,ER Lumen,0.101332018 +THOC2,ER Lumen,-0.208822228 +MED1,ER Lumen,-0.236449634 +GPR108,ER Lumen,0.178198865 +GPCPD1,ER Lumen,-0.377830519 +PANK2,ER Lumen,-0.132284833 +NAPB,ER Lumen,-0.00039715 +TMX4,ER Lumen,-0.136215525 +RRBP1,ER Lumen,0.311348323 +ZNF133,ER Lumen,-0.129166736 +MCM8,ER Lumen,-0.25423754 +NCLN,ER Lumen,0.570696556 +ZNF436,ER Lumen,0.142721509 +AMOT,ER Lumen,-0.104349843 +TMEM115,ER Lumen,0.404272342 +AGO3,ER Lumen,-0.016991544 +HECTD3,ER Lumen,0.086196515 +KLC1,ER Lumen,0.341551456 +XRCC3,ER Lumen,0.377118776 +TUBGCP3,ER Lumen,-0.307813842 +PCID2,ER Lumen,-0.195175453 +FRMD8,ER Lumen,0.132398322 +PCNXL4,ER Lumen,-0.165900188 +ATG14,ER Lumen,-0.285797146 +KTN1,ER Lumen,-0.251488367 +PLEKHG3,ER Lumen,0.274149683 +WDR60,ER Lumen,-0.123083231 +AIF1L,ER Lumen,-0.242746433 +SLC10A3,ER Lumen,0.536060376 +CANX,ER Lumen,-0.132830969 +CPSF3L,ER Lumen,0.55674017 +TRAF2,ER Lumen,0.403713317 +HELB,ER Lumen,-0.550318333 +DYRK2,ER Lumen,-0.053402493 +LRRC61,ER Lumen,0.361661205 +FGFRL1,ER Lumen,0.489174174 +EMC1,ER Lumen,0.03612198 +HP1BP3,ER Lumen,0.021806611 +SIN3B,ER Lumen,0.3384983 +SLC35E1,ER Lumen,0.000143487 +GFER,ER Lumen,0.169572193 +PKMYT1,ER Lumen,0.649599989 +CHTF18,ER Lumen,0.796426642 +MACF1,ER Lumen,-0.056329059 +RNF6,ER Lumen,-0.190021023 +AKAP9,ER Lumen,-0.370628476 +HIP1,ER Lumen,-0.058162391 +POR,ER Lumen,0.333158294 +PEX1,ER Lumen,-0.131142408 +LRFN1,ER Lumen,0.472804471 +SRD5A3,ER Lumen,-0.341279808 +PPAT,ER Lumen,0.055868049 +TUBGCP6,ER Lumen,0.61013964 +DGCR8,ER Lumen,0.319393923 +TPST2,ER Lumen,0.014842692 +MPST,ER Lumen,0.307236356 +SPECC1,ER Lumen,-0.500568433 +NAA38,ER Lumen,-0.303754015 +PRKRIP1,ER Lumen,0.427315093 +PODXL,ER Lumen,0.043072537 +STRIP2,ER Lumen,0.210394323 +MKLN1,ER Lumen,-0.299681479 +CALU,ER Lumen,-0.139674176 +CCDC136,ER Lumen,0.150039075 +SMO,ER Lumen,0.156071716 +KLHDC10,ER Lumen,-0.079388221 +OSGEPL1,ER Lumen,0.042179934 +HOXD10,ER Lumen,0.387405799 +HOXD11,ER Lumen,0.338040747 +HERC2,ER Lumen,-0.117447042 +TWSG1,ER Lumen,-0.039804772 +MYO5C,ER Lumen,-0.288882876 +TMOD2,ER Lumen,-0.420410617 +TTBK2,ER Lumen,-0.049301444 +IVD,ER Lumen,-0.08291437 +CLN6,ER Lumen,0.042450434 +ARPP19,ER Lumen,-0.070722179 +VPS13C,ER Lumen,0.003477333 +SUMF2,ER Lumen,-0.072436053 +SPCS3,ER Lumen,-0.175592015 +RPAIN,ER Lumen,-0.264189582 +PLD2,ER Lumen,0.211783414 +MPDU1,ER Lumen,0.02332706 +CCNT1,ER Lumen,0.006684736 +PUS7L,ER Lumen,-0.431441126 +KRI1,ER Lumen,0.247984841 +SLC44A2,ER Lumen,-0.007454656 +BCL2L2,ER Lumen,0.075059072 +PARP2,ER Lumen,-0.11982285 +TEP1,ER Lumen,-0.138251328 +MAP7D3,ER Lumen,-0.32966522 +ABHD17A,ER Lumen,0.68440057 +ERMARD,ER Lumen,-0.246296727 +SAT1,ER Lumen,-0.280477615 +GNL3L,ER Lumen,-0.125457985 +SH3BP4,ER Lumen,0.138545486 +LDLR,ER Lumen,0.418887646 +PRKCSH,ER Lumen,0.257456499 +THEM6,ER Lumen,0.243955428 +PVRL2,ER Lumen,0.501824373 +SAFB2,ER Lumen,0.136774091 +KIF1A,ER Lumen,0.371514601 +COLGALT1,ER Lumen,0.296518477 +MLLT1,ER Lumen,0.314011523 +MLLT4,ER Lumen,-0.135761162 +ACTN4,ER Lumen,0.284117812 +NDUFA10,ER Lumen,-0.078248224 +ZSWIM6,ER Lumen,-0.021909999 +PXDN,ER Lumen,-0.045907192 +COL5A1,ER Lumen,0.35348341 +ZNF337,ER Lumen,-0.101500259 +TAF4,ER Lumen,0.101294624 +LAMA5,ER Lumen,0.719808408 +EXOSC2,ER Lumen,-0.188274067 +POMT1,ER Lumen,0.028313886 +PRRC2B,ER Lumen,0.160246419 +YIPF2,ER Lumen,0.244817525 +ZC3H4,ER Lumen,0.397082283 +CLIP1,ER Lumen,-0.403783601 +HIP1R,ER Lumen,0.568230909 +PPAN,ER Lumen,0.421259467 +SLC6A8,ER Lumen,0.321133048 +PLXNA3,ER Lumen,0.846134218 +PRRG1,ER Lumen,-0.046096508 +AKAP12,ER Lumen,-0.160219138 +RBM39,ER Lumen,-0.042460209 +GGT7,ER Lumen,0.437722771 +PPT1,ER Lumen,-0.213339736 +RLIM,ER Lumen,-0.116269921 +ABCB7,ER Lumen,-0.134462581 +MRPS25,ER Lumen,-0.027226094 +CAPN7,ER Lumen,-0.155765134 +ZFYVE20,ER Lumen,-0.171021449 +SLC6A6,ER Lumen,-0.364748035 +MGAT1,ER Lumen,0.309363093 +PSMC3IP,ER Lumen,0.26980623 +DIAPH1,ER Lumen,-0.098405157 +NDFIP1,ER Lumen,-0.27689197 +ACAP3,ER Lumen,0.957654021 +C1orf159,ER Lumen,0.42007739 +MAP1B,ER Lumen,0.238490211 +IL13RA1,ER Lumen,-0.111513787 +WDR44,ER Lumen,-0.330341349 +PRKAB2,ER Lumen,0.115243309 +CLUHP3,ER Lumen,0.33578257 +CHSY1,ER Lumen,-0.05165006 +SNRPA1,ER Lumen,0.057076479 +FBXW9,ER Lumen,0.330474481 +RFX1,ER Lumen,0.19255059 +CC2D1A,ER Lumen,0.549552105 +NUP210,ER Lumen,0.099270544 +ENOSF1,ER Lumen,0.018660307 +EMILIN2,ER Lumen,-0.550451071 +PRKAA1,ER Lumen,-0.256535615 +PNISR,ER Lumen,0.092463663 +ZRANB2,ER Lumen,-0.071022199 +KDM6B,ER Lumen,0.700236147 +GPS2,ER Lumen,0.521681873 +VPS13B,ER Lumen,0.099797166 +REEP2,ER Lumen,0.155255007 +PRMT7,ER Lumen,0.295302781 +PCED1A,ER Lumen,0.451876781 +PTPRA,ER Lumen,-0.124787183 +KIAA0907,ER Lumen,0.355930443 +DCAF8,ER Lumen,-0.127495925 +IGHMBP2,ER Lumen,0.187267182 +LPIN3,ER Lumen,0.557901118 +SERINC3,ER Lumen,-0.022399024 +FBXO44,ER Lumen,0.526462474 +USPL1,ER Lumen,0.017121142 +XPO4,ER Lumen,-0.218236813 +SCO1,ER Lumen,-0.224603513 +MPRIP,ER Lumen,0.037088531 +DSTYK,ER Lumen,-0.28000664 +SLC41A1,ER Lumen,-0.093669138 +GPALPP1,ER Lumen,-0.218139352 +IRS4,ER Lumen,0.091672465 +FAM104A,ER Lumen,0.198413791 +SLC39A11,ER Lumen,-0.321583183 +EPHB2,ER Lumen,0.089569225 +SRRM1,ER Lumen,0.068321011 +SUV420H2,ER Lumen,0.42295518 +WDR74,ER Lumen,0.090994443 +RTN3,ER Lumen,-0.119686472 +MORC2,ER Lumen,0.04004945 +LARGE,ER Lumen,0.148175521 +ADCK2,ER Lumen,-0.011705108 +AGAP3,ER Lumen,0.177480961 +KRBA1,ER Lumen,0.402820044 +ZNF767,ER Lumen,0.375174963 +ATP13A3,ER Lumen,-0.00910858 +TMEM254,ER Lumen,-0.015898413 +TMTC1,ER Lumen,-0.129061422 +KRAS,ER Lumen,-0.219191326 +SWAP70,ER Lumen,-0.423753018 +ZFC3H1,ER Lumen,-0.092765852 +TEX15,ER Lumen,-0.131100285 +CTIF,ER Lumen,0.353478272 +VHL,ER Lumen,-0.164618199 +ARL8B,ER Lumen,-0.014935633 +EDEM1,ER Lumen,0.002565975 +PRPF38B,ER Lumen,-0.015807759 +SORT1,ER Lumen,-0.012457746 +PTGFRN,ER Lumen,0.184017829 +NOTCH2,ER Lumen,-0.107724333 +CEPT1,ER Lumen,-0.189501101 +AP4B1,ER Lumen,-0.034607202 +SPIRE1,ER Lumen,0.004566242 +SLC38A2,ER Lumen,0.162944797 +KIDINS220,ER Lumen,-0.063787132 +ROCK2,ER Lumen,-0.179151921 +LPIN1,ER Lumen,0.201908988 +IL6ST,ER Lumen,0.057269911 +TMEM241,ER Lumen,-0.165317734 +LRP4,ER Lumen,0.120088307 +DDB2,ER Lumen,0.151162908 +ACP2,ER Lumen,0.320393096 +AGO4,ER Lumen,-0.099161782 +HOOK1,ER Lumen,-0.212641058 +DSC2,ER Lumen,-0.13616119 +DSC3,ER Lumen,-0.212616918 +DTNA,ER Lumen,-0.406945608 +FHOD3,ER Lumen,-0.033603338 +FADS2,ER Lumen,0.457358928 +CLOCK,ER Lumen,-0.000691981 +COL4A2,ER Lumen,0.20978089 +DZIP1,ER Lumen,-0.148769668 +UBAC2,ER Lumen,0.015321432 +ARGLU1,ER Lumen,0.212243747 +BIVM,ER Lumen,-0.34019494 +ARHGAP32,ER Lumen,0.017729738 +TMED7,ER Lumen,0.090656295 +APC,ER Lumen,-0.190022821 +WDR36,ER Lumen,-0.221790037 +NAA35,ER Lumen,-0.323443493 +TMEM2,ER Lumen,0.068945871 +GOLM1,ER Lumen,-0.01398682 +TAOK3,ER Lumen,-0.418465833 +DMTF1,ER Lumen,-0.003879196 +TMEM243,ER Lumen,-0.056042387 +PNPLA8,ER Lumen,-0.309285672 +MDFIC,ER Lumen,0.043621712 +ANKRD6,ER Lumen,-0.047434264 +KIAA1009,ER Lumen,-0.37447024 +SNX14,ER Lumen,-0.273198689 +EPHA7,ER Lumen,0.042652409 +DNAJC14,ER Lumen,-0.038942107 +GDF11,ER Lumen,-0.040322725 +TROAP,ER Lumen,0.387939405 +TSPAN31,ER Lumen,-0.162147886 +TFCP2,ER Lumen,-0.145134981 +PAN2,ER Lumen,0.381451358 +HNRNPA1,ER Lumen,0.038460111 +ACVR1B,ER Lumen,0.127655521 +OS9,ER Lumen,0.041142206 +MAP7,ER Lumen,-0.256083708 +CD164,ER Lumen,0.10258295 +NHSL1,ER Lumen,0.667572708 +AHI1,ER Lumen,-0.257867424 +SEMA4F,ER Lumen,-0.032935306 +RAB11FIP5,ER Lumen,0.258202719 +CCDC142,ER Lumen,0.770284233 +GNS,ER Lumen,-0.143618781 +MDM2,ER Lumen,-0.189179298 +KLHL36,ER Lumen,0.176788478 +DYNC1LI2,ER Lumen,-0.039425742 +EGLN1,ER Lumen,-0.038523958 +ABCB10,ER Lumen,-0.511049142 +TAF5L,ER Lumen,-0.217091588 +STX6,ER Lumen,-0.445588761 +CEP350,ER Lumen,-0.089770751 +LAMC1,ER Lumen,0.00663349 +RC3H1,ER Lumen,-0.132628946 +TTLL4,ER Lumen,-0.008676795 +USP37,ER Lumen,-0.28209875 +ITM2C,ER Lumen,0.190138884 +SERPINE2,ER Lumen,-0.123046591 +TMEM127,ER Lumen,0.20170102 +GCC2,ER Lumen,-0.429838075 +C2orf49,ER Lumen,-0.317120494 +EPC2,ER Lumen,-0.248265086 +ARHGEF4,ER Lumen,0.146790012 +ALDH1L2,ER Lumen,-0.312719901 +CKAP4,ER Lumen,-0.001296289 +NEK3,ER Lumen,-0.260433199 +RCBTB1,ER Lumen,-0.179228081 +COG3,ER Lumen,0.090974727 +SCRN1,ER Lumen,-0.040987618 +CHST12,ER Lumen,0.554937709 +KDELR2,ER Lumen,0.002730533 +NUPL2,ER Lumen,-0.047063881 +DBNL,ER Lumen,0.267155439 +TTYH3,ER Lumen,0.516577264 +IREB2,ER Lumen,-0.329739591 +RSAD1,ER Lumen,0.095082623 +VEZF1,ER Lumen,0.058692235 +TEX2,ER Lumen,-0.004881514 +BRIP1,ER Lumen,-0.171198252 +SKIL,ER Lumen,0.04544839 +RPS6KC1,ER Lumen,-0.290759394 +BIN1,ER Lumen,0.044801038 +HS6ST1,ER Lumen,0.372267249 +UGGT1,ER Lumen,-0.150317525 +DNAJC1,ER Lumen,-0.274871865 +LRRC8A,ER Lumen,0.478357497 +CDK9,ER Lumen,0.360402321 +TOR1B,ER Lumen,0.169762133 +SMC2,ER Lumen,-0.400784734 +TOR1A,ER Lumen,-0.126419481 +RALGPS1,ER Lumen,0.245760769 +FAM129B,ER Lumen,0.429394446 +SLC2A8,ER Lumen,0.271280356 +SLC31A1,ER Lumen,-0.215786076 +ZNF189,ER Lumen,-0.088583083 +STX17,ER Lumen,-0.108917388 +TSTD2,ER Lumen,-0.026962398 +LMX1B,ER Lumen,0.134618339 +RANBP6,ER Lumen,0.193966072 +TLN1,ER Lumen,0.254900115 +ALDH1B1,ER Lumen,-0.107982559 +CNPY3,ER Lumen,0.07156789 +TMEM63B,ER Lumen,0.279673109 +TJAP1,ER Lumen,0.427432159 +SLC22A23,ER Lumen,0.427244435 +FOXF2,ER Lumen,0.249807296 +RIPK1,ER Lumen,-0.267162442 +ATAT1,ER Lumen,0.277113639 +NRM,ER Lumen,0.271369812 +VARS2,ER Lumen,0.399274702 +FAM8A1,ER Lumen,-0.170635609 +PRKRIR,ER Lumen,-0.104187041 +CREBZF,ER Lumen,0.078371746 +PRCP,ER Lumen,-0.177776685 +RNF121,ER Lumen,0.27317368 +SULF1,ER Lumen,-0.035782351 +SORL1,ER Lumen,-0.674490437 +YAP1,ER Lumen,-0.035912206 +RDX,ER Lumen,-0.237891492 +MAP2K5,ER Lumen,-0.117158683 +MAPKBP1,ER Lumen,-0.032380213 +CASC5,ER Lumen,-0.314271116 +HAUS2,ER Lumen,0.064521246 +PARP6,ER Lumen,0.001513193 +TUBGCP4,ER Lumen,0.018292993 +RMDN3,ER Lumen,0.207224842 +UACA,ER Lumen,-0.371604317 +SMAD6,ER Lumen,0.146084524 +ADAM10,ER Lumen,-0.198168468 +TTLL7,ER Lumen,-0.231403094 +FNBP1L,ER Lumen,-0.069156734 +RABGGTB,ER Lumen,0.105567413 +ARHGAP29,ER Lumen,-0.231864885 +SLC44A5,ER Lumen,0.337187563 +DBT,ER Lumen,-0.274631779 +EPT1,ER Lumen,-0.168785638 +ADCY3,ER Lumen,0.215076419 +PNPT1,ER Lumen,-0.305211156 +THUMPD2,ER Lumen,-0.426778514 +PREPL,ER Lumen,-0.27670213 +ACTR1A,ER Lumen,0.020900525 +TMEM180,ER Lumen,0.38031957 +ATAD1,ER Lumen,-0.286177946 +KIF20B,ER Lumen,-0.332193668 +TET1,ER Lumen,-0.274841907 +DNA2,ER Lumen,-0.053768841 +BARD1,ER Lumen,-0.083799004 +NAB1,ER Lumen,-0.064019322 +PPIG,ER Lumen,-0.412219717 +FASTKD1,ER Lumen,-0.006954293 +SSFA2,ER Lumen,-0.058042958 +ITGAV,ER Lumen,-0.00027871 +SLC35A5,ER Lumen,-0.340899634 +SECISBP2L,ER Lumen,-0.241362809 +SPPL2A,ER Lumen,0.047419068 +GLCE,ER Lumen,-0.136646226 +PPCDC,ER Lumen,0.072168773 +PCDH10,ER Lumen,0.480335231 +AP1AR,ER Lumen,-0.450444722 +FGF2,ER Lumen,-0.362435173 +KIAA1109,ER Lumen,-0.022472635 +LARP1B,ER Lumen,-0.159646284 +BMP2K,ER Lumen,0.041455598 +FRAS1,ER Lumen,-0.045541614 +SCARB2,ER Lumen,-0.177819999 +USO1,ER Lumen,-0.284051589 +CENPE,ER Lumen,-0.294795863 +GSTCD,ER Lumen,-0.050560636 +LEF1,ER Lumen,0.00769443 +PPP3CA,ER Lumen,-0.355930225 +FBN2,ER Lumen,-0.163948772 +MAPK8IP3,ER Lumen,0.955208943 +B4GALNT3,ER Lumen,-0.03232694 +AEBP2,ER Lumen,-0.201316233 +ETNK1,ER Lumen,0.029066267 +CLSTN3,ER Lumen,0.38572674 +SCAF11,ER Lumen,-0.164811769 +COL2A1,ER Lumen,0.65327601 +LRIG3,ER Lumen,0.012709437 +TMEM19,ER Lumen,-0.099139161 +POC1B,ER Lumen,-0.107389686 +TMTC3,ER Lumen,-0.027701269 +GAS2L3,ER Lumen,0.085359872 +SLC15A4,ER Lumen,0.013844263 +TDG,ER Lumen,-0.149653185 +NUPL1,ER Lumen,-0.14914749 +MTMR6,ER Lumen,-0.064353739 +SLC7A1,ER Lumen,0.12336789 +BRCA2,ER Lumen,-0.341046637 +CERS5,ER Lumen,-0.235703151 +ESYT1,ER Lumen,0.061349351 +TMBIM6,ER Lumen,-0.035863304 +ANKRD52,ER Lumen,0.150384617 +ZNF740,ER Lumen,-0.129842869 +HNRNPA1L2,ER Lumen,-0.070447204 +SBNO1,ER Lumen,-0.174282379 +SETD1B,ER Lumen,0.532599757 +RBM26,ER Lumen,-0.180087154 +ZIC5,ER Lumen,0.134762233 +TMX1,ER Lumen,-0.308784973 +NAA30,ER Lumen,0.00185763 +DCAF5,ER Lumen,0.152970171 +RAB15,ER Lumen,0.059554991 +NIPA2,ER Lumen,-0.221557818 +ZSCAN29,ER Lumen,-0.078453182 +BNIP2,ER Lumen,-0.025721415 +MAN2C1,ER Lumen,0.637912722 +MESDC1,ER Lumen,0.249686605 +IGF1R,ER Lumen,-0.131217847 +ARRDC4,ER Lumen,-0.195653652 +PML,ER Lumen,0.064093895 +LINS,ER Lumen,0.054292259 +PCSK6,ER Lumen,0.031237742 +SCAMP2,ER Lumen,0.178582179 +POLG,ER Lumen,0.087880458 +ABHD2,ER Lumen,-0.03370079 +TICRR,ER Lumen,0.03500162 +MFGE8,ER Lumen,0.328731187 +FURIN,ER Lumen,0.364751111 +IQGAP1,ER Lumen,-0.233864089 +CRTC3,ER Lumen,0.119957114 +FTO,ER Lumen,-0.017980385 +MBTPS1,ER Lumen,-0.007508825 +RHOT2,ER Lumen,0.622454081 +PDPK1,ER Lumen,0.05301276 +TCF25,ER Lumen,0.189476373 +GALNS,ER Lumen,0.420885391 +GAS8,ER Lumen,0.040361581 +MED9,ER Lumen,0.218260231 +GID4,ER Lumen,-0.268133553 +KSR1,ER Lumen,0.24801792 +SGSM2,ER Lumen,0.473580782 +SSH2,ER Lumen,0.056446222 +PTRH2,ER Lumen,-0.154274105 +SS18,ER Lumen,-0.100436934 +SLC39A6,ER Lumen,-0.065786879 +GALNT1,ER Lumen,-0.212040276 +ESCO1,ER Lumen,-0.252701601 +GREB1L,ER Lumen,-0.052823855 +NPC1,ER Lumen,-0.086360023 +MINK1,ER Lumen,0.179614518 +TTYH2,ER Lumen,-0.293677511 +CSNK1D,ER Lumen,0.229361887 +FOXK2,ER Lumen,0.22602174 +TRIM65,ER Lumen,0.047935999 +RNF157,ER Lumen,0.100188854 +CBX4,ER Lumen,0.452459619 +MBD1,ER Lumen,0.324577494 +ZCCHC2,ER Lumen,-0.060900965 +LEPREL4,ER Lumen,0.287561997 +FAM134C,ER Lumen,-0.011469765 +ERBB2,ER Lumen,0.232792926 +FKBP10,ER Lumen,0.083295309 +PRDM15,ER Lumen,0.173948061 +DUS3L,ER Lumen,0.323089812 +ATHL1,ER Lumen,0.906000626 +COL6A1,ER Lumen,0.8525043 +IFNAR1,ER Lumen,-0.220141825 +COL6A2,ER Lumen,1.324621053 +TMEM50B,ER Lumen,0.029448679 +APP,ER Lumen,-0.016869996 +URB1,ER Lumen,0.125425322 +CAPN10,ER Lumen,0.753475018 +ERVK3-1,ER Lumen,0.373761051 +SLC47A1,ER Lumen,-0.076977194 +RERE,ER Lumen,0.443771975 +EPHA2,ER Lumen,0.599544993 +KIAA0319L,ER Lumen,0.041107268 +PLK4,ER Lumen,-0.205754827 +GPN2,ER Lumen,0.029146307 +PIGK,ER Lumen,-0.154877262 +PTPRF,ER Lumen,0.239040366 +SYPL2,ER Lumen,-0.275989179 +IGSF3,ER Lumen,0.073839776 +CELSR2,ER Lumen,0.494793983 +ATP1B1,ER Lumen,-0.295153832 +CREG1,ER Lumen,-0.201101457 +POU2F1,ER Lumen,-0.064713435 +PPOX,ER Lumen,0.303205432 +USP21,ER Lumen,0.068683844 +PIGM,ER Lumen,0.075053219 +ABL2,ER Lumen,-0.376278126 +XPR1,ER Lumen,-0.165451675 +TOR1AIP1,ER Lumen,-0.309117169 +TUFT1,ER Lumen,0.301681365 +TARS2,ER Lumen,-0.035511401 +CERS2,ER Lumen,0.092719162 +SEMA6C,ER Lumen,0.60401176 +ATP8B2,ER Lumen,0.105947084 +ADAM15,ER Lumen,0.410291283 +SLC39A1,ER Lumen,0.299006786 +GATAD2B,ER Lumen,-0.167032887 +HCN3,ER Lumen,0.024583439 +GALNT2,ER Lumen,0.238006108 +TTC13,ER Lumen,-0.327756595 +MLK4,ER Lumen,0.029688032 +CEP170,ER Lumen,-0.444488282 +SDE2,ER Lumen,-0.19243745 +FBXO28,ER Lumen,-0.293972109 +CDC42BPA,ER Lumen,-0.050068737 +MBOAT2,ER Lumen,0.108020878 +PSEN2,ER Lumen,0.069020895 +LBR,ER Lumen,-0.237957147 +RHOB,ER Lumen,0.071935981 +ASXL2,ER Lumen,-0.046185205 +ETAA1,ER Lumen,0.129578868 +ZNF514,ER Lumen,0.213653657 +SFXN5,ER Lumen,0.584215052 +TEX261,ER Lumen,0.016924433 +RALB,ER Lumen,-0.043460848 +SLC20A1,ER Lumen,0.076601672 +ZC3H8,ER Lumen,-0.07767718 +UBXN4,ER Lumen,-0.186197318 +AMMECR1L,ER Lumen,-0.15801282 +GALNT13,ER Lumen,-0.465972378 +SCRN3,ER Lumen,-0.109842703 +KIAA1715,ER Lumen,-0.09581142 +CDCA7,ER Lumen,-0.191452552 +DLX1,ER Lumen,0.308809137 +GULP1,ER Lumen,-0.11295021 +FAM171B,ER Lumen,-0.270924775 +CCDC150,ER Lumen,-0.065830189 +SUMF1,ER Lumen,-0.127177109 +RHBDD1,ER Lumen,0.000194756 +FAM134A,ER Lumen,0.114731197 +CTDSP1,ER Lumen,0.265637877 +EAF1,ER Lumen,-0.171486637 +GOLGA4,ER Lumen,-0.069709274 +IQSEC1,ER Lumen,0.260651335 +PTPRG,ER Lumen,0.210569938 +IL17RD,ER Lumen,-0.406671268 +ARL6IP5,ER Lumen,-0.218314564 +TMF1,ER Lumen,-0.26154916 +LRIG1,ER Lumen,0.191584894 +LIMD1,ER Lumen,-0.089071613 +NXPE3,ER Lumen,-0.018132353 +SRPRB,ER Lumen,-0.073965145 +TCTA,ER Lumen,-0.115680465 +VPRBP,ER Lumen,-0.085267919 +SLIT2,ER Lumen,-0.079443486 +DGKQ,ER Lumen,0.530787355 +ATP10D,ER Lumen,-0.142787488 +SCD5,ER Lumen,0.187714018 +ENOPH1,ER Lumen,-0.107893197 +TRMT10A,ER Lumen,-0.355472997 +KLHL8,ER Lumen,-0.345157363 +USP53,ER Lumen,-0.436962672 +MARCH6,ER Lumen,0.04617897 +FAM105A,ER Lumen,0.089710035 +PIK3R1,ER Lumen,0.062876237 +LHFPL2,ER Lumen,0.053840673 +IQGAP2,ER Lumen,-0.330079118 +PPIP5K2,ER Lumen,-0.224756612 +PAM,ER Lumen,-0.187460614 +BDP1,ER Lumen,-0.285039653 +SLC30A5,ER Lumen,-0.016848775 +ATG12,ER Lumen,0.040397427 +YIPF5,ER Lumen,0.0164476 +RNF145,ER Lumen,-0.014774229 +FBXO38,ER Lumen,-0.274281198 +PCYOX1L,ER Lumen,0.117318164 +TNIP1,ER Lumen,0.030515008 +ZNF300,ER Lumen,-0.069253738 +GFOD1,ER Lumen,-0.029122918 +TRIM41,ER Lumen,0.220493726 +FAM193B,ER Lumen,0.462994172 +RNF44,ER Lumen,0.365602096 +MUT,ER Lumen,-0.321098235 +PHIP,ER Lumen,-0.214329372 +MMS22L,ER Lumen,-0.155545508 +PM20D2,ER Lumen,-0.314883711 +RNF217,ER Lumen,0.239369255 +AIG1,ER Lumen,-0.205060031 +TMEM181,ER Lumen,-0.199491506 +SDK1,ER Lumen,0.056963021 +RBAK,ER Lumen,-0.285666117 +CREB5,ER Lumen,-0.065418526 +PURB,ER Lumen,-0.151757553 +GBAS,ER Lumen,-0.455768398 +ZNF92,ER Lumen,0.045615758 +TMEM168,ER Lumen,-0.134063374 +C7orf43,ER Lumen,0.588772285 +SLC12A9,ER Lumen,0.408223888 +GIGYF1,ER Lumen,0.554862698 +TMEM209,ER Lumen,-0.32806947 +NOM1,ER Lumen,-0.127653372 +SH3KBP1,ER Lumen,-0.14368177 +CASK,ER Lumen,-0.058295996 +SLC16A2,ER Lumen,-0.03485559 +OGT,ER Lumen,0.189245457 +ZNF711,ER Lumen,-0.337151828 +DIAPH2,ER Lumen,0.151860053 +CXorf57,ER Lumen,0.06812291 +GPC3,ER Lumen,0.154538587 +BIN3,ER Lumen,0.146898954 +SLC25A37,ER Lumen,0.612117068 +CHMP7,ER Lumen,-0.162670417 +ERLIN2,ER Lumen,-0.150732037 +TACC1,ER Lumen,-0.043482014 +WHSC1L1,ER Lumen,-0.186772166 +TERF1,ER Lumen,-0.231628432 +MTDH,ER Lumen,-0.165537559 +LRP12,ER Lumen,-0.590090226 +EBAG9,ER Lumen,-0.097246718 +UTP23,ER Lumen,-0.359602158 +ZNF7,ER Lumen,0.199045795 +ARHGAP39,ER Lumen,0.581113381 +NAPRT1,ER Lumen,0.547248415 +UHRF2,ER Lumen,-0.000486598 +ZCCHC7,ER Lumen,-0.210876208 +SIGMAR1,ER Lumen,0.066433158 +CEP78,ER Lumen,-0.10964548 +HIATL1,ER Lumen,-0.093607934 +INIP,ER Lumen,-0.106822738 +UGCG,ER Lumen,0.223392751 +STOM,ER Lumen,0.05805322 +MRRF,ER Lumen,-0.101439237 +NR6A1,ER Lumen,-0.482768615 +SURF4,ER Lumen,0.215497282 +MED22,ER Lumen,0.31813963 +SH3GLB2,ER Lumen,0.698044107 +FAM73B,ER Lumen,0.459730033 +GPR107,ER Lumen,-0.042491788 +C9orf142,ER Lumen,0.760515035 +INPP5E,ER Lumen,0.570311701 +DPH7,ER Lumen,0.062140207 +NOTCH1,ER Lumen,1.100295503 +NACC2,ER Lumen,0.492533084 +USP6NL,ER Lumen,-0.206246164 +FAM171A1,ER Lumen,-0.127316854 +PARD3,ER Lumen,0.011616015 +POLR3A,ER Lumen,-0.151689089 +FRA10AC1,ER Lumen,-0.184445959 +ADD3,ER Lumen,-0.07297797 +DNAJB12,ER Lumen,0.301521375 +EIF4EBP2,ER Lumen,-0.185762962 +MKI67,ER Lumen,0.036818473 +MTG1,ER Lumen,0.400152382 +PPRC1,ER Lumen,0.124609994 +ITPRIP,ER Lumen,0.202450141 +CNNM2,ER Lumen,0.221037878 +PDCD11,ER Lumen,0.007093209 +LIN7C,ER Lumen,-0.176001274 +DGKZ,ER Lumen,0.492020121 +TNKS1BP1,ER Lumen,0.325499132 +SLC43A1,ER Lumen,-0.141421135 +PTPRJ,ER Lumen,-0.208752073 +CELF1,ER Lumen,-0.039057029 +SESN3,ER Lumen,-0.166703956 +ENDOD1,ER Lumen,0.02096248 +SERPINH1,ER Lumen,0.51788467 +NCAM1,ER Lumen,0.150610098 +NPAT,ER Lumen,-0.027259541 +ATM,ER Lumen,-0.066186606 +GLB1L2,ER Lumen,0.088942533 +HYOU1,ER Lumen,0.20101495 +DAK,ER Lumen,0.259520928 +TMEM138,ER Lumen,0.386828918 +FADS1,ER Lumen,-0.06226409 +EML3,ER Lumen,0.412131389 +B3GAT3,ER Lumen,0.547766054 +SIDT2,ER Lumen,0.049057226 +SOGA1,ER Lumen,0.217648253 +LSM14B,ER Lumen,0.232797889 +ORAOV1,ER Lumen,0.353943034 +TAOK2,ER Lumen,0.521793065 +ITGB1,ER Lumen,-0.145668988 +ARID5B,ER Lumen,-0.402874207 +TMCO3,ER Lumen,0.195397888 +LATS2,ER Lumen,-0.386689031 +LPHN3,ER Lumen,0.205700087 +PRSS23,ER Lumen,0.101140122 +PIP4K2A,ER Lumen,-0.100633908 +FREM2,ER Lumen,-0.085432228 +CRIM1,ER Lumen,-0.043429 +IPMK,ER Lumen,-0.180183147 +PLBD2,ER Lumen,-0.12182524 +GXYLT1,ER Lumen,-0.132384037 +CSNK1G3,ER Lumen,0.036160718 +MIPOL1,ER Lumen,-0.380216336 +EXT2,ER Lumen,0.065960892 +TMEM18,ER Lumen,0.054836727 +NEK7,ER Lumen,-0.268774175 +FER,ER Lumen,-0.045491234 +VIPAS39,ER Lumen,-0.031837695 +ANKRD50,ER Lumen,-0.042956327 +UPF2,ER Lumen,-0.232740755 +EPS8,ER Lumen,-0.304183343 +FAM160B1,ER Lumen,0.304356935 +ADAM17,ER Lumen,-0.118752017 +WWC2,ER Lumen,-0.189121633 +BICD1,ER Lumen,0.058342581 +NBAS,ER Lumen,-0.156325201 +GUF1,ER Lumen,-0.176681985 +SACS,ER Lumen,0.035462138 +PABPC3,ER Lumen,-0.116574877 +DST,ER Lumen,0.04842266 +TIAL1,ER Lumen,-0.011727685 +TMEM56,ER Lumen,-0.316734231 +FAM168B,ER Lumen,-0.210448955 +AC093838.4,ER Lumen,0.27528931 +MGAT5,ER Lumen,0.197888812 +GPATCH11,ER Lumen,-0.279070547 +POU4F1,ER Lumen,-0.032312649 +RNF219,ER Lumen,-0.0669405 +EPG5,ER Lumen,0.132698299 +C18orf25,ER Lumen,0.118766475 +PDK1,ER Lumen,-0.216671084 +PDE3B,ER Lumen,0.027611038 +TGOLN2,ER Lumen,0.101878494 +UHMK1,ER Lumen,-0.019627511 +TADA1,ER Lumen,-0.234884299 +CWF19L2,ER Lumen,-0.422530764 +JMY,ER Lumen,-0.061397206 +HOMER1,ER Lumen,-0.043043766 +USP12,ER Lumen,-0.282016889 +CCDC50,ER Lumen,-0.184564792 +PAN3,ER Lumen,-0.255222846 +TMEM123,ER Lumen,-0.283309413 +GJA1,ER Lumen,-0.105177528 +SLC30A6,ER Lumen,-0.439676852 +SAR1B,ER Lumen,-0.212053372 +GPR180,ER Lumen,-0.022165956 +UTRN,ER Lumen,-0.133146142 +PTPRK,ER Lumen,0.094455259 +PLOD2,ER Lumen,-0.238033162 +GPR125,ER Lumen,-0.049389549 +SREK1IP1,ER Lumen,0.008585056 +TXNDC11,ER Lumen,0.191390202 +BCL2L11,ER Lumen,0.141879886 +CLGN,ER Lumen,-0.377149922 +RASSF3,ER Lumen,0.061931291 +RANBP2,ER Lumen,-0.269488253 +TMEM87B,ER Lumen,0.191662631 +RBMS1,ER Lumen,-0.082545633 +LPCAT1,ER Lumen,0.219053654 +UBALD1,ER Lumen,0.691388321 +RMND5A,ER Lumen,-0.085954481 +ZDHHC7,ER Lumen,0.082834941 +TRIP12,ER Lumen,-0.247800215 +CEBPG,ER Lumen,-0.058471975 +SREK1,ER Lumen,-0.219026236 +CHD1,ER Lumen,-0.192295976 +DGKE,ER Lumen,0.049272805 +HS2ST1,ER Lumen,-0.205312505 +MSI2,ER Lumen,-0.334637049 +CACNA2D1,ER Lumen,-0.170323302 +NUS1,ER Lumen,-0.234490796 +IMPACT,ER Lumen,-0.636569305 +TBCEL,ER Lumen,0.106867092 +FAM105B,ER Lumen,-0.019755636 +TBRG1,ER Lumen,-0.037890504 +CC2D1B,ER Lumen,0.304229698 +MIA3,ER Lumen,-0.163537748 +TRIM11,ER Lumen,0.156252629 +CCSAP,ER Lumen,-0.319046181 +CXADR,ER Lumen,-0.147948182 +GABPA,ER Lumen,-0.131876103 +ADAMTS1,ER Lumen,0.370134875 +TSEN2,ER Lumen,-0.005710536 +FLCN,ER Lumen,0.186089254 +SKA1,ER Lumen,-0.043970241 +RAB6B,ER Lumen,-0.03223018 +ACSS1,ER Lumen,0.160213156 +ANKRD40,ER Lumen,-0.012978551 +VOPP1,ER Lumen,-0.170393862 +APOOL,ER Lumen,-0.232666402 +CYP2U1,ER Lumen,-0.128472304 +AGPAT5,ER Lumen,-0.183437602 +MARVELD1,ER Lumen,-0.148076595 +ZFYVE27,ER Lumen,0.342577663 +SLC25A28,ER Lumen,0.555280959 +HSPA13,ER Lumen,-0.097678072 +USP25,ER Lumen,-0.195426712 +RHOC,ER Lumen,0.38619857 +SLC16A1,ER Lumen,-0.12638475 +LARP1,ER Lumen,-0.065055073 +MIER3,ER Lumen,-0.128971026 +ZKSCAN2,ER Lumen,-0.107086836 +PDIA4,ER Lumen,0.146608581 +FAM126B,ER Lumen,0.106913255 +FZD7,ER Lumen,0.089898065 +FMN2,ER Lumen,0.499169705 +PPARGC1B,ER Lumen,-0.055458689 +SLC26A2,ER Lumen,-0.087434424 +LSM11,ER Lumen,-0.073148157 +PSD3,ER Lumen,0.037262855 +DCK,ER Lumen,-0.104364924 +ADAMTS3,ER Lumen,0.352446854 +DPY19L4,ER Lumen,0.022232575 +NDUFAF6,ER Lumen,0.303037696 +N6AMT1,ER Lumen,0.255710542 +CDK20,ER Lumen,0.161239607 +PCGF6,ER Lumen,-0.38474824 +ANKRD9,ER Lumen,0.450839773 +SFXN2,ER Lumen,0.150995472 +PTDSS1,ER Lumen,-0.084449757 +SUPV3L1,ER Lumen,-0.21681905 +TYSND1,ER Lumen,0.301726269 +CD109,ER Lumen,-0.302119127 +ZDHHC5,ER Lumen,0.136817895 +ZFAND3,ER Lumen,0.162040345 +NPTN,ER Lumen,0.08464965 +KAT6B,ER Lumen,-0.155528346 +SAMD8,ER Lumen,-0.232109702 +BAG4,ER Lumen,-0.274381266 +ATAD2,ER Lumen,-0.259484203 +PHKG2,ER Lumen,0.194514484 +SASS6,ER Lumen,-0.165974081 +ZIC3,ER Lumen,0.431850179 +EXOG,ER Lumen,-0.022030812 +SMG1,ER Lumen,0.186107995 +FCHO2,ER Lumen,-0.140468731 +C1orf27,ER Lumen,-0.204684228 +LRP8,ER Lumen,0.351942515 +PAXIP1,ER Lumen,-0.101755828 +SSBP3,ER Lumen,-0.082404391 +CLDN12,ER Lumen,-0.033626313 +GATAD1,ER Lumen,-0.110993263 +ST3GAL2,ER Lumen,0.161893094 +FUK,ER Lumen,0.389696318 +KIT,ER Lumen,-0.225061923 +AASDH,ER Lumen,-0.470415379 +DYRK1A,ER Lumen,-0.003537585 +TSPAN18,ER Lumen,-0.390362328 +SLC35B2,ER Lumen,0.104547711 +TMEM164,ER Lumen,-0.093062125 +TAB3,ER Lumen,-0.173325532 +SLC38A10,ER Lumen,0.636663326 +ZNF618,ER Lumen,0.026686061 +C9orf91,ER Lumen,-0.093971099 +UBN2,ER Lumen,-0.104256904 +BRAF,ER Lumen,-0.289546384 +SLC37A3,ER Lumen,-0.132052211 +DPYSL5,ER Lumen,0.177485652 +FAM213B,ER Lumen,0.536564886 +C12orf43,ER Lumen,-0.088272261 +RER1,ER Lumen,0.092152627 +UBXN11,ER Lumen,0.619360257 +RHPN1,ER Lumen,1.287185187 +CNNM4,ER Lumen,-0.132557872 +EYA3,ER Lumen,-0.071525144 +MRAS,ER Lumen,-0.272408167 +COLEC12,ER Lumen,0.360073827 +CUL4B,ER Lumen,-0.174356079 +MITD1,ER Lumen,-0.386719586 +EIF5B,ER Lumen,-0.391431185 +TSPAN33,ER Lumen,-0.005087721 +AHCYL2,ER Lumen,0.181314688 +B4GALT5,ER Lumen,0.108687954 +TSR2,ER Lumen,0.104600032 +ZC3H18,ER Lumen,0.155441253 +TMED4,ER Lumen,0.12038728 +PPP1R15B,ER Lumen,0.086180861 +AGPAT6,ER Lumen,-0.102044991 +ZSCAN12,ER Lumen,0.315399692 +ELK4,ER Lumen,0.029617581 +F11R,ER Lumen,-0.258826317 +ZNF276,ER Lumen,0.419473308 +PINK1,ER Lumen,0.165805665 +B4GALT3,ER Lumen,-0.07201949 +FAM160B2,ER Lumen,0.655211993 +CACHD1,ER Lumen,0.052150418 +PAXBP1,ER Lumen,0.10910587 +IFNAR2,ER Lumen,-0.240281702 +SON,ER Lumen,0.058748519 +SV2A,ER Lumen,0.341785114 +HLCS,ER Lumen,-0.188848255 +ADPGK,ER Lumen,0.033357437 +ALDH4A1,ER Lumen,-0.244767478 +STARD9,ER Lumen,-0.050365242 +UBR1,ER Lumen,0.059603907 +AMFR,ER Lumen,-0.110565169 +RSPRY1,ER Lumen,-0.290176269 +ARHGAP35,ER Lumen,-0.064342267 +CALM3,ER Lumen,0.139980712 +IQCC,ER Lumen,0.059885878 +BSDC1,ER Lumen,0.213929988 +ATAD3B,ER Lumen,0.696024658 +VMA21,ER Lumen,-0.268584909 +WDR4,ER Lumen,0.076282983 +CBS,ER Lumen,0.128610745 +PDXK,ER Lumen,0.031379887 +G6PD,ER Lumen,0.189083524 +AGPAT3,ER Lumen,0.25191257 +C21orf2,ER Lumen,0.272103208 +LRRC3,ER Lumen,0.177455684 +LSS,ER Lumen,0.346351679 +VAV2,ER Lumen,0.203411029 +MCM3AP,ER Lumen,0.062162706 +C21orf58,ER Lumen,0.313898299 +PCNT,ER Lumen,0.199493435 +DIP2A,ER Lumen,-0.113207227 +ZNF714,ER Lumen,-0.389988292 +PKN3,ER Lumen,0.32087778 +TAOK1,ER Lumen,-0.15676882 +SIK3,ER Lumen,-0.104933041 +PCSK7,ER Lumen,0.162522616 +CHTOP,ER Lumen,0.129768553 +ZBTB7B,ER Lumen,0.574626855 +NLRX1,ER Lumen,-0.031094991 +ANO10,ER Lumen,-0.137853464 +SLC25A44,ER Lumen,-0.007309909 +NBEAL2,ER Lumen,0.775517216 +IER2,ER Lumen,0.844101779 +ZNF394,ER Lumen,0.33047913 +CPSF4,ER Lumen,0.177642851 +TONSL,ER Lumen,0.70070302 +MUM1,ER Lumen,0.331842796 +RECQL4,ER Lumen,0.843857201 +LRRC14,ER Lumen,0.522056155 +PPP1R16A,ER Lumen,1.131095275 +C5orf45,ER Lumen,0.5145438 +MFSD12,ER Lumen,0.636308745 +FDXR,ER Lumen,0.462714532 +ALDH16A1,ER Lumen,0.288658213 +ITGA5,ER Lumen,0.005284448 +ZNF385A,ER Lumen,-0.113853816 +MPP3,ER Lumen,-0.208741408 +EMC10,ER Lumen,0.498538937 +FAM171A2,ER Lumen,0.59180114 +DBF4B,ER Lumen,0.117028692 +LARP4,ER Lumen,-0.216878852 +LEMD2,ER Lumen,0.260629692 +WDR90,ER Lumen,0.783396941 +C16orf59,ER Lumen,0.609423205 +AMDHD2,ER Lumen,0.718772322 +PAQR4,ER Lumen,0.379638216 +ADCY9,ER Lumen,0.216929787 +CLPB,ER Lumen,-0.049023122 +NEU3,ER Lumen,-0.02716585 +CYB561A3,ER Lumen,0.324381537 +TAF6L,ER Lumen,0.42727102 +LRP5,ER Lumen,0.613229933 +ZYG11B,ER Lumen,-0.228041201 +PPAP2B,ER Lumen,0.160887731 +PRKAA2,ER Lumen,-0.08447015 +KLHL21,ER Lumen,0.466456874 +GMEB1,ER Lumen,-0.43386669 +SEPN1,ER Lumen,0.231585814 +AK4,ER Lumen,-0.23038241 +RAVER2,ER Lumen,-0.179564972 +PDPN,ER Lumen,0.034073584 +SDC3,ER Lumen,0.029360304 +KIAA1522,ER Lumen,0.355845371 +C1orf86,ER Lumen,0.67135219 +NFIA,ER Lumen,-0.095734468 +OMA1,ER Lumen,-0.023200911 +MYSM1,ER Lumen,0.245551168 +FUBP1,ER Lumen,-0.1871153 +DNAJB4,ER Lumen,0.218807627 +FAM102B,ER Lumen,-0.540442506 +ATXN7L2,ER Lumen,0.149946568 +ZNF326,ER Lumen,-0.140843263 +EXTL2,ER Lumen,0.029447323 +SLC30A7,ER Lumen,0.013182109 +PEA15,ER Lumen,0.098816807 +NCSTN,ER Lumen,-0.007367817 +VANGL2,ER Lumen,0.014956664 +FLVCR1,ER Lumen,0.074701688 +RBM15,ER Lumen,0.036844538 +BPNT1,ER Lumen,-0.570617422 +BROX,ER Lumen,-0.512613473 +ACP6,ER Lumen,0.220280577 +PPP1R21,ER Lumen,-0.186215284 +B3GALNT2,ER Lumen,-0.08821538 +C2orf47,ER Lumen,-0.320077864 +ARL5A,ER Lumen,-0.257372738 +SGCB,ER Lumen,-0.072427509 +SMARCAD1,ER Lumen,-0.268614383 +RNF149,ER Lumen,-0.364067746 +FZD5,ER Lumen,0.343856278 +DCAF16,ER Lumen,-0.275327975 +PAQR3,ER Lumen,-0.397764322 +ANTXR2,ER Lumen,-0.163567311 +PBXIP1,ER Lumen,0.007896695 +PYGO2,ER Lumen,0.274473734 +HIPK1,ER Lumen,-0.06627704 +KBTBD8,ER Lumen,0.152074527 +EOGT,ER Lumen,-0.358746468 +POGLUT1,ER Lumen,-0.18104379 +ATP1A1,ER Lumen,-0.135509319 +EIF4E3,ER Lumen,-0.049276131 +LRRC58,ER Lumen,-0.273835866 +FSTL1,ER Lumen,-0.270137089 +KRTCAP2,ER Lumen,0.408873921 +KIAA1524,ER Lumen,0.068263449 +TGFBR2,ER Lumen,-0.074557521 +ANKZF1,ER Lumen,0.543330742 +STT3B,ER Lumen,-0.115073381 +PPM1L,ER Lumen,0.587660054 +RYBP,ER Lumen,0.165565975 +PPP4R2,ER Lumen,-0.399144675 +C3orf17,ER Lumen,-0.287238025 +SPICE1,ER Lumen,-0.276079225 +WDFY3,ER Lumen,0.066108027 +ATXN7,ER Lumen,-0.102774459 +PPM1K,ER Lumen,-0.199356297 +CCNL1,ER Lumen,0.292864829 +RPP14,ER Lumen,-0.079196314 +ABHD6,ER Lumen,0.180897063 +CRELD1,ER Lumen,0.608769465 +U2SURP,ER Lumen,-0.374546402 +TTC14,ER Lumen,0.006723223 +SNRK,ER Lumen,0.147733647 +SLC4A1AP,ER Lumen,-0.19258054 +ZDHHC3,ER Lumen,-0.028087278 +FYCO1,ER Lumen,0.240887992 +YEATS2,ER Lumen,0.048430026 +SNIP1,ER Lumen,-0.005578988 +TMEM41A,ER Lumen,0.173563244 +RPN1,ER Lumen,0.105032041 +SFMBT1,ER Lumen,0.056940298 +PBRM1,ER Lumen,-0.259873488 +FAM208A,ER Lumen,-0.328629698 +ARHGEF3,ER Lumen,-0.086073945 +UBXN7,ER Lumen,-0.17699248 +ZNF691,ER Lumen,0.176320153 +SGMS2,ER Lumen,0.018752826 +DNAJB14,ER Lumen,-0.236256715 +ZNF589,ER Lumen,-0.089880839 +SHISA5,ER Lumen,0.121785334 +INTU,ER Lumen,-0.076033082 +RNF123,ER Lumen,0.274979184 +MFSD8,ER Lumen,-0.147182318 +C4orf29,ER Lumen,-0.294294772 +RAD54L2,ER Lumen,-0.12069962 +MAP9,ER Lumen,-0.552819149 +CEP44,ER Lumen,-0.455619648 +ABCE1,ER Lumen,-0.262964813 +TMEM184C,ER Lumen,-0.00554496 +TMEM161B,ER Lumen,-0.251523319 +ELOVL7,ER Lumen,-0.056581534 +LMBRD2,ER Lumen,-0.262812607 +NIPBL,ER Lumen,-0.048070576 +SLC25A46,ER Lumen,-0.196977207 +STARD4,ER Lumen,0.161030048 +PGGT1B,ER Lumen,-0.433943622 +NDUFS4,ER Lumen,-0.162641026 +ARSK,ER Lumen,-0.119056264 +GPX8,ER Lumen,-0.185184069 +SERINC5,ER Lumen,0.171119691 +GFM2,ER Lumen,-0.062650434 +CCDC127,ER Lumen,0.06869879 +SEPT8,ER Lumen,-0.019324041 +DCBLD1,ER Lumen,-0.12896133 +PDSS2,ER Lumen,-0.171855345 +STXBP5,ER Lumen,-0.275763171 +DAGLB,ER Lumen,-0.060027736 +GALNT10,ER Lumen,0.166376462 +ZNF12,ER Lumen,0.026133356 +USP49,ER Lumen,-0.133040915 +ZNF704,ER Lumen,0.110576545 +LMTK2,ER Lumen,0.060823897 +CTSB,ER Lumen,0.079488434 +ADCY1,ER Lumen,0.355008876 +EN2,ER Lumen,0.125044947 +SUN1,ER Lumen,0.353310628 +OXR1,ER Lumen,-0.24259155 +SLC4A2,ER Lumen,0.227721176 +FASTK,ER Lumen,0.599348728 +TMUB1,ER Lumen,0.542274812 +C7orf55,ER Lumen,-0.364164424 +FOXK1,ER Lumen,0.183068659 +FZD6,ER Lumen,0.214703879 +KIAA1429,ER Lumen,-0.103415605 +TMEM67,ER Lumen,-0.194655431 +SNAPC3,ER Lumen,-0.377150864 +KIAA1161,ER Lumen,0.292071974 +METTL2B,ER Lumen,-0.255874151 +HGSNAT,ER Lumen,0.103258255 +RASEF,ER Lumen,-0.128657828 +ANKS6,ER Lumen,-0.011769909 +TMEM246,ER Lumen,0.247971357 +ZHX1,ER Lumen,-0.046445386 +KIAA1958,ER Lumen,0.375005268 +PIGA,ER Lumen,-0.135855782 +WNK2,ER Lumen,0.306070933 +ATP7A,ER Lumen,-0.317417948 +PIGO,ER Lumen,0.119326864 +BRWD3,ER Lumen,0.015901205 +SLITRK5,ER Lumen,0.053969396 +DDX26B,ER Lumen,0.13814546 +MARCH8,ER Lumen,-0.067545551 +GTF2A1,ER Lumen,-0.198597221 +ZCCHC24,ER Lumen,0.017500236 +REEP3,ER Lumen,0.006370012 +MICU2,ER Lumen,-0.137129442 +PCF11,ER Lumen,-0.1571292 +PKNOX2,ER Lumen,0.146921844 +ZNF22,ER Lumen,-0.212967281 +RPUSD4,ER Lumen,0.005196302 +ARF6,ER Lumen,0.016010412 +TTC8,ER Lumen,-0.373015491 +CDX2,ER Lumen,0.255287127 +BEND7,ER Lumen,-0.016906325 +TAF3,ER Lumen,-0.220134449 +PDZD8,ER Lumen,-0.057717567 +ZNF503,ER Lumen,0.585633729 +FAM175B,ER Lumen,-0.09270539 +QSOX2,ER Lumen,0.184101873 +NSD1,ER Lumen,-0.111204533 +SNAPC4,ER Lumen,0.341448275 +PMPCA,ER Lumen,-0.05693947 +SDCCAG3,ER Lumen,0.12150531 +TSC1,ER Lumen,0.026368124 +FAM69B,ER Lumen,0.365462857 +KIAA1462,ER Lumen,-0.131943006 +ZNF219,ER Lumen,0.02016786 +METTL3,ER Lumen,0.156115007 +HSPA12A,ER Lumen,-0.055166281 +TC2N,ER Lumen,-0.385161933 +CPSF2,ER Lumen,-0.318792364 +ARL5B,ER Lumen,-0.293520835 +TAF1D,ER Lumen,-0.048223932 +HTRA1,ER Lumen,-0.177938636 +CEP57,ER Lumen,-0.243901661 +JAM3,ER Lumen,0.239898629 +HIF1AN,ER Lumen,-0.13106154 +ZFYVE19,ER Lumen,0.43613483 +FBN1,ER Lumen,0.018363761 +BAG5,ER Lumen,-0.193721349 +GABRB3,ER Lumen,0.062318001 +SGPL1,ER Lumen,-0.145036914 +FRS2,ER Lumen,-0.137406702 +ZNF202,ER Lumen,0.236282183 +STXBP4,ER Lumen,-0.510784993 +CUL5,ER Lumen,-0.263220925 +WBP1L,ER Lumen,-0.039759975 +TRIM44,ER Lumen,0.035784995 +TPP1,ER Lumen,-0.063336462 +C11orf74,ER Lumen,-0.25199033 +TUB,ER Lumen,0.112524005 +RNF169,ER Lumen,-0.015799189 +PRTG,ER Lumen,0.04877858 +TMEM41B,ER Lumen,-0.006686762 +TMX3,ER Lumen,-0.070754997 +WEE1,ER Lumen,-0.063514148 +ZNF3,ER Lumen,-0.081311968 +RIMKLB,ER Lumen,-0.033206727 +TMED3,ER Lumen,-0.031151698 +NDEL1,ER Lumen,-0.111298059 +BLCAP,ER Lumen,0.131715034 +CASC4,ER Lumen,-0.252994142 +AP1G1,ER Lumen,-0.22172543 +KIF7,ER Lumen,0.17734814 +PEX11A,ER Lumen,-0.303552584 +ZBTB39,ER Lumen,-0.124492076 +TMEM194A,ER Lumen,0.129270045 +SMAD3,ER Lumen,-0.038507346 +MAP1A,ER Lumen,0.155199787 +MBD6,ER Lumen,0.240660838 +PDIA3,ER Lumen,-0.04946989 +ACSF2,ER Lumen,-0.39778291 +COQ4,ER Lumen,0.373686427 +SLC27A4,ER Lumen,0.114643605 +CERCAM,ER Lumen,0.345649565 +DOLPP1,ER Lumen,0.287997905 +GPRC5B,ER Lumen,0.08145016 +CRK,ER Lumen,-0.251349199 +FBXO22,ER Lumen,-0.204147615 +TBC1D2B,ER Lumen,-0.102444314 +CDK12,ER Lumen,-0.269135409 +ENGASE,ER Lumen,0.499860689 +TBC1D16,ER Lumen,0.028476749 +ENTHD2,ER Lumen,0.565314903 +STIM1,ER Lumen,0.090617203 +IRGQ,ER Lumen,-0.117139106 +PPP2R3B,ER Lumen,0.096973062 +ZNF646,ER Lumen,0.276840681 +MIDN,ER Lumen,0.485368583 +MVD,ER Lumen,0.655340516 +ANKRD11,ER Lumen,0.123689893 +SPATA33,ER Lumen,0.252444539 +ZNF641,ER Lumen,0.320595998 +DHRS13,ER Lumen,-0.221969473 +TP53I13,ER Lumen,0.438587406 +KMT2D,ER Lumen,0.244708872 +C19orf55,ER Lumen,0.313241596 +LENG8,ER Lumen,0.932786541 +ZNF146,ER Lumen,-0.335455069 +ZNF444,ER Lumen,0.48479883 +FAM57A,ER Lumen,0.169679827 +SLC43A2,ER Lumen,0.233923419 +SRR,ER Lumen,-0.157804317 +GHDC,ER Lumen,0.152759885 +ITFG3,ER Lumen,0.177936435 +ZNF598,ER Lumen,0.639127647 +E4F1,ER Lumen,0.71887074 +ABCA3,ER Lumen,0.117975887 +SRRM2,ER Lumen,0.255766596 +LTBP3,ER Lumen,0.906307756 +SAC3D1,ER Lumen,0.115480407 +SF1,ER Lumen,0.220902695 +PAFAH1B2,ER Lumen,-0.164898593 +ANKS3,ER Lumen,0.33591857 +SETD5,ER Lumen,-0.067706918 +HOOK3,ER Lumen,-0.329035998 +RBPJ,ER Lumen,-0.186112069 +TTC39C,ER Lumen,0.121809328 +KIF5C,ER Lumen,-0.503032054 +MGAT2,ER Lumen,-0.025277122 +BMI1,ER Lumen,-0.200117635 +KCTD6,ER Lumen,0.402579984 +TAP1,ER Lumen,0.026158851 +ING5,ER Lumen,0.091529338 +ATG4B,ER Lumen,0.252366281 +SOGA2,ER Lumen,0.155192021 +SNRNP48,ER Lumen,-0.234426561 +SLC20A2,ER Lumen,-0.180546601 +TMUB2,ER Lumen,0.082133657 +STAT3,ER Lumen,-0.091421199 +ADAM9,ER Lumen,-0.056678083 +PKIG,ER Lumen,0.108087736 +SEMA4C,ER Lumen,0.661124844 +CNNM3,ER Lumen,0.171651888 +TET2,ER Lumen,-0.21815497 +TCTN2,ER Lumen,-0.227261389 +TSPAN5,ER Lumen,0.124658634 +ZBTB5,ER Lumen,0.016263114 +SNTB2,ER Lumen,0.057371188 +ZNF507,ER Lumen,-0.193242408 +STX18,ER Lumen,-0.065278368 +GFM1,ER Lumen,-0.406614281 +ANKRD49,ER Lumen,0.120768879 +MAT2A,ER Lumen,0.105637579 +ZNF608,ER Lumen,0.187118732 +LETM1,ER Lumen,0.002115627 +TMEM129,ER Lumen,0.074053904 +FEM1B,ER Lumen,0.063672492 +HNRNPH1,ER Lumen,0.031075099 +MECP2,ER Lumen,0.263396403 +UPF3A,ER Lumen,-0.022751471 +CHST14,ER Lumen,0.441832247 +PARM1,ER Lumen,0.275113261 +CSNK1G1,ER Lumen,-0.213177458 +ZBTB43,ER Lumen,0.108828237 +GPRIN1,ER Lumen,-0.166956035 +MRPL1,ER Lumen,-0.308195005 +SLC33A1,ER Lumen,0.00030943 +SDC2,ER Lumen,-0.132655329 +MMGT1,ER Lumen,-0.134766209 +CLIC4,ER Lumen,0.04991888 +CCDC8,ER Lumen,0.304145936 +INO80E,ER Lumen,0.349069154 +DFFB,ER Lumen,-0.033107412 +ANTXR1,ER Lumen,0.206715196 +CKAP2L,ER Lumen,-0.310339085 +C15orf40,ER Lumen,-0.207236896 +HIC2,ER Lumen,0.276972458 +LUZP1,ER Lumen,0.114509241 +HEXDC,ER Lumen,0.784624327 +LRRC45,ER Lumen,0.814614684 +ASPSCR1,ER Lumen,0.356254895 +TAPT1,ER Lumen,-0.015598813 +CSGALNACT2,ER Lumen,-0.130765252 +PCDH7,ER Lumen,0.086599991 +ROBO1,ER Lumen,-0.049264509 +P2RY1,ER Lumen,0.465980877 +TPST1,ER Lumen,-0.006475741 +TOR1AIP2,ER Lumen,-0.242454874 +OTUD3,ER Lumen,0.265819202 +GUSB,ER Lumen,0.013620652 +BRD3,ER Lumen,0.33697106 +MAP3K2,ER Lumen,-0.031617411 +NLGN2,ER Lumen,0.541673835 +ALCAM,ER Lumen,-0.051453583 +YWHAG,ER Lumen,-0.031861896 +TMEM192,ER Lumen,-0.246564496 +ZNF778,ER Lumen,0.061525775 +NIPA1,ER Lumen,-0.23696412 +SIK2,ER Lumen,0.001890614 +RNF150,ER Lumen,-0.206338069 +ZNF212,ER Lumen,0.018001092 +FAM161A,ER Lumen,-0.048127975 +CRTAP,ER Lumen,-0.254903466 +PRDM10,ER Lumen,-0.195014373 +FOS,ER Lumen,1.458225479 +TMED10,ER Lumen,-0.094004169 +SLC30A1,ER Lumen,-0.057600818 +DNAJC18,ER Lumen,-0.095348191 +RALGAPB,ER Lumen,-0.102739986 +LONRF2,ER Lumen,0.23602851 +ELOVL6,ER Lumen,-0.263956841 +ARL6IP1,ER Lumen,-0.165430915 +CDH2,ER Lumen,0.054097565 +EMB,ER Lumen,-0.255775357 +STAT2,ER Lumen,0.593674839 +TRABD,ER Lumen,0.645558391 +POLH,ER Lumen,0.127110783 +KIF5B,ER Lumen,-0.252206777 +AKAP13,ER Lumen,-0.178225665 +CHCHD7,ER Lumen,-0.196676263 +GPR27,ER Lumen,-0.159367253 +KBTBD2,ER Lumen,0.132036651 +KIAA0232,ER Lumen,0.224841063 +TMEM43,ER Lumen,0.158653232 +RNF139,ER Lumen,0.236083955 +PAQR8,ER Lumen,-0.311430677 +TANC2,ER Lumen,-0.261272513 +DNAJC24,ER Lumen,-0.212724246 +HS6ST2,ER Lumen,-0.133215282 +INSR,ER Lumen,-0.253639443 +ATP6V0E2,ER Lumen,0.098867605 +ZNF692,ER Lumen,0.506249707 +NETO2,ER Lumen,-0.099873143 +NPTX1,ER Lumen,0.409214037 +FAM98B,ER Lumen,-0.201727918 +GAA,ER Lumen,0.342052258 +CANT1,ER Lumen,0.293136906 +CHST11,ER Lumen,-0.065266467 +CLCN5,ER Lumen,-0.432233958 +ZBTB26,ER Lumen,-0.217715613 +ZNF562,ER Lumen,-0.263782762 +ZNF318,ER Lumen,-0.01667933 +WIPF2,ER Lumen,-0.145184811 +LRRC8C,ER Lumen,-0.159033212 +LRRC8D,ER Lumen,0.047207357 +ETFDH,ER Lumen,-0.082386104 +LPAR3,ER Lumen,-0.174099549 +CLSTN1,ER Lumen,0.333207925 +BPTF,ER Lumen,-0.098586071 +ATF7IP,ER Lumen,0.131851111 +TCEA2,ER Lumen,0.429131439 +ANO5,ER Lumen,-0.244866106 +MLLT3,ER Lumen,-0.129512022 +PRNP,ER Lumen,0.036583753 +ZNF217,ER Lumen,-0.02445878 +JMJD1C,ER Lumen,-0.055052218 +THOP1,ER Lumen,0.443337608 +ORMDL3,ER Lumen,0.400311878 +KLF11,ER Lumen,0.006342361 +MTBP,ER Lumen,-0.045415307 +ZNF131,ER Lumen,-0.150284608 +BSG,ER Lumen,0.443983995 +CERS6,ER Lumen,-0.130808623 +TP53RK,ER Lumen,0.066573245 +FAM195A,ER Lumen,0.238540771 +GTPBP2,ER Lumen,0.139185192 +ZNF24,ER Lumen,-0.134141175 +MANEA,ER Lumen,-0.290660885 +RAD9A,ER Lumen,0.342566387 +FAM21C,ER Lumen,-0.035813513 +CORO1B,ER Lumen,0.388078643 +LRRC20,ER Lumen,0.004407428 +NAA16,ER Lumen,0.372384674 +DCP2,ER Lumen,-0.185953793 +CES3,ER Lumen,0.265322357 +CES2,ER Lumen,0.256037545 +PDP2,ER Lumen,-0.081652734 +SP3,ER Lumen,0.10387016 +METAP1D,ER Lumen,0.111529561 +ZNF621,ER Lumen,0.177463962 +NADSYN1,ER Lumen,0.27814833 +DHCR7,ER Lumen,0.381840938 +NBEA,ER Lumen,-0.130719432 +ANKRD13D,ER Lumen,0.792166905 +LCLAT1,ER Lumen,0.120273373 +TADA2B,ER Lumen,-0.000253921 +HECTD4,ER Lumen,0.111488096 +ESRRA,ER Lumen,0.239401043 +AHSA2,ER Lumen,0.578023682 +VANGL1,ER Lumen,-0.055148199 +IQCB1,ER Lumen,0.048861478 +GOLGB1,ER Lumen,-0.233207468 +TNKS,ER Lumen,0.20058418 +ZBTB21,ER Lumen,0.071518332 +STOX2,ER Lumen,0.123625683 +DAG1,ER Lumen,0.242691778 +RNF26,ER Lumen,0.133358931 +PEAK1,ER Lumen,0.108803928 +TNFRSF10D,ER Lumen,0.035637266 +MOB1B,ER Lumen,-0.143774453 +SNX33,ER Lumen,0.054179779 +CHD2,ER Lumen,0.189569582 +CCDC41,ER Lumen,-0.173124427 +PC,ER Lumen,0.13807072 +SUSD5,ER Lumen,-0.028770729 +HEG1,ER Lumen,-0.041534467 +TOMM20,ER Lumen,-0.38653021 +CNP,ER Lumen,-0.059574422 +DPY19L1,ER Lumen,-0.073573914 +ZNF791,ER Lumen,-0.34224221 +PHC3,ER Lumen,-0.192457885 +GOLIM4,ER Lumen,-0.34582715 +XXYLT1,ER Lumen,-0.08948942 +UBXN2A,ER Lumen,-0.210124055 +CCS,ER Lumen,0.261503976 +FAM3C2,ER Lumen,-0.075168878 +CTSF,ER Lumen,-0.174837212 +MSRB3,ER Lumen,0.192916753 +LEMD3,ER Lumen,0.024870879 +RGMB,ER Lumen,0.344661301 +ZDHHC24,ER Lumen,-0.037182911 +MGA,ER Lumen,-0.132820529 +PIGG,ER Lumen,0.204197102 +ADCY6,ER Lumen,0.42858442 +ZBTB4,ER Lumen,0.130554466 +ZHX3,ER Lumen,-0.035230814 +RALGAPA1,ER Lumen,0.059337532 +ATP2A2,ER Lumen,0.115156993 +CNTNAP2,ER Lumen,-0.377325974 +DENND4A,ER Lumen,-0.304853606 +MSL2,ER Lumen,-0.029389363 +UGT8,ER Lumen,-0.289557224 +ZNF266,ER Lumen,-0.201383977 +SLC29A2,ER Lumen,0.774739082 +BRSK2,ER Lumen,0.572116902 +B3GNT1,ER Lumen,0.217494609 +TMEM167A,ER Lumen,-0.20748397 +CEP135,ER Lumen,-0.384083627 +FZD4,ER Lumen,0.081672766 +PDE12,ER Lumen,-0.172339545 +GLMN,ER Lumen,-0.152378487 +SEZ6L2,ER Lumen,0.200017444 +KLC2,ER Lumen,0.413060492 +GK5,ER Lumen,-0.261683933 +VCPIP1,ER Lumen,-0.058620092 +PCCA,ER Lumen,-0.52613961 +GOLGA8A,ER Lumen,0.877336483 +TP53I11,ER Lumen,0.286473775 +PHYKPL,ER Lumen,0.082493061 +ARL10,ER Lumen,-0.114724021 +CCDC14,ER Lumen,0.114316271 +ALG10B,ER Lumen,0.17765123 +RAB6A,ER Lumen,-0.034940496 +ERCC4,ER Lumen,-0.017107158 +RMI2,ER Lumen,-0.41670869 +TOM1L2,ER Lumen,0.109256643 +MLXIP,ER Lumen,0.294916291 +SLC35E3,ER Lumen,-0.167116007 +ARL4D,ER Lumen,-0.006302756 +LYSMD3,ER Lumen,-0.195943732 +B3GALT6,ER Lumen,0.279525892 +MBLAC2,ER Lumen,-0.221154425 +TPRN,ER Lumen,0.491794547 +YES1,ER Lumen,-0.225559188 +TMEM39A,ER Lumen,-0.04319537 +CCDC57,ER Lumen,0.506492337 +FOXG1,ER Lumen,0.481719434 +ATAD5,ER Lumen,-0.521327314 +ANAPC2,ER Lumen,0.569276547 +SPRYD4,ER Lumen,-0.415394777 +CLK2,ER Lumen,0.359488626 +LPCAT4,ER Lumen,0.071971502 +B3GNT5,ER Lumen,0.093507385 +LMNB2,ER Lumen,0.419989029 +RMDN1,ER Lumen,-0.145543336 +ACSF3,ER Lumen,0.17194831 +ANKLE2,ER Lumen,0.088173096 +NFATC2IP,ER Lumen,0.047744464 +SMCR8,ER Lumen,-0.082019107 +MTX3,ER Lumen,-0.198594101 +FBXO46,ER Lumen,0.547356558 +WDR73,ER Lumen,-0.023711874 +ANO6,ER Lumen,-0.107519719 +ZBTB34,ER Lumen,0.094889826 +FAM210A,ER Lumen,0.036360891 +ULK1,ER Lumen,0.700243818 +RPS6KA3,ER Lumen,-0.15662388 +PUS1,ER Lumen,0.323883231 +CHD9,ER Lumen,-0.311541364 +PDDC1,ER Lumen,0.408180553 +TOP3A,ER Lumen,-0.054698895 +NR2C2,ER Lumen,0.26151588 +ZBTB33,ER Lumen,-0.142914878 +SLC25A22,ER Lumen,0.541550393 +PIDD,ER Lumen,1.109504115 +GBA,ER Lumen,-0.021574633 +IL17RA,ER Lumen,0.277134756 +THAP5,ER Lumen,-0.386227546 +PVRL3,ER Lumen,-0.123072217 +KIAA0195,ER Lumen,0.408533107 +SOX12,ER Lumen,0.130169771 +CHID1,ER Lumen,0.209853318 +ZNF518A,ER Lumen,-0.13477545 +ZBTB41,ER Lumen,-0.05217209 +DMAP1,ER Lumen,0.552490306 +C2orf69,ER Lumen,0.017170188 +SH2B1,ER Lumen,0.453827734 +KDELC2,ER Lumen,-0.385510524 +GALNT11,ER Lumen,-0.223036853 +WDR6,ER Lumen,0.198529859 +GEN1,ER Lumen,-0.117848253 +GLDC,ER Lumen,-0.106972812 +CTNNBIP1,ER Lumen,0.208002595 +ERN1,ER Lumen,-0.091482735 +KCTD12,ER Lumen,-0.102596221 +DHFRL1,ER Lumen,-0.614012809 +FAM132B,ER Lumen,0.371611122 +FAM219B,ER Lumen,0.053931298 +DPY19L3,ER Lumen,-0.175880236 +PFAS,ER Lumen,0.090341664 +C17orf62,ER Lumen,0.457072503 +ZBTB7A,ER Lumen,0.496042552 +SPTY2D1,ER Lumen,0.197599332 +FUCA1,ER Lumen,-0.383372271 +CALR,ER Lumen,0.190860787 +LDLRAD3,ER Lumen,0.17934853 +CLK3,ER Lumen,0.35490416 +PACS2,ER Lumen,0.653873382 +ELMOD2,ER Lumen,-0.103653181 +FJX1,ER Lumen,0.41412995 +ZBTB18,ER Lumen,0.076866718 +GCC1,ER Lumen,-0.088619489 +PLD6,ER Lumen,0.164552719 +CDC42EP4,ER Lumen,0.048148347 +PCBP1-AS1,ER Lumen,0.39498213 +MYADM,ER Lumen,0.435805962 +SERTAD2,ER Lumen,0.01077184 +BBS10,ER Lumen,0.04789106 +SOCS4,ER Lumen,0.044457985 +ZADH2,ER Lumen,-0.035254274 +EXOC3,ER Lumen,0.248265339 +C7orf41,ER Lumen,0.05678735 +ZNF609,ER Lumen,-0.116343536 +CCDC66,ER Lumen,-0.157407221 +MCFD2,ER Lumen,-0.002984899 +GAS1,ER Lumen,0.030396538 +FAM73A,ER Lumen,-0.354999634 +NRIP1,ER Lumen,-0.062029198 +PCGF5,ER Lumen,-0.193860867 +YOD1,ER Lumen,-0.485076442 +SLC36A4,ER Lumen,-0.472949253 +ZDHHC20,ER Lumen,-0.33153571 +PSMG4,ER Lumen,0.180192768 +PDIA3P,ER Lumen,-0.175447269 +CUEDC1,ER Lumen,0.261158204 +KCTD2,ER Lumen,-0.007049588 +D2HGDH,ER Lumen,0.379265113 +FKRP,ER Lumen,0.221588049 +SLC26A11,ER Lumen,0.395007093 +F2R,ER Lumen,-0.104223664 +DHTKD1,ER Lumen,-0.173717055 +ZNF746,ER Lumen,0.24361889 +TMEM136,ER Lumen,-0.044575786 +ZNF322,ER Lumen,-0.4511171 +OGFOD3,ER Lumen,0.261462491 +ZNF678,ER Lumen,-0.287818979 +ZBTB2,ER Lumen,0.027459172 +SGSH,ER Lumen,0.270074253 +SETD2,ER Lumen,-0.076703777 +YIPF6,ER Lumen,-0.123307574 +IBA57,ER Lumen,0.074751401 +C5orf24,ER Lumen,-0.011274669 +ADO,ER Lumen,0.115466198 +CREB3L2,ER Lumen,0.197691705 +UNC5C,ER Lumen,-0.474837546 +RGMA,ER Lumen,0.454355092 +EXT1,ER Lumen,-0.11970816 +ATP6AP2,ER Lumen,0.039102274 +BACE2,ER Lumen,-0.028984316 +FIGN,ER Lumen,0.141021352 +B4GALNT4,ER Lumen,0.687026278 +AP1S2,ER Lumen,0.142095621 +FBXL6,ER Lumen,0.94122505 +YBEY,ER Lumen,-0.454429201 +CLN8,ER Lumen,0.089385231 +PLCXD1,ER Lumen,0.571843996 +EXOC7,ER Lumen,0.144227791 +CEP97,ER Lumen,-0.047357278 +MXRA7,ER Lumen,0.168246652 +SATB1,ER Lumen,0.183693144 +PLCB1,ER Lumen,0.263132933 +TTC3,ER Lumen,-0.240164929 +COL18A1,ER Lumen,0.445615327 +ZNF721,ER Lumen,0.041042349 +SRPR,ER Lumen,0.069722986 +EWSR1,ER Lumen,0.063301609 +GJC1,ER Lumen,0.163637992 +MTA1,ER Lumen,0.498625541 +CADM1,ER Lumen,0.249250933 +LYSMD4,ER Lumen,0.324656527 +NKX2-5,ER Lumen,0.77212596 +GPC6,ER Lumen,-0.093440207 +PTTG1IP,ER Lumen,0.198139987 +ZNF623,ER Lumen,-0.166290406 +BCOR,ER Lumen,0.049880946 +ASB7,ER Lumen,-0.037398278 +EP400,ER Lumen,0.149329705 +COA5,ER Lumen,0.022787356 +PRR14L,ER Lumen,-0.247548594 +ZNRF3,ER Lumen,0.461416023 +TRMT12,ER Lumen,-0.226583297 +FAM101B,ER Lumen,0.179531557 +TRIM52,ER Lumen,0.074310619 +CMTM4,ER Lumen,-0.067418008 +TMEM50A,ER Lumen,-0.066127436 +CBX6,ER Lumen,0.263091752 +KREMEN1,ER Lumen,0.092655567 +TRAIP,ER Lumen,0.178634148 +EMILIN3,ER Lumen,0.468346613 +RBM12B,ER Lumen,-0.010595166 +BTBD9,ER Lumen,0.082920398 +KIRREL,ER Lumen,-0.066671453 +IQGAP3,ER Lumen,0.251176512 +PRKX,ER Lumen,-0.119037671 +SMTN,ER Lumen,0.4600617 +TBX1,ER Lumen,0.677600607 +TSPYL2,ER Lumen,0.439149244 +C22orf46,ER Lumen,0.058691157 +PCDH9,ER Lumen,-0.065737707 +OAF,ER Lumen,0.36261992 +ZDHHC23,ER Lumen,0.214136763 +EFNA5,ER Lumen,-0.266717455 +SS18L1,ER Lumen,0.211856454 +KNTC1,ER Lumen,0.163013993 +WDR27,ER Lumen,0.643862934 +FOXO4,ER Lumen,-0.059576964 +POU3F2,ER Lumen,0.015063095 +PROS1,ER Lumen,-0.319359172 +ZFP1,ER Lumen,-0.204585323 +XPOT,ER Lumen,-0.073821248 +SNN,ER Lumen,0.061645517 +AMER1,ER Lumen,0.067736991 +ZBTB40,ER Lumen,0.325168894 +ATL3,ER Lumen,-0.206054809 +UBE2G2,ER Lumen,-0.085020537 +TMED9,ER Lumen,0.282959651 +RBM33,ER Lumen,-0.071579634 +JAG2,ER Lumen,0.869926987 +ZFP90,ER Lumen,0.269620725 +SIVA1,ER Lumen,0.613984913 +BRI3BP,ER Lumen,-0.023669694 +ROBO2,ER Lumen,0.004219764 +BRF1,ER Lumen,0.438938171 +MANEAL,ER Lumen,0.268132923 +PURA,ER Lumen,-0.126667464 +DDX51,ER Lumen,0.289048873 +NOMO2,ER Lumen,-0.177040669 +NRBP2,ER Lumen,0.631884049 +ZNF445,ER Lumen,0.036878889 +PRPF39,ER Lumen,0.03606164 +CDK10,ER Lumen,0.684588851 +ATP6V0A2,ER Lumen,-0.163236837 +C14orf80,ER Lumen,0.911528857 +HGS,ER Lumen,0.65520424 +MRPL30,ER Lumen,-0.183809312 +METTL7A,ER Lumen,0.284955986 +NR2F2,ER Lumen,0.288814075 +SP1,ER Lumen,-0.03927234 +PCGF3,ER Lumen,0.230506602 +P4HB,ER Lumen,0.165568828 +PBX1,ER Lumen,-0.226017747 +BRWD1,ER Lumen,-0.196935966 +EP400NL,ER Lumen,0.181489455 +MYBL1,ER Lumen,0.242286444 +DMWD,ER Lumen,0.496414596 +SLC52A2,ER Lumen,0.404188343 +NAT8L,ER Lumen,0.741870736 +GNB1L,ER Lumen,0.647054342 +LAMP1,ER Lumen,0.048579946 +KLHDC8B,ER Lumen,0.2480341 +SETD4,ER Lumen,0.062838244 +RNPC3,ER Lumen,-0.34885337 +BICD2,ER Lumen,0.17752063 +LRCH3,ER Lumen,-0.110624208 +ZNF529,ER Lumen,-0.077176873 +AIDA,ER Lumen,0.041995562 +ZBTB6,ER Lumen,-0.394309739 +BCL9L,ER Lumen,0.478585214 +KIF18B,ER Lumen,0.327062223 +MKL2,ER Lumen,0.016689572 +CA5BP1,ER Lumen,0.102100492 +BACE1,ER Lumen,0.219996127 +KPNA4,ER Lumen,-0.212360267 +ZNF197,ER Lumen,-0.12697479 +BTN3A2,ER Lumen,-0.183683406 +INSIG1,ER Lumen,0.035249871 +TMEM222,ER Lumen,0.432439361 +SMYD4,ER Lumen,0.000558323 +GPATCH8,ER Lumen,0.180757246 +LYRM7,ER Lumen,-0.141179532 +ZNF397,ER Lumen,-0.270015596 +ZSCAN30,ER Lumen,-0.392402845 +TPCN1,ER Lumen,0.361323997 +POFUT2,ER Lumen,0.338019399 +ZDHHC17,ER Lumen,-0.04394562 +PPARA,ER Lumen,0.285159753 +TEAD1,ER Lumen,0.047404308 +ENTPD5,ER Lumen,0.081392551 +KIAA1598,ER Lumen,-0.045854611 +TSPYL4,ER Lumen,0.08972523 +FNBP1,ER Lumen,0.142592651 +BCAM,ER Lumen,0.452504454 +COL4A1,ER Lumen,-0.012729695 +SIRT7,ER Lumen,0.717983916 +TET3,ER Lumen,0.095618642 +ZNF286A,ER Lumen,-0.534393027 +SAMD11,ER Lumen,0.5040864 +B3GALTL,ER Lumen,-0.402570856 +TCEA1,ER Lumen,0.099629412 +FANCA,ER Lumen,0.244224328 +SEMA4D,ER Lumen,0.577492131 +LIN28B,ER Lumen,-0.282974969 +FANCM,ER Lumen,0.158857688 +FAM122A,ER Lumen,0.105060631 +ARHGAP11B,ER Lumen,0.349458588 +CYHR1,ER Lumen,0.660029693 +KLHL17,ER Lumen,1.150084157 +ANKRD19P,ER Lumen,0.63274187 +ARL4C,ER Lumen,0.312553115 +C11orf95,ER Lumen,0.189887291 +MAPK12,ER Lumen,0.301528499 +COL4A5,ER Lumen,-0.193807603 +NCR3LG1,ER Lumen,0.03977343 +HES4,ER Lumen,1.000904864 +CHM,ER Lumen,0.061304675 +H2AFX,ER Lumen,0.787507291 +SRSF10,ER Lumen,0.042403913 +NDOR1,ER Lumen,0.838984052 +FAM72B,ER Lumen,-0.205461785 +LDOC1L,ER Lumen,0.160834598 +PTAR1,ER Lumen,0.060842809 +ZDHHC9,ER Lumen,-0.001767397 +ZBED6CL,ER Lumen,-0.592678834 +TMEM120B,ER Lumen,0.196206221 +MTF1,ER Lumen,0.19756466 +TMEM201,ER Lumen,0.749114862 +NHLRC3,ER Lumen,-0.100753441 +BEND4,ER Lumen,-0.166734718 +MSL1,ER Lumen,-0.072786191 +DHFRP1,ER Lumen,-0.406058162 +ZNF292,ER Lumen,-0.171381389 +ADAT2,ER Lumen,-0.152861173 +H1F0,ER Lumen,0.485253096 +LITAF,ER Lumen,-0.025687823 +ARID2,ER Lumen,-0.031777536 +S100A13,ER Lumen,-0.102871872 +ZNF33A,ER Lumen,-0.022184714 +LIN54,ER Lumen,-0.416104133 +KAZN,ER Lumen,0.242934275 +SLC35E2B,ER Lumen,0.21512701 +KIAA0895L,ER Lumen,0.549775415 +PLEKHG4,ER Lumen,0.573861251 +ACADSB,ER Lumen,-0.311287283 +TMEM63A,ER Lumen,0.297738498 +MPHOSPH8,ER Lumen,-0.567661808 +FAM217B,ER Lumen,-0.377367713 +LCOR,ER Lumen,0.046212253 +POM121,ER Lumen,0.012428989 +ZBTB44,ER Lumen,-0.209511076 +SLC35F1,ER Lumen,-0.314752974 +PTPN1,ER Lumen,0.062221942 +EVL,ER Lumen,0.16367292 +EPHB4,ER Lumen,0.261961473 +PPP1R26,ER Lumen,0.41910139 +TSC22D2,ER Lumen,0.078004396 +PIK3R4,ER Lumen,-0.307476104 +GDAP2,ER Lumen,-0.324443995 +AFAP1,ER Lumen,-0.174863713 +MAN2A2,ER Lumen,0.471327925 +CACNA1H,ER Lumen,0.590530477 +SULF2,ER Lumen,-0.021283726 +PLXNB2,ER Lumen,0.664290041 +XRCC2,ER Lumen,0.030337739 +MYO6,ER Lumen,-0.088845773 +TCF4,ER Lumen,-0.348276442 +RABL6,ER Lumen,0.471588526 +ZKSCAN5,ER Lumen,-0.078878498 +ZFP62,ER Lumen,-0.095435057 +ERI2,ER Lumen,-0.284720374 +ZNF33B,ER Lumen,-0.396823101 +ZNF512B,ER Lumen,0.46517553 +ZNF431,ER Lumen,-0.044762504 +NF1,ER Lumen,-0.146324459 +VKORC1L1,ER Lumen,-0.014111363 +COL27A1,ER Lumen,0.515866806 +GM2A,ER Lumen,-0.106687288 +SNHG17,ER Lumen,0.225693959 +CD47,ER Lumen,-0.282025435 +CTBP1-AS2,ER Lumen,0.610512491 +C6orf106,ER Lumen,-0.117753714 +NHLRC2,ER Lumen,0.013019288 +KPNA5,ER Lumen,-0.239597378 +ZNF252P,ER Lumen,-0.331520733 +PDLIM7,ER Lumen,0.346484805 +SLC39A10,ER Lumen,-0.148096766 +ZNF100,ER Lumen,-0.205630849 +ZNF398,ER Lumen,-0.029638586 +GMFB,ER Lumen,-0.147638647 +ZMYM1,ER Lumen,0.298103257 +MAFG,ER Lumen,0.299372473 +ARRDC1,ER Lumen,0.33360022 +KIAA1671,ER Lumen,-0.035775436 +IGF2R,ER Lumen,0.003693044 +SLC25A29,ER Lumen,0.746452078 +PGAP1,ER Lumen,-0.135616363 +SRC,ER Lumen,0.244236167 +PCNXL3,ER Lumen,0.409931023 +LRRC8B,ER Lumen,0.045978552 +ABCB8,ER Lumen,0.463147095 +SND1,ER Lumen,0.064202571 +ENTPD4,ER Lumen,0.104189011 +KANK2,ER Lumen,0.164813157 +FITM2,ER Lumen,-0.154596179 +DDI2,ER Lumen,-0.016403862 +TRIM33,ER Lumen,-0.153803847 +LRP10,ER Lumen,0.301933441 +ZNF655,ER Lumen,0.033384647 +SLC22A5,ER Lumen,0.272316313 +ADARB1,ER Lumen,0.0386949 +OGDHL,ER Lumen,0.211924405 +STMN3,ER Lumen,0.259529194 +SIPA1L1,ER Lumen,-0.020120986 +PIGN,ER Lumen,-0.288244467 +COL4A6,ER Lumen,-0.175810722 +GPX1P1,ER Lumen,0.572356043 +ENTPD6,ER Lumen,0.341482913 +ENPP1,ER Lumen,-0.170232554 +PHF2,ER Lumen,0.350383224 +RPS26,ER Lumen,-0.201110637 +PSAP,ER Lumen,0.125748336 +HOXC6,ER Lumen,0.238822959 +EME2,ER Lumen,0.779856186 +ZNF780A,ER Lumen,0.095787324 +SLC9A8,ER Lumen,0.409911848 +OCLN,ER Lumen,0.009238427 +GPAA1,ER Lumen,0.659555842 +SPG7,ER Lumen,0.270370957 +ERO1L,ER Lumen,-0.146336678 +ZNF121,ER Lumen,0.035887821 +MPZL1,ER Lumen,-0.121961213 +VPS13A,ER Lumen,0.283094079 +AKAP17A,ER Lumen,0.466082536 +ELOVL2,ER Lumen,-0.265931556 +SNHG12,ER Lumen,0.352187661 +NOL8,ER Lumen,-0.015772713 +MRPL42,ER Lumen,-0.417266033 +ENTPD7,ER Lumen,0.104891479 +ZNF84,ER Lumen,0.107209467 +SIRPA,ER Lumen,0.299098545 +CD2AP,ER Lumen,-0.645338143 +NUP62CL,ER Lumen,0.004297146 +SFI1,ER Lumen,0.462141962 +ZNF248,ER Lumen,0.140196774 +ZNF770,ER Lumen,-0.323919134 +HMGN5,ER Lumen,-0.626183448 +MIER1,ER Lumen,-0.321915619 +MAN1A2,ER Lumen,-0.056780767 +RPS6KL1,ER Lumen,0.31974299 +DDX42,ER Lumen,-0.039267072 +STYX,ER Lumen,-0.289915952 +UCKL1,ER Lumen,0.647853881 +ZKSCAN8,ER Lumen,0.172539912 +HOXC4,ER Lumen,0.51163682 +ASPH,ER Lumen,-0.046557614 +WWP2,ER Lumen,-0.049864596 +GFPT1,ER Lumen,-0.02240693 +ITSN2,ER Lumen,0.070307411 +MGEA5,ER Lumen,-0.007089467 +FAM115A,ER Lumen,-0.22137264 +ZNF587,ER Lumen,-0.143047603 +MAFK,ER Lumen,0.402012126 +DDX39B,ER Lumen,0.283422863 +NUDT16,ER Lumen,0.079948008 +TLK1,ER Lumen,-0.330809401 +MDM4,ER Lumen,-0.152817732 +KLHL9,ER Lumen,-0.055732419 +C6orf89,ER Lumen,-0.054536633 +SLC9A6,ER Lumen,0.018176968 +FAN1,ER Lumen,0.204425115 +CEP290,ER Lumen,-0.768261144 +C1orf85,ER Lumen,-0.282002131 +SMOC1,ER Lumen,0.18072407 +ZNF652,ER Lumen,-0.28332378 +SMURF1,ER Lumen,0.02370521 +SLC5A3,ER Lumen,-0.155634281 +COLGALT2,ER Lumen,0.058909831 +TMEM184B,ER Lumen,0.384999026 +LRIG2,ER Lumen,-0.096836841 +FOXJ3,ER Lumen,-0.023302075 +ARHGAP11A,ER Lumen,-0.212992327 +DENND4B,ER Lumen,0.440262353 +R3HDM4,ER Lumen,0.276047799 +RUNDC1,ER Lumen,0.32036383 +TYW1,ER Lumen,-0.183481508 +SFMBT2,ER Lumen,0.267884991 +ITPRIPL1,ER Lumen,0.204618399 +SMC5,ER Lumen,-0.229139424 +SREBF2,ER Lumen,0.241262496 +DZIP3,ER Lumen,-0.215414841 +KIAA0753,ER Lumen,-0.337749067 +ATG9A,ER Lumen,0.256286267 +TBKBP1,ER Lumen,0.203489257 +NAGA,ER Lumen,0.268211299 +SGMS1,ER Lumen,0.090035227 +COX20,ER Lumen,0.206091632 +CHML,ER Lumen,-0.314962479 +TATDN3,ER Lumen,-0.858472228 +RBM20,ER Lumen,-0.243908268 +PCMTD2,ER Lumen,-0.427260729 +EFCAB7,ER Lumen,0.100120291 +ZYG11A,ER Lumen,0.160380627 +SYS1,ER Lumen,-0.161027362 +TRAF3IP1,ER Lumen,-0.140738888 +PHACTR4,ER Lumen,-0.148810371 +ZDHHC18,ER Lumen,0.329063447 +TMEM57,ER Lumen,0.066884356 +ZDBF2,ER Lumen,0.130864622 +BMPR2,ER Lumen,-0.057608913 +OXLD1,ER Lumen,0.233984449 +MRPL38,ER Lumen,0.367905717 +SDHD,ER Lumen,-0.072362156 +NEU1,ER Lumen,0.185130014 +HSPA1B,ER Lumen,0.82796873 +HLA-C,ER Lumen,0.361369142 +DDR1,ER Lumen,0.380537215 +HLA-E,ER Lumen,0.213967344 +ZNF616,ER Lumen,-0.311902241 +CRHR1-IT1,ER Lumen,-0.006124058 +GABBR1,ER Lumen,0.803111162 +RANBP17,ER Lumen,-0.434559567 +ZNF204P,ER Lumen,-0.157901946 +TCTN1,ER Lumen,-0.006283021 +ZBTB48,ER Lumen,0.485037736 +C11orf83,ER Lumen,0.67394935 +ZNF783,ER Lumen,-0.408105307 +SLC35B4,ER Lumen,-0.096663713 +TRIQK,ER Lumen,-0.39470319 +PSENEN,ER Lumen,0.223331933 +LGR4,ER Lumen,0.140244458 +PDE7A,ER Lumen,-0.127316583 +TMEM170B,ER Lumen,-0.174201657 +TECPR1,ER Lumen,0.193875358 +ITPRIPL2,ER Lumen,0.177848716 +CRYZL1,ER Lumen,-0.179139376 +C5orf51,ER Lumen,0.075153162 +ZNF316,ER Lumen,0.287923106 +NYNRIN,ER Lumen,0.090157516 +AP000525.9,ER Lumen,-0.036460692 +PTPLB,ER Lumen,-0.144243731 +WDR52,ER Lumen,0.176307801 +SETD5-AS1,ER Lumen,-0.018802013 +SACM1L,ER Lumen,-0.265410162 +C17orf51,ER Lumen,-0.015934591 +ZNF580,ER Lumen,0.262268153 +DENND1B,ER Lumen,-0.467614951 +SFT2D2,ER Lumen,-0.316676219 +FGFR1OP,ER Lumen,-0.176334577 +KLHL23,ER Lumen,-0.114631461 +TRIM59,ER Lumen,0.034858292 +NRAS,ER Lumen,-0.327311981 +QTRT1,ER Lumen,0.648691944 +CHUK,ER Lumen,-0.12134845 +COG8,ER Lumen,-0.01102626 +RBMXL1,ER Lumen,-0.152180907 +LEPROT,ER Lumen,-0.047780138 +ATF6B,ER Lumen,0.262256802 +SLC35F6,ER Lumen,-0.080809443 +ZNF134,ER Lumen,-0.157944005 +EMP2,ER Lumen,-0.195501942 +DNASE1,ER Lumen,0.335375616 +CSNK1E,ER Lumen,0.284255385 +GALT,ER Lumen,0.631404804 +ITGA1,ER Lumen,-0.495012582 +AP1G2,ER Lumen,0.487179939 +CARKD,ER Lumen,0.372526822 +TTLL3,ER Lumen,0.412293303 +CPNE1,ER Lumen,0.033858901 +RCN1P2,ER Lumen,-0.398984361 +ZBED1,ER Lumen,0.325474523 +DDX12P,ER Lumen,0.661644301 +C22orf29,ER Lumen,0.37673912 +NEURL4,ER Lumen,0.458209293 +TTC3P1,ER Lumen,-0.321137984 +PEX26,ER Lumen,0.000393625 +GOLGA8B,ER Lumen,0.582829235 +MIR17HG,ER Lumen,-0.014972354 +TMEM242,ER Lumen,0.021513403 +TMEM167B,ER Lumen,-0.065744265 +CYB5RL,ER Lumen,-0.157949036 +CROCCP2,ER Lumen,0.865593379 +FNIP1,ER Lumen,-0.00274445 +RP11-204C16.4,ER Lumen,-0.438827805 +TENM3,ER Lumen,-0.260168399 +AC007390.5,ER Lumen,-0.088143032 +NBPF1,ER Lumen,0.160072024 +CCNL2,ER Lumen,0.885450503 +PPT2,ER Lumen,-0.05144213 +CKMT1A,ER Lumen,-0.349202262 +NSUN5P1,ER Lumen,0.520617876 +RP11-54O7.3,ER Lumen,0.668254542 +AFG3L1P,ER Lumen,0.202569273 +EPB41L4A-AS1,ER Lumen,0.057596454 +ATXN1L,ER Lumen,0.206943078 +SMIM13,ER Lumen,0.053098818 +CTD-2228K2.7,ER Lumen,0.978354264 +PLEKHM1,ER Lumen,0.055946817 +FAM195B,ER Lumen,0.367928341 +IPO7P2,ER Lumen,-0.017189758 +SLC26A6,ER Lumen,0.541018117 +FGD5-AS1,ER Lumen,0.019771153 +TLK2P1,ER Lumen,-0.083508997 +BAIAP2-AS1,ER Lumen,0.231950732 +RP11-31F15.1,ER Lumen,0.072669412 +TMEM185B,ER Lumen,0.065405628 +C14orf132,ER Lumen,-0.00555238 +PARG,ER Lumen,-0.275316285 +TP73-AS1,ER Lumen,0.197358737 +SCAMP4,ER Lumen,0.455000006 +SEC63P1,ER Lumen,-0.267590896 +HCG11,ER Lumen,-0.197679588 +DHFR,ER Lumen,-0.277505292 +RP11-206L10.11,ER Lumen,0.013128227 +XIST,ER Lumen,0.631452623 +RP5-1180C10.2,ER Lumen,-0.172895692 +HCG18,ER Lumen,-0.213393131 +CTD-2619J13.14,ER Lumen,0.243405253 +SNHG15,ER Lumen,0.382267147 +SNHG7,ER Lumen,0.389746606 +HOTAIRM1,ER Lumen,0.532156006 +RP4-775C13.1,ER Lumen,-0.555061744 +ZNF37BP,ER Lumen,0.090148884 +ZNF736,ER Lumen,0.121706344 +MAGI2-AS3,ER Lumen,-0.304539588 +JRK,ER Lumen,0.054709332 +GAS5,ER Lumen,0.222402449 +LINC00338,ER Lumen,-0.312802422 +PPP1R3E,ER Lumen,0.184854743 +RP5-827C21.1,ER Lumen,0.807826822 +NUS1P1,ER Lumen,-0.093480896 +ZBTB22,ER Lumen,0.125026826 +AD000090.2,ER Lumen,0.573939765 +ZBED5,ER Lumen,0.169855171 +RNF103,ER Lumen,0.237769164 +TMEM189,ER Lumen,0.224959987 +RPL36A,ER Lumen,0.228885535 +CD302,ER Lumen,-0.237993754 +SNHG3,ER Lumen,0.133852665 +C15orf38,ER Lumen,-0.123558486 +AP5Z1,ER Lumen,0.736006021 +MICAL3,ER Lumen,0.166133016 +KCTD7,ER Lumen,0.206181563 +SCARF2,ER Lumen,0.857100849 +APOBEC3C,ER Lumen,-0.359308053 +N4BP2L2,ER Lumen,-0.298878578 +NEAT1,ER Lumen,0.336604367 +CRNDE,ER Lumen,-0.14433905 +OIP5-AS1,ER Lumen,-0.035906525 +MARS2,ER Lumen,0.079264846 +HAUS5,ER Lumen,0.396841923 +PDCD6,ER Lumen,-0.077526297 +THAP9-AS1,ER Lumen,0.034101829 +SHANK3,ER Lumen,0.426283977 +RTN3P1,ER Lumen,-0.14491314 +MALAT1,ER Lumen,0.62889642 +TUG1,ER Lumen,0.028078391 +GS1-251I9.4,ER Lumen,-0.267973024 +UTP14C,ER Lumen,-0.130949676 +ZNF260,ER Lumen,0.028032146 +PABPC4L,ER Lumen,-0.117749559 +FPGT,ER Lumen,-0.252601434 +MEX3A,ER Lumen,0.078642566 +POLR2M,ER Lumen,-0.495338249 +SNHG1,ER Lumen,0.126407646 +POLG2,ER Lumen,0.150795038 +KIAA1147,ER Lumen,-0.218060243 +RP11-349A22.5,ER Lumen,-0.022953976 +LINC00641,ER Lumen,0.013382861 +RP4-773N10.4,ER Lumen,-0.253564486 +CEP95,ER Lumen,-0.222428578 +LINC00657,ER Lumen,-0.14057536 +RP1-239B22.5,ER Lumen,-0.17507322 +RP6-24A23.6,ER Lumen,-0.519079635 +ERVK13-1,ER Lumen,0.275496766 +GS1-358P8.4,ER Lumen,-0.383863221 +VPS9D1-AS1,ER Lumen,0.354470183 +RP6-24A23.7,ER Lumen,-0.066377688 +GAN,ER Lumen,-0.106985994 +SPON1,ER Lumen,0.04199357 +RP11-159D12.2,ER Lumen,-0.240862031 +OTUD7B,ER Lumen,0.116544934 +RNF115,ER Lumen,0.096782852 +BAHCC1,ER Lumen,0.679105083 +NBPF15,ER Lumen,0.427692221 +RP11-242D8.1,ER Lumen,-0.221027672 +RP11-18I14.10,ER Lumen,-0.810233235 +NBPF9,ER Lumen,0.175385946 +EGLN2,ER Lumen,0.272133165 +NUDT3,ER Lumen,-0.245488718 +KMT2B,ER Lumen,0.485641623 +POM121C,ER Lumen,0.146581826 +RP11-504P24.8,ER Lumen,0.477659776 +DCP1A,ER Lumen,-0.266614945 +EPOP,ER Lumen,-0.166101946 +NOL12,ER Lumen,0.208232682 +SOCS7,ER Lumen,-0.063577929 +PI4KAP1,ER Lumen,0.578413582 +ZNF280B,ER Lumen,-0.126568253 +MLLT6,ER Lumen,0.276683441 +SYNRG,ER Lumen,-0.255939001 +TADA2A,ER Lumen,-0.098867629 +PIP4K2B,ER Lumen,-0.145630882 +AL133325.3,ER Lumen,0.038967762 +DDX52,ER Lumen,-0.254496856 +MYO19,ER Lumen,0.185537879 +DHRS11,ER Lumen,0.108858949 +ACACA,ER Lumen,-0.060355052 +AC005332.6,ER Lumen,-0.178405117 +RP11-574K11,ER Lumen,-0.300918197 +AL035425.4,ER Lumen,0.499380267 +EBLN3P,ER Lumen,-0.185605366 diff --git a/bento/tools/gene_sets/xia2019.csv b/bento/tools/gene_sets/xia2019.csv new file mode 100644 index 0000000..c99363f --- /dev/null +++ b/bento/tools/gene_sets/xia2019.csv @@ -0,0 +1,23807 @@ +source,target,weight +ER,GRM4,-0.473584409945523 +ER,APOB,0.672270050339723 +ER,LANCL3,-0.580126488244442 +ER,MRVI1,-0.298129384813611 +ER,UNC80,0.339533228140489 +ER,BHLHE22,0.0970777930287041 +ER,PDE3A,0.242642889094449 +ER,HEMGN,0.245681303286698 +ER,PCDH10,0.0955747773723703 +ER,GLUL,-0.000178222658225021 +ER,ATP6AP1L,-0.174293525390843 +ER,PRKCB,-0.243641469802397 +ER,CACNG3,-0.143411595528755 +ER,GLRA3,-0.246990400565713 +ER,CYP3A4,0.656625467640189 +ER,PCK1,0.253549672578629 +ER,GRIA3,0.409971548697057 +ER,TTC6,-0.393126342563752 +ER,GUCY1A2,-0.361908495968269 +ER,C10orf126,-0.491508446867162 +ER,CHRM2,0.218822142060723 +ER,BCR,0.323484821589267 +ER,TDRD1,0.482246022748971 +ER,PRDM6,0.425017879492958 +ER,CSF3R,0.57704115632912 +ER,SVEP1,0.524413451176554 +ER,SUMF1,-0.19855105406597 +ER,ZNF23,0.427201832465233 +ER,FCGBP,0.0537902372671192 +ER,NTRK3,0.254428178113546 +ER,PCDHGA12,0.403251771727537 +ER,TNNI1,0.0999547278049699 +ER,CLIC6,0.0285017407766952 +ER,SLC5A12,-0.123676759639456 +ER,PPP2R2B,0.571202662711114 +ER,STPG2,-0.00776449517024941 +ER,RADIL,0.0125263000776153 +ER,KIF26B,-0.401067569493229 +ER,PON1,-0.0271166761549031 +ER,KLF17,0.090566547200986 +ER,GLDN,0.900430146381358 +ER,GDF6,-0.0804820624156965 +ER,ESRRG,-0.583503894536079 +ER,KRT76,-0.239495497907943 +ER,MALL,-0.0791465152477325 +ER,FAM87A,-0.150815162728684 +ER,ABCG5,0.68282708321119 +ER,XIRP2,-0.0865127919009614 +ER,ENPP2,-0.090484617522216 +ER,CDHR3,-0.240927479697161 +ER,NPC1L1,0.0221189365300083 +ER,CLRN1,0.197971145924222 +ER,TEKT2,0.115710403997961 +ER,PRDM14,0.508823134218767 +ER,PCAT5,-0.045503553219693 +ER,SLC30A10,-0.291461178746829 +ER,TNFRSF11A,1.05860471744784 +ER,DPP6,-0.511070896742629 +ER,TEX41,0.445905006254194 +ER,IRAK3,-0.0159476958081869 +ER,VSTM2A,0.219133283575642 +ER,CAGE1,0.096260111298806 +ER,VRTN,0.0320300173105923 +ER,FAT3,0.641318834626167 +ER,SUPT20HL1,0.157806496189387 +ER,FAM83C,0.29146044557558 +ER,TTLL2,0.337318896333296 +ER,PRR26,0.546282834094628 +ER,NLRP2,-0.511953552920296 +ER,POU3F2,0.0912645770150419 +ER,SCAPER,0.761741527312142 +ER,TPO,0.0374812848225593 +ER,BMPER,0.866735602910081 +ER,ZNF491,-0.380291493357452 +ER,NDST4,0.329594510198101 +ER,SLC30A8,0.393832806246984 +ER,BTBD11,0.0774175899465564 +ER,SLC6A2,-0.197009653751756 +ER,POU4F2,0.158106854694613 +ER,CCDC146,-0.147211893107732 +ER,ZNF235,-0.0435090816868328 +ER,CMIP,0.376933976472481 +ER,SEC14L5,-0.156438648419838 +ER,PLAC4,-0.0793623064328997 +ER,FBXO40,0.475538359217246 +ER,GAGE1,0.218907504686838 +ER,ASIC4,-0.406658878105971 +ER,SLC15A3,-0.255957495679012 +ER,ABI3BP,-0.257373731192591 +ER,ADGRL3,0.987703865214355 +ER,VWC2,0.132951113671928 +ER,SYNPO2,-0.516961488481862 +ER,VWA3B,-0.0785924975031513 +ER,TAF4,-0.047459634677853 +ER,PRKRIRP4,-0.233803063891198 +ER,ITGBL1,1.44295922355867 +ER,IRF4,-0.27648174583037 +ER,KNG1,-0.0502951146462925 +ER,PTPRQ,-0.193790704800791 +ER,LRRC10,-0.433289438201758 +ER,IRF6,-0.0511643784071598 +ER,EOMES,-0.611248290711384 +ER,KRT3,0.157985309191708 +ER,SLITRK5,-0.0926973100229708 +ER,HLX,-0.0760526619475372 +ER,CHIT1,-0.24898532779614 +ER,CXCR2,-0.570670047474796 +ER,LIX1,1.29510586354091 +ER,LILRB5,0.307837136347821 +ER,NRXN1,-0.308231041883584 +ER,LAMA4,0.753245150061475 +ER,HS3ST1,-0.158843483979233 +ER,ASXL3,-0.177182556448924 +ER,SLC8A1,-0.637470835860209 +ER,WSCD2,-0.141335482234902 +ER,MAFF,-0.0873413502994158 +ER,ADRB3,-0.0444983934453916 +ER,TMPRSS7,-0.179474959769004 +ER,IL16,-0.131616666672401 +ER,KMO,-0.107712620757794 +ER,ACVR1C,0.414833360057477 +ER,MPPED2,-0.028502400855895 +ER,A2ML1,-0.138837392726369 +ER,KIAA1755,0.265416410536244 +ER,ZNF259P1,-0.237353090291839 +ER,MPI,0.359128248121948 +ER,A1CF,0.12474298594504 +ER,LDLRAD1,-0.055168269778845 +ER,ATP10A,0.035932069584313 +ER,FAM201A,-0.0261229617076368 +ER,AVPR1A,0.0524723858533708 +ER,CD38,0.0299660937020775 +ER,UNC13C,0.212194580261769 +ER,UNC5D,0.73143620272939 +ER,PTGER3,1.01866130368839 +ER,OLR1,0.863808695300449 +ER,GRIN2A,0.586576383028957 +ER,PTPRVP,0.493905687984581 +ER,IPCEF1,-0.0639274475650612 +ER,ENPEP,0.352820847169014 +ER,DLEU2L,0.74367869745838 +ER,SSPO,0.583728555187554 +ER,CLLU1,-0.0346649304424669 +ER,ADGB,0.151156082614488 +ER,NALCN,-0.394560083164143 +ER,HAUS6P2,-0.449065690602885 +ER,GABRG1,0.172626454053673 +ER,HS6ST3,0.264951529556697 +ER,MUC2,-0.47249510105074 +ER,TUBE1,0.219030636900615 +ER,G6PC,-0.181466934308148 +ER,OSR1,0.0366547158670039 +ER,NEB,-0.404714189057297 +ER,PABPC1P11,-0.248290305571571 +ER,CLSTN2,0.673622991177339 +ER,CES4A,1.0538256533591 +ER,CRB1,-0.215834248811907 +ER,LRP2,0.98447101002419 +ER,SAGE4P,0.436064350370032 +ER,TRPM1,-0.570362225822318 +ER,GRM2,-0.530165073876886 +ER,DLX6,-0.302750839023453 +ER,COL4A6,0.0908883787019624 +ER,GLP1R,0.377197130050354 +ER,LY75,0.0500433962364549 +ER,C4orf22,-0.0737841075074285 +ER,NCALD,-0.324851756297876 +ER,KRT32,0.226990940062284 +ER,AMER3,-0.0667683707479613 +ER,TMPRSS11B,-0.582480264667872 +ER,TMEM108,0.45139732042872 +ER,MUC19,-0.178433211493265 +ER,SCUBE1,-0.432514069449872 +ER,NEUROD1,0.18435851455192 +ER,DGCR5,-0.514875414535883 +ER,SHTN1,0.0581941640704138 +ER,GJB7,-0.614379836315798 +ER,ABCD2,-0.100748222997123 +ER,GP5,-0.203110867550425 +ER,TAF7L,0.363372550505521 +ER,ST18,-0.0492089462017124 +ER,PPP1R36,0.702171309842561 +ER,MYBPC3,0.50159682770066 +ER,KRT35,-0.158995409361956 +ER,HHIP,1.69568488369808 +ER,SIAH3,0.187327306837711 +ER,DSCAML1,0.0608571106091917 +ER,SLC1A2,0.0471050889416401 +ER,UNC79,-0.17134119785358 +ER,NPHP1,-0.302221822276409 +ER,PLD4,0.266422801427542 +ER, MARCH7,0.917025920501004 +ER,CD93,0.595732011745151 +ER,HGF,-0.322683517163721 +ER,OLFML1,1.20566314816635 +ER,FER1L6,-0.08082126219894 +ER,C11orf87,-0.180410691760386 +ER,CD1A,-0.514688878847038 +ER,PCDH9,0.681198164333763 +ER,ALPP,1.82018752940863 +ER,ANK3,-0.63317026276871 +ER,ALOX15,-0.524151176488134 +ER,TDRD15,0.361890896216085 +ER,CLYBL,0.0555513047283555 +ER,LEPR,0.980711080325759 +ER,POU3F1,-0.129261072699565 +ER,COL20A1,0.159010143192971 +ER,ST8SIA2,0.098187033140708 +ER,TXNL1,-0.471530045103239 +ER,DSC1,0.155817178123064 +ER,PHEX,-0.144622368425248 +ER,VAX1,-0.142539231624545 +ER,PDE4D,-0.334898218199141 +ER,GCNT4,-0.186202655967556 +ER,NRAP,-0.405789991908722 +ER,MUC12,0.364401329563701 +ER,KIAA1683,-0.0258548723742795 +ER,C5,0.0306334746765268 +ER,ESR1,-0.131449536192877 +ER,SOX5,-0.578890852007057 +ER,TNR,-0.149171798796667 +ER,GPR35,-0.180184935775076 +ER,SERPINB11,-0.309621496201478 +ER,LHFPL2,0.650094878355929 +ER,ALOX15B,0.108326521914371 +ER,NECAP2,0.483700192159266 +ER,PKD1L3,-0.115847644853561 +ER,CNTN1,0.261367442962502 +ER,LYRM9,-0.198978894074909 +ER,CMYA5,-0.0574749147369302 +ER,UGT1A7,-0.0944053579437985 +ER,INSRR,0.0674390661538978 +ER,IMPG2,-0.580779069010642 +ER,KCNH1,-0.160960161973361 +ER,COL4A4,1.41009205142973 +ER,GRIN2B,0.962166711683639 +ER,NPAS3,-0.00474672740538954 +ER,COL1A2,0.495930581923727 +ER,SLC13A1,0.430543427614341 +ER,C2orf54,-0.0885860229234863 +ER,KCNK15,0.656695720314444 +ER,OTUD7A,-0.19957097517179 +ER,CHRM5,0.421369975948864 +ER,KCNJ12,0.118754405190315 +ER,GRK5,0.0263099210339614 +ER,GPR61,0.00830729723394477 +ER,SPTA1,0.351370694432649 +ER,SP9,0.359777252711556 +ER,ANKRD66,-0.0505263600950939 +ER,DCAF4L2,-0.397548889981537 +ER,RYR2,0.378019204956386 +ER,ACTBP13,-0.607284284577467 +ER,SLC24A2,0.529633388659485 +ER,CD226,-0.472536960492281 +ER,GABRR3,-0.31444876365004 +ER,CXorf36,0.106359080204188 +ER,MBP,0.633884442509774 +ER,KCNJ10,0.434723327202441 +ER,OTOF,0.0261029511159401 +ER,CDH7,0.460064886381048 +ER,TREML2,0.453685316252098 +ER,SIM1,-0.0632564907066835 +ER,VWA2,0.652049381949509 +ER,MID1,-0.155921498219355 +ER,OR2C3,0.323944242292077 +ER,COL9A1,-0.334445200588516 +ER,C10orf105,0.29470773928564 +ER,TSSK1B,-0.23045549000349 +ER,CLEC17A,0.352445234256823 +ER,DCDC1,-0.276713506517036 +ER,PRDM7,0.379867490297464 +ER,CYSLTR2,0.934469296872114 +ER,PRDM16,0.37349900578809 +ER,ABCA12,0.196813897629094 +ER,CD160,-0.155504537218826 +ER,RFX4,-0.406144189389779 +ER,PIK3CG,-0.556663946552671 +ER,SPATA17,0.666441555005287 +ER,FRA10AC1,0.385816996982362 +ER,CD36,-0.654530920646237 +ER,NRK,0.033923039397915 +ER,RASGEF1B,0.237300554663819 +ER,GCSAML,-0.258421038704142 +ER,ZFR2,-0.485814536717462 +ER,ARRDC5,0.355966781363992 +ER,HS3ST3B1,-0.231318161560333 +ER,SPATA31E1,-0.802059471020771 +ER,ITGA8,0.510785580083167 +ER,HYAL4,0.470496421835342 +ER,SORCS1,0.349022206428206 +ER,ZNF99,-0.461191776554632 +ER,OTOG,-0.36434266999599 +ER,HLF,-0.0669468316767872 +ER,IL2RA,0.107030764761202 +ER,DNAH14,-0.474966701404668 +ER,LUZP2,0.0825381406284179 +ER,COL25A1,0.111107565953467 +ER,PARP8,-0.0147210032244059 +ER,MCM9,0.251884170931751 +ER,PROM1,0.236351171251857 +ER,KCNS2,-0.117279013958103 +ER,EGR3,0.0039080422562423 +ER,MYEF2,-0.204801812562668 +ER,ARL14EP,0.097384610910248 +ER,SPAG16,0.313005496320164 +ER,SLITRK6,1.22015023526601 +ER,TRPM5,0.303223066659811 +ER,SSTR1,0.652168050854932 +ER,ZDHHC13,0.69171914744491 +ER,TRPV3,0.0112508438115146 +ER,TMEM132B,-0.087873086858939 +ER,THEMIS,-0.569289926131521 +ER,CAPN13,0.786610178956236 +ER,FBXW4P1,-0.271278285711426 +ER,ZC2HC1C,-0.16958166437357 +ER,PANK1,0.107326325428417 +ER,ZNF578,-0.517974682155305 +ER,DMKN,-0.468099436684253 +ER,ATP2B2,0.79253604821323 +ER,ACSS1,0.00148945977846112 +ER,ZDHHC14,0.231339182763209 +ER,PDE7B,-0.542498719154527 +ER,KCTD1,1.40333887251526 +ER,CYP26C1,0.252674689269088 +ER,MYO15A,-0.0366436129118112 +ER,PNPLA5,0.374631033281932 +ER,RTL1,0.139544720113571 +ER,C1orf132,0.421949202829391 +ER,POLI,-0.148966532629723 +ER,GNL2P1,0.117090843342753 +ER,HDHD3,-0.0739600803414274 +ER,MYRIP,-0.512187581727652 +ER,TBC1D10C,0.0206918380773889 +ER,SHOX,-0.211950102341758 +ER,ITK,-0.336620668332266 +ER,FBLN2,-0.390464398468917 +ER,MYLK4,-0.0546210448382662 +ER,KAZN,-0.419716806008009 +ER,CCDC177,-0.323156498057183 +ER,SCN1A,-0.556229168802735 +ER,WISP2,-0.317370322031773 +ER,MX1,-0.383753525749496 +ER,LRRIQ1,-0.314810844344225 +ER,MUC6,0.0732212807454437 +ER,GSTM5,-0.487850763111348 +ER,SV2B,-0.219408365959715 +ER,KCTD16,-0.141130823251265 +ER,B3GNT6,0.211541680363434 +ER,GALR1,0.0489437195813788 +ER,FRMPD4,-0.541517485100795 +ER,PDGFD,1.27099375539908 +ER,OAS2,-0.449629814039333 +ER,C2orf88,0.272129306882863 +ER,SPON1,-0.534876835360142 +ER,FLG2,-0.26734563029943 +ER,KLHL31,-0.665448737565941 +ER,PDCD1,1.09836300684723 +ER,DOCK11P1,0.145303738059155 +ER,EXTL1,-0.27032387923209 +ER,LLGL2,0.266948897491442 +ER,LRRTM2,0.240850959833523 +ER,CALHM1,-0.149524298007366 +ER,F13A1,-0.360324572859697 +ER,C17orf102,0.420673471942617 +ER,VCAN,-0.313307153071887 +ER,TSPAN19,-0.448706020813585 +ER,ESR2,-0.0958021031072362 +ER,CNOT2,0.573764748491237 +ER,TRIM67,0.307033818275769 +ER,IFT81,0.249069913185377 +ER,TMEM220,0.0105363931738656 +ER,FOXI3,0.472935647538314 +ER,TBC1D27,0.226349535949675 +ER,TMEM30B,-0.118995820683196 +ER,TMEM229A,-0.310729844997209 +ER,TEK,0.666391696214448 +ER,COX18,0.508032484351315 +ER,FASLG,-0.425173305029514 +ER,HNF4A,1.33412653182246 +ER,NR2E1,0.123228237736909 +ER,ABCA5,0.204783125733115 +ER,SCN3B,0.486740508631226 +ER,MIPEPP1,0.458390997851317 +ER,CDHR2,-0.121711511210985 +ER,SLAMF6,0.0430731218891117 +ER,ZRANB3,0.272439686130737 +ER,SCN11A,0.24614220713314 +ER,MAGEB16,0.0127877689391113 +ER,GREM1,0.224781677641901 +ER,GOLGA2P1,-0.455025278632035 +ER,CAPN14,0.158394295601857 +ER,VN1R1,0.179686340949626 +ER,TNFRSF10A,-0.0577417716511419 +ER,NEFH,-0.493608871056316 +ER,MYT1L,0.353416537218696 +ER,SCRT1,-0.0444544411265238 +ER,ABO,-0.222695848392421 +ER,MAN1C1,-0.157604199170115 +ER,CFAP46,-0.26032597223974 +ER,APCDD1,0.116799291038046 +ER,RAD17P2,-0.371582114004139 +ER,ST6GAL2,-0.0422575944241531 +ER,GSN,-0.317282391649703 +ER,CREG2,-0.573353442004329 +ER,C10orf53,-0.607491004905258 +ER,CARF,-0.137124015467173 +ER,NDUFA5,-0.215390028929496 +ER,LHX9,0.386998989690978 +ER,KIAA1210,-0.157430704039217 +ER,LGALS12,0.197820726053604 +ER,ARHGEF38,1.1680602868821 +ER,HEPH,1.14596497174968 +ER,SPARCL1,-0.0826830858960518 +ER,R3HDM2P2,-0.565486673368217 +ER,NUDT4,0.0949088327574392 +ER,MYO3B,0.396680117239465 +ER,NLRP8,0.127931226398522 +ER,OTP,-0.109994038308775 +ER,ARHGEF28,0.163035513476608 +ER,USP26,0.34957505599361 +ER,GLDC,0.212195350637492 +ER,SLCO1A2,-0.128300953516367 +ER,UBE2D3,1.18923405022335 +ER,IGSF21,1.76910519235911 +ER,GPR37L1,-0.162454861264782 +ER,AGMO,-0.194568603510324 +ER,SLC5A8,-0.333601378753988 +ER,NPHS1,0.0678361668974093 +ER,HEATR4,-0.012613860226332 +ER,MYBPC2,0.366469920748916 +ER,LPA,-0.247040058635209 +ER,FILIP1,-0.235004344092205 +ER,FAM135B,-0.673639670663066 +ER,TMEM215,0.0467526042995891 +ER,LIPJ,0.10372009878375 +ER,PTGS1,0.471101878095641 +ER,GALK2,-0.266767266103247 +ER,BGN,0.962377154662201 +ER,ST8SIA5,-0.0806931292937099 +ER,CHST15,-0.0283102544803894 +ER,DMBX1,0.527793669959431 +ER,FLYWCH1P1,0.0508233687507539 +ER,ADAM28,0.605938756946805 +ER,DNALI1,-0.110385777774606 +ER,TCF7,-0.122266038826085 +ER,TCERG1L,-0.0837727883541863 +ER,ZMAT1,-0.0916407247448971 +ER,FAM189A1,0.0209469229837962 +ER,PRKRIRP9,0.0375232384644711 +ER,ZNF300,-0.234557570347275 +ER,SALL4P1,0.0326109831173181 +ER,C11orf30,0.895430970221789 +ER,PTBP2,1.1578447600232 +ER,GRM7,0.6488515671223 +ER,LAMA3,0.20647444668557 +ER,CFAP47,-0.164572360486457 +ER,RASGEF1A,0.405292533046783 +ER,SLC36A3,0.178804179437792 +ER,SGK1,-0.167904427903761 +ER,RASGRF2,-0.145380782864388 +ER,TMPRSS2,-0.286287032658906 +ER,KLF8,0.23413242375398 +ER,TF,0.102483064941073 +ER,ERICH1,-0.142121488014331 +ER,RFX6,0.195142611605774 +ER,MIR497HG,-0.546237977337725 +ER,PCA3,-0.314675260696623 +ER,HIC1,0.101596225387147 +ER,CDK15,0.176905865891693 +ER,FEZ2,0.552194518820983 +ER,NPAP1,0.239904256632774 +ER,LDLRAD4,-0.178003391364854 +ER,FAT2,-0.287958794300012 +ER,NTRK2,0.468697073784743 +ER,PRAM1,0.0460054966730777 +ER,FGD2,0.589571584876899 +ER,CCDC40,-0.221753582182502 +ER,TEX11,-0.339797207044684 +ER,ATP1A4,-0.474220537710076 +ER,MAFB,0.251830942169252 +ER,PIGF,0.785532161111394 +ER,PIEZO2,1.37223921091316 +ER,PRCD,-0.251901093367006 +ER,STRCP1,0.283967539654158 +ER,TP63,-0.607476206877599 +ER,PRKRIRP6,0.245684882618661 +ER,ADCY8,0.793931289576853 +ER,GPATCH2L,0.374585226227535 +ER,PART1,-0.0542666563141052 +ER,NLGN1,0.480612204817628 +ER,DLGAP1,-0.279769593255421 +ER,ABI2,-0.0681395955878861 +ER,CHST9,-0.228008465779655 +ER,GREB1L,-0.394797851491804 +ER,HOTTIP,-0.480790525847624 +ER,AFF2,-0.032597449769805 +ER,LST1,-0.558802795824027 +ER,SLC6A19,-0.539849531013587 +ER,SKOR1,-0.404902944915267 +ER,WDR78,-0.274059319066844 +ER,PGA4,0.274625921110341 +ER,SCG3,0.399774543620525 +ER,MMRN2,-0.14509918749159 +ER,SSPN,0.248292966986849 +ER,KALRN,-0.0565604622288663 +ER,SCN10A,0.589205341749229 +ER,PDE6C,-0.474720131962203 +ER,ZNF585B,-0.563824319164957 +ER,ROBO3,0.884191302092296 +ER,TRAF3IP3,-1.14276908596278 +ER,CCNK,-0.0698170985169608 +ER,CYP8B1,0.0170198327830916 +ER,ZNF546,-0.404185253402851 +ER,PLIN4,-0.0891706108677556 +ER,DPH6,-0.100276806238983 +ER,MARVELD3,-0.133566981705936 +ER,RGS13,1.13780802189398 +ER,STRBP,-0.255212795651914 +ER,LRFN2,0.327284299440285 +ER,PRRG3,-0.0994057499893537 +ER,NLRP12,-0.41890833910044 +ER,PLCXD3,-0.0346508176742816 +ER,RUNDC3B,-0.00716066186127243 +ER,CABP7,-0.476824823735712 +ER,ZNF366,0.263481690550437 +ER,COL2A1,0.646120603870638 +ER,BZRAP1,-0.00410162483599158 +ER,TCP10,0.0418820788641488 +ER,ADGRF3,0.923843296197463 +ER,HIBCH,0.878687564171535 +ER,ADGRD1,-0.630749037994599 +ER,SDPR,-0.589014891925385 +ER,TNNT2,-0.529387538284338 +ER,CD5,0.34199891027073 +ER,CCDC170,0.634311779155382 +ER,PRSS30P,-0.0836861088947237 +ER,GIMAP1,0.27281022088385 +ER,KCNK12,-0.363913296669864 +ER,DNAJB13,0.217417584598432 +ER,DENND2D,-0.407489746546911 +ER,MOGAT2,-0.328237666295318 +ER,AMER2,0.900940509806378 +ER,ZNF536,0.165886292520171 +ER,BPIFB1,-0.149600611233419 +ER,TMEM150C,0.285643695561474 +ER,DNAH7,-0.0724735964656169 +ER,ANXA3,0.866188537168512 +ER,HDDC2,0.830583204402375 +ER,VTA1,0.683359412947674 +ER,FENDRR,-0.247413215867521 +ER,ABCC11,0.233714732934337 +ER,RAPGEF3,-0.21435011541543 +ER,KIAA1109,-0.222480220922251 +ER,LRGUK,0.618385203198599 +ER,RGS11,-0.319908643168258 +ER,TRPM3,-0.13250473113327 +ER,ZNF862,0.513537111143282 +ER,CDH17,0.102094600024048 +ER,BCAS3,0.274151055150003 +ER,ZNF826P,-0.0742819713682414 +ER,VILL,-0.0702853491221833 +ER,TTTY15,-0.213707578396568 +ER,PNMA5,0.0620681416335829 +ER,CACNA1C,0.0780403215306786 +ER,SKOR2,-0.57510796153227 +ER,COG6,-0.149856999870668 +ER,HP,-0.638555679911945 +ER,TACC2,-0.00174397553061841 +ER,CABLES1,-0.417956847392125 +ER,PADI1,-0.0642439575778408 +ER,ZSCAN4,0.334139000590659 +ER,RIMKLA,-0.211434495049575 +ER,MYOM2,0.268445860318106 +ER,SNX13,0.642248234404356 +ER,EIF1AY,0.307701134595441 +ER,SPATA32,-0.146182074550882 +ER,NKAIN2,0.234679700368453 +ER,DUSP4,0.131130587105098 +ER,ST8SIA1,-0.117481749914657 +ER,CNGA1,0.589954341697946 +ER,UGT3A1,-0.150218381242978 +ER,ANKRD35,0.518970989538142 +ER,TSPYL6,0.0438981291614363 +ER,IL15,0.515179270570915 +ER,KCND3,0.233679541138175 +ER,PRR18,-0.223451223628247 +ER,FAM129A,-0.196437497694862 +ER,CD163,-0.430183611142641 +ER,PXDNL,0.128285995552546 +ER,HSF5,0.0833082890985518 +ER,GLB1L3,0.211699893354666 +ER,DHX8,0.516865564507077 +ER,CLDN2,0.962028822268934 +ER,RAG1,-0.383021561564522 +ER,PBX1,-0.0249954020300291 +ER,IRS2,-0.221580961697023 +ER,ADAM20P1,-0.033030412521166 +ER,ASNSP6,-0.18052532519699 +ER,KCNE1,-0.236800045738309 +ER,DNAH10,-0.391741350861519 +ER,CPN2,-0.149459732005924 +ER,PPEF2,0.773113670852361 +ER,TRIM10,-0.0629564106887196 +ER,HACD4,0.575297476575507 +ER,AIRE,0.270804816465253 +ER,SLC38A4,1.0946941549919 +ER,CD300E,-0.315985500940376 +ER,TTC41P,-0.115603006297466 +ER,KLHDC7B,-0.22566466045726 +ER,TMEM132D,-0.11415847996145 +ER,TRAPPC2,-0.0687453346682669 +ER,ACTN2,0.00434063344373187 +ER,CLDN16,0.0111055895359721 +ER,FGL2,0.101016003224007 +ER,ACE,0.861669843838087 +ER,PLIN1,-0.0733716951078646 +ER,CCDC141,-0.572543412125733 +ER,TMEM239,-0.22337056986756 +ER,C3orf67,-0.145989737103612 +ER,NFATC3,-0.50086652758182 +ER,CD300LG,0.0130827887184252 +ER,MUC21,-0.424003665782645 +ER,WNT7A,0.441669019678787 +ER,TIGIT,0.455219879109283 +ER,GRIK3,-0.189863204140978 +ER,SMC6,-0.0765281449934661 +ER,SRRM4,-0.0698690508288825 +ER,ARSD,-0.208697618717988 +ER,ADGRB3,0.591205231596302 +ER,ABCA8,0.84928476617955 +ER,C12orf40,-0.329713234598518 +ER,EXD3,-0.0967310253020345 +ER,AP3B2,0.100167750356043 +ER,RHOH,0.39436686917771 +ER,SV2C,-0.175970648521653 +ER,SLC1A1,0.49967707625611 +ER,LEP,-0.0637328927226854 +ER,PTCHD1,0.261643664282154 +ER,IL36RN,-0.369228865677775 +ER,SEZ6L,0.157725858980756 +ER,CFAP43,-0.286911288742545 +ER,ADCY2,0.537069798494276 +ER,CHFR,-0.312012643365539 +ER,GPC5,1.54360516497966 +ER,IL23R,0.676703205440159 +ER,DAPP1,-0.365737740514355 +ER,DNAH2,0.0438815980085706 +ER,PAPOLA,1.42004989603321 +ER,PPP1R1C,-0.384274966905226 +ER,ELF5,-0.27838547217998 +ER,SCML4,0.445221712500429 +ER,PLEK,-0.162594185173321 +ER,ANKRD36,0.916030464063828 +ER,SLC7A9,0.238620284976124 +ER,PPME1,-0.240942728583316 +ER,PLXDC2,0.913159635305869 +ER,ADGRF2,-0.762108990881174 +ER,IDH3A,-0.462461097705468 +ER,PRSS27,0.128834140421925 +ER,THEMIS2,0.0800009229947158 +ER,AIFM3,0.177591853212766 +ER,MYCBPAP,0.443865364081745 +ER,DMRTA2,0.489575821408064 +ER,SOX1,0.281060470526333 +ER,FASTKD2,0.422188507444786 +ER,SLC4A9,0.38945533294396 +ER,SYT8,-0.154842950303963 +ER,C1orf127,0.0838403196196552 +ER,ABCB11,0.421627336294159 +ER,ENTPD3,0.541910237771636 +ER,RXRA,0.0705549099584186 +ER,LRAT,-0.225561695426907 +ER,SEC1P,0.237274875251662 +ER,CASC2,-0.497736043867101 +ER,ARPP21,0.189461555813889 +ER,ADH6,0.248959982682671 +ER,FAM53A,0.283428678914735 +ER,NUBPL,-0.814281378370089 +ER,SLC26A1,-0.242642675734755 +ER,LRTM2,0.184473726869882 +ER,TTC23L,0.144803231031282 +ER,ZNF233,0.176100843939229 +ER,BEND2,-0.173981691461153 +ER,STC2,-0.554812978856706 +ER,PCM1,1.01629784684185 +ER,ABCA6,0.0203888579421636 +ER,MPDZ,-0.196137845426038 +ER,HEPHL1,1.34411454787684 +ER,MDGA1,0.529622489006736 +ER,GLB1L2,-0.0195109907323596 +ER,SYT16,0.608402829200191 +ER,LYST,0.000500755111306771 +ER,SLC34A2,-0.943968507752532 +ER,ANKRD30A,-0.133256107386409 +ER,KLK7,0.474426225360853 +ER,SIGLEC8,0.183649981101825 +ER,IL12B,-0.557905227072332 +ER,SLC52A3,1.12427692085769 +ER,LACE1,-0.0532836444179787 +ER,L1TD1,-0.586660092951106 +ER,ZEB2,0.413227902386271 +ER,C9orf139,-0.663047208637293 +ER,KIAA1671,0.718917762272824 +ER,DRGX,-0.279576823793915 +ER,SLC13A5,-0.234941912934186 +ER,NOTCH4,0.371292454894391 +ER,NPY6R,0.174284612560401 +ER,SLC9C1,0.028985551127327 +ER,ART4,-0.0816795593958764 +ER,CDH8,-0.0370000912993942 +ER,C14orf105,-0.155700720287673 +ER,GFAP,0.323618826872803 +ER,GPR65,0.637200402694944 +ER,SIRT2,0.974509366211742 +ER,CCDC102B,0.162502220503702 +ER,TRPC4,0.234940076721226 +ER,EPX,-0.688899350600905 +ER,PPP2R5C,0.354988093703844 +ER,GLIS3,0.102772193908373 +ER,BMP3,0.0287470592049761 +ER,NPTX2,-0.113568086943317 +ER,SLC8A3,0.506245730156612 +ER,PKDREJ,0.357001729310209 +ER,RCN1,-0.157524580152768 +ER,RSPO3,0.826200670000152 +ER,TMPRSS4,0.403637377681216 +ER,HRG,-0.551732643115324 +ER,ARHGAP17,-0.46061725260546 +ER,KLHL30,-0.00962533960650877 +ER,COLGALT2,1.04716048844531 +ER,LPAR1,0.660054762106756 +ER,PAPD5,0.62982405755888 +ER,PSAPL1,1.46548424997449 +ER,WDR20,-0.0295917288792629 +ER,NPBWR1,0.00492235773374198 +ER,WISP3,-0.0119574462518205 +ER,WBP2NL,-0.663878762095643 +ER,NLRP6,-0.152770898871601 +ER,GGACT,0.0629435646905444 +ER,GBAS,0.75101680823348 +ER,NCAM1,2.31182991942061 +ER,VPS72,-0.260630014830052 +ER,USP53,0.0163582927749995 +ER,LGR5,1.04618859153433 +ER,KCNJ6,-0.0959313756033731 +ER,RASSF6,0.077531760621896 +ER,FLI1,-0.178434772807489 +ER,LRRD1,-0.268556658083249 +ER,PRMT3,0.552634275609801 +ER,NRSN1,0.5848520654812 +ER,ZNF852,0.0921543305341975 +ER,SH3TC2,-0.455032812314908 +ER,RBFOX1,-0.298715232530467 +ER,SEZ6,0.888118530904105 +ER,TPK1,0.369978485671545 +ER,GDPD4,0.513952881382275 +ER,GLRA2,-0.219089468538496 +ER,ZCCHC5,-0.238019139606446 +ER,NOX5,-0.29312334173172 +ER,PCAT18,0.0150030524744416 +ER,BDKRB2,-0.0306191128822721 +ER,ERICH3,-0.140064210291157 +ER,FHAD1,-0.320716887389577 +ER,UGP2,0.744171014112469 +ER,DNAAF1,0.72878775937995 +ER,PTPRO,-0.0842290630961271 +ER,CPLX2,0.20562363560119 +ER,TECTA,-0.260321602117493 +ER,STXBP5L,0.0755359706377409 +ER,PCDHGC4,-0.241043382453721 +ER,RIMS1,-0.162947747502909 +ER,DSP,-0.389205662047137 +ER,MIP,-0.186142173894281 +ER,SCNN1B,-0.286859207364099 +ER,SHC3,0.568354832345346 +ER,PKHD1,-0.5274418589893 +ER,DAAM1,0.129987373838657 +ER,PRPH,-0.384783103931534 +ER,GSTTP1,-0.476340102064233 +ER,SCG2,1.18716708533559 +ER,SYCP2,-0.340990453062217 +ER,NDST3,0.0287227170521309 +ER,TBX21,-0.141631856619024 +ER,NR4A1,0.402936537025619 +ER,ACSS3,-0.407705266311338 +ER,IL1RAP,-0.216808783262746 +ER,RIC3,0.220647457015258 +ER,KCNJ1,0.717134840030152 +ER,GSG1L,-0.530319489695633 +ER,ATP2B3,-0.365695484984396 +ER,STAB1,-0.308230266454253 +ER,SLC22A13,-0.290990095507741 +ER,KANSL1,0.236231978529089 +ER,COBL,-0.221931145253279 +ER,EMX1,0.0630909581614953 +ER,LCA5L,0.0345627612121115 +ER,C9orf131,-0.522144447059997 +ER,SEMA4D,0.313477940587049 +ER,IL17RE,-0.118958559086176 +ER,ZNF681,-0.65507094189047 +ER,PECAM1,0.0721961758761863 +ER,SLITRK4,2.20131925338765 +ER,PKNOX2,-0.357532531018122 +ER,TBPL1,0.00665564569179433 +ER,LRRC19,-0.0702311613289278 +ER,NRXN2,-0.164596308938917 +ER,SOX6,-0.0122844734253853 +ER,PARK2,-0.656676763855448 +ER,FAM83F,0.177413019221442 +ER,TMEM105,-0.00330774435062648 +ER,ADAMTS19,-0.433826048487323 +ER,KCNC1,0.700570549352852 +ER,ABCB5,-0.300995674688204 +ER,ETV1,-0.383341603653731 +ER,SLC4A4,0.835282123636659 +ER,SLC6A14,0.535681750427583 +ER,VWA3A,-0.144741504525998 +ER,KLLN,0.0676473880973538 +ER,DNAH10OS,-0.447308612527637 +ER,LGSN,0.343388446436517 +ER,TMEM232,-0.417062671236838 +ER,NEIL1,0.216820784451251 +ER,SERPINA10,-0.575047228557341 +ER,PIK3C2G,-0.276957046107533 +ER,CACNA1E,0.273266136535389 +ER,C1QL3,-0.318934924833957 +ER,DRC1,0.277583464965478 +ER,CCDC175,-0.00594508134887833 +ER,SKAP2,0.0873928697788971 +ER,RANBP17,0.203006270800667 +ER,PROKR1,0.411158938421622 +ER,ARMC3,-0.249386036008971 +ER,CDHR4,0.510163715819369 +ER,GBP6,0.259411546861288 +ER,SMIM8,-0.0775762804968658 +ER,C1orf145,-0.142157331221083 +ER,PLEKHS1,0.300647390059901 +ER,EBF2,0.0139243880931104 +ER,ASPN,-0.495246977561368 +ER,GAD2,0.0645034118115759 +ER,ISL1,-0.00816614923873605 +ER,MIXL1,-0.51523250148415 +ER,HIPK4,0.332408220091358 +ER,TRPC6,0.122973267310801 +ER,PLCL1,-0.550274665053189 +ER,KCNG4,0.115830596581117 +ER,CAMK1G,0.0950957038637086 +ER,PDE9A,0.0838165336304191 +ER,LRRTM4,-0.408324195948362 +ER,NCKAP1L,0.473291019818986 +ER,MAS1,0.312039125436798 +ER,FAIM,-0.218103499858653 +ER,SORBS2,0.114650758405522 +ER,PPL,-0.361240545912453 +ER,CYB5R2,-0.45883123339864 +ER,CUL1P1,-0.0649882647815732 +ER,MAP3K15,-0.159029243799352 +ER,TTC16,0.156310793778198 +ER,SPINT2,-0.429315376536189 +ER,ANKRD44,0.917969288067974 +ER,TTLL9,0.149490479127798 +ER,ZFP37,-0.729640691985035 +ER,C6orf3,0.120347746156036 +ER,IQGAP2,-0.161171264421921 +ER,PPP5D1,0.597017877967632 +ER,PTPRC,0.524738486229116 +ER,C16orf54,0.146134295633008 +ER,MPEG1,-0.171165516603272 +ER,CLCA3P,-0.847229235262671 +ER,DHX58,-0.26923524035843 +ER,TMEM151B,-0.250830219169541 +ER,PREX2,-0.530754138826115 +ER,LRP2BP,0.213299853689692 +ER,ADAMTSL2,0.0182813307362849 +ER,CPXM1,-0.218137916334267 +ER,NTN5,-0.133448414435494 +ER,ANKRD6,-0.164058465862998 +ER,YPEL4,0.690871065827102 +ER,C7orf65,1.26676859305565 +ER,KIAA1107,-0.154925892381438 +ER,CNPY1,-0.39269818581869 +ER,MEIS1,0.405114682318377 +ER,TMPRSS11BNL,-0.45377255921846 +ER,MEDAG,0.233292353953953 +ER,KIAA1456,-0.232333692081104 +ER,ANGPTL5,0.17130324990338 +ER,ISLR2,0.179017777761559 +ER,COL21A1,0.177281988360562 +ER,WDR48,0.458102186251289 +ER,MME,0.241735903952481 +ER,CHN2,-0.219471701068387 +ER,MAPT,-0.704051222792156 +ER,TACSTD2,-0.124771278671758 +ER,ITSN1,0.527530361369295 +ER,XKR4,0.557031245349127 +ER,C5orf56,0.805430667903271 +ER,KRT42P,0.429939463305078 +ER,C8orf74,0.0209328787161308 +ER,FRMD1,-0.353276634600509 +ER,DRD5,-0.185693519778684 +ER,SHH,-0.0689970545616814 +ER,IARS2P1,0.0432698918881377 +ER,CASP14,0.0493730175103317 +ER,PLCH1,-0.524660258952504 +ER,KC6,-0.0351174956268953 +ER,FAM196A,-0.554079705376939 +ER,AKAP6,0.00498030015672165 +ER,PCDHGB9P,0.292409292922541 +ER,ITIH5,0.75722759287137 +ER,EWSR1,1.35777284572416 +ER,IGFBP3,-0.421544962000339 +ER,MSH6,-0.130474818659885 +ER,GPIHBP1,0.0765550691760053 +ER,TMCC3,-0.0764334461487813 +ER,EPHA6,0.176027817073038 +ER,OLIG1,-0.121114798711887 +ER,PCDHGA2,1.15733418232085 +ER,NXF3,-0.665149494160156 +ER,GJB2,0.0110174998132871 +ER,DNM1P46,-0.145946060946118 +ER,CD96,1.4743985589348 +ER,PADI4,0.228562001356825 +ER,PIK3R6,-0.0435085081863007 +ER,PLA2G4D,-0.0475257467180945 +ER,GFRA1,0.926448145562677 +ER,CYBB,-0.227609422376532 +ER,TRAF5,0.406102290667725 +ER,GAS2L1P2,-0.121215440333081 +ER,SRP68,-0.0148350196250182 +ER,CD28,-0.666490666632808 +ER,SSR4P1,0.0339491378262029 +ER,C17orf107,-0.31684158667055 +ER,CD84,0.0710557249691883 +ER,FEM1AP3,0.294817980910598 +ER,ZNF84,-0.255830025646747 +ER,MACC1,0.144699302272571 +ER,PCAT29,0.425539760133925 +ER,AHR,0.479075248758134 +ER,MTHFD2L,0.788514677062776 +ER,SECTM1,0.48633594343846 +ER,ECHDC2,-0.279956262407529 +ER,PSMC1,0.0790018171627799 +ER,SLC9A3P3,0.127343911251013 +ER,CD177,-0.555467618519002 +ER,SRR,-0.526931163121925 +ER,RBM45,-0.31832942417837 +ER,PP2672,0.200586469867777 +ER,F13B,0.324715009938962 +ER,NCAN,0.249230893571441 +ER,FAM205A,0.300359263647868 +ER,CPVL,0.181353380025558 +ER,GPR182,-0.018636880910578 +ER,TMEM144,-0.065731568475027 +ER,RASGRP3,-0.112318369335518 +ER,DCC,0.979375163970292 +ER,KIAA0825,-0.49782685449118 +ER,HAVCR1,0.144991706030105 +ER,ZBTB16,0.886413174765293 +ER,LGI4,0.0411757397929281 +ER,RFESD,0.419161552329921 +ER,HTR2A,0.260044930733222 +ER,HMCN2,-0.213523103058662 +ER,KLB,-0.217556842558949 +ER,SULF1,1.22519285170177 +ER,ALK,0.634955238221244 +ER,PNPLA7,-0.32098492102146 +ER,ZIM3,-0.17203499502616 +ER,CYP2B7P,0.0555397021295974 +ER,PRCP,0.30164309006208 +ER,LARGE,-0.394710603193525 +ER,MYO1F,-0.449510930655486 +ER,CDH13,-0.0211193119155591 +ER,MYH6,-0.836868972033668 +ER,RAX2,-0.213831459845987 +ER,ZPBP2,-0.145958614935766 +ER,TMEM233,0.0965566994433296 +ER,SLC34A3,0.44561062251244 +ER,CLVS2,-0.381137843543989 +ER,FRY,-0.156985173217476 +ER,SLC26A7,0.0537190077673025 +ER,KCNC2,-0.0741807714948746 +ER,TOX,0.00612880111705781 +ER,TRIM60,0.257756909281439 +ER,SH2D7,0.291486220751616 +ER,SIGLEC17P,0.399689973637443 +ER,PMEL,1.02794726648042 +ER,SLC26A4,0.423320641148794 +ER,SLC5A10,-0.372623429671338 +ER,ACSL6,0.992670678243394 +ER,BDH1,-0.257677839843369 +ER,MRAP2,0.769251235290574 +ER,SRL,0.289567212506292 +ER,IGFBP2,-0.0336402826425551 +ER,ADGRG4,0.260236264261679 +ER,CCDC13,0.64674130996732 +ER,SHISA7,0.13121101116174 +ER,TLR10,0.084761787851369 +ER,ZNF469,-0.161091532937671 +ER,SLC11A1,0.234409611425645 +ER,ANKUB1,-0.336247548061998 +ER,PCDH11X,-0.167827845955619 +ER,CCDC108,-0.0062111219783569 +ER,ESRP1,-0.16741320287958 +ER,DNAH5,-0.267255560369215 +ER,VNN1,0.610511136838199 +ER,NUMA1,-0.0436544111704843 +ER,GRM6,0.0830295727038024 +ER,PDK4,-0.212397491735467 +ER,ADD2,-0.237496821286629 +ER,RAPGEF4,-0.0237201119415385 +ER,BVES,0.562925053017396 +ER,POU2F3,-0.0383122639353402 +ER,MASP1,0.0166638828886444 +ER,DRD1,0.0329603651715388 +ER,SAGE2P,-0.395429825699116 +ER,HEXA,0.0551322336065805 +ER,DEFB132,-0.442966438888249 +ER,KDM5B,-0.298041855405157 +ER,CPNE2,0.752043398298863 +ER,P4HA2,0.183006461245385 +ER,CDCP1,0.141570308641584 +ER,AKR1C1,-0.258615396266153 +ER,SMCO3,-0.80323701218145 +ER,PLXDC1,0.746434726282985 +ER,MOBP,-0.0456168550536187 +ER,ZNF430,-0.218383598171179 +ER,CABP1,0.611735413545015 +ER,BEGAIN,-0.451628683995369 +ER,KLHL6,0.196992053752914 +ER,TAT,-0.50439277144297 +ER,PSG6,0.045350121293333 +ER,SOX11,-0.0992025023247048 +ER,PDE8B,-0.187998336089606 +ER,EGFEM1P,-0.775687854512211 +ER,CHRNB2,-0.0536509696960414 +ER,DCBLD2,1.12823197012282 +ER,COG2,-0.311607551625456 +ER,MYH4,0.654175548216958 +ER,FLRT3,1.61140504672801 +ER,SVOP,-0.291305939330863 +ER,SLC15A1,0.516172161993498 +ER,DNAJC5B,0.255000838918473 +ER,LHX6,-0.366389388575736 +ER,NUP93,0.0941208802109222 +ER,SLC7A14,0.464313779988143 +ER,SORCS2,0.241771996036544 +ER,ZSWIM5,0.297188625176954 +ER,ZNF225,-0.19066093788669 +ER,ZNF454,0.176578519878825 +ER,NMUR2,0.0272644420033211 +ER,GPA33,-0.131786628473306 +ER,EPS15P1,0.84044233797996 +ER,VRK3,-0.17173445775297 +ER,ARNTL,0.83471558291048 +ER,GRIA1,0.153708839217693 +ER,DUOX2,0.00138214047901074 +ER,SIDT1,0.237980764740077 +ER,COPB2,0.279360320823057 +ER,DOC2B,-0.0502703930789544 +ER,HMGCLL1,0.0642600697421759 +ER,GCNT7,-1.12048685234532 +ER,SLC25A48,-0.248179674842503 +ER,DNAJB14,0.28787092466382 +ER,PSMD6,0.611117495287743 +ER,EXOC7P1,-0.568957535829315 +ER,PRLHR,-0.519621161564639 +ER,NRP2,-0.138798038280546 +ER,GALNT9,-0.131248292310409 +ER,MYO5C,-0.427332778087439 +ER,ZNF610,0.0109434163204552 +ER,CD99P1,0.877829255703484 +ER,SIRPB2,-0.134366545230112 +ER,RARB,-0.0139729967564237 +ER,ABCC12,-0.50726677755648 +ER,SLC10A1,0.190895821254668 +ER,GRAP2,-0.32673699769962 +ER,PRCAT47,0.20664416319190199 +ER, DEC1,-0.137160346413117 +ER,MPP5,1.26065957478017 +ER,NEUROD2,-0.182600385145583 +ER,ITGA11,-0.243771059382183 +ER,ZSWIM5P2,-0.465550570529016 +ER,C9orf43,-0.0868620149968427 +ER,TLR9,-0.468383404031751 +ER,EMID1,0.0175542848251101 +ER,KCNA5,0.2277044080489 +ER,PRAMEF18,0.195618369302056 +ER,HES2,-0.279772297291543 +ER,KY,-0.560415073789244 +ER,LMCD1,-0.380359335397846 +ER,TARID,-0.240832804563675 +ER,DLG2,0.0593366845348096 +ER,DDX25,0.085763981902214 +ER,GLYATL1,-0.112528683863047 +ER,ACTL10,0.255731726255319 +ER,CEACAM5,-0.0468460215136534 +ER,C10orf11,-0.0800414721080314 +ER,IHH,-0.0165385181167462 +ER,VWA5B1,0.171942100668759 +ER,TUNAR,-0.43709612025154 +ER,CASP2,-0.11354695040295 +ER,PEX5L,-0.320157671957709 +ER,SNRNP35,-0.0890171692750428 +ER,AOAH,-0.371958248056914 +ER,TRDMT1,-0.06341399594776 +ER,HIF3A,-0.288366291407848 +ER,XAF1,0.291509160176949 +ER,C16orf96,-0.308185346655353 +ER,MST1L,0.805251739865293 +ER,ZNF677,0.432332554341737 +ER,CYP4F3,0.0792516817142427 +ER,SERPINE2,0.876892804937062 +ER,NLRP1,0.487434473003837 +ER,FGD5P1,-0.466829754220018 +ER,CLNK,-0.0984500988808536 +ER,NAPSA,-0.227584483774237 +ER,GULP1,0.36650211131496 +ER,RNF165,0.189685086672543 +ER,CCR3,-1.24201912822354 +ER,DMBT1P1,-0.521661806494305 +ER,SPATA31B1P,-0.205301206727446 +ER,TMPRSS12,-0.158549641221572 +ER,PRMT8,-0.300904362237315 +ER,ZBP1,-0.0292606925072956 +ER,FOXA3,0.0412427089650161 +ER,CD34,0.0485155192441393 +ER,HK3,-0.394090500958878 +ER,RET,0.0470668973445068 +ER,SOGA3,-0.0934440013670549 +ER,ABCA4,1.07460595282452 +ER,PRKY,-0.711549273668865 +ER,RANBP3,0.201437326439857 +ER,RAB9B,-0.514740279399318 +ER,HOXD1,-0.22342510384021 +ER,AMZ1,0.195408219519695 +ER,COL15A1,-0.429244639160078 +ER,HNF1B,0.247457903589604 +ER,CHRDL2,-0.436952934570827 +ER,MMP1,1.35459383793287 +ER,SLC37A3,-0.0692970350492654 +ER,PLA2G4E,-0.0330774659964394 +ER,LRRC9,0.544373903388134 +ER,ANTXRL,-0.399942749768408 +ER,ENPP6,0.748743117792841 +ER,CPEB1,0.16022253857258 +ER,G6PC2,-0.374193935299499 +ER,TMCO3,0.40206387029687 +ER,VSTM2L,0.11126545018295 +ER,TBX22,-0.206493256889355 +ER,TPRG1,0.00385378373915529 +ER,FGF7,0.0373087541246186 +ER,NKPD1,0.166067043839203 +ER,TMEM133,-0.0890082304182859 +ER,HSD17B2,-0.129723915688887 +ER,LAD1,-0.507817744313545 +ER,MPL,0.156856702571672 +ER,PRDM9,-0.249283012727894 +ER,ZNF181,0.304573010926999 +ER,IKZF1,-0.228132013780271 +ER,ZNF257,0.602433682827618 +ER,ZNF133,-0.0741134274659678 +ER,CNNM1,0.617656431500856 +ER,COMMD9,0.168155439695884 +ER,TMC2,-0.601794399283381 +ER,HPSE2,0.159163072749315 +ER,ABCC6,0.0942546350075561 +ER,MTMR7,-0.358863825256026 +ER,PPP1R3G,-0.887899373278756 +ER,SLCO2B1,-0.575388072784791 +ER,GABRE,-0.0846836068857009 +ER,FER1L5,0.191463290933748 +ER,ADARB2,-0.135948513385241 +ER,TMEM35,0.168420409724006 +ER,HYDIN2,-0.143399179899172 +ER,TMEM221,0.382055955887747 +ER,PCDH17,0.124320283187499 +ER,TTLL6,-0.802871345498103 +ER,RP1,-0.580615872705066 +ER,ZNF648,0.268127370491948 +ER,GDAP1L1,-0.117902187715635 +ER,SLC5A11,0.0948726665817082 +ER,ADGRF1,-0.0337147737909479 +ER,PIGR,-0.640056718486463 +ER,BCO1,-0.127829561587727 +ER,ANO9,1.30439386167991 +ER,DOK6,0.188592847206787 +ER,WNT2B,-0.283699099753013 +ER,ZNF583,-0.345442806096302 +ER,SERPINB2,-0.44422066243308 +ER,RTN4RL1,0.300767965957336 +ER,PADI2,-0.0995266660061114 +ER,RHAG,-0.358670234777628 +ER,C1orf167,-0.53683252546753 +ER,DGKB,-0.253465475139376 +ER,C15orf41,0.17879155388464 +ER,LIN7A,-0.0937139019085371 +ER,NEU4,-0.236624403984395 +ER,PPP1R26P1,-0.269126964998371 +ER,TERF1,0.3558914842852 +ER,ZNF717,0.0836503102771897 +ER,CCDC85A,-0.295038662724139 +ER,IYD,-0.119719624427411 +ER,CYP2C19,-0.700987126239479 +ER,FABP2,-0.604170429777627 +ER,HGFAC,-0.20743883224113 +ER,CNTNAP5,0.249119821032411 +ER,EFHB,-0.119268954847851 +ER,KCNB2,-0.0677314352500676 +ER,ZNF626,0.0945411765294415 +ER,EPHA8,0.28945809532165 +ER,KLHL4,-0.621199460356131 +ER,IFI44L,-0.293815267283365 +ER,CRHR1,0.131976464955652 +ER,ISG20,0.0151831619368085 +ER,OPRK1,1.00830386346743 +ER,HSD17B4,0.0228732397513552 +ER,NF1,0.305165217810315 +ER,TNFSF4,-0.195648063390508 +ER,GPBAR1,-0.697237017233795 +ER,ARHGAP24,-0.385853806493892 +ER,PRKG2,-0.493995437649897 +ER,MGAT4EP,-0.682297566812613 +ER,PLXNA4,0.422736859210755 +ER,SNCA,-0.0777899540185808 +ER,PRSS36,-0.0948161612818877 +ER,EIF4BP4,-0.296146402763401 +ER,PAUPAR,-0.102995810251829 +ER,LILRA2,-0.517878649018585 +ER,MAP10,-0.213370613565678 +ER,CHIAP2,-0.0603979862205478 +ER,HMGA2,0.616126164966596 +ER,MTTP,0.0504995224642697 +ER,ZNF746,-0.214192191360619 +ER,SPEF2,0.173862957727301 +ER,LHFPL3,0.750502555153671 +ER,SMCO1,-0.0818785070362648 +ER,PCDHGB5,1.9760671301951 +ER,KCNIP1,-0.412081272717524 +ER,CTNNBL1,-0.0245257026456681 +ER,CDH6,0.181537858633682 +ER,CCDC91,-0.567962669215811 +ER,AIFM1P1,-0.503919240584555 +ER,ADAM21,0.494990073566023 +ER,SLC12A5,-0.326722029935056 +ER,CEACAM8,0.148174565954544 +ER,ZNF773,0.0256084667147536 +ER,EFCAB13,-0.198216361823829 +ER,SMIM21,-0.0551072655636025 +ER,ZNF540,0.0887634903545191 +ER,IGIP,-0.178936649366802 +ER,MRO,-0.265824975637337 +ER,TLL1,0.718148163717714 +ER,CACNA2D3,0.8431153474419 +ER,PPP2R2C,-0.216916594874743 +ER,SNTN,-0.116771053511279 +ER,LRRC34,-0.671283024740433 +ER,GABRR1,0.603858240939398 +ER,STEAP4,-0.0992433930300244 +ER,MYOZ3,-0.176667540904054 +ER,ALOX12B,-0.431703979024654 +ER,ST8SIA4,-0.0464588802475511 +ER,TAS1R3,0.383661554674854 +ER,HOXA2,-0.206625740789601 +ER,LEKR1,0.195911647208538 +ER,POU5F2,0.121894335536981 +ER,WDR93,0.0201045547560164 +ER,TMPRSS5,-0.373728821882755 +ER,C6orf201,0.209009324157655 +ER,GABRG3,1.58590401011613 +ER,PDE1B,0.148887621779119 +ER,ATP6V1B1,1.15364298166325 +ER,ITGB7,0.0417073890752417 +ER,FAXC,-0.201607811232742 +ER,CCDC149,0.30978660531722 +ER,ZCCHC2,-0.624672671437178 +ER,TLR2,-0.150866608263208 +ER,SPATA2P1,-0.321990059109841 +ER,IST1,-0.342563653002213 +ER,SYCP3,-0.00874495075560388 +ER,GRIK4,-0.216010266250372 +ER,RGSL1,-0.476090413382227 +ER,FARP1,-0.391489425987024 +ER,C4orf17,-0.901277726575957 +ER,KCNT1,-0.490857338048669 +ER,NR1I2,-0.176928031922621 +ER,MYOD1,-0.194353335291111 +ER,TEPP,-0.0911537337072324 +ER,SERPIND1,0.163434622069518 +ER,AAK1,0.000632446255915667 +ER,HSD17B12,0.21108572314629 +ER,OAZ3,-0.742558184259275 +ER,PCDH12,-0.375885208574165 +ER,TCAIM,0.458767885666071 +ER,GREM2,0.14675933787715 +ER,CD101,0.184442110555395 +ER,ZNF385D,-0.42751500593128 +ER,FN1,0.871306730601202 +ER,TTC22,-0.205287435509021 +ER,TMEM132C,0.240590133907022 +ER,LY9,0.311012824459855 +ER,COL6A3,0.181985599316345 +ER,SLC2A5,0.277140187093028 +ER,SSTR3,0.174777835264282 +ER,FBXW7,0.393652407059845 +ER,CD40LG,0.381319782717036 +ER,TAS2R4,-0.115363903529571 +ER,NLRP4,-0.235851631104908 +ER,PXK,-0.178113464769206 +ER,ECT2L,0.315670078973022 +ER,GABRB3,-0.149101852328909 +ER,TRIM63,0.87216475678944 +ER,ADAMTS7P3,-0.890481893886512 +ER,MCOLN3,0.951935353189387 +ER,ADCY4,-0.490462364537004 +ER,SYTL2,0.672598532684694 +ER,WFIKKN1,-0.100133266771157 +ER,SNED1,-0.00590331090343622 +ER,SLC6A4,-0.171172544721548 +ER,PPFIA2,-1.26895642095364 +ER,FOSB,0.0345305946125922 +ER,ZNF788,-0.403463407329889 +ER,AASDHPPT,0.180479297975931 +ER,DSG3,0.193969040959329 +ER,MDS2,-0.000129864895064708 +ER,CATIP,-0.310649875506204 +ER,GATB,-0.273929755956931 +ER,ADAM5,-0.297706720261816 +ER,YWHAEP7,-0.282279760715628 +ER,PLEKHD1,-0.314774121583916 +ER,SUGT1,-0.594016118190398 +ER,GPM6B,1.0226095813112 +ER,SLA,-0.244392649598688 +ER,KRT20,-0.536726889630078 +ER,PRDM5,-0.0109599832241667 +ER,NEBL,-0.267314512001404 +ER,DNAH6,-0.27473590269107 +ER,ITGAL,-0.0952243735634913 +ER,POU5F1B,-0.04178205163428 +ER,PPARGC1A,-0.200997787281091 +ER,C20orf203,0.0502738906825647 +ER,ACTR3C,-0.44671938943835 +ER,PAK7,0.468744668230194 +ER,EWSAT1,-0.64213401555537 +ER,TMEM5,0.720814919030531 +ER,SLC14A1,0.515860135726125 +ER,MTERF4,0.40853325891194 +ER,BOD1L2,-0.457503630512851 +ER,ANO7P1,0.894584533725155 +ER,C3AR1,1.13769050340969 +ER,ZNF44,0.100573301484236 +ER,NMUR1,0.684929828016702 +ER,GRID2IP,-0.139771258141685 +ER,GSTM2,0.413859169782507 +ER,BPHL,0.094563266072721 +ER,GOLGA4,0.487889711572382 +ER,TXNDC2,-0.434058141608532 +ER,ARID1B,0.858928058420721 +ER,B3GNT7,0.288379151459969 +ER,DTWD1,0.714842366338241 +ER,FFAR2,0.0570566017488708 +ER,DCST2,0.207206887728216 +ER,CCDC140,-0.152579804058233 +ER,NLRC3,0.167116661086855 +ER,KCNH8,-0.427117462442931 +ER,PIWIL1,-0.358647735817614 +ER,DPP3P2,-0.601637829553595 +ER,C17orf105,0.0212583245211926 +ER,CLDN19,0.0520098964809507 +ER,SNX20,-0.277199790079853 +ER,LIMCH1,-0.156219464910552 +ER,BOLA3,-0.171328173365578 +ER,ASIC5,0.27425728415201 +ER,MESTIT1,0.615291281445174 +ER,ANGPT2,0.0180363762969329 +ER,PROCA1,0.0946714048193226 +ER,C11orf16,0.393796840854287 +ER,KCNJ2,0.580692319738952 +ER,CEP57L1,0.0829525331948664 +ER,FAM133A,-0.377293379748684 +ER,MX2,-0.0493909881020687 +ER, SEPT14,-0.0662892669565563 +ER,FREM2,2.57081806518802 +ER,KIAA0087,-0.265879201539698 +ER,FAM71F1,-0.168524545074665 +ER,STK3,-0.0270558840745641 +ER,TES,-0.21322383108507 +ER,DUOX1,-0.272050118798636 +ER,FBXO39,-0.541509496048219 +ER,EVA1C,0.349388540976731 +ER,OPRL1,-0.252315615141393 +ER,TNF,0.110921603322491 +ER,PHACTR1,0.600811468483271 +ER,TRPM8,0.286948596586116 +ER,DAPK2,0.216645865964847 +ER,DBET,0.11386293284162 +ER,PCTP,0.37621571856791 +ER,C1orf116,-0.287184118158077 +ER,CADPS,-0.7036597447539 +ER,TTBK1,1.24814353796201 +ER,BRD7P1,0.525658576707508 +ER,GRB7,-0.205017164671932 +ER,GYS2,-0.0544531142319387 +ER,PAX5,-0.00549619217488391 +ER,RNF222,-0.612965583268473 +ER,BANK1,-0.348891474280935 +ER,SARM1,-0.479829800512356 +ER,C19orf35,0.775711921432528 +ER,SPG20,-0.298845475047345 +ER,PHLDB2,0.88590196360807 +ER,NR5A2,0.457889507300141 +ER,QRFP,-0.438919817039466 +ER,MYH1,-0.0641403754971611 +ER,MMAA,-0.312387213020896 +ER,MUC22,-0.312365326381432 +ER,FCRLA,0.327400728168556 +ER,MC2R,0.739689075441447 +ER,SPTSSB,-0.382881908668503 +ER,CALHM3,1.08243592511079 +ER,TCP11L2,-0.164026508037903 +ER,TIMP4,0.922966671230591 +ER,LIPG,0.239520956993727 +ER,PRND,-0.07232561905877 +ER,AVL9,-0.00277955933290562 +ER,ZNF285,-0.179780260660527 +ER,APOBR,-0.517609423199324 +ER,TCEB3B,0.0478166365085636 +ER,GPX6,0.226372436629087 +ER,C9orf171,0.310974034727943 +ER,CELSR1,0.240054056076615 +ER,IFI27,-0.242084949259028 +ER,C6orf183,-0.342117379101751 +ER,GPR12,0.205000735081276 +ER,ELF3,-0.286187576834772 +ER,RBM47,-0.522767588721753 +ER,SOX8,-0.121647466008755 +ER,PATL2,-0.383878159828647 +ER,SGCG,0.34906400092532 +ER,APCDD1L,0.436245901115162 +ER,TECRL,0.346844026037074 +ER,SLFN11,-0.329462304128951 +ER,CPED1,0.527143085044712 +ER,RUNX1T1,-0.366307450518588 +ER,MIR646HG,-0.0911272525414066 +ER,SPATA3,0.145753653816321 +ER,RBM7,0.883661703314577 +ER,HHIPL1,-0.179490462297108 +ER,SSB,0.158624066815735 +ER,PLD6,0.313804051665639 +ER,C2CD4A,0.113384797421087 +ER,POLR2F,-0.466716858470141 +ER,SEMA3A,1.69767455905844 +ER,CAND2,-0.497276227436221 +ER,ZNF507,0.611576551808822 +ER,SNAP91,-0.317872652852709 +ER,HOXD3,-0.429480023404041 +ER,SLC35F4,-0.524688650721501 +ER,MGLL,-0.298365068424291 +ER,NOD1,1.14238394338091 +ER,SH2D2A,-0.100424899777108 +ER,WFDC1,0.538224189936627 +ER,LMF1,0.536192344230792 +ER,CLDN18,-0.663996260549936 +ER,CRTAM,0.112559840544939 +ER,CYLC2,-0.375353700443039 +ER,TEDDM1,-0.385846741267556 +ER,ADIPOQ,-0.614634098561836 +ER,UTY,1.03311452829888 +ER,PAX9,-0.138457511559246 +ER,ENKUR,-0.424255399629503 +ER,MUC3A,-0.418512474671528 +ER,SPAG17,-0.187327993862665 +ER,PROX1,-0.497740823596636 +ER,SLC47A2,-0.365618205903357 +ER,TIE1,-0.0751571990657317 +ER,NCKAP5,-0.209120275554557 +ER,CD302,-0.0962171364439633 +ER,CHRNA1,-0.231134089649185 +ER,UBE3D,0.46745460499671 +ER,TNFAIP8,0.0799887966744746 +ER,SFRP4,-0.307846189546416 +ER,TAOK3,0.254914494478706 +ER,ANP32A,0.457571818115981 +ER,CTSO,1.06727825942141 +ER,PCDHGA3,0.205357877887431 +ER,CIITA,0.154922180950963 +ER,ESYT3,-0.175280865386381 +ER,SLCO2A1,1.60796663886312 +ER,MGAM2,0.352087832393198 +ER,TMEM218,0.556460364777076 +ER,ATP8A2P2,0.625748211737466 +ER,HVCN1,0.323242827866798 +ER,TMPRSS9,-0.192926941106557 +ER,SLC7A4,0.515089577691021 +ER,PSD,0.320685165709525 +ER,KSR2,-0.478979870314086 +ER,ATXN7L1,-0.05943704039312 +ER,RREB1,-0.503743539726152 +ER,KCNH5,0.346627310745749 +ER,SCUBE2,0.368612684547344 +ER,GDA,-0.234142432604917 +ER,CTAGE1,0.457585359965873 +ER,PLD1,1.11578227203938 +ER,BSND,1.15546724702539 +ER,ITGA1,0.637773876143533 +ER,GNG4,0.790431447979828 +ER,PHF24,-0.286381830603155 +ER,RNF144B,-0.282696892528838 +ER,ACTR3B,-0.18539257039244 +ER,HMCN1,1.69744452818661 +ER,PRR23C,0.629440477389691 +ER,ZNF493,0.597260997301041 +ER,GUCY2C,-0.653231962505106 +ER,NKAPP1,-0.0932043293588303 +ER,LIN28A,-0.0198225450052761 +ER,TSPEAR,0.577867129260578 +ER,TTC39A,0.823677264370552 +ER,MS4A15,0.0954575100648704 +ER,HAS2,0.955783502264258 +ER,C3orf20,-0.488889973686551 +ER,ADRB1,-0.441348785842384 +ER,DDX10,0.63806123739793 +ER,COBLL1,1.3186086769748 +ER,GIMAP5,0.0355178976860464 +ER,SLC16A12,1.305791145541 +ER,HNF4G,0.100079191668266 +ER,PRR15L,-0.460192854591513 +ER,MSI2,-0.0661188967993805 +ER,PPIL6,0.0579855547663374 +ER,FAM120C,-0.284404862507834 +ER,CMC2,0.465908406699502 +ER,TMEM119,-0.218509442325292 +ER,PCDHB1,-0.468309280168471 +ER,CLEC4M,0.632048695800512 +ER,AACSP1,-0.27944804176509 +ER,KCNV1,0.173729862356311 +ER,CLEC4E,1.09429618781744 +ER,ALPK3,0.435257606907571 +ER,THBD,1.05553170052439 +ER,SEMA6A,0.332617861195706 +ER,PRODH,0.194227765736942 +ER,LRTOMT,-0.605088238365963 +ER,VENTX,-0.637025958456868 +ER,RAB3IP,0.110218122784196 +ER,TNXB,0.320744956559942 +ER,EPB42,1.55018209396194 +ER,DRD2,0.0521491848716987 +ER,FAM126A,0.940003902687201 +ER,ARMC4,-0.509677352772528 +ER,SPOCK2,-0.0200737448665739 +ER,SLC22A11,-0.267967792503365 +ER,APBB1IP,-0.267885007812398 +ER,MEGF11,0.173459632732621 +ER,PLEKHG4B,0.525275759270754 +ER,DNAH11,-0.312427581037147 +ER,C7,-0.14498482498546 +ER,FAM214B,0.892396418461292 +ER,C1orf64,0.486741510200678 +ER,MIR143HG,-0.176079052367982 +ER,CSGALNACT1,0.728470359547156 +ER,SESTD1,-0.351695019829433 +ER,UBL4B,0.276662381708485 +ER,FAM124B,0.260807587564095 +ER,CDH11,1.44243411715163 +ER,METTL20,-0.349252456065079 +ER,HNRNPR,-0.124171250621712 +ER,MGAT4C,1.23947640909287 +ER,KCNMB3,0.309129229436666 +ER,PRSS16,-0.0908371904567754 +ER,FAM198B,-0.623448533748439 +ER,GALNT11,1.15271999827742 +ER,RSAD2,0.0920036860673301 +ER,SMIM12,0.0940159787273299 +ER,CSRNP3,-0.035951797946388 +ER,EFCAB5,-0.308333265810251 +ER,DIS3L2,0.10506797977284 +ER,GOLGA7B,-0.37009120034556 +ER,MSANTD1,0.0954830147307518 +ER,LMOD3,-0.16647869135434 +ER,CECR6,-0.0964178539067835 +ER,TDRD12,0.130600468727797 +ER,GALNT13,0.720957155859693 +ER,PIK3R5,0.296256406974054 +ER,PRSS55,-0.297515963173929 +ER,ST6GALNAC3,1.18771600845234 +ER,SPATA6L,0.0643585257081225 +ER,ZFP82,-0.256281040356713 +ER,PDE1C,-0.625065399338322 +ER,ANKRD34B,-0.315120888310794 +ER,NCAM2,1.24434074981123 +ER,AGBL4,0.391185164744081 +ER,ASB18,-0.031583205189661 +ER,FAM169B,-0.152127861376063 +ER,GABBR2,0.658813675247777 +ER,TBC1D31,1.66210746006081 +ER,TLN2,1.10739143693629 +ER,ZC3H12D,0.553611825035905 +ER,HCAR2,0.215692879258744 +ER,LRRC49,-0.262489786986418 +ER,RBX1,0.0652646909500457 +ER,CNTD1,-0.0100381727765502 +ER,PCDHGC5,0.63508546967725 +ER,KCNE4,0.327263207591954 +ER,SLC15A2,0.257861421165143 +ER,CXorf21,0.25897193884851 +ER,PNMAL1,-0.755323412801744 +ER,CORIN,-0.383329090483779 +ER,FAM213A,-0.00207627224086473 +ER,IL10RA,0.0196958424184092 +ER,SALL1P1,-0.57559141745 +ER,FSIP1,-0.377408142736818 +ER,PAK3,-0.531140449293429 +ER,ANXA4,0.626320455123823 +ER,PDCD6IPP2,-0.200603226426156 +ER,WWC2,-0.393326525182975 +ER,USP15,0.449097666539624 +ER,PYGM,0.0630305744827623 +ER,PCSK5,0.0812848852651373 +ER,APIP,-0.153692223496928 +ER,AFG3L2,-0.0174067408693586 +ER,MYCN,-0.333584492710694 +ER,MEG3,1.46795857970473 +ER,TBC1D29,0.448707743479973 +ER,NKAIN1,0.415239326051374 +ER,ONECUT3,-0.361176398074155 +ER,COL13A1,1.0340705514151 +ER,ZNF555,0.780003233839685 +ER,NOS1,-0.475075839969541 +ER,C3orf80,0.717839412064193 +ER,KLF15,-0.0822447280828071 +ER,SLC32A1,-0.145745853842852 +ER,YWHAB,-1.5588102578332 +ER,MYLK,-0.439224315364638 +ER,LMBR1,0.740672138348681 +ER,MUC15,0.655511284579149 +ER,MS4A2,0.134251391217384 +ER,AKAP13,0.466523842921587 +ER,RPGRIP1L,-0.138073678961054 +ER,FAM163A,0.0423139887351509 +ER,CACNA1F,-0.315187356669178 +ER,FAM159A,-0.488816825749862 +ER,NEK5,-0.377870095237131 +ER,PIWIL3,-0.334537427426446 +ER,ZNF226,0.536782949452825 +ER,SPTB,-0.284429522820625 +ER,OTOA,0.105645268298931 +ER,HERC5,0.228583987654297 +ER,CNGB1,-0.323695182548429 +ER,NAP1L1,-0.467191135905029 +ER,TRPV2,0.610887639938859 +ER,GNB1L,-0.0210324667277938 +ER,CAPS2,-0.122344492521126 +ER,STAR,0.198872387586902 +ER,PRF1,0.538293815762508 +ER,RGS5,-0.237800225424782 +ER,C1orf158,0.463225793402917 +ER,LAIR1,0.235347985182032 +ER,SYNDIG1,-0.867194244085475 +ER,LRRC37A7P,-0.189043460913728 +ER,LONRF2,0.213753180272244 +ER,DSC2,0.151092953232747 +ER,THSD4,-0.629542159865987 +ER,EFCAB6,0.284638822500456 +ER,GLRA1,0.446811005808189 +ER,LPAR4,0.0893501371764878 +ER,TPH1,-0.309021559548921 +ER,C10orf67,-0.377420591047817 +ER,MAP4K4,0.668813091222993 +ER,MCF2L2,-0.0492305439405504 +ER,SMIM10L2B,-0.222991297892785 +ER,EHMT1,-0.35969921714862 +ER,ZNF286A,0.176611524735275 +ER,FAM19A2,-0.280297286780068 +ER,MYH8,-0.503782814694748 +ER,XIRP1,-0.0731164275859931 +ER,CCDC71L,0.162046479229394 +ER,NEDD9,0.528746686352555 +ER,LTF,0.0259159830259664 +ER,BRINP2,-0.253031464638643 +ER,CYP1A2,-0.12241887995828 +ER,GPRIN3,-0.236660954744953 +ER,ABCC6P1,0.0336459367026135 +ER,INSC,-0.671257355134401 +ER,CCDC88A,-0.0170908907520721 +ER,ACOXL,0.162989773502273 +ER,PLAT,0.284030404650574 +ER,PDE4DIP,-0.174274540344324 +ER,CDH3,-0.3105818264461 +ER,FBXO7,0.73663095949628 +ER,VCAM1,-0.079755227638783 +ER,LEMD2,0.0251164653144829 +ER,ZNF425,-0.0123366499629712 +ER,EFHC2,-0.33563477031677 +ER,MYOM1,0.282374519226507 +ER,WDR7,0.201304251449627 +ER,NPAS4,0.0340357748379767 +ER,CRACR2B,-0.813026419099581 +ER,GPR82,0.12530024519848 +ER,CYP4F22,1.43290322280986 +ER,CAPN6,-0.387447585601257 +ER,FBXW4,0.150253117524876 +ER,ZDHHC15,0.847060456373511 +ER,RPS2P45,0.170812602233135 +ER,TRIM69,-0.236581042805488 +ER,SOCS2,0.123331987756898 +ER,CCDC110,-0.310744829750696 +ER,ATP6V0D1,-0.1989327203401 +ER,ZNF682,0.0203107394517156 +ER,PRSS23,0.286405673155504 +ER,NLGN4Y,0.109811789868691 +ER,KLK10,0.034541258112345 +ER,RORB,-0.632355561261787 +ER,FAM65B,-0.489336547585041 +ER,ANKFN1,-0.39632503889906 +ER,ANKRD20A19P,-0.0495170715846337 +ER,PLCG2,-0.418073318307271 +ER,RP1L1,-0.223236118728057 +ER,CELF2,0.453453815920666 +ER,POU2AF1,0.0491617496548885 +ER,FAM153B,-0.0914425525054989 +ER,PWAR6,-0.314388378803292 +ER,CCDC169,-0.231283731806736 +ER,CNNM2,0.829381319361612 +ER,KCNQ1,0.207858036615809 +ER,SPTBN4,0.284267908261166 +ER,HTR3B,-0.350041857720481 +ER,C17orf77,-0.1118656138327 +ER,DRG2,-0.0191462835347132 +ER,CFAP70,0.0803656498132874 +ER,FAM83A,0.263554752943147 +ER,NANOS1,-0.321355126990115 +ER,FAM92A1P2,-0.281859510660534 +ER,GTDC1,0.388612127394737 +ER,BEAN1,0.540487760256144 +ER,BCAS1,-0.382894170280848 +ER,NOTO,0.139586793078351 +ER,NETO2,0.257111065529073 +ER,PTPN6,-0.208241306852164 +ER,SCEL,-0.520935084852042 +ER,ADAM29,-0.734678740294853 +ER,MIR137HG,0.697557581869632 +ER,RAB27B,-0.43094126852765 +ER,PTGER2,0.652601787703538 +ER,COL28A1,0.363906133779569 +ER,HSPB9,0.122840398268299 +ER,YTHDC1,0.286698837400481 +ER,C9orf106,-0.0121005859614792 +ER,ZFP42,-0.0953753301848959 +ER,REEP1,0.894739794367863 +ER,ESPNL,0.0368419089431942 +ER,TCTE1,0.170213755846604 +ER,ZNF596,-0.0799722181116304 +ER,ZNF483,-0.252260333185263 +ER,KIAA1324L,-0.130697418199114 +ER,SMIM10L2A,0.490837033231361 +ER,MAPK8IP2,-0.476931644876851 +ER,LPPR4,0.16712146037773 +ER,PCDHGB8P,-0.16991749385522 +ER,CDH20,0.114175651977874 +ER,ZNF287,-0.0948342051838377 +ER,GRHL1,0.11608827278925 +ER,ANKRD31,0.168961442728268 +ER,RPS6KA6,-0.469847268358986 +ER,ADCK1,-0.177375724068023 +ER,MRPL22,0.435620504825226 +ER,IFITM10,-0.0558661109450872 +ER,ADAM1B,0.277648199416714 +ER,RFTN2,0.155668579965748 +ER,KHDRBS2,-0.378623619185246 +ER,EREG,0.514691587831042 +ER,TANGO2,0.170084481307901 +ER,ANKRD18CP,-0.0549923376407706 +ER,PERM1,-0.515412884727677 +ER,SMCR5,0.411000366561737 +ER,FAM107A,-0.903044488505159 +ER,EXOC3L1,0.256232371467019 +ER,NUDT6,-0.0685798666630083 +ER,SPTBN5,-0.0833078071391554 +ER,IL12RB1,0.366902294705288 +ER,SLMAP,0.500333191498194 +ER,DOCK8,-0.455908896307815 +ER,ZNF559,-0.526215827781162 +ER,TOX3,-0.152149741562365 +ER,SLC16A9,0.868149341503972 +ER,KCNK10,0.339568591419905 +ER,TMEM41A,0.422263341928515 +ER,OSBPL9,0.535219710932824 +ER,KCNQ4,0.615291784900665 +ER,HFE,1.44323267847146 +ER,BLCAP,-0.497405300645791 +ER,LAX1,-0.115985433805483 +ER,GPALPP1,-0.139603023383385 +ER,RNF152,-0.470595105941062 +ER,MFSD2B,-0.0580258025455303 +ER,ZNF528,-0.225624809148064 +ER,ZMYND15,0.605022612156446 +ER,IQCG,0.415363456124271 +ER,SAXO2,-0.0295558930806517 +ER,ZNF442,-0.0377489151347621 +ER,LRRC8E,1.53368987835709 +ER,RSPO1,-0.147207000866667 +ER,SARDH,-0.424826967180222 +ER,ITGB8,0.449209742030336 +ER,MYO1G,-0.913369986161148 +ER,CALY,-0.0871252070768068 +ER,AMN,-0.246022654109418 +ER,ITGA9,-0.13256397515717 +ER,CNR2,0.0255987726231517 +ER,RPGR,-0.344000997019086 +ER,FRRS1L,0.578272965053473 +ER,AMDHD1,-0.0644765583563777 +ER,CRACR2A,-0.0501978163526957 +ER,CD209,0.550217106853009 +ER,DBP,0.195315689377149 +ER,ABCB8,0.270976948633616 +ER,BAAT,-0.125769990767322 +ER,HPGDS,1.30281393774817 +ER,RHOJ,-0.32875166921418 +ER,XKRX,0.481441307806582 +ER,VPS13A,-0.125903171175651 +ER,PES1P1,-0.453186649268272 +ER,CLASP2,-0.381666696879874 +ER,M1AP,0.340275910641937 +ER,LRRC56,-0.152891061681959 +ER,DNASE1L3,0.1658178204584 +ER,DNER,-0.193131724657945 +ER,ANKRD29,0.0873831226444006 +ER,SLC22A9,-0.214653311596905 +ER,TMEM236,0.0687759634011259 +ER,FRMD3,-0.115292403339755 +ER,SLC13A4,-0.0189006802301129 +ER,SALL4,0.161639086218761 +ER,SLCO1B1,-0.0916441197066162 +ER,FAM65C,-0.183916625664184 +ER,L3MBTL4,-0.0133966166294159 +ER,CECR1,0.100329646769488 +ER,CLCN3P1,0.102588931546715 +ER,ABCC13,-0.536379346607357 +ER,PPP1R12A,0.76685291107802 +ER,SULT1C2,-0.500178071907584 +ER,NTPCR,-0.0835771991689804 +ER,TTC14,0.660199565857433 +ER,PDE11A,-0.655426210032674 +ER,PLXNC1,0.409874461640669 +ER,LRP12,0.252871028322638 +ER,LRRC10B,0.19119805278496 +ER,TNN,-0.237255777056287 +ER,DGKI,-0.143405198827874 +ER,CUBN,0.0318519330452086 +ER,ANKRD62,0.26114606272257 +ER,MAGEB1,-0.229183205091297 +ER,RGAG1,-0.512887263712974 +ER,VENTXP1,-0.20903575666028 +ER,ATOH1,-0.131387790254291 +ER,RBMS3,-0.341033376981405 +ER,KCNMA1,0.808021501629432 +ER,GDF5,-0.636767936357421 +ER,TNFSF14,0.643535717381307 +ER,HHIPL2,-0.634283985847316 +ER,SERTM1,-0.257618907948848 +ER,ITGAD,0.423779049915185 +ER,NUGGC,0.317433277734609 +ER,GRIN2C,0.648999297376583 +ER,ENPP1,0.837762397164868 +ER,TBX4,0.7309047093936 +ER,MYLK3,-0.22658514042072 +ER,SATL1,-0.135833520377115 +ER,RNF217,-0.470966056544957 +ER,ADAP2,-0.394706634189383 +ER,KCNA4,0.571632940994761 +ER,SIGLEC9,0.298560910262452 +ER,ANKRD53,-0.213043598056246 +ER,DLL1,1.21081179041179 +ER,DMRT3,0.0676601090837422 +ER,RASIP1,-0.44975007133341 +ER,NPFFR1,0.391174274229999 +ER,SRSF12,0.321370782329223 +ER,PAPL,0.942162459776253 +ER,ZNF519,-0.644751224473306 +ER,CCM2,0.333466275180283 +ER,TM4SF1,0.756366833496645 +ER,SPATA9,-0.234290559952301 +ER,DYNC1LI1,0.390680164314564 +ER,STX18,-0.0562404639405308 +ER,MAEL,0.241895395422143 +ER,MAPK4,0.200449297829178 +ER,CDH23,0.0937078465420459 +ER,POU6F2,-0.37626723930767 +ER,LCN15,0.127586705036496 +ER,BPIFB4,0.740006153654839 +ER,ATP9B,0.43782537217335 +ER,AGBL3,-0.0343052514749168 +ER,MYT1,-0.224524635530618 +ER,FAM9C,-0.619179746595351 +ER,GRM8,1.01334569582978 +ER,SNHG14,0.0723949843023664 +ER,TRAPPC13,-0.319082676983216 +ER,HAT1,0.653236799149272 +ER,BEND6,-0.115291314172596 +ER,CCDC8,-0.441925196205844 +ER,KDM4B,-0.054946496720581 +ER,SMAD1,-0.168864522074297 +ER,FAM186A,0.333111055151456 +ER,SEPP1,-0.0606122221598677 +ER,TM4SF20,0.960875903939396 +ER,BET1,0.200406880423984 +ER,FBXO25,-0.127981482211468 +ER,ZG16,-0.0118145262633011 +ER,NOS2P3,0.256823328497993 +ER,APBA1,-0.52823185377258 +ER,CD180,1.36281633530065 +ER,ELAVL4,-0.188533426265045 +ER,MATN1,-0.341050234632708 +ER,MON2,0.0244472787160923 +ER,MLXIPL,-0.193210833620548 +ER,MKNK1,0.0180819686332902 +ER,N4BP2L2,-0.220876627246129 +ER,AGPAT3,0.459795563025975 +ER,PCAT19,-0.188839594967871 +ER,MCTP2,0.273019994679913 +ER,RCOR3,0.968813395998385 +ER,MFSD4,0.810611565952409 +ER,EIF4E3,-0.361302271710398 +ER,PROM2,0.239946112655432 +ER,OCA2,0.455594181680036 +ER,TRIQK,-0.179381668966222 +ER,NEURL1,-0.208075924805863 +ER,NYAP2,-0.218759910854221 +ER,KAT6B,0.102845196652195 +ER,PHF20L1,0.343048358615909 +ER,TXLNB,-0.323342808605649 +ER,ARHGAP25,-0.373808093736271 +ER,C14orf80,0.2479925559724 +ER,ADH4,0.0754881337476301 +ER,RCSD1,-0.441030970991979 +ER,HMSD,0.346260203968509 +ER,ASB4,-0.132075914571172 +ER,CNTN3,0.797752967790747 +ER,ABCC8,-0.0844339412827347 +ER,IFIT2,-0.191191713109449 +ER,PDE3B,-0.117933015892454 +ER,WISP1,0.102736466564924 +ER,AZIN2,0.206575188381827 +ER,ZNF487,0.492525851957669 +ER,ZC3H14,0.674579972791102 +ER,SLC24A4,-0.201435484280283 +ER,FAM46D,-0.522576051916576 +ER,C21orf62,0.859644014090128 +ER,CCDC180,-0.0794238327049254 +ER,ZFYVE21,0.714106110746144 +ER,C18orf65,0.600747642432508 +ER,INTS6,0.155114469226051 +ER,UBAP1L,-0.152355741429763 +ER,IGSF5,-0.425191542222167 +ER,PRDM15,0.495913304142302 +ER,IRS4,-0.253304600840422 +ER,EXD1,-0.202369795810686 +ER,NEFM,-0.469314993671966 +ER,CLCNKA,0.462173946536528 +ER,HBS1L,-0.00938090664598465 +ER,GNG2,-0.212676960405006 +ER,PCDHGA10,0.848521241932626 +ER,DEPDC4,-0.221654622960208 +ER,PPM1K,0.214805356980832 +ER,SLAMF8,-0.131546295430539 +ER,CCDC185,-0.401082434833232 +ER,MLIP,-0.127965031363869 +ER,PACS2,-0.160244718537902 +ER,PPP1R12C,-0.231622312781865 +ER,BEST4,-0.434608621716477 +ER,UPK1B,1.17562619720594 +ER,KNDC1,0.325671957167186 +ER,CSMD3,-0.0174518304581607 +ER,KLRD1,-0.669503368288746 +ER,FAM182A,-0.0595210308277977 +ER,LRRC27,-0.709854879049725 +ER,LRRC2,0.707402792750701 +ER,BSN,0.347100100312752 +ER,TSGA13,0.2568551912108 +ER,PMFBP1,-0.099736030997042 +ER,PDE6B,-0.47183584167377 +ER,ADGRG2,1.09556592595038 +ER,ZNF43,0.0973639662915823 +ER,CDK5RAP2,0.106989884322564 +ER,SLC19A3,0.165091413769471 +ER,CERCAM,0.247095674399844 +ER,MGA,-0.524433579511857 +ER,DCDC2,0.437894433401277 +ER,MYO10,-0.55128776580237 +ER,SLC18A2,1.69419284017822 +ER,ALOX12P2,0.412745840407475 +ER,SLC36A2,0.145900865054752 +ER,KRT18P59,0.724386217027402 +ER,WDR1,0.44728777942677 +ER,ZNF775,-0.140824038564631 +ER,ZNF117,0.606515605655282 +ER,GOLGA2P5,0.188744092903367 +ER,CNDP1,-0.137725123338173 +ER,PTPN2,0.108162446251671 +ER,TIGD3,0.205691304998045 +ER,CLEC18A,0.545628710173229 +ER,C9orf156,0.630337163329558 +ER,SLC44A4,1.22102049501566 +ER,DNAI1,0.114568787825502 +ER,SCGB2B2,-0.815845103739498 +ER,PCDHGA8,0.611995310094715 +ER,ZNF714,-0.153117639458086 +ER,PLA2G2C,0.0848873378675412 +ER,CCDC87,-0.487970418332096 +ER,TOR1AIP1,1.29219086234268 +ER,SAG,0.4359422635142 +ER,TRIM3,-0.149684475214429 +ER,NUTM1,-0.431499461103178 +ER,SPATA6,-0.405503875229901 +ER,CENPC,-0.110445583016489 +ER,RBFOX3,-0.0745335058719853 +ER,HECW2,0.198374986474308 +ER,SSC5D,-0.0439230386717319 +ER,TMEM106A,0.0753664289771824 +ER,NPY1R,0.534687757549587 +ER,CD8A,0.243381041364885 +ER,MTHFD2P1,-0.684604973116182 +ER,SEC14L6,0.0194463672303519 +ER,PCDHB4,-0.36634239105557 +ER,KLHL38,1.17391638064834 +ER,PRR27,-0.0109184070449884 +ER,IKZF3,0.0109163377331662 +ER,TLR7,-0.0243936643850515 +ER, SEPT9,0.13656291077069 +ER,PGF,0.428209834167761 +ER,HCK,-0.311226003874265 +ER,ELFN2,-0.517288634332174 +ER,TTC34,-0.198625334470943 +ER,CCDC80,1.40116589671676 +ER,INO80C,0.0587244256442604 +ER,IGF2BP3,0.232623423329192 +ER,MIR17HG,0.932191123138693 +ER,CLMN,-0.270566241661737 +ER,THADA,0.718153918298848 +ER,CFAP74,1.22140642347855 +ER,ZNF474,-0.256106092754816 +ER,VIPR2,0.45466277099832 +ER,RUNDC3A,1.44052059883951 +ER,MAGEB10,-0.609594406242787 +ER,TGM5,-0.194430542305181 +ER,ZIC3,-0.257050394626665 +ER,COL6A4P1,1.77857516443826 +ER,KATNAL2,-0.665870947052707 +ER,DZIP1,-0.276469887627944 +ER,TMEM185A,0.233287440279379 +ER,FFAR4,-0.799943224539261 +ER,TMED5,1.12845684221 +ER,FSD1L,0.206525519739024 +ER,CHRNA10,0.0393841835951874 +ER,POU2F2,0.0148773814721064 +ER,ZCCHC11,0.540333280648912 +ER,PRIMA1,-0.509348775112724 +ER,CFI,0.165413481445091 +ER,GRPR,-0.214635114438987 +ER,RIN3,-0.472496689068444 +ER,HFM1,-0.248183574531722 +ER,C12orf60,-0.243164909662413 +ER,PBLD,-0.3832093339602 +ER,CYS1,0.0604786376147013 +ER,CD33,-0.223622291654579 +ER,LPAR3,0.346452221678877 +ER,FOXL2NB,0.0551938419015837 +ER,ANKS1B,-0.105227171106386 +ER,SPCS1,0.128514855158381 +ER,ZNF716,-0.165538369502855 +ER,SCIN,0.696385075675635 +ER,DCLK3,-0.115755392124332 +ER,TTC39B,-0.306142455165915 +ER,C2orf16,-0.441449871564893 +ER,ELMSAN1,-0.0503747476547603 +ER,ASZ1,-1.54270354653774 +ER,TTC7B,0.274447850891534 +ER,SKIDA1,-0.535460838062571 +ER,PIPOX,0.106286180137381 +ER,C6orf165,0.080497075356649 +ER,STPG1,-0.228758869997285 +ER,KIF6,-0.0448869582478661 +ER,UCHL5,0.222830193945326 +ER, MARC1,0.674088523166696 +ER,NOD2,-0.150061618546589 +ER,SEPSECS,-0.464352105055465 +ER,RPH3A,-0.0661894098160403 +ER,SLC30A2,0.51334357027714 +ER,ITPRIPL1,0.00209817839139498 +ER,ZYG11A,0.366460295773387 +ER,ZNF431,0.747512301091966 +ER,ZNF833P,0.609936155106434 +ER,SEC14L4,0.498764513976369 +ER,LDB3,-0.0799099230897683 +ER,SLITRK3,0.53994631021365 +ER,SCIMP,0.225891707592486 +ER,WDR72,-0.353337506536519 +ER,DCPS,0.119290793568829 +ER,ALG11,0.860695616586268 +ER,CCR7,-0.278546953212884 +ER,TMEM169,0.473713874549051 +ER,CYP17A1,0.126273722206574 +ER,PTGS2,0.798513502651026 +ER,BCL2L15,0.178169954433926 +ER,EPC1,-0.0953413935573556 +ER,ATP6V0D2,-0.302975451380878 +ER,HSPA4L,1.21367984291919 +ER,EFCC1,-0.126762052956572 +ER,ITGA10,0.295726067957748 +ER,SIGLEC15,0.067630295566218 +ER,ACKR2,1.12174557606173 +ER,MCF2L,-0.714911779668763 +ER,BEND4,0.415559475056025 +ER,LCT,0.12264287241211 +ER,NUMB,1.45005874980546 +ER,POMT1,0.135471234564251 +ER,CCDC39,-0.104380810565591 +ER,RBPMS,0.727062816833678 +ER,KLHL14,-0.423185803210106 +ER,TPGS1,-0.0810107066286759 +ER,PIP5K1B,-0.453949877679138 +ER,CPNE5,-0.117532733690248 +ER,MAGI2,0.198000007714289 +ER,COL26A1,0.135930010133128 +ER,STMN2,-0.513353262100229 +ER,NAALAD2,1.99911680349169 +ER,RUVBL1,0.230476405797566 +ER,SFI1,0.534694335918344 +ER,AGBL2,0.420526487664388 +ER,CCDC64B,1.17554751609118 +ER,KIF19,0.468580556408274 +ER,CELP,0.231006747627815 +ER,WTAPP1,0.0460959553135284 +ER,KIAA2012,-0.182709315015164 +ER,BCL2,-0.313337464814736 +ER,TMEM9,-0.0574940330162432 +ER,STXBP6,0.162077657334189 +ER,RPS9,0.872840539722401 +ER,GVINP1,-0.521911068717488 +ER,PLCB1,-0.705714405715285 +ER,SCRG1,-0.0522181548543928 +ER,ZSCAN5A,-0.392888776122481 +ER,SRGAP1,-0.311996696745596 +ER,IDO2,0.115668367823582 +ER,GAREM,0.0778265809837957 +ER,KDM3A,0.319395152203426 +ER,SMIM5,-0.43671261215521 +ER,CFP,-0.293544310711044 +ER,IP6K3,0.241813705322077 +ER,ADAMTS9,0.142640259260364 +ER,FUT2,-0.343594872631328 +ER,CCDC38,-0.0467817425089154 +ER,MGST3,0.441714311931912 +ER,PPM1L,0.154885538023885 +ER,RAB30,-0.548774815143963 +ER,MCMDC2,0.0593278683561285 +ER,HOPX,-0.615006477961499 +ER,SYNM,-0.213057750186802 +ER,TTC5,0.353018280609197 +ER,SEC14L3,0.154317377279324 +ER,C16orf87,-0.32118221541824 +ER,FRMD6,1.45510689052972 +ER,CPAMD8,-0.277264134514293 +ER,ARHGAP26,-0.394915532487861 +ER,F2RL3,-0.264682691885367 +ER,SLC16A10,0.20266082097586 +ER,ABCA1,0.0305087087838481 +ER,ODF2L,-0.146905098842649 +ER,DCAF13,0.323675748951483 +ER,DRC7,0.273472742019903 +ER,MOCS2,-0.448442333959068 +ER,KRT15,0.0626640355023758 +ER,MARK3,0.467900278973366 +ER,MORN1,0.107020454044105 +ER,DDO,0.228111199658853 +ER,AK8,0.750308809077807 +ER,CAMKK1,-0.688965352847737 +ER,CEMIP,0.544760288075117 +ER,TPH2,0.752940056200504 +ER,CATSPERG,0.6287664183239 +ER,GRIK1,-0.0430599276753178 +ER,ATP1B2,0.705937199190502 +ER,BTN3A3,0.00723251479878489 +ER,ZNF91,-0.279186546115182 +ER,FHIT,-0.494462836141278 +ER,ANGPT4,0.380544091414391 +ER,INMT,-0.0241371972767327 +ER,OR4F13P,0.752661489094672 +ER,KIAA1614,0.167010009685037 +ER,ACVRL1,0.343669618673129 +ER,CICP18,-0.15198356837227 +ER,NANS,0.647861950506683 +ER,KLHL32,-0.203581275803949 +ER,NOX4,0.0406058970854874 +ER,CXCL5,-0.789126804225499 +ER,FFAR1,-0.503363407196619 +ER,DNM1P34,-0.115377047896784 +ER,FLT1,0.250147662466061 +ER,CYP46A1,-0.0349440944056183 +ER,GFRAL,0.142598919681493 +ER,PAPOLG,-0.180418660626329 +ER,FAM84A,-0.329065740447094 +ER,ZNF701,0.377117072101554 +ER,ZNHIT3,-0.00880457461157119 +ER,PLOD2,0.632082525448638 +ER,GNB5,-0.328249181988827 +ER,FAM221A,0.972034213795835 +ER,CIRH1A,-0.294086144560076 +ER,ANXA13,0.0357373739897816 +ER,SOX2,-0.262101318236821 +ER,TBC1D3P5,-0.218831640611392 +ER,LAMB4,-1.11759815197007 +ER,ERC2,-0.270427365791297 +ER,ILDR1,-0.231093634486885 +ER,ABCA9,-0.0720265990177159 +ER,BATF3,0.0454492305959528 +ER,SLC46A2,0.0483136302350875 +ER,TROVE2,-0.523259289040215 +ER,CCKBR,0.731330588176394 +ER,MFAP5,1.54812587101856 +ER,COL18A1,0.554145747940664 +ER,ZBTB32,-0.514499163737005 +ER,TSPAN3,0.115800889770467 +ER,HCG18,0.637841187586052 +ER,MIRLET7BHG,-0.129155089113153 +ER,RASGRP4,0.0432589882110479 +ER,PAX8,-0.128112134457059 +ER,ARSF,-0.758011369591041 +ER,SRGAP3,0.0728027043025554 +ER,MROH7,-0.484531156669795 +ER,LACC1,-0.657867718092791 +ER,C11orf88,0.094305642219023 +ER,KCNE3,-0.024371592203803 +ER,PHTF1,0.414190199175372 +ER,SEC14L2,-0.0784163980083365 +ER,TBC1D7,0.0258739423824982 +ER,NDRG1,0.00895169735656113 +ER,SPN,0.119143799123539 +ER,TTLL13P,-0.427932029679995 +ER,PSORS1C1,-0.306342474866152 +ER,ARHGEF37,0.189619405347867 +ER,PKIA,-0.461658154303414 +ER,RGS17,-0.531730102687309 +ER,MYADML2,-0.222691888920566 +ER,HP09025,-0.548747454675963 +ER,AICDA,0.357868601796035 +ER,NFAM1,0.305831405415948 +ER,ZNF75D,-0.305724620758568 +ER,PAX2,-0.151899491829917 +ER,PAK6,-0.180393706100844 +ER,SLC6A20,-0.26616857385557 +ER,SYT9,0.148871415162126 +ER,ZDHHC22,0.233986183614739 +ER,GRIP2,1.09559288823334 +ER,ADD1,0.950865095932881 +ER,CASP9,-0.173398746999949 +ER,EMILIN1,0.551333853588111 +ER,RNPEPL1,0.102221085189021 +ER,CCT6B,0.0181455974644067 +ER,CSRP2,0.403661617572122 +ER,FAM179A,0.296582721650424 +ER,FGF14,0.563410365206801 +ER,GPRC5C,0.736552825755171 +ER,LRRC37A11P,-0.372870672358657 +ER,SETDB2,-0.133653505566836 +ER,ARHGAP6,-0.56141023238568 +ER,RNF8,-0.482384767640183 +ER,TFEB,0.243322404499602 +ER,PTPN9,0.207385642808611 +ER,ASCL1,1.03300610255142 +ER,CCDC158,-0.615421202312663 +ER,COX20,0.28214999356728 +ER,CISH,-0.677351222654928 +ER,SLC22A5,0.169067870904068 +ER,TTLL5,0.0247894625363351 +ER,AKR1D1,0.55135860376393 +ER,CCDC144A,-0.246423222144342 +ER,PRELP,0.306696177658281 +ER,SLC18A3,0.448772677845881 +ER,KCNMB1,0.316785394377334 +ER,FCRL5,0.671534430994955 +ER,PATE2,-0.176211358622682 +ER,GNPDA2,-0.580072379487425 +ER,ZBTB8B,0.0619613773324162 +ER,TMEM45B,0.257578983399978 +ER,EPN3,-0.171805942619669 +ER,ZNF473,0.0744829785323501 +ER,CRX,0.111318515917533 +ER,TMEM130,0.326649464706276 +ER,SPRY3,-0.100842065567197 +ER,EBF1,-0.339982044330669 +ER,GPLD1,0.622918050696343 +ER,NCKAP1,0.637437895184854 +ER,ATCAY,0.236849550242042 +ER,ABLIM3,0.970277597482571 +ER,ZNF204P,-0.0822654856931258 +ER,EPHA10,-0.140148740983422 +ER,MALSU1,0.053695509185457 +ER,UBE3A,-0.159475013624368 +ER,FUT9,0.760053042217079 +ER,AGXT,1.18548140176135 +ER,AVIL,-0.105083621016033 +ER,PCDHGA6,0.895029658004148 +ER,CHRM3,-0.0384907218801616 +ER,PARD3B,-0.419546907458305 +ER,TLE4,-0.267485698308797 +ER,MRPL42,-0.489539926196365 +ER,SH3TC1,-0.223375754061404 +ER,SSBP2,-0.0680673414520766 +ER,TEX2,0.793713911110561 +ER,THEGL,-0.725835025086214 +ER,LRRC74B,-0.0739984461720928 +ER,CEND1,0.413429900469167 +ER,CCAT1,-0.307702616974752 +ER,REPS2,-0.434969426460034 +ER,SLC35F1,0.497869642568567 +ER,FUT8,1.21121989140222 +ER,CABP4,-0.0659915208167395 +ER,HRH4,-0.210711337541325 +ER,HNF1A,-0.205938339015897 +ER,METTL21EP,-0.545207317954421 +ER,TMEM179,0.897588565350307 +ER,IQCH,-0.112441063634612 +ER,C5orf64,0.51113431221837 +ER,TMEM98,0.851150054415314 +ER,SYT12,0.273422396491977 +ER,PSD2,-0.252365986827016 +ER,FGFR1,0.606801925879483 +ER,ALPK1,0.0868722675144646 +ER,TENM4,0.349716369225414 +ER,PIGP,-0.159435062045403 +ER,A2M,2.05647074854034 +ER,DAAM2,0.274913412281879 +ER,LSINCT5,0.0946756919145051 +ER,SLC16A3,0.217415129338538 +ER,SLITRK2,0.698980729418818 +ER,FBXW10,0.271734551899136 +ER,BBIP1,0.394811181982896 +ER,NFATC4,0.0391463342648634 +ER,RFPL1S,-0.104821267144457 +ER,CASC15,0.243692768013223 +ER,ETV3L,-0.417120806134968 +ER,GABRB2,1.21360144649435 +ER,MAML3,-0.10828975959055 +ER,GSTZ1,0.382296692776483 +ER,ZNF382,-0.311242145668224 +ER,ATG3,0.861644023228852 +ER,IQUB,-0.415966248317927 +ER,CD59,0.442230022709234 +ER,FAM204A,0.330720632090658 +ER,PCDHA13,1.04879029364042 +ER,NFATC1,0.328100438417888 +ER,NPAS2,-0.25669758821294 +ER,OFD1P17,-0.0717213231801102 +ER,TMEM42,1.06959742242794 +ER,FKBP5,0.317003741438255 +ER,DEGS2,-0.184402358532173 +ER,ATRNL1,1.15042545746694 +ER,PCNXL4,0.779790197809259 +ER,ERGIC1,0.0476415811416787 +ER,NR4A3,-0.223073951691546 +ER,CYB5A,0.0533861116553052 +ER,KIAA0226L,-0.436850982823939 +ER,CDH12,1.15549194910618 +ER,P2RY4,0.191937920093357 +ER,MLYCD,0.10666317190914 +ER,GCM1,-0.264527377936752 +ER,NBEAP1,-0.193289446356012 +ER,CDH22,-0.113484538038244 +ER,KTN1,-3.64576216741244 +ER,PLEKHO1,0.49526440213248 +ER,C15orf59,-0.628933062290944 +ER,ZNF486,0.017349797196113 +ER,ANKS4B,0.257430885310574 +ER,PATE4,0.17764127780274 +ER,GPR155,1.17070208964624 +ER,NUP107,-0.0862450869011264 +ER,CES5A,-0.526080101875164 +ER,TCP11,-0.225499397233493 +ER,CCDC116,0.588383961839938 +ER,HOGA1,-0.56248016331614 +ER,STOML1,0.754089328309603 +ER,DYDC2,-0.055536041726301 +ER,KLHL26,-0.0524965264866387 +ER,PTDSS1,1.24026646995048 +ER,CEACAM22P,0.0409880066796817 +ER,TMEM68,-0.0397859275297988 +ER,MYCL,-0.251959907461429 +ER,TRIM55,0.10631927921112 +ER,SLC25A18,-0.543403346528332 +ER,FAM71F2,-0.449839302902994 +ER,CSMD2,0.238976202454019 +ER,C6orf25,-0.177645051000374 +ER,TNK2,0.446968589823204 +ER,ZNF718,-0.397758203336849 +ER,RLIMP2,-0.280753608147853 +ER,LGALS9,0.151402565438734 +ER,MLLT3,-0.231459670534469 +ER,CNBD2,0.0817837221809088 +ER,C1orf140,-0.157043723825696 +ER,MOG,0.405403153595353 +ER,DENND6B,-0.0615147839291392 +ER,KBTBD12,-0.0446639429987131 +ER,TNFSF15,0.729291040803518 +ER,EFCAB2,-0.253001256510546 +ER,RNF130,0.60888710718305 +ER,BMP8B,-0.0893025982729374 +ER,DNAJC7,0.426623391051215 +ER,RGS9BP,-0.21584607676297 +ER,PBOV1,-0.129507084916453 +ER,METTL16,-0.281789167330574 +ER,PPP1R1A,0.296915895474274 +ER,PCDH15,0.0227294566369216 +ER,ARL11,0.292993179790698 +ER,FBLN7,-0.146455075216334 +ER,SSUH2,0.373545330049639 +ER,GAPVD1,-0.558614635788162 +ER,MTND5P24,-0.401619495162994 +ER,CACNA2D2,1.31303511386614 +ER,FAM189A2,0.167581770474253 +ER,LRRC38,0.310259523842325 +ER,CTAGE12P,-0.296880633822382 +ER,NDUFS7,0.383216715296077 +ER,LRRC25,0.0938845363578115 +ER,SLFN13,-0.394575188798956 +ER,ZNF441,-0.235257782014839 +ER,SMTNL1,-0.141392833807998 +ER,SCARF1,0.725543670968296 +ER,PDLIM3,-0.179174223953377 +ER,ZBTB7C,0.548117897208959 +ER,COL5A3,0.795757889478811 +ER,FAM230C,0.182947715737427 +ER,PCYOX1L,0.150986323938477 +ER,NT5DC1,-0.21919559243171 +ER,TFAP2E,-0.429647280379079 +ER,RNF180,-0.16957254945802 +ER,BCRP2,-0.121647021300835 +ER,CA8,-0.3825004417285 +ER,KCNV2,0.289135468959793 +ER,SCN3A,0.763517057762705 +ER,GLRX,0.286490255206415 +ER,STARD3NL,0.246008873516853 +ER,NREP,1.06224843778341 +ER,PPP4R4,-0.316972513262512 +ER,C17orf104,-0.364469890724382 +ER,PCDHA9,0.682132414833751 +ER,SLC5A5,-0.0253744165474957 +ER,ANAPC4,0.294973000787789 +ER,KLHDC7A,0.622184766021172 +ER,ZFYVE26,0.196427441712383 +ER,C5orf63,-0.0955370452495014 +ER,CTSH,0.306516950866144 +ER,BHMT2,0.222006690675758 +ER,MKX,-0.305497170418883 +ER,RFWD2P1,-0.282714584689493 +ER,KCNIP4,-0.265423091451613 +ER,HCP5,0.593491554966321 +ER,HS6ST2,1.65516725494336 +ER,ZNF326,-0.173388100733768 +ER,EDNRA,1.29037483988921 +ER,SYNPO2L,-0.478187202193939 +ER,HDAC2,-0.379384346997502 +ER,SBF2,-0.285641209440895 +ER,PPP2R3B,-0.20366068236254 +ER,FAM47E,0.240416385427265 +ER,NFATC2,-0.14217194936982 +ER,PABPC5,-0.461165456988861 +ER,THPO,-0.276504475718864 +ER,IVL,-0.225971336960136 +ER,LRCH4,0.0589385370221222 +ER,GPATCH2,-0.41184813232473 +ER,ESRRB,-0.275315565912955 +ER,GRIK2,0.968105129325352 +ER,CASS4,-0.202864496044482 +ER,SEMA5A,0.0140320405172893 +ER,PPP2R1A,0.40193485577676 +ER,B3GALT1,0.64779859866859 +ER,ATP6V0A1,0.68104821310955 +ER,ELAVL1,-0.283780769408887 +ER,ACSM4,-0.488508655993736 +ER,MYLK2,-0.0553863343141326 +ER,LSMEM2,-0.336752592759056 +ER,DGKH,-0.683927673949774 +ER,PRR29,-0.402653426490839 +ER,ROBO4,-0.804624445604598 +ER,FAM227A,0.622440337521182 +ER,C8orf34,0.205731945394566 +ER,SLC26A9,0.0208051221998879 +ER,ARHGEF2,-0.521645543509786 +ER,SSR1,1.2865593911 +ER,SLC12A2,0.848931339924827 +ER,B2M,0.402473489077892 +ER,ZNF790,-0.507410586983894 +ER,FNDC9,0.0879420055290563 +ER,HCAR1,0.181048173518754 +ER,NRG4,-0.316882509797017 +ER,DNAJC5G,-0.474173532695529 +ER,CYP27C1,-0.283592881011404 +ER,TTLL7,-0.392969711972745 +ER,SCLY,0.0819308782504633 +ER,KIF17,-0.253228303628853 +ER,GHET1,-0.248734355973116 +ER,EMX2OS,0.0150416434755267 +ER,SLC7A7,0.563932712184492 +ER,TYW5,1.18756174469548 +ER,KMT2C,-0.0444334632612117 +ER,TMOD2,-0.258704056981554 +ER,OR8S1,-0.26055020615092 +ER,CSF1R,0.355585190018073 +ER,APOF,-0.0875490789586883 +ER,ACAA1,-0.162747061643831 +ER,RIC8B,-0.355211045183836 +ER,KLHL3,-0.328047848184931 +ER,METTL6,0.144568560879916 +ER,ATP8B3,0.449754530875315 +ER,EPM2A,-0.236278160169903 +ER,ENDOV,0.0869552143150343 +ER,GDF5OS,-0.547864147903328 +ER,KIFC3,0.201346655608094 +ER,SEMA4F,-0.430775273896391 +ER,FBLIM1,-0.522868275123354 +ER,NANOG,0.525879821482297 +ER,SLC14A2,0.109894511816246 +ER,TGFB1I1,-0.62671104759753 +ER,C12orf42,0.223717491462795 +ER,ESCO2,-0.367607592462712 +ER,SEH1L,0.891060448164009 +ER,EIF3M,-0.317565896316801 +ER,GABARAPL2,0.655767691032285 +ER,MESP1,-0.435276101132242 +ER,STAG3,-0.389204351782679 +ER,MATN4,-0.09553292912347 +ER,SLC9A7P1,1.01619073102506 +ER,SHPRH,0.839245062984431 +ER,TM2D3,0.583514440947478 +ER,EML2,0.0982119494194168 +ER,LRRC37A6P,0.226198966516026 +ER,PPP1R9A,-0.673095218967038 +ER,ESRP2,-0.562398621336952 +ER,KIAA1024L,-0.244506289847303 +ER,RBM48,1.24550372398575 +ER,NME7,1.0875025202505 +ER,SCAND2P,-0.114503995729194 +ER,KCNJ4,0.0784798997011202 +ER,DNM1P35,-0.500943047719196 +ER,TPTE2P2,-0.000389309934421803 +ER,ACVR2A,1.18980420477263 +ER,TCF23,-0.191460363428526 +ER,PDK2,-0.514825824789998 +ER,SYK,-0.331914891292072 +ER,TEX9,0.331553443978815 +ER,NDRG4,-0.106034432374213 +ER,TUBB1,-0.250893167411863 +ER,PRKRIR,0.75996169719099 +ER,ERAP2,1.05746492944872 +ER,CCDC154,-0.332515328238076 +ER,RNF112,-0.0762322586474631 +ER,SLC17A7,0.0067917558459721 +ER,PCDHA10,-0.272812558574426 +ER,MUC5AC,0.698299150495601 +ER,ZFRP1,0.206942673165144 +ER,PROB1,-0.376712159849977 +ER,MBNL3,-0.50762272286714 +ER,NIT2,-0.364433152417001 +ER,LGALS8,-0.472659030317255 +ER,ALDH8A1,0.046320988917455 +ER,ZNF765,0.0429041162221488 +ER,SLC25A29,0.151363707472362 +ER,MAPK6PS2,0.589660612190916 +ER,ECM2,-0.16415820082544 +ER,TMEM59,0.491732084149085 +ER,JAKMIP3,-0.403361676809253 +ER,HRC,-0.31275025324682 +ER,CARS2,0.646366703003695 +ER,ICA1,-0.446633126739753 +ER,FLRT2,0.083560165293615 +ER,KLF12,-0.454423132112149 +ER,SCAI,0.0944515111728435 +ER,BICD1,-0.267537404955347 +ER,C14orf28,-0.258804499676972 +ER,ACAN,0.99945852470284 +ER,ZNF771,-0.261683269024133 +ER,RAP1B,-0.0811200923910811 +ER,ADAMTS4,-0.0243371070272771 +ER,IRAK1BP1,-0.491101586816154 +ER,ADAM22,1.1469043725008 +ER,UBE2W,-0.336306894959285 +ER,PNPLA1,-1.88788667626562 +ER,MARVELD2,0.0243860539227967 +ER,CTBP1,0.294058690274649 +ER,INE2,0.0758552274373598 +ER,CARNS1,0.620017301532157 +ER,FXR1,-0.0134762530389049 +ER,ELMO1,-0.519976639076417 +ER,TRPM6,0.194476617303952 +ER,GGT5,0.383458503619407 +ER,CMC1,0.480244394837106 +ER,CEP41,-0.351927129433694 +ER,KIAA1257,-0.445845682962731 +ER,GUSBP1,-0.392647148838692 +ER,FPR1,-0.183866229461952 +ER,SYT17,0.419862656493329 +ER,MYH3,-0.216467134370784 +ER,HS3ST4,-0.0577099574869793 +ER,ACTBL2,-0.437707364168125 +ER,UVSSA,-0.285879068592268 +ER,ZNF141,-0.443751163811932 +ER,GFI1B,1.966897400971 +ER,TMEM40,0.0766889786129884 +ER,EIF3EP2,-0.301869243586082 +ER,ZNF385C,-0.290541918665527 +ER,NTNG1,1.00182850838787 +ER,FBXO32,-0.561828993180401 +ER,MMS22L,0.189656761989269 +ER,ZNF10,-0.414877203168316 +ER,BDP1P,-0.900850692037715 +ER,PSMC6,0.785593606982195 +ER,TTC8,0.740670515003117 +ER,KLHL24,-0.144435054966498 +ER,CA5A,-0.988187205810525 +ER,FGF18,-0.0240099974524161 +ER,AKT1,0.365098575253816 +ER,C21orf2,-0.0303807001118394 +ER,TMEM161B,0.324352913468517 +ER,TBC1D15,-0.415695437649951 +ER,SLC2A13,1.02397156397176 +ER,PLK1,0.162667246051794 +ER,NIPAL2,0.511022283879882 +ER,IKZF2,-0.56833438789835 +ER,ZNF100,0.188839906140886 +ER,MRPL46,-0.0916174869485126 +ER,TCAM1P,0.382753924559878 +ER,RHBDL3,-0.0952974838765852 +ER,SLFNL1,-0.855887766934025 +ER,GADL1,0.659838771119294 +ER,DCUN1D1,-0.48590862028916 +ER,DNAJC2,0.391913295880082 +ER,ARHGAP5,-0.530201646241035 +ER,ANO3,0.415930556330038 +ER,PXYLP1,-0.181679791444908 +ER,SULT2A1,-0.181605452693242 +ER,FAM181B,-0.39562444735069 +ER,SLC28A3,0.72984175038051 +ER,WNT9A,0.596030822023898 +ER,C2orf91,-0.427805905612621 +ER,NCCRP1,0.0911307355831075 +ER,FBXW12,0.304046262336506 +ER,P2RX7,0.185948115888431 +ER,SHE,-0.204638257408186 +ER,PPP4R1,0.142964219745872 +ER,MAGEB4,-0.494205211683729 +ER,PCDHB14,-0.0691808324096292 +ER,SERPINB10,0.294956477702773 +ER,EPHA4,0.593167285648962 +ER,ANKMY1,0.161151553620002 +ER,CRTAC1,-0.0800825802894019 +ER,RBBP7,0.504205712121088 +ER,POC1B,0.125738782259923 +ER,KCNK13,0.414135830076819 +ER,RHBDF1P1,0.534335918364217 +ER,PSMB9,-0.216105777555748 +ER,SYNE3,0.239338064201676 +ER,SNX29P2,-0.412214036407512 +ER,MAGIX,-0.127502712899776 +ER,IGSF1,0.231586023045479 +ER,SMIM19,0.520701192888594 +ER,ARL6,-0.453972091694732 +ER,RGMA,0.775940479419105 +ER,EPB41L3,0.0710599817261174 +ER,CNKSR3,-0.411654790029119 +ER,C1orf204,-0.175765273019495 +ER,DCAF8L1,1.43170901448716 +ER,TINCR,-0.233135148147042 +ER,B4GALT4,0.489524448970399 +ER,LDHAL6CP,-0.793784797902198 +ER,INPP5B,1.5343086234241 +ER,TNFRSF1B,0.935868832046667 +ER,SULT1A1,-0.0891356304377011 +ER,MICU3,0.185089236868809 +ER,B4GALT6,1.24741021160103 +ER,LMOD1,0.17160512781279 +ER,AFAP1L2,-0.0343670005224614 +ER,ABCA17P,0.368433280543559 +ER,EIF3H,0.19382366442143 +ER,SPIN2A,-0.00207923164261781 +ER,METTL9,-0.076054497985586 +ER,CCDC7,-0.228450540863981 +ER,MYH2,-0.827754789136201 +ER,DNAJB6,0.350943111108431 +ER,NRXN3,0.189518683133139 +ER,S1PR3,0.382393501505653 +ER,TIGD4,-0.129904873748723 +ER,MGST1,0.265909330988265 +ER,MRPS33,0.436498716352316 +ER,KCNJ3,0.09780019649309 +ER,PHLDB1,0.44118238911451 +ER,OLA1P3,-0.174070376869668 +ER,MAPK13,-0.856450129590474 +ER,PPP6R3,0.544309642309075 +ER,KCP,-0.0480216758601559 +ER,CDH10,0.912070468448714 +ER,CACNA1I,0.547667075165559 +ER,UPB1,0.383946082496732 +ER,CFAP69,-0.023392169798866 +ER,TMEM163,0.729751474726758 +ER,PRKACG,-0.386678638647079 +ER,ASPH,0.0624992820365617 +ER,GDF7,0.23248594013068 +ER,THBS2,0.218229603063121 +ER,MGAM,-0.760045433035357 +ER, MARCH3,-0.172667195362952 +ER,TCHH,-0.0940007813125823 +ER,CYTH4,0.0170378259614833 +ER,CFAP221,0.446506002616216 +ER,BEND3P2,-0.336144311274331 +ER,ANK1,-0.313875152265138 +ER,GPR83,0.229098301627678 +ER,GIPR,-0.396027517698209 +ER,TSPY26P,-0.544620816196384 +ER,ABHD1,0.388023549188041 +ER,SAR1A,-0.205932519749753 +ER,LONRF3,-0.0497181008184912 +ER,VEPH1,-0.125630673286015 +ER,NDUFAF5,0.136440445987492 +ER,ENOX1,-0.54565745519111 +ER,GDPD5,-0.13623728041343 +ER,ARSG,-0.105347723049843 +ER,RCHY1,-0.18185378744459 +ER,MLANA,-0.117850665648058 +ER,PINK1,0.193486753240094 +ER,LGR6,0.823170201646785 +ER,NUP214,0.272493188309158 +ER,GCNT3,0.927605328444127 +ER,METTL10,-0.406494132911826 +ER,PLEKHA1,-0.0529030719750668 +ER,NRCAM,0.739092578960454 +ER,ZNF341,-0.330722704421642 +ER,CNTN4,1.35493223600726 +ER,GBP4,-0.323535135897492 +ER,OR7D2,0.395664445452258 +ER,TSNAX,0.555037987256601 +ER,FAM184B,-0.0399773787562343 +ER,PINLYP,0.0223184235886454 +ER,PSTK,-0.256046561280918 +ER,TP53TG5,0.191126920431843 +ER,TRIM72,-0.138711764385631 +ER,MGC27382,0.360412229974865 +ER,GRAMD1C,-0.0543609256828469 +ER,GPR78,0.506888120440703 +ER,UNC5C,0.229072283891919 +ER,SGSM1,-0.431731459626982 +ER,MMP25,0.245312123050922 +ER,TLE3,0.697649414514762 +ER,ARPC5,0.491821528654648 +ER,ZNF793,-0.108509512031002 +ER,STAC2,-0.28607090793336 +ER,ZNF14,-0.0683948980145577 +ER, MARCH1,0.134249325712529 +ER,MYO1A,-0.0309779599220021 +ER,ISPD,-0.321918500547063 +ER,SLAMF7,0.805582219525004 +ER,PRRX1,-0.386781392189442 +ER,MORN3,-0.67094902905823 +ER,RRN3P1,0.160628961459635 +ER,CYB5R3,0.150326199317262 +ER,C6orf118,0.129052124030999 +ER,MAU2,0.995866026401754 +ER,FBXO43,-0.590747269186589 +ER,PITPNC1,-0.464968272943289 +ER,ATF7IP2,0.00723791381316126 +ER,RNLS,0.068555736792626 +ER,CLN5,1.41276401253019 +ER,MLKL,0.175768468011995 +ER,NUTM2D,0.25532929625832 +ER,DPP3P1,0.0846002712948011 +ER,DBIL5P2,0.740623033476201 +ER,PSTPIP2,-0.499094889348197 +ER,COL24A1,-0.349608099812584 +ER,TSPAN11,0.893578558796775 +ER,TAX1BP1,0.552092954023306 +ER,PRTG,0.763161544012548 +ER,KLHL35,0.078506349544502 +ER,TTC3,-0.181518283832105 +ER,P2RX4,0.0420912841544503 +ER,ARHGEF39,-0.362632885586995 +ER,DSCR3,1.40056521392257 +ER,C17orf99,-0.292419121701009 +ER,TRIM11,0.872244226436115 +ER,HCFC2,-0.336786215973167 +ER,NBPF13P,-0.663251391146722 +ER,ZNF19,0.0197576526674714 +ER,PIAS2,-0.512780435216281 +ER,HYKK,-0.032831612423585 +ER,PLA2G7,0.533817070317824 +ER,CALCOCO1,-0.42342630167134 +ER,LRRC48,-0.451625160848274 +ER,NGFR,1.74369185675095 +ER,LSAMP,0.389697167616232 +ER,ZNF836,-0.413882673070437 +ER,CTNND2,-0.435779611751797 +ER,HRNR,0.758601572084122 +ER,DNM1P51,-0.100517327865993 +ER,SP100,0.155686028606768 +ER,MYH7B,-0.215940736774349 +ER,CHST7,-0.10492362184068 +ER,MTMR3,-0.446937073955648 +ER,C11orf44,-0.249755056798628 +ER,LRRC28,-0.258079712468321 +ER,INTS3,-0.10712800104747 +ER,CYP4F35P,-0.251527329572597 +ER,SLC35G2,0.109567621120089 +ER,OPRD1,-0.1961657918443 +ER,TPBGL,0.232884510680423 +ER,SECISBP2,-0.2492944725811 +ER,H3F3B,0.451402224288466 +ER,KRCC1,0.00622730456137757 +ER,C1QTNF6,0.183819950938636 +ER,CLDN14,0.144055733928973 +ER,ADAMTS7,0.483722560705365 +ER,C2orf82,0.515356023696657 +ER,CNTNAP4,-0.241907139352647 +ER,DEF6,-0.597786167836001 +ER,FAM45A,0.51214462492958 +ER,LMX1B,-0.113239314067985 +ER,UBE2QL1,-0.0909078431538243 +ER,GATS,-0.307109253372282 +ER,STK32A,-0.350613722338962 +ER,CTRC,1.01239979008411 +ER,HAS3,0.597253271959357 +ER,NOL8P1,-0.613733794467402 +ER,PRUNE2,-0.762277916646266 +ER,CYP4F8,-0.374134771833726 +ER,TMEM213,0.101078516143505 +ER,ADAMTS2,0.507656051292239 +ER,C4BPB,0.212206365336614 +ER,ADAMTS17,-0.0476440339873418 +ER,ACTN3,-0.725413736702741 +ER,TMEM86A,0.454730241291059 +ER,ACSL5,1.33100212199679 +ER,TACR2,0.103186111341907 +ER,HAUS8,-0.569696982362389 +ER,ZNF766,-0.0304591523174846 +ER,SIRT3,-0.580461812148034 +ER,KPNA7,0.869933439159644 +ER,RN7SKP23,-0.220935145867753 +ER,SETBP1,-0.501342134654631 +ER,FCN1,0.338409975992809 +ER,AIPL1,0.109445270236227 +ER,FBXO3,0.69285557430969 +ER,FBXL4,0.281172656930376 +ER,ZBED5,0.357353706907479 +ER,TBC1D10A,0.117331149647353 +ER,SOX7,-0.247522401387669 +ER,ZNF26,0.467900487610136 +ER,PCDHGB3,0.351874826939788 +ER,BCAT2,0.345601262414613 +ER,SIGLEC11,-0.198578466631185 +ER,PCDHGA7,-0.303349744488359 +ER,SLC22A25,0.207039710581762 +ER,ZNF599,-0.173217401207323 +ER,ATP6V1B2,0.277540710713052 +ER,GSK3A,0.694763703385408 +ER,HNRNPC,0.720434349422971 +ER,SLC2A10,1.41188928173302 +ER,BEST3,-0.194056345327137 +ER,ATG2B,-0.776838383990069 +ER,MGAT4A,0.13052407853291 +ER,STARD5,-0.208813535176905 +ER,ERO1LB,0.858414374428995 +ER,LRRN4CL,0.896539670622086 +ER,THAP3,-0.28442581670843 +ER,ANKAR,-0.257607580757922 +ER,KCNJ15,-0.464279455903012 +ER,XKR3,1.07828404757157 +ER,IGSF6,0.040156111590877 +ER,MASP2,-0.321072407882617 +ER,ACO1,0.113377079346905 +ER,MPP6,-0.336567289023937 +ER,TCEANC,-0.171226024650298 +ER,PCDH18,1.27373580924548 +ER,B3GAT1,-0.15632704510934 +ER,ARHGAP15,-0.034619119687194 +ER,KCNG3,0.705566694707605 +ER,PCCA,0.234325585417529 +ER,GALNS,-0.138970492965214 +ER,RNF32,-0.224226208001796 +ER,P4HTM,1.16625815940188 +ER,GPR17,-0.217700616664053 +ER,TESPA1,0.0575177940710404 +ER,ZNF613,-0.225483816351747 +ER,FAM186B,0.321455550610897 +ER,CHRNA2,-0.0983484249000703 +ER,RLIMP1,-0.384749945145862 +ER,RGN,-0.00265774393166293 +ER,AKT2,0.616246371550469 +ER,NTRK1,1.19792285013399 +ER,GOLGA2P9,-0.096575793914591 +ER,HSD17B13,0.330385187314015 +ER,SUB1,0.846218314191772 +ER,ACAP1,0.152931873024708 +ER,FAR2P1,0.176222453146316 +ER,SYT14,0.0841264249992532 +ER,MAP2,-0.334348147958617 +ER,ADGRV1,1.32084453791599 +ER,APC2,-0.428395561958889 +ER,C5AR2,0.114349551878725 +ER,CASZ1,-0.157746034187981 +ER,PCDHGA9,1.45119210103534 +ER,MOB2,-0.703497416118687 +ER,ROR1,0.952665186022786 +ER,TSHZ2,0.168855248465447 +ER,SPOCD1,-0.107147284388531 +ER,DNAJC17,-0.14688370083027 +ER,RNF220,0.381822707348091 +ER,COLQ,0.222682281186017 +ER,CROCCP1,-0.115527533946462 +ER,MS4A10,-0.459519226628603 +ER,TAB3,0.432583602562381 +ER,CRB2,-0.216116605429609 +ER,UHRF2P1,-0.533477599709268 +ER,SYT13,-0.409715226527537 +ER,MACROD2,0.883394382752548 +ER,FAM229B,0.249644139669467 +ER,KPNA5,-0.142470103269742 +ER,SLC38A3,1.023266893876 +ER,ZNF549,-0.00108386073369175 +ER,STRADA,0.970030660987648 +ER,MAP3K13,-0.264358931167069 +ER,POGLUT1,1.07949554487412 +ER,DDX6,1.09964830954214 +ER,CTAGE7P,0.00206877607642242 +ER,MAGEB18,-0.339640965966517 +ER,GAB3,-0.137009783014674 +ER,OLFML2B,0.816162663916034 +ER,SEC24D,0.509371792235564 +ER,DPPA4,-1.95617630544758 +ER,KIAA1328,-0.169863075276656 +ER,DLGAP4,-0.188435876814519 +ER,BBS2,0.0813631812946856 +ER,MYOZ2,-0.164089685942118 +ER,TRAPPC12,-0.142472130270876 +ER,VSIG1,0.0824117547688334 +ER,KCNMB4,-0.28881685060027 +ER,ANAPC5,0.871826089996091 +ER,KCTD8,-0.289361806509829 +ER,IGFL4,0.283530265820634 +ER,NCMAP,-0.330815422166833 +ER,YAF2,-0.0854624286802264 +ER,TTYH1,0.525670784943848 +ER,PLA2G2D,-0.251671723780841 +ER,SLIT1,-0.154209270524006 +ER,DIRAS3,0.775662407338277 +ER,INPP4B,-0.413412068368718 +ER,ATP1A2,-0.120247369195022 +ER,TMEM63A,0.326298820165947 +ER,GRIK5,-0.206383038246106 +ER,ZNF496,0.130769555439633 +ER,WNK2,-0.250931657160279 +ER,PRR34,-0.00299356446194483 +ER,C2orf50,0.0962766222638768 +ER,PPAPDC3,0.692446300941346 +ER,MYPN,-0.263286545266995 +ER,GLRX3,0.316870402571073 +ER,ZNF383,-0.219892279690981 +ER,PRKRIRP8,-0.310798703237727 +ER,NHLH1,0.109857171892366 +ER,ZNF607,-0.567386665397988 +ER,ATP8A2,0.807035957846116 +ER,ZFP14,-0.318733240426001 +ER,AQP6,0.332401852012433 +ER,COX7A2L,0.0614974932561615 +ER,ZNF774,0.73477250613757 +ER,SPRYD4,0.0480242835662974 +ER,SELPLG,0.443248472326118 +ER,USP8P1,-0.586869928909833 +ER,TRIM24,-0.220777204413159 +ER,WWC3,-0.368981040009734 +ER,TBL1Y,-0.552200929423791 +ER,GPR37,0.939888407485512 +ER,RDH16,-0.489825447516337 +ER,USP9Y,0.542839421983033 +ER,PCDHB19P,-0.321957462622908 +ER,SIRPB1,0.252698347388772 +ER,TSEN2,0.0690910490515342 +ER,ERBB2,-0.00525514135734197 +ER,RSPH9,0.220835713195888 +ER,AP1S2,-0.266982554720668 +ER,DCHS2,1.28298296099224 +ER,USP8,-0.241821327090815 +ER,SLC43A2,0.782486255324526 +ER,OAZ2,0.270713168526033 +ER,CRISPLD2,1.39955163966188 +ER,HERC2P3,-0.053384391114746 +ER,LILRB4,-0.180478090918565 +ER,KCNA7,-0.642357900037203 +ER,TECPR2,0.0168046862374327 +ER,ZNF558,-0.16744827742485 +ER,TMEM200A,1.16787086827144 +ER,TMC8,0.194897313236458 +ER,CARD14,-0.0445721464320711 +ER,PRKG1,-0.329010555191924 +ER,MYO16,-0.463497493384107 +ER,ARIH1,-0.564500123590956 +ER,STRIP1,0.295728936576535 +ER,SRGAP2,0.609838974947438 +ER,CNTRL,-0.432214468689789 +ER,KCNC4,0.123862595526911 +ER,ZNF582,-0.264650564708193 +ER,EGFLAM,0.48337606295344 +ER,ARHGAP30,0.00621710399625967 +ER,SERPINB9,-0.294634006584204 +ER,FAM122C,-0.127717569601599 +ER,DNAH1,-0.280798069497168 +ER,RECQL5,0.318906101030967 +ER,WNT9B,0.0374782780370361 +ER,LIPH,0.8882996290585 +ER,GP1BA,-0.541053209156365 +ER,CCDC90B,0.463831355896821 +ER,IFIT1,0.678120698599971 +ER,CTSS,0.428177542812327 +ER,TCOF1,-0.0198404732126336 +ER,GSDMA,0.287939451159613 +ER,TSPAN5,-0.0199636243289796 +ER,ZNRD1,0.165384534317458 +ER,SLC5A4,0.0604860510862152 +ER,C9orf66,-0.102373793558658 +ER,NPEPL1,0.398474607747111 +ER,PSMA4,-0.416245860893226 +ER,OR51E2,0.188200095481213 +ER,GYPE,-0.507182173759764 +ER,ZNF135,-0.648291684618507 +ER,UCP3,-0.0766086033971782 +ER,SLC9A9,0.789889169383921 +ER,MTO1,-0.0615729556650717 +ER,UBE2N,0.155646572998008 +ER,PUS10,-0.169245156889598 +ER,MEMO1,-0.454672485741632 +ER,WDR11,0.0222527860668536 +ER,NR3C2,-0.461739422576045 +ER,TRPC3,0.61017283791604 +ER,LRRK2,-0.17861029663987 +ER,PCYT1B,-0.295873912807304 +ER,ESPNP,0.083103902118408 +ER,INPP4A,-0.49003374512096 +ER,GARNL3,0.368915963726517 +ER,USP45,-0.424522607813982 +ER,KIAA1958,-0.334091907188129 +ER,KIAA1429,0.239875911185592 +ER,SLC25A30,0.281125467050236 +ER,CHP2,-0.0249452329888245 +ER,BCHE,0.822028413116449 +ER,ANK2,-0.251770116688715 +ER,MTAP,-0.269218230316452 +ER,KCNA1,0.302622609226859 +ER,FBXO27,0.58183897347162 +ER,CRBN,0.869974092529601 +ER,ZNF75A,-0.080034841904097 +ER,FAM26E,1.43533141319565 +ER,STRA6,1.41031168405477 +ER,SLC44A5,1.48547917244126 +ER,PKD1L1,-0.160031964791398 +ER,LRRC16B,-1.19756734687527 +ER,CD46,0.637304681971984 +ER,ASPA,-0.186350768010822 +ER,CCPG1,0.958434940640852 +ER,ARHGEF6,-0.191307302125786 +ER,RBP1,-0.208709727015522 +ER,KLHL28,-0.256028137292115 +ER,TJP3,-0.487287550235825 +ER,MOGAT3,1.20639793992934 +ER,ATP7A,1.45095375901532 +ER,KARSP1,-0.231172151775591 +ER,ATP5A1,0.0657323720319319 +ER,RABGAP1L,-0.660921498484901 +ER,MAB21L1,0.0491111155386253 +ER,CST3,0.5834794615936 +ER,C18orf15,0.0557487308328857 +ER,ACTN4P2,0.249674779635563 +ER,SLC1A6,-0.0324729436349939 +ER,WNT5B,0.677615499559386 +ER,TTC39C,-0.254164617695389 +ER,CA5B,-0.631135683106639 +ER,ULK4,-0.108565529631826 +ER,ABHD12B,0.215815674667 +ER,MAML2,-0.441768904088727 +ER,LRRC15,1.96380817587505 +ER,ABCA13,1.42519092046333 +ER,PHKG2,0.435099585213817 +ER,DUSP19,-0.421247231417126 +ER,KLF4,0.0164668816845023 +ER,SIRT5,-0.333689949880789 +ER,RBM23,0.130985018606761 +ER,KLF14,-0.231584979890891 +ER,INSL4,1.53738621935128 +ER,USP6NL,-0.125679301220267 +ER,STKLD1,-0.239034186088333 +ER,BLK,0.397688117392828 +ER,DNAAF5,0.451500755728263 +ER,KLHDC2,-0.867900136972046 +ER,MBOAT4,-0.363004675045693 +ER,SMARCE1,-0.575478236684206 +ER,STXBP4,-0.725909207323303 +ER,KCNN2,0.459513687109583 +ER,TPRX1,-0.170342723661731 +ER,MTCL1,-0.056452129102246 +ER,CEACAM19,0.479490278850636 +ER,ZNF200,-0.204716435307248 +ER,FAM177A1,0.00730987555199199 +ER,STK24,-0.144853701652149 +ER,DNAJC24,0.398247718570818 +ER,TCF3P1,-0.649913446632459 +ER,TEX19,-0.255249537460185 +ER,DRP2,-0.0914688472857552 +ER,APOLD1,-0.389600365074493 +ER,NFIA,-0.239723002753671 +ER,PRDM11,0.0818848139613103 +ER,CCL22,-0.0923774661429796 +ER,PLIN5,0.157275133759433 +ER,NRG3,0.279685066588856 +ER,GSKIP,-0.290406951623395 +ER,GABRD,1.2725037171708 +ER,SLC27A5,-0.285826854903778 +ER,CECR5,0.266320731992612 +ER,TMTC1,0.177426871908603 +ER,KCNJ5,0.0518551927457773 +ER,ZNF660,0.178083744568051 +ER,CCL28,-0.262151465841894 +ER,ZNF250,-0.274837787089392 +ER,MRE11B,-0.576588667741626 +ER,FERMT2,0.233354708268753 +ER,COX6B2,0.938344660708882 +ER,MAOB,-0.612530910547155 +ER,NDUFB5,0.116071648456085 +ER,NDFIP2,0.853699760431201 +ER,PADI3,-0.114515923289403 +ER,DPP10,0.270093799685456 +ER,ADCY10P1,0.406165575755362 +ER,PIGZ,0.745391149540699 +ER,ZCCHC18,-0.300544143299986 +ER,SLCO5A1,-0.0701055697011173 +ER,PDE4C,0.508710746803759 +ER,ZNF720,-0.501976592271429 +ER,MPV17L,-0.500168570785986 +ER,FAM155A,-0.293425708996897 +ER,ZNF7,0.256607123797904 +ER,OARD1,-0.085640269344527 +ER,ADRA2B,0.500350781824544 +ER,GPCPD1,-0.214241676697126 +ER,GANC,-0.428816710493337 +ER,UBQLNL,-0.0405340865854078 +ER,CALHM2,0.108278054460687 +ER,PCBD2,0.042701945408368 +ER,NABP1,0.96640793015077 +ER,GABRA2,-0.0252693614029949 +ER,MTSS1,-0.204313515366632 +ER,DCAF4L1,0.638435745691856 +ER,FMNL2,-0.0568228237370456 +ER,FAM78B,-0.068581977654568 +ER,DTD1,0.163238497425632 +ER,ZNF780A,-0.379576588211072 +ER,YWHAZ,-0.0354167219736953 +ER,MGC16275,-0.0968116255233808 +ER,PRRC1,0.543564019233593 +ER,TSLP,-0.345567431052473 +ER,IGSF10,1.33009650547173 +ER,GOLGA2P11,0.54192713662909 +ER,DFNA5,-0.00243519213329116 +ER,SCARNA15,0.453326231622618 +ER,BNIPL,0.129715503564711 +ER,RBM20,-0.198638780790889 +ER,SLC26A8,-0.420365088000698 +ER,VAMP4,-0.325555109982707 +ER,NDUFA11,-0.231374035753447 +ER,CNIH3,0.502622577340803 +ER,KIAA0586,0.303664523252586 +ER,GLCCI1,-0.515121558205541 +ER,PTGDR2,-0.428879498266118 +ER,TMEM170B,-0.464557972561924 +ER,AGO3,-0.423828162201875 +ER,CASP16,-0.478859367013251 +ER,CCR4,0.100439762997489 +ER,CYP4V2,0.689834775502254 +ER,DNMT3A,-0.412036608832111 +ER,CCDC114,-0.340326162307172 +ER,MBD5,-0.62146526390834 +ER,SLC6A6P1,0.0758558089235889 +ER,C17orf75,-0.249302949527686 +ER,ZNF556,0.345820736360282 +ER,AP1M1,-0.215337428990255 +ER,PTPN22,-0.250603706019604 +ER,C10orf25,-0.311714443906683 +ER,CD164,0.95597789090011 +ER,ZNF214,-0.0599974663693053 +ER,COTL1,0.37540815584694 +ER,RDH12,0.55143017963575 +ER,RALGPS1,-0.250795646509654 +ER,CEP126,-0.335464474735816 +ER,RAI2,-0.556483805613212 +ER,CDKL5,-0.467562247120543 +ER,PSMA6,0.245622088526273 +ER,SLC25A53,-0.179585425208334 +ER,GJC2,0.0312758649149125 +ER,ICE2P2,-0.716884061322833 +ER,AXIN1,0.126435580621623 +ER,ZNF419,0.784609499933389 +ER,RBMS1,0.500655899773682 +ER,CFL2,-0.487003786492102 +ER,SENP8,-0.027857927905921 +ER,RWDD1,0.152675779778641 +ER,PMM2,1.1285216628782 +ER,SRRM5,0.296455857469508 +ER,ZNF675,-0.0958960548614458 +ER,WDR55,1.08192397905295 +ER,TMEM255B,-0.0563939207803981 +ER,ZNF175,-0.215007803192804 +ER,LYPD3,-0.0779500810316045 +ER,CYB5RL,0.49292095241953 +ER,KIAA1024,-0.147160439155722 +ER,EYS,0.653403807664324 +ER,PTCH2,0.944708906812733 +ER,PLD5,1.34115906992271 +ER,IPO5P1,-0.130629350539559 +ER,PHF21B,-0.362831188890677 +ER,VWF,0.172343073936353 +ER,ZNF213,-0.485275579693727 +ER,PCSK6,-0.0861028310402202 +ER,DRAXIN,1.0560269229455 +ER,C17orf49,-0.104526565740834 +ER,ZNF843,-0.314791978895361 +ER,ARHGAP28,-0.563906394357757 +ER,ERG,-0.632866374349349 +ER,FAH,0.771293489156525 +ER,CCRL2,0.966516142815461 +ER,ZNF835,0.0191141858915415 +ER,NPRL3,1.30477309813302 +ER,STK32B,-0.493870197302682 +ER,GALNT5,1.10467218905962 +ER,MATR3,1.42701071807267 +ER,GPR62,0.0739082471676894 +ER,TLL2,-0.213588376301938 +ER,MRRF,-0.3047024405199 +ER,SLC27A2,1.53189118003926 +ER,CCDC157,-0.237051315996347 +ER,ZNF665,-0.270771815044578 +ER,LCA5,-0.433199924305867 +ER,PAG1,1.10940850724329 +ER,ZNF207,0.27295299120978 +ER,LRCH2,-0.612334571131893 +ER,HTRA4,-0.150161428936778 +ER,FUT1,0.546809526794996 +ER,AGMAT,0.191179739600689 +ER,NEDD4L,-0.276310756417216 +ER,PCDHGB2,1.4980229957791 +ER,TTBK2,-0.462983857902645 +ER,CTSV,0.940813194002715 +ER,SATB1,-0.359131165868245 +ER,PGM5,-0.522659553331156 +ER,LRG1,0.87363270931332 +ER,CHCHD5,0.211830367203908 +ER,CHGB,1.73716938076832 +ER,CCDC30,-0.352095753137498 +ER,ACP6,0.0161863578312032 +ER,SIGLEC10,-0.39367634627312 +ER,SRCIN1,-0.412183877054314 +ER,CLGN,2.30812996972112 +ER,KLC1,0.0851132439921282 +ER,TSPAN14,0.31761946990613 +ER,ATOX1,0.291364981918941 +ER,ADGRE2,0.647657069838784 +ER,GSTM3,-0.134936027268702 +ER,FAM63B,-0.689482826504441 +ER,ZC3H12B,0.049955721754986 +ER,RTEL1P1,-0.632952833829197 +ER,S1PR1,0.97004290914325 +ER,C1orf131,0.486599405854937 +ER,TTC9,-0.28536521522046 +ER,SHC1P1,-0.469433686825976 +ER,KATNB1,-0.0800310662213448 +ER,CRYBB2P1,-0.233818798800048 +ER,SETD6,-0.317187548004755 +ER,CXCR6,0.214087030665632 +ER,TCTN1,0.499932150083815 +ER,CHCHD7,0.349718471637526 +ER,WDR17,-0.791756899039161 +ER,SLC39A8,0.509537154025728 +ER,CASP4,0.429467807096383 +ER,CD1D,1.47169662678746 +ER,SCN1B,0.52347196604548 +ER,DNAJC15,-0.0275566443737486 +ER,ADGRA3,-0.212553361859634 +ER,CEP57,0.729297441378895 +ER,KCTD10,0.646123506652609 +ER,SNAI3,-0.391816652672256 +ER,SERPINB6,-0.222243949158279 +ER,ONECUT2,-0.326931910208021 +ER,LHFPL5,-0.417233043427565 +ER,HAMP,0.346728995619644 +ER,PTAFR,-0.0645694455315914 +ER,CUZD1,0.00155740745840606 +ER,CPT1C,2.06636290255589 +ER,WDR88,-0.0858293811282992 +ER,RHOU,-0.198977831727909 +ER,FAM131B,-0.0154702445001104 +ER,TRABD2A,0.360339409024036 +ER,SHISA2,0.189150934045351 +ER,ZNF25,-0.254816497282928 +ER,ZNF667,0.60088792920258 +ER,MOB3C,0.907743118210254 +ER,SPTLC3,-0.021457323339316 +ER,FAM214A,-0.325520363168462 +ER,HSH2D,-0.0550375871849023 +ER,INTS10,0.833113872945559 +ER,FGD5,-0.356254802358707 +ER,FRAT1,-0.250215572874677 +ER,CYP2E1,-0.193187633236197 +ER,PUS7L,-0.583000215162452 +ER,C2CD2L,-0.319432194614042 +ER,SYN1,-0.27478592476327 +ER,RHOV,-0.325603850178063 +ER,GP2,0.438713118302975 +ER,TM2D1,0.733829957615946 +ER,BAIAP2L2,0.191218867394408 +ER,KIAA1875,-0.44245402285641 +ER,FBXO15,0.201642300146482 +ER,NDUFA10,0.0395069203689727 +ER,PSD4,-0.693566419924559 +ER,STK16,-0.0462919343787734 +ER,PRSS35,0.26673770253302 +ER,TRAPPC3L,0.141945506911738 +ER,PALM2,-0.520899580327752 +ER,ZNF585A,-0.238445284129826 +ER,TLR3,0.809279591998619 +ER,KCNH4,0.380725148892008 +ER,TBRG4,0.837868737745998 +ER,ARHGAP8,-0.0906753228514505 +ER,RIN1,-0.0896454151158145 +ER,SPRY4,-0.523904073621824 +ER,TMEM134,0.522182383136442 +ER,TRMT44,-0.336605079339252 +ER,SLC25A44,0.129834695663301 +ER,CACNB4,-0.290595862633977 +ER,WDR70,-0.465466755557875 +ER,FBXO21,-0.763491942621736 +ER,RNASET2,0.885748356539829 +ER,BRF1,-0.151419288431718 +ER,TMEM78,0.626253265408933 +ER,PKI55,-0.581851453477472 +ER,EFCAB12,0.4940299945772 +ER,DGAT2,0.692400312768116 +ER,RAD17P1,-0.387018483906538 +ER,ZACN,1.22939393234454 +ER,GRHL3,0.210756791992183 +ER,STX3,-0.347183669433675 +ER,HIST3H2BB,-0.315987452348816 +ER,BCL7A,-0.52397796345326 +ER,C6orf132,-0.597062186155871 +ER,CATSPER2,0.229203203236217 +ER,VMAC,-0.440332745962766 +ER,ADCK3,-0.0575774953857668 +ER,DHX36,-0.00285954113888151 +ER,TFAP4,0.531892520058324 +ER,TEX264,-0.221626150896838 +ER,GAB1,-0.469450059739296 +ER,AP4S1,-0.419176980860797 +ER,TBC1D19,0.164525694129919 +ER,SLCO4C1,0.951023271685992 +ER,TEX10,0.482486906025742 +ER,SLC2A11,-0.242586996284051 +ER,SMIM14,-0.442743516735264 +ER,AKAP3,-0.0239677756442294 +ER,ECI2,0.0686335222311455 +ER,ALG14,-0.0325471694413464 +ER,SCHIP1,0.05908640230311 +ER,CROCCP3,0.0236943913037022 +ER,IAH1,0.722639514315421 +ER,MKLN1,-0.565527532876365 +ER,PCCB,-0.222895512074423 +ER,SFTPB,0.676461325322532 +ER,TAGLN,0.176849572096715 +ER,ARHGEF1,0.218616295098506 +ER,SPATC1,-0.331521911659574 +ER,TTC30A,-0.53159932224265 +ER,RYR1,-0.0123936549186336 +ER,PCDHGB7,0.74637383006372 +ER,COPS8,0.0380781740407188 +ER,CCDC79,-0.327894442614436 +ER,PLXNA2,1.59224800831803 +ER,ZNF624,-0.19896060720362 +ER,COX4I1,0.181126829603675 +ER,INHBC,0.105531932699555 +ER,HSPA2,0.0776388184805562 +ER,GTF2IP7,-0.188899873438474 +ER,MANSC1,1.09007470759705 +ER,BRAFP1,0.037892583420326 +ER,SREK1,1.09950460679444 +ER,STK33,0.318975955691974 +ER,SHANK2,-0.656951103906613 +ER,USP51,-0.229553422343814 +ER,MAP7D2,-0.367404638480393 +ER,GSTM4,0.60167696865839 +ER,UBTFL11,-0.394454477486 +ER,FOXP4,-0.198726081937065 +ER,COL3A1,0.258738966201033 +ER,PGGT1B,0.203312758721206 +ER,HOXB4,-0.298804938655162 +ER,BCL11B,-0.265126815853572 +ER,ATP2A1,0.280668063801793 +ER,OSBPL6,-0.521258271035576 +ER,EXOSC1,0.877584166004098 +ER,LRRFIP2,0.153039601192014 +ER,LTA4H,1.08420766406825 +ER,ZNF219,-0.0191889625040822 +ER,CACNA1G,0.316008036149323 +ER,CDK5RAP3,-0.0442676006822606 +ER,CYLD,-0.394067981338333 +ER,MANBA,0.0642507906411497 +ER,MR1,0.646697859317784 +ER,ZNF391,-0.19129989800176 +ER,APOBEC3G,-0.0532968993337124 +ER,DNM3OS,0.663316359060228 +ER,HAGHL,-0.341316204325459 +ER,ZC3H8,-0.0642862979657881 +ER,HOMER2,-0.522807197047419 +ER,OVGP1,0.583032916473754 +ER,RRP8,-0.340932062236589 +ER,STK31,-0.328382443897028 +ER,FARSBP1,0.991424361403852 +ER,ISOC2,0.316286275274538 +ER,AK5,-0.0498299250859874 +ER,FAM196B,-0.459077231403667 +ER,GTF3C1,-0.467016430042348 +ER,PRKACA,-0.239883195538531 +ER,TCL6,0.406265621246937 +ER,MAP7,0.318818415376022 +ER,HTR3A,1.14586326065278 +ER,ZFP3,-0.187458110547177 +ER,ZNF563,-0.411354172641713 +ER,ZNF224,-0.157241713678972 +ER,KCNF1,0.405689314789545 +ER,FSD2,0.0637538919900793 +ER,C4orf29,-0.276512234890847 +ER,LRRC37A9P,-0.235894582658056 +ER,ASGR1,0.141856489392289 +ER,ATG9B,0.0690555549195213 +ER,SPA17,-0.142448712366925 +ER,NBEA,-0.391854048282491 +ER,RAB37,0.412712687727815 +ER,RFX2,-0.201716488561466 +ER,C12orf29,0.203042421384474 +ER,POP4,0.0736797755905519 +ER,CFAP58,-0.377711426104864 +ER,SCUBE3,0.913989595693509 +ER,KIAA1407,-0.276002905123799 +ER,PMM1,0.353244910261418 +ER,PHF21A,-0.410614337666816 +ER,SNAP47,0.227132359751103 +ER,TBC1D30,0.00954995159329734 +ER,PTGR2,0.600527126681604 +ER,SCAMP2,0.254068472961887 +ER,ZNF385B,-0.373664445627235 +ER,HRK,0.0614289947168564 +ER,L3MBTL1,0.568229828613274 +ER,WDR60,0.377714741419421 +ER,C9orf85,-0.396629473136945 +ER,GNAI2,0.0183260061901238 +ER,C18orf32,0.0523695651306082 +ER,TNFAIP8L3,-0.145116686633092 +ER,MAEA,0.189368419434084 +ER,HSD11B2,0.669275393749746 +ER,MAP3K11,0.426317557443812 +ER,HAUS3,-0.375038072171578 +ER,ZNF606,0.806609825877642 +ER,PEX1,0.338306160957898 +ER,SMPD3,0.208073157676411 +ER,GABPB2,-0.263770933421557 +ER,DENND2A,-0.0423413982052405 +ER,DDX19A,0.650780125803624 +ER,RPA4,-0.448508116337972 +ER,CPEB4,-0.214668869565838 +ER,ZNF678,-0.340288228399848 +ER,PARP6,0.964623262709615 +ER,DNAJA3,0.158219583529822 +ER,DAW1,-0.287077419950391 +ER,RND2,0.100700150481177 +ER,SAMD9L,-0.561878238577588 +ER,TRIM41,0.272740971984049 +ER,CDSN,0.0694199552827936 +ER,CD81,0.187902122890976 +ER,BRWD1,-0.548416205765984 +ER,DENND2C,-0.360091146967966 +ER,SAMM50,0.196532061215524 +ER,C4orf33,0.0710325247015989 +ER,MTHFD1,-0.259914374126725 +ER,TMC5,0.1691225369851 +ER,CAMTA1,-0.125835143069883 +ER,SAFB,0.826036409465979 +ER,CAMK1D,-0.58891564019743 +ER,PAPPA,0.27957297113616 +ER,FGFR1OP2,0.47981013226736 +ER,PCDHB7,0.331353247499061 +ER,NBPF17P,-0.594874960041976 +ER,NXPH3,0.339832933056336 +ER,IZUMO1,-0.118748691132857 +ER,CLK3,-0.115979119753251 +ER,CEP85L,-0.0539747861701392 +ER,ZNF792,-0.199910731151692 +ER,DNAJC28,-0.335556589949351 +ER,ITM2B,0.748736243417731 +ER,EIF4G2,0.292207276750086 +ER,ACACB,-0.722335855786081 +ER,MIAT,-0.0285090334349447 +ER,TECR,-0.0723578364221201 +ER,ZNF514,-0.0538977291228044 +ER,FGF17,0.190940924516627 +ER,MGRN1,-0.199915710007798 +ER,MAMSTR,-0.293097326959844 +ER,MIR4458HG,-0.184887243758457 +ER,KCNA3,0.390952504966369 +ER,HIST1H2BN,-0.329085335830666 +ER,ABCG4,0.88442068252626 +ER,DUSP28,-0.106262349786469 +ER,ASPRV1,-0.254859353671222 +ER,TMEM189,0.275514081874904 +ER,RBM26,0.146768986766498 +ER,IRF1,0.732018624833197 +ER,WSCD1,0.2041923128176 +ER,C16orf70,0.25523880420362 +ER,CCDC171,-0.380815711841396 +ER,ZMAT5,-0.0442058339928807 +ER,HAP1,-0.287188903918039 +ER,SMARCA4,-0.143672920191312 +ER,ZNF532,0.462655895117549 +ER,ERCC3,0.699523941083816 +ER,ICA1L,0.382688769886273 +ER,SCN2B,0.743560228685905 +ER,C5AR1,0.0513786578068043 +ER,FAT4,2.11450158080729 +ER,RORA,-0.205326302501691 +ER,SAMD15,-0.100661249822902 +ER,CEP63,-0.420629607708889 +ER,NACA,0.348698416977954 +ER,HOXA13,-0.356183276657335 +ER,GUCY1B2,-0.494966805970668 +ER,PLEKHA5,-0.0049530384857396 +ER,ZNF230,-0.119672234029304 +ER,JAG2,0.439371278182121 +ER,ADRB2,0.906306281771518 +ER,TXNRD3,-0.204324242467917 +ER,MRPS27,0.505245826094754 +ER,PWAR5,0.15352616541392 +ER,TIGD6,-0.581994900337801 +ER,NEU1,0.735557158786491 +ER,PCSK1,-0.388937483715242 +ER,RNF224,0.133574586548257 +ER,ZPLD1,-0.0586098681914309 +ER,TTC13,1.55254814126651 +ER,SOAT2,0.985803696978875 +ER,PPIP5K2,0.510043641629655 +ER,PCDHGA5,0.446367557902014 +ER,CYB561A3,0.0782733986196025 +ER,KCNQ1OT1,0.409196646713179 +ER,DPY19L2P1,0.398403933109954 +ER,AFF3,-0.609677977965328 +ER,SLC25A45,0.13512624715363 +ER,BMF,-0.143259622685666 +ER,BCAS4,-0.328436847193727 +ER,CLDN22,0.0284070467867888 +ER,APOL4,-0.010304248059459 +ER,RGS3,-0.220998195672642 +ER,TRAF3IP2,-0.310099877620472 +ER,SLC31A2,1.12166297295766 +ER,SNX15,1.00405853085074 +ER,TNS4,-0.336128466077149 +ER,DNAJC10,0.229652023098237 +ER,FGF11,0.380949317091788 +ER,AIM1,-0.489528862310347 +ER,SLC25A26,-0.190260557885408 +ER,SOBP,-0.176733168813917 +ER,FAM3A,0.217008939636838 +ER,EVL,0.0954505541913074 +ER,SLC45A1,0.482440543131572 +ER,C1orf52,-0.266346384206999 +ER,ACADSB,-0.411311179304445 +ER,FBXL20,-0.320124355052111 +ER,SMAD2,-0.821436996121865 +ER,HDAC9,-0.322804305596552 +ER,OSBPL2,0.208577119131062 +ER,BLACE,-0.111883374961207 +ER,BOC,-0.160794458152736 +ER,ZNF502,-0.276293672277016 +ER,RAPGEF5,-0.56565200361522 +ER,XK,0.648452896294362 +ER,PRICKLE1,-0.405362067124652 +ER,ATP5S,-0.317629321673814 +ER,MACF1,1.09888592680126 +ER,TRGV5,0.572355905884337 +ER,ZNF268,-0.239261570801463 +ER,PELI2,-0.444184809841644 +ER,GPI,0.158263256893568 +ER,CCNG2,-0.13909593396688 +ER,GPC3,2.10539219693855 +ER,TRIM13,0.138812270965957 +ER,ZBTB44,-0.500547834376438 +ER,BFSP1,-0.470522921262045 +ER,AGFG2,0.0423571669938384 +ER,NKD1,-0.230550831471056 +ER,TBCK,0.0817815766703062 +ER,LINGO2,0.565573412621247 +ER,ALDH1L1,-0.0484505360805937 +ER,C10orf55,0.0506804650472296 +ER,C14orf79,-0.414818226918614 +ER,H2AFJ,-0.0574467107003976 +ER,PAAF1,0.121830149208378 +ER,RGS12,0.570786738226787 +ER,SYTL4,-0.0211117769628573 +ER,ANKRD26P1,-0.417801064620852 +ER,MRPS17P1,1.94736701540895 +ER,EML5,-0.455929816255929 +ER,RPL39,0.47863025268211 +ER,SGK494,0.197746799270033 +ER,PLCE1,-0.309166230278395 +ER,PRDM1,0.0972639438193131 +ER,SMOC2,0.0900154365623687 +ER,GBP5,0.312881465104697 +ER,JPH2,-0.477785944424192 +ER,UBQLN1,0.375884857305871 +ER,C3orf70,-0.365963698512295 +ER,NRIP2,0.945980888079015 +ER,NFYB,-0.552305559305273 +ER,ZNF557,-0.199480002182559 +ER,C14orf37,-0.0137030349167177 +ER,PRKCG,0.155516322329471 +ER,IFT27,0.438233724392952 +ER,TEP1,-0.702968143943113 +ER,GPR135,0.219303714774489 +ER,PSG4,0.300849748878608 +ER,RAB11FIP4,-0.306496680337607 +ER,PPP1R37,-0.00154977294588919 +ER,CCDC122,0.718387708533003 +ER,ZNF347,-0.47662536154065 +ER,CAPRIN2,0.338092385765168 +ER,KBTBD8,-0.257526340430876 +ER,KCNB1,0.508031698673376 +ER,KCNT2,0.381883767539021 +ER,PRRT4,0.542012153772127 +ER,CAPS,-0.0331590170077509 +ER,SAMD5,-0.579102228755751 +ER,DNLZ,-0.376225164715985 +ER,GIGYF2,-0.467685189188652 +ER,DIS3,-0.376583222116691 +ER,CHMP1B2P,-0.368674816176755 +ER,SFXN2,-0.0772092943387769 +ER,CDH15,-0.588246264074053 +ER,DLX3,0.398224546288948 +ER,BRINP1,0.622636059815948 +ER,TNRC18P1,-0.292186039535025 +ER,PCAT14,-0.0163093366145157 +ER,ZNF402P,-0.508218967842223 +ER,ANO4,1.09606571395514 +ER,SLC36A4,0.420456220543138 +ER,ZNF548,0.053285634874463 +ER,RPS6KA5,-0.636467063540163 +ER,DMRTA1,-0.0622536226016146 +ER,DNAH17,1.01738169888302 +ER,CCDC121,-0.272957502900652 +ER,HAVCR2,0.952754295816564 +ER,OXTR,0.146986603913711 +ER,C1orf220,0.503044632294585 +ER,RPL38,1.03412120632569 +ER,CRTC1,-0.540896367025188 +ER,RGS7,-0.322815154243057 +ER,C11orf71,-0.0910856344538848 +ER,PDGFB,0.557927976925871 +ER,PCDHA11,1.12074103887189 +ER,TRIL,1.90912938048651 +ER,PPAP2C,0.058930707099483 +ER,DDN,-0.00376438127990784 +ER,RNF125,-0.585926451573033 +ER,DGCR6,0.0580744504854517 +ER,TMEM151A,0.274673600959533 +ER,ADAMTS8,1.04174849656664 +ER,RAF1,0.988121231328357 +ER,PAK4,-0.244092913173379 +ER,RPL3L,0.461187584094794 +ER,EPHA5,1.0893463934591 +ER,AKNA,0.0303219273125245 +ER,RABL6,0.020583238161659 +ER,RCN2,0.0518872076518449 +ER,PCDHA4,0.367788216361619 +ER,PHACTR3,-0.264860807440182 +ER,ERCC6,-0.739709511469505 +ER,FADS2,0.440368391287966 +ER,RAB40B,-0.11091135641058 +ER,TCAF2,-0.405767735832064 +ER,PCSK7,-0.498861094546344 +ER,ZC3H12C,-0.307242508954526 +ER,C3,2.30106018666812 +ER,SLC22A18,0.390984034046896 +ER,TCAP,0.0477739674292498 +ER,UBXN6,-0.0814144737456744 +ER,CLTCL1,-0.104403301403864 +ER,ATP6V0A4,1.44385416377703 +ER,PDHB,0.468239128774477 +ER,TRA2B,1.47547390012747 +ER,OASL,-0.943453910093823 +ER,SMAD4,-0.516652048379631 +ER,S100A1,0.00952504147962502 +ER,B3GNT4,0.440529520128889 +ER,FAM195B,0.628801718513802 +ER,TARBP1,-0.419930399296857 +ER,SREK1IP1,-0.534656595283505 +ER,PDK1,-0.36773105615196 +ER,CHORDC1,1.53688628913579 +ER,FZD4,1.23032190929326 +ER,PLA2R1,1.69711358753522 +ER,ZNF641,-0.365222327757672 +ER,MOB3B,-0.416991608209775 +ER,PPP2R5E,-0.478563051886059 +ER,B3GALT5,0.432780822981984 +ER,CARD8,-0.0412445763781414 +ER,ADAT2,0.284099926721695 +ER,ZNF506,-0.463904439742502 +ER,FGF13,-0.197980701383716 +ER,FAM86B3P,-0.288204483719709 +ER,IRX6,0.567068862874333 +ER,CYB5R1,0.25043749579084 +ER,SH3GL2,-0.391171932598228 +ER,CFL1P1,-0.676341995103837 +ER,PYGO1,-0.53860219724905 +ER,KCTD19,-0.156685655734287 +ER,ATP2C2,-0.541326604608118 +ER,PCNXL2,0.237511129778339 +ER,LRRC66,0.633166398877394 +ER,SLC30A4,0.565785403860241 +ER,C15orf57,-0.556244967412014 +ER,PAX7,-0.139523962246395 +ER,RNF103,0.583141289982743 +ER,CSRP1,0.869230845686188 +ER,SIAE,0.431744734470162 +ER,FRMPD3,0.0931607515215212 +ER,MVK,0.828747778434664 +ER,MAGOHB,0.0700070073777355 +ER,DDHD1,-0.613260288803819 +ER,CCNT2,0.164205857361344 +ER,ZNF566,-0.439326907283529 +ER,EPN1,-0.112156582206191 +ER,DSTN,0.0495345997702651 +ER,LRRC39,0.279588987868215 +ER,HMGB1,-0.30723292980484 +ER,PCDHA12,1.68776563518232 +ER,VWA5A,-0.393901920308706 +ER,ANKRD30B,-0.277705295878752 +ER,RCAN3,-0.586409335847185 +ER,OLFML2A,1.73500256544833 +ER,KIAA0319,1.62658898592299 +ER,GFY,0.457138855189584 +ER,PCDHA3,0.952485434793752 +ER,MYNN,-0.0370980421819685 +ER,ZNRF1,-0.0892828257644327 +ER,NOXRED1,-0.2504756266799 +ER,DCAF10,-0.439325292476478 +ER,ING1,0.00905928877520865 +ER,FAM46C,-0.448516672149867 +ER,MYRF,0.568246797152242 +ER,DSEL,1.39895711733303 +ER,CAST,1.32226344089266 +ER,RPS24,0.390083433487131 +ER,SNTB1,-0.353164307849224 +ER,ZNF570,-0.584014430262491 +ER,ARRDC4,-0.577683040852857 +ER,MRE11A,-0.447888944176987 +ER,IL4I1,0.269884607125935 +ER,TMEM200C,-0.0021558116717081 +ER,XKR5,0.632123889261404 +ER,TET1,-0.336560523215076 +ER,PTK2B,-0.383840006743945 +ER,HELB,-0.425028701280774 +ER,CFAP53,-0.130372282258661 +ER,GIT2,-0.51364558748602 +ER,AIG1,0.788960405299272 +ER,SLC29A4,0.694129987825865 +ER,ITGA2B,-0.648249217374461 +ER,RBM28,-0.519414673389714 +ER,GPR4,0.135344541065182 +ER,CCM2L,-0.394783138256164 +ER,WDR66,0.00570016179566905 +ER,POLN,-0.0181967239448935 +ER,SLC28A2,0.95958202033024 +ER,IL18R1,0.660739382734012 +ER,JAM2,0.984695023157149 +ER,RSF1,-0.72171458449317 +ER,TRIM17,-0.349023263493933 +ER,G6PC3,0.152847441727355 +ER,EIF2D,-0.0222566443261959 +ER,DIO2,0.260930642825212 +ER,MLC1,-0.230764815365617 +ER,ZNF415,-0.126499605655295 +ER,PTGIS,1.32350056270864 +ER,ADGRD2,-0.147138243105852 +ER,C1orf147,0.602325842670284 +ER,RTP4,0.0795795423974712 +ER,VWCE,-0.0827937460799232 +ER,DLEU7,-0.482750336946603 +ER,TPGS2,-0.65144516151806 +ER,AGAP3,0.30596723986612 +ER,TAL1,-0.406017490125903 +ER,CACNB3,0.0702316057662592 +ER,FAM35CP,-0.330869380839909 +ER,CCDC17,0.258185950466245 +ER,CMSS1,0.157272321310454 +ER,ZNF83,-0.371930450191945 +ER,YLPM1,-0.447070158618447 +ER,KAT7,-0.303234705861526 +ER,ARHGAP42,-0.491120522707149 +ER,WNT4,0.147445939413614 +ER,CEPT1,0.661983432992286 +ER,RALGAPA1,-0.475475844847977 +ER,CNKSR2,-0.125004449515672 +ER,STK25,-0.355402027536724 +ER,PRRG4,0.158189380996664 +ER,SLC25A16,-0.347482603784075 +ER,TMEM154,0.343470511278311 +ER,CCR6,-0.162988716237148 +ER,ABAT,-0.559632918605841 +ER,GAS7,-0.522053481624358 +ER,CCDC138,-0.514677404757369 +ER,EIF3B,1.16959474063347 +ER,COPS5,0.397372983540434 +ER,LGI3,1.42425441707319 +ER,WDR61,0.505213245347398 +ER,TFG,0.984448620426334 +ER,MED17,-0.0946119212776383 +ER,PPM1E,-0.311844167003562 +ER,METTL8,-0.421602262231698 +ER,TNRC6C,-0.482734973158851 +ER,PDZD2,-0.57061084744317 +ER,ATOH8,-0.203017092477815 +ER,SLC10A5,-0.447890753024928 +ER,FGFR1OP,1.11617347369659 +ER,SBF1P1,0.579410413733459 +ER,ZNF891,-0.277000198263763 +ER,ARHGEF4,0.268695101728418 +ER,BTF3L4,-0.370500599764155 +ER,MTERF1,-0.0244987670724016 +ER,RAP1A,-0.224407760054344 +ER,SLC46A3,0.843098424004981 +ER,PCAT1,-0.0466538704586309 +ER,AP5M1,-0.349837156658846 +ER,MIR4697HG,0.383502466262308 +ER,PARP11,-0.329057162383505 +ER,SLC27A1,-0.0442646994674902 +ER,SLC25A4,0.0468613327065564 +ER,FOXG1,0.312076895219617 +ER,MEF2C,-0.116174211334666 +ER,CNTLN,-0.397290678753436 +ER,TIMP2,0.62757770008872 +ER,BACE2,0.736674378211062 +ER,ST6GALNAC6,0.443801878578863 +ER,VLDLR,1.76461755419776 +ER,FOXP3,-0.687253954623357 +ER,NLRP3,-0.276398424198199 +ER,FOXP1,-0.309052727735743 +ER,KDM7A,-0.234266703581707 +ER,FIRRE,0.128611147509909 +ER,BEST1,0.0817609641587869 +ER,ZNF136,-0.315671393474719 +ER,FAM174B,0.629400211105753 +ER,ZNF107,-0.25165323001984 +ER,SHROOM2,-0.294027176690438 +ER,USH1G,-0.138131648424352 +ER,FAM124A,-0.457088279771346 +ER,SOX13,0.675783459739172 +ER,NAP1L6,-0.287588592301569 +ER,THNSL2,-0.42668806679055 +ER,XYLT1,1.32638197997135 +ER,SNX19P2,0.690488894121486 +ER,IFNLR1,0.382940733231583 +ER,GPRC5B,1.2885264620778 +ER,IGFN1,0.156978340120354 +ER,MAF,-0.0340423292666089 +ER,PSMG4,-0.303502885932175 +ER,IL21R,-0.400143837744039 +ER,FMN1,-0.647776410970334 +ER,CYP2U1,0.25353188091477 +ER,ACRC,0.0256634877758196 +ER,IGF2BP1,-0.0941493254907385 +ER,DPF2,-0.00181832560622671 +ER,ABCC2,0.605266807408339 +ER,DCTN5,-0.349974771671439 +ER,SDR16C5,0.560173271696589 +ER,STOX2,-0.276456429359992 +ER,FAM110C,-0.267811262800216 +ER,LPL,1.78693881878986 +ER,AIM1L,-0.257576240508312 +ER,DENND1B,-0.363847449293672 +ER,CYYR1,-0.0787372294350227 +ER,GABARAPL3,0.128090686530141 +ER,COL17A1,0.409905466600223 +ER,RPS6KA2,-0.277015160849871 +ER,U2SURP,-0.377774293025605 +ER,ME2,-0.384752301252957 +ER,ITGB3,1.62403315552153 +ER,NEK4,-0.50672274310954 +ER,PTGFR,1.00162758817906 +ER,BRD7P5,-0.251581264901504 +ER,ZNF879,-0.220212903451136 +ER,WNK3,-0.444992451865141 +ER,PHLDA1,-0.477949869257033 +ER,OLA1,0.0467812289885535 +ER,TLR1,0.439516432276861 +ER,EN1,-0.0026825453672102 +ER,MYO6,-0.641761554848659 +ER,CPEB2,-0.232418663092676 +ER,NTNG2,0.205028727842081 +ER,RUNX2,-0.371788623264299 +ER,RGMB,0.37623744116452 +ER,TMEM198,-0.0114348759172887 +ER,CXorf23,-0.177308513721588 +ER,EGFR,1.56845790906227 +ER,SMARCC2,-0.224872323860317 +ER,ZBTB37,-0.463787908889075 +ER,KYNU,-0.57142703782291 +ER,ZNF101,-0.382500777714536 +ER,AMY2B,-0.767831263789636 +ER,SLC9A2,0.921015824755396 +ER,OBSCN,-0.565117203757875 +ER,C11orf63,-0.076240088009267 +ER,CPLX1,-0.248883697587547 +ER,NUMBL,0.333600619166834 +ER,CBLB,-0.428934909283529 +ER,PTPRN2,-0.438515178070224 +ER,ADAMTSL1,0.354209638311084 +ER,ZNF547,-0.139140643010511 +ER,SGPP2,0.44017771203861 +ER,RIMBP2,0.400958949310683 +ER,SH2D3A,-0.453716461136703 +ER,UBP1,0.857331997126595 +ER,SLC39A4,0.190512498327407 +ER,CARD9,-0.328353799943326 +ER,SDHC,-0.463384104476718 +ER,RCBTB2,-0.245698929688944 +ER,SLC35E3,0.0486348417076107 +ER,CASK,-0.288741405881082 +ER,AKAP5,-0.403131844247366 +ER,KIAA0895,-0.419578104570053 +ER,TMPRSS6,0.188117771742987 +ER,WDR27,0.726991722457529 +ER,TSGA10,-0.295167968762667 +ER,GSTO2,0.0337635693913523 +ER,STS,0.600986063703728 +ER,ZNF470,-0.31120067850406 +ER,C1orf61,-0.471722900640191 +ER,DENND3,-0.245087247727396 +ER,TRHDE,1.04144098842804 +ER,COPS2,-0.586178295963186 +ER,C1QTNF1,-0.173338829468016 +ER,CNTNAP2,-0.110517462866632 +ER,ZNF154,-0.0420037595951128 +ER,GTF2IRD1,-0.544601461123351 +ER,MRPS30,-0.419224812863893 +ER,HECW1,-0.369900606546477 +ER,TRPV1,-0.24448907084827 +ER,NFASC,0.440429672930025 +ER,MAGEL2,-0.0748449968969638 +ER,CATSPER1,0.353464185024483 +ER,SYNE2,-0.924568739757968 +ER,BCO2,0.501917925380218 +ER,P2RY1,0.613505183462792 +ER,PAQR8,1.01889232763133 +ER,MPZL3,0.991206226005034 +ER,PWWP2A,-0.360654542620687 +ER,HELLPAR,-0.178658140767807 +ER,NEGR1,-0.123728813257581 +ER,FLRT1,0.835944550725805 +ER,CRIPAK,-0.644493453614733 +ER,ZPR1,-0.431794596918014 +ER,TTC30B,-0.326085793555334 +ER,MAP9,-0.614305351941758 +ER,AATK,-0.146318445511113 +ER,ULK2,-0.417075596332387 +ER,LIG3,-0.511690796918441 +ER,CCDC82,-0.271025134708966 +ER,RPS6KB2,0.105265611544115 +ER,IL17RD,0.708900190032526 +ER,TMEM182,-0.171685656764241 +ER,FZD9,0.271023288737157 +ER,SUSD2,0.365017760582654 +ER,ZADH2,-0.504852025799229 +ER,BCL11A,-0.327290430443372 +ER,OXNAD1,-0.116791741706839 +ER,LRRC57,-0.473966793245183 +ER,PDLIM2,-0.142683933172368 +ER,FAM49B,1.16663556488802 +ER,TYRO3,0.400163098334982 +ER,TTC26,-0.628103223688785 +ER,MAST4,-0.540914084540796 +ER,ZNF594,-0.222301087871466 +ER,BMP6,0.909897790956309 +ER,PKD1L2,0.361835280891845 +ER,PCDH7,1.12398710236957 +ER,FGF12,0.17948532274119 +ER,SYNE4,0.254768947782015 +ER,FHDC1,0.060347947384003 +ER,UROS,-0.30433688441142 +ER,ZNHIT6,-0.671132321392895 +ER,ACER3,1.10102927731696 +ER,OTUB2,-0.311048038906906 +ER,CD47,0.991787328402401 +ER,NBR1,0.191760266168732 +ER,SERPINF2,-0.0429755936660464 +ER,NDEL1,-0.197313448173674 +ER,ZNF783,0.140332616038062 +ER,B4GALNT2,0.144042518344509 +ER,NGEF,-0.193056745910246 +ER,GBP2,-0.302973671183939 +ER,RNASEH2B,-0.0715773163873859 +ER,CERKL,-0.204848908668237 +ER,PHC3,-0.231855460756435 +ER,TPRN,-0.634855979321816 +ER,DERL1,0.876884275394527 +ER,MXD1,-0.160452174967226 +ER,FNTA,0.882120878725235 +ER,MRPS31P5,-0.0791061626517396 +ER,ANO5,1.19586045929779 +ER,OR2H2,-0.0926860347399032 +ER,ZNF649,-0.329220068147592 +ER,PTPRB,1.17712787480205 +ER,SF3B2,-0.0172883543397072 +ER,DOCK4,-0.681823686070374 +ER,SESN3,-0.443247401114222 +ER,PLCB4,-0.32844024790751 +ER,DISP2,0.428794931988848 +ER,NECAB2,-0.0455894207552584 +ER,TRIM73,0.196941492817322 +ER,PITPNM3,-0.491438069354813 +ER,HINFP,0.706978106408721 +ER,ZFAND5,-0.457662455936927 +ER,ZSCAN30,-0.454387978296001 +ER,ATP10B,0.33137303402014 +ER,PPP1R3D,-0.25919689701957 +ER,KRT79,0.137174255902063 +ER,SLC7A8,0.949928856545607 +ER,PTPRE,0.089374493336578 +ER,DOCK11,-0.547589235143046 +ER,DNASE1,-0.134974216223413 +ER,XRN1,-0.739749524514558 +ER,ZNF772,-0.466277054602508 +ER,HDX,-0.265427100758313 +ER,CARS,0.273132017890576 +ER,RPS27L,0.231290314697077 +ER,TRPS1,-0.383657487418189 +ER,ZFP28,-0.381357301804595 +ER,LRRN4,0.745268024428128 +ER,KCNQ3,0.65299335190842 +ER,BAG1,-0.0142075264047201 +ER,CREBRF,-0.177743006914104 +ER,LMLN,1.27931648877192 +ER,FAM229A,-0.2749196226747 +ER,PLAGL1,0.603498495691775 +ER,TOMM5,-0.19783703145751 +ER,SLC6A11,-0.0142325519407847 +ER,SH2D3C,-0.00796997692192197 +ER,PRMT2,-0.0833824962777779 +ER,SP3,-0.351716555950954 +ER,ALDH7A1,-0.288365091393538 +ER,TMPRSS3,0.840167081426853 +ER,ORAOV1,0.28766071018911 +ER,GOLGA6L9,0.401430336977524 +ER,DOPEY1,-0.464864260777755 +ER,HAGLR,-0.322995850836811 +ER,SBK1,-0.346142115925511 +ER,CNIH1,1.09913405820978 +ER,DGKE,0.747727759268737 +ER,ATP5G3,-0.244464604892954 +ER,LCMT2,-0.357148479313018 +ER,ZNF630,-0.151250558835553 +ER,DDX24,0.918581341345306 +ER,MTMR8,-0.392561398943169 +ER,MURC,0.260159306345362 +ER,CD22,0.515590616690799 +ER,ZMYM6,-0.380271459565208 +ER,JAKMIP2,-0.0954424717481711 +ER,PHF12,-0.16036111663603 +ER,PPM1A,-0.466169124946652 +ER,SLC33A1,0.930771039325312 +ER,POLR2J4,-0.336526236372304 +ER,SHMT1,0.242212191599867 +ER,MAGEA10,-1.04604355057982 +ER,POTEC,0.122869002421775 +ER,FEM1A,-0.43075257347216 +ER,GRIN3B,-0.301009346115659 +ER,MRPL32,0.262447585198654 +ER,FAM129C,-0.253053130535125 +ER,ZDHHC3,-0.0833275011527813 +ER,ALPK2,-0.415913572431194 +ER,F11R,-0.240547513463739 +ER,FAM218A,0.219329732180787 +ER,MKKS,-0.196677252548723 +ER,NUDCD2,-0.561127700669919 +ER,SLC6A12,0.209216641448589 +ER,ZNF471,-0.223808874326709 +ER,IL1RAPL1,0.0823938047048307 +ER,CDK20,0.0432203054148416 +ER,HEMK1,-0.470661436966401 +ER,FMO1,0.055529718522685 +ER,ADCY1,-0.101930403779813 +ER,BCDIN3D,0.0112298358999981 +ER,GATA5,-0.149796885847402 +ER,OS9,0.19662672721315 +ER,STEAP2,1.30491534010269 +ER,ZNF529,-0.364186774339679 +ER,PIN1,1.23348639771783 +ER,DCLK1,-0.59636949280264 +ER,TRIP11,0.651333446601422 +ER,C3orf52,0.240030923879572 +ER,C15orf62,0.0861792675431515 +ER,FAM151A,-0.114111970103055 +ER,ZNF530,-0.20292241970432 +ER,H2AFY,0.174890378355721 +ER,GDAP2,-0.504004129015026 +ER,FAM49A,-0.280733892298996 +ER,HELLS,-0.63801713813024 +ER,ZNF782,-0.0254980530855993 +ER,ZNF333,-0.302362906632177 +ER,TMEM106B,1.10116669298666 +ER,ADGRL4,0.985570351241053 +ER,INTU,-0.341908419119236 +ER,MAT1A,-0.517422489118008 +ER,LIPE,-0.0705608826967581 +ER,ADAM8,-0.148796435463 +ER,ZNF157,-0.386984976069219 +ER,TSIX,-0.955035877625129 +ER,CCDC125,0.854036521146936 +ER,FGD4,-0.0918159327927803 +ER,CEP162,-0.464246635048732 +ER,SYT1,0.659145545954016 +ER,KCNG1,-0.0504691163880736 +ER,SEMA3C,1.79161002880119 +ER,MANEA,1.56806299253535 +ER,ABHD13,0.905556530514807 +ER,ARMCX4,1.50058663760822 +ER,STYK1,0.674094801011881 +ER,LYSMD4,0.460030712978509 +ER,ASB14,-0.876113266859881 +ER,FRMD4B,-0.295460612062345 +ER,PVRL4,-0.163819325628047 +ER,FHL2,-0.167997422776818 +ER,TKT,-0.0951869403772082 +ER,FGD6,-0.417813659732155 +ER,RDH11,0.0086914897805797 +ER,GET4,0.167042345351568 +ER,LSM8,1.28519039417287 +ER,DPEP2,-0.539801211402885 +ER,PTCD2,-0.0893441328170635 +ER,PNPT1P1,0.421672058504293 +ER,TDRD5,-0.534204343012349 +ER,SLC25A3,-0.236696637282645 +ER,CD37,0.674787294541706 +ER,ENO1P4,0.52642194161984 +ER,EBLN2,0.866144178106448 +ER,HERC3,-0.626832664038497 +ER,LAMP3,1.4547978098122 +ER,MSS51,-0.0127017421365944 +ER,TMTC2,1.15376797295154 +ER,ASAH2,0.282295816772448 +ER,CCDC88B,-0.803738042200181 +ER,RFX3,-0.524522421098621 +ER,EMC10,0.0804758416019206 +ER,SKP1,0.476649109599732 +ER,KBTBD11,-0.511186044270596 +ER,WIZP1,-0.209321888136542 +ER,ZNF362,-0.277693692115572 +ER,COLCA1,-0.172120745784387 +ER,EXOC5,-0.656859772949283 +ER,YBX2,1.3099945217653 +ER,TAPT1,0.826350946141772 +ER,BNC2,-0.53973452217892 +ER,DISP1,1.07196470882089 +ER,ZKSCAN3,-0.254492222200988 +ER,SDC2,1.0728371428472 +ER,PTK2,1.76868115313662 +ER,SLFN5,-0.599775100660623 +ER,ZNF670,-0.129764637050943 +ER,YME1L1,-0.190910197872876 +ER,RAB27A,-0.456856475644812 +ER,PRPF40B,0.0422592504695895 +ER,ARFIP2,-0.184102581478188 +ER,NECAB1,0.170038004906046 +ER,FRMD5,-0.381765163542133 +ER,XPNPEP1,-0.0650496401966732 +ER,CHDH,-0.321753166153915 +ER,ANOS1,2.10550187411091 +ER,CDK17,-0.386426887257671 +ER,XDH,-0.508360228378805 +ER,WIPF1,-0.381802556911012 +ER,MIB2,0.148985805016077 +ER,WNT5A,1.43703508805949 +ER,HNMT,-0.204430319192857 +ER,STX7,-0.0130483707601956 +ER, SEPT7,-0.22476514200662 +ER,LYRM4,0.0175841487493453 +ER,DNAJB11,0.298714751945472 +ER,RAB21,-0.437040635282109 +ER,RPL10,-0.122215812575304 +ER,ANKLE2,0.590010093275389 +ER,ALDH2,-0.22629372949424 +ER,C22orf34,0.0394387083491399 +ER,RPP25,-0.178805109157699 +ER,SPIB,0.134644211397395 +ER,ZNF554,-0.0797218165109784 +ER,RPS7,0.740891654777419 +ER,ADAM32,0.00947766122791723 +ER,MRPS18C,1.1391598886918 +ER,SCN2A,0.668875604826831 +ER,KANK3,-0.193587102836727 +ER,ZBTB42,-0.214510154406536 +ER,ABCB4,1.4810495133072 +ER,SLC16A7,1.48246565297868 +ER,SH3GLB2,2.1374110067233 +ER,RUFY3,-0.307774071065603 +ER,DPF3,-0.504684492198423 +ER,ZNF844,-0.288483428727121 +ER,INSR,1.62090761060512 +ER,AP5S1,-0.326178982619109 +ER,RASSF9,0.0495657709628443 +ER,UGGT2,2.35275895683573 +ER,CILP2,0.18823859000829 +ER,GIN1,0.204512611788917 +ER,PGBD5,0.035623223496574 +ER,RPS19BP1,0.178364785045386 +ER,SLC25A34,-0.117222008203538 +ER,TOR2A,0.303026684894903 +ER,RPE65,0.0172402375976725 +ER,TMED3,0.444125088383349 +ER,NQO2,-0.109306982647521 +ER,TPD52L2,0.170561967563071 +ER,APBA3,0.117102854986483 +ER,CNOT6L,-0.536383232026352 +ER,ERICD,-0.134526335235348 +ER,ZC3H18,0.97518642500986 +ER,SSR2,0.0651536421576709 +ER,GNAL,-0.174237671160137 +ER,FYB,-0.795058533945458 +ER,DERL2,0.623915551506687 +ER,C14orf166,0.288346692261402 +ER,PCDHA5,1.18205953742865 +ER,DIAPH2,-0.65224977898065 +ER,HS1BP3,0.714408479868802 +ER,CASP10,-0.227499216598076 +ER,PIK3C3,0.375411711645083 +ER,POLL,0.36658474210263 +ER,C17orf59,0.0503460927407031 +ER,WHAMMP2,-0.520821216538929 +ER,ZNF623,-0.364994248958062 +ER,TRIM9,-0.401629434537214 +ER,EGF,0.741138500868349 +ER,KIAA1324,-0.427370744813967 +ER,AGFG1,-0.380946486513769 +ER,WDR31,-0.395926004367129 +ER,COL4A5,1.91231045639746 +ER,RSBN1,-0.36688892576651 +ER,PEX26,-0.54229208963089 +ER,KCNA2,0.183351405234317 +ER,FAM135A,-0.259091874604223 +ER,CHD5,-0.822730671898018 +ER,PKP4P1,-0.569231814551741 +ER,CPEB3,-0.116219975895872 +ER,ADAMTS15,1.41118483574974 +ER,ZFX,-0.370198111011971 +ER,SORL1,2.17709722042755 +ER,KDM4D,-0.0966608839951738 +ER,DGKK,-0.598236265477128 +ER,THAP9,-0.343863556885632 +ER,EFCAB7,-0.354798515392927 +ER,WDR25,-0.32331175795803 +ER,MYO19,-0.0374437448071857 +ER,FBXO22,-0.0425942570757348 +ER,ATP6V1C2,-0.107678922215482 +ER,SNAPC3,-0.192011760253288 +ER,GUCY1B3,-0.531079048377813 +ER,RNPS1,0.707109418693767 +ER,ZNF883,-0.244711912639461 +ER,ZNF616,-0.192208548075132 +ER,PHOSPHO1,-0.0232030020793604 +ER,ST7L,1.18323051639634 +ER,RFFL,-0.161500223932401 +ER,RCOR2,-0.118698702300067 +ER,CDX2,-0.0638415323597839 +ER,PCDHB15,-0.317632306092443 +ER,CCDC15,-0.470023144267872 +ER,LSM11,-0.496026444817696 +ER,LRRC73,-0.337144440397848 +ER,ZNF850,-0.353809167043305 +ER,LZTS1,-0.0101039981242525 +ER,FAM76A,-0.340328379237797 +ER,ADGRE4P,1.11779987663436 +ER,BIN3,0.316218334301974 +ER,GRK4,-0.300138794128993 +ER,KLC3,-0.309242652062353 +ER,NATD1,-0.484005918652276 +ER,CYP20A1,0.489344932660942 +ER,ZCCHC9,-0.15267925718011 +ER,ADAMTS16,-0.0626905222705877 +ER,C7orf60,-0.133086570867512 +ER,PLEKHA3,-0.467450207029061 +ER,PCED1B,-0.2947197513226 +ER,MED12L,-0.460713106170055 +ER,POM121C,0.12900670973704 +ER,WSB1,-0.383022398885196 +ER,C9orf3,-0.135528967795528 +ER,AK9,-0.131730990245675 +ER,ZFP30,-0.40415525475069 +ER,NOS3,1.06715314136532 +ER,WTIP,-0.687990659194286 +ER,SPATA33,0.247953733063776 +ER,SYDE2,-0.430826339809613 +ER,VGLL3,-0.647809524581549 +ER,DNAJC21,-0.387208605086246 +ER,PROSER3,0.00896386436927838 +ER,RPS29,-0.0209515294647926 +ER,EXPH5,-0.236842327284715 +ER,NAA50,-0.432790583622696 +ER,RALY,-0.408756201441745 +ER,TNFRSF13C,-0.0902608771070684 +ER,TLK1P1,-0.286038128400656 +ER,PIAS1,-0.309604295386208 +ER,ADI1,0.454954587174179 +ER,DLEU2,-0.586506662223421 +ER,FLVCR2,0.954649754666995 +ER,DBT,-0.494962934373827 +ER,TDRD3,-0.273432184385472 +ER,STARD9,-0.247841737948408 +ER,CTDSPL2,-0.356431931711622 +ER,C16orf52,0.175567723197477 +ER,FAM126B,-0.33483382743275 +ER,EIF2B4,0.458504366732266 +ER,EIF5,0.304100768954118 +ER,KIAA0391,-0.586093708219584 +ER,GFOD1,-0.426870623459214 +ER,KIAA1715,0.992412856300499 +ER,SMOC1,1.65621015463602 +ER,IGLON5,0.157442179761876 +ER,ZP2,-0.441291053088336 +ER,CDS2,1.13495153734853 +ER,ZNF501,-0.517939866537324 +ER,MOK,0.0657734442859206 +ER,NPEPPS,-0.0195496312922336 +ER,CDADC1,0.0485070306464566 +ER,ASPSCR1,-0.602444185624132 +ER,RNF216P1,0.112185583622111 +ER,CDON,1.44985299095933 +ER,FMO5,-0.13939553686269 +ER,CCDC150P1,0.8160023821024 +ER,ADPRH,-0.433362590195906 +ER,MCPH1,-0.377262465930797 +ER,TLCD2,-0.138583378782335 +ER,SAR1B,-0.368669263673059 +ER,SCYL3,-0.248110610107808 +ER,PCDHGB1,0.42209059239378 +ER,MYH13,-0.373933148440486 +ER,FLNB,0.836327848459664 +ER,WNT3A,1.23558156302716 +ER,NHSL2,-0.323041219254405 +ER,PCDHB9,0.951366664888223 +ER,PDE5A,-0.524137101063129 +ER,E2F5,-0.484556126622065 +ER,ATM,-0.634576484673737 +ER,ZDHHC21,0.597575344596474 +ER,CAMK2D,-0.555413722076062 +ER,C1orf21,-0.338107125722934 +ER,KRT84,0.0789697032349214 +ER,HOXA3,-0.13988747466304 +ER,ZBED9,-0.367605589257811 +ER,PCDHA7,0.920086114614747 +ER,TGIF1,0.152956688683446 +ER,ZNF264,-0.307735193571615 +ER,FGFBP3,0.551868098683898 +ER,L3MBTL2,-0.0708510172113314 +ER,DNAJC18,-0.401971133837088 +ER,GGA1,-0.262900287803175 +ER,USP6,-0.202483232302478 +ER,RWDD2A,-0.181555217442055 +ER,PPIG,-0.48680807163713 +ER,OGG1,0.0984046310332359 +ER,EMILIN3,0.231832513647909 +ER,WEE1,0.5578908429216 +ER,PARVG,0.811607518121963 +ER,SPIRE1,-0.506942883145053 +ER,KCNK3,0.147839089597651 +ER,CEP19,-0.0507164499528029 +ER,RIOK2,-0.292124584371739 +ER,BBS12,-0.355474352576219 +ER,HYAL1,0.531472204903362 +ER,NSUN7,-0.228300711412606 +ER,MAFA,-0.301121780458883 +ER,ANTXR2,0.800419037449797 +ER,GNG11,-0.428210319883932 +ER,BMPR1B,0.788921745691871 +ER,MFSD6,1.02276067608554 +ER,ZNF449,-0.377871632241689 +ER,TKFC,-0.292790964363915 +ER,RLTPR,-0.598600716482225 +ER,RIF1,-0.430439539756724 +ER,COL11A1,2.09231518764041 +ER,KCNN1,-0.0557534488578993 +ER,PSMA2,0.983677692887409 +ER,STAMBP,-0.398053859772363 +ER,FAR2P2,0.665099514019459 +ER,VPS35,-0.571509848594457 +ER,ACER2,1.15699786627905 +ER,ITPKB,-0.52710406619438 +ER,KIAA1841,-0.219936170647681 +ER,LHX5,-0.242224980914988 +ER,BMP7,0.749655026814974 +ER,SEMA6C,0.248419680244752 +ER,DDX3Y,-0.384518128995458 +ER,TMF1,-0.381644420236495 +ER,DDX60,-0.470250468892732 +ER,ACADL,-0.408117912729432 +ER,SYN2,-0.383152602401425 +ER,MTMR14,0.465595639009982 +ER,ZNF234,-0.18998218937307 +ER,CENPP,-0.346630268793396 +ER,SHOX2,0.134459754201086 +ER,GNAQ,-0.452042313601974 +ER,PARVB,-0.49858050975781 +ER,HTRA1,1.76186446906039 +ER,ITGB2,1.6651103556467 +ER,SLC22A15,0.370392066751205 +ER,HOXB3,-0.265139064291778 +ER,SLC9A4,1.40362430319362 +ER,ANKRD18EP,-0.156646516450517 +ER,KIRREL3,0.674938785326937 +ER,MYO5A,-0.646760369130891 +ER,CAMK4,-0.269193175555432 +ER,SALL4P5,0.0535191639942523 +ER,ALG10B,1.68748402940178 +ER,MED22,0.248021992919873 +ER,FAM160B1,-0.356294666848113 +ER,SLC25A46,-0.337119197766612 +ER,ZBTB41,-0.575442792771239 +ER,AOX1,-0.659081415320183 +ER,DICER1,-0.586896656483674 +ER,DDX10P2,-0.524454130911253 +ER,C11orf58,0.722359187724978 +ER,TTC21A,-0.569250353217669 +ER,USB1,-0.0253526658050118 +ER,PML,-0.426214915904188 +ER,FAM20C,1.14233935840765 +ER,ZNF695,-0.333435994528247 +ER,PCDHAC1,1.46965167266553 +ER,RIC8A,-0.0731618576868353 +ER,LPO,0.366550315359832 +ER,PIGA,-0.176410906674369 +ER,PGBD4,-0.232907686179767 +ER,CHADL,-0.483431710582033 +ER,SMPD4P2,-0.500090323565849 +ER,EGLN3,-0.312919652173755 +ER,WHSC1,0.563325710776776 +ER,LRWD1,0.329713307977825 +ER,RGS4,-0.324342070039194 +ER,AP3D1,0.250296321805015 +ER,NOVA1,-0.498265813403271 +ER,ZNF280A,-0.4429533449112 +ER,SYTL5,-0.428520426242144 +ER,SP110,-0.403399066141527 +ER,PCDHB17P,1.71770638216517 +ER,PLEKHN1,-0.526812894425677 +ER,HOMEZ,-0.506652933877776 +ER,EVI2A,0.666073048158912 +ER,SPPL2A,1.76644513918569 +ER,KIAA1467,1.65442016736546 +ER,HKDC1,-0.219399527480718 +ER,ZNF283,-0.585092055954354 +ER,ME2P1,-0.313237765174933 +ER,KIZ,0.557124432307915 +ER,ZNF444,0.37578086994255 +ER,TBX10,0.058996363127397 +ER,ITPR2,0.763170407818828 +ER,ACOT11,-0.238287690046253 +ER,EN2,-0.48072465442142 +ER,PER2,-0.511181998211901 +ER,DDX18,0.538970546133688 +ER,PPP1R16B,-0.515359453954785 +ER,IRAK4,-0.198457459950068 +ER,TAF1L,-0.769111357149595 +ER,SFMBT2,-0.256311150289196 +ER,DNAJC6,-0.272950167081909 +ER,P2RY2,0.104763301613208 +ER,HOXB5,-0.165829620750354 +ER,TGFBR3,1.42510568465915 +ER,DNHD1,-0.104101108930162 +ER,BARX2,-0.473032756818914 +ER,CEP295NL,1.95991788660933 +ER,DHRSX,0.945088751277101 +ER,PGAP1,1.60151669879675 +ER,PFDN6,-0.0180828309700571 +ER,PRX,-0.317142613763027 +ER,ALDH5A1,-0.291557226841093 +ER,SLCO3A1,1.0356013028118 +ER,SP6,-0.285610950233795 +ER,TRAM1L1,1.18239896820872 +ER,ZNF639,-0.437464679335593 +ER,NUDCD3,0.239212490973009 +ER,DST,0.152213931744572 +ER,ZNHIT1,0.0774136960727801 +ER,TCEANC2,-0.58646319039378 +ER,TIAF1,-0.476834392212365 +ER,TMEM168,1.58586645999671 +ER,PRKRIRP2,-0.35925870722185 +ER,FLT4,0.302529398048957 +ER,ENPP4,1.79962751873179 +ER,ELMOD2,1.17543779148962 +ER,CXXC4,-0.367367124654 +ER,ZNF8,-0.460888581960432 +ER,TMEM192,1.0163828298761 +ER,PPFIBP1,-0.44803180898322 +ER,ZNF500,0.162329999362908 +ER,MAPKAPK5,1.00560825453718 +ER,STC1,0.809198593996565 +ER,MSL3,-0.193846052429835 +ER,GTPBP10,-0.598910788621175 +ER,LINS,-0.0136339188368977 +ER,ADCY5,0.574407268282634 +ER,GRAMD1B,0.189324881929581 +ER,QKI,-0.236442996020958 +ER,DYSF,-0.947672527426139 +ER,YBX3,0.441433131188347 +ER,GLTSCR2,0.181216368457026 +ER,FUS,-0.364710270369486 +ER,MTMR9,-0.33409444849968 +ER,SPRY2,-0.224833974596974 +ER,KRT75,-0.489354830683565 +ER,ATG7,-0.269746673892801 +ER,MPHOSPH9,-0.49022493891721 +ER,ZBTB10,-0.618649230346949 +ER,MYO3A,-0.486187098796093 +ER,ZBTB25,-0.341132174543799 +ER,SEMA3G,1.0345744864924 +ER,RCAN2,-0.530057106157197 +ER,PTPN4,-0.517178590413122 +ER,ZNF280C,-0.497348235655093 +ER,EFHC1,0.10952222803134 +ER,FBXL22,-0.378530007502507 +ER,THRB,-0.498228064675961 +ER,GHR,0.395917816874245 +ER,DNAJB7,0.751900410021992 +ER,SERPINB5,-0.330221394378671 +ER,ANKRD32,-0.503383354218102 +ER,PRORSD1P,0.0270425073645689 +ER,ZNF350,-0.246418580252874 +ER,HLCS,-0.205368025946204 +ER,GK5,-0.592522943382826 +ER,TXNIP,-0.114444344922414 +ER,UBN2,-0.456319507017002 +ER,PLEKHH1,-0.374117278437294 +ER,PLB1,-0.104694303183071 +ER,FAM208A,-0.665505441450754 +ER,ZNF680,-0.129927018739148 +ER,PLEKHG2,-0.527074353481922 +ER,CR2,1.86351390963726 +ER,EIF3F,-0.375590626403481 +ER,SLC35G1,-0.132014428849313 +ER,ADCYAP1R1,0.500075930698526 +ER,CYFIP2,-0.412577083718046 +ER,RPL13,-0.392212382808011 +ER,MAB21L3,0.0923785020848924 +ER,KDSR,0.65264026886249 +ER,XPNPEP3,-0.513166955146719 +ER,ADARB1,-0.213617454641773 +ER,ACAP3,0.504642073761811 +ER,CTDP1,-0.321951515110667 +ER,SH3PXD2A,-0.67807265368749 +ER,RASSF4,-0.379488485017713 +ER,BIVM,-0.402029004848309 +ER,PPP2R2D,0.617983852549657 +ER,TMEM184B,0.80313918973757 +ER,RIMS2,-0.346206704109554 +ER,MAPK8IP3,0.176941302705922 +ER,VEGFA,0.137757134715653 +ER,TGM4,-0.287512051724782 +ER,CCDC103,-0.129862650084063 +ER,ZBTB8A,-0.588353781560561 +ER,GRIN2D,0.319407008927423 +ER,ZNF767P,0.0728797234526836 +ER,A4GALT,0.478406452166166 +ER,MN1,-0.425057551325512 +ER,SLIT3,0.448127296246647 +ER,MFI2,0.128926450404461 +ER,LRIG2,1.11298594843633 +ER,COX11,0.0380908432975841 +ER,NMNAT1,-0.449527341926492 +ER,ZNF398,-0.245238977864117 +ER,MEGF10,1.91417085036391 +ER,FBXL3,0.00698623369083804 +ER,PLEKHA6,-0.684476107882749 +ER,ABCG2,0.871190373710995 +ER,RAB33B,-0.263323623798587 +ER,ANKLE1,-0.258902254469759 +ER,PCDHB18P,0.0432525751748841 +ER,SMURF2,-0.468031209094558 +ER,FZD3,1.07815552504144 +ER,PTCH1,0.920194461321427 +ER,RECK,1.72139780807763 +ER,TGFA,0.655778756279905 +ER,CPNE4,-0.515747017260552 +ER,GFI1,-0.18641895216655 +ER,ZNF780B,-0.283596041137578 +ER,PSPN,-0.201117666775143 +ER,PCDHA2,-0.626278717190195 +ER,PAIP2B,-0.162935265092459 +ER,PTCHD4,-0.0219912358954113 +ER,SLC45A4,0.912598620732817 +ER,ZFPM1,-0.207788719418934 +ER,ELP2,-0.716566325422411 +ER,NR0B1,-0.41235059326997 +ER,PRKAA2,-0.442628286422726 +ER,FKBP15,-0.124918078618512 +ER,ZNF416,-0.205967202623276 +ER,RSPH3,-0.413729306997855 +ER,ZNF407,-0.445432074284271 +ER,ATP6V0A2,1.36579832267788 +ER,SLC5A2,1.38594849941469 +ER,CHAD,0.636791348809648 +ER,ABCA7,0.884211418514137 +ER,RC3H2,-0.508364632908513 +ER,EPHX2,-0.413372269599753 +ER,VAPB,-0.550812040653163 +ER,ZNF562,-0.542499462791641 +ER,ARID4A,-0.508689247094659 +ER,CAPN10,0.612380343829832 +ER,LRRC37A16P,-0.0383508629293792 +ER,CLN8,0.809581700306833 +ER,RPS15A,0.479726673611267 +ER,ALS2CL,-0.642834832303867 +ER,SAMD9,-0.66847019170101 +ER,ARHGAP27,-0.366822312486094 +ER,LETM1P2,-0.00935207499842263 +ER,C5orf42,0.211810438009133 +ER,RBM5,0.892417546007382 +ER,STXBP5,-0.548182835054809 +ER,ZNF468,-0.39728694516744 +ER,JPH1,-0.526107380870871 +ER,RASAL2,-0.575667840445318 +ER,RAB7B,0.069986472714525 +ER,PPA1,1.92564665126528 +ER,PHYHIP,-0.225109589418537 +ER,SCO1,-0.08853586320417 +ER,LHX4,-0.148083472185369 +ER,CCDC115,0.595893222437177 +ER,SERF2,-0.209308281075295 +ER,NUAK2,0.436758667177615 +ER,RNF157,-0.563020088729168 +ER,ZNF662,-0.306670698414477 +ER,AGO4,-0.331977663689664 +ER,POU6F1,-0.375564412707824 +ER,UQCRB,-0.274734678620589 +ER,PLA2G4A,-0.56454822906786 +ER,CHRNA5,1.43670855316391 +ER,CLCN5,1.05224443513722 +ER,HPCAL1,0.631763098923175 +ER,CCNB3,-0.645440216062979 +ER,GPR180,1.11082211550929 +ER,SSTR2,0.638297028361009 +ER,RAB11FIP1P1,-0.0994093269898226 +ER,GRSF1,-0.488166541557667 +ER,ZKSCAN2,-0.486985584937193 +ER,ARHGAP18,-0.422551383571595 +ER,MRPS5,0.93442008481064 +ER,ISY1,-0.585306233213434 +ER,ERCC4,-0.593458344622405 +ER,ABTB1,-0.0409727902451237 +ER,SLC4A8,0.214243843399426 +ER,WAC,-0.571572661640276 +ER,ZNF274,0.771151463327924 +ER,ZNF440,-0.212219683274872 +ER,MICAL1,0.0920064729401259 +ER,ZNF280D,-0.399087031452391 +ER,GAS1,0.484271007847608 +ER,NLRP11,0.255469933847268 +ER,ZNF543,-0.186377018069226 +ER,WDR91,-0.161532284379463 +ER,ZNF276,-0.10010865763886 +ER,ALDH3B1,0.0430024418505817 +ER,REXO1L1P,0.366018592854895 +ER,PDZD7,-0.0375124098565292 +ER,EFNA5,0.876822335873341 +ER,TSPAN31,0.951743418349365 +ER,HPS4,0.432097772655011 +ER,WRAP73,0.0351698482833295 +ER,RPL23,0.45844856552382 +ER,RNASEL,-0.429645551814674 +ER,ZNF829,-0.302029992025786 +ER,SPATA5,-0.704187632223521 +ER,TRIOBP,-0.212104645851394 +ER,GRHPR,0.685446007815546 +ER,CUL9,0.336864209175193 +ER,CHRD,1.0351117527216 +ER,NAT16,-0.0232797615457094 +ER,KIAA1919,0.537808149943082 +ER,XRCC3,-0.247872584676222 +ER,MTL5,-0.49293957937679 +ER,MYH16,-0.335222978579486 +ER,CPT1A,-0.150828547964809 +ER,TYRO3P,1.11033810975869 +ER,TRAPPC5,0.050915768331225 +ER,KANSL1L,-0.389497605220921 +ER,PAWR,-0.210055919919292 +ER,PANK2,-0.675014774477239 +ER,SP8,-0.265568047484555 +ER,GVQW1,0.120725291960479 +ER,VSTM4,0.705587937416057 +ER,SLC2A12,1.10591521726156 +ER,ZBTB26,-0.0788287063172988 +ER,ABALON,-0.0854880106050514 +ER,U2AF1,0.0607845174049839 +ER,ARSK,1.36053415978047 +ER,MALT1,-0.458580398629052 +ER,BHLHB9,-0.446453528603655 +ER,ATAD2B,-0.521590768494164 +ER,METTL22,0.490112827640912 +ER,EDN1,1.21349305579453 +ER,TRIM66,-0.401510988443031 +ER,ABTB2,0.0995850412535542 +ER,ERCC6L2,-0.610641653957773 +ER,SPICE1,0.149767747139911 +ER,DNM1,0.333752003567051 +ER,PRSS53,0.557824904294791 +ER,THG1L,-0.426235330985311 +ER,TRIM54,-0.0775768142387718 +ER,KRT82,-0.0277722867363113 +ER,PRICKLE2,-0.409937755263036 +ER,ZNF30,-0.0681640277259841 +ER,N4BP1,-0.43203739041875 +ER,UTS2,0.0595844836312501 +ER,TNRC6B,-0.5803553332666 +ER,OTX1,-0.126168850920561 +ER,PELI1,-0.363425718033269 +ER,ARHGEF40,-0.0198513939367216 +ER,TTPA,-0.385231653888573 +ER,CBR4,-0.214264774299881 +ER,SNX22,-1.8142351589452 +ER,AQP11,0.392143386939919 +ER,PRDM8,-0.1426601429234 +ER,TFPI,-0.0181340441224925 +ER,SMYD2,0.1694992012772 +ER,PTPRJ,1.27177848118015 +ER,CGNL1,-1.02105276714015 +ER,NCR3LG1,-0.421243948162276 +ER,RBM43,-0.336413366316163 +ER,GPR153,0.0781896759163504 +ER,ACTL8,0.160606086689421 +ER,ELOVL6,0.72000339587409 +ER,KITLG,0.0244055999413224 +ER,DPP8,-0.0583984967063804 +ER,SWT1,-0.268999751519529 +ER,FKBP11,-0.677825861898828 +ER,ZNF284,-0.296911911678313 +ER,PDE7A,0.674046925291266 +ER,POU3F3,-0.0123974443706811 +ER,DYNC2H1,-0.58355960902735 +ER,MAP3K5,-0.428369491746514 +ER,ARNT2,-0.636531715175004 +ER,TXNDC16,1.51966472450995 +ER,GNG7,-0.485772755767163 +ER,HPSE,1.86174836471529 +ER,ZBTB49,-0.10982180772933 +ER,PKNOX1,-0.381612344058892 +ER,NLGN3,0.666202687895385 +ER,ADAM23,0.958983643148816 +ER,CENPBD1,-0.180760595096125 +ER,C20orf144,-0.268174192024978 +ER,ZNF789,-0.13586510575404 +ER,MTBP,0.500912768244643 +ER,SMPD4P1,-0.557058616973245 +ER,PXMP4,-0.156556541950939 +ER,TCF4,-0.501034741014026 +ER,C2orf70,0.144651039936848 +ER,PRDM10,-0.53139281320367 +ER,EXOSC9,1.45422113930973 +ER,ANKRD36B,0.0534354290896823 +ER,IFT172,-0.901223339161032 +ER,FUT10,0.317279185844025 +ER,FIZ1,0.309055419785849 +ER,RNF215,0.232336426985296 +ER,PPM1H,-0.268837821014571 +ER,ANXA11,-0.137027700175447 +ER,RPAIN,-0.0567034091504763 +ER,PURG,-0.115593369629497 +ER,CACNG8,0.247360991825637 +ER,PABPC4L,-0.235771245755261 +ER,DLG3,-0.503971634008291 +ER,NAPA,0.0309763645227769 +ER,C14orf132,-0.387890343839553 +ER,GYG2,-0.386232177990973 +ER,HSPBAP1,-0.190530935077829 +ER,PDCD1LG2,0.838592254546652 +ER,APOOL,-0.512431752655017 +ER,SAMD12,-0.635402330414937 +ER,BARD1,-0.382702232029183 +ER,TOM1,-0.0598915102480076 +ER,NHSL1,-0.563689260129117 +ER,RAB3D,-0.02118740138138 +ER,THAP2,0.151117665918289 +ER,PIK3CA,-0.601063260134585 +ER,FANCB,-0.411711544147204 +ER,HDGFRP3,-0.331365823030676 +ER,ERGIC3,0.262616699944276 +ER,ATAD5,-0.557022954380218 +ER,CDKL1,0.472311538232305 +ER,GAK,0.115490712972439 +ER,MBLAC2,-0.486583072939845 +ER,CCR10,-0.193569453944159 +ER,EDA,0.23275176758852 +ER,LTBP3,-0.0948165811180093 +ER,TRIM38,-0.485821829923318 +ER,ANXA8L1,-0.443584569595164 +ER,LMBRD2,1.40557555040582 +ER,NEMF,-0.462224668434159 +ER,EBF3,-0.415492078638697 +ER,FBXO48,-0.489310532789571 +ER,MRPL27,-0.320929688159426 +ER,NDUFA9,-0.2010768475285 +ER,DGCR11,1.02146430300423 +ER,PPIE,0.251882397091878 +ER,CEP104,-0.424952985170114 +ER,AHCYL2,-0.605014068351368 +ER,SNTB2,-0.613486835782181 +ER,C19orf12,-0.334384618417448 +ER,MAP4K2,0.0300451223373949 +ER,MUC4,0.559887949042194 +ER,CHRNE,0.171296321937473 +ER,USP3,-0.453989047015605 +ER,POLR2J3,-0.105826900334165 +ER,PRR36,0.209860439134187 +ER,JAK2,-0.289200870890979 +ER,NAPEPLD,-0.271368553866054 +ER,ALDH6A1,-0.635496648760272 +ER,TRIM27,0.883983418797372 +ER,SIM2,-0.323589267463525 +ER,PHACTR2,-0.592068538159121 +ER,FAM78A,0.00306214738270271 +ER,IRAK2,-0.293437354082629 +ER,C8orf37,-0.387932028188665 +ER,CHD9,-0.67155800535875 +ER,TRABD2B,0.665703798435748 +ER,NHS,-0.404014622139487 +ER,DTNA,-0.578039040562135 +ER,FAF1,0.00871891403152204 +ER,SPECC1,0.306481117398564 +ER,SERBP1,-0.417741337906355 +ER,ZNF426,-0.496848538969603 +ER,MYHAS,-0.622406484069282 +ER,KIF3A,-0.476765194405414 +ER,RPL34,0.667936861553106 +ER,NMNAT2,-0.298130724836595 +ER,ZNF704,-0.720501756473372 +ER,SRRM1P3,-0.457230529270263 +ER,CCDC186,-0.496347882911467 +ER,NLGN4X,1.48929983428777 +ER,SNX5,0.554264060080939 +ER,MAP7D3,0.356987377290587 +ER,RFT1,1.10321043331352 +ER,USP38,-0.403962729354518 +ER,PDE12,-0.308968439215824 +ER,SPATA12,-0.14236319609074 +ER,EIF5A2,-0.315845196113993 +ER,KIAA1468,-0.402422634563813 +ER,DHRS3,0.669618952513694 +ER,EEPD1,-0.166652986953666 +ER,SLC37A4,0.800324383638089 +ER,TMEM198B,-0.0133326733568734 +ER,PARD6B,-0.281912158524083 +ER,KBTBD7,-0.379013072049772 +ER,C17orf67,-0.336328252760681 +ER,NEK8,-0.0970046397263638 +ER,CUL5,-0.494879089192251 +ER,PYROXD2,-0.193958755998328 +ER,CGB7,0.441655560248062 +ER,WDR13,-0.358488657545649 +ER,NUCB2,1.04940495713246 +ER,MEGF9,0.668474595222488 +ER,PRKAB1,0.748142071485519 +ER,IBA57,-0.289976573675679 +ER,ZFP69,-0.33693065468061 +ER,HNRNPD,0.880921340077443 +ER,EPHB3,0.911645674656995 +ER,NDUFS1,-0.640931955724584 +ER,MLK4,-0.419426813197196 +ER,SDK1,-0.118918147578534 +ER,HARS,0.579006748061891 +ER,SYNGR1,0.682387369727854 +ER,TMCC2,-0.293267638662256 +ER,MYO5B,-0.473658420450813 +ER,AP2A2,0.295424487712974 +ER,C7orf31,-0.303315264021164 +ER,PASK,-0.187231497277249 +ER,RAD51D,-0.152124666875959 +ER,ZNRF3,1.2701886318832 +ER,SLC25A42,-0.333159887993391 +ER,KCNK6,-0.119231051554882 +ER,SLC35A3,0.858439679587838 +ER,NPHP3,-0.472203754054366 +ER,NKAP,-0.386446160373496 +ER,FGFR3,0.49647534588455 +ER,TMEM47,1.12903611857127 +ER,RAB4A,-0.283446556656664 +ER,KCND1,0.504119988607795 +ER,POLR3E,0.285775040310501 +ER,DCUN1D3,-0.280566529959822 +ER,PLEKHG4,-0.193675593374873 +ER,SLC6A15,0.808198394639268 +ER,DHRS11,0.133228333122336 +ER,HYPK,-0.0779790827475805 +ER,ATP11B,0.906841313401439 +ER,PGBD2,-0.172618919188752 +ER,FICD,0.833068111034788 +ER,PSEN1,1.43445918924767 +ER,DDX3P3,-0.747839079983414 +ER,PCDHAC2,1.26527190205009 +ER,OSBPL3,-0.358767127316919 +ER,ZNF134,-0.210048381952723 +ER,RAB42,0.103882369203695 +ER,ZNF619,-0.407233407647775 +ER,INADL,-0.507679932608034 +ER,NAP1L5,-0.518935137626309 +ER,PPP1R13B,-0.460819800127834 +ER,ACSL3,1.99851774962601 +ER,ZNF674,-0.309576606263103 +ER,EMBP1,-0.0117833749614677 +ER,ZXDC,-0.0510096697765077 +ER,CBLN3,0.0793616656000341 +ER,DENND5B,-0.567146672176491 +ER,RAB6B,-0.370852980369411 +ER,PPP4R1L,-0.202814915119857 +ER,N4BP2,-0.644085358101281 +ER,GPSM2,-0.484741073025564 +ER,BCYRN1,0.00728867602581796 +ER,CNDP2,-0.282793112736685 +ER,BAZ2B,-0.473941288266985 +ER,RBM18,-0.448274635739934 +ER,FAM169A,-0.430162786405034 +ER,AMOT,-0.602846539932279 +ER,FGF5,0.0409646157137178 +ER,CACTIN,-0.295000379018981 +ER,CDK5RAP1,0.481671224637488 +ER,NAGPA,0.530752361834444 +ER,SSRP1,-0.372579079145413 +ER,GABPB1,-0.104646322921803 +ER,ZBTB3,-0.508396776127052 +ER,ZNF808,-0.519519154435761 +ER,EVI5L,-0.451093709722012 +ER,MRGPRX3,-0.312259825457023 +ER,CSNK1A1L,-0.575785401471933 +ER,CLMP,0.719983544169562 +ER,DDX52,-0.48093613313098 +ER,MYO9A,-0.708111163169772 +ER,DEPDC7,-0.348796496274711 +ER,C1orf226,-0.450727576587229 +ER,RELT,0.0303538082398393 +ER,TRIM7,-0.392564467043055 +ER,DNAL1,-0.353709886744567 +ER,FNBP1P1,-0.359626077447848 +ER,BRAF,-0.558780969369231 +ER,CHST12,0.74637526972929 +ER,FANCF,-0.322510177974428 +ER,AGAP1,-0.643505839836986 +ER,ARAP2,-0.553574574274363 +ER,SNHG15,0.572951942334229 +ER,HGSNAT,0.73680375431121 +ER,ZNF776,-0.342163410894705 +ER,ZNF236,-0.538468379074334 +ER,UBXN2A,-0.55451407612417 +ER,TRANK1,-0.632583224144042 +ER,PAQR3,0.304407543731503 +ER,C2CD2,1.12694100994946 +ER,NCOA7,-0.47659033208163 +ER,LZTFL1,-0.510855058288605 +ER,C12orf76,0.317402208023466 +ER,KCTD12,-0.486705799154906 +ER,ATXN3,0.153748319145402 +ER,SPAG9,-0.132537936967401 +ER,KREMEN1,0.365383530088779 +ER,SLX4IP,-0.448483887217847 +ER,SHROOM3,-0.57232374925115 +ER,C12orf65,0.523490236846941 +ER,AP3S2,-0.386739121894211 +ER,EIF2B2,0.191840484361506 +ER,MYCBP2,0.443397448975293 +ER,SCN4B,0.436182540755545 +ER,SFT2D3,0.57645966080905 +ER,CASD1,0.511015797229603 +ER,CACNA2D4,0.205503639980203 +ER,AES,0.146860016721399 +ER,DDX26B,-0.213459169698309 +ER,BIN1,-0.0722425304223611 +ER,FAM8A1,0.431245331182889 +ER,PLEKHA4,-0.479653992118184 +ER,GALC,1.79628820621111 +ER,ALX3,-0.367139159347123 +ER,TCEB1,0.146921822703256 +ER,HHLA2,0.899492786735339 +ER,TINAGL1,1.28715372460286 +ER,DHTKD1,0.0259225832119516 +ER,LZTS2,0.418712626659359 +ER,NAIP,0.132982094396923 +ER,ESYT2,1.27487769373989 +ER,CYB5R4,0.147611824047428 +ER,C1orf74,-0.219064946218612 +ER,LYRM2,-0.266264170215549 +ER,SIX2,-0.354078343212712 +ER,YPEL2,-0.365143547417709 +ER,ANKEF1,-0.525098546698491 +ER,HTN1,-0.011009685582898 +ER,FAM160B2,-0.374952154203984 +ER,LLPH,0.0452194962271356 +ER,C21orf91,-0.452437247486506 +ER,STON1,-0.488585749131609 +ER,WDR37,-0.304741067008932 +ER,SRPK3,0.329283508719102 +ER,WDFY2,0.399811686371889 +ER,HMBOX1,-0.423700190256514 +ER,SYT2,0.940222508509109 +ER,YIPF4,0.0928589435807887 +ER,SYNE1,-0.33290960520143 +ER,ZBTB46,-0.61719151594874 +ER,LMO4,0.0305290389701503 +ER,NADSYN1,0.244911318287029 +ER,CRELD2,0.523435835445903 +ER,ZHX3,-0.273959485513453 +ER,TBCEL,-0.484107075011839 +ER,NAPG,-0.331702771587115 +ER,TMEM116,-0.0403440853722986 +ER,HTR7P1,0.0875746048144065 +ER,GBP1,-0.554742837259497 +ER,LLGL1,-0.566875497081974 +ER,MYOM3,0.535860644735621 +ER,CYP2J2,1.68502282446716 +ER,C4orf19,-0.289483228063108 +ER,FOXO1,-0.483977846621478 +ER,XKR9,0.626879388468234 +ER,TNFRSF25,0.378403763802809 +ER,TTLL1,-0.189923356192385 +ER,MYO1E,-0.573928100546543 +ER,TRIM2,-0.461786181411546 +ER,PTPRH,-0.162904039674268 +ER,ERN1,0.863974407239738 +ER,FTO,-0.227475815992266 +ER,DNAJC22,0.479900996365971 +ER,FDXACB1,-0.347446442112997 +ER,FOXF1,-0.279560074725454 +ER,ADGRG6,1.75041182001299 +ER,RRP15,-0.711471577726719 +ER,FAM162A,-0.272523264296964 +ER,MAPK8,-0.543400689012603 +ER,SRD5A1,-0.0541989817424444 +ER,TM2D2,0.905489077836584 +ER,PEX2,-0.0926663470611505 +ER,MTMR10,-0.377796525440289 +ER,ENAH,-0.317531457717549 +ER,MIER2,-0.148303922008661 +ER,EMILIN2,0.435181103716824 +ER,LAS1L,0.15610609332877 +ER,PTEN,-0.410324053298983 +ER,SHISA9,1.13885971307829 +ER,MDM4,-0.355247911220408 +ER,MPP7,-0.543566536021002 +ER,TESK2,-0.215799830903654 +ER,TP73,-0.511697008361814 +ER,TTC28,-0.567289957326153 +ER,GLI3,-0.487067663126826 +ER,NEMP2,0.851019865551365 +ER,DYM,-0.278321525342531 +ER,SMPDL3A,0.798283548472796 +ER,C19orf26,0.392467338748458 +ER,DDX50P2,-0.478242132123195 +ER,ANKRD9,-0.228542507264813 +ER,CDS1,0.916080634871673 +ER,DGKZ,0.302810967726387 +ER,PGPEP1,-0.451204189626693 +ER,WNT10A,0.120594742877567 +ER,C20orf194,-0.498735207879732 +ER,DNAJC27,-0.330613356274959 +ER,TBX18,-0.38101512922078 +ER,BTG1,-0.16185314056255 +ER,FBN1,2.78846785404039 +ER,GATA3,-0.230056995769734 +ER,EVI5,-0.6164463307990939 +ER,GPR158,-0.109664118991652 +ER,ATAD3B,-0.19026467012124 +ER,AR,-0.475787549541861 +ER,NUPL1,-0.490657125525678 +ER,CLDN1,1.61543658531961 +ER,PPP1R3C,-0.397305205297963 +ER,ZNF586,-0.22658599596536 +ER,ZNF71,-0.249286026036727 +ER,TPCN2,1.04670628259375 +ER,IGSF9B,0.487600838291348 +ER,EPB41L4A,-0.385647771108244 +ER,ZNF572,-0.216733781719648 +ER,LURAP1,-0.0667142761681126 +ER,NAV3,0.0559449941873213 +ER,OAS1,-0.357598248063536 +ER,CCDC176,-0.206375698313618 +ER,ANO7,-0.342352586168529 +ER,HAPLN1,1.94435524667601 +ER,FAM178A,-0.555292133582718 +ER,SLC9A7,1.41276711486629 +ER,SLC24A1,0.363267067369878 +ER,ZNF81,-0.56946317221368 +ER,MRPS11,-0.30399665177928 +ER,ISM1,0.656862831180484 +ER,GMPPA,0.12444634289365 +ER,GSG1,1.48595991235662 +ER,PPP1R12B,-0.132057142424639 +ER,CPSF2,-0.76272490819611 +ER,EHHADH,-0.387818994966833 +ER,TIPARP,-0.371552500569044 +ER,KDM1A,-0.351669350446989 +ER,ATPAF1,-0.389306866921646 +ER,CEP78,-0.618007193592442 +ER,FAM110B,-0.261158043965973 +ER,RASGEF1C,0.0100615011461095 +ER,DPYD,-0.601360256108858 +ER,DOPEY2,-0.428894745662835 +ER,ZFYVE19,-0.43232823326345 +ER,PAXIP1,-0.0623599506339195 +ER,ICAM3,-0.0940535732234074 +ER,IFIT3,0.323091704542941 +ER,RNF141,-0.45179562785635 +ER,LUCAT1,0.0234342161329643 +ER,FRK,-0.022872299553194 +ER,DGKG,-0.290341659224282 +ER,SOX17,-0.21264576960842 +ER,XKR8,-0.357467748427463 +ER,GPR27,0.639450842635553 +ER,RRN3P3,0.154076334795546 +ER,LMTK3,-0.0518497349107341 +ER,ACSF3,-0.765456882787847 +ER,ADGRA2,0.537032554955861 +ER,AKAP9,1.2737963106873 +ER,C17orf85,-0.45957300008299 +ER,IL1R1,0.11698175256011 +ER,FAAH2,1.00407260177015 +ER,CHIC1,-0.392332324402387 +ER,ZNF92,-0.240513864434516 +ER,METTL14,-0.461924993439254 +ER,STAM2,-0.379312767453068 +ER,BMP2,0.673991153898794 +ER,ZNF706,0.466101255881852 +ER,SLC25A40,-0.27480421859669 +ER,WRAP53,0.126017645400227 +ER,RGAG4,-0.455262771127273 +ER,ZNF165,0.586319202844843 +ER,LRRN2,1.40417583186392 +ER,EPPK1,0.184731593834526 +ER,ZSCAN22,-0.335323688982611 +ER,PCLO,-0.717757181898181 +ER,ZNF37BP,-0.584107338042257 +ER,MYH15,-0.0108159920600002 +ER,UST,0.37386229183075 +ER,TTL,-0.490537515035382 +ER,ARHGAP44,-0.389591823046973 +ER,FBXW8,-0.361378544823781 +ER,PRKACB,-0.502784699746571 +ER,ULBP1,1.48395909094366 +ER,TTC21B,-0.60482940067401 +ER,DOCK9,-0.621981770745695 +ER,ZNF251,-0.247259830891194 +ER,SAP30L,-0.334386228987325 +ER,COMMD2,-0.585738989867025 +ER,MOB4,-0.403691900170711 +ER,ESPL1,0.107888878281515 +ER,SGK3,-0.51136226613591 +ER,PARM1,1.21631234650453 +ER,ARFRP1,-0.161517807614412 +ER,ADAMTSL4,1.43949659105249 +ER,ZNF700,-0.258720731741414 +ER,ZNF37A,-0.724942211691311 +ER,GPR75,-0.549079292368634 +ER,JAG1,1.66798188258877 +ER,FNBP4,0.500541591596951 +ER,FBXL17,-0.48040645687238 +ER,TMEM199,-0.301712954907906 +ER,RNF123,0.0852005218767651 +ER,LYSMD1,-0.383343877483856 +ER,ZNF813,-0.408575272626502 +ER,SGSH,0.104909431112194 +ER,EPHB2,1.47436663999258 +ER,GDPGP1,-0.108127970804227 +ER,C1orf35,-0.252717243635262 +ER,RNF24,0.549279114055606 +ER,SLC30A9,-0.216962377387164 +ER,VAMP1,0.270322833771987 +ER,DNAJC25,0.972388153535409 +ER,ZNF550,-0.14123061973501 +ER,ZNF80,-0.414702093078141 +ER,MAP6D1,-0.32024809726428 +ER,PAOX,-0.345611153103238 +ER,FAM188B,-0.302264265738088 +ER,HSPA8P14,-0.622186875060694 +ER,TIAL1,-0.300879754875621 +ER,ZFAND4,-0.428688414465867 +ER,NAP1L3,-0.68112083103159 +ER,THOC5,-0.642237448950213 +ER,PRSS12,1.01555063106116 +ER,NAGK,0.260501683821068 +ER,SNX1,-0.431176630373865 +ER,TRAF6,-0.261378015052775 +ER,COL8A1,2.51155476731816 +ER,BAIAP3,-0.216557025559121 +ER,ZC3H10,-0.333930948855639 +ER,ACVR2B,0.459531902294966 +ER,ATP10D,1.62450397889257 +ER,ZNF646,-0.548294405757644 +ER,IRGQ,-0.389868056751504 +ER,PCNX,1.16254636189243 +ER,FER,-0.644329776701406 +ER,KIAA1586,-0.332918512307275 +ER,ZSWIM4,-0.110002277265874 +ER,ZFPM2,-0.509145221036311 +ER,ZBED3,-0.447437966229124 +ER,KLHL15,-0.323185911382026 +ER,SH3BGRL2,-0.431340649966609 +ER,RASA2,-0.434008172453809 +ER,SNX29,-0.500549214597024 +ER,RPS14,0.497292064762591 +ER,TMEM55B,0.180820950261291 +ER,MON1B,-0.358430690335043 +ER,GLS,-0.376909003966887 +ER,TLK2,-0.535023693687018 +ER,SPRTN,-0.321249695889396 +ER,TCTE3,0.0998418493678895 +ER,NAA16,-0.25910789479621 +ER,C1orf56,0.584704609380202 +ER,GPR63,0.423822138981666 +ER,GABRA3,0.23048946106736 +ER,USH1C,0.0913390846399557 +ER,FAM215B,-0.792105235482844 +ER,NDUFS8,0.577837406631818 +ER,KIAA2018,-0.694971822623222 +ER,CEP97,-0.541962923383088 +ER,SLC41A3,0.425945367249552 +ER,FAM43A,-0.286526392497973 +ER,TACC3,-0.00932002975841274 +ER,ZNF329,-0.291497283499751 +ER,DUS1L,0.591403607522545 +ER,ZNF212,-0.235822470128461 +ER,PCDHB13,1.26412132206801 +ER,ACBD6,-0.102603592057897 +ER,MBOAT1,1.29562923381564 +ER,SDR42E1,-0.123222316546791 +ER,AGT,0.855564933171082 +ER,DLC1,-0.474996807781021 +ER,WHAMM,-0.365998943986228 +ER,FBXO42,-0.416877694580456 +ER,AMPH,-0.61627769336105 +ER,APBB2,-0.60092534149378 +ER,BRCA2,-0.522997187757128 +ER,THBS4,1.70775346597518 +ER,PIK3AP1,-0.535443012856516 +ER,FUNDC2,-0.037962674294699 +ER,UEVLD,-0.508192092088806 +ER,ARHGAP11B,-0.194449569216512 +ER,VPS37A,-0.25076021227775 +ER,SIVA1,0.0917560490451556 +ER,SNX32,-0.0621380704498185 +ER,ANXA2,1.20290807252109 +ER,DPY19L1P1,-0.0477350244068191 +ER,BAIAP2,0.55312040510277 +ER,CINP,-0.275233211669999 +ER,PROS1,2.11381804991511 +ER,CEP295,-0.14694094723171 +ER,USP49,-0.312871901733011 +ER,MBOAT2,0.730994057166357 +ER,NRDE2,-0.264296003724024 +ER,RNFT2,0.469511123420295 +ER,STK32C,-0.326455710063364 +ER,SYNRG,-0.330139081154229 +ER,PARP15,-0.612774215057655 +ER,CCBE1,0.352341162738574 +ER,RASGRF1,-0.312813803753541 +ER,GPAM,0.870151535901519 +ER,HCN4,1.03693485692733 +ER,SLC12A6,1.07453204145391 +ER,YPEL1,-0.184973272388842 +ER,PDCD6,0.895188068384437 +ER,LPP,-0.845952533938528 +ER,ZNF211,-0.194519749972957 +ER,FUT4,0.449742522541487 +ER,VPS13D,-0.270563237325092 +ER,ANKRD42,-0.4878957790412 +ER,ZNF627,-0.0877142603834489 +ER,HSF2BP,0.161677235743342 +ER,FANCM,-0.265820923074074 +ER,DPY19L4,0.936433864887004 +ER,ELOVL7,1.43598665606015 +ER,RIT1,-0.284861503682106 +ER,CEP290,-0.561952169269421 +ER,TMEM87B,1.38662889523471 +ER,IKZF5,-0.278449870379913 +ER,QRICH2,-0.383631576070083 +ER,PSMD3,-0.701306581540202 +ER,MCM8,-0.586958819265572 +ER,MVB12B,-0.274695935602738 +ER,FZD1,1.12589843241581 +ER,MYO7A,-0.329051043374371 +ER,CACNA2D1,2.07159602294626 +ER,CALM2,0.865184644247788 +ER,ILDR2,1.00758474162717 +ER,DCLRE1C,-0.220581660296529 +ER,RASEF,-0.503446372566737 +ER,PDGFRB,1.71401888508729 +ER,UQCC1,-0.000401721541162352 +ER,AP1B1,0.0246652257533523 +ER,MZF1,0.447769120615423 +ER,FOXC1,-0.300014594131906 +ER,CPSF1P1,-0.531451029350881 +ER,ZSWIM3,-0.21208862042013 +ER,BMS1P1,0.413110366314295 +ER,CNP,-0.56981147719551 +ER,DDX43,-0.365668518814294 +ER,SLC27A3,-0.628459147260459 +ER,ALG12,1.04754111498568 +ER,MMP19,0.951726932186136 +ER,HOOK3,-0.752232058192977 +ER,VSIG10L,-0.28787286772927 +ER,DNM1P41,-0.189878453155476 +ER,CTAGE5,1.17161842575788 +ER,ZNF292,-0.404318569162621 +ER,OGFOD1,-1.21759047926731 +ER,ANGEL2,-0.435664269867949 +ER,DOCK2,-0.669705721802054 +ER,GPR173,-0.100294935813411 +ER,TSHZ1,-0.407836391582405 +ER,PEG10,-0.503713197619738 +ER,DR1,-0.394301578886164 +ER,TMEM180,0.84310594364629 +ER,CPSF6,-0.473200237662305 +ER,ILVBL,0.694915158219868 +ER,LRCH3,-0.521949731142716 +ER,AHSA2,0.441508130651327 +ER,PIGG,0.0649975398185374 +ER,PCDHB2,2.31985137661404 +ER,CECR2,-0.51219382138073 +ER,PUS1,-0.219366336810197 +ER,LAMP1,1.25088164216891 +ER,C3orf62,-0.313910429403914 +ER,NIPAL1,0.739741830440396 +ER,PHLPP1,-0.63216052339611 +ER,MCC,-0.577158589776861 +ER,ARHGEF11,0.725590513237814 +ER,SH2B1,0.0469184228175833 +ER,TLX2,0.000296761665584297 +ER,BICC1,-0.486743712550239 +ER,RPP14,-0.333495945161113 +ER,RANBP20P,-0.481490408543631 +ER,CTSC,0.981596740301192 +ER,G3BP1,-0.469322104862359 +ER,HNRNPA1P54,0.205686010975528 +ER,REL,-0.252413793853083 +ER,DNAJA4,0.654878897431556 +ER,MLH3,-0.436710118884128 +ER,ACTC1,0.126088784622124 +ER,ZDHHC9,1.15372631559623 +ER,CORO2B,-0.400829865436547 +ER,MGAT2,0.947853666014743 +ER,GPR157,0.455763234297584 +ER,DOCK3,-0.221659978550976 +ER,FAM117B,-0.535731758458457 +ER,P3H2,1.42034075003647 +ER,RPS3,-0.448900554277963 +ER,ZNF311,-0.394991693931709 +ER,JMY,-0.454122282302874 +ER,LGI2,0.37367877791065 +ER,SLC41A2,0.942685851556744 +ER,SEMA3E,0.98309430761487 +ER,COMMD4,-0.210695232547034 +ER,CTNNBIP1,-0.21609472070729 +ER,GAN,-0.515796268336745 +ER,DCAF17,-0.334423692915418 +ER,CCDC113,-0.516688523666852 +ER,LCORL,-0.284178948805362 +ER,SYVN1,0.744500211067741 +ER,ABCD4,0.426802341166464 +ER,KRR1,-0.435542723783422 +ER,TMEM19,1.29661312574116 +ER,GRID2,0.778560075241231 +ER,OTUD1,-0.318169168150399 +ER,KIAA0040,0.0892040423679299 +ER,ADPGK,0.590980653037882 +ER,PLEKHA8,-0.568042720322568 +ER,GLTSCR1,-0.335749300721133 +ER,CDK12,-0.639333644796279 +ER,STX11,-0.440875676191905 +ER,USP14,-0.707492217701742 +ER,CDK19,-0.498777263211137 +ER,ZNF652,-0.477606608874868 +ER,ARRDC3,-0.172896458903828 +ER,PCDHB16,1.81057584516617 +ER,WDR26,-0.581726426750884 +ER,E4F1,0.151604657839142 +ER,ENTPD1,0.905922586945807 +ER,ROR2,1.09030373910834 +ER,CSPG5,1.45703100713705 +ER,HNRNPKP3,-0.578391459541613 +ER,MECOM,-0.390534269530825 +ER,TMED8,-0.575927794764043 +ER,EME2,0.142557651353335 +ER,ZNF587,-0.433024769596238 +ER,CCDC50,-0.450409968884932 +ER,SGSM2,0.256695835457182 +ER,CSMD1,-0.404498882474181 +ER,RALGPS2,-0.545238762294745 +ER,RTKN2,-0.508301846546567 +ER,ATP5G1,0.882566235606996 +ER,EGLN2,0.578394994925408 +ER,CPZ,1.30173107295625 +ER,TRAF3IP1,-0.483631257941551 +ER,SCML2,-0.567424031775436 +ER,BEND7,-0.434636586411554 +ER,AP4E1,-0.500325721807823 +ER,SP3P,-0.477074811933444 +ER,METTL15,-0.565398370219354 +ER,CAND1,-0.493774886599573 +ER,RPL36A,0.814732837763775 +ER,SYS1,0.547037039115691 +ER,TMCC1,-0.215655754485643 +ER,STK11,0.21537375054148 +ER,LIG4,-0.427498874548561 +ER,CDK13,-0.444250295577328 +ER,SMAD9,-0.431787806632278 +ER,C12orf50,-0.535350305772371 +ER,RNF135,-0.192003812754677 +ER,NUDT3,-0.446141032642754 +ER,C22orf23,-0.353429987063361 +ER,SEMA4G,0.689350482245352 +ER,PPP3CC,-0.277583195405631 +ER,GEMIN6,-0.314330956502727 +ER,AKT1S1,0.535090490518985 +ER,BAG4,-0.461111397290955 +ER,FLG,0.0288725029234856 +ER,CDK5R1,-0.0792048477754448 +ER,SSX2IP,-0.544354154736887 +ER,ZBTB34,-0.253769616687433 +ER,PRKX,-0.247150810352512 +ER,OCLN,1.68320322183031 +ER,NAA30,0.142787530330131 +ER,ISCU,-0.0318703422063895 +ER,NDUFV3,-0.588634875000453 +ER,ZNF169,-0.285385317328087 +ER,CLDN4,-0.303976656904941 +ER,ZNF784,-0.347178796976938 +ER,CHRNA9,-0.0158175956748867 +ER,WBSCR17,0.544209334395237 +ER,VPS53,-0.455071591742102 +ER,CXCL14,0.975513810116162 +ER,C9orf91,0.435794318205689 +ER,ZNF747,-0.31374924744275 +ER,ZFHX2,-0.3562376314252 +ER,C17orf100,-0.202056723417896 +ER,RASSF2,-0.459384401206376 +ER,NBPF9,0.721613170446401 +ER,ZNF397,-0.0500593604968557 +ER,FAM227B,0.448482789236079 +ER,MRS2,-0.292895449845458 +ER,ZNF587B,-0.418925605497672 +ER,JAK3,-0.187672781826151 +ER,AMMECR1,-0.369157486287489 +ER,ZNF148,-0.483214153593948 +ER,SENP2,-0.320881052693037 +ER,SERTAD4,-0.549286050771625 +ER,FADS3,-0.403016797309191 +ER,CTPS2,-0.52030583448603 +ER,PPAPDC2,0.953438870529302 +ER,FLVCR1,1.39857650064717 +ER,KIF13B,-0.707379024051017 +ER,LIMD2,-0.134225588937765 +ER,PPP2R3A,-0.527851257240607 +ER,PCID2,0.144670065159721 +ER,GSDMB,0.231352795029997 +ER,TASP1,-0.0421403306819438 +ER,ZNF736,-0.412738912471547 +ER,RFX7,-0.505493888656441 +ER,SLC25A37,-0.495092794572395 +ER,EML1,-0.396877244042876 +ER,BTBD9,-0.639437199561838 +ER,MED28,-0.454283676245258 +ER,PAPPA2,0.222040576089666 +ER,CDC40,-0.470600443488828 +ER,PTBP1,1.02735921786937 +ER,GLRB,1.40933401305693 +ER,DDR2,0.401942804278303 +ER,CRLS1,0.190421944806053 +ER,C15orf61,-0.653501607782294 +ER,WDR19,-0.690528398401163 +ER,GDAP1,-0.456126289728967 +ER,CEP68,-0.511354813536555 +ER,SVIP,-0.373382137852448 +ER,LAMTOR3,-0.148809259043008 +ER,ZNF184,-0.258127799439631 +ER,SERAC1,-0.272534782841338 +ER,TRMT13,-0.328812616852802 +ER,RSBN1L,-0.579867612358829 +ER,DCTN1,0.142018280661531 +ER,PLA2G12A,0.0965789967680259 +ER,COL7A1,0.613956198008651 +ER,C15orf52,-0.232760834331052 +ER,GTF2IRD1P1,0.10471569042577 +ER,ZFAT,-0.261939982879746 +ER,UBA7,-0.537565261937399 +ER,LRP8,0.731222772970421 +ER,FAM132B,1.63714375333782 +ER,MAMLD1,-0.455798711695802 +ER,TSPAN33,0.499545699531844 +ER,RGL1,-0.295648591212124 +ER,SLC30A7,1.48721095591212 +ER,ATP11C,1.55550191355312 +ER,ACOT4,-0.36611643903771 +ER,ETNK1,-0.284310502990081 +ER,TMOD1,-0.425857462394603 +ER,ERBB2IP,0.37487112969185 +ER,STMN1,1.12143007437654 +ER,SPAST,0.122154352670643 +ER,THAP6,-0.244843987136918 +ER,COL16A1,1.85346299459029 +ER,SLC35B4,1.11151320474058 +ER,CREB5,-0.497725806400401 +ER,NBEAL1,-0.709795113778643 +ER,ZDHHC24,0.870186594258751 +ER,ZXDA,-0.377593221409033 +ER,MIB1,-0.615985126524488 +ER,SYNJ1,-0.567180606057786 +ER,ZNF516,-0.53728870229986 +ER,GALNT16,0.513466673103376 +ER,BNIP2,-0.452522023168958 +ER,SYT7,0.581181697542804 +ER,FAM171B,1.04106666985479 +ER,STK17B,-0.377989665514719 +ER,ZNF77,-0.265767283823696 +ER,H6PD,1.80372475321012 +ER,UAP1L1,0.111613819112679 +ER,ACOT8,-0.112339207634012 +ER,RPAP2,-0.379779612656106 +ER,SP4,-0.460769970241244 +ER,HHAT,0.449463079633873 +ER,ZKSCAN4,-0.127205770901393 +ER,TTC7A,-0.252688414476469 +ER,GMEB1,-0.445289005152163 +ER,EXOC8,-0.447684759397374 +ER,LOH12CR1,-0.326346414488267 +ER,ZNF215,-0.302856326717899 +ER,DYRK2,-0.431881866246734 +ER,FAM167A,-0.565330614743377 +ER,PLXNB3,0.529546135997963 +ER,DDX60L,-0.601627988169463 +ER,PCF11,-0.323634779054485 +ER,GSPT1,-0.530550686023076 +ER,CFLAR,0.182139741886438 +ER,ZNF227,-0.350732275775565 +ER,USP13,-0.482452563827091 +ER,KIAA1549L,1.46341022343831 +ER,NCOR2,0.760737545041613 +ER,HTR1D,0.214887880128331 +ER,PPAP2B,1.56115851882617 +ER,ATG12,-0.258823623736185 +ER,VAPA,-0.476421224891337 +ER,CDC37L1,-0.367539650329013 +ER,ZBED6,-0.640601213301602 +ER,CSPG4P12,0.327500589296455 +ER,ZNF324B,-0.319474811718058 +ER,DYRK1A,-0.398891551121536 +ER,PIK3C2B,-0.601841737560155 +ER,GOSR2,-0.182266535341022 +ER,PRMT9,-0.484358088089071 +ER,PLAG1,-0.342155355518556 +ER,GID4,-0.291751126365111 +ER,TMEM38B,1.60794179310751 +ER,ATXN1,-0.377163901734296 +ER,TMPPE,1.70174655785567 +ER,SATB2,-0.24813226976916 +ER,PHF2P2,0.138918081320125 +ER,TBC1D12,-0.519678417430559 +ER,LYRM7,-0.57419942292412 +ER,MGAT3,0.417402971167462 +ER,FRS2,-0.341335522481931 +ER,ZNF827,-0.501456218015996 +ER,B3GNT5,0.0111082269363526 +ER,PID1,-0.297511120622409 +ER,NHLRC2,-0.551763779748241 +ER,SLC9A3P2,-0.424947253319782 +ER,KDELC1,1.95335907995142 +ER,PHF10,-0.447541928619272 +ER,MEF2D,-0.188868703677833 +ER,FRAS1,2.04456463826415 +ER,STK38L,-0.511612586756587 +ER,CCDC152,-0.512680842358938 +ER,TBX15,-0.382389254792174 +ER,CAPZA2,-0.483102097718887 +ER,TOM1L2,-0.445293948138545 +ER,ESCO1,-0.481911595690729 +ER,TEKT4,-0.840061997012403 +ER,PC,-0.311190901069563 +ER,NR6A1,0.499249362553978 +ER,RICTOR,-0.569289166669979 +ER,TPT1,-0.0062450610974275 +ER,ZBTB6,-0.361495865931823 +ER,VWA7,0.22828767542254 +ER,FAM172A,-0.335516810484747 +ER,SCLT1,-0.404323707687003 +ER,NT5DC3,-0.508927301108786 +ER,FAM73A,0.821270236956639 +ER,CALM1,-0.550480601292556 +ER,PGM3,-0.416356227744928 +ER,LRRN1,1.73444593320768 +ER,IMMTP1,-0.501607288823674 +ER,SEC14L1P1,-0.606559369191169 +ER,SASH1,-0.5778308870651 +ER,MICALCL,-0.637149807861995 +ER,ATP6V1E2,-0.235572692233172 +ER,LNPEP,1.89467972210681 +ER,CCDC74B,-0.708184471059613 +ER,SNHG17,0.606197931261105 +ER,GPR39,1.39243823994957 +ER,IFNAR2,0.570598495571435 +ER,BBS10,0.342623225766847 +ER,ANAPC11,0.149783186613058 +ER,BUB3,0.0170984886189334 +ER,FAM46A,-0.251513488484082 +ER,GPC6,1.85603079310656 +ER,TMEM74,0.172123396224234 +ER,FBXO28,-0.471608501074706 +ER,CDK5R2,-0.0598849140748771 +ER,GNAO1,-0.610385677302937 +ER,ZNF322,-0.253485623314204 +ER,EPHB6,0.876961495104112 +ER,C1QTNF2,1.03765547332238 +ER,WWP1P1,-0.388817333175405 +ER,XPR1,0.790596441079058 +ER,SH2B2,-0.217521530428484 +ER,CADPS2,-0.634028767433063 +ER,NRIP1,0.0746449612031505 +ER,IL22RA1,0.799606157433117 +ER,ATE1,-0.47368824249625 +ER,EML6,-0.362648955343163 +ER,VAV1,-0.220859058641807 +ER,PDIA3,2.34393612815935 +ER,MAGI3,-0.605970811642428 +ER,LRRC8C,1.36626252149654 +ER,SMG9,-0.390958727473271 +ER,COG8,-0.432164070425913 +ER,CAB39L,-0.160192010143785 +ER,SUPT5H,0.340828103192395 +ER,AHRR,-0.279159646947872 +ER,CDC14B,-0.405799462946544 +ER,AP4M1,-0.424107142853278 +ER,ZNF497,0.142054861321408 +ER,PLEKHA2,-0.513491485525631 +ER,GXYLT2,0.256397430264432 +ER,ZNF271P,-0.0950721860552789 +ER,PARP9,-0.515719525220725 +ER,LNX2,-0.431825785661606 +ER,PGM2L1,-0.632368426957709 +ER,ZNF70,-0.448959861952953 +ER,PDHA1,-0.531894340104271 +ER,ARL1,-0.361356126807336 +ER,CLCN4,1.17871373066871 +ER,BTN3A1,0.873334115977888 +ER,PTPDC1,-0.250920577034049 +ER,IFIH1,-0.475640335461066 +ER,ZDHHC17,0.750346343407927 +ER,ZFP92,0.180917233819613 +ER,TUBGCP4,-0.576381936142678 +ER,NUPR1,-0.265666309336042 +ER,LYN,-0.0816546382970105 +ER,FZD5,0.9362766651097 +ER,DHODH,-0.306029623144611 +ER,EP400NL,-0.24632475789875 +ER,KIN,-0.104573211489066 +ER,WNT7B,-0.56290419170594 +ER,PLEKHM1P,0.499444171563458 +ER,CYTH1,0.559123566080347 +ER,LIN7C,-0.480591961679464 +ER,HPS5,-0.608297022470528 +ER,PTRH2,-0.606050285419982 +ER,MXRA7,0.412033696720602 +ER,PDSS2,-0.395771250710459 +ER,ATP2A2,1.46069278007777 +ER,KIAA1143,-0.424544532901987 +ER,OSBPL8,-0.558523542882467 +ER,CHST11,1.12455530698989 +ER,CHRDL1,1.84005040980819 +ER,SCN5A,1.6024923013714 +ER,ZNF33A,-0.367092013603788 +ER,GPATCH1,-0.230558170493854 +ER,KDM1B,-0.566685304643396 +ER,ZMAT3,-0.479936905596832 +ER,GMIP,-0.374794328902717 +ER,GLIPR1,1.59972665867254 +ER,FAM149B1,0.0243231289560272 +ER,PPARA,-0.50264522501383 +ER,TNIK,-0.557751850600786 +ER,DCAF12L1,-0.614052582157754 +ER,MTURN,-0.464436956139544 +ER,MTX3,-0.606730161327044 +ER,RIMS3,-0.380153532034738 +ER,ZNF860,-0.365432636588739 +ER,PPHLN1,0.2495771036716 +ER,NSUN3,-0.510639826594341 +ER,LTB4R2,-0.330964276963138 +ER,PIK3R1,-0.37144252689163 +ER,WWC1,-0.467253756790302 +ER,INHBE,0.796417060661336 +ER,WHSC1L1,-0.596515640368321 +ER,DENND6A,-0.259866103711055 +ER,MARK1,-0.422591294233309 +ER,UBXN7,-0.531096793569078 +ER,SKIL,-0.459470955972822 +ER,CD274,1.16443248865375 +ER,PARP1P1,-0.542167884328549 +ER,MROH1,-0.0840448780998117 +ER,CCDC120,-0.368561456306965 +ER,ALG9,1.24276566727324 +ER,MMACHC,-0.274844047929739 +ER,TSC22D3,-0.284426355024761 +ER,MTSS1L,-0.374624639262398 +ER,TRIM23,-0.510904430875289 +ER,KLF9,0.102926509248729 +ER,CYP3A5,0.674112342959174 +ER,NAPB,-0.210771918372055 +ER,TADA2B,-0.300085995494159 +ER,COQ4,-0.310713746404602 +ER,CASP8AP2,-0.508693922839777 +ER,VPS41,-0.629454143332065 +ER,ZYG11B,-0.582390942299247 +ER,PPARGC1B,-0.248729364470583 +ER,FAHD2A,-0.354232741029033 +ER,CAPN5,-0.400870530714216 +ER,ZNF764,-0.173283178597502 +ER,CSRP2BP,-0.363231227691818 +ER,UMPS,-0.346052350751119 +ER,GPS1,0.429304642964587 +ER,PFKFB2,-0.579144047621945 +ER,ERGIC2,0.602728208409103 +ER,ZNF614,-0.423912067109178 +ER,DGCR14,-0.227662677910098 +ER,CEP128,-0.347673790225495 +ER,SH3RF2,-0.46046966296655 +ER,GFOD2,-0.220585801007241 +ER,NOS2,-0.256253060711516 +ER,DNAJC16,1.27959464603786 +ER,SULT1B1,0.135537305808181 +ER,RAD1,-0.339126770308797 +ER,CCDC85C,-0.391006559777196 +ER,DDHD2,-0.535525887705557 +ER,TPST2,0.543888670600132 +ER,RTN4,0.348913019137698 +ER,MBTD1,-0.379942816056584 +ER,ANGPTL2,1.50497495875592 +ER,METTL2B,-0.333382374630126 +ER,ZSCAN20,-0.151973670306196 +ER,SEC22C,0.218296835659943 +ER,HIPK3,-0.528250769511065 +ER,CHTOP,0.52993715364822 +ER,MIPOL1,-0.68719061976725 +ER,LARP4P,-0.419940160892324 +ER,USP40,-0.541320626010336 +ER,RHBDD1,0.444810462526125 +ER,SERINC5,1.60810807702763 +ER,DNAJB5,-0.336694210022265 +ER,LGALSL,-0.417392999803185 +ER,ATP5BP1,-0.617018331494658 +ER,FAM84B,-0.367268822654753 +ER,SIPA1L3,-0.526369768478337 +ER,TMEM39A,1.39886712528081 +ER,SRD5A3,0.632265368793182 +ER,OPHN1,-0.695730175932621 +ER,SLC22A4,1.06275039346788 +ER,HOMER1,-0.636693773026265 +ER,ZNF551,-0.247079064083941 +ER,MBD2,-0.00236773955959972 +ER,NFIB,-0.63262085178094 +ER,KAT2B,-0.459553938908659 +ER,ZNF197,-0.384800255068332 +ER,CCSER2,-0.356613978078358 +ER,ASB7,-0.376019087781822 +ER,ZFP90,-0.341068534504022 +ER,GUK1,0.0913893557288358 +ER,CXADR,1.72389632037437 +ER,TMOD3,-0.570834358712848 +ER,ASTN2,1.01248753199815 +ER,ARL10,0.789125584511998 +ER,L2HGDH,-0.516912577701223 +ER,KIAA0141,0.103302566016704 +ER,TCTN2,1.55217867106462 +ER,FTX,-0.328934918842351 +ER,SMEK2,-0.400006716257898 +ER,ZNF605,-0.368979490190848 +ER,GTF2A1,-0.54614067253649 +ER,MOCS3,-0.371359100242241 +ER,RPS6KA3,-0.749051731173676 +ER,LANCL2,-0.468338793528127 +ER,GTF2H5,-0.557850749987046 +ER,CPT2,-0.114132306440011 +ER,SLC9A3,0.0878801655664414 +ER,FOXO4,-0.472255773122224 +ER,SLC37A2,0.347199394934121 +ER,CECR7,-0.454622935914377 +ER,IPO5,-0.716752728283114 +ER,SOX4,-0.156151027177237 +ER,RAP2A,-0.38981454936421 +ER,FAM60A,0.287966402170393 +ER,ZRANB1,-0.321210814982978 +ER,EVC,0.0806008675280544 +ER,WWTR1,-0.462664567739284 +ER,ADAM10,1.93638363304688 +ER,MYH11,-0.296462901550391 +ER,RBM12B,-0.216128724352529 +ER,KIF26A,-0.720479025097738 +ER,HK2P1,-0.645693310328186 +ER,HIPK2,-0.777696476613873 +ER,POFUT2,-0.252376427192681 +ER,POU2F1,-0.63803183092737 +ER,COL4A3BP,-0.475165607589056 +ER,TRIP12,-0.599571116033696 +ER,FAM199X,-0.506791940273618 +ER,RPAP3,-0.696914986369035 +ER,SFSWAP,0.198040625537775 +ER,FAM43B,-0.54316676331125 +ER,KANK1,-0.0813622529417185 +ER,PRSS54,-0.975248897456254 +ER,MPST,0.630467574439014 +ER,KIF13A,-0.64054680330899 +ER,APOL6,0.218247159849348 +ER,NPTXR,1.54429399130477 +ER,TCHP,-0.0819204394218536 +ER,C3orf58,1.56419657064999 +ER,ZNF343,-0.350607619545664 +ER,S1PR2,0.421819454740654 +ER,JMJD6,-0.538499888906027 +ER,ZSCAN29,-0.449962505654182 +ER,CCP110,-0.470137208036489 +ER,OFD1,-0.38347328882192 +ER,MZT2A,0.222265131950546 +ER,AIF1L,-0.284527142587552 +ER,UBE2D4,-0.334481207639395 +ER,SLC35F3,0.643655588895814 +ER,RPL32P3,0.569270945651383 +ER,NRP1,2.01559434279685 +ER,CHM,-0.553148809665718 +ER,NOM1,-0.562393307019998 +ER,FAAP20,-0.124934996626399 +ER,TMEM120B,0.596359249119431 +ER,TBC1D8,-0.37130443086228 +ER,ZBTB43,-0.275268161282787 +ER,FAM161B,-0.422956795145132 +ER,SORBS1,-0.465910073341092 +ER,CBLL1,-0.307420380409981 +ER,SLC7A11,1.3001684345499 +ER,C5orf66,-0.121421761439415 +ER,SNRK,-0.408417234503706 +ER,C12orf43,-0.0763296135480931 +ER,SDE2,-0.421618058635783 +ER,RNF219,-0.413662453910964 +ER,SMTN,0.522766843327619 +ER,FAM160A1,-0.402826730591715 +ER,ARL4A,-0.353726043280136 +ER,HSP90AB6P,-0.821427315138788 +ER,MKRN3,-0.150954057245075 +ER,UBR1,-0.754605306752447 +ER,PNPLA8,-0.268479694748402 +ER,MAP3K10,-0.270893288795724 +ER,ZCCHC24,-0.409521593287477 +ER,LRRC8B,0.59714707263304 +ER,THSD7B,1.24174205491338 +ER,RMND5B,-0.448956455088531 +ER,TMEM63C,1.06976078216889 +ER,NLE1,-0.317129823961574 +ER,HSD17B1,0.596454646375584 +ER,TTC3P1,-0.634847861269247 +ER,MAN2A1,1.94064295684716 +ER,FLYWCH1,-0.393531766828871 +ER,CLUHP3,-0.0574006287119202 +ER,ST6GAL1,0.748150650598409 +ER,CWF19L2,-0.469771696915813 +ER,UBE2V2,-0.432592374045639 +ER,EMG1,-0.304769704319076 +ER,ETFB,-0.176696106952254 +ER,F8,-0.446305531529702 +ER,DDX19B,-0.418381191633959 +ER,SNX33,-0.386081716704709 +ER,GEN1,-0.397118366154503 +ER,EEF2K,-0.202547957344212 +ER,TMEM184C,0.735241776811691 +ER,MMAB,-0.365433178599441 +ER,GIPC3,-0.350300557345219 +ER,KLF7,-0.378753163952946 +ER,HERC6,-0.589356732805038 +ER,DNAJB9,1.34099544122209 +ER,ZSCAN12,-0.163215799873964 +ER,FAM122A,-0.378964738350867 +ER,TVP23A,0.744321527036274 +ER,DBNL,-0.491238994158415 +ER,ZNF628,-0.340992433743906 +ER,TRMT1L,-0.560893952472251 +ER,TMEM56,0.872513929657596 +ER,SMNDC1,-0.57880091981533 +ER,GALNT15,0.379099675469647 +ER,MCOLN2,1.23600102193035 +ER,SLA2,0.0836744670280339 +ER,CASP8,-0.31466576631261 +ER,KSR1,-0.557934657088147 +ER,NIPA1,0.604857174546502 +ER,NFAT5,-0.607771910244221 +ER,THOP1,-0.0546877644967523 +ER,TMTC3,2.0418073812932 +ER,OTUD4P1,-0.562157566609369 +ER,RAPGEFL1,-0.510697791383054 +ER,KRTCAP2,0.677553679745191 +ER,PIGK,2.10335800819728 +ER,FRS3,-0.151158412412041 +ER,RCOR1,-0.452363182754807 +ER,PEX6,0.67031105468611 +ER,RBM33,-0.422527254228782 +ER,RASD2,-0.0957717095933207 +ER,TPMT,-0.378846837043639 +ER,MTHFR,-0.357595804572458 +ER,LUC7L3,0.101840657111492 +ER,ANKRD49,-0.180456577768244 +ER,OSBPL10,-0.432159115232942 +ER,STYX,-0.392472282563589 +ER,RABGGTB,0.747382342116152 +ER,NEK10,-0.251882890253978 +ER,BLACAT1,0.0545735169853687 +ER,UPF3A,0.00796610969223443 +ER,IPMK,-0.514375016328747 +ER,MAPK1IP1L,-0.540298562728891 +ER,ZNF778,-0.0915764959741067 +ER,VPS13C,0.175910227939471 +ER,MAGEE1,-0.631886282707862 +ER,GPC4,2.3092399608563 +ER,DTX4,-0.520574886385051 +ER,ZNF480,-0.413274793032279 +ER,COG3,-0.409035950482817 +ER,PKD2,1.10774248475263 +ER,TIA1,-0.38205258592861 +ER,CALCOCO2,-0.533709788178949 +ER,NLN,-0.628283653021944 +ER,CA13,-0.286966393173771 +ER,SPRED1,-0.493405752147394 +ER,KIF5C,-0.000852001833037514 +ER,SEC22A,0.320165465131686 +ER,ZNF365,-0.492991403090583 +ER,ACTR3,0.841195309701536 +ER,ARHGAP31,-0.531844891922706 +ER,GREB1,-0.366459569841857 +ER,KRBOX4,-0.26923103586842 +ER,SCAF11,-0.715923244725588 +ER,KIAA0355,-0.465539902603772 +ER,ELK4,-0.509665202004497 +ER,GMCL1,-0.275784078886079 +ER,CBFA2T2,-0.422658254166481 +ER,TIGD7,-0.335295534641705 +ER,HELQ,-0.35358689599599 +ER,RDH10,0.828425299172227 +ER,SNRNP48,-0.469379543018183 +ER,SLC35B3,0.286303233244265 +ER,TMX4,1.17554824948461 +ER,ARSB,1.34293105333046 +ER,IQSEC2,-0.277070119348636 +ER,MAN2B2,1.3213154422031 +ER,PRKCE,-0.505873628625386 +ER,INO80D,-0.505601996062953 +ER,BPGM,-0.293174994492338 +ER,ICE2,-0.372795111747178 +ER,DMXL1,-0.66086728615649 +ER,TIGD5,-0.0972821590348021 +ER,RAPH1,-0.613448170790514 +ER,KIAA1033,-0.582805503538245 +ER,ALKBH8,-0.478612246659682 +ER,C16orf72,-0.584066624516956 +ER,ZNF618,-0.617646584915984 +ER,CCSAP,-0.417909414261528 +ER,VASH1,-0.664583948741086 +ER,LTB4R,-0.0143380425075013 +ER,ARID3A,-0.448456439879508 +ER,KIAA1211,-0.502583480932993 +ER,GP6,0.532371105611659 +ER,CPPED1,-0.537631323575154 +ER,SLC7A6,1.23707736926708 +ER,METRN,-0.304614029206945 +ER,HECTD2,-0.438600563840761 +ER,ACOX1,-0.70074059242409 +ER,ZNF749,-0.188719396009728 +ER,KIAA1549,1.31358245937382 +ER,ADCY9,1.08413346248302 +ER,FIG4,-0.621474538191229 +ER,DCHS1,2.03181498493251 +ER,ZNF438,-0.324810964462448 +ER,EEA1,0.426031341729215 +ER,SEC63,1.1978166084212 +ER,IGDCC4,0.788675172915527 +ER,FNIP2,-0.405236927758399 +ER,ZEB1,-0.731004621136082 +ER,UPP1,0.206995804766174 +ER,PAN3,-0.433611274902957 +ER,ZNF451,-0.541763235106587 +ER,RFXAP,-0.320063733509636 +ER,EPPIN,-0.544924525879404 +ER,HUNK,-0.553049572110903 +ER,FRMD4A,-0.469277193113711 +ER,PTER,-0.510216502176616 +ER,NHLRC3,1.06256619522493 +ER,PARP4P2,-0.745602784959282 +ER,ITGB1BP1,0.1463208719784 +ER,C8orf46,-0.277362320301085 +ER,WNK4,-0.473175977311135 +ER,DPY19L2P2,-0.335706019049599 +ER,BRWD3,-0.644074854550974 +ER,SSH2,-0.485084092176127 +ER,NSUN4,-0.28319639290184 +ER,FAM105A,1.13099411240462 +ER,THRAP3P1,-0.688899351335584 +ER,CCDC25,-0.4112055359637 +ER,METTL21B,-0.411187513156667 +ER,ZNF561,-0.469798328206774 +ER,SAMD10,-0.336608444831633 +ER,PTAR1,-0.432978179443272 +ER,C1GALT1,0.719288834964864 +ER,KIAA1462,-0.630375927615163 +ER,RAD50,-0.736348417154021 +ER,MEF2A,-0.502114958987618 +ER,TRIM33,-0.542913903144301 +ER,SDF4,-0.00767022970785758 +ER,OPLAH,-0.610991503389299 +ER,DNAJC3,1.67785740621736 +ER,ARMCX5,-0.394457447892539 +ER,ZBTB21,-0.41949506285896 +ER,MIA3,2.11355725103531 +ER,PURA,-0.374476916104486 +ER,ABCD1,-0.0525225692270965 +ER,DOCK10,-0.526943877802448 +ER,PNMA2,-0.494334710350078 +ER,INO80E,0.0115867807852043 +ER,QRFPR,1.17435875688995 +ER,XRCC6P4,-0.58857917166726 +ER,TAF1D,0.638088533820144 +ER,ASAP2,-0.488679448069854 +ER,TBC1D14,-0.422481268990552 +ER,MIER1,-0.231779920989412 +ER,DIXDC1,-0.601511763650243 +ER,ARRDC1,0.206401849853603 +ER,PLEKHF2,-0.368645624449433 +ER,ARFGEF3,-0.867176092194101 +ER,KIAA0930,-0.419535818406518 +ER,SLC16A2,1.39338691180497 +ER,PITPNM2,-0.332438210838804 +ER,C18orf25,-0.434761433277923 +ER,SPTY2D1,-0.494104418378425 +ER,ABHD15,0.89081593878062 +ER,MCM5,-0.0483867075096978 +ER,PDLIM5,-0.613058082420541 +ER,ANKRD50,-0.399550226493336 +ER,KLHL42,-0.451265656873709 +ER,ICOSLG,0.725217656839258 +ER,C2orf49,-0.335827912758144 +ER,CX3CL1,1.55487642709907 +ER,C2CD3,-0.607584383526635 +ER,ALOXE3,-0.328474886278057 +ER,PLEKHM3,-0.382477714879302 +ER,RNGTT,-0.576010359466895 +ER,PI4KAP2,0.431328068028724 +ER,PPP1R2,-0.452873493615507 +ER,CXorf38,-0.435687047085832 +ER,ATXN7,-0.472666203364179 +ER,DDX58,-0.614629282988787 +ER,TRMU,-0.526872981216924 +ER,TPTEP1,-0.463538186612312 +ER,CHRNA4,0.0998918262979351 +ER,ATXN7L2,-0.00811862911405467 +ER,ACAD11,-0.255650655948373 +ER,B3GALT6,0.540633070833665 +ER,SLU7,-0.436239155001643 +ER,MTA3,-0.461647533548574 +ER,OSBPL7,-0.228154889206438 +ER,RAE1,0.206689115835325 +ER,C3orf17,-0.210954295084212 +ER,MAP3K1,-0.37589262286537 +ER,CYB5B,-0.348444860544673 +ER,ATAD3C,0.0756199876162172 +ER,PLEKHG3,-0.336489700146515 +ER,IFT122,-0.294915032722492 +ER,CNST,-0.116825466874257 +ER,CCDC69,-0.179807988083272 +ER,VTI1A,-0.333154107622729 +ER,SOCS4,-0.341511745902882 +ER,ABCC9,0.228628971630923 +ER,TMEM8B,0.0724652797359018 +ER,PTPRG,1.74832908085466 +ER,LATS1,-0.471826909773636 +ER,FBXW2,-0.518651724771318 +ER,SIX4,-0.346582853023713 +ER,VSIG10,0.562870708473067 +ER,THNSL1,-0.318361953778017 +ER,DUSP10,-0.385804727881443 +ER,UBE2K,-0.393072688340224 +ER,HIVEP3,-0.443593642166909 +ER,FDX1,-0.271576015689683 +ER,B3GNT9,-0.0284814530040515 +ER,TMEM92,0.440960594743379 +ER,NLRX1,0.197484609452444 +ER,NAV2,0.151416030335515 +ER,SVILP1,-0.453057486205502 +ER,APH1B,1.26286913259737 +ER,KIF4B,-0.57192769796285 +ER,RAB36,-0.370349032904744 +ER,MAP3K12,0.180988509530736 +ER,SYNPO,-0.399584968679001 +ER,RAB11A,-0.440300443749416 +ER,SLC22A20,0.115048432013356 +ER,SNX27,-0.618052663179873 +ER,CROCCP2,-0.109903612530751 +ER,SGMS2,1.10653051784949 +ER,C19orf44,-0.283908250151644 +ER,BTNL9,-0.178638970344227 +ER,FOXN3,-0.56178402242278 +ER,SHOC2,-0.469166291432844 +ER,SPATA5L1,-0.562734707591028 +ER,C11orf72,0.179840690802151 +ER,RALGAPA2,-0.463056000553331 +ER,SECISBP2L,-0.571351232031176 +ER,RNPC3,-0.305475504294594 +ER,GAS2L3,-0.301338119500191 +ER,LOX,1.63681783708427 +ER,TUBGCP5,-0.475738423061729 +ER,SALL2,-0.569891769738648 +ER,PAICS,-0.445153697407088 +ER,ARHGAP32,-0.53643378847533 +ER,PCDHA6,1.48846370485102 +ER,KHNYN,-0.542605672887953 +ER,ACAP2,-0.603591519292947 +ER,LARP1B,-0.414433711680498 +ER,CCDC14,0.648083505468516 +ER,NUDT19,-0.415387150660195 +ER,TBC1D4,-0.548625775842633 +ER,CORO2A,-0.483297769428007 +ER,CDC42BPG,-0.844285544435484 +ER,SLC17A5,1.09946361459202 +ER,OGFR,0.275889862516241 +ER,SSH1,-0.572727254589486 +ER,WDR73,-0.230652031559331 +ER,ZFHX3,-0.644209414372628 +ER,TMSB4Y,-0.68447745659714 +ER,TRPA1,1.07042687736905 +ER,INSIG2,0.821040381953771 +ER,TSPAN17,-0.0248321819383818 +ER,PLA2G6,-0.175926985744102 +ER,PILRB,0.500636496810527 +ER,HOXC11,-0.134719179177762 +ER,OTOGL,0.327749041865427 +ER,ZBTB18,-0.353571254759217 +ER,STX1B,-0.607942259947273 +ER,HIC2,-0.267671526498168 +ER,TRPM7,0.444836390870808 +ER,FAM109A,-0.333545964832959 +ER,EDEM3,1.4810457061559 +ER,C2orf42,-0.319901273352754 +ER,TRIM62,-0.354076346837361 +ER,CCDC73,0.315349026099389 +ER,TMEM229B,0.364426094161933 +ER,OGFRL1,-0.384339895424152 +ER,TEF,-0.266431844558077 +ER,PGS1,0.0373179460670963 +ER,BMPR1A,0.726580410209136 +ER,ANO8,0.962488716664419 +ER,MAPK12,0.239630208704051 +ER,EPB41L1,-0.541269754596849 +ER,ZBTB33,-0.519580528515781 +ER,TECPR1,-0.423210053288928 +ER,TMEM37,0.798022347945381 +ER,CRYBG3,0.342246928448178 +ER,NUDT16,-0.791856924735571 +ER,LARP4B,-0.489382157978786 +ER,ZNF653,-0.39162696527476 +ER, MARCH6,1.56645591417773 +ER,RBM25,0.893004209714173 +ER,SFPQ,0.209609349227852 +ER,C19orf68,-0.784150354258011 +ER,C22orf39,-0.354512578841934 +ER,PBRM1,-0.654960658287388 +ER,CDAN1,-0.3786708850401 +ER,HIST1H2AG,-0.448608830837934 +ER,HNRNPL,1.34261223837028 +ER,LRRC16A,-0.688896169649899 +ER,RER1,0.818672810241387 +ER,ZNF319,-0.360360889034563 +ER,ZNRF2,-0.41885314986897 +ER,MCUR1,-0.399999346811986 +ER,EPB41L4B,-0.408911201600739 +ER,C15orf40,0.0630598820349414 +ER,USP18,-0.193551841265883 +ER,KLHDC10,-0.466113929278163 +ER,SIX1,-0.373270517149559 +ER,FBXO38,-0.550218593748274 +ER,HCG11,-0.565762198828277 +ER,RTN3,0.310145165483884 +ER,SASS6,-0.484470744347112 +ER,SLC1A3,1.52264182748352 +ER, SEPT3,-0.412934852246246 +ER,ZNF462,-0.570073096248451 +ER,SCP2,-0.235769934293428 +ER,LRRC37A4P,-0.197938301938176 +ER,ZNF513,-0.0214365823747139 +ER,KLHL20,-0.519265816700997 +ER,ZNF770,0.326869121194194 +ER,INPP5F,-0.591339157485317 +ER,HNRNPDL,-0.463023655075269 +ER,RAB3GAP2,-0.491286760982473 +ER,IER5L,-0.331994517073687 +ER,RPRD1A,-0.445657881729525 +ER,TRIM68,-0.440502500020717 +ER,RC3H1,-0.507652228448992 +ER,DNTTIP2,-0.283863082631152 +ER,ATP2B1,1.68433613193234 +ER,NYNRIN,0.0155586110339152 +ER,SPATA2L,-0.431024611104157 +ER,TNFAIP3,-0.328351272869865 +ER,UCN2,0.165949377097149 +ER,VMA21,-0.0819238549956191 +ER,AGAP2,-0.462034242150059 +ER,HINT3,-0.299185977412763 +ER,N4BP3,-0.0314454910232379 +ER,GLP2R,0.368332676606659 +ER,GPAT2,0.189454651603875 +ER,KIAA1147,-0.506595723585478 +ER,PES1P2,-0.608434985348144 +ER,TET2,-0.458932569942651 +ER,FNIP1,-0.033697181367331 +ER,MYPOP,-0.249711654213161 +ER,CHST6,0.934194087606716 +ER,SLC35C2,0.749121592187566 +ER,LRBA,-0.869015089865965 +ER,ELOVL4,1.50061816778498 +ER,SLC44A1,1.5954297775582 +ER,SEC11A,0.757792665316795 +ER,FKBP14,1.71339901133481 +ER,SYNJ2BP,-0.666906977738396 +ER,YIPF6,0.718396107202474 +ER,NARF,-0.435465479097932 +ER,HABP4,-0.361895616799201 +ER,SAYSD1,-0.104351424331369 +ER,MED9,0.315062548560028 +ER,KIF21B,-0.408967305598233 +ER,IGFBP5,1.11093750942802 +ER,SEC23IP,-0.605179043391774 +ER,SPRN,-0.149912003367513 +ER,KRT34,-0.421274258778524 +ER,RILPL2,-0.389320613955017 +ER,FAM217B,-0.524413246175116 +ER,TNKS,-0.588306213872268 +ER,ZNF354A,-0.203402217478096 +ER,SFT2D2,0.731950973803638 +ER,WDR12,-0.653286402687746 +ER,DOCK5,-0.597077104240621 +ER,KLHL36,-0.513847532798194 +ER,CAPN7,-0.561239413537069 +ER,SDK2,1.52631938636397 +ER,BNIP3,-0.14018327478814 +ER,GNAZ,-0.285991817745794 +ER,ARID5B,-0.379367985713006 +ER,SLC35D1,0.886357323214541 +ER,CD3EAP,-0.499438494555288 +ER,FAM118A,-0.160323196863299 +ER,AMDHD2,-0.495748600808095 +ER,PEX12,0.00190331139091621 +ER,UBL3,-0.464380870581382 +ER,AHNAK2,-0.575022748008374 +ER,FRAT2,-0.31885676547357 +ER,BHLHE41,-0.29850616151585 +ER,ZXDB,-0.38397318588983 +ER,ARID3B,-0.381826882126182 +ER,FBXO33,-0.510144804312719 +ER,EIF2AK2,-0.70995573298826 +ER,N6AMT1,-0.251712910564326 +ER,GMPS,-0.602667269220446 +ER,PSMB2,-0.546682055513846 +ER,ZNF248,-0.399439602130113 +ER,NIPAL4,0.70103397557624 +ER,MAD2L1,-0.453650245234902 +ER,SORD,-0.733481744734068 +ER,CPD,2.40225843051074 +ER,HCN2,0.300389040074965 +ER,MOCOS,-0.601294844324511 +ER,ZNF280B,-0.398544108855339 +ER,HM13,1.00170355841881 +ER,TLR6,0.868475534766007 +ER,MPLKIP,-0.476008064482921 +ER,TP53BP1,-0.173069107228779 +ER,WDR47,-0.50198208410025 +ER,SH3RF1,-0.416528836866649 +ER,EMP1,1.47347809626766 +ER,SCARB1,0.861561034463296 +ER,BEND3,-0.523711791483574 +ER,EHD3,-0.444623778005322 +ER,LRRC3,1.19586788693461 +ER,GATA4,-0.361653897998281 +ER,CELSR3,1.66977203785208 +ER,HDAC7,-0.406136990294152 +ER,NOVA2,-0.619692515906496 +ER,RAPGEF6,-0.294784109999702 +ER,MBTPS2,1.69894985221513 +ER,ZNF488,-0.255752640207257 +ER,PDCD2,-0.367429650302534 +ER,SPOCK1,1.00638103978336 +ER,SNX30,-0.629736962560078 +ER,GOLGA5,-0.482095440924716 +ER,LRIG3,0.305892107369618 +ER,CARD6,-0.427901290623761 +ER,TAF8,-0.387467380031358 +ER,BRI3,-0.376908257025787 +ER,RASSF5,-0.248303239144817 +ER,ZNF252P,-0.479507816419201 +ER,SEC62,0.992471562614408 +ER,ARL4D,-0.313384725973451 +ER,LARP4,-0.484581651041945 +ER,ARL5B,-0.478214828502034 +ER,STRIP2,-0.391875729877905 +ER,STIM1,1.46844397260383 +ER,ACSBG1,-0.377182132412122 +ER,PABPC1P2,-0.281946505843477 +ER,LARP6,-0.375449341782504 +ER,TANGO6,-0.440863003083718 +ER,HADHAP1,-0.525627382693073 +ER,LRCH1,-0.51592299900064 +ER,JRKL,-0.410405414153007 +ER,AGPAT4,0.923949446228843 +ER,ADRBK2,-0.532981830406387 +ER,POLR3G,-0.524216116932914 +ER,FOXD2,-0.309114001678551 +ER,ZNF267,-0.352873061246659 +ER,MYSM1,-0.361078173747913 +ER,FBXO46,-0.273966152570717 +ER,FMNL3,-0.476071014693207 +ER,EIF4E,-0.36086957459 +ER,PCGF3,-0.34993388370059 +ER,THEM6,1.14504356923591 +ER,KDELC2,1.30425394802977 +ER,FZD8,1.22949713982205 +ER,USP37,-0.519256957462852 +ER,CCDC127,0.161168678004971 +ER,SLC19A2,1.22148761911575 +ER,ZNF354C,-0.449679502754772 +ER,FNDC3B,-0.554528602060692 +ER,AMIGO1,1.07339036110638 +ER,HSP90AB7P,-0.612099569406904 +ER,MAP3K9,-0.329426467099245 +ER,NOL12,-0.0358621438054409 +ER,TMEM242,0.374818726944595 +ER,CACUL1,-0.453073401674986 +ER,HECA,-0.375607670379867 +ER,PIK3IP1,0.766798456330821 +ER,LCOR,-0.48963761358616 +ER,PIGM,1.84951434827068 +ER,PEX13,-0.294469858045503 +ER,F2RL2,1.4497459383282 +ER,TIGD1,-0.299738151575789 +ER,SAGE1,-0.495725120576533 +ER,OLIG2,-0.108287195098734 +ER,TSC22D2,0.582795518189724 +ER,KIAA0430,-0.661532162928474 +ER,GLG1,2.30941026862899 +ER,LRP6,1.46599443960471 +ER,FAM210A,-0.434489025616384 +ER,USP31,-0.612919949593007 +ER,RAB39B,0.00929415166496098 +ER,MINA,-0.508363008997315 +ER,NUDT5,-0.224919052425695 +ER,TULP4,-0.767621817814595 +ER,WNT3,-0.278766251928164 +ER,TIFA,-0.436157893008041 +ER,TMEM262,0.306420763177026 +ER,MPRIP,-0.787186626892928 +ER,POLR3D,-0.452869285297889 +ER,OSGIN1,-0.379311897161613 +ER,BOD1L1,-0.927083502450897 +ER,WIPF2,-0.471727550037941 +ER,RBAK,-0.191144255053493 +ER,CCIN,-0.467151594200401 +ER,KIAA0226,-0.341937539547841 +ER,RNF144A,-0.719300350800767 +ER,ACTN1,-0.205021343565504 +ER,TRUB1,-0.343518860351112 +ER,RBBP4,-0.475960067896763 +ER,SOCS6,-0.323335519687174 +ER,KLHL8,-0.502068652678069 +ER,C9orf72,-0.383758098312544 +ER,GAP43,0.302317701383283 +ER,TSHZ3,-0.381083774720629 +ER,BTRC,-0.583666946328583 +ER,GPD1L,-0.576878134688622 +ER,RILPL1,-0.424308931133825 +ER,BRAP,-0.362353225899259 +ER,CMTM4,0.329373866540723 +ER,RNF115,-0.461526637898983 +ER,C11orf45,-0.33856414767377 +ER,VWA8,0.8511477857602 +ER,EEFSEC,-0.414545953489363 +ER,CDYL2,-0.588501237366336 +ER,FGF2,-0.391370891763519 +ER,ARSJ,0.947488263620558 +ER,SPTLC2,1.48469698395406 +ER,SMIM13,-0.0671165160955349 +ER,DNAJC30,-0.0723660242010182 +ER,USP27X,-0.313661078896806 +ER,SIK2,-0.566811682826931 +ER,ERO1L,1.59390940209954 +ER,SMIM3,-0.0686590609528824 +ER,MBD1,-0.472076892145023 +ER,UTP14C,0.969663333178482 +ER,LONRF1,-0.404542064052168 +ER,USPL1,-0.294509744385014 +ER,DHX9P1,-0.702216139850965 +ER,FBXO30,-0.329107261403179 +ER,FAM222A,-0.406636982843324 +ER,SLC30A6,1.00088200846983 +ER,EXOC7,0.777110730014647 +ER,DUSP8,-0.261635423596722 +ER,AFAP1,-0.515862969658261 +ER,PTPN3,-0.467447365496175 +ER,XPO4,-0.556501253976414 +ER,MITF,-0.453806809220863 +ER,BMPR2,1.22005192096612 +ER,C5orf45,0.144097019135572 +ER,NLK,-0.439326795748421 +ER,MMP24,-0.308495131767636 +ER,HSPA12B,-0.0238465147802255 +ER,DZIP1L,-0.22506070604974 +ER,UHRF1BP1L,-0.575156134568472 +ER,IFFO2,-0.386948326975197 +ER,DCP2,-0.539712810063639 +ER,SELT,0.123263090501696 +ER,PTPN21,-0.403722346550298 +ER,KBTBD6,-0.553690740762507 +ER,MOAP1,-0.353091790600623 +ER,ZHX2,-0.315147203716379 +ER,PPP1R3B,-0.0748952241063467 +ER,E2F8,-0.315470351410793 +ER,KIAA1644,-0.00966891604301394 +ER,NSUN6,-0.327581453829308 +ER,ZNF282,-0.460930159329045 +ER,CEP350,0.172596904061576 +ER,RAB11FIP1,-0.51417371267192 +ER,HARBI1,-0.351595528784061 +ER,SIKE1,-0.529296058084673 +ER,PDZD8,0.862212985337919 +ER,PALB2,-0.497794222597585 +ER,ZNF654,-0.324347378075172 +ER,FBXO45,-0.290631407893416 +ER,PDP2,-0.381462896649415 +ER,TMEM38A,1.09355245372782 +ER,HSPA8P18,-0.170071443682728 +ER,TNFRSF9,0.519327001284132 +ER,GPATCH8,-0.544490787695066 +ER,ABCC4,1.04934581468972 +ER,ETAA1,-0.314570121155851 +ER,C12orf4,-0.532146974675935 +ER,DIP2A,-0.301097154672829 +ER,DPYSL5,-0.520980439485572 +ER,FXYD6,0.508810879925446 +ER,RALGAPB,-0.240351312354107 +ER,CHSY3,1.73418521022442 +ER,EPAS1,-0.455608045545011 +ER,SUMO2,-0.686759227956548 +ER,CACHD1,1.63865319254695 +ER,DENND1A,-0.523475110863544 +ER,ICK,-0.489570643680681 +ER,ZNF814,-0.210992142297849 +ER,ZCCHC6,-0.415799100520229 +ER,RBMS2,-0.611484459931331 +ER,MSANTD4,-0.352901488329103 +ER,SLC40A1,-0.151852808859428 +ER,NELFCD,0.460919434277532 +ER,ANKRD28,-0.28860894319585 +ER,ASTN1,1.15196821488221 +ER,CASC10,-0.182899541821227 +ER,KCNJ8,0.520910073474395 +ER,INVS,-0.407775598203707 +ER,LENG9,-0.0352757166990277 +ER,LRRC8D,0.980108610366861 +ER,QRSL1,-0.276315415068699 +ER,LRP11,0.277965166303632 +ER,CHD2,-0.535406902535207 +ER,ARPIN,-0.514592273977781 +ER,TATDN2P2,0.13060918417961 +ER,MBD3,-0.45764722095151 +ER,CYP2S1,1.54101540787049 +ER,COL9A2,0.325802351251217 +ER,PPP2R1B,-0.537389350954364 +ER,NCOA2,-0.535831085235829 +ER,SLC23A2,1.57528772659673 +ER,SPOPL,-0.440832664356585 +ER,CSPG4P13,0.642930637177663 +ER,NUB1,-0.54377879239087 +ER,SNIP1,0.0200382352638702 +ER,SLC26A6,-0.00657717772120669 +ER,SLC6A17,0.655180660471941 +ER,RAD54B,-0.508676734021958 +ER,SEMA3F,1.41507827163488 +ER,KLF5,-0.40813559534186 +ER,ATF7,-0.468494028640767 +ER,SH3GLB1,-0.486848549166638 +ER,FZD7,1.63368127529136 +ER,IFIT5,-0.421325607498896 +ER,KATNAL1,-0.65661179322991 +ER,UBASH3B,-0.458981595310267 +ER,NKILA,-0.172983252629929 +ER,ANKS6,-0.581984526995243 +ER,TBX3,-0.214613410814663 +ER,GATC,-0.344535459828539 +ER,SMAD5,-0.469845237632272 +ER,EFR3B,-0.582703761071518 +ER,UACA,-0.735232662953101 +ER,COL22A1,0.663405073400547 +ER,LYSMD3,0.0482494444029539 +ER,HEBP2,-0.279169966335023 +ER,TDG,-0.432160539535915 +ER,MNT,-0.271964204172384 +ER,TMEM140,0.975481674142876 +ER,MORC3,-0.505632437179714 +ER,DDI2,-0.564160836764104 +ER,SMYD4,-0.0863171549488247 +ER,ZBTB24,-0.387221784970153 +ER,DUSP5,-0.300196930054203 +ER,ZNF16,-0.284810081992657 +ER,NUFIP1,-0.486840763383404 +ER,CHD6,0.149868420728325 +ER,NSA2,-0.485148529223304 +ER,SPRED3,-0.329816920019028 +ER,GXYLT1,0.235548682269975 +ER,SLK,-0.46518990002274 +ER,EGLN1,-0.461908152426018 +ER,BLOC1S6,-0.412507020186823 +ER,ITGA2,2.55876812269901 +ER,WBSCR22,0.150862369135905 +ER,PLLP,0.121400445541857 +ER,SEC24A,-0.427334051666393 +ER,KMT2A,-0.181746993322903 +ER,HOXA11,-0.347029850112626 +ER,ZNF710,-0.458570776177722 +ER,ZNF608,-0.31452906553363 +ER,CDKAL1,-0.484200967317776 +ER,BRI3BP,0.87268350187678 +ER,KIAA0556,0.186683869693534 +ER,IKBKB,-0.235876435007862 +ER,C1orf233,0.131884909146797 +ER,SUPT7L,-0.249678208376002 +ER,CPS1,0.508586685910426 +ER,THUMPD1,-0.440265950823739 +ER,DOC2A,-0.481623698762256 +ER,TDRD7,-0.581779846103824 +ER,ZNF777,-0.268770756244441 +ER,BLOC1S5,-0.37847872420471 +ER,ZNF202,-0.168580162993545 +ER,ITPKC,-0.365030780354054 +ER,CCDC64,-0.453774716189186 +ER,EPG5,-0.698872702683444 +ER,FKRP,1.14813343253966 +ER,FAM81A,-0.346936998701227 +ER,YY1,-0.273279935698117 +ER,NEFL,-0.472815376893376 +ER,TLDC1,-0.45860597244344 +ER,HOXB13,-0.250069356072527 +ER,ANKH,0.29774387290154 +ER,HDAC11,-0.321708733116482 +ER,DAZAP1,0.544258848679371 +ER,HSP90AA5P,-0.408650712219703 +ER,SETD1B,-0.520003274343254 +ER,PHIP,-0.674645508559835 +ER,EXTL2,1.18166073320363 +ER,ZNF672,-0.326167693222448 +ER,FNBP1,-0.599899412668663 +ER,CUL4B,-0.566895966003641 +ER,ERLIN2,1.59353490841105 +ER,WDR5B,-0.217556923461039 +ER,HAUS6,-0.579771153110954 +ER,PARP16,-0.35595289730542 +ER,SLC26A2,1.62051884023509 +ER,RBL1,-0.36015032983124 +ER,ATL3,-0.111512697731394 +ER,MYBL1,-0.453296637662711 +ER,CERS6,1.50960127849081 +ER,SOD2,0.628910741932639 +ER,VCPIP1,-0.327997631220074 +ER,FOXF2,-0.280516835576438 +ER,CCDC144NL,0.389814486621389 +ER,LPGAT1,0.480435119167652 +ER,C1orf106,-0.375928651842663 +ER,PTBP3,-0.613152532660227 +ER,DENND4A,-0.706721484430292 +ER,NASP,1.33512731691263 +ER,KLHL11,-0.504428527756856 +ER,IREB2,-0.570109030152035 +ER,CC2D2A,-0.51997920353144 +ER,EHD2,-0.590899319474219 +ER,INHBA,1.11140872191842 +ER,RAB28,-0.334713957806343 +ER,CDC42EP3,-0.511374370582019 +ER,FAM212B,-0.370236620634312 +ER, MARCH9,-0.107146995734036 +ER,UTRN,-0.81852417561778 +ER,OPA3,-0.389124563897245 +ER,SOGA1,-0.48165180725595 +ER,RBBP9,-0.349171742350067 +ER,SOCS7,-0.50055279498888 +ER,NIPAL3,0.565786854452927 +ER,SLC16A13,1.23503071336821 +ER,SETX,-0.746250486914846 +ER,CBX8,0.0153295412928962 +ER,MAST3,-0.467782001689127 +ER,DHX32,-0.394957574305245 +ER,DBNDD1,-0.158533399619626 +ER,CACNB1,-0.157312092759011 +ER,C9orf172,-0.567277165689844 +ER,MAVS,-0.578934491554372 +ER,RPL14,-0.580975431006296 +ER,ZKSCAN8,-0.38778670173458 +ER,FOXN2,-0.504704485318895 +ER,SCYL2,-0.536171327038592 +ER,MAP3K2,-0.601296039810085 +ER,ZNF518A,-0.467914094740294 +ER,MMP15,1.70700052933108 +ER,ETS2,-0.191963337745308 +ER,KCNIP3,0.0378648578479729 +ER,TNS1,-0.589438420673768 +ER,CCDC57,0.022838932470216 +ER,NANP,-0.393635021632255 +ER,HIRIP3,-0.583700895544129 +ER,MDM2,-0.358467990193892 +ER,ING5,-0.3139209954835 +ER,ABCB9,1.27175742066178 +ER,MUT,0.395322664532219 +ER,SUFU,-0.437830309741999 +ER,UCA1,-0.21226419618461 +ER,EMB,0.927160407934968 +ER,TPM3P9,-0.453497037848167 +ER,ACADS,-0.663703323509454 +ER,ARL5A,-0.326579245024367 +ER,ZNF12,-0.301651543703763 +ER,ZNF33B,-0.549433757512755 +ER,CYSLTR1,-0.0760361817512728 +ER,MTHFSD,-0.369509452940795 +ER,KNOP1,-0.632031737744705 +ER,LCP1,-0.55788047638337 +ER,GNB4,-0.622894036875078 +ER,TMEM245,1.29864864457878 +ER,ANKRD34A,-0.251169998119437 +ER,MAPK9,-0.482446391218208 +ER,WDPCP,-0.32619284127123 +ER,EZH1,-0.265447981055818 +ER,PLXNA3,0.604140059891114 +ER,ABCB1,2.47353859808122 +ER,RPL12,1.52082868548388 +ER,MTMR6,-0.570827358859801 +ER,SNRPD1,-0.383778501457424 +ER,ZNF160,-0.253804556609247 +ER,ELL,-0.317041325429287 +ER,CHST2,0.336148159266266 +ER,BRD3,-0.547760997480678 +ER,ZSCAN12P1,-0.185149343105687 +ER,HERC2P10,-0.863877985955576 +ER,PANX2,-0.0648809930554989 +ER,HSBP1,-0.449284165146536 +ER,ZNF579,-0.309485178440136 +ER,URGCP,-0.394265731290793 +ER,HEATR3,-0.43870293466618 +ER,TMEM110,0.659136719405926 +ER,NEO1,2.04023332629592 +ER,DMAP1,0.932842252641201 +ER,SH3BP5L,-0.423803876929524 +ER,NCLP1,-0.870472124097315 +ER,ATR,-0.543835983720657 +ER,ZNF644,-0.42112107612921 +ER,ERI1,-0.52207351666268 +ER,ZNF593,-0.706494592698715 +ER,TMX3,2.02388219193534 +ER,FRYL,-0.518549953480867 +ER,INIP,-0.647589681952019 +ER,TBC1D22A,-0.347867401547956 +ER,VPS36,-0.441300789827522 +ER,GTPBP4,-0.660012800925736 +ER,BLOC1S3,-0.307696830436753 +ER,PHF20,-0.574262716391584 +ER,SRSF3,-0.451057873862421 +ER,ENTPD5,0.366957891491979 +ER,UBR2,-0.533286373577686 +ER,RAB3B,-0.780667755142672 +ER,IL6R,1.23589235228895 +ER,SLC18B1,1.40419022705001 +ER,PCDHB5,2.39637004574385 +ER,NINL,-0.222322545944466 +ER,TPPP,-0.381178099216332 +ER,WBP4,-0.432035864776986 +ER,UBR7,-0.494027280872647 +ER,CCDC18,-0.194052559713001 +ER,CHST1,0.225911112013349 +ER,TRPV4,0.552489931244085 +ER,ABCB10,0.867955107419537 +ER,RP2,-0.120671765015788 +ER,BCL10,-0.418433524949367 +ER,CYHR1,-0.437147825951422 +ER,USP25,-0.496130825207378 +ER,KLHL23,-0.534044349102771 +ER,RAB22A,-0.402666810358983 +ER,KHSRPP1,-0.614960401446642 +ER,ZNF655,-0.402019951310975 +ER,UBE3B,-0.375831719809429 +ER,TMEM65,-0.483931949645877 +ER,CDC73,-0.484166130242336 +ER,COG7,-0.624094053183959 +ER,TAOK1,-0.693683583117012 +ER,WBP11P1,-0.593066296644775 +ER,QSOX1,2.05872901662837 +ER,EPB41L5,-0.520119948600456 +ER,ZNF526,-0.347565319882116 +ER,SFRP1,1.41488410742596 +ER,ADAM12,1.3212430676359 +ER,FBXO31,-0.477146967337813 +ER,UNK,-0.307900208265759 +ER,XYLB,-0.573722219797808 +ER,LONP2,-0.676745487204469 +ER,MIS12,-0.165152206602573 +ER,ENDOD1,1.80777545915725 +ER,BSDC1,0.800429675161585 +ER,RAD18,-0.40238742494489 +ER,OTUD4,-0.51364924814708 +ER,ATG14,-0.37835031732293 +ER,ARL3,-0.226489231453555 +ER,B3GNTL1,0.269141471935699 +ER,PDE4A,-0.441518841513013 +ER,CDC27,-0.58741431407104 +ER,PSKH1,-0.0450529258209676 +ER,YOD1,-0.214135583378194 +ER,HEATR5B,-0.64220063231001 +ER,PDPK2P,0.631447357875035 +ER,ARHGEF12,-0.66663827887848 +ER,ASTE1,-0.18259473844989 +ER,STK39,-0.396058833546522 +ER,UNC119,-0.0719330842957493 +ER,FAM53B,-0.295669210080138 +ER,UTP23,-0.480489280376844 +ER,BEND3P1,-0.3867240994285 +ER,TMEM64,0.130942741084218 +ER,GOLPH3L,-0.408816814452925 +ER,MAP4,-0.800686533169138 +ER,MOB1B,-0.585524792453298 +ER,ZNF404,-0.278044177825101 +ER,TTPAL,-0.56228907541867 +ER,TXNL4A,-0.438164380004443 +ER,RCBTB1,-0.412392816164008 +ER,PDGFRA,1.58191600399628 +ER,SLC35E2B,0.0960055555879195 +ER,VAT1L,-0.52133125426076 +ER,PTPRM,1.70710911524147 +ER,SMAD6,-0.181693143606449 +ER,RASA3,-0.421654999503517 +ER,PIKFYVE,-0.327026658316519 +ER,EHD4,-0.659827100765011 +ER,ITPRIPL2,0.213894427488863 +ER,ZNF592,-0.340184031528082 +ER,PPP2R5A,-0.39178246213568 +ER,PKN2,1.73209647110938 +ER,MORC4,-0.396583031159702 +ER,FAM109B,-0.313917151264724 +ER,MMP16,1.48289817610618 +ER,SYNC,-0.205649783175922 +ER,TRUB2,-0.665454551883295 +ER,CABLES2,-0.357056895491249 +ER,CTBP2,-0.546940466038653 +ER,KIF1A,0.102915545564431 +ER,RTN4IP1,-0.39101908650401 +ER,PEG3,-0.760512343117487 +ER,STARD13,-0.274003835488848 +ER,ETV6,-0.482420646997053 +ER,PTPN14,-0.696735659531356 +ER,TCF7L1,-0.46603459941963 +ER,C10orf12,-0.739524827983323 +ER,ITSN2,-0.591064872096136 +ER,BCAT1,-0.737483300074001 +ER,BRD9,0.43349513435796 +ER,CROCC,-0.274523898769299 +ER,GPN2,-0.402484199967032 +ER,TTF1,-0.53562344219632 +ER,STK17A,-0.384232206455864 +ER,IGHMBP2,-0.35140859320696 +ER,STX17,-0.47522774342965 +ER,CTC1,-0.591170031009248 +ER,BLM,-0.557203920954076 +ER,CLPTM1L,-0.139980778313792 +ER,WDR59,-0.475486774126848 +ER,SIK3,-0.433104496059348 +ER,FAM114A1,-0.418145370164446 +ER,ZC3H4,-0.48348988551166 +ER,KIAA1551,0.181769028127853 +ER,RERE,-0.478628086266011 +ER,FOXA2,-0.31521571734121 +ER,UFD1L,0.210791295002745 +ER,RBM27,-0.551526168541475 +ER,FRRS1,1.96265851725867 +ER,RAPGEF2,-0.58410072662232 +ER,GAB2,-0.46422038635623 +ER,C17orf96,-0.329909439038038 +ER,CYB5D1,-0.366526123816862 +ER,MNS1,-0.551290144454431 +ER,UHRF2,-0.40552144418681 +ER,PHKA2,-0.613946644312056 +ER,EPM2AIP1,-0.515892493158131 +ER,CFAP54,-0.292220127752507 +ER,DBR1,-0.511537186492789 +ER,TBCD,-0.317098248567621 +ER,SS18L1,-0.166295038728973 +ER,ATG5,-0.294853593725851 +ER,RAD54L2,-0.667404037287088 +ER,ASB1,-0.248905105774406 +ER,ANGEL1,1.19827888933547 +ER,DIEXF,-0.512962771771075 +ER,ALS2,-0.615571094652813 +ER,STX12,-0.442108446616348 +ER,RLIM,-0.497321398174508 +ER,ENTPD7,0.801818352470611 +ER,ZDHHC23,0.929302447841457 +ER,LIFR,1.67681473062744 +ER,GOSR1,-0.415214006208287 +ER,CENPL,-0.416405489567027 +ER,MFGE8,0.982952161537063 +ER,SLX4,-0.32365085295114 +ER,YTHDC2,-0.533528086003488 +ER,PDXDC2P,0.156996269851287 +ER,PARD6G,-0.430952585129918 +ER,SLC45A3,0.881377504291759 +ER,TAF3,-0.627646776831276 +ER,SMC5,-0.581636772197129 +ER,CSPP1,-0.348767312457456 +ER,TBL3,-0.601173257838892 +ER,IFT57,-0.356665229698601 +ER,MXD4,-0.151917106616777 +ER,C7orf50,-0.00535895615784317 +ER,DNMBP,-0.545557672401925 +ER,ATP6V1C1,-0.490138152227683 +ER,HSPA1L,-0.267825993021438 +ER,TACC1,1.41551558237195 +ER,ZZEF1,-0.560152483848448 +ER,UBA6,-0.709902228816574 +ER,ABHD4,-0.348875137725545 +ER,ZNF740,-0.533111001784095 +ER,SLC11A2,1.45857647565831 +ER,SAMD14,-0.199479823516 +ER,PIK3C2A,-0.692959728025114 +ER,EAF1,-0.375428789081514 +ER,ASAP3,-0.500635765538961 +ER,IER3IP1,0.371864737923032 +ER,CENPJ,-0.467509067002342 +ER,CHMP1B,-0.400259856258829 +ER,ATP2B4,1.83697749886456 +ER,RAB8B,-0.496156114267279 +ER,CIR1,-0.354402888391549 +ER,CD72,-0.282402649728979 +ER,SPSB1,-0.258464783001664 +ER,TPP2,-0.676700211478867 +ER,PGBD1,-0.38125453917216 +ER,UFL1,0.568216292877807 +ER,MAPRE2,-0.563076441184218 +ER,C2CD4C,-0.452406255349292 +ER,TMEM241,-0.111731864293947 +ER,ATP1A3,1.90781322926311 +ER,MMD,-0.0613680519106612 +ER,HSPA12A,-0.505744053462632 +ER,NOL9,-0.67489737713165 +ER,ZNF621,-0.382525601735558 +ER,ELMO3,0.282557394156847 +ER,PHF6,-0.589474054685799 +ER,ZBTB7A,-0.434178274467002 +ER,FIGN,-0.28678000745827 +ER,SERTAD1,-0.27329726270258 +ER,IDE,-0.637517256617804 +ER,TPM1,-0.253506679619384 +ER,RINT1,-0.466476744921365 +ER,ARL6IP6,0.506716418954304 +ER,SLC9A5,0.791133888948038 +ER,STRN,-0.638093655045367 +ER,FAM13B,-0.258689068096797 +ER,NBAS,-0.0810634201304154 +ER,KIF14,-0.510436991786816 +ER,TGFB3,0.332044234198025 +ER,PM20D2,-0.607186888922559 +ER,LIMD1,-0.380841681926703 +ER,ZDHHC2,0.135453894154443 +ER,PHKG1,-0.336916723184769 +ER,TBCCD1,-0.374724873590022 +ER,DOLPP1,1.27790004419293 +ER,ARRB1,-0.287076904286567 +ER,ZBTB38,-0.450366530670087 +ER,BBX,-0.61790311588936 +ER,KIF5A,-0.669074230280806 +ER,ORC4,-0.405866809641646 +ER,CSRNP2,-0.371482727464598 +ER,WRN,-0.577331534632421 +ER,KCTD15,-0.38709925009321 +ER,C4orf32,-0.542881226661671 +ER,NAV1,-0.607223203517141 +ER,WDR24,-0.435770917360642 +ER,SHPK,-0.425750948301569 +ER,PAFAH2,-0.361298115824226 +ER,H2AFV,-0.471629479824578 +ER,PHF2,-0.504742403163052 +ER,ERMP1,1.65766958555466 +ER,BROX,-0.531699106109983 +ER,THRIL,-0.335824031568548 +ER,GPRASP2,-0.553194344154594 +ER,GPD2,0.746389930977317 +ER,ANKFY1,-0.651537004591772 +ER,ZC3H13,-0.867378559257164 +ER,HERC1,-0.717412094710944 +ER,SLC6A10P,1.14756913763342 +ER,AP5Z1,-0.28701150795592 +ER,MEX3A,-0.332137395961258 +ER,SLC46A1,1.63536720451532 +ER,CCDC184,-0.38031129023147 +ER,NPHP4,-0.461645580384797 +ER,FARP2,-0.536601035463116 +ER,ZNF318,-0.474940173141888 +ER,PAFAH1B1,-0.521294154570689 +ER,RAVER2,-0.42517194893762 +ER,THRA,-0.397475985775674 +ER,CEP250,-0.712290936591794 +ER,KIF15,-0.615343368940372 +ER,OSGIN2,-0.365687706939383 +ER,MKL2,-0.590644210743785 +ER,CDK14,-0.528366314318214 +ER,MTPAP,-0.515053319967903 +ER,PATZ1,-0.547217969092008 +ER,SPTSSA,-0.185990783563619 +ER,CSNK1D,0.133679489677309 +ER,CFAP97,-0.516711914415886 +ER,OTUD7B,-0.548536701670042 +ER,TLE1,-0.519246432039327 +ER,FAM102B,-0.547457861325423 +ER,BRIP1,-0.110757580279844 +ER,PIK3CD,-0.460747529203792 +ER,MAOA,-0.470125381729521 +ER,ZBTB11,-0.517886720034535 +ER,OTUD3,-0.188737099009643 +ER,BMP4,0.410789325017661 +ER,DCP1A,-0.394962321222379 +ER,ZNF853,-0.227605983049103 +ER,RNF122,0.56526373452643 +ER,METAP1D,-0.327376264600187 +ER,GPATCH11,-0.519925935429315 +ER,SPAG1,-0.19210760881071 +ER,NR2F2,-0.404414661079509 +ER,TSC1,-0.351617914385573 +ER,CYTH2,-0.140437029956974 +ER,ZNF395,-0.513451611504594 +ER,PER1,-0.440490508015273 +ER,VTI1B,-0.333653948615716 +ER,GNE,-0.493079091665941 +ER,BCLAF1P1,-0.585912711263436 +ER,RPL27A,-0.313473983765602 +ER,CIPC,-0.356310703332543 +ER,PRR14L,-0.495222176988563 +ER,CRAMP1L,-0.272769833735867 +ER,CCDC34,-0.322294657150612 +ER,TTYH2,1.45679488544714 +ER,SERPINB7,1.30307274836917 +ER,AKAP10,-0.471868748789021 +ER,INO80,-0.552432430420786 +ER,TAF5,-0.451763490062831 +ER,TMEM200B,0.157033455802965 +ER,CTNNAP1,-0.73265385519577 +ER,TRIM35,-0.414367545425117 +ER,FUCA1,1.71311977301334 +ER,REEP5,1.22432453549769 +ER,TRIB1,-0.143536867735024 +ER,SLC38A1,1.06594772890756 +ER,BRICD5,-0.0474027167054884 +ER,ZNF830,-0.380264792945646 +ER,SENP5,-0.473310429867913 +ER,ZNF275,-0.416381597776612 +ER,PEAK1,-0.565150461444984 +ER,WASF3,-0.366583043436865 +ER,TMEM127,0.694565626530999 +ER,KCTD21,-0.330049348039069 +ER,C1RL,0.791629156520703 +ER,BMP2K,-0.536133595830163 +ER,ENC1,-0.319724791702341 +ER,ATRX,-0.585671822260868 +ER,SYAP1,-0.393106937844112 +ER,PXN,0.0409967589194457 +ER,TICRR,-0.18141294488811 +ER,SLC35E4,0.878583246267986 +ER,CEP89,-0.436902343055575 +ER,MEX3B,-0.46154535819989 +ER,SNAI2,-0.271051964794102 +ER,TIGD2,-0.345331223852499 +ER,KIF18A,-0.464772789229768 +ER,DCAF16,-0.444861558909211 +ER,MAK16,-0.49351421730803 +ER,PCYOX1,2.15239152447389 +ER,CMTR2,-0.434824621619271 +ER,TNPO1,-0.589232594625684 +ER,VDR,-0.350933129401981 +ER,AKAP11,-0.30229455957639 +ER,ABHD2,1.54391185348294 +ER,NOTUM,0.430310383257419 +ER,CLCN6,1.07137213861747 +ER,LANCL1,-0.510884790893942 +ER,ADGRL2,1.47781740672483 +ER,GCC2,-0.550174404643831 +ER,FSIP2,0.00587645178701496 +ER,ACAT2,0.0103107578219134 +ER,PRKAR2B,-0.393223373717015 +ER,STAMBPL1,-0.316378526120013 +ER,DRAM1,0.748763370428112 +ER,EPDR1,1.17693719156694 +ER,LIX1L,-0.436622282431106 +ER,APPBP2,-0.50930968337811 +ER,TMEM167A,-0.242361103137343 +ER,WDR35,-0.556209197622747 +ER,POM121,0.404588372589484 +ER,ZNF865,-0.202854165554536 +ER,PANK4,-0.574374936020783 +ER,ELL2,-0.444921649784455 +ER,FITM2,1.44290189025463 +ER,PAQR4,0.552934857612225 +ER,UBE2G1,-0.404996374474852 +ER,DOCK6,-0.603084937520948 +ER,TERF2,-0.420631171847822 +ER,DDAH1,-0.492731302022553 +ER,REEP3,0.84533438869665 +ER,CACFD1,0.202927923252409 +ER,SCD5,1.15173825064013 +ER,MSI1,-0.298360990428195 +ER,CDH4,2.10441573057003 +ER,PERP,1.0750245633971 +ER,ARNTL2,-0.469941857703507 +ER,GRID1,1.23984931190452 +ER,ANKRD19P,-0.120299713537383 +ER,PARS2,-0.321750962782286 +ER,TBC1D9,-0.409858591331697 +ER,EXOC6B,-0.690074451989645 +ER,LMTK2,1.78381512003872 +ER,DIP2B,-0.678612386493574 +ER,LCLAT1,1.43325743015341 +ER,C14orf119,-0.277451455934046 +ER,HOXC8,-0.440490425150463 +ER,NCOR1,-0.71804386714406 +ER,IVD,-0.467671836623678 +ER,ACTR8,-0.472686796017027 +ER,RFX1,-0.429791635902971 +ER,C4orf46,-1.11762415514245 +ER,B3GLCT,1.68021014622782 +ER,CNOT7,-0.424318174553731 +ER,TSC22D1,-0.420611056505051 +ER,SLC5A3,2.06957903655761 +ER,IRF2BP2,-0.406868123442243 +ER,SLC25A36,-0.434554471656602 +ER,MTMR1,-0.337391054765793 +ER,SLC48A1,0.308198989398186 +ER,EXOC2,-0.654577024225935 +ER,C6orf47,0.0264378575682241 +ER,SFXN5,-0.43075264334566 +ER,LEPROTL1,1.05635230531101 +ER,SPEG,-0.355792662661281 +ER,SHANK3,-0.430192325681142 +ER,LIMK2,-0.478338947101799 +ER,SLC36A1,0.661642080064135 +ER,ZNF106,-0.725778679980303 +ER,VANGL1,1.20289232999384 +ER,EEF1D,-0.0428544659469243 +ER,NFXL1,-0.222021460983808 +ER,LRFN1,0.735449723339866 +ER,ABHD16B,-0.135796479091599 +ER,INPP5E,-0.309571273614909 +ER,GSK3B,-0.533774059599097 +ER,COA1,-0.338834822865774 +ER,C10orf76,-0.358754212270062 +ER,PPP6C,-0.388151875403228 +ER,KLHDC4,-0.170008079321116 +ER,BNIP3L,-0.467070679028669 +ER,HEATR1,-0.664884461499429 +ER,DYNC1LI2,0.804423505348849 +ER,JADE1,-0.497842533412612 +ER,LNX1,-0.262209345476236 +ER,MSH3,-0.562638418705563 +ER,RB1,-0.579587965109647 +ER,LHFP,0.814166632481406 +ER,SYPL2,0.972834978658751 +ER,ARHGAP10,-0.510096345226547 +ER,GALNT6,1.88948002300113 +ER,SNHG7,-0.215268485698396 +ER,POLD3,-0.453680580382126 +ER,SRBD1,-0.563229442039191 +ER,DAB2,-0.463638891584518 +ER,RPF2,-0.460324834274747 +ER,ITPRIP,1.35764745691052 +ER,SLC7A2,1.4743711954612 +ER,RGS16,-0.146846704960589 +ER,C4orf3,-0.301782181740221 +ER,NRIP3,-0.441129727567173 +ER,HSF2,-0.437890489834606 +ER,MRPS25,-0.0941230002792865 +ER,BRF2,-0.176400289232239 +ER,ZMYM2,-0.468095676915674 +ER,MB21D2,-0.467046451317801 +ER,IQSEC1,-0.525412118697624 +ER,RUNX1,-0.499563759788706 +ER,FAM175B,-0.332554096488796 +ER,USP12,-0.384608577283546 +ER,MOB3A,-0.399990967152081 +ER,MTF1,-0.31945577756711 +ER,ZER1,-0.412382332866556 +ER,SRP72P2,-0.467531034197538 +ER,CUL2,-0.542327747445694 +ER,SRSF10,1.19339210057185 +ER,HMG20A,-0.521370242986833 +ER,CCDC117,-0.444023087538586 +ER,RABGAP1,-0.584808584997959 +ER,GSG2,-0.449350520668955 +ER,CBX7,-0.309242319406565 +ER,MYL5,-0.475162726018653 +ER,UBE4A,0.549925682650061 +ER,E2F7,-0.504298046485491 +ER,VKORC1L1,0.548291519797012 +ER,GALNT10,0.628159540483964 +ER,GLIS2,-0.278563082416798 +ER,FAM120B,-0.454926136453719 +ER,TRPM2,0.0496258744741793 +ER,PPIAL4G,0.0789374505564763 +ER,UBTF,-0.565087906537926 +ER,MIPEP,-0.163398603338062 +ER,R3HCC1L,-0.43381858338601 +ER,ZFP41,-0.4052027309293 +ER,KCTD7,-0.455047953778606 +ER,MAN1B1,0.938122925776443 +ER,ARIH2,-0.361855095069088 +ER,RAB11FIP3,-0.436074042122904 +ER,HOXC13,-0.379620773965467 +ER,C17orf51,-0.295041856995023 +ER,SMG1,-0.835118471675651 +ER,MMGT1,0.792668527384872 +ER,UFM1,-0.321203185169691 +ER,MAN1A2,1.16265105144879 +ER,ROCK1,-0.713325748934337 +ER,B3GNT3,1.59276951670983 +ER,UBE2G2,-0.468831144603711 +ER,FAR1,-0.590330622899841 +ER,ASH1L,-0.500639738157117 +ER,APPL1,-0.565336212716219 +ER,UBLCP1,-0.505503338828444 +ER,TRAK1,-0.482447074978982 +ER,ZBED1,-0.313377111944194 +ER,HPS6,-0.534605426344656 +ER,SZT2,-0.297404530649688 +ER,VIPAS39,-0.340698279508332 +ER,KIF20B,-0.612276765024064 +ER,CHAF1B,-0.519856410365534 +ER,ST3GAL1,0.74870237586441 +ER,KIAA0232,-0.438147851556722 +ER,NFIL3,-0.250984244156931 +ER,RYBP,-0.46923934876261 +ER,RPL37,-0.325065889400213 +ER,ZC3HAV1,-0.728329561037349 +ER,UGGT1,2.04345540898461 +ER,VPS33A,-0.452991715039373 +ER,KIF21A,-0.667892229760892 +ER,UGCG,1.25458318140988 +ER,NDE1,-0.282874074061167 +ER,RABIF,-0.362671394743313 +ER,TOR1AIP2,-0.433965659665923 +ER,ALOX5,-0.54234098569158 +ER,GNPTAB,0.700517899882443 +ER,ZSWIM6,-0.465156632312564 +ER,ASPM,0.462849043434706 +ER,ZNF689,-0.248568234443874 +ER,TAF10,-0.244063956798163 +ER,MPHOSPH8,-0.692776036490988 +ER,TIMP3,1.81917098448885 +ER,GOLGA3,-0.546852303630336 +ER,WDFY3,0.241344038624489 +ER,PPP4R2,-0.45347959086363 +ER,SGPP1,1.3845358388478 +ER,TAOK2,0.15151555107847 +ER,IKBKE,-0.458917446364052 +ER,JMJD4,-0.304651910681743 +ER,CPTP,-0.325164789822536 +ER,NAIF1,-0.391134214866694 +ER,POLR3B,-0.537441317188352 +ER,ALAD,-0.507484732860936 +ER,RBSN,-0.423097114128082 +ER,ARSI,1.40114168212179 +ER,PPP2R5B,-0.304670092822974 +ER,CYP26B1,-0.373353334366668 +ER,STAT5B,-0.528721177118529 +ER,C9orf41,-0.486585121228954 +ER,HS2ST1,1.34300415182097 +ER,GABPA,-0.551365938795292 +ER,UPF3B,-0.517896244768232 +ER,SKA1,-0.355592735660946 +ER,DOLK,1.63511307510404 +ER,ATRN,2.05513111086054 +ER,FAM210B,-0.17130561749861 +ER,MSL2,-0.267532986416331 +ER,SIDT2,1.33631928146479 +ER,LAMA1,0.0768350153167303 +ER,SGTB,-0.453259483524669 +ER,NT5C2,-0.528929177527501 +ER,ABHD17A,0.489246599508494 +ER,CCDC9,-0.592427548281616 +ER,EFNA3,0.463289632279427 +ER,SNX18,-0.404880954697369 +ER,WASL,-0.457135454736137 +ER,SLC31A1,1.02167633309024 +ER,IDI1,-0.466116680682599 +ER,RSPH10B,0.852493402759629 +ER,STXBP3,-0.504056227370217 +ER, MARCH8,-0.178759352653859 +ER,KLF3,-0.337110984145939 +ER,LBH,-0.41657868357311 +ER,EFNB3,0.97500448129506 +ER,ARPP19,-0.502386664692803 +ER,IKBKAP,-0.622243808270501 +ER,ANO2,0.865132887944719 +ER,EXOSC6,-0.525901766252604 +ER,CHSY1,1.09987883593153 +ER,ETV5,-0.490093532103007 +ER,ZSCAN32,-0.366447766401053 +ER,NAA25,-0.101509509527412 +ER,PCGF5,-0.492926277445358 +ER,FYTTD1,-0.510048717337547 +ER,MIR22HG,-0.192290062360031 +ER,KPNA1,-0.354561225761262 +ER,AMER1,-0.120420265170684 +ER,DIDO1,0.517808070538687 +ER,ZNF696,-0.260792730561659 +ER,CBL,-0.579405959140237 +ER,LRRC1,-0.475928709435455 +ER,FAM206A,-0.273553758656093 +ER,FBXO10,0.173696542291417 +ER,MGMT,-0.235778125880497 +ER,IL4R,0.992566457480335 +ER,CRY1,-0.52129986229744 +ER,UHRF1BP1,-0.695000932694845 +ER,PLAA,-0.486450628323624 +ER,UCK2,-0.552570205338114 +ER,CASC4,0.451940560367474 +ER,PDCL,-0.428207679314719 +ER,PHKA1,-0.637074864024107 +ER,ZNF703,-0.361455812600213 +ER,PPTC7,-0.356313401046534 +ER,SYP,1.17157565881101 +ER,SLC9A8,1.00563448159459 +ER,GTF2E1,-0.459244015254176 +ER,MRPL19,-0.645382043857054 +ER,SP2,-0.427009963011645 +ER,COX19,-0.106063630254378 +ER,EIF4EBP2,-0.530214087148368 +ER,SMG6,-0.452586520433991 +ER,ADGRE1,1.09459841765263 +ER,CSF1,1.42918273420515 +ER,FAM175A,-0.28322218249605 +ER,PTPN18,-0.398736604272543 +ER,ZNF518B,-0.510685423247256 +ER,PCYT2,-0.372156490335079 +ER,NR1D2,-0.537411462567471 +ER,AFAP1L1,-0.45840910438177 +ER,VAC14,-0.517018183400795 +ER,TMEM57,1.51813471147011 +ER,NAF1,-0.481475765146264 +ER,GDF11,-0.334902174412844 +ER,RALGDS,-0.30068073625747 +ER,CTU1,-0.469636437881803 +ER,RNF169,-0.426974375289405 +ER,MECP2,-0.382537373024815 +ER,C2orf68,-0.371188830828967 +ER,GM2A,1.11996863482626 +ER,DHX35,-0.425655314081713 +ER,KCNK5,1.33681771512035 +ER,SLC25A33,-0.388631684818002 +ER,LATS2,-0.487364168391584 +ER,FAM122B,-0.331007702530265 +ER,CAB39,-0.473332693293524 +ER,TCAF1,-0.740738081133694 +ER,PDS5B,-0.607777081750643 +ER,ARID2,-0.578692149379302 +ER,RSPO4,0.269582287305122 +ER,LRP5,1.69201287499671 +ER,PANK3,-0.565032171586982 +ER,AKT3,-0.534534527884445 +ER,DIRAS1,-0.311031338652876 +ER,CELSR2,1.75420983929987 +ER,PDPK1,-0.408067787765621 +ER,LEMD3,1.21138149055553 +ER,ADM2,-0.150646406775474 +ER,CFAP57,0.299686239829962 +ER,OCRL,-0.589729045278018 +ER,TIAM1,-0.550814846045793 +ER,VASN,1.13169702986575 +ER,DDX51,-0.560101951742841 +ER,ABI1,-0.5232219816683 +ER,ALDH3A2,-0.481885265829022 +ER,RABEP1,-0.605833480643244 +ER,RPL37A,0.241037417893589 +ER,ZNF629,-0.451936018400064 +ER,TTC38,-0.418393341223844 +ER,SMCHD1,-0.733152009828007 +ER,HIST2H2BE,-0.381747719597864 +ER,SNAI1,-0.130417068861907 +ER,NEU3,-0.429384654159212 +ER,LRRC40,-0.596942314492668 +ER,UBXN2B,-0.529223759771405 +ER,JMJD1C,-0.280283848443895 +ER,AMOTL1,-0.651269109782393 +ER,PLTP,-0.286126802294584 +ER,GNAI3,-0.65680882642802 +ER,F2R,1.61755457054046 +ER,DIRC2,1.83227176722479 +ER,TRAPPC10,-0.439134688111103 +ER,TSSK2,-0.636844688929811 +ER,DDX28,-0.267701242283491 +ER,HSPA8P4,-0.328446995912905 +ER,SLC4A3,0.0943034289637334 +ER,IPPK,-0.539035825957927 +ER,CRTAP,0.283482906810953 +ER,SUSD6,0.880810646158002 +ER,LNP1,-0.197609281300473 +ER,RLF,-0.331120796085454 +ER,SIRT1,-0.473801817181567 +ER,MTX1,0.203539880596493 +ER,MED13L,-0.580846639198292 +ER,ATP5E,-0.262987789858536 +ER,FAM101B,-0.41818086504137 +ER,COL5A1,2.16720419830022 +ER,KIFC2,-0.00564912474706416 +ER,MOXD1,1.52761185453263 +ER,NKRF,-0.438450131151616 +ER,MAN1A1,1.87184526494407 +ER,ATP6V1A,-0.696108260374094 +ER,NUP155,-0.253244637468319 +ER,RAI1,-0.451556222170338 +ER,RMND5A,-0.49547523077012 +ER,IL17RA,1.19458631604232 +ER,PRKCA,-0.550470773966126 +ER,GTPBP1,-0.552831601521177 +ER,MIOS,-0.425713489281203 +ER,PITPNA,-0.446002809807532 +ER,PMS2CL,-0.434260057750413 +ER,CNNM4,1.80026360982302 +ER,CHD7,-0.709892141294581 +ER,TBC1D8B,-0.484931922253824 +ER,CSNK1G1,-0.435289085140907 +ER,NOP9,-0.605394425467462 +ER,SRSF8,-0.346773581833798 +ER,RBM8A,-0.530631042381185 +ER,ETV3,-0.411913429609583 +ER,CDHR1,0.800913814066984 +ER,TMEM69,-0.0296610762658316 +ER,CHD1,-0.56756484555186 +ER,C11orf95,-0.346348654410154 +ER,EDA2R,0.423339594068019 +ER,NBPF1,-0.289768716706503 +ER,SPPL3,1.0682314856023 +ER,AGGF1,-0.491671390479379 +ER,BAZ1A,-0.635671740591982 +ER,GMEB2,-0.443818488731854 +ER,WDR33,-0.5975050873544 +ER, MARCH5,-0.370287466052176 +ER,ARMT1,-0.520166363325498 +ER,BMP5,0.918198377671153 +ER,PCNT,0.0209460017240947 +ER,AQR,-0.756773016164767 +ER,HIF1AN,-0.495219560469755 +ER,ADCY7,1.51150045708033 +ER,FEM1C,-0.410774806539714 +ER,TYW3,-0.338423678967367 +ER,CENPI,-0.501068410034081 +ER,MICALL2,0.353642418323658 +ER,CTNS,1.10939191963783 +ER,PLEKHM1,-0.384152553067909 +ER,KLHL29,-0.481609282056914 +ER,KLHL25,-0.339407303187896 +ER,UBE2J1,-0.360208234752275 +ER,F2RL1,0.644981807194624 +ER,ZCCHC14,-0.429828527572635 +ER,CSNK2A1,-0.42279981286253 +ER,PHAX,-0.604760388225142 +ER,PDCD6IP,-0.59539231964375 +ER,PHYH,-0.363887139506322 +ER,TMEM45A,0.196904845681377 +ER,PRPF38A,-0.390801376961929 +ER,SERINC3,1.31169881250951 +ER,TRAFD1,-0.474863075011735 +ER,TXLNG,-0.49644947977993 +ER,LZTS3,-0.562392337356783 +ER,RNF213,-0.870678977059512 +ER,GCC1,-0.300141276917134 +ER,TBC1D22B,-0.368864273619762 +ER,USP54,-0.477244151137655 +ER,KLHL9,-0.388288811388654 +ER,LRPAP1,1.14480072691104 +ER,SAMD4A,-0.610099796813479 +ER,EPS15,-0.498621303671438 +ER,STARD8,0.750176889860343 +ER,CHML,-0.498112628572565 +ER,SRSF6,-0.43898397235265 +ER,AP3M1,-0.549938879624688 +ER,PHF8,-0.586014508820205 +ER,PARVA,-0.502897176087846 +ER,AK3,-0.440348640288943 +ER,TP53INP2,-0.534435156068283 +ER,BRAT1,0.336937903568191 +ER,NEIL3,-0.327022383245962 +ER,KCTD11,-0.2729762273945 +ER,ZNF24,-0.414257766863332 +ER,IPO8P1,-0.606249650727629 +ER,C6orf89,1.04220054398936 +ER,CLEC16A,-0.445982900816503 +ER,COL5A2,0.906743238011084 +ER,TANC1,-0.592543555243123 +ER,PDPR,1.64404315687822 +ER,POLQ,-0.596281113077517 +ER,RAB23,-0.455154074641739 +ER,REXO1,-0.410282186384856 +ER,COX10,-0.331459213217538 +ER,CLOCK,-0.647941009540908 +ER,DZIP3,-0.489090957765621 +ER,DHRS2,0.339942985499908 +ER,C12orf49,-0.165155341031315 +ER,PDE10A,-0.378043000518939 +ER,SORT1,1.82218774752849 +ER,ZNF281,-0.424494304853667 +ER,TNRC6A,-0.552604302863212 +ER,PIANP,0.685105996625387 +ER,TUB,-0.475286760053842 +ER,ATMIN,-0.366561232726974 +ER,KNTC1,-0.772774969226846 +ER,ZBTB39,-0.409549200420025 +ER,TMEM167B,-0.0471917033278633 +ER,DDX31,-0.367087682224736 +ER,NDST2,0.79302048168672 +ER,FOXH1,0.226188616626349 +ER,ACVR1B,1.06974213347502 +ER,DNAAF2,-0.403231298285228 +ER,NKTR,-0.407359904517022 +ER,HDLBP,-0.57041947142236 +ER,C16orf62,-0.503152060913036 +ER,SGK223,-0.188608811146789 +ER,AK4,-0.581297408237931 +ER,ADAMTS12,1.81172016737852 +ER,CENPBD1P1,-0.183245350527802 +ER,LIN52,-0.378550511018387 +ER,SOCS5,-0.286502994772837 +ER,FEM1B,-0.208570080338954 +ER,C1QL4,1.50513653691212 +ER,GRPEL1,-0.278444722411657 +ER,NFX1,-0.467246223456277 +ER,ARID1A,-0.53196883733203 +ER,CHST14,1.6150502397011 +ER,ARHGAP23,-0.460526139594267 +ER,CGN,-0.737015658556984 +ER,PPP1R14C,-0.338684463997362 +ER,NAMPT,-0.545684981681596 +ER, SEPT8,-0.488681694871786 +ER,PHYKPL,-0.041412270886554 +ER,RANBP10,-0.467658808269196 +ER,GSE1,-0.470268098447693 +ER,POLR2D,-0.465643671052956 +ER,TANC2,0.0507624969501679 +ER,OTULIN,-0.512380325093658 +ER,MAP3K7,-0.504116845147231 +ER,pk,-0.691567323255728 +ER,MGEA5,-0.492178064721233 +ER,NOTCH3,2.09251219437509 +ER,KDM5A,-0.606588497917176 +ER,C5orf51,-0.503213437127113 +ER,PTCD3,-0.390737007935622 +ER,MLLT10,-0.427933663484292 +ER,CAMTA2,-0.367710750155437 +ER,NAP1L2,-0.652452992539492 +ER,VPS39,-0.558690121668649 +ER,CA12,1.70800287740719 +ER,UNKL,-0.265870974415418 +ER,TXNL4B,-0.284523606351828 +ER,PEX10,-0.0919726141435109 +ER,TREH,0.393386536346102 +ER,NEK7,-0.496884204203799 +ER,HIP1,-0.655449037446741 +ER,PDXK,-0.343726721836012 +ER,DTL,-0.536303322015591 +ER,KLHL22,-0.521501487244306 +ER,TMEM246,1.00985033499773 +ER,TFAM,-0.551815531002424 +ER,ARL17A,-0.412786469741364 +ER,CSTF3,-0.594393525344122 +ER,SRFBP1,-0.458561389656946 +ER,ZC3H12A,-0.0122172756702422 +ER,GOPC,-0.500540985593226 +ER,AP1G1,-0.604610779101621 +ER,SFMBT1,-0.550662839600885 +ER,PHTF2,1.14054699862997 +ER,TBKBP1,-0.363933721169223 +ER,HMGB3,-0.463145533289676 +ER,TTF2,-0.833131305109064 +ER,CGGBP1,-0.458704562247584 +ER,CRIPT,-0.272225112370452 +ER,POLR2M,-0.386926611196367 +ER,ACBD3,-0.524914418492218 +ER,RAB2A,-0.401023872281845 +ER,MRPS23,-0.454332437154847 +ER,COG5,-0.524598159856606 +ER,SPEN,0.00806171833443662 +ER,ZDHHC18,0.262820188268202 +ER,CLDN12,1.34153087148242 +ER,FCF1,-0.643016683201252 +ER,MRPL35,-0.460623928079367 +ER,TBC1D5,-0.555062828892195 +ER,DDX20,-0.576187443693114 +ER,MARS2,0.259680374169367 +ER,RPLP0P2,-0.431520511888221 +ER,GPR3,0.706580372812563 +ER,SCAMP5,0.151102757354028 +ER,PEX19,-0.442686738696716 +ER,NCOA3,-0.500854805220979 +ER,IRS1,-0.55799748017946 +ER,ACSL4,-0.300933206081591 +ER,NCKAP5L,-0.489912069062857 +ER,GFPT2,-0.470541132922461 +ER,MAP2K5,-0.34729886920041 +ER,CEBPG,-0.337509910292356 +ER,IDS,-0.0970654156546075 +ER,DVL3,-0.419023849457119 +ER,RIMS4,-0.404080045578324 +ER,ZNF114,-0.104854560050123 +ER,SLC25A24,-0.458979625591067 +ER,RASSF3,-0.699695721565065 +ER,ZNF408,-0.328409441349659 +ER,CEP135,-0.462507487108083 +ER,WDR81,-0.681166247084186 +ER,GJC1,1.08474389505025 +ER,IRF2BP1,-0.404837899607167 +ER,TBK1,-0.459933076148342 +ER,SUCO,1.26024454817153 +ER,TNFRSF8,-0.460075444089654 +ER,RNF168,-0.532848097176061 +ER,SLC1A4,1.68332018008839 +ER,PTP4A1,-0.427125613423227 +ER,BZW1,-0.493718218648682 +ER,LRRC47,-0.493666159686173 +ER,CASP3,-0.43921252894393 +ER,ZNF121,-0.412966366904913 +ER,ENGASE,-0.324504726702727 +ER,ERCC6L,-0.533384716003434 +ER,TBC1D25,-0.29506986631268 +ER,UBE2H,-0.444240867351968 +ER,IRF2,-0.417268063780047 +ER,GRPEL2,-0.367569570909686 +ER,ZBTB12,-0.504297879500013 +ER,ZCCHC3,-0.32238558489088 +ER,EIF4ENIF1,-0.474804380512822 +ER,NR1D1,-0.278152743871689 +ER,GFER,-0.259995210463434 +ER,MAP2K4,-0.415162765466497 +ER,TRIM59,-0.147860486992877 +ER,CASKIN1,0.196297554427517 +ER,EGR1,-0.0505145973324214 +ER,TNFRSF21,0.936729328822466 +ER,MTHFD1P1,-0.766093933023803 +ER,SAV1,-0.394823720660433 +ER,PRR12,-0.397047981721205 +ER,STK35,-0.345108060109678 +ER,STAC,-0.220161512611883 +ER,NFIX,-0.445136823609908 +ER,RSL1D1,-0.371048002186214 +ER,USP48,-0.51333432103536 +ER,SMO,0.801754026286203 +ER,CD109,2.34988059235987 +ER,SCCPDH,-0.0516379976050845 +ER,MFHAS1,-0.461862300823412 +ER,MLX,-0.403943295905475 +ER,RTKN,-0.272336385359534 +ER,TADA1,-0.322756962244841 +ER,LRP4,1.98070072995229 +ER,CHAMP1,-0.433286463910166 +ER,CD99L2,1.40321533097226 +ER,CEP164P1,0.511157894945194 +ER,PFKFB4,-0.312964027468032 +ER,TRIM56,-0.509886649070918 +ER,GMPPB,-0.343087656778937 +ER,FASTKD1,-0.0537382480807359 +ER,NUAK1,-0.463863487678169 +ER,GTF3C4,-0.518458461368317 +ER,WDR3,-0.654352804191661 +ER,PIP5K1C,-0.365101493366067 +ER,NCAPD2P1,-0.64460121462305 +ER,TGIF2,-0.335457793360421 +ER,MAPK11,-0.245556932540907 +ER,TRMT5,-0.285646852547634 +ER,RNF38,-0.393270041313562 +ER,ZNF574,-0.258239441248051 +ER,MTHFD2,-0.545716603827893 +ER,RNF19B,-0.387102231582737 +ER,HP1BP3,-0.556198364459013 +ER,ST6GALNAC2,-0.136783352354803 +ER,ZCCHC8,-0.403655848381146 +ER,GATAD2B,-0.554435518511533 +ER,EPC2,-0.584856838073622 +ER,ALKBH1,-0.351212664622673 +ER,GTF3C3,-0.589197472367067 +ER,DDA1,-0.489956347598402 +ER,LIN28B,-0.273037208005576 +ER,ABLIM1,-0.56801658931786 +ER,CCNT1,-0.28647062670757 +ER,ANKRD36BP2,0.398107123522433 +ER,NEK9,-0.460570452461034 +ER,POLRMTP1,0.122732290903414 +ER,BANP,-0.34631657651415 +ER,UQCC2,0.142777269259372 +ER,ZCCHC7,-0.387106380580941 +ER,SLC39A3,0.144815315916322 +ER,PPIL4,-0.453483283747018 +ER,C10orf10,-0.102614038592982 +ER,ZBTB1,-0.298095118513173 +ER,MAP2K7,-0.502389553380076 +ER,NUP133,-0.68945844613572 +ER,BBS7,-0.478922638904566 +ER,ZNF346,-0.283163327032159 +ER,KLF6,-0.212371906711003 +ER,C11orf57,-0.402060166937497 +ER,SAMHD1,-0.685457406284833 +ER,SMAP1,-0.44021142875048 +ER,GLI2,-0.439826033879839 +ER,VGLL4,-0.234739044423244 +ER,ABCC1,1.75554592205593 +ER,MTND5P10,1.65440801821872 +ER,PRPF40A,-0.56604445878053 +ER,DHX57,-0.665684333612145 +ER,PURB,-0.502999333198209 +ER,SKI,-0.474710765525163 +ER,CRTC3,-0.412782102344916 +ER,TSTD2,-0.446771959721544 +ER,B4GALNT1,1.11284539979914 +ER,PRDM4,-0.346577393637825 +ER,ORAI2,0.0806150757569269 +ER,B4GAT1,1.61313145771017 +ER,CHKA,-0.409792540260683 +ER,AQP1,0.415464999092209 +ER,RUNDC1,-0.283422575847421 +ER,USP47,-0.596239368879872 +ER,TBC1D16,-0.527868869911831 +ER,EMC3,1.2104114982077 +ER,GPATCH3,-0.42922413683201 +ER,C1orf198,-0.45074089399636 +ER,PARN,-0.454035533834559 +ER,YJEFN3,-0.126384524567422 +ER,RPRD2,-0.397887226135114 +ER,PRDM2,-0.39424023235873 +ER,IFNAR1,0.913881667168401 +ER,BTAF1,-0.526247517211743 +ER,BRD4,-0.563752076963205 +ER,LEPROT,0.870991309227629 +ER,MRPL50,-0.417940044765573 +ER,ZNF22,-0.385014666963903 +ER,SNX11,-0.263308874138819 +ER,WASF1,-0.430783938374223 +ER,AGPAT6,0.60748570150521 +ER,CAMKK2,-0.485982251906112 +ER,ERAP1,2.32783779112618 +ER,DDIAS,-0.458831911361696 +ER,JADE2,-0.385976196798077 +ER,SOAT1,1.7663942282813 +ER,SH2B3,-0.431773187975292 +ER,MLLT4,-0.487036855550204 +ER,UTP20,-0.755492209178338 +ER,TIMM22,-0.238429594793508 +ER,NAGA,1.24245565389335 +ER,PIK3R4,1.27893827402733 +ER,RTN4R,0.71532159354938 +ER,WDR76,-0.49454866768717 +ER,NR2C2,-0.49573692261723 +ER,BAG2,-0.501746333777007 +ER,SNX19,1.72554424286993 +ER,C7orf73,-0.240053767033328 +ER,DSE,0.923413920990944 +ER,RAB6A,-0.414130428456868 +ER,EIF4A2,0.670179153508519 +ER,GSPT2,-0.542650381605515 +ER,EXT1,0.407792756277076 +ER,ZSWIM1,-0.436527602513925 +ER,MIEF1,-0.37850720116135 +ER,VEZF1,-0.425930596819676 +ER,RAB31,-0.416042536933779 +ER,SH3RF3,-0.463145575724754 +ER,CIC,-0.431640933259756 +ER,EPT1,1.74272690387563 +ER,BIRC6,-0.802013628004391 +ER,PRKAA1,-0.495706394364302 +ER,ASB6,-0.465814039046144 +ER,TET3,-0.474274640214042 +ER,ADO,-0.449878184555566 +ER,EMP2,1.36093613536471 +ER,SUDS3,-0.38282560982708 +ER,KIF3C,-0.323270801550113 +ER,TSPYL2,-0.662246900703016 +ER,ARHGEF17,-0.554587108401787 +ER,KRAS,-0.54378237514523 +ER,SLC6A6,1.53029331109865 +ER,AP3M2,-0.565661562901869 +ER,PPP6R2,-0.320304152306549 +ER,SNN,-0.1091938232123 +ER,KCTD3,-0.480958550250412 +ER,RBL2,-0.210978817310039 +ER,FAM134C,1.13094162049363 +ER,SMARCA5,-0.617160722587961 +ER,RETSAT,1.71575190855543 +ER,FANCD2,-0.705883186757132 +ER,LTN1,-0.652708458382017 +ER,RBMXL1,-0.620739812964324 +ER,WDHD1,-0.779359068703468 +ER,LPIN2,-0.546811066151928 +ER,TRIM14,-0.493265903309487 +ER,WIPI2,-0.366555371594064 +ER,ARHGAP12,-0.376237546885467 +ER,SGOL2,-0.404731483246298 +ER,SLC9A1,1.34812732008206 +ER,C1R,2.19205477625581 +ER,SRPX2,1.86485684950198 +ER,SPATA2,-0.252376037089108 +ER,MORC2,-0.529252070350948 +ER,ADGRB1,1.08042365176676 +ER,KIAA1161,1.64842973765274 +ER,CDK6,-0.706035172699465 +ER,ATF6,1.1499258276231 +ER,IL13RA1,1.47831711826511 +ER,CREBL2,-0.257102228482363 +ER,TMEM181,1.40975817445418 +ER,FAM46B,-0.355620379529122 +ER,UBTD2,-0.334355093171699 +ER,EIF1AD,-0.379987390185351 +ER,RFTN1,-0.397329306941511 +ER,ABT1,-0.293159866586183 +ER,FGD1,-0.492393977014894 +ER,PIP4K2A,-0.411617211205722 +ER,WDFY1,-0.441894983614916 +ER,KCTD9,-0.4755812990699 +ER,ATP13A1,1.92253488302559 +ER,PIM1,-0.168956640391117 +ER,URB2,-0.423265261116917 +ER,C2orf69,-0.310261596475968 +ER,PRKD3,-0.516043327576483 +ER,TRAK2,-0.658191060886316 +ER,MAP4K5,-0.44719923441384 +ER,HSPA8P11,-0.475799015922408 +ER,DAGLA,0.724921324675833 +ER,PIGO,2.05186943172859 +ER,FOXK2,-0.334507975251744 +ER,SMIM10L1,-0.26851394769603 +ER,ABCA3,0.224842855519047 +ER,GPR107,1.53448414652462 +ER,POLA1,-0.915017168447565 +ER,IKBIP,1.76774898322294 +ER,RANBP9,-0.502076360159827 +ER,TPRG1L,-0.438858264412068 +ER,CCDC97,-0.413579929314434 +ER,KRT10,-0.302979442558979 +ER,ANKS1A,-0.558017244766826 +ER,TSPAN9,1.39071417227694 +ER,ABR,-0.402401797286679 +ER,DPYSL4,-0.415218376421605 +ER,ABHD8,-0.225430870445032 +ER,CDR2,-0.388839082197391 +ER,RNF19A,-0.316703977920953 +ER,STK10,-0.533464296496226 +ER,ZNF367,-0.293488125903908 +ER,SDC3,1.29212374371599 +ER,TMEM248,0.955814518273456 +ER,ZNF217,-0.397328336417332 +ER,MAML1,-0.485370515237773 +ER,UTP14A,-0.552585367740849 +ER,RBFOX2,-0.595600482207852 +ER,PIAS4,-0.415239004053536 +ER,ENG,1.37252431173337 +ER,DESI2,-0.438437181554905 +ER,EPHX1,1.57233752498189 +ER,MISP,-0.318582680740297 +ER,YTHDF3,-0.498431083642038 +ER,ADSS,-0.532567627872226 +ER,CASKIN2,-0.454650012023495 +ER,LYPD1,-0.240458132728629 +ER,STK4,-0.601547331947014 +ER,COL27A1,0.0954225677665447 +ER,CNOT6,-0.451244526422542 +ER,CEP164,-0.580714311555722 +ER,QTRTD1,-0.531710088172868 +ER,MYCBP,-0.106158506219374 +ER,ASB13,-0.33941716817211 +ER,SVIL,-0.572217238717611 +ER,CARD11,-0.428714830529725 +ER,C22orf29,-0.486246985784964 +ER,SHQ1,-0.446583908466447 +ER,RNMT,-0.569058277841934 +ER,B4GALNT4,0.26223483578206 +ER,MLLT6,-0.518998985061256 +ER,KIAA0319L,1.16089034584367 +ER,ATAD1,1.10834642607586 +ER,NOTCH1,1.41779012598269 +ER,TIPRL,-0.479834486979069 +ER,FASTKD5,-0.175383396048851 +ER,SLC30A1,1.23208130968796 +ER,ELFN1,1.06220697606059 +ER,ULK1,-0.351140957446401 +ER,ERP44,1.41728809268056 +ER,TGFBRAP1,-0.511234186352784 +ER,SSU72,-0.21444291930112 +ER,RNF111,-0.396566222475948 +ER,C9orf40,-0.371885713462428 +ER,PSMF1,-0.463618231070789 +ER,CRNKL1,-0.562089443000622 +ER,SETD2,-0.575126744176042 +ER,DYRK3,-0.37049504805768 +ER,ZNF589,-0.397934593279852 +ER,RTF1,-0.603533156235029 +ER,AMBRA1,-0.427778564826101 +ER,PDGFRL,1.94939689288534 +ER,ERCC2,-0.444826425181282 +ER,SKA2,-0.332136607727613 +ER,ASCC3,-0.795203888130178 +ER,KCMF1,-0.3700440943592 +ER,PHKB,-0.481116417771986 +ER,AGO1,-0.644106497528203 +ER,PABPC1L,0.459640263462 +ER,ICMT,0.77313752592046 +ER,CHUK,-0.480322101564679 +ER,ENTPD4,0.946934853819188 +ER,TRIM21,-0.470228563719866 +ER,PAQR7,0.81790858400789 +ER,TMEM261,-0.326952600155077 +ER,ZFP36L2,-0.363254815686888 +ER,KLHL21,-0.255743736247918 +ER,ORC5,-0.242309839903875 +ER,AHDC1,-0.32237349970028 +ER,ASPHD2,0.805362668205413 +ER,GRWD1,-0.507307444592022 +ER,PLXND1,0.881250480146908 +ER,UHMK1,-0.590119368024585 +ER,PREX1,-0.651001701032062 +ER,TIGAR,-0.41153549527277 +ER,EDC3,-0.424444300559057 +ER,ATXN7L3B,-0.465037933277595 +ER,DDX17,0.155769487721644 +ER,PRKAB2,-0.367259640295442 +ER,FZR1,-0.423373219816121 +ER,ATG2A,-0.625826554195757 +ER,ARMC7,-0.26751555193243 +ER,PLCD3,-0.3665117332831 +ER,NCF2,-0.348375737314357 +ER,ABCC5,1.67128056752465 +ER,TSPYL4,-0.59696376222942 +ER,BIRC3,-0.22525896976875 +ER,NDFIP1,0.812110690466066 +ER,TRMT61A,-0.484512865257413 +ER,FLCN,-0.364079939827475 +ER,EIF1AX,-0.496245515975692 +ER,CLASP1,-0.590485987915574 +ER,NXN,-0.451534049333722 +ER,ME1,-0.411400484182621 +ER,KLHL12,-0.449841709018909 +ER,SP1,-0.565494575263849 +ER,GNL1,-0.582229212752588 +ER,SLC39A9,0.660242617629805 +ER,NID1,2.56100309487105 +ER,HHLA1,-0.555677413196062 +ER,CDC42BPB,-0.622034235277177 +ER,RIN2,-0.475155266747618 +ER,RALA,-0.422459859681229 +ER,FYCO1,-0.0882260283425991 +ER,ANKIB1,-0.270109940830842 +ER,BCL9L,-0.476737931095693 +ER,CBFB,-0.439379344851868 +ER,PRKCI,-0.532996006794032 +ER,ITPK1,-0.359936531498814 +ER,HERC4,-0.591991394283587 +ER,FANCE,-0.369945642045578 +ER,PODXL,1.91871074554766 +ER,SRRM3,-0.234686721565028 +ER,INF2,-0.626063066114768 +ER,MRPL57,-0.170829430592067 +ER,HEATR6,-0.560714692559183 +ER,HTT,-0.814150647573718 +ER,PHF3,-0.568578147176572 +ER,TWISTNB,-0.476491825972221 +ER,SYNJ2,-0.532897753575519 +ER,SPARC,2.19549197322901 +ER,ZBTB40,-0.438897490230541 +ER,NUP210,2.46263045668851 +ER,AP5B1,-0.411113888679814 +ER,CD44,1.71566438911624 +ER,NUDT15,-0.322936932667909 +ER,DCP1B,-0.349992334771362 +ER,MED14,-0.605554402230154 +ER,WTAP,-0.479391996387436 +ER,FAM98B,-0.575057442951678 +ER,ARFGEF1,-0.373248223803063 +ER,EZH2,-0.345945123086214 +ER,ABL2,-0.471507947535087 +ER,ZZZ3,-0.449937544440814 +ER,TNFAIP8L1,-0.316474192686572 +ER,DHX29,-0.650149359934326 +ER,SLC19A1,1.46426935563449 +ER,LDLRAD3,0.952534758573991 +ER,ATP6V0E2,0.248724471913839 +ER,ZBTB17,-0.357459417497024 +ER,KMT2D,-0.832793027739471 +ER,VPS37C,-0.308472341137676 +ER,SNTA1,-0.242653059356806 +ER,SMIM15,-0.293487211195819 +ER,TAF5L,-0.263005695438731 +ER,MYO18B,-0.639007939081428 +ER,UBE3C,-0.541783899470983 +ER,POLH,-0.466437856300869 +ER,GGCX,2.07024293540778 +ER,JRK,-0.214353982077045 +ER,SURF6,-0.51398045302247 +ER,LAMB1,2.01977750502511 +ER,DCK,-0.417688902420269 +ER,INTS9,-0.593371479682493 +ER,GEM,-0.288669453968766 +ER,NUFIP2,-0.290228485619021 +ER,NADK,-0.399730751999415 +ER,FBXO41,-0.194132752841028 +ER,TPBG,1.76446333463187 +ER,AKAP17A,-0.365319837907654 +ER,DPYSL2,-0.65802572841931 +ER,KLHL18,-0.449736335475521 +ER,UPF2,-0.610684646489339 +ER,SCARA3,1.0871301512198 +ER,EFNB1,1.18591187446465 +ER,TGFB2,1.52872858258128 +ER,TBC1D2B,-0.505059735742287 +ER,SH2D5,-0.325047921070692 +ER,PARP14,-0.695313105174795 +ER,RARS2,-0.31723286084976 +ER,VPS26B,-0.430991466729756 +ER,SNX9,-0.525373814334934 +ER,PROSER1,-0.429279261348391 +ER,ZMYM4,-0.560472556850212 +ER,KIF1BP,-0.577570910095647 +ER,NRAV,-0.181804034578267 +ER,KPNA4,-0.591061687546733 +ER,ABCE1,-0.598553937261565 +ER,C6orf120,0.80691818483746 +ER,HELZ,-0.689125463146527 +ER,SCAF4,-0.255211540496539 +ER,PMEPA1,0.595268283852342 +ER,PCYT1A,-0.426489211452582 +ER,NCS1,-0.401678725651572 +ER,POGK,-0.32141703750677 +ER,AFF1,-0.578128022002534 +ER,BAZ2A,-0.599092940749917 +ER,MAPK1,-0.538135620593692 +ER,SLC39A10,1.98651540819912 +ER,COL4A1,2.67053186116905 +ER,IGSF9,1.21796785484099 +ER,FBXO17,-0.301653973545564 +ER,DCAF8L2,-0.636317876888758 +ER,DPY19L1,1.88305204317039 +ER,ST3GAL2,0.10744984334944 +ER,GGA2,-0.502116065373674 +ER,CNPY4,1.23296892255307 +ER,FAM168A,-0.47856108507275 +ER,ABCA2,0.868900230679404 +ER,NEURL1B,-0.328438687792454 +ER,TNKS2,-0.377562208350752 +ER,PJA1,-0.42055454607302 +ER,ENSA,-0.323111046167204 +ER,LRRC58,-0.602893213845516 +ER,NSUN5P1,1.02389796683676 +ER,VHL,-0.382831085799932 +ER,PKMP2,-0.738548342214207 +ER,BTG2,-0.279508734648524 +ER, MARCH4,-0.254448536682287 +ER,TRIM44,-0.581456361331722 +ER,ANKRD11,-0.248560050575614 +ER,RASL11B,-0.0344015832472918 +ER,EHD1,-0.54289859809761 +ER,KPNA6,-0.674932055126589 +ER,BCL2L2,-0.407464104425578 +ER,HR,-0.515716176421611 +ER,VANGL2,0.791015891325392 +ER,RASL10B,-0.387157855394512 +ER,CRMP1,-0.469256204373196 +ER,STK11IP,-0.590471457989844 +ER,POP1,-0.599034795918626 +ER,EFCAB14,-0.0496774630908656 +ER,ARMCX1,-0.558486679460636 +ER,ASMTL,-0.486185530758761 +ER,PDDC1,-0.444117431154496 +ER,MTMR12,-0.503368156432483 +ER,ANKRD33B,-0.209914891504248 +ER,C9orf64,-0.423043858797435 +ER,DHX33,-0.54340661753897 +ER,SIPA1L1,-0.510555815929805 +ER,UBIAD1,0.696612084264376 +ER,SOCS3,-0.133969087816192 +ER,CAMK2N1,-0.309592173620255 +ER,CTR9,-0.692350771057847 +ER,QSER1,-0.660677569084255 +ER,SOWAHC,-0.367419282150844 +ER,GMFB,-0.466086516870496 +ER,NAA40,-0.444900820716958 +ER,SIAH2,-0.334671320063426 +ER,NUP43,-0.484505140915443 +ER,VAV2,-0.523810132940225 +ER,ANAPC1,-0.587590863622021 +ER,OSBPL11,-0.561022819223528 +ER,LIMS1,-0.505954387644548 +ER,PKP3,-0.29191796074887 +ER,SUSD5,1.67035319845037 +ER,CDKN2C,-0.22651700318971 +ER,TUG1,-0.248897097042045 +ER,ARMC1,-0.43953527185798 +ER,CBX4,-0.306428050221332 +ER,OGT,0.382612131365693 +ER,DNAJC13,-0.734684616778939 +ER,MRAS,-0.449159795048715 +ER,ANO10,1.45804418720184 +ER,GOLIM4,1.74048044882536 +ER,CBX5,-0.656796125192976 +ER,PTCD1,0.326776904428275 +ER,MESDC1,-0.215849061186875 +ER,SUCLG2,-0.442271599581656 +ER,NISCH,-0.268978342839899 +ER,CDC5L,-0.635547746561706 +ER,OAF,0.714885806453101 +ER,SH3PXD2B,-0.543787686303121 +ER,STX6,-0.422434767803467 +ER,GINS1,-0.399845586798718 +ER,SMURF1,-0.415608189903308 +ER,MUM1,-0.314256462182302 +ER,PVRL1,1.30991363075454 +ER,MAPK14,-0.443802527084936 +ER,EDEM1,0.782951707910475 +ER,CKAP2L,-0.358935640029573 +ER,POLR1A,-0.714565586571055 +ER,HK2,-0.66247213081022 +ER,SLC35C1,0.435356915582597 +ER,KCNH3,0.0415693913538659 +ER,SIN3B,-0.470347771512209 +ER,ASXL2,-0.621514093437586 +ER,NTN1,1.87125816235879 +ER,PALD1,-0.447607286645935 +ER,PNKD,0.552915202701331 +ER,TMEM104,0.932990045688129 +ER,NACC2,-0.527002149432933 +ER,FADD,-0.342295755598941 +ER,CUL1,-0.511157409008356 +ER,DUSP16,-0.416942889512989 +ER,STXBP1,-0.518697788077965 +ER,TTK,-0.416223365644145 +ER,RNASEH2C,-0.187957435126008 +ER,FOXJ2,-0.499854346468784 +ER,C10orf2,-0.382338442532565 +ER,GPRC5A,1.63698189753649 +ER,CC2D1B,-0.477708105469678 +ER,TRIM65,-0.45407724208999 +ER,SYNCRIP,-0.570289534017195 +ER,ARHGEF19,-0.250486945836622 +ER,TOR1B,1.75666521801755 +ER,DLG4,-0.309874826453107 +ER,OLMALINC,-0.203696089393128 +ER,CLIP2,0.308422761135816 +ER,RANBP6,-0.397350057658304 +ER,USP24,-0.683629685437293 +ER,CSGALNACT2,0.759458977163294 +ER,RNMTL1,-0.379569866244237 +ER,HNRNPA3,-0.487057690850952 +ER,DSN1,-0.507890977839438 +ER,RAP2B,-0.437544124844332 +ER,CSTF2T,-0.487452182090383 +ER,ADCK4,0.265968496731831 +ER,CIAO1,-0.401038692327649 +ER,SEC22B,-0.488188324262808 +ER,PCIF1,-0.446193738706073 +ER,WAPAL,-0.5564624587276 +ER,EID2,-0.409057375227813 +ER,IER5,-0.299597548258482 +ER,CREB3L1,0.878227177717532 +ER,MTDH,1.5218087947743 +ER,PIP4K2B,-0.402934193259876 +ER,PKM,1.33852562392354 +ER,POLR3A,-0.488710091326496 +ER,CAMLG,0.108318997191094 +ER,NUDT11,-0.436630557253338 +ER,NSF,-0.609576525540085 +ER,CD2AP,-0.509076152617584 +ER,LTBP2,0.871463325862253 +ER,BRCC3,-0.524791454601596 +ER,NBN,-0.553843849828282 +ER,SNAP29,-0.487278406516619 +ER,PITRM1,-0.0107595472622801 +ER,TFB2M,-0.332950069836671 +ER,LAMP2,2.19040957777492 +ER,CA11,0.43774853148648 +ER,KDM2B,-0.475021366667171 +ER,MICAL3,-0.73682925934426 +ER,NCOA6,-0.493688552471383 +ER,CUL7,-0.505785251656902 +ER,SNAPC4,-0.510458604216966 +ER,OAS3,-0.733371269645163 +ER,TM9SF2,2.23968746960857 +ER,TAF9B,-0.446908361693574 +ER,TOR3A,0.949847315379693 +ER,ACTR5,-0.442857171259002 +ER,SFXN3,-0.462631715386926 +ER,NPR2,1.64202549477576 +ER,HS6ST1,0.451444468377311 +ER,GALNT18,1.23230076072008 +ER,NUS1,0.275429326635992 +ER,KMT2B,-0.572635326734581 +ER,PDCD7,-0.40649290231881 +ER,IL2RB,0.982059417196607 +ER,SRRD,-0.44853579122241 +ER,TCTA,0.128708856667926 +ER,DFFA,-0.592829268133966 +ER,NOV,1.90898473116183 +ER,VPS18,-0.434685571342969 +ER,MPZL1,1.31763014958265 +ER,C14orf169,-0.455414679431573 +ER,OLFML3,2.41172590739147 +ER,RELB,-0.35001259369796 +ER,PAFAH1B2,-0.515106218820245 +ER,SPATA21,-0.184906468758522 +ER,RB1CC1,-0.671682940114585 +ER,EBLN3,-0.41409011344788 +ER,PIK3R2,-0.351610014218203 +ER,AMMECR1L,-0.312725443825667 +ER,CCDC3,0.13680970029542 +ER,CTTNBP2NL,-0.415094434525616 +ER,GTPBP6,-0.235213661119373 +ER,SAP18,-0.397387159934347 +ER,ERCC1,-0.422074166393969 +ER,CEP72,-0.215656928398701 +ER,NFIC,-0.642726601280209 +ER,UBE2Q1,-0.360202951387945 +ER,ANKRD27,-0.457326855190047 +ER,LARS2,1.15934454893666 +ER,NCAPD3,-0.697364057886867 +ER,TRIM8,-0.400378347398059 +ER,KBTBD2,-0.348685832007362 +ER,UBFD1,-0.588053722483867 +ER,COIL,-0.3688749876043 +ER,RRAGC,-0.416805480810495 +ER,NEK6,-0.422708545320937 +ER,PKN3,-0.422926285975837 +ER,LRP10,1.53235024430734 +ER,RGP1,-0.500498444876517 +ER,GNA11,-0.433001970178543 +ER,CDC42EP2,-0.329876483530709 +ER,NAA15,-0.608498094923158 +ER,B4GALT7,0.745221206119195 +ER,TBC1D13,-0.369587902589109 +ER,TEAD3,-0.381319160405282 +ER,ITCH,-0.445945455713511 +ER,TESK1,-0.25219279196892 +ER,UBA52,-0.375810545043795 +ER,CREG1,1.41175475548393 +ER,FRMD8,-0.458926071414271 +ER,UNC119B,-0.406570839637758 +ER,BCL9,-0.510346384556754 +ER,NOC3L,-0.555566703270767 +ER,ZNF638,-0.110178916620626 +ER,XPOT,-0.455012596160499 +ER,LRRC4B,1.1446894723823 +ER,PRKAR2A,-0.583644065439057 +ER,CERK,-0.332074677547547 +ER,ZBTB9,-0.385855833814112 +ER,SMU1,-0.669497927990502 +ER,AARS2,0.94776407358129 +ER,FBXO5,-0.310639330776811 +ER,NDC1,1.28098630818248 +ER,TPP1,2.24844602010894 +ER,ZNF335,-0.366217685639042 +ER,KDELR3,1.32084468087586 +ER,GFPT1,-0.494622485490722 +ER,SEL1L,2.11692229257016 +ER,FXR2,-0.437092242210134 +ER,CAT,-0.606105373271161 +ER,AFF4,-0.640905748950316 +ER,UBR4,-0.467694546211181 +ER,EIF2S1,-0.596002490756927 +ER,MUL1,1.00323907201116 +ER,NMD3,-0.470524765515355 +ER,TSPYL1,-0.582725627655338 +ER,SOX9,-0.365728706846573 +ER,KDM3B,-0.65580390593439 +ER,NFYA,-0.455458078540877 +ER,ZBED4,-0.463337055033427 +ER,CCHCR1,-0.484490984106612 +ER,KLF13,-0.417733381216518 +ER,PPM1F,-0.489824267059974 +ER,NKIRAS2,-0.288210177785731 +ER,POTEI,0.0909168493873936 +ER,SYT11,1.79708219405761 +ER,MAPK6,-0.504531220569254 +ER,AGPAT9,1.66520928678167 +ER,AGO2,-0.634798874156517 +ER,ACTG1P9,-0.626028673718147 +ER,PRRC2B,-0.459558912268869 +ER,CLCN3,1.32860054825298 +ER,IGFBP4,0.175517180474851 +ER,BRD7,-0.47967546980931 +ER,PPARD,-0.410624310387024 +ER,TSPAN6,1.46986266641165 +ER,URM1,-0.351795899331681 +ER,SMCR8,-0.629250896002684 +ER,DCAF5,-0.479127301652913 +ER,ZNF697,-0.404423879143814 +ER,FBN2,3.03086609807342 +ER,LAMC3,2.13840448178765 +ER,WIZ,-0.289122067344488 +ER,TMEM131,1.45675699800617 +ER,LDOC1L,-0.536249219579387 +ER,AP3B1,-0.643658979232165 +ER,PDXDC1,-0.468896269806109 +ER,TERF2IP,-0.505110858483806 +ER,TCF19,-0.376886460437339 +ER,LAMA5,1.52732796007399 +ER,SPRED2,-0.458271608405541 +ER,C9orf69,-0.157691268196816 +ER,EP300,-0.50851283367797 +ER,FAM111B,-0.6046658012591 +ER,EP400,-0.754871045928894 +ER,PACS1,-0.533119727259913 +ER,TTI1,-0.510599452638309 +ER,STAM,-0.461432469842622 +ER,PHF13,-0.295061875840219 +ER,NCOA5,-0.471461331847479 +ER,GINS4,-0.551671124721765 +ER,CARD10,-0.484622235084327 +ER,CYCS,-0.552121856201744 +ER,NIPBL,-0.647919987979861 +ER,MAGEA11,-0.417341458393024 +ER,SIRPA,1.23186327696645 +ER,GALNT7,1.95852818933247 +ER,KCTD5,-0.417516227482874 +ER,TAB1,-0.480389199011682 +ER,LUZP1,-0.469379386015941 +ER,JPH3,-0.378587762830437 +ER,DESI1,-0.421633989384947 +ER,CHST10,0.957540472390191 +ER,LDLRAP1,-0.400482446601471 +ER,RAB14,-0.478679153783254 +ER,SLC39A13,0.892222568585582 +ER,MINPP1,1.45594569317815 +ER,TAF2,-0.566792265161514 +ER,MALAT1,0.35666484332679 +ER,CLIP3,-0.464449901273548 +ER,ITGA6,2.18678122128403 +ER,OSBP,-0.488239941790301 +ER,ELK3,-0.202317139431131 +ER,HBEGF,1.18037874745769 +ER,HEXIM1,-0.471775590427706 +ER,ABL1,-0.446547684536484 +ER,VPS4A,-0.312838910536307 +ER,ACACA,-0.204376571161204 +ER,RPAP1,-0.578752641314341 +ER,DCUN1D4,-0.457663874531922 +ER,NBEAL2,-0.671517547471922 +ER,WDR62,-0.653403649983899 +ER,LRIG1,1.16109704066035 +ER,INTS5,-0.437169545475147 +ER,DOT1L,-0.419979183950656 +ER,MAP1A,-0.900485831539686 +ER,PRMT6,-0.350388182441975 +ER,IPO11,-0.529537894198858 +ER,UBTD1,-0.259730288933971 +ER,RBM15B,-0.39831830737266 +ER,PARP4,-0.796207069358333 +ER,TBC1D10B,-0.447641043533628 +ER,HADH,-0.471569951074315 +ER,LRRK1,-0.633978594590583 +ER,IGSF8,2.13390843381662 +ER,PLAGL2,-0.377114967246049 +ER,MET,1.99757393562511 +ER,RAB3IL1,-0.295198194253352 +ER,E2F2,-0.372459264430403 +ER,ARFGEF2,-0.469586824714115 +ER,GPRIN1,-0.512965458065299 +ER,PSMD11,-0.475675646438621 +ER,EXOC4,-0.604404203365455 +ER,COL12A1,2.94768955714324 +ER,TMEM184A,0.930662555568819 +ER,PAPD7,-0.346554476893234 +ER,HNRNPUL2,-0.557441897872918 +ER,KCTD20,-0.48020470976633 +ER,WARS,-0.520387760092467 +ER,MED13,-0.607197329656933 +ER,FBRSL1,-0.395665736395907 +ER,MYO9B,-0.737542621732562 +ER,C22orf46,-0.813971370586468 +ER,CELF1,-0.462578114341274 +ER,TBCC,-0.385513019682688 +ER,TTC27,-0.576057357966242 +ER,RAPGEF1,-0.627650454914229 +ER,VEGFC,0.651907576349255 +ER,DHX34,-0.479324916276482 +ER,TMED7,1.71557997245137 +ER,MESDC2,1.65293816148781 +ER,DYNC1H1,-0.11746528328645 +ER,SERP1,-0.357194231509752 +ER,MMP9,1.30188509368644 +ER,PFKFB3,-0.396863058828043 +ER,IRF2BPL,-0.443001030885759 +ER,LSM3,-0.0630805765870536 +ER,UBN1,-0.46828416104531 +ER,DARS2,-0.156252830320104 +ER,DNASE1L1,1.05883930669306 +ER,YEATS2,-0.477749224853777 +ER,PELO,-0.397973480045854 +ER,LDLR,1.70263574096108 +ER,SAPCD2,-0.213189858225748 +ER,RANBP2,0.28493764170771 +ER,CDC23,-0.54068981951315 +ER,ECE2,0.00735990169823395 +ER,MOB1A,-0.461118834911295 +ER,AGPS,-0.642422178148048 +ER,ARPC4,-0.360677032443913 +ER,ARID5A,-0.390282559864308 +ER,MLLT11,-0.308381699484375 +ER,FZD2,1.30065204602594 +ER,NUDT21,-0.504401154046596 +ER,XPC,-0.473779117172855 +ER,SETD7,-0.630834208808598 +ER,PAK2,-0.542422401142648 +ER,FAM20B,0.431273862555183 +ER,PPP1R15A,0.13992283057215 +ER,GGA3,-0.390124389724827 +ER,ZBTB5,-0.215017776548796 +ER,SPCS3,1.39201127028099 +ER,RYK,0.392435106295586 +ER,TENM3,1.27386782926187 +ER,NAA35,-0.394949574432361 +ER,UBQLN2,-0.504648867452997 +ER,PAK1IP1,-0.451473945798122 +ER,PPP1R15B,0.757693440730197 +ER,HDAC5,-0.355904762039931 +ER,PI4K2A,-0.434765796789573 +ER,CIT,-0.682388588435851 +ER,ANTXR1,1.45106544708471 +ER,DPYSL3,-0.664489646981918 +ER,FOXRED1,-0.466899564656123 +ER,EIF2AK4,-0.599401546029377 +ER,CMTM6,0.950468661233355 +ER,ATP13A3,0.930933205595679 +ER,HIAT1,1.22952401063938 +ER,TMEM201,0.889985256830199 +ER,TRIB3,-0.283052961355613 +ER,RAI14,-0.627865094525948 +ER,ABCF2,-0.561078902646608 +ER,MYH10,-0.909687283103648 +ER,NSFL1C,-0.464468073591136 +ER,CCDC93,-0.544699193516097 +ER,ADAM19,1.22667469275792 +ER,AACS,-0.516389475220515 +ER,ZNF512,-0.499950499970515 +ER,GTF2F2,-0.364884668626283 +ER,EDEM2,1.10410184481016 +ER,ERLIN1,1.65403818770949 +ER,CABIN1,-0.663014293673397 +ER,DUSP7,-0.36893144406488 +ER,CSNK2A2,-0.521624110133899 +ER,GEMIN4,-0.59287231280485 +ER,SGCB,1.07451317386253 +ER,CDC6,-0.586361391367067 +ER,VAMP3,-0.369874026064446 +ER,FAM208B,-0.627685577975341 +ER,TOB2,-0.292067245755795 +ER,KIF7,-0.552746364407302 +ER,NPC1,1.56514331537334 +ER,ARHGAP29,-0.573497879240537 +ER,NCBP1,-0.600589950489975 +ER,DCAF7,-0.530244028137226 +ER,ATXN1L,-0.463633663259376 +ER,TULP3,-0.493431596841617 +ER,PROSC,-0.400261903633174 +ER,GAS6,0.926710853148418 +ER,HSP90B2P,2.53374537170398 +ER,CACYBP,-0.520060464567113 +ER,ADAM17,1.5431619374788 +ER,TMED10,1.74975844184736 +ER,COA7,-0.39562308609622 +ER,ZMIZ1,-0.562304902641012 +ER,SRPRB,1.63614645674174 +ER,HPS1,-0.361478360111361 +ER,GPANK1,-0.279407597816601 +ER,FBXO18,-0.418981594162934 +ER,SFXN1,-0.464899332666541 +ER,NCAPG,-0.557299236360907 +ER,VPS37B,-0.294883508861748 +ER,FSTL1,1.98108646438965 +ER,MPHOSPH10,-0.485235909335257 +ER,TXNDC12,1.42376765484462 +ER,WASH5P,-0.0140471037992134 +ER,AREL1,0.142536701276252 +ER,MYL9,-0.502559944997472 +ER,BUB1B,-0.489135126277352 +ER,ZFAND3,-0.397521173445503 +ER,SLC35F2,1.38579330546816 +ER,NRSN2,0.425232995398841 +ER,SRC,-0.421850119865926 +ER,KIAA0368,-0.661876407201601 +ER,AIFM2,-0.417705233950134 +ER,APOBEC3C,-0.454224000449451 +ER,RAB5B,-0.429273874621938 +ER,TNPO2,-0.427391948907617 +ER,NUP205,-0.728734427522038 +ER,CDR2L,-0.396419478165949 +ER,FUBP3,-0.5349857936937 +ER,CDC25A,-0.472583598361379 +ER,CSRNP1,-0.277132229362603 +ER,TMPO,-0.566283731164849 +ER,RRP1B,-0.55054451789407 +ER,PANX1,1.27219704071532 +ER,ZDHHC5,0.941867497423137 +ER,TMEM186,-0.186130838966838 +ER,PPP3R1,-0.458357779579693 +ER,GPT2,-0.472352064109187 +ER,TTC37,-0.6572873180273 +ER,MBD6,-0.379709753579552 +ER,APEX2,-0.438491874633261 +ER,TOR4A,0.80970763570846 +ER,GGT7,1.76567938926908 +ER,NET1,-0.675121030455348 +ER,MLXIP,-0.446560611493242 +ER,STAT3,-0.538493163773495 +ER,LETM1,0.00198537424883385 +ER,PPP1R10,-0.377955299733933 +ER,PIAS3,-0.442989084861227 +ER,SUV39H1,-0.395265496631441 +ER,ABCD3,-0.436022638119889 +ER,KCTD2,-0.372037505482896 +ER,C6orf62,-0.38094290618065 +ER,GBF1,-0.596812172235948 +ER,ZBTB2,-0.41258949218379 +ER,TMED4,1.42984699462046 +ER,SESN2,-0.231704371677732 +ER,USP34,-0.757379168325735 +ER,PHLDA3,-0.388719503958434 +ER,ANKRD40,-0.429421034575069 +ER,CTGF,1.73066289176773 +ER,DNAJC14,0.226415446718338 +ER,CLEC2D,0.0956310478220516 +ER,LBR,1.71360301807509 +ER,RBM12,-0.557162633960796 +ER,LIF,0.257128623495891 +ER,SLC7A6OS,-0.380904227735353 +ER,LSS,-0.563870420039492 +ER,BICD2,0.136929978485904 +ER,THBS1,2.37977144407523 +ER,IMPAD1,1.33504432906659 +ER,TOPBP1,-0.589947736269517 +ER,BAIAP2L1,-0.454763154716343 +ER,NUP160,-0.740394062793132 +ER,CCNY,-0.404617842553523 +ER,RNF216,-0.493958657381403 +ER,RNF20,-0.709319063814238 +ER,PRPF38B,-0.244810673699511 +ER,GEMIN5,-0.760835070327526 +ER,TNFAIP1,-0.395038005478956 +ER,CUEDC1,-0.258236076942998 +ER,DGCR2,1.39543413636656 +ER,TNS3,-0.677860760829267 +ER,SF3B3,-0.826511353732977 +ER,CTDSP1,-0.226844404660159 +ER,GIGYF1,-0.537882917874171 +ER,WWP2,-0.467779583224259 +ER,LAMC2,2.18539052896654 +ER,GAREML,-0.332584481903652 +ER,HSPA4,-0.667582008296766 +ER,PNPLA6,1.56613614398659 +ER,IPO9,-0.616568282801516 +ER,SPIN1,-0.509365054837411 +ER,ITGAV,2.52637843245393 +ER,MAP3K14,-0.268005190699398 +ER,ORC1,-0.504637690673567 +ER,RFWD3,-0.469582913359749 +ER,NCDN,-0.52592938498514 +ER,CCDC6,-0.500318625661926 +ER,HERC2,-0.798879654191755 +ER,ANP32E,-0.533203089935313 +ER,NFKBIE,-0.387482960666719 +ER,NUP50,-0.523371537590502 +ER,WDR36,-0.323472388212122 +ER,RUSC2,-0.472944342961485 +ER,OSER1,-0.339386431970211 +ER,SMARCC1,-0.709417040259976 +ER,KDM4A,-0.514847372762004 +ER,NUP153,-0.490785169482869 +ER,GYS1,-0.582824282569287 +ER,CCDC71,-0.367278004609401 +ER,PREP,-0.56922503831312 +ER,CMTR1,-0.0783705372314166 +ER,TATDN2,-0.427197332608052 +ER,PFAS,-0.808871695659382 +ER,HSPA13,1.99113797057853 +ER,URB1,-0.423313932425611 +ER,SSR3,0.877620138722058 +ER,SMG8,0.339603900400422 +ER,MFAP1,-0.566687724785985 +ER,PIF1,-0.162609202655728 +ER,HEG1,1.71946826465427 +ER,LRFN4,0.42977465565248 +ER,CYTH3,-0.452954943059598 +ER,CCDC22,-0.405980732895517 +ER,TMEM183A,-0.0971867230137188 +ER,KANSL3,-0.524218338916693 +ER,CADM4,1.786263036543 +ER,GGNBP2,-0.424976186058465 +ER,SRPK1,-0.532896654623764 +ER,ARFGAP2,-0.453857656188079 +ER,AMD1,-0.411186427524315 +ER,USP16,-0.381384681924503 +ER,CKAP2,-0.279815270890623 +ER,TPR,-0.82948008517978 +ER,RALBP1,-0.457998426007841 +ER,SCARB2,1.76886695402035 +ER,RNF4,-0.335261344388534 +ER,PNPT1,0.407819952173406 +ER,RHOBTB3,-0.455266412769134 +ER,MAFG,-0.284793418858697 +ER,CHP1,-0.420448748781286 +ER,PPP2CA,-0.513084038072983 +ER,DCAF12,-0.435906421280494 +ER,DUSP11,-0.41338385622304 +ER,RHBDF2,1.03001949333679 +ER,PAPSS1,-0.605992468629988 +ER,TRAM2,1.18188667834582 +ER,ZNFX1,-0.670184268387229 +ER,G3BP2,-0.572517194854708 +ER,C15orf39,-0.330710556385858 +ER,CENPF,-0.152986040159233 +ER,FOXK1,-0.594662872938553 +ER,MMP14,2.04386216903363 +ER,TELO2,-0.426835774417552 +ER,AKAP2,-0.671934601170523 +ER,REXO4,-0.338108781904136 +ER,SERTAD2,-0.441652506658618 +ER,RNF139,0.79288256938773 +ER,STK38,-0.441679614122549 +ER,CWC27,-0.34723132337446 +ER,HSPA8P16,0.467793110541553 +ER,USP1,-0.473321872640434 +ER,MAP1B,-0.942173406034401 +ER,KPNA3,-0.528495647913581 +ER,TCTN3,1.09429016885722 +ER,GID8,-0.402299308044187 +ER,PCOLCE,1.74620801901256 +ER,BOK,-0.229845039529079 +ER,IL6ST,1.36807876211959 +ER,PBX2,-0.359588429482326 +ER,CHST3,1.06148359478765 +ER,DNAJC11,-0.492567803363657 +ER,METTL13,-0.341744886888777 +ER,TNRC18,-0.617174960461165 +ER,RAB15,-0.318350889251869 +ER,MTOR,-0.717423127011971 +ER,ARHGAP1,-0.602248192970117 +ER,ADNP2,-0.480061962257593 +ER,C14orf1,0.637224164369147 +ER,PLBD2,2.12076657581145 +ER,DSCC1,-0.41616359409295 +ER,HARS2,-0.362613667316075 +ER,KIF11,-0.597777647949212 +ER,CREBBP,-0.491854309934688 +ER,DTX3L,-0.561184561892851 +ER,HTATSF1,-0.6380449622751589 +ER,HIATL1,0.882619159311633 +ER,ICE1,-0.557092227060737 +ER,CENPO,-0.356894781417757 +ER,RBPMS2,-0.240866716363232 +ER,TSKU,0.823505234800035 +ER,ZNF146,-0.460812167929036 +ER,RHOQ,-0.305933639073811 +ER,BMI1,-0.446921916130104 +ER,ANAPC2,-0.52247335975408 +ER,CDH2,2.00252066423711 +ER,LOXL4,1.81971441683481 +ER,LPIN1,-0.499316433329183 +ER,IWS1,-0.535385318776148 +ER,RAVER1,-0.594786530625881 +ER,KLF16,-0.400971223612407 +ER,ZNF316,-0.393397341536674 +ER,TUFT1,-0.502435697780353 +ER,ATP8B2,0.420707827300331 +ER,RASSF1,-0.253715281169181 +ER,UBE2O,-0.668344776381996 +ER,LENG8,0.153508370407836 +ER,MAGEA8,-0.244597546539879 +ER,TMEM115,1.24259654604137 +ER,UBR5,-0.671182885111866 +ER,EDARADD,-0.328284684702642 +ER,UBE2S,-0.440839527539977 +ER,SRF,-0.338936777740642 +ER,ADGRL1,0.67889546163336 +ER,VMP1,1.15056808896252 +ER,PDS5A,-0.547974254070916 +ER,USP9X,-0.713931689666038 +ER,USP11,-0.671614758982123 +ER,USP32,-0.556334007337593 +ER,SETD1A,-0.359288636662919 +ER,SBNO1,-0.637354322557547 +ER,ERRFI1,-0.33802120625084 +ER,THY1,1.5013217455817 +ER,API5,-0.549127445025005 +ER,MLLT1,-0.518089287017705 +ER,HTRA2,-0.17688581132178 +ER,SEMA4C,1.24680388609143 +ER,GINS2,-0.371722011716006 +ER,HOXB9,-0.369791876512718 +ER,RPA1,-0.48503048287381 +ER,PIGS,0.88430223549414 +ER,SHB,-0.353213896263036 +ER,C1orf216,-0.443770576545919 +ER,MAPK8IP1,-0.271222980153105 +ER,RAB10,-0.454433935281357 +ER,ZNF609,-0.595952132729172 +ER,CDT1,-0.361995061858077 +ER,C6orf106,-0.438229338930193 +ER,PRPF4,-0.542451306849732 +ER,ZMYM3,-0.622863488026671 +ER,CSPG4,1.64422246908302 +ER,RQCD1,-0.384785735940807 +ER,CPNE3,-0.722388770247592 +ER,PHC2,-0.324428523734871 +ER,COG1,-0.530560213742101 +ER,STK40,-0.261575978683221 +ER,PGRMC2,0.808985526828581 +ER,YES1,-0.274285481568975 +ER,ACIN1,-0.666056592770965 +ER,PRKCD,-0.438984916547623 +ER,OXSR1,-0.524241867203298 +ER,TOMM20,0.0372358152429233 +ER,LRP1,2.42790298460135 +ER,SV2A,1.75596962676356 +ER,CAPN15,-0.523359244460267 +ER,KIF3B,-0.593058727207435 +ER,TRIM58,-0.467561951055975 +ER,PYGO2,-0.374621160657095 +ER,PGP,-0.479543536274274 +ER,CNOT11,-0.428600743124535 +ER,GOLGA2P7,-0.332096338969826 +ER,IPO13,-0.389453722993659 +ER,TSR1,-0.549663432679647 +ER,MICALL1,-0.457738452631771 +ER,EFR3A,-0.53335567580917 +ER,JAM3,1.6093052875752 +ER,OSMR,1.92449947315309 +ER,IGBP1,-0.2565381189643 +ER,TMEM185B,1.63111506309666 +ER,ARF6,-0.446342407201608 +ER,PODXL2,1.52662198530996 +ER,YIPF2,0.952365617123471 +ER,GLE1,-0.454949057570278 +ER,GNA13,-0.464178353732581 +ER,RSAD1,-0.448477188114679 +ER,TRMT10C,-0.359556912495351 +ER,ZMPSTE24,1.93367626733613 +ER,MRPS10,-0.337038004510004 +ER,DCBLD1,1.07345517406296 +ER,SLC27A4,1.46477254818762 +ER,GUCD1,-0.387914236896262 +ER,ILF3,-0.573830649140505 +ER,TRIM25,-0.637196416669014 +ER,SGPL1,1.09315957354091 +ER,TM9SF3,1.69255031161718 +ER,IDH1,-0.574031624478667 +ER,JOSD1,-0.391505381093264 +ER,TMEM101,1.20275537959725 +ER,DSG2,2.09420391633226 +ER,MDC1,-0.701215071182449 +ER,FARSB,-0.492840723711779 +ER,POMGNT2,0.912097869257366 +ER,DHFR,-0.503792041395875 +ER,MFSD5,1.12495470285248 +ER,CAV1,0.118953155742037 +ER,GPKOW,-0.446247625760447 +ER,ZC3H3,-0.477204927953175 +ER,CNPPD1,-0.12522330003211 +ER,PTPN1,-0.498630101940426 +ER,NCSTN,2.11404806582039 +ER,SHCBP1,-0.56545413045306 +ER,THAP11,-0.382612391220073 +ER,IL27RA,1.56829377040847 +ER,PDCD11,-0.186244434723735 +ER,SMC1A,-0.0918758717942288 +ER,KIRREL,1.44303711497787 +ER,CDC42SE1,-0.316825008796944 +ER,SDAD1,-0.382134804293031 +ER,TRMT12,-0.395466797082697 +ER,WDR75,-0.583935381989187 +ER,HNRNPA0,-0.467246886719671 +ER,USO1,-0.166671486144227 +ER,SIN3A,-0.542356045909998 +ER,PTGFRN,1.80783877997065 +ER,DUSP3,-0.463815757885742 +ER,TM9SF4,1.76783010718486 +ER,CNOT3,-0.441298794781613 +ER,POLRMT,0.0968912231604519 +ER,MCM10,-0.63920206496241 +ER,NOA1,-0.0975205823771887 +ER,ZFP91,-0.52186273478012 +ER,POLE,-0.632056615361364 +ER,TRAM1,1.17368729473221 +ER,SOX12,-0.305776490638209 +ER,MYO1B,-0.751936642794259 +ER,EIF2S3,-0.493695816234185 +ER,NOL10,-0.484183040323162 +ER,PLIN2,-0.385464516828791 +ER,TMEM63B,1.18056182212899 +ER,BLMH,-0.515357483693389 +ER,SLC35F6,1.30031822329029 +ER,HACD2,1.51605383750139 +ER,PPIL1,-0.309533067347265 +ER,MAST2,-0.4942114694001 +ER,PRKAR1A,-0.57577777314982 +ER,MICU1,-0.422893116729052 +ER,LMAN1,1.89415086549598 +ER,MRGBP,-0.278821625486337 +ER,SERINC1,1.62678758059853 +ER,DLGAP5,-0.537080276479079 +ER,ADNP,-0.445288421688057 +ER,SAFB2,-0.595847177815339 +ER,VGF,2.15534714236571 +ER,NSDHL,0.329423762353914 +ER,FGFRL1,0.823042248342696 +ER,FAM104A,-0.369790106073677 +ER,KLF10,-0.312145355990877 +ER,WDR5,-0.369422965772832 +ER,CHAF1A,-0.574849783104779 +ER,JAK1,-0.652734732907187 +ER,PGM1,-0.521495631523151 +ER,SRCAP,-0.747944290656051 +ER,UBE2R2,-0.385583035592314 +ER,EXTL3,1.0519061414271 +ER,ACAA2,-0.475068475229734 +ER,RAB35,-0.35539405979987 +ER,SLC7A1,1.12218338653053 +ER,PPP1R9B,-0.528327993783563 +ER,TIMELESS,-0.541958412297073 +ER,CCND2,-0.62724728532953 +ER,SMAD3,-0.435454208582005 +ER,DVL1,-0.321785842888796 +ER,PATL1,-0.4681837841385 +ER,DHX16,-0.630521679459595 +ER,RRP7A,-0.413650669397777 +ER,IL7R,1.60236728162346 +ER,NDST1,0.575163409263232 +ER,AP2B1,-0.622388838956821 +ER,FAF2,0.257508305568401 +ER,CTDSP2,-0.410547912789519 +ER,PPRC1,-0.478261665458639 +ER,SLC25A23,-0.328913548961565 +ER,GNS,2.18585409010014 +ER,CPSF3,-0.535506092656118 +ER,CTCF,-0.498894361822675 +ER,NMT1,-0.481339283602381 +ER,STEAP3,1.49823710224866 +ER,TSPYL5,-0.542693038237608 +ER,CTNNAL1,-0.459180998436876 +ER,CBX2,-0.45053692182925 +ER,PDRG1,-0.351278522845673 +ER,PRPF3,-0.510959100196448 +ER,SF3A3,-0.616506550964551 +ER,SKIV2L2,-0.732253401573733 +ER,LARS,-0.610330396453603 +ER,UNC45A,-0.618536090214932 +ER,RNF40,-0.523638479056767 +ER,GAA,2.23467339796833 +ER,LMF2,1.79946518008309 +ER,ACTR1B,-0.281135060336544 +ER,EMC1,2.47568543230897 +ER,NLGN2,0.686474524876388 +ER,VCL,2.08835657655285 +ER,PXDN,2.425129516575 +ER,PYGB,-0.588483765790142 +ER,PRIM2,-0.571596673367152 +ER,DDX39B,0.0140985946231063 +ER,STAT6,-0.4942606483658 +ER,DLG5,-0.589164243607801 +ER,CSDC2,-0.360116115114323 +ER,SRXN1,-0.331673166370637 +ER,GNG12,-0.507883810633519 +ER,SEC14L1,-0.481262759414589 +ER,NUCKS1,-0.541786012630136 +ER, SEPT11,-0.607712521447109 +ER,CCND1,-0.526191998412356 +ER,MCL1,-0.392527492032223 +ER,BHLHE40,-0.288050347152809 +ER,SEPN1,1.11628150589678 +ER,C11orf84,-0.294653058648459 +ER,SF3B1,-0.722375580924345 +ER,PNN,-0.48149211447708 +ER,TAP1,1.71714817356918 +ER,EHBP1L1,-0.669374053070186 +ER,MTPN,-0.471803205322356 +ER,MCMBP,-0.509798779218386 +ER,SF3A1,-0.60467226693305 +ER,TUBB4A,-0.648892917238196 +ER,IARS2,1.18050796705842 +ER,COL4A2,2.70326873614053 +ER,SUPT16H,-0.811420241010922 +ER,WASF2,-0.51188876908559 +ER,UNG,-0.495209175370934 +ER,NACC1,-0.390607415366129 +ER,PLAU,1.51314254458143 +ER,ADPRHL2,-0.347343719485652 +ER,LTV1,-0.435480660169993 +ER,SNX8,-0.908089138377691 +ER,EPHA2,1.30993411689479 +ER,AK2,-0.41407624524437 +ER,ADAR,-0.611106350072541 +ER,TGM2,-0.659357902406364 +ER,RNF26,0.430715368300507 +ER,CORO1C,-0.579859382862864 +ER,TOMM70A,-0.477224496607133 +ER,ALKBH5,-0.460096232729211 +ER,MSH2,-0.669099711690433 +ER,FAM171A1,0.723594902708826 +ER,IGF2R,2.25721781619036 +ER,PELP1,-0.570783653083214 +ER,ARC,-0.266828311203849 +ER,ALDH18A1,0.64913537387313 +ER,CASC3,-0.40250437859723 +ER,ENOSF1,-0.353554956272895 +ER,SLC12A7,1.33260141099067 +ER,DHX38,-0.637781887334534 +ER,TOP1,-0.626215461003505 +ER,CENPB,-0.448890824636092 +ER,GTSE1,-0.426591082419887 +ER,TMEM43,1.91259767076766 +ER,TRAF2,-0.424669933004471 +ER,RING1,-0.391744747346762 +ER,BMS1,-0.769795320125442 +ER,ETF1,-0.421433311091761 +ER,LOXL2,2.48976093144623 +ER,NRD1,-0.592358678570167 +ER,PPP1CB,-0.489557433686097 +ER,SLC16A1,2.05621645403261 +ER,MVP,-0.616406571639797 +ER,CKAP5,-0.670539986680049 +ER,CHD3,-0.535807069721143 +ER,NRAS,-0.436435985108734 +ER,MLEC,1.23015818666273 +ER,TCEB3,-0.385088107042869 +ER,PFKL,-0.545258411119203 +ER,CCND3,-0.359569149401558 +ER,C11orf24,0.477637910067456 +ER,PDIA4,2.40932364192807 +ER,ZC3H7B,-0.437943510061919 +ER,PLXNA1,1.63028387394073 +ER,MTHFD1L,-0.570954077810943 +ER,E2F1,-0.23538469188514 +ER,KPNB1,-0.60380315918933 +ER,LAMC1,2.59006666729688 +ER,NOC4L,-0.383301913216123 +ER,ANKRD52,-0.608366594949308 +ER,LDB1,-0.419582361056075 +ER,TFIP11,-0.56969723286948 +ER,POMGNT1,0.790961236957794 +ER,RRP12,-0.755836539227212 +ER,PDAP1,-0.371792039364911 +ER,ALCAM,1.70315675755252 +ER,CLTC,-0.749369742350761 +ER,CCNF,-0.29309214565208 +ER,MCM6,-0.715757749606045 +ER,TTLL12,-0.479811102251357 +ER,PRPF6,-0.587875944284904 +ER,BCL2L1,-0.31893806613316 +ER,CRIM1,1.85746627925347 +ER,SLC25A22,-0.456255534022724 +ER,UBQLN4,-0.493092225149999 +ER,RPIA,-0.351338680152461 +ER,FAM168B,-0.512087037479263 +ER,EPRS,2.00748391430652 +ER,SLC35A4,-0.27936559392314 +ER,SEC24C,-0.551912411991093 +ER,RCC2,-0.538983237543194 +ER,NGRN,-0.257045848952136 +ER,SBF1,-0.38050674328898 +ER,TAF7,-0.426750572102646 +ER,FAM129B,-0.541015392361911 +ER,ZFR,-0.604016265531159 +ER,PFKP,-0.591257799411818 +ER,JUN,-0.178490886950521 +ER,SREBF2,0.694081313854633 +ER,SQSTM1,-0.413558166747388 +ER,GART,-0.745980680877717 +ER,SERPINE1,2.0765829379938 +ER,SRPR,0.790194765179629 +ER,TSR2,-0.278660200399171 +ER,RAD23B,-0.487122379532189 +ER,EIF5AL1,-0.0756937584561644 +ER,PGK1,-0.578267541889896 +ER,AEN,-0.330418465005793 +ER,AATF,-0.493149823840953 +ER,PRKDC,-0.526473025070343 +ER,NDN,-0.387052171477437 +ER,PKMP5,-0.780000554964791 +ER,AHCYL1,-0.544571491656394 +ER,SART1,-0.505931566085483 +ER,STT3B,1.75006986151188 +ER,COL6A2,2.36584877324733 +ER,SPTBN1,-0.417723804142095 +ER,DAG1,2.29365823477537 +ER,IPO7,-0.568523931831803 +ER,TMEM214,1.01536628207957 +ER,PIEZO1,1.64915181952327 +ER,METAP1,-0.498822249362164 +ER,GALNT2,1.83854948704735 +ER,TAP2,1.94876921280466 +ER,LAMB3,1.75195965992335 +ER,UBE2L3,-0.449735453315405 +ER,ALDH1B1,-0.313220842030606 +ER,TGFB1,0.60016788099 +ER,GNL2,-0.554207624036697 +ER,NOTCH2,2.37357178748278 +ER,DUSP1,-0.110174370538817 +ER,AEBP1,2.12703851923958 +ER,TRAF7,-0.290514025994891 +ER,AHNAK,-0.0808410584784335 +ER,SLC5A6,1.55496139154259 +ER,FSCN1,-0.531382546259321 +ER,DLST,-0.531700645354198 +ER,GPC1,1.90257785663412 +ER,SDC4,1.505613146363 +ER,KIF5B,-0.567739175621836 +ER,LARP1,-0.629968703567355 +ER,FTSJ3,-0.549644437801599 +ER,CDCA5,-0.386662414652092 +ER,RARS,-0.526162027902187 +ER,ANKRD1,-0.454732692621396 +ER,WDR82,-0.535213618282696 +ER,PITPNB,-0.480397389778955 +ER,GCN1L1,-0.230667940584741 +ER,NELFB,-0.419894489342971 +ER,EIF4B,-0.389518418814251 +ER,ARF3,-0.499430690820134 +ER,CAPN2,-0.529276434397452 +ER,EFHD2,-0.424552687937233 +ER,SUMO3,-0.279926948147886 +ER,GNB1,-0.397687770539453 +ER,YTHDF1,-0.357465273376199 +ER,RBM14,-0.555655767508028 +ER,CCDC86,-0.452343799656863 +ER,PAGR1,-0.127231442870786 +ER,CXorf67,-0.564246067174208 +ER,CKAP4,1.78249449443487 +ER,SGTA,-0.399072524681588 +ER,EIF2S2,-0.394670833106207 +ER,SURF4,1.68125931328715 +ER,MFN2,-0.5792086326186 +ER,NES,0.0280829491847752 +ER,ITGA5,1.94000513968494 +ER,SET,-0.472104882866824 +ER,SLC39A14,1.94292945939966 +ER,NOL6,-0.666111328494384 +ER,KIFC1,-0.379656272846686 +ER,DAP,-0.287211036586973 +ER,HACD3,1.75158969888815 +ER,TONSL,-0.46817114250156 +ER,TPM4,-0.432968742657009 +ER,EIF3A,-0.802938761196426 +ER,SDC1,1.80800270420555 +ER,TEX261,0.756760146990957 +ER,ATP6AP1,2.15756633404275 +ER,RRP9,-0.471000209136719 +ER,DHX15,-0.65328244669067 +ER,PARP1,-0.675974704716529 +ER,TOP2A,-0.80364488624725 +ER,ADAM9,1.87018573941308 +ER,GARS,-0.451438622744404 +ER,ATN1,-0.461363712105462 +ER,KIF2C,-0.526094598427369 +ER,SLC20A1,1.023120327842 +ER,CDC42EP1,-0.30396740359525 +ER,MAT2A,-0.308881714968411 +ER,GLO1,-0.383981561575546 +ER,TOMM34,-0.371397653912187 +ER,PRRC2A,-0.522381197261588 +ER,DDX21,-0.627124605666629 +ER,PRPF8,-0.920977613991485 +ER,SLC39A1,1.45464852356726 +ER,DHX9,-0.891566214386809 +ER,INTS1,-0.623861111715474 +ER,EZR,-0.670327816374367 +ER,KDELR2,1.17595034262932 +ER,MAPRE1,-0.488143905687553 +ER,AGRN,2.41339850491341 +ER,MCAM,2.09686770766449 +ER,DDB1,-0.801422215359615 +ER,RAD21,-0.203751785880203 +ER,TPX2,-0.439400462654051 +ER,PHGDH,-0.54796076844114 +ER,COLGALT1,1.69643189806018 +ER,SLC7A5,1.65547807019252 +ER,TLN1,-0.873954264651525 +ER,HADHA,-0.461140081031854 +ER,ITGA3,2.29643195052825 +ER,SARS,-0.488914103276702 +ER,PEA15,-0.388237315845156 +ER,VARS,-0.455438728415188 +ER,CSE1L,-0.576611365654679 +ER,LMNB2,-0.597055996338128 +ER,VAT1,-0.540916622019735 +ER,SEC61A1,1.94202668885993 +ER,EIF4A3,-0.520833152201153 +ER,LRRC59,-0.446711403991759 +ER,KARS,-0.436098531672797 +ER,NRBP1,-0.488688214439086 +ER,FKBP4,-0.495166509402527 +ER,H1F0,-0.476445186621097 +ER,RANGAP1,-0.506416706943272 +ER,MYBL2,-0.274392536394257 +ER,RPN1,1.95220240616403 +ER,HNRNPU,-0.713269050532071 +ER,MCM3,-0.679985442471448 +ER,SERPINH1,2.16180103434681 +ER,MCM7,-0.598606070791206 +ER,HSPA5,2.55023500460149 +ER,PPM1G,-0.016966665298079 +ER,GHITM,-0.444518459700484 +ER,PLOD1,2.17066816565464 +ER,ILF2,-0.469545763463638 +ER,FASN,-0.8734737507455 +ER,ATP1A1,1.92299698295937 +ER,VCP,-0.688912488891354 +ER,MYH9,-0.815903923270928 +ER,IMPDH2,-0.37674553407159 +ER,MSN,-0.683726530741441 +ER,HNRNPF,-0.505241658699233 +ER,PDIA6,2.19811923697025 +ER,NCL,-0.648834673693745 +ER,ITGB1,2.22781506109027 +ER,PSAP,2.33065484716975 +ER,Blank-0001,0.286665947847636 +ER,Blank-0002,0.225860872101795 +ER,Blank-0003,0.202335202022639 +ER,Blank-0004,0.192601262237651 +ER,Blank-0005,0.43376731461354 +ER,Blank-0006,1.36178027473396 +ER,Blank-0007,0.450265948520593 +ER,Blank-0008,0.129252529237783 +ER,Blank-0009,-0.162597488845854 +ER,Blank-0010,-0.406522764333049 +ER,Blank-0011,0.028405374176314 +ER,Blank-0012,-0.138138804098988 +ER,Blank-0013,-0.107831876322161 +ER,Blank-0014,0.146754900313383 +ER,Blank-0015,-0.488342092541553 +ER,Blank-0016,-0.502082854405413 +ER,Blank-0017,0.914805383217642 +ER,Blank-0018,0.122860338372118 +ER,Blank-0019,-0.251149210399728 +ER,Blank-0020,-0.169547582104949 +ER,Blank-0021,-0.0508928430505525 +ER,Blank-0022,-0.216380793755238 +ER,Blank-0023,-0.207837418026285 +ER,Blank-0024,-0.118801746925741 +ER,Blank-0025,0.180127439761941 +ER,Blank-0026,-0.510368652940776 +ER,Blank-0027,-0.484223671522344 +ER,Blank-0028,-0.42961426652603 +ER,Blank-0029,0.598178524285193 +ER,Blank-0030,-0.491735447140591 +ER,Blank-0031,-1.16276991812826 +ER,Blank-0032,-0.0268804099044765 +ER,Blank-0033,0.0590326272589357 +ER,Blank-0034,-0.297838442120991 +ER,Blank-0035,0.0167391292549702 +ER,Blank-0036,-0.343309017286361 +ER,Blank-0037,-0.191170626031908 +ER,Blank-0038,-0.268391977435968 +ER,Blank-0039,-0.163959163401057 +ER,Blank-0040,-0.0934280981392502 +ER,Blank-0041,0.332447357745596 +ER,Blank-0042,-0.510240820293042 +ER,Blank-0043,-0.385546486849252 +ER,Blank-0044,0.337377673430039 +ER,Blank-0045,-0.207234945122794 +ER,Blank-0046,0.404961843221907 +ER,Blank-0047,-0.455750415444181 +ER,Blank-0048,0.659467647635754 +ER,Blank-0049,0.0972615753012456 +ER,Blank-0050,-0.291164629693817 +ER,Blank-0051,-0.280882465958392 +ER,Blank-0052,-0.0059751675321838 +ER,Blank-0053,0.35439557600559 +ER,Blank-0054,-0.280531725058538 +ER,Blank-0055,0.826623199600629 +ER,Blank-0056,0.296202145562116 +ER,Blank-0057,-0.1545657534802 +ER,Blank-0058,-0.508198313411915 +ER,Blank-0059,-1.17872709897329 +ER,Blank-0060,0.136664785395099 +ER,Blank-0061,-0.718337111175272 +ER,Blank-0062,1.32639004594638 +ER,Blank-0063,0.505570104985759 +ER,Blank-0064,-0.00866209405887218 +ER,Blank-0065,-0.141537437512638 +ER,Blank-0066,0.527611166033462 +ER,Blank-0067,0.264940540047528 +ER,Blank-0068,-0.566608478963528 +ER,Blank-0069,0.468035354911153 +ER,Blank-0070,0.342198969237337 +ER,Blank-0071,-0.0267803318299614 +ER,Blank-0072,-0.260365086228971 +ER,Blank-0073,0.618974876476392 +ER,Blank-0074,-1.13855035691513 +ER,Blank-0075,0.190014122255029 +ER,Blank-0076,0.526941430420895 +ER,Blank-0077,-0.440313361845662 +ER,Blank-0078,-0.222548265644013 +ER,Blank-0079,1.01130945323389 +ER,Blank-0080,0.053944329377033 +ER,Blank-0081,0.0184227141187473 +ER,Blank-0082,-0.183270113528597 +ER,Blank-0083,0.925571397945888 +ER,Blank-0084,-0.468270243655421 +ER,Blank-0085,-0.361011850094981 +ER,Blank-0086,0.239892691500352 +ER,Blank-0087,-0.0728335535586147 +ER,Blank-0088,-0.37752174317683 +ER,Blank-0089,1.12877183418517 +ER,Blank-0090,-0.552471669308131 +ER,Blank-0091,0.0354433142400374 +ER,Blank-0092,-0.0622022340631173 +ER,Blank-0093,0.56623202859377 +ER,Blank-0094,0.264057331110329 +ER,Blank-0095,-0.529071771152774 +ER,Blank-0096,0.205907730451518 +ER,Blank-0097,-0.156376452579865 +ER,Blank-0098,0.195323028174634 +ER,Blank-0099,-0.0157183946223168 +ER,Blank-0100,0.0921764918545333 +ER,Blank-0101,0.136586049376374 +ER,Blank-0102,-0.595766680045877 +ER,Blank-0103,-0.168463880089083 +ER,Blank-0104,-0.0829082719962885 +ER,Blank-0105,0.146371450821375 +ER,Blank-0106,-0.152838580858969 +ER,Blank-0107,0.548539428884828 +ER,Blank-0108,0.00956139778549524 +ER,Blank-0109,0.188922144909877 +ER,Blank-0110,0.60494101736457 +ER,Blank-0111,0.133937827540579 +ER,Blank-0112,-0.0375106652666445 +ER,Blank-0113,-0.112010106737743 +ER,Blank-0114,-0.486082646711839 +ER,Blank-0115,-0.342338690737533 +ER,Blank-0116,0.720146742874654 +ER,Blank-0117,-0.19736476620745 +ER,Blank-0118,-0.303618077222658 +ER,Blank-0119,0.537923051424737 +ER,Blank-0120,-0.319454691916436 +ER,Blank-0121,1.31663354671315 +ER,Blank-0122,0.583021571580071 +ER,Blank-0123,-0.268519868476673 +ER,Blank-0124,-0.236417262333049 +ER,Blank-0125,-0.0542875030525882 +ER,Blank-0126,1.14470582106161 +ER,Blank-0127,-0.530253693166267 +ER,Blank-0128,0.720247993815333 +ER,Blank-0129,-0.209164409083211 +ER,Blank-0130,-0.0337776894766375 +ER,Blank-0131,0.734317931183172 +ER,Blank-0132,-0.333722032513457 +ER,Blank-0133,0.851187351232684 +ER,Blank-0134,0.416489312925993 +ER,Blank-0135,0.343285240578662 +ER,Blank-0136,0.158032075480421 +ER,Blank-0137,-0.0670332786540619 +ER,Blank-0138,-1.00865266865187 +ER,Blank-0139,-0.298568322936209 +ER,Blank-0140,-0.151235033179527 +ER,Blank-0141,-0.245320000885269 +ER,Blank-0142,-0.235961434594053 +ER,Blank-0143,0.360557342881083 +ER,Blank-0144,0.125994508448765 +ER,Blank-0145,0.19752823554462 +ER,Blank-0146,0.840594154675901 +ER,Blank-0147,0.0582213900210606 +ER,Blank-0148,-0.197384423981279 +ER,Blank-0149,1.53887164036711 +ER,Blank-0150,-0.268450361315585 +ER,Blank-0151,-0.694370282656842 +ER,Blank-0152,-0.000108102780632624 +ER,Blank-0153,0.124512509227116 +ER,Blank-0154,0.48864200741596 +ER,Blank-0155,0.358404253783827 +ER,Blank-0156,-0.560449769831555 +ER,Blank-0157,-0.162327456604869 +ER,Blank-0158,0.275329121074521 +ER,Blank-0159,-0.338914250131645 +ER,Blank-0160,-0.128010427644559 +ER,Blank-0161,0.029676148944726 +ER,Blank-0162,-0.276972375449524 +ER,Blank-0163,-0.0953090370093033 +ER,Blank-0164,0.314633598381172 +ER,Blank-0165,-0.386222827097152 +ER,Blank-0166,0.233673542240402 +ER,Blank-0167,-0.577457624507855 +ER,Blank-0168,0.350503861601501 +ER,Blank-0169,0.00617426681199513 +ER,Blank-0170,0.0382106765205435 +ER,Blank-0171,0.546141324590965 +ER,Blank-0172,-0.347601554947825 +ER,Blank-0173,0.210146303326035 +ER,Blank-0174,-0.125260986140935 +ER,Blank-0175,0.432698738531495 +ER,Blank-0176,0.0483092984677623 +ER,Blank-0177,0.0899779299094441 +ER,Blank-0178,0.473601214781937 +ER,Blank-0179,-0.200724442866436 +ER,Blank-0180,0.0736629938449792 +ER,Blank-0181,0.266728633949669 +ER,Blank-0182,0.153873255350094 +ER,Blank-0183,-0.476292793172699 +ER,Blank-0184,-0.295728702244942 +ER,Blank-0185,0.0138169251137725 +ER,Blank-0186,0.562576556517308 +ER,Blank-0187,-0.106926864491954 +ER,Blank-0188,0.663085856809359 +ER,Blank-0189,0.209942488105314 +ER,Blank-0190,0.28096416664017 +ER,Blank-0191,0.771408242009872 +ER,Blank-0192,0.125081711942082 +ER,Blank-0193,-0.072307939839748 +ER,Blank-0194,-0.48625453597612 +ER,Blank-0195,-0.264375136220867 +ER,Blank-0196,0.201213091389542 +ER,Blank-0197,-0.297962011219684 +ER,Blank-0198,0.0726600354128633 +ER,Blank-0199,-0.558174902788665 +ER,Blank-0200,0.272474893658398 +ER,Blank-0201,0.8158789933085 +ER,Blank-0202,-0.269452914878478 +ER,Blank-0203,-0.0904333898629161 +ER,Blank-0204,0.0063375355244985 +ER,Blank-0205,0.332546420832798 +ER,Blank-0206,-0.549715179623109 +ER,Blank-0207,-0.229329567647249 +ER,Blank-0208,0.341563885089349 +ER,Blank-0209,0.547132609794282 +ER,Blank-0210,0.0777079949415067 +ER,Blank-0211,-0.0426852237220619 +ER,Blank-0212,0.444522208412133 +ER,Blank-0213,-0.191101725901647 +ER,Blank-0214,-0.524336415010682 +ER,Blank-0215,0.248972348521005 +ER,Blank-0216,0.0101099126001718 +ER,Blank-0217,-0.0643778959956189 +ER,Blank-0218,-0.0738737396861914 +ER,Blank-0219,0.582734241512721 +ER,Blank-0220,-0.0315440012769088 +ER,Blank-0221,-0.0621176073135363 +ER,Blank-0222,-0.42676584746294 +ER,Blank-0223,-0.12532261789292 +ER,Blank-0224,0.00357635928421111 +ER,Blank-0225,0.415423552219347 +ER,Blank-0226,0.100437786766888 +ER,Blank-0227,0.255326362856827 +ER,Blank-0228,1.294372708621 +ER,Blank-0229,0.0860313977693786 +ER,Blank-0230,0.38934314336607 +ER,Blank-0231,1.05251418365217 +ER,Blank-0232,0.0937190986282971 +ER,Blank-0233,0.168981686098606 +ER,Blank-0234,0.191451775328289 +ER,Blank-0235,0.309594331721609 +ER,Blank-0236,-0.265681740698721 +ER,Blank-0237,-0.634651447949747 +ER,Blank-0238,0.80523396462101 +ER,Blank-0239,-0.0616235252090817 +ER,Blank-0240,-0.369308739565959 +ER,Blank-0241,0.0211829034559824 +ER,Blank-0242,-0.349967807902065 +ER,Blank-0243,0.193948229014955 +ER,Blank-0244,-0.30380668988565 +ER,Blank-0245,-0.762391058645145 +ER,Blank-0246,0.296765316459295 +ER,Blank-0247,0.398265835300973 +ER,Blank-0248,-0.194311979414058 +ER,Blank-0249,-0.0712728382289828 +ER,Blank-0250,-0.160376760890854 +ER,Blank-0251,0.338623422715302 +ER,Blank-0252,0.36671493576812 +ER,Blank-0253,-0.399643568250032 +ER,Blank-0254,-0.00752455423936423 +ER,Blank-0255,0.377172456841992 +ER,Blank-0256,-0.480421374079277 +ER,Blank-0257,-0.473897563617754 +ER,Blank-0258,0.399666764365258 +ER,Blank-0259,1.79611183029484 +ER,Blank-0260,0.864171456911093 +ER,Blank-0261,0.100562078355544 +ER,Blank-0262,0.452395735089589 +ER,Blank-0263,-0.0769705508137861 +ER,Blank-0264,-0.585049837847911 +ER,Blank-0265,1.08416484141107 +ER,Blank-0266,0.197030395339492 +ER,Blank-0267,-0.191612882626143 +ER,Blank-0268,-0.46608818370915 +ER,Blank-0269,-0.0321102605115414 +ER,Blank-0270,0.217813235165797 +ER,Blank-0271,-0.141567868512299 +ER,Blank-0272,0.342110535174376 +ER,Blank-0273,-0.176754496901239 +ER,Blank-0274,0.201620309408094 +ER,Blank-0275,-0.257704233014194 +ER,Blank-0276,-0.574860994868485 +ER,Blank-0277,-0.00739511371357285 +ER,Blank-0278,-0.13687949568836 +ER,Blank-0279,-0.483987591079468 +ER,Blank-0280,0.214136101389364 +ER,Blank-0281,-0.263983513256789 +ER,Blank-0282,-0.0629671282059411 +ER,Blank-0283,0.0352941196902353 +ER,Blank-0284,0.133394295540871 +ER,Blank-0285,0.114520501608101 +ER,Blank-0286,-0.130057662640112 +ER,Blank-0287,-0.0337688955645528 +ER,Blank-0288,0.375234815496365 +ER,Blank-0289,-0.0330479940471435 +ER,Blank-0290,-0.509642882854416 +ER,Blank-0291,-0.147027215862594 +ER,Blank-0292,0.0471066088540814 +ER,Blank-0293,-0.425865178160443 +ER,Blank-0294,-0.134139544418585 +ER,Blank-0295,-0.114680279614885 +ER,Blank-0296,0.550062049807221 +ER,Blank-0297,0.0700395138363774 +ER,Blank-0298,-0.106573662327914 +ER,Blank-0299,-0.157826750746254 +ER,Blank-0300,0.369961038650226 +ER,Blank-0301,-0.313858174844872 +ER,Blank-0302,-0.0169833226811963 +ER,Blank-0303,0.34705813314246 +ER,Blank-0304,-0.284862386923062 +ER,Blank-0305,0.0491243631461093 +ER,Blank-0306,-0.0440778929127008 +ER,Blank-0307,0.256769367371405 +ER,Blank-0308,0.00558683818399308 +ER,Blank-0309,0.594120249501737 +ER,Blank-0310,-1.06639837335005 +ER,Blank-0311,0.605377759552941 +ER,Blank-0312,-0.368210773542197 +ER,Blank-0313,-0.621911875924876 +ER,Blank-0314,0.831253405434849 +ER,Blank-0315,-0.108695057243541 +ER,Blank-0316,0.600218099816589 +ER,Blank-0317,1.0126466060898 +ER,Blank-0318,0.092146890173514 +ER,Blank-0319,-0.514096259584691 +ER,Blank-0320,0.18654651560522 +ER,Blank-0321,-0.949933684539786 +ER,Blank-0322,-0.589257452801402 +ER,Blank-0323,0.268648834888054 +ER,Blank-0324,0.731369419772485 +ER,Blank-0325,0.420153637432711 +ER,Blank-0326,-0.318832461878058 +ER,Blank-0327,-0.0948428058131855 +ER,Blank-0328,0.568320025133978 +ER,Blank-0329,1.18380803820142 +ER,Blank-0330,0.0532039826512812 +ER,Blank-0331,0.0492304295962875 +ER,Blank-0332,0.00146083431821439 +ER,Blank-0333,0.188510713782591 +ER,Blank-0334,-0.218972030109993 +ER,Blank-0335,-0.358453039428965 +ER,Blank-0336,-0.0312529974518198 +ER,Blank-0337,-0.198209270351863 +ER,Blank-0338,-0.279424553105629 +ER,Blank-0339,0.0388977110504685 +ER,Blank-0340,-0.52681499938174 +ER,Blank-0341,0.196425521595506 +ER,Blank-0342,-0.240746695192841 +ER,Blank-0343,-0.343214635019589 +ER,Blank-0344,-1.02371253275902 +ER,Blank-0345,0.889283602283496 +ER,Blank-0346,-0.0640788127107365 +ER,Blank-0347,-0.00940606457104255 +ER,Blank-0348,0.560229091570838 +ER,Blank-0349,0.0826852497201728 +ER,Blank-0350,-0.564531091043127 +ER,Blank-0351,-0.226810934708162 +ER,Blank-0352,-0.00320769126769672 +ER,Blank-0353,-0.167665222478786 +ER,Blank-0354,-0.351974780132766 +ER,Blank-0355,0.497694321811305 +ER,Blank-0356,0.22734352159443 +ER,Blank-0357,0.278579165780901 +ER,Blank-0358,0.0564539958122887 +ER,Blank-0359,1.1558255869593 +ER,Blank-0360,0.236433908662277 +ER,Blank-0361,0.381775459302567 +ER,Blank-0362,-0.168361703120124 +ER,Blank-0363,0.266933835995355 +ER,Blank-0364,-0.626262770143182 +ER,Blank-0365,-0.406106620560196 +ER,Blank-0366,0.437856696579587 +ER,Blank-0367,0.289783167466555 +ER,Blank-0368,-0.165317580019298 +ER,Blank-0369,0.259643599616451 +ER,Blank-0370,-0.431394233425621 +ER,Blank-0371,-0.1583695925997 +ER,Blank-0372,-0.057780772018167 +ER,Blank-0373,-0.302282364068035 +ER,Blank-0374,0.27751761123062 +ER,Blank-0375,1.12190560707331 +ER,Blank-0376,-0.0872211193526784 +ER,Blank-0377,-0.702004173349173 +ER,Blank-0378,0.681420721828984 +ER,Blank-0379,-0.282506560843077 +ER,Blank-0380,0.345843662150026 +ER,Blank-0381,-0.407704316081751 +ER,Blank-0382,-0.483858175282484 +ER,Blank-0383,0.288956291168336 +ER,Blank-0384,0.667105906269115 +ER,Blank-0385,-0.355370022706242 +ER,Blank-0386,-0.0194381523484759 +ER,Blank-0387,0.456586825667668 +ER,Blank-0388,0.222684193656859 +ER,Blank-0389,-0.0493846240884894 +ER,Blank-0390,-0.109972716827549 +ER,Blank-0391,-0.508507255516484 +ER,Blank-0392,0.38438553605617 +ER,Blank-0393,-0.316198668307686 +ER,Blank-0394,-0.369995245795092 +ER,Blank-0395,0.400161599234148 +ER,Blank-0396,0.595864008142925 +ER,Blank-0397,-0.310830879821999 +ER,Blank-0398,0.0464476582816634 +ER,Blank-0399,0.981023093458566 +ER,Blank-0400,-0.411040927034737 +ER,Blank-0401,0.748992777722106 +ER,Blank-0402,0.360663370729612 +ER,Blank-0403,0.40409046233642 +ER,Blank-0404,1.11973994813215 +ER,Blank-0405,0.321173461489382 +ER,Blank-0406,0.561433860101183 +ER,Blank-0407,0.464432790971635 +ER,Blank-0408,0.0844894139839557 +ER,Blank-0409,-0.323083491970318 +ER,Blank-0410,-0.294742140715067 +ER,Blank-0411,0.238621024228166 +ER,Blank-0412,0.618105231294743 +ER,Blank-0413,-0.168994639560068 +ER,Blank-0414,1.03450925391387 +ER,Blank-0415,-0.625987192567554 +ER,Blank-0416,0.335456402219115 +ER,Blank-0417,0.371053687386345 +ER,Blank-0418,0.597639482446409 +ER,Blank-0419,0.0404129133858256 +ER,Blank-0420,-0.175780929035361 +ER,Blank-0421,-0.250850162928086 +ER,Blank-0422,-0.285369477617547 +ER,Blank-0423,0.18185528257093 +ER,Blank-0424,0.908890785071555 +ER,Blank-0425,0.00293103306583829 +ER,Blank-0426,-0.169966051180083 +ER,Blank-0427,-0.109003750794885 +ER,Blank-0428,0.196738348421406 +ER,Blank-0429,-0.429875541163139 +ER,Blank-0430,0.526521813440867 +ER,Blank-0431,0.058939169150936 +ER,Blank-0432,0.816591030347277 +ER,Blank-0433,0.158119374028984 +ER,Blank-0434,0.921996312681347 +ER,Blank-0435,-0.498262983932509 +ER,Blank-0436,-0.163010866375063 +ER,Blank-0437,0.329461055538544 +ER,Blank-0438,-0.233622691995229 +ER,Blank-0439,-0.590339661810852 +ER,Blank-0440,0.543616132388977 +ER,Blank-0441,-0.027847889961991 +ER,Blank-0442,0.0241980193849383 +ER,Blank-0443,0.306244986837239 +ER,Blank-0444,0.0283745281025875 +ER,Blank-0445,-0.266638727871755 +ER,Blank-0446,-0.0838767174549376 +ER,Blank-0447,0.403959860722401 +ER,Blank-0448,0.198356544346538 +ER,Blank-0449,-0.21668688771154 +ER,Blank-0450,1.03628783445249 +ER,Blank-0451,-0.319841589552249 +ER,Blank-0452,-0.139171278501259 +ER,Blank-0453,-0.398970582419944 +ER,Blank-0454,1.11294032378532 +ER,Blank-0455,-0.486877554316355 +ER,Blank-0456,0.834688106992048 +ER,Blank-0457,-0.00549379640722437 +ER,Blank-0458,0.0739108450739409 +ER,Blank-0459,-0.0187729706529532 +ER,Blank-0460,-0.0744087270395895 +ER,Blank-0461,0.455863572066417 +ER,Blank-0462,-0.347344059245825 +ER,Blank-0463,0.21760592308821 +ER,Blank-0464,-0.308173847766837 +ER,Blank-0465,0.570420788175109 +ER,Blank-0466,-0.236148345518067 +ER,Blank-0467,-0.566317644713895 +ER,Blank-0468,-0.405125189805003 +ER,Blank-0469,0.382091351317661 +ER,Blank-0470,-0.147293169058664 +ER,Blank-0471,-0.628485850273173 +ER,Blank-0472,0.442985099551509 +ER,Blank-0473,-0.79699362430605 +ER,Blank-0474,0.712252367587607 +ER,Blank-0475,-0.200566055491631 +ER,Blank-0476,0.0166597829686759 +ER,Blank-0477,0.326013757562931 +ER,Blank-0478,-0.667129201772719 +ER,Blank-0479,0.812574343533113 +ER,Blank-0480,0.0567320894881277 +ER,Blank-0481,0.30979344207382 +ER,Blank-0482,0.0173017434172461 +ER,Blank-0483,-0.113049881663966 +ER,Blank-0484,-0.479649689465258 +ER,Blank-0485,-0.0968929174764836 +ER,Blank-0486,-0.860765901381486 +ER,Blank-0487,0.313165755250422 +ER,Blank-0488,0.437942479085757 +ER,Blank-0489,0.229660758666821 +ER,Blank-0490,0.275958680003757 +ER,Blank-0491,0.521479525933602 +ER,Blank-0492,-0.131645979137519 +ER,Blank-0493,0.199268269225191 +ER,Blank-0494,1.02584269015687 +ER,Blank-0495,0.0787422362158206 +ER,Blank-0496,-0.679889417977129 +ER,Blank-0497,-0.264914244436141 +ER,Blank-0498,0.8630575714972 +ER,Blank-0499,0.148347708291386 +ER,Blank-0500,1.27572855348216 +ER,Blank-0501,-0.045175810447308 +ER,Blank-0502,0.447662249382796 +ER,Blank-0503,0.028554145339692 +ER,Blank-0504,-0.773518261999972 +ER,Blank-0505,0.257073044398815 +ER,Blank-0506,-0.0615586303241282 +ER,Blank-0507,-0.411540312655883 +ER,Blank-0508,0.548009310467918 +ER,Blank-0509,-0.479168907427868 +ER,Blank-0510,-0.170191112092913 +ER,Blank-0511,-0.644086467794085 +ER,Blank-0512,0.549511620295484 +ER,Blank-0513,-0.157580697388049 +ER,Blank-0514,-0.0680449771884509 +ER,Blank-0515,-0.263310312820842 +ER,Blank-0516,-0.224134582405788 +ER,Blank-0517,0.441224317642298 +ER,Blank-0518,-0.656857504335074 +ER,Blank-0519,-0.526013947857671 +ER,Blank-0520,0.117876661753164 +ER,Blank-0521,-0.430103221744759 +ER,Blank-0522,0.144461490918299 +ER,Blank-0523,-0.0675715508032194 +ER,Blank-0524,0.30324103218511 +ER,Blank-0525,-0.145458270887934 +ER,Blank-0526,-1.08368508090292 +ER,Blank-0527,0.0216414408927797 +ER,Blank-0528,1.0297145301314 +ER,Blank-0529,-0.503289291658396 +ER,Blank-0530,0.293281221663147 +ER,Blank-0531,-0.112517160064595 +ER,Blank-0532,0.427926862556479 +ER,Blank-0533,-0.232507911861949 +ER,Blank-0534,0.56626544946429 +ER,Blank-0535,0.884612336078755 +ER,Blank-0536,-0.334475102625234 +ER,Blank-0537,-0.33403955718492 +ER,Blank-0538,-0.458978376106376 +ER,Blank-0539,0.011401397373552 +ER,Blank-0540,-0.327689879339511 +ER,Blank-0541,0.194397239447951 +ER,Blank-0542,0.121927068167689 +ER,Blank-0543,-0.16871495564176 +ER,Blank-0544,-0.410804577432594 +ER,Blank-0545,0.087075240841942 +ER,Blank-0546,0.729458096862076 +ER,Blank-0547,-0.358141898819598 +ER,Blank-0548,-0.14785931702281 +ER,Blank-0549,0.343702631645933 +ER,Blank-0550,-0.0250178228244945 +ER,Blank-0551,-0.0676653798916258 +ER,Blank-0552,-0.733351508857052 +ER,Blank-0553,0.247399884422821 +ER,Blank-0554,0.74651045064183 +ER,Blank-0555,0.441451663825056 +ER,Blank-0556,-0.0946951650731872 +ER,Blank-0557,-0.127471086779266 +ER,Blank-0558,-0.501141599829499 +ER,Blank-0559,0.0178033653052392 +ER,Blank-0560,0.373041216431735 +ER,Blank-0561,0.218875918767519 +ER,Blank-0562,0.122520806710759 +ER,Blank-0563,-0.0540418621013087 +ER,Blank-0564,1.04395917462553 +ER,Blank-0565,-0.0666403272707545 +ER,Blank-0566,-0.432472695564318 +ER,Blank-0567,-0.630263322572295 +ER,Blank-0568,0.0813745744490306 +ER,Blank-0569,0.0188284390474773 +ER,Blank-0570,0.75822243213241 +ER,Blank-0571,0.0786114402234484 +ER,Blank-0572,0.0638479814009202 +ER,Blank-0573,-0.160184177058823 +ER,Blank-0574,-0.0766564713432281 +ER,Blank-0575,0.384145722861904 +ER,Blank-0576,-0.144555209937632 +ER,Blank-0577,-0.413956291624658 +ER,Blank-0578,-0.42322742783665 +ER,Blank-0579,-0.206815465248077 +ER,Blank-0580,0.0660901342341758 +ER,Blank-0581,0.128570693822566 +ER,Blank-0582,-0.117589809842366 +ER,Blank-0583,0.425435376903271 +ER,Blank-0584,-0.530768197957808 +ER,Blank-0585,-0.971221557909876 +ER,Blank-0586,-0.0259414472865758 +ER,Blank-0587,0.0343960010013441 +ER,Blank-0588,1.02210334519233 +ER,Blank-0589,-0.0344162631874191 +ER,Blank-0590,0.354933555834164 +ER,Blank-0591,-0.189062269706446 +ER,Blank-0592,-0.418298789786201 +ER,Blank-0593,-0.0203469806575714 +ER,Blank-0594,0.0591831301346192 +ER,Blank-0595,-0.222871046151448 +ER,Blank-0596,0.41592388792576 +ER,Blank-0597,-0.578139687041974 +ER,Blank-0598,-0.134710030365284 +ER,Blank-0599,0.373363598394107 +ER,Blank-0600,0.66145604685637 +ER,Blank-0601,0.0473340238778359 +ER,Blank-0602,0.281183233114386 +ER,Blank-0603,0.287091488619413 +ER,Blank-0604,1.06838862537119 +ER,Blank-0605,-0.0330999100202904 +ER,Blank-0606,-0.183631285401202 +ER,Blank-0607,0.735037266268612 +ER,Blank-0608,-0.251024311211808 +ER,Blank-0609,-0.402283474254436 +ER,Blank-0610,0.901599294543171 +ER,Blank-0611,-0.126919168208924 +ER,Blank-0612,-0.267230193560838 +ER,Blank-0613,-0.169314091988875 +ER,Blank-0614,0.142634430884303 +ER,Blank-0615,-0.357641204775364 +ER,Blank-0616,-0.182180074201511 +ER,Blank-0617,0.433221910922437 +ER,Blank-0618,0.185779027396406 +ER,Blank-0619,-0.908841649191626 +ER,Blank-0620,0.363373552575701 +ER,Blank-0621,-0.234923406121503 +ER,Blank-0622,-0.62817250765154 +ER,Blank-0623,1.31099096073465 +ER,Blank-0624,-0.324793235705906 +ER,Blank-0625,-0.271713342404848 +ER,Blank-0626,-0.319041241472483 +ER,Blank-0627,0.567418285296226 +ER,Blank-0628,-0.0582022305755977 +ER,Blank-0629,-0.581524088909904 +ER,Blank-0630,0.287069454109721 +ER,Blank-0631,0.235251537397408 +ER,Blank-0632,1.03371914672979 +ER,Blank-0633,1.00090111469849 +ER,Blank-0634,0.269541348760951 +ER,Blank-0635,0.207408022262766 +ER,Blank-0636,0.466858338977324 +ER,Blank-0637,-0.445143394396573 +ER,Blank-0638,0.112891404381811 +ER,Blank-0639,-0.281381818602395 +ER,Blank-0640,-0.0193610622694122 +ER,Blank-0641,-0.0102978851363414 +ER,Blank-0642,-0.154766728237944 +ER,Blank-0643,-0.663367504965582 +ER,Blank-0644,-0.0360721437132924 +ER,Blank-0645,-0.0864604184278327 +ER,Blank-0646,-0.125253023303858 +ER,Blank-0647,0.276903942479108 +ER,Blank-0648,-0.317695511296595 +ER,Blank-0649,0.155832090518171 +ER,Blank-0650,0.622511246557901 +ER,Blank-0651,0.400734434960197 +ER,Blank-0652,0.338734830075633 +ER,Blank-0653,0.809350769746851 +ER,Blank-0654,0.772504902386126 +ER,Blank-0655,0.158583786497845 +ER,Blank-0656,-0.54395820364902 +ER,Blank-0657,-0.0290909181271186 +ER,Blank-0658,-0.245025840449283 +ER,Blank-0659,0.500853960559418 +ER,Blank-0660,0.41809377361533 +ER,Blank-0661,-0.418040595385028 +ER,Blank-0662,0.306598369286546 +ER,Blank-0663,-0.572785425128766 +ER,Blank-0664,-0.176030235964564 +ER,Blank-0665,0.268136795457969 +ER,Blank-0666,-0.0152455067151519 +ER,Blank-0667,-0.393471393953861 +ER,Blank-0668,0.102502842497791 +ER,Blank-0669,0.377314432404865 +ER,Blank-0670,0.487061095542114 +ER,Blank-0671,-0.303645021273317 +ER,Blank-0672,-0.351136802913371 +ER,Blank-0673,0.339181035724695 +ER,Blank-0674,-0.130633573647957 +ER,Blank-0675,-0.259440828075047 +ER,Blank-0676,-0.165490071197731 +ER,Blank-0677,-0.123561392469553 +ER,Blank-0678,-0.569417593292079 +ER,Blank-0679,0.0240921675825574 +ER,Blank-0680,-0.120415532879377 +ER,Blank-0681,0.156250050618456 +ER,Blank-0682,-0.196150713883399 +ER,Blank-0683,0.666287063086881 +ER,Blank-0684,0.492166262172662 +ER,Blank-0685,0.00835637043691378 +ER,Blank-0686,0.0507373585427417 +ER,Blank-0687,0.121788310818548 +ER,Blank-0688,1.01447278857407 +ER,Blank-0689,-0.53459905363143 +ER,Blank-0690,0.376658027235448 +ER,Blank-0691,-0.0374556883720925 +ER,Blank-0692,-0.355374658533427 +ER,Blank-0693,-0.0937194663538908 +ER,Blank-0694,-0.055867215458612 +ER,Blank-0695,0.599840989584929 +ER,Blank-0696,0.0142124776035441 +ER,Blank-0697,-0.0502962600294543 +ER,Blank-0698,0.540668333407316 +ER,Blank-0699,0.76110647170623 +ER,Blank-0700,0.188634858937663 +ER,Blank-0701,0.171806967306823 +ER,Blank-0702,0.0384498268083912 +ER,Blank-0703,-0.20617073630414 +ER,Blank-0704,0.201800866272265 +ER,Blank-0705,-0.00748743366700996 +ER,Blank-0706,-0.15316422640359 +ER,Blank-0707,0.209223025337012 +ER,Blank-0708,0.351121286724076 +ER,Blank-0709,0.126922561043251 +ER,Blank-0710,-0.369421331874797 +ER,Blank-0711,-0.094343038382025 +ER,Blank-0712,0.203675114550159 +ER,Blank-0713,-0.385124350407547 +ER,Blank-0714,0.412639246098906 +ER,Blank-0715,0.840062861253859 +ER,Blank-0716,0.298750819822126 +ER,Blank-0717,-0.267108921011761 +ER,Blank-0718,0.162320967156338 +ER,Blank-0719,0.208492451285841 +ER,Blank-0720,-0.0447553770664016 +ER,Blank-0721,-0.4164211699267 +ER,Blank-0722,0.184367744181422 +ER,Blank-0723,-0.220460970793842 +ER,Blank-0724,0.191012507680026 +ER,Blank-0725,0.2474891746878 +ER,Blank-0726,0.770465898806461 +ER,Blank-0727,-0.0980024590725428 +ER,Blank-0728,0.319602986078785 +ER,Blank-0729,-0.182419066544428 +ER,Blank-0730,-0.432093504386427 +ER,Blank-0731,-0.249677519686078 +ER,Blank-0732,-0.0992148886607804 +ER,Blank-0733,-0.117286036887076 +ER,Blank-0734,-0.267026051642905 +ER,Blank-0735,-0.0155468326452706 +ER,Blank-0736,0.0623288195074505 +ER,Blank-0737,-0.211577750414294 +ER,Blank-0738,0.497909274033009 +ER,Blank-0739,-0.0942614176212785 +ER,Blank-0740,0.1953700679372 +ER,Blank-0741,0.0633250638551068 +ER,Blank-0742,-0.0423192339158681 +ER,Blank-0743,-0.226023029481659 +ER,Blank-0744,0.326201884664908 +ER,Blank-0745,-0.343417311012209 +ER,Blank-0746,0.250044654824719 +ER,Blank-0747,0.532752707438289 +ER,Blank-0748,0.374724271236546 +ER,Blank-0749,-0.682081518393109 +ER,Blank-0750,0.488474532457203 +ER,Blank-0751,0.00280842559856647 +ER,Blank-0752,-0.0930617459541423 +ER,Blank-0753,0.460932552683233 +ER,Blank-0754,0.575681449308072 +ER,Blank-0755,-0.62883091865904 +ER,Blank-0756,0.644866234551955 +ER,Blank-0757,0.0476093855362452 +ER,Blank-0758,-0.468108352490769 +ER,Blank-0759,0.068388332170174 +ER,Blank-0760,-0.378953407122508 +ER,Blank-0761,-0.0942309048603263 +ER,Blank-0762,0.168306393164042 +ER,Blank-0763,-0.156978982191209 +ER,Blank-0764,-0.171440497782866 +ER,Blank-0765,-0.532986601518316 +ER,Blank-0766,0.152217314388198 +ER,Blank-0767,-0.234826303598548 +ER,Blank-0768,0.26609381448858 +ER,Blank-0769,0.493353538030994 +ER,Blank-0770,-0.326689062347361 +ER,Blank-0771,-0.0995559936371473 +ER,Blank-0772,-0.113727087405089 +ER,Blank-0773,0.116871016287881 +ER,Blank-0774,-0.15475134366355 +ER,Blank-0775,0.23657228882554 +ER,Blank-0776,-0.950238773879347 +ER,Blank-0777,-0.148539160198292 +ER,Blank-0778,0.0726576619689215 +ER,Blank-0779,0.875507867132237 +ER,Blank-0780,0.791821770483479 +ER,Blank-0781,0.188197201958381 +ER,Blank-0782,-0.564765935902838 +ER,Blank-0783,0.317456314259656 +ER,Blank-0784,-0.0501093219106251 +ER,Blank-0785,-0.621870252150401 +ER,Blank-0786,-0.401907549160287 +ER,Blank-0787,0.456351750789113 +ER,Blank-0788,-0.653082859509859 +ER,Blank-0789,-0.605497086622279 +ER,Blank-0790,-0.741152140181587 +ER,Blank-0791,0.399570442119891 +ER,Blank-0792,-0.56214299906657 +ER,Blank-0793,-0.377154461958249 +ER,Blank-0794,0.345646637776845 +ER,Blank-0795,-0.239591151188874 +ER,Blank-0796,0.638666625513721 +ER,Blank-0797,-0.689420778873738 +ER,Blank-0798,-0.187384159155717 +ER,Blank-0799,0.021413359759826 +ER,Blank-0800,0.261455505284225 +ER,Blank-0801,-0.111608463620672 +ER,Blank-0802,0.254411081954248 +ER,Blank-0803,-0.453473072118218 +ER,Blank-0804,0.153854632587333 +ER,Blank-0805,1.47651540962421 +ER,Blank-0806,0.0521501970556619 +ER,Blank-0807,0.546302094470363 +ER,Blank-0808,-0.53723525358043 +ER,Blank-0809,0.461700549444038 +ER,Blank-0810,-0.452121335894339 +ER,Blank-0811,-0.444503261652022 +ER,Blank-0812,-0.62374824114626 +ER,Blank-0813,-0.0734637024874348 +ER,Blank-0814,0.362321236811425 +ER,Blank-0815,0.108099106581689 +ER,Blank-0816,0.00404986918970591 +ER,Blank-0817,0.811710547619805 +ER,Blank-0818,0.219463519030699 +ER,Blank-0819,0.132476424609401 +ER,Blank-0820,0.0750183614777532 +ER,Blank-0821,0.226406667485439 +ER,Blank-0822,-0.496778789077285 +ER,Blank-0823,0.243278194173603 +ER,Blank-0824,0.0780779226699108 +ER,Blank-0825,-0.0725769720041883 +ER,Blank-0826,0.137703478197061 +ER,Blank-0827,1.19284484624522 +ER,Blank-0828,0.501510724113369 +ER,Blank-0829,-0.202560598119428 +ER,Blank-0830,0.391767520548145 +ER,Blank-0831,0.479339941160849 +ER,Blank-0832,-0.617611556286156 +ER,Blank-0833,-0.285991097662351 +ER,Blank-0834,-0.149994356591209 +ER,Blank-0835,-0.702398061279202 +ER,Blank-0836,-0.136852762974239 +ER,Blank-0837,0.342906484236375 +ER,Blank-0838,-0.109703414336819 +ER,Blank-0839,-0.0805417828737087 +ER,Blank-0840,0.840462297533977 +ER,Blank-0841,0.418896504980399 +ER,Blank-0842,0.069776783713892 +ER,Blank-0843,-0.163223803104207 +ER,Blank-0844,0.739811347847347 +ER,Blank-0845,-0.189134182424534 +ER,Blank-0846,0.114404063881411 +ER,Blank-0847,0.000828495824880423 +ER,Blank-0848,0.297577635992812 +ER,Blank-0849,-0.177635747281287 +ER,Blank-0850,-0.437885464977199 +ER,Blank-0851,-0.258338791156408 +ER,Blank-0852,-0.827271110028915 +ER,Blank-0853,-0.0802441639972374 +ER,Blank-0854,-0.209815249449908 +ER,Blank-0855,1.1288863450158 +ER,Blank-0856,-0.153448893119449 +ER,Blank-0857,0.234189614582303 +ER,Blank-0858,0.335060627663242 +ER,Blank-0859,0.0574391960585618 +ER,Blank-0860,-0.346653248676205 +ER,Blank-0861,0.242436429654376 +ER,Blank-0862,-0.201376168376058 +ER,Blank-0863,-0.3216199106741 +ER,Blank-0864,0.0896310368469833 +ER,Blank-0865,-0.446820222368046 +ER,Blank-0866,-0.167587065724538 +ER,Blank-0867,0.632557315511053 +ER,Blank-0868,-0.320464085563046 +ER,Blank-0869,0.15361351051999 +ER,Blank-0870,-0.226104536905325 +ER,Blank-0871,0.783549192056321 +ER,Blank-0872,-0.0926837901388225 +ER,Blank-0873,0.665985748574965 +ER,Blank-0874,0.250629378710687 +ER,Blank-0875,-0.111539502043837 +ER,Blank-0876,-0.219089203253801 +ER,Blank-0877,-0.0838869792984278 +ER,Blank-0878,-0.131829461361266 +ER,Blank-0879,-1.17200844967886 +ER,Blank-0880,-0.0456157190771653 +ER,Blank-0881,0.392115978809696 +ER,Blank-0882,0.489688120659462 +ER,Blank-0883,-0.0875799012205653 +ER,Blank-0884,0.0277065738115628 +ER,Blank-0885,0.215248646827423 +ER,Blank-0886,-0.305122557349219 +ER,Blank-0887,0.661130031313367 +ER,Blank-0888,0.113776437772445 +ER,Blank-0889,-0.244231495773236 +ER,Blank-0890,-0.228550785893643 +ER,Blank-0891,-0.327448307478949 +ER,Blank-0892,-0.311542086394609 +ER,Blank-0893,0.82755880863456 +ER,Blank-0894,-0.319195266088017 +ER,Blank-0895,0.730385240245514 +ER,Blank-0896,-0.333700178153381 +ER,Blank-0897,-0.495759660211493 +ER,Blank-0898,-0.134225946870615 +ER,Blank-0899,-0.362742659823274 +ER,Blank-0900,-0.147037911626588 +ER,Blank-0901,0.0388000258989014 +ER,Blank-0902,-0.1654912202096 +ER,Blank-0903,1.17518012564821 +ER,Blank-0904,0.0576594336175223 +ER,Blank-0905,-0.473033775237423 +ER,Blank-0906,-0.0722006261680593 +ER,Blank-0907,-0.629811886736765 +ER,Blank-0908,-0.334207010565166 +ER,Blank-0909,-0.294231860808899 +ER,Blank-0910,-0.705177335937387 +ER,Blank-0911,0.253599415618737 +ER,Blank-0912,-0.556225008136318 +ER,Blank-0913,-0.251998476902078 +ER,Blank-0914,0.54932845582562 +ER,Blank-0915,0.195504387191856 +ER,Blank-0916,-0.16064079738223 +ER,Blank-0917,-0.637935349930335 +ER,Blank-0918,-0.126292461183789 +ER,Blank-0919,-0.22958958953436 +ER,Blank-0920,0.207967900010712 +ER,Blank-0921,-0.565234328244552 +ER,Blank-0922,-0.0664593461330367 +ER,Blank-0923,-0.0270715848234932 +ER,Blank-0924,1.23654451211951 +ER,Blank-0925,0.0150711272710231 +ER,Blank-0926,-0.150453837733352 +ER,Blank-0927,-0.132855177778178 +ER,Blank-0928,0.579529290111289 +ER,Blank-0929,0.00264553107581625 +ER,Blank-0930,-0.280995103490731 +ER,Blank-0931,-0.325593565962157 +ER,Blank-0932,-0.109067568502388 +ER,Blank-0933,0.761556732708162 +ER,Blank-0934,0.233515237627854 +ER,Blank-0935,-0.071083748769979 +ER,Blank-0936,-0.0916691685901729 +ER,Blank-0937,-0.271039193845788 +ER,Blank-0938,-0.439663753411751 +ER,Blank-0939,0.755709841430098 +ER,Blank-0940,-1.05671623758239 +ER,Blank-0941,-0.555820996743501 +ER,Blank-0942,-0.32894297930195 +ER,Blank-0943,-0.379926739840662 +ER,Blank-0944,0.0163000380226467 +ER,Blank-0945,0.456919695034335 +ER,Blank-0946,-0.271900239851971 +ER,Blank-0947,-0.0780634791686108 +ER,Blank-0948,0.245068756811406 +ER,Blank-0949,-0.518068956533372 +ER,Blank-0950,-0.217301443453191 +ER,Blank-0951,0.283527106551888 +ER,Blank-0952,0.406760281756497 +ER,Blank-0953,-0.20264087467639 +ER,Blank-0954,0.298693363236738 +ER,Blank-0955,1.14679766159136 +ER,Blank-0956,0.466208178135506 +ER,Blank-0957,-0.218001104097207 +ER,Blank-0958,-0.107287338178125 +ER,Blank-0959,-0.235906372579927 +ER,Blank-0960,0.314776490684414 +ER,Blank-0961,0.216004897007024 +ER,Blank-0962,-0.293795862260825 +ER,Blank-0963,0.207029539068321 +ER,Blank-0964,-0.497268090915961 +ER,Blank-0965,0.10010308127055 +ER,Blank-0966,0.528967762798519 +ER,Blank-0967,0.636752675723393 +ER,Blank-0968,0.257552114857269 +ER,Blank-0969,-0.321283468212818 +ER,Blank-0970,0.55361575939228 +ER,Blank-0971,0.250143942580808 +ER,Blank-0972,0.345949388044749 +ER,Blank-0973,-0.879342100513629 +ER,Blank-0974,-0.192945895916885 +ER,Blank-0975,-0.0156809955834121 +ER,Blank-0976,-0.477121369518335 +ER,Blank-0977,0.0995354201783764 +ER,Blank-0978,0.866281746924903 +ER,Blank-0979,-0.460417569840751 +ER,Blank-0980,0.373048309084094 +ER,Blank-0981,-0.0286064773761593 +ER,Blank-0982,0.611418729494036 +ER,Blank-0983,1.55971465440768 +ER,Blank-0984,0.621040461337482 +ER,Blank-0985,0.241249398546892 +ER,Blank-0986,0.193274460933689 +ER,Blank-0987,0.235053272880872 +ER,Blank-0988,-0.607419153905391 +ER,Blank-0989,0.267602187316259 +ER,Blank-0990,0.570433007917156 +ER,Blank-0991,-0.397100066874053 +ER,Blank-0992,-0.19283657215515 +ER,Blank-0993,0.246044694210391 +ER,Blank-0994,1.20060900699068 +ER,Blank-0995,1.04771702148763 +ER,Blank-0996,-0.139741547587528 +ER,Blank-0997,-0.134028952784155 +ER,Blank-0998,-0.276567699987891 +ER,Blank-0999,-0.253227684804492 +ER,Blank-1000,-0.267413448769147 +ER,Blank-1001,0.193491215485583 +ER,Blank-1002,-0.391650067353622 +ER,Blank-1003,-0.516832057228817 +ER,Blank-1004,-0.0271627479829763 +ER,Blank-1005,-0.500331501730275 +ER,Blank-1006,0.319193318048199 +ER,Blank-1007,0.0985142198223435 +ER,Blank-1008,0.251816686872238 +ER,Blank-1009,0.434774370097493 +ER,Blank-1010,0.0119634844047674 +ER,Blank-1011,-0.48053888538533 +ER,Blank-1012,-0.189994641880187 +ER,Blank-1013,1.45615064937494 +ER,Blank-1014,-0.897058790753931 +ER,Blank-1015,-0.191932008187702 +ER,Blank-1016,0.251698486299623 +ER,Blank-1017,-0.115756012303221 +ER,Blank-1018,-0.124829788024409 +ER,Blank-1019,-0.0982983422887688 +ER,Blank-1020,-0.784024255346558 +ER,Blank-1021,-0.145989435801594 +ER,Blank-1022,-0.294527678334825 +ER,Blank-1023,0.237381836830089 +ER,Blank-1024,0.156520184184454 +ER,Blank-1025,0.372700844591005 +ER,Blank-1026,-0.577602451318605 +ER,Blank-1027,0.514688557353715 +ER,Blank-1028,0.494373239571687 +ER,Blank-1029,-0.456584693446883 +ER,Blank-1030,0.277207465265797 +ER,Blank-1031,-0.262469704664581 +ER,Blank-1032,0.213164496102057 +ER,Blank-1033,0.313231538789101 +ER,Blank-1034,-0.114469192419972 +ER,Blank-1035,0.0656878177317831 +ER,Blank-1036,0.245470363940574 +ER,Blank-1037,-0.474917024048752 +ER,Blank-1038,-0.272802496319005 +ER,Blank-1039,0.433312297154519 +ER,Blank-1040,-0.558972129503265 +ER,Blank-1041,-0.374493963568068 +ER,Blank-1042,-0.0370891400374382 +ER,Blank-1043,0.123144171837989 +ER,Blank-1044,-0.366582057933299 +ER,Blank-1045,0.239564199638051 +ER,Blank-1046,0.0677125186274507 +ER,Blank-1047,0.267687359559609 +ER,Blank-1048,0.147035991204863 +ER,Blank-1049,-0.52865976718936 +ER,Blank-1050,-0.0920781375551941 +ER,Blank-1051,-0.508776379738055 +ER,Blank-1052,-0.0105513347475743 +ER,Blank-1053,0.503730989159758 +ER,Blank-1054,0.0102413780158454 +ER,Blank-1055,0.158629573721271 +ER,Blank-1056,-0.36394301100818 +ER,Blank-1057,-0.057715486552406 +ER,Blank-1058,-0.140690648741267 +ER,Blank-1059,-0.0158172522005948 +ER,Blank-1060,0.190042032854237 +ER,Blank-1061,2.3726625225599 +ER,Blank-1062,0.950550624770269 +ER,Blank-1063,-0.088083004589123 +ER,Blank-1064,0.225549235091913 +ER,Blank-1065,0.564198092938539 +ER,Blank-1066,0.291768169027414 +ER,Blank-1067,0.82727197902163 +ER,Blank-1068,0.377482446961718 +ER,Blank-1069,-0.322718107557573 +ER,Blank-1070,-0.113115248763267 +ER,Blank-1071,-0.304068466504685 +ER,Blank-1072,0.0975098884615776 +ER,Blank-1073,-0.0393860374615927 +ER,Blank-1074,0.752851891146986 +ER,Blank-1075,-0.115575949985195 +ER,Blank-1076,0.167361283657615 +ER,Blank-1077,0.336619417928671 +ER,Blank-1078,0.0584396478683778 +ER,Blank-1079,-0.126095022434666 +ER,Blank-1080,0.0592774463744324 +ER,Blank-1081,0.385418356009732 +ER,Blank-1082,-0.49530770294094 +ER,Blank-1083,0.0795066717757323 +ER,Blank-1084,0.159061127592261 +ER,Blank-1085,0.379947920963312 +ER,Blank-1086,-0.419388203927339 +ER,Blank-1087,-0.0601241153994532 +ER,Blank-1088,-0.120867398662429 +ER,Blank-1089,0.00107671308492897 +ER,Blank-1090,-0.0533160795152529 +ER,Blank-1091,-0.295567234341266 +ER,Blank-1092,-0.093494081355707 +ER,Blank-1093,-0.198211167087983 +ER,Blank-1094,-0.737408648964609 +ER,Blank-1095,-0.61161329505964 +ER,Blank-1096,-0.577852771739985 +ER,Blank-1097,-0.276305427524265 +ER,Blank-1098,-0.724615466292889 +ER,Blank-1099,-0.360990598785319 +ER,Blank-1100,0.653341919907382 +ER,Blank-1101,0.857184450911955 +ER,Blank-1102,0.440738846498768 +ER,Blank-1103,0.23124472561323 +ER,Blank-1104,-0.0964733071139113 +ER,Blank-1105,-0.26969673882086 +ER,Blank-1106,-0.473965225188411 +ER,Blank-1107,0.249548843295568 +ER,Blank-1108,-0.546389866912108 +ER,Blank-1109,-1.08244596037235 +ER,Blank-1110,0.613257196278768 +ER,Blank-1111,0.320574414203484 +ER,Blank-1112,-0.118430448207911 +ER,Blank-1113,0.568297785349819 +ER,Blank-1114,0.0412415028078552 +ER,Blank-1115,0.58909122556548 +ER,Blank-1116,-0.171131195660192 +ER,Blank-1117,-0.21338137542719 +ER,Blank-1118,-0.0787334782323161 +ER,Blank-1119,-0.590181881422074 +ER,Blank-1120,-0.555173317879276 +ER,Blank-1121,0.964066676416286 +ER,Blank-1122,1.18647770692104 +ER,Blank-1123,-0.449921715709487 +ER,Blank-1124,-0.310857618512144 +ER,Blank-1125,-0.543786011446951 +ER,Blank-1126,-0.692413207747557 +ER,Blank-1127,-0.441534586499169 +ER,Blank-1128,0.0623271987159016 +ER,Blank-1129,-0.120733903371637 +ER,Blank-1130,0.183220532916995 +ER,Blank-1131,-0.543663042822691 +ER,Blank-1132,0.118284871541822 +ER,Blank-1133,-0.0399651321517287 +ER,Blank-1134,0.658551589820829 +ER,Blank-1135,0.102411337170939 +ER,Blank-1136,0.376392647673789 +ER,Blank-1137,0.126537835767729 +ER,Blank-1138,0.365737415354457 +ER,Blank-1139,-0.26795652757782 +ER,Blank-1140,-0.574229125762378 +ER,Blank-1141,-0.301654213080867 +ER,Blank-1142,-0.360669525154816 +ER,Blank-1143,0.218305441270807 +ER,Blank-1144,0.118131639164529 +ER,Blank-1145,-0.296302378908941 +ER,Blank-1146,0.510765074690687 +ER,Blank-1147,0.728069741555623 +ER,Blank-1148,-0.114710498452999 +ER,Blank-1149,-0.168653311760994 +ER,Blank-1150,-0.478014844883296 +ER,Blank-1151,-0.190793165365506 +ER,Blank-1152,-0.0209623850848306 +ER,Blank-1153,-0.572727138494659 +ER,Blank-1154,-0.0228937197913053 +ER,Blank-1155,-0.638606909704818 +ER,Blank-1156,0.143817345931029 +ER,Blank-1157,-0.359938014435771 +ER,Blank-1158,0.457461788471459 +ER,Blank-1159,0.15123331508311 +ER,Blank-1160,0.000710020243591543 +ER,Blank-1161,0.780437487978795 +ER,Blank-1162,-0.364567993949104 +ER,Blank-1163,0.761135429692727 +ER,Blank-1164,0.247733086339588 +ER,Blank-1165,0.00432535611193203 +ER,Blank-1166,0.899027814334161 +ER,Blank-1167,-0.263972837824385 +ER,Blank-1168,-0.167958300195477 +ER,Blank-1169,0.110111191891356 +ER,Blank-1170,0.275672380868453 +ER,Blank-1171,0.862845010114352 +ER,Blank-1172,0.15456389876492 +ER,Blank-1173,0.197625807223405 +ER,Blank-1174,0.101073270566504 +ER,Blank-1175,0.0806697896330308 +ER,Blank-1176,-0.314426391508722 +ER,Blank-1177,-0.671827783266635 +ER,Blank-1178,-0.47131302459928 +ER,Blank-1179,0.37532200356353 +ER,Blank-1180,0.791384378751051 +ER,Blank-1181,-0.246186522397376 +ER,Blank-1182,-0.51254566379236 +ER,Blank-1183,0.0832133511029667 +ER,Blank-1184,-0.288113822774018 +ER,Blank-1185,-0.0325514781150261 +ER,Blank-1186,-0.220435326544307 +ER,Blank-1187,0.537485566590594 +ER,Blank-1188,-0.204530257719658 +ER,Blank-1189,-0.254363587819577 +ER,Blank-1190,0.56824979651136 +ER,Blank-1191,-0.133323841077105 +ER,Blank-1192,-0.155170777483899 +ER,Blank-1193,-0.188060411661715 +ER,Blank-1194,0.39721069386053 +ER,Blank-1195,-0.353520963677153 +ER,Blank-1196,-0.0564405044315582 +ER,Blank-1197,-0.12728431660149 +ER,Blank-1198,0.911400129994374 +ER,Blank-1199,0.461066635909992 +ER,Blank-1200,-0.206820047906432 +ER,Blank-1201,0.263800705895007 +ER,Blank-1202,-0.209909447089173 +ER,Blank-1203,0.285812954261188 +ER,Blank-1204,-1.13839233740623 +ER,Blank-1205,0.00570114055295186 +ER,Blank-1206,0.0499859361263192 +ER,Blank-1207,0.178643117971713 +ER,Blank-1208,-0.548454912449182 +ER,Blank-1209,-0.0468709961791497 +ER,Blank-1210,-0.616980942622354 +ER,Blank-1211,0.290256673279756 +ER,Blank-1212,-0.263506420022706 +ER,Blank-1213,0.227514116011136 +ER,Blank-1214,-0.383760181695312 +ER,Blank-1215,-0.0665679644597969 +ER,Blank-1216,0.583557344435154 +ER,Blank-1217,-0.261360449051935 +ER,Blank-1218,-0.0416423781260499 +ER,Blank-1219,0.284757960978167 +ER,Blank-1220,-0.131960533013509 +ER,Blank-1221,-0.213008217088943 +ER,Blank-1222,-0.547033786543082 +ER,Blank-1223,-0.844961689169894 +ER,Blank-1224,0.16899095989565 +ER,Blank-1225,0.281344035260107 +ER,Blank-1226,-0.399806878899517 +ER,Blank-1227,0.249794795896256 +ER,Blank-1228,0.623670841535659 +ER,Blank-1229,-0.868453881299828 +ER,Blank-1230,0.139041782305186 +ER,Blank-1231,0.556319331020299 +ER,Blank-1232,0.11734293687332 +ER,Blank-1233,1.07070588569681 +ER,Blank-1234,0.0440613057770412 +ER,Blank-1235,-0.223942280180934 +ER,Blank-1236,-0.23377182610685 +ER,Blank-1237,-0.717097380047935 +ER,Blank-1238,0.494199744597618 +ER,Blank-1239,0.114298873803629 +ER,Blank-1240,0.14372477454394 +ER,Blank-1241,-0.269456796201626 +ER,Blank-1242,0.0192112174123701 +ER,Blank-1243,0.512277269993661 +ER,Blank-1244,0.140323048472944 +ER,Blank-1245,-0.861906427150723 +ER,Blank-1246,1.12314536046009 +ER,Blank-1247,0.120900434000983 +ER,Blank-1248,0.623048287374733 +ER,Blank-1249,0.183312534842977 +ER,Blank-1250,-0.345292392566152 +ER,Blank-1251,0.0731425344449346 +ER,Blank-1252,0.305907086436943 +ER,Blank-1253,-0.394947334389659 +ER,Blank-1254,-0.115148750800328 +ER,Blank-1255,0.333084612782886 +ER,Blank-1256,-0.0568698358804602 +ER,Blank-1257,0.608900285973004 +ER,Blank-1258,-0.597033988712315 +ER,Blank-1259,0.749838240757136 +ER,Blank-1260,-0.464937918419355 +ER,Blank-1261,0.53086640640295 +ER,Blank-1262,-0.309912446191723 +ER,Blank-1263,-0.382066115635323 +ER,Blank-1264,-0.0198037367093539 +ER,Blank-1265,0.457195012493659 +ER,Blank-1266,0.498383396676102 +ER,Blank-1267,-0.102408333170545 +ER,Blank-1268,-0.108844771299986 +ER,Blank-1269,-0.018152065075345 +ER,Blank-1270,-0.119101500673805 +ER,Blank-1271,0.198911426635816 +ER,Blank-1272,-0.372408770019558 +ER,Blank-1273,0.181138861147315 +ER,Blank-1274,0.148516085650141 +ER,Blank-1275,0.501380520998437 +ER,Blank-1276,0.337168572948239 +ER,Blank-1277,-0.210468949970472 +ER,Blank-1278,0.29266642656813 +ER,Blank-1279,-0.126333043085214 +ER,Blank-1280,-0.803839450195572 +ER,Blank-1281,-0.141642307958375 +ER,Blank-1282,0.087511319780798 +ER,Blank-1283,-0.323838119120142 +ER,Blank-1284,-0.0986666468899364 +ER,Blank-1285,-0.300962422077295 +ER,Blank-1286,-0.363842750811957 +ER,Blank-1287,0.370160164336943 +ER,Blank-1288,0.240316135389341 +ER,Blank-1289,0.578503469045549 +ER,Blank-1290,-0.541973155192547 +ER,Blank-1291,-0.199984913968876 +ER,Blank-1292,-0.0831686073721167 +ER,Blank-1293,-0.172170834269311 +ER,Blank-1294,-0.444214096231203 +ER,Blank-1295,0.517655052380933 +ER,Blank-1296,-0.257615373203301 +ER,Blank-1297,-0.646033203470207 +ER,Blank-1298,-0.570196840289332 +ER,Blank-1299,-0.487751081022574 +ER,Blank-1300,-0.765455360928801 +ER,Blank-1301,0.165533724812084 +ER,Blank-1302,0.258296444770295 +ER,Blank-1303,0.130645406143959 +ER,Blank-1304,-0.334632601748734 +ER,Blank-1305,0.164687366211311 +ER,Blank-1306,-0.0272951849763228 +ER,Blank-1307,0.37275100260172 +ER,Blank-1308,-0.346211709935959 +ER,Blank-1309,1.20214885593606 +ER,Blank-1310,-0.301967864896144 +ER,Blank-1311,0.569595616794799 +ER,Blank-1312,0.598777912461428 +ER,Blank-1313,0.394090619705324 +ER,Blank-1314,0.225624092803029 +ER,Blank-1315,-0.204073286902321 +ER,Blank-1316,0.0446917551634153 +ER,Blank-1317,0.343040123156847 +ER,Blank-1318,-0.0587884705171334 +ER,Blank-1319,-0.230941563680617 +ER,Blank-1320,-0.0671496433331364 +ER,Blank-1321,0.0478393523091368 +ER,Blank-1322,-0.444168541004505 +ER,Blank-1323,0.419430152360942 +ER,Blank-1324,-0.531308630101165 +ER,Blank-1325,0.322120476425226 +ER,Blank-1326,0.861272910478666 +ER,Blank-1327,0.191919196079401 +ER,Blank-1328,0.703626827922252 +ER,Blank-1329,0.297070443930815 +ER,Blank-1330,-0.315509883064365 +ER,Blank-1331,0.247351243943806 +ER,Blank-1332,-0.039781711975148 +ER,Blank-1333,0.71802624293846 +ER,Blank-1334,0.630526508664994 +ER,Blank-1335,0.0767371848158417 +ER,Blank-1336,-0.220205340275311 +ER,Blank-1337,0.572826803372041 +ER,Blank-1338,-0.854924545027544 +ER,Blank-1339,0.20608010460613 +ER,Blank-1340,0.0641677925791308 +ER,Blank-1341,0.160390920631771 +ER,Blank-1342,-0.0285331594703385 +ER,Blank-1343,-0.294195342217887 +ER,Blank-1344,-0.502382395756253 +ER,Blank-1345,-0.00635982735590498 +ER,Blank-1346,-0.335653904967913 +ER,Blank-1347,-0.172279658610051 +ER,Blank-1348,-0.276275175233378 +ER,Blank-1349,-0.527972164220524 +ER,Blank-1350,0.529892992654836 +ER,Blank-1351,-0.0113228265425766 +ER,Blank-1352,-0.892298025152324 +ER,Blank-1353,0.355023279781327 +ER,Blank-1354,0.327074315889678 +ER,Blank-1355,0.498119186473069 +ER,Blank-1356,-0.276696182318605 +ER,Blank-1357,0.229521324159404 +ER,Blank-1358,0.140933276909612 +ER,Blank-1359,-0.0528106308934377 +ER,Blank-1360,0.781460355992515 +ER,Blank-1361,0.552105857664575 +ER,Blank-1362,-0.23077306183671 +ER,Blank-1363,0.304145956411016 +ER,Blank-1364,-0.629573803886042 +ER,Blank-1365,0.189701677833336 +ER,Blank-1366,0.386489660698663 +ER,Blank-1367,1.61594640859519 +ER,Blank-1368,-0.19356677768906 +ER,Blank-1369,-0.213336651533505 +ER,Blank-1370,-0.264182612984067 +ER,Blank-1371,-0.126110658257991 +ER,Blank-1372,-0.781314391920513 +ER,Blank-1373,-0.75909861880108 +ER,Blank-1374,-0.476233266546676 +ER,Blank-1375,-0.372879397887369 +ER,Blank-1376,0.452555355807112 +ER,Blank-1377,-0.307487026091472 +ER,Blank-1378,-0.255418755308525 +ER,Blank-1379,-0.839663045075243 +ER,Blank-1380,-0.218870201565326 +ER,Blank-1381,-0.537209635249118 +ER,Blank-1382,0.459496121967909 +ER,Blank-1383,0.320268050888336 +ER,Blank-1384,0.440591201775227 +ER,Blank-1385,-0.114509913116955 +ER,Blank-1386,0.080121383371949 +ER,Blank-1387,-0.281037292462223 +ER,Blank-1388,-0.195405762274684 +ER,Blank-1389,0.339215469891025 +ER,Blank-1390,0.116841503237298 +ER,Blank-1391,0.116912474812679 +ER,Blank-1392,-0.326862422978143 +ER,Blank-1393,-0.373253957109352 +ER,Blank-1394,-0.553958786098472 +ER,Blank-1395,0.101674494967675 +ER,Blank-1396,0.189912539284836 +ER,Blank-1397,1.12654931637685 +ER,Blank-1398,0.326345514953878 +ER,Blank-1399,-0.0622324514450929 +ER,Blank-1400,-0.0790596008916205 +ER,Blank-1401,-0.0964932467746132 +ER,Blank-1402,-0.25729001404235 +ER,Blank-1403,-0.5307495641456 +ER,Blank-1404,0.446438224140823 +ER,Blank-1405,1.62421067831857 +ER,Blank-1406,0.410605927070329 +ER,Blank-1407,0.382852584462772 +ER,Blank-1408,-0.308093021236159 +ER,Blank-1409,0.95982218442723 +ER,Blank-1410,0.297293309839384 +ER,Blank-1411,1.51668187014807 +ER,Blank-1412,0.800103406307586 +ER,Blank-1413,-0.295427276044547 +ER,Blank-1414,0.369168744539733 +ER,Blank-1415,-0.172583623956982 +ER,Blank-1416,0.219807499773124 +ER,Blank-1417,-0.366234355084427 +ER,Blank-1418,0.507935098507916 +ER,Blank-1419,-0.389774838124218 +ER,Blank-1420,0.18642274125636699 +ER,Blank-1421,0.283832260272503 +ER,Blank-1422,0.26018822022999 +ER,Blank-1423,-0.612193855554067 +ER,Blank-1424,-0.692947604066595 +ER,Blank-1425,-0.205652590627716 +ER,Blank-1426,-0.0282031690205469 +ER,Blank-1427,-0.0905302277918304 +ER,Blank-1428,-0.0853600870102318 +ER,Blank-1429,0.0881652453745685 +ER,Blank-1430,0.0203198680573145 +ER,Blank-1431,-0.228471251641093 +ER,Blank-1432,-0.31639063804499 +ER,Blank-1433,-0.255300747509695 +ER,Blank-1434,-0.60215324939697 +ER,Blank-1435,0.134388194704419 +ER,Blank-1436,-0.162490270065449 +ER,Blank-1437,0.096645531896019 +ER,Blank-1438,0.00176013442382979 +ER,Blank-1439,-0.427760810928471 +ER,Blank-1440,-0.019653800889471 +ER,Blank-1441,-0.0137424269619287 +ER,Blank-1442,-0.40748957409462 +ER,Blank-1443,-0.19602575981315 +ER,Blank-1444,0.354512864424457 +ER,Blank-1445,-0.352996812512572 +ER,Blank-1446,0.303902700400162 +ER,Blank-1447,0.121506353627441 +ER,Blank-1448,1.61879123452307 +ER,Blank-1449,-0.192338620486399 +ER,Blank-1450,0.875365266243566 +ER,Blank-1451,0.885520311741337 +ER,Blank-1452,-0.357409895692813 +ER,Blank-1453,-0.310253193542 +ER,Blank-1454,0.246102313286063 +ER,Blank-1455,-0.87775314162173 +ER,Blank-1456,1.12077621820231 +ER,Blank-1457,0.0804241717294139 +ER,Blank-1458,0.0188717448752766 +ER,Blank-1459,0.754195678935472 +ER,Blank-1460,-0.404563685953761 +ER,Blank-1461,-0.311547733584452 +ER,Blank-1462,-0.102572310922038 +ER,Blank-1463,0.317337133149995 +ER,Blank-1464,0.207609666698227 +ER,Blank-1465,0.217435924083268 +ER,Blank-1466,0.214589131617672 +ER,Blank-1467,-0.439840008282532 +ER,Blank-1468,1.23419034754029 +ER,Blank-1469,-0.390031587219472 +ER,Blank-1470,0.106411254369768 +ER,Blank-1471,0.332752414317808 +ER,Blank-1472,-0.121063623190006 +ER,Blank-1473,0.23051884743902 +ER,Blank-1474,0.18150935338883 +ER,Blank-1475,-0.549437379394472 +ER,Blank-1476,-0.144715690944725 +ER,Blank-1477,-0.770125989557295 +ER,Blank-1478,0.428783701308158 +ER,Blank-1479,-0.246324088393879 +ER,Blank-1480,0.15601862104596 +ER,Blank-1481,-0.402373849427446 +ER,Blank-1482,-0.567646033188763 +ER,Blank-1483,-0.0951231850177148 +ER,Blank-1484,-0.400581032493463 +ER,Blank-1485,-0.604729959389621 +ER,Blank-1486,-1.14603164243522 +ER,Blank-1487,0.041177610866927 +ER,Blank-1488,-0.506771567213885 +ER,Blank-1489,-0.0293635653812942 +ER,Blank-1490,0.26861144595003 +ER,Blank-1491,-0.217942680788283 +ER,Blank-1492,1.37257974994831 +ER,Blank-1493,0.139412419704674 +ER,Blank-1494,1.07087342768566 +ER,Blank-1495,0.625430121742918 +ER,Blank-1496,-0.162902891495898 +ER,Blank-1497,0.0591929083501338 +ER,Blank-1498,0.0315196723380419 +ER,Blank-1499,0.703472084186173 +ER,Blank-1500,-0.98333990355432 +ER,Blank-1501,0.817263995867519 +ER,Blank-1502,0.22353055822064 +ER,Blank-1503,0.111374486586003 +ER,Blank-1504,0.0322634852685385 +ER,Blank-1505,-0.296882222771335 +ER,Blank-1506,0.152342943656799 +ER,Blank-1507,-0.781734157228306 +ER,Blank-1508,0.106325511742664 +ER,Blank-1509,-0.0469521683508014 +ER,Blank-1510,0.0532946566747559 +ER,Blank-1511,0.156973429714569 +ER,Blank-1512,-1.03737456890543 +ER,Blank-1513,-0.487815301184243 +ER,Blank-1514,-0.304005992650749 +ER,Blank-1515,-0.882863593256069 +ER,Blank-1516,-0.364331659650112 +ER,Blank-1517,0.128356414853607 +ER,Blank-1518,0.00847276755200088 +ER,Blank-1519,-0.209997845178272 +ER,Blank-1520,0.425843141694603 +ER,Blank-1521,0.600809372787712 +ER,Blank-1522,-0.268069760786854 +ER,Blank-1523,0.497865738836559 +ER,Blank-1524,0.192056569660217 +ER,Blank-1525,-0.280657763869359 +ER,Blank-1526,-0.160549649717534 +ER,Blank-1527,0.782985149790157 +ER,Blank-1528,0.258363519166871 +ER,Blank-1529,-0.628220040806364 +ER,Blank-1530,0.0540207683730595 +ER,Blank-1531,-0.69345125639931 +ER,Blank-1532,0.0445895105107407 +ER,Blank-1533,0.203956057121889 +ER,Blank-1534,-0.571754438182738 +ER,Blank-1535,-0.197850854698269 +ER,Blank-1536,0.413915743816314 +ER,Blank-1537,-0.418103791028562 +ER,Blank-1538,-0.0853992916843697 +ER,Blank-1539,0.949908056020615 +ER,Blank-1540,0.462773844745486 +ER,Blank-1541,0.840030545486836 +ER,Blank-1542,0.639792730585412 +ER,Blank-1543,-0.433194847936967 +ER,Blank-1544,0.116740813559007 +ER,Blank-1545,-0.530524644606767 +ER,Blank-1546,0.019313812973392 +ER,Blank-1547,-0.645221004800056 +ER,Blank-1548,-0.171120883133426 +ER,Blank-1549,1.42132003269042 +ER,Blank-1550,0.146797767301785 +ER,Blank-1551,-0.161271048784329 +ER,Blank-1552,0.297852904059742 +ER,Blank-1553,-0.681561180563187 +ER,Blank-1554,-0.278565856226172 +ER,Blank-1555,-0.0954103155616131 +ER,Blank-1556,0.0886082413691251 +ER,Blank-1557,0.239386716705471 +ER,Blank-1558,-0.173381428559847 +ER,Blank-1559,-0.113894007291747 +ER,Blank-1560,0.0774697359176364 +ER,Blank-1561,0.289768833994213 +ER,Blank-1562,-0.0708628343379577 +ER,Blank-1563,1.17049603155898 +ER,Blank-1564,-0.403507834929512 +ER,Blank-1565,0.802216221280328 +ER,Blank-1566,-0.880815107100218 +ER,Blank-1567,-0.112052072151462 +ER,Blank-1568,0.0254895375209937 +ER,Blank-1569,0.327515775761941 +ER,Blank-1570,1.06792735265986 +ER,Blank-1571,-0.454819512597498 +ER,Blank-1572,-0.664661290079288 +ER,Blank-1573,-0.101557985237629 +ER,Blank-1574,-0.122997172637858 +ER,Blank-1575,-0.267566193975852 +ER,Blank-1576,0.363865900121813 +ER,Blank-1577,-0.0107307927633738 +ER,Blank-1578,0.725028482724236 +ER,Blank-1579,-0.435392444472868 +ER,Blank-1580,-0.37892138932802 +ER,Blank-1581,1.02738776550147 +ER,Blank-1582,0.33762371722526 +ER,Blank-1583,0.415590868111183 +ER,Blank-1584,0.127039147932359 +ER,Blank-1585,0.798573220671509 +ER,Blank-1586,0.523338185085072 +ER,Blank-1587,-0.139848587874856 +ER,Blank-1588,0.379971959732591 +ER,Blank-1589,-0.0763803768284486 +ER,Blank-1590,0.288973915534621 +ER,Blank-1591,0.593288446489694 +ER,Blank-1592,-0.892427035555841 +ER,Blank-1593,-0.20509722936543 +ER,Blank-1594,0.270406287711014 +ER,Blank-1595,0.190032000757371 +ER,Blank-1596,0.546815251663386 +ER,Blank-1597,0.116558120853404 +ER,Blank-1598,-0.0585863112346452 +ER,Blank-1599,-0.0647904323137818 +ER,Blank-1600,-0.22298058350533 +ER,Blank-1601,0.432246138990395 +ER,Blank-1602,-0.245351542954896 +ER,Blank-1603,0.539688674302376 +ER,Blank-1604,0.362641866532902 +ER,Blank-1605,0.261697560655478 +ER,Blank-1606,-0.101331495840421 +ER,Blank-1607,0.442983721125177 +ER,Blank-1608,0.447672262584876 +ER,Blank-1609,0.334635328852917 +ER,Blank-1610,-0.167995356314243 +ER,Blank-1611,0.0670980899236118 +ER,Blank-1612,0.417863249646803 +ER,Blank-1613,0.139358113013706 +ER,Blank-1614,0.433199652886335 +ER,Blank-1615,-0.982433848065688 +ER,Blank-1616,-0.123430814929524 +ER,Blank-1617,-0.156685220657126 +ER,Blank-1618,0.113394563775516 +ER,Blank-1619,0.155648412648016 +ER,Blank-1620,-0.379787230725526 +ER,Blank-1621,0.440384540818638 +ER,Blank-1622,1.00553314341599 +ER,Blank-1623,-0.0838538901998467 +ER,Blank-1624,-0.499961133673901 +ER,Blank-1625,0.953642112614279 +ER,Blank-1626,0.028601793487291 +ER,Blank-1627,-0.557380062206529 +ER,Blank-1628,0.361675356543188 +ER,Blank-1629,-0.00489271749562061 +ER,Blank-1630,-0.302244903610166 +ER,Blank-1631,-0.059283958991183 +ER,Blank-1632,-0.187071146826205 +ER,Blank-1633,1.00916476987049 +ER,Blank-1634,-0.100218201588268 +ER,Blank-1635,-0.47695400577242 +ER,Blank-1636,-0.800530312132525 +ER,Blank-1637,0.0515600522134035 +ER,Blank-1638,0.848820833420899 +ER,Blank-1639,-0.589752142102503 +ER,Blank-1640,-0.476533751308153 +ER,Blank-1641,0.205115697104418 +ER,Blank-1642,1.22390714641218 +ER,Blank-1643,-0.0897895626995555 +ER,Blank-1644,-0.936826561236001 +ER,Blank-1645,-0.172974879521441 +ER,Blank-1646,-0.441363593312872 +ER,Blank-1647,0.186957396433389 +ER,Blank-1648,0.241477849317917 +ER,Blank-1649,-0.293827497309677 +ER,Blank-1650,-0.43072276544322 +ER,Blank-1651,0.169037807845117 +ER,Blank-1652,0.304921551321303 +ER,Blank-1653,0.0334905952726872 +ER,Blank-1654,0.30872470861411 +ER,Blank-1655,1.34616237358655 +ER,Blank-1656,0.108121919087915 +ER,Blank-1657,-0.0570839626697816 +ER,Blank-1658,0.628149903438026 +ER,Blank-1659,0.473805347310235 +ER,Blank-1660,-0.106682836322643 +ER,Blank-1661,0.130905317673593 +ER,Blank-1662,0.0731521579705546 +ER,Blank-1663,0.316993056797678 +ER,Blank-1664,0.11890909237972 +ER,Blank-1665,-0.00743553853201501 +ER,Blank-1666,0.346152905275807 +ER,Blank-1667,0.323213405243567 +ER,Blank-1668,0.261687993723098 +ER,Blank-1669,-0.641701352121565 +ER,Blank-1670,0.184498499979849 +ER,Blank-1671,-0.437032315142734 +ER,Blank-1672,0.244764300570158 +ER,Blank-1673,0.816612578371797 +ER,Blank-1674,0.261921714096577 +ER,Blank-1675,-0.577693581048879 +ER,Blank-1676,0.518342435343629 +ER,Blank-1677,-0.8453601890012 +ER,Blank-1678,-0.265534499062985 +ER,Blank-1679,0.21095716842821 +ER,Blank-1680,-0.400126512310168 +ER,Blank-1681,0.637658254163505 +ER,Blank-1682,-0.344059854106007 +ER,Blank-1683,-0.566866521203109 +ER,Blank-1684,0.199290403307976 +ER,Blank-1685,-0.387842169627715 +ER,Blank-1686,-0.039191074989539 +ER,Blank-1687,0.175114291959062 +ER,Blank-1688,-0.200698171834109 +ER,Blank-1689,-0.343300349451852 +ER,Blank-1690,-0.0289177559371646 +ER,Blank-1691,0.232228966284848 +ER,Blank-1692,0.483554139501549 +ER,Blank-1693,0.186996432735564 +ER,Blank-1694,0.436516471954783 +ER,Blank-1695,0.0194075704985065 +ER,Blank-1696,-0.214625736615551 +ER,Blank-1697,-0.09327026925877 +ER,Blank-1698,-0.057927690606615 +ER,Blank-1699,-0.153354357975231 +ER,Blank-1700,0.298213561167225 +ER,Blank-1701,0.35923829108552 +ER,Blank-1702,0.50133259751116 +ER,Blank-1703,-0.241166254861418 +ER,Blank-1704,0.207934890769942 +ER,Blank-1705,-0.309230868439903 +ER,Blank-1706,0.265680618952272 +ER,Blank-1707,0.147558652546517 +ER,Blank-1708,0.451068439265361 +ER,Blank-1709,-0.466678857893694 +ER,Blank-1710,0.247096804204712 +ER,Blank-1711,-0.109082335332638 +ER,Blank-1712,-0.280168689553992 +ER,Blank-1713,-0.594935984969515 +ER,Blank-1714,0.231567726315651 +ER,Blank-1715,0.24213641112985 +ER,Blank-1716,0.226363998830494 +ER,Blank-1717,-0.664418467909677 +ER,Blank-1718,0.127224635024877 +ER,Blank-1719,-0.182796858209103 +ER,Blank-1720,0.0157139056988122 +ER,Blank-1721,-0.0100694704597281 +ER,Blank-1722,0.530459539852498 +ER,Blank-1723,0.187622673653485 +ER,Blank-1724,-0.137204084954292 +ER,Blank-1725,0.259109692126104 +ER,Blank-1726,-0.506699053825946 +ER,Blank-1727,0.187695852187037 +ER,Blank-1728,0.606744190275262 +ER,Blank-1729,-0.238270246682962 +ER,Blank-1730,-0.307383981823719 +ER,Blank-1731,0.146303441119723 +ER,Blank-1732,-0.0805660303249762 +ER,Blank-1733,0.940281161163793 +ER,Blank-1734,-0.249544075052582 +ER,Blank-1735,-0.147317559257274 +ER,Blank-1736,-0.508726709999807 +ER,Blank-1737,-0.066187768863834 +ER,Blank-1738,0.117789901886253 +ER,Blank-1739,-0.278771571355224 +ER,Blank-1740,0.828654829649085 +ER,Blank-1741,-0.108820142880743 +ER,Blank-1742,-0.220204091493336 +ER,Blank-1743,-0.511130222240256 +ER,Blank-1744,0.0577689571526449 +ER,Blank-1745,0.067406547086857 +ER,Blank-1746,-0.543454053138999 +ER,Blank-1747,0.2624803903339 +ER,Blank-1748,-0.102014971819685 +ER,Blank-1749,-0.616297537760414 +ER,Blank-1750,-0.107725641149336 +ER,Blank-1751,-0.233945949198323 +ER,Blank-1752,0.34565060880501 +ER,Blank-1753,0.381738950457978 +ER,Blank-1754,0.300812504580235 +ER,Blank-1755,-0.214348440488243 +ER,Blank-1756,-0.158470616505845 +ER,Blank-1757,0.10066039873464 +ER,Blank-1758,-0.457910484910064 +ER,Blank-1759,0.562130245162361 +ER,Blank-1760,0.356233820519208 +ER,Blank-1761,0.329591920880465 +ER,Blank-1762,-0.924562690775446 +ER,Blank-1763,-0.111941495459389 +ER,Blank-1764,1.26305346367561 +ER,Blank-1765,-0.245577295447493 +ER,Blank-1766,0.482777791567061 +ER,Blank-1767,-0.0506878056890084 +ER,Blank-1768,0.179208083959611 +ER,Blank-1769,0.0906072576159188 +ER,Blank-1770,-0.0938891338669793 +ER,Blank-1771,-0.563830523946594 +ER,Blank-1772,-0.9148971475849 +ER,Blank-1773,0.0791522967726438 +ER,Blank-1774,-0.0732298995389294 +ER,Blank-1775,-0.639992343029056 +ER,Blank-1776,-0.117912255929016 +ER,Blank-1777,0.475598755831868 +ER,Blank-1778,-0.280397223210262 +ER,Blank-1779,0.870336938311358 +ER,Blank-1780,0.0990714643907671 +ER,Blank-1781,-0.282368887578267 +ER,Blank-1782,-0.265175076317541 +ER,Blank-1783,0.304922232274354 +ER,Blank-1784,-0.0652500595909701 +ER,Blank-1785,0.100210908602306 +ER,Blank-1786,-0.164501697583055 +ER,Blank-1787,0.222697236210041 +ER,Blank-1788,-0.231752231133459 +ER,Blank-1789,-0.328931602427204 +ER,Blank-1790,-0.360310492004383 +ER,Blank-1791,-0.473069685107985 +ER,Blank-1792,0.16587218134008 +ER,Blank-1793,0.771686204590495 +ER,Blank-1794,0.319999021087697 +ER,Blank-1795,0.0185762773200198 +ER,Blank-1796,0.702668860160237 +ER,Blank-1797,0.565904437492959 +ER,Blank-1798,0.407591865760825 +ER,Blank-1799,0.591733574547892 +ER,Blank-1800,-0.680092234896747 +ER,Blank-1801,0.125617031847287 +ER,Blank-1802,0.560043579412088 +ER,Blank-1803,-0.255775043796287 +ER,Blank-1804,0.110967197083918 +ER,Blank-1805,0.473087008750839 +ER,Blank-1806,0.16258851213197 +ER,Blank-1807,0.110783920392075 +ER,Blank-1808,0.0636067205167124 +ER,Blank-1809,0.0615680182084942 +ER,Blank-1810,0.244264376331462 +ER,Blank-1811,0.114687229633454 +ER,Blank-1812,-0.376523876853673 +ER,Blank-1813,-0.181993108269301 +ER,Blank-1814,-0.093333568826704 +ER,Blank-1815,0.405889469149156 +ER,Blank-1816,0.245533952265481 +ER,Blank-1817,-0.237769854142832 +ER,Blank-1818,0.145283042163367 +ER,Blank-1819,-0.289192093707526 +ER,Blank-1820,-0.315987209054969 +ER,Blank-1821,0.292634083827985 +ER,Blank-1822,-0.356882802858526 +ER,Blank-1823,0.249445314906302 +ER,Blank-1824,-0.47165071094385 +ER,Blank-1825,0.497367814088781 +ER,Blank-1826,-0.398430343826633 +ER,Blank-1827,0.104246302155536 +ER,Blank-1828,-0.872611300386817 +ER,Blank-1829,-0.324709007878671 +ER,Blank-1830,0.333519782745212 +ER,Blank-1831,-0.102165051376287 +ER,Blank-1832,-0.307769108009595 +ER,Blank-1833,-0.65380122061115 +ER,Blank-1834,1.03016931505275 +ER,Blank-1835,0.423730660500365 +ER,Blank-1836,0.771020392779046 +ER,Blank-1837,-0.392426074134418 +ER,Blank-1838,-0.280023505116708 +ER,Blank-1839,0.017045263450702 +ER,Blank-1840,0.450360800001719 +ER,Blank-1841,-0.426576757964148 +ER,Blank-1842,-0.182825774393273 +ER,Blank-1843,0.234708695446565 +ER,Blank-1844,0.0868044530294033 +ER,Blank-1845,-0.167850381006976 +ER,Blank-1846,-0.371971678450851 +ER,Blank-1847,0.516244867019207 +ER,Blank-1848,-0.62744333921613 +ER,Blank-1849,0.411185090004395 +ER,Blank-1850,-0.220276861663109 +ER,Blank-1851,-0.184786207454285 +ER,Blank-1852,0.912067464906525 +ER,Blank-1853,-0.263353215365195 +ER,Blank-1854,0.654830163042287 +ER,Blank-1855,-0.432038623990562 +ER,Blank-1856,1.49876290000523 +ER,Blank-1857,-0.260688483863006 +ER,Blank-1858,0.028385006152474 +ER,Blank-1859,0.0972405400946008 +ER,Blank-1860,-0.184191864189656 +ER,Blank-1861,-0.589000378989426 +ER,Blank-1862,-0.412693651392518 +ER,Blank-1863,-0.421749171690143 +ER,Blank-1864,-0.314087272671541 +ER,Blank-1865,0.130314279786382 +ER,Blank-1866,-0.00834491002703582 +ER,Blank-1867,-0.227495706692938 +ER,Blank-1868,-0.111671063277477 +ER,Blank-1869,-0.242112087291753 +ER,Blank-1870,-0.816999523662662 +ER,Blank-1871,0.181145153414574 +ER,Blank-1872,-0.208782023127945 +ER,Blank-1873,0.836278827156851 +ER,Blank-1874,-0.655961297670701 +ER,Blank-1875,-0.390944163452383 +ER,Blank-1876,-0.491490689634637 +ER,Blank-1877,0.395982315286749 +ER,Blank-1878,-0.0812800992911939 +ER,Blank-1879,-0.168256666326436 +ER,Blank-1880,-0.372709906064793 +ER,Blank-1881,-0.681305232456182 +ER,Blank-1882,1.74599495618971 +ER,Blank-1883,-0.207738817752635 +ER,Blank-1884,-0.251302345816551 +ER,Blank-1885,-0.171594401207911 +ER,Blank-1886,-0.0299768846011791 +ER,Blank-1887,-0.260645194423467 +ER,Blank-1888,-0.343078195178107 +ER,Blank-1889,-0.565690928969531 +ER,Blank-1890,0.211804996856221 +ER,Blank-1891,0.0170206869177552 +ER,Blank-1892,-0.664695058363568 +ER,Blank-1893,-0.320715191362667 +ER,Blank-1894,0.0536473701041933 +ER,Blank-1895,-0.22975769557875 +ER,Blank-1896,-0.322080561227265 +ER,Blank-1897,0.236996371700035 +ER,Blank-1898,-0.584586405158553 +ER,Blank-1899,0.525573326974404 +ER,Blank-1900,0.0637546938788398 +ER,Blank-1901,0.0275366686035679 +ER,Blank-1902,-0.294443019686781 +ER,Blank-1903,0.872715958395442 +ER,Blank-1904,-0.330903727313899 +ER,Blank-1905,-0.233251161041919 +ER,Blank-1906,-0.247378861802141 +ER,Blank-1907,-0.0718030915168631 +ER,Blank-1908,-0.123701983756132 +ER,Blank-1909,0.8969665438778 +ER,Blank-1910,0.181355537530954 +ER,Blank-1911,0.214681570646265 +ER,Blank-1912,0.119559106725672 +ER,Blank-1913,-0.13941196677166 +ER,Blank-1914,-1.04123082943784 +ER,Blank-1915,0.166922622233231 +ER,Blank-1916,0.707957568447159 +ER,Blank-1917,0.379214225463762 +ER,Blank-1918,-0.516039788192412 +ER,Blank-1919,-0.658646893688366 +ER,Blank-1920,0.172814748579943 +ER,Blank-1921,-0.0507853441923035 +ER,Blank-1922,0.408617313257674 +ER,Blank-1923,0.272476998870099 +ER,Blank-1924,0.0135127235741174 +ER,Blank-1925,0.124061400922859 +ER,Blank-1926,-0.0237254414326631 +ER,Blank-1927,0.377092357021766 +ER,Blank-1928,0.624292732711369 +ER,Blank-1929,-0.814897234421279 +ER,Blank-1930,-0.30757876317091 +ER,Blank-1931,0.316031742665506 +ER,Blank-1932,-0.162311425600652 +ER,Blank-1933,-0.319333077705575 +ER,Blank-1934,0.26059526660297 +ER,Blank-1935,-0.072268104706646 +ER,Blank-1936,-0.065821148289949 +ER,Blank-1937,0.726133550403158 +ER,Blank-1938,-0.202915960365684 +ER,Blank-1939,-0.0402489838159794 +ER,Blank-1940,-0.24965476814882 +ER,Blank-1941,0.145251575230089 +ER,Blank-1942,-0.268143825850524 +ER,Blank-1943,0.0444811080711409 +ER,Blank-1944,-0.146018120632059 +ER,Blank-1945,0.217467890182016 +ER,Blank-1946,0.258903045525841 +ER,Blank-1947,-0.108221301950289 +ER,Blank-1948,-0.264456204468596 +ER,Blank-1949,-0.18482942354692 +ER,Blank-1950,-0.336165500820056 +ER,Blank-1951,-0.783261667816396 +ER,Blank-1952,0.669592996237061 +ER,Blank-1953,-0.331432884202566 +ER,Blank-1954,0.682920827223756 +ER,Blank-1955,0.542561273359051 +ER,Blank-1956,-0.479555316943311 +ER,Blank-1957,-0.864746470593493 +ER,Blank-1958,-0.175155524698117 +ER,Blank-1959,-0.166263310698956 +ER,Blank-1960,-0.0442481899770779 +ER,Blank-1961,-0.564962896114656 +ER,Blank-1962,-0.30916238715648 +ER,Blank-1963,0.0460429206540677 +ER,Blank-1964,0.121997149693048 +ER,Blank-1965,-0.0547987138313384 +ER,Blank-1966,-0.565115987629925 +ER,Blank-1967,0.451350441174913 +ER,Blank-1968,0.296285431602128 +ER,Blank-1969,-0.410552533061626 +ER,Blank-1970,-0.226549602507908 +ER,Blank-1971,-0.240975711151511 +ER,Blank-1972,0.0655792522969977 +ER,Blank-1973,0.295096067627143 +ER,Blank-1974,-0.13720071609487 +ER,Blank-1975,1.3990280596494 +ER,Blank-1976,-0.473174359906409 +ER,Blank-1977,-0.522495930096817 +ER,Blank-1978,-0.0038664893972123 +ER,Blank-1979,-0.249655869655552 +ER,Blank-1980,0.0170849521411179 +ER,Blank-1981,0.382067943901845 +ER,Blank-1982,-0.215982799716801 +ER,Blank-1983,-0.469651863844712 +ER,Blank-1984,0.731825001701048 +ER,Blank-1985,0.00655416901886591 +ER,Blank-1986,0.120588495421475 +ER,Blank-1987,-0.646738272545281 +ER,Blank-1988,-0.609670415814096 +ER,Blank-1989,-0.0125271923273127 +ER,Blank-1990,-0.160636021016826 +ER,Blank-1991,-0.49406477367226 +ER,Blank-1992,-0.0539702997078877 +ER,Blank-1993,-0.153865341892881 +ER,Blank-1994,0.42578152852844 +ER,Blank-1995,1.67558033971503 +ER,Blank-1996,0.250812595582215 +ER,Blank-1997,0.124393071297942 +ER,Blank-1998,0.0536074203631012 +ER,Blank-1999,-0.0156959042122048 +ER,Blank-2000,0.283823007709661 +ER,Blank-2001,0.636266409513347 +ER,Blank-2002,0.441517121558489 +ER,Blank-2003,0.673209076494147 +ER,Blank-2004,-0.690338003647499 +ER,Blank-2005,0.0706100931241623 +ER,Blank-2006,0.0875694347551479 +ER,Blank-2007,-0.0191656364203594 +ER,Blank-2008,0.161786678360444 +ER,Blank-2009,-0.396225694110632 +ER,Blank-2010,-0.0961534098720835 +ER,Blank-2011,0.935601903038114 +ER,Blank-2012,0.0543967260278433 +ER,Blank-2013,-0.560446983757564 +ER,Blank-2014,-0.134736785953964 +ER,Blank-2015,0.295807058412634 +ER,Blank-2016,-0.151340568408592 +ER,Blank-2017,0.157947591416125 +ER,Blank-2018,0.696726076829299 +ER,Blank-2019,0.145566322492308 +ER,Blank-2020,-0.80647897875879 +ER,Blank-2021,-0.371920083580993 +ER,Blank-2022,-0.177346961964445 +ER,Blank-2023,-0.372210601933465 +ER,Blank-2024,0.173673005273123 +ER,Blank-2025,0.515911916310461 +ER,Blank-2026,-0.217371845042956 +ER,Blank-2027,0.304752041279038 +ER,Blank-2028,0.204788692191686 +ER,Blank-2029,-0.220282771305158 +ER,Blank-2030,-0.361990487295478 +ER,Blank-2031,0.0296501483985141 +ER,Blank-2032,-0.462582369114407 +ER,Blank-2033,0.0329499478947372 +ER,Blank-2034,0.0273521580996472 +ER,Blank-2035,0.139823187974706 +ER,Blank-2036,-0.257989037545908 +ER,Blank-2037,-0.243964336391247 +ER,Blank-2038,0.237683798787769 +ER,Blank-2039,-0.165003161414807 +ER,Blank-2040,-0.589935375975012 +ER,Blank-2041,0.782001513206466 +ER,Blank-2042,-0.191108136247143 +ER,Blank-2043,-0.397660435712386 +ER,Blank-2044,0.0869601250813547 +ER,Blank-2045,0.0753977989984505 +ER,Blank-2046,-0.00373254430458595 +ER,Blank-2047,-0.267107468706964 +ER,Blank-2048,-0.0169564088530209 +ER,Blank-2049,0.196296656643612 +ER,Blank-2050,-0.777239661677394 +ER,Blank-2051,0.00524261899425144 +ER,Blank-2052,0.836444917529252 +ER,Blank-2053,-0.0631219680775929 +ER,Blank-2054,-0.337321733927471 +ER,Blank-2055,0.0260417675695097 +ER,Blank-2056,-0.135277962842033 +ER,Blank-2057,-0.705373152599405 +ER,Blank-2058,0.198395483478775 +ER,Blank-2059,0.27488744904682 +ER,Blank-2060,-0.143329105625956 +ER,Blank-2061,-0.351763337605674 +ER,Blank-2062,0.639392723918078 +ER,Blank-2063,0.99178384083967 +ER,Blank-2064,0.0878440125293626 +ER,Blank-2065,-1.1569217689764 +ER,Blank-2066,-0.230048074401434 +ER,Blank-2067,0.0537043419441209 +ER,Blank-2068,0.116526453019356 +ER,Blank-2069,-0.158027636773697 +ER,Blank-2070,0.0136152104761579 +ER,Blank-2071,-0.0872875095009831 +ER,Blank-2072,0.477966190689987 +ER,Blank-2073,-0.0839808246297384 +ER,Blank-2074,-0.060951238761893 +ER,Blank-2075,1.18580694074604 +ER,Blank-2076,-0.399935460043845 +ER,Blank-2077,-0.358332498449514 +ER,Blank-2078,-0.323716941926166 +ER,Blank-2079,0.141260979280712 +ER,Blank-2080,-0.384621298188666 +ER,Blank-2081,-0.480862361502898 +ER,Blank-2082,-0.231159592724069 +ER,Blank-2083,0.986346118656236 +ER,Blank-2084,1.38980375982633 +ER,Blank-2085,-0.549749352132144 +ER,Blank-2086,-0.0886493313821459 +ER,Blank-2087,-0.462696489253313 +ER,Blank-2088,-0.272344447574235 +ER,Blank-2089,-0.564648727276607 +ER,Blank-2090,0.480024366489589 +ER,Blank-2091,-0.373531449658038 +ER,Blank-2092,0.36887262666922 +ER,Blank-2093,0.0645413594962913 +ER,Blank-2094,0.166079894746385 +ER,Blank-2095,0.287905646817157 +ER,Blank-2096,-0.868764212857367 +ER,Blank-2097,0.876123136480209 +ER,Blank-2098,-0.00447592526406156 +ER,Blank-2099,0.0766693717071375 +ER,Blank-2100,-0.0132980880121232 +ER,Blank-2101,-0.312641422661189 +ER,Blank-2102,-0.785032080646812 +ER,Blank-2103,-0.12583867491933 +ER,Blank-2104,0.46655488453864 +ER,Blank-2105,0.371164741683477 +ER,Blank-2106,-0.31510852894676 +ER,Blank-2107,0.35023881546309 +ER,Blank-2108,0.511609159435324 +ER,Blank-2109,0.307788433304076 +ER,Blank-2110,-9.88844239704198e-05 +ER,Blank-2111,-0.706673407041101 +ER,Blank-2112,-0.607588647503638 +ER,Blank-2113,0.0102551003771543 +ER,Blank-2114,0.418668933984695 +ER,Blank-2115,-0.360320277326874 +ER,Blank-2116,0.643837250600476 +ER,Blank-2117,-0.388901463438422 +ER,Blank-2118,-0.135424448740792 +ER,Blank-2119,-0.39431034328316 +ER,Blank-2120,0.167340594560936 +ER,Blank-2121,0.0415157666446241 +ER,Blank-2122,0.493617141166406 +ER,Blank-2123,0.829193301541873 +ER,Blank-2124,0.156466233188028 +ER,Blank-2125,1.28299864914055 +ER,Blank-2126,-0.701396489334924 +ER,Blank-2127,0.18448258075285 +ER,Blank-2128,-0.71769580140232 +ER,Blank-2129,-0.146911140762091 +ER,Blank-2130,-0.120554316720346 +ER,Blank-2131,0.101171015667412 +ER,Blank-2132,-0.0693535919044793 +ER,Blank-2133,-0.560831193084153 +ER,Blank-2134,0.0648593852434387 +ER,Blank-2135,-0.114004412413055 +ER,Blank-2136,-0.416106073056867 +ER,Blank-2137,-0.0205641989649616 +ER,Blank-2138,-0.0588550204980862 +ER,Blank-2139,-0.177333272332631 +ER,Blank-2140,0.128151684266135 +ER,Blank-2141,0.213388484202291 +ER,Blank-2142,0.0495645836345926 +ER,Blank-2143,-0.057308716027148 +ER,Blank-2144,-0.277197303091173 +ER,Blank-2145,0.15711656829045 +ER,Blank-2146,-0.234472024415591 +ER,Blank-2147,0.633506882648633 +ER,Blank-2148,-0.299247693425606 +ER,Blank-2149,0.27049546165324 +ER,Blank-2150,0.15669815086543 +ER,Blank-2151,-0.396442524005259 +ER,Blank-2152,-0.0181774843670475 +ER,Blank-2153,-0.305423290269988 +ER,Blank-2154,0.33274152778735 +ER,Blank-2155,-0.102507581456537 +ER,Blank-2156,-0.501748198886965 +ER,Blank-2157,0.401885827465969 +ER,Blank-2158,-0.5562951618328 +ER,Blank-2159,0.631462784615513 +ER,Blank-2160,-0.421542184755356 +ER,Blank-2161,1.24172351840094 +ER,Blank-2162,0.312523649957367 +ER,Blank-2163,0.206782101995493 +ER,Blank-2164,0.234638301165478 +ER,Blank-2165,-0.49904232528438 +ER,Blank-2166,0.125225113242905 +ER,Blank-2167,0.812102022320055 +ER,Blank-2168,-0.576562489922052 +ER,Blank-2169,-0.674413682103194 +ER,Blank-2170,0.063080942188472 +ER,Blank-2171,0.18433832980515 +ER,Blank-2172,-0.492290161110714 +ER,Blank-2173,-0.106254076869202 +ER,Blank-2174,0.83335340645688 +ER,Blank-2175,-0.406450930924841 +ER,Blank-2176,0.23386976331077 +ER,Blank-2177,-0.189738178159878 +ER,Blank-2178,-0.694332239929218 +ER,Blank-2179,-0.449781727958637 +ER,Blank-2180,-0.83305142983128 +ER,Blank-2181,-0.488028793419898 +ER,Blank-2182,-0.413790202860077 +ER,Blank-2183,-0.117502735278864 +ER,Blank-2184,-0.378454975737139 +ER,Blank-2185,0.590470787053216 +ER,Blank-2186,-0.918626486916179 +ER,Blank-2187,0.251385096949631 +ER,Blank-2188,-0.222721015185063 +ER,Blank-2189,-0.597904598306009 +ER,Blank-2190,0.540623992285988 +ER,Blank-2191,-0.0362491566682419 +ER,Blank-2192,0.0571664062112677 +ER,Blank-2193,0.356203807164044 +ER,Blank-2194,-0.156296597983576 +ER,Blank-2195,0.310468942168374 +ER,Blank-2196,-0.715201540597527 +ER,Blank-2197,0.611224989089355 +ER,Blank-2198,-0.0192357023439322 +ER,Blank-2199,0.27517258228374 +ER,Blank-2200,0.547268479099176 +ER,Blank-2201,0.0154064347952628 +ER,Blank-2202,-0.795299139052376 +ER,Blank-2203,-0.0188367978091901 +ER,Blank-2204,-0.153414579357415 +ER,Blank-2205,-0.0352779977894345 +ER,Blank-2206,-0.291763672760503 +ER,Blank-2207,-0.0443340525222444 +ER,Blank-2208,0.0867051552855082 +ER,Blank-2209,0.21010518901914 +ER,Blank-2210,-0.528288762981789 +ER,Blank-2211,-0.678466828603629 +ER,Blank-2212,-0.265400067987111 +ER,Blank-2213,-0.0439081695896846 +ER,Blank-2214,-0.0487122571197955 +ER,Blank-2215,-0.410894488613172 +ER,Blank-2216,-0.744242904529004 +ER,Blank-2217,0.179892154819865 +ER,Blank-2218,0.0768717130409397 +ER,Blank-2219,0.149098759272578 +ER,Blank-2220,0.320096985083226 +ER,Blank-2221,-0.242266149577705 +ER,Blank-2222,0.384662619295817 +ER,Blank-2223,-0.340008373570666 +ER,Blank-2224,0.211310630492947 +ER,Blank-2225,-0.586302478199667 +ER,Blank-2226,-0.0249611558379377 +ER,Blank-2227,0.645149945542684 +ER,Blank-2228,-0.13305037440075 +ER,Blank-2229,1.55989732474202 +ER,Blank-2230,0.21533922279194 +ER,Blank-2231,0.0948505084650114 +ER,Blank-2232,1.25291904723467 +ER,Blank-2233,-0.883381383971857 +ER,Blank-2234,0.329285121368146 +ER,Blank-2235,-0.465908155594994 +ER,Blank-2236,-0.525931386417981 +ER,Blank-2237,0.127281798636988 +ER,Blank-2238,-0.32351676908697 +ER,Blank-2239,0.142345069449961 +ER,Blank-2240,-0.0645758948368802 +ER,Blank-2241,-0.0621072208994383 +ER,Blank-2242,-0.807714543195225 +ER,Blank-2243,0.700385051956734 +ER,Blank-2244,-0.138255153935378 +ER,Blank-2245,-0.282427512714276 +ER,Blank-2246,0.367293865212665 +ER,Blank-2247,0.293732079878751 +ER,Blank-2248,-0.0350294115013276 +ER,Blank-2249,0.313827228165433 +ER,Blank-2250,0.0247366623134407 +ER,Blank-2251,-0.600225836077407 +ER,Blank-2252,-0.812476419810572 +ER,Blank-2253,-0.0304420936973976 +ER,Blank-2254,0.768528673088527 +ER,Blank-2255,0.508714301877381 +ER,Blank-2256,-0.423612462887636 +ER,Blank-2257,-0.388541313298797 +ER,Blank-2258,-0.142946493666496 +ER,Blank-2259,-0.929010263681079 +ER,Blank-2260,-0.494741983110906 +ER,Blank-2261,0.0783228732520935 +ER,Blank-2262,-0.0384198426878148 +ER,Blank-2263,-0.425805906070195 +ER,Blank-2264,-0.54616435047422 +ER,Blank-2265,-0.177879657893025 +ER,Blank-2266,0.187042133248698 +ER,Blank-2267,-0.644478448093894 +ER,Blank-2268,0.396836434764286 +ER,Blank-2269,0.396652609694283 +ER,Blank-2270,0.272816710939551 +ER,Blank-2271,0.4150542203998 +ER,Blank-2272,-0.0925576634155185 +ER,Blank-2273,0.589086278658093 +ER,Blank-2274,0.340853223397655 +ER,Blank-2275,0.767085157937839 +ER,Blank-2276,0.0997912306554117 +ER,Blank-2277,0.367716243859292 +ER,Blank-2278,0.171477311430933 +ER,Blank-2279,0.401714231948862 +ER,Blank-2280,-0.0543463263883777 +ER,Blank-2281,-0.245961928608713 +ER,Blank-2282,0.985538589959373 +ER,Blank-2283,0.167084676681139 +ER,Blank-2284,0.189849064807778 +ER,Blank-2285,-0.25729311822504 +ER,Blank-2286,0.0928111409149491 +ER,Blank-2287,-0.388971911523991 +ER,Blank-2288,-0.0776337818793314 +ER,Blank-2289,0.350196738771186 +ER,Blank-2290,-0.222911709622923 +ER,Blank-2291,-0.733073427020321 +ER,Blank-2292,0.497041030979462 +ER,Blank-2293,-0.0645189664573704 +ER,Blank-2294,0.0903792496081994 +ER,Blank-2295,-0.00881060619427994 +ER,Blank-2296,-0.279472328759404 +ER,Blank-2297,0.587318038118824 +ER,Blank-2298,-0.55465161679125 +ER,Blank-2299,0.132822361540508 +ER,Blank-2300,-0.170682761285306 +ER,Blank-2301,0.00440967064405825 +ER,Blank-2302,-0.153666419634575 +ER,Blank-2303,-0.561611523381313 +ER,Blank-2304,-0.201582721316198 +ER,Blank-2305,0.113906348839313 +ER,Blank-2306,-0.26720882292944 +ER,Blank-2307,-0.233033200015458 +ER,Blank-2308,-0.614343165655004 +ER,Blank-2309,0.999584171090557 +ER,Blank-2310,0.154059873896945 +ER,Blank-2311,0.362990674272822 +ER,Blank-2312,-0.295103630872892 +ER,Blank-2313,-1.18738312481639 +ER,Blank-2314,0.0462387740891942 +ER,Blank-2315,1.26065397097405 +ER,Blank-2316,0.0659145202256549 +ER,Blank-2317,1.11716412103198 +ER,Blank-2318,1.03666940992665 +ER,Blank-2319,0.049973125907299 +ER,Blank-2320,0.148340426204178 +ER,Blank-2321,0.395456821414248 +ER,Blank-2322,-0.279289233724765 +ER,Blank-2323,0.43738633568323 +ER,Blank-2324,1.45125952281708 +ER,Blank-2325,0.339991569951568 +ER,Blank-2326,-0.290500564550706 +ER,Blank-2327,-0.0151357232889451 +ER,Blank-2328,-0.341609604552362 +ER,Blank-2329,0.0549900954169459 +ER,Blank-2330,0.0303475220970115 +ER,Blank-2331,-0.105457690604927 +ER,Blank-2332,1.03573469591829 +ER,Blank-2333,-0.539898570529996 +ER,Blank-2334,-0.408515620449063 +ER,Blank-2335,0.625991483247148 +ER,Blank-2336,0.184443747968943 +ER,Blank-2337,0.045383149154027 +ER,Blank-2338,0.694601327379079 +ER,Blank-2339,-0.19665178248354 +ER,Blank-2340,-0.231313152315154 +ER,Blank-2341,-0.386109432870701 +ER,Blank-2342,-0.318971995131601 +ER,Blank-2343,-0.659388844390862 +ER,Blank-2344,0.007811690113766 +ER,Blank-2345,0.173230041493412 +ER,Blank-2346,0.431285412963246 +ER,Blank-2347,-0.221624254233332 +ER,Blank-2348,-0.102593834662395 +ER,Blank-2349,-0.723015681873335 +ER,Blank-2350,0.186843464050615 +ER,Blank-2351,0.0713335497260112 +ER,Blank-2352,-0.446826613871038 +ER,Blank-2353,-0.0380436895056277 +ER,Blank-2354,0.0562579300984576 +ER,Blank-2355,0.114533628994133 +ER,Blank-2356,-0.051903190934244 +ER,Blank-2357,0.848190859250753 +ER,Blank-2358,0.138560288015669 +ER,Blank-2359,1.15061943657814 +ER,Blank-2360,-0.523100017422179 +ER,Blank-2361,-0.141610462266397 +ER,Blank-2362,-0.573605839193227 +ER,Blank-2363,-0.479496640553405 +ER,Blank-2364,-0.207837947441699 +ER,Blank-2365,-0.421802447621233 +ER,Blank-2366,0.27554310161004 +ER,Blank-2367,-0.207777651208699 +ER,Blank-2368,0.1572912741297 +ER,Blank-2369,0.743939503677421 +ER,Blank-2370,-0.128962337502206 +ER,Blank-2371,-0.140882031095271 +ER,Blank-2372,0.75872116793044 +ER,Blank-2373,-0.0527925641256221 +ER,Blank-2374,0.258108030143199 +ER,Blank-2375,-0.179431672278523 +ER,Blank-2376,-0.388689394999508 +ER,Blank-2377,0.317172606257515 +ER,Blank-2378,-0.0655114051515617 +ER,Blank-2379,-0.156323225577081 +ER,Blank-2380,-0.304525179590262 +ER,Blank-2381,-0.362452467928842 +ER,Blank-2382,-0.618287112989017 +ER,Blank-2383,-0.303234877592171 +ER,Blank-2384,-0.11997854292111 +ER,Blank-2385,-0.394779046760637 +ER,Blank-2386,-0.336034542800571 +ER,Blank-2387,0.229470772526562 +ER,Blank-2388,-0.277909550249978 +ER,Blank-2389,0.66045255079332 +ER,Blank-2390,-0.222862335990506 +ER,Blank-2391,1.68109965015563 +ER,Blank-2392,-0.52472508284366 +ER,Blank-2393,-0.00825858879968635 +ER,Blank-2394,-0.162316292554232 +ER,Blank-2395,0.12589448255713 +ER,Blank-2396,-0.511488951761933 +ER,Blank-2397,-0.608849327344491 +ER,Blank-2398,-0.344151442766655 +ER,Blank-2399,-0.386480686274377 +ER,Blank-2400,0.895160738753016 +ER,Blank-2401,-0.136801275738378 +ER,Blank-2402,0.155122406922579 +ER,Blank-2403,0.126908782516295 +ER,Blank-2404,-0.394683550235679 +ER,Blank-2405,0.169740697548168 +ER,Blank-2406,-0.0862958477202099 +ER,Blank-2407,-0.0781106213704918 +ER,Blank-2408,-0.525885068285352 +ER,Blank-2409,-0.219755596281785 +ER,Blank-2410,-0.723390239171611 +ER,Blank-2411,0.800925692987405 +ER,Blank-2412,0.111886964283934 +ER,Blank-2413,-0.186568181893031 +ER,Blank-2414,-0.654224562062701 +ER,Blank-2415,0.514610484466915 +ER,Blank-2416,-0.102719861317933 +ER,Blank-2417,0.0261534219094766 +ER,Blank-2418,-0.229840798745649 +ER,Blank-2419,-0.31111818020705 +ER,Blank-2420,-0.324999817007575 +ER,Blank-2421,-0.202022402097474 +ER,Blank-2422,0.629447978304376 +ER,Blank-2423,-0.509719262613201 +ER,Blank-2424,-0.0171853387113126 +ER,Blank-2425,0.0691845245987158 +ER,Blank-2426,-0.749820096418599 +ER,Blank-2427,-0.574845556304353 +ER,Blank-2428,-0.37816866238979 +ER,Blank-2429,-0.270245153231257 +ER,Blank-2430,-0.491175671647211 +ER,Blank-2431,-0.270144462206395 +ER,Blank-2432,-0.0956696571431862 +ER,Blank-2433,-0.27750452836461 +ER,Blank-2434,0.0341831571710437 +ER,Blank-2435,0.189413029068231 +ER,Blank-2436,0.380180380616656 +ER,Blank-2437,0.124342342387618 +ER,Blank-2438,0.246158097628277 +ER,Blank-2439,1.77687374211673 +ER,Blank-2440,0.630459713429744 +ER,Blank-2441,0.244201521738841 +ER,Blank-2442,0.195307416917619 +ER,Blank-2443,1.77821983169693 +ER,Blank-2444,-0.568950943639818 +ER,Blank-2445,-0.344344545438031 +ER,Blank-2446,-0.152415241947051 +ER,Blank-2447,-0.0415825546899604 +ER,Blank-2448,0.689942801822466 +ER,Blank-2449,1.06044975090768 +ER,Blank-2450,-0.268922319817981 +ER,Blank-2451,0.173335332522705 +ER,Blank-2452,0.0458652640578412 +ER,Blank-2453,1.29667910582017 +ER,Blank-2454,-0.248129259445466 +ER,Blank-2455,-0.268604980066997 +ER,Blank-2456,0.817981306901722 +ER,Blank-2457,-0.0629361556358092 +ER,Blank-2458,-0.173300987337608 +ER,Blank-2459,0.340090327008076 +ER,Blank-2460,0.00499243215630278 +ER,Blank-2461,0.559727570718603 +ER,Blank-2462,-0.113576609103644 +ER,Blank-2463,0.432342355214332 +ER,Blank-2464,0.377320278736087 +ER,Blank-2465,0.637200491262318 +ER,Blank-2466,0.174588637055177 +ER,Blank-2467,0.933662333091686 +ER,Blank-2468,-0.122301209190464 +ER,Blank-2469,-0.29787852696458 +ER,Blank-2470,-0.284625350513583 +ER,Blank-2471,-0.541469200122115 +ER,Blank-2472,-0.139983513681334 +ER,Blank-2473,-0.370413616780391 +ER,Blank-2474,0.653157405358909 +ER,Blank-2475,0.567896153974347 +ER,Blank-2476,-0.342364505813845 +ER,Blank-2477,-0.651712883934379 +ER,Blank-2478,-0.3760449536041 +ER,Blank-2479,-0.416161017980618 +ER,Blank-2480,0.190742691130231 +ER,Blank-2481,0.313816010721244 +ER,Blank-2482,0.12472394999468 +ER,Blank-2483,0.240934167198526 +ER,Blank-2484,-0.238973352263161 +ER,Blank-2485,-0.15047055233693 +ER,Blank-2486,-0.0397555295816069 +ER,Blank-2487,-0.878943797549469 +ER,Blank-2488,-0.328912846180174 +ER,Blank-2489,0.114413146616422 +ER,Blank-2490,0.585331346511347 +ER,Blank-2491,-0.437848106110843 +ER,Blank-2492,-0.187881404430104 +ER,Blank-2493,-0.353906479795322 +ER,Blank-2494,-0.135898556627861 +ER,Blank-2495,0.0466868997062462 +ER,Blank-2496,0.552679381291894 +ER,Blank-2497,0.3161694340361 +ER,Blank-2498,0.431714801962192 +ER,Blank-2499,-0.366590586350266 +ER,Blank-2500,-0.13601225578893 +ER,Blank-2501,-0.142644450725065 +ER,Blank-2502,0.122436114298118 +ER,Blank-2503,0.34309125287289 +ER,Blank-2504,0.657346254890925 +ER,Blank-2505,0.105466916938924 +ER,Blank-2506,-0.432669841242504 +ER,Blank-2507,-0.542815399156883 +ER,Blank-2508,-0.433540505469542 +ER,Blank-2509,-0.120972830782152 +ER,Blank-2510,-0.768465774490588 +ER,Blank-2511,0.0843856743241085 +ER,Blank-2512,0.0477453288777507 +ER,Blank-2513,0.791178644830514 +ER,Blank-2514,-0.167171092428042 +ER,Blank-2515,-0.475106116960378 +ER,Blank-2516,-0.279923747433112 +ER,Blank-2517,-0.264274916218482 +ER,Blank-2518,0.532867267579342 +ER,Blank-2519,-0.209252010938817 +ER,Blank-2520,0.00564845989182684 +ER,Blank-2521,-0.335035018885111 +ER,Blank-2522,-0.638377754293106 +ER,Blank-2523,-0.828890764009419 +ER,Blank-2524,0.383450303397471 +ER,Blank-2525,-0.0271465332820675 +ER,Blank-2526,-0.186532960436757 +ER,Blank-2527,0.111968245613109 +ER,Blank-2528,-0.319172938504321 +ER,Blank-2529,-0.250687858177949 +ER,Blank-2530,0.231205622816127 +ER,Blank-2531,-0.182372731315771 +ER,Blank-2532,0.400681218091611 +ER,Blank-2533,0.839974026713256 +ER,Blank-2534,0.442997757348245 +ER,Blank-2535,-0.157475949418006 +ER,Blank-2536,0.233366627838705 +ER,Blank-2537,0.100519055112743 +ER,Blank-2538,-0.544327851350433 +ER,Blank-2539,-0.298601904006685 +ER,Blank-2540,0.134501579327067 +ER,Blank-2541,0.466195579984701 +ER,Blank-2542,-0.12111264933482 +ER,Blank-2543,0.291786198829648 +ER,Blank-2544,0.000951685667928206 +ER,Blank-2545,-0.100592031946014 +ER,Blank-2546,-0.0492996636942976 +ER,Blank-2547,0.207258158908239 +ER,Blank-2548,0.467730527960254 +ER,Blank-2549,0.0268629234251438 +ER,Blank-2550,-0.0504524190114353 +ER,Blank-2551,-0.0462230443112543 +ER,Blank-2552,-0.81190995328975 +ER,Blank-2553,0.147971489437712 +ER,Blank-2554,-0.211487208037276 +ER,Blank-2555,-0.596470903002341 +ER,Blank-2556,-0.259822816381815 +ER,Blank-2557,0.409480253558043 +ER,Blank-2558,-0.165712210945398 +ER,Blank-2559,-0.0800458678975363 +ER,Blank-2560,0.656470440770814 +ER,Blank-2561,0.377541057079071 +ER,Blank-2562,0.0164940304445053 +ER,Blank-2563,-0.222325194263285 +ER,Blank-2564,-0.160781888414828 +ER,Blank-2565,-0.466978387402927 +ER,Blank-2566,0.626691180355769 +ER,Blank-2567,-0.298757223686945 +ER,Blank-2568,-0.702020119699507 +ER,Blank-2569,0.305203313746655 +ER,Blank-2570,0.454885306200924 +ER,Blank-2571,0.134815619597351 +ER,Blank-2572,-0.142747406774305 +ER,Blank-2573,0.586978442484086 +ER,Blank-2574,-0.27318894689143 +ER,Blank-2575,0.126696508643593 +ER,Blank-2576,-0.348403639106656 +ER,Blank-2577,0.845172421375693 +ER,Blank-2578,0.347925764902295 +ER,Blank-2579,0.0892328866804443 +ER,Blank-2580,-0.245544398391778 +ER,Blank-2581,0.349153999591441 +ER,Blank-2582,-0.632030770299339 +ER,Blank-2583,-0.133946399633452 +ER,Blank-2584,0.230596143100722 +ER,Blank-2585,0.206703486058082 +ER,Blank-2586,-0.115518683719431 +ER,Blank-2587,0.14401549834704 +ER,Blank-2588,-0.346622511272296 +ER,Blank-2589,-0.411129618239978 +ER,Blank-2590,0.0605553572039837 +ER,Blank-2591,0.0620474243655632 +ER,Blank-2592,-0.0593012021947173 +ER,Blank-2593,0.365359784360007 +ER,Blank-2594,-0.0119571901298953 +ER,Blank-2595,0.975459095014803 +ER,Blank-2596,-0.125763772908584 +ER,Blank-2597,-0.44589329882217 +ER,Blank-2598,0.978426451481514 +ER,Blank-2599,-0.402282048909148 +ER,Blank-2600,-0.330953283370509 +ER,Blank-2601,-0.312069846004359 +ER,Blank-2602,0.414163837189003 +ER,Blank-2603,-0.312463344031567 +ER,Blank-2604,-0.338760383394397 +ER,Blank-2605,0.110434835261142 +ER,Blank-2606,-0.127870920832578 +ER,Blank-2607,-0.835607873238564 +ER,Blank-2608,0.0676901738453818 +ER,Blank-2609,0.30321786668216 +ER,Blank-2610,0.292180787211668 +ER,Blank-2611,0.159657106389415 +ER,Blank-2612,-0.712925170953031 +ER,Blank-2613,-0.5620677571598 +ER,Blank-2614,-0.219684276834875 +ER,Blank-2615,0.848879543641333 +ER,Blank-2616,-0.539536569862106 +ER,Blank-2617,-0.379244596332197 +ER,Blank-2618,-0.0814151301457202 +ER,Blank-2619,-0.393915074363032 +ER,Blank-2620,0.682139376909428 +ER,Blank-2621,-0.127917815200969 +ER,Blank-2622,-0.124637866966303 +ER,Blank-2623,-0.277642547913544 +ER,Blank-2624,0.642818184367416 +ER,Blank-2625,-0.262348093952695 +ER,Blank-9050,-0.32462179012093 +ER,Blank-9051,0.37633905350818597 +ER,Blank-9052,0.204275789498674 +ER,Blank-9053,-0.230450490911654 +ER,Blank-9054,-0.583555943149614 +ER,Blank-9055,-0.307333637231062 +ER,Blank-9056,0.0468777867387121 +ER,Blank-9057,-0.101446315847463 +ER,Blank-9058,-0.297826143469223 +ER,Blank-9059,0.920047619004565 +ER,Blank-9060,-0.258208996503985 +ER,Blank-9061,0.0345584858032764 +ER,Blank-9062,0.112742049552836 +ER,Blank-9063,0.270981045368889 +ER,Blank-9064,-0.275488646915478 +ER,Blank-9065,-0.100000226620182 +ER,Blank-9066,0.598868943263154 +ER,Blank-9067,0.327375965556024 +ER,Blank-9068,0.584432325946698 +ER,Blank-9069,0.268398080025042 +ER,Blank-9070,-0.328293735946943 +ER,Blank-9071,-0.403880462280682 +ER,Blank-9072,0.854562439228724 +ER,Blank-9073,0.338355126870655 +ER,Blank-9074,0.125779057700127 +ER,Blank-9075,-0.00356339130129832 +ER,Blank-9076,-0.315555867629222 +ER,Blank-9077,-0.0255163329376885 +ER,Blank-9078,-0.0140683183160579 +ER,Blank-9079,0.20504862482244 +ER,Blank-9080,0.0427261911252628 +ER,Blank-9081,-0.0771889348155514 +ER,Blank-9082,0.0114428647865517 +ER,Blank-9083,-0.152359036591824 +ER,Blank-9084,0.809482318984522 +ER,Blank-9085,0.44697189300528 +ER,Blank-9086,0.0678658030149833 +ER,Blank-9087,-0.36951575400982 +ER,Blank-9088,-0.161081310016907 +ER,Blank-9089,0.59912692818189 +ER,Blank-9090,-0.430052373512217 +ER,Blank-9091,0.903984184312331 +ER,Blank-9092,0.0999802025291371 +ER,Blank-9093,0.0692232709664263 +ER,Blank-9094,-0.627819358274282 +ER,Blank-9095,0.23475394379969 +ER,Blank-9096,0.336614249685953 +ER,Blank-9097,0.120715171520135 +ER,Blank-9098,0.0470797981640453 +ER,Blank-9099,-0.476465603035622 +ER,Blank-9100,0.722417414670869 +ER,Blank-9101,-0.184253382443164 +ER,Blank-9102,0.946341241217311 +ER,Blank-9103,-0.237922834240256 +ER,Blank-9104,-0.0152786966933485 +ER,Blank-9105,-0.368462282902155 +ER,Blank-9106,-0.29416379425903 +ER,Blank-9107,-0.170752893962495 +ER,Blank-9108,-0.432994410749683 +ER,Blank-9109,0.347996058520135 +ER,Blank-9110,-0.487903602675966 +ER,Blank-9111,0.0723192671523867 +ER,Blank-9112,-0.148937451934652 +ER,Blank-9113,0.264764313707434 +ER,Blank-9114,-0.241481091529249 +ER,Blank-9115,-0.734603446353052 +ER,Blank-9116,-0.515831101250657 +ER,Blank-9117,0.130764956507309 +ER,Blank-9118,0.229790758723186 +ER,Blank-9119,-0.623666516658764 +ER,Blank-9120,-0.412804493062959 +ER,Blank-9121,0.579380831852319 +ER,Blank-9122,-0.705361179643732 +ER,Blank-9123,-0.483197273136853 +ER,Blank-9124,0.180452370588096 +ER,Blank-9125,0.540127035215179 +ER,Blank-9126,1.14763987477886 +ER,Blank-9127,-0.755564243993742 +ER,Blank-9128,1.09866608052931 +ER,Blank-9129,-0.316448900249058 +ER,Blank-9130,-0.883668826940653 +ER,Blank-9131,-0.0955778294134451 +ER,Blank-9132,0.166272201603191 +ER,Blank-9133,0.418352928206592 +ER,Blank-9134,0.0830406054800356 +ER,Blank-9135,-0.179091308172703 +ER,Blank-9136,0.312201711090742 +ER,Blank-9137,0.142517243477822 +ER,Blank-9138,-0.108514640990754 +ER,Blank-9139,1.00889948732462 +ER,Blank-9140,0.00573571179116979 +ER,Blank-9141,0.140570036677433 +ER,Blank-9142,0.832038090904627 +ER,Blank-9143,0.249106275069042 +ER,Blank-9144,-0.408053343496644 +ER,Blank-9145,-0.5350875186337 +ER,Blank-9146,0.32899757078945 +ER,Blank-9147,-0.245813477500473 +ER,Blank-9148,0.0271702644754141 +ER,Blank-9149,-0.602813120910412 +ER,Blank-9150,0.730004995065254 +ER,Blank-9151,0.154587024447767 +ER,Blank-9152,-0.0859413239150584 +ER,Blank-9153,0.303807819642684 +ER,Blank-9154,-0.0152281786573949 +ER,Blank-9155,-0.192857853305228 +ER,Blank-9156,-0.47039247600313 +ER,Blank-9157,0.353323222126775 +ER,Blank-9158,-0.373302242876617 +ER,Blank-9159,-0.163453451495854 +ER,Blank-9160,0.33442580695516 +ER,Blank-9161,-0.0295275706603387 +ER,Blank-9162,-0.0897526694313294 +ER,Blank-9163,0.695093531587912 +ER,Blank-9164,-0.580458726521047 +ER,Blank-9165,0.05781077609364 +ER,Blank-9166,0.0749916399468558 +ER,Blank-9167,1.71301841622847 +ER,Blank-9168,-0.0745612993046555 +ER,Blank-9169,-0.47807721409546 +ER,Blank-9170,0.910768004116834 +ER,Blank-9171,0.666341079705337 +ER,Blank-9172,0.226997135751208 +ER,Blank-9173,0.0303708239108169 +ER,Blank-9174,1.39218943014163 +ER,Blank-9175,-0.0657706100657817 +ER,Blank-9176,0.0995530414435049 +ER,Blank-9177,0.452159570678659 +ER,Blank-9178,-0.787930991027882 +ER,Blank-9179,-0.140816248489689 +ER,Blank-9180,0.380983028577952 +ER,Blank-9181,0.341212130083554 +ER,Blank-9182,0.442344105448559 +ER,Blank-9183,0.00316761209295604 +ER,Blank-9184,0.237699408203913 +ER,Blank-9185,-0.511670674748208 +ER,Blank-9186,-0.0539043299247122 +ER,Blank-9187,1.29908176689843 +ER,Blank-9188,-0.386465797437681 +ER,Blank-9189,0.648403067846669 +ER,Blank-9190,0.399295260304326 +ER,Blank-9191,-0.846584220563221 +ER,Blank-9192,0.12262887976282 +ER,Blank-9193,-0.224594450441951 +ER,Blank-9194,-0.14823314507656 +ER,Blank-9195,0.403503753402786 +ER,Blank-9196,-0.680526896058864 +ER,Blank-9197,-0.0863149032082857 +ER,Blank-9198,-0.150925201298449 +ER,Blank-9199,0.5567308488226 +ER,Blank-9200,-0.719426922033071 +ER,Blank-9201,-0.714548687117532 +ER,Blank-9202,0.0505050952577682 +ER,Blank-9203,0.00166566041479049 +ER,Blank-9204,0.08656016526708 +ER,Blank-9205,-0.542524198014571 +ER,Blank-9206,0.514390131372166 +ER,Blank-9207,0.283063653303133 +ER,Blank-9208,-0.00605919525417624 +ER,Blank-9209,0.208496230717799 +ER,Blank-9210,-0.0839541657195054 +ER,Blank-9211,-0.288802561047622 +ER,Blank-9212,-0.373066349387089 +ER,Blank-9213,-0.410781433536482 +ER,Blank-9214,0.937597345346227 +ER,Blank-9215,0.000709668110236205 +ER,Blank-9216,0.323698442933379 +ER,Blank-9217,-0.00316538486757181 +ER,Blank-9218,0.658563703623367 +ER,Blank-9219,0.500438519833616 +ER,Blank-9220,-0.357643267331523 +ER,Blank-9221,-0.0912047500049433 +ER,Blank-9222,-0.70016176892179 +ER,Blank-9223,0.0245790491495108 +ER,Blank-9224,0.0442364203200633 +ER,Blank-9225,-0.456844227257803 +ER,Blank-9226,0.555617753910298 +ER,Blank-9227,0.283329403262354 +ER,Blank-9228,0.892700050065255 +ER,Blank-9229,-0.165193006378983 +ER,Blank-9230,-0.688145486628873 +ER,Blank-9231,0.0540477717442216 +ER,Blank-9232,-0.158912849567159 +ER,Blank-9233,0.633891127660557 +ER,Blank-9234,0.169845672112779 +ER,Blank-9235,0.175530513243272 +ER,Blank-9236,-0.281595541616329 +ER,Blank-9237,-0.401316996195575 +ER,Blank-9238,-0.282401067182392 +ER,Blank-9239,0.429998878717462 +ER,Blank-9240,0.964994573513445 +ER,Blank-9241,0.21404341144773 +ER,Blank-9242,-0.265466150262022 +ER,Blank-9243,-0.280121222166673 +ER,Blank-9244,0.918713767858052 +ER,Blank-9245,-0.379880096419732 +ER,Blank-9246,-0.397826347072295 +ER,Blank-9247,0.14331982735637 +ER,Blank-9248,0.0368359711096913 +ER,Blank-9249,0.0620852067583465 +ER,Blank-9250,0.274895799089096 +ER,Blank-9251,0.205356440953914 +ER,Blank-9252,-0.0357177636199229 +ER,Blank-9253,1.34070143810056 +ER,Blank-9254,-0.525612046968227 +ER,Blank-9255,-0.737698762459801 +ER,Blank-9256,-0.464672614306718 +ER,Blank-9257,0.161939838203086 +ER,Blank-9258,0.524758648809879 +ER,Blank-9259,0.577884614574492 +ER,Blank-9260,-0.00851586683199588 +ER,Blank-9261,-1.05355628980093 +ER,Blank-9262,-0.0386211767268085 +ER,Blank-9263,-0.506217050812032 +ER,Blank-9264,-0.350587548190972 +ER,Blank-9265,0.181981377447468 +ER,Blank-9266,-0.573293558796245 +ER,Blank-9267,-0.812850454379735 +ER,Blank-9268,0.656303343700012 +ER,Blank-9269,-0.294067096044019 +ER,Blank-9270,0.879364101609549 +ER,Blank-9271,0.314322691513032 +ER,Blank-9272,-0.0628488682597966 +ER,Blank-9273,0.0111830694131184 +ER,Blank-9274,-0.16070444330687 +ER,Blank-9275,-0.0335160785400351 +ER,Blank-9276,-0.0938914542887436 +ER,Blank-9277,-0.3744756675184 +Nucleus,GRM4,-0.875984067316664 +Nucleus,APOB,-0.9530328075493 +Nucleus,LANCL3,-0.0144545364561498 +Nucleus,MRVI1,-0.702817440034379 +Nucleus,UNC80,0.463544214317632 +Nucleus,BHLHE22,0.893539677073821 +Nucleus,PDE3A,-0.0321048102099873 +Nucleus,HEMGN,0.0285663109290801 +Nucleus,PCDH10,-0.509458438547209 +Nucleus,GLUL,-0.245858058161007 +Nucleus,ATP6AP1L,1.67170818435885 +Nucleus,PRKCB,0.30475729259758 +Nucleus,CACNG3,0.721212110904514 +Nucleus,GLRA3,0.097730486008212 +Nucleus,CYP3A4,0.286535767557144 +Nucleus,PCK1,0.060172142023469 +Nucleus,GRIA3,0.182260207310881 +Nucleus,TTC6,-1.56168632283143 +Nucleus,GUCY1A2,0.893384634703086 +Nucleus,C10orf126,-0.539005706007845 +Nucleus,CHRM2,0.244119118673552 +Nucleus,BCR,-1.00980848485119 +Nucleus,TDRD1,0.493635219023555 +Nucleus,PRDM6,0.85725737646895 +Nucleus,CSF3R,0.991996305223984 +Nucleus,SVEP1,0.35872085783077 +Nucleus,SUMF1,2.03017209038242 +Nucleus,ZNF23,3.39418046221213 +Nucleus,FCGBP,-0.0678013030736132 +Nucleus,NTRK3,-0.213072470181575 +Nucleus,PCDHGA12,-0.119395503075587 +Nucleus,TNNI1,0.57127464196855 +Nucleus,CLIC6,-0.648929480326649 +Nucleus,SLC5A12,1.02859241491841 +Nucleus,PPP2R2B,1.14502065862329 +Nucleus,STPG2,0.426310684325347 +Nucleus,RADIL,-0.0150164640639288 +Nucleus,KIF26B,-0.571504788507729 +Nucleus,PON1,1.32084720773891 +Nucleus,KLF17,-0.301121009559382 +Nucleus,GLDN,0.311551547004964 +Nucleus,GDF6,-0.933313367226301 +Nucleus,ESRRG,0.110330562498609 +Nucleus,KRT76,-1.10488340112306 +Nucleus,MALL,0.0161552005335583 +Nucleus,FAM87A,-0.058202739240388 +Nucleus,ABCG5,-0.32746837304518 +Nucleus,XIRP2,-0.483172877275356 +Nucleus,ENPP2,1.75700907686086 +Nucleus,CDHR3,1.85526768944402 +Nucleus,NPC1L1,0.167034718916334 +Nucleus,CLRN1,0.874561048127347 +Nucleus,TEKT2,-0.246619785115028 +Nucleus,PRDM14,-0.686982241001721 +Nucleus,PCAT5,0.374014719313446 +Nucleus,SLC30A10,0.218435601137993 +Nucleus,TNFRSF11A,-0.337813565718231 +Nucleus,DPP6,0.217375672206283 +Nucleus,TEX41,0.133492204637956 +Nucleus,IRAK3,0.294278310131208 +Nucleus,VSTM2A,0.443813793513495 +Nucleus,CAGE1,0.144540215043006 +Nucleus,VRTN,-0.784271043048726 +Nucleus,FAT3,0.172199346969237 +Nucleus,SUPT20HL1,1.25412750251574 +Nucleus,FAM83C,-0.464654848418303 +Nucleus,TTLL2,2.03956722063449 +Nucleus,PRR26,-0.0653407411151437 +Nucleus,NLRP2,0.430976960348996 +Nucleus,POU3F2,-0.701744356915148 +Nucleus,SCAPER,2.67120024614557 +Nucleus,TPO,1.0402416288825 +Nucleus,BMPER,0.328713706368877 +Nucleus,ZNF491,0.404278333461205 +Nucleus,NDST4,-0.55348426096761 +Nucleus,SLC30A8,0.0520672298455284 +Nucleus,BTBD11,0.90220484199474 +Nucleus,SLC6A2,0.747613729017152 +Nucleus,POU4F2,1.76653644273506 +Nucleus,CCDC146,1.27900425774939 +Nucleus,ZNF235,2.35450943329382 +Nucleus,CMIP,4.16779402048885 +Nucleus,SEC14L5,0.516505382567202 +Nucleus,PLAC4,-0.565918646398452 +Nucleus,FBXO40,-0.837595059448329 +Nucleus,GAGE1,-0.384494803320982 +Nucleus,ASIC4,0.117129320980147 +Nucleus,SLC15A3,1.39639985273248 +Nucleus,ABI3BP,0.0440546089815176 +Nucleus,ADGRL3,0.657743259746475 +Nucleus,VWC2,-0.317675485244438 +Nucleus,SYNPO2,0.301664637470281 +Nucleus,VWA3B,0.0417284196327966 +Nucleus,TAF4,3.98628840089777 +Nucleus,PRKRIRP4,-0.353822553332628 +Nucleus,ITGBL1,1.40265445101097 +Nucleus,IRF4,-0.881230155949989 +Nucleus,KNG1,-0.370549044601022 +Nucleus,PTPRQ,1.38552775540595 +Nucleus,LRRC10,-0.304597325015153 +Nucleus,IRF6,0.310191482799939 +Nucleus,EOMES,0.136816361464677 +Nucleus,KRT3,1.05029002159344 +Nucleus,SLITRK5,1.004662470787 +Nucleus,HLX,0.982910306642992 +Nucleus,CHIT1,-1.96869955236994 +Nucleus,CXCR2,-0.847405863689086 +Nucleus,LIX1,-0.347768563280655 +Nucleus,LILRB5,-0.543712543564942 +Nucleus,NRXN1,0.465207293594826 +Nucleus,LAMA4,1.23305243082764 +Nucleus,HS3ST1,-0.0826837796762678 +Nucleus,ASXL3,1.69377455693809 +Nucleus,SLC8A1,-0.440720810501711 +Nucleus,WSCD2,3.28866988171582 +Nucleus,MAFF,1.86526372624725 +Nucleus,ADRB3,0.269618029679189 +Nucleus,TMPRSS7,-0.107193891959128 +Nucleus,IL16,0.0372621262643691 +Nucleus,KMO,1.27484806167333 +Nucleus,ACVR1C,0.640430722366048 +Nucleus,MPPED2,-0.586833388293109 +Nucleus,A2ML1,-0.824829543324447 +Nucleus,KIAA1755,-0.284943135687295 +Nucleus,ZNF259P1,0.618992208344758 +Nucleus,MPI,1.69168224875452 +Nucleus,A1CF,0.0935325769706984 +Nucleus,LDLRAD1,-0.251255565350527 +Nucleus,ATP10A,0.534076033592173 +Nucleus,FAM201A,-0.75368021589066 +Nucleus,AVPR1A,0.881671069991702 +Nucleus,CD38,-0.400717153561151 +Nucleus,UNC13C,0.210810335322582 +Nucleus,UNC5D,0.0836422118609957 +Nucleus,PTGER3,-0.215065552739508 +Nucleus,OLR1,-0.876301073667823 +Nucleus,GRIN2A,0.3659134154687 +Nucleus,PTPRVP,0.669186913059304 +Nucleus,IPCEF1,0.0337116446089874 +Nucleus,ENPEP,0.192773624404015 +Nucleus,DLEU2L,3.84467626814766 +Nucleus,SSPO,0.119868968956028 +Nucleus,CLLU1,-0.244485049112919 +Nucleus,ADGB,0.712932691622478 +Nucleus,NALCN,0.282476870481708 +Nucleus,HAUS6P2,-0.503400983051332 +Nucleus,GABRG1,-0.26530626217349 +Nucleus,HS6ST3,1.10659487773671 +Nucleus,MUC2,0.112148039035341 +Nucleus,TUBE1,3.86269013026114 +Nucleus,G6PC,-0.381839784390735 +Nucleus,OSR1,-0.0312811761731491 +Nucleus,NEB,-0.878638898988602 +Nucleus,PABPC1P11,0.240525401543246 +Nucleus,CLSTN2,0.318602277058801 +Nucleus,CES4A,2.00973617043624 +Nucleus,CRB1,0.38927604631371 +Nucleus,LRP2,-0.270625447546699 +Nucleus,SAGE4P,0.24240429909982 +Nucleus,TRPM1,0.648294639198221 +Nucleus,GRM2,-1.35577554757993 +Nucleus,DLX6,-0.0909220569282477 +Nucleus,COL4A6,0.526958150247235 +Nucleus,GLP1R,0.153387108244393 +Nucleus,LY75,-0.236934463997848 +Nucleus,C4orf22,3.28231763266714 +Nucleus,NCALD,-0.327100284208091 +Nucleus,KRT32,0.995296809638272 +Nucleus,AMER3,-0.316349117365722 +Nucleus,TMPRSS11B,0.178527238774476 +Nucleus,TMEM108,1.76768077086126 +Nucleus,MUC19,1.67454508122408 +Nucleus,SCUBE1,-1.08724650547173 +Nucleus,NEUROD1,1.25400998289514 +Nucleus,DGCR5,-0.447713629894298 +Nucleus,SHTN1,2.99256050845745 +Nucleus,GJB7,-0.721568578209191 +Nucleus,ABCD2,0.748910972679642 +Nucleus,GP5,2.00139535660026 +Nucleus,TAF7L,0.127120581344201 +Nucleus,ST18,0.400398115228421 +Nucleus,PPP1R36,-0.196281392600068 +Nucleus,MYBPC3,0.50212669215034 +Nucleus,KRT35,-0.102501783633854 +Nucleus,HHIP,0.142875459349454 +Nucleus,SIAH3,-0.015242340564967 +Nucleus,DSCAML1,0.233989753275641 +Nucleus,SLC1A2,0.716577076558575 +Nucleus,UNC79,0.917355994121615 +Nucleus,NPHP1,1.36215420703527 +Nucleus,PLD4,1.38536522671576 +Nucleus, MARCH7,4.20877211181743 +Nucleus,CD93,0.388093349504932 +Nucleus,HGF,0.825130633344668 +Nucleus,OLFML1,-0.41129055365101 +Nucleus,FER1L6,0.674763794614283 +Nucleus,C11orf87,0.052231469165426 +Nucleus,CD1A,-0.140576161180524 +Nucleus,PCDH9,2.41295595386215 +Nucleus,ALPP,-0.274684112999657 +Nucleus,ANK3,1.72678206653754 +Nucleus,ALOX15,-0.758498055767579 +Nucleus,TDRD15,3.11531111561641 +Nucleus,CLYBL,0.217170044355558 +Nucleus,LEPR,1.19067619076947 +Nucleus,POU3F1,0.384450722821635 +Nucleus,COL20A1,0.275875478491704 +Nucleus,ST8SIA2,0.819867145965534 +Nucleus,TXNL1,2.59560577111418 +Nucleus,DSC1,0.448303263220342 +Nucleus,PHEX,0.00500571215985131 +Nucleus,VAX1,0.30561733485153 +Nucleus,PDE4D,0.679142160300146 +Nucleus,GCNT4,-0.0511962905986962 +Nucleus,NRAP,0.776987089423679 +Nucleus,MUC12,0.834269081707186 +Nucleus,KIAA1683,1.98872886704491 +Nucleus,C5,0.699428332836272 +Nucleus,ESR1,0.663116644139539 +Nucleus,SOX5,0.273529067143957 +Nucleus,TNR,-0.0806386822427758 +Nucleus,GPR35,0.0696119774551745 +Nucleus,SERPINB11,0.725430529264435 +Nucleus,LHFPL2,4.79575442141269 +Nucleus,ALOX15B,-0.341515076425972 +Nucleus,NECAP2,4.02886451449983 +Nucleus,PKD1L3,1.26756265409858 +Nucleus,CNTN1,-1.27223430212651 +Nucleus,LYRM9,1.99011938635614 +Nucleus,CMYA5,2.55437221112714 +Nucleus,UGT1A7,0.481758816009723 +Nucleus,INSRR,-0.839727602783604 +Nucleus,IMPG2,0.957837684280394 +Nucleus,KCNH1,-0.296350574581398 +Nucleus,COL4A4,1.02585213580437 +Nucleus,GRIN2B,1.33473685264525 +Nucleus,NPAS3,0.0218574530166648 +Nucleus,COL1A2,0.807189754367375 +Nucleus,SLC13A1,0.164918373390243 +Nucleus,C2orf54,-0.367750620340373 +Nucleus,KCNK15,-0.469282602980339 +Nucleus,OTUD7A,1.22318704067674 +Nucleus,CHRM5,-0.56098298767592 +Nucleus,KCNJ12,0.108444478912873 +Nucleus,GRK5,1.20005451535221 +Nucleus,GPR61,1.47693084512105 +Nucleus,SPTA1,0.612762929489475 +Nucleus,SP9,0.339850140039454 +Nucleus,ANKRD66,0.537058247880808 +Nucleus,DCAF4L2,0.387784497992337 +Nucleus,RYR2,0.890112024307961 +Nucleus,ACTBP13,0.461510447888014 +Nucleus,SLC24A2,0.281595960637485 +Nucleus,CD226,0.339228225389074 +Nucleus,GABRR3,0.0470505282316699 +Nucleus,CXorf36,0.0402401480566607 +Nucleus,MBP,0.093532413046043 +Nucleus,KCNJ10,0.935205275071108 +Nucleus,OTOF,-0.0212080267987913 +Nucleus,CDH7,-0.416955709769412 +Nucleus,TREML2,0.517264107817357 +Nucleus,SIM1,-1.19895952753753 +Nucleus,VWA2,-0.344761860333945 +Nucleus,MID1,-0.371463003336122 +Nucleus,OR2C3,0.301717555371126 +Nucleus,COL9A1,0.797569917809342 +Nucleus,C10orf105,-0.125414314933331 +Nucleus,TSSK1B,1.04526272409006 +Nucleus,CLEC17A,0.514315182898183 +Nucleus,DCDC1,0.667270024163186 +Nucleus,PRDM7,1.23364108270115 +Nucleus,CYSLTR2,-0.00415540919588133 +Nucleus,PRDM16,-0.998690206292522 +Nucleus,ABCA12,0.951536518651864 +Nucleus,CD160,1.09839162137456 +Nucleus,RFX4,0.469620409982287 +Nucleus,PIK3CG,-0.40797614980192 +Nucleus,SPATA17,0.0411286268880633 +Nucleus,FRA10AC1,4.52898967878462 +Nucleus,CD36,1.67697376405908 +Nucleus,NRK,-0.445577036065763 +Nucleus,RASGEF1B,0.718141469423076 +Nucleus,GCSAML,-0.707531695542165 +Nucleus,ZFR2,-1.07344359136835 +Nucleus,ARRDC5,1.04539131622393 +Nucleus,HS3ST3B1,-0.708966294963243 +Nucleus,SPATA31E1,0.121946005869747 +Nucleus,ITGA8,0.280316224145658 +Nucleus,HYAL4,-0.891097652189463 +Nucleus,SORCS1,0.413584996832787 +Nucleus,ZNF99,1.1884098626516 +Nucleus,OTOG,-0.156643182193954 +Nucleus,HLF,1.25354133460531 +Nucleus,IL2RA,0.887048098615561 +Nucleus,DNAH14,0.0552911942513749 +Nucleus,LUZP2,-0.563482976387496 +Nucleus,COL25A1,0.517256073927203 +Nucleus,PARP8,2.07923346427934 +Nucleus,MCM9,3.76198316391925 +Nucleus,PROM1,-0.284656823002718 +Nucleus,KCNS2,0.746217619606346 +Nucleus,EGR3,0.916932325993696 +Nucleus,MYEF2,3.11924443881332 +Nucleus,ARL14EP,4.07564544839796 +Nucleus,SPAG16,0.625656447497017 +Nucleus,SLITRK6,0.661476566759042 +Nucleus,TRPM5,1.35489411513475 +Nucleus,SSTR1,1.24806011375458 +Nucleus,ZDHHC13,4.60071501458318 +Nucleus,TRPV3,-0.795896107297831 +Nucleus,TMEM132B,-1.02219460249523 +Nucleus,THEMIS,-0.70485772835339 +Nucleus,CAPN13,-0.0576964593766323 +Nucleus,FBXW4P1,0.154174672872161 +Nucleus,ZC2HC1C,0.779010660523105 +Nucleus,PANK1,1.95917085430669 +Nucleus,ZNF578,0.113116421907112 +Nucleus,DMKN,4.27380894261557 +Nucleus,ATP2B2,0.653920051708162 +Nucleus,ACSS1,1.34102431077927 +Nucleus,ZDHHC14,1.3532409537374 +Nucleus,PDE7B,0.0310564652145671 +Nucleus,KCTD1,1.42632259511302 +Nucleus,CYP26C1,0.86310660902796 +Nucleus,MYO15A,-0.915945667814285 +Nucleus,PNPLA5,1.0207058926549 +Nucleus,RTL1,-0.123134487735913 +Nucleus,C1orf132,3.59288381147253 +Nucleus,POLI,1.95921817228653 +Nucleus,GNL2P1,0.114814935219833 +Nucleus,HDHD3,0.54170697130141 +Nucleus,MYRIP,-0.868970431048535 +Nucleus,TBC1D10C,0.408608479652092 +Nucleus,SHOX,0.205624652873906 +Nucleus,ITK,0.287116217197558 +Nucleus,FBLN2,0.00545285293240905 +Nucleus,MYLK4,-0.60134333050448 +Nucleus,KAZN,0.59900020987638 +Nucleus,CCDC177,1.9292079634026 +Nucleus,SCN1A,0.620111563891163 +Nucleus,WISP2,0.331274571249837 +Nucleus,MX1,0.257651762394773 +Nucleus,LRRIQ1,0.934682538121025 +Nucleus,MUC6,-0.473760556223739 +Nucleus,GSTM5,0.251818206545729 +Nucleus,SV2B,0.402308096963008 +Nucleus,KCTD16,0.791677305989413 +Nucleus,B3GNT6,-0.150452513658252 +Nucleus,GALR1,0.169735753838646 +Nucleus,FRMPD4,-0.949378526434419 +Nucleus,PDGFD,-0.670987302732472 +Nucleus,OAS2,-0.754245787435017 +Nucleus,C2orf88,-0.201916353067984 +Nucleus,SPON1,0.392348346271996 +Nucleus,FLG2,-1.63740444904765 +Nucleus,KLHL31,1.00937419051386 +Nucleus,PDCD1,-0.240740814546194 +Nucleus,DOCK11P1,-1.01611304348023 +Nucleus,EXTL1,-0.232301114892728 +Nucleus,LLGL2,0.455357930381532 +Nucleus,LRRTM2,0.385703620187327 +Nucleus,CALHM1,0.709277052786983 +Nucleus,F13A1,-0.812421698438309 +Nucleus,C17orf102,-0.623608845316782 +Nucleus,VCAN,-0.536651156504231 +Nucleus,TSPAN19,1.13989900641333 +Nucleus,ESR2,0.141583053000615 +Nucleus,CNOT2,4.86072826312171 +Nucleus,TRIM67,0.192043415068931 +Nucleus,IFT81,1.93579745120512 +Nucleus,TMEM220,0.344424564488949 +Nucleus,FOXI3,-0.256417340011031 +Nucleus,TBC1D27,-0.139767206856696 +Nucleus,TMEM30B,-0.291280504648974 +Nucleus,TMEM229A,-0.360370361704043 +Nucleus,TEK,0.327658625277488 +Nucleus,COX18,1.78467344868314 +Nucleus,FASLG,0.672035931168639 +Nucleus,HNF4A,-1.20692510958741 +Nucleus,NR2E1,0.0710303320363246 +Nucleus,ABCA5,1.6831011118618 +Nucleus,SCN3B,-0.317244828676338 +Nucleus,MIPEPP1,0.250176810241292 +Nucleus,CDHR2,0.465843547361637 +Nucleus,SLAMF6,0.166887616328537 +Nucleus,ZRANB3,2.0734371088865 +Nucleus,SCN11A,0.455530272142443 +Nucleus,MAGEB16,0.0708444678202606 +Nucleus,GREM1,0.358534403995531 +Nucleus,GOLGA2P1,-0.68712268354663 +Nucleus,CAPN14,0.759803281628669 +Nucleus,VN1R1,1.01902575586886 +Nucleus,TNFRSF10A,-0.209241605660043 +Nucleus,NEFH,-0.421456361589601 +Nucleus,MYT1L,0.666111334350573 +Nucleus,SCRT1,0.420963453285456 +Nucleus,ABO,0.459141107985567 +Nucleus,MAN1C1,1.6559278674533 +Nucleus,CFAP46,0.953683952687601 +Nucleus,APCDD1,-0.146022129262051 +Nucleus,RAD17P2,0.571557772063151 +Nucleus,ST6GAL2,-1.14931275446857 +Nucleus,GSN,3.9184543326641 +Nucleus,CREG2,0.0660824413284966 +Nucleus,C10orf53,-0.23905892181574 +Nucleus,CARF,1.35843339893246 +Nucleus,NDUFA5,2.6228032672464 +Nucleus,LHX9,0.518924023471728 +Nucleus,KIAA1210,-0.011849292499273 +Nucleus,LGALS12,0.0326401402699449 +Nucleus,ARHGEF38,-0.451759650483415 +Nucleus,HEPH,0.57483752289239 +Nucleus,SPARCL1,0.422549740003062 +Nucleus,R3HDM2P2,0.633189648831314 +Nucleus,NUDT4,2.61561436265638 +Nucleus,MYO3B,1.15648956508418 +Nucleus,NLRP8,-0.753339077332079 +Nucleus,OTP,0.973500317661679 +Nucleus,ARHGEF28,4.51107319357222 +Nucleus,USP26,1.05420688818453 +Nucleus,GLDC,-0.64701809011904 +Nucleus,SLCO1A2,2.52227847052621 +Nucleus,UBE2D3,5.81245164858192 +Nucleus,IGSF21,-0.498617571937319 +Nucleus,GPR37L1,2.25664935562271 +Nucleus,AGMO,0.237372219749344 +Nucleus,SLC5A8,-0.81428257630075 +Nucleus,NPHS1,-0.768370948050667 +Nucleus,HEATR4,0.639469055503118 +Nucleus,MYBPC2,-0.69231378829924 +Nucleus,LPA,0.745615044302967 +Nucleus,FILIP1,0.603923184905655 +Nucleus,FAM135B,0.82774355146418 +Nucleus,TMEM215,1.0326591422765 +Nucleus,LIPJ,0.971732836823734 +Nucleus,PTGS1,0.778232251935814 +Nucleus,GALK2,2.97499542217696 +Nucleus,BGN,0.061802936801859 +Nucleus,ST8SIA5,-0.0604142407715726 +Nucleus,CHST15,0.679612993114829 +Nucleus,DMBX1,1.10242886190472 +Nucleus,FLYWCH1P1,-0.369569522884586 +Nucleus,ADAM28,0.950930978592615 +Nucleus,DNALI1,-0.649676461086273 +Nucleus,TCF7,-0.697573058697676 +Nucleus,TCERG1L,1.01517868699168 +Nucleus,ZMAT1,-0.332853884400337 +Nucleus,FAM189A1,1.02127952271382 +Nucleus,PRKRIRP9,-0.453066633581139 +Nucleus,ZNF300,2.2184186685709 +Nucleus,SALL4P1,-0.130664636333194 +Nucleus,C11orf30,5.53652524045203 +Nucleus,PTBP2,5.2578264107489 +Nucleus,GRM7,0.348552789911778 +Nucleus,LAMA3,-0.91319926566874 +Nucleus,CFAP47,0.33543574855493 +Nucleus,RASGEF1A,0.984930013295963 +Nucleus,SLC36A3,-0.258100951784604 +Nucleus,SGK1,0.834691194560121 +Nucleus,RASGRF2,0.87128781819324 +Nucleus,TMPRSS2,-0.415116865477654 +Nucleus,KLF8,0.590607735284073 +Nucleus,TF,0.201779810901286 +Nucleus,ERICH1,-0.114624947572839 +Nucleus,RFX6,-0.284274247274483 +Nucleus,MIR497HG,1.15376565461659 +Nucleus,PCA3,-0.447606043005144 +Nucleus,HIC1,0.73688586450045 +Nucleus,CDK15,0.280827171183789 +Nucleus,FEZ2,4.85439228862743 +Nucleus,NPAP1,0.267419001628474 +Nucleus,LDLRAD4,-0.0168083484048414 +Nucleus,FAT2,-0.57792027193611 +Nucleus,NTRK2,-0.296407186260137 +Nucleus,PRAM1,1.08920913371323 +Nucleus,FGD2,1.4050310209233 +Nucleus,CCDC40,0.626930297357183 +Nucleus,TEX11,0.305403234714002 +Nucleus,ATP1A4,0.055967594238392 +Nucleus,MAFB,1.08186420805051 +Nucleus,PIGF,4.40163548118972 +Nucleus,PIEZO2,0.336064561514056 +Nucleus,PRCD,2.49569585360018 +Nucleus,STRCP1,1.06751408009305 +Nucleus,TP63,-0.372488009257134 +Nucleus,PRKRIRP6,0.870975613139483 +Nucleus,ADCY8,0.283872312341612 +Nucleus,GPATCH2L,3.89821223398689 +Nucleus,PART1,-0.0287104526478691 +Nucleus,NLGN1,-0.185762331741263 +Nucleus,DLGAP1,0.228300684596789 +Nucleus,ABI2,5.12127670224323 +Nucleus,CHST9,0.55839891883503 +Nucleus,GREB1L,0.41152050000405 +Nucleus,HOTTIP,0.0512110890601198 +Nucleus,AFF2,0.494271788115927 +Nucleus,LST1,1.33792406384708 +Nucleus,SLC6A19,-0.325442457954952 +Nucleus,SKOR1,0.630703186155945 +Nucleus,WDR78,-0.14256701087165 +Nucleus,PGA4,-0.218841716383546 +Nucleus,SCG3,0.0437222081875395 +Nucleus,MMRN2,-0.250457423876045 +Nucleus,SSPN,0.136823115363222 +Nucleus,KALRN,0.342063867007664 +Nucleus,SCN10A,0.425731708802984 +Nucleus,PDE6C,1.36646716531181 +Nucleus,ZNF585B,0.558789319457311 +Nucleus,ROBO3,0.18360825398514 +Nucleus,TRAF3IP3,-0.178938873992026 +Nucleus,CCNK,2.28803575524085 +Nucleus,CYP8B1,-0.277774986045819 +Nucleus,ZNF546,1.77310467731199 +Nucleus,PLIN4,0.20971001167642 +Nucleus,DPH6,1.28999757829548 +Nucleus,MARVELD3,-0.412156726994558 +Nucleus,RGS13,-1.26118872993665 +Nucleus,STRBP,3.2582643037222 +Nucleus,LRFN2,0.345477875782159 +Nucleus,PRRG3,-0.319759534755943 +Nucleus,NLRP12,0.723015531858332 +Nucleus,PLCXD3,0.636873380619421 +Nucleus,RUNDC3B,-0.863105196113223 +Nucleus,CABP7,-0.799221291100491 +Nucleus,ZNF366,0.548253419991648 +Nucleus,COL2A1,0.916469873904159 +Nucleus,BZRAP1,0.214392517164603 +Nucleus,TCP10,-0.300270624642135 +Nucleus,ADGRF3,0.0928678839994868 +Nucleus,HIBCH,5.29230479063237 +Nucleus,ADGRD1,0.31195232376272 +Nucleus,SDPR,-1.73059906216471 +Nucleus,TNNT2,0.376938481614651 +Nucleus,CD5,0.169803160233226 +Nucleus,CCDC170,0.217470517038533 +Nucleus,PRSS30P,0.428624419670789 +Nucleus,GIMAP1,-0.107985931717146 +Nucleus,KCNK12,0.821688028846046 +Nucleus,DNAJB13,-0.0310856350169132 +Nucleus,DENND2D,-0.851198598062905 +Nucleus,MOGAT2,0.364923388208712 +Nucleus,AMER2,0.0692135768923296 +Nucleus,ZNF536,0.550403900163859 +Nucleus,BPIFB1,0.660792337314941 +Nucleus,TMEM150C,1.35790571775439 +Nucleus,DNAH7,-0.953135672801782 +Nucleus,ANXA3,4.92075923368028 +Nucleus,HDDC2,3.94795586632705 +Nucleus,VTA1,1.53929312692027 +Nucleus,FENDRR,1.156005352666 +Nucleus,ABCC11,0.954779480070265 +Nucleus,RAPGEF3,0.758806650193277 +Nucleus,KIAA1109,3.18880839108221 +Nucleus,LRGUK,1.27857951970554 +Nucleus,RGS11,0.54988555640493 +Nucleus,TRPM3,0.296312912923942 +Nucleus,ZNF862,0.30105298952453 +Nucleus,CDH17,0.300785236678896 +Nucleus,BCAS3,2.1542521317786 +Nucleus,ZNF826P,-0.41536038711455 +Nucleus,VILL,1.13734119424525 +Nucleus,TTTY15,-0.623436885756291 +Nucleus,PNMA5,0.889646795122597 +Nucleus,CACNA1C,0.886674764418552 +Nucleus,SKOR2,-0.554568065063861 +Nucleus,COG6,1.60072106959622 +Nucleus,HP,1.39068458553223 +Nucleus,TACC2,0.95813057093718 +Nucleus,CABLES1,-0.377284078607437 +Nucleus,PADI1,0.913645489637912 +Nucleus,ZSCAN4,0.516179774353695 +Nucleus,RIMKLA,-0.453675085871646 +Nucleus,MYOM2,1.18461948691845 +Nucleus,SNX13,4.81134409086544 +Nucleus,EIF1AY,0.0648296287888057 +Nucleus,SPATA32,0.962978978837048 +Nucleus,NKAIN2,-0.106916574745284 +Nucleus,DUSP4,0.804326755967684 +Nucleus,ST8SIA1,0.138888254091339 +Nucleus,CNGA1,0.429223167484516 +Nucleus,UGT3A1,-0.749711293081694 +Nucleus,ANKRD35,-0.521009952238938 +Nucleus,TSPYL6,0.213773247498579 +Nucleus,IL15,2.34202003366226 +Nucleus,KCND3,0.0976449818020177 +Nucleus,PRR18,0.0406138396305285 +Nucleus,FAM129A,1.14441033531578 +Nucleus,CD163,-0.587840625091694 +Nucleus,PXDNL,1.75745844856128 +Nucleus,HSF5,0.949599268591854 +Nucleus,GLB1L3,2.35486098607173 +Nucleus,DHX8,4.24045340537616 +Nucleus,CLDN2,0.243716025216063 +Nucleus,RAG1,0.0411267309730073 +Nucleus,PBX1,2.77029822388883 +Nucleus,IRS2,-0.559235361731679 +Nucleus,ADAM20P1,1.18229186849707 +Nucleus,ASNSP6,2.08312600397616 +Nucleus,KCNE1,2.07776783887126 +Nucleus,DNAH10,1.23999018514283 +Nucleus,CPN2,0.454979355113545 +Nucleus,PPEF2,-0.793530927067997 +Nucleus,TRIM10,-0.885164315412827 +Nucleus,HACD4,-0.0928556542989154 +Nucleus,AIRE,0.417633935096379 +Nucleus,SLC38A4,0.0856314846656813 +Nucleus,CD300E,-0.585066726693104 +Nucleus,TTC41P,0.834447218635822 +Nucleus,KLHDC7B,0.177146900595384 +Nucleus,TMEM132D,0.0826313820933914 +Nucleus,TRAPPC2,3.91751901706282 +Nucleus,ACTN2,0.307384555641601 +Nucleus,CLDN16,0.59969188037261 +Nucleus,FGL2,0.533731036491211 +Nucleus,ACE,0.401121754031762 +Nucleus,PLIN1,1.14888720379172 +Nucleus,CCDC141,-0.136715494825173 +Nucleus,TMEM239,1.0345778029344 +Nucleus,C3orf67,1.9374060547954 +Nucleus,NFATC3,-0.0121230608216715 +Nucleus,CD300LG,0.689318940983322 +Nucleus,MUC21,0.793032288281731 +Nucleus,WNT7A,0.526964921968812 +Nucleus,TIGIT,-0.127751245461305 +Nucleus,GRIK3,0.666029334296139 +Nucleus,SMC6,3.60572794735508 +Nucleus,SRRM4,0.170430144117692 +Nucleus,ARSD,0.191003276038752 +Nucleus,ADGRB3,0.872637526398343 +Nucleus,ABCA8,0.935816057625681 +Nucleus,C12orf40,1.21095751381782 +Nucleus,EXD3,0.824457836600612 +Nucleus,AP3B2,1.34481949668761 +Nucleus,RHOH,0.502452019758832 +Nucleus,SV2C,-0.208138198577923 +Nucleus,SLC1A1,-0.0414118470264985 +Nucleus,LEP,-0.285414341005493 +Nucleus,PTCHD1,0.449369793351928 +Nucleus,IL36RN,0.0812106690451505 +Nucleus,SEZ6L,-0.131667115114327 +Nucleus,CFAP43,-1.16132271859208 +Nucleus,ADCY2,-0.0237811891840789 +Nucleus,CHFR,0.694696089853727 +Nucleus,GPC5,0.736093643569452 +Nucleus,IL23R,0.0149668521370001 +Nucleus,DAPP1,0.434529197571312 +Nucleus,DNAH2,0.23823567194312 +Nucleus,PAPOLA,5.00262008785517 +Nucleus,PPP1R1C,1.52196487546595 +Nucleus,ELF5,0.496508449574943 +Nucleus,SCML4,0.766072597994335 +Nucleus,PLEK,-0.194935421210927 +Nucleus,ANKRD36,6.3857056881548 +Nucleus,SLC7A9,1.08083894092037 +Nucleus,PPME1,4.43048368437547 +Nucleus,PLXDC2,1.0041949468393 +Nucleus,ADGRF2,0.254334134849788 +Nucleus,IDH3A,-0.710002165323137 +Nucleus,PRSS27,0.862602629868261 +Nucleus,THEMIS2,0.00819703593381395 +Nucleus,AIFM3,0.976344075311121 +Nucleus,MYCBPAP,1.06263893929246 +Nucleus,DMRTA2,0.228083363390317 +Nucleus,SOX1,0.696034454251252 +Nucleus,FASTKD2,3.80403303438387 +Nucleus,SLC4A9,0.947539006151539 +Nucleus,SYT8,0.0236503444083395 +Nucleus,C1orf127,0.53629369162735 +Nucleus,ABCB11,1.24656459580424 +Nucleus,ENTPD3,-0.0283026525939024 +Nucleus,RXRA,2.83423125154904 +Nucleus,LRAT,0.105967257798985 +Nucleus,SEC1P,0.465425369605278 +Nucleus,CASC2,0.599030509388248 +Nucleus,ARPP21,1.3311628480541 +Nucleus,ADH6,-0.0354400776503416 +Nucleus,FAM53A,0.404393980646433 +Nucleus,NUBPL,2.41694657996022 +Nucleus,SLC26A1,-1.23333782703566 +Nucleus,LRTM2,0.920653974399658 +Nucleus,TTC23L,1.87391731900359 +Nucleus,ZNF233,-0.596407019273367 +Nucleus,BEND2,0.63435687760498 +Nucleus,STC2,1.40112309627567 +Nucleus,PCM1,5.18129046599802 +Nucleus,ABCA6,0.840873225279046 +Nucleus,MPDZ,2.80250969841803 +Nucleus,HEPHL1,1.40174959710817 +Nucleus,MDGA1,0.983163380082664 +Nucleus,GLB1L2,-0.680032548117409 +Nucleus,SYT16,1.72248356294498 +Nucleus,LYST,2.86889450490308 +Nucleus,SLC34A2,-0.950668053577454 +Nucleus,ANKRD30A,0.929476906794125 +Nucleus,KLK7,1.20044950503715 +Nucleus,SIGLEC8,-0.531877733394513 +Nucleus,IL12B,-1.13693263330139 +Nucleus,SLC52A3,0.0477274885095564 +Nucleus,LACE1,2.02626679430231 +Nucleus,L1TD1,0.339456623227791 +Nucleus,ZEB2,0.318330190934544 +Nucleus,C9orf139,0.131513443846375 +Nucleus,KIAA1671,4.94867151992874 +Nucleus,DRGX,-0.190629136875506 +Nucleus,SLC13A5,0.0645684098708302 +Nucleus,NOTCH4,-0.367997002209947 +Nucleus,NPY6R,0.778621930663763 +Nucleus,SLC9C1,0.590591344876031 +Nucleus,ART4,-0.00642162304512134 +Nucleus,CDH8,1.17712992468962 +Nucleus,C14orf105,1.44429735515098 +Nucleus,GFAP,-0.0738585075321921 +Nucleus,GPR65,0.277965278165719 +Nucleus,SIRT2,0.699465234881475 +Nucleus,CCDC102B,0.138775394128246 +Nucleus,TRPC4,0.370711364614744 +Nucleus,EPX,0.0517351498058369 +Nucleus,PPP2R5C,4.6766739668756 +Nucleus,GLIS3,0.790526298224131 +Nucleus,BMP3,-0.298914621786478 +Nucleus,NPTX2,-0.111298344157747 +Nucleus,SLC8A3,-0.0311791586531967 +Nucleus,PKDREJ,0.769947842813811 +Nucleus,RCN1,0.16577534947072 +Nucleus,RSPO3,0.334421468150463 +Nucleus,TMPRSS4,0.558094798122133 +Nucleus,HRG,-0.751403463825692 +Nucleus,ARHGAP17,4.38343459982558 +Nucleus,KLHL30,0.14065714745476 +Nucleus,COLGALT2,0.17827995983534 +Nucleus,LPAR1,-0.392550509615404 +Nucleus,PAPD5,4.2381497221394 +Nucleus,PSAPL1,-0.083293933507194 +Nucleus,WDR20,2.99551340035462 +Nucleus,NPBWR1,-0.0388875571954225 +Nucleus,WISP3,-0.495463065943906 +Nucleus,WBP2NL,1.20080991480174 +Nucleus,NLRP6,-0.273510964333014 +Nucleus,GGACT,-0.943736400683326 +Nucleus,GBAS,5.54059342587658 +Nucleus,NCAM1,2.93328144322536 +Nucleus,VPS72,0.100044496722043 +Nucleus,USP53,4.81994593873154 +Nucleus,LGR5,0.353723870465973 +Nucleus,KCNJ6,0.0776183770498806 +Nucleus,RASSF6,0.26941898436696 +Nucleus,FLI1,-0.131842716675878 +Nucleus,LRRD1,1.35597403873686 +Nucleus,PRMT3,4.86650808094493 +Nucleus,NRSN1,-0.493944882074305 +Nucleus,ZNF852,4.77004660149197 +Nucleus,SH3TC2,1.81982694153826 +Nucleus,RBFOX1,0.248525856586189 +Nucleus,SEZ6,-0.568960987799625 +Nucleus,TPK1,0.694421140823393 +Nucleus,GDPD4,0.341368624223665 +Nucleus,GLRA2,0.216002653642824 +Nucleus,ZCCHC5,-0.285851360358026 +Nucleus,NOX5,0.169130510289676 +Nucleus,PCAT18,0.417415865784678 +Nucleus,BDKRB2,0.240175943945214 +Nucleus,ERICH3,-0.586974222566227 +Nucleus,FHAD1,0.653454253868796 +Nucleus,UGP2,4.96925090391065 +Nucleus,DNAAF1,0.760283575866758 +Nucleus,PTPRO,-1.15846268691625 +Nucleus,CPLX2,0.49310511074041 +Nucleus,TECTA,0.59398580232168 +Nucleus,STXBP5L,1.1065022577517 +Nucleus,PCDHGC4,0.781704822824634 +Nucleus,RIMS1,0.239113855929179 +Nucleus,DSP,-0.968491894311672 +Nucleus,MIP,0.0854008161404319 +Nucleus,SCNN1B,-1.58231381231942 +Nucleus,SHC3,0.966730422640883 +Nucleus,PKHD1,0.145271592651858 +Nucleus,DAAM1,4.39343275933264 +Nucleus,PRPH,-0.431982038798682 +Nucleus,GSTTP1,0.613123763565813 +Nucleus,SCG2,0.420959468589777 +Nucleus,SYCP2,1.87258677584648 +Nucleus,NDST3,0.0662853327692153 +Nucleus,TBX21,0.195192786837431 +Nucleus,NR4A1,0.942328770637617 +Nucleus,ACSS3,1.91322240951754 +Nucleus,IL1RAP,-0.422295264396686 +Nucleus,RIC3,3.42980957321906 +Nucleus,KCNJ1,0.320740010765163 +Nucleus,GSG1L,0.481988753506771 +Nucleus,ATP2B3,0.317457946554102 +Nucleus,STAB1,-0.494558245612372 +Nucleus,SLC22A13,2.64090553824462 +Nucleus,KANSL1,5.00209178719067 +Nucleus,COBL,2.42486997252014 +Nucleus,EMX1,0.360042035096362 +Nucleus,LCA5L,0.718899827451583 +Nucleus,C9orf131,-0.462213391068405 +Nucleus,SEMA4D,1.70133368642173 +Nucleus,IL17RE,-0.0499345573320931 +Nucleus,ZNF681,-0.0924021181956182 +Nucleus,PECAM1,-0.575248581470511 +Nucleus,SLITRK4,0.926978774741623 +Nucleus,PKNOX2,0.363390791331723 +Nucleus,TBPL1,2.48329383191779 +Nucleus,LRRC19,1.90259819005901 +Nucleus,NRXN2,-0.454697732247737 +Nucleus,SOX6,1.48207420443635 +Nucleus,PARK2,-2.15751401877029 +Nucleus,FAM83F,1.66692927670716 +Nucleus,TMEM105,0.464170809995345 +Nucleus,ADAMTS19,0.121210282615908 +Nucleus,KCNC1,1.27654622782513 +Nucleus,ABCB5,0.312636644007349 +Nucleus,ETV1,-0.954565479119608 +Nucleus,SLC4A4,-0.0349765985548902 +Nucleus,SLC6A14,0.606537199638821 +Nucleus,VWA3A,-0.7774524291022 +Nucleus,KLLN,-0.107097111560233 +Nucleus,DNAH10OS,-0.209372684376126 +Nucleus,LGSN,0.159076762134815 +Nucleus,TMEM232,-0.0484242727187935 +Nucleus,NEIL1,1.87615602158339 +Nucleus,SERPINA10,-0.45528593252625 +Nucleus,PIK3C2G,-0.389281494567408 +Nucleus,CACNA1E,0.7243905571153 +Nucleus,C1QL3,0.248546222770162 +Nucleus,DRC1,-0.550734454606091 +Nucleus,CCDC175,0.472723220500044 +Nucleus,SKAP2,-0.591029798330668 +Nucleus,RANBP17,4.57520558476672 +Nucleus,PROKR1,-0.305650754748919 +Nucleus,ARMC3,-0.202975142825115 +Nucleus,CDHR4,1.07151019864273 +Nucleus,GBP6,-0.2902334047212 +Nucleus,SMIM8,4.1602305269152 +Nucleus,C1orf145,0.970815656022175 +Nucleus,PLEKHS1,0.423920175217421 +Nucleus,EBF2,0.302136305726284 +Nucleus,ASPN,0.443132242332727 +Nucleus,GAD2,0.564523841825209 +Nucleus,ISL1,-0.0963981905863842 +Nucleus,MIXL1,-1.20086536300845 +Nucleus,HIPK4,-0.614159092423714 +Nucleus,TRPC6,0.388920226125384 +Nucleus,PLCL1,-0.638835422104026 +Nucleus,KCNG4,1.56330801695593 +Nucleus,CAMK1G,0.879055637610423 +Nucleus,PDE9A,0.869871499545159 +Nucleus,LRRTM4,-0.145924494390079 +Nucleus,NCKAP1L,0.787810752634298 +Nucleus,MAS1,0.86959240208833 +Nucleus,FAIM,2.35187436117002 +Nucleus,SORBS2,4.39016065128388 +Nucleus,PPL,-0.726147095220852 +Nucleus,CYB5R2,-0.309254636303315 +Nucleus,CUL1P1,-0.648224177610766 +Nucleus,MAP3K15,-1.75684395234017 +Nucleus,TTC16,-0.143311353041729 +Nucleus,SPINT2,0.835586082499545 +Nucleus,ANKRD44,3.53690444087364 +Nucleus,TTLL9,0.535882453644174 +Nucleus,ZFP37,1.06930339591785 +Nucleus,C6orf3,2.14524706841455 +Nucleus,IQGAP2,0.18807338245514 +Nucleus,PPP5D1,3.19159257954192 +Nucleus,PTPRC,-0.0368532342489751 +Nucleus,C16orf54,-0.226016361312994 +Nucleus,MPEG1,-1.65712862635499 +Nucleus,CLCA3P,-1.25956413647407 +Nucleus,DHX58,0.178761050458472 +Nucleus,TMEM151B,-0.148193721222471 +Nucleus,PREX2,-0.00099340760603863 +Nucleus,LRP2BP,3.51358662384848 +Nucleus,ADAMTSL2,-0.345710121224769 +Nucleus,CPXM1,0.119262004942134 +Nucleus,NTN5,0.58806361609229 +Nucleus,ANKRD6,0.295650731864447 +Nucleus,YPEL4,1.34355940789776 +Nucleus,C7orf65,-0.267376460849195 +Nucleus,KIAA1107,1.05248029224957 +Nucleus,CNPY1,1.81186440454221 +Nucleus,MEIS1,3.12002750326838 +Nucleus,TMPRSS11BNL,0.198213505889746 +Nucleus,MEDAG,0.367383869647448 +Nucleus,KIAA1456,0.0401077721875075 +Nucleus,ANGPTL5,0.310162630649761 +Nucleus,ISLR2,0.486573283703356 +Nucleus,COL21A1,0.221068331397832 +Nucleus,WDR48,4.02207613678998 +Nucleus,MME,0.739540404530323 +Nucleus,CHN2,-0.687067632821867 +Nucleus,MAPT,-1.69078523081145 +Nucleus,TACSTD2,0.91255061164872 +Nucleus,ITSN1,0.917309281745253 +Nucleus,XKR4,0.329010338171641 +Nucleus,C5orf56,4.73100800576503 +Nucleus,KRT42P,0.642744012546117 +Nucleus,C8orf74,0.338619395611805 +Nucleus,FRMD1,-0.65419373524785 +Nucleus,DRD5,-1.06378354586969 +Nucleus,SHH,0.556569661624683 +Nucleus,IARS2P1,1.70428142096316 +Nucleus,CASP14,-0.258419780689683 +Nucleus,PLCH1,0.578194960435108 +Nucleus,KC6,0.924540523166769 +Nucleus,FAM196A,-0.0679598916912219 +Nucleus,AKAP6,0.269947180807738 +Nucleus,PCDHGB9P,1.04580885326871 +Nucleus,ITIH5,2.15834110933541 +Nucleus,EWSR1,5.99794047682405 +Nucleus,IGFBP3,0.137005589538966 +Nucleus,MSH6,3.27489870799411 +Nucleus,GPIHBP1,0.319970903449716 +Nucleus,TMCC3,-0.126038470325624 +Nucleus,EPHA6,0.338817054151417 +Nucleus,OLIG1,-0.819170499535071 +Nucleus,PCDHGA2,0.0420888569298007 +Nucleus,NXF3,0.0346946332267666 +Nucleus,GJB2,0.454115152034172 +Nucleus,DNM1P46,-0.241754056119747 +Nucleus,CD96,-0.185671132614328 +Nucleus,PADI4,-0.558533581430785 +Nucleus,PIK3R6,-0.24658474938134 +Nucleus,PLA2G4D,1.01589699477909 +Nucleus,GFRA1,0.721891272509964 +Nucleus,CYBB,0.430365387663517 +Nucleus,TRAF5,4.36775132449514 +Nucleus,GAS2L1P2,0.839127593053237 +Nucleus,SRP68,4.06385252069308 +Nucleus,CD28,0.0940644499479276 +Nucleus,SSR4P1,0.0941060888716873 +Nucleus,C17orf107,1.86581136396943 +Nucleus,CD84,-0.0179284113739284 +Nucleus,FEM1AP3,-0.412268736977265 +Nucleus,ZNF84,2.17679875061764 +Nucleus,MACC1,-0.54788112529999 +Nucleus,PCAT29,0.50682639715991 +Nucleus,AHR,0.509458568189928 +Nucleus,MTHFD2L,2.41500044236736 +Nucleus,SECTM1,-0.468420991964644 +Nucleus,ECHDC2,0.13579779860111 +Nucleus,PSMC1,1.71347390462149 +Nucleus,SLC9A3P3,1.51163529934853 +Nucleus,CD177,0.212373019312462 +Nucleus,SRR,-1.16228147012924 +Nucleus,RBM45,3.26315936719334 +Nucleus,PP2672,0.666311562558278 +Nucleus,F13B,0.359171909274897 +Nucleus,NCAN,0.0337563068345872 +Nucleus,FAM205A,0.696248665369193 +Nucleus,CPVL,-0.256212732560998 +Nucleus,GPR182,0.64401011809644 +Nucleus,TMEM144,2.0555603834579 +Nucleus,RASGRP3,0.114181711445698 +Nucleus,DCC,0.251515131034673 +Nucleus,KIAA0825,-0.90013171214676 +Nucleus,HAVCR1,0.241126415936173 +Nucleus,ZBTB16,3.58953064004353 +Nucleus,LGI4,0.643602852598498 +Nucleus,RFESD,0.964873695115833 +Nucleus,HTR2A,-0.0451257503073587 +Nucleus,HMCN2,0.0362293509376068 +Nucleus,KLB,2.03015481518064 +Nucleus,SULF1,-0.419873963462689 +Nucleus,ALK,0.21825681764453 +Nucleus,PNPLA7,-0.274690362391142 +Nucleus,ZIM3,-1.05023902022353 +Nucleus,CYP2B7P,0.098813897318255 +Nucleus,PRCP,4.4792060853904 +Nucleus,LARGE,0.0403793644879242 +Nucleus,MYO1F,-0.51054483565113 +Nucleus,CDH13,0.509979403804882 +Nucleus,MYH6,-0.842054793257834 +Nucleus,RAX2,-0.315155865682517 +Nucleus,ZPBP2,0.355555141040001 +Nucleus,TMEM233,-0.321093509428705 +Nucleus,SLC34A3,0.949279906386458 +Nucleus,CLVS2,-0.613131452512491 +Nucleus,FRY,0.430022682428265 +Nucleus,SLC26A7,1.09227393998948 +Nucleus,KCNC2,0.583606345393491 +Nucleus,TOX,0.303219286744118 +Nucleus,TRIM60,0.910288019083329 +Nucleus,SH2D7,0.548447821224313 +Nucleus,SIGLEC17P,0.0695839546149314 +Nucleus,PMEL,0.178944273332551 +Nucleus,SLC26A4,0.599085749291304 +Nucleus,SLC5A10,-0.548519661943905 +Nucleus,ACSL6,0.339096984920979 +Nucleus,BDH1,3.74092208752845 +Nucleus,MRAP2,0.695301150988664 +Nucleus,SRL,1.66636408028197 +Nucleus,IGFBP2,-0.527892805150193 +Nucleus,ADGRG4,0.614078328816969 +Nucleus,CCDC13,0.553696265399365 +Nucleus,SHISA7,-0.186601902620489 +Nucleus,TLR10,1.20645862504663 +Nucleus,ZNF469,0.198895396391809 +Nucleus,SLC11A1,-0.618520556295534 +Nucleus,ANKUB1,-0.571455264768787 +Nucleus,PCDH11X,0.282784399630949 +Nucleus,CCDC108,0.638886098698024 +Nucleus,ESRP1,-0.546553915380558 +Nucleus,DNAH5,0.58360557677536 +Nucleus,VNN1,0.469224573087711 +Nucleus,NUMA1,5.08834775146217 +Nucleus,GRM6,-0.473175096548313 +Nucleus,PDK4,-0.613692117509563 +Nucleus,ADD2,-0.311581492373772 +Nucleus,RAPGEF4,1.07280586961614 +Nucleus,BVES,0.0728205135873212 +Nucleus,POU2F3,0.781690012549784 +Nucleus,MASP1,-0.698432204376245 +Nucleus,DRD1,0.342591823446411 +Nucleus,SAGE2P,-0.511672983210628 +Nucleus,HEXA,3.58610917505861 +Nucleus,DEFB132,-0.0186014870904489 +Nucleus,KDM5B,2.18291260146489 +Nucleus,CPNE2,3.76095219396012 +Nucleus,P4HA2,0.685332915660895 +Nucleus,CDCP1,0.522055024097196 +Nucleus,AKR1C1,0.150862836045368 +Nucleus,SMCO3,-0.334099950017999 +Nucleus,PLXDC1,-0.401445007615967 +Nucleus,MOBP,-0.00118234283375581 +Nucleus,ZNF430,1.6797104185284 +Nucleus,CABP1,0.765100580381021 +Nucleus,BEGAIN,2.80729594049822 +Nucleus,KLHL6,-0.355707297039053 +Nucleus,TAT,-1.40024861906429 +Nucleus,PSG6,0.0303857616097304 +Nucleus,SOX11,0.784391588029516 +Nucleus,PDE8B,0.150482960349632 +Nucleus,EGFEM1P,0.278850781442266 +Nucleus,CHRNB2,0.0196075208117888 +Nucleus,DCBLD2,6.1931499249218 +Nucleus,COG2,2.4962552372263 +Nucleus,MYH4,-0.0802163009422051 +Nucleus,FLRT3,1.02932304560786 +Nucleus,SVOP,-0.516798557798289 +Nucleus,SLC15A1,0.221609944926416 +Nucleus,DNAJC5B,0.113019626284684 +Nucleus,LHX6,0.120259411901338 +Nucleus,NUP93,3.84567171002604 +Nucleus,SLC7A14,-0.114278809715944 +Nucleus,SORCS2,0.171739957055113 +Nucleus,ZSWIM5,0.589358620291214 +Nucleus,ZNF225,1.37125569389556 +Nucleus,ZNF454,1.27709668889264 +Nucleus,NMUR2,1.03935033568889 +Nucleus,GPA33,0.644565750998292 +Nucleus,EPS15P1,-0.123836629916466 +Nucleus,VRK3,4.37008594664111 +Nucleus,ARNTL,4.23150082723445 +Nucleus,GRIA1,-0.840240112902936 +Nucleus,DUOX2,-0.321501380042256 +Nucleus,SIDT1,0.720002771716589 +Nucleus,COPB2,3.0775327789469 +Nucleus,DOC2B,0.541034803107053 +Nucleus,HMGCLL1,-0.0493700496737665 +Nucleus,GCNT7,0.720893346820582 +Nucleus,SLC25A48,1.16109851731467 +Nucleus,DNAJB14,5.22818622160366 +Nucleus,PSMD6,5.24768125689985 +Nucleus,EXOC7P1,-0.916686339820559 +Nucleus,PRLHR,0.0765702127023215 +Nucleus,NRP2,0.0508010102428983 +Nucleus,GALNT9,0.543708355505116 +Nucleus,MYO5C,0.457140578067893 +Nucleus,ZNF610,0.525368415699992 +Nucleus,CD99P1,3.48805064368723 +Nucleus,SIRPB2,0.516015129036268 +Nucleus,RARB,-0.482760039411425 +Nucleus,ABCC12,0.378111177706107 +Nucleus,SLC10A1,-0.212227465476267 +Nucleus,GRAP2,2.61631947849451 +Nucleus,PRCAT47,0.657030756223858 +Nucleus, DEC1,0.104002462787969 +Nucleus,MPP5,5.55141877871967 +Nucleus,NEUROD2,-0.802140663277963 +Nucleus,ITGA11,1.36245556057406 +Nucleus,ZSWIM5P2,-0.160178174300989 +Nucleus,C9orf43,0.758721569341191 +Nucleus,TLR9,-0.492504337032085 +Nucleus,EMID1,1.54136193230306 +Nucleus,KCNA5,0.637063975119882 +Nucleus,PRAMEF18,-0.0299858384365745 +Nucleus,HES2,-0.379846337482808 +Nucleus,KY,0.578479404061516 +Nucleus,LMCD1,2.01313738621085 +Nucleus,TARID,0.658498121072686 +Nucleus,DLG2,0.473062467417429 +Nucleus,DDX25,0.565959578445363 +Nucleus,GLYATL1,0.484366165055817 +Nucleus,ACTL10,0.587651101195386 +Nucleus,CEACAM5,0.634856207293128 +Nucleus,C10orf11,-0.178881477365837 +Nucleus,IHH,0.938020118098248 +Nucleus,VWA5B1,0.310644188225962 +Nucleus,TUNAR,-0.369870635943083 +Nucleus,CASP2,4.49111024887849 +Nucleus,PEX5L,-0.397027293999123 +Nucleus,SNRNP35,2.36127934195045 +Nucleus,AOAH,-0.1181746237167 +Nucleus,TRDMT1,1.64462999668858 +Nucleus,HIF3A,1.24262533129061 +Nucleus,XAF1,0.734065883870345 +Nucleus,C16orf96,1.28952640407878 +Nucleus,MST1L,0.973272124695837 +Nucleus,ZNF677,0.441847295381904 +Nucleus,CYP4F3,0.794708414007608 +Nucleus,SERPINE2,4.46072307929149 +Nucleus,NLRP1,1.38112713492944 +Nucleus,FGD5P1,1.08145980428912 +Nucleus,CLNK,1.41425248000928 +Nucleus,NAPSA,0.913533137896075 +Nucleus,GULP1,1.88675101555718 +Nucleus,RNF165,0.610916649273354 +Nucleus,CCR3,0.396277293372268 +Nucleus,DMBT1P1,-1.30301955031942 +Nucleus,SPATA31B1P,0.143195800427856 +Nucleus,TMPRSS12,-0.831492585000488 +Nucleus,PRMT8,0.714107164444645 +Nucleus,ZBP1,-0.418445398137837 +Nucleus,FOXA3,0.025741884325027 +Nucleus,CD34,0.992409286366593 +Nucleus,HK3,-0.315827176330356 +Nucleus,RET,-0.311022015917383 +Nucleus,SOGA3,2.13533220704752 +Nucleus,ABCA4,0.921094299389636 +Nucleus,PRKY,-0.849990725258031 +Nucleus,RANBP3,2.397865953703 +Nucleus,RAB9B,0.207891458819593 +Nucleus,HOXD1,0.223330915054679 +Nucleus,AMZ1,1.36550308066951 +Nucleus,COL15A1,-0.718565600243123 +Nucleus,HNF1B,-0.404770492524533 +Nucleus,CHRDL2,-0.428965861471065 +Nucleus,MMP1,-0.10091474483156 +Nucleus,SLC37A3,-0.183974470358062 +Nucleus,PLA2G4E,1.18566276356395 +Nucleus,LRRC9,0.169002912579792 +Nucleus,ANTXRL,-0.315702941126196 +Nucleus,ENPP6,0.812002060021841 +Nucleus,CPEB1,3.58048323783207 +Nucleus,G6PC2,-0.692731372197036 +Nucleus,TMCO3,4.52811398314866 +Nucleus,VSTM2L,0.0762527033369646 +Nucleus,TBX22,0.338933776973209 +Nucleus,TPRG1,-0.463031388353638 +Nucleus,FGF7,1.40238038675917 +Nucleus,NKPD1,-0.17416655083622 +Nucleus,TMEM133,1.1797347957841 +Nucleus,HSD17B2,0.132273242701484 +Nucleus,LAD1,-0.601862254828785 +Nucleus,MPL,2.71883689556336 +Nucleus,PRDM9,0.596761637235245 +Nucleus,ZNF181,1.63575224010411 +Nucleus,IKZF1,-0.248005084239391 +Nucleus,ZNF257,0.48789126685543 +Nucleus,ZNF133,2.25407015661467 +Nucleus,CNNM1,-0.189203443873631 +Nucleus,COMMD9,2.42671137161502 +Nucleus,TMC2,0.665359861201623 +Nucleus,HPSE2,0.734348503042336 +Nucleus,ABCC6,0.0856584870180044 +Nucleus,MTMR7,-0.501486995269878 +Nucleus,PPP1R3G,0.139912203175237 +Nucleus,SLCO2B1,1.02447992666949 +Nucleus,GABRE,1.06848609414666 +Nucleus,FER1L5,0.24312959200101 +Nucleus,ADARB2,1.03488285555445 +Nucleus,TMEM35,0.680493534259064 +Nucleus,HYDIN2,0.478264953064367 +Nucleus,TMEM221,0.443040570511544 +Nucleus,PCDH17,-0.378285194561373 +Nucleus,TTLL6,0.986208003416388 +Nucleus,RP1,0.294792786587275 +Nucleus,ZNF648,0.468462647267218 +Nucleus,GDAP1L1,-0.695902481644982 +Nucleus,SLC5A11,0.606251546875966 +Nucleus,ADGRF1,0.113213659873518 +Nucleus,PIGR,0.593683635007493 +Nucleus,BCO1,-0.592271529352183 +Nucleus,ANO9,0.157879306573725 +Nucleus,DOK6,0.531033187954606 +Nucleus,WNT2B,2.13658406587852 +Nucleus,ZNF583,0.971483702585974 +Nucleus,SERPINB2,-0.231456741429404 +Nucleus,RTN4RL1,0.521071880264972 +Nucleus,PADI2,0.616790921468976 +Nucleus,RHAG,-0.251529822425564 +Nucleus,C1orf167,1.49973924772623 +Nucleus,DGKB,0.0696677095402498 +Nucleus,C15orf41,5.32455167431426 +Nucleus,LIN7A,0.549234887225633 +Nucleus,NEU4,-0.927421962719261 +Nucleus,PPP1R26P1,-0.364935005854073 +Nucleus,TERF1,4.26149619561384 +Nucleus,ZNF717,2.80397885862398 +Nucleus,CCDC85A,0.291449029981848 +Nucleus,IYD,0.799653444359227 +Nucleus,CYP2C19,0.518799486458733 +Nucleus,FABP2,-2.07470060294221 +Nucleus,HGFAC,0.20221203257013 +Nucleus,CNTNAP5,0.140822900746198 +Nucleus,EFHB,0.140068213932739 +Nucleus,KCNB2,1.02646942761442 +Nucleus,ZNF626,0.475488493467309 +Nucleus,EPHA8,0.750244941789802 +Nucleus,KLHL4,-0.859374790168848 +Nucleus,IFI44L,-0.228175421083546 +Nucleus,CRHR1,0.649451960214377 +Nucleus,ISG20,1.25078995590923 +Nucleus,OPRK1,0.787587841549014 +Nucleus,HSD17B4,3.54546474908265 +Nucleus,NF1,4.19989124931475 +Nucleus,TNFSF4,0.383443390291083 +Nucleus,GPBAR1,-0.0810982164236669 +Nucleus,ARHGAP24,0.63095082455207 +Nucleus,PRKG2,0.596794019215069 +Nucleus,MGAT4EP,-1.05145497090049 +Nucleus,PLXNA4,0.108638535407578 +Nucleus,SNCA,0.147468849378863 +Nucleus,PRSS36,-0.160559617736887 +Nucleus,EIF4BP4,-1.46132962878399 +Nucleus,PAUPAR,-0.250363400094769 +Nucleus,LILRA2,-0.797771180030945 +Nucleus,MAP10,0.538051211667009 +Nucleus,CHIAP2,0.606621769388852 +Nucleus,HMGA2,5.06216907575286 +Nucleus,MTTP,1.16961572857705 +Nucleus,ZNF746,3.67896793032868 +Nucleus,SPEF2,0.835647278138875 +Nucleus,LHFPL3,0.764670511065851 +Nucleus,SMCO1,0.371958171427475 +Nucleus,PCDHGB5,0.825818541568442 +Nucleus,KCNIP1,0.340159724653823 +Nucleus,CTNNBL1,4.18313357535713 +Nucleus,CDH6,-0.337595864920833 +Nucleus,CCDC91,2.28921509468297 +Nucleus,AIFM1P1,-1.82823290450215 +Nucleus,ADAM21,-0.162607346840693 +Nucleus,SLC12A5,-0.484705177968082 +Nucleus,CEACAM8,-0.144642397966043 +Nucleus,ZNF773,2.3314253279836 +Nucleus,EFCAB13,0.690357955582588 +Nucleus,SMIM21,0.247566436557296 +Nucleus,ZNF540,1.25112916650118 +Nucleus,IGIP,1.63064195656952 +Nucleus,MRO,0.839047017690626 +Nucleus,TLL1,0.853358031607501 +Nucleus,CACNA2D3,0.910361104735368 +Nucleus,PPP2R2C,3.02293546993548 +Nucleus,SNTN,-0.111117079588979 +Nucleus,LRRC34,-0.106600695939327 +Nucleus,GABRR1,-0.144359746746146 +Nucleus,STEAP4,-0.262257087091795 +Nucleus,MYOZ3,0.0862609885877251 +Nucleus,ALOX12B,0.374706095669355 +Nucleus,ST8SIA4,-0.152563870139253 +Nucleus,TAS1R3,-0.469201131898095 +Nucleus,HOXA2,1.12029197362603 +Nucleus,LEKR1,-0.0682648114172697 +Nucleus,POU5F2,4.22497798727143 +Nucleus,WDR93,-0.320139825953788 +Nucleus,TMPRSS5,0.270243243263461 +Nucleus,C6orf201,0.527439690626103 +Nucleus,GABRG3,-0.100989804105032 +Nucleus,PDE1B,0.842409497504557 +Nucleus,ATP6V1B1,0.633955305614913 +Nucleus,ITGB7,0.00879940817295499 +Nucleus,FAXC,0.759264116076572 +Nucleus,CCDC149,1.1370208467547 +Nucleus,ZCCHC2,1.52345070402694 +Nucleus,TLR2,-0.184342822707795 +Nucleus,SPATA2P1,-0.64579698427549 +Nucleus,IST1,2.90024309859899 +Nucleus,SYCP3,1.82236884502491 +Nucleus,GRIK4,-0.592353481686089 +Nucleus,RGSL1,-0.171038837662338 +Nucleus,FARP1,2.55650860470688 +Nucleus,C4orf17,1.27111101302229 +Nucleus,KCNT1,0.581021839264495 +Nucleus,NR1I2,0.271070737206226 +Nucleus,MYOD1,0.678216494069563 +Nucleus,TEPP,-0.0259911021750629 +Nucleus,SERPIND1,-0.189348806586669 +Nucleus,AAK1,4.10023986442707 +Nucleus,HSD17B12,3.88334819403348 +Nucleus,OAZ3,2.66975746524885 +Nucleus,PCDH12,0.0506035915110989 +Nucleus,TCAIM,5.37727112932956 +Nucleus,GREM2,-0.149726409135979 +Nucleus,CD101,0.581956916853308 +Nucleus,ZNF385D,0.138670026471888 +Nucleus,FN1,4.66799276320738 +Nucleus,TTC22,-0.392902143995155 +Nucleus,TMEM132C,0.384156694605586 +Nucleus,LY9,0.810720078355691 +Nucleus,COL6A3,1.41850642727866 +Nucleus,SLC2A5,-0.384428872041628 +Nucleus,SSTR3,0.0472368234584854 +Nucleus,FBXW7,4.19724597914253 +Nucleus,CD40LG,0.235016848103573 +Nucleus,TAS2R4,4.24146772956751 +Nucleus,NLRP4,-0.672432091968245 +Nucleus,PXK,3.96642320355835 +Nucleus,ECT2L,-0.414461029743581 +Nucleus,GABRB3,3.44382569988958 +Nucleus,TRIM63,-0.573433274478929 +Nucleus,ADAMTS7P3,0.322600933915374 +Nucleus,MCOLN3,0.325104869371784 +Nucleus,ADCY4,-0.363636660314684 +Nucleus,SYTL2,1.35098096618293 +Nucleus,WFIKKN1,0.584252811275627 +Nucleus,SNED1,-1.88266648311166 +Nucleus,SLC6A4,1.35274781884825 +Nucleus,PPFIA2,0.542655567042604 +Nucleus,FOSB,-0.166269336013232 +Nucleus,ZNF788,-0.181584227555368 +Nucleus,AASDHPPT,4.28851585520242 +Nucleus,DSG3,0.890074322606816 +Nucleus,MDS2,0.540396869942495 +Nucleus,CATIP,-0.494442506210784 +Nucleus,GATB,1.13705453584581 +Nucleus,ADAM5,1.33483478324561 +Nucleus,YWHAEP7,-0.582743425537598 +Nucleus,PLEKHD1,0.149927686476565 +Nucleus,SUGT1,2.60273163956668 +Nucleus,GPM6B,-0.504293487433401 +Nucleus,SLA,-0.925663041401497 +Nucleus,KRT20,-0.271644189066017 +Nucleus,PRDM5,1.62609780694572 +Nucleus,NEBL,-0.224457955212487 +Nucleus,DNAH6,0.658256946419943 +Nucleus,ITGAL,-0.907483924539117 +Nucleus,POU5F1B,1.43521881543442 +Nucleus,PPARGC1A,0.42941714255717 +Nucleus,C20orf203,-0.00467954618462953 +Nucleus,ACTR3C,-0.403839284047238 +Nucleus,PAK7,0.123553137239682 +Nucleus,EWSAT1,-0.263513897607615 +Nucleus,TMEM5,3.71396124812238 +Nucleus,SLC14A1,0.0692201237311612 +Nucleus,MTERF4,3.2428913813643 +Nucleus,BOD1L2,-0.811964745565405 +Nucleus,ANO7P1,0.5501462411625 +Nucleus,C3AR1,0.743882382379998 +Nucleus,ZNF44,0.221811856036929 +Nucleus,NMUR1,1.03900463645768 +Nucleus,GRID2IP,0.152037342468858 +Nucleus,GSTM2,0.54084039439354 +Nucleus,BPHL,3.96854920877266 +Nucleus,GOLGA4,3.04529802317899 +Nucleus,TXNDC2,-0.773941843359906 +Nucleus,ARID1B,5.02885302112381 +Nucleus,B3GNT7,0.284859986043887 +Nucleus,DTWD1,3.79507460305749 +Nucleus,FFAR2,0.448032661216669 +Nucleus,DCST2,1.0586032037647 +Nucleus,CCDC140,0.891958509790324 +Nucleus,NLRC3,-0.352224136583406 +Nucleus,KCNH8,0.492328914724581 +Nucleus,PIWIL1,-0.343886144913436 +Nucleus,DPP3P2,-1.6824216397657 +Nucleus,C17orf105,0.0372261075587586 +Nucleus,CLDN19,0.877573982897838 +Nucleus,SNX20,-0.762151369461379 +Nucleus,LIMCH1,5.11207750198068 +Nucleus,BOLA3,4.11940140170964 +Nucleus,ASIC5,-0.795472464210168 +Nucleus,MESTIT1,-0.163590108572965 +Nucleus,ANGPT2,0.885529654999737 +Nucleus,PROCA1,3.91009136615937 +Nucleus,C11orf16,-0.340494979902112 +Nucleus,KCNJ2,0.96317310321671 +Nucleus,CEP57L1,3.72184112954364 +Nucleus,FAM133A,-0.849021601331393 +Nucleus,MX2,-0.410363799821262 +Nucleus, SEPT14,2.42938844521259 +Nucleus,FREM2,0.834239923067497 +Nucleus,KIAA0087,0.850750109147612 +Nucleus,FAM71F1,0.0304087100932288 +Nucleus,STK3,0.212271446688091 +Nucleus,TES,-1.02495164901353 +Nucleus,DUOX1,-0.0849176046700467 +Nucleus,FBXO39,-0.576206811573697 +Nucleus,EVA1C,-0.0335888095864407 +Nucleus,OPRL1,-0.615167470324044 +Nucleus,TNF,1.10625033325601 +Nucleus,PHACTR1,1.66360773493952 +Nucleus,TRPM8,0.346302704493148 +Nucleus,DAPK2,2.35602873770319 +Nucleus,DBET,3.85164212388369 +Nucleus,PCTP,3.88123207973121 +Nucleus,C1orf116,-0.388992207157462 +Nucleus,CADPS,1.51399323773021 +Nucleus,TTBK1,-1.04236885681113 +Nucleus,BRD7P1,-0.661330600815842 +Nucleus,GRB7,-0.635355081442606 +Nucleus,GYS2,-0.886622051075379 +Nucleus,PAX5,-0.439476619469296 +Nucleus,RNF222,0.217705610536968 +Nucleus,BANK1,-0.249153229653745 +Nucleus,SARM1,1.35399139443444 +Nucleus,C19orf35,-1.3370941966063 +Nucleus,SPG20,1.62976816066816 +Nucleus,PHLDB2,6.17473418233637 +Nucleus,NR5A2,0.579770100556422 +Nucleus,QRFP,-1.73535916104725 +Nucleus,MYH1,-0.0126297531619057 +Nucleus,MMAA,0.770359022978458 +Nucleus,MUC22,-0.339977214732752 +Nucleus,FCRLA,-0.394183105197512 +Nucleus,MC2R,0.0563733406500251 +Nucleus,SPTSSB,-0.519109882677159 +Nucleus,CALHM3,0.0039712870142766 +Nucleus,TCP11L2,2.2884814815591 +Nucleus,TIMP4,0.358370382393113 +Nucleus,LIPG,0.579740920830295 +Nucleus,PRND,0.378703682955516 +Nucleus,AVL9,3.65164681596335 +Nucleus,ZNF285,2.03105112036707 +Nucleus,APOBR,1.10806248867824 +Nucleus,TCEB3B,0.36451358567385 +Nucleus,GPX6,0.204070650222032 +Nucleus,C9orf171,-0.871328651229027 +Nucleus,CELSR1,-0.171924113560309 +Nucleus,IFI27,2.39564911090396 +Nucleus,C6orf183,-0.472559022451102 +Nucleus,GPR12,0.176506647972364 +Nucleus,ELF3,0.211688523665853 +Nucleus,RBM47,1.07294106282909 +Nucleus,SOX8,0.22759915757076 +Nucleus,PATL2,-0.718456565542618 +Nucleus,SGCG,1.10367754552512 +Nucleus,APCDD1L,-0.610843585838293 +Nucleus,TECRL,0.431789345294915 +Nucleus,SLFN11,-0.128375697831473 +Nucleus,CPED1,-0.516820148404104 +Nucleus,RUNX1T1,-0.834163603284944 +Nucleus,MIR646HG,0.299134918895001 +Nucleus,SPATA3,-0.991392177160241 +Nucleus,RBM7,4.94298557479689 +Nucleus,HHIPL1,-0.3801171830366 +Nucleus,SSB,1.81390671926035 +Nucleus,PLD6,0.739656909280184 +Nucleus,C2CD4A,1.02937189328728 +Nucleus,POLR2F,1.63967644529207 +Nucleus,SEMA3A,0.71927137709019 +Nucleus,CAND2,-0.379911965750602 +Nucleus,ZNF507,4.98685816067923 +Nucleus,SNAP91,0.75203621941988 +Nucleus,HOXD3,1.0006926480179 +Nucleus,SLC35F4,0.0519473539263376 +Nucleus,MGLL,3.29514669280673 +Nucleus,NOD1,4.70947555805995 +Nucleus,SH2D2A,-0.513888540440598 +Nucleus,WFDC1,-0.897426231540552 +Nucleus,LMF1,0.822781660795544 +Nucleus,CLDN18,-0.0169662253767612 +Nucleus,CRTAM,0.390384169913536 +Nucleus,CYLC2,-1.12035649225749 +Nucleus,TEDDM1,-0.394055544236144 +Nucleus,ADIPOQ,-0.241659602910996 +Nucleus,UTY,0.832608604095092 +Nucleus,PAX9,0.333659652695693 +Nucleus,ENKUR,0.107808525396469 +Nucleus,MUC3A,0.591100679848058 +Nucleus,SPAG17,0.727551174382789 +Nucleus,PROX1,1.06953993272873 +Nucleus,SLC47A2,-0.807411011594216 +Nucleus,TIE1,-0.00292158518131408 +Nucleus,NCKAP5,0.376717948458328 +Nucleus,CD302,0.674565291082381 +Nucleus,CHRNA1,0.898039450003023 +Nucleus,UBE3D,4.52381233509806 +Nucleus,TNFAIP8,1.09934401223608 +Nucleus,SFRP4,-0.456332151221801 +Nucleus,TAOK3,0.872401224458775 +Nucleus,ANP32A,5.24396669555092 +Nucleus,CTSO,0.575391124535181 +Nucleus,PCDHGA3,0.28730296025343 +Nucleus,CIITA,0.961642329170831 +Nucleus,ESYT3,0.9528989144612 +Nucleus,SLCO2A1,0.603395810588914 +Nucleus,MGAM2,1.40706803875421 +Nucleus,TMEM218,3.05799150448056 +Nucleus,ATP8A2P2,0.104439301654704 +Nucleus,HVCN1,-0.424125865272696 +Nucleus,TMPRSS9,0.699014058168328 +Nucleus,SLC7A4,0.0149763836895833 +Nucleus,PSD,-0.165598448891661 +Nucleus,KSR2,0.304504232866808 +Nucleus,ATXN7L1,1.65580823853871 +Nucleus,RREB1,1.70354210166225 +Nucleus,KCNH5,0.632240629918707 +Nucleus,SCUBE2,0.26368774171356 +Nucleus,GDA,0.680192928086295 +Nucleus,CTAGE1,0.887863371300143 +Nucleus,PLD1,4.85352315905052 +Nucleus,BSND,0.573376798694861 +Nucleus,ITGA1,0.338658613065403 +Nucleus,GNG4,0.705576990897051 +Nucleus,PHF24,0.222732967745871 +Nucleus,RNF144B,-0.230796562610844 +Nucleus,ACTR3B,1.48027080188005 +Nucleus,HMCN1,0.72973044157056 +Nucleus,PRR23C,0.558862433211084 +Nucleus,ZNF493,0.176389936320612 +Nucleus,GUCY2C,-1.13239566942375 +Nucleus,NKAPP1,2.71984675189448 +Nucleus,LIN28A,1.70260020705403 +Nucleus,TSPEAR,0.714870986049584 +Nucleus,TTC39A,2.77861678285654 +Nucleus,MS4A15,-0.309202538127598 +Nucleus,HAS2,0.656871040436481 +Nucleus,C3orf20,0.723079855788787 +Nucleus,ADRB1,0.41295922481517 +Nucleus,DDX10,4.50572629428499 +Nucleus,COBLL1,2.61186696410605 +Nucleus,GIMAP5,-0.246944952501865 +Nucleus,SLC16A12,0.943600571467228 +Nucleus,HNF4G,-0.409850011911143 +Nucleus,PRR15L,-0.155153136613227 +Nucleus,MSI2,3.80442326177507 +Nucleus,PPIL6,0.158994052595316 +Nucleus,FAM120C,0.37058751653126 +Nucleus,CMC2,3.86051328128796 +Nucleus,TMEM119,-0.595581646307934 +Nucleus,PCDHB1,-1.21058064203742 +Nucleus,CLEC4M,0.0395986544474492 +Nucleus,AACSP1,2.91477415904556 +Nucleus,KCNV1,0.315741062080455 +Nucleus,CLEC4E,0.189480978695958 +Nucleus,ALPK3,-0.308854447271201 +Nucleus,THBD,0.605423002632654 +Nucleus,SEMA6A,0.895384558154393 +Nucleus,PRODH,1.29942214103068 +Nucleus,LRTOMT,0.471887900118267 +Nucleus,VENTX,1.27737202140506 +Nucleus,RAB3IP,2.47649150037559 +Nucleus,TNXB,0.213356996217015 +Nucleus,EPB42,0.508807552641372 +Nucleus,DRD2,-0.809835798259768 +Nucleus,FAM126A,5.39750330765984 +Nucleus,ARMC4,-0.345699140552488 +Nucleus,SPOCK2,0.908655426315369 +Nucleus,SLC22A11,-0.249115949560932 +Nucleus,APBB1IP,-0.574772512691861 +Nucleus,MEGF11,0.157458111196882 +Nucleus,PLEKHG4B,0.562535592595484 +Nucleus,DNAH11,0.816268730710877 +Nucleus,C7,-0.610477062942704 +Nucleus,FAM214B,3.74647351743288 +Nucleus,C1orf64,0.536249403618691 +Nucleus,MIR143HG,0.790704240898884 +Nucleus,CSGALNACT1,-0.680734970635137 +Nucleus,SESTD1,2.48738762429835 +Nucleus,UBL4B,1.05101382079354 +Nucleus,FAM124B,0.934582391984689 +Nucleus,CDH11,0.935965073133442 +Nucleus,METTL20,0.932816481053347 +Nucleus,HNRNPR,3.89659445410302 +Nucleus,MGAT4C,-0.63975330343765 +Nucleus,KCNMB3,3.01882023237407 +Nucleus,PRSS16,2.29297269606562 +Nucleus,FAM198B,1.92762262451138 +Nucleus,GALNT11,0.708373380528874 +Nucleus,RSAD2,0.540336707986921 +Nucleus,SMIM12,0.585341061226715 +Nucleus,CSRNP3,-0.634817329282615 +Nucleus,EFCAB5,0.482037670634495 +Nucleus,DIS3L2,3.14066495793762 +Nucleus,GOLGA7B,-0.255018025910681 +Nucleus,MSANTD1,1.22246132865332 +Nucleus,LMOD3,-0.125832069099033 +Nucleus,CECR6,-0.326651111045956 +Nucleus,TDRD12,-1.1366416047271 +Nucleus,GALNT13,0.332318498015012 +Nucleus,PIK3R5,0.480436872096167 +Nucleus,PRSS55,-0.535219950046207 +Nucleus,ST6GALNAC3,-0.294314729525952 +Nucleus,SPATA6L,1.43799477433301 +Nucleus,ZFP82,1.34999018242011 +Nucleus,PDE1C,1.35718521302465 +Nucleus,ANKRD34B,-0.116994687048341 +Nucleus,NCAM2,-0.138939997081498 +Nucleus,AGBL4,1.78455416588661 +Nucleus,ASB18,0.574344845237756 +Nucleus,FAM169B,2.66052840982459 +Nucleus,GABBR2,-0.367231289853685 +Nucleus,TBC1D31,5.77800820626241 +Nucleus,TLN2,4.91652582828009 +Nucleus,ZC3H12D,0.935843331659329 +Nucleus,HCAR2,0.584452472229986 +Nucleus,LRRC49,2.16656976319309 +Nucleus,RBX1,4.19204619163735 +Nucleus,CNTD1,0.684604159217614 +Nucleus,PCDHGC5,0.193117105047125 +Nucleus,KCNE4,1.04719592969174 +Nucleus,SLC15A2,2.72079915135016 +Nucleus,CXorf21,-0.206786036970952 +Nucleus,PNMAL1,-0.285541642301504 +Nucleus,CORIN,2.91428133690729 +Nucleus,FAM213A,-0.329582789417015 +Nucleus,IL10RA,0.222958326367308 +Nucleus,SALL1P1,0.00728581692356848 +Nucleus,FSIP1,0.80275167969141 +Nucleus,PAK3,0.632568525770862 +Nucleus,ANXA4,4.39230881061187 +Nucleus,PDCD6IPP2,0.748032442648226 +Nucleus,WWC2,1.70788938793627 +Nucleus,USP15,3.15573856771719 +Nucleus,PYGM,0.923406216840611 +Nucleus,PCSK5,0.224374064116331 +Nucleus,APIP,0.490550226306749 +Nucleus,AFG3L2,3.77801791232387 +Nucleus,MYCN,0.00693684958442387 +Nucleus,MEG3,2.01980557744928 +Nucleus,TBC1D29,1.82940828241222 +Nucleus,NKAIN1,-0.114940880057435 +Nucleus,ONECUT3,1.87651037033208 +Nucleus,COL13A1,4.21676751780145 +Nucleus,ZNF555,0.96303184186331 +Nucleus,NOS1,-0.439032901347782 +Nucleus,C3orf80,0.336379301998981 +Nucleus,KLF15,0.172616749625656 +Nucleus,SLC32A1,-1.32742393363263 +Nucleus,YWHAB,2.25287091153992 +Nucleus,MYLK,2.09770159084714 +Nucleus,LMBR1,3.70525639316914 +Nucleus,MUC15,2.41717228723581 +Nucleus,MS4A2,0.0353132919800388 +Nucleus,AKAP13,2.57348931363204 +Nucleus,RPGRIP1L,2.42423736568791 +Nucleus,FAM163A,0.145809252276142 +Nucleus,CACNA1F,0.664240019282125 +Nucleus,FAM159A,-0.446643072167141 +Nucleus,NEK5,-0.0776238602370405 +Nucleus,PIWIL3,1.9233890998195 +Nucleus,ZNF226,4.26119647539171 +Nucleus,SPTB,-0.0471693167766227 +Nucleus,OTOA,0.316278506633101 +Nucleus,HERC5,0.00330249212528716 +Nucleus,CNGB1,1.20072081161557 +Nucleus,NAP1L1,5.01993598222718 +Nucleus,TRPV2,-0.106217351025325 +Nucleus,GNB1L,1.13673596188426 +Nucleus,CAPS2,0.986112342760585 +Nucleus,STAR,0.160131164989252 +Nucleus,PRF1,-0.326859277029238 +Nucleus,RGS5,1.50807343583575 +Nucleus,C1orf158,0.18260899485217 +Nucleus,LAIR1,-0.185589842163405 +Nucleus,SYNDIG1,0.460637453159694 +Nucleus,LRRC37A7P,-0.265457460454794 +Nucleus,LONRF2,0.726438779676095 +Nucleus,DSC2,0.914032235295415 +Nucleus,THSD4,-0.241290351827872 +Nucleus,EFCAB6,0.823903012344566 +Nucleus,GLRA1,1.30282247254907 +Nucleus,LPAR4,-0.531344236304964 +Nucleus,TPH1,2.78351858716258 +Nucleus,C10orf67,0.0492279605557355 +Nucleus,MAP4K4,5.05729684785939 +Nucleus,MCF2L2,2.83195942803665 +Nucleus,SMIM10L2B,0.04938191305589 +Nucleus,EHMT1,1.33248513978856 +Nucleus,ZNF286A,2.10195558981686 +Nucleus,FAM19A2,-0.822071599153437 +Nucleus,MYH8,-0.82807952564595 +Nucleus,XIRP1,-0.486849801321049 +Nucleus,CCDC71L,3.02130772569157 +Nucleus,NEDD9,3.97888271064724 +Nucleus,LTF,0.545473015442655 +Nucleus,BRINP2,-0.349265506523047 +Nucleus,CYP1A2,0.611109584115375 +Nucleus,GPRIN3,1.58489380278701 +Nucleus,ABCC6P1,0.704857905296431 +Nucleus,INSC,-0.0367977646239817 +Nucleus,CCDC88A,3.57012758528831 +Nucleus,ACOXL,0.989451039924399 +Nucleus,PLAT,4.40930237645705 +Nucleus,PDE4DIP,0.998112425824837 +Nucleus,CDH3,-0.601425707349643 +Nucleus,FBXO7,5.18266194621308 +Nucleus,VCAM1,1.25144355150197 +Nucleus,LEMD2,4.90584975329978 +Nucleus,ZNF425,-0.183429071272993 +Nucleus,EFHC2,0.0399193851224658 +Nucleus,MYOM1,0.547987990942121 +Nucleus,WDR7,2.56833210411001 +Nucleus,NPAS4,1.25087126342134 +Nucleus,CRACR2B,-0.0713021432296464 +Nucleus,GPR82,-0.607120218193856 +Nucleus,CYP4F22,-0.341470929179608 +Nucleus,CAPN6,-1.56916128754016 +Nucleus,FBXW4,1.64013208791554 +Nucleus,ZDHHC15,1.50092845842716 +Nucleus,RPS2P45,2.36564563811589 +Nucleus,TRIM69,0.0637208838939168 +Nucleus,SOCS2,0.780418480800388 +Nucleus,CCDC110,0.0931776925652358 +Nucleus,ATP6V0D1,4.13226545494354 +Nucleus,ZNF682,1.16837281281276 +Nucleus,PRSS23,-0.425037651049407 +Nucleus,NLGN4Y,0.170449777450286 +Nucleus,KLK10,0.385115037049984 +Nucleus,RORB,-0.192156525691309 +Nucleus,FAM65B,-0.588295052919186 +Nucleus,ANKFN1,-0.63477058122911 +Nucleus,ANKRD20A19P,1.12830421258592 +Nucleus,PLCG2,1.44118584295217 +Nucleus,RP1L1,0.65628209995222 +Nucleus,CELF2,-0.00392498327495794 +Nucleus,POU2AF1,0.193689422735962 +Nucleus,FAM153B,3.21119410987951 +Nucleus,PWAR6,4.48148971364289 +Nucleus,CCDC169,2.37484353118843 +Nucleus,CNNM2,2.00684094471741 +Nucleus,KCNQ1,-0.233198416005985 +Nucleus,SPTBN4,-0.646501390328117 +Nucleus,HTR3B,0.294376809310942 +Nucleus,C17orf77,-0.301023416647983 +Nucleus,DRG2,4.53011917381948 +Nucleus,CFAP70,2.23273153007146 +Nucleus,FAM83A,0.256605856291344 +Nucleus,NANOS1,-0.56277084178283 +Nucleus,FAM92A1P2,-0.0930783498476756 +Nucleus,GTDC1,2.62125159724098 +Nucleus,BEAN1,0.312864211786252 +Nucleus,BCAS1,0.583175706792519 +Nucleus,NOTO,0.997801800381236 +Nucleus,NETO2,-0.046309493746178 +Nucleus,PTPN6,0.507733050833884 +Nucleus,SCEL,-0.424088993068651 +Nucleus,ADAM29,0.0573447906603409 +Nucleus,MIR137HG,0.650130997919408 +Nucleus,RAB27B,0.146022240808742 +Nucleus,PTGER2,-0.329496244495103 +Nucleus,COL28A1,0.431482681305563 +Nucleus,HSPB9,-0.0327406066540401 +Nucleus,YTHDC1,2.71084616278727 +Nucleus,C9orf106,1.08447147780258 +Nucleus,ZFP42,0.701255475655386 +Nucleus,REEP1,-0.188259502527475 +Nucleus,ESPNL,-0.374863816296755 +Nucleus,TCTE1,0.206277990237143 +Nucleus,ZNF596,1.06167016728873 +Nucleus,ZNF483,1.8956504954471 +Nucleus,KIAA1324L,2.03699963687743 +Nucleus,SMIM10L2A,0.784931424682462 +Nucleus,MAPK8IP2,-0.359859419305919 +Nucleus,LPPR4,0.10977621718597 +Nucleus,PCDHGB8P,-0.3424253598685 +Nucleus,CDH20,0.230449845406185 +Nucleus,ZNF287,0.818606336130021 +Nucleus,GRHL1,4.10979782993161 +Nucleus,ANKRD31,1.19199147278718 +Nucleus,RPS6KA6,0.937888119766669 +Nucleus,ADCK1,0.677228046631698 +Nucleus,MRPL22,3.45892592171012 +Nucleus,IFITM10,0.659541097535525 +Nucleus,ADAM1B,0.944733497808915 +Nucleus,RFTN2,0.211677720754439 +Nucleus,KHDRBS2,1.59171243352651 +Nucleus,EREG,0.530526807355671 +Nucleus,TANGO2,3.87454747383055 +Nucleus,ANKRD18CP,0.509996243846491 +Nucleus,PERM1,-0.819227913492697 +Nucleus,SMCR5,0.315665089946923 +Nucleus,FAM107A,-0.829982137064503 +Nucleus,EXOC3L1,-0.822640710132655 +Nucleus,NUDT6,3.52056656029859 +Nucleus,SPTBN5,-0.765440355989481 +Nucleus,IL12RB1,-0.100245589182051 +Nucleus,SLMAP,4.961308833554 +Nucleus,DOCK8,-0.521839584153075 +Nucleus,ZNF559,3.25091294108902 +Nucleus,TOX3,-0.475302406351137 +Nucleus,SLC16A9,0.196079593178718 +Nucleus,KCNK10,-0.304702689043263 +Nucleus,TMEM41A,3.60411642526336 +Nucleus,OSBPL9,4.53605394999167 +Nucleus,KCNQ4,0.501697574485983 +Nucleus,HFE,0.247223325597521 +Nucleus,BLCAP,3.63028906656566 +Nucleus,LAX1,-0.563305742853879 +Nucleus,GPALPP1,1.56903539215024 +Nucleus,RNF152,1.25824498562744 +Nucleus,MFSD2B,0.577880017170726 +Nucleus,ZNF528,4.07407146211643 +Nucleus,ZMYND15,1.43575213677242 +Nucleus,IQCG,3.06027621680514 +Nucleus,SAXO2,0.837598651750408 +Nucleus,ZNF442,1.42088393554828 +Nucleus,LRRC8E,0.140628100949628 +Nucleus,RSPO1,-0.609335401232459 +Nucleus,SARDH,-0.501192018670995 +Nucleus,ITGB8,3.67573673523972 +Nucleus,MYO1G,0.410376404079891 +Nucleus,CALY,0.887395167116136 +Nucleus,AMN,-0.035775512646954 +Nucleus,ITGA9,0.006399014273747 +Nucleus,CNR2,-0.157826079719299 +Nucleus,RPGR,3.63332442846599 +Nucleus,FRRS1L,0.393918446878282 +Nucleus,AMDHD1,-0.339952985819741 +Nucleus,CRACR2A,4.68170604051805 +Nucleus,CD209,0.995026987973889 +Nucleus,DBP,2.37970037776512 +Nucleus,ABCB8,2.26355024869919 +Nucleus,BAAT,1.00916628044226 +Nucleus,HPGDS,-1.50383062240181 +Nucleus,RHOJ,-0.0671292779350462 +Nucleus,XKRX,1.07118693204402 +Nucleus,VPS13A,2.41298346635356 +Nucleus,PES1P1,-0.839462012074908 +Nucleus,CLASP2,4.60448799510906 +Nucleus,M1AP,-0.886114897492306 +Nucleus,LRRC56,0.145234849299044 +Nucleus,DNASE1L3,1.14067478527301 +Nucleus,DNER,-0.976336884630608 +Nucleus,ANKRD29,3.35959095190263 +Nucleus,SLC22A9,-0.205853567456916 +Nucleus,TMEM236,1.84209303487932 +Nucleus,FRMD3,0.0889711793168097 +Nucleus,SLC13A4,0.044296620854401 +Nucleus,SALL4,2.03257878432014 +Nucleus,SLCO1B1,1.21574332046771 +Nucleus,FAM65C,0.966716521376658 +Nucleus,L3MBTL4,2.01994582858481 +Nucleus,CECR1,0.170545775890031 +Nucleus,CLCN3P1,0.861835584535981 +Nucleus,ABCC13,0.889096929336206 +Nucleus,PPP1R12A,5.4575486497015 +Nucleus,SULT1C2,-0.371043248958237 +Nucleus,NTPCR,3.48414444783495 +Nucleus,TTC14,4.86894304253583 +Nucleus,PDE11A,-0.777288448041979 +Nucleus,PLXNC1,-0.177249355083427 +Nucleus,LRP12,3.84604907340397 +Nucleus,LRRC10B,1.23939468130042 +Nucleus,TNN,-0.357975564672462 +Nucleus,DGKI,0.312341749913278 +Nucleus,CUBN,0.221714735670702 +Nucleus,ANKRD62,3.82976018978897 +Nucleus,MAGEB1,-0.179775348910504 +Nucleus,RGAG1,-0.784223194566611 +Nucleus,VENTXP1,1.10437748751078 +Nucleus,ATOH1,-0.246504451656567 +Nucleus,RBMS3,0.867274294388238 +Nucleus,KCNMA1,0.231659958416787 +Nucleus,GDF5,-1.67264207810587 +Nucleus,TNFSF14,0.184135225248036 +Nucleus,HHIPL2,1.0700175928618 +Nucleus,SERTM1,-0.177500722866144 +Nucleus,ITGAD,0.347362702398687 +Nucleus,NUGGC,0.356872384828235 +Nucleus,GRIN2C,2.24976469508895 +Nucleus,ENPP1,0.366855500225006 +Nucleus,TBX4,0.766903772480009 +Nucleus,MYLK3,0.120297544439006 +Nucleus,SATL1,0.195269095473258 +Nucleus,RNF217,2.0903275095023 +Nucleus,ADAP2,-0.797127975541349 +Nucleus,KCNA4,0.608506405685442 +Nucleus,SIGLEC9,1.21546798094176 +Nucleus,ANKRD53,-0.0323222796504277 +Nucleus,DLL1,1.0231374558678 +Nucleus,DMRT3,0.0159673651971701 +Nucleus,RASIP1,0.190635314008221 +Nucleus,NPFFR1,0.911715385872039 +Nucleus,SRSF12,-0.166525504454083 +Nucleus,PAPL,-0.0269803693018873 +Nucleus,ZNF519,1.99057759203938 +Nucleus,CCM2,3.21907927827942 +Nucleus,TM4SF1,5.44995774285717 +Nucleus,SPATA9,1.10499350974756 +Nucleus,DYNC1LI1,4.57974960753531 +Nucleus,STX18,4.05431011337533 +Nucleus,MAEL,0.61222443966625 +Nucleus,MAPK4,0.624862631288529 +Nucleus,CDH23,0.56530023835024 +Nucleus,POU6F2,0.0769140249110495 +Nucleus,LCN15,0.524826516797952 +Nucleus,BPIFB4,0.575568359331246 +Nucleus,ATP9B,4.66037474208112 +Nucleus,AGBL3,1.0984709108293 +Nucleus,MYT1,0.510900049952169 +Nucleus,FAM9C,-0.284053784867776 +Nucleus,GRM8,0.305611555432641 +Nucleus,SNHG14,4.81671070399018 +Nucleus,TRAPPC13,2.82525025813697 +Nucleus,HAT1,4.38960296942715 +Nucleus,BEND6,1.03309814510949 +Nucleus,CCDC8,0.51450202539289 +Nucleus,KDM4B,2.73776404698908 +Nucleus,SMAD1,2.49017979350803 +Nucleus,FAM186A,0.649844810181602 +Nucleus,SEPP1,0.259224125702903 +Nucleus,TM4SF20,0.484785393725145 +Nucleus,BET1,0.29458872801984 +Nucleus,FBXO25,1.89410313052021 +Nucleus,ZG16,-1.80011843743624 +Nucleus,NOS2P3,2.27736818982801 +Nucleus,APBA1,-0.546085111218233 +Nucleus,CD180,0.0775283093725322 +Nucleus,ELAVL4,1.52582045823342 +Nucleus,MATN1,1.10800262256683 +Nucleus,MON2,4.09876848621228 +Nucleus,MLXIPL,0.410394892365869 +Nucleus,MKNK1,1.06110675011855 +Nucleus,N4BP2L2,4.77261302824275 +Nucleus,AGPAT3,-0.0160423237704207 +Nucleus,PCAT19,0.0985290535143742 +Nucleus,MCTP2,1.88434220330231 +Nucleus,RCOR3,5.47300320430514 +Nucleus,MFSD4,-0.0110926802049417 +Nucleus,EIF4E3,-0.156640340913642 +Nucleus,PROM2,-0.189309188174965 +Nucleus,OCA2,-0.0662798332873556 +Nucleus,TRIQK,-0.00267100476556714 +Nucleus,NEURL1,-0.128037034091103 +Nucleus,NYAP2,0.903340113850732 +Nucleus,KAT6B,3.46407002835319 +Nucleus,PHF20L1,4.44260346263331 +Nucleus,TXLNB,0.00880395372702976 +Nucleus,ARHGAP25,-0.466964099712912 +Nucleus,C14orf80,1.19032763053228 +Nucleus,ADH4,-0.178946876048675 +Nucleus,RCSD1,-1.13525742233463 +Nucleus,HMSD,0.543606921059375 +Nucleus,ASB4,0.554350872778045 +Nucleus,CNTN3,0.646697952340981 +Nucleus,ABCC8,1.81419354516051 +Nucleus,IFIT2,0.465258026647989 +Nucleus,PDE3B,1.92373409914834 +Nucleus,WISP1,-0.320520566042453 +Nucleus,AZIN2,2.82549739682439 +Nucleus,ZNF487,4.55288592036768 +Nucleus,ZC3H14,2.98550547007813 +Nucleus,SLC24A4,-0.160386476231745 +Nucleus,FAM46D,-0.174289049267004 +Nucleus,C21orf62,0.0272133027027191 +Nucleus,CCDC180,0.824336506483484 +Nucleus,ZFYVE21,4.43171072448322 +Nucleus,C18orf65,-0.327504952377497 +Nucleus,INTS6,4.52146235445987 +Nucleus,UBAP1L,4.74806339666713 +Nucleus,IGSF5,0.0512531002058804 +Nucleus,PRDM15,2.55628160152155 +Nucleus,IRS4,1.31192270442629 +Nucleus,EXD1,1.10001243781975 +Nucleus,NEFM,-0.595162262505448 +Nucleus,CLCNKA,-0.20551136993184 +Nucleus,HBS1L,4.69132274179624 +Nucleus,GNG2,-0.576544205014098 +Nucleus,PCDHGA10,1.17041807622687 +Nucleus,DEPDC4,1.10293227939145 +Nucleus,PPM1K,3.19967099061651 +Nucleus,SLAMF8,-1.01562230701216 +Nucleus,CCDC185,0.19250218742782 +Nucleus,MLIP,-0.58383443616882 +Nucleus,PACS2,0.887601293706503 +Nucleus,PPP1R12C,3.74991145890237 +Nucleus,BEST4,0.206294620094232 +Nucleus,UPK1B,1.22388994365613 +Nucleus,KNDC1,0.681329546563926 +Nucleus,CSMD3,2.61306270533062 +Nucleus,KLRD1,0.417342232210874 +Nucleus,FAM182A,0.835241092260712 +Nucleus,LRRC27,0.663254936187222 +Nucleus,LRRC2,0.324535016430844 +Nucleus,BSN,-0.179273892824828 +Nucleus,TSGA13,0.854625956433141 +Nucleus,PMFBP1,2.57002076955451 +Nucleus,PDE6B,-0.441338699025937 +Nucleus,ADGRG2,0.255299545555475 +Nucleus,ZNF43,0.682727844894353 +Nucleus,CDK5RAP2,4.00203699354605 +Nucleus,SLC19A3,0.251716667884559 +Nucleus,CERCAM,3.56537171705661 +Nucleus,MGA,2.14962869078715 +Nucleus,DCDC2,-0.361525320760027 +Nucleus,MYO10,1.20253475751145 +Nucleus,SLC18A2,1.65078255545777 +Nucleus,ALOX12P2,1.78891526689918 +Nucleus,SLC36A2,0.729573600637316 +Nucleus,KRT18P59,0.493313454339037 +Nucleus,WDR1,4.07422197170802 +Nucleus,ZNF775,1.03530144893145 +Nucleus,ZNF117,1.95244463523102 +Nucleus,GOLGA2P5,3.59306909590495 +Nucleus,CNDP1,0.92491482695161 +Nucleus,PTPN2,4.97093972389291 +Nucleus,TIGD3,-0.199551423045072 +Nucleus,CLEC18A,1.98222073956447 +Nucleus,C9orf156,5.08535785489175 +Nucleus,SLC44A4,-1.28839375573231 +Nucleus,DNAI1,0.504816401060932 +Nucleus,SCGB2B2,1.73587902246257 +Nucleus,PCDHGA8,1.16354301263244 +Nucleus,ZNF714,1.82450768982609 +Nucleus,PLA2G2C,0.122923299327533 +Nucleus,CCDC87,1.02271471576544 +Nucleus,TOR1AIP1,0.648166133272547 +Nucleus,SAG,0.888697526858368 +Nucleus,TRIM3,2.46503908627686 +Nucleus,NUTM1,-0.849807164443578 +Nucleus,SPATA6,1.92749865385741 +Nucleus,CENPC,2.94275086594705 +Nucleus,RBFOX3,2.85178309178338 +Nucleus,HECW2,0.906096774243585 +Nucleus,SSC5D,1.61902579310489 +Nucleus,TMEM106A,4.27700895566224 +Nucleus,NPY1R,0.428303853191761 +Nucleus,CD8A,0.0137537623783652 +Nucleus,MTHFD2P1,-0.977290025708341 +Nucleus,SEC14L6,-0.328180636238376 +Nucleus,PCDHB4,0.252779798135515 +Nucleus,KLHL38,0.478243332722648 +Nucleus,PRR27,0.534671029371579 +Nucleus,IKZF3,0.692861519673865 +Nucleus,TLR7,-0.235074193692383 +Nucleus, SEPT9,3.0762487210526 +Nucleus,PGF,3.62298394173365 +Nucleus,HCK,-0.403501756906524 +Nucleus,ELFN2,0.408088198229927 +Nucleus,TTC34,0.0581149481463565 +Nucleus,CCDC80,0.349243033386547 +Nucleus,INO80C,1.00650681067832 +Nucleus,IGF2BP3,1.01344721321377 +Nucleus,MIR17HG,4.62214339683613 +Nucleus,CLMN,1.45725562044465 +Nucleus,THADA,4.41250328934608 +Nucleus,CFAP74,-0.285861337392614 +Nucleus,ZNF474,0.731103176203592 +Nucleus,VIPR2,0.0923683556608401 +Nucleus,RUNDC3A,0.0485007936314851 +Nucleus,MAGEB10,-0.668635108817833 +Nucleus,TGM5,0.34441532719989 +Nucleus,ZIC3,0.933194736170181 +Nucleus,COL6A4P1,0.0262991371116672 +Nucleus,KATNAL2,-1.09671648050618 +Nucleus,DZIP1,2.31340680004843 +Nucleus,TMEM185A,3.77063420591545 +Nucleus,FFAR4,-0.735794595825982 +Nucleus,TMED5,4.24441816868479 +Nucleus,FSD1L,3.10894806670807 +Nucleus,CHRNA10,2.14121565124195 +Nucleus,POU2F2,1.0819921330288 +Nucleus,ZCCHC11,3.87552236568071 +Nucleus,PRIMA1,-0.0333894676187723 +Nucleus,CFI,-0.267023453216036 +Nucleus,GRPR,-0.259925343048823 +Nucleus,RIN3,0.898054176391039 +Nucleus,HFM1,0.618696306236363 +Nucleus,C12orf60,-0.654923459729508 +Nucleus,PBLD,2.35129912261602 +Nucleus,CYS1,-0.881861077565209 +Nucleus,CD33,0.590038264593846 +Nucleus,LPAR3,0.783260637567091 +Nucleus,FOXL2NB,1.55415969001085 +Nucleus,ANKS1B,1.9009079034689 +Nucleus,SPCS1,3.31396436945277 +Nucleus,ZNF716,0.190876565095764 +Nucleus,SCIN,2.08016971304139 +Nucleus,DCLK3,-0.402115903082789 +Nucleus,TTC39B,1.83531015962812 +Nucleus,C2orf16,1.15545055698624 +Nucleus,ELMSAN1,3.34104714596498 +Nucleus,ASZ1,2.21833951356609 +Nucleus,TTC7B,1.32926457309749 +Nucleus,SKIDA1,0.368373771859241 +Nucleus,PIPOX,-0.378926008101852 +Nucleus,C6orf165,0.154009520160633 +Nucleus,STPG1,0.104245335829628 +Nucleus,KIF6,-0.0951936898568217 +Nucleus,UCHL5,2.13886266433998 +Nucleus, MARC1,1.84103697657572 +Nucleus,NOD2,0.418759044925264 +Nucleus,SEPSECS,1.25200591183173 +Nucleus,RPH3A,-0.471803828577128 +Nucleus,SLC30A2,-0.526045199056806 +Nucleus,ITPRIPL1,-0.862973445395104 +Nucleus,ZYG11A,0.403979748388458 +Nucleus,ZNF431,0.715526751198053 +Nucleus,ZNF833P,1.55782762764739 +Nucleus,SEC14L4,-0.448658480113339 +Nucleus,LDB3,-0.127752086803993 +Nucleus,SLITRK3,0.799964853018511 +Nucleus,SCIMP,1.40686244003704 +Nucleus,WDR72,0.507030064212028 +Nucleus,DCPS,2.48464824665519 +Nucleus,ALG11,3.56887767161768 +Nucleus,CCR7,-0.157892218991843 +Nucleus,TMEM169,-0.107666234070208 +Nucleus,CYP17A1,0.169615740330121 +Nucleus,PTGS2,0.673233432999981 +Nucleus,BCL2L15,1.01280687542282 +Nucleus,EPC1,4.27907589098875 +Nucleus,ATP6V0D2,-0.900575498693275 +Nucleus,HSPA4L,0.444971361072879 +Nucleus,EFCC1,-0.229560415656487 +Nucleus,ITGA10,1.46782162181773 +Nucleus,SIGLEC15,-0.299184754302711 +Nucleus,ACKR2,0.149903219537162 +Nucleus,MCF2L,1.95997365875132 +Nucleus,BEND4,0.584966463328794 +Nucleus,LCT,1.21307487463239 +Nucleus,NUMB,4.89328705796862 +Nucleus,POMT1,3.94239417329759 +Nucleus,CCDC39,0.402681929242704 +Nucleus,RBPMS,2.378568742285 +Nucleus,KLHL14,-0.876479555867346 +Nucleus,TPGS1,2.24852131452566 +Nucleus,PIP5K1B,0.0163202093497157 +Nucleus,CPNE5,-0.171855266551261 +Nucleus,MAGI2,0.984972978476714 +Nucleus,COL26A1,0.447269546891641 +Nucleus,STMN2,-1.2867951648098 +Nucleus,NAALAD2,1.76228124413655 +Nucleus,RUVBL1,3.49124511945711 +Nucleus,SFI1,4.08596533236671 +Nucleus,AGBL2,1.21573717094744 +Nucleus,CCDC64B,0.337636337868195 +Nucleus,KIF19,0.176668348553041 +Nucleus,CELP,0.41710903196636 +Nucleus,WTAPP1,1.23420388330727 +Nucleus,KIAA2012,1.15990545307875 +Nucleus,BCL2,-0.488803551776464 +Nucleus,TMEM9,2.93771230301356 +Nucleus,STXBP6,3.65157659829181 +Nucleus,RPS9,1.20196357319115 +Nucleus,GVINP1,1.54697963132797 +Nucleus,PLCB1,-1.26694540347818 +Nucleus,SCRG1,-0.173667059068228 +Nucleus,ZSCAN5A,0.168313244028012 +Nucleus,SRGAP1,-0.809089704536609 +Nucleus,IDO2,1.38185460008604 +Nucleus,GAREM,0.582158871590643 +Nucleus,KDM3A,3.92666741607665 +Nucleus,SMIM5,-0.237200037079608 +Nucleus,CFP,0.957509047428286 +Nucleus,IP6K3,0.724131892926836 +Nucleus,ADAMTS9,-0.236057425958032 +Nucleus,FUT2,0.462566057609865 +Nucleus,CCDC38,0.243803659178163 +Nucleus,MGST3,2.58007448451955 +Nucleus,PPM1L,0.455837545983139 +Nucleus,RAB30,1.06226061125783 +Nucleus,MCMDC2,-0.292391001232171 +Nucleus,HOPX,-0.395987351886468 +Nucleus,SYNM,-0.251033401737608 +Nucleus,TTC5,4.43494660442767 +Nucleus,SEC14L3,0.135519102721679 +Nucleus,C16orf87,0.883248288259913 +Nucleus,FRMD6,4.5605444634326 +Nucleus,CPAMD8,0.143612315711786 +Nucleus,ARHGAP26,0.497306896629448 +Nucleus,F2RL3,0.525125458032655 +Nucleus,SLC16A10,0.700764359519759 +Nucleus,ABCA1,0.396174587932279 +Nucleus,ODF2L,3.91587670493751 +Nucleus,DCAF13,4.61951452105558 +Nucleus,DRC7,-0.210832569454165 +Nucleus,MOCS2,2.27058715081122 +Nucleus,KRT15,3.14167594685874 +Nucleus,MARK3,5.17856150273115 +Nucleus,MORN1,1.62078232371069 +Nucleus,DDO,-0.886687192048115 +Nucleus,AK8,-0.0923299664749853 +Nucleus,CAMKK1,1.82652938051629 +Nucleus,CEMIP,0.139169186936616 +Nucleus,TPH2,-0.237274259821256 +Nucleus,CATSPERG,0.485423351820863 +Nucleus,GRIK1,-0.00368815747714205 +Nucleus,ATP1B2,-0.578175911737816 +Nucleus,BTN3A3,2.94835088389483 +Nucleus,ZNF91,1.55900132676151 +Nucleus,FHIT,1.00497597433342 +Nucleus,ANGPT4,-0.160538036815938 +Nucleus,INMT,-0.712665889106553 +Nucleus,OR4F13P,3.81126510196906 +Nucleus,KIAA1614,2.28106599926065 +Nucleus,ACVRL1,0.479720969050425 +Nucleus,CICP18,3.54374649902366 +Nucleus,NANS,4.95005445081959 +Nucleus,KLHL32,0.102444112134003 +Nucleus,NOX4,0.831510891580467 +Nucleus,CXCL5,0.407657910374996 +Nucleus,FFAR1,-0.595102793341973 +Nucleus,DNM1P34,0.368575855732718 +Nucleus,FLT1,-0.283267741564289 +Nucleus,CYP46A1,1.53201527866198 +Nucleus,GFRAL,0.0134051751888254 +Nucleus,PAPOLG,2.07349844062933 +Nucleus,FAM84A,-1.02842910453448 +Nucleus,ZNF701,1.35216731107351 +Nucleus,ZNHIT3,5.01002164367409 +Nucleus,PLOD2,5.15445660604436 +Nucleus,GNB5,2.94644377063246 +Nucleus,FAM221A,5.4003466640986 +Nucleus,CIRH1A,2.46726945630917 +Nucleus,ANXA13,0.335959528691558 +Nucleus,SOX2,-0.419847053134752 +Nucleus,TBC1D3P5,0.159292100167189 +Nucleus,LAMB4,0.609119311066237 +Nucleus,ERC2,1.12213802091014 +Nucleus,ILDR1,-1.01510849333421 +Nucleus,ABCA9,-0.40200917575846 +Nucleus,BATF3,4.17463594098569 +Nucleus,SLC46A2,-0.324741232193309 +Nucleus,TROVE2,0.361223778136859 +Nucleus,CCKBR,-0.631793074461673 +Nucleus,MFAP5,-0.686531555485135 +Nucleus,COL18A1,0.252516784468683 +Nucleus,ZBTB32,0.50062901697808 +Nucleus,TSPAN3,3.07179057835711 +Nucleus,HCG18,5.21778531599635 +Nucleus,MIRLET7BHG,3.57009414491295 +Nucleus,RASGRP4,-0.825894257366156 +Nucleus,PAX8,2.13623205041149 +Nucleus,ARSF,0.0880751338342315 +Nucleus,SRGAP3,-0.00509975342223975 +Nucleus,MROH7,1.73382154664234 +Nucleus,LACC1,0.0510678619195182 +Nucleus,C11orf88,0.000713504784501271 +Nucleus,KCNE3,0.635664686559947 +Nucleus,PHTF1,3.99056378063602 +Nucleus,SEC14L2,0.718978448670718 +Nucleus,TBC1D7,3.65201688732781 +Nucleus,NDRG1,2.27297190356676 +Nucleus,SPN,-0.0490785869566017 +Nucleus,TTLL13P,0.19034827878992 +Nucleus,PSORS1C1,3.91607871838531 +Nucleus,ARHGEF37,0.108492452811365 +Nucleus,PKIA,-0.195408142450654 +Nucleus,RGS17,1.76365942634013 +Nucleus,MYADML2,0.645043647570729 +Nucleus,HP09025,0.265120632568434 +Nucleus,AICDA,0.195750177123941 +Nucleus,NFAM1,0.0704144995308918 +Nucleus,ZNF75D,1.74562343387477 +Nucleus,PAX2,0.0257746519216139 +Nucleus,PAK6,-0.0938590481241082 +Nucleus,SLC6A20,0.445910480594175 +Nucleus,SYT9,-0.168356789332338 +Nucleus,ZDHHC22,0.0709174557148982 +Nucleus,GRIP2,-0.677452801075712 +Nucleus,ADD1,5.5130234314589 +Nucleus,CASP9,0.969680522010766 +Nucleus,EMILIN1,-0.198101558612216 +Nucleus,RNPEPL1,1.88994116554676 +Nucleus,CCT6B,0.0173098821966933 +Nucleus,CSRP2,3.16411145594494 +Nucleus,FAM179A,1.0752104607764 +Nucleus,FGF14,0.0834413798833566 +Nucleus,GPRC5C,1.43624900596574 +Nucleus,LRRC37A11P,1.10647729293688 +Nucleus,SETDB2,0.46658752539993 +Nucleus,ARHGAP6,-0.589318691954933 +Nucleus,RNF8,2.21282151788953 +Nucleus,TFEB,2.38834947293422 +Nucleus,PTPN9,2.86938338375734 +Nucleus,ASCL1,1.00913382963871 +Nucleus,CCDC158,1.17669560072272 +Nucleus,COX20,4.03365006443068 +Nucleus,CISH,2.67700337877698 +Nucleus,SLC22A5,4.8849465407029 +Nucleus,TTLL5,4.46973535500416 +Nucleus,AKR1D1,0.905830193115521 +Nucleus,CCDC144A,4.98715982304233 +Nucleus,PRELP,0.515568585167963 +Nucleus,SLC18A3,0.176234032137221 +Nucleus,KCNMB1,0.920249263907633 +Nucleus,FCRL5,0.119326015313167 +Nucleus,PATE2,0.738878511482959 +Nucleus,GNPDA2,2.55000750596421 +Nucleus,ZBTB8B,1.47493304781909 +Nucleus,TMEM45B,-0.264884450992948 +Nucleus,EPN3,-0.281127717618655 +Nucleus,ZNF473,2.5511817187284 +Nucleus,CRX,-0.649737477020295 +Nucleus,TMEM130,0.986219794481618 +Nucleus,SPRY3,1.14245265431053 +Nucleus,EBF1,0.424545598075778 +Nucleus,GPLD1,-0.0775650189619492 +Nucleus,NCKAP1,5.03585711866299 +Nucleus,ATCAY,-0.44755932561811 +Nucleus,ABLIM3,4.54370048660961 +Nucleus,ZNF204P,0.602395299409341 +Nucleus,EPHA10,-0.137402787519876 +Nucleus,MALSU1,3.54937509982997 +Nucleus,UBE3A,2.90912427298789 +Nucleus,FUT9,1.75105554418948 +Nucleus,AGXT,-0.115721376080069 +Nucleus,AVIL,0.442937848759508 +Nucleus,PCDHGA6,2.49048642486421 +Nucleus,CHRM3,-0.0966995306891542 +Nucleus,PARD3B,-0.363474233739694 +Nucleus,TLE4,-0.934500629971994 +Nucleus,MRPL42,2.35152743216853 +Nucleus,SH3TC1,3.33881287151802 +Nucleus,SSBP2,2.98411581098182 +Nucleus,TEX2,3.21305725468428 +Nucleus,THEGL,1.24321647106773 +Nucleus,LRRC74B,0.6983296867101 +Nucleus,CEND1,-0.654456356373311 +Nucleus,CCAT1,1.0288718884476 +Nucleus,REPS2,-0.94057484811585 +Nucleus,SLC35F1,-0.373318445288133 +Nucleus,FUT8,0.994323285700193 +Nucleus,CABP4,-0.312735532232598 +Nucleus,HRH4,0.747439516632343 +Nucleus,HNF1A,0.0952525795917837 +Nucleus,METTL21EP,0.097677240639815 +Nucleus,TMEM179,-0.242210613886668 +Nucleus,IQCH,0.777614470882733 +Nucleus,C5orf64,0.0739117313216145 +Nucleus,TMEM98,3.00440589902582 +Nucleus,SYT12,3.83442531524669 +Nucleus,PSD2,-0.304783546662347 +Nucleus,FGFR1,4.89979078052762 +Nucleus,ALPK1,2.0400467283896 +Nucleus,TENM4,-0.497234346714711 +Nucleus,PIGP,1.13014473968412 +Nucleus,A2M,-0.672180638510432 +Nucleus,DAAM2,2.32348330029311 +Nucleus,LSINCT5,-0.108281180523152 +Nucleus,SLC16A3,2.48961673286899 +Nucleus,SLITRK2,0.611503933283309 +Nucleus,FBXW10,0.89545347933988 +Nucleus,BBIP1,4.90299517269545 +Nucleus,NFATC4,2.01255882013948 +Nucleus,RFPL1S,-0.670670160472859 +Nucleus,CASC15,1.14201068906829 +Nucleus,ETV3L,-0.605020398325061 +Nucleus,GABRB2,0.574609974628156 +Nucleus,MAML3,-0.051696981025139 +Nucleus,GSTZ1,3.66002894434395 +Nucleus,ZNF382,-0.096028792594584 +Nucleus,ATG3,4.83101271938068 +Nucleus,IQUB,0.487943025112761 +Nucleus,CD59,3.79729992645458 +Nucleus,FAM204A,3.52198688417487 +Nucleus,PCDHA13,1.3893941270202 +Nucleus,NFATC1,2.97878734601137 +Nucleus,NPAS2,3.55643630115451 +Nucleus,OFD1P17,-0.0797731665025162 +Nucleus,TMEM42,5.86474495741198 +Nucleus,FKBP5,3.92054907870308 +Nucleus,DEGS2,0.0394834519032509 +Nucleus,ATRNL1,1.55126545620932 +Nucleus,PCNXL4,2.99414690778286 +Nucleus,ERGIC1,3.4541299433828 +Nucleus,NR4A3,-0.695228406541238 +Nucleus,CYB5A,4.12506665844075 +Nucleus,KIAA0226L,0.754162627536788 +Nucleus,CDH12,-0.515049182707093 +Nucleus,P2RY4,2.60101928864928 +Nucleus,MLYCD,3.07495704404882 +Nucleus,GCM1,0.443532778930644 +Nucleus,NBEAP1,3.46710699138339 +Nucleus,CDH22,0.782757445686389 +Nucleus,KTN1,4.59991394479016 +Nucleus,PLEKHO1,4.14555102169893 +Nucleus,C15orf59,-1.12882927049256 +Nucleus,ZNF486,-0.302842896725302 +Nucleus,ANKS4B,-0.262627794515155 +Nucleus,PATE4,0.0492607652786983 +Nucleus,GPR155,1.40610999734768 +Nucleus,NUP107,2.10902105206917 +Nucleus,CES5A,0.431354641851493 +Nucleus,TCP11,-0.521117869236402 +Nucleus,CCDC116,0.941924392533111 +Nucleus,HOGA1,-0.240600080739144 +Nucleus,STOML1,0.924624845465583 +Nucleus,DYDC2,-0.378887291814723 +Nucleus,KLHL26,0.0607191427966638 +Nucleus,PTDSS1,3.57394206390384 +Nucleus,CEACAM22P,2.59558748785569 +Nucleus,TMEM68,4.85553495052984 +Nucleus,MYCL,-1.26863945438037 +Nucleus,TRIM55,-0.628808507817585 +Nucleus,SLC25A18,-1.01020785138892 +Nucleus,FAM71F2,1.5944319935437 +Nucleus,CSMD2,1.80411904960742 +Nucleus,C6orf25,1.8831082117186 +Nucleus,TNK2,3.11781662056538 +Nucleus,ZNF718,0.827020474318725 +Nucleus,RLIMP2,-0.668005620348659 +Nucleus,LGALS9,1.1674785378011 +Nucleus,MLLT3,0.915534651854642 +Nucleus,CNBD2,0.584794376457713 +Nucleus,C1orf140,0.613834595158578 +Nucleus,MOG,0.753652945770616 +Nucleus,DENND6B,-0.460440518915481 +Nucleus,KBTBD12,0.715936678610965 +Nucleus,TNFSF15,1.17995678797588 +Nucleus,EFCAB2,1.65308802887287 +Nucleus,RNF130,0.316143159136621 +Nucleus,BMP8B,-0.566469928284777 +Nucleus,DNAJC7,5.47781362057583 +Nucleus,RGS9BP,-0.333701213516572 +Nucleus,PBOV1,-0.690157172041924 +Nucleus,METTL16,2.98316370204384 +Nucleus,PPP1R1A,0.711594411536566 +Nucleus,PCDH15,0.0229317240775767 +Nucleus,ARL11,-0.233400358095259 +Nucleus,FBLN7,3.92218458219161 +Nucleus,SSUH2,2.83414986164617 +Nucleus,GAPVD1,2.16981912094047 +Nucleus,MTND5P24,0.403715241715214 +Nucleus,CACNA2D2,0.225546784016696 +Nucleus,FAM189A2,0.329225274071644 +Nucleus,LRRC38,-0.682325460048926 +Nucleus,CTAGE12P,-0.091114942749172 +Nucleus,NDUFS7,3.38737450104109 +Nucleus,LRRC25,1.6149731417744 +Nucleus,SLFN13,1.20028667009303 +Nucleus,ZNF441,0.849994537583645 +Nucleus,SMTNL1,-0.542063770204747 +Nucleus,SCARF1,0.419835632038416 +Nucleus,PDLIM3,4.60308498907902 +Nucleus,ZBTB7C,-0.339734797847065 +Nucleus,COL5A3,-0.41754886713863 +Nucleus,FAM230C,-0.0550271092083042 +Nucleus,PCYOX1L,3.89987141511821 +Nucleus,NT5DC1,0.463235456546907 +Nucleus,TFAP2E,0.774642711342546 +Nucleus,RNF180,0.246495958195886 +Nucleus,BCRP2,-0.306969550819998 +Nucleus,CA8,0.489700548873728 +Nucleus,KCNV2,-0.696430997515147 +Nucleus,SCN3A,0.187636700058337 +Nucleus,GLRX,2.4527532789035 +Nucleus,STARD3NL,3.65248652839588 +Nucleus,NREP,4.5885429481413 +Nucleus,PPP4R4,1.30249828719138 +Nucleus,C17orf104,-0.611893857106501 +Nucleus,PCDHA9,0.0402801402535755 +Nucleus,SLC5A5,0.237533246458777 +Nucleus,ANAPC4,5.92508761099388 +Nucleus,KLHDC7A,0.450086974807766 +Nucleus,ZFYVE26,2.60285839813629 +Nucleus,C5orf63,3.24336505344417 +Nucleus,CTSH,3.39949721946651 +Nucleus,BHMT2,-0.16288536652862 +Nucleus,MKX,-0.880341585909562 +Nucleus,RFWD2P1,-0.860306632729939 +Nucleus,KCNIP4,-0.872360595356958 +Nucleus,HCP5,0.783455727946291 +Nucleus,HS6ST2,-0.654332878742894 +Nucleus,ZNF326,3.38873834487329 +Nucleus,EDNRA,0.57141559686843 +Nucleus,SYNPO2L,0.336125006743916 +Nucleus,HDAC2,1.81790552241495 +Nucleus,SBF2,5.03984913239307 +Nucleus,PPP2R3B,2.20950258169177 +Nucleus,FAM47E,1.66485057626975 +Nucleus,NFATC2,-0.16850871889579 +Nucleus,PABPC5,0.185898134451971 +Nucleus,THPO,0.798553615070862 +Nucleus,IVL,-1.04619625677867 +Nucleus,LRCH4,4.59587765504167 +Nucleus,GPATCH2,0.937798064015851 +Nucleus,ESRRB,0.770843334491965 +Nucleus,GRIK2,1.00147496730841 +Nucleus,CASS4,0.257195308248341 +Nucleus,SEMA5A,-0.20416418195007 +Nucleus,PPP2R1A,4.40674318966766 +Nucleus,B3GALT1,-0.372180568428662 +Nucleus,ATP6V0A1,0.210054504518222 +Nucleus,ELAVL1,2.23439305563499 +Nucleus,ACSM4,0.511316289087904 +Nucleus,MYLK2,1.72919998856982 +Nucleus,LSMEM2,1.44163818587537 +Nucleus,DGKH,1.82320762775495 +Nucleus,PRR29,0.0676916409665239 +Nucleus,ROBO4,2.449572579526 +Nucleus,FAM227A,1.87913553109414 +Nucleus,C8orf34,0.789299091697498 +Nucleus,SLC26A9,0.467570247544241 +Nucleus,ARHGEF2,2.74476515229189 +Nucleus,SSR1,1.50819027480253 +Nucleus,SLC12A2,4.14331160616092 +Nucleus,B2M,4.45509948530149 +Nucleus,ZNF790,0.536914003176735 +Nucleus,FNDC9,0.160358218900928 +Nucleus,HCAR1,-0.486056815291297 +Nucleus,NRG4,-0.416479970072174 +Nucleus,DNAJC5G,0.639564598054168 +Nucleus,CYP27C1,0.647387941871087 +Nucleus,TTLL7,1.39568148667204 +Nucleus,SCLY,3.27443096344352 +Nucleus,KIF17,-0.36756975944294 +Nucleus,GHET1,0.42053652985436 +Nucleus,EMX2OS,1.07813542235763 +Nucleus,SLC7A7,0.637434046385053 +Nucleus,TYW5,4.5050768865503 +Nucleus,KMT2C,3.49025300618567 +Nucleus,TMOD2,1.05635086549786 +Nucleus,OR8S1,-0.465482738112773 +Nucleus,CSF1R,-0.282017380123796 +Nucleus,APOF,0.239851330270574 +Nucleus,ACAA1,4.87293243466636 +Nucleus,RIC8B,1.91564826738544 +Nucleus,KLHL3,1.4931139037969 +Nucleus,METTL6,1.02127083167139 +Nucleus,ATP8B3,0.259677501139877 +Nucleus,EPM2A,-0.199296523216596 +Nucleus,ENDOV,0.172776170894867 +Nucleus,GDF5OS,0.505968619417111 +Nucleus,KIFC3,5.10714126460393 +Nucleus,SEMA4F,2.76729941694265 +Nucleus,FBLIM1,-1.29655035220754 +Nucleus,NANOG,0.487378122065764 +Nucleus,SLC14A2,0.830425315842148 +Nucleus,TGFB1I1,2.93242642862395 +Nucleus,C12orf42,2.3291920153487 +Nucleus,ESCO2,3.98993723172389 +Nucleus,SEH1L,6.44267057749885 +Nucleus,EIF3M,4.22141066571881 +Nucleus,GABARAPL2,4.84036856318824 +Nucleus,MESP1,1.07454667779359 +Nucleus,STAG3,-0.716966278042994 +Nucleus,MATN4,0.0875850982579864 +Nucleus,SLC9A7P1,-0.0988996672747334 +Nucleus,SHPRH,5.19035045571651 +Nucleus,TM2D3,1.58020236193742 +Nucleus,EML2,2.1509172774169 +Nucleus,LRRC37A6P,0.696692956366099 +Nucleus,PPP1R9A,0.412183766263922 +Nucleus,ESRP2,-1.3326462837618 +Nucleus,KIAA1024L,0.368486135622096 +Nucleus,RBM48,4.31258228935223 +Nucleus,NME7,4.5521737252615 +Nucleus,SCAND2P,2.29284925301424 +Nucleus,KCNJ4,-0.914134280414576 +Nucleus,DNM1P35,1.4285338667058 +Nucleus,TPTE2P2,1.43744663138082 +Nucleus,ACVR2A,1.3621160790682 +Nucleus,TCF23,0.843777600098524 +Nucleus,PDK2,-0.461388999944633 +Nucleus,SYK,-0.403165566890727 +Nucleus,TEX9,2.43189785270441 +Nucleus,NDRG4,-0.313951610392939 +Nucleus,TUBB1,0.641764076824009 +Nucleus,PRKRIR,4.71439881123403 +Nucleus,ERAP2,2.36199820297707 +Nucleus,CCDC154,-0.149710183875444 +Nucleus,RNF112,0.269395414594208 +Nucleus,SLC17A7,3.95104335153511 +Nucleus,PCDHA10,0.695060364041756 +Nucleus,MUC5AC,-0.640507628544795 +Nucleus,ZFRP1,0.78472935827917 +Nucleus,PROB1,1.09265694214301 +Nucleus,MBNL3,-1.08562960950919 +Nucleus,NIT2,2.39313384387472 +Nucleus,LGALS8,0.129541621936143 +Nucleus,ALDH8A1,1.7298414357626 +Nucleus,ZNF765,1.68199636801853 +Nucleus,SLC25A29,3.93310100226731 +Nucleus,MAPK6PS2,0.838478171622079 +Nucleus,ECM2,0.538604728982914 +Nucleus,TMEM59,0.944009289094651 +Nucleus,JAKMIP3,-0.0652674374691032 +Nucleus,HRC,0.118539001401639 +Nucleus,CARS2,3.23106265268175 +Nucleus,ICA1,-1.01120428140835 +Nucleus,FLRT2,1.23017272122262 +Nucleus,KLF12,0.800556057554939 +Nucleus,SCAI,2.37391144120723 +Nucleus,BICD1,1.83657032285527 +Nucleus,C14orf28,0.513701001136683 +Nucleus,ACAN,-0.0629846047428 +Nucleus,ZNF771,0.122912721120467 +Nucleus,RAP1B,0.821722579724364 +Nucleus,ADAMTS4,0.0181319281313038 +Nucleus,IRAK1BP1,1.84454330737456 +Nucleus,ADAM22,2.68008419438328 +Nucleus,UBE2W,3.06037826073411 +Nucleus,PNPLA1,1.64447026754953 +Nucleus,MARVELD2,1.57082363732014 +Nucleus,CTBP1,3.30127258264897 +Nucleus,INE2,0.474289262569574 +Nucleus,CARNS1,-0.407789159336375 +Nucleus,FXR1,1.98400552041143 +Nucleus,ELMO1,1.09798792894601 +Nucleus,TRPM6,0.584274201927538 +Nucleus,GGT5,3.68192977837309 +Nucleus,CMC1,0.829216120580012 +Nucleus,CEP41,2.60858700263015 +Nucleus,KIAA1257,0.399390319127876 +Nucleus,GUSBP1,2.12634603669326 +Nucleus,FPR1,0.715086842296836 +Nucleus,SYT17,5.5991616437604 +Nucleus,MYH3,2.21417181597614 +Nucleus,HS3ST4,-0.440769810502286 +Nucleus,ACTBL2,-0.751098147160699 +Nucleus,UVSSA,0.971479883156424 +Nucleus,ZNF141,1.36528395841933 +Nucleus,GFI1B,-1.6788790029482 +Nucleus,TMEM40,-0.769904378838572 +Nucleus,EIF3EP2,-0.827755751181473 +Nucleus,ZNF385C,1.17350527358371 +Nucleus,NTNG1,1.49164364133807 +Nucleus,FBXO32,0.0954099800918439 +Nucleus,MMS22L,3.05203690580928 +Nucleus,ZNF10,1.75995469196026 +Nucleus,BDP1P,-0.629909361043835 +Nucleus,PSMC6,5.25073705604321 +Nucleus,TTC8,0.601001377813018 +Nucleus,KLHL24,0.552835130889588 +Nucleus,CA5A,0.0754055819161653 +Nucleus,FGF18,0.913890491319021 +Nucleus,AKT1,3.25599144422025 +Nucleus,C21orf2,0.764081944932309 +Nucleus,TMEM161B,4.23972603178053 +Nucleus,TBC1D15,1.30010594172203 +Nucleus,SLC2A13,0.695427000280808 +Nucleus,PLK1,2.03637561787347 +Nucleus,NIPAL2,0.24258684802306 +Nucleus,IKZF2,0.837856705955597 +Nucleus,ZNF100,0.829487622573493 +Nucleus,MRPL46,4.16628167796934 +Nucleus,TCAM1P,1.53040136561359 +Nucleus,RHBDL3,0.181406249766183 +Nucleus,SLFNL1,2.29851683865086 +Nucleus,GADL1,0.587050594270624 +Nucleus,DCUN1D1,2.03048977132186 +Nucleus,DNAJC2,4.49181912133331 +Nucleus,ARHGAP5,1.44856913882917 +Nucleus,ANO3,-0.135662735688233 +Nucleus,PXYLP1,3.62588608572846 +Nucleus,SULT2A1,1.18859315908581 +Nucleus,FAM181B,0.917821943061978 +Nucleus,SLC28A3,-0.642427681667687 +Nucleus,WNT9A,0.518332227012804 +Nucleus,C2orf91,0.207172325235603 +Nucleus,NCCRP1,1.01735869793793 +Nucleus,FBXW12,0.596084470012002 +Nucleus,P2RX7,1.08815701684894 +Nucleus,SHE,0.124985619459377 +Nucleus,PPP4R1,3.65645704878566 +Nucleus,MAGEB4,-0.533825714503025 +Nucleus,PCDHB14,-0.41017148728541 +Nucleus,SERPINB10,-0.325366167414143 +Nucleus,EPHA4,0.537198083663569 +Nucleus,ANKMY1,3.56103970862319 +Nucleus,CRTAC1,-0.0564959219947456 +Nucleus,RBBP7,4.52555772873268 +Nucleus,POC1B,3.52687259192075 +Nucleus,KCNK13,0.159426248040056 +Nucleus,RHBDF1P1,1.42026693229099 +Nucleus,PSMB9,2.7155498560638 +Nucleus,SYNE3,0.721198008664473 +Nucleus,SNX29P2,0.512906033373975 +Nucleus,MAGIX,1.52417798213518 +Nucleus,IGSF1,0.547322925287283 +Nucleus,SMIM19,0.314451930656804 +Nucleus,ARL6,0.455095991084139 +Nucleus,RGMA,-0.113256120505773 +Nucleus,EPB41L3,4.07725197376399 +Nucleus,CNKSR3,1.77946165387499 +Nucleus,C1orf204,1.26831490929661 +Nucleus,DCAF8L1,-2.33818477360669 +Nucleus,TINCR,0.953646093736306 +Nucleus,B4GALT4,3.3063341260536 +Nucleus,LDHAL6CP,-0.596596138849823 +Nucleus,INPP5B,4.75176022867507 +Nucleus,TNFRSF1B,0.123568596316979 +Nucleus,SULT1A1,0.694417000134821 +Nucleus,MICU3,1.60634570760055 +Nucleus,B4GALT6,-0.129249814346665 +Nucleus,LMOD1,1.02863795706518 +Nucleus,AFAP1L2,0.260318769071807 +Nucleus,ABCA17P,3.54888330620984 +Nucleus,EIF3H,3.41129955081669 +Nucleus,SPIN2A,3.45030144891007 +Nucleus,METTL9,4.02624754885059 +Nucleus,CCDC7,2.92154819257902 +Nucleus,MYH2,-1.62594287199083 +Nucleus,DNAJB6,2.83101699103699 +Nucleus,NRXN3,0.799742086600399 +Nucleus,S1PR3,2.92277496895665 +Nucleus,TIGD4,1.69969652334075 +Nucleus,MGST1,2.10896343606569 +Nucleus,MRPS33,1.14142400480868 +Nucleus,KCNJ3,0.853187079204557 +Nucleus,PHLDB1,4.15433990458521 +Nucleus,OLA1P3,0.921267255682431 +Nucleus,MAPK13,1.23690198810427 +Nucleus,PPP6R3,5.71587015010002 +Nucleus,KCP,1.24808281869685 +Nucleus,CDH10,0.64946399783004 +Nucleus,CACNA1I,0.334280435630958 +Nucleus,UPB1,1.30860868902484 +Nucleus,CFAP69,1.99584610057351 +Nucleus,TMEM163,0.415119874247563 +Nucleus,PRKACG,-0.56297667286368 +Nucleus,ASPH,4.24402078910366 +Nucleus,GDF7,1.55376090555399 +Nucleus,THBS2,0.501269465918951 +Nucleus,MGAM,-0.0853936023637029 +Nucleus, MARCH3,0.758870419423538 +Nucleus,TCHH,1.17548743379209 +Nucleus,CYTH4,-0.0458790505596256 +Nucleus,CFAP221,-0.499720507470697 +Nucleus,BEND3P2,-0.269950587252223 +Nucleus,ANK1,0.109585306784584 +Nucleus,GPR83,1.06196968194452 +Nucleus,GIPR,1.73382089347285 +Nucleus,TSPY26P,1.79622909316602 +Nucleus,ABHD1,0.908534247954064 +Nucleus,SAR1A,2.68094834392841 +Nucleus,LONRF3,-0.0881500972011744 +Nucleus,VEPH1,0.378755461241356 +Nucleus,NDUFAF5,2.97285936797341 +Nucleus,ENOX1,-0.292618257354406 +Nucleus,GDPD5,2.24927512081106 +Nucleus,ARSG,0.846501498446852 +Nucleus,RCHY1,1.7906723081565 +Nucleus,MLANA,0.503606667143506 +Nucleus,PINK1,2.54170484200478 +Nucleus,LGR6,2.23068660050187 +Nucleus,NUP214,4.46854240928733 +Nucleus,GCNT3,0.64794459304557 +Nucleus,METTL10,2.65688270833229 +Nucleus,PLEKHA1,2.47192852652323 +Nucleus,NRCAM,-0.0992558936315249 +Nucleus,ZNF341,2.70743658783663 +Nucleus,CNTN4,-0.0127266011802019 +Nucleus,GBP4,0.0482234321344043 +Nucleus,OR7D2,0.599680214714059 +Nucleus,TSNAX,3.77813187158522 +Nucleus,FAM184B,0.800272260859493 +Nucleus,PINLYP,1.5796128781877 +Nucleus,PSTK,3.14386380404713 +Nucleus,TP53TG5,0.671476279921799 +Nucleus,TRIM72,0.146832743801047 +Nucleus,MGC27382,0.068237828227613 +Nucleus,GRAMD1C,0.122505295163677 +Nucleus,GPR78,2.10414936260573 +Nucleus,UNC5C,0.0179174641050013 +Nucleus,SGSM1,0.138193974473416 +Nucleus,MMP25,0.32158053302877 +Nucleus,TLE3,3.01190599681425 +Nucleus,ARPC5,2.93410399834014 +Nucleus,ZNF793,0.955373638008645 +Nucleus,STAC2,0.174321731386153 +Nucleus,ZNF14,0.70035303566159 +Nucleus, MARCH1,0.408227339240568 +Nucleus,MYO1A,0.576256782271025 +Nucleus,ISPD,0.898482317418264 +Nucleus,SLAMF7,2.48408614363594 +Nucleus,PRRX1,-0.755303611392273 +Nucleus,MORN3,-0.327548575763225 +Nucleus,RRN3P1,4.08249521380904 +Nucleus,CYB5R3,4.97328132563897 +Nucleus,C6orf118,1.22004727709769 +Nucleus,MAU2,3.5753619872717 +Nucleus,FBXO43,1.61632591405434 +Nucleus,PITPNC1,0.453991362305627 +Nucleus,ATF7IP2,2.05718115148411 +Nucleus,RNLS,0.715694288573814 +Nucleus,CLN5,0.656500373045868 +Nucleus,MLKL,2.56290044024453 +Nucleus,NUTM2D,-0.825860801248996 +Nucleus,DPP3P1,-0.624579874718278 +Nucleus,DBIL5P2,2.36514723246145 +Nucleus,PSTPIP2,-1.10933233316969 +Nucleus,COL24A1,0.364794158102569 +Nucleus,TSPAN11,-0.0570918393757092 +Nucleus,TAX1BP1,1.62715761893781 +Nucleus,PRTG,2.06160550706056 +Nucleus,KLHL35,0.669985669863467 +Nucleus,TTC3,4.46574043722462 +Nucleus,P2RX4,3.58441391967706 +Nucleus,ARHGEF39,0.441787619356746 +Nucleus,DSCR3,2.12751341695356 +Nucleus,C17orf99,-0.47547587659591 +Nucleus,TRIM11,5.09440528176862 +Nucleus,HCFC2,1.48465763955978 +Nucleus,NBPF13P,-0.188058636744022 +Nucleus,ZNF19,1.91568103758543 +Nucleus,PIAS2,2.32378764959897 +Nucleus,HYKK,0.85493725107327 +Nucleus,PLA2G7,-0.808631451217069 +Nucleus,CALCOCO1,2.35548379161912 +Nucleus,LRRC48,2.42117865122731 +Nucleus,NGFR,-0.213189096776024 +Nucleus,LSAMP,1.14301353253135 +Nucleus,ZNF836,0.806065898818252 +Nucleus,CTNND2,-0.721888542280358 +Nucleus,HRNR,0.575802358992389 +Nucleus,DNM1P51,2.68844002503125 +Nucleus,SP100,3.72772388882488 +Nucleus,MYH7B,0.257375946788564 +Nucleus,CHST7,-0.392495401030939 +Nucleus,MTMR3,1.90718759507019 +Nucleus,C11orf44,2.52212494041258 +Nucleus,LRRC28,1.41790825934591 +Nucleus,INTS3,4.72020406301795 +Nucleus,CYP4F35P,3.98643710716473 +Nucleus,SLC35G2,2.11572876065006 +Nucleus,OPRD1,0.125496266697091 +Nucleus,TPBGL,-0.434992806598348 +Nucleus,SECISBP2,2.52930901586891 +Nucleus,H3F3B,1.35379431175259 +Nucleus,KRCC1,-0.373609217753676 +Nucleus,C1QTNF6,4.31247561979482 +Nucleus,CLDN14,0.464544225946467 +Nucleus,ADAMTS7,0.208164353099315 +Nucleus,C2orf82,1.83949675348135 +Nucleus,CNTNAP4,1.61235431233753 +Nucleus,DEF6,-1.1381010890696 +Nucleus,FAM45A,2.20779717149418 +Nucleus,LMX1B,-0.185482478282446 +Nucleus,UBE2QL1,1.4629789106936 +Nucleus,GATS,0.580092059535434 +Nucleus,STK32A,1.52231341435739 +Nucleus,CTRC,0.343908237416513 +Nucleus,HAS3,1.22262278712306 +Nucleus,NOL8P1,-0.185333715561303 +Nucleus,PRUNE2,0.266435458248572 +Nucleus,CYP4F8,-0.0497884251776377 +Nucleus,TMEM213,0.321234528188539 +Nucleus,ADAMTS2,1.15080679028178 +Nucleus,C4BPB,0.810180616088912 +Nucleus,ADAMTS17,1.36999240408286 +Nucleus,ACTN3,-0.334265219475397 +Nucleus,TMEM86A,1.25539938493745 +Nucleus,ACSL5,-0.0710903801721031 +Nucleus,TACR2,-0.250160220745782 +Nucleus,HAUS8,3.411540612576 +Nucleus,ZNF766,2.3162522040445 +Nucleus,SIRT3,3.25991680481469 +Nucleus,KPNA7,-0.094273156577279 +Nucleus,RN7SKP23,0.292675162837059 +Nucleus,SETBP1,-0.10279321929767 +Nucleus,FCN1,0.593553860648879 +Nucleus,AIPL1,1.01675355432123 +Nucleus,FBXO3,4.49116209492443 +Nucleus,FBXL4,1.60075040714932 +Nucleus,ZBED5,-0.391013131420848 +Nucleus,TBC1D10A,2.83424665030542 +Nucleus,SOX7,1.14325460311074 +Nucleus,ZNF26,3.53913271221625 +Nucleus,PCDHGB3,0.77638069920784 +Nucleus,BCAT2,4.60388744712692 +Nucleus,SIGLEC11,-0.10786147218674 +Nucleus,PCDHGA7,0.085802191863022 +Nucleus,SLC22A25,0.607258375960313 +Nucleus,ZNF599,1.69222798736165 +Nucleus,ATP6V1B2,4.8609633078155 +Nucleus,GSK3A,3.17303953828886 +Nucleus,HNRNPC,5.44359633675642 +Nucleus,SLC2A10,0.128392222130214 +Nucleus,BEST3,-0.352740078559066 +Nucleus,ATG2B,-0.0202360773033915 +Nucleus,MGAT4A,0.742043545488225 +Nucleus,STARD5,2.25143686252067 +Nucleus,ERO1LB,1.42844661317401 +Nucleus,LRRN4CL,2.55147806251539 +Nucleus,THAP3,0.000648011444486724 +Nucleus,ANKAR,2.349668945781 +Nucleus,KCNJ15,-0.257153914998792 +Nucleus,XKR3,0.842923537219236 +Nucleus,IGSF6,-0.982013986777773 +Nucleus,MASP2,0.180691983789806 +Nucleus,ACO1,3.07297376050143 +Nucleus,MPP6,2.82792882820867 +Nucleus,TCEANC,0.381754737515648 +Nucleus,PCDH18,-0.201382093884026 +Nucleus,B3GAT1,0.753429967733327 +Nucleus,ARHGAP15,-0.078116587527936 +Nucleus,KCNG3,1.44246983858783 +Nucleus,PCCA,0.523258880787101 +Nucleus,GALNS,4.44465684130812 +Nucleus,RNF32,-1.09361180605579 +Nucleus,P4HTM,4.17115417979335 +Nucleus,GPR17,0.243771971159892 +Nucleus,TESPA1,0.00289710210442266 +Nucleus,ZNF613,0.720153226755088 +Nucleus,FAM186B,0.222714371372727 +Nucleus,CHRNA2,-0.113650391980996 +Nucleus,RLIMP1,-1.08694789475009 +Nucleus,RGN,1.38074434003077 +Nucleus,AKT2,4.80299357178264 +Nucleus,NTRK1,-0.298704171667425 +Nucleus,GOLGA2P9,-0.755027721729195 +Nucleus,HSD17B13,2.55258011999411 +Nucleus,SUB1,4.54447707938286 +Nucleus,ACAP1,0.855082174766315 +Nucleus,FAR2P1,4.83360401170361 +Nucleus,SYT14,0.883511802418078 +Nucleus,MAP2,0.691816883288525 +Nucleus,ADGRV1,2.87455301502782 +Nucleus,APC2,-1.07613406697431 +Nucleus,C5AR2,0.506875794117943 +Nucleus,CASZ1,0.60532944529453 +Nucleus,PCDHGA9,1.44437019955071 +Nucleus,MOB2,1.57536660589969 +Nucleus,ROR1,-0.305917815375601 +Nucleus,TSHZ2,1.04926398297829 +Nucleus,SPOCD1,2.13579027593278 +Nucleus,DNAJC17,3.81799874029599 +Nucleus,RNF220,4.92309017124602 +Nucleus,COLQ,1.34930359318542 +Nucleus,CROCCP1,0.309053871968225 +Nucleus,MS4A10,0.33568072459856 +Nucleus,TAB3,5.11365918593322 +Nucleus,CRB2,-0.537812631058929 +Nucleus,UHRF2P1,0.465691784548476 +Nucleus,SYT13,-1.07262782596552 +Nucleus,MACROD2,3.42556201229173 +Nucleus,FAM229B,1.54499896661145 +Nucleus,KPNA5,2.226465398821 +Nucleus,SLC38A3,0.405118582388977 +Nucleus,ZNF549,1.13589041287898 +Nucleus,STRADA,4.47681042260408 +Nucleus,MAP3K13,1.02876566714488 +Nucleus,POGLUT1,4.88259917202515 +Nucleus,DDX6,5.12956513199725 +Nucleus,CTAGE7P,0.192742667686144 +Nucleus,MAGEB18,-0.299553897891272 +Nucleus,GAB3,0.809837268010566 +Nucleus,OLFML2B,0.151147326372887 +Nucleus,SEC24D,3.68105689188181 +Nucleus,DPPA4,1.59215737741777 +Nucleus,KIAA1328,1.84574104715514 +Nucleus,DLGAP4,-0.187898606043577 +Nucleus,BBS2,3.67660367698954 +Nucleus,MYOZ2,-1.5482235040348 +Nucleus,TRAPPC12,2.6706208764094 +Nucleus,VSIG1,0.791821647210436 +Nucleus,KCNMB4,0.191067142338908 +Nucleus,ANAPC5,5.5198338509622 +Nucleus,KCTD8,-0.635281530642456 +Nucleus,IGFL4,1.69799295859184 +Nucleus,NCMAP,0.410149703787563 +Nucleus,YAF2,4.95883054434408 +Nucleus,TTYH1,1.88791283296113 +Nucleus,PLA2G2D,-0.408976701839563 +Nucleus,SLIT1,1.04869334199666 +Nucleus,DIRAS3,0.504332467596642 +Nucleus,INPP4B,0.761136700604729 +Nucleus,ATP1A2,1.89109657826208 +Nucleus,TMEM63A,3.67316231139731 +Nucleus,GRIK5,-0.279403493103349 +Nucleus,ZNF496,4.21805935221799 +Nucleus,WNK2,2.02240695561913 +Nucleus,PRR34,-0.455379598261124 +Nucleus,C2orf50,0.256902732288242 +Nucleus,PPAPDC3,-1.28068072364758 +Nucleus,MYPN,-0.272100777193226 +Nucleus,GLRX3,4.09131802617973 +Nucleus,ZNF383,2.18445368220933 +Nucleus,PRKRIRP8,0.78835832737545 +Nucleus,NHLH1,2.50588269083663 +Nucleus,ZNF607,1.14355595130535 +Nucleus,ATP8A2,0.605132488183848 +Nucleus,ZFP14,1.81711815601997 +Nucleus,AQP6,-0.242693101520874 +Nucleus,COX7A2L,2.54364365044679 +Nucleus,ZNF774,1.20799554791729 +Nucleus,SPRYD4,3.60497782870921 +Nucleus,SELPLG,0.805585291293517 +Nucleus,USP8P1,-1.20315597936762 +Nucleus,TRIM24,1.39923234425766 +Nucleus,WWC3,-0.771654251613228 +Nucleus,TBL1Y,-1.70920078203077 +Nucleus,GPR37,0.344976592115576 +Nucleus,RDH16,-0.640604876053632 +Nucleus,USP9Y,-0.263369065897613 +Nucleus,PCDHB19P,0.295481556232946 +Nucleus,SIRPB1,1.0451161800655 +Nucleus,TSEN2,4.60642009889918 +Nucleus,ERBB2,1.29480505314086 +Nucleus,RSPH9,0.196931510780083 +Nucleus,AP1S2,1.4789335259089 +Nucleus,DCHS2,1.84444573883313 +Nucleus,USP8,2.4384880926713 +Nucleus,SLC43A2,0.585171205910659 +Nucleus,OAZ2,4.91645251057274 +Nucleus,CRISPLD2,-0.103901974292456 +Nucleus,HERC2P3,4.44738199048699 +Nucleus,LILRB4,-0.114729231841423 +Nucleus,KCNA7,-0.114136237913118 +Nucleus,TECPR2,0.456299907832251 +Nucleus,ZNF558,0.926790923999924 +Nucleus,TMEM200A,-0.105961395064408 +Nucleus,TMC8,0.789864536376077 +Nucleus,CARD14,0.22949588194617 +Nucleus,PRKG1,-0.983042394409304 +Nucleus,MYO16,-0.255252636045713 +Nucleus,ARIH1,1.98692757587324 +Nucleus,STRIP1,3.02818229860116 +Nucleus,SRGAP2,5.64134783754794 +Nucleus,CNTRL,1.17580974658645 +Nucleus,KCNC4,2.20256261633177 +Nucleus,ZNF582,0.960194668445644 +Nucleus,EGFLAM,0.777942166451167 +Nucleus,ARHGAP30,0.573607901522021 +Nucleus,SERPINB9,0.651001273471912 +Nucleus,FAM122C,0.628887729301578 +Nucleus,DNAH1,1.18074088711847 +Nucleus,RECQL5,4.55113602825671 +Nucleus,WNT9B,-0.500275091675595 +Nucleus,LIPH,-0.613936805491578 +Nucleus,GP1BA,-0.730660179176763 +Nucleus,CCDC90B,2.80600206204388 +Nucleus,IFIT1,1.07492958652737 +Nucleus,CTSS,0.964446472252357 +Nucleus,TCOF1,2.50098739763575 +Nucleus,GSDMA,-0.739476074312514 +Nucleus,TSPAN5,4.02564011768515 +Nucleus,ZNRD1,0.477605279952314 +Nucleus,SLC5A4,0.306029108292751 +Nucleus,C9orf66,-0.367654127305423 +Nucleus,NPEPL1,0.550921949169322 +Nucleus,PSMA4,2.13635833343148 +Nucleus,OR51E2,-0.601039038314385 +Nucleus,GYPE,-0.228077289332526 +Nucleus,ZNF135,-0.885416209245339 +Nucleus,UCP3,2.35620488148374 +Nucleus,SLC9A9,0.493708929250526 +Nucleus,MTO1,2.0060473581978 +Nucleus,UBE2N,3.25193896421363 +Nucleus,PUS10,2.03900121812137 +Nucleus,MEMO1,3.54973611916782 +Nucleus,WDR11,3.84015378659756 +Nucleus,NR3C2,-0.0372854556885427 +Nucleus,TRPC3,1.46904201498398 +Nucleus,LRRK2,0.381480112555718 +Nucleus,PCYT1B,0.018868220927632 +Nucleus,ESPNP,-0.307954919489573 +Nucleus,INPP4A,3.37536399981623 +Nucleus,GARNL3,4.41862803487395 +Nucleus,USP45,1.37875877955507 +Nucleus,KIAA1958,2.77215738885314 +Nucleus,KIAA1429,2.94300654477694 +Nucleus,SLC25A30,2.53450346840899 +Nucleus,CHP2,-0.385453509971843 +Nucleus,BCHE,0.429006991482868 +Nucleus,ANK2,0.976110213657185 +Nucleus,MTAP,1.3590548510677 +Nucleus,KCNA1,0.282730264658379 +Nucleus,FBXO27,0.46448667997119 +Nucleus,CRBN,4.01962467964047 +Nucleus,ZNF75A,4.11539012375235 +Nucleus,FAM26E,1.08021431068081 +Nucleus,STRA6,0.646818531777141 +Nucleus,SLC44A5,3.39706579755351 +Nucleus,PKD1L1,1.98452831692481 +Nucleus,LRRC16B,-0.466038673632608 +Nucleus,CD46,4.89543886500584 +Nucleus,ASPA,-0.601133855598201 +Nucleus,CCPG1,2.49943594355795 +Nucleus,ARHGEF6,-0.481158315470714 +Nucleus,RBP1,2.07260086861923 +Nucleus,KLHL28,1.19662855297373 +Nucleus,TJP3,-1.06476595735825 +Nucleus,MOGAT3,0.556208802525481 +Nucleus,ATP7A,-0.0381555501569722 +Nucleus,KARSP1,-0.338892251412381 +Nucleus,ATP5A1,3.65821411572894 +Nucleus,RABGAP1L,0.844618224826204 +Nucleus,MAB21L1,0.190534252596399 +Nucleus,CST3,0.205504441664061 +Nucleus,C18orf15,2.18750664079436 +Nucleus,ACTN4P2,0.350803124391993 +Nucleus,SLC1A6,2.44807164282148 +Nucleus,WNT5B,-0.259740211423122 +Nucleus,TTC39C,0.222957356304246 +Nucleus,CA5B,1.31462378122768 +Nucleus,ULK4,2.60947756814783 +Nucleus,ABHD12B,0.207138923498769 +Nucleus,MAML2,0.499031906713086 +Nucleus,LRRC15,-0.923250725046354 +Nucleus,ABCA13,0.49014376007709 +Nucleus,PHKG2,2.3759773884514 +Nucleus,DUSP19,-0.207144507241566 +Nucleus,KLF4,0.488188344901529 +Nucleus,SIRT5,0.970806419226771 +Nucleus,RBM23,1.3859195209015 +Nucleus,KLF14,0.290514275289903 +Nucleus,INSL4,-0.811908405270357 +Nucleus,USP6NL,0.0919936723354226 +Nucleus,STKLD1,1.18847184858881 +Nucleus,BLK,0.893025569029049 +Nucleus,DNAAF5,3.7936128553731 +Nucleus,KLHDC2,2.45319880364787 +Nucleus,MBOAT4,-0.703318807225632 +Nucleus,SMARCE1,2.44340631965081 +Nucleus,STXBP4,1.81782219376718 +Nucleus,KCNN2,0.802356741807417 +Nucleus,TPRX1,-0.329222344515404 +Nucleus,MTCL1,4.14116112747563 +Nucleus,CEACAM19,2.71637292669714 +Nucleus,ZNF200,4.68056190733609 +Nucleus,FAM177A1,2.16537128388632 +Nucleus,STK24,3.30406217536528 +Nucleus,DNAJC24,3.03974115928851 +Nucleus,TCF3P1,-0.995167703331528 +Nucleus,TEX19,-0.787665457286075 +Nucleus,DRP2,1.87643715391001 +Nucleus,APOLD1,0.642707547008489 +Nucleus,NFIA,0.326726782031449 +Nucleus,PRDM11,1.44767290100003 +Nucleus,CCL22,-0.0783700827477695 +Nucleus,PLIN5,0.756064543352955 +Nucleus,NRG3,1.31825735136695 +Nucleus,GSKIP,0.21155626617811 +Nucleus,GABRD,-0.113616532693442 +Nucleus,SLC27A5,0.644232170461753 +Nucleus,CECR5,4.6841537144931 +Nucleus,TMTC1,0.4449521918734 +Nucleus,KCNJ5,0.285257882634462 +Nucleus,ZNF660,1.94578714010973 +Nucleus,CCL28,0.601237269951769 +Nucleus,ZNF250,2.40224483342143 +Nucleus,MRE11B,-1.15569327807377 +Nucleus,FERMT2,4.00584083003861 +Nucleus,COX6B2,1.00203831527169 +Nucleus,MAOB,-1.96249126691182 +Nucleus,NDUFB5,2.48129175809972 +Nucleus,NDFIP2,0.708303881807117 +Nucleus,PADI3,0.435522954754557 +Nucleus,DPP10,-0.0358502831381307 +Nucleus,ADCY10P1,2.6158962229767 +Nucleus,PIGZ,0.793452917772715 +Nucleus,ZCCHC18,1.5683517936984 +Nucleus,SLCO5A1,0.986526276487108 +Nucleus,PDE4C,1.40432021208069 +Nucleus,ZNF720,1.80470665440137 +Nucleus,MPV17L,-0.72960921387005 +Nucleus,FAM155A,-1.13666772494138 +Nucleus,ZNF7,4.4678502700181 +Nucleus,OARD1,2.25218403314187 +Nucleus,ADRA2B,0.487701350470116 +Nucleus,GPCPD1,2.10063587922506 +Nucleus,GANC,0.356068359002382 +Nucleus,UBQLNL,0.608172226564666 +Nucleus,CALHM2,-0.999466121653051 +Nucleus,PCBD2,2.47607181806089 +Nucleus,NABP1,4.95590301408793 +Nucleus,GABRA2,1.14232727654474 +Nucleus,MTSS1,-0.101115257026759 +Nucleus,DCAF4L1,3.35675848602719 +Nucleus,FMNL2,0.96452931398072 +Nucleus,FAM78B,0.658868788833098 +Nucleus,DTD1,2.36327296254632 +Nucleus,ZNF780A,0.907690081869262 +Nucleus,YWHAZ,2.98214420671671 +Nucleus,MGC16275,0.388898773753735 +Nucleus,PRRC1,3.89820432228619 +Nucleus,TSLP,-0.0522980392674223 +Nucleus,IGSF10,0.974182493878896 +Nucleus,GOLGA2P11,4.22175445641953 +Nucleus,DFNA5,4.1801502825807 +Nucleus,SCARNA15,4.55388948744437 +Nucleus,BNIPL,1.18461561269377 +Nucleus,RBM20,0.709382186418065 +Nucleus,SLC26A8,0.375220666604374 +Nucleus,VAMP4,1.03961372570366 +Nucleus,NDUFA11,1.26978025625224 +Nucleus,CNIH3,0.245791565938606 +Nucleus,KIAA0586,1.97271140437492 +Nucleus,GLCCI1,0.862945632047152 +Nucleus,PTGDR2,0.209309795766494 +Nucleus,TMEM170B,-0.0413895258742089 +Nucleus,AGO3,1.95340076965792 +Nucleus,CASP16,-0.617983843273958 +Nucleus,CCR4,1.23362651068243 +Nucleus,CYP4V2,0.212035332963564 +Nucleus,DNMT3A,2.165089817358 +Nucleus,CCDC114,0.661906461445739 +Nucleus,MBD5,0.567073061706613 +Nucleus,SLC6A6P1,0.406349806869727 +Nucleus,C17orf75,2.49378743571974 +Nucleus,ZNF556,0.742868239018983 +Nucleus,AP1M1,0.621238648576276 +Nucleus,PTPN22,-0.46135626860172 +Nucleus,C10orf25,0.0509516154657199 +Nucleus,CD164,5.06774892439301 +Nucleus,ZNF214,0.756346643971969 +Nucleus,COTL1,3.31254247407861 +Nucleus,RDH12,0.157437321816082 +Nucleus,RALGPS1,1.17399823224473 +Nucleus,CEP126,1.20131180994962 +Nucleus,RAI2,-1.31730906144505 +Nucleus,CDKL5,0.21846992819014 +Nucleus,PSMA6,4.16844766094233 +Nucleus,SLC25A53,1.24833547895848 +Nucleus,GJC2,-0.858966826376883 +Nucleus,ICE2P2,0.462563394257645 +Nucleus,AXIN1,1.50466225774266 +Nucleus,ZNF419,4.50167690165957 +Nucleus,RBMS1,5.7058448673223 +Nucleus,CFL2,2.8536004525067 +Nucleus,SENP8,0.603473881107074 +Nucleus,RWDD1,1.40658861756123 +Nucleus,PMM2,5.23947002954847 +Nucleus,SRRM5,2.18175630371338 +Nucleus,ZNF675,1.43226324247731 +Nucleus,WDR55,4.16389116842624 +Nucleus,TMEM255B,1.63969424606949 +Nucleus,ZNF175,1.15530599885792 +Nucleus,LYPD3,0.258436639325749 +Nucleus,CYB5RL,4.80247785064416 +Nucleus,KIAA1024,0.821518831910652 +Nucleus,EYS,0.902272270243488 +Nucleus,PTCH2,-1.00363102192759 +Nucleus,PLD5,-0.437562776841112 +Nucleus,IPO5P1,1.58212221294562 +Nucleus,PHF21B,1.49011009834852 +Nucleus,VWF,0.0545683452226307 +Nucleus,ZNF213,1.23881841414996 +Nucleus,PCSK6,0.171753563188455 +Nucleus,DRAXIN,-0.166016931637431 +Nucleus,C17orf49,2.4101893542489 +Nucleus,ZNF843,-0.199739803970688 +Nucleus,ARHGAP28,-0.99393548458752 +Nucleus,ERG,-0.287748619751664 +Nucleus,FAH,4.94862372807108 +Nucleus,CCRL2,0.304951903098586 +Nucleus,ZNF835,-0.34554840676034 +Nucleus,NPRL3,2.16885668648784 +Nucleus,STK32B,-0.574324054746652 +Nucleus,GALNT5,-0.0157846914624604 +Nucleus,MATR3,5.30337697039081 +Nucleus,GPR62,-0.0872471340295373 +Nucleus,TLL2,0.22964695505694 +Nucleus,MRRF,2.99822010640111 +Nucleus,SLC27A2,0.305027555033318 +Nucleus,CCDC157,0.763302085842268 +Nucleus,ZNF665,1.02462047923171 +Nucleus,LCA5,-0.0742341407200291 +Nucleus,PAG1,0.864798375069572 +Nucleus,ZNF207,5.11274262413532 +Nucleus,LRCH2,-0.13086676109207 +Nucleus,HTRA4,0.474518611291894 +Nucleus,FUT1,0.90270656787332 +Nucleus,AGMAT,-0.974410907565193 +Nucleus,NEDD4L,1.25337547633832 +Nucleus,PCDHGB2,1.15504987121274 +Nucleus,TTBK2,1.29453523580013 +Nucleus,CTSV,1.57472598155631 +Nucleus,SATB1,0.348824835779994 +Nucleus,PGM5,-1.75495027488825 +Nucleus,LRG1,0.641638847440486 +Nucleus,CHCHD5,4.19399308478416 +Nucleus,CHGB,-0.67517619337702 +Nucleus,CCDC30,1.88764731127032 +Nucleus,ACP6,3.37264929832835 +Nucleus,SIGLEC10,-0.381795505455873 +Nucleus,SRCIN1,1.81653463131627 +Nucleus,CLGN,-0.357097698040243 +Nucleus,KLC1,0.70820987167071 +Nucleus,TSPAN14,1.26225983206256 +Nucleus,ATOX1,3.16353531488053 +Nucleus,ADGRE2,0.819426009875029 +Nucleus,GSTM3,1.6153491142281 +Nucleus,FAM63B,1.30527648317785 +Nucleus,ZC3H12B,0.471567309597719 +Nucleus,RTEL1P1,0.322788421744028 +Nucleus,S1PR1,0.17052845132288 +Nucleus,C1orf131,3.9435994680728 +Nucleus,TTC9,-0.230040286088778 +Nucleus,SHC1P1,-1.49201191656868 +Nucleus,KATNB1,0.571609768533246 +Nucleus,CRYBB2P1,2.90036623025348 +Nucleus,SETD6,2.56458516073091 +Nucleus,CXCR6,0.623493527897676 +Nucleus,TCTN1,2.87710260959632 +Nucleus,CHCHD7,4.29700272307675 +Nucleus,WDR17,0.481613626907707 +Nucleus,SLC39A8,0.752248787058788 +Nucleus,CASP4,2.81530496783714 +Nucleus,CD1D,-0.117797232366317 +Nucleus,SCN1B,4.00256861735846 +Nucleus,DNAJC15,1.55789946995724 +Nucleus,ADGRA3,3.52427489918482 +Nucleus,CEP57,4.75483274175532 +Nucleus,KCTD10,4.48636238498469 +Nucleus,SNAI3,-0.862449860029242 +Nucleus,SERPINB6,3.55929248100401 +Nucleus,ONECUT2,2.63432921024124 +Nucleus,LHFPL5,1.33359992630615 +Nucleus,HAMP,1.04860365440723 +Nucleus,PTAFR,0.0649720864366746 +Nucleus,CUZD1,2.56216738206559 +Nucleus,CPT1C,0.687897797119486 +Nucleus,WDR88,0.612172211920182 +Nucleus,RHOU,0.119515024521571 +Nucleus,FAM131B,-0.700590481481492 +Nucleus,TRABD2A,0.622442177917669 +Nucleus,SHISA2,-0.506571192063153 +Nucleus,ZNF25,0.788966211598219 +Nucleus,ZNF667,4.38118911910694 +Nucleus,MOB3C,3.79700263953998 +Nucleus,SPTLC3,-0.394983619857605 +Nucleus,FAM214A,1.19814936334729 +Nucleus,HSH2D,-0.461972977670112 +Nucleus,INTS10,4.65720602240048 +Nucleus,FGD5,-1.09505437775358 +Nucleus,FRAT1,0.0813280633640331 +Nucleus,CYP2E1,-1.37703769365802 +Nucleus,PUS7L,2.32837663534186 +Nucleus,C2CD2L,1.65675139669879 +Nucleus,SYN1,-1.89867561390576 +Nucleus,RHOV,-0.728739461856508 +Nucleus,GP2,-0.164433057195191 +Nucleus,TM2D1,4.88289969994173 +Nucleus,BAIAP2L2,-0.343371326030831 +Nucleus,KIAA1875,1.15167686310927 +Nucleus,FBXO15,1.25080918495923 +Nucleus,NDUFA10,3.79396183336273 +Nucleus,PSD4,1.02895669307042 +Nucleus,STK16,0.78377929353412 +Nucleus,PRSS35,-0.331417830812377 +Nucleus,TRAPPC3L,0.144880058287348 +Nucleus,PALM2,1.71599517303143 +Nucleus,ZNF585A,0.75211845442255 +Nucleus,TLR3,0.468517717744902 +Nucleus,KCNH4,-0.349482276230018 +Nucleus,TBRG4,4.53435508035832 +Nucleus,ARHGAP8,2.89750575351235 +Nucleus,RIN1,3.89763002440612 +Nucleus,SPRY4,0.273309513417461 +Nucleus,TMEM134,1.91770247780646 +Nucleus,TRMT44,2.03698003407634 +Nucleus,SLC25A44,3.9964451150919 +Nucleus,CACNB4,1.81317924684063 +Nucleus,WDR70,3.40651153648777 +Nucleus,FBXO21,0.819745073141787 +Nucleus,RNASET2,4.72448863089427 +Nucleus,BRF1,0.335869871910056 +Nucleus,TMEM78,-0.420681077188973 +Nucleus,PKI55,2.32224426891868 +Nucleus,EFCAB12,1.29301989498359 +Nucleus,DGAT2,3.90642016309419 +Nucleus,RAD17P1,-1.11221398705875 +Nucleus,ZACN,0.389868338255967 +Nucleus,GRHL3,-0.0574421269901805 +Nucleus,STX3,2.91954520194272 +Nucleus,HIST3H2BB,0.117128814065036 +Nucleus,BCL7A,-0.81305928736855 +Nucleus,C6orf132,-0.276025860557851 +Nucleus,CATSPER2,4.02404058325418 +Nucleus,VMAC,0.9923684587364 +Nucleus,ADCK3,3.44931959604377 +Nucleus,DHX36,2.91794937547927 +Nucleus,TFAP4,3.02983449751187 +Nucleus,TEX264,4.42294116553451 +Nucleus,GAB1,0.679918653096582 +Nucleus,AP4S1,0.822494154886042 +Nucleus,TBC1D19,1.45074116624272 +Nucleus,SLCO4C1,0.0160965820975069 +Nucleus,TEX10,5.30755574664318 +Nucleus,SLC2A11,3.83185202069755 +Nucleus,SMIM14,-0.373368958380987 +Nucleus,AKAP3,-0.489062553841017 +Nucleus,ECI2,3.5411819076455 +Nucleus,ALG14,1.38322235032411 +Nucleus,SCHIP1,3.52905445523516 +Nucleus,CROCCP3,3.99768953182958 +Nucleus,IAH1,4.21041097558019 +Nucleus,MKLN1,1.79261551281086 +Nucleus,PCCB,2.00408809243751 +Nucleus,SFTPB,0.376426704555889 +Nucleus,TAGLN,2.59781723586405 +Nucleus,ARHGEF1,4.65150807629264 +Nucleus,SPATC1,0.150307505964837 +Nucleus,TTC30A,0.0600164551164813 +Nucleus,RYR1,0.284551036229306 +Nucleus,PCDHGB7,0.557694659739294 +Nucleus,COPS8,3.0194581000794 +Nucleus,CCDC79,0.703509224003374 +Nucleus,PLXNA2,0.569378580739009 +Nucleus,ZNF624,0.651085747023844 +Nucleus,COX4I1,4.22850547015934 +Nucleus,INHBC,1.07809290384477 +Nucleus,HSPA2,-0.60565844917929 +Nucleus,GTF2IP7,1.28617325585276 +Nucleus,MANSC1,0.96173575643111 +Nucleus,BRAFP1,-0.0333449503055504 +Nucleus,SREK1,5.98306936945152 +Nucleus,STK33,4.67184187803376 +Nucleus,SHANK2,0.35880135014177 +Nucleus,USP51,0.102105170461637 +Nucleus,MAP7D2,-0.628847677088355 +Nucleus,GSTM4,4.29886172878077 +Nucleus,UBTFL11,0.138180569850535 +Nucleus,FOXP4,1.70234275583907 +Nucleus,COL3A1,-0.360971662341227 +Nucleus,PGGT1B,3.1206238300294 +Nucleus,HOXB4,1.89065583544674 +Nucleus,BCL11B,0.423160978896977 +Nucleus,ATP2A1,0.991012466758146 +Nucleus,OSBPL6,1.54178927824445 +Nucleus,EXOSC1,4.94867803327146 +Nucleus,LRRFIP2,4.50351794097046 +Nucleus,LTA4H,4.39800897627055 +Nucleus,ZNF219,3.92125815876834 +Nucleus,CACNA1G,0.8543908199461 +Nucleus,CDK5RAP3,4.04526147419888 +Nucleus,CYLD,1.29470034757844 +Nucleus,MANBA,2.90943105360071 +Nucleus,MR1,0.949835862499101 +Nucleus,ZNF391,0.4057734388662 +Nucleus,APOBEC3G,1.7173492306814 +Nucleus,DNM3OS,3.62506546441091 +Nucleus,HAGHL,1.27813988556614 +Nucleus,ZC3H8,4.33986078791069 +Nucleus,HOMER2,0.866241596337997 +Nucleus,OVGP1,0.998594422330255 +Nucleus,RRP8,2.60820309389332 +Nucleus,STK31,-0.24684639687936 +Nucleus,FARSBP1,0.675905534472755 +Nucleus,ISOC2,3.00414201424212 +Nucleus,AK5,-0.553193505247622 +Nucleus,FAM196B,-0.0982204990540532 +Nucleus,GTF3C1,3.22521735012928 +Nucleus,PRKACA,1.61680343787691 +Nucleus,TCL6,1.54358436232476 +Nucleus,MAP7,-0.112797157951214 +Nucleus,HTR3A,-0.414627871310128 +Nucleus,ZFP3,1.93375661148387 +Nucleus,ZNF563,0.571704043966812 +Nucleus,ZNF224,2.12997829404128 +Nucleus,KCNF1,-0.902535946571171 +Nucleus,FSD2,-0.557402838859672 +Nucleus,C4orf29,1.5338735587879 +Nucleus,LRRC37A9P,1.33604672090061 +Nucleus,ASGR1,3.06652700108214 +Nucleus,ATG9B,1.05864531931631 +Nucleus,SPA17,0.222888994991281 +Nucleus,NBEA,0.872653285350396 +Nucleus,RAB37,-0.33282575263777 +Nucleus,RFX2,1.35514049997244 +Nucleus,C12orf29,3.9794568683185 +Nucleus,POP4,-0.0931691224537345 +Nucleus,CFAP58,-0.835267968349538 +Nucleus,SCUBE3,-0.0430118040888046 +Nucleus,KIAA1407,2.09030644170268 +Nucleus,PMM1,3.65123181727344 +Nucleus,PHF21A,2.45755209836629 +Nucleus,SNAP47,-0.00268789760684584 +Nucleus,TBC1D30,1.13518076266364 +Nucleus,PTGR2,5.72854264608116 +Nucleus,SCAMP2,3.38676638711613 +Nucleus,ZNF385B,-0.809515980338389 +Nucleus,HRK,1.03011203822401 +Nucleus,L3MBTL1,4.20028989255998 +Nucleus,WDR60,4.305029217282 +Nucleus,C9orf85,1.12422994983071 +Nucleus,GNAI2,3.38566703669301 +Nucleus,C18orf32,2.51393346995786 +Nucleus,TNFAIP8L3,-1.34836944296115 +Nucleus,MAEA,3.96531597189861 +Nucleus,HSD11B2,0.67242090559593 +Nucleus,MAP3K11,4.60364150321224 +Nucleus,HAUS3,2.65945916768897 +Nucleus,ZNF606,5.09889873766863 +Nucleus,PEX1,4.92787225344251 +Nucleus,SMPD3,1.39227480599913 +Nucleus,GABPB2,1.01245120237458 +Nucleus,DENND2A,0.0147583300261778 +Nucleus,DDX19A,4.97935963700594 +Nucleus,RPA4,3.00765906460798 +Nucleus,CPEB4,0.936891882795212 +Nucleus,ZNF678,1.15494778728167 +Nucleus,PARP6,5.14515284617242 +Nucleus,DNAJA3,4.07603354516177 +Nucleus,DAW1,0.0308178581109628 +Nucleus,RND2,0.0927736468553077 +Nucleus,SAMD9L,0.444059608442158 +Nucleus,TRIM41,3.65710209514615 +Nucleus,CDSN,-1.45081067826337 +Nucleus,CD81,1.9970995970954 +Nucleus,BRWD1,1.98654391146965 +Nucleus,DENND2C,0.495797090746045 +Nucleus,SAMM50,5.40779735457763 +Nucleus,C4orf33,1.01615435454191 +Nucleus,MTHFD1,2.61678619124701 +Nucleus,TMC5,0.39015328835687 +Nucleus,CAMTA1,1.20839733374217 +Nucleus,SAFB,4.1646233346216 +Nucleus,CAMK1D,0.930301886138055 +Nucleus,PAPPA,0.0673149762259708 +Nucleus,FGFR1OP2,4.33961255368715 +Nucleus,PCDHB7,0.143225732352678 +Nucleus,NBPF17P,0.779284516408627 +Nucleus,NXPH3,0.029986215925503 +Nucleus,IZUMO1,0.281823118093094 +Nucleus,CLK3,2.55969605180714 +Nucleus,CEP85L,1.30147689525443 +Nucleus,ZNF792,0.631234052985153 +Nucleus,DNAJC28,0.647578537599055 +Nucleus,ITM2B,3.16246294427211 +Nucleus,EIF4G2,5.08703919973533 +Nucleus,ACACB,0.2587607429514 +Nucleus,MIAT,3.13858223925928 +Nucleus,TECR,4.29778190726917 +Nucleus,ZNF514,4.68076266885247 +Nucleus,FGF17,-0.114793480410586 +Nucleus,MGRN1,2.82868074416917 +Nucleus,MAMSTR,0.592005940990132 +Nucleus,MIR4458HG,2.75315301234369 +Nucleus,KCNA3,0.689318883901859 +Nucleus,HIST1H2BN,2.33895039345677 +Nucleus,ABCG4,0.727079433386193 +Nucleus,DUSP28,2.35629437270073 +Nucleus,ASPRV1,0.589882912381192 +Nucleus,TMEM189,1.40428777432386 +Nucleus,RBM26,2.84358327758491 +Nucleus,IRF1,3.46734699428026 +Nucleus,WSCD1,-0.603907899685232 +Nucleus,C16orf70,3.98853877615406 +Nucleus,CCDC171,1.37377107241497 +Nucleus,ZMAT5,3.51519852781566 +Nucleus,HAP1,0.558492897613773 +Nucleus,SMARCA4,4.10280827674779 +Nucleus,ZNF532,3.87811660425204 +Nucleus,ERCC3,5.04889255265546 +Nucleus,ICA1L,0.641671171346096 +Nucleus,SCN2B,0.668959200810841 +Nucleus,C5AR1,2.79745760498606 +Nucleus,FAT4,1.36201219068041 +Nucleus,RORA,2.28427360599415 +Nucleus,SAMD15,0.617607178832395 +Nucleus,CEP63,1.13964238355777 +Nucleus,NACA,4.83404673380331 +Nucleus,HOXA13,0.0171065171522391 +Nucleus,GUCY1B2,0.205884472765 +Nucleus,PLEKHA5,4.30349491597871 +Nucleus,ZNF230,1.31565041460095 +Nucleus,JAG2,-0.0595158424374199 +Nucleus,ADRB2,1.48068377590033 +Nucleus,TXNRD3,-0.122759650278555 +Nucleus,MRPS27,4.46166724494553 +Nucleus,PWAR5,4.84975432329361 +Nucleus,TIGD6,1.27698486723479 +Nucleus,NEU1,2.40569318333338 +Nucleus,PCSK1,-1.01665157679003 +Nucleus,RNF224,-0.844226173153609 +Nucleus,ZPLD1,1.01684997436535 +Nucleus,TTC13,0.695093218162148 +Nucleus,SOAT2,-0.750484702868479 +Nucleus,PPIP5K2,2.72676893713535 +Nucleus,PCDHGA5,0.800182912402587 +Nucleus,CYB561A3,4.06040838639593 +Nucleus,KCNQ1OT1,2.84031372009436 +Nucleus,DPY19L2P1,4.45305601343621 +Nucleus,AFF3,-0.617955657101982 +Nucleus,SLC25A45,1.7484492576426 +Nucleus,BMF,0.504279790883216 +Nucleus,BCAS4,1.11259584285327 +Nucleus,CLDN22,0.984913469958691 +Nucleus,APOL4,0.357380956105424 +Nucleus,RGS3,0.717071378858843 +Nucleus,TRAF3IP2,1.24545196995206 +Nucleus,SLC31A2,-0.184990753624716 +Nucleus,SNX15,2.58613522147007 +Nucleus,TNS4,0.295333587782188 +Nucleus,DNAJC10,2.95465002757427 +Nucleus,FGF11,1.6400872532296 +Nucleus,AIM1,-0.147604334280829 +Nucleus,SLC25A26,2.22043955271922 +Nucleus,SOBP,0.147904304000839 +Nucleus,FAM3A,4.14577765157824 +Nucleus,EVL,3.94141087705691 +Nucleus,SLC45A1,0.291363113280293 +Nucleus,C1orf52,1.32358471557179 +Nucleus,ACADSB,0.343264926896373 +Nucleus,FBXL20,0.776485201668103 +Nucleus,SMAD2,2.71835057356136 +Nucleus,HDAC9,0.1884811384856 +Nucleus,OSBPL2,4.48463896021415 +Nucleus,BLACE,-0.66422607232 +Nucleus,BOC,3.01472231558621 +Nucleus,ZNF502,1.48410091689479 +Nucleus,RAPGEF5,0.983905599893605 +Nucleus,XK,-0.158858193751442 +Nucleus,PRICKLE1,-0.344824846754206 +Nucleus,ATP5S,3.29504959359568 +Nucleus,MACF1,1.61760021881301 +Nucleus,TRGV5,-0.0650630222004922 +Nucleus,ZNF268,1.32101202596979 +Nucleus,PELI2,-0.0846287265112541 +Nucleus,GPI,5.18445887780508 +Nucleus,CCNG2,0.459165776607949 +Nucleus,GPC3,-0.571012199797788 +Nucleus,TRIM13,1.61756978411092 +Nucleus,ZBTB44,1.48551532579958 +Nucleus,BFSP1,-0.62175520951798 +Nucleus,AGFG2,3.31342842412666 +Nucleus,NKD1,0.320889937005329 +Nucleus,TBCK,2.67263710420068 +Nucleus,LINGO2,-0.692122352406055 +Nucleus,ALDH1L1,1.25241266461191 +Nucleus,C10orf55,1.16042155790899 +Nucleus,C14orf79,0.207788473917898 +Nucleus,H2AFJ,1.84453678783175 +Nucleus,PAAF1,2.46071911464377 +Nucleus,RGS12,3.4119070465629 +Nucleus,SYTL4,3.15121508360089 +Nucleus,ANKRD26P1,3.10451802845796 +Nucleus,MRPS17P1,-0.470529472780577 +Nucleus,EML5,0.18814132391121 +Nucleus,RPL39,3.73672870427224 +Nucleus,SGK494,3.68050863782346 +Nucleus,PLCE1,3.01627037066372 +Nucleus,PRDM1,0.454726136915892 +Nucleus,SMOC2,1.35610178545247 +Nucleus,GBP5,-0.548397915948507 +Nucleus,JPH2,-0.543306959887301 +Nucleus,UBQLN1,4.58369131595592 +Nucleus,C3orf70,0.061195546643238 +Nucleus,NRIP2,-0.830566637711038 +Nucleus,NFYB,-0.453689332612907 +Nucleus,ZNF557,1.18733594954204 +Nucleus,C14orf37,-0.412640837522236 +Nucleus,PRKCG,1.77837404308712 +Nucleus,IFT27,4.18505191713179 +Nucleus,TEP1,1.76713160940024 +Nucleus,GPR135,1.99417545521459 +Nucleus,PSG4,0.346454397636402 +Nucleus,RAB11FIP4,-0.161988587460395 +Nucleus,PPP1R37,1.64229489954609 +Nucleus,CCDC122,3.29452760874617 +Nucleus,ZNF347,0.986867467815765 +Nucleus,CAPRIN2,5.18091525876964 +Nucleus,KBTBD8,0.612314001150231 +Nucleus,KCNB1,0.628885148875982 +Nucleus,KCNT2,1.17649486382511 +Nucleus,PRRT4,0.15986373621158 +Nucleus,CAPS,1.80380388364712 +Nucleus,SAMD5,0.778569993517335 +Nucleus,DNLZ,1.23243877320112 +Nucleus,GIGYF2,2.56910205556352 +Nucleus,DIS3,2.29599192243137 +Nucleus,CHMP1B2P,1.30185333597618 +Nucleus,SFXN2,3.5713802200186 +Nucleus,CDH15,-1.25799416521652 +Nucleus,DLX3,0.242409272278606 +Nucleus,BRINP1,-0.519506035415633 +Nucleus,TNRC18P1,0.0138168674157709 +Nucleus,PCAT14,1.60674144631451 +Nucleus,ZNF402P,-1.23688776221056 +Nucleus,ANO4,-0.136913358825634 +Nucleus,SLC36A4,1.9714835621576 +Nucleus,ZNF548,2.13616836338654 +Nucleus,RPS6KA5,1.82433270248376 +Nucleus,DMRTA1,2.82748123999895 +Nucleus,DNAH17,0.921153582108758 +Nucleus,CCDC121,0.427605472580834 +Nucleus,HAVCR2,1.23867029363487 +Nucleus,OXTR,2.52447533606978 +Nucleus,C1orf220,4.3286371345068 +Nucleus,RPL38,4.67717055511281 +Nucleus,CRTC1,1.75157230506363 +Nucleus,RGS7,-0.350729900450751 +Nucleus,C11orf71,1.04390172266353 +Nucleus,PDGFB,0.0894910707994111 +Nucleus,PCDHA11,0.990471713949549 +Nucleus,TRIL,0.0233316653878834 +Nucleus,PPAP2C,2.88827386027698 +Nucleus,DDN,0.536551696307595 +Nucleus,RNF125,0.00237825812902102 +Nucleus,DGCR6,1.17123707100856 +Nucleus,TMEM151A,0.227484296392943 +Nucleus,ADAMTS8,-0.522622814951515 +Nucleus,RAF1,4.47866488827159 +Nucleus,PAK4,3.19581609710129 +Nucleus,RPL3L,-0.00936782467295478 +Nucleus,EPHA5,1.04097850830178 +Nucleus,AKNA,2.35406253344709 +Nucleus,RABL6,2.51429562598527 +Nucleus,RCN2,1.73025302411907 +Nucleus,PCDHA4,1.82826899967074 +Nucleus,PHACTR3,-1.26060282788109 +Nucleus,ERCC6,0.781052284233578 +Nucleus,FADS2,4.71572266534716 +Nucleus,RAB40B,0.486072206543442 +Nucleus,TCAF2,0.0606398165850428 +Nucleus,PCSK7,3.3045678836699 +Nucleus,ZC3H12C,1.37008233422818 +Nucleus,C3,-0.465632293349676 +Nucleus,SLC22A18,2.46995033019416 +Nucleus,TCAP,1.70317274166756 +Nucleus,UBXN6,1.00212873415854 +Nucleus,CLTCL1,2.35028075675241 +Nucleus,ATP6V0A4,-0.26867828902349 +Nucleus,PDHB,4.67758861693825 +Nucleus,TRA2B,5.54507643676664 +Nucleus,OASL,-0.205971488898813 +Nucleus,SMAD4,0.996801286737649 +Nucleus,S100A1,0.0207094816616863 +Nucleus,B3GNT4,2.38384623374802 +Nucleus,FAM195B,2.94051642612398 +Nucleus,TARBP1,1.30649501571248 +Nucleus,SREK1IP1,1.45115439836029 +Nucleus,PDK1,4.10978221561585 +Nucleus,CHORDC1,5.56744471370805 +Nucleus,FZD4,1.79459545536974 +Nucleus,PLA2R1,0.998410784377246 +Nucleus,ZNF641,1.19161747330546 +Nucleus,MOB3B,-0.650264911327618 +Nucleus,PPP2R5E,0.984005586084625 +Nucleus,B3GALT5,1.22923430829847 +Nucleus,CARD8,1.78641111660135 +Nucleus,ADAT2,2.41662731008943 +Nucleus,ZNF506,-0.0268209931932436 +Nucleus,FGF13,0.833425729750993 +Nucleus,FAM86B3P,2.54169699403741 +Nucleus,IRX6,0.313994261297129 +Nucleus,CYB5R1,3.20278988496849 +Nucleus,SH3GL2,-0.680692667548893 +Nucleus,CFL1P1,-1.68405804925699 +Nucleus,PYGO1,0.380555088431688 +Nucleus,KCTD19,1.50723683431809 +Nucleus,ATP2C2,-0.28569448202305 +Nucleus,PCNXL2,2.5361525230664 +Nucleus,LRRC66,1.79884187604235 +Nucleus,SLC30A4,0.0161078409086592 +Nucleus,C15orf57,3.15844312099688 +Nucleus,PAX7,-0.508316776306801 +Nucleus,RNF103,4.65455425262174 +Nucleus,CSRP1,4.79582976622848 +Nucleus,SIAE,0.451024230874926 +Nucleus,FRMPD3,0.0847109201097589 +Nucleus,MVK,4.47440316867218 +Nucleus,MAGOHB,4.11470947485287 +Nucleus,DDHD1,2.28923253338824 +Nucleus,CCNT2,4.15580621854444 +Nucleus,ZNF566,1.3443905585056 +Nucleus,EPN1,2.36281177258266 +Nucleus,DSTN,2.92158059589241 +Nucleus,LRRC39,1.78137787732572 +Nucleus,HMGB1,0.689641149195412 +Nucleus,PCDHA12,0.841996101777851 +Nucleus,VWA5A,-1.02784375360447 +Nucleus,ANKRD30B,0.443141574235807 +Nucleus,RCAN3,-0.477752541839943 +Nucleus,OLFML2A,0.11482335796387 +Nucleus,KIAA0319,0.0947104805175457 +Nucleus,GFY,-0.099968130175897 +Nucleus,PCDHA3,0.0410974570104427 +Nucleus,MYNN,1.90030851755732 +Nucleus,ZNRF1,1.01693142461574 +Nucleus,NOXRED1,1.31461217275985 +Nucleus,DCAF10,1.2548247052245 +Nucleus,ING1,2.02456053840049 +Nucleus,FAM46C,-0.120712567664505 +Nucleus,MYRF,4.29326736621684 +Nucleus,DSEL,1.10102670952677 +Nucleus,CAST,5.441107167387 +Nucleus,RPS24,1.78362328962666 +Nucleus,SNTB1,-0.692514544290833 +Nucleus,ZNF570,1.4373515113506 +Nucleus,ARRDC4,-0.550976710575969 +Nucleus,MRE11A,3.06054015030078 +Nucleus,IL4I1,-0.314652712681518 +Nucleus,TMEM200C,1.1538823808279 +Nucleus,XKR5,1.15430614687323 +Nucleus,TET1,0.265058743761271 +Nucleus,PTK2B,0.30419914428622 +Nucleus,HELB,1.54719724682766 +Nucleus,CFAP53,0.600834940517038 +Nucleus,GIT2,0.477140623041302 +Nucleus,AIG1,1.35018755365487 +Nucleus,SLC29A4,1.1465405835616 +Nucleus,ITGA2B,-0.34460989186621 +Nucleus,RBM28,1.79261009748326 +Nucleus,GPR4,-0.756518892828213 +Nucleus,CCM2L,-0.342354304911309 +Nucleus,WDR66,3.21388315211461 +Nucleus,POLN,2.01005303093533 +Nucleus,SLC28A2,0.0183509197506002 +Nucleus,IL18R1,0.774866335813202 +Nucleus,JAM2,0.85378222866792 +Nucleus,RSF1,0.678877014871562 +Nucleus,TRIM17,1.49077775748787 +Nucleus,G6PC3,3.81202014046509 +Nucleus,EIF2D,3.85244610303111 +Nucleus,DIO2,1.20320744556763 +Nucleus,MLC1,-0.333342734975581 +Nucleus,ZNF415,0.0848387070176535 +Nucleus,PTGIS,0.169574426036367 +Nucleus,ADGRD2,0.410713009061843 +Nucleus,C1orf147,-1.0148330858424 +Nucleus,RTP4,-0.212306036454742 +Nucleus,VWCE,1.68191074075213 +Nucleus,DLEU7,-0.774577433484227 +Nucleus,TPGS2,0.275085521318627 +Nucleus,AGAP3,3.5678397329263 +Nucleus,TAL1,-0.182612480772598 +Nucleus,CACNB3,5.18796269049786 +Nucleus,FAM35CP,-0.254217078953075 +Nucleus,CCDC17,1.05577937812605 +Nucleus,CMSS1,5.28833266272015 +Nucleus,ZNF83,1.8539539677798 +Nucleus,YLPM1,2.36837315315127 +Nucleus,KAT7,3.45888560936192 +Nucleus,ARHGAP42,0.182032257081339 +Nucleus,WNT4,-0.0818302098849752 +Nucleus,CEPT1,5.44705163653557 +Nucleus,RALGAPA1,1.81614551111855 +Nucleus,CNKSR2,-0.141569635383807 +Nucleus,STK25,3.01574689939063 +Nucleus,PRRG4,-0.466114812411495 +Nucleus,SLC25A16,1.60247229230918 +Nucleus,TMEM154,0.333437423189208 +Nucleus,CCR6,0.855767324470828 +Nucleus,ABAT,-0.585380435632748 +Nucleus,GAS7,-0.579136760933631 +Nucleus,CCDC138,2.97393629185647 +Nucleus,EIF3B,4.74651242303367 +Nucleus,COPS5,5.01531769825661 +Nucleus,LGI3,-0.119934009022296 +Nucleus,WDR61,4.48094236176122 +Nucleus,TFG,4.91934511281509 +Nucleus,MED17,2.8617792048675 +Nucleus,PPM1E,0.12970418978364 +Nucleus,METTL8,1.83034525214712 +Nucleus,TNRC6C,0.132563865058246 +Nucleus,PDZD2,-0.286153208646085 +Nucleus,ATOH8,1.42982966670738 +Nucleus,SLC10A5,3.26567184487714 +Nucleus,FGFR1OP,4.29615254325781 +Nucleus,SBF1P1,0.775520370128769 +Nucleus,ZNF891,2.61841309300885 +Nucleus,ARHGEF4,0.0747870775761017 +Nucleus,BTF3L4,1.61536809749692 +Nucleus,MTERF1,2.90171691794403 +Nucleus,RAP1A,2.1390918406314 +Nucleus,SLC46A3,0.545933313410728 +Nucleus,PCAT1,1.60089610262822 +Nucleus,AP5M1,3.22674199447653 +Nucleus,MIR4697HG,2.24986419301333 +Nucleus,PARP11,0.443598922258197 +Nucleus,SLC27A1,2.98747225548885 +Nucleus,SLC25A4,2.10545446486621 +Nucleus,FOXG1,1.06985577053004 +Nucleus,MEF2C,0.513700089932762 +Nucleus,CNTLN,1.54771054541149 +Nucleus,TIMP2,4.14456334006218 +Nucleus,BACE2,0.437337385968381 +Nucleus,ST6GALNAC6,2.67288923910911 +Nucleus,VLDLR,0.770660734455179 +Nucleus,FOXP3,-0.347441453432515 +Nucleus,NLRP3,-0.231518406110552 +Nucleus,FOXP1,1.4129556536204 +Nucleus,KDM7A,1.23637759831806 +Nucleus,FIRRE,1.96701678404665 +Nucleus,BEST1,0.744326003253263 +Nucleus,ZNF136,1.03193550213746 +Nucleus,FAM174B,-0.386779650448346 +Nucleus,ZNF107,1.53489203037493 +Nucleus,SHROOM2,-0.613420614068269 +Nucleus,USH1G,-0.0864057721133237 +Nucleus,FAM124A,0.0228478812414861 +Nucleus,SOX13,4.38498003928433 +Nucleus,NAP1L6,-0.330587561698515 +Nucleus,THNSL2,2.3738274834841 +Nucleus,XYLT1,-0.0470878837044275 +Nucleus,SNX19P2,1.11181265885547 +Nucleus,IFNLR1,0.081676635501464 +Nucleus,GPRC5B,0.578797920046863 +Nucleus,IGFN1,0.891855276678489 +Nucleus,MAF,0.249972568378796 +Nucleus,PSMG4,4.57421875439382 +Nucleus,IL21R,0.101155014460901 +Nucleus,FMN1,0.524443878768819 +Nucleus,CYP2U1,-0.461440731202654 +Nucleus,ACRC,2.23981800644755 +Nucleus,IGF2BP1,0.144173538252453 +Nucleus,DPF2,4.39377093811481 +Nucleus,ABCC2,1.4485902763162 +Nucleus,DCTN5,1.71262840898802 +Nucleus,SDR16C5,0.234704969383417 +Nucleus,STOX2,0.909318039855608 +Nucleus,FAM110C,1.71062178302904 +Nucleus,LPL,-0.367913124218375 +Nucleus,AIM1L,-1.71232415937663 +Nucleus,DENND1B,0.462767444306915 +Nucleus,CYYR1,-1.13947980027469 +Nucleus,GABARAPL3,0.730977360026907 +Nucleus,COL17A1,-0.534927515576663 +Nucleus,RPS6KA2,-0.295509560750486 +Nucleus,U2SURP,2.96887653514472 +Nucleus,ME2,1.06003742243268 +Nucleus,ITGB3,0.567070240170414 +Nucleus,NEK4,-0.0225799928074629 +Nucleus,PTGFR,0.39912460052759 +Nucleus,BRD7P5,-1.07791799800259 +Nucleus,ZNF879,1.07318324207499 +Nucleus,WNK3,0.733990869641617 +Nucleus,PHLDA1,0.578359043190296 +Nucleus,OLA1,3.68847261583159 +Nucleus,TLR1,0.931181492990671 +Nucleus,EN1,1.13587832610515 +Nucleus,MYO6,2.70446409866054 +Nucleus,CPEB2,1.01435118224529 +Nucleus,NTNG2,0.142910998981741 +Nucleus,RUNX2,0.637770667463044 +Nucleus,RGMB,0.395707385146801 +Nucleus,TMEM198,-0.113894143190724 +Nucleus,CXorf23,1.5481027903428 +Nucleus,EGFR,0.291357650934842 +Nucleus,SMARCC2,3.22095258098702 +Nucleus,ZBTB37,2.84212049729489 +Nucleus,KYNU,-0.394704867917314 +Nucleus,ZNF101,0.560311329166156 +Nucleus,AMY2B,-2.0619183866975 +Nucleus,SLC9A2,0.268175745508505 +Nucleus,OBSCN,0.727800214677838 +Nucleus,C11orf63,0.0132628473261027 +Nucleus,CPLX1,-0.529123722432251 +Nucleus,NUMBL,4.64611458670626 +Nucleus,CBLB,0.354982681488694 +Nucleus,PTPRN2,-0.161469510187301 +Nucleus,ADAMTSL1,0.392119114142344 +Nucleus,ZNF547,1.58805774504568 +Nucleus,SGPP2,0.0691474788263389 +Nucleus,RIMBP2,-0.0521570574370042 +Nucleus,SH2D3A,-0.44654477107144 +Nucleus,UBP1,5.01068766220297 +Nucleus,SLC39A4,1.01490143211815 +Nucleus,CARD9,-0.00852337464224678 +Nucleus,SDHC,2.26540320086319 +Nucleus,RCBTB2,0.722227463316613 +Nucleus,SLC35E3,2.4448217112401 +Nucleus,CASK,0.48498234923129 +Nucleus,AKAP5,0.136039766950745 +Nucleus,KIAA0895,-0.0288208050415235 +Nucleus,TMPRSS6,-0.999572623412729 +Nucleus,WDR27,4.95183162183395 +Nucleus,TSGA10,1.99108334840036 +Nucleus,GSTO2,0.386621116815405 +Nucleus,STS,-0.921571885301969 +Nucleus,ZNF470,0.667613684862631 +Nucleus,C1orf61,1.12734103842315 +Nucleus,DENND3,3.48960407153521 +Nucleus,TRHDE,-0.693762998550987 +Nucleus,COPS2,1.24546501582204 +Nucleus,C1QTNF1,0.906335205627894 +Nucleus,CNTNAP2,0.194985057124259 +Nucleus,ZNF154,0.0071822880885729 +Nucleus,GTF2IRD1,1.72338657140121 +Nucleus,MRPS30,1.60005561937588 +Nucleus,HECW1,-1.51140085172923 +Nucleus,TRPV1,2.04008623753288 +Nucleus,NFASC,4.48747181933819 +Nucleus,MAGEL2,-0.397107740475455 +Nucleus,CATSPER1,-0.400982043014684 +Nucleus,SYNE2,0.803635406550022 +Nucleus,BCO2,1.30493432105538 +Nucleus,P2RY1,1.74433376078844 +Nucleus,PAQR8,0.579253624323813 +Nucleus,MPZL3,-0.087972405340315 +Nucleus,PWWP2A,1.07794850172094 +Nucleus,HELLPAR,1.12857845941818 +Nucleus,NEGR1,0.747869197614228 +Nucleus,FLRT1,-0.264873511534459 +Nucleus,CRIPAK,1.91353706613125 +Nucleus,ZPR1,1.78456963523135 +Nucleus,TTC30B,0.169081963937843 +Nucleus,MAP9,0.603134355454191 +Nucleus,AATK,0.439669309121406 +Nucleus,ULK2,-0.42336441429453 +Nucleus,LIG3,1.05825044552412 +Nucleus,CCDC82,1.70585779812516 +Nucleus,RPS6KB2,2.87405443291602 +Nucleus,IL17RD,-0.101680528555195 +Nucleus,TMEM182,0.932668734632851 +Nucleus,FZD9,0.0542093098832026 +Nucleus,SUSD2,0.316322539914969 +Nucleus,ZADH2,0.972365238128699 +Nucleus,BCL11A,1.02262557162382 +Nucleus,OXNAD1,3.13120487112625 +Nucleus,LRRC57,0.855575362911962 +Nucleus,PDLIM2,4.04838267680257 +Nucleus,FAM49B,5.72836647511943 +Nucleus,TYRO3,1.58690959004216 +Nucleus,TTC26,0.100084963425058 +Nucleus,MAST4,0.194054588021989 +Nucleus,ZNF594,1.54621228347371 +Nucleus,BMP6,-0.23999068891153 +Nucleus,PKD1L2,3.26680966328661 +Nucleus,PCDH7,1.59773682302742 +Nucleus,FGF12,0.134968186301639 +Nucleus,SYNE4,1.01299744860228 +Nucleus,FHDC1,2.14977893002511 +Nucleus,UROS,1.30886350023897 +Nucleus,ZNHIT6,1.5056564774594 +Nucleus,ACER3,1.47895745818407 +Nucleus,OTUB2,-0.915453806358689 +Nucleus,CD47,4.86558469924916 +Nucleus,NBR1,3.37329856668543 +Nucleus,SERPINF2,-0.441736302654802 +Nucleus,NDEL1,5.16590043689167 +Nucleus,ZNF783,1.42952382755007 +Nucleus,B4GALNT2,2.11924633871693 +Nucleus,NGEF,-0.712455122165777 +Nucleus,GBP2,-0.428787666768912 +Nucleus,RNASEH2B,2.67656122743408 +Nucleus,CERKL,0.309826323850066 +Nucleus,PHC3,2.54791397237086 +Nucleus,TPRN,2.23207318268324 +Nucleus,DERL1,5.25378572746643 +Nucleus,MXD1,1.06162291098113 +Nucleus,FNTA,5.12836658070722 +Nucleus,MRPS31P5,2.9569968559378 +Nucleus,ANO5,0.600330887530504 +Nucleus,OR2H2,0.821085589412255 +Nucleus,ZNF649,0.303215280758756 +Nucleus,PTPRB,1.01871680042583 +Nucleus,SF3B2,3.80573964119692 +Nucleus,DOCK4,-0.065926939511368 +Nucleus,SESN3,-0.00765674468531705 +Nucleus,PLCB4,1.06554200316367 +Nucleus,DISP2,0.356886710097582 +Nucleus,NECAB2,0.394809550332838 +Nucleus,TRIM73,2.49495729277181 +Nucleus,PITPNM3,0.347341828236021 +Nucleus,HINFP,2.01176211405876 +Nucleus,ZFAND5,1.53771358461383 +Nucleus,ZSCAN30,1.26897174764267 +Nucleus,ATP10B,-0.0551227329610552 +Nucleus,PPP1R3D,0.127414868803317 +Nucleus,KRT79,1.5830456045832 +Nucleus,SLC7A8,-0.577882895212075 +Nucleus,PTPRE,0.162044065501481 +Nucleus,DOCK11,-0.796891218822403 +Nucleus,DNASE1,2.86541841455185 +Nucleus,XRN1,0.487203928578791 +Nucleus,ZNF772,0.474788470806746 +Nucleus,HDX,0.98472672710548 +Nucleus,CARS,4.55603663139601 +Nucleus,RPS27L,4.72689295137469 +Nucleus,TRPS1,1.86676751940148 +Nucleus,ZFP28,0.368425396471978 +Nucleus,LRRN4,-0.46509916177494 +Nucleus,KCNQ3,1.87082660330739 +Nucleus,BAG1,2.33477964236357 +Nucleus,CREBRF,1.21590563053806 +Nucleus,LMLN,0.584924507500156 +Nucleus,FAM229A,3.55033540469514 +Nucleus,PLAGL1,5.00016202925879 +Nucleus,TOMM5,5.06965763344569 +Nucleus,SLC6A11,-0.121498892975001 +Nucleus,SH2D3C,-0.427586851423287 +Nucleus,PRMT2,3.39452673770352 +Nucleus,SP3,1.6449526716842 +Nucleus,ALDH7A1,1.79612379839971 +Nucleus,TMPRSS3,0.0425685083641313 +Nucleus,ORAOV1,3.8657495741471 +Nucleus,GOLGA6L9,4.80848650500738 +Nucleus,DOPEY1,0.754707740063123 +Nucleus,HAGLR,-0.362802145576451 +Nucleus,SBK1,-0.0552697962456177 +Nucleus,CNIH1,1.68908960482951 +Nucleus,DGKE,3.16932019304456 +Nucleus,ATP5G3,0.947653967033491 +Nucleus,LCMT2,2.3487185536703 +Nucleus,ZNF630,1.02320948588566 +Nucleus,DDX24,5.13486448537212 +Nucleus,MTMR8,0.165399572516625 +Nucleus,MURC,1.37602812327826 +Nucleus,CD22,0.242778535699624 +Nucleus,ZMYM6,1.79923958652837 +Nucleus,JAKMIP2,0.597432732684938 +Nucleus,PHF12,3.69099898363546 +Nucleus,PPM1A,1.3508988848804 +Nucleus,SLC33A1,1.91368230195394 +Nucleus,POLR2J4,1.37342332307958 +Nucleus,SHMT1,4.29554525099646 +Nucleus,MAGEA10,0.913134170636973 +Nucleus,POTEC,2.7700348436373 +Nucleus,FEM1A,0.449241312809724 +Nucleus,GRIN3B,-0.241131171510264 +Nucleus,MRPL32,4.5384914641588 +Nucleus,FAM129C,0.460035099680434 +Nucleus,ZDHHC3,2.18506912054719 +Nucleus,ALPK2,1.17502831309475 +Nucleus,F11R,0.797893534869372 +Nucleus,FAM218A,2.5760139818971 +Nucleus,MKKS,1.42014577531461 +Nucleus,NUDCD2,0.233626787842276 +Nucleus,SLC6A12,1.03902089686563 +Nucleus,ZNF471,1.05021383032374 +Nucleus,IL1RAPL1,0.473705168014463 +Nucleus,CDK20,1.80426372257121 +Nucleus,HEMK1,1.89977792061439 +Nucleus,FMO1,-0.614880954900614 +Nucleus,ADCY1,-0.468580308625536 +Nucleus,BCDIN3D,0.260333534503743 +Nucleus,GATA5,-0.733158306887763 +Nucleus,OS9,3.42425233481559 +Nucleus,STEAP2,1.47179081210446 +Nucleus,ZNF529,1.22993813940397 +Nucleus,PIN1,3.6394851520861 +Nucleus,DCLK1,-1.78046768591932 +Nucleus,TRIP11,0.617240469065669 +Nucleus,C3orf52,3.89266211582163 +Nucleus,C15orf62,3.23895315456105 +Nucleus,FAM151A,-0.003726176621296 +Nucleus,ZNF530,1.62649127486299 +Nucleus,H2AFY,3.83279724854377 +Nucleus,GDAP2,1.14784646254541 +Nucleus,FAM49A,-0.0718738109162105 +Nucleus,HELLS,1.88309251024358 +Nucleus,ZNF782,2.6261876949515 +Nucleus,ZNF333,1.70161116728361 +Nucleus,TMEM106B,0.938767197450703 +Nucleus,ADGRL4,-0.891619500403297 +Nucleus,INTU,0.891027060252119 +Nucleus,MAT1A,-0.792515345801856 +Nucleus,LIPE,1.05133298857597 +Nucleus,ADAM8,0.969288474849859 +Nucleus,ZNF157,-0.432927736091352 +Nucleus,TSIX,0.495506601064646 +Nucleus,CCDC125,1.5532345643585 +Nucleus,FGD4,0.981540280910526 +Nucleus,CEP162,0.635536007841773 +Nucleus,SYT1,-0.195264981623662 +Nucleus,KCNG1,2.20578510738479 +Nucleus,SEMA3C,0.0775216465091064 +Nucleus,MANEA,0.332062016390939 +Nucleus,ABHD13,0.572342359554901 +Nucleus,ARMCX4,1.3320281545315 +Nucleus,STYK1,0.542225337395045 +Nucleus,LYSMD4,1.06338664286877 +Nucleus,ASB14,-0.00127538577694704 +Nucleus,FRMD4B,-0.445231450620815 +Nucleus,PVRL4,-0.520036885811269 +Nucleus,FHL2,3.62710001835648 +Nucleus,TKT,4.00618660259245 +Nucleus,FGD6,0.20286028043944 +Nucleus,RDH11,2.10155323613237 +Nucleus,GET4,4.22266696049115 +Nucleus,LSM8,5.27127179637786 +Nucleus,DPEP2,-0.00705561981233596 +Nucleus,PTCD2,2.97297285572408 +Nucleus,PNPT1P1,0.564998977222734 +Nucleus,TDRD5,0.80050095445125 +Nucleus,SLC25A3,1.26988240843306 +Nucleus,CD37,0.352018775044839 +Nucleus,ENO1P4,1.64818965288485 +Nucleus,EBLN2,4.74929719521536 +Nucleus,HERC3,0.489992014216593 +Nucleus,LAMP3,-0.789703945227433 +Nucleus,MSS51,3.58836483534208 +Nucleus,TMTC2,-0.0432437190987844 +Nucleus,ASAH2,2.07748700566869 +Nucleus,CCDC88B,0.295196797013783 +Nucleus,RFX3,1.17143143108014 +Nucleus,EMC10,3.08781010859526 +Nucleus,SKP1,4.200009008442 +Nucleus,KBTBD11,-1.04373973321597 +Nucleus,WIZP1,0.620357845236121 +Nucleus,ZNF362,-0.924419964236919 +Nucleus,COLCA1,1.32121325453512 +Nucleus,EXOC5,0.127783224532322 +Nucleus,YBX2,2.44641985611732 +Nucleus,TAPT1,1.02345766667383 +Nucleus,BNC2,1.10284407709499 +Nucleus,DISP1,0.783421587424877 +Nucleus,ZKSCAN3,0.940683878051078 +Nucleus,SDC2,-0.888956550026962 +Nucleus,PTK2,5.76506750459593 +Nucleus,SLFN5,0.123701350703994 +Nucleus,ZNF670,1.21706464229381 +Nucleus,YME1L1,1.56023903355196 +Nucleus,RAB27A,-0.361498834922475 +Nucleus,PRPF40B,1.83225623710977 +Nucleus,ARFIP2,2.3734966257934 +Nucleus,NECAB1,1.08917370100763 +Nucleus,FRMD5,0.116249604187826 +Nucleus,XPNPEP1,3.31722648071678 +Nucleus,CHDH,0.217767846652283 +Nucleus,ANOS1,-0.186042701461986 +Nucleus,CDK17,0.283054881365358 +Nucleus,XDH,-0.0895261990765419 +Nucleus,WIPF1,-0.88942944265211 +Nucleus,MIB2,1.77067470470203 +Nucleus,WNT5A,0.619801139622917 +Nucleus,HNMT,0.855576888815055 +Nucleus,STX7,2.19852568126121 +Nucleus, SEPT7,4.06191230655032 +Nucleus,LYRM4,3.59733015622093 +Nucleus,DNAJB11,4.51539825956574 +Nucleus,RAB21,1.42021144943738 +Nucleus,RPL10,4.06457804540056 +Nucleus,ANKLE2,3.98413237869329 +Nucleus,ALDH2,0.606650956964098 +Nucleus,C22orf34,-0.0629795533609872 +Nucleus,RPP25,-0.18531997675124 +Nucleus,SPIB,2.7987627278381 +Nucleus,ZNF554,0.786683954818646 +Nucleus,RPS7,4.68358854083615 +Nucleus,ADAM32,4.63798147221684 +Nucleus,MRPS18C,5.30490542137182 +Nucleus,SCN2A,1.0510297221247 +Nucleus,KANK3,-0.762690479004942 +Nucleus,ZBTB42,-0.414308160084265 +Nucleus,ABCB4,0.634254926311874 +Nucleus,SLC16A7,0.475082851399733 +Nucleus,SH3GLB2,2.02371055110266 +Nucleus,RUFY3,3.21475457643845 +Nucleus,DPF3,0.21565350915748 +Nucleus,ZNF844,1.10015866178624 +Nucleus,INSR,0.402753976700917 +Nucleus,AP5S1,1.44012171567457 +Nucleus,RASSF9,0.766594426488927 +Nucleus,UGGT2,1.66522408056868 +Nucleus,CILP2,-0.846438068526132 +Nucleus,GIN1,0.626543781280147 +Nucleus,PGBD5,0.00277552756222157 +Nucleus,RPS19BP1,4.82321883483858 +Nucleus,SLC25A34,1.49119691411668 +Nucleus,TOR2A,2.11107397097766 +Nucleus,RPE65,0.14665509899106 +Nucleus,TMED3,2.07105029454343 +Nucleus,NQO2,1.16658210493077 +Nucleus,TPD52L2,4.48583618964184 +Nucleus,APBA3,2.48452771650358 +Nucleus,CNOT6L,0.661601924442022 +Nucleus,ERICD,0.516787685621127 +Nucleus,ZC3H18,2.34863483865897 +Nucleus,SSR2,4.7035591164068 +Nucleus,GNAL,-0.76240949284358 +Nucleus,FYB,-0.97330676830742 +Nucleus,DERL2,1.65806687912414 +Nucleus,C14orf166,4.0426296546839 +Nucleus,PCDHA5,0.0692783341095815 +Nucleus,DIAPH2,-0.842408842462569 +Nucleus,HS1BP3,2.25192345953037 +Nucleus,CASP10,0.244326245561804 +Nucleus,PIK3C3,2.50767794633579 +Nucleus,POLL,4.08471147468537 +Nucleus,C17orf59,0.669160934689276 +Nucleus,WHAMMP2,2.63714585245536 +Nucleus,ZNF623,1.09381432677876 +Nucleus,TRIM9,0.00274275931658727 +Nucleus,EGF,0.218813946629954 +Nucleus,KIAA1324,0.472306320630637 +Nucleus,AGFG1,2.21433737852459 +Nucleus,WDR31,-0.309890990113545 +Nucleus,COL4A5,0.489453259703106 +Nucleus,RSBN1,0.86619675239409 +Nucleus,PEX26,1.73404575961297 +Nucleus,KCNA2,1.36228088567895 +Nucleus,FAM135A,3.12951334379806 +Nucleus,CHD5,-0.159943374727138 +Nucleus,PKP4P1,-1.5822025337647 +Nucleus,CPEB3,0.356072021221317 +Nucleus,ADAMTS15,0.151502272517214 +Nucleus,ZFX,0.207952626596021 +Nucleus,SORL1,0.375430939094937 +Nucleus,KDM4D,-0.150563487123689 +Nucleus,DGKK,-1.15053234190663 +Nucleus,THAP9,0.580954736149526 +Nucleus,EFCAB7,0.364015698824228 +Nucleus,WDR25,0.0246646967569084 +Nucleus,MYO19,4.71640649327299 +Nucleus,FBXO22,4.0319847858344 +Nucleus,ATP6V1C2,0.303395620055139 +Nucleus,SNAPC3,2.59669545942345 +Nucleus,GUCY1B3,-1.39828578281611 +Nucleus,RNPS1,5.22812751057721 +Nucleus,ZNF883,-0.737333153251066 +Nucleus,ZNF616,0.395563349077886 +Nucleus,PHOSPHO1,0.346038798909302 +Nucleus,ST7L,2.2185197382112 +Nucleus,RFFL,2.78993100507763 +Nucleus,RCOR2,0.231600357854784 +Nucleus,CDX2,-0.873679286584303 +Nucleus,PCDHB15,0.58553624175074 +Nucleus,CCDC15,0.995457756703951 +Nucleus,LSM11,1.02500208053466 +Nucleus,LRRC73,0.0871410223707599 +Nucleus,ZNF850,0.671189008901297 +Nucleus,LZTS1,-0.675599840134015 +Nucleus,FAM76A,0.775486803696865 +Nucleus,ADGRE4P,0.168849892319336 +Nucleus,BIN3,3.22150517756968 +Nucleus,GRK4,0.0955779357501301 +Nucleus,KLC3,-1.65165188867021 +Nucleus,NATD1,-0.381031584297623 +Nucleus,CYP20A1,1.26364625906051 +Nucleus,ZCCHC9,4.47786031712761 +Nucleus,ADAMTS16,1.54489241572593 +Nucleus,C7orf60,-0.112498645393191 +Nucleus,PLEKHA3,1.71807236475601 +Nucleus,PCED1B,0.702791912999958 +Nucleus,MED12L,0.5797932377377 +Nucleus,POM121C,4.24143757193579 +Nucleus,WSB1,2.64520143563463 +Nucleus,C9orf3,2.9784540524488 +Nucleus,AK9,-0.031777457040426 +Nucleus,ZFP30,0.374782093579859 +Nucleus,NOS3,-0.823685216356722 +Nucleus,WTIP,2.154876313612 +Nucleus,SPATA33,4.92524071264234 +Nucleus,SYDE2,0.798047301660102 +Nucleus,VGLL3,-0.514213021940979 +Nucleus,DNAJC21,0.739801936537466 +Nucleus,PROSER3,1.6093114252168 +Nucleus,RPS29,2.77623645626228 +Nucleus,EXPH5,0.674107461654964 +Nucleus,NAA50,2.57588556369722 +Nucleus,RALY,3.71696683912659 +Nucleus,TNFRSF13C,3.35419693280681 +Nucleus,TLK1P1,-1.37093595775941 +Nucleus,PIAS1,1.72778739164542 +Nucleus,ADI1,3.73718918802115 +Nucleus,DLEU2,1.77820146225225 +Nucleus,FLVCR2,0.490328895875753 +Nucleus,DBT,1.2225543588481 +Nucleus,TDRD3,-0.124100364443521 +Nucleus,STARD9,2.44279043868261 +Nucleus,CTDSPL2,1.78842630355495 +Nucleus,C16orf52,1.53605403670057 +Nucleus,FAM126B,1.78345445770311 +Nucleus,EIF2B4,4.98266242674899 +Nucleus,EIF5,4.18309048927211 +Nucleus,KIAA0391,2.36559757026264 +Nucleus,GFOD1,1.5292668670934 +Nucleus,KIAA1715,0.614667163979705 +Nucleus,SMOC1,0.627118716607955 +Nucleus,IGLON5,-0.906666660632771 +Nucleus,ZP2,-0.848345587432541 +Nucleus,CDS2,1.11050082585092 +Nucleus,ZNF501,0.0467399017069531 +Nucleus,MOK,1.91258175474926 +Nucleus,NPEPPS,4.93963268341787 +Nucleus,CDADC1,0.855689253447174 +Nucleus,ASPSCR1,1.38091719800739 +Nucleus,RNF216P1,4.63990951193169 +Nucleus,CDON,0.667301648829163 +Nucleus,FMO5,-0.192184523802727 +Nucleus,CCDC150P1,2.66248386065242 +Nucleus,ADPRH,-1.00396714575547 +Nucleus,MCPH1,1.14598408413905 +Nucleus,TLCD2,0.010728550141439 +Nucleus,SAR1B,1.32401101792406 +Nucleus,SCYL3,2.50646536779353 +Nucleus,PCDHGB1,-0.234032646600424 +Nucleus,MYH13,1.0023045094808 +Nucleus,FLNB,5.63598774564154 +Nucleus,WNT3A,-0.178360104482932 +Nucleus,NHSL2,0.793442578750696 +Nucleus,PCDHB9,0.774758237383205 +Nucleus,PDE5A,0.102472813313733 +Nucleus,E2F5,0.897352552753324 +Nucleus,ATM,1.48531096894352 +Nucleus,ZDHHC21,2.79539726606511 +Nucleus,CAMK2D,-0.0492439809637653 +Nucleus,C1orf21,2.78560537143916 +Nucleus,KRT84,1.19775828009977 +Nucleus,HOXA3,0.053647470098488 +Nucleus,ZBED9,0.320331531542606 +Nucleus,PCDHA7,0.475403562895742 +Nucleus,TGIF1,3.08578359793795 +Nucleus,ZNF264,1.656406365007 +Nucleus,FGFBP3,1.36770466784009 +Nucleus,L3MBTL2,3.85962492447463 +Nucleus,DNAJC18,0.947410126285367 +Nucleus,GGA1,2.97694555587443 +Nucleus,USP6,0.282941513499079 +Nucleus,RWDD2A,0.323741534359811 +Nucleus,PPIG,1.49747980789109 +Nucleus,OGG1,2.70647179896827 +Nucleus,EMILIN3,-0.267998662663889 +Nucleus,WEE1,6.1121023197561 +Nucleus,PARVG,3.95789657429574 +Nucleus,SPIRE1,0.0765942743598239 +Nucleus,KCNK3,-0.0601067957220512 +Nucleus,CEP19,-1.00878828288515 +Nucleus,RIOK2,0.664720095631062 +Nucleus,BBS12,0.221968668145056 +Nucleus,HYAL1,0.983714212186559 +Nucleus,NSUN7,0.503646118000074 +Nucleus,MAFA,-0.551775373432602 +Nucleus,ANTXR2,0.866877517789206 +Nucleus,GNG11,-0.981081186487037 +Nucleus,BMPR1B,2.00757121131606 +Nucleus,MFSD6,-0.0974327494007844 +Nucleus,ZNF449,0.935121412256283 +Nucleus,TKFC,1.39704947461744 +Nucleus,RLTPR,-0.329918165234357 +Nucleus,RIF1,1.61518220927666 +Nucleus,COL11A1,-0.434711575971628 +Nucleus,KCNN1,-0.535974506599478 +Nucleus,PSMA2,4.65671310081676 +Nucleus,STAMBP,1.2816545724735 +Nucleus,FAR2P2,6.2320362126776 +Nucleus,VPS35,1.74618335722855 +Nucleus,ACER2,1.0317616444691 +Nucleus,ITPKB,-0.602340745597286 +Nucleus,KIAA1841,2.4182462246284 +Nucleus,LHX5,-1.16430443591735 +Nucleus,BMP7,0.190833906884447 +Nucleus,SEMA6C,2.25869785682874 +Nucleus,DDX3Y,-0.160067606766033 +Nucleus,TMF1,0.854740675414042 +Nucleus,DDX60,1.18563686471639 +Nucleus,ACADL,0.768297082283646 +Nucleus,SYN2,1.05412760860993 +Nucleus,MTMR14,3.79176345317981 +Nucleus,ZNF234,1.26608652487168 +Nucleus,CENPP,0.375193224762434 +Nucleus,SHOX2,3.09759879203094 +Nucleus,GNAQ,-0.605408922191036 +Nucleus,PARVB,-0.301330557009228 +Nucleus,HTRA1,-1.38288540390719 +Nucleus,ITGB2,-0.85394020696796 +Nucleus,SLC22A15,2.33580214881069 +Nucleus,HOXB3,1.67637691997644 +Nucleus,SLC9A4,-0.430996478811033 +Nucleus,ANKRD18EP,0.759638565070485 +Nucleus,KIRREL3,0.891374802887492 +Nucleus,MYO5A,0.106177937936855 +Nucleus,CAMK4,0.398944878957302 +Nucleus,SALL4P5,0.633546538083948 +Nucleus,ALG10B,2.5554032479094 +Nucleus,MED22,4.27455197463237 +Nucleus,FAM160B1,0.809032116862731 +Nucleus,SLC25A46,1.29868096236038 +Nucleus,ZBTB41,0.255625844585615 +Nucleus,AOX1,-1.07251647054616 +Nucleus,DICER1,1.60660758119182 +Nucleus,DDX10P2,-0.409142809163327 +Nucleus,C11orf58,5.41270407372485 +Nucleus,TTC21A,0.412772318836038 +Nucleus,USB1,3.91129457891682 +Nucleus,PML,2.24848846106347 +Nucleus,FAM20C,-0.396969122461316 +Nucleus,ZNF695,1.3810598549206 +Nucleus,PCDHAC1,0.504720402397303 +Nucleus,RIC8A,3.89284694217198 +Nucleus,LPO,-0.126014331583553 +Nucleus,PIGA,0.302436157752916 +Nucleus,PGBD4,2.35326483204669 +Nucleus,CHADL,-0.485432180588023 +Nucleus,SMPD4P2,-0.191769717959839 +Nucleus,EGLN3,0.523038829276989 +Nucleus,WHSC1,3.57771666577417 +Nucleus,LRWD1,1.8170166037004 +Nucleus,RGS4,-0.868626840500556 +Nucleus,AP3D1,3.77410652843421 +Nucleus,NOVA1,0.327315817094825 +Nucleus,ZNF280A,-0.134549225320109 +Nucleus,SYTL5,-0.575457858258799 +Nucleus,SP110,1.26887477212938 +Nucleus,PCDHB17P,0.70898577468268 +Nucleus,PLEKHN1,0.522516441140681 +Nucleus,HOMEZ,-0.776609890490621 +Nucleus,EVI2A,0.226417453320926 +Nucleus,SPPL2A,0.435248433640123 +Nucleus,KIAA1467,0.63480827279843 +Nucleus,HKDC1,-0.870019805811624 +Nucleus,ZNF283,1.8282573300819 +Nucleus,ME2P1,-1.91768709108079 +Nucleus,KIZ,3.7817962419602 +Nucleus,ZNF444,3.34626027349624 +Nucleus,TBX10,0.562177821763969 +Nucleus,ITPR2,0.30255997668855 +Nucleus,ACOT11,1.20149865550209 +Nucleus,EN2,-0.775129198293169 +Nucleus,PER2,-0.456992249910943 +Nucleus,DDX18,5.27952217426066 +Nucleus,PPP1R16B,-0.636871251299397 +Nucleus,IRAK4,0.642553634568708 +Nucleus,TAF1L,-0.148303778554004 +Nucleus,SFMBT2,0.396145554392194 +Nucleus,DNAJC6,-0.236876301236727 +Nucleus,P2RY2,0.0589454776104025 +Nucleus,HOXB5,3.2618291220257 +Nucleus,TGFBR3,-0.170056434559118 +Nucleus,DNHD1,1.30067500184227 +Nucleus,BARX2,-0.85225295304457 +Nucleus,CEP295NL,2.2836938568534 +Nucleus,DHRSX,-0.190098013973824 +Nucleus,PGAP1,2.4163152037132 +Nucleus,PFDN6,1.11318136587899 +Nucleus,PRX,-0.454134262682983 +Nucleus,ALDH5A1,-0.405987505184549 +Nucleus,SLCO3A1,0.689984675446453 +Nucleus,SP6,-0.234926916566674 +Nucleus,TRAM1L1,0.541192785109254 +Nucleus,ZNF639,0.817882922301566 +Nucleus,NUDCD3,2.53790035985295 +Nucleus,DST,1.6502733424904 +Nucleus,ZNHIT1,4.8743435534374 +Nucleus,TCEANC2,2.76992448448167 +Nucleus,TIAF1,3.00692818361579 +Nucleus,TMEM168,2.037356439871 +Nucleus,PRKRIRP2,-1.66418185930927 +Nucleus,FLT4,2.00433985524216 +Nucleus,ENPP4,0.420192919124529 +Nucleus,ELMOD2,1.06851991110225 +Nucleus,CXXC4,0.309624517966691 +Nucleus,ZNF8,1.98478306899347 +Nucleus,TMEM192,0.556499663084875 +Nucleus,PPFIBP1,2.25923161808766 +Nucleus,ZNF500,3.61866025568323 +Nucleus,MAPKAPK5,3.1502927269212 +Nucleus,STC1,-0.078080838444604 +Nucleus,MSL3,2.01265864015992 +Nucleus,GTPBP10,0.672254998021389 +Nucleus,LINS,2.68776082375134 +Nucleus,ADCY5,0.742145252292769 +Nucleus,GRAMD1B,0.601703437000836 +Nucleus,QKI,2.4048588857105 +Nucleus,DYSF,-1.1007939283288 +Nucleus,YBX3,5.26676120627162 +Nucleus,GLTSCR2,4.01243949352305 +Nucleus,FUS,2.23357355762662 +Nucleus,MTMR9,1.98887594816957 +Nucleus,SPRY2,-0.371350735808679 +Nucleus,KRT75,-1.69110283310274 +Nucleus,ATG7,1.54444182455947 +Nucleus,MPHOSPH9,2.38621102038491 +Nucleus,ZBTB10,1.68649805699158 +Nucleus,MYO3A,1.43318827406215 +Nucleus,ZBTB25,2.52773784513269 +Nucleus,SEMA3G,-0.0511032493472983 +Nucleus,RCAN2,-1.03827384076565 +Nucleus,PTPN4,1.58973942766427 +Nucleus,ZNF280C,0.189352643251814 +Nucleus,EFHC1,4.0482356500378 +Nucleus,FBXL22,0.751092069604368 +Nucleus,THRB,-0.172258320410715 +Nucleus,GHR,-0.162447540055247 +Nucleus,DNAJB7,0.659396172032148 +Nucleus,SERPINB5,-1.12358107528383 +Nucleus,ANKRD32,1.34928267317104 +Nucleus,PRORSD1P,3.05650084722352 +Nucleus,ZNF350,0.463947358039841 +Nucleus,HLCS,0.18251569452491 +Nucleus,GK5,1.22734935603825 +Nucleus,TXNIP,-0.0176326886520788 +Nucleus,UBN2,1.90784240438144 +Nucleus,PLEKHH1,0.457461946874148 +Nucleus,PLB1,1.23360724114613 +Nucleus,FAM208A,0.211806503435133 +Nucleus,ZNF680,1.65884087810015 +Nucleus,PLEKHG2,0.487133447015954 +Nucleus,CR2,-0.221902843618763 +Nucleus,EIF3F,1.75669687893089 +Nucleus,SLC35G1,1.20184477638691 +Nucleus,ADCYAP1R1,0.545334865659955 +Nucleus,CYFIP2,-0.23628524062172 +Nucleus,RPL13,1.34551222078845 +Nucleus,MAB21L3,0.256214762155074 +Nucleus,KDSR,0.831634499332633 +Nucleus,XPNPEP3,0.530665568501713 +Nucleus,ADARB1,0.918857358523802 +Nucleus,ACAP3,2.54674902104028 +Nucleus,CTDP1,0.658440391580293 +Nucleus,SH3PXD2A,1.08413253409793 +Nucleus,RASSF4,-0.0613591077382546 +Nucleus,BIVM,0.726252299242796 +Nucleus,PPP2R2D,4.51571698100224 +Nucleus,TMEM184B,4.35482113161195 +Nucleus,RIMS2,-0.104241124059412 +Nucleus,MAPK8IP3,3.79126682596437 +Nucleus,VEGFA,2.92708709974729 +Nucleus,TGM4,-0.333794035976741 +Nucleus,CCDC103,-0.184598085318702 +Nucleus,ZBTB8A,0.869807260258542 +Nucleus,GRIN2D,0.129702200874327 +Nucleus,ZNF767P,4.04470542725257 +Nucleus,A4GALT,-0.681196403695512 +Nucleus,MN1,-0.743004781366191 +Nucleus,SLIT3,-0.861109339138332 +Nucleus,MFI2,3.24320353505443 +Nucleus,LRIG2,2.71564933845343 +Nucleus,COX11,3.13497349166386 +Nucleus,NMNAT1,0.0137756659353833 +Nucleus,ZNF398,0.834139029118852 +Nucleus,MEGF10,0.782685105959559 +Nucleus,FBXL3,0.847001351331776 +Nucleus,PLEKHA6,-0.491311039508782 +Nucleus,ABCG2,-0.751046982531825 +Nucleus,RAB33B,-0.118154810921872 +Nucleus,ANKLE1,1.1088389240428 +Nucleus,PCDHB18P,-0.10778774610234 +Nucleus,SMURF2,0.883943597388608 +Nucleus,FZD3,0.824201834182221 +Nucleus,PTCH1,0.309385846365502 +Nucleus,RECK,0.371497210923921 +Nucleus,TGFA,-0.401068045320331 +Nucleus,CPNE4,-0.781151562182694 +Nucleus,GFI1,0.0232040473676483 +Nucleus,ZNF780B,1.55717472883584 +Nucleus,PSPN,0.565709166934184 +Nucleus,PCDHA2,1.76712885256574 +Nucleus,PAIP2B,0.763877305961231 +Nucleus,PTCHD4,-0.126915514901235 +Nucleus,SLC45A4,0.806529688511751 +Nucleus,ZFPM1,-0.0627878513110154 +Nucleus,ELP2,1.03744971384958 +Nucleus,NR0B1,-0.0882082093565276 +Nucleus,PRKAA2,1.3517264822825 +Nucleus,FKBP15,3.16173874383045 +Nucleus,ZNF416,-0.0568674043120817 +Nucleus,RSPH3,0.826759237193377 +Nucleus,ZNF407,1.49151851744464 +Nucleus,ATP6V0A2,0.986413171318161 +Nucleus,SLC5A2,-0.74287886097753 +Nucleus,CHAD,0.28210710514948 +Nucleus,ABCA7,0.881074485970716 +Nucleus,RC3H2,0.560873304557978 +Nucleus,EPHX2,-0.486909582284764 +Nucleus,VAPB,3.38758316066227 +Nucleus,ZNF562,1.48790136239945 +Nucleus,ARID4A,0.843509542071018 +Nucleus,CAPN10,4.15701533672786 +Nucleus,LRRC37A16P,-0.955042346973307 +Nucleus,CLN8,2.79594166830481 +Nucleus,RPS15A,4.51974134913726 +Nucleus,ALS2CL,3.80304552631658 +Nucleus,SAMD9,-0.860185711603305 +Nucleus,ARHGAP27,0.899100998167899 +Nucleus,LETM1P2,-1.78009627784688 +Nucleus,C5orf42,1.40126488364738 +Nucleus,RBM5,5.83408262787146 +Nucleus,STXBP5,0.761372961418496 +Nucleus,ZNF468,-0.390917899046752 +Nucleus,JPH1,-0.797524618580621 +Nucleus,RASAL2,1.41037698506115 +Nucleus,RAB7B,0.506848206736153 +Nucleus,PPA1,5.35698354514098 +Nucleus,PHYHIP,-0.113011921788379 +Nucleus,SCO1,2.33550016596203 +Nucleus,LHX4,1.07543209818647 +Nucleus,CCDC115,3.6936202130511 +Nucleus,SERF2,1.4982325977451 +Nucleus,NUAK2,-0.13960642177295 +Nucleus,RNF157,-0.740049383170654 +Nucleus,ZNF662,2.43837447206675 +Nucleus,AGO4,0.931740994774063 +Nucleus,POU6F1,0.234406373138875 +Nucleus,UQCRB,0.20365882256102 +Nucleus,PLA2G4A,-1.22189736477893 +Nucleus,CHRNA5,0.964949007915223 +Nucleus,CLCN5,0.673662349195277 +Nucleus,HPCAL1,3.1405000883615 +Nucleus,CCNB3,-0.454949809404151 +Nucleus,GPR180,1.08761479268037 +Nucleus,SSTR2,0.516737408120959 +Nucleus,RAB11FIP1P1,0.652561933320895 +Nucleus,GRSF1,1.85740081929401 +Nucleus,ZKSCAN2,0.122680593091001 +Nucleus,ARHGAP18,-0.462401899996301 +Nucleus,MRPS5,5.64144891937198 +Nucleus,ISY1,1.34538300240155 +Nucleus,ERCC4,0.160209390699423 +Nucleus,ABTB1,2.62032741822145 +Nucleus,SLC4A8,0.659803050111151 +Nucleus,WAC,2.31283980387458 +Nucleus,ZNF274,4.79568328436028 +Nucleus,ZNF440,0.985725754643632 +Nucleus,MICAL1,3.31355795633349 +Nucleus,ZNF280D,1.17855235156276 +Nucleus,GAS1,0.0783434116847827 +Nucleus,NLRP11,0.262354134764139 +Nucleus,ZNF543,1.11492267195592 +Nucleus,WDR91,0.280536680423014 +Nucleus,ZNF276,2.53996279862384 +Nucleus,ALDH3B1,2.86417869494237 +Nucleus,REXO1L1P,1.04994594283353 +Nucleus,PDZD7,0.395950967096587 +Nucleus,EFNA5,0.503261157764442 +Nucleus,TSPAN31,1.88526303522073 +Nucleus,HPS4,4.68844059456741 +Nucleus,WRAP73,2.52106605145999 +Nucleus,RPL23,4.72789730946756 +Nucleus,RNASEL,-0.0965152698510131 +Nucleus,ZNF829,0.645587307591226 +Nucleus,SPATA5,-0.557398240312617 +Nucleus,TRIOBP,3.46344135609762 +Nucleus,GRHPR,4.97082113184459 +Nucleus,CUL9,2.25423942467886 +Nucleus,CHRD,0.255150585743986 +Nucleus,NAT16,0.704418684940393 +Nucleus,KIAA1919,2.30151993007671 +Nucleus,XRCC3,1.44264034040733 +Nucleus,MTL5,0.743481838956733 +Nucleus,MYH16,-1.53557626093341 +Nucleus,CPT1A,0.422738319473195 +Nucleus,TYRO3P,0.611865432130952 +Nucleus,TRAPPC5,2.32010913391551 +Nucleus,KANSL1L,0.0597457893654901 +Nucleus,PAWR,2.76081401990141 +Nucleus,PANK2,3.3293600219354 +Nucleus,SP8,0.35161989324038 +Nucleus,GVQW1,0.319992308136373 +Nucleus,VSTM4,0.560288038184652 +Nucleus,SLC2A12,0.394148175023429 +Nucleus,ZBTB26,2.16866033664885 +Nucleus,ABALON,1.62380707772053 +Nucleus,U2AF1,3.38212736046807 +Nucleus,ARSK,0.712879139966534 +Nucleus,MALT1,1.11548634662053 +Nucleus,BHLHB9,-0.035849947252935 +Nucleus,ATAD2B,1.52689694156907 +Nucleus,METTL22,3.58245204646507 +Nucleus,EDN1,0.897351652514014 +Nucleus,TRIM66,2.59509754558253 +Nucleus,ABTB2,-0.359965891960755 +Nucleus,ERCC6L2,1.15371356755482 +Nucleus,SPICE1,3.3675197798033 +Nucleus,DNM1,4.22150072231656 +Nucleus,PRSS53,2.35578482909181 +Nucleus,THG1L,0.375097127725344 +Nucleus,TRIM54,1.06984789568056 +Nucleus,KRT82,-1.014359961586 +Nucleus,PRICKLE2,0.684850487566717 +Nucleus,ZNF30,0.302835931845767 +Nucleus,N4BP1,1.31097394488518 +Nucleus,UTS2,-0.422825651474471 +Nucleus,TNRC6B,1.49717249607276 +Nucleus,OTX1,0.67449983351702 +Nucleus,PELI1,0.076424909171192 +Nucleus,ARHGEF40,3.00038516881959 +Nucleus,TTPA,-0.166971111407996 +Nucleus,CBR4,1.78743196082037 +Nucleus,SNX22,0.761375521383109 +Nucleus,AQP11,-0.73210578031941 +Nucleus,PRDM8,0.526862991703873 +Nucleus,TFPI,4.28653771093943 +Nucleus,SMYD2,3.96631789218903 +Nucleus,PTPRJ,0.318837877013524 +Nucleus,CGNL1,-0.553228118302279 +Nucleus,NCR3LG1,1.77088345088498 +Nucleus,RBM43,0.281356463909961 +Nucleus,GPR153,-0.642973818741323 +Nucleus,ACTL8,-0.0274287169076693 +Nucleus,ELOVL6,1.86143799330401 +Nucleus,KITLG,-0.486489338273384 +Nucleus,DPP8,2.71393763576479 +Nucleus,SWT1,0.681411830366131 +Nucleus,FKBP11,2.77461129680997 +Nucleus,ZNF284,1.22363108829849 +Nucleus,PDE7A,4.90114410006412 +Nucleus,POU3F3,1.38175770335322 +Nucleus,DYNC2H1,1.60551667660357 +Nucleus,MAP3K5,0.01143542836344 +Nucleus,ARNT2,-0.619906575558064 +Nucleus,TXNDC16,1.39380948413686 +Nucleus,GNG7,-0.540690707451863 +Nucleus,HPSE,0.652362937701363 +Nucleus,ZBTB49,1.75634218413578 +Nucleus,PKNOX1,0.231914698756921 +Nucleus,NLGN3,0.794360145557372 +Nucleus,ADAM23,0.887221872943458 +Nucleus,CENPBD1,-0.555438376163037 +Nucleus,C20orf144,0.528402848960388 +Nucleus,ZNF789,3.11705976370419 +Nucleus,MTBP,4.21101922982281 +Nucleus,SMPD4P1,-0.0600496008363166 +Nucleus,PXMP4,-0.0718953014032751 +Nucleus,TCF4,0.249359795056735 +Nucleus,C2orf70,1.06759648678969 +Nucleus,PRDM10,0.530418797043464 +Nucleus,EXOSC9,5.88596637935192 +Nucleus,ANKRD36B,4.43134721933672 +Nucleus,IFT172,-0.163192328131682 +Nucleus,FUT10,0.767062010491846 +Nucleus,FIZ1,1.13761738899759 +Nucleus,RNF215,0.331285190792314 +Nucleus,PPM1H,-0.262299610173295 +Nucleus,ANXA11,3.58486603157707 +Nucleus,RPAIN,4.55731606508375 +Nucleus,PURG,1.01292332308362 +Nucleus,CACNG8,1.26424235750035 +Nucleus,PABPC4L,0.65096892768585 +Nucleus,DLG3,-0.35742108843441 +Nucleus,NAPA,2.2401996556324 +Nucleus,C14orf132,-0.772471418943569 +Nucleus,GYG2,-0.402076357588208 +Nucleus,HSPBAP1,3.24823529726869 +Nucleus,PDCD1LG2,0.637847452172345 +Nucleus,APOOL,-0.0352015794730745 +Nucleus,SAMD12,-0.661417932707745 +Nucleus,BARD1,0.367571960239902 +Nucleus,TOM1,3.11989498624602 +Nucleus,NHSL1,-0.221629653503413 +Nucleus,RAB3D,0.245088660837805 +Nucleus,THAP2,0.682480159051338 +Nucleus,PIK3CA,-0.88379431210728 +Nucleus,FANCB,1.62345542301069 +Nucleus,HDGFRP3,2.35490476616739 +Nucleus,ERGIC3,5.04819877948102 +Nucleus,ATAD5,1.39371696328231 +Nucleus,CDKL1,1.22939667614197 +Nucleus,GAK,4.44896970761276 +Nucleus,MBLAC2,-0.10757309029711 +Nucleus,CCR10,0.60585226738957 +Nucleus,EDA,0.287530930348431 +Nucleus,LTBP3,4.49736199126195 +Nucleus,TRIM38,1.14964459884762 +Nucleus,ANXA8L1,1.66669730752545 +Nucleus,LMBRD2,0.930814378566025 +Nucleus,NEMF,3.17224291156853 +Nucleus,EBF3,-0.0236206523960818 +Nucleus,FBXO48,1.62938144065643 +Nucleus,MRPL27,3.87083082436592 +Nucleus,NDUFA9,3.57398127754918 +Nucleus,DGCR11,2.53194082413843 +Nucleus,PPIE,4.45906545959963 +Nucleus,CEP104,-0.434486746179233 +Nucleus,AHCYL2,0.0127887301072917 +Nucleus,SNTB2,0.442474342855948 +Nucleus,C19orf12,0.457355884387065 +Nucleus,MAP4K2,3.54429346329944 +Nucleus,MUC4,-0.122491875649171 +Nucleus,CHRNE,0.217269346590641 +Nucleus,USP3,1.14458730200902 +Nucleus,POLR2J3,5.01237427350581 +Nucleus,PRR36,-0.169641244606715 +Nucleus,JAK2,1.16331050759966 +Nucleus,NAPEPLD,2.38103126804931 +Nucleus,ALDH6A1,-1.34402910135192 +Nucleus,TRIM27,5.17459156698264 +Nucleus,SIM2,-0.191573939408313 +Nucleus,PHACTR2,-0.416581484569053 +Nucleus,FAM78A,-0.66396530558101 +Nucleus,IRAK2,-0.157086657389238 +Nucleus,C8orf37,0.425207881562627 +Nucleus,CHD9,1.21384421220419 +Nucleus,TRABD2B,2.05899235369891 +Nucleus,NHS,0.0642552139301912 +Nucleus,DTNA,0.331929142165849 +Nucleus,FAF1,1.72741347141959 +Nucleus,SPECC1,1.15848940302091 +Nucleus,SERBP1,1.65075686998516 +Nucleus,ZNF426,0.32557219781734 +Nucleus,MYHAS,0.6364676843774 +Nucleus,KIF3A,0.965943805820637 +Nucleus,RPL34,4.2926089610939 +Nucleus,NMNAT2,-0.275341284391981 +Nucleus,ZNF704,0.500498810201757 +Nucleus,SRRM1P3,-0.0962372156250063 +Nucleus,CCDC186,0.117047815695085 +Nucleus,NLGN4X,-0.324134047031431 +Nucleus,SNX5,5.42335253316408 +Nucleus,MAP7D3,1.37249528345728 +Nucleus,RFT1,2.77139201179702 +Nucleus,USP38,0.238319160455395 +Nucleus,PDE12,1.47187710365021 +Nucleus,SPATA12,0.614386093267573 +Nucleus,EIF5A2,-0.0788796224570732 +Nucleus,KIAA1468,0.729233860986801 +Nucleus,DHRS3,-0.56383515331716 +Nucleus,EEPD1,0.907217223065639 +Nucleus,SLC37A4,3.48074661564604 +Nucleus,TMEM198B,1.76075799945189 +Nucleus,PARD6B,0.36854741745614 +Nucleus,KBTBD7,0.174387557321346 +Nucleus,C17orf67,-0.443847064405465 +Nucleus,NEK8,1.18323235930251 +Nucleus,CUL5,0.40955997937928 +Nucleus,PYROXD2,1.33113655049511 +Nucleus,CGB7,0.661978754732075 +Nucleus,WDR13,1.9910750448193 +Nucleus,NUCB2,1.67071585690681 +Nucleus,MEGF9,-0.273889849930953 +Nucleus,PRKAB1,4.85008998693189 +Nucleus,IBA57,0.782010207323164 +Nucleus,ZFP69,-0.177073279308015 +Nucleus,HNRNPD,5.45249397582406 +Nucleus,EPHB3,0.225548581809219 +Nucleus,NDUFS1,1.09421155600957 +Nucleus,MLK4,-0.00282826543573533 +Nucleus,SDK1,0.767890795846133 +Nucleus,HARS,4.26092941013075 +Nucleus,SYNGR1,1.45181622280322 +Nucleus,TMCC2,-0.849151471275506 +Nucleus,MYO5B,0.277887589268474 +Nucleus,AP2A2,3.29066745351512 +Nucleus,C7orf31,-0.669974390747098 +Nucleus,PASK,2.82684688660336 +Nucleus,RAD51D,1.18958822707207 +Nucleus,ZNRF3,0.883064419432283 +Nucleus,SLC25A42,-0.342926737505869 +Nucleus,KCNK6,1.24728921072864 +Nucleus,SLC35A3,1.0321655411882 +Nucleus,NPHP3,1.46869561932903 +Nucleus,NKAP,-0.543212366259016 +Nucleus,FGFR3,0.615984149504843 +Nucleus,TMEM47,-0.329740188171265 +Nucleus,RAB4A,-0.120603790121104 +Nucleus,KCND1,1.07048418247969 +Nucleus,POLR3E,5.07191534276074 +Nucleus,DCUN1D3,1.54088652805266 +Nucleus,PLEKHG4,1.05677185048737 +Nucleus,SLC6A15,-0.137476523772328 +Nucleus,DHRS11,5.07281933075797 +Nucleus,HYPK,4.17284580800858 +Nucleus,ATP11B,1.21651432776712 +Nucleus,PGBD2,1.2800406279661 +Nucleus,FICD,0.37713527221189 +Nucleus,PSEN1,0.718969352769292 +Nucleus,DDX3P3,-1.12954316627501 +Nucleus,PCDHAC2,0.299751539015444 +Nucleus,OSBPL3,1.62128257553364 +Nucleus,ZNF134,1.26244997762372 +Nucleus,RAB42,-0.862186022954944 +Nucleus,ZNF619,0.704646897277067 +Nucleus,INADL,-0.119107435799658 +Nucleus,NAP1L5,-1.21684214409677 +Nucleus,PPP1R13B,-0.0106969980778533 +Nucleus,ACSL3,1.16093718894447 +Nucleus,ZNF674,1.10347734109538 +Nucleus,EMBP1,0.054424903828029 +Nucleus,ZXDC,5.25906309559696 +Nucleus,CBLN3,0.0886837300361153 +Nucleus,DENND5B,0.209591063971577 +Nucleus,RAB6B,1.5059616704367 +Nucleus,PPP4R1L,2.89817210074733 +Nucleus,N4BP2,0.577228544984212 +Nucleus,GPSM2,0.0118392876563224 +Nucleus,BCYRN1,0.267952075703002 +Nucleus,CNDP2,0.235043118833973 +Nucleus,BAZ2B,0.967974976717542 +Nucleus,RBM18,-0.166583142089 +Nucleus,FAM169A,-0.365889380880938 +Nucleus,AMOT,-1.00353147659801 +Nucleus,FGF5,-0.0416816446027291 +Nucleus,CACTIN,2.07574673792016 +Nucleus,CDK5RAP1,4.25937347437701 +Nucleus,NAGPA,3.48489173765391 +Nucleus,SSRP1,4.32552439262088 +Nucleus,GABPB1,3.1500742026829 +Nucleus,ZBTB3,0.40841178977504 +Nucleus,ZNF808,1.01177814994588 +Nucleus,EVI5L,-1.49427378517528 +Nucleus,MRGPRX3,-0.841325983923444 +Nucleus,CSNK1A1L,-1.2810939293606 +Nucleus,CLMP,-0.597303568862041 +Nucleus,DDX52,0.375688456659544 +Nucleus,MYO9A,0.582221629086234 +Nucleus,DEPDC7,0.00202648543622682 +Nucleus,C1orf226,0.421884930452362 +Nucleus,RELT,3.48744156418373 +Nucleus,TRIM7,-0.940129288421569 +Nucleus,DNAL1,2.25723368571336 +Nucleus,FNBP1P1,2.35865625652048 +Nucleus,BRAF,1.26275316131387 +Nucleus,CHST12,2.57960241366098 +Nucleus,FANCF,-0.0600200282194954 +Nucleus,AGAP1,0.105826630214308 +Nucleus,ARAP2,0.46767740564649 +Nucleus,SNHG15,4.66329797861554 +Nucleus,HGSNAT,0.572591577851803 +Nucleus,ZNF776,1.5004524662428 +Nucleus,ZNF236,0.554195120267272 +Nucleus,UBXN2A,0.32528457484726 +Nucleus,TRANK1,0.397682194978423 +Nucleus,PAQR3,3.18806167074155 +Nucleus,C2CD2,0.673216172151821 +Nucleus,NCOA7,-0.560762306688315 +Nucleus,LZTFL1,0.390977209871155 +Nucleus,C12orf76,2.15668483394018 +Nucleus,KCTD12,-1.64340409750614 +Nucleus,ATXN3,0.875913455344809 +Nucleus,SPAG9,1.00225394325724 +Nucleus,KREMEN1,-0.754617834185267 +Nucleus,SLX4IP,0.440947546367974 +Nucleus,SHROOM3,-0.816443886812942 +Nucleus,C12orf65,4.45398946906685 +Nucleus,AP3S2,1.05211383672691 +Nucleus,EIF2B2,3.49877463523208 +Nucleus,MYCBP2,-0.777602259636723 +Nucleus,SCN4B,0.311258827730256 +Nucleus,SFT2D3,0.779742436008439 +Nucleus,CASD1,0.909878620388092 +Nucleus,CACNA2D4,0.824806422306559 +Nucleus,AES,4.27245675957744 +Nucleus,DDX26B,1.51680462079582 +Nucleus,BIN1,3.7863737876711 +Nucleus,FAM8A1,0.0800611908121957 +Nucleus,PLEKHA4,-0.236552765069869 +Nucleus,GALC,-0.331324533418723 +Nucleus,ALX3,-0.11417039028744 +Nucleus,TCEB1,2.8535087780539 +Nucleus,HHLA2,-0.922647850951719 +Nucleus,TINAGL1,4.54786323197164 +Nucleus,DHTKD1,-0.260430820193803 +Nucleus,LZTS2,4.42679332991869 +Nucleus,NAIP,4.12182366072931 +Nucleus,ESYT2,1.06976942512652 +Nucleus,CYB5R4,2.33450956132368 +Nucleus,C1orf74,0.695032459737325 +Nucleus,LYRM2,0.185361241568216 +Nucleus,SIX2,-0.963367451089448 +Nucleus,YPEL2,0.625173421158887 +Nucleus,ANKEF1,-1.13766567398059 +Nucleus,HTN1,0.913131786024257 +Nucleus,FAM160B2,3.30738138481861 +Nucleus,LLPH,2.66263841738933 +Nucleus,C21orf91,-0.0609471288135061 +Nucleus,STON1,-0.208242715832729 +Nucleus,WDR37,0.900141613209493 +Nucleus,SRPK3,-0.0628649164971819 +Nucleus,WDFY2,1.281225599221 +Nucleus,HMBOX1,2.47149090245471 +Nucleus,SYT2,0.191253386686805 +Nucleus,YIPF4,2.78889367012725 +Nucleus,SYNE1,0.912798312363542 +Nucleus,ZBTB46,-0.474988659137601 +Nucleus,LMO4,2.61025912936912 +Nucleus,NADSYN1,3.88365622317184 +Nucleus,CRELD2,4.07554026280784 +Nucleus,ZHX3,2.10550782869292 +Nucleus,TBCEL,0.122552067105728 +Nucleus,NAPG,1.72056241879141 +Nucleus,TMEM116,3.13031502536506 +Nucleus,HTR7P1,0.0370666173239622 +Nucleus,GBP1,-0.69562136059592 +Nucleus,LLGL1,4.27257477394341 +Nucleus,MYOM3,0.0669094009510144 +Nucleus,CYP2J2,0.72288926636569 +Nucleus,C4orf19,-1.00030039110992 +Nucleus,FOXO1,-0.0169839856057553 +Nucleus,XKR9,1.2578565603537 +Nucleus,TNFRSF25,3.54355129942327 +Nucleus,TTLL1,-1.04419248235749 +Nucleus,MYO1E,0.782700611320116 +Nucleus,TRIM2,-0.0031976820239082 +Nucleus,PTPRH,-0.182811844622979 +Nucleus,ERN1,0.551398137001045 +Nucleus,FTO,1.33340044807891 +Nucleus,DNAJC22,0.167307699458801 +Nucleus,FDXACB1,-0.354362542699491 +Nucleus,FOXF1,0.157112290956089 +Nucleus,ADGRG6,0.451255575304802 +Nucleus,RRP15,1.27664584468854 +Nucleus,FAM162A,1.8735023988347 +Nucleus,MAPK8,2.5566368525071 +Nucleus,SRD5A1,2.98320940406346 +Nucleus,TM2D2,0.762560795523482 +Nucleus,PEX2,2.10080343908546 +Nucleus,MTMR10,0.532776726016924 +Nucleus,ENAH,2.81908964955343 +Nucleus,MIER2,0.788105105324924 +Nucleus,EMILIN2,0.583040661058521 +Nucleus,LAS1L,4.58946278400002 +Nucleus,PTEN,0.164136625303667 +Nucleus,SHISA9,0.278373578299198 +Nucleus,MDM4,3.46553695439912 +Nucleus,MPP7,-1.03618238156696 +Nucleus,TESK2,0.118439205872237 +Nucleus,TP73,-1.17339095283909 +Nucleus,TTC28,-0.128302599417734 +Nucleus,GLI3,-0.566580378606217 +Nucleus,NEMP2,1.45724068562161 +Nucleus,DYM,0.203873395956441 +Nucleus,SMPDL3A,0.421828945944073 +Nucleus,C19orf26,0.865019360144397 +Nucleus,DDX50P2,-1.72901431985678 +Nucleus,ANKRD9,-0.709186792167445 +Nucleus,CDS1,0.1844744715211 +Nucleus,DGKZ,3.99202613066995 +Nucleus,PGPEP1,1.16867149521173 +Nucleus,WNT10A,-0.250652382981455 +Nucleus,C20orf194,0.26294514744847 +Nucleus,DNAJC27,1.59984493275104 +Nucleus,TBX18,1.24154227303488 +Nucleus,BTG1,0.42018928038814 +Nucleus,FBN1,0.079750514896237 +Nucleus,GATA3,-0.0983339061833732 +Nucleus,EVI5,-0.179032270733011 +Nucleus,GPR158,0.495964463016627 +Nucleus,ATAD3B,1.37425690772962 +Nucleus,AR,-0.146005076059137 +Nucleus,NUPL1,1.92530520907603 +Nucleus,CLDN1,0.158326127843692 +Nucleus,PPP1R3C,0.177556453962443 +Nucleus,ZNF586,1.46698225864316 +Nucleus,ZNF71,0.205793594633479 +Nucleus,TPCN2,3.53483468384548 +Nucleus,IGSF9B,0.872211646436393 +Nucleus,EPB41L4A,-0.286214542655099 +Nucleus,ZNF572,1.48086101562743 +Nucleus,LURAP1,1.25190374857635 +Nucleus,NAV3,-0.00751285397024271 +Nucleus,OAS1,-1.28410695375732 +Nucleus,CCDC176,0.1469960713808 +Nucleus,ANO7,0.58767872652282 +Nucleus,HAPLN1,0.0304224756707101 +Nucleus,FAM178A,0.556362322278048 +Nucleus,SLC9A7,0.911078340759551 +Nucleus,SLC24A1,0.968102059707449 +Nucleus,ZNF81,1.16631406345959 +Nucleus,MRPS11,1.13486015958608 +Nucleus,ISM1,-0.936672096186648 +Nucleus,GMPPA,4.09926346338376 +Nucleus,GSG1,-0.828362261055686 +Nucleus,PPP1R12B,3.34343801588926 +Nucleus,CPSF2,0.440399220916377 +Nucleus,EHHADH,-0.912040930522974 +Nucleus,TIPARP,0.0545957125696777 +Nucleus,KDM1A,2.36376136637721 +Nucleus,ATPAF1,1.05105407672134 +Nucleus,CEP78,0.372385451137248 +Nucleus,FAM110B,0.181966706419582 +Nucleus,RASGEF1C,1.31385560179243 +Nucleus,DPYD,0.324754197257257 +Nucleus,DOPEY2,-0.283430481886725 +Nucleus,ZFYVE19,3.04842065512104 +Nucleus,PAXIP1,2.51100013006478 +Nucleus,ICAM3,-0.0893776329576983 +Nucleus,IFIT3,-1.14813497421709 +Nucleus,RNF141,-0.745734007230399 +Nucleus,LUCAT1,4.71884623702983 +Nucleus,FRK,0.624002049203606 +Nucleus,DGKG,-0.630697914269928 +Nucleus,SOX17,0.0113942640556817 +Nucleus,XKR8,-0.383581593513586 +Nucleus,GPR27,-1.23669248658587 +Nucleus,RRN3P3,2.70546261223424 +Nucleus,LMTK3,-0.20964513828446 +Nucleus,ACSF3,3.41211885638644 +Nucleus,ADGRA2,-0.793087240308778 +Nucleus,AKAP9,0.858973557629904 +Nucleus,C17orf85,1.25023502203347 +Nucleus,IL1R1,-0.684208127218053 +Nucleus,FAAH2,0.854599994584017 +Nucleus,CHIC1,1.17464212376766 +Nucleus,ZNF92,0.449016646017497 +Nucleus,METTL14,1.11810020708245 +Nucleus,STAM2,0.00880176652245639 +Nucleus,BMP2,0.330499695358685 +Nucleus,ZNF706,5.36213409245053 +Nucleus,SLC25A40,1.09335167204836 +Nucleus,WRAP53,1.35695634414831 +Nucleus,RGAG4,-0.161979822365095 +Nucleus,ZNF165,-0.167550495516072 +Nucleus,LRRN2,0.38225287842475 +Nucleus,EPPK1,0.33191565019279 +Nucleus,ZSCAN22,0.786312965930376 +Nucleus,PCLO,0.782766762800644 +Nucleus,ZNF37BP,1.49344502472381 +Nucleus,MYH15,-0.124454098451516 +Nucleus,UST,-0.562161844572862 +Nucleus,TTL,2.74824713950648 +Nucleus,ARHGAP44,-0.0277305831901843 +Nucleus,FBXW8,2.47370430943399 +Nucleus,PRKACB,-1.47699773768803 +Nucleus,ULBP1,0.518749916708805 +Nucleus,TTC21B,1.3283775231161 +Nucleus,DOCK9,0.181882154633674 +Nucleus,ZNF251,1.26621100029067 +Nucleus,SAP30L,0.505038809639791 +Nucleus,COMMD2,1.37139638664454 +Nucleus,MOB4,0.266716361202893 +Nucleus,ESPL1,4.06181685235096 +Nucleus,SGK3,-0.302581113974899 +Nucleus,PARM1,-0.283413318368999 +Nucleus,ARFRP1,2.69225709311578 +Nucleus,ADAMTSL4,0.13842372911039 +Nucleus,ZNF700,1.96442402666882 +Nucleus,ZNF37A,1.20783879969892 +Nucleus,GPR75,1.99144432036291 +Nucleus,JAG1,0.923116972922464 +Nucleus,FNBP4,5.44797018624523 +Nucleus,FBXL17,-1.63631552481787 +Nucleus,TMEM199,0.659030937121994 +Nucleus,RNF123,2.63899611478299 +Nucleus,LYSMD1,1.23453166653975 +Nucleus,ZNF813,-0.130833386543626 +Nucleus,SGSH,3.29390119554672 +Nucleus,EPHB2,0.70539393114228 +Nucleus,GDPGP1,1.2476423241377 +Nucleus,C1orf35,0.486944890930654 +Nucleus,RNF24,0.837186083268189 +Nucleus,SLC30A9,0.356843950427415 +Nucleus,VAMP1,4.91340436639762 +Nucleus,DNAJC25,1.14191837116058 +Nucleus,ZNF550,2.42476855121873 +Nucleus,ZNF80,0.571403584000859 +Nucleus,MAP6D1,-0.53069413273485 +Nucleus,PAOX,-0.820608777073229 +Nucleus,FAM188B,0.907772174789125 +Nucleus,HSPA8P14,1.58332423294734 +Nucleus,TIAL1,0.297911710312846 +Nucleus,ZFAND4,0.459259727816786 +Nucleus,NAP1L3,-1.31264088936791 +Nucleus,THOC5,1.12946252273149 +Nucleus,PRSS12,-0.493733125652313 +Nucleus,NAGK,4.95418871644867 +Nucleus,SNX1,2.54401877826516 +Nucleus,TRAF6,2.11207046694356 +Nucleus,COL8A1,-0.23736607853962 +Nucleus,BAIAP3,0.884575432175487 +Nucleus,ZC3H10,1.60746789236693 +Nucleus,ACVR2B,0.638334824157129 +Nucleus,ATP10D,0.62580665972529 +Nucleus,ZNF646,1.74722695338831 +Nucleus,IRGQ,0.766592994538995 +Nucleus,PCNX,1.919405810211 +Nucleus,FER,-0.0698363998025407 +Nucleus,KIAA1586,1.21610905151242 +Nucleus,ZSWIM4,0.0374668046308028 +Nucleus,ZFPM2,-0.817875237489627 +Nucleus,ZBED3,-0.518987762572212 +Nucleus,KLHL15,1.15423088263955 +Nucleus,SH3BGRL2,-0.927548497257175 +Nucleus,RASA2,1.41411362164653 +Nucleus,SNX29,-0.48210428868471 +Nucleus,RPS14,3.68975947422068 +Nucleus,TMEM55B,4.5115896619518 +Nucleus,MON1B,0.267730424396963 +Nucleus,GLS,0.163129058916579 +Nucleus,TLK2,1.82594304897125 +Nucleus,SPRTN,0.987487583470662 +Nucleus,TCTE3,3.43520694422654 +Nucleus,NAA16,2.15278066178395 +Nucleus,C1orf56,-0.103158788494979 +Nucleus,GPR63,1.66022130553047 +Nucleus,GABRA3,-0.821200883948592 +Nucleus,USH1C,-0.227132357536688 +Nucleus,FAM215B,5.42618070675696 +Nucleus,NDUFS8,4.78918287482619 +Nucleus,KIAA2018,-0.0623663573159284 +Nucleus,CEP97,0.908945615962394 +Nucleus,SLC41A3,4.12442023803177 +Nucleus,FAM43A,-0.410054159215215 +Nucleus,TACC3,3.05022091562161 +Nucleus,ZNF329,-0.233636626603334 +Nucleus,DUS1L,2.7654451884495 +Nucleus,ZNF212,0.893391117659615 +Nucleus,PCDHB13,1.19002038601019 +Nucleus,ACBD6,4.57473410900033 +Nucleus,MBOAT1,0.850984063829851 +Nucleus,SDR42E1,0.779144537420896 +Nucleus,AGT,-0.389481275174603 +Nucleus,DLC1,-0.618482604594402 +Nucleus,WHAMM,0.01374601282434 +Nucleus,FBXO42,0.54439741714257 +Nucleus,AMPH,-0.55954245056754 +Nucleus,APBB2,0.42717045824918 +Nucleus,BRCA2,0.466085386517219 +Nucleus,THBS4,-0.013595048711621 +Nucleus,PIK3AP1,-1.22464274651136 +Nucleus,FUNDC2,1.48509298599489 +Nucleus,UEVLD,-0.107161800798971 +Nucleus,ARHGAP11B,3.42504190967606 +Nucleus,VPS37A,1.9903668932066 +Nucleus,SIVA1,4.2378885287192 +Nucleus,SNX32,0.667021134399115 +Nucleus,ANXA2,5.95868930638636 +Nucleus,DPY19L1P1,1.28735528622993 +Nucleus,BAIAP2,3.04531419803739 +Nucleus,CINP,-0.0869466695901695 +Nucleus,PROS1,-0.491262130629484 +Nucleus,CEP295,1.63748463762785 +Nucleus,USP49,3.5357297067266 +Nucleus,MBOAT2,1.20051038954449 +Nucleus,NRDE2,0.995799894352298 +Nucleus,RNFT2,-0.49127057384337 +Nucleus,STK32C,-1.16185865386317 +Nucleus,SYNRG,0.209923340998887 +Nucleus,PARP15,0.0936202897077829 +Nucleus,CCBE1,0.0219297520381694 +Nucleus,RASGRF1,0.0689728324094687 +Nucleus,GPAM,-0.453046521836453 +Nucleus,HCN4,0.684062242392741 +Nucleus,SLC12A6,0.362845982624515 +Nucleus,YPEL1,-0.117317967722941 +Nucleus,PDCD6,5.38565255881169 +Nucleus,LPP,0.687746601758946 +Nucleus,ZNF211,1.02630106634169 +Nucleus,FUT4,0.752887664933189 +Nucleus,VPS13D,1.0841394574848 +Nucleus,ANKRD42,0.753668712983199 +Nucleus,ZNF627,0.696436208131429 +Nucleus,HSF2BP,0.228872009694536 +Nucleus,FANCM,1.17501413618467 +Nucleus,DPY19L4,0.482924334876008 +Nucleus,ELOVL7,0.169948254562435 +Nucleus,RIT1,0.935971802865807 +Nucleus,CEP290,0.720443169311735 +Nucleus,TMEM87B,1.42336768189613 +Nucleus,IKZF5,0.257479111233058 +Nucleus,QRICH2,2.22710707112629 +Nucleus,PSMD3,4.31804329503429 +Nucleus,MCM8,2.74043305500488 +Nucleus,MVB12B,-0.466310950081504 +Nucleus,FZD1,0.106463117063271 +Nucleus,MYO7A,1.26930347015197 +Nucleus,CACNA2D1,0.345987125401456 +Nucleus,CALM2,5.60430246463329 +Nucleus,ILDR2,0.26140415993315 +Nucleus,DCLRE1C,1.82892603993198 +Nucleus,RASEF,0.27340947741611 +Nucleus,PDGFRB,0.379689887876891 +Nucleus,UQCC1,4.53119201724389 +Nucleus,AP1B1,2.06654695245459 +Nucleus,MZF1,3.93730987185501 +Nucleus,FOXC1,-0.358915533967527 +Nucleus,CPSF1P1,-0.15306193227377 +Nucleus,ZSWIM3,0.188605099188619 +Nucleus,BMS1P1,5.59441908681483 +Nucleus,CNP,-0.304773706616271 +Nucleus,DDX43,-0.183080607133453 +Nucleus,SLC27A3,2.13562512504573 +Nucleus,ALG12,1.08642169357723 +Nucleus,MMP19,3.51652488057798 +Nucleus,HOOK3,0.15363610376576 +Nucleus,VSIG10L,-0.676334023972625 +Nucleus,DNM1P41,1.0194854190349 +Nucleus,CTAGE5,0.72836522680189 +Nucleus,ZNF292,1.5664732529163 +Nucleus,OGFOD1,-0.0532090549181638 +Nucleus,ANGEL2,-0.0558961232813124 +Nucleus,DOCK2,-0.800404048850129 +Nucleus,GPR173,1.57424485937118 +Nucleus,TSHZ1,-1.02597218508432 +Nucleus,PEG10,-1.32523097341735 +Nucleus,DR1,1.61287730746745 +Nucleus,TMEM180,-0.222963547115661 +Nucleus,CPSF6,2.76061249476015 +Nucleus,ILVBL,3.81421582879849 +Nucleus,LRCH3,1.49711691755541 +Nucleus,AHSA2,4.80569717350584 +Nucleus,PIGG,3.61833039418941 +Nucleus,PCDHB2,0.116345465939403 +Nucleus,CECR2,1.17607702881721 +Nucleus,PUS1,2.52675057858961 +Nucleus,LAMP1,3.54647432808826 +Nucleus,C3orf62,2.38733249143037 +Nucleus,NIPAL1,0.533735495096956 +Nucleus,PHLPP1,-0.866768095193069 +Nucleus,MCC,-0.745632963727874 +Nucleus,ARHGEF11,2.3342945310545 +Nucleus,SH2B1,3.4469939031945 +Nucleus,TLX2,0.181508672341457 +Nucleus,BICC1,-0.871205747562864 +Nucleus,RPP14,0.889047425603306 +Nucleus,RANBP20P,-1.54106795142778 +Nucleus,CTSC,2.85402747718979 +Nucleus,G3BP1,1.0541057108212 +Nucleus,HNRNPA1P54,0.288278016492785 +Nucleus,REL,2.15016230195258 +Nucleus,DNAJA4,4.50654195221639 +Nucleus,MLH3,1.42097841467689 +Nucleus,ACTC1,-0.840922876661313 +Nucleus,ZDHHC9,1.08676181469298 +Nucleus,CORO2B,-1.18534585922672 +Nucleus,MGAT2,-0.890759286940501 +Nucleus,GPR157,0.590874610522375 +Nucleus,DOCK3,0.398108899020475 +Nucleus,FAM117B,-0.592255034502767 +Nucleus,P3H2,-0.793668309947341 +Nucleus,RPS3,4.686795989974 +Nucleus,ZNF311,0.899802887417063 +Nucleus,JMY,0.098909335590498 +Nucleus,LGI2,0.109291193593115 +Nucleus,SLC41A2,0.15059971154679 +Nucleus,SEMA3E,-0.599323589646246 +Nucleus,COMMD4,2.42165327190148 +Nucleus,CTNNBIP1,-0.735998417756036 +Nucleus,GAN,1.22315015601768 +Nucleus,DCAF17,0.829316752501809 +Nucleus,CCDC113,-0.757704581181671 +Nucleus,LCORL,1.01252054260569 +Nucleus,SYVN1,4.44381002912537 +Nucleus,ABCD4,4.26761213526583 +Nucleus,KRR1,0.834536387710288 +Nucleus,TMEM19,-0.18515477146034 +Nucleus,GRID2,-0.23477586553245 +Nucleus,OTUD1,-0.200183329930295 +Nucleus,KIAA0040,-0.284629645021346 +Nucleus,ADPGK,4.014263165898 +Nucleus,PLEKHA8,1.01691855084701 +Nucleus,GLTSCR1,0.24025266035662 +Nucleus,CDK12,0.095082143335711 +Nucleus,STX11,-1.53086284583306 +Nucleus,USP14,0.397072328520935 +Nucleus,CDK19,-0.327085293787779 +Nucleus,ZNF652,1.28569945141607 +Nucleus,ARRDC3,0.748016279978233 +Nucleus,PCDHB16,0.228804477957243 +Nucleus,WDR26,1.104648059949 +Nucleus,E4F1,0.751988626084496 +Nucleus,ENTPD1,-0.192751143512097 +Nucleus,ROR2,0.43562938468578 +Nucleus,CSPG5,-0.556634999010254 +Nucleus,HNRNPKP3,-1.39207423025702 +Nucleus,MECOM,0.0370119530034116 +Nucleus,TMED8,0.452911360403957 +Nucleus,EME2,3.04383676907517 +Nucleus,ZNF587,2.09757208403552 +Nucleus,CCDC50,1.68699489902445 +Nucleus,SGSM2,2.37241753723418 +Nucleus,CSMD1,1.04013423368457 +Nucleus,RALGPS2,-0.221934290741938 +Nucleus,RTKN2,1.3669011933127 +Nucleus,ATP5G1,4.83930057823964 +Nucleus,EGLN2,4.36387364549052 +Nucleus,CPZ,0.43727863717396 +Nucleus,TRAF3IP1,-0.104722310593366 +Nucleus,SCML2,0.042947630124209 +Nucleus,BEND7,1.18292279965716 +Nucleus,AP4E1,0.471616437800412 +Nucleus,SP3P,-1.1375697930466 +Nucleus,METTL15,0.0643070534399331 +Nucleus,CAND1,3.12815494675758 +Nucleus,RPL36A,4.83377484697664 +Nucleus,SYS1,1.23712737449115 +Nucleus,TMCC1,0.391645728090144 +Nucleus,STK11,2.37299743622556 +Nucleus,LIG4,0.3835725686631 +Nucleus,CDK13,1.02247020521037 +Nucleus,SMAD9,-0.269968165531116 +Nucleus,C12orf50,0.367815706263924 +Nucleus,RNF135,-0.666177236641931 +Nucleus,NUDT3,0.979094163822433 +Nucleus,C22orf23,-0.30966602228182 +Nucleus,SEMA4G,-0.357704363135311 +Nucleus,PPP3CC,0.384464871468072 +Nucleus,GEMIN6,1.22125512875172 +Nucleus,AKT1S1,4.62222624808317 +Nucleus,BAG4,-0.799414814001587 +Nucleus,FLG,-0.463926617119308 +Nucleus,CDK5R1,0.11318074214314 +Nucleus,SSX2IP,-0.399079645131858 +Nucleus,ZBTB34,1.06981416106575 +Nucleus,PRKX,0.351117030642599 +Nucleus,OCLN,0.883619222833838 +Nucleus,NAA30,2.34090573823037 +Nucleus,ISCU,3.81115811410347 +Nucleus,NDUFV3,1.49963912607469 +Nucleus,ZNF169,1.68768436648474 +Nucleus,CLDN4,-0.700426804172938 +Nucleus,ZNF784,-0.585632019906008 +Nucleus,CHRNA9,0.104764365222605 +Nucleus,WBSCR17,-0.531827042256594 +Nucleus,VPS53,-0.0301214313792652 +Nucleus,CXCL14,-0.870571075357341 +Nucleus,C9orf91,0.304345371306675 +Nucleus,ZNF747,0.749814916932834 +Nucleus,ZFHX2,0.367766378492954 +Nucleus,C17orf100,0.757030766735804 +Nucleus,RASSF2,-1.28813894095745 +Nucleus,NBPF9,5.92917528441109 +Nucleus,ZNF397,2.32429728625677 +Nucleus,FAM227B,0.547727542409008 +Nucleus,MRS2,0.212848341466033 +Nucleus,ZNF587B,1.71811813776759 +Nucleus,JAK3,-0.325036843835908 +Nucleus,AMMECR1,0.00842462339692015 +Nucleus,ZNF148,0.612184250874409 +Nucleus,SENP2,-0.205299525904051 +Nucleus,SERTAD4,-0.516180432636121 +Nucleus,FADS3,2.58371086812938 +Nucleus,CTPS2,-0.0974296101653329 +Nucleus,PPAPDC2,0.478506983891026 +Nucleus,FLVCR1,1.83762493193988 +Nucleus,KIF13B,-0.0392398294192285 +Nucleus,LIMD2,1.28368341479264 +Nucleus,PPP2R3A,0.867687929191826 +Nucleus,PCID2,4.55189300386872 +Nucleus,GSDMB,4.37616103382928 +Nucleus,TASP1,1.06145620214011 +Nucleus,ZNF736,1.67369642969389 +Nucleus,RFX7,0.278222199008928 +Nucleus,SLC25A37,2.62021980891557 +Nucleus,EML1,-0.800936352470663 +Nucleus,BTBD9,-0.210003677835814 +Nucleus,MED28,2.01443945491768 +Nucleus,PAPPA2,0.447139603092837 +Nucleus,CDC40,-0.0942505686793367 +Nucleus,PTBP1,5.15409093064589 +Nucleus,GLRB,0.409523075273951 +Nucleus,DDR2,0.865969985924342 +Nucleus,CRLS1,1.86828791015174 +Nucleus,C15orf61,2.12600220335468 +Nucleus,WDR19,1.8331165236818 +Nucleus,GDAP1,0.283616536973532 +Nucleus,CEP68,0.114193125199804 +Nucleus,SVIP,-0.0472129505039448 +Nucleus,LAMTOR3,1.33935133323878 +Nucleus,ZNF184,-0.167627613681824 +Nucleus,SERAC1,-0.0212290102023137 +Nucleus,TRMT13,1.22874358127723 +Nucleus,RSBN1L,0.753616510339033 +Nucleus,DCTN1,3.71478198363881 +Nucleus,PLA2G12A,1.62566777337887 +Nucleus,COL7A1,1.74634566555622 +Nucleus,C15orf52,4.47329112659112 +Nucleus,GTF2IRD1P1,0.713977530948213 +Nucleus,ZFAT,0.19265146347272 +Nucleus,UBA7,0.41921838008565 +Nucleus,LRP8,3.31634289265668 +Nucleus,FAM132B,0.243010296932377 +Nucleus,MAMLD1,0.577581661171226 +Nucleus,TSPAN33,-1.49813190022436 +Nucleus,RGL1,-0.646534609725444 +Nucleus,SLC30A7,1.68494456313119 +Nucleus,ATP11C,0.12411675378699 +Nucleus,ACOT4,-1.67879430261538 +Nucleus,ETNK1,0.849310397019508 +Nucleus,TMOD1,-0.896058243904512 +Nucleus,ERBB2IP,4.93469845012342 +Nucleus,STMN1,5.38005211273982 +Nucleus,SPAST,-0.684231849316433 +Nucleus,THAP6,0.882342852215707 +Nucleus,COL16A1,1.04985555768803 +Nucleus,SLC35B4,0.327137861805467 +Nucleus,CREB5,1.49723080605114 +Nucleus,NBEAL1,1.30185179081321 +Nucleus,ZDHHC24,0.31976883175118 +Nucleus,ZXDA,0.924365565191765 +Nucleus,MIB1,-0.148280992845747 +Nucleus,SYNJ1,0.143074323996711 +Nucleus,ZNF516,0.634876793179549 +Nucleus,GALNT16,0.479948508244625 +Nucleus,BNIP2,0.0463071927941531 +Nucleus,SYT7,-0.0803448366963169 +Nucleus,FAM171B,-0.487901440180545 +Nucleus,STK17B,0.307540531622376 +Nucleus,ZNF77,1.0411025703888 +Nucleus,H6PD,0.511677399044424 +Nucleus,UAP1L1,1.99039404107396 +Nucleus,ACOT8,2.97398694500666 +Nucleus,RPAP2,0.734646179688451 +Nucleus,SP4,0.143501729617699 +Nucleus,HHAT,0.118309498119256 +Nucleus,ZKSCAN4,0.776696528309198 +Nucleus,TTC7A,0.71602324735101 +Nucleus,GMEB1,-0.0368859459468272 +Nucleus,EXOC8,0.588353357410817 +Nucleus,LOH12CR1,1.40633972982476 +Nucleus,ZNF215,1.34333380360735 +Nucleus,DYRK2,0.84933035643098 +Nucleus,FAM167A,-1.16894593842554 +Nucleus,PLXNB3,0.808891569812073 +Nucleus,DDX60L,0.434446203016446 +Nucleus,PCF11,0.75286955930047 +Nucleus,GSPT1,0.988999007364626 +Nucleus,CFLAR,1.44497678136405 +Nucleus,ZNF227,0.361428042733732 +Nucleus,USP13,0.724506232638493 +Nucleus,KIAA1549L,0.824867169019554 +Nucleus,NCOR2,3.93923274240874 +Nucleus,HTR1D,1.24211993394946 +Nucleus,PPAP2B,0.400713595059757 +Nucleus,ATG12,1.19741155934196 +Nucleus,VAPA,0.719346107019162 +Nucleus,CDC37L1,0.105335367553814 +Nucleus,ZBED6,1.07625126886759 +Nucleus,CSPG4P12,4.98888661261334 +Nucleus,ZNF324B,0.790493341256716 +Nucleus,DYRK1A,0.054425114833331 +Nucleus,PIK3C2B,-0.340478617931823 +Nucleus,GOSR2,1.6223871767722 +Nucleus,PRMT9,0.760202579317792 +Nucleus,PLAG1,2.07263720779539 +Nucleus,GID4,-0.443097351450904 +Nucleus,TMEM38B,0.0532857202122681 +Nucleus,ATXN1,1.41568138042382 +Nucleus,TMPPE,1.30822498572577 +Nucleus,SATB2,-0.0663312370785175 +Nucleus,PHF2P2,2.97337330887228 +Nucleus,TBC1D12,0.28230732790242 +Nucleus,LYRM7,0.9014738537812 +Nucleus,MGAT3,-0.492689146633764 +Nucleus,FRS2,0.670350873530625 +Nucleus,ZNF827,0.502154350860611 +Nucleus,B3GNT5,1.12247561933448 +Nucleus,PID1,-0.882626072964976 +Nucleus,NHLRC2,0.963200133490888 +Nucleus,SLC9A3P2,-1.09651124460999 +Nucleus,KDELC1,0.0878612584579894 +Nucleus,PHF10,1.17579426257153 +Nucleus,MEF2D,1.21857254823799 +Nucleus,FRAS1,0.854484499976268 +Nucleus,STK38L,-0.418530582702869 +Nucleus,CCDC152,-0.13613542131783 +Nucleus,TBX15,-0.559510483259294 +Nucleus,CAPZA2,-0.942506829443513 +Nucleus,TOM1L2,0.130549016945977 +Nucleus,ESCO1,0.292227472566039 +Nucleus,TEKT4,1.8079305986705 +Nucleus,PC,-1.26911617474727 +Nucleus,NR6A1,2.18814253199357 +Nucleus,RICTOR,1.14009443440465 +Nucleus,TPT1,2.98353928396778 +Nucleus,ZBTB6,0.402494595338937 +Nucleus,VWA7,-0.0477557434334274 +Nucleus,FAM172A,-1.31417553054064 +Nucleus,SCLT1,0.194197345903438 +Nucleus,NT5DC3,1.05051385962074 +Nucleus,FAM73A,0.323927920492464 +Nucleus,CALM1,-1.05555047507315 +Nucleus,PGM3,0.594254596547963 +Nucleus,LRRN1,0.138240680116861 +Nucleus,IMMTP1,-1.83827789548271 +Nucleus,SEC14L1P1,0.75342284907467 +Nucleus,SASH1,-0.838633062214172 +Nucleus,MICALCL,-0.195755915415148 +Nucleus,ATP6V1E2,0.37120106009052 +Nucleus,LNPEP,1.35590341991802 +Nucleus,CCDC74B,0.494397618296608 +Nucleus,SNHG17,4.70223644909648 +Nucleus,GPR39,0.611700911418544 +Nucleus,IFNAR2,0.834051322923732 +Nucleus,BBS10,0.948267610281175 +Nucleus,ANAPC11,3.98377222000295 +Nucleus,BUB3,3.59404611957963 +Nucleus,FAM46A,0.223041784241578 +Nucleus,GPC6,0.0351066853556408 +Nucleus,TMEM74,-0.317953236156607 +Nucleus,FBXO28,-0.00244009335354351 +Nucleus,CDK5R2,-0.601871378946099 +Nucleus,GNAO1,-0.475533927757727 +Nucleus,ZNF322,1.17639791625164 +Nucleus,EPHB6,-0.859623673956499 +Nucleus,C1QTNF2,-0.254442329792815 +Nucleus,WWP1P1,-0.97687462384644 +Nucleus,XPR1,1.0304254454904 +Nucleus,SH2B2,-1.1555181349545 +Nucleus,CADPS2,-0.295375852179952 +Nucleus,NRIP1,-0.0961545749431515 +Nucleus,IL22RA1,0.367326615083536 +Nucleus,ATE1,-0.543467362910366 +Nucleus,EML6,1.84333477321189 +Nucleus,VAV1,-1.27545503549774 +Nucleus,PDIA3,0.0378028713463347 +Nucleus,MAGI3,0.364505603082269 +Nucleus,LRRC8C,0.559527334707051 +Nucleus,SMG9,2.58666680625215 +Nucleus,COG8,1.79745840566941 +Nucleus,CAB39L,-0.610095557328206 +Nucleus,SUPT5H,5.0147899025435 +Nucleus,AHRR,0.568353532948668 +Nucleus,CDC14B,0.78326504293352 +Nucleus,AP4M1,0.29595386999965 +Nucleus,ZNF497,0.385025649378176 +Nucleus,PLEKHA2,-0.524460121846646 +Nucleus,GXYLT2,-0.404337571554836 +Nucleus,ZNF271P,0.535022466384067 +Nucleus,PARP9,1.15757577724674 +Nucleus,LNX2,-0.135746162267663 +Nucleus,PGM2L1,-0.655351030821 +Nucleus,ZNF70,1.29589939371182 +Nucleus,PDHA1,-0.32775172181639 +Nucleus,ARL1,-0.270358751708416 +Nucleus,CLCN4,0.0140486762073151 +Nucleus,BTN3A1,0.712636138615898 +Nucleus,PTPDC1,0.908232412895247 +Nucleus,IFIH1,-0.919911738680116 +Nucleus,ZDHHC17,2.24070726427253 +Nucleus,ZFP92,1.35263009755332 +Nucleus,TUBGCP4,0.322610880076249 +Nucleus,NUPR1,1.47972628190965 +Nucleus,LYN,0.599768609088224 +Nucleus,FZD5,0.960606463951229 +Nucleus,DHODH,0.289027469613142 +Nucleus,EP400NL,2.46320908932003 +Nucleus,KIN,3.31986383139303 +Nucleus,WNT7B,-0.811536987351091 +Nucleus,PLEKHM1P,2.77917878135988 +Nucleus,CYTH1,5.1305033993924 +Nucleus,LIN7C,-0.874517740402874 +Nucleus,HPS5,-0.266275944151872 +Nucleus,PTRH2,4.61282452189236 +Nucleus,MXRA7,-0.558436822639655 +Nucleus,PDSS2,-0.922835772906146 +Nucleus,ATP2A2,1.57299432956857 +Nucleus,KIAA1143,0.122541886615814 +Nucleus,OSBPL8,-1.4856944582218 +Nucleus,CHST11,0.308399255766667 +Nucleus,CHRDL1,-0.485253730270059 +Nucleus,SCN5A,0.765083031588928 +Nucleus,ZNF33A,1.2425600125404 +Nucleus,GPATCH1,-0.303769644348781 +Nucleus,KDM1B,-0.761847642431591 +Nucleus,ZMAT3,0.95160959395797 +Nucleus,GMIP,0.37786101076668 +Nucleus,GLIPR1,0.17829126832116 +Nucleus,FAM149B1,-0.235847480346664 +Nucleus,PPARA,-0.179462487559548 +Nucleus,TNIK,-0.539000340932124 +Nucleus,DCAF12L1,-1.52460200154961 +Nucleus,MTURN,1.70132583776453 +Nucleus,MTX3,1.34593059028941 +Nucleus,RIMS3,1.3013016115474 +Nucleus,ZNF860,0.765158037425902 +Nucleus,PPHLN1,4.84664155336892 +Nucleus,NSUN3,0.36663092627774 +Nucleus,LTB4R2,2.78690279789783 +Nucleus,PIK3R1,-0.0509885044541912 +Nucleus,WWC1,1.46936323100447 +Nucleus,INHBE,0.272842589843544 +Nucleus,WHSC1L1,0.932968897941277 +Nucleus,DENND6A,0.410177208916789 +Nucleus,MARK1,-0.0359108879514965 +Nucleus,UBXN7,1.40661981634199 +Nucleus,SKIL,0.411395209373017 +Nucleus,CD274,1.46742490540617 +Nucleus,PARP1P1,-0.362496129474967 +Nucleus,MROH1,4.15198682246343 +Nucleus,CCDC120,-0.411315044011617 +Nucleus,ALG9,1.19329858129495 +Nucleus,MMACHC,0.557398508070812 +Nucleus,TSC22D3,-1.41785273775794 +Nucleus,MTSS1L,-0.0823384558153772 +Nucleus,TRIM23,-0.163179798018789 +Nucleus,KLF9,-0.518171391271734 +Nucleus,CYP3A5,0.740793332396732 +Nucleus,NAPB,3.02556541212506 +Nucleus,TADA2B,-0.693228851709415 +Nucleus,COQ4,3.8706843040719 +Nucleus,CASP8AP2,1.07480178711471 +Nucleus,VPS41,0.569521938228639 +Nucleus,ZYG11B,-0.275069467474671 +Nucleus,PPARGC1B,1.04022512437978 +Nucleus,FAHD2A,3.5682954228841 +Nucleus,CAPN5,-0.269032997753417 +Nucleus,ZNF764,0.193617013630216 +Nucleus,CSRP2BP,-0.809905411481988 +Nucleus,UMPS,2.85816046427748 +Nucleus,GPS1,1.76733675855439 +Nucleus,PFKFB2,0.282979774308526 +Nucleus,ERGIC2,0.897072235905916 +Nucleus,ZNF614,0.0142440857083073 +Nucleus,DGCR14,0.0723723347522124 +Nucleus,CEP128,1.42282199822434 +Nucleus,SH3RF2,0.657790591918079 +Nucleus,GFOD2,1.43019266893588 +Nucleus,NOS2,-0.803684217514278 +Nucleus,DNAJC16,1.02671184881823 +Nucleus,SULT1B1,0.6193419215613 +Nucleus,RAD1,1.72881321973629 +Nucleus,CCDC85C,1.44079230000202 +Nucleus,DDHD2,0.454019060723637 +Nucleus,TPST2,0.984976718714107 +Nucleus,RTN4,3.27503688483163 +Nucleus,MBTD1,1.39105691199972 +Nucleus,ANGPTL2,-0.344734612601786 +Nucleus,METTL2B,0.563515851799732 +Nucleus,ZSCAN20,1.26724065737902 +Nucleus,SEC22C,1.52825071577994 +Nucleus,HIPK3,-0.502661696979294 +Nucleus,CHTOP,5.14151410636789 +Nucleus,MIPOL1,1.98474159552441 +Nucleus,LARP4P,-0.208100384999997 +Nucleus,USP40,-0.103630151256726 +Nucleus,RHBDD1,-0.0631648859755336 +Nucleus,SERINC5,0.550377333408103 +Nucleus,DNAJB5,3.54187279079579 +Nucleus,LGALSL,-0.59395007824561 +Nucleus,ATP5BP1,-2.19151061542308 +Nucleus,FAM84B,0.332762595049649 +Nucleus,SIPA1L3,-1.28081989334355 +Nucleus,TMEM39A,1.99972029578046 +Nucleus,SRD5A3,-0.0046896794529125 +Nucleus,OPHN1,0.135201127568367 +Nucleus,SLC22A4,1.27861472547412 +Nucleus,HOMER1,-0.301699556247657 +Nucleus,ZNF551,1.15206798996638 +Nucleus,MBD2,2.96273145568833 +Nucleus,NFIB,-0.209532114833163 +Nucleus,KAT2B,-0.5698797503244 +Nucleus,ZNF197,0.454336050741428 +Nucleus,CCSER2,0.503937828761049 +Nucleus,ASB7,0.336649916224411 +Nucleus,ZFP90,0.355532105427083 +Nucleus,GUK1,3.61990269133719 +Nucleus,CXADR,0.366983033883439 +Nucleus,TMOD3,-0.543431119104063 +Nucleus,ASTN2,4.88745581508298 +Nucleus,ARL10,1.67972840493714 +Nucleus,L2HGDH,0.671457958854384 +Nucleus,KIAA0141,3.06985878843945 +Nucleus,TCTN2,-0.0975972086428866 +Nucleus,FTX,1.08131637864537 +Nucleus,SMEK2,1.32856517688563 +Nucleus,ZNF605,1.05464860511864 +Nucleus,GTF2A1,-0.983719181530556 +Nucleus,MOCS3,0.179031058522268 +Nucleus,RPS6KA3,0.789947947020795 +Nucleus,LANCL2,-0.471899775804182 +Nucleus,GTF2H5,0.81603411929829 +Nucleus,CPT2,-0.718430631228732 +Nucleus,SLC9A3,1.11547652916539 +Nucleus,FOXO4,-1.12829387614996 +Nucleus,SLC37A2,0.346605766909019 +Nucleus,CECR7,1.88579062099921 +Nucleus,IPO5,-0.51660580060985 +Nucleus,SOX4,-0.261663931338928 +Nucleus,RAP2A,-1.10099254103979 +Nucleus,FAM60A,4.8037900749585 +Nucleus,ZRANB1,-0.537787873952156 +Nucleus,EVC,1.97094423980919 +Nucleus,WWTR1,-0.767107441449605 +Nucleus,ADAM10,1.60203922352167 +Nucleus,MYH11,0.150247636125863 +Nucleus,RBM12B,2.39209759809431 +Nucleus,KIF26A,-1.48737637483843 +Nucleus,HK2P1,-1.02630098506187 +Nucleus,HIPK2,-0.817285736781073 +Nucleus,POFUT2,2.70142411235722 +Nucleus,POU2F1,0.149120563409521 +Nucleus,COL4A3BP,0.28279747359234 +Nucleus,TRIP12,0.106548836388772 +Nucleus,FAM199X,1.89951090958416 +Nucleus,RPAP3,1.05245953150987 +Nucleus,SFSWAP,3.93628510422047 +Nucleus,FAM43B,-1.22853100607281 +Nucleus,KANK1,0.0491652934713931 +Nucleus,PRSS54,0.92427409860269 +Nucleus,MPST,3.08652056332418 +Nucleus,KIF13A,-0.565440533306997 +Nucleus,APOL6,-0.257672386172872 +Nucleus,NPTXR,-0.0864793786209198 +Nucleus,TCHP,1.86056432787387 +Nucleus,C3orf58,0.796364559315541 +Nucleus,ZNF343,0.916024016286782 +Nucleus,S1PR2,-0.338120989140968 +Nucleus,JMJD6,1.37584301872108 +Nucleus,ZSCAN29,1.14238215738207 +Nucleus,CCP110,-0.187766179180778 +Nucleus,OFD1,0.479970822224808 +Nucleus,MZT2A,4.91385017335233 +Nucleus,AIF1L,-0.711760571705027 +Nucleus,UBE2D4,-1.41424541421148 +Nucleus,SLC35F3,0.245907023371681 +Nucleus,RPL32P3,5.37210569457673 +Nucleus,NRP1,-0.0582299906174857 +Nucleus,CHM,-0.171615868915304 +Nucleus,NOM1,0.71239864918046 +Nucleus,FAAP20,1.27654444600822 +Nucleus,TMEM120B,1.78634397599078 +Nucleus,TBC1D8,1.03725185316409 +Nucleus,ZBTB43,1.66712300483335 +Nucleus,FAM161B,0.111376727220917 +Nucleus,SORBS1,-0.316443978179135 +Nucleus,CBLL1,0.0799985221858412 +Nucleus,SLC7A11,0.522813137845531 +Nucleus,C5orf66,0.865230201814033 +Nucleus,SNRK,-0.249906785279691 +Nucleus,C12orf43,0.878138172776341 +Nucleus,SDE2,-0.832130672905665 +Nucleus,RNF219,-0.430677224680709 +Nucleus,SMTN,5.26302586904041 +Nucleus,FAM160A1,0.413607975618019 +Nucleus,ARL4A,0.180424372506512 +Nucleus,HSP90AB6P,-1.77455226710517 +Nucleus,MKRN3,2.17193924828257 +Nucleus,UBR1,-0.436562733172625 +Nucleus,PNPLA8,-0.696826158485514 +Nucleus,MAP3K10,-0.514213354338931 +Nucleus,ZCCHC24,-0.940580493388586 +Nucleus,LRRC8B,0.213953655874221 +Nucleus,THSD7B,0.860024269507154 +Nucleus,RMND5B,0.794090758672058 +Nucleus,TMEM63C,0.15068747053716 +Nucleus,NLE1,1.05115283324971 +Nucleus,HSD17B1,1.60280519597992 +Nucleus,TTC3P1,-0.642214561799337 +Nucleus,MAN2A1,1.03427517705783 +Nucleus,FLYWCH1,0.391093038011271 +Nucleus,CLUHP3,3.42358598966907 +Nucleus,ST6GAL1,-0.63107223814939 +Nucleus,CWF19L2,0.679960993310496 +Nucleus,UBE2V2,0.523546511427609 +Nucleus,EMG1,1.73364767599196 +Nucleus,ETFB,3.79919321410164 +Nucleus,F8,-1.71204793300963 +Nucleus,DDX19B,1.03552473892076 +Nucleus,SNX33,2.33952326350889 +Nucleus,GEN1,1.75522798028632 +Nucleus,EEF2K,-0.0396246022047828 +Nucleus,TMEM184C,-0.5062475674845 +Nucleus,MMAB,0.180551777459625 +Nucleus,GIPC3,-0.0557868866218483 +Nucleus,KLF7,1.22168272172391 +Nucleus,HERC6,-0.399308735791918 +Nucleus,DNAJB9,0.447906387172461 +Nucleus,ZSCAN12,1.70308517611024 +Nucleus,FAM122A,0.259862427443669 +Nucleus,TVP23A,-0.290878745023433 +Nucleus,DBNL,1.51690305298425 +Nucleus,ZNF628,-0.548784401282411 +Nucleus,TRMT1L,-1.01546266408622 +Nucleus,TMEM56,-0.249481823909666 +Nucleus,SMNDC1,0.716384314614946 +Nucleus,GALNT15,0.122042829523788 +Nucleus,MCOLN2,1.03964354210209 +Nucleus,SLA2,0.424883781573542 +Nucleus,CASP8,1.10231551014976 +Nucleus,KSR1,0.998350617735866 +Nucleus,NIPA1,0.990530223443312 +Nucleus,NFAT5,0.845611519805895 +Nucleus,THOP1,2.25146424879938 +Nucleus,TMTC3,0.074122316627953 +Nucleus,OTUD4P1,-0.689226854134563 +Nucleus,RAPGEFL1,2.69050421912462 +Nucleus,KRTCAP2,4.24410397867057 +Nucleus,PIGK,-0.147027071620175 +Nucleus,FRS3,-0.236806110637516 +Nucleus,RCOR1,-0.289246771747127 +Nucleus,PEX6,-1.7954570083359 +Nucleus,RBM33,1.14976836097244 +Nucleus,RASD2,-0.823462087608921 +Nucleus,TPMT,-1.88317233730543 +Nucleus,MTHFR,0.472880196886187 +Nucleus,LUC7L3,5.31010320250745 +Nucleus,ANKRD49,0.879058826237709 +Nucleus,OSBPL10,-0.145807758258476 +Nucleus,STYX,-0.517897293017961 +Nucleus,RABGGTB,5.20003205716388 +Nucleus,NEK10,-0.0881854850676416 +Nucleus,BLACAT1,2.4246081562804 +Nucleus,UPF3A,4.16435647964418 +Nucleus,IPMK,-0.73117547037452 +Nucleus,MAPK1IP1L,-0.323207241639705 +Nucleus,ZNF778,1.98130234831983 +Nucleus,VPS13C,0.642979674577384 +Nucleus,MAGEE1,-0.788459920064225 +Nucleus,GPC4,-0.294253365036741 +Nucleus,DTX4,-0.234217857521705 +Nucleus,ZNF480,-0.402994993454668 +Nucleus,COG3,0.843254620910904 +Nucleus,PKD2,1.3149263606887 +Nucleus,TIA1,1.75301841593956 +Nucleus,CALCOCO2,-0.477251505768335 +Nucleus,NLN,1.43526138765265 +Nucleus,CA13,0.727928895496966 +Nucleus,SPRED1,-0.536339772778988 +Nucleus,KIF5C,0.294140812545903 +Nucleus,SEC22A,0.986665374961461 +Nucleus,ZNF365,0.165958915403957 +Nucleus,ACTR3,5.52023687455745 +Nucleus,ARHGAP31,-0.864760160087947 +Nucleus,GREB1,-0.426827456407603 +Nucleus,KRBOX4,1.51965181171097 +Nucleus,SCAF11,0.338542279405237 +Nucleus,KIAA0355,-0.0271744281896837 +Nucleus,ELK4,1.30589620539914 +Nucleus,GMCL1,0.24168402561421 +Nucleus,CBFA2T2,0.772145044034131 +Nucleus,TIGD7,1.34093444175081 +Nucleus,HELQ,0.661354224807546 +Nucleus,RDH10,-0.402031425798294 +Nucleus,SNRNP48,0.880118036416511 +Nucleus,SLC35B3,0.169787572776412 +Nucleus,TMX4,-0.807525662127085 +Nucleus,ARSB,-0.541624983651499 +Nucleus,IQSEC2,-0.262812662466544 +Nucleus,MAN2B2,1.17087521912159 +Nucleus,PRKCE,-0.742078644783993 +Nucleus,INO80D,1.29619885333086 +Nucleus,BPGM,-1.4963558597345 +Nucleus,ICE2,0.818828054083922 +Nucleus,DMXL1,0.754184284185104 +Nucleus,TIGD5,0.974467024468061 +Nucleus,RAPH1,0.257346695104336 +Nucleus,KIAA1033,0.155681392943779 +Nucleus,ALKBH8,0.0379255533382796 +Nucleus,C16orf72,1.83607139440414 +Nucleus,ZNF618,-0.0124978989504604 +Nucleus,CCSAP,-0.105702260017265 +Nucleus,VASH1,0.387992693339277 +Nucleus,LTB4R,4.05075829204131 +Nucleus,ARID3A,-0.200955566052828 +Nucleus,KIAA1211,-0.860429049745525 +Nucleus,GP6,0.151028401187001 +Nucleus,CPPED1,0.44872811702057 +Nucleus,SLC7A6,1.73202721518822 +Nucleus,METRN,0.593640975495399 +Nucleus,HECTD2,1.88270118744971 +Nucleus,ACOX1,-0.0545859004025835 +Nucleus,ZNF749,1.66963706320668 +Nucleus,KIAA1549,0.311938550655308 +Nucleus,ADCY9,-0.103247639265117 +Nucleus,FIG4,-0.4731909539122 +Nucleus,DCHS1,0.13827046875239 +Nucleus,ZNF438,-0.155628559949872 +Nucleus,EEA1,0.636395995996138 +Nucleus,SEC63,1.53296093046472 +Nucleus,IGDCC4,-0.289556952415301 +Nucleus,FNIP2,0.142733736774194 +Nucleus,ZEB1,-0.968471620718731 +Nucleus,UPP1,4.09784084825011 +Nucleus,PAN3,0.779603239325587 +Nucleus,ZNF451,0.659745541752028 +Nucleus,RFXAP,1.31851686924377 +Nucleus,EPPIN,-0.46247148157841 +Nucleus,HUNK,-0.230571267386244 +Nucleus,FRMD4A,0.36182040664476 +Nucleus,PTER,-0.382981700849766 +Nucleus,NHLRC3,2.15084695555559 +Nucleus,PARP4P2,0.0448738563010114 +Nucleus,ITGB1BP1,2.60466917095927 +Nucleus,C8orf46,-0.0815616583087866 +Nucleus,WNK4,1.43923846049261 +Nucleus,DPY19L2P2,1.45483912300895 +Nucleus,BRWD3,1.01582261542838 +Nucleus,SSH2,0.285344364548377 +Nucleus,NSUN4,1.39728222285222 +Nucleus,FAM105A,0.719964194164131 +Nucleus,THRAP3P1,-1.54774490839908 +Nucleus,CCDC25,-0.465448424034103 +Nucleus,METTL21B,-0.128864949877451 +Nucleus,ZNF561,0.45126350320499 +Nucleus,SAMD10,-0.162914224802079 +Nucleus,PTAR1,1.90896665298314 +Nucleus,C1GALT1,1.07097865794786 +Nucleus,KIAA1462,-1.23037315951165 +Nucleus,RAD50,0.429893142267627 +Nucleus,MEF2A,0.124137940685874 +Nucleus,TRIM33,0.730709700940925 +Nucleus,SDF4,3.22252635903408 +Nucleus,OPLAH,0.157815685371176 +Nucleus,DNAJC3,0.0800044040801394 +Nucleus,ARMCX5,0.443361859389197 +Nucleus,ZBTB21,-0.105928366145171 +Nucleus,MIA3,1.2895551729239 +Nucleus,PURA,0.304158671786859 +Nucleus,ABCD1,-0.645306307567368 +Nucleus,DOCK10,0.352476007772462 +Nucleus,PNMA2,-0.297648255487534 +Nucleus,INO80E,3.41640013133858 +Nucleus,QRFPR,0.603612349553939 +Nucleus,XRCC6P4,-2.22980761343373 +Nucleus,TAF1D,5.11567291026964 +Nucleus,ASAP2,-0.288349027639246 +Nucleus,TBC1D14,-1.15348356745432 +Nucleus,MIER1,-0.0741310572199702 +Nucleus,DIXDC1,-1.14657453071773 +Nucleus,ARRDC1,0.744102116414647 +Nucleus,PLEKHF2,-0.512263572834927 +Nucleus,ARFGEF3,-0.0680486750381388 +Nucleus,KIAA0930,0.47588969537931 +Nucleus,SLC16A2,-0.447911126946422 +Nucleus,PITPNM2,0.554651862882484 +Nucleus,C18orf25,1.04732161231623 +Nucleus,SPTY2D1,-0.331605825170821 +Nucleus,ABHD15,0.205584784017086 +Nucleus,MCM5,2.11526916848092 +Nucleus,PDLIM5,-0.0466877369113418 +Nucleus,ANKRD50,0.521828963441738 +Nucleus,KLHL42,1.06640792933607 +Nucleus,ICOSLG,0.323849759036508 +Nucleus,C2orf49,1.60518882299431 +Nucleus,CX3CL1,0.788840387241852 +Nucleus,C2CD3,0.903597071074455 +Nucleus,ALOXE3,-0.169116694389376 +Nucleus,PLEKHM3,1.34145467901564 +Nucleus,RNGTT,-0.963200959112825 +Nucleus,PI4KAP2,4.7725042645371 +Nucleus,PPP1R2,-0.767922341833813 +Nucleus,CXorf38,0.770152708293575 +Nucleus,ATXN7,0.930967018544402 +Nucleus,DDX58,0.0290619170310262 +Nucleus,TRMU,1.77720857246007 +Nucleus,TPTEP1,1.74994998296982 +Nucleus,CHRNA4,1.12348102912468 +Nucleus,ATXN7L2,3.64264525167255 +Nucleus,ACAD11,2.28834579526372 +Nucleus,B3GALT6,0.311962576133521 +Nucleus,SLU7,-1.44569555725728 +Nucleus,MTA3,1.019929174832 +Nucleus,OSBPL7,1.69026441873077 +Nucleus,RAE1,5.25090792424113 +Nucleus,C3orf17,1.7036388873336 +Nucleus,MAP3K1,-0.177888785000369 +Nucleus,CYB5B,2.33967713374549 +Nucleus,ATAD3C,0.748023154991928 +Nucleus,PLEKHG3,2.37726078217072 +Nucleus,IFT122,4.42145897931904 +Nucleus,CNST,0.33465881643488 +Nucleus,CCDC69,-1.17095390484816 +Nucleus,VTI1A,0.665452325250449 +Nucleus,SOCS4,2.64794303512961 +Nucleus,ABCC9,0.200364802082275 +Nucleus,TMEM8B,-0.475194361681507 +Nucleus,PTPRG,0.0318926183586794 +Nucleus,LATS1,0.652708299984467 +Nucleus,FBXW2,0.927518160652367 +Nucleus,SIX4,0.636199163355464 +Nucleus,VSIG10,-0.315980103806093 +Nucleus,THNSL1,-1.01415321207235 +Nucleus,DUSP10,0.0645253572943503 +Nucleus,UBE2K,1.54464458762868 +Nucleus,HIVEP3,-0.14366358938223 +Nucleus,FDX1,-0.784309293583697 +Nucleus,B3GNT9,1.15978979007773 +Nucleus,TMEM92,0.24778768432948 +Nucleus,NLRX1,-0.731858546540967 +Nucleus,NAV2,0.301469688216133 +Nucleus,SVILP1,-0.827381252537285 +Nucleus,APH1B,1.00458788281791 +Nucleus,KIF4B,-1.47492892285393 +Nucleus,RAB36,-0.541397249638671 +Nucleus,MAP3K12,3.90951345858018 +Nucleus,SYNPO,1.78958202145005 +Nucleus,RAB11A,2.00688352253293 +Nucleus,SLC22A20,0.0811912925422479 +Nucleus,SNX27,-0.273642639175975 +Nucleus,CROCCP2,1.94814007560064 +Nucleus,SGMS2,-0.00178938188570332 +Nucleus,C19orf44,0.443302083168027 +Nucleus,BTNL9,2.04264351511518 +Nucleus,FOXN3,-0.793298651378576 +Nucleus,SHOC2,-0.90515583420522 +Nucleus,SPATA5L1,-0.795147765229452 +Nucleus,C11orf72,0.998864348697566 +Nucleus,RALGAPA2,0.121018645025408 +Nucleus,SECISBP2L,-0.216543631345857 +Nucleus,RNPC3,3.28198174499516 +Nucleus,GAS2L3,0.05313190974618 +Nucleus,LOX,-0.901131299815862 +Nucleus,TUBGCP5,0.59859739507311 +Nucleus,SALL2,-0.830751521802822 +Nucleus,PAICS,1.28793581466945 +Nucleus,ARHGAP32,0.144335413319016 +Nucleus,PCDHA6,0.307856932998755 +Nucleus,KHNYN,0.163820639443229 +Nucleus,ACAP2,0.129349009467082 +Nucleus,LARP1B,0.0162701329978369 +Nucleus,CCDC14,5.86745750954528 +Nucleus,NUDT19,-0.39225024631924 +Nucleus,TBC1D4,-0.858823666499562 +Nucleus,CORO2A,-0.948823854638753 +Nucleus,CDC42BPG,-0.490397296465465 +Nucleus,SLC17A5,-0.162942293122233 +Nucleus,OGFR,4.40978287794579 +Nucleus,SSH1,-0.157777702235017 +Nucleus,WDR73,1.41573925290407 +Nucleus,ZFHX3,-0.320346316932535 +Nucleus,TMSB4Y,-0.972570692862048 +Nucleus,TRPA1,-0.263230210139101 +Nucleus,INSIG2,0.947913664563522 +Nucleus,TSPAN17,3.13934049338431 +Nucleus,PLA2G6,1.25007541376007 +Nucleus,PILRB,4.15631718878701 +Nucleus,HOXC11,-0.446790365560962 +Nucleus,OTOGL,0.219238749618078 +Nucleus,ZBTB18,0.118289500697997 +Nucleus,STX1B,0.940257435074554 +Nucleus,HIC2,1.39373438890807 +Nucleus,TRPM7,0.76585870258934 +Nucleus,FAM109A,-0.0920699651617698 +Nucleus,EDEM3,0.602202909296688 +Nucleus,C2orf42,0.0981764720693121 +Nucleus,TRIM62,-0.363296234915437 +Nucleus,CCDC73,-0.547375549391203 +Nucleus,TMEM229B,0.0846711568033618 +Nucleus,OGFRL1,-1.13465491454439 +Nucleus,TEF,-0.266723648777434 +Nucleus,PGS1,4.67138155790325 +Nucleus,BMPR1A,1.50749200539104 +Nucleus,ANO8,0.288230610805382 +Nucleus,MAPK12,2.91751195045115 +Nucleus,EPB41L1,-0.450376455808017 +Nucleus,ZBTB33,0.0994818172039088 +Nucleus,TECPR1,-0.390989023223774 +Nucleus,TMEM37,-0.345458706643616 +Nucleus,CRYBG3,0.494195031815252 +Nucleus,NUDT16,0.658497642873157 +Nucleus,LARP4B,-0.308842283036236 +Nucleus,ZNF653,-0.289229078286183 +Nucleus, MARCH6,1.15758968832786 +Nucleus,RBM25,5.55941104329053 +Nucleus,SFPQ,4.73196339487631 +Nucleus,C19orf68,-0.591041940882569 +Nucleus,C22orf39,0.910583439617098 +Nucleus,PBRM1,-0.446246366669565 +Nucleus,CDAN1,-0.606032783858406 +Nucleus,HIST1H2AG,-0.554714090560585 +Nucleus,HNRNPL,6.13152645410644 +Nucleus,LRRC16A,-0.431428148475122 +Nucleus,RER1,5.87849560705838 +Nucleus,ZNF319,-0.316947320529277 +Nucleus,ZNRF2,0.521306238049642 +Nucleus,MCUR1,-0.0985290196400872 +Nucleus,EPB41L4B,-1.00389975581273 +Nucleus,C15orf40,2.09542651691811 +Nucleus,USP18,-1.11353528714715 +Nucleus,KLHDC10,-0.116584327401372 +Nucleus,SIX1,0.206543488919943 +Nucleus,FBXO38,0.688903444509973 +Nucleus,HCG11,0.0621001891778215 +Nucleus,RTN3,2.31435941009134 +Nucleus,SASS6,0.382291282767501 +Nucleus,SLC1A3,2.31980267213075 +Nucleus, SEPT3,-1.03964082978554 +Nucleus,ZNF462,0.628622291650112 +Nucleus,SCP2,-0.127071673972683 +Nucleus,LRRC37A4P,3.13796925312702 +Nucleus,ZNF513,2.08923010055505 +Nucleus,KLHL20,-0.547110284346226 +Nucleus,ZNF770,-0.236278183905895 +Nucleus,INPP5F,-0.15473853271495 +Nucleus,HNRNPDL,1.56853767050923 +Nucleus,RAB3GAP2,-0.359325699605542 +Nucleus,IER5L,0.0163676917266912 +Nucleus,RPRD1A,-1.128505439705 +Nucleus,TRIM68,-0.315772823081647 +Nucleus,RC3H1,0.272893210499693 +Nucleus,DNTTIP2,1.90096719691734 +Nucleus,ATP2B1,0.301530559761349 +Nucleus,NYNRIN,-0.118988940159225 +Nucleus,SPATA2L,-0.64669396803658 +Nucleus,TNFAIP3,0.347237034872149 +Nucleus,UCN2,2.0441854250373 +Nucleus,VMA21,-0.30227743461327 +Nucleus,AGAP2,0.951339649966135 +Nucleus,HINT3,-1.01229937919594 +Nucleus,N4BP3,0.616579669066099 +Nucleus,GLP2R,-0.746353357759448 +Nucleus,GPAT2,2.99792404202845 +Nucleus,KIAA1147,0.755069076494811 +Nucleus,PES1P2,-2.02863120824519 +Nucleus,TET2,0.233833345010725 +Nucleus,FNIP1,0.955384953232861 +Nucleus,MYPOP,-0.558131085460137 +Nucleus,CHST6,0.778653762583667 +Nucleus,SLC35C2,1.56479434569905 +Nucleus,LRBA,0.857882272463453 +Nucleus,ELOVL4,0.208668853769132 +Nucleus,SLC44A1,0.418996814789533 +Nucleus,SEC11A,4.8936775099826 +Nucleus,FKBP14,0.288215766347982 +Nucleus,SYNJ2BP,0.798555902079259 +Nucleus,YIPF6,0.982152662933493 +Nucleus,NARF,0.0562291179649821 +Nucleus,HABP4,-0.677678464498459 +Nucleus,SAYSD1,-0.810044654081913 +Nucleus,MED9,4.26293510766218 +Nucleus,KIF21B,0.00626483356794501 +Nucleus,IGFBP5,-0.0480623827133057 +Nucleus,SEC23IP,-0.452093359331302 +Nucleus,SPRN,0.677437540702439 +Nucleus,KRT34,-1.73894828993503 +Nucleus,RILPL2,-0.684541235365104 +Nucleus,FAM217B,-0.540828492958994 +Nucleus,TNKS,-0.271844745953291 +Nucleus,ZNF354A,0.889760428033554 +Nucleus,SFT2D2,0.297087319291561 +Nucleus,WDR12,1.20095240809678 +Nucleus,DOCK5,0.883266804458647 +Nucleus,KLHL36,1.05504305206585 +Nucleus,CAPN7,0.53033532235584 +Nucleus,SDK2,0.243180961303074 +Nucleus,BNIP3,3.19392404743097 +Nucleus,GNAZ,-0.98976429391768 +Nucleus,ARID5B,0.0260366799184379 +Nucleus,SLC35D1,0.898784646264721 +Nucleus,CD3EAP,-1.32506210673024 +Nucleus,FAM118A,2.8801536733468 +Nucleus,AMDHD2,2.27090541302737 +Nucleus,PEX12,-0.363187887898355 +Nucleus,UBL3,-1.44539097380228 +Nucleus,AHNAK2,-0.515918152448482 +Nucleus,FRAT2,-0.476070174322029 +Nucleus,BHLHE41,-0.206197595851764 +Nucleus,ZXDB,0.211010821402496 +Nucleus,ARID3B,0.406714246947447 +Nucleus,FBXO33,-1.10119725411843 +Nucleus,EIF2AK2,0.615035347802929 +Nucleus,N6AMT1,1.82794627687106 +Nucleus,GMPS,1.20219685749748 +Nucleus,PSMB2,0.513432084744481 +Nucleus,ZNF248,2.17655882852217 +Nucleus,NIPAL4,-0.134365483638783 +Nucleus,MAD2L1,0.365836402994612 +Nucleus,SORD,2.18269148285575 +Nucleus,CPD,-0.17643592224883 +Nucleus,HCN2,0.183793844091376 +Nucleus,MOCOS,-0.561529694205843 +Nucleus,ZNF280B,0.674443170136756 +Nucleus,HM13,3.52558875984645 +Nucleus,TLR6,1.58389703142122 +Nucleus,MPLKIP,2.52739293517684 +Nucleus,TP53BP1,2.02758928526921 +Nucleus,WDR47,-0.196678031606221 +Nucleus,SH3RF1,-0.3924417746165 +Nucleus,EMP1,0.655328780440269 +Nucleus,SCARB1,4.67603619572039 +Nucleus,BEND3,-1.18724390361148 +Nucleus,EHD3,-0.554768333461357 +Nucleus,LRRC3,0.986439191970662 +Nucleus,GATA4,-0.773012337806701 +Nucleus,CELSR3,0.594101687340674 +Nucleus,HDAC7,4.67076529278076 +Nucleus,NOVA2,-0.94002316639016 +Nucleus,RAPGEF6,0.877933196196147 +Nucleus,MBTPS2,0.13095509961696 +Nucleus,ZNF488,-0.0558421148871176 +Nucleus,PDCD2,-0.0436736003512958 +Nucleus,SPOCK1,-0.788577515029609 +Nucleus,SNX30,-0.237052919678893 +Nucleus,GOLGA5,-1.24801488692571 +Nucleus,LRIG3,0.388851140506096 +Nucleus,CARD6,-0.0506297922255145 +Nucleus,TAF8,1.03809716847834 +Nucleus,BRI3,0.557985324642983 +Nucleus,RASSF5,-0.823359154393747 +Nucleus,ZNF252P,-0.789159203024231 +Nucleus,SEC62,-0.386391404696879 +Nucleus,ARL4D,-0.647341158645164 +Nucleus,LARP4,0.359702460208863 +Nucleus,ARL5B,-0.114593511899017 +Nucleus,STRIP2,1.58497781528487 +Nucleus,STIM1,-0.145904868849036 +Nucleus,ACSBG1,-0.0846498876964614 +Nucleus,PABPC1P2,-1.81177120069732 +Nucleus,LARP6,-0.0459496906075071 +Nucleus,TANGO6,-0.400603923325814 +Nucleus,HADHAP1,-0.0803005336025805 +Nucleus,LRCH1,0.0467044405060325 +Nucleus,JRKL,0.58538295045599 +Nucleus,AGPAT4,2.06753043742522 +Nucleus,ADRBK2,0.531493690658261 +Nucleus,POLR3G,-0.565356355106245 +Nucleus,FOXD2,0.146672604604699 +Nucleus,ZNF267,0.680846587736643 +Nucleus,MYSM1,2.57789642548202 +Nucleus,FBXO46,0.430801916098476 +Nucleus,FMNL3,1.04241325473034 +Nucleus,EIF4E,2.88748142503979 +Nucleus,PCGF3,1.13408039329765 +Nucleus,THEM6,-0.146552682748451 +Nucleus,KDELC2,-0.584051383757616 +Nucleus,FZD8,0.925408075336422 +Nucleus,USP37,0.828361322251632 +Nucleus,CCDC127,2.5138757242368 +Nucleus,SLC19A2,1.14310228601964 +Nucleus,ZNF354C,0.290756194238043 +Nucleus,FNDC3B,-0.479907491169353 +Nucleus,AMIGO1,0.700069145025737 +Nucleus,HSP90AB7P,-0.165070046809107 +Nucleus,MAP3K9,0.986756889002163 +Nucleus,NOL12,4.09449865185962 +Nucleus,TMEM242,1.61386236805129 +Nucleus,CACUL1,0.348381811397041 +Nucleus,HECA,-0.706921043739368 +Nucleus,PIK3IP1,1.10190909748696 +Nucleus,LCOR,1.38087662895638 +Nucleus,PIGM,1.092458753868 +Nucleus,PEX13,-0.122104522146679 +Nucleus,F2RL2,0.686144539173274 +Nucleus,TIGD1,1.21653002832422 +Nucleus,SAGE1,0.669693715832013 +Nucleus,OLIG2,-0.767447267617813 +Nucleus,TSC22D2,2.59457646575219 +Nucleus,KIAA0430,-0.148932080594964 +Nucleus,GLG1,0.491025959848606 +Nucleus,LRP6,1.48629039904151 +Nucleus,FAM210A,0.0727377301552675 +Nucleus,USP31,0.492596896255532 +Nucleus,RAB39B,-0.211311611771524 +Nucleus,MINA,1.09415108354453 +Nucleus,NUDT5,1.54772471168627 +Nucleus,TULP4,-0.872091047939515 +Nucleus,WNT3,0.0105938442295035 +Nucleus,TIFA,-0.276940050816496 +Nucleus,TMEM262,0.0387448593657056 +Nucleus,MPRIP,1.82277153247491 +Nucleus,POLR3D,1.30098383889429 +Nucleus,OSGIN1,-0.783065293071968 +Nucleus,BOD1L1,-0.242248394600428 +Nucleus,WIPF2,-0.0197834090389511 +Nucleus,RBAK,1.02456850356932 +Nucleus,CCIN,0.0680914278921805 +Nucleus,KIAA0226,0.495989309364163 +Nucleus,RNF144A,0.179217132425388 +Nucleus,ACTN1,1.39917878861241 +Nucleus,TRUB1,-0.445693857041189 +Nucleus,RBBP4,2.40863943688745 +Nucleus,SOCS6,-0.413089192973707 +Nucleus,KLHL8,-0.356538875734171 +Nucleus,C9orf72,0.935464399262659 +Nucleus,GAP43,0.819330240406886 +Nucleus,TSHZ3,-0.890109301123527 +Nucleus,BTRC,-0.18728432545265 +Nucleus,GPD1L,-0.712005993127577 +Nucleus,RILPL1,-0.0923951867422261 +Nucleus,BRAP,0.43167236264402 +Nucleus,CMTM4,0.607553395429333 +Nucleus,RNF115,3.25463409275755 +Nucleus,C11orf45,0.0578038253543773 +Nucleus,VWA8,0.381728974044678 +Nucleus,EEFSEC,-0.606210974043751 +Nucleus,CDYL2,0.412762629642542 +Nucleus,FGF2,-0.187740153381932 +Nucleus,ARSJ,0.635191834442045 +Nucleus,SPTLC2,0.710660831678703 +Nucleus,SMIM13,-0.601436591547029 +Nucleus,DNAJC30,0.926779406582648 +Nucleus,USP27X,-0.453334810917657 +Nucleus,SIK2,-0.419168207816183 +Nucleus,ERO1L,0.22021007905888 +Nucleus,SMIM3,-1.47626872364431 +Nucleus,MBD1,1.77930780962132 +Nucleus,UTP14C,0.0618690188497094 +Nucleus,LONRF1,-0.187987123194134 +Nucleus,USPL1,0.828867545538598 +Nucleus,DHX9P1,-0.280103558687069 +Nucleus,FBXO30,0.54385506621581 +Nucleus,FAM222A,-1.30337123843727 +Nucleus,SLC30A6,0.895807698625455 +Nucleus,EXOC7,4.47803319523625 +Nucleus,DUSP8,0.258931685623501 +Nucleus,AFAP1,-0.0244585102042249 +Nucleus,PTPN3,-0.119138378393977 +Nucleus,XPO4,0.569115180275779 +Nucleus,MITF,-1.18314251563339 +Nucleus,BMPR2,-0.38594307440891 +Nucleus,C5orf45,4.47152683992389 +Nucleus,NLK,0.565286251950723 +Nucleus,MMP24,-1.17139089575107 +Nucleus,HSPA12B,-0.688738394778995 +Nucleus,DZIP1L,1.522951525351 +Nucleus,UHRF1BP1L,-0.504110174120744 +Nucleus,IFFO2,-0.264056837349223 +Nucleus,DCP2,0.865994771169754 +Nucleus,SELT,-0.233216000381457 +Nucleus,PTPN21,0.299961169668924 +Nucleus,KBTBD6,-0.226069827252236 +Nucleus,MOAP1,0.100385069908694 +Nucleus,ZHX2,-0.688624846339241 +Nucleus,PPP1R3B,0.604798787759106 +Nucleus,E2F8,0.216128776755886 +Nucleus,KIAA1644,-0.151397511043747 +Nucleus,NSUN6,1.68620264989838 +Nucleus,ZNF282,0.183418459695732 +Nucleus,CEP350,0.540027292164848 +Nucleus,RAB11FIP1,-0.575502265338089 +Nucleus,HARBI1,-0.0272598921345486 +Nucleus,SIKE1,0.449374490712996 +Nucleus,PDZD8,0.018227672071654 +Nucleus,PALB2,0.112579811532052 +Nucleus,ZNF654,0.386679199281203 +Nucleus,FBXO45,0.376199164121248 +Nucleus,PDP2,1.21090541992869 +Nucleus,TMEM38A,-0.505517672630959 +Nucleus,HSPA8P18,0.45367223184189 +Nucleus,TNFRSF9,0.661370635017495 +Nucleus,GPATCH8,1.18307917158061 +Nucleus,ABCC4,-0.237479437132371 +Nucleus,ETAA1,0.932243173652922 +Nucleus,C12orf4,0.478322407810877 +Nucleus,DIP2A,1.07060432964999 +Nucleus,DPYSL5,-1.00664997430171 +Nucleus,FXYD6,-0.842528208755933 +Nucleus,RALGAPB,1.20460125674984 +Nucleus,CHSY3,0.281278418896162 +Nucleus,EPAS1,-1.82002891089965 +Nucleus,SUMO2,1.40877151534023 +Nucleus,CACHD1,0.480888154545762 +Nucleus,DENND1A,-0.885814286098693 +Nucleus,ICK,-1.11372116038589 +Nucleus,ZNF814,2.04526764060522 +Nucleus,ZCCHC6,0.684280837575567 +Nucleus,RBMS2,0.569949604920575 +Nucleus,MSANTD4,0.281564287537045 +Nucleus,SLC40A1,-1.27369034003331 +Nucleus,NELFCD,6.02580862478174 +Nucleus,ANKRD28,1.3767381984298 +Nucleus,ASTN1,0.0457446065865712 +Nucleus,CASC10,1.2837797487658 +Nucleus,KCNJ8,-0.0698326049415268 +Nucleus,INVS,0.252100426265226 +Nucleus,LENG9,0.329802162128999 +Nucleus,LRRC8D,-0.294162688936309 +Nucleus,QRSL1,-0.902364059131437 +Nucleus,LRP11,-0.676745505908211 +Nucleus,CHD2,0.924166825732512 +Nucleus,ARPIN,-0.419457018265395 +Nucleus,TATDN2P2,1.14471175627644 +Nucleus,MBD3,-0.396141142273154 +Nucleus,CYP2S1,0.152100697129045 +Nucleus,COL9A2,-0.469485800280754 +Nucleus,PPP2R1B,0.483801134164727 +Nucleus,NCOA2,-0.179456452940237 +Nucleus,SLC23A2,1.05394284758541 +Nucleus,SPOPL,0.394693622091893 +Nucleus,CSPG4P13,-0.201636174789075 +Nucleus,NUB1,-0.806636741744413 +Nucleus,SNIP1,-0.221923103737926 +Nucleus,SLC26A6,3.50143968676833 +Nucleus,SLC6A17,0.314764069340168 +Nucleus,RAD54B,0.466693320375716 +Nucleus,SEMA3F,-0.266873362751068 +Nucleus,KLF5,-0.376111537473329 +Nucleus,ATF7,0.595642892699494 +Nucleus,SH3GLB1,0.271099508218786 +Nucleus,FZD7,0.316413995760508 +Nucleus,IFIT5,-0.758429470541676 +Nucleus,KATNAL1,0.845877765383329 +Nucleus,UBASH3B,-1.03587645793274 +Nucleus,NKILA,-0.375099312839613 +Nucleus,ANKS6,1.06847059551004 +Nucleus,TBX3,0.575612721084465 +Nucleus,GATC,0.60267176382244 +Nucleus,SMAD5,1.1704488247173 +Nucleus,EFR3B,-0.252358218921282 +Nucleus,UACA,-0.0603159862457055 +Nucleus,COL22A1,-0.24143025657405 +Nucleus,LYSMD3,-0.256468253026448 +Nucleus,HEBP2,1.56725013175925 +Nucleus,TDG,0.421763207676038 +Nucleus,MNT,0.257567363824098 +Nucleus,TMEM140,0.13746683050631 +Nucleus,MORC3,0.271480558059703 +Nucleus,DDI2,0.575264344969138 +Nucleus,SMYD4,0.981997716177321 +Nucleus,ZBTB24,0.220368129394856 +Nucleus,DUSP5,-0.909805096164188 +Nucleus,ZNF16,0.0666344495008991 +Nucleus,NUFIP1,-0.157326374141604 +Nucleus,CHD6,0.831255448252103 +Nucleus,NSA2,2.44761446943116 +Nucleus,SPRED3,1.00104995222024 +Nucleus,GXYLT1,0.941969861408561 +Nucleus,SLK,-1.03917264956351 +Nucleus,EGLN1,-1.26452154536245 +Nucleus,BLOC1S6,-0.62853427827849 +Nucleus,ITGA2,0.5115688915506 +Nucleus,WBSCR22,4.45722830537374 +Nucleus,PLLP,0.914915254950144 +Nucleus,SEC24A,-0.595416881654962 +Nucleus,KMT2A,1.00246334957798 +Nucleus,HOXA11,-0.872499473215991 +Nucleus,ZNF710,-0.257216297610076 +Nucleus,ZNF608,0.754315943623181 +Nucleus,CDKAL1,0.0910985352336592 +Nucleus,BRI3BP,-0.151492802629111 +Nucleus,KIAA0556,0.139841568232411 +Nucleus,IKBKB,3.68386722401211 +Nucleus,C1orf233,-1.36727468754972 +Nucleus,SUPT7L,2.31766983911511 +Nucleus,CPS1,-0.678878548383921 +Nucleus,THUMPD1,-0.393597199658334 +Nucleus,DOC2A,1.11353764323945 +Nucleus,TDRD7,-0.333628839931344 +Nucleus,ZNF777,-0.919965693737685 +Nucleus,BLOC1S5,-0.715160362674502 +Nucleus,ZNF202,1.4048103613527 +Nucleus,ITPKC,-0.423303443872603 +Nucleus,CCDC64,-0.364631231711728 +Nucleus,EPG5,0.823099314384079 +Nucleus,FKRP,0.441248009725655 +Nucleus,FAM81A,-1.46225790691616 +Nucleus,YY1,0.533054071938833 +Nucleus,NEFL,-2.07745901807189 +Nucleus,TLDC1,1.27766340634239 +Nucleus,HOXB13,-1.53020733959011 +Nucleus,ANKH,0.453307215133291 +Nucleus,HDAC11,-0.891099540710414 +Nucleus,DAZAP1,5.4694910568102 +Nucleus,HSP90AA5P,-0.388284594161521 +Nucleus,SETD1B,0.332320628667732 +Nucleus,PHIP,0.162076153945855 +Nucleus,EXTL2,0.0355151454644311 +Nucleus,ZNF672,-0.972962255176286 +Nucleus,FNBP1,-0.906411248122498 +Nucleus,CUL4B,-1.16806672751907 +Nucleus,ERLIN2,-0.0620862468217979 +Nucleus,WDR5B,2.0396810624869 +Nucleus,HAUS6,-0.0463864734286226 +Nucleus,PARP16,-0.0301483519104894 +Nucleus,SLC26A2,0.733877512811219 +Nucleus,RBL1,0.560464277431905 +Nucleus,ATL3,0.104402546445448 +Nucleus,MYBL1,1.26739093959736 +Nucleus,CERS6,0.225698484505643 +Nucleus,SOD2,1.93596867382037 +Nucleus,VCPIP1,0.325924606253922 +Nucleus,FOXF2,-1.24591052684918 +Nucleus,CCDC144NL,5.94809857420294 +Nucleus,LPGAT1,-0.100693457126144 +Nucleus,C1orf106,-0.481863977993746 +Nucleus,PTBP3,0.353959079960622 +Nucleus,DENND4A,0.042833459311792 +Nucleus,NASP,6.14929121149258 +Nucleus,KLHL11,0.169265188942484 +Nucleus,IREB2,-0.110760462824545 +Nucleus,CC2D2A,0.418613538037275 +Nucleus,EHD2,-1.75335575326235 +Nucleus,INHBA,1.22211087840711 +Nucleus,RAB28,0.419693770382591 +Nucleus,CDC42EP3,0.487320243716411 +Nucleus,FAM212B,1.83785862860135 +Nucleus, MARCH9,-0.547917378990253 +Nucleus,UTRN,0.198127714830121 +Nucleus,OPA3,0.294851317680006 +Nucleus,SOGA1,0.0708043581319988 +Nucleus,RBBP9,-0.412471626046336 +Nucleus,SOCS7,0.794959852787269 +Nucleus,NIPAL3,-0.46389120518184 +Nucleus,SLC16A13,0.741075573803876 +Nucleus,SETX,0.714267642846596 +Nucleus,CBX8,0.558395764869035 +Nucleus,MAST3,-0.629254949735348 +Nucleus,DHX32,-0.697144179972361 +Nucleus,DBNDD1,-1.64335885168229 +Nucleus,CACNB1,2.07119990238635 +Nucleus,C9orf172,-0.441143118827575 +Nucleus,MAVS,0.875083250981735 +Nucleus,RPL14,0.913866485296832 +Nucleus,ZKSCAN8,1.64906973909236 +Nucleus,FOXN2,0.273175803900093 +Nucleus,SCYL2,-0.778107881782945 +Nucleus,MAP3K2,0.0544897768821227 +Nucleus,ZNF518A,1.42550916297949 +Nucleus,MMP15,-0.0584049966864263 +Nucleus,ETS2,-0.34873226665882 +Nucleus,KCNIP3,-0.506757529367003 +Nucleus,TNS1,-0.0111819113812057 +Nucleus,CCDC57,2.76025965701927 +Nucleus,NANP,-0.00552166749396145 +Nucleus,HIRIP3,-1.31428130311162 +Nucleus,MDM2,0.55911048355458 +Nucleus,ING5,0.448429697265824 +Nucleus,ABCB9,0.152106784818751 +Nucleus,MUT,-1.08567385351126 +Nucleus,SUFU,-0.510005582218279 +Nucleus,UCA1,-0.480183351135396 +Nucleus,EMB,0.420446784092594 +Nucleus,TPM3P9,2.07110989744152 +Nucleus,ACADS,-0.998388828881671 +Nucleus,ARL5A,0.196465512522346 +Nucleus,ZNF12,0.601512366798304 +Nucleus,ZNF33B,2.46148916135612 +Nucleus,CYSLTR1,3.8796079221216 +Nucleus,MTHFSD,0.599012216325699 +Nucleus,KNOP1,1.11050526298761 +Nucleus,LCP1,-1.74919661409651 +Nucleus,GNB4,-1.22741897780512 +Nucleus,TMEM245,0.850579056726 +Nucleus,ANKRD34A,-0.133418956148498 +Nucleus,MAPK9,0.730568179917928 +Nucleus,WDPCP,1.65964266208213 +Nucleus,EZH1,2.33877298260055 +Nucleus,PLXNA3,1.40844799999986 +Nucleus,ABCB1,-0.0523473617045523 +Nucleus,RPL12,5.27049410060113 +Nucleus,MTMR6,-1.01534268346554 +Nucleus,SNRPD1,0.773576237889103 +Nucleus,ZNF160,0.984426834243924 +Nucleus,ELL,0.763628222475302 +Nucleus,CHST2,0.00702882150046886 +Nucleus,BRD3,-1.03419821929373 +Nucleus,ZSCAN12P1,-0.384710831210445 +Nucleus,HERC2P10,1.70892649741373 +Nucleus,PANX2,-1.13947330540796 +Nucleus,HSBP1,-1.42327773801372 +Nucleus,ZNF579,-0.621799354197029 +Nucleus,URGCP,-0.103952467916975 +Nucleus,HEATR3,0.134525241114898 +Nucleus,TMEM110,0.999851775722523 +Nucleus,NEO1,-0.0491848329415374 +Nucleus,DMAP1,5.38391063826829 +Nucleus,SH3BP5L,-0.963808907619694 +Nucleus,NCLP1,-1.63427192360423 +Nucleus,ATR,0.542171455529912 +Nucleus,ZNF644,0.162784698258006 +Nucleus,ERI1,-0.103087395132315 +Nucleus,ZNF593,1.27940884574917 +Nucleus,TMX3,0.605770907102716 +Nucleus,FRYL,0.0237250708024392 +Nucleus,INIP,-0.20268339201499 +Nucleus,TBC1D22A,-0.47555662889738 +Nucleus,VPS36,0.892582235236354 +Nucleus,GTPBP4,0.0887516267662637 +Nucleus,BLOC1S3,-0.189914539996539 +Nucleus,PHF20,-0.835957551151652 +Nucleus,SRSF3,1.75436155947191 +Nucleus,ENTPD5,0.263486675745547 +Nucleus,UBR2,0.104110692935386 +Nucleus,RAB3B,-0.0915803745894352 +Nucleus,IL6R,0.536938365231234 +Nucleus,SLC18B1,0.166535998637644 +Nucleus,PCDHB5,-0.261872438370563 +Nucleus,NINL,1.41691995150819 +Nucleus,TPPP,-0.436789520183647 +Nucleus,WBP4,-0.577791773847421 +Nucleus,UBR7,-1.48130148049937 +Nucleus,CCDC18,1.60017451352525 +Nucleus,CHST1,0.0270628496210566 +Nucleus,TRPV4,0.173432024087649 +Nucleus,ABCB10,-0.998255228600256 +Nucleus,RP2,-0.738180323349147 +Nucleus,BCL10,-0.848030952239792 +Nucleus,CYHR1,2.15186071133555 +Nucleus,USP25,-0.268167372469016 +Nucleus,KLHL23,-0.161326650726535 +Nucleus,RAB22A,0.310603055822877 +Nucleus,KHSRPP1,-2.15448541141357 +Nucleus,ZNF655,1.76544135866972 +Nucleus,UBE3B,-0.493592048201665 +Nucleus,TMEM65,0.717918614973211 +Nucleus,CDC73,-0.475550990203287 +Nucleus,COG7,0.0864720224264534 +Nucleus,TAOK1,-0.138242332627861 +Nucleus,WBP11P1,-1.61354241579199 +Nucleus,QSOX1,0.790617024364002 +Nucleus,EPB41L5,0.194641788944435 +Nucleus,ZNF526,0.816422696934823 +Nucleus,SFRP1,-1.3130563960034 +Nucleus,ADAM12,0.604539782227727 +Nucleus,FBXO31,1.01948037643903 +Nucleus,UNK,0.67325007998162 +Nucleus,XYLB,0.848507091840572 +Nucleus,LONP2,0.0851064667285189 +Nucleus,MIS12,0.533666214076777 +Nucleus,ENDOD1,0.0883263087095711 +Nucleus,BSDC1,5.80486559877215 +Nucleus,RAD18,2.48582987197355 +Nucleus,OTUD4,0.706636015511158 +Nucleus,ATG14,0.14482405396886 +Nucleus,ARL3,-0.931106543796555 +Nucleus,B3GNTL1,3.32723920353779 +Nucleus,PDE4A,-0.456573046840221 +Nucleus,CDC27,-0.484535471717571 +Nucleus,PSKH1,-0.822183988879434 +Nucleus,YOD1,2.55467046895901 +Nucleus,HEATR5B,0.863175102310747 +Nucleus,PDPK2P,3.58397152360431 +Nucleus,ARHGEF12,-0.928559273313016 +Nucleus,ASTE1,0.668262976002664 +Nucleus,STK39,-1.01375767977251 +Nucleus,UNC119,3.32895417711284 +Nucleus,FAM53B,0.14031029984699 +Nucleus,UTP23,0.060756844804916 +Nucleus,BEND3P1,-0.04372786717294 +Nucleus,TMEM64,-0.310776491422141 +Nucleus,GOLPH3L,-0.678351917201532 +Nucleus,MAP4,1.16175330429268 +Nucleus,MOB1B,0.416626522942208 +Nucleus,ZNF404,1.76644573039941 +Nucleus,TTPAL,-0.428275509626074 +Nucleus,TXNL4A,-0.0487048865130566 +Nucleus,RCBTB1,0.483498911521376 +Nucleus,PDGFRA,0.529753570452884 +Nucleus,SLC35E2B,0.00347782479069469 +Nucleus,VAT1L,-1.84626777791592 +Nucleus,PTPRM,0.947409393943258 +Nucleus,SMAD6,2.90179325865341 +Nucleus,RASA3,0.341471340367412 +Nucleus,PIKFYVE,-0.165469032412419 +Nucleus,EHD4,-0.479714679569098 +Nucleus,ITPRIPL2,-0.319871251547505 +Nucleus,ZNF592,0.789152658938212 +Nucleus,PPP2R5A,-1.26565848723546 +Nucleus,PKN2,0.585897419792146 +Nucleus,MORC4,-0.417749687901103 +Nucleus,FAM109B,-0.341568569915629 +Nucleus,MMP16,0.932144716779845 +Nucleus,SYNC,-0.708260914381118 +Nucleus,TRUB2,-0.467773198717175 +Nucleus,CABLES2,-1.10269211615251 +Nucleus,CTBP2,1.16695438790509 +Nucleus,KIF1A,-0.725161139834629 +Nucleus,RTN4IP1,-0.230457724782421 +Nucleus,PEG3,-0.279342978701459 +Nucleus,STARD13,0.19699798866314 +Nucleus,ETV6,-0.525570981738768 +Nucleus,PTPN14,-0.473669453450084 +Nucleus,TCF7L1,-1.1137101726901 +Nucleus,C10orf12,-0.324646430918307 +Nucleus,ITSN2,-0.168807498440955 +Nucleus,BCAT1,-1.09567398327581 +Nucleus,BRD9,5.18551053444872 +Nucleus,CROCC,-0.00216567638845632 +Nucleus,GPN2,1.25773173214182 +Nucleus,TTF1,-0.269553900295987 +Nucleus,STK17A,1.32481423740304 +Nucleus,IGHMBP2,0.614985427304235 +Nucleus,STX17,-0.000396818977792386 +Nucleus,CTC1,0.960209038049586 +Nucleus,BLM,0.461696129099497 +Nucleus,CLPTM1L,1.72334287850761 +Nucleus,WDR59,0.8684048488065 +Nucleus,SIK3,0.325073204287396 +Nucleus,FAM114A1,-1.01338632496211 +Nucleus,ZC3H4,-0.953770102403743 +Nucleus,KIAA1551,0.324581914363412 +Nucleus,RERE,-0.137513941881735 +Nucleus,FOXA2,-0.34045571238726 +Nucleus,UFD1L,6.08444685995093 +Nucleus,RBM27,-0.487702584157744 +Nucleus,FRRS1,0.394242956230593 +Nucleus,RAPGEF2,-0.578294000919422 +Nucleus,GAB2,0.0758413013297927 +Nucleus,C17orf96,1.0832185920045 +Nucleus,CYB5D1,0.117903580303993 +Nucleus,MNS1,-0.249510193191557 +Nucleus,UHRF2,0.689270520208979 +Nucleus,PHKA2,0.630070399152041 +Nucleus,EPM2AIP1,2.90596310189062 +Nucleus,CFAP54,3.29681699520672 +Nucleus,DBR1,-0.289543008113529 +Nucleus,TBCD,2.22651689646945 +Nucleus,SS18L1,2.73320857595995 +Nucleus,ATG5,-0.60758539528921 +Nucleus,RAD54L2,0.160194219148402 +Nucleus,ASB1,2.58102979301214 +Nucleus,ANGEL1,0.437958005006834 +Nucleus,DIEXF,0.136869896579358 +Nucleus,ALS2,0.114855239907696 +Nucleus,STX12,-0.36728944498062 +Nucleus,RLIM,0.719209056258669 +Nucleus,ENTPD7,-0.466776946223584 +Nucleus,ZDHHC23,2.15141792778809 +Nucleus,LIFR,0.197433451254822 +Nucleus,GOSR1,0.369996092233041 +Nucleus,CENPL,2.25683422430349 +Nucleus,MFGE8,5.31230407222869 +Nucleus,SLX4,-0.0728513776363682 +Nucleus,YTHDC2,1.04886055754688 +Nucleus,PDXDC2P,4.27378345813198 +Nucleus,PARD6G,-1.56209500689715 +Nucleus,SLC45A3,0.269485523583683 +Nucleus,TAF3,-0.917661872782636 +Nucleus,SMC5,0.628813852637715 +Nucleus,CSPP1,0.718504424158196 +Nucleus,TBL3,0.943010768102672 +Nucleus,IFT57,-0.387209358354738 +Nucleus,MXD4,-0.112823521328047 +Nucleus,C7orf50,1.31724660448735 +Nucleus,DNMBP,0.791020008755459 +Nucleus,ATP6V1C1,0.841244462676874 +Nucleus,HSPA1L,-0.345507101508029 +Nucleus,TACC1,0.553994180467226 +Nucleus,ZZEF1,-0.132686169376875 +Nucleus,UBA6,-0.289505486882844 +Nucleus,ABHD4,-0.575032500116127 +Nucleus,ZNF740,0.935601104150758 +Nucleus,SLC11A2,0.690173175342388 +Nucleus,SAMD14,-0.346192859428721 +Nucleus,PIK3C2A,-0.614492044306618 +Nucleus,EAF1,-0.0322785924881458 +Nucleus,ASAP3,0.0234338436756979 +Nucleus,IER3IP1,-0.592250074313518 +Nucleus,CENPJ,2.06063957530655 +Nucleus,CHMP1B,-0.302329439511153 +Nucleus,ATP2B4,0.0802071773536689 +Nucleus,RAB8B,-1.00489475437038 +Nucleus,CIR1,-0.728057444635192 +Nucleus,CD72,0.76495861822162 +Nucleus,SPSB1,-0.291989672235177 +Nucleus,TPP2,-0.357779513441699 +Nucleus,PGBD1,0.0580772939981419 +Nucleus,UFL1,0.0256216080252556 +Nucleus,MAPRE2,-1.28275549789744 +Nucleus,C2CD4C,-0.738089068975273 +Nucleus,TMEM241,-0.163552651727239 +Nucleus,ATP1A3,-0.739244837052754 +Nucleus,MMD,-1.1318994623791 +Nucleus,HSPA12A,-0.157261506549102 +Nucleus,NOL9,-0.780120490188185 +Nucleus,ZNF621,2.53611493681503 +Nucleus,ELMO3,0.75227147769468 +Nucleus,PHF6,-0.884913580351257 +Nucleus,ZBTB7A,0.350657680301475 +Nucleus,FIGN,1.77980370490636 +Nucleus,SERTAD1,-1.17014705473535 +Nucleus,IDE,-0.486046781941854 +Nucleus,TPM1,2.90081604292115 +Nucleus,RINT1,-0.123065662937494 +Nucleus,ARL6IP6,-0.245071180610032 +Nucleus,SLC9A5,0.287705060562938 +Nucleus,STRN,-0.0724674921948058 +Nucleus,FAM13B,0.999218944674356 +Nucleus,NBAS,0.93622545158355 +Nucleus,KIF14,-0.296922925518421 +Nucleus,TGFB3,0.737183497078872 +Nucleus,PM20D2,-1.38751774241867 +Nucleus,LIMD1,0.633290462524162 +Nucleus,ZDHHC2,0.019312934334326 +Nucleus,PHKG1,2.65134657911574 +Nucleus,TBCCD1,0.127522473613455 +Nucleus,DOLPP1,-0.00868885450693858 +Nucleus,ARRB1,0.00458094681205581 +Nucleus,ZBTB38,-0.284159632254194 +Nucleus,BBX,-0.171422918281902 +Nucleus,KIF5A,1.12338648435171 +Nucleus,ORC4,0.761518566192532 +Nucleus,CSRNP2,0.211365491010989 +Nucleus,WRN,0.59882794120734 +Nucleus,KCTD15,-0.221404977762465 +Nucleus,C4orf32,0.419101129519499 +Nucleus,NAV1,-1.13475757527799 +Nucleus,WDR24,-0.906870867700938 +Nucleus,SHPK,0.242317489487249 +Nucleus,PAFAH2,0.351641363186044 +Nucleus,H2AFV,0.889338593252371 +Nucleus,PHF2,-1.2447174991527 +Nucleus,ERMP1,0.576578632598629 +Nucleus,BROX,-1.11226171846046 +Nucleus,THRIL,-0.419306025484347 +Nucleus,GPRASP2,-0.861617531194606 +Nucleus,GPD2,-1.28402980296927 +Nucleus,ANKFY1,0.402952222553306 +Nucleus,ZC3H13,-0.323592907442719 +Nucleus,HERC1,-0.280251458148633 +Nucleus,SLC6A10P,1.88772322014137 +Nucleus,AP5Z1,2.35350426110356 +Nucleus,MEX3A,0.952918639305108 +Nucleus,SLC46A1,1.2598188353945 +Nucleus,CCDC184,-1.07040980463882 +Nucleus,NPHP4,0.217653039462216 +Nucleus,FARP2,0.250436786869538 +Nucleus,ZNF318,-0.250277848143673 +Nucleus,PAFAH1B1,0.417562745331623 +Nucleus,RAVER2,-0.241171926229211 +Nucleus,THRA,-0.488137834826292 +Nucleus,CEP250,0.821394134007234 +Nucleus,KIF15,0.288072061914825 +Nucleus,OSGIN2,-1.01113274174294 +Nucleus,MKL2,0.415447280363037 +Nucleus,CDK14,-1.1526108073396 +Nucleus,MTPAP,1.1581239093262 +Nucleus,PATZ1,-0.274025104696853 +Nucleus,SPTSSA,-0.364420905638074 +Nucleus,CSNK1D,4.37219903376926 +Nucleus,CFAP97,-1.12284233042907 +Nucleus,OTUD7B,0.0330454519363186 +Nucleus,TLE1,-0.866381289302364 +Nucleus,FAM102B,-1.07719972923288 +Nucleus,BRIP1,0.802686642199402 +Nucleus,PIK3CD,-0.398143417899766 +Nucleus,MAOA,-1.59643603467472 +Nucleus,ZBTB11,0.43965537915826 +Nucleus,OTUD3,2.91806501781195 +Nucleus,BMP4,-0.192105584718775 +Nucleus,DCP1A,0.29758083327521 +Nucleus,ZNF853,-1.8331687810216 +Nucleus,RNF122,-0.185609137711049 +Nucleus,METAP1D,0.822871946678556 +Nucleus,GPATCH11,-0.50178654781036 +Nucleus,SPAG1,-0.0617582657464782 +Nucleus,NR2F2,0.27992633055364 +Nucleus,TSC1,0.607702571393212 +Nucleus,CYTH2,3.29508433502469 +Nucleus,ZNF395,-0.929837733872319 +Nucleus,PER1,-0.928313227346195 +Nucleus,VTI1B,0.713239808941656 +Nucleus,GNE,-0.467602031470929 +Nucleus,BCLAF1P1,-1.04596619185704 +Nucleus,RPL27A,0.255586544630318 +Nucleus,CIPC,0.161254688429066 +Nucleus,PRR14L,0.960247757296584 +Nucleus,CRAMP1L,1.35969094616189 +Nucleus,CCDC34,-1.470982751036 +Nucleus,TTYH2,0.432634833991269 +Nucleus,SERPINB7,-0.539150046782084 +Nucleus,AKAP10,0.633614391269192 +Nucleus,INO80,0.0995855650023967 +Nucleus,TAF5,-0.831113961066678 +Nucleus,TMEM200B,0.481302438945884 +Nucleus,CTNNAP1,-2.01382741515032 +Nucleus,TRIM35,0.442955112019879 +Nucleus,FUCA1,-0.396109351453328 +Nucleus,REEP5,-0.0594561415509089 +Nucleus,TRIB1,0.132363342747516 +Nucleus,SLC38A1,0.325100850134722 +Nucleus,BRICD5,2.64189607200177 +Nucleus,ZNF830,0.0981969260856679 +Nucleus,SENP5,0.463522467957722 +Nucleus,ZNF275,0.104077679571508 +Nucleus,PEAK1,0.675762271223032 +Nucleus,WASF3,-0.635768160783309 +Nucleus,TMEM127,1.34462563512351 +Nucleus,KCTD21,-0.414344478029074 +Nucleus,C1RL,0.801961636035406 +Nucleus,BMP2K,-0.38078708904231 +Nucleus,ENC1,0.622382686363908 +Nucleus,ATRX,-1.43774564427568 +Nucleus,SYAP1,-1.45897745747025 +Nucleus,PXN,4.0801271743021 +Nucleus,TICRR,1.94226496930233 +Nucleus,SLC35E4,-0.0440595790377631 +Nucleus,CEP89,-0.00475780057030965 +Nucleus,MEX3B,-0.490068932753611 +Nucleus,SNAI2,-0.58856263554495 +Nucleus,TIGD2,-0.128370092934053 +Nucleus,KIF18A,-0.158406370190879 +Nucleus,DCAF16,0.749108017103908 +Nucleus,MAK16,-0.940277534520968 +Nucleus,PCYOX1,0.117662002247823 +Nucleus,CMTR2,0.436135534259385 +Nucleus,TNPO1,0.485706215912295 +Nucleus,VDR,-0.539833079860373 +Nucleus,AKAP11,-0.0085385593553611 +Nucleus,ABHD2,0.404646023159287 +Nucleus,NOTUM,-1.00125997143157 +Nucleus,CLCN6,2.29666342662633 +Nucleus,LANCL1,-0.721045157247551 +Nucleus,ADGRL2,0.0862293594911659 +Nucleus,GCC2,-0.0581245506523499 +Nucleus,FSIP2,2.16430353372732 +Nucleus,ACAT2,1.6814864094427 +Nucleus,PRKAR2B,-1.8287291189862 +Nucleus,STAMBPL1,-0.483147635786577 +Nucleus,DRAM1,-0.380450444742112 +Nucleus,EPDR1,-0.651974028072162 +Nucleus,LIX1L,-1.43709278368722 +Nucleus,APPBP2,0.0368402588030658 +Nucleus,TMEM167A,1.06085143498497 +Nucleus,WDR35,1.04042649454721 +Nucleus,POM121,1.96631853011076 +Nucleus,ZNF865,-0.364801613004977 +Nucleus,PANK4,0.151866714348734 +Nucleus,ELL2,-0.138237321914232 +Nucleus,FITM2,0.465985769687448 +Nucleus,PAQR4,-0.569612910937314 +Nucleus,UBE2G1,-0.683369299281852 +Nucleus,DOCK6,-1.21501877609228 +Nucleus,TERF2,0.897587948751676 +Nucleus,DDAH1,-1.90905862127065 +Nucleus,REEP3,-0.300981670040189 +Nucleus,CACFD1,-0.132694948155993 +Nucleus,SCD5,-0.836884870207162 +Nucleus,MSI1,-0.845779051539758 +Nucleus,CDH4,-0.240403533593573 +Nucleus,PERP,-0.506565810176651 +Nucleus,ARNTL2,-0.734488123484056 +Nucleus,GRID1,0.249136881392079 +Nucleus,ANKRD19P,-0.285638723473765 +Nucleus,PARS2,-0.425058912601094 +Nucleus,TBC1D9,-0.847286425367231 +Nucleus,EXOC6B,0.21543071838086 +Nucleus,LMTK2,0.529577788962198 +Nucleus,DIP2B,-0.491048289081292 +Nucleus,LCLAT1,-0.377744441059372 +Nucleus,C14orf119,0.721897195910254 +Nucleus,HOXC8,-0.0551724084970034 +Nucleus,NCOR1,-0.450933246442024 +Nucleus,IVD,0.370840101219555 +Nucleus,ACTR8,0.507200561086666 +Nucleus,RFX1,-0.769460554983999 +Nucleus,C4orf46,-1.05974053182725 +Nucleus,B3GLCT,-0.198040750509236 +Nucleus,CNOT7,-0.746355787030961 +Nucleus,TSC22D1,1.5090576577511 +Nucleus,SLC5A3,1.83262211660708 +Nucleus,IRF2BP2,-0.566758108801951 +Nucleus,SLC25A36,0.580859964580036 +Nucleus,MTMR1,-0.372618231681904 +Nucleus,SLC48A1,-0.433494182399533 +Nucleus,EXOC2,-0.590538352801654 +Nucleus,C6orf47,-0.231375864700367 +Nucleus,SFXN5,1.23339825662723 +Nucleus,LEPROTL1,-0.356396239442584 +Nucleus,SPEG,1.23615467995717 +Nucleus,SHANK3,-0.404171873609974 +Nucleus,LIMK2,0.819574448247181 +Nucleus,SLC36A1,1.6666030219409 +Nucleus,ZNF106,-0.786664046401658 +Nucleus,VANGL1,0.337284309436304 +Nucleus,EEF1D,3.21868721417081 +Nucleus,NFXL1,1.94131750608575 +Nucleus,LRFN1,-0.301563188360153 +Nucleus,ABHD16B,-0.828246661239408 +Nucleus,INPP5E,0.601712858282922 +Nucleus,GSK3B,-0.340044404924487 +Nucleus,COA1,1.99372349788032 +Nucleus,C10orf76,0.655950082238635 +Nucleus,PPP6C,-1.18666582874478 +Nucleus,KLHDC4,1.95625000358703 +Nucleus,BNIP3L,-1.04694367670713 +Nucleus,HEATR1,0.966700111466398 +Nucleus,DYNC1LI2,5.72430365369287 +Nucleus,JADE1,0.1720671300751 +Nucleus,LNX1,-0.664396157807425 +Nucleus,MSH3,0.111131229086855 +Nucleus,RB1,-0.919816947547047 +Nucleus,LHFP,-0.442826159740365 +Nucleus,SYPL2,0.0926430352587112 +Nucleus,ARHGAP10,-0.100245700290568 +Nucleus,GALNT6,-0.225961380846588 +Nucleus,SNHG7,1.66061296897109 +Nucleus,POLD3,0.773283557535115 +Nucleus,SRBD1,0.385410862865333 +Nucleus,DAB2,-0.139768106487462 +Nucleus,RPF2,-0.60720098910007 +Nucleus,ITPRIP,0.943985527725379 +Nucleus,SLC7A2,0.232164420299049 +Nucleus,RGS16,0.171364120308052 +Nucleus,C4orf3,-1.12458868919092 +Nucleus,NRIP3,-1.19465275357838 +Nucleus,HSF2,0.212297323158151 +Nucleus,MRPS25,3.56892839777244 +Nucleus,BRF2,0.968810433208062 +Nucleus,ZMYM2,0.785959697329415 +Nucleus,MB21D2,-0.702233162534576 +Nucleus,IQSEC1,-0.151658508856854 +Nucleus,RUNX1,0.44523075690235 +Nucleus,FAM175B,-0.451981352144237 +Nucleus,USP12,0.040067014377667 +Nucleus,MOB3A,-0.896999607540144 +Nucleus,MTF1,0.434325009454627 +Nucleus,ZER1,-1.46914619539905 +Nucleus,SRP72P2,-2.04622110232763 +Nucleus,CUL2,-0.341657462699016 +Nucleus,SRSF10,5.55735624591794 +Nucleus,HMG20A,-0.38376331728176 +Nucleus,CCDC117,-0.541714646570406 +Nucleus,RABGAP1,0.0986726876510289 +Nucleus,GSG2,-0.235026791927143 +Nucleus,CBX7,0.796024339450249 +Nucleus,MYL5,1.07257813783348 +Nucleus,UBE4A,-0.66325156532827 +Nucleus,E2F7,-0.127717712653062 +Nucleus,VKORC1L1,0.210974118686116 +Nucleus,GALNT10,0.0412865031355382 +Nucleus,GLIS2,-0.819202994259813 +Nucleus,FAM120B,0.79369412601663 +Nucleus,TRPM2,-1.03450481035643 +Nucleus,PPIAL4G,0.370092993721146 +Nucleus,UBTF,-0.495907917017346 +Nucleus,MIPEP,-0.840304206470272 +Nucleus,R3HCC1L,0.873129513617442 +Nucleus,ZFP41,0.697155546238983 +Nucleus,KCTD7,1.05768138975903 +Nucleus,MAN1B1,6.02230921999276 +Nucleus,ARIH2,0.490332506075044 +Nucleus,RAB11FIP3,-1.12519444078052 +Nucleus,HOXC13,-1.46154791004584 +Nucleus,C17orf51,2.04585310466731 +Nucleus,SMG1,0.679779193680154 +Nucleus,MMGT1,-0.866698144496844 +Nucleus,UFM1,-0.305608859323263 +Nucleus,MAN1A2,-0.132105289171451 +Nucleus,ROCK1,-1.1447483718783 +Nucleus,B3GNT3,0.0485657000210424 +Nucleus,UBE2G2,1.96590122490818 +Nucleus,FAR1,-0.193433221592561 +Nucleus,ASH1L,0.7531698650286 +Nucleus,APPL1,-0.613276093986135 +Nucleus,UBLCP1,-1.3285126336663 +Nucleus,TRAK1,0.770952109599335 +Nucleus,ZBED1,-1.27127472238149 +Nucleus,HPS6,-0.756767213753763 +Nucleus,SZT2,1.30282160239659 +Nucleus,VIPAS39,-0.705132877261391 +Nucleus,KIF20B,0.134780712303999 +Nucleus,CHAF1B,-1.05612713793473 +Nucleus,ST3GAL1,0.513598888959633 +Nucleus,KIAA0232,0.229723785985281 +Nucleus,NFIL3,-0.699189083764724 +Nucleus,RYBP,-0.513481806648508 +Nucleus,RPL37,3.52351428625302 +Nucleus,ZC3HAV1,-1.13582624433307 +Nucleus,UGGT1,0.598849557052293 +Nucleus,VPS33A,-0.389253619212544 +Nucleus,KIF21A,0.0922395604872894 +Nucleus,UGCG,0.780014163873209 +Nucleus,NDE1,-0.371668155530194 +Nucleus,RABIF,-0.481983770588111 +Nucleus,TOR1AIP2,0.43989396563702 +Nucleus,ALOX5,0.288408722755403 +Nucleus,GNPTAB,-0.660725938374274 +Nucleus,ZSWIM6,0.607685875569511 +Nucleus,ASPM,0.974741479092147 +Nucleus,ZNF689,-0.33806414346913 +Nucleus,TAF10,1.70416817382787 +Nucleus,MPHOSPH8,0.083118094409152 +Nucleus,TIMP3,-0.306702820915011 +Nucleus,GOLGA3,0.755515343574766 +Nucleus,WDFY3,0.649796851609813 +Nucleus,PPP4R2,-1.03765961701251 +Nucleus,SGPP1,0.0365503576243417 +Nucleus,TAOK2,0.36832116220447 +Nucleus,IKBKE,0.0183648280498626 +Nucleus,JMJD4,-0.363311318339659 +Nucleus,CPTP,-1.46936471825377 +Nucleus,NAIF1,-0.210766995336985 +Nucleus,POLR3B,-0.753242535928022 +Nucleus,ALAD,-0.550262529155566 +Nucleus,RBSN,0.00884234700363801 +Nucleus,ARSI,0.187808643303575 +Nucleus,PPP2R5B,-0.699965720540959 +Nucleus,CYP26B1,0.560715027823892 +Nucleus,STAT5B,-0.235526187263161 +Nucleus,C9orf41,-0.845580790835328 +Nucleus,HS2ST1,-0.485806320406318 +Nucleus,GABPA,-0.731096722744182 +Nucleus,UPF3B,0.0233455803045735 +Nucleus,SKA1,-1.22157253170489 +Nucleus,DOLK,0.234645747973859 +Nucleus,ATRN,0.444154671933727 +Nucleus,FAM210B,-0.904873454224544 +Nucleus,MSL2,0.619546615589374 +Nucleus,SIDT2,-0.120227116765209 +Nucleus,LAMA1,-1.08020395735683 +Nucleus,SGTB,0.342084649244316 +Nucleus,NT5C2,0.393279358122681 +Nucleus,ABHD17A,2.4038872467163 +Nucleus,CCDC9,0.156095815981167 +Nucleus,EFNA3,-0.989242017747071 +Nucleus,SNX18,-1.11378231949014 +Nucleus,WASL,-0.844394526640889 +Nucleus,SLC31A1,-0.251720213947771 +Nucleus,IDI1,-1.24880372407644 +Nucleus,RSPH10B,1.40329795276354 +Nucleus,STXBP3,-0.288332500733152 +Nucleus, MARCH8,-0.809929002072922 +Nucleus,KLF3,-0.294769816363365 +Nucleus,LBH,-1.67503349927938 +Nucleus,EFNB3,-0.6738578885595 +Nucleus,ARPP19,-0.497168377353762 +Nucleus,IKBKAP,-1.15832807003892 +Nucleus,ANO2,0.260711669225836 +Nucleus,EXOSC6,0.388604526804076 +Nucleus,CHSY1,0.330768147388354 +Nucleus,ETV5,-1.09070595073151 +Nucleus,ZSCAN32,0.394948731824784 +Nucleus,NAA25,0.893051033541967 +Nucleus,PCGF5,-1.05567939021925 +Nucleus,FYTTD1,-0.813607581256426 +Nucleus,MIR22HG,4.28450622354279 +Nucleus,KPNA1,1.01569890986799 +Nucleus,AMER1,1.66811279507867 +Nucleus,DIDO1,0.51163618950965 +Nucleus,ZNF696,0.403586967936958 +Nucleus,CBL,-0.0982771546951782 +Nucleus,LRRC1,-0.555193233976057 +Nucleus,FAM206A,-1.22210145283571 +Nucleus,FBXO10,0.511877069490964 +Nucleus,MGMT,-1.15129879052806 +Nucleus,IL4R,0.287134985606081 +Nucleus,CRY1,-0.208947893882747 +Nucleus,UHRF1BP1,-0.432629658479338 +Nucleus,PLAA,-0.205488764642848 +Nucleus,UCK2,0.204918390932165 +Nucleus,CASC4,-1.33255354380282 +Nucleus,PDCL,-0.831590271147673 +Nucleus,PHKA1,-0.624895134644771 +Nucleus,ZNF703,-0.871128082140624 +Nucleus,PPTC7,-0.347307945896969 +Nucleus,SYP,0.253900266975369 +Nucleus,SLC9A8,1.85659537719005 +Nucleus,GTF2E1,-0.904684667610961 +Nucleus,MRPL19,-0.446528629380428 +Nucleus,SP2,-0.978197359501387 +Nucleus,COX19,1.72482438383041 +Nucleus,EIF4EBP2,0.0218886071529541 +Nucleus,SMG6,0.797819985732235 +Nucleus,ADGRE1,-0.366321079048916 +Nucleus,CSF1,0.874929399166888 +Nucleus,FAM175A,-0.199906409516831 +Nucleus,PTPN18,-0.641672822686949 +Nucleus,ZNF518B,0.0987852929261772 +Nucleus,PCYT2,-0.491660541977004 +Nucleus,NR1D2,-0.892688864953856 +Nucleus,AFAP1L1,-1.23101194080015 +Nucleus,VAC14,0.907699667757116 +Nucleus,TMEM57,0.369939040030154 +Nucleus,NAF1,-0.334235280024912 +Nucleus,GDF11,-0.79694783095255 +Nucleus,RALGDS,-0.680849063847096 +Nucleus,CTU1,-0.440149855464599 +Nucleus,RNF169,1.52563672610815 +Nucleus,MECP2,1.91795569119857 +Nucleus,C2orf68,0.51315344391479 +Nucleus,GM2A,-1.09125709556376 +Nucleus,DHX35,0.767314996342889 +Nucleus,KCNK5,0.970707852821627 +Nucleus,SLC25A33,0.0895830337472719 +Nucleus,LATS2,-0.694037584836425 +Nucleus,FAM122B,1.27847482170061 +Nucleus,CAB39,-1.14892824397307 +Nucleus,TCAF1,-1.57462544080781 +Nucleus,PDS5B,-0.537927453767153 +Nucleus,ARID2,0.414935939838357 +Nucleus,RSPO4,-0.243631792259642 +Nucleus,LRP5,-0.0122837660176256 +Nucleus,PANK3,1.45401242560063 +Nucleus,AKT3,-1.0830789848067 +Nucleus,DIRAS1,-0.962752678765558 +Nucleus,CELSR2,-0.166277913172444 +Nucleus,PDPK1,0.90258941414438 +Nucleus,LEMD3,0.413986401418766 +Nucleus,ADM2,0.00509702290944584 +Nucleus,CFAP57,0.0898117110013814 +Nucleus,OCRL,0.0543839928276737 +Nucleus,TIAM1,-0.753545397764279 +Nucleus,VASN,0.350751071702542 +Nucleus,DDX51,0.651750944976675 +Nucleus,ABI1,-0.461246176739368 +Nucleus,ALDH3A2,-0.543965076672356 +Nucleus,RABEP1,-0.747541670687311 +Nucleus,RPL37A,3.90399903609067 +Nucleus,ZNF629,-0.217627916578068 +Nucleus,TTC38,-0.704872848236124 +Nucleus,SMCHD1,0.177054868556834 +Nucleus,HIST2H2BE,-0.748155507361039 +Nucleus,SNAI1,0.128858334392275 +Nucleus,NEU3,1.57558427406759 +Nucleus,LRRC40,-0.410086662275093 +Nucleus,UBXN2B,-0.54959391262241 +Nucleus,JMJD1C,0.832876116250118 +Nucleus,AMOTL1,-0.369489170462921 +Nucleus,PLTP,-1.51220393041839 +Nucleus,GNAI3,1.88308622051657 +Nucleus,F2R,0.195922633130266 +Nucleus,DIRC2,0.0501405679185201 +Nucleus,TRAPPC10,0.690208773543721 +Nucleus,TSSK2,1.01317094613107 +Nucleus,DDX28,-0.250652142190596 +Nucleus,HSPA8P4,1.12801725952203 +Nucleus,SLC4A3,0.453171322612543 +Nucleus,IPPK,0.180707923541926 +Nucleus,CRTAP,0.205567593411066 +Nucleus,SUSD6,0.567728290910698 +Nucleus,LNP1,0.43879817970248 +Nucleus,RLF,0.142766356570723 +Nucleus,SIRT1,-0.328860174685702 +Nucleus,MTX1,4.33727407511563 +Nucleus,MED13L,-0.484610040793032 +Nucleus,ATP5E,4.08813369973611 +Nucleus,FAM101B,-1.94234355168305 +Nucleus,COL5A1,0.0758094840420605 +Nucleus,KIFC2,1.61001514468549 +Nucleus,MOXD1,-0.123838761609842 +Nucleus,NKRF,-0.344159733876579 +Nucleus,MAN1A1,-0.352400890826155 +Nucleus,ATP6V1A,-1.53310163008805 +Nucleus,NUP155,-0.229888541452657 +Nucleus,RAI1,-0.0516262705441012 +Nucleus,RMND5A,-1.15506323397785 +Nucleus,IL17RA,0.740940020833533 +Nucleus,PRKCA,-0.518167009357455 +Nucleus,GTPBP1,0.177763820055673 +Nucleus,MIOS,0.128793531643497 +Nucleus,PITPNA,-0.416384092792563 +Nucleus,PMS2CL,0.677506244039175 +Nucleus,CNNM4,0.654621924855233 +Nucleus,CHD7,-0.386397119276778 +Nucleus,TBC1D8B,0.176977314237173 +Nucleus,CSNK1G1,0.762063306268264 +Nucleus,NOP9,-0.0512900231693896 +Nucleus,SRSF8,-1.03194016952491 +Nucleus,RBM8A,-0.278133420269461 +Nucleus,ETV3,-0.067429100736426 +Nucleus,CDHR1,0.718194256444836 +Nucleus,TMEM69,-0.484787091713618 +Nucleus,CHD1,-0.137651127101821 +Nucleus,C11orf95,-0.176609734229115 +Nucleus,EDA2R,1.25946744373129 +Nucleus,NBPF1,1.57785100984028 +Nucleus,SPPL3,-0.0888090615783965 +Nucleus,AGGF1,-0.96326908357656 +Nucleus,BAZ1A,-0.585030504706132 +Nucleus,GMEB2,-0.429570218453296 +Nucleus,WDR33,-0.499851198814817 +Nucleus, MARCH5,-0.651015961003985 +Nucleus,ARMT1,-1.17115208547687 +Nucleus,BMP5,0.874456674721408 +Nucleus,PCNT,1.474762486161 +Nucleus,AQR,-0.727900123242015 +Nucleus,HIF1AN,1.53780452233793 +Nucleus,ADCY7,0.59827458791388 +Nucleus,FEM1C,0.0964841979429289 +Nucleus,TYW3,0.378471640772891 +Nucleus,CENPI,0.452244880192942 +Nucleus,MICALL2,4.09025692704136 +Nucleus,CTNS,0.156056056540089 +Nucleus,PLEKHM1,0.0204079396527707 +Nucleus,KLHL29,0.150854773563904 +Nucleus,KLHL25,0.495002170683826 +Nucleus,UBE2J1,-1.64806502527906 +Nucleus,F2RL1,-0.187680985723718 +Nucleus,ZCCHC14,-0.549850016520521 +Nucleus,CSNK2A1,-0.648144379490057 +Nucleus,PHAX,-1.18859001612698 +Nucleus,PDCD6IP,1.23670120161501 +Nucleus,PHYH,-1.45904274037706 +Nucleus,TMEM45A,3.00238620977761 +Nucleus,PRPF38A,-0.125234911760597 +Nucleus,SERINC3,0.380879019812718 +Nucleus,TRAFD1,-0.767933170568124 +Nucleus,TXLNG,-0.450923915484573 +Nucleus,LZTS3,-1.571623149822 +Nucleus,RNF213,0.380427981830613 +Nucleus,GCC1,-0.276144940477809 +Nucleus,TBC1D22B,-0.247600585130184 +Nucleus,USP54,-0.268801809816672 +Nucleus,KLHL9,0.336239918945656 +Nucleus,LRPAP1,2.31345697418008 +Nucleus,SAMD4A,1.42409509183622 +Nucleus,EPS15,-1.147962084297 +Nucleus,STARD8,-0.199829675605701 +Nucleus,CHML,0.0249532768928467 +Nucleus,SRSF6,1.14079284650017 +Nucleus,AP3M1,0.163644268365867 +Nucleus,PHF8,0.0599382288023632 +Nucleus,PARVA,-1.12722852775997 +Nucleus,AK3,-1.00829852433738 +Nucleus,TP53INP2,-0.377218728911113 +Nucleus,BRAT1,3.73295105299203 +Nucleus,NEIL3,0.805857835233015 +Nucleus,KCTD11,-0.351261578573589 +Nucleus,ZNF24,1.15732787934063 +Nucleus,IPO8P1,-1.32108845540973 +Nucleus,C6orf89,0.233251395636335 +Nucleus,CLEC16A,0.181554050581802 +Nucleus,COL5A2,-0.407914622601669 +Nucleus,TANC1,-0.0757706638901375 +Nucleus,PDPR,0.44402563684601 +Nucleus,POLQ,1.92179231646276 +Nucleus,RAB23,-0.618938322826079 +Nucleus,REXO1,-0.900169646764483 +Nucleus,COX10,-0.635996170547134 +Nucleus,CLOCK,-0.157503095703087 +Nucleus,DZIP3,0.491187239476215 +Nucleus,DHRS2,5.61851922198323 +Nucleus,C12orf49,-1.03840771173919 +Nucleus,PDE10A,-0.488285692002743 +Nucleus,SORT1,-0.460604213756895 +Nucleus,ZNF281,0.174036797116994 +Nucleus,TNRC6A,1.27967491050352 +Nucleus,PIANP,0.311708674124203 +Nucleus,TUB,0.932304820822474 +Nucleus,ATMIN,-1.47740764250606 +Nucleus,KNTC1,1.39369080436708 +Nucleus,ZBTB39,1.21722398781519 +Nucleus,TMEM167B,-0.382984725254496 +Nucleus,DDX31,0.821337507776599 +Nucleus,NDST2,0.868060727456131 +Nucleus,FOXH1,1.56000973121944 +Nucleus,ACVR1B,1.02502631547811 +Nucleus,DNAAF2,-1.04232863706504 +Nucleus,NKTR,2.79313609526561 +Nucleus,HDLBP,-1.17468677362565 +Nucleus,C16orf62,-1.00399428925455 +Nucleus,SGK223,-0.05389022512306 +Nucleus,AK4,-0.727197790437217 +Nucleus,ADAMTS12,0.741143116662576 +Nucleus,CENPBD1P1,-0.315188432281467 +Nucleus,LIN52,-0.691467161713058 +Nucleus,SOCS5,0.222605464657611 +Nucleus,FEM1B,0.170890787130967 +Nucleus,C1QL4,-0.697629151955142 +Nucleus,GRPEL1,-0.736475728685646 +Nucleus,NFX1,0.797639388838598 +Nucleus,ARID1A,-0.0984281248634879 +Nucleus,CHST14,-0.408751205501969 +Nucleus,ARHGAP23,-0.933317939527552 +Nucleus,CGN,-0.685046566738806 +Nucleus,PPP1R14C,-1.44830755682217 +Nucleus,NAMPT,-0.5524990974202 +Nucleus, SEPT8,-0.0207064350680548 +Nucleus,PHYKPL,2.94815994407612 +Nucleus,RANBP10,0.307772166771311 +Nucleus,GSE1,0.156267024255039 +Nucleus,POLR2D,0.1193479515076 +Nucleus,TANC2,0.270100013040813 +Nucleus,OTULIN,1.63728182686652 +Nucleus,MAP3K7,-0.868246452396964 +Nucleus,pk,-1.209814990091 +Nucleus,MGEA5,1.62322096100747 +Nucleus,NOTCH3,0.196697599714503 +Nucleus,KDM5A,-0.261280200579457 +Nucleus,C5orf51,-0.645225322953517 +Nucleus,PTCD3,2.06649989208432 +Nucleus,MLLT10,0.751751859094218 +Nucleus,CAMTA2,-0.177018381703518 +Nucleus,NAP1L2,-1.2225697896521 +Nucleus,VPS39,-0.149619423569998 +Nucleus,CA12,0.553659936178786 +Nucleus,UNKL,0.257541912173968 +Nucleus,TXNL4B,-0.439518052333791 +Nucleus,PEX10,-0.857309158756865 +Nucleus,TREH,1.07553137591954 +Nucleus,NEK7,-1.43382683886967 +Nucleus,HIP1,-0.804679984877187 +Nucleus,PDXK,-0.102696785174476 +Nucleus,DTL,-0.350118620721698 +Nucleus,KLHL22,0.0971222265810225 +Nucleus,TMEM246,-0.320646014819558 +Nucleus,TFAM,-0.471161635648457 +Nucleus,ARL17A,3.31016859990235 +Nucleus,CSTF3,-0.923203316673301 +Nucleus,SRFBP1,0.26930866003236 +Nucleus,ZC3H12A,1.61339648750642 +Nucleus,GOPC,-0.00150636068832579 +Nucleus,AP1G1,-0.413848632732473 +Nucleus,SFMBT1,-0.621617319414689 +Nucleus,PHTF2,0.305898824064249 +Nucleus,TBKBP1,-0.182877485158515 +Nucleus,HMGB3,-1.10677027830888 +Nucleus,TTF2,0.58386059310841 +Nucleus,CGGBP1,-0.322305809629216 +Nucleus,CRIPT,0.174990076562734 +Nucleus,POLR2M,-1.40246024805438 +Nucleus,ACBD3,-0.686385949180231 +Nucleus,RAB2A,-1.07529332208513 +Nucleus,MRPS23,1.42944488626457 +Nucleus,COG5,-0.305607636336849 +Nucleus,SPEN,0.544552908598423 +Nucleus,ZDHHC18,0.148298288447264 +Nucleus,CLDN12,0.601308334747013 +Nucleus,FCF1,-0.507946741741007 +Nucleus,MRPL35,-0.530943941623853 +Nucleus,TBC1D5,-0.974489591113449 +Nucleus,DDX20,-0.420367866814332 +Nucleus,MARS2,0.314285213068766 +Nucleus,RPLP0P2,-0.249086695336299 +Nucleus,GPR3,-0.177625569747436 +Nucleus,SCAMP5,-0.377571192243639 +Nucleus,PEX19,-1.0560625915027 +Nucleus,NCOA3,-0.0657551803440277 +Nucleus,IRS1,-0.440023450445133 +Nucleus,ACSL4,-0.966231050094938 +Nucleus,NCKAP5L,-0.772900778644561 +Nucleus,GFPT2,0.0331399176633956 +Nucleus,MAP2K5,-0.205142248200428 +Nucleus,CEBPG,-0.44098528534103 +Nucleus,IDS,-0.827470820240932 +Nucleus,DVL3,0.47963721358887 +Nucleus,RIMS4,-0.95488184682971 +Nucleus,ZNF114,0.0905291407945861 +Nucleus,SLC25A24,-0.689104645987943 +Nucleus,RASSF3,-1.41061635439189 +Nucleus,ZNF408,0.0801775787696863 +Nucleus,CEP135,1.05709902295413 +Nucleus,WDR81,-0.451752000013056 +Nucleus,GJC1,1.48359377877046 +Nucleus,IRF2BP1,-1.30560659918638 +Nucleus,TBK1,-0.0272195176525145 +Nucleus,SUCO,0.567890207587624 +Nucleus,TNFRSF8,-0.446808972385169 +Nucleus,RNF168,-0.0393523652127376 +Nucleus,SLC1A4,-0.00987688885821118 +Nucleus,PTP4A1,-0.785240934318004 +Nucleus,BZW1,1.15312265218601 +Nucleus,LRRC47,-0.894003471130074 +Nucleus,CASP3,-1.05504782436072 +Nucleus,ZNF121,1.63561993917044 +Nucleus,ENGASE,2.15528831970331 +Nucleus,ERCC6L,-0.907684790002521 +Nucleus,TBC1D25,0.380371803474318 +Nucleus,UBE2H,-0.523326379286636 +Nucleus,IRF2,-0.620599947354654 +Nucleus,GRPEL2,-0.100606895099772 +Nucleus,ZBTB12,-1.37980762134877 +Nucleus,ZCCHC3,-0.370308786808107 +Nucleus,EIF4ENIF1,-0.296144248644157 +Nucleus,NR1D1,-0.367529341982708 +Nucleus,GFER,-0.67330721793986 +Nucleus,MAP2K4,-0.660113360369238 +Nucleus,TRIM59,1.38781810855087 +Nucleus,CASKIN1,-0.332195237260342 +Nucleus,EGR1,0.00401742134226198 +Nucleus,TNFRSF21,-0.620020628126798 +Nucleus,MTHFD1P1,-2.05527826938286 +Nucleus,SAV1,-1.20270114387056 +Nucleus,PRR12,-0.456852633144817 +Nucleus,STK35,-0.0290217054706514 +Nucleus,STAC,-1.33597375517333 +Nucleus,NFIX,-1.60956772196733 +Nucleus,RSL1D1,-0.199450914576815 +Nucleus,USP48,0.0719820968826426 +Nucleus,SMO,-0.0697217891399682 +Nucleus,CD109,0.158549436664935 +Nucleus,SCCPDH,-1.42936036227178 +Nucleus,MFHAS1,-1.04061399727425 +Nucleus,MLX,-0.684349616647938 +Nucleus,RTKN,-0.80761883106285 +Nucleus,TADA1,0.125986346671271 +Nucleus,LRP4,0.701099028485511 +Nucleus,CHAMP1,-0.284026911815746 +Nucleus,CD99L2,-0.430529466729411 +Nucleus,CEP164P1,0.418782905893257 +Nucleus,PFKFB4,-0.544808286996258 +Nucleus,TRIM56,2.05603470479967 +Nucleus,GMPPB,0.362888269848003 +Nucleus,FASTKD1,0.454524144564584 +Nucleus,NUAK1,-0.200419300387608 +Nucleus,GTF3C4,-0.31683894855389 +Nucleus,WDR3,-0.819976782258538 +Nucleus,PIP5K1C,-0.658205457847046 +Nucleus,NCAPD2P1,-1.83264530015877 +Nucleus,TGIF2,-0.717873598171934 +Nucleus,MAPK11,0.178061444162725 +Nucleus,TRMT5,-0.278589978449494 +Nucleus,RNF38,-0.133355132601566 +Nucleus,ZNF574,-0.557130615788167 +Nucleus,MTHFD2,0.474322987505682 +Nucleus,RNF19B,-1.31559804852736 +Nucleus,HP1BP3,1.58247099795912 +Nucleus,ST6GALNAC2,0.941739030383175 +Nucleus,ZCCHC8,1.36808035511149 +Nucleus,GATAD2B,-0.445848596752246 +Nucleus,EPC2,-0.532182008774092 +Nucleus,ALKBH1,-0.34836940268318 +Nucleus,GTF3C3,-0.168288857517202 +Nucleus,DDA1,-0.892503855396777 +Nucleus,LIN28B,0.241090340215926 +Nucleus,ABLIM1,-0.879994166139552 +Nucleus,CCNT1,0.694306486777245 +Nucleus,ANKRD36BP2,4.47791093384277 +Nucleus,NEK9,0.131713752915315 +Nucleus,POLRMTP1,-0.654826180658712 +Nucleus,BANP,-0.0771737039145255 +Nucleus,UQCC2,3.31399337582425 +Nucleus,ZCCHC7,0.156079294788122 +Nucleus,SLC39A3,-0.822812695063113 +Nucleus,PPIL4,0.610777572143569 +Nucleus,C10orf10,0.0417397080535895 +Nucleus,ZBTB1,0.370423464912289 +Nucleus,MAP2K7,-0.547304501303923 +Nucleus,NUP133,-1.01495490903352 +Nucleus,BBS7,-0.046719830875057 +Nucleus,ZNF346,0.441608192571978 +Nucleus,KLF6,0.778831076099853 +Nucleus,C11orf57,-0.417888584690923 +Nucleus,SAMHD1,-1.47971514337832 +Nucleus,SMAP1,-1.40159200503857 +Nucleus,GLI2,0.539705162336601 +Nucleus,VGLL4,0.644226425973326 +Nucleus,ABCC1,0.832408116312605 +Nucleus,MTND5P10,-2.29916861757431 +Nucleus,PRPF40A,-0.214624653961169 +Nucleus,DHX57,-0.673076311831378 +Nucleus,PURB,0.309138041143001 +Nucleus,SKI,-1.17138392910225 +Nucleus,CRTC3,0.265099160205961 +Nucleus,TSTD2,0.108049645936922 +Nucleus,B4GALNT1,0.0946781723648694 +Nucleus,PRDM4,-0.81272339997609 +Nucleus,ORAI2,-0.761668491951069 +Nucleus,B4GAT1,-0.674968829581258 +Nucleus,CHKA,0.0637596751553114 +Nucleus,AQP1,-0.259381372139273 +Nucleus,RUNDC1,0.136454322292809 +Nucleus,USP47,-0.611755918457442 +Nucleus,TBC1D16,-0.284290001725293 +Nucleus,EMC3,-0.036212999360249 +Nucleus,GPATCH3,-0.251292199142911 +Nucleus,C1orf198,-1.03197053630099 +Nucleus,PARN,-0.536494352851355 +Nucleus,YJEFN3,4.81425863978359 +Nucleus,RPRD2,-0.796814763912495 +Nucleus,PRDM2,0.693625374796836 +Nucleus,IFNAR1,-0.288020439349593 +Nucleus,BTAF1,1.26219657971975 +Nucleus,BRD4,-0.93090246694716 +Nucleus,LEPROT,0.559802658980783 +Nucleus,MRPL50,-0.297248530810406 +Nucleus,ZNF22,-1.14718157367125 +Nucleus,SNX11,-0.151793709955988 +Nucleus,WASF1,-0.890243448508446 +Nucleus,AGPAT6,1.3054720007013 +Nucleus,CAMKK2,-0.25251097578757 +Nucleus,ERAP1,0.163397914252742 +Nucleus,DDIAS,-0.331929345591889 +Nucleus,JADE2,-0.484982179842018 +Nucleus,SOAT1,0.431914380836067 +Nucleus,SH2B3,-0.646485571718891 +Nucleus,MLLT4,0.420927769071958 +Nucleus,UTP20,-0.752933358290319 +Nucleus,TIMM22,0.0311625360531571 +Nucleus,NAGA,-0.36173211824865 +Nucleus,PIK3R4,0.245313940961718 +Nucleus,RTN4R,-1.1599256530983 +Nucleus,WDR76,-0.0250310766479143 +Nucleus,NR2C2,0.954185677591276 +Nucleus,BAG2,0.0707727263419054 +Nucleus,SNX19,0.424296143803539 +Nucleus,C7orf73,-1.14710692775594 +Nucleus,DSE,-0.433391379728733 +Nucleus,RAB6A,-1.14138243837446 +Nucleus,EIF4A2,4.94347001669409 +Nucleus,GSPT2,-0.840211992639984 +Nucleus,EXT1,2.37560568865309 +Nucleus,ZSWIM1,-0.503888591269507 +Nucleus,MIEF1,-0.0960967101254198 +Nucleus,VEZF1,-0.180115928336262 +Nucleus,RAB31,-1.72546206382926 +Nucleus,SH3RF3,-0.786474215085187 +Nucleus,CIC,0.105778179929024 +Nucleus,EPT1,1.34687169412656 +Nucleus,BIRC6,0.119422827524492 +Nucleus,PRKAA1,0.0587630455268738 +Nucleus,ASB6,-0.0690223844804994 +Nucleus,TET3,0.909579750837842 +Nucleus,ADO,-0.522796652730958 +Nucleus,EMP2,-0.416995190249553 +Nucleus,SUDS3,0.96219115096208 +Nucleus,KIF3C,-0.811883972276649 +Nucleus,TSPYL2,0.734784546839116 +Nucleus,ARHGEF17,0.115065714955659 +Nucleus,KRAS,-0.401132667793888 +Nucleus,SLC6A6,0.925099726733732 +Nucleus,AP3M2,0.775477131742019 +Nucleus,PPP6R2,-0.639470917051055 +Nucleus,SNN,-0.714107419930465 +Nucleus,KCTD3,-0.973509382196692 +Nucleus,RBL2,-0.658160531853855 +Nucleus,FAM134C,0.0177323957400596 +Nucleus,SMARCA5,-1.63108593127197 +Nucleus,RETSAT,0.136608485329124 +Nucleus,FANCD2,-0.372148576070805 +Nucleus,LTN1,-0.362572856047339 +Nucleus,RBMXL1,0.371499615417217 +Nucleus,WDHD1,-0.613925314707805 +Nucleus,LPIN2,-0.765850257350044 +Nucleus,TRIM14,-0.249570035916117 +Nucleus,WIPI2,-0.314804079277788 +Nucleus,ARHGAP12,0.0284318717939777 +Nucleus,SGOL2,-0.128490507078286 +Nucleus,SLC9A1,0.0734293487677159 +Nucleus,C1R,-0.302329699620771 +Nucleus,SRPX2,0.77709436534273 +Nucleus,SPATA2,-0.093361984985256 +Nucleus,MORC2,0.867528462668078 +Nucleus,ADGRB1,0.352171841040173 +Nucleus,KIAA1161,0.161362945342203 +Nucleus,CDK6,-0.510142551733434 +Nucleus,ATF6,0.329228787783989 +Nucleus,IL13RA1,-0.725336983168344 +Nucleus,CREBL2,-1.29060771650054 +Nucleus,TMEM181,1.09274268413882 +Nucleus,FAM46B,-1.01563895566578 +Nucleus,UBTD2,-1.11224242033054 +Nucleus,EIF1AD,0.388456717651684 +Nucleus,RFTN1,-1.27265547291916 +Nucleus,ABT1,-0.844834552080473 +Nucleus,FGD1,-1.45307087659954 +Nucleus,PIP4K2A,-0.96927791286898 +Nucleus,WDFY1,0.19240602104908 +Nucleus,KCTD9,-0.188848855174131 +Nucleus,ATP13A1,0.393368019577313 +Nucleus,PIM1,-0.151011885412237 +Nucleus,URB2,0.103445094818875 +Nucleus,C2orf69,-0.36036328977215 +Nucleus,PRKD3,-0.209946457768844 +Nucleus,TRAK2,-0.600845676042473 +Nucleus,MAP4K5,0.07249610490467 +Nucleus,HSPA8P11,-1.50835011904829 +Nucleus,DAGLA,0.484913237499706 +Nucleus,PIGO,1.24792451819932 +Nucleus,FOXK2,-0.397368795859721 +Nucleus,SMIM10L1,-0.486429496448812 +Nucleus,ABCA3,0.31587873181116 +Nucleus,GPR107,0.904551765533743 +Nucleus,POLA1,-0.223530937190251 +Nucleus,IKBIP,-0.356173869179611 +Nucleus,RANBP9,-1.25352598948021 +Nucleus,TPRG1L,-1.41095052186082 +Nucleus,CCDC97,-0.640832706127867 +Nucleus,KRT10,-1.24130576968161 +Nucleus,ANKS1A,-0.566364403108058 +Nucleus,TSPAN9,-0.000527713696741403 +Nucleus,ABR,-0.67002590959215 +Nucleus,DPYSL4,-1.08365373178861 +Nucleus,ABHD8,-1.84664834769278 +Nucleus,CDR2,-0.796444540134999 +Nucleus,RNF19A,0.435319720959437 +Nucleus,STK10,-1.09052904421819 +Nucleus,ZNF367,0.276618902140115 +Nucleus,SDC3,-0.251416167859811 +Nucleus,TMEM248,-0.187790935124977 +Nucleus,ZNF217,0.0532200426591698 +Nucleus,MAML1,-0.317434228793962 +Nucleus,UTP14A,-1.23923973061987 +Nucleus,RBFOX2,0.0582455442464815 +Nucleus,PIAS4,-0.984484602021749 +Nucleus,ENG,-1.06496508696495 +Nucleus,DESI2,-1.45630573887495 +Nucleus,EPHX1,-0.753637669795483 +Nucleus,MISP,-0.88077385347684 +Nucleus,YTHDF3,-0.375978817931922 +Nucleus,ADSS,-1.17107203388595 +Nucleus,CASKIN2,-1.01085477492942 +Nucleus,LYPD1,-0.810119772286481 +Nucleus,STK4,0.112739088585154 +Nucleus,COL27A1,2.30714012719693 +Nucleus,CNOT6,-0.829979323634687 +Nucleus,CEP164,-0.428340612418779 +Nucleus,QTRTD1,0.146247856496502 +Nucleus,MYCBP,-1.46087173674204 +Nucleus,ASB13,-1.32414344699372 +Nucleus,SVIL,-0.72471968378282 +Nucleus,CARD11,-1.50109217207713 +Nucleus,C22orf29,1.43250848233057 +Nucleus,SHQ1,-0.581871313311509 +Nucleus,RNMT,0.759761063172556 +Nucleus,B4GALNT4,-0.754463318814034 +Nucleus,MLLT6,0.363906761476021 +Nucleus,KIAA0319L,0.727465921711424 +Nucleus,ATAD1,0.912964766015522 +Nucleus,NOTCH1,0.419243028677138 +Nucleus,TIPRL,-0.634845326010739 +Nucleus,FASTKD5,-0.421475223773378 +Nucleus,SLC30A1,0.694363624243928 +Nucleus,ELFN1,-0.556823026946896 +Nucleus,ULK1,-0.186399569592096 +Nucleus,ERP44,0.93454438282158 +Nucleus,TGFBRAP1,-0.352879539010867 +Nucleus,SSU72,1.0953284059015 +Nucleus,RNF111,0.172772943330923 +Nucleus,C9orf40,-1.11408325786699 +Nucleus,PSMF1,-1.16219256431062 +Nucleus,CRNKL1,-1.03293416517782 +Nucleus,SETD2,0.336494120768729 +Nucleus,DYRK3,0.321337489333677 +Nucleus,ZNF589,2.57623931668979 +Nucleus,RTF1,-1.40543204226117 +Nucleus,AMBRA1,0.144884283061138 +Nucleus,PDGFRL,-0.435169252268187 +Nucleus,ERCC2,0.118171325471907 +Nucleus,SKA2,-0.554484959785291 +Nucleus,ASCC3,-0.850192550557102 +Nucleus,KCMF1,0.04028879021867 +Nucleus,PHKB,-0.945449142806603 +Nucleus,AGO1,1.20593486464766 +Nucleus,PABPC1L,5.66870819073731 +Nucleus,ICMT,-1.0383063979269 +Nucleus,CHUK,-0.641207955588995 +Nucleus,ENTPD4,1.31132286873255 +Nucleus,TRIM21,-1.13275301630239 +Nucleus,PAQR7,0.48155190833024 +Nucleus,TMEM261,0.332616788126467 +Nucleus,ZFP36L2,-0.429225946167768 +Nucleus,KLHL21,0.014293004521795 +Nucleus,ORC5,-0.415014594294933 +Nucleus,AHDC1,0.176443796479046 +Nucleus,ASPHD2,0.165845212251766 +Nucleus,GRWD1,1.62743786186147 +Nucleus,PLXND1,-0.97849874753661 +Nucleus,UHMK1,0.158938200030888 +Nucleus,PREX1,-1.97516274786756 +Nucleus,TIGAR,-0.632012859202441 +Nucleus,EDC3,0.310887358926122 +Nucleus,ATXN7L3B,-0.636590853644502 +Nucleus,DDX17,5.24383337438066 +Nucleus,PRKAB2,2.11460377168849 +Nucleus,FZR1,0.299578229198078 +Nucleus,ATG2A,-0.966183818686819 +Nucleus,ARMC7,-0.617596490128323 +Nucleus,PLCD3,1.32758935496229 +Nucleus,NCF2,-1.78457131911155 +Nucleus,ABCC5,0.83782403998991 +Nucleus,TSPYL4,0.700299048275172 +Nucleus,BIRC3,0.714547718968512 +Nucleus,NDFIP1,-0.479666990359592 +Nucleus,TRMT61A,-1.09386023972021 +Nucleus,FLCN,0.027796246219371 +Nucleus,EIF1AX,-1.40969226333294 +Nucleus,CLASP1,-0.133654506920588 +Nucleus,NXN,-1.54363858391222 +Nucleus,ME1,-1.07934924634371 +Nucleus,KLHL12,-0.100834628574163 +Nucleus,SP1,0.176035754429788 +Nucleus,GNL1,1.00104976986155 +Nucleus,SLC39A9,0.182138985392256 +Nucleus,NID1,-0.288451406911681 +Nucleus,HHLA1,0.26926069925084 +Nucleus,CDC42BPB,-1.1379119588127 +Nucleus,RIN2,-0.758840081363509 +Nucleus,RALA,-1.30666452424989 +Nucleus,FYCO1,-0.306842552388383 +Nucleus,ANKIB1,-0.415265269235352 +Nucleus,BCL9L,0.268535943503223 +Nucleus,CBFB,-0.802002559165343 +Nucleus,PRKCI,-0.726291516190759 +Nucleus,ITPK1,-1.66772576903128 +Nucleus,HERC4,-0.170250902463772 +Nucleus,FANCE,-0.574066484770371 +Nucleus,PODXL,0.300643311217485 +Nucleus,SRRM3,-0.436022747969926 +Nucleus,INF2,-1.38225882533235 +Nucleus,MRPL57,-1.081569854653 +Nucleus,HEATR6,0.107574886332122 +Nucleus,HTT,-1.22398131684748 +Nucleus,PHF3,-0.400485758480417 +Nucleus,TWISTNB,-1.17744983584546 +Nucleus,SYNJ2,-0.198881879700283 +Nucleus,SPARC,-0.0905488465971887 +Nucleus,ZBTB40,0.882478014421478 +Nucleus,NUP210,0.574852434208373 +Nucleus,AP5B1,0.817535624809133 +Nucleus,CD44,-0.488897650936486 +Nucleus,NUDT15,-2.06345139587122 +Nucleus,DCP1B,-0.545390446616624 +Nucleus,MED14,-0.810414762618886 +Nucleus,WTAP,-0.210230499969964 +Nucleus,FAM98B,-1.04633493592489 +Nucleus,ARFGEF1,-0.189357192019601 +Nucleus,EZH2,0.911816513524905 +Nucleus,ABL2,0.801077233492753 +Nucleus,ZZZ3,-0.219265549331835 +Nucleus,TNFAIP8L1,-1.23500101493101 +Nucleus,DHX29,-0.765949421227758 +Nucleus,SLC19A1,0.340364538145756 +Nucleus,LDLRAD3,-0.28891013036938 +Nucleus,ATP6V0E2,-1.7766014184976 +Nucleus,ZBTB17,-0.756070275479061 +Nucleus,KMT2D,-0.195259557895418 +Nucleus,VPS37C,-0.651877923663484 +Nucleus,SNTA1,-1.878525752936 +Nucleus,SMIM15,-1.22364660470635 +Nucleus,TAF5L,-0.638674985316405 +Nucleus,MYO18B,2.45754604375097 +Nucleus,UBE3C,-1.28453198718009 +Nucleus,POLH,0.498463355565164 +Nucleus,GGCX,0.757757414010031 +Nucleus,JRK,2.51920425143977 +Nucleus,SURF6,-0.90535423140077 +Nucleus,LAMB1,0.0844146873530107 +Nucleus,DCK,-1.25733564150644 +Nucleus,INTS9,-1.05311317575723 +Nucleus,GEM,-0.513037267507084 +Nucleus,NUFIP2,2.90532935163389 +Nucleus,NADK,-0.0453258748225565 +Nucleus,FBXO41,0.534778935833958 +Nucleus,TPBG,0.696384796036691 +Nucleus,AKAP17A,-0.21785956357575 +Nucleus,DPYSL2,-1.78403123360794 +Nucleus,KLHL18,-0.317562647420146 +Nucleus,UPF2,-0.342317853281689 +Nucleus,SCARA3,-0.971809898061389 +Nucleus,EFNB1,-0.276106707921262 +Nucleus,TGFB2,0.442824994656634 +Nucleus,TBC1D2B,-0.0919045584064169 +Nucleus,SH2D5,0.138093893830225 +Nucleus,PARP14,0.0582918498387075 +Nucleus,RARS2,-0.397800980181597 +Nucleus,VPS26B,-0.516323174630233 +Nucleus,SNX9,-1.36267794725701 +Nucleus,PROSER1,-0.593546236069992 +Nucleus,ZMYM4,-1.23447359893659 +Nucleus,KIF1BP,-1.10124913684368 +Nucleus,NRAV,0.429946464289016 +Nucleus,KPNA4,-1.03271369463573 +Nucleus,ABCE1,-1.29460943292417 +Nucleus,C6orf120,-0.349036368526152 +Nucleus,HELZ,-0.172327654653823 +Nucleus,SCAF4,0.660498323541971 +Nucleus,PMEPA1,-0.0937256865695087 +Nucleus,PCYT1A,-0.180556777278886 +Nucleus,NCS1,-1.27938908763797 +Nucleus,POGK,2.02523569632637 +Nucleus,AFF1,0.422996034309319 +Nucleus,BAZ2A,0.100542419439607 +Nucleus,MAPK1,0.025067007222737 +Nucleus,SLC39A10,0.17453286793042 +Nucleus,COL4A1,-0.600548460275866 +Nucleus,IGSF9,0.661330273604219 +Nucleus,FBXO17,-0.563960307095509 +Nucleus,DCAF8L2,-1.3231751500949 +Nucleus,DPY19L1,-0.184538637338714 +Nucleus,ST3GAL2,-0.477035130974748 +Nucleus,GGA2,0.895004767198812 +Nucleus,CNPY4,0.190585751025657 +Nucleus,FAM168A,0.0117171902123566 +Nucleus,ABCA2,-0.0328490856892334 +Nucleus,NEURL1B,-0.175387753267727 +Nucleus,TNKS2,-0.517698423833942 +Nucleus,PJA1,-1.52849668746273 +Nucleus,ENSA,0.599082209230225 +Nucleus,LRRC58,-0.0264024091535548 +Nucleus,NSUN5P1,6.49247329695534 +Nucleus,VHL,0.479329767652091 +Nucleus,PKMP2,-2.13078562083277 +Nucleus,BTG2,-0.142427116640758 +Nucleus, MARCH4,-1.18720293532932 +Nucleus,TRIM44,1.18102619631719 +Nucleus,ANKRD11,0.533247558559055 +Nucleus,RASL11B,-0.227707639151007 +Nucleus,EHD1,-1.3711019837911 +Nucleus,KPNA6,-0.126772571677367 +Nucleus,BCL2L2,1.47100394389824 +Nucleus,HR,-1.47367591790242 +Nucleus,VANGL2,0.224276562682146 +Nucleus,RASL10B,-1.47938999040317 +Nucleus,CRMP1,-1.27694698821149 +Nucleus,STK11IP,-1.02754387325936 +Nucleus,POP1,-0.904353899026935 +Nucleus,EFCAB14,-0.290846458722673 +Nucleus,ARMCX1,-1.1879058555185 +Nucleus,ASMTL,-1.37567354498329 +Nucleus,PDDC1,0.369562046584131 +Nucleus,MTMR12,-0.764828145614694 +Nucleus,ANKRD33B,0.234212759302691 +Nucleus,C9orf64,-1.10234730949522 +Nucleus,DHX33,-0.308219796386002 +Nucleus,SIPA1L1,0.109508783921376 +Nucleus,UBIAD1,-0.0629459954952167 +Nucleus,SOCS3,0.0351081883200886 +Nucleus,CAMK2N1,-1.45931697305081 +Nucleus,CTR9,-1.74933127870272 +Nucleus,QSER1,-0.696034642172598 +Nucleus,SOWAHC,-0.584641095611621 +Nucleus,GMFB,-1.10615644430724 +Nucleus,NAA40,0.864981722231631 +Nucleus,SIAH2,-1.46595254248516 +Nucleus,NUP43,0.0540852942486513 +Nucleus,VAV2,-1.00742499480087 +Nucleus,ANAPC1,-0.773689711464421 +Nucleus,OSBPL11,-0.685995933024177 +Nucleus,LIMS1,-1.1893744294885 +Nucleus,PKP3,-1.33437850789716 +Nucleus,SUSD5,0.0937520278221209 +Nucleus,CDKN2C,-1.34524530034239 +Nucleus,TUG1,1.1016504487162 +Nucleus,ARMC1,-0.985125259301329 +Nucleus,CBX4,-0.46705801464708 +Nucleus,OGT,5.13839229240501 +Nucleus,DNAJC13,-1.12680027156455 +Nucleus,MRAS,-1.01400194407853 +Nucleus,ANO10,0.145614358515376 +Nucleus,GOLIM4,-0.562160216422985 +Nucleus,CBX5,0.385579139754771 +Nucleus,PTCD1,-0.266024518826969 +Nucleus,MESDC1,-0.899747396217318 +Nucleus,SUCLG2,-1.36942790859614 +Nucleus,NISCH,2.21281723454109 +Nucleus,CDC5L,-1.07475067986544 +Nucleus,OAF,-0.591534339506819 +Nucleus,SH3PXD2B,-0.52020803573646 +Nucleus,STX6,0.435210654421204 +Nucleus,GINS1,-0.34989046212726 +Nucleus,SMURF1,-0.0511548402900098 +Nucleus,MUM1,0.218783622200541 +Nucleus,PVRL1,-0.239927444884272 +Nucleus,MAPK14,0.663176263313786 +Nucleus,EDEM1,-0.141960222020834 +Nucleus,CKAP2L,-0.613917186173494 +Nucleus,POLR1A,-0.148620278144401 +Nucleus,HK2,-1.02758042926311 +Nucleus,SLC35C1,-0.17337245440698 +Nucleus,KCNH3,-0.663122556695524 +Nucleus,SIN3B,0.557033035362596 +Nucleus,ASXL2,0.0634397768629329 +Nucleus,NTN1,-0.0437566554414471 +Nucleus,PALD1,-0.712075420626707 +Nucleus,PNKD,-0.235792325707035 +Nucleus,TMEM104,0.554946026799783 +Nucleus,NACC2,-0.0850583059223268 +Nucleus,FADD,-1.36831656109483 +Nucleus,CUL1,-1.11297833681001 +Nucleus,DUSP16,-0.911296459558795 +Nucleus,STXBP1,-0.473824498187706 +Nucleus,TTK,-0.596563642476671 +Nucleus,RNASEH2C,1.0903088265932 +Nucleus,FOXJ2,-0.594338680507104 +Nucleus,C10orf2,-0.761300584942791 +Nucleus,GPRC5A,0.944250740490536 +Nucleus,CC2D1B,-0.750511120695609 +Nucleus,TRIM65,0.194664815334946 +Nucleus,SYNCRIP,0.318022745399295 +Nucleus,ARHGEF19,0.0244920506661094 +Nucleus,TOR1B,0.557993508994212 +Nucleus,DLG4,-0.487238265440807 +Nucleus,OLMALINC,1.79597582690413 +Nucleus,CLIP2,-0.739109790339081 +Nucleus,RANBP6,1.09868925924424 +Nucleus,USP24,-0.302846689050796 +Nucleus,CSGALNACT2,0.229082679989353 +Nucleus,RNMTL1,-0.474315841752559 +Nucleus,HNRNPA3,2.15463369601072 +Nucleus,DSN1,-0.448389587906186 +Nucleus,RAP2B,-0.823920813539553 +Nucleus,CSTF2T,-0.0609376979293263 +Nucleus,ADCK4,-0.838393565099337 +Nucleus,CIAO1,0.210181236217067 +Nucleus,SEC22B,-0.355727476409047 +Nucleus,PCIF1,-1.34651550962967 +Nucleus,WAPAL,-0.592192718558263 +Nucleus,EID2,-1.45196588381629 +Nucleus,IER5,0.123371210632335 +Nucleus,CREB3L1,-1.14997609934628 +Nucleus,MTDH,0.380159922940638 +Nucleus,PIP4K2B,-0.835611084221694 +Nucleus,PKM,5.79490450257808 +Nucleus,POLR3A,-0.345861640162085 +Nucleus,CAMLG,-1.09751174746183 +Nucleus,NUDT11,-1.73631925575582 +Nucleus,NSF,-1.81771236853324 +Nucleus,CD2AP,-0.939368054358122 +Nucleus,LTBP2,0.713352608108074 +Nucleus,BRCC3,-0.603444930590982 +Nucleus,NBN,-1.09169121249878 +Nucleus,SNAP29,-0.97793256906664 +Nucleus,PITRM1,-1.57233198616128 +Nucleus,TFB2M,-0.845797536771523 +Nucleus,LAMP2,-0.292490721426785 +Nucleus,CA11,-0.943037123305851 +Nucleus,KDM2B,-0.960675383682346 +Nucleus,MICAL3,0.342060632411097 +Nucleus,NCOA6,-0.129344884956419 +Nucleus,CUL7,0.0704130288615712 +Nucleus,SNAPC4,-0.0338688869617683 +Nucleus,OAS3,-0.441652697574695 +Nucleus,TM9SF2,-0.259618025331663 +Nucleus,TAF9B,-1.94993404226717 +Nucleus,TOR3A,-0.604573792911757 +Nucleus,ACTR5,0.0493865925681481 +Nucleus,SFXN3,-0.681616637417961 +Nucleus,NPR2,-0.0413091521258782 +Nucleus,HS6ST1,-0.942716103596328 +Nucleus,GALNT18,-0.00257090525547078 +Nucleus,NUS1,-0.769341796397049 +Nucleus,KMT2B,-0.38291541599512 +Nucleus,PDCD7,-0.422181778384489 +Nucleus,IL2RB,-0.857856455139647 +Nucleus,SRRD,-0.928924532939176 +Nucleus,TCTA,-0.285921214868799 +Nucleus,DFFA,-0.264324208167337 +Nucleus,NOV,-0.151864077209349 +Nucleus,VPS18,-0.683106465744048 +Nucleus,MPZL1,-0.120173205809098 +Nucleus,C14orf169,-0.516409097225871 +Nucleus,OLFML3,-0.499003107563877 +Nucleus,RELB,-1.26014095330256 +Nucleus,PAFAH1B2,-1.4119482929238 +Nucleus,SPATA21,1.07390893076565 +Nucleus,RB1CC1,-1.13196304467264 +Nucleus,EBLN3,-0.161726147837357 +Nucleus,PIK3R2,-1.60628029708714 +Nucleus,AMMECR1L,0.257143153853143 +Nucleus,CCDC3,-0.796448785131417 +Nucleus,CTTNBP2NL,-0.342896173650767 +Nucleus,GTPBP6,-1.65475452902633 +Nucleus,SAP18,-0.626713056793761 +Nucleus,ERCC1,-0.141085262984026 +Nucleus,CEP72,1.49184980402994 +Nucleus,NFIC,-1.32821491963436 +Nucleus,UBE2Q1,-0.948391192627581 +Nucleus,ANKRD27,-1.19157739811145 +Nucleus,LARS2,0.189495038857642 +Nucleus,NCAPD3,-0.0823746583822111 +Nucleus,TRIM8,-1.42110645611656 +Nucleus,KBTBD2,0.0770695527462157 +Nucleus,UBFD1,-1.2090752914252 +Nucleus,COIL,-0.491733373909607 +Nucleus,RRAGC,-1.49926680691356 +Nucleus,NEK6,-0.566540072663414 +Nucleus,PKN3,-0.901285776998165 +Nucleus,LRP10,0.208821158610284 +Nucleus,RGP1,-0.0983097905677894 +Nucleus,GNA11,-1.80618027440961 +Nucleus,CDC42EP2,0.118886996034874 +Nucleus,NAA15,-0.97106351343563 +Nucleus,B4GALT7,-0.693856746413749 +Nucleus,TBC1D13,-0.471523766255591 +Nucleus,TEAD3,-0.76129469342373 +Nucleus,ITCH,-0.596477088330209 +Nucleus,TESK1,-0.657353879872156 +Nucleus,UBA52,-1.19308870056621 +Nucleus,CREG1,-1.01680743242783 +Nucleus,FRMD8,-0.618380411865008 +Nucleus,UNC119B,-0.481537151078783 +Nucleus,BCL9,-1.01800417691745 +Nucleus,NOC3L,-0.596050243340455 +Nucleus,ZNF638,0.0658019119823223 +Nucleus,XPOT,-0.62401569852665 +Nucleus,LRRC4B,-1.14021809710336 +Nucleus,PRKAR2A,-1.6832214116525 +Nucleus,CERK,-0.851109585254441 +Nucleus,ZBTB9,0.138863001704896 +Nucleus,SMU1,0.502779688262364 +Nucleus,AARS2,-0.306658013116353 +Nucleus,FBXO5,-0.13765720345863 +Nucleus,NDC1,0.0310942950665305 +Nucleus,TPP1,-0.262196388450313 +Nucleus,ZNF335,0.229709739715899 +Nucleus,KDELR3,-0.984966434380194 +Nucleus,GFPT1,-0.625981304786197 +Nucleus,SEL1L,0.0464925085551052 +Nucleus,FXR2,-1.43987694702592 +Nucleus,CAT,-1.40715978300982 +Nucleus,AFF4,-0.163647723152532 +Nucleus,UBR4,-0.00691565356425393 +Nucleus,EIF2S1,-1.16503458468833 +Nucleus,MUL1,0.0657111098898061 +Nucleus,NMD3,-0.868500456866114 +Nucleus,TSPYL1,-1.65433286760299 +Nucleus,SOX9,-0.528847210454824 +Nucleus,KDM3B,-0.863005292178866 +Nucleus,NFYA,0.0503151052941268 +Nucleus,ZBED4,-0.519614937303718 +Nucleus,CCHCR1,-1.00832863980572 +Nucleus,KLF13,-0.842886368108102 +Nucleus,PPM1F,0.150678500686485 +Nucleus,NKIRAS2,-0.678220752934417 +Nucleus,POTEI,4.88926348578257 +Nucleus,SYT11,0.295249177356739 +Nucleus,MAPK6,-1.30364142429572 +Nucleus,AGPAT9,0.0413223953309464 +Nucleus,AGO2,0.598418756326674 +Nucleus,ACTG1P9,-1.64882496359417 +Nucleus,PRRC2B,-0.491852796945276 +Nucleus,CLCN3,-0.1260146166135 +Nucleus,IGFBP4,-0.290666488635979 +Nucleus,BRD7,2.3960875414917 +Nucleus,PPARD,-0.735315939167134 +Nucleus,TSPAN6,-0.818607960278647 +Nucleus,URM1,0.160582119172522 +Nucleus,SMCR8,0.316749674105249 +Nucleus,DCAF5,0.444510879993184 +Nucleus,ZNF697,0.0579642720591946 +Nucleus,FBN2,-0.727798996629964 +Nucleus,LAMC3,0.737507174768943 +Nucleus,WIZ,-0.743994392633468 +Nucleus,TMEM131,0.17650700994917 +Nucleus,LDOC1L,-0.950572465323152 +Nucleus,AP3B1,-0.628282905599793 +Nucleus,PDXDC1,-0.749070262157642 +Nucleus,TERF2IP,-1.02114843710041 +Nucleus,TCF19,-0.886869184913581 +Nucleus,LAMA5,0.799790963558619 +Nucleus,SPRED2,-0.885202366823977 +Nucleus,C9orf69,-0.93305989413202 +Nucleus,EP300,-0.341937699065295 +Nucleus,FAM111B,-0.982674879675518 +Nucleus,EP400,-0.690902186949953 +Nucleus,PACS1,-1.27669426974844 +Nucleus,TTI1,0.393704448547121 +Nucleus,STAM,-0.297786439264341 +Nucleus,PHF13,-0.385703217353867 +Nucleus,NCOA5,-0.521030161318495 +Nucleus,GINS4,-0.235442784985283 +Nucleus,CARD10,-0.947198321461764 +Nucleus,CYCS,0.634833391779118 +Nucleus,NIPBL,-0.498351689250497 +Nucleus,MAGEA11,-1.61617455485265 +Nucleus,SIRPA,-0.324190453530077 +Nucleus,GALNT7,-0.106927422683402 +Nucleus,KCTD5,-1.30935550753404 +Nucleus,TAB1,-0.761148536465097 +Nucleus,LUZP1,-0.263575803990893 +Nucleus,JPH3,-1.37243779325807 +Nucleus,DESI1,-0.215156200304606 +Nucleus,CHST10,0.0739410001280519 +Nucleus,LDLRAP1,-0.625713512595962 +Nucleus,RAB14,-1.16466964984041 +Nucleus,SLC39A13,-0.465330762336651 +Nucleus,MINPP1,0.0185276893693698 +Nucleus,TAF2,-0.104461347042003 +Nucleus,MALAT1,4.64273288724415 +Nucleus,CLIP3,-1.7588868481797 +Nucleus,ITGA6,-0.278076790395415 +Nucleus,OSBP,-1.09311513845454 +Nucleus,ELK3,-1.54330725141264 +Nucleus,HBEGF,0.076409342855658 +Nucleus,HEXIM1,0.0187564643978852 +Nucleus,ABL1,-1.25306691568509 +Nucleus,VPS4A,1.24770518015707 +Nucleus,ACACA,0.273664876171287 +Nucleus,RPAP1,-1.40775539639082 +Nucleus,DCUN1D4,1.16681698174691 +Nucleus,NBEAL2,-0.297881856191881 +Nucleus,WDR62,-0.195958420018877 +Nucleus,LRIG1,0.17808218105135 +Nucleus,INTS5,-0.947243149724494 +Nucleus,DOT1L,-0.268872071146402 +Nucleus,MAP1A,-1.42342924563998 +Nucleus,PRMT6,-1.65724135904916 +Nucleus,IPO11,-0.375716268187079 +Nucleus,UBTD1,-1.86150304943943 +Nucleus,RBM15B,0.0868414552141806 +Nucleus,PARP4,-0.396811869468771 +Nucleus,TBC1D10B,-1.22391947198881 +Nucleus,HADH,-1.73117491500333 +Nucleus,LRRK1,0.992020742771669 +Nucleus,IGSF8,-0.179269622990346 +Nucleus,PLAGL2,-0.0989813576984593 +Nucleus,MET,-0.342250025648154 +Nucleus,RAB3IL1,-1.81651881710394 +Nucleus,E2F2,0.610035119727316 +Nucleus,ARFGEF2,-0.874145463044382 +Nucleus,GPRIN1,-1.70377276411215 +Nucleus,PSMD11,-0.522016668549067 +Nucleus,EXOC4,-1.00892058224552 +Nucleus,COL12A1,-0.302537811761695 +Nucleus,TMEM184A,0.509598923222554 +Nucleus,PAPD7,0.771108405703618 +Nucleus,HNRNPUL2,1.84707922539371 +Nucleus,KCTD20,-1.04194179586572 +Nucleus,WARS,-1.99369443763761 +Nucleus,MED13,-0.581114560702157 +Nucleus,FBRSL1,-0.971542010638062 +Nucleus,MYO9B,-1.17584265620346 +Nucleus,C22orf46,0.934918096824831 +Nucleus,CELF1,1.15089324516853 +Nucleus,TBCC,-0.593016274394877 +Nucleus,TTC27,-0.4235659210734 +Nucleus,RAPGEF1,-1.3651809128392 +Nucleus,VEGFC,-0.563258231231186 +Nucleus,DHX34,-0.567420213820232 +Nucleus,TMED7,-0.252924663907553 +Nucleus,MESDC2,0.15897212186208 +Nucleus,DYNC1H1,-0.787027447770395 +Nucleus,SERP1,-1.4752170343534 +Nucleus,MMP9,0.422506392409104 +Nucleus,PFKFB3,-0.680403672926036 +Nucleus,IRF2BPL,-0.991843486824835 +Nucleus,LSM3,0.758712212053892 +Nucleus,UBN1,-0.767133175271366 +Nucleus,DARS2,-1.46307780655423 +Nucleus,DNASE1L1,-0.820448048502488 +Nucleus,YEATS2,-0.225188523665037 +Nucleus,PELO,-0.13757810779602 +Nucleus,LDLR,1.24685880745247 +Nucleus,SAPCD2,-1.4422240467614 +Nucleus,RANBP2,-0.201416978990022 +Nucleus,CDC23,-0.632739523700499 +Nucleus,ECE2,-0.485867962180964 +Nucleus,MOB1A,-0.591363974837331 +Nucleus,AGPS,-0.944050011427372 +Nucleus,ARPC4,0.209435547777731 +Nucleus,ARID5A,-0.736573902019658 +Nucleus,MLLT11,-1.16865421642208 +Nucleus,FZD2,-0.182335265385789 +Nucleus,NUDT21,-0.246296683229793 +Nucleus,XPC,-0.380459190501203 +Nucleus,SETD7,-1.00370967440646 +Nucleus,PAK2,-0.817176072593496 +Nucleus,FAM20B,-0.82965038520565 +Nucleus,PPP1R15A,0.10336528909917 +Nucleus,GGA3,0.658747802731162 +Nucleus,ZBTB5,1.49953683120689 +Nucleus,SPCS3,0.200462766406052 +Nucleus,RYK,-0.0147921757383591 +Nucleus,TENM3,-0.132215820399783 +Nucleus,NAA35,-0.115058276939681 +Nucleus,UBQLN2,-1.29476791911455 +Nucleus,PAK1IP1,-1.48306830896783 +Nucleus,PPP1R15B,0.963753430653606 +Nucleus,HDAC5,-1.76961099043423 +Nucleus,PI4K2A,-1.01469330739899 +Nucleus,CIT,-0.156587666342059 +Nucleus,ANTXR1,-0.666627987847452 +Nucleus,DPYSL3,-1.31946041920972 +Nucleus,FOXRED1,-0.769308270863549 +Nucleus,EIF2AK4,-1.61139877689444 +Nucleus,CMTM6,-1.07755334461011 +Nucleus,ATP13A3,-0.441025707816638 +Nucleus,HIAT1,-0.115974484606646 +Nucleus,TMEM201,0.323297666532421 +Nucleus,TRIB3,-1.7654388446105 +Nucleus,RAI14,-1.15657664874083 +Nucleus,ABCF2,-1.27983567622712 +Nucleus,MYH10,-1.15227196758699 +Nucleus,NSFL1C,-0.305715884345743 +Nucleus,CCDC93,1.13980693190796 +Nucleus,ADAM19,0.0891315214327653 +Nucleus,AACS,-0.658583316349959 +Nucleus,ZNF512,0.631881954824266 +Nucleus,GTF2F2,-1.05451115602176 +Nucleus,EDEM2,-0.736881374955131 +Nucleus,ERLIN1,-0.0760919520328812 +Nucleus,CABIN1,0.376048682205988 +Nucleus,DUSP7,-1.53182560359289 +Nucleus,CSNK2A2,-0.611792023983227 +Nucleus,GEMIN4,-0.709348716972268 +Nucleus,SGCB,0.409052121244417 +Nucleus,CDC6,-0.726438538363777 +Nucleus,VAMP3,-0.939087242292062 +Nucleus,FAM208B,-0.0646469247122046 +Nucleus,TOB2,0.120454727724064 +Nucleus,KIF7,-0.358620068040415 +Nucleus,NPC1,0.634532311482928 +Nucleus,ARHGAP29,-0.608539219282163 +Nucleus,NCBP1,-0.241780341568618 +Nucleus,DCAF7,-0.401637428475891 +Nucleus,ATXN1L,1.01488345550113 +Nucleus,TULP3,-0.406431035583884 +Nucleus,PROSC,-1.66314721610618 +Nucleus,GAS6,-0.334281902116073 +Nucleus,HSP90B2P,-0.292941427334393 +Nucleus,CACYBP,-1.57808054239095 +Nucleus,ADAM17,0.675014543667529 +Nucleus,TMED10,-0.76199205383909 +Nucleus,COA7,-0.363887218063697 +Nucleus,ZMIZ1,-0.725270732865869 +Nucleus,SRPRB,0.147080414364299 +Nucleus,HPS1,-1.03158096698604 +Nucleus,GPANK1,-0.872581626191598 +Nucleus,FBXO18,-0.621305322953596 +Nucleus,SFXN1,-1.04593108228393 +Nucleus,NCAPG,-0.768124636426935 +Nucleus,VPS37B,-1.25495629973123 +Nucleus,FSTL1,-0.224563181147492 +Nucleus,MPHOSPH10,-0.715650015267995 +Nucleus,TXNDC12,-0.474605981092356 +Nucleus,WASH5P,4.15790421794719 +Nucleus,AREL1,-0.317354420575805 +Nucleus,MYL9,-1.2612287923648 +Nucleus,BUB1B,-0.406629862981603 +Nucleus,ZFAND3,-0.814617855218921 +Nucleus,SLC35F2,-0.401847578988869 +Nucleus,NRSN2,-0.909819298146991 +Nucleus,SRC,-0.872550102437957 +Nucleus,KIAA0368,-0.817817942972181 +Nucleus,AIFM2,0.542664742399255 +Nucleus,APOBEC3C,-1.27897218805809 +Nucleus,RAB5B,-0.603153886573153 +Nucleus,TNPO2,0.782115743138239 +Nucleus,NUP205,-0.706015263802126 +Nucleus,CDR2L,-1.53377684320132 +Nucleus,FUBP3,-1.01263408237264 +Nucleus,CDC25A,-0.882944913349512 +Nucleus,CSRNP1,-0.0087992195479625 +Nucleus,TMPO,-0.55824110153755 +Nucleus,RRP1B,-1.45737392484639 +Nucleus,PANX1,-0.131538566393689 +Nucleus,ZDHHC5,-0.0809886816148026 +Nucleus,TMEM186,-0.306250242878637 +Nucleus,PPP3R1,-1.14263267710398 +Nucleus,GPT2,-1.05643339575413 +Nucleus,TTC37,-0.877351077642488 +Nucleus,MBD6,-1.05585334623262 +Nucleus,APEX2,-0.6431806161676 +Nucleus,TOR4A,-0.225898219882686 +Nucleus,GGT7,0.953760285749229 +Nucleus,NET1,-1.08192201232693 +Nucleus,MLXIP,-0.0445681526080161 +Nucleus,STAT3,-0.339098856849352 +Nucleus,LETM1,-0.570645295799928 +Nucleus,PPP1R10,-0.213275570735021 +Nucleus,PIAS3,-0.468262089705066 +Nucleus,SUV39H1,-0.968117614314873 +Nucleus,ABCD3,-1.07039454714825 +Nucleus,KCTD2,-0.499087717176714 +Nucleus,C6orf62,-0.292756971062686 +Nucleus,GBF1,-1.0250672609924 +Nucleus,ZBTB2,-1.50156052030669 +Nucleus,TMED4,0.0791998113539296 +Nucleus,SESN2,-0.174237060620805 +Nucleus,USP34,-0.259429440594006 +Nucleus,PHLDA3,-0.0679319443719717 +Nucleus,ANKRD40,-0.955677771878264 +Nucleus,CTGF,0.730300769795206 +Nucleus,DNAJC14,-1.01657040537559 +Nucleus,CLEC2D,3.0193869122813 +Nucleus,LBR,0.0162224925700014 +Nucleus,RBM12,0.319860058069138 +Nucleus,LIF,1.76940447917672 +Nucleus,SLC7A6OS,0.942053113888771 +Nucleus,LSS,0.049234995069171 +Nucleus,BICD2,0.366070787844103 +Nucleus,THBS1,0.427328822222797 +Nucleus,IMPAD1,-0.0983733386758495 +Nucleus,TOPBP1,-0.488817493437173 +Nucleus,BAIAP2L1,-0.656303700020315 +Nucleus,NUP160,-0.401413363739699 +Nucleus,CCNY,-1.05039872105209 +Nucleus,RNF216,0.0734326985643757 +Nucleus,RNF20,-1.58157201894738 +Nucleus,PRPF38B,1.73148466460147 +Nucleus,GEMIN5,-1.20087366598987 +Nucleus,TNFAIP1,-0.54631478383499 +Nucleus,CUEDC1,3.70667091238134 +Nucleus,DGCR2,0.178343266141528 +Nucleus,TNS3,-1.05669275826821 +Nucleus,SF3B3,-0.529004873705426 +Nucleus,CTDSP1,-1.02889725047985 +Nucleus,GIGYF1,1.35425856904864 +Nucleus,WWP2,-0.949128247272459 +Nucleus,LAMC2,-0.593341061046332 +Nucleus,GAREML,-1.28929037744218 +Nucleus,HSPA4,-0.882447288066003 +Nucleus,PNPLA6,-0.798351484759985 +Nucleus,IPO9,-0.208553747828796 +Nucleus,SPIN1,-0.896404117717932 +Nucleus,ITGAV,-0.0563987693268467 +Nucleus,MAP3K14,0.217711746897216 +Nucleus,ORC1,-0.725032527915817 +Nucleus,RFWD3,-0.0628505777572246 +Nucleus,NCDN,-0.351303938896842 +Nucleus,CCDC6,-1.36108218470428 +Nucleus,HERC2,-0.455339882438387 +Nucleus,ANP32E,-1.21574044683772 +Nucleus,NFKBIE,-0.466141575976705 +Nucleus,NUP50,-0.932188938365551 +Nucleus,WDR36,-0.462099172788958 +Nucleus,RUSC2,-0.40339683690883 +Nucleus,OSER1,-0.693568026660876 +Nucleus,SMARCC1,-1.22062879770686 +Nucleus,KDM4A,-0.520276890152466 +Nucleus,NUP153,-0.22511642995154 +Nucleus,GYS1,-1.40718196664758 +Nucleus,CCDC71,-0.419286719362727 +Nucleus,PREP,-0.978401387913935 +Nucleus,CMTR1,-0.0705958813934792 +Nucleus,TATDN2,-0.564467067287625 +Nucleus,PFAS,-1.2790356718474 +Nucleus,HSPA13,-0.0534743750625119 +Nucleus,URB1,0.380778888971979 +Nucleus,SSR3,-0.508899849321258 +Nucleus,SMG8,-0.00606588736004375 +Nucleus,MFAP1,-1.40851414549662 +Nucleus,PIF1,2.18426301215238 +Nucleus,HEG1,0.700883490463028 +Nucleus,LRFN4,-0.505064314850011 +Nucleus,CYTH3,-0.533203169280591 +Nucleus,CCDC22,-1.49950459260935 +Nucleus,TMEM183A,-0.637811652100414 +Nucleus,KANSL3,-0.113478514367814 +Nucleus,CADM4,-0.793717762298614 +Nucleus,GGNBP2,0.0155008850661635 +Nucleus,SRPK1,-0.145968347034619 +Nucleus,ARFGAP2,-0.256554950746018 +Nucleus,AMD1,-0.757988992286489 +Nucleus,USP16,-0.606810940969551 +Nucleus,CKAP2,-0.651231774899986 +Nucleus,TPR,-0.283143375000406 +Nucleus,RALBP1,-2.03574987339184 +Nucleus,SCARB2,-0.467028234089825 +Nucleus,RNF4,-0.178780903068341 +Nucleus,PNPT1,-0.780560926547753 +Nucleus,RHOBTB3,0.101698825869008 +Nucleus,MAFG,0.916869707811004 +Nucleus,CHP1,-2.04236538640308 +Nucleus,PPP2CA,-0.900931890914729 +Nucleus,DCAF12,-0.981937152875004 +Nucleus,DUSP11,-0.392425057319374 +Nucleus,RHBDF2,-0.104358840524981 +Nucleus,PAPSS1,-1.26868087241569 +Nucleus,TRAM2,0.483013090319628 +Nucleus,ZNFX1,-0.636733120421845 +Nucleus,G3BP2,-1.48172302291916 +Nucleus,C15orf39,-0.0988615674195725 +Nucleus,CENPF,-0.603018534055117 +Nucleus,FOXK1,-0.540139792289246 +Nucleus,MMP14,-0.0542578176429514 +Nucleus,TELO2,-0.106681244730522 +Nucleus,AKAP2,-1.07252191940883 +Nucleus,REXO4,-1.42148324485599 +Nucleus,SERTAD2,-0.311048641329887 +Nucleus,RNF139,-0.319107730531556 +Nucleus,STK38,-0.0722125689238576 +Nucleus,CWC27,-1.13126855544984 +Nucleus,HSPA8P16,-0.450648999383632 +Nucleus,USP1,-1.04929747687374 +Nucleus,MAP1B,-1.14333461071824 +Nucleus,KPNA3,-1.52477230580673 +Nucleus,TCTN3,-0.610766504902066 +Nucleus,GID8,-1.13368484685957 +Nucleus,PCOLCE,-0.26577513360535 +Nucleus,BOK,-1.37966781062801 +Nucleus,IL6ST,-0.178142163008191 +Nucleus,PBX2,-0.510008751445668 +Nucleus,CHST3,0.461785780534222 +Nucleus,DNAJC11,-0.985624147262304 +Nucleus,METTL13,-0.652388940474417 +Nucleus,TNRC18,-1.137183910889 +Nucleus,RAB15,-0.689838783102707 +Nucleus,MTOR,-1.28257102820031 +Nucleus,ARHGAP1,-1.70532318759824 +Nucleus,ADNP2,-0.502238359139838 +Nucleus,C14orf1,-1.09552650771815 +Nucleus,PLBD2,0.0143095601308705 +Nucleus,DSCC1,-0.960674192697141 +Nucleus,HARS2,-0.167243272786213 +Nucleus,KIF11,-1.06690987302099 +Nucleus,CREBBP,-0.819106005940302 +Nucleus,DTX3L,-0.880152992814238 +Nucleus,HTATSF1,-2.22890041531463 +Nucleus,HIATL1,-0.693324062684396 +Nucleus,ICE1,0.204933955664704 +Nucleus,CENPO,0.396051341645888 +Nucleus,RBPMS2,-1.37032678618179 +Nucleus,TSKU,-0.508848779829212 +Nucleus,ZNF146,-0.229468909069958 +Nucleus,RHOQ,-0.793675208352943 +Nucleus,BMI1,-1.00816593323179 +Nucleus,ANAPC2,-0.667822064294817 +Nucleus,CDH2,-0.744789534254197 +Nucleus,LOXL4,-0.56129323976156 +Nucleus,LPIN1,-0.0771720264424735 +Nucleus,IWS1,0.376397459022309 +Nucleus,RAVER1,-1.56704560133016 +Nucleus,KLF16,-1.27523231944771 +Nucleus,ZNF316,-0.272998612109615 +Nucleus,TUFT1,-0.364669548906724 +Nucleus,ATP8B2,-0.716309337759326 +Nucleus,RASSF1,-0.00944230709522602 +Nucleus,UBE2O,-0.394258239079093 +Nucleus,LENG8,5.69971145406473 +Nucleus,MAGEA8,-1.54214756101729 +Nucleus,TMEM115,-0.4146530282881 +Nucleus,UBR5,0.0949611475220738 +Nucleus,EDARADD,-0.72717873214059 +Nucleus,UBE2S,1.47078502218348 +Nucleus,SRF,-1.1621573658539 +Nucleus,ADGRL1,-0.58339987778374 +Nucleus,VMP1,5.38319421591174 +Nucleus,PDS5A,-0.971784201591423 +Nucleus,USP9X,-1.44877456327017 +Nucleus,USP11,-1.58938961805319 +Nucleus,USP32,-0.751209593506713 +Nucleus,SETD1A,-0.778158227939685 +Nucleus,SBNO1,-0.991502388454658 +Nucleus,ERRFI1,-0.422500418639215 +Nucleus,THY1,-0.277533785504779 +Nucleus,API5,-1.18137953586842 +Nucleus,MLLT1,-1.29891424766553 +Nucleus,HTRA2,-0.955128870969893 +Nucleus,SEMA4C,0.922884834007061 +Nucleus,GINS2,-0.0417164527402192 +Nucleus,HOXB9,-0.578033389592101 +Nucleus,RPA1,-1.4557313271388 +Nucleus,PIGS,-0.618742656336066 +Nucleus,SHB,-0.669062861229291 +Nucleus,C1orf216,-0.00704287364948381 +Nucleus,MAPK8IP1,-1.77398823398527 +Nucleus,RAB10,-1.30784371902042 +Nucleus,ZNF609,-0.453103128639037 +Nucleus,CDT1,-1.07106139748567 +Nucleus,C6orf106,-1.2007976371674 +Nucleus,PRPF4,-1.19131704182896 +Nucleus,ZMYM3,-0.966723287369184 +Nucleus,CSPG4,0.375555464926817 +Nucleus,RQCD1,-0.420587884514449 +Nucleus,CPNE3,-1.9359593357854 +Nucleus,PHC2,-1.31732094165449 +Nucleus,COG1,-0.219719994741328 +Nucleus,STK40,-1.01350443659123 +Nucleus,PGRMC2,-0.351865856953611 +Nucleus,YES1,-1.65226001859183 +Nucleus,ACIN1,0.629364120867693 +Nucleus,PRKCD,-1.1306861158774 +Nucleus,OXSR1,-0.837482361565734 +Nucleus,TOMM20,-0.61418393543923 +Nucleus,LRP1,0.205157382541772 +Nucleus,SV2A,-0.276174005386534 +Nucleus,CAPN15,-0.853124523495333 +Nucleus,KIF3B,-1.39305072577573 +Nucleus,TRIM58,-0.985043590068025 +Nucleus,PYGO2,-0.604191949270465 +Nucleus,PGP,-0.389672840990525 +Nucleus,CNOT11,-0.792702480923759 +Nucleus,GOLGA2P7,1.80315408979453 +Nucleus,IPO13,-1.05069435582868 +Nucleus,TSR1,-0.887756250066964 +Nucleus,MICALL1,-1.23918349577424 +Nucleus,EFR3A,-1.31902266693879 +Nucleus,JAM3,-0.407432053866497 +Nucleus,OSMR,0.475535714832818 +Nucleus,IGBP1,-1.29639075496327 +Nucleus,TMEM185B,0.409418902045646 +Nucleus,ARF6,-1.27673223942474 +Nucleus,PODXL2,-0.615485426648903 +Nucleus,YIPF2,-0.840427187727092 +Nucleus,GLE1,-1.4735426092478 +Nucleus,GNA13,-1.22213861539047 +Nucleus,RSAD1,-0.370489475946018 +Nucleus,TRMT10C,-0.901009703312176 +Nucleus,ZMPSTE24,0.150923687614488 +Nucleus,MRPS10,-0.932019699940814 +Nucleus,DCBLD1,0.529920158182913 +Nucleus,SLC27A4,-0.246441458499294 +Nucleus,GUCD1,-1.58725571403302 +Nucleus,ILF3,-0.272842757250098 +Nucleus,TRIM25,-0.295584292694593 +Nucleus,SGPL1,-0.0631959891047839 +Nucleus,TM9SF3,-0.15249684647348 +Nucleus,IDH1,-1.71705931322521 +Nucleus,JOSD1,-0.967658766205986 +Nucleus,TMEM101,-0.165456106299322 +Nucleus,DSG2,-0.613809977894697 +Nucleus,MDC1,0.433774047333698 +Nucleus,FARSB,-1.54777204333575 +Nucleus,POMGNT2,-0.721937588741944 +Nucleus,DHFR,-0.822158481732353 +Nucleus,MFSD5,-0.373990109548013 +Nucleus,CAV1,-1.7819006693303 +Nucleus,GPKOW,-1.63634424308343 +Nucleus,ZC3H3,-0.85773499491926 +Nucleus,CNPPD1,-0.41246528409902 +Nucleus,PTPN1,-0.954604146680639 +Nucleus,NCSTN,-0.0633827662275205 +Nucleus,SHCBP1,-1.5330582681172 +Nucleus,THAP11,-1.77393056952528 +Nucleus,IL27RA,-0.273308013363446 +Nucleus,PDCD11,0.396198483996013 +Nucleus,SMC1A,-1.09877975999817 +Nucleus,KIRREL,0.517950203081308 +Nucleus,CDC42SE1,0.131063698184531 +Nucleus,SDAD1,-0.603427732385881 +Nucleus,TRMT12,-0.00928966203619691 +Nucleus,WDR75,-0.342515725236108 +Nucleus,HNRNPA0,-0.520672232879874 +Nucleus,USO1,-0.481547810699781 +Nucleus,SIN3A,-1.05479358348942 +Nucleus,PTGFRN,-0.802905559491724 +Nucleus,DUSP3,-0.655883446860351 +Nucleus,TM9SF4,0.152900759993225 +Nucleus,CNOT3,-1.45412497034858 +Nucleus,POLRMT,-1.48761088966384 +Nucleus,MCM10,-0.867090540281937 +Nucleus,NOA1,-1.17570008456704 +Nucleus,ZFP91,-0.781398220798531 +Nucleus,POLE,0.472568997430437 +Nucleus,TRAM1,-0.791151114351213 +Nucleus,SOX12,-0.849474760933559 +Nucleus,MYO1B,-1.2154247584867 +Nucleus,EIF2S3,-0.690030806136025 +Nucleus,NOL10,-0.998482200795582 +Nucleus,PLIN2,-1.47783185693439 +Nucleus,TMEM63B,-0.407036975628601 +Nucleus,BLMH,-1.31949833447695 +Nucleus,SLC35F6,-0.0738540287379903 +Nucleus,HACD2,-0.373606960282303 +Nucleus,PPIL1,-1.61176822705085 +Nucleus,MAST2,-0.222845835215802 +Nucleus,PRKAR1A,-1.71705709408516 +Nucleus,MICU1,-1.61242267699187 +Nucleus,LMAN1,-0.509293029972487 +Nucleus,MRGBP,-1.36003139018624 +Nucleus,SERINC1,-0.324241415819014 +Nucleus,DLGAP5,-1.03123958038466 +Nucleus,ADNP,-0.155773893980164 +Nucleus,SAFB2,-0.942167022346184 +Nucleus,VGF,-0.665021084345546 +Nucleus,NSDHL,-1.37139870122095 +Nucleus,FGFRL1,-0.911876506124357 +Nucleus,FAM104A,0.0268233435423462 +Nucleus,KLF10,-0.353314195676664 +Nucleus,WDR5,-1.35972044527567 +Nucleus,CHAF1A,-0.135126337681128 +Nucleus,JAK1,-1.55861020184822 +Nucleus,PGM1,-2.06620074999983 +Nucleus,SRCAP,-0.9024782460171 +Nucleus,UBE2R2,-1.00116932021334 +Nucleus,EXTL3,-0.463880897649672 +Nucleus,ACAA2,-2.09180163968676 +Nucleus,RAB35,-0.909747709355298 +Nucleus,SLC7A1,-0.101957929229855 +Nucleus,PPP1R9B,-1.52718605071302 +Nucleus,TIMELESS,-0.877446935739161 +Nucleus,CCND2,-0.783776165253899 +Nucleus,SMAD3,0.0643942393058125 +Nucleus,DVL1,-1.07322303646623 +Nucleus,PATL1,-0.404087242739831 +Nucleus,DHX16,-1.2090294045648 +Nucleus,RRP7A,-0.203758077494306 +Nucleus,IL7R,0.160360853807006 +Nucleus,NDST1,-0.329078312284136 +Nucleus,AP2B1,-1.53408282814771 +Nucleus,FAF2,-0.156280889369643 +Nucleus,CTDSP2,-0.856542769292854 +Nucleus,PPRC1,0.250175420513265 +Nucleus,SLC25A23,-2.069180357555 +Nucleus,GNS,-0.273300383026941 +Nucleus,CPSF3,-1.50046556196704 +Nucleus,CTCF,-1.03394051230116 +Nucleus,NMT1,-0.761964683271955 +Nucleus,STEAP3,-0.25263212371923 +Nucleus,TSPYL5,-1.04515309513515 +Nucleus,CTNNAL1,-1.69698017578474 +Nucleus,CBX2,-0.447788560043799 +Nucleus,PDRG1,-1.50420956001119 +Nucleus,PRPF3,0.746276711484786 +Nucleus,SF3A3,-1.31097905526514 +Nucleus,SKIV2L2,-1.09585837879071 +Nucleus,LARS,-0.707959333466254 +Nucleus,UNC45A,-1.64821270976566 +Nucleus,RNF40,-1.62330707388329 +Nucleus,GAA,-0.508090430836796 +Nucleus,LMF2,0.26505319483415 +Nucleus,ACTR1B,-1.14489522241769 +Nucleus,EMC1,-0.0366207037656837 +Nucleus,NLGN2,0.129235359394648 +Nucleus,VCL,-0.420849265926378 +Nucleus,PXDN,-0.0772480225383528 +Nucleus,PYGB,-1.17374508904349 +Nucleus,PRIM2,-0.952273973041925 +Nucleus,DDX39B,4.86411712851656 +Nucleus,STAT6,-0.35183476089594 +Nucleus,DLG5,-0.668438890537797 +Nucleus,CSDC2,-1.09427288252027 +Nucleus,SRXN1,-1.87655496312725 +Nucleus,GNG12,-1.74688076537025 +Nucleus,SEC14L1,-1.04491699558402 +Nucleus,NUCKS1,-1.55543955853311 +Nucleus, SEPT11,-1.1861961916969 +Nucleus,CCND1,-1.41602868800815 +Nucleus,MCL1,0.260618067729436 +Nucleus,BHLHE40,-0.377866619893189 +Nucleus,SEPN1,-0.918173613977499 +Nucleus,C11orf84,-1.08866254592484 +Nucleus,SF3B1,-0.850510070900492 +Nucleus,PNN,1.17696564868566 +Nucleus,TAP1,-0.349983985495789 +Nucleus,EHBP1L1,-0.858030015314208 +Nucleus,MTPN,-2.21382409834114 +Nucleus,MCMBP,-1.22889365655339 +Nucleus,SF3A1,-1.39103712148733 +Nucleus,TUBB4A,-2.13863965803109 +Nucleus,IARS2,-1.7654112040068 +Nucleus,COL4A2,-0.978479390033159 +Nucleus,SUPT16H,-1.68125895481536 +Nucleus,WASF2,-0.948997360504925 +Nucleus,UNG,-1.71424638855214 +Nucleus,NACC1,-1.71581966753616 +Nucleus,PLAU,0.254459229893443 +Nucleus,ADPRHL2,-1.29019133300723 +Nucleus,LTV1,-0.533434451651192 +Nucleus,SNX8,-0.858604004063339 +Nucleus,EPHA2,0.140240373004543 +Nucleus,AK2,0.100709130037036 +Nucleus,ADAR,-0.863374229653395 +Nucleus,TGM2,-1.99934554064713 +Nucleus,RNF26,-1.09833554874304 +Nucleus,CORO1C,-1.25330444858764 +Nucleus,TOMM70A,-1.36430506535088 +Nucleus,ALKBH5,-2.03527718787275 +Nucleus,MSH2,-0.727570886852435 +Nucleus,FAM171A1,-0.795894469511129 +Nucleus,IGF2R,1.01985309197671 +Nucleus,PELP1,-1.46904840292111 +Nucleus,ARC,-0.590339633937402 +Nucleus,ALDH18A1,-1.69752175494298 +Nucleus,CASC3,-0.814878425817345 +Nucleus,ENOSF1,-0.180924703433594 +Nucleus,SLC12A7,1.03906502125942 +Nucleus,DHX38,-1.09724605369564 +Nucleus,TOP1,-1.55810648144628 +Nucleus,CENPB,-1.82246204119549 +Nucleus,GTSE1,-1.1390650168478 +Nucleus,TMEM43,0.0575608948120924 +Nucleus,TRAF2,-0.607038767504629 +Nucleus,RING1,-0.960367007330166 +Nucleus,BMS1,-1.28159775321596 +Nucleus,ETF1,-1.42423639200843 +Nucleus,LOXL2,-0.582428530365979 +Nucleus,NRD1,-1.01677290300051 +Nucleus,PPP1CB,-1.96011694623502 +Nucleus,SLC16A1,-0.122997441846027 +Nucleus,MVP,-1.83721621969248 +Nucleus,CKAP5,-1.03504758032986 +Nucleus,CHD3,-1.05207245376282 +Nucleus,NRAS,-1.69165456972979 +Nucleus,MLEC,-0.188769122249838 +Nucleus,TCEB3,-1.40018979895291 +Nucleus,PFKL,-2.04094762304013 +Nucleus,CCND3,-1.84516801569252 +Nucleus,C11orf24,-0.738093038800188 +Nucleus,PDIA4,-0.682761352693999 +Nucleus,ZC3H7B,-1.51500676589361 +Nucleus,PLXNA1,0.160390393558719 +Nucleus,MTHFD1L,-0.813359339664803 +Nucleus,E2F1,-0.83393795579897 +Nucleus,KPNB1,-1.21065712406182 +Nucleus,LAMC1,-0.589010826356372 +Nucleus,NOC4L,-1.66625124136485 +Nucleus,ANKRD52,0.273275592588959 +Nucleus,LDB1,-0.314630111636901 +Nucleus,TFIP11,-1.10395443037507 +Nucleus,POMGNT1,-1.03411272159809 +Nucleus,RRP12,-1.4598444155527 +Nucleus,PDAP1,-0.202077391984376 +Nucleus,ALCAM,-0.631667694540121 +Nucleus,CLTC,-1.44076961663127 +Nucleus,CCNF,-0.769812640974484 +Nucleus,MCM6,-2.0017226180539 +Nucleus,TTLL12,-1.97028255215222 +Nucleus,PRPF6,-1.51519055689799 +Nucleus,BCL2L1,-1.09978537262689 +Nucleus,CRIM1,-0.0435793283055012 +Nucleus,SLC25A22,-1.40878217644089 +Nucleus,UBQLN4,-0.578459529948318 +Nucleus,RPIA,-1.73067643833242 +Nucleus,FAM168B,-0.975835538596116 +Nucleus,EPRS,-1.00359378802356 +Nucleus,SLC35A4,-1.41123232959172 +Nucleus,SEC24C,-1.5210557954879 +Nucleus,RCC2,-1.25889403867582 +Nucleus,NGRN,-1.612512517713 +Nucleus,SBF1,-1.4853162066797 +Nucleus,TAF7,-0.781545569868116 +Nucleus,FAM129B,-1.99612513470747 +Nucleus,ZFR,-1.10367977783022 +Nucleus,PFKP,-0.821862652070217 +Nucleus,JUN,0.216639198006788 +Nucleus,SREBF2,-0.996571427055105 +Nucleus,SQSTM1,-0.875479987393972 +Nucleus,GART,-1.43299224733094 +Nucleus,SERPINE1,0.374211853219471 +Nucleus,SRPR,-0.608453876763724 +Nucleus,TSR2,-1.68995479888313 +Nucleus,RAD23B,-1.70645417685714 +Nucleus,EIF5AL1,0.212597611248639 +Nucleus,PGK1,0.856576070201836 +Nucleus,AEN,-0.63236418931218 +Nucleus,AATF,-1.68256848461149 +Nucleus,PRKDC,-0.977258903077852 +Nucleus,NDN,-2.30192010216458 +Nucleus,PKMP5,-2.53696535544041 +Nucleus,AHCYL1,-0.923870603223615 +Nucleus,SART1,-2.04857322655441 +Nucleus,STT3B,-0.0660327150412771 +Nucleus,COL6A2,-0.573060170742726 +Nucleus,SPTBN1,-1.06910027536519 +Nucleus,DAG1,0.217449271088306 +Nucleus,IPO7,-1.47316268599827 +Nucleus,TMEM214,-0.492907449729303 +Nucleus,PIEZO1,0.100072582962495 +Nucleus,METAP1,-0.828594531075277 +Nucleus,GALNT2,-0.438664127775908 +Nucleus,TAP2,0.0105179778065355 +Nucleus,LAMB3,-0.275179330211478 +Nucleus,UBE2L3,-1.67296624018953 +Nucleus,ALDH1B1,-1.99681717393208 +Nucleus,TGFB1,-0.914856740497549 +Nucleus,GNL2,-1.35159534840706 +Nucleus,NOTCH2,0.17507951141443 +Nucleus,DUSP1,-0.0602945475695858 +Nucleus,AEBP1,-0.214593358905638 +Nucleus,TRAF7,-1.82120213125096 +Nucleus,AHNAK,-0.506458256741368 +Nucleus,SLC5A6,-0.0267167618146367 +Nucleus,FSCN1,-2.21892060291873 +Nucleus,DLST,-0.731712806672191 +Nucleus,GPC1,-0.156633668992276 +Nucleus,SDC4,-0.282441871936499 +Nucleus,KIF5B,-1.55762596830138 +Nucleus,LARP1,-1.59785311144509 +Nucleus,FTSJ3,-1.39575971242797 +Nucleus,CDCA5,-1.26956374482028 +Nucleus,RARS,-1.4496732893781 +Nucleus,ANKRD1,-0.983871813203663 +Nucleus,WDR82,-1.31542884744157 +Nucleus,PITPNB,-0.519479104533334 +Nucleus,GCN1L1,-1.03350261884117 +Nucleus,NELFB,-2.03628442846894 +Nucleus,EIF4B,-1.68676655250918 +Nucleus,ARF3,-0.978064379630247 +Nucleus,CAPN2,-1.54563724284323 +Nucleus,EFHD2,-1.79315043722421 +Nucleus,SUMO3,-2.1979588028528 +Nucleus,GNB1,-1.79752706135107 +Nucleus,YTHDF1,-0.799145852112194 +Nucleus,RBM14,-0.027542566403409 +Nucleus,CCDC86,-1.87449604271633 +Nucleus,PAGR1,2.00677019828096 +Nucleus,CXorf67,-1.75835944271118 +Nucleus,CKAP4,-0.980699460869329 +Nucleus,SGTA,-1.78385607343284 +Nucleus,EIF2S2,-1.70246660933103 +Nucleus,SURF4,-0.28082764980564 +Nucleus,MFN2,-1.63343679259147 +Nucleus,NES,-0.888711637861729 +Nucleus,ITGA5,0.346162549038497 +Nucleus,SET,-2.07254320686237 +Nucleus,SLC39A14,0.0758076646361807 +Nucleus,NOL6,-0.673049788898565 +Nucleus,KIFC1,-0.303560604015767 +Nucleus,DAP,-2.03089979064123 +Nucleus,HACD3,-0.536498577767255 +Nucleus,TONSL,-0.154494174058447 +Nucleus,TPM4,-1.93802579888856 +Nucleus,EIF3A,-1.76780448904174 +Nucleus,SDC1,-0.476723278979725 +Nucleus,TEX261,-0.971998258798209 +Nucleus,ATP6AP1,-0.482417209787972 +Nucleus,RRP9,-1.94394628484654 +Nucleus,DHX15,-0.725248774040392 +Nucleus,PARP1,-2.22852802960683 +Nucleus,TOP2A,-1.2455699515163 +Nucleus,ADAM9,-0.382354020431877 +Nucleus,GARS,-1.80839217569429 +Nucleus,ATN1,-1.10424738325969 +Nucleus,KIF2C,-1.0022707902383 +Nucleus,SLC20A1,0.0795540986444461 +Nucleus,CDC42EP1,-1.43139893951658 +Nucleus,MAT2A,2.69839886433794 +Nucleus,GLO1,-2.21433179936938 +Nucleus,TOMM34,-1.6370163721409 +Nucleus,PRRC2A,-1.77894700780749 +Nucleus,DDX21,-1.3040964159369 +Nucleus,PRPF8,-1.91648153225109 +Nucleus,SLC39A1,-0.780164010775117 +Nucleus,DHX9,-1.52488515344505 +Nucleus,INTS1,-1.21617439273167 +Nucleus,EZR,-1.91884286963446 +Nucleus,KDELR2,-0.999324119118193 +Nucleus,MAPRE1,-1.51831880499163 +Nucleus,AGRN,-0.00675268971764384 +Nucleus,MCAM,0.0497781843077763 +Nucleus,DDB1,-2.16829480791561 +Nucleus,RAD21,-1.53858197089295 +Nucleus,TPX2,-1.09016974781211 +Nucleus,PHGDH,-1.76423925445505 +Nucleus,COLGALT1,-0.499906134925928 +Nucleus,SLC7A5,-0.316701673156096 +Nucleus,TLN1,-1.80668929192083 +Nucleus,HADHA,-2.1293139688056 +Nucleus,ITGA3,-0.414352623056245 +Nucleus,SARS,-1.93121812608196 +Nucleus,PEA15,-1.65048570487752 +Nucleus,VARS,-1.761752311775 +Nucleus,CSE1L,-1.71953587744864 +Nucleus,LMNB2,-2.11337968236286 +Nucleus,VAT1,-2.28461097120113 +Nucleus,SEC61A1,-0.240108615881312 +Nucleus,EIF4A3,-2.11513431956287 +Nucleus,LRRC59,-2.16032291154064 +Nucleus,KARS,-2.32802431691099 +Nucleus,NRBP1,-2.0368998525792 +Nucleus,FKBP4,-1.64305806779419 +Nucleus,H1F0,-1.18437679901028 +Nucleus,RANGAP1,-1.47384920691561 +Nucleus,MYBL2,-1.71341889786204 +Nucleus,RPN1,-0.69966463082417 +Nucleus,HNRNPU,-1.73886260036891 +Nucleus,MCM3,-0.683392106552657 +Nucleus,SERPINH1,-0.754902976602748 +Nucleus,MCM7,-1.4993983217629 +Nucleus,HSPA5,-0.142027415622814 +Nucleus,PPM1G,-1.8472736001141 +Nucleus,GHITM,-2.26790040407797 +Nucleus,PLOD1,-0.555328375811464 +Nucleus,ILF2,-2.2101255828325 +Nucleus,FASN,-1.02891344599091 +Nucleus,ATP1A1,-1.0437522584523 +Nucleus,VCP,-2.02453300724267 +Nucleus,MYH9,-1.94772551798306 +Nucleus,IMPDH2,-2.14942199489443 +Nucleus,MSN,-2.43676772053435 +Nucleus,HNRNPF,-1.64504439703422 +Nucleus,PDIA6,-0.909186793677563 +Nucleus,NCL,-2.03265710581655 +Nucleus,ITGB1,-0.743653409428082 +Nucleus,PSAP,-0.615100309062114 +Nucleus,Blank-0001,1.5747323364813 +Nucleus,Blank-0002,0.230844916117903 +Nucleus,Blank-0003,-0.289067409249816 +Nucleus,Blank-0004,-0.574751545892646 +Nucleus,Blank-0005,-0.00235872281658363 +Nucleus,Blank-0006,-0.549573114597011 +Nucleus,Blank-0007,0.901391869025745 +Nucleus,Blank-0008,0.26415498826918 +Nucleus,Blank-0009,-0.102140238945504 +Nucleus,Blank-0010,0.671114019225827 +Nucleus,Blank-0011,-0.413548256845719 +Nucleus,Blank-0012,0.115587050787991 +Nucleus,Blank-0013,0.00276391948461694 +Nucleus,Blank-0014,-0.0866721992980053 +Nucleus,Blank-0015,-0.0401698350666179 +Nucleus,Blank-0016,0.602755723296248 +Nucleus,Blank-0017,0.612229607996542 +Nucleus,Blank-0018,0.322383361713935 +Nucleus,Blank-0019,0.27712223999901 +Nucleus,Blank-0020,0.736744080310429 +Nucleus,Blank-0021,2.80451656648693 +Nucleus,Blank-0022,-1.07476474992889 +Nucleus,Blank-0023,-0.00689521424780595 +Nucleus,Blank-0024,0.207279460598765 +Nucleus,Blank-0025,0.65238043064225 +Nucleus,Blank-0026,-1.4910663739078 +Nucleus,Blank-0027,-0.164505179748644 +Nucleus,Blank-0028,0.249721512939591 +Nucleus,Blank-0029,-0.0463638927264973 +Nucleus,Blank-0030,0.631734189080509 +Nucleus,Blank-0031,1.24178205416672 +Nucleus,Blank-0032,0.646046515480325 +Nucleus,Blank-0033,0.278026251478827 +Nucleus,Blank-0034,-0.271255565285802 +Nucleus,Blank-0035,0.404233033527859 +Nucleus,Blank-0036,0.260834953774846 +Nucleus,Blank-0037,0.16293682144933 +Nucleus,Blank-0038,0.25102296923597 +Nucleus,Blank-0039,0.230456262856523 +Nucleus,Blank-0040,-0.572452066589953 +Nucleus,Blank-0041,1.81634147319762 +Nucleus,Blank-0042,-0.610950541447671 +Nucleus,Blank-0043,0.721575444070027 +Nucleus,Blank-0044,-0.109120161675198 +Nucleus,Blank-0045,-0.174745861403678 +Nucleus,Blank-0046,-0.150253942040413 +Nucleus,Blank-0047,-0.165854531912099 +Nucleus,Blank-0048,-0.287588224388352 +Nucleus,Blank-0049,-0.278423532157229 +Nucleus,Blank-0050,0.171550763744886 +Nucleus,Blank-0051,0.412415364986437 +Nucleus,Blank-0052,0.0592127632282754 +Nucleus,Blank-0053,0.0156065475014972 +Nucleus,Blank-0054,0.743352380751013 +Nucleus,Blank-0055,-0.950143228622191 +Nucleus,Blank-0056,-0.442848148764289 +Nucleus,Blank-0057,1.62132022488313 +Nucleus,Blank-0058,0.404584142899985 +Nucleus,Blank-0059,0.37422078040674 +Nucleus,Blank-0060,-0.844658901003932 +Nucleus,Blank-0061,0.185846759747956 +Nucleus,Blank-0062,1.1980066614845 +Nucleus,Blank-0063,0.357490561438742 +Nucleus,Blank-0064,-0.540680388356872 +Nucleus,Blank-0065,0.677644989399922 +Nucleus,Blank-0066,-0.272258627459423 +Nucleus,Blank-0067,0.0464079487632644 +Nucleus,Blank-0068,-0.44725604826391 +Nucleus,Blank-0069,0.520040401614131 +Nucleus,Blank-0070,-0.244010828188361 +Nucleus,Blank-0071,0.406198951546507 +Nucleus,Blank-0072,0.0927844694178921 +Nucleus,Blank-0073,0.308156842962808 +Nucleus,Blank-0074,0.861961801432347 +Nucleus,Blank-0075,2.03615810014658 +Nucleus,Blank-0076,0.191306553431231 +Nucleus,Blank-0077,0.0822679602706881 +Nucleus,Blank-0078,0.379274767455602 +Nucleus,Blank-0079,3.08042887135304 +Nucleus,Blank-0080,0.936207968761663 +Nucleus,Blank-0081,0.0962594674390141 +Nucleus,Blank-0082,-0.463505099251526 +Nucleus,Blank-0083,-0.344604496579161 +Nucleus,Blank-0084,0.5645941140336 +Nucleus,Blank-0085,0.0621200058176577 +Nucleus,Blank-0086,0.434223349101049 +Nucleus,Blank-0087,0.534571181398412 +Nucleus,Blank-0088,-0.552206645121248 +Nucleus,Blank-0089,-0.332255789769163 +Nucleus,Blank-0090,-0.963328676267502 +Nucleus,Blank-0091,0.256921910122623 +Nucleus,Blank-0092,0.734126691425895 +Nucleus,Blank-0093,0.62527521541525 +Nucleus,Blank-0094,0.713748405311438 +Nucleus,Blank-0095,-0.254350141165397 +Nucleus,Blank-0096,-0.0399869025143798 +Nucleus,Blank-0097,-0.210010265412294 +Nucleus,Blank-0098,0.44460346215544 +Nucleus,Blank-0099,0.398618849081264 +Nucleus,Blank-0100,0.21811214486443 +Nucleus,Blank-0101,0.340292423530131 +Nucleus,Blank-0102,-0.679958963760377 +Nucleus,Blank-0103,-0.381125659495233 +Nucleus,Blank-0104,0.127172569974535 +Nucleus,Blank-0105,-0.809426778195094 +Nucleus,Blank-0106,-0.101483444937093 +Nucleus,Blank-0107,0.6057378010293 +Nucleus,Blank-0108,-0.29236776726845 +Nucleus,Blank-0109,0.266566132398671 +Nucleus,Blank-0110,0.347127335557464 +Nucleus,Blank-0111,0.384924992845805 +Nucleus,Blank-0112,0.759839926067758 +Nucleus,Blank-0113,0.0163939570947537 +Nucleus,Blank-0114,0.180114702806014 +Nucleus,Blank-0115,0.751301182683977 +Nucleus,Blank-0116,-0.00740299796517059 +Nucleus,Blank-0117,0.0537499524475426 +Nucleus,Blank-0118,-1.20645068204833 +Nucleus,Blank-0119,0.410154000503498 +Nucleus,Blank-0120,0.383814789360168 +Nucleus,Blank-0121,0.153919432698461 +Nucleus,Blank-0122,-0.389346756594468 +Nucleus,Blank-0123,0.780824222907649 +Nucleus,Blank-0124,-0.202783384216568 +Nucleus,Blank-0125,1.1917909730264 +Nucleus,Blank-0126,0.208028509722212 +Nucleus,Blank-0127,0.738076125764539 +Nucleus,Blank-0128,0.554165661352896 +Nucleus,Blank-0129,0.142396669508527 +Nucleus,Blank-0130,-0.249532118379531 +Nucleus,Blank-0131,0.538340409843479 +Nucleus,Blank-0132,0.65603839528888 +Nucleus,Blank-0133,0.036762717209818 +Nucleus,Blank-0134,1.01459984062469 +Nucleus,Blank-0135,-0.332843386834541 +Nucleus,Blank-0136,-0.31240795672832 +Nucleus,Blank-0137,-0.0401485395871703 +Nucleus,Blank-0138,-0.961974187154044 +Nucleus,Blank-0139,-0.494449283945831 +Nucleus,Blank-0140,0.556714686931028 +Nucleus,Blank-0141,0.324491710695409 +Nucleus,Blank-0142,0.073145964519396 +Nucleus,Blank-0143,0.328104726479967 +Nucleus,Blank-0144,-0.31727545112725 +Nucleus,Blank-0145,0.453424915166013 +Nucleus,Blank-0146,0.735603662096666 +Nucleus,Blank-0147,0.726624300102004 +Nucleus,Blank-0148,-0.380653822895015 +Nucleus,Blank-0149,-0.722252770007891 +Nucleus,Blank-0150,-0.107885703946929 +Nucleus,Blank-0151,0.08259899417636 +Nucleus,Blank-0152,1.03814455134442 +Nucleus,Blank-0153,0.519592332036417 +Nucleus,Blank-0154,0.268372936157282 +Nucleus,Blank-0155,-0.56191460204242 +Nucleus,Blank-0156,0.552641571439242 +Nucleus,Blank-0157,-0.218622855461139 +Nucleus,Blank-0158,-0.619576626609938 +Nucleus,Blank-0159,0.0236403801909485 +Nucleus,Blank-0160,0.57150980528249 +Nucleus,Blank-0161,0.0159857938889885 +Nucleus,Blank-0162,0.27337707883314 +Nucleus,Blank-0163,0.0338174828423622 +Nucleus,Blank-0164,-0.534414788360727 +Nucleus,Blank-0165,-0.993780371487031 +Nucleus,Blank-0166,0.340356029150986 +Nucleus,Blank-0167,0.07243162635939 +Nucleus,Blank-0168,0.442903147808898 +Nucleus,Blank-0169,0.457976246070983 +Nucleus,Blank-0170,0.664593425312813 +Nucleus,Blank-0171,-0.691711367506451 +Nucleus,Blank-0172,0.118383207464256 +Nucleus,Blank-0173,0.565915226933654 +Nucleus,Blank-0174,0.399566059255343 +Nucleus,Blank-0175,-0.272224362361898 +Nucleus,Blank-0176,-0.940659528428853 +Nucleus,Blank-0177,-0.834675421496343 +Nucleus,Blank-0178,-0.0969510318339534 +Nucleus,Blank-0179,0.41347257213643 +Nucleus,Blank-0180,0.570083410314764 +Nucleus,Blank-0181,0.556663434260699 +Nucleus,Blank-0182,1.2066160127832 +Nucleus,Blank-0183,-0.581816896875557 +Nucleus,Blank-0184,0.0274107163988295 +Nucleus,Blank-0185,0.167927985800102 +Nucleus,Blank-0186,0.98408728740034 +Nucleus,Blank-0187,-0.0821705958425933 +Nucleus,Blank-0188,0.270919625051794 +Nucleus,Blank-0189,0.401333501851217 +Nucleus,Blank-0190,0.877484452242706 +Nucleus,Blank-0191,0.80309543562301 +Nucleus,Blank-0192,0.650202037176352 +Nucleus,Blank-0193,-0.374408146399931 +Nucleus,Blank-0194,0.0857728231076812 +Nucleus,Blank-0195,-0.270840603771894 +Nucleus,Blank-0196,0.184488225199876 +Nucleus,Blank-0197,-0.587282701678188 +Nucleus,Blank-0198,0.141780337004036 +Nucleus,Blank-0199,-0.47114449721441 +Nucleus,Blank-0200,0.18874540891876 +Nucleus,Blank-0201,-0.0276294650768773 +Nucleus,Blank-0202,0.534358419390832 +Nucleus,Blank-0203,-0.0711308956378283 +Nucleus,Blank-0204,-0.221635159045741 +Nucleus,Blank-0205,0.606033154744868 +Nucleus,Blank-0206,-0.59820803686926 +Nucleus,Blank-0207,0.709878317765764 +Nucleus,Blank-0208,-0.00715226932898625 +Nucleus,Blank-0209,-0.0375781566204697 +Nucleus,Blank-0210,0.832286008184013 +Nucleus,Blank-0211,0.0302420531210943 +Nucleus,Blank-0212,0.417631896202623 +Nucleus,Blank-0213,0.236475791686295 +Nucleus,Blank-0214,-0.555971710677011 +Nucleus,Blank-0215,0.338833288652538 +Nucleus,Blank-0216,-0.889975406954638 +Nucleus,Blank-0217,0.620958906551703 +Nucleus,Blank-0218,0.319876935084313 +Nucleus,Blank-0219,-0.349119334801729 +Nucleus,Blank-0220,1.65332832651757 +Nucleus,Blank-0221,-0.493278956026636 +Nucleus,Blank-0222,0.191237712324185 +Nucleus,Blank-0223,-0.0951587070815355 +Nucleus,Blank-0224,0.497711775981763 +Nucleus,Blank-0225,0.583543622179461 +Nucleus,Blank-0226,1.23712113546283 +Nucleus,Blank-0227,-0.226175051603435 +Nucleus,Blank-0228,-0.00684761228522102 +Nucleus,Blank-0229,0.580411830986838 +Nucleus,Blank-0230,0.698438610161824 +Nucleus,Blank-0231,1.166804454176 +Nucleus,Blank-0232,-0.514633496976425 +Nucleus,Blank-0233,0.490612137235304 +Nucleus,Blank-0234,0.0751729060332918 +Nucleus,Blank-0235,0.168918585416196 +Nucleus,Blank-0236,0.581491912105658 +Nucleus,Blank-0237,0.574816399030602 +Nucleus,Blank-0238,1.06323776610809 +Nucleus,Blank-0239,0.721227943860703 +Nucleus,Blank-0240,3.34568724891848 +Nucleus,Blank-0241,0.626739505200828 +Nucleus,Blank-0242,-0.0583812649862404 +Nucleus,Blank-0243,-0.259125203208588 +Nucleus,Blank-0244,0.530327895519778 +Nucleus,Blank-0245,0.408231491676422 +Nucleus,Blank-0246,0.785995050477325 +Nucleus,Blank-0247,1.37277401203182 +Nucleus,Blank-0248,0.40276942754007 +Nucleus,Blank-0249,-0.740767949876179 +Nucleus,Blank-0250,0.423476865418481 +Nucleus,Blank-0251,0.303591023634211 +Nucleus,Blank-0252,0.546188281253767 +Nucleus,Blank-0253,-0.939521250688718 +Nucleus,Blank-0254,0.863062746151074 +Nucleus,Blank-0255,0.45283172236343 +Nucleus,Blank-0256,-0.180827367628791 +Nucleus,Blank-0257,0.0371257340210921 +Nucleus,Blank-0258,-0.578836970468535 +Nucleus,Blank-0259,-0.0555817722841279 +Nucleus,Blank-0260,0.296650886596707 +Nucleus,Blank-0261,-0.759578920220824 +Nucleus,Blank-0262,-0.0526299235889239 +Nucleus,Blank-0263,0.375796940369161 +Nucleus,Blank-0264,-0.350076916798559 +Nucleus,Blank-0265,-0.0959107409636303 +Nucleus,Blank-0266,-0.285633099710211 +Nucleus,Blank-0267,-0.461390722561316 +Nucleus,Blank-0268,1.25544514144922 +Nucleus,Blank-0269,-0.170162225912772 +Nucleus,Blank-0270,0.285489300818457 +Nucleus,Blank-0271,-1.1083372950767 +Nucleus,Blank-0272,0.294314414060125 +Nucleus,Blank-0273,0.841074757122743 +Nucleus,Blank-0274,-0.0124443407382309 +Nucleus,Blank-0275,0.0368844616062809 +Nucleus,Blank-0276,-0.282347731888756 +Nucleus,Blank-0277,0.291255490893561 +Nucleus,Blank-0278,0.256547064430484 +Nucleus,Blank-0279,-0.0770310217528667 +Nucleus,Blank-0280,1.49458968929229 +Nucleus,Blank-0281,0.0763008442209402 +Nucleus,Blank-0282,-0.91574576190847 +Nucleus,Blank-0283,2.18849451570576 +Nucleus,Blank-0284,0.346322307624536 +Nucleus,Blank-0285,0.551455899138286 +Nucleus,Blank-0286,-0.0197912411005639 +Nucleus,Blank-0287,0.660670922153828 +Nucleus,Blank-0288,0.0599225953601855 +Nucleus,Blank-0289,0.259298860562013 +Nucleus,Blank-0290,0.210747228352621 +Nucleus,Blank-0291,1.80161085951453 +Nucleus,Blank-0292,-0.332335593572029 +Nucleus,Blank-0293,-0.426818357788201 +Nucleus,Blank-0294,-0.04911809052623 +Nucleus,Blank-0295,0.636453048707206 +Nucleus,Blank-0296,0.338720519597786 +Nucleus,Blank-0297,1.2305308498289 +Nucleus,Blank-0298,-0.0090979296116374 +Nucleus,Blank-0299,-1.13144445123604 +Nucleus,Blank-0300,-0.27964662879517 +Nucleus,Blank-0301,-0.269639931335566 +Nucleus,Blank-0302,1.10259401457979 +Nucleus,Blank-0303,0.149457401434832 +Nucleus,Blank-0304,-0.585511742907 +Nucleus,Blank-0305,0.307190712567954 +Nucleus,Blank-0306,-0.812792757389281 +Nucleus,Blank-0307,0.579069166657141 +Nucleus,Blank-0308,-0.440204172384524 +Nucleus,Blank-0309,0.8904764608655 +Nucleus,Blank-0310,-0.6196955548217 +Nucleus,Blank-0311,-0.653101677664562 +Nucleus,Blank-0312,-0.409122819566711 +Nucleus,Blank-0313,-1.72050851879798 +Nucleus,Blank-0314,-0.820963494093328 +Nucleus,Blank-0315,-0.250575287511767 +Nucleus,Blank-0316,-0.0906351567113406 +Nucleus,Blank-0317,-0.412198213067128 +Nucleus,Blank-0318,0.727857098968522 +Nucleus,Blank-0319,-1.20672592181649 +Nucleus,Blank-0320,0.186591199225491 +Nucleus,Blank-0321,-0.448624065698263 +Nucleus,Blank-0322,-1.21380927531917 +Nucleus,Blank-0323,-0.101223421940918 +Nucleus,Blank-0324,0.833014924747274 +Nucleus,Blank-0325,0.497066427767021 +Nucleus,Blank-0326,-0.480759276713183 +Nucleus,Blank-0327,0.717687015629149 +Nucleus,Blank-0328,0.82622103384894 +Nucleus,Blank-0329,-0.634497421856828 +Nucleus,Blank-0330,0.520306616293378 +Nucleus,Blank-0331,0.125304958408812 +Nucleus,Blank-0332,0.0959740516813223 +Nucleus,Blank-0333,0.117718907919364 +Nucleus,Blank-0334,-0.140137352615251 +Nucleus,Blank-0335,0.982314099620648 +Nucleus,Blank-0336,-0.198070818283248 +Nucleus,Blank-0337,0.714580160154695 +Nucleus,Blank-0338,-0.657844972855536 +Nucleus,Blank-0339,0.720528715226225 +Nucleus,Blank-0340,-0.844508923116705 +Nucleus,Blank-0341,0.616959313904706 +Nucleus,Blank-0342,0.228542363484324 +Nucleus,Blank-0343,0.177092087322049 +Nucleus,Blank-0344,-0.253279687784114 +Nucleus,Blank-0345,0.660226514228537 +Nucleus,Blank-0346,-0.290591312437255 +Nucleus,Blank-0347,-0.2003153652543 +Nucleus,Blank-0348,0.79447774304734 +Nucleus,Blank-0349,0.0647701049907049 +Nucleus,Blank-0350,-2.33663152106821 +Nucleus,Blank-0351,-0.758891425928549 +Nucleus,Blank-0352,0.333738463260591 +Nucleus,Blank-0353,1.22240411840912 +Nucleus,Blank-0354,0.397884896173078 +Nucleus,Blank-0355,0.959312334311862 +Nucleus,Blank-0356,1.11933641476541 +Nucleus,Blank-0357,0.823903869489411 +Nucleus,Blank-0358,-0.287126549150427 +Nucleus,Blank-0359,0.11872841586804 +Nucleus,Blank-0360,0.669982283577497 +Nucleus,Blank-0361,-0.54350234034116 +Nucleus,Blank-0362,0.226697319773781 +Nucleus,Blank-0363,-0.0539381248171521 +Nucleus,Blank-0364,-1.36012977231056 +Nucleus,Blank-0365,0.327627574346074 +Nucleus,Blank-0366,0.839822983796661 +Nucleus,Blank-0367,0.731313304273218 +Nucleus,Blank-0368,-0.107025242167704 +Nucleus,Blank-0369,-0.0949531656938601 +Nucleus,Blank-0370,0.348445165680848 +Nucleus,Blank-0371,0.0123757495510011 +Nucleus,Blank-0372,-0.149006557202791 +Nucleus,Blank-0373,0.525158084694608 +Nucleus,Blank-0374,1.18798894983593 +Nucleus,Blank-0375,0.357891317964542 +Nucleus,Blank-0376,-0.71119530241696 +Nucleus,Blank-0377,-1.44447634272891 +Nucleus,Blank-0378,0.116384943416649 +Nucleus,Blank-0379,0.140301563941453 +Nucleus,Blank-0380,-0.658460671912696 +Nucleus,Blank-0381,-1.03781897962793 +Nucleus,Blank-0382,1.39334225038702 +Nucleus,Blank-0383,1.07832910732632 +Nucleus,Blank-0384,0.121879080456682 +Nucleus,Blank-0385,0.290280795757906 +Nucleus,Blank-0386,0.724784629449327 +Nucleus,Blank-0387,0.542476529900607 +Nucleus,Blank-0388,0.412091510444441 +Nucleus,Blank-0389,-0.206382820475196 +Nucleus,Blank-0390,-0.389985704857193 +Nucleus,Blank-0391,-0.177236595559058 +Nucleus,Blank-0392,-0.384757660053356 +Nucleus,Blank-0393,0.0591817844694873 +Nucleus,Blank-0394,-0.273095190421793 +Nucleus,Blank-0395,0.117546143959247 +Nucleus,Blank-0396,1.21320098548582 +Nucleus,Blank-0397,-1.0264783285348 +Nucleus,Blank-0398,0.108478257835047 +Nucleus,Blank-0399,-0.99309079891648 +Nucleus,Blank-0400,-0.350510321651656 +Nucleus,Blank-0401,0.514563082426265 +Nucleus,Blank-0402,0.0433526371748701 +Nucleus,Blank-0403,1.5569939153938 +Nucleus,Blank-0404,-0.0368546128539132 +Nucleus,Blank-0405,-0.0400778333250562 +Nucleus,Blank-0406,1.13224789785517 +Nucleus,Blank-0407,0.209256145199116 +Nucleus,Blank-0408,0.550744019371218 +Nucleus,Blank-0409,-0.655315506338744 +Nucleus,Blank-0410,-0.234715291445269 +Nucleus,Blank-0411,0.244443494467614 +Nucleus,Blank-0412,0.651379288551112 +Nucleus,Blank-0413,-0.12252810854176 +Nucleus,Blank-0414,-0.664201300196934 +Nucleus,Blank-0415,0.608180123387873 +Nucleus,Blank-0416,0.161210194031176 +Nucleus,Blank-0417,-0.00251402043009728 +Nucleus,Blank-0418,-0.654476971816134 +Nucleus,Blank-0419,-0.0547221770955499 +Nucleus,Blank-0420,0.606968345247806 +Nucleus,Blank-0421,0.162138902316064 +Nucleus,Blank-0422,0.633062682485963 +Nucleus,Blank-0423,0.270704289432143 +Nucleus,Blank-0424,0.348560775000201 +Nucleus,Blank-0425,0.414539707281499 +Nucleus,Blank-0426,-0.645178576481347 +Nucleus,Blank-0427,-1.05656775268252 +Nucleus,Blank-0428,-0.817644715163532 +Nucleus,Blank-0429,-0.38381021604754 +Nucleus,Blank-0430,0.289333116317286 +Nucleus,Blank-0431,0.885111106395648 +Nucleus,Blank-0432,1.08900075422815 +Nucleus,Blank-0433,0.31980213847681 +Nucleus,Blank-0434,-0.0757530324459359 +Nucleus,Blank-0435,-0.0389683399486083 +Nucleus,Blank-0436,-0.795926844923239 +Nucleus,Blank-0437,-0.12262331889072 +Nucleus,Blank-0438,-0.418967315211299 +Nucleus,Blank-0439,-1.02239743228404 +Nucleus,Blank-0440,0.172697827577268 +Nucleus,Blank-0441,0.735841081358016 +Nucleus,Blank-0442,1.08002503848566 +Nucleus,Blank-0443,0.558295785438155 +Nucleus,Blank-0444,0.164453736217317 +Nucleus,Blank-0445,0.82810139308486 +Nucleus,Blank-0446,0.770756418147844 +Nucleus,Blank-0447,-0.218418718941806 +Nucleus,Blank-0448,-1.34174957957905 +Nucleus,Blank-0449,-0.66939157153502 +Nucleus,Blank-0450,-0.746300052377773 +Nucleus,Blank-0451,0.468084262005745 +Nucleus,Blank-0452,-0.326678174497328 +Nucleus,Blank-0453,1.20580809931915 +Nucleus,Blank-0454,0.832277233950515 +Nucleus,Blank-0455,-1.01894022018765 +Nucleus,Blank-0456,0.175828332308028 +Nucleus,Blank-0457,0.713033757759467 +Nucleus,Blank-0458,0.372970777353773 +Nucleus,Blank-0459,-0.188151869130123 +Nucleus,Blank-0460,-0.140205312367962 +Nucleus,Blank-0461,-0.254334233194806 +Nucleus,Blank-0462,0.167611515675433 +Nucleus,Blank-0463,0.432761671539659 +Nucleus,Blank-0464,-0.625871844360229 +Nucleus,Blank-0465,0.350552871512337 +Nucleus,Blank-0466,-1.83770690548481 +Nucleus,Blank-0467,-0.0350198864714771 +Nucleus,Blank-0468,-0.289028807117483 +Nucleus,Blank-0469,-0.750321777807883 +Nucleus,Blank-0470,-0.263036412870194 +Nucleus,Blank-0471,-0.744106168132132 +Nucleus,Blank-0472,0.361417998803303 +Nucleus,Blank-0473,-0.528118970863023 +Nucleus,Blank-0474,-0.0690051579860609 +Nucleus,Blank-0475,0.774455881497955 +Nucleus,Blank-0476,0.854933061895662 +Nucleus,Blank-0477,0.251671079082201 +Nucleus,Blank-0478,-0.0447870341545232 +Nucleus,Blank-0479,-0.830196823819782 +Nucleus,Blank-0480,-0.157302302628303 +Nucleus,Blank-0481,-0.760426828562127 +Nucleus,Blank-0482,0.418245212842783 +Nucleus,Blank-0483,0.694976040375491 +Nucleus,Blank-0484,-0.156906637040558 +Nucleus,Blank-0485,-0.17206377353936 +Nucleus,Blank-0486,0.0130915418025362 +Nucleus,Blank-0487,-0.41324390803794 +Nucleus,Blank-0488,0.00584848356445977 +Nucleus,Blank-0489,0.418511695925334 +Nucleus,Blank-0490,0.53844929752946 +Nucleus,Blank-0491,0.303185675454924 +Nucleus,Blank-0492,0.895675797908936 +Nucleus,Blank-0493,0.632619291369029 +Nucleus,Blank-0494,1.12896749863535 +Nucleus,Blank-0495,0.0884273048041744 +Nucleus,Blank-0496,-0.920916394664795 +Nucleus,Blank-0497,0.977461977882067 +Nucleus,Blank-0498,-1.00702000063039 +Nucleus,Blank-0499,0.394996816594182 +Nucleus,Blank-0500,0.0589839740719422 +Nucleus,Blank-0501,0.0529218309791702 +Nucleus,Blank-0502,0.394862900795443 +Nucleus,Blank-0503,0.209335843079058 +Nucleus,Blank-0504,0.73851231221551 +Nucleus,Blank-0505,0.238968552541223 +Nucleus,Blank-0506,-0.451857958001154 +Nucleus,Blank-0507,0.117042451781721 +Nucleus,Blank-0508,0.63580387864323 +Nucleus,Blank-0509,-1.12062124435404 +Nucleus,Blank-0510,0.439853805122259 +Nucleus,Blank-0511,-0.203437295960391 +Nucleus,Blank-0512,0.959474629059981 +Nucleus,Blank-0513,0.0821104103375472 +Nucleus,Blank-0514,0.96919291463191 +Nucleus,Blank-0515,1.12573195119201 +Nucleus,Blank-0516,0.275995314421063 +Nucleus,Blank-0517,0.474232709834554 +Nucleus,Blank-0518,-1.2746777091095 +Nucleus,Blank-0519,0.655572419643268 +Nucleus,Blank-0520,0.0371468899999726 +Nucleus,Blank-0521,0.666789969318711 +Nucleus,Blank-0522,0.192300875109682 +Nucleus,Blank-0523,0.790035926920699 +Nucleus,Blank-0524,0.5122644482744 +Nucleus,Blank-0525,-0.727974723166912 +Nucleus,Blank-0526,0.193826984123552 +Nucleus,Blank-0527,0.779638140738523 +Nucleus,Blank-0528,-0.123684956307183 +Nucleus,Blank-0529,-0.792232734141956 +Nucleus,Blank-0530,0.699542072684057 +Nucleus,Blank-0531,0.195409662613754 +Nucleus,Blank-0532,0.470312310691697 +Nucleus,Blank-0533,-0.213120251635489 +Nucleus,Blank-0534,0.567132839964769 +Nucleus,Blank-0535,-0.238378806374444 +Nucleus,Blank-0536,0.584352060860234 +Nucleus,Blank-0537,1.00803630585311 +Nucleus,Blank-0538,0.383268692753978 +Nucleus,Blank-0539,-0.106011755045001 +Nucleus,Blank-0540,0.670035900786559 +Nucleus,Blank-0541,1.27053910408556 +Nucleus,Blank-0542,-0.109003694720203 +Nucleus,Blank-0543,0.52206313112117 +Nucleus,Blank-0544,-0.383298666029007 +Nucleus,Blank-0545,0.474932130677943 +Nucleus,Blank-0546,-1.10336920727738 +Nucleus,Blank-0547,1.12534654660296 +Nucleus,Blank-0548,-0.515122620488786 +Nucleus,Blank-0549,-0.41188401988849 +Nucleus,Blank-0550,-0.432654591415978 +Nucleus,Blank-0551,-0.237548969071166 +Nucleus,Blank-0552,-0.0670696306642477 +Nucleus,Blank-0553,0.0418463067856075 +Nucleus,Blank-0554,0.216629700922989 +Nucleus,Blank-0555,1.6389678302388 +Nucleus,Blank-0556,0.392118983757172 +Nucleus,Blank-0557,-0.53605898744554 +Nucleus,Blank-0558,-0.074247186655068 +Nucleus,Blank-0559,0.771442835651369 +Nucleus,Blank-0560,-0.237825249766117 +Nucleus,Blank-0561,-0.0767217559313778 +Nucleus,Blank-0562,0.0241583425076213 +Nucleus,Blank-0563,0.0817523631733566 +Nucleus,Blank-0564,0.0700698709627786 +Nucleus,Blank-0565,0.565969931091616 +Nucleus,Blank-0566,0.00871407151256351 +Nucleus,Blank-0567,0.694888844300023 +Nucleus,Blank-0568,-0.208115142162837 +Nucleus,Blank-0569,0.471740235253958 +Nucleus,Blank-0570,-0.389875311656649 +Nucleus,Blank-0571,0.319287381189715 +Nucleus,Blank-0572,-0.0778178501281762 +Nucleus,Blank-0573,-0.118611194708127 +Nucleus,Blank-0574,-0.624458258963098 +Nucleus,Blank-0575,0.759730669152784 +Nucleus,Blank-0576,1.07151157207303 +Nucleus,Blank-0577,0.588994249632896 +Nucleus,Blank-0578,-0.295922546696503 +Nucleus,Blank-0579,-0.120571897631317 +Nucleus,Blank-0580,-0.64044303263279 +Nucleus,Blank-0581,-0.884272601571123 +Nucleus,Blank-0582,0.0299986530162981 +Nucleus,Blank-0583,0.769682024943415 +Nucleus,Blank-0584,0.236708510053877 +Nucleus,Blank-0585,-0.602855970694916 +Nucleus,Blank-0586,-0.329852371650331 +Nucleus,Blank-0587,0.309705114861042 +Nucleus,Blank-0588,0.740598311542256 +Nucleus,Blank-0589,0.573308503944084 +Nucleus,Blank-0590,0.500044172123032 +Nucleus,Blank-0591,0.141025230053764 +Nucleus,Blank-0592,-0.470554334301469 +Nucleus,Blank-0593,-0.199245512240591 +Nucleus,Blank-0594,-0.641572679793069 +Nucleus,Blank-0595,-1.42621900687564 +Nucleus,Blank-0596,0.784577940090755 +Nucleus,Blank-0597,-0.234526512346613 +Nucleus,Blank-0598,-0.189795643442175 +Nucleus,Blank-0599,-0.702058809308593 +Nucleus,Blank-0600,0.000973080329568685 +Nucleus,Blank-0601,-0.159441204488076 +Nucleus,Blank-0602,-0.0604483025971617 +Nucleus,Blank-0603,0.530666761588499 +Nucleus,Blank-0604,-0.980773794388705 +Nucleus,Blank-0605,0.0478850841066125 +Nucleus,Blank-0606,-0.301469774878088 +Nucleus,Blank-0607,0.25330610703189 +Nucleus,Blank-0608,0.122364455452678 +Nucleus,Blank-0609,0.0247563273853668 +Nucleus,Blank-0610,0.544805414882994 +Nucleus,Blank-0611,0.232964605297368 +Nucleus,Blank-0612,-0.547871292074852 +Nucleus,Blank-0613,0.0807072632964492 +Nucleus,Blank-0614,-0.828080157441602 +Nucleus,Blank-0615,-0.301190453393686 +Nucleus,Blank-0616,0.14021166899688 +Nucleus,Blank-0617,0.706213694053595 +Nucleus,Blank-0618,-0.351387845869723 +Nucleus,Blank-0619,0.370166661154212 +Nucleus,Blank-0620,0.817802308786046 +Nucleus,Blank-0621,0.231804274802589 +Nucleus,Blank-0622,0.504978857072744 +Nucleus,Blank-0623,-0.580747393847584 +Nucleus,Blank-0624,-0.135453734994697 +Nucleus,Blank-0625,-0.731636474188658 +Nucleus,Blank-0626,1.04390507403998 +Nucleus,Blank-0627,-0.384339465016656 +Nucleus,Blank-0628,1.13823573529662 +Nucleus,Blank-0629,-0.298085208575926 +Nucleus,Blank-0630,-0.210822224368461 +Nucleus,Blank-0631,-0.466591947691366 +Nucleus,Blank-0632,0.654865589557819 +Nucleus,Blank-0633,0.983544357769201 +Nucleus,Blank-0634,0.408258193065716 +Nucleus,Blank-0635,-0.16668431000302 +Nucleus,Blank-0636,0.0672465858026187 +Nucleus,Blank-0637,0.414758664809479 +Nucleus,Blank-0638,-0.321516902256538 +Nucleus,Blank-0639,-0.203315243722299 +Nucleus,Blank-0640,0.758218499237808 +Nucleus,Blank-0641,-0.499686357067245 +Nucleus,Blank-0642,-0.176634523012613 +Nucleus,Blank-0643,-0.310076242247549 +Nucleus,Blank-0644,-0.416211398828075 +Nucleus,Blank-0645,0.835576986840086 +Nucleus,Blank-0646,0.216192227312485 +Nucleus,Blank-0647,0.746755821235467 +Nucleus,Blank-0648,0.183190399197431 +Nucleus,Blank-0649,0.218083703605917 +Nucleus,Blank-0650,0.0532998033674542 +Nucleus,Blank-0651,1.1361402420071 +Nucleus,Blank-0652,0.416180982160478 +Nucleus,Blank-0653,-0.448478956693758 +Nucleus,Blank-0654,0.458864296593634 +Nucleus,Blank-0655,0.771302983195622 +Nucleus,Blank-0656,0.243226754658442 +Nucleus,Blank-0657,0.876420558690074 +Nucleus,Blank-0658,0.701468516410719 +Nucleus,Blank-0659,0.15150444870966 +Nucleus,Blank-0660,1.4972470055954 +Nucleus,Blank-0661,-0.289262541982521 +Nucleus,Blank-0662,-0.0938119158364606 +Nucleus,Blank-0663,-0.80994014292527 +Nucleus,Blank-0664,0.101491728796015 +Nucleus,Blank-0665,0.0519942964175906 +Nucleus,Blank-0666,0.860839394220641 +Nucleus,Blank-0667,-0.906150068437622 +Nucleus,Blank-0668,-0.749877235060295 +Nucleus,Blank-0669,-0.0753377764022375 +Nucleus,Blank-0670,0.176625871964037 +Nucleus,Blank-0671,0.0991103572736847 +Nucleus,Blank-0672,0.429541568738375 +Nucleus,Blank-0673,-0.397628988752057 +Nucleus,Blank-0674,0.871647905966567 +Nucleus,Blank-0675,0.437019789458728 +Nucleus,Blank-0676,0.366458543602392 +Nucleus,Blank-0677,0.452683709810632 +Nucleus,Blank-0678,-0.606745322817444 +Nucleus,Blank-0679,0.268901360971195 +Nucleus,Blank-0680,0.0934151520591672 +Nucleus,Blank-0681,0.67516143876507 +Nucleus,Blank-0682,-0.300471181890077 +Nucleus,Blank-0683,1.40296216128529 +Nucleus,Blank-0684,1.79754127630363 +Nucleus,Blank-0685,0.518131556865272 +Nucleus,Blank-0686,0.238798587044167 +Nucleus,Blank-0687,-0.389513754449083 +Nucleus,Blank-0688,0.217250351495041 +Nucleus,Blank-0689,0.264498148556193 +Nucleus,Blank-0690,0.195542916879795 +Nucleus,Blank-0691,0.283461301699693 +Nucleus,Blank-0692,1.10879939125992 +Nucleus,Blank-0693,-0.764548432282422 +Nucleus,Blank-0694,0.850602646522408 +Nucleus,Blank-0695,-0.140077947078367 +Nucleus,Blank-0696,0.519215137330603 +Nucleus,Blank-0697,-0.640156620926736 +Nucleus,Blank-0698,1.09954646530728 +Nucleus,Blank-0699,0.329848644171994 +Nucleus,Blank-0700,0.209038275580687 +Nucleus,Blank-0701,-0.232957435056825 +Nucleus,Blank-0702,0.103139584364341 +Nucleus,Blank-0703,0.00436153145129946 +Nucleus,Blank-0704,1.75313300557576 +Nucleus,Blank-0705,0.359750513031845 +Nucleus,Blank-0706,-0.0408132211410653 +Nucleus,Blank-0707,0.228343787372174 +Nucleus,Blank-0708,1.74808589250736 +Nucleus,Blank-0709,-0.261171822800578 +Nucleus,Blank-0710,-0.609223367019994 +Nucleus,Blank-0711,-0.870285220710372 +Nucleus,Blank-0712,-0.573244758901436 +Nucleus,Blank-0713,-0.483478845095047 +Nucleus,Blank-0714,-0.0343218375499791 +Nucleus,Blank-0715,0.39268645498516 +Nucleus,Blank-0716,-0.384016634109125 +Nucleus,Blank-0717,-0.0764372370564561 +Nucleus,Blank-0718,0.908158486602595 +Nucleus,Blank-0719,0.0493107656365858 +Nucleus,Blank-0720,0.00689019059554527 +Nucleus,Blank-0721,-1.17583770220528 +Nucleus,Blank-0722,0.590978007137589 +Nucleus,Blank-0723,0.683110586504556 +Nucleus,Blank-0724,0.361035635111374 +Nucleus,Blank-0725,0.559729785041961 +Nucleus,Blank-0726,0.479304678949154 +Nucleus,Blank-0727,0.371768542251152 +Nucleus,Blank-0728,-0.831517898946642 +Nucleus,Blank-0729,3.33312624574453 +Nucleus,Blank-0730,-0.959193338216343 +Nucleus,Blank-0731,0.436642774042568 +Nucleus,Blank-0732,0.163761599019293 +Nucleus,Blank-0733,1.52529459606649 +Nucleus,Blank-0734,1.50713950474413 +Nucleus,Blank-0735,0.62645907728444 +Nucleus,Blank-0736,0.985979814099561 +Nucleus,Blank-0737,-0.0440915573495332 +Nucleus,Blank-0738,-0.0854181929031428 +Nucleus,Blank-0739,-0.209516228311385 +Nucleus,Blank-0740,0.623405594550071 +Nucleus,Blank-0741,0.0760389772110994 +Nucleus,Blank-0742,0.592420224073109 +Nucleus,Blank-0743,0.594982156340886 +Nucleus,Blank-0744,0.596231610206601 +Nucleus,Blank-0745,-0.411089716056007 +Nucleus,Blank-0746,0.39307750604186 +Nucleus,Blank-0747,0.751192832396457 +Nucleus,Blank-0748,0.415008427867269 +Nucleus,Blank-0749,0.545456102654899 +Nucleus,Blank-0750,-0.338894867231003 +Nucleus,Blank-0751,0.229921924236609 +Nucleus,Blank-0752,0.471385662108172 +Nucleus,Blank-0753,-0.161630138032949 +Nucleus,Blank-0754,-0.807805368658374 +Nucleus,Blank-0755,0.106433820169362 +Nucleus,Blank-0756,-0.294321995197293 +Nucleus,Blank-0757,0.910489814726538 +Nucleus,Blank-0758,0.454280699903574 +Nucleus,Blank-0759,0.776553772375604 +Nucleus,Blank-0760,-0.0254146410049933 +Nucleus,Blank-0761,-0.675475664282821 +Nucleus,Blank-0762,-0.346683909934306 +Nucleus,Blank-0763,0.639355094228633 +Nucleus,Blank-0764,0.301603642149003 +Nucleus,Blank-0765,-1.50169654115434 +Nucleus,Blank-0766,0.237820690487002 +Nucleus,Blank-0767,0.158208074881164 +Nucleus,Blank-0768,0.804769484607939 +Nucleus,Blank-0769,1.13418826696839 +Nucleus,Blank-0770,-1.3068575103222 +Nucleus,Blank-0771,1.73303936102463 +Nucleus,Blank-0772,0.00479328330763702 +Nucleus,Blank-0773,-1.73295160769742 +Nucleus,Blank-0774,-0.216412696243001 +Nucleus,Blank-0775,0.542021260071989 +Nucleus,Blank-0776,0.133663547043737 +Nucleus,Blank-0777,1.48960455585616 +Nucleus,Blank-0778,0.49770552846428 +Nucleus,Blank-0779,0.409559909174734 +Nucleus,Blank-0780,-0.417586545397805 +Nucleus,Blank-0781,-0.0483255187175522 +Nucleus,Blank-0782,-0.109411207610528 +Nucleus,Blank-0783,0.79824637901199 +Nucleus,Blank-0784,-0.0603545429143748 +Nucleus,Blank-0785,-0.240699384320771 +Nucleus,Blank-0786,-0.0819245552164291 +Nucleus,Blank-0787,-0.0950074679208238 +Nucleus,Blank-0788,0.374735233109071 +Nucleus,Blank-0789,1.15965005822186 +Nucleus,Blank-0790,0.212964360998759 +Nucleus,Blank-0791,0.838065925548498 +Nucleus,Blank-0792,-0.699175779161865 +Nucleus,Blank-0793,-0.425299107416916 +Nucleus,Blank-0794,0.816926715529028 +Nucleus,Blank-0795,0.287407074657356 +Nucleus,Blank-0796,0.0829311096327229 +Nucleus,Blank-0797,-0.13038242591762 +Nucleus,Blank-0798,-1.10160841762717 +Nucleus,Blank-0799,1.00414449110231 +Nucleus,Blank-0800,0.719639983737005 +Nucleus,Blank-0801,-0.356402299242862 +Nucleus,Blank-0802,1.1219569760837 +Nucleus,Blank-0803,-0.631128305342211 +Nucleus,Blank-0804,0.157440499338302 +Nucleus,Blank-0805,0.67110209048434 +Nucleus,Blank-0806,-0.343624495182753 +Nucleus,Blank-0807,0.207525949197233 +Nucleus,Blank-0808,0.522033449389927 +Nucleus,Blank-0809,0.761314807638512 +Nucleus,Blank-0810,0.962937277212153 +Nucleus,Blank-0811,-0.215238555967082 +Nucleus,Blank-0812,0.534305560135741 +Nucleus,Blank-0813,0.404776424371995 +Nucleus,Blank-0814,0.657592625240047 +Nucleus,Blank-0815,0.676804131893448 +Nucleus,Blank-0816,-0.377749035915177 +Nucleus,Blank-0817,0.925440104606571 +Nucleus,Blank-0818,0.0160102161156283 +Nucleus,Blank-0819,-0.512316645632399 +Nucleus,Blank-0820,1.03728667336654 +Nucleus,Blank-0821,-0.228571827390046 +Nucleus,Blank-0822,0.0175421103883196 +Nucleus,Blank-0823,-0.0544326952877024 +Nucleus,Blank-0824,0.866636857710542 +Nucleus,Blank-0825,0.553676334288002 +Nucleus,Blank-0826,-0.6339255720846 +Nucleus,Blank-0827,0.442443964334801 +Nucleus,Blank-0828,0.859852831969509 +Nucleus,Blank-0829,0.293741269228971 +Nucleus,Blank-0830,0.832563555984336 +Nucleus,Blank-0831,0.866998687117334 +Nucleus,Blank-0832,-0.555632420897357 +Nucleus,Blank-0833,-0.383501753209497 +Nucleus,Blank-0834,0.670931308569566 +Nucleus,Blank-0835,0.392864906092835 +Nucleus,Blank-0836,-0.753284351662903 +Nucleus,Blank-0837,-0.0842275742752568 +Nucleus,Blank-0838,-0.238004573942167 +Nucleus,Blank-0839,0.162506830823571 +Nucleus,Blank-0840,0.399822503844024 +Nucleus,Blank-0841,0.60592326545176 +Nucleus,Blank-0842,0.0437453891970826 +Nucleus,Blank-0843,-0.243312829314726 +Nucleus,Blank-0844,-0.738744954037476 +Nucleus,Blank-0845,0.201205879276224 +Nucleus,Blank-0846,0.124003329645211 +Nucleus,Blank-0847,-0.453481471689925 +Nucleus,Blank-0848,0.424558572594114 +Nucleus,Blank-0849,-0.275877506441813 +Nucleus,Blank-0850,-0.832053971012209 +Nucleus,Blank-0851,0.988740600502815 +Nucleus,Blank-0852,-0.440053454896399 +Nucleus,Blank-0853,-1.08326412236623 +Nucleus,Blank-0854,0.771535805075958 +Nucleus,Blank-0855,0.255762043344686 +Nucleus,Blank-0856,0.454166975067956 +Nucleus,Blank-0857,0.355749333991847 +Nucleus,Blank-0858,0.628629168990368 +Nucleus,Blank-0859,0.489541920078318 +Nucleus,Blank-0860,-0.429334092253884 +Nucleus,Blank-0861,0.0088647681855034 +Nucleus,Blank-0862,0.17865416736653 +Nucleus,Blank-0863,-0.73789969495769 +Nucleus,Blank-0864,-0.248343734772849 +Nucleus,Blank-0865,-0.818702237428212 +Nucleus,Blank-0866,-0.837209565426899 +Nucleus,Blank-0867,0.64683689571682 +Nucleus,Blank-0868,-0.589112456609296 +Nucleus,Blank-0869,-0.59646059620467 +Nucleus,Blank-0870,-0.844124541140582 +Nucleus,Blank-0871,-0.668939931642066 +Nucleus,Blank-0872,1.76449393406564 +Nucleus,Blank-0873,0.390371275129359 +Nucleus,Blank-0874,0.507418382205378 +Nucleus,Blank-0875,0.858586881621778 +Nucleus,Blank-0876,0.846225572067997 +Nucleus,Blank-0877,-1.034412605046 +Nucleus,Blank-0878,0.810966815877073 +Nucleus,Blank-0879,0.977028222305998 +Nucleus,Blank-0880,-0.0206314438059041 +Nucleus,Blank-0881,1.00875812617069 +Nucleus,Blank-0882,0.103248528099309 +Nucleus,Blank-0883,0.329974781684953 +Nucleus,Blank-0884,0.154416436919764 +Nucleus,Blank-0885,-1.39791460958951 +Nucleus,Blank-0886,-0.397129457390648 +Nucleus,Blank-0887,1.31584121695942 +Nucleus,Blank-0888,0.112033320816291 +Nucleus,Blank-0889,1.43661422099514 +Nucleus,Blank-0890,0.549250728263066 +Nucleus,Blank-0891,-0.0813898036704921 +Nucleus,Blank-0892,-0.482419696466624 +Nucleus,Blank-0893,-0.294064948597368 +Nucleus,Blank-0894,0.136044684419101 +Nucleus,Blank-0895,-0.867565730207919 +Nucleus,Blank-0896,-0.60665147186217 +Nucleus,Blank-0897,-0.368911949053238 +Nucleus,Blank-0898,-0.627086181129708 +Nucleus,Blank-0899,0.474043143782045 +Nucleus,Blank-0900,0.0358876028257262 +Nucleus,Blank-0901,-0.221184891092895 +Nucleus,Blank-0902,0.255506453223514 +Nucleus,Blank-0903,-0.45205715805459 +Nucleus,Blank-0904,-0.188908055303893 +Nucleus,Blank-0905,-0.122489325000107 +Nucleus,Blank-0906,0.579568239515461 +Nucleus,Blank-0907,-1.29089384541711 +Nucleus,Blank-0908,0.147530052149122 +Nucleus,Blank-0909,0.704937087519563 +Nucleus,Blank-0910,-0.0532371386576007 +Nucleus,Blank-0911,-0.783858308322003 +Nucleus,Blank-0912,0.0326156344099592 +Nucleus,Blank-0913,-0.0539138291485433 +Nucleus,Blank-0914,-0.46365213609012 +Nucleus,Blank-0915,0.637842371821457 +Nucleus,Blank-0916,-0.940294818286981 +Nucleus,Blank-0917,0.879224476208361 +Nucleus,Blank-0918,-0.0890201684874444 +Nucleus,Blank-0919,0.261442208654195 +Nucleus,Blank-0920,0.593238873506007 +Nucleus,Blank-0921,0.0761449888757069 +Nucleus,Blank-0922,0.565416042759424 +Nucleus,Blank-0923,0.286010079022513 +Nucleus,Blank-0924,-0.325993244579749 +Nucleus,Blank-0925,0.623601843261036 +Nucleus,Blank-0926,0.498563660646993 +Nucleus,Blank-0927,-0.0929962560697069 +Nucleus,Blank-0928,-0.39425633985864 +Nucleus,Blank-0929,0.201690560964527 +Nucleus,Blank-0930,-0.0654160493999657 +Nucleus,Blank-0931,-0.702225328835502 +Nucleus,Blank-0932,-0.783055623350047 +Nucleus,Blank-0933,0.548870676382932 +Nucleus,Blank-0934,-0.175857677891429 +Nucleus,Blank-0935,-0.455081788163815 +Nucleus,Blank-0936,0.612380846522645 +Nucleus,Blank-0937,-0.173725417456989 +Nucleus,Blank-0938,0.248433660054044 +Nucleus,Blank-0939,-0.565907102150129 +Nucleus,Blank-0940,0.382351089703195 +Nucleus,Blank-0941,-0.242673713112634 +Nucleus,Blank-0942,-0.151886530007894 +Nucleus,Blank-0943,-0.398268339751648 +Nucleus,Blank-0944,1.04002526672891 +Nucleus,Blank-0945,-0.203209664757767 +Nucleus,Blank-0946,0.313605631977434 +Nucleus,Blank-0947,0.0257330324212288 +Nucleus,Blank-0948,0.899513482515497 +Nucleus,Blank-0949,-0.243997151014203 +Nucleus,Blank-0950,0.628433937484215 +Nucleus,Blank-0951,-0.688732849192893 +Nucleus,Blank-0952,0.206276711485962 +Nucleus,Blank-0953,-0.120327060079224 +Nucleus,Blank-0954,1.54107796595957 +Nucleus,Blank-0955,0.968205516544948 +Nucleus,Blank-0956,0.565163044252944 +Nucleus,Blank-0957,-0.138988772094661 +Nucleus,Blank-0958,0.797352282429451 +Nucleus,Blank-0959,0.0424462176005002 +Nucleus,Blank-0960,0.374615645005002 +Nucleus,Blank-0961,1.07758347722138 +Nucleus,Blank-0962,-0.431508469370053 +Nucleus,Blank-0963,0.631875516798339 +Nucleus,Blank-0964,-0.30364778947505 +Nucleus,Blank-0965,1.18103245201212 +Nucleus,Blank-0966,0.995796856305669 +Nucleus,Blank-0967,-0.0157792835193826 +Nucleus,Blank-0968,-0.28513427879069 +Nucleus,Blank-0969,0.208588667231762 +Nucleus,Blank-0970,0.890478715406633 +Nucleus,Blank-0971,0.166888584305818 +Nucleus,Blank-0972,1.03733611234242 +Nucleus,Blank-0973,-0.767696165445566 +Nucleus,Blank-0974,0.471061485256481 +Nucleus,Blank-0975,1.07849820287341 +Nucleus,Blank-0976,-0.490315786486854 +Nucleus,Blank-0977,0.651249415860722 +Nucleus,Blank-0978,-0.678001936694323 +Nucleus,Blank-0979,-0.252727589603362 +Nucleus,Blank-0980,0.264813496346663 +Nucleus,Blank-0981,-0.257525962488267 +Nucleus,Blank-0982,0.675137939146263 +Nucleus,Blank-0983,-0.621528707476505 +Nucleus,Blank-0984,-0.267326054803079 +Nucleus,Blank-0985,0.310628312136843 +Nucleus,Blank-0986,-0.247547789076362 +Nucleus,Blank-0987,0.91487115863359 +Nucleus,Blank-0988,-0.845301839715847 +Nucleus,Blank-0989,0.407375999435948 +Nucleus,Blank-0990,1.388747327975 +Nucleus,Blank-0991,-0.16105562693586 +Nucleus,Blank-0992,-0.0926263321251668 +Nucleus,Blank-0993,-0.414804501179012 +Nucleus,Blank-0994,-0.116922105081165 +Nucleus,Blank-0995,-0.583589401122054 +Nucleus,Blank-0996,-0.677443221255619 +Nucleus,Blank-0997,0.515421219980383 +Nucleus,Blank-0998,-0.497935367716763 +Nucleus,Blank-0999,1.23169109210644 +Nucleus,Blank-1000,0.244973314937573 +Nucleus,Blank-1001,-0.294688346264529 +Nucleus,Blank-1002,-0.168995768667846 +Nucleus,Blank-1003,0.249472379512452 +Nucleus,Blank-1004,0.00408020145267765 +Nucleus,Blank-1005,-0.81355975306923 +Nucleus,Blank-1006,0.357188441965686 +Nucleus,Blank-1007,-0.383646201095722 +Nucleus,Blank-1008,0.26018684590095 +Nucleus,Blank-1009,-0.309279719738422 +Nucleus,Blank-1010,-1.05704466337537 +Nucleus,Blank-1011,0.455571303002943 +Nucleus,Blank-1012,-0.954829000300629 +Nucleus,Blank-1013,-1.87872841615131 +Nucleus,Blank-1014,2.41416501677953 +Nucleus,Blank-1015,0.347903400182137 +Nucleus,Blank-1016,0.545098559216824 +Nucleus,Blank-1017,-0.55996748235184 +Nucleus,Blank-1018,-0.622496853635003 +Nucleus,Blank-1019,0.399621386402086 +Nucleus,Blank-1020,0.0735154983759553 +Nucleus,Blank-1021,-0.775229985170274 +Nucleus,Blank-1022,0.142416349554673 +Nucleus,Blank-1023,0.489371229295751 +Nucleus,Blank-1024,0.289253637326001 +Nucleus,Blank-1025,0.642184685005802 +Nucleus,Blank-1026,0.0358536672982218 +Nucleus,Blank-1027,1.80589027613013 +Nucleus,Blank-1028,-0.183534664326279 +Nucleus,Blank-1029,-0.568236535029166 +Nucleus,Blank-1030,0.429360874676112 +Nucleus,Blank-1031,-0.267645994832405 +Nucleus,Blank-1032,0.645144547398596 +Nucleus,Blank-1033,0.423485659929155 +Nucleus,Blank-1034,0.334658073407229 +Nucleus,Blank-1035,0.177185313712591 +Nucleus,Blank-1036,1.24280701194752 +Nucleus,Blank-1037,-0.531012491503493 +Nucleus,Blank-1038,-0.111560356538628 +Nucleus,Blank-1039,1.60446825849315 +Nucleus,Blank-1040,-0.502710899657728 +Nucleus,Blank-1041,0.805279871230027 +Nucleus,Blank-1042,-0.231398817155535 +Nucleus,Blank-1043,0.640995746155466 +Nucleus,Blank-1044,-0.664188069471557 +Nucleus,Blank-1045,0.385033111840313 +Nucleus,Blank-1046,-0.580674539280135 +Nucleus,Blank-1047,0.469850231039604 +Nucleus,Blank-1048,0.425169620581289 +Nucleus,Blank-1049,-0.4393527961839 +Nucleus,Blank-1050,-0.930856472675401 +Nucleus,Blank-1051,-0.433425772038169 +Nucleus,Blank-1052,0.669029156119835 +Nucleus,Blank-1053,0.0354095388171352 +Nucleus,Blank-1054,-0.127855729264328 +Nucleus,Blank-1055,0.693810571829724 +Nucleus,Blank-1056,2.99028102909903 +Nucleus,Blank-1057,-0.291146514047634 +Nucleus,Blank-1058,0.361078081929516 +Nucleus,Blank-1059,1.15738033625883 +Nucleus,Blank-1060,-0.452578930353245 +Nucleus,Blank-1061,-1.53587155277608 +Nucleus,Blank-1062,2.03356267641654 +Nucleus,Blank-1063,-0.652510532307724 +Nucleus,Blank-1064,-0.294935683837785 +Nucleus,Blank-1065,0.39220551257641 +Nucleus,Blank-1066,0.595287936229946 +Nucleus,Blank-1067,-0.844973371667842 +Nucleus,Blank-1068,-1.05833865056287 +Nucleus,Blank-1069,-0.447975378842165 +Nucleus,Blank-1070,0.799351419103421 +Nucleus,Blank-1071,0.145359536237949 +Nucleus,Blank-1072,0.354127857928738 +Nucleus,Blank-1073,0.574108706905927 +Nucleus,Blank-1074,0.584236581558591 +Nucleus,Blank-1075,-0.198548570907197 +Nucleus,Blank-1076,-0.0462083394688756 +Nucleus,Blank-1077,0.113791111947084 +Nucleus,Blank-1078,0.854719497372441 +Nucleus,Blank-1079,-0.0749672214725548 +Nucleus,Blank-1080,0.819928641505857 +Nucleus,Blank-1081,0.103994713159497 +Nucleus,Blank-1082,-1.05693491566225 +Nucleus,Blank-1083,-0.208325325881119 +Nucleus,Blank-1084,1.80752125884521 +Nucleus,Blank-1085,0.450330636851908 +Nucleus,Blank-1086,0.1249198166377 +Nucleus,Blank-1087,-0.021361509959172 +Nucleus,Blank-1088,-1.49208735839324 +Nucleus,Blank-1089,-0.0368510117246987 +Nucleus,Blank-1090,0.3914883001911 +Nucleus,Blank-1091,0.483925582526966 +Nucleus,Blank-1092,-0.19255619086669 +Nucleus,Blank-1093,0.374317318800509 +Nucleus,Blank-1094,-0.556924151314386 +Nucleus,Blank-1095,-0.664048872508807 +Nucleus,Blank-1096,-0.645935090458852 +Nucleus,Blank-1097,-0.400813224302765 +Nucleus,Blank-1098,-2.03732599588517 +Nucleus,Blank-1099,-1.70101286737574 +Nucleus,Blank-1100,0.628186503465545 +Nucleus,Blank-1101,0.215068451852348 +Nucleus,Blank-1102,-0.0821916406727883 +Nucleus,Blank-1103,0.606592555773733 +Nucleus,Blank-1104,-0.46450237061894 +Nucleus,Blank-1105,0.151094466650717 +Nucleus,Blank-1106,-0.656988683848327 +Nucleus,Blank-1107,0.114544063462677 +Nucleus,Blank-1108,-0.129901734741562 +Nucleus,Blank-1109,-0.503178916282759 +Nucleus,Blank-1110,0.664234594768637 +Nucleus,Blank-1111,0.528524693200761 +Nucleus,Blank-1112,1.16119739167534 +Nucleus,Blank-1113,0.552531109783247 +Nucleus,Blank-1114,0.720348635659074 +Nucleus,Blank-1115,0.0746376673377838 +Nucleus,Blank-1116,0.0744783995263086 +Nucleus,Blank-1117,-0.150992882020212 +Nucleus,Blank-1118,0.614829029968519 +Nucleus,Blank-1119,1.13244286603902 +Nucleus,Blank-1120,-1.17986819283178 +Nucleus,Blank-1121,0.672000684556716 +Nucleus,Blank-1122,-0.647988833459294 +Nucleus,Blank-1123,-0.821414462280816 +Nucleus,Blank-1124,0.41066257487012 +Nucleus,Blank-1125,-0.576786124492915 +Nucleus,Blank-1126,0.317765046982946 +Nucleus,Blank-1127,0.540400750943875 +Nucleus,Blank-1128,0.580132000538791 +Nucleus,Blank-1129,-0.504563792410242 +Nucleus,Blank-1130,-0.354117857965317 +Nucleus,Blank-1131,0.858766566501557 +Nucleus,Blank-1132,-0.0912004680984422 +Nucleus,Blank-1133,0.423258844131614 +Nucleus,Blank-1134,0.828105163687254 +Nucleus,Blank-1135,0.205818972925946 +Nucleus,Blank-1136,0.664922650093705 +Nucleus,Blank-1137,0.583388761621798 +Nucleus,Blank-1138,0.19625979793929 +Nucleus,Blank-1139,0.774988659961381 +Nucleus,Blank-1140,-1.32858354955798 +Nucleus,Blank-1141,0.162927163535463 +Nucleus,Blank-1142,-0.54492070713734 +Nucleus,Blank-1143,0.0210178753787716 +Nucleus,Blank-1144,-0.0271031789516841 +Nucleus,Blank-1145,-1.17171756875443 +Nucleus,Blank-1146,0.316220470103091 +Nucleus,Blank-1147,0.518885611748402 +Nucleus,Blank-1148,0.0100136578809335 +Nucleus,Blank-1149,-0.0609975529997662 +Nucleus,Blank-1150,-1.31347368616249 +Nucleus,Blank-1151,0.135943883041009 +Nucleus,Blank-1152,0.468675972587549 +Nucleus,Blank-1153,-1.06647357894088 +Nucleus,Blank-1154,-0.418222383178258 +Nucleus,Blank-1155,-0.373547123374735 +Nucleus,Blank-1156,0.631130177218276 +Nucleus,Blank-1157,-1.41782111363548 +Nucleus,Blank-1158,1.29445785258574 +Nucleus,Blank-1159,0.87799161361718 +Nucleus,Blank-1160,0.179240618947295 +Nucleus,Blank-1161,-0.268575495069396 +Nucleus,Blank-1162,-0.452722121325747 +Nucleus,Blank-1163,0.305394598469228 +Nucleus,Blank-1164,0.299805426599431 +Nucleus,Blank-1165,-0.313681229431478 +Nucleus,Blank-1166,0.516095066256886 +Nucleus,Blank-1167,0.0762997521317766 +Nucleus,Blank-1168,0.130213893373688 +Nucleus,Blank-1169,-0.514384395579836 +Nucleus,Blank-1170,0.0587199771520509 +Nucleus,Blank-1171,0.15767903717858 +Nucleus,Blank-1172,0.0823370709929656 +Nucleus,Blank-1173,-0.293066032987361 +Nucleus,Blank-1174,0.642279022770709 +Nucleus,Blank-1175,1.26309405694597 +Nucleus,Blank-1176,0.598732501374795 +Nucleus,Blank-1177,-0.343362677082876 +Nucleus,Blank-1178,0.610994307269215 +Nucleus,Blank-1179,-0.729246215267743 +Nucleus,Blank-1180,-0.106302195511499 +Nucleus,Blank-1181,-0.145690004568423 +Nucleus,Blank-1182,0.785675211081332 +Nucleus,Blank-1183,-0.241927933349421 +Nucleus,Blank-1184,-0.877456991695628 +Nucleus,Blank-1185,0.110437942588482 +Nucleus,Blank-1186,-0.153955440881228 +Nucleus,Blank-1187,-0.0899907119423485 +Nucleus,Blank-1188,-0.417508711625185 +Nucleus,Blank-1189,0.00937850378027606 +Nucleus,Blank-1190,0.259056439030292 +Nucleus,Blank-1191,-0.940246032137329 +Nucleus,Blank-1192,0.0086830264551163 +Nucleus,Blank-1193,0.205100402229169 +Nucleus,Blank-1194,0.617476503750162 +Nucleus,Blank-1195,0.704017055513489 +Nucleus,Blank-1196,0.532267278799698 +Nucleus,Blank-1197,-0.192471556888214 +Nucleus,Blank-1198,-0.0384264952292449 +Nucleus,Blank-1199,0.206252084388442 +Nucleus,Blank-1200,0.577217555277066 +Nucleus,Blank-1201,0.651894763924462 +Nucleus,Blank-1202,0.136179461014726 +Nucleus,Blank-1203,1.12729799504407 +Nucleus,Blank-1204,0.553106481762569 +Nucleus,Blank-1205,0.88513054704478 +Nucleus,Blank-1206,0.727570970535962 +Nucleus,Blank-1207,0.667683273793765 +Nucleus,Blank-1208,0.506109041871172 +Nucleus,Blank-1209,-0.428939050941295 +Nucleus,Blank-1210,-1.20334937797647 +Nucleus,Blank-1211,0.219414737513291 +Nucleus,Blank-1212,0.147561351288636 +Nucleus,Blank-1213,-0.0124298785022985 +Nucleus,Blank-1214,-0.451436039693029 +Nucleus,Blank-1215,-0.311282439053748 +Nucleus,Blank-1216,0.31377256391615 +Nucleus,Blank-1217,-1.06956034145518 +Nucleus,Blank-1218,0.271858629503628 +Nucleus,Blank-1219,0.737363989222838 +Nucleus,Blank-1220,0.332250079257589 +Nucleus,Blank-1221,0.767315566423123 +Nucleus,Blank-1222,0.0204303737828126 +Nucleus,Blank-1223,0.660063889744514 +Nucleus,Blank-1224,-0.215393272471517 +Nucleus,Blank-1225,-0.311095825385611 +Nucleus,Blank-1226,-0.865909411609186 +Nucleus,Blank-1227,-0.599254181186612 +Nucleus,Blank-1228,-0.293954192124116 +Nucleus,Blank-1229,0.127888840788106 +Nucleus,Blank-1230,-0.620080115531632 +Nucleus,Blank-1231,0.182408843509281 +Nucleus,Blank-1232,0.178046477249703 +Nucleus,Blank-1233,0.255108628488715 +Nucleus,Blank-1234,0.053852429754919 +Nucleus,Blank-1235,-0.784424194198143 +Nucleus,Blank-1236,-0.138541625041243 +Nucleus,Blank-1237,-0.198492017753785 +Nucleus,Blank-1238,0.418760796207348 +Nucleus,Blank-1239,0.327151662905944 +Nucleus,Blank-1240,0.466375893096048 +Nucleus,Blank-1241,0.584079948753903 +Nucleus,Blank-1242,-0.227956695165428 +Nucleus,Blank-1243,0.117288431113988 +Nucleus,Blank-1244,0.602171929915739 +Nucleus,Blank-1245,-1.17478818503037 +Nucleus,Blank-1246,0.819664310313171 +Nucleus,Blank-1247,-0.0309918449441962 +Nucleus,Blank-1248,0.494975318473033 +Nucleus,Blank-1249,-0.749454165513591 +Nucleus,Blank-1250,-0.126092630342115 +Nucleus,Blank-1251,-0.141273080836915 +Nucleus,Blank-1252,-0.197233963305746 +Nucleus,Blank-1253,0.944832712666733 +Nucleus,Blank-1254,1.8902305924718 +Nucleus,Blank-1255,-0.274422837803449 +Nucleus,Blank-1256,-0.882777494394708 +Nucleus,Blank-1257,0.935405632086019 +Nucleus,Blank-1258,-0.242085441969791 +Nucleus,Blank-1259,0.246590919692188 +Nucleus,Blank-1260,-0.140966429939603 +Nucleus,Blank-1261,0.0769202826850446 +Nucleus,Blank-1262,-0.0663520390690744 +Nucleus,Blank-1263,0.169403541818394 +Nucleus,Blank-1264,0.325272861152632 +Nucleus,Blank-1265,0.797295893403881 +Nucleus,Blank-1266,0.701631199387578 +Nucleus,Blank-1267,0.607744613002938 +Nucleus,Blank-1268,0.50891385046852 +Nucleus,Blank-1269,-0.922121422941515 +Nucleus,Blank-1270,0.766614223064033 +Nucleus,Blank-1271,0.168046983238061 +Nucleus,Blank-1272,-0.417746606175995 +Nucleus,Blank-1273,0.604848814877418 +Nucleus,Blank-1274,-1.34128335587386 +Nucleus,Blank-1275,0.726324297613502 +Nucleus,Blank-1276,1.35071724756924 +Nucleus,Blank-1277,-0.352151748089191 +Nucleus,Blank-1278,0.747286595033779 +Nucleus,Blank-1279,0.0227068410808972 +Nucleus,Blank-1280,-1.16731541046438 +Nucleus,Blank-1281,-0.646532463050593 +Nucleus,Blank-1282,-0.377909228021223 +Nucleus,Blank-1283,-0.0991845539523952 +Nucleus,Blank-1284,0.445511711433156 +Nucleus,Blank-1285,0.409643143863946 +Nucleus,Blank-1286,0.128240545886578 +Nucleus,Blank-1287,-0.240563853596584 +Nucleus,Blank-1288,-1.26169031070821 +Nucleus,Blank-1289,-0.428780022490775 +Nucleus,Blank-1290,0.53136263821273 +Nucleus,Blank-1291,0.0852916319529179 +Nucleus,Blank-1292,0.804002842002987 +Nucleus,Blank-1293,0.0532639008350295 +Nucleus,Blank-1294,-0.947487008387735 +Nucleus,Blank-1295,-0.633461675047675 +Nucleus,Blank-1296,-0.116239739054985 +Nucleus,Blank-1297,1.47586332380305 +Nucleus,Blank-1298,0.111079047967421 +Nucleus,Blank-1299,-1.25257436799236 +Nucleus,Blank-1300,-0.462050791811768 +Nucleus,Blank-1301,-0.697704256988846 +Nucleus,Blank-1302,0.100749935325108 +Nucleus,Blank-1303,0.518223529670425 +Nucleus,Blank-1304,-0.149728144618173 +Nucleus,Blank-1305,-1.14031501521147 +Nucleus,Blank-1306,-0.161898900998539 +Nucleus,Blank-1307,-0.762365468441403 +Nucleus,Blank-1308,-0.593021458010606 +Nucleus,Blank-1309,-0.077730680005017 +Nucleus,Blank-1310,-0.165118690078931 +Nucleus,Blank-1311,0.857867263001921 +Nucleus,Blank-1312,-0.0343208035317975 +Nucleus,Blank-1313,0.537702972045594 +Nucleus,Blank-1314,0.608331663234554 +Nucleus,Blank-1315,-0.334457308585448 +Nucleus,Blank-1316,-0.403910211107294 +Nucleus,Blank-1317,-0.0357565436004563 +Nucleus,Blank-1318,-0.575901084376542 +Nucleus,Blank-1319,0.145980509726212 +Nucleus,Blank-1320,1.15811014805345 +Nucleus,Blank-1321,-0.278339165184645 +Nucleus,Blank-1322,0.311767004536147 +Nucleus,Blank-1323,0.0357449701549735 +Nucleus,Blank-1324,0.107520532027739 +Nucleus,Blank-1325,0.222186297175798 +Nucleus,Blank-1326,0.0214899246599343 +Nucleus,Blank-1327,0.374149127055041 +Nucleus,Blank-1328,0.544062043143225 +Nucleus,Blank-1329,0.0400846262705856 +Nucleus,Blank-1330,0.478821841265098 +Nucleus,Blank-1331,0.839790906072316 +Nucleus,Blank-1332,0.99326758590718 +Nucleus,Blank-1333,-0.255577103119712 +Nucleus,Blank-1334,-0.480310393610752 +Nucleus,Blank-1335,0.26177811009525 +Nucleus,Blank-1336,0.00858194426827225 +Nucleus,Blank-1337,0.121853592085174 +Nucleus,Blank-1338,0.166117015133078 +Nucleus,Blank-1339,-0.260631120768339 +Nucleus,Blank-1340,-0.373052588430271 +Nucleus,Blank-1341,-0.453042351416181 +Nucleus,Blank-1342,2.74355196215365 +Nucleus,Blank-1343,-1.11370965638455 +Nucleus,Blank-1344,0.000969097107405392 +Nucleus,Blank-1345,0.42552276119372 +Nucleus,Blank-1346,1.07570619980185 +Nucleus,Blank-1347,0.128016366946714 +Nucleus,Blank-1348,-0.0567419752123256 +Nucleus,Blank-1349,0.49626749226512 +Nucleus,Blank-1350,-0.173896809118115 +Nucleus,Blank-1351,-0.223698379917476 +Nucleus,Blank-1352,0.778261489412635 +Nucleus,Blank-1353,-0.854313821317188 +Nucleus,Blank-1354,0.830494169455029 +Nucleus,Blank-1355,-0.882677255917122 +Nucleus,Blank-1356,-0.14556410011576 +Nucleus,Blank-1357,-0.0850802479777791 +Nucleus,Blank-1358,0.327548884252588 +Nucleus,Blank-1359,-0.138292269131928 +Nucleus,Blank-1360,1.01510049374132 +Nucleus,Blank-1361,-0.780148921922497 +Nucleus,Blank-1362,-0.288531784975393 +Nucleus,Blank-1363,0.417039118962745 +Nucleus,Blank-1364,0.409086653638855 +Nucleus,Blank-1365,-0.025592621078498 +Nucleus,Blank-1366,0.86596154797676 +Nucleus,Blank-1367,-0.932810396129023 +Nucleus,Blank-1368,0.239284873290144 +Nucleus,Blank-1369,-0.487112738452399 +Nucleus,Blank-1370,-0.204820427930917 +Nucleus,Blank-1371,1.3643811716833 +Nucleus,Blank-1372,-0.378752559996454 +Nucleus,Blank-1373,0.366293841959985 +Nucleus,Blank-1374,1.05821530640393 +Nucleus,Blank-1375,-0.587939538568419 +Nucleus,Blank-1376,-0.102288613029289 +Nucleus,Blank-1377,0.115505505531366 +Nucleus,Blank-1378,-0.562779479822915 +Nucleus,Blank-1379,-0.278428372514913 +Nucleus,Blank-1380,0.140040061992346 +Nucleus,Blank-1381,-1.30892010621012 +Nucleus,Blank-1382,-1.04058219754331 +Nucleus,Blank-1383,0.145160585197354 +Nucleus,Blank-1384,-0.135882409747966 +Nucleus,Blank-1385,-0.0686289102654639 +Nucleus,Blank-1386,0.380527615971035 +Nucleus,Blank-1387,0.659198991237721 +Nucleus,Blank-1388,-0.105952867638604 +Nucleus,Blank-1389,-0.668324251774737 +Nucleus,Blank-1390,-0.452700021720907 +Nucleus,Blank-1391,1.08314599157371 +Nucleus,Blank-1392,0.551691137090419 +Nucleus,Blank-1393,-0.70539233997855 +Nucleus,Blank-1394,-0.10460156502196 +Nucleus,Blank-1395,0.68212664065672 +Nucleus,Blank-1396,-0.135012815455949 +Nucleus,Blank-1397,-0.0669905987462883 +Nucleus,Blank-1398,0.00317113454211628 +Nucleus,Blank-1399,0.254766951004679 +Nucleus,Blank-1400,-0.16891195718088 +Nucleus,Blank-1401,-0.248608012733267 +Nucleus,Blank-1402,-0.830025782231316 +Nucleus,Blank-1403,-0.159533782192068 +Nucleus,Blank-1404,0.301406915493794 +Nucleus,Blank-1405,0.0108619400105976 +Nucleus,Blank-1406,-0.026977673215752 +Nucleus,Blank-1407,-0.0287508452554451 +Nucleus,Blank-1408,1.42899573769531 +Nucleus,Blank-1409,1.44636792637913 +Nucleus,Blank-1410,0.120211932607427 +Nucleus,Blank-1411,-0.349332743547483 +Nucleus,Blank-1412,1.08563876258953 +Nucleus,Blank-1413,0.352479863863411 +Nucleus,Blank-1414,0.0634176803793857 +Nucleus,Blank-1415,0.175575270150923 +Nucleus,Blank-1416,0.558621860736538 +Nucleus,Blank-1417,0.406706910331002 +Nucleus,Blank-1418,-0.0295848333947013 +Nucleus,Blank-1419,0.228678368215886 +Nucleus,Blank-1420,1.2176070640995 +Nucleus,Blank-1421,0.565362866202312 +Nucleus,Blank-1422,0.0338538377557989 +Nucleus,Blank-1423,0.240702872915228 +Nucleus,Blank-1424,0.198917667868553 +Nucleus,Blank-1425,1.2681059136577 +Nucleus,Blank-1426,-0.568343470698838 +Nucleus,Blank-1427,-0.516183935559724 +Nucleus,Blank-1428,-0.120202535472701 +Nucleus,Blank-1429,0.580389260286208 +Nucleus,Blank-1430,0.825032686718807 +Nucleus,Blank-1431,-0.311753917824877 +Nucleus,Blank-1432,-0.761409116282076 +Nucleus,Blank-1433,-0.252292164833955 +Nucleus,Blank-1434,0.0569279417444671 +Nucleus,Blank-1435,0.49985995686157 +Nucleus,Blank-1436,0.502547744229214 +Nucleus,Blank-1437,0.124625191106328 +Nucleus,Blank-1438,-0.0931548696786018 +Nucleus,Blank-1439,-0.00646913066698286 +Nucleus,Blank-1440,-0.758563261913476 +Nucleus,Blank-1441,-0.816785568955709 +Nucleus,Blank-1442,-0.595335565976842 +Nucleus,Blank-1443,-0.679483548240498 +Nucleus,Blank-1444,1.55495352047164 +Nucleus,Blank-1445,0.284264157313662 +Nucleus,Blank-1446,1.00100763052914 +Nucleus,Blank-1447,0.990937666621923 +Nucleus,Blank-1448,0.192483976257029 +Nucleus,Blank-1449,-0.0968965630014521 +Nucleus,Blank-1450,0.243063446274381 +Nucleus,Blank-1451,0.274223678867666 +Nucleus,Blank-1452,0.902538405337198 +Nucleus,Blank-1453,-1.00370926611346 +Nucleus,Blank-1454,0.427747108721524 +Nucleus,Blank-1455,-0.370986514211122 +Nucleus,Blank-1456,-2.38367793317111 +Nucleus,Blank-1457,-0.414583715852229 +Nucleus,Blank-1458,-0.812269522253697 +Nucleus,Blank-1459,-1.23693835502138 +Nucleus,Blank-1460,-1.17268025438616 +Nucleus,Blank-1461,0.77870405927095 +Nucleus,Blank-1462,0.352761330322405 +Nucleus,Blank-1463,0.630739408176199 +Nucleus,Blank-1464,-0.648652917549108 +Nucleus,Blank-1465,1.8747957135456499 +Nucleus,Blank-1466,-1.94050780378888 +Nucleus,Blank-1467,-1.12677637348515 +Nucleus,Blank-1468,-0.418149335496908 +Nucleus,Blank-1469,0.581660895623729 +Nucleus,Blank-1470,0.768234777725335 +Nucleus,Blank-1471,-0.203250774859814 +Nucleus,Blank-1472,-0.254083835596248 +Nucleus,Blank-1473,0.845978808604436 +Nucleus,Blank-1474,0.231274159222094 +Nucleus,Blank-1475,-0.952616277226487 +Nucleus,Blank-1476,0.390209945046932 +Nucleus,Blank-1477,0.142450428000096 +Nucleus,Blank-1478,-0.330119931192439 +Nucleus,Blank-1479,0.889399038682288 +Nucleus,Blank-1480,0.299053977451846 +Nucleus,Blank-1481,-0.212052850410906 +Nucleus,Blank-1482,-0.261438388711514 +Nucleus,Blank-1483,-1.11370575633327 +Nucleus,Blank-1484,0.194483859428534 +Nucleus,Blank-1485,0.724001060394685 +Nucleus,Blank-1486,-0.29782072472562 +Nucleus,Blank-1487,0.664632806040449 +Nucleus,Blank-1488,-0.444932659653685 +Nucleus,Blank-1489,0.032753908258939 +Nucleus,Blank-1490,0.446270335846094 +Nucleus,Blank-1491,-0.138988100370982 +Nucleus,Blank-1492,-0.685816726499109 +Nucleus,Blank-1493,0.825271747892537 +Nucleus,Blank-1494,0.342046481847168 +Nucleus,Blank-1495,1.19272085591691 +Nucleus,Blank-1496,0.646560424067046 +Nucleus,Blank-1497,0.172314331637755 +Nucleus,Blank-1498,-0.0508411288734064 +Nucleus,Blank-1499,0.638569933748036 +Nucleus,Blank-1500,-0.425801511531571 +Nucleus,Blank-1501,0.454700643131484 +Nucleus,Blank-1502,0.904142826152482 +Nucleus,Blank-1503,0.309590594392985 +Nucleus,Blank-1504,-0.730955575217145 +Nucleus,Blank-1505,-0.356029349740899 +Nucleus,Blank-1506,0.910721790137236 +Nucleus,Blank-1507,-0.177269090343834 +Nucleus,Blank-1508,-0.770490415547028 +Nucleus,Blank-1509,-0.434807826020356 +Nucleus,Blank-1510,-0.639341975145097 +Nucleus,Blank-1511,0.640875052422982 +Nucleus,Blank-1512,-1.47226101657583 +Nucleus,Blank-1513,0.50096519994637 +Nucleus,Blank-1514,-0.111154965347483 +Nucleus,Blank-1515,-0.286311453287642 +Nucleus,Blank-1516,0.104730275484045 +Nucleus,Blank-1517,0.485256472705533 +Nucleus,Blank-1518,1.33744995745304 +Nucleus,Blank-1519,-0.613119349951757 +Nucleus,Blank-1520,1.8105307138773 +Nucleus,Blank-1521,0.958803704064617 +Nucleus,Blank-1522,0.0280583680613667 +Nucleus,Blank-1523,0.16847505080825 +Nucleus,Blank-1524,0.86655217767104 +Nucleus,Blank-1525,0.230023026274916 +Nucleus,Blank-1526,0.625502024824397 +Nucleus,Blank-1527,0.861028696579716 +Nucleus,Blank-1528,1.04723438161579 +Nucleus,Blank-1529,0.810069937731607 +Nucleus,Blank-1530,-0.302753380469477 +Nucleus,Blank-1531,0.934264882619132 +Nucleus,Blank-1532,-0.090270714789289 +Nucleus,Blank-1533,1.38442532906453 +Nucleus,Blank-1534,-1.04537700496199 +Nucleus,Blank-1535,-0.0992278755195767 +Nucleus,Blank-1536,0.100885730641412 +Nucleus,Blank-1537,-0.76596261561656 +Nucleus,Blank-1538,-0.217381717837834 +Nucleus,Blank-1539,0.426906248910844 +Nucleus,Blank-1540,-0.458267682388139 +Nucleus,Blank-1541,0.931170536901433 +Nucleus,Blank-1542,0.223401473115045 +Nucleus,Blank-1543,0.0772964135466408 +Nucleus,Blank-1544,0.757777158360706 +Nucleus,Blank-1545,-1.47179141998431 +Nucleus,Blank-1546,-0.274310258610174 +Nucleus,Blank-1547,0.479713445617409 +Nucleus,Blank-1548,0.680449880840142 +Nucleus,Blank-1549,1.03354204092822 +Nucleus,Blank-1550,0.689632351403387 +Nucleus,Blank-1551,-0.61828120940539 +Nucleus,Blank-1552,-0.373338798405905 +Nucleus,Blank-1553,0.401970097917577 +Nucleus,Blank-1554,-0.496724272365962 +Nucleus,Blank-1555,-0.713526254564795 +Nucleus,Blank-1556,-0.136802369481738 +Nucleus,Blank-1557,0.582294207364802 +Nucleus,Blank-1558,-0.51417855306305 +Nucleus,Blank-1559,0.412015577219386 +Nucleus,Blank-1560,0.365608922307961 +Nucleus,Blank-1561,0.977858967825308 +Nucleus,Blank-1562,-0.074393755735736 +Nucleus,Blank-1563,1.12515021413464 +Nucleus,Blank-1564,-0.613412106448096 +Nucleus,Blank-1565,-1.82622403764806 +Nucleus,Blank-1566,0.460328578136662 +Nucleus,Blank-1567,-0.589387989576081 +Nucleus,Blank-1568,0.182699898800684 +Nucleus,Blank-1569,0.970292638754794 +Nucleus,Blank-1570,-0.290805765652656 +Nucleus,Blank-1571,-0.83061039447822 +Nucleus,Blank-1572,-0.264908280697824 +Nucleus,Blank-1573,0.590809764409789 +Nucleus,Blank-1574,0.255342339764561 +Nucleus,Blank-1575,0.625258473778631 +Nucleus,Blank-1576,0.134489837462707 +Nucleus,Blank-1577,-0.912026442401581 +Nucleus,Blank-1578,0.185968630440192 +Nucleus,Blank-1579,-0.100636508565487 +Nucleus,Blank-1580,-0.282917802719597 +Nucleus,Blank-1581,0.880124512327781 +Nucleus,Blank-1582,-0.109939927469374 +Nucleus,Blank-1583,0.306384205109963 +Nucleus,Blank-1584,0.427056885009426 +Nucleus,Blank-1585,-0.452920424796918 +Nucleus,Blank-1586,0.207207099432298 +Nucleus,Blank-1587,-0.361579050202161 +Nucleus,Blank-1588,0.160425394554229 +Nucleus,Blank-1589,-0.215681124348212 +Nucleus,Blank-1590,0.701350253890004 +Nucleus,Blank-1591,-0.605414747228736 +Nucleus,Blank-1592,-0.158142023506245 +Nucleus,Blank-1593,1.01493006273313 +Nucleus,Blank-1594,0.375485032191782 +Nucleus,Blank-1595,-0.0685613298842847 +Nucleus,Blank-1596,0.15786187820993 +Nucleus,Blank-1597,0.101551983648933 +Nucleus,Blank-1598,0.619477488107426 +Nucleus,Blank-1599,0.28246053593568 +Nucleus,Blank-1600,-0.876426764590137 +Nucleus,Blank-1601,-0.476195191652942 +Nucleus,Blank-1602,1.03974726528551 +Nucleus,Blank-1603,2.36999097524818 +Nucleus,Blank-1604,-0.677940870551532 +Nucleus,Blank-1605,0.918039507855183 +Nucleus,Blank-1606,-0.0398552274733638 +Nucleus,Blank-1607,0.221709732564902 +Nucleus,Blank-1608,-0.627004544757741 +Nucleus,Blank-1609,0.271424578636777 +Nucleus,Blank-1610,-0.470193715735534 +Nucleus,Blank-1611,-0.18369181954035 +Nucleus,Blank-1612,-0.184484549939288 +Nucleus,Blank-1613,-0.69488567673144 +Nucleus,Blank-1614,-0.139161673857 +Nucleus,Blank-1615,-0.611948245043395 +Nucleus,Blank-1616,-0.67357223848901 +Nucleus,Blank-1617,0.626640237007545 +Nucleus,Blank-1618,1.18493942324039 +Nucleus,Blank-1619,-1.15728104538652 +Nucleus,Blank-1620,0.126430896304389 +Nucleus,Blank-1621,-0.19740572274897 +Nucleus,Blank-1622,0.227198233870576 +Nucleus,Blank-1623,-0.400772120919885 +Nucleus,Blank-1624,0.864706568772873 +Nucleus,Blank-1625,0.39183208071755 +Nucleus,Blank-1626,-0.211178476488274 +Nucleus,Blank-1627,-0.374473250077287 +Nucleus,Blank-1628,0.321521813889068 +Nucleus,Blank-1629,-0.171914228050206 +Nucleus,Blank-1630,0.470481159565195 +Nucleus,Blank-1631,-0.360321345881204 +Nucleus,Blank-1632,0.604853753427192 +Nucleus,Blank-1633,0.203523157178148 +Nucleus,Blank-1634,0.922277630072788 +Nucleus,Blank-1635,-0.118418301743425 +Nucleus,Blank-1636,-1.50246333109803 +Nucleus,Blank-1637,0.0146219941828987 +Nucleus,Blank-1638,-0.0352712596898754 +Nucleus,Blank-1639,-0.0712351980625872 +Nucleus,Blank-1640,-1.30806734441906 +Nucleus,Blank-1641,-0.163300933552317 +Nucleus,Blank-1642,0.359557076224797 +Nucleus,Blank-1643,0.335780788270751 +Nucleus,Blank-1644,0.613791770050929 +Nucleus,Blank-1645,0.639576483426569 +Nucleus,Blank-1646,-0.718813365918078 +Nucleus,Blank-1647,2.51542254241315 +Nucleus,Blank-1648,0.369743408797189 +Nucleus,Blank-1649,0.742323448951576 +Nucleus,Blank-1650,-1.03344672243107 +Nucleus,Blank-1651,-0.248208408582708 +Nucleus,Blank-1652,-0.00831454757468825 +Nucleus,Blank-1653,0.38618804549674 +Nucleus,Blank-1654,0.318521417544997 +Nucleus,Blank-1655,-0.218338960181313 +Nucleus,Blank-1656,0.35816082667547 +Nucleus,Blank-1657,0.238854668461828 +Nucleus,Blank-1658,-1.03848498214982 +Nucleus,Blank-1659,2.91090869326261 +Nucleus,Blank-1660,0.616527421424077 +Nucleus,Blank-1661,-0.163805860806245 +Nucleus,Blank-1662,1.45220921693772 +Nucleus,Blank-1663,0.276108658154577 +Nucleus,Blank-1664,-0.443626223259563 +Nucleus,Blank-1665,-0.297374521682271 +Nucleus,Blank-1666,0.303677610239217 +Nucleus,Blank-1667,-0.0535010050481852 +Nucleus,Blank-1668,0.196429508567752 +Nucleus,Blank-1669,-0.861087171776145 +Nucleus,Blank-1670,0.642408526617167 +Nucleus,Blank-1671,-0.237810604203413 +Nucleus,Blank-1672,1.59675343903017 +Nucleus,Blank-1673,0.967619168326214 +Nucleus,Blank-1674,-0.122598180924846 +Nucleus,Blank-1675,-1.48777258560097 +Nucleus,Blank-1676,0.757886788426063 +Nucleus,Blank-1677,-0.151783376667823 +Nucleus,Blank-1678,-0.723961151481275 +Nucleus,Blank-1679,0.715200090045339 +Nucleus,Blank-1680,-0.149475411926211 +Nucleus,Blank-1681,0.322209331791397 +Nucleus,Blank-1682,0.752999213575716 +Nucleus,Blank-1683,-0.603189424693446 +Nucleus,Blank-1684,-0.0560245859831958 +Nucleus,Blank-1685,0.103169320135173 +Nucleus,Blank-1686,0.275564321233728 +Nucleus,Blank-1687,-0.573102109478904 +Nucleus,Blank-1688,0.0416445030453646 +Nucleus,Blank-1689,-0.466197734545733 +Nucleus,Blank-1690,-0.0617014726897975 +Nucleus,Blank-1691,0.562101356109229 +Nucleus,Blank-1692,-1.02792922590677 +Nucleus,Blank-1693,-0.16311365525436 +Nucleus,Blank-1694,0.435743950166502 +Nucleus,Blank-1695,0.593205010914022 +Nucleus,Blank-1696,0.273028627070607 +Nucleus,Blank-1697,-0.591410001442018 +Nucleus,Blank-1698,-0.0304384202893261 +Nucleus,Blank-1699,-0.878343383048697 +Nucleus,Blank-1700,0.713002912644032 +Nucleus,Blank-1701,-0.273812373534153 +Nucleus,Blank-1702,0.386612137296088 +Nucleus,Blank-1703,-0.548915515512704 +Nucleus,Blank-1704,-0.0186592740957812 +Nucleus,Blank-1705,-0.247104113206426 +Nucleus,Blank-1706,0.293173264316819 +Nucleus,Blank-1707,-0.606975397557625 +Nucleus,Blank-1708,0.159857566049872 +Nucleus,Blank-1709,-1.03865988829541 +Nucleus,Blank-1710,0.825448602332053 +Nucleus,Blank-1711,0.42823154447333 +Nucleus,Blank-1712,-0.783213647699833 +Nucleus,Blank-1713,-0.39949169632231 +Nucleus,Blank-1714,-0.261294905054164 +Nucleus,Blank-1715,-0.60450706388801 +Nucleus,Blank-1716,-0.0331604088697926 +Nucleus,Blank-1717,-0.740576775709912 +Nucleus,Blank-1718,0.682342309585388 +Nucleus,Blank-1719,0.714351660334589 +Nucleus,Blank-1720,-0.194379898327173 +Nucleus,Blank-1721,0.393909522614809 +Nucleus,Blank-1722,-0.486448471910876 +Nucleus,Blank-1723,1.00644039951358 +Nucleus,Blank-1724,-0.742001084479145 +Nucleus,Blank-1725,-0.340199822691172 +Nucleus,Blank-1726,0.151574417351547 +Nucleus,Blank-1727,-0.180414881952798 +Nucleus,Blank-1728,-0.0623917844708472 +Nucleus,Blank-1729,-0.50793598853815 +Nucleus,Blank-1730,-0.914280396999378 +Nucleus,Blank-1731,0.806584133702997 +Nucleus,Blank-1732,-0.418997157783602 +Nucleus,Blank-1733,-0.771841249577785 +Nucleus,Blank-1734,-0.788432558771136 +Nucleus,Blank-1735,-0.878603737054907 +Nucleus,Blank-1736,-0.0629203268169956 +Nucleus,Blank-1737,1.09686749467599 +Nucleus,Blank-1738,-0.25726764472536 +Nucleus,Blank-1739,-0.0102495649724708 +Nucleus,Blank-1740,0.092874995801757 +Nucleus,Blank-1741,-0.510109065145253 +Nucleus,Blank-1742,2.29916962714767 +Nucleus,Blank-1743,0.0639048986122256 +Nucleus,Blank-1744,0.233380513399319 +Nucleus,Blank-1745,0.165279173977027 +Nucleus,Blank-1746,-0.335050779236954 +Nucleus,Blank-1747,0.885089472327725 +Nucleus,Blank-1748,0.563365185979146 +Nucleus,Blank-1749,-0.180708717597968 +Nucleus,Blank-1750,-0.333510380524195 +Nucleus,Blank-1751,-0.0470449811489722 +Nucleus,Blank-1752,-0.217351397199083 +Nucleus,Blank-1753,0.697768946000459 +Nucleus,Blank-1754,-0.103111555729247 +Nucleus,Blank-1755,-0.969660551872173 +Nucleus,Blank-1756,-0.333514830152226 +Nucleus,Blank-1757,-0.654992245021404 +Nucleus,Blank-1758,-0.470721740627564 +Nucleus,Blank-1759,-0.116749237197198 +Nucleus,Blank-1760,0.301820897323371 +Nucleus,Blank-1761,0.649128838331383 +Nucleus,Blank-1762,-1.21506248212284 +Nucleus,Blank-1763,-0.968203447033581 +Nucleus,Blank-1764,1.46868992706981 +Nucleus,Blank-1765,1.03951266849629 +Nucleus,Blank-1766,0.37608964428416 +Nucleus,Blank-1767,0.853821692087289 +Nucleus,Blank-1768,0.276944723182874 +Nucleus,Blank-1769,0.630975391202693 +Nucleus,Blank-1770,0.595216017948844 +Nucleus,Blank-1771,0.315283139683184 +Nucleus,Blank-1772,0.903521566317557 +Nucleus,Blank-1773,-1.07731414860781 +Nucleus,Blank-1774,-0.27616601372423 +Nucleus,Blank-1775,0.721103981949951 +Nucleus,Blank-1776,0.126799265526433 +Nucleus,Blank-1777,0.445029773993026 +Nucleus,Blank-1778,0.593505591802288 +Nucleus,Blank-1779,-0.00312760049494461 +Nucleus,Blank-1780,-0.461671682736436 +Nucleus,Blank-1781,0.698126653002687 +Nucleus,Blank-1782,-0.471888329356199 +Nucleus,Blank-1783,0.188671974651381 +Nucleus,Blank-1784,1.25142338738101 +Nucleus,Blank-1785,0.037945039514743 +Nucleus,Blank-1786,0.583620188845391 +Nucleus,Blank-1787,-0.594277805101376 +Nucleus,Blank-1788,0.473528203834136 +Nucleus,Blank-1789,-0.421736423842087 +Nucleus,Blank-1790,0.530059624623141 +Nucleus,Blank-1791,-0.451789827105899 +Nucleus,Blank-1792,0.857179940054161 +Nucleus,Blank-1793,-0.362041549227121 +Nucleus,Blank-1794,0.481792094118755 +Nucleus,Blank-1795,-0.108922058306811 +Nucleus,Blank-1796,-0.0737412722436096 +Nucleus,Blank-1797,0.525250193104564 +Nucleus,Blank-1798,1.06960015614223 +Nucleus,Blank-1799,-0.0683861225323755 +Nucleus,Blank-1800,0.746041649721797 +Nucleus,Blank-1801,0.720246921282529 +Nucleus,Blank-1802,1.24050974479915 +Nucleus,Blank-1803,0.25141948819796 +Nucleus,Blank-1804,0.324363063484718 +Nucleus,Blank-1805,1.11893974813072 +Nucleus,Blank-1806,-0.522693886832048 +Nucleus,Blank-1807,0.225284123640844 +Nucleus,Blank-1808,1.38126828019972 +Nucleus,Blank-1809,0.536709859618109 +Nucleus,Blank-1810,1.15098189567935 +Nucleus,Blank-1811,-0.110890228429764 +Nucleus,Blank-1812,-0.944017819195426 +Nucleus,Blank-1813,1.09991051278402 +Nucleus,Blank-1814,0.428545628609366 +Nucleus,Blank-1815,-0.226210659056236 +Nucleus,Blank-1816,0.749244477662466 +Nucleus,Blank-1817,0.350261555605033 +Nucleus,Blank-1818,0.85407865383561 +Nucleus,Blank-1819,-0.362323709442577 +Nucleus,Blank-1820,0.0536678300902373 +Nucleus,Blank-1821,0.202284733501443 +Nucleus,Blank-1822,-0.100893307990483 +Nucleus,Blank-1823,0.128392808923122 +Nucleus,Blank-1824,-0.00467630736415652 +Nucleus,Blank-1825,0.0254103638546986 +Nucleus,Blank-1826,0.417443562561865 +Nucleus,Blank-1827,-0.10977718104795 +Nucleus,Blank-1828,-0.27073125914539 +Nucleus,Blank-1829,-0.10939945717525 +Nucleus,Blank-1830,-0.0183731826436096 +Nucleus,Blank-1831,-0.429640361391602 +Nucleus,Blank-1832,-1.20222811338438 +Nucleus,Blank-1833,0.283853003614208 +Nucleus,Blank-1834,-0.659735683251599 +Nucleus,Blank-1835,0.595882452335945 +Nucleus,Blank-1836,0.483842981074063 +Nucleus,Blank-1837,-0.0338502946299617 +Nucleus,Blank-1838,-0.0679064106305716 +Nucleus,Blank-1839,-0.176691047454682 +Nucleus,Blank-1840,-0.285030763355862 +Nucleus,Blank-1841,-0.0767545893560942 +Nucleus,Blank-1842,0.198360286789711 +Nucleus,Blank-1843,0.529593145449779 +Nucleus,Blank-1844,0.326182129276756 +Nucleus,Blank-1845,-0.0466639856141228 +Nucleus,Blank-1846,0.0667879899680752 +Nucleus,Blank-1847,0.629267466981368 +Nucleus,Blank-1848,0.0890171633079985 +Nucleus,Blank-1849,0.409871933785879 +Nucleus,Blank-1850,-0.412409922772661 +Nucleus,Blank-1851,1.36140969496302 +Nucleus,Blank-1852,-0.364049728983116 +Nucleus,Blank-1853,0.0733229444399271 +Nucleus,Blank-1854,-0.220342263864198 +Nucleus,Blank-1855,0.507241643534975 +Nucleus,Blank-1856,0.286544892951919 +Nucleus,Blank-1857,0.498304611545081 +Nucleus,Blank-1858,0.53529632484621 +Nucleus,Blank-1859,0.391632814449395 +Nucleus,Blank-1860,1.21921693899048 +Nucleus,Blank-1861,-1.70190328087335 +Nucleus,Blank-1862,-0.519672902409623 +Nucleus,Blank-1863,0.880779690192999 +Nucleus,Blank-1864,0.0368663357424165 +Nucleus,Blank-1865,0.734712619748627 +Nucleus,Blank-1866,-0.522756830174475 +Nucleus,Blank-1867,-0.563803133151941 +Nucleus,Blank-1868,-0.274297010138017 +Nucleus,Blank-1869,0.396387367395736 +Nucleus,Blank-1870,0.6671162071159 +Nucleus,Blank-1871,0.661861858122325 +Nucleus,Blank-1872,-0.951559286959713 +Nucleus,Blank-1873,-1.88749733012399 +Nucleus,Blank-1874,-1.65609044068952 +Nucleus,Blank-1875,-0.0855529475512284 +Nucleus,Blank-1876,-1.13140314497219 +Nucleus,Blank-1877,-0.242174722151007 +Nucleus,Blank-1878,0.529592620507606 +Nucleus,Blank-1879,0.230760077874118 +Nucleus,Blank-1880,0.800415916889587 +Nucleus,Blank-1881,0.423523828221183 +Nucleus,Blank-1882,-1.34216779230702 +Nucleus,Blank-1883,-0.174114749220472 +Nucleus,Blank-1884,0.0174117000180675 +Nucleus,Blank-1885,-0.34748705215266 +Nucleus,Blank-1886,1.46431933333213 +Nucleus,Blank-1887,0.00261779266461557 +Nucleus,Blank-1888,-0.344290950931136 +Nucleus,Blank-1889,-0.15208122610027 +Nucleus,Blank-1890,0.16223516938689 +Nucleus,Blank-1891,1.29324086929661 +Nucleus,Blank-1892,0.0746515067615529 +Nucleus,Blank-1893,-0.152944189009036 +Nucleus,Blank-1894,0.775530616585648 +Nucleus,Blank-1895,-0.162734378277795 +Nucleus,Blank-1896,0.141299050082378 +Nucleus,Blank-1897,0.146655396443011 +Nucleus,Blank-1898,-0.0390396658580513 +Nucleus,Blank-1899,-0.000395794756964676 +Nucleus,Blank-1900,-0.260510488322278 +Nucleus,Blank-1901,0.311632442189111 +Nucleus,Blank-1902,0.436508375979898 +Nucleus,Blank-1903,0.81257854660874 +Nucleus,Blank-1904,0.491529919758191 +Nucleus,Blank-1905,0.825970456340271 +Nucleus,Blank-1906,-0.397687252548162 +Nucleus,Blank-1907,-0.123929103661726 +Nucleus,Blank-1908,0.324618862380243 +Nucleus,Blank-1909,-0.581411821211492 +Nucleus,Blank-1910,0.273160974196356 +Nucleus,Blank-1911,-0.494248638493628 +Nucleus,Blank-1912,0.303974474253651 +Nucleus,Blank-1913,0.685431347758589 +Nucleus,Blank-1914,0.128279396288727 +Nucleus,Blank-1915,0.0881609198092431 +Nucleus,Blank-1916,0.755446909056832 +Nucleus,Blank-1917,0.187822173737547 +Nucleus,Blank-1918,-0.702158770964661 +Nucleus,Blank-1919,-0.868978445471509 +Nucleus,Blank-1920,-0.3786676059809 +Nucleus,Blank-1921,-0.554881266427727 +Nucleus,Blank-1922,0.560920507566915 +Nucleus,Blank-1923,0.0486214624707718 +Nucleus,Blank-1924,0.331694630587446 +Nucleus,Blank-1925,0.652623660572691 +Nucleus,Blank-1926,-0.281911232216404 +Nucleus,Blank-1927,0.765093107331084 +Nucleus,Blank-1928,-0.451768259422087 +Nucleus,Blank-1929,-0.537653883321433 +Nucleus,Blank-1930,-0.218897620831767 +Nucleus,Blank-1931,0.193557026036392 +Nucleus,Blank-1932,0.834217764084744 +Nucleus,Blank-1933,-1.51297399113851 +Nucleus,Blank-1934,1.02356023712565 +Nucleus,Blank-1935,-0.270489528972391 +Nucleus,Blank-1936,1.28614365586352 +Nucleus,Blank-1937,-0.171290119891047 +Nucleus,Blank-1938,-0.233121583844165 +Nucleus,Blank-1939,1.0574774777778 +Nucleus,Blank-1940,0.822621106884873 +Nucleus,Blank-1941,-0.244083108441063 +Nucleus,Blank-1942,0.19684067146744 +Nucleus,Blank-1943,-0.299140779206438 +Nucleus,Blank-1944,0.138012053195637 +Nucleus,Blank-1945,1.1345327781839 +Nucleus,Blank-1946,1.45119872070919 +Nucleus,Blank-1947,1.1019481863993 +Nucleus,Blank-1948,-0.100851976304824 +Nucleus,Blank-1949,0.0913928447181522 +Nucleus,Blank-1950,-0.54929497293322 +Nucleus,Blank-1951,-1.79874069717772 +Nucleus,Blank-1952,-0.0167828715634065 +Nucleus,Blank-1953,0.762226213405142 +Nucleus,Blank-1954,0.466297165938521 +Nucleus,Blank-1955,-0.0193378484185603 +Nucleus,Blank-1956,0.166703198174248 +Nucleus,Blank-1957,0.309042178503294 +Nucleus,Blank-1958,0.713563794623089 +Nucleus,Blank-1959,0.51639138334114 +Nucleus,Blank-1960,0.745428352647242 +Nucleus,Blank-1961,-1.72952548149059 +Nucleus,Blank-1962,-0.119730162752433 +Nucleus,Blank-1963,0.429442037023215 +Nucleus,Blank-1964,0.107951869086379 +Nucleus,Blank-1965,0.54330559628403 +Nucleus,Blank-1966,0.540713722834869 +Nucleus,Blank-1967,0.434145172199618 +Nucleus,Blank-1968,0.101817432945622 +Nucleus,Blank-1969,0.266712580109512 +Nucleus,Blank-1970,-0.112593268194732 +Nucleus,Blank-1971,-0.575693756889361 +Nucleus,Blank-1972,-1.35600735988326 +Nucleus,Blank-1973,-0.241820865415556 +Nucleus,Blank-1974,0.438466858137079 +Nucleus,Blank-1975,-0.146819759366612 +Nucleus,Blank-1976,-0.103063869185387 +Nucleus,Blank-1977,-0.475321753734739 +Nucleus,Blank-1978,0.473189718241032 +Nucleus,Blank-1979,-0.573001527889055 +Nucleus,Blank-1980,0.366602316392593 +Nucleus,Blank-1981,0.751880670103745 +Nucleus,Blank-1982,0.785332353571658 +Nucleus,Blank-1983,0.189031325719801 +Nucleus,Blank-1984,-1.03554405555572 +Nucleus,Blank-1985,-0.51450629841786 +Nucleus,Blank-1986,0.290682308109097 +Nucleus,Blank-1987,-0.581779985251582 +Nucleus,Blank-1988,-0.322982916809481 +Nucleus,Blank-1989,0.196392296591512 +Nucleus,Blank-1990,-0.30439849218569 +Nucleus,Blank-1991,-0.534297033940942 +Nucleus,Blank-1992,0.507328761276425 +Nucleus,Blank-1993,-0.994760080955004 +Nucleus,Blank-1994,-0.021472470812995 +Nucleus,Blank-1995,0.792388475595545 +Nucleus,Blank-1996,-0.50319192711241 +Nucleus,Blank-1997,-0.0128684054823868 +Nucleus,Blank-1998,1.06235491537963 +Nucleus,Blank-1999,1.19910081085645 +Nucleus,Blank-2000,0.0512011579171888 +Nucleus,Blank-2001,0.73878151370434 +Nucleus,Blank-2002,1.05300976714347 +Nucleus,Blank-2003,0.445294616225305 +Nucleus,Blank-2004,0.203831602214437 +Nucleus,Blank-2005,0.122208186688341 +Nucleus,Blank-2006,0.81676957339335 +Nucleus,Blank-2007,0.509807758942724 +Nucleus,Blank-2008,-0.0729721603321019 +Nucleus,Blank-2009,-0.691592359424897 +Nucleus,Blank-2010,-0.649851095346413 +Nucleus,Blank-2011,-0.681488318495543 +Nucleus,Blank-2012,1.47235658097235 +Nucleus,Blank-2013,-0.0652121693231149 +Nucleus,Blank-2014,-0.0221527721568659 +Nucleus,Blank-2015,0.317449515292709 +Nucleus,Blank-2016,-0.499640972873271 +Nucleus,Blank-2017,0.244646900726204 +Nucleus,Blank-2018,0.196505962629985 +Nucleus,Blank-2019,0.654663279524392 +Nucleus,Blank-2020,-0.0140094917724498 +Nucleus,Blank-2021,-0.786521773731128 +Nucleus,Blank-2022,0.559738016101327 +Nucleus,Blank-2023,-1.61756316548345 +Nucleus,Blank-2024,-0.540226639188551 +Nucleus,Blank-2025,0.596449439712779 +Nucleus,Blank-2026,-0.767389612742161 +Nucleus,Blank-2027,-0.651657638789669 +Nucleus,Blank-2028,0.950940714808658 +Nucleus,Blank-2029,-0.128722793345381 +Nucleus,Blank-2030,-1.27912932492016 +Nucleus,Blank-2031,0.778048307824252 +Nucleus,Blank-2032,0.547377751296698 +Nucleus,Blank-2033,0.71719639994973 +Nucleus,Blank-2034,-0.723932745928034 +Nucleus,Blank-2035,-0.775201450918514 +Nucleus,Blank-2036,0.780207064133527 +Nucleus,Blank-2037,0.0178316756467709 +Nucleus,Blank-2038,0.173288864352503 +Nucleus,Blank-2039,-0.331934036568173 +Nucleus,Blank-2040,-0.489258717143568 +Nucleus,Blank-2041,0.406461225298365 +Nucleus,Blank-2042,1.00224057294549 +Nucleus,Blank-2043,-0.621055810137758 +Nucleus,Blank-2044,0.609268978251936 +Nucleus,Blank-2045,0.263524800746189 +Nucleus,Blank-2046,0.725088877518236 +Nucleus,Blank-2047,-0.662445436062294 +Nucleus,Blank-2048,1.49588522181549 +Nucleus,Blank-2049,0.0310009941159873 +Nucleus,Blank-2050,-0.374790012823415 +Nucleus,Blank-2051,0.451644336563914 +Nucleus,Blank-2052,-1.13052110717959 +Nucleus,Blank-2053,-0.693440762030412 +Nucleus,Blank-2054,0.848871516512852 +Nucleus,Blank-2055,0.940038992811722 +Nucleus,Blank-2056,-0.446721809245362 +Nucleus,Blank-2057,-1.23566964295654 +Nucleus,Blank-2058,0.538622228272434 +Nucleus,Blank-2059,1.18063125067733 +Nucleus,Blank-2060,-0.24706288190719 +Nucleus,Blank-2061,0.348317520092186 +Nucleus,Blank-2062,0.0536774012687727 +Nucleus,Blank-2063,0.185219608227335 +Nucleus,Blank-2064,0.647101726470469 +Nucleus,Blank-2065,1.02912879456779 +Nucleus,Blank-2066,-0.598264558007519 +Nucleus,Blank-2067,0.402263835648349 +Nucleus,Blank-2068,0.192119104711447 +Nucleus,Blank-2069,-0.775059928114719 +Nucleus,Blank-2070,0.29142766676218 +Nucleus,Blank-2071,-0.882259027696025 +Nucleus,Blank-2072,-0.381818271875858 +Nucleus,Blank-2073,0.641216153662759 +Nucleus,Blank-2074,-0.121977109069911 +Nucleus,Blank-2075,0.654026965328418 +Nucleus,Blank-2076,-0.237559223137698 +Nucleus,Blank-2077,0.444340993400564 +Nucleus,Blank-2078,-0.0410127145594326 +Nucleus,Blank-2079,-0.518227040532549 +Nucleus,Blank-2080,-0.261062511991204 +Nucleus,Blank-2081,-0.259042375554989 +Nucleus,Blank-2082,-0.290296987373884 +Nucleus,Blank-2083,0.444357989478796 +Nucleus,Blank-2084,0.694004139330842 +Nucleus,Blank-2085,0.112869595226732 +Nucleus,Blank-2086,1.28256490467054 +Nucleus,Blank-2087,-0.0536317248759432 +Nucleus,Blank-2088,0.186788864403532 +Nucleus,Blank-2089,0.138986401438512 +Nucleus,Blank-2090,0.0632210553076688 +Nucleus,Blank-2091,1.13744197951022 +Nucleus,Blank-2092,-0.118284078570786 +Nucleus,Blank-2093,0.210254264816785 +Nucleus,Blank-2094,0.202276033267471 +Nucleus,Blank-2095,-0.194136709635815 +Nucleus,Blank-2096,0.561269471720555 +Nucleus,Blank-2097,0.422476298415978 +Nucleus,Blank-2098,-0.0939168283871865 +Nucleus,Blank-2099,-0.210637627676905 +Nucleus,Blank-2100,0.81532273483402 +Nucleus,Blank-2101,0.471110772781367 +Nucleus,Blank-2102,-0.648632890395729 +Nucleus,Blank-2103,1.62514085428519 +Nucleus,Blank-2104,0.449760930052521 +Nucleus,Blank-2105,0.556821366096769 +Nucleus,Blank-2106,0.390890360539661 +Nucleus,Blank-2107,1.1934635780394 +Nucleus,Blank-2108,-0.147051218215075 +Nucleus,Blank-2109,0.574304870570627 +Nucleus,Blank-2110,1.27388225624344 +Nucleus,Blank-2111,-0.496600769161664 +Nucleus,Blank-2112,-0.551872709469945 +Nucleus,Blank-2113,0.125441426787138 +Nucleus,Blank-2114,0.46781431541737 +Nucleus,Blank-2115,-0.208042657819337 +Nucleus,Blank-2116,-0.343367900376535 +Nucleus,Blank-2117,-0.803349130276567 +Nucleus,Blank-2118,-1.18157311953621 +Nucleus,Blank-2119,1.78275644992012 +Nucleus,Blank-2120,1.26292909900204 +Nucleus,Blank-2121,0.125063521755802 +Nucleus,Blank-2122,1.2303211184189 +Nucleus,Blank-2123,-0.293040323070501 +Nucleus,Blank-2124,-0.368402146647122 +Nucleus,Blank-2125,-1.72292688227716 +Nucleus,Blank-2126,0.322460104425 +Nucleus,Blank-2127,0.421033282258056 +Nucleus,Blank-2128,-0.938772424959522 +Nucleus,Blank-2129,-0.121388583581297 +Nucleus,Blank-2130,1.02088032644586 +Nucleus,Blank-2131,-0.0600615551952751 +Nucleus,Blank-2132,-0.259761060516182 +Nucleus,Blank-2133,-0.0549158915254389 +Nucleus,Blank-2134,-0.873181438672173 +Nucleus,Blank-2135,0.424826547010455 +Nucleus,Blank-2136,-0.363855342324302 +Nucleus,Blank-2137,0.931676034917701 +Nucleus,Blank-2138,0.473672303856671 +Nucleus,Blank-2139,0.00094502292649495 +Nucleus,Blank-2140,0.616211182662249 +Nucleus,Blank-2141,-0.589664397529607 +Nucleus,Blank-2142,0.547949008301471 +Nucleus,Blank-2143,-0.0940852331620904 +Nucleus,Blank-2144,0.10195211221441 +Nucleus,Blank-2145,0.220833229091711 +Nucleus,Blank-2146,0.25799331662479 +Nucleus,Blank-2147,1.7107034638445 +Nucleus,Blank-2148,0.372434904925668 +Nucleus,Blank-2149,0.700526393687927 +Nucleus,Blank-2150,0.0770936152999882 +Nucleus,Blank-2151,1.37590856267482 +Nucleus,Blank-2152,0.21781320515847 +Nucleus,Blank-2153,-0.775481537878181 +Nucleus,Blank-2154,-0.182040546109642 +Nucleus,Blank-2155,1.45558068223179 +Nucleus,Blank-2156,-0.547298673149482 +Nucleus,Blank-2157,0.137663747751978 +Nucleus,Blank-2158,-0.833021873007741 +Nucleus,Blank-2159,0.637908892288398 +Nucleus,Blank-2160,-0.169661406272708 +Nucleus,Blank-2161,0.845530666757375 +Nucleus,Blank-2162,-0.17721400237634 +Nucleus,Blank-2163,0.376193780678367 +Nucleus,Blank-2164,-0.131059985815836 +Nucleus,Blank-2165,-0.63680388839915 +Nucleus,Blank-2166,-0.369843791505369 +Nucleus,Blank-2167,-0.414463960650604 +Nucleus,Blank-2168,1.34787334356719 +Nucleus,Blank-2169,-0.833896674308379 +Nucleus,Blank-2170,0.826738121884649 +Nucleus,Blank-2171,-1.23670644791743 +Nucleus,Blank-2172,-0.760970954399433 +Nucleus,Blank-2173,0.0982342493212831 +Nucleus,Blank-2174,-0.422858988448856 +Nucleus,Blank-2175,0.935846916604585 +Nucleus,Blank-2176,-0.391416947768387 +Nucleus,Blank-2177,-0.676248389701066 +Nucleus,Blank-2178,0.687856726483292 +Nucleus,Blank-2179,0.113904585896286 +Nucleus,Blank-2180,-2.0756739470253 +Nucleus,Blank-2181,1.31853511125229 +Nucleus,Blank-2182,1.07667055021545 +Nucleus,Blank-2183,0.146224155761652 +Nucleus,Blank-2184,-0.00748339876342615 +Nucleus,Blank-2185,0.355801803974997 +Nucleus,Blank-2186,-0.00781789911890894 +Nucleus,Blank-2187,-0.472423047383168 +Nucleus,Blank-2188,0.579157644860238 +Nucleus,Blank-2189,0.334869463259569 +Nucleus,Blank-2190,0.930697445861852 +Nucleus,Blank-2191,0.479669143359514 +Nucleus,Blank-2192,-0.506390503401724 +Nucleus,Blank-2193,0.681565201806892 +Nucleus,Blank-2194,-0.653754082135658 +Nucleus,Blank-2195,-0.388121583132471 +Nucleus,Blank-2196,1.33868952046078 +Nucleus,Blank-2197,-0.130081432287902 +Nucleus,Blank-2198,-0.364531200714783 +Nucleus,Blank-2199,-0.273700449799474 +Nucleus,Blank-2200,-0.0981900807040181 +Nucleus,Blank-2201,-0.244476128589777 +Nucleus,Blank-2202,2.19234582827437 +Nucleus,Blank-2203,0.527589714238824 +Nucleus,Blank-2204,0.0180877269613284 +Nucleus,Blank-2205,1.77763819517082 +Nucleus,Blank-2206,1.00709755756747 +Nucleus,Blank-2207,0.650129340203622 +Nucleus,Blank-2208,-0.014663919471433 +Nucleus,Blank-2209,-0.693437878961058 +Nucleus,Blank-2210,-0.809636233006261 +Nucleus,Blank-2211,0.849921532911339 +Nucleus,Blank-2212,1.00894920587151 +Nucleus,Blank-2213,0.125274914888059 +Nucleus,Blank-2214,0.863770300423193 +Nucleus,Blank-2215,0.344741699610679 +Nucleus,Blank-2216,0.549864607755898 +Nucleus,Blank-2217,-0.415342778846461 +Nucleus,Blank-2218,0.762085978261917 +Nucleus,Blank-2219,0.7465525673272 +Nucleus,Blank-2220,-1.10381586921273 +Nucleus,Blank-2221,-0.528687689571752 +Nucleus,Blank-2222,0.216983411345096 +Nucleus,Blank-2223,-0.316583012107141 +Nucleus,Blank-2224,0.264926477492837 +Nucleus,Blank-2225,-0.137975187904771 +Nucleus,Blank-2226,0.213512133092454 +Nucleus,Blank-2227,1.5903188386912 +Nucleus,Blank-2228,0.327539187842462 +Nucleus,Blank-2229,-1.44632654858708 +Nucleus,Blank-2230,3.51883435690929 +Nucleus,Blank-2231,0.0722095997548289 +Nucleus,Blank-2232,-0.560745427882525 +Nucleus,Blank-2233,0.473466982523555 +Nucleus,Blank-2234,-0.136708072831815 +Nucleus,Blank-2235,-0.0912101715753205 +Nucleus,Blank-2236,-0.151737610651616 +Nucleus,Blank-2237,1.87136013189846 +Nucleus,Blank-2238,0.0760424201556911 +Nucleus,Blank-2239,0.57957912562393 +Nucleus,Blank-2240,0.616160919623605 +Nucleus,Blank-2241,0.259595984559386 +Nucleus,Blank-2242,-0.268849066190308 +Nucleus,Blank-2243,0.273598687109129 +Nucleus,Blank-2244,-0.212785906526754 +Nucleus,Blank-2245,0.456957995089288 +Nucleus,Blank-2246,0.84114924294454 +Nucleus,Blank-2247,0.921606226717384 +Nucleus,Blank-2248,0.351610547166867 +Nucleus,Blank-2249,-0.34596437302539 +Nucleus,Blank-2250,1.21912700959164 +Nucleus,Blank-2251,0.428116352371173 +Nucleus,Blank-2252,-0.559604740998531 +Nucleus,Blank-2253,0.446077234898814 +Nucleus,Blank-2254,0.47307450814526 +Nucleus,Blank-2255,0.186082616366084 +Nucleus,Blank-2256,0.461619581549939 +Nucleus,Blank-2257,-1.1988696695595 +Nucleus,Blank-2258,-0.34487812283827 +Nucleus,Blank-2259,-0.699210961466789 +Nucleus,Blank-2260,-0.179622113436498 +Nucleus,Blank-2261,0.589164326138666 +Nucleus,Blank-2262,-0.883919865621274 +Nucleus,Blank-2263,-0.263418615371291 +Nucleus,Blank-2264,-0.141253972512474 +Nucleus,Blank-2265,-0.295441379604781 +Nucleus,Blank-2266,-0.0580440848722134 +Nucleus,Blank-2267,-0.169882566930122 +Nucleus,Blank-2268,0.090201107768981 +Nucleus,Blank-2269,1.01082078976187 +Nucleus,Blank-2270,1.59943375847881 +Nucleus,Blank-2271,0.0345177957506416 +Nucleus,Blank-2272,0.157487187160847 +Nucleus,Blank-2273,0.706232204640845 +Nucleus,Blank-2274,1.42453876784654 +Nucleus,Blank-2275,-0.423471944814071 +Nucleus,Blank-2276,-0.582577041249191 +Nucleus,Blank-2277,-0.411380137180795 +Nucleus,Blank-2278,0.230183976008038 +Nucleus,Blank-2279,-0.724855658447279 +Nucleus,Blank-2280,0.0250926704844369 +Nucleus,Blank-2281,0.477747872200464 +Nucleus,Blank-2282,1.21841428559157 +Nucleus,Blank-2283,0.112870482758512 +Nucleus,Blank-2284,0.649699555013932 +Nucleus,Blank-2285,-0.369535919463492 +Nucleus,Blank-2286,-0.271918436098263 +Nucleus,Blank-2287,-0.3374979517702 +Nucleus,Blank-2288,0.622565867412881 +Nucleus,Blank-2289,-0.39143162534155 +Nucleus,Blank-2290,-0.551146442650128 +Nucleus,Blank-2291,-2.01212469320345 +Nucleus,Blank-2292,-0.244622574368031 +Nucleus,Blank-2293,-0.170391296885937 +Nucleus,Blank-2294,0.567010744781275 +Nucleus,Blank-2295,-0.0482816869324794 +Nucleus,Blank-2296,-0.716864686422196 +Nucleus,Blank-2297,0.260668013336022 +Nucleus,Blank-2298,0.354080907484372 +Nucleus,Blank-2299,-0.00367944483524268 +Nucleus,Blank-2300,0.335475459922138 +Nucleus,Blank-2301,-0.0606064592543497 +Nucleus,Blank-2302,0.808701172660997 +Nucleus,Blank-2303,0.406154404005952 +Nucleus,Blank-2304,-0.687680725017082 +Nucleus,Blank-2305,0.069011319272738 +Nucleus,Blank-2306,0.13353321188575001 +Nucleus,Blank-2307,0.104069478625147 +Nucleus,Blank-2308,0.696410068687335 +Nucleus,Blank-2309,0.10251299968179 +Nucleus,Blank-2310,0.758328110304697 +Nucleus,Blank-2311,-0.149851098754864 +Nucleus,Blank-2312,0.250169299042382 +Nucleus,Blank-2313,-0.567890045565281 +Nucleus,Blank-2314,-0.287459058042213 +Nucleus,Blank-2315,0.426963457352246 +Nucleus,Blank-2316,-0.368949365036972 +Nucleus,Blank-2317,-0.286605591670467 +Nucleus,Blank-2318,-0.217266740053137 +Nucleus,Blank-2319,0.0792183510842057 +Nucleus,Blank-2320,0.433152721693864 +Nucleus,Blank-2321,1.13444007405235 +Nucleus,Blank-2322,-0.485823323762128 +Nucleus,Blank-2323,0.886259395210347 +Nucleus,Blank-2324,-1.78490693778182 +Nucleus,Blank-2325,1.70333100973478 +Nucleus,Blank-2326,-0.237688820161103 +Nucleus,Blank-2327,0.0585563067743387 +Nucleus,Blank-2328,0.046219001978746 +Nucleus,Blank-2329,0.461086535708617 +Nucleus,Blank-2330,0.857922997235704 +Nucleus,Blank-2331,-0.378430119819129 +Nucleus,Blank-2332,0.761529542202213 +Nucleus,Blank-2333,-0.0684518669390699 +Nucleus,Blank-2334,-0.580088033125288 +Nucleus,Blank-2335,-0.673976398953426 +Nucleus,Blank-2336,0.357721076078911 +Nucleus,Blank-2337,0.282984448503149 +Nucleus,Blank-2338,0.720335573450478 +Nucleus,Blank-2339,1.00041044715039 +Nucleus,Blank-2340,-0.912319356235606 +Nucleus,Blank-2341,-0.487994674251475 +Nucleus,Blank-2342,-0.588906147415097 +Nucleus,Blank-2343,-1.43677608372698 +Nucleus,Blank-2344,-0.0049000197475945 +Nucleus,Blank-2345,0.78709480431809 +Nucleus,Blank-2346,-0.548326205264871 +Nucleus,Blank-2347,1.20390047594852 +Nucleus,Blank-2348,1.27997944988729 +Nucleus,Blank-2349,0.00912831187898666 +Nucleus,Blank-2350,0.570969832449313 +Nucleus,Blank-2351,-0.0776005241010007 +Nucleus,Blank-2352,-0.483708412144176 +Nucleus,Blank-2353,-1.83918364142072 +Nucleus,Blank-2354,0.2240846622208 +Nucleus,Blank-2355,0.552287630386185 +Nucleus,Blank-2356,-0.0708661168674607 +Nucleus,Blank-2357,0.020501461113833 +Nucleus,Blank-2358,0.325863097377071 +Nucleus,Blank-2359,-0.436457611577945 +Nucleus,Blank-2360,-0.152710626495573 +Nucleus,Blank-2361,-0.479388133442867 +Nucleus,Blank-2362,-0.390559894063002 +Nucleus,Blank-2363,-0.18760557502258 +Nucleus,Blank-2364,-0.123285061873349 +Nucleus,Blank-2365,-0.815056352470483 +Nucleus,Blank-2366,0.138176200330692 +Nucleus,Blank-2367,-0.149682935802935 +Nucleus,Blank-2368,0.645929461047015 +Nucleus,Blank-2369,1.82419265013939 +Nucleus,Blank-2370,-0.677294159418235 +Nucleus,Blank-2371,-0.478510678763922 +Nucleus,Blank-2372,-0.102539303268423 +Nucleus,Blank-2373,0.0402032722811137 +Nucleus,Blank-2374,0.121920808094583 +Nucleus,Blank-2375,-0.211576610520026 +Nucleus,Blank-2376,0.216410799468489 +Nucleus,Blank-2377,0.62889874203569 +Nucleus,Blank-2378,0.342461503276397 +Nucleus,Blank-2379,-0.206287074552976 +Nucleus,Blank-2380,1.16902607985484 +Nucleus,Blank-2381,0.398292215047686 +Nucleus,Blank-2382,-0.827476458642179 +Nucleus,Blank-2383,-0.779401358062896 +Nucleus,Blank-2384,0.572658128181794 +Nucleus,Blank-2385,-0.639426511366036 +Nucleus,Blank-2386,-0.0541649598444718 +Nucleus,Blank-2387,-0.154374005325678 +Nucleus,Blank-2388,-0.144306047093239 +Nucleus,Blank-2389,0.75974029269351 +Nucleus,Blank-2390,0.690960187317877 +Nucleus,Blank-2391,-2.29076401192773 +Nucleus,Blank-2392,-0.242737378349019 +Nucleus,Blank-2393,-0.380663714645581 +Nucleus,Blank-2394,-0.0558381834157791 +Nucleus,Blank-2395,-0.0443528371261276 +Nucleus,Blank-2396,0.674021730696766 +Nucleus,Blank-2397,-0.151858342123779 +Nucleus,Blank-2398,-0.303692985722473 +Nucleus,Blank-2399,0.0258751108738671 +Nucleus,Blank-2400,-0.045578829397892 +Nucleus,Blank-2401,-0.0257299004000115 +Nucleus,Blank-2402,0.109519396642003 +Nucleus,Blank-2403,0.884755307600798 +Nucleus,Blank-2404,0.975778145767626 +Nucleus,Blank-2405,-0.509627974975052 +Nucleus,Blank-2406,-0.383973298001272 +Nucleus,Blank-2407,0.349959834235381 +Nucleus,Blank-2408,-0.307337010481558 +Nucleus,Blank-2409,-0.237626731672054 +Nucleus,Blank-2410,-1.56745784280569 +Nucleus,Blank-2411,-0.451904282025911 +Nucleus,Blank-2412,-0.187793737561748 +Nucleus,Blank-2413,-0.788816525741823 +Nucleus,Blank-2414,-0.675754046509498 +Nucleus,Blank-2415,-0.401810565562173 +Nucleus,Blank-2416,0.652385257226833 +Nucleus,Blank-2417,0.599810222507896 +Nucleus,Blank-2418,0.120668315681942 +Nucleus,Blank-2419,0.0652285664868072 +Nucleus,Blank-2420,0.421809818583083 +Nucleus,Blank-2421,-0.230133903197775 +Nucleus,Blank-2422,0.570954687663647 +Nucleus,Blank-2423,-1.01731150090312 +Nucleus,Blank-2424,0.718807239368575 +Nucleus,Blank-2425,0.730465295647463 +Nucleus,Blank-2426,0.318447830740215 +Nucleus,Blank-2427,0.092399794909901 +Nucleus,Blank-2428,-1.87374303243594 +Nucleus,Blank-2429,-0.0707478991232408 +Nucleus,Blank-2430,-0.181982139586443 +Nucleus,Blank-2431,-1.17541398100544 +Nucleus,Blank-2432,1.0403226918613 +Nucleus,Blank-2433,-1.13995344309746 +Nucleus,Blank-2434,0.0828406057224856 +Nucleus,Blank-2435,1.18816479506624 +Nucleus,Blank-2436,0.370142647895638 +Nucleus,Blank-2437,-0.525213263733308 +Nucleus,Blank-2438,-0.0388258209771724 +Nucleus,Blank-2439,-0.268397267169454 +Nucleus,Blank-2440,-0.420941589874346 +Nucleus,Blank-2441,-0.166396023688451 +Nucleus,Blank-2442,0.00955372622764302 +Nucleus,Blank-2443,-1.33074990185366 +Nucleus,Blank-2444,0.23664127806005 +Nucleus,Blank-2445,-0.11683856712434 +Nucleus,Blank-2446,0.13723024981217 +Nucleus,Blank-2447,-0.663408521937547 +Nucleus,Blank-2448,-0.739352096340374 +Nucleus,Blank-2449,0.350679604087124 +Nucleus,Blank-2450,0.941260528853661 +Nucleus,Blank-2451,-1.29229798917564 +Nucleus,Blank-2452,-0.941203172774576 +Nucleus,Blank-2453,0.306542339047114 +Nucleus,Blank-2454,-0.029267752613387 +Nucleus,Blank-2455,0.376246633994339 +Nucleus,Blank-2456,0.231951983912765 +Nucleus,Blank-2457,0.357949062270273 +Nucleus,Blank-2458,-0.198363245854926 +Nucleus,Blank-2459,0.928183246999113 +Nucleus,Blank-2460,-0.142496399222596 +Nucleus,Blank-2461,0.476814015022234 +Nucleus,Blank-2462,-0.1671207304321 +Nucleus,Blank-2463,3.26466978563281 +Nucleus,Blank-2464,-0.413274689779304 +Nucleus,Blank-2465,-0.735739278168305 +Nucleus,Blank-2466,0.368385045837378 +Nucleus,Blank-2467,-0.493176360301244 +Nucleus,Blank-2468,-0.155714849726023 +Nucleus,Blank-2469,-0.316478686408542 +Nucleus,Blank-2470,-0.646860007474117 +Nucleus,Blank-2471,-0.986793649085671 +Nucleus,Blank-2472,-0.796339025448312 +Nucleus,Blank-2473,-0.0778554116164717 +Nucleus,Blank-2474,0.361231468318982 +Nucleus,Blank-2475,-0.767730662254487 +Nucleus,Blank-2476,-0.752359639413396 +Nucleus,Blank-2477,-0.926405207178727 +Nucleus,Blank-2478,0.684554635091547 +Nucleus,Blank-2479,-0.61246872813389 +Nucleus,Blank-2480,0.124554991240703 +Nucleus,Blank-2481,0.362221976036898 +Nucleus,Blank-2482,0.0920651276928619 +Nucleus,Blank-2483,0.998668786043368 +Nucleus,Blank-2484,0.587672302188766 +Nucleus,Blank-2485,-0.519783093996404 +Nucleus,Blank-2486,-0.691634022247916 +Nucleus,Blank-2487,0.951135430651039 +Nucleus,Blank-2488,-0.193667435145512 +Nucleus,Blank-2489,0.706643002418959 +Nucleus,Blank-2490,0.440697550812976 +Nucleus,Blank-2491,0.433362319116631 +Nucleus,Blank-2492,-0.0716030894689445 +Nucleus,Blank-2493,-0.619493969210237 +Nucleus,Blank-2494,0.457750848152367 +Nucleus,Blank-2495,-0.42629603709019 +Nucleus,Blank-2496,-0.391479873375183 +Nucleus,Blank-2497,0.580102030686366 +Nucleus,Blank-2498,0.450942521058595 +Nucleus,Blank-2499,0.426086908726707 +Nucleus,Blank-2500,0.259292236421705 +Nucleus,Blank-2501,0.796044699574487 +Nucleus,Blank-2502,0.642626062409779 +Nucleus,Blank-2503,0.892059585344617 +Nucleus,Blank-2504,0.612781596681384 +Nucleus,Blank-2505,0.27335407619368 +Nucleus,Blank-2506,0.6776478073323 +Nucleus,Blank-2507,0.197920144851565 +Nucleus,Blank-2508,0.597773941166885 +Nucleus,Blank-2509,0.598445549975882 +Nucleus,Blank-2510,-0.246621131208002 +Nucleus,Blank-2511,-0.00650281634532137 +Nucleus,Blank-2512,0.101725123974693 +Nucleus,Blank-2513,-0.0913766375249902 +Nucleus,Blank-2514,-0.442676624715402 +Nucleus,Blank-2515,0.0993860168035847 +Nucleus,Blank-2516,0.955757044963921 +Nucleus,Blank-2517,0.945431411026955 +Nucleus,Blank-2518,0.00908766308102318 +Nucleus,Blank-2519,0.565480397060783 +Nucleus,Blank-2520,-0.120480016147183 +Nucleus,Blank-2521,0.272723198734215 +Nucleus,Blank-2522,0.115165298853729 +Nucleus,Blank-2523,-0.209750916064247 +Nucleus,Blank-2524,0.0309577375494914 +Nucleus,Blank-2525,0.450642839689302 +Nucleus,Blank-2526,-0.399368693900032 +Nucleus,Blank-2527,1.12232891557743 +Nucleus,Blank-2528,0.163052046170894 +Nucleus,Blank-2529,0.432972871252087 +Nucleus,Blank-2530,0.724231252513042 +Nucleus,Blank-2531,-0.344239585636706 +Nucleus,Blank-2532,-0.498489516287942 +Nucleus,Blank-2533,0.377019909349648 +Nucleus,Blank-2534,0.440507424409284 +Nucleus,Blank-2535,-0.624226648566512 +Nucleus,Blank-2536,0.652542012698794 +Nucleus,Blank-2537,0.253613480349174 +Nucleus,Blank-2538,0.17551756566944 +Nucleus,Blank-2539,-0.149620557619225 +Nucleus,Blank-2540,0.619611811792681 +Nucleus,Blank-2541,-0.889008702811552 +Nucleus,Blank-2542,-0.131143939551071 +Nucleus,Blank-2543,0.351077706590323 +Nucleus,Blank-2544,0.388948905551027 +Nucleus,Blank-2545,0.632611278973607 +Nucleus,Blank-2546,0.292885038796862 +Nucleus,Blank-2547,0.302843197579585 +Nucleus,Blank-2548,0.0158344153034389 +Nucleus,Blank-2549,0.203629488330429 +Nucleus,Blank-2550,0.780021420335469 +Nucleus,Blank-2551,0.240521113823114 +Nucleus,Blank-2552,0.18530610945774 +Nucleus,Blank-2553,0.269546379821345 +Nucleus,Blank-2554,0.839760315603489 +Nucleus,Blank-2555,-0.173962886658277 +Nucleus,Blank-2556,-0.0196113988461295 +Nucleus,Blank-2557,0.134417053184348 +Nucleus,Blank-2558,-0.399126699286515 +Nucleus,Blank-2559,-1.15111487665577 +Nucleus,Blank-2560,1.00337824826388 +Nucleus,Blank-2561,0.525084499940826 +Nucleus,Blank-2562,0.148300581658814 +Nucleus,Blank-2563,-0.0899324853151324 +Nucleus,Blank-2564,0.12264826820486 +Nucleus,Blank-2565,0.55469733619691 +Nucleus,Blank-2566,0.730398156272351 +Nucleus,Blank-2567,-0.274255533146698 +Nucleus,Blank-2568,-1.15700259623297 +Nucleus,Blank-2569,0.815404544669425 +Nucleus,Blank-2570,-0.7094137830908 +Nucleus,Blank-2571,0.305380281524179 +Nucleus,Blank-2572,0.0206275911871656 +Nucleus,Blank-2573,0.905656656587563 +Nucleus,Blank-2574,-0.307930642048557 +Nucleus,Blank-2575,-0.141568852552961 +Nucleus,Blank-2576,-1.32959313848597 +Nucleus,Blank-2577,-0.573600751847712 +Nucleus,Blank-2578,-0.71816332630081 +Nucleus,Blank-2579,-0.331433665942392 +Nucleus,Blank-2580,-0.0160530391888582 +Nucleus,Blank-2581,-0.852749205171017 +Nucleus,Blank-2582,0.387117921700297 +Nucleus,Blank-2583,1.13766499791373 +Nucleus,Blank-2584,-0.248517800736885 +Nucleus,Blank-2585,-0.372736006213429 +Nucleus,Blank-2586,-0.109990738773706 +Nucleus,Blank-2587,0.909672639735288 +Nucleus,Blank-2588,-0.254547771251562 +Nucleus,Blank-2589,-0.192138400120788 +Nucleus,Blank-2590,-0.813117212634891 +Nucleus,Blank-2591,0.349204182324474 +Nucleus,Blank-2592,-0.426774699689616 +Nucleus,Blank-2593,0.313816247769096 +Nucleus,Blank-2594,-0.563501786967558 +Nucleus,Blank-2595,-0.405676759285801 +Nucleus,Blank-2596,0.543883631253541 +Nucleus,Blank-2597,0.555314794246953 +Nucleus,Blank-2598,0.0460890092561462 +Nucleus,Blank-2599,0.211261517579311 +Nucleus,Blank-2600,-0.584364111799085 +Nucleus,Blank-2601,0.318502657164667 +Nucleus,Blank-2602,-0.0752350083164942 +Nucleus,Blank-2603,0.473073891923224 +Nucleus,Blank-2604,-0.826454197477986 +Nucleus,Blank-2605,0.700465383632061 +Nucleus,Blank-2606,-0.0131946932779122 +Nucleus,Blank-2607,1.01308033739665 +Nucleus,Blank-2608,-0.745416538598948 +Nucleus,Blank-2609,-0.460751933221942 +Nucleus,Blank-2610,-0.274379768950452 +Nucleus,Blank-2611,-0.243688958182964 +Nucleus,Blank-2612,0.45769513184379 +Nucleus,Blank-2613,0.0674822600789308 +Nucleus,Blank-2614,-0.219383434587834 +Nucleus,Blank-2615,-0.0182063220650966 +Nucleus,Blank-2616,-0.179616959497001 +Nucleus,Blank-2617,-0.34922365479864 +Nucleus,Blank-2618,-0.011815129094225 +Nucleus,Blank-2619,-0.178640766074494 +Nucleus,Blank-2620,-1.33072623787058 +Nucleus,Blank-2621,0.463863202326387 +Nucleus,Blank-2622,-0.0904392577045518 +Nucleus,Blank-2623,-0.0790623148598597 +Nucleus,Blank-2624,-0.00194765862788306 +Nucleus,Blank-2625,-0.202319339127451 +Nucleus,Blank-9050,0.92823234321602 +Nucleus,Blank-9051,-0.394307238198479 +Nucleus,Blank-9052,0.119973285316315 +Nucleus,Blank-9053,0.313626052349686 +Nucleus,Blank-9054,-0.486934966010506 +Nucleus,Blank-9055,-0.172827730200291 +Nucleus,Blank-9056,0.308005180112215 +Nucleus,Blank-9057,-0.499497968854051 +Nucleus,Blank-9058,0.0282666061413356 +Nucleus,Blank-9059,0.679757824623633 +Nucleus,Blank-9060,0.669674529564622 +Nucleus,Blank-9061,-0.412176448769118 +Nucleus,Blank-9062,1.39600174313302 +Nucleus,Blank-9063,1.74334559473725 +Nucleus,Blank-9064,0.914099225074151 +Nucleus,Blank-9065,0.314131761115138 +Nucleus,Blank-9066,-0.56166681263206 +Nucleus,Blank-9067,0.882064199622799 +Nucleus,Blank-9068,0.678712473308521 +Nucleus,Blank-9069,0.0379889883174507 +Nucleus,Blank-9070,0.0872951805515702 +Nucleus,Blank-9071,-0.381278457005572 +Nucleus,Blank-9072,0.777660515449491 +Nucleus,Blank-9073,-0.280516001524673 +Nucleus,Blank-9074,0.11129779376535 +Nucleus,Blank-9075,-0.741200758514705 +Nucleus,Blank-9076,-0.827357881937486 +Nucleus,Blank-9077,-0.0892570668420579 +Nucleus,Blank-9078,0.575624741760212 +Nucleus,Blank-9079,0.796905243481569 +Nucleus,Blank-9080,-0.0727172302664958 +Nucleus,Blank-9081,-0.0410410132238212 +Nucleus,Blank-9082,-0.879289293898289 +Nucleus,Blank-9083,-1.11051582954757 +Nucleus,Blank-9084,0.678327823509171 +Nucleus,Blank-9085,0.303330940569971 +Nucleus,Blank-9086,-0.210382317464634 +Nucleus,Blank-9087,0.186754091942428 +Nucleus,Blank-9088,0.852997266767812 +Nucleus,Blank-9089,-0.455797032368141 +Nucleus,Blank-9090,-0.425924543466669 +Nucleus,Blank-9091,0.439374113018497 +Nucleus,Blank-9092,-0.108048384717655 +Nucleus,Blank-9093,0.177620966960438 +Nucleus,Blank-9094,-0.61085390442402 +Nucleus,Blank-9095,2.01868030811466 +Nucleus,Blank-9096,0.125247948616891 +Nucleus,Blank-9097,0.0783706434009617 +Nucleus,Blank-9098,-0.0636805579101487 +Nucleus,Blank-9099,-0.0842558935463379 +Nucleus,Blank-9100,-0.0427986125414155 +Nucleus,Blank-9101,-0.732161274536193 +Nucleus,Blank-9102,0.00379714565520919 +Nucleus,Blank-9103,0.248156738290276 +Nucleus,Blank-9104,-0.5576165860546 +Nucleus,Blank-9105,0.255146466854845 +Nucleus,Blank-9106,0.238139552943416 +Nucleus,Blank-9107,-0.151383125805766 +Nucleus,Blank-9108,0.132386030343592 +Nucleus,Blank-9109,0.0415970803062846 +Nucleus,Blank-9110,-0.350564449560699 +Nucleus,Blank-9111,0.00276273361490791 +Nucleus,Blank-9112,-0.477684441652995 +Nucleus,Blank-9113,0.865187997669631 +Nucleus,Blank-9114,-0.0928292134091909 +Nucleus,Blank-9115,0.776507240431777 +Nucleus,Blank-9116,-1.78846835081418 +Nucleus,Blank-9117,0.710917407806683 +Nucleus,Blank-9118,-0.826299397948104 +Nucleus,Blank-9119,-1.21935009642777 +Nucleus,Blank-9120,-0.548509727589696 +Nucleus,Blank-9121,-0.710056433927273 +Nucleus,Blank-9122,0.583134522491659 +Nucleus,Blank-9123,0.0977790909278553 +Nucleus,Blank-9124,0.358041319960833 +Nucleus,Blank-9125,0.576316276330895 +Nucleus,Blank-9126,-1.09934170198982 +Nucleus,Blank-9127,-0.420231132438934 +Nucleus,Blank-9128,-1.01431707105075 +Nucleus,Blank-9129,0.137286726510804 +Nucleus,Blank-9130,-0.151152184537578 +Nucleus,Blank-9131,0.0678784425860845 +Nucleus,Blank-9132,-0.0468849540185202 +Nucleus,Blank-9133,0.830575189668532 +Nucleus,Blank-9134,0.3572328702988 +Nucleus,Blank-9135,-0.233901533001304 +Nucleus,Blank-9136,0.805120266111189 +Nucleus,Blank-9137,0.0446913252095832 +Nucleus,Blank-9138,-0.416592358077551 +Nucleus,Blank-9139,-0.610949984539689 +Nucleus,Blank-9140,-0.857645646706086 +Nucleus,Blank-9141,0.330567508996383 +Nucleus,Blank-9142,-0.541573025505579 +Nucleus,Blank-9143,0.29898037045593 +Nucleus,Blank-9144,-0.960633694184183 +Nucleus,Blank-9145,-0.239719256666359 +Nucleus,Blank-9146,0.274813174436979 +Nucleus,Blank-9147,0.582478310511866 +Nucleus,Blank-9148,0.602494532379973 +Nucleus,Blank-9149,0.364009329194385 +Nucleus,Blank-9150,-0.489993327495513 +Nucleus,Blank-9151,0.0668024071080319 +Nucleus,Blank-9152,-0.278338328077754 +Nucleus,Blank-9153,-1.27613840261972 +Nucleus,Blank-9154,-0.240151508214124 +Nucleus,Blank-9155,0.116925223584781 +Nucleus,Blank-9156,0.136009985847157 +Nucleus,Blank-9157,-0.35890542793549 +Nucleus,Blank-9158,-0.828684015562097 +Nucleus,Blank-9159,-0.708015188863941 +Nucleus,Blank-9160,0.0662528038721196 +Nucleus,Blank-9161,0.675879735290073 +Nucleus,Blank-9162,0.233267136172787 +Nucleus,Blank-9163,0.683144291296531 +Nucleus,Blank-9164,-0.719355131481967 +Nucleus,Blank-9165,-0.270195035175366 +Nucleus,Blank-9166,-0.0910127873596395 +Nucleus,Blank-9167,-0.944972621030393 +Nucleus,Blank-9168,0.623837604132734 +Nucleus,Blank-9169,-0.425999145961488 +Nucleus,Blank-9170,0.122120650794432 +Nucleus,Blank-9171,1.14717910619586 +Nucleus,Blank-9172,0.218583720384331 +Nucleus,Blank-9173,0.953098405226628 +Nucleus,Blank-9174,-0.571035915784206 +Nucleus,Blank-9175,1.2505584821897 +Nucleus,Blank-9176,-1.10398448594613 +Nucleus,Blank-9177,1.24541086917933 +Nucleus,Blank-9178,0.553850808196015 +Nucleus,Blank-9179,-1.16180601280233 +Nucleus,Blank-9180,-0.409625532693118 +Nucleus,Blank-9181,-0.416418056862 +Nucleus,Blank-9182,0.985588459576522 +Nucleus,Blank-9183,0.701462864090082 +Nucleus,Blank-9184,0.00731022286843482 +Nucleus,Blank-9185,-0.645343504703632 +Nucleus,Blank-9186,0.680336931754736 +Nucleus,Blank-9187,0.222499785013206 +Nucleus,Blank-9188,-1.05098485061386 +Nucleus,Blank-9189,0.167039001400746 +Nucleus,Blank-9190,-0.361491634326529 +Nucleus,Blank-9191,-0.58303732596087 +Nucleus,Blank-9192,0.350324888762913 +Nucleus,Blank-9193,-0.0943035238192679 +Nucleus,Blank-9194,0.161073897864 +Nucleus,Blank-9195,0.885836850406499 +Nucleus,Blank-9196,-0.280085297583005 +Nucleus,Blank-9197,-0.155529390370893 +Nucleus,Blank-9198,0.235327503003725 +Nucleus,Blank-9199,0.33714369663967 +Nucleus,Blank-9200,-0.489094116100034 +Nucleus,Blank-9201,0.127445168370803 +Nucleus,Blank-9202,0.182685611457774 +Nucleus,Blank-9203,0.473402962611069 +Nucleus,Blank-9204,-1.18194049242658 +Nucleus,Blank-9205,-0.230355667748104 +Nucleus,Blank-9206,0.817555408051193 +Nucleus,Blank-9207,-0.318459763134727 +Nucleus,Blank-9208,0.540017521157375 +Nucleus,Blank-9209,0.384267674494767 +Nucleus,Blank-9210,-0.73849419282923 +Nucleus,Blank-9211,0.802894700729869 +Nucleus,Blank-9212,-0.703228317939747 +Nucleus,Blank-9213,-0.530204108637297 +Nucleus,Blank-9214,-0.138708228364055 +Nucleus,Blank-9215,-0.251507060174824 +Nucleus,Blank-9216,0.960862626294674 +Nucleus,Blank-9217,0.630902582110391 +Nucleus,Blank-9218,0.871529214963325 +Nucleus,Blank-9219,-0.210021475791696 +Nucleus,Blank-9220,-0.600963194695702 +Nucleus,Blank-9221,0.809477488053893 +Nucleus,Blank-9222,-0.558540915914844 +Nucleus,Blank-9223,-0.444428780462293 +Nucleus,Blank-9224,-0.033579241304155 +Nucleus,Blank-9225,-0.557738953207342 +Nucleus,Blank-9226,-0.291001365438967 +Nucleus,Blank-9227,1.16558771044939 +Nucleus,Blank-9228,0.569656128535278 +Nucleus,Blank-9229,-0.167701823663878 +Nucleus,Blank-9230,-0.0144634355367764 +Nucleus,Blank-9231,0.0426039215251659 +Nucleus,Blank-9232,0.0482301754460528 +Nucleus,Blank-9233,-0.977329173612598 +Nucleus,Blank-9234,0.281299283264136 +Nucleus,Blank-9235,0.159838152494039 +Nucleus,Blank-9236,1.14866544897347 +Nucleus,Blank-9237,-0.86474230390231 +Nucleus,Blank-9238,-0.382264220596183 +Nucleus,Blank-9239,0.424150620737437 +Nucleus,Blank-9240,-1.0939815218673 +Nucleus,Blank-9241,-1.2368928588099 +Nucleus,Blank-9242,0.334172618951153 +Nucleus,Blank-9243,0.0483471354217661 +Nucleus,Blank-9244,0.206148124711806 +Nucleus,Blank-9245,-0.75758773635848 +Nucleus,Blank-9246,-0.214304966278743 +Nucleus,Blank-9247,-0.150792246363797 +Nucleus,Blank-9248,0.142869821650155 +Nucleus,Blank-9249,1.06118644909868 +Nucleus,Blank-9250,0.00799803356501217 +Nucleus,Blank-9251,0.306296477921996 +Nucleus,Blank-9252,0.165422137600048 +Nucleus,Blank-9253,0.283265181721761 +Nucleus,Blank-9254,-0.406704173603237 +Nucleus,Blank-9255,-0.12830400358171 +Nucleus,Blank-9256,-0.681888092016211 +Nucleus,Blank-9257,0.488713745858562 +Nucleus,Blank-9258,0.284975556444623 +Nucleus,Blank-9259,-0.453335034045114 +Nucleus,Blank-9260,1.39446783151037 +Nucleus,Blank-9261,0.124667469699007 +Nucleus,Blank-9262,0.0498718002629359 +Nucleus,Blank-9263,0.549424594147384 +Nucleus,Blank-9264,-0.033498697119694 +Nucleus,Blank-9265,-0.20453666641193 +Nucleus,Blank-9266,0.626205179711171 +Nucleus,Blank-9267,-0.546899117659537 +Nucleus,Blank-9268,0.177428418140489 +Nucleus,Blank-9269,-0.217494092964124 +Nucleus,Blank-9270,0.500563981542479 +Nucleus,Blank-9271,0.981360193352819 +Nucleus,Blank-9272,0.907562782674365 +Nucleus,Blank-9273,-0.020642350146036 +Nucleus,Blank-9274,0.141765671914105 +Nucleus,Blank-9275,-0.366616762317613 +Nucleus,Blank-9276,-0.695531239486435 +Nucleus,Blank-9277,-1.27036536692361 diff --git a/docs/Makefile b/docs/Makefile index 6d3fdbf..cefa9c0 100755 --- a/docs/Makefile +++ b/docs/Makefile @@ -3,7 +3,7 @@ # You can set these variables from the command line, and also # from the environment for the first two. -SPHINXOPTS ?= +SPHINXOPTS ?= -j 4 SPHINXBUILD ?= sphinx-build SOURCEDIR = source BUILDDIR = build @@ -20,4 +20,4 @@ help: @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) livehtml: - sphinx-autobuild "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) \ No newline at end of file + sphinx-autobuild "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) diff --git a/docs/source/_static/Hind.ttf b/docs/source/_static/Hind.ttf deleted file mode 100644 index 682abc3..0000000 Binary files a/docs/source/_static/Hind.ttf and /dev/null differ diff --git a/docs/source/_static/Inter-VariableFont.ttf b/docs/source/_static/Inter-VariableFont.ttf new file mode 100644 index 0000000..ec3164e Binary files /dev/null and b/docs/source/_static/Inter-VariableFont.ttf differ diff --git a/docs/source/_static/Nunito.ttf b/docs/source/_static/Nunito.ttf deleted file mode 100644 index 6bc8144..0000000 Binary files a/docs/source/_static/Nunito.ttf and /dev/null differ diff --git a/docs/source/_static/custom.css b/docs/source/_static/custom.css index f6d5218..a1099f2 100644 --- a/docs/source/_static/custom.css +++ b/docs/source/_static/custom.css @@ -1,32 +1,27 @@ @font-face { - font-family: "Hind"; - src: url('Hind.ttf') format('truetype'); + font-family: "Inter"; + src: url("Inter-VariableFont.ttf") format("truetype"); } @font-face { - font-family: "Nunito"; - src: url('Nunito.ttf') format('truetype'); + font-family: "RobotoMono"; + src: url("RobotoMono.ttf") format("truetype"); } -@font-face { - font-family: "RobotoMono"; - src: url('RobotoMono.ttf') format('truetype'); -} - - :root { - --pst-font-family-base: Hind, var(--pst-font-family-base-system) !important; - --pst-font-family-heading: Nunito, var(--pst-font-family-base-system) !important; - --pst-font-family-monospace: RobotoMono, var(--pst-font-family-monospace-system) !important; + --pst-font-family-base: Inter, var(--pst-font-family-base-system) !important; + --pst-font-family-heading: Inter, var(--pst-font-family-base-system) !important; + --pst-font-family-monospace: RobotoMono, + var(--pst-font-family-monospace-system) !important; } /* Font size */ ---pst-font-size-base: 15px; /* base font size - applied at body / html level */ +/* --pst-font-size-base: 14px; base font size - applied at body / html level */ /* heading font sizes */ ---pst-font-size-h1: 36px; ---pst-font-size-h2: 32px; ---pst-font-size-h3: 26px; ---pst-font-size-h4: 21px; ---pst-font-size-h5: 18px; ---pst-font-size-h6: 16px; \ No newline at end of file +/* --pst-font-size-h1: 32px; +--pst-font-size-h2: 26px; +--pst-font-size-h3: 21px; +--pst-font-size-h4: 18px; +--pst-font-size-h5: 16px; +--pst-font-size-h6: 14px; */ diff --git a/docs/source/_static/tutorial_img/bento_data_structure.png b/docs/source/_static/tutorial_img/bento_data_structure.png new file mode 100644 index 0000000..7991f97 Binary files /dev/null and b/docs/source/_static/tutorial_img/bento_data_structure.png differ diff --git a/docs/source/_static/tutorial_img/bento_data_structure_dark.png b/docs/source/_static/tutorial_img/bento_data_structure_dark.png new file mode 100644 index 0000000..c2b76cd Binary files /dev/null and b/docs/source/_static/tutorial_img/bento_data_structure_dark.png differ diff --git a/docs/source/_static/tutorial_img/bento_tools.png b/docs/source/_static/tutorial_img/bento_tools.png new file mode 100644 index 0000000..2894697 Binary files /dev/null and b/docs/source/_static/tutorial_img/bento_tools.png differ diff --git a/docs/source/_static/tutorial_img/bento_workflow.png b/docs/source/_static/tutorial_img/bento_workflow.png deleted file mode 100644 index ab68782..0000000 Binary files a/docs/source/_static/tutorial_img/bento_workflow.png and /dev/null differ diff --git a/docs/source/_static/tutorial_img/clq_workflow.png b/docs/source/_static/tutorial_img/clq_workflow.png new file mode 100644 index 0000000..4fdff29 Binary files /dev/null and b/docs/source/_static/tutorial_img/clq_workflow.png differ diff --git a/docs/source/_static/tutorial_img/rnaforest_workflow.png b/docs/source/_static/tutorial_img/rnaforest_workflow.png new file mode 100644 index 0000000..9ffa851 Binary files /dev/null and b/docs/source/_static/tutorial_img/rnaforest_workflow.png differ diff --git a/docs/source/_templates/custom-class-template.rst b/docs/source/_templates/custom-class-template.rst deleted file mode 100755 index fc92caa..0000000 --- a/docs/source/_templates/custom-class-template.rst +++ /dev/null @@ -1,66 +0,0 @@ -{{ fullname | escape | underline}} - -.. automodule:: {{ fullname }} - - {% block attributes %} - {% if attributes %} - .. rubric:: Module Attributes - - .. autosummary:: - :toctree: - {% for item in attributes %} - {{ item }} - {%- endfor %} - {% endif %} - {% endblock %} - - {% block functions %} - {% if functions %} - .. rubric:: {{ _('Functions') }} - - .. autosummary:: - :toctree: - {% for item in functions %} - {{ item }} - {%- endfor %} - {% endif %} - {% endblock %} - - {% block classes %} - {% if classes %} - .. rubric:: {{ _('Classes') }} - - .. autosummary:: - :toctree: - :template: custom-class-template.rst - {% for item in classes %} - {{ item }} - {%- endfor %} - {% endif %} - {% endblock %} - - {% block exceptions %} - {% if exceptions %} - .. rubric:: {{ _('Exceptions') }} - - .. autosummary:: - :toctree: - {% for item in exceptions %} - {{ item }} - {%- endfor %} - {% endif %} - {% endblock %} - -{% block modules %} -{% if modules %} -.. rubric:: Modules - -.. autosummary:: - :toctree: - :template: custom-module-template.rst - :recursive: -{% for item in modules %} - {{ item }} -{%- endfor %} -{% endif %} -{% endblock %} \ No newline at end of file diff --git a/docs/source/_templates/custom-module-template.rst b/docs/source/_templates/custom-module-template.rst deleted file mode 100755 index 16ee6a7..0000000 --- a/docs/source/_templates/custom-module-template.rst +++ /dev/null @@ -1,66 +0,0 @@ -{{ fullname | escape | underline}} - -.. automodule:: {{ fullname }} - - {% block attributes %} - {% if attributes %} - .. rubric:: Module Attributes - - .. autosummary:: - :toctree: - {% for item in attributes %} - {{ item }} - {%- endfor %} - {% endif %} - {% endblock %} - - {% block functions %} - {% if functions %} - .. rubric:: {{ _('Functions') }} - - .. autosummary:: - :toctree: - {% for item in functions %} - {{ item }} - {%- endfor %} - {% endif %} - {% endblock %} - - {% block classes %} - {% if classes %} - .. rubric:: {{ _('Classes') }} - - .. autosummary:: - :toctree: - :template: custom-class-template.rst - {% for item in classes %} - {{ item }} - {%- endfor %} - {% endif %} - {% endblock %} - - {% block exceptions %} - {% if exceptions %} - .. rubric:: {{ _('Exceptions') }} - - .. autosummary:: - :toctree: - {% for item in exceptions %} - {{ item }} - {%- endfor %} - {% endif %} - {% endblock %} - -{% block modules %} -{% if modules %} -.. rubric:: Modules - -.. autosummary:: - :toctree: - :template: custom-module-template.rst - :recursive: -{% for item in modules %} - {{ item }} -{%- endfor %} -{% endif %} -{% endblock %} \ No newline at end of file diff --git a/docs/source/api.md b/docs/source/api.md index e81c950..651ac5d 100644 --- a/docs/source/api.md +++ b/docs/source/api.md @@ -5,42 +5,47 @@ :noindex: ``` -# API +# {octicon}`code-square` API Import Bento with: ```python -import bento +import bento as bt ``` -Bento takes inspiration from the success of other tools in the python single-cell omics ecosystem. The API is organized under a set of modules including: +Bento's API structure takes inspiration from other libraries in the Scverse ecosystem. It is organized under a set of modules including: -- `bento.pp`: preprocessing data -- `bento.tl`: subcellular spatial analyses -- `bento.pl`: visualizing molecule-resolved spatial data, localization pattern statistics, and more -- `bento.io`: reading and writing data stored in the `AnnData` format, customized to hold molecular coordinates and segmentation masks +- `bt.tl`: subcellular spatial analyses +- `bt.pl`: conveniently plot spatial data and embeddings +- `bt.io`: reading and writing spatial data to `AnnData` as `h5ad` files +- `bt.geo`: manipulating spatial data +- `bt.datasets`: included spatial transcriptomics datasets +- `bt.ut`: utility functions -# Preprocessing +# Tools + +## Point features + +Compute spatial summary statistics describing groups of molecules e.g. distance to the cell membrane, relative symmetry, dispersion, etc. + +A list of available cell features and their names is stored in the dict :func:`bt.tl.point_features`. ```{eval-rst} -.. module:: bento.pp +.. module:: bento.tl .. currentmodule:: bento .. autosummary:: :toctree: api/ - - pp.get_points - pp.set_points - pp.get_layers -``` -# Tools + tl.analyze_points + tl.register_point_feature +``` -## Sample Features -Compute spatial properties of samples. A sample is the set of points for a given gene-pair. These include properties of shape(s) and points associated with each cell. +## Shape features -A list of available cell features and their names is stored in the dict `bento.tl.sample_features`. +Compute spatial properties of shape features e.g. area, aspect ratio, etc. of the cell, nucleus, or other region of interest. +A list of available cell features and their names is stored in the dict :func:`bt.tl.shape_features`. ```{eval-rst} .. module:: bento.tl @@ -49,20 +54,32 @@ A list of available cell features and their names is stored in the dict `bento.t .. autosummary:: :toctree: api/ - tl.analyze_samples - tl.PointDispersion - tl.RipleyStats - tl.ShapeAsymmetry - tl.ShapeDispersion - tl.ShapeEnrichment - tl.ShapeProximity + tl.analyze_shapes + tl.register_shape_feature + tl.obs_stats ``` +## RNAflux: Subcellular RNA embeddings and domains -## Cell Features -Compute spatial properties of cells. These include properties of shape(s) and points associated with each cell. +Methods for computing RNAflux embeddings and semantic segmentation of subcellular domains. -A list of available cell features and their names is stored in the dict `bento.tl.cell_features`. +```{eval-rst} +.. module: bento.tl +.. currentmodule:: bento + +.. autosummary:: + :toctree: api/ + + tl.flux + tl.fluxmap + tl.fe + tl.fe_fazal2019 + tl.load_gene_sets +``` + +## RNAforest: Predict RNA localization patterns + +Perform multilabel classification of RNA localization patterns using spatial summary statistics as features. ```{eval-rst} .. module:: bento.tl @@ -71,20 +88,14 @@ A list of available cell features and their names is stored in the dict `bento.t .. autosummary:: :toctree: api/ - tl.analyze_cells - tl.cell_area - tl.cell_aspect_ratio - tl.cell_bounds - tl.cell_density - tl.cell_moments - tl.cell_morph_open - tl.cell_perimeter - tl.cell_radius - tl.cell_span + tl.lp + tl.lp_stats + tl.lp_diff ``` -## Subcellular Shape Features -Compute spatial properties of shapes linked to each cell, such as nuclei, other organelles, or regions of interest. +## Colocalization analysis + +Methods for colocalization analyses of gene pairs. ```{eval-rst} .. module:: bento.tl @@ -93,47 +104,57 @@ Compute spatial properties of shapes linked to each cell, such as nuclei, other .. autosummary:: :toctree: api/ - tl.is_nuclear - tl.nucleus_area - tl.nucleus_area_ratio - tl.nucleus_aspect_ratio - tl.nucleus_offset - tl.raster_cell - + tl.colocation + tl.coloc_quotient ``` -## Localization Patterns +# Plotting + +## Spatial plots + +These are convenient functions for quick 2D visualizations of cells, molecules, and embeddings. We generate `matplotlib` style figures for accessible publication quality plots. ```{eval-rst} -.. module:: bento.tl +.. module:: bento.pl .. currentmodule:: bento .. autosummary:: :toctree: api/ - - tl.lp - tl.lp_stats - tl.lp_diff - tl.lp_signatures - tl.decompose_tensor - tl.select_tensor_rank + + pl.points + pl.density + pl.shapes + pl.flux + pl.fluxmap + ``` -## Colocalization +## Shape features ```{eval-rst} -.. module:: bento.tl +.. module:: bento.pl .. currentmodule:: bento .. autosummary:: :toctree: api/ - - tl.coloc_quotient + + pl.obs_stats ``` +## RNAflux +```{eval-rst} +.. module:: bento.pl +.. currentmodule:: bento -# Plotting +.. autosummary:: + :toctree: api/ + + pl.flux_summary + pl.fe +``` + +## RNAforest ```{eval-rst} .. module:: bento.pl @@ -142,36 +163,91 @@ Compute spatial properties of shapes linked to each cell, such as nuclei, other .. autosummary:: :toctree: api/ - pl.qc_metrics - pl.cellplot pl.lp_genes pl.lp_gene_dist - pl.lp_signatures pl.lp_dist pl.lp_diff + ``` +## Colocalization analysis + +```{eval-rst} +.. module:: bento.pl +.. currentmodule:: bento + +.. autosummary:: + :toctree: api/ + + pl.signatures + pl.signatures_error + pl.factor + pl.colocation + +``` + +# Manipulating spatial data + +Convenient methods for setting, getting, and reformatting data. + +```{eval-rst} +.. module:: bento.geo +.. currentmodule:: bento + +.. autosummary:: + :toctree: api/ + + geo.count_points + geo.crop + geo.get_points + geo.get_points_metadata + geo.get_shape + geo.rename_shapes + geo.sindex_points +``` # Read/Write + ```{eval-rst} .. module:: bento.io .. currentmodule:: bento .. autosummary:: :toctree: api/ - + io.read_h5ad io.write_h5ad io.concatenate + io.prepare ``` # Datasets + +```{eval-rst} +.. module:: bento.ds +.. currentmodule:: bento + +.. autosummary:: + :toctree: api/ + + ds.sample_data + ds.load_dataset + ds.get_dataset_info + ds.load_gene_sets + +``` + +# Utility functions + ```{eval-rst} -.. module:: bento.datasets +.. module:: bento.ut .. currentmodule:: bento .. autosummary:: :toctree: api/ - - datasets.load_dataset -``` \ No newline at end of file + + ut.sync + ut.geo_format + ut.sc_format + ut.pheno_to_color +``` diff --git a/docs/source/conf.py b/docs/source/conf.py index 18900ab..2d8618c 100755 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -18,12 +18,12 @@ # -- Project information ----------------------------------------------------- project = "bento-tools" -copyright = "Clarence Mah. 2021" +copyright = " Carter Lab & Yeo Lab. 2023" author = "Clarence Mah" html_favicon = "favicon.ico" # The full version, including alpha/beta/rc tags -release = "0.1" +release = "2.0.0a0" # -- General configuration --------------------------------------------------- @@ -35,11 +35,12 @@ "sphinx.ext.autosummary", "sphinx.ext.napoleon", "sphinx.ext.intersphinx", - "myst_parser", - "nbsphinx", - "sphinx_gallery.load_style", + "myst_nb", + "sphinx_design", ] +myst_enable_extensions = ["colon_fence", "html_image", "dollarmath"] + # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] @@ -60,9 +61,13 @@ "use_repository_button": True, "use_edit_page_button": True, "path_to_docs": "docs", - "logo_only": True + "logo": { + "alt_text": "Bento Logo", + }, } +html_context = {"default_mode": "auto"} + # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". @@ -85,11 +90,4 @@ # -- Options for extensions ------------------------------------------------------------------------------- -# nb_execution_mode = "off" -# myst_enable_extensions = ["colon_fence"] -nbsphinx_execute = "never" - -nbsphinx_prolog = """ -.. image:: https://mybinder.org/badge_logo.svg - :target: https://mybinder.org/v2/gh/ckmah/bento-tools/HEAD?labpath={{ env.doc2path(env.docname, base=None) }} -""" \ No newline at end of file +nb_execution_mode = "off" diff --git a/docs/source/howitworks.md b/docs/source/howitworks.md index 402c268..23c41d7 100644 --- a/docs/source/howitworks.md +++ b/docs/source/howitworks.md @@ -1,15 +1,33 @@ -# How it Works +# {octicon}`gear` How it Works ## Data Structure -More info coming soon! +Datasets are stored as `AnnData` objects, where observations are cells, variables are genes, and the X is the count matrix. Bento additionally stores molecular coordinates in `uns['points']` and polygons as columns in `obs`. -## Localization Patterns +```{figure} _static/tutorial_img/bento_data_structure.png +:class: p-2 -More info coming soon! +AnnData adapted to hold spatial data +``` -### Spatial Features +### Shapes + +Currently, shapes are stored as `GeoSeries` columns according to which cell they belong to. These columns are identified with the suffix `"_shape"`. Each element in the `GeoSeries` is either a shapely `Polygon` or `MultiPolygon`. Shape properties are also stored as columns and identified with the corresponding shape name as the prefix e.g. `"cell"`, `"nucleus"`, etc. + +### Points +For fast spatial queries, Bento indexes points to shape layers upfront, and saves them as columns `points`, denoted as `"shape index"` above. For example, `"cell"` and `"nucleus"` columns are added to indicate whether points are within the shape. + +Metadata for points are stored as matrices `uns`. These metadata matrices are the same length as `points`, which makes it easy to query points and associated metadata. All metadata keys are registered to `uns['points_metadata']`, which is used to keep them in sync. + +## RNAflux + +RNAflux is a method for quantifying spatial composition gradients in the cell. + + +## RNAforest input features +The following describes input features of the RNAforest model. + | **Categories** | **Features** | | -------------- | ------------ | | Distance | **Cell inner proximity**: The average distance between all points within the cell to the cell boundary normalized by cell radius. Values closer to 0 denote farther from the cell boundary, values closer to 1 denote closer to the cell boundary.
**Nucleus inner proximity**: The average distance between all points within the nucleus to the nucleus boundary normalized by cell radius. Values closer to 0 denote farther from the nucleus boundary, values closer to 1 denote closer to the nucleus boundary.
**Nucleus outer proximity**: The average distance between all points within the cell and outside the nucleus to the nucleus boundary normalized by cell radius. Values closer to 0 denote farther from the nucleus boundary, values closer to 1 denote closer to the nucleus boundary. | @@ -17,4 +35,4 @@ More info coming soon! | Dispersion | **Point dispersion**: The second moment of all points in a cell relative to the centroid of the total RNA signal. This value is normalized by the second moment of a uniform distribution within the cell boundary.
**Nucleus dispersion**: The second moment of all points in a cell relative to the centroid of the nucleus boundary. This value is normalized by the second moment of a uniform distribution within the cell boundary. | | Density | **L-function max**: The max value of the L-function evaluated at r=[1,d], where d is half the cell’s maximum diameter.
**L-function max gradient**: The max value of the gradient of the above L-function.
**L-function min gradient**: The min value of the gradient of the above L-function.
**L monotony**: The correlation of the L-function and r=[1,d].
**L-function at d/2**: The value of the L-function evaluated at ¼ of the maximum cell diameter. *The L-function measures spatial clustering of a point pattern over an area of interest.* -
\ No newline at end of file +
diff --git a/docs/source/index.md b/docs/source/index.md index b982777..0c3d9b2 100755 --- a/docs/source/index.md +++ b/docs/source/index.md @@ -8,38 +8,42 @@ # Bento -Bento is a Python toolkit for performing subcellular analysis of spatial transcriptomics data. +Bento Workflow -# Get started -Install with Python >=3.8 and <3.11: -```bash -pip install bento-tools -``` -Check out the [documentation](https://bento-tools.readthedocs.io/en/latest/) for the installation guide, tutorials, API and more! Read and cite [our preprint](https://doi.org/10.1101/2022.06.10.495510) if you use Bento in your work. +Bento is a Python toolkit for performing subcellular analysis of spatial transcriptomics data. The package is part of the [Scverse ecosystem](https://scverse.org/packages/#ecosystem). Check out the [documentation](https://bento-tools.readthedocs.io/en/latest/) for installation instructions, tutorials, and API. Cite [our preprint](https://doi.org/10.1101/2022.06.10.495510) if you use Bento in your work. Thanks! -# Main Features +::::{grid} 2 +:::{grid-item-card} {octicon}`terminal` Installation +:link: installation.html +::: -Bento Analysis Workflow +:::{grid-item-card} {octicon}`workflow` Tutorials +:link: tutorials.html +::: +:::: +::::{grid} 2 +:::{grid-item-card} {octicon}`gear` How It Works +:link: howitworks.html +::: -- Store molecular coordinates and segmentation masks -- Visualize spatial transcriptomics data at subcellular resolution -- Compute subcellular spatial features -- Predict localization patterns and signatures -- Factor decomposition for high-dimensional spatial feature sets +:::{grid-item-card} {octicon}`code-square` API +:link: api.html +::: +:::: --- [![GitHub license](https://img.shields.io/github/license/ckmah/bento-tools.svg)](https://github.com/ckmah/bento-tools/blob/master/LICENSE) ```{toctree} -:maxdepth: 1 +:maxdepth: 2 :hidden: true installation tutorials -api howitworks +api ``` diff --git a/docs/source/installation.md b/docs/source/installation.md index 4227834..a71b25c 100644 --- a/docs/source/installation.md +++ b/docs/source/installation.md @@ -1,48 +1,71 @@ -# Installation -Bento requires Python version 3.8 or 3.9. +# {octicon}`terminal` Installation +Bento requires Python version 3.8 or 3.9. Only Python 3.8 is supported for Windows. -Install Bento with pip. + +## Setup a virtual environment +We highly recommend using a virtual environment to install Bento to avoid conflicting dependencies with other packages. If you are unfamiliar with virtual environments, we recommend using [Miniconda](https://docs.conda.io/en/latest/miniconda.html). + +To setup a virtual environment with `Miniconda`, run the following. This will create and activate a new environment called `bento` with Python 3.8. ```bash -pip install bento-tools +VERSION=3.8 # or 3.9 +conda create -n bento python=$VERSION + +# set channel priorities +conda config --env --add channels defaults +conda config --env --add channels bioconda +conda config --env --add channels conda-forge + +conda activate bento ``` +## 2. Dependencies -To enable GPU usage, run the following: +Bento makes use of several packages for spatial analyses that require addtional non-Python dependencies. ```bash -pip install bento-tools[torch] +conda install -c conda-forge gdal cmake ``` +For developing docs, you will also need pandoc: + +```bash +conda install -c conda-forge pandoc +``` + +## 3. Install Bento + +All that's left is the package itself. Install with pip: + +```bash +pip install bento-tools==2.0.0a0 +``` + +--- ## Development The package and its dependencies are built using [Poetry](https://python-poetry.org/). 1. Install [Poetry](https://python-poetry.org/). 2. Clone the `bento-tools` GitHub repository. -3. Use poetry to setup the virtual environment. +3. Use poetry to manage dependencies and pip to install the package in editable mode. ```bash cd bento-tools - poetry shell poetry install + pip install -e . ``` -4. You have a couple options on what dependencies to install depending on what you want to modify. - - For developing Bento, install normal package dependencies: - - ```bash - poetry install - - # or with gpu enabled - poetry install --extras "torch" - ``` - - To modify and build documentation, install extra dependencies: - - ```bash - poetry install --extras "docs" - ``` - -5. Launch a local live server to preview doc builds: + + For updating documentation locally, install extra dependencies and launch a live server to preview doc builds: + + First install pandoc (see [dependencies](#Dependencies) section for more details). ```bash + poetry install --extras "docs" + pip install -e .\[docs\] cd docs make livehtml # See output for URL ``` + +--- +## GPU Support (Optional) +Bento currently only uses GPUs to accelerate tensor decomposition (via [Tensorly](https://tensorly.org/stable/index.html)) GPU support can be enabled by installing PyTorch. We recommend the [PyTorch installation instructions](https://pytorch.org/get-started/locally/) for more details as installation varies by platform. + diff --git a/docs/source/tutorial_gallery/Data_Visualization.ipynb b/docs/source/tutorial_gallery/Data_Visualization.ipynb new file mode 100644 index 0000000..2fbe068 --- /dev/null +++ b/docs/source/tutorial_gallery/Data_Visualization.ipynb @@ -0,0 +1,718 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "id": "ded53b22-45c5-458e-9ec1-c15bc49f4b0a", + "metadata": { + "tags": [] + }, + "source": [ + "# Data Visualization\n", + "\n", + "**Author**: Clarence Mah | **Last Updated**: {sub-ref}`today`\n", + "\n", + "We will demonstrate spatial visualization in `bento-tools` for exploring subcellular biology. We will explore the seqFISH+ 3T3 cells dataset, which we have included in the package.\n", + "\n", + "## A Brief Overview\n", + "\n", + "In `bento-tools` we provide a high-level interface based on [matplotlib](https://matplotlib.org/) for plotting spatial transcriptomics formatted as an `AnnData` object. [See more details about the data structure here.](../howitworks.md#data-structure) Data is represented as points and shapes, corresponding to molecules and segmentation masks. We closely mirror the [seaborn](http://seaborn.pydata.org/#) package for mapping data semantics, while replicating some [geopandas](https://geopandas.org/en/stable/) plotting functionality with styles more suitable for visualizing subcellular data. For spatial visualization at the tissue level (i.e. plotting cell coordinates instead of cell boundaries) we recommend using [squidpy](https://squidpy.readthedocs.io/en/stable/) and [scanpy](https://scanpy.readthedocs.io/en/stable/index.html) instead.\n", + "\n", + "```{note}\n", + "In general, plotting in `bento-tools` assumes datasets will have data stored from multiple fields of view (fov), which must be encoded in `adata.obs[\"batch\"]`. The plotting functions plot a single fov at a time, which can be set with the `batch` parameter; if unspecified, the default is inferred from the first cell in `adata`.\n", + "\n", + "If available, cell and nuclear shapes are plotted by default. Plot more shape layers by passing their names in a list to the `shapes` parameter.\n", + "```\n" + ] + }, + { + "cell_type": "markdown", + "id": "5efe2763-a777-4e88-997b-95afa5a6f6f2", + "metadata": { + "tags": [] + }, + "source": [ + "## Load Libraries and Data\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "223b1e16-87e9-4fab-86bb-500a14d3a875", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T21:13:40.158153Z", + "iopub.status.busy": "2023-03-31T21:13:40.157992Z", + "iopub.status.idle": "2023-03-31T21:14:20.246384Z", + "shell.execute_reply": "2023-03-31T21:14:20.245892Z", + "shell.execute_reply.started": "2023-03-31T21:13:40.158135Z" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "import bento as bt\n", + "import matplotlib as mpl\n", + "import matplotlib.pyplot as plt\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "5bb23bdb-0263-4bb8-89fe-a5e991f350a2", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T21:14:20.248440Z", + "iopub.status.busy": "2023-03-31T21:14:20.248283Z", + "iopub.status.idle": "2023-03-31T21:14:21.137272Z", + "shell.execute_reply": "2023-03-31T21:14:21.136835Z", + "shell.execute_reply.started": "2023-03-31T21:14:20.248427Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "AnnData object with n_obs × n_vars = 211 × 9506\n", + " obs: 'cell_shape', 'nucleus_shape', 'batch'\n", + " uns: 'points'\n", + " layers: 'spliced', 'unspliced'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "adata = bt.ds.load_dataset(\"seqfish\")\n", + "adata\n" + ] + }, + { + "cell_type": "markdown", + "id": "04044c76", + "metadata": { + "tags": [] + }, + "source": [ + "## Plotting points\n", + "\n", + "Let's plot the points (RNA) as a scatterplot in 2D. This is a lightweight wrapper around [sns.scatterplot](https://seaborn.pydata.org/generated/seaborn.scatterplot.html). Refer to the seaborn documentation for more details.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "cb3f8ec5", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T21:14:21.139216Z", + "iopub.status.busy": "2023-03-31T21:14:21.139053Z", + "iopub.status.idle": "2023-03-31T21:14:22.931491Z", + "shell.execute_reply": "2023-03-31T21:14:22.931094Z", + "shell.execute_reply.started": "2023-03-31T21:14:21.139203Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAGbCAYAAAA4KMxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADvf0lEQVR4nOydd1hT5/v/3wkrbJC9QRAQUIYgoKIICLj3ts4OWzvs0q5Paz/9dNraVu1utW6rOEAcKLK3gKCILNl7hQAhCSE5vz/8cb5SVhKSAHpe19Xras54nvtE8tznuSeNIAgCFBQUFBQUIkAfbQEoKCgoKMYPlNKgoKCgoBAZSmlQUFBQUIgMpTQoKCgoKESGUhoUFBQUFCJDKQ0KCgoKCpGhlAYFBQUFhchQSoOCgoKCQmQopUFBQUFBITKU0qAY8+zbtw80Gg3Nzc2jLQoAIC4uDjQaDWFhYaMtCgWF3KGUBsUzyc8//4y///571Obn8XjYu3cvTE1NoaqqCm9vb9y6dWvU5KGgEBVKaVA8k4y20ti6dSsOHDiAjRs34scff4SCggIWLFiApKSkUZOJgkIUFEdbAAqKZ42MjAycPXsW+/fvxzvvvAMA2Lx5M1xcXLBnzx6kpKSMsoQUFIND7TQoxg3Nzc1Ys2YNtLS0oKenhzfeeANcLrfPNUePHkVAQAAMDQ2hoqICJycn/PLLL32usba2xoMHDxAfHw8ajQYajQZ/f3/yfFtbG958801YW1tDRUUF5ubm2Lx5cz+filAoxOeffw5zc3MwGAwEBgaipKRk2OcICwuDgoICXnzxRfIYg8HAjh07kJqaiqqqKgm+HQoK+UDtNCjGDWvWrIG1tTW+/PJLpKWl4eDBg2AymTh+/Dh5zS+//AJnZ2csWbIEioqKuHLlCl555RUIhULs2rULAPDDDz/gtddeg4aGBj788EMAgJGREQCgs7MTfn5+ePjwIbZv3w4PDw80NzcjIiIC1dXV0NfXJ+f66quvQKfT8c4774DFYuGbb77Bxo0bkZ6ePuRz3L17F/b29tDS0upzfPr06QCAnJwcWFhYjPwLo6CQBQQFxRjnk08+IQAQS5Ys6XP8lVdeIQAQubm55LGurq5+94eEhBATJ07sc8zZ2ZmYM2dOv2s//vhjAgBx8eLFfueEQiFBEAQRGxtLACAmT55M8Hg88vyPP/5IACDu378/5PM4OzsTAQEB/Y4/ePCAAED8+uuvQ95PQTGaUOYpinFD706hl9deew0AcO3aNfKYqqoq+f8sFgvNzc2YM2cOSktLwWKxhp3jwoULcHV1xfLly/udo9FofT5v27YNysrK5Gc/Pz8AQGlp6ZBzcDgcqKio9DvOYDDI8xQUYxVKaVCMGyZNmtTns62tLeh0OsrLy8ljycnJCAoKgrq6OnR0dGBgYIAPPvgAAERSGo8ePYKLi4tI8lhaWvb5rKurCwBgMplD3qeqqgoej9fveK9/5knFR0Ex1qB8GhTjln+/+T969AiBgYFwdHTEgQMHYGFhAWVlZVy7dg3ff/89hEKhVOdXUFAY8DgxTAdlExMT1NTU9DteV1cHADA1NR25cBQUMoJSGhTjhuLiYtjY2JCfS0pKIBQKYW1tDQC4cuUKeDweIiIi+uwCYmNj+431b4XTi62tLfLy8qQr+L9wc3NDbGws2tvb+zjDex3obm5uMp2fgmIkUOYpinHDTz/91OfzoUOHAADz588H8H9v/k++6bNYLBw9erTfWOrq6mhra+t3fOXKlcjNzcWlS5f6nRtuByEqq1atgkAgwO+//04e4/F4OHr0KLy9vanIKYoxDbXToBg3lJWVYcmSJQgNDUVqaipOnjyJDRs2wNXVFQAQHBwMZWVlLF68GC+99BI6Ozvxxx9/wNDQkDT99DJt2jT88ssv+N///gc7OzsYGhoiICAA7777LsLCwrB69Wps374d06ZNQ2trKyIiIvDrr7+Sc40Eb29vrF69Gu+//z4aGxthZ2eHY8eOoby8HH/99deIx6egkCmjHL1FQTEsvSG3+fn5xKpVqwhNTU1CV1eXePXVVwkOh9Pn2oiICGLq1KkEg8EgrK2tia+//po4cuQIAYAoKysjr6uvrycWLlxIaGpqEgD6hN+2tLQQr776KmFmZkYoKysT5ubmxJYtW4jm5maCIP4v5Pb8+fN95i4rKyMAEEePHh32mTgcDvHOO+8QxsbGhIqKCuHl5UXcuHFD4u+IgkJe0AhCSntuCgoKCoqnHsqnQUFBQUEhMpTSoKCgoKAQGUppUFBQUFCIDKU0KCgoKChEhlIaFBQUFBQiI1KehlAoRG1tLTQ1NQfNpKWgoKCgGL8QBIGOjg6YmpqCTh98PyGS0qitraWyVCkoKCieAaqqqmBubj7oeZGUhqamJjnYvxvHUFBQUFCMf9rb22FhYUGu94MhktLoNUlpaWlRSoOCgoLiKWY4FwTlCKegoKCgEBlKaVBQUFBQiAylNCgoKCgoRIZSGhQUFBQUIkP106CgoBg1CIJAcXExDhw4AA6HA+D/eqxzuVz09PRAKBSCIAgoKytDVVW1n6OWIAh0d3dDWVmZPEej0eDm5oYFCxaQx1RUVODs7Dxom14K0RCpNHp7ezu0tbXBYrGo6CkKCgqJ6O7uRkNDAyIiIpCXl4fMzEwAj7soOjo6Qk1NDQCgpqYGJSWlAcfw9fVFcHAw+ZnD4eCff/5BRUUFrKys4O/vj2vXrsHIyAgXL15EW1sbrK2toaamhry8PFRWVmLXrl2YNGmSWLIrKyvD0dGxT9Kbjo7OoHKOR0Rd5ymlQUFBITOamppw7do1nDhxAqWlpTA3N4epqSnU1dVhbm4+ZObxYGhpaWHixIlob28Hm81GQ0MDeY5Go/Vry6uoqIienh4Aj9vqFhUVgc/n97mGTqfDyMgIXC4XQqEQCgoK0NbWRllZGezt7TFhwgSUlJSQ1xMEgYqKCmhqasLa2homJiYICgrCtGnTxH6esQKlNCgoKEYFoVCIX3/9FefPn0dRURHs7Ozg4+ND7iR6EQgE5P/TaDSJFIgssbGxgb29Pdzc3MBgMPqd53A4SEtLQ11dHbS1tXHixAk0NDTAwMAA77zzDjw8PKCoOH48AKKu8+PniSgoKMY0QqEQ4eHh2Lt3L5ydneHu7o7Zs2eDTqejp6cHeXl5KC8vR2trKxQVFcHn88nFmMPhQEFBAYaGhnB3d4ehoeEoP81jk5SPjw+YTCYuX76MkJAQ6OrqAuhrFgOAgIAALF68GCUlJbC2tsZvv/2GiooKuLi4wMvLC9OnT4euri7U1NT6Kc/xBrXToKCgGDFNTU3YsGEDhEIh3N3dyVIUQqEQmZmZyMnJgZOTE+zt7aGnpzegM5rP56OmpgZZWVlob2/H9OnTMXny5FHdgbz44ov466+/IBAIYGpqihdeeAGFhYU4d+4chEIheZ2qqirpyJ80aRKKi4thZGSE7OxsNDY2oq2tDQRBIC0tDcuWLYOhoSH8/f2xYsWKMVMEljJPUVBQyIWcnBysWrUKzs7O8PDwII+z2WyEh4fDysoK3t7eYplqOBwOkpOT0dTUhBUrVkBFRUUWog+LiooKeDyeyNcrKChAVVWVjPwaiPb2dtTX16O2thYqKiqIiIiAsrKytESWGEppUFBQyJywsDDs3bsXy5cv71PojsVi4dKlSwgMDBxRheyKigpER0dj7dq10NDQkIbIY4r8/HyYmpri+++/H21RRF7nx5bniYKCYtyQlZWFnTt3YsWKFX0URnd3Ny5duoRFixaNuKWClZUVQkNDER4e3i/i6WnAyckJWVlZiI+PH21RRIZSGhQUFGKTk5ODhQsX4rnnnuuzAxAKhYiIiMCsWbOgr68vlbnMzMzg4uKCuLg4qYw31vjzzz+xf//+0RZDZCilQUFBIRa//fYbduzYgU2bNkFHR6fPuZSUFBgbG8POzk6qc06dOhWNjY1obW2V6rhjgYaGBpiamiItLW20RREJSmlQUFCIzJkzZ/DDDz9gwYIF/Zr1lJaWoq6uDjNnzpT6vDQaDR4eHsjPz5f62KNNVVUVVqxYMW5MVJTSoKCgEIl//vkHX3/9NVauXNkvEqq7uxsxMTFYvHixzEJIra2tUVZWJpOxR5Pi4mJUV1f3CeEdy1DJfRQUFMOSnJyMr776CosXLx4wdDYrKwseHh4DZk5LC1VVVQiFQnC5XJnOI09WrVqFjo4O8Hg8NDU1jbY4IkHtNCgoKIbkwYMHePHFFzF//vxBcy2Kiorg4uIic1lcXV2RlZUl83nkgZaWFpydneHj4zNqeSiSQCkNCgqKQamqqsKWLVswb968QRe27u5uAJBLgpqLiwsKCgpkPo88UFVVHW0RJIJSGhQUFAMiFAqxefNmsm7SYDQ1NcHY2FguMikqKkJDQwOdnZ1ymU+WtLS0AHic/Z6Xl9evOu9YhVIaFBQUA/L+++/DwsICRkZGQ15XW1sLU1NTOUn1OG+jtrZWbvPJCmNjY3A4HISHh+Py5cty/Q5HAqU0KCgo+pGdnY3bt2/D1tZ22Gvr6urkuuBZWlqiqqpKbvPJikmTJuE///kPvv/+e+jp6WHLli2jLZJIUNFTFBQUfWhra8PGjRuxYMECka5nsVjQ1taWsVT/h76+PlJSUuQ2n6RwuVxUVVWhqakJXV1doNFoKCoqgoODAwQCAYRCIVxcXPD222/DxMRktMUVGUppUFBQ9GHr1q2YNm2ayMVJe3p65Fq+XE1NbUzmNLS1tSEtLQ1NTU1gsVjgcDhQVFSEtrY2DAwM0NXVBSMjI6iqquKDDz7A7NmzR1tkiaCUBgUFBUlbWxtqa2uxcOFCke/pXcTHWuc9ecBms5GTk4P09HTweDzo6Ohg6tSpMDAwgJ2dXZ/vpNfRXVdXh48//hitra0IDg7Gxx9/PK6qh1NKg4KCguTHH3+ElZWVWPcoKyujs7OzXx2qp5mOjg5ER0ejsbERKioqmD9/PhwdHYfMhu89Z2pqClNTUxAEgYcPH2LOnDlwdXXF+++/DwcHB3k9gsRQSoOCgoLkyJEjYjtk9fT0wGQynxmlkZ2djZycHFRWVmLdunVwdHSUaBwajQYnJyc4OTmhvLwcGzduhIuLC9zd3WFlZQUbGxu4urpKWfqRQykNCgoKAEB8fDwsLCwGbMU6FAYGBmhsbISNjY2MJOsLi8UatQzqhw8fIikpCcrKyti1axcMDAykMq61tTWsrKzQ0NCA9PR0xMfHg8Vigc/nY/r06XjjjTdG3JtEWlBKg+KZg8fj4fPPP8e9e/fQ0NBALpKKiopQUFAAn8+HkpISOBwOnn/+eWzfvn2UJZYPCQkJmDhxotj3GRgYoKSkRAYSDUxTU5PUFmtxqK6uRmVlJRgMBtasWSP1nRWNRoOxsXG/RMmSkhJs2rQJPB4Ppqam8Pb2Bo1Gg5aWFiZNmgR1dXVMnz5dbj4lSmlQPDPU1tbis88+Q3Z2NmxtbeHg4AA3N7dB7dDd3d24ePEi9u/fj7feegvbt2/v9xbe2dmJe/fuobGxsc9xXV1dWFtbj1hmdXV1qTUzGoqysjKcOXMGq1atEvteHR0dtLW1SV+oQaipqYGZmZnc5iMIAtXV1eBwOPD29oaRkZFcTXF2dnZkf5KOjg6yPLxAIEBVVRXy8vLQ2NiIRYsWwdnZGVZWVnB3d5eZPJTSoHgm+PDDDxEREQFnZ2eR8w+UlZXh5eUFBwcHREZG4s0338SmTZugoqKCnp4edHV14cGDB5g3b16fENDCwkIy7r61tRUCgQBtbW0QCAQAHmcCM5lMMBgMsFgsKCgoQElJCd3d3WQUkoqKCjQ0NCAQCFBcXIyZM2fC3NwcO3bsgKGhodS/n127dmHmzJlim6aAxzs0Pp8vtwiq8vJy+Pr6ynyeXmXx6NEjvPjii6iursaRI0ewZs0amc89GJqamv36mHh4eKCnpwcFBQV49OgRSkpK0N3dDUVFRejo6GDp0qXYsGED1NXVpSIDpTQonnp4PB4uX76MVatWSbSoaWlpwcPDA5MnTwaHw4GlpSUqKyuhpaWF0NBQaGlpgc1mAwA0NDSgoaEBU1NTVFZWjniBV1ZWhoODA5SUlKCoqIgFCxZgzZo1ePnll/stHpISGxuL7u5umJubSzyGubk5KisrpbK7GopexSvL4ogEQaCsrAzFxcVYtGgRfv75Z1RUVOCzzz7DypUr5R5abGRkhJaWFvT09Ax6jaKiIuzs7KCgoABra2syvLe7uxuXL1/GwYMH8cMPPyAwMHDE8jx7gdUUzxylpaUwNDQc0Y9dWVkZISEhWLp0KRQVFTFhwgRMmDABCgoKpMIAHpurenp6UFlZKQ3R0d3dDSUlJQBAV1cX5s+fj/b2dkyZMgUJCQlSmeP333/H/PnzRzSGg4MDHj58KBV5hqK1tXXI4okjhcfjITw8HEKhENHR0fjggw9QU1ODRYsWISgoiPy3kCccDkfksvMEQfQpfKisrIzAwEAsWLAAu3fvRldX14jloZQGxVPPmTNnRvzG393djeTkZNy5c0eu9vt/o6ysDEtLS6xZswavvPIK3njjjRFVfL179y56enpG3NTIysoKNTU14PF4IxpnOMrLy2FpaSmz8W/cuIF33nkHJ06cgJqaGlgsFtasWQNbW1vo6enJbN6haG9vR05OjkjXDpQp39HRATU1NXh7e+PAgQMjlodSGhRPPdeuXZOKH0AgEIDL5UpBIskRCoWoq6uDuro6tm3bBnt7eyxbtgw1NTUSjZeSkgJra2s0NzePuE2rp6cnMjIyRjTGcDx48AD29vZSH5fL5SI8PByzZs3Cxo0bATwuXR4YGAgnJyd4e3tLfU554+joiOLi4hGPQykNiqceRUVFuUQgyRuhUIjJkyfD2NgYy5YtQ11dndhjXLt2Da+//jocHBwQHBw8InmmTp2K4uJitLe3j2icwWhqaoKGhgbU1NSkOi6bzcbp06fh6OiI77//HgCQmZmJkJAQTJw4UaIw5LFIU1MT2TBrJFCOcIqnmurq6tEWQWZ0dXUhOTkZjo6O0NbWRmhoKG7duiXyrqqmpgbKysrQ0NAA8HihHAl0Oh2zZ89GYmLikLWrlJSUwOfzxR4/Pj4eM2bMGImI/cjJyUFVVRXOnTtH7iZSU1Oxfv16rFy5ctCaUBwOB7W1tejo6EBrayu6u7vR0tKC7u5uqKiogMfjQUNDA5aWljAxMYGhoeGY6GveG0gwEiilQfFUc/PmTZF6QoxXem3YhoaGmD59Onbu3ImLFy+KdO/333+PnTt34vTp02huboa5uTnodPqIKsja2toiNzcXRUVFg5qRhlMYA8lQVVUFgiCk0reDIAiUl5cjMTGRNKn1Bkk0NDTg5Zdfxvr16/st8kwmEzk5OXj06BHU1NRgamoKAwMDTJw4EZqamtDQ0OiTqd7e3o7KykoUFxcjOTkZBEGAx+NBUVERpqam8PDwkKlT/0mEQiEyMzOlMh+lNCiealgs1jNTfdXc3BwFBQXYt28f9u3bN+S1HR0dePDgAVatWoXm5mYAgI2NDVpbW0cUYUOj0bB06VJcuHABAAZVHDQabdD2ptra2mAymeTnrq4uREVFYd26dRLL1UtPTw9iY2Ph6OiI6OjoPqVPuFwuFi9eDF9f3z4Kg8PhICoqChwOB9OmTYOfnx8UFYdfOrW0tODi4tIv8onP56OiogIRERGwt7eHt7e3TP9GOzs7cePGDfj6+uLzzz8f8XiU0qB4qiEI4plRGgAQGBiIU6dOYfHixZg2bdqg14WHh2PJkiVwdXUl3/y9vLwwceJEHD9+fET9qhUVFbFy5UqEhYWBTqeT2cxPMtT4TyqMqqoq3Lx5EwsXLiTNaJLy8OFD3L9/H19++SWWLFnSTx4TExMEBQX1KeNRXl6O6Oho+Pv7D/gckqCkpAQ7OzvY2toiKSkJZ86cwaJFi2TSyIrD4eD7779HWloaPD09pTImpTQonmpGGhE03qDRaFi0aBE2b96MvLy8QZ//xIkTuHTpElRVVeHn50cet7a2hre3N9LS0kYkh6KiIpYsWYKLFy+io6NjyHItg5GVlYWioiKsW7duRNnMBEHg7t27yMrKQkZGxoAmrgMHDmDKlCnkroAgCKSlpaGyshKbNm2SiT+CRqPBz88PDQ0NuHDhAgICAqSaHNnY2IgzZ84gISFBagoDoKKnKJ5ypOH4G2/o6OhASUkJqampg16jpKSEe/fugcPh9Ds3e/ZsqSwyampqWLduHZhMJk6dOiVyWDCTycSFCxfQ2tqKtWvXjrj8RWZmJoqLi1FWVjagwkhJScHx48cREBAA4LHCiI6OBo/Hw+rVq2XuwDYyMsKmTZuQkpKC8vJyqYxZVFSEO3fu4O7du1IPHqB2GhQUTyGenp44efLkoAtGd3c3oqKiAAA+Pj59zqmqqkotkU1RUREBAQFobm5GfHw82Gw2HB0dMXHixD5h0AKBAKWlpcjKygJBEJgxY4bYzaAGo6amBmFhYQNmc/f09OCtt95CcHAw6WeJjo6GmpoaZs6cKZX5RUFZWRmrVq3CiRMnRryzys7ORltbG27cuIEJEyZIUcrHUEqD4qlmLPaSlgempqa4dOnSoGXEe8uiuLm5DXh/b/OfwsJCqbz96uvrY+XKleBwOHj48CFSUlLQ0dFB+lOUlJRIn8K/c2p6s8wJgugTeUWj0aCmpjakz6q8vJxsdDQQ4eHhmDBhAukvSU9Ph5KSklwVRi/KysqYNWsWkpOTJcqZ4XK5SEhIgL6+PuLi4mRmmqWUBsVTzbPkBH8SBQUFODg44Pjx43j77bcHvW4wh7Sqqip8fHzg4OCAgwcPSk0uVVVVeHh4wMPDY8jrmpubUVhYiNraWhgaGqK7uxvZ2dkA/q9YIYvFgoaGBnbv3j1gNJNQKERiYiJiYmIGnefbb78l8zN6qxZv27ZN0scbMfb29khOTgaXyxXLLMZms3HixAls27YNn332mUx9eZTSoHiqUVFRQXV19VOT1SsODg4O+PPPP7Ft27Z+ZoqhzFP/RtJkPElgs9lITU0Fn8/H119/jbq6Ovzwww9gMBjYtWtXnwiqzs5OnD59Grm5uQgMDERbWxs0NDTIWlwpKSnYu3fvkLWqhEIhmbuQnZ0NLy+vUX3R6G0BW1hYKFKrV6FQiJycHBQXF+PQoUMS9UMRl2fzNYzimWHbtm2or69/Js1UysrKcHZ2xrfffjvgOQcHh2H7W1+4cEEuCoPH4yEpKQmxsbHYt28ftm/fjt27d+OPP/6An58f5s6d2y/kVkNDA8bGxoiJiSGz2Z2dncHlcpGcnIyGhga88MILg85ZW1uLpqYmAI9zJx4+fAhnZ2fZPaSITJ48WaQaUeXl5Thy5Ajs7e3JnBt5QCkNiqcaDQ0NLFu2TK7tSMcSU6ZMQXR0dD8TjUAgQG5uLgoKCoa8X9JCiKLCZrORkZGBmzdvwsXFBXQ6Hf/5z39w6dIlLFmyBLNnzx4yP8PQ0BDnzp1DU1MTkpKSsGnTJmRlZWHu3LmIi4sbcu5Lly5hypQpAB5HWLm7u0vUhEraaGpqoqOjY8hr8vPzUV1djdjYWOzfv1+uoeWUeYriqefDDz/EjBkzMG3atGF/jE8jc+bMwfvvv4+EhASyzMXmzZuRk5MzqCMc6JtkJ00IgkBubi7y8/OhqamJrVu34p9//kFubi68vLzE7v9tZmaG69evg8/ng0ajidzz4uzZs5g1axaAx4vwli1bxH4WWUCn00mT4EDPUltbCxaLhStXroxKPStqp0Hx1KOmpgZPT0+Z93oYq2hoaMDQ0BBhYWHkMVNTU+jr6w+66HA4HBw5ckSqcnR0dCA3NxdhYWGYMWMGbt26hU8//RS//PIL9PT0MGfOHLEVho6ODq5evQoajQZlZWWRFUZrayuam5uhoqICFosFTU1NkUqDyAsDA4N+feeBxwECly9fxv79+0etACKlNCieCfbs2YObN2+OthijxtSpU/HLL7+QLUOtra0RHh6OtLQ0MJlMpKWlgcPhgMlk4uzZs7h8+fKImjs9SUNDA1JSUhATE4OgoCBER0fjnXfewYEDB3Dy5EkEBwfD3d1dorGtrKwQHR0t9n3btm2DpaUlaDQaWltbYWZmJtH8skJNTW3AxNS0tDTExMSQZrXRYOyoVgoKGWJvbw8DAwO0trbKJOFprKOsrAw9PT2cP38e69evh6WlJQwMDPDrr7+SRfuioqJGXOW2F6FQiIqKChQXF0NTUxOff/55H5/Bq6++CisrK3z55Zf4+eefJVZQqqqq6OnpAYfDgaqqqkj3hIeHo7S0FCtXriSPjYdyM6WlpbC3tx91Zz2lNCieGVatWoUzZ87IRGkIBAJUVFSgrKwMTCYTXC63j1OVy+X2KZv9JL1v/xoaGjA3N4eNjQ309fWlvpBNnjwZv/76K9avXw8ajYajR4/C0dERzz//PGnWGanCEAqFqK6uRnp6OkJDQ/HNN9/06+/x5ptvwtTUFO+++y6Ax9V179+/L9F8ampq2LhxIzZt2kRW1h2OmJgY+Pj4jGlF8e9dRnd3N3JycqTWF34kUEqD4pnBwsICLBZLauMRBIGSkhLk5uaivb0dFhYWmDRpEvT19aGuri7WokQQBFgsFiorK5GSkoLm5ma4ubnBzc1NahE99vb2yM/Px/379zFlyhTo6OjAz88P7e3tUikbUlxcjPj4eHh4eOD27dswMjLqd015eTlKS0vJDnkA8OjRoxHNu3HjRpw4cQIEQQz7nff09CA+Ph6hoaF9jo+kqq8saGpqwvTp08nP6enpeOONN2RSCVdcKKVB8czg4+MDNpstlbGKi4uRlJQEExMTzJ07d8SLLo1Gg46ODnR0dDB16lTweDxkZmbiyJEj8PX1hbOz84jfjK2trXHgwAHs27cPJ0+eBPC4OGFqaqrE8hMEgeLiYmRnZ0NNTQ0pKSmwsLAY8NqKigps3769j4N9oIKJ4tDV1YW8vDx4eHjg8uXLWL58+ZDXV1VVQUdHp48pS1dXFzk5OSOSQ5r0vkD0Orq7urrQ3d2NrVu3jq5g/x9KaVA8M9BoNPT09EAoFEqc9dvS0oLr169DX18fq1evHnGPh8FQUVHBzJkz4eXlhZiYGBQVFWHJkiUjivDp7ePQ1dWFuro6mJiYQFNTU6JKwO3t7cjPz0dqaiq2bNmC+Pj4IdvM8vl8vPDCCzhy5Aisra1RXl6Oc+fOQSAQjKhvtYODA0xMTGBnZ4c9e/ZASUkJixYtGvKef3+HmpqaMgsvloTq6moYGhqSf6NpaWn49NNPx0xJnLEhBQWFnNDR0ZHYbv/o0SNEREQgJCQEoaGhMlMYT6KsrIzQ0FA4OTnh0qVLpP9DEry8vAAA8+bNIzOoaTSayA5k4P+66N2+fRvBwcFoamrCjz/+OKTCePToEVatWoVXXnmF7Bdx7tw5cDicESkMAAgNDcX58+fBZDKxY8cOvPTSS/jll1/EUoQKCgpQV1dHS0vLiGSRBgKBANHR0Zg9ezaAxyG2XC4Xc+fOHWXJ/g9KaVA8U9jb25OlI8ShuLgYmZmZ2LRpk9i5BNLA0dERkydPxo0bNySyv9PpdOTk5IDD4UBdXR2tra0AHisNURduLpeLiIgIhIaG4u7du3jzzTeHzYs4evQo3nnnHXz33XdYtmyZ2HIPR3p6OthsNuh0Ong8Hr7++ms0NDRg8eLFOH78OB4+fIj29vZhx5k5cybi4+OlLp+4xMbGws3NDTo6OmhpacHhw4fx008/jbZYfaCUBsUzha6urtg7jaamJiQnJ2PlypUiJ4/JAhcXF2hra0u0uAmFQkRFRSE3NxfBwcF9Ev3Mzc2Hvb+jowO3bt3Cl19+iY8//nhY/wqXy8Xbb7+NO3fu4MKFC31apXI4nBH7Mnp58OABgP+L+hIKhdi3bx/++usv5OTk4LfffsOiRYvw3nvvoaKiYtBxer+D0tJSqcglCXfv3gWHw4G7uzsqKytx6NAhpKamSrXrnjSgfBoUzxTivqV3d3cjPDwc69atGxMZw35+frh48SJKSkrE7lltZ2cHNzc3MBiMPov+cA1/WltbcfDgQURGRmLhwoXDztPe3o6tW7di27ZtWLx4cb/z169fF0vuoejo6OhThVdHRwdpaWng8/nQ1taGg4MDdHR0wOfzsWzZMsydOxeVlZUQCAT9otJCQ0Nx5swZ6OrqkpVv5QFBEEhOTkZraysWLFiAjIwM1NTUoLa2FiYmJnKTQ1SonQYFxRD0xvTLw38hKgsWLEBcXBy4XK5Y9zGZTFRUVODnn38mfSMzZ84cMnKotwNcdHS0SAqjrq4OixYtwltvvTWgwuBwOMjLyxNL7uF4sgpvVVUVWfK91/cUGBiIwMBArFixAqWlpairqxuwB7qamhoWLVqE8PBwmRdq7IUgCNy8eRMEQcDV1RXnz5+Hq6srsrOzx6TCAKidBsUzhji7hfr6ejCZzH4x/aMNg8GAv78/oqOjh40UepKWlhb8888/IAiCtPPb2tqiubm537VcLhcXLlyAmpoaIiMjMWnSpGHHf/jwIV599VX8/PPPcHFx6Xeew+Hgzz//lElOBI1Gg6mpKRYvXoyysjJYW1vj+vXrSE9PB5/PJ0Ot3d3dYWZmhp9//hlTpkyBlpZWn3GMjIywatUqhIeHw8nJSeLyJqLA5/Nx+fJlmJubQ0lJCRUVFcjIyOgn01iD2mlQPFPY2dmhurpapGsTEhIwb948GUskGXZ2dmhsbBSr1wWDwSAX7CfDN5WVlaGgoAAOh4OioiJkZGTg+++/x+eff46cnByRFMZPP/2Effv24ciRIwMqDCaTiUOHDpEOeGnj5+cHBwcHFBUVwcrKCidPnkRlZSXa2tr65eYYGhrC398ff//994AKTENDA+vWrUNLSwvOnDmDhoYGqcoqFApRUFCAY8eOwcPDg4zeunnz5phXGAC106B4xpg7dy6OHz8+7HW9ztp/96seS9jY2KC6upqsHTUcXC4X5ubmUFVVRUZGBnmcxWLh8OHDsLCwwJIlS+Du7o5jx46J/OyJiYlITEzE2bNnB3WQ94bYygIlJSWkpaWRUWBDtXftxd/fH4WFhbh+/ToWLFjQ77yCggKCgoLQ0NCA+Ph4dHd3w8PDA5MmTZI4GILP5+Pu3bu4d+8eLC0tsWbNGiQnJ8Pd3R2HDx8eE708RIFSGhQUA1BcXIzJkyePthhDYmZmhsrKSpGVBvC46dGSJUvw559/ksfS0tJAp9MlSh47dOgQ0tLS8Ntvvw2qMAoLC1FfXy/22KIiaWfBtWvX4u+//0ZLSwvWrFkzYG0wIyMjrFmzBu3t7cjNzUVaWhrU1dVhaWmJiRMnQl9fv89iLxQKIRAIwOPxyIRBgUCAqqoqsoXrc889B6FQiMjISPj5+eHnn38e03Ww/g2lNCgoBqC+vh5Tp04dbTGGxMzMjAw5FRUmk4mwsLA+fcEljQrLyspCVlYWTp48Oeii11tqfSyio6MDMzMzLF68GBEREZg+fTqsrKwGvFZLSwt+fn5kra7q6mpkZGSgtbW1z86Dz+dDVVUVNBoNhoaG5PdiaGgIb29vKCsro66uDomJiThx4gQ8PDzk8qzShFIaFM8Uv/76q0jJea2trWOiONxQKCkpSVRLKz8/f8S2cy6Xi/fffx8nTpwYUmH88ssvI5pH1tjb28PLywtvvPEG3n77bURERMDY2BhTpkwZNFNeS0sLTk5OcHJyEnu+7u5uxMTE4ObNm2R2/HiDcoRTPDM0NTXh6NGjcHBwGPZagiDEKq8xGigrK0tkUqqpqRnRgsXlcrF+/Xq88847A1ay7eX48eMSm47kjbGxMU6dOoWMjAz4+/sjLCwM169fl6ofhsPh4MqVKzh06NC4VRgApTQonhFyc3Ph5+eHxYsXi7TQPs2tYVtaWsQK1X0SHo+H9evX4+WXX0ZwcPCg12VlZaGtrU1CCUcPBQUFvPvuuygpKcFLL72E48ePSyV6islk4tq1azh69ChCQkKkIOnoQSkNiqcegiCwfft2+Pv7i9zWczTLhciS9vZ2dHR0SJw49sknn2DTpk1DKozy8nJERkZKKqJccXV1HfTctm3bcP36dSQlJY0ot6SgoADXr1/HH3/8gWnTpkk8zliBUhoUTzUEQWD58uWwtrYWa6EcD9Es3d3dYtfRioiIwO7duyWaLzY2Fo2NjX3apP6buro6HDt2TKLx5c2KFSuQkpIypG/C1dUVK1euxOXLl8UeXyAQICYmBq2trbhz5w68vb1HIO3YgVIaFE8tBEFgx44dIAhC7EiokZQglxdcLnfYulFP0tbWBm1tbWzevFnsuSoqKvDZZ5/h4MGDg17D4XDGjcJob2/H1KlT8d///heOjo5DXvvee+9BV1cXJSUlIo9fW1uLn376CUuXLsXVq1fHRdKeqFDRUxRPJSwWi+ziNmvWLInGEKV96GhSV1cnVpn2+/fv45133hF7HoFAgJdffhl//fXXoDW4mEwmjhw5MuZ9QTweD7GxscjJyUFmZqZI5iIVFRWEhYVh/vz5UFdXH3bH2tDQgOzsbKSnp4tdVHI8QO00KJ46SkpKMHfuXKiqqmLOnDkSZdpOmDBBor4b8qSiomLQ1qr/RkdHB5WVlVi3bp3Y8/z4449YsWLFoEmEdXV1OHToEDo7O8UeW160trbi/PnziIiIwLZt29DW1iaWf0FPTw/Xr19HfHz8kI5xgiBw9epVHD58+KlUGAC106AY53R1dYHNZqOpqQmRkZFkF7fg4OAhw0GHozfbeqiOdKNNdXU1AgMDh73OxMQEqampEiXZFRYWIiEhAZcuXRrwPIfDwdGjR0lHMY/HQ3FxMcrKygZMfNPX18fkyZNhZWUll7IZXC4XsbGxYLPZ2LlzJ3bt2iXx7lFPTw9//PEHAgMDsWnTJlhaWva7Jj8/H7NmzXpq/BcDQSkNinFHUVERbt26hdjYWBQXF0NHRwfKysrQ1NREUFAQVFRURmxWmjhxIm7evDnmGuD0wmQyoampKdLC29HRgfb2drGzj1tbW7Fr1y4cOXJkwO+zvLwcJ0+ehEAgQFdXF1JTU1FeXg5HR0f4+PhAT0+vT3izUChEfX09Hjx4gNu3b8PHxwcuLi4yMwFWV1fj1KlTuHHjBtk+daTMmjULcXFxmD17NlavXt0n54fP5yMiIkLkgpjjFUppUIwr7t+/jw0bNsDZ2RkmJiaYMmWKTObR1tYGm81GV1cX1NTUZDLHSEhPTxe5bHdKSorY5d3ZbDbWrVuH/fv3D/hGDQBnzpwh6yrdunULPj4+CAgIGFQJ0Ol0mJqawtTUFHw+HzExMairq8O8efOkqjiEQiHu3buHiooKsh+KNPH19UVRURFeffVVnD17Fr6+vjAzM0NSUhJ27949potcSgPKp0ExbiAIAlu2bMGcOXMwefJkmf84nZ2dxa7tJA86OjpQV1cHW1vbIa9TUlKCoqIiqqqq8MILL4g1xxdffIG1a9cOqJh6TVI8Hg9xcXFISkrCunXr4OTkJPLir6SkhJCQEGhqaiI6Olos2Yaio6MDP/74I1xdXZGUlCR1hdGLjY0Nrl69iujoaGhoaCAtLQ1cLhdvvfWWTOYbS1BKg2LccP/+fQAQK2JoJLi6uuLu3bsQCARymU9UEhMT4efnN+QCraKigh07diA/Px9vv/22WONHR0ejvb0dO3bsGPD82bNnUVpaigsXLkBZWRnr1q2TeDfm6+uL7u5uiZXz1KlTYWdnB09PTzx8+BCJiYlITU3Fvn375LJDNDMzw8GDB3Hr1i2kpaWNaR+YtKDMUxTjBoFAAGNjY7nNp6ysDFdXV6Snp2PGjBlym3coamtr0dbWNmxkDp1OR2lpKRQUFLB27Vqx5jh16hQ++eSTAc+lpqaSCqO3v8RICQ4OxvHjx2FpaQlNTU2R7lFXV8fzzz8PHR0d8Hg8vPjiizAyMsLJkyfHRC/3pxlqp0FBMQReXl4oLi5GS0vLaIsCoVCIGzduiFQ3isPh4LPPPht08R+Mmzdvory8vF+JcCaTiZ9//hlXr14dUmEMV9drIMe9kpISAgMDERcXJ5KMDg4OePXVV6Gjo4NLly5BR0cHa9aswY8//kgpDDlAfcMUFENAp9MRGhqK27dvY82aNaMqS0pKCiZPnjxgdrGGhgbodDrZ+1tBQQF0On1Yv8eTMJlMfPHFF4iMjOxj+qqrq8Off/6J7u5uXLx4ccgdxnBlTRQUFAY091lbWyMmJgZcLhcMBmPAe9XU1PDCCy9AR0cHALB//37U1taivr5+zJexf5qgdhoUFMNgZGQEgiBk2n1uOMrLy1FdXT1g/L+2tja2b9+OrVu3ws7ODn5+fjh58iQ+//xzkcevqanBsmXL8MEHH/TL+j5+/DgEAgFu3rwJR0fHEZmkeluyDoSXl1efNrRPoqGhgddeew06Ojpob2/HypUr0dbWhgMHDlAKQ85QSoNi3KCpqYmOjo5RmTs4OBjXr18fctGTFeXl5UhJScGKFSsGNP+wWCzk5eVBV1cXGzduxJUrV7BkyZIhK7g+SW1tLczNzfHpp5/2q16blZUFLpeLhIQEaGtrizymJDg4OKCysnLAczt27ACDwUBhYSHWrl2LPXv24PPPPx/TZV6eViilQTFusLW1RXV19agoDl1dXfj7++PYsWMoLCwcUalsccjKykJaWhpWrVoFZWXlYa9vbGzEvXv38M0334g8x7lz5/DFF1/A39+/z3EOh4PIyEjk5OSAxWLJPBhgsKZS27Ztg46ODuLi4rB792589dVXT3XG9ViHUhoU4wYajYbXX38dKSkpozK/jY0NnnvuOZSVleHvv/9GeXm5zOZqbW3FP//8g+bmZqxZs2ZQhaGtrQ1fX194eXkBAD7//HPs27dPrLnKy8v7KYy6ujr89NNPKC4uxqNHj7Bo0SKZv9VzOJx+c1haWsLS0hJxcXH47rvvcOHCBZnudiiGh3KEU4wr3nzzTcTHx6O2thampqZyn5/BYCA0NBQdHR24ffs2srKyEBgYSDpnRwqfz0dGRgZKSkowb968YZ+RxWKhtbUVDAYDNTU1qKqqgp+fn8jzdXV14cGDB/D19SWPlZeX49ixYxAIBIiLi8Nzzz0nUVtZcWlra+v3PS5fvhzt7e3Yu3cvYmJixmR2/rMGpTQoxh1Hjx5FaGgo6uvr4ebmJpcF7d9oampi2bJlqKysxJUrV6ChoQFvb2+JFBlBEKisrER2djZaWlrg5uaGTZs2DVtXSlNTEwYGBmSJkD179uB///ufWHNv27YN77//fp9jJ0+eBPC4xpednd2g0UzShs1mQ1dXl/y8YcMGAI8z88PCwsTqHUIhOyilQTHu0NXVxZUrV/Dqq69i//792L17N1RUVEZFFktLSzz33HOoq6tDcnIyuru74ejoCGNjY+jr60NJSamfyYUgCLBYLLIcSF5eHoyNjTFz5kyRM4q1tLTg6ekJT09PqKqqAgCampqG7EL3b8LDw2FmZoaAgAAAj81D165dg0AggFAoRGpqKlavXi3yeCPFwMAAWVlZ8PHxQVBQELq6urBixQpcuHAB06dPl5scFENDKQ2KcYmhoSHOnTuH77//Hn/88QdUVFSgq6sLW1tbmJqaQk1NDVwul7ze3NxcptVHTUxMsGrVKrBYLDx69Aj5+floaGgAn8/v54/o7u6GlpYWJkyYAD09Paxdu1bst+jOzk7ExMRASUkJPj4+KC0tFaudbVVVFQ4dOoSrV68CeJyj8ddff4HNZgMAMjIy4OTkJHKGtjSor6+HkpISNmzYAFtbW7i5ueH48eNwc3OTmwwUw0MpDYpxzZtvvok333wTAoEAkZGRSExMRHR0NLS1tWFgYABzc3MoKyuLFHkkDbS1tcUuQS4JvUl0vaW5v/nmG7zxxhsi33/8+HG8/fbb5A7t1KlTpMLg8Xi4f//+oLWnZEF1dTXS09Oxfv162Nra4vnnn8e2bdsohTEGoaKnKJ4KFBQUsHTpUnz77bdITk7GJ598AmNjY/z222+oqKiAoaGhXN+a5UVhYSGam5uRm5srcqn0uLg4ZGZmYu7cuQAe15N6skzKgwcP4OrqKldfUXx8PJYuXYr169fjm2++gZKSEnbv3i23+SlEh1IaFE8l3t7e+PrrrxEdHY2ysjJUVVWNWmKgLHFzc0NpaSnmz58vckjs77//jgMHDoDBYIDJZOLmzZvkOYIgkJubC2dnZ1mJ3A8mkwkFBQXs3bsXxsbGOH36NL755hsqcW+MQikNiqcaNzc3XLp0CV9++eVTF66pq6sLDoeDO3fuiJy7kJeXBwaDARsbG3A4HPz55599zjc2NkJXV1eukUopKSkIDAyEkZERvv32W3z88cdUaZAxDKU0KJ56dHR08PPPP+PgwYNyCx+VB0wmE9evX8elS5fICKihEAqFeP3117FgwQIAwJUrV9DV1dXnmqKiIjg6OspE3oFob29Hc3MzGSp8+vRpkZ6FYvSglAbFM0FISAimTJkyaEG88YaGhgasrKygqqqKoKAgkfw1jx49gqWlJVatWoXCwkI8fPiw3zUVFRX9yqLLksTERGzcuBE6OjooKCiAr68vJkyYILf5KcSHip6ieGbYsmUL1q1bhylTpoxre/kbb7wBHR0dCIVCbNy4Ea+//vqw9wiFQgQHB+Ps2bMAgH/++WfA63p6esi8D1lTX1+Prq4ufPjhhwCATz/9FHv27JHL3BSSQ+00KJ4ZVq5ciT179uD48eNob28fsC/FWMfCwoIstfHTTz/Bz8+vTwmQwcjLy8OiRYvg7e2NrKysAQsuslisEUeYidoESSgUIioqCqdPnwaDwQCPx8Pt27epulLjAEppUDwzKCoq4uuvv8Y///yDiIgIqKmpjbsdR29pjfLyckRFRWHnzp0i3RcVFYUpU6YgJiYGkZGRA17D4XD69dIQl56eHpGuy8rKgqOjI6ZOnQrgcemS999/f9jSKRSjD6U0KJ45vLy8kJKSgr179yIrKwt8Pn+0RRKJDRs2kI78Tz/9FJ988olIuRQ8Hg+RkZHQ0dFBYmLioNfp6+ujublZavIOBpvNxr179+Dt7Q0Oh4OHDx/ivffew2uvvSbzuSlGDqU0KJ5JDAwMUFZWhlmzZiEsLAx37tyRaanzkaKtrU12zGtsbASPxyPLoQ/H1atXMXfu3AEd30+iqKgo8k5BUgiCwM2bN8nEwoSEBKxZswapqalUf+9xAqU0KJ5ZdHV18e677yI3NxevvvoqSkpKEBcXJ/OFUxK6u7vB4XBQW1uLHTt2iFXi4++//yZLhIiCrHZeBEEgJiYG+vr6mDhxImpqahAaGopXX30VdnZ2MpmTQvpQSoPimUdFRQWhoaGIj49HYGAg/vjjD+Tn548J5aGhoQF1dXVwOBxcuHABy5Ytw5dffonAwECR7mez2WhvbxfZV2FhYYFHjx6NRORBSUtLg6KiIry8vHDr1i08fPgQ5eXleOmll2QyH4VsoJQGBcX/h06n46OPPiIzrC9evIjGxkaR7jUyMhqxE/nf6OrqYtOmTdixYwcKCwsRGRmJo0ePwsXFReQxMjMzxcrunj59ukxyWe7fv4/6+npoaWnh0KFDWLt2LeLj4+WaE0IhHSilQUHxLywsLPDBBx/g6tWrKC0txdWrV9HW1jbkPc7OzkP29JCkLMfrr7+OiIgILFu2DJs3b8bZs2fFrgkVGRkpco8O4PHOxsDAAAUFBeKKOyg1NTXIyMhAR0cH3Nzc0NHRgddee21UmmdRjBwaMVDA9r9ob2+HtrY2WCzWuIxtp6AYCffu3cObb74JoVAIOzs7mJiY9AkNNTU1RUNDAwQCQb97J02ahOrqanA4HLHmnD9/Pi5fvgwWi4XDhw9LFBrMZDIRFBSERYsWibVAc7lcnD17FkuXLu3TSU9cCILA3bt3kZiYCCsrK/z9999UHsYYRtR1nlIaFM8UvdE7v//+O6qrq/ssxtra2ggJCcEbb7wxYL5ATEwMDh48iAcPHmDp0qXYsGEDmpqakJaWRl6jpqaG559/HlFRUSgsLISysjK6u7vFkpHL5SI5ORnvvfceWSdKEj788EPcuXMHM2fOFPve5uZmXL16FStWrJAo4Y/FYiEyMhIsFgsvv/wy3nvvvaeq7tfTCKU0KMYEvW/Y8ipNMRAPHz5EYWEhTpw4gdbWVigpKcHLy6tfYyY2m41Hjx6hpKQENBoNCxcuxKpVq2Bra0teo6qqimvXruHnn3+GUCiEhoYGdHV1YWRkBACYPXs25s+fj6ysrEGT6IaCy+Xixo0b2L9/P4KCgkb03M8//zwpnyQ0Nzfj8uXLmDp1Kjw8PEQKie1VeAUFBdDR0UFYWBiZwEcxtqGUBsWowWazER0dje+//x4PHz6Erq4u9PX14eHhgY8++kgsG7uk3LlzB9evX8eDBw/A5XIRGBgICwsLODk5ISIiAgD6VXh9Ej6fj4KCArBYLPD5fBgYGEBFRQV5eXmYOHEiFBQU4OLiAh6Ph/j4eHR3d0NRURE8Ho9su6qpqQlFRUWYm5sPqTQFAgFqamrQ3NyMxMREnDt3bsQKAwBZYmQkZc75fD6ys7Nx7949GBoawsbGBpaWlmQpk56eHnR0dKCmpgYlJSVobW2FmZkZ1NXVceLECRgbG4/4OSjkA6U0KOROWVkZfvvtN0RGRsLGxga2trbw9vaGkZERhEIhmpqasH37dnh7e0NTUxM9PT2YPn06NmzYQLYtHQkEQWDfvn3IysqCqqoqQkJCcO/ePaxfvx40Gg1RUVEim4vodDrodDoZdqumpgZjY2MYGxvDx8cHXC4X9+/fR0FBAWpqaqCnp4fc3Fy0tLSgtLQUwOMFt6enBxUVFdDQ0ICenh40NDRgY2MDJSUldHd3g81mo6GhAcuWLYOLiwtWrlwplda0QqEQ3t7eWLRo0YjHAh5/t01NTSgtLUV9fT3a29uhqKgIgUAAXV1d6OnpYeLEiWCxWODxeDh79iyVrDfOoJQGhUwRCATo6OhAfHw8jhw5gvLycmhra8POzg4WFhYDOl4NDQ37hLDy+XyUl5ejvLwcTCYTzs7OmDZtGvz9/eHt7S2WPF1dXZg9ezbWrVuHd955B8Bj01hubi7c3NxAEATCw8NRWFgIOp1O9tgeCCUlpSET3EJCQuDj4wPgsbP53LlzqK+vH/R6oVCI0tJStLS0oKmpCbW1tVBVVYWXlxc2bdqE0NBQqddcunbtGn788UfMmDFDquMORVVVFR48eIDExERKYYxDKKVBITWYTCZqampw7Ngx3Lt3D0KhEI2NjdDS0iLLW2hra4+o+F9PTw/YbDbq6urAZDLBYDDw4YcfwsPDQ6QF9bnnnsPKlSuxbNmyAc9zOBxkZmaCz+eDz+cjIyNjSMXxJO7u7tDQ0EBNTQ3MzMwwY8YMVFRU4MKFCxJnT/cqzNLSUjg5OfXroDdS3nnnHZSWlsotWqm9vR03btxAfHw89PX15TInhXQRdZ2nXgcoBqSpqQl//PEHrly5AiUlJSgrK8PS0pLcAdDpdKlWiFVUVIS2tjbZ5pMgCHz22Weoq6uDmZkZdu/eDX9//wHvraqqQnNzM4yNjcHhcAb0H+Tm5iImJgYODg4oLCyErq4umEymSLJ1dHRg3rx5UFVVBYfDwbVr13D//n2JnxV4vJuZNGkS7OzsSB+LtBAIBIiMjMSKFSukOu5g9PT04Pbt27h8+TKlMJ4BKKVB0YeOjg58/PHHSE9Ph42NDQICAqRiYxcXGo2GadOmkTLNnz8fv//+O5577rl+17a0tMDCwgJRUVEAQJqOemEymSguLsbEiRPh7+8PMzMzxMTEiCSHqqoqSkpK8MMPP4gdOisKNBpN6v2429raoK+vP2SyoTRJSEjAnj17yIKKFE83lNKgAADU1dXh8OHDSEpKQkhICBYvXiyTRVISNDU18c477+DHH39Ee3s7du3a1e8afX19hISEwM3Nrd+569evk87p/Pz8PnkVw9EbMjxWvgtR+PDDD2FhYSGXucrKymBsbEz2+aB4+qGUxjNOfn4+PvnkEwgEAuzatQsLFy7ErVu3RlusfigqKmLBggW4du0a2tvb8f777/c539jYCD6fD4IgSP8Fh8NBQ0MDueBbWVkhPT19TPXPIAhiwEzykXD//n0EBwdLdcyBEAqFuHfv3pA9OiiePiil8QyTnJyMt956C7Nnz4a+vj5sbW1hZGSE5OTkIXMYRgsFBQV4eXkhOjoaLi4uWLx4MXmupqYGMTExKC8vh7W1dT/zk6mpKaqrq6W+QI8UNpst1VyGhw8fkrsqWZOVlYW1a9dK3bxGMbahKoY9o5SVleG1115DUFAQNDQ0wOVycebMGZSUlIxJhdELjUaDl5cX3nrrLdTW1gIAKisryYWrtLQUFRUV/UJ+a2trx5zCAICGhgY4OjpKbbzm5uYBTXTSpra2FkpKStizZ4/M56IYW1Aht88o27Ztg5WV1bjrkd1LVVUVampqcP36dbi7u8PT0xPm5uajLZbYZGZmYs+ePfDz85PKeCEhIeSOUVbweDxcv34dN2/ehIGBwbDX94Zs95Keno6oqCiwWCwoKyujoqIChw8fxuzZs2UmM8XwUCG3FENSXFwMa2tr8jONRgONRhM5d2G0sbCwQE5ODjo6OkCn08elwgAAZWVlqSnuu3fvoqSkROYJfdnZ2di7d28/hSEUClFbW4sbN27g6tWraG5uRnd3NxgMBhgMBnR0dGBlZQVNTU24u7uju7sbkyZNgoGBAT7++GM4ODjgt99+k6nsFCOHUhrPIBUVFf3CaAmCgAibzjGFlpYWIiMj0dnZOdqiSIw0nfJ79+7FkiVLpDbeQLS3t6OhoQGrVq0ij8XGxiI6OhoxMTFQVVWFrq4uLC0t+5jJ9PT00NLSAnV1dejr66OiogLA45eX0tJSzJo1Cw8fPsRXX32F9957T6bPQDEyKKXxDFJZWSm3GH5ZYmVlhQsXLkBPT2+0RZEYGo2GpqamEY/T3NyMzMxMicqgi0pnZydu376N8+fPQ1FREd999x0uX74MFxcX6OvrIygoaNDyIb2Knc1mQ1FRkVQiwONkRCUlJbi6uiI6OhoLFiygKuOOYShHuAxhs9l44403EBcXN9qi9OHPP/+Umg19NLG0tERycvKYCqEVl8mTJ+PixYsjHueff/7B3LlzpSDR4KSlpeGvv/7CpEmT8O233yI9PR0///wzTE1NoaioOKjCUFJSAo/HIz+3t7cPmEdCEAScnZ3x8ccfj7td77MEtdOQEWw2GwsXLoSRkRE2b94MQ0ND+Pv7g8FgQEVFBXQ6HSoqKliyZAnZW1pRUVHmZcMLCgpQW1uLiRMnynQeeUCn0zFz5kykpaWhtrYWpqamoy2S2DAYDFRVVY1oDCaTiQMHDsi0bEhFRQUmTZqEadOmITMzE9euXUNYWBh++umnYf1gRkZGoNFoaG1tBZvNBkEQKCwsHPDaCRMmIC0tDSUlJVSG+RiFUhoy4vjx49DR0YGTkxOcnJzA5/PR0NAAFosFOp2OVatWQSgU4tChQ2T57cbGRrDZbNJ0NHHiRHh5ecHa2lpqzs29e/di0aJFw/a8ljVtbW3o7u6GmpoaqTQlwdnZGRkZGXjw4MG4VBo0Gg1GRka4d++exCaZ3Nxc2Nrajuh7HAqCIMgCjQBw+PBh2NnZ4cyZMyIFTlRXVyMkJASpqanksd5aYwRBQEVFBc3NzeTuYtKkSfjvf/+LEydOyOR5KEYGpTRkgEAgwO+//4558+aRx5SUlPpE+LS0tGDdunUICQkZdJysrCwUFxfj9OnT+Oqrr8Bms/H8888jODhYIjt+Tk4OtLS0oKOjIxel0duDIT8/n0ysU1BQAJ1OB4PBgKamJphMJthsNlRVVeHo6AgnJyexal3R6XRMmzYNcXFxmDt37rgryU2j0RAaGoo7d+5IrDSOHDki07fypqYmzJ8/Hzo6OsjKysLdu3exfft2NDc3i3T/hAkT4ODggPj4ePJYR0cHgMe7kM7Ozj7mqEmTJuHKlSvo6ekZd/+ezwJUnoYMKC4uxvPPP4+AgIBBr1FQUMDq1avFaj7U1dWFX375BT/99BNWrlyJN998U6y36xdeeAE6OjoyeyN9Eh6Ph4sXL4LBYMDZ2RnW1tZDKoPOzk7cv3+f3DFMmzZN5FwDgiDw3Xffwdvbe1z6atTV1ZGTk4OTJ0+KfS+Px8O8efMQEBAgk5yb7u5uZGRk4ObNm6DRaFi7di3c3d0hEAjIHbIoODg4gMViDdl35Enu3bsHPz8/7N69W0LJKcRF1HWecoTLiOHelgUCAc6ePYvjx4+LXKJbTU0Nb7/9NjIyMhAUFIQNGzZg7969YLPZw94rFAoRFRUll5IPbW1tOHXqFGbMmIHly5fD3t5+2O9DQ0MDvr6+2LFjB5ycnJCUlISjR4/iwYMHwzpFaTQagoODkZWVJc3HkBs0Go1s0CQuN27cgKmpqcySNPPy8rBx40bQaDQkJiaip6enT0fDoejtTa6vr4/CwkKxdg3Ozs4ICwuTWG4K2UEpjVGmrKwMp06dIqupDgeHw0FJSQmmT5+O1atXIzMzE8HBwcPmKsTExMDJyUnmGeBtbW24fPkyli9fDisrK7Hvp9FosLa2xsqVK7Fu3TrU1tYiLCxs2CqzU6ZMQUdHx5gstjgcnZ2dMDExAYvFEvveL774QmYvAlpaWlBUVMTWrVsBPPZl+Pv7i/y3qqWlhYkTJ2LSpEnw8/MjTVKioKCggLa2tnGTbPosQSkNGSGOGa+lpaWPk3AwOBwOLl26hKioKBw8eBDNzc2YP38+pk6divnz56O4uHjQe69evSrzrOlek9TSpUvJt8yRoKqqinnz5sHd3X1YxUGj0TB79mxUVFSMy3BNDoeD7Oxsse9TV1eHpaWlDCQCbt26hc8++wwAcOnSJejq6opsDqXT6aioqEBpaSlSU1ORlpYmtlI0MTGhnOFjEEppyAhxwygTExMH7AbHZDJx9uxZMJlMpKam9lMMvVVS3d3dsWLFCuTk5Aw4flJSkkx7LAiFQly+fBn+/v5SURhPYmdnBx8fn2EVB4PBwJw5c/Do0SOpzi8PjIyM8M8//4h1T25uLhgMhkzk4XA4mDx5MpycnNDT04MffvgBFhYWyMvLE+l+AwMD+Pn5wdPTEzQaTaJcmkmTJonV+4RCPlChCTLAysoKbDYbDg4OcHFxIUMVh+PixYu4ePEiaDQaXFxcYGBggKqqKhQXF6OhoWHIiCc9PT34+/tj69atWLx4Mf773/+SpqiysrJ+VV+lTV5eHvT09GSW/zFx4kTQaDSEhYVh9erVUFJS6ncNj8fDrFmzcPXqVZnIIEt0dXWRm5uL+vp6kUulR0dHy6S9akhICA4fPoxPP/0UAPDzzz/D0tJSLMd3Q0MD2tvboaCgIPHOT0VFhaxkTDF2oHYaMkBZWRkaGhqwsrKCi4sL3N3dxbqfIAjcv38fMTEx5M5ClBBZfX19LF26FFFRUTh06BD5Y713755MI6b4fD7S0tIwZ84cmc0BADY2NnBxcUFsbOyA55lMJry9vcVa3MYSoaGh+Oqrr0S+vr29XeovA6tWrUJubi5MTU0xceJEsFgsnDlzpl8LXVHgcDgjqgumo6MjcrQVhfyglIaMeOGFF8g49nnz5snM7vxv6HQ6QkJCcO3aNbzwwgsQCoWg0+kyDZXOzs6Gu7v7gG//0mbKlClobm7uF2kkEAigpqYm8x2VrFBSUsIbb7yBBw8eiOwwvnHjhlT9VPb29rCxscHrr7+OL7/8EsDjEvpOTk4i52RQPP08s+apmpoavPjiiygqKsLkyZPB5/PR1tZGNuoRCoXQ0dFBUFAQ9u7dK3bUEUEQ5NZaVVUV27ZtI7f7skZRURG+vr64d+8edu7ciYULF8psLj6fj9zcXGzfvl1mczwJjUbD3LlzERcXh9WrV5PH7969S+7oRqMYY319PXJyctDU1AQFBQUAj3ub95YENzU1HTI0ls/no6KiAjt37sQPP/yA//znP8POqaSkJDVFraenh8WLF2P9+vW4ePEiFBQUcOPGDbDZbLi6ukplDoqng2dKaZSVlSEsLAx5eXlob2/Hf//7XxgYGODKlSvo6OjoU1QNeLy9Tk1NJXs3iGM/njFjBl5//XW89NJL5DEfHx+5OvamTp2KjIwMhIeHy2yO4uJiODk5yTVz18TEBDQarU+9qfr6enz33XewsrJCQUEBpk6dSi7eskIoFKKwsBBZWVlQUVHB9OnTERwcDDqdDi6Xi+7ubrBYLHR2duLu3bu4fv06XF1d4ebmNuBif/bsWezevRsHDx7Ehg0bYGtrO+jcJSUlUo0Sc3V1RUJCAjgcDhYuXAgOh4P//ve/8PX1ldocFE8HT7XS6OjoQGxsLBoaGnDu3DkYGxtjy5Yt2LhxI0xNTcHhcHD48OFB25uqqqrCw8MDdDod3t7eSE1NFbmgoKOjIzgcDvh8PrlAhISEICsrS65VWd3d3XHq1CnY2dnJZPxHjx5JZO8eKbNmzUJSUhLZ14HBYEBfXx8qKipwd3eHoqKiTENvq6urcfPmTdjY2GDJkiX9zH+9jYd6j0+ePBlcLhf379/H0aNHERAQMOC/SWRkJHbu3ImAgABcu3YNzs7OA86fm5srtSg1X19fMJlM7Nu3D5GRkQCA06dPY+XKleO6VwmFbHjqlAaXy0VsbCyOHTuG5uZmqKurQ1lZGZ6enpg3bx58fX2RkJCAS5cuwdraWqR+2G5ubtDU1MSyZcuQkJAg0lu1goIC9uzZg127duH3338nj3t6eoqUkyEtlJSUMGnSJKSnp8PX11fqb99tbW2YMGGCVMcUBWNjY7DZbHC53H5hp9ra2pg4caJMQm8FAgFiY2PR3NyMVatWieUrYjAY8PLygpubGy5evIju7m44OTn1uaakpAQA8M0338DHxwcREREDljy/efOm1CLVWltbcebMGezduxempqYQCoX4/vvvsWHDBqmM/2+UlZWhrKyMnp4eGBsbo7y8fMDrCIIYtz6qp5mn6l/k6tWr8PT0xP379/HBBx9g2bJl8PT0hIuLCxgMBurr6xETE4O0tDQ0NzfjwYMHIo89ZcoUbN68GXv27BH5DXbZsmVobGzsUyZkNGoj6enpwcLCQiamsZ6eHpmbgQbDxcUFubm5/Y7b29uDw+FIPfudw+HgzJkz0NPTw7p16wZUGKLMqaSkhBUrVqC4uHjQF4iCggLs3bsXv/zyC+bPn9/POS6N711JSQkTJ04Eg8FAdnY2li9fDgD4448/YGJiIrUdsZmZGRm9p6Kigu7ubsycORNr165FdXX1oPc1NTXBxsZGKjJQSI+nQmkkJSXBw8MDR44cQUxMDPbs2YOkpCS0tLRAKBSCRqOBwWCguLi4T30iUbf36urq2Lx5M3bu3AkjIyMcPHhQZNk8PT2RnJxMflZVVZVL/acnodFopK2fy+VKdezR7AA4efJk8s38SWxtbdHW1jakT0Bc6uvrcfr0acydO3fIEGpRXyiUlJSwZMkS1NTUDPqmLRAI4OzsDFNTU8ybNw9nz54lx8/OzoaqqqrYz/EkfD4fsbGxWL58OeLj46GsrIzKykocPHhQqn3GJ0yYQJq5TExMEBISAgcHB5w6dWrA8GhVVVV4eXmRbWApxhbjXmkUFBTgvffew6lTp3DhwgXS57BgwQKoqamBwWCAIAhysXzyR93Y2Djsm6GRkRG8vb3Jt8rdu3fj5s2bfRTBUKxevRrXr1/vc2zjxo0iP580MDExQXx8PDw9PZGSkiLVsf8dPCBP1NTUBqxNNH36dPzzzz8oKiqSyjxVVVW4efMm1qxZAzMzM6mMCfxfWfThOjtaWloiMDAQP/74IywtLVFVVQVlZeURK2wul4vMzEykp6dj4sSJqK6uxooVKxAQECBVs9D9+/dhbm6OiRMnYunSpfDx8UFhYeGg+TQcDgd37txBQ0MD1q9fLzU5KKTDuFYaHR0deO6553Ds2DFMnjy5z7mqqip0dXUN+Gbd65Po6ekZ9s2woaEBMTExCAsLA4fDgYqKCk6ePInPP/9cJBnt7e2Rl5fXZ6tvYmIi12gjLS0tTJo0CU1NTWhoaMDdu3elNrY4vS9kBUEQfUw1JiYmMDAwkMrYfD4fUVFRWLlyJTQ1NaUy5pNoaGhAW1t72MxnZWVlhIaGYvHixVLp0Mfj8XDjxg38+uuvmD59Om7fvo2QkBB4e3vLJMu8uroaEyZMAEEQOH36NNmMbDC4XC4mTJgw4t0UhfQZt0qjq6sLa9euxY8//jigGWIoe2xPT4/Y9u7ewmvAY7MWn88XKQmLRqMhJCQEN2/e7HNc3ruN+fPno7y8HF5eXigvLx+wzpUkKCsrj2qETa/y7c2v6UVNTU2kkvHDkZOTA1dXV5maFH19fUX2NxkZGaGnp2fE1V/j4uLw7rvvYsaMGbh27Rree+89LFu2TKbthjMzM3Hw4EEUFxcjLS1tyGd4+PAhXnjhBZnJQiE541ZpfP/999i+ffuAtlcOhzNoD+JeJAnHfLKkwapVq3Du3DmR7jM0NOy3qFlbW8ulGVIvKioqWLhwIeLi4hASEoKkpKQBncjioqmpKVbJa2nT+712dnb2eSv19/dHZWXliMYWCoXIzc3FlClTRjTOv/l3tJexsTF6enpErrPU1dU1ItNUT08PWlpasGDBAtTX12PPnj0IDQ0dE7tG4PGLlkAgkKopkEJ6jEulUVRUhKysLKxcuXLA86mpqWhsbJTqnIqKiggMDCQ/u7u7IzMzc0RjyvKtbiBMTEzg4+ODo0ePYuvWrSgrK0N2dvaI3lotLS1HtaqsUCiEQCAAnU7vozSWLVuGlpaWEY394MED2NraSr2S7EAmUz8/P5GbSLW1tUlkfnN3d4eBgQEOHTqEH374Aerq6li8eDHmzJkzptqqampqwtjYeNSi8iiGZtwpDYIg8O677+L7778f0MRUXl4uspNaHHp6evooienTp6O8vBx1dXUi3T/QzmbRokVSk09UXFxcMGfOHJw7dw7BwcFoa2vDiRMnJFYcdnZ2KCgoGLUeFkpKSqioqOjXWtfc3HzEO6Ds7GxMnz59RGOIiqGhoUj9JjgcjkTNmhgMBsrKypCcnIw1a9Zg/vz5ePvttzFx4kS5v7wMR3t7O4qLi8Uu9EkhH8ad0rh48SKmT5/erysch8NBTEzMiBbA4cjOzu7TtSwwMFCkxjmTJk0a0Iegq6srVxNVLy4uLnBxcUFMTAz5lnn8+HGJqsMqKyvDyspqWHOgLOjp6QGfz0ddXV2/XSeNRoOBgYHEvggmkynX8GhR36oJggCDwcCkSZPEGp/L5aKxsREXLlzATz/9hMzMTKSmpvZLLhwL9EY7yqpXCMXIGFdKQyAQ4JdffsFbb73V71xqaioSExNl2h5SKBQiMzMTHA4HaWlpWLJkCX777bdh7/P19R1UuQxmYpM106ZNg7a2Nk6ePInQ0FBYWFhI3IdixowZSE5Olvtuo6WlBRMmTEBbWxscHBz6nRcIBCgpKZFIMRcXF8PR0VEaYoqMKGGufD4fAoFAImV2584dHDx4EGVlZdiyZcuoJJqKQnV1db9oSIqxw7hSGmFhYVi0aNGAYXg1NTVykaGrqwu5ubmIiopCdnZ2Pwf3QAy1GIxmvwA/Pz/MmzcPN2/eBIvFQmNjo0SmD3V1dUyaNEmidqUjoaioCLa2tqDRaAMmar7yyivgcrkSdSysqamRaafDgRAIBMNmYaekpEikMAiCQGtrK1588UVs2LABU6ZMgba2tqSiypSWlpZRMd1SiMa4URp8Ph+//fbbgKGqHA5HbhE8NTU1cHBwgI6ODgoLC9HV1TUi08xAb8jyxNTUFOvWrYO9vT0EAgHOnz8v0Y7B19cXOTk5IjWLkgYEQaCwsBBGRkaD1mDy8fFBcXExWS5GQUFB5FLiHA5H6m1rh2OwZMUnycvLk8jWn5CQgAULFmDHjh0wNDQc02/y6urqo1ppgGJoxo3S+Pbbb/Hiiy/2ixphMpn4+eef+zXlkRWNjY24cuUKuTgaGhqKHHr7b5hMJs6cOSNF6SSjt73s/Pnz0dDQIFFBRSUlJSxevBgRERFyqeJbWFgIS0tLtLa2wtPTc8BrDA0NYWtrS0bSTZ06FTo6OiKNPxqZ7mw2e0jfRm8IsbjOeYFAgNraWqSnp6O5uRne3t4jklPW8Hg8KnJqDDNulEZCQkKfpju9REZGyjW5jMfjoaysjPw8efJkREVFobu7W+Qxen0i165dQ1NTk9Syl0eKlZUVnJ2dkZiYKNH9hoaG8PT0xLVr12TacpXL5SIpKQmzZ89GXV3dkG1mX3jhBdy7dw8KCgpwcHAgi/KNRRQVFYcMfb179y6srKzEKvEhEAjwzz//gM1mQ1dXFx4eHtIQVaY8fPhwVMrtU4jGuFAacXFxsLKywp07d8DhcMDhcHD16lV89dVXKC0tHRWZemtR9XZl6+3lLQq9PhETExM4ODhIpSyEtFi0aBF6enpQVVUl0f1OTk6YOHEi/vnnH5m9rUdFRWHOnDlgMBjo7OwcdKcBPPbb0Ol0dHR0ICwsTOSIHHlH7gznzxAKhWLv4Do6OnDo0CH09PRg9erVY9ok1QuXy4Wrq6vcTYMUojMulEZubi6cnZ0RFRWF3NxcZGZmIjMzc9SK5ZmYmGD58uUwMDAAi8WCqakpdu3aNaQvQCgUIi0tDRwOB66urggJCYG7uzusra3FUjiyRlFREdOmTUNCQoLEY0yZMgWzZs3CqVOnpJ5k2ftd9Yac9lYxHornnnsO8fHx6OnpIZsMDQeNRhOp14q06OjoGLK2VX5+PmbMmAEWizWs36isrAxnzpzBDz/8AENDQ2zcuHHMOr176fU1tbW1QU9Pb5SloRiKcaE0gMflrkNCQuDo6IiCgoJRlaWurg7Hjh1DU1MTGblDo9H6VbN9EjabTSo9VVVVstJnVFQUAIypjNzewnIjCV+2srLCihUrcOPGDdy9e1cq4bh1dXVISkpCSEgIgMfFJEWxzz/33HOoqKjAjBkzRDabWVhYoKKiYkTyikN1dTXZunYg8vLy8P777+PSpUuIiooa8N+mrKwMf//9N06dOgUej4cFCxZg7dq148o/8ODBA+zYsWO0xaAYgrGzUg2DiooKfHx8kJiYKHKNHnlAEARoNBrmzZuHjz/+GHPmzOkXEtn7o+3t2taLq6srgMedAYuKioZsSCNPGAwGhEIh8vPz4eLiIvE4Ojo62LRpE27fvo3z589jwYIFEuVMtLa2IiEhAVwuFytXriRNRx0dHX1KuwyGqqoqnJ2doaSkBFNTU5FqUllbWyM3N1duJp3s7GwsXbp00PMMBgPW1tawtrbGu+++ix9++AGNjY2k85zH44HBYMDW1hZr1qyBmpqaXOSWFnw+HwRBgM1mk78LirHJuFAa2dnZWLJkCYChq9c+CZvNRlFRESorK/vkUqipqUFXVxeWlpYwNDSUylsYQRDg8/kwMzPD/v37sW/fvj7naTQaDhw4gO+++w4LFiwgj/fuOADAxsZmzCgNa2trtLW1oaamZkRKA3icozJv3jxUV1fjn3/+gbGxMaZNmwZjY+Nh7+1VFp2dnZgzZ06/vImSkhL89NNPIskRHByMw4cPY+nSpaDT6cPuokxNTftVJpYVZWVlmDBhwqAmpMLCQvj6+pKffX19sX37dgQGBpLFFNXV1UUOJx6rsNlsmJubj7YYFMMw5pUGQRCor68Xue1jV1cXbt26hba2Nri4uMDPz6/PW1drayuYTCZycnJQVVUFKysreHt7ixyKORSTJ0/G5cuX8cEHH/SrGDplyhR0dHQgPT29j0mFw+EgNzcX7u7uaGtrk1rJ8pGgoaGBxsZGlJeXY968eVJpyGNubo7t27ejsrISKSkpaGtrg6WlJYyNjaGtrQ11dXWyrlJnZyeKiopAo9Ewe/bsAZPs2traYGxsLHKP7jVr1uD48eMiV6yl0WhQUlKSSzmLhIQELFu2bMBzHR0duHPnDln3rLy8HGvXrsWuXbvGTNSdtCAIQiY9Syiky5hXGgUFBX0S4IZqV/rgwQOkpqYiICBg0IQvU1NTmJqawtnZGQRBoLS0FOHh4bC1tcXMmTNH1FdaVVUVBgYGuHjxItatW9fv/P/+9z989tlnOH36NHmsN5IKgFQUlzSg0+nw9PREc3MzqVilQW/bWSsrK/D5fNTW1qKlpYXs4kan02FgYAA1NTWsXLlyyAY8Dx48wJ49e0Se29raGjQaTSwl4OjoiHv37sm0aOHDhw9haGg44C5DKBTi8uXL+Oijj6CtrY26ujp4e3tj7dq1T6WzuKysbMjwaYqxwZhXGi0tLX2qcA7WwjM3Nxfl5eXYunWryE5lGo0GW1tb2NjYIDExEUlJSSOux+Pr64s333wTCxcu7PfWZGlpiYSEBPT09JAyPunXOHXq1IjmlibW1tbgcrnIzs6WmtJ4EiUlJVKBiAuLxcKdO3fg7+8v1n3BwcEoKCjo41caChcXF5w4cQKenp5SbX/aS0dHB1JSUrBp06YBzxcVFWHt2rXYunUrUlJSsHz5cqxateqpVBjA48TZrVu3jrYYFMMw5qOnoqOj+zg7B4rCaW1tRW5uLhYvXixRFBKdTsfs2bPR0tKCe/fujUheBQUFWFtbD9j3WV1dHV988QV2797d7zkIghjVDngDsWXLFjx8+LBPZd/RhiAIREdH49ixY2L/W69Zs0YsvxGDwSDb9Uqb7u5uREREYP78+YOWzCgtLcVHH32E/fv3Y9OmTVi/fv2YK2MuLYRCITgcjsjmRorRY8wrjaamJhgZGZGfBzJZxMXFISAgYERvgzQaDUuWLEFRUdGImwp5eHgMWDH2008/xYMHD3DhwgVER0cD+D/zVHh4+KiUSR8KXV1dGBgYSLWn+EgpKyuDlpYWGRghDt7e3jAzMxMr+s7b2xsZGRlDmkXFhSAIREZGwsvLa9Aw25ycHNjZ2eGtt95CREQENm/e/FQnvBUUFGDVqlWjLQaFCIxppcHn81FYWAhra2vyWGtra59rampqwOfzpRJ1QafTsXDhQsTGxo4ocXCwiKzjx4+jq6uLLBoHPC5YaGBggMLCwlFrZDQUpqamY2anweVyERsbOyIz3qefforo6GiRv2sGg4GgoCCEh4dL7d8nJiYG5ubmsLe3H/B8T08PHj16RAaBBAUFjcjXNhRCoRA1NTVIS0tDSkoKUlJSkJWVhdLSUpSXl8stgZbJZFL+jHHCmFYaUVFRCA0N7bODeDLklsPh4Pr1633CWEeKqqoqZs6cKXH9pV4GMp1kZmYiKyuL/A94HE7Z1NQEPT09uZV3FwdVVdUxYTYjCALXr1/HH3/8MSIfi6urK7Zs2YIbN26InK1ubW0NMzMzJCUlSTwv8PgZ0tPTweVyB3Wua2pqIicnB7NmzUJVVZXI/hdxqampweXLl3H06FHcu3cP2traMDExgYmJCRQVFdHQ0ICysjKcP38eR48eRUpKikwrSbNYrDFfSJHiMWPaEX7ixAn88ssvfY4ZGBiQFW0vXbqE0NBQqYfp2dvby6RlrK6uLlJSUkAQBJYsWYIzZ87ghRdegIODg9xKu4sLjUYDm80ebTHw8OFDzJo1i8wGF5WBdgf/+c9/4O/vj127doHP58PGxgZTp06FqqrqoG/0M2fORGxsLK5cuYKQkJB+IdXDUV1djVu3bsHGxgbz588f8BoNDQ1UV1cjNzcXNTU1CA4OFmuO4SAIAg8fPkR6ejr09PTg7e0NExOTYe/r7u5GYWEhwsLCYG5ujjlz5oj9/EPR3t4OGxsbmQQbUEifMa00Ojs7+4Wh9v5hZWdnw9jYWCbJQAoKCjAyMkJNTQ3MzMzEvp8gCOTn5+Prr7/Gjh07wGAw+vgraDQarly5gvr6eri7u2PJkiUi5w/IEw6Hg+Li4lF3vnK5XOTl5ZG7s6FgMpm4fPkyLly4gPb2drS1tQ3qaGYwGFBRUcGdO3dw8+ZNaGpqQkdHB6Ghof0WUxqNhoCAABQUFODYsWPw8vKCi4vLkM54giBQVlaG1NRUqKqqYvny5UOGVW/cuBHr1q3DlClTwOfzhww5Fhc+n48LFy7AwMAAa9euFStjXFlZGVOmTIGLiwsePHiAU6dOYenSpZgwYYJUZMvNzR2wGyfF2GTMKg0WiwUVFZV+bx+NjY1oaGhAXl7egA2ZpIW9vT3KysokUhqVlZW4f/8+BAIBwsPDSZPa119/jYCAAPI6Y2NjnDlzBh999BHee+89nDhxYkz5NZqbm+Hk5CQze7qopKSk4Ntvv+2XXyEUChEfH4+4uDjk5uaSZea1tbXh7u4uVnRVT08PWejv999/x0svvTRg1rqjoyNsbGxw584dHDt2DOrq6rCwsMCECRPAYDDA5XIhEAhQXV2NqqoqWFhYIDQ0dNgwWVNTU1y5cgVdXV1gs9lSNblyuVxcvnwZ06ZNE7u3+JP09l0xMzPDpUuXEBAQ0MffKClMJlOqz0shW2iECKtUe3s7tLW1wWKx5BYSd+LECQgEgn5x25988gmOHTuGFStWyLRyZ0dHB27cuDFgD4+haGtrwy+//IIFCxaQORgEQaC2thZFRUXo6upCV1cXtm/fjg0bNsDY2BjvvfceTExM4O7ujtjYWFk8jkSkpKTg7t272Lp1q0QtRqVBXV0damtrERER0ec4k8nEzp07oampCS8vL1RXV0ul6GNPTw8uXryIqqoqvPTSS0NGtPXWSqqpqQGbzUZrayu0tLSgpKQEPT09mJubi2RyEQqFKCoqQmJiIng8HrZu3Sq1SLrOzk6EhYVh9uzZAya80mi0IV9UBjvf3d2NkydPYuXKlSP6HXI4HOTk5ODGjRsSj0EhHURd58fsTiMiIgJ//PFHn2Pl5eV49OgRLCwsZF7qWVNTU6IOdA8ePICOjg4sLS3JYzQaDWZmZuSuRSAQIC0tDefOnYOVlRX++OMPLF++HKWlpVLb8kuDhw8fwsXFZdQUBkEQiIuLw4ULF/ocP336NA4cOABXV1fY2tqivr5ealWCFRUVsWbNGly5cgVHjhzBwoULYWtrO+C1NBoNGhoaI2rZKxQKcenSJejq6kJDQwNbtmyRmr+gp6cHERERmDdv3oA7ZhqNBkNDQzQ0NAw6xmAKRVlZGQsWLMC1a9ewfv16iWUsKyvDzJkzJb6fQv6MWc9Td3d3P/vv6dOnUV1dPeiPWNqIG27IZDJRXFwMDQ2NIWPqFRQU4OzsjPnz56Orqwu+vr6YP3++yL0e5EVTUxOcnZ1Hbf6MjAwsXLiQlKGqqgovvvgifv/9dyxcuBCWlpZidUwUh8WLF2Pu3Lm4cOECrl27JpNgAKFQiOTkZKxZswb5+flYuHChVB3McXFxcHJyGtTEShDEkApjOIyNjaGurj6ivKaKigq8/fbbEt9PIX/GrNIYiJ6eHpSWlg5YwE4WiBvNUVpaCkVFRbHk8/T0xJIlS3Dx4kXU1taOKZ+GiorKoE5kWcNisdDY2Iivv/4aAJCWloZ169aBIAjMnTtXLpE2U6ZMwZYtW9DQ0IAzZ84gPT0ddXV1UumBLhQKcfv2bWzatAkxMTEICgqSqum3oqICTCZTZiG7vQQFBSEuLk6iv1uhUIienp5xV8b9WWfMmqcG+iNsa2uDtra23BoWiVs2vbu7G5WVlVizZo1Y9zEYDISEhIgdTipruru7pRrBIyq9pULOnj0LBQUF7NmzB7GxsQgKCpJ7G1YjIyNs2bIF0dHRqK+vR09PDy5fvgwDAwPQ6XSoq6sPGyigpKQENTU1KCoqkteWl5dj9+7d5P2Ojo5Sk7m7uxvR0dFYu3at1MYcDDU1NZiZmaG8vFzkStS9lJaWDtlDhGJsMiaVBovF6qcY6urqUFBQADs7O7nIwOVyxX6bLSgogK2trVRNDKNFr59gNDoKlpWVYcaMGXBycsLzzz8PJpOJRYsWyV2OXuh0OoKDg1FWVobW1lZ4enqip6cHPT096OrqGvYtm8Viobm5GTU1NTh27Bg0NDRgaWkJOzs7PPfccyPuWfJvYmJi4OPj08eZzmAwoKamBhqNhpaWFqnO1xuKK67SqK+vx/vvvy9VWShkz5hUGuXl5f1s6efOnUN1dTWCgoLkIkN9fb1IjYKehMPhyLSMtjy5f/++2IuANBAKhcjKykJ8fDz27NmDkpISzJ07V+5yDISNjc2IvpM7d+7g8OHDfZo7tbe3S9Xc2tjYCCaTidDQ0D7HuVwuuFyuTF5o9PX1JVJEra2tEoW0U4wuY9Kn0dtC9UloNBoZEiYPKisr+0RAiQKbzRYpw1aeSBq6ef/+/VHpolZTUwMLCwu8+uqruH///lNVj8jLyws1NTVk9r9QKERJSYlUd3OpqamYPXv2oOdlETggicmwu7t70D4iFGObMak00tPT+2VIh4SEyNUpW1dXJ5YCYDKZoNPpY86pJ2ndKB6PJ3WziSgkJyejsLAQQqEQPj4+T11pCRsbGzIXJz8/HyYmJlJpOQw83k00NzePytu7ONFlNBoNnZ2dQyo3irHLmPxFXr16tV+GqKKiokxKQw+2KHV1dYmVnyAQCODo6ChSqYuxTllZGTQ1NeWuAOPj41FQUIDAwEA4OTnJdW55YWhoSLZuvXTpklQbKhUWFo6KogfE220QBIH79+/j1VdflaFEFLJizCmNxsZGqKur91uw8/PzxfYxDIeCggJsbW37mcK6urrEjhqqrKzEyy+/DA6HMyar1YpDc3Nznx4m8iA3NxfZ2dnYtGnTqJjF5IWCggKEQiG6urrw+eefY/LkyVIbu6SkZESJhiNBnB0hn8+HoaEh1Q98nDLmlEZaWtqAduxHjx5J3TwlEAhQXFzcL/qloaEBBgYGYo3F4/Hg5eWFq1evIjExUWZJZ/Kgo6MDAoFAbvPx+XwkJydDQUFBbtFxo0VNTQ20tbXx8ssvY86cOVKt68VisUalz3xnZ6fIDnZtbW00NjbiP//5j4ylopAVYy56SigUDvgHmJmZKbcfREFBgcRvgFpaWjh8+DDmz5+Pl19+eUyVBREVDocjVwfl1atXQaPRsHLlSgCPlXlVVRXa2tr6XKeoqAh9fX3o6OjIPV9DWpSUlGDevHkoLy/vU7xypDQ1NY1aq9TW1laRTcd6enooLS19as2PzwJjTmkMRmNjo8ThjsMVZXuS6upqtLa2jqjRT2BgIH788UdERkaOuxDczs5O6OrqoqurSy7z3bt3D0wmE3p6ejA2NkZaWhru3bsHa2trmJqa9nkTZ7PZyMvLQ3V1NVRUVODk5ARHR8dRy1oXl66uLqioqODPP/+UelJbXl4eWSBT3vRWF/43mpqa6OjoIJVZd3c3FBQUMHfu3FGvnEwhOWNOabDZ7AFDEFVUVCQu3yCqwmhtbSUzaUf6R/3888/j6NGjIxpjNHj06BG8vb1RUlKCO3fuwMvLS2Zz1dfX49q1a1BQUIC7uzv+/vtvMqFvOBt5e3s78vPzcfz4cTg6OmL69OljXnncvXsXra2t2Lx5s9RlZTKZo9b5rqamBr6+vn2OaWlpob29Hfr6+mhubiaPnz17Fl988YW8RaSQImPOpxERETFg9q++vj5qa2v7HafT6UPaU0Vd/AmCwLVr1zB//nyJSmf8WzHRaLRx+TZVX1+P4OBgHDx4EF1dXYiNjZXJrkMgEODq1avo7u6Guro6GhoasHbtWvj6+orkVNXS0oKPjw927NgBTU1NnDhxAvn5+VKXU1owmUwkJyfD399fZqa10fh7IwgCjY2N0NfX73O8vb0dAKCurg5PT09oa2uTv4nRivCikA5jTmm0trYO6LuwtbVFSUlJv+NCoRDd3d2DLjSiJk7dv38fxsbGEkcNNTQ09In6KS0tlZuJR5p0dnbCxcUF+vr6iImJwfvvv4/r169LfUGOiopCTU0NrKyssG3bNoSEhEiUiEin0+Hm5obNmzejvLwc4eHhcnXii0pqairU1dUH7GkhDeh0uthVmaVBZWUlTExM+iisJ1+6KioqcO/ePbBYLNy5cwdLliyRu4wU0mVMKY329nbo6OiATqeDw+EgLS0NHA4HwOP+2ioqKqivrx/wXqFQCOBxcbgnEcWk1draiqysLImzj3t/rE8qu717947JFq7DoaOj0+c5QkJCEB0dDQaDgfj4+BFX4SUIAuHh4cjJyYG1tTU2bdoklaKIvf0d7OzscPny5TGlOFJSUgAAs2bNklktL2Nj4wF34rKEIAgkJCRgxowZ5DE/Pz+y+KK2tjZ0dHTIwpc1NTXYsmWLXGWkkD5jSmkIhUJyAcnNzUVUVBRyc3PB4XDQ3NyMoKAgXL9+nVQQAyGu36O1tRURERFYsWJFP4UjKtHR0Vi+fDn5OSEhAdXV1X1i5iXJbB6NkiQDLWqGhoY4duwY1qxZg99//13iHVR1dTX+/PNP5OXlQV9fH2vXrpVaNnQvzs7OsLe3x/Xr16U6rqR0d3cjOTkZ7e3tUs3J+DeGhoZgMpkyG38gMjMzYW5uTkZOmZmZwd3dHZWVlQAehwD3/lZtbW1hZGQ0KgUwKaTLmFIaT+Lq6oqQkBC4ubkhISEBADBhwgRMnToVV69elUrfibKyMly+fBnLly+XOMS0vr4eysrK+Oijj9DZ2Ym1a9fi3XffxaxZs/pcN5SiGwx5lyUXCARDzrlz504cPnwY169fx61bt8gaSqKQlZWF8+fPw8TEBA4ODggODpaZ43rKlClQV1dHcnKyTMYXhxs3bmDXrl0wNTWVafVjPT091NXVyWz8f79QdXV1ITc3t8/uvKamBlFRUWhpaSGTc3t9GydOnMCKFStkJh+F/BhTSqOuro7Ma1BVVYWPjw8YDAby8vLIa6ZNmwYNDQ1ERUVJbIJgs9kIDw9HVlYWNm3aJLHCqKurQ05ODq5cuYLnnnsO06dPh5qaGhYsWDDinBIDAwMsXrwY7u7uIxpHHAoKCjBv3rwhr1mxYgUyMjLw8ssvIzMzExEREUhPT0dra+uAipzFYuHkyZNISUnB7NmzMWXKFNDpdFhbW8voKR4zd+5cVFRUjKgz3UgpKiqCr68vJkyYIPMMey0tLbBYLJmN/+8d/PXr1xEUFETuoH18fBAQEICQkBD4+vpCRUWF9PExGAwyaoxi/DOm9orHjx/HqlWr+hyrq6vrV3Rv7ty5yMrKwokTJxASEiKyGYcgCDx48ABpaWkICAgYkVOyvr4ekZGR+N///kfKsHr1aqkV2GtqagKHw8G8efPQ0NAgF3s1h8MRqdgdg8HAxo0bERAQgH379iEpKQlZWVngcDhwcXGBhoYG+Hw+CgsL0dbWBnt7e4SEhMDAwACnT5/G/PnzZf4swON8mfj4eLGbYkkDoVCIqKgoFBUVYdasWX3Ml7KARqNBVVUV3d3dMu/nkpOTA01NzT6KX1tbG66ursjNzUVxcTFaW1shFAphYGAAa2trNDQ0jPmQaArRGDNKg8lk4t69e31iuDkcDv7+++8Br582bRpsbGwQExMDPp8PDw8PTJw4sc82miAIcDgcNDY2oqamBoWFhbCwsMDmzZtH9MMSCoX466+/4ODggLNnz2LOnDkSlyAfikuXLuGVV17Bpk2bsH//fpm3gq2rq+tXKHIwhEIhNm7cCEtLS6xatQpsNhulpaUoLi5GR0cHCIKAt7c3HB0dyRBTDoeDnp4emRSeHAgjIyPQaDRUV1fLvZ5VY2MjQkJC8PDhQxgZGcmlMVevM1yWu7iamho8ePCA7AqorKyMWbNmwc3NDTk5OYiKioKVlRUIgoCmpibKy8uRmJiITZs2yUwmCvkyZpRGfn4+vL29+4TuZWZmDlnDacKECVi1ahVaWlpw//59pKen93G09fT0gMFgwNDQEIaGhtiwYYNUYuSvXLkCDQ0NBAUFyay0iYqKCllWQ1VVFa6ursjJyZHJXMDjCDCCIESu7Pvll19CS0uLzNLX1NSEq6vrkFnJlZWVMgs5HYyQkBBcunRJrlE7BEEgLS0Ny5Ytw9tvvy23pDtbW1s8fPhQZkqjsbER0dHRWLlyJfk76+7uhpKSEhgMBlxdXVFeXo7CwkKEhITAwcEB58+fR0JCgtx2lxSyZ8wojd9//x0ffvhhn2ONjY0i3aunpwd/f38ZSNWf/Px8FBYW4pVXXhFpd0Gn08VygmtpacHFxQV+fn6kgmMymaiurpZYZlHg8Xgi1wO6e/cuIiIixF4IioqKMG3aNEnEkxgtLS1oaGigoaFBbpV7b968iZ6eHjg5OSE1NVVu9ccsLCwQHR2Njo4OqVeQbWxsxPXr17Fy5co+f/cODg5wc3MDh8NBZmYmDA0NYWZmBjc3NzAYDOTm5mLnzp1PXV+UZ5kxozSamppgb29PfmYymX0c4GOF5ORkTJo0SSSFQaPRyFLYouDh4YHFixcDePz858+fh0AgQGdnJ1paWqCvrw8FBQWZOHdFDSpITEzEa6+9hnnz5omdgdzc3AxTU1NJxBsR06ZNQ25uLoKDg2U6T1NTE8LDw+Hh4YEvvvgCu3fvRkhIiEznfBI6nY7AwEDExMRItbbVvxWGgoICvL29wWAw4OXlBQaDgcTERMTExAB47N9wcXFBSUkJKioqsHr1aqnJQjH6jAn1TxBEv3j9S5cujZI0Q0Oj0YZ9i9PT04Oenh4IghA5b8TDw6NP5NK1a9dQWlqKiooKtLS0wMDAABs3bpRJbgPwuPrqsmXLhrymsLAQu3btwoIFCyTy4YyWI9TS0pLMHZAFfD4f0dHRiIqKwvnz5zF37lzs2rULs2fPlnsjK2traxAEgYKCAonu//eLwJMKQ0tLC3p6epg2bRqZsNi7G34yd4fFYuHo0aN488038eOPP0r4JBRjlTGx07hx40a/7OnRDJUcira2tmETlFpaWsQac+fOneju7saBAwcQGxsLVVVVcDgctLS0oKmpCZ9++inpj0lMTJRJtjNBEEM6i1tbW7FlyxbMnTt33EXB0Ol06OjooK2tTeo+qKamJsTFxWH79u1YvHgxgoODMWnSJKxevXrUao8tWLAAly5dIosYimMaejLY4t87jBdffBFGRkZITEwE8FhZpqWlwcHBAYWFhX3GiYqKgoWFBWxtbaXzUBRjhjGhNM6cOYMvv/yS/MzhcMZUGYhe6urqoK2tjYKCAri6uo4oCojP5yMvLw8lJSVISkoiQ3bff/99crEhCALbt2/HjRs3sGXLFnA4HPKNWVtbW6Zx+f9mw4YNcHV1HZf9QYDHTuKioiKplaoXCoXIyspCS0sLrly5Aj6fjzlz5mDBggWwsLCQyhySoqysjDVr1iAhIQGnTp1CYGCgWGZBHo+H9PR0lJaWYtWqVWTQh7KyMhktqKSkhPb2dkRFRSE+Ph5cLpe8v7m5GVVVVQgPD5fF41GMMqOuNIRCIaqrq/v8UWdmZo5JpdHQ0IAPP/wQCxYsgKOjI3799VdUVVWJJSuHw8GDBw+Qn5+PZcuW4bXXXkNAQMCAb6U0Gg1Hjx7Fe++9h8uXL8PMzIxs6WlkZERmyssSoVCIt956CxwOZ1T8EdLC3Nwc6enpUhmLz+fjwIEDeOONN/DFF1+gtrYW06dPx5o1a2BoaCiVOUYKjUbDnDlz0NbWhqioKCgqKsLLywvm5uYD7jyEQiHq6uqQnZ2NpqYmTJs2DZs3bwadTsfOnTthZGSEH3/8EW1tbaivr8fkyZORlZUFAH0URm89qkuXLo3bRlkUQzPqSiM/Px9OTk7joox4RUUFNmzYAG1tbYSHh+P999+Hs7MztLW1oaenRz5DY2Mj8vLyyOKKPT09EAgE6OrqgpmZGTZs2ID9+/eThd2G45133sGyZctw48YN0kfi4uKCxMREmeZucDgc7Nq1C3l5eVIJmZS0H4o00NfXJ0tajAQej4e///4b7777Lj799FMAjxtJubi4jBmF8SQ6OjpYu3YtamtrkZubi9u3b0NRURFqamrQ1NSEUChEc3MzeDwejIyM4O7u3sdMaWJiQkad9XZSZLFYSEtLG3C+3Nxc+Pv7j1qvcgrZM+pK49q1a/3KJY/29n4geDwe1NTUyJIjwcHB8PDwwOHDh1FdXY3IyEjw+XyUlZWhp6cHBgYGZEKXhoYGtLS0oKKiguLiYqSnp2PdunUiz62vrw9PT08ymiwmJgZFRUVQUlKSWS/yc+fO4fPPP4eTkxPmz58vlZBJOp0OgUAgE0e+KIxUwZaVlSEyMhL//PMPAgMDyeOKioqjqhBFwdTUtM9Osb29nazOrKurO6ifbsmSJUhLS4OrqyvpaxsMFotFNsaieHoZdaVx69YtvPLKK+RnDoeDsLCwUZRoYDIyMvDJJ5/0Oaavr4+33noLTU1N+PDDD5GZmYlly5YN6fzz8/NDUVERLC0tkZ6eDk9PT5EW5I0bN+Lrr78my1DLKm+DIAhs2bIFOTk5WL58uVTj642NjVFVVSXzulMD0dzcLHGNMS6Xi+TkZJiamuLhw4f9WpsGBATg66+/RlxcHPz8/EZNKYqDqP3Ey8vLERUVBQBYunQpzp49O+B1PB4PJ06cwKlTp6SeI0IxthjVkNuioiKUlpZCQUGB7J2RmpoKNps9mmL1g8vloq2trU9IrFAoxIkTJ2BqaooXXngBmpqaeO6550SKFrG3t8drr72GXbt2YebMmfj1119x5syZQXuFAICXlxeqqqpw7do1qTzTvxEKhaDRaAgPD0dpaSmWLVsm9YSsiRMnDthISx40NjYO2Md6OGpqanDx4kXs3r0bZ8+eHXAMBQUFREdHY9euXYiMjERUVBRpyhlvPPlvPnv27D7VppOSkga9LykpCd99953Mc2EoRh8aIcKevb29nYzWEfUNRRT+97//gcfjQVVVFXw+HxMmTIBQKBxzP7iqqiqYm5tj3759AIDa2lrs2LEDDg4O0NTUlLhHgFAoJMNqu7u70dHRAUVFRZibm+P555/vV1aFy+XC29sbgYGBEr81D8aVK1dw5coVBAcHY+nSpRL3FhkKoVCIv//+G6tWrZLq35EoxMXFwdLSUuQyJkKhEFeuXEFHRwdu374NS0tLkee6ceMGduzYgeDg4FHZVUmKubk5WlpaSBOUlZUVtm7dSp7/6quvBuwOWFlZiYaGBkRGRspLVAoZIOo6P6o7jYyMDLDZbNIe3NraOuYUBo/Hw/nz57F+/XoAj9vCLl++HJ9++inmz58/oqYydDodBgYGcHJygpubG/z8/LBjxw7s3r0bR44cwezZs/Hhhx+ioqICwONEquPHjyMuLg6tra3kOCPtu8Hn89HZ2YnXXnsN06dPl4nCAB4/b1BQEG7duiWT8YeiuroaxsbGIl1bUVGB//73v/Dx8UFhYaFYCgMAQkNDcefOHTQ0NODq1atkFJG2tjaZ8T8WUVZW7uOzaGxs7PN5oPfL2tpa5OXl4ejRo3KRkWL0GTWl8ejRI9y7d0/qb8zSpqioCKtXr4aDgwMSExPxwgsvYMaMGSgsLBw0gmQk5Ofn48KFCzAzM0NgYCCqq6uxZMkSLFmyBOfOnYOrqyu+/fZb/PTTT1BXV4e2tjamTJkCPz8/iefszT+pqqoSe4EUl97xa2pqZDrPk7BYLNBotGGzswmCQEZGBrKzs5GQkICff/5ZYhOdqakprl27hvfff598Q9+8eTMmT54sl4q34mBmZobZs2f3K4vfW08qLS0NdXV1/YIuWlpaEB0djatXr0pk+qMYn4yaeWrx4sVQUlIasirqaGNhYYGffvoJ169fh4GBAZYsWYKAgAC0t7dDRUVlwK26rOBwOEhPT8eECRPw008/IT8/H++++y4WLVoEOp0+YFauqGRlZSElJQXr16+Hvr6+lCXvT2NjIxISEvr1TpEVkZGRcHZ2JivyDkZKSgpmzZqFjz76SKwQ8Pz8fMTGxgIAZsyY0a9xVkdHB1566SWcOXMGL774IvT19ceM4ggKCsLMmTMBgPQp5ubmor29HQwGA25ubkhLS+tXeLOurg6pqak4ffo0nJ2dR0t8Cikyps1TQqEQtbW1mDp16mhM34ehzEspKSnYuHEj2SMbePzFKioqylVhAI9NUP7+/tDT08PSpUtx6NAh+Pv7Izc3F6qqqkM60YcjJSUFgYGBclEYwON+1t3d3SJXMR4JLBYLra2twyqMjIwM2Nvb4z//+Y9YCoPNZmPbtm1ISkpCSkoKdu/ejY0bNyI5OZk052hqauL06dNob2/HrFmzcOPGjTGRvKqsrEwqDODx35ivry9pkuJyuWhsbISamlofhVFUVIS7d+/i+vXrlMJ4BhkVpXHlyhWYmJiMiYS+np4eAOj35icUCnHr1i1s2rQJHR0dOHjwIKnkeu8ZDczMzLBgwQKoqKjg/PnzaG1tRUJCwohKinR1dck9GSs4OBhRUVEyTU4UCoW4du1an5yKgaiqqsLNmzfx3XffiT3HJ598AltbWzg6OsLe3h7+/v7Q1dXFO++8069jYG+E3cqVK3HixAmx55ImNBoNGzdu7HOMw+EgPDy8T85JaWkpmdzX3d2N+Ph4aGpqIikpaVxXCKCQnFFRGhkZGQNGlYymEjEwMICfnx9pc7937x7eeustGBoa4pNPPsGUKVPGjEkBACZPnoz169dDU1MTV69eJUs6iEtZWRlUVVXlnlugr68PIyMjFBUVyWyOpKQkWFpaDtnCtqmpCbm5uairqxPr37empgbbtm1DTk5On5L+vcENwcHBqKmpwdKlS/sELQDABx98AOBxDsRoQKPR8NJLL/XzX+Xm5qKwsLBfYEV5eTm6u7tx6NAhvPnmm/j1119lFixBMfYZFaURGxsLPT098rOenh7ZIlLeoZi91NTUQElJCXZ2dvDy8gKTycRLL72EiooKZGRkwMbGRioLK0EQqKurQ3p6OsLCwnD8+HGcPn0af//9Ny5fvozi4mKRTRdqamqYPn061q5di+joaDx69EhseeLi4uDp6Sn2fdJg5syZSEpKkrqpRigUIi4uDjwej0yGHAgej4crV67g0qVLIpvm+Hw+Pv74YyxcuBBKSkrw8/Mb8GWHTqdj3rx5UFVVRUBAQL9S5ZGRkYiIiJBKaRNxMTc3H7AhlaurKxwcHPplfTc0NOD06dMICwsb09FfFPJB7hnh+fn5oNFofaJSniwlLu8fkYmJCVRUVMjSJTdu3CAXcIIg8Oqrr5IFBUeyuPF4PGRmZpI9o21tbREUFARtbW3QaDQIhUIwmUzcvXsXcXFxcHNzg4eHh0iKavLkyUhPT8eVK1ewc+dOsQrFtbe3i1wDS9qoq6vDxcUFSUlJmDNnjlTG5PP5uHr1KoyMjDBnzpwhd693797FJ598Mmz/cIIgcPv2bZw9exZpaWlwdnbG0qVLh42sotPpmDx5MszNzbF582ZMmDAB58+fh6amJpydnfHVV1/h9OnTcus62ctg/h1VVVXMmTMHzc3N5G8yNTUVysrKKCwsHFM7bYrRQ+47ja+//nrA2lLy7h3dS2trK8rLy6GmpgZbW1vExcVh7969cHNzQ0hICBQVFUe0w+DxeIiPj8fx48ehoaGBLVu2YPHixXBycoKOjg65qNHpdOjp6SEoKAg7duwAj8fDyZMn0dzcLNI8mzZtgoaGBk6ePCmyn4DD4aC7u3tEJd5HyvTp08Hn8xEeHo6Ojo4RjdXQ0IBTp07B3t4evr6+QyqMmpoaVFVVYfPmzYNeQxAEoqOjMXv2bOzfvx/KyspYuXIlnJycxArF1dTUxMKFC2FhYYE5c+Zg//79IAgCW7duRXFxMbKzs8V6zpEwY8YM+Pr6Anj8799biaGX+Ph4UmGUlZVBKBQiPDycUhgUJHJXGk1NTaSNWUFBgXzrqaurI3+I8uwnzOPxoK2tDSsrK/znP//BZ599hp07d2Lp0qUwNTWFm5ubxGMXFhbi+PHj0NbWxo4dO+Dq6iqSLZhOp2PWrFlYtGgRrl69KlKUkaKiIpYuXYqmpiacPXtWJMXBZrOhoKAwqr4kGo2GoKAgTJkyBRcuXMCtW7fEjkzrza+4efMmli5dOmyv856eHly8eBHXr18fMHqOzWbjr7/+gr+/P/bv348ZM2ZgxowZMDIyGtHfprm5ORYvXoyEhAS8/PLLUFRURHFxMcrKymTeAx4AlJSUMG/ePHInmpubi6ioKOTm5pLXhISEQF9fH48ePcLp06fR0NCAvXv3ylw2ivGD3JVGY2Mj6bcQCAQwMjLChAkTUF1dTYb1yTtRiMVi4YMPPsDdu3dhbm6OuXPnwsDAAJMnT5ZovK6uLoSHh6OgoACbN2+Gm5ubRIuNnp4eVq1ahStXrohUj6vXAdvZ2SmSk7WwsFDkLGlZM3HiRGzZsgUmJiY4fvw4UlNThzQHCoVClJeXIy4uDn/99Re4XC42btwo0q7p7t272LVrV78db3p6Ot577z2EhIQgKioKM2fOxIwZM6TaspVOp8PT0xP19fV4+eWXwWAwcOPGDURFRclccfw7f+TJulK9MBgM2NnZITk5GZ6enlixYgUuXryIN998U6aRbhTjB7kn93l7e2PBggXk54E60CkpKcm11HR+fj7Ky8vh6uqKrKws+Pv7S/ScBEEgOTkZRUVF8Pf3l5rJraGhAVFRUVi5ciXU1dWHvJbL5eLQoUOYM2fOsF3qEhIS0NjYKLckO1ERCoXIyMjA/fv3YWZmBkNDQxgYGKCzsxNNTU1obGxEZ2cnzM3NYWtrCwsLC5HNJ42NjcjOzkZycjKSk5Oxb98+smS7srIy3N3dQaPR5NLS9u7du2AwGDh8+DAEAgECAwOxcOFCmfQVt7S0xPr164f1d6WlpeHq1as4cOAA3n77bVhbW8PS0hJRUVFwcHDA888/L3XZKMYGoq7zcnWEEwTR542bTqcPmF8gT4WRnZ2N2NhYWFtbQygU9uvtIQ5xcXFQVFTE1q1bpWpiMzIyQkhICMLCwrBu3bohFzQGgwFra2vcvXt3WKXR1tYGTU1NlJSUwM7OTmryjhQ6nQ4fHx9Mnz4d9fX1aGtrQ3l5OVRVVWFlZQVPT09oaGiIPW5XVxeuXr2KgIAALFy4EARBwNvbm/w+5f2y4u7ujszMTHh5eeGrr77CBx98gP3792PZsmVSn0tZWVmkAAlXV1eEhYVBW1sbs2bNgqqqKjw9PeHr64ulS5di3rx5sLKykrp8FOMHuZqnoqOjycVptEuItLW1ISwsDDExMfDx8cHixYslbv7Uu8Po6OiAn5+fTHwyRkZGmDp1Ku7cuTPstQsXLkRbW9uwjmVVVVVcu3YNLS0to1ayfCjodDpMTU3h5ORE7pxsbGwkUhg8Hg/Hjx+HsrIyCIKAh4cHQkJCoKKiAjMzM6irq/cJA5cXnp6eeO655/D999+DTqeDTqdLFDo9HAsXLiT/n8PhIDExEYmJif3Ca9lsNu7cuYOlS5dCVVUVMTExSEhIwJUrV/Daa6/hyy+/lLpsFOMLuSqN3kU1ICAAfn5+mDp16qg4YSsrK3Hy5Emw2Wxs3LgRM2fOHFF0SGxsLAQCARYtWiRFKfvj6uqK/Pz8PiUdBkJNTQ1mZma4cOHCoNdwOBz09PRAR0cHly9fRlVVFaqqqqQt8qhDEATS0tLw66+/wszMDOvXr4e1tTWUlZXB5/MREBAADocDNps9olIsI0FBQQHBwcF49913sWLFColriA2GiooKdHR0yM+5ubmIiYlBTExMHyc4ALz22mvYvHkz+Hw+8vPzAQAPHjxAYWEhKisrERcXR9bZong2GZXkvqqqKsTExODq1atyda51dnYiIiICra2tMDY2xuLFi2FiYjKiMcvLy8FkMjF79myZR33R6XRYWlqKtLgvWbIElZWV4HK5A55vampCSEgIgMemi8jISJSUlJAtZZ8GOjo6cPr0aTQ2NsLMzAwLFy4kw6cVFRVhY2ODtLS0fhnbo4GCggK2bduGsLAwqdc1+3d9KFdXVwQEBCAgIKCPE7yurg6FhYVoa2sDj8cjlWjvjrW1tRXfffcdvv/+e6nKRzG+kKvS4PP5qKqqQnFxMQDAzs5ObiaBxMRExMTEYMuWLWCz2Zg5cyYmTJgwojF7enpw+/ZthIaGSknK4XFzc0NOTs6w12lpaUFdXX3Qa1taWvqU19DQ0CBrgmVkZEhJ2tGjo6MDFy9ehJeXF9hsNuLj4+Hg4ACCIDBp0iT4+voiPz8fXV1doy0qiYLC/2vvvOOauvf//0rCChsJW2QZUYYMQRHEIgooKri3ddz21rZqbXt7Wzus3g5H661tb6vW1lW3INoiigNEFFABRUD23pswEiAh5/eHv5wvYUhCBtie5+PhQz3J+Xw+Wed9Pu/xejMwbdo0ZGRkyNV4906eYDKZ8PX1ha+vr1ic44svvsBXX32Ftra2PhmMbDYb/v7+mDlzJlRUVMhdCMXfD6UajcjISLi6usLLywtjx46FhYUFeDxev02E5OW2am9vx40bN2BsbIxHjx5BKBRi4sSJMu8wAOD27dvw9PQcNKNJnhgbG0ssTmhnZzegy+XGjRv9Cup9//33cHBweKkNR2FhIS5duoSQkBDcvXsXa9euBY1GI3e1lpaWI1Y7icViwc/PD3/++afcxqTRaGJFfD2L+pqamnDu3Dncvn0btbW1mDNnDtmUSwSdTiddyhoaGti+fTu+//57ua2P4uVCqdlTdXV1yMjIgKGhIRoaGlBSUgI+n9/HQBgYGKCtrU3iTBZjY2Ooqqqiuroa3d3dZNoYn89HeHg4Tp8+DS8vLzx58gR37tzB6dOncfHiRbIj3lBIT08Hn89Xurw7nU6X+IJnY2ODBw8egCCIPu/x5MmTxfzcImg0Gvbt2wd3d3fU1NT0q1E0kuHz+YiPj8f+/fuxd+9erFmzBgKBAFFRUcjPz4ehoSGcnZ1BEASys7NRWVkp1fgiWf/CwkJUV1ejo6MDKioqEAqFYDAYsLKyIqv9h8qUKVNw+/ZtpKenw9nZecjjAIC+vj4ePXoEHo8HPp8PX19fsqivoKAAzc3NqK2txddff42YmBgAQH5+vlj9jlAoRHh4ODZu3AgmkwlPT0/s2rULpaWlCm/aRTHyUKrRUFVVFWsWZGxsjObmZujp6Yn9eJuamqQat7u7G9ra2uju7oaRkRFWrVqFyMhIrF27FsnJyZg0aRJiY2Oxa9cunDlzBlpaWhLLc/RHeXk50tPTsXTp0iGPMVS6u7slNqY0Gg3m5ubgcrlS7YZoNBoOHTqEBQsW4J///KdSK/RlJTc3F8uWLcOBAwcwevRo+Pn5QU9PDzweD/n5+WhoaEB2djY4HI5EBqOrqwstLS0oLy8nL7IWFhawtraGh4cHmEwmaZBFc1y/fh1cLhc2NjZwd3eXujulmpoabG1tkZycLLPR6Nk+WSAQgMfjgcvlQl9fn8yYKy0txauvvkqKNpaVlfUpbK2vr0daWhq8vLwAAJ9++inefvttnD9/XiF1JRQjF6UaDRqNhtDQUCQmJqKqqgpz586Fvr4+mpqa8NNPP4lVAGtoaAwYxO1NQ0MDuFwubG1tMX/+fJSXl+PkyZPIz8+HnZ0dLly4gC1btiAjIwMqKio4d+6cRBXW/dHV1YXo6GgsX758WFwcHR0dUqWcWlpaoqamRupCwylTpsDT0xPFxcVi5/Z084w0HBwccPPmTRAEgcbGRsyYMQO1tbUICgoCj8cjJUNcXV1x6NChF47V0tKC6Oho8Hg8GBsbQ19fHzNmzHhhHIzJZMLZ2RnOzs7o7u5GXl4erl69CnV1dVKcUlLs7e3l7iIkCALJycmIj48nj7W3t6OkpITsJZKdnd3v56upqSkWNPfy8sLs2bNx+fJlrFq1Sq7rpBjZKF3lViQV3RMDAwOxL6qqqqrEBkMEj8eDqqoqOBwOVq9ejejoaIwaNQpbt24Fn89HeXk5VFVVce7cOeTk5EBFRWVIzZRSU1Ph6uo6pFoBeVBbWytV8oCLiwuSk5OHVJ3+66+/Ys6cObC2tiZ3G66urnj8+DH09PTA5XKVWgw3EJqamuByuTh+/Di6urpQVFSExYsXg0ajkcF+UfAXeO5afFFcqL6+HpGRkQgMDBxyoyEGg4Hx48dj/PjxqKioQFhYGCZPnizxzsHJyQnx8fHo6OiQSrX4RTx79gxsNhvA8wpxBoOBAwcO4Pbt26T8SlpaWr8y8S4uLn3WsXjxYixduhQrV64cEQ3VKJTDiPE79LwIS3Ih0tLSIrV0zM3NwWaz4efnh61bt+L48eNQVVXF2rVr4ejoiFWrVpHFTF5eXjAyMhpSDwmCIJCZmQknJyepz5UX1dXVUmlzDfRjluRHbmxsjPXr1+PBgwdgMBhYtWoVAgICEBQUhE2bNg1aLwI8V1UVpfZKc2GRVEjR09MTmzdvhoWFBeLi4kCn07Fw4ULQaDTY29uT/TSqqqrw008/4dy5c7h06dKA4/F4PFy+fBmLFy+WW2c6CwsLrF+/HoWFhXj69KlE52hpaUFHRwfp6elyWYOqqioaGhrQ0NCAoKAgrFy5Erdu3cKmTZvE9LoOHDjQRyqfwWBg+vTpfcY0NTWFtbW12M6F4q+P0nYaRUVFpNRyfz5yMzMzqXppcLlcBAQEwNjYGK6ursjKysKCBQuwc+dOWFtbY8WKFdi+fTs0NDQQHR1NnsdisVBfX4+6ujqpX4MoQKgMXaKBKC0tlSrFV11dvd+7aknjFG+99Rbi4uJgaWmJ6upqVFdXw8PDAzweb0A3FZvNxpw5c3Dt2jUyOGxra4umpiYyXsVkMqGuri7mczcwMEBTUxN0dXXR0tICLy8vpKSkvPAmwtvbG0wmE++//z7Wr1+PCRMmwNraGrq6uvD09CTvji9cuIDm5uYXxrIaGxvx559/Ijg4GDo6OhK9P5LCYDAwf/58nDp1CiYmJhIlGJiamqKkpASenp5DmlNLS4t0w5qYmEBLSwuzZ8+Gvr4+qqqqUFVVhddff518vsg11Tv+paqqOuBnvXv3boSGhiImJkbq2A3Fy4nSdhp79uwBjUZDQEAA9u7di8LCQjLdr7i4WOoqWNHFwNPTk1Th3L9/Py5cuIB169bh448/BoPBAJfLha+vL7y8vEiDMRRE/ZF7u9aUiUAgQFtbm1Q/Tltb236LxSTtEcJgMPD7778jLCwM3377LaKionDs2DFcuHBhwJ2GpaUlcnJykJeXh/j4eERFRZGfN/C8sI7H45EGg0ajkQYD+D/lAFEG3EDrAoA//vgD06dPh4ODA9asWYP6+nokJydDVVVVKrdOYWEhrly5guDgYIX1vqbT6QgJCcG1a9ckiguZm5tDIBCgsLBwSPNNnDgRtra2GDNmDGxtbREaGkpmdR09ehTvvPOO2G7uvffew7Rp0/qM09HRgYiIiD6SI01NTbh37x6Cg4PJzCuKvz5K22kcPnwYwHMXz/HjxxEcHAw9PT2MGjUK8fHxZJCSyWT2W7fRE6FQiLS0NLzxxhuIiYmBpqYm2Gw2Lly4gDfffBOenp5ISkoidxhBQUHgcrkyZUzl5+djwoQJg65NkWRnZ4v1o5aU/gyENF0ImUwmLl++jCNHjuC3336DkZERDA0NYWdn18eFRKfT4enpCYIgUFhYiLy8vD7vuyiWpKenBxUVFejo6KC4uJiMMxEEgdraWrIItDdjxoxBaGgovvrqK+zcuRPd3d0oKCgAn88njUzPoG1iYqLYjqY3Dx48QGlpKVavXv1CORl5JAHo6+vDxMQEBQUFg4pEampqYt68ecjIyJA6JiWSPNfQ0CB/C0wmE15eXhAKhdi7d69Y9lhUVBRaWloG3GHl5eUhOTmZjAsBwLVr15CXlwc9PT3s2bMHQUFBVCbV3wClB8JpNBo2bNiADRs2oL6+Hvn5+bhw4QJZmZuYmEhKUxsaGoIgCHR2dqK9vR1VVVVobW1FV1cXVFRUMHr0aLzyyiuYPXs2CgsLERQURAYQRTnpqqqqGD9+PI4cOSLTurlcrtL7fPTm8ePHclNAlbYbIYPBwKZNm/D666/jzp07iImJweXLl+Hk5AQ7OzvS3SUUCsHj8WBgYICFCxciOTkZKSkpZGIDjUbDlClTSGmPqVOnoqOjA9HR0Zg6dSru3r2L7u5uMBiMfncy5ubmCA0Nxbfffovc3Fzo6uri999/h4qKClRUVMQuak1NTTh79uyArkihUIiYmBgIBAIsWbJk0BiKvLLGpk2bhosXL2LMmDEvNFJGRkZ49OiR1BfikJAQsd4ZImFQkSHNyMjA7NmzyThiVVUV9u3bh4CAAKnmMTU1RV5eHtrb22Fvb4/IyMg+BaMUfz2UbjR6wmKxwGKxyNxvEU1NTThx4gQOHDgAVVVVqKmpgclkwtbWFvr6+lBVVYWdnR3U1NSgpaWF6dOnw9raGlwuFxEREeQdqrq6OgiCQFxcnEz9vQEMKdNKnmRnZ4PFYknlaxfVwPREdLc81PeDwWBg5syZmDlzJrZv346dO3fi119/ha+vL/mZREVFYfXq1QCe5/xzOBzo6Oigo6MDS5cuBZvNJmVdgOc+cwsLC+jq6oLNZoPP5/dxd9jb28PExASxsbFYuXIl5s6di4KCAqxevXrAjKQLFy680GBcvXoVpqam8PDwUGr2j46ODtzc3JCSkkK2Xu0PY2NjJCYmSmU0zMzM+jRbEu0wRPzyyy/k51NQUIDFixdj8+bNqKioGHBcURFrTwWHCRMm4P79+xAKhdDQ0MC///1vLF26lMqk+oszrEYDACorK5GYmIiuri5kZ2cjMzMTNTU1sLOzw7Jly15YlCYQCMDhcBAXF4fGxsY+AV95Cr/V19cPyTUkLxITE7FixQqpzmlpaUFgYCB27txJHhPdLcvjh62trY1vv/0WO3bswI8//ohr167B0NCQzLRJS0sjDbinp6fYLkBEdXU1+ZyKigrk5OTA19cX5ubmqKqqAkEQmDNnDiZPnozU1FTExcXh9ddfh6GhIW7duoV33nmnz5g8Hg9RUVEvVK1NSEiAvr7+kIPMsmJpaYmUlBS5j1tfX4+kpCS4uLj060o9c+YM6HQ6QkNDQRAE9uzZg88++2xQLSkWi4WYmBioqqqSBig2NpbcDVpYWIDNZiMvL29YfycUikcpRqO5uRnPnj3DmTNnSDdFZWUlurq6oKmpCQ0NDQiFQpiYmMDd3V2ilFsdHR20traCTqejuLhY4QVnzc3Nw1abUVlZCQMDA6njKQMZBi0tLblmgOnq6uKTTz7Bxx9/jE8++QSnTp0Ci8WCk5MT+Vn2vjiLUp75fD5MTU0hEAhQXV1NuhQrKythb29P9nX44YcfcOnSJfz444+wsbHBrFmzcPv2bdK9w+PxkJiYiIqKCvB4PFRVVQ243idPnqC1tVWpQpNDhcPhwNjYWOLnOzk5kbG83jv42tpaHDp0CDdu3AAAXLp0CS0tLaiqqho0fVqkitwzVmRoaIi8vDyYm5tDU1MTkyZNwtKlS/vIrVP8tVCY0WhtbcXly5dx8OBBqKmpwdDQEKNGjSLdK9OnT+93JyBpsVhXVxdoNJpEtQLygE6ny9RzQxbi4+P7zZMfjIHey/b2doW422g0Gr7++mtER0fj1KlTSE5OxuzZs8FgMPptHlVWVoaCggLY2dmRrkQajQZjY2NoaWkhJycHFy9exIcffoi3334bMTExoNPpmDx5Mnbs2IHW1lacPHkSwcHBSEpKkigDr7a2Fk+fPsXq1atfCjcKg8GQOD3ayspKLA29N/v378e///1vaGhooLm5GXv27EFgYKBEhbTp6ekwMjISuzkTfYfMzc3JJk//+9//+tU6o/jroBCjIarI9fDwwIwZM/q92MrqOpJ3z4GRSm5uLnR0dIakyivvWgNJCQoKQlBQEFpaWpCamjrg89zd3QE8d5mdPHkSDQ0NuHLlCuzs7MDhcHD//n0AwAcffIBPP/0UBQUF2Lt3L3R1dfHkyROkp6ejq6sLYWFhaG9vH1R6hiAIXLt2DfPnz5c6EWC4qKysJN+nF2FhYYEFCxb0iV+I4HA4SE1NxZ49ewAAO3fuxK5du1BQUCBxPxFRnEnkZiwuLgbwvNJcV1cXHh4ecHJywv379/tN3aX4a6AQo/HDDz/gxx9/hIODAyIjI1FVVdUnx5ticDo7O3H37l25a/sYGBgoZdekq6sLPz8/iZ47Y8YMABDzic+bNw/Hjx+HoaEhKisrsWzZMri7u2PatGno7u4mg/nGxsYoKSkZ9I45OTkZ1tbWMvdRkQeSJiLQ6XSJbhi0tbVfqKz7zTffkHUZzc3NePLkCfbt24eGhgapmlCVlZWRv+XRo0ejqakJXC6XNChubm44ffo0ZTT+wsjdaFRXVyM9PR2LFi1CRkYGlixZgo6ODkRGRpLuEgaDgfLy8mHPSJIGGo02YO8PRXH16lXMmDFD7rnvTk5OuHXrllzHlBdsNhs8Ho8szMvMzMTu3buRnJyMxYsX9+tyKyoqGnTcuro6ZGVlkVlDw019fb1EGmKD7Yj09fWhp6f3wvhMWFgYSktL8eWXXwJ4/r3asGED6TaWtHiQRqMhLy+PjFmIGnyJ4hmtra3IyMgYkf3mKeSH3I1GRkYGXFxcxNIpvby8sHbtWgAgC43c3NyQkZEBJpMplXzIcMFisdDQ0IDRo0crZb6UlBTo6urCzs5uyGMMFO8xNTUd8LH29nbU1taCRqNhzJgxCpFFb2hoGPQzv3v3LhISEhAXFwc2m43FixcPuS0rQRCIjo7GnDlzRoxbisPhyLzjUVVVRXNzM6ZMmTLgLiM7OxubNm0SS6e9fPkyvvnmGwDStSEgCAKWlpYYP3481NXVkZeXh8LCQnC5XNTW1qKurg4aGhrg8Xior6/vV/iQ4uVH7kYjKSkJ3t7e6OjogLm5eZ+AnKjQSFS96+vri8LCQtI/OlIxMzNDZWWlUoxGfn4+8vLyZCqUqq2tHXCtn3zyCTk2QRCorKzE9u3bySya8ePHQyAQIDMzE5qamiAIAkKhkJT/UFNTQ1dXFwCQlfyix0V/q6urkzUhomJMUcMiGo0GOp0OoVA44G5TU1MT5ubmCAkJgZaWlkx9vDMzM2FiYjLsxZk9KSgo6DdY3ZsXZQUuXboUDQ0NA47T3NyMdevWkfLsIjo7O2FtbQ0A8PHxkWpnUFZWhrt37yIkJARLlizB3bt38fTpU+Tk5MDNzQ2dnZ1YsGABrl27Rt4oUvy1kKvRIAgCsbGx8Pf3x82bN8HhcEgpAxGiQJ1IytzV1RUeHh74+eefxVpMjjSsra1x6dIlTJ48WeaxaDQadHR0+r3bzs/PJ10xstzlFxcX4/333+9zvKOjA7m5uSgvL8f8+fNRV1eH0aNHIzQ0lHRTTJ06FY2NjTJpMI0dOxZmZmaoqKhAYWEh2a1R9PdQUVVVhZWVlcQXuu7ubiQmJmLdunVDnlPeNDY2QlVVVSK3Y2dn54AJDaIU5f5ISEjA9u3bsW/fPkyZMmXA8WNjYyVbdA8eP36Mjo4OBAQEID8/n1RzKC0tRXt7OyZOnIgTJ05QRuMvilyNxtOnT6Gvrw83Nzc8efIEdXV1uHbtGmxtbfsUG/XO8ti4cSOioqKgo6ODx48fy3NZckFbWxva2tpDanFpZWWFyspK0h9PEMSgBkPWBk/19fVwcHAA8PyO88GDB6irq0N+fj4MDAxIiXcNDQ2YmpqirKyMPDc1NRWdnZ2wsLCAurq6xD5vOp0OgiCgra2N/Px8sQu7pqYmKc0tDbNnz0ZWVhY4HA7YbDaampqkujPOy8vD2LFjhy1duj9SUlIwadIkiZ7LYDAGdKmlpaXByclJTNpcKBTiyJEjCA8PR2RkZL8Gp2cQfqgGXPSZiHTFdHV1ybFYLJbSUuEplI9cjUZraytcXV3BZDKxcuVKREdHw9jYGNHR0WIBTFGbTBE8Hg85OTlYtGgRmEwmGhsbZerfrShmzZqFsLAwrF+/XqpdQGNj46D1J6mpqcjNzZWLwRBVUr/33nvIzc1FS0sLkpOTwWKxMH369D4pnD0rp0VFk6J1T506ddBiORGiC4Xo/J70di8xGAyxi5fIXdVTFNDX1xdTpkzBxIkTERUV1W+tx2AUFxcrvY/7i+BwOCgvL8fMmTNlGkdFRQUNDQ2Ijo4mlQKKi4uxa9cuEASBqKgo0nXYk/r6erHf3lA7WAIQEzzk8/mkArSnpyeys7MhEAj6XQPFy41cP9HDhw/j888/B/A8rXPFihXg8XjQ1NQU0xPqKUUAgGx0DzyPeYyUYGVvdHV1MWXKFFy9ehXz58+X+Lz+LqIiOjo6cP36dWhqamLp0qUyv3aBQIBTp07B0dERBEEgODhYqjF7rrWzs1Nukte9L069U05FBkdFRQV8Ph9qamrw9vbG3bt3h+RCEVFXVzeiYhmxsbGYMWOGzAkGAoEARkZGmD17NgiCIHfqkZGRL5RGiYiIwMKFC2Wauz9UVFTEdj0WFhaor6+Hqamp3Od6GeByuWTcT4S6uvqwqmTLC7kZDZF2TW+5554xDBGiwB2Px0NycjIZEOfz+UhOTkZhYSHs7e3B5XLF3CYjAUdHR9TU1CA+Pn5Af7IkdHd348mTJ0hNTcWMGTMGlcmWlOPHj8PU1BTBwcEyj6VsF4OlpSU8PT3x559/YvTo0di7d6/MYzIYjGHp5d4fZWVlEAgEZBBaEgQCAan62xM2mw1nZ2eEh4fj2LFjsLe3R3V19aCV2JWVleQNjyS7R0lpbW3FL7/8Am9vb3h4eJBtZf+K1NXVoaysDPfu3UNjYyPu3btHKnOLXLQaGhp9DASHw0FjYyN8fX0hFApBEARMTU3h4uICW1tbaGtrvxQZZ3IzGhcuXMAbb7wx4OOiHs08Hg9PnjyBi4sL0tLSyDtZe3t75OTkwN/fH/7+/uDz+RAIBCgvL1e4rpS0zJgxAzExMbhz5w6mT58u1V1jW1sbMjMz8fTpUzg4OGD9+vVyu6ilpKSgpaWlXxG/l4HGxkayFetQGw+NVNrb23Hr1i0sWbJE4nOEQiEsLCwQFhZGao9xuVwIBAIYGBhAR0cHHh4euHHjhsS1PD2z1c6dOyf163gRHR0dpKhh77ledtra2nDu3DlERkaio6MDzs7OMDc3R2BgICZOnIj09HQEBQWJeVBEemhVVVUIDg4Gh8PBkSNHxPrLlJWVkTVTdXV1MDY2xvz58xESEjIkFQhlQCMkuCK3tLRAT08PHA4Hurq6/T4nODgYERERgwrhieo0RIahoqICFhYWcHd3R3Z2NlxdXfHkyRPSXcVkMkdkNTlBEHj48CHS0tIwffp02Nvbv/Aur6amBrGxsRAIBHB0dISjo6Ncg7P19fW4ePEivL29ybRmiueqrvKuqJcWgUCACxcuwNfXF5aWlhKfl5OTg3HjxuHDDz8kdwV6enoSFQUOxMyZMxEZGQkmk4k9e/bIXY5HV1cXb775Ju7fv4+IiAj873//k+v4yubixYu4ePEi2traMHnyZHC5XGhpacHGxgZFRUXQ09ODnp4erKysyNozUd0K8H83P9ra2hJlh7a0tKC4uBj5+fkICQnBtm3bZPq8pUGS6zwgp51GVlYWWCyWRMqpPes0RA3pVVVVoa6uDhcXFzx58oR0TaWkpIDL5fYJmo4ERM2EXF1dERsbi3v37mHMmDHQ0tIS+5C5XC4KCwvB5/Mxa9asAf3rurq6GDduHCoqKkg/vKTuAz6fj6NHj8LExGTA3hIUw4OosNDJyUkqg6GmpgZLS0tYW1uTvWRkpaSkBObm5qTbRFVVVe5Gg8vlQkNDAzNnzsSBAwfkOray4PP5OHnyJM6fPw9ra2t8++23pOpyRkYGgP/T3eJwOOBwOKDRaMjKyurTpVKU4CFpOYGuri4mTpyIiRMn4uHDh/D398eSJUsQGhoKZ2fnESEEKRejcfPmTSxdulSi5/aOcZSVlSEnJwdpaWngcrmIj48Hh8MhNW2A5/3ABQLBiBQpVFdXx+zZs9Hd3Y3a2lq0traKfUFETYt6pkX2R1tbG+rq6lBVVQUvLy9StoTD4bzQPSfqHWFpaQl3d3eFVHD3x0g05P0h6vwoTyl4aea+fv06jIyMpM7gmjRpEnbs2IE1a9bIbT1FRUVkgyYej6eQuqieLikVFRU0NjaOCK0vSWhubsbx48dx5coVTJs2DZ988gnu3LmDhIQE5OTkgM/nQ1VVFS4uLtDU1BRzoXI4HLKlsKhtMSBbXHDy5MlwdXVFVlYWbt++DRqNhldeeQX/+te/hq1NAyAno3H16lUcP35cqnN6xjjS0tLg6uqKixcvAni+LW9qaoKBgQGamppkSgtUFgwGA2ZmZlL5IXt/uURpxg8fPiSrpQfyCxMEgezsbGRnZ8Pa2hrNzc2wt7eX/YVIyMtgMIDnNQPV1dWwsrJS6rwiRV0WiyV1QaiKigrYbDb09fXlunOsra2Frq4umpqacObMGbmN2xMajYZz584hKCgIixYtwpYtW3D69GmFzCUrBEEgKSkJhw4dQm1tLbq7u7F27Vrs2rULnp6e6OjoQFVVFfz8/GBhYYHi4mJSNiUhIUFsLJFBYbFYqKqqgqqqqsRtHl6Empoa7O3tSe9LXl4efHx8YGNjg88//7xPl0ZlILPREF3Y8vPzoa+vL3VKWc8iP2NjYxQWFkJbWxtNTU3Q09MjtXF6XmCVjaT+SGkwNjbGggULcOvWLXR0dKCpqQkVFRWoqqpCdXU1WTHf052loqICBoNBZtTMmDED4eHh8PHxEevvPGbMGDAYDImE/P7qODg44MmTJ0o1Gh0dHfjjjz9gbW09JAUBgUCAmzdvyj0QGhYWhr179+LMmTN93CjygiAIsq/JrFmzcO/ePYXMIwvNzc04ePAg/vzzTzCZTKxfvx6rV68GnU4nY65qamrg8/nIycmBhYUFVFVVyZ1FRkYGedMkUjgQ3diKrlfyMBi90dTUxLhx4zBu3DjU1NTg3XffBUEQ+Oqrr+Dj46M015VcdhptbW19WkFKiminIdryAc99raJAuch3aGxsjLa2NqWLGzIYDLDZbLlXqdfW1qKkpARsNhvHjx9HSkoKWCwWlixZgoCAAFhYWEhUX7F582YYGxuTRVSjR4+Grq4u6Xv9u2NpaYmYmBhwOJw+/dLlDUEQePLkCVJSUjBz5kzY2NgMeay6ujo4OjrKbW0cDgddXV2oqalRmMEQwWQyYWJiMuISWLKzs3H06FE8fvwYW7Zsgbe3N+7cuQNra2vQ6XTweDwy/Z/L5ZI7f9HrsLW1RWFhoZjIo56eHszNzZGeng4AEjW0kgcmJiYwMTFBc3Mzdu3ahZKSEqSlpSmlDkQuRkNXVxf+/v4SCbD1RlTYJ7LMoj7DdDodLBYL1tbWpAWtrKwko/vKoru7W24GQ0VFBbNnz0ZMTAwMDQ1hY2ODvXv3oqGhgXRlSMMHH3yAZ8+e4ZVXXgHwvBJXR0enT0HeSM1AUxYBAQGIjIzEihUrFFI4KhQK8fjxYzx+/Bhjx47FunXrpE6j7lkJ//TpU+jo6OCnn36S2xojIyOxcOFCuLi4kLFDRaGrq4u7d+/C19cXWVlZCptHUnJycvDxxx+DwWDg3Xffxbx588jdur+/P1kMKSoBEF2DRNTX1yMvLw/+/v4wNDTE06dPIRQKwefzoaWlhczMzOF6adDX18e0adNgZGSEJUuWICIiQuGSOXKJmuro6MDX15cUJuTxeEhKSpLoQuXi4oKgoCAAzzuDWVpawt7eHvn5+UhKSkJxcTHU1NQQEBAAe3t7zJo1Sx5LVjpMJhPvv/8+Jk2aBHd3d1y5cgWLFi2Cu7s7Ll68KJXBKC0thYWFBXg8Hn777TfSqBYXF8PDw4MUGlRXV8fUqVNfWCH8d8Dc3Bzjx4/H7du35TquyBVz/PhxcLlcvPrqq/Dz85PaYMyePZvUM2MwGCgoKMChQ4egpaUlt7WWlZXBzMwMHR0dZCGuoqipqYGbmxu8vb1f2BhKGYSHh+Mf//gH9u3bhwsXLoBGoyE2Nhbx8fGIj4+HqqoqKecukkIRVbGPGTMGtra2YLFY8PLyIpN2Ojs7yZvcZ8+ejQidLVHK/9mzZxU+l9yFYXg8Hq5cuUL6NQdzV/XOpuLz+TA2NkZdXR0aGxuhqamJnJwcWFtbY8WKFS9l3re+vj6WL1+OJ0+eoLOzE1988QVee+01LFy4UOoLg0AgwLZt2/Dzzz8jMDAQ58+fB0EQUFdXh0AgQHNzM5YsWYLo6GhMnToViYmJ8PLywoMHD0Zk9pmymDRpEu7cuYPo6GjMmjVLph0HQRDIzc3F/fv3MXr0aCxfvlymCzxBECgpKYFQKMSff/6JLVu2iClDy4N79+7htddew2+//aaUxJL09HSEhIQofJ6BEGmvpaSkwM/PD5WVlairq4O9vT1ZOKyiokJ6R0S7jKCgIDg5OaGqqgoCgQCFhYUoLCzEqFGj0NjYKKalRaPRRlRCiIODA3bs2IGZM2cqtIWDzEaDTqejtLSUTGtMTk5GTk4OWCwWxo8fL/E4HR0dSE9PR11dHYDnooZGRkbw8/NDXl4eGd+QRVZb2ZiamoLP52PJkiXIycnB559/jrFjx+LixYtD1kM6fPgwZsyYgdDQUERHR5N+187OTnR2duKXX36BqakpqqurUVZWBi6Xi8bGxr+1wRDh5+eH1NRUnDt3DnPnzh3SXXBzczNu3rwJbW1tmY2FCBcXFxQWFiI8PByzZ8/GP/7xD5nH7IlQKERzczMuXLigtEzE4dZYWrVqFSwsLDBz5kxS0kRUMCyS/+mpTiGqHxMVF/dWUhbFUh0cHJCeng6CIEidtJGClpYWvLy8sH//fnz33XcKm0cuRmPt2rX4/fff8dprr5HH6+vrkZ2dTe40ega8+/tCRUdHo66ujmzw09jYCDabjdzcXFKwbqRoCElCSEgI7t+/j4aGBvz4449ITk7Gtm3bsGDBgiGPef/+fSQmJuLQoUM4d+4cuZvrjUi1lsvlgsViwcTEhDTGf3fc3d1hZmaGP//8Ezo6OnB3d5co6YDP5yMlJQXZ2dmYNWuW3O7kaDQamEwmrKysIBAI8J///Ecu4/aktLQUpqamqKurA4vFUnggHABZF6OhoUH2UVEG7e3t2LhxI9zc3ODj40PG95ycnMj+PSJ6C6UCz3coLi4u4PP5aG1tRU5ODlpbW8nMzYqKChgZGaG2tnZEGQwR9vb2SExMVOgccnFP/fOf/0RoaChCQkLg4eFBHh/oA+qtz5KWlgYvLy80NjZi5syZePz4MXR1dcnnixiJH1J/6Ojo4OHDh6ipqUFCQgLGjBmDgwcPylTVW1ZWhs8++wzHjx/HH3/8IRaoA57fZfB4PNK/Kspko9FouHv3rkyv56+GmZkZ1q5di6qqKjx58gQ3b96EhoaGWMoijUYji9La29vR2NiIiRMnYs2aNXKV+3Zzc0NtbS0+/fRT/PTTTwopzhQIBDAxMUFQUBDGjx+P77//Xu5z9EYkhR8cHIybN2+S8u2KQiAQ4OTJkzh48CA+++wzhISEoKqqCg8ePEBeXh5sbW3FbmCTk5PR0tJCpsxGRESQvykrKytSx613YW1DQ4PSCmhHKnL59jOZTLzxxhv49ttv4e7ujqCgIGhoaJBbPyaTKbb9q6qqIiWa8/PzyYyFuro63L59GytXrsSVK1fksTSlIypIrKmpQUREBLZu3YrNmzfLNOb27dvx9OlTfPDBBzh+/Hi/FeI93Q4MBgNLly4Fm80mBQAp+vKiYsyOjg7yPVVRUZF7uq6ZmRmqqqrQ2dkJFxcXfPnll2TTLHnz3XffYdasWfDy8upzI6YoRDcvPj4+2Lt3r0KNRnt7O1599VUEBgbi8uXLiImJwfHjx9HS0oL29nZoaWmhoaEBp0+fho+PD6KiosR23iKXt729PaysrHDs2DGxG9SemW09X9vfFbndMi1evBhHjx5Fe3s7KdHc3NyMlpYWBAYGihXxRUREoK6uDhEREWTFq6mpKZqbm1FXV6e0L7a8CQoKgr29PQ4cOICYmBjs27cPoaGhMo35+++/Iz8/H++///6gaZIaGhro6OhAd3c3Ll26BHNzc6rAb4hoaGjIPRjdk/b2dpSUlODq1auIjIyUuJPfUIiJicHXX38NHo+HlJQUhc3TGx6PBzabTYr3KYLKykqsWLEC//nPf+Dn54dz586JyXvQaDS0t7cjOTkZAFBeXo6Ojg6yYtvQ0BBsNhuamprw9PTE5cuX+3g0RprK9nAj1+ypo0ePIiAgACwWi9zCPXjwACUlJaDT6VBTU8OsWbNgZ2cHgiCwePFi6Orqkr7GCRMmICIiAu7u7rh69ao8lyYVBEGgoaEBxcXFaG5uFmumQhAEjIyM+q30zcnJwa+//orOzk6Eh4dL3Ra2N0KhEP/9738REhIyoMGg0WhQVVVFV1eXWGFRR0fHX05e/K8Cn8/HjRs3UFxcjBs3bkglZDgU2Gw29PT0cPXqVaW6eJOTk8k+OYqAz+cjNDQUXl5eMDQ0RFNTE7q6usibp/66QYoe4/P5sLW1hbW1NZycnJCTkwOCIPDKK6+gqqoKra2tL6WxaG1tHbCnvLyQq9EwMTHB+vXrce3aNUybNg3A8wtfz7aQv/zyC/nvo0ePYuXKlXBxccHt27fx+PFjdHd34+LFi0qXDBEKhSgvL0dBQQHa29sxceJErFy5ErNmzYKxsbHYcz/99FOEh4eT8RsPDw8kJyfj9u3b2Lp1KxYvXiyXkv7t27eDzWb360MV/RAIgiDfq97baIqRRUNDA+rq6pCeno4tW7bg9ddfV7h/nMfjkcKfoqplZSEyFgwGA/X19XJtMEQQBNatW4exY8eCxWLh0qVLpJHQ1dUFg8HAlClTEBsbC4IgyJtWc3NztLe3g8/nk+m0omD5y+rh6AmHw8HixYsVOofc6zS2bduG+Ph4idpsdnV14cSJE310pZRlMAiCQGlpKfLz81FcXIwZM2bg66+/hre39wvP+/LLLzFu3DgUFxeDwWCgra0NwcHBWLRokVwvAikpKVi9ejVKS0v7XbsIkY+VMhgjj+7ubuTn5yMzMxPq6upYsGAB9u/fTxZgKprY2Fiyd7ey065FrYMXLFiAsLAwbNq0SW5jf/fdd+BwOGI7ftHvQJQem5CQQP4mhEKhUgobh5umpqYX9sKQB3I3GnQ6He+99x7Wrl2L9evXS3THPRxChKmpqcjNzcXs2bPx5Zdfwt3dXSq54VdffVWBqwPOnj0LV1dXrFixAj/88IPSNG0oBkYkXS8J9fX1ZDZbcHAwtm3bBldXV4VLPPQmLCwMb775Jk6ePKnUeYHnWk+hoaFwc3MjFazlwYULFxAeHk6qQ4h2GL35O/5mGAwGTExMFDqH3I0G8Lx45o033kBiYqJCA3zS0tzcjNTUVLS0tGD27Nk4e/asxG0ylc3Ro0cRFhYGJpMJV1dXJCUlDfeS/jYIhUJUVFRAKBSitLQUAoEAra2tMDIywoYNGyS6ERo9evSAO1aCIFBTU4Pvv/+edMmKXIsCgUDsAijqOT169GjQaDTS/bJixQqoqKiARqPBw8NjQGNUU1OD1NRUsnZHmYjeJzc3N2zYsAErVqwYkj5dTxISEnDixAnMmTOHrMbuqYb9d0b0fVV0506FGA0A+OijjxAcHIySkhKl9zLoTUtLC7lV3bdvH6ZPnz6s6xmMr7/+GlZWVmSa5+TJk9HQ0AA9PT1UVlaiurr6b5/2Jw9E/bbb29tRVlYG4LlLhcvlwsfHB4aGhli9ejWcnZ3BYDAGLFCrqakhd8uingdNTU1kMgefz0dGRgYEAgFu376Njo4OaGhokI2zBmsQJRQKybiEaI7vvvsO3d3dEAgEaGlpgZqaGvbv3w93d3exc7u6usQSOZSJSBqITqdj5cqVMotmpqen45133sGKFSvIVgVqamqUwQDImI2rq6vCG44pzGjQaDSEh4dj3rx5ADBshkMkGbxjxw7Mnz//pSjMefDgAf773/8iKSkJVlZWZIpyUFAQWltbUVlZKbcmL38nuFwu8vPzyZ0Eg8GAnZ0dVFRU8P7775OteseOHUuec/PmTVy4cAFZWVmg0WhQV1cn3SEdHR0oKSlBQ0MDtLW1oaurCzqdDj6f3ydON2rUKDAYDHh4eEgtX0Kn08Vcp9ra2jA2NhbrnsjlcrF+/XqcOHGCbMxz5MgR2NrakoV2wwGPx5OLpMiNGzfwzjvvYO7cuXBycsKTJ0/Q0dEBAwMD1NTUyGGlLy+i70FaWppYcbWiUJjRAJ43DYmMjMS8efNQW1sLBwcHuSp3vgiRpLmKigpiY2MVHhySF+np6eDz+aisrERMTAwp+6Cvr4/CwkLY29ujqKioj9EwMjJCfX09FQz//wiFQqSlpaGmpgYtLS1kUsbatWuhoqICX19fUl6loqICbW1tOHLkCJlF193dDS6Xi6amJri6uoLFYoFGo6GrqwtjxoxBaWkp6HQ62Gz2sKkIiwoTa2pqoKmpiRkzZiAoKAhVVVVgMBg4e/bssO+q4+PjERgYiDFjxuDBgweYOnWqVOfX1tbiu+++w4ULF3Dr1i3U1NTA2toaz549Q0dHx9/eYOjo6JBptunp6Urpy04jJLjKtLS0kH0shnLx5fF4OHv2LL777jvo6OiQlbhDFe3rD11dXTJrIicnB0lJSdi8eTPefffdEdGMXVJCQkJgaWmJxYsXQ1VVFTk5OaioqOiTe94bTU1NMRfG3w2hUIj6+nrcvXsXpaWl4PP50NXVhbGxMbS0tMjvgKgtpwgajUb2b7ewsICuri40NDTkKhWiDEQ7G5EKw1tvvYWlS5eSmVPDhY6ODt577z1UVVVhx44dOHLkyKDnCAQCnD9/Hr/99hsEAgHGjx8PU1NTODg4IDQ0FGFhYVQNEkB2FyQIAnw+H/X19Th06NCQx5P0Oq+UXwaTycTGjRuxYcMGNDc3Izw8HJGRkXj69Cna29vJHyiNRut3saNHj4aFhcWAP2SRH+/ixYsoKysDk8nElStX5NpfWRmEh4dDT08PxsbGSElJgaamJikuJ8oEERkMY2NjtLS0kMcVYTBE4pEjma6uLkRHRyMnJwddXV2wtrbGwoULxZp3/R0QucJMTEzQ2dmJixcvyr1d7FAQSbGYmJiQiswD0dHRgZ07d+LUqVNwdnaGvb09TE1NoaurCzU1NeTk5ODKlSsj/jupDGg0GgQCAQiCQEVFBYqLi3H+/HnlzK2MnYaktLe3o7y8XOwYj8fD77//jtTUVAiFQnR3d6O9vR0WFhbQ0tKCsbEx0tLSIBQK4ePjg1dffVWubTKVyYoVK/DRRx/h5s2bgxoBAwMDaGpqoqKiQu7rMDc3R0dHB0aPHo2SkhK0tbWNmL4BIon8nJwcFBcXo729HcbGxpgxYwbMzMwUHgQc6VRVVZHZRAwGg2woJA0EQYDD4aCyshJNTU2kNpO6ujrMzMwwbtw4qSRW/v3vf4PJZCIkJAR//PFHv88pLCzEsmXLEBQUBKFQ2O/4InFBS0tLMnHh74pI466trQ23b9/GvXv3ZM4EHVE7DUnR0tKCvb19n+O90/Sam5uRlJSE7OxsnDx5Eg0NDSgqKnopgtwDcf/+fWhpaZF6/gPdlamrq6OzsxNNTU1y7ZdOp9Ph4uICAwMD8Pl8xMfHD2sAtSddXV3Izc1FSkoKamtroaqqivHjx2PmzJmYMGHCcC9vRNHQ0ABjY2MkJSVh0aJFEp9HEASKiorw+PFj8qIxevRomJiYwNHREQwGA62trSgvL8epU6cwduxYTJkyRaIgd0xMDObOnUsmD/Q2CBUVFVi6dCl8fX2hqak5YN2WKPuqq6sL2traZAaVLHR3dyMvLw8ZGRlibl8NDQ2Ym5tjzJgxMDIyGnG7VtHvPyIiAr///rtSSwdG1E7j74yfnx8+/PBD+Pn5obm5GUeOHBELarPZbJiamiIjI0OuKYaiYLBQKISRkRHeeustxMfHIyYmhoyTiLKNes9Lo9FgbW0td62b2tpasq6grq4Oz549g0AggI+PD2xsbOQaC/urER8fjzVr1ojJ3LwIoVCIjIwMPHr0CGZmZvD09Bz0/RUKhcjMzMSDBw9gb28Pb2/vF/YjUVNTw/bt2/Hjjz/CxMQEy5YtE3t88eLFmDdvXr/KB4qioKAAqampaG1thZWVFTw9PcUMIIfDQUVFBYqKilBXVwc3Nze4ubkppMe8tNDpdDQ2NuL27dvYs2cPgoOD5TLuS7nT+LuSnp4OXV1dPHz4EHl5eWRBlwhDQ0PMmTMHOTk5pExAW1vbkGs1tLW1wefz0dnZSWafaGlpYfHixcjLy8Pdu3eRmZkJPp+Puro6MBgMeHp69unPzufzcenSpUF3JA0NDRJf6Ovr6+Ho6Ag1NTVkZGSAx+Nh3rx5f7sYxVAgCAK3b9/GqFGjYGFhMejzGxoaEBkZCSsrK6xevVpilxOdToezszMcHR2RmpqK48ePY+7cuQO6wrq6usDj8WBkZNTHzdnd3Y2uri6sWLFCrKeFIujq6kJaWhrS09NhYmKCmTNnkj1TesNiscBisciGTI8ePcLRo0cxdepUODo6Dut3sbm5GdevX0dERIRU3VHlBbXTGAEsWrQICxcuRFNT04C7CFVVVXR3d0NTU1OmbXnP3H7guUESGayCggLk5uZi9+7dmD59OtTU1Ab8UUlDa2vroG1Gu7u7cf36dZw8eRIdHR2wsrKCnZ2dQuXJ/2rk5ubC0NAQ8fHxCA4OfqFkSVFREe7cuYMFCxaQ2WNDpa2tDZcuXUJAQMCAwXd/f39UVFSAIAisXLmSPC4SMP3nP/+J4uJinDhxQqa19AdBEHj8+DFSUlLg6uoKZ2fnIX2vurq6EBcXh9raWixYsEBp5QM9aWlpQVRUFD7//HO59yihdhovCY2NjaitrR00hVBUkyGrH9fc3BxlZWXIy8tDWVkZTE1NYWZmhuXLl2PatGkKuYPS0dEZ0IXV3t6Ow4cP49KlS9DT08PkyZOl0gCj+D/4fD5cXFyQkJDwQoPR2NiI2NhYrFmzRi5aWNra2liyZAnCwsIGNBz9VYMTBIHr16/jwIED4PF4ctWn6klsbCyEQiE2btwok3tJTU0NAQEBqKiowPnz5xEaGqq0NrbAc5fZ4cOH8c033yi8E+KLoIzGMPPqq68OKcNFGvT09JCenk7KWKipqcHT0xM//PCDXHYSQ6GsrAxfffUVnj59CisrK0yfPv1vn/kkK21tbTA3N3+h4e/o6EBERASWLFkiV/FETU1NLF68GOfOncOqVav6BMiTk5PJmhkRjx8/xujRo5Gfn48//vhDIWnjmZmZaG9vx/z586U+VxSU753ia2FhgUWLFiEiIgKrV69Wighld3c3oqOj8eOPP2Ljxo0Kn+9FUEZjGElLS0NFRYXM3f36QyAQICkpCa2trdDX14ePjw88PDwwffr0YdlWA8+LLk+dOoVbt27BxsYGNjY2CAoK6iO5QTE0uFwuEhMTX9jUKTIyEv7+/nJvXws8j4v5+fnh+vXrWLhwodhjfD4fjx8/JvvsAMD169cxevToQTtSDpWGhgYkJydj9erVQzr/RUZMX18fnp6eiIuLQ0BAwFCXKDEPHz7EG2+8MewGA6CMxrBRX1+PJUuWYO7cuTK7hMrKytDY2IjGxkbyiy4UCvHxxx9LlXapKO7cuYPTp0+jsbERTk5OCAwMFEuPlqfB4PP5KC8vR2VlJZqbm9Hc3Aw+nw91dXVyHjqdDhaLhVGjRsHIyAgsFuuld4lxOBxUV1fD2Nh4wDvfZ8+eQUtLCzY2Ngpbh52dHZ4+fYri4mJYW1uLPdY7Rby0tBRBQUF4+vSp3NdBEASuXr2K4OBghVX3Ozo64tGjR2QfckWRl5cHPT09vP322wqbQxooozEMEASBjRs3wsPDQ6ogJJ/PR25uLurq6gA8/xFqaWnBxcUFK1euxOTJk4ddUbgnpaWl2LFjB9ra2rBz506oqqri3LlzCpmrrKwMycnJaGpqgrW1NSwsLGBvb49Ro0b1qd/h8/loamoiY0kPHz5EW1sbRo0aBTabjbFjx750rrKamhrMnz8fx44d61c6pKOjA/fv38e6desUvpbAwECcO3cOa9euFTNg/cU1Jk6cCC0tLSQlJclVN+3mzZtwcnJSaHo2jUaDu7s7njx5Ah8fH4XMIRAIUFFRgatXr46IdF+AMhrDgkgfqfcWvj8IgkBGRgZqamrQ3d2NtWvXIjg4GKqqqjAwMJCLgqi84fP5OHz4ME6fPo3PPvsMwcHBSE9Pl7vBIAgCWVlZePjwIfT19eHl5SWRdIaqqiqMjY37tPGtqalBQUEBzp49Cw0NDTg6OmL8+PFiWlUjlYSEBBw9ehTJycn97pqSkpIwZcoUpfjftbS04OnpiYSEBPj5+Yk91jvllslkQldXV64GIz8/H1wut49MvCJwdHTEsWPHMHXqVLkXFzc0NODOnTu4du3aiOr7QxkNJcPlcvHWW28NqvZZVVWFjIwMtLW1Ye3atViwYAHs7OyUtMqhU1lZibfffhuqqqoIDAxES0sLiouLcenSJbnO09HRgStXrsDQ0BDLli2Ty4/KxMQEJiYm8Pb2BofDQUZGBo4dOwYXFxd4enqOWMUBHo8HHR0dWFtbDxirKCgoUKrirZOTE3777TdMmzaNdA+NGTMGFy9exJo1a8jn9exhLg8IgsCdO3fE0noViYqKCmxsbFBYWCgmqS8rOjo6+OGHHxAVFSVRzY0yoYyGkjl69CgMDQ37BCtbW1vB4XBw9uxZtLe3Y9GiRTh9+vSIcje9iJaWFvznP/9BXFwcJk2aBC8vL/D5fOTl5SEnJ0euc5WXlyM6OhozZ87s4zeXF3p6evDx8cGUKVPw8OFDnDlzBiEhISOuTokgCISFheHo0aOoq6sbsB6GyWQq1ejR6XSMGzcO+fn5ZAGanp4eqWMlIjMzE48fP5bbvEVFRbC0tBw0xjCQWvRQcHR0RFpamtyMhqGhIb755hv8+OOPmDJlilzGlCcj89bpL8zjx4/BZrPF7q5SUlJw//59mJiYYN26dYiLi0NYWNhLYTC6urrw3//+F/Pnz0dNTQ3mzZsHMzMzNDQ0oLKyUu4dBouKihAXF4fly5crzGD0REVFBd7e3pg1axbCwsJGnFDe/fv3wWazMX36dFy8eBFjxowZ7iWRODo6IiMjQ+yYQCAgFQTGjBkDgiDg6+srtzmfPXuGiRMnDvo8eX4vR40a1ccYDpXs7Gzs2rUL4eHhWLVqlVzGlDfUTkPJbNu2DV9//TWZDivSdaqtrX3pZDJElakTJkxAQECAmL9aHmJyvamoqEBCQgKWLl2qFN98T0xNTbFq1SqEh4fD0dFR5l7X8qC7uxupqakoLi4GABQXF8PExKTP87q6uoalPTCLxeqTMaWtrY3s7Gx4e3sjNDQUX331Fd588025zVlTU9Pve6BI1NXV5fLbTU1NRVJSElm/MlKhjIaScXZ2xtmzZ4d7GTJRU1ODf/zjH2hra8Mrr7wCHR0dhUund3R04Pr161i2bJnSDYYIDQ0NrFy5ElevXkVjYyNmzJgxLIZedGeemJiIOXPmkNX25eXlcHJy6vP8xsZGpVYu90RNTQ1CoZB0jU2YMAF37tyBt7c3HB0dJVJDkJT29nZoa2sPS+yps7NTpvMLCwvR1NSE6urqEX/zSLmnKKQiNjYWy5Ytw4QJEzBjxgy5K9z2B0EQCA8PR1BQkFLmexF0Oh3z58+HhoYGbt68qfT2ura2tnB3d0dtbS2ePn0qViw30Frq6ur6ZIopi1GjRom1ZJ0zZ47Y4y4uLoiNjZXLXFVVVcPWeEqWFG1RTcmRI0dGvMEAKKNBIQUxMTHYu3cvtm/frtRiuNTUVFhYWIyoLbu3tzdoNBpSU1OVNqelpSWamppw5coVZGdno7q6mqxGfvr06YAZZPX19cNmNMzNzVFZWUn+v7OzU2xX+tprr/VpvDZU6urqXkrZ/IaGBpiamvbbS2gkQhkNColIS0vD559/jtDQUGRnZytt3o6Ojj7yEyOFmTNnIisrS+xOWlGYm5uDy+WiqakJxcXFKCkpgYuLC5mGXV9f/0JpkOEqDDM3N0dVVRX5/ydPniAmJoZMBBk/frzMrh0RRUVFL0XySG/a29uxY8eO4V6GxFBGg2JQmpqa8Oabb8Lb2xu1tbXgcDhKm/vx48eYNGmSwqQgZIFOp2PevHm4evUqqUKsKCorK2FrawtDQ0NYWFigrKwM33//vdhzBtppKNuF1hMjIyOx7wudTsfMmTPx5MkTAM+rqnV0dOTSWEwgEAxbEZympuaQX0NSUhKcnZ3lvCLFQRkNikG5ceMGVq1aBScnJ4UI3Q2EqBq+v+DuSEFfXx+urq549OiRwuYQVf1raGjA1dUVJ06c6OP/LisrG7BHRG1trcw9M4YKjUYTWyeNRutzA7B582a5BMOH88aCyWRKnQyio6NDvj9sNltBK5M/lNGgGJSKigrw+XwUFhZi0qRJ8PX1VUrArqKiAhYWFiNexsPZ2RmZmZkKSWsNCQnB66+/Tvq7Dxw4gNmzZ/cRHbx16xY++uijfjPLCIIYMVpaWlpaoNPpyM3NJY/Z2tqio6NjGFclOxwOR+rGTqqqqrCxscGGDRtG5E56ICijQTEoNTU18PPzQ1BQEJydnVFbW0u6PBT5Za+trR1Rwe+BUFVVxbhx4+Qe69HU1ISbmxtycnKQk5OD9vZ21NTU4KOPPhJ7HkEQqKyshLW1db/uGRqNNmwX5cbGRrHq7La2NixZsgQ7d+4kj/XejbyMiNJ9paGxsRHHjx/H+vXrFbMoBUEZDQqJ0NDQgJeXF7Kzs5GTkwMWiwXguR9ZUUHW5ubmlyYbxs3NTe6ZVKLaChcXFwQGBuLkyZPYs2dPn/ebIAjo6OhAVVW138I2NpuN9PR0ua5NUkQtinuSlJQEV1dXsawq0U3IcKXMykJbW5vUsRQnJyeMHTtW7Lf0skAZDQqpcHFxQVBQEFatWgV/f38YGhqiu7sbTCYTlpaWsLKygr6+PgDI5e5xOCqZh4Kuri66u7vlGhAXyaQwmUzcuXMHPj4+g0pwFxQU9Dk2YcIEuRXQSUt/fn4Wi4Xly5eLiVgaGxuDxWKJZVq9LOTl5cHW1laqc7hcLrKysuDp6amgVSkOymhQSAWTyYSXlxcMDAzg6+uLxYsXY9SoUTA2NoaPjw/a29tJv7qsWTuGhoZk75CXARaLJZcsIOC5n9/b2xvAczfd1atXsWHDhgGfz+fz8fPPP/frLtTU1ASXyx0WA1xVVdWnGl1FRQULFixAVFQUeayjowP19fUyKboOV/fHoqIiqQPZIlXckR6v6w/KaFAMirq6OkpLS8WO8Xg8JCUlISsrC42NjSgpKUF4eDjq6+tRW1srl3m1tbWVmt4rK73TS2XBxMQEly9fRlNTE7788kts27bthZlrDQ0NqKurGzB2MWbMGFKjSpmUlJT0UXRuaGgAk8mEiooKqU0l+ltWiRhFpz73RigUorGxUaqsQpERbWxsHNZ06KFCGQ2KQXn99dexb98+MdnttLQ0REdHo7q6mjzm5OQkV12o0aNH9zFWfwf8/f1RU1ODnJwcHDp0CB0dHViyZMkLzxlsF+Ho6KiQtqovgiAI1NfX94lLiRIGPDw8SAkRU1NT+Pr6yrQbMjMz6/eGRZFB9pqaGpiZmUk8h7W1NdasWQMjIyM0Nja+lFljlNGgGBRLS0u88847+OKLL8hjotjGnDlz4O/vD39/fwQGBmLTpk1y+5Gqq6uDIIiX5odVW1src78Nb29v+Pr6krIfN27cwMcffyzz2szNzdHS0qLUnVtlZSVMTU37HBfV3QQGBiIzMxPA87vv2tpalJSUDHk+U1PTfqXrFXk3n5ubK5VrKiQkBPr6+li4cCFYLNaISYWWBspoUEjE/PnzUVdXR/qhe8c2fH19oaGhAQMDAyxfvlxu89rY2KCoqEhu4ymS2tpamTJhtLS0oKGhAR6PB01NTdTU1IDJZA7aN0TSHh/Tp09HTEzMkNcnLbm5uWQDpp48ffoUPB4PlpaWSEhIAPBcdSAnJ0emim5LS0tUVFQM+fyhUFpaKlUPE1F/kZKSEqSkpMi125+yoIwGhUTQaDT873//w6FDh5CcnPzC59rb22Pr1q1ymdfBwUHpbpWhwOVyoa6uLlP68ahRoxATE4MrV67AyckJ+fn5OH78+KDnnTlzpk+xX39YW1tDIBCIuRQVhUAgQEFBwYBaULGxsbCwsIClpSWePXtGHpel9au+vn6f/h2KpLW1FTQaTaqiPlGw3sXFBUwmE6GhoYpansKgjAaFxDCZTBw9ehQffPABwsPDX/hcAwMDuYjHGRoagkajKUUUUBaysrIwbtw4mcag0Wiwt7dHTk4O7t+/DwaDIZE6bUxMjETd6gDglVdeQVxcnEzrHAyBQIDw8HBMnz59wOwgUYtXFxcXZGRkiNVsyFIwqqenJ7dEjMFITU2Fu7u7VOeIXGVMJhMlJSVSnz8SoIwGhVSwWCyEh4cjMjISmzZtGrAnNQCEhob28Wk7OjpKPaefnx9u3rw5Yms2CIJAeno6HBwcZBrH2toaoaGhCAoKQlpaGlavXi3ReRoaGpg+fTq8vLwGrRcwNjYGnU5XWD0EQRC4cuUK3NzcXmhERXfcItXknkq3BEEMORV13LhxSqlJaW9vR15eXr/utxchel35+fnQ09OjYhoUfw9GjRqFY8eOYcmSJQgJCenTB1qEgYGBWHEXjUYbUnzC2NgYY8eOxb1794a8ZkVSWFgIY2NjMbkMaTAxMUFQUBCmTp0KJpNJNiaSNDbU2dmJmJgYJCUlSeQemzVrFqKjoxUSII6Li4OpqalEuy4ejwcdHR2UlZXBzs6ONBzd3d1D7gTJZrPF3F2KIi4uDn5+flJ1CWSxWKSa7aNHj7Bw4UJFLU+hUEaDYsjMmjULJ06cwObNmxEfH9/vc4KDg8l/EwQx5FacU6ZMIVtijiSEQiHi4+OH3O9DRUUFK1asgJeXF+kbP3ToEDZs2CDx3XbPHVhHR8eg2WsGBgYYN26cXI1wV1cXrl+/Di6XSxYlDsaNGzfA5/OhoqKCiRMnivWVnzRp0pDWoa6uDhMTE+Tl5Q3pfEmoqalBc3Oz1EHs+vp6Us7l2rVrL03Tpd5QRoNCJkaPHo0zZ87giy++wLFjx/o83juzp+eFQRpoNBoCAwNx+/btIZ2vKFJSUmBjYzPkVNu3336blF0BgJycHFy7dg0rVqyQeIyuri7y32VlZaSU+ovw8vICh8PB/fv3Ze7vnpOTg5MnT8Lc3BzBwcESp1yLan1GjRoFLS0tJCYmkoZSFh0vf39/3Lt3Dw0NDUMeYyCEQiGuXbuG2bNnD+l8Pp+Pu3fvQigUvpTxDIAyGhRywNzcHFevXsWjR4/wyy+/DPg8GxsbmVJSzc3NoaamJiarPZxUVFQgNzd3yLsMBoOB7Oxs8Hg88tipU6ewc+dOmbKwJMlAotPpCA4OBoPBwNGjR4dUH1FdXY2TJ0+ioKAAa9eulTgYL4IgCPB4PLi4uOD06dOYMGECfH19oaamhuDg4CHHNZhMJhYuXIjIyEiZ6j7648aNG3Bzc8OoUaOGdH5XVxd27dqFn3/+Wa7rUiaU0aCQC6qqqvjxxx/x6NEjLFmyBBwOh7wYioKzNjY2mDt37pBdVMDzgrD4+Hi0trbKZd1DpaGhATdv3kRoaOiQL/CTJk1CdHQ00tLSAADnz59HTk4OvLy8pBpHdHGVtsaBTqfDy8sLa9asQWJiIm7evAkOhzNgrKOrqwtcLhelpaWIjIzE7du3MX/+fAQHBw85oFtaWgqhUAhtbW3MmTMHR48eRVdXF3Jzc2UKEuvr62PFihW4d++eXAwHQRBITEwEjUaDi4vLkMd59OgRrK2tZS4CHU5ens4fFCMeBoOBI0eOICIiAsuWLcM777yDR48ewd/fH2w2G1ZWVjh9+rRMWVAaGhoIDQ1FeHg4FixYIObaURa1tbWIiorCokWLpO6hIMLOzg5+fn4wMDCAq6srmpub8euvv+KPP/6Q2qhqamoiKCgIPB4Pd+/elXotTCYTy5cvR1ZWFm7evAkejwcGg0EGpkUXb6FQCC0tLWhqamLixImwtLSUS/W/gYEB7OzswOPxkJOTAw8PD+Tk5Mg8trq6OpYsWYKwsDAAGHIKeFdXF6KioqCnp4fAwMAhr4fBYCAtLQ3ffPPNkMcYCVBGg0LuLFy4EPb29li5ciV2794NT09PaGho4Ny5c2SKLp1OH7LxYLFYmDdvHiIiIuDo6IhJkyYprKdHbzIzM5GSkoJFixbJdLcouiB6eXmBIAi8+uqr2L17t0TxiP7gcrkoLy8Hk8kUc3dJsx4HBweZ04aHgp2dHdLT05GcnIwZM2bg/v37mDZtmlwUjnsajuLiYvj4+EhVB9Lc3IxLly7B29tb6vTa3pSXl0MoFMqlfmk4odxTFArBwcEBJ06cwDfffEOmQL7yyivkRVHWmgsWi4VXX30VfD4fp06dUrh8RGtrK/744w8UFxdj5cqVMrsX8vPzSbfUxx9/DG9vb3h4eAxprIqKCly9ehVFRUUjtpblReTm5iI4OBiRkZF4/fXXUVBQgOXLl8utH726ujpWrlwJHR0dHDt2DJGRkcjMzERrayv4fD4ZW+n5p7m5Gffv30d4eDgWLlwos8EAnsunvPvuuy99l0IaIUGydktLC/T09MDhcF5qXxyF8rl//z7efvttREdHIzMzc8DUXFlobGzEnTt3wOPx4OnpCTabLbcfZnNzMxISElBbWwtfX1/Y2dnJZVwGgwFvb288evQITU1N2LNnz5DH2rFjB1paWmBgYCCXtQ0HWlpaiIuLw+rVq1FaWgojIyNYWVnJ/ftCEASqq6tRVFSEmpoaMptPQ0NDbAdCo9FgbW0NZ2dnuexia2pqcPv2baSmpg65nkfRSHqdp4wGhcK5du0ajh07htDQUOTn5ytsnubmZjx8+BDl5eVwcXGBvb291DEHgiDQ2tqKoqIiZGVlgSAIeHp6yk1YjkajkYHmR48ewcjICEePHpXJyF2/fh23bt1CQEAAHj16JHMK7XDB4/EQFRWFb775Bl9//TU2bNiA6upqsWrxl5Vr167hvffew7Jly4Z7KQNCGQ2KEcWJEycQFRUFT0/PF0qPyAMej4eMjAzk5uaCz+dDV1cXo0aNgra2NtkAp6mpCV1dXeQFvKWlBc3NzeByudDW1oa1tTXs7OyGnFo5EAwGA93d3UhPT4e6ujpOnz4t85gEQWDu3Lnw9vZ+aQ2GiOrqakyaNAmqqqo4c+YM/P39Xxpp/P5gMBggCALJycm4cuXKcC/nhVBGg2LE8c0332DXrl1wcnJCYGCgUoLXQqEQPB4PdXV1aG1tJd0RTCYTZmZmZE2DmpoaDA0NpVIsHSolJSWor69HRESE3N6DvLw8rF69GrNmzXop9YxEcLlc3Lp1Cw8fPsTy5csxefLkIQX2RwomJiY4ePAgoqKiZGplqwwoo0ExIhEKhYiNjcWOHTsQEBAAFRUVhd4dDzWbSJ6I7jZFBuzmzZu4efOm3Hcx8fHx8Pf3x9q1a1/qDJ2EhATs3LkTAoEAX375pcSyJCMRUU+U/fv3D/dSBkXS6zyVPUWhVOh0OmbOnAkXFxcUFRWhu7t7yJW/kjDcBgN4XnwnFArR0NCAy5cv44cffpC7wQAAX19fxMfHIz09HRkZGS+tW8fHxwfr16/HhAkTcP/+/RHxGQ6F7u5upKSkyKXz4kiCMhoUw8IHH3xAireJROv+qjg7O0NXVxfXr1/Hr7/+Ch8fH4XN5eXlhTt37mD69Om4ffs2Hj16BD6fL5N8izLR1dUlYzS3b9/G7t27UVRUNCxFnLLS3NyMefPmkXG0vwqU0aAYFmxsbGBvb4+mpibQaDSyv4IsaGhoyNQuVBGw2WyYmZkhMjISly9fHrJOlTRoaWlhy5YtuH//PpYuXYrY2FhcuXLlpchCamtrg5WVFQwNDfHxxx9j7dq1oNFoSElJGe6lSUVJSQnS09PxySefDPdS5A4V06AYNlJSUrBu3TqEhITIHLxVV1eHlpYWGhsb5bQ62SEIAg0NDSguLsZvv/0mURc+Ra3j0qVL2L17N8aMGYNJkybJxUgrmoyMDMyZMweLFy/G1KlTMWHCBKlFEYcDLpeLc+fOITU19aXaZVAxDYoRz6RJk/DTTz/h+vXrMlcyd3Z2gsvljpidhlAoxB9//IHa2lpcvnx52AwG8Lw2ZPHixYiLi4ODgwOpLzXSeeWVV8hq/4SEBJSXlyu1B/hQ4PP5pBvyZTIY0kAZDYph5ZVXXsFrr72G2NhYmQ1HR0eHRLLg8oTBYMDNzQ1vvPEGGTdoa2tDZGQkFixYgFOnTilNF2swtLS08OWXX2L+/Pn4/fffFS69IguGhoZoaGjApk2b8Oqrr4LH4+Hw4cMIDw8f0W62O3fuYP369QgICBjupSgMyj1FMSI4dOgQvvvuOwQHB0sd9OxZZa0M1NXV0dnZCVtbW6xduxYAkJSUhD///BOFhYUoKirC/v37FRrwlpWsrCwsX74cHh4eYLPZYo2cRgIqKiqYOnUqvL29ERcXh6ioKHz//fe4dOkSfv75Z8yZMwft7e1K/dz7Q1dXFy0tLWCxWEhOTkZFRQVu3LgxrGsaKpR7iuKlYtOmTfjpp58QHh6O5ORkic+j0WgICgqCkZERLC0tFba+qVOnYvTo0dDU1ERAQACMjIzIu8ni4mJcu3YNJ0+exLhx45CQkDCiDQYATJgwAdeuXUNzczPy8/OH/eLbG4FAgOzsbGhoaCAwMBD19fU4ceIEFi1ahLq6Ojx79mxY1kyn0+Hs7Aw2m4133nkH7777Lnbs2IHw8HC0tbXh+vXrSl+TsqGMBsWIYdasWcjOzoaRkRFOnDiB5uZm8rGBAuUEQYAgCLz11ltYuHAhrKysBnUH9az6ptPp0NbWhoGBAVauXAlbW1tSXZVGo0FHRwfA8/7O5eXl4HK5iImJQVxcHDZv3gxfX1/861//gre3NwoKCrBr1y6ZmkwpEwsLC5w/fx4sFgtXrlxBfX39cC9JjLq6OqSnp4NGo+Hbb7/Fm2++ifLychw4cACPHj0Sc2cqo5IfeB6r6urqwqpVq6Cvr4/ExETMmTMHPj4+OH/+/Evz2csC5Z6iGJGkpaVh+/btqKiogLOzM0aPHk3Kqves8maz2Vi0aJHYReP3339HYWEh+X8tLS3Mnz8fly5dIt0wmpqaZPzDyMgIdXV1YLFYGDt2LGg0Gurq6uDv74/8/Hx0dHQgOzsbiYmJyM/Ph6GhIXx8fLBq1SrY2Ni89FLXAPD48WPMmTMHM2bMgJ2dnUILLqXFysoKoaGhSElJwS+//IJz587h66+/RlZWFsaNGwfgudGQtphRErdmz74vFhYWYDKZmDt3LvT19fH9999j//79SEpKgrm5+dBe3AiCkhGh+EtQV1eHgwcPIjk5GWVlZVBTU8OECROgrq4OU1NTODs7Q01NTewcUSBa9NWeM2cO9PX10dnZifv376Ompgbjx4+Hmpoa6urqUFVVRV50BAIBKajI5/PB4XCgpqaGoKAg6OrqYtmyZTAzM1P6+6AMGhoa8O233+Lo0aMICgqCra3tiDGIhoaGWL16NXbv3g0dHR1s3LgRrq6ueO+999Dd3Q0HBwfk5+dLnRVmZWWF8vLyQaVsWCwW6uvr4e/vDw6Hg0uXLqG9vR0HDx5USHX/cEAZDYq/HEKhEJ2dncjKykJ3dzcyMzMHrDcQCoUgCAI0Gk3MZSByZ9FoNPJOU/QTIAgC6urqcHBwAJ1Oh7W1NfT19cFgMEbMxVMZpKWl4fjx44iPj4eJiQkcHR1HRA8IY2NjVFdX49y5c3j8+DE+/vhjsZ7qHh4eKCkpQVNTk1R1KJ6ensjNzUVbWxu6u7vh5uaGp0+fkobE2toaoaGhyM7ORl5eHrZu3YrvvvsO69at+0t9LyijQUFBIRONjY24desWdu/ejQkTJoDNZo8In31OTg64XC4iIiIwbdo0jBo1Cu7u7pg1axZ8fX2xe/duqbLB/P39wefzER8fD01NTRgZGaGkpASqqqrw9PSEr68vNDQ00NDQgPnz5+Onn36Cm5ubAl/h8EBlT1FQUMjEqFGjsGzZMty6dQtWVla4cOECiouLh3tZsLe3R3NzM27duoU7d+5AVVUVly5dwpgxYxATEwM+ny/xWNra2uDxeKRMCZfLBYPBgL29Pd566y0EBARAQ0MDFRUVWLx4Mfbt2/eXNBjSQO00KCgoJCI7OxvvvvsuOjs7MWXKFKVlLPUHj8dDTEwMHj58CD6fj4MHD+Kdd94Bg8HA+++/PyRlAFGPlfnz54vVCmVmZmLLli3Ys2cPJk+eLMdXMbKgdhoUFBRyZfz48bh27RoCAwNx8uRJtLa2DttamEwmysvL8ezZM6iqqmLr1q0gCAI3btxAXFycVDUcoriEp6cn1q5dK2Yw7t27hzfeeANHjhz5SxsMaaB2GhQUFFJz9epVfPLJJzA3N8eECROG5bpQXFyMZ8+e4cGDB2LH16xZA11dXZiYmEg8lr29PRYsWEDunurr67Fz505wOBz897//hZGRkVzXPhKhdhoUFBQKY+7cuUhNTcVrr72GP/74A2VlZUpfg7W1NdTV1RETEyN2fNKkSWhoaBj0fBMTE1hbW8PX11fMYBQWFiIgIAB6eno4efLk38JgSAO106CgoJCJ/Px8zJw5Ez4+PkrPsOrq6sKNGzfw8OFD0s1UWVmJJUuWICgo6IXnqqmpYfv27WLHHjx4gKVLl+LXX39FYGCgwtY9EqF2GhQUFEph7NixSE1NRVpaGqKiopSqQqumpgZjY2OcOXOGPGZmZiZRyu2SJUvE/v/06VP8+9//Rnp6+t/OYEgDZTQoKChkxtDQEBkZGXjzzTdx+PBhpepYsdlsfPvttygtLQXwPLDdWyWgN3Q6nZRKIQgC169fx3vvvYfDhw+T2mMU/UMZDQoKCrlAo9GwceNGPHz4EGFhYUhNTVWKEq2BgQEmTZoELy8vcocxWG8WoVCIs2fPoqSkBMHBwbh37x4uX76M8ePHK3y9LzuU0aCgoJArdnZ2qKiogJmZGa5du6aUxliWlpaYPHky9u3bBwDw8vJCUVFRn+eJRC9pNBqePn2KVatWYf/+/fjyyy+hra2t8HX+FaCMBgUFhdyh0+n4+eefsXDhQkRFRSmlS6CLiwuioqJw8uRJrFq1CnV1dWKPq6iogMfjgU6nIzExEaqqqoiNjYWDg4Nc5t+9ezc8PT2ho6MDY2NjLFiwADk5OeTjO3fuJDXPRH9exp0NZTQoKCgUAp1Ox0cffYSwsDBkZWUhIyNDoe4qOp2OgIAAHDp0CGlpaairqwNBEOjq6kJXVxdaW1uRnZ2NyMhIvPHGGzhx4sSgsQ9piIuLw9tvv42kpCTcvHkTfD4fgYGBpGoyADg6OqKqqor8c+/ePbnNrywoo0FBQaFQ7O3tcezYMTx8+BBXrlxR6Fwiw3H8+HG4u7sjKyuLNFj5+fkICAhAQkICFixYIHeF2uvXr2P9+vVwdHSEi4sLjh8/jtLSUlLXCni+2zE1NSX/iPrKvwhra2scOHBA7Jirqyt27twJAPDz88OWLVuwbds2GBgYwMTEBEeOHEF7ezs2bNgAHR0djB07FteuXZPL66SMBgUFhcIZO3YsiouLMWHCBLEGWYqATqdj1qxZqK6uBpfLxRdffIErV64gLCwMGzduHLSzo7zgcDgAINZvIy8vD+bm5rC1tcXq1avJjC9ZOXHiBFgsFh4+fIgtW7bgzTffxNKlS+Ht7Y3U1FQEBgZi7dq1cokvUUaDgoJCKdBoNJw8eRLPnj2TulmStNDpdLi5uWHTpk1YtmwZ9u7dq9D5eiMUCrFt2zb4+PjAyckJADBlyhQcP34c169fx8GDB1FUVARfX1+5aHi5uLjg008/BZvNxvbt26GhoQEWi4XXX38dbDYbO3bsQENDA54+fSrzXCoyj0BBQUEhIRcvXsSzZ89QV1eHDRs2KHy+1NRUhISE4PPPPwcAfPjhhwqfEwDefvttZGRkiMUs5syZQ/574sSJmDJlCik5/49//EOm+SZOnEj+m8FgwNDQEM7OzuQxkQ5XbW2tTPMA1E6DgoJCiTAYDHC5XMyePVspfSmMjIzg4uKCDz/8ED///LNYfEFRbN68GZGRkYiNjcXo0aMHfJ6+vj7GjRuH/Px8qefo3Z62d093Go0mdkwUvxmsfkUSKKNBQUGhNJYtW4Z79+7h8OHDGDdunNzSXQfC3NwcQUFBpPFoaWlR2FwEQWDz5s2IiIhATEwMbGxsXvj8trY2FBQUSNRzvqamhvw3n88fFoFIEZR7ioKCQqn4+PggLCwMCxcuxIMHDzBx4kScO3dOIXNlZ2dDW1tbItVbWXn77bdx5swZXLlyBTo6OqiurgYA6Onpgclk4l//+hfmz58PKysrVFZW4vPPPweDwcDKlSsHHfvo0aOYOXMmrKys8P3334PD4aCgoEDMmCgLaqdBQUGhdBYvXoxvv/0WmzZtgq2tLf75z38qZB4ej4esrCwAGFI3P2k4ePAgOBwO/Pz8YGZmRv45f/48AKC8vBwrV66Evb09li1bBkNDQyQlJUkkvT5//nxs3boVzs7OaGxsxJdffolLly7h1q1bCn1N/UHtNCgoKIaFuXPnorOzExs3bsTvv/+OiRMnyiW7pyc0Gg319fWwt7dHcnIy2Gy2XMfvyWCFi7LsppycnPDrr7+KHfvkk08AAKtXr+7z/P56ucursJLaaVBQUAwbixYtgqamJpKSkjB79uw+AV1ZIQgCWlpaCAoKAkEQLwxMU0gGZTQoKCiGla1bt+LHH3+EhoaGQkQD29vbcfHiRbHe3xRDhzIaFBQUw4qjoyM0NTVx9+5dLF26VK67DS0tLQDAlStX8P7778ttXGVSXFyMbdu2DfcySCijQUFBMex89tlneO+99yAQCODl5SW3cUVigXFxcbC1tZXbuH9nKKNBQUEx7IwZMwZfffUVtmzZgqlTp5IVzPKgq6sLLi4uVEc+OUEZDQoKihFBUFAQ8vLyEBcXB4FAIPF5g7mznjx5gnXr1sm6PIr/D2U0KCgoRgQ0Gg137tzBW2+9BTabLbEaLZ/PB/C8T7mKingVAUEQKCgowGuvvSb39f5doeo0KCgoRgxGRkZISEjA6tWrERAQQGosaWhooLOzs0+tgZ6eHiZOnAhVVVV4enqiqakJly5dQmtrKzo7O5GdnQ1ra2vQ6dT9sbygERJUfLS0tEBPTw8cDge6urrKWBcFBcXfmKamJsyYMQMsFgtjx44dUJ/J19cX/v7+fY6Xl5dj69atyM3NxZkzZ8RUYCn6R9LrPLXToKCgGHEYGBjg8ePHiImJwU8//YSEhATo6OiAIAjY2NhAU1MTDg4O8Pb27nNuaWkpli1bhlWrVuH777+HpaXlMLyCvy7UToOCgmLEw+VyIRQKweVycfHiRRAEgczMTJSVlYFOp4PH42HMmDFQUVFBbGws/vOf/2DFihVKWZu828Yqi96Xfkmv85TRoKCgeOkhCAI5OTkQCoUYP368UmMYfzejQbmnKCgoXnpoNBrGjx8/3Mv4W0ClFFBQUFBQSAy106CgoKCQAXlJjr8sUDsNCgoKCgqJoYwGBQUFBYXESOSeEm2/FNmUnYKCgoJi+BBd3wdzt0lkNFpbWwGAKpKhoKCg+IvT2tr6QkVgieo0hEIhKisroaOj89LmJFNQUFBQDAxBEGhtbYW5ufkL61wkMhoUFBQUFBQAFQinoKCgoJACymhQUFBQUEgMZTQoKCgoKCSGMhoUFBQUFBJDGQ0KCgoKComhjAYFBQUFhcRQRoOCgoKCQmL+HwMT2OZuE4dZAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.points(adata)\n" + ] + }, + { + "cell_type": "markdown", + "id": "23662c0d", + "metadata": {}, + "source": [ + "You can use `hue` to color transcripts by their gene identity. In this case there are >9000 genes, so it isn't very informative; you can also hide the legend with `legend=False`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "549d2d9a", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T21:14:22.933418Z", + "iopub.status.busy": "2023-03-31T21:14:22.933257Z", + "iopub.status.idle": "2023-03-31T21:14:29.239267Z", + "shell.execute_reply": "2023-03-31T21:14:29.238855Z", + "shell.execute_reply.started": "2023-03-31T21:14:22.933404Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAGbCAYAAAA4KMxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ZWAc5733/79nmUErrZgliy3LzHaMsWM7sZM4zA1zGmraMDZtw2mgbcAhO4ljiNmJGWS2ZcmSxcxaLfPu/B/8/if3nZNCzmnPyd12X4+016x2Zr4Dn70GdgRRFEViYmJiYmJ+BMlPPQExMTExMf88YqERExMTE/OjxUIjJiYmJuZHi4VGTExMTMyPFguNmJiYmJgfLRYaMTExMTE/Wiw0YmJiYmJ+tFhoxMTExMT8aLHQiImJiYn50WKhEfP/vCeeeAJBEBgcHPypJwWAXbt2IQgCX3755U89KTEx/+tioRHzb+n3v/89H3zwwU82/kAgwEMPPURKSgpqtZoJEyawffv2n2x6YmJ+rFhoxPxb+qlD49prr+Wll17iiiuu4NVXX0UqlbJw4UL27dv3k01TTMyPIfupJyAm5t/N4cOHWblyJb/5zW+4//77Abj66qspLS3lwQcf5MCBAz/xFMbE/GWxnkbMP43BwUGWL1+OwWDAYrFw99134/f7v/ee999/n1mzZmG1WlEqlRQXF/PWW2997z1ZWVnU1NSwe/duBEFAEARmzpz53XC73c69995LVlYWSqWStLQ0rr766h+cU4lGozz77LOkpaWhUqmYPXs2jY2Nf3M+vvzyS6RSKTfddNN3bSqVihtuuIGDBw/S0dHx36hOTMz/jlhPI+afxvLly8nKyuL555+nsrKS1157jeHhYVasWPHde9566y1KSkpYsmQJMpmMr7/+mttuu41oNMrtt98OwCuvvMKdd96JTqfjl7/8JQCJiYkAuN1upk2bRm1tLddffz2jR49mcHCQ9evX09nZSXx8/HfjeuGFF5BIJNx///04HA5efPFFrrjiCg4dOvRX5+PEiROMGDECg8Hwvfbx48cDcPLkSdLT0//+gsXE/E8QY2L+H/f444+LgLhkyZLvtd92220iIJ46deq7Nq/X+4P/nz9/vpiTk/O9tpKSEnHGjBk/eO9jjz0mAuJXX331g2HRaFQURVHcuXOnCIhFRUViIBD4bvirr74qAuLp06f/6vyUlJSIs2bN+kF7TU2NCIhvv/32X/3/mJifUuzwVMw/jf/oKfyHO++8E4BNmzZ916ZWq7/72+FwMDg4yIwZM2hubsbhcPzNcaxevZry8nKWLl36g2GCIHzv9XXXXYdCofju9bRp0wBobm7+q+Pw+XwolcoftKtUqu+Gx8T8vyoWGjH/NPLz87/3Ojc3F4lEQmtr63dt+/fvZ86cOWi1WkwmEwkJCTzyyCMAPyo0mpqaKC0t/VHTk5GR8b3XZrMZgOHh4b/6f2q1mkAg8IP2/zg/838HX0zM/2ti5zRi/mn952/+TU1NzJ49m8LCQl566SXS09NRKBRs2rSJl19+mWg0+g8dv1Qq/bPt4t94gnJycjJdXV0/aO/p6QEgJSXl75+4mJj/IbHQiPmn0dDQQHZ29nevGxsbiUajZGVlAfD1118TCARYv37993oBO3fu/MFn/efA+Q+5ublUV1f/Yyf8Pxk1ahQ7d+7E6XR+72T4f5xAHzVq1P/o+GNi/h6xw1Mx/zTefPPN771+/fXXAViwYAHwf775/9/f9B0OB++///4PPkur1WK323/QfuGFF3Lq1CnWrFnzg2F/qwfxY1100UVEIhHefffd79oCgQDvv/8+EyZMiF05FfP/tFhPI+afRktLC0uWLOHcc8/l4MGDfPzxx1x++eWUl5cDMG/ePBQKBYsXL+bmm2/G7Xbzhz/8AavV+t2hn/8wZswY3nrrLZ555hny8vKwWq3MmjWLBx54gC+//JKLL76Y66+/njFjxmCz2Vi/fj1vv/32d+P6e0yYMIGLL76YX/ziF/T395OXl8eHH35Ia2srf/rTn/7uz4+J+R/1E1+9FRPzN/3HJbdnzpwRL7roIlGv14tms1m84447RJ/P9733rl+/Xhw5cqSoUqnErKws8de//rX43nvviYDY0tLy3ft6e3vF8847T9Tr9SLwvctvh4aGxDvuuENMTU0VFQqFmJaWJl5zzTXi4OCgKIr/55LbL7744nvjbmlpEQHx/fff/5vz5PP5xPvvv19MSkoSlUqlOG7cOHHLli3/7RrFxPxvEUTxH9TnjomJiYn5lxc7pxETExMT86PFQiMmJiYm5keLhUZMTExMzI8WC42YmJiYmB8tFhoxMTExMT/aj7pPIxqN0t3djV6v/4t30sbExMTE/PMSRRGXy0VKSgoSyV/uT/yo0Oju7o7dpRoTExPzb6Cjo4O0tLS/OPxHhYZer//uw/7zg2NiYmJiYv75OZ1O0tPTv9vf/yU/KjT+45CUwWCIhUZMTEzMv7C/dQoidiI8JiYmJuZHi4VGTExMTMyPFguNmJiYmJgfLRYaMTExMTE/Wux5GjExMT8ZURRpaGjg5ZdeIeDz4pOIuG3D9HqCACQEPIgCOGRyjEoFCoXyB58RdTkQwwEkhjjC0RARQYZCiDJmdAULFy397sSuUqmkpKTkLz6mN+bHiYVGTEzM/4pgMEhfXx9r1q7lTNUZTpyoBDnkyhK5xXopyeYq9sVl0FSezzN9HlamJOKWSykI7OKDLC/ndoW56+bnEBGQ/P93/Lv2NLOhfgNx0XbKDG4+ECcQiih4rmaA1b2f8u47J7EmlVJ1VoItMoir8TC33noL+fkj/kvTrlAoKCws/N5NbyaTCblc/g+t0T+DWGjExMT8jxkYGGDjxk28v/IjWppaSc4ehSY/lZ+5k7Hd/iDLBzs5rzOOcDCFLuMwl4X68bUakQfTETN7OK4bT4shD2l4iL1GN6F33qE8dAi/6R7SHc28ag7zhPtDuiSFZNW9jjXbxnh3Lbn2DMZlCmwr1OEMOLlFK7AxYTJG19007NpA4/pKpIBBbGdvko10qjFocgm4NXhEBzKhl4gsQFLSOFJTJuJ2u1mxYsV38yWKIi2tbSg0Ogpzs0hJSWHOnDmMGTPmpyv2/5JYaMTExPxDRaNR3nzzNdasXc/Z+mbKSqcwenk/49TlmIcmEx9pY69eR4uunzcVOrzhdgY1x/gsp5JbG0spG7LwamEflzi30SOcZFBZjzZ8Pm2aLgxRAzZRycSukxQOtjJVmMQaywjUkShydScOfRW7zFV0J51kfNtCrnJ/hJs4OhNUTPTX0SUfQ/XCPJoMYWb25pI7lEBTWivdShcRztKshABmMiLDvDN7CSZzPsGQC4+3H4v5+72TP57y8P5JJyltz5GulPGbW27CptVgsqZw//0/Z/To0chk/3q72H+9OYqJiflJRKNR1q1bx8MPP0T+1FSmLB1gqtlMmluN3H4pOw+cYWPba9gGbMiEEXjCbiRaPW/6OmmPuonIBFbpTVROmUW9JkCNt5hGFcgELVP6c/EpBCT69+hUeYGX+SKpE7MPnOYAIVUHJ1K/oN0gJyzocUXyGc6sJ1fiwy0IfGm+lHtaznJP/yk6VWp+nbmAMfZURIlIk64LdTCXQCCe6ZGnUEW1nJBOweu3EyeR8tGGlXT1L2f5vF6Kc5OIeESOfuujue95FkU0zE1x8o40iV9elIdd20V3w0P86YXP+KXzF4wYUcjkKZMYP34CZrMZjUaDRqP5qRfV3+VHPe7V6XRiNBpxOByxO8JjYmJ+YGBggEuuvJoubQoPlBqw5TVjlHTgj0jYt8PDqW9F4iYXEJ6cgCb+QiJCOTM9Z3God2IJn6TL0IkmGMV52sTGvQKRwUFyZl+OZEYO2R6By5tH0pD5PAsc1RxWzid98AHcCimN2jq+TN/MRIebEZIjdAoWAgoHh2SXY4h0IpMfRCEEMAxfxkPNDQTUXbiERVjcTpSBZCKikhvGi6R4VDx/LJ0bZlQiigpm2Bu45YILGFq1Gn94L+Lg63SdH8Y1cBrV2aM0m+r50jwOo3iU2zqC9MifxljUxuhoNdGeW6n2nmL+ISMnBxs46d/Jp4Idt1RK47drmLt0AbkJmUyfOYNly5b9P/MjsD92Px8LjZiYmL/LyZMnuXrZZSwsL8W3TE+/4SSj7SmMbuvn5182U5YxlfszX6MheR8bC96nVriYVK+c5xrasMVv4qv4ONq4nHndKr5JaqZNY0Jq19CxdjvO3loK7ryOCl8CTeYubu5tJqX/V+iDOl7JP0OHpp0K4SO00TAL2xSsy1QyqDnL9SduwiWV8euiYfSSE0zsmsAxq43xLg0lA3dgjm6hL+4FPk7Mpj86ledOXo1XFuR0fB9HzYfoleQSVtazYNDOOf7NrNJVsCduFFHBh1lspiA8gMY2k2/TXkUmylGH1VxZ8zrjI6/Row3zRNq9qIVtjB/qpEtbjENqZFAyBh3HiDg3U3FEw8meQSSina/Xb0ChUPzUi/FH7+djh6diYmL+2z7/4gvuffQhXl52I7rkJnYFckhwFBJoncWTf1rEb6eP59TEP3DMr6ZHX0NIZic5dIbfHjuXoFBETXoH030necd4iFUpS1AoHISlbqLmdNKvicdWu4gzz71K4KFlKGRpnOQm1mX1c2XfTmqNekBN4lApq61pmOUjSBjOxBesQR6xYVPBsHQExe5BpoVOMfn0L+mN/5Kw/F36fTlstyowSZsQfPPQRuS41VGKXCmc7/6Im3MvxC1TsD3OQND2Cs2qDjKDZ4EAg5LxNIcV/LK3DqRFRFQeiuigILKVfE+IoJiOKdLIgC7I/kQISsIUDhso8Mho0+WREH+GxDGrWRQNMnz2JR5++GFeeumln3pR/mix0IiJiflvOXb0KHffehsTnl3IWl0Qt2QcQzIjOMbT8elVrJ5zAcq0SegiXXiVKSh8V6OyzaDRGOK2CSEcikZgOmbRRKo3jaDmLaY7jch9o3g7OYxKzOQq6zd8fv0Ymt/8nFcXfUizKZFWVZj12atJlPtxRCaQPVSC0uLhsFnFnXXxNGcVElC9TpcuHYFEvJG5aPrHoQxJkdnGU+Y7SKeyluyasfwxW0qKczROuY8h88MkCJ2cjmpZ7N5BxKUmyZuFTbyS/vhaXuj9ghASPjIlU6sYyXPln+Pz30iZQ4Ja8TinTBYyXbNpkKby/PFiQrIZfJUVwhMVublJh1KUsNnaT0/kZdSRITL8zYyeu4yb3n2J3bt3M2PGjJ96kf4osdCIiYn5Lzt58iTnLVnAtffdiVohUNqWxrb0RoocZla+/yFz5k6hVBhLX9DFTssGHJoeru92MNfezHvBB5ncm8LGnB4CgoBPoeG0cg7JIQtSRxlJ3hGMNf4GlyDSKb2AcWknGVmhZ9v25/nV5Bto0quoM0xnrOMMal86GUE/MwadCL4w9cbDjPIlku+JEJB00zY0l6DUwZrMfaD7DHXESZc9n0PaAqZE9jE2FKYtrEMXUpHmF3k9vZgGlYrkgJlb+vdxRh2iSmggye/jlDCXqLqKy93v8KlhNoOYiQ95sQQFFp5+jlq9FLO/n1zLKgTdVFSeJRgicpTRNnq1EnZbhjiQeJppzguwqY7RZnkDr13Ge+99xA033BALjZiYmH9Nb735Bp+seI3xj19IXPgqcnpdLOw7gk9u5eXjLzIqMYdZI6T82vAVZfYQZqWTkYEhVFIjQjiRe9rPUqdt5vxONSX2VJqT6vjGuoJq+Ui2JxxkRn8bS9siDKs8vJOcyFJvPyMqpNxwqJ5Lck7ysKeDosEemuLkSOSnOa16jw1JlWQGDjC1+iLSh01UpklYZc3HqHiOpLCLHnUuUfUZrj78PAUOM878HQS1IaRRDUliDQeyX2J0+CTl3ky6lDn0S7P51KijSxGHV9LD1L7xnNucxTVTBOLDCXQL2bxR1UVZYAeRqJ6IRskrhZn4pQouixwhKJzG3ZdHRVcaj49t4UBCI8NKF8VOHU36+yjwO3DL/ST6i0hMTCQlJYXKykomTpz4Uy/evykWGjExMT/ax598yh/ffI3HfnYJ3aHFdGh/h9d7DtviC1nds47WTi+jrs9h6eEFPF+xlmGpg4B0AFvERJ0mnpKuIrrNtWzIq0IWtPC6cAsSmY7prk4ucjYzof1ONqdv5N1cCzf1V2MIX8KXyufI0z9E+fQo7buqMI+XUauN46gqm3JPJ2MH4xg1rKVXp+CAtYfFfW2EZS1cbG+izujHL8kgHLyYNpWVSkuAkGSArXGJPFp9P7JIHs+MPEWtfhajmvs4q78IISwywRlEImujQSmhNHCA8YKT5gwvEkkOnSo38vAAgylr6OkpoMnQikLZzCPDAYTBd2i3XMb6pChnMwJcpllHuceIJ5qLSWhkhq+W809PpTKuEE+gGb/mT7TUrOKyyy5j9+7d/xShEfvBwpiYmB9l5Sef8fyrrzLh1kc5q5pGSDqMXFXH7qQ6BqIyvt34CWU3XoIxMIk+tYurTl1Bomjnmm43F/a7WFb1c4Yj82hSq2gM34F2eDmXdVchi8CShocYN5SJQIQxQ1mMCLQxKFNxVc82xjsrOaqcRt+YuTSd7eSFnAgfWwtRByo4rJdiS70br7IBQyCH1IgEe+JvyO5fxCnFeMKeqUxvnYdSqELnz+SzvJU8OtKLTd3An0b/iabcn2EJtyIhwhvJ89GGshBEBTny95noqeNc1y4K2EdSpI4eBXiFZBClTAxspUc3yD3lCszDF5IyeC5eQUlECPOtoZl2qRq/3E5AdZqr+yqZMmCn3J5IhmMKK1PiCYnZZHgzkcpVSKRy1Go10Wj0p17EP0qspxETE/M37du3j49feIVbrrwWQ+gsFc5NbEnxI5PY6FVHeKr1ZeLmFSBRZ7PXEGBOn418u59hVYTkgZ9xxtDGrlSR9endjAqBVtKMRtfIZuO5pHsEiCRQp0zgjYLTzOvUMsN/Apcsjp1JAU7qWlGLHkKaclRBEbdnBkG1j2/i7CBMIU1bQ5vaT5qnm1LfTrSyALtMSZw0BsiNHCCuaSot2UZ80ggJEYFBqRyvTMMBSpks7OWaTg8Lelw8XWQn2WlDFw4gEby0mJyM7U9hZuci1qTZMQ8uxJjQjQ4bP2tIRRlN43S2mk7daGziORwXFqBJtmOVKFELH5LUs4x4/RGGDTpS+2YwpMzky8R0Thn2keLbx+sViSSXbgOgp7Lyp13A/wWx0IiJifmrampquOPGW/n9eS+idtfhU/hp1SawXjcSK/UMC8k4j63i/ituINiTz9YUeLIYMjxhRNm5xEXmkz94lI8Ku0AIkiI5QmJIR54rlWNGKb2qEHeM/YwlPYXc3ihjaaeXUOMTnDar+KToA5ShckRpN7KIFsO06xjcUs2Mc4tJdlvICG9l6pCGdVYpQdkAG8xljHeaWZlmISix0CHJRJvuRCE5Qq/CTFE4woTI09jDRpY2zGakcyLDcilG0U1AKGd3koNEn8iVJ65hV8opzmqljJJJ2WVO5KmzBZxrULE5YTQE2vFHZvKz+q94KaeHDm09MlHLVOc4oAGb9yq6DO0s8O/ltNTC6ordyAPnog/XUuHuxSQ9TGLJ5z/1ov1viYVGTEzMX9TR0cEV11zDE7PfRCsvIXdYwu5EHadUlzDN1ovC+D6l3m/oDbvwGaTM60miT+kj0RPhQFIPdm07h+J2YowGUMgbyBGOoHKO4RvdIpT+DGa6PRyPr0YeFdGFB5k17OWswYBXkkZK6AzXtIxC5buKt/K2csI8QO6ERA6++BrCQgMSZRveSCYpQ+W8Vxnk7dwAmxOltKkjiJJeMlwW2g0htqU1kyTZT0J4Gt2yBNyKBpJty3Go6umMRnm7ZAPmsAw5t5BpN5Ho1TOsaKNXrmWbVWBNQiG5nnj2jV+OGT1K4QH+mFrMsp4gW1J01JhrQYzDEgzgU76KECwhVSykV6Fjh7qU4yYwhd0opZ8xsW8io2zn89GIdnrt9aSYC3/qRfxfFguNmJiYPysajbLkkoXMmT8Ro7wTv/wTjlsGqFMspthZRZJLyZbUBeywt+PNb0ETHotLXcxi+9f06DfzcO0y5IGFlDiUPDruMGn+IBKplRTbLRgVYa6r16MLmjiamsenWVu4pFVAHTZyJO84m1JO8ljPJtS2C/Epqhkb+BZ7MIrDcoI0lZ7C1ni2jDCiUQtsm2ggKMjwK6uZYe9AFvHRLJST5VXw1MnpuOQTuWtyBhFBhih6sItZXN44nhTT1+xLjqMhej3j7CKPD7bSochgu7mEZ8u3M85bRyg6nUS/jkJHHEiz6NHbyFI/Qrz9MrYkp7E9uYMR9iwKbFZOJtaR6roDs+c06Z5B6nWN5IfChLLiqdHnk+12sy6jgx7NIeI8WpJNBUTCAY7vfITuARP/LLvjf46pjImJ+V939/33UTouzNQECb+NK2BQfxaiZUgi+ejEszzUfJIH60dSO7Ce/pxcmnT7sCs0jLa7mNGVxR8yHMz3fk59QoRpES+7Qsu4qGkObs0KdMTTEq8hII6jWxPhlEnCMaOOiQNxHIxrYs7AeGzSQ5iIw6z8NaNCXcT1Z/O7tJkkZ2uo6U7kYsNpRg7reSa3CDlBLuw7TWakmjy/m3EOEB0V7EjpY0l7FpN6EziQaEcttOAinhfGnKDccR6DGg/DUitiVM4Rs5L1CQUIyJnvC1AcGOCehkQcQibNcUfZZ44y0iVhWq+EV0wJ5LoU5EcPcV3DTB4Z3QWCEmXEQaZbgj4cj0pIZN+IPVzU+HMy9MmM6k/icEYTC/okFPQtxrO0iROb7sLjH2LvMQMVk676qRf5jxILjZiYmB84duwY+/Z/ywX3aqj11YO0AUHwIpG2IhdlOCRKnGIpfmmYtvZh5hcswC1Vsie+gT3x8TzYdoQ4UYJb008koEci7yPbm4VPYeZAvJxhbQ/bUuLpUq+nLFDPPLuBFQUG1uXISVN/SY/QyZnANRTpVazKvJJxvkPcf6qUWfJOzhY76al6k52zYU3ictJDeykT1zKp+y7q9CNwyb+gRQlK02MM69o4rcpnQSCdKqwYZRtQhOZgYyynjVoE0cR9VckE9CfJ8UQ4baxDFdHTxBzO77wbqRDPryvWcWtzhJF+HaJiCAGRVH+YHm0LdrL4eNSfKHHfTqP2CAr/Dp6a+Crzmm7hRIKLvIiZbYkhMof9vDjmay50HiBv4ut4zFHOnjjCl1tbaRm0kJSWxVVXxUIjJibmn5DdbueSKy4j6d7LGIh6GVZacEancMvAeoYVnSS5j3NUeiedhia+MR7EvsVHsTYdcTiOiZ7fc8YcYJe5hMLQCT5Sz6fCXcDC6jJemlLJ1sSXSBfrmOBOIkf5DQV4GOuAPq0Cu30Bx9V3EZWdYasukwxpFyn9WViCAoaom18Xy0gMwgP2Ip6s3cm9p6cQNm6iVpWFRzKL0v4iTF4fn2SN4/aOD9iR3YdbFGnUmGmRXEqC/Gai/rFYXDOZqnsSb6iCwcCFvDaympLwftztl3NB91mKol/wy+Q3OKmXMnZYwURbBud3t9Olnkm/kEJBaDf6os0cUV9Bmmw7PvkABcNxXNR3lim9BYwfvpMbJ7/D+d0hxBonXzi+QjXchWanktfOdLB75O0MDw8ze/ZsRs9+kF/Mn09ycvJPvdh/tFhoxMTEfM/V11yDefHFFMnPJcUxEqt0PSrZEJr+e1hgb+CUqY7hRD2zB6dyzoCJZ/2VVCf+hmFhErf1DGCPa2WSsxWT6CLPFyHkHk18QMsMWz+H45y0C0WcNWSw0OOi2F9Pg0yGRuImLB1GFQW16xyMyi6cCif1yfsZ78lgyWCYF9INHNMsZo75JGIkSmH/5Zw01tCsUnFKnY+6MMgFZwu4ra6bwxkGXrHcwkxHDTs1V+CXQkY4lWTfXIaFLHwYkUnaGSn5A/2RkVg9Zr7IHuLxwc9wR+CPNZ/TkrKVnlQ9i7vup0dZhso/QFtGG1lDAiExkdHukwxp01BGLVxqu5SDnrksrj6G0HSYo592ctTtRCsTiFqk5MUlM+zrwGQxE4yEee6555g+ffpPvaj/W2KhERMT8x273U6TzcU9pruxtvpYk1OFWggzwZ5Pn64HyZAcnT+DiKIXZfRcerT1mPQR8oauIGQ8SrPCgDNUxnFLDSVDBhKDQfq1ezmd/wH1Jh1BIYWwRI8mPMgOTQV7NKVc5cwmu3ck3UaB/QnreHD490zrgk4hmzZlMlFtNdv0CzGFnRglQ7jUtSBEWZ/Sx4akc+iWp7LQu44c5VtoDZM4YcjhSEor6aEkzK4xPDTg5JuULsrdd9OvGM+geR/blcuY4BpgTmAtSr+F85ty2T5RyzfqSVw8cJyDpjlopbvo0/SQ4DpGhstFOGol3XMe9SoLTx7fRVR1iD+lNPDGsXgmbzpLIHASkyWLySOLuCZpDqkVKWSFOokXBpladxtbE+H50l662s7yzPO/YOCeQebMWsCjjz31T/XIiVhoxMTEfOeVl35LpKKYWlMV7yU1EsFA+bCeduVBijx5rM7ey7zWqSSLB3mh6ChF/gC2PSb6h3zYtZNoN9hIFb5CJ0bJ8CqpNEl5M9nEsuEAKomXC3oMpAbsKAMy1mdryIvuJ9HzJuP7BgiLGj7MlHNaOYJizrLFqKdG18xFQxrWJKYwX/wtaRE1VnUAj6YRvfEdSsMyuoXLqJQtR6lZg9ri4LV0JQpxMmNcLoLRMeQ6rQSFfNIDGr5N6qI40EC8c4g4cRefG9UoHFMYpW/jjRMS+vValP5y3iiyYwk/hKB+gxFhO9PsIcJRHeMHtuGTqGj3CtxycD1nB4aIaHq57IJzKB6TgUxxlkya0Pj7ec9wMxK3i2p9P76UICuTClCHFBQkNjN3OUgFDfsP7GfCvDlMKivnofvvp6Cg4KdeBf6mWGjExMR8570Vn/DWnWOolbShiarwCSFqtCXMbOziaNq79MbtJyQZQbM8B7e8g8S+bKTJXWwIqzFqcxnl6+Wo5CIeO9uBJ2zhVFwFpkANh1TlzHVUo1IcZ0zbUhrkM2iU2Ej2hcgNfkGTbhQfZfuYMxhmdk8cX2Ync1gvIyodwBxM586BrWy3llA6bMDXPwO/eA8ORS+7lBMocRVSq7Wjck7gcNxuEoJedCEl+41+MsQTNOnH0qIZ4HSCjIAsD1EmwyI00CwbQY18LKmGFk5r1xOOSintuBu3pA6/1IEuXM+ygV4iwhC/yXyRSwfXkG7PZ1XtSn53tpbW1lYW3Pwws7KX8UVeK+MaA2xIHECPjlrJKBICHjyGJpzheQj+YkqdfZiFZi4faMOg9GFXCZSPzufY/GWcqvqMy69bTEXBBEZWjCYjI5vs7GzKy8t/6lXiB2KhERMTA8Du3bsoyywkR2zjJWstEbSk+gop69UwpD1KV9wWtO5SRvZdQSh0kAytAZeyE39WAZHuahJLU+iUjef1hgd4LuMmFGE1UsHFnPCX9AZuIaPvbtri/sSvR8RT7DjCOLuDWQN6pJEoZvk3vF2josXSRKJ7BANhK2ZfBsPyPJIjX/ONQcuQ3IYnMI+4ljSksjzW6pYTErMwhfWkSh/hVGo/43uzcMd/Qa5fID0YYuQQ+BURrm6z8lFuH0H5KQ6qdCTLVMhCCYhiNg55EEckAa13AgbXEuwaJXOCH2D2C9SrjIjRRKTCakTZMK/aT/K7I8eQKjXM/e09DOakoqj3UDGkIn84g0s0W9mhu46l3vFc0P4Na8trcUvUrMkcSUhRTauxB3fkMAa/wCb5pXTpNBhYgbt8AjckKvjIbaSyu5qCqs9p6QbjsIYx4yq4+4G7SU9P/6lXESAWGjH/hgKBAM88/TTH644w1DeAEgt+WQCJAOqIlygSFBEVAdHNNTfcwfXXX/9TT/L/in07dxMYn8drpqWE6CPLm4PFn8MN3ev4Iq8OWVSBEBnLK0Xv0a+QERJkxIX0GFNMdJ7YRb77AkKiFk9gEbPtR3gpW44YmUN2eBqp8n10qkZQHzkXm24fXyQcIy6o4MV6KfcXjCYqSeD6oa8JaLr4beJj2KWZeIQjjB0o4+kEJU6Vn6TQIB3Geh6NP4UsK5XlzYXU65T0afbRHz2fh067ibgm4ZN+wmFdGdfbP0Vh3IxlMMTWpNm8l+uhxNfOfHEdzqgURbSbIruLdeYiDihL6FLOJamng9+WtKKIzuIR9w70wiAnZdczPfI7Kp0SNjepUKp0pD74HIXxx8Fzhlm+JgplfvaklxMn72OER4+SNr5On42+v4IK+y6mex9lacUCEBXICLNDP4FKfS6yiJn88DFOygpoUXgYk+ihL1OHNZLBBEkD+QMVdO4dwwOX38FwqAuLNYeKyeOISiOYDGby8vLQarWMHz8eieR/5/dnY6ER82+ju7ub5556hpojTZyXt5yEResplxs5xe34lUFKxPeY5PKg9+byke52Luuu4tvPtvPyCy9z1wN3cf311yOVSr/3mW63m6qqKvr7+7/XbjabycrK+runWavVEh8f/3d/zt/S0tLCF6u+IP7Rm1G7ZKR4FUy1TcUkbMBv2cSUnsl8klwKOvhFayeibzxfp3XRq9IgJGvQdZ/ld2cO0SUppjr7FAmys2T70/GKqSwcCJNNN9XqF6lSv83lvQqKvWb2Gkt4MVNFm8rEKHcdvmAOj2ctJRrtx+hPJCqr41iCBKIFyAJasoOf0qEs4ejQHsrylVhUayj0X8KxjN1IwxWsTJzMCOt6klyJNCdGOOYbxURfLXWGHv6YUs8kTx0Lh08jk0sJO29CqfwWiXIfHu9Z/IKVCo+NAwVPcUX7eSR445AosiHOyNIlF/DsU9sZcvoZNzaJufFWzpG8Rq0Y4hvpHdxZMIK7ej9kl2EmVtkg9kg7j7ad4Kh+OTuSDrIuSUJidSEpzhEoGeYzza00qRIwhD08UWvjYH41Sxz9mH1q7s0fxT22rZhdIwgGr0RqWM248nLOKzETCN3AQG8mx+vfJCLzsM5sJ2l7BfZgP/09N7Fw2XKKi0rJzMykoqLif2xdiYVGzL+FXz38KJs2f821I/K4bt4KFBEd8cMTOWboZUirpthuxxvfzxlFGr849BilqiCrS1u4bvJikq3X8fb2VzDdey9XX3kJMoWOSCCK2+flxKkGrJMKaJWHSVDGM603HYVLjlhykLbaA2iGtYiChnDITFA+TFBmRi02I0SVtKlTEAUFSqEOXTiKVhzCFy3DITGhkDWiUYo0u0SGB/o5d8oM0lLTuOGGG7Barf/w+tx2+43cN2ku83ddQmViNc+MqeRqz8VYAhHCCoGcYSmFzigN6nLeSizly30qXim0I4hqJnnCrA/68Us9pLrk1A9cwWulB8kLWNF6gmQP3Yg2ZKAm7yWWDG5kmW0Nas9MXsnpQBY1cHuLiundxXRqs/BIvegjXYx2W/na1IkUAaVnNiGpnSpNFvpwI66ao8TNOxdFYDdHtOWYooM4xEEC6mpMzkEcshykURlrLIUcck/hkbqZzJK0kC/dRkrIzbBMihgdR6/8DGpXLoaQirUZAoskv8cs68ee9Bkzz87l0axnmB9ew0OXLeBnP/sZ7e0drFyxgtcuux2dfy9V0SJ6ZFkQ1dMuTMIn6Imnl355Bh+nhRgduhtJ5ByCyjh2Js0hK9jDtiQVppAGIZzOnTUh0oZFvin5GRcJR8l2J/ByVRn2hEqiqBDdU0hUrMSkXEmT9GKSPbOwGCIs9zyLBA0LAgMcmriaEX4lr2cfZkXThyi2nUNa4276/EZUAsQZrZy3+DyuuvxqtFrtP2RdiYVGzL+8QCDAyi1fYnxiJp+G5tE3dJBLO3QEhbFY/TZEYxeNRgdJvov52bEbOBXXis+4G4tqF2fTz6CRFfCCYwwP3VxGpX4j9dKXsYU7mepr4uq0W0iUR/kw+SwXtMfx4rki8mg654dXkFcQwBcy4ta0o460M6bpMdoSN+KWpdMii6CNLqJRq+Ic21TGhL/GFNbg8SzhsCmBNt1pHj2dwL7EHlyqDlK7jrFfYmP2onlcddFl3Hrrbej1+n9IfXbs2EGcpANr/nQah3upMmu5p+FppKrbGSTK57rpTA4LlESq6I+mMGXQjELiY363jkZDDla/j6KMDK6RtfOe5FxmdWYS0ldiVn1GWAqDJgkSv4J5did5nUnssD7EzvyNuOVhUiINpGhXIIovkeyN8kC1yLS2yaysWAPIGeUIog6vpkHvo19ixCWNIuLBr/Xxkm4+Sf5eXMG5hCUilzk+5o9x5zPGpifTa0eLj0TZOpyKYlK9CjamLKdJdRx5KJd8iYLcoWSy7BZqtVoyLV0UDWWhkIbwSCVsVBQx8P5S+ufOZsuWLbS1tfHoi8/z1pLnyeo5h+PWGSQP76Ip6RAJwTBbksZQFvgce3QqgkzBud6dnDZpGTN8HTrZGg4aPcxqG8EIVTfVZhFpWMqHuQ7muDfSJ5/IipRM3ku1c2/3q1gHFvFc4TCBlK3cXvs8OdekoHlRTY/xKM2JA6jCWnIcMxjQ7udAYj/10Q4SZHquSZUQss5FMVbHWsM5pIdclEc+54vtL/PGu2/x6gsvM3v27L97fYmFRsy/vObmZiaYLPQFx+Ahnnx3HD2aTDpUu/BLyrmx1Uim5xRfpqZhV4RIiLjYk/YFh2TnoZA4KZCL9E4vI15eQq/0Z1R1Bniu+ynadJfy65QuTEEZTx+dhdln4IboIA5jNRhG06mKUm9wkhL1keqLw6u249UdoVcCs9tmYsODOt7OtwldVIoW7j9byJrEfjqMRyhzKFllmcaWVCtPNTgpihbSpE9jyu1eFNv+RPnI1/jgw8/+ITeI/eGtd0hbeC5PxS3gNmklOqkSfSAHS9cTZNiyacs6y1dJzVzXkkNrdjuN5gY+ykoi1W/GqHuRLmkFgzOsdBw5yUNLT7C8JYuvLSOxq5LRRJ3c0K/jpewyLvCeYn3xEapkoynzgj44BpfSxmntIA0Zpwgp5hOSGPhs/O3kOZN4+1gaj4xsZWGfhIBxO8HoNHp6gxTGiTzWfRBcFdxckkKUeEzBIC+kLOS+ph4m9mlIjdZwyNqCILNzKuV3TOqzEhh+CKd0Ov0KDxWRSqzRs6xP/zUjhmr54wE1QeNudprkvPpVC2Wl37Bxw3o0Gg0tLS0sWnQ+RTfci9J/hlAEehRKOix2ZoqraZeNppHzcEaUdKo7SQgaaZROAE4gU2xBqVhNo/ZqXHn1TBZXEe8ej+CRERSsWGVHGeGehk9/DEnYyK7EYbSWr+hVziXFHc/krokom2Fb+U20m2pRhqVIXXORhrOY6uqgu8fMWym3khjdgllYQ5OukmK7jgf62vCrXIxzZBCebuKrySL33XcfBw8eRKPR/F3rSyw0Yv7lfbryU0ZZC9gX1JIUtpHurWBPwim2WgdICBzioo4KRjpEsjwC8e5GlKF4TtlKSUg8winJfaxM3s/E2kkMKvxky5/mlsAwvcELOWReiCnSjtEv5ePCb+nQuXl+30VIhmZzPHEMe3JaiHh6OKAVCZi3UCwRyIrmsrDHR1b7beiU3zJjKMriqSFsEhU+XwWVCUeRICVfVcWgsRyz2EJRz1K69XpK+/sIm43MHDNIeqmB2+/6GbNmLODZZ59Fp9P9t2pz4sQJos3D3Dd5LodEH9utJi7uO8LuuEQqxFSadV3M7R9BqTsJY/gU3dKxiMIwGul20gNyuiSdNEimMzZtCrWfHqRoqIkVRQ20q1UUe9z0y0w8nj+JsERgu3gO5c5cOizxNBiG0EQ8BKOTqJFNIE/dTJbXQq32FD3Ki1jRUYnWpyUr0kh68ApyHJvYLQ+S/m0POUkaogi8kFPC2EEjRywRkiLd1KpMrEjR0y8LsiG9k5DcznU9Aq8mGFhlhafPbOaQUcWeOAlxYQlpjl5cshAf5nmY1V+JsmQxH729nvvufYJLLrkEAIfDwVUXX8i8/IXM5DJk+otwG77giOFljK452FR+6g1B5g29T0l/BS8WyXErWxhWpVDkVyIKNgLyyeQEa6mIHkAhRrnQcZDIcDEP5I/HHbmWRkUWmd5bwPAwPUBQkoEoGBlQJvGb6bfi7Pew2CslP5RDNGwlv3csrQoJvmAZJ021lEteI4vdnJUuAFkXmy1XsTeun3zlwzSG5ByTLCVREc91vzyPl156iV/96ld/1/YUC42Yf3mbN33NwiUzeXLwtxzUZuJQz8bIcdJ8Xp6qbSQgqGhL2Mugtptd4RuwsIvEsAMNfTxdV095x1X06hRUJSjoy2zAFRX5PNXCsGIb83pTGZKnszVBRRQlNvN2gkIKVZYgp4wu0gODXOzbiNc1m9VJMiLBbNQeUEVEKrWlrMvs5IXjS/m44LcUOVJ4+ORETJJmkn0jqUv7gJzhFFyK6dhUCRywmCj1BAn7LmQw/2Ne/O2NrNqzn8VLz+PjDz4lNTX1v1yb/fv3M7c0nchoE8W9dZzUZvJWroZM92E+zU6mT+3lntr5qCRHeT65gqjEhTpq4h3r/Swe3I3bOY5TicMEBT2zJszHs2EPM5Y9xc54O03qGs7v70TrOcHHOUdoUwhcMLQea/BBOtV9+OQRbux9E407l6PmZALSYQRcXNmiZ5dpFl9WbCAumEKrcpBgJJtIcCmr6x/gwwuncFIVwOhP4vazc/hj5jCCqZkx7vc4oIvnXenLyAU/snAnj6fEUWpLJFt+mrH2OgqdSs7oUwmF1axW3U2cqxGVaoCDhh76PmwiOzv7u8AYGhpi7sLZLKtIZWq+gm/jVtGlmk65p4WEYA77DQoE4TLiJE/RktDAZbWLOL/3EPX6CJqIkg5JOYnBAjJcVhyW9zARQRZSsNMcZKRdxwhPmFL5ehKDRxDDAnavmf7IPPol5xInNuCT6mlTZDHfuR27NkhXaAedhjPs1bVxaXMyO00i86KP80n0BvqEIBpfMQRLiepB7UtEJrUwLOYQkgYIBmXYrVYaN236u7en2DPCY/7lqVRhslKqwTeO0V3nIyje4TzvBzzeMESmT4FfDnZ1iCOmAN9mf0KLxU5EjOfmo1diUq/Ho26nNekdVNq7OaRMZoeqnBRvHBWOJHKC5zDdfZDlw3u4tf8bgsph7im30qU0U+JMp8jnxSB0o5NEkGCiTZnIa6Vn2JPeyR+Lqxkh3Uxv/MeMCg2wZcLtlAabyfZksykpjWPq6ZiEVj7O7eGO8b/HJfMgSEdSk7SDOpXAZucZpqZPZWqBh4suWERPT89/uTabN2+m4IlH6S6YQWJYy0TvMcYNSHj+8CTO7Q4yY9BDg/X31Jtb8Up06MVaLhvYSUJoiC+ymvkmtQaP3IFSqGHmBBnv9jdxPKRipGMqAYxIFDbGyV7j8m6YbBN4PSMTr+osUwL7WeTdzNSOQpa2p3NLdyWzwhfx1jEXF/S6sTpK6aeMam0S65M62Rw3lr2+GtQGKy/nPcW75gcp8TlRCQe4vLufxIH57JOn0ymXo5XsYFJoPSahE0lEjiKQSO7gKN5OT6ZLpWK68zSTBrW0agUywg5q5F+y+ZVdKJVKXn75ZQCOHDnCrPPmUjxyKWmjs4mTbyUtugmfRKRVqWe35RTGSDcV9n60QRXpLgM2dR26sIoGxRJOa8oYlJ7LhZGHGTZ9iCA/zUnhBroDWxHECXTHH+XxEyoqupK5/7SJLkkmP69J5tXT7aS74znH2YMkkoLKM5FJNjkVLikhKTTqj7DPeohWXS+nkzvRdX6NKOnhpGwcczrGcWnjeNIDDdzYqKJSfIIj3I85KHLxwH6StocRBOHv3p5iPY2Yf2mdnZ1o/GFG9SUid/wKWVSPDht7zQJfFMq4yLmRDFcTa0ylNFkcZIdaiZe3cCDZwuvWGyn2J3Lb8Bm2W2QsGE7CqzhAQNKNJqxiXuNNeHTNtMktnDtoR6Ks50RqHze2zWD8QCmHkyO41WpKHWfxBq5njKyKIb2PKvlNnC1q5MKBFFTqVrxxVSQ7SkgcuJMDGd/iJo3tBh0O2XwOavTook0k+aVMdzailxzjM9USZA4FTv1Gao1DLCwdwVNiCwvOX8q2Det/9NVVXV1dSKTw5PED+CJWRGkpmZEI59mqebbMzr74bF6oPc4xSyJa7SYujWznG8m9vJtpQxC/JN47hlxvlDbDbnpUAbqlEzFcAru2/pLnZ9/M0bgAvZIiXBEFAW0fu+LGAQJuzWFs7kyK/Q4yXEYCEj8tltMkeCV8XeChI1JEocfAde2j2J7SR6tKRqJXT8+qL1k66xnw2jiqPY5N3cmwcglR1WHKo4fJac9iRYoVi9hLviuOfebruKFtBFtSznJl4CM8opJy53SSPdkkOhNJCJ1lhX8rkR12Pl3xOePHjwfgwMGDXHjNcmbcPZ/p4fs5Jj+KMuJgkucMecE+NiUomdJtgFP7Se4K0RexURXuZE/XGwyEtfTGbSHsG0ZnNPB5ej+KvCMYc10IknREJIQDlxFQfUxjooKVKVmUGhSMHMhG5/OgCiu4pe0UDdb5XDgUxxTn45zQzMeq3MKcwBIK+5LwRxTMGtqOXb2QzsSP0Mi3kCTVsT1Tjy9czKBSwhe5jRS5tNQaekkSq1iblMZIu+8fsk3FQiPmX9rWrVsoshqRo0Bqvonm0O/oNGTQoCzDLrfjJw2lGGZudwleSQKnTNVIFC20irfjk4nIgvEk2fOZ0TlIS+JarN5C3KKVimE902xN7BGSGOuZyfGkbMKSEUjC63Cb1hLylmCllsm1N7NytJG4yN3M6L2AF6w1mPw5KEU4oq7AJF3E7IF8ZIFM5EE11YIRjeYjlnbezgdZBhL8xTTrhhGFIJ+lNNGhSsYaCNAnFxDIZny0koAxQHPhL3l4vpNbb72V1atX/6javPzyyxgm9ZLB2zjDf+T8pBayK7+haNjAlxmNJPkm8UVSOee4j6KVBBhU+yjztLB4cCXN8gxejr+Y46ZTiEIZoz3bWNh1DkNZStrWHkBauYtfe0ZRp7sZX2QPbUI9GZ4sLKEEqs3rUIgh/mCZzOmR/TRoczknoiVeqYJwMuOHyhhQ12BXi3Qo8kj1eRi9r5d6+UlKk+pZZwqCJMI2UwFzFb1sStDh5XyMpp9TLomwWfYzXFIBrzRKQOZhjHsGTmEHx9UmnpgwldFDA0haV7Jny3ZKS0eya8fO726M6+vr4/bb7+OTOVs4G9yIK+56nEIF+e4GGodl/L6qm8o6yJB6mGMxkKicyeLEMfTmZpGrP8yb6feSLMgY7ZxIyPkmRzpr6amV49g+ROnwi2yWPItCKiEzbRz6eR+BbCRfWEpYYHPyWdYEptieYVVeLaPdqSSEjKxLj1DsPYQUHz1KC/sNFhoj1zKyXcoY10581lXE+Uo4rZnElT1BCuxnebxMgyGgxi+vZaG9D7nGh2KgiNPdG9F6PH/3NhULjZh/afYhJ5K0BzmsHUeq9CpeT3yI+zrGslOvQxT0fJwQzyx/HMuGZ/CzliAnrc2MHLoETaCCOn0bAma2Zh3g1/mJZASLub+rhVety/g88Sxb44a4siGBTakhCnUfMBy6CVl4MhPsx0kKnuQzk8gj816G8AxyQw2Ua1ewxJ7MOY3z6DPu5tU0J8bweMaFRer1bfyyS0KwS2RfajEFLgeaSJQlvU38IdeAT0wjIDRjCcLcgWKOGQ9hDhUy0qfGrVBhCvVwaLiXM0OdPP7EEzz5xBN/tS4ul4uamhpufPEGNnacZPk4D+clTGVD3R9xColMcgwxrn0cLYZ95Cm2g0vgW9V57IlPYUxXPENSkUdaP2JdoglR3YUxGuDDkfdTK5uN9d5reeZ3nzI3vRJtxiCzG6dyoFBGSqARbUDJK+076BMm0KKS0KxJxiZLYp+wjIXRt9CGXkYtX8sJ3aXkBEYzy7EdaWATH29p5rx7pyKV70BPHuGInIAQZlfOc+xXXkVQ4iNTnAhIuKa5jPSojFGer1AEs/ggdTZfWeJxy9oJhT3sWv8HZubn89VXa8nOzv6uJn6/n8WLljJj1g3kec2MPHM7O/M+ZlA2h59/vg5foI7iWYUsP+8yLm1eQCDlGsZ1D2GTFLC1YBONgohBegZNRIE5GERI2ca8ZC3No64gHDUz21dNj/AgkcBxPhnYSc9Hr1FYVsyyiQuY3z4Tr24fifJdlLiKiBN2kB32cSB0P02yej7ULyPfnUKjdJhhiY4dqWpG955Dk76XncmDCEEdeOegc6t5sG4nD49+mx5NIj2eBGQD42ha8SETx5TzzJtv/t3bVCw0Yv6lCRKRgsAWpg4241OMwJYawq48QrHzKYZl1QwpjFiUTYzwv8v+uEkU2R8m3ttNRJCS5knBElSiMd7F9d2jUYdSCLmvRG9qQyOXIQ8r2Z1xhJuG7yXsDLIroZ6IECXovJ3Dxrn0SjcjE0+TEKnFHPGQGO2lRa7i6dJdXOrcREnwGOP6ctlqNdGijmeyzcM31n5kSg8FoSpmDltoNXXilmYjjQ4wwdFCl6IUu6SWJ2vD/KKkj7zW25CKEYIJt7BCVs6fJq/n1o8XsmTxYsaMGfMX67Ju3TqWLFnCsrJbWVb2f9qLL36arZ94GeGqxOIAn7YSQRLA4CilKqMIETV/SJzCRHcNPr2HExYXd1Yt5b08Aat4kDG+Sk4YilH+4go2vLCRkNnHYLaDd0+18HjBGPYZdNzZloI1YiFZX45LTCY92sVi7zp8oVwaVWa2JC2gRZHIkbCD0qZPWLOyiyuvKqZXdTcO7aNMidawOXorYUkCWzTjmONeT7tSQ418NMZIP19mbSPfUUH5wAIiUR931Tp5fVQVe+uq8H+7h+effYFFixZ9rx6iKJKYlMg1517FzOQ2ViUvY9KZ97AdTePjY5czdskd5I47gjSioCKwhv3Z8Sz0GHFYdlGtqaMqvBSZtJW5tg48SjMe6bns1ChZ0hdHWegkOcFsGpO/Js45jC+ymISR0/h5XDbrd+7ms9ffQ7c0gKjJYFCYjN89m1czu7i2MZni0Eg2pEQYlkY5opMQVtoheoCvMhuoGJ7IuV0W7No+/Or1rB9hJtzVTZH0XcqiIsZAO4VDOp78+Q4OHqxk7Nix/5BtKhYaMf/SgoLIKZOHhSE/opjN1K4xSAeyKFGoKe+dRWX2rxgyViMKVozhGqp1STxeeIBsl4Y+lUh5cB2F0ShSXx9fJB5n4mA5JpmLntA4OnWVtEvUzHPHsU83Bm2wly59HxpzA1bHWF44ZcQvHcVD037HXdULSfYv5PERCUz3aFl49l5Scl5nSD2AkjmMdCo5kf8IYSEHfAWoIwF0IRFDKB3BKqPM28xa822c3yFFJa1CGrWjj/hps36AKiJhhKOMcGI+J809PLT4IX527bUcr6r6iyc+P/roI9asWfOD9ryEQnrmrqVyZylvTn+Ebo2b+UO3UZUSRREe4irPZggtQBUx0KnsYKxzEInyDOpoISMcydxYdRkXz1kFqgjLrvw9qz84H/mozfhGXMJ9PR+x3VzK1/keJnS3cn2fG4J5vJE5kt8npjO3H7aaZmD2JpHsFTh55Dp6D/fxqxtLCQp/Yq9+AF/oBn7VXMVXZaeJShNZ1pjNtP5prCr5EBQhbAoRUfBxIq4Nt6SIgGoAZdjLtt0Z1O/dy6HKQ6SkpPxgvn/z2xcpmViKeWYca4xB7NIF7K15i2BVM59fvIBvchuxsA98U+gQL0QhXsBxlQOd9EM+0N9Noj/Cc3V9DOhD1CtmszaxA5N/MZO860kYLCZiXElSn4KMrnxs8n78ShdXd/UTPlfks3kOnvn9c4xbegNL0lVoHYmEJe1sSUjj1kY9X2R4UER1hMR0ZrcZCOk+oMdUiVstYPZqGOMa4vkEE0P0ccxo4s2jzzPO+yhptaN48uOv2Lt33z8sMCAWGjH/6sQoZ3QWrhi3nmvsUi4+O4E4byoOXRQhehQJEIzq+E0x2BQdLGncT3xAwl2NIu0akXVZnZjdU1mfXMDF/ccQI/mUDpnIxsceRTfDknRafA+yK62FsUMFdIhOxik3cI7NTWOiH2k0k/nN73JKL6fSuJ1+pZxfnVQSkjnZnDJERNNCnE+CMXATfvSERBMhJNSnb+KcsIq20GKS/CpyAyKNMimpHi0T+hYQlp5maf9HbM2uwxSSsVl/J/0qgRXZtURyB5EdVFJZWcmkSZP+bFkUEZC8sh3xrvkIOtX3hqWkzmdNwhnkkrHo2IIytIyIZC8heQOlrlqGiKdOK2CTxWOKdiO1fkCSNJcq0zjWZnaiD2kISATmRt7lkqXn8esTK7h51R/52fS7yMhfRMT4Ep3yUroVfgbi3dzYOQpFSz8K6vjGUEyfo5Zjn7/M3HA6KT+7kXp5Og+caWGNdRRyhuhMOMMLJy9lb4KJIxY5Ryx9DKpyiEr8CKKOkf5WxjjaaEvqIOgby17NGfp3bqS5qRm5XP6DWuzfd4AVX6xE8+AjhIc7qJPF0/7ZCqQKDS/fVI5JuoHyQDqdjnu5omYuLcYgR1NP0mY5SatZRO6xIg+HMIYEtuvGsdbST6fagzxcTJ2qiqH4s1gicdRHJ7N61D5cMhl+71xqjIN0aGw81PEKO25u5tAfn0A53UT15BCjQnYOWyTU2F2UeHx4BTl6nxKbMo3MUBazhg+R7qlgZ0oDT+ZaUYoS1JEw4/sMJA1P5J1jC6k5s4vDhw+RmZn5D92kYqER8y9NHoUF/R4i/eXo/K18k3mE8bbdZIc78WmrOaO8GptsBkqpgE1p5+duGav2xeFV9lPs8eJWncuAKsokVxMzXC00WG7G532Affowpc4iLP55WCNhbqwf5khyPTZpDmIwlfqk/cT7jLgNuzCH5eiCuWyLS0Ia9XLttA4Wub9Fjwy9X8JgtBuF8UZqpZNR0YdK20xzIBmFQsL03ihm3xQcChNfF7/PqtGr6eiYz7zG5RzXp3FAFcat0qOTKhGIIogC2rCJ3LkZrPzs078YGkRFRIcXwtEfDMoxqrh/TAaZqhw2rndzwrwe8CFEo/zBPJckv4cKDmCOGhhyz8HgSSaaWY1OsZK6VJElg0o00UTaZF6yQnpuq9jD7mIPq7Y9wcnK31NWNobrLHr2zviQiBAm1z6DeT1qPh5Io37T3YhihISlUwimlzK+pwdv3A6eL8qn2DXENPVz2DQik+wmzP4F7C/fzaBcTnxYg0ISpWxoBNMcXkYLq2hSDvNh2jyCnx9k1apVfzYwwuEwj933AI+c83M6esNcdHYeQ5Uvo88b4OERG4hz6NGrtlLssrAxYSzy7ABLO+Mxtmr5VnIbNXI3j5yJUm5TcyRhAp2U0qvagTpoYoS/myGJgW75dAxiHp+kDyCPjiE5VE2LwcnbhS0sPHsF2Z6pLBITSbx+Mw+9vZTkcWUkysMk+oKU+b4leUDHb7LGs8Bt5Kg5RAuzyXQfYkd6HyfjzORHdyAXFYzvfpgSbuTxgW20Oqv4es2XxMXF/YO3qFhoxPyLkyDiw8Jx5R0oh8PssB5hj7GHGx3bSPdJuLq+DJtERlDdxK60FnwKL7ZgCceSu1EZPuWP8bcSEQREQaA/dZh5gZMI0s2E5dkk8zHD0hpOy7NpSHqNrJBIWkjFBv31JA9nM3rYxhdJPehCHzCrdzLjBtNZm2rilRwNX5tyKPW20hK6ngatApn0JCJDPNTbgksu8EncZMJSH1ndKvQBHe/m7SYsJBAS4zGJPawq2cAJTQ6yQIRZtmRCeCn2dfN2tpGRfWmcJ13IY7tfZ2BggISEhB8WRqtE9fwlCH/m57QFQWBZ3v/3P9ZeDRelVDLGGaRWPZZ6uRwPAS5um49HNszZwEz+VPguyfSTNDiNcGQZ6eEVKANl+MNudiTbSPTVEUmewEsXXMAb1h4ke/fw9a4PaNrmpkM6zFH/rTyk1jLTNIZHpzzLV1NO4hcMtEmctFpPMNLeyjxbGLU3nq54DZKIgo9NlRzXOzB487EZtBR4RCrlySzsUlAcjlKfEeWEUEz6yY/xJidTXFz8Z9ePdWvXUpQoZ7TgI31gFKuP/xGT4OOXZXMpbhP4dNSb7DT9jAJxE+e2pvFFRhXNcWdIE+wcUM+mXxrltCHMCOcAJf2LSPYOc0u7h05tC6tTHub8uokk+sL8crQVQ6gfpyzMoEJGps+IXJLE/hFv0DPUjF/IQx86j5vHPM3mT9bhv+liLhyciVe6H4W4h+TQURJClZzbO4NtyXYKvN3sS2jEoUzEEtUSknbxp4QFZLwbRkiQsn379n/IPRl/Tiw0Yv6lRSUi9dqJRAQVizodVOf/hpSwlJ7IOahtSyh2eZEHinlz9DrC6j28NmIxF7b6kYjNtEdKSQ13MSLQzxlNmAatjNtrbkUlLiW3v4ZjWfs4qirDpVTjCt/JUETEKU1FLW3hncx0Zg4N4JSJdCujaE1WvBI16Z4Ibx2J8McJ66nU3INPMCMXhwgIYfL8hZxUa6lwhem2WBAEP3a1l4SAiYAkhCwq8OzJCaxNyuW4Rs+jg7/mmGoSg8JVDCgPIPjymTe8mWm9GTRZAhSNms8nn3zCPffc84O6dHu8vFNbxy0lf35n+t37rpuM+vhOihy5TB6cQI9uN8cVFahtk+jSN7A93c5A+FIustdR3qOkUTJMqXshQ8oGDJLTJHiG0Pn7WRunpMh7mjfa/EjS8wgar8cr6FlR8RI3dDajGHwQQlm8U/wKiREzZ/slJOxcyxctdWxJyCDq+x1Hjx8HQUArlyKLnqHb1YveYOLlV7fSJjmHc3zdHLS2stPcTnkE6qNjOLH9cTZu2vYX5++lV57n2hmlZAxWUGXoYFXHl3x+8bNs1M3kjclHKPIpGJQbme734zPP5vm2dLYYL0QuJFAYUJPq7WZ5Sypu/RE6E44hoCbdFcQvqBlQbqUu3kyfP0yRM56jlk6iEsjzV1GvnIw+aEUUnNQb9xMWHCTZ53Czbilbdr3NtBYzUrWKrxLmMqSUk+87wrW91bil+0lUJnFKa+YiWxVp/gq8gevRuk6y9813mX/tDTz55JP/Y4EBsdCI+RenVGrwN+xmRt5UsuRfM797JE5TNRvjJmG3DoJsOxJxN1r3NVxQX8b19SM5mdzP6EEvR32FFAvv4xYSyPGmUNA9lTSfgWpTDYfi+6lWFDGxO4FtKcMEJGpUoploNIn7B17io+QI10/2k+E2EFEMEspZyzXH7kIX0tBu2oZNTMcQcWIJi0xwV9Ooi3JanU1AMHJOUymXa94m3m9GJtVhj/sTud4kZgwvYmPSMTYkBVBFh/BJFETxkDl8kg1FjWgjCmY5Iryb38Fo+xSKy5fz4bszufrqq39wmEImEUhUq/9m/e472kBQVshxc4DxoV8jqhsoDuXydkk1x7XpzO3vRMtJAvIgv84P0S1rItuj4NYz01HL6hg0HaFL56YgquDVIjd2IYGyoT6i1m8whsNM7MvC75lDWN1OncFCpW8ckvfXohV28ujzT9PT08Nv3/gtkjgPF71czFLXCD5OycMQjjChvY7n3qnk7B83MGru7bwxQs5VWS4+9o+kIziGni9W8sCDj5CRkfEX508eMlEgXMUxU5TfNn3KRaW3kOwcRbzHQYm8FxkeLh7+gB7DEIIR6iMtTAi+jl0RwamcQWb/VNqTvuXrNDuyYCop2vc4qHDQKozgsN6LKBYywa5FFlajCpuIF44QUJ+h1N9PTlBGRfds9iec5kzCt2Q75tGcZGJ2WTbqQ+9SVt7O5/ETGOWXMMY+njBnUEdDLBhs4+lCNSnRXs7rDvLx0S1s7TrC66+9ybJly/7ubeZviYVGzL+0a6+7nt+/O5NlQQ09Wg9XtFj4OPlqZEkWLNFBlKHRhJGjinQxrWMm25I72JviQ9s+lUKHm7P6EbjVLtZZihm2upjeJ9Koi9AlK8cS6SMiO8OHx4a5ctQsfNIBftn+Bgqll2yPmVpNAjXyyRTyMV6Zn6CmhsPyXPaYChnXks32NJHbGlVMGRrLlVNOowk5Ke3NYJ/1OAbbAib1jWVAZUUWFUhSVGMSd1E+pKdD7uekxclD6VdwVbuDgbi9JHOCOb41pAd1vHy2nycLP0cVXkzOdD0vv/oqTz/55PfqopDKkaD8q7UL+8OI4XhEuYdWRQ7T7bnYo7Xs1UwhL7wDuahnimcbbsFNnUqHT7ObOPE43XoFQqIeh9CLRAjgVnQyOtrHK5oL6VMYub16JL8Z/z4RRR8DJCJKV3J5VRrPnvqc6J5hfvfsszQ0N3DLg/cwTmvhxrml7Bh5GnlQzw5jJxcEqumSWEk0CeSlJ/HWyZe5b2EhF2VP5ursyThW3MOnJ8+i7JBy9dVX/8X56+7upmG4n7cyyujTruDsV0ex3/sMjwtVHI5vwitTkRgwkhGRM2m4kGFtHUFBg1sqZ6VhJpawnat7JMgEPecE36dGXsJOTTmjPb1MCfczJEmjSrEIl96GqPuM/IBIknsxck0nevfjGIOpdMo+5erTd3A6dQ3dGis6oY7rspK458jHTJ0WQCtvYbbtMPrIAvoUk9AH+ulV9NMsLePZnlxaVnzCtVdex5H1x/5Hexf/t9hvT8X8S9PpdCw9fz51zXdQlS5iE+LZac7EJo8yqHAxpyedMtsoOnQhKtMOUZu+kkuCTxFWN+AV8klr+yNlrdcx0j2MhChbU9x4BCvn9fcwr3s2Kn8JW0fswUQnS7simH0qHsgqxC8x4QvNY1BbQ7MkjzYFPFvo4dFSNx5ZMreeuRCVbzwjB7IQArlExQimgJkBtZoC26Vc2J6JPjRIdcbznCy6gB59E29mNPLzMTaQdjBN/BMFoSOciW9CG9ZT4IaK7ikkDJ1LfP9lXNoVh1Kxg9nTguzYvpEdO3Z8ry4RUWT9mca/WrveqnqebdxFiTOe6zrTyZS+S0WwkhxHEgtapnFZj8jXGTZ2mEUuqzsfuWcGl/RI+eDgZcjco+lVBajSGdijLmOV+iLuP1XIy6fcNCbuIqLoQxpWE9ddwMDqKE9/3c20jAKMoozfP/IMX239nKuuepi3R03jquFSfJ7HaY3ejSB1I3eXEvGNIDM0SEayklWfr+JE5Ur2vXgfmSVl7N3l5prRV7F12/a/On9r1qwhbcp8ejR+er7ZRs6M6ViiJky6z9DgRx8ZJDNQTYZXoCcyk+M66JbEE/BN5ISmBIMnn0CogNeLq6jVGqhTJXJWmYNh6EGEwVW4grdy4cBmbm5tYWR0FTVaGd8m1uMJXUdSqIpUpwu31MHxzL0kyKtI9exFpJ4/jp7MKb+ULOcAOf5OGtQaNPJv2JDRyvUVRexU3UDcNy70R2vZ/c1unn3mmf+1wIBYTyPm38AvH/kls+fM4+SM6yiUd/DrE2ZWjdhLXcp2euPKWFTzCNOG9lAYPskbSWoeNt5NYrwNS2oNvzicj8Y/H0NkPUV+B7boWB5rW0/usJET6hR0rgX4hh+mOXsrt7Rn0yafSnywkrRQK2EOkOqJku5VEZZms8mYT7LPhEJqYlfuezzYM8yQJYHVhmRsSjk3nJ3HrEEVLo0Em2w07Xo3+80uJnkldBlXsXiomFq1hrk9Gl43XEcc3UyOfktR90NccaYEUd7Ml1khKlLvIz4ipY6FWB1jeGz2Xp58/DGmTJmCUvn/9S7uvO4auptPAX/+eRyHewd4qmkjC3RqHju0lEOZa9irPAeb1IDFqeClkgN4ZG6KIyEkYTnvZ9k4r8eAW6tGHsgk3j+fw2YfWskulBI/BbY8RvWX4jU3oRqexNfHqtlVNYRGf5TLr72RT9pXsqu5mcfKXyEvLoleVZTWSBwnDFEaVDqUUQnWgMDc7qt4NycBC0dYVvcCYdWTpKamsm7dOkKhEIIg/NmrpP6cD1d/wbw593CcLpx7B/jl5c8xvaGdlriHmCjk0Gyo4sOEMgzuo5ywdFPqV1Fot5LuDjB7UEd8cCRbip6gQ1HMZv3FKEU7M2yNtJi0VMvlLOo0URuv5rMxLVTYz+faLgXDGgdF4Y/IpA5XREL2wI3UWg9SK1vEWG8KG1MOo2U8EWUGay1mKo3xDHjiGdeTwamMLejklXzlu4qEvhOs+eoLVCrV357Rf7BYaMT8y9NoNJSPLGXwRDVrktUIhc8RkHmRCy5yvQ5OlF6HwzeWRlFKn0ogKIEO1TBDylbeLO+hcGgcuxJkpAWGuaKrn6jqCEfjSwlHnazIa+Wurj6mOLSc1klYk3IWmzCeNfoyxgd30iIvocps5Oq+vej0dhb1z0MQ1ZT6VnMytZYBMZUdcSbMYTn7kvs5kKjjBtc9uNwv06fUYRy6DJdkM+farqBGv5fyvkJ2WQZxyvzoggb2yKYi0XZwxByl1piCX1uP1pHFNuMohqXFrLUqiUo8jElvYfXq1Vx++eUApKSk0NnZ+YNaBUIizb0RAgNDXFU3nU9z23DG34xdJmGHag6SqBGpUuDnzUogwJrURXSrAuQrmij3p2LquwBPdBQRmYqZXTmYBDd98UcYUPyOrZbxbO7q4+jpaq66/mrW/fZCaqqr+cV99zBhjJGqpZex2jlAvifAoYQW7mtvxizKqLLWcFO3gvFdC/liRB1KxWl8iqMcSY9iMWayadMmysvLUSgUP3qdsNlsePs7GSt4cba46DJkYEtfyWO54xjlP0VZoIaI2kCW/0k6tTLUOKmTnEt3mpwJgwlsTzxLaMCFXiqnRTGTCuchGvQ+dlosCKKHmd0dnN+VhVcZT6W1n0ldM1ncVsDBvDcxK1uJAKpADgcsdmTAAXMfDRoXdw29zBHVjcxUjEZxYi5SayrZdgWvZLWREDLj73TR/vZveWfzpp8kMCAWGjH/Ju677z5uvHEJnptmEFAOMWogjxRHPa7QUhyS33K+ZyOfmM5B7SljTV0VnTonp3T5jGQl72S30S8ZSbbPz2GDAVk4jlDUypA8h6va6tlihX7TCfbnyggICsRolIio447qUr5J8HPA2sbUPit68Tib4rQ060RyvBYGtU4S3QI3tqdy2DzAWc1u0sODDMvaSQn/glbNcjpUBYzpv4uEsBWH8UO6rCcxu89lgqeJyZ6DfKuez8oRe3HLpEyyu2mXjme1UUOH0krhsIS0QD+ldisTxVu57M1rWb58OTKZjKysLB5++H6mpXmQac9lSBNm1uQxHP+2EWvl16hkUdbleunVVtDsr0Ai9AECUSFEjq+DbLeLqFSKNBogQbKDWnOUWW3TyAhYqEl6nwbJTDLEE8jCbg44nOw4OoqzQ3u5+cYbeOql35CYmMi9996Lv8XGu3NGcKoomeIODd/GKzltDuORuYkoTvCtWcpISQs2K0Rbf8Y5bRMp64tyIKeTruTdzBy8itd2b+AXv/jFf2l9uO66q4mOyuI3I4aJVG9EW9DPqHAXcWIXgjTILkM+4VA+aqEao+pDVORh9YXwhK+k0Shhft+3RMQTVKsW4otWkBf+gt5APsNSKPH0oFV0sq1wN3sT5UwZUpDpG6TaIqErcQN5gyGalEl8m93KCWOUuFASj3T9BleknGGFlSHZZCTm4/hFDxmhXnKjDkIBEzsT/GjWy9i6dQslJSX/MxvKjxALjZh/CyNGjCA1uZSxByeQm9GLWtLEOs0faNOrSPS+x3btG3wTl8FIRwJRQUaay4om1MGhVDNnNWEWdTm4tsvDlkT40LyYSZJ+PreM4/5m8AlRjE41zzZHWZcUQSF6KLVfypakGtYlHmRQVsBbqXG06boxhQaJCBGqTGEaxCU82yyiEKt5LldOmS2HGV0zaYrTMGY4wm1DtXwRn0f5sJVj6W/jVR9nduNNfJV1mHP7h1mfLqdKFo8x4mfWcCOjbEtI0MwkLfoLPjepUOJha4oMBB/TjI1Mzkrhyy+/5NJLLyUjIwNrYgLPnP2MCfnbyOqKo7EygRT/CBIDgzRo5TSYd5DiTKG460pGefdwsdRNNDyDP+SeYlOilYs9X/LiqeW8OFpGuzyTuyoGyfYOcG7XUpL8B1jpbKHp6AAqXRZPPHMPFRUVSKVSAO644w4yMzO5/3cvc/nn63BFBV49MpuCISd1CQNURLYyoTuHzjQl9fFRxrv6uWXmF7y7fwrxNHDQdRFl7g+Zqb6Qt+Rb8Pl8qH/E1WAA69atp6mjnZEPT2AQG0KwHEnEwtfKNBZ0XI7VY2Jr6efkBt2Md6fiVD9FoqBlV/xR/Lq9uKQC9/R9wUFjIpMGLFiCv8Gl72HZYBiFvB2VECBpqIRTmXuYE9Tgdl+NqKwjJH+Pg7IL2ZhmwYuR8weaGV83mjHuZlbnjAHDfurlY8mzCXgVEFL0cNVQFQ0GG3JBhexQGiNyLT9pYEAsNGL+jSxddgnHVvQw2jKSIwlx7DaewCOdxFBQRkiYgjLiBRI5f/IeVu27gn7pco7I3LilKxgwtHPCHUcyDVSETzMsncS1Pd+SHzpLyJ5KlVbPJ4OVfH1coKi+kd2+VdTHtSGiAOQ0uoNEdHIgQJxo4zeiAWNIwpKASCjiILheQrviAPWmUfhm+Pkiv495NQ8zpTPEyeRq+nSV9ITmoFdYkUYT2BKfhENRR3p0BzfWvESBbwO+aAqOxF7+lFVIQNrHgN6G0Z+ERrAhqM9yx0VXc9WLv+XSSy9FEAQ+/OBTCorzKPu1jm79MPZIDwN+Ha3u+6jTf8Z5g0UsbSzG5Epnb3oumc5CulUDdGjdFLnSkLomYoxEOKc/jWprIypvGbXaCG/63yf0xbfMXXgen6667wfP97j33ntJSUnhgQceIBIJMb9/P2csp+jRq1BoK0Fdx9uJrTiQ06uyUuh2kGEvY5Tcx4DahzkqpSBQizWUhuqhBJanXMKVV175o38Sfte2TcycM5Jw1MWMwAZO+q5kMNLLkLGKIyE1szvPYbltA05MvJ8+lvmDaWT7dLicIrvjaxntddOhVjCzT0GvpJV3clX8uk5LkdNHa2IvDmWEgMJBwtB4vraMImKxsTalnFG2KQxGpAiyamb5N3HSlIdEHuD8EyZyHOmsi1tIt0yK27ICl/JPSDQJqLHSpEohzXOA6E4Zv9vy10/u/2+IhUbMv4209DTeD+1mT/xMNiQ6MSrewOI9QJMuE2mkHCGaTKeqhrE+FRtT48h35VDgcmEO5ZAZdKEQBc45eykD2XI+SDPwqPdlnhmI59sTXxMctpOSk4JhwjTSppRSKDXzVWYj1/cc45DBSI16FFKxE1VwDJOFZ2kXSnigZz9u4tkhfRKnqo5Adx57mrZRWbkH6RfdrJ7yJKlz0mlUzaPIM5szOgsHtW4y/DkYvZloIvHk+pTkhnchyOrplmpwSKJoIk4yfAGKh/PJ9/dT4g3QobBQNmcemjd+z+nTpykrK8NkMjFz6hwuWnsLocws6jPeodo0zO6Ms4wJCszqvZIetYGN8afICI4hLiDnrFHOub1+TumG+ECSz0S7m1PqFEYMgWmvl32Vn1E+bhTvbP+GxMTEHyyD1tZWmpubv3tCXigSYECRjl+2B23cI3iUcjRiFsqIBomsj1luN2HH0ygCZZzj8vF+rkCHejPKaAKTHRlI3prOsvPf4L333kMUxb95FVE4HGbvwT1Efn4VMpVAk1ROhmI9+mgHUgzsivNwVnWYJ7racEt7uGpwLeAhRWjhdeMVeBVn8PszmNiVxwS7nfdz25hqSyXNpaRepSbY+Q59lmpUpk9Q+K0keZzsTfRj9dfwu5p0ThpMvFw4QEjajU88jw7LXu6e2Mt5PeX0UEih6ziK0EwOdG1kylwJexSXcTIyj86vl3PnbTdiNBr/B7aM/5pYaMT825g4cSIDznuIE/txSgvICCQRkDrID9fhDiXSLzcwmlXoRTu1+jYkkg/4KFXkwoFexkZ3cVY9ltMmJXV6DQUHH+OWbYdQ5GaRt3wpCZZ8zvF8gzcUz744P6FQPRe3SzmYNExQdRh1RIcYycetPspWYTKj7VG+UV3EMb0Gt+wTip1FKFO66SkpIl2SR2mXgvo9q9j82A6WTy4ke/z5hKQbGVL1olI1sKzpLcZ2jeTZseu4o7yJyTYr7dIoVZZOBKL85kyYk4YpGEIHiPMHaVX4EUWR3/72tzzxxBN8/PHHAEybNoVNOxuZLwtzccNU8swdWHNfRHS/iM6dTWJAxWLfl/QaN+CMdzGseghTUIFNriTRXcjrOUfJ2e5n/f5qMLSzZ99u0tPT/2z929rauP7663nvvfdocfVzpLcBaaUCW2gU6d3ldMpfY6d6DLMbp1Nn6eA9iwd91MNs+bcohzSc1TcxoFBRr4mnJHgYIa8RlS0TiVLNyJHFrF27lqVLl/7VdaCjowNZkgmpKpVUt43n2p0cEMfy6LCNWf4rcEjn4VS6WBs/lqPqQjI8CtJla9ltHeIC31d8G3qas0o1lcphajK2oJCf4c5GP/FhO5+njGa0J0Sc/mNUoo10l5m0vgtZ3NzNxqKP2BeXTlNcDQNqN5uYyp1N49gy4kr6TUkw0M8TzSP5fWYGaT4prqFeBMlzKAKzSHGfwOFTcsUVV/zDt4n/jlhoxPzbEAQBjxjgw0QNT7UM4vW/xDvFd6MQhigK12INXkO/PAOPqGbqQDaF3VPZbNmIISJBDKUxo3s6/YPH+OTrL8mzWhn78zmMVvYQcJpYXuWlsvQwIUWUYeVkhlUhghI1Bu8S+uR7MftNeNTvEorOxBJ1cPlwHXEMccx4Hi55hGJ/NQe0RUSlJgptCZxJHaBgwXWcMzGLM2v+wOnajYTvvwGpaCJZ2IHT8ju6I2YMfishqZPtCUkEERGiyUCEV/P0jHRGqU/9ku3eMiaWzEEQBPLy8vB6vfT09JCcnIxWr6NJc4aR4UEOxVuos1ZxQWs6W+K+YV2ulDJniNm9Bkq9tdh17VzafACzP47px6x82vURh07+gZE/u5Gvd+/+q4+ZDYVC3Hjjjbz33ntkZWVx1Rf3EgnMIiIGSVF1MaZ5ES8UP4pD24gh9wuU0QkYRBvX2baRYM+mKulVVpqWkSVs4WK7ikz7SMKZanLPuYHKFQuYVxrigQe/RS6X/+BZGf9ZQKlFKq1moa0IQdGJzjAD54CdNmkJiFIuc72DTjpIp/Rm2g1K4jUbkQYrcMt+Rr5TZGzASLxfxYq0sfils2lM7+PCvnYOmbVsTHmPe21DqIIwJJmGTAY26waOaKZwoFAFkRJSZQ+jCRvwKu8ge/hqdpvcvJirYsKAhikDyRhPDhKXruNY/Coq+tLo2vIbnv/Vo989XfCnFguNmH8r8UYzGT43Ca4E1uoG6Y3ORxENcVv/UULStfQ6H6BZmcE57cMowj2McHrIiHQSlDtYM7CG3++r4/YLH6SuXMJZvZ1Um5f9qRFa1QITIgk0K+PIdZko9vQytnsie9PrWdDjQhfcj7r/VtTqKpSqBkS5jV5pGVbfbOa438Wv9SGXpWMNWIjXfAyhTPTiOZxOOYD6pgXknvo5G15/nnF3LOccRwpOIcA9xWX8rPsAhb3tvGYtQiIESHZX0K+UU609gzqyBbNkkOyAyIUl/+ewxty5czl69CiLFy9GIkhA1sjJRBteoY1S8QjtCQrm+qvpkCZTaw1zSWc+Gl8OXTofK5NUHNtwN30eOVddcz0D2wb+5n0RTU1N3Hfffdx2221kZWUBMNUmoz86i25FPyNtZRiFBBZ5XiWns4DTmht4vb0Ku2kbfmkEpWsRJbLtWHXdTBQPEZbrOKl/iAvFOrZ+vgidRECQCbzwSDI333wzv/rVr7jpppu+O+n+n6X5jDiiGlqV43EoLyUuMIHR4i4CfWdITmhDFTTxbvz9pAe70EX7qdWMIKSUIxcjdJhbGPYqOZXYTEBqRhJRUq/J5MU8Je1aG3lBD3YFSMJKTLr38OpXM6yWMdaZgD+YyFlzM6pQIoqoisMpVxHvnsh032G+VS2lNs5NzqCf3+94jHN+Ho9feoaEtlfQhLxMn/7n76f5KcRCI+bfSlnuCJIqJ5IRnsBdUQ3DymG6dF6sQypa4o5xwpDOuT1+VEIbKMJE9SvI6hQ4cMbFm2d6WfjAJaRqf89mzc1IIzoMYg/lg/n0qEXeV19JilcFigGUA5OIC6ewy/o5uwULUdHHM0MhUvwSjLaL6VbqiOgtXG6roTq7E3NAw3zPYb6Kc2OW1VIQruNr9QR6daeRhNykTZqFUVJH7zurSZt5GccNGciiEgISGWe0BUSFePRiCymRFuK8JgIBH8FQHtPqbkIpptBY9wld3XuYdu5baLVabDbbdzUpHiikv0yCV3sUQ1ikQ5ZASKImuX8ObtUYBhTvYxV7OGZ/k7VrL+KiSy7lV7/61Y+6C/n9999n/fr1/O53vyMvL++79qxQDfGSx0gLdxE2S/ggXSQi76bB3EtC6FuC3lzcUgX6qJeV2dNJDOZw/eDTnDQUsclYhklSg+3YcezmMLL0MmoHtUgjcr7d+T4rP/2ERYvO49JLL2P8+PGkpqZiMBi+G7c0oiDJU8RByx9Q0cqNDgWXT53Bs19+yJib5jLC6WGivI5ijwGrM5mlQikSy0dk+XeyLlkkJI7B4o0yZL+Fs+oIrWozpT4vN3b+Cb3PjCuwgUpTG9X6z0kLeDnn5K+YGjVz1awP8MgV9EUvISKNkhCto8ngxyuZzFh/FYqoyEtHv2Lk9Ek0pw9x6SEjt/16BUeOHPnHbgR/p1hoxPxbidcnUtF9FI8+j03JTvZYTTxSo8Vv+j1rLEupkavwaM+ibDYSVEg5vy+enp5OnquMYnnyMQzOTsKCyEX23TjciykIT6AoPJGPsz4BAa51bkYetGKL+jmdvYcbXHv5WJ+LS9bMmIGbiUgz2FD4LhGpF7MnH5/gJ6HjQtxSNQ7TKhQ46JMpSewvJ5zQx8jBC2k17kepOEjOdD2eFgM3nf0U8yVXMqfLh8E9AonuDHHhYUqHVaTJ1iMR1Yw68zQPjfUiDxVR7OpA0n4It7uNSDjAvHnzuPHGG7nmmmsA0IRVZAxczEfGSSi8Z5jWkojBeRFJxmpemXwDq/USXDaRY+tv5+nnnmTJkiV/s85+v59f/vKX+Hw+Vq9e/b1DKwN9p2jQe7A6RSSReCaEDxKihN1WPznBbnLsS1Dbb0MQVtCj20W+PYTFm0JNhpYsh5Y8qRpzSI/O4SQaB60DZ/laczMICh4Ykc8vfvULNvxxDnv2vcuRg1upa+hk3Pgp3HLLLQDUG7t5qNvFp9kifapsPk7r4+O+KBtcDkYeXEsgZwzXtaaic6UQVRznSJyJEV49brmbUf05jB3Q0qPt4qDWjkoswaHcR/6whFE9l/J53g76LdsYO6CjOxzHwm4FoqyKKt14pgwnc0Knwyv141EMM8h4FOIAKroJ+Qro3nOAxEER442pOE8PcNvzn1BZ+Y97TOs/Siw0Yv6tRIQohqgP1MeoTu8gI5qDPS5CmhggNdRCcmAXF7j/wOmcMN7QOMqcA9y+to27bryeI/444v2HKelYTnH3InoUEt4ev4olnVEuGLDydXwD/XobA8GZbNPmURLdTFbURJJrFi+dvIc/jujDrfRz2nghPkU9lpTPsGFBiIj0SVIocZ7L89V2tieNxiEkYVOqMIcSSQqakJDOuOHbSZik4d2v7sV9tJXpyhwmunZxIEOCTZZPhbsNr0pAENUYCXHP2Xia9RvIDznJ3Plryu8PEg7FoVHyXS9BEAQGpvTTab6Lybb5FHbfhkd5Elvqu3xY4MJPPHm+fC696/ds3LiRhQsX/s0aO51Orr32Wq677joWL178vWH1AzYe2bmfJHEhScEw6mAmrZIxNGlUePxz6PObsETG0qeKogqMYEWaBbn2CF5FF5f0T8Il81IjX0Sq5llO+s5jRkMdJjHMTFHKHksmr9V8w+ctR3isYA43jzbTXLWCZbPSaXXns3jeIuadN5dgzQBjM3XoRQvPFw3Rqg1yVjqe35Xdxnkbl2B8uJRn3CmoFZ08VaDkuVMlaIKzeGziYp45NYa9plm4hAQuPdvP6TgP3yT2cCyxjx0ZxxDEAmYNnEe7ZgCV8h2+yg1h9VVzWDuA2X8ew9IBJtlbcMokdGmHOdd2nHjHRPZuqqdG2s/Tc95j+5cv4eyppru7m+Tk5P+JzeDvEguNmH8rEQGOmSfisDaTIt9JRXAnCvEB6rQGTKIdm1DNaXUCvWgo9rl4eXMXk89NpjYrRL1uB27DQRqsB2hTGdgfHyDD76Ij5bfkB7zMsM3ilPoihOBswupMTkhyOCqvR5S3cSxhkHadk2F9Pef0WujlInriHURNm8gfKAdVBll2GdrwN0gkDjJkpzln6GakURkS6oiIdpa4HyXgeYt3Jqzlgs9nseoeM+M8QdKkB7hiuI9SaRVe90Ka4k9xOPtPJAZFPKZeVK7LGVIEObjPS3DIjUT8P9/6p0yZwi1/eJq7FvycVlUqEmMLLqWAJ3UlBzVz0fWk8Pzb+/nmm2+YPXv236xvT08Pl1xyCc899xxTp079wfDX9/bRKc3FI5Pyy/pijo74HbvS99CmjOAWx9CvrKDWVI9deS1SshAjKpQRHQOCj4K+OXjkdkIJfoLhNBJs09BEV6ILmDBFa1DEF3JULSVNY2b0pCuIV+mxJFVwpj+Ab5+HSQ9dQvPOPdg6Onjr1EfcOc3CpN7JHIsPsja7gYui6Vy87GHeeuMJti+q4sb4Ju4ftKK22gk4ruL2Hj3ehDW4hKVEojZ61F4Oxh+gxNFOmsfIytx+kjwl7LRsoCS6k4zoMC3OJ3kv7TQR1avM7A1xmb2ZY6pJ1OoEZISIC8D+z/YylGhAOW0mT32+hAuXLeYP6w79P3Pi+z+LhUbMvxWlKHJcE2B3wQEyfHr8ChfxcjspUSdvWhYQlOhQR0eQ6lbhGF7BwECQjBuLaJTEMcKtYrZPRXJEZGafkok2DRvLVxIRvDRFTSxv0rJ81PmkCR5u61xHrTqTbVYt0kAJ69LsXDh0lqldxzA5ZoMfvokmoLIXMq8pSqW5jxplBke1qZy1bCYtEGVx6xzC/z/2/jLMjSvf+36/YlZL6lYzM5qZGWJIYiexncRhJicT5mQCE5owg0O246DjxDEzU5uamVHdklpMJZ0X+zyzz5w9+5nMTHLfyUx/3lnS1Vrrv+qqn0u11iqJA6thBAF1FeGInO8T+pgiMTB08VJOf7mPukkv0u1ZiEUqwShqINczE5n7fT5O0nFL2TTGh7/mu/Qybj0VR7etn6ta11Gl/++bqllZWYiIY3zTSibIyukzfccVeXlcL78bz+NPEpHI+frrr8nJyfm7ta2qquK2227j7bffpri4+H+8v/7gPnoGVKRInHRrmzhd/BIJgoU0L1giqfjl8cQEPDhlcMK4kwSviBhfLkNc/VzR5UciOFmTGEVe5B6c2tPYVAWs1l3MAy3vEZo2n9S5eWTJtSzLHMPq019Tc24LoUgqRe3ns6xlPIosP7N057P3hie4+pXvSJp6JWXmSoKRSRyN7UJlvJXRvXlELr2RdzZ8TNMQA3PG6kgQuuiK/YrD2lx0oXRi7Wcosc7hvdyT2FXweNtpDkXlIPbdS4IjhbPRZ9gtGsHF7eOY0jGciKyOC30iqtSfY4wYyfSZSHIsYmSPkye2/ZnLlVcQH3LhOLaXr47s+6v7L79Fg6Ex6D9Kdn4+Fd8cRzTWQJdEgTMwGj9GoiM5FARqCYlVrOis4YO4It7Z2c2oa+ejjDgRi2TUqZIp6XqMsZZ+3EIiiqAetdeIT+MhzzqOnfEyJlodJIi/YXHzAs4T+xnujWV1QphuXQW7ImaOaOcwSTmRYmcs47pGYI3fTaOuHyvFzOhRkOwZi19zmngaOZj4IEf0+TzYsBOHawGVinHU6vtoU+3DW5hG+Nt1bDCfYVdcBeKIlBbFRZyv+JCL6/J5O6mNBkMjsab9THcWYjVlkqZqRSk5RqHm/68oKjXd2WsJ9p5ha3sPkrZyVn2zmc8++4ylS5f+rLq+9dZb7N+/n9WrV5OWlvY/3n9vYwftHR7aoiWMtZno1LYQFnkhouKaE3eTH9fHn/KDXFkfj96vRRSRsDetkqMGHYutVZgCuShDWi7oHOBo+EqwFTBC8Syp4Whs4xfRZ7ZyZPV9jB06E8m24STjwZ4SwT9wA7viGxlldzHN6iDGp+KSyI0cntHIi29uIvPdR0gN1DHBEoVIl4gq0k19ppus+2/g2Bffc+DDFj6c4ic33sNWvYJtpizucR1FKjVi9sWyzPkj8Q4jYlUWIz02JgT2M6+7gQ+jl7IzToIxrGdubxJqjRi9IEaiaGV6TRE1lUd44MzLJF4xlo6qrVg12fz0yY//64yv35Lf5vXPoEG/kikzpqJz1PPMkU/544nXKNfkUqONQu7OJ86vYqrFw4g+mNLhggEpwxXnkxG04BQlAWIatG5SbHkoBTEf5DdgEU1kZK+cdl0fBYFGkoUdHNLm8lO8i2Z9OwpcLLOEkAhK5vbV02r+mu3xrTRoq7DKJeh6V/BKlpzNGcd4fVg5a4u/IDqQjkJswyYqpEFewr7oLLr0u+jV9TLRNpOkQDEywUhCcRQbHdUgxKAJRmOUfYbFcITPcrq5tP80cmkvMxtUTK2dh8KjZ8B+JbYJN6G/7pa/qonVamX2q49z27HTCDnDeOjiK2lpafnZgXHgwAEOHDjA+vXr/2Zg+IMCwQYZtWoZYWkb/ep2lls30RnlpE2pJyQWGN9rYEWzmrfyrOgDIqZ0ZjFyQExAUcrLWQEE5ffsj/2Cr7Nq2JTaS1xwPCHUnFZlsM2aQvdOP0MCJzh8rIb4jjgy7FkM7VzJRKsMqdjJntTjJAo9OOLf5uliBx3X6YmSSHC+/Q0dslxmNF3DlPpFfGm4hBalgQsHynh//BjGLlrF07td3LC6Ev3u0yzq3cJ4z3406ufo0jTwTPJstpuj+TRuBv1CMfFuL3lOKQOyAWxyK27ZOQR5BbcnPcYrmpv5fJec69fdzdnWQ3w+9VOodkLKGD755JPfRWDA4JXGoP9AXlUHMrpwSX0g6DEEJLTKribWEUY7oKEpvI/qyme5NbmQi/wvcoJicghToQ5THd2OTZrHu0VH2R1vZkmnnq7gGL5MzuDLOhkxSoG1SVKM3ng03igqhtzKueCNGIJ6tqafJtqTw4A0mjfS9TxbEUMcZ5jTkcjMjkncP3oPa1LEVFoF+kVvYJdHuL7vTd6Pm4pZSMMlbqHQeQhN2AZCLt1FM/BUVmMqvISEYDMNKjOtsvMRmbO4qHcIOe4ijmt68Gk7eTulmAW9Nm7xdfOs143L5fpLPY4ePYpYLP6nfkN/4403OHr0KO+9997/OgX3la+uIWgYx2h7NgqgT66jSriCTtVZhocHcI38E/qu5cTI6xjp0WIyfk6fZAY6dzH5NjPFzl7qosLUG04yo/YCUnyNSAUtgb4/kugw4tf18lNaDb1aGe0hEXuNXzLN3sLGuFSs8hYIK2hXy0h1pDKnawjZOoFdKUEm3z2OTc/sJ/jw/bz4h3EImhg6xddxXoeFZba9uMOpLJXm8c5jDyPpOcjBXTV0vXiWPWo5GblOxmR8SE7KJLrket6veo83zU/zx7hnuLauCvfAcYK9lXwWOonSl4d7/SbcJw4xr2ASN1/2BA2Kjdz6w7VMmDyJV1999f/oQ5T+VYOhMeg/jldkxClNwSGr4YYGNZd1NlKnkbA3fhj9OhlJA5kM1EbIGx2LLyBlqmeAEs+PPJiRh0OiZF96EKdUz/K2Dm6snExIMoS3M7/hrcIgCn8Wd55LZ3/KZrDEMK36Rq5xRfgpHrS6IM/F5xPttmMKO3DrNmJomkm8xI5bIsUZmY8/vJMjMb3og3tI8GaT5+1kQV8HXQolpVEiqrVlmAU/EnEz8uwZhI88jVTkJDVgJxzW0KkUSPe2Y44I7DHbOBQjIc2tIEvYxVVVl3Fx4wJqY08zbty4v9RDKv3nTgOlpaWUlpayZs2av3nSi0QifPTx64gVTZyLkvJ0Yze3tsr5rPAUGmkb9dbz8QTm8H1cFImxMqLFEqZ0xKESYjmuTyCtpwhPkpeZvf1sz+3FJovjcKKHbuM7fK9xsa/idYaKoKroMdz+CB5ZFC91baNLpuSkqghlpBeZEMsYi5l07wBdqn7KDCGkmsO83BSgUh3LkYwCLp4zlQ1vf4NsmYzhMUu4uHUcZ7SZjHCe48ehdUjCUtJ1yRRNW8mtGW+xWSTluWCIytMH6N9ymARBxw8hgRZ5Nf2RAK9rW3HLJMSnSAiK1XQgZ7puFA/PeoLr554kcugA2/eu5oPVHzF8+PB/+jj+v2UwNAb9R/ng3dfJTrPhlXXxaaqLPKefSERFpcrDVr2H2xtbeaf4dX466KRiZDxjmxJJsRo5Fx8klq+ZaJlDvOg4blWAqa0KIuIBfkgSM7N1Aa06E3JpJxp9KVuTfeyITeaFxl24BD3fpzSy1CNwgf0MyZ0T8EV/hVc+jNeG7mZLdDIhEgjjQRacTrZzFwqGkOgXM6AKkh05iykkoTGSgV08GrdIzPQuNfHuJtZYmsl1uxjem828QBvfJTppkI9ih66Tu06Ppn24lxyvwGXtXTRGNdMU1Uvr4a1IJKZ/qY4+n48HH3yQzz///H/9X/KhdbdgEM5gF0EgouKpvAhPNR0hjI1IRIwmKGFrvIj4cDI3dZ1AIq+lN7iUSvJ4NWUcM6M3M8ut4EdzHEfki+mTmbjBFeFczCyUAR+dhgrKTCNpk6zFEthEcVcvMr4gInFwKGYkgXAi03r9rGxpZWNsCT8kJNFo3EFMJEhPaDHf61aSVbyBUaPTuWPVKu66515O1d/NwynFDBlrZmHPdBJCbQRCEtKcF2MKmPk0dgE/xZkpCreQVZBIpuQECHq2Sv6AXR2HXvkIl7kE2iQJIHZg9JmR+CREPHoOugfQOeHr3U+zedPGv6yO/70ZDI1B/zEsFgsff/IpT/wpmW7vjdxtd9EUnssTxTr8qk58okL+VHQUnZBNJHyIfGUzXaoMouRmvkvwkt13AbfXiShTa4iOymFH4kH6o35iW3wasb4YLuv20q5sxuz3MNGiYkWjmOrMKmoSbciFKzgQeZgpPTXkOry4/TcgE2L5dswTGEL1ZAbO0inKQCsocavctIdVTOARtLZYREIWnyYXoQmfBGGAbLuU2xolxERkbBSiKdPFISbMUGcyGcJJllo+5aDkanL97bxzSkOT3sn7SVOp17fgVbRStCWaURMz/uk6+nw+VqxYwT333PM3d7IFOF7bSLApBRS5oFnLfGcV8b0LeSRjPh7dOlL8IXSOYvSRVnLCJxECQ1EGkqnSD6E8/gHGOhQUeeJY3FFKn64Bt1GJNWJEGbWOLPcNiEWdnMh/Cq9wPTXKLAptIxjbH0d5yilCsi5y7QnUaUyoQiO5eswmwpFGZIFhdGqaOSIt4JbqpWSKoVHZAaQTHx/PF2s+RxAEXnnlJd57/x1OxG6lsGgxUzwaZnXISY08giDys8f0IK8fzUAiziZkaKdaq6e2wI5UCCGKyGkQFzPEZUMVHEVu10rE0ddzXNvNW0Y3A++s4+1XXvrdBgYM3ggf9B/i7NmzTJ08ieuXjyEmIEIaduIPpDK5K4HrGzWkePp5ufYHhjjicIavIqcrmqnuNtJtmSQPpFMy0E+sz8emjAoeGiKmXa5EJ1FjELpIDbSxzP0WCt1TtCZ+wUcFx5hi9VE4IKWM2aR33Mw9VdeQGTxNdMhGscNPqqOXSr2dVfVybm8SmBzcxlzPdi5q9zKrPZ0/VbSwUzGbddplpLddQUjSTKtczRXWUxQGsnmuUM8OsxqPRME0ey0L+8roli3BEVzFK6Z7iA8U0Klx4pcGGOoIIo2ESRBsvJN5Nd22KubNm/dP1dHv97NixQpuvvlm5syZ8zc/I9icbN/1Cjn2OKZ0axnfL0YXUFBtDmBX2eiILCXOE0tA0stNVVoGAsWkWZPROlP5NuUrJO5xPFUukOtooFkbwqHqZJirmyFuO4TUPFT/BT1yGYcktxET3M4pwyFCIicOeR8bjOm4wrk8cC6TWd1xTOmRYfZFoYz0EVAdJFcoY1LoSzJdcpa3S1hU+NehJ5FIuOee+6mrbWbZdXez9tmPae1qIN5XRrfaj0dUyM3tmXRG1eFTnyAsCqP3pLG4JQYRbm5umM2dB59l3onPEDvjiAhReP2TONc7Bs+bn/PlO28xe/bsf6r2vxWDVxqD/u1FIhEuvfYaVNdNZGdmDDnOLo4Zw9zWOgW5oKNXEUHlVZPXV8LlVPNhcgvNoihmnXqdVtNP7E/wcnvlUMSKJnbGZ6DTD8cmP4xMsoZypZiduok4pAJhqYXhkXJy/CLWpCp5PdXDpzuvxJL9MhZlAyMDh4hW97EnVc1TudFk+ndxb5MNpTeFgv5L6RInEB+ykuiVgBCHXzDh1MKhDBc3dxzn29hC2iJ/IiiRUa3fxvHoIJ2aflxRm9gauY+Thk3ogiALlJDsOskrRXWc08TzekU34yObCfsj+EPTaGpq+KdXGj/++ONcfvnl/2tgRMICJz6/G5vWx42jqrjEXoVGGqLDP5koaSPJIYFIcDwn1WnMc9Qwp2cyYfHFLJpgpzhwEK/UTQQ9bYZ6Tqb+xLeGTPyRBGb1vIY94mOfdg/9iQ14Inl4EYhyDOe8bjWFvRo+GnM5MUKE2X2p7IwLsCH1GFmedv7QNsAnyQPM7z1GX+RNtNJPqU1ewxW3PEjvJ+b/ta9XXXU1w4eP4PbLrkM39QK2qy/AJx9KjfEbnrV34pCL2JbZTV7VH/lDlZgVHSK8US3II372Dn2MgPYsG2J9sCuVXaUf8/EnHzFixIh/qu6/JYOhMejfWiQSYcmF55MzXMuwpHpc7gi9EjEWkYk1aWLG2tt4OjuLYqeJrzL3cklPJVdaj/Ok1INZshOzzcxXBT/yeZyE0e0zKI0twyeajQo1LscsmjQuBGk7A4oAVapMIr4g6Q4jbTFOlrfl8nVeLYnhC2jVVjFWiCK54R66knaRKPjJcTvplvrZmhngshYvjw45g0oQ8Xy5ky8SxVzTX0Wl2YsgGc96Ux5iUTtm1tEgN+GShBD8QcIhBXNah/BsKiDqY0Bl5ck6BVOsQXRhDX3KOHShCGl2BbEXrmLRxeO47777/qla7tmzh97e3v91Km44EmH9KwdwiR7jjso9PF3ch1t1hD45mD1qFP3XcVG3E7NrLKVxcg6kvM3wvkLWJiUSQkOvyk68eCdefQo92gysmn6kpOELZ+KUHQORC7+sgV5RCVd0ZKCIbMKuaWaUNZ+nxqxlSs8SkmhhQFXOFNtW4mriyfD3EufMYJ6mjoJQJVXSY7RINNxz44MMDAywfv16Xnvttf+1z0OHDmXOxecz/cc/sV66BQkBJlnDfDB0D4khGzvkN3O2ZB0za68FeQrJrglYVFak3nw6tHVs+m4vqaIojh47/JtftPdzDYbGoH9bkUiEa6+7EdQTGZiRRtAd5JzOy3GljiJ7LFtj4zlt9CMVuTltCmAI+7HaA1ilFs5pHFw1Kprber9BrGgDWYB3C0aS52vhPM+fWNzbSbZlKlVR9fSrOtBJW1nan8msusvI70+mc8wBanX9VOjbWNk+l7LoWvLbr0PjySHT1se7+034FWcxyQ8SkHhA380iWwoE9RgiHq5vuIKDGXbC4ipKY5pp1mRhEuCARkGFvoVhA1I63HVEFFFUKMw80nCYDWlNDAgF9KnyqNcJKMJByo1DadO1ow8sINjVg1ar5YorrviHa9nS0sJTTz3FDz/88DffDwYjrPq2kiI5WKQKvhj+ET7R+RwI3cmS7ih86i/ojvkUv1+F3XozdvVhmpnD8wV1dCj8DLGMo8I4j9SADY0/C7FtBQv75qFP28340I90iY8wrb2EZmkmz+TryXR70HtjMcrURLtVhEUBsv29DIjVrEq5DUNCDyW2VGKdETQePYXuDXRppayNP8OFncns27uXGTNmcPToUfLz8/9f+37vA/ey48BOvrA/w/XGibxeXM1h9fVIwxAJJ5I2kMjTRUYMIQ+XtbUw3pJGfX0MLz9fycOPPs6tt9zyT89Q+y369+nJoEH/PwYGBrhg6YXEEMs1E8aScFagSZvP0ahPSbEnMb2/j5TgAWY5j/BU3C3EeUVM7CpkQNJOUqAHJT24ZX00RAWIEYK4xaCMSJnScAnlaWsIiLSc0JhZl2Yjy9vLSd0EFntKkcY9wa4MNVf2zsEayOfV3C5Ko04iCw6Qa8+nPtpIRCVB7HdRpVWzM3UIIrEMuywRlSCQFoilOboajfsrJrZped4wkWrZEBBamNM7ErE/i/E9JmYHX2dPTTu7E6V8lxSh0paMSnYckShMoi+TLpWUBLuHSbZ3KI8JM2r2LTz7zBPcdddd/3AtBUHg5ptv5qOPPkKr1f7Nz2x87zAL+3V8ni7HIT/EJPyI6KFRK8M/sBuT0ITfr8UvkYD6ELM8x2lQLMBKLhlBPyWuk1SaVNhDc3FL/HyTUUaFwcn17WEUER2x/gy84VhaVXpqdf3k+8sZ0XcRNmUsTxfuJNuZQKtkGNWGALF+EYLIxSFjIjVaK0usUg6Z8zFJYFL/Gb7Z1sXu+1/k5MmTjBw58u/2X6FQ8N2X33Lh/HmMy1OREKlHL+TiEMUytk+gIHAAvfsU1fIE9ptNDHRuYVv1Jg4fOfZX28H/uxgMjUH/durr67nw0iVESrTcNSzI1FoborCOYCSEJhQkJA3wbuJYwqIIypACW2QBcywtzG6T8UVGNB/l1ZER3chF5z7EknoVNVI5xeEPKTVU0TKsjhznOBZ1jEITjCJi3IBeUsMx1Tj2aIcw2XMKh8KOJ1xEVFDNZU3JOBW9DHHqyXT3UK0DkbSW3pQNSGWwxCHmNfMCGtUgCksosawg5AWT/0NaVQJufwlx4k66RNnkW2cgDxkZ4r8OryzCntYQSSOy0XUNwSzbz1nfVeS4LWS799Ajk7M94wArWpLInTyVNmcVx44d4/PPP/+H6/naa6+xZMkSMjL+9oyrhza8jlp3kFh9A1rJpbSI5iEPSDEo6tGGo5BFPOjCAboJ4Arl0SiL45RqNmNbF/JJ3mk80iCXNBYQktZhF+t4oGMzR4wmzMEc8i05eLVezJaV9CU8SWNUArGhZMb4t+OVjadX1Up9lA29L40YfxaN2u2keOK4rPssm5MrGeX00KYROG4rwf3JFqIlam684WK+++57FArFz65BdHQ0G7Zs5bzzzqMo7RJuViTwZlY0jfp+eoWJyOTHaZG7eaxZyq273uezzz/7twwMGAyNQb9zHo8Ht9uNxWJhyw8/8tWGb+h2dTB65RiyM1px+Zpo1osQ/EPRByNYpWms6tnCgHsKVfoBvjON5uL2E0zp76XaFM85Yyf5dgWW5EnsqbWzKhzD00VayiX3MN62D5l3GtP73GglTUQiJtItM3AqE7hOsZX3dC9z1CBmlHQl6aE+8i2t5MpdWJUi3siXc1xn4qShi6F+KxZtEZf1tCITu1lmP0xNz4PEeHW8W7iVRI8enX8i19bG4JXuZ6zvIAG5E5fuBHPqphFWGmnV+tjY28GIsbMZ493OtI4ibu0sYV3ht1Sp2xnfXcDbRceY2TuehFgvbz/3LuvXr/+H61tTU8P+/fvZsGHD33x//Y+vY3F34Vam0i+yYvPXkXJgK+/WSQn07EUuO8edkgiIgmgGNAxXyyi70IO+IInFsm+Z5jDTrOqjP3EfclGAOIwcjulimLuB8ZZs3stzYfKN5HTGAI/12thhmkCRXY25bwbJzmqGWo1sTvRzef9GqmUFOAZiWNpxFmNYRHEoyKLGSm444UE0cJI7r7uJW2+99Z9efR0dHc2f//xnZs6cyairLuVm2TB03otI8Op5bFg7+cJZ9recYPKUyYwdO/af+o7fg8HQGPS7U1tby/ad29mzfRPNzR34k+NRSo1oTTEIt13GDXYdCzqXc6L3z4iV36PzmZEJHZTrK1ALYRz+SYgMXzCgKuCSzuWYVM+S50umXR2m1ViLFw2d00W432sh1zCc8X0H2G3OY3HzHZgCVWS7lUQCRlA14lF08E7eSbJs03DLrajCLtyiGBo1EUq0B3mwyEe/UiAi9XJYm8OH5WX8EDuFVkkFme1T6JVH0TD0AxzarWQ230qMV4dFZqRXksb6rGOM8VVye9n5fFh0jBSPE2VY4OWUEXwttWCIqicgkxCyLkHtLOKroW9xOO4A7ZrxuMQJFPh8bCzcwUrV1Tgcjn945o7VauXWW29l9erVf/NE+/yu9ejb2hDUw7G4fBzfVkFP1U7SRg5HN3cV4wxlPHxqOY9Pv4qQrI8hdZ/jaK7h0OlPcX78PU3Fo5DPvY/ZgTs4rJrPUGctY91n+TBuCPvU0eSpuqnVRKPxJeGV6DjHCobZYhlpayXPJYKIjWZtNtN67qXaeBkO5b30KtN4LWcSK7wbSKt8jKJ3PmTbtm1/c5v2f8akSZPYu3cvU6ZMYeFtbRRmziA+0MiSnqPI3LO4/quPaWnd/It812/VYGgM+l05V1bGDZdewkXFScQOK+HSsSv5JL0PcaAIi9zMg3UKch0mKk11JIWrSHKJMIdPIkHKFEeAKQdTKTWNYr/6KrpkW5gd3oJXyGFL5hayAn081BHDp/rhBKPS8NmOsGrcdWRFhmEIpFCuiUekAYduNfld85EECtiR+TmewAp6xCZu7vgWqaBjd8w89JEAgiRElzqMPBKkxN2NS1vBo8Pb6A4tRSy24IxkYXYa2BN5jn6liP4kETZpCvHeHqSy7cSp9vCdbhj9hR4ORE8mGG5heMjMePeXNGw4QWTkH/F7bByKt5AkqqVgIJMJ3UpW5c2hPlXFaGmAdnmEt9555R9el+F2u1m+fDkvvvgiqamp/+N9f8BDpGMdFcolnGgV0fzFS8QtnsQVSzNIDDcwtF5McXcCjbpuRjRfQZqvBL0QpGXsH1mmjMY9/1KOrz5C88ZrmXRZFqdUYyn0yRjr3kGHJYYGeTxX9H9HROLmocShzO9tQ0IxHSodLrEaWdDBkbhOsl0l6IIChY1Xca7gTcY51dj9Xqo3j2F/z5/ZtWvXX22Z8ksYP348tbW1rLpzFdu3rGThlKlcqevnzhOfc9cf/kBMTMwv+n2/NYOhMeh3IxKJsOLaKym4RkFXrEBrZCafUUmuo42D5r0keC6kXzqFDqWYxuhnkBJB60pmfYqXdJeCdJcEtayJw4kHkAor+PxkLzZZGHdgKeWJHqyiegzeMZjlQzhuqmPGSCV1+xJImXwdLnE0XyT7eKbxM17O0xDMKCfBK6bQdhUd8XoaVSI6vNM5ry/CJMt4WsWneGbINlyiKQTEFoLSKaxo9lGV8D1DHQfYlVCNXRNGIVHil6UgjygoN64nJSCiTZ2PWdAhwU2U4OVQjAllWI7WfRlv5fWisKdS3XWAxTnRjK8q4pwuyPrsVj5rURDnS2V+jwSrVssN097kdPUhntjzDX/+09v/UK2fffZZli1b9jf3Rjp54gjHKh/FLc7B8vVr+Lu8XHTHPBLC2aS7DtISbeF46ncYesWMqJ6MjwgDMT9RoxShFqkx+aPQiaZjvnw+vYfv5Mi3R7lwsYYYetmleJEmSS/PlHloijMjiXiY3jNAtO5DehUWamRX49OHkEZEJLgVjLBv470MLf70LWQKCoZlXMKVF1zDnff8gR13vYxarf6lDr+/kpGRwQ8bf6Cjo4MXXniBi8u9ePHx3B13/Crf91syGBqDfjfKysqQiuUE0nLo9+t5+8h0nLJUMl1e9saFSdXfTWnUPlrlU8m2jiVd/SW5PTMZEvZxwTgRY3sLme3YyImEU4zrFiEnGpXICWEj2bbJxCt+5Ef9Anab+1nc5SVq0nDWvXoA2Zy96ETRLHAPsCO9C4Mvl3JdmHBwGhVxUtYdr2FjSohNcWbSXM3IPf08U+yhUz2GJb63cZLKHvlYPktxcIllKF3iEF5RIZ9mt7LIcZhc72P0K9tok4lJdItoNQgIEjtNwhDMAQ1a/AwbGEW/KobT+oMc3tbD0Iuvoym6hRTJARLCbiKiQh4vDJDmNSCStjEpV0Ncyng+f+DNf3jG1M6dO3E4HFx77bX/470dJ3fwTpWSuPB4vn6vlNiMIobdUIE2cIwLawy0xoY5HSrGqglyOrWA67Q3IhNbOWfwc1xyDbnCcBY0LeF4dAnVmgrsS88n/PpuPqyM4qb8ABPdnzIsYMWW2Mm30aPoi8zHpHwXIdyHB0iQfkFO+91MkzpIum4+uYZoXgGOtKt5efUbbHj3BfYfPkhBQcEvc9D9HUlJSf+v6zz+HQ2GxqDfDUEQWCAfTnztcr7O7KVV20S2y88ps5qni6tY2bOI89sFPk7uYk1mD2sP3ku/ooFdiVV4RGMoNUhZ3DMSjWM0+4xNXBB1lFatC6vnAJ+nW7AorybdGSbHbeNwtAgYi2F6DxU7N3PB5EdxhUZhEhoY5jpKVkCD2W6mXzQSUyjEzG4FOxKOsT7FSzCYRoEtlQ5NOX2SGBRCkLkD63FJ1XwVOwqD+EuS3Isp6ZjHRtMM8iwqvsv0ckf5SPqULhoMn9CtamSCNZdOvcAJRQ5+w1HCIj/jDrk43ltBycVjaBAm0qE7gVlSwWxXP1mW81CYPkCOl0i1mJ2uW5FIJCxbtuwfqvPatWt5/PHH/8frbW0N9O9xMNWr4JmfvmT41GlMKXLSFJbiEavZmlFPTvfHDGi+oSGqnFRPKUGpB1FEwu6oACG/kURvEhbNUPolNdilbSg8l3PblGu5af1cLEk5iEXd+KRq9kunk9t5IU/Wp/BTrpb+pI+Z3DYHZWwdo+fkMz0v9y/t8vv9fPDYx6SZUvli77p/qzURv0WD1R30u+JUt9FutuKXRPgs4wSZboGRdjNhYtmlS2V0KJf9pq2M64ugGRjJG0PcHIkVoxQ50Mi/piKpnx5VAn0yER4hCxkdlCduwi2bghgvNrmMUEiKNCzB6JcSN+sSap9+hQPDT5MV086FVikJA5djkfzI5W1+ejR7WZsWQ1ywki6lBotchyioo8TThFRUT3rbQsY5GkmUbiDsuh51IEi7voSv4jW8WtzC13vziArC9ylxzO6IozZKw7mYJcQ6D+HQdmOQHiHDl0mjEkRhBV9t/ICYh+/AKxRikSci67sfiaQCv7YCORei8J5EpPYQlxbLK+9v4k/PvfAP1Xf79u00Nzf/j4cpfXVoO+dKdeQMyHlq51WY5hWyINnKWYWcMtkEZlk76JeKubgrSJEliYdHnKRV5aFFkUIoeA3X1EKTXkpb1J/pJ4WBUBL5nlbatRPoNFUwfFk663fuovyGefQHngB8xCpljHMeQqQ6y8SqlVRpkpk251bGp8T+pV0bNmzg0ksv5ZtvvmHBggW/wBE26O8ZDI1BvysuTT3Z4f1UyqSoInHMt0bQROqQMRKJyEB9VC8OqZ4MVwY1MW1sSqsnxaumyFFNi7GC9CAs6NdySpfKJzl+RgmNjHYGkfsXYBe3cDDKzi2tFqb0WdgYX0hzqovsK26g+YsvUdx7BbnCflqMdZQpR3HUBFZ9OcPsxQyxpfF1kp3kYBVqxQG8Skh1TuKqujzOmtL42iwjjxjSfTYynUqWBKWU6w38udDKCP9RAtLx3DDeQonvDCqpigyXiR1RGmb2lfBA04045ad4ofxOJuQnUei2MrPLjSTUyMHYBOTihaxMHU+weRtd4euwBrKJyarC6/sjWVlZP7u2NpuNZ599lk2bNv3VbKlvzx3h0/Y6buuYwtMb72f2jJn0DhWT0VHHee1p7InrwRBUMbdxLkd0DrL9Ll47VURjVAelWT+h8MpI7/4TqNcxtGM+O5Le5cLWfDZEFxHQvEmMcRuzTamc/E5FnzsH5BYWt8VzQ52H6qR2KjQJDB+RyCUXL/6r9r744ot0dnbS3d1NVFTUL3aMDfp/Nxgag35X5GExN1QNo0ds4YShAHO4jxJXB9meAbKEA7THe9BERiGV1/HacAcxgpjrujUMax9Jv2ICwUgKdmUWtabTSER+TK5+DpjPY3FbI23G44QUXsp1U5ALibQYvidX1MZK10Tudrtwt7TwYtxyIuJu2uVwqjAVpZDMefp32Bu9GB9mrig7n7WjbuWM+EL6tTaeG7qPNL+GM4qFlLiVvJ3Ry7wuB1P7ItzeeowTidXsiO3BHKlDIR6B2T+BBNmXKDW7+UPLCHrkYcRhB31l9XjOxpJ5+wg0wkK8Eicpnj6+SP+BZenXUDw2j/DwWIpi5fi8EcZOuOIfWpfR0dHBpZdeysMPP/xXq757BwZYXbGXbnUbD5W+zeWpl3BzYDlvtcswO19GrTiC0j8bq6qbZq2bp4o7ifbHsPpQGkbFLkR+PTWRYnqSviFT9jEbjCOQypz0qJz45AMIGDgsHkqxZQ7Lh42m9PujZC4J4DK6CYpX4pZGGDF6FlnD/nsGlMPh4OqrryY/P5+XX375d/XUu38Hg6Ex6HdDp9Nh7cmircTCbfUGBFEP76eM5N2ETG7q/oZU8WH2aMdg8iuRSzoJKhtQIyZWLFBlMFGmX8xQp5Wgoh9BbEcmauOAToIQkiKVnWNq7yyaVCfYEtOE0mdCojhDHF2czOxhyrIprPlgHeNve5QxfiPj/Gt4NtlAqiub2a4Izcof2KC5iNeKTxMJT2SSrYqNyUfYmexhw9EClnVWUKWXgXQmqzPimeI8wBhrFDJ9LRtjRMQ7w7x9eDxhqYWjaXkE5TrSfJ0cVxk4GryFI1Xt/Dh5M6edRwnLc6iNAp3wHDe3+xjlCBAZFUGcqkQO3P/gXSxatIihQ4f+rLp2dnaSnJzMnj17mDZt2l9et/XbqHp9P0/5b+LmqjsxxYBhArwV7KVNY+ab2COMcYNTfpA2iYlDI7YjhOOxKdVcMOc0WezFIh5Nf0TNJa7NyMQB4jwm2oKXcGmtgWGmVm4bthWVIsjOtD6Uhngq3u4mXxqgPrqf94a7OKmbzIahY/7SppqaGu68806eeOKJf+sFdL9lg6Ex6HcjKyuLqo46xK0PkRxVS1BqRxfpIoyWDNFRghENP2kvRC5uxcAA43qLOaeWs0E1GnS1jHDspcB3mmEDiXyQrkUj6SbbqWd57wFU0iN0iAqZ2mck1iPl0lYfjZ0P88GolyjXqunNvpArZnez9dnXKR73KOkp8xiiC7O4ZSoRmZGI+RXigx2M8rQyxbYBv1hMnX0ktapJXDTKwZoTQWSGTxgXDLNeuYInis4yy2lDF4ojKhBHl2wWOxKgyOVniPMULbooNKJT9O49QnVFBy8tu4C10ZuY1pGN2V7PC4UR5lo0zOgyIGp0gicEOhm9vb2cO3eOXbt2/ey6fvXVVzz77LN/FRihcIS3vtrKxHA8H9d+gqg3wm3zDpHQJaHGBPHWVkq1SmpUckRiB3pXLgkOAwFtB23yEiKRXLL6YLJHxPqkCFKvmlNReejEh3iqPgMhUsSBxCqWWItI5wx1BivumC5EEj865xQubrLh1rdz84VLkYj+67E/e/fu5fnnn+e555772YE46Jc3GBqDfjdEIhHX3XkDf17zBvcuzkOi/wFBPZq4cBL6vvNRBfQ8ENrCCZOU2FAvHdIwSv+V7Ijxc23zAtLF99FtitDluROv/D2yBBfDbPciDwTwSesY5ViNWV6GXCrmsPlF+tXtSMUtyMUKJvZFcaXiE5Ze+hEfbt/FzGNHEF9+J2nROxhu89MlXILZf4wMb5jjmhEMt9kQwoUowwJhkYgdccMYGkoiK1BOiuZTnFItb8VnkSPUMC5QTVMklm3JMmacisOiC+Ft7+fWLTLO5WvJfuQGDGWz+Cm2h6MGP5kDAZoVQSK9V4JRQPlEDCKdDIBnnnmGJ5544h+qa3Nz8/+YYfXtV+/RqnSx3qvE3nWI6y//GIcziDYsoVvegxB2cvPRZ/hhxB8RUGEcuA1oYcC8jZhwA/m9Q5nUHyEuEOCjDD+lBj1NoZfIEb7HLV/D02Pr8YhVxPvU/Ch+mDTvx0g8bcQEoU6TQ5e6n2XiGZhV//VT2d69e/nzn//Mt99++6utvRj08wyGxqDflTvv+gMX71vEY6I6JqsnkBesJUd8guOGpyjp7yRetp9ifxQfJUYIiF2Msm4gs/N+ehV2vtKOQeIvJiIZzSTHHmJlpZSZdjEQmcs4bwHV8aVow0407hLsogBtuqHM601CafkjGnE7gn4rfkHJs6NfYF/UOm47tI2XXGEemXAdDdmpnN/RxOReDdeP6GeLMZNGpZmLrftAJqAULuSQNo/zrft55NQC1EElZ2K6OWOW0mNSMCmyk+ktasK+FN7eI+ZM4yGeHn8dO6eDu68AnySFqztOclZnozQ2Hql3CC6liOgLjYjNKuC/7ku0tbUxefLkn11Pj8dDRUUF48eP/8tra9beS7lsH92quTRvfIBL7llJqqeGg+ZWanQWkt0e7j53EVp/FM6BFQTEqVTEvUuDKhmB4YhEfnLR8mFakFadhTyXFlMkjDi8iytaJiP2z+Kmqme5eUguWn8Kb5UWU5G4gHelWwjEK3GJEtGHz3LBspuA/7qHcf/997N79+7BwPgNGAyNQb8773/8GefNn8vZ1GImTldwwiRhYtwj7ErQYHJpGdpdQluCijivl8XdhzkZfTsfm2aQ7lcxtj+R99LFTLYtJqIMc8yYQHavmyxbMr2Sct6Mvw6X6Qw+yV4Qi9kbvgRnwg6u6zvEEF8bQ1pu50z8p2ikcbw0axU9Te08v/Vu1Ef1xI2bz7bhfhpkCxGhJsF7mvPLb6ctupZNqe/gFkVjtt2DJGMHY9um801SNMM9Fsy9QYIVIq45txF329fMGpXDN4vupyfpJ7IHLuDttDg88gGCqmb8Ej+5rnxGWyNInjQgS1D9pS733XcfTz/99D9Uy6uvvpoHH3zwL/8ur6piWjk0FOnpPNuIcdhQUiVtzBh4nTTByAPRCrqJY3PRmzQEr2GsUEeG8BnRDSPZFn+WDdEzKR5IpS66nmHCOia4nMT2LmOoGz6Lb6RGm01GJMRDBSW4JBFSfLUMKBNxqpopLktHGtEyolnD9OvuQiwWYbfbKSkp4ZtvvkGj0fxCR9Cgf8XgM8IH/e4YjUY2/rCJiNjFfffswOsTUylPoVkRZL85hDqoZ2VDPFm2CcjCEYpsEj4/6UcddrPItps/NB7msZoeLm42cn+NmNooEc9npWLzLMSDncV9IR6vjCXbnoBHUYVb6uOt6Lt4z3AVhPUM753I1JbRLGqNwzl6Mstve5jzpqTw04GdnHxhL47dX+FsLMUeFKGXr2VnXAJL+pp5vFzDksYSPKFUftI2sKv/BM9UHuKZN37k4NkuVo64kh/O38fVY+NZP2wTPk0d6aHDlDibyfLvYbiwnaGhQ0xRGPk4o4yv++v/qi4Wi4XCwsKfXceNGzeSlJTEjBkzCIdD7D36Gmv3bkcV1HHbiYX0fr+bUefVEpY149S0YxKfYGXzcoKBCVSrpaDeRUaoHk1AS86AmYm9ObxTeQS/zEm3oh+vWEZYFGa4sAGx38RIe4TNSZtoin2VgFjJjF4RM3sS+HD8U6DbgSbLS3PLPuZcbqLIHMPZs2dZsmQJ33777eBN79+QwSuNQb9LsbGxrFv/Fa+++iofPv8xp9X1hFPkXJlYRJysjDGKhQj+oTQPe4WjmkNcaM3n2j1jOafrojJmO2PcPo7GtZFlGU+zzkeICLWR0xT7MpAhRhGYyuVNCXQbHkQkOkVTeDwJ4Ra+yu9gRu9+jkqn8UV6iJiQnht6enlrSgN547UsPHw+f7ZX0nTsEK0dxxjhsePR/sh2j0CcuwqPdA2nj9jRmaIQJ5qQJ8WjeOQp3GID70f52RV4BauogJL+eKJlXzJGcpwJThOVxjD7tVczqd+PizeJUkpZkPrfmxA2Njb+Q8/9bmtr44033uCnn34C4NSPf+JM67XI5G7OH/8dng37yZyQwFj/i7QoRNyW3sPyZgejHQepi6ugTJGAUtGMwtlMSCpie1wR+xP30RdcwTjvOhZ7T7FHfCX57m+wKuxsHfITs2ou4/I2BW0xPaw9qmRvzlbEoklkds4kpNjCRlcbmpJYclPSCIfDrFy5ks8++4xhw4b90ofPoH/BYGgM+l278847ufPOOxEEgU0//cjRwye58MQxTM170SQl0KUQcUdzNafzBbKCE9HZspFotqByjsLo9WGL6ubm1jQs+oP0G06zWT4SnyiFJ+yVbE45QW8kE5s4inEDdYhlTYjFCj5NHsJBrQLEAdS+fka5W8nruRCxIGMgxU5wSg7D/RGkoSEExC5G94/l8s4TRHuiKdXE0WLs4tvkMNqwgxts33LOF8v6+DSy/DZWtVTRo2xDGsrgi7hLaJeeZJ9mLnrBhTLcQJ5TYIrPjl8ewtfeB4U6AF544QVWrVr1s+v22Wefcffdd6NQKDjbXoVyzwKGaty8WHwad7CexmOHeOmRRHyBw1iUSpQEsKrMnFO1s7RqLsrkVrwyKcejpEgQ6DB+Si8X4hGX0CnOwOhJpiahH7nXyT5tPumuejpNh0joG40tysy3+cfQKhtoiUljVPcTPCnxUrtjNZXHKgmHw1x33XVcffXVg4HxGzQYGoP+LUgkEs5ffAHnL74AgGPHjvHlhu/481OfUHTVEsa2/8ixtMkci9tEgSWdEe5iprdYaDN4aVFcgdg1iU3Gk1zQU02TRoU6kE5uf4SogIrN6jCycIi9yhuYIv6ECxxfM7xfx9wOHXeUZPNJnJ4lDUWYgzuoNzWS6gsRJowsEsEQCJHiDRAb6kQssTGqr4Dx/XqG8SyycAidcwp1yfXEBuNYVZtLoTWNkrCampS1CMJM5KJ+5tn9rEncTTiSgZkWjiS2EqWEw6d3kld4PX19fZw9e/Zv7kj7t+zdu5eTJ09y99130+6w0/7ZVqY7z0MpeLDKgyi3WrgydwpT64voj9rM/Lq7ETwj2ZkUwigyMcYqYYgjjm5ZDG8ULWZhcx7b0oeAZi15LOey8qtJ9cmI87RQFZPCt8bRrOiVMtPaTIzLQo99GUmu0fSb7mJkez5dsj6aN37Mvq37UKvVPPfcc8hkMu68885f74AZ9E8bDI1B/5bGjh3L2LFjuWL5Cu6//36ir12JThJhcoMco+oj3h8qZ8SAh+b4HzE61GyMF3CJhlAhi+Hy1jaGWtIZ0QOumC9J9OQj92fQoaljj3oaorCJoY4sbPJustxuon0mgiI936csYnv895Q4ChGJoqnQdCAPn+Dt/E1sSJWRbVnMM2ViLEovMpEdVTAVQ/8MzpM1onQbcEoWUKE/QaGrgq5wFpmSDyl0dTGu8SDFjh7eSbcS43gKJRoi2iOcv3IJ8F8/Tc2fP/9nr4x+//33efnll5ErFDzx3Rvo4zREO6v5Nq2CN07kce2uM0y46GnkfitJjgTMgSaC3pHE+f34dPPYE9+EoDyH2D+Gws4iprUaORQ1QIemAqu6g5/S27muOps90f2MDfQxzX2Yob4OgkIKm1M7KQjdz4MFf2Bafwkz6aFcdAexaVmkpabR39/PunXrOHDgwOBK79+owdAY9G9t2LBhfPnll4wYPoRbrokjTj+ZGERES4/hM7XRJ00mPVTHeQP9fBSTiDkQZkBWTFfGExi6rufxvCRORbs5v/0kb58JcCDlDHXGEDWGEpp0SVzVuRFTaIAj+izqDRoW2mU4wiPxip20qg6jCMcwvSuWixpTyeuLoTJazt74WlK5gGH2IkRhI9EddzFP1UartpqtqSfQtjupVYxhtyIOh/YoQ8QyCp0qzu/rwhV3E4FIBEHdxTdHv+D6Gbdx4sSJn73Yrby8HKVSSWxyMtdvWMs5FUhksaQWvUJWxMkGvR9lfCqvjUzjXbGbdyoD7E+ejwcDq9OqmWPvJlrRRFv0FjSeRlpkJipNydRFn2aSU0NiKI2TGjXPFdayM86N06ulJFhNu1rOLpMfjX05m0wQiAjUKAq4feQOLJ97ufPu+wF46aWXeOyxxwb3kvoNG5w9NejfnsFg4J13P+D9Tzs4qU/jlLKQj81zaZUlMrn5UQgm41L3coP7aYq9EzmS8gU/pDSwPvskaR4lsy19THe00aDR8kbMH+hUyAlKZLSrFBw2TcAjMlGrd3HA0EKn3EoMb6OSXcBi62Fur4swMbyJ5twnCUk87EvsY1fiGb43JuMXBXErrOzI/YKOjBewGT/lmtbTnNAmoAn50YRsHNOm82NsBj2REWSHOlE75STZdKiDYPFJEASBDRs2MGPGjL9bh3A4zB133MF5551Hz0APYU8XilAixqCbgYiBgVAeX5QVMiP7Jm5oT2OYYwIHdS/jkoeIEX/LSHc7aVYra1LOUC6LxSlyMasngTNxR7ApLMxsHYPWNpF2/TGqtYnEBMP4UeIVgVO8EJ3tckLSucBQnikt4KVjeQxYTPR6A8yePRuAdevW/ay+DPq/Z/BKY9B/hLlz55KbPwJXeQWbR07GK1LRKSwiTV3D3sQydqmvZ6yripW2PRxOP0uSpYgyvY076xR0K1N5uiCaAWIhHEXIn8tJwyeM7R+BTTmetdlnmexbwwH3jfiFofhDWiYKX5Bgt6DtyeOPKRXEBg20jHqDOulIBhiLQxnD40PqyZW9xAnpDC6wFpM/EMPWOD++kJuv0pz4RFGAiONGgX1xHlZZw1QlzuGGldegtrq42KBm965dzJo1C51O93dr0NDQQGpqKhdddBH3rX0ee2gCVwaeQSpyMbxXy/sJedhqNpOyZCxx/q0k+y6gWX0Qffg46YFuFjvreDdzCjlOLRd0e4lI6ynX5bLq3PmcTF5HrCeGLpmImzv3IutRsTerh5iwmHZVGlO9B2nS/0BtRIlK0otW3oNEkUHDtkM8/8gjAFRXVzN+/HhMJtOvfDQM+lcMhsag/xgrV65k+fLlDHtvLNEmPypPHIeTXkEqsTNkQEWOJ51Pir9kiM/HirM34pV6Ecnr6VAGsUk1LOiuojTxLcJhFdc3Z3JWlUCj6nMaovrZJJtMssvPtrijxActnBaSKFJoGe/pp1Q+FZHchVfmIsEDxQNglXtp1ffiF6bglKhZa1hOsmYnumA6mrCLR3q38oNmJuFgKj65kibFCD4zl/PkyJUA5Ju0hMNhVq9ezR0/4xGj4XCYOXPmsH79ej7cvY6T4UV8XLUVkTyfstgexPJa7mgvZ61fzHDXCIb2R3GmpJ8VvUf5JhE+SlNzea+WQHAcw51NvJo8Fz2l9Cv7mNamZYgrwLN5ZuSCwCJ7PlWmeppNFYxrh0tahtOUcAZzUMvnugRixK38lGPD0tRMdAt/ucp48sknue+++37VY2DQv24wNAb9x1i6dCn33nsvn77wR6a88gz2xA7Or0tkZ1qEK9qi6VJKyPTG0WBSsSu1gmZjM1/GZpIaPsU04QCpQjrHwmkcVVxEKMZFs2kbU1rHkmIfwprcs7QqFYiwohMfxSIL8oXxdrZrPERELkT4ubv9EGmWidhklTybm4wCKymBAGL/ECxyKdfUriDbo+FY7DdEi+RcPtBAwLqCnYl2muJ7GaIZhrFA9pf+vPXWW0yePPmvtgD535SXl7Nw4UKyi1K4d+uPiKRqxJEgFlEMFZE8Cq16XP0DKAzJ/DnPwMPN52hRZpHpFjFpwIFBVc1bUU+QKDTj0x8lTsgiwylirLOHg7k3clDyCtP6PfyhoZtrR6dSrxETFbiYV8yZPNph5HN9FlZJLBIhlszILgT/7ezZ9Sjrv1gN/NfT93bt2sWaNWt+tfEf9MsYDI1B/zGkUikvvPACF198MVdffTVTb17JJ+leRjrUjHB8xyaNH6/cQ7uun580UcSHw4iEAsR+OUXusxQGO0mpSmVLjJVeXRXTA6e4pPEq1AET1qjT1CgUKCICN1auJErQcFbj451cBdkDYqyG3Yhl9eQEolF55CiapDyWo6JZpkIU9CAXEtERR4tegzVuLz8I+ZwTXcO9fUpuqRxCkew5llz/8F/60tzczLZt2/jhhx9+Vt+3bduGJC2ar7/6I5miqdSq8vjeUEREC17ZQa4oWcSVR95jqLqbxRYnYv8S7q8u46xyBj7Vx5R0j6M8vpQr3GuxiTUURz7l/IqluAJ30hdayEBOE1WaPPzidlY0a6jRKrisJZUbx7jQSsqol5kIYKDAd4R4eQNHTl7KrHlXk56eDsCaNWt48MEHkUgkv8bQD/oFDYbGoP84o0ePZs+ePWTl5JC3vBDj+BAt2mjy+0YzoJpIg8mDTR1E4c1CGe5jZXsDwwMqAooBcuw6xvc5qUk6wW7jVN4vOk2tSk+fKoFwKIcr6rMYY7UhiH3kOvtwiXJYm+1igi+CXSXicJwLtRAmMfwxsy3nk+LtY2uShSjfCDTaJ7CF5pBh15M+MAt3XA0nE3qJaPZy3tX3IpP/995LTz75JI8//jhi8d+fy+L3+/nhxx+56nIFi8svY1LUcb5PbCJBZOaouoDooJiHaur4YmghfTsPczBuA6MsHhKEDlqUDlKEOmpUY0j2+mhTSDin1NDvXUaWxsC3OV0cMhtA1Ea0dBs/5TaT2nY1U4T9ONVWnqk/yS1DJpAQ6MYdzqVBVkxxyyRKD6wl7ZJrAKiqquKBBx6gq6vr1xryQb+gwdAY9B/JbDbT0tTEhx99wKcvvkd7Xh+nhx5mevx8RtlgqH8XmwzTACfP53XzaH00+UI3rRoX3aoGOrVGooJ2+qVyvHI1irASUSjCsoZUjsaK6DMcYFJfDHWGbkQiF7WRmYxqfwCfYOLV7FquHLiPJo2TS1zbiLYoiBuopkVjpSz+fbLD0GH4goOq2yjWHsQVX8145bV/aXtvby9+v5/Ro0f/rL7+9NNPUJDBafkw1o3RM8mh54zeRbW2lhp1L0pBTpeukxx7LieCIk4bA5w2HyG5y8j7GeDiT1xr+5QLvNVgN7EhI56JrKMrJcQJ40OAlNigmEJfF0bBg1Raz77UU4zqh/E9KSxsj8Mmy8Gu3o0iXMNHP5ShXnEvfls9/f0aLrnkEo4cOYJUOng6+j0YnHI76D+W0Wjk3nvuo7S0khXXX45h1zkObH+HH42JjOpNRyw6S0RSjiBScyRWTbcaBMNedqftZocmjyH+SoqCexlvzWWofQz9Ug1/Grafh0aE+SwtiyWjR3PYHEGCmy61m1NRbtq15XgU+/nYNAaTyMKWxDBxgRDD7B7ivDJqNVAvjscuUjPGfYQKaRb7JSvY9Z0P+K+n7F177bVce+21f6d3/+3tDz4kNDQZjScNeTiMRWZArDiIT1WB2juSIqeIs+LliPxj0PpTuLh2PEkeNV0qCXnhVnqVfXwbnYTRmY7YP5Yk+0Wke6JJCneiC/kRh7WMsZ1HxHcLQ9onU9g1EpO0llZTDx8nDOGKrhoeazyEWl7Kic1PkhujY1lSDufHCMTExHDbbbeRnZ39aw3zoF/YYLQP+o+nUCiYN28ec+bM4Znn/8Qr91/E7rnLmSVbwM60MGMcbpyRWA5pB4gNNxOUiBjVfD6vJeQyztXAfN9drNe9RnrAwVyrC5HYhULURakhjqm2SpbWjGJrXBQtic+yWbkQUWgOLtlhukVtxAc1dKkDyOKc7DDpmWfrZ7NiOdKgmfg0A8/lJdFyVIYhWkxZWRnXXnstq1evpri4+Gf1ze1247N28XzYxproNhZ1lZAkPco7ujyCIh0u1VaiBrK5t72OGfVT6IobyfaeFyidKENvfxxVWEKUbwJ94Qn8pC0lLIumWxrPKc9djG70MDqjnS2xyQyIepjj3IhMUsG7BfF4PBfjlNu501KFTS7FEBIR+roJpTQB+5Ip7PvhBQ65NDQ3N5OWlvYrj/CgX9JgaAwa9P8lFot59MGHueryK1i3dh2bVj/C6Asm8LRtCWUx1WyMW0Ku8DWZQgJTO1NZ2J5Edc52xIs+55mcRF5dsxwdI1je5uTasSoW92QQ5c+k3NRHfdxe4vzRmAgSUtYyt03J7N57kIi9nNaf4XjMLnrkcrqEuYQFMY+eP4VsoxqRSIRvgY/77rsXi8XCxx9/TFFR0c/u08mTJykwJiIJRlhYexttUcdJCzWjCQ7DIlGRIjQzxf89Wb1/pNJkR714PD2f72R5+m0MCf6JMpOfguAJ/AN/JFO0hjxXG1c0raBNHeadcT9SH7yG5ZYtbE/eyBPG8dx9ZgUnDcm060MIkg56ijtp0ARY8sVhmpo1hEclUXrHo7z0wovceOONP+uezKDflsHQGDTo/09KSgr3P3A/y5Yv445bb2N552MkXVREJlfztf5GqjVycuKeJDqQzS7NfGwtfq6IHEYUMrA9+yDiQAVZgSxSPPtIzBEoyM/H90MrRvscvhmxj/tqlYyx6liduoMebS3N+jZ6IxeQIZykNXQhD/Z+TI7pv256f/DBB3+ZWTRv3ry/0/L/adOmTQSGKtiumszlLQX0K/uojNYzu9fK3kQPDbJC6jRdHJ54O3L3BA6pbiLJPJa2Yzpm50TRpAqxTTOBCVE30xJIQO0cyvpMGQUuJUnWi5hvWUpuTx/iQBzbElIIoMGhqmRGb4QS5zi2pn6NUNfCK6cbMGtiWJ41jj2OjYP7Sv2ODYbGoEH/i/T0dH74aRPnzp3j9vv+QLn4eaanryQ+T8RoZwObx3mZkjcT2c6TnKpWII+sIMPcRl7bARbrVaRMyOe+vgaUayvxqLNoij3J5wcmsal4DUcSozmlUKAQh9EIYaKEIMV9E9lt/pF86224XC6effZZBgYG2Lt37z91krXZbGzevh/Vo5dRJQkTH1lFZqgBbc8EjulSaJL6MQbt7NZMRC1OIEWk4PHTUdRdYuGNt+4nPnUR+5ULiAhOjquSyXTkMqplAeUSLy/mHQcUfBldim9oOTkD47GJU/g64xSCxEWzRoE0XIlnc4i2HXvIzsnhrbfe+tl7ZA367RJFIpHI3/uQw+EgKiqKgYEB9Hr9/4l2DRr0q4hEImzbsZ2333gdm8WPWCTgk0TQB3yoNGZmLprJbatu/5vrBfbs2cPrb7xGXWMFr7/2ONMmL+OrT66m2fsim03daMMu1s0dhx4n/ufe4MvMIEdVI3j2nBu7ysK52HIMAS3fmoZw3KTirkolhqCMUXY7Hw7bTZ41HyGUxIRx87n2uZXcfvvtnHfeef90Xx986CH2NO6mYGkuVZKRlLgc+CQOPFI3aR4l1cocbHIRYSETJBbUtOOWDDDamkGgu5Wv1/1A7k1rMJm2kyfdgcv6PAvbpXyaJcWuqiYktaMUwC+zYBa6KbCu4JCxCS96Mjq2cPiTI4T6LNx045Xcd999KJXKf2XoBv3Kfu55fjA0Bv2qvF4vACqV6u988tdTVVVFTU0Nn3/+Oa32LtyxMG2SlkfbJ3E4KoaXModwXftxpleGecb3PftqulH4dJy/eAEXX7SUrKysv/wtlUrF5s2beeeddwiFAmQruhmePApx6nA8GdHcesmlYHWw5qtnyBTtpSq0G6ng5KvEA3jECq51vsLI5sWURqnoV1nZZ0zBL9KR7zHwWPVpPF4X19Ud57777mHmzJn/Ur+vuf4WeopVpMWK6Y6MpzcygZDqOwRRkLGOcgp7z2dtZhOqUDS+sJlh4heoE01nrGUM4nA05xy7Ofvel8wYNgz9IhnH1HezsNtOnPIjJEEFn6eoSJRsoT80GZcwldH2XHZrDtL33SZCh09gNJtZt3YdQ4YM+VeHcND/AYOhMej/Grfbzc6dO3nllVeoqqrCaDQSExPDiBEjeOSRR4iNjf3V23DixAm2bNlCTXkZHp+PGbqxzNaNZP/U97DSwfD6Kxk+EMIqhWaNklTVagQUXJ8xCUG+mxU1F/BFg4CrqxaJ206JRo2g8FFd3UB2Vg4SiYTi4mICfj8H9u8jLBIhEUuw2fqIVosZbQ4iik+kTWsku6gBv/gu5IERXNO4m63Jvcg1x+lQiakM3IlB42RZfAJfvbGFr3d9yNfffMn06dP/5RrMmDiDcfOvYl/mZDLdLgrcMjbFBYiK1CBCjiMynhn+N6iST6BLNJJEYTet6iiSAnbutL3EZ7rF6GxjkPxUwaaqj9GmByhJncvCjNOUZwxhhymBhMAhmm0leKv76S6rJtjZxyhzFkq9hA8//Ij4+PhfYDQH/Z8wGBqD/o9ramrinXdf46ct2wmPXMyE7HiukpZwMFbDpJl6Tuw+zgM33cS4saNRS+X4hCATpk7lyksvJy8v71/+/kgkwhNPPEFpaSkqlYpV0ydiOHWQvKtuItyUQ6C+g7fTPkcs8nLNkbtx6KtQCgGiBIGahG+p1iSySXsZo7x7aIzbSCA0koD7bpJDNnK8hYSkJxDFvcPKC9djs9koKyujsbGRLqePXQ1NiJ0ycjy7KK3qwRfR4AuJiIS8NDU1Y9ArSImJI4cifOPktEXFMqxHhlvopLOnh5kzZ1JUVMSSJUuQy+X/ci3C4TAzxo/mjZlXczoqgQRfFInu8exM3ki9Wku5sZQoXxYpgVMM8Vtpk2TRKUmhXS0m199GktdIqzSJfkUnV7WMoV+/lRP+bxF2DaOyqxOLv5wBlRGD30J0rIrMGAnuEZOw93ox9ylY/ckng4v1fmcGQ2PQr0oQBJxOJ3v37uXdzz6nubmDEnU+40rS8JcEKFMtwKh6h0x/B3Prz+fVIgXVYjMhsZSx/W5eqGnllayj7Glx4DkZwWnpZ3h+EUVjRjFlyhTGjh37D7XH4/EwZcoUli9fzj333ANAxO9DOHcSydDR4BXjLD3Jvo53eFOyCm2wk/G+DRT0jKXEIefh4aVUabSs6HdyqaDmiCOb3emrKewfRrrpelo6c9EIIobMOsmwIf99FXD47He49r7JizGP4pboKXG1cavzKWpkuRzUWonGgz8wDs+ZGrTNXZyyKDnT3YRSpWLsqBFcdtkVzJs37xffc2nz5s1s+OAOFsxJZqs6G424m/M7U9hoHM0x/TBSZI+ApIdHDz7Mq/khJncmsTV9OzWGPpSumxGHo/GpvkUXEjE8uIlmhZHba3IY013Ay3kmVFIRavWz1MsymexsRBt2s7spjiMnnWzfvnMwMH6Hfu55fnBkB/1dNpuNjo4OVq9ezbnKM4gjavosbWgMYvpTJ5IxfRxzFTEs6pjAwaSviApaWV3+Ex8WdpPiSkIfEugN+0n0GrHLQ2Raczmil1KRuJE8k5YnwvPZbFAwrNXOR9U7eaf0JH/y+Xn44YcZMWLEzzqh3njjjTzyyCNccMEFf3lNpFAiHT0JAP+nDUhPShFN1TNDcg/7Q09y65mVNOmsfDHsXTpVuYhEAaY7jrFdMg9pMI9ZrdMJjhMxbUgS9rCKiF9Eknk6br+PVz/eTI2qm5He00wPDzDRtZsyZRHjfLtoVUUYkHioEj/PGz3X4w4388cpo+mcGQuIScdDZn8SOYdC/OnPT/LjDxt59733f9Ex27N7F35DAq+ap+KSN3JlUwFjLBGq5RbsYhcy6UgatU6eK4qlXi3iWoeSojML2ZV+gg2JWxjmEHNcI0ZFAJV/NgHJAGOtEmqNLbjlMwiE5WyW/gkz1ZxWGqhxCVRs283uXbsHA+Pf3ODoDvqbLBYL7771Ft9t3YNWZKQvIUJsYQKPjbuYKO2H9EjHoxWaeSlxNEmi46SF17Mxt4wz3IVZ/A353i04vLeT1deLPCAl1icjLliNwSNGGi7BhY6g5zJMzsWcMVSwwHGQpyYECOsspLvkBLum88Cz92Pv6iElIYc7V93JtGnT/mZb29ra6O/sY2Hi7L/5vuBz4slwozbFk1kyF2e/ifz6VzlivppGnR7bwCpWNVrZkHqUY4oSNH1LGBLcQma/mPdaunmn7n5WLnwSpUjG12u2UOezUKYpplGtpVU1lR5HAbMaRuDO2kaDoZJhFglZ1lFkiDs5oLuJHWmNmEJWPJEcBmRiRtpc3N0oUJMzA/34Rr5bs/kXHTtBENiy+Xui7v6AUNiLIijhgDEGUSiBbxOCzLFv43TMdoTIcOo1XiIRFW2mw8R6p+EXB7m59wgXNBs5qR+JX1lBpSqNrmgjHyRr2BvnxCk5yP3V2VQpQa7sRhpuo/6zKr795jtiYmJ+0b4M+u0ZDI1Bf8XpdPLgIw+za/cBZo+ayuUXLmK0axZdUheF3jrWp9ex1B6LUyTlz6mL8YiiEcIlZHIEqeBFHRbIdq6kKvoUiyungkhEg7KeSn0TFeF4ooJawvoBrm0oZnhXMqPtfnL9FlQhFWZnHoL4JKGIiIUhLRnnDUWkOID09EgWnnce777/Ppdffvn/aHN/fz/DpAUE3rMgGapCpPjvVcZd1jDl658iybcLScFaCnMXseHLd+jUd1Nm7mBG22WMR4xYKMcj6adZd5w9CYe5qWYeASGK7cEOpnmOcPKze5E4n2JnioJObRwSQUAUUWDwRbGyOo5zsQX06F/BKxOoHshkrleGWqThmbxhBER5pGjvQOrLAZERldiBIhwiJOxE6b4MpfbALzqGdrsdeZqMEZqXmGH30CBKY3dUkHXpMkosmUzoSqPOLJDpbWWndjcXdMj4MUVGlfocU61+EoRmTkcVM9bWiE0pp1t/jD/UzCWzdyqnok7gVMp4M8XEsMBW4oX9bP7KxX33PEZOTs4v2o9Bv02DoTEIgK6uLt5880227d2Dcu4okh9ZhsaZzMiB/Zj812OTdfN5agu7zXKE0M3sN6QSpguF4CIUTqM+tIwzajmF7nJSg5mYpf144m4lyxJHvOAiXwjjEcYysTuaKa15iLU/MqktGaM3CoKTqUj6gu+TxAzxLGKl8zs+jE9HryjjpHYW6nFh7sp7ghc/+ByHw8Ett9zyP9rfnRFGfp35rwLD4g2wu8lFH7NQSlUUZCexaucr6D0xLBxwUanpxCX141R08EH2UVpVYqThCNc1DXBxnYkerYpv96TjiNuKT9/Ja1lP4ZEH6RdPIcsfoUsloIgIPFViZqJdxr2VufRJMngjo4S2zBbuqN/HrU3DEWRnqY7V0urPw2ZQoQ82c+GYNAyCk0t730P0C+8b+tjDTxGbn0B0KIJRcKGWOjFHrKQH7KRKyolRtbCqehQ7TEbkqgzO6STEBQcQIadFFeIlxTT0MS0EI3pubz9Hr97DZIsLke4oCnUZyvBUepUSLNJSaiuaMCaM5uKLL/5F+zDot2swNP7DVVZWcv9D9xEOi/nDqlUYLprDN80H8YsEUuyHMYlLaTTvIMsyj9OmHiQCyMN5iCMBCq16zu+UYJcZORNjRqq14tM/xn5NLtk9F+PUb2RH3BkyrAXcf3oitfGVHNWJ+Sx/BzkhL5uiW7inWmB0n4quqGoikWR6RCVsl0npUsTRrMjFixO/TMxe7Q1or89n36b12G12Hnr4ob/qR1cv/FAvsGQUnGtrQPlTLWXePHYabFziEBjVPozTSc1cdfBC+tPLiA27SfMqEYt/5PusH+lSjmZY5FtCIi0RcS6C2I1TocUkFbEv0U6pdhI92p2IwmJePjuVYY5e1qaI2ZDgwylpRer/GKu0AU/ftfQr/JxRR9ErLiBKKMYqczGh/hEc8SauaztBX/LXxAg3McFRiZZKIvyyW2rUlR/hyemPcsT1JTbHbYztz6cqq4NSg4ZKw0nOs5VTLp7HDn0BQ4OfIpVI8QYm8NaRBF4b2ohVmkkgbMIvDtMrTSGz6xKkLjnrCz/GLtNiDZkZLjxNwDuVum3N7Nn9zi/a/kG/bYOh8R/s4MGDrLrpUq65yMznJVcxdchk0i0+bL0HschiqVQNEJErMPfpsajsjLG30mWqQCJtZ6R1LKfMPUT3tDOrN4GRwWbKTWGiRHLihVoubrwNvft9ug3nWFOwi4W1JioNf6AwJOXTlPdItExivN3PodTtOJUPsjahjYi0ljuaGpCKXOzJkpDrM+AVR3N5dyUjghfQJdyGd7yWdV/sZdPQISxcuPAvfdFEoLPXw9vltTgrznJHpQqnvodCbQM7UnaTF46n8NBRgq5HOcVobJISCu0JxPvF3Flr5oXcVpzaMLogTO6cT6/pOA26VE6mf4/NcIp6yQzmN95Fik9CruckIZGWjEgV3xwvocrUg0isZ0BeyATPKb49moraejkH4u28kXMAo+ItcF1OoywDmacdVVjLyAEBtfMSgrYfiI/t+MXGtKqqisrGTmJHTWdUh5iazOfJsGwgyy6mXdnLtL5RJHcFyBX1IoTV9CQ6KZNMxilLJd6jxBjyAWrG9a1EEo6iQvEJxcFTuKQ30a9yoBL1oA2JKJNcT87Gp7h0xQo0Gs3fbdegfx+DofEfqqmpiZtuvIJld5jxaZVk+7soq3iRT+rnc8w4mrhIM8t8O2mTJqASN+LTFnE4WsEUdxmGviWMbRrNzuKHaU7bj1o0A7vuFHbpMgzuQnSiej7PLuOCJimNOhsusYGrxyp5orqCb5LDTOuXkR/8EYX7IVp0/QQlfZg9Eyi0N1DoaMEn8zDT+SMiIY1x9lhsprWI+twMqPaS7Mhi5cwR3H3vPYwYMYLExERaW1upjdtHokFMzj4p43zdHNPezKt5jWQKhzBac/D1zKPc+CU1xRfyiWEKYrx40trJ8lnJ9lkp9vqJ6Z3ITzF5fJa3g2srSkhx+whIrsQX0vOKvQkr2UR8s/k+8Sw+YEznLYSEBlRBH6m9s2jSOrh8VDMpnhAzu3Zj8iSS4/AyYNQzzVrBiB4jR2PMVEmmkOIczoq6Yh6Vfk129i93L6Cvr48xo+fxXNE5fFIHI+Uems1PcZNFwmj3hehCGiTBZPYkpHHOmMdBVTSIxIilCrbmb6BGq0Eahh7ZGezKVmYLa6nUZNEg6aRKfBEgYqn3QzxnR1OvUbFq1apfrO2Dfh8GQ+M/1OOPPcjlF8ooCOaQeu42Yoe9TV1jPRpRNiO8LjIsaTTHpiESDGgDabyd3oRPqsEc0BKTtB6d5CzpooPUBqN5NUVNnm8B2Z5OcpwhPoi7Fq1UwgqySPakoQjZ0MuP41JFqDR34hPpWdS2nVOalXTIs/km8T2GuG10RK5m+bCh5HrO8NC5YgY0mTiUKp43vsL2hCMIYim3umxMDzi5bF4+N910Ez/88AMPP/oQxovNzG9XsttsZFx/EhmWIcyJsrEnOZ6VwU34E1pIa7mKsL6C1zrr2WJI54fkME3yVDTiOlxKLxH3Aho18dQjo2fIWYLSseQ5C2nSljMltJ1IyE2yVU9M4wIeGdbOpylWxvYmcyxOwz1VMrwKG31SHQ5dBLOolAdPmBniViMoCwiEo/FFUpngOs0FnVn8ZK5idZEPfU0306cv+cXG9YWnn2GV8RZKPT42JQq0ia4jPbEULREE1dOIw3YuLH6ciY6RKCIyJva2YpdCBtsZkFxLvrOSTGcnDmk/mw0CFq+BPlEUi2xJKEM6+tVBEtwNrK78gq++/PJnbaT4/0zZ/n8cPXqETVt+IBSIIBaJaW5u5s0332TKlCm/WB0G/XoGQ+M/VENTM7OnFDP8zB/pSHyPEks7e9QZNBm2YAsPoyqtFbd0Co93fY8o6gUiPI84rGVI5R3Yc1fRbign06vma82VeEMlDAkf5NHGKpSyauTBaPYasiiNriIqGI0hLJAm+oozKVq0UidZXjnGASPB6CMc0+chFwfoMZykx7OIkbYsGs3b2JIicF6PQKcujFnoJ8XqZWesjp9iM8kcKGJUVCJ7z36A0+lELQ1xu6aYp1PSOa+3lVNaLcHUN4kXi+lUxtIvjiXHbcAYCSDrXIRbGWSh7zOk1qF8r11Avq2D2Z7TNMr2oAlNR0cd06widkV3IZd+zzWtzURUEsRBIz5JH2bHaJ4qNfDo6FLiJNu5rfIi3sqtQSWysNRzFE1Qh1FSyf74RTQoTUwauISNuc/RI7WwoGEC6a4sLAn9jHTUU5qY/4ttE3769GkaGup496EY2qI6MAftDEhUjBqIJ6lzKeXp79CiUuNSnsbU6aba5EQqRCjqzyMim0hI6SLNlcq84OM4vTlkezMoDEjpiXgIiAUSAmFcUaXs6Brg5ptuwmw2/9X3h8NhOjs72bxlCxu2bqXPbkPwu3CrFMTHxZGi0aBQqPE6D5A4T4RWO595ikc5GVjHw08/SlFmAe++++4vUotBv57B0PgP1NLSgktlIhDQU5n9Ju0xBxnaL6PEY+WUyYVe3Ivdfwsj7F30i0245U5u7PiAk4l97BvRQpYXVOIQ2o67iFUlcX9jFfKInGbNCKIiAlLDPub4uijXZmBVail2DuNc5A9c5Pqckb1hkvunYQyEiIveRHqkl/rgcEThBnS+ePQiF1P6Hifd1YaYJjKlH5AcWsEB3flM6JeQ7zmIIFZgDqQSVonZtGkTTp+bHWYp2qCJkKSZcX1qmlM341VaCUVu5InEi/iyWYVF52Rf3CTaNAomBLbSL4qnwN/MXM9pOqV6+kJjWdliYqTsEAOReD6QPojU38/NFh/SwFPU6NxcNsbEY2W1THYf543KPiol8zmjl5A5kIRM0UO1KkhWMECzaAmdSTGMdYnoVmZSY7CQ4nZQEpDRYAxzfX02d4yUENPe8ouN6333/AHp/efRFnUGbSiOxe4fOaMcwpq4yZxJuIEYn5IxHVMJJ1opi27GJc5gpvA9O1NB6RvOLdURhtpga+bVNMjTmdKZQmrExGeFEg5EbyGCl4R+F9ZjZSx5/o2/fO/u3bvZvH0be3bsIVERhThnFN1Tl6OP1XN30ynezIlGHT6JU2ykXZLDXdaTnFJriXhNPK24kSWWEUxemkD5ISvPPfccDzzwwC9Wk0G/vMHQ+A/U2tpKpiaLIqeJKtVYflIqORQro11czNv7TbSoodO0gxkds/gmJ5WvjCoSlQbGBWrol4BPAnpBIKI+yzM1Ng6bW1EIKfRqF9Ejj2ZBYx46Tw5FklzOmc8y17KJhMQIYjw0yDIpdo/EKvfRHnWECcK3dMrOJyJrR636lnjPVBziWLzSAUw+HbEdlxPUjUEnk5LqbKc15VnsUdmsKhvG4oRcNn63AVmyHKe6kgfPTiDXk0W7+QveNXtQBJcSEYnQRPygriHBp8QlG0qFvowKCrDLbTzfeAC/xEiDYiqS8C1062o4KU5CE5Kw2PEJhb4qTpueRBWQYJEcYHLkWU7mqCipzkIXVPBFfhPHjFoKvc2Mtfkpk3qp1LsQWf9IXKSHQvmDBKUX0iVMYGlbLk5JNBZNN3axDYummWiZBIvF8i+PaV9fH6fOnKXo5qkU2N0s9z2LWAyxwiEGiCMqksAQqxqf7jTzLcksbJHzQ3IXOkU559sSSOiZhZYoTsQdx+SN4flcL13KTp46eRHZwmNUhIaR1tZA1fen+fjjz5BKpfz5z3/m+++/xx+fzFLDTN6ZMprbZvyJsT1eXOpUbmqUMHIgivfrv+BI9AD1UVAlambqBdvI/7KJP0ZtwC7roVCynuwIbF2awfa3d3DeeecN7oz7Gzb4rMVfkdvt5pbb72Dv3r3/t5vyVz766CMUE4dSLr8ShzSCUr4Tv6yM83p9aAJGkryxJHomMBD/KtN9B3mw2cjk/vPR9j7AjIrHuOnMVDJ7i/giMUS3TM261ABumZkS92ous79A2DeUAZGRCvM5GtXzeSjnVtSifmIDAWb3OIioNiCVb2d060j2chMryq5mbM0fWOTbTrT6YULGpeSIdyCTn6VbaaJaXwPy7RyJbqdLmMnRqDrWJ3txjlRy9MA+Eq1qrq+PwxSUIRd3cTrKgDcyii5ZJik+JSnuCMGIhGpNMT5JkCn9UkSiaOZ2aeiM3MzHxrc5q9UTHd5EiruGSxpFzKy5hGSXguiBIUgEJWdjqvm45E3skQxcci+18hJWJ2aSwVEmOtwUirbTajxFfM/V3FE+nrmOeozhUWxRL6dV4WT1sRJ6FH6albMp0ycxLLiT16squWBuCRs2bPiXx3T9+vXkL70cgy+Ti3piUVgvRuzII9J/JW8ey0aLE23YzrqYqRzVjMMQsnJxRzuq3stQWW/ikZJy3soqx6ccjSYyiiyXD0Hko9N0lKiAjJVdp3Dub+OVV94kJyeHF198kb37DnPVsjjunRCNbvwGavLWE+8ZyhhLCR+ecCETWtlcsBGpVEr6gAJHOJEWYR7Pn6hBUZnIcOudLOs4n2pNmJ0GOQkBOXelr+TpJ5/iZ2yJN+j/ksErjV+J2+1mwaIldI7IZOM1V5ISq2X6pLmoFRpESjkisRiFQsHixYvRarUASKXSX33b8Orqamoaa1kwagRSTydp/qm47TkMcbeSGnoTb1wGNk0sMQEZ7sBijhuqscprSAk8Q5R7Mh/l2jnnFthiTGNAriHHHuCZxk5Czlm4lEaOxp9gbdZJuqQFPFnhA81GFKpdlMrA4pvFa+PC3NwooyRQRpn0BdIHwG34huKBMOLIAkpNvfgkp+mTZpMo83EgrpB8zy7aVCp8MhfVoquIhM18mjCG2zvXMn9uEVt2VbNROM6ouFywTOFrUxCPJMQUSzZDHUpUkndwmA9RL27CEG4lzXE1UZJyYtx+4nx2LIpW2pSJXNb/MWqxB7tCw0DMm/gVk3gvo5IO0Q4E4pjZNY+NiSmM6JvFcLsPTcTDqoRnyPS1kSd8hsLxIpk+H3GRYzRGP81EywHoj+LTxFhCYQXzesXsTv4BabgAQUjF7BZxqn83PT09/9KY2mw2nn/xZRIefJM+WRxaVzYBZTnH0r4iqU9Ht3U2RxQxXOwewBmJx6Ps5/ZR7aQJlTx5No1N8d2ERRM4G+1ica+K46YKbqrRsTs5miPJsRyVFjE1sQNj0iZGjhzJyRMn2f/5Du556mGOee5CZ4vgVXbjVCjpUqawJbmT8zqG8EZqJnLps0hNzzJ01ktoNlaQp1ZSGz6JSx1DVDiRdqWbcDiPIbYa7qmdSEPOPjx1TdTX1w+uMP+NGgyNX8nnn61hsnoutwdzOHuDCY/yCPJT/aiCPsqMExhzZQ52u5033niDUCgEQG9vL263G4VCAUBmZiajR48mPT2dCRMm/CLtuv/++7l+yRjOqSX0KVMRRerQS8RYZSqy+ktwKF2ElKeIEE1S5yK25mjoVdi4sWc3RdL3ubDzCQqcWWTZfDyXHWZtWogJzZX4VWtoNlpoNXYy03UCj0+PKhRDp7KBSe4a3AofmY54dP4IHyeM4/zyGDJ6m/HEargotIsaxZO4/cls0LYTLZTSkVLHl7FmKqPeJhyaT0QUISzuRRSuJywBf0hFqT4F/XQP4r21VO+MIL7cSKPSxlCPh9Seadi1zcjDDczuSqAnOoU9qWIqlW7OE52lVW9DH+UgKfIJsZFJOMKxvJk4nEucWzkke4GAJB2N/wQF7SuoTD2MKGxift8ROlQqxvtKaU47SqtoDGPcJsa1DcegvJw6lZS9sRGqg4mYxadRhW2YfRJq9alUR8mpM7nIdo/CIcmjRtdFvK+F/Px7MZke5Ny5c//0TzJnz55FVVyA1BhHbHgPZTHdbEnoIDYyhSOmCXxqTGCZux2HNsQL5VZeyZGTFNTjlZbQ776EYaGHOM+uoVQ5DqPqAYp7pxLTcylhmZM6UztXLJ7EE9fex/r16wF47423uHzeBKoHHibBmY/ePplg1DrkkQhXd/Uhdy1iQ2o2ZtFeukQlmDPmYRgwMa99Oir66TTq2ZrUiEjTyNWzL6J9l5Gs7n7ezxLIVteSMczPM88+wycff/KLHPODflmDofErEASB1R+8yRMXREH/H6hRJlKtvQTp1A7mdWtQRVcwZsyliERi5s6d+7/+ndLSUurq6li3bh3PPfccbreb6667jjlz5hAdHf0Pt+vMmTPIFAoaFAtolgcY5tTTo+jCErwMwaPhosYsWmLq+Ml4gD5pEff5JVzdVo4+4uWkbiqnVWfI7BhBSq9AphDm1fTTOKR+rsu8g2k9MTzctpX94STiQ920K7YgmEIsPhnFo23ROOobMbq/oF3nxyf/ilaVQL6sjJbScj7p78YXdTMX5GVxkSaBiH8ZX2TloJJHofTMJxCJY3TkISxqO53iDEQhLct8q+hTmjimtTBqajL7NpVTcpGMcYGfSPCU0qgtZYt5DDvM2eS6fAR8s6mSOxHCmXyT0MkUF2T7wvRrjJzVhAmgxEYydaoIBa7j9IcMDO0ZhywiZ09MCyJUvFF8EpfsAMeVGSR352B2zGN0wM7MbjUt6mW4DX6iI30kSXaxTzaGt3PNmPxSQpLDyENDkYibqRcFmeB7jY6YckrVPuJbDCxZsoQTJ07806Hx4YcfETd1KCrp54REnaxJKsAvMWILT0cSCrKsRUATH0buGYFbpOeJs7HcMUqDXR7h05wexJK1LGjTMlsQ6Evy4pXtokOykr6odpYuNPH1pk+YNWsWBoPhv47Jsv0kTbmTCZ0P8G5KO+0JLoZ5xpMkPUJY00ma7RgnEr4lV3WEsYpiaKhArtLh1FgoT/0KiSjINuV9uCRhEvb+EY2nliOpF3FGJabAF8A34lJq3ttKKBQa3DH3N2hwRH4FjY2NpEVpSZMbuWq8k6DYzIDMTlgcosBbi4geXvnkOq5Z8jiGqLT/9e+MHDmSkSNHsnz5cuC/nhnxzjvvMHr0aJYuXcpdd91FYmLiz27Xy2+8jjI3l4a4h8l2jEXjSyBaspk5A2FezVBwi+40Ex1jKbJL2GKQs7fwBbbFixjflUuZVkVyz1JCsg10xzoweTXEhNS0S5PIdIkZ7q3CI/ORErShCgtYffE8uv4smSIrkZlzGL5gKQ82/td6hLUph9gf78QXFJPnvYuV3YcpFwawnnybz94O4C/YRrziJuRJBZj8sfTLDlPBMjL8OykWbBzVmtmkGUW8oxBruAzvhS14vg9zbvMOpo9/ggHRZiqiztInFzO/U8yOuMtJll/HdL+SlNB+9krnMT34E+pALBn2SezI3YtUyCFDOIs1MIqs7otJlVTTJnewMaMUY2AkrSoD2a5VGJVvYiWBH0wqhgYKGdd/GqXsLC+NCKINxdClaCdZGE+/zAWiKMwhF/Nap7E2rZYD+iIeaPJQn/ctEiDach5nmg9z9aS7efTxx7j22mv/4WPN7/dTdfYcxZNvpTYoMN4J2U43h00manWtxItacCYdZuXxR2jX9nDH8GIiYjsRkQZxpJlYbSnifgOHzROIjpwgHzetWiWVyr3c2Cogi53Et98+yrZt2wB48YUXkCy8DLdvIWZHLGP7qnDE2SiTqZD4otAEzOxKV3NjXzJ1Si0ZwYvo071IpcLA9yl+XKqRFLt7Gef/im06M5URJx2q6+hjFFdU6TmRGqFCOo3E9D7ee+89br311n+4JoN+XYOh8StpNmSS3nke7/ZH+D5hNO3qdsTKs1SZfFzd04UlaOHH7y/hhC6Zp+e+h17z97eUVqvV3H333Vx55ZWUlpayfOkSJk2ZzMOPPfF3t3IIh8Ns3bmHIU8eYKirmwLbKAxuNW8kZ6IMzmFxawvNMd+RP3CY0QMybGIHboOdmsid1McJXN7eTaOmnos7PZzVB0gJneDq5vnYNAeJeOdQaryMOFEzUmkZxy3JvPPxWUYtv47CMRvwimoY3jwBcUSEJNKL3PwQ6cJ0mqUj6ZcZ+TEugcdKF7B6ThQr59j4vr+Bvh9eoLvPzuSpo0iaMItW8UXYhZHc0/9HEoLdfGNOxCzrJD3SRsixHMmyHA5vWEP6Ii/DgiEE/7us6PiBW+vrqTCs4VyCgE0qJ12wYnYN5TB/oiL+EIWhUiZ13cxPsSICaEny5mFT9lKhjmV74nZ8yk7mNY5CbpLiknoRgudxre0HdEKQVUn34VG2MdJpRx64hpiAmnNRZXiDWShEzczqFbin3opX0caeRDlOVJQE9iNun0mcJ4mo/hmcGFJOUKP4/7D3nnFyVNe+9lPVOU/HyTlqRmGUc0YCSSCyBAKRwWBMMjZgwARjm5wMmJxBgECAECiinHOYnHOe7umcu+v9cH4v9/W1z7HPOfY99n15vtXuD7X3qlXr37X32mvjdDoZGhr6s70Pf43NmzdTPEqDiSCSagMnlUlW+w9zQLwKJANpyR6alaWszTChSFlDSVgiJA+zcugkdaqHiAg3E7A+QSioZX7vAE5rIV6FhqKhsZgvt3LjjTeyatUqBEFgz5499A/FSV6cjyTdwB5tBqubY9gS09hkrcAWnEJWdBqTPEOUDJiRxy9CUCV5NXMMS6QISXk/9Uob5sQIBvxABQMKLw5xC/hnE0fijqOXU5jtYXDCZL799v0fReOfkB9F4x+EOhGhSa8jfaSIjHADpqiPnanLaJYmcCHXkpRiyHwZhGI5dDXXUjHur++GjcclDu+PYkmP0hN7h9uv0bNv3ecsXXqE77777ocF9b/Ejh07sE67kGmBw9zd5eZQSh59OiPmaJQWfQsRg5weTRFL5B46VCLf27RU+H/KuV05+I27CGh89CjGsCvtMAOJqciFTnJkGwgF3+CF/BGUQjULPEW8xRiOfvE8axf+jk9L3PQoFCT8Z5GVPIVLNYuAup/MgAat5KRLPZH8SC0TvB2cyu5kZY+NPk2SPfmPcMNF0xnbMZpf1P+GzjNfsPjmarJlg+T1LqHLmIMmrKE0uoEuTR/ysIZ7tQ8ywfMy8beeYumMn/Jl+YfIE8M0ag3Up31Dt0rPcflU8p2LGBuqJC0ip8Ywwk5NDnPkU0nKtpKM6UnVvoJdbGFVfw47MlJ4pPsTnsr2k+6fQq3WR0im5yNhFlkRNYJ8mKjhBC65l2a1Am28m4u7ZpEe1PNa8XeUeBUkYmMJCjFuqjZQm1lLajROtSDnt/mjGaj8mEzfRN7b9iIFBQV4PJ7/tGg8/vjjzJswGX0kwbKeufRZPmBELhEjHaUU5rRsARrJRH1RE2mqeuzRFh5qUvOd/kOQUhAlDxGUHDPm0KZOxSxCQeQYM4reZEj9M2KxGNdccw0AL730Cgtm/YJh8eeIUoI2bR8JIZtKfx3hlM0USoN0yR4mKOugwXoVFbbveFHp5qLUxVysV7BpqBqnmATv2RhjURbIdQgmNx5NF1nDjbw4Loq+WqRCsRuVZS9Ol0QymUQUf0zy/Gfix6fxD8Ki7+W1yufYl32SI4WPsazbzo3NfiR5FSd1qXybMoG0zkf47eF7eb16N/HQX04x7BuI4PX+20L5Fw3Hebb3Y9bu/yN+dxtD6gC5V/yO4uJszl+0hKampn+3P59//RXi2EzO7veQEOIM67ajpB+vMkJ1ym6U8k+4uqsblzKFrzJUtBjDDKuVlAVzuMz7JeWxKmrV8/ljgUi35RAhTZyqjB46UzaTHT+DX11Lq2I3R9+6k/NvLuXJZdUcdXTQTwVqWTfVtmaeKz2AUv8UMz0hzh7y8fPGM1QET/JRfpRO6wkiVJDvK2PNXg3njZzBrkzj3lnPYFs4lT0vHMTReQk3VNpY6fyGd061IOoaSY0LKGKpbMr1cc7isezqO8SwrhlJ3MWoruU4Bq9GkUjh4m4Pa08cRBWZiVMlEEgM4BRl6JJhDLKTTPXGOMtbRWYAIopeWvVBjIlB5BErtzfmctzqJiuo5ZKWSmoV08gbgSdbPuCwZinvWGehVH5Bn34PO9O+5aWy7URlSdYU1LJ0jgu5fyrTe8dj9d9BLDqbxR2lTAwf5576Ozh/xEnZSB7lpaM4ceLEf9rPlEo1k9PnARGc2pNcUXMhvcHLGRvIYopLy9t7y0kqXsavbsdDATWqPJ7LmEy/vBen4iDZ/u3IPIs4v1Pg3F4FAVTMl3Ujug/yq/vu5bHHHgPgq6++QtRoIfcr1MkkcilOhqcUe8SKLuHAmpDh1YBDfBZRvpVZI11EBpupFtLZ1RZm946D5MZijHFlc0W3lxvqxqIVpyGEHmRu+yJyQmpSIxLD2e/iSdmHOgl5WQk+/vjj/7RNfuQfy49fGv8gnN1BxkoKvsqBtOjZHC5+H4/pDDrZPA7JbiFICqczvqfJnEqDsodFmy5itfVnqCxmVlZUIpEgGIBVW4cpj0icNaGb71o/RS1FmejtID+YzieWudSmuLihzEZ2aA6rLlnJm++/Q2Vl5Z/15+TR42TeeRENnX18mZrKsHEzU/vGc0tvB5aRceiTFn6fPxGzMMToiJ+J0W/JS+ZRHA1wyHQ+lugp1lXdx72T2ug3mMk//Qc2pr7LEeNMrhj5hi5vnK9fb2H5srOYpYrwolxNDJEIGRTFgmzRT2FYLKRHbkUWc/J8djn9mh6UcSWrOwNc0bCa/WWP8qFsFfbin5OU7CwfeJdyz3XMKxuNclIqO994lTk3X09GfAit2IrZ6+CQbZiFsrvJEeWcUNuZNm8Uv4j6mJ+4nRMZm6nOqyZV1UydaCLdex3LGyz4NU1kRt34yGZNsYs+w5Pc0FjJgLKEI9mttNhETsmy+H3DUaT4eHRSPpNGGvCrWzGF5pMQPbxSYGeKx08XZ1EYPkBmrItGvQEEJYVBF+VBN8cNGXjkmdw1xQWSisLEMFN1QwwbGlAnHejjOvpEBxfX51M30sAbkc9ZsWLF3+xjp0+fJhEbod/Qx4Xd19KbEmTUcAlSLMEXuUfpl+cSG7uOhFxAjCtwR28iodnKqRQBjbaNpBBngvIPVKt+x839qfhVEa631DNq6kPs3raPnLwWysvLicfjPPzU49x74WTS4ttJac+l1dTPXo2MD1MnUBJSEglMpzCykaCsmwnRLhpn7ydekMOEmqfQ+q/Dqaxjimshi/sG2JbWTV7yIDalhrTBC5nT8hBHKm7mtm4TRu9SvJnv4hXi5Jcu4tSpU6xevfrv+Gb+yH+XH0XjH0Bubi5uV5zHVp6iwdXLSxvv4JOsFuZ4lJSPjOfitghxKc7x3DYs4X5c6qMoExbeH+ggPtSOctM6XhzdxDjjeM4NTkATSLCxagfNRjPvd27E5J2CKSoyRpSz1zSOo6YGPl5kJm/0Rdxy7Q2cvXwpDz/y6A81jdra2rCLAZ4/IhKRG1nVeiPfFH3LsP1ZZPEQDneSJulm3jqQwfqiJAMGKI0/Q3rARLM+QKuigH5lMecM1HNLzWQ+SZ/ElrxafLHziRqr+NA2DfOmTWRZ8rhcdz+jG5rYTzbHTNm8VfcZT5XI6NbUoIsqqZVVsKgzlRf6JX46PolHGI0q2sWAZgTT8ApuS2zitYoqgmIKBzy/4Gj6ITyKPGaP6WKqv5SH1ryIdKcSmThMk8ZAWBwkLqrQJ6IkomEWLJrF+t19UDAae+J7hvSdNMRzOGAvZlHoFA3GGDOcSeJhE/vSe8nx24grjeR4MkEHMdT4FY1kMcKreWOQJR0scC1l2PgNMUU9nxRcgz1ZQ79cQYk/iFvTQqcml4B6EE1SQVg0oI2lcUhnZkQwokzU4lTYkLCQGj7EXeP0yGVJ/AkdrRxndCjMgNaPYE1F06qhv7+ftLS0v8nPtmzZxtSKi/gu+wyC8nFyOcJztsXsNRYRlWUy21PLEdMg+oTEvQMbEEOneSOtgNmBLqz+aTQYu4klSyiMRPigrAmllODTcx8EYMOWZ3jooYcAeOWVV0grGYPF9WueTxviIc8TFAUjfGYMoTQOsnqgE2MsgwbVFNqtSWqUblq9WwjWyAgHn6ZC3MbY+EF8+jQOaNNo0ajZnJpHbqyEPuNhrl3YQpHYRXGogdFRBaXdy4npxyFHw7D7k3/MS/oj/2V+nJ76B6BUKtHpdBw8eJBSSwarxp6D3WdhclcRISmP0T4/qfEWvrBO56WCDITkXFSJUsyhVH7Z5OGsQTWznTK8nRHO9d2PVr6NBl0RYtJAlzia/YYpOBU6BDGVKCqa5PO4oEPO871zue+iFziw+SAvv/LSD7tqz5w5Q5FWRbrfwiHLaPq1CaKiQG90JW1qK/tSBYYzn2PzlJV0awcYkCdQOO+gXaXg8VKJvTY/MTHOgmlTeKI4jUNmG+/mGjBGlUTkI4TiQY7tWk9s1VMMaQtwKtLJCztRJxN0CgWsrBsD4ggyxR4uch/DEktSa/aQElTy6sExLOoqIMdvZ7R3kOxoP6XuVOZ3305JeAY+tZekOEJ6zEd4Xi3GOeVs/sJNbsxJXtSN4H6cUd1Poxr6OUPDPqZOnYpL2MGw5llWtKcxvvVxTMPLeOy0hat6grxeMsQdk4a5dP5xOkxD9Bn7SAteyysFNk7pSgm4X8IeymX8iApVXIs5LGIJbGZZ7T1EA3dxduI5ftuzljt6jrCocxYdmiyi2MiKtxOWQXZ0iEbDe+T7lJhiIRKyCCXSh9iSRxCJ41M1EFEMERNTqU1JRRcuwW97nbxLB7jqqqt44okn/mY/8/s81NpsDMpsHLL04VM7ETWnkcv7yA7H2JWiIi7YMBLEKao5rptMpjDEGeWF7DMr2GQq5p2UxTxR28Rvm9fz/uJ/W1d7/fXXSU1N/WGd5Y2PPkJxjpkaazNeuZK92nlskf+WLmUpB62pPJ+fxsMV7Twz+hh9WpGK3vk8sus1Jrf9lLA0hhqNhUC4lI2F6wnYtlOacBPVVRExvMFIYgIK5Xb6VV7a1RKapBxvci6pvvnM0bYyODj4D3lHf+S/zo9fGv8gbrzxRoaHhwGYMfZ6zJTzZegUi0LbeGTGEU4qxpNURLGELfQhoYvlM6jK44tUM19k1NOodaCTBmmWjyUSnoOEi8tch1mbVs4ZnZ95TiNnO0NIskG6dQ0cSVWyrDebuOhi9NXP8+rBX1BdXcOrf3wVURQJ2NPxm7/hs7zJVJtTWDJQwh9zU5jkXcUtrZeyvfghFMoBprpfZygyhQLvVEqDxzDG3WyxFrOkt5ei4XS+t+tIauopcjtI9waYJNdhWPsJ6uIlKBJNWD3TUHmnsFD+NWMCH+KIabD5S7m//m6G9e+xPrOf7x0jzAkfpShahDWiJqHqR5TFiMrCnDRPxiLfilu5iwa1HadiiEl+L+9nlpKq3EnObDPNe+NEuryMFI3BEmsi36/DhwJdih1RFBFkLkYUEn1qgaRsiLEBDZUBJ4mkhpW9w9Rr7ZwxVKKQJOb6P0Abv5gBdQdJhZHcWA7ZDQ9QOWziVPa7SLJu1pa+RWfsLvxKL4elZZwn1XIwxcFR/UHUaJniP8RsYQttEQFVJJ2NjnPpNB3mqVoXT46SGNJ2kCIdpCScR1MyE0kmJzPRyYy+JJd3K9iWU0BF+nTOqsjjySefxOfzYTAY/qqPbdi+gbNXrUXskxifvJ2IXsIs1pMudDI6NIEO7QzMyWHkSi/CwCOcyUilSyhntKyLWHQuCaEdSRT4uOQ0506+GlWajmAwyO23304wGATgimtvYsrcR+mXEmzI7ef56lZ6lRNJD0eZ0nUxj006xCFHD27GIyTjJIIuZnSNQZCfIqA9SIHyE5rlMY7qZIjyBA26JMl4Eac0OzAELFzTOIPsyEkOFLRhSyR4Lz/EnH4H5kiYb0s/InHo30/u+JH/Gf5/Kxo9PT3cdNNNNDY2kllYRDwwRCSRICYaiIgRkgmRHJ2OBWedxX2/vPc/Xb5akiR6e3t/uM4onYhyr4k6ZS5Kz3u8WT2b2+d8jU/UQqKAha4MuuICcVFPrVWPMhnhnO50xraeS9Ai547WQ/gMMu7p6mTVeBMHrQm6FBZmRD8hJsXZnTqNO6ZtxZqYijphJmfp+djXDHLzzTezbNkyQhqJNblyZnla6dJ30SZ1MN07jjm+M6BOEhUCWCNJBq2HOCJdjlepwOZyM35oMmsyfKQGyvjIPosOjRdtNE5AtDJxWM1HmQm6mg6T+dR1CMpa6ix+LmnL4uuM5VREPuc2/wZqUk8xbrCIu3IS9GqyyA2rSQoeTurbqcp8HFGuwDxgoMPSQCwxhcKun7A//wPikUeYMSJjZvwBFNJZzBzJZ/pwgJsvncSTXzcy7d4GJG01z0xWULOhgPLyCgBSvBU0Kydx9cQgqwZa2WmJE23TkxfQUunUcG29lVunnaFVXcTXKYsYpfiKoCzIJb1DdKmz+LjkJF+nn0+RkECrOsH4/qnUW7MR436u9LxBn1LHaW0mSDIKpZdY0Bfmq3AK1du3cNIdQC3KSQgiF5oh95gHZ46W7FQ5Y1IkPrONQZ400akS6MzvYUQF1mQXOc9+hemeK7n55pt54YUX+PWvf/1XfUytFDmc8XPu7kmQEx/G41EQitxKa04eZnkdOWEXMmkmNt8iEnIvDWYXGroZ0r6JJjBIqtiIKqrnQ+ODlDjySYvHufzyy/nyyy+RyWRs2ryZgGRkSsEk1LF3GTuUQq/1EG55CCFxhAl1j/Jo+zEaVDksbF3Brsy1vFr+Oe+UdSIkUzhlGSaVKBe56sh15vOWZiln5EtZGleSFTjCZU0jJFVVLG69BJ8mSLshzvihyzmmt1ApryYnGqJR0vznXuwf+Yfz/yvRaGtr44svvqC6uhqv18sv73sI845POW2SkcBNr17gPN8Jfu+4inZVPgvqhzhY8y75+a9x7NgxbLa/vpfi/2XGjBncfvvt/OQnPwHApFJiyuqlvPVDjqm1OEJGlnRU8knxGcYGBxnHB6iDj3Ful51fTNWRSBi4vCuIKQITXTEOph1Cpa0naFRyW4+XF7LzcRs/o1vIQhSSLPRWMSBdwG6TnKs8T1Pp7yI69SZ6jv6R9evXo5C1MSYhJ+ybQW3aLsqHZJzla2CrsYjmkg/YoplIOOTAITmJspYa81by5XBGFSJJJRvzqrisL40NyRRsiRG+cVTSaf8WxdEqZlVMpVMoR4i7Obs3yuKOLJQRN2+UXoC7+BhtGg2/qGrhjvpsDtgb+CZTRoe6gOLQEAXCfrrkDj4szKBTNp19FhtXd1mIROwMaN8iHh8hxZ/KuYlvyXFVcMziZKzqPNpi7+BrdmIvVhJSSAx2VPHUo2vIzc2ls7mKiwbcnO3qYltWHdnJJE8WLiHDdz5NjlvJivi51t3DB8or8ceLUCcD2MMyyv1xujRJGgw5yNTDnJYm88zpcmKpL+IMpnJQeQF/SHmS+09rWe3p5K3Sk5w+rOe275ow6gfIW7iAC0vGMagaw2DcTTzWTKL/FIFAmPbvT/HLnlZyZsV4xraYt0ssHLaG2WOH37U4+SZ7mKqDX5A3cQVbXnyRVatWUVhY+O/6V3NzMxm+VC50hsmOuThtMOJR+6hSbkbDpcwZVCApm3gmT0lSMhKxbGf24DzGjhSgVyyhbDiPFybUMl82kb78HManyti6dROhUOjf/mSEQjz62K/5fcVvGHNSw7sL1hK1GMlpOp+AOUKHScmZ8S9Tq65k/kAJ+xxn8IlWznfq8Ztr+Vp3AWlROZd0BRjSleNKGSYzoqFFbUAQM7mw+xnyQ9eyw7GVkn490wYcZI6YCco6SU9GGZe4j1F9SfZIsv/2e/8jf1/+rxYNn8/Hzp07GRjo563PPqY4I4err7ySSxdcQIamgA/dQdTZ+5FkcTQx0CUupVXu47J2HZaRDL7K1eNadjfFxs+YMm0ahw4c+JsLCpaVlREKhYjFYigUCgBuXL6Q3737HU3qYa4+6yXKY31kxI1EFEfYpy3km4y9fFEc5/7+04hSkl1j3Fi8BYxtvo1YNIfxbif5w5VE9QqulEKcTOtkrHMah2z9pMkaMMW3MCwYkZTHiUZTaTZPJ7ismMNPLmdm0VTK7dlU6zVM6nuVsPgsIUUtPpWXzcobMMeaGA5P5pgmG42skYyYjk+MFzCoyKYw1MusnkmMcisYUvUhyNRc3HucrJgbzbEjLB53Gx/Ecpk7pOOSwaM0WptZn63Hr1CwUzeLqKKZn8w4xItHVlLkyaJMO0CrPsz93fuQZAk25PXQRQGqsIusaILlw1+hT/q4eco2OqTFuAck1NpG6tJ7SUt0ckHPZSwq+im3rX0cxS9WkyeuR6YXsNlsqFQqKseNZ4J/NwV9TxHOeoF9+iSTh1XcdUrky7JyQsadvGGZzTA5KKjjtDKdhKyNl2L56ONLONf5BNtMCqJiAEm7HmUyTG7yGw7KiiC+iOfH7cPdeoauX32HYuwcHLc/zjO9HkT9Oh7Umljd30eHmMmm9EJK1a3YDa3MKkplZORnnDl2mhVr32DxsqeZNEXDHouCL8xXsj+9nml9Q7zhHmDCLY+yYMECNm7cSEVFxV/0r9OnTlGUHiHD72BE4eeoeDX18gxKpT8yhRdIiOfitO5meqwBS2wudfI7uOmUAVNMy87RX/FRvpL+2H005jbyy7Z23HGBX//612zYsAGAjz/+mLHTrdQX7MHtaQZJQEwoiIYvpLzPzMf2y/CYhmgRlXRrd+FXBpBQcl/tEnrM7RQmdEiKfmrUl3JV+3Za0tvJSxxhj9LDoHoFx03tvJt7Fvf2fkevsYDt1tHc0RKmWdfPLkcPP0+/jJs76kHs/vsEgx/5u/F/nWiEw2F27tzJe++/R2N/B7Ozney2XITiynt54PyphNf8jtdaJ1M8oMKypIMzyvFo4l5Oqy5jVsdEdjkkhjJT6CrdRQwbSYyUzSxAk6ZkxYoVfP/9939TPRyZTMY999zDrbfeyhtvvAGAIAhUFkzF0vw6SAYkxQiWeIB4xIoybkKSdHhlfjampHCxq4mJndNQhip4YtYDoAggHxLI9GZgEGIsG5hIuWclR4xZBOTdfKZ8gBRFA8MyJb1iKj5NBHlUpDRuITNjBZ8ceIPT026hKXsdkv8iBmM/wy18TuFAPreq99Kc0otl5D5OpNSjJB1DZAZtinFIyGiUj+KpgjC3dR5hv3UuFw7ko2YzbRmb8Lt6SStdzwWR71FEb8enaWZdfjt3NM0hLOo5XPJHqoTFzHUF2JDdxXbHCFnBIVa1lGIbuplYchy/6B/ikcnrMURHKHXZ6VRm0mzzo01GEMQY7Sn9jPONxuh6gF5DHQnzThZkJ+mpTSKEZyIqjOi1H/1ge6PRiHn0DXS5NJC4DiH5BXUGiQbHCHmyk8QTTs6IzZiTFha4euhJ5LI/LYRK8rF84CMetMmJyPq572QZFb0v8eDcFxifPMYvXS8htM7k6rZ3kbcPsvD6exjMtTPDe4Je3RyyYuWUB7JZ0N1Mt1jGIftxMsICcWUqLlkG2zMuJmfxCm6ZsofX3v+E+UKE26ePsF9+OZe1lpKlfI5pvkY6LFexYctmpk2ewjfffMP8+fP/zL82bf6GW21nk9uRw7lzaxHEU2jCfRyXn8OCwZlUWb/AlMik3OelXxqHJmHl8YlfUxppZkbiDOt1k4lZd9HYlICDaXwS2Ma9995LRkYGyWSSZ596lnvvWIVfyKRFvYylx6fjUig5ZVVR7kswuW8qZ+zVVODjhLURRXIUJMr4KqcTn1BOv8bFQk8aUV0LB1PH0a7x0qCSKA+FuWxCLavLzkcmhNm4ZQsuwyG2mPIYUpmoDLZSEa1njWwpKZ6lILz5d4sNP/L34f8q0fjuu++49957uXL1apZNlzMxNYo8NBunuBiPRYFtVxcfmPeSHT1OTaqW1M6XUMvclLR+zbcFEketAmOCRg5ZkqgkDcWhNjpUY9GqlLx82zNsS9vAPffcw7PPPvs3rXFccMEFvPfee4yMjGA2mwGYMOkC5FWvcdDcQ5fKiD4yh6KB2VzTOIpRZY/zRH4GgYSdw4nlzHePxxzM5tzmS3mu+AuarF6Kwp+hDizAo1Cwu/ANFrVcRFmDhbezRTxyO+OHFVzW8ATbck4Tl0tkJw7SU+CizJ3Fh8dbGFOoAt199PseJTtexqJBHV/kpbPOouXc2AbOHZnIequXWnUu5/QaMcr3kjNYzrC6j4/KTtKeyMHn7qYl7QuiSoFQHLx6J3LVMCPGozQrMtll8/G9xc21rSFiiiBzBtuRJeUscB/iuMVAp8FLnc3H24rR3NgRRh6XMSFykkFZDh/kVTA0rMWs6qfAM4p5YRlZ4TjtqVUU+2L0Kxy8n68njRpmTShjcOcbiAsvQi77XzupS0pK6HTW0JrZRFRmZNFwghbz57w35o+4E4vIjoyiL6nERif5sQbOdbtIjS3DpWjjs+LTNKvORZDC5IUDtBkiPLT7FwhyN1/mP8lj3y9EO3MR9iuWI0RO8tDQDizxOC9mHSYYfZQCejAnZIRjCn7aUESn4Wmm9DjJi7/DBcIaPks/C01SgfaXKzn26tP0+114zi3ktC6fe7waXrXPYkR0813Nfia/soK3f/07ntc/y8eff/Ini+MRlPiVVk5Yl3F+TzZ1qS9gDmcghpZwSV8fMtNWwiJ0CWPZnv4J8piNN05q+TrdQFyp5Ln6w5w/Tc18W5TdU9J58ZEPaXrr3zaHvvLaa2SVOzAE7uBoSg8n04fJ9mqpt1bj13bgNExkitPEdU35xAURf+tMPs0ZYY9hEk5GY5SGmOgxoRCqGJOTS1F5Ad37LMxz28lMuwej/Ty8ETlX73sXpTCHSapmbDEfcfN3dJgyKUw7hw+/0+Hu6iA7O/vvHCV+5L/L/xUpt/v27WPChAm888477NixgwtvupWssA5tVMlQ0o1K+yoPNLxOcGch5T0X081EDOYvmWW/FEl9JR3KGp4+qmae7GfMkL2LLg6OsJ3lA0nu1Rn5ffHF5BgdXH/99aSmpvKHP/zhb+7bpEmT2L9//w/XGXo1u4oWUauT41UEOaJLY4q/DVGCwnCQ6YHjPFSn5SdNJmLafnaWv4ck7yEnGseeGKIxReCko4cG60HCMvBqT/JKbhYpHOeNzj/wQEOEdaN+i9P4FdpkALvwERbFBrLLlLSe+hZdzyTSIkF0jltQG7ejIogiaqdyxECrOo3C5NtcPKzh3JFB7Mk+xkcOk2f4DXMDm/DH8vApAzxbMECeK49KtwytSk6DJgN1UqTR2MEZazNBwUICBccdQ5zXVMbbuRaeKrYxre0CrmsXyPFbmTs4nrgY5r3RH/HKtMcJqT3MabmK8wf6qfT18rnyNY7LbsGVvJGs9ocZ03A/bapmBgzrmOhy0KpXUjbTz2DN5xjEo8TDgR9sXFhYyMDAAKP9fRwzvU8KRxDlbYTIxCdLo1abRVwWYFBmxZiIEdIMsSFdyyZ7Ofn9S8jyp1HhEvm06CR+2xpQtdLWN8QrLx/l6uUq7h/XynLXKZa6j3NKZ2dQbqFPdj5zhk9ww0kln+RIrJ63gS+LN6LXfkGrtZU3syazPyWNHfY6Xi5wISiVjLnyaXqrHbhr9iKXbaKHcegjxcwdtCOJAn7DZJadP4nV2TrOOucsPl7zyQ9p1DUnqnh17jvszXyKiOBkdriVUukYGimFJnUP6c6xfGU4m89sGfymNsnNjXnUGuI06yPEIwXUp/hJS4bpPLibJdddyc6dO1EqlXR2dvLGq8+y5BIvW+37EIR2cqWtrCn7nD5dC3tNYfTyX/NEWR+XTVLTbJDRZJARkssYK7xCaXwfTrK5qnoUdmcF+9qqOd7YyGe5HvryPMy/+mvSCxbR3eYiRgJTcoBjsgvpF/PoF3Jpia6gw1/DlnHP87riCJMnT/77BYof+bvwLy8a9fX13HfffXz88cesW7cOh8NBqVlP2+LF1KVY2GaXaFF40YqNhI2fUuIvoU7vpFFU8oeB9WyPxvio9CRPTPoco+QlKpPxQJOMC3uG6dP5Oau7Afl7b5J0OQG488472bp1658IwX/EpZdeyqZNm/6k7edzbiNENnIhhlbo5L7Subw0+WOez5rNov4iwppWhlVhWgz1pMQ7cNlvZ6y/hVVtWSjjBjzaBnpSqlEDx60Sq+LPYkn68IomZLJOBvVNCFKSaX0nOS2M43jFEj7dVkv5UjPfHH2fc5oquaR2IVJCy9bUKFsz+xhQmZEJCezJISLyZgZ0JzAnq4mRgjeZz6eZZpYORNELtZQE+pk3WIdTA/1RA14plwExneJghO9VIr/s28kv+tdzoWcHtmiUp2s7ua7VzK50J8uHj1AS6aAp7SWyA31sTSnDHZpDUe9idKEyKvtHU5c4n6QQRif145MlqDIr2WL30G8+zLm1P0FMFPKS9T5sskmIUTVWTyFGo/YH+06ZMoVP313DPtNUytxzmdI3haKRPMTgchQxkcXtedzQNIb7OxvJjUTwRyYy193HLKeXszsqub11GCVHmBHfxRhnDtVDu7n/6O954Yrx9I3XsMfhZPGAhmx/GuNGZrNO/zQBIQVFHMyhVDIDCi5yHWdKsIpe/T6OGoOoElG+dkwFyUKuX8nmDWezYCSV6y/Kwrn2E1LFw3xkWkW3Kokm6eW+Gh2rOgVeyb6Ez+ZcwILV03jlzc3k5BbQ1dUFWgGdwkKzUseAUiC361IiQRtXdb9BVvwYj+Qs4XtLKqmKfbxekMnm3H5ur/SilwbJj/SRMNYzPrGEY98bOXz4MAUFBXR3d3P5+edz1UXFuOOTqTL4OGkeoFnjZsJIlOJEA+MiJxjvbyInKGGIGPg2p4+Pcv0cMivQxzQYQ/kYEjGiKClN7qJQsYE9iQF+4bFw/fIxAPT0Hcba0EBS8SUh5U5u7hqmML6bgBRBjGfwld+BRiigqrn5hwrPP/LPw7/09JTP52P16tV8+umnf5ZpoqurI6AZwJi8kLLhufS5jOwreoNUWRX2WAUdwiRuq5rM4xP2okhGSE/085z+WXLi1aiUCc5YI1zrbOF+hZf8/Aia/iNcZ1mCSqXio48+4oorrmDjxo1/tY8lJSVUV1f/yYK4Q2dk2kAlbmOSC/w1fCsPo0wmGec6hxlN8zlmG+DeGVEmuBVMc06jqO08qrO9XDzkRggVcdqUwknTGFA0Y3NPJZTyIlOdej6yTmCizMnDh26iRxjLvowWbqsbg0tj4djoU3T2t+DqDvMbWTuPpy5hbneMFVM68KgMjHeJDOlcvGi6EafMxmXRXSh0W2hTxKhJzOXK1lF060tIEe9kimc8fapsTiXn49F/wAPVgwQUal7N1pOMFSAlslBKNQSj+TyZPY1LB08w3dfJwbSTHB6RI6k78Mu72VVmwisrICBk4hJ6eXLyIQSSiJKcD6u+xqcb4ivTeM44ajlqdaJNZvLZrCEmB7qQBAtr7SLqZJROjYRSUP1g8/T0dHLSMlnRY2JdwVT0sVP8omo+u8xqGgxypvbbeHGMgtTIr6nXvEZubICxiu1o/DkcKt2HzT2Wxw69wOHiT2jUNvDA7o28v+wRgtY3mOQBWVLBPtsgrcoJEMmgQXeIsNLHm2XwYcERRkV7kQfPxa/7ijrlaDzJFBqtZh5saWVApWX80FSGTXX06razcXQnsd0hxu0ew8DsOkKKANutE7h45Dtesi8hIXpwKhNMcl7C76eVc2j8O1x68QrUihCXdilpip7PmlwNOdJBRsKr8Sq2sD/vAIOJeZjicu6snsjxvM0E5SAbLsUtj7NbV05vcjHbXnmV5557nilTpvD999v4xd23svCSccy0tFIfkig2fExX4mK0oUlc39ZEVJnkaP4ONlnKCOmPoRMkjiZvRi+5mT7ggISNCc4oF/vHEjY9T7XcSNJXyhjdu5zQhrHsfoAO/3pOx4LMU0YxBVawqnuQAtULyEU9PWolpsRnRBOTUXX2keqIodH8mHL7z8a/7JdGMBhk5cqVvPjii38xNTHdn03q4GryPNOZ25fNpIEiitwZKKQEI/HFTB5IpcKVSanbwQynlgGVnsmebh48Y4OkBiQNTXIbmfEmNjgk+nc00uodAsBsNhOLxfD5fH+1n4IgcPbZZ7N169Y/aV82tgibz8BurY472o9xTYuefH7Lk2N8fJlr4eyhEn5/dCzjRmYSVk6kUd/F62WdJDQn0cV0WANp5Ltm8nFakq+U99Gf/BknUnp5N6+fr+15fF0YwqdK5WjR04bzAwABAABJREFUa9Sl7efGi5bSVhvinAUWDvfv4tJQNfXKm3j6VC6FXj31Ohsu0cKS6EdUhvcyILPglikYESu4yrMPdcqHVA6YeWPbc1zYcDWHCg+wMPAphbIBjmlb0frHU+gtYJLnHEp6b6IrdBPvpJUREIzkDl3IAavEFoeMbfk9NMuyaEtMwy3XoaaGWxt06MQggiRHApSSh3UZBl62XkNU8RYLhi2cNTCfTlUm+rgfR2wEk7gZVVyLUrDxi1or/v4/3TmsTdFxWtGGXvJxMiVKjwbmOwe4qmuEHvMBetTDdGvrWNoyj9ltM/H4LwD/JEzJTnZaE/Qb+hhWTOO5Bg3LKstxWE9wQq9nnEfHTG8crRCkX9+FISajfETHM0fLefaUkUWuWo6ryxg0dpBGC90KBSqhnbGhgxjCJUx1plPsFLAHUxnlNhCKL6LovDK2HPqE+1r6Oa8nhRu7emmKXYVfyEUjdZOUDfBF3veMib3D7YQRpQQawUONtZ184WWu9r6IYNxCoeIz8nruocfzBkXqP+AT0zmqL6GsZwn2/tuQCyo2pcX5Os3Ihl2Hue2ma5k+fTrffvcdL9x7P4+dfwF1xfOICQIWCZKBs4gkSggI+TxRmMdGaza90dFsNU7BGXmQXPdTmKMw1jtMn66eAxYt75RUs6vwQczJTt7PjfFlqpmFjavYq66kq/0pZrQfwin6sLdpKQ3mst80g5y227j36K2s6LYzKnKcglg9x/0KVq1a9V+ODz/yj+Nf9kvj+eef57rrrvuLx6CePvAETtlaSgQb451LiOrt1Oa9j2Dcxenor/ApcxgX/xBRPYpr2kahNd6H3jPAkJBPlX0u1eZcBElJYWSYOcEAxa58zuqNkIwpfrjHJZdcwtq1a/+mg3McDgeJROJP2sZNW8HIrj2YQ0XcUX4OF/d2skBcz5kUNTpZDZnii7SlrsAfn85hSzfyeIJusYCGyM0cyv+GYd23JMNzKQpO5IqOMEo66B5JozDZTbe1li12I9mRfpb1dzMslqMR4px/xWw+/KiBm2/6iD++dC2rL+rjc2MGbmUGcUHDza5tDFNJzOCmVmEHsYXe4GgqEYmJSnT256gYHkdYpqc29hM+Mp+F0nwxXeEAPXk6tlqiCMkefuYykOXWc8puITfiRpW00c80ukUndiFOt8qAIZ5EQocpEceb83sq/XrGe+tJJjOY621BUrUy3e0hGF/OkAocYYEit5LnTmro0M3HlH6CC33rWJnwYw5UMBLx/sm/0pkL53C86n7OMl7Nl/ZMzOEgb2abyPCnUZ+2jlxxLdc5AxjkSxDjeRQNjyImH0CucmMVDtCb/w0K2Vhqjn7AExdeSUQwsNk4j5MqI9eM/JFs5ySWRGvIj75JdeRqKkcMoJJhI0Rh8nPeMP2KY1gwRz245EGc2kKm2L/DEOzigLGMWX0xjtmG8YvpGPPKqJPt4jHJxTTDIIv6x7KzZD2a5F3c3JzL50WdRJMj7HLIqfR6UPicYFFwxAxOqRFl6GHM3om0iCJDmh7O78jkHfMljE4exGNtpjakRSHU8eCC5zj70Hqk9DxuqF3LOW+8Sn9/P0/+8j4ev3w8a0dtpzBSTDUPIotqaFaaECUL83wb2G4pxKvM4Ffd6+lUFnNYr0SWSMEQTueYZhQR1SZmht5GKzaSHffTpJ2MOVSBPClSODCF8cGNHHa4aFXNYXzvWP6QocMUyuTKwTPogpWoEbijOY0mfSY/K7qFgsjb/6kDxn7k/xz/kqLR2NjI8ePHuf/++//st55TTg6fKsAgn4gpoSQmb8AiHaHVVktMFuaKrk6s/gg7zZfgVloIyMNYXBfR5uijWbyBtblfIUpJHjp6Fvmhibw18WWM8SjZo2czzpryw33Gjx/Pu++++186bQ1AFEXM0eVUJo6xzazBrdWjcaYxR/sydXo7sqSc345206ncjD2SZFXntZwy1vDgWLikbyLZsj4OyXIZULt5qjzBxGEjgu4g4USINJ+aia7LuLt1EJl0A3vTLsESrUHIHIX2vDpefnE1d935OW9tuJl7CzxcrC6E1LXIVf0My9OpYxW5wQ56lDlUaSdRbcgjJhvCGu/hWnUnYWMjrYqfEBHllJeFWN9kwlC4lKhUTa+xiXun+IgJJurU40noo1w3MQ2tpGT68CZkmiFuHY7SKzcypFCTFvMgi2SQ7yzm1wPZ+BQafjs6mwZjKi8fKWSiy87jY7rZnnECQUrQpVmOmDATiY2lyribqBDk+6zPkepUfyIay88/n01frkdVeAtXtzdRa82jwlvNB9lu5IpUftVUTkFQwZr8HrLlm/hU9VPccjPjhl9FEiSuDt7Nx9UHqRytw2NOcmdhJmH5IFH9KxxNpOKSF/BNlpHzRg6THfmSm8c/TVyu5efud5nsFXAFGxjbM4O7535DTAwyY8BPk2Ufs/uWkO6toM68n6i6h5R4Erc0ivvGlvD+xvVcfXGEgdQDuMQKjMIhDmdKzHF7mBvaz6BGTUfkYto9booK09DHZNRojZztPk6LaKUj7QVeMJkY3/Moxb6VHE1ZT250O4fsKnQaHXce2sZMWS+3XHg/a9asQafTce7iedw3fxT9aS0YYhry/XKS0fmYoi7m+7+iWptDqi8HyTaEV9PPTRUmYvFSVro+4ZAhnU7FGGSxDMpibaTJjuD1nk954Bt6ZZ38umUm7QqBa2aFSQ+fi1+5jWrtbCRdlBJ/D6ftw4zz2RmvPohc3kOjeiJPF7UyM8eJrCmCTPbjxr5/Rv7lpqckSeKXv/wlzz///J+lvba6PVzavJODBhdtiRcwRVQY9I+S5vKQNZTPmeg1DKlcvFHcyYdlJ/Ckr8JouI2AboB2xUxMsV6uHGxg/kgdecIX7EgbZL92IlsME1nX0UCsZscP95oyZQrt7e309fX9zf3+3zFdO4tGaSEXDHmYFdpIMjCVNmWC9JE5LD38NW/suJpRHhUBeR9tugyUkh1tVEG92orLeyeqqIVL+hrIDvvZZ0vSF7kWKWpiUBbnhsENaONyYqIPlxKaDePQyjYxa2oPi8/L47V3rkP/k7Eo+jv48O0HyHPaSEY19GtOkqr4gCbZdLqSUymL1KOQYljC6VzdsgCvUoVXFiCp3omcYYrH2ThzqpO0uBm14Cc9lKDbEKLakElM0YhCqGVEKZJIppLtnka9cDUHUkaTLvZzXvhbpib3UWMZoTllCG0knc+yFehjElP9wzTkvkeLxU92pJhSr4a5/fn4RT25XgeTffX0R5dji+Yir+ph9pzZf2LbrKwsRsJhEkI9XYZuJASssQSSzIMo+hnbfiOp3XewR5fPWl0aolQFkpwelZ1OVTZvWM5i/SEXw+fdzhrrJD47cYqLepNkuSdyzJBFl/070jhKs7GP9+w5SJo13Nx1jMbEWXyhvwJrYogBcw3Tggd4eOA7RonfoAqN4aRmOuqEnI9yfHSaa7jYfZCLhhqorziXwZEYgiQQUcQ5qS6lVy1yVDOF05qJSJKcoJRKv99Mv8dLi9KGrf9GLm2+hHdzMhnS+pjktDJ7IJ2vco4TEjsIyYI8ankDKZZP1rDECTGfTw8Psnr1apYsWcJ9d9/NqozR5GapiCpDzHCqmeWrIyx/gS/SqzitG8US71725b2PJe5Cn6wnJpgQBBX5rjHMHLZSFKtlUvQj3Ixhr7iaqMqNS2bFETCRIXuLXMX7GMQu5vYt5eKG8wipD2FKNtKkmYY8XkpBLJXjDhXVBold9nQW9JRRecTN6ZMnGD9+/H8hQvzIP5p/uS+NL7/8kilTppCb+6dnaw93n+DY919g06aRQgcTg4/hT2RQI/sVY8PDuJUatHE7fyhqJi76uKBHjkKK4lUHEWWnuLSrh4fLtRQm2zmv38dzFToe2r2KA6l+GlOcNJh8hNe8jHjH58gc+QAsXLiQEydOsGzZsv+wz8XFxezdu5fzzz//T9oLcvV8XtnBisOn2ZRTw9clxSCZWNk0HkdQx+HUYfr1PmYmq+k3PkQ/85gV3cFpk5rCzouJ6GIsGhlidn85otTP70b72Ko6F6/SxQL3PppyD/G28XaCwkECSidzE2dIypLIFgpII+ex7/0t3HD2Yp7r3cu17+/k3p+czwShjjhQID5PR8ppVrVdQKZXRVxMIyyLY+67gsfH59EtM3Dz0OMs9ITYk7WQ/hObubdkDWeE+7AFLZxMfwad+yx80lxa0zw0GVKpt0JSVGCMK8iNDxETZATkAocVizmap6HUlIFGVs1RSxs3+bZiimfSbUhDLnioM+i5sXoS1oSBD0Z3sjbTSDImEBfifO1t5a5zf/UnthUEAbNczxSHnPWew9zachqZ6Ge730qnKsjnWUH6dCH08UxyvZdQ6TvJx6nZpEvHyA8f5GOZiFqr49IQJJIOWjVGttmNDGmVhChlSmw7+SHIDElEda08UJ9KbkBBoy6br1IrKQz1cJZnLW5FCEnSghCnxRDljLyE3ZkvcMRi4saeAj5KqyBEBuqwSHo4Rkr/zbxQ2YQhHiUzqOCW5iEEx8vs08xGSMYZlWjBpFZQMOpmdlkVXNQ2mftrTqDTHkSQ7MSSerL9cYjWooiWY5NVkRrzkBRcPH36Gxb+8QO8Xi/Hjh2j6vAuCq4exw7lMGJoGoMKNYXh3Ry3uAkkFZgiGiq6Z9KilXCEzGjlepYOTKQgfIhcn4RBlkpq6HN2qc9hQG5HTJoxxbt52fgE7zZ34VEN4MzdTZnsFfzWEmTSILa4gZdPFOOXNfNxxijsPhVt2qvpSL0eV7yRSztW0m5tIBqNolar//sB40f+7vxLiUYikeDVV1/9odTB/5ePdj/LRt18FnhbsPgm4Te8xdvmxXhEJ5MHU/g2zcBxUxolAT3LhoaZ5DRyU+Vyft3RjCmsoVZ9DSdNn5B0T8Au5lCrHeaxma9ii4ylJalh8XAvTkM5elsuPQEfnzWdYeHSs3n4vgf+qmhMnz6dF1988S/+tjI0RFokxh5DNs26CA/U5FFnqcYv5vDCuG2MiNkko5mkhS6kKCYnVVeN3l+I2XY/kyULT5SlcF2NmtRIkoJEHeXDC2m19BGOFyEgMNqpZ6r0FYfU2YyoFzDZ4+KMUYW4dD5ZG1p46P0vybrhdsL71vHMN7s5OeoVJEULWwq+RCnX8dWorzirO49UfwZndGbqs0ZRZ3Qx2SXiwUGrkEX4Miu7nn8G+7SF3FzvIi/gJWEY5OW0fOJSlKhMQMEJ5NSQFNvJiTchjFzMxBEZPx2TQqtWwVhPlE+z36MsNMC4xBCEM1ncOpljKZ/yx7Q0EmKUjUUHyArnoJLKkUkhgr0eBgtySAZdlJaW/rlxBejt6EebmYZHNUSUDOKJ8cSSKr7KU/JR9acIvXratRJj/Uo04mZ6tIPUp6jw7uzEMGUmb2fpefv0Tl7Oy2BIYcJMFcZkHG8yjQcaZOQF43yXpiM9ZGKHw8UnuREWDQa5aOgkhf4yOpQiwYifmHUjUwPtpDjXYYgW/ttCvKkNixilLzkKo/JTvDKJDrWcRpWOiCyOXC7SZZhFjSGPIyYled4KHOJhInEolZfjDx+kxBOmwptPU/pM5MEitNZfc2NnJgfUpWBrp0z4iGDgZUaPbOPL41/wxz/+kba2Nq677nKeuUDNALBbn4E3XsKskV56FAZu6z+I1qlCHylityOCwncuTVIFffp8Jso2M2ZkFwM2Ab8uSYcW7MJBru+XI2JmQPYICk0rEU0tOoLYojFOybwMpuxAFjZztXcEl1GHfWQBMWUNb47uJ8OnY0b/hRRoDjGY9gfWDhb+h3W3fuR/ln8p0fjiiy8499xz/ywNT5IkurXp+OI2QqEKpgyM5YuSWma4vcgDBcRlGi7sDGPO2sqmNJEL+vKwxFxc3+0CwwGcqjSqk0Pc0TAHIlr8tk+ICQVEEuVkhoxokiHeyjQRHYGfDHew3e3l07Y6svu6/uK00//Of3TGcXzUaIZqj3BfdwsPFicRZA6m90zinimfMKJQUuhT0Sk9Ql4yg5N6L4XxlXTqmpgVF+gWNdSpHLw4djdTnUqmBltYUvVT2vQVPFl5mgqnnlsbDfSlidRZ7dTq0igPbkaQj6BnBxXnTcY9WIH/nY+RGUNE+xt5bMEelqq7sQsCOd25vF6soF45mxJXKYu9xxHtCaJyPb85NoZnK3J4IUvD5f0naR87idptHvqy8/igvIEdacvIDp3glhYl4wNtJJFo0Y/Qbm0nzT2aSlcCpRTDkAygj2cybyjCaJ+DIvEAnVoNPWoV7+Ro+DwzgDXsxRJOI1vcQqmqnpPK8YwP5LL+eBMplWWkHK/6Ycf9/5eb7r6F3659kuGK29kzSs0zdd9Ro15BQXwzcUlOg1aOT8zg44xs7mgPsM4WZ1VDJikqGXvqV2NZOQ9NIoA6GaVPbSJOKsOx+4nJmhhWudmV1kxqwsv6lFHsSqnjoN3JqrZiyl2p/KFAwy87D7B8JMazpX4SMnjx8Gj25r2L3WfFHlkEgo0pQxXEoylYjft5VYxgd5UzLbSD3fo8CkMGfEoX7SkNaMVOimIyPtvThs5o5IyhkZ93lDCi9dJurCFmPEWB7DhBIYU9Nh37VQ5mcjMKQtQZ2nGEbZyISjxz7bVMnjKJijmp9OeE8CSCBKOzua19mMnuFG4cP5nKSC/pQg3PFlexdtfVXBKKcffoLlzyFHYrJjHaYyfTvZy44h72KMpxMYPp+iqWuk6x3bEXldDK0/mjmeU7REiToF6cxDh/KwlNJ4k4nLb7meibjiG2m27tu3h0EfJdLzIvuIMBXR9Wm4rysQv/8wHiR/6P8C+zphGLxXj99de54oor/qQ9mYjx3ddXsfDINdx9xk6N+TibMr7h7K4QM50hXDovj47rZ3/eCZCmoIupeCfLioIA40eSRMM55PasYLOjmw8z0mgt+j1RbRsTvW7qLENk+k04IjYUSREpUEGytolQUMckX5g600ECSYmGhob/0pg6h0YYOJ3CrkwZx6xh1EkDw/GlbM2soU2fQEDAFBXoUJrwq77m6cY/cF1nDTcMtNMZH89FXX4ePePAGb2Wb/U/5XPNdTxS2crHRX10axvpVyd5oVjHi6kruaO5k8udW9lnr0MjNjE1sZ/0pJHb5XN4/IrnWZW1EGM4wua3H+RbfTF7LVHqUnTEwzcTly5lT0Y+tZoyrmq1sGTIzaOVTk45mhBo4JJ+J3vTM+nft4te/whVJpGkAAF5kjzpDBGFl6CmjXH+YZZ2pmAT2/kmy8fLeQ6yEy08UBshLBP4OFfkuPIstutm45Nl4jNU4VdEmT2kYVWHnh6lFWUC5Ikoh3UOfEcPMytTQVF+/l+077Rp03B1higPtOOUZ+C89zUWxF+lVz6Wy/pbKXBX4lbMZ/pICk3qFDTJIaYOWRjvihMPDBHKUhCVd3H3qHzMIRtIcpLIyQmaGesXqTe48SkC1Bp6aNNmUuAtZbo3TnXJNQxqnay1l1Kts+JLjOKcYRURHHhVQTwqidRADmbfWcxov5Ybq3PoSC4ikpJBg7mAiT0vcZEzyIjCzUdZJ5k7MJ/0kXuokZXzXe0R9GfN5Zp2C8bwZPbmhvjltD8wrOgjojvNoDbK6sZiftt0kHgkm5PSdVTrYjx14HXmzJnJ9TfeSGF2CkvGq/An0yj1qri+dRlC4kJezbVQr7Vg8GbSLZ/F0l4HrxXoWZ+VS4poJiFvISRLUKWYS5RMsnrfRUcNIiHciQpeSyujRddKq8LIbnMOa1MLkLCwusPAXSev55z6y6lNzuSo7TA783/LZQ2ZGDyF5PTfQmmkEbvfjtI/loRJj0ql+ovP9Ef+5/mX+dJ45plnuOmmm7Db7X/Sfrzze76JD3B6Uj1jXAY6tDEcoUECITmz287Go/oQqwiTI01sUk5k1YCWyb0XssGmYV12KwlxAh+2uxjnLmO/KYVBykAcYc6gA4s7n43ZVTxb10p6NEafxs9QtZfPM1qYkRhgg3EiaWV9rFu37i9mcv17SIkEPc3NXF1bRVAb5UPpZp4TNxMJzUYrT6Vf0YgimWD2cAYre5q5r9RJv1RBWnQ/+4wWciK1nNN2DnusJubwKRe5d7DXkIVT7WdSUEm34gxeRZyjtn4M4UzcinQsiTFUeg7xQYYKr0xgdKIMRfASigJ7mTHyPTNyTbSV5LL+iQaO79zM5IUXkx//hAmR7wgJRYxojOy0lKAVt3DE2s+NzV5qFGsYUiq5p/xeJgwX87PzFvD776/l9oIrCSovoFXVzJuZclYPfU9YM4jOtxitOIxb0cJruRnESHKly8PuwmMMhpYyb6CVBq2IOtnL5NAxwqo4dzSnsrQjB1lCz4r8HNJjTZzQ2vAdjmIvzaVhWMElY8b8RTs7HA6ys/NpaKni0aJtjDJ/h187gDn5Am0GGwXBXrr1izFGg/yh/BOePVnMmcLXeSerEcU3OShic5GkIL9u7qCk38rPJo5QlyJHnTDRpNcTlM1kSHYEY1yOIFlJkVXzfkEcJ/cRS/bhVp3knZQpeBUJGiLzOctzHultd5MSVTBZl6TdcAqPZgtyaS6TB0S+8DURV0gY4nK+08/AmAjycNceqjQPEROqGGyuRZDiXHR2I408j81txyMs4fyur1EmHufWrJ+yOPoOQauLYU0H5niIXuVZZLhd1DcOcSB8Gr1xEneOfYEO//scNnsR3dnMCBoQMLA1vQpB5uedrCu4q+0kw4npfJghIz95gklBA72BLvrFUZyxrGV233XkBwoY3XcRsxLt3Ng0lj0ZIjuzaogqOxnVG+HKLpFv0+8kptjGwdxtaBMuskdmINMcRK/aQ44qxGWeNhSJTp4fNZ145GyUSTVlg3t/zJz6J+ZfRjT27NnDPffcA0Ao6mPvmffoGxrhM18fFXjJTx4mrE7lsoF+jqvP46TuXCrUnTjiAbYpS9iq+QkywUWYPFL0bmqMGcikMBnRg7h1faTHY9zUk8SXvJr9Ni1pwlssSO5ierSVYPhh9lvOMNYDgUE3knUxuSEXubpell92Hh898Dq/+MUvUCqVf9NYErv3YNu4mckl+cQKSrBNs9O3p5QRUYk6ruP8vmnMdBbhVZvRaC5iljfMpBEFV1csY0iZyqM9Hqb35WIM+VCkRDlvuIk5gX18nKbBLoHdOQ9bSGKCO4jScD8aKUQ0mk2XQkQVt2EMmqhRKykK9/NVTgfmGLhMZ0i3303h1Hc4s/F7Fsy6m6JBM1PirbyS+x1DiqkUim+QEZd4oHoKAclOrz+fAaOacf4piHEXSwUL8op8Nq9Zy88uGGRjaRkA4eRFDOrbucVpwxrXo5Mf5LKRHRxTlWIS2jFSw4hyDOMGlWSL2/kw3c37yhyS8QkE03/COttpcoISy4cK6LXsJ2UwHdeXbzP6nj9iPfI2M5Zf+O/a+mc338w9j13HB6OmMTXq5a7KW3nw+NOsbJ2EIViMLvdmYqZWyiNF9NgHmRiq5freLK6Xe8mJBZkQqWIwfQcDydHUmaMY4iNYk+1McdbxbdoQJWEzs0I1vKefyYg4lhSqsQ9P5Kq+WmZIH/NpqpIPHBM5lHaAGcNaooqxJEQToUQbUtLMmYyNePT1fGM/G78ql48K1yBKdsT4XJZ3KzhsrWVAsYYTRiXxXesozktDF8vG4V5Oj6ShXl+BOabloH4qYUHDHvkSym3vsdnu5WeDEkRf5sVX9xD2eRmXfTGy6WUc8p8hqd9Gg34uks3J8nYPEbmBc4cHscbieGMqgtI5jHYGMKf28ak9A0diP1G5DlGoYdrAdXSbCzhl2ccFnTkMaFL5eaWXSm8GV9b8jE7Hi2T6hjlgLmZA4ySRspGYwkVb8DIy9G+jS2iY35XNMUMGg/rDaOJKlvlnsl4RQzCF2PTGOm676b+Wyv4j/3j+Jaandu3aRVaGhdN7HiIcHOK7fU8y5SM94Volg0o97WI5yVgOzaqJfG2ezZxAGzHRweaiXbyeWcIJdRlxVKRE8yiM70BnuJlDts0UBqxc1uPjyYJ8PstQM3lYzTXdXazoqyM9amRmdznGUApNGd8y0+0hIGSyce4VpBnsFHlWsNp1KedsSaPA4aCpqelvHo9YVIQ4ZjSXTj2P2ypncm/bVua7TrHEVYlf1cKIop8sd4TN2Q+xLjXGaH+UBcMShdEuDJKEJ/QEr5e00JH6CWmuSWT2raJwMIMpHhWV4V42ZB9HMGylPv8TVARRJqNIqNEqB5nvD9Oi1tCk7sMn30hp+AidmuWctnuwBS7gkhV/JB7zo2rYznOFo2nTj2JW/9kUBU8j0+zgozw/X2UkWDmzh99kj6dB6WOH9XF6ddswR0QWFVzBoswxPPbhBooHQ3gUIqdsA6TLT2PxzMYXq+RXWWdTIy/juqHj7FfOYK1yNenuPEQELj72PC/vfJayobmYQ8sAgTHOEm4c/haT8i1yQk5c77zCy+NLGG3cR9Q5zKRJk/5dW8+ZPQdiVqqkMzx98gP6uz9gikfElfohX5ZuYq92Ke2ig2ZxBm/alvK4/af8Nns1QaOIS3uGbkUqzuBP0UblTHVp8MuTHLCKFLhGcV+jjbC2hy3ahSQVbURlAXK8l7F8oJmF/Rb2qS/luK6SgpAOlWIfH5a/xfqsjxjSHyIu9rMmL44pOIk+gxNVJIwi5OP5qigaKUhIu4Fd6fvZpltCkVNBhVNFMhRARZTZA1qI6Hk/p4tTxtMcsnyNRRoBKQVBKkAmdyOTKnhLTOeBRz4lHI+S+sBiZNMqKB8RcdnuoF5npDji4ddnRmMKJWnN/DUBcyuVfVcxc3ASFZ5c1MlSrEEZEMUQUVAR/ZZsYQMB1fe86/DQqncQ1dbxTFmE41Yf7+WFaUrZSZZsHTH9Ad7JzqZyJJ+Knt8iCEmKhIPIpQRC1MxJ+QJ+Pi7Jd4bxyHw/4ZAwG5XmW4rcaykuLv6La1Q/8s/Bv4RonD59mhkTrfS2bMYzXIc7UkK7Ng19fBTK2BT6EtcTQo48VoExmsqoxDs0pNzN69ktxGMFXOgc4Y3e61noO4FSdJEX6cOQjLHPPIBfLXLNQAMO6nimYicNtm5aMl9jZ+oAX6S7mFh/L5JcpFdp4OExPex3vsOYxFFal/nJ7sgi4XZynWYSP//5z//DRfFwPMGzJxvwRGOIOdkkLr+S146n8PaeOK2+AZKqCEpG0Cu3UGuJI5MkWvT9HDInKQzI2Jp3gmG1nEXDBfQZPSwe6aZTmsnm9Fa+yTnAT0qv4EPzxbxoPY+xUTeSapigZGPA+xN+lnc2z2XMYJzPzSUDPqLKI6TRQML4PhMGHMilbxmO3MVO22tsy/oNxbNHs2HLN5T5x9Kmd2GKSYwfycIXy6RRo+PNHBt+uYKIYGBAnEuPqozvsozUWzPxmqupnG7gkrNyOfj0qyw9fJRxbg3asB5v+uvY5bXI41qOG7N4Nv1iTmtLiMhj9Gc8zztFnRxxuBntKuCq5skURI2MD8gpDfRxJOs471gu5NWmaUREAfMUB9kmiVAo9FfL1F+76gY876m4rPA8BttO8bl1KnfnL+Mb0wV4ErPJ6X+SpJhEFFup18kJKvvRSwp+1nAEt3I772V9yp6MGtoMVSjiBgwRK0WBMGfsQ8TEGF5VHTNdgzxc30tqOI8O03h+M7aHx0ssyGIO3KIFlf9BnAqBwZQvOWoYZkJ/LjOGdIyK76FGPZaJPd8wSdvNAbMNXUwAEiBv4LmWt6nwuwgc2MuMmTPo88RIO7OI4xY3ShIohRGSgsSibh1jfSOkhRR83xJj13Nf88HtG3HkxLnl1iWUq+ayusXOrZ0NpHnzaeBGmsWF7E/z0mZtQSGpSAnkIgrtePQf0aF18V12L/MGDCjiel46lUpAkUQSwljoRi5BheJpanPWcan/E/QxGQlJQ79qAKu7gqzhibxYtwuRELqomrMaLmFmx0zmtpxNIKHls+I3QXCRFAZJ84JVOo1ZqKPNdRCHw/4fPs8f+Z/lX2Z6KrNoKZMrb2SXN41Yw146dIvJC+qpCKyjRjuIR9lKXDpKJDFMVfJJkokBzhoYR5s8QY1ygGmKj/ne2s6gMoevU7LRJjTEhBS00gjDBjWiZCUqi1OV/SVFSScbrVF2pjoxxdW0xm/l+7wgqZH9tAvZBPodOI73c8LgYZVrH3K7nGJVMZs2bWLp0qV/sf/uSJTPm7uZ7LAwJ9OORimwapoSm0HgoYwH2PbiN0hhK0HharpTLGyXbaNbmU12MI18VwXHMto5z7+WiKyaZPQchjPW0mEcw3aVjmGFGodvCKc8BZcwi8zEMTRRBzXxn3LdcBJHWINbGUOSRIJilBeOraTT2M4fige4c0wq+riCCR4n1kScYUUUMVXFcEeQcQN2LFIZw/ZfkBrsQQxdjkdVzOX9PWxJldOtNeBFxh01dtzqABrl+9SZTzDGFWCGfgc5y5p45tMldJwLlgUTmCnrYWxYS6anBKscTPEAHv0oIpIRUX6cST4nHRmbeTYbvrVloo5b0CTDLBruwu4TMfbt5+Q3O7E9mEK0pYD5mQvoKf/rmyuvuvJKHv/d76iw5bKXX3BdT4xUnuf11DB+tYLczov4/bHlePQ7WZ81gkwcJpap55u2TFxlDaglgUbLCD65AUNigGervRzRj2ebfgBJeYaQFCIj0scnWaU0addhiygIi04eOD2L08ZsBNkutMYXGY6MY0BewFJnL6kKFVO8A+xNt9CgyeTISC/W0gVsyehnyXCcZcE9FPsMmNxnUZx003j0ME9t+IZrr72Jq1bfSPm8m7CGDVRGDnFGOYcXSxqZvX0ra75v4mh/EzkFdq66ZDrTJmdTa4iTFkljX8Z+5rS0MmEwj+FkLXsMC9lryaIuRUVWOI8sZyrPFm/ipLkfVXiA0f4yzgud4gtFN+/kGUn1lJMVCTAsZHC1P0jALNGvsHBUdTVBWYTJ7mGu7XGxJd3O52Vebm9I8vPKd7CG7aR6z2HWSDsH7OmUhiXalEmEZAGFAQ8Plvup9O8na+ghDm7/FXc/cdXfOXr8yN+TfxnRkMkUmB1jCJ9ag0sVYY/5JPNdap47IbJqqoRKAbrETq6ouYaK4WxclVpkkp1zfV8jTw5x3JpFh9pObqSbh6vM5PnS+N3Yg5QN5PNt2hhuaLqEd3I28LJ5FC9VtTBf7GZG2I0tpObj3CF6dUEuGnRyfZuOqyb002SScWvdRD5Im4FWX8OlPjn3PPwIc+fORafT/W99l6FLxrmjNJ3ZGf/rnPGF5f+rllWHrZHISIJlrcvoVgWpcPdx0XAbmVEfj0yycUw7h3N8JvLEQwxEVnBMeRH1Kj+6pIQqYUDLICXhIaY4JT7NvIGb2jo5nebj/YrTXNdpZ3rLVXw+rh9B28B1bSnkBMbxbnYdAZUXY8LLTd0NJORu7i530G+NIcWHeHLwCaZXvokkrCCuiXNS24A5HmJ1V5isaIAPM1VEE3mYpU7O6pP4umCEXcbzkcW/okd/hASTuS37Fm472E/LMx/xqxuXs9g4jWq9gzvqlJw94OKjfC9rciP0RmeCopEd5ibGD1wMgpNYMpewvIvjwnHq3m2hQ36ay26dSkQ9hEffT+/Ro1RWVv5V39FoNKTlZbJ622PMLfIQaRhE7rVgZJgUv4w1o1czsXsZGdIg3VoLJb4krvFFxLZXsyH5AW0pjdw8rZeUuI8Les6jTaXn/bydRJhBWsRPEjuWWIRx3gAeUUtq4gSXduQyuc/G17n7GNA1UwDke4vRaRQEdNWoE7mYQrlMdR1AH7fw2bffor3zCur0abhUPcz3exlMlnJ5n5XXcwvR2XaRl5dHXl4et9x7F28/9xoDA0Nsjw8RV2wkEQywXq1mSt54vr5iJbVps3EEskmXPUWvZGFx5zgisgj1xk1kREPc1tVBY/F0MmQ7GdQO0qezso7LQK5GHVeTkPS41Zs5nF6DLprBB/k9TItVgS+L8zxriCT2IfWOxRWawZ7y3VT4phKUZTF/djeFwTiNGju1juOsbriQT/OTeAwSbkU6PcZuvEolQtLBxEAjEwM9FAyfS7X5GF876tHElIwbN+7vFTZ+5B/Av4RonDhxguXLlwMwlNjMAfNswkI/72cqOWzUopFVM2/Iz7yORYjRNFxqOYORnfgP3UFtbQNHDCKQgi5RhaAU+ExnpThzFrsNBkZn9rHbuoMmVRJdJJ0x4RO8UaDHo8xkbKyBZ0fFUHCAdFkDbcZ0jkRgZVeCrzKTPDjhCIX+MH41lGl6uShvPE8//TSPPPLIn/RfEASee+45nn32Kc59772/OMZzl17BzbtfZa8lwJC2nRRZB5cOddCusuDwhNDb60ExgDZoZPrQQe4tKSIl4aMydoiA+wZ22vaiTCq4O/pH2kcuZp9VRYfWiFahYayvmyF1gB5ZDsaojWpLP265krmDBUztSWOi9C7xZCkDqmwqRmxcYvbxeX42Q80tRCeEkElqEoZbOSc4Bk9iEo8VTqDVcoTZ4e2c33gpjWo5smQCl7iSYl8OW01dJJPH+FXTNhKyWlYuvYHvR9R0PPkKuzPXcPG4a5kRX4ioPYHX0kSepKM0NMQ3qRkIkhVl0oA1JOLuH6Z9w4esHzxNziUruSvnAEUjCd6I50G6la8++IpPP/30b/Kh85cu5+NNrcy76BY26neQSNlCUrkNIXAHiWQHjeZO4j49XlHHcXOAP440cWNfJz2TovjNe7mne4CjegNv5n+JPppNZXw37UIhOVKU/So139thpr+Kc33lTByyMXokwRPjP6PKYkImaTmn/RoOpyaYGTmGMzqVzTmn6dN6uMDTQ1fTRvSOeYzSjOGQNEJFqIca9TymRzrZVbiWY4PzmDxu7A9jmT59KtdVX0PFilnMm7YQC+mkq/poMs0nJxZnfyyX7SY3EhIvdSip9CbYY69jUNNFkzGXD46mIwgDrPTfi1MjMt4dw5BU8gfTUqaEjrCsz0N+Xza/nfUW/SY1C7rO47OiE4SlCpKa49THNDiGZjJqYDSjw2nEhVEkVCWsyz5DTEjSqwzym7YmdltkfJ/5NZc3raBN102JJ40dohavogJ5ZDSNio85ljOENnyCi4YGqXZpsdh/nJr6Z+efXjQkSaK/v5/8/HyCUS89/mqm0URSkrFV/Bm9ag2fnBhgQJhEliebxuQId1edS/O2Hi4om8SCBQUsLPTjFnJoCv6SSw6IHOV7vq06iG/jafZkZRNdmcYFym62GedxVeAhemUOntMvZLt2BnliHdnJblqCN3JclyAcSqPTFCMi8wNJqk0aIJtFfSrClX2sW7+R+++//88yqcaMGYPP5+Pw4cNMnTr1h/b+ljixMGSVOrhKJdEwcoxDajl62TBJWZIjhgTnsIVFAZEuY5wOVRZRtZdkbDoB/Mwa2MzLOU+RHRgPosAh1Uz2W0WSkpLckI+7qudgDsl4eswGjFIHerEVX3oDm9TLOKDPwy84qegq4p2cfIJiOpVDCS70dfG8u472pnbuufhKNlqzqVJPo0J5hpX1szmjH8SnGGE4FiMl4iVDSiEZmow6aWJA1sycyDFSIwmM4Sv5Mj2XaqOOfN0Uih9zkXrmKF/seIYP+59lUkYRQrIfvc2GIyEnY6CXel8qW12fMniiCk0yhYyLrqag4A4GxUoMne+QjHfgDE9m/Iy5rPv8CEaj8W/yo8tXrOSlc1fw6aQw9ridySEzaIf5VK3AGjqP3x6Pcfm0IQRxI2lRFT3Cebi173D1+P1cG4rgSAwypDQiicPoEiLjgk5KFcf4yDQPSdLTphyDRRclV7aRA8IlHDP1sjVDhVoaQpF0o9Z3ICnK+Fw5imWBRpZ1Kqkx6HgtawEffrCTn1z+KtqAhgmh7+iTj2GnQSCByMQhgarv3mf37t0AtLe3c+VlK1n2+J2M5F/IkLyJC4c3kB/2MHrQwMs5FaRFgqSHJfpUSuRDNzDbn8Ebs88wrAlTEJAjSEkaDBrqVHbsgcew+z5iYv8oclMf5WBamNdzFnJf7xhkzsupsgyxrbALeWw2tcylyPMV75gdjNgNLErpwq304AgZuGLwW6LOLi51N5Axcg1vZIdRJmtY2JdOjX0vtfpRxBQCD9XNJJhs5JvMKKt6CvjFVAuKmAmT1Mxq5Rl26Qx/5Un+yP80//SiUV9f/0OJCK3SSLe4gPLocVJiEX7u3cgxTT612gxey4/QePA49bufIXe1DMe482kPFvB7dT2zA7XM6a9kqjONrql7UerUXBIdy7tZY8nb5OWTV3fRMqkH6bxz2atcTL1WxrxAFStH6qgyCDSIy8kKXUWJ/yA31AWRy9t5sUhil9VMUB4iKop0a6x8V+QieCqbr7/+ihUrVv7ZWH7729/y2GOPsWbNmh/aTm2NEvZLGBydnHJ34VcWcGfvIUaFXBxRzWC9rRaXUEqW0E9fopLzepNM9vhpV37BHpuesqGxDOZOQalK8nDfm3TJNQixC5FJeiaPiNSl2PCk92JT7mRV1VLSvefy/agn0AsO7Io4+20qipJRAvrTRBPNrNev4LjpHMrkBQz3PcWnLdNwWZZiiB1BTEJln5HjY4+jkjVSZengpTIN61PbWdIXY5PDgIAef3ApsxL7ODZ6IxkDV+AXTdxRY2difBd/rMxjbsUojsYvxFN1EF3fYdy1Cfb7tITNJyjLU6PVCixecRkx9T00aatZ4nyB4UglZ48c4Zby5SRkej54+y1uueWWv9mP8vLy0BFmJFaFX1tCIjaHKYEUxsZ7ObfThE2s47YuBSesmTQqsngyu5iSMdMIfL+Dj5avIiZP44oOFdneJJXSN8jkAfwJkYggopKCiFKQU5occods7FPOxiH1MG1okHHCZ0zqddAe+z0DBg9eTRVfpF6LXPyOBrUVzfYushw5VKjaaROWEo5fjjVupSTwDpneItZ8+h533XUXJpOJvr4+Jk+fydvXpRAwH+FpbQ2F3gp8Uh725F7ssZPMHrHSpDLRpbSzuvcMRc4FeNQB4ol8svy9LB9q5PvMft7LFnEqTaxuOYA6WIxPEWWr4SxOK6Kc0cV5YMoBbIoqRgtn6FEsxBwXmeUcSzxyAR7LCIr4AP26Fqr1mUiWCPGURk6pS/CIZVym/pBa4ww2HU4SlrWxoaiRUeHTGL1Xsz29EXkYdubsJ0ca4qujKkJCLT1qGxubOpkwYe5/P2j8yD+Uf3rRcDqdOByOH65l3p8yY+hRhnVuRodrOa3N5XfFWbQd2oWr3s3khy/FJDvDqqYMdprsDHM2fcJGAqKMpGMdnRmf4w88SpZXT6G7g2OLXMw8S07L15to/O5p0uaF2Kg6h1RfLuu0cziumMqV3UdJ6L+iILaHEcXZpAqDXNxrYmpfPm2mdnZlnUYRuQxlLE72klH84q67WLJkKQbDn/5rysnJYc+ePcTjceTyfzP95OUq4lGJFPsoykMxrMnveCcbJrlymNo1jl2bL+GUrYtd6afZkalkUGZgh2UiCwZKmeZ7n2B0OfdXJ3hv1HF0whD2pJExsS+pU5xFWBFhQugFPk95gmT0TrzanQwpdPw+dynT3Eku7FWxO/00hYl6xrl87NCNZofeiCaeyoK0LLaHf0fD/m1kTZpCmUtir6OAhGQjQ/cBFf1ZZLtmkhZsQIgbOGlrAcHE1QPNfG6bwRmDgoi8m6XCBu5rm4RVkNGvLuV48hJcyhhjorWk5Wdzr9TP52Mr+SQnyApXCu1aE06ViKEzG4cXygLdGHVNlHhyeDZnIR0aPZkdEm+++SaPPfbYf8qXli1ZzMG9BymfZsGtNhIPlQNZfJ4hUBATSROqWBYY4IK+h9mX/TsyyyV+8l4bF57TRCQ5xJq8NJb26tEQIiUSp001lnt7jvO17jHc+scJSIVMHTRygexu3srOpTQix5dMxx26n+lDpex0nKbR5icl0oJB6OLcKgO/2fEdU395LwPqXViiSioCZ/BqJTThHdR4x7Jw4UKuvvpqDhw4wAUXLyf7l3dwyFrNiKYJZdJAWXiAaHgVVcoRJvolotJk/DItBlz06aDJvo92x2kC8usISHnscZyiXDjIpMBStot2yj0iaSGJn01uRIqXkx0KYYwkUYtOyqS9DCdNQIiooh65TMs3GYWYw3Yu6y+nRZ/GiMJLh+EQJ7US2eFe5Kokb6flkxmQeDHfTnn8JKa4HFU8iDHqZ8A0FpeujUJ/GBPN1BgFIlIKrxfX4F+j4MPfXPnfDRk/8g/mn140vv/+e84+++wfrhc4A2iC55DpDzEsLKYi4eIb/RF69h5i6i/vxaNOcNGgj0LZOk4mLsMaH2ZCtJZqs45WlZUUJqNLWFnaqaDUNZ6bp3bSoxgmdsXFKJ85wHNVxZjnxri4YRnrs7X4dV7eKK3lNz07OGyRiIRLMHT8jNdLP+aIrhyBLF6v7WebUSTHl81oXwxnQRZ79uz5s0KGOp2O3//+99x555289NJLCILAU73vo1OoeYhV9MtAB8gQ6RbGMEVTxd7sNtZlRZkZG2S2u5x9RgW1Rhe1+mZ+4j+MqXcFRV6Ji4ab+HXaZbgVcuYNjmcJUeLMo0odpzS4EbfCidr4OdWaEmzhZczvEckO9/Ne3igez0jh/NCXnNIYOdu3hsUdV3I4ZYAbb3mcl5/+KXmBXexNl1EQUODVaOkX1QwbXaQ6J6Hzj2ac7wync75hlL+cFvFKorFKyiNv4JMbIZ5CUrefptityGXDLOqLohaGCGgCVClX8Nuc1YRTHmRElUKXXE9EXs/8gXRUsq2kxnQc0dfRobyI1ZFiWh0fkCHvo+dbJe++++4Pwvu3cvkll1J710qW5Y+iz2DlgywrF7c6mNOXyTMT9rEgEMcVu4qY4xTrrdNImosZX/QJkQPvUTIrE8dwJmnCUfbpMyj1J7mgr4Fj+hV0OFop9f+MKZ5pHLZ8SWasBBlBMqRWjO5yHPoHGEyRo0sZpteQJC7aeVWdT+vuNSy74rcoTKcZ0R9ECjtIC1UQ4DsC9rM59tl2NmzYwNNP/Z6X336fqb98hv7CHsy9peT77PhMxaQGBZK4qNJYqDDsYXTybYKqEZQ4CavGccOU6ZRGdFzb1svabIFGVSWqhJsqo4oir4zPMtPpdbyIRujgqu5NNKtGcUA1n1JvPakJA186lqCKFjHKa8atOoiYmEyuJ0qbsp5t9n5eO2qiyViOSDl5/gLuq3yXseGjGAMXgTCerNiVjBBDm9Ayo7uUaKKdNwobEQUtr2XNQULFz+uWUjTQwA73r/7m6cYf+Z/jn140hoaGSE1NBSARi3DB4Luok3H2FJzEMDSB0b44vg3vk7NyMYaElnjCS7vKSEp4EdvNpZB00BWroE+p4kbvexxSnkWLapDDGVkcNoS5tW8zZqGB963TeXj6T7nh+z8wYtZz76Ru8oIDRLS1rHKfQiFKWASQKZoIqoYYUQeRiU3M8jbybcU6ivr8XHjsPu6a9RMyFxezY8eOPxONRx99lGAwyLp16zj//PNZtGgRdZ5O4kmJa/e8yWLzKD6P5jCnIw8xmsmx7CfokBXiFLVs1miJJyLM8bbiSk7n7rrl1NkM1KZtZapb5C3lPLzJKaSE2jk7+B57LWrqcXBKG2dieB+dGjnhUDGH9Xncf3I235f+js/sR5nvmkZAGWVYbsEcT9KtlcDwGz7NW4YyR0+RNYfYliauXRpFl4zhTHuM5afuodF+gPfyJH7XvRidN5tLm/zMGpJxzHiEJAoSymKq1Rl06TPIczZxea+KRqOOiYkQWWEH3ZbDzBHjBEUzcWmYoeiNtCqqETV1mBMuNlvH8HRqKQ7lLnSKo7wl3Eo0kUtfjRKZws155533n/alqVOnok+rROxdS6zkWWYMJMn3Wug29NConM6KljlszGugJWUPYrQMhSRya9mtPPbFRi7IF1hTUMexRDmZsQwC5n1sN0zigWMl/L4vnZfG9hKjl+22BPrEaMo9Iaa0LGRIUUEw5UEkZYhJrllUy6N0qUy0/+FjHEum4R9dw8OHx3GoqJv8kSI+yISk9TTRIzZsNgu3/fxu+to3ceUDS3FF53JZ9RGW9WTwyLguGgwtLO1TcGGPjqun5PJQxoXkRvrRh2zEpMmY/WYkUwsBaSybcyL45TlICTUNQhnx+HTOGepEFvXzsSUNUXQzKJSyVfVTKnx7WOg9SYuiDK9oRpeI44j5kSUXkir2U+FR8VFZgDHeEDGFF19KFe5kEltUQabQxKRYEw7fGQYMeziUOsz5J36OJeQgJg8zomolLjvJzW2ZfJCZx7AiTo9RwUDjDi4479/f2f8j/zz8U4tGLBajoaGBvLw8ADyNrWgiZQypfbQkdUxgPV/5YniTAayjTFR0QbW6htN6DXuNhSSEQSa4dWTERSYMCxQ7r8VorqHF9Ao2k4sKaQa5sRN8n5JJqz7J9kwZN60cze9e/4oLr/kpC/15HM84gVYpZ0jKRNt5E+nDZfTbv+FXp+eRI3zLlpRRbEqZjFooprXkK2RMoFCoJfQXxvPBBx+wdOlSrr/++h+m3NbmXMnpHVt4y3ycjOZR3O28kLcq6in3GvlKs4i4oEGdlGNMjhCRJ5jotHFMlkmrsRVtbCY62Ua+yFBxKEWFIe5icnQjZuEU+4zjCMqeIDOi4CvTeGYFj1JrglptjJ9P/wwNDooC40DZz0KXl8yRMTxUlsqg3Ew8rsYR6yGkCBIdZaI/XoekNBGLq3GEXWT4HBgUdmoz1nM01877uWF+1eFHmbQRM21lgWclyvg0suIP0yeWM9oX5+ViWJfrJysU5ZftjQRkAuboN9QZr8ThupZx0QCujK+Z3pnCqBE1Z2yNGJVbyE90kDNwFhO7y3lALafnsyfYtmXzf9mnHn74Ua689GzmzLkDhW85L45JwRLVsnxAzkJvDYmubHJaBT7OGKbb8hZbJ2aTobyOBz97nbPvKGFYraBHHI9PMqBP5pOQ4owesbCiK4fvrbVc2d3LgOkMUbWMbfZ5RORGDtrLuaL2Vo7kCVgjdXR8/DpzLWXoR+XRrBkiKZVS2hOjzTRMmq2Z5IiZDVs2UVFUxpFYJo7rf8qJmIBfu47TFj+2sAFJeYDiUJid9kym9qXhUrUjoeWkNoNpsWNMdsppU4RID2vIDBfTqh4GkiQUtfgReKznd2w3X8ppZYK0Y3GqunU8Kesnmvgcv6KF7dIswuYDXKY5ybB6NK3ppwhE5nBzfwu77PcwzpNGpVfgZOabRE1taAJNTPb30t+Wx95sA2UeG726RkJYiAo66o0Cp4zZZAUyuX7wOBbDO1zY+yYnTBvYZg+Q0djDjBnX/pef64/8n+OfWjS2bNnCOeec80Np8WF9BrtyF2MODTBp8CAZrkbWbNhE8QMPoYuNEDe/RlQoJ5lM4eXjVhzeyTTbdEQEN3neTKzRfnwqL6KxkWEpg8dziygL6blh8ADmWIAjNj0LPUkeGzeO77bfz8xZz3B5b5gTxml8Zh/LgTGtLOoUubRjHmZvMQdSFeSGOvjl/jvwav0okuVkhuqoUx4BrH82nmPHjrFs2TJMJhMFBQWMGzcO2ck6xjU6uWGsHU1QQ55Hz7TEZ2R6V5IeUpIaMrGkezKzA2toNGqpTxnHHOVDnMiPIKFGIYXJdGeSHsvjJ97naJXn86x9GTGGEKUED58p4qgJ2tO8pCTcGPrGMdYf5IBjiEhiAimKj3DKp1DrSPDzzho80Ym02A5ySXSAHfFFGFHQNGAmKoiohTD91jOEpA0EVX2Yh1bgUTfzflUbh60Gbptg4JyeRyh3ZxFWNHBWaCfu2CAyWx37Ui8gIdroVDsgbqNWV87O9GkkhQS9uX1MHR7GJnmJiA5qVHOoSlZSHFtLvjRIl6mHVOX9RN/188pLf/izA7j+M4wbN45LrvopX7z9HqlLT3BnMkBh1+Wst2dQrw5Sa5SxsCPJ2EAzDmUHqYEga8edj6w/yZkvW3m2aAVHUo+zw+Fgvj/GUPEvOZlYhjJ0O2d5xvFqwTtUJOSUu1UEFQcRWMDS7sd5cOLnlPig4OONtAdiTFyxnILeHESxnkT2amzBQkxj7+O8FC93rD/BlMmFNDcd5qIFeegG41RrCinzxdmbGmVt4XEWe5I0xex8nTbMCxUnMcu3YE/EGY7PwSz10W/qpWBoDH6FkwLvTo6YlSx2NbInpYgYFmo7Arx/bB2e/l5sRTLko6cj0+qYHf+a067RJM/00mhqpH67n664k7SpBuZWqNjiKCHI99x86jxeHZXEpfgpRuH/Ye8vw+W4rnZt9G5m7l69ejGTlrTEzCzZkiVZZmaKMbZjjDF2EttxYidmxyyZJNuyJYuZWVrMjM3M3efHe76c451N3977Tbyvy/e/Of50zRpVz1NdNecYOyhLuQmL3By3hvELRPypYgin4BYmOoMc1pj5Li/BkELOn4+7MEs6GFDlIIrFqPHeg9nSyZ76N36yqvAXfr78rE3jk08+4c033/zHWKkd5lTO48z0dBMbuphLtx/nvrUy6qROjorkdEhGkS0+xNpTDzIsV2D1BZFpHkcULUWaLuG9yjY2mSbwYG8zE+1S1FkqwgItGkEAp7SA0yodTuEsZi39hoN/bOI6lY1Nkmr22drok9dDWsGO3EZOmVKEpWdIoicvLOTNo26E8RQpvCDajT08ByVd/zQfg8HA4cOHSafTrFy5kvXr1zP78gX0jx/iofppuIV5HC5Mc1IxlmFDiAdaM3i7eiM/iF2MaxHhFprJCRgxJmI0iQx8Y04xPZJgWDmaecOQTMxg0eByBsduJit5nNbEdHqUccpCTr6TzGJ5ZAMP143GLXcxr3sa8riUT0Zdy4CqliW9Zpy6Zt4oGOCOkQg2j5zJ/dN4PXqALpeX2QPZfFToo0MO/apsmrRWzL655MXrWeJuxSXXYEoI8ctS9GlOElH/wCHtIo5pKymOluOQ2EAQREScYU0XP1hmEBCm0CYiyKMFCIRubjs3B2EaXivU06AKkBaV0pkU0yeV03ccJk/MYNGiRf+vrqH/WmmX3z7+JPNmz+XuX93FU4kYRdUfMsMkZF/WREKiK3ls9FZOGfp4+9RsMsMyGgQpYkufxPb+2/x11728PuUOvLIeatUeNHE9O9QebO5jxCQOBBjISx5hvGMeO/QG5OlG5IkEro5Ovv3wG64152G+aw4bVYPkJfaRIzjM6HYZ0oIKMlsO0dPUxJZd58k2K7lvxSwualHzx5IAPqUTs8NKceIoEVWMhsR8FOk0BdEgi4a1fMvTpFXbCQirkA/PY5rvEONdeXxgreFgphJb5EeUqRiJwwep31rHBl2K66YvI9tmxG/ZyBaVBWFazPT+pYzJilJS5sAguIjfeU7zpmUsX7cl+PSDzcjLc8i6dCnjrfV0aNWo4gkapHPoMfRTpFFz0+lJPDbzc0YkaoTxIVZ3Z/B5YZABVZJqzxCt5lqWD83jTxPTaGQR7mhJs8fcTX5+/n+378wv/Hz4WZtGIBBAr9f/YywL5XF7swKlPMm689+RZ52KKedCTNFeTEkHs70RzmjH8mp5ER6Jjum2fVwdaCSlbGCo8AdqRAnqkz6OZXVwXldDdXoDx8SP8bSlmH5lL2lBhBkeB3PjA6zL1fJt4G+kJ3xPfiLIouFM5vRW8mqlA3dayzFFCmME5vUXkYiPps+4l/asJ2gwuLAduZl99d/x0h9/zw033oxcLketVv9jHgKBgO+//56hoSHGjR9H2cNzMHrL8GoNaONZnFbZOKGOIVd+wej+G1g1GKVLd5pB6RxsUTORVBnZXg0LYjJqUm0kQ1oiynOcMp0lIKwgKjuPMZlGHb2A48o0uhgMUkBr3MDHk/6IGz3L6+7Hp3cyc0CBIbKUwYyvmdRfjDgnSUwgRhKXkx6uYnNXP5bMPF7OeAxpchNlThUSWT3ucBkOiRivZBzbjUZ2Z79MZqAQj/lxVLJMajxO5rZaOawP8klWGasHu7nA2cPXlmWYBScRp6/EnGzjkvDTbNN66RXN4Y/FhTx/Pp9rBw6yyziXz852IE+FeN2qZ/eJdt7d+/7/8Jpxu91s/GYjH3+2nlAC5K4BFMo0QxI9EaEAQ9KPKhXFKxZgkWWDSMbBfUf4caMPi/YUJt333LhyKa1T53NveTkPON7jeucIl3mHiC7N5i+9/Uz79gVy4sW4F0/BG1zJH4+Uc9J2gneLB/FI5di9K/jO5mW7IYHhaDuiL/+Kzhyn8H45fmOU6YMeBII0rcoyqvz9+FJQdt2TJA/1c8+7nzK2ehRjAnJKE/N5rvwcO82l/Hr4e4KReZyJPU1KGKbN4Gdc4hsmJZo5mnkRE71aNspvIc15JLTzerGZAqMZbVRDVC5gUZ+Pt77aQH6Gjhcvv5RJ4jNsyhhAk9pJ6XAJ/QV7EAkCLHWUokkG6NIH2GZaRVAiZkqijeOTr+EN4bMcaPmQHQ+9w8iVV+IvGU2lN45D7iYuOs0hqxZLYAYOkRxIcEffVOTyA4zxKqnXGRlS11HVLUSUyKVb4SClGOBc3hYGdzv4zdVX/icoyC/8Z/CzNQ2v14tMJvvJ00fg7Flyk/Wc7pSw65iAl9c+y3mhDHPsILcNDJOVbqU5/TAenQ5jzMO41HZ8UgEdybnMH7Rx2NZFpbuaHZkJKkRNFARHU6eKMiLOojR2FLtIQ1DmIxCvYGKVmvMd35IzwUa9wsbouBshKXJjDnQpJ2eSNsY7zUTFft4b9Qo7cs5iDK1lUGhlct87NNR2IhE1cfTra2hJ9CESSfnTH15i/vz5/5hPZmYm69et54UXXkD6UTmtnwY4rvuUzKibgtAqZJEksYSN7HAPbxeXsc+ykztaJJwy+Li2fhGLUgJemOjFIhxAI3LSlayh3daMU1SDEDnVgQlc3uLjXNYhrIIOVKkkVd48kpIeOrO+ZE/eUf6w4zUkKRmf6Yo4oI2SSEc4rRxLh7qRQe/1lFWVkDD2EJO34o+t5qK6ydw5/0+EgKRwJ9qYmGRqCWMH36MgeRvtJhE9Yi1/LVnMi01nmeHtIj/qJCyLs1u/gtGho3Soi/iV90nqlAIU6SQp5PglCWoNQQKyLsKRZXx20k9GvJiIrJGOMz0888wz/9QzOpVKsW/fPvbs3s3+k2dxBkIUyyUosk1Yb3eiSufym9ZxpGTN3J1/DaNcpazx7kIh3c2XZgNrOldi9c+kyfocs/ty2dFfx2Ubd/LQX//GZZoXCVf2YE32065R4JQL6U/cR+mYz4jWLOfcrjZcT35BRJrFh8pJJMp6yfZ34AjNoy0QINT5LcOtStT54ym/9nYmGmrZZOmlJ1XBdaFhxofr2WmxElF0ESu5kIi3h3WHt+NUxskZiHDf3MsZTBkQE0GbDCJOiRgfaOREYgh7eiy9IhlE50IqyF61kVKBE6HkEG6pmC2WbJKJuSwN7aIweZD9wXxe/Xwb86fN5hFDNoFUgI+LQ0gER3FHZORKB5g7YiLIRcSD1xNN78QaC+HKr+WkeBxZkTyWuc6zJ1fDb5MJrjSt5fIvPkEvvJ2CTBlid4hG1TzO6WMcm9gEifHo091IUwlsYTU2yRCjfTEucw5QETEwpJSxfFjMjgwfcUULgkHXT1ZI/sLPm5+taWzatOkfpUP+HwwiCacEF3H/9jd45OYxnMm6DKHAzGeGWWgSNn43GKIgcYSSXtie3YgntpwO1TnU/kIOaE00KYqIUY5TNIQo1o9ZuIvb+6fjT+UQNXewX7qMRd6d6FNR+sdMpOmTNPM8enrNMhpludTnx6hwLUODhU3NUdyq8zxdqaRHMUxI4kUVibH4bCuv/LCF52c/iXn6RN4ZdZrpPhEnRjr4/UuP89Rv3US9aa644XauuPIK5s6dy9atW3lr/Ye0W9V0SYQsGCokKM/GKVOxKbuRY9YW8tOdLHPmMKBpZFTIB4oN6GJimmQ2zirDBMUaqn0S9JJGoulMBqL3M9lxkkPluzikykKTHqZRXch0u4KAPEVT5gls/qVsqv4IR3gN32eMIj/Sxix/jHH2WXgVaU6eb6bu3CGuej4bQ+p9zooX8dLMLyFVRlqgRpqUsGDEQ5W/kb9ZfPxdP42qgJzlobPY5CLa5cvZZ2pim2k8ppgTt3Acl8ffQyQI4nM+wxh3JwnBThKCXnRxDw+19NGgvByiFoSiFgQxLd8H8yFS+0+i4na7ueXmu+iIJaiYkMUVo+8kYrSSktXj0J2kUZyFJCInoGmiU2zGKxnhcGYflvhchtUpemUNPDfqO+4e+IEOWYoSpYzYzFzeHPdXNnzwDdtfe5XnH3ycVvGfmORu5U8TP8Wb2oc5LGVQO4bMVTXcNuVFIr42vgh8R9GAEO/x8WSqMwgp9CTma5lwpwpdoJhVg2cZ0JxnMHkjsjQo4z4aMiykFEM4k/ORNVbzXv0j/P7dvQSTCUY/dC8nPRam23UssZxjWuIkg+oQG3Regmof6YgERXIatoiWCweLWOIXcMrs580KH4K0hjFeA0v6BnDkbmAw3crmN4JkXLqMwXIbXc0ZTLbrsIX6iKRrUEgqsbpamOIaxV9L9fyppJXHG7KoNbQRENjQkGRAqaApbqHTfJZap5bz2Voki26l8em3eW/ObCQWK1q/GafMxXWTwJJqxiw4RpvuAGN8hSwfHMd4VymvVdbSoIpjCvqY4+ynIuhnWsc8flBu/1dKyy/8b/KzNo133333H+NkVz/iHd/RPFzLqCIV1Ton9Wklb+hnEhf6EaQzuT/rRaLCswgF7VzdPYEZ9kmctMSQio5xJMvMUZ2arFAYKQNoI1oK+i7l2YoRrOEEieRv6BbpedckZFrka9KaSSTjdUjCE7mofxoh0QjDso9ZPjQZfbQXuXiYrGiaOY4qPsi8gZzIceIpAydrt5KrzWK2cTKWwWw+Kh/EK0lzt1DOyPLZ6GTbmDAg49y+r7nuq08xFBTzztvvsfKCVVww4xkGx7Syvug8ldFdlEWbeLbHjDrtJIScwuhZDmmHKYpF2VY0xGSXnFt7JuNKL6NN9wEV3iUExBXUGt/Ep97KiFqCUH2GHDwMxA1IhGf4U46B3GgGWdEyYvGF7LP+CaFXjCBp4ta+rwiIK+iXpsjx3MDx2quZOHEBZm077nQBLmERVnYyO/EtCv89fGMM0CfX06k7Tq1mNKJkDgWhJqr757IwuZQRuYZO3U5WDJSzdEjK94Xf40+P4WJ7K/LwQd6uGEYiHsKZWI1XnEmLooG9WW3U6sLIk2Gm2WHXOx/x0Wff/OTa+PTTdbz82h+YsKCEB6zjyYimGd8/m5THjjoxi1emn+aqPgHptBS7IJN6SRUXDio5q4ekYg/jAynWeh08nLuCnaLbmORoQJE8Q2+yhi+ralE9dwWaN2U89tenuXb177hQXIA3aaJbXINdYScptCOPS9mQfYrpqmEM+lKK/EZOSu7GlU5hi9nxqUI4xV9yQ2+CGW4VZwU2pin2MiDO4w/55fjE83GL5NybGsU9W65Cqhaj1FupePBezut95PUNIE/5+UR/MbZkD/nsYCi+mAx/H9K4grPa4yR0m6kTy5jWMJFVPQWc1alo1zkZlljZbdFwaedCnv3xLLZrV5NbpGNZcDNHzEvJj/RzTUsWe8u8HAr1Mjo6hh8zR9htGWJV2yTW5+o4bJmIQ7SNWS4jlqCcMT4nr1QM8seSDIZUe9CldYy/8k4u+OZ1Ft57Kb9uiDIsT5MS9fFEyxlk8hECiQkI5QdpMJbxeVY3h41Z6EI6zlsFBEVWHqsdw3qOMHX69H+xuvzC/w4/W9OIxWI/+Z7hdA7zfKWV0CEvY2tEnJcp2CNbBMkxCIXbKfKFOWP5jLSkk2R8BRKBkWElSIXdXNo1mr0Te0EQY0DRDQI1W3STCMZ9RARiBqV6Hq63sNnmxK6QsU2zgKqQlj2RFrpMhynxXo4tbGasdyGvF0zl6t469L4gIMCSPEFKWIwwHaW4xcuHXWfRW2W8uqSPR5sj3Nc0mzGuPnQxIW9U72WmPUKJr5iKEjWXFyt4uLWWibPmcOs1V/PRW79mYtnrjPL3YJfraBWP5YLEcbQxDZtyA+wRFLLq7J1YAir8kx+iQablNVsOhfGN3NQXQhSR0KswMcadTyJpYbMtyoVxP/Gkjh6FCr8wCxFBKkYeQiA7S0z9IqFgOQ2SMn7d1s5hWy6VDgHHi57lTCybkaEWpl9+GVqfjU7ZJEy6P9OWnIjF/QwCzhMWSFnkrGe2p5ONxmKKwv081tWGXTrCHP8JYophFPF+ZrryyI5lsHi4gd9UjsEasqKRXYhBeB/yVJwFwRMckM+nUWdksb8Np8yAMTlI/IchFi5dw6hRowDo7e3l8Wefpq+nnlm3XkVWqIiltcs4XbCX2pJnOC6dzKDUwmFjNSKXhzya+UE5ijbJOIzxBE937yKsakDvz2WdzcQ0+wymBiSYElYCzOKE3o0gaUGACPM9SyjaUsD7n/2a8+MLCU64GoFGjiqRT0jShi4RwBSvptJVTaXkKgISCbWiCfhETkJo8VLDnecmMSiU8mhpMzcO+LEITyBNj7BDV0qZN4E6aWPLzmdYseYCXn3lJe674zPqBCGqR6TstrWwObMccWI6flyMDok5Y1Sz0F3BWclUQunjxNCSEERo1XkYzmxjlutmrOkz6IQ7SAov4MHTW1BOm4eguBpTcgdfa6ZSnhbwSX4FOZGH6Rc9ysW9RYxxFfGHmvM4FHK+LQjjkSZZNjLEh412NhTUohRHqHGv4Q+1GjZlCAkpG3h4IMmhrHmcydCyq8vFqWlDCPiP/hgVjjF0qdeij03HylM8UiXmrMYBgiRdWjtxoYG4MEJBbIRdnYf5+tUv/y0a8wv/a/xsTeO/5LxJwVFTGvvwTjKq7+BNSx55YQ/Z4Qg90ix8sjDGuAkvYu4bOUC/xs1G3Q0EpFZ+tAgoS7qQ+pTcMLCVI5pFjCiOMDnSTW7/7fhkU0hov2BO8iCvakdzsaOFOvk4DAkz51UVyKMfc/25m3lqfAF1aicf5dbQ6C3HJHoexMNYUqfok+ZSevozasJOJuXKWd1rJz/RS4vyKHWCCjSJIF9lW+hXV3AJA5hHbiRL/DUli+Yzyl7I+5tfo7P/PK/272OGvZyrpp5nSCHhhPgKTugqkQh3Y0024lW20k0+h0Q3UqX9jrGhWpaH9jC+715SwmHyYsM8P3cjIXGUnKiNbpGNbbo8JKk0yXQO2X4rX2Wl+E27D1lcRkhZzFjx58jEPnKdFg5khMh1V5If8fOtLEkVbTgjNzHfbWWb+CwZcTXfZxwhLf6aVFpBhzZEjT+TYZWfAlE9ndI8ni28Dilx5kY+4bxoNCcLbMwSvY4ooeXeQS+TIn1ssO7nDJdjSI0wMXGc64aaiSj7cBmGsAVvZlyHk0/8h9jz/HsAHDlyhDvvvYXo2jKWThvPGa0elWwndouPU5oZFKffJi6XcFx3NVNGEqRTBxk0xBgfDFDFOmaPFNEtU5CVFOLTdiMSizAEraTDPUzxbUBIlNXDN+L2ONmUc46AKE3WPCN35U1j3ccdpJ95i9w5RRRVDHGBbDJH9CIqvGW4JL00Ca8gIIlTGWyn3CelXjMbifAMbXoICawcNptY1bcIsaOMFlOaUreJ+7p38frpbSxYfQUffPgOl1xZwK6yUqSpNG80Huf6mcMkUlNII6Us1sYPyvmMCnXQIp2LV2AjJowzyi3D7buD3pKXUcdkXHdexGmThh8yu5h3+EZagh5six7AGrajlETwCxVkyA5iFG+jXqpFKerh3fJOhs27uas/hleU4gPLaEBCRrwVgSCBR9XGOU2YLywnEaU0rG0vICu5AKVgO1npRtaszWL9qz9iGzWasFjOxEAft08+SpF/DLqwFmvSzCTXaNLpIYwRH2u7pxNTbkQXuhC7bDOxVASlUvlv1ZZf+H/Hz9Y0/sulkjOUJSw7/zqbLR7miT+myplDJDiKFa1VXD8rilPqxC2xYY0WYo3twZAIoE/tYn2ukhXh71DhpUtcRTT8J+Z6ynHq/4ZD3UK7zIkuEeSUwcG8cCNvNZ7j0zwL9coocZmMeYNZVCTb+Wrs0wzoDZQFFmGJOSgKdmIUJjlmE2EVnMaXVuFMJTjb18s9N62l2BPEL1CTK91Au/o0R4RPIUrVclZt4pLQKHL9Rj6uuJ0vso4xShUlp+x6JL+6GXmtm92ZJ7mlU85vq7LZmXOG/sREBOk1CNI5nB/9FFd1NvHXU9PwmHS0WA+hTaQ5UfA9dqGN8qGV2AUVIKjHkPBhSnkoSBygR+yi0ldEaTCfoHgCE71xhP4CrKbd+FQD6EVS/pa/HJfIzCWhHdQpM3DHBMjlair8+5D678RuvQunNE6a77m19XoEggS7Mr4ne+hupjvOct44mnvGqMn1helQxTkimEWOo5xDlg6a0tOZ7BqHMC7gvPJzvPEyZgU9XNGp4q3C1Ww26PltSwphwkhzYYgPtnzN++s/QyQS8dB999Oy9xx3XbaSOlsb410eStOb0IkH2Ffs4HvjOVLJ27hxYCtpgR2z+FPmDwuQ9D/E/eMc3OjayYChng8yqqh0TaY4OUjp8ENk+11M9TTiS4+h1SAiI5aJWGikzKfmmLaUNkkmbRUTeOruQ3y+8STuBjdnR/JZd3YruRk5HJc0ITbkoY97iIqSdArF/CjWoEp/jTmeYI8ojF1kxCqO8ZqwCqEsQkhjoGbwLI8PN3Dt/fcilcsQGcLcbbgIzbkD3D5qNk+U53Bb61jEYR2PjX+L04JZOGRJDPEYwUQRKWEzC/zdyAVBlndaeNWaCQk5e6wOzhgHicXibNzQws13zqE71M6cXjPqbAsr7A04tR4k6SSbVfWEE8+glWynVztAOpbGKdRyAb9FFtShSU1lv2YsfcJ+ZJFB7nA2kZEcIuaex9tZehyu59iS5cNEHaV5Haze8x5751yOPpbPacNM8pPHKQ18zFeZVcwIvEReLBevUItLI+Jc4dusbG7jU/cBFi688N+kML/wv8rP0jS8Xu8/1RXa9nY/TefbME8SIxAk0Al66ZGPYVPBAE5FJ2VeEXZVCLdYxn7RYvKSzahSPZQFJvK59AOs6fP0i9V8Y02x2O6jW+nhkEVIzchBtPEOspOV+AUL2ZI9yAmNkHjAQUyc5pTewM1HruetOZdiEYjIiit4svU/9nsfzJxO0cBVHM/5htVuF281naOqtAi5VI8hISIWN5AMj+O0Tkepp5Kc2Fl6ZBZeHt3PMvMp+tQl3DOyD3NigJcVNzPKp6Re6yCsb2T6YDZ/rlXwaXEKTewYGXEhpZFetlqkfJCXYHGnDmHQhDZkwRMdy1xXP4+X5yMwbqQipKZPXs0JsYVH2hoZyh1hRBum3ngafbKf+Y5LOWT1kIxfQlZ4Cw0qKT5VinTaz2x/I0dFTzDSfZqU/BAndIXYEn4qBa+wxFXJ+Yx6RJFhcsMTCAiirB6YTpGviI35Eap9HTgkAiKCBpYGjnFI9mtUCj0zA/u4pzmPd/NUlEbmk4zoMIUzmGlPIE0fpdotI89VhCycQpGQoa69nynz5lBVVcWNV1+DKSHmhutmcVgr5NGmJLqomajQwstjPBhSHq5xpDisaEMSmc6LnR/xduU59KkcCt0NjPFkUe3386Z5LeGkBGlygCLHWKAaj2YbhxVt5DsmkhHMJiFMkJPYgyWSQZUrwh5rO10qH+XpOh5bncnvhyrodvq5PrGSk5o4qtQIUZ+aEdUZEIQQJgpIYkSTDCEWOUEgICOeIu7y0x3vpqPbx4cffoRarebKvDxKSkq45tob0cyZjdgeRyAQMz1kplZdT9ydjyKdh4AUspSKfH8JTtlhbNEot3SL0aeXsLfiAF+M+YweYQlKxSBT3GvJyzhLz+ffUrT0EtTmM8wPv8vHJbcSEF9AdW4mU7QH2dV5EpdUglmwhRGJElPLr9GmI5wqXEd1VE2+cyxV/RO4ZbyWXoOYyd5sjigmssPkx2RtZFCWRZ5biiyhQhCvYFWNkVMHwwwu0jMsKkWbbKMg4kcem0SnNA+HXkaZP8hx8yHk4gTVrnHI00PUhXN48r9Y7PILP39+lqbR1dX1j/fY/w/2zDtxd9VyZcG1vK3LJy84iphUQLfOhDQwFWVsI9kBO3c11vDnmjNsFhnIjMhZNGCk19KDNWlnYsDNgHQcb5f8QEXUQ1rSi0u8hCs7cqk1zabdcJI6dR7maJhU2w5yc4yY000ExeVMabqTnTlHsMTa6ZNlIRDE0AXNeKR2lgzHMMZThEM6ls1axPMlInYYfdzdmA2BOQijvTile/EJTVTFzmALGTlrO0/NYBFN2nyECiVjghWUh4pxyf4KiiE+t9zMWY0cBQoSqhj3dezEkHKzwzQLv1TEGxPfYb5DjSRUil5+ko9zHuSo3kVSMMAC7wDmwEN4BG62WDoQxfOZNjyL/aY01cM1pBU5BMQjTI7cR71kKh9niEkmppOSnMMeKaXIORr39h+ZmFuNJVLMd3mdnAqbKY8foE06nq/2T8OucHDbBCXqRCG/twfJi0ooCmdzc98sQoJ8dpV1c63LSas2j/LkMLutCr7NiVEQ3IQkXszjp4vRJCQ8M/d1rPEfyR5aykujtmF0lbHnHRfbtj7Jr+/7NW0DXdwzZSspz1FC0r9SaxQyxjOIVyJBRxqhUIBbLKBVKaBK1csVXX66e8fQIZ7EZ2VpzNEA+8OrGZTkEk3LcBg/5Lj4Qpb0HONs0e8ZFJZQW1DJJNdJbh74G8PqIEHtCbbrZ9Mv02OKCXnfuJpeZTvB3DIKE0GMfTn48+SkBYPYQmWoZHMpTm0ll3YsPgOFCS1vGO9kWFDFG3X76TF34DccY/c2Je+88RY/bN3yj+va43FwX/I0IsFS3izOwC8ZpCqSZIpjmNdKj5EUdRAV64kmJhBNLiEodqOJFaBMGIlGx4DmDKtCImTpNJXOKpYcOM+u4WFsN2ppi43lvLmPoLCXBGE6/TuQOWtRikJkxkqZHK7HMnQtK3uMNOSsp1Vm46Qqh3kxOT+ObqMsuJrSxJVMtkuwK3aj1CvxCDMRJDWM9QS5tWU8vebv2Kt9jH7XbTzddZDjqiruOb2QM6U+DumvpSZ4kLhiN8eM8xAk1tIm0XB3o4kN5d/QfWCY7Ozsf7W8/ML/Jj9L00in0wgEgp/EVCIB/f4ob00vJCOewhgbTVjkQST5E0s9Q7xuK0Se0DAiDzPBlaJPIUeTDNKd8xwC4RLGuNqYE2zhDcUdDMrkzAyH6YzPJZY2IEpHyQt+QqZqCyZ7FS9nzSTr3HZWWpV0JCLcPuMM1kApGZFqRCEpz1Ttol8h5U9n+tFLa5EELycu/xF3YISa3CHi0RCHDQt5QtiIMabg7tMPMKBrZKN1mCz7HC7qyUcbu5azaicVA1HeHNWIRniSYt8Jrupdwun8YbZndBKQy0gkpdzVFeS02swsp5Ye6UyWDbVzzXA/hKeQVJ7AIwsiTVUx132K0Z5B/HIbg2Ixs3wpvspYi07xJ9xpNZrEKk5lKKiMfkHVyHii0T+xL0vGZ/sc/GbcCJ0yGJFGuNE1wHtnvuei2ZcREQbISMY4K59MOpaHX9RHWGjCFLJR4xkmKRTToNtJk0bNXvNYTqoj6CJetGRwkaMOSXyEP1bUUBgIYY4P0a2WMMe/jq7MCcSSZnwCO4PKIEb1FqSEOTDiIyc7jzvvvINGhxvxPRm873iX0ngTcyI99MkMfJKXzZxAI5KUDEG8im/MQkSpGKXBICFhHoWiPfjTE5EmDAQEYo5rc5EJ9lLhkzFkTmIWuQiJveyTzGD60FXEzGnqNW6urMnghfbjqNO7UeBnTLSficEhPtZcR0zSyBT/foLp8XydHydNinFOK6t7o3QrF/D3ikF6YrNZHVpLl2gHCcEQVYL3+bQySCC2hqXBTm6YmOKej/rw+/1oNBpSqRSN3Z0cUU9kUtuFXOuP83GlEGFyEYL0D1ij12AJJ3ALbYyNpGjRnkIj2cAzE8TMHixhTp8OqaSAUtdYjuXs4c0JN/H2VycwXXkFveIYOtl+SBZS48zgnpYMjhft5IxWh8B9Gdf4hhDoXJzMXs/HOgPTe2aR6+/GawhywiglLziDOX4FvvAUwuq7sKU9vNBcxA/GKJuzEnw/qo6qVDXp1CxSShO1ajUbsyVM700iEvrZpzLQK++iRyakxLeGO51adlkSTHc5OVmwEaNOhc2UjU6n+zepzC/8r/KzNI1jx44xevTon8SGKx5mQHcfpUiJirsJSN7ggElEacjKwkAtTw0M81DOFXSq8vAjxYsOufgHBEkT/eISdujEFKeaWD0YZlH078gTcoa0dbjlU7l7bIwCyY9Md01DGL+Qu9tUfNwsYFrZFAIRIQa5ixFFJnaFjwbjCCmhhazoMFvyvCRSdyNAhbE9GwRJFMLbqQ48xeohO5JIJTFyCCm7CRq28uNhDT2SW0mnEyRSCU6Uv8T4+Cl+1X07w6lshslh+YJu7nTUc4l/H6WJTITBKZy0tGEKKVBHYySFMX7IzGG2M8wfxlSzqm8MU717mKa7FGmkCqMkjFtTi0es5XullOt8m7CH8yFiZFi2mXWZRq7u/hFd7CVISymJtmKOGnioQcIr4wPYBQWkxFuJhkfImxFBnvE6FnGcfPFprKm3uaHNRrcmA584RIN+mABGjli3M9pZxLCkkmZNjGcHt2PXNPJU2bVM5y8Yk3MxxlNc6OzgqFnMEU0Jhypj3NTZRlgUJyxKkxcXYx3WcnT9aWrDcWbNeYA75xvYER2gTSsmy76WI9IMtpjFDMq01KrNTIqeY59aQUE4iUOSokuZ4m2VjWXDq5is3cnX8adQpJKEJScYUQxS6p9MPLyWab1GNlj9kCinOFiEwNxGWHGIUSEdg6nxvGMuIZ62sNa7nR26CbxU10+nOhON5ixnxSV0KpTMChzlmvonaFcJOWixc/FIkGn+E1T0W2nM3UlNZICwIoZMHGGf1Eutfhq/rVOyIvMEe/bsYeXKlTQ0NJBXnCatbcUp0pOdOsblHS4+KOrj9cnrKR+JMjk8wk51PiLlWyxJ72W/aAJRdMyyW9hpGY8tmqAm6kThHUOdrYFwv4dLTJ0cSlYTEpSjiI/FGqwhJ+Qh7NPSkV7LvORzNJpkbFL8Cqc4E6OmjZudJTwW1LB1zNP0yyXkea8hItbSJ/VyVvMYt7ifZr8pH7/wAnLDR5nTl80bOZkcMeoQJQqIeBMs7SrCLRFyvuz3dClX0aRsRZgyYYrYqPEWMmUEDhu7CS4ejbyzk0kTm/5NCvML/zv8LE1j8+bNrF+//iexaSodJl0uk4Ne5IofUCSWMz7Ujs5zDapQAK/UyQK7lIm+XIyiu4lEMvhUO58jqiLGpj/CkNKg9ZVTEPmUQMu97MtysyA4mWRkHds0MU5Kx2CVO1nkf5x+8Xh60p3sLl7JDkMlmqSTpa56EuojHBa8QJoUqwKPcVwxDYf4FLZIOfXaPkZVV/KH+nUsLFyASu3mrCLO/P5Skur9bM+xMyiWMGugiSG5jN9OqUUuGaYoJWao7E1OSXIZSi4gLNZySPYEXxjO0qvqxBDz8OeTSzB5FuIwf4YwHSEpTDMos3BvswRtREVYXMBXpgkMS0zMj+0GoF6eQUqQRp9eyGifncu7pew2liDKMNMgdBLI/4jsmIfyWISvii9mW6YCW6SAbo2M1z0JlDolV7rHcs50gnRaiSAlxy9yEdUfQSxagl2ppDpykCXt86g1FXDIlMckfwNn9VLqJTPYa/bhUe3mdCwLuaAdoWQ8cXkOTu1GrNHFXNa4AId+P1Pbf8txo5oh+dN8872Ds/WtvHPNu2QVrKA//RGXeTaTkQoAAsRJIUfDv6HKZaRf10/50O1M9c3ju+LH2G7IwiORUuhfRTgVQmF/gN+kX+Azi5U2hZDLOpYxx16AV9VHWDyFceHPyfRP4IDxMHO9x3FqTxJiPOes7dzbE+YLayEzO5bTUeRFotjGRcOlnA/9gRrVLmqcbozhctYX9fBj7gjCRCapSDlzQwc5lJVmWPxn5JGviKTPcVaRw69ailnaNZsWUxvjVTLq6upYuXIlX3+zkZHCYoRhLxurNrFgMMWW3C00ahaTH7qUzFAv5w1ikoIQowcvpCx0K7vKTxIXCXFJXWzNTELSxNd5hwlKUlR+o+Pqyny69O1YwuOQx3KYHN6PNi3jh8IFRAW3I0gGSAiEQBq/WIk4KQJBlO9zAsRFIlKey7l0xMpmWwNawQScUikuUQYt0geZYO+jMaebPokORWI2o4JSavXHMcYStChELBsW8FahgPtyxyKJVLE49h4SvHikaxBJz7HXMIZPCxooGNHie//9n3Sw/IX/e/jZVQgbGRlBpVKhUql+Eh/a2UaOuZicqI4L7BJaNNkMJZdxdyts0E/kN8UZXDFQS1S5mwbRcjyxS3jldBZPNUixxZTMG1yML3EbI9Jsfje5lhO5W9gk+xuN6Rupl+cjj+VR07WEs7JyumJpFKoMctONWFOdBIUqtlgzqRVdSEE0wrxgM2MjrcwONJEVMdGg28hI2wnuuOM2xI56Cho/J0NUT1pWi9pwDw2WrZzSuvk+v549GUl2ZeuBIXxCMz2xaZTaS/AlKghIFAhJ41YeZECmozCg49I+FaaYn4QgSb59NusPFJMZibIuV0BMtYl7Zv2N307aS4u8mmaVgWZREWfTNzM6PEJ2VMhBxSQa1Uo+z46zIXcfM506jmqnst4yhdesa7A4r6RZn8eITIk6tpjJ3iIMfe1kZOahCZsZ1XIfu2VXsLLlYsTJGGZ/CeMdg4jSXzKs3YfT9hbVQSEuwXhG5FIEghh1pjO0afTYycPOdByppfTJa5nWk4E4ls84exalfgWxeCHdSivtahnb9mWy+YiTu2/6HVcpxpIQ7GFGr4BEyoRdkkaeStErNRCXnOCynmFeODUTQ6qdfuUApzUG7u0pwCiqJS9eTzwtQJByYw4E6FHF0cYlbLBOZI/taxpVPYhE6xmRLmZcxMWa3hS3dgp57qwBTaSaiEjLlgwFnUohlliEW9rSRGQddOtDjChGYRU2srDlYsb1X4Au2YMmHkUo7KNVJWUoNZb82E7C4u1ERW3cMlTLc+1t5Ig/4bKFB9mQFycqziWdThMKhfj9716gcuxEpre8Q4h7+bg0RYfWw+8aUlzePo9mZZJjiokkRcN4RRK0kRx+02DgjWNWSrwWprjtaONmAoxHJuih7+wZJo+2YI4JMSfq6JOqaZZZmN8vpVYWIKh5nQFViNdUO5hZ90duajaRJziAU+pnR04adaqK5V0XkRPUU+lT06Z7GDUBxkRdLBv5PaOSr3F/xzlere9kuf1rCgJ+nmm6gEFlirhEwlOjwnSoQZ6Ks3AYnOk8BsViotIAvaog9Zoh5gZF3JuVi1qt/qfOlr/wfwc/u38aR48eZc6cf+4TfGpkAxPU9UyP7QcBzAnsY6sxjztniDH4s1HHxQSlCb629XF/fTkJYZRjRjExVRP6lJNIZD6auJSv8nX0CXLwiAoRCPW0Wo4B4FCISGKgfKQcb2MDFbqJ2AYe5P6+LgZkQr7NDeKXOpBpb0GaDPG1bBSy8LVkRyooiA6xKbSbcePGsWPTFqZMn8ammc9SafoKgaqXqqgMJQmkZJAZqiIrdYTbega4a3QOu40KjKFxBIV9iFMBEkIxzUovAoa50d5CbizMHyZlUhn+lJWnf8sRk4hEWotD6aFLqWdyoAeEUU7IU8zxduEWmqnTDXCXdwuuZDaHQr+mW6bhhtRmcr1p3IKX+FB9M/JUlF+1RnmgpoCMaJxLBmahTNUTkG9np7eTVEJAj2gMQfluJrrkvF1oYIFnM7cO9XJcX0idoY6kMES9sZsulR4Dx/nzCQVBuYjtOgtd6h5SilNMEm3Hlazg4h4JtsgoJvWtYXFPDoZQPotSIXq0Bhb7H+SaPXvRCAU8qazm3aLTeJX9TGgayw6lAr14L/XGLmaPLKdZ08S27A4W2DNos33FPlkjhkQ2p01N9GnaEaW+YEXKizgxnuuqbOQF46zti9GuOMKXRT+ypO8CcnES5xJ6Dc1UjUTRxoXcP2Y0PQqICwsIintRJ0P4DK/zagkkU5XcP3iKfO82TPFiGoreJCws5KpeK379WbboZmBODCGS15FIKbmpQU6/YhxxlZgKTy5tWRswpkZwyNV8kNrMQuVobr71DuYte5CH24wYA34CQjvawAMscNQgSp/jkYkvYYppqHZlkJDYmT8gwcIXVIZD/KpGyHV9I/z+5Ar+WtnHQXMWo5yT+Gu8EU/NWsoStTTrbUiTIvLtk9HFNCy1t3Ogso1kugFpeB5ZQQ2Oig+oYT+q+ALGBD1IRAP0aSS8nucmoN5CRHWK4oEUipSEXpkBXSCCOaRHI4zjkCbol7rQRNPcdjjFb6RSNKq9WFMhgt576NO3Eo1egzE4Qp7uPlpsGq6pfZbxd13E/S/dzxNPPPGvlpZf+D/Ez840UqkUUqn0n+KD588yYzQMiJRUBuMUSnqRJappVaoZ1Kq5pl/BAf1TTPJ0oUu0YZfqeWfUTkoiCbRpHS9WbkWRTJMbmsEd9TVsKNtOm1yBIVmPV2jCFk5wzOrikvAu3uoMIpu5BLfmEIXDen49LokqocAUnc15mYE+QTdeQzeLRC9ij/4JdWIGEuGfANBqtfz1tdcZvXQ2nzw8ljyFmsPCvzK+v5fpI1Xo2USR9xwhEWjiCkirEMfzMUcdBMUhRlQeMoJq/FIZf8lcQ3Uwida/AEXqMdrLnuC9rLVEkyXMG0pxed0a6gvfwG/+gjXDTjJcNxOUDNIlsiCVyBGJMihWb6BNeRKXWEFUEsRLLi5pDLEgjEKQZLHdAelC4qleapUhzAIT9oAQm9pIqTeDVuu39MnvQYiMKXYBYRHstgwy3vEQIe0rBFVHcMrDuMUituWkOZjRz2nDMaqCESRRAfXSGnJiaXTOK9hqhG3FL7O/yM/q5s0sb7HQr+znlW/PkRQLeGb5baiiWfSKQuwbaMAx9Ab7E5nkJJ0Uh8N0Sj7B6J6J3PANJ4sVbJTeyhMjX6BNNnBUm8FASok8bkEe1SJPSMmOpPALrfyxeCyz7QEqXA/QYDzKjAE3cxPL8SbzaVNP44siJ83qHO5qiTPZ6+Jrm4bL3F/zYoWSVsmlJAQytovKmZEMoxUJ8alGcEj7+V1pFZXJduZFziOI5/G9bjLzFZtJRpoguoghjZd+VQdbLZXMcLsxOXP4Q+0xBDNG0+GyM+/iyxmOvsr9NXspCI+lMHAph/M30p/oRcQ4TPEQsxxJ3ivR833ZFro1hyjxllIaKkBNM2FVBkmhkee6t5Nug/U6A8pEAn+yGnFCwCPNLs7ZTrNZCB2Sm5E6HqLd1sJcRwcHC8EQ1NOknMr0kVJsgq18m5XFosg+xoezidivJqRT4DfcSas0k4Omcm4fdtBg+pilneMY5cyn1/INavdkbLVqZsukOGMVnFVH6JMJWO3Zxx3eYQLkcyLzOt4SCxDla5lgE9LU1ERVVdW/Wlp+4f8QPzvT+G+h9E5FHvTwvV7G3zLhQu8QweQyrF4HtqiEq1ozWVdZyxmFgv2V5WSGTBh5laTjFb7NHqLQ6yWo6MOv6KYm2cAxfzXdYj1Xu06SGw2jdE7kmHYin3uibE4EyJsdY1nvdtozVzLDC6n0OLKD4FGEiAoTaJIj5Ma8nFX9BkF4FLrY/6/0+YL583n1L6+yc++rrLFOpdpbxGmtlNqsj7EEiwj6dZzRC3mpycEGs5E8RzVT+0cRVZ6iXZUiL5TNb8fuxCnRck4lYY7bQkYwE598EGNygEfPFSFNx3l58h/JSveQndYhQ8OdNQ4uGMhjknuAzaYKDmQ2M9lpQxfJpNYQJiLI4KR4NMm0AgRJOrJ2oZC4kQ1ey6cFWQBk9QuxWXMYGurnWNFbfFc4glr4BDPb/8QrxRP5W4MLn0hGRaQDdXgV27KFrBq2EpM3cTrjPzZwmaMC7OSQFvfhEpeyOLaegHErM/rX8lW4DFs8TK+2katnm8jcvoeB4UwmyIq5KnEDVzqe4MCOA2hGjeHHsjLGJI6iEMoQiIrRO5vY4qijsd6HRSxiZlWKtnF3YFB0EE+1E4zn0CJP8EjhDPICXh5tjeOWJPgoQ0xOKMju7GEmueaQZghpup7RjgrMnjIEsm6OavR8Z6ngr4VGSkNeAu5C2oULSKT1VPq9zAi2opD0c8AaQJkOoAysIige4KQ4g4yUjGHVHNIYqEqfwpEVQ+aR4xHP57TWysXOPcxwyNgl3IdILuaTD95Hfe+77NcMUmpfy0LJIWo1zfRJzzDDL8MiFlLj0WMKZVHj/Y9NrrVqFSEFyBIhopovcRmU5DqG8SjzaRcF2NLTQtXkS/lT4yFEgcvYZ42RHR2kUXaORksmDt5DHi5HFJ+KKBlik0VHg3oFKYGQxcl3GNU/m40ZbejwIUop+DKzl5PmIm4YHqJbnotbkmI4OY1uURcRgYwBbT9ReT9nCgbxtjUxWZTN7Q2ZbMgexK7o4KLSqexz78Lp+4YmxX3cdLaaIUsxGzbtYt68ef+0OvIX/u/hZ2cawWDwnzb2AXSrFBS5V3D36Tm0m7ailn+GWvsHtkhXscg+gkelJI/v+FT2HhO8dl6sb2a97wVk8sPskQ7jSml47ZyGkL6PU5pyWuTFJFNGBiQixII041Ih4pHX+XZDN7fefA87SPCJdTJPnbuQTMt9XFibhyWUz1WdlWwrqqPUOw0MX2GMyonRhJ/QT4735ptvYd5nf+YaYQM7Mn9Hp3oYHS2cU85CqryMgmg9ybiMvIgDbSJJRBzBo90Ftl2kB++m1K9EkQgjUmzmh8yTLDs+jebiWmYlDpHteowjeRs4kOEiJ9mMKTSebKGaOFJ6ZUIqjScpD83n8kOzqXJkcc6yiuZR19CfWkK2cDvVIXAlJjG1axUxqZ2XSvvIDRixJD2oDh/AOH48dbUyNpz/iJpsCb2Usd8aJCpS0aS6BFMkTFXoO/yqbgrEdcwc/hVdmhzMngBjvGNp0adp0ieRJT20qhrQhTLoFV3Ep2O8VARtrBlqQxA+QiDazR+//Yi0RMHChauZt2MNxsnjueupGQQlMgYlQi7unc53uitxihVUBb/nd6KzlM8OYXdl8d0ZJ8+/8Tcsk8oQrLwXEUkG9U0IhI1MSHYQM3TQI1nLpUNGFEkzlceqyYoEaS3ZzF7ZeEZZ60hoDBSlzvCrYQfvaFYgjyuo8oaRpmq40H2afqmeSewgZhTyjWw5h3SzeKIeZIJR3NPdRZ3ExgzhBxyXBRkUzcLBHKSp2fRmfMtptZqMsJQBQQ2agJ51va8y6PVxz+1fEkp8zW5xFl/nZ7DurJzHRhs5rVFRHClmXutiGkZ9S1TZx6lCBw90F9EkGsPn+bfiUTrIiFZxV90t/Ji7Aa3gCP2GdtqDffwusopoOIuyCJAoJumdAOEuTkiXEZbI+Z3jbYQCF1MDGspDxXjEOcxz15LnzwL1flb2J/nY9iAdqrnMDH5IdayTfdpRuCViECQ4aDQQTRhpFQsIaDbTpbJjSsUJNPYjm1+KxS9jdCALj/4M63qUTEq52WVaQ0u4E1+FhyKXlh+3fMeDD9zxL1KTX/jP4GdnGps2bfpJtz6AeMSHv8TEetd+VkQXEwlYGB0YphknQvMwb2ctoUBwE8X+NCvFJ7igN8AJo559uYe5fMTB6mEFQabwesU5qp2X8lGuk2XeLSwLd/F2toWiaCmfyG7m3B9v453qbYRCg+xKtWHzm3g7/xiNymupq4zz8mkfcWkj35vKSBlFyGRpbuy3EDA0ILSW/eSYBQIBIQm8mSmiSXqEiZE47uhUru3Kosrl4sopFXRJygnqP2N2chmdqRI8Mjvq+BTqtBmUOMMs87YSyKxnijfMR4WT0AhK6BMK2Lbga8rdASYFztGvihIRipkwMo7edD5TIzsJ6s5zTuqg2j+DiH8W+0wqPOJSFnak2F8SIiWOcsO5KQzIlJzXhtCnP2CeIwNj1MRbDh+Pz57NrbfeyhVXXIFsXwZL8tJEy95CEVeR4l6mhTaQG8ykQVSAOBjkcM5nBMU+Vtc/RI/RjlfspWrEwLAuTkzkRx2cRDw5icLoKQ4ayniyYAKPnQ3zwbd/JhaNIDPZqPMe5fL7xtNlnkOZPYFHZadK/TVxZR63DOxnosPM99ZySpXfERTKCWfouLLqCv6su5GlikeofeEWslcuIm/SDBDGGBL30ye20ptS8F3hQUoDZYyOfMlLOTEu8vUz0TONVvGveb/sFNP90zGH45Sm32BYOA1tXE+tJsJx5XyGpFIm21vI8kcZYzmGPxbGp4txWt3H1b51jLavxWUUUiDyI4iuICw5zjznd/jSE+gs6WKMR49DouRwzMHenUd49KpKjDIPNt8AnfKl9CikfGeZSjgdZ2X0JSJKK9dM16JOFxMT6NmrSbE4WkhOOEVa3A/pBH6xmG2ZTWw3S7AkTCz0rSaR+pK6AgeT5H/juMDAWfkdiJXfk+/LQOefwkflw7TLrShjYiLC2zGm/EyI7OAKx8eIUlE+KlNjCKmZFttCjqSWKaEW+pQdDAlHsASt1KVvoEeg5wrXV/TZDrCg08evwiJ8crivL8YkaQ7HjBFEuj7cCQcTU2FOCW9lOChitqCbKb4vUCa2cNQjp7q6+l8pKb/wf5ifnWm4XC60Oh07ehxMyNBilEuJR/1cVniOP+9tJSvbjCHegjSVR+FQEQVDUQqybuP7rDg3N0wjUyrHI7HwcflpBqUQjpSiMn7FZvlMkuIy3JITZMdFTAnXoUm6EaSnMSxO0H96L5n5mZRnyHnaqiIvUECjNkY6LQY0FPvjHMzfwSxvGw90KdlvEVEv0xBMjEPqWExd6wfk5OT8Yx4dHR34AxEQJsmISalPX0dSXMO6TDvjrB9zudtAOl7BDqkAV1TJEa0DlyhNmWMRXUZ4sk9LvUbPj8Y5+MlnpmsBWZ6FpPSf0mg0IdYK8AnvJJQMUBbJpcw+i4uT++gyn2GCU0y7qpCjhVvwCGsYlT5KfcKNJaJkv2QyFw+kGBaUksLORfGHmdJjotieYkhup9c/QnV1NXq9nh07drBt2zbuf+hXVC5Kkz1jEdbkQU6IRjGQMYnCUC7WQBsFqd2YY2H6M820F2wklMhkcl8mQmUtN7sNSBQexNE+BnT9iNOrSBPmtlPvMtQ5QnX+OH5zxXoOlX3JaSbwsPsxfJIsWhVzEAitWJUjkLmNIt/lrBhMsK7oBgal06jTHsJlOIq6So5ctoibaoxs2bSP4aN2DHePRRDXY/So+LLmKIJkGQVBI29kzSEk20LS92uC8Sw0Ih/ZsU5OSK5ncXwdLSotF7k+4r2SYnS4qBw20mdIMLvpDtSiVjZbD1Iq2MWXlnuwi0azxHuYxpwDnFeUondfxYj2K1qUSkocC1jqcrOidzSfFPhYMljA7+ruRq1RUVqVQatmC9c3GlF4dXTLpYQluTSo7Dx/4FaOWcaSI8th2PAHoikf2002zhv9zG0RMdsxBp30fdKJDPRUkhQM4hEJCCoO4lIEUQfeQZ/IJT9Qyv6yWlKqzUTcNzPD1cHUE8M8O6GKXrmCIENURjqZNrSSRuN7IIHySIw/mi/jYv9H6EQNNBpKKA/oSCl7GO8R0K4z4pEl2WxYxPiIhN+Uhlhpb6Cpt5WqbBkHba3MjAQYs3IHW7e9wtj22zlrEzM9egCF5nMS4hBnektYsWL2v09cfuH/CD8r0/D5fOj1ek7a/fz2aCuri608PKGI7jN7SWX3oVCH+DK1n2xrgkD8DjLCSmq85ygICwjaL2F7lpDxfdMJKA9TFm+mWTaDTwt8XGbPxyYMEkgLCUp7uKD7SgguQqu8g+faHAx0X8erP9zGq7fqGY6/yyMtc/m89BQCqYUeQTaTA7WUxt2IwiuQxD+lJDyEcjiTpZ1PENVtJ20eIBQK/6SU+28fvo/rx2RQ3G8hkcyiydTHws5aZOElKCznEQIKZwZ53ocwJXejyHuLesk0EskYU+1O3hqTZJo9h0UDPsodeXyTX8eYuJ+Lz1uJjd/OYV0FBbF2oqkQfqmIJv1ZRlTnufrcY4yYv2F+QEmv+lYqHHMISQ20aLu5a0InN3XoMEWVPD5lN8t9zfijBhyaEeIxMQPxiWQZd/1kHkuWLGHvuEP85vHfsPmdFlouyeadFvh73hA57COk7CAaTxMMS7GmznA4Mp6agUV0i7xEkkLCsXm0aTewOf8A9vQSotEMZC8/R3vdCUqKyih47H7+pjxNWjgG0nL2h+4i3+9FJfuMQDKXjao5VAr6WRGT8HlunB8yZIzzBajxNfGD/kYS0l4KQ2lO2uJYb5uN5UcDDa9+zfaHL2K+fYhlA3M5aBwi3y+hTpVBSWgphqiBV0u2UBjp5NrWybxdNMyAVMJ8/3kmxFuIh+xIxG7GDk/GFrGiihsZFlUwutPEutIeFoxIqbDnMCVZybSBOHeNl3DIGqXSn4U65SGBAyNbWeycTIvOzOG9LxFOxclavZJeuZE1zn08PlbL8tYwFwxksbFkH9d1LkUXHkQTEVPuEbFfXIVXFuTR5hB/LcjgwRoh60648ejKCaXG065Ms8LTR16on0MZYnylxbwfcJOrV2P2QWGqkXQaXBIFt81/hMKgistHbNhlclLxLlpz9jNsLKVPamJucJABQT5+oYmPM0LEyYLUNGamnTy5/xreHNfK5VxDS/AaZMki6o1dpFGxVTeH794bpPTmPxGS+lg1uQabUsDFg0UIhFFKVCcoVETx9d1E3kU5/O29R9n3wrv/dN//wv9d/KxMI5VKoVAoGGvWcPOoHOblmACQ9FeR8v+WyxbIeGnD9TzyWBY7xTEMkWlsMQvJi9twS7OJUIM2469IZEcJhtcg0/STkxzAJqpDJKkiKbChSQ7glfYzvqOUkLmC4aCGN797iqcu+oQu3Z0QyueT/ByK06cx0EYwbcKsXEeV3UiWfTadil9xyHQMTVJCRJfEpo3x9sZOli9f/o957N+/n5GhNuTLqtkouxWB/jHyB1ci9kyj1KfinHoZfToXdus4tCkNRc4Ek3ruYU9VL70qKA57mF2g46qxY/jmWxmvVTUwrGjg8t58EmIRnfJCEgItuemjGBPNtLGC349yUBSwMkHr5pXCSVzgGiKdmotd1UpY+xETQsNMbryAbrWa17LSxEUpzkvWkE6toCT0KsqYggHbB0j/K9+TMjIy+ODdD3jjrbd49unnEF9wD9nJQ5yXX4IxOoBQ1M7bpjuZykw8SSnNikEmuauQxeaQkubQRBlJwZ1MPCjh86/uYGCkB212FrMezEcTVrB62IAxtZOQUMFnpUdZGH+Z0s7ReDV70HuqqPAX8UWOiB5tEzkpP83aASY572J8oA+lYJg72uHveXo86QJW5/XxXqKQnW//yI7VD/BE5xdcOaBiUNOOI1TJZlMpAvWfCYvG0K/QkBP38/uRBziiyicr4WNYBWU+E0eMJn5f6ecR93scLq9iasdCnixU0qgbwS6LsbbjIg7ZxiGQ78IcKaZNZGZ0IJuqaICFrj3Ek9nssuUzcbCPD7dtxlqQi37mRC6t68QpH8Ow+ix29TG8UhgSlXN3XSZvlzdyytzIdHs1R3LeQJiGmRE5FwXzOClZht28Ea2wFT+DlLqrKJF+wQnJjbiEI+jznNiboKtoBR+PP0plEGa7pfw9M0VGNINOyUw+tRRhkHxOOu1nTFjBzH4Rh1QXct7wAw6FkzVDIxTGxnHUeo5IwkmRX8CxfAF5aQUpQYLq1AZGt9/NoKGNpMjPsYO7UZdOQmgzIhLkciiej3OkgaGst4nxCR+qnqM0lMNCYS6ic+fQarX/1e+Vv/B/Fz/LDMrFIm4alQuAPxrjD/EjVKg+40LphUSLruad93cSus9JleAT+vRutovzkMRgrluOU9lDedxOmzwXWbofv9CCP7aMK30fYYlIeDj7eppzGrmybi57amfyUP0f+f2ljzA1McwPkXm0GwI4ZUIsMSWyuJ9LUn8hhBSTLx8hcURJAwMZ67nq7MN45QY+H1YSCgV5/PHHCQQC3HjDzfQM9XD9gmpUhLnKuYvBaDXKkXIqfCq+KfmGNfYgLxQuxxiXsNhzkqgowBn9xcxyncEubWOP4grUjr+TMTYPt1qEKiVinvsrcrwzCMhPExH3c+HAPHQSJW71p3RK5TzctIDzWiF/GXUUcUrJyqERfsj4gvsnDvFo7TwmBPdh9ApQSDcwyrsITayAIr8Sr1xOruNupDEteRUg/PHH/2Ze7rz9dnIyMln11BPQE+eCCzZzWn8Jw4JXsEREJJMqcgIeMmNFvFbRwCRfFxkRG9ZwIXUbDLz3w99YnjOFozYr4gvHcsWQkWFxNtXuCryyYcY6inDLR/BKHLSqMvnesown2kcREwh4u+hbDEkdv+/7nvWKv+ESSygMS4knM8hMfMxlfSV8nefHothMzVwh576P893BDxk7PofskJDpAzn0WMch0dQQErZwU/RThsQC9hdkcV3LTFYj4/PsfK5uaEHIMG+ZVlLhqUdqv4mE7DBhzSEsAhsiv4UVI0N05vyRiOEE7+seICTQYAkn0KW+oYj38ZgLUTjGckYbov6zr7nrrrupO3MacypGQFSAR1LFVE8zAbEHsWgb1uhkBpUhRru0XNPn5sqpHpb0r2Fy4huyY15GhAG8xr/TIi0lJMjlpFFEhfJLJg48wpejdZCqQWjbgnPrNrYurKJNrEAr28SHujj+1G6mui/ikGIWIzI3JYGxqNIermu2oUpK6TB+yRfaidT4VVw61IU5kkkqXk1ZIMU+WzNnst+hSHg7teIb2CMfx7SiJjqTFxENttB+4HuqnyugIO2gM5XBrh4XmdVR1hmmMc0swebqJhHPJqroZefpraxZs+ZfJSG/8J/Iz8o0BgcHMRqNP4kd2XWav9S2cU53ARmDd3HBjDfo363l7PuvYL7OiDQ8hYTUT55vmIfbn+G0soCnKlYRkbiRC9QEZDE8gijmhIQ2aTZEV6Nyt7Lm9C10Sb3ce/06qtxhjuuSnFJey0unPEjkn7BqahFJQRGz/Ceo6rqNtHMlD40/x4BmD9lk8sfKAcadOMO5pqNs2LiR6y67iua6elbMfpC7C6fwcuURXmnejH7oaXy6AwSlnZzN3cjekiPMcd3I+/tn8UVRA+8X9oLoDPnuXBKSCAlNB6tjA1xy4SOIJAIumK4ndTiCmAwUyTTtonJW968hK/oURcEcnildSULmIiuYhzZ1ihrBadSiOrpUyzloipMSpPEKjdRLKpkq9BJKpvGb11HWcSv7MhO0an18UWhHmRRx6VkN8+fP/+/maOWaVSxevpQNGzbw7t/fYjD8DVXZG7HOcGNKPonJN5+3ilvoVCSpDNdS2L2dJ7ftxD0cYe6SO1mRMtPf+nfCVeP4YyLKtSMv8XzOWNThG3ku8gkXD6r5vvAlApo45bEl9Mn19CnCrO62URS2IvW/QN2YIVziBLJ0M0uHzWzSLcHsmcnoyMtoEinmDuopWBTit2+f4tOJfegqbOQeXcRlfWHioq0MqsQM6zI4KpxHTCOkRpeHLhKgyJdGlRTTrtIipY9x/ls4YDaztj2L07l/4RbnIepFM1jem0EyXk17uh+TRI5LE0UiBaH6O7xxMy0aHe9WuNAd+hvT5k3EYNBRlXkRav81HDEEUcWlBP0lfJZ/AE06jCr5Cl9U+rh4sIK+wONcOJiNIGaiThkF4R5mDOvJ8ZtxSAUcKziABCmtqgDp5FriomLUyShWnZseZz/dsmxqPF7mOspZV1lPOAW9wispibiZEd9EcaiLY7KZXDx5iLlOH5nSIGMd0zinVfK7kuMkEouICAz8yfspX2SOR5H2MSq4jlZhFppEmi6FjQgBut75hOyrLmVcuIP5uQHCtjnMy7aSFqQJSJR0NuqYZdrOTm2Q1WtWccmFh3nu6Sf/M+XjF/5F/KxM4+OPP2bt2rU/iR0ZCPHC2IcwpY9RadjH1LCQ8as+xX5+CV8+34X56jvIzVVRbzzJyxURivieFU4haaGLsaEOHi8Zz36zjaBoOQHJboS7n6Z3y0EWLP4N+jmVLDuTRU4gwYbsME1qCeczDnEiu5urBgQUuavoVjzAfpOX76p/RJaQ45WCQzCV8GA7O394jWeef5Z5F8xjRYaURy9ZQpvcxGntj1Slazlu60MjPMyo+CkKYn4+q9lFTirJ5tJTaPyLMSXy0cc7OaAeTyTrWYzhLDzCUlTBJC9uDPHX6ySMrVEjcU3gy7ZWXpnxImqhi7Opat45uhS5uIVHasdwKiOf3fl/YU5oF7pkjCA6XJp28lJqlh1fxYzBUo6V7EYqUGBXxJnl9XHYdp4ZPVcgT45w3piNNOFnOGSnuiz3f5gnuVzOVVddxfz583n+2d+y69BxDh108374FsrHTUBVJ8Qc8vFp3QADXh+5NaWsvPwaZqpu5OX3xpN/42q6BXGCWJkwbKZXEOBI5l38OqOPu09vIhYYoUG+lzqNgVrVKfRxMa+eXIkoCqcLPyZbUIteAF2iPKoCPqKaTsoje9gTmIbcPpXRoh0U+5TUrRSwYV0ra+6YzaOjVMz2nOSSoV5uzC5CkJ5NbqCMuPQcu01jOKY/xO/rR/jcWsYbJWEuHIpzyniauSPFfJHv4Mfsq7m5v5tewWgWpLxERHBvhZUQ55HFxnJPU4yz2ZOwiL7HkCyi2jWTHz78kK8aNzJ7ziRuuu1CTJFTjHecoUN5GWO8NYg5y+igl/Hucbxe5OJrzRPcwmMsb7uWaNrA+eL9GBIuGvRyns6/GpEgQmUwE1FKyPhwM4U+Pwdt7+IUT2Hc4ATsbGKV/WHGBipRi5sZFU3jSHi4tvdvHMr0MqLdSa1ciSluR52cTFo6gDmVJDt9jJmBw8RS+XyvKiM7sZevinowRIuRiP0cVxVwU88gtvTnjIse4Zm6PNqsQkoq0qw2aBlfeQmmzAKePHqenT0jzIwVUx48xzXt6ykom01bbR1jx45FJpP9Z0nHL/wL+dmYhtvt5vz587zwwgv/iP14dDcxxWeI0w/RLxOhFZ4kLDqJXTyDivkzmWWez5sb3qUzHCO50kbjKBXOxAWczizlEs9W5MlWtEPzEdUnqDg5wCdDw/jGBZn72NUMixcREsRwaOroNo+jJC1jUv9OJrp0RNQ2YsIwX2fZOG4wYqCRsKiCnGAIXSqAJb2T9x/9gZJRZWzc/BoF11ixSMM8Zd6N3p3BE6fW0FDQRr9RSsj2AdUj0CeeiyR9AFM4RZVTRJfcgTnZzB8bGtmtm4w/Mo2wSMRZ7SIkskqsCSHxJIiEMGpeJr1dUkTCLE6IV5AZrScdGU1YqqUvM4vcqAaVXIMoZUKZcJHd/hUnJi6mKi3gWMZ8kvSyLkdGtzJAFn7y/BIOm5NM4z1qBjTsTGSDpJ8j+87w8H1f/0/lK5VKccW1l8I0PeMfvBH9gB7z0e2s76sj7UqRjspZO/Vypk2tpUm9ih+tewm09tEiljDWrCcd0nCZ6zNkiWou7TNgFLQwoDChTNo5YEyQElhQJ4MsHokwJLaSEEY5lXscmXwftzXN4LDJzs2Jnfy2fCFxqhk9EmKU34Q2ruft3KupSOyjKXsOhe5DFO5ewvEL6/lco6JUOEhUKsYjSXGRt4nswcVsLfgYvziLdslK1OntFASUyERdyCTD+IVCFoyoadP4KbHfSoHQgzTRxKCmF1FSjkQgxRhNMssZY3ygkBbTo+gji9Ammlh54UoaGxspsNnYlingwYHfMZLr5zuNgAZFFg81axnnzgDRIAPSiSTkx+hJQI7tI/IH12AKVDLivxiX9hiF0U6SshGiSg9D6SquHVYRi16CLCrjIqeCWxqq8Grmc7JHjS2vhw6JGpO3Gp+oDLkghEi7gylDFWzJ7GR0ephloYPk2h/krGkjP2RoWeQZRX66A7PkLQwSH82KLHLjB7nI0YYyIebRvOu5fvg8A5259Bwa5JHbr+Z82M5zchHrNPkAzMyycGwwxFHBECun19B+diIFkxbxzYYtLFiw4D9FN37hX8/PxjQaGhqYMmXKT3aKHu2OYk73sJAnOBR6kYv9r3LYksCVeoc761Zht+3kg+t9tDWvZvvZD2n5QsJ+w1kEaQkbY528kRIjUP4ZkXEME/WVPD3/If4ycZjljdX0KpoQ++JMc3o5bB3BI02xJWcPEUMHZc4izmcMIUx4EKSzMcYN6BV/YZLnOjSpTtZ9kkSsN7D6Wgv5Zj86++28ZvGjTW1htD8PVcTK7O4pnBYMctbcy9Y8OE4FVZFsxrnDTLGHkRuf57xKx6DRjSm5jl7BMtyKbjR0sbhsDFdVWJFLBKRSCc537GVIM4/l/XZqszMoj0VZP3oT4tR4FMI30LuXkVR/RTwpJpYQkU4LKW+/E3FSybEsI16lG2FsLu/kDqNJzGFJ6C0uDu1mwAzzWhZSGRzghEzHjkjwnwpF/rd44cXnSecqCI2vZnFrFVJBO/45kzEUzOXCATWzhmdxILMfMW30KYa5t+4P7Oh6jzGlmUwNthJLhpjdsYSvc1V8UiBi1fC1XNXzPS7ti0wNlHFr31mO6CuYOjCdOl2YL0v+RGUwgcS7iHBajVtlx5EQkB+340LOF6M2UmQfxT7zKk6YEyhGLsMSOUD1xRN55ptneHbsCtIpExpJiMleNU6Zg35Vml7VRq5uvZTmKjv789Yx2S3HIc2nThAjKohjVlmY6lDy6uEcduS4aTIcxY2cTk0VG7bnsrnkLF2qXtKqg7QpTIwIVlAeFXJ634MsvnAxTzzwONdOvpbz3mKGEqtRib5lVPQwPZLVDMoUrC87xlcZ/cwYmE2OSMaAYCbh6CA5sV7UfVNxiRdwKqeZqthxvtP2kkwuRpuKcF5xIV5VjC65CbUmSUTso6K0hq+bviU99jq65MXUeN2cV9uQZh2hwjGbH9R6TsmlJGPnGVC6uW94Pde2m2kTq5CnkwQlblYNFHHMpGFKzEmbepA+ST7lsShJkYNPIia6d55i37w/knIFuSa0h5tmzUIqFJMOBFjocxIZU0B/MMrM0TkIpvweu93O4cOHeeqpp/6zpOMX/sX8bEzjnXfe4fHHH//HOOjrY+W5IG+VzkIgOs+a2D28mrmQlChAdcSDNr2Hjeog5lQB386UM2vCHPLlZ+gUjSIjkkFMZkMoLucCZytfZg4hOruWClc+V/bsoTR+irVOL7HoPMRJA/qQl87yZ5gaDjGicSJLp6gZmsmPxXJMUR96xVeYkmGsAh/hvS5Otxxgyh8+Jp7OJas3RI7XwN1+N2+W5ZAdb6M3YwCl/Ch2gwGlIEiP0ECfyEdKUI7IcIKvTEZyvWZ2WWQkWMjjAx8wL/IXeqb8gfGj5iL//1th0tmzhzeONRKXWujPWMwtLf18UqKhSyZnpX0m9fof2Jm3lcVDt6MSf0+EOOtqvmFhfy5+qZaFIx7GuTNQxiQou7M5krMBpTRFOlrNgEjEkxU6Kvwihnyi/+l6QGfOnGH/tg9ZP6cUz2kh/dLp6FIOaiWzWTF8nDGuaWRENGSGDexVv40k3ExxMIPX6hoZN3cRmoAZoVCDxjOb0bqD6EPV/Kg1Mc3ZRZthF/3K85zz2MhwP84ZXRMflhwlJyrEFhvmpfwxuGUxKuIJ8vwabh2pJelcy/HcE6zqmESjvplk1qeMSpdyWZsEeVLMc2YDH0dyeDJSQ1w9zGVBB03y8bxUlCI7LGCsTM993R0YxIf5QreGoChNtcPLNQP1HNXeRp/eiUAYIDdmQT8wmrlDRl6raeHD0Tq+tJZz8dAZxOkocmkTr1dIcL39INJYgMqKCty7B9Bm5FDuSVIY3UV3+iaW+p7h2hMlRDDyyjQPT7Wt41MjeMQKHBRSpW4gLpKx1xqlw/QcLcYDiFJyMoOrKIp2sE8/hS0WBxN8CjJDZpp0Xdw8vYGH23ow/P00Qd9CLnMtQp5KsrqnnQ5jLwbHLZzL2YMgJUSU8DDTE2VA7WHqSD4v1MnpzeimRXETtZJrmOG6GeQD9ERK6BZdhEdsIrvuKAMfbmT/kiXsnStgqSaO3DOVLxfdi0AgIPbV16SOHaVSMpGCNdP+8fD39NNPc+uttyIU/uwKav/C/yI/G9Ow2+2Ulf3HrupEKsUzu/ZRN24TU5wZLHYnUaKmMx3HJbSgj03g4ywz8ZiYTba3CaZNNCssTEgA3lxGRPkEpUKu8R/AL4PskAlryEK2v4zlQ3v4MsfAsDJAt7iJBT2zqXGmmNp/M2Pc3TjlcYRJKevyA/hFCsJSCWs6b+VY9lFW9NzE2toxLC8o5uZBC38tEZJQNnCJawkTRzKZnPcXzhgjqJI1xLMiVA32s7xvNccKPucm17dEBHreKpjNKdlslOJWfNIhijxJtmlmkZdfxLQx8xEI/uPm+s33XzO2qQGL9gBBxf3kq/W8uKyGXedaqDlyHqmklZzgcWTJMbRI+pg0MpPThlK2FB7kgoEgEe02qkYWku2tpNkQ57PSfXSrPIzxRrixzcB62/NIkhJ0guO8W9CAdGCAqqH/cZ727zvA3b++l2uuVPGD1k9esJUs3yvIBIexxfdRJ5rA2/mDTPYN4JHosKQyGeeYyE7bMWr9TQQnPcBNhzPwqUOcsinJFm5iod+JOzGXs8piNhlsFKbqOF20hbzerbQoJBQIT7LHOAl/agIP15rZnumi1aqiJ7GKtW0x/lB5nEjqStq0HRw0ShhJV6BIRRky9NEhLMe2YDaNx3by7sU5PN9QRGb6PNpwmnGeOygOBDhp3M+SyDakiShTAg7aFGkMcSdHtfmEFa8wyteLJHUTgyI5r1cdY39+Cp3+XQYSk6kOLkRHH49NPUPhWSn9D+xnwqSZ3PXos9zx0EOU3byS06Y+IgIlq+I7SEQCGN1RxNI0LmmCSFpLk2QlVw/ICcub2ZO5F6OmiZfGjWKHdApVwi6CZKHCgUm6gwk9n9Al+ppxsSPkp+yM8SQ4IYJD0ll8nl3IbxZn89ZnHxO+4ibUcSmHS97Gq3BgjqnJ966hOP0uVw6FMEYMpOIFPF9yDYibuXBwCXvNhSxwNqMNrsYrs1EW62NTyWkaXHn0frGBv16+CpFKR+bYClafb+S5mfNZ9P81hy8UNmYKi3io3IqvvZc9k/Kpq6uju7ubSy655D9LNn7h38DPwjTS6TQikegf4+PDLtqTX2JX9HJGO5YZ8Qa8CDmttZISevGnSshNdHFLbxKvupAM6fsIUib60zM4a9SSF3FiSDowJGKokeOV/gpj3ExE7OSvpRIWRr9Dqwjgp4JXqnOYP1BIj3I/5c4MpnYv4LBphJtbYHvuaQqGa4jLB5k6lEdYkiAhUOPPUVFf9GfmxSqZ1Hsvz45fzyTfGqyhG4imP2H3KBHXJpdS7z9Je9k5pEkJlTEzplgGU/su43iJmwgFPN73DfrUQWas/RvCnLyfnJOK9gDjAnDU6uQ622Fqpi8GoE85Qp0uxWOuzaDbTLvgPn7VEuWU4QTF0o8xhxdxxCBBIDRQEf+AWPROjMkI/TIjiuQw5/VxuqSFdCsCTHRmIVPBox19bDw2wJIrr/nv5qm5uZnrH7yL2y6bz7WOELWykzjl/XygX41QaKVdLUQbVRAVNrNNNcLFHRcz1Z1CKjiJQriPUoGPl5vWYWAxIkEbHxaM49pAG7MiA3yvtfO1diJJ5JR7AxiEoBe/hUUqQZkcRh9IckHLg1jCcbpytiFIODhu7ebrQCUHzRLkqWEO4cQQsrOmzsYx3WUkJMNYgjP5nbSBWxv+guQqDfeMncwjzYuRJRX0Szw81n+MhHiI340qpyzRyV7RFDxSIVtNFnwSEVWBIbThMPnCQ+TJHsAWn8MY1zLO6rX0ao5jw874bjlfbImwszfMus+/49Dxg9x7z208sGQ+Pdr9DIULcAmW0S2cTINWgyhayeyAlbhugDM6NycNIp6pNRKSelGJWvDFs+iRVTLJb2dspBRfdCaWWJRBtRm/MIg1PB5jOI9vjFomJb8gI30aU1xHq2wyayt/QH7+PB/1fEX2+MlUCCQYkkJazd0ok+0U+Czk9qzCn/0cHkWAIvGD+GVeGgv8XNt6P5O8g9gVCvyM4S+j9uLtk9L7yRvceuOVXHzfE4gEsO7sMfI0SnLV//Eq0xP0UNFci1Nswq5pwRpRE96bza9f/DVvvPHG/2G1+IV/Nz8L09i6detP2rsapXJs4dH8qk2PPZ1Jr3IShSEBnkwpZQEtxakdrIhsxhS4gQdalPi0mfzZWkGvJkQonU+LpIzp4TgF3lY+NsxgoltGVJ7By6V7ECt3USfUo08l2a5yYIqeYVPZ21ijEj4usrJcEaRi4EaCGiOTh/KxxLchDxTyZa6aPOV+/C4XluAUnKFFTPUtJqg6zb31U3FoRmhVO3GL59LvlLHb20Kd7SAl4UIqogJc4V/RpJFSrxshO9qNnlzE0atQr1mMMEdHb28vn3zyCXv27EGhUJBKpnh7xI7H7+HYsV+hU4lJp9NIhAmyDS7kvZXstDnYqnYjTMs4afmc61qux2mOIUkl8IiV/GiZwlW+k/ikZpJCK6aYmQy281LxLUx0uZg1kEer1cP5vEakhtFkZWX9N3Pkcrm46saruWPxLO5quxrku1ElTuMUCRlQxigMFVHtTVKvlCBMGZgSqici7UeT1LI1o4l7BlKok0lyxMeIa8WURHqpCmbxB+vlVEdqOaotI4kFU7wbuyLJJLuF0S4RXsQc0FWyuktOhvhltuSP45PMbKojCTSiE1Q5bmecepA7evvwCjKoip9HmJagTybplDWS6x2NNDGaSrUJ6YADe36ST4v7EafAkkjxQ8lODpntVHrMCGVOUsIY6riRjEicEVmKiwdiTPEoOZS7DwsxRvklTB4eT7X7D7w67j2OuHQc3LmPa664g6VLl7J4yUIyJiuoevBuPpGXcLljiDVDac7qFnLUmElK2s1u/TB3an+kUDBAqWcyrWolX+RuQituoU74W6qTHdgclcxOfkqnaAFfZZVTGT5Gm7oFU0jIiExCeWAeTnEvJ8TTuGgwi2zVdCwCLXvlNzDp6mYaPv47Hc4DRJbNA0EuK5VPMctewBUDYVKK45xOPMDzo1soCjXRrhnhqdN3UT0ymT6Zkc22frZbDhLrHaHn7zuYd/tlvHj744iFAjzRCN921VFpMPNZx15ODnYwYcSDSVFF0uZHkx5BJznNC++eJC8vj+Li4n+FhPzCv5CfhWmsX7+eF1988R9j94CfIUULzcq16OIqlBwkGb2BV0+7EaemoguJeGxKP6+0qojr2xCIh8mLzCU72otU9TGh+GKmRk6iSAi5qq2CzdkNCKjEIw1iEEhwqTvJ617N9Z2T+HvVCeLCairDhWR71BS4LQxYP+FHSykuWQeTvQ7EylOUylr5sWcOWq2cnW27eaNuCZJcISK1C0vsKD+aDZw2dhEWCsmLmNmSnSbFaoSJIq6vW4xf2cRuq4+w/nsmiveTHTKx42glDbveJ5lMYrPZuOSSS3j00Uf/8T44nU5z8803c9tt9/H8m29x897jSGWtuBPHGVP/B/ZlX0puso6kUMEfa0v5QZtJhbeXhYG9TA81UaucxgdFs5g+JOFvx/QMart5e5QQuyxBg2k3DV4nRwwRRtIXInT3/XdzdMm1V3HBfBlTso5yWjSaYWWEfnEJxzJbuKz/PCPqeiQBK32qJBXpUzgk4ziS28qOzG50wj0o5UbOag2st+Yz1iVgu2ksG80Z3Ns9RE9WM6MjCs7L7Vw5OMjf8yZzofIgJxQytmsmckidQblUTWW6mc3ZARTxfPqSSxH6lqFOx5gc/ZHsUDEChYC3sqZQHLJSGllPUzIPl+QIFaFZrMispvPAGVQ5cykR/4goZmBep5z11XYMUR2npSt4uu9zqqSf0ya5kC5pBA0JuswddGlNNBpymRowkZZkczS7nhUD29FsMaIePs07n31JPB5n/uy53H55Lr0zBLiiBgwxOaWOKai8fi7uG2F0dgNbM1SEhRpkSS1usYHFw4WEhBEeOreG5ye9TSKt46R6InKliAqPjF1qE6TkOGRqQmI3MtVBkulRVHnKmOTWsLv6TSSJxxCntUzzyDlrbiBgOMfd96V5/7th2l58guyrVuDKqGCBX4xXWIlCWMvXZXtRxHNwiyaT5S1hgW8Yh+5HEulFlI0Y+ezQ0wzWN/HkNfNYe9WDiIVChj/YQTrQyFuXr0UjTPHqgW9QBqBy0EqdIZ/r2kWs7QvwobKH7xqGOHLkyH+qbvzCv4d/u2mkUin6+vp+8pT7YdNOuhRt9MvH4hcamerqp9EwjoygnwK/ErumgwWubLaWfYXVU82wMIs13TcwJO/huKmLJbFD6KIVZPdcQVLahM0f5YvcV3CojVQnuojHJfw9x0yuLkJIUIJbomV0Vw3ylIEhTSMD2kHM6u3I4zb2mGahFwrJTbvYE6jnyScfZ8mSJVRVVbHu18fId4Yp9adYFtiOVK5EFNXgN/yIPbUSYTrKs71fEhWPo9An4zLa2RuoZk/rFt4/6GTV6vE8tPgh5s+f/1/tLyAQCHj//fd55JFH2L1lMwZDNvNypjA2YxrSpJqQfTE9Kg1KpYUe4TxajMdZNVRDefwgEgkUJ45gjveQEb4XeUSHTDiXW5vW8PfCxxDKG3AqbVzVcRUflf+NHuE54NL/an5+fe99RBM6mqtmEoqHOT1KSSR1BQvsHZREH2V0IMG50HQ+LjvFcncrAU07U70upg2t5oiljSZ9mHaVmqhATrtaworhczxbcB2JtBxRSkxLejqH1blUeSMsGhIyKLGTTIxDEDfTrpuBMO4jzyvjrCaGNi7j2u4RnigVIk3n8cWYZ4lFs1gQncntU1wExCIe6vqWQk8/pcFRxJKzEYo+Z4Y1i4P1tSRSRpZ0WEkntGw0TaCkL4up7iGaVBGSAhmZyU42GdvICSoIC634lF2s6s8goHDxra0LeTTIbrGeO559mfsfuI/tn2xnYGCASZOm8uBNbzLd+lcGBi7CEnHRpvuRP5fNYF5vKRf1Baj0pbAlOpEkPSDRk5T62Fr4DX2yDH470chczwDayLusz7weYTrGm9Z5LBxpwKvNJySQcqHnFO2KfCJiP2+Vf85sxwzkrgf4e8EQLlkvZwwF/Gb4KE73rUSkx8m8VI3Vqafl7zt5T2bAWFXO1UopaXGECT4j5Yb1DCanclRRzZNlIyzcDV/UPc7hUDPJC65l3Mp7uGhyBYU6DZFjDuqG+0gILNR/v4c4ffhTC5kpeY6E0YABLwrhFDJiQbbt6OXzzzcgl8v/E5XjF/5d/NtNo6Ghgaqqqp+IZpZIQV3STCz5BVtNY/nRbGShoxW5uI2XSvU82CImy38zQ/IyFKItJER6jmWuQ67cSjEO3tIuwSPVUmY6RLfmGKPcC3m4cSkdunp2VshJCgzEyaRRI6Mk4sIj1bMrM065L8hqdwcJf4pH1ZM5bFRzS7eDiwY1/L54GcqGL7nsxcvQ6XRs2LiRRx67nlmTrqVCH+HLnAJ0CRUXO/rZM1RI+fbNNA+N8Cuhl3rxVlQhE5GgB1t2KVdecyfPPbyUioqK/6lz9OCDD7Jq1Sr27dvHR9uvoGdYwcQL3iH85pUoAyGu6x4mIvIz2a6nymHFk+UjIFAQF6YYPVDAiPwHTpjmku+fgyKZZL6jCLdKyOToYaKyIhTSIwxL0v/0u+FwmF/deRvnug5zw4pDnIyeJyfyDfnubjZkhmjXOymzP0p7Ske3xgGkSCBBObKKE7p+8qRZtMu1LBwcRaboa9SRTm7uVZBKZGALmlhmryNH8gOXjcgYlCjoUQupVY4iJkhSPZyHcugOHnQM0m60U5DcRlasBYdzDFM9Mhb6N+GRRdkjuxNxupA7px9CI+hnjGccZd6LGZJ8hSSRRfWIFHOyBtSl9Pj2cMlAEb/PvoI2jZ+i5D5EkSGyhwXY3BegSF/F70ZXoohUkxl7nURaTrM4l0NZ5+nXjBAXxpAmW6j/7QM89PCD/x/2/jM+rirL14CfUzmXKqiUc7JsWbLlnHPExgbbGAwmZzChydA00OTUDTQ52YAJxhhnG+ecgxxkS1bOuXLO7wd+L3N5e+7cmXfm0j1zeb7pqOrU2Wetvf5n7732OvzpT38C4Ny5cwwdm4gkfx9mmxut34lSvp5wqIB5zj4Op3USy9hEXu8garRNVCiLuKdGxi5TLourR7I7q4oehlPeo6NS28wDTat5vd8pylwTqVRfhl8cIS4kUaORkxE9Qli6FbFIS3pwCeJwjIuyGgIiB/meNlrjC2gwbKdTNAifEEaSOIRH7ujlYMtIdu+s4buOv6KSRek2JmExurGHVXR1/8SlgJVK7RhmjboH5bidRMTdlGT7KCz6+WHOkyYju6+QVG+MrQlWcn1ZNJj7MdBTxvx6gTqlhWh0CPf0vMm4qbMoKir6zweH3/mn5B8uGlu2bOHyyy//5e/w8V4mnwqgHNjHQXMPsugZRBIBFFu4vKmYz9OnsjXFRok3Ro6vidFODbmKIG8NWs7cDikZIQ/nEzo5pjKgjWlwCLcz0CbC5FMQFwYRDuwh7H+UsFGOMhJimG8fbnkSO5IGcMikJDeczhlTM0fMgNDCd5lhLu9O4bkpd7No9Xr0ej0AM2fMYOiQIXz08Uecb+/F9pfDWIMC99c1EIpFKNerCKpMNIqTiRg9qHMUpMiVVJ/p5NTBgyxYsODffY/MZjNDhw7lxIkTKG0KJIEob37+Ms364XxwsQeJejt9chGp1lm8MvI5+jlzmOT1U6Mx0aebQKPuCJH4adYWvky5XcUl8UR00SQ6VXv4Ou0S1Ypb0PD8r37z+6+/5u1XX2HWEAOPjJmLKLyARFcZ6T0zGRz4hjUZBmrkGmo0diSRFFRxFQkhFTahBLdaylMdp+gR1xLufpzjyXsRJD7iIhku7wD6u8Nc01HD+eQLDLF6KetV83D4IncMzOX7rHZKbYPZlLcZWcEiTD4dg3ueQRy8iRrV93yakcmGlCZUUhvDGq9FZz7EMa0blfIdemIlqOMptKiHoXLdxNs5Vfw5+g7i3tnUJvbRoZBS6MtlX1IdMSGKKV6LRNLCcwWlPH0yi2bTEcrET3BQ3I/59XOplTmxG6O0GVqIixVoj4n58bMWvvvu+1+VW5FIJNSHE5kkEbNN+QZ++Qdc7pKQGqklEi/k1pYr0UcH4FLJ2G7+jnnN2axKS+C0LhmvKIRHJqNNrEAeLGKc9zZ8ohoyIrfjlmlxCjHmdjpAXIVK34mIOIhgWt1wWiWb2WvRMrJHyzBXC5/lmEmkkeO6ItzRKdzY/jd2Wbo5rUxjlr6EcVMrCerycAQH8qrlOBltk6mWzkab20ZcHubJ8x4OpW7lhGkfhigsadVRU9FJev5lGNJS2DBAh7rDwRm9k1MGKPQcwqo7TXOyA3Xcx3LVEU7u7eDQx6v+UzHhd/65+YeLxo4dO7j77rsBiBx04fimCqdZjdhdikirQRET8ceTOaiDEzlm3sOI6CucTEoguXMtI1r74xdp2WmU0hG4mbctTYz1VjC3aQzBSAKFrk72JRjZbfIxpiudioznWODoxOs5TaFrOuc01UzqSCTTqmdDUpTZbSYcknx6k96jKFRIoleLXFHNF6WVVD7byKOPPvqrazebzSy7dxm9vb34nnySitMVDLp7DDkFC5nfpmRnRiWNCgtdikoKXck0abrpt+AKeo/uJDMzk2PHjjF06NB/Vw77tddeyytPPMPQq5Wc0QynTRjARGuQHI+MpuhVPDREz/KeDqSxOKeNlRTE5CgkfVgiFgx9fyTdU0uqUIFLnMnD9UPJsBfQnCliVrSFCYSpcKiAn9dRblh6E7UX97Ftyo20GroIChECEilnTWdw+0soDst5sr6BAyYVWw25jHRtJ6SwoQkbuMa2hbUJY6iWLcIjb0GpWIVHMhhR9CZykz6npyqDaGIptZpLbDEZmeiJszdRSZu5nsxwMlnOHCJxMUFlPXZpjCxfiCjJOKQhNqSmoggtok6zmojITCznb+T0PEiCso2O4L3YFMfZazlEwPAeSy7M4/HmBv5aUMTAzJe4ZHNQoMrkYOoLyOTVJMTGcC7+MCM6f+SB7noqLPs5lv8tlmgcu6KHdwor2Z+YhyYyifyOCRzYuZq8JAMXLmwhMTHxV7aZPHkyma+/wr61m7EtTUAvziSoaWdU252c100iN2E3bvkx7LqTTGu6hyMpFzmREGFkj4rj+kISRJX8sXYXAZUcR3g8zclruMEao1K3nmj4ODe1LODdklM0ypI4Kp1OXIixyOtlR+mnyERJqON/JiuwkXH2ELO9u0iKZNMbyafAlsrXqZmEBRn2JA/nVQO5ukvLi/30ZAYSac8bj19ZiyweZVzXMLxJtZi8JVzWqyInvpXkHDk1pz4kGglQPGwZ5jw/yw1PkowXhX8iAUUrpoiXzKaHcYdtfLbuMb5Y+TVarfa/KDr8zj8j/9AdNzU1NdTV1/NExVFWnv4Of5KbcwMfI5r+BnpJPQ81hll+qBh1KA2zZzDlTfeR7xZhcS6iuO1BQsFreC63jO8z9BgixVilCexXT6ZSW8ZRowZtzIM2voPB7gIOJ/Zi0/bil0fYmBQjKltLesxBfrCDcl8947y7mNihIR5tRRyPM8/agV6wE5H48QaMtLV0MW3atF+uPRaL8cWXX5CSmsq19z0NmbP4/KpTCEP60SEvolHnYbatle8qDjC9dwDiuJG/VpoxBQ0UFU/jx2W3cdvD9zB+zAg++vBDvv32W7q6/vcbJYYNG0an00btNxKaZJmABqn4POeSjiKMaAHJfvYnZJDoSScojvKGeTjrpddgFxJxyOGISSCx83F6Q+Np0khxqrvB8zCFtoksbIlhEwQEQWDd+vU4WgI8eFsiq0r2EIpkEo6ksiLLSYPGj0l8BkW4iMy+O8hyPkBy2MVcRxWzW43s1ZXRKE9lqvswx3QCo9rULGiWMsTuRx0NYykewdddpwmJ/dzSZEQSEZNx4VNezCtmr6aMRH8u6ngxeZEQWZ1jOScT81LyfB4e/B3vFZ9iVk8zYslXBGQbEejlnGwMHSo3QsxIIDaUnJAbdTiVSGA4hxMrqDGGqVFk0KwwEWxtIz1NQkTcQFDsRx/QIIkq8ah68AqJdGraOaaNk9hTRjiWyE+Zq4nTS2/DeZaveJWH77yFL7748u8EA0AsFrNr+y5uvuFF/K+vpePD7TjabsAuu0BW8ENy+1JRO4Yg8RdS3qthsNvJKE896R4joriUMR0l2BnJDv043iw6wremwdRKslEGVCS55ew1+gjKrdjpjyRcAnEpmy0CrriRUleIBbVhVJ4HudK9iWqFjs9TM/HKumkVXc3LRxfyyNlxuKUSTpgihEUOgqIYDsZiZxhZ/gR0sRqSorvYP9hItVRPMLiY5YahiMuXUjb+GfIG/pyKXXX+J2KCF4Cgci/PVdq5fdePxCJJPHF2A2++9fav+sjv/M/kHzrS+P6775k38XJKT3/O+1kB9olWcKUiiQ2SSVjjgxnfYWFzzhoG2ixIOEWdtB+7NNcwq7uUgYEKbHI33bpOxtjykcUG4ZJdJBb3o4+KeKpGwBiZxWU9xyn3ymhT17BXPoZaSSkabz4h5V7G9HqpUidQ7BZRHt3M8YFn8fhG8IO6HyliI4IowqL0uRh6hyKbUvHLdXd0dHDTzbeQmC7hi8eb8CsE1qZsYouzmfvqhnHYXMkPSaMY7RIYYv2JYmE1Wa5h2BVirMom8iPnOTowG9mEIYTb91Bz8gui9kI++/ILJHFIT0/n1ltv/buyKrsP7GXciLGk1MuIpkjIFM5SJx/KtAMmpvbfTEI0n0Ht89llrmGQL4rSMwe5P4IpdpZpVjORmAlTQMlPAz+kquAS4+oeIKz/kkviaVQ5w2RkZHDTndfyw6QHsUYaEUvdpLjSUYVTuPpUKeuzzzH+0nzC8koaE6Nki77mepuX/nYJikg3C9tKqJSPIzUSIsl9F8S+wBfrQBoXiIk9ZPdP4+Pt21ktiXIifxzFdjNLZz1OKHol1kg/bm5yUJG8n7K6MLK4gY9zxjDWej1n9CcICAmcMLqZ2x4mryGVlwrD9ElF+MQhhnbGSU5/nQMaJaKYnZrwCJotnzLKHWK0bSkNigdQX2xCXDiAOZ3N+JtvRQgPIJp6Kz6Zh7fKUvF6S3FH1VQrkhlqFVOnKMD/5mqizh52bN1KZmbmv+LBv2bhgoUsXLCQn376idtuuwnjAgtVY6/l0wvpYEvj9pxuZviyuagYxD1dn3NWYiYkL+OsMcAOSxZBkZIB4b0MCO/BrrZxSDoBlUpErtKOKqigT2MhFotjjtSxMbsHdSyd4t4surRtdChS+Sh5ETZhKPJgLQHVXi6ajNgURjqSf2BQrJpyq5ZsbwGT7OexqnZxRd8Fjie0MsoaoyJlJ7paBUJ8CONtSaBUkiRToS38eeo4Ho8TUVchiwuoIgqmtA2iW64iUdbI7t6zBDOlXHPNNf/lMeJ3/vn4h4rGkWMnWVj6GjXSowRF67FGJDRKWuiQZOIUlCwv/5i9umIykgS+qLBSb9nK6GAyIelEqrVqTplclHSlIxU3kqLYSIH7FLvFT9A/uBKJ8ijd4oEMc6i5lPY1o7s0bI5cziGtlvm8jVzaS593DK+mJTPebqcwYuRHs5ZJ7bMotXs5n+CHuAp/dAD3X389R48eBeD8+fPcc+ddlN77GiNaD5Hu380ubSV+VTMbVd14xaOpUHt4tPkbPGIlT5RkoxfFuak1G5e8E5EQ5KKxmxG2Lib2yUhQB1lYFCG1s4BW5SD0f5hDe1sXjz5zGyGbiknjpnL77beTlZWFQqHg0y8/Y9Fd91KweAF+fQHpZXoU3lLulLzG9oRX2Jx5iRt7tPQp2thuuMh450n2qQfQmrYKtfsW5JE85lx8jA5dExXmPSSH1ZzXdRB1uLnngXsZO2UKgsqPLhLBFVLyZckJJtTMIWA8gCGchiQm54EhlwjIO3m8+xTNweGsSk7gyqpb8Ymb2ZQsMNd5nhSHjWptN88XpSGKR1nc5mR+dx3BmWNYv3E14aeGIpF3oRWcuOJtTOsykyleS7LDRaX+W3aYK9D7w3gkvagiMfr3VjLS00eOL4YklkBQJCEiqafCcJ4anQmvZDyl3h3M7solTfweFapiMq1JzOsWeLTUz/4OH8nXDKRKPYAfdk2hOfdOgjEvQkTCRWk6LZYwIyMBrmwzU9nUzCOrV3H//ffzl7/85T9cAmPmzJkcO3aKZcuW4fxoGzvnRcnPHczdQxZjG+2hZX8W3yTMgRhEBS8esZ6gxMHYHgfJomJ8chtu9W5yo+cYHrTRIsujI1ZGYrCDXk2QWdYz+L0BthgG8HXyIFamuNCHv0MXLCGukDHF2cJ5vR5J2gucjw5GFVOSGZMyuH0UQiSBU8YWVKJeBge/5yQj6c1V4Fdew4ian5AGVMSk01ALDs711lCW4MPZV4UxkA9RFa2Rpyl2+5AFE3k/S0SNbBvaup2s+v7b/xsh4nf+CfmHiUZ9fT0V1ed4sr+a0toxnElQUxDdRZ63g2ujK9hlkRNTdTG/+UoMUSvRmJcGlZHy2NeYhM1UmxbRJB/ALa5PcMlCrJH8FVOok7u7S7GZ9rI5JZEqWQpWiYn7W3LZmlKDRypHhJv+LoE6g4QuYy3DXKNIc47k7fRllATW0aHSowjOYb6njvUqKzvWH2PRokUUFRWxf/9+nrnjIR6/5iFCSTtJ7jyOWilmjreXS85HsGkjJEQO4FD3UGHwcFtLiBXZecxo/IBTCb38lFhHCJhkvQy9v5AdiQ6ergtSzeVYhDZMYTerVlipTPmRmVdpMdozaL14jMXzfsKUmcb1113H4quu4sMXnmPajBmkf/1nvNZP0S5SYHZEydqfQLFLzGi7mwfSX2dQHwxwNvNWRhln4skMUl5AF+5lkOBjkMtKejTEayW1dF/sQ6ySU9HnpuSqNDY46ygPiFmjmcM91jXU5p8jKncxszuPiKEHv0SGLKKjMnI5n+cUkBCUMN14gHGubo6GnbjEIbrMD3NdQwGZbhnKmI5VqQW0KE08XAPLRFX0dL6M0E/H9MbHubUulZSog3ZLBTFxLbroN4yw34Y6KvBu7gbGOqu4s3o+MsNeWkUL6FEl4hVthriAgIiYyIUsHqbckYEYDRESSfSryBIfQ2Tooqh+NmcFKWJdnDBOvhjxCAO8PsRx2KpM5d5zi4nEU/m60MxDtaeob61l//79jBs37v9v/05NTWXNmjWsXbuWm26+mddff50lE8fz/ulrcUke4qRxK5JQJoqohTS3kffPDkckeGiy6LEKg3G6svGJr6Le8DBdQgaZoR6uuzSIa0ZVMMrdxN6Ey5jisLBJa0WIZuMTDCxtC6CKt1Gg2kGKSMEZnYA8pGFMdz4/pg6lRtuNRRIjHB5DasxAu6yJx6bfit6Qi0KRwKcJ6QTOLScaP8W6hFLSfSC79BbdLfuIOB+nOs2IPO5BFc2nf/wZwlU6Tm26yNZ9+zCbzf9lseF3/rn5h4nGncvuJm/CUkQiPyS9wZ9rS9mdnoM7cp6BbdcS8ngY0zaBJo2fNkMLdm0jU331aJ1TiAswyx5nelRGY9oovOHpmHXriURHEZB1ciylhd36YtRRL4N7i+jXPYlYKMgQnYJs+5cg7yHJ3R9DyEG6/APqFA+jjQZJ8mTQpBBxUSNjVjxKiXowrx78kvfXrSMej/P6iy+zbMGjWBMOY+vch14hwhNNYJ92IMNCOynuzuS6VisnDAmUuCKc1yTzcJ2VanUTvRIVzTIzylgbHSINYuEcAzxhnumvIccdYHLzTJw6L1O6B9KccAqReh/p4lpmGUdw3+XnOCZx884nq/lhzVr+9vZf2b5tG3c+/SyRu+cwTFlK+8Wv+CJtNj7RAF7NWM8oq42nq6KctwRZ2lFDq7aD4zoTn57bg1RWT0NihLMJQS5vnMB7DRdobKgh44/30SkJs08bok1SjFU8gD3aepLD3dijRg4oR3EgM8KttkMk2BdzRjuK1EAFGr+RWHAQXlkXNtFh3NJjXNkmoFXuxBS9mwqdF1FcxBGDmaVKKwuv7OPF9U2MzphFr+kot6caKHdI2Wcax8PNQXTxOuya5yh3nWZZ0wwGR3ZTk+Mi2TmFdqUWt1hORORHiJsZ69+NhRZOR1+mUqKlwN6fHel2fCIT+9XjyfF3sXzD+wydNZvh3eUUeaN8nBOm3LsGSwhus7YiVn5MSscjfPrdEconjOTbH7/+V/fN/O+4ePEiO/fsQQDGjh7N4MGDf/nfFVdcwdSpU7njjju47bbbmHvnYgqHfoDMlcp+xZUgxNFqttCdsg9pVIPSPx+dvIHuSBZO+TE26TJRRaNcZzvGRWMWpmAqz6cNZIh9MUIsGaNiG8FIJmGRwOdZVsRxGBEVSAup6R/wYeo2srDdjoCaHwt2YAwmYHE/Q45wlMwJfyAppfyXa72l/Go6Eow0f32BpPZi4CzaQTfwoGMaKrWNUZxkQHQPkfAu1vWVs+3wLtZ8//3vgvH/GP8Q0YjFYnR3tbN4ziNsllQxI3KCdlEHPkUXgzsyMUcqSejN4KlhH3FJZ2RRuw2vcBhtVEmmR080Lqfa4EMu/Zhu+QTk/jQaJEkUGP9ApbAcufdubnRtoUvZSaJyB26pkcMJXlq0YlJ6LqdD9wV1gWvpVRRwQ8/3jAr7mdDuIMsxgydHfE1IXctXfhGjL3SyaOFCLBYLK5Yvp9gfZVRsL8t13SgR+E76Lu1aLz2aKnJC7eiEQ6yXS+mTj+evuXpyQpU0SQcQ4QQvnB3GsL4usoR1bDEMYluSFoEYOT4/E3p0RGMGThjPMc25ifkNI9DF7kWn3IrBNpvaRDVi2TCeGpPIH4VzLF4wE1NSFpeNGcGOAz04RXLsognohCRUUS2z3Csos26lQzGZsKKVbtMZDEE1luB4lBExRAZyIq2CY2Y1ekkmJ7Z/xS2zZjFQvZsT3kzuaOrgq9RM8sW7Oa0uZmG3i2xvlC8S40zr6SRR1I1Xu5MOfS2DQm0M6JhLpb6Jb7Prfw7knWYSRXX4kTDev5kKwyCy3W4a1AkcTrnERc1CerZtwNPiJ6NgI1McM/BFJmMKt7NHPRdrSgtNMjNtcg1FbjdE4KyijC8tAj7tCprlPaSKa1D7BzHQH6dSPol2SSoTWkOkujwYfHPZnfEZBBYQbK8m1OHGemsR9NowB/tT6Chgu2Yqmf4Q/fznaUvspuLo46T3H8hjjz3+H/Jlr9fLoptvJDxxKEpBxKcPfElWagaP3fsgo0ePRhAEtFot33zzDR999BFr163jLx+8waryL0jqt4tVyen4JXGMgRQaVdciEjvZlOTgkFmDQB1C1IgqFGJX9A2OZNqxyoPEpVuQxp5jae1CBnab0Ue0uCQRXimpRBX14YrMY1a7mM/778SarMYpEjNc+AxVTzrHRVfSpJKR7biVZLPmV20JhyEQsOMWpEzq0vGNUU1BejsJES/ZwV66Yovp0DURrnmawJkzfPfDun+z9Mzv/M/kH5I9tX7DBlQDjBwzP8lhbZgPdHdgiEcY6Bbj1TTiVbfQI05lWdUYil1hVmce4/3EEty+oThD47lvQAKFHgnJ7gKSJct5o+BTunQXaVMG2Jy8kdWJjWxM0jPGOh+PWMahjIPYlH1I431kutfR5l7KMzVHGOloo7D1Xgq65lKdtoutpR/hUMSQRNXIyOTjjz/muuuuw+1288E7K7hjRA6GcC9TL00kyT6ISyoNfRI9mmgHBYFa3NJO4uF88vxhQoIEjXsG0nAhsriY94vOMrVLSpE7SH64ioCgxydk8PCFfBY057G8zE2rIUqfVEaC30Jq30KkjisRogaC0dFIIjOp0iYTKR7KnfOvYIq8g7WrvkVfXUVo8xIMkRDEe6nVNPKVcTFu3REM4SilLXNo07RwIvkc8+rz8QhZBOMWApER1AozGGd1I7Z7uC51IAWdMwAND+ffwqT2wRS5XCzq6GBMy2QGtc5ksMPN3N4mKkU5vJaeiVRoYLazgim9YSyhdm5rGM+S9gbKbImsTBjOvdnzkQtOvjpp45UTg1nQrKFBHcUjjpBxw2Kqv9hOaetMuumPLpzJm9V1vFlTwXCnlEx/kNOqXA4b9ViFEsqs17CgdRoXxPNJD1ogkslM9zk04W4CoXwghk+lJkf0IYs792IM9+PyzrO0fv4SY+bPRRuJcMBwkQrjpyzoGsVA67WcUGQhdY7BcKyLD7fu4eWXXv4/ue7f8cwzT3B5SQrDyyB5+Cn+cqXApLwuXn78LhYv/vUOe61Wy/VLl3L1nGtYtOk6hvbJ+WvTjyytG8H2tAP0qk7gl59imLOIuR1Z5ARMKIKTuLp+HFtTVfS3ZiPEI6S7bmVs9zW8MLCRFp2KiEKENi6QGQgTE4U4pjOyJ7Uev9wKkdF8mzKcUEzD6E4L0oiFKboY900Lok0f8su1dXdH+eQTH4fPudlZvJxPhi7nm2QvDzd187m5Hqk5hXNSHfp19RQjZsf2Xb8Lxv+j/ENGGkcOHsPdbwaWYCEDfQGu1zdhiExgv24VVWRyQTqF8h4VM7xbuaE9yPuKNI7pSulv7uXTjCbkgp5lZQFCQpRWzXjG+GpIDbUxqHsqr+XokCBGFdHiFjnYJR+FW2NlqX07Jb2JtKZEKLO/Skj4lmt7d9Nj2sn2pHSMM65mZp6RhR99yqaYifPtDkbefTcWi4UHHribW/oPYktyKdfV5yOzHMansjLHupvv0n1cbr/ATbUx3OIMVlomMCggY354NQkuNV9l5+BWODAF7XxfvBGJxMteU5SCQBsiouxNjrO+NJm0kApjZAL7NTOoTW3gno77sIensrbIQEa4kSH2v5IcSOaQIQOfso6xQ+UUZl/N65cUbPz6RV50bKZ8yCu8V7gDt0xNWBBAdolYKIMlVbM4lNzGGXMV6bGVqKIx5tc+B5EmPumJolOp0EYtXLCsISzkIYnHaVPKkQaNeCQWdmfKCMYCfJ00k9WWsQyIrKFdamajPomzyv6MCmeQGrWzz3SAOT230CQPkuV+G8KQ0fgsWk+M3WlOwiIJBzXlpIfbGZBQSNwwBO0OKU2LR3A8KcrEwDE+TE+mnzXCzA4pm7I6cGgv0qixYIi9TKMuhgULmfFD3F71ACJxJ+tTLjGv6yDTxcd5KWc813YFMYV9DLQPoHHjBkamDEBnMvGdLMhVzUmMkb5DpybGdmMGtdp6XulVEa5NorNzPzKZ7N/tw+3t7fzpj89hsx3h4dHl+Nu6OGjSYYjbGaNP5Pgd06lbsY158+ez/PPPMRqNv3z38Scf573PPuHhiJU/+68GhpIQOcSq5G7cEgWX9SkxRzIICJVoYk56VAEebqjDIJwg2QYHZbfwfUYFkpiGMX2lWFVx1qY3sbh1NMX2A+zLX0NcJCGt604O69VAHFyTMHqUCEki7h1QgDGv+FftUSoFTCYR/uThWO2HUYa1iIQugnEVidMeQ7/yay7cv4ynvvqKOXPm/BdFgt/578g/RDT2Hd7O45ctYcJJLZq8djShEiL1HRQWzGGd3sZBSSknzU0kdlzg6ax5SAlyp3UTJ9SzaFaYuKklBbu0CKdsF+qoFpX0DGGZk5PmFjKpRhN1cuWxD9ALDh61lbI1vY0W2QB8hgqEaBp+lY99qTbG9Mg5ZfLgSbKQp4nz0OknuPu6u5hKOu9feSVbt26lubmZY4e3M/lOE91dd9CokNFk7kUlasOnamRs9ChSkqlTpvHggCJCQgsLOnuZ2dEDbCC1uYmT2mXMat7PumHLCcdj9KuI46iqYFdbnO1BKUH5Jpo8Vko0UfzDxtM8ZjqqFh/7LGk4FNkU+c5iCjdiDEfQqr9il9FPWqsZl1nPw+ZWRko/4LUNj/FXxRRWWo1syPLwx9yFXEuUKo2NKwI/Mc8dJBKtokumIr/lRuTBBPq5xHyw8XWGjp3IccMoeuNNjLcfY05bLy8VDOCIdjLiWJC7/M8TjhtIjKTSJ5VQp/p5f4EuHGB4rxpkzRR3zKZSU0Glrpdsv5Q7Wls5q8lAFyimNvlbNmRFsIkTKfCKEAlKruiYSu90Hc8tv56lk0byY0aI95MupzIhRqncwZJOO6FoGmGhAZ80iliaSZvsJpY29KLSbUBIeAtbYC52cunnrkQbdbHJLOXF/HQGO7toXPsF0pAG1aI7+NE8lsUNl7ixTkd7ymQupnWQpP4Ko83Czk8b2LFn9797Xj4cDvPsn//E6m27kC+Yw0eOT0lvMRJIv5+pbjd71VNpj5bQJ7PS74a5pG6TMnXaZXzz9fJflY35acMGxkyYyGfPXMd4mQ2P/jBGQUQnV+GI19ChOEiePZEWw0WOWfzMrIb9WT2sNw1jcccqDkgy8cjc2FU7WGeRU6NvxSg/zpncSmZ1KIiKolgCcYLSMzRLBtCqVOFU1+JPqcCYN+Hv2qXTibj6aiXPn64l1qnkjjPXcmtcRTiSwGunXuOLbz/kh1WrmD59+n9VGPid/6b85qJx8eJF/NogqwZ+TWf7OG5vbSfWKkIQDaZZaGZQ6BJnJePJD53Co3QywVNBjyzIh4lSVLEDLOm+QI6khqMJ4zBKzvDq+aE0qEZyNGsTveo2bEImZ6QDaB25mdvrbGR70iiMFyCVvUe6V8boS8OJUcPWwossGjIPHyVc3y+DsLiW430nGKkdyeWXzWX16tXE43Huvu02nst9gCHVFRw1fsG7wxQsrn8alcvKkfw76JMFKcNJr3AdsqgDsSChUQlbjUMpCZ4kKj+OVfEFPbLj7P1B4NS5HoqN+ZiHaSgeV8R9qi76xHJWGheRVlPNgaNNtD73R2aNms7ErCZUkQyOqcvYmSDhHudrXNkp5ZOU6Ww3tnJcNA9D1EHx9B+QXTTw0N4H6HfDn8h2XcuMnnc5rk/ivNFJ0JXGVX1d5AX9HDLCWHEDcfJJCEdx2ULoRxdS6DKS478JrciLKuzAGG8hyz+LKL14AwMZ7KtCGXVyXmtkl8WCKB5CHBcY3pfNIcsRDqS1ojGtRuG4nw7jBVboYYu2BCH7NGOdybTJjFiCdhplhdzY/RHR+HmGBYcwfFQiF3c+jejGt7mkjiOKunjokgOXUIZNPZzpNdPo1B6lNrUGpasLfWQ7Pf4RvJwj4pGGk/iUebySW85t9jU0S0pwCT72b7iK3KwI1065jkG2zVxK/oYERRBl8D1yW25iVNDP3v7nqdvSxWNPPUl6evq/6bPxeJydO3fyzQ8/cPLoQRKmRZl457VMa1qMxZnCR0M/xK32c/e5yzk70MklcRILXccZ2yWlzNSPEZOW8MjVjyEkR/h69XdotVoGDBjAG6+8zI8bX8Sz4DyqQApZ/nxsSlhSPQSp6ieOa5M5YNGhiIdwKQ4j+HMZG97G3M5SvkmWo40oKO5TUtH/JGFJhEvxNEb7OkjrmoHO048C5WGaDE0UilZQGigg0aelYci/2VREfT8SVFbTnDABpT+XT6o/oMfeyaVLl/5DI7Hf+Z/Lby4aL77yMoaCm4l7dCSas5BeqsSq7OLEFSWsbxIjlYgpim0hrj5HS0jOrdWDOWiKorCcokeaz3LDXEoVpykUNiPEIOS5hSSvQP+ES1gcjayVTkKh72ScsIraDBmHpHI2qiYgZRzPOM5xOMnEseTVOKVZZPAdJumjXJmXQpIqh9RYCg/e+CAPPfQQgwYNYuL48Yw2y+gqS8XlrWC4s5mTdNGY7CQi+Miz3ciAsA6lbyhnkt6hJFhJac+rTOv0cecwB37JGOZ1HGDnznU8V9mJ7rIJ3DPmAa7rTuK24fV0ycM0xoIUBLpJj9kI5wpo+k9ilnsmJ7adZeXf/srW8jDvTjBSkXQSt2YkTzTacKUqUEdKubG7CokoRJN6NNcs07Pjhc958Ns3uOsP00nx3Uyv6S6M0TxO6TuIBm7hiaYCTNJj3Ds4kUikhmbxXqL+OIucl3PJ0IiYPCY23oU/4qVO+TBaPuMKZyWDW0fSaGxGEPQM6ctASQ1N4oHc2txJunMct/suguDluEiCL3KCjeZKpJFkuhQ2wMEBaRIDQ9u55sJl/JTq5ydjEUUSLznOKHOGPcm6LY8ieecmMha8i8yYxd9yXFzbdDnzusQkRLJJinZx2Hweg+ZvPJWeQ5lzCIpoJX06P2XRA/TzZOCRRQm2VnLpqzdZNPpKJgyro6BThTJQTED+Hc06CS7TdzgwU9a7mOXnplJdv5Kvrrvuf+urP4vFLl544WVcyWrGFqZzaMoM7htaQ7ZjDHFVKlaNgE8mxi8OE4hr8EfD5AUaaVV3ctJwJZ5YKinBDq694n72BP/KlEkTWXz1NfzhoYe44YYbeO7ZZ5Cb2nmw3MLAS3kcNAfpSlvLCGsLg0I2Bjon0aVuRe3PYZw9j82J2zmvSeGq5mIUsXb8kiALux1MaR1Iu74epVyGz/IlW7IHcF2Didmt/YgLA6nI2MDY4R9wd1m/X9q2fl0AnU7E5CnyX9o8WMjB7u/g4WHHGLK9lg5ZC2tXr/sPZZP9zv9sfnPRcFjtBIdMRxs0c9XRrXROzOZkYBz1Zw1cHuoibrQhkqVyKSzFrgniE/m5onYao1vm8X3ZTyRyHnW8gYPqLPpHz9Nr2EtIrMInCeILaZnZNYVqr4ed2VYGh2uQEEQSkxAXyTmsK8Ku7+GwwQixBMo9BgZ3WflpXy03zBrIW8+8xZNPPsnYsWOZMWMao4qiPGsx8Y1Ywp1FD3BnxwVErl1YdfuZf/I5LqTVIg6P46v0Q3QrslDFxFQn1dEhlHJlvZ/Wc7v5/OBxbiy5FcNTBVQZbGyK2pEYjzAu2Mha6WwksTCz+hrokqYRUPTgkMK83hDqyyWEB05jzvL3GVPwIDODA7mmw4claOWhSyIcoiQGeJvwq8MYInfQlvo3Ltz9BAefe5QXvvwDzy55nAxfkBPq0Qjk8mDlPISoHFGsjHyvGKfYQ279QaoFGXL5ebZm2ukVLiAxrmBA3U0srrqXEznbUMf9fJzro1I1gpfOV5MZ2odCEcUkljMkuJMjSScQRVMpd3cyqs3MmuQ8NOE2iBgoCCWiCcdpMb/OvNohZLs03OIN835xIYcS6ymyJmJyp1E67zlGV2zk4eX3oinIYsDcGaxNvYQ6IhCW1lNv/JBmuZRkhpMUVJLjm8LYvgB+0RTGtVoIJDzE5yd82M/dy4czn2MeVraGBY5nHGVw8zTeOTYGebybuPgQUkHgm2w9O959nZPHTyKR/H0X8Hq9fP3Nt6xc+SlSs5r0JcXUWnI5SSc7Lw7CGWvAIemhVbWFS+oIQ9omMs4RQRdx4hVrsKsv0BE3oZBr8RtS6NV/wAFNGlM6pjP+tgC79+2jblkj7//tXWpq6xgzsowKfYhiaQf5vjSOJbqQyav5KqWFy2vHcja5ljuHxLmiUU9q3R94v/A88zuLadSYWK3YRT9XBoUuE/uKPyYkCdHQdR3fWVyEI1FuulSCgIBf8OGYVUSm8PMbMuNxcDrjQOxXbZ897UWq9qzDvm8lH3/+HsP6lfHkE4/y8iuv/xbh4Xf+GyDE4/G/r4n9/4PL5UKv1+N0OtHpdP+pHxw5spBFd5XhDY8lXXuGA9J7cPtamdI3gkx/B1LtC5zR2jmoKmKuXUZx+0sk2pwkBAxsGHEXjSo7R2QlRJHywckszqVcpNWyD7Mri4G9amzRR6hIcHBJ086dTeM5mPUig+0OnsobSkKsniJfBhfkAWb0RrmmVc1eyw3UqnvR+o7w9cqP+O6777jn2jvIGTqCnFIfV3RaeT3jIXpkcvr5Iozzr6TJdBRJVE+6NZ92TYCvzaWExHEkoSGAnLsbn2fNt0F8UisfTsjCFLiFdf2/5tOUfPyCnhS/hevta9mhz+C0xsRIl4tXDl6FVdnD1txSZPzAuowKcv0+TvmmU/X6G+yfeisGWRGHklvZZC7loqEDcyjKX6pqSLeV896A81yS5dC8+zRHT6yi3+JbuS9hHLXqUvaaP2V0ZwkOmZFa82eMdg1GRpC273ZypLWVpx404lU66Q5cRqJ0D6fkIia1P0KisIOtegsHEoYgivv44FwtaqGB9akivJIQ/ZxhMoOTkMR9nEv8HmP3n1ELwzinOUWrsofjCTmMtJ/njOVjxnfewvYkFQsboyTGgzQlbmOvNgdlYBQ2SRHXt5/goqaXqoqLnN6xG+3Y2aTPmE9hqJm5HdlIhQNMtZ+jSt4ft7aVwW1j+dbex+kmJzvavmNqvpkx0+dR6BlBevAiu5IL2Je4FpM3jZtbRCjEZ5CL7LRLzaw+DNoRg3j66ad/5ZtHjx5l7fffc3DXHkaO8DIlcSlhxZWcNrZwPOkwwdBw/BITk7qqKJF/xQ+Gfgzumcfc9vEEZQcIiuP8acBadCEdPeKZ5Lg1mDmFMdDJ1jQvV9cN5c5GPQ5VO3OstYxQBnj/3b/R2dnJ8NEj0N91GUNTZdjUVYzxiTkvUxOTNWF23scZbTMBcZwHL6Qzp1vEx/0dlNjLiUnf49ssaI/NZ1bwe0r7EhhZ/QhrMzrxqwWGtRswx1phVCGZC/sh+l9GDLFYHEHgVy/9Orbdzta+x3nrteMMMht488oibnl3DVNmLeXNN9/8fcTxP5h/b5z/zVNuY1I1BqGeiHIvZ4R2rjpj593jYiSx87SriukIL0DrSeO6bjfueC49CiuNZiX70uu47OQbOHyTcUsEAvFyKjT5FFjzUQcsTG3No9heREfGbXTLrFzZUEaf/AQ5sTNINJcYF1iFOlzHA5VqpnWbUUa06CNh3PKv2XLxI378fgUjhpSx9LqreapsGRkl2QzqG0AsPIVLagk2aYyjBidHZLOYU7WUQDSVo4ZkvjIsY2yvno8rvMzoqySw9s88+9kxCkcV8OP46ehkYl4YtganwodfpCUvlECfpIjdmtlMd/UwONiB3lWCW+YgLHVz3vIsX6SJ6YneTJdQyjihhoxbXmHavm85otxLULeNKd0CJn8ydqE/m5JUhKQuEiSVVOs9LMnPJtzroLf7KF9mVtKqrCIoNmMz7eGs2YafkWgVX6GRbaBRpMSvkTKuJY/k3glcf+ZWfLYZVKiDeBSf8EmyjDF9MLMNImIPX2eKaNN2UcwJpgTOsdM4kUhwPm2SUnYkediW+wUBUSdRSTlJ4QgPV9lJc6fTzzuaDl07kniEH/O+BvlROmUyPNIAmYE2hjmr2JIU4bTRwMBhBu57bBZl0YP0PHkV1ctXcnbvRRyVJt6uNXL/CQdPfXWOiWtf56OefUQGZpP67Kt03bgMS0TMMfMAmswnKI69w5jubE7rk7mnZBTNia106AL84C3kpN/BU089xf79+5k4vpwRUycybMoEnr/vOmZ79rH42tnclJPPhMhxgiIrc9sG8Ozxu/FJw8hjXtLC2fSI07m38wI5waNUG1rxScN0qy+gCJey/Fg517XEaNZf4FiChG3pu7irRsP1zTrOWyrYkObj65RE/L19LL52CTKZjFPHTuJfdQhN9yCWVr/NHsksVIE0RNEMcj2DyXTnkO2PEVY2U5PQx84EBa/kdrI52U8EPT5BTZcoFUlEw5rMNpLkR8j3juRkmoIXB7rIGGr+lWAAiETCr0QgEoa6qjipvg7ijbVsmH4fBVNv48fVHyOXy/nss89+63DxO/+E/KbTUz8PakQIxInEVfTTpDDEKkUTMnFG9yma+CX2W76lwJ3MVa33U53/LjtNTmZ2pbLD1EOXchClsWOIrIV4o8kkuzLQBBNJc50lGEmjXt+IRyziau87qMSzaRRPYEDHCEKqelo11zC+148vns46Syr5Ph/lOXdx+KCG6i1nyM/N4+pAIxNvSGRFQjU1CiP3NtiJIWNZ9/tUyCbSoZJgU0S4fngffzl8N+fNFZjcLeQEvPTzRnh203JKwqVk3b0DndBMrE4gHJpPi/wce5QuSqM/0d+nRJBGaJRr+J4HaBd1UpFeR7e2jYWdflLEJ9CE+mgI5XDfhcsIynLpzd1K641juG/FGj5Ymsb7+VuJRnMZahtIs7yFu0avosw7iHh0JBXpR0ktyKd790lSZg9FJJxhhKeVAYFG8p1FiHwl2HU3Mr8hiRWuV0hRKlkcg3u1F2lN+YKZHeWIw6P4OM9GvjfAjM4wVZl6tIEoS9u2kB6JsE8Yx6vpqdzWfQxN6GricROSUBlLmtREorvZkJhOVCRly5lsilQBVI03UqN386chjUgjS3knsxd1KIokFOOK1ky2W/R0KRyYoh2McbVSb2lk2GVq+uY+h7+pnj2tjVxs2UZQWYZ14HAGGgaSnHgAnaSZ1pCOiGwgnqiPPN9O3s3ahcqewIjgJeb21REMzWZl7mk+TJSh7C3h4I/rmDR8OAtmzybsq+eBKxL5uOA6QoFePj1XgdY+hwPG01T4MumI5vJF/lk8MRUPVBmY1CNhn9lIg76SdOeNxJ1W7LoAB9JXc0ezFbuunsm0sz77RtLjR7m518d3CTcQCz7PZc06QlETD5e0cF+NlGyPioyJY/jm7H6GjhrM6y++wQsPP8E7f/2EG6ct5LbWPuz6Gs7HcunXHmRYLAdv6lekYOXR4pkk+sfhkPbyyIXJ/GSeRCBlO6eUebRZxDTqahnklLG0ZTc/JZQx1G/6u77oDLnQSbW/Eg2pTODyGwx8+eFkEhOr+GK6krPNp/hgys388Y/TmTdvHtOmTSMrK+s3jBq/88/GbyoaO3fuZOTw8QgFA1lWPJ9Vl9byTqGDpZfSWXb2fgJSD6VdJuSCnDZzJTEhQCxajD2UiRMxRy0XePnY30hPvMBxs5sv8jsxSU/QJlnIXxulqAJjOJhdTrJ6DZe1x7H0pNNn6M8lRSbtkkIOmrx0yLxERY3UeZq57QsRTbVnSZ47EcWMhYgbu/jYMIzS8FaGun24lLV8k25BFdcjjsd569IaPs7KpDWiQKn8jO9zOnmhsxWRVMmVzTLCnlrED4WQ9L1PTjDOIcsfOGaqRR4xMMx7inr5VFyqKD1iLwGxDHWkjRGxr6iIlnFWn4A0JiU1nMySxmQKnXvpVPbQqhO4zibnaOYxomOzeOt4HsocC4kBMY+dS6AyS89O0TV4A+lMi/7A3MAGwjdO5fPH32ZU10+k+N4kMTKIBT07EcUdbDEm4En/jmP9fWScNfD1t9+yZOnVHAl0cbygP/VFu+gVmUjzlaAJSfkiI8TmVA8B1U+82E/Lm7VdHNMb6JKrOKkT2KY6jFsSoj52H22a77CKbMTigxFF9OzP2UK9UsfS6pHowyLi+AlKOxDiSXhlPehifl4tUuIXUikK76VaKeFUggGjUEuivT+yRAlFaXou5Jei9uVydXMGbxQoaJTWYQpIkRKmLLKGvN4M0nxKHEJ/ZIKLk9o0BllzOSfPY1XB90TjA7jzxFzuWvEugkHL7EAfI4oz8N18JwG5ntGn9eSFZDTHSiiLe5ls9SDEFKzMqaNXOghJ2M/HAzbxaF0mOmkFI1v7YwkEaNRK8En6UCk2sC5PzghrCq0i0IvzOZr8FbNaS0hVt1KjgnpVCj7UEO6HUjgO8RTurTFgGaZEXjKTVa8uZ9EjNxPEyV+DN1OSbCMgc3JHaw+VZgV9nhvYbh6NKdKALDSOy3r6YxQ2Iai2MaGznMaM7zCGQCzS0Ruey8KeHpJCcE23kcsfmIBYof6lH55q288dZ55jacbl3F92/6/6aChqY/VP65k+fTpHWitojsQ5s/15BEcfjz78CC+//DIffvjhbxk2fuefjN9UNNxuN+UDy1iq7I971buEdevRKidg8U7hdKKLc0YFC1snYTPuwaP6HI37Zq7pMlHs9LArRY9dnEJQHKFb6aXaICHKRQxBM1Z5MscTtfRzJjK1S8S4TikHTG38JX8TC5vMfJqfQpa/kgLXBIo8YQ7bPqP63c+QG+Vc/odHaByYwJg+Jw0GK0ocHNamYok2c3XpVcQxMM2+jxpZPvXh9xnpfIlre/dTp+mPNPw4B4SL9K35gEJtG74b/4TfYSLNfYkLqkfA0k26v5gTsn0Yg0rs4gTcAiyxbmOzbhFOqQtlcCQ+mRRiYk7q0rm95jHyW8z0Gn5iZ9YJinsGUWDLx6Wqp2HUDFa++A5Dry7mtk4bmrAEXVjEKeVY4soo2cIB+vylTPQXszfXwPp3q3n4DifJ/gnsSvmRCS0j6Oc9icsrwevMJxTuJiEhgXVrNnDZZZPRyA8yxrCfzriJCslEunRRZPEOrnBvwxrpJM+aRa88GVW4H2N8O5hg9bJR28ms7gDt2X426kcwo28QZR4FEmE3azMhw6HmcKqVg4kRsgJypHE7ye5MOk19DAg0sVGTTaGnDasySkJQwg79AMb0DOWFmi7mN9VxZ+kQbuw6iggjazOsZAT15DhczLT6EatNyETNKDoEEr1aOovW80xXhBAS/O7v+LB0JR6Jk8C6L1i0qZKROelMujWbotYC7FLo1OTwt/PnSHOXkuT6DJ9sOGHlASwRO80qDanii/QLWNAHa0n1q2k07mWG7yI+sYHnBqbSqoojCc4mPdJMbrCG1JAHb9uzfJN1gkLvCPyBxUzrSqMp70veH2CjRZFBlEI6ErrYIW/i3ZTBeIUbkapFfDdEyZhHruLWO29l/6YfuD96FydMQXqNX1CjCiJTf0u7pAyjbzEO/RG2Jf7EnfaP2auYwkirHpV1Pnr5TkxBF0s8h1FqmuhQSXFEClD+L4IBELPVkhKKYAr6/q6PLlu2jOuvv56D299hcs1lSAJ6Xsj2URY+RXZtGXv3PMCePXuYNGnSbxU2fuefjN88e6ql7QA7/MsZ1pyFpFwGqgoOD76ZzeqbOKPNYkBsD2bpflK8YkShBgojDvIDuVzVYSMxqOCjYa+RYr0Xu2wDxI1YPHqm2LOoSxCBcI4k1d84XuDi48Qh2CQyOvS1lAddVMgn0SBtZvPG58lLN+FLSiR01yLaEk2M7UsioNnFJ+qnyI4eJBJvoEuqhfgF5MGJ7ElUkRCo4lBKGzc3jcedEKZHN4IZfU2cbbyI3d3LfYvL+UCmxSaNckarosD/EyJhJodN6xjk6IdSkIDOhjkcQ+8tw5HYjDimxdh3C6NDlziqkZLn72N7ajffZ/vJjDkZFXSiCmk4axyPwaWhM/Ecmv65mE+fJ2oooyXnVaKqVpTxCDbxTCzUszNRxnFJhAfnTeael77FG9TRrI2xLjmRr5JbmOqsJdExiY29UiZPCQMgk8lYu/Yn5s+cySGnivQpVvzi7YhjIzlu1NAbSuXZpiZSrYl8lzKCPk0NIyKnqVSP57zBS2WCA7fEgDasZEiPhTrdIUrD3/CZfgxV2nb2JpUQi+czwzqdma0GXi80YY9lUu77I1vVcmxSFT0SLeJYPsVOB4LsOBsKRAQD/eiSZrLKZGCETUONpoeJtkqSg0FC8UwaRUmcMrhJUa3hsHwu99oyiYh9OEPjSVW1MuJCGbt3rGJEdjmyJDl/uf5VTJcOc6x0HyfTJrHhzBEQgoz0VBCRKEjyDKNL3kCd8TgyOulyP0yDTsPrNXLK+hL5w6gtfJFYyBv2ACNtHWQG8umTaIgLqRxVZhNQhxnZE0UXyEJOL1kOHWlYeN5bSnb3RDaVvEOXfjUnDAEcyX2oaUEWmEWBI4nDxWt5rHgCn325npgAVVopXkUzklAe+5L0aEMRPJIARfYoEzsm0pfwBVERBIyHOGPYwj7dBCRiP+kIxIQWktvVFHi9fFOo+rs+OLTkRpabyzAlD/7V8c7On/djDBlShjEjwrrUXqa3JNAvVENEdQ1aqY4tW3fzwAN3/C4a/w/zmy6Eh8NhemzVNGk9hCcP5Jb5O5lZfBNmv5YFbVqWtBjRyurwYOacRsYZUwsPDZDz2IhDDA5fIGjYSJJ8Pw2Jr6NSfMsT1Q4eu5iEUfsaJeJZHMj6iIjyElalE3FcwBD1MSB+lJG+C0S+fx3hq6e47dorcLntPDRmPGNlaUgiGRwzH+eIRktGuB5L/CJ2RjDEOpxhtmGEZOcICkrG9Glp1UZxyGLsSvRRpdrO9S1fcmTdV9w1dy5ZvUN5svcDIqJejlqcVOiP4hddQB3SsC3pMCd0PegjTvqYyB71QtQhKbJYiAb1RoY4ddzZXcMi5zpurtfhl0SRCGHG2gQqdSGaFQdpVfYw0iti8BgFp05uZVqnjix7IRqhm+GhdkQxPaK4hoR4FwWRk6QldmPUSGk9+B4lkUd4+3gBeU4JHt8S3swaRGtfG8nJyb/YRqPRsHbrVlKlQ9i7vgwhMpGQ5CDD3Qe5u3sT7aIktpmMfJYjok4YSY9/NkubYiQG5SC2Uuw9xTDHIPYmu9mfUEu96AkcQhJRIcx4awcP10Q4rG/nw1wNfYoAHrHAt8rFPF+VzdXN/ZHGMgEJXomaStU8zoguZ5C/muRIJz6JjT3Jh3i4eSd/rDuPXZJCvSqF3VodZ1QF/GQowKG+wPLEISjbX0UjaqMy8Tte2vwcSdPuoq6lkf2HV5OmP48irmFg3pVYWtcyINDMrE4p110aijwsEBb9xLP5Sv5iup6KyAKMsW6meU6wKkNKu/kgTRo3iribLwov8E1OF8G4llF2KaWRvYyNfI037qRJGaRPWkhGWE4knEKTropQ0ht8NXgtJ3UZKH1xrq14jAxXJgXeIMXBS4zztDA4UItMImXczDmcOVfJ+sbvyYqdQxoTM8vej1m9z3Bj3VQyvUkEJV4uaXUo4l707iTmVF7HA3Vm8qIiUiNxRJF03rHMZ33CDK6I9fu7fmgLhQnpixFE4l8df/7553nhhRdw2/0cM9xOn8LPifSj3DHUxMtX53DVdSpyc1OQSCRcvHjx/3a4+J1/Un7TkcYPP3zJVYvLSJNF6fQ3k/zkPpLCYlYN7aCfYwvDu+4C6UASygtYxWmkUQFjSIkp4qEu6QjdwUlYvXOJahoQBUsxRVVoAgVkeHKRiraREpSh757Jh9lD0PiVzBE/hSMcZvuWZEotGXz6/af87W9/Q5XTyamR6fh85Xx12I9HOoU/lVezpF3BMGsJl2kmsjy7C320+5fbFJaEGe408ofhpxjR04/rqzN4av+rpM8YQkZwDsaAlPOW/VhCGeSH5NQr5BQ7lQQkQeSxIJ0KL6kBC5e3GjAFm5lw+iZsCi+3jTtFkdPHTN8naByzSXDpSDoW4+WyXD4zDmePWUl/VzLjrUUsrf+EW113MLfhz7x2ZQiNqJ0EuQq19DyPV3ciFc0iXfMO9Qor9shwBua7uNRWjU4kotpyBZO7SrDJm7m5XsaD333KFW+0/co+Wq2W9996i8efeopT619nwRQBpS+VBFwcNfbySWIHS+rNKOngxi4fneo4i/p8KGyLSYl00KnpJCp4GGYdQJhBTOgrQBMsxxA5yMwuF9+nxZHEYrxzRM+Boh9ICGVSrbFh8WQRQ0RS0EBOIAst7zK/K5NCdypXGb7nraTFiOLJdOoOslKexdYkNYhixAUPxJzI4gIhQY5auofNBQWkeArZ+cMayq59ldOfPcG1d6zikwtHEHkOMmuwmtzhzzBB0UOZpw9Pg41V+VtZk6Ulnr0XaTQHTTiNpfUmVpatIKZoxeJdgiPpccoCiRxWDWFytwYhoORkghJZ2MPQnpsQiXyc1w2iVP0M40JJjLHbSAo2o7H2sFF9JUfSKrFKUtGILSQFzTx07E168mazyWDlpSIVQx3jeaAqi8GJKzk1dwp//WE/y/Rb2Tb2DxCWEfFO5+t0HwpauMy1gWPaLI6rHmbzidO0KgXO6BLIdSwmqllJJD6Sh2pSKO+6HFU8wor+DRQZpIxKzgDgvgP7afXaeTq7H2M3yRHlhTiXH6Snp4fZs2ez//AR7OIA75+VY5MZORNbQV7pkl/85IknnuDtt9/mo48++q1Cx+/8E/GbiobT6UIVacRqsxNBRl7oCmwKH2mxHvy6bfjdKjJ7xvGV93n08iJ84TuJRUSE4g4Qnycm9zIqdIygz0cLWXSkfIs3oY2EOffyp7P1aMI9jDDaeVKewQ/tx7BpL+fjV77ns89eYMSIEZw5c4Y9e/bw/udr6Hqzhx1mFz+l+5jWnsvlLXrisVqadN38ZGmlUe1hcUeUK7pvola9DqQVHE47xVMdboqqPuS7hg1c1HZy5RgLr0e6MERt9KrHMDr+Fsq4n78evZYvMo5SYWhmcreWPHcGCEMIyMNU6GJMbBeIinwUhc+jFsfpNDhQqdZySa1jp2kCLlkdJ9UyDJEeEHqo0bQyo8OAKpSKOWYgM9yDI2kX4ghIQwVM7kxFIIXqnP6M7ClE7B3NupI6Du86wAnR80gkY7mQ3smIHinZ3hamTJ5MQkLC39lIEAReefFFhpaXos6OMdX5FyoTz7PXXE2ZXSDJY6LVVEmtKocOyzZMoiNsSc1gcfM4clyt1GhdnDV3kuc0kOnP4ljiT3Sq7Bww5CCNxBnVo+OTohinzDOZ7/+JVnGEfZYGBocv0CAdjld1lPLIWQ5l2el2RelQhBkX/QoxAZz+6zlhCCKNS1BFPASEGPecH01F4atcUEXoZSxTewp447N3eefPU3ntj4/w8VN/IZSVyE9tHzBVfYzl2j/wikxDSCTl+Y4knoi6OWdIJCpykOeaRiCez5QueGTID9Roh3BX42IMkR40vX9BLm8goPLgqDtMvO4INutmVvuCrFDHicZCaGNmXAUiXjNkc6m/mW+Gr+O8NoosUohLHkCIB7mp6zQniu+gn02B1pfB4t5yavu7CYoD/JTWh0E0kOEjZ7B33Q4Wie9nfiCVvmgBsx3f8GVaPyJCMxWmM9zWlsKJhBrOqbMpc0hpUeiY23MVG0Tj6Vb34JFYaTWYqDWd4+szHTiUbbw1cgEl8hhzMtPZ0tLAxWMfMrLlDoT2Tu5/589s2LgRgLrac8wqjzHEegcBcYCf0gSsnacwpfxcg2TYsGE899xztLS0/Lteg/s7/7P4TUVDoUhAHxfRIE8mkLIQ7a2ToTsR9a69WJ1LcEQT6S16kik2Ox7FUA6qFQQFgYvyLDKdI+lnT2RA/Dg7U7TE5M3YgWp5A1XHnwTZAKQyKYPH3Yxen4nxnJyysjJOnjzJkCFD2LNnD8899xwfLv+Czr2dFPSpeaS/FnVUz0BHMkFxPS8W6DEH9VilHhDZGOc4Rjwi5YsBlwiL1BSGLJxXB2nzruRvHVuZ/lgJvZIg89vaKLaV8vbAE7RIMtAJLcRCRSxukpDvERhqVSInwP0lXhoSDuGX1dJtfo00VyJ2iYELCjXB2EwS46lszWulUn6WuMSDIjyO6X3ZrEney0WNhBAy7q86Rp/Qh07SgC+QzFlJKi060OXvZ0T3QExUEUiowpe4CSr7kZmairRnCBaVjy8zN2JPqCaEmujpyP/WToIg8MGHn3HZwsu599FD6DUbWdYmZ4C3jnPKBs4pZnMw/2V00Tgi1xIOpbfRq9zAw21rKY6qmdT7FxC0zHG8Sh49fG3pT7NGwBDqZZo9gFhswaGrwRcYxKDgGcyxdlak5+MUGXFGijgjSqdZWowy9CNz7B18pbQgFbnYmdqHIuxDH5YQIAdB4iJsWMkdNSl8n6pn0vTLee2nd0mYNoH7v1jD4qHJLBrdD3GRloKayVw8dZYJuT/XmXLvFXGf10WiK5tH+kqo0XkY3WOkWVdDmqcIvbyXXL+YNqpYIU5H0x3l9JHdSLvaOGxIY3xmFoNGzKMxfQQHdQ788ir+cLicUw1reXTvapp29SArT0UxdTJvuL5gZ0Ie+aFOXLEkhvSpiNKKNiriuDqJUT35LM/tRBZQkuXN50BeH5kD0qjYoSCvfAkDvREGePq4sbULufgScnmYkvhXaELQqJ+PJZBMkl/Ecf13WDV9TI6v4UReGjG3gqy6fjzZk8p3RQKGQDs7tt6P3zQZna8dvfIShwc20+qdyIL8hb8UbXS1WHk29Tq+zxNRr9vPmHAfZxoOMSXlXwpX/fGPf+See+5h1apVqFR/v27yO/9z+Y0XwgXGXrOesf/LEV1KKXkT/wrfimnTeTGGHuRcwhquOH0rw7U6DmYGKfO1M6MzBWPUzkHLEELea4hF2kgIrqRR04U+7mZ8VxnP3vYMgiBQWVnJww8/TF1dHXl5eXz//fcsW7aMY6cO8srZrQyqT0GkVRFQXKDMqic7ephEq4dP8rUEZFEu6yhkdkN/CiJBehUhNBExDplAnzCQlTo/hytWMvLR0TRrHWS7htGlKuGMVmBiXw+u6FI2pEiIIiMo6AnJRAQiej7KdzDMno0p6kKkPoRL1UGtzoDFO4Mi33AOGAI8Wy1lm05FXNVFgUdMgT2VWFRNeegAbcJkigIBBJcOmVGGOCamTWzmsDYLIWak3KlAKhY4Lb2DPD6iWx4hJraTlp5Bh+t2hiSYKQlkkSipREaAvTHLv2mp4SOGM3zocNb0HGOUei56URZmfsCVeIbBQg1HlZkUOgyMDJykv30adkUDjw3o5MbG8fTKzlIUqcAtinJeMptBnhoub+glqjqDIjKD6T1t7Ms8zKakAm6pm0VxVx5XBHbybiE0yzJpjRgot4b4MN3EPm+cKk0rwxwzSRX6qJep0cUUiGI9CMhxSuP44iZSk91ofBL2ndiOdvRkYq4AJQt7sGvbMZPCqMJZjCqcBUB11zGaAyn8daCHO+tsdEl/JMs1CGU8jDwmZsGUg0R7Z9Oy/CXE7h5iOe0kJ5gZfvlsDClikoVTDLkwnSR7MU0xO825EgyeAkb6MtEPTePk4he5tzmdxvNb+PyT73iQIMOuLmSUzEl97Do0bi3HzO141SJGO1Ip6h5Nj+5FMiMNJMaMGFvu55vSo1j37KG/t4cr2tR8kmtlo3E4ZS4dL9ZF+TG3kT6llaOGJg6nHaNVKEJMiGJHKo36MjLthUQdMVqTlmNyDyPdn0qyuog2qZFY92lqTBMZY8wiqsvk27+tYfXq1T/fm+pqPFIlG1Oi/JjsID2SyCeK+bxRcu2v/GPkyJHMnDmTdevWsWTJkr/zn9/5n8s/7HWv/yuZUT1hbwToQRHpz3ltHivGn2Ja7yQSYio6LT+yXaNiSksRfcJoOsVdyBRZ7NR50AdUGCLzuLJkAoIg0NzczLXXXsu2bdswGo0sW7aMYJ+dmv3NBHQdKP1raCy/iYJzRzCH5QzyNKOjCa/UyHtnCqlXSpljXY0zfDPv5KsZ6MjjlVNaDiaBKJbCylPNmKaUkq0Sk+33YnRMpNAxCr3hcaZ2WngjW4FdYuCFsuMcN0q4u2c/7wwpYL/qCmYF/sro8DEMngAHfTPplZfSqOghX7aHLnkPF/SJmANapHEvz7Ws4A3DJM5Z4lgil9GrkvOTxcrphJU09EvmtCKTlK7xJEq6scnEqHwW9qUX0KkeTHtEzunEtehiFnJL09hQL8NnLMDCScpa56EMadgT3/R/tMvyjz7lsnljCd9yJ2uSsxh4zUgy/Vu41HmAF0Y9z5m3HkIlrsUk9XJGNQ0ZM2jTdDDBepxjBjsh5XyGpqspVeWgu3iQCqOXkzlfsVe6jDp5GXFRN6dNVQyxZ6ES7ePu2umYoy20CAX0JLhJCIuQoOeq5gwyVbsIRSNsF+7hkiYRi3AYlU+Bsd9N9E1rZIKpmBk33I9gSsZcWcH3d/6BRtlGpLKf307XUreZcMDJhYiNzt1xrMoBFDvVOOR1HE2MsCPFCfHJyOMyZA0izn35J7Kvu577ZfBRjoGPjmSQX6diu7+SusKNrCzo4MazgykJfsf757O4fYSfI+VPEJD7yY0sYYhjCuNTMnnUks5t+sN8/ul+dkxZhnn0EEJ5lXxwSkahy8KxlDYaLV+ijDWQRy0iKTQIlUjHzoFN65la5+XDQcdxq9socZRiijhxyIM4ND2clWeiDpkQS7voVIgYaY/zx3MlXDN8Ik0JDkYHvsIU6qQxqYLTaQv5y1oNS4seJt+/n4XTniASjTN69Gh27NiBwWAA4MyZs5jSxrE6u4WSyG5qxAPRUkKe/u83CC5YsIBFixZxzTXX/F5e5P8h/ilEIyldyhbDSSLR/pS0+zGGd5HiyQbNO5hinWgd2ZhDYhI9OajkMfaadNyZF8XrKsGgTGLJ8CcBCAQC3HfffaxYsQKpVMrSpUuZZtZzXbqajo8b+GGOkScT3kZhjHFzUidukZqvs3zIJA6aFXESIl1s1Q6iwpxKhe4wc3uc2PRnKG+4n+qCr6lTqKg6fZK8Z8fQHh9AULafqrxd3FV/koDEzPs5mRijbq5v0fN9dh+yqBo1zYz2d9ApTiImQKdUSb+WmQyUm+hIq+CtPfdjy7mdu88/ylmDjyWdLfSP7WNHwkBC8lPcU5fNoaQ4PYoAHeISOroOM1YncE7Xw8P1FoZ4LrAn6xQ3TDCypOUgl3dZ2J/9NUMjbi6IOhCEdFTY6JMFKbFdTV/iCohLEUuU/0e7WCwWll5zB1UnX+aDx1aSkSkHrqKk6CouNe0hHEtkk+wudmnDyIVegrFcTOFGMq+dwEDnKNrqo4yeISe+0UPEmkgxGhKidjJ0VpLyp+GoP8Ss+insyTahFopI8Jko8dvIFB/Fk9bN2PMv4FP+SGFgB7LW22gxHsGSso1ucim3ppIja2fJlBHACI4ePUrzgeOYxg3h29E3kpE1hJzxtwHg93ZTsfdZAv4hfKR/gtfbNKzLW8dfKztRR7VU6H2oI6N5twheO6yhc92zTH70euZLtjKw/S5uqdWwK9nHRW2cYwlpCL6rGBLfzvbyrZQ3j+X71Bq0MQFdNIAjlMFkZw85sXtolC3EGhiJLv8Usx95iT1ffYc45mXmsDA7B66no+UuhjYsoNV8iB1mN97uaRzUp3NBEyUhDsqERG6y70Gn70+ZJ5Ghse1s1A/nYaOGsYE0nqucSaJfxCc5V1Iu+Qx1rB2rLIYqGiItGKYj8hQ50ZspdEjoSLWTZe4mo3wmKu1MAG696Xpuv/32XwQD4KU33uCyBbdi8f6IhV6kqLh72BX/qn8kJyeTnZ3NgQMHGD9+/H8mBPzOfyN+M9FobGyksbGRWCyGSPTrTN/P9j3P4az1jO6Tcro4kyvO3UFZt4j3x/3EmOorSXaMYHNqJt+n+vAKNcxpB8vgdGYP/viXc1RUVHDXXXfx7LPPkp2dzVWLF3HjXQu4euAkAntOcF5kZH+Th2UnOlk74Gus5hn4RCIgRr15Dy6Rl+rIcHqlpbRERSgifcTxc9CsoFu6GpFmP+bTP5CWJSBWSXCGJATiE7D4+5jZ5aLS7OSVzIEoYvWoglasch9Tu8y8bbyDgKQbMT7G11xDQHETnrCbtVkxIvF8UO1C1/YMNqmfkwlGjiWdB9FoPj/tRpfSTp51AM2pu6mLzMAl0RCsquHpAa+jO6LlQuoHTOzz43ba2WMwoAyaOaftZb/wOhO825G62pDL5ahbXYSiFr4xTyQ9rqVYsRuR0Ma/h3vueYAl1y7hppV3sWDMGG4SihGGj2Ljufe5kCflvFyEPKpjROgo6f59FChGUp4+nhWe0/woqiDPNZmTGhHtg4I0JYoo9e5nUm0S4s4/k6BM5GLKDBLkTWwxD+OOut04FI3ExuSQmlKOQ7uLwLENOBVeNEEBlfs5HAULGG9PQojKWFxnIx4KIsjkzJgxg5uvnsUN4wIk5AhIxpT/0gaFzEJnaDYNcgml4SOcyppLiVeNOhonHE3m7ppkjupV5DSc5Jm1b3PvZXejD2YxqPZp8p3p9OTs4Jv8bzkRLSUQHscVvgMcVpYys93A1sxLuGP9cMbU9AXtaOJ2hvlPIQ+OQBsuRB4xM7tuLFGxi+Y7ltH6/BP0ZBQgzUnjjLmeYvvb6Fx30SKdxVvZIoKCFJ+kBwSBbEsS/vMtpF7hZJT1TpJdM0nO+ImhNQvZnRrkRm8PEbGX6zrWsLfwPGFpiHbdKe5vs9EvkoLLX4Q4/BA98yRsGTmdBLkKsfBz3+vs7KSzs5Pbbrvtl/tUXV2NTmJgMufJtPbRLFPSLOrPua07UMtk6LKK/84/XnziRa5YegW7d+9Gr9f/R0LC7/w35Tfbp/HKK68gCALTpk3j1VdfpaGhAduudva/0YrhUhvKQC7r1Xdhj+ZRkbWe94obiXj+zFGjgf1Jw+jSprDNrGdjUj5ySRmDlNkARKNRvvnmGx588EHefPNNvv/+e2644QbK5ko5F/2Es9J65LdcS+MQB+VJ29mReobyurdZ2DkaBFBHjOR45ejdw5jV1cGV3ad4oq4ZdbCY75OHUqM2Mtieg7l7DidWX+TZYX9g1Ql4uLEVfdSKXSrjkYEJjKpfgCHcgT6ioFMlRhRLJRIvJjXYRxgDsnAKEzuV7DaYeLo4iUtqKZcSGniovIPnhip5r38GW7LWUhg8x+w2NS6RnCInpDvT2Ky9Al+8P9n2XrpcYTpK91KV/wGpESfEjciiMjYcyGdCVxrv5INf3MmYxnJq1Xpyc3MJeQSm9IoBCW2iMkTyq/5NW/2viMViVi1d+oYAAQAASURBVCxfQeRoGxu+XI197Y+s/ayeuadTmNGhZbAzynW9VViivbRIC2gZOBWAblsjvaEQjxz7muW2AzQkP0qruI6VCWM4YxiNUxbBI7MRMTUzQ3aAr47sISwycjqxP3WiNDIKr+AvbQ08Uhxhv3Q2UtcCiMmZ1itnRJqFR0oyEAqH49oVYOLEifTv35+rZsvpCLTi6Tz3qzY07rPxdbKPvUkOLipTEceqyAqe5ZV8KQ6xBl04Sm/X9Wz75klemzKNMRY55uBIdpY/zXfDn+SZ/jrquRZZOIuMSC0NciMnNdlsyTtAXFXNyL4SWrRiduuHMdBvw6kM8VXKDCALj1xJvvJHhvMjf7nQzPULF7PumyOcit2OIm7HJ+Ty6uBNtKmiuCUSksI+brIdZ7C7g+TsHKJ+Of6j5Zh9UsRRPf26i2g0VVGfuJX3i1qYOU7H23npSENaPCIBXTCFp/v5ePtyNVmvFZH65hXEratoPvzSL4IB8Pnnn3P//ff/alrpoTse4KO8D/FEFrPBKOLrJD96SR9/TbiLNdW/LqEOsH5TH/ce9zBh2Bx279797w8Gv/Pfmt9spPH/zemOx+OsWLGC2bNnk6RLISl5BFm56VSnzccp0lOLwKKmIlaMXUsw4ue0xkuptYakoJh7ezaxNaUccUzgi0+P037mRTYebUMhT2Bw+WB+/PFH7rrrLoYNG8bZ1u18c+wJ9td8hVY/ju/qGpBEBjBC92ccIS9FPfPIsxxFHhfzlvlqxLEYGaowk/rGsCbnLZpU4yCWzM09R+nVh9nYvBfJ6FIk0lzswhmSxScZ41ezWjGM6xoSkYp93NKUh0XzNh2iVL6zmLArk6jWiSAmICBgCfuJx4K4ZKCNn8EmBKhTaxjTc5QyTjPOfYyi+mVk+CO0pK/GL5XzaXY9ee4Z1ClVxE5s4ZosM+cSTxMT4jSqvdTJr8DkT0YmODme3kWyX8kYXyv78veg7Px5Pt+hkNKkCjGjw8lP6RBuk/6HbKdUKtm1YSufffop8z9bTlL3KcTxFMbmFjL70iTEcTF/HlrPQaOAskfEIuCREZdTt+st6oIxBvqUJKlamNYtYn/W4ySUJTLM/iXZ/XrJ6W+k+4e9BGRuqnQ3E44ZKI5+SmW3h2aVDb+kG48g4kBGF/J4FxbDjUyesQQEMWu+XM0r2yfilriprq0m6O/G62giMXX4L9dea23n7ZZvKZFHqJVl4RGZCMWqOGDysClNICKqpu7Ad/RUd/HYvaVI+0aR4uvAI90MRAhIYqijUgoDRcRDPdzY1MOBdCO32dx8n6lA4p2KUprPxNYgbYZq+sRaLFE3S3r24kKOT+IjJLPTppDg1f+ETT0CVXYaS7Y/hHjwm7xfmM454x4yAxH6pG4aVH6W1YzBaWmnIk3EnJzLOFPrI1Q6mAJ7E1/knSAaTEcUV+ATzyPOCc6pkzCH9IgFN23SDB4aOpChKf8yKojHo8Tj/5ItF4vFePXVV+no6Pjl2OZNm9D7wyQk70QsTaBO/CQyyQt0GvZR7v8LpQ41MOBXfnHBHsYui1CQP4pXXnmGGTNm/J5J9f8Av/mahiAI3HTTTdx000309fVRV1fH6tU/UNK2g2A0zNHT57iWCMkXwgxTDaFZJmOz6gP0jnbea6nC6XEgcSnwKqLk6mM8N2sh86L3o1mcgnSWga07/dy0eRXjDHFuG/w5WrOWTTvPAREygo2YfEqWDbExuXMjKUELAZEEASuIgixuzScgjjP/wiQODr+AQx6jwVzP3FY7Yxqi/DRQQ5XhLHsUQ5DFhjK21cBLbWeo1nixBGTUqu3oRSKK/dU83xjnQ4uGYd3DuM72OYLSSlXGcMqiWjaqokhjIsY6FBxVzqBD1caJkJ/rL83jkPEC3ek1KITRtCnlmMUt5EneJilczsH9PzH/hhyOqCKIiJEiaPCKfHyeH2Se1Q7abQx1voEx2B+npoWxfXUAeCVSDhpG8Ye2LG7s2kFCJMS1/7aZ/g6xWMztd9zBLbfeyt69e9m3Zzd/W7+bkqEK7jXOY4A1jWCslylWEcwBkVjKG8OuZPeaqxHkJgaceYiopI+ipUXkmBT8sMLH0cNmCgerSFvyCD53J0sCBtq766lnJj9u/ph84y583jyGuIaSY97N/px9VLtqGROezwvPvcL57vOIjWI2f78ZiUSCRJuGWpv2yzU3b+/gg6ZWZtjL+VtmFuJInD9fqqLCIqNTKOPPpyU8fvILAnEpV903h73hUsb17kEbGk6av520C0toTVvNI65a+oSpdEgbaTIayQy0Ew1a6N93HRf1BuK6CDZFN2XhKk5LZqGni7SYhcT4DpqFUficX7I/uQqHMBJlpJKiWSKeeftF7i0/Qa5HjxcNPQophthJMtwFlLdPZECPFatJ4MThx4lZFKT4czmbUok2WMwJVX/0vhRUOLm8M5EuUTIdynwiikbmTLKRmzPnl3sgEkmZuPCHX9mysrKSmTNnotH8/FDR2dnJi88/z40LZyH3fEq57Ub65CFskRwcmhYSwkFCA4YSjEaRi/9lF3lmSR++tqfYnBtiVLmMTZs2cdVV//5R7O/89+QfuhBuNpsxm82MHDnyV8ftdjtffvEl7731IVKZlpg6hF7dx4DCRRgN5fTznWPIsJMEFSHW5F3OdYmZ9HRs5vTK3bT6llAo2klNdw4tFYmc1NkQwllIVCLywmdRiXuYYEsmLxRhVcIcwugpCnyONKximmMz0uhWYvFCHqvP45h+IBqxm/1aFzpvD1c15nBZIIMil4kT5j4EwUqdMoN9hjRWZrSQE+6l3GElKgJ5RMHihiJCnok8V17GgGAF9ZYAA4LHSAtq6ZTl4Ra1o431MFZ4lby+SeR1jaFVaefdko2M70skGhuLTLaLCFLqTrQRSpuPJTiGRw8m8uqot9ijKGK25CJWhYBAFLnjRo5YuhnnO4tbdRyvK4n+ej2yWIRSdyGHMgVEVjFOM9D4/5/NxGIxU6ZMYcqUKXge9/Dcn19g9jcTKZr7AI7kmZRr/uXp9aijl7+apnJfgoOCpff86jyjlXZi/iDVjgTeOHecRwcNR3REgVBTxLqCbeSL/fTExpIYUjL+nmz0CeMJN6XSaavjputvY8yYMdTX17P4usUUFRX96tyhgINw0M/mCyHKoykowmYWt1UhxFoYYfNR4EzFFh/KVWcXEyvUkj5pIedFEcbFarmr6A4GBteytMVEh1JEU3guM7pa+DbjKBc1GjTOEjyyNioTG+gfrGZA52ACxg9xB6aR5stmoH8fG1XDUESltKrkrEjxE4/3khVoJi6Tsj2xFllcTNb4kRzd0cFnScl0qHU8NuICI72dSKUnCMv60a4JMlIrsN3lJTlRzfr8ZxneOxpjcAoqeRtWpRNFp4S8oItz6Ub00bE8cP4UOc/8nx8HPv74Y6699ufP1dfXc8UV81h6lZo5LhvHFMs4kDoet/5lJHER3eGruCovl8faPIyKHOHVUT8nzLtDTrY33sl8f4zdGiX2AgmPP/44ixYt+j2T6n84//DsqY6ODo4cOUIwGKSquoqqYxeo9tlJyR/C/dd9RrI8nQZNnNNGK9OteYTFElJjZ3ApQCEEKVTK6d55LzqrgVjmeVSOJCZ5bmFfUgG16hA2qRWJADFByW7tWBJDbp6rFHHv8BM80HcJo3M61Ypyrunazim9isF9mbjEiQywqYijpFU1iaHxp3nLc4k7Ux7g+bI27qoN0ZC+grX6AmzKnVzWOIfZVhkfZQ1jhTaFmaG9DHYn0Zq0hhOJuQREeZxT5eCS12KTDWSio4pOk59pjUOxBOFQPwWxiIYVox5ifu1c/nhmAaeyjjO5rQuFqJwVqQPZtf0zCh67DVd3J6uMfTQrpKSGj1Eu8TC2qj8xZRNPpo7GLZLjlu4ghJqKaAt/mz6d5//8MuGQHZ/yHGnyP+OMJROP/+eXszQaDa+/9gpP//FJ3nv3PbZ+9iC12XnAZQBEY1HCghhB+vdTFsZLPcR7/HxQ1U6lo40VZ6XcpRyD3CAwQzUKpcLG3aVTSTUNRKz6uUqr3JfLe09/wJIlSzAajezcuZP77/91ae9wyMfub+exUpVOTW4a83tdhD1LuGi4yPSOanoSL6G1Xc/yUxtIM5gwjJ2HP5JEh6aG1kgbC0J3sFX1EMFAKuvTHRyxhHk/fw93tbQRFcv5NkmNNpbF53WvsydZz9dpZq4MtNCr2EazSMlm/e1Mde1nvyGJZ8uqGNqj5uHTZSyeCX88KaVGZcAp9UDhbJKPHSWQGkGQnWN6XyMhmYksp4Zlwzq4pDGTGJQCAj2SRLYaiym1niXH52KruYwRPQZEYitT+5yIJDspdUbZnZ6K880AhXPkmIv/9a79zTffIBKJmDdvHvF4nJdefpnsK5PIT7VzqeM6FLF+WGVWqsVzCAli+gdraZIkMDxJypDEf9nbIxJEZAeDFIdiiGImJi18gPiZL6mtraWwsPA/7Vu/88/LbyIaDoeDixcv8uXKTwiHQ0gEGQ0tbQQCPpSRGE2DBlMSqmO6pB9X5zzKF+XnaJXL+UJ7jpRAEzM6B5Ea8qIPO2lTHmRT4mGGCvdz1hZg2rG9SHtmYyeNoU2T8ci2kxlpo80zh6goRrfqMGXBcxwQzadbpmeLYRTy3INkeW6nWfMROc13kKNwMWOYg0/OeHivKMDiukQsvmQEnQVlyMO+hMG02qrwp7pJ8IznUOZnnNcOwhLqRiJWYJdrGBRo4XJbOwX+IEO8DfyhTElOKIa+z818u0BY0BMT7yOEji5ZKmbJRwTld5FhK2XExfvZUPYBUXkz64RssjxWRnXMJCjT0Wp6Dc+lgSiSUrBoz9IoNLFKNxFZfCjSUAEvagfxcsc+dhgKcElAFHNTJZ1GTtCNRLIeAF1IwiPVXp4YUcXyhIc5IxuPhLv+y+yr0+l44sknePyJx3nuuee4/fbbWbZsGTP6j2R23ph/9Tuyu4vx/hDgIZccY7aca1YoSAjUY7k3k2NH9xGWv09j0ywyMn4ehb7zzjv8+OOPvPPOO+Tk5DB16lR27dqFEA/SUPkDiemjObj7Mbo9dbTGJ+OUVaKLWBDF4vRqVtKnP8l7yit5sfkQf+rZwgHtOVJvGsJth2fzUpmUQX3ZjHUl0G1qxy92ccv4WiZ29mdeq49D6R50/rm0JG9CFW5CkLbwQNF4jIE8gnEt+/kDfaJ2yqLNtCtSWWW4jGBCKjn2BMb11rOxeD3qWJQu41nMsXqk0VzOy6U4k6o4krWZdFcu8mAhc+qmYg6oaB/6A35/NlZpEKfTQWYoRGaoFrH2GJ2xTMbb2rGEeyj3VXAsLYY0KuGDvAQemfo5ld8EiEX/dTv19PTw4Ycfsn37dgDWrFmDozVCYFYZm51JmJNqyHfBAIebFqWLkCyOU9rF6t4o3024jCzzv4iBWqplkqKMqL2CW6c+QVLGGEI3S1i0aBFnz579L/Ot3/nn4/+aaLjdbtau/ZEPPnyDxHgcXeJ45ENbCJviaB2vkjgswCdHTMQlfdw5rIEFdjeWvvFYugcwuEdDssrFUJsGr6Ka5PhKRtf9gQ/6bUcr9JLq7YeqN4k/9MSwia/gmYIY9zYEgEFsTF2NWxiPQ3WGHkka91gPkhDrRS19j7WSm7FL4fOUIsYEDiEXOVhb9AR5/gjjbPexPkVKoXUfTtMmXIkBilqfYueAk+yyZNKjTGSwL5OJZ7p4fji0SCykC5XEJX4qDEkcM5t4teddLirTqAsX0i5OJiOk4fGGs+wx2mg0VlLoyGBojxGZfxB3jr/AmaRa1IGJ+IQgJ8QPIA5kYcCLP/lZxjSPIW54iaSQjO17vqT0KglRsYxATMtc+wU6KccvFpMT30eWP8pkeyONahEWVxEjXdOQxoycCK0CwCqP8srARjIDDuTeYrS5Jwn8X5hBEASBZ599lm3btrFy5UpOnjzJzJkzEYvFf/fZeCSOb3sYkUZAOV7K8ZCRof58us6loXXOBm0lZWW3cebMGWbNmsU999zD7t27EYlEDBsylAeXLmPflxdJzKylp+svWDKO43bUYrFNZFjvGLaNEEFkKuv1ap6uUOCI/YRYZqCmM07r8fVcdf9yQrYM3hr2A6OsGvKDc3EqnaRFerm9q4X3MzM4YJIzq0vJS2dvozX5Qd4/NRdVpIcbRtnok5nplDmRh5NpVPi4v62VBvlCgqbtRKJm1P5E8kTbseVsxivImeeRkRkcS/+GDMLGjey1pfGpSk2bSkF+TxppTi8/ZPUwxG2lUTqGmQ4VOaI/cJNci01l4t72ODqlF3kkTj+3ha+K6rEpdcglXUxz1jN+yksYcsSMe0r9r1jmZ958800effRRFAoFDoeDt155i6Wznybce5wzumaa1atoT0jGFpnHzfWFnDcmc9jSSVhi57WNa3mzew6Kx39eDD9zZgtZ1WdQRAWUDhtkwMSJE0lJSSEej/8+RfU/mP8rotHY2MiCBQu4bN5obrylkPLWkfi4g6PmnbTqd5MkFNMlP0yP2kpYYmeC4yKn9CGMia9zLvNHiv12tiSOY07b5QTi/fk2/zVmCwkMct1Bn8xNNHolLtlRYpFsvLIIESHOGeNR0FSwT7+IgEhEQfQSvTIZFdLHkYov0CT7HI+4GV04i8xAGmLFD7SKksBwhLgGfN5WwmI1MzslhBOCSMR2Ki0+UiOXMArd1MsaOZV4kSmdydxam8aukfV0i5K4qnEk6R4z63IuckBVRKuQiVp8gtcvJnMyIY09FhVVltVUykrZZg7ydugAbkkeN19cxJqiw1Sbz/5/2HvPOLmqa0/7OZVz7uru6uoc1VGtnCWUExIZLEBkEMnYYGMDtgkGjMFggskZESURJJRQzllqhc455+7KOb0ffF/P3Lm2b5Jn5s7vPh9P7araa52zzv+3w9qLb+zVSCJTSSDGp97AjL5M5AERHUYrr3XIsBhcTDEv5tpjJSi1H/NuSiprGu6kPf2X+LTHCQj3kt13LVf41TxRJmd28BMUUT3qf0ra0idGSBdOMhov5Ae7kltiDv71fPD/OIsWLWLRokW43W7OnDnztxv+0yanRCLB2uq1fBHaRu3v6hlfuBqnb5jr12QB8POf/5xf/epXtLS08MzTT5Nq9xEwvs0O6TQWdI1j6owHEXkDnO4cQO6fywFrJwgJFLEgiYQWl6qXySMCTkmAP3yt4uYrf0+TpJSoqAOHNIxJsRW15CNcEhmJOHRZerm9XcVz+QratC4a4nWMHXWR7ovjlTv43Xk1bVonb2fJQBjkqk4rlS2/ZiSvkaXeM5Q4VEzubaI3+RiRSA57tGWsaY4hSwQJRtI5YKzA7jajifSiizdy2yU1iBBj882kzlLAecMpjPEByrwyhjobUS25mg5xKut0Ch47l4ZXmoaAmB0WC7JYDs2i3/BJTvbfvScul4szZ87w3HPPAfDEE0/w7HPP0NlQx3jfdwhCEd+rJSTECcoH7GT5U2g0Z3BbSzEfZcS477wdXzgFwe9CrtKTorcwoNQyaCjliQY/Tw3VMWnuGEpLSzl8+DAzZsz4u/35b/7r8g8RjVdefoVXXnqVmXP+/OAc/Z0TnUdM0PAqUVEetzTuxy/3cDLNSEH8JDf2dLAnEuKQ3UBOKBNTvIErO/QsGNpIWJxgv3UmC4ad7E66QKcsjTbFICu7bYTDRTh1e3iteSvvZSwkKivhOvc7aEdn8XyJFFWsiR1mNSOKDu5s/SUTEgkGzC9jHP01n6ddT0q4G0G0iZa4hls6amjVdZPvnMMX6keoVgc4nmqmzHUDczprOR/fTUHfRLZljJAcdUNCiS7qJ8Nj5K2CGjyyMObBOVQlKTlHBqkKE93KMCVKAzc2v8jBMUdwiwfYZVWw1OklLWDkcXkWHUYpokQq2ngLSsKclFzJnT0B0vxKNiSXUvXd50x++GayHQ/Sqgsxc7SBH0cO0KxeT0l/Kl7nDLYXf4o5LMIVmk6691rSB7PIjHYhjicASCBgj7diirlRxvXctGQFmz/64h9x6/8ZOp2OOXPm/Jva/v9Fff7nOfHly5fz0UcfYTab6e3t5YrLl3HlnJnMmaVASASxivZxStvL+nO38UFVDYtVaXyTsYGo6wq+PBrHKW1GI2xEF69hSBXmvSMKJqXPplS5iGmtVj4v2MbMASNjHC/hVDdw3v4znO5ZGIRqXsuzkOvVUa/JoE6bwTPdrzMiOsGAaC5nNHbcpj+RHDczwTnAlUMDCLH5hCS1FAYdjPGJ6VUloSBIWNFPm2IiB4wGcqKN+GMq2q27CY8ayPLDZV1j2Z/xNS3iUrqVTorcMxFoZpxDw2eGCcQktyHNDxGILmeaw8MrBT0Myft4usbIeluIBuliVgr/8oiP/5UXXnjhL3kZTqeTs2fP8vSzv+dPnRW0iZUcMg2h9s1m7ZkGHsk1UmU5yrLBz0gORXhNMguEBB5JJ62HPmXCnGcwnz1JzFPOOZkEW8xErL6PY/YAZZUWPvvss/8Wjf+Hueii0d/fz5m91TyifxbXmQD6B5VU3KjF3zLMQv1qrANS5JMTGE70MdGh41zqUkShQ7TI1BwVDFwwill0+A6yTMc5lKJBHxAx1dOIU5iJW3yCfo2CmGDlnNHAV2lexnt0JPXMpsRRQrvhFAPWw8TF3dzbVsQeq4YalYF5fUmkBWYREXvwKvy4LWtxSJbjkGRgj2qJS7ScsR/nm6RW8p0VfJg5FW3UQ3J4hAt6DX3h8WT6U2iUSelWluCWNmAKSnBK83klT0tQomKmo5nba6dyYtYxxrgy6VMNgiDm+pYJ6MIa7qldQY31E75IK2CD0Uk0JkKQHSHVtYBhhQIv4/FIXAiJCA9MbCMl7GbwxQbGXHEdcq0Uhfc7IMHBjJ0s7jJhip1ELB4m4LmM46YQb1ot6L2z6ZUaebwkyKC8GHH9IQD8YhkupYejQi5Ty23INX97CuP/NPn5+QQCARQKBQA1NTU888xv2XRgN3NWPUhJ0ocIMSXW4SnEbPsYQoXCa+eCLoc0XmbBkJSjIhFD8hA+scBdhQ8wwdXJZWe2sb12A0t+lsJozyD6oIqJfEMwMoteYwSCl2H1FpIT7COucFLinMTMzjG8V3KOikAH4kgqVQY1uc7ZTPKEqVEbmNt5N9GEgGxAzOMz13LKCGmRcfiibbQbNrFgMI2EaBDEXbyZMZ/ykIZbWhJcf345n7WcRpwuplUdZsWQhH7BwW6thqJgE3b/dOShVGJ8hkkIoIpFOavfyPUjo+xRZuAVa0kOHWJCWM+MnONcMf/dv+vTDRs20NnZydNPPw3Ali1buOWWW/DFhlAqhskI7GaSV4EmIqFHoUYiPcp2SwO7ZKdYVXsVL53KIyCNMLLwU3IzlpAY7CR+bAsNmTGi8mHub36YpGViVp3fQErIha+z/R/9mPw3/we56KJRXV3N3ImLkYghNpwgkUigsotR2ZOxcCvBp/4Enl4GMurwK45hmfAxh4/Y+CxtPzHRCDq8PDirAadiOzf0zkSq2UVBMJV0vxh1KAejP8TjjW6CCTtfZA6SH6kmmshGFTGQ6zajkCYj8kzALKlmEr0UOnMpi7YwYUjKlVOlzAqlUiudjxDXUhw5worW9zif/gxR7WlmDqzgT3lS8r191Jr6uHywnuRQgNNmMbLUBLGeJm6KjLAlK0rYZCWOh7DYiSoGyfJdNOa0k+26np80TCBOhBb9V5xO/g6V6jhmt50rhhN0KAs5rykmJFhZ4H+OgqiT7thkPPgIEyYqP8KoyEnf5jZS7D0Uj5mO3DfK3KENHDYLzGy5D0JSGrRp+OVGJriHkIXbcIilqOSHKI5vokqXhTRqQRwJAZAQQvTJlLSqWmlp+j3zk/KIx/9lhi+Az+djcHAQQRDIyMj4F0e+XAxGRkZwu91/t82BA/s5eeQE2w9tIWdiMivut5PhuYLBYA4uQUIsomKTUkRyrI8p4WoiogXsSoqwqPoRbLZtjCqHyBmeQqW3kTJfM8/t2MObl9zLSOQkttgJ6gwydol/Sbb+C4KKrRyPSrgy2oJMJEHU9hRV+dOoyYfL3R/zpfphRky1rOopoNn0NmrfNXyrz6VTtI3Zo0bkkjJuqZvGaEU7TqmBc8bzGEI5vK5+jI/q1jJGFuDFwvWsDO3kYI6NbE8y+1rEiJKCuOQBgopBogk5w8omWq1fcFayEKG7kmSfGiEhkBMcxaB2MaRI50rHHoZUMmrVl9KS3cmqwkV/14/19fWsWbOGnp6ev1z77rvveOGFF6jub6U5kUlDymQe6fue7MgQTdYUVjsPcb/2MVThLD7IyOKJUQ+ymAnPoenotw/AT8YivfsPlB8Z4mxrHfW20wzoZIiHg0jMelQqDcPDw385av2/+X+Liy4aR48eRVXRwuDiwxiGbRArBMn/+BvZbVdDJILs3KuYxBJKJirY65AztrOAPnkncYmSkPQATrGEQ6YRKsNKxsSH2WZXcVovZmmPinZ1jGU9AcbX9LB6whg+SzIzzvctkxKfMaT1I8gM1Es1/KC6kcsSG2hTeBhObyUgTeGwaDYLBuw0mo5SGT5B5uhyPMYQ8ZCVbsFOp8YFiiCGkI7Zvu2csEqoFPUS0xRTP3iQMRmLEQQHYVEWjza3cEaTznZbkH2JFUwPn2Cap4azBjsZPhXlrhCnjVpaRPfzQtdRajQ3s7TfyxR5Lz52ka5OkBRr5dLAEFLx5zjjGdTHijl8IZmBs4dJ/dlKOkUmUsJ9mEMyKoaup02RydGMdgLiJn5Wb8MjiSGRneezhi4isRROq/I4k9tLrPMYRRlZAAgIpAz9lCRLPwHFN/z6d8/8JQkrkUjQ29vLz37xCF19w4QRMyU9mVBzD/XBfuQaK9GEFL80gTo+iAAEBBkIIZRhDYqYjLDET1QSQkhARBBQKkzIxbI//344RiKYICRyEyZBLKoFQUumPEiz2odXMJEWENBFA/iVncTEESQxKTODYxibk4v17kIydMPsZDVR7VcUh09Q5sxjR7aHHqmEPF8lPtkAW1M/pMpkoGXqY5ijbsZ0XobZl4bN7+V4/TaKkyz4cvNxig+hs65ln9LOeXUaauettEk7kCPnuHgeM7wJrgy+x7awBJcoi/bQjaSq9mGLhnCLx6NxVeCXK3nt9HU0Ja3jlPkQ6YZ8DDE5C4eXIMRGOWn7lMmt12EznGCPyUpavJrSUTte6RhyAz7s8SqGq+KkXPITDqh3EpdJaJeANipFIQyREW4hK9TKgH45IZQsdh1AJJ1Lp/heUmJ7EfMNqQkLCxYuRS7926LudDq56aab2LJlC3K5/C/XQ6EQWVlZWMMmlu7Yw+ZkCx+YL+U218cckJdhjoaJJayoA5OZP5hHvneIE0kNHLMkyIsM4u48zZhZi9CnR3ls834kcT/R5lReSM1mbO8Jvl68gG3btnHjjTde7NfLf/N/ARdVNBKJBHv27OKKWz28fPoa6mM6PgmcJb0oA1Han/d4i9KSAUjNev4v37s9V8mBY2G2potwynvIi/XTF72MWb4tZEaC2Pp+hFJVw5QLP0IZTOH5qe+yzRZhjC9Ar8YD9HLK7GVc91RiirPoRbuJyjqwxU1sVM9DEZdwg6yNxc5RAtIIuqiXySMFDAlXETf/CTUORj0rOZFeSPmAEqRBrhooRySaTTRUS2ogSrRgGW99+y4XVi+hWV9KiXuAeSO9pAZjuCQLsIsOUZdST5bLz0DqJspP3408MoHp3gF2GfbRZj6FIlxIv7icbk2c3clNTB1awNwgCMF2/BIHd9eW8kqfjm9aNjPtzqcwhU8xIEml0j2Ru8rXc0nvWDbZz9Cr8JHpUXLSKKLYG0BQdOH1alDFpYxzmLilMYnPz9Rxw+13ASCLKsn2TKJIVs0+5lD3w5uMMaVw6YqFDA2MkG5Lo3PSYygXFiAXYvyquZfhcWeJZbfQ1bKAau1HiOMxjPjpUvuQikK0CWbOysczZtjMmJCXkG4v6niUU0oR2qzlqEemkt1o4Iruc0Sci2goeoImfTWS6HMo/bWkh47zQP44Zvs7WXNmFT7rWr7LMJETb0ASizOpvYL9hlQqMNDq76ZDO42SPAmpoWkcOttFOr8j7p9Iqvsq9hvO4SObcChIKCBii+EIX5c10a9xs9m8lIa9nXxx3Z38qsTDZNclaBI7WDR6ipOGHmq1EozxGKnxkzSJZ/JGpoRsX4LLI79GEknmpGQal3V28kP2Gd4wDSCOy3iw3kpMlIpLrGC/dhK95Yd4/sRMUp3tNNk/oyI2giftNZSKIZK8iylwpmKO7me/4UE65efx+LYRl/dyeaAPdayYSPg++lO+YkS4jcPxyRTKnuaV/HnMH/6WaCDENLGSoO8M1SmfUBHagzQeoCvbQYUQBhR/NRaPHDnCI488wvPPP8/kyZP/aht3ezu3dp4kJthwaFto0kcJxD3s0BYyzb2Za9rn4JJZ+KHwGwZ0u1lZ/RP+VNFE7oUqVDIJycpyrL4MlFIXcsko8oY6Qh0nmDLrdR555Zn/Fo3/R7moonH+/HlMJgvXLXuHIx1qjE0+9BeaCW/dj/zJu0GpRBD/8614iVgEffgkV1xdzDX2KfR7Sun6ahMKfRPVknJEAR8G81cooqkcypiDUrSLSaMjHLSIiCd9QbnvKgKCnEtdh9CLBilvWMeodgcXMl4nP1zPnR0Sjumn4ososMh2ERXAbWhgWD3A/Kb7KHH1clhXxpeZKsY5e6gzppAS70BqeoQN6nHsNaQzeTSJ7iQ98j0Wyo/txjM7G4c6yk+KZzMkD3JF11j8ymT6JCICqoOsaJMyatyC3rkaSTwfqeYCjxV1sbKxHZFqAFNEx6W9kBkdoVaVw8eGh5nv/oGNnWc5drqD/ct/jTD0Dsia6JDWUSfX45ZIOZrxKBZpF9rAXDzM55EyIwWSx1g0oqZBGMulnZcTVPShtO0l0uOluLgYgFGHm90H7uO7kJPB6hNoLBqae7VMWXAlTaaTXO+tpZlv0faX4BPmstP6OT3mHVxT8Hu0Y3rJ2n2G1IASfSJIXNCQFPOQlEghJC+mVq3htDqbecI2hgNryBmayIoL73LzODmiNC3jHUnI7R+zNX8ax92T8ErreWDkAD2G49w6YkTQHuDouK20iio4LF9JOLQRm2g2r2dM5BcTCsgqlxOKR7hy1M/zew9yJnGQ9sw40/x5nJDNYtB4gnaVCKM/SEw6gkp6kOSwjQpvIzNjezl09BSDFRNoTZJS7HWxov5qujIGSaRsZ6LnScTRS1BprkUs7eO2Ng1HdWNoVl5B7uA1FDo3M1VwI0HFHvNyIpYYMckIw7JBnireTlikZJKnnUtdNQzkfEyvSk2rbAaCuISKkIyCgamU940lipaOpHr2ZD5IJJLHnh0BLFcU8WpeGBImlvaHaFdWk+HfS653FIPByWBciVzch1QcxxLMY7NOg19oRSk4aNAVsZcEzYe387PZl/2zeIrH47z77rt8/fXXbN68Ga1W+y/iNBb7cyJHaCRKWFvLdX0xdoW1FIqNyDXtBCRSJJIobs236AOdSONHiceH2Jd5HFPcidWbiW/zHg5kRTBLRcx0N5AsPo4i4y6aOh4gPzn7b05//jf/9bmoouHxeBg7dixJpkJWmmBlJcROx4h3pxDe3MNI3ZtE85ykr3obQfznQ/N8F7bg2Ppb9HPuRTfmVqxSO6MJCSPiZEoizbyaNpuSkJLkqIsJvvfpCV3KnR1erD4l+wt05Ei/Z0rzYiZ6RTSp5xMVBhFiOrqlEKObz/KTqRNZkKBi5eByWrRqlnfLOW2OcNAswhRZSoFD4FH3KPNHHfwm349XOUpMCDMiGybDq8fmy+KULsySy8p465OPyJ1/M+OF7YhFC2iQFPJ+zgYqA9UoRH4meYYwhuz0arroyXkAXSQHVdsUBjNtfJFXxe+b+ziunshaexGzPCdZ4P6eWa40Rnft5zetDTzwwGS+M77Ogv5K5LEw3mgld3R2syYh4Zx2Cj5FJhnhTvYpBzltdFFrms6vu4LERD7un/sYkxwW2lqSiYZCPPzgT2ltrMfldvHh6A4iGYXMXHw/U5ccQCReS3PkMgRBjRcpCfkZ/KJczFEp/uhM1OHj+N/NRTVtG+qYjqh/MruSJOSH95MZEjipK6VZOYEft5+mJvUziuJhHOzDLRVosYxS7BQRi6uJu8ZwVOdFNrQFlaISf0KHeGgh6zOWcWn0NaRBB00yNVmhPnqUJyiMtCCIulmumow5Q/bn3T67v6Kv9i2uFQfpUin4OraMWbU3oU9yMKxqYEWnjbLgNj5Mz0YtdaOOjGWLdgke6Xs07jyFdu5ViET1THDrCMmGqJebiUrKGU7oyFE+hsG9hHz/KcIiMQrZPhIhLf0aKfpIhCKPCY/Uy72t7fRpuuhUexjrb8AeKKZXOoaexFQ2mp9lkk/BOfFkTijnYQs4uLOlEksoSkzxKZLQJEZFdqSJFmSDAwQbe5l3VRIBfyNtkgqaTW8yIkpCLd4DkRuwtTzN9iwbhN1ERLvZr53GLpOb+ZGtvKBbyzTPccxSHXaN4Z/FX3t7O08++SSJRIKtW7cikfzL8B4eHkap/HMtFVtlIY/WZ3FU9hMucZ2gR56JRfo2FcEgSv8Uzti3sbougKF7LNtSsgkpZEQVLfQnDTGz/XF6EXO/tIaI8TTpU5/ENmEp8bkCYqlAfX090Wj0r/bhv/mvzUW9o2+//TaPP/74P7smHl+MeHwxkW2dRJWjRNx9JOIxBLEUX9RPjVpJQcVVxPPmE47FaTz/Pk2GKL9IltBalUe20kWdMg+vtI4Sfx/fpraijffRqtAjjRpIiDvxijWEAtfgUEoQzE9RrUxGFRMIoEAtcmKPdOIU6/FxM0MRKbvSXyUs9TGneRzbk2poUolYMjDK+lQpVYY4CPn4m94lVfQxf2rbwg/GeWyNVtJe/EcqlpppeeMol894kN+VdRKUOBDFU2hSapjpcVKnNHK2WES5t5Tk4QSqQAV3+PU06pLxKPo4YkhmQGQjJRBkn17PocR1ZL/4PBa5is0LryK9U8yXiUzSO6bTbhxHdjAXwmcRSxt4J30yLWo1ay98Rr+lj251MhFKeTXTjybhxCU7SWc8ibff+ArLpOmki7Tcv+hxgskvcyZ2H04hkyXDBRz1JRERe7i9aRyqcIywcA+p+p08U7KNkiGBB+rTeWnMnTwxfgPXD35PpjOVT6w3YYxk0qhuYFDRRn6winx/P3miVtQOAz5ZHicN4yiOnaIgUkNWtAyZ6iO2Vo4j5H8aT2iUee6rCIucSC13cqkrlZVt09mfdYCixCjg4x6plT1yI/ZoL+HsPZyq6qb7zE4CsgCt2quZ6d+DOTDErEQnOvvt9BlSGA1fxhu5aUxxhBAJ/ZxTpuEQdVLqH2ZJ9wxON2xn5kI91zWNJRxYztaMC8wK7sUZ9+BTbUInOYg2YUHrK2VEmkqZYxEDKQ8yKE3QYzYxMpgGvheJiRw4xU8SERIcNaQxqBwkEpPhkIlIyKQoXTBsGGCN+2msoTiy+Hc45cPEtINsL3kHtXiYiV4Rr60b5bLLMsimhTEeUIabedb8EEI8SJfCSXf6Rg75ruChkTfI8igRxWFEoiPVL6AFvmp+lVD+dB6OWpCV5QN/nha+9dZb2bp1K5s3b2bixIl/M0a//fZbLr/8csKxBPt2DtInDqKO99Emn8xUn5yZjrew9F2PEBnHjycH6MrI4v6+U0xyGahRqgnEUhhRmHiiYpRVLZnIQzl8n5HEjHNV9GbnIRHEVJrzSUtLY3h4mJSUlIv5ivkvg9/vJxwO/7Nrcrn8L4L9X5mLJhq1tbUA5OXl/dXPpUsySF/8AS5vLzHRnwt5vN34GZ+1fssTDVm8HHAwISXKj+1lWFImkDL+Riz73+cZUS4iujCElAzFirjaWU29IYfLHRtwhtVU6Qo4r0nmo4kBnLIIN/a8yJqWhzmkX0JN+iEigpxzKisl7gLs4WRGlHtoVGlwidL4dfcEyoO7yQ7XIQjwUGExTnkQUWKY18ftositIiSkkekPsmSgg5qMILFZ4yip8vHb5oeJVl7DeH8McdjPKUMyVZIUXqxJ4+6JLnZpIkR0P+FazztM70rniaoJHEjRsC49g7Agp8LZTs2hHxjc9R2Lp17LzVlODiW38450EcpYD98VdrPZnM6wehuGUJhp7gsYpSEMVHJ3yTyucG8jy5+PKC6mRmPAJxpLPDye1qfvJNMu47nLYxwyd/KkuI41zcu4o62MIaUDUczDgHEF9zUIdKa/SaPGQWXjowyZG7m16xK8sUokiR70EQNTeycxfcCLKu4hnnQapeQQUVkr7pCGsKmeCmcrAXGUis4SapI7aRTNRSKX8Hyai06pn+kRNU6xC7HnAnddWMHOTB/f5B5mrnMi53W5NKOiVHKMRkk+G9VX8Ny4KVwW1jOw5TVyv+9il3YB5kQWn9uycIvT0AcMLB0aojPFjIQLiAQR6oSL52qVdOlEjO1cyn67C6NkmPHDwySiGfQaNnE2HY6F69C4Mjid1Mq1YTdGr4qVDTKeLS1kmfdb8lw5hEVSPsxPsKCllO1ZMXzRJKr17Rjjw3TKDbTI51A2muCwWYFLtoO84JfYpTWoQnrGN/6CqOoJgtIE/VJ4deJRCqN7aVGmUSA5gd2TR+h8H6KQj0WK52iJvIw/MUC7Qs01jq1s180HwUmPKsxCzwGk4Tx8ggN/LMI1nU4GNCJ25RoZkYkIZYtJWlBEY2MjBw8e5MMPP6SwsJD+/v5/NRO7t7eXSy+9lMM9fn7rcWMQHsAvAU80SEjoJCSS0auK4tZ9iFyIMl7YQ5u1n7HNK3ioPo0a8yIeLtWjNrXye/EESuJfUGfqRd3lZtOhd5ArBHYtfpH8/PyL9Wr5v46hoSG6uro4ePAgI6Mj7Nu/E7VKi1Ty5/WlRCKBQqH4s0DE/pwrhVjAOeRkdHCUOfOmEBcE4oixpNoYV15KTk4OGo3mv8SOs4smGuvWreOuu+76u21cgUFe+uEKimyzWTXtBZbY5hDsbmV8ZgGVVg3lFg1pWfN4rq+X4JfvMjM6xCJPLdtEyXjEEr5ISSfXu5Q2uYSDqkWsGl3HlJ576ZRb0Mdq6Rb1c0KtwK6dQNGwmROq3+I0biM9NExJ9Ag5vM8RaR4rBkZI65vLaVMIm7qFcLAAqTDM/KEMqox+8n1eBM0xEN/Ai/lWrF4/952ZR5VrL88WunlsoY3fHVYi+fAUS5YY8GgOsqDqD4ijFj7NfhFRTE8MG5XuejZpruRg0Q6u6w7wvT1O2FPPyNH9fHDkKMsqNNx5p4FJnaVE3V486V+x39KCOeJm9nApU9wKDsoSjCq9lHdMoV4bpUqhISRS8IO6nB51Mzd0zsCdegtHuJ/+bScZ9Lh55977MHpiYDnBiCzO9mSBOT0tJAmt+CNF3NQhwqEX0Wp002PejzhoZeFQMkEqkZPNm2U7WBzcgGLk9zgTi+hQXuDJxrO0qGYg6Mw0yiTUi5V4R64mX/QWgmYffnEuImEEZcLPafFtxEVVHI1fj1OuYYqkHXOoHJMnhiguoA4WMNs/wo/6z+BkLj8U+lDFgry76xire5qZMeqGhIQNJecZlVsR4gFyg6eZE13Lg4WvIk7ImRyQcEZRRSoetGED5lgfm4r7iMRWII7mMSI6QsL2HKb4CLGEki+znMwa+J7pzjSqtMu4vFfNsMxNt1SPKiKwz5LGHvVizLE9BF0/JuA3YUocpti5DbP/Bz4rLiI1oEEbddEsz2Tm0I+QaJ/H5CvH1j8et2Ia1p7HOJP5CmekE/CKhvhlNWy39/N90kLGtft4bl0Hikfe5kI0zIz22/lDgYigkEp6/BscIhGjygC/qjdRq7uOE2oLC3Jex56RzqQ9H5BqLsFwWs7H0aPoztTCi++g0WiYMGECO3bs+DfXsYhG/1xXY1qakod7vuQD2yx0sRRePzXA1zkWnrFdR2XSHtJpZIqrEq14iIgoggIBpH20qv2s9q3FHgjRKlxgUdMC3pd0c8J+jPvP/4L0pTn/4r/+X8Dr9fLFF1/w7aavEUs1RLUdWAvkXDHtZoIWNyvn3sr0kj9XQfQ4WghGQ+xxxajZ0clNvTa4L4n967ajHG4iqSGDoylOjusmIGo6zp7Db+GMjNDTPkJRRjpXLFvOihUrSE1N/T9s9V/noonGiRMneOSRR/5uG5VMT5FtFjZVOjs/W0R21MQD6TNRX3ULf/if2sUScXanKPki2cSsURWbd01hZ06U53MrUEgOIxYKiKFlm34uMulvEeNj+UAx9XlqjptknDRN5g+159iaaqLSX8yzTetQh1R8lG0hLgrQnHIEp9jENoOMqYkgmpyDTGi7nZDKwJqeLjL7r6EuuYwh6Rwikr18Z5XTOu0ARd4F/KbzIw7nHuSSdDMnv5rLmj98waoFl+EYl0yXBl45cS+9Jf0sHmljvuttNlqmUqeeTl+vnNZ1v6BLLGP8uEwqHv4xEXkyP8SOkQifRCQKkeRbxHz5IVrlyYyLHqFFUPLCWRvfpY2j1DHA/IF6Dpv6SQv7KPV2IqaUvZZ6UkQ2on27ad25l5VLr6V08BYkHOfXoz4GyrxERHFOJFeRGjTyVtFB5gyVk+U3kOzJwK9LYBMuEEpMo8XyEkNqP13iUlp8d7HcN0wsmsLGirV8676T9Egdk+OjINVQ4cpmR2YT1Z6fI2EurkQ72qgXh8yHPOFlfp+M27pqWVNWgleWRFjZSLHxXpZ4SpGElrC6v40h60kiopOUDf6E4SQFK3vLKfL0MSTz80zWDRgi1QSlbvJcYub7jjAgVYOoB68oyNy+Lua3zEUijrIrzUua5AzTEmc4hReZ8ypeytXwYvW1SEO1zOtJYl3mEBZjN/c2+elDRl1yJ7+zT8YliRLyXs5TFWMBgfG+bBqL7iHXfyVR7RZCqigjMTVKrHilLWSFgtgTB9hguoyk8E+xSjfSlXKUq1onMuIr5KOs5ZgiPTjEPhoMYaYOR3nXkslz3/6OH8/+GZvVMXapRulWe8kLOpgU+owvzfl44xkIiS6OWPpp07zNzFASp1sbuOXG63nooYfo6+sDQK/XYzb/6xngf4sjR47w6KOPIheLkMUGyIx9Sp+kgGGLlTTRCHb3eHYbTFzmMFPQV8pp62Y65dnk6deyWXsFtSYxC4IZGHpeI2hoJ8lpZWabiiHZHkKSHiamLgXg2muv5bnnnuNPf/rTf7iv/zewfv161q9fj9frJbsozKJFw1gnPsWZ1iOck+WxwTvCMsWtTMi9ijfPt9HTfZDpPa/wrVHLWdFViKyZxHXPwuYCHm1Xcc4SptQ4AZ/lGKkyN5+WjiEeX8w9jlc5YCjjeNDE8KbTXPrG+yy9dDEP/PSB/9T9/kdwUUSjrq4Oi8Xyz/aC/zVkEiWrpv2B4d5TnDjzBRG3jy9lX6DaXcWSyU9wtO4DJmdcxxvTbuLNz59ml1qEVV5LSDeRuNxBWryK9MQpaiVyVGEbTrGFDrWblZ1qfpxvIy4SSIj6AT8HU4e4a+Adxgcv4BMZ0cVFpAyPp5cBgspJHNWmMdE7xD7zArLDHVSqt5AW96NNODiRmkmr4hRmoYOEfD/i6CP0Kv0cN5gZ77uOG7s+pV8d5PjVN5AVX8mxr26ift8mlIWTeNVrZL/CQrM3TJurn8be99nY8hW6gJc7llv5cvxCVvUF+Upjw6HooVWkJRwfy8Nj2vim/V3yNcVMzr+NDu3XjDn5C3ZaPYhFtdhGihlV6/DIt/LpiRJCgo2V00JAiK7gcs499hBJthTumnKU0Ojz1CiWUacTs6TPDHEzU0fDCOIRXKoEvyvvYPywnU7FVBYFz7A23YwtbT0iqZtoQoqLIo5oF5BsdGEP78PkLeGsvoMzUiU5HcWQCDAsiYD8JFXxe5noUyCShBATY7pnEI/8E/IDqSQEMeNcYnTRHLyqg0hjUhYPhlibWsufZBVMiR+nuOcKZodncNryPd/bj/G+eArjRqdxY5eN3SlKbuj9itL+sSQkS3ioXIlbcQZTZBSluJqygWvx6M7RmHoG2+glHE+NkDsUJDu+FrwDaN33MSJKZp2tEkXMSelIDHlEQY2xjyzOsnrYycp2OVuTUkEYhVghhoiPNvEM2lTFjBHvQqQZBOVpVjXO5ftM8EnX4SEfUULBJb6vUYobual6GcOGg5xTV3Jzbxud4mTOpRXz+8x0Hhh4j9aPvkYzZxXtWSVo4s30StuYNDiLz3IkaEVWwtJ27PEDXDrkYiQxjRMyO8uW/oh9678lXSJBqVSSk5Pzd2Pr30JHRwc2mw2lUolzeBBneBmBcD0LHUFS/HHyh8dxatwmAnIrjaKx3NwbotKjBqGfQbOSdHZQHVmCfnAp8YQYvyzIVwUXmDSkwKQ4QHvqAJK0P882zJs3j5dffvk/3ef/E0QiET755BO++OpLVPkZvHTDS1jPmzh5TS06uQKbPMjXzXMZFX+DQ9THb5pu4JbN2+iLGxDHrazqXsGztWZ+N6EGGcdIRC6hVpbB89kwwXuChybv4rFz5fxkQh9+aRhTSEaLJsaU0BmyY0VkXCLixeKveaH2WeZNmsQ1t9zM8hUrKSsr+7/iIMiLIho7d+7k6quv/je3t9gmsPTWoyTCfs4cuBepVElr/xHOtX6Lp2oPtsLl5BlC3DKcjjtSyI+mH8IpijHWlcAfKuOeHjFfpOZytetTFg0nk+ZJpsgawSsR8dMWH1X2nYQVLpr0Qfr9KrQhOQNZA8TCe4gkJrCqsRJx3MCOtFnkehU4ZRBPtPCpJYkx7luQSc6RPVqKIqZmY/ZMFg7twh60syE5TqljEVZPO17JGfqSPyE7PsSs1WIKRkT8NGxnr3OUubUdFDqT6FNOwia28Kexk9g3doDPLUGyw03MGxhhWrOIt7MKOJrsp0Xj5wFvHjrJHRicBg43HMMey6bZ1IFB9iZWcRMHsubhUIa5pn+Y2ypFDCg0xIUjxH1+Rt+4QF5aJmtKlzIqPk+LJcB+80ESwhBCPB8xUl5RKVGKB1nRrcCjqSVdqKdachsKdyUtpqMcEU9l2WCIlJCMzhQbHlUjzdphKrutVHS8xEjZPDQ+FZP7F3HOEOKPBQYGYhVUBN2YZb8inriE5f56SoLH8Liv4nzaZmrscQa9JkZl/byVp+aW3smE9ScIxmczVnKUPqkBjXaEcELDLW1LGO/8il+WtZLvM6CJiOhUtHNzewlfV76IU+ngnjOfct5YQL/2EI9nRrjDe4ax3jAqVwbSsIA7bmP+yCgjqmHGRWs5UnGB+IkmJo1sYVHkBL9Pn8uA/iRb9BnIEzOoDLiZKhPjFutJSOqZ6vZxifcQZ6Xl1Fq09IpmMjf6LtlDBSzpzAEhwLoiO+KQjSt6e/jCPpbVgyqqknooGspHpl6LS1ONXy0wK9KDzqfiw3XN5I5RMaMkizVVFeyxKfDLhtmXGscUjTGht4LU0E7OJ/fQJhtDdyKF3xVlk6szcf277/Luu3//iJB/D21tbVRWVlLvaOHQjgN8XJSCSFCy0NGJCAV+VTOLPXUc0xVxxtJDVZKabPlOPjfPYqttLAXeBA9dyCcz/gNO0Xlu6ApzuPCP2LsfJntoMtWKKcTbW0EiQWTPQCKRMDo6islkumg2/CNxOp18+OGHbNq0iRkzZnD584/xUfsZqn2jKP2jPFb7PT/KncKPJDKuG60l2XEWr38ipkiEwYiEH43UkYitxuQfRiM+zdTBGMf10whJpURFXnYklVJj6CMkUdCR+h0ruxewLcVOlzwZJ8UopUNU6zo5bx3kV60RfjNJiqviWva0n+W3a04xonQyZ9ZcHnzoob9UXfw/wUURje++38ynH3/07/6eIFNx/fwPAYjHo5w49B6iuIjBrq1IQz52mP9EoeiXiBLFSAQFIsUeAvHJXNsvQhO9wIkUCbuTfMz3FHFFazKFAT+nc76hXj6OExoRGZFBZkmPMqgeYUgCMSGPF4+U4pOEcGtPk+UvQ5SYwDZrL6fF96P1ijhsPE1IFODphjSigoLPM6WUeqrwqU4zJXqMUelP+W3GVRQErsEU/h5LPIhX0IB3DvPMRShVca4St7FDezU9+iF+0pqDXxzm1t7DpCv3oIjHqUm+hJmPzqF6+zYk0SjDjBD1hlAIZuKqOMmBGCtkSgaEN3FwlnS3hwHZEdyaNnbr7qKio4gBayeqvSJGTh2lOMuGLpDCjfqfMtqxiy/nmDgfCEMiiYpIL4nAfO5p8/LIjG/YmtTKQ21GzO4irva30ahNJy1yFFE0wrXdIjKGZtGn2kpl70x22oYo9sBa21nG+MZTNGSjQWUjxT9ManiUPqmaC5oARLOY2zGGoKGL5BA0qVsxRMKIfWN4sNlBp1JPl2IV/bpfY0oEKIk2kJvYTV1sKq+mruKpxk7SnUFgNj8e+iVxYSOtwscs6TBy+4RuUhiHWNTC+6XreenQao4lTUBLgtlDHkTB5WjVAXYmq9ilE9Nf9jX6UBFuhZbCUBtSWy7JjfW0FVYQFsXxCDbsoSB1uhHKe3R8lF6AKrKcuQNHGBvej1g6SH6kirBMgyvhY0LLTMaNSPhjxT4OJ3kYN2Lh0q4MDtm6mDoi4/a6GVywVBPS7eWzVBO1ejNznaCJd1H14RDTFBV8v/BSzoctxAUxi7rKaDC62G/JZopDhFh8AZ33ASpj7dzedI6vsm2kSmQEAgEMBgNlZWUXI0SBP9fT6I+Pcv2hJyiKpWKJ5pAWUbEnNc4fc0Lc3X+Csr6VLIvZWZfTTZsmjm34F5Qoz3AhIMEYMJIcciCRunEoajhkKCYRWkyTYYDjsoX0K6Rcevwd1gzCpfc/xxVXXMH999/PZ599dtFsuJgkEgmOHTvGW2++zeDQAMFIhIHKXO59+WluHDOeK3Z8QqU5g2VTS9hYMYL8/NUoG77Fq55JEDsJZHyedDlHjW38uF+MxruGXek+njAXYnP7qNd7UQpnkQQnkuWbx9WjbloNUZpNXhSCEzN1LOtPZkghIdmwBYegpkW4jKRQG58UHuMm/3F02KjIfA6h8gwx3XOcP/c9i2d9ijWrgF//+mkqKyv/t/vtPy0a0WiUnqCM3af2cv2yaxD9U/7FvxeRSMLO5F/gCEV50/cxQU8jafRwIMmNKXKeOUorbTEXlw1pOZXcSZ/WwfLuFL61TmNWcC6n0g9zTuwmyDJOKfUI0RDzHVWUBaRoXdN5ufgQPlUHI9ZP0QUMVBmM2MNfMNN7gT3W2exO9SIOXEYsYWdMqJpvcsyk+0I8bdcTj5ykMaRA5Z7G8pZhnitSs8k6isA8xKFrqJIpaEnayp1dLZywneRUUiaN5g9ISJycMZcydVjLxsxOBEkM2+Bk0rpupmOXk10rL+e5/V+R1v4ep+XzyKiWMtTSRlt/G+tVRgLBACqDgYaEHplcBqIi9KIjNEb2kxyPM2/2bNZ8+AJjp47juRuzcPccxFKwgEeWp1LzzQbkrhZsvhL2WI/T7WkloewiSxrlO+OtLAzJwbSP8qZfY4xHGDF/QXIwj8NJPuzDU1ncr+GsEfbp0jlvGMYbLcToC3A02UW3Us6A0oLNV0e/ysdZLNRl5jHBmc9XliuRMspDjXN5tLiEqxOHMAdFtCli4LuXo1o5R607aHEtpju6mpuaImQ4RxFFrcSFGInRhxhOfZ3atFcZls7CLwnSxDgSjGM2G9kz9TIKmp6hoONHnDeeJkV4Fr1qlPmj+aQ4J7KvZC/pQyXcdvwl2vUNFE9/kLf3N7F0gozyyCmWOfxo4iHuFa9hp6mH6bHDDEZv48b6uVh8K7lQdD/je1bwiOwrRtQuHsu7Bn32MLnRJhySFZzT9xAU93EwycqP2gRalEqkyuPEI07Sw3G6IjKaogb2v3uMRfYszq0sQpoYRSso2ZIn44L2IGFgpvsH7u1p59v0UfaqsniyvpuooGNafyHNey+gudJ30RdCN2zYQPINKUCIRf1FBGUTiEmPUeq7QKlqgM3mMfQav2BGwx2EmmeyM82P2H4zKR4rV3XdyIfpEs4bfXjUizmi7+GQSUZR/AJmzZdc5THSH7Lwuq0MX8Wfd1DOnz+fQ4cOXVQbLgZOp5M33niDrd9uJE81gXt+/BATLiumoXELz7X1YfXV4HMaMCR85EmNiEcCmORSLOE4lecWYg33ka6J8/Oy1cwxZjPxwg5i8j4SnnGcEwyUupws7skgN3qICeHTOCUNPG6az+NtO1C7nNyqm4O4bxZzXGq+K/RQ7rXSr1hAiyZCPKFFGSlgOS/SHH8Si7cAf+rrqFVqUoTZRCvyKCppIdzZwIv3/ZFRcQ+PPvsk06dP/982dXVRRhpaURBr91fEQksQqf59Q9Evms+RptYxKzWb+XY79UMNJMpWkRs2c3WVlUmNb1A22oJqCoSafZyS6Thn2onem8FEpxFZNIQ5LHA2qQ+vJMzK1iIwxTHSiEvdwlqthZB2ErnuVlIjEU7pYEJIzx/yUrH7E6zddQu/iZzki9IfqJaWgOCkYngcsriBjHANEu/XJFwdFJFMWzAHczhKVNIPIjdzhgIctFajDmdTEPVwJOMA+6zD+KLpjJLPZeG3qVPdwyr3KBmeDNapr2der4ZMj5ia832wLIXZGQVsOqTkxO4jdJuSWbZsGXfPm0daWtpfLV70v3L3vXdSVhhBr+hmYPYpPsmCzg9MdKjsqKUDfFBwgQF5lGRxNbkeE/VGL+qImhkdV/LtpO2oozLMjpl8lqajPetrtukjjMoV5LoUFAfL2Jn6HkvcHlb19fFWloRTugzs3lwsITljvKNI5D2IEgmi0T5yorXM7HQz3iXCIxvgzjYriogRh9LPtuQB7m4MMrVvIQetCha1jGVQ7GN+v4pqcw5nTM2otZtwyXMojw0wMTZKa2AVixpO8mK2heJIAzFJgq8UV+Au9/JEw2EE9SbEXgkmGlDioFeawoLeAnLcZtbM/IGgOEZRdAKOr/bS4J3BFMsxuhQp9IlLCYhVNCjzmDHaxRzXk1gSYwip8ogl5AjRQjL7n8KZ9Rtikk4cEilF/no84auZP1RKu3kHNzXPpkOpYXNahIkhDRtzHOT4e+n8TsHhQ/tZtXwh4+yzGBJ9TLIIMmIGkkUxMkYWUSvt47t0MzO8VfToqzEGJnIwyUVORxJBxUGculN8/vkoJSUl/8GI/Je4XC7C4TBXFl+C7+xrOJQ99OmeZ5fBTYmvBHF4IWHhJBFRnD1Z+7i0SUNhJIbLPIk6+STO6P2MqKI8UtlNUtjKz2q1FHs6WJ+joTWSQnFkkH6VjAkU8HnAQ0pvM4XC/12nKdfX1/PBBx9QVVXFHbdex8O3J0hPKmLs5aU4Bs7RevhJ7rZPpbf+CLXDh7l+6AL6QC6hzxTMGJvK5JiawVicLSmT2JR+jIRI4OZiGdJdReiCY9mWupsoM8kIOWjMex6H9zpqpaWkU82TQ6upSkvjdetqsv0DtOoE+pV+Tmf8Fl0kBY3sFMlDd2AWWTCFLDTGlzPZ2UaHVMqQ6TDqUCUFgRKsso+IRDIoUQm8+GAdqe2pfPrYW9zRfydnzp7+35IHclFEI92oZs4NbyL9J8EYGqlDqTCiUf/9xB5vJMwrF46QqzUw/vB73FA8h9+PPEHg7FwkvUk02a/DoSpiwZJ03N8fIbt+OdvGbadoYAWdyetoTunAL/TT6Z3F+IE0FvekccAmICKBRzJC0DWbkHKIO3p2kBsy0mA/jymYjNU9kdn9w+hk53HrkhEldDTFHgJxmJ+3/sB0xzcIFOCVu6htaiIraORr4yPUWOxssZ0mIHcQl8CK4XZ2p6ZQmPie7al9jHWls7j1JtamuTHRT2P4IYpCSWzO2cXEuUu4vnIq3QsHkf/+TSYkDIRCxXz75hf09GSwad0r/+492j/72c8409xK5Y03U+uYhdqiAmppVSqICXJUggmt/ggrBk+zyTiLflERUtEIatMgX2d3s195FcrCpzhu1FIwWsLijnvYOSGCSCJGEouzO/03mOJRhISeZFchiwdryPG3Mq53ASesBzipUzDP1UByzEEk5MWXdAxtZC76SC4/JOWTJuygUV3KmvF6bIF6nimRY/YbuGKkFoXhPB9lZRBU341PmswZzSDTJVW4fD+lMx6hTzZKcvACkwazuEM8wKBOjTeyiLygmC+y+jmn62S66Ci9mhtAMoxHXEGPsRp/5D4GtKXMG4lRqzmFNnYJ11x3ml3vrmXJ7ZeS3XYzzswfyPWKMQnN9EZ/Rb/+AufMb1IWfp303ltxilMQRRUMxirJ8enQyDZzWriFyYk/IJMWscVUQIbMx3MnSvjF5Gauaenm9V2jvH5gFEXlXNKeuptTigh3dL5BdCjBx9ZCPtJPplzUzPxeLxtyHcwaKkAWk9MryWH5jApeOt/Op2kGKmKbkZ4JERw9zyuvvPIfDcl/webNm7n88suZmb2SHb0JPP3D3Fo7iDxbij6UywmDhrFuGXvN0xDESu73u4kou3lCv5gpzjHMDLyIT5pPusOOz3CIppQKhLiKFQN6zCO/xZk4zajyJGepJhYw4ImE0JpTqKuru2g2/EdpaGjg0UcfRSwWc1NxAuUNl2LK1xM8GyN5bBGCIGBIKqFw/D2MaIrYO6ogWUijNFFPwNOJMD4FUWkq6glptH36B2ShL7mudxV9ciVfH6/iJr8VRUjHV5nV3NDcgSmmpnTwKq6dUECeu4TfncmmJ/sOvsx0MhSTM31AxcIBEYeztyMTudEFbagHHuectYlRaYxhxQF6VAJ7NFLiohYGxXcwIaKhwnMelawMrSeFotEQktTJ1GRO4vLLimnsWM/V1/2Ib9avQyaT/UP9eVFEQxCJketsAIy07uXboz8nyVzM5Ys/+bvf00hlvD5jBXp3H5GP/4BMquC6cW+jDA+yL1ZPtqadI5IYj3T7eO/+hURbw+iPNOA0biCr504GlRtIHdXg131MkWofEtsoFvkCXu45wnumy/k+FcqcNkyxThSxMLqhBWg9+YTjJrJ8A+zXW1g35gi27ntYPtDPTQPriQgJLuiTme46Ra9Mx8zO6WxKXcw4R4I0r4MV3sP0CvkkB0w4FSnc0DmBoPoIVbo0jurczO73M9bvQCzu49d1NZy1foZIbSer9M+7SuxJVkZnT2btwf1sWrqUW265heeff/7v+ul/pbOzk6lTp3LZggXsKy2hxZfO0VgJE5IkXF9QznXpHt451c3PJ5agU1VweOfPSR61kS5qZXxiO1LvHJJFbXSKPuKMZSyntEpO6uR4hTg/rk1l15i36Ms9SXPiAUIUEDNt4uikUVZ64qhkjRyxf86gkE67Ss4qZwClEOEl41WUIGOCcxKBwFLGh17DZd1Fb7iQMY4slOIUBqVOzhlDrKq7mcaUjfhFInanvUGPtIAbGsuY2fsZYuRI47dx17QapiYaeC2vA4W8jiDZTOtNMG4ohbV5p/gsM0rrwG/52eBaui29uMVJ2N25ROKN/GBsJyo2UO6uxBxWMpD9BnNKtXS810XhjBpyOxOkGqeiE7ei93zFJzmNDOq76PctYU1zJqOSo/y8soaJTgdXhDegd1jI7fLTku5gUL8fQ+A2VrQV4hPJCR3bw7KtgxSUlFP4lIzLu26nzh/hgmKQU9JpuNTHqVcPIsQDdMrDbE8dQB8WQCjkvGY+zy5ajMLfzmZFLw3hISpzlvPhH59h//79f6kpcjHo7OykQlXCW19XUR2TMQ0pJzK2c9Sci0OcykO9HyMPzGJOT4wa+w/sy3DQZmlDn/BwPOklLnEmoY3lM9vVwVHLKaoN3fQrh7ik4wmWODbSpI8zvWspx82bMYfizNcqUWo0GAyGi2bDf4QNG9bz2svP8cW677HZbOxa/wI/UII6LGO6tRytMReA/ZtjBH2rmHGVmGSXBINUyusBJbPMKdSpZUxs/Qnm2CyOJPYxrv92OvVDFAR1vBCsY8vsBLf3n8EQLSOsnI3UXY8+IkERsjMsVvJQhY5B5TvYI+uY6Rlioa8TT9IA1bKJnI+W8EBbJWnxM4jVTZxVlZISNDNzQEuDTk6eu43UmBJBsZ1dqVpK4/VIdU1UOssRxeykBCIETK/jT5+A23GOL7/8ktWrV/9DfXpRjxGJ+IY4uf0hrGodJXn/tt1U45PSICmNqtUv8kjzVq7/wQ1yJ5P4HH9wLzMveQu7WotMrYZCCdM/mku/bZDhRClrzSLe73SyI/cQHYYBTFEJ7apB7BEZMsSMHS7FLyh4zV7ITEcr85qvp0/TT5JiH9/bk3BJkyjpvZ5P8r5jTUMJrSoVJMSc1Vg4o1fwXXIWVw72ESSDXLeXQeV6xMIBTEE3+0suEI9b0Y6uplnnZ7Knlp80yHgt9xPG4+OEMI+d412cpYebS2+i/Y0lJM24m8ZoLr986ffcfvvtbHr8V6jV/74hfDQa5Sc/+QlvvPEGi0bVxM+dIanegHt8I2/tj3ONKp9drRe4RadE9egJYkkqPFf8Dr/jB6b6XUSFQmplSRisB+iRRwipt5PvmQXSETIFKa+WjWVYUUxSbxSjdjveRARJKAVdOJNCTz2tOhVx1TkGo5UoPXPxRvroM+0mKdZKlXwKM+UCx7POIVgPYkbCDss4mpXJTPZKuMrzHSnuBDszj7HC3cHD3Va2qK4hKhNzygLrsjq4py1BiyaNGa5UpEI5p9VDZAQbMYRDvJE5hiWaozxYl0mdOoVtKVrepZKTuuvxC8nc092MPKigKf0kIiwUD1lY2FTKH1W3MHnyQeq7LnDz+d+Qunohp7V7ubUrynz3HXRL1tEqTmJWWMsd0zcyLPcz1WniiPqnSP25nE8KYFNqqYgnE1acZUb8bZ4MVNC/YzfqwhxSf/UkPZZmSMgYVXp5/lQOT8ys4gPL3VzZNxaF5geKE7sZik+hVqfHykH6JBOY1Z2OXa3k9PHtzGq5gQJTJ58++EvuvPPOiyoYAIf2HeLGcjdF/j1M9zzO+ux+3NEZjPd0sccQoTt2BxXy35PsL+BkKIsNGdUYR2/n/vogbxY38J1RzwfnD/Ki/VKCngcp4hOCwhg6xTkMRvXIQifYYZHRLs2jTSjlWFcPl5j+89uE/6MkEgl+8sC9XDjzA7+6s5jQ5rsYLVvJ/Kt/jnHQQbFJh1Iy8y/tY9EE0WiCeCLA2eFfIpPOwSmP4+iYBCEr7dIEHdUC0sCPmNR+Gd2ZLZxIryIiG+ax81NIC+TSmyclJJZwwajhm9Ld6CPJDCuMeGUmDLEAE32tzGpfTcL0CSPCKCu8XWTIEhzIjlIQyKE40kRpfC0RVR2tpkupVY8hPeokGG8iO+KnTZZPKAKX+Jz8qQAa1Klkh1pJ9l7CkpCE0rwYP3/818ydOxe73f4P8+1/WjREIhGdnZ2EQiFkKgvHjXKu6/Fg6OuAv36iyL/A0byHoT0Ps0Buwq3fh08cxVf2ILnJxVRmpvHz45/ydacfXZOWX/gLyG68lU/GZID4HM8Wh1nW9DT2rl4+mPArKr2nWJc8lbMqBwtHWzmouoJWcT/NujSOai9wwtrHG6fsrG4fQ5dSwTHradq1vZT5zfhCWXyccxm66AgfpO5FQCAg6yAW3MSs3nTqjG6es16FMu5mdfuPqTWdZ7dpD8kJJ7qoibSgQMHwrShDCR6aKKfe6cEaATUqnIKch1/6ConOxrp160hKSvoP+fvtt99m2qyZhPMsDK9/ElNkNXXmGNef30WTdoDfHBiDX5gFrl38lBLiET/17hZksckMxFZQo2jFJWklL7aBPt+LqMQ1vFr9LR6FG7F4iLkXkvAKKrZZK/hxXR5fZvjwisO8dXA8YeESlLbNnMl/k0v6VezRR4j6F+OynEKWEOGQiXGIVXxU2MTkqJqCoIvL3C9RERwH0hHaxFcilvehSZykV5LEN7rlFEk/RBauQCnuJyieRINlM7PdIY4KTxAWJ1gwfJ4berupUmVxa/Aku+ytTO/+EcN2P9ZoMzvN2aQGfcREAl8k2+hTDzFraD4nTYNszKhlvzWMT1zM/KZxTJ6azdq2SRx66TtUawpYn2rH7HIgjmvI80a4rmeEz2OFqNVashxRTptViL2VDBgvMKJV449b0DrCnHxvmEDqMXJ/cSVyzUSEmIVovI8EMnbYXAQTMXL9g7ilHZwzpGHy3opM/SR64QK2UBazR+ZR2VnCGdMAo8EQ+ZW30dAqEK45y/xL5nLbbbf9h56Nv0U8HsfpdhNTTSIiDjKY9CknVbewT5TFpb7PWd3bQUa4A5PEgVcqwi9WYwqYua4riFOSjDI0D51UQarvHL+ssRDXHmC9+WraFZnUmMNMzPqM8uhRRPLL0ETMaEMi0u3jLqoN/15WrfoRFsUFfn5XBjOWvEzvF3cQjwQBGG81kohH8e34I5L0CuRj5jJvOSS6GgmJC0hVpSEWG2jyBNBI9ThjWkyB3zDG007b+PP8VvY7ool0BMUJFntbKXUuRBtS4qaVvfbX0AaVDPBjZjoDOK0b0UXTKYsMUBmpZsj0Pm5xPgs6xtOta6HZ8j3Jnt0c1xZxWjKBVrLJDQgsH75AscNEuTOLh8vLyPSPIqOFwqCfcYEeqoxl2MOd9IvG44mnkedVMsF1GTdMMPDqq6/+u2cv/j1cFNG48cYbWbt2LbfffjtTKtfgFO8mM3/uX9r0+z28W3eCG/Irydb9j4XyeCLB8X4X6V4XoniCJSnjcJut9Lma0NZtpO/CAbpbL6e64gLD8ghTY1nUGHMQhDCn9N8zLnIEuaqOffZMyoayCIggFlOzdMRLhrGaxc5WRiVKCsRVNMQrOWKTMmmwhCJ/GJFogNPmAs5YXqBodBWSuAiFyElSqJMWhQ5J1MYy125WD5/mT8kSVs9s5enGWrqUZdRobcgkJ8jxS/jCMkyPsIb7W5T8MqMcubKXq39URtvW78k/L8WoLadeE+EP26TcffdtrFix4j/s68OHD3P06FE0N1zJgbovOD1mmKWaT/nC9h73VAnsMzoZ1W5CEgozXt1MzfVD5MRuI6/qZUIqK25hEUUeB6XBGvy6Lh7s/oiI+hSnTTdgj+3lgl5ggTuKRBzms2wfDcNd5HvyqVNq6FYH2W5vo8XazdQIaBMOftLi4vukbHaKPmK5px+738TrY/aypFdBV5IZeaKNmLKXrJibtEgX3aHZ6EXHKPC08ifjneRINyBL+FnoquYdczpSmpjYX06/xolY+1ts7nG0qxvYZJ3I9iQZ6d4c+nUJDBmf8X6uHV1Yws/6tvKSfQphYYSc/mk8ejabdkML4mAhuaFa3s+SokgE6dOYkIq/oXDy05TbX+LtV1+lLSWTd2af4xc9F6j0Bon47qE+ewxOiYiDej9pgSHGj0S5u7Gcl3KifF0dJHEsyLPjXsVafIJ3RUn4xW+ijOYxtVPLhuTpZEhepiDqRhoqZZzsAF9absYa8XDD2ccxBmRsyW1gWLKI9woaMUeiqMQlqMwaxow/zXc79rBu3br/VDz+NTo7O8m1F9LNQlTzcvmo5SHuakqnVakjqL6UPZZXeWD0Ap1CNo2yx2kx38ev6qQkxEf4xF7BGaOTYtdYvkwN0aWuoV+lQSkcQCotxJAYxC0bIR6HgsgeDP0TyfRIyTP/eQStUCgYGRn535bV7PP5uPXWW6msrCS30E+/p5sBXzu59+/5Z+3inmF8Rz/F1XmS/DFzie36lNiBDchu+S2vTPwAv7Odnd272ekTEZPGmDzQSKnHRUfXUVIil+KI5nEynMKVXT10FfySGqaQ75fSoUhBHVbhkrho0AqUjRbQbOxkv6qAy9svxeirJEn+Lt+ndDG/r4xJnT0MycJstbbhkZZCbAxEu8mN7WaTIY1GpZiru2SczHiDOd4Y5xVzqZZNQhyzUe6aSac8xmbLIRRxFV9mHyS3vJbOb/+xvr4o01N33nknK1euZMWKFSwqugmKbiKeSPzl81ND3XzfWUeW1ki2zsRofxVqfSaHh+GxIy3cVDCWW5KuIZo6FodGYHLFTzn0+xeoTdnP/LiLD04l8XBZC16ph/fGHKRe34c4LuPyxnwMcRsvpXtJkb7FL6sryB0pJCCJsNvSzOf6eVzd6+FceowK7yC90gJW9Mzl+fyjnDZ/jymSxNONSVSO7AZWEopXMGEgm6rsw0hEA1QppyC1RKlSzMApP81Wm57bHFsReotQy+twSHWY4kq8EhlFo5dwLOMH/BYFz258nePKdPQlEYrW+gm3bef111//T2X1dnV18dgjj3DzldP4wBcmWVSLA/htxkoujw8wqLcwtXgepzwOBsWD5C99lHxzEn944zSTfEZMEhdB0SmOm3NwhVK5ZViJNShiJFHMqE5gzsBsrM5Rdlh1WEK9XN2j4XvjNBqVajSJBu6aPoBf6gHBRsxzCZlZa+lJ2s/1DStYGHDzZEEa5lA1BZ44l/fEOKLuYIvmKnrVs7AFHUwNfUl+Ygd9kfE0idUsaVpOU95+xIIaY3QYj2AmJug4pw8zwR2nLfUgDeYejqkSLOyax5O+jbxvr2RYmsTXGX0Yo8k4ZAa2JlupDJ0nmDBhiWRy34wq0l02VFHo0NqRCn3c1daDOdpAEetoU1qJJX/GNXe72Og5C/t/zo/bvWjlCog9Rd1hMwIJ6gURqhQV+0Rx7IMNOLcnkMzNZ9wvFmNpjRFS+ZnLZ3wc+iNJsQHu6NpPWHSe8/YualM3s9IR5C3dVcSUW7CERviwOEqrSseqwVqkQQWV1nHUG9JQyQUGBwf52c9+xuuvv/4PKa8bjUYxpKqY8JCSo3u3Y/A8RJcyTl6ogwPWz8iIBPheW4gQmows2sCE4ThuqR+X3EGf0saa2tlc0avj0XIVneYjeAQjmTENw+IUSpxTeTdJz6boN8wZ0VDp6WNfahVT/VG0KglLly5l586dXHfddRfdrv/Vxk8++YQ33niTB3/8CNesWM6FL2ZwTv1jzjd8R8zvwGafzo5OgYGYl9b2fRSkm7HGG9i04zeclabw+0mLcStTuX3zRsrcAq2qTOKG42R6bEQUe/nSlIEhVIytbzHKiJGk6F6y++ezPvUsyKuwxPyExE/iVrrxKVoISK2ElA5C8SLiiVQOWM8wzrWTRmMvOr8CmUTH9L5MxCSwO1vZmr0XRaCUo8Yom4wlDKhH8Qlaltfr6ElKwuYLsdlcQEQq4YXWTZzSRKjR5JMeDlOc2MUxmYgWdQgh8Y898+uiiIZSqeSuu+7id3et5oGbZ5Gy4Bdce/BjMrQGXpt2BUszikhWaRlrTuVM+wl+emYzSwQjt8y9l2kyM2P9ETixjY6+A5zS9jF/mojzqSfolZq4YDlCzkgaLqGQ11va8cXT+aLQg8aXgSeWz+R+JdO1pzAIARISP/GonYCsmRqVlndOFNKp1LJNNIcbR8Q8ONxOjr+GXdJuetWNVLYvZaeqkC8tDh5rPk+XqoMdeiuNJge6WIhyh4lv0maQ4hN4fcdDhLIvRxM0kjKaz8ZUGztNYu5v8pI5MhMDjfxk8fXsPPIrZOEGqiMJGl48yhX3PPqvHuT4r/HII49w5uxZni7PZEJPI/XyUpI0YWJiiCeGyK1vZ8pQCuvq32G8JoE7kUnmP62VjKpeJtlfy++TKxiWeFjRczUixvKc/QgZBh1DQgZVlkHsASMlbiMelZtzyQJLuwchpCWiMtOv3kNC3EKuayoj6gbEiiZ0w9NRRnSErK+zRb8YW6iQBlkZ97bVsD6rkx2mScQSelShEL0KI6fj17Auu59ip5nLO5YxfVDgVNKDHEkO4/V187PGUd7OlBBHy3aLkpPSeyhxSFneL+NISivq+HnmJg4T9V3BTnU+hlAa6dEB9IKD+c42hESC49oRij0TGVA46BPMmMNRxjsdLBxUoIhFEEvLGDWbWDgSwh7bRnbaWb5as4p7Bs+QFJRQLS2AaDIfZYrR+Q8z7EpCH8pDLzezJKkeSWKI62pmEw2M5XjSQWokWRT4HKSGfARiOcwbMLE+/QqQK0joLhAUpSKJD3POkIE83oY56kMZj6KwneKPkSLoH+XK1gDzpk/k6aef/kvRrIvNH//4R+bPn49cJ6KntYRUxUyarG/jih1gTVcv26X3csQs0K5Xkh7oYUK/BmXMg31YzROuBLmuGiQKL1e5uvg45TS2cB7XtWr4IkXMtCEv4piYauNEPreFOBQJI44ZONI9zKKCFKZPn87vf//7f6ho+Hw+Vq9ezYSx81hz1Vbiwz76n9nIZ9lqTJ6neV9cxCW9rzHrzH5ekM0lipT7vJ+gxIdPbqLe0U6zQoV77g28s/VjxNISOhQ23OIwSbFBroi+gVRkZO5wCEPYyH5zFI9EQreyj9NpzXyjr2RSQE5a4jBj4uuReFNYfWoO7Un7OW51stkwEVHEzhHzPqo1KdSoSsnz+1AE7PgV3WgTXiQeO71M4p1zJdw7PsZGbQnzA+8wt8eOOGikSVrIpFg3892HqNKb+Di5nOsHN7HefC83D5zHaTlHf3AmHokFT+IfWwDroi2EX3nllXz+9oe0f9+Lv24l8ezp1PnihAaaEBlSyHDXITanEMBCUABXohjBK2ZsWzKCToL07tdwdG0g2PE9w7Fh0kJLEELdLOrIZ0DhZarDj8N8kEAkl+PSVWSYNrOsD+L6PlaMxukWFrNZO5MHxIcwRaOYQ1ZiiPkwx4mJHr7OzKBfmcM0Zxvz+q9mQddltGnr+DxbipCw0WreilQ6ilma4K7BBJXNi1EFStFE9vJl3kYemrmWStdKFsTPUm1Ss9Pq5/I+Lb0yCxXemQxl1jMmScfqhY+zZfMnxN/cxMtPvsLKlSv/U3798OO1NLT08YepC2kViXnCrGefUc/k8Eyyo4cIKHfw6MQaruvJZo5bRabjNmyJzfS9uABZ32uUFsepVqZjCIwj3zMdcbQTt/IYXnk/19XZeTfHgTg2jhF5M+q4Eq1/OTGZFpX3OPNcak4kBenRdtIrtaKQy6kIaNDIWxlSJrNktIcBrY7tprHY/F7WNAcw675FlcjEFhJhjTRwTiEmLljIDbeyqL+FjMRHWCU5vF58OwGFHkt0kIUDApXuOOushTRaNzImUEdGuJBJQwu4ulXPm2MaMLnLUQeHuGHUTjiu5LruOYAHU2yIqHGAC1oJM/0tJMuduOXdBMLlqPxJzO0ow63bg3J4Ph2qMlxMwpOQYBi+huqUKbQlQnyUPMCzVWUsC2s5qwmxqjmNZm0GtnAG1/c2ctQ2xISacWzNPs9xY5Cwdh/bTRbatD5eaznGQ6VhvHIVD3bWUOw1MyhO55C+hXSvkfsaK1DG3XyYq2RAkWBAKEE77CFucSPvOMaat75h8+bNjB8//qLE4V9jz549PPvss/g6XCgirYRMdUikm3Er3DQnbmBtwV6IGbH7r0Ai9PNaVhmy+Awe6tpGh6oTh9KFLGxka7KWFHcxLlmEjzMs1GiqGFSkc+eFxSSH+zlrbQJxD81qNwOiBiCF/Px8BgcH/2G29fb2ctWVV/LMs8+SMhqnekCEWH4DJ9VmKkZ/wmZrMrZQjHzn07iVT5Fu8yH4+6mU5pMom0m7tpA7oz7SbNNIVkmJqqrQhMYw1jNEs8KGOTiXoaFsJvi2oYufwSOMJyvwAyc087ixM4Q14ufVHDXd4nQcsbu4tXEFopCHd8qfptrYhyxYgCwGedEtzPA00RgvQO+XccJgBnr4NHkSTpmIpEgzl7hHSAQrmdl/np6sDua3F7DTkozEUM1CxwiZkWF8qjCqaDVJgz9BJ97KyuArvJR+DWnhHMIxOVd3KflM0vQP8zdc5N1Tb6x9n+WLLuXTHBnX91fxse5Vfr+uismJe/g4xc/KqlGm55byeG8lZUtysKaJWbJKgd4sYrB3hB5nHRKZifDud4nJHNjDGXhlKpIjkBpMcEA7CZHoWRZ5Pic14cASlbHJfAlXdoqRyAycMKWxMW0qqZxFiI/j9skOZFEZYVEyRQEfDrmEA5ZRvOLDPHh6Cc+U+QiIwyxz1qP15xDROUiOnyY72sM6fR2+ehUt5/qJyNy0igL0xdZxPBxmikbJsyU3Um0VM6pVcya9inh5DZn+Mfz4x78gFArx8Ucfk5GR8Z/yZzwe53cvv82j16whf+QELxQuIS5VYA9oCQpjUQ7MZ56plYhhE/JkOe2eW7jU+Qm1OgFQ813+dnZYzZT7dLRKS3Fq/RxV9ZLnS2dZ51o+S2tkbH+QWnUX/bp2nANLsLjMRMyfsNXu46r2RYwbdeDUeehjDBk+I+e0ch7pl3FWEaFGZac82sKtI98yvvVGihwRtloHOaObRJbnMvRRHWnurzhvbGZecAuKcA5+VYxgcDGX+dupT6rh51U/wy0V8VhREzHFWWzRC2zSj0MW01NvjvBNfIQehZjYUAk6l4mtVil706qZNVxM+agcVeAmPrXJ+TSjjbEeOVOHxjG5fwCnrptz5mP0WFwwdA0fFAfQMJmo1MFZm4Vh1RA7kvIxhtuZGXCTPjoBj7KXPNEmOoXlFDkyEctj/LQyQWFAzoIBgeLeMj5MS6dRVklqzMqd/fvZabwVSWIjozIPfcZzFASnUquzIg2vICk0wGV9Imq0KjL95SRFeshWvcg6mQnbdg+tZ4/z/caNpKenX5wA/Bvk5+ej1+vZ+4fv2FlynMpwLeluAfXIUr5MMTLd7yPJXUEiNo4R9ScIsk8RBS7hPXshN7q2IdcINGjklCAmHlCxX3QF9So1Y90dBOM51JpD3Fq7kJuNJRANMMn/MdNl/2NePRKJ/EPsikQiXL30Gn6X9wqxxDksB7VcovuOb/JuYjRmQyvX0q1KMD1+ErliJgq1kiS9iuagjPCwnoOSdNZe2IUhsgpTwxDPT/Mgi7ZTHthLn6yCLkUWXXIXc1zVaJwWGmWvcNJ8jp70Z1DEP8Y7+g4PVjaRG+xhWvA0h8RXoo4oGZG2oA/LUcRM9EmmYIzWscjdRJZfjFstpgcRT3V+ypO5y4kLcexBLctGc4iTyztjNzIpsosvz46jX2akSaMgN5RHUFCyP6mfQq+focQU4nETfWodWT4zqQJYvLn88swsWq9rQ3zmt/8Qf///XFTRSE5O5sZbb+CPm17h7sk38Vajmq9zo5wxSGhSBTjfd5Sp70xjUnQhb0l/hj2+kklLk/m8qpbWWgW60NNUa75nsv8rykfy0PhLGLZ+Q2dgEobIBKZ16tmVHCAtcYjkeDtfp4tZm7KFBsUq+rQ15AYLOZ2ygfmeo8wMiImID6HyZ5MZ6aFBcgupHi1Hzd2c1dv4qvhr7u0/jdVZQa98Ah/a+qnqMOKtOoRoWEZJuYkFN83mvvnzsFqt/8zOpx57iku/f4LyS+YzRiVGeclMTp3y89xLS7nvvvu48sorL0pK/2OP/pqb7EvQCPWc00m5zf0mKYkePNEchiNTmDUYotUdICXFyxnNCcwyM/2KGB4pFAzNoNYeZUCi4ajahBDRs3j0B5rD6ZQ5synhp2Q4JzKu9SbKg4exhQ0EdJs5ZN9Ju+k8/YGJxNtjhOXNiMQ+RqVqJsY3MyA38NO0+3motoSpwa/RxSbRJNdw0DYVXaSNgPunxFUjDMgGGJa66FYmYaKH70xwWjXIvMHHGaeXYdQ8TJHXjJwBjKFs6g0jDCsktAsLECEjIpKwM+U76tQ59CrVHE5OYk2zmgXxR9DV3kOr5gRz3I20GUoo8DkwhHS0S+3c5K+lvPNaThf8gQGFD6uzAl3QSiDh5Jx5I/3yBNe5XeT4Aoz39lE6XMyw5i7ervyY+f0aWmQVvFtUjywkQRGZQlgqY1ShYGv2WaqFRdRqDUxxHqU42I5LJeG88X0CEqjXx+nxiRkWSkDkRRTL5vbWBHssCZ4vOUeFKwNtZz8n+yK0Herj/nuv5bb3/jFrGP8zgUAAv9+P09HCeW2UVmkJ9oiLnFgvAUUj2bEQCVoIqV2IfNNQhseiCyUxtn0OJPSMqh3UqAX6JSrGhg4ijZaweFTL1KEJTPU0835SkF3JF9AkjnJzTzKmoIhZ4RpqRV+Su/ppAMRiMcPDwxe1wFAikWD1TTdyY+qt5JqzONa+hu8rUpjZ8zIOr4GgSE2l6XpmiIZIigfIiL/IttBq6gY0+GOL+Uh2ksJ9m7k5VkKPfC8XVDm8+t0FpEym1XwCrdNFbqSKNNd8XsnO4vskCXe0j/BDkg6tUEqmUM2o6R0SwlzcIivv6x9EEQ9hCO+lxFGJ1X8r06VGnhl3lPk9+ZidxVgDNjKTSqgMbmGKO4NrpANYwgYGZYuweqHJ/Apm8bcc1ZoIB0ARKmHyaAbrbXHK/VMpiG+iQxOhW3mMbrmWyX0PYQuWsXpEyyHLU/xQWMeZLef/07Mb/xoXvYDvfffdx/KdWzkYPs8M5XT0urd523gld3WcocATRxNM0Ja8hW79Sc5Fp/De4VQuCR7hlKaC24bP87MG+DzjDVYNfoMk4WNAnOA3xWHuahogIYRYZ/8tEeYw1a9kCBlSoYFDSSEyhO/ZaviQ8VER2xUaFtVOZDTrEFFJNzZvlPPCdOTRFMZ4thIPyiiMHSKNWoYbZGzs3sKxznrmzZ3N7Y8+y7Rp0/6ujb955jfkFObQ2d1NNCbi6NGj5OTksGfPnov6Ejh1+gRfvvUab/+wmaWtfqrFqfiUQ7QI43mhfIQlXRLOmKVEhJuJJLK5K7IfpagTuWDBJYsyY9BGq8ZNaqKV6X0yVreU8afcUaLyz5FFqmnXSzk0LoxNeogp7Ss5nVbDfvMYdN6l3FI9j6HUu5GIO0Dl5/bhAF+bsomJXVzmPU6XeSpCvA97ZAivJoTc7SQQy8YjLWD24A98kd6DiACIxAhEOSu/hkt7l1Di7kYZ7yGs1CESj5DQf0qHOpsZngq6/KMUBTtY2WtgV/4OLjAVLxKiYg+joix2pPSwX7yKIncVdToxHZZmDmg1iBLlZPvbyYu1kDDu50VbJ6c0eiqCdj5Ly6fKIKCKmCjzxygf0XJe52Jlp4krOjLYljbCLpsDkbiERv1BVjVnYw7JGBXUCKIoc1zdXNUrUOguJ247zqTePdRZeomIDXxpUSKNDzPfO0yKz0BuyIdD+i1Hok+giIX4xZgkHq89RvzEabYd+IHkmIXLrrqJ7VtXYbPZLtpz8vfYu3cvFdOm09TQQU1yCxP97ZgDCtoo54RxLJOc9RjCOvZrFiBTfsLypgq0nk/5JquF3Zn7mDqcQS5nsYa9bDWFMYVOM204RqF7kAKnjJ7sMG5pDl9l7OfVk2loJcfw6pwM+o79pQ+XXXYZGzZsYM2aNRfNrhde+gN9sW7GTQsyFOpBFRUhERw0CDIKRp1UW79jU2I84WAqAaGR1mgacjwkB3vpF1sZk9jNctc56pVnsQ3fwIHMIkKyHQRURxkM34tPqgZxGy2pG5FHL0cm+Gixf0y38iGW9a1Cp9yGID3FH2oLEfnn8ki5C580RH/yJkSavSCWkzN0HXP7jey0+dmQGeZXDUfpk8kZEPuZ5FIwddRPqW+As9Ihfl1+gTGhGAtHBEaiuRT0Xk1Q5EFQShElInhETZwTTcHKQUQhHd5IBW9ke7mmswddIosRaS4TZRsxWiei0+kump//GhddNEQiEY88/BjX33olH710iB8N2FjVGWVY+jjH8i8jXnA5ReEEY70SpCNaTpl6GOMNc0+1irAQwaXw4JQpeTv9SopCm+gXT0AXVrM7aYinijXoYmYExOSF3MzwBXENLiegOEKxaAQ8uUgDBegChbgFCYmRGZw2JTiXehRR+Gn0o/dwXFPG9Y5+Nh4/x9nzXlYsVHPvml/y/rhx/67jhm9YfcPFdt0/44svvqCiogJzbhHJcvh1/im8Uh21umnc29JDiUNLTHkap2QSc3qLOZikpkpbhDn4ID7Je3xZWkO1MAOxaANZLh35rolszv8aXfgS3ssyMdr1AEKsj5jIS0gEGwoOcE2XkhVtPk6qbkOqsnBGYyGk6qdGmMc31grExJnv3oWdJg5rzuNU9PBDbD6qsIQVrj1Y/VfRJz9FwLiRmHgZ6kQvAVE/g2IfN/U1kOyayPaUKmp1cR7s1dMYvI3NObuZED3G1MgPlI1chUemRheRIIpqSPFN5IKlFbcUdEEBnzROmzyNWpWC1FAco6QJdUxCIhFkWFJEj6KIQYmeCyqQJEQs6K4g6MxkQOalR6nGLenhmHomMYmfZ8d2IYtqWNKtpcBj4Iz9MC5dH+szdagjxUiQ8tnRAfzSbBIyL6PSEYTOczS2pjKoThCVdOIx25Al3LRH21D2reb7+CyarV8SF39JuLmXkK+HJwUvi5asYOErixg7duw//IiH/5V169dzvvxyFh14g2zNLMaEZ6OV/4E+FfRrneSPeOliAif0MiSxiawQw0slw3Qrs1jZPIP0eDVei4/UMEgGxpDvj9EiGst7+WrSQl76VXHuGHyF73SXcG/5FCoDYeYmdhELpv2lD5WVlaxfv/7i2bTuKzbs+JDnF5uQ8T7n9NUkJ+J4o8voNqo5a/iaVoWJX9QU81xZNcaIFZ35ID9oJyKKaRjnOYZLJmKDpYheYSbTwhIe71yLWOxgj81GTiSEMajjYNJYSGRyTX81WqEXs7SVXwz8EXukH2nCQRgpEXJQxbK5zP0UUUUPa5NLeaZGjC1o5+2sERbHn2c0NIkqSRpHsr8m2dtJV2I6VbJynhnTxDiXhZk9McQJF9XKJF60XkP5yHzSExJ0gRQ+LziJKTAWQ0TNXOcgNpmLwcRY9skmYY4eod14iBZZH/n+CaTGPuXgsIPk5OSL5uu/xkUXDYCZM2ey5vYHWLdxN/rSAlJCPdSIE9hdefhVDcgjMdKiYoqGiil3ymk0H6ZP24osqsUhNpLjOo8mLGVs312cTuqhOXsHBR749YWxGKS7OGn7jrk9Co7KbuKNwjCXDwQZFRt4P2MmhngbtzdoeavyaRQRO1fWPUmJaxY9lkMciqwn8U4Lnw8MsujSZbz/7i/+zWUy/3fzwQcfsGHDBgCmWrMpOpnOu9nHCAsu3s0dwCuRYupbSUFUzD6rkZlDXqz6b9hgj1PhlFAxkEunOcGwLA/zyBUkB1LpTlmH3Rvmmn4nB9JrkIrPc29tGcaBfO4bd4AZAwVkEEUf8uCVi8j1++iVhVGG0siRhfCIZEzqLiMjlILa9A42R4zXTSHalVJOlXhYZr+Ha111tDiSMKk2kz96LfrATeiUNxCXDLLZ8gNdSjmmaBBTOMG5+Hh+MAl8Hy9kfvBDZgeO82aWkZfy4iiCv+I6R4JpA+lc0yjntMXHS+UKsvwOCt1aHq4z8euSh4gaVWSGG5nl9PFhmpgOcT7pzkIeag3Qqs+kUvoShaF8suNeCuJKYuIUlIIee7iHmcHfINcF2WEXKBycTEnLQ9RlrWWyt4r1g062jKg42HecoYSU7kAMi1XO6huWkv5PU49/bTxawIMsBew32v/miDWRSDAwMMALf3yF8+fPIg468SOQQEacOJpoBL9YRlAsJi4EkcUS5FnTkSaUJIQQCp2e625YhUQiQRAEJkyY8DfFaHBwgJIkDbKWxfQY9ZyRl7MqYiKIl0i8ALlwBhunUMSTUMViWNVfMqj1ERFlsiu9h2i8nKg4k1J/PVNHgmQ5JXxYFCQi0iKX9jI3eBZbYAZ2aSFBZTcG6RGGRXEOSuZwzT/1obKykltuuYXrrruOsWPH/qfi4siRIzzz+guI7s8i3B4jakghIO5ij6SME0o9470vMSbWjn50EeuyHcwcWsglgffxCgLawWw2pyk4ryjkgshOWDLC/QPHeSOniDKnmp82VtAqySRTGOBHHTJ+qeyjTqPAG61k4kgWW3NKmeqU4Y1HOG08hzemJyf/KerFb7Cg6SWMoTTenvQCW3Ic2NwKuuVG1M5cupNTCIhF2AIxyqP7qHSLKPTMZs6QjF2ph1HK9vCQw8v4tiv5wV7PPqsPb7yIiUOZXNJnYLzfjDZq45R2ATmdy6lNVWDmGL/sXcdQcAlPd6s4MiFO6vQ7OPbz93jqmX9cYh/8g0QD4JGHH2XXioP8kFzHrwO/QK08wpRgNt2GED5NC0GRjA51DCGu5SN7NnPiHyIlyPi2sRzIP48umETFwCTUiTj5AS9lA8toU4ZZn5fMvMgpfjDPZFnNPFrUJ5DqNuGLB7l7+DtaFWqOF+7HG52EKJRDrneYbk07z+w5SSiq4OWnf8v06dP/UWZfFJ599lkyMzPR6/VEYnH2ZYxQUabhDylT2LP+Rs4mxBxW53A66QKloQCFiUbme+PUSOycT+mjXw4BcvhJ53pq1bfTKo+S6ujDkbSII0lgiqfQL5Yw3TtMky5If+owE/xaduQ0Io1b8QY60fqTOJQ0jjR3FqNGDXOcTWhVW5jst2MMZmIUa4jI+/lTtQ93tJSXy6qQSHsZlSYY9N9Mr1DEzEATEWGQZm0QTSCbO7o9nDG3cTblAgPyDD7KbkIWUyMIPlzKdranq/lxs5mzWg2SgIBW9yEJiZpq6118ldWESyLHL7ZjCR2mR5XPgFJNsuJ3BJUekgNixoQupWR4DDd2nUIXNDIiV/C7PA0PtR9krTUTpWc6v+/tYIttLCpRNTntRvYa1LQlzjF47Ax9g3pOyBx4vV1Mm55Fd4Waa+94hJKSEsRi8d9MUBsYGPhLPWy/309TUxMOh4MtW7YAf16wrb5QRSQSZtf+Q7ijCWJqI+KyuVx2pYAxOJd9pgqGhUKkhFlX9TuO65L5LD3A4pYfYRYaOaE+wHm9kzX1N7HF38TB535Gh1JHlVyNfMCBKCrl5T++8C92YYXDYUyRel4tDNEnKuKS0dN0BVbRIo5QGusiPTDKCXU+C/zHSaIT7f/H3l/GSVbe+/73Z61yt652d5me6XF3RmGYQQcPTgJBAgECJGSHQEICBAvBggV3GXd37+me6Wl3K3evdT/IOfv8s3NOsvc5O2Hv+8X7YVU/WKuv61ffqrWudf1GrmGKVsv27EHCIujD+eTGk0yJHyKVuoivCg+RUCWIKYwUxs+ik8I0Km6gKBpF0P8KvbCX1vAVtBkFerpOUFQyHlEUufLKK4lEIv9PdXH69Glu/9GPuPknDzHg2kdl3Ef+wudJfXonl7pzOGTy8URNE6Z4HQ81FTOgkRG2b6IweYJWjY2v8luwRwJ4hOVIiUlc2H+Wxe01vD3/EMM6DyGNn4m+arblnKHTOEiN4mtyEhnE5TfRlKVGSKyiXRtDK+5noWMnZW4NX9SI9JtGWF/2OJWui9CmM1Bo1tGsGcYlC5PXXcA9rSl+U+flqHo8gicfu6abscTwmrZglDuZ6KlFp3Dj1rjxpvN48FgFvxlzmu8NDWMZyuarPB8qQU+J20yF18CfSk9SJDVjDOWTlAbxafL5g+YrLvJPo6am5u92UP1/9Q8LDUEQWPvxF6xcuYJO3TkW2ucyoqrid5nHWZz6EyFqeWHcRkoS3cxy1lHnux5P1tt02ny0SDdz0YiWWFqGX3WGywNbUInXEZcPI5cS2DxTGJSu5LVqGQWJiczs20GjZiI22VoyIjoOMgmnspKFoxbaek7xdP833P+Thzj//PP/4Tce/zMcOnSIF6+6g+T+Zh5JyNg7HKXT2sdj1gJUQoo5MQGvOsyAEEZMZDOod3PEGibTs4qHAh0ImpOMJk18XJTicsdDzPdNQJS+z6jay7iAjst7srDGJRbQi9K3ELp+glu3nzUl69E5L+SPsx4glcrgth41J40y+nUjOIVuwvIEj4+x8YvdK8mKtSOomkgT4uvyA7Toypnd9RN0wotc1J/L6nSQ45m1dFqKGN+6luLkh5zVW/Gp1gIiidj1zB/WktJuZXr4DD1qA0X+bAxpkamJg3yTNci4yB4cohqHcSU/PFfLS5XtlKTGkxWtw5zezGWBt+mW/IyKOWSPNvCLxtvpMzgxJkbwqGK8VbydwqiCPO9k7u+7ha9sa3ip9wsiHevZ5TrFS2kFRRVV5AzN4KofXIlOp+NG2/coL/9f+99s2bKFTz75mDNnO0jJUugUKtJpiWQshSTEGOoewOfx4DfnkCGLkenNokprIC4rIqw+Q7f1CFG5F4u1iJjKyIwLMzFmCRAYx+K+Appw02fZik63ASJX4hXKuGPsdFZ3+XmhKcLyySkKg3Vc15XLuqoP8cR2cXU4jLn6Th4qVqKIl5Ep62HJ4f3cdt1NvP7eW//amOfV114mv6aAZmU9KvEIY+J7uLJzPEdsVZR5T/BO5QE6tefjTs9nke8slaFjvFKmoFsjoUsoictCzAh9xMLYOqzJGJmd0/jlgpc5z1WFS+6mXb4El9JGwBrDyhGmuO/Gp1jJpZ0NVBmaaVS0UVTyn9MkaPPmzdx6991Y732YSeMmEf3GybosI81Hfsu9I1ejTTUxMR2mwV/HEWMOI2qYN2zgylobb6efYY67BUssyKhGIi19zVi/B2NSRUy0kEBJq0bk7jE2LvZswKlYxgt1u8kQJYJCgqHcrbSGKqkKHWVNZj+G9AG2maZQa4yzuPc8jur2UxJ3EtBvx5gqZ4PsGi70r2du4lMas608VLKQgniUZb7THMmIsjX1MJ1lg/ikUtKSiBgrJaU8iz9jI3J1FW8U1dChT6KRIoxqE7RkPEdeqom80DIeHW/npNVH2cAtOBLFdFR8wvM1HzEoM7L92BEmVVf/p/y//5Z/WGgAaLVavv56DReuWEWTy8W0Mcs4ag9xVDwPdVKOPWxhxchRTAE5U/pXc1B+ip7Mw1SnD1MTK+CJmcdJarrQCWnyZW/SMLKS2ef6ebxoNsWhVpJUsdBxgHR8Nh8XjiE7fh5OeTZzfHqm6DpY3/0sVlmCtRvW/cNvDv1nOX36NB1RDxlHu0idGyEzr4M5opny4Faei03l9mNXkZJAnuVDUg5icv+A9dU7EHIKedNk4Seu1zHJWvkwu412VR1/ylUSyR2isugHbDfDdYPjeGHGKVKih2fTen7a8UPCWgXdais7LbkY8lzUDl5MXKEmJ/kJ3nAlNn02vbFKjLRzUjGRl6a9wJhQEDENcXmMU/J7cCv7ENIWChIB3i6Ocs7qZKV7DVvsBTh0p0iISXZpVxGTLeH+fi3ZvgXEpGHyU0expt0UOn5Kr+0romqBYVsz8x0liDqRLfJ7GK+uQmNK4FA7USV7MccN7LCbqIrEqI6k+CQnRGbIhjoh8mVBJ52RZXjkKTI+f5Pm0V0s9jnJsm0hLaS47LrVyOVyvj/7EbKysnA4HAwMDBAMBnnrrbcIxWIM9PYzHAqjEyNEgyPMnb6UasMd9KtPoU8PUR47R7VrCTExjc0W5+DMSl4ul3NPo5LaUJxR6weYvJehSDvw215FnlSRlh3lydIF1PjO8pp6IdlCApv9IHvscfIiMqYP53NW58KrtNKnNiKpBgmLGsrCYUqDEcaOzOLSVh1e21N0a8NoVItYQR1vC4dwEqBjyk6mZ2Vz/gXn09fbh0wm4933XuP8H5QQiioZVWajSneCmCSLtzi/7ceMGGsZUMoZ0UQJS8V4QgVsLR1AEkf4/rkCPi+ALXY7xYPZCLFastSbmTYylbU2O90aNUhxZNIwDaNOSoS9WKNjGRay0OnvIVdTzsnBK1nxP+Z1YWEhhw4dYvr06f+hehgdHeWpZ37Dp599xOfb9hOQyfn5/h24i/u4aFDOIx1BTud9xFmVi8+Ni4glVnBpbxq7shVP4R+Y7qtjn0Hi8q5KJOEcp21OSkMWcsU/YJUtwpDIRZ/0EVZ68MgLOWjIJRm30596kBjPo5SdxCvqWRRuwcQxvlZegkvIQiVJpCUj1bKtTApHcUU+5phlMwNyC+WJHsYGUgSEWt7KasAUF6kOB8hPxFgjNDCiSHHGGGFp30oKojF+XWEiR7AwJ7KF03oZeu3XGBSD3DlVzgDLMIudBIUk07xxVg/1csf4IEPm98mVLaO6u4DmvJ9y36w49/zLTTy9fv1/+mfSv/UPDQ34c3CsWfs1H37wIfc/fzOa0xaiY/Pw1FiQrAt4NU9NRPMBynGNFAcnY4lPJzuo4OOcCszKx7Ane+kXDIyoT3LArGG36UbyYgEe7jpLQPkxZ7MHyK/9E6muOBq5HL9Kotu9nq2vPsYPfvB97nz+zv8Szdj/vR565EHGnGfjUL0V1VAuptRWKuMOvjKV0JSwslhnQJ7WENKN4aQQYykydJEC2o0tTA2CQybDFrJjVtspU+4GuUQSBU7BwDxnNWL4AZaNPk9I6cPmvBOfxctuS5Sgqg1VIpNebQYV8TCZdPNwwQICsVvITK4li2F+3DTMpRNS7NQuZWLoc6a0XciHOVU0lSSY17uYXvUOvLLvsTU3jE+pxK/OZEQ9gDMp4lTKyUh20KcMcUi2kh+PQLfGSJqpkB5AG8nC4qvidN4xSkcuZlLb7Tw2YSmjZDPWvR6d+isyxAkcN0ZY0lNIsz3Ox4YnuNCV5s69MtaOfZLfZw7Q/cEW/nimj2QijtWgocBux2o0EUyn0Sbhrdefx6O38qfXPmZQI6ERwtSYykmTz5SiDmRFBq7Iv4gD2SZ2ZkJZLMSY9AdkOVrYlBfhFtcexo0UYTGVk5RF0Wp2Y1CfYKz3YkrDZuJSCZvz3axIvUlPci6lnjkYkmneL5rAbLcJyfQ2YxNG8jx1xEUTVX6BBp+S7ICZeaGtvGxPkpn0UBXKpkt2EWesT9NnlFHjLuRQ1jALEzH28wecsp3URH/LbHT442UMqSczWGQjf6GVxx9/nB/84Ad4UgL1bTdxtdPGWw1PIgoSjqxz6D3PsaHMR2G8G49sLIXRINVBLZ3WYcToFCRFG07dEFnRbFwqOVJyEo6MLbRrF+NWSVzm2csR7yr2ZbmZF2jhgbM5dKjPozR6lDU173DSOJMe+R3EcP3rvF6wYAGPPvrov6sGkskkH330ES+/+hpaUYe2fIQ7Xr6cO4+0c2vBACu9u3knYxYVQQ1fZQ3TafEyPXWcXNlm5MJeNPyUz/Nc3OTsoiohZ5sqh2fqPbRqx3Kht42zynLSOjfNmvUUOCZR5a1iDPvQxPtYb67FLInEycCVnopDf4TzRkcpDpooEU5gi6UIirNZLD3COt1dHBfzGe+ykjXqYEDrpTx+lK1mLSfFpYgJO6fMfSzqL8WqSDGskjEutoVeHZyxeXHIr6QqYmd6SE7U/BuUci9lcZGoZpDxrrlUp44hixyjX5nBoEZLQKFgh7kXldyP2jaJsa0nyQ8r2G+vpmPXdqZMmUJ29t/uYfSf4R8eGvDnbUZuvOlGbrjxBrxeL19+8SVr122gz/cgsbAflGFCwhA+mpHZqjClE8Ba/MoEynQWT/hvZ3KRml25sNUKTpWaHTkqLmxbTiKW5MUMN1/FFRzNcPLm2ucY8vv55JOP/1P7K/8zfP7554iKThZl6anc90fWie9xPOt+Zrr8hDReLvVtxqT9iEOGciZUPMSngy721G/jhv5GPsuoYqIgogzM4df5Ete01rPR+CNUCT09ygXUCgexhBcTVUjUeaz4lGqSCSVO3f241C+zKvg5ytRPOF+tp7ylh7Aply+zuhnjHuVi6X0kSSTke5mLOhL0ZBylL3QpI/m9bM7vIamSkSUZOG7r5XTGKX55eiwvFNcg175PWSKTOS4zvy4pojowQloWJ6j2cDwjRqehD32sGHNSS0/uJyTFYcLaLkShnFMZDu7u8GMKjOPn00a43dvGkkAYRWIVdZFWPjWqucr9MdObL+GuA79m3YdbCMUTlFbMYMF1D7Ayb4g3s88nlC7kgS4jqqQOjfghku0VDmgqKe2/m7aMnRgUJyG2kKP6cdhCK5HLX6Mw7OexLBsqKYk93cmY1oeIixEKMxuR/IvIHJlOa8WDnNGpWNI5mwLhNNdGT9ObcQ0tWhdN6hzStlICymomRg5SJX1IVeRqGtVuesUVXDXQS/lwObLkIpxhBy2yKqy+NDohl1BWjCmhXoK2k3TL2zCmQ1QnEvxh7A5s4lZ2EWbi0OtMa7+IwcwFnDOoKXHOxm54kxJNB+0zJ5EeTPPxJ58g6jJ5vvoI012nyZI5iCrCjMgXUZlUoUmn8ck6OacfIiSa+SS3m5LkCIK8E7XYTpvOwPUtFiS5nCmuTCLKMRzSV+EvepGy6CjD8gEEQYtfZuCRWoGkoOSm/gHO2frJd7sYEdupCZ8gnboOUSaSlZVFT0/P35z/0WiURx/5F9798ANypzYQuSROuXU8K4c/QjBF0Af3M9z2NoujPtSuFBGtDb82Rn/qWsJuJcacz4gqJPbYX6dLBzaq6GIGkzxBzu+azVeVh6iLteOML2TVmadoNwyyvWQDhzIq+e2pZ0jKgsSq7qV+dJCzxmOcUM6m0jMdnXiGvdZcynqnkpCyEZCji8vISyVoVo7n3rPTeam6k/1mFZODSdQSPFOZ5CeNen54poSXK2wUxabwkOM01mAdA1E1+7Pgig4Rg7qHZnMWmWEzuQkH4z1q1L4b2Ve6kX55GTpVLcPqkyhjdYx11nAYPfle+JE0hfezdxGRLNQXtPD7p9/no48++qd8Tv1TQuN/EgQBi8XCjTfdyI033fhX74dCIfr7+//itUgkwkfvfcyzx04Qbk/CnhQjQRef14Zpj01kom4qHd9s4YKhTqZNm8Z99933n9om85/p008/Zfn3foze8TInbAXM6exFKSp5tbyUue4ubuux0pmpwK/q5a0+J5cNGNBq3mG/MR9FOoExAX8oqqE80kFS7mdG6/1sz+8mrnGwytmHOwatWhURZS/mpMR7pS+hkmZy0vw0KdktjPWPxZ7XQ9r8Elpu4y3v/Zwsew93b5Iz8kkUpwq5qsdHm+aPrMlV4pNVEZbVsGxYywLHKMsG6nmhOk6z/TBPdA7Tom2gSZ/J7/LrmewQWOxuo+6MhU7d+Qxbg6zJa0bhGaUjUsaR/G+wJNRUOWcwFDuf00XNXDyYQB71MHZkHtt1Ii7jBrrE4/w4XMXptz5iV/MxQoFXyc4s5L4bGmitn0ml/1Iu7MnmJ8WvoYwoKI66iCm1iPoXGTB/QamniOm+MgY027ixN0ibpo5bxmUhSAEUZDLDW0q5L5uxXi1e7SAnVOPoHXOIrFgh1vg8TmXspEceocdwBXtyG9ktL2BauojKoUX0aMbyfn4jQjoftIWYJTnHtZmoI2UkBC/zupaiS6YIGppYPbma+c4uiqI38X6WmlqjF9H4MK2q63kqq5aH+vbSpK5GJu1Hk9STJTuHXFIwPQhTYico63uKoMPGJ3NP0pHbxy2eJPGUm6wBGQ4B9h8/ydSJV5EKBpGnQ9hDKlKKKKeMYd6yb2FSeA+Xe/ayUbaMMukES7pu5/2yXNIyiQxxI+eS8EvfImSjMlK9zcTkg7gtUYpHy1kzfQ7XR01cFPqarOHH2JB1gnzxY9ZVu7jqxM041XGs2Q9S5byQ1rdfoPqmexBF8W/2COns7OSSy1dzY+6d/PqWFzlT/QF98mpM0SQGaSvFsfP5XuYJIl1BNKWz2RIyQiqPblUBZeGzPF/RyqWjpSRMHeSku6j0KZg9OImCzC/pNLnIwMgVo43o5C68OhvV7gpkqVr2ZxXzw571TPBt50BmGpnopS3rHCeki3HLzAhSBR36A8iTx7i59h600hBThecIqeOEZOdQprxsLdCRG5NBsoFj2gzGpd9kwbmxzPQ6OJt5BH16Cg65REwGltgwt3ZOpDxQgk/dTb36MSwpiKajCEBM0pATyWBq2808PDaOUcxAg56jNjuZld1cefoalJKTJfaNJHKquKswm1/eeTs7d+78p60E/aeGxt+j0+moqqr6q9f/7TI9r9fLwYMHaWtt5YkPPmBoaIiurq7/Fje5/0/27duHTqfj1hU3sWFjM+O2jccsnMJridKgu5LLMvUoMqbyhVDGD/cX8kLdODosEh7hZjZlnkWQzOyxBdGkvLSrynnatx9DMklIWUiPFnq4kMz4FJQKF68XFPG9tixWymr5o+FFJgWSJMQe5ixNkltXy1HxZUo3ZqMccdG44B0UOmgRihm0H+SU/Rxbshag0OyiMH6a2piEUz6ZEcMevi49gMU/mTOqK+jMV/L9gZ30qEzExRAulZ6erP1058RpaF1Gk/0IRSElS/s7+SjLTI5/KhH9PprtnUz3yvnVaRW9mlp8ejMz+xy8NzrI5yc7GRneg0auoGhcLUuXLKSo7iYud3Rxzt7Efl0DfYYBhozHiAkWrh0OMMsRIKLbSES3Bn9KTo9iIiftXnYaI/T2S5zVBwEBURLQpc20WAs4kH0KQ3QuZ4SFqMTNDKgCVAcquCT4Ux7OepSQPpPCSAQx5eCETaRkpJLVvfNpLfaRFmTk8A0l4Zk0myIc02rYyzzyxXeZ5mkkp//7vFZlRibF2Zyl5HL/L/jiXC8t6jHsV4XoVp7CkIbN6ts4YFKTlPKIyLczzm/Ap+mlMgxKKU5n4W9wJCcgS2uo84oog9PxUcUu1zpq7Ss4fvIYJ2ZNw9kCyriFpKYBrXInG0rHI4k9LInsYpepHrc4BgudjHUo2BL+I627R9nu9WMwWckvHqYs7zyypuhpMTpxRXo505wDv1zDttJVTFq2kq8z/SAPkp3y4AvN4enyIKczhvjgWDmWRDufxKP8z1uz6XSaaDT6V+ExMDDABZdfysQbVGw0S1yc+iVjPTMoC13DByXbGSw5zoV7dYyNRzhaKPJlwk4ynk2vPs70yBbOdwzyglbJqMyGlg6K/FY+zLFhd5gYPzoJdbQfp8pLKlZKdd9KVqur8Wh7OZxlo1ljpPdUgj/u/RX6iIGoYMSv7qXH/EesZRqCYwuYqq1ju3E8FV4zKusbqKU4iUQhXrmV8ngOn+RO4uetJ/H0h/Co4hzOnMjjXXPpsJ3mQN4ZHnWdZq36Kj5VP0yrNcqvnUpmOYPcMuMsu6PTMcXlzEztRp1O05/fjCdVx9TROq7sMJJQdmI3vIdTvZxNtjE0WEbYldlBQhYiPuril798mLdfffWf+ujAf6nQ+Pcym80sXbqUpUuXcuddd33bh/Of4pF7HuKjV95HFASCFbfyiOc0MwegyxxgSqmOhrH1PHfczL4zo8w2O6iPDOOPxvmqtAVtMklUlJOUu8hOb0KjOMuwbh6BhJrWkt+RE7+QWGAhfZo4g+phbIp20hpwh9+jrPBmLt79BYNmF4V1JgCGFWNpqopx1PgEAXkBy4fdfObt46u+D2h0WWnrMSNHQ186gn3sOdS2s6yVT8KritNnNOGUJXnQ+Rkei4stxtsxRyKMk14iqnZw4blCtpmH2ZEVQkya0cctrB5ppyqoYl1pHj7tCIeDxzkz2ki/SoWsq48N5w4iJCPMXTCPGUseIF1QDzIzq/qyaIqfRZkcpWx4No94xxFVanhkXD/qlJGzumyUiSwM6SSn9GP42lbAslE7S/rmcX/gS3bnKKkO7aYo7cWXegxTIkZOejsy4Tj5w0YKE43oVFvZbhhPReJ3OBQq0qkMBJmCgvQwPz5cy468YcbHj9GZo8Nh9WGNZ1LvnsNNnQuRDH/g43xwixUkjeDVDfJpjZe4PEiRr4w+g5shRQYhRQ+iuoNxUYkjqnJ6FPnYxTDj3CIjlgGqg1GubJ7Imtx6DmScYHryLB+UWrm9vZV3ToV4aMwJzqUK6VKsZMRxhPMnl5JZO4FtecN4zHv4ynANP2majylexH2OtwgkqzlsXkUkmo01EqblaBNzN1xBQ1YdV86fTjJvKUujr9CtbeKs+SBaCXA/wL2jV9JUM8jWBUa069U8/fKfyJhQS96FY/GlSthoN6NIqtDGlBzT6ZEZhzlr2f+vc3zJkiV88803XH755X8x9++66y6W/eQu9gsi04MHsLlWUOS4GGWqlG32MKO6YQqEbaSTY4m4F7Ck5zj5aisfFdqpia1DE56CU7RyV08u5ZGxOOVKvKHJ3Hrawq7CQwxkbOKz7EzGemTMdHWQlibRdvYMaza/wtn0EGPKS1l+k4EZngWUjczkkXodiYCVacee4ei7h3nR1YduUYLkfCcz3OeRlRhmZv84Do13sKxvESXR45w0WriyN44UG4tQr+aZ6jRb87KZmtKRDNRzZW8Br1QN4FEZeKnhCF2yOqCNcaNVVARKea46k8qYlwfaHcgSEW6fdo7b2gTuqSpEn76apHw3WVEn+ypjWMJLWXR2gPVf/Z7nfvOb//Digv9X/y1D4//fnD59Ggt2PjnxMedv2sCJovNoV2Xxa+/HeIvrKQu3k+rNI+SOIMky+KA0yOL0Teilibx+ZDpqYZThrKfwSLm0ahX0ms3cWa9hvqOGULqRuCgn3/wLNuknsFBjYiS+h3VVo0zzDLHR7+ZcyQwumjkVgLa2Npoav6C9vYORoQ58wTBvaQ3MaTDSsOyn/H/7sSUSCT7/5jMGvC4GpZPI0wai4kHURPh9SiAhGCH1MzoCo7jyDGQmUpyKDuEXX0KuDqKUUvwy9Oc+EzIpRfJMmPBQgMrqA7jkKZpPnyEeTlJz0+OMqxAZ0Ab4UJNCTDeiTp/Dp7uLvKiMdtcikrIIAZ1IXGaDdD4hMcauzC62W2ZRF+vge/2luOV+1tl7kKW7KIpkEJJmcFZxIfFkGRpJTn1gF3r9aTwygZqgF4vyBPG4m6h0iljkOl6xTeDHHWE2Z7exI+ccMwaWMTa0n035SmZqvmHh8EwOWhNsydKzqi8LeXIltSN24oKZPm8tvdZGZOpyjIkhBlWZ6BODmGJmBP/tlLktfFncy4ThHCwGgYP2QRoCIv2qDE6lS+mq7+CQKZ+UtICNuqXIknXssRzj+sFjVIoDxC1uzoiXcujTzVhFI/6GJWzL8nOJ34PbZOOT4ibmukoolIXRy4/zScYiYkMjJH/xJNLEKKsfrMMkzUUWXsw0Rz1nLEE+tQ6ybLiCCR45fyocZX9+EznpPfz8XDavzhvLynmr2HboFUYeep7pS5azf1kMr1wFgozPc8rJiWcx0b+L0+c+p77qEux2O6lU6i/mfiqVIh6Pc9t5Kzm9awet3MB8ZyZZbjNHCz9ikcPGUUU7umSK08oZFAQzaDbWckrTjp9yGqO/oiXzOOpkkskuGUl5Fn7b6xyzLObd0hD78mWMjeUxxS+R44WbB4McP7qaguxatDffxO1Zm6iN+KgcWkmf2kFv1Rr8hvFoLflc4bucq/Jmcu+4Xka2/IETj76Nbf5U7tQvR5+QU0AzbYVbiMed7Fdcykb7LK7tECn0VvJ25W4QlMwbqKRiZCqWQDmpyDQuD3/IsLKW4xaRi4ayOW3I5+I+JRc7jnNcW0OBN5dTJgM/PzIJt/YMhZEAZrGVY+oQBYpGCmW76NcNs/ndd/nw3Xep/icssf23vguN/wLuffhneK+4kT7pBCGNlxUjJzDpsvlt9Th8sQy+GPqAa48IyBVJLk1UUu25iCH7GF4q0qAqaOPWnllMkN5ATRRj1IQrvJKQdoA9+kJU4YdZGfyKdNrKJFc+emEvPius1YyjteAWrssrJO3z8Nabb9La2kprayu//vWvuf7676FUKrFarX/z2K+99tq/e36BQIBQKPQ3/yaVSrFp40Y++tMHRFs86OqzuWPVXRiVOj4rVLHE9TFvK29CFtczN/QZ3nQdEbmcXm0Jg1VpFnRKDGfex1751YiSDFU6hjkZQ8lGjlm8GFMKfFovhnQdG616ZoX2YJeOcVj2DJZUEE1KxRTPYV7LqWX+iI5ejZWtulmszYkyxTmRi/0xZngOUOVXM8Pv5UDsFD2W8ZxRV7JfU0s0lKK1ykRa4UQUYuwq/AV+XQeHFZfiUspZ5v+SqMFHXlRLt3wapONEpDrCqT7CMgGnwsjC7lt4s/woQrofUfBjiY+nLP4JmQk3alEiKxVmptdHvz5FPN1IvnYHjgw3ruRciiJeGg59zsx7f8TWXTuYNX8Clwa/oEObYkrkG77XfCthTYxNxttZY5mGr+lL/B+/zgtXGwjllvGueQE+0cSy1D62ZJ1jSX8tK5JRPKZPedFWSabiMMP6MFuEWbTIx3LamI2MZiyLruBHGToe+vJNCssXE6kci1wS6VVq6dUGUYbHYW/dTn3VJf/bcX/jjTdYsWIFBTozFa5S3HSys9DB58WZ/P5MAtIOpjnnoqKVRd5MOoxhnGYvetXbmKjnhG0BJSEzauEgz9W/S0MyQUFYzfXeP/Jm8Sr8ihqmtz5Basf7PNf6NnVzzueq217Cri7liHk7YtqA2juFMd3n88eZe8g0vIA+ZSAuBfmX+gTIP2JMcAH6VUEylt1N73tfMbf3ZYpu+wXzUu1kSS6ichm2RJROQYNDpScpgCqVRVpIEEyVceV0Nw0uN0nRRPHozdSm5Fzb9xyexPfYVj/Ac3VnWe5V0uAO401eTaMxh4bBDgSZgZea9/BRkYpRpZ7SpJ+0cRFrX/iU+++//1sJDPguNL51brcbr6uJubYNHFMtos43FW1Ch1m1g5j7QoYtZ9HG4iTk7cxIb6ZJkWJUNRu5fzUXJOLsserZZYljC2spCEdJUUhe6HqeGD3IWc0QA5oUlcPzmeaZyJHzjVR6snEbz+I7FqLzoxf5o0pFdnY2l156KbNmzfqHLE82GAwYDIb/7XuhUIgXX3mFtZ99ypgcLXMuCpAhu4Ac1wQWDeWwLWeYQY2MDbrrmOOoRC0cZLwvl3hKz9M1X1EQnUynTmD7pCSrRybx2EAbe2w6nqnqpSQdIzMep8ynYFnkKA4inFFZMSYkPrdb2GO2oUq9h10aZUIoyQNjK8mL2akYziGFnKg1QJJBdlkKsEa7UZg/4h1pKkUBC0sGbyauqmZrSS+C5OKI2YotkSadtCJT+NmfewSRGP6km5QshFNmwhleTY9eQh7VgZhi0WCSezurURBnV5aZTfZjHMo4zhS3Dm0qhCwlo0MxmUExzY29Es6kjEZ1hPubrewqOMyQzMqoeh5tYhWPtbTwdPgk5dOXs2v/KXLTd7CVHPq0HYwLtlIQ1NNtWsec5Bo+Gs1j+KPPufeOq9GldLxlMiClU9iTcVyKEAftDjzKLp5odTESi3NR/3WsLy+gK2s/VYKPcckdFPep8Sl7uGawnWMmK7KHb+HY737HjIuV9IytZmZgCwcMY+hVZvCxX8by/08nz/9JkiQ2btzI/b94hqs/DCHKT3Ohby8XDkp8bV6GPz0TYyxKaSLEiLKMbbnn+EPtKAudA9zTauAT20Q+zlfSrynhua4/cc4eRRW8mN5UOc/lZzHb24QtGWX77jXohRYev+cC2rT1uGhko30bl/hO08pL7DYGqbSvo1udiS6Vw/TEQaoG5zMsr8ehDXNL19f8obyQz+w6Jq/8MfscSY68/CPSty7hCtUFXNSio1tcwEMTPbxS7UBCwa9OVGKKi5zL9KJNJTjP08h5jqO8nrMYu3I9kq+GUm8B2uQJJrKeT7PmY/FP49LYCCn1Ho7lJaj3e4hIxXjE2TgSefQO7OC5x+/iN7/5zV9d4vtn+i40vmVXX3UF08YI5KYC5AxnsMEeYZLbwJL+qzCEcliTa+Pd2ps5IFmpdMxkR4aMzpyHMIQXc747TlA+ibh0hk5NLg0DheQnQbQ9iF50YHf8hN6pGiJZ3/B5j0jLXi+P7t2L0WhkRkMD97zxxt/9JfGP0tfXx0M/f4DWzj78k2fzypLpjKorOaGNcMigRZf1MY35EjeePY8rw2+jUEdxpc/jstOLeXnq+3i0gzilW0G2lekBHzmu6VzRuRi3oZE0AdQpA2fl8+mXTMwNf4gpHcUcEjii7+Yb4xQk0cPFAwkm+IK8WR5nWLQTFmGcawytue+xSV9FYVjPI6cm8JsxB2nJOcU0x3kcyzLQolbikYXYkLeGAu8c7FEvtuQAw5ow6XQeJQGJTCYyrDBQEjfRZQxg9TawfDSfA7nNnDR1kxkq4PLeGPK4FY/lM94oHkuvTk1uVMv8QTtFAR0yxWbUqWwy4gIjlib8Og2tsrl06jtIpFzs1FdhEmfhk4c4ZRZxt3jIyclBJkTxKQ8RD8/knLScs7Y/0LjkPhKKAWoGMnA/cxdj71/KmhwtOd3Xo49voyrq5kdd3bxcpEUXL2FEnWRA4yQoqnlr4l4azSKLoqPkxGOUC1HatIP8KVeFMXQj3YYAgnGEgvsWcPKxj7j+h5PpM96AIPYiJVPIJT/3bj/M1H8zB06cOEGWKZuszzZxvTyL/TmjNCSP0pKRgTNdzL7MQsY6Bmgu/oAT4nwGjN3c19NGRDJxwirn6+wyckICdamv6FeYIO0hndYjEGdZ5HW+yZpC9eaviMVOcttV5TgFD9XuWwgpndzQ0c02fR9+8xvMCm9GZx7k8WG4t0xBk9LKL/2VvDAxiEgRreoC6iNyysMii3sL8Y95A8MdF9D04gYyLruN31ee4P7GYVa59rIpIw9feh6/Hv8ST5yYzLLeBl4vaeaoRYFHmcNNLTJunq2ks7AVW7SJNCkGkvmMyjLx6YI4dQHa7K/Rz12M94R4rmYCe02jXBDpY82nv+fZZ5/lxhv/euXpP9N3ofEtOnXqFB2+GCvm6DH4plPgqeObvJ04lRqSlNCe9wznj44hOpTHMUOQV20FqFIhlFKMfGEjo8ZupgXcTA/MJaXeSVieRBmpQ5QaEYVWXjjyFH2H3OiMGqZMmcKsWbN46KGH0P2PVrD/bOfOnePdd95k+8avUOcV4W2YwuLllRxP1pM+I5AX9jI5cpz3a04wTCYhmQ2tdxbZ3hN4LHvxmnbx2GQ100YnsbVwCNCgS4VxK7soMfYybFzJg/VqQooyshPb6VK1o41Xs+LcBeSGr+JAyW7U0n7McRtehZyJvlFKImGcgplOQwKEPjJC8wjwW74p20t2NMFsmYeASqIjOYna9EJSNJISY6DbyvLB8VzROcJNM04y0wHnDOUIaQvt+jS91KGWQrg1IvedU9CU9wY7VRF22UoQJCXjAylSmlMcK1rPJ+ZaenUKRFzc7FrL6WIdE4YmMG0E1uSfIKYOskc2nYJ4F5I2yKHMHvbrLySOHpdc4MnOjWhN+whFEhw8cJAl1hu4/nQG7YYhgrp9THO1sNE+C524i6/f7OOBhRPxm08TDFnYnpWmOnEMpaGPr2vl5CAgE89nQG3i/coustOjzAx/Rc7oddzRPYOurH0IQhyZfJAF3iJSunpOZX7BL3rWI4YaeO7qZv645ii5t1+EKCnJ9dUStr6L0pEF/GVfmg0bNqBTzme3aTbG6Bf45Ua2WDTkucZRxQYCspl8NH4d0wO72J5biYRAWJHDdY4dOKxd3OjVkjN8Ia3mC3i1MJNbu9txyiwU659naljFBs90Nu7p5ec/OI/TiMz1RNlgf5UB/SH2xhsYUFQwIM5Fq6ihLnoMuzOfyoJnGTNYTI50DLlUTVJMcsFIOS9nlxCULLw2Zi9uZS0/TDfTXvM9vtj6JpVXN5CQxQjJE6gVxxkbaqNHMPHY2D7MsRE0aRcZqk85aoVOSxFeTTEiCgJKK78+eDFflh9levwYd5zMJSAz81HuD3ipuRCHysxQZh63Fyg48PLTXHvtdd96YMB3ofGtcTqdXHr5xdhv/xdisS/Qi/tQytVc3ifikKc5WXwrS7smYk2N4jG2UhKdyXGNCmu8kCtGEoxJb2C/ci5rLFUoW19HM3CY91xK4t4DKEQNIZWBu3+0+h/ekOXfY+fOnbz//vv09nVSWenmN8u/xK8MozL/FGFYxuXD1Ry3Bzhk38GyoTKEtIFKfxl6z81sKkjyhXU6Y8Qm2tM3YJf1QTKXS09dzPhQL4OlL7LdmM2oeYjfTnbRTSWZJ/009YZJDkfxOL7h+x4HZrkZtyjQZhhCKbyILbOC2/Mq0edXYndFINvPAu8gvdmP06LNwChYubFzPA0eBZ8UyokJMdZlN1HpK8alO8Zhk5oyZSs/nqijJN2NXhVgVWw3J8Xz6JLXIZMUTAnvJzuUg1nfyEn5k5i0fgwMsXKol+aMAW6ZPIbbvU4a0ns5LKjIlbYSlUcZEbN4ujzIuHCQmCJIUsogoLDjUCQpi7UzNdqCTpIIydQcVZXzZnYZs7v6aXS0Mi0zk715Or6u6kcrf5falIV37LeQTlcz/qtRJkhuSgqWciKxm1zfKpT6o3RY+yiKaIgLNsJiiqluL0eNOmShKWQkzlAYi1AbOYA5WoY7/Ajz+kWydb38frqfhtQIDV4T1dFBdI6reF7+JOclf4a/uZufKefzXGEDtlSUvFCAg/4gU3P+1xeWvr4+Llt5Be+O9tGnKaZIfJc9yLGpj1OFm+GEm6705Vw1muYy1V4OaybTq1WjFtzY/Fm4jFuJSH3oEq+jTIs8WWlkvEPJqtaLkNIquja/whU36PHYzvGNeglrbDkY0mnGSW30GtswJmwYgxPRSt1ssGaxJL6Acnc3GbJTfFhQzPkDlYSFKprlTkxiNz91/oi3TL9Cnw5SPbiQDUumsPvpi7EKaa6YlUERHVweOEFRUOIPGSsZ1Br4xYmxlAVl7C3vokN7lAFdiIkBDW3qbHxCIUdLdjAuuZsZ/haaS7o5olxJg/9Kmi1tZChF7p9cyaa3nsLr9XL77bd/i1X8v3wXGt8CSZK48ZbvUbnsUhwFSXoCJUxzjjDO38GGjHp6rOvpk41g9YUZE20nEr2AE6rzWDh4kK96DtDb6mVD2o7bvRPBeIpQfT3jL3qS66ZMoaio6Ns+vX/V29vLo48+SjAY5JGf/ZQdx5+hYnQW5+T7ebVslEWOJZgS3yPPFOes9Qncmm62Wh5j8vBStEkr7cYihqxb6VXrSEZvI6h7hzlBH/WhS6kaidGTsw9D1EDApOK9/gocG48QHW6k0D6fCVVzmd4wnfKsL9HL9/FcxjVE1CpqxDDZ4U6EkXZ0refwH2hnV7CPpHeEmNXOFzOyMUyUUS4ewq1X84VuEtXBUcb60+SFJjCsGaZi0EhpaD5rGp7BnyylW7GANlOK/GQXTpmBwkQ70xK7SIgpDttN+HylBEUdLrmKRb5RJsaP0Rc5j7Raww75jVwT+JBbRrsJR35MwehU1la9TmlyM0dNiwmmK5kROIM86mKHPcR5vhbyU4NkB/ykhQRbisxEFRo6EnqWLb+Ad99+hVVXrEalaqQq5EWQdbI1vRyz+yif7f+Kn952E0+UxZjgvQC3RsZYz3yqHSJDqmI+tS9DkO/ktZZyvkcuL064gbWmCLd2F7DHHuKZsjb8qVxGBCNT3Sau7VlJi+EYcTGTU+JnJPPepzCsYsrqq9j04pukLiunJGKjUHESS/Ahvuj401+EBkBNg4Yf7X6TwFArnxvuZXrgY97Om4RT9jlXu85QntpDfsjArCE19YkpGBTb0OkCnE4vRB3fhoFzpOWPk5CZ0KZ0LPYMMKCL8sO9u5gy4Rqm6Y+R9I+w2JfGolxLluTFn7bTo3YQUbpY7uri1dIuxmuG+Ni+jqn9S5jiKaYlw8kWazvnd8OX2Xa8qn7W2bRoYiNMCTh5eGwYr2YPhQuL2HCwH/sFOs6KE7jcdRq/oOWa0V28nzGGgC6GUypkMDUGi9/KMdMMzhoCpFEgEGNlrxunJpMNhQNU+JLIoib6zJ2YA9noctSMtB9k8+bNrF27FplM9u0U8r/xXWh8C3bv3k2o3UPtBWMZP6BghSMXa/RGzilymDJ8hrhyDAf1N/B0bgVXujYT3byL1MghtqY93HblVSy9dwkKhQKLxYJGo/m2T+evJBIJXn3pJb56/2N+/rvfMmvWLK5972m0MjNprY61OUEmOTMZlgXQSrvoMdQQSq3ElRzPiOE4psQ5bupL4VDdzIKhEU5qF2GKtnGlN8KX9inEqr5Bk5BREtDxRovI+uN7GaeYgGrVNdTlXMIpYz/XdCjpK7+HnrSKEcHKXY2z2JPTx5G8bcyXbUSTDUHreL6Z8yANyj1YU51csr+XL7rOsGlDM4NakRPTPUxvOEaLWWBSuJV8+UE+yclj6vBssgN6uuIrkTSHyZd3c0PrFHbbJbYayxhJzuUbcRUFwke0ixO4YiBKhaKHZ8stDIoX4VMepiDm48oRJwtDa/FoYwiqAIHkUlzKEM0mLZbEIpSJarJTMZY7ApxSHcaY7mB6ME4SFQd0i1mbIUOVShNWHCf61XGW/P4Gjp7YRqnlS2Z3zCAR/BFpQaSoZhuer5qoW7SAT4prWDYYoop17NfXsDF3EIVmB9O6VqNigHFuL0WBNAFlJ83KOURl8EipBW06gk22D48o8naxjlVdRcxJOumd8jIRMciHxpnM9PYwsetOhOpNzFlo5Kkzr1JQuwhbqIt+6wPYxVZSqZv+ar6Y0jH2qbPp1fRx2DiTCa6ZeDUSTsM7OORb+Do9gT77FrYpNSjjDRSHKxhQmnDo7NzRf4oc5WbuHhhHk/IForrn+LXzGE1EeGpMDb2EmTdYS5XmBBuzbKTUTsS0l7vP1OBKz8CW8PLiiSJerM6hSPyEY4YIG6zLMSdHCRqeZX+Rjetbb+JF23p69C5aNXIuCLaiog5tUodu8l00/uZG7Be0c8fAQV7LuIherZ75rn7qAnp6zK38dkwzHmE8caEemQTqVIrcVAdy5Xq+LrPjkXIZF0mxsK8Mq+EoXxYPIaVXc84Z4ed3383XX3/9X6rvz3eh8U8WDoe5/Y4fsHTepeyxergkoMMaycOhGWVEqaArYwcWKUG6vYvIjud4zTfAjddewf0XXEhZWdm3ffh/1+DgID+6/W4qfKO8c9VtqHLK+ODpByjK6WafroIelYAuIdCkbQBBQB3YR5lUQJcaYlgojARp1Czh1Tw/KuEoHxTK0cvfY/loFlFTLjGZQFIK805mggOvv4clK4dfXjeRBYOP0KHYzFvaMG0GB/vyy8lHQ1DpRJHIY2y0GctolD1FCmQJOeHERHSKw8yTfosvlM1V/SFq5dORpk2n5yo5CecoyV1H2fnLNymcW4Rj+mx6RB1P7fohx7MP0pDYwp3tJu6doKEqbKfSNYGMUDGHKkxI4iAB9SgDqTJk6SReZZKKoIEbuu3stvfzdNYKwlQxy78Pv0yOaWQ5lKwlZHucg6o5WKPVaAQPC30u7L4cHi6fQVZUzu2nbma7+SghzSks8du5eDBEs/Zd9MkZbNY2UlxcDMpc1siuJZ7/CeP9P+W1zMm06jM42n+Y2ps/xB7XstvuYvZQH6dNOUREM0XxWjZkJQmqOvBKToZyX+NQloOkOIW8UBG9+rMEBAOVgfPISFYwqOxiVO9jb5afVDpFIrYcrbSS8e0BXJZGutVqCqdeScsTv+Oa6Uou8FewpfQk2eUOvlr7Nddc8+eul5Ik4fvwXnqsXt7Knocq5UEfGc/3O0vo0l7BtqpjZEh9HDSUkBZruLjXxMUt1Zwq/IqZ3mbezqninGY8f7TWs2BYiVb2Bu3qHg59tYPL7/wZo2kVRzTTGKtSMsmVxw2+Tu4YV069z4YhqCZt+xJ9uozsQC2ZsSQn1T9m0KpBTNnJSXnJDq5k2mgv+7ObiaWzMIaWUJKuJKQSuWgkwknFvZwwQXV1NlMOPYuyuI6ALBOkOMmUiZN6O8PaDgZVeswROzFFhNxEF9NjH5FMVzESWU5jxle4JS2mkMBXdbvpk27ll+XL0RxKc9u7F/L5V5+Rl5f3N2vun+270Pgne/W1lwlVpjkz/wRWwYpMsZxQqpT7c9fh9bjov/8t/MEQl1yyimfefO6/1OWmv8Xv9/PQz3/OjiPHeSzvXhZ/sJBbdn2F6tA71OZvIyKHiweLyA/AshE5X+ceIRqex6U9F/LZxF9wuS9CtreaJoODDaaJtGvjuDSjGBJy9EkrG7LVXNR7GZJBYmenkSMfvUHt5StgbJzP5bvZVfQmZ1X1aBN9WGI55MaixGKP0Ww+hFdWQV32CD5llJzkELtVE8khE1f614QFJTmyDchFH+f0JXxsq0ae6KFUU47/ouPcN7+IbV+O4c3f7+bn1wq8PSnGdmMxnt582rVZ3NUS4dmSq7hvjJyfnZlBQXwrderfcCxZiy4wn0F9iFFjirzIIgrjMmZF3uOsMIQvJXDYEueakAe97AxXn7qCrTnDVISdbB+jxSuU4RULcZnGUBT00KtVIqDikC2LBaERvsx9gLJ4nJ+cHMPKTS/z7MvP4XA4/vyEuTabpPI8yhOvcL47giwFJ4wK5LJOtIlCPIKWcGwRplQHoqClnZvIl29mpqcMc7KWjXl34hNrqQtpmeKYzWfyAJpklLJgGW55Dh36g9w6TUtM1DI3kMtNLYvoNtoxqI9S7pP4fruCT4oUzK5XkzraR1buWBqFaaiM0/B59v7FvEmFfVitMoqDGcxxFlMQHOWb3FOc0WUwKl3DavcW1uQC0kIyZRJxMc0Bk5nPcrJ5+qSJJqOOtTkDrCkIMkt6B/1mG7byckb1KziplaGik4+K3+W0WcGCETMPNU7ljDaLJ0pkBIxh8uNhaqJb0JPBqMpKWuwkrnqVOn+IvEgtjZZMmrU+cmJ2rPLPOCzT4JWNYoxWcCL7GBnpc4yb7GHdgTQHZ82lwRukMBFhr60SXSpMSdiMNXQBIVkaddrL+f7tqCQDerGRqNzE2eQCPDI7LvEwWWI3k+unUJOtYOonE3nmuaeZOvXfrjn79n0XGv9krSfPYJi4guFQFkujGdgiC/hF/89JH2rkogXnEb7lVlatWsXs2bP/W2zpHo/Hef6FF/njx18hX3gVRT+4lIj3E17ftJM+Qw2SwkZuCmIpE3kBK7NCx0nJ6smSNdNkDPOnmiK6Fc9gSCtpM21nW/6/8HzbCfTpBD8oupWkTKBfqQBFNiMldrq73iXw5R7uuvoPGE1u2oJtuEyVtBrGkJIMZKRMpDBTGXuOEV0cXWoBHWozm3P6adaV4FcFkEtyQkIn6YgZnyyTHlUVReqFjNq93Ntp5ZzRyKBezmF1OfqQDsWFPyLD28Uzr99C7rUx0mY1X+YoCIhZzI6swyQaUVPF4fxH+aFvN4dEDYuC/ZxUnqA+cAnFI3lM6PPycdUAn5oqiSsURMQkC/1t7FfXMTaUQVIbJ1c8hSNjmIRYQooiDhgbua/dx84KBSlBIC2X8dL2hWyd8gmi/Bi5QQs/61ORVZzDrFmzuO/BRxDGV1AePUlVvI3fZU4lJepxihY0UoKYwk842cj63Zm41GPIq/gEWcLEKaYTlOnRCh4EIY92YREH9FNJqfbTptrMK017sKSCfJxj56DuCH6ZnbTgQBJG2G61ME0TRxvvpTjayIi9laSiDF0qkwlTtLz9+RHOXGjALc9Am/YhUytwu91YrVaKioron3ARazQJlh8rJKrfiiCco0SKMdEfQx4dIiUPcIfzNF9rrqfPspG15Qn2ZehxqxRsswvMHhzD0oEke3M7wbeUvkObmLd4Crt1acoTR2lVFhGVdZMp1VI9dAmiJJBh7ETKfJEPxO+TkmUyrJehUJ1CktJkhyWKU2aOqWayzS7npZadNGbfzyFDnBWOK7FkPUBA5sGmXcv0yCF8ihj+jIX0jn5OtTSETeGgXDpKF1cw1xtggSfKQO5pmnUhru4TWG+bSX6kncfPjmWCdoCIfTnbcyROySYzq7cel76DMUsWsWHDBiZNmvRtl/f/1neh8U92+3334HvySfq2HWK/J8R24ff0DPYzNDT03yIk/r/Wr1/P4z/7GcYxEzHf/xPUyXzqoqdQKTvQpcq42r2ZI9oqfDIrDo2bhNpBuyghGBppFuaxyVrNqKGXea44aeTEZKVkBefyudWFNSGwuttOQWyA56oktHEjQz2DOL/ewowfPsSi3jwC/j56dBLXNl1Elz7OieyjPNnyIeakj9U1j+BS2clOHualnvtJS2ZOCOfzYpVIQWqAyWE34fQf6Y/eQK80ga2ZKnKEYzxbeYigXEtQuY+kQuLt7BqiyQjF+hCTbruR9W++zbyGXVwwrpSsWJyHy+YxIb6BGcNnsMlOExOVmAO59NlayeAQl7brkaW1rCuqYVP1v6BIjycgmUnJlBzQF7LFUkyOMYvJvElWPMFpZR2CZEeSdTCiDvBVQS+5ySIUMRuvlnXTkreOm21PUHN4lMZxSp7etYq2tjYAertakU9bSb+8iPM9B9mhX0Ku1IIUiWNKeKiIDhJKW7hjoo57zuhY3lOCR55Hf+YBrh49y0ZbD3pxlOOKMaSFfUiShF/Vyae5VuaPVDC3cxlV1nWgXIfTGGBEJdGkzeGP5YPcPLSGgwYZFmmILPfNLE1GWDi4lbcd5zGg1DMjsR6ZkKCvYAItLS3MmDGDlStX8sQTTxBavYjrEx+wX9PLWb1AbiRMVkAgt/tGujQanIYgPw+8SN7IEr7J9uBWWVjp24DNcpY+cSommUhRXM74SB9Pu4d5SjmHCW0uZJoO1uQOE08u57XMCkbrWqgJe1HrvqAmHubqITdv5zuJy+TM9Wu4x/0S+7mWy0cy2W3SsDG/C0HXQ4HwEXXDM7l2aC2vmyL0qvSYRy/mF03T+N24dThVSmwJBXUeM1mBBQyZTQRFkeP6TG45cRM/G5RzwN5JfrCQD3N2kRVSE5F14RTPY9Wohsvd7+MSprLdG+St5+7gxIkT5Ofnf7vF/Td8Fxr/ZPX19Xzw/vvf9mH8PxkZGeGmy28iPxbltamLuXvaLShoZHbiFRbEjrFZ9jzL+0zoYiYKM37FWdktuDLCVLnUqIyvIyPEjS0/YVLB+2zNVDBp0MpRa5hy+TpU4TIGZJcxKEpMksdJJfv4+Ogo3bGDXLj2Fa677ifsyhhlf/xr7m3T0q3LxpoMUOfwcbCwi7U5BZxVTGLUeAqQkRd3cNwuRzO6Aqe8AHNqOyEhjihvxx4rZvpAGZ8UthJU9TEqljA2/DUXDHrZmFFNtzgNWbyUVlMav9LPhqJ6an78W46/+jyOPg+/nzyVhZ4+5kcCNClE+mVz8Fp2M2e0k9yhUvbZVMiQMaAReWpME4XpDKb6vXiSBRywJdGnRArSXlpV+Si8FeiTDiIyK0qxhTn+EfoVZg7px1Ec81CjehJZehWXrViNxV6MQ3wB2ckWFi1a9K9P2/cNdDHWaMeZjiJoOlg9msFx2S1U96znTK6chtRWWpjCGeM4thQGmBD4A27r75jujePSjlLmvIoVwQ9wFTloUZdSFKghJfbxdWaCPmUDRXYFFfFuPLoEaklJQaIfRzqKR96MU2HmVME+ZMksTqTtPNp/GHnWBci1ARSRiWwRb6Na9ibXrZ7Pzp07mTFjBnV1dQwP9rAqfIjXsxsoSUiE8ZBIRdG55yMl7XRop7AjZyuD4Yn8IJZDQewsYxOHEDS9+KNyBNNBnJp5VEZGUPk7MGSESelcKPUHUKSrmeaKEJANkK8QGe8TSEbns9+g56pOOzFVMarcvWRLR6gIxwhIGXSYojxoVZIbsNGpVPO1yc2gXMfS0QDGRIopjiqmSn5GNSOkTC5Omew4lGpccRXHLBqOGyNY4kv41ZFcTma6WVfYQklQx+9re3nzoJsfn8llR7GX39UPs1tdzI+ac/GrLsQThONNO/5bfHn8LjS+8x+yfft2bnnwHu6YcTOO6kwe1RlBUpFCQ5N8HquijSj0JwilF3Iu5w/sLTyA0a+gT1vF+/lJLnVWURBO0m5u5XRWG6Kxj7o+H3mObNw5zWjTl1OUruPdwt/QlpFglaeNU4ZVfPKHF7Df+D0qpVzyuhKo5BJ/KtDyTQ64jQcJYAJ5Py6lEUFIIovNQpINcV54HbZUjHWZ/ew0qygJjiUi03FAqKIsmWJaXEt9MEZa9QKTz12CMTGRE/bjnMn4ktnDaq4+XoFHoeGdmjI2Z3vIjkb5zdwFvHL4JPft3UPnpKvpi7YzKhSyomcG0bSZePIMe6x5+FWDbCo9yUjsAsqDDmqC17Ms8Qz+hIl5nb/il5PfZFQy89NTZiSrm6pEN93SZK5vPQ+Z+WW2WgXy04exSicI64q5qX4Ou0cUHGh7iuHoIfComTVr1r+OTVCuwadtw6Hzkfbn4Va306SbSOGeCOmCUo6pSginJJLKJ/Er7iQuJOiT1yMZX8QtppkxECeldXDbkJxHci9loi/Cwsg7PJu5mqCUSbX/HFrBj1oWo90QI0gSuehhWvJjzppug4STdmEaCdkw7+U1kRMbgy1/HXQfJ7Mwh2qlGYVC8RfzaXzDOJxHD9E6ZRLFiQHaDSH0ErxWXIhfEBhS9VAWt2OT/Owv3MMbxc3YEiYi6NhhUnN1Zw7fcw1y/biJJNsldGUROpWZ1AqfEJI5eSfrhxTFD+NVKNDF6+jSaejQ2tlqT1EVPII8ZUUulygLS3Rr5JzSWwjJoV0+gZR4hj2aOdw2sJkeZTVjR69kfDjFw7Ne4jxnhJ68J1gerMPs+x5PSgZMiSA+eYSMxBBWoZBzRhcnivtY4W7iJ6euI99j43dlUVz46FDnIgGjhgMkk5U8/eaD7Ni+/b98YMB3ofGd/4BtW7fwxOM/Y/Gdd7BHGYV0GrdgZ1X8ZrYk70YtgZIodXyALjUeedxGjrcBIZ2mOuzkQucwXWo1SFEeqdrO1W4VtpANVVKLUXscf9xKRLWfkOUZBGEM1oSEMaHh46MOsksWU1+Q4E+aVnRJO08eraPHksE1/QJzuicgyZ3ItQGeqFRyxqjCGm3CKdfyrv5aLnfvpl+fRCDNKycThGQSqxsuoS52iPvHdFARE/jBmWupCIVoNArI03bSyTpMkQg9ZY/Rm5jNKYsGW1yBTvKiT8m4doGB5YcgsucgriX5aKXDfGFcT1ww8En4F/g0XeSkA1zVNAFFOk2ur4Hmgk/5OGspp1RLKNb1YEqkCIsixzO7cNlHOBSaTCg2BUu8hoT7WgR5DLP2c7oMYzgjTWT9yVZkqRTTTBOZnevkvb5unr7rPAAaGxux6Mw8e3Amo7ZNbLItYl7sTyzqyuSzlj4WT5fzuZRPUlCjTkvYkyc4m7mfPdq7mBLvYHJ4CydzjtOWmsd6Sw4+ZRubLfUsTqRYEThKJFTLsuEenq3IYo19AbcPfU695KIrnINWGGS+6zSfWVfgtRWgSXloV9VR7TtBVV4uzZ0RbMUysrqCUMBf7HR782138r072/lBUQUJ7TQsQgox2c1J1SQgiU81TEm8iQypkXdLBOSxBRwTrqUy/THoNvBGZZLq0TosiRCy5jSr45ewwP0ZYuRm/CovJaZeUrI0fkWU3Eg+fmUuoVgX/dohmkxKlOHF6JJG1lmPs8fqQRnNZP5wPuM87bQbYa6vg6fqz0DaydL+P5BOyyiM2UB3GGVa4Lh+lOuDDyHKB3n60BzaLK04s79mT9XX1MezqBm2snIoiNoV+fN9KUmPXxbDJ09T7Szm4rZp9M4JYrNa/7e9hP4r+i40vvPvcurUKR59+A6Udy4komphUDaDOb5eaiJx5OogN/t+x6BJwU5jGb36IcqzClCk9nPZwAAfWy7l6iEHJwtOM6LS0Tn8IJX+diLqdymKxni6Qok1XUBBqIGE4EGVVPDazlvYkTPKUcNJ2va8yU33vYc1/QtGUvWYw7U0GkVShg+Rx+fxTWUx1Q4LPx+fR7HPwtNHr8CnCPJU9S76NUpOGy1MCbdzY9+FnMjczIBSw6r+OFf02lltaGNd9Qf8unY5idRYXmhqweg2I4jLCKgO8pVJS7uoY1SlZ7a3E4UI946Bi0bz0X1vIoO/fo4VxgfRlubTZTyCUxEnLxLiVscegookuyrfI7/zl7gMGj4t1OBNXkFpFKrCpyiJT0SSNVIfHmVrZCybLXks70rzVelbzI5sZvnwAzwwMYZXHaRSNg1f9CRVfgN3zavjs3eaKSyQ/nUZttPpJJkdZVSVQyxZR0LewHZNP3rTC7gOBslJZzPNpebrbCs3D5uRSQNoIgNc7zxKttxLfuRCPFo7b5Z4SAoiinSKVb5PGZFn0CmtZqLqDxzMrOG4oZY0Skbjl3NIF2TuqJmoeQiXzMiujAwmOhXYYkq258s5v/kmDitLaWl9lpp4FTOHx2KrruGhhx7ivvvuQ6vV/nmn1mCShDQBeSSImR5aNDIU8qMsGg0TZSU5yXx0sjUkpEwU8Trs4iDtqunY4yoyxK/YYM/DrdAgnOlgyswf8EyJxFifg1lOOT7dcUzSCFeP1DNodOBX72JYE0MS0sBZCtISEz126uW7OGvIIpos5Iwhxb1dR3DqL+C93CJSMRMJ2RDvVXajj5Ux3pukyD+DjRkKDhvqOZ5vZ0B1BS/P+CH2aDFq2QimqJ0yv4YvbCWsGVOMMXmIIc1urg5uZWLUSspXys0tLiRZhINnhvjZz3727Rb4f8B3ofGdv8vj8XDPPXfxi4tW8rBpgEaxg0fbOyh1rSCeWooj6zhduuPsN0gIRJCEFGqlRLdlBFcwl93GbJJCLtXJHZgEJQlRyTFblHFuM/p0H/tNpRhTMS71T+SzjBNU+H7IHCmbAwV/wrl2CxfMjtCZ8SylkX4WRRw4UiXszynklLGG67q9HM7YT1ZkADGtoMyfgS0i0KdOc1WPwHivkU5bHV9kFDI3Us+Ashed9klWDMroyixDnfShDFzFsN1KUqjgiQoF3dZ1TPc0oY+U06vIZXxqA93SFRSnOpgW6KHft4BHKyrJTDqZfOXlbPn9b5lx/4Mo4jWc7z5BtaOLdsNE+qV6UrEOdleepF9dCExnnluFLmnh/MEoCbGGDo0es/5NlOlS5rrDpBSdbMscIufcHbxVbyMmq0KZGqTHl8Vvp1/JzDIVZ86cYdOmTWzevPkvxklDgENF+wlKShSSmX6hgQLFepKSgEPjp0bYQuZgNhc6urhqzKUE5Hq2f1ONU11OY76NvKicB7ufZLtN5KCxFj9mnslzsrRdwUG7jTneGpZ6G5Erv6Zu5A66coqxOmcRipXiNp7he51ppnnCHLVrSUoZfFrVyYLRInwHwojyVuxJHTqNloULF3Ly5ElmzJiBIAhYLSZ8I2cxZ3SwK2MeKtFKXIyzoHMqrVkmAkoZESGHHPflHNTNRZK5WNGlR2M8wQQEXtZXEE0WEUi+RqHORbfGyh5bkg9ySggkK4mkbHhMP8OSPIRd7GKmq5CCuIff5CXIEwa5o7cGl3IWruIvGRt6kqlJN1/XyVirmEFI7iQl5pEWUxzI38IYn51QMsUCn5mJ8hgnLJ140CGZ1OQ3lbMgtZy7xwfQiTr+0FTEqkCAx8b0kZQVYIgGcMoNuOWZKKUJvF2qIsNm5cs3X+OlK1/6dor7/8J3ofGdv2vz5s2sXD6D7BkW/lR4Fe+c/AXvWv6FfEU2t/ToEJM5KOQi84NBNqmnUT84nbh4gCmRQyQ0Ae5rvJ0u2z6+tsm4pReqg88wNZ5GqYjyZsaFFCSPMHN0EvWecmbrhtia2cyPZ3VjTkqcPNKL/acL6GM1W5UdFEZ7mTJ6KcVygSluBUK6iXZ9GL9MyyX9UQzBMTxW04JSFsetaWVP8Unq3KtZOFpOmjQVHi26aAHHdVeQEDUEDbfRLrsLTTqCT34WpXgUl1hBl8pOdkrNWa2EKzGLLQdPM6hVUhDTkNR5yU7IKUsfZ5o6RX3B1TR/doymO2dQmTrHO1UDdGisyKPjkEQVasmEMaEjOzGIUns3k7qXkhupYnvOu/y29i1eOHU+R/NmE1Z4yTO/hlU2jFsxl9x4B7fXr0DYcT8y9Qbkb69m8IIU37//+7zzzjt/cf27t7eXHFkpimQp43mDx7P/fDkkFryF7cHXmVVgxio4mOcdJux+CL9sCEjzXu1GzmrG4NP10uDREVZVoEj6ub/JxlRfBXlJG+eFXmRU6aDPYKEiPoo50c+evEbGpg5y89RaIuJ4lroNfP+0jjNWA4PWN1AlVyEmlNQNVxAQClBF7fRmfEmt6krk8r/82Lnrzls48ezrhC61YEmPcr6vj/l9MTKDUzEm2nhsfJSbgn7Oi37MhIEZZCZ7qPWoWVflQhmvIEey0GMVUSnS9GduxK1qQEhlEWYKpYFRejSZyF03MqAaYlY4wlfGH1Mo7kUfaKA7lc1hUyOFMQV3dFUQCNzBqeyTpBVd+JXD5KZaaUh+TDw0DUM8wGHDWUKKEDvsm6hNRVgSSTHe/wU/kJehDWWhlyvRJ0VERG6d1okkRKkN5tKirmV8cC/tyivpV4whQ+3h6esXEo1Hefy3P6aiouKfXNX/974Lje/8XQMDA8gT5+g+28N040ICwRBhZQ/Dmlyen/JzmhUObNF5FCXj9IsTSGf3c1eLnW61loAywOaSFhKSgQca36dYeICU/AxnlFPId32PhLmRbNU3nLWANVpEoS9EOneYi7uKCXUPc6AynxZLCYXBHiYKfyIpK6DVnAZJ4kcthyBhx5PxLk25Dpafu5e6kWwEbRHDGlDJDzJi7sci/z1B1T0kZSNoU60kQg/TnHEcpbqHI9oFZAcaWTVi5ZP8GN/vSrFiaJQNZadY4Pg+hVEnu4t+x7Plc3CxECU+jlvCTIid5IYege0Zl6FcMpvNr8/gwb4gnxWewSXTcImjFH3wOCPqPrZlmrmzfRR7VIT4L4kqI/SZN5Mj6+DutmXUBmCx+xifFw4jhsuY6SrjyoFRauZXUZ8jsF/rID9XQi6JfL33A5YvX05JSclfjNG2bdu44q5f0HNwI6XR/eQmyhlUZrJkKMUaUeKAdSnXjwr06tezNiPOeZFt2MN6bLoY5fqP2SP9hE/yPZjiufgUeYwJf4hf048sPY5dBh1aSU7O6HT61Snsime5MLGdnflqLom/QDg2lUzVadrNE+nK+oKJ8YNcem4Mr5WFuG/WDmTHe6kSPiHlfYpWpwNRFGltbWXGjBkAlJaW8rDZQaFpCt93vk+jIpvfTNxHV8pEbdDJHGc5z+dcyZAmxq9G9vBktQFBcRxTwsbl+1Yw3x7nQtdmfkWYEY2IxCBliRb8siESmnNkx25nv8XMqMZEv1qFQ+kmKnopjW5lv/Ym3swfy4/aKxjW7mV7xgBhhZmceC0CCRyKNFrPMnJCF/Je3ieQVjAmIUcniFiSNvqUMZJ6BU63k6m6XQwbcimLBxiS1RARVUwKt7Oo9zzeLxDoyfgQjSRxdd9afKoddLwe5ZjlG6677rq/CtL/yv77HOl3vjUjIyNcdcUDFGbrUP+2mZ/rrufTmrdp0Ozjj+nrGTfayvmuTt4u86CXXOjEfhpzuqkbuhZPxmdMTrzCa/pH6dSF6OIuXq35E5WeBnaYo8z1KPFH7yGCihcqt/KLQz9gbq+BD4pOEzwnUF2ix5Juoli5DU/CTo98CSblSa7pCxKQ6+kxeaiM97HBcCsHJuygOrSD83pnkx8vJ6UKUxQCt2wsI8ocbgk2cdRsw0Epc4dCtBgKaa9qwiuDn3e2sTS+G1v4OuwRBadTfSS0p9CIAeT42WUtYFJ8PeWJAWKxerQxC6HoHETlRmJWGzVjLOxr2Y4iZzFywcmAMI0HfTvxBW00mvSIyrOMdeZwRBdDHyvn0aogBqmIFa59bMys44jZSHGkm6kBH8bQalZPc3O7yoVWPxlL0Qwyq8pQTg3x2eoP/uqylCRJDA4OUl2axf5TlZyW2ymKO6gJRlg4WkxFzMklw+8SVF5Eq6aUA5YMLgka0IlDDEmPUjgQoMbkJSg3MsWtZFNmiBeKe9Gk7KTT5aSAG/vizPEbyIn6+bxiCWNip8iOdRGUytERZ0gr0V7cQk7CyVRnkHfyZezLjLDyYJD9VgVHtQ1sGreXpc3buPnmHzFhwgSuv/56AARBoCbSw9jACQ6VX8/E5g1cdvojDmb18uKYJhpSb1OdqMKcqGBMdIiAPJ+UzEpC8LOzSM+wNgOkDsJykWD8x9zTtZvDuW9jEbahk4BANRFBxomkmQebi3lx/BqyhSb2K39EWmjncs92NpbaOKWZgDYNlriHPvE8ingNlbgXhEIqhc1IwgX8ePBNXi+KsTAcZlzPNQRSZp6q9eAIv4jXMI1GlY7TWgPq9BBlsQEKQhkEFDrKUrvxxrNplhs5Zn+M70fuQ7Ik+eCdD3jjjTf+6TX9/+K70PjOv4tSbcKSU0NihRyLTklF+zskRrsZQyEXdinJDVcg6H/OSYuETthBUqcjJhRT6MkjavDi0XTxcuUwJeEIH+2ayYcVR6mKDTK254f0GcJsymujzGlBI9dzwu4mKViJOGPk1k8lmRrhmHQtiGoy022U+DyM7x9Dl0WLLrWBnYqL0MeLGZNeS1KKsGBwCbZojDWilYE8BfLIBORSNo06Gc8X5NDgG2FpZwiTagfHYiOUeix8XnmarGABB6tS9Kl1lMbGMWj9EyNSBZHoSiLKINv04+iN5FAYD/15fzB5kCsal5OUgnywajI7X9lF5ZJ6hHSMtDKCy9hLoyoLb+pShNTvSYjwYcFZ0rJWRhV19MlUmLJOUBA9xuVdl7B+zCHW28dws/cIt4xUcNllixBFGTMXv4gkSVxxxRU89thjf7XbqSRJGAwGQgQo957lnPo55JHTyFIhFCk1MyvG8P7JYUYvtlApbGJRKMkiXzMnledRMZLJtGENi1VDeOOz+PWEM5RE22hTrkBKRxATVcgkE5uzDlA7LENl3IbStI9uwsjDM3jVfDNjYweoSoc4pr2YC9xupLSeRYMLSLMTb1ogrV7MGcXFlChf4+CoiWusVhoaGhgcHCQ3NxeADEUWk4fPxzZwkheL1NhG+pEyXuCZpgkYkyuYankXWXiYDdZLiSqHscRzmeBbQGn8YwpUW0kKKl6SR2nMewq91MikUJREcjxOhYGF7g4K3JMJyOGLkkaypXbU4UweP2flubomxLgKX6qGPmk2cjxkJ3ZTn5Chko/Fp29DKclQptWc35/NWu3lqBK7EfCxxS5wwhAkGBjAooHart/iy05isxwlI3WOZnOSEWWQhF7NRE5RnGrB7p9Jlmo7D+UaMch1HDt2jIyMjG+jpP+vfRca3/kPUSyoAWD++C9xHo/SdQyGF2RRpHazePbbTNw1wo6gidJgjK15fYT0x6lx5HFZZyaFsRgTgiGEuBp9KsARexvR8CGajUm2ZfXw/eaJbMjbxTivkglRN++kjzOqjuCS1SAK/WgowCNo2ZflYLFzHzGZyO7MELuyRrildy1+aweH9PBJ2XGWdi/l86xsHu6YjUMJBmUbuzIy8Wi6GUnm8XVRLyZ1EzW+MRRKTTjSafbo68n1lmEMCxzM6WSzZhq/6jmEQ55JtyqH8kAOA6oM+nV+rpS+4bP8PObK9TQ489Ba7JBMYfHJ8RqTRFVb+MJ4GZtNdeRHjlMqHOZEbgb54SsJyELMDD2JQ1mAXnGOd22zMZlbyEGOIpnP8+VK/uXkZKSwCPo//9+ffPJJpk+fzsyZM/+34xKJR1AmdKjTKorCBqa6fZgSEJfsrMy/iov3P0uFXE8cOcd1VXhFC4cMBVSohskNjVKYcPFiw/scsYwDaTxI50inxlAdVHHW6MRNJm9UepmU9uBOLqA4mkQWy2KSeje10WEy4zHkmps4YzSywXI/AdWnDOkG0YXdZKW8lEdMVCWTxOouBmD16tV88cUX/PCHP/zzCRh1eNV1NKvG0GRew6fVm7lyoJaGgekMZb+DLziTeysmYZEGsKSjuFVGtmeMsjJ4GFM6zBMZV2CJuBky7EeWFhBjSsKyE6jiBaQjH9BsPE6rsYn9GYPYY5O5sXEqWWETNd5c/MpOZjs7OaHPxy/qsSdPkDJ+jio+lnluIx1agcOBp7ij6zRnFQU8V3s9xxTddBlqSajaEXZ2MrEsg3um7CE7VIxLIcehlSHGp5ETltElk5gxkMWA4ZdkxCYzYP4EjaCjwWRE/D+M539l34XGd/6vjMaVHLcnKZjwJvFmP4ezk3R/sJkjxjSLWh9mr02OZPwV1aP1FLkreLqymQm+NGXtmZwwOZnUv5gHcw+ytboLQTKwqrOE6Q4TChHqXRb25OehyRpHtCsCtVFMSSeZ/gqS5jbyYrN5oF6DTOzhgTOZjPGZsUR1BAJafFknKYypWFPcwwNNJWTHdayvW8uJrFfxxi/DL+bRl5bxmqmWxam30ST3Yg5Cd2oa2zPlTFXvZknPQyR8TlqE3XQoxzHb309MlDiq6wL0WOhDTMN+/Qr6CkbYYVZzW+MShqxnmHkqSfv4BEVinDPKQgQpzJA6yoBQxVBsBXtK9iOTgixru4VM2TR22T7EGJMRkKtRRR9GmUqjNJyj9qpMgnEJEwKjo6OsW7eOdevW/R/HI+YdoOtPr7I3Z4QjhlcQJRtvHVFikp1EpTai9MSYPmJFsglMchnQpV0kk2kk3R/oNZdT4CgiLO8mQzqIOjoJS1yPNpZPo9GMIpFikW87Cwcd9OgvYCR7MyahiZiqggAz2aOVU685QkzhQ4jb+V1jN+2yVXxYvon2rm+w2C8iJ1pNUUxN0L8XSbqAVatWcckll/xraPQEz1CS+DVJwxKuHznE9KESKn0m3LoW/Mo0Ge6pREU5BdERrhzew3Z9NZ/bKnk+ZwoFMSVdqilEUm+xsH0VB7K7OCqvpzTaRTQtss9+jBPWcwRMX1GQSHPYsBxH4a9wCGb6bYvYos4jN6wgNzlEvqyLPMUo+miAeUevZ2deO8cMAbyF+zhhk/HbXRXo1L8jP91LRWwPa1WzGWo5R/5lU3Apy7FFR1AKnUQlyIqJXOT/kqrYM0ih8cgFPwO5fTSGrfilKHfPWcpNfPJPqtj/PN+Fxnf+LpVKRW9vLzU1Nf/62h9PO9nUHWBV9CjV8UF63T406gJkKSfedBUHdT5KI0vxJEpZ5sxglfkb0gofH+VYubE9GymZxzWeF9mp0uFQ+FjUXwPyUdTyNio9V9BpNiAzLCXV+RILRxexLaudm9ocHDbvx6W14JdNRpJLDGuKOW7pYU+GhoyEhpu7FlHlmUeZrIjP8sPc293C5UMdmJNl7LCoyROaGBaNrPZuwpbKxu6rpVs5lWneJZxUf4mVM8TkKgJiLbrwGLbrQxR5UxzVDiIJbpDkzHGHGBOKkCeGiEs57Mr/kp1FQ4QHyjkg9fBCW4yn6iGe8vH9c9P5Q+1OXsidTmXgGCGZEUGIklC0o4vVsrQ/m6N1Hr53bgxdFhUa6zBGi57T+1cRCt7Nwksu5PEnH+eee+7BZDL9n8cooaFHd4KG0fNo0rajS+iJpC/BbXuLo7btzMiaSNWhjQyeZ+G09SwuTQsvnNXQq9IRVkcZUQlc4juKxiljNFFFpTuXvGCcr8pPsz67hcO2JN9k2ZGEXiRRy52HSvGqVewoSGBOjlLjzkCtKEGILmMk833a5DWM9Zdy+OwQC5ev54zOzFj3g6Q63sTbsRNL+QLkcjl+vx8AnSaDcIOVWdudPFtXQltxB07hIqzyQ/SKMynJPkNMmSQUS6JLJVnka2OLuZLy+BCa8GJQZTCsViMLKrjc2c5AMp9mTQl1QiPvFqynS3uaW3wOhsQMLFEbgcQsLKpdGJNhbu00cHlvDuvKNhEVLmFAeTk21Y3syj/FZ6WDKJIW6v1JVLJ+Ppn0SxTBWayzl5MbC3LPyDs80Oci26ZBkn9K3L4Ga2Q5g2IhbpmS4oDAEeUlrBpZQBc95E7W8tTWclytIiOZp//htfuP8F1ofOfvuuWWW7j++uuZNWvWv/YXv67WSqVFjbK9nLm7jQSmVZN70V3MeK2VE6kB+jRhIvJSttnaaDe18/g5PQFNmKivHIVmC/tzBxkxOLms382k3mW8PeXHjISvRSu66Zn2DO2yMWRlnmLoGy9Lxt5Avr+R9ys2MX9wBU32SmbH1zK9+wIKA3V8WNCNPRbjCscAS0Ya6FM1Yw9pELRv8ujEDn51zs1Ur4DTeIDyVDtt4RradGreMFzIdPUQ13tfxGkYpl+dRZN8IrvVW5jqKaXBf5K3S2I83hTj+uEQd9fU4dfuY7OlltKIkdkeHbZkAf1xJamkiQ2xHjr1Jt7Pl+FRuYjHB9mX9yXGhB2fTKDRlI/IQa50pJDp9rBDU0BMu5O0UEPI0Iyo/4pHL/0QjyODfe0fIJpTdPWeJhqNcumll/7NMerXCHyYl0sy3YUlOgVTXEdMGSGibmNIUcCsBh8Hd+5hxcQCdLL5eNQ5DOi3slNfT0DTilp9BHsiwjbT+TQEj3LOWs99kztwqP1oaMUe16GSDCSSDSQUUb7OiVDlm05pcBrHCq/hM7OGm7rtrMkcJiM5g2RqCunUaYR2GZ6sKygNLaLZXEJRbA76vD/v3jpp0iR27NhBdXU15owJbM2axqkZu7lpoIV0spCa0Dr8hiaeyCwhoT1NdryYMeF+nOlJhPx3k2VtoU0lcF3gNbT9P6NXL5Ho66WpUIPcnc2VfQoeHHs+t46cYFiuIaSooFc5nn6jjCPq6SyKtHLH0Bo04VzOGM8nS2pjp0ZGUtLTGbuAElopkn9Nnn8GDzSVcap8Ey2qfIo9CioiKT4sVLO3v4qabAlzwMqIdZQUanJwEIkspSZ1FGN4HJcO1tNhHCavyMy4qiUMOs7CQD6BrsF/eO3+I3wXGt/5uwoKCrj77rv55S9/yZNPPglAsUlFsUkF1b8gPXEQgz3zzw9q3ViK66kuLhtqol0/m2HNWQ5arfyuXKIoHSCtP0tals3HeQ3YBTNmytBk70cjBDht9hJUylkVbKPFsA9bSo6fHJxpF3LNJp4Y2MgazSICslLGDHg4YDvFC8UBpriiXB5/loCg5rYJY+lVx3hl/zCNWgv17st4zzrAHnsYn0JBE6sxaQPYVacxJQrpNjoQ/AHazMeZ657KDuMUxgR8zHHtIG7byJWOKrTpEoRklPJ0D43pLCJCAZ9asgnKupjljnKh6xxlw4v4qucAhokFXNGTzbPKmSSlCI3aaozCKWSSnoioxB6bwQdWPQpGSDCKNZ2JJAYYtu3kPNVqFDIlwUQlPu96hgqGef/XP+b555//u2MkplWQGIskWMngIEbDJj4oW8ojp6bhDav5fEqIU1u/YUD4PilLFfO883jbXEO31sP0kJNDWjn6WAWy9BSyFI8gC2TiURmQEadKakIjj+BPTMcnmLl2MEyLWUNCe4SMUAY5yToM4QDrzJPYbfVgiWuY4PEhtn9BQaGKRSM34FTFUCeHaHAoeP9MiOsnGlm8eDHbt2+nurqasx4HR/rOoBQ1JNQeigcupUsRZZ85yuRoHI1k5IfufcREEQQnDQM6Zg1MYMn5DnYYCxgfasdorWWP4yTNpitw2lMcNZuIiU7W2Do4L9hPYVjN8pY8Gq0eJrjkqMVCPPYhlIQ5ldHL5sxZWOJdnNYYiSkMqDLjTI5kc1XbeFJCBMm9gm2lAlFFMY92jHLO5GLg5DFKJuYR1+1nSN2PUlLyyjkLceWbvFaYw35jKVqVlj7LQYTaCYwDcqZXo9zjJy02/EPr9h9F/LYP4Dv/PaxYsQKHw8H69ev/6j0xJxfhf6wz1ykUXHTXPOKmAnKjNUxxXc2UoIu6eDOH7CO8WzCWN4oKMaRkVCVG2Jk3RKGrhsuOPMziIRFzRMup+MPkeadSHByLfCI8H19CkBh9cjutxhhz3HvZm9VEIpnBtCETQbmczzLl7FfeQFQsRhfL450SD2nByD2nJ3Bt8zLmD+RS6dEzKtQyIk6m1L2E5YMqIvFrecJ+D++a7mSLaRYRmZKSiIOpvhB+jZccenmirJCT2WcJpXUI0ZUUh4fxq9cwKf4uXbY/0qeWOF34J0ZGmllm28SbFWFs8RWs9AV4ZPR3XDhyAUs8Rq527OBa53bKAiJJIUZadCAkrSQlG/2q6Uwea+XYx1cixgbRG0VqRD+CIPy5I9/f0NfXR3FEwdOnlFQEBLJjceo8FqrjxzHEbVgjBlyKPORXXc2pz75AJkGnZoR+sZC5zn6u6dQgi1eyxjyLzzPsnE5cw9NFJdQG5fzi9HQW9kwnlJxMTgxuHf6aSz1rGBBrOKoz4rX9C/NGO9AFb0EeX8IYnxprVE1D8ge4mj7mvLEqAto/Ejc8TUzzMmtzw6iDHcCfv4zs378fAGPcx49dXj4+JsPsqeW9vDb+paKOberv401cQyB1GV9qr0HtnYJ88OeEFSIurYZfnDJDMoeXKrz4Fp7k3PBZrhrpo8E7FZXkpTTcT0wU0EsJGnV13DQxjxeL60gmqhE997PGNJMn81fg0USZ59HRq/VwQfA1ChJ9xEQZXfLxKCQRbdyCLlzII/2bqYgO8XbeHM6pFnJwwMnxKZfQI1xORagCTWI8R7P7OZd/jCLFWtyGTobkVpQpK82e/j8PWBpwKtixb8d/q4f6/qfvfml8599FEAR+//vfs3r1ajIzM/9mgxizXs1D113NHz/9Grk7xvTAQVJCkvkuLYLuIMpABjpFJxp1DxURGwrTWowjF+O09LA01kVnqohq/3SG9Q6WTzrAh5/6+eL+Ur6RckjKXYjxahyqMIv9fVzeUcRPxxpRxms5YtaSIIlD6WWn2oCQns27FSFG1aMcs+v4+EiYoNjMW6VLqR2uw6UaIilCQhgBWRJdopSxnlIGtVrurctngfNq5viOYc7+HaPMoUsbZ5y3jRH9OQLCDJBv4cJQByFtFsa2uWTI2ikM1TKoGEVMRRDFUfJSvYzIhihJdNGtdpIvBQmrfVzZZ+GoWUNQLkebiiGmewmOpAm623n6wBl+uCyL3931K1577bW/OzYfvv8BpnH5GJNw5YDE5/njucm7A6dMzWOTt7JXX445Uo6utg5p0zY8/f+/9u47vooq4eP/5/Z+c5Pc5Kb3BgESQu+9KYKAoICCYC+4WNa26qJr72UVEXvBgogK0pt0CB3Se683ub2X3x/7e/w9PmXXfSys+5v365XX6yaZm5lzJjPfe+bMnLOf/PgeokSxzC1dQmXsVmpj17DAfAyldQ59Qoc5JepDh6qV6ECQ/k0DeTWuCJEMJNFH0cl0+GQXcIl8KP0+AlIJOmcSEWINOeF6mpCi8TdwuLKHxRMHsFtpJ58jtKrj+doQxSMHa2HcaBITE0lOTqa0tJReT4AXjCFUXhvVyiwORHUiDZwkFBqE1mvGo1ZiM2yms+V+YlUlNIlS+DxjM9Ma8+ljaaRVqkESlUOpq5wNxgic4nLm1Y6g2uDE4TtJ0O9HH1FBoeQpJteMoiHKwD0TLqAMDsIpjkEeTiSMmNmWLVxmPY065KFHEotbd5Bv++3GY5tEvSoKkzSGbOfntIsHEzZnYAy6kSkSaZHvICyOQRTsx159FaMCKkShMP3cJfQza/kw9XPyXAnADYhkIqKfVnHh0dNceumlv+BR+tsQWhqCn0ylUvHuu+/yxz/+kQ0bNvzD5Y+qXqfGsIsvIhfSqAujkJpZ5i7ntoZyaqRRWCwruLxFg0dVyZb0XiJD9fglLk5GSvksUY5EcYwhEXqUQR2++g684VwyrDNoVrfSKUlhnzadbwof40bzehadXk6XvAV9oJIUl5xkt4giWwVlkZ20awMkeC0EREEk0mrGdH+JQ9RGnSaJCT0H6ZI58StK6OdspsiqplInojzCgVXdQWfkBWJ8Xmr0kfj8c1GL6ujrDRDnns54s4R4u4QOhZ/X7KuZkTaWJZWjuKViOMN7qzH5qlmnvxSVW09M4DR5Lif6+hcoastmgNnAqhOFOCR+JIFE6iWX4M9dhGbmdyhj+hO2deFyuYiNjf2H9bxn717unngzrwyI4djIQeg9WXxm1HBKq+WoahB3tpxmZlc74mAqyXNuwLvhXgaZo1lWPYkXi15iY2YxQVEYQ6ibatM2Pkkw4JWHSfFE8ElWN7uyN7Km8j3uqDuBOxygb8MyUl1m2mTxmEO5RAVcKL3H0Smv47A6gU1RfbjnEz/jpl3P3qjp9JBDWBRCKatnjLODF7J1uLxOAAoKCjh3/hxesYgMh5Jd6gC9fYZg9EUwPHCQh8pTmd4eR6/2A1o0vezMv5+3Mq08M+Y6jiYd57PBDzPQbuXt4/GoxI2oY9VUdzopsg2kKiaeKOlxZvg/pFfZyyfyp6BtNcMrVhBEic4fxC51oQo1Mb2rlrCoFXMwH2zXUK5OQqndzYC2fugcacRKzpLNdq6rTKBZZmKM/QzyHe+TMaGIdM85hlm6MHnFTGmX8uDpm0jrGkTIOYYYSw4KUQ/prXdQ5Z5At8cKgEgm4njxcYqKin7eQXkRCKEh+KcYjUY2bNjA5s2bufnmm3E6nf/rsjcWPUquXU6Gsxqf9XoGFryIrBPO61XUaYNEe+0M6Mqn3nsfDukVzGgL0xbMJdPVRhgJ5eLxvBx5HVMuuYzA22sJyR+mVbWZOJeFlw+OYM2BceTbNEgVNSgCBh4pHchfTyu5oredIbahpNhbKI3oRiXZid/wOl+bwhwVj+PTlGoeHFiDIVjMfmMkoXAquZZcxncWkeaU4sWL0Z3IGc0wDmr7cEA9BouikT6hDzEqP6DQUcUwewo9ovGsjR3CxxGzKd+lJDD+Jg4Zh3POMIKwuBKltIpYfyefpexhtWkwQYWVdwo3sjm9HIkvBpMzmr52L3P0fm7JTybLGMvg5Fjem57G4U3rWbx48U/aJ85wL8/Iv2Zk/gAW258mIrSfpTWDOaIdTESolQp9CJn8DOmiDcQnBWiXpVDfaCfBrWZ643Q84l5SbXmU6wOcUCewX5vFZOcBpjkOMt6cSravDZ9hN3KxhHEdfUi15jChM4lch4u4gJNmRQQRYQd14sFI3cm0v/YqA8cbODUlH69nCHnmPPYE/0h9OAdf2ENkyM7GIy8AMHv2bCrKK3DZ3HRpOikzONnWsY8kzzyiej/kSOLX1Mf8iZWnR7P0zHK2qIdQrj9BitfDREcZQZmdC5FWKiJrSe+NIVg0idDpc4yyv8Fk30y8snPYxHKcrsF06r+gxNhAceZOAuJ5zGtOweivIs9/DLPCjjgUQCOrwRy9EatYjN09lNXJ0XwWm4JFa0cn76ZFHQDfHO6LWMCp0jKy+42iKiJAjV6BQXaIpEA1Sl8cYbGI6bUPcE9eIbMHDeS7+HaGjsjHqPzbHXDV1dVERESgUCh+9jH5WxMuTwn+aVFRUbz33nvs2rWLWbNm8corr9CvX7//ttzQhBG8oC6nUVOENCQlKgSDnEOJlKrIcHRw1niB10JzqdFKSPIFUXpyMYsNtCvF/KHxMK8kLkISLiWUmkxC/8FUfF5B36n96VS1UJx0nNhmNXF1qzkbZeZAfhUDumJRBaXk+DbRIlPwadYhoj0yBvVEs1edwFGTnZKMKu4o70ee2cNZdRirVEaGQ0GVzs0zfbYREfDQKU8mwxNmWM9lzKlKoE2rpSSvmPmutxjW5gdfMtK4N4i3SrC7ptHQfZj+2gFEKsNs114g0lvHuNqbaE74nu3R6dglIUShaHoUMgZ5LpDlyGGQ9xR/LbzA5b2NjFp+M4r/9JS32+1mx44dbN269SftD0lYypVVfYkQn8XWdhS3PIFuuYRGST6ikIl23bc0aeLxOp9kkNNKx6I5vLj6TfY/qMEkPoxbEskO1RUUhl4mWnoAb2gsHa5RNMon01e0FxkeQiENGf5P0KHlhCmWKU1FRFkk7B6wlRiPnukNQ1iXVMrx795mgbQfuX3qWR/0UqO1UmdoISgSUyG/iqeaX+RQtIcTzqtYDKhlWpqbmxmWnY3eZqNanYVdrEYprqFb7uZkVCljHQ48ce9wQjkLcWAC07urGO/YSkjioVgTxe7ko+xNPkZyzxUMzu+i5MlvGRt7K3fnPotXVUep2MXIRhlpTjmZHgdfJDbz3OnjRPqbeCtnH/3bp7EvKos4n5RkyYck9ebzXJuCZ3PjMXlDTLSWku33U61JpF9PGFFgE9/tOcPtw27ihhofDpmCDvkg2hV5fBJvICq4khLVWKKTPqJHJUIR0BGW5KIm54d9VlxczJw5c372sXgxCC0Nwf/Z5MmT+eCDD7j99ts5cODA/7jMQ/LLSPV0EyaSuu/tXFPkYVtCAuluPX71SSwRG7igzueY1s0Z5VDuaL7AbQ0RHDL0Jah4i2ktFhrUajoX5+A5E2DpfhnPFA/hs1Q/N49s5tkBJbyQq8ful/BO2ik+zDjPDl0/DkT5EYcGkOcPU63MQ2ddQCCUQK5VTmZXHrvivZiVIbS+dJpkA7irdQ+ze47TqgyCpByLzEymPQziIAneam5qP0y7ykeluh9+y+tkNE0g130BjyyR5q+PUjgnl40ZN3M4+itSzeOIdyt4InUyIhH0sSrJt5eQ6FAgCkWQ67HzVoqBvvYixtz40o8CA+DNN99k2bJl/22Wu/9VUEGKeTCDTzroO+Q7Mtum8GGqE60/mXCwP2LrNYid42lT+hFpdnGju5DoonysX79PSHUOvaiBO7pep0uShjsUx8pTM3k/1cQ3sZWUq32IgNPKPO7KuoMumQRxuBe3ZzTJtjjMwURqtA7uGf4upz7ZyvBqOZMuy0Ih6WF08F2WWDfx3ukW+jh7SPa1sE+fhrf3TqotErqr22h8LoherKV///74j3aT7T/MZU47Vzs7yXE9w4Nl8RyPqsErhhHe44xxN9EbvpPDyrvpZBRD6q8nzalHHQ5glGxmumU4hZFpvNzZS7dMgSuYzlkuZ0NCFjM92zhseoozxi8oi65Cqj7PhK7B7Iu1ERsoZXjPUGzey1mXIEUcgsGB7Rjl29CK2vF4C7ni6NN8lBTLGWs14q5Sjl2m5/toNTWKwQTlvQxz1DDJVorCM4TdhiHsihEREneQb+vigsjH+uqGH3bZ1q1bfzeTLv1XQktD8LMkJSWxbt06rr32WhYuXMiyZct+9HtzyMmtHZvZF2llik2B21pBOJxBvH0M5/Vt7NfmEwqfxiX2oXbk44/4hkGuHUj8k3GLJMR5Taj9AcRKBanL8/jrmg+4f86DhERK0n21+FQe0rxBtOIekkMbSPTlsLh0MSONrbiVHj7KzKUyVoU8GCTK7+XdA6monEkkuo9QFhFC4Q2Q7Ssn1+FGLxXRT19DhTwGWciJNCylOiqRFtNzJIRr0XiT2W6ahlTn4pg6CZXoDhTfvUtSfhrncgOkhiDXZsEUrOPqicfwk0S8X8YtlnVsiMxhm64/sy3NmIKn6LBOJOuGfhx3dzHKYPqhvioqKti6detPbmUAhMQB3MbnkPeYsK/XEIqv4soGMSfVF6hSJXNLYyRfJ7bjkn1LsnQ9w3x9uW9AOp9saCbm5SL+VFCIVNVAjTTE0ObbiXT0JRx0I/VDmVRF30AGWyOLsEnUvJ94JTdZMpGIHDREqrBpm2k5IuLo17vInDiPKZOGIhJ9hUWixSKKxadqplafTIUmggjpTiqiG8kPfY7BP5TTdSVItDEMKxqIVqtl/9EOrh4twSvdz25lGxsTa5nTrKRJGaAxOIyCpkUkiL7D4KvEqsjkqH4fabJdhHvvxal5iBKNhAvywWQuepvn37uaIQXxRCc3IArMpVkWjcQvZZhThM03nNsHdjLSmkCxehg3V7cxvNfGvhg1p2Iu4FBWs953GXYScYjfplKSzpxgK9/2e4X9ycWcWlNH9K33YJZJ2ZngIEJ8Bp38A/y+OLK6B/NRkon0wD6GBb6h0dGHGyojaVe3UVXQRjg4igOHjhAKhX6X/RkgtDQEv4CEhAS+++47iouL/9vdPu8aSziTcJzIiOfJuDLMQvMZpljPoFC9ytXmRoKkER0qJSBx8Xz/VkKiXpyKHhTSZi5orqY76jwzes6gDAYpNPYhpJOyuqcGmXsU4/xbGePbxCsn1OR5SnBJs+jTNYUOXQs9Mdsp0Ydok4VY1HmAHKef/lY5N43s5umhW7mgjyIgEhMSd1Gqs5JmzuVgXDtB5Tlu7N7HTdViWtRfYld/hLRzGfsj4Iv4ZgIBCf1s3dgUQco7drOxcS9DputoC84mzxLDiM5kdmQcxiuzEha78IbkhP0RzLcfZ0l3I6/HpvNU/DhOJ1v5sLmZuw+d4IK594f6+vjjj1m1atV/G5Tw75GHRKQGa6jUZNCmMBOWNxEjK2WqbzPLqn2kusIMNqegdC6mzH03f8hOAbGOr/puIdkVz6WfvcRXbX7S7DCmM5bDKVvJddixi6O5wvkhkf5zZDt7iBIdo1cSydo+dVxIqqDKuZZ9DzVRcd7KwD9dT/qIUXyWmEpK10wya/9CcvsjnJFcydPpo6lR+2iQJSENyXCiQBtsI/LAef6SGaJx+AzWrVtHQX4BLbIpOCNnsmTmi4zsHMzYzr5kBkN8FjuWG4a4mVp5F7XSMHbRcTYZRvFa/Hh2xXmI6FlKf3MSUao7iIr5iJzbr+PCO1+iLQ4S5bOT6j9OotvD+A4dhb0GUh0xjOhqYW77Yd5Oieb6/tns0TmJ7VnAlPIVXFtzjpDkHbxiN136dlSyJo4YCjn+rpxBw26iSNuf4RY/+f4j6PxmusL9qZRMwGRfSao7BX3YzgBbDAN6pxPrHEhhVwa7+Iht1dt49NFHeeONN36x4++3JrQ0BL8ImUzGa6+9xs0338yOHTt45513kF1Q83LUBLZKd+NytyCLzqMm2kSbeCsnuRaVpJnZjnVUyBT0yCUkOaW0qf3s0fQQDjYg8cexVd+PpY5S3j6WSMg/kM6Zn3H1ulW8nPwJ32UuJRxU8OHYBgqsWQTdqXwf46PRuA9kPZwUj2ZCh5ORrtNMbq/gC1NfWpRqWpUKCMsg7MMjk5DsCrIjLpY57VLORWg4EWMnJ3yBePtCGmQ2TkbvIS1gwui1MqSrgYkdaj4I2zjx+Tuk3bMIt3MwzxWnYjdcigYrlwfsBMSd7Nek0aYt48HMZJ6/MJcLikxaVZuI9/m5+9oFlFtcxKlV5Bj0AHz++edUVFTw6KOP/lN175OrKbnsRZQHTFh9Dkp0ckzKk4TFPZQl38ZZpxJd152UapQkBTJIF7/PYVM/RA4rN/AHLul7NTMvTGN6lZ++Ays4E11EbFjMiJ69VCuiyA40UxtxHK/fyzj7N0hqxLx47AD1tiAr5v+ZrvTTHFZk0BnOZFVJN2/1baJcnMnSlk6suizyXCMxyx2YFUEurbiJhbUZfJy7iU25rxOHgbH503DFx3PJJZfwyrefo5w7nBXnWqnRpvJsjpcxnv4kiFp5qrqa/alm9sRnM63TxNKWYr6Pikcjquea3k0EJX72ikEf9hAf2RfFfQ9Q9vRduHXZ9EkqQOeV4hTHMLx1Iouqu2lL/pKoQBefSrNJCNTREtFAgySMR6QlIFcxvDMSsyZEStdkno7qh/nbY0T4Mxg1cC5loRaKNYM5I6vDI9YQZhAmsRepSMK0jmw2mWwckwzicLSfWoWdVE8TMomenroe0tLS0Ov1v8JR+NsQQkPwi5FIJKxdu5aNGzcy/4oFvJj4JnHpJhb/+W93ytge+Auj/KN5sfAQYxqnE+mP5rvEL5jdqGZSWyR/KDLzoulyZtk/JNvhIui+QFlMPSdMPTiJIFH+AFXSwUTcNZFHX/6KPjcNoS5pJNJAGmUqC7c1hvBHPo9dLqErsJQepQ+VKJaXo15ghGkJK8+rGWEWcyi+hb2aAXhldWh9kbxzSk6TSk2DKY8LMjESTz1xlodxy5x8mLYdn9iLumc4953SUR/RwT3adnZ8/hL3Xf4aFkc3Re4GTqacoT1yNw7XXNwM5pDKT4LLTKdax/C2BELOBHQyC4leP/PsBkTBAP2jI+kfHQmAxWLh7bff5ttvv0Us/ucuAEQpFUwxRnNKpcDrDBHp1eOQ5CMVn0Ek6aUsKsR1rV9R5K3gjE5DPm56VI2813cdhd5kzke1MGx2JBUHlPxh/yk69tRgVsUQba9DIbIg1oixik9hC2k4GxFBnljFlYXDsQ0Yg951Pc3+o4TU5ynsTsQuieSk7BLCIheIB6MLfIk3FM0fz05kd2ITx029GMPFlKY9SyikJVVRzNbzC/AbC/B4PITOtPJxnA+17jBXaCJZl5DIlPoQzQnraIsPk2Ubw/xOM3VRWynXtNLlu4tGiYQ3UxOQh7vpCOdjUScRCCWQEg6Rdd0zvP7Jm+gvlWFWXE5hYD91sjYkIjsGaxFiTQfTzXoU4UqsLKdNdYoWXQkHo4vobx3LLYdzsASdfH70djrTQyReP5Emx0ecicgj2m3m8g4L1ogj9FpuIFb7EdbIemqlM5FLzajCe2lXTMEcvRenYzYr/fm8+NkOnnjiiV/82PstCaEh+MXNmTOH3NxcFs6fw5Y7tgJqAMIpkTibw1zWlEzYocYnDlOl6MfJLBB7I5nf3E607CwZAR9ZoUryrVv4KrIBhcjM3G4v3dFW/OEKouNzsdxxDftf/xTtMDuxE+7FJZPQpN9GYagZjyiN2b1r8fk9FDXcQZ+4VdRoM3HIpCR4E1hY52CqSMb9faejkHzLwVgF9SoxNTFdNCg6aZIMpCzlPPFeMT6RGklYgS8Yj8Hcn7qT29ne+ja5K2/F0OOnX28Cp5LqUKu+JM0B75q8FFgKSXcfZH57FzVKDX06cuhQttKqiMIl0qLw9XB0xx2Mnvm3yXfC4TA33ngjTz31FCqV6p+ub6u7kxd3Xc3ItokoREMZFPgAm8yJOxBF0DGVhICUnfGtaGgjRBGarrs4Halhtu1r5PoThEKz8IeNRI6WYiqYwpVtVs5GShnek49T0p9AuBalcyzrM4o5qkum0CwhqUPHF/JsZloCBIJiLmkDt/Exdkg/wui1Mq/9FLqgj7F1keTY2/giKcyOxEouax+FTRPF8uYYuqUBpFEL+UYNsUUjOX3yC6ZdNp0tZgNXi60M9qn4NF5Fl64btzebWqUHS1wdV9TqqXEN4NOk6QRkEQRFFvxhHfFOHYNd0RxTzkFJD0W9zUT7TFx5RybnH9/AEf0E+hU8y8BgEvNnfMmGQ1MI+sx0Ju7ljhoFH6Q4iPca+D4qFWWgC7XHyH2ZH3L29bXcUTSRHXMLkYXtRIfKUQWjmN4u51RCmPygi2zJJpR0kN2dTUfmn0kVich06Xmm9TWQeujxpHCs0UYwGCA1NfWXPNx+c0JoCH4Vffv25YNP3ufqOxfxwgsv0C8niYbAZ4j9W5DZumhX+ehInscg+/uc1Lt4Njeayy1OxJJzfBKRzxJRCQqZhcEVK8l29hIZPsOypNn4w/EM79DQaSjh/BOzsH59lManZqO7djofZ47gqPsGnNI9/DVpOE+XuzE5Elhh+gN+kYjj/d+iSr2F5XVGCmzniZBI6ZLpeTQvRKHvHNEhK9Pao3knPp9epYt5bV1EBGLIdHQwsGE/C0v+iF+m5ea7+jLMUsw30UYyu8ZR0NJLpXEqq2MiGes+gzg8l7HuUsxx3+LwDWfVEDuSoJbCXj9OqQ+PtBe3ZgDuQAiVVMyDDz7IyJEj/+5T9n9Pb7cNl02KTL2fw5IZRIkCTKxPoyuyjDy/B5HrfuzydZjU3RjUf6FM9gZSfxriYBOlytFc3nYMq6YvXxrnow5FclIdQVHLAaItOewveI4IWQ3b5AZyvD5y/aV0KPrwQl49A3pVyMJpzGzM4mykn+yWAFOc7/Jdxnb6OeazM3kdKk0DbcZ2avVTKLAYqVe1kOmuQ229H2f0Rjq666iIa2Nmr58V33zDnu+/59prr2X5N98if7+V9w71cig3TGpvMkmak6jFVnaaBvOFYSmTXR/TqYtjeGs2d5ae+CY1AAA3sUlEQVSMpCpxBy+nFZISKCNRspNkTSkHouayovQKNLOsvFu1h0t2XEpeTB5GSR4vpnpRqyq4riYBQ9twRPqvUGgOck2jhPSzD3GidCOnLevJXjmPGV0Sbjnewa0DBqANpjGqfQDXlafynmwnJyJjyZE6QWrGHBeiS5SKTlTPUe1AFrSfwaLzENTuZONe+PN9j/9obvffIyE0BL+awsJCHn/8cZYvX86nL6+EgJsTcVuxyQKkaLfQHRyHTVFNj7KLCF8j3QoXjRoHwaAfkS8RfyCOd7K9PFN7lOaAhGDYhDIo54bKSJrTj/FHzWWkX+7nTp2Lhzd8TWVwD5apM5mc0w+X1kekR4lKuYOw1M0Ep4so5TEivQl8Hx2PJPozJvli+Uw2ChEGmiXppPm7KbD5uNVbjUIUoF2SwgGvjs92vo+x5jy3TozGNTyJFKuRBtHlRDoLOKvfxKLmKiZ6d9Ium0usT0GX+CAjW0OUJkQz2JpGnVRCuU6JQmdiUHsBg2s7eECu5pmvK5lct5lwOMzKlSv/z/U8Z9Z8Us3VREW1oJZ9TbTjMuKdtdiUicR1zqcx/i+4VHl4/YtweE9zT1UlvWIPTRGD2J5zEzW6PPQuPTmeMmyyGFJ93RQb69hicjHV2UyzHlJcaSRL3yYmEGKfbBxq71DOqhOZ2vsnquPNbDUVYvRGsPr7SaR1jeNU9gbGNz3EwcS1dEvP4VCWcPv5JaxPbaCPVUWnaBh/TWgkxRXi7oYShpl7WTRqKsePH2fGjBm8ueZJNFPn0azfweJzC+iI3UptlAOfz8h2vZX+9uMMbZvEhZQojO5uDiQE6DW1IBMn4AybuCAey7heJVmJX7A/fg7DW3MZMGwmTYvEJBSH0R1zcurIdnq8ZXwpCeDXaemtgLhgD5pgEGPPS4yPHc8D1z1Fs/YErcEzvJE2mnaZnFMyKX3dbhxyEYl+P3EdXvwsYItsIk2aAYjCHiTSveSGQ+gcbRjcYd5RJtFWd5yBAwf+YsfXxSKEhuBXNWrUKJ566ikefm0Nj01Pp1pcQnTYzBlJCt8r5qMJeVjkWI0kaGB5WTrr3INZmziEDToXDSo9saFDWCIOogqKuafiepxI2Zj1FUH5FOa0zOCKOhNmXZDl8xbztjpIz47V7PyilNmXJLE9JURaZBaxHi3hYBR+33QS8JAk/xaPdQVOaTSXmeupMJ3AKCnjjnPZ+FFjlR3nRH0Ne09J8MjURM6eRNSyxRx3SrjzfAJWcSbfpng4GuVkpvsAu1J6GWJOZHy7gmjnXI6kHedEbDeaYBTdkqWM7pXTzz8fTepC7I1xdCa9y5U9+fx1fzc1Yu9PGl/q7xkxYgT79nmR5ExnyTawSA3UiafQ4vcgUmbiCyfiF8lBBJl0UBNdgS/YzrY4Pf5gAhdUJsZ6Q3Qru+iSBXGqd2NXN3JBk8nYliQMPTI8hlYa/LfQqPBiCRUQCqsZZ5FyMM5Gc0QVN7XaSPI6WV9Ygl/ayxXly+iWq2kR5/F5fCvPnDWSZckjJvkAB3XDcMkqEIeDZPZmEW/1ERZZmK++iuufvZ/Hn3icx//4B/6s7aY65hRtylzUnjgIxvCecRT+YAEu1SCq0kWYeJ/1fT7j0vpbmF+5gmDhVXSQx07RUqo0clRhH5G08uCARAqkr9En7MPXP58rlRlcElUO/jweTR1Og8ZFpCjAlXUaltYMQBYK4JJ1c2tSL8ute0j1BokON1MqyWNE81+QiJy8mx+DXVLLktZz7E96gSrdLPr3HmVmm4dXciS0yP18lZfCPmkfXJ8Us2rVoz9MLfB7JoSG4Fc3Y8YMOjs7eXLnTpIXF3LGKiO3ZwSDFfsRybYyuPYhYu19OWF6mGGWIIhPc1KnZ5T7A77XwXZtEdeXTaZBH8F+UytVBiMjumeSYfXTaKjnxf4ldIfHovOm02/+gyw/omF76WZe3v8OEVYHWfIs9vcpQWIYgTa5g+RQGIlkP1qnGvkpJ8kyH1XBDq5oklAi7iBXoaUwvR+xi+cwXRnF5DYjJ6pt2KQG/lzQTgLvMLxHyeiKGRzN6WJj1BRGyz2sqrDSHcpmdL2IipRPadW2UNR9mHKDnIWdPTwnPQWRrXj8Tew+VU8f+rF27Xs/u36nTZvGq6+8Qq43yJeJeYQkx5ldfh/hQDvNxjAN8uF8H3sPgyxfcnnpNYQD0bQo3czUvk9syWraVBL2JldiFe9DRh1RngA3tPQjMSaDx5ITMPnaSXdHMci5gxnuEsK2Yj6KXkF/Rxz+YB5Vsj6ovWWIwi5Om46g9OnQ+O1oPcepiXmJQV49tfENrE/qpFa1GLvIhl95HpPbwx0lRfToxawc1IvRZuaamLk0NTVx0533sfPTL5hzyRXUG8roJpHU3kzilVpcgSwskjA5riB1ETnMbJrOnTVSOkORqHsncGmvjPiID/ksycwHxQsweYMEXGqOpcVzXjaIJImPNl03WpEfj9xJp6wvGq+NLLeLAa4THDJmkOOrpUNpItGhYbNqIkptN2cUOTxY20I4JOOIoRWpfAsBdwafm24hylNLlqOBu2uaSfb1Ymrbxc7Ifqxc9Cbjzp7iWfXZfzgnyu+FEBqC38TSpUvp7Ozk4SuWkDx8DNOnfoo+lMV55XBKjbtJ6k0hvWUh0fINZPTqGSNNxiobQ1fm5/QxX4GXVD5MO0CL2kAfRxQ5PdUUSp+jSZFIrDuEW+onz24kIZCNKCrMrTm3YbtqIipPC6nmDsze56ntNWMvjee0WkKUppoBEiNZ8RJ8gSLksbNIGpeBpV8TMp+P44pyvGhwuwIsrpWSYdewLqeGTo0LSzCfxlgZqujtjOpJIk7aS6rHRrd4HDZZPLHBMuTORtpc/fk4rYwsbR33Oa+mSmtGHRKRf2wUTmsz69a9/YvUrUgk4pVXX+XWebOYfHM1TXEN+CV+xL48/PIRVOtr6R+yk2Prx7M5LuLdEmrj1xIQB7ir/QitGS8y3jUCY6CJeLuWBNslWFR7kQZHMrw3mU5FCQFZNae1Mi63itEHKiiw7aXWeIi4YBe31UynRLaMr0x7iXUXYzRfjSKoo1vZTpIzhgK/HafGwSmdn4KekzQqEoi1yhlj7mX/gNvRuo3E++Xk22IY6Sjl2jfXcPDYUbbt3MmGLhip09GkD3BaNoJaw7OYnHv5a4Wap5PnYJOHaJKMoUYtp8u4hvVR41FEwDjLJsK4OBjfyeD2JHxhLz7HHLqig9xs3cReYxrnZI/RrezGJ/YTEdBwXifhVKyLSea1+MWjMNiWcGdrMzrvcO4Y/xFiWRkvZ4tJsm1FF0wg3zmLoOZextgq2aT+Mw2SybyV8T5jzUq65Fm4ZB2IpSKWL1/+P04p8HslhIbgN/PHP/6Ru+++mz179/HOw/fwzJCr2VcYQ6+8nN1x58lwBVBbJ+PR9FKjm0pphJIxrV7S3K0EDW/SqxoOgVQalVasmmLcIS/qkIg3z9g5qT/COakSlcRPvLMPjTFbGeA9g0XWj3jjNlQspI/JTyA/k9XGUThEFs6JTqFxHkASPsXtpws5ogjS32akRdWKMhDC5MrGLZbQFbWfPh3TmaU0cEn0Kr5U302D0oQML92SZIocRxjb3octJgcz2oqpj91NlNhOfdRJyvQdBMQZNCsSUfniWSDP4dNjd/HVV1/9Uw/w/SPZ2dk88tc1TJg0kSsfHING35dZ3Yd5JvcUsYpiEm3J+NTVnDAmEO1VIgkXMrY9gAc5SncWUR4PxaEoks3XYpe34/dOxa3MINYbRZXme6TS/TSpdBzTLsHglTKuM5KvYkzMtNoJG7owSxO5o3wiB+NV7I1SURjjIsFr5L7it9ibbMWsU5Alfpss6SZG+exYJUoOmKYwVHSOkDuN2N47GNo9BL3CzsD8eo4fP85Nt9zCE39+lbLrJ2KVegmgZUrdCoyhIo6oz6NVHGJY7wTmNw7CqthEmTxIVLCGDFs0c5v7kOxahEcsJ6UnjNgVoqBbiVPmR2n6lAOmXCyiIOmhEyhDMUy1N9Kp7OW8LpqDymmke8wkas5i6k2lwNrIlKZxnIsuJUb5CRFeG1sj84hTPM9JRT+8iMj0bae/7G2yuq8nTfIm9eF8AsEktm/fzuTJk0lMTPzF9vXFJoSG4DclFouZPGkim78azavOg/STJDBGciVJ1h34xfDoqAbizXMYZFEQFzyGUrOODXEySqKbuaF7E+8YwljlvRRZUthpWo8q2I0x6lq6tD6OR54n1XYlgWQrhwwTyLYq2RGVx1VNaXyYeQEFQeb43iA+qKBHrqBDlMZ5TTvPHh2Izt0Hh9hBoW075wzRhKQeDF4HEf5IqnQD+TQ2imx7HEWtN3CzpJN9SfsRa3ewPfYqQuIcdhYaSHQkkmSDGJGVzUY9MkmQGIWCKyNzWN1aTl2rlbfefobVr79OVFTUL163Y8aO5eCBg6y843aqM3fhiJER540hKDbgcw0n1tdIkaWMk7oQS3rMRKireLhIysJ2Fcf0WRyVZZKjsFMcu49z0sGYZSf48pCWAs0YkvDzYnaYjggfD3RsQSlzE3NmFdvzXuacqZdB3Un4ZW6mtSZwY6Wckoggx2OSGdscJM5fidsXYHllIqczHTjEYdrlTmxhCV9J/kiSO4bCgJ13089y0uBFaR/Gtddey6FDhzh4bCtvDr+a14q8hPFwNEbGtJ4kXOHznNHIGeKvRClORaJfQ4t6IuWaELeWxCGTl1IY2IHe1p/iVBfv5R1B7+rLXadmUinVMKdDwQldM9nSk0gkLkqli0iQfklU2ENvWEmLLI4oetmeXUmL7FUuKVnE6Kpk2hKl6EMVbI0Os0k9FTEhKhVy0p0pyEJVNKhbKexJQRtyctvghSy7+aGfNI3A74kQGoKL4g/33Mm4BTOJn3kZsxu6ebOglJGVswkEbWyNq6NMlYxbmsQU6+NkWN9A7zYwrm4Mu7IGkqZ8j8bELzihbybFJUHUOxi3tpUEdT0Gy+dUqSZRpZLSxzyMZ0qkHM56nBx/JFa5jf2ySzHyLQrfFThFFmoll1EdcQ6VfhOvZ/lZ2DiIVaWFlOr8LG/5jla1kq8Sh6B11xISG0iwqcjyGdmf8wJysYeMQBUucRCZx8uz5yKJCIgplt5InP9ZHJIGHoobzeDCG0goL+XKP83j7bfWMnLkyF+tXocPH87uvd/zwfvvs/CLL2h3BumTPx1vgh6L3Egfi4jFLS3oxfG4pU1kWiMR2UawN9eD2u+lIvIYzZomZtcn0aTwAUoGd8exviABmyJEhNdFr8SDPBhNnDeEQ9EEdFBumkSkXI9VlMvAlgIuqKV4ItbwbJKVgT1qBrcOpF/LdKJdfbkQqcNmcBMyHCHKJeeaqjyS/Kd4YkAls+LzKErJ4tjCBezevZsnn3qSP337DFkFtxGUtGBXKtgT/TGvn21hc5KICk2ItzJ3cmnPQEollyLzGdgRV0uixMinMVdwV90B1LpdRPqhr6+ELn0WpbJMzsvGY8HDAWkTIpGRDk0mZVyP3JdBQqiKh0uUJPbGcyD7G44nSTgWd4Z5FSbW6MeiklYQFnvRBv0MN08lzq9H5InmirbvqPf7SWy6n9R7etm46QCTJ08mOjr6V9vfF4MQGoKLIj09naLsAejLB+B2jyFG7GF1VjST/A3cUt/GqsTJuMUhOmUahvRGQngeBqePqzzP0SJOxSkxMLZpAMUJx2gXxRJVlMbkg53kmau4Oa8vy6vTSPZ1gygZm3cJF6J3M6tpMkvL+lKnb+X5wi20K4MsL5PzjSmKMoODWc0RnNP7UQW7WN7kxCFLQhOsYUFFNuWRUp7KO0ONToFavpY6jQeTu4A6uYlwOJJJNhWVegunI71oQn6SzXNQmM5QNOBmSktLuWvFCr76cgN9+/b91etWo9Fw6223ccONN7Ju3TrefftdJAlJFI7vh0drY1JHOi3yTLYxmKDSj0cqJcsqQRN00iCbTYf3eiKtDiriDvDIsE/IsNcTDF7LCMsRxts/xCDqIdj8Eu6ILYQdV9Ou9qMLd9CsOsQ+0U20xoR45lgknRGxHMj/KxfUfRkaHM3RxOMUm6bik8iwYaZb0UGOr4vGqDC1ignMbb/A+PRaFB+b0AaKuPKjP3Ly5An2HTmI+uhmivL0bDPGEeeKJd4TxcTWJA7FWqlRSXkydTDxdjGRwUa2JHvQ+bMIIaNOFYVJBYPdoLUPpFK1iJPa/biDAdwScIZHoQ5bWXPciAQ95Rnvc0qbwddxY5DH1PJ56kiUwek83RJG7klH5NZx3NiXyU3D+CphNwrkJLlaUUv/isEdyazeLqr1h7DVxvHVV1+xe/fuX31//9aE0BBcNI/c80eWLV9Bw5zxnNDqMctlHJQOJzNqC/N7rDREbcTHvbSpFNQk3MMLieNQq84wv0oNrpkYzSNRyEpwiOdSJArhcLxIqzwPXaAPSRI7+aFvORbnZ1jPdQQoZ2xHOpEeET6JElFQAziJ8iQi19pQB8O45OOp035Om7aMw1EDmNucj0NazOwOF16xlInWZjTqUqojqnGIVFSrVLhE3SiDSi7E1hInUXJOlcNg3sMR6CFj2Me89NJL7Nu3j08//fQnzcL3S5LJZCxdupQlS5awceNGHnnuL2Tl6UkRL0WhcZNkfJdDyiIU4jLUQRPnotqQ+GMRBaKoMVwgxdeCVeInTfEOJ8QW5JYBRHas4FTCt2Sqz1KScIz+ARVO32iiAkaS7TomSfZh8IzEp+hCgZd5JbPw9d+A13QNxxVTaVLYqVMmIAtVcm3FWCwx73ImewcZ7QlUKVtRnPmUUeqBuHWzmDrtBr766ivee3MtI0YNJbpHzKyh42nTlvF4XgaTO33cXSeiRtaHjzK6Oa73ExQr0PntXGE9iCGwn0quZ5NWQl7wHLERPobY4si19qVUI+WSdiUW+Uh2RTQS65IhkrYR0Jyjb7iEI5EewiIpovBYvKIgLmkH1XobcV4Fs+p2ciKihHjbUnIthxlireLDtEYO6JK5yeGnXN/C47c+xqFDh/7pIWF+D4TQEFw0RUVFvPrKk9xz52yuW/gK4biDVGm1bDHkM0a0BpHqJM2a4+R4kxFLbKDZgsQXRYS9D23G72hRNhMWTUROCk1HFqCI7MTjC1DEPdjkg4iydKN0FhIOnmdcRx7v9l/J4ZjBfJswEJW/gPxOCVFeKcn+XvQ2DVLJJmKDjdSooVtiJSl+Az2KZvbEFjLI3cONtRZMjgG8nt/B56Yc5AEFoOd2Kfg835Non8rEiksozzxOCDmr/nw/IuDrr7/+RTu9/1kikYi5c+cybdo0nn32GWYeXo78ypn4oiIIe3L5JiaNK+rkhCVhzkd0Mth3gPWpSaiCifSx9+GorAm5bQbDbD7e7PcdZ7RONtfqOaHswa2IRiK9QK10OM2qSahCLtJEdUjDaXhFBs7qHHSJ40gSqRnaMpP2eAe9Gg3De/sw0ezm7ahh9G/KR6l4nteNV1Fhn03SZUHec1ZSaXNQ8fYOhg8fzuGDx5gxbTyzEw7gGyCnXeHic8UA9kQV8UCpgiubVJzvf4YeuYaibj/7FBNojMhGE1DiFSvwhjR4xX72JN/FoG4/MzozKDbMRRnSY5H7qYypQCMpJcEcyV+Sr8IliuDBrreoUIwhz+5guLOKEm0Lo6y9nMw4S1DmYc1ZN3OLJvF+KEyXtonLbGdZmTOJng938tprr/3bXZb6D0JoCC6qcePGcd311/HSlqcpmD8PSSACrycLnTmFDP/TlMb20N9/ljEVMUS5IliTZuC1jEikoaV813cdOd4apJ1l2BR9iQiL0ekuEC3SsS6rlPjuJ0myFNGp7CEUey8a9zI6TJ9hCJvwhYrQBxS8ndtLmyKHYaI/kd/+JxZaC9mdej9W2in0NxFv02OWV6BufYB61WGskU1ownqiPdn8afRUouVq8o2x7G6aQNN7FvqHjjOgrIk/VNkYMm4c991330UNjP9Mo9Hw6KOPoXtex/N/eYH027IxxBfx5sEpOOQ2TOKz9GUXh5WjEYUS8Ym6uKDREwrNZbG3ng9TZHQphiIL9vJcvyOclyylTdwPVXg/KpEVj0iBR6JDovVyKjYZs6acNTmvM8HnZ78ihnvKpBR1q/gg7ywd4gyWDYrk1uYA/TuGsL3fcRJCVcQ48zhc9j1Dxs9GYwly8+sLWXL1EjZt2sTqNe8zf85l3JoZhVwLcUEbPfoa/tRvOOcNZsZ3K6mPqmems4b0M2+wOreNo7FBFrWraZRfzc7oCkxeOz2RIWa2WGiIfZyDqqEkBtMoV6Uzt24Ep/NOYPJ3EggqGNqcySL/h5zQzuWcNpcMi5OexG8orL0Np2EzLToXUYFuWlRahpmncOPJdB6xvMP4y2cyZcqUi727fzVCaAguuptvvZmgVMwzz71E0ZKnCUSk8ESfYjK8/RjkuEC90kxmuBun3Eqysopn9ZNQhNyYgh7igi7qY/PYE5rEEOkLDHC30BHoj8R2K82aSizKAyjU28kK2kgQlRIM9zLWu4UbDg/hyMCVHAlPRUQ8QWkXtcaX0XdP45R4KlNDH1MRFWTUvrXkBCO4dnob8yrGMNwboizyHDaxDo3sb4EBoFaoWVewmVPHXZw/1MMTTz7xq3Z4/xz33PNHLr10JkuWXMXy2Q20x5xF5/Hgj9pKSqiFHncqnnAUcxsdFDodbIsrpzj9a5TeoRh941nofo8IkYfGsASfLwWfqD8heR3J3ghmd0agDHfjMzzAqfgunIE/IHZ/xAA62Jz/LvOq+jLd3Mja9E7EjEOtOEt78jfYJGIePmfi3YQUihUrGXRCymvXTALgiSee4Omnn+aVV17huZde48vP1rJy0gy2y84xoauKDmknKR1pDO7MJk1ynHiHHpe+gwUdMZyJ2447YiON4ksIoSSMiHalh3ZdA9GSKmY4bXwuvoVzsaVMtR7kUGILaaKNBEMG5IF+yKXt+DTf8UVuPXOrUtC6BmNIDSB3X0Pk7HQ2ZPSluLOTPH0E73WvoamqhbfvePci7+FflxAagn8Jt914I3mZWSy77jrm970JyRUDiRCVEys9Q5k+inSvC2VITMAzlBn+bkZbjuBTSekfWEnMDaO4iTDHzqdhqz5FvPQQw0IugqF7GWs9hMlejE8sokG/hVPO5VxVeSnduvNE2RO5wtNLs+4kO6MGkR6qxBvxMWLxbE5K81CGvFQXraFffTU36ZayPqmLHEs0Y5LdDPL2kBPzt8Cor69n98efUfXOO4xcupTde3b/y1/L7tOnD19/vYU7V6wg0fAl95oK2KOYyjG9BHnIi9w1lksaPEiDEdSm7sEaHIrY1x+vOB6rSEuPJI5F1r0EOMKjCQtY1tCDUz6JaGcMUR4L/Xr0fJf6GAMdF2gI3Egn7bTpzcwJ5BH0q7mptpTHnAdYmytFh4nI3nzSe/IZpjRSaoyk0+fC5rKgVxuYOnUqH374IR988AFLly7l8UceZWvi9+TlVbM+HZwkc9+Ry8nrKaJT6cGqWk+z5gByn4kp9hNktixlXlcCi8bVkWGPZ2VliO6YYyQ1LeK7OAcpnomofWacoUhSeqtJMmfylTGbuYM7iHcVsdD2CiLgz/1GYyWXjydNoMgQ90NdDomNZdKkSURHR/9TMy7+XgmhIfiXMWnSRMpLS7jr9pUcf/JdrljaD4VJhVHuotOQTFKzjgO6OFoUZfSXliIPRxJ1KgaZL0xStJykkQ9RZxrErgPvckYZRV3ah7RgwuB4G4/yGQzhEhKk3bza14tcFM2kzpnMnV1I/s4sJqdICA/20ea0suXMUeZnzGJmeiahU5vw9BbTULuJSuNMtilOcEXFKbYcbqTukwrKysowmUzccMMN3Hvvvcjl8otdjT9ZYmIin3z+OX956EGWfbcD7VVphCLycUs6eKA8iEhWQ1BhZ1SPlZ7uW2hXBjgSqyfGPJLBvU7OJOhA3MqSjnISaSHCf4h4XzbxXQvZl1xBqk3HvAonSwsSSHHr6NudjE1VhUekZmtqA+VSA+URCWgCGmxiJSk2OXVRsQQk29gbfY7gl6WsmLeWWI2B559/nszMTCZNmsRzr7zIfffcx8iYIpqN2UiDElqyn0DSuJROSRofJY/FKz1Pr7SUd89YyOhpoEVfSZHbTa5XQbdWhsGRQpvCyVTft9S5oykVTadXYUMaUhHrTGScdgt9egpoCxsRi2VIA0ZGBbPZIY5BL9P9UIdHjhzh0UcfZdSoUTz66KP/8h8WfgmicDgc/kcL2Ww2IiIisFqtv+sZpwS/H2fPnuXuh++nqa2Ty0d7yE0ehyy8AkRx1BUewNJ5gpsLBpOdeiki9Y/7DD75eAYvawtJ8dkZGDuQh8ZfR01PBz3rb+Scuolu2Qz2K8ZhsHfzxJnpGLtFvDb0KAdiGxls6CatfSN7NLfi1Ml4cOAEstwWdr19L/uk6dQcrkQikTF69GiuvPIq0tPTf/dDXQOcPn2aSy6dTu6Vc7g8ZhpXtSVSpY3k5ewAAYmXhyt6+SS5isMxcUzvNHJVcyfFUUWEI/6CTH6SDIsEqU+HJBSJ3XYTa7J7GdvdwaVNM2hTetE69UT6tBzMfYJLLvyB79P2cTT+LN3acuKtH+MXtXJr/QaOxcTiUG/itfhchrrqCVlXcHOfXPLHJ7Br1y7eeustPvvsM55++mla/HLqsjNZ7txBVGQXu32NHJAXovDPYF7HCSoMbZj1F7ixZDS1iiji1BsRS8J0iyNoMIjYLV7E9bZ3OCydRqV4KkH5YXxiPdc0aRnkKeOcNppmtZoRXfOI5hEU0mPorllPfFw6AK+88govvPACR48eJSEh4SLvwZ/vp57nhdAQ/Evr6uri9TVvcf7Uedpam4iIMFE0pC8SqZS8nBy0Wu1/e4/T0siB4vcQhVWMn7AShexvn/47nA4+P7WZNFM/pmXk4a5oxHMygYiUAK8Hj2JR+hmsDuCqPIFbN4CKugYSpCpwe5k4cSIGg4F58+YRHx//W1fDb8JsNvPq88/w3jsf8sjkRXSNHohM+yUiQG+eQp1Cz9zOGhqUl3Bp+2ka5X2wKiI4kf4nhnaLeEf3Z7rVYtrU1WiDbvyy07xyeij2cAZHjAeoibiAWltOTssM1if66VFoKHDWMsscYr/8KrpVu1livoCRDsrE+bSI4tC4BhGSexmkGE2/mBbeqTmMNehn2bJlDCwo5PPb1vJdoZwnOrXs7tmILTKa7C4FmWYdfyoqJseSyrjmwdw7dA+Ptu/FI4YmlQqLNMw3mut5etR03is+w3mHloCkg0KrC53IiTw0EJF0C1KJnRmSJ8juf4SulmP8wTuMK0wRHH13DTabjdWrV/8qT/dfDEJoCP7thEIhvF4vZWVlBINBSkpKCAQC/+Oy4XD4f2wB/Me/+3/9XTgUBhEoFAry8vIQi8WkpaVhMBiQSCT/Fq2Jn+rs2bN89P47HD18kujsbsb1W0RuKBeZbRTpLivbEuyIpFamNsfjU7l4p99raGninFpMpnUhE1ou4dPUPTRoarjVvIOMzrGcjepmf8xZFpbcxMD2iXw+/CZ2avuiFDdzU2sLJo8Kt9SHKhjC7xjHaa2Caq2GP1SYqMt4E7G3kNYwDE+fxqWPrOLYsWP86d77EZXY4aqJrCiPJ2mciZPDjdx9YB+Lmpxsipdya3kqE9o1LB11Fp3IRpckn2vaDqIQOXk6bSDLRSbm5k2i+KtWYjPKyCpt5UR+H1ZJWhgofp44pYmHLv0agGqrnSUfbaDisXt58bnnWLJkyb/V/8VPPc8LfRqC3w2xWIxKpaKoqAiAIUOGXOQt+vdUUFBAwUuv0tPTw+7de3ji2aeRjookp/AzJnQM4dJOMQZOsCu9HTQVDPOZqQoNRiZKJ8HZzuTW85w3DCIgO49HHqCgM50cSywWtY+wwo0t8TEmm60ckqfSIhuGzL0Ns6KKDaYAE3ogy1/OfuN0rnZ8SlNKCPwRVEWU8l20iwpzO+OLRrH46qv5asMGRo0ZTfdJEaZp13D3lHTMx3cgD4WRaU4w3aKlKtJLts/Py6VuHsidiEUW5qRmBqmOWlZUepidbkAS46M55Tpc7l6SrU/SZWkkU1bAlX2fp2Bg7g/1EhnwIf7sbXZt3/5vMZnS/5XQ0hAIBH+X2Wzm6RdfZv2mLyicPofb1ZehUexF45gMgTxE4s/JsiXxeH490dI2anSnkXtmsd94mBhfJDeUjaAhohSzzsicOhHJHjNWdReH9RHUqaKpVicz2hZCr3qWbkmYCWYxm6NE6HxZXNqaiD1sxKU5zvp4MSsrjBg9kdxafIHFD9/B+PHjuWrRItrb2njumZtI+jKSCL+MfQnl1KR8gt8/jvyWbPLtfqxSMV8kKTmn15LuyaVB0cNjmk/pbj/BYWM0+eYkxrVeh3ZFCnK3BXFK/x/qoKWlhcWLF/P4448zevToi7g3fj1CS0MgEPwioqOjee6Jv3DdNYu54567+INiN38ZZiRKHUu9xMhRox6fxEKKt5u2iIM4FDa0wf1I/XHE2/rzblo0TtlopvSM4JhpD33KVcjsQyiSfM6meCeRXit9XA7EEmhQx2AVezmhmoBU3IcJniCRym2og3aG+By4NSI8vddx3cBhPPz4k0yZMoXP1q1j9erVjBq9BIlEwjv3vUSBLQtxyytsik5me7qLNw/HUBu/mR6lDadMSXpPGoTkVNs8aKWQ6A8z7+b//HxF8g+vSkpKWLFiBc8++yxDhw79zev/X82///1hAoHgF5GXl8eOzVtYMvwK7ll9gQ90J1mdvYugrJVSfYha5UzklheR9cwlKWhGF/ZTqtPglgQwhBoQK9fi0L9Dp+hyGiKk7IjvoFnlp1rrQaQ6SKUkizrRaO5JugenKIZ2WR6vZKVSr4gmuXsM5zByUD6K88ZWNg9/hcraKkpLS5HJZNxxxx2Ew2F27NzBY8c38H1sBZ/HmtH7XBh8Yr7MgwhRG9M9XzPX8waHDOe4oLFhcY9ELNWxYPqb/2OZDx48yE033cTatWuFwPh/CS0NgUDwT7nvj/fRP78/jzzyZ9LSyskb28PtpavYn5CBTyRhQfVwzBkbsUpDuAJSnKERlOjdHJI3MLNThFtZijj6OabaemhQxaJ2Tea40sWGyCncVtvCSFU5GZLPOS2rxuYt5K2EgfiDnTRrLCy5MIloVxLbU9Zz98wgN99wPfsPHf5h2yZOmMiY99aS1PoRXyb9GbF4H4awAlXwUqJcfThmOk+ZvoQxrQHkPgsyuYOYjDHoojJ/VMbu7m5WrVqF1Wpl48aNxMTE/NbV/C9LaGkIBIJ/2iWXXMLx48dYvGgla97wstHSxtj6Ri4rg6aIJmSWIuo1ZlojzjHH/TbDLXHog53UaSV8nP8mVRoRB1QJ9PWEiROvx+VYQJZVids/lLOqdpoVQdq1J9iVcJZEN4jwcFf1KMrjjvFKnplYZ19u1ytJDwfYs2fPj7atqGgIzQ2pLK3xU6XqS4nORp79FHL/RKJ7FhC038wRvY0pS8cy4/rbGDj+Lz96f21tLVOmTCEiIoIPP/xQCIz/QugIFwgEP0t1dTWTp0wnfvZ1PKmdzQBLK3W6Hj5K78Yl8yETGYl3z0Gi/IgO1fe4PZfikhbTFboJg6gCY7CL08qRiENhEj0+brLdwtrUAEZXInmWXMY0DSazJ4fvMtfRY2hjYrMRtV/PA/kSasQGRG9s4ODB/T/c/tra2sptly/nw36reXnkO+jkhxnQeBlizxAKuhXcW2CkXBfBd/MN6BU//tx87Ngx5s+fz9tvv83UqVMvRnVeNEJHuEAg+E1kZWVx8sQxxo+fwMvSU7xadA8vDS6nSg/LykdRHdnEDtOr5Hjs3NAspidQyHFNDC/VHscuEVFmCKCM30h65xjWZTdTZp/LW5uu5FTeS7ikPrSeNLqUFk5E17HM0kBY20idPIRaNJDL28axL+4Mn332GQsXLgQgPj6eJkkL7w74FIV2Cy6fFrdhB6c0hyChgWtcBYgHvvLfAuPcuXPce++9nD9/noiIiItRlb8LwuUpgUDws0VHR3Pu3FkuX3EJRd/MpMLSDWEdh+PayfBXEhJ56WsJU9Dal3TXRg5HdyGT1BPv8zGhaSh5DgsiaQ9BEVSqhuCUSSmXJ/No8mj2JrRz34gdLOx14RCp2am7hC2KuxjhqmNpRSEPq5bz6mt/pbGxEfjbg5sSuZYJtUuoCMWzR3ELT5huJCHopF2cSig0HN9OKK7oAf72wOe2bdu46667WLNmjRAY/4DQ0hAIBL8IkUjEsuXLGDtuLOPGjWfm0CnM7/8S9YZx3FpbS9/u09ilrSDp4fkyDV+m1XNJZyWt2PDrT9PlHc5n576nmwnsGfQhlnAqw3r8LG7tYbTTR1jXSZMikgGiL7FwCyNs7XxW+CgZVjXLRQsZPXwU1fU1fxs00ivmgRHHGGj7K80aF2FZN+2KeAyBDAZZ61GEVvN+8QRSIwMsXbqUQYMG8fXXX/+Pw9IIfkxoaQgEgl9UZmYmjY0NiE1yXtg1A7+tjYKOLBo0C3gjRw9hBalOOTpVNffmpXPLIA/1DKDQcYhKjQiVeD8WuYVvdVdToRzGt3FKXkhLYVXiJSQ3Xk+bdwoLygvxuSaQ2DOIFkUyC5RjWdFnAc8/9zwAw0cOo778JB5xgDxXB/eW2lhutZJj7KXLcIALmXqUjjKuuuoqXnjhBR5//HEhMH4iITQEAsEvTiwW89fX32DsZbNYu3ExxV2HCOJjfLcHv34nVaZielwfo3LlMMncyThLE1PbxTRpILbjZmaVTmVYj48UvqM27TUa9T3UK7VsztlCYWAna/ofol4ObtNq0lx+arKeIHe6jf07PuWTjz9k8VVXMeRUCTHuwzRoOgjFfICot572jjLejcnkUOkpqk/tZ9u2bfTt2/cXKfNTTz3FkCFD0Ol0xMbGcvnll1NRUfHD71etWoVIJPrRV15e3i+y7t+ScHlKIBD8KsRiMffffz9z5szh1ltvI9OTz6VjDpHfMgS5T8221B7ORUkZ1z6FLRGV7Nd1sTtWQlf4KG3GY5RhYn7TCDT6XRTJu1D4BlCuP8dW/UryrW6CqgoKnF4Cfh8t3uX8dcB+Vo26j2de/4jZN1xJRXcnUwenE3f2btxSKEvvw+5SDfVHK5m18k4uu+yyX3TAwe+//57bbruNIUOGEAgEePDBB5k6dSqlpaVoNBoA8vPz2bVr1w/vkUp/f6dgoaUhEAh+Vbm5uaxZ8ybbDn/DfZ/I0bgTcMmk5Hs/o8gsJdHXS6m6L/v1lzLWLCYoUeANG3CJ5cS59RQ5Wkl3ayhW52BwjcEtVqAIJ7BV/wBfK2dh6rwamUjMOJudzRntXHtlDG9seIfCwkK+ffUNNu9NYdPeNN7eGmZc9nB279zFrFmzfvERardt28a1115Lfn4+BQUFvP/++zQ2NnLy5MkflpFKpcTFxf3wZTQa/+HfTUtL4+WXX/7RzwoLC1m1ahUA48ePZ8WKFaxcuZLIyEhMJhNr167F6XSybNkydDodWVlZv9isgkJoCASCX11WVhYN9XUMTsvgr+YWDiVfwKvwcEvVDFLE5xjmrCM3eIRBng7cqtcJh4/z5oWjJAXKsRBHrWQAvTIvkc4Y3qzaRX9PkEq1i53RQ3l6QA1NOQ9xSpOLTlLLPkN/7pjtBYI4HXZW/fkxPv98PZ988gnLli1DIpH8w+39JVitVoAfzbdRVVVFQkICGRkZLF68+Ic7vn6uDz74AKPRyPHjx1mxYgW33HIL8+fPZ+TIkZw6dYqpU6dyzTXX4HK5fva6hNAQCAS/CZFIxPsfvM+n585y1vEMFp8Rl6yXBpWDAZ6dzDIfoAcFt7SGmdKjJdvlQybbTpv/XnShedzWcYxBge8JqE8SK1pDrL+efsFdDJc/RL0og5CkglGeY0x3bSfZo2Zxv0r+lNPC4nmX8eyzz/6mZQ2FQqxcuZJRo0bRr18/AIYNG8b777/Ptm3bWL16NXV1dYwZMwa73f6z11dQUMBDDz1EdnY2DzzwAEqlEqPRyA033EB2djaPPPIIZrOZc+fO/ex1/f4uqAkEgt+t9evXU1l5nm8+vo6dU66nXbGJT2O0pDoSkMvPElQUkxzU8o0xjjM6N5eU30ymP5NjkV526GYyyPcWnQoxUk+Y6f6PqPP3I8Yax9GIfiR4NOyUDyLTVcF+g4nE8Amu6BfDkwM8zLvlYcLhMPfdd99vUs7bbruNCxcucPDgwR9+NmPGjB9eDxgwgGHDhpGamsoXX3zBdddd97PWN2DAgB9eSyQSoqOj6d///xva3WQyAdDZ2fmz1gNCS0MgEPyGJBIJLpeLKxfMJvqyUVzQQZ67l2ste7izpRG1J5ePoybQIE2hVB5Pm0SCyeIgynWE3MAa8rxnMTXciCnUi0JsZ3KXjVWplxIZUJIQlGEPjyTSo+Nq+zpU4l5K80fjo4M33ujLm2+9+qP+hV/L7bffzubNm9m7dy9JSUn/63IGg4GcnByqq6v/6XUEg8EffS+TyX70vUgk+tHP/qP/JhQK/dPr+q+EloZAIPjNLFiwgMTEREaPHs3iusWMG7SYgmed9Kgi6VVXUy+ajk3pQBw24hXZUUc8h907kcGyj3E4sqlSZLKu4AhXNvfniioRzZI4RCIzpmAF0lAUJZrd3FWSz3u5KipRcF3SYE6VHaaUeUyfcQKbzfarlS0cDrNixQo2btzIvn37SE9P/7vLOxwOampquOaaa/7h3+7o6Pjhtd/vp6mp6Wdv7/+V0NIQCAS/qVGjRvHll18yY8YM9CEJ+Y/eiziQzPeKeUSFN3OV+QBGvw3EFiRyD70KOX6pnTynj+EdCSTYJ+JVdBCSuFiX3k50sAyx7AIqn48XzrnYHW9nqzGDsNhOb2kxjkAHLVINde5fd7DV2267jY8//ph169ah0+lob2+nvb0dt9sNwD333MP3339PfX09hw8fZs6cOUgkkh/GzPp73n33XXbt2kVVVRV33nknVquVmpqaH4XJb0VoaQgEgt/cvHnzUCqV3HzzzXzwwQfkXzWOjFfN1GhvRBHzGLHBTSgDWsyGKs4bvuWq0w+Cdh+BsIYnW9/CK5ZxIbaHRMcfSHGmcijxFnT6s5TGOVG4k4jhJAvrY3E2ViI12bgmpYPibMWvWqbVq1cDf7sF9j977733uPbaa2lubmbhwoWYzWZiYmIYPXo0R48e/UlDr1922WXccccd1NbWMnfuXB5//HGefPJJpk+f/msU5e8ShkYXCAQXzVdffcXGjRv56KOP8B7ppnTzZ+zN/ZJRZj8RvgDdwam0aVrR+kCrrMFvv4cU3kTqj+WZxLmc1aazvDkBaaiJ3XGnqVakM818AovpE8ZWL0WfXkVSTiF5hdcxe/ZsXn/99b/bz/CvKC0tjZUrV7Jy5cpfdT0/9TwvXJ4SCAQXzdy5c1Gr1Rw9ehTFCCNbsurYJV3FTl06AaIY2DCLPi034FFAdt21qBxJ6Ow5tIbzaJBHUGSv4sOUPXyVXMw1vR8TGTpL2K9i1XdfoBO30ew5hMaQBvyt8/j3Fhj/ioTQEAgEF9Udd9zBa6+9RjgcJhQ/A7somhhvBB5FD38aco4vMj20y2IJhGLpb2umRp7D/X1zkElrmGrfhj8cS6a3lbhgD89Un+TazkbW9fsOuaibdt8iyhq7KS4uxmAwXOyi/lsQ+jQEAsFFlZ+fj1qtZv/+/azsk89dL79Pd0wx5WoDYcV5YrxHaJMsZlNGkCW11eQ4dNxWOwiN+jbalBmIA5l0yXawNkHOgnof3SIZJyPlXF2WyvbEg2xvd1D9XSSr7n7wYhf1/6S+vv5ib8KPCC0NgUBw0T388MPcddddWMQBzPPzaZXHciIimhTJfuSiUjSebPzBPEoiOtAG7YjCFzimyaNZLiUxeIGAKECVPJ+3UtNpTtzMQvcHBMVlGIJdxIZ62LNxGxkZGRe7mP8WhNAQCAQXXUpKCk888QQrVqxApsnkrrTLaFTpybXDEIeXgZ2HaTdcy+vZ51iVp2VDQgcuTQN+aQAnBlT+RHrD0wkHUjB45cjDAdam93JSqmX6mX6MGj5SmJHvFyKEhkAg+Jcwbdo0qqqqKD51ljdOxqP3yTiqzsXrGsnIHikry6Yx1tnN90YxDnUbp6WJjPQd5CbXncx0HmasuYU3z9YwoKU/al+YSl2QToWYp3uauGLB/ItdvH8bwi23AoHgX0ZXVxfDhg1j/fr1lJpLiT/ppG9vCW7JYJQBD2q/micH7qaP+Bwhv4GizjQC6Ur6Tr8fjTKO0x98yQlpHdPq2jHaBtMr9zLn+zUcO1qMWCx8Rv57fup5XugIFwgE/zJiYmI4fPgwixcvZlTu7YxWDUMsllKS8QZZDUuIdKu5smwMFzKaUaoSKVjwLOK0aETiv42tVHTjIoqAg99swnXSzv7608SZEoTA+AUJoSEQCP6lxMXF8eWXXzJ+wmS6DHlck5BFS2YRb+T1I9maz3Xt64jwakibtgBJ6v88idGImZfwUtVLfHL+ez744IPfuAT/3oTQEAgE/3IiIyM5c/oEe/bs4aXVL1P2TjUhfQeNSMm4fAKFWTfha4+G1P/+3sbGRhYsWMCiRYv49ttvSU5O/u0L8G9M6NMQCAT/8lwuF6FQCJfLxYYNGwgGg5SUlNDU1IRYLMbtdpOSkoJUKmXv3r089thjXHXVVb/Jtv3S08b+Vv7rqf+nnueF0BAIBL974XCYiooKQqEQeXl5v2kfxv/fQkO4PCUQCH73RCIReXl5F3sz/n9BuKVAIBAIBD+Z0NIQCASCn+EnXOH/tyK0NAQCgUDwkwmhIRAIBIKf7CddnvqP5tevOSm7QCAQCC6e/zi//6PLbT8pNOx2O4DwkIxAIBD8m7Pb7X93ROCf9JxGKBSitbUVnU73u70nWSAQCAT/u3A4jN1uJyHh74/V9ZNCQyAQCAQCEDrCBQKBQPBPEEJDIBAIBD+ZEBoCgUAg+MmE0BAIBALBTyaEhkAgEAh+MiE0BAKBQPCTCaEhEAgEgp/s/wEPnLmvwqGL4AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.points(adata, hue=\"gene\", legend=False)\n" + ] + }, + { + "cell_type": "markdown", + "id": "6c8fc953", + "metadata": {}, + "source": [ + "If you have certain genes of interest, you can slice the `adata` object for that subset.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e726bba2", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T21:14:29.241345Z", + "iopub.status.busy": "2023-03-31T21:14:29.241178Z", + "iopub.status.idle": "2023-03-31T21:14:30.320242Z", + "shell.execute_reply": "2023-03-31T21:14:30.319716Z", + "shell.execute_reply.started": "2023-03-31T21:14:29.241331Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAGbCAYAAAA4KMxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydZXRU1xaAv5m4u4coQYMFd3f34t6ixYuUFmpIoVCc4rRQpLh7cJdAEkKUJMTdfea8HwMDIQmEAoX2zbdWFszxeye5+559tkiEEAIVKlSoUKGiFEg/9gJUqFChQsW/B5XQUKFChQoVpUYlNFSoUKFCRalRCQ0VKlSoUFFqVEJDhQoVKlSUGpXQUKFChQoVpUYlNFSoUKFCRalRCQ0VKlSoUFFqVEJDhQoVKlSUGpXQUPHJM2/ePCQSCQkJCR97KQBcuHABiUTC3r17P/ZSVKj4x1EJDRX/l6xZs4atW7d+tPlzc3OZMWMGtra26OjoULduXc6cOfPR1qNCRWlRCQ0V/5d8bKExdOhQli5dyoABA1i+fDlqamp06NCBK1eufLQ1qVBRGtQ/9gJUqPh/49atW+zatYvFixczbdo0AAYPHoy7uztfffUV165d+8grVKGiZFQ7DRX/GhISEujTpw+GhoaYmZkxceJEcnJyCrXZsmULLVq0wNLSEi0tLSpVqsTatWsLtXFycsLX15eLFy8ikUiQSCQ0a9ZMWZ+SksLkyZNxcnJCS0sLe3t7Bg8eXORMRS6X89NPP2Fvb4+2tjYtW7YkKCjojdexd+9e1NTU+Pzzz5Vl2trajBgxguvXr/P06dO/cXdUqPhnUO00VPxr6NOnD05OTixYsIAbN26wYsUKkpOT+f3335Vt1q5dS+XKlenSpQvq6uocOXKEsWPHIpfLGTduHAC//vorEyZMQF9fn6+//hoAKysrADIyMmjcuDF+fn4MHz4cDw8PEhISOHz4MBEREZibmyvnWrhwIVKplGnTppGamsrPP//MgAEDuHnz5muv4/79+5QrVw5DQ8NC5XXq1AHAy8uLMmXKvPsNU6HiQyBUqPjEmTt3rgBEly5dCpWPHTtWAOLBgwfKsqysrCL927ZtK1xcXAqVVa5cWTRt2rRI22+//VYAYv/+/UXq5HK5EEIIT09PAYiKFSuK3NxcZf3y5csFILy9vV97PZUrVxYtWrQoUu7r6ysAsW7dutf2V6HiY6JST6n41/B8p/CcCRMmAHD8+HFlmY6OjvL/qampJCQk0LRpU0JCQkhNTX3jHPv27aNatWp07969SJ1EIin0ediwYWhqaio/N27cGICQkJDXzpGdnY2WllaRcm1tbWW9ChWfKiqhoeJfg5ubW6HPrq6uSKVSQkNDlWVXr16lVatW6OnpYWxsjIWFBbNnzwYoldAIDg7G3d29VOtxcHAo9NnExASA5OTk1/bT0dEhNze3SPnz85mXBZ8KFZ8aqjMNFf9aXn3zDw4OpmXLllSoUIGlS5dSpkwZNDU1OX78OMuWLUMul7/X+dXU1IotF2/IoGxjY0NkZGSR8ujoaABsbW3ffXEqVHwgVEJDxb+GwMBAnJ2dlZ+DgoKQy+U4OTkBcOTIEXJzczl8+HChXYCnp2eRsV4VOM9xdXXFx8fn/S78FapXr46npydpaWmFDsOfH6BXr179g86vQsW7oFJPqfjXsHr16kKfV65cCUD79u2BF2/+L7/pp6amsmXLliJj6enpkZKSUqS8Z8+ePHjwgAMHDhSpe9MOorT06tULmUzG+vXrlWW5ubls2bKFunXrqiynVHzSqHYaKv41PHnyhC5dutCuXTuuX7/O9u3b6d+/P9WqVQOgTZs2aGpq0rlzZ7744gsyMjLYsGEDlpaWStXPc2rWrMnatWv58ccfKVu2LJaWlrRo0YLp06ezd+9eevfuzfDhw6lZsyZJSUkcPnyYdevWKed6F+rWrUvv3r2ZNWsWcXFxlC1blm3bthEaGsqmTZveeXwVKj4oH9l6S4WKN/Lc5PbRo0eiV69ewsDAQJiYmIjx48eL7OzsQm0PHz4sqlatKrS1tYWTk5NYtGiR2Lx5swDEkydPlO1iYmJEx44dhYGBgQAKmd8mJiaK8ePHCzs7O6GpqSns7e3FkCFDREJCghDihcntX3/9VWjuJ0+eCEBs2bLljdeUnZ0tpk2bJqytrYWWlpaoXbu2OHny5N++RypU/FNIhHhPe24VKlSoUPGfR3WmoUKFChUqSo1KaKhQoUKFilKjEhoqVKhQoaLUqISGChUqVKgoNSqhoUKFChUqSk2p/DTkcjlRUVEYGBiU6EmrQoUKFSr+vQghSE9Px9bWFqm05P1EqYRGVFSUyktVhQoVKv4PePr0Kfb29iXWl0poGBgYKAd7NXGMChUqVKj495OWlkaZMmWUz/uSKJXQeK6SMjQ0VAkNFSpUqPgP86YjCNVBuAoVKlSoKDUqoaFChQoVKkqNSmioUKFChYpS815Do8tkMvLz89/nkCpKiaam5mvN5FSoUKHiffBehIYQgpiYmGKT2qj4Z5BKpTg7O6Opqfmxl6JCRakRQhAYGMi6devIzc1FCEF0dPQ7p+aVSqXUrFmTNm3aKA92tbS0qFy5colpelWUjvciNJ4LDEtLS3R1dVUOgP8wz50vo6OjcXBwUN1/FZ8keXl5xMbGcuTIEfz8/PD19UVLSwsHBwc+//wLTodk4W5nRGsPN7S1td9prtzcXI4dO8bp06eVZWlpaVy6dImhQ4fi6ur6VuNpampSoUKFQrt5Y2NjNDQ03mmd/0ZKlU8jLS0NIyMjUlNTi5jcymQyAgICsLS0xMzM7IMtVMXrSU1NJSoqirJly/5f/iKr+DSJj4/nxIkT7N+/n6CgIOrUqUPZmo25ElnA2imf4Wiu8AkIic+gxS8Xaexmzh8j6n6w9WRkZHDw4EGSk5Nf3zAxBO7/Ds5NwLUFGRkZBAUFKauFEISFhWFgYICTkxM2Nja0atWKmjVrfrC1f2he95x/mXfeaTw/w9DV1X3XoVS8A8/VUjKZTCU0VHxU5HI5GzZs4PDhw/j7+9OvXz82bdqkfKlcfjaQ3AhP9HZ2I7/9PHCsh6OpDhsH18LNSr/YMTPzM1l6ZyntnNtR27r2316bvr4+AwcOLF3jxPFg4gTSktVZBQUFPHnyhLCwMJYuXUpiYiJGRkZMnToVDw8P1NX/exm139sVqVQiHxfV/VfxsZHL5Rw6dIjvv/+e4cOHs27dOuzs7JBKpfx+JZDzp7ajm+hPQEAgajlJ9I16gGTHGJK17TGS5qGhoUGVKlUYNmwYlStXJidfhoaaFDWphMDkQPYE7EEmZMULjRMzIC8Tuq4qeYE5aaBd8hv08ZDjNPQ+hlFGPPTbBWZvVmGpq6vj5uaGm5sbrVq1AiAgIIAtW7YwZ84c3N3dqV27NrVq1cLExARdXd1//Qv2f08MqlCh4h8nPj6e4cOHU6lSJU6cOIG1tTWgECRr1qxh5sKVaLrV5+zSyVSuVEGxG04Jp+mGYNJSsrn5fTsK8vO4desWCxYsIDQsnEi7pjRr04ktw+tS3bI629ptY+5fifTxvs7aAR7oa6ujpf5sFxDsCbnpJS/Q7yjsHgDd1kH1foWqItIjyCrIYsblGexPysWoQIC8AKR/z6ikXLlyLFiwACEEd+/e5c6dOyxZsoSCggJ27NjBZ599hoWFBfXq1aNHjx7/uhe+dz7TyMnJ4cmTJzg7O7/z4ZWKv4/qe1DxsfDy8mLIkCFMnDiR4cOHK8sTEhIYNmwYTZo0ofvAkcgk6pS3LhzXKDA2nYSMXGLScmjvboO2hkIIxMYn0nzwZEiJ4ObpQ8p4SH3WXUcigQcRKTQrZ8m6QTXxj0nnUWgk3avbgLZR8YuMuAuHx0P7RYpzimccCT7C7CuzmVd/HtkF2dQwr0JlYzfQ/AC7gfRYyE4mMt8ALy8vLly4gI+PD4cOHfokrB5Le6aBKAWpqakCEKmpqUXqsrOzxaNHj0R2dnZphlLxgVB9Dyo+Bnv37hU1atQQ0dHRhcrDw8NFs2bNxLVr14QQQqRm54mrgfHFjrH2QpBwnHFU/HE9tEjd5cuXRcOGDUVMTIy4E5oksvMKRHZegRi25ZbYcClYCCHE4E03heOMoyIwNu2t1++T4CMGHx8sHkXeFCI7pVBdfFa8GHBsgDgQeOCtxy2W9c2F+M6s0DyrVq0SkydPfj/jvyOve86/jEo9pUKFir/FvXv3mDRpEnfv3sXS0lJZnpmZyZAhQ/jtt9+wsncmO0/GklP+/H49jK7VbDHV12Ru58rI5YKEjFy6VbcjPSef9u4KlVZegZz0nHzM9LVo1KgRy5Yto2vfgUTXGsuYlhWZ2b4Cm4e+ONf4ql152la2pqzl66OzPmf3490cf3KcFS1W8Lvv7wQkB+C2dzTkZ8NUP2W7lJwUfBN8qWZR7d1vVmoE2FSHMvXg6BTFjshjEOPGjaNjx45cvHiRpk2bvvs8/wAqoaFChYq3xsvLi+49utPi5xaEykKxRCE05HI5I0eOZObMmTg4u1Lnp7NUsDZkVocKAFx4HEdGnoyeHvbMO+zLnbBk/hpdn+ltK/AkIZNZ+73Jl8m5GpSI5/Rm2BnrULt2bYYM7M/mI4dpPaEZAJcC4tl45QkLe1TB2VyPYw+j8Y1KpbJtCeqpl3ic/BifBB/S8tJwNXYlJjMGYWgGstxC7cqalOVC3wsYaJZOGL2WM9+Czz4YdBB29oOCHAg8A5O92bx5MyNGjPjXCI3/VNyJ9PR0BgwYgJ6eHjY2NixbtoxmzZoxadIkQOHwM23aNOzs7NDT06Nu3bpcuHBB2X/r1q0YGxtz6tQpKlasiL6+Pu3atSM6OrrQPBs3bqRixYpoa2tToUIF1qxZ8w9epQoVH5f169czZ84cVh1cxb28e9yMuamsW7x4MdWrV6dNmzY8jEjFWFeTGg7G1HAw4fuu7hwa34hTk5qw42YYd8KSKW9lgI2R4gzO62kypx/FoqOhRj1XM4x0FKbjftFphJnUxDgnBr+AQGr+cIZ5h325FBBPaEImd8OSWXMhmD9vhpdq/XPqzsGzrydlDMrwedXP2dZ+GxqdlkLX1UXaGmkZIZUUfUzeir7FrYhHCLkMTn8DD/e8ftIGE6D5HHBqBBO9oMNiaPsjAFZWVtja2nLjxo1Srf+j8666rk9Jlz5y5Ejh6Ogozp49K7y9vUX37t2FgYGBmDhxorK+QYMG4tKlSyIoKEgsXrxYaGlpiYCAACGEEFu2bBEaGhqiVatW4vbt2+Lu3buiYsWKon///so5tm/fLmxsbMS+fftESEiI2LdvnzA1NRVbt279GJes5FP6HlT8d9m5c6do2rSpyM3NFUIIEZQcJPJl+UIIIc6dOyf69Okj5HK5EEKIwZtuCMcZR4s9y0hIzxEnfaKVbZ/jHZEiZLLCZYtP+gnHGUfFzKUbRY8vvhKOM46Kmj+cEqEJGUIIIeRyuei//rros+5akfGEEEIkBgsRevWtrjNfli/2BewT0RnRRerSctNEla1VRMV1rcW647eEmGcixMY2bzX+q5w/f14sXLjwncZ4V0p7pvGfERppaWlCQ0ND/PXXX8qylJQUoaurKyZOnCjCwsKEmpqaiIyMLNSvZcuWYtasWUIIhdAARFBQkLJ+9erVwsrKSvnZ1dVV/Pnnn4XG+OGHH0T9+vU/xGWVmk/le1Dx32XPnj2iQ4cOIisrq0hdZmamqFevXqFnRIMFZ4XLzGOFhMC6C0Fi8q77okBW9OF+IzhBeHx/Wpz2jSlU/ueNMOE446j4+fAd0bZtWxGRlCUyc/MLtem99pposOBcseOK9S2EmGskREZCqa/1csRl4b7VXXx37bti61fc3iTa/bZWnPGNESL6oRCpUaUbOOVpseu4fv26mD9/fqnX9yH4vzsIDwkJIT8/nzp16ijLjIyMKF++PADe3t7IZDLKlStXqF9ubm6h8Ce6urqF4tLY2NgQFxcHKA74goODGTFiBKNGjVK2KSgowMjozbpUFSr+rVy9epU//viD/fv3o6WlVaR+/fr1jBo1qpCp5m+DapGVJ0MqfeGHcM4vDp+oVL7v5s7wLbdJzc7n1GSFCWyBXJCZV0C+rHCwQmsjLZqUM8fB2oK7oQnEJSZhZ2JXqM2uz+shEwK1Z3MdCT5CYEogkzwmIW08hdjQi/Q83IVptafTrWy3N15vHes6TK05leYOzYutn1BrOBNqPf9k9cbxAJDlw+p6YOIIY66Wrs8nyH9GaLyJjIwM1NTUuHv3bpEol/r6L0IXvBqCQyKRIJ65smRkZACwYcMG6tYtHB9HFTlTxX8VX19fpk6dypkzZ4oVGABHjx7l0KFDhcrc7YxYetqffXcjiE7NZknvamweVpus3AL0tdQx1tXgZb+2hmXNuTazJY+j0wqNs+ikP49j0vGLTkO4NmH9+vWs/fm7Qm2kUgmPE/1wMXJBW12b3f678U3wZYT7CIwqdCTBwgn56SvKv+Xi2Hc3grUXg9k0pBaOZnoMdR9aqP5J6hPWP1zPmGpjcDB0ePONO/udwku9w8+Kz2oaUL0/GNq8ue8nzH9GaLi4uKChocHt27dxcFB8oampqQQEBNCkSRNq1KiBTCYjLi6Oxo0b/605nh9YhYSEMGDAgPe5fBUqPkmePn3KhAkT2LlzJ1JNHXbeCqdTVRsMtF+8XGVlZQGQI9RRy5cpHfSy82SsvRhMvkzxoA5LyqK2kyn6WorHzvrBtXiVH48+Yv/9SPaNaUB0ajYNXM1pUcGSxzHp5BcIXLqGsmvpBdYsmkeBXCCVSFCTSrgXe48hJ4fQv0J/ZtWdxdJmS0nOScZIS6EBqGxWmWv9rr32WmPScghLzCQ9p6DY+utR1zkachQPKw8uRlzkaMhR1rVah4m2SfEDPjqo8FJ/LjSg8P//pfxnhIaBgQFDhgxh+vTpmJqaYmlpydy5c5FKpUgkEsqVK8eAAQMYPHgwv/zyCzVq1CA+Pp5z585RtWpVOnbsWKp5vvvuO7788kuMjIxo164dubm53Llzh+TkZKZMmfKBr1KFin8OuVzOkCFD+PXXX3F2dmbbtVDmHvYlLTufL5q+UOH6+vpSoXIVGi3ypL6rmdKHIiI5C3WJBAcLHTpUsaW2k+kb5+xbuwzGuprEpecw/s/7DG3gRLcadlwPSWRe58oMPvo7Mh0tYmPj6LXNF1sjHfaMro+LkQsdXToq1UmWupZYJoRAzGGo1KVU1zuueVlGNnZ+EZrk1bWV70t50/LUsKzBwlsLeZL6hKyCLEwoQWiMPAfi3fKCfIr8Z4QGwNKlSxk9ejSdOnXC0NCQr776iqdPnyrDamzZsoUff/yRqVOnEhkZibm5OfXq1aNTp06lnmPkyJHo6uqyePFipk+fjp6eHlWqVFGa9apQ8V/h66+/Zvjw4VStWpXU3FS6VLMlPSefrjVs+enYIzwcTGhfxYa7d+9Sp3Yt8uTm1HIyIV8mZ/PVJ0gBU30thjZwZlB9J/64HkpaTgHDGjrhF51OTceiD9u6LmbUdTFj69UndKtuy+XAeORCcGBsQwB+aPAzu/1WcffuHZzNzbE2VPxtG2sbs7DxwsKDHRoPiUEwO6pUYUFyZbloqRevfgNQk6pR00oR+nxWnVlMqTkFbfXXhOzRfbOQfM6VK1ews7N7c8NPgXc9Vf+UrXYyMjKEkZGR2Lhx48deygfnU/4eVPz7uHv3rujUqZMQQohTT04J963u4lDQISGEENEp2cJp5lHRf8N1IYTClP252boQQpx/HCscZxwVjjOOittPEpXlDReeExXmnBBzD/kIxxlHxfGHUWL+8UciPDFThCdmiuy8AiGEEDGp2cJxxlHReeVl4f7tCVHu6+Ni/rFHynGuXr0qZs+e/eaLeHJZCO+9JVbvfrxbDD0xVKTkpAivOC9RfVt1sdXn/ZrO//bgN9H/WH+RkZdRqPzp06fi3r174tdffxW9evUSo0aNKt5c+B/k/856CuD+/fs8fvyYOnXqkJqayvfffw9A165dP/LKVKj495CSksKQIUM4efIkALb6tlQwrYCdvh33Yu8hF3IOjWuI9TOnvPDwcBwdHZX9G7qaM7SBE+k5BTib6wFw8H4k87u5Y2OsQ3JWPhm5BcSm5/DbxRAycgrYdfspnavasLRPdYx0NFg7wANHMz36/HaNvAI5mXkvzhnKly/PkiVLAMjJl6GpJlVaaPlFp2FrrKNwDHRq9NrrfJT4iAfxDzj55CRJOUmUMSyDlW4pLaFe4X7cfRKyE2jt2FpZlpaWhucZT67du8b0U9PRUdfh0KFDVKxYkeTkZFq2bImLiwsrVqzAxubfczj+nxIaAEuWLMHf3x9NTU1q1qzJ5cuXMTc3/9jLUqHiX8OYMWNYsGABW71ScQjPZ1BlU/7q/BcAjXY1okBewF/tzhMQk4GlgTa5ubmFkg1pqkuZ16Uyqz0DqfnjWb7rUpm5h31pUs6C34crTOLrOJvSc63iYPpxdBptKlnRtLwF0/56wBm/WC5Ma4ZMCHaMrIdEAlKJhLDETBzN9DAzM6OgoID0nHwa/+xJXWdTXCz0kQBrLwbTtpI16wa9OYPeN/W+YXLNyXx29DOiM6O50f8GPgk+yOQy1F6TeAlQmM9e/gVcmoNDXeZdm8fj4Me0e9oO/8f+hIWFkZSUhK6uLnZ2dmRrZhMUGYSFhQVqamrMnz+fJk2avH6OT5T/lNCoUaMGd+/e/djLUKHiX0tKSgo5OTm0bNOeqd+f5iuD03BqMwzYB26t+KbeNwghmLHvIdeCE7kyoznm5ubk5+cXMsfNLZCx7EwgGmoSKtkY8FntMnRwL/w2baaniYWBFv3rOtKzpj0A4YnZuFroczkwnkm7HzC/exV61rSjytzT2BprIxOC3jXLAKChJmWezl/YZ0oYEtgDC0Mt+tYqQ9NyFqW6VjWpGkZaRnRw6cDFpxfZ4beDX+/9yjf1vqFP+T6v7xz3CC4sID7wLqsiKnFj/Q0yMzO55HqJAf37Uyn1Im2bDUSt1dfKLuKZue/9+/fZunUrc+bMoXHjxsyYMeP1ocg/Mf5TQkOFChXvxsqVK+nevTs6mmqcmNgYk1gp3HqsSHsKtHVqC4Bes3jqu5hha6SDnp4eMTExShWVb1QqTmZ6TG5dDitDbWQCdt1+ikwuaFL+xQO9OJPbia3cmNjKjUdRaZS1VAiPbjVs6eFhR3B8BgGxGTxNyiL7mWlvc9lV8qIz2TB4PjkFMhqVtUBTvWisqA0PN+Cf7M/CxgtRlxZ+7CXlJBGSGkIls0p0culEPZt6b7xP0Vgy7kZ1vPxvY2YeyppVa5QJlQrycmDJCqTB6fCS0HiebMnDwwMPDw9E7CN2/LaU3r164eziwuTJk5XOyJ8yKqGhQoUKJTt27MDb2xsAFwt9sGgL7m2LtKvpaEJDV3OkUgnly5cnJCQER0dHfCJT6bTyCr1r2rO4tyKkeE6+jC9butGmUunPCyrZGuLhYMyeOxGMbOxMvkxwOzSZPV/Uo/+GmyQ9SYS8TA7X2c6um2EMTMpk1n4fvmzpxpTW5YqMdyP6Br6JvuTKcosIja/rfs3EGhMx1jamvm39N65t06ZNLF68GH9/f/YunUZPtXPQuDLPPRW33IhiXdoi5rb04Lmxb06+jDyZHMOX/Fskl5cwUL6PgRtPczYgnZkzZ2JjY4O7uzu2trY4OztTrdp7CMv+nlEJDRUqVABw6dIlatdrSKOfL6Knpc7K/jWobGvEw/iHJOUk0axMMwCiU7Np+ctFulSzZWHPqlSsWBEfHx+aN2+Ok7kePT3s6VDlhSpKW0Ot0IN885UnGOtqEBCbwZAGjtgY6RRax0/HHiGVSpjdoSLdqttxzi8OLQ0pO0fVo46zGflpCdTUeALLKjNokg+DWngQk5pDl2pJNC9fvGpqVctVZBdko6emA0HnwLEhaGhDxB3UjR0x1i+dSmvnzp3MmjULbR0dzl6/i9/5HcjyQ1F7KdVsIzdzHlStgLFVHtcir9HArgGDN90iIC6dG7NaKp0faTEHXFtAmTq0cpDQsmVLHj58SFhYGAkJCRw7doyIiAiqVq3K+PHjKVOmTKnW+KFRCQ0V/3fk5uby888/4+/vT2JiYpHQMc/Jzs6mf//+DBs27B9e4cfh6tWrtOvcjdte+cSm5/LgqSI/xZyrcwhNDaWPxe/MbFsVXQ11ylkZ4GKhsIyqXLkyp06dAkBfS51f+hT/dpyTLyO3QM4Pxx5hZahNTGoOZnqajGriUqjdkQfRqEklzGpfkQZlzZl9wJuM3ALmd68CQHWDdKxcXMDWGtQUaVKtjbRZ0a9Gidemo66DjroOPPwL9o+E5l+De0/Y2BLKd4B+O994f27dusXmzZvR19dHvfM8lt7KJKqgLcnVBzFQx417dyPo4WFHRRtDVvX3oPeR3vgn+XOl3xVqO5tgqqeJpppCdeYblYpLdiw6tzaARUWwr4lEIqFatWrK3cXz1LkHDhzgu+++Izo6GlNTUzw8PJBIJMo4eXp6etSpUwep9J/JdKHKEf4fQfU9vJmoqCgWL17M48ePGTVqFM2aNcPExESpa36VrKwsfvzxR44fP864ceMYPnx4kRhjGRkZPHz4UBnU8jkmJiY4OTm985r19PT+Eeu/J0+e0L9/fy5fvoy6ujpBcenKTHjXI68zce8l4qLduTi9GY5meoX65ubm0qVLF6XgKA6/6DS6rrrK2Oau1HEyxVBHg+D4DNpUsiYnX8YPRx/Rq5Y9DVzNSczIRSKRYKqnEAjDttxGS13KukE1ySuQY9dqKGXKVaFZy9ak5xbQ08MOz8fxfNe18ou3+JJIj4ELC6DuGDB1gbNzwbkplG9XYheZTMbMmTOJj4/HysoKFxcXQszq42iuy9hmZQEYs/0uJ3xiODy+IVXtjQG4EnmFp+lP6VehX6HxnqvwFrg+ol/kj9BzE1Tp9fp1PyM6Oho/P0V2wfT0dEJCQkhMTFQI/HbtKF++PI6OjtSoUbIALYnS5ghX7TRU/F8wb948rl69yvDhw1m2bFmp+ujq6jJ//nzGjRvHb7/9hrGxMcOGDVMKjqysLPz9/WnZsmURb15fX1/27dv3Vms86RuDmgRaV7JWliUlJRESEkLNmjWxtbVlxIgRhVKrvi+mT5/O8uXLlaazZS0NWH42kISMXL5qV4vkuGTcLPWKCAwALS0tsrKykMvlbL4aikwuCoUZAcUOxNlcD1sjHayMtHG10MfdThEX6kFECvvvR2Koo0EDV3PM9At7ZYclZiqFgaa6lHLyp/w+bymT9j0mLSefww+iOOETwxdNXRTnMK/DwBo6L3/xud2CEpsKIdi+fTtbtmxh1KhRREVFsf/gISbO+JYfjj9WeqMDTGjhRm0nU2bsfYiBtjqjGrugrl6OfhWK+oo4mevRw8MO66q1ocxw0DMr0qYkbGxsivXpyM3N5eLFi0RERHDs2DFiY2ORyWRoaGjQpUsX+vbti55e0e/ub/GunoL/757Ic+fOFdWqVfvYy/i//x5eR05OjmjUqJEoKCh4bbvk7GTxxZkvxPGQ40IkhwuxpqEQd39/UZ+cLIKDgwv95OfnFz/YrgFCLHUXIq/038dF/7hiExZlZ2eL4OBgcebMGdGwYUPx888/i7S0tFKP+yY8PT3FlClTChdmJIiH39cX3879ShTI5CIoLl3EpeWUOMb06dPFhQsXhNvXx4Xb7OMlttt9O1w4zjgqdt8KVxRs7SzEipriQXiiyMot/vvJK5CJ/AKZEEKIhLQsUa5GfRGXliPyC2Qir0AmUrLyxKOo13sxvw1yuVycOHFCtGzZUsyfP1/k5uaKgIAAUbd+Q+E286Co+9MZ4TTzqJjw5z1ln0m77ov2yy+J+vPPiipzTyo94gdvulkkqZQQimRT3xz0FimZee9t3cWRnJwsFixYIBo1aiTOnj372ral9Qj/ZNK9yuSC68GJHPKK5HpwIjL5G7Vm74WYmBgmTJiAi4sLWlpalClThs6dO3Pu3Lm/NZ6vry89e/bEyckJiUTCr7/++rfG+emnn2jQoAG6uroYGxv/rTFUKAgJCcHd3f2N4evjsuO4HnWdu7F3ITcNEvwhJUxZb2xsjIuLS6Gfl53aCqFjAromUEyq0JJoUs6CBmWLqqK0tbVxcXGhVatWnD9/Hjs7O2rVqsXly5dLPfbrWL9+PdOmTStcmJ2EuwhgRrU81KQSXC30sTAoGpcpJjWHibvu41KzMcs2bsdUVwNHc50i7Z7jbmtEYzdz5S4DXVPQNaOqvQnaGlISM3KL9NFQk6L+7Cxg07FrRMkN2XPnKepqUjTUpBjpaFDR5v34OaSnp9O1a1f27dvH4cOHmTVrFpGRkbTp2JWkmsPJE+rEpOUiAX7oWhlQ+KSExGcQGp9BdGYs1jbBdK1ui5muBteCE4hMyUL+yvPs4P1Ifr8expoLQe9l3SVhbGzMzJkz2bJlC1OnTlVGJH4XPgn11EmfaL478ojo1BxlmY2RNnM7V6Kd+4dzrw8NDaVhw4YYGxuzePFiqlSpQn5+PqdOnWLcuHE8fvz4rcfMysrCxcWF3r17M3ny5L+9try8PHr37k39+vXZtGnT3x5HBezfv58WLVq8sV05k3Kc6nkKMx0zkGrAjFDQ/Jtb+i4rixQ9jknj+MNoxrklouVQm4fRmSw9E8CcjpUoa/kGtcozNDU16d+/P23atKFz587UqVOHn376qVBOmLfh/v37AEVVHuZuSKYFoKtdcnKxg/cj8fSP45BXFGEu+Zy6dIzu9ftQ0UGhPrsenIjX0xRGN3VRnhtVsjXkjxEv5aLpvVX532VnAlh1PpB9YxpQw+FFMEPfqFSy8mQsPumPa8J9BnRpw8C6L8KWvE/69+/PwIED6du3L6BIr9DrswGUb9oV57rViErNxkxPC1cLPc77x9G9hj1rPYN5EJGKsY46ctOjRGt7s7x1c/S1bNhxM5zOq65SvYwxW4e9SBA3qXU5Dj+IYsPlEKa1LY+GWjEvF+E3IScVyrV55+sqW7Ysc+bMYenSpcyZM+edxvroO42TPtGM2X6vkMAAxRvMmO33OOkT/cHmHjt2LBKJhFu3btGzZ0/KlStH5cqVmTJlijLJe3h4OF27dkVfXx9DQ0P69OlDbGxsiWPWrl2bxYsX89lnn5WYsObkyZM0atQIY2NjzMzM6NSpE8HBwYXafPfdd0yePJkqVaq8vwv+P+X48eOltne31rNGQ/rMmurvCowS2HYtjNALv6O1rT1cW8n98BQu+MfjG5VatHFmImzpAPd+L3Ysc3NzPD09cXd3p1evXkRGRv6tNV27do1+/foVX6lrCq8Jp7H2QjDHHkazc1RdXFzvYdZWysWjKznyIAqAVZ6BLDr5mMiIcIXVklxWeAB54bDhFa0NqF7GGMuXzgrWXQyi44orrLsYzK3QJI4dPsD8SUMx0tWA0CuQnfzGaxRCsOT2Evb47ymxTWpqKn369MHZ2VkpMBITE2naqh0Jru1Y9O0M1gzw4NC4RmweWpvdt58y7/Aj5HLBpqtP0JBKSMkuoINDHwZX+JyyJmWZ07ESf46og5meJuavnNPoa6mzZoAHGwbXQkNNyt2wZHqsucqmyyH8fPKxQtOyfxRiZ18K8oruvv4OzZo1Iyjo3Xc2H1VoyOSC7448ojhF1POy7448+iCqqqSkJE6ePMm4ceOKPSAyNjZGLpfTtWtXkpKSuHjxImfOnCEkJET5S/V3yczMZMqUKdy5c4dz584hlUrp3r07cvl/L/b+p4CJiUmRNL//BDdDEpmyx4vkzDwAprQuR5cu3RHuvcGtNYPrO+JTfgtdr/ct8gAlOwme3oLoByWOr62tzahRo5g0aRL9+/cnOvrtX7COHz9O8+bFpzR9E+sH12T/2AbUdzVnZv0vWTVtFWVSEtncR3EI/lO3KmweWgv7B8sVZq7B5190TgiCBfbg+eIgun0VG/aPbYid8Qv11sbLT5BIYHQTF7Z2t6WyqwOmpqaKe7O1I5x6w1tznB95vvvZ+XgnewP2FtskISGBZs2aoaWlpTSSuHv3Lm06diXWvgmt2rSj6+qrrPZ88cDdNrwO24bXQSqV0LmaLc2q5WFgEkhYlCXT605AQ6pBdGo2Q7beJjg+E/+YwtkI114I5std91l8yh+A4PgM7oWnsPvOU9ZeDCY2LQc6LWWB9mQ6r71FTr6MPr9d54ejj0jJyoPdA+HYKyrFNyCRSEq0FHwbPqp66taTpCI7jJcRQHRqDreeJFHftfQWBqUhKCgIIQQVKlQosc25c+fw9vbmyZMnSsea33//ncqVK3P79m1q1679t+bu2bNnoc+bN2/GwsKCR48e4e7u/rfGVFE8ERER/5j9+quc8o1l/71IennY06CsORYGWrSqVwvYCIAE0NfWhFwJvPrHbO4G0wLgNeqh57Rr1w4HBwd69erFgQMHSm1dFRkZiaam5t9Wbb1sSWWpa0m3ct3QnafL2l+XsHr1apzM9XAy1wOzL0DfSuFQB/x+PZTQ4GC+MbBComMC4TdgRx/otLSI6eminlXJypNR29mMfrPHM336dMISMxmxPZ5VDp9RoXr/1y/y6GS0wq9zcORpdMxci1QvX76cgwcP8ttvv1GnjkJ9dOPGDb744gtWbd3N+QgZlwPjn12vIidHeFo4hhr5PPF9wu+eUagHBXHeawfx4fGk5Jelywl70tLSMDazQF3YkmvowGOZI0+Tsihjqhhj27VQEjJyScrM45fT/kxtU56m5SwQAiJTsrA11gHjVtwx0CEyLoPu6w8Sob4VH+9WHPWK4KbOHTD4OJFxP+pOIy69ZIHxd9q9DeLN7in4+flRpkyZQp6YlSpVwtjYWGkr/XcIDAykX79+uLi4YGhoqLTnDw8P/9tjqiie06dPU6/em2MJfQimty3PgbENij3cVtLvTxh9uajQgDeqh16mUqVKLFmyhDFjxpR6fcuWLWPixInFV97fAXe2lGqc1Ox85d9T69atSUlJ4fjx4y8aWJSHZjOUiZBO+8ay/bGclBE3od5oRRsJRe5BUFwGF/zjqetiyo0bNxBC4OHhwdLT/gSlwjH7KeDU8PWLa/ENtF9MGfu6mOsovgchBBcuXKBWrVrK3f5zgREbG8tXX33FpUuX8E5VZ8vVUIY2cOLohEZUMcpn9jezqVSzEo27NebatWvo6OjQqlUrFny1gHVb1vHU9x6HDx/mwoUL1BhZFX3Xa7Q1Cifm8C9Ua9SKZs2a0a5dO+omnWZxezO0NfO4kbyD7oe6cyU4nC933lcIjGfkFshJyykgIj0KtENxsU2ljbstTLgHw0+W6vsBRRbGNWvWkJmZWeo+JfFRdxqWBqVzQittu7fBzc0NiUTytw6735XOnTvj6OjIhg0bsLW1RS6X4+7uTl5e3j++lv86aWlp1Kz55jDZHwIdTTXlge6D+AeEpITQ3a37B5uvfv36qKur89133zF37tzXtk1PT8fX11eZl6IIZ+dCfjbUer03/KOoNLqsusLnTVz4ql0FJBIJmzdvZsCAAQB06NChSJ+1Az1IyynA5JnzHg71YGbRF6bj3tH8cSOMcsawdvYUDh48CICVkQ4OpjqMbORSpE8RnBoWEiy5ubmMHTsWXV1d/vrrL5ydnZV1OTk59OnTh5UrV2JEBpUMsqnpYIKrkYRf5kwiKSkJw+ptaTBrFMPq16FfxRLOgoDzj2PZ6R+OYTV1vu40Cx9rXyrZGDK6mStf7brD/ShfdoztjHYVPdzKdyM+Kx7f6GTuhCWxxjMY78hUfh9Rh196VyM0MYtlZ/UJCJyNRVkXfuhWCm2EXAa/dwWL8sTVnsGAAQNwdXVl9erVb+77Bj7qTqOOsyk2RtqUpGWToLCiquNc+rSJpcXU1JS2bduyevXqYqVvSkoKFStW5OnTpzx9+lRZ/ujRI1JSUqhUqdLfmjcxMRF/f3/mzJlDy5YtlQlZVHwYJBJJsWaxkSnZ5OTLiunxYVh8ezHfXvuWuKy44hukPIUDYyDu7+9gAXbt2sWJEyfemCLg0KFDdOnymtzZA/fDkCNvnM9ET4PKdkZK66+/7jyl85obLFy5gY0bN3L69OkifQy0NQqdW5S4hLqODHLJZe3XX7BmzRql2m12h4pc+qqF4jD8LTh48CBNmjShR48erFy5spDAEEJgY2PDqFGjqOZWBvma+rgc7sHVK5fo2a0L/fr149ChQ6RbViMqrB3p8XXw9C/huwSMdTWxzu/PBNcdBEdLSMvOR01NQu9110nIEVSo1ZgaU4eQm27MsVlXGGCwmDnt6nB9VgsycvMJjE0nO0/GjpvhTNh5j/i0HPTVTXE2M2Dolls8jEh5/cXKZZAYRHK4H3Z2dixYsIB169ZhYVG6GFuv46MKDTWphLmdFQ/fVwXH889zO1dCTfruhzfFsXr1amQyGXXq1GHfvn0EBgbi5+fHihUrqF+/Pq1ataJKlSoMGDCAe/fucevWLQYPHkzTpk2pVatoWGdQmMp6eXnh5eVFXl4ekZGReHl5Ka0WTExMMDMzY/369QQFBXH+/HmmTJlSZJzw8HC8vLwIDw9HJpMpx8zIyPgg9+L/iScJmTT52ZPZ+73/sTln153NosaLsNQt/rwhN/gSPPiTlAdHC5WHpITQbl87DgcfLtU8EomEPXv28MUXX7xWBfvHH38wZMiQkgeyqQp2HgDI5DK84ryQi6KGGkmZeQTHZZCZq8is9yQhkyfxmeQKKRs3bmTR4l8YPvtncvILCvULic+g97prXA6MJzO3gIYLzzN1T+FD/4Ff/cQvi39m/prfqV69eqmuvziEEKxbt45JkyZx4MABOnbsWKTN8uXLGTBgAG3KapKzoi4U5PKjjy0a/qdY8NtOYg3LM++wL1Nal0NdCotO+jNsy22C4tKLjLXiXCBzDvgwuL4jqzxDGLvjHnfmtObXPtVxs9QnPaeA6g7G6Gd1Q6/yjxg3G8qG76dw5cpl1l96wjHvGP4a3QArQ20q2xpSw8GEwxMaI5cLtt8I44J/PPfCkskreI3hjLomvq13UfG7e1y+fLnE59Xf4aOb3LZzt2HtQA9l6sjnWBtps3agxwf103BxceHevXs0b96cqVOn4u7uTuvWrTl37hxr165FIpFw6NAhTExMaNKkCa1atcLFxYXdu3eXOGZUVBQ1atSgRo0aREdHs2TJEmrUqMHIkSMBkEql7Nq1i7t37+Lu7s7kyZNZvHhxkXG+/fZbatSowdy5c8nIyFCOeefOnQ92P/5fMNfXpEUFSxq5vXLWcO572NRWoZZ5zpPLcP5HkBV+6L0tlcwq0cGlqKpGObVGM/rmfsO63MJhyLNl2cRlxRGTnljquRwcHLC3t1eajReHlpYWurq6pRpvl/8uBp0YxKGgQ0Xq1KQS1KQSVp4PYtCmm/x1NwI5YKqniampKfVHL2T/hXs0btGm0O/u0+Rsbocm4xedhkSiUOUJBFN2e3HkihcDBw7EqCCJEd+tokY5h1Jfe3GsWbOG1atXExgYiK2tbZH669evc+bADsaUj8fkxGjys1KZdt8Rs4pN+Xn1ZuaefMLCE35svRbK+D/vsWVYHeZ2rsTkVuXQ1lBj4+UQsvNe7FpvPknELzqNxacCGN+8LHM7V0ZHUw1dLXXm96iCub4mumdnMd/0BFNal+PqwiFc9jzL4sWLyQn3poK1AXkFcnqsuUp6TgFlLfRZcNwPAeTJ5PSuaY9/bDoeP5xRWFkVw/Hjx/ly8lRu3rz53s/0PpmAhTK54NaTJOLSc7A0UKikPtQO47+IKmBh8Sxfvhx3d3datmz55sZ7hsCTi/ClF+gYK8p29gP/4zD2JlgWb2l3NfIq7ubuGGm93tIpIDYdzb2DcHAqi7TjErLys5h6cSqN7BrR260fv10M5saTRGa2q0gV+xdjzTnwkD13Ijk1uYky5/abuHHjBnv27GHp0qXF1nfp0oXDh0u3ewlKDuLquVn0i3uKZp/tYK4I0kdyGOhbcioglS/+uIudsQ65BTJaVrDih27uaKpLiUrJ5rRvDLVMclg4/ydiY2Pp1q0brVu3xsjaAatnPhkFBQUs3bKXeYuX42Sqw/ol39Oo0etzfJeWjh07snjx4mJVygUFBTRv1YZFTQuoI33ELPkXXLtyh7LVKnHTTo0W1j3JzFWjb217olJysDfRpZ37i9hgC4778dulEOZ1qcSd0GTGNitLak4e/dbfBKB1JSu+bOHGqN/v8E2nSnSsasPN4Hhq7KyBpokdjLupHCs5NZ36TZrTaepS0oQuZ/xicTTTJTRR4cWtr6VOw7JmfN/Vnb13IzjuHc2fI+thlBsJewZDgy+hSi9+/fVXjh8/zq5duxTmyaXkXxewUE0qee9mtSpUvA2rytbkYEEw2+U5KB8LHZZA7ZElCozrUdcZfXY0fcv3ZU691/sMrD7nz6w4L7JIRh/IyM/gdsxt9DX0GVBxAGVMdfnlTAD3wpMLCY3KdsZUi83ASOf1Ovxtvts4HXqaNa3WULNmTWbPnk18fPw767HLmpSlrHVD8P0OMuPAvCwPvG5T9VAbJFX60LbHb/h81xZNNSmPolL58Zgf3pGp1HQ0wdZYh6ENnUnJyqPzxPk0cdTlxNHDLF68mOjoaDIzM5HJBT6xOZR3r8aO9Sto39CjULTa5ypZuVxeKAyGVCrF3Nz8tSbVly5dwsbGpsQzyMOHDyOzcWdqfm0uOv2O5PpDfHPNsa6niUb2caysa/NV414c8oqkd60yRb6DEY2csTfRQVtDjaMPo6lqb0R7dxuqlTHCTE+LlhUsWeUZSGJGrlKFV9fVAibeUYZ1X+0ZhL2JDvHpuSS5dWTD6uWYNB/OqEbOmOprIgEy82SMbOyinH9c87KMa/5ceCdCjA+p4b58/dsF4uPjOXXq1HvxySiOT0ZoqFDxsdFQ00KiqYPk5RM2IzvFTwlUMa/CwIoD6ehSVE/+KlPbVuKa62m611SEwLDUteR0r9MYaChCkHerYUclW0PcXgkp0q+OA/3qvFlFE5oWSmBKINkF2RjpGTFo0CD+/PPPks1q34ZGk6DmUOUObPTBKH4QtWhVVrGD09dSPEqeJmdzJyyZUz7R1HRUWI49Tcri6wPeXApMYHGvqgwfPlyZKwIgK6+AziuvUNfFjO7NFBEQAgIC2LJlCzdu3MDAwIDc3Fxu3LiBhoaG0q8kLCwMCwsLnj59Wmz0BblczqRJk5RWV8Wxbt062g+bxeOoJNJCvbh6Q41Nf9yiZllNvBLq09GlI3/djmT2AW/O+MVyLSiRVf1r4Okfx+imrtib6DKovhNCCArkcjwcTChjqsuhcYpd0toLwZzyjaVZeQtyZS+dQRgoXkuy82QsOxOAi4UedZxM0XGtjYbPYTqUN0BLXcqik/60d7fmhE8M2hpqjGtelnyZnA2XQ2hazoLKtkZgV5OEEXdo1KoDvXv3Zvny5R9MYMAncKahQsWHRF1dnUuXLpWq7RfVvuBMrzNY6ZUuLWlegZwH4TlMq/UV7uavN4O8HBiPVAo96pZDov7iAWeqbYqGmuLt8cejj/j2kA8FfzMCwjf1vuFi34tY6ykeSH379mXXrl0kJSX9rfGK8FxlBwxpp8eftauT8kpcpM7VbOlTy571l58oneI2XA7hUmAC3arb0vYl1c5zdDXVOTe1GfO7VyE+Pp6RI0cyduxY2rVrx5gxY8jOzsbFxYW7Pnf56dxP3H50m9DQUGJiYjAwMCj2TBBg5syZTJo0CQeHkgWutrY2Mj1L7iTrslTyOdX7zmDZuSBEvj41TFqjIdWgYxUbprYuR31nM4x0NLgTmsT2G+Gc83thPRUUl8G8/feQr2nAkfl9uReusIgc1tCJdQM9uB6cyPbrYUXm19FUY//YBqzsV4O0nALaVLbGvVFb9uw7REhiJqObujKplRsD6zlQxVax+3wYkcrPJ/1ZfykEuVzOihUr6NSrP/Pnz+eHH354Y2DOd0UlNFT8pxkyZAinTp16bYiWXFku486NY5P32wWG3HL1CQM23mT/vQhAEaDv1pOiD+jQhEwGbbrF1wd8XjteSEImQXEZFMgKC407oUn0XneNx6+EongVqUSqyE73DF1dXT7//HNWriwaPPFdqRawhA6Pd+CXVNRE+LNnO6OqdsYAjG7qynddy2PqeJQbMZ7FjpeRkcHs2bPp3bs3AwYMYODAgcydO5fbt2+zY8cO1q5dy/3s+6zyWsXBoIMAWFlZ4e7uzqJFizh5UuHoVlBQQFpaGosWLeLChQsMHjy4xGuIiooiMjKSuZ0rcXVaI86dPUvFRu1JzMhjz50Imi6+wEmfaIx0NZjQ0o2RTVy4MbslX7Ysx7AGTiw6+Zi7YUmQk0bZ7bXZbrkdE2k2BdnpXHgcx6YrT8iTyWnnbsPxiY1Z2b8G98OLmtdXtTdGU12NIw+iuBOahK9mRazS/JjSujwz21egvLUhRx9EM2zrLWbtf8hx72iW9K5GE4MEKlWqREJCAtevX6dHjx5v+S3+PVTqKRX/afT19enYsSNHjx4t0S8hOz+b2zG3kT4PYx5+A+5shjY/wWtyR7esaEVwfAYNn3l8j9x2G6kEjHQ1+al7FZqWU/QtY6rLpFaKJD2vY8PgWhTI5WipF35T9ItJ53ZoMkM336a6gzGz21fEwayo5dPTpCxM9TTR03rxZz1s2DB69uyJp6dnoRhTEomE1NRUjIzeHKakOOqmJyMrUEfDpqhljoeDCR4vRam1Ndahpbs2Hfb/RVxWLG2cXuxOEhIS2LZtG4cPH6Zu3bqoq6uzfv16ypcvz/nz5wudV3Ry6YQUKa2dWkNWEhyZSBV7I77YvZs1a9awfv16Ll26RN26dWnRooVSkJTEoUOHGDVqFBKJhO1bNzF4yFCGNC7LuJbluReezMPIFGX2wqTMPEITM/FwMKHXumsExmVQIJMrQoZJ1ZBoG1Hb2YWeYVN5GJGC5GIweTLBKZ9odoyqh6uFPpN23eegVxTHvmykUCu9hI2RNp2q2XDkQTSfNa3KLZ/NSt+XXmuvoaYmQSbgrzsRFMgFn9tGcvPcMY4ePUrZsmXf+vt7F1RCQ8V/nqlTp9K1a9cShYaxtjFnep158Zb++Bg83A1V+0LZkq2uylrqM6GNKTISIDySQxVOc8RkCCsvRZCSlUdGbgG91l6jaXkLZrWv+MZ1KsxX1bgZkoilobbSUmpQPUceR6ex69ZTTvrE0Ly8BQ5mhVUuIfEZtFp6kRYVrNg4pLBN/po1a+jXrx8NGjRQ6v779evHjh07GDt27BvXVRzSEaeRymXFhz95xv3wZFZ7BjGviSH2xwdzqsoAdOoo/EdWr17Nrl270NTUpFevXmhpaZGfn8/KlSupWFFxr/Jl+Qw7MYwKphWYVXcWOuo69Cz3LG5bwn3wOwxpNbGzs+PQoUPk5+cjkUhKzPn+KkeOHGHnTkVu8L/++osygxaycdF5ZrSrwLXgRDYOro2OpkKAf33AmxM+MfT0sEMuBKa6mlgaarHSM5BpbcpT9ZkVlMNuL7wjUsiTCdQkcCs0mYSMXGyMdOhS3RYBuJgXjfXVbfVVkrPymN62PAPrOdBrsw7Z2dno6OiQWyBHTQJSCdR2MqWlZSbHtp1g9+7dH8VSUqWeUvGfR1dXF1dXV86fP19iGyMtIzSfWbOE1uyPV9elrxUYzxl4YiA9D/fj9Lb5lA3YxOQqBfj/2J6u1e2QyQTx6bkkZpQ+PExyZh6fbbhB55VXGLblFkFx6VT77jQu5nrc+6YVe76oT++aZYr0O+YdjVyAkU7R90ArKyu6dOnC/v37lWU2NjbvFodI24hrKY+p92c9zoUXn7Ds1pMkzvrFERIZA0lPIC6F/X/up0mTJsjlcv7880+++uorNmzYQO9ycpa53aSi24vQIDIhIzw9nKiMKGVZTGYM7fa1Y3PSfRh/h6rth3P8+HEkEgmampqlFhhJSUnEJySw9MJTtp+9i52dHTWcLJBKJPx03I9j3tEkPEsIlZFbgJWRNvVcTNl/P5KwxCxSsvNws9TnUkACO2+Gk1cg5/froUxrW54/RtRFKlG8BOhqqtFvvcJf5kpgIocfRBH4kkNgUFwG6Tn5eDiaUM/FjHHNyzLv8CPupupy8abCq//IhEb0q+OAXEAXZwk/TBzO999//9FM61VCQ8X/BVOmTOG3334rVdtvbs5n0MNfic+Kf2PboZWHYi3aMjvzM8ZKvkbYeSgT6hjpanD761Ys6f0il0dSZh5eT1OUn1OyCgsUEz1NvmxRFhM9DVKy8wEJGmoS1NWkGOlqUsfZFGkx/kvdqtsxrKET41sUr6oYNWoUmzZtoqBAYfbp5OTEkSNvDhPyOiRIUJOooSYp/uB1VGMXTk1qgqmxGbMzh/HZymvIZDL++usvJkyYwNKlSzl+/LhCTdTMAfIz4SW3MW11bU73Os2KFiuUZTIhIy03jcz8TDB3o3X7jpw9e/at1/75559jWL4+266HsePsLWrXrs2MdhWo4WCMo6kum4bUUkak3XUrnK1XQ59dM7R1t6a+ixkdq9rgaKpDs/KWbL4awreHfFl3IZi6Lmb8NqgmBXJBXoGc0MQs1l0MxvNxHNrqUjSf/X6EJ2bRZtlFpv/1kPndq7D8sxoAVLM3wtHOhtycF78bNR1Naexmzh/Lf+L48eMfNc+OSj2l4v+CcuXKoaenR0hICC4urw90N7b6WAKSA7DQfbN/wzD3YfSvICMmNQdjHc0ipo5SqYQzj2I5eD+S+d2rMGPfQ848iuX81KYcuB/JyvNB/DGiDo3dFHPtvxfB8nNBrO7vQXa+jNWeQVyZ0aKQ30JxlDHVJSolmy4rr3Lpq+YvggE+Q09PjyZNmrB3714+++wzHBwcsLa25uzZs7Rq1eqN1/kqsy7P4lrUNU72PImBpkGRerlczvnz59m6dSs5OTnMnDmTH36ar7TsGT9+PI6OjkyfPl3RwWFzsfMoE2I9w07fjmv9ryk/m5iYoKGhoVTllIbDhw9zJ8wf/bFB6EdVY6i7E5HBigP9jUNqs+f2U4Zuuc2CHlXoV8eBK4EJOJrpsrKfBwLBiK13eBSVhqulPhe/akHX1Vfxjkjhq7blcDTTo8GCc3zXtTLda9hjbaTFmUexLDrxGAFoq0vR1VQ8di0Ntehew56m5Qv/nvWsac8yIWf09nvE6jryeRNXmpSzICvkLvtsrKhcuXKprvNDoRIa/xASiYQDBw7QrVs3QkNDcXZ25v79++8UU0fF29GhQwfOnDnDF1988dp29W3rU9+2/hvHO+0bQ2x6Lp/VLoOtoSaXL1/m3LlzPHnyhJSUFKWq5FF0Gk9jEvDeYkdGbgFauTK+9F3HndBk0nLymXhJGzM9TSytrLArVxVHNVtsjbVZcyGY84/jmN62PLbGOuTL5MWnBX2Gu60RmbkypR7+VSZMmEDfvn357LPPkEgkrF+/nmrVquHv7//Wqg4zbTMsdS2L7DLkcjk3btxg+vTptGjRgqVLlxbJ7zF58mRsbW1fCIx3pE+fPgwcOJB9+/aVqv05z4sU1K6HKAigiasNVkY67AtJZO2FIPbciaB5eQualbegehljAFJz8tFWV1PmSO9d056fYv244BfHpYB4bI10GNPMlTHNynIhIJ7o1By+OejD1ZktUZNKcDTT4/zjOEY1dqaavbEy37m2hhq/9CmaUbLn2muExaVhVl6NhxGp1PzhDHtGeLBo0aLX+pz8U3w6QkMug7BrkBH7LGFLg1LnEvi7DB06lG3btgEKe35TU1OqVq1Kv379GDp06D+WvOfBgwcsXLiQK1eukJCQgJOTE6NHj34/TlkqlNjZ2XH16tX3Nt6CE3743b7MOJ9zmEsz6d2hJR07dqRChQpYWFgodx05+TIikrP49Wwgx7yjOTelKQKF2sNET5PRTVwJuHmMtN3j2JdqQtkUfyb0X8dnAwYx48u+2Brr8PUBbw57RTGpRyInww+wpuUatlxKpIyprtLxb0JLNya8Zr0mJibo6uri7e1NlSpVMDY2plmzZjx9+hQ3N7e3uvZptYtmjTt58iTTpk2jcuXK7N+/Hyurov4uoaGhhISEKDPkvQ+GDBnC5s2bEUK80amtoKCAU56XkDabBhE9adi+ItlpQZx9FM2DM4HkyuQ8ScjkjxF1qGijCKVxYGzDQsEfBzdwonM1W7LyC+i2+hqp2fncCUvm88YuBMamU9fZhNScF7Go+tQqQ59aRc+hSqKKnTEBeXFc+HEABx6lcic0mZVLFzF8+PC/be32Pvk0zjQeHYZf3WFbJ9g3QvHvr+6K8g9Mu3btiI6OJjQ0lBMnTtC8eXMmTpxIp06dlPrfD83du3extLRk+/bt+Pr68vXXXzNr1ixWrVr1j8z//0K9evV49OjRW/fbdzeCxj+fLxTR9MSJE2Ts+4Z6mhG4d/2cub/tZdG302nSsAGWlpaFHl7broWy5Woo+TI5jcuaY2Okw4pzgWy4/IQ6ToozCgNy8DBOo1erWmzatImTJ0+SnZHGgK5t2b17N9aGWtib6hKbHUlgUjBNfznBmgvBLD0T8FbXsmTJEhYtWlTonrxLThkhBPv3Kw63582bx4kTCque4gRGWFgYw4cPZ/ny5X97vuJQU1PDw8OjVG/hT58+xcDGmTI2Fuwb3YCB9RzRNrUhLz4ce1MdDLQUL6pP4gsbCbwqjEz0NLEz1uXKjOZ0q25LfVcz9t2LYP7xx2ioq3FiYuOSY+fJZYXObkARey8iWREiZUnvqtioZWBracaXLd049kV1/H29lTlKPjYff6fx6LAi2NarmcLTohXlfX6HSq+J+/+OaGlpYW2t8FK1s7PDw8ODevXq0bJlS7Zu3cq1a9eIi4vj6NEXIavz8/OVMepHjBhBs2bNqFq1Ktra2mzcuBFNTU1Gjx7NvHnzSrWGl0MqgCL67vXr19m/fz/jx49/b9f6/45EIiEvLw+5XP5Wu8iU7HxiU3PJypMRGBjIxIkTKV++PAf3/YWd7bMozInBiF8qcMOwHb41v+dKUALt3a2pbGvEjpvhxKblkFsgp1NVG2RC8HljF+o4myr9Gezq94K6Paj9bF36+vpMnz6dcePGMWfOHBISjnFo40Y0NBphmteZrVGRyDXyaFbu7eJKlS1blqysLKKjo7GxsUFPT69I8q8fjj7ihHc0x75sXORs5DlRUVH8/vvvLFmyhJEjR7J3797XppnNz89n1KhRbN68WZmp8n2yZMkSqlSpgoaGBp06dXptWyHVIDI5m8SMXCKSs2hUzY3yulnsH9uQfJmcfXcj6P3SzuDnk4+JSc1had/qRcaavd+Hg/cjODe1GT8eU5yLjG76mjMzWT6sqKFI5zvogLJ42ZkAVnkGseeL+shjA6hSpYry/Of5S+THSlv8Kh9XaMhlcHIGRQQGPCuTwMmZUKHjB1dVvUyLFi2oVq0a+/fvZ86cOTRp0kT5RwZw9OhRsrKy6Nu3r7LPtm3bmDJlCjdv3uT69esMHTqUhg0b0rp167+1htTU1LeKUKmidBgZGVFQUICmZvEPw+IYUNeBs49iWbvjAH4ntrF27Vo8YzVovsaLg2P1qGRrCDom5NvV5egTGwJ8Y7kXlkRoQiYFckFkcjaa6hJmd6hIi/KWtFl6EQ11Kav6eRS2hCrmoaChpY1hsxHoh95m0KBB/PHHH4xuUoHRTSogl4tiLaneROvWrblz5w6dO3cutl6RebX4cZOSkpgxYwY+Pj7079+f6OjoN5q5BgcHM2XKFMaOHftBBAaApqYm3t7eODs7M2fOHD7//PMSw2noaKghAb455EtMWg5e37bBuYwtvo/92fQwG8/HcdR0NKHWM2fMy4EJRCRnUSCTo64mZcfNMGJSc8iXCR5FpyJQ5D3/uVdVolKycbd7jQpJIgVjBzAsHM/Mw9GYxm7mWBuoM3jYTKXaPCAggODgYJo0afI+btN74eOKrrBrkBb1mgYC0iIV7f5hKlSoQGhoKA0aNKB8+fL88ccfyrotW7bQu3dvZeA0gKpVqzJ37lzc3NwYPHgwtWrV4ty54u3X38S1a9fYvXs3n3/++Ttfh4rCuLq64uvrW7gwO1mRMyO5aGwggNx8OdcvnePUvu2cOHECbQsH0rPzMdBSf5FBTdcUzRHHGDP1O7YMq83yz2oQmphFJRtD+tYug76WBpm5BbRadhFHM13yC+R0WX2FyJTsYucE8IlMpdGi82y7FkqYfiV69OjBxIkTlfp1qVQCPvtggQOEXS/1PdDT03ttPKo5nSpxdWaLIruM1NRUevTogaOjI9euXWPChAlvFBhbtmxh2rRp/PLLL3Tr1q3UaywVicGwqg48/AtQCI5Lly4RGxtL586d+f333/Hz8yMtrXD4lapljLk4vTmf1SlD39pl0FSXKnZ1077mnF8cNkY6aKpLScpU7MD61LJnbufKygPsbddCWX8phKtB8QTGpqOtoYalgTbbb4S91srtaVIWPtHpPO22l+1W0wmKe5FQrUUFK/4YUZd1SxcyZMgQHB0dCQoKonz58ixYsOD93rd35OPuNDJi32+798jLh2ojR45k/fr1fPXVV8TGxnLixIkijmJVq1Yt9NnGxoa4uJLTQZaEj48PXbt2Ze7cubRp0+bNHVS8FUZGRshkr6R5vb0JLi0GJNDi60JVm6884fs/TiG7fxDf25fQ0dFh/IbL+EWnIYQiGN9nL0WgtTfRJV8mx9VSnyW9q9KmkhWGOpos7Klwdjv9KJaZ7SsSlZLNrdAkLA2KRmd9TmZuAYkZeYxvUZahDZww06/DkydP+OGHH/j222+ftZIUTXv5Btq0acOoUaNen7nvFWJiYhg/fjxTp04tcYfyMjk5OXz99ddkZ2ezb9++t1etFOTCgdHg1AhqjyhhkhRICla8WD7D1dWVefPmkZKSwpYtW9i6dSsPHjygRo0ajB49GgB1qQQHM10+b+LK/fBkhm+9zbed3ClrqY+zbQrzvmhLhxWXSc3O5/SkJsw97ItUIuGCfxy/flaDrcPqEJWSzdWgBPKfxQkrZ63P8K13SMjIpW/tMszY95DZ7SvS4FmImTOPYhn1+x2kEnAy1yUkPouOVW1Y3d9DufatW7eSlJTEsGHDuHr1Ko0aNeLGjRvvNeve++DjCg390kUTLXW794ifn58yh/DgwYOZOXMm169f59q1azg7O9O4ceNC7V9945JIJK8Nklccjx49omXLlnz++efMmfP63Awq3iNPnyXCecUD/Psjj9hx1Z/oo79Sa+R89HQVfgATWpTlSUIW7naGmOgWVXMtPxvIKk9Fet/JrcoxsZXCMqmOsyknJip+b6qVMaZ9lddnpazrYob/j+1Rk0rIys/iadpTxk2aymcDBnLq1Cnatm0L7j0UP2+BtbV1IfVTESH6CsHBwZQtW5Zjx47RoUPJ2Qefk5aWxtChQxk2bFipBEyxZKfA46OQn1Wy0LCrCbMiQKOof4axsTGTJ08GFC+AW7ZsoWfPnrRs2ZLbd+5w2T+WRuUsuROazPnHcfSqac9vq1fSpUsXVlqXITQxi3rOpkzd+xAJEvQ01TjkFUWfWmVoUNac074xLDsbyKz25fm8iStyAfM6VyItp4DwxCx8ItMITcyiwTNfSxcLPeo5m2Ksp0FBgZzMXBlG2urKXePPP/9McHAwK1eu5JdffmHPnj1ERUUpVeKfEh9XPeXYAAxtKflVSaLQ/Tk2+CdXxfnz5/H29qZnT0WcGzMzM7p166Z8cxk2bNh7n9PX15fmzZszZMgQfvrpp/c+vorX0Oo76LwcytQtUhV7fhsmtbuxb3IHzjyKJSO3gHbuNoxp5kpjN4ti9deN3MxpWs6CZuUsaFi2aGKxJaf8GbH1Nuf8XuygJ+y8z4CNRdOzPrfA+ebqN3Q+2Jk5xy7i7dCTabPmkJqa+i5XDUDDhg0LhRd5lbCwMHr16sXZs2dLJTCio6Pp1KkTU6ZMKV5gJIcpgg2+CQMr+PI+9Cre6U9JMQLjVSQSCcOHD+f27ds4Ozvj4/uI7qNncvhBFCMaOXNmchPsTXRYdimKBb8sY8NP08mNDqCeiynOZrp0rmbDgBZpmNpdJiRBoVLqXasMP3V3p19dRyQSRcrba8GJLD0TQEZuAfe/aU3/ui92oK4W+uz6oj7m+lqcfRxPbFouf956yvnHsUybNg0hBAMGDKBFixakpaVx/fr1T1JgwMfeaUjVoN2iZ9ZTEgofiD8TJO0WftBD8NzcXGJiYpDJZMTGxnLy5EkWLFhAp06dCoVVHjlyJJ06dUImk73Vtr40+Pj40KJFC9q2bcuUKVOIiYkBFKaE75p1TcWbOZsTxa/he/nFuT7lTcsry7s5FnDVvIAV677mTngS4/+8z/jmZZnWtnyh/qnZ+ey4GUafWmUw19einosZtkY6TNp9nxHb7jCikTNftnzhB7H79lPiM3K5G5aMTC5n24i6xKRmk5CRV6KvQbMyzVCTqNHRtiJ3g/xJrNaTr2bM5Ld1a5VtYjJjMNQ0RFejdLm/QaHOyc4ueq6SmppKhw4dkMvl7Nmzp1R+HH5+fowfP541a9bg7l5MfpHcDFhdF6wqkzbkAA/jH9LQtmHJvhVG9qW+jtIgkUgYPXo09pU86Ny0Lo463yCVSnCzMuD7I4/Yfu8Ox8quwmKMNunr1rNDJBBv24ABdR24mribPIMA5hyuRYsKVtga6zCgriMkBEK2Bpg4KZ0qXS30kUokJGfmFToXkskFo5u6Us7KAFcLfU54hbHm2y9p0qghcrmcJUuWcOLEidemWv0U+Pg2XJW6KMxqDV+Rqoa2H9zcFhQOSTY2Njg5OdGuXTs8PT1ZsWIFhw4dKmR90apVK2xsbGjbtm2xyenfhb179xIfH8/27duxsbFR/tSuXfu9zqNCYXK67/A++h7ty96AvQAkZicSkR5Bel56obY//vgjK5b9Qvkrk2j1dBXDGzrTrUbRLH5HHkTx80l/9tx5qiwLTczkXngKWXkFXA9OLNT+6JeN6FenDCnZ+eQWyAlPzCIzV8a3nSopH6ByuSAuLUfZp7NrZ35u+jNN3exo7GaOW81GPPL1JSdH0SYhO4EO+zvw1aWv3vqePBcaycnJHD9+nEWLFmFra8uUKVO4fv16qQTG6tWrmTdvHps3by5eYABo6JJXpS9b0mox9th8xpwdw7Wo0hu5hKWF4RXnVer2JdGpSR3mzZtHn87tlOqhya3dWN6nDpZ65mTrZtBrfg8CAgOI2/8jqZHBdLWdQWbYaFqVd8TaUJuM3ALkcgHrm8FWxY5qUc+q/DGiNnkFctouv0jbX18k/1p86jGVvz3JzZAkBtZ1IPHRNc79Mp4xX3xOXl4e9+/f5+DBg5+8wICPvdN4TqUuCrPaf9gjfOvWrWzdurVUbTMzM0lOTmbEiKL61QsXLhQpe9XR6GWPUicnp0Kf582bV2qfDhXvRqNGjTh94TSByYGEp4UD0LdCX7q7dVdGuQXFAzQpKYnybmXh0AW0jcvw7efzix2zew07BNClqi0rzwWio6nGyMYuXJnRnP4bbuL1NIUzj2I46BWFk6keZ/1iqfosB/iIxs6Y6mniF5NGWGImuQUytNTVWH4ukBXnA9nzRf0ieTgW9FAYXfR64MGQBdv545vhGGoa0sqhFbWs3/7QNCkpCRsbGypWrEibNm2oUqUKYWFhmJubl6r/5cuXuXz5Mrt27Xq9R7ZUSnLzRfx85wKNcnPo7WZIcpI1wvbNntwAUy9MJSgliCufXUFfs2h48SIEnAKbasrUqi8zd+5cdu7cyahRo8jpkUN8VjxdynbhWPdjZBdko6uhSxfHOO55PeDW/g2EHM9iUNuehOfncjs0iaFbbtO5mg0/N5oEmi9ybiw7E6TM2tfY7cX9M9PTQlaQx+ezfmJR6n2aNW3Cvn37+Pbbb9HX12fLli0fPOPe++LTEBqgEBDOjd/c7h9GLpeTkJDAL7/8grGxcYk5GVT8e9DX1OfKZ1de5M/4axiafkfAYzB0WgrA8ePH6dSlKy2WXaaBw+/82KNGiePpaakzqJ4i7/f6yyEYaKkzvKEz9ia67BhZl9wCOZuvPuHYw2jaVrYiIjkL/9h0KljpM6V1eSTAyEYunHoUy6/nArk4rTnudkbUdjLFxqjkmFDJug7c97zIo5E90dGL46s6X2Gu8+YHfUZGBhkZL8w9b9y4gVQq/VvOYytXruTGjRv89ttvpXrwWxlqc3tOK3Q01PjxmBvjDz9Gb6gBzStYkplbwHHvaDq6W6J7cgpYVoAGE/j++vcEJAcwwn0EUZlRpRMYEXfhzz7g3gt6FZ+R8cyZM9SuXRudWzpYT7Zm3YN1xEa6M6dtY6QSKW0rW9O2sjUMaEtUVBRffv8rR48t49gKMyTlUjmja0Be13Ok5wouHtpLrbszaWo7jfIetYiKT6KbfRY3btwgNzeX2GvX0Di5j/Ytu7J23s8UFBTQs2dP3N3dWbZs2QfN6f2++XSExidKeHg4zs7O2Nvbs3XrVtTVVbfsv0AhvX9KGCBA64VqwMvLC8c6bYnwyibWQh80iz8neBiRwg9HH/Ftp8pUsTfiyPhGXAyIw23OCTYOrkXzCgov6W87VWJYAye++OMuhtrqmOlr8Tg2A+/IVK4GJbDhcghOZro4m+uhqS6ldSUrWld6vdXghmmf0aTnafpuPIO260/UsqrFprZvTlkbHBxMvXovMu793d/pu3fvcvfuXbZv316qh96B+xE8jklnRtsKyIQgNCGL+i6m1HRSeMWvvxTM8nNBxMTbMMF3PyRWhQYTiMuKIyYzhhaOLdBSK9lEuRDW7tB4GpRrW2KTMmXKULt2bapVq8b5jeexbt6N3/0y6OeRoYg7lZcJuwdB2VbY1h/LnjWLaLm0PYFPwlHP30jKhUjan21PeJqM3JQYqknDiNddjoNbFaRSKT5JlfFTU0MIgWv5ity+ehE9PT3u37/P+PHjWbVqFTVqlPwy8qmiegK+gVdVSSr+3WzdurXQAxOAEWcUsYDUXvw53PH2I8a5PflyOcMbOpc4XmBsBrdDkwmITaeKvRFO5nqEJeljbaiNmlRCSlYexrqaaGuo4ROVSkhCJi7meizpU42zj2KpZGPInAM+qEslbB5aGxeLUrxFP8PazBgTaQ7NK7hi4diPWjZFI6aWxLuqQnJycpg1axZ//PFHqd+S/7gexsOIVMY0dQXgWnACtZxMMNRWmKsbPPv3WkQeo8feRiMrHjwXsKrRQuSaui/S8ZYGdS1o+c0bm/Xs2RNDQ0PGjx/P13PmkBO8lEPbvLEZPRpjtRyFylzbEBiLVCrBSEcDHWMLRnfti6OxNb3K9cInMpVj3tF82dSJAw/jiEjO4suWbmTmFvDNIR9y8uVs80qgQXMJkMmoUaPYu3fvB/OO/9CohIaK/xvi4+PZsmULQUFByrKn6U9BQBnDwlFIg2LTeBKezYGxDajxUr7rV+lZ0556rmbYGb8w/WxazoKrM1vQaeVlIpOzuf11K9TVpKw4FwjAlDbl8HAwoZKNIcvPBTK5lRtlzHTfSmAsOeXPvnsRWBnrcvpRHJVTmjCn/pvDuYNCHfWmnCKvIycnh379+jFt2rRiAxMWh1wu6FbDjvquZvhGpdGwrDme05phqPPCv2lAXQdO+cZwPTiRh2nlqOn3F9xYDdZVkFZ8fTypd8Xa2ppNGzcik8lYtWoVjRo1olatWvw6/zrGlgrjh8zcAlpWtMLraRJbH23CXt+OXuV64W5nhLudEQ8jUph9wBuQgf5tPCzrc9w7hko2hmipS3kaHc/IKaNYuHDhv1ZgwKdgPaVCxT/AgwcPaN26NX/99Veht+yBxwcy8MTAIu3t9SWs7u/xWoHxnCuB8VSZdwrviFSy82R8c9CHy4HxNHGzoHkFS2X4ia87VOKHrpXpVFVhfecblcqhCzc54RtDBeu3s5qRC4FMLlCTSOhew4749FxaLr1Yql3x2bNnadeu3VvN95zc3Fz69evHmDFjSh2x4M+b4ZSbc5y5h3z57WIIAzfeJDA2HVtjHfS11EnMyMUnMpWhm66TkRDJsj7VFIEcG0+BHhug3FusNTEYAk7/rWsDxQ5s4sSJ+Pj40LJlSzwateSBryIQ4bS/HrD0dACOpgZkPhlPb/t5hfoGx2fQtrI1XRuk8kfwz9xN2cepSU1o625FcmwkU74YxMKFC/9W0qtPCZXQUPGfRwjBuHHj2Lx5c5GQDEMrD6WZfTO+vvI1aXkvYhSZGRnQsWrpnKt8IlPJK5Ajk8t5FJ3KHzfC2H8vkq/aVaBXTXu231DEtGpVyYpB9Z2U/WrG7uOa9pd8bu7D7APeynavcjUogR03C9d91a4Ct75uRXpuAaObulLF3ghrQ+03qoqioqIIDg7+245jc+fOZeDAgW8lMCKSs7Ay1GFOp4p091BYmvVce40hm2/xOCaNyXse0GXVFcbmbeZYwed0s01WXIeeOVTtU0ht+EaOTIQ/e0NKeKmav07IDho0iAMHDjBt2jT8olM5/SiWCjYGdK1uizzXmgrmToBiF3XGN4bJux8QHJ/B92168GWNL+lfoT/lrQ2wSXyA2fUVrFi6GA8PjxLn+7egUk+p+E8jhOCzzz5j0KBBxf7BDnMfxg/Xf2B/wH56l+tNdcvqAG9lSeQblUZegRxzAy2m7nmAlrqUya3KATD+z3skZebTqpIl1oYKFVZQXDrhSVm0sK7CHVGRRZdzuJsTTnkrAwY+s8J6mdlnNhHPJeq7bcTF1IYCmZxWSy9ipg33QxOZc9CHP0YU9WYvjjZt2vDVV2/vywHg6elJXFycMlJCcYSnhTPg+ACGuQ8jNrw+v10KwcZIm+uzWhIYm85hL0WA0rScAi4GxJOQnouHowku9Z1o6Nge6YMkMHgHT+gm08GtNRi9OelRSkoKu3btem1+j2rVqtGiRQumjx6GY5MvGdrAiT61ytCvrgM2Rorv88jDKCbu8qJFBUsuBsQx71Agy/qOoqCggKlTpxIcHMzlS5f+FT4YpUG101Dxn0UIwZgxY6hfv/5rU7xOrTWVXR13KQUGoHSaKw0hCZloqUvJyZdx80kSpnqaWD8zlS1rYYCpniamui+sfmbu82b41jvEGlfHr90uatdthFyAk7lekbGz82TULZ+Hpl4USBVOeBKJBGNdTUzU8qhWzoFxzcuWap1hYWHo6+sXinRQWsLCwvjhhx9YsWLFa9tJkKAuVUdNooa6mgSpBGJSc8jJl/HNIR8eRLwIfaKlLsU3Oo2dt8KY27kS6tX6wOBDih3GM27H3GbX412lX6hLU2g4Ed6w4/L09MTExITvv/+eChUqvLbtlClTkOVlM7NKHn1rOyCRSJQCA8DMJAGnytvpWgeauFlQx9mUO3fu4OjoiJOTE3v37v3PCAxQ7TRU/EdJTU3ls88+o0qVKm9MZKWroUtl88qAQtWw5Vooadn5pUofCvBDV3cCYtMZuuU2dZ1NGVzfCU11xfvYzs/rcf5xLCvPByIXgultKzCldTn8YtKxMtRWqqtqO5lS2a7wgyUjt4DGi85T3aENl/pPxFBTUa8mlfDboJoM+24ttatXpZ5L0fhWxTFnzhxlEL+3QSaTMWbMGDZt2lQoHUBxlDEsg2cfT8WHyuDhYMLlwARy8+Wk5ygyYXasYsUx71hyC+T0qWVPA1czsvJk6Gm99Dja/zlEP2SlozP3E31o6dASCx1zuPwLWFeFci+pxwpyFTGtLMq98VrS09OZPn0627Zt486dO9SsWfONfbS0tNi+fTt9+vTBzMysSJ+4vGAS5T4IzUi2DOuGj48PEyZM5+LFi5QtWzqB/m9CtdMogQsXLiCRSEhJSfnYS1HxlgQFBdGpUydat27Nzz//XMQPwT/Jn9DU0CL9AhP8+OKvzsz3PESKuil+fn4lzvGyLrxzNVuq2hsTlZLNoPqONHIzZ9etMIJi0znyIIpRv99l67VQ/ryp0LM7meuy/mKw0poKoHkFSywNtJHJBQtPPOaUbwyaalIq2RpS0dpIKTCe4xedxtUrV5BZlC639+3bt7l582ahxGGlZfny5fTo0UMZ9bk45HLB3rsRRc5eNNQkbL0WyqwDDxnSwIku1WwZ3siFxmXNqediyp47EUzd85AJO+8XHlCWD/J8vq07hxXNV2ChawEZcYq8J5d/Kdz2zLewujY8vV3i+oKDg+nUqRNt2rShTp06pKSklEpgPMfMzIw9e/Ywfvx4vL29C9X1cOtBvwr9OPHkBLkFufTv35+FCxf+JwUGfEI7DZlcxr24e8RnxWOha4GHpQdqHyiMyJveHufOnUuzZs3eelxfX1++/fZb7t69S1hYGMuWLWPSpEl/b5EqSkVWVhaZmZnEx8dz8uRJDh06RFZWFps3b6ZKlSovGl5fA6YuiHJtGXh8IKbappzqdarQWHrnf+Q3v8vMdNMmU+rClStXqFSpUpE549Nzab3sIl2q2fJ9V0WcpdaVrPD/sT0aalKWnvZnxfkgpBI4OLYhQxs4Uc/FlHN+cQTGptN73XVSsvPxjUpj8m4vtNSlLOypCA0Sm5bDb5eCaeBqRtvK1uwYqfApSc/JV/oxADQrb4lt3lN88624HpxILScTdt1+SvPyFtibFHVEXLNmDbt2vYWa5xn+/v5cunSJAwcOlNhmws773AxJRCYE6enp7N61G93Ex8RGhPEgJhsEbNsnY4+kAGtHV8J9WqBl704rd1vScwrQ11KnZcVXUsX23gJAWaAsil0gBlYw5HDRQIauLRU5NUyfCbXwm5D6FKr0Ii0tjTFjxhAYGMjgwYMZN27c3/a+NjMzY/HixdSqVQtPT08aNHgRfTs09SkP4r3YsXMHdevWpW7d0p0x/Rv5JITG2bCzLLy1kNisF6GirXStmFlnJq0c3795WnR0tPL/u3fv5ttvv8Xf319Zpq+vz507d9563KysLFxcXOjdu/ffUgOoKB0BAQF4enpy4cIFYmNjcXFxwcjIiAoVKnDkyBEMDAwKPxiyU+DUbLCugqR8O8ZVH1dsKArbyr3JzErmeu4jhFEOUafCis2eqKEmQUdDDekrDx/Px3HkFMjpXasMj2PSsZDF4ranCW3t+hOe3Z+/7kbgaKaLub4meTKFambeEV+01V+8HNka67B/TANsX/L7OPYwmnF/3mNFvxp0qaYw133y5AmWVjaEp+aSkJHLlaAEvjnoQ/+6DszvXqXQumJjY0lLS3try52kpCSl1dnrHrRmepoYSXNxjPLk7LnzXLaqQY+uXTi5sSOfbbyFq7ke5gba+EQkce7qbZ6eO0dO+DL8W39Giw7dmN+jarEZ76buecCNkEROT27yQnXlXDTt6U9Jt9Fyqc6052chx6ZCrDdX4vRo26UXp06dolGjRm917SXRqFEjLly4QJMmTdi1a5fSKMArPINMWQ4TpkwgLKx4K7j/DKIUpKamCkCkpqYWqcvOzhaPHj0S2dnZpRmqCGdCz4gqW6sI963uhX6qbK0iqmytIs6Envlb45aWLVu2CCMjoyLlnp6eAhDJycmF2p08eVJUqFBB6OnpibZt24qoqKhix3V0dBTLli37cAt/hXf9Hv4teHt7iyZNmoj9+/eLx48fl9juauRV0fdIXxGQFKAoCL4gRFzJ7V/mh7MHhdOcbaJ8jXoiMTFRWe4bmSo8vj8tVp4LEI4zjoohm28W6lfrxzPC7evjLwriHouceRZiyezhIiQuXZzyiRbZeQWF+mTlFhQqS8rIFb3XXROtfrkgcvIV5XdCE0WbpRfFrScv1jJp0iRx8uRJZd/cfJnYdDlEhCVkFrmeH3/8Uaxfv75U1/6cjIwM0bp1a3Hv3r03tr127Zpo1KiRWL15uzjpHSUcZxwV84/5iu6rrxS6R4e9IsT0vV7ialC8mLLjhjCs3V0Y1ukhQuMzih139v6HouUvF0Rmbr6yTC6Xi7NhZ0Vi9ot70Xx3c9F+X3vl54In18T6eWNEo0aNxPXr19/quktLSEiI6Nq1q2jYsKG4fPmyGL5nsSjbtbr4+uuvP8h8/wSve86/zEfdacjkMhbeWoigqK20QCBBwqJbi2hepvkHU1W9DVlZWSxZsoQ//vgDqVTKwIEDmTZtGjt27PjYS/u/QAjB6NGj2bBhAxUrVnxt29DUUHwTfYnJjMHNxE1hVVNKpjTuSFmDKGIs09mzZ48yTahcCPIK5BjpajCplRt1nU3ptfYaaTn5nJ7clLUDPMgreClbo0V5wr8IpGJ8Fs4W+pjqaREUl1EocZOOphoFMjk5+TK0NdRYezGYW0+SsNDX4vmxSU1HU7YNr8Pmq08oY6IL2Sncv3+fpUuXKncAmupShjcqeuYQERHBkSNHuHGjaIKn1zF//nz69u1bYmykkPgMjj2MIuL8dh77PGDa4g1MPBhM2SR/VvarTtvKNvRYe5V82Yv7sfHyEx5GpjKzXUUGNy7PrafjcfZayZqpvVi07QRRKdn8ejaAz5u4UtZSn5+e75h89hGjrk6ebQ0iMyKZ5DmJ3uV68219RcrbA11fqM4iIyOpXrsLkydP5tSpJejqlj63yNvg7OzMwYMHiYyMZOXKlaQEBmKXYsSXX375Qeb7lPioQuNe3L1CKqlXEQhismK4F3eP2tYfP7dEfn4+69atw9VVETtn/PjxfP/99x95Vf8/eHt7Y2VlpRAYXn9C6BXo9CuoF0252r9if9o7t8dI04gH8Q9wN3Mv9YuHrqY6n9VxIMt9GE5VanNHszobh9fD3c4I7+/aEpeeQ4slF3malI2ZvqbSUqrWSyHMvz/yiEuB8Rwc1xA3a4WQmHXgIce9Yzg7pSla6lKGbrnF501cOPowGt/IVC7PaEH/Og5oa6jxeROXQiqbEz7RrL8Uwh/XQ6kecZBZs2aVSjc/Y8aMt1aVnj17lrS0tGLTADznq913ObHmWwzsyhF+Yj8dV1xBAgTFZxIYl0nnalKOTigctfrXz2oQm5ZDRHIWhtrqJGbmsa+SL98dDWfvnj0Il/rsuROBq4U+ZS2fqQ9zUmHvcDK0tBnlWolj3Y8xsspI2jq9CERopKW4vzt37mTNmjVcunTpjS8V7ws7OzsWLlz4j8z1qfBRhUZ8Vvx7bfeh0dXVVQoMABsbG+Li4j7iiv6/kMlkLw63fQ9A8HloMedZyuCi6Gro0nRPU1JyU5hWaxpDKr9dxkVdXV3Mq7fm8qE/YPiLIIc6GmqUs9LHxUKvRB+JzNwC0rLzkclf7KK717DHWFcTexMdJu/2IiQhk9i0XEx0NUnKymf52QBmd6zElNYvTEcjU7KxMdSmXx0HniRksuPoBaIiwhX5wd/A/fv3UVNTe2uLqR07djB37twS63Nzc7m55Tv03VvSuWMHNNSkDGngRGRyFo3dLPBwLD70irO5HmoSCU2XeNKygiWeU5syYdlU7Hvm8+uKFeze05jtI+pSx/ml/CHaRtBrM48TvBhqURZdDV0mekwssp4xY8ZgamqKp6enKhL1B+aj3l0L3dKlMi1tuw+NhoZGoc8SiUQVAfdj0XMjZCaUKDAApEix0LFAT0OPejaFI9vejrmNVCKlptUzs0uvnfBwN/RYD3kZYKoI6Oe1awnt2rUlMDBQmcHOQFuD/WMbvnZ509qWx91OEajuOS+HO49Jy8HaUJvxzcsSn5FLXHqOMmDh9hthpOXk4+FgwmfrbzCxpRuTW5djXudKeC4Zw5+ltIJatGjRW+ebP336NKGhoTg6FvVMB4XTY48+n1GrdU8mDutNs/IKq6fiPNmLw9pImyH1najvaoaloTY2FepgaaxDdePH1BrswYPDDzjnF8v9pynMaFdBkSPdvSedKN4L/cCBA/Tv35+9e/fSsWPHt7pWFX+Pj+qn4WHpgZWuFRKK32ZLkGCta42H5b8/XouK94y2EZi5vraJhpoG+7vu52TPk4VyfwOMOzeOSZ6TXhQ8vQmhl+HsPFhRA57eAkBTQ53lv/7K119/XeqlnfOLpf+GG3xzyJet10LxeprCuB33iEp5kYv79+F1sDLUYsEJP6wMtWlTyZqZ+7254B/H+QtnyDr/C/ZGGjRwNaN6GWMAFi9eTI8ePbCzsyt8dlIMd+/eJTMzs9DO+E0kJyczf/58jhw5UqzqKzc3lwEDBuDcsAv3cSIgNr2YUV6PproUdzsjFp18TFhiFp0bJDGgoT5lqpch/Wk6a65vYPvNMDZcDiE+Pfe1Yy1evJhLly4RExOjEhj/IB9VaKhJ1ZhZZyZAEcHx/POMOjM+iUPw0pCXl4eXlxdeXl7k5eURGRmJl5dXoVDcKj4cMrmM7Y+2E5wS/Ma23zf8nrn1X1LBdFgMk32hYhdwawPGijfntJx81vsUEJ2SxcOHD0u1jpM+MQTGKTLjPYpM5VJAPMe8o/GOVITQuBGSyPWQRCKSs3mapBAkblb6lLPSZ8W5QOZbnGWa9E/scwL5c1Q9kvNiqTGzD6cveDJx4kSOe0dT4ZsTnPSJKXZ+IQQDBw7kxx9/LNV6QXGA3K1bN2bPnl2s17cQgmnTptG9e3d8JE6oSyX08rDn4P1IsvIUnt67b4dT4ZsT3AtPZua+h8ze703/DTd4GJFSaKzYtBwikrLxSwxgkuckFt1axKBKgzBvbsOapSeY26kyh8Y1VIZieZW0tDR69uxJSkoKS5cuxcjIqNh2Kj4MH13518qxFUubLS3WT2NGnRkfxE/jQxEVFVXI2mTJkiUsWbKEpk2bFptHXMXbYWBgQERERIn13gneLLq9iPbO7fm5yc+vHauduYciImqeUAS4U9NQ5JIu3w7Kt+OUbwxJmeGUs9LnyIMo2nYdy8jR4/hj9wHKl3l9StXvulZmWCMn/KLSqetiigTIyiugaTmFmnX8n/dIzynA57u2qEslHH0YhW9UGiMaOTNjnzd320+kY51eYKdQnW04tJrgkyfpvmQRUqkUY10N7E10MdbVKHb+KVOm0LlzZ6pVK11SpqioKOzt7fH09CzRqbXz8ClEZ8KSz/rhd+QRWupSDj+IYt6RR8zpWJGRjV3QUlfDQFsDNYmEEz4x6GmpEZWSg29UGlXtjRWh3KUSxjUvy6jGLqhJBZF5E6llVQsrXRu+7LKPZbPG4Giui5Z68S+K/v7+TJo0iXnz5v2nHeg+ad7Vfvd9+QcUyArErehb4ljwMXEr+pYokBW8uZMKJf8PfhpyuVy4u7uLqI2DhFjTUIj83EL1MrlM7A/YL8JTw988WNh1IeYaivgDX4g8WV6hqszcfOE446hwnHFUzD3kLX444ivuhSUJuwELhaFDRXH48GEhl8uFTC4TUzyniF/v/iqErECIOH8hwm8J8bOrED77hRBCXA6IF3MPegvHGUfFYa9IIYQQZ3xjxLGHL/x7eq29KpxnHhUJ6Tki5CWfhdTsPLFhwwbRqUtnseXmPpFXUHidxREbGytatGjx5ut/iWXLlon58+eXWL9t2zZRrklXUembE8I/Ok04zjgqeqy5KuLScsTPJ/1EbGrR37n49ByRmp0nQhMyREZOvth9K1xUnHNcLDzhJ4QQ4vsjvmLT5RBl++Fbboka358WHTp2KnEdnp6eol27dsLLy+utrk9F6fhX+Gm8jJpU7ZMwq1Xx6SKRSBg5ciTf7NnMxg7AK/49UomU7m7dSzeYQz2u9ljB+HuLGe29mS+qfUG+LJ+dj3fSrEwzfuzmzkmfGGyNdZh//DEZuQXMGNaDfZXc+WrFdn755RfmfDuHW3G3iMuKgyvL4PwP0HKuIrd0QR43QhIZuOkmXavbMqdjRVpVVByCt3ol9/eyvlWJS8/GTF8LM31FNNzvdpxn8Q/f0r1xNXbt3oeedvG7ilf56aefmDdvXunuwTNCQ0NLtLA6efIkp0+f5sGZveTJBSmZ+fzYzZ1KtoZYGGgxvW3RCLFBcRk4memiribFUFuDJaf8WeUZhKWhFmZ6muTky9hxMwxnc32lb0lZK31SkpPJVyteY37hwgV++eUX9u3b98F8L1SUkneVQP8Pb7j/Bv6fvof+/fuLW7duvfM40RnRYuqFqcI73lsIIcTViKvCfau7mHt1rrJNgUwu9twOF1EpWUIIIVr9ckE0X+wpoqOjxdChQ0Wffn3E46DHQoReFWJ7LyGSnij7pufki3mHfcSd0KTXrqPPkT6i3d52QgghsrKyRNfPZwhD1xqi3pT14rxfrHCbfVwsPvlmb/aIiAjRvXv3t7oHmZmZolWrVsXW5efnizp16ij/7kPiM4TzzKNi4s6SvcQvB8QLxxlHxYAN18XWq0+EEEI8jk4T3xz0FokZL3aGYQmZIiY1W9x6kijOPooR3x/xFTdu3RYTJ04sMmZqaqqoU6eOyMgo3nNcxfvhX7fTUKGitKxatYpevXrRt29fRo4c+VYJk17GWs+aJU2XKD/XsanD3PpzaWj7wpxWTSqhd60XCX1kckFIQiZB6Wps2bKFq1evMnHcRKysrJg4cRYeJk7Ktvpa6sztXLnYue+HJ7PxyhPmdKyIq5ErAXcDGDp0KP7+/iTa1se813ccnN0amVzgaqlPGVOdYsd5ma+++uqtDr8Bhg0bxqxZs5SfU7Py2X4zjD61ynDl7HHatWuHoaEhI7beJjOvgHbu1jSvYFnieK6WerSsYMn1kEQCYjMY0sCJ8tYGysCOz3Ew02X37XBm7POmgrUBj2PSsa+RVySSbkpKClWqVGHv3r3o6RXNN6Lin0cVGl3Fvw4TExN27tzJpUuXMDU1JT397U0/CyGXQ7An6rICepXrhY1+0cxxw7bcos9v15naRuF4t+R0AAANGzbk5MmTTJ48mQWLfqZN+45s3ryZu3fvkpWVhRCCuLQcFhz3IyZVkdhJCMGhKw/Zf8KTn5Ys5/Lsy9gE2zB9+nSuX7+OS+NuuFoaYmWoja2xDicmNqZvbYc3XkZ8fHyxUXlL4tChQ9jZ2dGiRQtl2eGHUSw+5c/uW6EsXbqU5t0GcDs0iZTsfNKyC1gzoCZdq9uRkVvArSdJRca0MtBGU11Kp6o27Ppc4RtzNywZr6cpACRl5jF8621O+kRTz8WMTlVtqGhtwC+9q9GqQS0uXbqkHOvBgwf06NGDffv2qQ69PyHe205DLn+93biKD4v4P3MytLS0ZPv27fz666+0aNECIyMjqlWrRp8+fahVqxZqaqU0085JBb+jcGgsO/QGYdflW6XDGiiiERwKPkRanjM5uZp0rGqLmlSCg2nht97q1asjaT6RkEdBZOdls2/fPh4+fEhWVhbJeVL8Y9PZbWWAg6ku6enp2NrZ0d2qDI0qV2PexAOYm7+wyDr2ZePC36ffMQg8DY0mvQj//QohISFvlff76dOnrFy5kmPHjhUqj0nNRktdytMrB2jcphNfHnpCdn4QAT+2V/pu5BbImPbXA076xLBzVD3qu75IAlUgF9x8koSLuR62xjpsuBTC0jMB6Giqce+b1kSlZOPpH0cZEx3audvQu1YZhmy+hZ62OppRocrzCrlczqBBg/j999+pXr16qa9LxYfnnYWGpqYmUqmUqKgoLCws0NTU/Nvx6lX8PYQQxMfHI5FIinit/9eZNGkSkyZNQiaTceLECY4dO8a8efNwcHCgb9++1KtXr+SDU1m+wpHP0I4Y1z787udOz9j0QkJjX+A+VnutZk7TuVy668Lu2+ElvvW3qWyFg5kuo3tWJSUrj++PPqJfHQc0pFKC4jPoWt0Wn8hUbj5JYnRTV4W38zP23o1g3cVgNg2phaOZHrzst3RojEK4yfOh25pi5/7555+ZOHFisXXF8fvvvzN16lS0tBQH7wUyOSnZ+ZjoamKiKWPfnt1UH7uCtPA0pBJIzy3A8Nlh/KrzQZz0iaGJmzmVbBXJoU77xrDwxGNW9ffg4vRmaKhJuRgQz0/H/WjkZk7vmoocGO52Rlya3hwrQ4UPxo3gBFzM9airn8TKn1dy8OBB5HI5I0eOZNiwYSqB8QnyzkJDKpXi7OxMdHQ0UVFR72NNKv4GEokEe3v70r9h/8dQU1OjU6dOdOrUCYCbN29y9OhRBg8ezK5du4rPp3DuB5AXgFNDrNstZHt6LhYGWoWa9KvQDzMdM2qatuRr32tk58mKFRr5MjkZuQX0r+uAmlSCf0w6h7yi0FCTsvduBIY66iRk5HI3LJnzj+NoU8kKNysDZf/YtBzCE7NIzc5nySl/qpcxVlpZyXptI+j6UnSq9aY4cZWQkMCDBw9KjEj7KhcuXODOnTtMnTpVWfbdkUfsvBXOyUlNCL9xjNW29dHX0aJ7DVvM9LTQ13zxqKjjbEq36rbMal8BHQ01Fp18zJarT8grkJOanU8lbYUgaV7ekp+6u6OjocZ3R3yZe8iX7SPrForyeyEgnieJmSxZsIId2zajq6vLwoUL0dDQUCUw+0R5L+opTU1NHBwcKCgoQCaTvY8hVbwlGhoa/7cCozieZ0/r2bMnM2bMYP78+UXTe2bEglwGlopzgFcFBkBkooQ2Zbqx4VIIcgH+JYTO8ItO49ezgQTGZeDR34QGZc05Mr4RDqY6yOWC4z7RPE3K4rsulelXx6GQwAAY17wsIxs7k5iRx+oLQXR0lNPq0UGoPxZvQxMGyUNpH36Cn52bF5k7JCSE9u3bl3qHv379epYuXYq29guP66r2RgTFmWKqq8HOHdtpM/wHJrcqR7VnIUyec+RBFBN23mf5Z9VZcOIx5x7HkZ5TgFQCC3pUKaSq0lSXMqCuI/vvRZCcmY+mupSClwI45svktK1kRXBwCNramtjb25OYmMiff/7J5cuXVRqLT5T3dqbxXDXy/6YeUfFpU716dXbv3k2tWrU4cuRI4ZDZPX6DH20U8aY8BhfpGxyfQceVl2nvbo2VoTYaalJlwMFXqWpvzPpBNalib0RQXDqjt99jcqtyVLE3Ymnf6izoWQUNqYQzfnHUKiEKrJa6GrbGOvz1RX0c48/Dsb38GaJFxwnL+K7Bd9SyqlVsv9u3b5fa+9vHxwdtbe0iVkq9a5Whd60yeHt7E4cRT7PViwgMUKS61VSTkp1XgL2JLi4W+vSqaUdtJ1MqWBsWaQ/Qw8OeztVs0XjJByM+PZcea66ip6VOG/kduk5S5KFYsmQJ3377rSo0yCeMynpKxX8eY2NjVq9eTZ8+fYruhAfth367i/Q5GXqSLPGUz2qXoUs1O+Z2rszuL+pzKTCey4GKUP05eQUs3rSd3TdCAGhT2RobIx1Ss/N5kpBJTFoOf94MZ/YBb9SlUq4FJ/HFH3f55UyAcp6M3AI2Xg4hMeNFcL5aTqbMDylLt7zv+TmzA3kF0MOtBw6GRZVTMpmMAwcOFLKAKgm5XM6XX35Jhw4dSmxz9OhR5k8axh8jirdWikrJJk8mJywxi3LWBuwdXR8NqRT/mNdbsGmoSckrkHP4QRTpOfn0WHuViORsrNSy8PPzo3Xr1gD8+eefpboWFR8PldBQ8X9B27ZtcXR05Jdffilc4VgfyhSORBCdEc30i9NZcnchC3pUpWUlM364/gOnw47zJCGTuDTFAz7n/m6mPx2H2u11yr5XgxL49UwAN5o9ZoR9JAe9Itl7J4L0nHw8HI0Z28yV/nUckMkF98KTOeIVxY/H/Fh6OoCbIYnKcaqXMUbfpS7nv2pTrNrsOefPn6fV/9g76/Corq0PvxN3N+IJSQganODuWtzdihUtpVgpFGhLizsUt+KugeAECE4SQtzdfTKzvz8mTEiTIG3vvb3fzfs8PG322Weffc7MnLVlrd9q1w59ff1y67wjODgYe3t7+vbtW+bxyJQcrl73ZkivzjiZlR0T0cLNHGMddWLS85h26CnnXsSw+MxrVlwI+Oj1F59+xbRDT9l5J5SM3EIkEtD1P8M33yhESwMCAmjcuDEmJiYfaamC/yh/Z6RgBRX8kzl8+LAARHR09Efr/v7md/E0/qkQQhE57rHHQ0y4OkHk5Cs00SJTskV8uL/IPjBM5EQ8VZ637lqgaDJ3lxCLDYT/8mYiPiO3hJ7UO3bdCREOc8+JPXdDxM7bIaLhD1eF67cXhFwu/+T7kclkYuDAgeLevXufVNfR0VE8ePCg3DoeSy4LAyePEmWPw5JF61U3xN2gxBLl4UnZYuVFf5GanS98w1PEy6g05bFNN4LEvBMvhFwuFwWFMpEnLRQymVzUXHxJOM49JwLjMsSr6DRx6OIt0aNHD+V5AwcOFL6+vp949xX83VREhFdQwR/o06cPX3/9NR07duTy5ctYW5efwKmfWz/l/1vpWnGs+zEiMyP5yvtLFjZeSPf1/uhqqHH3m70lzpvc2oWetW349VAa3kmGHNRQw0K/tMR3TVtDmrmY0tzNAiczXawMtcjKL/yszd+NGzfSvHlzGjdu/NG6r169olu3bh8MkuvlqsV5Z3ti03Mx0FJHV1ONpKwCQpOyuRGQiKOpIvZCCMG5lzE0qWyKkY4Gde1Lpts9/zKGkIQsXkalE5mag66GGuenNSOnQIa+lhoHfCJY2NWdaT9/x86dOwFFrg4vLy/279//yfdfwX+GCqNRwf8Mampq/Pjjj/Tt25cOHTqwYsUKunfvXmZd3/AUzj6PZXbHKuhpquFi7MKlsEvcj71PaFoowxs7lsjKd9w3CitDLZq6mGFvqsOUidMYL5Ojp6n4ieVJZWiqqSCRSPCPzWDO0ReEJGVTIJOSV5hHl5qfHpgHCpHBy5cvc+bMmU+qf/ny5dLeY3+gd3Uj4qo60/JnbzydTdk7uiEdq1txbGJj+my+T3RaDpuG1CMuI4+fLr1BTUVCdRsDjoxvjJa6KtcD4vEJSWHXyAbkF8oZusMHHXVVqlkbYKSjQQ1rQ55FpXHyaTSW0bdo164djo6OAOzfv5958+ZVeAD+F1BhNCr4n6NBgwbcuHGDKlWqsHLlSoYNG4a2dkltp2O+URx6GEmXmpWUOaszCjIACIjLYnRTR4x0FCPs7PxCZh97jou5HldntgQU7qYaRUblXnASQ7b7IJEoUr6+js4gKi2Xyha6DDs7GQ3dcC73vYyu+h/2EWKfw9FR0PEHqNK5xKElS5awePHiT9Ldys/P59y5cx/N6VKoV4l9l+7RYnJvKlm/5kxwHD0q96CWrREz2rnRzFURtb7O6y12xtpEpubyIkqRZKq+own77odz400igxvZ42Cqi/ecku7BczpVwSckhc6u2owdukTZH39/f7755htiY2M/ei8V/Oep2Aiv4H8Sc3NzgoODycnJoVWrVqxatarES/WbTlU5MLaR0mAA9HHtQxf7QSw/mcey8/7Kcl1NNbYNq8/P/d5zew27Aw+3AxCRnIMA1FRUiE7NJTWngF/6eeBun0EOkVjoWKOuUoarem4qpIYq4kneIyEhgfz8fBo0+LRUAufPn6dHjx5IJBKiUnPIzJMSkZwDKDa/m668zm93QjEx0EETGWObO3M3bScrfVYCkJpdwKhmjtQrchV+FJpCfEYeDibatK9qwfh9viw49ZIf+9RiSmsX+m25j39shvL6eYV5ZBZk0tTFjBntXVn53QK+//571NXVSUlJoX///ty/fx81tYox7H8DFZ9SBf+zGBsbM336dL788ktu3LjB8uXLuXjxIkuXLsVQR4OmLiUz9FUxqcLipl+jnfmGzjWsShwrFb/h9b0i77h7N6VKbjNXM8z1NckrkGOoo45c7z63HqQysvpMNOQy+OPKjHMr+DYW1Iv3RGJiYpgwYcJnRUvv2bOH9evXE5aUTdtfb+JoqkNwYjYnJzXBUFud9FwpqTn5WBlqoaIiYZOXH1tGb0Eu5OQWyGi9yhs3K31OTmrKw9AUghKzAZjSxhWJRMIVvwR8QpJp+fMNRjV1IiNPqsxhnpSVzzTvcURmhXGt7zWWfrcUd3d32rZty/Xr12nbti1btmzBxcXlk++ngv8sFUajgv95NDU16dSpEx06dODnn3/G1dWVn3/+mV69eqGhUXKTV0dDje96lC13XoJuaxSzBINKqAIDGxbHWLxLZdqvSj/sDewxPD8HkTgVybSnoPuHVLLvGYyXL18yZswYfvvtN2rUKCk1Xh7Z2dkIIbC3tyc7v5D2VS2xNtLCwVQXW2MdzPU1ebygHY1XeOETmopjtTqoRL+ghlkHAORyQZealXA2V+QNdzDVoXUVc9pXs6RffTvSc6RUtzbgdUwGxjrq9Kxtw9edihMzdVt3hwIDM1pWN2Pjuo1oamoyadIkJk+eTGBgIGFhYTg4OHzSvVTwz6DCaFRQQREqKirMnTuXwYMHc+jQITp27MiGDRuoXv0TjMR7pOdK6b0/gXbVnJlXOrFdCR7FPYKsMCwMLDFRK+1lBZCXl8fXX39NYmIiu3bt+qz++Pr6KqPFdTXV2DKs9Ga4hqoKDZ1McDbXY/2WZXTq1R8v/2G0rWqJioqkxLKbnqYa0Wm5PAxNoWstawx11Dk4zpOXUenKPY/36VXHBpiAY/wzLj6/SN26dbG3t+fHH39k/fr1fzoXSgX/OSqMRgUV/AE7Ozu+/vpr+vfvz1dffYW6ujq//PLLJ4+I5XJBeq6UzLzCj9YdUX0Etw2d0XdsD2Xsa2zfvl3pWdSpU6fPvpeLFy+Wed7LqHT8YtMZ0MAeFRUJW4cpJEqEEITKjJm0fBtv9i0sdd6RR5FEp+YSGJ9FSnYBP3xREzsTHaXByC2QEZyYpRQl/KazO48ePWL6svXk5uZSpUoV0tLSKnSl/ouRCPHxRAwZGRkYGhqSnp6OgUHZ+jIVVPD/lRcvXrBw4UIcHR0ZPHgwdevW/ZdrrGVlZbF8+XLS09PZsGHDn3rJpqam0rNnT7y9vZUj+oC4DDZ4BfE8Ko3I1FxuzWmNvWlJ6fgLvsEsmjKS7Tt2UKhrTgPHYmeAxiu8SM+V0q1WJa4HJJBfKOfldx1JzS4gIC6TrTeD8Q5MpH01C3Q11KiV85Tvv/8eOzs7NmzY8MkaWRX8+/nU93zFTKOC/ymEEFy7do2dO3eSnp6u3LOQy+WoqKjQtm1bJk+eXCJeoFatWpw+fRpvb29++eUXYmNjOXr0KFZWVuVd5i+Rnp7OwIEDmTp16gd1oj7GuwRV7wxGoUzOD+f9uf02CYBmRTElf6RLvcq47NlJi56DUWv7FdcX9sKtSJV3/9hGFBTKqVrJgC03g8nKK0QuFwz/zYeX0QqPKVcLPfzfhvH691WYyVMYM2YMc+bMKaGqW8F/LxVGo4J/Kbm5uQCl4iD+nfj7+/PmzRv27dtHfn4+NWrUYMOGDSWy5YEiL8XJkydp164dmZmZdO7cmd69e1O5cmUA6taty4EDB7hw4QIjR45EJpPRuHFjOnToQK1atQDQ0dEp03U0PT8dPXU9VFU+HLyWkZHBoEGDmD17Nm3btv1L952enq5MzBSalM35FzFKg2GopcaK3jWVdfMLZWioqihnNG5ubhi0mUjEqeVsN48lyLghHg5mDGxoj5meQgtrYsvKjNr1kKqLLpFfKEdVAqqyPFwjvblx6Ty2GmocOHBc+Wwq+P9BxfJUBX872dnZXLt2jdWrV+Pv74+xsTFmZmbUrVuXBQsWYGFh8fFG/iKPHj3i0qVLvHnzhuzsbDp27EinTp1wdHQkLjuO39/8ztBqQzHRKlscLy0tjbNnz+Lr60tSUpKy/NWrVzg7O6OqqkqNGjWQSqXcuXMHuVyORCIhKysLa2trGjVqRPXq1dHS0sKqqhWjb4+mv1t/5jWaV+pahYWFPHz4kAcPHvDjjz9y+PBhWrcunTfjc+nUqRP79u3D3Nyc8Xsfc8VPEe9hpK3OUE8HZnesAsDb+Ey6b7hDv3p2LO1V7JV14kkUOTm5bN+xgwdXTqNh7oCukwfuHg3wXqKQWZm4+wGXH/mjkhSEVsIrshKi6dGmMREREWzduvVfNhur4O+nYnmqgn87oaGh7Nq0Bi9vb/oNGcWuXbuUeRtyc3O5cOECDg4ONG/eHC0tLQoLC2ncuDH9+/enSpUqf/n6Qgi+++47fH190dbWZtasWQwcOBAXF5cSewLnQ86z/eV2rHSt6F+lf5ltGRkZMWzYMIYNG1aiXCaTIYQgNTWVly9fEhISopTCAIXBPHr0KKdOneLo0aPkFuQSHBiMlrEWB10O8sLpBS1btkRHR4eMjAwCAgJ48uQJbdu2pXr16kRGRpZy8/0zKJbbVPnqVDBOZnG0r2bJFb94jHTUOTaxMS4Wxaq422+HkCeVUyiTl2jDzVKfxCwNjOp3x9aqOeNqaXLzxnXCvPdRt8kGbM0MKSgooJ6ZNdeTVOnWdRjdHQRnz57l+PHjFcF6/0+pmGlU8KeQyWRkZmZy69YtDh8+TGxsLJVtzBmpfZ0mo75Hpcmkj7aRl5fHjRs3OHLkCG/evKFatWpUq1aNZs2afVBYryxycnJo0aIFAwcOZPbs2R+uK83BK8KLDo4d0FQtX3b8c1j5cCVh6WGsbb0WTTVFmxuebmDri6382OxH1EPUCQwM5OnTp9y5choNbT1qN2rOgAED6NSp09+uuXThwgUe+DzkimZzKlvosrJ3LaYeekrH6lbcDUrkux7VcbHQJyo1hyOPIknJzmdu56rKPOAAHVffIjAhk0cdozB6+Atqo84iNXHFfeElbI21uVkkE5JTUMiPFwOwKYjk2PbVXLhwocJg/Bfyqe/5CqNRwUdJTU0lOjqagwcPEhCgyJuQnJyMra0ttWvXZsCAAdjZ2f0lN8r8/HwSExN58uQJ58+fJz4+nvnz51O3bt1PeqEOGzaMPn360KtXrz/dhz/Ly8SX/PToJwJTA5EJGUe6HaGyUWVC0kI48uYIEzwmFC+DCQEbGpCnZc4N22kcPnwYHR0dNm/e/Lf2ae7cubi7uzN0+AgOPAjn+JNodo1qwDfHX3LNP54O1SzZNrw+Xx1+yulnMUxr68KmG8FsGVpPmZv88us41l9/S1/peQZk7uZeywO0bdWWRwGh1Lw8AK1qnaD994AiUr1Xr15cuHCh1F5RBf8dVCxPVfCXSExMZMeOHXh5eWFiYoKVlRV9+vRhyZIlIJejlvQaiXUd+Jv87TU1NbG1tcXW1pYePXoQGhrKhkWTWRAYiq61O9O++opWrVqVeW5kZCQpKSn/HoORnwVP90HNfqBrxpP4J4y8NBIPcw+m1ZnG4TeH0VZTbPo7GzmX3sOQSGDKI7QkEjqj2Hf4O/Yv3kcmk3H9+nW+/XY+MWm5hKfkEBifSVx6Ltf841FXldDCzZwtN4M59zyGEY0dyMotpFAu2HgjiDbuFqioSKhiqY9fTAbf05zvRHOavNWlbStoYG8I+cmQk6J4JPn5DBs2jAMHDlQYjP8BKoxGBSXIzMxk0aJF+Pr6MnPmTKZNm4auqgw0dInNSVDEJzzaCednQvd1UG/ExxvNToLQm1DtC/jECGAnJyd+6WUNAc8I7DyHei07snnzZoYOHVqqbnJy8kdlv/82Xh2HS99Afia0/Jr1T9cjEHR17spA94EMqTbk4228Z2glEsnfng87LS2NqlWrsvdxPL9cDWTPqAbM6VgFHQ01Ng+pSyUjbWrbGXHmeQyVLfSoYqXPm/hMbIy0eRqZxquYdGrZGmGur0kLNzMaO5tR18EY53fZ/HRMYE6Q8j5mzZrFxIkTcXV1/Vvvo4J/JhVGowIAYmNj2bBhA3fv3mX69On8+uuviuWmjBhYU49Yh4Z0kIUwt8Fchjo0AfduYO/5aY3f/BEeboPBeuDWEYD1Xm/RUldlXAvn8s/7YisUZOOmZUBycjKDBw8mMzOTL7/88m+44z9Jjd5QkA21FBvoX9X9Cr9kPwa6D/zP9ekP/PDDD3Tq1AkHB2Oau5rhbK6Hjobip975vbwdPTys6eFhzbCdPtx+m8ShcY2ITc+jZlE0d0JmPrcCkzDS1mBCy8olL1JkMK5du0Z2djb9+vWjgv8NKvY0/sfx8/Nj8eLFyGQyJk+eTOvWrUvqAeVlwKGBJDs0YnZBGJNrT6a+Vf3Pu0hCgGKEnp8BqeEw8CBuCy8hFzCrgxtftvo0hVOpVMqMGTOwsbFh3rziZZ9nz55x4sQJvv/++8/rVxFZBVkEpARgrl4VexOdv0XiIj0/nT5n+lDXrBmLmyxAV7Ps8ZkQgq5du3LhwoW/fM13dO/enbNnz5Z5LDk3mfCMcOpa1lWWxabnEpmSi6OpDvsehBMQm4lcCMa1cMbaUBtzfU20NUrvK8nlctq2bcu5c+fQ1S07p3gF/z186nu+Qi3sf5i7d+8yfvx4VqxYwYkTJ2jbtm1pATktAxh1AdM2i9nVadfnGwwAC3doMx/iXkHUI5BLsTbWplAuOOYbpaz2KjqdQpkcqUzOjNPHOfzsQYlm1NXVWb9+Pa9eveLcuXN/5pbLZM2TNYy6PIo2G39j++2Qcuvly/I/qb0CWQGL7i0iR5rH6WdxLDz1qty6iYmJmJubf3afy+NdIGN5LH2wlBGXRhCSFsLLqHT6br5HfEY+rhZ6tPj5BltvhXAzMAGvgATuBydjb6qDtqoc5LJSba1atYpevXpVGIz/MSqMxv8ooaGhTJs2jTNnzvz7chkMOwnTX4CaJoMbKKTChzSyJ08q48LLWLqtv8PWWyEEJaRyNfV7fnm+oFQTEomEDRs2sGDBAmJiYgDFRvhfefF2de5KJ/svaGBdndp2xmXW8YrwosH+BlwKvfTR9jIKMrgTdYdW+s6ckb5hsOnbcuv6+voqI87/DpKSkhg8eDA7bodw6VVcqeP93PoxvNpw7PTtCE7M4nF4Km/jM9HVVKOZixkFhXJq2hpxdUYLprZxURiLdXVgT8m0uE+ePOHFixdMmzbtb+t7Bf8dVOxp/I+ydOlSNm3ahIlJ2RHRn0RGDGxtCbYNoMvPYGhTbtXHYSkY6WjwOiYdM71cxjZ3ppGTCYHP71FjsT8bh9Sjcw0rmrmYUbWSEUNcvqKKmXWZbRkbG7Nx40YmTpzImTNnWLJkCRs3bvzTt1HHog51LOrAB5yYTLRMcDBw4EmoFPW8eNpWtSy3rpm2GRd6XyDX3wdH32HE57wGyl7zf/ny5d/qPbV69Wrmzl/IoGP+uFnq0+kPyaKa2jSlqU1TQCFb3sjZhEqGCm+vHSMa8DgshUpG2tgYFcm+CAFmrmBQ/NlmZWUxe/Zsjhw58klLee9ctt/h4+PDlStXlBIzYWFhbNiwgRYtWvyle6/g30OF0fgfJSoq6rMD6N4nbW93VKV56Mtl8OY8aBtD48lwbx20ng9GduRJZZx+Fk0LV3MGbHtAZXNd3iZk4WSqy/XZrdB5uZd+vot4qzMJV4uWbB5a7AHVq3JfhuzwIbhhAHM6lkxKkZJdwNN8C3Jy88nMzERPT+8v3cunUMeiDr93PUX1xZfwMvP/oNEAsNS15JRqPYbmr2WMSXNGfaDu3yUT/uzZMyIjI2lUrw6HTRww0f24Eu87g/GO+o5/GERIJIoZ4nusXbuWiRMnlprdyeVyYmJiuHLlCtevXyczM5OCggIMDQ1xcnJS3qeJiQlr165VSoz4+PiwdOlSDh48yJYtWz73tiv4N1NhNP4HCQ8P/8uaQAnRD1EF9OdEwv31UKULBF6G54cUaUqNBnL6WTRzj7+knoMRE1o4U9PGEDVVFUx0FTIZWRb1uU592rTrRmZeIRP3+fJ1pyrM+P05IQlZZOUXIqH0C/XU02hWXQmkhoU958+fJy8v79M6nZcBl+ZBjS/Apd1n37O2hir7xjTCWOfTZD561bGhitUXxKTlkZZTgNEnnvdnWbhwIcePHwcozm0uzVPkGjeo9IEzP52YmBguXrzI3LlzlWU3btzAy8uLO3fuYG9vT9u2bfn+++9xdv6AZ9x7NGrUiGPHjjF79mxWrlzJN99887f0tYJ/DRVG43+QiIiIT/5BLz79isfhqRz/sgla6sUeNAH9tqKCCpXVNKD5LEWhqYtiqcq+MQCdqldinVcQTyPS8A1P48c+NRnQoDjtaa5JFcbkz2RegRWy4GQuvY6jbVULghIyMdHRoH8DO6Wo3vv0b2CHlroqJhnaHNi7Czc3t0+78eQgeLYfJHyW0ZALhSaTSkE2TZ/MUrgbW3+ai2lKtpQxex4zpJE9P3xRs9RxTU1NEhMTP7kv5ZGUlMTjx4+xt7cHaS4U5oNEBc7NAL/TMNUXjEsmkZLK5NzePJmaha8xn3wZ1D+sRBwfH8/QoUPZtWsXampq/PLLL5w6dYratWszYsQIFi1a9Kd1s7S0tFi/fj1du3alS5cuFcq4/2AqNsL/hWRnZzN79my8vb3/010pwc6dOz85eto/LpP4jDxk8pKe2T1cetHNpUfJyqrq4NhUGcBnqKPOqclNWT+oDg0dTXCz1Gf64aesuqzw7rE00KKmjSEuFnqMb+HMuanNsDPRITtfRpPKZizsVg0Av5gMCgqLxfT0NNUY3MieDm1bce/ePbKzs0v1+1V0Ov233Od5ZFpxoU1dGHcDOq38pHt/x6Dzg+hzpg9kxoP/GXh75ZPPrW1nxNhmTgxoYFfm8d69e3Py5Mkyj30OR44cYcWKFYo/9vSAX6vBSjvQMVUYSB3TUudk5hWSlxCCZkYYyAo+eo0FCxYoc6ivWrUKHx8frl27xtQFy9n0ShCU9IkzvnJ45+SwbNkyPiESoIL/EBUzjX8R2dnZDBgwgOHDh/PVV19hbm6Op6dnibwSmpqa9OjRAz09PQDU1NT+5bLhAQEBxMXFKTOoeUd6Y6RpRG2L2qXqhiRm8TA0hRauZuXGGXwMc31NutaypmstawoK5XgHJuJgqsvsjlU45BNBZXM92rgr9gfepQjdOaI+te2MALgVmMjw3x4yuXVl2la1xNlMl/TCWAAcDBxYsmQJixcv5smTJ9StWxx78DYhk4dhKbyJz8SjqC1AYTg+E2tda6RyKZi5wNQnoGeJEAKpTKCh9uFxl66mGguKjF9Z2NraEh8f/9l9ep/U1FRWr17N3bt3FQWOTUFVDXLSoM4QloadwfLNQcbXGl/iPBNdDWp+dYJMpIAOBijyasjkQhkM+I6bN2+ioaFBvXr18PX15fbt25w6dQqJRMKzyASuByTQtqoF1az/WhyXs7MzampqBAUFVUSY/0OpCO77F7Ft2zZUVVUZM6AHnJtOXo0hPM8uOdpLS0vj3LlzFBYqckknJCSQnZ2NpqZCJdXZ2ZkGDRrg6OhIkyZN/pZ+9ezZk9WrV+Ps7Ey+LJ8G+xtgb2DPuS9Kxz3IirSIGjia0Lhyyb4/j0xj9tHn7HDwwsHODhqOK/N6uQUynkemoa2hioedEY/DU/AOSKR7ZXXG7rxLhtDi6fK+qKiUvRmckJHHd2df08rNnK+Pv6SHhzXPJF8hkUi4OeAmMpmMGjVq0KRJE3bu3Kk4KeQmHBlKcvvVmNbv+9ceWBFe4V4suLuA1a1X41nJk0kHfHkQkoL3nFZKZdh7wUnYGumUmQ0PICw9jLdpb2nv0L5E+aBBg5g3b96fXpLx9vbm2LFjbNiwodQxqVxKi8MtsNGz4ViPY2We3+rnG0hlgrvftKHnxrvEpuXyYF5b5WcihKBz584cPnwYIyMjxo8fz7hx42jQoIGyjTdxmbhZ6n18Uz8xEORSsKxebpXz589z4sSJ4s+zgn8LFYKF/0FkMhl79+5VLDukBEPAObSMHGjUaXmpuh07diy3HV9fX96+fcvBgwdZuXIl2dnZjB07lg4dOmBqWnq54WM8e/YMY2Nj5X6Gpqomy5svx1SruK1CmZyzIaepaloVdxN3prUte7SXlJVPcEIGNtnbINqaq3o9mHnkGZuG1qW5q8KrRgjBgJ+OcvvSWQriAmnsaEhoSh6xmVKuVXekoasDwcHBtGmzEWNjY3r16kW/fv3Q0Sl+6Rpoq1NQKEjLlTLM04F21SypJx2jPK6qqsq0adNYunQpBQUFijV1iQQkEkx1/8b0ohLF3sbrpNd4VvLEzkSHuPQ8NFQVM42EjDwGb/ehgaMxu0Y1ZMrBJ7SraslQz+J9hJUPV3I35i5nep3BydBJWd67d28ePXr0p43Gb7/9Vu7msbqKOqd7nf6gBHyrKhZIi3Jp1LY1xNpQq4QR37ZtG+3atcPIyAhfX1+ioqKoX79kkGcVK30+ib09FKKP30aVW6Vr166sW7eOwsLCCon1fyLiE0hPTxeASE9P/5Tq//MEBgaKCRMmFBckvBFCmv+X283OzharVq0STk5OYvbs2SI6Ovqzzh8/frx4/PhxucdPPY0Szgt3ixq7a4gxl8d8sK0TTyKFw9xz4tglLyFSw8XV13Gi5uJL4nZgohBCiMzMTNGjRw/RuOMXotGEH8Wv558LIYSIT88Vp55GCZlMXvLad1+JXhPniUaenmLKlCni5cuXivoZucJt/gUxbs+jcvsil8uFiYmJ+Hbh4k94Cn+ezsc7i1p7aomCwoIy+7Dh+ltx3T9enH0eLRznnhPDd/oIIYSQFsrEyov+YufD62LPqz1CLi9572FhYWLIkCF/qk95eXmiRYsWpdpUkhErRFLQZ7V5PzhJnH2u+G5lZGSI9u3bK9sfMGCAuHjx4p/qqxBCiIc7hDg3WwivZUIUFgjx9qqij39g+/btYuPGjX/+OhV8Np/6nq8wGv8CAgMDxcyZM/9l7ScmJopLly6JNm3aiPnz54usrKyPniOTyYSrq6vyx/866bUolBUqDkY8FKIgR9wIiBdNV3qJ1ff3Cf9k/w+2F5KYJcbteSReRqWVOhYWFiaaNWsmvly1X6y6HCAeBCcJp2/OiS3eZb+84tJzhcPcc8Jh7jnx+6MIcfPmTTFkyBDRokULcfToURGfnityCwo/2J/h3/wkdIzMxKPQ5I8+iz/L7ajb4kzQmZKFySFCrK4phM82ZdHhhxHCYe458dudYCGEEGFJWcLhPSOSkVsgJh/wFRdexCjP6dSpk0hISPjsPp06dUqsWrWq/Aqbmgix1FKIglxFX72WCpGTWnxcmifE8XFCPN6lLGq96oZw/OacyC0oFAMGDBC7dimO3bp1S/Tv3/+z+1iKQ4OFWGwgxMtjiv/+PqJUlYKCAtG5c+e/fq0KPplPfc9XeE/9F2JmZkbHjh25du0aqqqqdO3alaysrA+ec/36dQYPHoxEIuFS2CUGnBvA7te7iXq2F3a2I/vKfFpVseDO3DZM9xyKu4n7B9tzMtNl2/D6ys3rd4SHhzNq1CiGffMzFxONOOATgbm+JtWsDXAy00UmF7yOSS9xjqmuBoMb2tO3ni1da1XCvlo93AZ8y459R3j8+DHTxo/kxMMQan13mWfve0O9x8DBQ8jLTGPj8tLSI3+V9Bwp8068RLuwOt0rd+dJ/BMW31tMSk4a99/GIM2IR55bfE9WhoplscB4xWfiYKrL7xMa81PfWsz8/Rlj9jzm/MtYrvknKM9xdnYmPb3kc/kUfvzxRxo2bFh+hbojoOFYUNeCp/vh1s8lvb9yU+HVCQg4X9xmn1psGlyX+JgopFIpI0eOBGDDhg38+OOPn93HUnRcDu2+A7cu0GwmNCy5QU/gFdR/ciAjOQ65XF5mExX856hYMPw3kpknZfkFf3p42JTaWP4zSCQSlixZwqFDh+jTpw8bNmwo1+Pk4sWLSvnqGqY1aO/QHs9KnniFXMJITxcLM3saf8a1k7Py8QlNoVN1K+X6d1ZWFkOHDmXfvn08T1NHVzONn/rWwtlcj3NTmwOwyTuIny69YcvQunSqoQg4yy6Qsbx3cQzDuReh/HY3lKqV9Fm5ciVXrlxh/rxJiOZTywj1U9C5pjVfTZvK+fPnEUJwO/o2ciGnlV2rz7irsnkVk86hhxFoqqlQz8GYy2GXOfH2BAe8THHS8yAodyf3a7fjXbhk08qmLP+iJi3cihMSvQu2C0nMJiW7gGszW2L9XjR29erVefLkyWfrgGlra9O8efPyKzR674XcZCqYV4HqXxSX6VspYjh0iiPBGxRFhQ8ePJilS5cCcPLkSczNzUvkQ//TvLkA176De+th5AWFoOX7qKiCmibtGtXiwIEDpfK0V/Af5u+ctlSgIDAwUHTp0qVU+aPQZOEw95yYd+JFiXKZXCZypDl/+ZqtW7cWT58+LfN427ZtyyzPL8wXD2MfllgT33svVNRbelW8jc8s93oLT70UDnPPiRsB8UIIxfJXnz59hJeX1wf7+SQ8RYzb80hEJGcLIYS4F5QkHL85J7bfClbWyckvFJdfxQppoUxZ5uXlJbp37y6ys7PLbXvx4sVi1KhR4vLly6Lpoaai4f6GH+zL53A/OElk5kmFEEJkF2SL3Y+vi6YrvcTZ59HiQXCSyC0oFN3W3Rbfn339wXYKZXJR8N59vePly5eib9++n9WnZ8+eiT59+nzWOZ/KhQsXxKxZs4QQQkilUtG6desPPvuPcmetELu7C5GfJURioBBbWwmxxFSIqMdCbGgkxG+lfy8vXrxQ9qGCfz0Vy1P/QRwcHAgPDy9Vbm9RyNphlszrXHJk9f3972l5pCVx2aVVST8VV1dXtmzZwrfffsv3339fIjgqNDS0XG8rDVUNGlg1KOEqKZUJCgplyMvwxhZCsOj0K7TUVJjS2oUGjsbI5YJDhw7h5uZGmzZtPtjPOvbGbBteHzsThYeUub4m1SoZ4GhaLK+98UYQC0+/IiW7OOCsTZs2zJgxg4EDByqF7gDuByczcZ8v8Rl5pKen07BhQy7cvYCBhgEz6s34yFP7dDxsjVhxwZ+bgYnoqOswol5r7sxtQ7da1jRyNqVQLohNzyM+o/wAN9/wFH66HIBMLngZlU5GnlR5rEaNGmhraxMX9+nfAS8vLyZMmPCX7qs8Dh8+rEx2tWnTJgYOHFjCq+2ziXkKUY8VnlNmrjD+BiyIB5t6kPwWoh6WOsXQ0JC0tLQ/f80K/iVUGI1/ARoaGujq6nL//v0S5TNuzOC7J+MQKrklyh0NHHExclHmlv6zyPSt2HngKIGBgWzatElpOF68ePHpUhvA6GZOvPiuI26W+vx6NZADPuH4xWTQd/M9em64y9HHkdwLSWZ2xyqM+O0RrX+6ytq1a1m0aNEH241IziE0qWT0touFHuenNaddtQ8LAAK0bt2agQMHsnjxYmXZ7beJXHodR2B8Jq9evaJRo0YkpCYQmRlJJd0/obeUk6JYNslNY+C2+4ze/QiAkKQsDvhEcORRBHOPveBxWEqJ0/Q01dg3piHqKhK23AwuFUEPcOBBBFtvhnDhZSzdN9xh0R/ybAwfPpyVKz89Wj07O1uRfhcg5hncWQMyRczPZu9gdnwgN8iH2Lp1K5aWlsp9ltOnTzNmzJiPn/ghem+DmX6g/97nrFIkS9P6W2hV2mXY3t7+Lwc+VvD3U2E0/kWMGzeOpKSkEmX9q/RnWNVh6KuX9GkfWWMkB7sexFDzz+eKDk/Opuu620w5/JydO3eSnJzM5MmTkcvlqKioKDSJPpOCQjlbbwaz624YKy768zg8lRfR6VS3NmRJjxqsuOiPqZ4GKb4XyHduwZvED8tI9Nt6j14b7370urM7VuHBvLak50rptv42Ky76K48NGjQIf39/AgICAJjezo1L05vj6WiEhoYGKioquBi5cGfgHVratfzgdRJzEvnt1W9kFbznRPB0H1xZAC+PkplXSGbRbMBEVwMnMx3M9TQ58jiScy9iS7V35lkMJ5/FsPJiAL7hqay8GMCUg094EJIMwLddq7J7VAM61bCiXz1b7kcE0PnAJKIyFTEL7dq14/Xr12RmZn70GQHcunULT8+ilLt3VsO1xRD9GIAtN4PZduvzjUZOTg7Tpk1TSpJ8+eWXLF68GFXV0pn7PgtVddA2KvtY81nF+mV/4O9SAK7g7+N/diM8Ojqa8ePHExgYSNWqVUscyyzIJCYjBhczF9q1bsf06dM/+8srhFAmCXpHT5eeHz3vXnASuhpqJaUvPoHN3m9RMfClpl17NDU1WbRoEdu3b2fy5Ml06tTpk9uJTMnBQFsdQ211NNRUmNU7g+CM+wx1mU6n6lY8j0ojITOfE0+iOOATwU+93Lnu701B5+8IS84us98hiYpR+pBG9qipqnA3KImatobKSOqy2H47hOUXAtDTVMPVojhjnkQi4fvvv+e7777j8OHDaKip4G5lwIYNG3B3Vyz75efnl2mA1z1ZR0x2DCuarUAikXAs8Bibnm/CWNOYL1yLNofrDgdVTag1gPMNi6Ni03OlRKXmEpGSQz0HYya1Kk6clCeVcfWODwGnDhB/5T5aWpq0PwVqeiYUqmlz+Zgdh74dQr169WhVRSETs6RndVptPU5U4W0exD6gr74icn3ixImsWbOGhQsXfvSz0tbWRkurKICx2UwIvAh314G9J6cmN6WcIHt4eQxin0O7JUqdMIDCwkIGDRrEiRMnUFVV5fLly7i4uHxenovCfAjxhsptFIaigv93/E/NNEJDQ/n5558ZMWIEU6ZM4fvvv8fv9lnO7F7DmTNnlP/mb52P2VQzZv08C4lEgpOTU6lZw8do0qQJv//++2edI5MLhu98yKQDTwiMz+TytSuQ4F9m3fRcKYmZxS9Td+dotK2PIjHxUpaNGzeOypUrc/78+bKaKEVKdgFtf7nJl/t9lWWPkq5xJeIslUzlDPF0oJatEd5vEglOUIyGj548w9hhg3i0sBM9a5edhOnUsxh23gnF2kibZxFpDNnhoxQtLI8aNoY0cjLh1OSmrB5Qu8SxOnXqIJFI8PX1ZdmDZax7so6bN28yYcIE3N3duXjxolKa5X3ux9znTvQdCoXi2CD3QSxotIBOTu8ZVW1j8JwIWgak50jptfEu22+F4G5lwLNFHTDQUuNFVBr5hXLyCqScPHmS6o1aMXDSN7Tu1J2XD7xZsWU/jn3msmjhQnRcG2NvY828FWuxdPVg8oKVhMensvN2KOdGfsO6VlspSK1HnlSRTrV79+5cu3aN4ODgDz6foKAgRZrVgAvkBJwl08gaHFuArSIniZOZLg6m5aRhfbQT7m+E3JJLbO8SI3Xt2pXc3FxWrlz5+XsmD7fBwf7w7MDnnVfBfw3/r2camZmZ3Lhxg8TERE6dOoWpqSlDhw5lyJAhWFsXZYVb6QBqWjC7+CXWzqEd7RwU0tltqrRBV1eXJk2acOfOnU8WFHR3dyc3NxepVFq87vwRVFUkrOhdE0NtdX68GMDa0GGk3dfFYH5wKW2mQdseEJmaw4bBdXC3MmBAzTZIVafRwbED94KTcDLTpZKhNlOmTKFx48Y4ODiUc9ViDLTU6FXHusRsYVXLVSTnJWOmrXAf7V/fDjM9Tb498QKA9CBfeiybj4WBYsR7PzgZB1MdrI2K92cmtHCmurUBzma6zD76AjtjbXrVKT/LHyiUbZOzCzDQKvsrOqhvT1aMbEGTifZcs3HFRNcEMzMzNDU1qVGjBunp6aU2/3d23IlULkVdRfF5GGkZMcB9QLl9SMjK41lkGvEZeYxr4Yyupho/9fPg267VePnUl6ojJlKzQVN++GU9t2Pl9OxYE0MddVwsDZjYsjKp2QX4JMCDkGRsGtVDyz6Jw49usq9+Y7QbDyYitSf2xub8ctUPVRVVBjSwR0NDg82bN9OmTRsuXLhA9eplazS9ePGC2rVrw7FR5AsZg6rV59LQ4lS0P18OQFVFhZnty9jL6rcLsuJBt9glOCEhgYULF3L27FkADh48yJAhQ7Cx+fDnVAr3rpASCi7tP163gv9K/t8Zjby8PG7cuMGePXvIy8tT6jTt378fQ8My9gyaTQfVD+cAGDduHE5OTvTv359r1659kh6OqqoqX3/9NZMnT2bbtm1l1hFCEBCXSdVKxcsg/eorJLQD4zPZGjWE5AIplV/tZ1DVPhRI1Zj1+3NkQtCxuhVnnkcz4rdHtK9myfbh9elkO4Qea++Qmi2ldRVzdo1qiJaWFgMHDmTjxo3MnTv3g31XU1Xhp74eJcoMNQ2Ll3oKC9AoyKJTDSsuvYrl9LMYspNjlbEhEck5DNr+gBZu5uwdXRxwpqupho2RNgtPv+LX/h60qmKhTMQEihnW/JMvSc+VIgSsGVibxKx8YtJyyZP+IbhLVkhEUhpbnmaRk12Io+jIvs5L+OrUV8oqBgYGpKWllTIaOuqf5/3jYKJLQycTXC30uPM2iYdhKUxu6cSaFUt45edP47FL6digKgNbV2FgGecb62rwY59aTD74hCGN7MmXOrP8gj65NduRdHYVr210mL1kCgJF7pF3VKtWjRs3buDh4cGZM2fKTAfr7e2tyM8tr82FwGO0MHcqcfzIo0g0VMsxGvpWin/vcfjwYebOnYu1tTVyuZw1a9bw5MmTz3peAJg4Q7dfP/+8MhAKxYq/pa0K/j7+Xy1PnT9/nvr16/Py5UvWrl3LqVOnmDRpEgMGDCjbYAA0m6FIU/oR2rVrx7Bhw/j6668/+Yvcq1cvEhISSE1NLfP4fp8IOq+9zdHHkSXKA+MzWXUlkKdW/THq4s6apz+x7+VJGv7gxdPINOIz8vmqnSu5BTK01VUZ2cRRea5EgKezCaObFb9EqlatShM3U1Z//xczop0YC6urQ2Y8P/X14NbXrVHPiERtnQfZ8cFUMtRiahsXxjRzKnVqQFwmD0JSyM4vREtd8bXb7B3MwG33ScrK4+TTaO4HJ3PjTQKZeYXM61yVF4s7lFaMPdAXuy1u9FS9g1/VidxPrlRq/8LNzY07d+786dtMzsrnVXQ6GmoqqEokHH0cxeabQaw+/5SOnbvi5ubG2dOnuLqgV5lJot7HzkSHM1OaMaCBPcObONLAyQR3G1MeXj2NRbofh37bwrS2rhjqlJyNOjs7ExYWxv79++nZs2eZm+Pq6urg1pEh3bbzbaNvSxw7P605pyY3/aT7vX37Nr/88osyx8rOnTvp3r37J8+Q/1X4+flhZ1d2HpIK/oP8nUEf/ylu374t6tSpI3r37i3i4+P/pddauXKlWLNmzSfXX7p0qTh79myZx15Hp4sxux+KwLiMEuVyuVzsvR8meqy/LTx/PCX6HFguotKSxYCt98S++6HKQLyEjDwRn5770T6cWfe12NBZUzR21BK9DvUSx94c++T+l+DeBiH29RYiXxHklZadL1rXcxOFP9iKdvN3isWnX33w9LCkLFF/2VXRcfVNIYQQUw4+EdUWXhQJGXkiMiVbxKXniviMXHHdP17U/f6KuPs2sXQj52YKscRYiFOTRXJysujatasQQogRI0aI5GSF7tSpU6fETz/99OfuUQgxfKePcPzmnIhOzRH77oeJr48+Fxdv3hc16jYQjx6VL5z4KXRdd0s0Xn5N7LoTIlr/fF306ttfeHt7CyGECE3MEi1/ui4O+YSXOOfWrVuidevW4tChQ8rPvnnz5iIjI6NU+6I84UIhRJ60sJSw4a1btwQggoMVwZXh4eGicePGorDww1pfHyQ1XIhjY4SIffnn2xBCTJkyRfz2229/qY0KPp3/GcFCf39/0bRpU+Hn5/dvuV5eXp7o0qWLuHPnzifVDwgIEJMmTSrzmEwmF/6xZT/T2PQc4TzvvHCed150WnPrT/dXCCGigvyFpYGG2DCvt7DqaSVWP179p9vyi0kXA7feFztuBQuHueeEpl0NsfVmkOix4Y7Yey/0o+fPOPJULDmjiJqWFspERm5JxdighEwxfu8j4TD3nDj1NKrsRopUZgsKZaJtuw5CiJJGIyYmRtSvX1/IZKUjr8vifcXd4ReGi0GnJolZvz8THX/1Fr023BaHzl4V7dq1E7GxpdVYP5c8aaHIyS8UP18KEO4LLgqfV8GidevWQgjFs3Wbf0FsvPFWWf9+cJJ4GpEqsrKyxOjRo4WTk5OIiIgQ3bt3L9349eVCLKskROLbUodSsvJFre8ui2mHnijL0tPTRZMmTYSPj0JIMTIyUrRo0UK8efPmr93k8yMKIcLbq/9SM40bNxY5OX9NKaGCT+d/IiI8MzOTYcOGsWfPnlJus2Xi/SOsrQ1ZCSRk5pEd8Qx+Hw7JH/ZUeR9NTU3279/PDz/88En13dzcePXqFVKptNSx7bdD6LTmNhdelvb5V0GCsY46o5o6UMVSn1m/P1ceexqRStd1t0sFmJWHTWV3uvQZQpRwo56sHoYvPj8e5FnCM6IyowiMz+R+SDJJWQXYGmtjYWJIDw8bTk9uyrDGjuWen5SVj39sBr/2r82i7opMdmqqKui/53b7IiqNtr/cJDQpG3N9TRo7l6PPVeTKOfXgU+6HJJHwhyjsSpUqYWtr+0nLiImZ+dRZepX5J18ihCAlLwVtrTxypTIC4rPwDUlg5ISpTFm6Disrq1Lnn3gSxU+XApTXWnvtLUN3+Ci9of6Ippoq2hqqzO5YhZffdaBhdWfs7e158uQJVSsZ4Pd9Jya1UuhPCaHwppuw7zG6urrs3LmT48ePM3z48LL3prSNQc8C1Erv0Wmqqyg8qooi8TMzMxkwYACrVq2iYcOG3Lhxg/4D+9NlVhecXEovL74jJD2Ee9H3PvxQa/aD0Veg8RSCE7M46BOBvIxgxw+Rnp6OhYVFiUyXFfwz+K81Gjk5OQwYMIC1a9dSuXLlj58AUJAJeWnk5ufTZtVNDv9+APxOQ2RpCYMPYWxsjFQq/aQgLIlEQseOHblypXRe6UbOprSrakH1MlJkWhho8XhBe9RUVDn3IqaEgYhOy+V1TAY8P6RQLf0E1q1bp9g8nToNb29vDh8+/EnnAWT7n8VhS2v2nx1Jz9o23JrTmo41rJjRzo0m7rZI8j6uzjrt0FO6rb9T6gUPKFxAf6iEdY4fKhJF7upH89spPbLKvB+vQLwC4lHX0ESvjFS0+vr6JCYmfrRfGqoqWBpoYqqniUQi4ewXZ9nZcScTW1Sme61KEOhNzVbdMTU1JyGzdN/33Atj260QMvIUbryvYtJ5HpnGT5cC6L7+Dtn5hbyMSi/TwKsVJXCaOXMmP636lRtvElAt8pKLTsslLiOPFb1rsqRHsQdVnTp1qFSpUmkvPrkMnFvCV8/AqHQgp46GGqcmN2VmB8UezLfffsuIESNo3Lgxly5dYsOGDbRa0or9qft5FPeo3Oe18O5CJlybQFLuB1zQJRKwbwSqaqy+Gsi3J1/yLCqt/PplsG/fPgYPHvxZ51Tw7+G/1ntq9erVjB49+tPToN5dC8+PwLjraBrZ0qF6Msl6I1kUVpOWGq1p+5nX79u3L7///vsnyStYWFggk5Ueeda2M2LHiOKUmWeeK4zDwm7VUC96ocSl56KuqkJKdh5nn8fQ3cOabm66tOngj/qLA0ifRjDKryF1K1cq21OmCD09PTZt2sSkSZM4f/48bdq0obCwkKFDh5aqWyArwC/ZT5k3XEdVAw2JGh3sFE/J3lSH6Uee8iQijaZ6xhy7/YLJfT/sYjmggR2WBpq8iEqjXTXFiP3O2yRWXXnD5poqVNI0wMxAnymtTbE0/HDGvYw8KauvvkVbQxVrfXW0NVSJjY0tMSpt3LgxV69e/ahCqqGOOldmKCLH49LzmHPsOc1rZqKmE8HqAcN5vP4Rh7edpe36h9S2M+LYl8Xft3tBScxo74aFvhaG2orZz6YhdckvlLPw1CuiUnPIlRYycNt9cqUyHsxrW6YhrFWrFs/CEhi84hDHFw6hSWUzeqy/g7qqCg++Lf3NzMrKKr1BfOdXuL4MBh4C9y4fvOeYmBhu3LjB0qVLiYuLY8WKFVy5coXEgkQ8bDxoaFW+1Pokj0kEpQUpXbA/xvR2bjRyNqW2rdEn1X9HTk5OsVt8Bf8o/itnGoGBgfj6+tKnT59PP0kIEDKi03KZevgpE1pUpm31SuyNMOVxRNpn96FOnTo8fvz4s88ru2uCCfse8+PFAPY/CCcpK5+0nAJSswvIlcrIlcoolEuKBQRfn0Tn1lJyHdvTt3Apd8Ky2Hk7pEy9oz/2efr06bRo0QJvb2+8vLzYuXNnKYO27cU2hl0chleEIlBQ4tYRn4H+9L/owamn0QB816M6awbUxlQkcXPzLN7Efni20bO2DeHJOYzd66scsQclZPIsMg1/iy68GvQQYVmDmR2qMKTRh2NKDLTUOTjOkzNTmmJrpElBQQF5eXkljEa3bt3w9vb+YDt/5NSzKG6/TeJY8G5W+65m0+5NdOzYETtLU0Y2cWRQQ/uifmex/0EYQ3b4sOjUK6q9N1NUV1VBT1ON1QNq82h+O1KypWQXyJAL2HEnVFmvUCZn2Tk/Tj6N4mlEKksWLsAu/h4eRS/XoZ4ODGlUtvRLWFgY1apVK1no2BzcOn8w9/Y7qlevzs8//4yuri6DBw9m06ZNaGpqYqtvywD3AaiplD+WbGrTlBHVR3z0GgBZ+YW4WOgxzNOh3Bzw5ZGTk/PXpUsq+JfwXzfTEEIwZ84c1q1b91nSHpHVxpNoP4KQxGzOv3hOXXtjxjRzYkgje3Q1ir+ceVKZwpVVQxVVFYlyxP9HGjZsyOLFi4mNjaVSpY8L431ofb1QLvANT8PaSIudI+tTyVCbpiuvI4Rgx4gGNHY2pVMNK8z1i0apNfuBvBCD6r1xk0YS8DyG7AIZydn5WOh/eJQ+YIAimK1Pnz4cPXqU1atX07FjRy5fvqz8kba2a01MVgy1zIpzVv/+OBJtDVXlUlAtWyNq2RrRpEYsPa/4U/kTtklmdajCm7hMZR+/qGtL26qW3HqbyOjdj5ncujLZ+TJmtHMr5YL6PslZ+TwKS2FwI3u0tbW5fft2KakLW1tbgoKClH8XFMq5FZhIczczNNVKv4yCEjLZcTsUdRUJ27osJywjhGWjlnH48GFUVCQs6Fb8kv7lyhsuvoqjbVULvPwT2HYrmPEtKvPLlTeoqkiY0tqFwdt9cLXU44cvarJ9WD2eRaYx5L184YlZ+ey8G4qlvhZxGXkcGlOf7JQ4nkem0cTFjBnlzBrT0tIIDw8v/d2394TBH19yPHHiBMOGDaNz587MnTuXsWPHlhtA+CGEENyLuUdti9roqpeOPH8VnU6vjXeZ3Nql3Hv5EL6+vuXmPa/gP8t/3UzjxIkTNGzY8JMinN9nyqGn9N18jzZVzNkxvD6rr75h3J5HnHkewzHfKGLSctlxO4RRux7ReKUXDZZdZfD2Bx9ss23btp8UAOXq6srLly/LPa6uqsLNOa04OrEx5nqa9NhwB3sTbZzN9Zhz7Dm2xjo0Xnmdn99Jb2jogl0jkEj4uZ8Ht79uzdkpzco0GFfCrjDh6gSSc5OVZQM6t2CQbSzzJw5k0aJFaGpq0q5dOwoKFFLk1c2qs7z5csx1zAFF8N31gAS01VV5HZNOm1+8mXdCcT8W40/R4ovRnL/qXea9bb0ZTIMfrrLkzGsczXRpX82SzDwpMrmgzSpvvjzgi7a64iV+4WUsu++F4Rvx4Q3+089i+PVqIMcfhZGbm8vVq1fp2rVriToSiQQDg+IZwOFHEYzd+5iDPhFltBdNu19voaWuioOpDo6G9jjKHDExMeFpgozhvz0ssRczo70bS3vVYHQTJ9RVJay8GMDmG0EcehjBkUeRyIQgIiWHqNRcsvML8YvNpG99uxJR8pUMtanvYIyWugoD6tuhoa5OSGI2m7wVThlhSdmM3fMYL//4EhLxMpkMIyMjOnfu/MFnVBbZ2dkMGTKEX375hcePH+P3xq/cfYOU7AKarrzOigtly9jcjLrJxGsTWf90fZnHjXTUqWKlj6OZDjnSHMZeHsuuV7sUB4NvQNA1ZV0hBP6xGQSkBHA2+CxCCAoKCop1tSr4R/FfNdOQyWRs3rxZKXXwOUxs4czbhCyMdNQ5/iSKXKmMq/4J7B/TEDdLfXbcCWXbrRC61aqEmoqEzHwZTmblaPcU0b9/f6ZMmVLqhfVHGjduzNq1az9YR1dTje/OvObS6zhSsvL5oo4NEokEn9BktDRUaORkQm27ouF8Sghsaa6QbBh4AAsDrRJr5dn5hegWzQieJjzlQewDojJjMdAwVsycshMZ6xxHUkQlOnfuzJYtW9i9ezeTJk1ix44dpfqmqiJh/aDaLDz9mo3ewVjoayCVFUVq65oxZ9EP9OrVix49epQaARfKBdn5MnbdC0NVVcKee2E0czFj16iGNK5sSmp2AVdeK3JIdKhmRePKphhqq3M3KImmLmbsux/G2eexbB9eXzn7GNDADl1NVZxUU3ju4sKbN2+oUqXsILtnz55Ru3Zt2lW1JDghi/ZlSLBXtzaghasZqTlSBIoZ4fSfd/K40InKAfHcfptIVJHzgaaaCk1czHCzVCgV/9S3FssvBPDzlTdcmdESfS01NNVUuTO3NaoqEi6/jmf1tUAy8qQs7FaNrPxCjj6OpFdtG7Q11NDRUGQtHL7TBxVVVaa0VnhOvYhO55p/PLcCE3Cx0OfCV4rsfDk5ORQUFGBubv7B79P73HmrEIhcuWwZmzdvJjQ0lP6j+9N6fslI8/DkbFQkEuxMdBBCUCiXl7vkWceiDk4GThwPPM6YGmOUA4x32BrrcH6aos9JuUm8SHqBsZax4uCxUVBYAPMVgp77H4Sz8PRratQ7QHjOS0SY+OwMhhX8+/ivMhrHjh2jW7duf8oNr3PNSnQG8gtl3A1KwtlMjy/q2lCtkiEvY9IZ28wJO2NtLA20cLPU521CJo/CUvjtTmiJ6Or3sbe3/yS3ThWVj0/oRu16yNOINPS01Lj1dWu+PvaCO0FJXJnRAhcLfZq5vPejNLAhs8ZQtKq05Y+LOBtvBPHr1UCOTWhMWq6UCTW/YnjV4fTZ4IelYTqbh9TD0qomkjlBfKNlRNXr95g0dTpW5ia8efOGyMjIUpusF17GMunAEya0cKZnbZsSa/igyFnepUsXduzYwbhx40ocm9zahbHNnTj7PJZWbuakZBUoU582cjJh4enXDPW0Z1xzJ2a0d0NLXZWmK68Tn5HHm2Wd8YvN4FlUGhl5UqXR0NVUY0ADe1asOECHDh3YuHEjxsbGpZ7puHHjOHLkCLVr18baSJslPWuU+exdLPTRUFMlMjWd218rXqQJIX7Y1unLlDYuTG7tgq2xDm4LLmKgpc7+sQ0JS8qmU41KfFHHluSsAqJSc3Ay01V6PyVm5bP0nB8jGzuyeoAHLVzNOfk0in33w3kSkUauVKaUWtl6M5i7wcnoa0hwt1AY/x4e1qhJJNx+m4CjmZ6yr7/88ksJz6n47HhMtE2Uelp/5G5QEkN3+jC0kT2PHz9mxYoVNGvWjHYj2jGhVUkxwh4b7qKlroLPt+0w1dPE59t2ZbYJCnmZXq69uB5xHW01bXxCkrEzKak59g4zbTO8+nkV54v5YivIZWy4/pbzL+NY3L0qbd0t6Fd7OjlEEXcj7qPJvCr4z/FfYzSkUilbt27lyJEjf6kdTTVVvOe0RlNNBV1NNeaffMkBnwhGNHGgsrkes35/TmZ+Ic5muoQm5XDVL75cowEK184PjXQ/FQ01FexNdTg9uSkSiYR+9e1wfE+pVAihHMW/is+ju29nhqo5sLQotfawnT7kF8oZ6umAm6U+r2PSWXD6NRNaOjOvc1WqWUdRKBN4rvBifpeqjGvhjBCCb25mYd56Jl0dEnn16hX9+/fn3r17JWYMLhYaWFRdR7xGI6pZf19m/2fOnEm7du0UG8d2diXO11RTpW89WwB+fU+xtkdtG3KlMvrWs8NEV4O7QUmY6GrwXY/qpOdKUVWR8HXHKtS0McLCQLPE9YQQnDlzhv79+5e7VOnp6cn69euRyWQf3FTNzJMSEJeBsY4GGmoKA68py8HF3ZV8qRxnc8VLe/2gOmipq7Lg5Cseh6dyf14bUrILWHZesYTTqooFrapYcOZ5DFu8g/GLzcDVQp8Z7d0QQrDu3nnCoiyY1rYaAxvYK+/jwstYrI20kFayoNVP1zgyuQ15UhmTDj6hcWVTvnvP2B08eJD58+cDEJwWTJ8zfejj2oeFjcuWUq9la8jIJo6EXdhC8xYtGDtxEnU8m7N+1opSdce3cEZdtfhzuxR6CT0NPZrZNEMu5DxLeIaHuQeqRcmTRtcYzegao4lKzWHgtnt46y+CytVgYEmF28DUQPIK86hlXrRH5tYRgFj/l0Sl5OBspsfOke+8CBuy7cY2NDVLft4V/HP4rzEaq1atYvz48R+clr9NfUtUZhSt7UsLvL3P+2J5/erboa6iwr4H4ehrqZGZr/C3n9PRDRtjbZzeG+WVRa9evTh+/DjffvvtB+t9jK3D6pf4u7uHNd09FC6HX+735XlkGtdnt0JLXRUbI23aulvS1KU4+C2/UE5+oZweHtb08LAmLaeAoMRsehXJle8Y0YCQxCyyj79AX0uNY75R9K1ny5etKmOorc6AJm2wtramU6dOrF69mpkzZyrbtjHRwlBXjp7WH8QD30NLS4utW7cydMQokht/xYDGLryKSae7hzWeTiY8i0yjX3075HKBb0Qqde2NMdRWZ7xTClxYRm6bJQzb+RJncz2uzVS4wAYlZNF57S2kMoGGmorS8ACcOXOGZs2aERwcTM2aNcvsk4WFBdbW1ty8ebPckatUJicxK5+EzHy61aqk3CSPTUwl1C+eLjWtlEajY3WFq7COhioBcZlUMtTGRFeDAfVtUZFI8CwKRvQJScYvNgNVCXSrpTjneuR1kvQ2oGPZmhnteimNqlxAUlYBdsY6PEpKRJYn8PKPZ4inA+5W+twPTub0sxj617fj7t27FBYWMmXKFEAxgves5Ekdyzrlfi76WurM7+xGsx8eEhVuzluJHZJazejhF19qqW5y6+IlIbmQM+/2PMx0zLja6QAZO1pxVSWbNx1WMsh9UInzKhlqM6W1C6Z+JWc7c2/NJSIjguTcZJLykng89DEqkuJZ9w9f1OS7HtVLOZtUeE79w/k7w8v/lXTq1Omjejg9jvcXNXbXEAEJJeUnrvvHi4Fb74mOq2+KN3EZYuONt2LusedKHZ5nEanC+ZtzYszuh2Lcnkfim+PPhdM358Ty8wppkuCETDHr92ciIjm71DXlcrlo3769yM/PL7dfUqlUfPHFFx+9xxmHn4phO33Eo9BkkZ0vFflSmfDyjxNfH3suuq27LfKkH77/pWdfi96b7orcgkLlfT0NTxGLTr0Ua66+EdJChazGiN98hMPcc+LNe5pXB33CxfyTL8TIUaOEqampKCyS1vCJ8RE/PfxJ5BXmKev6J/uLtb5rRY60tMTDzr0HhUndjmL0jjvCdf4F0WXtLVF90UXhMPec8I9NF4d8woXD3HPitzshihOu/6CQnPA/L/beDxPX/OKUbQXEposaiy+JbutuidG7HoqQxCwhhBBpaWnC09NTpKWliZkzZ4qHDx+W+0xu374thg8fXu7x3pvuikY/XBOJGXkiOjVH+YxatmwpXkWnffB5l8fcY89F7SWXhMPcc2L+iRdCCCFSclPEuHPfCNcl28XSs6+VdYMSMsXqq29ETGqOqNqolXCYe06suhQghBDiSXiKaPTDVbHh+lvhG54i+vfvLzw9PUtfsCBXiORgEX/rN/EiIrXkoYIC0bJlS1G5cmWxcccesfN2iBiz+2GZ32UhFHIjndbcEhuuvxW3Im8J3zhfIZJDhGyppbi5o5kITgsW0kLZJ2meTbo2SXQ90VWcDjotDvkfKj4Q/57kTxlaWZ6eniIlJeWj7Vfw9/L/SkbE29sbZ2fnj44+cuM7khfXky6rnxOUUJzCc8vNYO6HpBAQl0lceh6XXsVx9nkM+YWKkbORjjqulvoExmdyxS+e4Y0dqedgTDVrA8KTs9l6K4RjvlHcCSodBSuRSHBzc+Pt27d/+T6DE7MIiM2g75b7/HIlkO23gxm9+zHuVvqcndqsTFfRt/GZSomG0KQsAuMzyZPKyM4vpM/me4zf58ue++GsvvaW51GKWIo5HauwrFcNXC0UI+h7wUksO+/H/gcR9J6yiJSMbIat2AfA0cCj7PXbS2h6cYzBkTdH2P5yO88SnpXqz5BB/VGz8+DUL7O5Mc0TMz1NsvJlNHIyoYqlPgba6jR3NaO5a1FwWPPZMO4GuHdhmKcDbataEpmSw+XXcQTEZZKZV4iBtjpeAQk8CVeoBc+aNYtFixZhaGhIUFAQ9evXL9WPdzRr1oyEhARSUkp7ZMVnx2NnkU11awOSsvJp/tMNlp7zIy2ngJB0QUhiVhktlk1Uag6ey73YcjOYmPQ8NFRVmdfFnfEtFGoFxlrGLGuxmCrG7jgWOVi8ik6n3S83WXPtLYd8wtCWyHCz1KN9dcUMQF1VhfjMfLbdCqbPpjuEhoWhofEHiZBbq2CFLZydjoXXdL7bupeCou91XFwcVapUQSqVcuPGDSaNGc7oZk7sGNEAO5Ni9eCCQjnLz/vxw3k/8gvlRKbkEJeeR3Pb5tS1rAsmTqh8E06LMbdJSTVi+pFneK7wwi8m44PPpK9rX9QkaribuDPQvUg83ncPbPKEJ/sU/7/MsoQiQ0REBK6urmXuUVXwz+C/Ynnq+fPn9O7d+6P11vTsy5HHEbyNz8K0aAkqKCGLN3EZSIAzU5qRnJ3P0p41sDLUQqvI1dPBVJdL01vwOiadqNRcqlYy4OhEReTv8N8eciswkV/61aJXHVteRadjb6pTIlXprFmzmDhxIpcuXfrTOY0fh6XwIiqdUU0cycgvpK69EdMOP8PZTJd2VUt7/ABcfh3HhH2+zO3kztOIVB6Fp5KZV8jNR0/o2bQOM9q7YaanQVJWASa6GtS1NwKgurUh1a2LAyueRqSRna8I8MuUSqjStCPPj2+C+cOpZlqNoLQgLHWK+zC1zlSaWTfDs5JnqT5pqqny5ehhXLtuT78vurPil7Vk5RsxvLEjEomEeSdeIhcCF4uiPOlqGmBTt0Qbi8+85npAAqenNOXHPjVp425JTFoulS3VOHXuFEIIpctpbm7uR595v379mDVrFrt27SpRPu7qOOLy4rg3/B7pOQrDVtveiLiMPJJypHy15w61F3Qv8YL9IwmZeVx+Fce557HEZygGJCGJWbSrasGYpk5KqRAAC30tzk5tVvy3gSYd7QXGlvZ0cNTAt7I96obazDzyTLGpbKiNEIpgxjpSfwwaNeLy5ctEREQU53w3sFHksPCcxHMdTzqad+LenVusWbOGixcv0qFDB06ePMllv0SmnrnLhsF1sDUueT8/XQpgx51QJEB6biFPF7UvHZ+kpthjGLrTB3VVFTydTbEw0CQ2PZfcAplyCe994nLiCM0IJS0vrbjQph64dlB85gn+oGOqbBsgNTUVS8uyv+8V/DP4rzAan0o1awO+6VSVwTsesP12CF93cicuPY+03EKmtnHB0kCT7hvuUM/BmONflpYf+ePLFGBKaxc8nU1o627Jy+g0em28R6/a1qwZWLyO7OTkhKurKxcvXqRLl7IlHMRHvKzM9TWpYqXP3gfh9KlrSwtHbdaYnYGafVnn9Ra5EBjraJQIMqtqZUAbdwsaOhkTmpSFtaE249zS6OHdmYKUIQQVjKWSoRmTWlX+4IvVyUwHO2NtvutRnbZVLQlpW5/ff/8dmUxGdFY04RnhZBZkKl0mTbRMaOtQvvBKRl4hiXrO7N/yG+PGjSXKpC59687g/IvYor7Az5cC8LAzokN1K4QQxGfkY2Woxb3gJK4HJGChr4mRtjoDijaMzfU1afJzEwJ2BxB6TzHrefnyZenI6DIYNGgQ339fegN/QJUBJOUmoaaihqmeGgfHFRvB1s2bEZocqNwYL4/f7oSx5WYwDZ1MqG5jyIuoNOQCzoae4O6hrxjutIJxjRqX2Y5F7C22JAzhQMFEZngb06xGLQ5lbkIuNyMurD1Z+YmsHlAbD1tDRvb5jr179zJs2DAGDhzInTt3FF55tQcp/gFpcdocXjKRBw8e4OnpycaNGxk5ciRqamoExmfyIiqNxMx8bIy0S3wfHKxTsK9ymuzYjqTmFJQb0JqeI2VYUcrfd/tt7X69SVRqDo/mt+PGm0TaV7VEuyhYdpD7IHq59Cr2mgKwqgFDjir+37I61Oxb4hrr169n6tSpH3zmFfxn+f9hNBIDYXsbaDGLgrpTCE3KVo6mmrma4btA4UIIsKBrVdytSgsElkdDJxNq2RrSaLkXlc11GVDfjo41So+EVqxYQbt27WjZsqUid/N7qKqqkp2dTXx8fLmjKAdTXY5MaMyEfY+paWuIfvxjumccIiNTi6m+7VGRKEbxczpVUS5T2Zvq8NvIBryISmNAAztF1r3cVGJ3N2fNc1NO5kVz8mk0517E8tvIBmVeFxQbsTHpeUrFWWtrawoKCjh8+DDfDv6Wdg7tmHp9KvMazSsxu8grzGP6jek0rNSQ0TVGK8vr2htT38GYBjUd2LT/OF+MmsLYEUMxaT+R1nVcyZPKeBiagrGOOh2qW7Hjdig/XPBnzYDaZOcXoqoiISEznxdR6YQl51CYFsv+zatJDU1lzIoxyoRaDx48UKQ8/Qja2tq4urqSk5ODjk7xKHtI1SHlnvPdhH7s27cPy6L4F6lMzoWXsbRysygRrT6yiSOZeVIuvIzlp74eaKursOVmMOnq2kTJ8vjlSgAHb+dzY3arEoYjPUdKvroVFnaNuBxqyt3zh1l9+TBH7/yOPM+SE8MWkVUgo669wlBraWnh6OiIo6MjkydPpnPnzkRGRpKRkUGBXEJGRgYWJoZ06NCBY8eOYWJiUuJ+prdzZWQTR55FpeG24CLrBtahc02FkkGmygtSVe7z6+B+1DSuwcwjz8jKl/IoLJWrM1tiVvTb+elyAAd8IjgwplibapinAwmZiiRai4rcpwc1tFcOvrTVtMksyGSl1zU0C6soFY7LQghBREQEHh4e5dap4D/Pf4XRePLkCT169Ci/gooqaBmCui6GOuo8/LYdaSlJ7Nq1izt37igjnQHMzc3JdXIiPLAWi2+nY2Wsx44R9T9oSK68jqOmjSFVrAXjWlpgpVv6xa+vr6+Uml68eHGJYxKJhF9++YW5c+eye/fucq9jqK3OoXGe/HDen0MSVwb124OBY3Pqxb8hJbuA3SMboKmmyo2ABO4EJTG3kzsaaiqM2fNY4Ta6tDNoG3Oz3gbOnvOjhasx95TZ8KQlZMgBcgtk/HgpAG0NFZpVNqWKlWLJqFOnTpw4cYKLFy8yZMgQ8grzCE0PJSEnocT5OYU5PEl4UnIkCSw774eBljqDGznQxMWcnRtXM3n1YdLOriA/ozFd+g7BycyO3kV5wt9FhJ9+FoOns4kyoCwvOYZB0+ehK8vi9M7V7PIsubx08uTJT1brfbdMM2RI+YbifWp41OH57DnKvy++iuOrw8/4slVl5nZyV5ZbGWrRuUYlTjyJplAmp1k1S5q5mgOeRKZMZ8yeR+RKZcqgwXeM2PWQwPhMHi+4gPhxL24uLtRwdWNe+m7i02S4vfd9PH78eIkZVb169Rg6dCiLFi1i0NDhLD3nj09sIXfmd8KqSOzRLyaDucdfoKepRqsq5mioqTCggR2HfSLQ0VDl/MsYpHJBtUr6hAY14tfmddCSujD3+AtuBiaipipBLhfkFBQCCqPR0s2cK6/jGL3nMacmN6VqJQNGFGWNTMjIIyIlh113wrjzNgnvOcUejGufrOVMwhFEzES+7eJeYsnufRITEzEz+zQhxAr+c/zjjYYQgri4OJycnEqU/f44krr2xrha6oNpZZj5mskHn5D95DpqvgcJCQ3DwqMVw0ZNoVlNZ/xj09l+O5Q2zqrkpcZx6sQhYi7dINGmOj515rH7riZNXMzo4VFSWTMhI49ph5+hr6VGvMEaLp3JwLv/bTLzCku47gKMGjWKnj17Mm/evFIbljVr1iQzMxMfHx8aNWpU7v1m5Rey9344Va0NGDS5F0CppbT119/yJCKN7rUqUdvemEXdqpXI3zCwoT0DG9pTd+lVDLXV2DikXimDAfA2IZPd98JwMNEhKi2XpKx8DLXVsbKyQkVFhfPnzyOTyWhl14oHgx+UyrFtomXC1b5X0VErWX5onGeJUXW3WtZ02zUTIWaw5cg5Zi1chlZeCtld2rJVzxb/TA16ujtS1yQD3cRw+umEcvXSeXa/1OWryRPp0LoFnm4lXa3Dw8PR1tYuIRXyIfr168eQIUM+aDQiMyP5wecHRlYbw9Rd6USn5JOeno6hoSGtqpgzpbUL/erbljqvmasZ/ks7lSh7HpnGk4hULk9vUebSYJeaVlStpI+WmiqxNw9yrmgwMaR+yQDE2NhYli5dys2bNwGFWOG4cePw9/dHzcSGLuvuMMzTmVWjnZQGA+DSq1heRqejpabC65h0NNRUqWtvzGW/eAy01Dj3Io5nkekMbmTP0cdx2Bm78SgsmNtvk1nYrSonn0TzKiaDCy9iySmQceNNIl/UsSExqwBDbfVSy20WBlos6FoNZzM9zPRKfve7OXcjTypnRJf+5RoMALlcXmImWME/k3+80QgICCgVOOcfm8nc4y9pV9WSHSMUnjMLtx8j6fIuLj8O48Rv6zFyqUPvTfewiISuNTIIiEnFKziL7vVr07dtM2zrtkbSJIimWjFs/+Fr/FQcSRwxqZTRsDDQYmADOw4/iqQwshq96pkx99gLzr2M5cbsVti8FwFrbGxM48aNOX36NP369St1L8uWLWPp0qUcPHiw3PvV11LnwlfNUVORMGHfYzpWt6J33ZIvKhsjbZ5EpCm9v96tL6fnSjn7PAZtDVWauZgytY0LjZxMqGZtSEhiFnYmOqirqhCVmsO+++GMa+HMkfGeOJvrEhifyXdnXjOnYxVq2Roxa9Ysnj17xr1792jevHkpg/GOP+bnBnA01WXQ9gd097Au4fsvkUgIUbVHv9MM5NJ81OzyiHsbRNDz19QqsOBVkBbVqlWjfhV7vp16UulBE5SQSURyTol84Vu2bOHLL78s9zmW6pOjI3l5eWRkZCgNza++v3L0zVF6ufRidI3R+Cf7czf6LvUs6uNuVRPL5h04cOAAkyZNwkBL/aP5wN9n9bVAvN8k0szFTDGw+QPvvKpOnTpFjRo1sLUtbYzkcjm9e/dmxowZGBoaEhsbS4sWLfDy8sLV1ZW49DxczPVwsdCjkqE2Mrmg18a7WBpo4heTQU8Pa77vVZ3EzAJUJIpZkQTFMmeXmmZMae1KZQtdalobMnbvYwplAmMddX4470+lIgP08+U3NHc1Jywpm261KuFqqYens2m5+x6Dy1DmrW1RWymz/yHOnDlD3bp1P1qvgv8s/3ijkZycXCrhTNVK+izrVYP6jsVueQWXlqEX4kf0lWvouikUTzcPqUsdC2BDbUbYNqDO5P142BnhH5vB/gfh3H6bxKiRTbhypRtz5n9H/IOjbHY04ctWJZM6rexTC2edXHIf5tHZaQg+moqAsHc5FN5n2bJluLm50alTJ/T1S74s7O3tuXXrFoWFhWVnXivCxUKPsKRsrvknoKOhVspovLtuem7JbIAHfML56ZJC1FBTTYX8QjnjWziTK5XRZ/N9xjV3Yn7Xapx5HsPWWyE4mukq5b7vBSdz+20SHapbUcvWiAJzd/ILpKxfv57mzZuX29ey8AlNISolh/gyEi5NaeOCRKLQe0rJliI1d+f3X+dx8mkMy875MbRdYzzsjACFfMm++2H4RqRiaaDF+kF1cbfSJyk+lu3bt7N06dLP6leHDh04evSoMgeKrpouLrlZJD/ayubCfI4HHWdirYmMqTmacbVUSO/rTr2mrWjWfRC17D7PBXRB12p8USddaTCSs/KV+2rviI2N5eeff+by5ctltnH8+HHatm3LiBEjuHfvHgMHDuTixYu4uroCCiPwTpPqHdkFhfjF5hObrsg+aKitgbqqCjoaiu/bzpH1MdXVVD5jgOZu5szpWAUv/wQsDTSJTc8jv1BOdFoe5vpa1HMwxjswkYuv4pTLUe/zJi4Tc33NUjPvz+XKlSv89ttvf6mNCv71/OONxrVr1+jYsWOJMolEwtD3ZKZP3/JlzwsZk4Z8haZz8VJO55qVQFYINfogqVRb+UP57sxrfEJTODi2EU1czOi05hZpJq0J9V7F3bitTGjxI0GJWaz1ektPD2uuBySwwOg2emI/xNfGrfG4clObqqur07ZtW27dulVKyFBXV5fly5czffp01q9f/0GPJkczXW7OaaXchNx9N5TotFzmd63GuBbOWBtr08LNnJG7HqKlppBxH9jAjsmtKrPJO5iCQjk1bQyQSGD5hQBauZnRpLJivXhkE0fsTXToUK04fWnP2jbUtDHE2VyPPKmM8fse4zz6Vy6sG0daWhpGRopnF5KYxVW/eEY2dVRuyD8KSyE+PY+8QjlVK+kzcb8v3WtV4vueNciTykpIzDuY6mKko8FPl96QXSBDU00FmawmuhqqJWQ8AB6GpnA/RBFfUdvWiF4b7zK+uRN3N81h165dHzS8ZdGrVy9+/fVXpdEYX2s8nhcW4ZGfx668qkikFhirOSmjlhPzVUgyrs7kpRu4va1smY7ycDbT5YpfHD4hycjkgiE7ffimkzsTWioGJDk5OYwdO5b169dz6EkCO+/4oKelysGxnkrxya1bt3L27FnWrFnDgQMHuHnzJjqmZcvwp+dIeRGdxtxO7kzY54uKBHxCk9l3P4xFZ17Tt64tTyPT2DG8vjJOBK/vIT8LuvzE2ObOjG3uzLOIVK74xeNioUsNGwO+7VKVbuvvoCIBV0s99t0Po1Au6FnbBhNdDX4478/OOyE4m+uxrFcNZVT85yKTyUhJSfnk5cYK/nP844P7EhMTP+q3/dXXC5A0HkXH4XO54p+IEIL7wcnsfxAOqmrQaxM0Gq+s/01nd5Z/UZMmLoqXaANHExo5m3LzzGE8RDDXr3txLyiJ8y9iOfwoksOPInlg3J3c9j+xOrEuoUnZH+zPjBkzuH79eqnyJUuW8Pr1a44fP861a9fKOLMktsY6aKmrIpMLtt0KYeedUBIz83Ew1WVSKxc01VQUAYFxGZx/GcurmAwGNLCnpq0hHnZGnJ3anPj0PPxiMviprwet3S3IL5Sx5WYItsY6pdal3/naa6mrsmZAbX4Z3Z6qVauyfft2ZZ3tt0NYcTEAn6KXeURyDv223Ofr4y+Yc+w5VgZajGziyIAG9hTK5LT8+UYJifncAhn+sRmoqkiobKHL8S8bY6ijTu+6tjz4ti12Jjp4+ccjlwvmd61K1UqKkfoXdWzoVdsaw7Q35OXl0b17948+vz/SqFEj1NTU8PX1BRSDD5Oem0nq8D0y9XpkBc+gikFjZX0XC33WL/uWrCdnSU//eErb9wlMyOSnS29YcOoVP11+g7OZrlIZVwjBhAkTGDhiDAka1kQX7SdFpuQQm57Hjtsh/PzrWqysrPjmm28ICgri4cOHXI+GRsu9uBGQwPPINCbu8yUyJQeAHy8HMGznQ7TUVZjfpSpzOlYht0COl38CTqa6yIUgPDmbrCKZHABen4JXx5V/5hfK6LvlPpu8g9nkHcxBnwgC47PoX9+OoZ4OOJjqsvD0a5ac9eP7s6+RyuT8dicEuVDEQ73T4PojMrmMAllBmcfecfz48Y+qRVfwz+AfPdOQSqW8efMGR0fHEuXBacHci7nHIPdBPPV9ShUzDabOHsjp57Ec9Ilg35iGrLoSyPPINCTAd2dfo62uxq/9PWhXzZI69sbUsTdGLhdMPvgEB1NdlvaqwcCt94mpNoT5CxZw5cpVPOya4G6lz9PINBo7m3LuhT5rzz5FqqrLhJaViUlTBAL+kVJRu0Xs3buXLl26MGbMmNI5nl8eg4fboN9uTgULIlNyuB2UxOYhdRm68yEZeVKEgNScAl7FpHP3bRJfd3Ln+qxWqEgkvIpOR01VQstVNzDWVkdLXZXem+6yqp8HDRxNeBKRSks3C/zjMljn9Zbw5Gxq2hhy9nkMVaz0KZQLfu1fW9mdnkWaVdWrVyc+Pl5ZPrWNK7WLlvh0NFSpbWfExJaVMdfXwMFEF1M9Tb4rymmtePlDaFI2oUnZOJnpcvZFDLffJvFVW9cyk/N8f/Y1vz+OYvOQunSuWYmNg+vyPCqNNlUtqWetRePGQ7h48eInfHvK5uuvv2bcuHH4+PggkUiwq6YIGh2LIlveu4DPdwxrWQ37X36m/5DhHDh0BLOPJLl6R2ZRzvC3RcoEX3eqQmt3xWe+YMECPD09eShz4ux+X05Nbsq8LgqPrL33wll25gWGNw5St2ZVqlSpwqRJkwBwt9KnnoMxdiY6XPWL59LrOLp7WJOSXUAbdwvypDK+3P+EL1tWZmpbV6Qywa9XA1nVz4O+9WxZ3rsmUw484VlkGre+boP22GuExKfx1vsOAc99eRKWjGtmHqhp42FTBVl+GrqSBkxsWbxcu2aAB5u8g3E000VdVYU27hZcD0jEwkCTH3rVIKegULkUBkBqOE/2d2WboR4bh9xCQ7Xs38azZ8/+1ECggn8//2ijcfnyZTp16lRKWnzbi21cCL2AvZo9876ax4kTJ7CwsMRUV4PcgkI0VFVY2bumchSmo6FGdn4h2QWFJdoplAt8QlNIyMwHICQpmwJVbRbNmcOEWfOZNf87tDXUlMs67lb6VLc2oLmrYjP8sl8cN2a1Ukz3316DpEBoPKnc+3n8+DFdu3bF0NAQZ2fnkv7o8a8h6jGv375l+tEsLA00ic/IZ9bvz5DJ5DRwNKFXbRueR6ZxxS+eq37xtHa3QE1FwvIL/rStasmIxo60r2pJdw9rwpKz+fVqIAmZ+Sw6/RoNCmgreUyuQ1sqGWoxs70b22+H8CYuk6CELLTVVdl9N5TXMRms7FOL5Kx8LAy0MDY2JjS0WELE2kibhk6mtF7ljbGOOgu7VeObzu5l3K0i0jgxS/Fsr76OY3zLynSuYUVyVgF96iqMUp5Uxv2QZJq7mKGmqsKraIU0hbOZHum5UvY+ucu4Rk0QQjBixAjWrl372Qm43sfDw4O+ffsybNgw5s2bVyJr3R8Nxjtq1PPkcbYJbYbP4MXJzYAik+HLqHS+61EdVRUJUpmcXhvu4G5lwC8DatPA0YQtQ+tx7kUMDqa6TGxRGSEEGzduJD09nR9++IHnkWm4mOtRrZKBctbXv74dp7euxMGzPgUFBUqDAdDUxYymRbNjJzNdnM11WXnBn7DkHBo5m/BzXw98QlLQ01L8rEc3c8LZXFcptKippsrTyDSSsgq4dfc++3dt59iNR1g4VWPm8F5cjs+hnoMNg6rrkpSUQEuDNL4aP5KcnBy6d+/OkCFDaOJixszfn3MvOJnp7RRCm3mFMnQ01Dj3IoZem+6ycXBduhTFgBD1iAbJkYTr1URVUr4M0L1791i2bNmf/FQr+HfyjzYa+/btY/PmzaXKp9SZgmclT1bNWsXq1asJy1Fn0pZ7PIlIQ1VFgk9ICvfmtVXOAqpZG9Dml5vcCkyikqE2hXI5TSqbcT0gnlo2Culo3/BUWlUxJzEzn05d2jB02nzi3L7Ae05rCgrlaKip4B+XyeuYDPxjM+lZ2xojHfViN8cbP0DMU6g1oNz7MTY25t69ewgh6NGjB4cOHWLmzJkKSYw2C6HJVHyepAH+dKlhxf4HEXgHKvSuprVzZcP1IALiMunhYc2EFs4sO+9PYFwG2hpquFrmYKijzrbhCm+ytJwC2lW1pGolA3rUtkbjxX5+VN/OL9FJeBV0Jy1HyuJu1cjOl3HyaTRDPR04/SyGl9Hp1LI1ZOHp16zsXRO5XE5MTEyJ+/Dyj2dwQ3sOP4rgUViqcqM+KCELZzNdVFQkhCVl8yY+CxtjLVKNVrIn1JQqldbT0s28hKPB7nthrLwYwE99atG/gR1Le1XnbXwWloaazDx7iIe5PxN6vR8dcivj7OxM+/btP+s7VFYk/pw5c7h9+zYjR45ERUWFfv36MWbMGIyMjEruM0lzOXnlOoseqdG41ygeHN1Mr0EjqfrFZHyjc3gbn8XElpUx1dNg+QV/XsdmkvRelr3Y9Fyu+sXjYKpDTY0EVi5ZSJs2bVi3bh0AHnZGJTakATKS4/C7f410GxvOnDmjKIzwofDOWrbrTqCtp2J5dOrBp8ztVIXI1FwaOpkworEjdiY67BrVgKQiQ62nqUa3WtYsOfuam4GJnJrUhJYaIRw/t4NjybWZMf0r7tvGoaupytTRHTCuHk4DRxPl7ya3QMbl13E0c9Tn2uUL9O03AEuXGuz/5lucrRR7FyoqEuXMwkJfi8rmepjrv7fhX6MPGDtiIk3hB58fmNtwLpqqJR0CYmJicHBw+KS8MxX85/lHG42srCzlBuz73PKT89Pah7R1r8EbuQWLtz1AAO5WevSqbYOzuR4JmXlsvxXCyKZOGGir08DRmNp2hkzY95j8Qjl+33fiblAy3oGJ3HybiJqKhLc/FEuAtGpcn34uMvbeD2PJWT8Oj/ekh4c17lb6uFroIZFIlBG1AHyxBTKiQdcUIZIJCAjg119/Zfjw4WhpaaGnV6zNI5FIOHv2LHFxcdSrV49Tp07RoEED0DFhUENDjHU16FS9EkLA7vvhtK5iTvtqlqirSohNy2X5hTfUtjdiQgtnIlJyGN/CGc0/7E+M2PWIoPhMjk5sTGhSFhN6DOfekxy0rPrSKEEbW2NtXkRncPJpNM1dzZjVoQrTDj9VbJbeDkFFAoYq+Zw/fx5nZ2dlu6nZBfxwwZ8a1oasHqmBu5kW3m8SmLTflxypnG86uzOxZWXCkrNp4mzC69hMEOrkFUgY8dtDDo3zpHHl4s3SjtWteBiSzJabwVSzNqCegwn1HEz44bwf11+o41q1EQPdmrNk7Dy8vb0/+p1JTU3l1KlTnDx5EiEEWVlZ5W6uWltbI5fL2bBhA99++y02NjbY29uzdu1aRaT5tSV88WgzF1WX8CC1KvrNhlIoDeTX6cOo2qY3cquGBCZkopmswt774VQy1GJs8+JnpaYiITfsOXcPn0C3rgt79+7F3t6e8Ixw8mX5uBmXXp776quvqFWrFvXq1SsW7QvxRi3wPI8L3ImXmNHaXRGV7mKhT5PKptR1MFZ+Fyft9yUoMZs9oxvS0s2cgLgMEjLyyMzKYcjA/njUrMGTW5eVEePfZIego6GGioqE4X9w7jj8KIIlZ/1Y2K0aYwYO5K1uTdbt2MfboX05deQAGDqXqN/QyUQpa69EIgHb+py5MZ3rEdcZWX0k9gYl3XJ//fXXctPOVvDP4x9rNNLT09HU1Cxz9PHg8TPePrjEfu9r9Nn6EBWJhG86u7PrbignnsZwbmozjvpGsv12KGZ6mgxuZE9SZgFRabms6F1LGXG8oFtVpDI51wMSmNRaMfotKJSTWyBjysiB+Pk9oaZLdexNdNAvmvK7leFzD4B5FcU/4O7duwQFBVGtWjW++uorYmNjycnJYfny5SXyOlhZWXHgwAHmz5/P6dOn0dbWJi23ABWJBE01FSoZaSMBhjRyQFUiYdqhZ6ipSujhUYlvu1TF5D0XzjypDJ/QFJq5mKGqIqFjdUvcLfVJyMznWWQ60bWs6fzlJpoAk4vOMdHVYPUAD4x1NDjgE86E5s64W+mjoapCWHI2BvmJuLm5Ua9ePeV1jHU12D+mEeoamYy50YPa5rUZZPcjOVI5+lpq1HdQvOgO+kRwr2izXCV8Mn0a2bMvJIL11wOpbdeQQrkcfS11dt8NxT8uk9j0POVSFsCABvZoqKkwsWVf5s78iiVLlpTKGS2Xy7l58ybe3t68evWK/Px8DAwMaN++PUePHv2sRD4FBQV4eXnRo0cP6tevz5MnT6jl3gVykvm1zSDabHpJZn4hnbp2Y9LgXtw7d5CTp5ezLtiWxo09GVbJjLouNpD4jNk/XiIy4Dlhfk/p06QJI07voXb1qoAieLPnsRGgmsnT4Y9LzGz27NlDfHw8dnZ2ikRLcjk83Iq3vBaHdNfSon1LetS2wVhXg0fz25GZJ2XKoTRUVIrb6O5hzeprb7kblERqdj5zjr3AVEOG3fNdjP9yIp06lQxCfN/I/ZGutSqRmJlP91oKgzSokQPaGqPo7DiWkSNHsnTpUlq2LGkkMvKkDNvhQ/tqlkxp46osX9JkCRM9JpYyGAAvXrxg1apVn/xZVfAf5u/UWf872bt3r9i1a1epcplMJlq0aCEC3iryMfxw3k/sKsrNMG7PI+E877yYtN9X5EkLxfkXMeJ1dJpIycoTdb+/Itr94i1a/3xDzDv+vNzrTtj7WFRdeFG8DgoT/fv3/+x+h4WFCQMDA7F//35lmVwuFz4+PmLq1KmiW7duolmzZmLdunUiNjZWCCHE3LlzxZo1a4QQQsz+/ZlwmHtO3AtKEjcC4kWP9bfF2/gM0XvTXVF1oSIvReV550RoUW6Jd6zzChQOc8+J3XdDS/UpISOvVNkf79lh7jnxPDK1RPmyZcuEnZ2dSEhIKPO8/X77hU+Mj8iTFop+m++JZeeK80QkZOSJiy9iRP8t98TSc69FdEqOqLrwophywFe0WXVD1F5yWRRIZcJt/gXhMPecWHHBr8xrPH36VAwYMKBUeUpKihg8eLD48ssvxYMHD8rt4+eSn58v+vXrJ2xtbUu0GZ6ULRr+cFXsvB2iLJPL5SIuLk6cPXtW7Ny5U8ybN0+sWbdemHb5StSZvF7IZLJS7YcnZwuXFQtFzV+/UZbJZDJx+vRpYW9vL+zs7ERcXFFOkbhXQiw2EEk/1REbFwwv9fkIIUR6boHIl5a8zk+X/EW/zXeFw9xzotrsw6JaXU/h5eX1ec9BKhN9Nt0Vi0+/EkIIkZZTIMbueSTOPIsWQgiRlZUlmjdvLiIiIsT++2GiyQovMePIUxGfkStqLLokZv/+7JOuk5KSInr27PlZfavgX8Onvuf/sTONM2fOlHD1fMfly5dp0qQJVVwUsiLfdqmqPLZ2YB0m7Peljr0R846/JCWnAO83icxs78rjBe3ot+U+TyPTSMzMY2mvmsp8znlSGasuv6G1uwV17I3IlcpwtrclNzeXByHJ1LAxRE/z449q3u15PD3yFCcnJ5o0KY4XkUgkNGzYkIYNFUJvhfl5HFowgKmjT6Bjbs/69evp3bs3Xbt2ZUxzJxzNdKnrYMTqq2/R01LDzliH9JwCXMz1qGyhR0BcOp3X3ubRgnboaaqRJ5Vx/kUsAE8jUksFYL2/xiyVyXkVnU4d++Jgtbmd3WlfzZKaNsXR3YWFcrbsPoB5U1t8s3zpZF5yhAqgoarBzaibNLBqwO8TFa6qp59Fo66qQpealcgtVMx+fEJTsDHSZm4nd1q6mdFq1U3M9DRQV1Ph6oyWzD/5AtUyZpRCCCZPnsy2bdtKlB8+fJidO3eyZMmSEs/570BDQ4Pff/+dkSNHUqdOHXbu3EnHjh0plMvJyZeR+55ci0QiwdLSkm7dupVoo0a7eIx1NcqcJdub6DCx7hAqmytiJWQyGb169SI3NxdbW1sGf7eN1hufcmJSE9ytqkOfnZheX8aXmpeRWBVHxOdJZWipq5aQ6H9HYHwWj8JSETIp+o92sn7LOsXy5ycQnJiFgZY6eppqRKTkoKupUMgFxV6WiY4G3T2s0dXVZcOGDUyZMgX/GhMolAsSMvLR01RjYEO7UsoK5XH+/Hk8PUtL7Ffwz+Ufu/NUUFBQ5n7GgwcP6NChAwCbvYNZcy1QeUxbQ5W9oxvSr74dp55F8yg0BQlw+XU8EomEg+M8uTu3DV6zWykNBkBIYjY77oRy8GEEXWpWwlBbnZDEbCLjkxm47QGrLr/5pD7fenEL31u+WFpaltDK+iNqBWkM07vN0QH6VKtWjfbt29OlSxeGDh2Ku5UBk1u7oKmmWiRnnc6cY8+pbKHHq5h0Tj6NxlJfC3U1CQd9wgHFhmVESg5OZrr0qmPDlpvBRUJzpdl2K4QvNt3j3IvizW0nM13UVCXsfxDO6N2PCErIYsutYKIjI0i2rsPj+MdltnUi8ASHAw6TU5ijLJt34iULTr0CoIeHDcu/cKVFnWjOPo9k8ZnXPI1I48tWlfnhC0WKVmsjLZ5FpnP0cWSpPv/000+0aNFC6eEUGRnJlClTuHHjBpcuXSplMIISMrnqF0+ZJL6B/X0VzgrlIQQcHwdeS9m9dhnfL5rPgAEDGD58OAaSPF4u6VhCFqU82la1VKrTAlBYANnJyj9ndahCrzq2yGQyxo8fT5MmTfDz8+Po0aPcCsmgUCZQebdsVbMv0T2PIh9/U5F7BLjzNolqiy5x+GFEqWvvexBOSlYBm4bUxTPViy9HDflkg5GZJ6XzmtuM2/sYbQ1V7n3TBiEEndbcwkBLnZtzWvN9r2Jvs1q1amFhYUF38yRqWBtyPySZ6/4JbL8dysGHkYBCu+1DcU2nT59m2rRpn9S/Cv4Z/GONRnl4eXkpXxZ774fx251Qxu55xI2AYgVWVRUJzmZ6fFHXhtr2RjS1khOzexQa8c+wMtTC4j1f+7j0PKYceoIK8EVtG55EpHLmeQy33iZioK3JoIb2Sm2njzFYdTB1rOvQtGnTEuX3gpPY7B1c7MmjbwUT70Df35g7dy5Xr17lyZMn+Pn5lfD22TaoOr3dNTnzPJaghCyKtmLwj80kI7eQqCKX4ui0XIX30+SmPAhJYeXFgHJfni3dzOlWq1KJmUZ+oYwZR56x+upbrgck8DI6jcENHdDW0WNeh/7MbTi3zLbWtF7D4W6H0VUvGjXLBWOa27F6gIfyc8jQ9OZp3npepF+na81KdKhuxdxO7ko3UDVVFb6oa0NCZj5e/sWfYVRUFBcuXFBKhTx48ICxY8cyZMgQtm7dWmYWx29PvmLc3sdEp+UCitH4r1fe8Co6HWKfQ9BViHxU5r0obkCqqPP2MqytzWjDu9y8eZPnz5/TpEkT1qxZw7Nnz8jNzS2/jbI4PQl+rQrp0cWXKjIYrVq14ubNm6xduxZra2s01FQw1lXHoUhn625QEk23BHL9ymmI8AEUmSYdzXSxMNBUPvfkov0gv5gMnkenceTcVWTp8YwYMaLMLh15FMHpZ9ElynQ11Bjq6cCABnaA4rPpU8+WQQ3tMdXTwM5Ep1T2yK6jp3Pql9m05hEu5roKB5Th9ZndQbHJP/y3h3Ree4v8Qhl/RC6Xk5aWViFS+F/GP3Z5SpThKhkWFoa9nQ2aF74Cp5Yc+7IXzyNTmXTgKY6musrgKT1NNa7Nakl4cjYtf/bGKekZ1vITJD22wawoS5ysSPb5uzOvCUnMRltDFStDLapbG2BnokMtmR9nClNZ0bvmJ/dZmiflwb0HnDx+skT5xhtB3A1KplutSsVZ4CyLpa4NDAzYv38/oBhFhqdkM6SRA2rHRvBd2F0GjruHvokF557HYGesw6vYDFKyC1jSU6GIuvteGMd8o2jrbsHY5k7YmWgrX8rvSM+V8uuVN/Sua8uQRg60/cWbH/vUomdtGzTVVBnTOZF8eRoDXEfhbKlBfHYMGiKfUa08UVdRf/ehwPmZYOQAzabzze1viM6K5mLvi6iqqHLA15ddUePxSe1MS7cfeBmVzq8ndalfsyetmvdmeKPqaKmrsuH6WyQSiXLUPrWNK1Ws9OlQlOZUCMHIkSPZvHkzqqqqfPvtt/j7+3P06NFiT6jCfLizhtsqDRh7JZ+dIxowq70br2MylCKSzyLTWHc9iNj0PH7u1x+saimdFfKkMrqvVyTkWtmnlqJNNQ2Y+gSEXHGfldvg4eHB06dPGT16NL///jvXrl3j5cuXVHW2QU3bEAcn549mDtTJiMG40BbNrftQ0VAMWK5evcqgQYPQ1tbGw8NDKXC5Z1RDCuUCdVUJeVIZDqY6dHeW0D7oB8i7CmOvUsPGkOuzWinbX3rOj733w7jwVXOW9apBdnYW2+bN5tjx42V1B4CFp19jrKOuDOIEhfvsH/Nd9Kxtg7OZLnW+v8r0dq4lNs5fx6Rzzz+C7jbpuIQcJEzXnVPPYpjVoQpRabmsvhZIdw9rMnKlZaYqvnz5Mu3atfvgs6vgn8c/0mikp6eXqSt09uxZOrbwhBdLIS+dSrUGYlPTmhuzDbE11sYvJoMNN94ypbUL1awNcTDV5beR9cnJr8PRoMp80bE44nTw9gc8iUhFKlMYp951bKhRtKZf196YjNWzUU18xduwCBxsbZFIKFfZ8x0nT56kffv2pZIwLf+iJiFJ2R9MG/qOFRf9eR2TQbea1hg6NkOiok5Vh0qgpklEai73Q1LYPaqB8kV17kUMT8JT+K5HNRo6mSCRSBjSqHTw2/PINPbcD+dVTAa969qgp6lewk33QfJxwtKjePDUgwYNrvH7jd/R1NYs6YEkK4AXvyuk6JtNx97AHjUVNaVWUzMXa7YHVqKZk8IY6GqqYqtvQ1/nliVEF3ffCwOKjcbbDF9aVLNTvliuXbtGrVq1qFatGuPHjydN24YVm/eUdJ2Negzey6ns0At9raFoqKnQ0EkhBwOK/Ntv4jKY28kNKHqpWxQHIQpZIWNydpCT0gCoVdyuTlHyov57lUUqKirs3r2by5cv8/r1a1pUs6HgxTHyTDxIlss/+pm+zdQkK8uUpz+t4rfffkNPT49u3brh4uLCl19+yZw5xXk7VFQkaKhImHPsOSefRHPhq2asH98FXu0C08rI5KLE0mqeVMbxJ1Hoa6ljqquJqoqEggeHmDVjOl0blh10CQr5+j+6aZfFmmuBbLwehJa6KkF/yJl+NyiJ3wPlzBu2gpsBgVyZ0YLrAQmM+O0hTSqbci84WRnZXxZeXl6MHj26zGMV/HP5RxqNsLCwEpG673jw4AErV64EnR6E5OnQdfFlJrR0Zno7xVT49ttELryM46pfPFNauxCeksOIxo48j0zgyx79yCyQkVkksW1vosOTiFQ87AwZ39y5KHGOgoSMPALsRpNqrUmPnX6Y6QVhpKNRIr9zWaSlpZWZqtLBVBcHU90yzijNmv9j76zjoky7//8ZultAaQwUwRbsAhUDXbvXjl07Vqxdu7u7uwtRBEUBURAp6e7OGWKYOr8/bh0ch1Sf5+s+P9+vl69d7ivumJn7uq5znfM5AzSRLjRnssN1Xwx0Z14Mf10PxtuEfJRWClBWKYCakjyKyniIyylFamEF2hhr1Trj7dWiEXaMssWqux+hoSSHwHWSM7xjDsew9lEg1PQ10Mu4FzyiPGDTVTK3A+QUgfkBgDwzk9/YbWNVGTsLlk+XwqfLCqApk4DHspEaXq7oI64Sn8vBOldvTOknwKhWTJBeRmkG5nrOhX1je5wZcAYikQhbt27F3bt3sXLlSsZlWKcT7gSmY91QaxSX83DKOxETOreD4chz0DG2R6COpApwWHoxFl0PRnJBOdqZaCEkrRiByUUw1lbG/L7NoK+hBGVuLsYLHqNAWIRzvs6Y0aNqDyq7hIvV98IwvbsFen2Rx2PgwIGMeGZ5IfBSBWg/RSq/eW0cOnQI586dw4MHD8THSkpKpCRl4nI4eBySCYGIEJbORgsDDcBmJO4HpWPNsWcYZGOI5QNbwkhLGbIyLLRuooGWhhpopK6IiIgIZGek4sTRQ4jPLUUzfenc3QDQ0ax+qr1GWsriuKf7QRnYMbJqgJ3R3QJ2FrowV++O33//HWa6qnCyMURsTikmdTFFYSkPPZrVnFQpMjISRkZGNZb/4ufkpxw0iKjaF2BGRgZMTEwQmFyI1MJyGGgoQlulSstmZg8L5HIqEZXFhl9iPoJTivEyOgfF5QJ0a6qLnc+iEZ7Jxod1juAKRDDQUMS1WV2g+oVn1GnvRGx1i4JjZRJgMxyqirJobqAucZ6aWl0sIwABAABJREFUyM7O/r58AJnBaH6jL5rbzQZa7xYfLqng41l4FrSU5cEXiFDCFSAsvQRLb4UAAMI2DMCJ14lYdz8cN+Z2qdajBgDGdzaFlrICvOPycD0gVSyLDgAmGia4NNlE/Pds39mY6lKNPVyzhh95fiwQ+wxQ1kGgiiqWvF6GjV03SuQSj8hkI7TiLCLi4jDCpj0AUzRWbYyF7RfCVo8xA/r7+0NbWxuLFi2CoqIi7lw+B6/YfNhZMCuAF1G5OPYqAfG5pUjI0wVRPF6ukBw0zvkmIbmgHIv6NcNg28YYf+odwjNL8CI6FzZGmhjTyQTQMgFmv8Ci2xnwexKJUR2MxWlck/LL4BWTh46NhBKDhhgVHWDo/uqfQy0sWrQIN27cAIfDgbq6OkQiERITE6XiSdhcAfhCEYbaNsbwdlX7aUe94lHBF+FdYiF67nyJYW2b4C+nlrgxp0pkcd++fVi3bh1uvk+Fy92P2DW6DcZ2Yj5XoYhw50MaujfTg7G2CthcPsIzSsQyOV/D5QsRklaMZQNaQENJHjyh5KpKTlYG7T5FtBMB868FwVRHpV4m3bKyMqioqIhT9/7i38NPOWj4+/vD1lbyi1dSUiI2Tyy8HoxcdiUC1zlAW7XqBycnK4O/hzI2WQ6XjyvvUrDzWQxm97SAnYUOfmtvBOsmGlBVkIOKvCzUFOUllvoA0LIxIwqX/iQCrYctRkQRYNNEA8Z1mJaSkpIgFAqhq9swaejCMh60VeSZQVLTFLAaBFhIBkwZaCjBa0UfKMrJgMsXQUNJDpPO+kNbRQG/tTNCSGoxApIKkVFcAb5A8oedmFeKwjIeOppp40H8A7QwaI07N9IRnFqMCXqJgP9JYMheQENys5/NZmP8+PH1vxHL3kBvF+D1Tuhq6EEgEkBIkpufw9sZgRSXIJ8fC2N15kUvw5LBnDZVCsRr165FRkYG1qxZI97E7W/N7HUk5JWiVWN1tDPRxPPIHPRp0QhaX+TrfhCcgQ8pRfjbMhatsqNxOkABM3tY4vnSXtjyJAqWeqoY0f6LQc+oIzZMaIFcTqVE3u+uTXXhP5ILAzcnwPAA0Gl6/Z9DHYwdOxZeXl4YNmwYIiMj0a1bN8jLSw7yHc20EbnZCYpysijnCcATiKCqyGRgLCzjYenNYIgIeBCSCQU5Gawbag1FORlcfBWJ1wGhOHu2E5QzS9CzuZ6EG7V/YgFc7n7E6I7G2DOmLXY9i8aVd6lSUfqfySrh4pp/KqKy2Lj3Z3ep8i/JyclGenw+UrVVkFUcjCldzdDRTKfG+h4eHujUqVMDn94vfgp+ZNDHj8LZ2ZlKSyWD1+Lj42n+/PlERHTaO4HMXFyp3x4vWnAtiCp4ghr7yi6paPgFRLtRr6ZqRBnBxOULqOnqJ9Tq76cUk82usUlMTAz17NmT1q1bV+/TBCYXksUqV1rl+oDK+eU11nsTn0eByYUSxy68SSLPSCYIrPMWDzJzcaXT3vFUVFZJRETFZTyac+k9ddvuSeYurnT5gx/ZXLChBZ4LKC6HTVnFFUSeG4nWaxAleEn0/ezZMzI2Nq73fYjJiyW6NY35b0NIeUu0tQltnj+WAJC/vz8REXH5Ahqw7zX13PmCApIKqN1Gd2r591OKyCihMz6JJBCKJLoZ9SmgrWhzU+Jv0KX+e72IXcGj0LQiMnNxpZW3qw/qzC/PJ78MP8mDmaFEJ3sTJXo37F6ICfoLyAogruCLoMrUAKKCRPL29qatW7cSEdGOHTskgkCro+9uL+q586XEsTfxeXTNP5la/v2UbNY/I9v1z2jS6XfUdMwqMnT6o8a+eAIhnfZOoPhcDhERBSYX0PAjvtRlmyflfPqdPP2YSR03e1BgciGJRCJqutqVOm15XmOf5ZUC+vPKB2rbpTcVl/PoWXjWp2DNqFrva+jQocRm1/x7+sV/n/q+5386l9vc3FyoqqpKbSZHRkaiRQtm72KivSnMdVWQkFcGt7BMFH4hEvclfKEI94MzMOrYmzpzYHxJQXoidOUrAW4xFOVkMbd3U5TzhPiY/lVOBZEQqCgGwAQpzZ49G+/fv4e/v3+9zqOvroimpqlwzV+H46HSwoyfmXbuPf648kHi2NRu5kgtLMfo436ft3mx5Uk0zvgkIZfNxZuEPLhH5IAvJOiqKWD9nUK4dFqLBe0XoJm+OtSU5DAtyQGz1Y+h3z3mWX3mw4cPaNKkfm7GEug1B8acZ/7bEFiyuBLGx5l7Xjh59R7atGdkS4RCQnJBGVILK+D5yYWYyxPCVFcFM3tYQFaGha1PInH8VQIAYO2gVpCXZeF37gw87rQRz5f1gbqSPNoYa+HOvK74e2gr3P2QjtSCcpRU8BH3KWhtZ8BOzPGYg8iCyKpratwGmPMKsGhY1kIA8EjxwAz3GTj78SxzgFsCnBuIyhu/A7JyICKUl5dj48aNdWou2VvqoIulDpLyy5CYV4oXkTnY9zwGAAtXZtrh7NROsLPQRXMDNWgXRuD8+nk19iUvK4NZPS3RtJEaisuZXN/qSnLIKuHioGccWqx7ilvv08Dh8sETiMBisXBmamccmVCzyTW/tBJPw7OQxeFBUU4GA1sb4sH87ljiWPN3IDExEWpqalKZLX/x7+CnM0+9e/dOSs8GYAK7DA0ZN1IVBTnsHdsOnpHZGNPJBE2+yNP9JRfeMAqqAJBexAS/1YePsq1hPWIZYNkHALBiQAsMb9dEWnfq8SImD8aCQOTn56N///4YPnw4BgwYgJcvX9bpf26io4JWujZIzeqEpipVdmlcGMq4fU53AwDsGt0GygpVLouVAiHO+iZh17MYyLAg9soa1cEIE+xNMfGMPzKKyqGpLAcleRnYtQtCdlkeJrfeKe6DXVqOsambkKTQAlmaY+Ebl4+b79OwZYQN0tPT/2uKox4pHtAKuI6dr4pBCgbYFqaAHI0Y/D3UGkIisRCloYYiisr5cLIxFEfni0SEy29TIC8ng+ndzdHeTBuuC3ti+vMT2FiQit4VUzD/ciSU5GXgFZOHlQNbYJd7LIa2aYx43n0k5VfgxcxNGGs1Foaqhmiq1bT2i60n7fXb47dmv6Gf6SedMSVN5HdejvVvuIh+/wDObRtj4cKFcHFxwaPQTBzzSsDJKR2rMup9wfaRbVBaKUC7je74bHlkgUkQ9XlPys5CFy53wvAxJhGLHmdgcp6clOvs1yy5GQKfuHwcmdAe5Twh890m4GVMHh4t6C7+TfWx0q+1HxMdFYxspYbjD+TgGpaF0R2NxfscNfF53+UX/05+ukFDJBJVm8QoPz8f9vb2OOebhPN+SbgxpytcBrWqpocq+rbUR0wOG5O7mKHdpxzPXL4QL6Jy4WitL+E7XljGgyyLBU0Vedy/fx8jR44Ul7FYrOqFCg1sgcIkQLGqTENDAzt27ICOjg4iIyMlFGKrY7htC8jRYjhYfuGpRCLm3yd+ay+5+ewZmYtdz2IwwNoAc3pZonUTDbC5Ahh8ShM6vrMJ8jiVCEkvQEhmItxT3KGiwoFAJICcDPORN1ERobFiGMhYGfOn9sQW10g8i8jGzJ4WSEhIQKNG1WwA/wfY/X43sMsXshDigstI3Ndpgt7NdeDt7Y2YuATIxsdCga2GY8FcKPCA4YOGgM1mQ0NDAzIyLNhZ6MAnLh85bC7MdFVhZaiOhZ2m42V8OEQCBcTmcGCiowwlORmc8onDYodmGGTbGNNeeEFdXwaN1BVhrN0JnQyrsa9zcgBhJaAlLbJXG41UGmFzd8n85Qr9VkJYEIacJ7PBajcVysrKWL9+PY56xSMhr1Qi33sepxJPwjIxrrMplBVkkVZYBqEIUFWQhUMrA9hb6MArJhcekTnob20ADo+DNmoc6Bk0hrG2Moy0q59Efclv7YzQWFMZjtYGYpfYzhY6eJtYgFx2JYYdeYNNw1tLKd9WR29DEcLaW2Ng69ozbALM7zs6OhrW1rUPar/4efnpBo26YHP5KCzlgSeo2z++mb4a9oxpJ/57t3s0rvmnoqicj83DW2NKV3MUlfFwNygdR73iAQBd1ArxITgCBw4cqPtiusxj/n1Fnz59cPDgQdy9e1fCB/9LBCIBCioK4NDKAA6KUUDCE8B6OFP4aYVRE3E5HLQ11sQ/ztYw1mZWGcpfZEub1dMSsTkcpOM+FBSvQyZ3Gg4OGCEeMJgGWmAtDgNLgZnd/uVkhXGdTaCBcmhoaDQ86rkB+GX4YePbjdjeczscCxyxifMGGsaq6Dp7Jz6eOIXlky+jb9++sG7TDjyWPCCvCIGMCMqiYvi4P8KuDauhoaGB0aNHY7vzUJQIWiG7hAtNZXloqSggK6M1PPwUMNAoH29W9YO8rAxG31yLOO4znPNfjkUOE3Fv+C3IsGSgKCcLDpePOZcCAbDgMqhl1Uz54lCAnQmsSgVkak4gBHYW8Hon0OVPoJG03DkAaCjJY9sQCww6Io/Hjx+L3W7n922GGd0toFyeAQQ9BtpNxKW3yTj8Mh7qSvIY1dEYumqK6GimjYn2pojMZGPns2iwuQImNkO7GDM9x4Pc1MG3dERqYTn01aXVfVfeCYWSvCw2fQoI/a29kdRkxLqJBqybaCAmm4O2Jlpo2qh6d92vyUlNwJRB3aFeg9fel3h5eaFv3751BkT+4uflpxs0ysrKqg3sC00vgVxICtbMHInFDs0b/KU765sEr+hcEAGdzLRxwDMO3ZvpwT0iBzufRcNcVwVxCYk4//QQus3d+t1f6hkzZmDs2LE1lh/4cACXIi/h+pDraP1wPvPi+Tuv9pfTJ17G5CIpr0wy2c1X/PMwHO+zVdCrc1dsHz0JhqqGuB+cjiaayuIAOKgxq4kKnhBBqUXo1lQXV68+RPv27RERESEWpPvRsHls5JTnICQ0BDtW74CivBImzJoG+259MH7saLx7904sE9KhdzHGnnqLNaNbScx6MzIysPvsbqzqswr9B0zES5YdZBVVYKargn4t9bFuSCsMsjFEOU+IVzFZyCtWgqaaAexaGkNWhoUmalV7NiUVfLxPLoJARLj7Ib1q0Gg/GSirx2eS9Br4cB7QNAYaraix2qFDh1BSUoLnz59DTU4EHOkMNHOEstN2wG0nEHIF0DLFlK720FSWxyBbxhybVliOU793go6qApLyY6CtqoAjE9tj5sVApBTJwNrEGmnlaZgyazCuhhRVG4TqE5cPFYW6v1sAYGWojofza/eW+hJ/f38sW7asXnXv37+PefNq3nf5xc/PTzdoPHr0SCpbHxHhbaEyPtz3xJqZI7/phX7ONwkZxRXo3UIPPZs3wuGX8cjnVEJdSRbrhrTCENvG6NZ3HXQc52Cmgy2ehWdh4+NIHJ/csVobbaWwEl6pXuht0hvKcspSsicsFgsyxalAcRoTE/AVbfXbwr7IHkYFyYwmUYffa305iUSENfc/opm+Gi7PtEelQChhXhMIRXgemYOezfWgriSPvwa2RERmY/zedQkAZoW29GYoWhqq49mSXhJ9H3sVj8Mv43Ficge4u7tj7ty5mDNnDiZMmIC4uDisX79enLTnuyjJAJS14GThhN5NeqO/Q3+UlpbCysoKWdFcFHZdgLIWbSV0pRTlZSEvI4NXMXkSg4aRkRG0HLWgbaINk2INVB7dDE37EchV6IrYnFIMadMY0dkcjD7uh8Zayshld8KD+YvFUf8As4k75sRbjGhvBP81DghNL65yE82NBjrNBBTrMdu2HQOo6gFmNQd/JicnY//+/bh27RoTm1BRDHDZAO+Tg0b3xUzEulk36MvKY1ZPS+SwuZh0+h2C00rg0EqfkUoZYIXlA6wgFBHGdTaBgYYSFva7it9v/o6ZPZthubNWted/vrRXlQhiXYTdAnQsAeO6XWKJCBEREWjZsubo88+kp6cjMzMTNjY2ddb9xc/LT+c9VVhYKKVuy2KxcPXv6TApi8WLqBz4xOU1qE8iwskpHdHXqhH6tTTArJ6WCF0/AI/CMrHuQQSa6qvBy+0+JgzqjdhjczHJ3gyllULkl1aigidEpUCI0kpJBdZ7cffwl/dfuB1zGwAz2zI2rgoyS0xMREleBpDkXe019Tfrj9MDTkNLywJo1BJoMbDWe4jJYePG+zSce5METWV5segiEYEvFOHJxyz8eTUIp70T8SL1BQ5FLoGjbdXekIaSPI5P6oBt1QReDbJpjAl2JuhkroOsrCzY2NhAT08PHh4eGDx4MJycnHD79u36PewaiEt7A/5BW3BvTgIAuPzlgvfv36Nnz57w8fHBiSMHMNWhrWQcBZhZr66aAgKSCsUDc2JeKdpscIcOdzRuDbuFzUv/RmLoWwzUKYRd2i2k5XMw7uQ7lHL5MNBUQmZxBVY6WSEiswSVAiHiczkoqeBDIGSE/tgVfOiqKaJfSwNoKssDebGgY13Ae1hzvncJZGSBZo5AURJQlFJtlXXr1kFTU7NKa0lZC1gRAwxjUr+iUQug20JAtsrEk5BbiuA0xmPP6CtnD1kZFqwM1LH3eSwehmRAVlYWJSVfefd9gbqSvEQQa42U5gH3ZgNu1ZtVAYAr4OJixEWklGTA19cX7du3r9dE7s6dO3B2dq6z3i9+cn6k/+73UlJSQqNHj66xfMyYMWQ26yh13Pycctlcmnc5kHzj8ursd9/zGLJc/YTC0oqprJJPl98mU05JBYWlF9Ehz1iKiIqhXr16UXn5F7ESUU9I9CneYMwJP2q/6blEPEhuWS7tfb+Xskuzic1mk729vcQ5J06cQI9PbyOqJhGPFIVJRNtMiF5srrHKrIsBZLnalf66HULxuRwKSmHiNpbeCKZma57QrAvvaeuTSErMK6WjwUfJ9oItBecE133urxgyZIjUsZycHJo3bx5NmzaNiouLG9wnEdGpD0fIbZchfXRbQtOmTSN1dXXq378/8Xg8iXqFpZXE4fIljmUVV1BqQRnNvRRIy26GUHJ+Kdlt9aAzXyRE+sytW7eoz+CR1GPbc2q+xo3Si8rpQXA6bXGNJDMXV1p2M5gsVrnSjPMBRMTEVHyNiMuh0JNdaNnRZhSeFy4+/jz5OXW91pUCsgKkb1DAI9qsT3SwPSWfc6SH53tTGa+MiIh27txJPXr0YJKKiUREpXV/Z4mIPCKyafaFABp7wo9W3pGOMQlOLaJJp99RTDabNmzfTYOX7KbwjG/7fCQIuUGU9r7GYvfEZ7TlkBkN3zmWbO17UWKi9OdQHd26dSM+n193xV/8n/CvjNMQiURQVq7Z82P79u3QDL2C3aNsEZ9biqfh2XgdK73q+JzOtbRSgG1uUVCQY8G6sQa0VeVxLygD6x6EY8ghH8y99AFDLGSx4M95uHLlStW5i5KBGxPAesLYadubaqGjmbaErbiRSiMs67QMBqoGmDx5MgYPrsov7u3tDS63EkNnrQbq47oqI8/MPBWr91snIgQkFUEoYuQa5l7+gDEn3oLLF8JIWxksFgvJBWVYM7gVLPRUMa/tPLwc+xLt9NvVeWoiQmRBJESfvLWqkxzX19fH8ePH0a1bN9jb26OwsLDue/qKaW3nILf1Doxb8Ry3bt1Cy5Ytce/ePYloaKGI0G/vK4w98VairaGmEkx0VBCZxUZ4RjGmn3+PyfZmmPmFXtRnxowZg7lTxkDx/UV0MtfGmnsf0cdKH1O7mWFaN3PcDcqAgYaSWO6exWKhgifE4IM+2Pg4AgBwJeE+JimWItqwBXSUvjLLfWGF5Al5uB93H8XcYmaF0HM5YDcHBunBMMqOApvHFqf55fF4jJLt613AnuZimfOvWXU3DMOO+IInEOFhaCaeR+UiOpuDW4FpiMpiS9RtZ6KFK7Ps0cJAHSxtE/iFROJVTP1W4Vy+ECdeJyCtsFy6sO04wLgTLvolS6Qc+ExfJUOsLShCU+8PaNuhU625Yz7zORVvdfuVv/iX8SNHoO+lqKiIpkyZUmudU6dO0dy5c0kkEtHsi+9p0um39DI6R1x+xieRmq9xo9C0Inodk0tmLq606FoQCYUiepeQTxNPv6WtTyJp6c1g6rPsMDVr05lSU1MlTyISEb05RKE+T6Qisb8mKCiIHB0dSSAQEIfDod9//53Gjh1LycnJ3/wcqqO4nEcvorKpqKySHoZk0KnXCeIyLl8glfKzvjyIe0A2F2zoSuQV4vF45OzsXGv9R48eUbdu3ejPP/8Up6utD4cOHSI9PT2aMWMGTZgwgV69eiUuexGVTR/TmRnyspshtOtZ9dHEXL6AEnM5ZPPPU9r8OKLaOp9Zv3499Z68lCxXP6GETxHQIpGIzvokis/1GXYFjzpt8aDF14Nox9Mo6r7/HE1/OosSixOJsiOIwu9Vew7XBFeyuWBDBz8clLzO4lTKLUoiIqJRo0bR2rVradGiRUxh5COi045EhdV/P2ZffE/dtr+gCp6Aist59DG9mI68jCWrNU9o3uVAiTS/PIFQvFJ6HhBOjkNHUmhqUa3PJb2onG4HppFbWCaZubjSxkfVP8fich6Zr3IlpwPVR8QvW7mUtI2bVpvStjrWr19Pp06dqlfdX/zfUN/3/E81aERGRtLixYtrrfMqJpeaDpxGU2b/SY67X1DT1U/IfJUrhaUXkUAool3Posh+qwfNv/qBUgtKae/zaDJzcaUjL+Po8Kc82nffhNPMmTPJuFN/Mll6h3LY0lIjQqGImq5+Ql23eVJiXqlYeuFLgoKCqH///lRYWEhTpkyhLl26kIeHx496HPUipjCGXBNcv7l9UnESLX65mKILounWrVu0f//+OttUVFTQtWvXaMiQIeTk5ERbt26l+Pj4ak09aWlp1LdvX2rcuDEdPHiQfHx8aPLkyeJydgXzchq4/zUJhSKxDMpnUvLL6KxPIlXyhVTK5VPHzR4055K06SSHXUEhX70whwwdSl5+VXX94vPJcvUTOu4VT7PP+tC1bTMowt+TiKrMVCtuhZD1308pvfCTqfLcYEZqpZqXPKeSQydCTtBO/520zmcd9brekx76bmMmHUR0//59WrFiBe3Zs4cePXok/SDLCohuTiGKdpM4/PVz/PPKBzJzcSUzF1c65hXPnJvLp46bn9PcS4F0PyidTFc+Jm0LGzJzcRWbLqtj2U0mB713TC5d908Ry4dUh09snoR0zuPQDNrjHk0ikYh6DhpB60/cqrHtlwgEAurbty9xubXnqv/F/y3/yhzhly5dwujRo2utk1lcAWH70dBXjUGK6yasWLgOOQqN4Xz4DUZ3MMadoHR0NteGa1gW7Cx0YKGnCkU5GSjJyWBqN3OIEt9iz4qt2Lx5M1Zvt0dGUYVEJr/PyMiwsGdMW6gpymHMibfgC0UIXT9AXB4aGooxY8Zg/fr1GDVqFCqaV6DDpg7/0aQyJZUlYPPYyC1URUBSEeb2ssSugF3wz/ZHG702MNGQ9tKqC3NNcxzoewAA4JnrWS+paiUlJUyYMAF9+vTB+s3bcPH6bZw8eRLl5eUYOnQodHV1weVy4evri5SUFAwaNAjHjh1Dy5YtMWzYMBw6dEjcl7qSPHaMtIWRlgp2P4/BKe9EPFrQHa2bMF5OJ7wTcM0/FZaNVNG1qS5MdZTFsSlfsuJ2GHzi8uDr0k+8abxj+3Zs2rQJfbreAgBsfRIJgJBUUIq8uEBMULyDpBAuYOcg3sjVU1dEGU+IwJRCGGkbAY7rERFxA3mlSeijLZmnRE1BDXPbzsWQe0NQyC3ECHYJhkXvAJSNIGw7CQsWLEBYWBgGDRqEly9f4vLbZISml2DHSFvIycowZtDIhwgpkEMjgz7i6/5yUzksvRhPPmZBV1UB652tMeBzxkMZFkx1VKCjKo9DL2LBYrEgp6KBwS21YalXs8fXvN6WaGGgBntLXSjUkU+jR3NJ9dvT3okITS+Bj9tddLFphg1zx9Ta/jOBgYFo166dlJrvL/6d/DSDRlFREcLCwrBt27Za643uaIyE3FL0sbLHnxN/w9q1a1HILkXz5n3h2KI1FORl4NymCbgCIbo31cWjgFiUJn/EuwdvcWGNF7p16wZPT0+xxEdtAUyfg5/+LCyH4ItkO0KhEPb29mjfvj0SEhJw/fp1LAxYWO1+wI9k4cuFiMiPQGvhPnhHl8KxlT6WdFyCyILIbxowvsbNzQ23bt2qV12RSITJ02YiQqcnDEdth9v01vDzfoXLly8jJYXxIFq+fDmGDx8uVicuLi4Gl8uFubk5wjNKkMvhol9LA4zrzERc55dWoo2xJnS/UC7+s09TWDfWQI9mepCTlalRbXWinSmsDNRg8EXsio2NDVgsFgICAmBnx2TEE4oYGRqhUSdMz/wL/wyYgMhMNprqq2LhtWDE5XKwzLE5BnxS1oWJHX5/9QfU/YLwatyras99adAlCEkIfU4e8GIzYNwZERERcHJyQlRUFDqZa0I19j6ehjdDYEoR1vVpBC0tHcCoA9x6P8RS9yIs+JCOhQ7Sek2PQphc7jN7WGBYOyO8ic/H4hsh2Du2Lf7s0wyzLgXCurE69HRyILQVom+jHGSxKyRUe7+kuYE6mlenblAPdoxsA+cNFxH+4RluvfWsdzs3Nzc4ODjUXfEX/wpYRNXkVf0KNpsNTU1NCXnyH82bN2/w4sUL/PPPP9WW8wQivI7Ng5GWMgYf8oFjK32cmdoZABAXF4dr167hzZs3UFKqWjVUVFRAS0sLrVu3hq2tLRwdHX+Ifv/UqVPx6tUreHt7w8xMOkvef4ob0TcQVxSHKc2XIianVCqlay6bi1mXAjHBzlQiV0Z94HA4GDJkCLy9q3cR/prdu3cjk81HvrkDto2wrVdWQldXV/gHhaC10+84/yYZsbkcnJ7SEf1aGkBGRtplk8sXIi6nFLbGzGe29UkkorM5OD+tM+RkZcDlC7HJNRJ9rfTF8ulfk5GRgalTp8LT0xNCEeHJxyz0aKYHdgUfcy9/QGZJBThcAWb2sEA2m4uP6SVILSzH2sGtMLsXIwHzNvMtFGQV0NGgY72eDRFh8uTJsLa2hpeXF07aBqOpuQnYc9+jtDAbTc7bARa9gIk3USkQwu1jFhxbGUhEVHP5QijKyeBjegk2ukZg2whbWBlqwCs6F7MvBaKrpS5WDLTC+kcRyC/lIk/uIfgFrpD5YAlB+6V4vKCH+Ln9CPI4lTh2zwteF3bh1s0bUomjamyXl4eJEyfC3d39v6Zn9otvo77v+Z9mpXHq1CmsXbu2xvKbgWn4+0E41g1phWuz7SVWCFqGpsi0HIK/J/6Jns0b4WV0DngCEZxsqtJMZpRm4HjkcUxvPR0GqnVr5NTEvXv34ObmhvDwcBgYfHs/38L4llX5LcyrMUGwuXxEZ3GkFH2TS5Lx+9PfMdN2Jqa2riaxEpgvTHXZEqsjODgYQUFBuHbtGqacDcDfDz7ixJROUJJnJDmU5WUZ88sX8AQiXLhxBwnaXXD53kcsdmgG00wVzLr0AQfHt5PIVf2Zvc9jcNonCVdn2aN7Mz1EZ3MQlcWGQESQkwXSiypwzT8V7uHZqBS0xtA20sq8RkZGMDQ0RHh4OGxsbDDsk9eULIuFmBwOZFlAZ3Nt9Gupj+7N9JCYVwqXu2Fo1bjqR9O1SVepfmvjjz/+QFRUFEaOHAmhUIims/cC8qrQUJKHhr4+YNkXMGP6VJSTxYj2kkmk8ksr0XfPK/S3ZnSmPqQU4018AawMNaCnrgAdVQX4xOdj3VBrPJjfHT5xeUgrNEeJaCiWXloKu66VMNVVQaVACFkWC3G5peAJRGhbh5Bgbey56YlDW9bi0Mnz9R4wAGDDhg2YM2fOrwHjf4if5pPMy8sTS59Xh2MrfUzrZo6BrQ3RrameWJwPYJLzuEfkwCcuHwCw8k4YFt8IkWjvmeKJq1FX8Tr9da3X4Zfph81vN4Mb9RiIk16C79q1C0OGDGn4gFGYCJTlN6xNJQfw3s1EldeDZvrqCP6nP1YPko7OZbFYYKHmACwer3p5+a/x9fWFi4sLNu/Yje47nyM0IxevY/Ox5EYI8ksr0WXbCyy5GSLVzumgN56/CUKRqgkG2xpiXu9mWD6wBcZ1MkGXz7Imn0gvKkdCXikcWxlgeLsmsDJUR2EZD72bN4L7kl5QkpdFWaUARIQD49qhqJyH096J6LTFE7lsrtS5Z8+ejYsXLwJgcoePOeGHhLxSjOpgBCExGmVtjDVx830qojLZqOALYagpvc9VF9HR0bCxsUFxcTH27duHw4cPMzIsjdsCekw+dMgpAhOuMYF8NaAkLwvLRmow01HFmI4muDW3K37vaoYLb5Iw4qgfcjmVMNFWRtNGjG5Yz+aNYGehj6QMAzjPWoZGMQ+gqiCL3rteYeJpf0w//x5jT76t8Xx1ERERgXdX92LX0TOY1LfurHyfCQ8PR0pKCuNq/Iv/GX6KlQYR1bkf0FhTGRuGVT8T7mKpC4+lvcR5uA9NaA++UNLqNr7leBirG6OXUa/quhDjmuCKx4mPsSb9GCCrAKySjPCVkZGpf66JyIeAgMdk4zvWFTBoDcx+Wb+2ABDzDHi5BeBXAA5VZju+kI9p7tMwuZSLQVwBMPYyoMTMjKuL+jXXNMfrcbUPlrdv38aAAQNqrRMTEwOXNetw8849aGqoo7zRTKjI89EVu9C9mS5UFGTRxlhLvIn9Ja0MNZCsow23JT3R0pC51paGGtg5uo1U3SlnA5BdwkX4xoFinazDL+Kw1yMWqkpymGBnijX3P+JRaCY8lvbCuzUOOPk6ERkhGWCxWCAibHgUAVNdVYxsbwQ1Mxv4+q4GAMy+FIisEi7icjnYO7Yd2ppo4bJfCvY+j8UFv2QMsjFERCYbuRyudH7t+BdMhkN9SXXliooKuLi44OXLlzhz5gyCg4OxceNGnDlz5pvkV9QU5fBwfndEZZWg9Xp3LOzXDHYWOghILgSBiQ5PK6pAelEFFOVlMPtSIBprKsEjMhcHxzvh4aE3cH38CK0aN4GRtjIm2JugrJLJopicXwYhUb3FCCMiIrB48WLcboBJCmB+08uXL8exY8cafP+/+Ln5KQaNZ8+eSaV3bShfbu5Vl/NYUVYRDqZ1b8atsl+FcS3HQbYoB2BJL8QSExPRr1+/+l3Uk+WMtpBtJtBhaq3JidLS0nD58mV4eXmJgwxLSopRkqML/0Wz8KXfiZCEyC7Lhk5+IVCQAXCLxYPGt8Ln82sdDAsLCzH3jz+R3Goydr1IwaEJ7TG8VRdU8Cuwq3eVRtH1OV2qbX90UgcMu6kpHjCqIyabA8VPuTEKSnkSqXgn2jMy4Z+D8pxaG0KGxUJjTWWoKsqhuJyP/FIeskoqoK4kh1uB6dBWlcdmVyaxkp6KLlJSUsBiAfKyLPRo3gjhGSXIL61EXF4p5vVpimX9W2BKFzPsGNlGeiO5ogi4MgowtAXm+YgPR0dHY968eRg9ejQWLlyIIUOGYOTIkXj58mWVF1ROBHBhCNB3LWA3u8b7/5q7QRmo4Avhn1SAfq30sX9cO+RzKlFUzkdppQDmeqqIyeYgJpuDbpZ6ODfNFL1b6KP/kSP4bcwExLGMcWDzagxvbwzv2Dw8Cs3E1ieRTEKxDbXL1gDMgLFo0SJcv369QQMGAGzduhWmpqZo2vTH5Cj5xc/DTzFoXL9+Hdu3b29YI3YmEHKN+REq/bgNPw0FDbQVyQN+hwCH9RJlISEhUFJSwuXLlzFz5sy6I2HHXQVEfIDFAgbvkijicrk4f/48Hj58CKFQiMaNG2PMmDFYvXq1+GVDRJg1axam/rkMV69eFa/GlOSU8HzUc8iSiBG9U21YXvJvYdasWdi+YwfcMpkcDACwsdtGAMChF3FQUZDFrJ615w6pDSLC8KO+aKSuCJ+VkoNyDpuLoYd90b+VPva4x+DPPk0xoLWhOA8EANgYaeBRCAvR2Wy0MdbC86W9EJZegs2ukTDVVUEjxb64++ARxnd2wkW/ZBARJp5+BxERdFQV4Bufj/3j2tV8gcrawKCdjJAfGA+63bt348WLFzh//jz4fD4GDBiAa1euoGvZM0b0r+04oLKUWW2CxXwP6kBEIpTxy6CuoI5xnUxQUs7D/dA4DL/8AF0aOYHHU8SH1CKsH2oNfXVFLLweBFsjTawe3FL8vVFRUcG2o+cwcOoS/P3HRJgcO4C1nsXIKKrAmsGtIBDV7PtyyjsBZoVvEXhuLV4U6OPG/ScNHjBiYmJw9+5dvH377SaxX/y8/J/vaYhEIqSnpzc8veiHi8DLzUDU4+++ho/pzIxTTF4UkOwDZIdK1AsKCsKaNWvg7e0NGxsbcDic2js2tQfMJZVPi4uLcerUKXTv3h0pKSn466+/8Pz5c1y6dAnOzs4SPvosFgtnz56Fubm5OP/CZ2RlZBnpClVdiEiErNKsb7r3uhCJRFi+fDmMjY3R1a4zNv9mg94tJBM0nfZOxPk3ydW2fx6RjbO+SSAihKYVY/3D8GrrsVgsLHZoAXtzXXH6VnEZmLiExLwyXPBLxoyL79F1+wtU8ITiOm2MtaCqJAcleWYeZKKjAiV5GWSzuWikpogHGSq49MQHHc20UVzBx4uoXJTxhNBSUYChhhL01KQTf0lhPxdo3h8VFRXQ0dFBRUUFnj9/DgUFBfTq1QtPnjxB1/atgLdHgcBzTDrgwx2AJ0sBlySg86w6T7H/w370utkL8UXxaG6gjt1j2mFg11Qo6LviQ4En3iYWwEBdEWsfhGPR9WDE5pQij1MpJRjYyVwXeV6X8PjmZWzduhWqfsextA1hRndzzOstOfu/GX0Tg28PxsOXrvhr8QLMW7IGZnK58Dj1T8MGjPt/gPZYYfHCBbhx44aEJ+Mv/nf4P19pREZGwtrauuFy5/ZzAY3GgM2o7zp/elE5hh31Rc/mjXBphh1z0GYU0KQDoCO5krh7965Y2vr+/fsYNmwYVq9eDTMzM7Ro0UJ8D5GRkbhx4waCg4MZbaOKCvB4POTm5kJXVxdjxozB1atX6yUnDQArVqzAb7/9ht9++63avZ8ToSdwPPQ4zg08h86Gnb/reXxJRUUFlixZAi6Xi3PnztVY7/HCHpCTrf7z2+cRi9gcDkZ1MEIxpxQRmexq6wHAH32aot+eV3gUmomZPSzEwWe6aoro1bwRmumrYVZPS3jH5eFjRomErFdHM234reqHfc9jYaytjA6m2mhuoIYlDs3haG0ANUVZ+B67D3UlORhpKaOwrBJCESG9qAKL+hlhor0ZZl8KxAQ7E4SmlWB0R+Nq3Yg5HA7s7e2xfPlysXt4WFgYZs6cWZWNbq43I5UuIwuYdgXUG0v1UxOWmpaw1rFGUHIl9j75gB2j2mCb4yxMv81DNKclHFrpY24vS3zMYMNMRxn3gjMwrZs5PCJzYGeuI2FWSy+qwJIn6Zi67hA+hgYj0tcdfU/shrKyMnR1dWFkZAQ+n4/n758jJTcFOj11cHTjcnTt2gVN1QSMHlpDUFTH6RAW2rZrDysrq4a1/cW/hv/zQcPNzQ3Dhg1reEMVHaDjtO8+v4GGEqZ3s4CdhbZkwVcDBofDAY/HE8d5DBgwAB06dMDp06fh6uqKqKgoCAQCREZGQiQSoVWrVlBTYzYbDQ0NYWJiAg0NDVy/fh1BQUES6WTrQk9PD506dcL79+/RpYv0noGNng3sDO1gpFZ3NHd9uXPnDg4dOoQlQ20xnHwhWxgPNKr+RVBdbuvPHJ7QHgVlPGipKMDOUg+XZ9Seo+HstM4oqxRIRCuXVgrwICQDbU20cGtuV7F57Gs+ppfgjG8SOFwBLHRVMXC/D+wsdLCkfwssG9ACj3ZXYrNrJJ4u7omM4gpc9U9FfikPKopyiMnhwCMyB80qI3ApQRUCkQh/DZQc1L28vDB58mRcuXIFffv2FR+Xk5NDUVFRVUXDL/JFjL1Y6/1+SVheGORl5XF1yFWsvheGZxHZWNivOaybaOL2xFXg8oViR4e0wgoEphRh1+i2CEgqwOxLgZjR3UIiN/jHzGKEpBaDhWSEFQdDze4dhjlvwCanIcjIyBCvlHfs2AE5eTlm9fodpNkuxLHw5/A5/vd39fOLn5wfqUnyLTg6OhKHI63rRFwOEb9S+nhN5Mc3rD4Rfcj+QFOfTqW4wrg6606fPp2eP38udbykpITi4+Np+vTpZGdnR48fP67+8jhc4vIZafVHjx4RAPL396+34FtAQACNHz++XnW/hS1bttC7d+9IJBLR9OnTadCgQSQQCIjeHmdk2y+PInp3ol59fUgplNCQEolEVFzOo5UrV9Lr16/rbH/NP4Umn3lHxeVVsulphWUSf9fEq5hcKiytpEq+kP688oFOezPCjh2WnSP19oMZ3aXYHIrIKKHLfsnUc+dLSs5nRACTg18SrdegxHMzJa6/uLiY/vjjD5o+fTrl5uZKnVMgENCQIUNo0aJFUlLvDWH84/Fkc8GG8sry6GDgYboQcr/GuvbbPMjMxZX+uPKB2BU82vokkiIzJX+f/fZ4UfM1T6j9xmfUfOtWsj3XhZpv3UpBWR+/+Rprgs1mk5mZWbW/kV/8O/hXSKPHxsYiMTFRPCMXw+cCB9sCV+o5G0//wNiOPaqPJq+J6MJofMj5gBR29YlzPlNSUoLExET0799ffEwkEuHKlSswNjbGvn37MHv2bPj7+2Po0KGIzmZLJIrK5XDRbcdLLL4eAgBwdnZGXFwc9u/fj379+uH06dO4fv06srOza7yGzp07IzU1FevXr6+xDt4cAlyXMvrpDYTP54PFYsHV1RXy8vJ4+PAhYwrrMg9YFMzs8cQ9l2zk8Q/waBH+uh2KkcfeQCgiBKUUYeQxP6x7ULV3sfd5LDpu9kDTdl3x9OnTWq+jUiDE49BMvEssQHF5VeyIsbYKkyCpDnq3aARtVQUoyMng6KQO4s35tqocWDSzQgdTLcy4EIjBh3yQza5AEy0l7POIBQCYtewAdPgdFn1+h5YKs8fh5+eH/v37Y+DAgTh37hwaNWokdU5ZWVm4urqiX79+cHJywpQpU8RSKg2hp3FPzLSZCXlZeZyLOINnaTcRkFSI5K+CNQHgzO+d0FxfDRlF5SitFGCRQ3NxQKJ/YgHO+CRiendz/NGnGbaPaovdg6fiobMnGlu+wBzP6VKZJr+XZcuWYceOHRK/kV/8b/J/ap66ffs29uzZI10gK8+kmqzFRZUv5GPy08mw0rbCpnaLAKvBgGVvcXk5vxwKsgqQk6nhFoUCTJRrhL7DXdFYq3YpEG9vbwk328zMTMycORMODg7Iz8+HgkLVJqpniie2PkpFcqYBwtYPgLqSPDSU5NGjmR7sLKp89ps1a4arV68iNjYWLmfcoIgC3Lw5D1wuF8bGxpg1axbs7e0l9npevHiBfv36Yfbs2RJZAsVE3APyYoGB2wD5mvOSVIe/vz/mzp2LZcuWwdPTUyLPBVR1mYHjs5faq51MfvFYd6AsH3l6k5DLqYSICN6fBssvgy+b6auhdRMNDB7YHhOO7UVGRkaNwojX/FPhl1CAvwa0gJmuKogIKQXltZrA6oOZbBEmzxuKvn27weVuGAKSCmFrrAXXsKyqMVZJExh2GADjHTV58mR8/PgRbm5uMDWtW5Zl+PDhGD58ODw8PMSTgfq6Z1cKK3Ei9ARMNUyxpOMSXBl8BXKkjsH73sLGSBOPFkg6VNgYacFMVxXecXkYsN8b5rqqOD+rJbQVtXHAMw5vEwvgs7Kv1L7Mko4LUMov/aaUyTXh5+cHNpuN8ePH1135F/9+fuSypaGMHj2a0tLSvqltpaCSBt4ZSIteLJIqK+YWU9erXWmp19KaOwi8wEhe+x6suQ4RcTgc0tLSoujoaCIiCgsLo549e4r//pIKfgXZXrClfjec6KJfEt0JTCPrv5/WmpNDIBRRu43u4rwFQqGQ4uLiaN68eeTo6Ehr166VyM0REhJCQ4YMoYSEBOnOygqIiqWfp09sHq26G0acCh4du3aXYo5PJCrJFJeXl5dTp06daMqUKfTmzZsarzWnpIIEvEomQ92hDkQVxcw5qUrOOzm/lDY+iqBcdvUy2G/evKERY0fQmEdj6FG8tFx4RlE5bXwUQZnFjDT5ae8EMnNxpacf65+740tOvU6gAfteU4++jlRQUCBVLhRKy7l7e3sTAFqyZEm9zYdfk5GRQaNGjaKBAwdSWVlZvdp4pXpJZVs86hVHz8KziHjlUvUreAKKzSqhZTdDaLXrE2pzsQ3teb+H4nM59DwiW7JyYRJRZalUH99LQEAAOTg4VGu2+8W/i58+n0Z8fDzZ2tr+sP6+pIJfQdOfTadjIcdqrlScTvR4CbMXUgvXr1+n2bNnExHzMunXrx+lxEYSPVlBlOwnVf9p0lNxOtAHwenUftNzCq4jMU5R2VcpTi+NILo1jUQiEXl6epKDgwONGTOGbt1i8he8fPmS5OTk6v0y+pxDITCpkA7/PYMZLMPvi8t9fX2pW7duNGnSpBr7iMgoIYtVn5L25ESJ80vkc7jinAwf04tpyY1gyiquOUcDEdHgUUOo2frmtNFnX53X/j6pgCadfidOpNQQXn1KwmX0xwWy7+0oXcF9HdGNSeL8FyKRiDZt2kRdu3Ylb+/qkw81lHv37pGWlhadPn263p/XZ8p4ZeSV6kXCoMtE6zWpIlJykHWNiCCLVQ/p5Ot4yi3LpenPptPTpKfSHRUmk2iDNnmsH0DX/FO+53YkiI2NJVtbW8rLq1/62l/83Pz0g4azszOdOXOmwe28onOkNvzECIVEnB834xEIBNS9e3fKyckhkUhEzs7OzAw/2Y958T5c8MPOJcGhjkSnHSQOFRUV0aJFi2jChAmUlZVFXl5eNHToUGazug6Ky3n04VNinrTcQiqJfiV+URIRHTlyhIyMjCRWT3nleRRTGCP+O5fNpfEn/ehBcLpE3313e1GbDe4kEonogAeT5OpJWCZ9TVkln269T6VSLp+2XnYnFesetPRmsLhc8GnG7xaWKU409K2UVfJJJBKRX3wembm4UpOuw2j9iZvSFc/0J9ppIXagWL16Ne3atavaZFK1ERkZScePH6fjx49TcHCwVDmbzaYJEyYQANq0aVO9B49jwcfI5oINvfPeSkW7LGjiqZYUXcB8RsfeeJHNeVuyP7FAelVBRHMvBdKAfa9JIBTR9TdRFHVoFK1Zv4ouvf0xGSUDAwOpX79+FB4eXnflX/wr+KkHDaFQSF27dm3wj7OkovYUlOS+jmiDNlFmyA+4SqJ9+/bR3r17iYjowoULtHr16qrCRG+ickmzU3Wmjm9CKJR4qX/J27dvaeTIkTR+/HhavXo1HTp0qN7dcgVcSi1JlTrerFkz8SrmM1OfTqW2F9tSQQVj0jnoGUtW69wo9otMbjyBkKad86flt5jnXckX0vskaRMQEdE530Qyc3GlVXdDyczFlUza9qCXfoFERLT5cQS1/ucZJeeXUpdtnmTu4kolFd/mhZSUV0ot1rrRpNNvacghb5p73J2UzdtRl22e0pV5FURc5n727t1Lf/31V4PPV1paSn369KEHDx7QkydPaMiQITR16lTy9fWV+n6z2Wy6cuUKjRgxgvh8fg09VpFYnEjb/bdTfnk+3Y+7T6MejqJMDjMgr7znSy2PjKRzwQ+qbTvvciAN3M8MGrbrn1H7TT/Oq+n27dvk4OBAGRkZP6zPX/zf81MPGg8ePKCtW7dKHhTwiLz3EmWG1tr28ttkehVTw2oi7DbRWSci9rfZv79EKBRSy5YtKScnh9hsNvXr16/WGaLLnVAyd3GlRyHf/0Pa834PLfVaWuugevfuXWrevDk5ODjQvn11m3mIiP72/ZtsL9hKuRhraWlJvcQexT+inQE7SSBkVjKX3iZT710vKbWAeQa33qdS5y2M26fLHeYzC0wupIfB6XTqdQI9/Si52sjjcGnf8xiKzWbTilshdM8rgAYOHEgikYiOv4onh72v6Fl4Fpm5uNKUs+/E7coq+eQenkV8Qc17CzklFTT3UiC9ic+jPA6XnA/70KTT76jpqkfUb+Bguvr4BUVl1fzdffv2LcnJyVFlZcNctomY1cm9e1U5xIVCIUVFRdH06dNp3Lhx1bbZtWsX2dvb19hnOb+ckoqTiCfk0aP4R1RUUURERK9SX9Hfvn9TGa+MeAKhhBnwbUI+zb0USNlfpW8NTSsiu60edManmj2wBlJUVEQzZ86kpUuXfpdr8S9+Tn7qQWPdunXk5/fVfkCqP2PyuTPzh5zje9m3b594Fr9y5Upyd3evsW5WcYU4h/OsCwESZRmcDEopSSG/+Hzqss2TvGNrN5/xhXwa8XAE9brRi3jC2n+Y+fn5tG/fPgJQL1Pf06SntPjlYmJXVq0WXr58SU2bNq2z7ZekF5XTvucx1HytG+1wi6SU/DL6mF4sfgbmq1yp05aqXOmByQU0++J7iswsob3u0ZSWmU309jitWLJAIq5FIBTRJb8kif2Lg56f8rp/qNlhwjeOMUOtuRdGK2+HUnJ+KYlEIvpn4ybatWtXrfcSGRlJ/fr1a7BdPj09nf78809asWJFtYO7QCCgmTNn0ujRo6vdgLeysiIvL69q+17tvZpsL9jSpYhLZHPBhva+Z1a7K1+vJJsLNhRbGCvVZtezKDJzcaXXX02o3sTnkeUqV7r5XnqF2RA8PDxIR0eHXF2/PR/9L35ufupBY8CAAdJeKSIRs1Io+r4vd41kBDOrmXpQWFhIffr0oYqKCkpOTqYBAwZIvRh4AiG9TcgXm6QeBKXTjPMBUoPCgNsDyP6qPXlGZlPT1U/ILSyDgoOD6dChQzR+/HhydHQkZ2dn6tu3L02fPp0WHV1Erc+2psfx1QcJVsf9+/dJV1eXPDw8KKcsh1a8WiHlhfMZvkBIGx9FkNunfYcuXbqITXDVIRKJ6EFwOqUWlFFBaSX12PmCmq5+QgP3vyb2F8F2ZZV85qV9J5TO+iRKeIwd+vTi3/w4gsxcXMnj/Cai9RqU+3gLdevWrdZZa2JeKW14FE55nOq9sTKKymn5rRB6Fp5F598wJrCzr+No48aNtHLlSqnPbY97NHXe4kHZJRXEZrPJ2tq6QR58PB6PNm/eTI6OjhQQEFBrXaFQSLdv36Y+ffpQVFSURFl4eDgZGhpSenq6VLtnSc9oxasVlFOWQ0eDj4pNiuxKNkXmR1Z/XQKh1Gpq1auNNODCSrJa60a7nkVV264+7Nq1i8zNzWudOP3i389PO2hERETQ5MmTv7ufBhHzjFnFvNxaZ9XS0lIyMzOjgIAAKi8vJ2dnZwoJqdojuReURpseR9Axrzgyc3GlO4G1v3Auhl+kYyHHiM1m065du6hr1640Z84cunPnDsXEJ5B7eBZV8oUkEAgoNjaWZi6eSQYtDWj+P+volFdsrSaqjKJyOu2dQBU8AfXt25csLCzINdyVbC7Y0OGgwzW2MV/lSpPPMCYgU1PT6t13PxGcWkRmLq7059UPtNU1ksxcXKnb9hdkscqV5l4KrPXeP8MXCCkys4R4AiHdC0qj4oI8Is+NRJdH0eHNf9HmzZvFdRu6z3X3QyqZubjSkIPetPBaED3+kEi/T51K+/fvr7avve7RZLfVg3JKKmjLli10/vz5Os/x2Ytt0aJF1KNHD7p8+TIJBAIKSikUb+DXRmZmJvVy6kXDRwwnNrtqlXfmzBlasWJFg+63Idhd7kHWp3pTx83P6axP4jf1sWHDBho1atQ3me5+8e/ipx00Zs2aJbXp+h+nJIPo5u9EKe9qrVZYWEgODg506NAh4vF41Lt3bzp4UDKOY8wJP7Jc/YT8E/Opz+6X1H3HCyrlMt465ZXSnkwcDoc2b95M9vb2dOnSJSovr/K3/xyD8LVHi0AgIIvBc0jJrA15vg2q8Xq3uEaIvZUqKyupa9eu1LVrV/qY+5F4tayqwtKKKY/DpaKiItLV1a3xRe2T7kNpJRl08nU8hWcU08OQDBpyyJvistn0x5VA+vvBRzryMk7c3jU0k6LCgyn1/AxKS4iipLxS6rjZQyzlIUHEA6L1GhR2/W9yHD+Hpk+fTssveFHbje5iF96lN4Op3x4vGnLIm6ad8xc3jcwsoU2PIygopZA4FTxqvsaN2mxwpyYzj5B995509+7dGu/9MwEBAdShQ4daN6Q/DxaDBw+mtWvX0olnJ2jXu10kEArodmAaNXN5QHfdnkm0ySquILutHrTveZXnWWxhLNlcsKFRh0aRo6MjHTx4kEQiEfF4PDI1NaWjR4/Weq3heeG01GsppXOqViVHveKo42YP8R7Tl9c82302rX+znnJL8+l5VEK9BrbqcHd3p+HDhzd4IP/Fv5OfVkakOD8b3Qwq665YDYXcQox6NAoXwi80rKFGE0Y4ztQeAJDOSUd+BZN6tYInhEAoAsCoya5ZswZz587FbyNGoNvgsdC2Gy4uB4CjEzvg+KQOMNFRgb2FLlgsgABseBSBDps9kFZYLq77+PFjODg4wNTUFG/evMGUKVPECZYAwMnGENO6mcOxlaT8tKysLNoP/R0GgxZh85oViIiIkLoloYgwyd4Mm4a3hkMrfSgoKODs2bOIiIjA2llra46EB2BrrAk9NUXk5eVBTk6u2ujghOIE/OH5B3YFbMUc3TC01hJiWNsmcF3YE80M1HFsUkd8zCjBnucxKCjjoaC0EvOvBeHl4yswSb4Dj8fXQAAEIhGEIoJQRBi43xuzLgYyJ7AejtkqBzAyzA5xZsPg9NsYPNjvgqJXF1BRzshmEDH/RJ/+pReV49LbZNx4n4qzvkk4dWI/WKf6wGuGKcaqRMIy4T6uX75Ypxgkj8fDyJEj8eDBA8jJST+nsrIynDt3DkOGDIGXlxcuXbqELVu24IPoHcx8D6Is6AI6m2vjSONnGOk/Fkh89dVnAwmZjubazbGl+xbsnLIT7u7u4PP5WL58OeTk5BAdHY3Lly/jzZs3NV7v06Sn8EjxwInQE+JjTPfSUiAiEiGJnYTkkmQk5AB9m5tLJLOqL56enhgxYgQ4HA7WrVvX4Pa/+B/mR45A9WFgB3OiPVZ1V+RXEkW5EvGrbNmZnEyyu2JH2/23f/P5eQIedb7SmUY+HEkcLp/abXSn6ecD6PTp09S+fXuKiYmh/v3707i1R8Ubu1ffJdPxV/HEEwipgieg5mvdaOB+SeG9sz6J5HzYh4JTCqn7xofUb/h4mjlzZvVijJ/IKamQmil+pqyST7lsLuXm5lK3bt3IPzJJou68y4Fks/6ZhLAeEdGpU6fIzs6OXr58Wf1JSzKZaHgBjzZu3Eh9+vQhIiJ2BY8OesZSehGzEuIL+XQs+BjF+u1jTHvP1kh1lZxfSu8S8sV/33qfSgHxWeR6/yoFJuZI1BUKRTT4oDfNu1xl0vrjSiC12eBOD4PTaa97NLncCaWbN2+SnZ0d7du3T2oVsOZeGJm5uNLj0AxaduMDLZw6lNb3UaKuHW1p69at4pgVzqeVX03s3LmTNm3aJHX83bt35OLiQr1796bLly9LmJKIiPKzQ0m0QYvo8kjmQOJrohuTidjZxBMI6ZxvIqXkM5/RzqdRtO5+zcKABw8epKVLGQ+5jIwMatq0aY3R+LEFsdT5Smc69/Gc+FhcDod673pJ94KqzKOJxYmUUJxAPCGPLvoxq9iLfkk1XkNt9O/fn5YtW0ZERD169KBly5b9WnH8j/PTmqecHXsQXR1X94a3/ynmZfVWMqpbyuxSWcqYn2ogs7icJp95Ry+jql5iOwN20sXwi1TJF9LE029p4sqd1LNnT1q4cCENGjSIMjIyyDs2l9pves54RF0MIDMXV3EMws6nUXT1nXRkrUgkoiWrN5CScWtavPdSjdfE4fLpTmAa9d3tRdZ/P63VfJBaUEa+/h9IxaI9dfnnvvj4fo8YGnfSjyp4kiaxkpISMjAwoCNHjlTfodtK5rlGudLKlSvJycmJiFdBEddX04BVx2iP+1fyKBUlRB4biHJjqu/vO9j3PIaarn5CQSmF1H/vK2qzwZ2EQhEJBAI6ePAg2dnZ0YIFC+jEiRPk4+NDx85dpuEzFtOo0aOpRdtOpGE3knYfv0AJuQm00+8YXfWPpbgcDjVf40ZbXCOqPWdERAQ5ODiQUCgkHx8fGjRoEA0bNoycnZ3pt99+o9DQUKnBQoKgq0TbjCQi6omqos/ttnpQUl4p9dntRa3/eVbtZ/vZeeLgwYM0bdo0ysvLo+zsbOrRowfl5+dL1a+O0LQiarbmiYTpr9eNXtTjeg8iYuJVlt4MpsS8hkuHVFZWkq6urngQLi8vp1WrVtHp06cb3Ncv/j38lIOGSCSiwX3smZfWh4u1Vy5OJ3ryF1FRHbIHl0cxWkil1btM+icW0KhVe6hwe2tmZvgVBw4cIC0tLerduze9fftWoswjIpv2ukdTSkEp3Q9Kr3OmtX79etq2bRvFZBXTX7dDxLPOr9n4KJzMXFxp7qX3tO1J9d4wRIxER/M1bjT5zDtadeoxWXfqTnmFxTT5zDv65+HHGvWdxo0bRx06dKi+04JEIt8DRDxmk79fv37kdnYH0XoNSjgzXWrlQsRsZG96HFGn/tOHlMJqo8Fro7icR122eZLzYR/a8W4fTXCdQGU85rkJBAL68OED3blzhzZv3kxHjx6l557P6ajPUfqYnURZn1ZFBz4cIJsLNtR062byic0j58M+1cplFBQUUOvWrWnOnDk0YsQImjBhQq0rwZ0BO2m+53wSir7w9EvyZaTivxo0+AIhzbr4nsxcXOllVA5tesx8xq6hks/jYUgGNV39hLyicyijqJxm/LWJDC2s6Nat23T9+nX67bffqr2W02GnyTVB0t2V92XsCieXPtyZQteCjhMR81kMOuBNgcnVB1vWxokTJ6TcsEtLS8nBwUFCB+0X/1vU9z3/X1W59fT0hG3nnsDkrYBln5orcksYGW6HfwBFtZrrAUDzAYCiOqCoUW2xnYUOTow0h9aTdKAsX3w8JSUFixYtwqvXr2E7YAJundgBfR1GxfXS22TE55Zig3Nr5HIqMebEW1yZaV+t7d/tYxZEIkK0xzVkZGTg9OnTuOiXjFuB6WhjrIXJutIKuqmf9j3G25mij1XN6TQ1lOUxrF0TtDfVwiR7e1jJ5+PIkaMI4neAT1w+orI4uDW3q7h+Ql4pdj+LweJ/dmBoz47Izs6GoaGhZKc6FkD3xQCYFKt3797FzJkzIei3AM5jFwIq0mlPs9lcnHuThOhsNp6GZ2GwbWMMbP2pX5EQiHwAWPTGmnuRiM7m4OMGRt23PmgoyUFfXRGh6SVQapyATH4q+CI+AGZvp0OHDujQoYO4vn/oBdwLPIyD70Mxt/UyLBtghSnWUwCBNjSadUH3Zrp41LyH1Hk4HA569OgBVVVVjBgxAr169YKKinRmPgAoLONBWV4WkQWRSC5JhlAogAwIkFMEzLsDq1Ol2sjJyuDUlI5IL6qAiY4KjLWVISKgW1PJ/O3esbkQiAgnXifgXWIhmhn0hOLotrhw7TKmTxqH3NxceHh4MBLjRICgEhUswtHgozDXNMcQyyHivuRlv9iSDL6MDh8fooMpo/ScUVSByCw20osq0LF2EWcJ8vPzce3aNSmJc1VVVaxZswbbt2/HiRMnamj9i/8v+JEjUF3cvXu3Xi6O5HuAWY34n/q2E/ErGQXWL8grKiaHva/oyMs48vb2JiMjI2rbti2N33aNzFe5UsfNz8XKqsOP+FKLtW606XEE2W31oFZ/PxXrXe1+Fk2zL74ngVBElXwhNVv9hHR7TKAtW7aIl/M8gZB84/JqjGJOzi+lO4Fp5B2TSwc8YustPyIQCKhTp06Uzy6nDQ/DJezZREQ33zPup0vcjlKj9o2oW89uNfZVWFhI/fv3JyLGHDFkyBB68eJFjfVDUovILz6fzFxcadnNL2Raop8yn5XrcvJPLKD7QenkHcvcF6eCR5feJkutXrh8AfXf90rcT0w2mwbuf00eEVmUkFdMNwJSqn0mQm4piTbpUd7eVvTbicfVrnyW3gwmx72vxAmvRCIRHTx4kJo2bUpz5sypU7WWw+VT63+eUf99r+jE6xgq55cT3Z5OtMNMrOhb0wqyPjwJyySb9c/IzMWVBh3wphZr3ajp6ieUUcCh1q1b044dO2jMmDFM5XvzmFUNJ5fC88IppaSWVXd5IVHAaSZ52SeqWzXWxfjx4+nMmTP0999/S5WJRCJq2bJlzftlv/hX81OuNOpN24mAkP/t+b9vTgZS3wJLw8U5IHhQQEZGFs657oaVoQbMzMxw+fJlNDExw86n0XgUmgmliJvAu924OOo6StTa49DLOPAEItya2wXN9NXwIDgD7xLzEZ9XBp5ABA6Xj7KUj1Dm5mPt2rXi08vLyqB7M70aL89MVxVmuqqYctYfPnH5GNHeCKa61c96v0RWVhY9e/ZEZEgg1g/rKVU+pqMxWhlqwDsvGYbTDRGwPAAlJSXiFLVfEhkZKU5ZqqCggBs3bmDUqFFIS0vD1KlTpeo3N1CDa1gWHs7vjuYGX6z+LHoC6oZAohfshjC5UT7fl5wsC7vdY1BUxsMih6rcKEQAX0jgf/JKa2GgjmdLegEAlt0Kwb2gDJjqqIIvFMEzKgdrBreCe0Q2lt8Kxcv2s2DatBXudxha7TMSiggCEYEIyMrKwuzZs9GkSRO0atUKx44dg4xM7Q6DSnIy6NVCD+8SC7Hb8wOmdm0KaFsAus0AOUVceZeCdQ/CcWhCewxr2wTR2WzoqCpAWV5WanWVUVyBAx6xmNvbEs301QEAg20bQ19dEW4fs7BmcCssuBYMHVV5jDjxDj1XnoPHpTXg85mVFnQsAD3mvK31Wtd63VDWBjrPkjikVc2qsTaysrIQExMDe3t79OghvVpjsVjw8vLCnDlzJNLd/uL/M37kCFQXN27coPNnz35XH/Xi1U6iK6Ml0r+uXr2aevXqRUeOHCFnZ2cKCpKMfygu49GrS5tJtEmfKKOqbIcbI8/wWcF18+MIsZgel8uljnZdKDGtYXb8z6QVlpFPbMPkK0JDQ2nmzLqlVvhCPhkZGdUoaHj48GE6d+6cxDE2m00rVqyQ1gWjKsHBdhvdpWf41yYwe0uf+HxfJRU8Ov4qnnLYtUulf0lcDofO+CQSXyCkBdeCyMzFlSIzS8gzMpu6bPOUsNEXl/No9PE3dPiFtKxGZmYms1/j5kYODg4S8TH14XjgNbK5YENPEp5IHA9KKaThR3xo4ul39CYuj5qufkJO+1+T5eondNRLUtPr1qeV34lXkqq9O58y36nPnmcVPAENPeRDfz/4SNHR0SQvL/9tsUy50UTCulWPa+KPP/4gNzc32rRpE71//77GeiNGjKCIiOodDX7x7+Wn3AifMmIgpZ2qJmdDaT7RucF1b45/A7m5uTR16lSaMWMGCYVCOnDggNiziCvg0nb/7eSX4UdX36WQ1YEpNPb2con2/zz8SAP2vaa4HDbtdY+mpC+8UZYtW0ZXrlz5rus76hVHR17WnaP8M0KhUGxWqotp06bVmFdcTU2NioqKpI6LRCJat26d1MCRz+HS8lvBZLnqCV15x2yG5pTl0OQnkyU3aM8MIDpiT3TEjii24cqqIpGIBEIBlfPLqaisstaN3PSicrJY5UoWq1zFrsJERC9evKDevXvTu3fvqGvXrpSd/Uk6vAEJlUJyQ2jyk8kUkS/9cnwQnE5mLq606HoQdd/xgg54RNOgA97kGpohsWkuFIrINy6PsksqqMOm52IX3JfROfT7Wf8a845s376dNDQ06n2tRMQ86/UaRF47GtbuEwEBATRqFDPw1zVoBAQE0Jw5c77pPL/4efkpg/uK2RwYt+4iXVBRCKT5A1mhP/R8SUlJcHBwwB9//IGzZ88iLCwMXl5e+OOPPwAAySXJuBp1Fffj7mNEeyPo6qWjTCZOoo87gekoKKtEM311LBtgJU47euPGDVRUVGDSpEl1XkdIWjGGHvKBd2yeVNk532Scf5MkdXz70yiMOeEHLl8ocVxGRkYiQLA2+vbti8DAQBARorLYcD7sC7/4fHGZlpaWVBsWi4VNmzbh4cOH+Pjxo/i4rpoi9oxph6jNTphkbwbEPIPmKQfwMwIRUxRT1YG8MrgiPkR50eDkx0j1XyMl6cCLTVjweAJ63OiB3jd6g48SdDTTqbGJLIuF/tYG6N5UT5w/vKKiAtu2bcPdu3exadMmHDt2DAYGBkDkI2CzHhBTe45yABAIRfiYoIVtXU7CWtdaokwoFMKwMh3D4Q/3Q6vw4cRyPNy9FLm312PcOEcYTzTGrXe3AAAyMix0b6YHJTlZaKrIQ02JsQb3tdLHxRl2MNRUQjlPAJGICdIrLOMhIKkA2p2cwWazcf369RqvMSgnCDllOVUHGlkBLZwAc2mzUrWUFwJBlwFBJUQiERYvXize4E5ISICeXs3m1c6dOyMjIwOpqdIOAb/43+e/u6ehogt0WyB9XK85sCK2Kgf1DyAsLAxt27ZFYGAgOnbsCC8vL2zcuBHXrl0T27WtdKxwwekCLDUtoawgi75qu3EjIA1x3TlobsDYoK/P6QKZr7ym/P39cfXqVdy+fbte1zL9fACKyvlIzCtFrxaNJMru/9mt2jbJ+WVIyCsDXyiCkrys+LhAIEB5eXm1bb6GxWLB0NAQ+fn5KE6Nx8G8mcgKWwQ0m19nuyNHjmDUqFGIioqCrGzV+RXkPs0zSnOgWJKOM06XoWI1uKpxp+nI8t6GOcaN4dKkJRzrdaUAwm4CPnvRx6onEpW0oKOoAyU5pVqbnPZJhHtEDk5M7gA1RearfPLkScyePRubNm3C5MmT0a5dO6ayohqg3hhQqNkbLzi1CK9i8mCkpYR1D8Ix2MYQu0e0REZGBt69e4fnz58jKSkJdnZ2cOjbF6uWLoRIQRVG2ip4FZOLRTcuoDD9HJYv2I2lpdsxZdQQzJ83FyYmJni5vI/4PLE5HJx4nYDp3S0w4dQ79Lc2wP5x7bD4RjB84/JBAIxt7HHy5ElMsG8M3JkJjDgBNGc8mtI56Zj6bCrMNcyho2gIhfzpWOzQGjYTb9b3aQPvjgHeuwFZBVwJrcSoUaPEA0VBQQHMzc1rbb5u3TrMnz8fN2/erNEL7Rf/m/w8G+EqNc8oG0p4eDhWrFiB+Ph4NG3aFLdu3cLChQsRHh6ORo0kX9odDTqK/7+dsQFis3nQUa3aQGxjrAUAeBSaiZIKPka1aYRly5bh/v37UFKq/aX2mb5W+pCXZWFadwupMhOdqh9cdgkXSvIy0FJRwPFJHcEXiaAgK4O4HA4sG6lBVoaFoqIiCTfacn45VORr/tE2adIEISEh6G+tC5IrgKWhqMa6X9K5c2e0bdsWHh4ecHJykq7QcSrQZhzU5L96BkneMM+Owf7Rx9Ha1KFe5wIA2M0BNE0wptUwjPm6zxqY0cMCjTWVxG7LERERePDgAaZMmYLc3FyMHz++qnLTfsAyaTmWLznrmwTXsCz82acpBJwC+J0+gt8uCmBjYwMLCwts2rQJlpaW1bbtY6WP50sWYdalrlDuKIuAxHw0aVqKP//8E5qamtixYwfCi2WRXlQBoYhwLygDncy00dJQHc30mYFsTCcTGGkq4X5IJvIN2yIzxQsQCgBeGSDkic9lqGqIWbazEJwTjNC8IBTH9oO9hSFsjBow6eowFZBVQABbHxcvbhFPgKKjo6GhUb37+pd06dIFTk5OePDgASZOnFj/8/7i38+PtHXVhbOz83e1rw/JycnUpk0bysrKosrKSlq4cCHNmzevwUljnn7MouFHfCm1oIzKKwXUbbsnNVvzhA4cOECnTtXtCux82IcGH/CWkAivDS5fQNZ/P6Uhh6qyEmYUlVPLdW5k5uIq3vd4+fKlWBU2LDeM2l1sR6fDvojUTfZjpEKI6NKlS7Rhw4aqnBJfRNPX57PIyckhJyenOt1UJeBXEhUm1b/+D2TmzJk0ffp0mjNnTr0y431NVnEFuYdnkX9IAFl1bEPv/GuXPq+JkvJK2vs8mtIKGdfc9+/fU/fu3cl2yj9kufoJFZVVkl88I6sfllZMH5IL6bejvvQgOJ1OvIonq7VuZLXsOmlr69T6m+MJeFRYUUhhacXfJEpYWVlJHTt2pMLCqu/ozZs3af/+/UwqgaerGUWAGsjKyqIePXr8khf5H+Gn3NOoNxXF39SMy+Vi0aJFuHDhAuTl5TFlyhS0b98ex48fh7z8F+6QfC7zrxbicjgISy9GaFox2m16jk7mOrg+uwtu376NCRMm1Hkt2ioKKK7gY9RxP/jGVQUVHvWKR/tNz5FaIGliUpCVwW/tjTDEton4mJwsC7pqimjaSBV2FsxKLCQkBNbWjJ1dQ1ED5prmaKL6qU1hEnDeCXhUZQKUCEiUrV/A3Wf09fXh7OyMTZs21b+RnAKgbd6g8/wI3r17h3v37kFDQwPHjh2rVoiwJt4nF6KcJ4ChphI6N1HEqMkjgSmVUDD/toV4SFoJDr2Ix1GveABAp06d4OXlBStBEqYZpONxaCauB6SipIKPEcfe4PSN25DJCER0NgdhGSVgsVhwdRkKAwN9HD9+HADAE4hQUFol9ElEIBC0lbRha6z5TaKEs2bNwpw5c6CtrS0+dvjwYUyePBkIuQa8OwqkB9TY3tDQEObm5vDx8WnwuX/xL+ZHjkC1kZiYSDY2NnXPWv2OEG3QYnJwN4CgoCCyt7enp0+fUmFhIQ0YMKDGzGh0oC3j4VMLIpGICkorxelDL7xJoqdPn9LQ8dNo+vkAKiytO3AqIKmAlt0Mkah7/FU82W2VlrSuL6NGjWKSBpUVEIXeIhJ8MaMW8Ime/0MUwyTLuXTpEu3YsaNaT5f6rvoEAgGNGzeObt++LVlQUcwISjZkFfIfRENDg1auXFmvugm5HNr2JJKKy3jkHxJGV9f+RkduuZHHu1BycHAg563badi1FWI5k4ZSyRfSWZ9ECU87IuZZ9u/fn5w3XqPma90on8Olg56xxN1qSoItRjT74nt6l5BPmx6F07PwLBo0aBD17t2biIgWXAui5mvdxAGo69+spy5Xu1BuWe2ZIGsiMzOTHB0dJVYJUVFRNHr0aOaP8iLme1THKiItLY06dOhAxcXFtdb7xc/PT7fS2LFjB1gsFvr374+dO3ciMTGx+oo6loCBDaBmUK9+hUIhrl27hqVLl2Lv3r24desWpk6dio0bN6JPnz7VNzLqCBh1kDjEF4ow48J77POIBcDM0HVUFaCnpohHC3pgTDt9bNy4EVZDZsErJhdZJbWvVACgs7kO9o5tC+0v9kjm9W4K/zWOMJHn1Ov+ACCzuAKFZTzweDxkZWXB2NgY8NkL3JsFxDypqigrB/TfCLQYID5kaWmJtLS0ep/ra2RlZXH+/Hlcu3YNhw4dApvNZgq89wA3JiI76DxuXXKAYIcpkBv9zef5VrhcLvr06QNra2vs3LmzXm3uBqXjpHcivOPyYMP9gIlyL8H1v4yhYyah/6zVyGd1Bjfbuda9otpQkJPBjB4WYk+7z4RncjBh2RaE3NqPs793hK6aIhY5NIfikF0Ib7sWzyNz8Do2D+f8knHRLxkDBgxAUVERPD090dlcG92a6kLjUwChkZoRTNRNoCDbsAC+z5w7dw6LFy+WWImuXLkShw8fZv5Q1mK+R9VI53yJsbExRo0ahZcvX37Tdfzi38d/bSP85MmTAJhl9YULFzB48GCYmprC3t4eTk5O4s1dXYOu0JpX+3JXKBTC3d0dfn5+uHbtGhQUFNC+fXvcu3cPf/zxBzp37lz7xYw+K3WoUiBCYHKhOEoZALh8IQrKeDDSUsadR3cg21YW/bqVYvHgvhIb2A3m/VngyTJg3FWgFRPZTER4HZuHjmbaEpHFlQIh+u97DV01RYzTScPQoZ8ioTvNABRUmQ3ezxQkAFqmUmaohphqqkNZWRm3b9/GuXPnMHz4cDg6OqJzM1P07zIfISqqSChOgICEkKvjBfMjISI8fPgQmzZtAofDQVRUVL3bzuvdFNaN1ZEmeowIk7Z4UDwGh9yj0e3P3RjSsxMWjFCV8pirLwWllVBXkq/yMvuCP68GIaukAsVKjXHjwRP0XDmdKWg7Dq1aizCgMAgWekq4NqcDLHS04euRDicnJ/j4+GDjRkf83tVc3NfsNrMxu83sb7pGkUiEnTt3IjMzU3zMzc0N2tra0lpl9WD+/PkYOHAgBg4c+MuT6v8D/uveUywWC9OnT8f06dORn5+P+Ph43L17FwKBAABjs1dXV4e+vj66dOkCIgKHw0Fubi5CQ0ORnZ0NDocDFosFMzMzHDlyBA4ODlBUVPyu65KTYaGLpS56Nq/yT//rThiefsyC14o+SMpMQrpyOt7nvMNgy4HfdS40sgKMOknY/r1icjHjQiBm9bDAuqFVsQGKcrIY2NoQ94IzsOXiMQS/eMAU6DYF+q4BSvOA6xMA066A9y6g20JgwJbvu75qkJWVxezZszFjxgy8evUKb968wc7X/li0yB6jJj2Hok7zOmelPwqRSIR169YhPDwcsrKyePLkSYMGRnUlediYC+By9zDk3eXRRqMbuszeAhenVmIPpBw2F/OufMDUbmbo17J+q97sEi567fbCwNaGODyhPRLySmGqoyIWFlzvbI2SCj7kh27FnlV/oGz+WKiqMquR/NJKvIjORYTwMNgUhYlNjmO4tTXOnj2Lrl271nbaBhMeHg4nJyeoqTFeW1lZWdi9ezeePXv2Tf1pampi8uTJcHV1xdixY3/kpf7iJ+T/1OVWT08Penp66NJFMuCvqKgIly9fxr59+6ChoQEVFRU0adIEjo6OsLCwgLKyMgYOHFinjlBDKC7nwysmFywWMOXTjK5Xcz3wBSLoqilAS1YLG7ptwES7H+BeaN4DmP1C4lBiXhm0VORhoKGEF1E5uOCXjN2j28JQUwl7x7ZFWdw7FHVuKz0TLMsFUvwYs14LJ8C8l7goIiIC/fr1w49EVlYWDg4OcHBwQGlpKXbs2IHly5djx44dGDx48H98psnn8zF58mR0794dCQkJGDt2LFq0aNHgfkzUTGD5whJdu3TFqsWrpBSM0wrL8To2D60aa4gHjWOv4pHLrkRwWjEW9WsGh1aSg4m6khy6Wuqik5k2/BMLMO7UO8ztZYnVg1sBAAZ8VgaGCTz6/YZ2E11g0nMUTk/tjKaN1OC+pBcuREbgYUwJ5GQUYG1tjbKysoY/pDo4deqUOCg1ISEBo0aNwo0bN75r4mVvb49x48ZhzJgx1apB/+J/h//zOI3MzEy8ffsWPB4P0dHRiIqKAo/Hg5OTE16/fi0VV/GfwlBTCa//6gvtL0TeerVohDGdTAAw/usrhq5ARSULmeVlUvbq7yUhrxTF5Xwc8IzF1G7m8I3Lx50P6ZjftylYLBaiPa7jwYMH0g0NWgPLY5g4FxlZiaLw8HDs2LEDR44c+aHX+hk1NTVs2bIFK1euxKlTpzB69Gg4ODhg+fLl39exSAh8uABY9GYE+z4RGRmJv/76CxMnToSOjg48PT2xePFiybYCHuPB9YmUgjLMvBiIP3o3xaiOxuLju3fvhqlROyz5c2W1L7lO5jrwWdkXjTWrYkYu+aWAw+WhjCdCbE6peNAorRTgnwfhGGzbGBdn2KFSIMThl/HoaqmLbjUIV8o1aYXcZ28gKihHcTkjUBieUQI377bglFtDp7VkEGJ+aSUufbyHawl7ccLxBDoZdqrfs/yKz8Gtw4cPBxFhx44dOHDgAFq2bPlN/X2mc+fO6NGjB+Li4r5pEP/Fv4f/yqBRXFyMyMhI3LlzBwKBAEKhECkpKQCYF8/AgQMhLy8PZ2dnLF++vF7BRZ/JLssGT8iDqYbpd1/n6rfzUCGowC3nW3gSloX514Kwc5QtxnU2RXJyMho3boyZVz7gQ0oR3q1xkAgC/F62/GaLLha6UFaQhUMrA2QUV2DP8xi0M9FCZXYcostVcD4wD8v6M+6ROWwulORlGfkMteoH1v/WjE9DQwMrVqzA8uXLsXHjRsyZMwcLFy6EtbW1RDR5vUkLYPZ8bMcAo84AAA4dOoR79+7h0KFDsLCwgKOjI168eAEFhS8+A98DgNdWYOZzoEl7AACHK0BKQRmy2VWOC+t2HcH7oGhEm49CE48YrBkiKRXyma/3re7+2Q3rH4bDMypXwoyZVliOe8EZYLEY2ZCeu14iv5SHCXYm6N2i+s/mj95NIYo0w66NTrgWkIKtTyLRSE0RRZ8GkBOv4jGsbRMUFRVBKBRi/aMIuCelQNdMGfINdJ3+TG5uLk6cOIHnz58DAO7fvw8DA4OaHUYayIwZMzBmzBiEhv5YOaBf/Fz8xwYNDoeDh/fv4eKRHdA2bgHrNu0xfvx4RgcIgJGR0Xdv0ALA7OezkVOeg7cT3kJWpuYX1KyLgdBRlceu0W1rrKMiryLuw0xXBe1NtcTRuvLy8lBRUcGwdk1grqcCDaXvv/bT3olQUpDFlC5mkJVhYXh7I3HZnF6WMNZWRkczbYxZvhM6nYej8pMOFZcvRL89r9DcQB0P5ndnGnDZTJIguSoTA4dTfw+tHwGLxcKGDRvg7u6OK1euIDAwEE5OTvUaOFq2bIkuXbpAU1MTsiZ2wJC9gEUfhISEYNCgQZg/fz5evnwJGRkZ2Nl1xj+rV4pt8mLUDBhHAAV18SEbI0183DBQLMUSEBSCvcfPwXbmNrBKhagQiLDHPQbR2RwcHN8WPnH56GOlD75QBHlZGQkJFyMtZczsYQkLPVXx9wIAWjXWwLMlPWGirQIWC9BRVYBlIzUscmgOkYgw78oHWDZSw6pBVbN5GRkWFOVlISvDwhbXKBCYhE1/9WmCy8GF4PKEICLo6uqiUaNG6N6uCZ6E2aJtnhlMbkzFLfNOGDXkZK3f+a/Zu3cvVq5cCSUlJRQXF+PIkSNwdXWtd/u66NOnDxo3bgwi+mWi+h/mPzJoJCUlYdSoUZg91B4PlveC6siDQD2lIRrKOKtxKOQW1vrjoU+CfXrqtdtsjzsygVRcvhAKcjK4/2d3qToT7Ewxwe77VzUAcMAzFupK8pjSRTq1WusmmmjdRBNubm6wMDOB6+F54jJFORkMbdME+XJPMOTOXrBjJ+IllkO+iS0wreol0JAV24/ksycNm81GUFBQnfWJCJcvX8bFixcRExOD2bNnIzExEfv2Md5Bf/31F9atW4eEhATs2bMHvRuxMTR5I4Axkh21m8D8A/AhpQiRWWxM6WImfvETESbO+AM2Y5ZhoUNLPAjJRFdLXVx5l4KITDauB6Rhy5MorB7UEideJ6C5vjpuzWM2oedcCoSCnAyOTOyArl9l4wOAloZVz/r50t7i/68UCPE+uVBsgvoaeVkWZGUAgQjQz/fH3PT1GNplA0ycFsMnLh8REZFYutQEA6wNcX12F5iVBEDrURLSUYJSfik0FesnHVJSUoKgoCDs2LEDALBhwwZs3Ljxh+9B2djY4M2bN9Xm4/jF/wb/kUHj0KFDOHz4MLp3l37p/mgmW0+usw6LxcLLFb1rdKO8+T4V+zxicWWmPZobqGOzaySu+qfi4fzuaGui9YOvuIr787tDrpZIXg6Hgy1btkjNBlksFnaOboMNfvcQlpgJNpePQqMOMDBp/x+71m9BQ0Oj3qaPz0l9vrSJDx06FBcuXICuri4yMzMxbtw4HDlyBPZ5SkBFAfB8HdB1IaAu7d2081k0ApIK0deqEYy1mRfjyZMnod2sHUTqBujXUh/rH0XgpDfh1twu4AlEKKsUIquEiyG2jRGUWgQLvarVREJeqcSq4zNcvhBHveIxwNoQtsaSL/AdT6PxNDwLjxf0AIsFHPSMw+QuptBVUwSPx2hJCUUETWUFFJTxUAANZCuaQ9e4KXzi8vH7uQBUilho3575XJnBahCKzD9ghKxsvQcMgNnD+RyXUVxcjJCQEOzatave7evLtGnTcOzYsV+Dxv8wP3zQyM7ORkREBPbv3/+ju/4uFOVqXolU8ITgcAXgfYrRcGilj5IKPsx1qza7ZWRkUFRUJCG58L20MFCvtfzPP//Epk2boKNTvZjjhm4bsNZ+LeRk5MBi1S1t8m+gefPmqKioEItBRkREYPv27fjw4QPOnj2Ltm3bAugCvDkEePzNuC1/lbEOADYPt0F8bimMtVUw6+J7hHyMhFbIHbxxcwNk5CAvy8Iih+Zorq8ORTlZKMoxmff+/uTufHKK5Eaz+5Je1ZpcwtJLcPhlPLJKuNgzRtL0yeULUVYphLKCLB6EZGK/ZyzUleTQ39oAH0I/okWLFpCTlcGrv/pg+rkA+KQC57pfRWYoF4aauZjWzRynryrhnG8SbK1kxBv52jrN0JBv4Z07d5CamootWxhX7CdPnmD69OmS+0E/CFNT0+8KJv3Fz88PHzTCw8MxePDguiv+YMoqBWCxABWFht/StO4WEgq0/VoaSPnmW1lZITY2Fvb29t99rfXh9OnTMDY2hqNjlbi4SETwic9HZ3Nt8X3WtikqElWvaFtWVlZrWW5uLlgsFkxNTX+oW/NnCgoKqiLLa8DPzw8BAQHwf+ONcV3NsO3JYyiofLGH0XkWoGkMtBwCoYhQVM6DnhpjfjzoGQf38Ex0ttDFKe8ExOVwkOV6DN53zkm8KJc41t/LR062+udgZ6GDU1M6op2pllTZhmGtsWEYk6Z1fGcTqCvKoVtTXfTd8wpykb74Z1I/7HGPQTN9VQSmFqODqRYmdTHD6BNvoa+uiAfzu+OCDKG5/xpEpjtjVMdV9b7ez0RHR2PevHnIyMgQH3vw4AF2797d4L7qg4aGBpSUlJCfn19rTo5f/Hv54YPGu3fvYGdn96O7rZMB+72hrCALz2W96678DXTs2BGBgYH/lUHD3d0dbm5uuHPnjsTxp+HZmH8tCAv7NcPyAVa19hEREVFjdO++ffvEQVhEhMzMTKxZswYFBQWQlZWFubk5+Hw+YmNj67Z5kwhgZwCyCvWSfhEIBNDU1IS+PiNnjrQARvrbso9EcKCZmRmmTZuGv9vmQy/VFSiIAlS+iPRXUAFsRgIAtrlG4oJfMlwX9kCrxhqIzeEgMrsUkdmlAIDyaB/I6ppBzdC8zuurD0IRIbmgDHE5pcguqahW8v5rVBXlMLazCQRCEUx0VPA29C18nMfC7UM8BtsYYmQHI3RvJYSuhhCbh7fG/GvBOPgiDgI+Hz1kPmJ40w51nuNriouLMXXqVDx58kQiBqOysrLOfBnfw5AhQ/D06VNMmTLlP3aOX/zf8UMHDSKCl5cX1qxZ8yO7rRddm+pCSf4/J6XVp08fTJ48GfPn157A6Htxd3fHyZMncf36dSmvI3tLHUzuYoqhbZrU0LqK+/fvV5vngM1m4+HDhxg3bhzGjx+PwsJC6Orq4u+//xar5zYIkRB48CcTL9J9UcPbXx0LFCUBf+6XijMBAFjuAjLGASY1S8PYGmnCVEcFrmFZaNVYA7tHtwGnkg9tZQUMtdXH7DFroDpiE4Q1rK7qQwWPMTMBwPFX8djzPBaNNZWQw+bifnAGlvRvgb6f8nqIRIQ/rwbBspEqVjoxHlOJeaUISi3GqA5GEJVkgyWviKdxpVCUZcEvsQBNDfnw+LAaL3J6YFOX/RjVwRj66grIKirFGZvL2Dx8UIOu18/PD6tXr8auXbu+eaKTUVwBkYgaLJkzcOBA/PHHH78Gjf9RfuigERYWBi0trf+ISaMuDMyfo4xfBsBWqmz1vY9QU5TF2hr88euDvr4+DAwM8ObNm//YBv/nAePatWtSCZ4+pBQhKouNLb9J399nuHwhisp5aKypjODgYMyaxdj68/LycOTIEURGRuLp06fQ09ODlZUV5s6d2zAPq5IMQEZOcuNZRhYYebJB9ynBpFu1l2saMf9q4bf2RtjnEYszPon4o7clppwLQI9melg+wAoPHz5Eu659sGV+HzTTr30PqSbuB6dj2a1QnJ7SCY7WBuhsroO+Vo0wvbsFYnM42OoWhdhsjnjQ4AlF8E8qQHQ2GxV8If4Zao1dz2LwLCIbemoKSPB9CIsew1EGQEFeFrIsFsrKlcAr7wRZnY7QU1PE3rFtYfPPM7Bk5dC2XSdmRSarAJjWPgCIRCKcPn0ad+/ehaurK9TVpe9ZKBRW01Ka0cf9UMEXIuSfAXVX/oLGjRvXaP78xb+fHzpocDicqvSa/2V8M3zB5lVvJ/eMygFPIAKLxcKaT5IO4JbUmV6WJxCBzeWLbeU7d+7E+PHj4eXl9W1Ba7Vw7tw5uLq64tq1a8grF+Haq2jM7mkpDiD87A3Uu0WjGmd+q+6GwTUsC4f6ayEvLw8uLi5ITU1FaWkpTpw4ASsrK/zzzz+YPn16/S+sMAl4vRPosQw46wgo6wCLQ37AHddAnAej4PvbMUYapZ5cnGEHLl8IgYiQmFcGk08eU7cfu8NfZIW/7oTi6eJedfRSPfrqSrDQU4WuGvNZ2FvqQldNEed8ExGfV4Z3qx1goFE1yCvJy+L1yr6YfMYfV/1TsXyAFRY7NkcXSx3IcwtRkBgBGbuJaKypBBNtZWQWc2GooYro2FFQNqqKWl/k2Bx/HZHD6I7GwJaOgKIG8Fec1PV9Jjk5GRs3bgQRwc3Nrdo4qPz8/HrnmJ/S1Qx8AdX3MUkQHR0NgUDwQ2KxfvFz8UM/0ZMnT2L9+vU/sst6c3XwVQip+hmUx9JecDrgg8ehmcyg4bMXeLkFmOEOmFTtv3hG5uBDahGW928B94gc3AtKh3dcHp4u7oWp5wLQ0UwbCxcuxOBx07Bt70G0bqIJRTmZBgcy8YUi8AUiKCvIgs1mY+nSpdDV1cWtW7cgJyeH+2/icPxVAiz1VMUyJpuGt0Z8bmmtpoJuzfTALq3AtPEjMMhWHyNV8jD4WTDkFb8jRubpX8yLXM8K6DgNUPy22Xq9yQ4DUt8CxWn1GjQOeMYiPION45M7iIUBA9Y6QP7Tajc9KQ4K7RxhoF7/ZzDy2BtoqSjg3DTGJNa9mZ44x/fOZ9F4m1CAkLRiNG2kinKeUEJ65jMaSvI4N60zXkTl4IBHLP5yskJLQ3XMnDkT984eQDCvMbqaqaHs2UZcYbeAT0lrrBncEiM7VA0ac3o1xT+fTGIYflQicPNLiAgzZsyAm5sbXF1da1V5vn//PkaMGCH+u1JYicNBh1HILcSElhNg26hqJTvOXhu6ytIxKfXByMgI+fn536Sa+79AeXm52K36M4qKivUesH9mftigERkZCQBo1qxZHTX/M6gpqNVYpqWigCeLvvAb123G5OxQkfxBXHybDN/4fDi20sf8a0Ew1FCEQEh48jETaopyUFGQhYPTcMzefxcT5q+GXIcRGNPRGBuH29T7OokIvXa9xHrOZgTF5+FRqgY2bdqEAQOqTACfczE4ta76wbU01JAIIKuOsZ1MsH9ab7TXLsfFqc0Yc9L3zvRUGzER1u0mVhsP8cPpsQxoNwlQr/tls/HtRrxOK0ZeihMqBSLxoPHZvXrUcT+EZ5dBR1kZOmrVu5cWlvEQm8OBjZEmZFksKCvIIquEi4hMNpLyy2DxlcbY+6RCJOaVomczPSzt3xxtjLVq9KzSU1PEq5g8PA3PxuiOxpiw9TKKI9JxzrEfnAAg+yPAuQ1dzd74s7IdzvomYXZPyYGyoqKCmbHbjpbqPzY2Fj4+Pjh//jysrKyQnZ1d5wQmMzMTzs7O4r+jCqJwMfIiAECGJSMeNHzSffDniz+xym4VJrWaVGuf1dG8efMGt/m3kJeXh7S0NPj6+qKwsBBv3ryRGAyICEpKSlIDRElJCYqKiiRERPX09GBtbQ1LS0uoqan9KzzOftigcevWLcydO/dHdSeJoBLgZH1XGlFdtS9madbDmX9fsWdMW6QXlaOjmQ62jrCBmqIsDr2Ih6WeGtyXVpk2Lh3bizsn9+Lt+1to0nd1g64jLy8P/LCn+MsnEKPb6cDL64PUl0tNUQ7D2ta92f01x48fR0ZuIXwXqgGD9zDy6XWRHc7M6BVqWMH8dhwYdqT6Ter/BCxWvQYMAPBO84aypjJ8XXYhl82Fiq4qZD4HS8Z5oKVCBd7KyqC9iRbaGFVvitzwKAKPQjOho6qARmoKGNbOCH2s9PEgOAMnXydgWndzicH6yix7lPMEuPw2FWCxahwwEvJKYaGris2/2WB6dwtoyXCR7n4GI1d84epqaAv8/giXPCpQmMRHH6tGEi99kUgEc3NzdO/eHdbW1tDU1EROTg5KSkogEomgpqaGTp064fnz5/WO7P6cguAz7fTbiWN9+pr0FR9vrNoYtnq2AAF2V+2wxn4Nfmv2W73OUdO5/s2Ulpbi5vVrcH98FywlDTRvYYXu3bvDwMAAU6dOhYVF3R50wKcBJzIAyI8HLHoiPT0d/v7+ePDgAYKDg2FkZAQHBwcMHToUjRs3/g/f1Tfyo9IADho0iLhcbn26azgPFzApYB/MJ3q1k7JKsyi2MJYpy48nOu1IFOvxbX0HXiDKCGpwM5FIRIcOHaLOnTvTw4cPSSQSUUBSAU0+844Sv0rzSUQUFhZGv/32Gw0aNIjOnTtHZWXflkq0JmJiYsjS0pIuXrxYZ4pOMRlBROs1iB4u/HEXUphMtM2I6Nwgokrp5/AjKeIWkV+6H7mHZ5KZiyuNPv6GPCOziQoSmfu6OIycnZ3pfVIBFZfxqu3jTVwe/X3/I7Vc50bdd7wgMxdX6rLNk+4HpZGZiyutvR8mrlteKaDQtCL6mF5MZi6u9MeVQKn+glIKqfeul2Tm4konXsUTERGXyyVnZ2fy8/MjIqK4HA75xuXRXvdouuafQh6R2dRirRsd/1T/M48ePaLNmzdTeXk5JSQkUEJCAuXn53/XM+vXrx+Vl5eL/04sTiTbC7a04tWKauuH54VTrxu9yDXBtUHn8fT0pPnz53/Xtf4M3Lp1i8aMGUODBg2iS/PsKHelFhE76/s6vTaB+X5mfZQqysjIoKtXr1KfPn3on3/++e7PuyHUN93rD1lpREVFQU9P77sTIdWIZV+grACIegwoaWIh+z0SihPgO94XKiVpQHoAkBsBNHesu68vKUwEHi9ChrYdblofxbL+9Q/2YrFYWLhwIaZNm4Z//vkHO3bsgLpZawRkC9G0vBfamzIxu/n5+fD09ERFRQW2b9+OVq1aNewa60FFRQXs7Oxgbm7O5Emo7x6LjiWjJNtySNWx+BfAwwWMR5TFN2wcy3z6SqW8ARK8xJkJJbjozMy0Jt1iZttfISIRbsfcRnuD9mihLfmZnAu9gRuxF3B64Em8zXyLrf5bscB2FTqaWeB9chHeJweif0s9HO3zNxTM7MG+vBWjT7zFyPZG2DeundS5ujXTQwczbQQkF6K9qRZ4AhHuBmWALyQcm9QB9hZV0fjbn0bh0tsUDG3TGB1MtLBuiPRnmZhXhuSCcrRqrI6OZtogIixbtgzjx49HMxsm1mLUcT+UVPDBAiPJf312F+ioKkD5K5mS3NxcmJiYQFlZGZaW9XcKqImUlBQ0adJEYmVbxFaBCs8eZkrSiZ62vNsCGZYMXo973eBzOTg44MCBA99zuf9n8Pl8XLp0Cbdu3UKXLl1w9uxZxgutohgoL6j3SrhGui8GjNoD+tLfnyZNmmDixImYOHEidu7cif79+2PMmDEYMmQIbG1tfwohyB8yaHh4eGDMmDF1V/xWbEYy/z65fE7M9kMaJ43J4WzZB1ge+232dh1LYMRJrH1ahg++SQ0aND6jrq6O/fv3QyAQICwsDCHRSaCKYuTn5wMAFBQUsG3btnovXxvK5wAuExMTrF27tmFeXUqajPR46jvAfS3QbjLwajtQmgPwygF+BcCSqXEDtlo0jYAFQUzu8hZOzLG094DrUmDIHsC0C6PIy8kE3p0Afjsq1UVMYQy2+G9BP5N+ONjvIJ4lPUMLnRaw1LTEUe8w8NRywBVwYdfYDoPMB2Fg0+6Y28Ecdz6kYdPjSHhE58O9/UQ4WzSBsrwsxrbVQ3erRph/LQgze1igg6mkCIeSvCyeLWEGSC5fCOe2TdCzeSPIfqUL5tTaEKVcAeLzSpFZXIFG1Wyuj+poDBMdZbyOzUMLAzUsWbIE1tbW0G3bD523emLrCBvM79sU7hE5+JBShMaaSjDXU8Xb1Q5SfZ0+fRqnT5+u/7Ovg6SkJLGO1WeuRV9CCT8X6iLpwdsn3QcyLBmgGi/fFHYK/nnzD+a2mYtuRt2qPZ+cnBwKCwtrlMH52SguLsaFCxfw8OFD9OjRAw8fPpR0fVfWYv59L6b2dbpOA4CLiwsWLFiAFy9e4MiRI8jKykL37t2xYMECaYXn/yY/YtkyYMAAyszMbPBy6D9Ffnk+3Qg8RLw7M4jSpU0IX5NRVE4p+T/GXFRSwaP1D8MpJLXou/vicrlUXFxc7b+ioiI6evQodejQgZydnWnKlCnffqJ785jlstd25r++B5nj+22JjnVreH8vNhNt1CHKDGH+/niX6Tf0FvO3SMQcK8kkDpdPV94lE7uiynwkEonoXuw9SihKoITiBLK5YENzn88lIqIjL+Noj3tUjaeOzCymK++SicsXEBHR8uXLycfHh9zDs8jMxZX2e8SI635ML6anH+tnajjnm0jWfz+liIwSquAJiMPl11h3i2sEma58TDb9x9GufQeIiCgio4SGH/GldwmMuUEgFNGOp1G042kU7XoWRUKhpEmxvLycBg4cWK9rqy83b96k06dPi//2i88np6szyf5KFyrmFkvVL6ksIXYlu9q+3qS/IZsLNnT249kaz3fp0iWaOHHi91/4fwiRSER+fn40depUcnJyov79+9ONGzf+c2b276SgoIAePXpE/fv3p4kTJ1JQUMPN6rXxXzNPCQQCKCsr/1SbNvfi7iHM/wDG5eYDWuYo0LSR3Aj/iiZa3+4Gx+UL8fu5AHQy08ZKp5YISS3GBb9kAGiwQm5iYiICAwPx7NkzFBQUgMvlVsltVEPXrl0REBCA/v37S0mO1Mn1iYCSBtIc1mILKw/zBq5H+67LgOYDgMafhPeMOta8QV4bus0Zs5PypxmmzUigaV9A+dMMn8USS4DceZOEDY8jUV4pxOxelp+KWRjRnHELJSKssluFNnptAADz+9bsnecZmYNZlwIxq6eF2INq9OjRuHDhAk6cOIHHC3qgZeMql+E19z8iLL0EgescxbE4NaEkLws1JUboUEleFktuBCO/lIccNhfL+rfAINuq7//kDo1wbuMiZGo1R7M+owAA1k008GB+d/jF52PZzRCsd24NF6eWGH/qLfyTCvF7V3OJWI+ysrIf/pu6c+cODh06JP77xvtURIUNx+0/tlSrmKuhoIGSyhKEZKRDWVYTVoZVz66bUTe8GPMCjZRrzqzp6OgIX1/fH3oPP4Li4mIcP34cHh4esLW1hYuLC6ysrP5PgpIbgo6ODpydneHs7IzQ0FCcPn0aKSkpcHFxQffu3f9rpqsfYp762R72mBZjoCKvAq5iE1xPNcSmrZ64PMMePZr/eHc2nlCEuBwOtFXkweULcdEvCZPtTbFsQP1NXSEhIVi/fj3k5eUxdOhQbNiwAUZGRvUyNS1btgwDBw5suGJpbiSgpIncily8LYlF56ZOaA8ARl9oHI0537A+P9N2HPPvS5QlTUKoKAbK8jBKOxW9jE5Bq8UhVAeLxcJ4q4lILyqvtvzWkTXQkhdiwNydMNFhkmOd8UmCf2IBjLVV8Ft7c4RGRCM9PR22xkwMRHhGCVo11sDawa2QlF8mHjBisjlgc/nobM4MdkVlPKgoMgq4X+dRickpRUk5DzmcSmQUVwBgBriLFy/i5MmTOLRlMwT6rTDIpurFn5xfhtmXAlHGE2KCvSk6m+tg/7h2yCrhSgwYAJOWtXXr1rU/5wZQUlICHo8nETex3rk1xnc2hbGWCsoqBVBVlH4dTHKbhNSiQgiS/8GL5b1xPvAV5NQjsLDDfOirfJrQlOYCcc+BNuOAb8wq+N8gOjoa586dQ3BwMBYuXAgXF5ca311J+WW48CYJ8/s2g77GfyYXUEMRiQhJBWVo2kgNbdu2xZEjR5CSkoJjx45h7ty5/4+9s46vsn7///OcdY/12MZGLIDR3YzukG5QCQURRQQUFKREQFqRkpYuRzeMhgHb2MaCdXfHiffvjwMHxoJR6uf33fPx8CG7433HOee+7vcVr4t79+79I3Ug/1+Wa5rqmqpzy51kidS1T8XWtOwPPitfhr62ZjE/9usw1tXi5uyOaGtISc4uwCskhQ5uVhjrvv7HU1BQwNy5c4mJiWHLli1vnKM9Y8YMMjMz+fXXX99ov7DkHCK6nKC9izWNNDS5MuQKpjqmbzQGj4/AiW9g2F9FCiTLzeEJEHIeo8YfY5RyGXLDyCgwxVDLsFhDrdUXgllzIZjdnzaj1Us9t5VKQbvkvRhK8rgY2ZX0gnTm9KvORv9fSE9ui1amOxN33qdG69FMmjSJ3t/8ysrzoeTLlczs5opSQN2XemB8tvs+ESm5+PzQmXy5kra/XKJZNXN1kd/L35HjU1RSMnKFQFsDNm/ezJYtW+jWrRsXL15ET0+P6LRcUnIKsDVR/ZBlCiVKYEwLR7VhsjXRU69/zoYNG/Dx8WH16tVvfl9LwdPTs0hRH8Ch+9FcepLI3fBUWtWwYNu44p9jhyodeCRNpFUNZzZfC2NPxGY0DYNobNOQDlWe1Rt4rYRbv6kq1mv1Ue9rZGREQEDAe7uGt+XJkyd89913aGhoMHv2bJYuXfrat/KTvnFsvxlBHXtTVUX+f4A/rj5l6elANo9WydmASthz6dKlNGvWjNGjR7N79+4PInn/Mv/zRmPdg3UUKgv5utHXJa73cLVSawKVRmJmPu2WXaabuw0rS8iweR3Pm/NYGeviNbMDRq9pBZuZmcmOHTs4cuQI48aNe+NmOJGRkbRo0YL+/fu/VaB09mEfbj1N5fqsDtiZalJJ95VZwO2NqhqPGsWDs2oUclWgXPn6XPyorCjWeq9lfN3xOFdy5m78XQKk2Qx074d+p3nQ5FMidPXov9+Dj5w/Yk7zOUX2b+JUiXYulsUK7aRSCSafnUOKjGVeXxGXE8daj7UkyHyY3K4Nk+q1YsfNcFysmrF/VxqH/liOfq1BNHYyxsXaiE+236NZVTPaOKtcLDO6uJKYVUDPtV4Y6WnRoro5jRxVD/f4jHzaL79Ejzq2/Dq4PloaUoQQnD55gl9++YWePXty4cKFIvUSvdZcQyqRcPO7juhoauBsbUTAT93KvFf5+fn8+eefXLlypZj+2LsQFRVFw4ZFlXLvR6ThHZlGWxfLUnuZf93oa2ik+ndseh53MpwIlweR8nIn4aYTwMACahTNXjQ0NMTU1PS9XcPbcPjwYTZs2MC2bduoXLn8tU+ftK6Km41Rqffl36CSvhY1rAxxtioeBP/oo4+Iiopi3759H14o8l0DJDKZTPTv3/8twi7vhy4Huoi2e9uWa9uMvEJx0idWyOSKIsuz8mVi0IYb4o8rIaXs+f64deuWaN++vdi1a5fIzn7zOobn9/vo0aNvfQ7Xg5PEhsshQllSPcfzHPIN5bunqpPKF8J7pxA5KSWuPhp8VLhvcxfb/bYLIYRY671WuG9zF9ejr6u3Sc1LFaNPjhb7nzwLlqeECnFnkxAKeblOwS/ZT9yOvS2EECIyI1IolC8+48uBCcJxpqdw7fGxMG7aX1wJUCVt7LsbIcKSsoqMk5CRJ5ouOidGb7ldZHlmXqHov95LbLoaKpRKpTh+/Lho3bq1mDFjhkhMTBRKpVI8TcoWO26EicUn/IUQQny6/a5wnOkp1l0MLtc1yOVy0b59e7F58+Zybf8m9OzZU8jlRe9lboFcNPjprOiz9tqLhSdmCHHwU/WfCqVCrPVeKy5FXhJCCNFrzWVR9YfNwisoqVzH7d279zuf+9ugVCrFV199JQYOHCjy8vL+lXNQE3VPiM1d3qoe7GXGbr0tHGd6iifxJScnJCYmipo1a4qoqKi3Gv8fC4RLpVIiIyMpKCj4cHUaZbC7526EKJ+o2h9XQll/KZS1wxrQ+6WKa0MdTfZPLJ6nXhoFcgXBCdm4l1JlXBL5+flMnz4dpVLJ/v37sbR8uzeYP/74Aw8PD/r2LV7RXl5a1rCgZY1SXGEZUWBsp6oEf5XsJJX21Kv93v2PwbHJ0HYGdJhTbLc+1fvgaOyoqjAGJtWbRPeq3alu+qJivZJuJbZ33/5ip6vL4eFusHApV71IbfMX/n8HY4ci6+Iy8gFoMXAiD88f4ccvxjHi659YeCWJn/rWxumltq4Po9JJyCxgSOOin+3DqHS8I9NpYqFg6NDZ2NracvjwYdKUuqy9EUEl/TRWXwjGvpIeSVkFOFsbcS88lc61rPGJSmf9pZAyg/gAW7ZsoV27dnzyySevvd43QalUkpGRoY6RPU5+jF9yAEEhtXCxNqR25ZeuNeIG5CaDECCRkJSbxB8+f1DFqApuZm6szfqGDM085j4+zlKzn5l9bTb1reozr+W893rO78rw4cNp3br1G7tuPwhJgRB1CyJuQuW3b8n8fc+a9KlfueSOn7mpWOrImDdvHmvXrmXp0qXvcMJl884RbKlUyqhRo9i5c+f7OJ83xkLPAkv98j2ABzS0Z2LbarR1frcp5+rzwfRa68WVoKRybX/16lX69+9P165d+f3339/aYFy/fp2bN2/y+eefv9X+5WLCZfjSB6xfkZHPToJVdeBgCQq5Lt3A43toOKbEISUSCfWt6qtjFZpSzSIGo0TaTFdJoVQpuQbgTehQ04qGVUxp62zJta0LaDVkMpuXzELj2u8o458UkbtwtzPByVwfm1eCnxa6EkxCz7F/xXdMnz6dVatWYWlpyd+PYtlxMwKpREIbZwsaVanEpPaqa8uXKfm4lRPXQ1M4659Q5jnev3+fs2fP8sMPP7zz9b5KZGRkkaLS5feWs/D2fLbevo+uloa6xS0An5yFKXfVBaLWBtZ8VncykVmRbH+8HafK1lhYGhKZGUFGYQb5inwKFAWlHltXV5eUlJT3fk2lkZOTw5AhQ6hXrx6TxwyGvSNUgpsfitSnr9+mwQhoNxPOzIbAk299qBpWRvRvUEp8ZXsfWNeUj/r2Jji4dCXk98F7iWlMmDCBvn370qdPnzJTRP9tqlkaMrvHu1dkt3e1IiJVVfVbFoWFhXz33Xfk5OSwfv36d6rqjYqKYu7cuezbt++9y7IXoTSNKR0jqN4BnEroJaJrDO2+fedDb/bdjLW+NdmybNY+WMu2bttw0Xj3r6iBtiaPojPIzJfhFZLMhRApU+duwMMih23btrF5xQIMjYxJy5Ojp63BvfA0kg4bcL9lfUBVmR0aGsqEESMYP/6XIoHGYU0dcLExoqe7LYUKJfXmn6WapSGnvmyjDqBe/KadOu5VEomJiXzzzTesX7/+g2QiyuXyIvGRmU1ncjXcl8UB+sgVL2bpk85NQiD4o3PR/ijXvd2ZlGjLGE1vGH0MO6kGN+V56GnqsbXjEfVMriR69OjBuXPnGDp06Hu/rpeRy+Xs2LGD33//nblz59KnTx+IvA2BnmBaBZw7v9F4vtEZfLrjLt/3rFW6DtyDXaoZdt/fVIahLKq2g/DrYPGBhBzd+6uKnzW0Pnjq7XsxGnp6ekycOJF169bx008/vY8h/zEK5Uq0Nd/sh9q0qhlNq5Zd5ZqSksJHH33E8OHD31nIcfbs2fj4+LB58+a3nqW8M1q6MGzPBxu+QFHA+ofrcTByYGTNkWhJtZDw7MtfkAXpkarugG+BgY4m+yY0xyskmVXng2lVw4IGVUxp4OqirpDeeDWUxScDWdjPnZMN7ZDl5fA4NAqFEDhZmeLgoHJ5hSRmUd1S9cMMT85hwO83KFQoMdTRxMPVilNftsHwldRVqzJk2ePi4mjYsCELFy58u86J5WDlypVFes27mbnhZuaGuYimnoPKNZWRJyMtPwOJ5IURiUrNZePVp1QzN8EjPgeDyACVeKi2PnqaqoyvKXu8eRCZzrWZHthXKl7T06pVK3Ufmg9FTk4Oo0ePpkuXLly5cuVFMkKVZjD57hsJnW71CuNvn1i+7OhMWq6MvMIyEj1s6qhcpzblULl2agXjTpS9TbiXKrGkWvtyn6+aNtNV//8nRCLfZ4BkwIABws/Pr9yBl3+b/XcjRdVZnuJqUGKJ64MTMkXXlVfKXTX8nGvXrgkPDw9x5MiRkoPNb8DOnTvFpEmT3mmMlznsHSXmHfcT8ucVyFkJQpz+TiXyl5sqRFpk0R1Sw97bsV/H4+THIiIjoviKQxNUwfn4d/tu5RXKxRHvaNFj9VVRbfaJIiKG0Wm5YtEJf5GQ+SJo2nLJBVHrh1PCN1pVLX3EO1o4zvQU22+ECSGEaLTgrHD+7qRwnOkpxmwtGjgvDxcuXBBt2rQR9+69XrXgXXBzcxPp6cUrvp/EZ4qpf3mL8KRs0WjBWVHnxzNiwo676vWbr4YKx5meov+6a6LnrNVC/pO1SDgzW/glv/gcxu9QBfuPPogWQghxPyJVJGYWraj+kMHwmJgY0aZNG3Hp0qX3Mt6sQz7Cdc5JEZX6fgVFy8XPTkIstHmnIWQymfjoo4/eat9/VLDwOevXr2fEiBGcPXv2P1fwVxLmhtrPCsKK1lQIIQgODub37XsJvnybhX8r+f1ZPwYhBE2bNmXOnOIB39zcXKZOnUpBQQHbtm2jSpUqxbZ5E5RKJRs3buTSpUvvNM7L7L0Txb2INKZ41FBVyQedgZvrVMV3wecg7hF8E6RyOXnvhONToP8fUO/d3xQX3lrItehrfOH6G05mFsUSCWqZl/KmXauvysdu6vhOx9dV5NCvgR3amlJCE7Mx0X/xuduZ6vFFhxpsvPqUAQ3tcbIwYFhTB349F8TwTbdY8lFdXKwNaediSQMHVYryxLbVEQjq2Zvi9Eo6cFnk5+ezatUqDhw4wNGjR9WzmA+Fs7MzJibFkzauBiVx7GEsrWtY0N7ViktPEgmIe5FL+yg6HakENDWlpGBAjqYpu0OPsT/5EjeH3yQ+I59vOrtgY6xLi2rmhCfn8NFvN+joZsWWsS8aQclksg9yXTKZjCFDhrBhw4b3Vgi5qJ87c3rWLLHQ8W78XTILM+lYpYxU9NcQkBKAcyVnNKUlPHr7rgflu92r2NjYD+u+5j3XaVhbW9O3b19mzpzJsmXLIDFQdRNKUDL9LxAm88TMxRMHyy0olUq8vLw4ePAgAQEB1KpVi1atWjH7y0nF4jSLFi2ib9++zJgxQ73s7t27HDt2jClTpjBgwID34lf84Ycf+Pjjj9/rl2Dd8Iak5BS8kFWpNxQUMnAfANqGYOkC2s8egDbu4NQGrN7RbeJ3CB7swsCxFiBlyl8PqWmtcuWUC7ceqv/ehag7sLUbdJhDjzYl1/Sc8Ilj7cUQCuVKpndxBUApQK5QMnmPN4v712H7xy8K4J7LnpSXkJAQ/Pz8WLVqFSNHjuTu3bsf/OUqLy+P3NySq+nHtnSivoMpDatUYlBjB2QKJS8nIl4MTEQp4E5YGjO7tUM0G41TtCdfCzmpOYW0W3YJBzM9QhJz8HwUx+3vO/Jp66q0qF60uZmGhgbJycnvtcGQEIKJEyfyxRdfvBeDcTDoIO4W7riZuZVoMADmXp9LXE4c90beQ0v65pXvFyIvMO3SNCbXn8ykepOKb/Cu33Hg7Nmz75RZWR7ee3Hf5MmTGTx4MIGBgbid6A8FmfBdzPs+zHshISeBIO8gZp6ZyfXL12nXrh2jRo2iZcuyM3a+//579uzZw40bN9TLqlWrxsWLF9/rQ+D27dssWLDgvYyVmS9DX0sDSyMdLI1eSo1O8EOc+JoTd1fh32Qk3/ZZ+2Jd5QYw1vPND5adBHlpKgMEqoDk08t81fknvmq7iL+qRFKljLa15cE/8irygx9j1nIq9s2nvn4HfXNVRphZ6WrD226Eo6UhYVwrJ848jmf52SDMDbRJySlkaBN7Otd6cyVlmUzGsWPH2LlzJ+np6fTp04c9e/a8UaHZu3Dp0qUineJeRlNDSmOnF7E5LQ0pqTmFmGmqZtXz+7jjG5OOjYkertZG3HqaQv/aqqryQrmSzrWssTbWITtfQQMHU7Q0pMzpVfwFo1+/fhw8eJBJk0p4UL4la9aswcHBgcGDB7/zWE8znjL/5nxaVm5ZJAngavRVjoYc5YfmP2Cqa8pPLX8iozDjrQwGQC2zWnR27EyLyuVP738bjI3L7vD5rrx3oyGVSvnyyy8ZPnw49zd+i0Reejrev8nKlSs5tvcYfTr0ofvQ7qz8ZeUbyQ0PHz78A54d/PXXX9SrV++9zFhOhlzmmz1xdKjhyrrhRauCMbZDUbUttwsjKchLfudjAbB/FETfU7m59M2g6yIuOLgz9+JEfuv0G8Oa1n/nQyTEP6BtZhKR4V5QHqNhXh0mvRDPy8yXMeuQD73qVqbHM7HBQY0diEnLw8ZEjw5uWnzTxYUW1c1RKFXJD4GBgZy5d69c53fz5k2ioqLIzc2lQ4cOfP/999SvX/+DSzy8ysGDB5k1a1a5tj32MIYv9z5k1ZD69Gtgx4BG9gxoZM/X+x/yy+lANKQSghf1IDw5h+kHHpKeK+Przo3R09JkYCN7/rgSSr8GdsV0tBo0aMCBAwfe6zX5+vqycePGtx4j9s4RZEEXcBy6gmom1VjQagE1zYpmVnrFeHEu4hxja4/FVNcUN3M39gXuIzkvGQu9N5812Rra8mv7D1s3EhYWRt26dT/oMT6IjEibNm0YNWoUyy8lM2PGDHIK5MRl5FHDquwU1bclV5bL4eDDdKvaDQs9C345HUhseh4rh9Qv8tCNjIxk8eLFBAYG4uHhwaVLl8rdJvOfZuvWrW+uXFsCEZkRzLz+BaYO7rjbLSy+gaEVmmOOM18oVb0T3gf1R4BNXVW/DgANLQoMLEo1gJmFmRhpGb2RgfRo+iVJVdpT1fLtXGdx6fmc8ovHQFtTbTQ+aa2ahSgUCny871JPS87edRtJT09nUWIiGhoaDBkypFznOWLEiFJnrEIIEhIS+O233/D393+tz1+hUGBtba2exWprazN48GA0NTWRSCQ0bty4VGOUkJCAtXXJM6SsfBkJmfnUsDIiOCELc0Nt6tiZUMX8xW8it1DOzdAUlAL0NCQM23gLYz1N7kekY6ijyQnfONZdCmHj1acUKpQk56bxfffGRY7ToEEDxo0bx9ChQ6lfv36Z1/o6bty4wZ49e9i9e/c7zeqjL26iaf514iImYFu9bomtbL9p/A1D3YZSzUTlhjwbfpY1D9YgEEyoO+Gtj/2hUCgUeHl5fZBan5f5YNpT06ZNY/DgwVy6dImjCaYcfxTLua/afhDDcS7iHEvvLiWjMIPJ9SfjFZJMVGoucqVAS0NCTEwMc+fOJTIykvnz59OqVQm1Bv8hFi9ejKOjY4nBS7b3AQNLGLilXGPZG9ozuf5kGlg1oJlt6QV1781gADQsrn3To1oPelQr7rMNSAlg+InhfFznY75o8MUbHcbSpt5bn6KrjRGHP66LsZbgwYMHnDypKroKCwsjIiKCRo0aYWZmRs+ePalVqxYaGhqYm5uXOFZCQoK6QDA3N5fg4GDS0tI4cUKVYimTyQgICECpVHLt2jUkEgmWlpb06dOHb7/9ttQZ7t34u3zv9T1zm83FVcdVvdzPz4/bt28Dqt7VCxcupKCggGXLlhXTlyosLCzyPcrMlxEQm4lSwJ/Xn3IuIJGdHzdl1NY7dHe34e8vWhfZPyw5h7iMfJobxDJVcoAfwgdSs0UrVg+tTw93G+RKuByYyP3IdBwcHrM3cRa6Xj8yvfVA9RhSqZRhw4aRl5dXrs+mNHx9ffn22285derUO6u5avVbw9+h/vSqVnq8VVtDW20wAHpW64lA0NWpa8k7hF5Sdb3svwGqljNe9x55+vQpNWvW/ODKHB/MaEgkErZv387QoUNp3W80/erXKKbm+b7o7NiZzMJMulftDsBf45sjUyjR0pBy4cIF5s+fz4wZM+jZs+f/RFbX7du3+f33EmQ8hICMaFAUlnssDalGyUG3V8gtlJNdIC+zpqAIsjw4OUPVf+O5sqn/cVUso1HJleElYapjipuZG1VNqqry1NMiXl8o9ZakpKRw+vRpCgsLOX78ONnZ2dSoUQMNDQ0++ugjDAwMMDc3p0aNF3If586d49ChQzx9WnLlb2RkJBKJhEqVVBlV2trauLq6FklekEgktG7dGm1tbUa2rYHjnXnQ71tVj5EyyJHlkJibSL6yaF+VDh06FItThIaGMnr0aNatW6euPdm8eTMtW7Ykr1DBhiuh9Kpry7Yb4ey+HQmAh6slHzWwp3ZlY+rYmaClISVfplAXIvrHZmKoo8nxKa249tdSWubc5lCvYRg2r6VWg17q6Y+hrhZ969lyKSISpY4x52MOMUXRGx2N9/fwOnv2LDNmzODMmTOq1qvvSAO3GjRwK1vWBVB9p5ODoO036GnqMchlEKk5hZwJjqdLLeuis86CLMiKg8Lsdz6/t+H+/fu4ubl98ON8UJVbfX199u7dy9ChQ/Hw8CAvyx4DnVd8gUKAUJZeiVye42jpM6rWi7dbAx1NZDIZy5Yt4+HDh3h6en7w4ND7wtfXF319/ZIDpRIJTLn3+h7gQqg0hOybgGbZPvTotFwK5Urm/e3PnbAUbs3uiKl+OfzuGTGqitiCzBdG4+wclBnRXDW3o71T+fq122Yl8leuFpjWhn2jIMFXlUXyav+NYpcoOBh8kIZWDUuUJFEoFOzYsYPz588TGhqKlZUVQgj69euHpqYmK1aswNramqSkJGJiYsjOzmbbtm0UFhYSFRUFqCQwcnJymDJlCh4eHiW6pfT09N4stfpBiKr/RGHOazdt79Ce+yPvF5OKL4nq1auzc+dO2rRpQ2RkJBoaGhw6dIiTJ09yOSiJ1ReCCU3KorKpHlZGOjSrZsYnratR38GUJ/FZ+ERn4BOdQR07Ez5tUw2ZQkm/365jX0mPi9Pboxw8g6+P1mK0fS/OnXtC06rmtHOx5OKTROLS8zHR06KpXWOecIOYvMf4xMTTpMqLFOkqVapw+/ZtWrR4syBwYmIiq1at4siRI9y4cUNtnN+V3y+HcuBeFHsnNi/yopRbKKfrqqs0dTJnxeB64PWrKg298ceq+Bzw67kn7LoVyfaPmxZVwa3VB+Ymw/t6Mb24UJX1N+LAa1su5+fn88svv6hnzB+SDy6Nrq+vz759+9i7dy+9e/fGycmJrl270qxZM5Uezs5+kBIKUx+8twYux44dY/bs2UyaNIldu3b9J5qxl5d58+aVnTFVni+k3yE49AlKjzl8HtkBVxsjviql//mwTbdIyS7kq07OGOlqlppuWAyLGqrAsslLWjiDd/D1mfFcuTYDb0fv8t33sKsqwUO33tBnDWTGvNZgAASkBvDTzZ/oWKUjqzxWoVQqCQwM5IcffuDq1asoFApMTU2xs7NTp3pKJBIOHz6MsbExp0+fBlQzg5o1ayKRSPj444+pUqUKlSpVKhIj2B2wG1+pLz2q9sBAy4DA1EC8YrwYU3sMWomBkB4FpuWotQi7Csc+h8oNVddZDspjMJ5TrVo1xowZw8KFC/nss8+QSqVIJBLaOVsyq7sbP58KpKqFPik5hXzZ0VntKna1McLD1ZKnSTl0d7dBoRTcCUtlcvvq6Gmrjv/j0YeMTNpP+o0k1j90xT82k3Yulhyd3IplpwO5EpTMj71qs+fuDDZc8+eCdS5NXrKlHTp0KLevXS6Xs2/fPv7880+MjY1p3Lgxvr6+aGq+n8fVn9fD2OL1lLRcGUcfxDLhpdRpCRK0NaRoa6q+uxk9/sBEma42GACDGzsgUwgaO5bwPS3l9/nHlVCeJuegVArm9KqFiV45nnXxfiqDJS94rdE4cOAATZs2LdJk60Pxj/TT0NPTY9y4cYwdO5b09HSOHj3KwoULyc7OJj85Al0JcGkAWtraVK1atcjDRiKR0Lt3b5o0aVKmr04Iwc2bN9myZQsZGRns27ePOnX+m/UhpXHo0CGqVatGrSqWqhoXq7ecalZpAfWGE2DUkvMBCcRn5jG6hSPfH/FjWLMqRd6OPm5Vlcw8OePbvkZAsCSeyydE31Op0nZbzJCua+grzy+/oW7+OTi2etEx0K5h2ds/o6ZZTX5o8QM1DWsyYcIEDh8+TG5uLh4eHhw4cIC2bduSmp/K2Yiz9K/RH13Nt+tNIVPIWHZnGUqU/B36Nzu672Cr31ZOhZ2iaaVa1N3aR5XKO/Hq6wczcQCHZhDzAKQHoNm7ycuUxKBBgzh69CgHDhxQFw1KpRJGNnckMC6TLrVtaOxYCSsDTXi0l/TKbbkYpSQlp5DUnELMDXXYdzeK74744uFqyaUnSbjZGEFuKv01r6Op0OWv8WPQ1ZLy09/+TGhbjQX96vDL6UDar7jMzx/VQao0LjZbtba2JiIiosxzz8/PZ/78+ezZs4dhw4axbNkytavtXSiQKxi04SbudiYs7l+Hp0k5ZObLUCgFp/3iVEYjIwZM7NDT1uDC9PYAXHqSyMd/hvBNV1cmV4G8QgWZ+TIuBiay724U3d1taP+aXj3P2Xo9jPRcGQVyJYMaO7xWhgiAIbtAUfCibqoUrl69yq5du9i7d2+5zuVd+UebMD33/Y4bN45x44qrpebk5BAdHV1kWV5eHgcPHmTZsmUIIVAoFMhkMrp3707lypVp0KAB69ev5/HjxzRv3pyvv/76vbbJ/Cc5cOAA8+bNe5ayehe+CS7yhlNewmWmVOq6htve0ciV6Yxo5khYcg6nH8dT2VSviNEY16r0uoVyE3EDgk5BvaG0qN3vzfaVahQ3FGFX4dIS6L36Ra3HM/Lz87ly5Qpbt27l7t27pKenU61aNQ4dOkTDhg2L+Lt3B+xmk+8mDLUM6V2991tdmpaGFlu7beVPvz+pa6lKZfyq4Vd4OHhQp3JzaD0NzMppcM2qqlRk0yJUApAfED8/vyJqyHpaGlgY6iCEqlkY/sfhyERCrAdxMcqG0f0+pm4VC+RKQesa5nR1lGKY9ADTED82LDyEhbYGM7T608SpBT0tNDngk8LW62HYmerSztUKVxsj6tqb0NrZgkfzuhTT35JKpWU2lXr69Cljxoxh6tSpzJo1q+QkkHKQkStjxsFH9Gtgp86KkysE/rGZxGfks7h/HX7qW5vBjRzovd6L8OQcUq9txuzCdB42W8FRWQtGNKuCs7UR3x/2RVNDQo1nTY+++OsBl58k0qmmFR3cLItIlCdk5jNh531GNqvCoMbFZ50HJ7Ukp0BOnkxBgyrldLFpaKr+K4OEhAS++eYbLl++/I9lgv6nOvcZGBjg6upabPmraXrp6encunVLHfyLi4sjLCzsfyLIXRrXr1/HwMBAFcjKGwW29V+krL4BydkFdF55hWZVzdnxcVNaVDenpq0qnnPuq7ZF0infGy2mqLr8vYmgoEIG8vySH57xvhB5A9LCwNKFnJwcjh49yvLly4mIiEBXV5fOnTvz888/l1ncNdRtKMbaxu8k+wDQ0LohDa1fGDZbQ1tsDZ/1/i6hf8hrqfRucijI8ov3NHmGr68vGhoaPHnyBIfqrure38nZBWy9HkbzuEx61rVVKRa3/w6XtCTWJawlU16dejMTkQdcpKpuHnZ2dtRu0YKl43tRs2ZNtLW1iYmJ4datW3Tr1o1OnbuwvM9wjgU/4dcno6ip34ORzcbgFZxMYHwW3/eoifSV1slKpZL8/PxixiMmJoaxY8eyY8cOqlYt30vM917fE5Mdw9auW4tk/sVl5nEuIAFzQ2210dDV0sDVxgjHZ9/9oIRscmVypBJIyc5n+Kb7CG9NfPf9RobYzhErQ5q62mOpbUeDmg1pUc2MjFwZbV0suBSYwOnHCVz6pj2VTV8k9mSmpTA1YQ45/r2hcXHFAYd3LGYtidjYWPr06cPatWv/0dIBiRCv72CUmZmJiYkJGRkZ/zMB5f81PDw83ro50+Pkx8Rkx9DFqQsyhZLZh3xo7GTG0Kbvpn31HKVSye3btwkLCyuyXCKR4OHh8XZ+1D1DVTOUr3yLGUd/f38e3rgI+mbcu3eP/fv3o1QqmT59Oj179vxHMkT+KyhfrZ85/R3c2wqf3yyxuv3LL7+kQYMGJCUlsyevLvaV9NVptH4xGVgZ62BlpMun2+8hUyjZ2seCvcu/4bcr0eSaVKP74LEs/rjslrTPG4mtXr0auwYNCWl0l/y0NtTWH0CBQkFgXBb35nQq5qJau3Yt1tbWxQz9gAEDWLhwYZGeH2oKc1UZg6/MOMefHU9UVhSe/T2L6ThFpuRibaKDjqYGGXkqN5RMoWTOUT9Gt3Dkk+33MEjyxyHpJkFPI0k3qYF7p0GM71wHEz0tmjiZk5IQy507d7h48SKHLtxC370TtT36Ymqoi6ZUyt4JLcjKlxGcGkpNK0f00qMR65tBvaFI+v2mPpeY9DysjHTQ0ni/L7QRERGMHj2a2bNn061b2Z9XeSnvc/4/NdP4v4qvry8ODg5vLXv+062f8E/x56rNVf5+kMHhBzEMaPR2InjBwcEcOXKE0NBQ0tPTycjIQEtLi/r16xdz+8lkMr766ityckrPBBJCkJmZWfxBn5IEeRYQNh0kL4K9QUFBVKtWDZlMRmBgIBKJhF27dtGuXbvXx0nyM1VCi/+f8DDxIePOjGNmk5k0NuuJrYkeBqYOYF6jRD+3EII1a9YwevRopk2bRlyQBBuTF2/1zwUit98I51FUOvL0WLrs3k7btm05dWZbuV8IpVIpQ4cOZfDgwWzevJlzC69QpZcLzXqZ8dulUBb1cy8xA8/S0hKFQlFkmUKhoLCwsGSDAcg9p6Ph8xfZ465g5PiiLqdV5Vbcjr/N3OtzWdJmiXr5CZ84krMLGN5M9cI0aMMNkrMLWT20PmceRZByzxPF5ROYO9dk1fJfqFatGvkyBZpSCZovPdjNTVxwcXFh5MiROBzyZs/2zdxcNZm1i39g3KhhqrG3HiLGYBF9q/djYesFSKb5qGqonhEQl0nPNdcY0cyRBf3KIZ9eTmJjYxk4cCA7d+78V16gKozGf4ASM6ZCL8Hln6Hvutc2bpnZZCaRWZFU0q2EjXEB1S0NqWRQvky0lJQU4uPj2bhxI0FBQQQFBbFkyRJGjx6NtrY2ZmZlx1TK08Q+KyurTMMCqofHmTNniImJISMjg969e7N27dry+7bDr8P2XtD5J2j5ZkWC/wQ3Ym6gq6lbxM31OvQ09bDWtyYvX5vOK6/Sr74dK4d8Bs0/K3H7U6dOMX36dG7fvo2rqyuZiVPJkkiATeptsvJlzDv+mIIoX9K99vD48rFyu4ReRSqVMmHCBHw0nPFc8x36bathZ6qLuWH5pVK2bNlC796lx5vuaDcjRfGUSH8Fk5959fLl+azyXoUECcY6xiiUCjSkGqqMrz3eAFgZ6dC9ji1Nq5rxOCaD+2cPYXppMx0//ZhV352i70Zv1t3N5NdqlNkgC2D+gIbMH/Ab2dk5LFy4gF69drNt2zY8qrtyPqk5Hg7tVRu+nEkI2Bjr0s7FsnxB73ISExPDyJEjmTFjxr82464wGv8yqampFBYWFm/Ak+Cn6iucHlG60Tg/D/LSaNh7tfph1KW2DV1qv95ddOzYMXbs2IGWlhY2NjYMHDiQ1q1bf5D0ZCMjo1ILsnJycti8eTOenp507tyZLVu2lCp7AaoK8oisCLo5vTIlN7AEq9pQ6T0E9ssiOViV0tzyi2Jv+6f94lh4IoANIxsVkX0XQjD54mTMdM24MOhCuQ/laubK6QGnySmQ86ieL11rW/MkPotD3tFM6VCjmKR/bm4utWvX5smTJ+jr65OnyEOKlPiMfCoZaKGjqcGOmxEUpsXB/f2cPOFJ1arv7sJ8nCah5vC5rFs6n8w6Q/giq4DABTbqAsDSEEJw+vRpVq1aVeo27p1GsE2vFYMav3gg+6f4oxAKWlduzc9tf0YqkTL0j5voamvgbKNFYaEmlQxUhqtApuTS7nVclSj56It1TB7XnJwCOfaV9LE1fbOMOkNDA37++Wdu37lLr7792bX9T2Z23VTq9pUMtPlzXNNS1wPkyfOYeXUmrSq3YojbkDK3jY6Opnbt2ixduvS9CDW+LRVG419mzJgxJX8BWn4B7gPB2Lb0nZ+cgpwk6LWqzIK/8PBwYmNjOXnyJF5eXhgbG1O/fn02bdr02pnEhyIqKorFixcTERHBJ598wuHDh8tV6bvw9kJ8knxoaNUQK/2X0h0tXeAzr9J3LIn8TAi9oKoReZ6lkh4FWfHg0KTkfe5sgjt/gG09cO1eZFVGnoz4jHyyC4p2T5NIJCxprXKhHAk+Qreq3dSd78qDgY4mq4aqUk+/P36T/QF/09SiL52qmoLli8SRgIAAGjdurK5Gt8j8Bu+INFp7XaS1swUSoJm9Lqknf8Wyz7e0dCu533RAXCax6Xl0rGlNr7XXqKSvzc5PmqnXH7gXxd8+cawd1gATPS2qmuuTkKXBT6v+4MtPRjBq0UY0pBJmH/ZBT0uTH3qXrA/24MEDnJycyiyONNbVYmrHoi9NDawa8HObn2lo1RATHRM2X3vKrbBULCxiKLBYT0Fid4ZuzGPtsPps270XS60CmoycSd0q5ur7+apcynMSs/LptcaLjxraM6t7yW/yl1ONiK3/CQOGj2HWqu2EpMqY3cMNLQ0pMoWSleeC6GhTQKPwP6DVl0U+o1fJLMjEK8YLTalmmUZDLpczbNgwVq5cyccff1zqdv8EFUbjX+TRo0dIJBJGjhxJVGouus+ky9WUZTBAlb6pkJdoMAoLC5kzZw5+fn7o6OjQtGlTWrduzezZszEwKH/DoPfJkydP2L17N1evXsXR0ZGRI0fSufOb9W6e0XgGT9Ofsu1qKkplCpeDkvh5QF3qO5gCkC9TsOd2JD3r2hZTWwWITc8jK1+Oq40R3FgDV5fBgC1Q55lW0qFPIfoOhztcZP2dDLaNa1o086XtDLBvrJJPeYUh7kYMyvRGalYHKKpT1a1qNzb7bma192pkShmDXUt5U9w3CmIfwKgjJc4wzW3voZv2N41vHIcziTAzHLRV55eUlMSdO3cYMGAAoAp8R6Xl0bCKKYY6mnj6xPH0wGZWLvuZGnWbqdscK5SCPJlCnSY765APj6IzuD+nExoSCZqvzBjuhadxIySZlOwCTPS0+KmfO62XXuKwriY71y9n167fYGBTLgQkYqSrCZRsNE6fPk3Hjm+e2SaRSOhZraf677r2prSsbo6GjpL7eZYoZaYMbGSPcWEKGk/O89v+I3SuU7KBLDY2qustK25tY6xL0zqu3Ixvx5fffo9h2zGMa+WEg5k+X+9/yN+P4sjU9aIRu8HSrWSjIQSEX8ParjFnBpzBWKfseNIXX3zB4MGD/3WDARVG418jOTmZUaNGcezYMWQKJV1XXcW+kh5nv2pX/kGeZR3dunWLgIAAbt26RVxcHBKJhOzsbKZOncovv/zyga6g/Fy+fJndu3eTmprKyJEjmTdv3lunR9e3qo+JtAYzt1/F2liX6LQ8rgUlYm6g6sJ4/H4Y360/wEGDNKrq5BAREUFOTg6FUh38o1IBQaFSQvfWjTA10mGkY19qGdVBPWdp8TnEtyUq34CotHhyC4sGbjG0hLqlPPCfnEJ6bZlq1tJ+lurBsL4ZGNnAmOP0rd4XmVJGF8fiBkeNlp4qW2jnR6rMslcY7T4MC30T9HLyITNWbTCio6O5evUqEydOVAsgDm7swO+XQ3kQmc7cnrWwTX1IQq4Dk4b2KTLmuD/vcCc8lavfemBlpMvMbm6EJuegqSFlx8fNinQ4BFjQz53pXVxU9R6AfSV9Pm1TlWMPY/hTYkRGVj5Xr17l3FftyhQwiIyMZOzYscVXPNitSmioWTzWkZCZT7/11xnSxIFpnVQZVU2rmrFnfHPO+sdzbcdXVNLX4tsuLowY2IfLR3biVsqMCuD20xSsjHWp+qzzoqWRDjdml27ICuVKFp0MwNpIh6pNOxG24yiftdBDU0OCf2wmno/i0NKQcEDWimpubvRxH4BugbxY3QpPTsLe4dD6ayw7/Vj6TQJ+/vln0tLSitTd/JtUGI1/ASEEn0+eQm6dgXx+53s0HmYytPESQpJzufQkEY9Sqkzz8vI4cuQIXl5eKJVKwsLC1DIYTZo04bvvvsPR8R1rAN4jkZGR/PDDD2RnZzNv3jzc3UvIIMmKB32L1xYxPSciJYdOK65gZqiDVCJhcX93vj/qx+Ezl3FMvEFwSAh2Fm5E61VneO/+rO3SDKlUytEHMUw/8IiaNob4RCTzRJZKfEQI+jqVWT9jDlExsWiY2jJp5ED69/mSLw0NmdiuOqHJbyA+5z4AJNIXbiuJRCWJ8sy4W+pb8lk9VRC7QFGAVCJVNfTJjIXAE9BwNHy0UTXD0DUt8RAWehaMrj262HIfHx+6d+/OX3/9xYEDB8iXKRjapArBCVkc9I5hr1cgqxb/wvwNRauGC+VKvEKS0daUYqCtSXa+jODEbHrUsaXf+uvkFsq5/V1RHbHI1By+3v+Irzq7qL+rlU30SMuRcT00BS3Hfnw8+Sse3brK1uuxbL8ZzpHPy6ksrVTC31PByLZEo6EUgnyZSoDxaVI26Xly1gytT1qujM93eVPFTJ/I1FzGfj6NYcOGlRksTs8tZNimW9S0NebE1PKp0mprSvmsXXWi0/I44n8TjTbZLN86gyepG1jUvw517E0Y3rQKvepVRgo0W3wBFxsjDn32iky+fVPV512r7C57169f5+zZs3h6en7wNq7lpcJo/At4eXmRlpGBSasW6GnEY6SrxSfNq9Nq6SUC47Jo4mTG+hGqwLYQgq1bt+Ll5UV8fDwDBgxg5syZaGlpUalSpXeWiP4QyGQyNm7ciKenJ9999x1t2pTyg0zwhw2tVWJwPZeTXSDnSXwmjRxLj7OYGWjToroFN0KTUSgFZz2PoXlqDzrVqjLth5lYV3WlxZKLAMiNbNQzmn4N7EjIzGfJqUCkWjq41ajJL+N70v1ZAdiaC8H8vOcs5+48ZuumP5DqGpBu3Zhki3qsGNqYvg3sXp9rr6lTvJf6J2eKbaYUSnoe7om1vjW7e+6GG+vg1nowtGJq/AU0JBqsbDqj2H5lMWfOHFasWEFKSgrW1taM2nIb74g05vSqyUHvGI7u3kzjnsNo5lJUCFNbU8p3PWpiaaRDWHIOfdddRyEE3hFpdHCzokCuKHas+IwCfGMyeJqUg8czz8vHrasytqUTc476sv9eNK16D2f58uVYtB2BRCJRe1BfTbkthlQKo46qZ1CvYmuix+HPWzFoww0eRKYTlZZHSGIWLjbGtHWxpGNNK5Zu3sf9JxGc2LWhzENFpuaiFGBu8GaNsb7q7MJWrzAOPbChTotB3Jx/jMg22RjpanJ8yotYiVIp6FTLGidzfeQKJflyJYtO+NOzTmVaO1vCy10ySyAkJIQvv/ySY8eO/af6/lQYjX+Y3NxcvvzyS9avX/9M8fOFT/+v8c354ZgfD6PSefjwIStXriQqKor+/fszZ84cqld/C32of5jY2Fi1lIunpydKiZKn6U+pZlpCP21Da1XfAQdVhsnPpwLYdSsSdztjWlW3oIObFUcfxqKjKcXCUJspHZwx0tVi16fN8I+I46vJk7Bxr8ntiyeLBPQ7uFkSkZKLtqaUPbcj1Tn7/RvakZUvJyOvkL/uRnEjNIXudWyJy8gjITOfLq2asGpofXQ0Nei26AhPr55CXNrPtAAP9vcazv7Pyt+HRQhRaiaaVCKlpnlNLPWe5fS3+FyVruncleiQ7WhI3uyNMj09HQ0NDZycnNQPl2oWhlwLTuZ2WCqfta/OjjO+/LFxBWP+vMvMbm4MbvKijufTNqrPJjQpGxsTHWLS83mSkMXqYarge0hiNj8e9+Przi40cjTD0kiHds6WtHFWCUF2W3UVYz0t9k9sgUwhEECrrn3545vh3Jg1i8keKgny1q1bM2vWLEaOHFn2BZXSiyIqNZd5xx8zsV017s3pzA/H/Nh7JwpzQ12MdbXYOrYJQgimDN2BYe/v8I5MK/MFxNHMgF51bfmooV257vPLnPWPB6HFmFrTuGsXi++da+TJWqoFP4dtvEW+XMHEttWZeciHIw9iWDW0AX/diUKhFLR2Lrvzn0wmw8PDg4MHD2Jn9+bn9yGpMBr/MH/++ScdOnQoJhEdFxeHNDkSn6WDSUxMZLnfCBYtWvSfcjeVRWZmJosWLSIwMJB58+aphebW3l/LFr8tbOmyhaa2r6QfGpjD6GMAHH0Qg6ZUQt/6tvz9KI7UnEKyCuT8dScSfW0NrI11mdJBFRi+c8OLr0f3ZNEnXWg3++di52Kip01CZhq/ng0ip1DB8GZVyC6QM/D3m7RxtmB6F1cex2biYq3y/W+7/qLHRGhSNia6WkQU6FGp+UeM/OILTh/YxsPNs4jpsxdjcyvCknOoa29a6r3Y/ng7ax+sZVePXbiZleweWdvhpbdME3uV4QAO9n6zbo1CCLp168bKlStJSkpSuzC+6epCfGYeHq5W9K1vx/XfbEAioUCmYPvNcBKz8nGzMabTS33Pq1sa0re+HQ+i0pnT80Wx3Z2wFK6HpNDEMZlGjmbcj0jjclAS3dxtcLE2wlhPS53+26K6OQfuR7P41BMsHRvxy+a9DPyoPzVtjbG3tyc1NbXI+SuVynJfq29MBhcCE3kQlYb33C7M612bQrmSw97ReLhZoaelQaz/XTq0a02ivQ2jt95hy5gmNK9WcvMsE32t4u2Py8nKIfWJTsujiZMZf/fuh9/lv7EwfJHEoiGVkJhZwPYb4WTkyXCzMaK+gymHP2+p1rIqjYSEBJo1a8by5ctp1qxZmdv+G1QYjX+YwMBAhg4dSmpqqvrt+Ndff+XUqVO0b9+ekSNH0rdvX9q0afM/IeleWFjIunXrOHnyJNOnT2fp0qVF1jezbcbTjKeqJktlsOLcExIyCrjzfUfuR6TT1tmC2d3dqGdvQl17U/UP8vLlyyz/ZSmHRlljXb24a27T1adEp+VycXo7krILyM6X0/aXS9S1MyYrX0Z6ngwzA20Of96KR1HpfHvwEZ+0qoqhjgaVTfVpWKUSay+GoKsppUCu5EJQKj2Hj8dddyDNO/eh6ZCp3M+zwPOL1kVqMV7GWNsYCz0LtDXevB/4m3ZQnD9/PpaWlrRu3Zoff/xRnTllpKvFbyMa4R+bCahiAfcj0lgzvCEfb7tLeHIO+XIlQQu7F6mn2HsnirS8QvS1NVAqBVKpBLlSpTRkrPfsLbqpA/UcTKj1TNNs/8QXL0C96lZGphBceZJIjFEHfl6/ntvKanh+oZo96Ovrq7/7VapUwc/PD3v712c2hSRmk5JdgIeLJZoaEvU1HX4QQ6Fcye+XQ7E21qVuxEHmTptEnIY1Mw/5vNG9zMiVqYP+43fcw9ZEl5/6llzJbWuip24q9/vnPel6eisp2QWYP/uerh/ekAYLzmKqr8X5r9upDUXD14gVHjp0iEmTJnHq1CkaN25c5rb/FhVG4x9mwoQJrF27lpiYGBQKBUqlEh8fH3XW0/8SJ0+eZMmSJQwcOJBz586VeP4tKregReXXN975Y2QjNl59yqPoDLxmqrrSRaTkMOuwLx3drNg8pgl3795l5o+LmLp4PWsTVb2tx74yTkB8Jn4xmQigdmUT8mUKtDWlFMgFabky5IoXb7ZrLgRzITCRbu42uNoYs/hkAPGZ+Wy8+hQNDQkmWprkFsjxjc7AqLolkq4z8T/xG5Xd22FfqWiq8K5bETiZG9Da2YL+zv3p79z/TW/nGyOTydiwYQPBwcGAqh7nZTfdFq+nLD4ZyGet7LgelIjf8ceMaeHIxentCEvOoUCuZOreB4QmZuP5RWs0NaT0qV+Zw97RdFpxhcFNqrDkozoMaeKAtbEuUomExKx8rIx0qV25ZIOprSmlm7sNsw75gEQfSU4KX3d2IbdQjr62Jvb29gQGBtKyZUv69u3LokWLyqWdtPpCMH8/imVk8yrsuhVJv/XXWT6oHnN61mTnrQh6uNuSlJTAxa2HqDutP/Vd66vjVeXB0yeWKXsesGpIfXrXq4xPdDrJ2eWLF4akyXkYncGiEwH8OqQ+oJrF7J/YAgtDHZwsypfivnLlSpYuXcqDBw/KZUj/LSqMxj9MnTp12Lhx4799Gu9EQkICE4b1xkGaxIEDN9+p8Utmvoxea7xoWMWUow9jyS1UqKXbbU30GN3ckRbVLcjIyGDatGko2k1j7t/BCAnUsjVm7CvS7ssG1mN+n9oYPXOX6GppcP7rdlwIiOdcQAK2xrr8dSeS8/4JXHmSSCV9LTq4WTPg9+uEp+Sy904kx6a0QksqZd2lYA55x7CwnztOFga0rGGBd+/6zPz6SwaPn8aZXeuRSCQc8Y5mzlE/XG2MODOt7dvf2DfE19eXzp07q4siU1JScHNz49jDGO6EpTKwkT3d3W2QpcaiMLJhQEM7JrSrjp2pHtUsVW++nj6xKF/SLP2xdy323I5EKpXg+sx9F5qYg62xLn3WX8dAR5OJbasVK7h7mZi0PASAABNjI345FUBmvoIbszsyYMAALl++TMuWLalduzZJSUkUFhYSmhXKvif7+KLBF5jrFXcnfdXJmebVzDAz0OKvO1GquF9UOqNbOPFRQ3v6r7+ORoQX9pppSINPgWsZac0lUNlUj5q2xthV0kNDKuHyNx6vrWh/Tk1bY6x0lUSk5rLzVgSjmjuSV6jgnH9CEcOlVAokEkp8uTp37hynT5/+n3h5rDAaFbwRly5dYv78+fz2eR9q1akPJRmMiJuwexD0Wgl1B5U61tOkbFZdCKZApsBQV5P9E1uo8+VB9dY6v687Qgh69erFr7/+iratCztuRnDkQQxfdXqhfKpQqlIxDXQ01QbjZVxtjOnoZkX3OrasOPuEO+FpjG5RhYTMAq6HJNO3nh0BsVn8PKAu1Z89UAvlShRKgV9MBm62xjSvZk5IYhbm3abg432MvmM+49j233mSoErLndi2hGD/ByQ0NLTEzLTD3jFcC05iSocaLB9Uj6MH97Po4+58Mbh+sW1/G9GoyN8SiYR9E5ujo6lBbHoerX6+QEx6Pj/0qsnI5o4c8Y4mPVcGqO75laBEWla3KKLfVKuyMd3cbYhOy0XUdiM27Ak21VUxEi2top9Nw4YNuXHjBj7GPhwKPkQb+zYlStlXszSkmqUhaTmFWBlq07yaOQMb2ZNXqOCb/Q8JSczGIFuTXl3HQ5dFnPdPwNXGiB03w6nnYEoNK0NM9bSLCDgWOY8qlTj15Yt7+bxjYXnQ1dLAxd4K3+gMbEx06ehmxSfb7xIQl0V6roz6DqYIIej46xUsDLU5MKlo+q0QgnHjxnHhwoX/vMGACqNRwRtw8eJFfvnlF44fP/5CEbUgCzZ6gGNLVT1C449VtQoaWqX2fc/IlfH5nvtU0tfG0yeOJR/VYVgZMu5btmyhadOm6qBgXXtTvunqit1L/Qym73/IOf8ELs/wwNJIh9xCObMP++JsZUSL6uY0cqzElrEqaZAaVobci0jD3ECHHTcjMdTRom/9ylz51qNIRf6oFk4kZhVQv4qpetm+u6omYfqN+hL2aB8r1v7GjCmfM7qFY5H+Ch8aIQR79+5VF2/6+Pios+tWD61PYlYBOpoaNF98AV3fK6yZMbbYGMEJWcRl5NP25T7XoG4SdD0kmdj0fBo5VqJ5NQs+bm3Mgr61WX0hmG6rrjKyuSNzjvrxaeuqdHW3oYmTyjWmUAouP0nE1kSPIR1bM/fII6SWLwzqy2m3Y8eOZfHixWz8cyPNbJvR1EaVLCFXyln7YC31LevjUcVDvX0lA21uPqsbyS2Us/p8MKcfJyCVgLN2Bs3bdcE/Wc6nO+5Ry9YI/7gs3GyMCE3KppatMcemFJUPyS1UuR+bPQuW/3k9jAeRaSiUsLCfu1rDqiRi0nO5FpRMcGI2GlIJXrM8yMqT8/vlUALjsuhV15aZ3d1YfHsxlQ0qU9nUDXOD4t1Hg4KCqFSpUom9hP6LVBiNCsrFo0ePWL58Ofv37y8qoa2QQ24KJAVC1G2ViF/7WTAzrNSx0nILuROWSv/6duz5tJn6B1sSGRkZbNmyhStXrqiXaUglRQwGgIuNEbHp+eg/e0OMy8jn+KNYtKRSfr8cwuOfXvjNw1NU+fmO5gYc+qwFhXLBsE236F2vMmuHNSAxM5/LTxKpbWfCnvHNixzn5wF1CIjLZP7xx2TWGcSvm5ZQs25j9Gyc/lGjsWLFCuzt7dWGIjk5Wa1Wa6qvjam+NnmFCmrbGZMRpl2kVfLzAPf0A4/wjcng/pzOzDjwiEoG2iwf9EJ+fHzbagxu7IBPTDqqRFrVTCQhs4DY9DwaOVZidAtHboSmsOV6GD/2qkX/hvaY6Gnh+UVrdDQ1yIyzRLr5CCk5hVwKTKRx7drMnj2b6dOno6+vj5ubG0lJSehp6tHM9kWmUGJuIn/6/Ulz2+Z4VPHgsHc04Sm5fP2s131aTiFDN97iSUIWgxvbM6OLGx+P2ECbNtMxMTWkvoMpD6PSAQiMz2JUc0fq2hePw6w8F8Sma2FsG9eE9q5W7LgZwdCMzciFhCctVpWaefUgMo3+v91Q/22dXYCVkS6Td9/gbngaEqBVDXN0tJQcDTmKkYYtnzVYz8BGxWMV58+fZ+7cueX52P8TVBiNCl5LWloaX331FQcOHCjecyHmHuSlgoWLSpOp2aTXjudkYcCt2R0x0dMq0sNATegleLALeixj85btjP34UzILBd7B8aTlFjK4sUOxafzn7Wvwefsa6r+rWxpy/ut23I9IReOVjKRPWldFCNDWkKozoCa1q05bFwvyZQr6rb9ObEY+Thb6zO1Zi/auVlwPSaaunQmHvWM47B2NXCmQSKS0HjubMZ9OQL/vj9z7sQdWxrpEpuSSnldYPC033g9u/a7q9vc6XbEy8Pf358yZM5w9e7bM7fS0Ndg7oQW9b+zh55MBfKJTGQ2JhIm77jOpbTUsjXSY3d2NSvpa3AhNURvcl9HSlDB66x1qWBpy7muVxM2Sj+qwsJ87GlIJP/V15+zjeA57xzDvb3/S82RM6+SCsZ4WE3bcZ2gTe6rp5aNrYUAlA22MjIzo2LEjDx8+pGXLlkgkEgwMDAgLCysi0V7ZsDI7uu+gsqGqGHGLVxiB8Vn0rmuLs7URiVkFBCVkoa8t5ZRfPCOaOZKfn4+5ueohv6i/O4tPBhCbnkcPd1umd3Et1kkQoEcdWzLz5OrPakxLJwZeukmOHHrs9sZrZocSXVWVTfWoYWVASGIOjR0rYRhvz8HL99HT1mRQI3tyCuTMPuzHYe8YLBVzCEkoYNnTQPS0NLA21qGx04uEhUOHDrF+/frXfOr/HSqMRgWv5ezZs4waNUr9gyxClebQcipkJ8DN9eDYCtx6Ft/uFcwNdfj+iC9BCVn8Nb45mhpSCuVKtDQkSJ6cAr+D/JLSmqVrN1Nl1FIu7fHm1lNVjr+bjTH1ngkUAsgVKj2gBlUq4WimT+3KxmhqSCmQKVl/KZSZ3V7USvx2OYT0XBmjWjjy+W5vPmpoh4G2JrN7uDH2z7sEJ2SRliujkr4WdSqb8Mn2e0zxqMG6SyEMaeLAgXtRaGlI6VVX9TCrY2fMjSsdkAScwcr4IwAm7LxHcGI2lU1VOk7Pt+XJSXi4C6p7vBBIfENkMhmTJk1i+/btRQxnVFSUuo3q0QcxrDwfxOT2NajnYMq1O94Ym7bmzs777PqkKdZGOtyNSOVOWBpfdnSm99prKJRKjPWKu070tTVZ1K8Otq/EAl4OEnepbUOzqua42Bip+2Nn5snwj80kJDEHS2M9jn/TXr29pmbRx84nn3zC8ePH+fLLL4ssr29VX/3vNcMa0HXlFT7b7c3ZaW0JiMtk/8QWjNpyi9xCOacfxxdRR6hd2YSW1S1YduYJLjZGJRoMULninrvjnsRnMu/4YzK12mEpUnCuYqhO730Va2Nd/p7Shk3XntKjji0bQs054xPD1VgNDn/eEgsDHVxsjHgQmU5iihF7P2mDkAg++u0mLtaGao25vLw8kpOTcXYuu2fOf4kKo1HBa4mJiSne7+M5OkbQZQEkBoJxZXAqn4YPqKb4AXFZ9FnnxXc9ajFp1330tDT4feg0QuVtWXkwCJvqtanjZEX/BnbYmuhRz8GUOs9mB5EpuVQy0CKvUMH2G+FcD0kmKCGbWd3dmNSuOjmFcmLS8kjJKQRUxmXP7UhSsws5cC+K+g6mpOfKOOwdw6DG9tSyNcZAW4POtayp52CKjqYUc0MdBjW2J7tATr8Gdoxp4YSZgSqgmi9TMHTjLaTObcg98gMKhQINDQ0+a1+dW09TOHAvmtRnxwZUMtlVWoBTybLc5WHXrl306NGjWOOk8+fP8+uvvwKQklNIZEou3x7ywc3GiEr6WqCrjwDq2JlyY1YHCg5OINXaFn3zLkSm5VGoEDiaG5CYlU+ftdcZ0MiOGV3dmP/3Y4SA9q6WNF10jpHNnZja0Znk7ALScgrRfnaPTPS11K6jqX89wFBHkwaOJtwLT+VGSDJ5hQr1G7tUKiUoKIiWLVUB4WrVqnHp0qUyr/txcgByclEKA9x/PE2uTMngxvaYG+kQk5bPjZBkUnMK1a43gPYulnhHptG0qhnHHsaQmlPIuFYl1wv5x2bSa+012rpYMDLNF+PcaIZ93JCy5G71tDVwsTbCPy6TiIgIfp7aiElCj4ZVKnEnLJWLgYmkZBdwcmpbdf3H2mENigTjjx8/zujRo4sZ0v8y/ztnWsG/RkJCAt27dy97Iys36DTvjcad2LY63xx8hH9cFj5RaVgYahOeksuj+ALG9OzBnUfBOLTsRv++tfn9SihypWBsSydA1feg46+XaVXDgm3jmuL5RRvkCiV/XH1K6xoqiYYmTmYELOhGaFI2vdZew9nKkOi0PPo3qMyRB7H0rGPMjK5uBCdmUdfetMQq73l9aqv/7xOdzpN4VQ1IqxoWbLsRzsOodL7oUotzSR2YvXILrTr1pKqFAXEZ+SwbVA9LQx3ScwtV7U81dUqVyCgPycnJ7Nq1q5hbSghBbGwspqaq8/+kdVV23wonu0BBx5pWRGpr8eeYOkj1jDHR12LTpQBGBZ7CwLQaxno/4T2nM2ceJ1CrsjEI1PELgPMBCSgUgkaOlUjMKuRBZBoA47ffwyc6A4GgvasVzlaGdKplTWPHSlwJSkRTKiW7QIaxLBUtw0pFxvz0009p2LChWuH2dRlDYRlhfH/nY/Qr16GP2zw2X31KexdLDntHY22sS1tnC/xiMgiMTKPFzxdo4FCJDaMa4RWSzIWARAY0TGfF2SDiMvIY1dyxmEv0Tlgqc4/5UcfOhIGNHDCrcQpkuarP6zXMOepHVr4M26Qkdj/KQKZQSZdsuxGGT3QGlobaRa69d72i2l979uxhy5Ytrz3Of4kKo1HBv0bfBnYExGex4Uoo7vamfN7BmciUXBzM9JBIJOy/7I1mtWasCr+MhaE22hpSEjPzCUnKxlRPi45uVrR/prJaq7Iq1vJc6PE5WhpS4tLz8YvJpKmTGZ1qWtPG2ZILAYl0rGWNib5WEf9yWXx3xBe/GFWF9YBGdlyPP4OJ6zHqVVvLepMmPNy6nv3JdtR3MMUvJgNbE12i0vIY2sSBnwfUfad7JYRg8uTJ/PTTT8XUToUQGBkZFUlnPfPM/TF80y0STGqyZ89frF4wG4C1VyLZLFtOdowmY04H0t3dlp51X8RYbn/Xicx8GZcCE/mue03+vB7O3bBUnK0MSM0pZOLOeyRm5SOEoEddG6pZGrHmQjAJmfk0cTKjipkBj2MzuDi9PVnx4ezCF33tF48aMzMz6tevT2xsLJUrF32IlkRlw8rUMuxCTGYVRjRzZFonF8KTcxi4fzbmVhl8XHcpY7feR0tDSmpOISZ6qvvQrJo5nWpa417ZhM1jGpNbqFAbjJuhKQgEzauaP3sZyOL3EQ3fqCAQ4I9RDYmLj+fPAHMuBCZQIFMyt1ctetWtzMBG9nRwK70LpVwu5/79+1hYlK1D9V+jwmhU8K8yrZMzPerY4F7ZhHP+CTStakZWgZzea70w0tWkXS1LckwsGdW8Cq1rWPLl3gec9U9AUwpVzA3YMKq41EJ4cg47b0XwefvqmBvq4OFmxYO5nYukT37UsISKW58DINVge2ZD1l4MYe+E5mr5B0+fWEITVX3OBzWyZ0Aje84eLkDDuBBNTUGDmtV4dBVqW+sxo6sL+tqaaGtIOXA/mt713j7o/Zyff/6ZFi1a0KrV60UTt3iFkZ5bSP8GduTLFei7tOTSxc3wzGgcmaySUHkQlc5vl0MJScxm4+ii93HVuWC2Xg+jvYsld8JTuROeyvmv2zJ5tzfBCdl80cGZiNRcvu3qikQiobFjJbXh/m1EQxKz8nGyMOBRjLzY+QEMGTKEw4cPM2XKlNdej46GDvsGrCiyzMnCgAY18rkfF8LlJ/EASCVQxUyfuc86BUal5qKnrYG5obZaSPA5E3feQylgfJtqrDwfxObRjehUy4ZbT1O4HpLM1I7Or1c1Bho5mvHnxWN06tSJ7oObsvlqGMvPBLLxWhgrh9Qrc1+ZTFauz/O/xtt1wqmggpcJuwqeX0PBG/SeeIaulgZ17U25EJjI+B33WHshGCFAJlfi4uxCC/MCMvNkLLi8k97HutKxrhIJoKMp5ZPWRf3TmfkyfKLT+etOJFu8wvjzejgA5/wTCIzPev3JeE6Dk98gVwpkCiVCCHyi01l1PohfzwVRqFDSq64tP/SuRfNq5nh/NYeHY+6hL6ryIDIdhZEt3v5PsDDUpUGVStS2M2Fen9plKq2Wh8TERE6cOMG4cePKtf3Om+Fs8Qrj51OB+EZnoqlnREhUHBm5BYAqs+yjhvYs6OvOmmEN+P4lccKNV0MZuvEmLaqbIZVAoULJptGNmNCmKntuR9GiujlPk3NwMNNnZjc3tWuprYsl++9F0W7ZJXQ0pTRyNGPnzXA+/XU/Dk7F1Zn79evHyZMny76QvHTyN3ng/fdEFMoXtR25hXIUSsH8pisoeDoLv+hcxrZ0omolbS5Mb69ueHQ+IIETPrEkZOYXG/qXgfVYPqgude1NaF7NDLdnOlpbvcJYezGEp0k55brXoCp47dGjB4+i0tl1O4KcQgUDGtrTrGrpqeT/y1TMNCp4LTo6OkRGRlKzZs2SN3i0T5UVVH+4Ku32JYQQ5BYqir3pvUrTqma0d7HE3kwPEz0tbszuyPnzglu3bmHhUJMChYKkgnR0tVUe4gZVzBjYyJ4LAQm0dbFES0PKvGOPOfwghq86qTJRboclo1S6MGnXfWyMdVnYrzarzgezZlgDYtLysDTSwdn6pb7kIw4SmpLH3cep/D2lNTmFcvqsu46RriZZ+XLm967NluthPIhMVx8ToHk1c65968EBm1BMbaxVrWSBp+kqocZ3rfJduHAh06ZNw8SkZL2nV/lrQnOSswr4cu9D2tSwoIa1IQd9GnH7+jW6dC7aUKnPKz72x7GZPIrKoJatMf0b2NO0aiU617Jh2/VwroemoK8lxVRfq0Sl1qx8OQmZ+cz/259pnZzZePUpTx7epdakAcW21dPTQ1NTk8zMzNIvpCATjbhHhGU8QdHkU5rYNCEjV0abXy7iZGGAT3QGUqQ0r2bON11dubFOh7y8PHUW1ZKP6jCtk0sRlYHnOJrrs+p8EDO7ubF3wgtttJ/6ujOiuaP6M3wdCoWC4OBgqlSpgp29QEdTg9bOFqRkFxCfmf+P1u78U1TMNCp4LePHj+eXX34hJ6eUt6+ui2Dc6WIGA2DJqUAa/HSOkMSy3/SNdTXxCknmjytP1cuaNWvGtWvX2DymCdOajWW8w146VW/EkMYOTGhbjZ03I/hk+z3234sCoE/9yvSqa6sO1ubLVJk064c34JeBdfnzejiPojM49jCGEVtuM3Xvw6In4diCs5lVOP04nu03wnAyN2BYUwf61a+Mo5k+etoaRKflkpb7IiNq87WnnPKNw8FMH11tTbXy6fGQv+l7rC+LvbaQmJnPnKO+7LoV/po7XZxHjx6Rn5/PwIHlT9G1NdHDxkSPpOwC7Crp8WPv2gwbOoQvFqwh76X2tU+TssmXFW2KtGJQPW5/3xG7SvqsGFyPIU1UlfrPs8AaO5kxolkVrI11OeefwIYroQDcj0hDKgFLQx1O+sbhFZJMZGou5vJkOrQoWX68cePGZWdNmVYhdtIVZD2W0TDyAewdwc2gaGQKgZWRDtUsDXC00Mf5mUZWw4YN8fPzU++ur61ZosEAuBWazJnHCdyPSCuy3MZEV619Vh58fHxo2LAhEokETQ2VWKOhjiaf7/Zm0IabZObLyj3W/woVM40KXouDgwNffvklCxYs4Oefi/evQM8UHEtWsq1qYYCrjZG638Jz8uR5aEu10XgmNSKRSPhzXBM0XnorNzIyQiZX4LHoBCky1dv+0KaOLB1YVz12ZGouHdxUwfD2rlb4xWSw/GwQTub6fNVZNePo5q6KKcgUSjLz5fSqa42hjhaO5vrkFsrZcTOC3vUqY2eqRwdXK5aefkJwYjZ62hos+Uh1rBshyRQolAQu6I62ppSIlBwK5AqWnAqkhqUh3evY4ufnR9u2KsFCE42qyLNdeBhizIqEIPbdi0JbQ8rI5k5vdO9/+OEHVq9e/Ub7wIv+JBPbVWff3Uj+CtUkKiqK+/7BNHV3Yc2FYNZdCqFPPVvWDHvxUNfUkGJcgi//uTz6zwPqUNlU1ehp7cVg/GIyGNLYge03wjn+KBYrIx20NCUcfRjL4jb6XMtoWmys53Tp0oWLFy+W2ZLV0aoOjlZ1YN9ICD5LltVUCuQKPm5dlZbViwaQ69Wrx40bN2jSpEmZ90amULL1ejgNq1QqsUK7NO5HpFK7skkRnS1PT0969OgBwMOodGpYGaqMRvsahKfkFPve//9AhdGooFz07t2bY8eOcfLkSfWPpDwMa1qlmK5UdmE23Q53o4FVgyLNiC4/SWLnrQjOTGurfkNs07Y9f/rcRlq1GeNaOakzYwAczPTV/Q5O+sZxPiCB73vUpLqlKv3z1UBme1cr7mRuY9jZ6Qy3W4NfrCnpuYX8fCqQtJxCZveoSVRaHgCVXylmm7r3IZn5Mry+9cDKWJdea70olCvpU8+WyR4q43T3wSPkRjbkFSpQFFiyodPv1LA2IitfhpaGhL717UjMzGfMn3foUsuGrzq7UBZ+fn5IJBKcnJzK3C4qKqqYEKBEAtJnBjgmPZ88mZwm/T6lz9gv+H3TVtZdCgFAphDFxnuZkMRszvkn8NuIhjxNzsbsJe2k1UMbkJCZTyUDbeb0rEnPujZYG+ky56gvqTkFBN65Qv/+/Z/1IU9i3nF/FvRzV7/JOzg4cOPGDXUPkDL5aBPkpTPI2JYereTF3J35MgXNDaKYe+oQvFIk+CpSiQRLIx2qWhi8cB0GnVHppVXvUOI+l54kMu7Pu0xsV43Z3Wty7GEM+tqaXL9+nYmfT2H1hSBWngumvYslZobafNauOolZ+TyITFMXD77KxYsX/6eK+p5TYTQqKBcSiYR169YxZMgQrKys3qlBjLaGNq6VXHE2LfqDcbIwwNXaSB3IBBg1Yii3p03HtX5/Rjxr2xqUkMVvl0KY3sUVBzPVW+8pv3g8fWJp4lSJk77x1HUwLaZPBaCNCUJuwqpzYQiFIauG1mdx/zp0ftbBro2LBXN71aJLraKpkssH1WXf3SiaLbnAoc9aMqaFE5uvPSU9V0YNK0NSU1MJSVMwdPNdatuacD8yjVVD6mNnqsen2/1Izi5kYf869F57jYC4LGraGhc7t1f58ccfyyWjv3//foYOLdqb/NM21dRtXO1N9ZArIVa/Kgq5jMTwQL7wqIGOlpThzRzJlymITc9Ty6W/zBavp/x1J4rqlgZM3+9DPQcTdn+q0uOqamGgNu5WxrocfxjHKb84lAI2j6zLDxPm8N3sWXx78BGePnEolIK0l4od7ezscHBwwN/f/7XXiJYe6TIN0pJyuB6aTM86tqpsOHkh8oIc2q2+zyn570Q9iX3tUBpSCYc/L5q1JN83EoWmDjqzo0vcp05lYwY0tCctp5ARm25xIzQFY5FNZYmEM8GZrDwXjLaGhMtBSYCqYvz3y6G0cbZg5ycld9+7ffs2PXu+Xj3hv0aF0aig3Ojp6bF161YGDRrElClTyveGWALaGtps6Vq8oGlUc0dGNS/a3rZGjRoY6WnzaW1NalipgpNXniRx9GEsrZ0t1UZjyUd16FnHhsl7vFEoVQ2cSjIa8ZEtSAywR1tDgqudET3cbdHWfDEj0dHUKJKVpXiWSdXe1Yp8mZLUnEJsTXT5pqsrD6PS1fUKhw8fZkC/PsirmnM5KIl69iYceRDD7bAUCuRKCuSq5k8tq1vgYKbP8oFlp2PGxcWRm5uLlZXVa+/nxYsXmTp1aqnrA+MzkTy7FoNmg9m0Zjk+184AkJJdwJQ93pwPSFR3I7wUmMhfdyJZ/FEdvuyo6gvezkXVE7xWCcbuYVQ6vjEZuNkacTsshWaOxqyb+yVz5szhcUIeMen5NK9mxpphDTF7RTW2Xr16ReIQZTF66x0ex2SiEIKU7EK+7OQMB8agEXaNJtY72Km/GrnTKr747TiLP+5eTCI/u0Be5IXkZb61skRTS49fSlgXnZZL91XXGNzEnttPUwlKyEIAzul3GPbpp7StbcMZvzi8QlKoaWPExHbV6VXXltqVjXGzKf3l4Pbt23z//ffluvb/EhWB8AreCAsLCw4dOoSnpyeTJk0qPTj+lsRl5DF5jzfekS8ClPPnz2fmzJnI5AqGbbxFSFI2uz5pSge3FwFLQx1NXKyNsDbS5duurrSsbsGNkGT23VX1/hZCMGLzLTLzZMzo4kpVS0MaVTEjLiOvyPEP3Iui7/rr6jTNz3ffp/mSC2Tmy+jmbsO+iS2wNdHDOzKN28mexEqOI4Rg9+7dLJk+Xu02iUrL5WpQEtdjrmPstIPt411ZcyGYLV5hfN6+RqlaSM/ZuXMnI0aMKNc909LSKqJi+zKB8ZlsvR6OrpYGtWyNWfRxd2pYGzN703Gi03KZ97c/5wMSaVndHIdKKgN8LTiZs/4JfLP/ETHpuQxsZI+Olga/j2zEFyU0X/rpzHnmnTmOllRKUlYBd3csZvynn9CjRw+OPYzlbngqGlIJy84E0nrpRbbfCFfv27dvXwIDA4mKiirzGpOzC+jubkNvzVt0ld6hsaOpakXlhkiqNGPdmFY0adqSIOMm7D7syWm/+CL7H3sYg/uPZzjlG6dediM0mcQs1ef8yYADfNJvT4nH1taQYmaozZ47USiUgvPT2/JZM0tuXT5P7z59OXA/Cv/YTKRAUEI2B+9Ho/lMn6y0fuAhISGYmJiU+rn9l6kwGhW8MWZmZvz5558MHDiQPn36lPtNsTz4RmdwwieOq8+m+QC1atWiW7duLFmyhPCUHKLTcll3KYR2yy6T9qz2AFTKozO7uzG2lRMAC04EMPOQL0M33uTW01TCk3NJzS1kcocanJnWFi1NCe2WXVZn0KTmFOITk45/bIa60ZCzlRGu1kZoP4uPyBVKVp4LIio1F13z68iNLnLyzGnc3d2xtLRkaBMHpBKQIOGz9tXp2zyfq9FXiciMwMFMD2droyJxmZLIy8vj7NmzDBky5K3uYVpOIccexqBQClysjJjd3Y2VQ+rjH5fJef8EktwGsHLhXHbdiqBLLWsMtDVo7FiJzHwZi074M7pFFXQ1Va6WEz7x3A9P5bRfHHmFCh7HZpBTULRgL8fkTwydNjO6lR2d8r3o36ml2u3ybTdXXKwNuRqUzF93oohOyyP+pboJIyMjoqKiMDQ0xNfXt9h1TN7tzf67kbRYcoHw5Fx+0drIEq3NGD6fRbSbASMPkS80qW5hyPwpI6mU4F1MrsPGWBcXa0OsjFWxqqCELIZvus3co6rvbm2L2rialdzPwspYl/Nft6OyiS4B8VmcfZzI5jXLEA0HkStTcvtpKqm5MqRS0NSQUM1CX5VtlhZe6md09+5d+vf/8C2BPwQSIUTZkTAgMzMTExMTMjIyiktjV/B/mujoaEaOHMmCBQtK7CL3NvhGq1wdC27NQyBY0GoBSqWSGvVbMOH7XzCztScmPY9LgUkkZ+Vzfnp7KpvqsfNWBHOP+jG7uxsT21XHLyaD037xrLsUQn0HUwx1NNg2timamlJ++tsfr5AkghKy+a5HTSa0rUaH5ZdJzSnkyrftMdEruflOYHwm3VZdo0stawpJ4XpoNNHb1vDlwtX8PKo9AD+fCsDcUIfxbaohV8qJzY6linEV/GIykCuVfLLtHlM7OjPmmY7Wq6xcuRIrK6tyzzT69OnD8ePH1X//cPwu+8NWU6eyJTV0+tK2qivd69gSnJDF7bBU5hz1wzHmAm2qV+KTKV8x4PebjGhWBV0tDZadecKSj+rgFZKMVAIBsZmEPCt0G9zYnv33onG1MeKLDjXU6r0XIi4QnRrNo52PkMvlrF69Wh1gliuUJGUV8Cgqnc/3eCORwNHPW1Pnpd4WQ4cOpXnz5iiVSr7++mv18vsRaQz4/QbDmjoQnZZHzzq2DLUMRyakaFUrKvo4fsc9rgYl4TWzA/NmfU3v3r3p1q0bUam5AGo35nMK5Up+PRdEG2cLWtWwIDotVxXU19cuMbYDEJuex4YrobQ2y+XHH+awced+6tibkppTyDcHHtGrri39G9gxaMNNqsccZanmH8j7/o5mg+HFxho9ejTTpk2jYcOS05H/Dcr7nK+IaVTwTtjb27Nnzx7Gjh3LsGHDyl21XBZZ+TKGbbxFtOFNKulrkZkvQ1MqQdFkJL8umY9+t+kMa+rAyOZVOPYwFr1nKZDd3W2IS8+jT33Vw8zdzgR3OxMGNrLn24OPCEnMQTzzCt2PTCMxq4Cq5vo4mKliH73rVSYzX1bEYKy5EMzeu5E0dTLDKySZ41Na8+fYJrjZGmFrokej4d9iWLU+DvYvUjcPe8cgVwrGt6mGplSTKsZVCIzPpNdaLzq4WaIUokhf7pd58uQJp06d4tSpU299/5q5yTmS9ojAXPCJyiMiYSzd69iSLgJZGzqFBSO+Z0Tt5dTuNIg/vKbRpOcI2jpb4mpjSFULAzrVtGZAQ3s2Xg3l3ON4qlsaYGeqR/8GdoQl53A3PI0dNyPo7m7L3fBUsnyy2bB0A1OmTKFb34EUyJXqtNQxf94hKCEbr5keTOvkzK/ngolKyy1iNPr27UtOTg4bN27kq6++UhucRo6VOPtVW6qY6b+U5lqFkuZpLaubE56cQ4cVl9E178LJGXPZbKnF9BueaGR24P73vYtsr60pZVb3F6m+A3+/SWJWPtqaUnzndS2SeXf0QQzGepp0cLNmXu9a1G3amrRGH9Nn3XUczfWZ2sGZ2d3d6LnGi6CEbIISsshXOHBPsxbu5jWLPWSvXr2KUqn8TxmMN6HCPVXBO1O5cmVOnDjB3bt3y5Xt85wfrv/AwlsLAVXM4feHv3M67DTnAxK5F5FGQsDnyCO/xmPZZXQ0Nbiy9GO61ndisHUSLlZG3A1PY++E5mpNKQtDHb7t5qYusHuOk4UBf01owZVv26sfBvsmNMdrZgcsjHSYc8SPRgvOUc3SgB9711bvdyUoiajUXOIz8jn2KBaEqk+Eh5sVtiZ63L17F9tMf47+sZQtXmGcfazyo49rVZWPWzmx7XoYbnNP4ReTQRUzfYY0dmBEM0ce/NClVInuXbt2MW/evGKihG9CT5cWLGu5GWvZULSyOzK6hSq5IDtfiYZEi8rGBlwJTqbPZ3PR1tLiwrJJ9J6ziU1XVb0htDWleIUksfxsEP0a2HH+63bs+KQZiVkF3A1PY1hTB9YMbcCyPWfx6NCJdbsOc/bsWbr3G0TrpZeYvNtbfS6aUikKpeCUbzxOFobcn9OJ/fei+GzXffU2bdq0Yc+ePbi5uREfXzQW4WJtVKQu4lV23AxXu9lq2Rqrkhq0Dej75WImTppIZvwxOtR/vbzN2FZONHEyo5qFAcnZL1yeCqVg+oFH/HDsMQDjP5/K6DFjaVqvJjpaUiJScplxyAc9LQ2crQ1xMtdnVvea9O7WgzpzvNCt0qDIcYQQzJ8/n99+++215/RfpWKmUcF7QUtLi7Vr1zJp0iTOnj3Lli1bXit7cTPuJnqaqgd8liyLP3z+wM3MjW3dduPhZompnjaePrHEZ+ajIZXgZGHA+jWr6N69O+n6dpwLK2TyHm92fFxySuNz8goVHPSOpmcdW3Q0VQ+g5w8iVxsjFEpBYHwWhc8ynEAlvT5m6x0aVjHl18H1iU7LZev1cGbuvMCxGf0IDglh5syZ/PXXX6zwPk2+xX4iMxYCNnzWXqW1tP+eKnA6bd9D9n5WW12UWBr79u3jyZMnzJ8/v8ztykM352bciQ7kr9hcdRbRnxclxAXNJtnZmZmH7lLd0oCD635i4ZG+XNn0E8ujHlBd/ztMrWzIzFPFLSwMddRv/slpmbiYQD2tREZ+vIzQsHCGTV/EnKFtMTIypECuoFUNC5pWfVGXYFdJj2vBSXx/1Je8QgUhi3oQk5ZXpEugvb09tra2dO/enVWrVrF06dLXXl9mvoy8QgU//e2PQimwNNIhMauAxf3rMPxZavY3/S4zYPAAeneze+14k9qpPrOfTwWy61YEX3Z0QVtTioZUwp9jm2Cgo8Hchb9w8EEsY9t/wuEh9Vl7MZhfzwXTtbY1Nia6nJj6evfs3bt3cXJy+p9281cYjQreGxoaGmzatIkjR44wePBgdu7cWWbK6NG+R5GgeiAZaxuzq8cuKulWQldLA2crI2LSc5ndo6jelbGxMVu3bmXCxEnYtpqInlbJ0tN56Ykc+/074moMxb6qK3OP+pGUVaBuFJRTIEcAc3rWIl+mwEhXi6vBSepmQVZGuszpWRNXGyPaOKuytIzibzM6aAqPd97gi2332blzJwkyHZ6kBSHVi8ZAP7fIObSoZk4lfW0k+j547J/Cx67f8lXzUSWeb3p6Ops3b+b48eNIpe/uAAhKC+JA5HI6tmpHqxpjAJXO1NWgJP64+lTdjXDluRAcrC2pOWo+2tH3+HjyNAqyM3C0MiY+NpnVf+twtbrK3Xc9OJECTUOc2tZCUa01mq7D+GVsRw55R9OxpiAkMZunSdl80/VF0eK83rX5vH11Oq64goZUwkm/OM5Ma8urclyNGjUiPz+f69evI4R4rV7X4A03ScjM56/xzdl2I4wq5vpIJRK61n7xfbC3sOfC8Qv06T8Q0xbBLJg0kNqVS36RyZcp6N+gMln5MtZfCiUrX05ESi6zurshy89l8tSviVcY0mbENNo4W9BxxRV0tKR0dLPkpG88DauEq+tiSuKHY34ExmehdXUdixYtKvPa/utUGI0K3jv9+/fH1dWVLl26cPbs2VINh4GWqjBMplCSXSBn1l9ptHfR4puuMP3AQ26EpuA1s0OxegtXV1c2/rGBiRMnUs9uMOcfV2bXnWiWDqiL9bPsGEnQKYYWHOBkojFt+7QnNUclFf6cPuu8yMiT4WZjzMOodL7vWZPZh32Z1smZaZ1UD72XHwL770YRUmDMgXgHNp07z879nphaWNNu/lmM9NrybZdhDKvvXuQ8vZ/FTdq7V8czzoErjwVfNS9+H4QQTJgwgSVLlhRpWfou2Orb0tK2JX1r9FUvG9jInj23I0jNLWRaJ2fsK+nhamPE7MO+JGUXgmldqgxoSBUzfXxiMmlurs+kdtUZ2rQKT5OyWeDpz+UnScyc3g4zfW0y8mQEJ2az5FQgQQnZ1HcwISI1l4zcF3pL2ppS8mVKVg2tx2e7HuD5KO5F+9uXaNWqFbt376Zjx44cO3aMfv36lXl9HWtakZJdSJOqZjSpaoZCqeBO3B2OPJTSvKo17naqroHamlLGz1vDJ2NGoox9zL71S0pMcx375x0ex6QzY0AB7WoakpJdyJWgJJpZKpkzbSKa9ftg7NqCoIRsTvjEqZIE4rKo6/aUuoV6OJeSWvucyNRc/H0fUVuuwNHRscxt/+tUGI0KPgi1atVi27ZtDBkyhBUrVpQc9JMXwh9tuZJmxVL96SRlFxCXoUrHHNeyKvXsTbEx1i2+HyrD8ffJM2xYv4ZPh31EQYOhOFsZqWW+dRsOBT0Derh0BR1NJj5zP3gFJ2NppIN9JX1Ck5IQQtCiujntXS0Z1dyRXnWL9r6YuPMej2MzsdHM48yO9bR0bcjx8xvUD/eBjezZezeKRxEKeMVL1qdeZRzNDXCvbEwbv/q4laKc+t1339GyZcu3rrKPj48nJiYGO7sXRvFOwh1uxN2gRqUaiOw65MuU3HyajKGOJum5MgQw9Jm8y4mpbTjqHc32WxH4RGfQ096Uti6WjG7hhJWxLrefpjBk4y3GtXLidHeVTAtAJQNtNDUk9Kpry/AWlWho78Cgxg5FYhCXAhMZt+0uUzs6c/artkVanb5M9erV8fT05OLFi4wdO5bevXuXGtf58uKX5Ehy2DxgM6ByP54KP8aPN38kP6EH7UIHsnlME0ZuuY2RrhZ3v++E24XT3D93hLZt22Li4ErNRi2YNbYfpqam6OrqUs9SC5kyjJ+91qFf0Jz44DYUBl1n22V//tq9E6mxNS2qmTFt3yMaOpoypYMz809d52T8CuQKR7bfrEY7VyuuRF2htkVtLPSK6mJtHdOEj6/+zqdfTHln1eN/m4qU2wo+KNevX2fy5MmcOXMGa+tXXEnyAvi9FfcK7Nlh9yO/Dq5XrBVnadwITWbk5ttM6eBMZHgo29Yuw8lIwqLvvqZHjx4l/jAz82XUm38WV2sjto5twqKTAYxvU436DqalHmfCb6c4t28zJvkJxFXtzsLPhzG+bVE3xNnH8dSvYoqVUckPxLL49ddfSUxMLFkIspz8+OOPNGjQoMjbuUKp4GLUReqYN6LFoptU0tcmNaeQFYPqMaAEkb7D3tGk5Ray6EQAX3RwJjWnkL13IzkzrS2GOpp8d8SXUS2ciijA5ssULDkVwE7vaxhW3cCkehP5vP7nRcb9at9Djj6I4ZdBdRnUyKHM61i5ciV2dnaEh4djaWlZaibeyJMjyZHlcKTvESJTcumy6gp9Gumja3kBB2kPOtZwp5qlIQfuRaGrpVGkZkMIQe3Jf5AafJ+ulQtJSEhACIGpqSla2lrcin5MQqoe2lJDLFwacvG377EzN1LvG5EZgZOJk3q8Q0GHefRUlz5uzdHUj2TUqVH0rtabxW0WFzlnX19fhg8fzq1btzAwKFl599+m3M95UQ4yMjIEIDIyMsqzeQUVFOHkyZNi0KBBQqlUvrcx/WMzRMcVl8XwTTeF40xP4RWcJMLDw8U333wj2rRpIzZt2iQSEhKEEEJk5BWKYw9jRGHSU5G30EE8PTCn1HGVSqWIjo4WO3bsEFUatheV67YWZ86cEUIIkZSVL4QQwjc6Xfx4zE+k5xa+0zUsWbJEjB8//p3vy6lTp8TMmTNLXX/EO1pcfpIgrjxJFHJF8WPlFsiF0yxP0XrpBdF15RVx9EG0+Ot2hBi04YZIyS4occykrHzRdeUVUXPuSbHiwk0xzHO4OBt+tth2e26HiyYLz4meq6+K4ITMMq8jNTVVNGnSRJw+fVp4eHiIvLw89bpD96PEvjuR6r+f37PkrHzRa8018afX02LjhSZmiQKZotjyxzEZwicqXey6FS48ll8Ssw49EvOPPxZCCNFj6xJR8/du4rhvYLH9dj7eKdy3uYvTYadLPP98eb5YdX+VeJj4sNi6ESNGiAMHDpR5/f825X3OV8w0KvhH2L59O+fOnWPz5s3o6r75G3lpxKTncT0kmQEN7dF4Js2Rnp7OX3/9haenJ7m5uWRpGBNSYMTo5g58lLMHavbmqUHDIg2Adp73Jjw8DDdTcLC3o3379hxPtgAja05+WTQrZv7xx/x5Ixxr83QaOpjxXZd26uKxRSf8iU3PZ93wBmW6IbZu3crNmzfZtGnTO98DIQQ9e/Zk0aJFNGigSvGMzIxkq99WJtSdQGXD1/fhvhCQgJmBdjFF1siUXLQ0Jeo05pTsAswNdfj+iC+7b0fSsIop+ya2QEtDyvNHycvX/bxAD2DtsAb0rleZ3EJ5kZ7hL7N//36ysrLQ1dUlICCAhQtVKdmNF55TVaT/1K1c98Q7Mo2PfruBjqaU+X1qq11xz8nIkzF5933uhKViaiijsNIBVvX8lCuRNzj+9BAHex/G1sC+iKvtUdIjfnv4G7OazqKqSckp0yVx//59fvnlF/bt21fuff4NyvucrzAaFfxjLFu2jJ9++onevXuzceNGDA3LDh6+DxQKBb6hMWw4epm65oKCzFQAzM3NcXB44S7Z7Z1IWKERntO7oqdddo1Eak4B7ZZdRlT5HoQOksgf8J3fFYC+668Tk5bLrdkd1a62Qrkq0P9crO/q1ausX7+ePXv2vFM9xssEBwczZcoUDh06hKGhITv9d/LL3V/4ocUPDHIZVO5xjj+K5WZoMvP61EZbQ0rdeWcxNdDi2rcdOOkbx+e7velV15YrQUnYGOly/IvW6vvVbdVVdLQ0OPp5SxZ4BlDVQp9RLZw44xeHmYEOTaqqWsD+ePwxuz5tVqwfBkBqaiq9evXi2rVrjBkzhm+++Yb69evjF5NBtiyXe2mH6F61O9VNi7eQfZmU7AIm7/HmUVQGc3rVZEQzVfD50P1o7kem4WJlyLy//WlW1Ywve+gy8eJohrgO4ftm35Mnz2PyLj98YzK49m2H134fXke9evU4efJkkZjTf5EK91QF/0kUCoW4ePGiGDt2bIlumTxZXtEF97YJ4VN8Wq9QKIXno1iRWor75FW8I1JFtdknxO+XQ97qvF8lM69QrL+/WUw6ulqsOPPClZFXKBeZeUXdVlP/8hbO358UMWm5IjU1VbRr106kpKS8l/N4mWvXrgktLS1x7do1USgvFF7RXkKmkL3RGJ9suyOqzvIUUak5QgghZhx4KEZsuiXyZXLhE5Uumi8+L2rNPSWcZnqK7quuFNl31Jbb4pNtd0VOgUy4fH9S9Fpzrdj45x7Hi04rLouAuNKfJdOnTxc3btwQV69eFV988YV6+eXIy8J9m7tYfGuxEEKI9JxCEZeeV9owJTJy8y1RffYJ8TQpS4xZtEn4z3UXWf7nRGh6qMiX56u3W/D3YzH0j5uiUF7cvfUmnD59Wnz99dfvNMY/RXmf8xVGo4J/hWnTpolz584VWbbi3grRaGcj8TT9Jf/0T5ZCLHcrtv95/3jhONNT/HjMr1zHC03MEl1+vSKOP4x5o/N82bA9ic8Uy88EipwCWbF1ZbHtepgYteW2eODnLxo2bCiuX7/+RufwJty8eVO0a9dO7N69W6Snp7/x/uk5heJJ/IvYw5d/eQvHmZ7ifkSqEEKIdr9cFI4zPcVp31h1fGTZ6UAxfvtd9d9KpVKsPBsorgcnCblCLtLz3+w8fH19hYuLi0hKShIGBgYiODhYCCGEXCEXp8JOiZQ8lcHts85L1Jx7SuQWyMs9dlpOgTq2kuJ9TIgfjVUvJmXgneAthv49VPgll/xdO+MXJxaf9BeyVwyMTCYT7dq1E8nJyeU+v3+TCqNRwX+ap0+fio4dOxZZtjdgrxhwbIBIyEl4sTDythCxxQOLWfkysex0oAiKLzu4Wl52+e8SXQ92FdFZ0eplT1KfiMY7G4utvluFEEKM2XpbOM70FKf8YkWhXCFaL70gxmy9Xa7xQ0NDRe3atcW1a8Xfvt832dnZ4rfffhPt2rUTv/76q4iIiHjrseIz8sQZvzj13wfuRopPt98V4cnZ6mWDN9wQ9eafEXmFcvHtgUei04rLwnGmp/hk213x042fRIMdDURExpudw8qVK8XevXvFmjVrxMiRI0vcZsPlEDHz4COhVCpFUHymSMspUH1f0qNL3L5E8l5v0A4HHRbu29zFqbBTJa4fufmWcJrlKaLTcossX7NmjViwYEH5z+VfpsJoVPCfZ9y4cSIsLOzfPg0hhBC/P/xdNNnVRISlh6mXhWeEi64Hu4q13mvF+Yjzwv/n9uLKnFbiSVymKJDJRLffd4uv9j547diPHz8WHTp0EI8fP/5wF1AChYWFYseOHaJz585i7ty5Iisrq3z7KQpFUm5Sqet33AwXjjM9xR9XQoRSqRR5hXKR8cwlN377XdFyyQWx61a4CE7IFPsC94kxp8YUmW3EZceJDQ83iKyC0s8nJiZGVK9eXaSlpYmRI0eK06dLzlgSQmXYqs0+Ib7Y4CnEjyZC/NmzXNf5JpR1PxIy8tQzsedcuHBBtG/fXigU7+be+iepMBoV/Oe5f/++aNOmjcjMfD+zhXelNHfTcM/hwn2bu8j7rZXIWd9eCCHEdr/twn2buzgecrzM8ZYvXy569eqlTv/9N1AqleLw4cPCw8NDbNq06bVutR+v/yjqb68vwjPChRBC5BTIhG/0i4f+zdBk0ernC8JxpmeRNNiXj1cWA48PfO29E0KIVatWiS1btoj09HRRt25dsW1byW6kQrlCfHfYRxy+Hy7E+flCBHiWOe6HJjk5Wbi6uv7PuKWeU2E0Kvif4MqVK6Jr167/6Teyu3F3xb7AfUWWBaYEiq8ufVWq20Uul4uhQ4eKIUOGCLm8/D73D0l2draYP3++mDRpkkhNTS11u8NBh8X4M+PVs4Pvj/gIx5me4l74i+B9YFymmLTznghJVM0WIpJzRJdfr4iD96LKPAelUila7WklPPZ5iAJ52UkMycnJomPHjuLx48ciLS1NtG/fXkSHhQjhtVqIlNAi2z6MTCvmHvqg3N8hxMXFxRbn5uaKnj17irNni9es/NepMBoV/M+wceNGMWnSpP+04XgT4uPjRf/+/cWCBQtEYeG7FQB+CFasWCGcnZ3FzZs3y7X9taAk8dXeByI9p+i1KJVKcTzkuIjKjBK+0emixncnxJrzQa8dLzUvVWQUlO9Z8uTJE9GoUSMRGxsrHjx4IGq71hBZs42E8HyRkZSaXSCqzvIU/dd7lTpOem6hCE4on3uuXKxvIcRPFkIUFjVUEyZMEKtXr35/x/kHqTAaFfxPsXXrVtGiRQsRHh5edEVmvBCy/JJ3ehWFQojzPwlxeakQacXdJh+a7OxssXz5ctGxY8cPmiH1PvD39xdt27YVly5deusxHiY+FO7b3MUnJ6cKuUIV2yiJ1OyC11aDl8Xp06fF1KlThRBCHD1yREwa0k2IjBdZcEqlUqw4Eyj+flR6ZtzzVOL3NhtJixAizlf9p0KhEKtXrxZdunR5P+P/C1QYjQr+57h48aJwcXERa9asUS1Ii1C9zR38tHwDZMapUih/NBZiW68Pd6KvEBYWJhYsWCCcnJzEjz/++D8zY4qOjhZDhw4Vu3fvfispE5lCJr4+vVJU/WGj2HQ1tNTtRm6+JarNPiESMt+spuI5SqVSDB8+XB3TaNSo0Rsb5SPe0eKb/Q9Fvuz9uwqVSqXw8PAQAwcO/J/57EuiwmhU8D9JTk6O+Oyzz0SjRo1E+BM/IXYNFOLu1vIPEHFLiFOzhHhy5u1P4jU/fKVSKXbt2iXGjx8vWrduLQYMGCBOnz4tCgrKV2j4X6KwsFD8+OOPonv37iIwsLje0usIT84Wn++6L/xjS382HLwXJWYf9ilWx1AWide2CcW1F26e2NhYoaenJ6KiosTFixeFh4dHmQ/oJ/GZ4sdjfqVqZ70vbty4Ibp27SrmzJnzP20whKgwGhX8j/Pw4UMxaNAg0b59e3Hq1CmRlpb2z/wo/Y8LMa+SEAEn1ItycnLE9evXxd9//y169uwpevbsKZYsWSJCQ0Pfqwjjv4m3t7dwdHQUBw4cEHmBl4QIPv+PHTunMKdI5fqVJ4kiZK6rkM0zF0L+Io5y7tw5MWjQIKFQKMSiRYvE4cOHSx1z2elA4TjTU5zwif1g571q1Srh4OAgYmLerGD0v0qFYGEF/1+QlJTE1q1b8fHxIS4uDjMzM2rWrImWlhY1atR47/pVOU/vEnx5L6KaB8GJueTk5JCRkUGHDh0wNTVlwIAB2Nravn6g/0FSUlJYt24df/6+kk1dlXT6Mx3Je+giWBYZBRl0O9SNFpVb8Gv7XwGITstl3YFTDKtnRr1mHkW2X7duHenp6YwbN44GDRqQkJBQojBkToGc22EptHexQip9v/0r4uLi+OGHH8jMzOT333/HzMzsvY7/b1EhWFjB/3colUoKCgoICAhAoVDw+PFj5HL5ez2GtrY2bm5uSKVSnJycMDU1RUND43++cc6b8OjRI/7atQP/J8E0a9aMiRMnYmFRXFzwrchOhC2dod4waD+LfHk+ky9MpolNEybVm4TyWU91J3N9vu7iCsDfj2Lx9Ill2aB6GGhJqV+/Prdv32bu3LkYGRkxb96893Nu5cDf3x8PDw9++eUXRo8e/f/V96JCsLCCCip4J1JSUsShQ4dEu3btxMGDB0utNwnPCBcr7q1Q13UUyBSlu+0yYoX42UmIM9+XuDpfJhd1550pkj77zf6HouosT7VkzM6dO8VHH30klEql6Nixo1i9evU/UguTnJwsWrVqJby9vT/4sf4NKmIaFVRQwXshOTlZzJs3TzRt2lRcvny52PrV91cL923u4uTTkyI1u0DUnXdGTCuHvEpppOUUqEUhhVApB0ck5xTZZsqUKeLcuXOisLBQDB48WLRu3fqDPp+io6NFu3bt/hHtsH+LCqNRQQUVvFcCAgLEgAEDxFdffVXkWZBZkCnOhJ0RMoVMZOfLRJ91XmLZ6fLrbOXL88Xt2Nuq2UlhrhCrGwhxeGKZ+6SlpQkPDw8hhCoDbPXq1QIQmpqa71123s/PT3h4eIjbt8snTvm/Snmf8x82ylVBBRX8f4ObmxsHDx7Ezs6OJk2aEB8fD4CRthFdnLqgKdXEQEcT1zrHOJ42iczCzDLHexKfxQmfOLb6beWTs59wJuKMaoVEApJXHk0KGRz9HO5tBcDU1JSYmBj8/f3R0tJi6tSpCCE4d+6c+t/vAy8vLyZOnMimTZto2rTpexnzf50Ko1FBBRW8EdOnT2flypX06dOHxYsXExsbW2S9jb4NlQ0roykpuaXrc+Ye82PyHm/cTVrSv0Z/Glk1Ai09+OI+9Put6Mb5GeB7APyPqxetX7+ezz77rMhm7du3x8DAgMePH7/TNSYnJzNlyhT++OMPjhw5QvXqZXcK/L9EhdGooIIK3pgePXpw69YtatWqRZ8+fbh165Z63deNv2aQ7XK+PRBIXqFCvfxBZBp+MRnqv2d2c2VBP3faONXjp1Y/YalvWfLB5AXkH5mIrPnnMHi7enGnTp1wdnbm0qVLRTavU6cOAQEBb31tT58+pXPnzpiYmLBjxw4sLUs5r/+rvE9fVwUVVPB/j+DgYOHs7CwOHz6szmL6bNc9UW32CRGZ8iKA7bbgD9Hg10VvPH5SUoDInWcifFbXKrYuJydHtG/fvki2VkxMjBg+fPhbXIkQt27dEg4ODuLMmXdQFPgfpSKmUUEFFe60KYcAAApvSURBVPwj1KhRg5s3b/Ljjz8yduxYsrOzWT6oHpe/aY+Dmb56OyeXC8jM/iI+J/6NxjeqVJWfWwznSYdZxdbp6+vTqVMn9u7dq15ma2tLcnJy0Q1l+ZAcUuZxfHx8+Pbbb/H19aVLly5vdI7/l6gwGhVUUME7Y25uzqNHj+jYsSMuLi5Ehz8tYjAAlnf4gcWtF2NjYPNGY+to6DC/y28MdB9V4vrhw4ezbt06IiMjAZBIJOjq6hbd6PQsWNcI4h4V218IwenTp/n666/5448/MDExeaPz+79GhdGooIIK3gsSiYSxY8dy7do1OnXqxKpVq4pkMdW2qE3v6r1L3NcrOJmQxOy3Om7VqlVZsWIFrVu3prCwEICCgoKiG9XoBDX7gGmVIosTExPp0aMHXl5eHD16FDc3t7c6h/9LVBiNCir4f+3de0xUVx7A8e/MgE2xAxhEKFGgaIU6gnQbQ0UbMa4oa7VSlIItjVbXtQUJ1i5NRVdjSJpmtdRFqqatj6K0goDbGB1fvNZQqX1oVhrtiCXgVuimLMPIsO04c/ePidOlMnSQ4WH9fZJJhnPPnHMuf9xfzj33/o5wq/Hjx9PY2IjBYOCll16ira2t1/o/3PyRtD11rCu+cNd9Pvnkk+Tk5PD22/b8VVFRUZw5c+bnCo89Dc8VwoOjHEVFRUWkpKSwbds2cnNz3Z7H7LdKgoYQwu3UajX5+flERESwdOlSPv/8c6d1/R56gJw/PEbWnIlO6/xo/ZHj185wy+Y819jKlSu5fPkyRUVFLF68mOrqagA2f1JP/hmDo157eztbtmyhqqoKvV7PpEmT7uIM7/Tmm28ydepUtFotY8aMYdGiRVy5csVxfPPmzahUqm6fe3FmI0FDCDEg1Go1r7/+Otu3bycnJ4eioiKnL92tfCqMWeFjnLa1uWo32f/IYl/pBjC1AnCt/RopR1OouV4DgEaj4YMPPuDkyZPU19dz6tQp2o0dlNRdpfz8Ndrb29m+fTuLFy8mOjqa3bt3M2LECLedb3V1Nenp6Zw7d45Tp05hsViIj4+ns7PTUUen03Hjxg3H5+zZs27rf7BI0BBCDKjw8HAKCgpYv349KSkpd9XGrLGzmWyKYmX9Tji2DoBWcytf//A1jcZGR73bgaOmpobo6GhW/2kVuqsf4X9hL+np6Xh7e3PixAkWLlzo9gy1er2eZcuWodPpmDJlCvv27aOpqYkvvvjCUcfDw4PAwEDHx5XswaGhobzzzjvdyqKjox3ZfePi4lizZg1ZWVmMGjWKgIAA3nvvPTo7O1m+fDlarZYJEyZw/Phxt5ynBA0hxICbMGEC3377LZ6enpSUlPT59/HhOj5avRdiM2HqSgCmBU2j+rlqXtS9CNhvYd2yWtDUvcv7G5bh4eFBZ2cnm/6ykUMff8zBgwdZvnw5Go3GrefmjNFof5Hx//fbMBgMBAUFERYWxvPPP+944qu/9u/fz+jRo/nss89Ys2YNL7/8MkuWLCE2NpYvv/yS+Ph40tLSMJvN/e/MnS99CCFEbywWixIbG6u0tbW5p0FTq6L89VHllv4NZdahWcqfjyTb94jfO19RFPuLh48//rjy1ltvuac/F1mtVmX+/PnK9OnTHWXHjh1TiouLlYsXLyp6vV6ZNm2aEhwcrHR0dPTaVkhIiJKXl9etbMqUKcqmTZsURVGUmTNnKjNmzHAcu3XrljJy5EglLS3NUXbjxg0FUD799FOn/bh6ne89OYwQQrhRSUkJFy5cYN68edTV1bmhRRVoHkCtGcHEURPx9Q6G1GXg9yhgn+FUVlY6dlvMzs52Q5+/Lj09nUuXLnVbs0hISHB8j4qKIiYmhpCQEIqLi1mxYkW/+ouKinJ812g0+Pn5ERkZ6SgLCAgA7I8Y95cEDSHEoNFoNJjNZhYuXNhzBZsN+rLF7EP+sPafqIBdTqr4+PhgMpmYPHkys2fP5oknnujrsPskIyODo0ePUlNTw9ixY53W8/X1ZeLEiVy92vub6j2xWq3d/vb09Oz2t0ql6lZ2e/3GZrP1ua9fkjUNIcSgSU5O5uzZs2zYsIHGxsbuB38yQ54ODvX85nd/aDQaVq1aRUdH7+na+0NRFDIyMigvL6eiooJHHnmk1/o3b96koaHBpT3nW1tbHd8tFgvNzc39Hu/dkqAhhBhU06dP5/DhwyQkJHS/iKs1oA0EBej6z5CN726lp6dz4MABioqK0Gq1tLS00NLSQldXFwCvvfYa1dXVNDY2UltbS2JiIhqNhtTU1F9te8+ePZw+fRqDwcDatWsxGo00NDR0CyaDRYKGEGLQJSUlsXXrVlavXo3FYrEXejwA87fB5U9A/4bb+1TctDGTMzt37sRoNBIXF8fDDz/s+Bw6dAiA69evk5qaSnh4OMnJyfj5+XHu3DmXUq8vWLCAzMxMIiMjaWtrIzc3l7KyMk6fPj2g59QTleLCf7KjowMfHx+MRiPe3t6DMS4hxH2grKyM8vJyCgsL7QU/dcLJjfDYAhg/q3+NN9XB5aMwaz14PsgzzzxDQUFBr+sMw1FoaChZWVlkZWUNaD+uXudlpiGEGDLPPvssXl5eP2/iNGIkPP12/wMG2LeGrf0btFwC7IvH91rAGI4kaAghhlRmZib5+fnObx81VMA3J/vecHwuvFAK46Zy/vx5fH19+zVOYSeP3AohhpROp8PLy4uamhpmzpx5Z4XSP8JPnVx+pYrKpkpWRK5ghObOnFEvvF+H6b8W/p4xw17wkL89JTrw4Ycfsm7duoE8jQFzx1NmQ0xmGkKIIbdx40ZeffXVnh8lTdwNS/Zy4OsDvHvxXS7++86NlABUKlCre84nVVhYSFhYmDuHfN+ShXAhxLCg1+vZtWsXR44c6fH49+bv+er7r4gPie9TskGz2UxSUpLbEvb9VslCuBDinjJ37lwMBgN6vb7H42O8xjA3dG6fs9Pu2LGDpKQkdwxRIGsaQohhQqVSUVVVRUxMDCUlJW5J96EoCmVlZdTW1rphhAJkpiGEGEb8/f2pra0lOzubysrKfrdXWlqKv78/6r7ksxK9kpmGEGJYCQwM5PDhw8yZM4ffxz1F8uhv+N2iVyBivsttWK1W8vLyOHjwIPv37x/A0d5/ZCFcCDEsKYpCRUUFewu20vqvZvzH29N/JyQkEBAQgI+PDzExMXf8rqmpieTkZJYuXUpiYiLjxo0b7KHfk1y9zkvQEEIMe2azGZvNhtlsprS0FKvVSn19Pc3NzajVarq6uggODsbDw4PKykq2bNly11vL9pW7t40dLL+89EvQEELcNxRF4cqVK9hsNiIiIgZ1DeN+CxqypiGEuOepVCoiIiKGehj3BXmkQAghhMtkpiGEEP0w0Pt0DDcy0xBCCOEyCRpCCCFc5tLtqdvTr4HclF0IIcTQuX19/7XbbS4FDZPJBCAvyQghxG+cyWTCx8fH6XGX3tOw2Wx89913aLXae/aZZCGEEM4pioLJZCIoKKjX91xcChpCCCEEyEK4EEKIPpCgIYQQwmUSNIQQQrhMgoYQQgiXSdAQQgjhMgkaQgghXCZBQwghhMv+By2B8fTml/KwAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "genes = [\"Tln1\", \"Col1a1\", \"Dynll2\"]\n", + "bt.pl.points(adata[:, genes], hue=\"gene\")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "12a7269b", + "metadata": { + "tags": [] + }, + "source": [ + "## Plotting distributions\n", + "\n", + "Often it may be more useful to look at how molecules are distributed rather than individual points. The `density()` function wraps `sns.histplot` and `sns.kdeplot`, which is specified with `kind='hist'` and `kind='kde'` respectively.\n", + "\n", + "Plot 2D histogram of points:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b06d97b3", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T21:14:30.322565Z", + "iopub.status.busy": "2023-03-31T21:14:30.322422Z", + "iopub.status.idle": "2023-03-31T21:14:31.050113Z", + "shell.execute_reply": "2023-03-31T21:14:31.049558Z", + "shell.execute_reply.started": "2023-03-31T21:14:30.322551Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAGbCAYAAAA4KMxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydZWAURxvH/+cedw/u7u7u7i6llNIWKZS+lBqlAhQoBUqLW3F3d3eXuHtyOZd9PxzcTErCRS4G+/vCsDc7M7t32WfnUQ7DMAxYWFhYWFhyAbe4F8DCwsLCUnpghQYLCwsLS65hhQYLCwsLS65hhQYLCwsLS65hhQYLCwsLS65hhQYLCwsLS65hhQYLCwsLS65hhQYLCwsLS65hhQYLCwsLS65hhQZLiWfevHngcDhISkoq7qUAAM6ePQsOh4OdO3cW91JYWIocVmiwfJD8+eefWLduXbHNr9Pp8OWXX8LHxwcSiQQNGzbEiRMnim09LCy5hRUaLB8kxS00Ro0ahUWLFmHo0KFYsmQJeDweunTpgosXLxbbmlhYcgO/uBfAwvKhcf36dWzbtg2//vorpk+fDgAYMWIEqlWrhpkzZ+Ly5cvFvEIWlpxhdxospYakpCQMGDAADg4OcHV1xdSpU6HVarP0Wbt2Ldq0aQMPDw+IRCJUqVIFK1asyNInKCgIjx49wrlz58DhcMDhcNCqVSvr52lpafj8888RFBQEkUgEPz8/jBgx4i2bitlsxo8//gg/Pz+IxWK0bdsWL1++tHkdO3fuBI/Hw4QJE6zHxGIxxo4diytXriAyMjIfd4eFpWhgdxospYYBAwYgKCgIP/30E65evYqlS5ciNTUVGzZssPZZsWIFqlatih49eoDP5+PAgQP4+OOPYTabMXnyZADA77//jilTpkAul2POnDkAAE9PTwBAZmYmmjdvjidPnmDMmDGoU6cOkpKSsH//fkRFRcHNzc0614IFC8DlcjF9+nSkp6fjl19+wdChQ3Ht2rV3XsedO3dQoUIFODg4ZDneoEEDAMDdu3fh7+9f8BvGwlIYMCwsJZxvvvmGAcD06NEjy/GPP/6YAcDcu3fPekytVr91fseOHZkyZcpkOVa1alWmZcuWb/WdO3cuA4DZvXv3W5+ZzWaGYRjmzJkzDACmcuXKjE6ns36+ZMkSBgDz4MGDd15P1apVmTZt2rx1/NGjRwwAZuXKle88n4WlOGHVUyylhjc7hTdMmTIFAHD48GHrMYlEYm2np6cjKSkJLVu2REhICNLT023OsWvXLtSsWRO9e/d+6zMOh5Pl/6NHj4ZQKLT+v3nz5gCAkJCQd86h0WggEoneOi4Wi62fs7CUVFihwVJqKF++fJb/ly1bFlwuF2FhYdZjly5dQrt27SCTyeDk5AR3d3d89dVXAJArofHq1StUq1YtV+sJCAjI8n9nZ2cAQGpq6jvPk0gk0Ol0bx1/Y5+hBR8LS0mDtWmwlFr+++b/6tUrtG3bFpUqVcKiRYvg7+8PoVCIw4cPY/HixTCbzXadn8fjZXucsVFB2dvbG9HR0W8dj42NBQD4+PgUfHEsLIUEKzRYSg0vXrxAcHCw9f8vX76E2WxGUFAQAODAgQPQ6XTYv39/ll3AmTNn3hrrvwLnDWXLlsXDhw/tu/D/UKtWLZw5cwYZGRlZjOFvDOi1atUq1PlZWAoCq55iKTUsX748y/+XLVsGAOjcuTMA8uZPv+mnp6dj7dq1b40lk8mQlpb21vG+ffvi3r172LNnz1uf2dpB5JZ+/frBZDLhr7/+sh7T6XRYu3YtGjZsyHpOsZRo2J0GS6khNDQUPXr0QKdOnXDlyhVs2rQJQ4YMQc2aNQEAHTp0gFAoRPfu3TFx4kRkZmZi9erV8PDwsKp+3lC3bl2sWLECP/zwA8qVKwcPDw+0adMGM2bMwM6dO9G/f3+MGTMGdevWRUpKCvbv34+VK1da5yoIDRs2RP/+/TF79mwkJCSgXLlyWL9+PcLCwvDPP/8UeHwWlkKlmL23WFhs8sbl9vHjx0y/fv0YhULBODs7M5988gmj0Wiy9N2/fz9To0YNRiwWM0FBQczPP//MrFmzhgHAhIaGWvvFxcUxXbt2ZRQKBQMgi/ttcnIy88knnzC+vr6MUChk/Pz8mJEjRzJJSUkMwxCX2x07dmSZOzQ0lAHArF271uY1aTQaZvr06YyXlxcjEomY+vXrM0ePHs33PWJhKSo4DGOnPTcLCwsLy3sPa9NgYWFhYck1rNBgYWFhYck1rNBgYWFhYck1rNBgYWFhYck1rNBgYWFhYck1uYrTMJvNiImJgUKhyDGSloWFhYWl9MIwDJRKJXx8fMDl5ryfyJXQiImJYaNUWVhYWD4AIiMj4efnl+PnuRIaCoXCOth/C8ewsLCwsJR+MjIy4O/vb33e50SuhMYblZSDgwMrNFhYWFjeY2yZIFhDOAsLCwtLrmGFBgsLCwtLrmGFBgsLCwtLrmGFBgsLCwtLrmHrabCwsBQbDMPgxYsXWLlyJXQ6HRiGQWxsbIFL83K5XNStWxcdOnSwGnZFIhGqVq2aY5leltzBCg0WFpYiQa/XIz4+Hjv37Me9R09w9c4DMDwR4OwPNB4NvoMbHAR8CBq7gSsUI9NEqjbUkJJxajgYrO0rqQJr24FH+gvMOly/dRSnVxyCxmwRGiZNBlTPL+HjCaNQoXy5PK1dKBSiUqVKWYLenJycIBAI3nHW+0mu6mlkZGTA0dER6enprMstCwtLrklMTMShw4exbutuhLx6Bady9SCq2hHJfAWkZeuBw+WBLxRb+zsKyUO4IEJDTG0mEvTEhbQ8Lx3PrxyEXp2GTCM57iEmOxspn4xTM0BiWUtmJl6+fGk9HpuqR0p8FBwdFQgODoKfrw86d2yPunXr2r4pJZTcPufZnQYLC4tdMZvNWL5iFfbtO4CHT5/Du1E/VB6yHDKJm7WPNkMJxmQEYzSA4fIALhccbuGrjUQSOaq3GQQAiNORXUMVB6O17UoJkEGNnLIdZ8e1VACAyWhEYkw4EuMi8eU3P4NvtDx4p02bhjp16oDPf/8esexOg4WFxS6YzWbs27cPU7/8H0Q1u4Fbvjl4PpXB4XJhNuiQ+fgcVM8uQ58QCoFYDrNeDZ7UEUajEWZ1GsATQOxbEU5NBkHsUxFQJlrHFmYmWdscM3nA6+XuZAEcIgSEynhr2ySQWNuijDhr2yBztba5Rr217V69lbXtLSSPR6WJTPU4KcXaruBKxgkUmZEa/QLh5zch6uUttKhXA62bNkCjBvXh7OwMqVQKqZTaNpUg2J0GCwtLkZGYmIh+w0YjSlYB0oELIVBYdhUmACnnNyLt6k441u0Bl9ajIfIoC7kT2XWoMtMBAGaDFpqQ20g6sgyG1Bi4NOoHh+ptwXlH8rySiLNveTgP/hZJ8Zk4H34PZ07cg3zrz+CYTXh6aiu69x4Iby93tG7eGH369Cl1SWBZocHCwlIg7t69i+4DR4DXchJcW46APvopAMCoSkPUxpmQlmuAoM+3gyd1euc4XIEYsgqNIKvQCCZVGpIO/ob02wfhO3h+EVyF/eFwOJAE1QKCasFTbsnn5DFyBbx0kYgPuY8l2y/g77//xr59+yAUCot3sXmgdIlwFhaWEsWOHTsxYOgoOH+6F64tR1iP69PiELnpS7h1nAy39hPBFYjyNC5P5gTPLlPh2mokIv7+GIbMFNsnlRIUbj4o26ATmoz8Ed26dcOsWbOKe0l5grVpsLCw5IsbN2+hbefu8J7yL/jO3tbjXKEYob8Pgd/IhehWvYr1+AsNMXTHEBMCKojJI+i5lqhqNLEvLP9GPETi0WUIGvwjuAIR+NoMax+GUu3oHbysbQFlAxFo0snajBpr2yQgtgWTSG5tc0xkcQJNGukjlFnbWkdfMqZBa20bFETtJkqPpc4lc/H8q1nbX5U34LcZg/Dz91+hZcuWKE5y+5xndxosLCx55u7du+jYvTc8P9oAvoIYghmzGZFrp8Kj61SIvPIWC5ETkoBqcK7RHnGn19hlvJLGuFlL8d2PPxf3MnINKzRYWFjyxPIVqzBmymy4f7QRQhefLJ8ln1oNiX91KKq1seucTjU7QBv/CrrkKLuOWxJwcvWA2MEDV69eLe6l5ApWaLCwsOSaTVu2Ytnfm9F55mbwHdyzfKZ6fgXaqMdw7/Kp3eflcDhwrdcD6Y/P2X3skkD9Nn1w7lzpuDbWe4qFhSVXbN66HXMWroZ0wO/Y+zIOAnWq9TO9ow8SDi9B4NRtaOtOjN7HE3TWtkmZnO24d6mI8ApuRBC9cia7GHNiKKTlGyLp5j7o2o6zHudpM0lbQ2wdRomjtc3XKa1tlXsFa1ucHk0WwZCAPqOI6POFygSyBikd10HsGJLUMHLcTKLVaVsH3W7mSN7V+zV0BgD4MR44c+YRSgPsToOFhcUmFy5exI/LN0A6aBG41EP+DakXNsG52VDwJO8uFVoQeBIFGLMJJkpQsBQ9rNBgYWF5J48ePcKYydNQd/IacPnZxxMo75+AY/2ehb4W59pdkHJ1V6HPw5IzrNBgYWHJkcjISAwc8wlqfbwOghx2EWa9RfXCFcmy/dyeONbsAOV7atcoLbA2DRYWlmwxm83oO2gEDE0n4mm6Gkh/DB4V1vUm9kAdHwpJQHVweZbHybVMEo9h0qmsba6OqJXMfGL34CrJ8VApsSdUdCSxDY8NJAaDp3CDXpMJvsIVjIxkueVR40uSQ8gaKBuFLP6ptU3HdYgo+0amV1Vr20DltuJTMRt8NQk2NFPxHgIVsdvoFZ6k7RpobVd3InaPN4kPnz/KKDVv8KVlnSwsLEXMFzNno2KrIRB6lX9nP23UE0iCahbRqgBJYA1oIkuH0Ti3vHxwDb6+vrY7lgBYocHCwvIWt2/fxoXrD1C99SCbfTXRTyw5looIaXAdaMLuFNl8hUFKQjQint/D8R2r8Oc3Y2BOD8fw4cOLe1m5glVPsbCwZCEtLQ0jR45Ejzk7c9XfkBYLgat/Ia+KIPQIhu7suiKbL7+YtCqoIh9BGx8CE2MEnwNkPjiBdZWrQJOZhrZt26BRlbL4btqf8Pb2tj1gCYEVGiwsLFkYOuYjBPX+FvtiDEBMOMRUDQozn7jbml4bvhmDDnyR1JrCvBKVS+qaidS+YKi4Cw5VA9xsIjr+KjLinVVWQvqEyF2sba1GCcZsAjgcyGKfWI/rZSTvE4eal2sksSIM5f3F16RS/ckaFNF3rW0dlWNK50jWb/SpTM59XTxKlxyF1D3zoUkIgSEtHkatChyhGAInLzj4V4QxPRbeXh4Qivj48Zuf0KJFC5RGWKHBwsJiJS0tDTGpGjSr3wmhL0JsnwCAL3UCYzKAw81bJtv3AaMyCZoLaxF3ZhMMWhWEjh5wrtEeYo8giOv2sAoUvoMb3uSGjY5+jDG/bgE++wq92jXH3K9nl6pEsKzQYGFhsbLw96XwqtMtT+dwhWIY0+MhdAsopFWVPAxp8VDumAV91COYJc7wGTIfsjrdwYt+TPr8p3ztm2JL0tc1NhiGgerlVrTr2gdVKpTF7JlfoGLFikV5GfmCFRosLCxWVq/bCJfP9iMiLAbyOIvqh+ERlY7OkaiJRBmWkqoSRw+oQu8AAovqKsCDcjX1Jm6tz6i0527Uk8eBR9RZ/lR9bg1pQpsUaW3z1WngGPXgq9OgU5DxOQypx2qmSrzSrrJ02nOtC3GDNQlJanSNVyVru3dZD7JOgWWdN45uwMU1SxAX9gKB41dAVqODZU51Osy0bYdSwRnVJD27kVKdnffuDAztjIvPLqDDqC/QtLI/6taqjrIBvggODkbNmkXnlZZbWKHBwsICADh37hzEZeqDwxPY7kwhdvOHOvYFZBUaF9LKsqJPTwBPXPiBhNnx8OwOnF73LThCMcr+76Ql/bvZZPtEG4gqNoeoUitcj3qMy8+i4Ps8DprQ/eBnxqBR3eqY8fmn8PcvOmeDd8EKDZYPDp1Ohx/mL8CdR88Rn5gMHo8PAeV8znv9QqzXaTBm5FCMGzumeBZaxJy/cAlM5Q55Pk/iHojU+6cLYUXZo0sIhdgjuMjme0Pk05t4eWELxFIZpOM3QejqZ9fxORwOxP5VAf+qCHJzAjASAGB4vBujP/0fNGnx8HR3QcP6dcHhcKCQS1GhfDnIZDI0aNAA3CKqpc4KDZYPhpiYGPww/2fcffgEjToNh3PPsfCSO4PD4aC8nLwteogtbZ1WjeNbF2LR4pr4fOonGDNmDHi8rHrqzMxM3L9/HwkJCVmOOzs7IygoqMBrlslkcHNzs92xgISGhmLH7n2QjVif53OFjh7QJ0fa7mgn1FGPIfWrbLujnTCbTLi6+Ru4cVLRsF4d+NXrgUd2FhjvomrT7qjatDsAQJ0Wi9jwZwCAxAwlbh66BpUyFWHTvkS3rp1RrUolBAYGonbt2oW2HlZosHwQzJzzDXYcvwhR42GQjvsRZwEYYl8ASAQAXKfcMum02r37fQuvVhOx/cQafPa5E4YMGwkejwcGgEatxv1Hz+BWtRWEThY/+xSDZZtizriHjNQY6zh0VWUOh0sdJ8KKQxlO5XxL25CZCnNSCBrUrwd/Px98PHEcPDyInt1efDJ1GnpPmo/9YuJiakxyApDV1ZRHlVrVy0iqcKjTIUgMA4fLhaIyWV8ZKbk+KY9cd7yBtB35VGoSqvi0iHpxpl1oVSG34dGoL7gmA6SJL8h6xSQ3FtdAvk+dI4mBMPEpW4eOXEvFOqRoVC9fSy4thmFw9OAW3D25BZ99MgERUdFYsWkXHMf8DQ6lkuJS5WRBf7ec7N/8GQnlKUXZPRgzWbOeug8pejLOHVMg4GexxbxISQWcLMf79BDi+YOLuH0hGvFr9sGgTAQPZijEfPTt0xPDhgyCTGYflR4rNFjee3Q6HXYcOoWgL48hnX4q5RIHNx80HPw1+gyZBFWGxbdfY7IIh4bD/BCqJbEL4VryB/4sQ21tm+m4AcpmYKYebjwq5bi/nDzcmsgzkJ4Ui4TYMHTo2gsD+vTClE8mQaGwTxry02fOQODoi7JV6gK587J9C5lfFagiHkBeyOlEGJMRYBjwhBLbnfM7B8Pg/rVTOLnjT3Tq2B4rzx9HeHg45ixYCoeRK7MI95ICXyhCubptAQDqtiOtx72ZJJw+tBYr/uqAhQu+Q9u2bQs+V4FHYGEp4YSEhEDuX8Xyx049vPOKTOEImcKyC1EbOTZ62w+BUAw3n2C4+QSjYYPGuHl2H6rXqouN6/5B8+bNCzz+suWr0Gb4vAKN4VCxMdIeny90oaFPioDoPyVm7YlBo8Tvs0ehfJAPTh8/BKlUitDQUHTv2Qei3r+AKyhdsShShRPaDfocNZr1xLRpo3H58mVIpVLbJ74DNvcUy3vPhn93gVu+ZXEvwy7wBUI0at8fs5YdwcyZMzF16lRkZua/KNGdO3eQpjbDyc3Ldud3IA+sAXX0U5h0atudC4Dq1XXIAqsX2vh3l4/GJxNGYP3avyGVSpGeno6BQ4ajetsRELkHFdq8hY2HXxl8/fXXWLRoUYHHYncaLO89Rw4fhtPQVZBwgfhkkgKbS5X4lMWRdBTgkF3EiVgSrLXPvZy1zadKndK6dHkc6S8RyKj+JGU2Q6mneFQMgUnibG3HUfrwXdS5KXX6vW6JMOR/+3H35DZ069kXmzesyVeW1MuXL6N+694QvY6V6OhK5j0aYVm/Q8RN6zHaPsBwyePDIHWGc9NBSLhzFOvLNbIeb+5G1EiBEmIHUJuomA0BURn6UjaQFS801rY4JQwAkHlzP/xGLITpdRxGhn8d0ic1iozvQYLk6HTo2kDyHU6sXsPaHlJLj/Hjx6NTvbIYMtiSpDE5ORmtO/eEsfXneFW9I5CRZO0PSq1IpyAxZbGrkBKvZqkTOZdH7huPsnuZqV3M0xDy+3pCxclw9UQoM3JiU9pxn0r1QtnkOJQa72yfVjh48CAKCrvTYHn/kThD7vPu9N6lEYFQjPpdRqFsu4no2XcQYmNj8zzG4cOHUbVuM7usx6l2ZyifXoQhNe/ryA2apEjwZU7gSx1td84DmWnJaNWqFUQiERYvXgwAuHHzJjp26wNNw7EQV+9o1/mKCw6HY41KLwjsToPlvSYqKgo6c9HZH4qDivXbo4yfD7r26IOjh/bl2rsqOjoaQqEQYqncdudcwOHy4N5uPBIOLYbvsF/sMiZN7IWt8GrUx65jXtq7Es+uHcaqVavQoEEDAMDlK1cwdNREDJy3A8dN2e/eTOoMaCIfwpieAGPcc5h0auiTImEy6sEVy2HWZkIgd4Y0qBYkvpUhCK4NnqT05Jd6F6zQYHmvOX78OASBDYp7GYWOb3AldB37LUaNnYjDB/bk6pzFixdj6tSpiLfjOuTlGyHtwWlk3D8Bhxrt7TZuZvRTAAyk3uWgt9n73TAMA/XLa1i88jfUrl4F1y6esQbGxcfHY/LUmRjx82GIZY6gb44+OQppV3ZA9fQieFJHSPyrQeRVFvJyDcBXuIGvcAEciW3IlBQBddhdKJ9ehObCZoBhYNZmgiMUQxJYE05NB0HCK5pHMGM2488//4RKpbLd2Qas0GB5r8nIyECmZxVEqSz6cXn0fetndDlOjpnopRkOcakUUGVAZVQsB4/y8TeLiB6bztNkonTUfDPlckvpwM1C2neeilcQk7dSroH8oTvf229t73tExk8r2wxAIFITDPh67jz88N08vAulUolHjx7ht99+w85rRH9ew5ms7cDrB6CesrsAZNcmzEyk1kjsD+WaD0TIgcUQxjzC2bYTrcflDiRIsZ6M2JOSDGTMfc+U1rYgKRwAYFRnIPLUOgQNXQCjxBkiJXmScw1Ex8+hYmHMVL3yKk17WNutXTKw6fcZCPR0wOwDuxAcTCLLtVotOvfsD2WzKdj9MhlAMsxSR5jUGYjb9T3Mmgw4Nx8G925fQOJIrsVkonJeUd55Eo8gyKu8nf5cq0yG6vkVxG7+EvKKzeDSYjg4XC44WX5fxLnBQNmRODpyf0D9vjgykixSQNnMJgUxyEhNxJYFExBdswKWL1/+1nryCmvTYHmv4XA4WQyP7ztOg3/Drn2HcevWrXf227dvH3r06PHOPvmFyxegTPfPkXjvBDIfnyvQWKqIhwjdNBN+PaZBIHe2fcI7CL+2H7991g2TRw/AXyv+yCIwGIaBp5c3nJqMgsSHGNFVL64i4s/RcKzXHQEfr4OiejtwqZoc+YErlEBRrQ2Cp+8GY9Qh8u9JhWYHUinTMLtfZaxe9gtWrlwJd3d32yfZ4MP5a2Jh+QDgcDgY9b81GDVmJO7fvZmj4XPjxo3Ysyd3aqz8wOULENx5Ml6c/AfGtDg4Nh6Q5zGSb+xHxrNLCB66AHyZU77XwjAMXp34G68OLsKNq5fh4/N2nMfPC39HuZYDEdRiMBJfPgfDMEi+uBmqiIcImLwOPIl9AilpOBwO3NpNgDbmGaI2Todnx8mQla1rt/G1UU/w47SeOHfuPOrVq2e3cdmdBgvLe4arpz+kLt64cuVKjn1EIlGBg7xswZco4PfRauiTIhDxxwhkhrx79/MGfVIkotdMgS4lGkFD5hdIYADA86OrkHhuNcJevchWYFy5cgXrdx1HjVGWGAaGYRB/ZCnMmkz4jf2jUAQGjdinIgInrkbS2XVQvbpp+4RcoLx3HIIDs3D75jU0bWLf7MPsToPlvSdAIoSnwpKi4xVlf5AmPLO2dU5EJyyi7Bgayt+fryU5hkwiyhOGzjFE5SQSUWVSjXLi0UTbSWh7CE+bRsanyozyqD4cIzEDc6g4E8eQy9b2EoceUDedgn82b0eTJk2QHZlaM3a8tmX0b5i92ofHsdgIvr9M7g1tE6LjTWh7go6yFQmVifBpNhi6Sk0Rs+M7GDNT4VClBTLK1IHI7XWqbw4PjMkI5asbSL55AAzDwL3FMEjq9cCbu8koSayKibJXtKtE4i6uZRJbVAXqyaY/ehKrd/wLgeDtlO9GoxFTZ/4PTP/fcSNZCYZhkHhmLfhuAXDvPAVcSrXZwJGc/5JKF5OkJ7aIes4kLuIpVT+ktpT6rpxIupgnClLTgzP8V4T9NREBo5eAcaESItJ50ZwooUcFUnbxd7K2E08tRcjd09h1aBdcXEj9E3vBCg0WlvcQSWBNnDo8H4mJiXbRYxcUkVsAAgbMg1GTgYxH55FwcSsMymSYXwfAcQViSH0qwqvTJxC5Wx6kbx6zJq0K0KnAmM1gDFqSvJDDBWM2W2uTZ0fS44uo6O2NKlWqZPv53n37IK/QEmoHyz1KOf0POEIx3DtPsc+F5wGuSAr3tuOQdGYtPPv+L8/n61TpuLL5O/jwU3D65HG7xGRkBys0WFjeQzh8Afj1+mHLli2YOnVqcS/HCl/iAJd63eBapxM5SHmrmV/vXnSJ4TBd2wR92G34uTnCoNXg/u3rMIIPnsjyNm9IjUW0kztGrXkKfjY5oRizGRFbZ2DzsX05rue3JStRZcTvSABgzExBxs39KDPrgH0uNh/IK7dA0uk1MGmUeVKLqdOTsH1WB4wZ1h/ff7e80AQGwAoNlvccPp8Pp8hz6NCuKQBgkW9V62fiJJJWmy4JahYQ9QGHcpVluEQ9YZCSFA6ijBjqOFEHGKjU4UIlVW+DSr8B6i3ZTKm8RGkkJQZXT9wvzQJih6Dn4lGup8JXVy3X5OyDFWt/xfDhw7NVU9h6rESpLOukU6zQrsA8PXEF5lJqMwGVKpyhMsLSqcIN/iSFR4ADeTjGpiRCtXcupMoI/P7jXETHNsXPy1ZCK3BBhY/XQSB3hs7VshMxZiRBs2owUo4vQq9R01DPhVyRiMdg+8p5mDtjKgICcq5dnmYW4ibPG2KRBHGn/oZnh0lgGMaSTRfAqADynR9OolK7J1HeTtQ1Xosn3wNPSL4rqYIINSFV3jZITNSZLxzcwQHg0KA3Mp9dhPNr5wEmnbgz+7sSNWc/bx3MZjMu7FuN61t248/FP6FPH/sGP2YHawhnea8ZOXIkXt05AzNVt+BDgSsQo3K7kfht8dLiXopNjNpMRO6YC9PaYfhj+nCMHzkME6d9jTmbzkHXewlkrT9+y+WW7+CGgHKVsW/jEty9chIAYDIaoVZlYO/GJXhx/zLGjhmV45wxMTFITbAIfLNeg9Qbe+HcsPAfurZwqNMVmQ9sV0J8fvcSfhjTCN5iJa5cuVIkAgNghQbLe45cLkfPHt3w8MrR4l5KsVC17XAcv3QXJ09lfQjxeRyoMjNyOKvoMCqTEX34d8T90Qet/RlweHxMmb8Kf5x+Bd64bZD1+Bp8Kijwv/iXrYLt2//FjWPrseqbEfi0VyVs+/UjVA+Q49SJY++ce8+evZA0GQYASDz1D9xajgCHn7f66IUB38kLhrR3x20kXtmGu0dW4tSxQ/h5/veFqo76L6x6iuW956svp6Nl+26o0bRLcS+lWGg2bhFmzx2L5s2aQiSyqElGDR+Cc8d3oH2fsUW+HoZhoL3wD5Q39sJVLsa44f2xOVSEs6E6oPdCOPpWAgColKk2RrLg6+uLY4cPwGAwgMPhZOsllR3rduyHrP9KAEDqtd2o8HXJeLHgcLngCqUw6zXgZlNsKj3kDhyf7cW+3dshFouzGaFwYYUGy3uPVCpF3eoVEGy4BaGsvvW4zjnI2jZTUb58qqQp7UpqonTUZgH5YzbIiHeSxo1EGfNVKWQuJyrxHZXSmptCamvTLrSiDCpVBjUXne5EmEHeRk2UWy6fSkGRauACci8oqnXGzp27MHToEACAr68PtNdewshw8NVhYptwFJI1bHiZZpnTs5L1mCQ5zNo2ikm2WZ2C3AORH/FU6udObEKjqmXiyJEjWLt2LUb3749e323H48ePMXnaLJgbjoJDi5HgRj6A/uV1AIBURdxs9Qqiyxc6knbvdvVx+PBh1KxZE0Jh7iO1U1JSkJiYAKlBC214GHhyF+gyLUJK6kTyRz1RkvsRICK/BZknSe0RpiIp0Bs4kjVcSyG2iNNpZO4+7mQcBfUEFkuJvUjqXwWmpHCIy9QBX1rWerwz5wEW/DEQx44cKhaBAbDqKZYPhC+++AKrVq0q7mUUG+XajsbylX/DaLQ8xIOCgnD3UtG8WceFPsb5jd9h0KBBMJlM2LFjB6ZMmYJFixbh8OHDEI7ZCIcWI20PlA3t27fHyZMn83ze6LHjYSjbGhwOB/qkCIgDa9g+qQjhK9zAGN9Ozbhr1bc4cewIqlcvvEJUtmCFBssHQYUKFSCTyaBLCC3upRQLArEMwVUbYfv2HQCAgIAABAf44OGNs4UyH2M2I/PhaRxePB7PDvyC7z8diNOnT2P8+PHw8vLClClT4Ovri6VLl0Lo6md7wBxwdnaGQCCARqOx3fk1+/bvR2RiJhzbjLceK4l1v/+L6v5xBPp7omrVqrY7FyKseorlg6FLly44f/QMRB7BtjvnEcZkhDLiIVKv7YU+OQpmjTJLZUCjQQue6HXdCtrYatCCeV0Fji93gdS/KuRl60EoEtvduNm+73j8+eN4DBkyGBwOB+vWrEaVajUw7I874Avto+pgzGZkPr8Kw7456Na+DeasW/pWfY/PP/8cPj4+mDFjhl3mHDBgAIYNG4Zdu3blqv/J0+fQYdiXOKAruXVWGCoKHABMOjV0Jxdh2cmcY06KClZosHww+Pr6whx7EobX6Rc4lI2CR6X2VntUICdRD3467TlfnQKGYaB8eR0pTy/DkBYLadn6kFVrCxevsuDJXcETUTYQDeWpRNlJBI7urw8x0MS+gPrFdSTc2IeoyEdwqdMFLrU7Q0CXB6ViIziU/YFrotKLaIgB+aaKKBOW9wjG3uVyPHjwANWrV4eTkxPat22NvY9fQuRZxrJOqkQp5/X1CqjStvoKpMpfb28i/Ko6GXD3ykls/fMb1K9dHUuP7oGnJ0kn8oawsDCEhITAq+t3+PmkJc03P/QGmZNyjaZjZOg4mg5USdotV9IgrNAT4av+BsMwNgWt0WjEqYtX4VpjBrgZlnQuHIMG0GaCq7Jcp5q63xoxsT/5icnalCayBmfKtnBTSWxOdZzJ928kXznCNWSNqUbS1mtJjIc66gmc24yD0WjAjIoG7PxrPrp+MgaOjvatWpgfWKHB8sHQqFEjiFLynp4hOzKeX0XChc2Q+FSEZ+/Z1oeuSZu/IjccDgdCFz8IG/rBqWEfcKIeIvn6XrxcPQme9bvDuXJzu+w8fvvtN8ybNw+bNm0CYLknZx+/sK4/rzAMg5dX9mPv4T8h4Bhx7tQx+Pv7Z9s3PDwcY8aMwZo1a/Dvy3xfwltweTz4lKmBvXv3onfv3u/sGxkZCa5XFQhkTkCSRWgIXfyQduuQ/RZUQBiGgSE5CrzXhnFlegqSIx5i5HD7V0PMD6zQYPlg4HA4gFFvM1/Ru9AlhiNu7wKInb0QOPBbCOQuMOfzgfsueCIpPJoPgVvDPog/ugzpL28gsOunKKjmvVy5clCr1YiNjYW3tzdkMhkYU95r4RlSY3Ht0g5c2bUMI0ePxfFDe95ZZtZgMGD8+PFYs2YNgoKCgJfKHPvmh36TvsOs8c0hEAjQrVu3d/bl/ifliMDBDfqUqBx6Fz2akFsQ+1Wx2ln2/vMj5n4921pdsLgpGatgYSkinJ0cwVBqj7yQ+ewyYnZ8A68e0+HbZQoEcvtnEP0vXKEY/u3Hw7lSM4TtW5SlMlx+ad++PW7ezF8KbmNmKlI3fQZsHIMOVZ2RGB+LJQt/fqfAePXqFfr164ePP/7YIjAKAb5AiAcPHmDixIlYsWJFlmp6tuDw+ODLXaBLiiiUteUFxmhA3K7v4NH9CwCALu4l0uPD0LpVy2JeGYHdabB8UFSpWB4P0qKhCK4FbZbU6ESlYhbTieIsyujMx+eQcecwKn59DFyhBE48oipKMxGFtYZST5mp1NWg3CcdvYghXkxpnHzkxGYi9KhjbV+LS4LIrwakDp4IO7sZAZ0/sQSxUWVP6aR/RhmJoPahbO5vUqE/jgekUhJD0sZdgBpBlrfvg0nk2vt4WNYsqVQTAKDOTMeun0dgcLt2mDNnXa7UZWvXrsX+/fuxcOFCXE90w5YraQCAjfdIfAocSFyEOJW88Zv5xFZA25PuUCnQfSREOOy/o8LspQdw4fh2bO/YFcOHDUbjhg3g6+sLBwcSA6E3m5Gi08MsIfYBlw4fI+HMOviOWAhQgvlOLElv/8SJCMY6MspIkQVyw8VcYgO5kUn3IefWl5OjfXxFOLX2J7TtOgw9GgQiPioEc2bVx6YbN1CSYHcaLB8UTo6OYMy5fwsFLG97SSf/QvDktdlG6BYVjvV6QOToidgLWwo0To0GrbFz5848nZOeHI9tCz/FtGnT8PXXX9sUGFqtFtOmTcONGzewa9culCtX7p397YWXXzD6jPkSI2etxOUH0fjm11Xo2K0vps34EuHh4TmeJw2qBQBQPbucY5/C5u7xTdAoU1G7w3C8eHAVc4bUwZUrV+xadc8esDsNFpZ3YNZrELN5FvzHr3xLF14ceDUdgNB9vyH91S2IHR1sn5ANTq6eWR76ZhtCNCE6FF8Nro0DBw+iW9euNsfPyMjAqFGjMHr0aHTv3j1faywoMoUjOg6YBAAwmRmcO7gZnbr1RvsO7ZD28g48s1HzefX9HyL+mgBfj6ACxY7kFYZhcG/PIhgSQ9B50m+4sWcpYm/uRUxMDLy9vW0PUMSwOw0WlneQcGAhXFqPfmfSvKImoOMkxJ7fBKMu9wFtOdG0aVO8un4wx89T4iKw7vuROHnyZK4ERmxsLLp164Yvvvii2ATGf+FwOGjVfRi++eskDqZ6Iz3yGZKPLnurH0/mBO+B3yNm4wxowu8VydoYhsHVtbPBMAxqth6AnXO7oaabFjevXy2RAgNgdxosHxhcDuAlZOAmYvCYqkdB1314U15TG/MMxvQEuLceDQDwFZK385B04v1jziT2AbocK11Dgy5Rmp5Eyr2mU7uXdCr1d305mat7AFnn0WQHQOwAj3YTEHrnKILajwMA8Kh8U1wqMEzGJfpzleFtlVLZsmXBNWrhKbHo3zu6WuIMtKp0bP16IMxmMw7u3Yny5cu/de5/efLkCT755BP8+eefqFatGgBgw6U06+c/30q0tun8WHSMjDCT3DO1G8m5JFCTcSKSiC1H7kPsEq+U5HF2NY3YFp7HEjuJpH5f+PhVR8j37SGt3QUCR0ssCYdv+R4kwXXgN2IRYrZ+BYdaneBUv4f1XDqO4oqKqrPCUDs1SpAnUbmkhGLy/Xd5Hfph0Glw7o+JqFa1PngcBonn/8T1c8ey2F9KIuxOg+WDokqFckh5cCJXfZOOr4TPoO8LeUX5w6F8Q2iSImHOJj9RXjHoLQF9qow0PL12DJd3LsaCwRXxxRdf4MqVK7kSGMuXL8e8efOwZs0aq8AoqYi9K8Ct6+cIXzQQDPO2QZvv4Ab/ccuhSwhB5D+fQBvz3K7zM2Yznl89hM2zu6JltxHgmI0wJD7B3r17S7zAAFihwfKB0aZVcxjpKno5YFKnw6ROh9jb9gOzuFD4V0WmHR5oamUqPutVCWt/GIUyeIHx3eogMiIcffv2zdX5Fy5cwIULF7Bt2zYEBgYWeD1FgUfXzyAR8pD276xsP+fwBPDsPh3uXaYi8fifiPhrItJvHYBZn3+VoFmvReKJv7B+ejtEPrqCvnM249aZ3XBgkrBpwzrweCU//xXAqqdYWLIl88l5KGq0K+5lvBO5dzkoo57CISBvb/ZadSYyM4l66PbNa+ByufkKHlu2bBmuXr2KVatWFWkhIHvgPmkjYhf2gCGuD9w+2Q4epUJ6g9i7PPxH/Q5DegIy7p9E2MmB4Du4QVqmPmSVm0HkVd6i83wNYzaBMRlh1mbCEGspJ8wYdUgJv4f0O4fh0nQIBv+wD2aTEcd+G44W9atj+bLfS9W9Y4UGywdHqs6A64kZUFC1KehaForo+0h9egFuVZqjioz8iaRQDjdMGvHfp3XyHMoTibYtCKmYCgNVr8NM1R3nq5Ks7QtBDaztnkHECG/yIjsfBxcvpD4+D54uM0t9D9o+czeZzFXH0dInJiwcjRo1IvPy8/cYuHXrFm7duoVNmzZleeitvUhqhP92m9gxuHpiExBRuz2jiAQr0DU6RErqXCO5x+J4El+z6KKTtU3bSTgm8t0KqPHp72RQowbYXrkeurWsjb1rR6DSgLnwrtoM55LId2JSWmp6CJx94NZ0ENyaDoIhPR76Z5eQdvh36JKjASrI06zXgC9zBrgciP2qWqO6a1SsCZ8+kyEQy+CRcQObl87Chr+Wo04dEo9TWmCFBssHxZJVa8D42f5D1abFQ+TgarNfccIViGCgEyHmgYKqQrRaLWbPno2NGzeWqrfk/1KxcQ/Ur+eBqZ9Owedffo0LB36FJrAJhE1HgSfNPjmgwNET0qot4VTVEqWtd6VUctR95VExPYHOlrZBq8K63z7Hof27Cy06vrBhbRosHwyJiYlYv24dBHV62ezLMGbwxXKb/YoTnkAEDjfv733Rz26iTJn858vSarUYPHgwpk+fnm0m29KIl5cXtq7/G7fOH8XYOs7IXNIN6Rs/gUltvzrqusxUXFs8GIt/+7nUCgyA3WmwfCDcu3cPvQePhGf7yZCFXgMACNKyT1KnV3jCaDLCIHXGS6rmgplytGEEJMUFV0vcbzmU+kPjGkT6OJByqOJXV61tg4OTta2jUnKLHUl/Ou0EQwWlmURyMFweTCJ5FrWYxoW8+QolRE/vJracG/PwLDpN/xP5QafTYfDgwZg0aRI6dOhgPf7PBaKSWnSTuBQLqbK1WaDUgXSpXROlSjLziTuygCr9yqOM0Xzq3oNyfVV5kZKzoErRtvYiaVL+11GKdbFZ64jweDzMmv4ZZk3/DBs3bsS02f1R7fNtUATWQPhTks5DLycqQ46GXDtDpSZp607GLmd4gbV/TMGmPxejbt26KM2wOw2W9x6GYTB47MdwHLECMq/cpbMoCdHfhUFqUixSYsPyHTj2zTffYNiwYVkERmkmO5fbNwwfPhwnDu1B5L+z39nPFiGX92D53JFYvuTXUi8wAFZosLznMAyDbn0Hgld/MCRBtXN9HodT8v80TAZdnvNoLZrWF1988Vm+5jtz5gwSEhJy7Ypb0klLS8O2bdtQpUqVHPvUrFkTQ7q3xcMlw/I8vtlkxJW1s6G5twNXL51Hw4YNC7LcEkPJ/8tgYcknDMNg0qRJCHOuD0XLcXk61x5Bc4WNSauCIAdjbXYkxUXA2VGB0aNG5nmu8PBwfP/991i6dGmezy2JRN0/B2dnZ3z33XeoVKnSO/t+NXMa/MQqKF9ez/X4uoj72Di+Cvo3K4fD+3aViqC93MLaNFjeS9LT09G9zwCE8/3hU9EVuPovAICREY8o2jWVS5VRFaeEg2vQQJQchvRUUvq1thcx+j6kXEaFmcRV1kDptEXpseT4f2o+W+dKI/p/OtUInURQbSLrZLTErTQtMwN8v6rQOvmBS7mYml1ImveJAWSci6t/xeyZX2S7jndhMpkwadIk/PPPP5DLic3hTblWANh4j9SiENB2BsqzinZ3NUicrG0jdc9o92Ue5aKbxaWYGpM+ly6jO7wGseu4iYj9ZEAtE2bMmIGj69fj5s2buVIXiUQi7Pl3M7r36oeuLeoiqFItLHhC7jc34ZW1Pa1RAKJCHmP/hd9w9PK5IsvuW5SwOw2W946XL1+iSZtOCHOoBUXHz62+8nlB7OgBTWqs7Y7FSGbYXcgCqueqb9iT27h27RoGDhyY53mWLFmCPn36IDg42HbnEkpCdCj+/GogOnTogAYNGiAtLS1P9gVXV1cc2LsT2/74EpGvHuXYj2EY/PPDBCxZ9Mt7KTAAdqfBUspRq9VQqVRITEzEgUNHsHP3PqRmqIAuX8PBu4LtAXJA4RmMjJiXENvuWmyoIx/Bu8NHuep77dA/2LZtW57nePbsGc6fP489e/bkqr9Jp4bywUmoQm5DlxyVxaGA0akhdvOHU6WmkAbXBacI0mZoVRnYuOgLpMaFYPyYkZg8eXK+40pcXV2xYulCtGnbBv5f7Ia0XIO3+lw/tQtNGjd8b+wX2cEKDZZSx/Pnz3Hy1GmcPHUG4VFx8PANgljqAJNrBbSavg1CiQL7nhasdKejXyWEXd5ZYoWGPjkSAgc3cHi2/4QzUhIgYlR5jj5OSUnB5MmTsWbNGpsPWqM6HcnnNkD16gacKjWFW+MBELn5g0u5wXL0amjiQ5D6+AKiz6yDe6O+cKrWJk9rygthD69g3Ve9cezYUbRo3twuYzZr1gznzp5F8xYtEDRxFSS1Sfp3s0GLNT9PRWREzsWe3gdYocFSqnjw4AF6DJ8IU4OREFadAFG7CngjHnhpcQh7YbERyFJCrefQvv98Taq1rXOvQB1PyzKP0MkTBk0m+KE3wZdYfPsfKYg9hBtY09pWqci5XCWJJ6BjEWi7h4aKIOZTNgozJQCqU+lLTkRSsQ6vx0w5twFObcfD7GlRgZCZgI/KkLd7J6EJF09sQPeunZAXVCoVBg0ahF9//RUBAQHW41MOEDvD2WchAAB12D0knVwFv65T4DZuCfxJ2AUeZhLdPwMGogpN4dV8OLyfnkfMmfXQxDyDe+85VqGkpWJMBNQ9o+0hLeqQFCiVHMj4DkKLTcNsMkHzZBsO7tqAM6dPZUmZYg8aN26MF8+fY/KUzxB99W+0HzkXQZXr4vC6+eg17Qu4uZWc2iuFAWvTYCk1MAyD0eM+Aq/Hd1DU6giRZ1nbJxUA1/INkPr4fKHOkR+MGYnQRj2GvGprm32TE6Lx4OoxfPzRxDzNMX/+fAwcOBC1a+fspswwDBJOrELimbWoNmMH3Bv0yrXqhysQwa/DBAgUrog/vCRPa3sXKYkxmNKjIhITE3Hs2DG7C4w3BAcH4/DBfTi8bweMYadx8PcJSAu7jSlTphTKfCUJdqfBUmp48OABRAo3iHIZoFdQ3Cs3wcO9i+BWq2Ou1EBFRdKJVXBrNyFXD+hdq77Dl9Pz5jF18uRJZGRkYOzYsTn2MRl0iNoyGxK/KggYtRgCKmlfXvBs1AdhJ9cg/f4JONZon68x3nDt5E5cPrQWly9dQOXKlQs0Vm7x9fXF7wt/KZK5SgrsToOl1GAymeBfNudALHvDE4jgUr0tEm7sK7I5baGJfAR9SjTklW3r6CNf3IObgxCDBw/K0xybN2/GtGnTcvzcZNDh+MIxcKrbHW4tRxQ4YaFXty+QfGEzDBlJtjtng0Gvw45Fn8Cc9BhXLp4rMoHxoVJyXp9YWHKB1sQBL4PESJiFUmtbnE5iHmgduCAlzNpWBRKvFkkCSbENKgKc4RPzt1+Feni85ze4e5cBl3o46nyJq2tTL/KWfYXKl0TnidJSuaokHkFknOinZA0uftbm3WhyLYI0i+svYzYjfv8v8J/wF7hyF3TyItdey5no9vlci/F5997fsXpZ3t6Cjx8/jrCwMAQGBmLnNYv9Z94DEuhoUiYjev0XcG4yAN06EWHkJSLXGqkl99JXQgwcLak1bjbXJ9cX/QTebcch8cgy+PcgwkpUjvSZXobEb/RvSK57z549GDJkCHbu3ImuuahhzlJwWKHBwvIOOFwugloORuSV3QgMKt7aB4mXtsKhdlcInG3njQp5ehc8sxZly+be7pOamor58+fj4MGD2e4ezAadVWDIq7TM09ptIQ+ujbiTq2HSZoKXy+zCv/76K2JiYhAXFwdHx9xHxrMUDFY9xcJiA5mbPxiGgTo+pNjWkBl6F6qox3BtN8FmX4ZhsOr7j/Dbz/NzPX50dDR69eqFr776KkvUNz1m/I5voajZ3u4C4w2uDXoj6ZrteJCMjAz07dsXaWlpWLRoESswihhWaLCUGhQKBTKSYopl7sBmAxB1dAXMBm2Rz50ZeheJl7YhoO/X4OSiJOu25V+jd68eqFmzps2+ABATEwM/Pz98++23OWavTTr0OwSuvnCq3ysvS88TDpWbQRVx/519YsJfYODAgZg5cyZ+/PHHUl0AqrTCqqdYSg1ly5ZF5NOb4DQEBI4eloOUV5PWQGwCXCrhoFHsZG2LU0jgFVdJ0oQY3UjMhpmyaTA8i05e4OEAv0a98GLdNPg06gMnjdL6wLpHUg8BdBU3ykYBSuWi01BlSakcU0wyCUiUJ1l2NQn3TyE56jn8Ry4EhJIs2XdpO8bQJpZrTEhIwJrYZ1i86RRyy/bt2zF//ny0atUKO66ROJZ1EZZ8T6mX1kOfFAHvYT+joReJQVBRCXZ3xJD7Xd2R5InyFZIIkpcqEgHezIW0L0Vb4it4QjEYsQIGV0tcyN3BdGilGGfPnsWatT9jwYIFuRaILPaH3WmwlBo4HA4mfzQO2uOLi2V+h4CqqNR/DjIiHuHptm+QEZFzDqKCok2Lx4t9C6FNjkbAiIXgUqVD38WPP/6IefPm5WmusLAwtGrVKtvPEu8eh+rxeXgPXVDob/VGTUaOc5w9exYLFy7Erl27WIFRzLA7DZZSxWeffYaj5wbhRfg9iAOL/uHBE0kR2GYE9Colos5vRuL9k/BrPhiiNzufAmI2aJFyeQfUD0/Dv9VQyDzLQJ0LlRRgsUtERkaieR5SZqjVajx69AiNGzd+ey0mI55v/x5ekzfkSi1WUPSpcRC4+r11PCMjA19++SVOnz4NqVSazZksRQkrNFhKHVvXrEC3nn1QndsD9TuPAvf1Ay1dT2oWCKhnnI5So6y7QdxsHfVETWSiXHcFGXHWtsHR19rmUyVHOVIXlO00EcroZwg7vgp8qRO86naFlH5TTiHqJjrtuVFMrVOdBoZhkBn5CEl3j0GXHAWXmu1RdsQv4HB5MCJrOo0OVUhg49AmZEwAmDlzJn744QfkhdGjR6NhzynYciUNALAwhLjIJpxZD0G5RmgRTFRu19OJGsqQRlyfuTIna/tRJulTUUbGqywnX0SEhkr37muJvTGmxGJuz5qY+jGZLy0tDdWrV8fOnTshk2W9XpbigVVPsZQ6nJ2dsWfnv0gLu4mp3YKhUSttn1RIKHwromL//8GrXjfE3tiHF7vmI/H+KajiXlkq62VTJpRhGOjT4qCKeIiEmwfxfMMMpD4+D8/G/VBxzO9wr9s1X+ncExMT31mF7r/s27cPvr6+qFK3xdtrNJuQfGYtXJoNyfM68ovIpyLOnydpW+7du4c+ffpg165d73XW2NIGu9NgKZV4eHhg29bNWLhwMf6c2QsSmQNcA6uictPe8K9QG8jHQ7cgyDyDUa7759Aqk5ERehepz65AnRgOs0FnMfByyZ+a0aCHwNEDIlc/SB1cUbb//8CXOmYpLpRXQkJC8lT3OzIyEsuWLcOhQ4ew67bmrc8Tj6+EQ62O4Du453tNeUUb+dCqfjKbzRg+fDg2bNiAWrVqFdkaWGzDCg2WUs20aZ9j2rTPYTKZcPDgYVy8ehq7d/4MsbMvqjTrjeAq9QFB0enBRQ5ucK/Z7q3j71JP2YNffvkFU6dOzXX/DRs2YNq0aRCJRACyCg2TRomUKzsQOGWTXdaWG9SvbiLp5F9Ydf0QzGYzxo0bh9GjR7MCowTCCg2W9wIej4eePbujZ09LfYNr167h4MGDWDhuEib+bzUq1bJkO/UIJuk/UtUp1rYs8qa1zVApP/hUHw6laqJ3BXSJV1ogSJOIL66AGkflQaVk16Zb21wqBkTtTidlJHOFaohG+U2aj4y0ZNy7d++dGWlpzp49i6NnrsK/2Vhsu5qGnx5T6cvTo5F6bTcca3ZCdT+L66uIS66bS+/g+AJrUyFTWNsVRKS/hsrZrjKS67hPMqzjf5WB+at/xfSflkEqlWLBggUQCAT47LPPcnU9LEULKzRY3ksaNrRUT+vbty8+/XwGhOKvUKZSreJeVqEQHx2Gzp0759ol9q+//kL/j3+AUPR2iSmGYZB2az/8RxSdW3N8TDj4AiFcPXyRnJyMLVu24MKFC2zgXgmFNYSzvNfUqlUL+/fswJ/zxiEq9JntE0ohYU/v5Dp24eHDhxCLxfDwCcz2c13cSwhd/MCXO9tzie/kwJbl6NhnDADgt99+w9y5c9nUICUYVmiwvPc4OTnhr5V/YtncsWCoCOz3AZPJhLuXD6NNG9tlU81mMz799FN06dIlxz7Kx2ehKMQSrP9FnxqD6LDnqNnQUlBqy5YtuboWluKDVU+xfBB07NgRVSoEw/nyQnQa/CkAYDVI4j3aaVecSuIruFQsByiBQ9s3REoS1yGgysbqFJ5kzPQoa5su/QpqHJOI2AUEapLOQ+1Xw9r+ty8dGS7BiRMn0LtbRygUCtji1atXEDp4A/5t8f3tDHItamJXUYfdhXPLkWCEYgRLLAaJBD15tzSbiZGigoeXtd3IidhF4qjU6F7Ua+mBMHLdX9a07CQ27PwJX87/Gu0bOuPp06do3LgxXFzyV9CJpWhgdxosHwzDhw/Hpj++QWpirO3OpQCz2Yw1a9agZUvbWWfNZjPatmuPlt1HvbufQQue1OGdfexFxMuHSEmMQfv2lop93377LWbOnFkkc7PkH1ZosHww9O3bF9Omz8CiGf3eC8GxfPlyNG/ePNsUIP/l4cOHqNO0I8pXq5djH0NaHPiOnjl+bk/MJhO2LpuDoVMXAAB0Oh1OnTrF5pUqBbBCg+WDgc/n47dff8G/m9fh95n9kH77UHEvKd+EhYXh2LFj+Oijj3LV/9ixYwgo/+4HskmdUWTBfGf2r0OVei3h7m1x6920aRNmz54NHq9ogzJZ8g5r02D54Khfvz6uXDyL8hUqot+EuWjaaSBS3JpYP98Q2cDaNqqJ7p8nIenNTToq0ICydQhSIq1tcTpV+4PKJkKXouUaSGCdkYoPMVYiKqfpwVSww2u+/fZbfPPNN9a8W+9Cp9Ph3137oR61FafuWtbNS48nS3s9hsjVF8aoxxCmWkrNPlBZ8m6VF5P5GziSR8ZLqrTIy0zysPem+u96RsrWBr322NJlJOLa8e2Yt+IA+HwGT548waxZsxAbW/p3fx8C7E6D5YPE3d0doSGvUMmDwcLPe+DSrqV4de9CcS8rVyQkJECn06F+/fq2OwM4dOgQqjfqaDPugcsXwGzQvbNPQWEYBk83zMbACbPB5wugTE/FgAEDcOXKFfD57DtsaYAVGiwfLM7Ozpg+7XPcunYRE3rUxcMDi3H8n7kwUwWcShoxMTEYO3Ysxo4dm+tzVv29Fg1a98xdZw6n0AQHwzB4/u+3kPlWRPX6LfHw1nmM6VgWn3zyCcqVK2d7AJYSASs0WD54RCIROnXqhLOnjqFpVU9E/68+lDf2lDjhEfXqEXr16oWffvoJbdu2zdU5KpUKap0J7l5v16nIDpl/VShf3ijIMnMk7NAycPkiBHacgHULZ+L09qUICwvDxIkTC2U+lsKB3Q+ysLyGy+Vi7pxZGD1iKDZt3oIdq/uj/yc/w69MZQDAq0z6z0VkbZVXGK3tB2nEkCzkklxQ59PJuWkvyENZHvPA2taU60bGGU7iLrRaLWbOnInExESsXbsWVatWzfU13bh5E1K/6rifKoAo9qn1OF0/hOERW4pb/R6I2P0THCs2RliSpV5GlQBX6+dqA3nP7OhKYjNiqfoYx1LJtbYv4w8AeHZ+B9SJd1C+ck38O6UCfv3lZ0yYsCpXNhmWkgUrNFhY/oO/vz9mz/oSgwcNxMSPp0Bj5KH3xO8AeZkiX8vq1autnkWdOnXK8/n7Dh6BV9XWue4vkLtA5B6I9KeXIPEom+f5siPuxS3cO7gSDlwNWjWqioz0NDavVCmGFRosLDkQFBSEY4cP4P79+5j+5RwY5P4o26w/vMvVAo/K8FoYZGZmYv78+UhPT8fZs2fz9ZBNTU3F8TMX0ee7r/J0nnfrUQjdNhdeVVtD6Oqf53nfwDAMHp5Yj1vbFyAgwB8bVq9n4zDeAzhMdqXF/kNGRgYcHR2Rnp4OB4eiiRZlYSkMGIbBseMn8OfKv/EqMR0M11KO1IFnhlTERecO7fDF1E+yjRc4c+YMlv3xJ16ERuPE4d3w8rKk0Vh+lnLL5ZA/p7+jSalTzqNT1rbao7y13bsCKSdb7rWaS52ZjgNLPsKUKVPemSfKFnO+notN99Mhbz8FAOD04pz1M6OEJCQ0iokrsV5mUUXpEsMRu+sHBPWZDRmIS7HKs6K1beYTFR3tOjyrWVkkJ0RjzS+fQ5UYihEjRmDGjBkQi9/OqstScsjtc57dabAUKhqN5WEikUhs9Cw8njx5gqdPn+LvNRuQmqmFd2AldBz3E9akkdxJPT3MUKUn4+bVA6jftA10mkz06tYZ/fr1RdmyFjVN3bp18e+2LTh8+DBGjRoFk8mExo0bI9O9KXzKWOwMErEEvAK4jmpUGVg/fwLmfzMz18bunEhOTYOwTu98nStyD4R/16kI+fcbuFdoBI/qrcHNxe7KpM3E9lXf49b5Q5BLBNi1axdq1Khh8zyW0gMrNFjsjkqlwsmTJ7Hg10V4/vQJFI5OcHNzQ4N6dTHvm//Bw8Oj0Ndw48YN7D94GE+fPUNsohLVG7RG1zHzIPegUoKnZT1H5uiKWh1HoXOv4VAr03H/yhHM+3U1VEpLASUuh0Hkq6cICg6GQqFAtWrVYDAYcH3HTzAYTACHgwylEo6u3vCvWBep0qrgCsSQlW+Adz1uzSYjYp7dRFj4NRzZuhT/btuKtm0Lnun16dOn4Prmv2qh2M0f5UcuQtqVf/F4+3eQuvpDVL0dpEE1IXT2sazdqIcxPQG60FtQPr8CfXIUAurVQ9XK5bF+zWrrbozl/YEVGix2IzQ0FKtW/4Mjx06hRvOe6P3pUgQHWtJE6LUa3L1yAgEBgajfqCmcHaQwGo1o3LgxBgwYgIoVK9oY3TYMw2DevHm4desWVEYB2vefhBbVusLLv4zVJqA22hjkNVKFIxp1GARex0HWYxI+A5PJBDAM2lQAHjx4gJCQEATrSb4mo06Fhxf34fHVwzDq9sNoNOJlyFMI5E4QO/tCIHeGpFobcIVicHQqXLyQgIRX99ClY1vUaVQVa36LhFAozG5JecJsNsNo5oKvcLXd+R1wBUJ41e4Iz1odoEmJRlJKAhJOrIIhPREcoRiM0QChqx9ELj5wazYUnNRwOOruY/P+PWyw3nsKa9NgyRcmkwlKpRJnz57Dyg3b8Dw8FgKPYKD+UAjFCnBeu1KaJNTvRUB04MLkCJgNOmSG3gEn7BLMqVGoVrUKGtepiTatmqNhw4Z5Wo9arUbjps1Rt2UvdBn8Cfo1JDr7f6+SNONGMzEo//SQ6OEZncraHluF7IS8pCQlRgqV8ntdLNk7aJJI2nN5NHGhNUidLGObzdA8PAVtaiz0KZHQJoZCLhWjUb3aGDlsCDp16mT3nEuHDx/Ggm2XkVq9r/UYnW6dLi1rkJJ7xdcS+8wbt1yGSx7+fB1JIq/1rmxtf1VDgRcPruHk1l9x9uRRVmCUQlibBovdSE1NRXR0NP5Zvxm3Hlp8/eMTk8F39gXXtzoUbb+Fk6Ov9W3eEPkoV+NyBSI4VGgEc+XmMBv1eKFKg0yjxZGf/oJQNx8/ffc16tSpk6sH6sSJE9FpyOeo36Jr/i+0kOBwuXAKqg4EWeqTq93Lw2zQ4UbILSSt3Izdew/gn9Ur7Trn6TNnIXYpOhfh1MRY7F75NU6fOMIKjPcc9ttlyZbExET8uXI1jh4/CUicIXX0RGCDHsAwi/umF48PHuUGqjO+nVQvL3D5QggdPVCxbnVUbNwVqXFh+HHpKsSGzYarkxwzp32GVq1aZXtuZGQkUlJS0LMECoyc4ApEUFRsgiGjR2LVlz3sOrbJZML+o6fR+utpiI2IsX1CATEbdFj/8yTs2r4Fbm5uhT4fS/HCCg2WLCiVSsydOxenL15H674fY8w3GxFrIvWaQ9KK5ifj7BWEuh99DwCIi3iJ7t1bY8WKFRg2bNhbfZOTk1G3bt0iWZe94XA4kCvsWw87LS0Nzn4VIZTaruZnD7QH52Pu1I9Rvnx5251ZSj2s0GABAMTGxmLR4qU4c/4SWvaeCMOwSTjB4eDEYzUcws9a+2mdqGAvut42tetQJJB0FWaBzNqmffwFqmRrW+fobW0fOk/N5fxmLgHGb4zAb7+PQXJaBqZ+8vFb638Vr0UVhqxh46U0a1ttIraIP16QfFLS0OvUdZF4ifXXEq1towMxcgvSSepuDpWXSsAjf0YmKr05Hbug8iapP+hrT9dzYLZpVcwb07/+Dik+9XA6NBoCPUnhLlCRcqsqz0rWtoJKZWISkpiNN/YN2v6h9CPBeV/VUODRzbMIczdh8MAB9r0IlhILm/jlA+fx48fo1rMvBo6YCKF/I3y2cC/qtuha4tI88ARCtPl8Lbafuo/vf5hf3MuxGwzDwGQ02O6YB24/fAZhzW62OxYQs9mMk9sWY/WqPwt9LpaSAys0PmAuXbqEQcPHoeWQORg3bwOq1mtZohPI8fgCNB77G85cuYsDBw4U93LsQmZaEjw97Vct78mTJwgPeW638d7Fie1/oH/f3pDJZLY7s7w3lNwnBEuhEhoaik8//RQf/bAZnn5Fn4gvv3A4HAz/7GdM/3IOYmIsRt6IiAjIHEqnATbmxV1ULG+/WhJJSUlwb2Bfw3p2aKKeQB3/FNO/mFroc7GULNg4jQ+UIcNHoUyz4XArT6q/rX5MdPmyqPvWtllAUoDQun9p4ktrm2MmUXMmIXnzFKiJ/t4kIr8dviaNOk4Mthwj0Z/rHLypPkTX3qhyVcQ/uQLl2d9x+ugB1KxdF+3H/4ojPCpAkCrHKkl4YW3zaDsDlQNKmhRibavdiBCVxz62tulcSwJ1CjVOBTIvh7yHCVSkD8MjcR36MqSc7LDEv9G4cWM0b94c9qBL914I9+4AiUcQgKylZek10N8XwyEuzWYqloZjtnjEadyCrce+qOMFrToT674disP7dsDd3fYu6Y3L9hsuXr6CQ0eOQ6W2fBexUeFYtWI5WrRokdvLZCkE2DgNlnfyKiwK7SfWQ3rJqjOUazwrN8bLfT9DqVSCJ5IhqHI94LnS9oklEHvZj+7cuYOQsEjIawbZZbycOLdnJaZ9OuktgWE2mxETE4PDR47h0PFTSElTgjHqIZQo4OodAA4s1ymRO6PtqB/h6GpxMoh8egMz/zcf1Spsxt+rVxXq2lkKDis0PkDCw8Mhdyr8/E+FjcK3Eg4cPAiNRmu78wfAzNlfY+K8ddh8J7LQ5khLisXL26fQ749vrMfOnDmDQ0dP4Nz5i3B084NTpZYI7jobdb2DUc4h+7wtOhMRlOWq1sNH367DjhVzsWDBAsyaNavQ1s9ScFih8QESEREBV+9A2x1LOO61u2LP/o3w8Cu99aVFIhESExNtd7RBUlISbt++heFe/gAKR2gYlUnY+usc/Lt5Pfh8PhYuXIi9e/eiVq1acK7ZFxM6fQ6+QIhIVd5ToghFYgyZ+jM2/zAUXbp0YTPjlmBYoVGIqFQqTJ89FwP7dM8xmrk4WLrib7g2m4hwFQ87HxJdvjgj3tqm7RjCdKKPFqjIA+6NzhvIanMwiomNgkfnOJKQIDa9nFJtUPEeXFP2+jJhJpn31u2LACzuqlEXLsO7XA3cz+BDkBRO1kaNQ88lyogjcxmIvl+nIPEYtF0iy3EKg4wkAhRScRf0XGY+STxIYk4AiYjcW1FwG2zd+jN6985fCvM3bNi8DVUGfYfj8aIsdgw6VoSh7Bg6Bck+K8pMsLZpW4e6XBMAwIxKFjvH1kU/Yf6yhShfvjzmL/gV+05eQd+vdoMvFOFcqhD3Xt+GBg7EhZi2mKbpyX0VcskHGVQJ2Q5j5uPrb77Hvt3bS5zbN4sFVmgUEiqVCp17DYBDnUEYMu5TeHq4o3WzRlDISPCXQiZBjx49IJdbHrh8Pr/Q04Y/ffoUz8Ni0GtE9UKdpyjgcLioMWAOHu/8EUmv7gAofQ8ZVw9fxMbG2+74DlJTU7Fw0e9o9M1JO63qbZ7dvQQ/Nynq1q2Lmzdv4vCJsxgwe4vdH+wevkFQ6oCXL1+yEeYlFFZoFBLrN26CuHI3lGvWF35N+sKo1yI07AHqupC3sOp+JixbtgxGo+XtLiEhASqVCiKR5c2uTJkyqF+/PoKCgtCkSRO7rOvLL79EqwmLiv0tTp8aB7NBA57UCQJp/j3ygpoNwNO9vyL85Gqg6QQ7rrBo4HA4EMoccf/+/XyrZO7duwe3Gu0gccp+V1RQGIbB6e2/49j+HQCAP/5cia7Dvii031D9tv3w7Q8/YdP6NYUyPkvBYIVGIWAymbDsr3Uw9/sd0WEx4Iheu6A6VoDegaShLu+oQbOhFvfLgY2c3xrn1q1bePHiBbZs2YIFCxZApVJh3Lhx6NChA1xd814n4e7du0g1KRAapwHiLK6kDlQKCR7lRmp09LG21ZRLqUCdZm3TqiTaFZfzWt3EMAxSzEDGvRNQRz4AYzYDXD44PD54EgX4Dh7QJ0fApEwGT+IAh6qt4FylBbhCy26MYyIC1sh3srZptY9EwEOVLpNw/d8F8Gk3A5zXnwmUROVCq6TodCf0cTrFhtaF2HvepAcHAB6VkoNLtXla4rVlcqZrapO5hNR6NCIyZpLWGWUadMe169fzLTRW/PU3VJX64W6oxQVaTqmkDJS6jL6fPCPpo5e6kLYnsQ/NqWp5eVHe/xf9e3SEk5MTbt26hTvPIlFmQAPQVT88+ERV6S8j6kYhj6ihItXE1nFVSdoqKhtNS0cTUKkbHu3+G0ajkc2YWwJhv5FCICQkBAbXshAVsABO3bp1UbduXQwaZCkEpFarsWLFCtSvXx89e/XBjOlfwMfHx8YohEVL/0StLhNAlbQuNEw6NSJ2fAeuzAmONTvArdVIQEYJRoY8ZLgGLYzKZKTdOYKQNVMg8akE1wa9IHEPyNVcFTqMw+WN3yH19Gq4dJhs70spdIIq1cGRXT9h/LhxeT5Xp9Ph5aswiOoUToCmRqXErl27cOzYMQDAvB9/Qc0uH73eZdg5aRaFb4Ne+Ouvv/Dxx2/nGWMpXtiI8EKCJ8p/mc2ckEqlmDZtGq5fvw5pYCP07DcEX86eA5VKZfNcs9mM06fPwLd8Lbuv67/oU+MQumE63JsNht+gH6Co3AJc4btrhPMVrnBrMQxlJ/4Fx+ptkHB+I17+MwVpD8/CVvwph8NB07ELoLy81Z6XUWS4egUgMjYpX15UR48eRfXGHQtNVbT+188wZMgQcDgcXLhwAQlKE8rXa18oc9GUbzUUBw8eLPR5WPIOKzRKIW5ubqjVqC1mLNqNsCQjunbtiszMzHeec/r0adRs3b/QbRn61FhE7p6PgH7/gzyopu0T/gOHw4E8uDYCBsxD0JD5UMc8RcT2b2HWvzsWo3yrIdBkpCBt3w/5XXqx4uYdhPT09Dyf9+P8BShTuXDSwifGRkAuNGPUqFEAgD/++ANNh31bKHP9Fx5fgIyMDJjNBavTwmJ/WPVUIVHNVYT+9S35kL6/Q/RBEeHPrO1f9MQ7ZH8M0TF38iQukymUm+LZZKJFrqOwpISo1u9/4J3fjg7d+mD96uU5epxs3X0Qj12aIexpAoSUPt5I6bPNVPoPWv8tTieFfOgUIXS6DWFmEkx6DSK3zUWFGTshdrfYBbq7knGSaZdLSnZpqOdCjI70eRgRCvfec5D57BLCdnwL/6E/gSuUwEy59555QVyG2/SbhKfXjmJ4ZU9suUVKm/J15P5rXEhKjKwusX5ZrsV6H6iHFkO54tL3J6NCS2ublx5H9SE2H9oNmU5xcjfN4i2nca2C27dvo1y5vMWccIUSiMs2h+jCVesxM2WH4WvIfTDzyW6PdsvVUTarebXJvd2z5Ev89vOPAICdu3Yjg3GEQFEGCa83tm4CsgN0pNoGqqTu8xTyiImjvttME+mvURKX5ZNG4hTRq107bN68GcOHD3/7wlmKDXanUUhEhhZNplEAqNqyPxqO/Bl9h43H3bt3s+1z5dZdSINrF9oaGMaM8H2/wqfVcKvAsBfyik3h2nwIIjfPhlmvybGfWCZHy+ZN8eLWabvOXxR4VG6KHTt25Omce/fugRHat4DTG+5eOQEfHx9UqVIFRqMRPy9ciq7jimaX8Ya+ffvi3r17RToni21YoVEIBAYGIi0hqkjndPMth7YTF2Hip19i7jffZrEDhIaGQiso3ESTqQ/PQOTiB0UhCSZ5uQZwbT70teDIXlWlU2WgWZOGSInIXY3ykoRLYFVIJBLExcXZ7vyaw8dOonqHUYWynhtn9mLSpEkAgCXLlqNqs94Qie1vp3sXjo6OSEtLK9I5WWzDCo1CQCgUQiGX4fmD67Y72xE3v/KYMn8LLtx8jGV/LLcKjvv370PvVHhpQ8wGHRKu7YV3y7dLsdoTebn6cKzVEYlHlmb7eXLkEzRs2BBGbelMXDhixAgsWLAg1/1VKhV4fIHtjnnk7P51qFLWB2XKlEF6ejq2bN+Dxp2LXkUUEBCA+PiCBT6y2B/WplFITPpoAjw9dejeyAkmSme/4CLxkDFEkbTbd6VO1vb9EOINRevdOVS6jRcKKjVGllrQYpj7r8Cyo4tx597H+Oev5eByuRALxBAlW9JsCNREz02njaBTh5ikb8eNAABfRwzub8qAplzZgfJdPkZQ7bYAgNoKMuaxFPJQUxrJ+vVaotdv7EbsJP5icrO8ywVZ2yciLfdN0XQIlIv7g/vgKCSuflC/Tm/OmAzwchKDy+Witp8QEV7EtpNJpQSndfm07YKOxzBQ186ly7pS900vI/U7eOnxVH8yvt6TrEEUS0rggkMM3heISQZtm9TFtVvzoVQqoVDYru998OR5BEz+FAlpgiy/Db2cZBUQ5pAiRF+ljbX9ZVmyK+1aXYhhLWZBrbZ8P6PHfQTv7nNwLd3y20ilEg2+0JG2nqo+aDRTKdg5lO2C+juQ88i5Wio1O4+X9ZFU3EGoLG/zwQqN6OhojB4zHk+fPYdvGVKHQfv6j8JsMsLTQYS2rVti5vTP8/zjZRjGWiSoqOEKRHDoPguGe2swZsLH6N29c6HNZTbokHrnKOr9etV2ZzvA4XDg23wQYi7+i7I9p1mPZ17fiUqVLHWvdTpdTqcXGprY50i9dRC6+FfgvhZSPI8y4EoUELgFwFHmAIl3BZu/o6ZdRuLXhYvx3by5NucUiCTgCcU2++UWk9GIwYNHYvfu3eDxeDh69Cg4DgHwqNLMbnOwlH4+KKERGhqKnTt34uHDhwiLSUHHoTMxolxVJOlJ4ZnHSnJLKvEScevkVgQEBuPO7Ztwc8t9dbgmTZrg008/xcSJE+16DXmhXqeRuLBzGfYdOAjAqVDmUD67DMdqrcAVCG13thMyzzIAhwNV3CtwXu80OFF3MPHH3xEYGIgjR44AFaaDwyvcnzdjNiHj6SUk3T4MnlgG18b9Ie/wEThcLkzaTOgUHjCkRMOYkYjkG3uhiV8Ol5rt4VKrI7hUsSOaus074bdp/TBy+FCULVs2x7lfvnwJLce+NoaHN05Do9Gga9eu0Gg0mPvdTxgwfSUe2z6V5QPivRYaSqUSZ86cQWJiIvbu3QtXV1cMGzYMQ4cOxfkI6g8uh0JEUoUTmveeBJ5QiiZNmuDixYu5TihYqVIlaDQaGAwG250LkUY9xmPl5+1h8Ktvu3M+UL68DrcmAwtl7Hfh3ag3Yq/ugXeNTgAAoVgKNzc3iEQiVKtWDfc0GeDLXWyMkn/UUY8Rc+xPyIPrwK/PVxA4Wn4XbyoP8sRyCJy8IHCyZJN19wyCSZuJlAen8WLt5/BuMxoO5d7+TvgCIYZ9/gvatGmDw4cPo2rVqtnOf//+fYj97Zd0MiM1EUc2LMCJo5aAui1btqBai35wdvcBkm2czPJB8d4JDa1Wi9OnT2Pl3+uQlqGBf41WEMld0HLin3B0cEAogNCXgIzyK98UR3Swmgyi567paHFnbNhlFEZ0qIIBAwbg5MmTucqHw+PxMHPmTEyePBl//fWX9fjV5MrW9pkXoda2IC3W2jbKyMMuS14jyo5BazkMlBuqiYoB2Pj8CQBA51sfSZd3ItA3CBwuDyr/etY+fHp82r+fOq5zIInw6JKhAnUqjMmRkEvlcKNyD/EoPTadV0ibRDzKuFTK9KtcEiPBoWIh2ruT3YunK1lDSqon+ApP6M9thYuzO/hSRyRQEfgODg7o5pAJVx/Lg3z3I+L+bJA4Wdt07IRBTnaR9NpMXKJvV3tUAGMyIuHoMgiUCWj21R5IXHxQj0oFLqBcS9SU/v+R2+uEk/U74GHER4he/zl0Igc4VCc5u+bdehNP4oMucw+hfoNGOHBgH9q2IfaHNxw5fhppQf2gTrB4W4m5ZGIztcPSUynczb5VrO0J/mRtEr4Z58/txv/mfAkfHx+YzWb88ttiyGdfxv1IAcwvrpD7RNl7JMlhZB5fIsAyFOSaWriRN7Km1N9cHJWHSk/ZtIRcqgwtw9jMBsBS9LxX3lOHDh1CvXr1sO3oTXQe+wM++n4jmvQYj7pt+kIiL5g/e7t27TB8+HDMnDkz1z/kXr16ISEhAampqbY7FyIiN38oPAMQ/eiS3cc2Gw3gcPNedMceONVoi7jzW946XqFCBYQ9upLNGQXDpE5HxJpPIHQPQsOZ2yFxyX3eLxquQATfkYuR+fgsks+uz7aPs3cwJvzzCHMWrkfnrj2gVGbjEWYn9duTu1dweNty9Hld02PlX6tRtVFHcArBMysvPH78GP7+/rY7shQp74XQuHjxIurUqYM1a9bg9OnT6DT4Uzi62L8uxdixY+Hp6YmlS7N3+cyOevXq4dIl+z+s8wYHjp5BSI54DKONdBx5hWcjp1Rh4lilFVLunXjreNmyZaGndoz2QBPzHOH/TIZHp0/g3KBgBZMAi+DwHjwfmoj7UL3M3jVb6uCKNpP/RJMeH6F9p+7YvGWr9YXl7t274MmcCryOl/cvY+5HXXHh3FkIhUJERERg5V9r0WP0VwUeu6CsXLkS9esXjlqVJf+UeqHx9OlTzJo1C5s3b8auXbsKvYjRZ599huPHj+daEPTv399imC1GpN7lEHHvDLwqNkTUwwt2Hdv0jgjtwoYvdchSje4NDRo0wJOLe+2Wt0gdfg9xhxbDf+TvkPhXs8uYgMUTzKv3bCQeW/7OfpVqNcbkHzdhw47DCAwqg8jISEjkjuCJ5e88zxYaVQZOrv8W165dQ5kyZRAVFYW+A4Zi2Iw/wOUVz+6R5tatW9YMzywlh1Jt01AqlRg+fDi2bduWxdMkiqpRTKW4AZcyBKyMpHTA1IOHoyY+9LGat2MVRCIRNm3ahKFDh+Lw4cM211ihQgU8fPgQBoMBAoEAy7oT3XvVP4i7pNGB5P9h1CRXkolyqeRSDwnGRNYc7ER0wq+M5LjW+7X9xBtwCq6NTI0GGmUaxGf/hmcFyxuczjUHDx2GjCOiyr3SNSXSyzQF5C7QeJTHKyqvEOWCD52OxJzQtgKzgLqupAhrW+5PbD5iSr9dR06MI8cptQwXDMQcJsuc3t7e8PP3tejEAahdSY4suoYGz0B2I/R1MZS6TSeQIPbgYgSOXAxBINHb16RiUVRGcu20HeOSkhzv7kr6+wUR+8yZe7EQyV1geH4JUp9K1uOHU8k9P/qmPkbNURBXGYRu/YZCzVdAJie/T53Gm9wAyi7kW4bU6OhJ5TQTG9Ow+ZdxWPXHQjRo0AAnTp7GlC/nwtz6c2yMFgDR4RClRb8ejtwPaRKxw9HII29b2/fjSX61e5VbW9v9PMh3SOenSqRyktVxttiH1Jnp8PDwgERSfDtZluwptTsNtVqNgQMHYsmSJe90TSwMnJ2dYTAYstcz/wcOh4OOHTvi+PHjRbCynAlqNRwZUU/gWaMd0mNfIfHVXbuMyxXJYLSzKigv8ATZxyk4KBRQpRd8Xak3D8C5Tjfw5dkHO9oD96YDkXR5e676CnyrIpbjjBSuU4Hm3L7qB0yZNBpNmzTBwUNHMOPHpWjx5R6IvPKWMLGwuHFiO4YMGVLcy2DJhlIrNBYvXowxY8bYrQxqXunXrx+2b8/dH7qHhwdMJpPtjoUITyhGcJuRiLq6G8ENuyPq3mkkvLhV4HH5Dh4wZCTY7lhImF9nm9WlxmV5K23ZvAlC7xQscSFjNiPt1kE41u5UoHFsIfEqB7NBB3X0U9udAWjUKnDEtiPGcyItKRYv719Cl86dERcXh+lz56PRJ2shEMtsn1xEGPTqPBUYYyk6SqV66vnz57h16xa++ooY61aeI2qlRB25LBGX6Kf2x5HtuZuU/IEkZlKqCT4JutoTQcascoWoF4Y0dkLt2rWxdu1ajB07Nt/X0bssUVPsv08eGCYHYpfJqXgRQ1W+i9aTa2RUpGQrh0pNkhHUAAhqAEe+HA8O/ILqPaYi9MoeMCeXwzOoMjgcLpTVepFxeOQ+0CkqdFQZWEniKzi5+0F3az9SHInL6iUvomrj0K6gVCVD2oBOuwnrqJwrqQZyriOfXCOXUuNIYUAFoQZx0GYRGn16dsfRz+YgsOcACPxJrIM2hvrJU/eQvsY37sapD8/AsW43SMrUAQCM8yO/gYvJRGXzlMqPoU0jKUX4lKH6lpKsrbKUUtO4BQEAXHrOQsqJFZD6Wq6NS5Vspf2rxfHPYYx/BdcytWGKJzlIGCpdPIequd7elbi8Kl67vM4c0xibN2+GTCZDi869IagzALdvngcA8Gh379droF2TuXqibtQryO+Uvn8CFQnsUEWS5JGbUsn3L3Ag7foOtGrTskajTgNeCbCrsLxNqdtpMAyDGTNmYPHixcWal6ZBgwYICwtDbGys7c5AifE3d6zTBX51OuLpiTUIatwLWlUGHl7Yl0UI5Wm8snWR9vxKsV0fXyhBzKPLaNOqRZbjfn5+SIjOXv+eW5LvHIFHh6KJ6Bf7VoQ+zXZyPqM2E/r0/O/sbp8/gEFDhqJ7ty74dMYcGBqMhMQtd2V1i5Kol/dQu3bhpfJnyT+lTmjs3r0bDRo0QGBg4WVtzS1t27bF7du3bfYrX748Hjx4UAQryh3u5erArVxdRNw4hIAqDcDh8vDg/B6YjXmPXucKxJD7V0XG04uFsNJ3YzbqYdRrkPDoNPr16pblMw6HA0eH/KeD16XFgS9RgK/IfeqYgsDh5TImwmwGXyzPNprcFlqNCsu/nYDlSxfj5s2bOHH7BRwalTzvJIZhwJgMEIvtl1eLxX6UKqFhMpmwYsUKfPHFF8W9FADAgAEDsGrVKpv9GjdunCvhUpR4VW4MkdwZjy7uR9maLeDg6oOoQ0vyN1bjfki4sKXIdxu6uJdw8i6DjJgXqFix4lufc7lA2PP8CeuM59fgWLFpQZeYJzi5UMeYDVqYjQYI8hGjcWTzQiz7YzlCQ0MxcOwnkA/4JR+rLHxePbqJyhWzr0DJUvyUKpvGzp070a1bN6vuetV5YnN4lUkuJZnShesorQtD+e0nZhLPJ1rvDjq6mVLZxFJpD1ZY7SeOuXpQcqnxd14j0eFVnIh6bQ9lf+BQyexo11qGKjFawZ3ok50pfb8+IIgcp9I2hGiJ90+C+wQAgHuLCeDeOYqnR/8AT+4DY9QjMLFPIXJwA49Kga5xJSVSRelvZ+7lA3Co2ATJtw7CtX5PMJT6hPM69xIAtPIm+nIFteZQDXFDpkuIcint4+EkojN/Y/xOv30IPVq2xOWDa+Hs/LZ306cfT8SVK4fxcRfidvrCmdhbjt4hVeHotOE6Jx8okyLh3vFj1JSR7+4SVW43xUgWZ9ATW5lAQa7RRUS+xxgqv1kF2kxlIOcyBh2gSQeXL4RJRGxuZmoXEnNqDXgO7tA5+mRJ6UL/bhkqdmZnoiUTAsMwSHt8DzvXLELNBk0hDGwIyaurwKurWVyMpSoqXfzrlCviZGI70VIu2llcsanz9M5E3aWIvkPGE5GdnzKI7JTK+5Df8oimTvjrUShqdmwLlpJJqdlpGAwGrFq1CkOHDi3upWRBoVDg2bNntjuWUCT+VeE/7k/Iq7YCYzbh5f7F+doxuDUdhNQ7R6BPy33luYLAMAwy7h5FYNkqCArKXlXZqFEj3Lx5E+Z8eK6Z1OkQuvrZ7mhH+FKHLC8J2ZFx53C+ItKTt3+F3h1bY/iET6ALbg6nsvVsn1SMiETZZwFmKX5KjdD47bffMGHCBLi7u9vuXIT06tULu3btKu5lFAgOhwPHOl0R2HYUNInhiLt5KM9jcAUi+PWciag9P8FssG+qkuxQ3j0CWfmGiIsORZ1aNbLt4+HhAR8fHzy7m3d7i1mbabuTnTGq0t6Z70kddhc8xgznpoPzNK7ZaID+5UVcvX4T13TeEHWZVdClFipqtZr1nCrBlBqhcf78efTv37+4l/EW/fv3x9mzZ6HX55BfvRSh8KsMl0pNEXttT77OF3uWgWv9Xojd/SPMxsK7HyZ1BhIOL4VHt2l4cvMsWjTP2fYwfvx43Dm1rdDWYk84fKG1gFN2aG/sgE9wuTyl+DAbDQj/tRt0GSmILNcDkjaT7bHUQuXff/9Fo0aNinsZLDlQKmwap0+fgcDRD3tuZiCasi1siCF/YH4iIv/ouAWaAAfibx6rI2oAE+U1REf+GjXE7rEtnszV34P033Q5HSKXILx48SLH2gcAkJJpxM5rqejXkIy/g7Jv8KjaD74youOPTCd2m1a+xJNHwiMql5PJ5Fr4VHlYXSpVNpZKj1Lfj6SuFgeS9n0Pf5St3gE3xvsgWZUJmZ8llbZAk0bGpOI06FKixtepxWWN+sMocUDkxunwG/MH+FSZ03MmEm3MUHEIAW7E7pFJpZeI1hDBY6J0/6rd36HWwK/h6ekNY3oE6tXLWdXSrFkzmL75HiZ1CuQOzhDzyG/D4EyuhUN91xBKwJU6AkIJzNRPKYAqRSs1kHVyqWJIcfrsVWEelCzQUteI1zsLxmSEyWSC4Y1ti0oF0rhCRTBmMy4ZUwGhBN0qWWxMZ84dtfbROZA0IhyT5b4ZlCm4u3oS5M5u8OvyJWSMHrhhEaAaN2JolqSEkfVQdjzTm2h7KYmpEFJpWOjywIyCxBxxKPWm3oG6x5TdSOhI7BgKAZkzIiIC5cuXz9ZGxVIyKBU7jdt376F2s67FvYwcad13MiZ98lmJicUoCFyBCP4tBiDt/Jp8j+FYrwdcO0xC+PKR0FIBaPZA+fA0GIaBZ+2OAACNRmMzXmfo4AHYvvx/eZqHw+XBpErL7zLzjDE9HnyHnN17Qy7vRtPGDZGREo+MhMh3jqUMvYOQrV/j8eJBELv5o0y/eRC9Y+ySRGpqKjw9PW13ZCk2SoXQKOm4+wRC4RH8zmy2pUmgSD0CIWG0YMz5T30iK9cAfqOXIPrwUqTcOmSX69dEPEDi4SWoPvJnAEB6+ENUqVLFxlnAsKFD8Ph23rL7SsrUyTFleWGgDr0NiV/O1xJx8i/MmfkF9mzfjDNLRmfxBHyDMvQOXv0zBSGbZsOkVcG361RU6P1lsdU7yQ/Lli3DsGHDinsZLO+gVKinSgM9x/0P337dDy1btoRMljWHD4/Hg8mgQVpyAoBSsO128AZjNiLj8Vk4Vsu/66PAxRdlRi5C7IlVCP93LrxGLQXfIe+ODLqEUMTtWQCzJgP+E1ZBILO4kapeXUetBrVsni+RSBBcthx0WjWA3AX8yco3RPq1PUCn4Xleb35Iu7QNfr1yNlCLxWIEBQUhKCgIMz+bjEU/9kFEyHNo1Jng8Hgw6XUQiqVQlKuPoAHfgP86lQiHSitT0mEYBhEREahZs2ZxL4XlHZQKofHg3h3Mm9cTwcHOmLyfylNE6aFDtGTT5CpXQJ+RiJTbR5Dw8DyY1zreEA4XPIUbhO6BEHlXgNinAjg8AUTORKdupHTnHCoPlcFIjq9/SGIV5J5vYhjEKNewB3755Vd8++28LOvncDhYsWwxFi78CeO6rCPHqT5TypK3wUvJ5K08miotm07FBlxVkj48KlW4NjPN2qZTg/BkRFg9pNIaufPf3mxKq7WH64v9iE15BVPQDHBfXrZ+xqXug1FMqiHyNMRmwskkNh8uY4Jvu3FQRT1G5NIhkHiXh2v9HpC6EzfZ2GSibjFR6d8NcS+RcHY9jJkp8G3UG3LfSkByGDrUs8QBrH24D30W7Hhr/dnRo2tH3D1/EF5NiOcRh/KQYiREmPAkcsgqNkXCvl9wI4rEIoypQpWcNZDvy4mykwQpyHcURfkCNKBKwv5LfcDNTEHmqxsQOXpBLHMEXnueCYLrkvGf/otmdYi9rHHDeng4ajgC246Cb/UO4IADMZ8P7uv4Hp5BDSgtX/Ib+waQNU5CpCS2CZUnyeVFp443vC4Va+aTyGwzZTMTp5LvzSClc1YR7zk6J5XajcR4cKhiYGbGsm5lahLc3EqHGu1DpsQLDYZhEBcXh+DgYNudARgzU/Fs80xoE8Ph0bgf3Lt9Dr7c8uPn8njQxYdAnxSO9Ou7ERt6F9Jy9eHd/QsI7ZB/p0nnoVg9dxjmzPkKQqEwy2fVq1eHUqnEtWvX0LBhwwLPVZgInLzwIs2MjGfHUW6YfbLzyvyqoNz4P6EKv4/EC1uhT4uFLKAaJF5lIXDyAV/mBJNGCa06HUZlMpRPzoPDMPBoPQqygOoQZmZNc54cFwEXBykccpkqZOCAAejeZxCGNMmduyqHwwFHIIFJowRPkv+Msrkh8eTf8Bv4Xbaf6VNjsX/DQly7bFGvhYWFoe+wcei97A5Ck4kjBVdX9C7C9oZhzJBKpbY7shQrJV5oPH36NNsUEdmRfnM/kk6sRPnB38O5WisAQIqa7Ey4PD6kwbUhDa4NWYUmYBgGqmeXEP73ZDhUaw2Prp8XaK0yhROCq9TDrj17MXjggLc+/+GHH/D9999jy5a361qXJDhcLmRtJ8Mc8wiqF9chtJNKnMPhQB5UE/KgmmC0mVDHPIMuOQoZTy/CbNSDw+VB6FMRfKkj/AfPh0AgzHGs64fX4YupH+d67qCgIMCkh1aVAbEsd4LGoU5npN/cD5fmhRdQmvHwNMReZSFw8gT+8+BnzGbELh+Mn2d8AUdHR8TGxqJ+kxZo8fUhOPqUA5KvFtq6ioMnV4+gUZ06xb0MFhuUeEN4cnJyrkq4pl3ZAeXD0wievscqMGzB4XAgr9QM5WbuA2M0IP7gogKuFug6eg6mz5iZbYGmgIAAnD9/Hkbju6N+SwLySk2h0hqQefavQhmfKxBBHlgDrnW6wLv9RPh2ngKfjh/DuX5PONbqCJ405wd7akI0LhxYjzatW+fYJzs6deyARxf35rq/U8O+SL++J1ujsz0wpMUh6ex6eHT6JNvPM2/twZBubTF69ChcvnwZdeo1QPNZeywC4z0k5O4Z1gheCijxO42TJ0+iY8eO1v/rqb9f3msdri4hFKlXtiPos3/B4XJRgfKnVwuyr0fxgCG6UwaAe/fpiPx7MjS39sO9mUWFoaYC9vhUpK6ByguUSVWt2xPnBkAMeeXWOH/+PLp2zeomLJPJMH/+fHz22WdYtmwZaH+iBG328lsoItv1ZMqmUUZM+hsZcjzURPobVMTOQKPXEaNGrJH8BCrKyDU+TFXC+7OdCP2hA9w6TLGqaOiyqEYJsWkIMxOtbYGaqE0YLhlTJydGcIZHdhG0nlySHGZt0/YTTXVLISSGYXBp3TBsWL8WfH7efr79+vbGlDm/oHaHEZYDCrIegYjo7Q0ZpB6EvEpLZNzaD8e63bGJSrvVzoV8e9RXASch+e0lULEc2yIpPX9iKMx6LaK3zIZPt88h4HIAgwb8YPKWPcZXh3/++Ac/nTqEH35ZhKV/b4LzlD2ICX+GmHBL2hqjN7FzcKkYCCNVW4POScU1aqk+ROVG338Odc/Fb8q9UmNrqTgdI2XH0MtILAdDjSdUJmR73EFG5ncSamE2maBXpeZa3chSfJT4nUZiYqJNv+34vT/Ds9esrIkH8wiHw4H/2GVIvX0EaQ8KVvHNp9MUnD799hjffvstHj16hF27duHkyZMFmqMoELn5Q+xdDmk39hX3UqxkPjkPrVaL7t275/nchg0bwsdZiOgXd2x3fo1Li+FIOb8JJs3bO8f8wjAMovf8BJdGfSH1zV71enHfXwgO8Mbn07/E6tOP4THzKITu2efYeh+4eW4/+v4nvT1LyaRECw2DwYBnz55Z9NE5oA65DUavgbRM3Rz75BYOl4cyY5cicse3MBUg9xCXn70ufsOGDVCr1Rg7dmyuVG4lAQf/igC1cyhOTOp0qLbPwpo1+Q88/PbrWTi+4otcx43wJAp4dJ+GmK1f2S3WJv74SkgDqsGhUrNsPzcbdLh/bg94PD7UkkA49P+p0AqOMWYz1JGPkHxpG5LOb0LsrcNIuH8a6RGPkBHxCCZqV1qYxIQ8RItmRZuKniV/lGj11LFjx9CpU6csqcVNlKOqk1GD8K1fofq0bcig1Ec3MojHTzsXcq4LpTooIyWXfo9Kqy7nCiDu/TmSD/wMcZ951uO0SoebSdQXZjnZlgeILOOnCc1Q69/Wg9+8eRNdu3aFo6MjypQpA4eqxGOLTgN+V5l9MaSKCrJOOh2G1kROjtCR+8BQdoEgGVG/ZCkPS7nlyiiDt7eLRaiZXLygjnpkVRXRLpm0SorhkrXpZUT1x9dmWNtmKuU7rebKUhKWErgq3+rW9ryKZvz+1WQsXLmkQAW4atasiaGD+mPzrxOBdl9A4lfZMm8WuwWVnl2XCYV/FWh9KyJx3VR4Nx0IADjiTDLg0inKafUOnQoEDAOGYZByaRuMRj3cW4+BCUDn8uQ3UMfFcu6/y/8H9/q1cPqVEtJWwyCMvG/tQ6cL4VNuzno5pW51JC7k/ERSvVDrTlxejcmRSDr1N3RxL+FRri78qraAQO4MEwNok6OhVyYhJT0F0Wc2wKxMhqJyczjV7gQFFfdBq6poeBrqO6d+F8J0UuWyaqC/tT20iRNWf3ULDRv+mu14LCWLEi00Nm7ciBUrVuT4+eMV41F+xC8QOXkBWvtlVvWt1xWP9y5GYB+7DQkAcHZ2xuXLl8EwDHr06IGENZvQrt9HqN24vX0nsiMcMDBTNZ+Li8sndqJO9fLo2LFDns7Lbncwb85MtG1xAROmTEKyiQvU7AlF02HgyZxyfKN3azkSyQcXIfzwMvi3H5/n9asjHiD+4GLIyjWAV++vcuyXHB+F2xcOQuHuA9Gw/O+osoNhGCjvHUfKuXWQ+FWFW/uPIA2qiQAJEXpG6nYJX+f+MobfQ8aTC4jcMgcKj0D4NBtktSfag5iYGAQGBmZ5OWQpuZRooZGZmQknJ6dsP3t+cj3kAdXhWL6B3efl8vhwDqwGVchtyMrk3QWQYRi8ePYMv/y6EGNGj4RYLIZcToyTHA4HBw4cQFxcHGrVrovP5m8A/Ox/HQXFkJmKlDtHoKASChYHJo0Sp/f8jWuXz9vsm5qail2792Djtt0wmBgoMzPBiMmOi95PmBTeEJhNiD/5FyL+nQeBsw+Ern7w7DUL4v+k9OBwOPBtNQJpz6/i+aZZcGo+HA61O+eoigQsvwPVy+tIPrcBPKkDfAf/CKGzN5h3PBw3L5mNWjVr4J6gMhzyUZ0vJ8wGHaL+ngyRdzn4j1sBiU8F2ye9hiuUwKlmBzjWaA/N1e14sf07BHWdAuSw08grixYtwpAhQ+wyFkvhU2KFRnp6OkQiUbZvH6nhjxB6cQcqzthbaPP71uuCF4/P5UtoxD2+godPX0DgXg5HRk6GMiUOMGrxy88/oU2bNtZ+Xl5e2LZ1M778+nt0nbUVAlH2nl7FhTrmGapVKo9wrrftzoWI/sQiLP7xu7dqRpvNZpw7dw5nz57Fw4cPkZimhlCiQKU6LdB4ynrwX78NP1JRqjPqTfpNpmMHAEa9FpmPziF0ySCE/NobwTP2QeJXCf/FqUIjKIJqIvbRBYSvGAeewgWS4DoQugWAJ1HAnJkCxmSEJuI+1GH3IA2qBa9eX0Lk6v/WWP/lyrGtMKmTkSHyhqLr1HzcqewxaVWI3P0DnFuOhLxKy3yPw+Fw4FK5GWTe5RFycAncO38KeT7+Pv7L/fv38dtvvxV4HJaigcPkwrqXkZEBR0dHpKenF5lL3MaNG2EymTBq1CisvUh0t3tiBLg8ryPqfLoG6Y7kD1FLpSXwk5KHi5DSNki55FLdqbKiGZRNwJFveRdVpcbj39+nwm/ccgCApwsxXMenUdHJtK1Dlwl9agxeLhoIr0E/wOl1hbUmPm5IenELMVe2IS32BfSqDEwaNRgjhgyCl5cXpk77Ek/UrqjRzVLr4Eg4sRUIFcRmwqd05y0did3GQ0TenyM1VDqSdHK8vIQcp20XrlRa6lgdEdB3Q18i/fRqKG/sgtfkzeC/Tt0uyogna6NTo1MpKmhXXJ6OeB0ZqTd+HpUa3cQnwpKvJ+ncv+jSCGHPH+DavmXYt3s7aFJTUzFmwmSEaRXwaTYECs9gPEoiBntRGkn/IVAT9ZpBRtxsOVT5XM5r247ZZMDLQ8ugjnyMihNXwVyORO8LEknGXoYnAMMwMGamQhv5CAZVKvTJUeA7eYIrEEHkFgBhtfZWe005D+IBqKSC7McFaGE2m3Hn0lFsWDILOiMDv69OQpr4knTikC/MSLl7Cyn7gpqyV9A2FjNjRuSq8fDoPg3j27dDduiypKMnvwHH138jkZQ7+MMEy2/TrFMjYulQ+A2ZD6GTF8wC8jcnyCC/Czrtema1Ttb26CCLQFcrU3Fz3VTs3bs327WxFB25fc6X2J3G/v37sXr16reOJ9w7AeeKjSBx80d69vZiuyBz9sxXBbr0eycgdPGFtAyp8cDhcOBeoR7cK9TD5Veh4JuMWHnnKLYfmowynjL8vfIPtOvSG6l1OsHZp+w7Ri9alI9OQV6nu1VgFDUMw2DrkpnYtvHvLMc3bNqKxX/+jWp9vkLNsk3IB0kF9/Li8gQoM+AbxB74FeFrPobbsIWQVGmVbV8OhwOBwgXCSsTrh1Y9GXOhozebTFg2ZxgkXD2Ezj7wmrILXJEUoIVGPmGMekRvnA6v/t9AGlzwHQENVySFT69ZiN2zAIGjf8/3OC9uHGcLLpUySqzlSa/XZ2vPSH1+HR41s39jsjd5LfmpT4mB8tll8BWuELrlrI7g8PiQ1u6GZp9tRKq0Ahq1aIf+vbvg9JJxBV2yXVHGR0Jcs/jqmBzZshQd27W0FreKjIzE+Ikf468dJ9F+9h74Vim8h4139xnwaj0SMf98jMwtn8OYaf9ssYzZhI0LP0f3Di3w6PFjOI5dYxEYdiLhyDI41uthd4HxBrFPBfAVLsh8fiXfY7y8cQSffvqpHVfFUtiUWKGRE0kPzsC5YhG9meTRmyPzxVVw+QJIA3Of2rlqzy/QcvZ+7DhxE7GhT0tU3Q2uWAYelXW2KNFnJOLF7VNYMP8HAMDlK1fQf8hoBNbriWYTl+ap5Gl+kVfvCL/Pd0Ib9RhpS3sj5eoOaGJfwExlQs4vjNmEuPWTMahnO5w6cxbDpv4EgbP9bEfqkFswJEfBuekgu42ZHZ6dP0XCiVX5+t2azWYY1OlsksJSRolVT9E/wjcpNlLiwsG4+CHWzAd0JlSXkof6ExCdqi8Vj3GL2ix4CUl/2qbhQun1z6aTPly+yJqGIT6Z6PKhI3p3OtWFWa+BOuweAob/ak1xDQDXUumHDJn35AviQ890noeynefh6KtocEwkbQPXkejg9dSYrzTkem9mkgdoGydybn9PMle6gVwjLQqPpRJ9tin0JlmPSwCgV4Pr4gtQun8zlS6eoWJmeJQtgmcgMRgmAXkgiJTEVkPHFdDlZNs2awOGYXDoux5Yu3YleDwePpsxGwcu3Iao27f4N10O2fOD1v50enYh5S4ryiAxATBTqdqp9BkcKjZD60ge2HRGXWcATgN+RPrZlRDHXoO7/iXu7noAqXcZMFw+GIU3uJR9hk658absKVcgQnLZauAJROBwuSgnN+HhzbP4csxQSKRS6N2qwVh9AJhHj8j9ocqnSpLJ74RP3StlMJUtmbp2nkCEhMNLETR1Ezp6kN+Jgk+MKVGU7YuOX7qWQq7FX2Gxn5Sn0vI4eJPv7da9lxAAkHmVhebZJcjKWTwAOdRvPKMsUd1VcCT33l+uwZ3LJ9CjS8l1N2fJnhIpNNLT07PNK/Tk6hE4VC8a1ZRJnZElb09uyHh4BvLyDcEVSvB2aF/pQhv1GByhxFKjwVSIxqNsiLh7Bs3q10SVKlUwbPQEaJyrQdrvlyJdAw2Hw4VT64+RlhqL8KQQODWpCrPZCLNBB4MqLUtdbbrNvH54mjLikPgoBQmv7mH9ujWQy+UImNQf5cqVw9DRH6Fs2yl2XW/szu/h3nESBPkoeJUfnKu1QfKT81ahkVte3L2Ab7+cVEirYiksSqTQCAsLs+qxaSKf3ICi5/dFsgZ1+H2I/d9ew7swaZRwLWR1QFGRfvMAnMoVPDVLXmHMZtzf+yvOH92DqV/MQFiKCe0GjcHzB6+KfC3/RVS+KVDe8ubM8LKPdM4S6U4JkFr12+Dp4T+xZMU/OHWE5PJKTU+Hv6P9Hu7amOfQJ4XDd+hPdhvTFmI3P+gvb7fd8T9Ehz+Hr69vIayIpTApkTYNhmGyjcxNT4qF0NUvmzPsT+bzy5CWrZ+nc4yZyZD4vu3bXxpJv7kXvDJF79US8+wG/D1dMG7SFFx/Fo+2Hy0u8jUUFpW6fIzouARr2nyz2YzQkBC7RlennP4Hnj1m2G283JAfu5dWo4KzgwyOjo62O7OUKErkTuPatWuoXp3kHRLzGGgy0yGVKVBTRuScj4joaBVU2VJXSkfrJiDCx1NCUp2LuLTNhKih9FrLm2Lmy5sIaj0afLmlTKqW9p6hU0k7WaKl9YnhkPCALnXrQiRzxNEkots2UCVYuY5EV82kUW+oGvKGSudo4lD5i9yp4LZXSqp/ColJ+DeZ6I25lE8/UklebwGls6dzPTH+5J6bNZlwqN8T4HIhVNKxGcQuYRaS8U1CYrsQUGlHTNQaeFTeKjonldqD1Ic4vW4S+MpYOHWdAbN/Xex+aNlh8PRE106n/qbXlhFA3JxpW4o0mexS9FIq7oWyw4ip3QLXSMXeUHakLN8LZQ/hq8lvg04XzlC6/WvPHgMAdIFNcebMGfTo0QOPHz8GyjTCLa1lXJOCsvOkRJEx6Yh2KtW/IvSatZ1ZoSVMGiX0CaEY2ZjsEF+pye+HR+UefKImv3kPPfWCRr2spb7+81JT2jdXIbkmel1GZTLe2OsMMnIPgjxJ1HgPL2LbUyTdRPMmJS8LAottSuRO49ChQ+jSpUuWY6r0ZDh7FM0uAwBMmcngU3/EtmBMBlSqXAX39y8txFUVDdpHpyBXKKwCs6hIPL4SMffOwWH035A1eT+L8XC9KuL23QcAgL37D4LjV8tuYyvvHbcI+mLgXUWzsuOff/7B5MmTC2k1LIVJiRMaCQkJkMlkkMlkWY7HhT+Du3/RVCwzZqaAl8eANvOTE/h44nhoo+4g9tmNQlpZERF1D55e9skrlFvSbu5H2tWdqDz7IBTl8qYWLE1w+EIwjBlqtRo/fv8d5I3sZwPLfHQaihp5S+hoN/LgNJIQEwa5XA6FonBrr7MUDiVOaFy9ehUtW76dHyctMQoOLkVTg0Ib9Rgi79zVJX8DV52K+vXq4Mi+Hbi27kuYdWrbJ5VQTGkx0BWh+5fZoEPyqX8AvgBONdoW3cTFgCbyARRyOSZOmozeI6batU6GISWmyGx+WeZVJucpKPHC7j/x9ddfF+KKWAqTEmfTMJvNEArfzhyamZ6CwMr1cFtH/siCqPx+5eTEhpCuJ7JQQtWdiKV80xOoPioqF5BQLIXq/nE41++JABHp8yKO6K0ZCdmK13C0LCJEaBnbwcEBfy5egI6dg1Hm2wsQugfB3ZXyuaeeEVwH8qYVlkB06hwqEl0bR/IdxdJZT+lodSG5ERyqwpww/rm1raMykjJZSoASO09bN0vOojPKcOhcPOHubPHqiafGZCgbizSRjM+lck9ldTslF6x3INly6fob8VvngMMwCOrzFVRaDRiTEaqX16GLI7YIjioFHL4QIvcA8PxrWMvP6pXEPkPnuaJjP2h7C0PVXTGbSFucTmwIJqp0KZeyV/AlTuR4Fi8p8gMSUDYfvYK85PBfO0hwXpwBt9VwXE4SwWnI1zBoyTi0ikcYRdVs4RNblt6B/JboWBd97AtrcCD9m6dzi9F1VxSUTY/ORSYQkrk0BourdSV30jdJR3V+HYeiT46CU2B1ePhZMucO9yW2Cz6H2IQkfAZmsxnJ0S9QpUrWLMIspYcSt9MoblSvbkAb/wryHKqq5YY2bVpjye+/w3DvkB1XVjSoUuPh4uRYZJHpqfdPQJ8SDZGbPyRe5ZF0YhVe/tARynvHwBGIwBFKrPEiJlUa0u+fRORfExGxagLSru+BqRTt6IyZKZAJeVi4cT8Ufb6169jpN/fBsVF/u46ZW3QJIZD5Vs5V30e3LqBj+zaFVomQpfApcTsNlUqVbWAfh8OBXlu4pScz40MRvW0uyny2tcA/6vHjxmLR5t52WlnREX73DBrWq407Dx7h1fEV8O5QeMFXmriXiDq4BOAJ4FO3K16unQrHJgNR7n/HweHyYKIyF3NTIq1tk8IdhrQ4ZNw9itC/J8Ohaku4Nu4PvlCc3TQlBtXplUhLTYf/13vtnp5FnxgOlzZj7TpmblFHPoJv09wJrHuXDuOHOWyuqdJMiRMa+/fvx4oVK7DzGslYajTz4RFQGeHP7oLr1Yocz+FlmK60SmUOgdJIBMH1hDRrmycUg2EYhK38FL7DfgFXooDZbEIEpQrjuhBd8RuVFAB08LRsxQ+IiXoMsAg5B6EA9dxkKCsjEdVX04hKxI1PFhpO6YRHVCRqh/WPiZsqN51qU2olLhWxbaJcMs08yp2WSpdNpy6nqeRgxK2nJ9Fx1mRMnTwRgwcPRpXLYRjY+TPIHSyeVJeTgqz9LzymXG4plZ0wjbj3msQKqg+ZlytxQOSGmTDptZD7+oOnV6HhnANIETtZ+9RyI+17VDAdhzFD6FkGbh0/hluHSUi7uhOhG6bDtdUoONTsaLl2Kt0JHXAnoNKJc8xEraR3zr6ErNGTvEHzNdRvklZVmch3QavvaHWcKT4E0YeXw2fC3zBoVDBoLO6+fCqwz6gmbsgGynWXp8shcSaVjhxmI6DTgOEJYGCIQHKj0ubT6lkppcIKp1Liczjk+KDXmVWMDPk7OBhPpcTxKAOGYaBLicGnjQLBea2K0lB/Z5TmF418VdiiS0K1atWyvx6WUkGJU0+lpKRkm922TI2meHbjZKHNm3Z1F8QBNSDxz5+uNezpLfj5EcESEhICtTL9HWeUTNKT41CtWjW4ubnhxIkT6NKlC5bN6o/rZ/badZ7Yf/8HdehtyCo0QsNvT6HS8AUQOXnaPvE/cLg8ODcZiOBpO6F6cQ0xW74CYzLaPrGIUR/4ERKFA+RV818E6Z1weDBplbb72Rn1i6sQB1TP1c58586d6N69exGsiqUwKVFCIyMjA05OTtlW65M5ukIkdYAy/IHd59UlhCLl3Dp49pier/M1aiX0WnUWYTf9q3kI7Fj6/NAd5JIs19GxY0ecPn4YytCrWPfzJ9CpCiYIGYZB7JZZSL20FbKKTRH8xQ4I7FDWlCuSwbvfXMgrN0fM5lklSnCknFsHV200nLrPtuTyKgTEvpWhjXhYKGPnBMMwSDi4CO65/J3v2LEDw4cPL+RVsRQ2JUpomM1mSCQ5lzztMu4bPF83DYzZlGOfvKJPDEfU2s/gP34luML8lVtd8+NH6NWD1J04f/48wpPUCKzf2V7LLDJ42aQc9/DwwJq/V6JvlxY4MKsVtMr81ZZQh91F3MJuSL9zBCKv8gj8ZD04lDeTPXCo3Rnyaq0Qu6/4EhzSmPUapJ5dgxSVDvL6vQptHpF3eeiTI213tCMpZ9dCWqYuhO7Zq/ZoDHodHBwcsrVXspQuSuw3SOtRnypfP8gU5eHQZADu//0p/EcvwS0llTSOUvs6UvraWynkAzolh0TujIxH5xC763v4jFwErtwZRp0KMjGxJ2RSqT1MVDp0dyF5Wzxz+zE4Zh3m/u9rZGZmYtCYSXgcr0LjYQusEjmCStkQRdTfeJ5I3EXlTsQ9009GDMAjqxC9+KabRKdOp/+gE+PRqS7oKnK0iyhfQ3YLeg9SKXBEIyn2CXNWM3w0cQI8Pb3w/Y/94R1cFb7tv4bY2ev1tZASn3r3YGub99qmkXl2NZIO/AZJtXaQe1VBi56T4O1judfPqQKJInr9VBoOsyqNdKKuN9CHPLCiBZZ74tZmDGKinyLx7Hq4txoJI2VXEaeSByudkoOnJ78TM1V+lrZR0K6vNHTZWJ0TScA3rVEgVs8bhU+nfILd9xLBMBwYtWpwqRQqRsp4T7tLG6RO2c4lSiWuwTpnog6VOLoj/fI9cLUZiNWQNfhLyQsWXdaYLjnrTrnlVpSSe65/3T+dtlGoLb8dY2YqJHd3Yvbyo+ByuRBwKTdr6r1jaBPLdcybNw99+vTJ9ppYShclaqcRGxsLF5d3R2K7tR4NvqMnojfPhjmfKgijMglhqych6cwalJ+5DwKX/EU/J766hyc7vsGRfTswaNgoVG3cFs+De0M+ajUUHgH5GrM42bt3L9q0afPOPr179cDlC2cwpGcbZPw7Gc8X90Lk/l+gTwzP1k1XnxyN6EW9kHJkCdy6TIWsYX9wOFx4V2teWJcBAPDs8BHUoXegjX1RqPO8i7sXD6FutbJwdnaGLqip7RMKAN/RA4bUWNsd7UT8ru/Qb8LcbFXJ/8VkMuH8+fMYMWJEEayMpbApUTuNDRs2oF+/fjb7+fSdg6Qz63D9h66oPOJnOAbXytX4DMMg/eY+JJ9YBb8B38KhWmvLB4a8u/ImhT7AmUXD8eN336BDtz7wqN4BDp8tAieP1f5KEgkJCblKVS0WizF06BC0adMa//v+Z1y4dADJJ1ZDq9HAvVZbiBTOMOl1iH9yDYaUGDjUaAvXwb9C4OqLiD/HwGugfWMUcsKz8ydIOLka/iN+K5L5aBizCVt+n4mnjx+gZduOkI3ZVqjzcTgc8KSOMOsL1y0dsDiN8B09UbF27mKZbt68iVq1akEkKhx7DkvRUmKERmpqKu7fv4/58+fnqr9b61EoU6sNnm39Bma9BkFtR8GjehvwRJRqgWFgzEyFLuYp1CG3oLx3HNKy9RE8bRckBahhYDaZ8O/0VihftRY2nX6GRpPXQObkgch4re2TSzCHDx/G9u25q4tgNpsxYOQEME0+QeU588GEPILqySWY7u+FLj0GZjMDp9bj4NigD4neTosFY9RB6Jpz/XR7Ivay5CpTRzyANKC6jd72RZsQho6dOuHJkycIqFAri0t1YSH2qQhN1GPg/+2ddXQUVxvGn1nfbNw9wd3d3d2hWPFStBQvUIpTihWKF9fgrsXdNWiIu26S3azP90fC3ps2ENtNAt/8zunpZXLnzt3Z2bkzrzxvFfPUBAeAtODnSH5yGl4jNuR4nzNnzqBFi29bHub/iSKzaPj7+6NOnTrG0L2nCcRBGkDFkdeyJLbTd4JiKDt+J5SRH8B7sA/PL6wDXyhBnCbdTGLQpsHKyg7W3hXg4FMeyqbfG6Ua0lKJfwCUzPUn6QQAEFK+i0YOxPZ8auUISGyc4TNyByIsXHFDByBOh7r2ZMGqZENMZ9sjiP9BQz0JtvYichXV7bJecDxlxPhcvxyJb7/9xt/YpkvOAlS+BJWToKbKmYKy04syIpf0aSlISUn5j1Dk55i35A/Ein1gqWcR9uI67NTJsHNxB1r9iFRfUoZUYkN8REkBDyArk26moX1WxcXErEXnxlAqLpA6Evs9Q0mTCCgXTAVLcp6fxaVfP65dpyFi91SUHLwcAKCxJA8LmeVUyPnX0/kPlF9FZUvmoLMhviZaKr+Pb3o2/fE/1qJY48oYO20OtN1Xwdr/PJk/FciRZu9rbNN+DCnlu0izJ6ZOuhStJCGY+iwC2HpXQNKzC7hYkdyg2xcj86T1xCpbkjkkaMlJtKH8G0+T028Pn2RGEkP8If5nBeYt+hvWdk4Y0pDk3fx9g/jJhjUi22NjY3H79m38+uuv4Pg2KDKLxqZNm/DLL7/kaV8Lt5Ko/t1M478vxZMfhI8F+UEHpiiQXwLuHEfYo/NoveIhJHYugEKT/U5fAfq0lCyrJWbFkydPsPviQ9g0GJKrY6Q8vwS7ht/lZXp5RmjjAqGlPdKiAyF1KZb9Dibg/LqJ0Ma+R8VyvbDXXwUbl+JAyCOzH1fmVRERl/6GLjkWAhOXek0M8ce9v6dgyvz0BSOnzJ07FyNHjsyR74Pj66DIfJOxsbEoXbp0YU8jW54cWQG36m3TF4xvCFafs8Xv6vUb6PXDVFj3WZZrqRVNdACkPpXzMr184VCjAxKens++Yz5RR33A5jF14CRMxZrVKzD79zWQNRtp9uN+guHx4N5iGGJOrTDpuJ8WjCY/bcvVgvHy5UsEBwejV6/C0cTiMA9FYtFgWTbL/ICiCMPwILF3y77jV4buyTG0bv3lWgxv377F0ElzYPvDPghtcr9o8iSFUz9B5l0JilDzJb4ZNGmQH54D3Z7ROLj7bzRt2hhjJv8KQd81EOSyLkt+sfStDLAsUp5fNMl48lCyYEhtc16agGVZ/Pzzz1i9erVJ5sFRdCgS5qlz586hUqVKmfSm3iqJfyBJS/wDd1SkXdGK+BwuJxLbM538F5BIbK18ykfBo+zQEJK2jhLJ86aky6vapvsN9sQGoYx1I3TI0JwKUpBT+CqVPHmfiSVjpinJHCSU/HUDJ3KsOu6p2LVrF65cuWJMcJTL5ZDL5bh37x7EYjGE1PmJ1BL/RvBbYvoQUFISeqoc67/t359gMjSd+KwB7u6fDz1OSEhA32FjIG48Crrw19AB4FM+gVRvUmK0qSd5GnWltI9+N+iBDFVae8p2rjaQ8ybjk3YQ5d9gKflxjZoSMqQ+Yyo1TilvUrDrQ6AWQgcvKFUKyGhRQ8q3Q58rA+XT0InJNSD0Iua70Z7pvq+o4Hc4/tckjPquNzq0n47mbTrAskZnWPx0Fnh3E8gocUvLs2ssyc1XZ0GqI/Kp/A1a9lyaEELOAzVnvlZJ9Sfn3LPNjwg9NA+68De4WrGRMT9J4UJqxDyliyZR4ol86vzU17zB/e1T8NO8LbC2swWggVRAfmd/XSXzvRBHfls29xJxbPtyuHt4oUQJkgfE8W1QJBaNffv2YfHixbgTln3fwiT0/XNYyaR4eMkPDdsPhJN79pmwn8OgUeHS0a14dOMsBDwDShXzRK9evTBjxgyj2YdlWQwfPhyDBw/Gnj17TPUx8kTvgcNg0XE+WF3RkefIDZal6yLl9U3IqrQ0yXgGvR7XDv2JsFc3cGT/Tmi1WjRt3grWw7dDVio9EKBgxOX/C08kgXe/hYi5sh3v/BbAs0l/yFxzfvPWp6Ug/tJmnP94E92nb4e1Xe7elsKD3+PprVN4eP9ubqfO8RVQ6OYpg8GAsLCwLz7lFhVC3z/DzJkzcPvWDcz5vj7SlLkXiNMpkhB7+W9ELmkBK30MlsybgdvX/8HOnTvRqVOnTH4ChmHw999/w9fXF8eOHTPhJ8k5BoMBP06YhAi+O6yLVyuUOZgCqVdFqKM+mGQsgyYNU7oUQ3E7A25evQSRSIQGDRtj7OL9xgWjsGEYBi7Nh8C37Q+IvHMYASdXQhn4BCwVKUjDGvRIC3qK8B2TELSqH4SOnui/8ARktrlzqLMsi31rfsHhgwcgkRRtqXqOvFHobxr+/v4oX778V1GUxf/OKayacQA2NjY4cvgIZv86AOU6TYKNsxccPEsZ+yWHvsbHm4eQHPgMYBgolClgdVoYUmNR3MMZo/v2QtfJe1G2bNkcHXfy5Mno2rUrxv3eBLwC9P2kpaVh4sSJ+OeDAiVHbMz3eKy28PJYxM7FoJVH53scfVoKguY3xeSfJ+G3uelhpM+fP0eD9gPgUawsEJzNAAWM2MYZJbtNhSIqAFFPzyHm9CowQjH4lnYQ2riA1eugjguGIS0VEs/ysG/UHxYl0k2NebnWIq9sRcPaVVGmTO7KJXN8PRT6onH85GnYlW6GQ/cSodTR8feU7hD1dCSgfBH+CmIq0aSQ8pg8MbFPswbSRyAg9mmekLJnU32qWpIfirOI2NH7VuPBT6SHjU16DHq7dm1Qq1YNrFm/CWEPLuH0Nn8kqrQID3gDnV4PsYMXeCIpGIaB0MIWQhcX8MTVkRBwHXcfPEb/3j1ycnoAAI6OjqhZsybuPnkG3/K1AAClpGRuHxyJmYyXTMqN0nUk1FRtB0EasUXzMnSc2H8ZU3bu9cP8ZSuhq9EfTtWdkfjkHABARPtDaOFIXta1Gg4Ek7cxvk4NSfQ7MDw+EnxI7gFdkpSmsgXZnqQj39cLEH9XdSvy3WmpjxBC1Y4wyOzBsixYvhBCSneLoSLGaP0oFaUfVa80ufk5hf6DzQtG4fDe3WhBya0IBAKkJCchWcODRk1lZPsQP099JzLnyx+CjG1ZDFUyl8q30VK+DtqPQddOof0YtC8rk88q49q2dPZBCTfi51Ep5MbscX7tP4zqu12cyW+wom36sej6GGuDyduDXE5+c7OryBAfHYa/rm/CvDs3wfHtUuiLxplzF/DD3IKN3c8LEyZMwNSpUzNtc3R0xM8TxiI2NhYzf12Aqw+ew2vwcogrtgY/LtDYj2XIDazE8D8Q/eg0vL29ce/ePdSsWTNHMez9+/fHxNm/GxcNc8GyLAZ9PxSXXwTBZtDfEPH4YCJME3kkdSmG1LDXsPIu+CI8mugACO3yZgLVKOR4deBXlLbW4NWLZ3Byymyyad68OX5fvgqnNkwH2/JXkyv3mgORNXG0600g156mSMGCHztg+7bNsLIqnCg5joKhUH0a7969Q1BgIKQWpi19aWrUCjk+fvyIVq1aGbcZDAbs3r0bbu6eGDHtd9jUGACnyWcgrvjlsFUAcKnRAS3/fImfZv+Oho2bYcPGTdi3bx+ioqI+u0+tWrWgTQrHhZ05k1nJNXotGIbB8RMnEZHMwGbAGjA805rCrH2rITngoUnHzCnqiLcQu5bKvuO/iHt7FzcXd8b079tjz67t/1kwgHQ5+YvnTmNE39bQbO4Dxa4foYkrWJnywubg+tlY9vsStMkmbJvj66dQ3zT27PNDs6EL4J9RAtVZQswddLilhYiYpORx4cY2Xentk74RAOhVJPOboZ6ialBrkztVnjWWkinxsSDbvTOkFp74X0PDxk2N2yMiItBv4FC4l28I318uIVYgRKwOYKhyrLS5AzxiN3kfTMwRhja/QRMbhIX3AsAyGojXDoOM0aCUjzd+Hjsc9erWzeTruX71Mho0agZhygBUpMrPelKlVrfdJTcrWiaDNsvQ5ouSkvTP7h/yEF5eY9FvxDiI+/0FAWXa4quJ6UNlR8xKdMlZWorlUSo5LkuZXCxLVEfEzX1Qpybi8asnxu2NKlc1thvbUWYiyvqVrCdzrkV9j9YictxYFfkeoylpDGFCCLQfH0LmWznTU7XWlrx56B1Jtvi4MhIY9HrsXDwS7yLe4PKZM/D2zl61uEe3rujRrSsuXryIH37ojnWbNxtVgw9S4dISHjEnnqfOM0OZSa1CHpCBmawXb5a6NmiZd9rMRZf21YvIiategQQ1tHElvqYE6regz7hsY1Tk+LVl5HzX9kk3A797cQ+v+WkY0L9flvPk+LYo1DeNx0+ewKVkjew7FiIqZSrWzf8RAzN+EC9evECHrr3RfMgCNO01Drx8mCIYHg9il+KwrtwKdvX7wGLodhgG70ZavZ8wbvE2VK7fCpOn/YLg4HTvqkQiwdYtG7B7xWTERASZ4uMBAHTqNKQlx2Pk+J+BxmPNVl2OYXjwaDEM4f/8bZbxv4QyzB/SHL5pvH92Gz82d0D1Mp54/vx5jhYMmlatWuHGjRtYt24d2rZtC6VSmf1OXykf/R/j4u6lWLt2bWFPhaOAKLRFIyAgAP6v38LGKXsp7sLk8a3z6N2rJ8qUKYNr165jyMhx6D1lA1y9c2/qyAkMjwcrtxIoOXg1yv18ArF29dC5zxC069IL+/b7oUqVKlgwZypm9q8Ftco0N6OkwKewk4nxLFwBqW9Vk4z5OSwzarArw1+b9Tg0GnkMwDAQUImVWcGyLNQXV+Hyznm4fv06/lqzKs+aSe7u7jh06BBGjRoFDw8PXD6x02TfV1EhKjQAO/+YgONH/LI023F8mxTaojFu/EQ06z6qsA6fIwx6Pa4d/xuLFy0Ey7JYtOR3DJmyEvYuBSPtzTAMilVrim6/nUCVQStx4MRldO/VF+XLl8eF8xewfcFwGPT5L32bGvIMAYFBEDcalv9J5wDXBn0Qe+tAgRwLAGKu74Zzg77Z9tOcXYJ+lW3x6P5tNGqU8yJR/v7++Ouv9fjrr/V4+vRppr9169YNISEhiP9wFwObeuL4jj+g/QYWj9iAJ9i76mccPbQfjo6O2e/A8c1QKD4Ng8GAsOg4VGv0Pbwo6e+3yWQ6Kqr0pZKK7/d2Jm8mUWpi/zZoiX3d15HINFhS/gQ6hNaWCvMsRYVt6qmwzfMHN6B/nx5wdnbGtm3bIXIuC9iXwLqPZByWT8xTmSQeqLZORjJqJZQkhIoq12mgQmXfRhG/x1vKV6Ct+zM0wU/RqMcwlHa1Qu1aVfDn7h3Q1SK2ZAFVzVCcQiq56aS2pC0hT9zv/B/g7eEVcGs1CnaMHohNT4Cjy8nSoZ10mC1fQ3xH/FQSfhnNJ9+jOPajsf3JByKzdwerlEMb8gxSJx9cDibzrONJ/AwfKb9WZ8esBRU/pJJjXQ4heRif5qOVR0MbEwj75oMBRTzSHIjvom5J8rZY7uMGRJUSYd6saVke53MoFAr0GvIjVA1Gg+EL8ceuaajo44Lp40ehfv36YBgGVlZW8DuwDylbNuHEiRNY/ddw9Jy+HXy+AHpKj0uYTErmpjkR8U5RKtnOUH4kWppEkkCi9bSWxNdHf48dqxOxyKr25DfVsw4J7915K8nYjswoU+wpI9fUzy2scOjQIWw4tQEnDu39KpJyOUxLoSwax46fgHuVNkU6oc9gMOD6qV1Ydvs6UlJSsHbTDgz4dV9hTwsin6qAzyqEBT/Ck4OzUczHG+GKVFg2HZHnMbVKOazKNARU8uw7mwjPlsMRemEDSvadZ7ZjsAY9wo/9Ds8m/b/YL+btfWyfNQ0KRe6l82fPXQBtg1GwrdERAKAqVQ9vogPQb/ZfqOnwJ44cJG9UVlZW6N+/P4JCwrFpUhuMXv1Pro9XmChS5Bg+fAqsra1x9uxZCIVFP7SYw/QUinnq9t2HcK1g3hrR+eXKkQ0YP/ZHODs7Y/bceajfYzxEEvNXX8spTrW7otSsq0gs1hbB+35Fws29eRon5eMTCC2sjcKFBYXEwQNSZ1/IPzzIvnMeib22EzLfqrB0+7z/KTH0DUKPz0NkZCREVJRedoSHh+P7ET/iSVgaLKt3Mm5neDyI3UrBqu8fiFFJ0aVbTyQkJGTa95cZU2FQyRHw9EbuP1Qh8eL+VfzUuwa6deuGFStWcAvG/zGF8qZx/c49tJo2NfuOhYQiOQn+d89j4+LzCA4Oxt37TzBg3iyTjM2yLNKiPyI15AWSo4OgVySCEUpgUCsgsveAVZU2sPMsm6ObuNDKAe7txiHFwhGRO3+G0METdva5MxfEXdkCu5pd8vpx8oVL3Z4IODQf3vX7guGb7ibEGvSIvrQZBq0Krm3HAvLwLPtp0lJwd9UA3L12Icd2ea1Wi6VLl8Lv1BVU7/sr6pSugYuJ/+3H8PhoN3Y1Xt86gRbtu2Hf9o2ZZGNOHj+Cxs1awmHMAQhti3ZtlrP71+DSka04eGBftvL5HN8+Bb5o+Pv7Q2btCC9LFoAeBsqH4ElJY7RxJU/1Aoa031I+xIa2JH5cbU3i0a0FZJxXCtLnXCJpN7UhpjEPyq+SlKLEb8Ob4MTRg2BZFt+PGgtJl0XYHMLik26pjvK3MCz1AShrm15MJRMwPOhVqUi8fQCpLy9D4lkelhWaolyH8RA7eoNhGMQlJ0ETG4zEW/sQe2E9bOv0gF39PpnKkEriid06kWo7uJdEorMvorb/BPshKyCQpMfP034MrZTYrfW2VAlQRSKcGn4HjZMPmEiq1K2S+CgUruWNbWl8kLGtkZFytXpKXpuXQvwzBgEJ39VTuQTilGiIJVI4lGsI+dGFcGuY7qh+RvlAtD6k1vVePbkGtMHPjG3axyJLjYVBq0bwhU2QObjDtXobMLHvkGZL5ZY4krbhxnLMmzUFnp7Et5QVLMvi4qV/sNvvCG7cfQBhpY6wbD0VLxLVeHHvNoQKcq40ruWM7WMfQwDYgq09DB2HTISnrQQn/XbBysoKFSpUwJJF83H86iF0GzUfALDqLrm4JfRCR11iOhlZ3Ax88mbEo/x+Wup7Z4uRc1iJyoH5HCJaMZ3P4uLupWAS3+Hjh3e5ehPj+HYpcPPUkmUrULpW24I+bI5ITU7CxjkDMG3Kz6hWrRoat2wHuWdT2PjmvdqcXq1E7Pl1CFk3BAIrBxSbchQeg1fApmZnSJx8jH4dhseH2KU4XLv/gmKTDsKgTkXwuu+hjg3K0XGKD/oDAit7vPf7DSybM1FuvVIOVq2E0DF3eQimxLl6Oxi0KgSdWg1tSkL2O3wBZWww3h1cAJuSNeFWve0XfWbKj4/x/PYZDBo48LN9WJbFhYuXULdFB0z9+xLuWdSHVZ+VkFZsbaxRkROElnaQ9FqO8DK9UL1ZRyxbsTr9gWTwYDy9dhzXj2/J1ecsKN48/Aep4S9x8OBBbsHgMFLgi0ZCYhKKVahd0IfNEQfWz8HS+bMw5scf0K5jVwjrDIZX2zF5Hi/Z/xqCNo6E0M4NvhP3w7ZWV/BE0mz3Y3h8OLYcBfe+CxB5ZBFUOZD05gmE8Oo6DarYEHw4tDBHC4cuNQEMX1CoAQkMw8Cj2fewr9gUH48vQ/ilv6FX5y4klWVZxN07gtDL21Gs/VjYl6n3xf4GnQYxGwfj1MnjEAj++7KtUCiwecvfaNaqHab+fQmW/TfDrftcSFxK5EtaRexdFaK+a3H/owJjxv8EgUCA9+/e4NmVgwh4UbRqTzx/cAXrfxmAmIRkzJplGtMsx7dBgS8acQly2DoVvTC9yyd2IuLjS3h5eaF5q/ao3uZ7ONXPmyyCXpGE8IO/IeXVVfiO2gTb2t3ydLMROfnCs/8SRByaD50iC8P5v5A4+8KzxRBoFYlICXmRbX/tkxOw8jBPkmJusfatgtL9F8HCrSTe75qG6LuHwVLhw/+GNRiQ+vExoi5vxYdNo6FPS0XpXrMySct8jrQrGzB+9Eh4eWXOt7l37x6mT5+Opi3b4VmYDgOnpy8WIiuHrAfKAwyPh4Y9xiKB744x43+CRCLBmZNHsGfZj1CHPMt+gALi1O41aNR5KEYtPY7r16/j559/zvEbLMe3DcPm4EpITk6GjY0N5HI5rK2/nFWbHY1bdsCQuSTS5148cYDaC8lUnlG+iEQqf620mPShpbDLUH6JaEo/51YSZaen7OulJWTnwOt7ob63HZUrV8X1p2/A774EQltXMIokYx8epREE6smc1nfSWzkh/sI6pLz4B/X6/wrXys0AAM6UPhLLkn1vpZB5trCl/CqUbtKN8Biowt8g+sgCePZbCIEs3TchoLSkRJRN3aCU49mWCfCo1wMODfoYt9O5GcVLVU3/3Ad+gSDyBcYsOQgAWBdCzo865LmxLZGTPApaTpzWO1I6k8VHRPWnz48s6pWxDR753tPsfUl/vhCsQY+4+0eR9OQcZG6lIHXygcTJB9rUBKjiQpEWHwZtagJknuVgVbw6LL3KgyeUZMqZ0ViRxUPsQnIzOupf4NLfM3HjykXcvHULc+YuBF8ghM7AQq3noWG/6TgdKwA/wy8kTiLlJPl0PRCWfKfCVKpOB6UTRet00bkWn3wUya+voLyDAetX/wG9Xo96bXvA+of9EFg5gPfiPJl/HHnT1NgR3SpRIineobEvbmzrqNIA/ZuQt65JLcg1QGth9aLyNA7cTYROq8HoTuWx/vQ78Pl86NVKHN2+DK3qlceokXkP7eYo2uT0Pl+gjnCWZU2SwWxKgs79hRcHFsC9VBUE+PSEpHrJ7Hf6DLGnVoAnFMN30iG4upguS1biURYu3WchbPc0eH2/Cnzx50N/+WILWHtXQOyLK5kWjazQRL6FJU+LF3cvolLdVl/sW5AwPD6c6vaEW8WmUMYEQZ0UjZSQFxBIrGDpXRGOtTpDKLMFkFm0Lzt0qQnYvXwoGjWsj3adu0MHIYb8shkSC0uEUw8p/JSCUai1LtcMH1LjUKV+c/yxYA7mTRmDmX/9COcxBZctnxU3zu6DlbUN+BlFmEQSKboM/hlrfhmItm1aw8cn72WOOb5+CtQ8denSJbj5lsu+YwGgiAnB3WW98OzAQpTsMA4lJx6BXem8lepkWRZx13ZClxQFx7ZjweRRr+hLSDzKwqZ6ByTc2p9tX5+Ww6BOjoUmG8eyTMTDqRNH8fb6Xry4fdZUUzUZDI8PmWsJ2JetD/cGfeBcoz2sfSoZF4zcoFOmIGhhKwglEthWaIuO49dj5KxNkBSyLL93m9GoPv82Fmw6BIYngK0mDskvCi/pLzkpHo+vHEb1es0zbZdIZWjXfyIWL15cSDPjKCoU6KKRkpICF6+8P8mbCuW7m7jxa3NoE0LRaPZZeHf/xRimmhdiLmyAQaeBW/8lJpzlf7Gt0RHJzy+BNXz5bU0otYKlW0kEH/38fDSpiTBo02Bra4ujh/bj2aVdSPO/auIZFz4syyLm/Dq8mV0fwlL1MeHPSyhXq2WRStTk8QUoPmILJsyYi55dO4O9s73Q5rL3z+kYNfx7WNrY/+dvFao3wrVr13DlypVCmBlHUaFQkvv4VClXVwmxDdN6UHWokqFiqq3WE3OEC5XXoaK20/1LyKi6CsoQ+K2dCW9rAQzuPqg8ajOsXYvhfhJVopO6IbPUQsJzpGP5yZjJL69AkxoPrxEb0NiJ9NdSrqIgqh6BBaWFZWDJsS4lkfW7IhVgVdGF2OZfv4+FzKcyVB8eQOhdgYwjICU4DeJ0LSPPrtPxavUAKEVW4EutMtn7G9ppERj+ErVap/tcRCIRjh85gPadu6E8E4j6bfvhpLiSsX/AC5KXQmsZaak8DYGS2MilVA4JnaehtSL5IbRvRBpLtLboPAR6fCE1vp76LHohufm7lSFVDds4aiCPj4Lf8vEo7eIC55KlMHneUjB8Bp+cCnHU97ItiKr7EUkqFeqofBulY3GqD/HPqBzIdlEqyVGhc3WUlE+JrnGREvze2HaffQ27NvQGY9BmqmGil9FlXUmpXh3lt1FT+mDwqWJsellm/YBBG/U++TcS46IQFx6AhKRkFKtQF8EZdVGKZ2izMQyDK1euYOTIkWjWrFmW43J8+xTom4ZWq0VhxV9c2j4PuxYPR+9OzZCckopyA/+AtWux7Hf8AgatGtFHFsKt70ITzTJ77Gp0ROLj09n2E1k7QmDlgKSHJ7L8e0zgc7i7kZu4paUlTh8/AnHqB5zbs8Jk8y0s5PFR2LN4BBp0GYGYiGBMXLAVPL5pKxGaGoYvAK/7Unx4dg9x7+4V+PFP7lyOJYsXQp6cDJm1XZZ9XF1dIRAI4O/vX8Cz4ygqFOiicejoSVSq1aQgD4nUpDgcX/kj7JgE3L15FRqNFl6VmsKheNV8jx11aB7sm6Un7RUUEpcS0CZFZ98RgGXputCFPc/yb6c2z0Xvnt0zbbOyssKqFX/A00aPkBPL8j3XwiL+5VXsWjgMHYb9iou7f8fY3zZCJMk+P6YoIHErBZeuMxB4cWuBHjfA/zFYVQI6tG+fbd8ZM2Zg9erVBTArjqJIgZqnkpKS4OjsAZZ633ChSrzKBGR7GmVuottCyrQloN6x3S3IOJ9CCAMDA9GlS1ds3rwZderUwdOnT3HszCWMnb8DfwRS0uVyKhySMr8IqcVAryXmC4nUCgl3/ACdBoO7k4zioDQyoURqzhEqEvarSY4jx6LyEPhWxIYcwidmrjiq6hsvo4QsTyDMFEJLy2Uz1Lmt07Ajnh1eihYli+ESJT9uLzagXsMmsLW1xb9hGAZLFy1AjVp1ULFZS3iWqIA3teoa/+5LhTb/HUZJwb++amwnVyAZ/wLKd1DLmpiV7r0hJiCGCk1lXUjoroH6XOI3l4ztNHsSvdOzKtFz8papoFGnYfWZJZi2dDvWzRuNUdP+gIMDkcpXU9aanZFUlnMiManpJMR8pLWwJfM06MAa9EgL80dcxDuoQl5Cr0wC+AKweh0YvhBWFZrCplZniBy8IHt0mMzZqVSmcYyflwqPFb6/DQBwLVYFUZo0hEZHwLZ6e1iHPiJzo+RgGAO5rniUua+5A3mjCkkl1+H+u0nGtoEK/e5bxxoNf5qNEyfS30rfvg9AubLdgQxr8b/j02rVqoXffvsNISEhua5qyPH1U6g1ws3J8+fPUaVKFTx8+BA1atTAlStXMHnGHIyctTHP1dg+kfrhPuJvHUCJ8XtMNNucw+p1MND5Atng4eaKNHqhygEMw2D9urXo0bs/ft1+D1/TZXL1+HY07jQIR7YuQ8M2veFbuhKQD6OoQZMGbXIslCEvkRzwENqECEi9KsCyWjvYNxkMvswOBnUqgHRZFmXAA0TsnQldShzsbZzgXKERxFb/dSp/Cb5IAlmpeki8ewi21bN/8s8vu3fvRo8ePYyijZHR8Wjo6oPUL0hVzZo1C2PGjMGBAwdgYVF0ggo4zM/XczfIBS9fvsTkyZPx4cMHlChRAn5+fhg3bhwW7bgJa7v85U8Y1EqE7p6Gkj8dAE8kAfD5rGVzoFelQGiZc3OYl6c74gOfA7a5C3WuU7s2alSvgjeProBXtmhqhf2b8MDXeHzjNOq36QN5Yizqt+qR57E0KfEIu7gJWk0aJC7FIbJzh0vr0RA5pAdEMA7/fcLmW9jArm5P2NXtCVavg+bIXARe3Q2+WArnjpMhsnH+zz6fw6pCEyTcMn/9lgD/R7i6dwcOHkxP8Hzz5g0YcfZhyHXr1kXbtm1x7NgxfPfdd+aeJkcR4ptbNGIjQ7Hg14E4f/487O3tMX78eGi1WoSFheHY49R8j594Yw8cGw+EMBc3AFOiiv4IcS4EBqtWKo+bIS9yvWgAwOYN69Cp5wA0Kt3aLLknpuaC33o4ufvi4+tHGDNnY541tVTxYQg+swaeLYdDVIJEZNGRYNnB8AWwL14N9sWrITU6CB8PzoNjnW6wq9QiR/vbVG2HpEsboFfl/5r9HDqtBvtWT8Gta//Azi7d7PX06TO4layWo/179OiBXr16oV+/fkW6oBqHaSnQRUMq4qFnHTscoiQMJFRAS2QaJXVuIBehtYCE4sooqZFhjYjtGQBUKhX6LJqN7du3QygUone/AfAo3wRNOvTH4UcKvJETm7oyhUhvgFYspS5+LdWHUaWAZVnI7x5EjbkXIciYapyG7CuihgmKijK2xdbk7Yahsrm9KDl3B8qfY0eFHl9JpmwEAhGU0YEQuZXMJIUtosJR6dBLW5EBDMPAUmhANQ9SJndIQymOirNfBJydnTG4b1fcOrUQ3Yaml0FN05HzU86CnE+fBiQEs5oDsa8nEVcQeAz5LA0aknKmLGU1p8OxHySQ83PZ0NTYnl6JlEiVCtLHfPfyAR5fO4nG7ftg0PgF6FOfnPO/rpIw1XWvk4xtRklK7/K16WHXurRkBF3cDN9JfhDaumK0L5m/lvJTRanI+TubQEKevcXkGk5pkF4x0AKA0Lc6Qs6tA0+tgGN5UoBMK818DX+iXY0a2OfgAo/AS4j3IcEjkgQiHZLqXtHYNliRz1vRhpxnPnUv71vXNtMxBg0ahIljfzAuGACwePkaVB2/F6+TBXAWp1+HnzPuXQ2SQGLrgRs3bqBx48af6cXxrVFgj4+BgYEIDAyEgap5bUqePHmCpk2bYvTo0fD19UX3nn1RtcVANOrw5VKfuSH17W1I3MtAICm8LGJF8DNYeFXIvmMGYrEYSZEfs+/4GUaNGoW0+EDcu3w8z2MUBAsm9ESLroPw/U+L8xxaq04IR8jeX+Ax8HcIqZojpoDHF8Cn3RjEP/8Hytjg7HcA4OLpi8inF006j09ERkYiMjISI0YQLak3b96AsXKG1DrnJtyuI2bjhzETIJcXXKlgjsKlwBaNJUuWgGEYtGrVCqf2rEZ0eJBJxtXr9di7dy9++uknLF++HH5+fujScwDaDpiCCjUamuQYQLpDNPbiBji3HWuyMXM9B50WupQ4CG1yXumtePHiSEuMyPMx+Xw+9uzajle3j+H8oU1IUyRnv1MBolGrMG9MJ3gVL4P+Y+bmeZzUgIcIO7QA7p1+hoVvVZPNj4bh8eHTfixCLm7JkWKsY4Xm0KclQfHxocnnsnXrVkyYMCGTWWnq1KmoPOiPXI3j4OyB6o074fLly6aeIkcRpcDMUxs3bgSQLuvw99ZtWDKtLxxdPeFVpgZKVW8BGwcXxKsZWFjbQ2pp+8WxDHo9Xj34B7MuPMPevXshEolQrVo1HDlyBKNHj0aQwfRSJalvbsG6UkvwLfKn8psfkl9dgVXZ3C+E/HzW/5ZKpTh57DA2b/kbW+YORMkqjeFZuhpY7y8XOjInLMvi8Y0zOLt7GRSpKVi+N+/1KOJv7kNawAMU+35Fjuqd5AexjTMsnH2QHPgUNsW/7DuQ2rujU/u2OPHKHyhe02RzMBgMWLp0KSIiyMPEmTNnYGdnB6ld7t+wmncbhqWz+qBNmzZcJNX/AQXuCGcYBsOHDcXwYUMRFxeHDx8+YO/+g0jQpUchXX/yFCKpJUSWTnAtVQNgWSQrFEhNikV4wEukJkZBo0wFGAZOLp7oMnoJytdoAh0/3a78UAkEK8jHCkgjL1P+0THIEipuHnxy0xBQMfR61gBJ8RpgbN3Q0Ib0j6Rs29GUpLnQkoRZquOIaqq3O8lCl1OWOhHlw3HjkT8IxGQ+CY9Ow6PvAhgE4kw+DY0FsUkbqJseLyPFgwHgKiZjHryXiDRN7syEfD4fP4waiRHDh+Hq1au4desW3i1fg4ZdRqBSvXaI15Bz/m+p7U/0qUu209LcBuqpW0/lD9C2+SbOxCTYvZY1Zs2ahY8vX8LaQoiTR8+idGlKRgPAiGMkv+Xx4zvGtpCSHdFKbRBz9k8YdGoMXnDcuADSuUMPE4ip604MMcG09SAPD40pt0SanvK/8chnsavR0thWaVQIPDgfkpK1IFITRzePyku5FK2EysIXiVd2wWBdBtqM71icTPJtaPoUI+f2+4ZfNp++fPkSzVu2gaVler/IyEjMmb8Uoxb6YdV7InJZxyU9Sq8yso69VXy63sW2GDBgAE6dOoXevXt/8dgcXz+FGj3l6OgIR0dH1K1bN9P2xMRE7Ni5E3+uWQeRhRX4Yilkdm4oWa0pXDy8IRRJUbZWC9hRwSw6MyuuG6jkvsJA/vg0xC7FIMyFvTkx9A1smpk2XJbP56NFixZo0aIFJk2ahN/mL8LcQbPRbPBclK7V2uxCgDqdFv369UODBg0QEBCA3r17o3Tp0tnv+C9YgwGRh+dD4lEOdvV6Fegbk9DKAQ7V2iL+0Rm41Wj32X4S9zJISE4FTPxyu2nTJgwemO7rCwgIQLtO3TDkly0QisTAZxaI7KhTpw769OmDXr0K9lxyFDyFHnIbERGBO3fuQK1W4/nL13jl/xryVDW8qjbHiGWnYWXrCAUVtSLh07Zg8zjVs0IT+R5WlQuv5kTsub/g1X9prvZJCHuD1q1XYN7SP80yJ0tLSyxbugizf5mONes24tzK7+FcthHQcqZZjhca+AZ+6+di7MhBsLe3x6VLlzBhwoQ8jRV7ax+E9h6wr184T8YyrwqIf5S9hpip2bt3L3g8Hrp16wqWZTFvwWJ0H70Ibj65X3hpatWqhYYNG+L9+/d5WsQ5vh4KZNFISkqCv78/Dh06BJ1OB71ej+Dg9AiSNFaCMtWbgs8XwrVUc3RrMQIWMmvEpRWtvABNfGiuHNCmRBn4BCLnYrn2pxTUE5+1tTV+mT4FM6dNxoxZczFy5EiMGzcO5cuXN9kxLh7ehGe3TmPT+rUoVqwYWrZsiX/++QcikSj7nf9FwpOz0KbEwbnnryabn7lIkcshcTfNa3RMTAw2bNiACxcuAAAOHz4CNd8OZauZJmBk6NCh6NWrF549KzplazlMj9kWjZSUFBw9egwbtmyHWGYDG4+yKFa9E2ztnGBgAd8u7uDzBUjSksXBwADhOgByIJ7Kf4ijfAVRVDuG0mWio8lZA6VZJCX2Xd7nKt5R21mqjCfdlomlKOmcvmhYCrKOgy9H6V85CUgOgyOVPRynIfNsakV8Iy+SyVdxNpxEKDHJMYg+NB9OLUdkKp3K0s5tuuQsFSqqU6XLa/977ehVxw67RKZflBmGwZKFv+H8+fPYvXs3Hj58iLZt2xorwK24Tfr6h6Vl2tfZqxRKVagJiczaGDI7qrEtnj59inbt2mHEqNG4feMqeDweqtaohUpdpmLlLcDXMsk4xtoQki+RmkgkyhlbImuvSolDwpvb8Bm3G7VcSWa9pYB8d7TW2RMlaXvZEr9BAlVrOJHKXQlWke+0hJR8L+HUdcvTacDTa8Gw+kxS83zKvyH9cAsAEAMBhAoFLCPSa76rqc8ypHoJY3tSi+zDwJcvX46pU6dCIpEgKSkJS1f8iYmL9+JaPLXwqhTG5r2I9HPSwMHWuI3OsRJRPpuD9xIBaRVY2TmDZVnORPUNY5ZFIzAwED169EC1lgMwdM5OiKUyxFN1uw1cffock/L6BgQ2TpB6lM21Mc7SqnAivdq0aYM2bdogOTkZjx8/zrJP9eqkzbIstm7fiVc3DuL167do2GEgYiOD0LfeOgDAlClTMG/uHAQEBGDRkmVwLN0Apet83hfwOViWRdT+2XAfsAwMtagXZRIjg2BTvnn2HbNBLpfj8ePHWLIkvTDXjF/moPPgaRCb2Afl6lMWt27dQsOGpgt35yhamGXR+PPPP7FmzRp8RM6T0Dj+i16Viph/NsNn6JrCnkqesLa2RtOmTXPU91NRH9om3rFjR2zfvh0ODg6IiIhAl+690W/8Yvh41MvTfBLv+EFWpj5Ezr552t+UsPocapYxfMhMMN9ly5YZ8zKSkpLw8PFTTOr3S77H/Tf12vTF3r17uEXjG8bkNoqoqCi8evUKDRo0MPXQhQrDY6BJTcy+owmJ3DsDLq1/hMAia6mJb5FSpUohLS0NLMvi5MmTiIqKwuTJk9Gpe18MnrIKpSvWypPpQx39EcnPL8KxTeElZ9Ko4kIhtvfIth+TzxwbADh06BBCQkLQsWNHAMDp06dRt3VfCIW59wdlh6OrJ0JDQ7PvyPHVYvI3jZcvX8KzUjPsv5sEKaWn5CnI2pknotwS1xKIyeCtnPyBoWUhqJh+Wi7icxm2Oir2XSIlmkVW1JDR0eQip+taGKinQYNzSXwMegNZyVrQUnYi2qchoUq5VrYmfo84NTlYLTuyPVBBtj+nPi+rSkXi7QMQWDnAonxjYpaiypwyGurEUSVqGYY6J5RkCz237VfCoVBl/aSrUCgQExMDhmHg7e2dbxn5rIiPj0dy8pczy6/duIU7d+/j2q27qNK4G4YvPAyBUIQkdWafw9J7YcY2X0VKpPKExL/BVyYh5OhCeLUZjS4+xC8RS/mXXlG5PXbUdeshIseypM4hnZPjISLn2UlIzpeCuuTVevIPgToF2oQwSOxcIaAECTWUbphIkSFnz7Lp2mgZ+mhVKhIBRW/L7CXy37x5gx9++AHh4eHGbceOHcOyZcvg65t+LuZuIUW9pHFUqd6M6231B5KEOKU0+Xz0L06bkWcklNpAIpEgLi7OKLXO8W1h8kXjxs07cPX+9sxSFsWqQRn4BLKStbLvnE9SX99Aqv81eA5dg7zWglBFvIWHe9bZvRf81mHgd30ApC+2ERERmDRlOmJi46FjeXBw8QKr1yIm/CMsLCzodRo6qk0vmLwcPvxrdToIJVaQ2pAbJL2rJuPeKnP0QulqvTCkzU+wtHGAgJd3R1jSq6uQuhSHxMkn+84FhDzoGZwqNs2+Yw7kRj5HUlISBg8ejNOnT0MsJklNarUavr6+eR43Ozp06ICzZ89i4MCB2Xfm+Oow6aLBsiwuXLqMcb+PMeWwRQLLso0QvGE4nFqNNOtxUl5eRuLt/fAYvBIMj585Wz0XMP7nMPyHAf/ZrlYm4/mts6jobYMu3XsjJi4eFlZ26DjwZ7j4EPl0IXWTTqUi3AJTyZuMi4Q8YTtQbVqplkZDvSGkUhFHdAVGOmCCruSYV1i9DrG3/VDy+5X5HstUqBKjwBeIIJBmH/Gk16RBZJl1ve4vcfv2bcyYMQO///476tSpk5dp5pk2bdpg9OjR3KLxjWLSReP58+dwd7HHd/XTTTx0eB7986efLJ2k5LW9hwe58TySEPPCmSAi/0GXYKVDYhlK3pyhHoHp7WmUT0JJV78TkWPRE6X3FVg7QmDthJS3d3DQUNu43UNKTEYulFQHn7LqPKPMUMdDk8gf6CxzhkGq/3Uk3toLz5EbiXkllcg68JUkjFQno8xodsQ2XtXRFgDwPPYtypefCAAIj43Djv0bkRb+BinPL8LFwRE3FMXg0msQilmmR1gFA5Ank/nTN/gQSiqFNqN5yIjMSiz1CmJLnf/6lORKMrX42FImHQ/qGnCl2qHUeTsQTsx6lk8OGdsWMmICUdm4Gdui1PRzlfT2DqxqdQFTuh5YAHJd1q9EjpT8fiC1cCXqyHY9Za6sbUN+Ouxn3r5oE5YqkUjlx765A9t6vaG2coVAQ0JcBWpiXkst0zS9IbaAtnoX4/YmTsTcmhUGgwGbN2/G4cOHcerUKVhZWf2nj16vz1T61eIDiYWmS8iKMkyg/PAnxm1LkkglwVq+RBKnozv5Pbm5uZlNzZqj8DGpwTolJQVVq1Y15ZBFCvc+8xB5cC5Yg+k1SxLv+CHx1l54fL86kz0+LyR8fAphWhwm/DwNFes2RWJyKuL++Rt6eQxcu05H2yXX4VWrA0SFKL5YUKQGPYd11dyH55oLbWIElGGvYVXC9GbOoKAgDBs2DHfu3MGZM2eyXDDi4uIglZpXlBFI96XodAVb1ZKjYDDpm8bGjRvx669FP8s2rwjt3ODUahTCd06Gp4nMHfq0FEQfWQC+zA6eQ9fmO1pGr1HjyoKuKFGrJZ64doRN27YoLRBCZ4aF7mtAFRcMF48yhT0NI7Fn/oRr86EmrYTIsiyGDBmCM2fO4NSpU6hV6/ML0tGjR9GtWzeTHftzeHh4IC4uDq6upq1L8rWgVCqh0WR+KxSLxQWyYJsbky0a/v7+AICSJU0vS16UsK3dDcqQF4g+tRIuHX/K8zisXouk2weQdMcPTu0nwrK8aSqf/fNrG9j6VkLV0VvwXs1l5TJ8odnlznOKMvAJDBoVLHNRr4PVqMDqdVk+TESEfMCbZ3dw5/x+VK9cDlFRUdmGI0dERKBTp05492UrV74pVaqUeQ9QiMTGxiI0NBQ3b95EQkICLl+9YbQOWEv5YFkWEokk0wIRI9dCqUiBSpGEFs1JsqaLsxMqV6qA4sWLw9LS8quIODPZouHn54dRo0Zl2taTksj+nH+DtgHrKeNwVSo0NV5LnlYeJhCbup4KsaSlyOlQWT0li0DLbUBDZCwYGZmnXplExrQmET6aFOJbcGw8GDHn1iBiz0xoOk1Kd1gDCIqlfCmUiUkQ85Ic18oRSfePIvGOH+o3644aKy9AKJbCR0aFZFIPoZdibI3tVEo+PSCBnM9W7ulmppdnNyMgPgKN17xBvI5BZSmxK9+OJv1vxZFzwsjI+JAT3xEtWQLqswwoQ87J02TyfYVEktKpaRLi6zicRJVyzXTzJvvS35cg6l1WXWAV89rY1knJ96WTEBOMSEG+I15G+VbGoMsUeiyiHPy0DPvteHI9GKgwbbGMmPAqWBL/FY+aXAr1vURSfozoWBLmyoT5I/bwAvj0nguRkpQR5lGh08oKbYztWeX5MBgM+K2YLwyrW8HNuwxkVta4oEuEXC6HwWCApaUlatasiT+uXcpxHYtPJqNgKqCBljIRqMlnN/DTtzMScg5sgu8b2wFvSFXB6H5DPnusb4HU1FTs3bcfJ0+fg0LNwta9ODzK1IG1ZxX0HN8Nzu7pkXka6oWeDg0/FyOGFIBaHgu/wDekU2AsmHvXIEj1gzL4OUr6eKJ3h5bo0rkT3NyIj64oYbJF4/79+5gxY4aphivSMAwD57bjkHBzLwL/6A6ntmNhWanlF5/y0qICEPXPFrACEWxqdUGJqSdQ19t0SXuJ4e/x/MSfKN13bp7LnXKYB4NWjYhjS+DWalR6IAe1aHyJJ7fOo1+fXpg2dTIiI9PraNjY2MDBwSGbPT/P7du3MXPmTFy8Zd4bep8+fbBkyRKsXbvWrMcxN/sP+GHPPj8kJqWgWtNu6DxqMaztHJFEaePZiHIe5Se2cYLUh9IbE4kBpAcXiAx6RCZGYtHjW9i4tS/atGyCKZMm5Ov7NgcmWTRev34NR0fHTLHg3zoMw8ChUX/YNPoOsadWIu7CBlgUrwm+lQPEzsWAjKc3fWoClE/OwKBTw63VDxBXM71TVqdOg9/kJnBy94Fbw74mH/9rJh9pDiY6Povoo4tgW6kFZN4Vc7VvcmIcypfyglQqRfHixfM9l+DgYLi7u2eYTVKy7Z8fWrRogVWrVpn1GOZCq9Vi586d8PPzg4NvVfQavwJSmVWBaOYJ7dxgW7cnhvfrh8v7V6Je45YY2K8XunTuiEqVKhUJIUiTLBoXL15Er169TDHUVwdfYgnXnrPB6nVQRbyFTh4DXXIsmIxsWoYvhGurURDbuwPIa6re59Er5fhnx2R4eXmhXNcpUPO4t4zMsNCnpYAv/W8kkdmPzLKIPrwAYteSsKvUItf73zi9E2N3bzXZfAIDA1Gt2pdLzJoSgUCAhIQE2NvbZ9+5CJCUlITt27fj+PHjaNiwIY4fP46Tz9Ky39FMNO/7Exp0GYmYl1cwY94KaFJj0aJpI4wdO9ZYdbEwYNgcVLhPTk6GjY0N5HI5rK3/G6bZuFkrDJj8J+wcXTOV+swJtK9DTdkAVVSbThZbE0xe7VS0FhRlh2YoqXMe5UCk/Ru8VGIiMEiJmYih7O4/lyfjrHhL2XqpHA86PJYX/YFMh8qjqOVNpNGbO5PcDBF1f1dQtnCbjBwGrUaNuFRyXEshOQ8MWNy5eAg3z+6Ft5cHFLBCnykbMmVOa6lz+FhO7PH3Y5Ko+VNvh9EBxqZF/Edj25gzAMDVipyrklRC340o4k+gYSjpE4sAUnaVLlfLUn10YvJjEKUQH4tBRPwkPB35IbM88v3S++oz+oefXw/ris0h860CAHAoXpWMQ83TgUokfJ9GDNPN7cg5DKXyVV4nkznolaQMLDKuN5ZlkXJiCSzcSsOrzQ+IjCd5GvTrj5MjsVt3ciR+vB/rC9CtWzecO3cOpmL//gO48SIKzToPwopAqizwtc3Gts7SmXwUZfp3qrV2N24Tx741trU2RKa9UXOSS1LHMf2avXHuAOLe3cCePXtM9hlMCcuyuHv3LlavXY+IyGhodTrUbf0dqjTsmFHFEBBTRd/o+xP91iGnTFVqyr+1L5pcm2mxxOdHI0kINrb11DVOw+jTrwudMhmpSjnY29tQ1tsFi2dPNelDQHb3+U/k+01Dp9MBfDHsHP8/Q+tMSWxEEILfPEHws3+QmpwA6DVwdCI/YvrNlAHQuGF9rHvyALUbtsCgedsKfsJfAbblmyD+6TnjolEQ6NOSEbF7KtyqtIJXmx/yNIZCoTC5I3TP/oPoPHKBScf8EhVrNsHDiCfZdyxgkpKSsH79ehw9eQ4excqjUacf4eFTyqizRie2FiUEFtaQlawDVG6NgLBX+GnBRrDJoVj46ww0aNCgwExXJjFPmUPU7v+JoHcvcHL7UthYitCzayfMGLIQHh4exuJFX2Ls+IkoWb05BGZQLP0WkHmVR+TlrdDIYyCycc5+h3zAsizkdw4i8cYeOHedBq86nfM81t69e1Ghguk03ORyOeSpKtg5FE71yaLAmzdvsHXrVjx58gTjxo2Db5ORxntXTrXTigpizwpoWu8PJEWH4Lf1WxAyYiSePn5UIHkghV4j/P8ZrUaNY1sXgVXG4Ljf9lzHaE+c9DMCwhPQcdw8M83w28C13ViEH1sK3wG5q7GeU1iDHkl3DyHpth8sKzSFz8T94InyntX/8OxWyJJeYPXq1Sab46lTp1ClQfvsO5oQiYUlXr9+nX1HM/P27VvMnDkTfD4fM2bMwNKlS8EwDA7cLdhSB+bA1sUbDQbNQ/UqVdGn3wAc8tuXpxLIucEki4a9pcDoy6A1bfrWtc12X30mrSfSthQSe7mOshPyKD0oOu5fT2U8s1QOBium7ISULTmTH4Mqs0mXUV197RXZLiH2clqTyiAlY1YpW9XYbuFMfBFWQmK/71nHDsnJydi5cyeOHj2KIUOGYMCA/woLfomQkBDUrlMPNRp3QK+Jf2bKb7GgbPMCSt/pRSS5kGjNLgOlfyXQE5u62pqYRlhK/0psQ87bjdBIY5uXRqTOBVSuC0Mfi/JdaKW2xrY0npLjFhAfC8NS3yn9NkvlXbCUyBePyvfgpZE5yNxKwaZsQ0SdXw8IJpB9nYh2UmRKHDmuBZnb2VQypojyWUmViWBZFkkBDxHx8DSsS9VBqe8WQsTqgKj0OPzESPJZrKgcklR3EkU11pe6VgFo1Cq8+mc37t+5AYkkf3IyNKGhoZDZljba5VODSe6QpZiyX9My+9T18AmVC6n7zqd0s86+DTK2l3X49IZkh4MrbfM38Xxy6NBhLFu1DsOmr4G9kxs+aIAP95MAZM4Ro6F141IpXyMt3En7LnaGUiUUYogvkE/9thjq/mERS3yHWgsqR0xEfKhiOfXbor4HJox8b0djSH+hby8k2cZg7779+H7woKw/mIng7EoFzL1799ClSxfY2dnhxIkTuV4wdDodJk6ciN7jl6HnuGVFIgTva8ChVmfwRFJEnlmd86p5n4FlWSR+eIDX+2YjJew1ivX5DS6NvsvX2wUAGPR6LJvcB+N+HGXSBQMAbt68iQo1m5h0zKIMy7IYM24i/ty0CxMW7Ya9U9FMlDMlsrq9MWPeYoSFhWXfOR/k+02Dx+MhJCQEarX6/ypPI7do1CrsXzcHHnYC+Pn5wcnJKfudsmDjxo1o1qwZLKt1MPEMv31cmw9B3OOzCN41Be5dpkJIvWnkFE1SFCIuboJYIkOprlMgtLCBhnozyQ/XTu9G+9ZNMWLEcJOM9wmDwQC5XP5/lfTZo1dfOJWoiTHzfv3sG8W3htDaCVYdf8GaNWuwdKl5TLGAiRaNgQMHYteuXRg+3LQX+7eC/5PbOLtvNab9NAZdu3bJfofPcOvWLdy5cwc7duzAzjup2e/A8R/sa3WG1KMswo8ugcDJF/aNB0BarHq2+xm0KsTePQz5m1twazkCdvamjRYMePMUoS+vY+3RQ9l3ziUhISEoV65c9h3NgEQiQXx8fIFlNSsUCgwdOhTW7uXQvNv/3/3IqmYXvD96xKzHMIlPY+TIkWjdrhP07k1gYZP1EzSdj6H/TGYIXfjnXhyxwVtTdno6yuFTLDWQ2TZPQ5siaD0oUDbsTBU+KPuh1pK60OnaHVSfdt6kT00HMgetHtBpNTj+93y4WeqwZ9uGfGX1hoaGYsKUX9Btylasva5AooY8NXpZEDs0nd+SQuUVKJNInkBJZ3LD+ygnmcFaOxKPz1NQTkLKL0THp/OkxBZuoJIK6TwWaSKJT2cpU9qnehcAoKPsukJqu4byq9DbaT+JVkbOvzSO2Ip1lM9KLI/ItF1o5wzrfr8hLfwt4v/ZhOjID+BJrYnyLMMAYCB2SM9D0KUmQp0QDrvKLVFs0HLwBMJMSZRCBcn5ESUTvalUj6rks3iTePoxJcm13bOODWJiYvDX9Hn466+/zBKJqNPpIJFIkELZ5yVJZJ60r4n26WlsvdK3UZ+V9mMwVG6UgPLZ0L/19u3b4+LFi+jb17xKBTqdDtu27cCff61Hm+8moUqD9pl0oD5B3z/4nznV0WnkD+9SyPkIouqshAQRB79V+HNjW2tB8rP4VH0U5jMq0zwduWfQvj1QflM9lX/E11IaadT97JOfkmUNZjdZm2TRkEqlGDvmBxw9tgUdBv9/6E9lR4o8AetmD8KPwwfgx9F5i9X/xKQp03Dv4TO0G7MalrZFXwXza8HCtQQsXEsAAHRiKmOcx4delQpdRvIoIxBBZOuSyUlsKiIjI1G9enUsWLAA5cuXz36HPLBy5Uq0bNkS0dl3NTkNGjTA0qVLzbpoKBQKDBo0CA6lGuGnFScgllgUiOTH/ysme6zp06snUqLeI+xj4YfYFTZvn93B3/OHYMHsyRj9w6jsd/gC23fsxLvgOIxfvA+O7rm3wXPkDb7EEmJHL4gdvdIXDDPw/sk19OnTB6dOncKwYcPMcgwAuHz5MppTctwFSalSpRATE5N9xzwSERGBdu3aYdy4cWjS+XuIJTlT++XIOybN09i6eT3ade2HIQuPgMfjYegx8irlSsUO85iszU0aKoztMSXd7ESZp9zJmzTexSeRcSh5Z1o6REDJZOgps1IxuxLGdgUZMWGVsdaBZVlEhQaAF34VL168QFISOQ7LsrD0qIK2A34GAAxqQEw3SqUS48ePh1qtxtEDu+BNyYfkBYPBgBVrN+G7BacQnMrP5NCzoOQNAqhX6AjqFTqWLm1Khal+iCGmKkYozbKPgXLuSqyJCciSOm4mORVKlkWgIuG3dEghQ41Pt2lJEdokxVD10bWWxOxJm1N41Os63YdPyeaDMvkYeJQpRkA+eybZFDeSVCdUErOLhhqflj7RUudKWLmVsd3OmryZ2FPhzzIocOHgBjy9cQJnTx2Hl5cXzImLZ3FceGPAuo+ULLxrWWNbSoWAZjJFZXwvLB1iToVEixRxWbbpMFUgXQDQHGi1WnTq1htNRqzAPV05gAqKC0sjn0NFvSDejadKJVDQYfT8sKfGtlBJTG18DfEjWlJvMrSJlL42+ZTFnK8mv4k0p1LUdjIf2vSncCJ1icQpxDSrpMyc/ERiYpzok36O46NDcc/MAQ8mXTRcXFwwoE9XnP37V3QYMd+UQ5sd1mBAmP9tPH10DPER71GpQnm0bNYIgwYNgrNz5kziOb/Nx1+/9Eer3mNxk003azx48ADHjx/H2LFj0aNHD5PYFefMmYPKLQb8X0W9fMvEhQcgOug19p9Zjx+GDcTOPx+aXU0hLS0NaWnK7DuaET6fj7i4OJMWGGJZFt8PHYGKbUfAxbdwnPxFkdcPrqBLl7wH2+QEk2eETxw/Fv9064WokHeAtelkEMwBy7JIeHMb154cQtCzq2jerAlmjh+E+vXrf3G/eb/ORskSexAS8hy3b6cvDsWLF8fly5dNehO4d+8eWk6darLxOAoevU6LwPunEHB9P0S6ZHTt0hmLj+6Hu7t79jubgCtXrqB01YYFcqzP0bVrVxw6dAg//JA/3x7NipWroZO6onKj7iYb81vhS2KDpsDkiwaPx8P0yRPx/cjhaLzodpFNPos49yfi7x9C+9Yt0HNiP1SvvixXcsODBvQ34+yAffv2oUqVKkX2/P0/oo4JhCosvaxxpsqGlGlDa5vxVhp0D5dSw8BqlWjfugWm/jEHVatWNbvEw7/Zvc8PdTqPKdBj/ptq1arh4MGDJhvvgN9BnL/xGP0nrUJU1kGT/7ckxYTAxaWuWY9hFu2pRo0aYeTQQXh4aQXqdR8PADhFhdC6UxLfdB1rOuKhtCTr8AcbAbENV/MlYZUGqg9t7/eUkbDAhh7JWLRoEd68eYNmzZphyp9Xc1wms6D5a8MWjJizFWKqDKye+pDJlN2YDmG2o/o8TiS+AtA1pml5Ayq0lqXK3pZ3Ic7fSpZkDkeiiX1aQEurWJDvQpVKzBCSaLp8KxUqS/k6LCJIyCJ9M2Y+099A+WH4VLlUWlpaKyHz0diSp3qhHfGZ+FiQa7KaFbEV+0rV+Pj6EfR6HR49vwCNUo6UxFiUshJi0IC+OVrIPb/7/Bsry7KIjo7GitV/4dFzf6RllFhNo75gWi6Hxxrg4eYChseDlMdCKhFjUP8+EAgEYBgGNWvW/OxiFBEVgySRG1QpAgiD7hq3WyWQ8E6FK+3DIdeDNqPMK/09CNOo0HlKCobuczeezOV7pC8aQ4YMQd++fVG1atUs55lTbt66hdWbdqHftE1QsXwciSU+BL3/VTIfyn9J+6UE9j7GNu1DoK8jOjyWpyO/IT0lt0L7KGhoOX86VFZhS2TkxclEIiTTNSsjvxvad6ShyizY2BD/ycCyZHypwACDXo+Pr+6iSpWFWc7NVJhNsHDq5J/QoWsvfHx6HcWrNjbXYXJEQmwEjm9djK2pkfjtt9/QoEGDQp1Pdvw2fyGsHDwgs7SGjgsdNBualAToNWnQJMfiwbuzAICU6GBoE0NRt04NONg7YMqwLqhUsQL4fP5nE9Sio6ON9bCVSiXev3+PxMREnD59GkC6w/bpC3/o9QZcu34DaTpAbOUInxrt4DtwHITS9B//zWhSl4OuTW7NAxJS0gMNOrloEBXojw0Hr0HAAKo0BSJm/gaDXoM1q/5AzRo1Ms0tKVUNicx0ZYXzAo/HQ79+/ZCWlr+CRi9evMC4iVPw/Xw/iMTmV3P92oiOCEKViuXNrsxhtkWDYRgc2rcTnbr3Tt/g2dJch/oi/o+u4dyuZZg1cyo6d+r4Vci4375zFz1+NJ8MwP8rOkUiUl/fAPQaCN+cQyyUKFGiJIQCPoZ+1wMymQwODg4oWZJErly8eBEHDh7C67cBmaLXPj1Xh4SEIkHJQmplCwCQiISwdy8BhuGTOtIMULJENQgEIrQZ1QV6WxI6HaHK/npkeHyjrLu1nRrWdk1QunoTSKk36rjwQAwf9SO2bV5nLMyzZcsWeJarnYczVfQ4d+48xv80GVOWH4TBouCrMH4NBL99ivIFkPlvVml0CwsLnDzih07deyPazR929b+DyLpgktP0Oi3un1gHftwrXL54xuzOIVPx4sUL6CD+vxBYMyesQY/EZxcgjH4JQ2oMHJ2cwAMwon9PCAQyNJqxCi4uLoiNjUV4eDhSU1Px16ZtUKnVCA8Nhd6QHq4dn6xAzY4j4Vz1O7hZEBNMQkZoc416Elg4ktBqOyq0NlRJTG3uUmLyiKGshqbCxbMYBk9bj7btOyAiLAR8Ph+HDx9Gk0kHTH+wPODt7Y179+6hXr16udovJiYGfyxfCb9DRzB3wzlYWtsinvNj/AeNWoVz+9fiyiXTVXr8HGavp2FhYYFTRw9i3759WLOuByQuXhBWaQ7vsjXh5lMGtKGIthTHqMgPzkZEeywI9A+UlgQXRl3HjBkz8MMPP2DcuL1flTN5xi9zUK/3DERnxJnTpW5p6PyWaOpc3UimYvGpHAZQcvG09HfbEsTeX9aakgHnkV9mJBXz3taRtKPUxJ78QkmVmaXyLvS0dAsl/SxII6YYPVViFAzl06DzN+g8DUq+hMmQYWANBqQqk5F4cT3SAh9Bo9XBysYWDi5ukFnaQKVO/2y/b9iVPo9NB8Dyhel5G47FwOi0YDzrge/qAqaGN5iMvB+L2AD4GwD/oLhMEtW0rInKnuRae1UgfoyPgSTRlfbVSBKzViG1pGQnaCKLkxvtJh156GpsQ855qo4BhKVRrMl3+PW3+Rg/9kfI01jsek3mZkFJVtD2ebrkqIDyWQgyfBp6EbGd86g5pjmSfAM6N+dmDP050r/z5s2bY86cOVl+vn+j0+mwb/9+bNi8DazQEq7Fq2LhjlvgCwTQscAHKi9JFfTU2OZTORIiFbm+GD353EJKMl9tRfx2amsirWMTdI9st806h0ZP5wRRvhEDdY0zVMkCUQr5Hui8FyGV30L7NITU70NXrKax3ZsquSCj7nn4eAlNGtaFq6v5K6gWSBEmqVSKoUOHYsiQIUhKSsLhI0dx+uRKXJenQpmmgiBDQ4rHF8DO1QcMGEpDiUHZOm3gXaa6sV9WsCyLdy/u4+bZPZDx0nDgwAFUqlSpAD6d6fA7eAgSOy+4+ZbNvjMHAMCgUSH8/F9IfXsLOo0KshK14NL/d8h8qxkfFvgqkpRlAfJD01iTmwafqgeiF3y9VRDdaneDLu4s9u33g42jO+TZ71IguLi4IDg4+It9VCoVZs6ei/379qFikx5o2H8uvEqll+nlC7J+cOQA3j27hQfHd2P//v0FcrwCrdzHMAzs7OwwfNhQDB829D9/VygU/9GCT0tLw+59fjhzZi0MBhZ6vR5KlRbFqreAi5MLvEtVxrXjfyM+7C0aNaiLP+ZPN2mZzIJk734/NOv9c2FPo0hj0KqREngdzNOjiPvwFJrUJNg4e8Kz5xwIS9YFX5IejfI5gbj/F549f4mmXYdiZ0L2ff8Ny7JQpyYiOfQt1PJYpCWnO+F5IgmsbR1h51MJglw6onk83hdrhHz8+BG9+w1E+bajMOqvW5DIbCDjc1Eg2SFPiMHxTb/i3u3rBRYJWqTKvcpkMpQpU+Y/2/8dppeUlIS7d+/i7bsP2LF8DOJjoxAYGPhVOLk/x82bN6FmxfDwLY3o/AWZfHPotWoonp2B8u5eJEaFgy8Sw6liI7h2mQJrT1IFTyuRfWGU/w9Sw15BaCXAs1ev0WpYBSAhLvudkL5QJIf6I/7ZRahTEyCS2ULmWQ4Wjp6wrdgMPJ4AmtQEpAU+hP/JNbDzLg/b5iMyhV1nh8FggEql+s/iER4ejl79BuH7aX9BaV3iM3ubB1avQ/K7O0h68Q/YDGkboTIeApEUlk7ekJRpCImDV5E0cSfGRWLdL/2xdePaAk0dYFiWzXY5T05Oho2NDeRy+VfjUP7aqNOgCQbO+BvWdo5I1JDFT0I9bdFL4jUq7+VFCrHZstQTtpAqh9vbhWx3ltC+INLuU5fkQuy9k0QOxhrw4dVDxEYEQ0dZCXg8BuWrN4KtgwsSKc0rOkw4gfosdLSPnCqdSfumbicJkRL6GvKgZ4iOiwKi/JH87CJ0Oi1c6/eEtFhN8HxJWGlmbSASa6+jYuSllM1eRcXL0+VkpTFvyb6Uj0VISbtrqBh/tQ0Zh9a/oucgTiL70nkD8mLE72EV9tjYpssRa62IbZqWz6bj92nNI33G4qk5OhPTu9fFoiuRsGo9AfqPj8j4tHZZXLrWFmswIDL8PeIenIDUrRTsu06HxK10+pjadPs5nzIL6xIjwRoMSH56DkmXt8CmdF241OuZyc9E5yFM7kG0uKLu74aLiwt69+4NmvaduqHZd9Ph4VsGV2PIdX3v1TNyXGvynfAoc6MskpRkVlPfrSiVLJYaKsdH45IeGZf6+gY0D45AnRgJu3KNYNFsGPgZeUrFpXwo40KR8OEhAq4fhCo2GPbV2sK+RicwGflOtIQ8LVcuSia6biz1XfG05LowCMiiSZd4pfOPUIJEvfV1JdeFd0bOVGxkCA6tGocZM2agbdu2MAU5vc8XqTeN/1devHgBK3t3WNsVvuz5+/fvcfToUVx/+AbKFDl06hQIhULUqF4VDapk9hFptVoc3j4HqamKTImZ9FOInmWRkJQMR8/SmZz39OIjpFbDkJAAVC5bHI4GLVJf+iMpTQ/7Xgtg7+RpfNojrkAOGpZl8fbkRhy1UEJQKXvJjrSkaHz8ZzssStZGif6LwZfIoM9YML4Ew+PBpnp7OPuUR/yTc3i3cyo8Ok+G1K3kF/dzcnKCXp/ZbKjX65GsUMPD978WBlNj0KiQcH0Xkh8ch9i9LCr1mw8Ll/Tw52gNCQLhi/iwci8FK/dS0NoXg0GrRtyDE/iwZQycGvSBTYVmZp/rl0iIjcSGuUNw+MAelC1b8P5PbtEoAsz4ZQ5a9JlWKMdOkScgKT4aN07txPbfgvHu3TssXrwYgwYNgkgkgr29/Rf3HzhwYPbHSEmBQpG1uugn9Ho9zp0/j7/3ROFteBKsKrcHr/cPcJKmx+Qz1BMcR9akvLiEH8ZPwrVb9yBu/eWbvzzsNcLuHkOJVsMB3+wrF2YFw/DgWL09bErXQ+CJ5XBvMxpSt1LZ70jx999/o0LdNnk6fk5hWRYJT84i/tEpWDceCK8ft4EvtYKFfc5KLvOEYjjX7wWH2t0QdXU7Ep6cg1ev2RBQCgoFRUJMBDYt+AGzZ0wtlAUD4BaNQichIQGJqSp4FCvYC+DZrdN4/M8B2FmK4ebmismj+6Nhw4Zmsd1aWVnByirrhCyFQoF1GzbjyPFTcC7fBFb91sEpo35FSvC7LPfhyBpWk4Ya1Svg4sM3kIo/b+NWJ4Qj/M5RlOv6M/hCMfKbNiK0tINP77kI9psL9zajIZblzM/BsizOnTuHpgN/y+cMvkzUlW1gDXqUGvontO55/53xRBK4t/4ByvA3CN47E57dZkLsaF5Ze5qk2HDMG1kPvy9dgr59+xTYcf8Nt2gUMn36D4KoSk8su0Ps7gbKucijQkFhT+nXSInt14FyLHZ0JMYbL8t0W3hMRAiqWShw5swZ3Lx5E9bW1qhatSqO7d+W7ZuEuQgNDcXs3xbizftARFfoDUnvjUiRWEIS/AQITs9vEFMLmMqdqmqno/SvKH8Fy6PszJRvQeFCmT4ovwGtSaSicg5UlFaVjJqDjtKzktBlbOn8gHhSm0Jj70v1Id+XNCHI2M6kZ0SXUjWQz5ipbCjlG6F9HbWq1sRL5Ud4uNeDgQXUaen7yKh8Ep4uDTq1EgFHl8Ft7B6k2qd/ToklpeulovSYMnwZNWyIbV5gS/w60Z4ksz382VWU6DIZH/zmwarrJKOD/FYM2fffMnpPnjwBI3ODwcYHMRlugbsJZAmjH19s31w0tvVSqkYL5Zeiv0+lQ/o85c8vwU4iQqMf1wAAylA6akFKYiOtQymtWAvIOa5aj+RIHIlNz7WxKl4DHnZuCPX7Fb5D/oQhU80YMj6d80JD91HbkGuNvkaGuNH6eTrodTrsXj4Uf65eiaFD/xt5WpBwi0Yh8uzZM4SnALUa9UPcx/cmHVun1cBvw3xEB7+BzEKC5AZ10bBhQ8yYMQMyWeFEGb19+xbbd+7GpcvXYOXoicrNemPwwGb4670ZUqT/D1HJ43Dn7j1oyrXD594zAi9tg1eDXmDsTS/NLrCwgXvjAQi+shMl2v2Ybf+Tp86ibDXz6dKp40KQcPcwWi25YPKxRXZucKjbCzGXNsG1w0STj/9vdq2ahqED+xb6ggFwi0ahERcXh+59BqDqRL98m4Tk7+9BHfEWTMh9+CkiwTAMtCoFZk6ZgO7dVptoxnnn6tWr2LNnD94Gx6Bm816Y8MdPSNGZp7CUQatGavhbKKIDoEmKhkYeA51eD75EBoNOA7AsGL4AYicfWFjaQeLoBYmjF4SWWYsRfi2kxoUj4e0tOLcYBV5s1jkU8e/uQ2hhBRuv8shaozX/WBevhsSn55Ac+hrWXl/WQfoYFIwG3bvBHCWiWJZFxNElcO86DXyheZI1rSu3RPydg9ClJkJgaT7/xqndq2DBKDBubOFK3H+CWzQKAZZlMWTkWGibTcQbVgZExYKxISGWUkrhdKAbcdaNrCvE0aNHcfPmTRgMBgQGBkIkEqFcuXKo1awWateeDR8fHxQVQkJCMGX6bHyITEa9vjMQX9UJ5wGcfyoHnyoPK6IkKOgSr3QIoiiWSHkLFWRfjVV6KKYi9CVin12CJi4YstL1YFGuKWxcikPkXBwW1A9amRwLg0YFTVww1GGvkRD5DuqX16FPjIDYwRNWZerB1lcHfka4Mh1aS5fyNFCmBIaKF+OrSWgooyefhZaUoEN0dZSphZYpMVClaLUyclymSjtju7YlMa+I355C5w7tsHP3Plj0Wk/2labbXfRqBcKf/YPiQ9dAKZJkkthOURDzl4EKZzVkzPkRiAmzkhUxN5Wm9LRCShNBILe2P+Kj3zyU7L8IFwNJSdK6mQtgGglQ0Lchcs50lCS4yp6YwjKFVlNyHvS1k3Z7L4q3HAqvOh1gwSPniZbloSP+YqmQcfpxRkSFiXdwIOMcTkqfm22jAUh4eRmOrdOj1fSUXI84iSQq6yX/lb7592cZWJdEn3lmlKB+++wuwv1v4NSpU+AXkQqe3KJRCFy/cQOB0XJYtWqVbV+WZfHo/C6Evb6Hc9o49OjRA9OmTYNQKISdnR2k0qInEa3VarF+/UbsO3QCFbv8jK4VM24oH2K/vGMuYVkWSa+uIu7u4XRzQbvxkHilqwEw1A3+3/BEEkjcy0DiXBxABwCAICUGqqgApHy4j4/7ZoEvsYRt+SawrtQSPKF5paZNwYmti7Dxr5V4+TEaSuv/RgXF3D0Ch3q9wBN9PivbVAhltnCq2RExdw7Brkdmval/h9yag+SAR1Anx6HsgEVmP5Z1tXYIWt0PDi1HgjFxcnFU6EccXDcL586cKFJ1f7hFo4BRKpX4YcwEVB68HC+/1C/oGfRX12JXShj69+mOuSPnokSJgs2WzQsREREYM+4nSJxKYvzivfiQap6blE6tQNCZvyB0LQnffgshsLCG1jF/b1kS1xKQuJaAa63O0MhjkPjqKj5sGQP7am3hULt75kfQIoQ6NQlSsQC+vr4Qf0beIyXgIYq3GFFgc7Kr2BRvt02CjU4DXoaWV8OGDTF9+nQMGDDAbMdlWRaR13ah7tzzZjsGDU8ohqxsAyheX4dlhaYmG1en02LR+C44cewwPDw8TDauKeAWjQJmw+atsCnTGO5l6+BlKDGzaJOioU0IR+hfg6BLiUPHnt9h7eZFRcrc9CWSk5Px62/z8fDZa3QYOAXFylQ227FSI94j9PI2eDTuD4mZEq1ENs5wqd8bDg2+Q/y9wwjcNQUePWZBaPMZG0shwbIsLizsip3rVyI2NhYML+uVjS+1NvmT8JdgGB5sStWG4vV1WFVKr6Xj6emJhITMYlgsa1ohwpTAp5B5loc4i7ctc2FdvSPkdw+ZbNFISYzBHxObY8XyP1CnTh2TjGlKuEWjgHnl/xqNmnWGG2IxvbItAODSwb8Q8eoqmjZtioQRg9ClSxc0atSoSOrd/BuNRoOVq9Zg95HTKNZ2HCqP/w1741XA63RbsOQtCZW0pOz6tBQ17aNI9aAWG0pLyvrdNQCAPNQfYc+vwmvQHxBa2qNC2arGPtFUCVz6VpSgJmHIfDEZ09mOvPIn2hHFW42Kcs3Gh8C+6WBIS9dD2N7p8GgxDDLPclDbkqc/UTKRvaYl3Pl0WV09mQMdoitQZq0oSIfZWtbubmwP98kcaXZ06xKU83FG40aNMG3mbPjU7ozQoEf4Nwyrh44KJU5VktBanoAy5SnIfD7JYEhEdKQV+Q6tKGnuKpbkVvI4Q97EqkZnRF3fBauanYx/s7CwQEJCAuzt7VG8mA9CAl4jwZu8QRuocGoeLbFPyW3wdNT3qSafI83BF/EBW2BXr08mf0sMJWVzOYiML5KQz+0kINfO6zTSvwYVoutKye9Y2pN6N3pNGjQxgYDBkMlfRV8jdACxxpIoP5QvTvJGfm4hxeHDh/HD6B9w9uxZ1KxZE0URbtEoYCaO/QFLl6/Gw2MRUKq0YFkDgt6/QnRU5FexSNCcOXMGc+YtQum6ndBoxkmzzz81KgCRD8/AZ9CKArHN00jdS6NEn98QeGwp7Mo1hmWTwQV6/KzQ6bS4dHQbgj5+AAAEBgahZJkuQHRMpn56jcooxleQiJ18oEuMzLTN09MTb968Qf369dGze1dMnDYXzkM7muyYqsj3Ru2sgoIvsQSY/L/FrVy5EkuXLsWTJ0/g6emZ/Q6FBLdoFDCVKlXC7u1bCnsa+SI6OhoDvx8OWLqh59StsHFwwUu5eRcMnVqJoKu7UbrTBOgKeMH4BF8iQ4nevyL07Foozq6Bc9uxhbrQhwb4o2XLVsZs+/DoeDTwLg28z7xoqBMjILEvHLs4TywDa9AbzWY9evTA1atXUb9+fVSoUAFpKQnQazUmCYvVpSZAaOVYoGa4T9BRZ3kh5vk/OHf3HCIji/7D49erJc5RKPxz+TLad+mJNoNmotvYZbBxcMl+p3zCsiw+nPkLPk36QySzNfvxvgTD48O7wwTwLawRfWolciASbTZiwgPRtEkj478/NxNVXAgkTt6f+at5ETn7QhVGKhgKhZmj2mrVrI64t3dNcixV+GtIPM1fIzsreLmQiP83LMviyfof8Oeffxb5BQPg3jQ4csGlS/9g5m9LMOy3vZDKrOEvJ5fPQwV5/hBQT40KH0rGPIHErWspsTctVX5WSElaCzJudHFXtsGuRie4dkkXdaxD1eqW8Ek7XEucwLHxROCQofI9WMpmH6UneQAlbImORCBlA9fbUCVBKUlrx8YDEXVqJRLvHoIjZbMHyDh0iVeL2A+kC0vZt22JY10a88bYlpdraWz/6ElLa6QvDSzLIuTRSYz9/XcAwPPnz2Hn4gMLPgud1JaMGRcATeR72PpUAk9K9L8MlL+FF0tyKQwS0udTPoGOkr2Ip5Iyw1TkPHlKSJ+HDkSPSeJeFqqPjyB1IX4LOux25PChGPHzPFSuny4X70yVlr0V8NHYFlFy6/JipPytWB5hbKvlsZAUrwHG1hVXEih5EQEVHBBDZF7UTiT3I0RJahxWo6KVtAbyXSl11PdG+V6EccHgaZTp/9dlrW5AS4Q0pmoGNXNRITz4PV442mZZS6gowr1pcOSIZ8+eYc783/H9rK2Zkg/NjV4pR9zVHfDtOqXAjplTXNpPQMrLy1BFfci+s4m5cGAdPD09jWHYcXFxsHP5fKRdJmd3ASLxqghVKKl5UaFCBVy+fBlKZXqwQdmyZaFJif/c7rlC8eYmLEr9W+GqgMjHC6f/o2v4dc5s083FzHCLBke2JCYmYsTo8Rjxy7oCXTAAIO7aLjg2H2qM9S9KMDwe3HrMQvixpTBoC04/KyzwDd4/vYJVq1blbAcTh7XmBrFrSWgTyduAlZUVWrRogadPnwLIKAFtY4mEyKB8H8ugVUFgWTgCnHyZDdTU58wN96+eRJUq5gtRNzXcosGRLRcuXECtFr1gZVOwP0iWZZF45yDs6/Uq0OPmBpGdG+xqdET8nUMFcjydTovdKyZj57YtmezfQcEh4H8mc10ZH16geQs0DMMA/8odEQgyW8Un/Dgc7++fzfexeKLCU0cQSK2BPGS7q1VpSEtJRKlSuatDUphwPg2ObAkOCYOtQ7p/QUxp8VSwIXbdEpZE90dN2YHvJ5Kb1VMqpp6OwaftvfAi1QFFQQ/hULIGXCwsUNaC/CDfpZGbkJp6iI5NIv4Qhiq1iRQiXyJQkygXHeW8DEgkNm06+oaXTPYVe5CY+rRE4jNxKNcQH7ZNhEutTtA6Eju5JJbYz+ncDB3lYxFQulupnqQY0rRKxLdgQeVDpPifRp8enVCsGDkOAJw5dxHthsyFjdiQyUfEOpeCXiSD2rMy9Aoi1c1QeQ+ZpN0z5Zyk5xNUsiDnQ0EJNgkpn62YevxkKQ0toTwKPI0KQnkU9t9NvxZeR2jg+u4d6mf4MYoXLw6D/DwcxQZo9GRQLSU5rqfK99Ilfun8B1angSE13Wfl7U5MdUHhRLfsk8wMAKijyXZQ5yOMyveR8qjPS/k0bETk1hnr5AuVKgUGj3JgFeQapKXuFa7k2qnjQPJMBGE3MHzo4P8spEUZ7k2DI1vCI6Pg5FpwxWY+kRrqD9tStbPvWMjwhGJYl64H+ZubZj1OclI8du/ejSlTMvt3WJZFeHgEZFY2We/IMNCrUrL+m5lRJ4T/RwG2UYeBmDt3rvHfX0PEUHboUxIgsM59uea9e/fi+++/N/2EzAi3aHAUWdLiQmBZSCGUucWhenvEPzpjtvFZlsXuVdMwb968/6idsiwLkUQGwWec3VZl6iPpmelrSuQEVq8F3yKzH8zSxg5Vq1ZFRETefABFDV1yLPh5KP2q1+nw6NEjODrmfrEpTLhFg6NIw1Ly4kUZobUjWIMOBo15HOInd69C+5YN0aBBg+w7/wubCk2Q+uGhGWaVPZ/7/vr06YMjR44U8GzMQ+rLK5CVbZjr/fR6bZ6+z8Lm6zGkcRQaEiEPbarYoFy5zE9Te+8kGdt0nYKoVPIk/DyR+BCalyB25jv3rhrbOikxq/D5xFav5osR+vQSUnkihLuQWgNCKiNcT9nP+ZRdmoki9cXpMrAsJfcgiSR5EYI08llo/SiDkBxLxKPi9C2ofIykdJ+M2MkXbPATCJ3TP4OAMgnxtMS+TZecpety9KpFImjEfHKzbVxMi1VPL2PNwtP4HGl6Bq+TMt40KF8NPzkKfIEQ+tQEQJVqzMwW2VL5J9Q5zHQ+M3JUniRTOR2UU7smkV9CiJJsZxTEP5SamghBserQOheDhvIT9+raFT169MDYsWMBAAIeIBOyeEldO0LqO2EoGRTaF0V/byxrAC8jeqqGFTl/ll6+xraMekl7RGXJO1ElBmLTiH6UxIL4xj5QvrREFfVwEPQYZfrMgdTeCdHRpAInrZc1sgK5pgQZ9T0MX+kj+1c6bY6CRCwWIyQkJPuOJkZo5QBtUlT2HYsIEidfaMww3wULFmDixImwsfmMzyIHyLwrQBFQ8G8byg/3YFG8xn+2S6VSCAQCJCebtoaggSqCVBCwBj0UUR8gcSycjPvCgFs0OLJlxIgR+P3336FQKLLvbEKkXhWgCHpaoMfMF2Zw6Aa/fwmVSoWePXvmaxy7Ck0hf3TKRLPKGSzLQh0VALFb1uGkNWvWxJUrV0x2PKl3ZajC32Tf0YSoQl/Bpli1b8KZn1M48xRHtnh5eWHChAmYP38+lixZYtz+XT3bLPvvupVkbAupokBelFz1LWHWooMqORXiWqIWGJEFGHsPGKhyr3XLEuf4RxUxH8Royfi0RIQ49LmxTZuMFC5EDVXrQ8Jd2fis36r0VNYvGxdM9s2oL65MiIC0dD3oM+TXaZOUnpLHoENcZZWJXEhpG/KU/OkWdGrHEuzc8leW8/kcYiuST6OTpx9XVKw6tFd2QJsYBaGdK3QaYnISUI5qRkbeZmzF6edWQ33uilJiJgqkniFuRFHhvGz696AKfQWpsy948vQw3sORxOE7CEDr1q1x+fLl9KxwA5CkZlCOkiKnAmKhoUq/0iHafCGZhNTWBWnPzkNmZY/XtiS0VkY9Gr9RkZu7TEKuzSg5mb9AQsxKKVSY7bsoIreCDF9N0t3DsHArjfCPGdcYVdaV/p6dKFl1UUYYL8sUnm5ZfuDeNDhyRKdOnRAbG4szZ8wXIZQVluUbI8X/eoEeM6+oI99D7GS6olkhAf6wEPPh6+v7xX6hoaFfLG/7CadWoxB9bo2JZpc9Kf7XYVW+6Wf/7uXlhdu3b5vseBa+VZAW5m+y8XKCMvAxZL5V87Sv/6MbX1VS3ye4RYMjRzAMg7Vr12LDhg14+LDgbON2dboh4db+AjteXtErksCTyHJ0884pJ3b8jp3bspfR9/PzQ7F6PbLtJytRE6xOA1XEW1NM74sYdBqkvrsDWfFqn+3j4eEBLy8v+Pub5kYvsnWFVh6dfUcToZXHAGDS62nkgcA3j9ChQwfTTqoA4BYNjhwjlUqxdetWTJkyBYcPHy6QY4pdSoBheFBFFrwoYG5Ifn4RliYsPZsYFwXoVHB2zr687OXLl1GmdtscjevUahRiLmzI7/S+iEGnQfieGXBqOQK8z5ghP1GlShU8ffbCZMcW2rpBFf0x+44mIOnuIdjVy7uvKfDNY1SvXj37jkUMzqfBkSscHR1x+PBh/Pzzz7h48SKWL18OmUyWqc/ABrbGdiwlk8GnHlE0bsQvwUsINbaFVPZwOYv0EEf3/rNxbfNkeI3ZAYbHw9VgkhRW34uUIpVQ4aAfKNlulTuVIEjlUUjiiNWcWPgBlpIHL+lGKqiF08Z9e7K9hLUlbr+8iJo/7UZYErGN6yS2ZEzqDURlR7LrJ/sQP0avOuSz//77ZgwfMhA5QSgUwk4mxKcit7aUNH0cJbPB0yhhYe8OHgD1g6OwcEsPY9ZS54dPCUMmZCjR6hVJxm13KZ8HG0+k7gWa9L4syyLk4DzYVW8P65K1IU4i39WHcPJEfvBe+mLI82qCl//Mg0KhgYPEAAklU5PmQPxSohRSWEpAlQemxRh52jRYl6oFxdubeO9AVb6jpEPElD5XfSviP0kU2xrb7mIy5u0Ucv7EcUHGtk6ZDMWLi/Co1RGiBOLf0ovIb0FFlQWgQ9J71rHDhw8f4OVqD7E4a72wogz3psGRa+zt7bFt2zb07NkTnTt3xsuXL816PBuvcpBVaIq4c2vNepy8EvfiCqy9ykNsYxpRwLS0NFy4cAF9+vQxyXj/xrXtGEScX2eWAlIxV7ZB6l4a1jlMdpNaWCI0LBRuTjYI+ZB/M5V16XqQv7qW73GyI/LaTrg1HWzMe8ktDx48QLdu3Uw8q4KBWzQ48kzLli2xY8cOjB07Fjdu3DDrseybDYXi7U1o4go+X+RLsAYD3h/5HSW7TjbZmBs2bMCQIUP+U+XOVIjs3WFdqi5ibuw12ZgGjQoRZ1ZDp0yCY6MBOd5PYmEJSzsX1KhaGS8f5D/8li+2gMSlOJLfmaYaYFakxQRCkxQF65K18jzG2bNnv5qiS/+GWzQ48oWnpyf27t2L+fPnY9u2bWY7DsMwcOkxGzHHlprtGHkh8fpOOFZqCqmDaWpwv337FmfPnkXfvn1NMt7ncKrXExp5DGJuHQBLVaHLC8n+1/Bx6zhI3cvCo+OkXOcsVKrXDpaWMjy8eswkbz9uLUcg5vouqONCs++cS1jWgLCza+HZdkyex7h+/ToMBsNX6c8AOJ8Ghwlwd3fH6dOnMWHCBGi1WthXIfUvvKjAEgUlOS2Ukj9oKTswL+SZsf2cinmHUAKpczHwhCKkvL0Nq0rNAQC3Q4nNnBFTvhVKLoRJJX4GugSrjpLbpuVFaImNIAXxgRhiie3aIBAhLeQFkh+fhu3YnQhISD+GmJIWp/0YDCXPMa4msbfzmcwFknbv3o25c+f+R5QwOxwoO3xMCpHxkKQSX4BOSnwmfFYH73ajEXv/OILmt4Rnq5Gw9KmU+ZxkOLFFyiTjNkMKyW1Ii/qIqDOrIXbyQZles8EXWwCpcZnkM7QyBzKX+CBjO1xBNEjKV62L7b+PQ9myZaGSR8PO0RUAUKMEyaN5/JbKK0mjcioo/8an4woYoGTr4Qg8sgAeDXrBSk7yKxSuxH9zIZH4rkDJ9tNJmnT5YZEqGSH/bIVThSawYXRAYsZbL7XQqW3Iw4OAylHSZ/heWJbFb7/9hqNHj+JrhXvT4DAJQqEQa9aswYMHD7Bm9vdQpJpWHuITLl2mIe7smgINrcwKdWwQok+ugHvf+SYLsz1w4ADevn2LunULpmQpw/DgXKcbSg5YjOh7RxB+6W9okqI/+7Sv16RBp5RDEfwc4ceXIfr8Onh0nwn3zlPSF4w84uDsAQsbJ3Tt1B7/QesVCwAAGe5JREFUHDZNZJfYxgmluk1BxL1jSAnLf5Y4y7KIenASYHhwrNg0z+N8fP0Yvr6+sLYu2AqYpoR70+AwGXw+H5s3b8bhI0ewbO4wjJi5Dtb2pq0Yx5dYwn3QHwjfOh7ug5ZDZFXwstKqqA+IPL4MHv2XQGCi4ytS5Ni9ZQtOnDgBHq9gn+UEEksU7zUHSW9uIer8OuiUcjB8IfQZhbIEGRFVrEEPgbUj+BY2sK3aBlKfqiaTz/ApXQVKlQofXtwHy7ImGZcvkqBkp4n4cHIV3NENVp5ls98pC/SaNISfWgWphRW8mg3O15yuHd2MLWuXZN+xCMMtGhwmp0f37ihXtiy69eyJKcsPwcbEC4fYtQTc+i1CxPafYF21Lezq9wHDL5hLWf78IhLuHoJH/yUQUmas/MCyLHYsn4TfFy+GVFo4JUsZhoFduYawqkryPT4p/Apo8xRVUpU1od5SiQq18fjRCbRv0xKPb5xBjcamSXpLXzh+woeTq2AZWgrWnabmqt68JikaIYfmw6lBHzh55a+2S9C7F7AUs/DxMZ1qQGHALRocZqF8+fI4sHcnfvppFJYvX47q1avj7xvE1t7BkdxwToUkGdt0+VOGMpOwaWS7XmsNqcwWxYathc2bcwjZPhr1Bs1H2VJVjX3iNeRp/TpdvpXyXRT3Km5sy6iynk8TqDlkqNZqk2MRe3YNGL4AxQYsgcGeqJpaBN43tjUWWddR71qbZEar9MT/0LOOHWbMmIHObRqjZs2aWe6bHVFRUUiIjYC9U3rOCl3DQmNFLWzU+eRTbT1VfpYupcpmLMRa2hdClTDl0ZLqtCy9QZdlf9pXsDWY9JlSmgcb1+I4ceoUbl2/gu59BqJmwzYoRemYPzGQnAqdhOSK0JLptK4Y7UsRMCko3WMG4l5cQfDqfpC5loSVb2XYOHpCIJaBEQihATkWT6eEXqNCwps7iA96Du9ev0Jk5wZhFAkJ5imJL0Vj70vNgVw7/Two3wiPxZWjG/Hr5HFfvbght2hwmI2qVatiwYIFGDp0KM6fPw/gy9nBuYXhC1C9+08oUa8L7u9biKcHElGjw3CUrNXGZMfQJEYg7tpOqKMC4NxkAKxKppefNWSzX05ZsWIFWJbFxIkT8zxGu3btEPj6iXHR+BqxsnVAyx4jcPfuPfTs1hE3zx2Aa8NBJhufYXhwqtwCdtXbIS36I1KCniH0zS1oFXIALHgWNuQNxKADwzCw9qqAEsPWmuQtNuSDP8LePUW1ap+XVfla4BYNDrPSoEEDLF68GOPGjUPrsZvM8pRl41YcrSb9DSYhCA9PbsTtgytRvEl/+NZuDwvb7GU4aFiWhTYxEoo3N5H85CygVsK+fm+4d50Onta0tRpu+K2EvT4cGzduzNc49erVw6Z9501m0iks6rX+Dgtm9MTypQvxy9xF6Fi7d6aCW6aAYRhYuJaAhWsJCNLIm6+eitTjaZXGtspEZs+z+/7Eb3N//Y96wtcIt2hwmJ127dohJiYG25b8gL6TVkMoNu2N4BO2Lt5oOXwhVKlJuPfPYVz+8wfo1GlQWDpD7FIcAmsniF3TVUU1scFgKfEQfUI4UqODoEqOg9rSEbLS9eHa69dMshOm5NH5XZAoQ7FpR/aChNnRpk0bLF2+CsHvnsOndOXsdyiiyKxt0arXjwgJDcW40cOx/+AyNOw/u7CnlW/C3j2BTGRA7969su/8FcAtGhwFwuDBgxEZFY2fu5ZE3SZt0WvCSkgs0nMCeD5VjP34L84b2wbK1s4KyM1boEgwtq9EkqdFR5tPtndHlGs7AuXajoBBr0dIkhwpoa+hSoyAOiZd4dXWygE+rkSWWi+uB2u3khDJbHAvkGhSCag4fY0dya9gqLh+AxVyy1JPpv1rVzS27UTEJh/pfxMp76/hkN8+mAKGYbBp3RoMHDoaY+Ztw4Ditsa/nYwntn15HMlp4ek1xrY0ngj8GQT/XSTpkqp0XoTKgfiEDJRPg85VESjJ+dNJybzUCUS3KjKNaExVrtUUa37pjwd3b+Lk6YFgIp7Cp3QlsG4ke5r3/paxzadyNng68hDAVxP/horyOTDU56ZzeYQKMk+tBTlnlpFEIoefEkk+iw3RDwNDvvPqNRsb2z+3SD8nVSaNK/CSAuaEWzQ4Cozp06Zi6pTJuHLlKpb8OR3fTV5jdqcgj8+H2NoR4gqN/vM3TyohTqEvGOekIiUJp3YuxblTx3KdwPclSpUqhd8X/YoWLUpg6NJT8K1Yz2RjFySWNnYoVr4m7t+/jwljR+P3dXvgU/rrDVE9f/48WrZsCQ8P0ygGFAW45D6OAoXH46FFi+Yo5eWA14/MLyxXlIgOC8D6aV2x/PfFsLfPOsoqPzRu1Ag3rl/H44ML8fyKH1QKefY7FUHqt+mL/gMHo1y5crh8YjeiwgpG6tzU6HQ6LF68GDNnzizsqZgUhs2B2EtycjJsbGwgl8u/6kxGjqJDYGAgevUfimkrjyBCSZ64/w4ioZj6FGIKYahCNwwltz2sJjExWQnJpbzqHTFDiCnJkrQkKpOcCk31diGmp9DQ92RfOTkWHVYKb+I7qGhJ4v6dROTtpYETmUN1p0R07twZGzZsQMOGOVOAzSsKhQI7d+7EgQMHULxaK9Rq2hmOrp5Io0qXvkgiJrXLSWRf/osLxrZA9d9FR21DIrQY6vwB5NwL1KlkK4+SUtERSRY+NXZS2VbG9vTq6cmSlw6tR9vaxRATG4MTF26hwdi/jX2epRIDyccgUlDKMpyU9TVQdTxoUxwtpU6H6+rp/BNqznQIrbwYydRnpJTjnJKiH1eCzE31bCfkcjlmzZqFr4Gc3ue5Nw2OQqFYsWIoXcIHMRFFS7XWHIQGvsGIESPg5+dn9gUDAGQyGUaPHo2LFy+iSVUv7F/1Ew7/vRgqZWr2OxcRajTtihkzf8HgQYPgYCnAx0eXCntKueLd42s4cuTIN/eWAXCLBkch8vPEcdiy6EeolCnZd/4KYVkWp/f9hTPbF2Dfvn0oX758gR5fKBRi8OBBuHr5Inq1qYu/5w7AjdM7zVJHw9TYObqhWbfhOHz4MDZvXIeHe+fgxaU9hT2tHJEqT4Dfmik4dOhQgUvCFATf3ifi+GqoUaMGVi5bhAOLvofBYKp0uaKBQa/H2rkjkBz+AudOn8hR2VZzwTAMevTojssXTsNVmIj9qyZDRSn/FlUat+2NTVt3Izw8HHdvXUfo7X1IpiLAiiIadRr2LhuNLRvWwsHBIfsdvkI4nwZHobNuw0ac+uc++oxfhtcpJORTRpX+tBJSchFUoJMdFQGlpGz2DxKJXVpMPRqVtSJ2ePrKF1LHClUQH4tMQLZ7y0jYrICSHeH/K/AqKT4GO1dOQesmtTFt2jSzFVPKKytWrMDqNesxYtY6lKxQCwHJ5PPuDaTK8yam36CtIoivQCsjAo20jyeT/AsV+konRDIsOX9qWyLDwqN8HR41iPbV0Z4SvHv3Dt999x1OnjyJ6OhoDBgwAGNWnDeGa79PJj6E46FkIRTGERl7i2iicqt0InLrrIB8L3wNSejTeVc1tof6kPFtKX+VhIo7FVClXC9unY4KFSpg/Pjx+NrgfBocXw0//jAKXdvUx7Lx7SGP+Xp9HKo0Bc7s/wvblozG4rnTMGvWrCK3YADApEmTcO7MCRzdNA+vH98s7Ol8kdKlS2PhwoVYsmQJqlatioULF+LE5l8Le1r/wWAw4MKhTQgKCvoqF4zcwC0aHEWCkcOHYdUfi3B6Xhc8O72+sKeTK2IiQnB8x3JMG9gQ7pZa3Lh6CQ0aNCjsaX2RcuXK4cSR/XhxeTdeXfUr0n6O1q1bIy4uDjt27ECXLl0Q+u4JPry4V9jTMsKyLBaO74bYgAc4e/ZsYU/H7HCLBkeRoWWL5njz8ilcNQE4MLkxkqKL5lsHy7K4c/Egdv7xE5aO74jT237DgC6NEBjwDgvm//bVOD89PDxwYN8ueDMhODK/F2KpUOOiBMMw+OOPPzB69GiEhYVhzao/cHbHwiLhB/vw8j5WTO2Ddq0a4/Ahv6/mu88PnE+Do0jy7NkzzJ47H5FRsWjRexxKV6wJqcwKPB4vkw+hZx27LPffdSvJ2B7YwNbYPniP2L31LBmIQdY/gz517aBUKvH06VMkJCRgw4b0ynINGzZE7969UaxYsa9e6hoAnjx5go6du6Lh9wtRolZbCEQSnIxNPyeGsFfGfjLKP8Bk8leQG7iOkuHQSUhJVZ6O5EtkygGhbkG0HIm2aidje1IxDV4+uAr/q3tw9PABzF+4GAqxNyo2IH1on9aGG8QPQ+eTNKlex9iu7Ujmk6imyv1S/ipryo/x7+tu9erVWL58Oe7evQt3969XYfgTOb3PczIiHEWSKlWq4MTRQ4iNjcXGzX/j1KbDCIuIhIWlLdx9SoHPF8LBvRhE0VkXQnr8muQk2MST5L6Hb8l2PdX/0/1Ao1IiPuIjWLCICfuI/QIN5HI5mjdvDltbW2zevBlubm741qhWrRqeP32MP1auwZbRNdB6zBqwnk2L1IJYsVZTxIS9x9x5CzBqxDBUqlIVK491LPA5JsZFYcSIqUhOTsbTp0/Nkt1flOHeNDi+GgwGA9RqNV6/fg29Xo8XL17CYNBn2VdvoKKbeEyW27NCLBKhfPly4PF48PX1ha2tLfh8fpG6eZqbZ8+eYduuvTh15yV4PjUhLF4PApktgMJ90wDSQ5nnjWiMZ48fYPrMXxCtlKDD4GkACuZNIzTwDRaM7YIVy5dh0KBB39R1wb1pcHxz8Hg8SKVSVK9eHQBQq1atQp7Rt0mVKlWwqkoVzElIwIV/rmDu4nlQV+wEizKNs9/ZzPD4fHT8bjx69+2Pk8ePoHGzlvjn8EY06zoc5r6dpcgTsH3ZJFy6eP6bKKaUV7g3DQ4Oji8SHx+P5avW4PjJ0yjeawHcKqYrBt/+8MHYRxpP8iIEqiRjm2VIDggtb6+hyrGKKLl1hiohq6ZK1fJLEd2nIe5anFg3FT+P6IFmTZtiwIABiIiIQK+ZeyGVpd+f/gqiPwF5G+jjRtrOEvIWQb9R9MrCTxYeHo7+/ftjwYIFBSIFUxhweRocHBwmwcHBAYvmz8Xh/bugubsJz3dNh0aZnP2OZqTloJmYNXchhEIhdu/ejV69emFCe2+MbuEIRbJps91fvXqFgQMH4vfff/9mF4zcwC0aHBwcOaJs2bI4f/Iwutb2xrkZjaFNjst+JzNhYWmLiIgI+Pv7QygUYvz48WBZFhcuXMDRddNNlndy8+ZNjBo1Cps3b0bt2rVNMubXDrdocHBw5IrpUydj45qVYI9MhvLGVmjlMYUyjx7jlmH06NGZtjVv1gw+rtZQhb/O19hxcXEYO3YsNm7ciKNHj6JEiRL5Gu9bgnOEc3Bw5JounTqgU4d2OHb8OGbNmQrn/ivhVCb9SfzRBxJhJVAmGds8A/FXsDy6aiHxM2hlJHxVRJVgVQc+MbbvSDKc0L6tYeF4BJf+uYyWLZob/169SiXcfPcGEveyAIDvPMltTkxFRg1rZJPlZ/v48SN69OiB9u3bY80a81eX/Nrg3jQ4ODjyBI/HQ/du3XDiqB9ebBqB8PvHYdBnHQJtLvqOW4xf5vyWyRzVu1cP8F/nTc7j3r17aNq0KZYuXYqFCxdyC0YWcIsGBwdHvihZsiSePLiDsBOL8GjDSOjVyux3MhFiiQVKVW2M3Xv2Gbe5ubmBp0zI9VjPnz/H1KlT8eLFC7Ru3dqU0/ym4BYNDg6OfOPg4AD/l8/w03etELayO9SxwdnvZCJqt+iJ1X+uRUhIulYZwzAQiiXZ7EVgWRbnzp3DpEmTsHHjRtjYZG224kiH82lwcHCYBIZhMHzoEDRr0hiNmjRFw94/4mHlH4wmHn0UyevgaUg2ucaC5EWIlCRcVm3tamxL4wKM7efvSU3u12nlAZSCosMi1K3fEEEfP0AkEkFi0KC1c3o/AUNyMOzFmUUOY2JiMHjwYNSoUQPHjh2DpaUlOL4M96bBwcFhUkqUKIGwkGAIlKFI2DkOugKoEigrWRvt+/+E3/9YDgCoV7MKgp5e+eI+e/fuRd++fbF8+XIsWLCAWzByCLdocHBwmBwej4cN69bix9YVId82EmlU9JO5aNRhEK7dfYmdu/ZgYL9eiHt7K8t+ihQ5zuz8HVevXsW5c+dMVrt98eLFqFWrFqysrODs7IyuXbvi7du3xr/PnTsXDMNk+q9s2bImOXZBwpmnODg4zAKPx8PM6dPRo1s3jB8/Ht51eqFWi55gGAarXhBHNS+NZJdrrUgtdUFakrFtEBIJEml8oLGtpEJ3/wg3gK0/AXM3LcaMwZ0Q+fwySg8ajd710kvUajQa7NixAydPnsT48ePRqVMnk0ZHXbt2DWPGjEGtWrWg0+kwc+ZMtG7dGv7+/pDJZACAChUq4NKlS+QzCr6+WzCnPcXBwWF2Pnz4gGbNW8KzdHUMnbPts4sGyyM3UXrREMvDqdHIjV7pVJJszlDaZQ16eNz9E17OloiNS4CFOH1h4fF4aNmyJQYNGgQ+n84TMQ+xsbFwdnbGtWvX0LhxY8ydOxfHjh3D06dPczWOr68vJk6ciIkTJxq3Va1aFV27dsXcuXPRtGlTVKpUCXw+Hzt27IBIJMKCBQvw3XffYezYsTh06BBcXFywZs0atGvX7rPH4bSnODg4igwlS5ZESHAgPBwkeHrtmFmPxfD4+H7KKsSmsFAqFZg1axb27duHPXv2YMiQIQWyYACAXJ4u/07X23j//j3c3d1RvHhx9O/f3xjxlV927NgBR0dH3L9/H+PGjcPo0aPRq1cv1K9fH48fP0br1q0xcOBAKJX5D4fmFg0ODo4CgWEY7N+zE7dPbIBeKc9+h3zA4/Px3YQl6DhsnlFssCAxGAyYOHEiGjRogIoVKwIA6tSpg+3bt+PcuXNYv349AgMD0ahRI6SkpOT7eFWqVMGsWbNQqlQpzJgxAxKJBI6OjhgxYgRKlSqFOXPmID4+Hs+fP89+sGz4+gxqHBwcXy0HDx7EO//ncN0+AmPX/gMAWP+cFEOSxpLQWrWth7GdWoxIozPUgsMKSPgtXWzpU1ElsXNJ/Lj0KMZ2LgetjsUvM6eZ8NN8njFjxuDly5e4efOmcRttGqpcuTLq1KkDHx8f+Pn5YdiwYfk6XuXKlY1tPp8PBwcHVKpUybjNxSVdZj4mJv86YdybBgcHR4HB5/OhVCpRvm7bAjumhaUNtlwMxaYtW/Ho0SOzH2/s2LE4deoUrly5Ak9Pz8/2s7W1RenSpfGBqkuSU/T/kmsRCoWZ/s0wTKZtnxz+BkPmPJW8wC0aHBwcBUbv3r1x8+ZNnNq6APFRBZc1zuPz0bzrYCQnm68OCMuyGDt2LI4ePYrLly+jWLFiX+yfmpqKgICAHNWcj46ONra1Wi1CQ0PzPd+8wi0aHBwcBUqDBg1w6NAhbJvVC2mKwi3mZErGjBmD3bt3Y+/evbCyskJUVBSioqKQlpae/T558mRcu3YNQUFBuH37Nrp16wY+n49+/fplO/bWrVtx6dIlvH//Hj/99BPkcjkCAgIyLSYFBefT4ODgKHB69OgBiUSCPXumYsaPqyEQpJtS5j8jWdnC2I/GtkFGlWC1IbkcoghSN4P1rU7aIJkEogw5dB5MU5jpc6xfvx4A0LRp00zbt23bhu+//x5hYWHo168f4uPj4eTkhIYNG+Lu3btwcnLKduxOnTph/Pjx+PjxI7p3744FCxZg0aJFaNu24Mx8n+AWDQ4OjkKhQ4cOUKvVWL90HIb9ssHsx3v3/DZKTRpstvGzS3nbv39/nseuWLEitmzZkmnbL7/8AgDo37//f/oHBQXlen45hTNPcXBwFBrdu3eHh5M13r98YPZj8VjDFx3THDmDWzQ4ODgKlSk/T8DVY5tN9iScFR/8H8PZ0S77jhzZwpmnODg4CpUKFSqguJsN3DXPMblCVeP2x4k1jO1bchIqyqekRjQ+pD9L5WkodSTclIUBdy/64dfpU0w884IhK1NTYcK9aXBwcBQ6s2fPxqRJk5AQHWaW8S+fPoDixYubZez/N7hFg4ODo9Dx9vbGwoUL4bfW9BnbapUS1WvW4SrymQhu0eDg4CgStGnTBvKoQLy4dyn7zrng4uEt+K5PT5OO+f8M59Pg4OAoEjAMgxvXr6JOnTro3/QgFNpSxr8VsyD9pAK1sW0vJs5zlnoG1mbIbLAsi7f3z2LbqttmnPn/F9ybBgcHR5HByckJt2/fxtSpU/H+6fV8j/fw2gk4OTmBx+NudaaCe9Pg4OAoUri6uuLQoUNo2rwlPjxugkoNu8K5ZNVcjWHQ63Hh4Do8vXoY+/bsNM9E/0/hKvdxcHAUSViWxeXLl7Ft2zZER0cb5TbatWsHFxcX2NjYoE6dOv/ZLyQkBL1798Z3332Hbt26wcvLq6Cn/lWS0/s8t2hwcHAUeZRKJQwGA5RKJQ4fPgy9Xo9Xr14hNDQUPB4PaWlp8Pb2hkAgwJUrVzBv3jz07du3QOZmyjrjBcm/b/3cosHBwfF/A8uyePv2LQwGA8qWLVugPoz/t0WD82lwcHB89TAMg7Jlyxb2NP4v4EIKODg4ODhyDPemwcHBwZEPzCm0WBTh3jQ4ODg4OHIMt2hwcHBwcOSYHJmnPr1+mbMoOwcHBwdH4fHp/p6duS1Hi0ZKSgoAcEkyHBwcHN84KSkpX1QEzlGehsFgQEREBKysrL7amGQODg4Ojs/DsixSUlLg7u7+xTyXHC0aHBwcHBwcAOcI5+Dg4ODIBdyiwcHBwcGRY7hFg4ODg4Mjx3CLBgcHBwdHjuEWDQ4ODg6OHMMtGhwcHBwcOYZbNDg4ODg4csz/AJFI+4qhBWb2AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.density(adata)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "e7bece8a-450b-45bb-9cb3-be5f58beafb6", + "metadata": {}, + "source": [ + "Plot 2D kernel density estimate of points:\n", + "\n", + "```{note}\n", + "Density plots are not recommended for a large number of points; plotting will be extremely slow.\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "fb350f5d", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T21:14:31.052686Z", + "iopub.status.busy": "2023-03-31T21:14:31.052348Z", + "iopub.status.idle": "2023-03-31T21:18:54.431316Z", + "shell.execute_reply": "2023-03-31T21:18:54.430841Z", + "shell.execute_reply.started": "2023-03-31T21:14:31.052668Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGbCAYAAAAr/4yjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADhQ0lEQVR4nOydd3gUVReH393NbnbTe0JISOi9I1V6r9JBVKqCYkVFLNjLp6IiWFAQEaWJAkqX3ov03kkglCSk1822+f6Iu2wvSRCI8z7PPpqZO3fubML9zTnn3nMkgiAIiIiIiIiIANK7PQARERERkXsHURREREREREyIoiAiIiIiYkIUBRERERERE6IoiIiIiIiYEEVBRERERMSEKAoiIiIiIiZEURARERERMSGKgoiIiIiICVEURO453nnnHSQSCWlpaXd7KABs27YNiUTC77//freHIiJyxxFFQeQ/wbfffstPP/101+5fVFTElClTiI6ORqVS0aJFCzZu3HjXxiMi4ghRFET+E9xtURg9ejRffPEFjzzyCDNmzEAmk9GrVy927dp118YkImIPr7s9ABGR8s7ff//NkiVLmDZtGi+//DIAI0eOpF69erzyyivs2bPnLo9QROQ2oqUgcs+SlpbG0KFDCQgIIDQ0lOeffx61Wm3RZt68eXTq1ImIiAi8vb2pU6cOs2bNsmgTHx/PqVOn2L59OxKJBIlEQocOHUzns7KymDRpEvHx8Xh7exMTE8PIkSNtYhoGg4EPP/yQmJgYlEolnTt35uLFiy6f4/fff0cmkzF+/HjTMaVSybhx49i7dy9JSUkl+HZERO4MoqUgcs8ydOhQ4uPj+d///se+ffuYOXMmmZmZ/Pzzz6Y2s2bNom7duvTr1w8vLy9WrVrFxIkTMRgMPP300wB8+eWXPPvss/j5+fHGG28AEBkZCUBeXh5t27blzJkzjB07liZNmpCWlsbKlSu5du0aYWFhpnt9/PHHSKVSXn75ZbKzs/n000955JFH2L9/v9PnOHLkCDVq1CAgIMDiePPmzQE4evQosbGxpf/CRETKAkFE5B7j7bffFgChX79+FscnTpwoAMKxY8dMxwoKCmyu7969u1ClShWLY3Xr1hXat29v0/att94SAGH58uU25wwGgyAIgrB161YBEGrXri0UFRWZzs+YMUMAhBMnTjh9nrp16wqdOnWyOX7q1CkBEL777jun14uI/JuI7iORexbjm76RZ599FoC1a9eajqlUKtP/Z2dnk5aWRvv27bl8+TLZ2dku77Fs2TIaNmzIgAEDbM5JJBKLn8eMGYNCoTD93LZtWwAuX77s9B6FhYV4e3vbHFcqlabzIiL3CqIoiNyzVK9e3eLnqlWrIpVKSUxMNB3bvXs3Xbp0wdfXl6CgIMLDw3n99dcB3BKFS5cuUa9ePbfGU6lSJYufg4ODAcjMzHR6nUqloqioyOa4MT5iLmwiIncbMaYgct9g/eZ+6dIlOnfuTK1atfjiiy+IjY1FoVCwdu1apk+fjsFgKNP7y2Qyu8cFFxVtK1SowPXr122O37x5E4Do6OjSD05EpIwQRUHknuXChQtUrlzZ9PPFixcxGAzEx8cDsGrVKoqKili5cqXFW/zWrVtt+rIWFCNVq1bl5MmTZTtwKxo1asTWrVvJycmxCDYbA9SNGjW6o/cXEfEE0X0kcs/yzTffWPz81VdfAdCzZ0/g9pu7+Zt6dnY28+bNs+nL19eXrKwsm+ODBg3i2LFjrFixwuacKwvAXQYPHoxer2f27NmmY0VFRcybN48WLVqIK49E7ilES0HkniUhIYF+/frRo0cP9u7dy4IFCxgxYgQNGzYEoFu3bigUCvr27cuECRPIy8tjzpw5REREmFwzRpo2bcqsWbP44IMPqFatGhEREXTq1InJkyfz+++/M2TIEMaOHUvTpk3JyMhg5cqVfPfdd6Z7lYYWLVowZMgQXnvtNVJTU6lWrRrz588nMTGRuXPnlrp/EZEy5S6vfhIRscG4JPX06dPC4MGDBX9/fyE4OFh45plnhMLCQou2K1euFBo0aCAolUohPj5e+OSTT4Qff/xRAISEhARTu+TkZKF3796Cv7+/AFgsT01PTxeeeeYZoWLFioJCoRBiYmKEUaNGCWlpaYIg3F6S+ttvv1ncOyEhQQCEefPmuXymwsJC4eWXXxaioqIEb29v4YEHHhDWr19f4u9IROROIRGEMrKRRURERETue8SYgoiIiIiICVEURERERERMiKIgIiIiImJCFAUREREREROiKIiIiIiImHBrn4LBYODGjRv4+/s73BkqIiIiInLvIggCubm5REdHI5U6tgfcEoUbN26Iuy5FREREygFJSUnExMQ4PO+WKPj7+5s6sy4UIiIiIiJy75OTk0NsbKxpPneEW6JgdBkFBASIoiAiIiJyH+MqBCAGmkVERERETIiiICIiIiJiQhQFEREREREToiiIiIiIiJgQRUFERERExIQoCiIiIiIiJkRREBERERExIYqCiIiIiIgJURREREREREyIoiAiIiIiYkIUBRERERERE6IoiIiIiIiYEEVBRERERMSEKAoiIiIiIiZEURARERERMSGKgoiIiIiICVEURERERERMiKIgIiIiImJCFAUREREREROiKIiIiIiImBBFQURERETEhCgKIiIiIiImRFEQERERETEhioKIiIiIiAmvuz0AERGR8sPp06dJTk5GEAQSr1wlOyevRP0E+PvS9sE21KxZs4xHKOIKURRERERKhFarZe/evWzZtpPzlxK4cjUJuX8UYXF1AFAFRaH0jXXax/4c+1OQ4UoWny15Fy9NTvEBQcAbHRNGj6Bfr+5IJBK3xujj44O/v7/7DyWCRBAEwVWjnJwcAgMDyc7OJiAg4N8Yl4iIyD3Irl27+P2P1ezduw+9VEHFWi3xC6tI5YYd8A+JQip17JFeky4v1b11BTlkb5kFGVfdvkZfmI1Ur8Zf9s/PmkJq1axOlfg4KsfF0KVzJypWrFiqcd0vuDuPi6IgIiLilKSkJN798FM2b9qAKiiK9iNeI6JSTfyCwgAw6PUU5GQAIPXywsc/GCiZCKTlZHt8TVhAoNttBb2OoswbNNEkkJWcwPHNCwkK8KVjuzaMfmwEVapUcdsKud8QRUFERKRUpKam8vqb73DwxHnaPTKV8NgaKH38yctK48D6n0k8tQ+tuhCplxf+wZFc1ynQ5WeizctE7hdC5IPDCWncA6nc227/JREAT3BXLARBoMq55SQd30ZBeiKtmj9Ai2aNCQ8Po3r16sTExNzRcf5biKIgIiJSYtasWcPTz79Ex1HvUbtlDyQSCTpNEZsXTePy8V20fmg8iVV64uVjfz5QpyWRvP0XMg6vI6LNUCr2mIhEKnMpBEJ+ZonHLPENdtnGlVB0VmWQnHCa1MvHKMhJ5/Se1URViKIwL5sP3n2HPr17lnh8dxtRFERERErElzO/ZuHyv+gw6l0iYqsDkJd5iyWfPIGkxQgi245w28Vi0Gm5sPJL8s/uInrUdLz8Qy3OuxIBmTrH4Tm90vVc5EwonAlE71Ctxc+5GSms++5l+nZuwVtvvObyvvcioiiIiIh4zKSXp7D9wGmGvjYfmVdxTGDlTR0nPu5PtVHT8Itr4FY/1hZBwaWDpP75MZWeXYhU7m1XDJwJgCc4EwtHImFPIKyFQa/XsejtQcz64gPatG5dukHeBURREBER8YgvvvyS2fN/Z9y0dUBxoFgQBE5/+QjRXR4nuH4np9e7cg1l711K3pmdRA97z3TMnhB4qXNLMHrQKe0vPXUkEtYC4Y4wJCee4e9Fb7Jzy18lGuPdxN15XNynICLyH0cQBCa/OpX9p64w4p0lFquGrvz+IYG12jgUBHeDxUJ+JgENupJ7cgv5lw4QUNFyU5o9IZAXute3VhVotw+jSJgLj7lAGK0VozgYn8VcHNakyy2EISq+NvLAiuzavZsH27Rxa3z3G2KaCxGR/zCCIPDU089z+HIm/V6YxRZ1mOlc2sHVqG9doWKPiRbXpOVkmz4u+8/PtHAVhXWdQPbuxaafvdS5FpO5vDDb9HEX82vMrzP2bd6/TJ1j+piP0fr5nNGw+ziW/v6H2+O73xAtBRGR/yiCIPDi5Fe5kqvAMPhT1qTfPqfNy+Tqn9No9OZfpOd67ut3FDNQ+QVTlJaEIAjIi26nwLAnAl6Frlci6VS2MQJjX0YLAm5bEeYuJpk6x2Q52LMajBaDtbWg9A3gllrjcmz3K6KlICLyH+WTaV9wPl1KQe/3bc7d2DibwA5jyVAXedyvsyCyRCJBVaEa2oRDpnPWguBVmOmWIJi3tdfemfVgPS5XlHY39v2EKAoiIv9B5v+yiGVrt5HX/S2b5aVpOdmkHvkL/8a9POrT2lVkxHrijWjSi9R9ywFLQfBEDOzh7Hob4bHjUgJLQbvTm+vuVURREBH5j7Fu3V98/eNifCYssRAEY5zAoNMgkcmReinc7tPdTWde6lxUkVXQZCXjlZ9x+7gTMZBlJ9l8nN7DheVgPhZ7OBKG/4q1IMYURET+Q6SmpvL6ux/h99RyJFKZ6bj55KdOOomyYm3Tz6XZZWxuJZhPwn4RcRSkXsE3qopDQXA2+RvP6QMdZ2H1Ksx0GHMwX7FkvkrJnQ1xWk0RTvL+3feU40cTERExRxAEHn/yGdqN+gCZ0td03NpNor5yDGWF6g7dQWWBX3RNcq+fdXjelTXgaTtn2LMY7FkLenUev2zZxrpvn+epx0eX+r73KqKlICLyH2Hp0qVk6Xw5FvKA6Zi1IAj5mRRdP0tQi4Glvp+jIK68MBvfyCrc/PtPu1ZCWUz0rjC3FsyR5KZSpNGgzbyBXqdFdmErXuhJuH6a0PBI+nVpz8jF86hRo8YdH+PdQhQFEZH/AKdPn+aj6d+jeux7lA7aGN+ONbcSkQdVuKPj8Q6OQltw9wO5hakJZJ3aQWHWTQqSTmPQFCIYDKhCopBq8qhRoxrd2rflpRe/JjQ01HWH5QBRFERE/gPMmvMj7R59kxNht33w5laCubvEO7IqupxUZKqyq1jmbuoKT60EZzEFR2hyM8g+8RfXjm5Gry1CGVEZv0r1CR70Bj4xdSAwCgCDTkNWXgYLrx5jcY8hxIT688lbU2h9H+Y98gRRFEREyjmZmZls2LiFqObvYVxr5EgQALzkCgy3EpAFhlscdycIey9hHWTWqfNJ3jobdfJFpP7hxPWfgn/VZrfPGze2/RNwlnop8A6KKg66txpOcsolHv/gB5S5bzPl2fEMGTzIaaW5+xVRFEREyjnr1q+nStNuFNqZwKwFQabOQREaQ1H6NfyqNbc5B2UjDoJeD3ZyceoDY92yFlxZCNaCUHArkZPzXsIvIIiojk/g36i7ZwOm2IIKG/Ut6rQk3ln+E+999hWV4+OJDA5k+OCHaNOmNT4+Ph73e68hioLIfwZBEMjOzubChQsUFdnfqVu7du1y5zue8+MvqAfMxFj/zNGmLOOkr4yoQvr+5Xd0TIVpV1EGex638FQMAIqyUriweCpBoeFEd38O7+qtPL6vkbScbMLCYlEOeBOAjOxUbhXm8uWCn3j5jQ+oU7MywwY9RNOmTYmN9dy1dS8gioJIuUcQBBYsXMSPPy9C5+VHYEQcCit/+cVCKYLBQNbB53npqbGMfORhQkJC7tKIy4709HSy89QEhNqWlDS3EsxXCinCKqFJd7JHwI31/K7SR+SnJKAKr2T3nHHid2cvghF7YgCQf/UERSdWUqtufQrqD8fbQT0IR2m3ofh7clSHQREYAYER5Pd6nxGPFJF69RyLduzlyx+XUZSXgQQJEvR4yaQ0qFebl194lri4OJfPczcRRUGkXPPTz7/w7fc/Ela9JS0f+5iQCvGmc+Y7VI3Tf1DXZ/h27Qw+nd6adm1a8cyEcaY2K9ZsYNueA2iQgtE7LwjIBC3e3vbrELtDSFAgHVs/QLvWLWjSpAkKhfs7iZ0hCAJDR4yk+aAXcbwjwBaplxxBr3XdsBTkXT9LdKvBTtuURgw0uRnkXdpN3UANnZ8cy5eL1hHoZoEgV5gnyzNnXaY3veNrExVfGxhrc/7S0e2MevZNinLTEPRFtGxSn6pVq1KpUiV69OhRqr+hskQssiNSbklKSqJrnyGM/Gglcm+V6bizdAVG14pg0JO/71fk6ttv00JgNN5N+rtditIdwgIC0eTcIvfACiT5t9Ce3857rzzHgAH98fIq3Tvbho2b+GLeajqPfd/0zPYCzNZv9V7qXK78OY2IVkNQRcR7XLzGUZ9G5IXZnFk0lVoPv49cneXRMxlxJAZqmYLCA0vwy7/Ou6+/TGRkBN0fGkqlUTORedv399t7Putns2cpOCrnaV2Yx+4483PIy7pFp6gUdu3axfr163nuued47LHHXF5bUsTKayL/eVavXs3cNcdoPeg50zF7glDSxGcl3e3rrCSkNi+DzC1zyNm3mA2rllOnTp0S3QOgS89+tJvwDVuKbq8iMomeA9eRcfLOOrsbdWoiUe0eAdybOM1xJgrSrGQurvqcmoOnFp/zIAmeIzHQqgIpuLSPvD2/MHfWV3Tr2oXz58/Ta8BQfPu+g5fK/lg9EbyyFgaAyV2K76/X62nTpg0ffvghnTt3dutaT3F3Hi9/66lERP5h6fJVVKzdwvSztSBYF4oxpnVw9+MI80Iu9nzrjvpJy8km2yAjot8UYl74ky79hvDGW++i1+s9fvaDBw+ikQWg8gty2s5RbqLA6i3IPrcbweD43iWtqZyTdBJ/s9xKjiZ64znzjzlaVaDpk5twBO+zqzl3/BDdu3UlOTmZXv2HoKk3AIIrolP62/2UFkcvFO4mz5u2qfg7l8lkrF69mo8//rjUYyotYkxBpNyydfNGxvd/G7D8R2ovtYM1ZVVE3lVfemWA/bKQyiCqvrmdX1d8wOkRI1k8fy5KpaO9yLas37CZmg8699k7QyLzIqhOe9KP/kVYk14WieNc4eq7u3VuH7EtLdNoOBMGc+ylpsg5u5PUv77m8IF9+Pr6cvPmTTr26ItXh6fxjWvsVr/mlNV+DOviPK4ICwvz6Hd8pxAtBZFyS3TlWih9LCcye5YBOH67Ny/pWNYf8/tajwcgU6On4vD/kVCxJ537DCI/P9/tZ1+99i+qNGzr+ZdmRniLAaQfXoteU+iwjafiqc1NR1+Ygyq0omfX/WMRWBzz9iP39GbU+35h3+4dVKtWja3bttO2+0OoGz+CtxuCoFfnUXDtDPlXjqMrYdqNsqy7UJbxqpIiWgoi5ZLdu3fjH1689M+eKW8vyOpOKgZPagc7Q6sKtHs/a8shPTcHanclT6agx0OD2bFxrcuJ49y5cyiCovGSK0pVA0DqpSC8xQBSdi4iuvM41xfgWiSSdy4iovUwtKpAl9+lPavAaK0UJB4jd8N0nn5iNFOXXEAqlXLy5EkeHv88QWN/wFvph95sPNrsVHLP76Pw+hm0WckYtEVIvBRI5d4oQmOQypWk7lqMQZ2HPDAS76jqyHwD8fIPxzuqGvLQGJx9645WJHlqLWRn3/18UKIoiJRLtmzbQWhcfbtuI2tBsJ6cSzvxWwdOndURBvsCYRQHo0tJX6M9mVcP8fn0Gbz84gtO7//62+/TYuCkEo7ekuB6nUha9QXpxzYQ2GKQ3Tbu1iEouHEObc4tAqo2BexP+o4wioEuPwv1pi+JDZDy0S9zaNOmDQApKSkMGjUe/+GfI1P6ma7LunyEjJ0LkHgpCKjXmaB2o/COqobESXoKbVYKRckXEHQaNGlXyDm6Dk36NcJ7T8K/YTe3x+wJ2dnZjB49+o707SmiKIiUSxQKb4Ki4kixOu5MEByJQWlKRDq73igW5oXmjb5740RrIQwPjmfazIF06tCOJk2a2O0zJyeHxGsptKxUNqmdJRIJsX1eIGn1lxjkKoKb2C/R6XKz2rXT3Nj8I/GD3nD73tYxjKJjq+H8Fn7/4SuaNL7tGkpOTqblgx2Q9X0XZUixW0pfmEvysveRKn2pOOJ/ePmHuX1feVAk8qBIi2N6dT4pa6aTe2oLUYPeROrt6+Bqz/n777+ZMGEC7777Lv369SuzfkuKGFMQ+U9gz+9rFASbMo1mxeBLKwjOsO7fOAZjzMG6brBM6UfAqFkMG/WEwxVJ33w3h7odHynTcUqkMmL7vEDOqW2k71+OG6vYTQiCwK2di0jZvZT4wW8g93MdULZeGaTz9ufWb1OpXHCKQ9vXWwiCIAiMf/p51LV6oYxrCID65gWuznmSoBYDqTD4bY8EwREypS8VR36OX50OXJkxAvUNT7YDOuba+SOMGDGCr7766p4QBBAtBZH/IOZvtdZi4HYfpSgEY71T13hfnSrYxmoAS1eSd2RVsoKr8seq1Qzq/5BN31eTrhPVtJP7Y1EGmL4PndLfYVxF7xNEpUc+JmXTbK78Mpmobk+hjKrqtG9NVjLJ677GOyKeykPfQiJx/A7qbB9E8jcjGDe4N9P+975Nm1nfz+F4UShhD00BoODi36Su+pyYkZ8jD4pyOj53Md+fENCoB6q4hlyf9xxRw96zKFvqKRcObeHQ8s/YsmULlSrZT/lxNxBFQaTcsi/HC/P3UvOVPdaTX0nqBJcU8z7NBcK8prCxMpg9YVB1e4H5i7+zKwqlxZ4wGCdsiVRKVLcnKbx5gZTNcxC0RQTU64hvXCPkgeFIFSr0RfkUXDlBxoE/MWgKieg0Ft+4BkgciI2rTXH6wlz8pRo+/eg9m3bp6el8PnsBPo//AhQLwq21M4h96kdTudHSlhO1t2FNHlyBmCdmcfWbUcRP+g2pt49Hm9gEQWD/n9+SfPwvNv+1iqCgoFKNsawRRUGk3GPuOrJnJdytkpDm9zGKg7XVYAzGmscYFBFVOJZwk6SkJKeZOJ2tPJL4BpsmTHNrAZwnhwNQVahO3CMfo8vLIOf0dtJ2LUSbm46g0yJVKPEOjyey63iUEZVN1xQU5qLNSUemziU/OxX+8UDJlCoC63VGIvMyjcWcgh1zmf7Re3ZXXE3/ehb61uOQypVoM2+QsuIjKj27wKL+tHFS91QcHO06N+LlH0ZwmxFkbP+JsG4T3e5XnZ/Duu+nEKooZNf2LffEElRrRFEQKZcYDAb0hfaDn66Wnv5bgmB9T3sJ4IzCZR58lkgkSJs9zMefz+CbLz/7t4dqQhIWT2C7eEIcBJkNGjVF+xdiuH6cipHhhAX5s3nLZrQyH2QBEQDkXTxA9rYfiXv+VxtBKMpOJTLvPP37f2O3/19++xPfp34DIPXPT4gc9JbFyiOLsbohDq6EwJqg1sNI+KQvNQe+Yve8tZWQn5POj1P6MGxAbz75+H/3pCCAKAoi5ZQqlStRtGUtNOvr0XV3QxDM721uMZgvZTXfUSzkZ+LTsCerZ//M1Js3qVDhdl2CIkGCu8kbnFkLzrCevK2vNeg05B9YhnfSXp54dDgB/i34/KtZJMljiZm4AJlZHqKCpFPk/vkO2cf+wq/FENNxwUuBeunLrPhrOTKZzHYMej3IVUgVKnS5aWjSkvCpYn9FlvUzlxXhwaFk13mQ7HN7Car9oMN2BTkZHFg9hytHNvDT91/RqVPHMhvDnUAUBZFyybChQ/loxmwMWvvFdIyYu47upiCYj8FaGOy5kSRSKYp24xn/3Ev8+esCU1lIqUTC1jQBX5V911FYQKDDHbjmk735JO9u2gdBECg68gdZ+36jT/cuaMKbMOeXpQhV2+E96FNUdpZxqirWRhoZS/L6L0Hhg14AVdpZ8i7u57lxI4mJsa0DAbB9+3bkkcXLbtPWf01YtyfdGmNZYYwhhDToQo4dUTBaCTcunWDFZ4/z6svPM2bWznsmPbYzxCWpIuWWV54dT+ZfM+yeK6udyf8m5m4vIT8T7zqdOZ4fyLJlt6ukDejZmcLD7ldNc/TmrFcGmD7OEASB/EsHyd67BPXSSXSOLCAuvjI7EnI5ENQJRf+P8Gk2EJmDdf0GnyC8ffxIvp7E2Jp6hlfKY9aLwzh/aDevTXnZ4X2/+eFnAh58jGClgoJLB/Gr39XtZy4NYQGBFkFlvyqNyU04YtHGKAipV8+zbe5k9u/aypMTJtwXggCipSBSjnmoTy/e+XQm8lajkDjJ33Ov4a61AODT4yVe/98oBg4cgEwmo327tgjTf3bav7W1UJJgrKDXUXjlOMLeuTSvHU/rTg1RKmvx3PMvUHXSUnwCI9zuq0CtoaCggLdft++bt7m3IHDhciJBvZuQcXQ9/g273XH/vKPVRYqAcHR5GaafjYKQl5XGrx8+yoqlC4iMjLR77b2KaCmIlFv8/Px4bMhDqE/8dbeHcseQqfzR1+3N3J+Kl2V6e3uTmXjS5XX2JjmJb7Dp4wi9Oo/8g8sp+PkJWufvZMPCWfz03Vd8P28Bn6w6RvUpq5CbCYJ58j+HVGnNH6vWuByzkU8/+5wsaSBSLzl5V05QocGd89FbWwb2kCn96R2qtQgsb/3pTWZ/O4OmTZvesbHdKURRECnXTH7hGWSHlvxr9xMMBvRajd2PYDCUun9rFxKAstWj/O/zGWg0GuRyOd07tiVj9yKbicoaZ5OduUBIfIPRqvPRbPsWw9LneadbLAc2rWTh3FnExMTwQPvuCK3H4f/gKGRmta/Nx+pUGOJbsGnHHncen+TkZD758hsqPf696ZhMoXJyRclxJQZGIhWWv9frF4+hEvLo0f3O5Em604juI5FyjUqlomJECMmFORarXkqDOi+bzBsXyUpOQFuYj0x+u6ayQa9D7u0DdtwZWnU+gkGPKiCUoKjKhMTUsLi2pEjl3igbD2DtunX0f+ghvvtqOjGVq6Pu3B2lbwC9Q7UO9ywYJz5HwWdN2lU022ZR06eA11+cSNsHvzQFtQ0GA807dEfbegLKCpa5luyJgKOaDN6RVVk7bw2XLl2ialXnu6T37t1LhR7P4OUb5LRdaXBXDIyCO6fotmtSEAR2/PIuKxb9cEfG9m8gioJIuadWtSpcvXYKVfVWTtvpA2MdrkASDAZSE06QfPEIcm8fQipWo0qz7nj7eFa9SxAECrJSybp5mZObFuAfVpGYem1QqOyvr3cX/2b9+fDzF+n/0EN4e3vT/6GHyEy5SoUq9YDbE5grcYBigdBmp1Kw8n3UF/fy0w+z6d2rp801X383B3VsC7wrN4NSFCWSSKWEdxzD1h27XIrC13MX4NPhdlI9iUSKXu1+nQlXeCoIBoPBIp7x98rv6NejI3FxcWU2pn8b0X0kUu4Z2KsLQtrlEl0rCAKpCSc5tv5HigpyqNvpYep0GEpU9SYeCwIUZx31DY6kYp1WNOgxhqAKVTiz/Teun95bKveST3QNCvzjOHXqFAAPNGlI+s1Em3bO3EmCIJBxZD3aZVOQ//oUr43oQur1q3YF4cefFzL9920o2oy1OefMVeTonLxRPz768jvOnDnj8FqAzHwNvrG361b7RFcn/7rza9zFHUGwdsklntxLZHzxeIoK87h8YDVvT32tTMZztxBFQaTcU7FiRbyyrrrV1nxXsbaokDPbllKQmUK9ro9RqX5bvORlt6xQIpEQElOdBt1GFa+o2buqVMKgajee6d/NAzC5eOxhL9aQueMnzr7xALHnF/HdlFGcPLCLiU+Ot7uq5+DBg7z/9U+o+kx1WpfAE2Qqf7z6vEWvYaM4e9ZJBlKr8fhXe4Ds0ztLfX93BcGaHb9/xQM9HgPg6MYFvPTsk/fsTmV3EUVBpNwTHR2NIce6skIx9grg6ANj0RTkcmb7UirWaUV8k85lKgbWSKRSYuq2JqhCZS7+vdZuugt3UEZU5uq162637x2qpbMynesfdqCV9Byn/97OmuVL6djR/moejUbDY+OfYfgrn+E9fAYSqe1OY3eq1zlqo4hvgqTzJFp36s7bH35Camqqy76UYZXQ5meizbzhsq0jSioIBzcsJCK2BlHxtTmx4w+2LfmcAQP6l3gc9wqiKIiUe4KDg5FLBPfTOGiLOLN3NdVa9CYw8t9LaRxRpQFeQdFcO7i2RNfLlL4kJF6lsNC9PRnqglxWf/Us773+At99NZ3Q0FCHba9fv073/sPY690M5cMz8PK/3dbTOs0WY7a61qdOJyq8vY8F14Jo1e8xGrTrzcNjnuTkScfLbOMHTyX5d9ssqmWFPUFIOneYo1t+o/uYNzm1608WfjiaPbt24OPjc8fG8W8hBppF/tPYy5B6acvPxDTrjXelutgvZWOfsqixENs8houb5pF55STBcfU86kMilaGq0oxr164VH3BSDCcr9RrTxjTmu+++4+Hhw532e/bsWfqPmojfwP+hDIl32M6eBWBeH8K6rfVKJGNqcIlUiqpJf2jSn5CAQM4nHKVjv2G0bNaE7Fs38VXnWSS+C6zZCv/9K8jctYjgB0c4fRZrXFkJ9gThwuGtbF86g2GvzGbbgg/JTjxIenr6PZcCu6SIloLIfwpX7o30i4fwUvoSVKmux33rA2NL/DEikUio0n4E1/5ehVadZ+PecpXW2ljIpknjRiQd32y3TXbaTZZ++AgLfvmZsWNGO+1v1Zp19Bn7IsGjf8AvvqEb30Ix1tXsrH92l7ScbPwrN6Lu/w5xs/YjZGSkc3b6wzbtqjz8PrpL+yncMc+tynDubEqzJwgndv7J/rXzeXDAU/z6/jA6Noxmz85t5UYQQBQFkf8Iep3GdRuNmuuH/yKutf0C9f8WMoWS2Bb9uLp3hemYvSL3xp3H5pNbtHdxoLpGjRpoCixdM+qCXBa/P4JlHwxh+ZL5DB061OEYBEHg5wWLefHdz6nw5AK8Q6Itz5eyeI057rqf/Op0oMFnJ0k7sZVb+1dYnJPKvan19I8YigpJ+/kFgrwkNpO+UQhKEkMw6PVsWvAJp/euo1L1+iRu/5GDe7YyZfJL931g2RrRfSTyn0Al0aEryMZLKnX4xnrr/H4iardCdgeDyu4SVKkuVw+uw6DTIvWy3FvgTtZSlUqFOi+La+ePcP3sftIST3DpxD4mPD6KqW+scnn9mCcmkiWLosLzy5F6Od5gZ5zQzS2wO5lsUCKV0nDqOk5/MYyguh0saj5LpFLiBr1G5oktHP+oD5FtRxDVcZTHO57NBUEQBM4f3MyWxZ9T78E+xNdsiFfGSZav+RO53HERo/sZ0VIQ+U9QpUoVBL3O4ph1PCH9wkHCarT4N4flEJ0qGN8K1Si4deX2MReuI3NkMhkxkcEkbv6aB6v7MG/GuyQlnGfqG284vc5gMPDmux9wS+NHmyEvOhWEkmBRE9uOK88dCySoTluiG3Xk6KsPUJiSYHM+uH4nGr29EQSBY+/34Pzsp8k8sQWDzvEeDSPmm9IObVzMty905fyhLQx56WsuH9qENO04ixfML7eCAKKlIPIfwqsoHxykldBr1EhkMry87/7qEWMcwT+mNnk3zuFdxTapmj3XUe9QLYsvHzcV3flj2VKP7z1uwjMUBtSk/WPPlWTo/1pK8riJv5DxbFUuftSVyk//gl8Ny93qUrk3FXs8RcUeT5GbcJRb+5Zx9c/PQBDwi2+Ib6V/gviCQGHKJQzaIgIzLzJPr0cw6CnMy6JGsy488clKNIX5rJn5FFOeHcOIh4eXO3eRNaIoiJR7BEHg3JkzyCsNcFiXuSg3HWVA+N0YngXmgWW5bzC56cXr741WgivXka+vL35+JUuZsXfvXq6kqek5zHaXMjjOj1SWWGdodeT/l0ilRLcZzDfP9efTmbNI3DEH76bDCG7YxWb/hH/lRvhXbgSArjCXwhvnUafd3swY0qgbXWIC8Q+JQOUXZHFtUWEe86b0ZMVvi+7LjKclQRQFkXLPzp07KfIOQaXyBwdvspqCHHy8FTbLSku6kcxT7G2iUwZXQHNii1vX9w7Vos7PQSJ4soj2NhcuXODpF1+j3+SfSnR9SfDEHWYPhX8wgYGB/PXnUk6dOsXc+QuZ8/QTxPV5lpDuL9jEYgC8VP74V22Kf9XbE7yj1B9FhXmsmDaOH2d/+58RBBBjCiLlnPV/bWDUU5PwfXCMQytBlp0E2dftZjaVZSfd8TKd9gQBQPfPW7O1lWDPdQTFeXg6d2zn8f0vXLjAsJFP0Ov52fgGON7AZsTo97cXZHaFvVVUjqwfd5PTAdStW5cvPv2I7LRkBlWXcfq1JnbjDUaMqT4cCUJuZiorPhnFx2++SJcund0eR3lAtBREyi1ZWVmMfXoSwb2mIPcPs2slGCd8dV4WKicTorFdWVsOjgRBqwoEdZ5bfRgntp1LPmXTmt89un9RURGPjplAr+e/JzCsgsU5RxlV7zam5/W2tYqkUinvvvk6ndq14aW3XqbX1MUexwAuHtnOxjlTmDNrJp07/7cEAURLQaScUlBQQMv2nfHr+hzeIRXtWgnWFoBx45czytJycCoIgCYrGal/GODaSji7fz15GTepVMmztBzPv/QK9bo9QWBYtOvGbmDPErB3zp7ryDye4MhKMArCjUsnuHZqJ5UrV7bbrn379rRsWJ2VX01ya9wAOk0R25dM49gf09i7c8t/UhBAFAWRckhBQQEt23VC12wkfpHVTMedCoJUis6DOs5GcShr15L5xKkuzEceGGEjCOaY3pp//ZyVf66wOe+MefMXkJAuUKt1H5dtnQWZ3YkNOBIEe89mTxCMrh6DXs+uZV/z5ZNtWPHrL07zNX3x2afoMy5x7dwhl+PLy0rji3GNaVnFh+1bNtx3dZXLEtF9JFKuSEhIoGat2lQc+QV+VZpCUZ5byyR9gyLIunkZ8Dy9RVm5lqwnzsLrZ1HVbGPTznrSvHJ6P7FRIR4FQ69cucK3cxcweOqvJR+wA5xZC/YEwRVGMUg8tY89S6cRoBS4fPmyy0I2CoWC1X8uo0vPh+jy5AwiKtWw206rUfPz1IfYuG4VjRo1cmtM5RlRFETKBefPn2ftuvV8MWcBsc//im9IBcsawU6sBADf4Eiun95bqjF4Ig6OXEfm5CccIqTrk4DjfQkAW+e/w7xZ0932nQuCwLgJz9Bx7P8c1l0wjycYNGryzuxEl5VcfH1RPhKZFz6VG6P0oGKcI0FwZiX0DFJzYtty/vh6Ms0eeIAFc76kfv36bt8zNDSU3xfPp0Xrtgx/42fi6thuTjyy4RdGDh8kCsI/iKIgcl8hCAKZmZls2rSZhb8uJzU7l4IiLfmCN0WRdfCbsBipXmsqD+nuZiovhRKtugDBYCizwjGeYG0l6PKzkCj9kXr72HUbGUk4sYcWTRvQvPkDbt/riy+/Iqj6g4THVHPaLvvsbpJWfYmuMAd5fBOUMbUBCRKDDn1BNil/TkOXfZPgJr0JbtIbuda++83aveSuILTSXGDBW8/Rp2s7Th4/4nG8xEjVqlXZtnkD9evXZ8wHS6ndoofpnLoglxXfTOHbGyWvx1DeEEVB5L5BEAQmTHyOo2cTqVCtMXUGvEG2vBreQDDFfm9XaRKcxQACo+LJuHGR0Bj7bgZ3kWUnldiVZJxAM05uxb9+F4tz9qyEs7tX8PaztllDHTF77jxWbT9Cz4lfOmxTmJfF6ZkvIfP2pdroz1CGx1nEFIzfcXDrYUhyU0nfs5TEn1+m0sMfWKS0tsaRGFg/G0DjzEPM//BR3n17Kk88Ps7t53NEvXr1OHDgAP0HDuHy32toM2wKQREx/Dl9IjO/+obw8Lu/cfFeQRQFkfuGH+f9zPnkQga/vvC2qyS9+D/mk1ZJi75EVm1E4pHNpRYF8EwYrH3wBq2a7MNrqPzsAqdWws2EUxiyrtCunXt7Ey5cuMA3s+cz4v0/HbqNrpzezy/fvEn8sHcIrtveZZ+CfwTh7UfiW7kJVxe9QaURH9oVBnetgx5BhSz79HEOC7ns3bXNZdzAE5o1a8a1qwns3LmTDz55nQK1lvzkS0x4YlmZ3aM8IIqCyH3D/z75hDGfb/V43bm9Qjr2UAWEYNDrKchJx8eNTVxljdFKSDu8jqDmA5GYJaOzZyVsmD2Fr6a959b3IQgCD498nL6T5jgUhCNblnJk81LqTf4dub/j55f4BltYZHplAN41WhNiELjx5zRih73rMIjsTBBaas6z8I2JPDthDOPGjkYmsy33WRa0bduWv9q2vSN9lwfEJaki9w3RlaqgUN7ZhHVxjTqQeGijW4VaXFGS5aqarBRyj28kuMVAp8HlS0e20b5VUzp2cP02D3Ds2DFCKtW12aBm5NDGRVw8soPR7y91KgjO8KvVBmlgJJln99ick/gGOxQEwaAn8u/Z7Jv/KquXLWT8E+PumCCIuEYUBZFyjzsrfYz4hUThExTOrYQTd3BEt7F2Hd1YM4OogW8gDXS+Tv7Qqm94640pbt1DrVbzyKhx1O30qN3zBzcs5PLxPQyaNJN1me7VkrCe5I1E9HqetK3F1c+MbazFwFwQ1LeukDm9N7qre9i0fmWZuotESoYoCiIiVsTWa8uNs38jGAyl7suetWBPpHRKfzIPr0URHoeyYm3TcbvB5X1rCPaVu7XBSqvVMvbxCTTp8xTRVW2Xch7fvoLLx3czaNJMh24lZ5hP/BLfYGTB0fjWbkv+ZcsNY/YqnjXOPIR24QT+/HUey35bgpeX6M2+FxBFQeS+Qa/VuuXWcXdTlCNkcgXh8fW4ce7vUvXjCXmXDpJ9cgsRvZ532i477QYrv3qRhT//6LJPnU5H2/Yd0YU3oX4H29KbCSf2cHDjIgY89wVSqdRpriNPktOFdX2SjB0/m66zd23cycWc/PMTVvz6s8NUFSJ3B1EURO4bQkOCyUhO9Ogaa/eMuyuComs1JzvlKtfP7C+T+IIzMk5sIW33EiqOnonES+E0lrBv2ZfMmzvbrSWUr7z2Brl6FU17jrYJRqddv8T6ee/x6Bs/IVcoyzT5nVdAOAqp1K4Y9AgqRLL4KYTr+1i/ekWJ9x6I3DlEURC5b5g86Wl+mNzb7iRtnIDM/dfmm6Y8iStAcS6kWu0GIQgGjq2bS2rCiTIXB11RPklrvyL3+lkqjfgIqULptH1G8hV0WVfo1auXW/3fSsuk91Of2riFstNu8vv05xjx+o8oVL5uC4KzovfGc2EBgYT6+WPQFlmc7x2qpUdQIatnTOTxod35+cfvxWDyPYooCiL3DW3btmXkY49yevdKl23NXUgltRakUhkxdVpRr8ujFGTd4uTGX8jLSPZs0HYQBIH0M7s4+/tHBFR7gIr9p5hqITuzEvYv+4IZnzlOTWGOWq3m+KmzhEZXsTm3+vvX6f3EewSGRZfIQjAXAHtCocvLQO4fYjP+nUs+5dGHOvHIiOEe31Pk30OM7IjcV3z43lv06T+EjJuJtBn4DL1Db+fpCQsIJC0n22IdvU7pb8qBpFMFm/Ys6ANj3V4y6qVQEt+4E4W5GSQe3oJg0FGhVnOCK9hOuM5QZ6eScnIHWTcuEli5EdVHfYZUrkSH6zhIcuIZguRqGjZs6Na9Hhs7npaDJtkISNat66jzc4it2fSO1UsoyryBMqKyRQGbnb9+hizrIk88/sEduadI2SGKgsh9hUqlYtWKpTz3wou82iOY1xeeRpDE2c1XpFcGmHY3a1WByAuzSywMACr/EGq3H0xhbibXT+/h6rHthFSsjiogBJ+gCFRmb8cA6rxM8rNSURvOkX39PAgCkfXaE915HBKJFK3cubsIzOoHXDhMn57d3Brn6tVrydSqaN60i825v+a9T6cRL9/RAjoDalfipyW3Vx/t/vVT/DU3+fn3JaLL6D5AFAWR+w4fHx9+mP0dnTt3YsHit8i6do3CoHi863YnoE5HcqRKk7VgfAP3UueWiTAAqPyDqdaiNzptETmpV1HnZpJ58zJadT5wO6Ar91bhExSBIrwKldsOx/sf0dCZFfMxj3s4KqADkHBgLb1fnONybKmpqbz14TS7KbETTu4lqVDAr4LnJTvdwShge/5cSFjFqgBcPXuQxMN/cfTQv7eSS6R0iKIgct/y8LChPDxsKIIgcPr0aXbv3c+Pi55Co1NA06Eo6nS2cSOVlTAAeMm9CalY3WU78xiGMeBtHudw5TpKu36J6DA/t/YlLFi0hOqtHkLurbI59+vP06k+bobLPjzF3E109cwBLh7ZzqNv/syNSydY9eWT/L1nZ5nfU+TOIYqCyH2PRCKhbt261K1bl/GPjyU5OZlO3XuRe2I9fkM/RU9xkjxXwgAlS03hjNIU3jFOtsc3/szEkY+4bH/27FmWrt7GgFfmWRxfky5HnZaERCpDGVZ2S0DtFb3ftWIW3ce8CcAvbw9ly4a1RERElNk9Re484uojkXJHVFQUp48dZmKvZuT9/hqCIJjexo3uGuObuvVS1dJWT/MEd11HeenXeLBNa5f9fT7jWxr3HGsRXDbGDm5s+J7oruNLO2QT9gQhNzOVvMxbRMbV4vSuP3h83FgaNGhQZvcU+XcQRUGk3DLlxecITDtJ3snNAB4Jg/FTGqyvL4nrqCA3E0GdTXCw830Wly5dYvOWrVRpWJwgb0263CKYnH12N8ENbAPPJcGeIABs+3U67YY8C8CG+e/z5BNjy+R+Iv8uovtIpFyzduUK4itXodonR5BJZaYVSfZcSWCbZtt8YvfEteRKUFxZCcaJ98i6ubwxZZLL+7374ad0G/8JgM3KoqKM6yiCIpFIpRZ1J6xxJ5WFI0HIzUzl2vmj9JnwEQU5GVSpUpX4+HiX/Ynce4iWgki5JiYmBr1Oy7mX6pkmX0cWAzjf+WxuQTib9O2dK4mVoC7IJfHYNlq2sK0rbM6BAwfYsHEjleu3sbvUNOngehS12jsVBMDleUeCALDqu9foOfZtJBIJe5bP5JmnHnfal8i9iygKIuWeS5cuUb1OAwrWfw4+QYBrYXAnLYa1SDgSC+u+rGsWW2OcfLfMm8qXn7zn0nU075fFDH/jZ7tpr9NystGkJqAIj3fxNCUn4cQepFIZ8fVaAnB690p6dndvT4XIvYcoCiLlnipVqnDu5FEG1vYlZVoPdFoNYF8YSiIO7mLPSnAUYE48uY8qESo6uCiio1ar2bv/AAeVNS2Op+Vkm978BZ0GiRsb5ZzhyErQ67SsmfMmfSZ8BMCRjQsZMXQgQUFBpbqfyN1DjCmI/CeQSCR89sHbVAwP4tNvHsO32wsoqra0iTHA7d3PRhzFG9zB2m3krpWw//dprPptvsv+FyxcjK7BALxUt/u1dgMpIiqjTbmIEGmZotpekZy0nGyP0mRvXzqDZt0fxS8ojMyUq+z/fRrfHDzo9vUi9x6ipSDyn2LS889z7uBOOstOIV36NHl/votGKN6FbD5hW1sN4Jnl4KytKyvh8rGd1KlZhQoV7JfONGf+0j/wazrA9LO5IAj5mQj5mci8FGjSbYPk5nWWS8KV03+TeGofzXuM5My+tXz8WH1WrFjh0t0lcm8jioLIf46AgAC+n/EZJ/du4akejcmZN478c7sRBAGd0t9GHKwxTviOJn3r4/asBEcrjo5vW0rC1jl8Oe0jl89x48YN0vVKvIOLxcNaEIz4VGlK/jnbusnW7Rxhz3WUdO4wmxZ8zIjXf2T/yllsnvMKhw4dEvcllANEURD5T/PqlFc4e3AXTfUnyV4yCXXyJcC11WDEXCDsCYW1IDhacaROvcLKL8ajSdjByuW/EhISYredOX//fQBZ3AOAY0EAUMikyOQKdNdOmRIEmuOpxZCRfIU1s6fSvNsIvn2mLeHCTS5cuEDjxo096kfk3kSMKYj85wkICGDpz3O5ePEio8Y/w80DChRtn4CgSFOcAWxjDa5wJAjmVoJgMJCx9lO8L21j9nczPXrTXrhsFarGzzoUBHMBCG/3GCkbZlFpxEfI1DklLlmqzs9h4YdjCA0JRbi+lz07NovlNMsZoqUg8p9CEASLjznVqlVj95b1LJ3xFv57ZpK3+Rvyr52xaOfIYrDGnXZFGde5OWcMY5pHsHf7Ro8EITU1lUOnL5LvezuvkFEQZOocG4vAJ7YuipCKZBz409TGU1KTLjDz6XZ4S7S8+vw4fpk3WxSEcohoKYiUe1JTU7l06RJvf/Il129loZfI0RkMCAYDPqgZ88hQRo0YRmhoKADNmjXjwI6NbN68mVfffJdre3WEdJlo8t27shgslrU6sBL8NNmkz3uc33/8ukR++Pc/noaqYW9THQlzQTBibuUAVGw7goSVnyH19iGoQVe3LIbeoVo06gI2/vI/Tu5YQdPGDVi8YL5b7i2R+xOJ4Ebh2ZycHAIDA8nOziYgoGRmp8h/l1OnTnHy5EkqV65M8+bN/5V7Zmdn8/3suRw+doLL11JRxzRD2XQwPtHFqa6NLheDTkPR/iVwfhvXj25n4vOTaN6wrimpXKtWrdiyfScrVq3jxOmzSMKrofGJRCGTofAPxScsDplZmmp3BCH/3B68tk5n7ZK5VK/uOvW2PUY99QJ7YobjHVHZLUEwIuh1XN00B11OGuHtR+Jdo7XF2OB28FuvKaTCsSXs/uM7CrOS+eGHOQzs369E4xW5+7g7j4uiIHJH0Gg0fPfDPBb89gdXrt1EVa8rKnUayYc38lC/Pkx8Yiy+vr74+vqWSY4cQRC4dOkSf23czIIly9DqDVRtNZiqjduxR2ZbNtN6Lb+Qn4mhKJ/CpFMIaQkAGLRFyBL3IpcAOjWBfio06gI0RcVF6fPz8gAJMqUPgpcKvcIPZd1u+EbXQKb0sxAFXc4t9CfWoL9ykEpB3nw7/VPq1q1b4uet36ojuhE/IFP62YiCI0EwJy8njfTdv1KYmoAiNBbvSg1QhMch6HV4ZV0nL/EYuvxMmjZpRfqFfcyf87XbpUBF7k1EURD517l27RrL/lzN3kPHOHrmEvL6fQh68FFk3j6mNoLBQPKGb5HnXEfq5YUm8waGW5fp2rE9Dw/sQ926dT1e556Tk8OwEY+RLwkgIq4uzfqMR+Z1OweQdT4ge4JgjrW/3TjJCnodgmAwHdcX5qI+vQWZPh8Egcwbl8m4eq64nUGHr38QIREVUKmUVKlSmVFDB/BQ3954e9umo/CE1NRUWj80EuXY+S4Fwejmstlz8Y9g6bz90WbeQJtzC11uOgDhcbVRRVXDyyeQ3K8f4o9f5xMXF1eqMYvcfdydx8WYgkiJOH78OOfOnUNdVMSKdVu4djOFHEGFol4PVA2fIbJbFdJzc8gs0kKR5SRcocczFj8bdFr2XDrAjq9WUXTjU8i7xYsTH2fc6JHI5c5rCQuCwCMjxxFYuwcduz2CRHK7HKa95HAlFQQAiczLVGxTXpgNXl7IWwwxnfcBKv7z/xovbwqvn0O4fpTCKwdReMno06tHqQUB4NChQxB7e/mnPUGwjnnIC7PtBr8lEgmKkIp4x9YzHQsMCETQ60ic1ovvP35TFIT/GKKlIOIWycnJ/PDjfFZt3kF+oQZ9SGUkcS1AKkUXVQd5aAwSWcnfMcw3cRk0ajK2zsFwej1RYcFMGDmMQQMH4OVl2/8ff/zJzAXr6PnkNIvjZS0IRuwFmB29hZvHErJWvMN3E3vTp08fm+s9pWvfQVyqOghVfBOLcRvH604Q3NkyWYCUn55k6siePPLwsFKPV+TeQLQURMqEtLQ0xj7xJGdTC1C0eJSQsYtReSmKz/0zySqsrnG1GcpRzh0jYQGBhHV/Fro/izrnFlO+f50pr0/l3KnjNm/aZ85fpEar28FPe2Jg3b/1GN0RA3A+2bpCHl7FoiJaabiWnotPv+L6054Igrtk7VtCp9pRoiD8RxFFQcQuiYmJfPLZl+w/fAK6TiG6TjvTOVdv3K6wbm8tEsb+wwICUQSEEz9+DjlH1tCifRd2blyLv//t3cY6AfblyDnrQAxcjbek1oH1eXf3L5SWJb8tRxsUh9TsGcpSENS3rqDbPZcZe7aWui+R+xNRFEQsOHv2LBOfewmNzJeC1hPxf+5/Jj+9s1QK4NmGKPP18eZ9mQuEuTgENO5NjrcfD3btw84Nq9xyY3riLiqJGHiCRFto1/3lKYuX/YGkzUSgZBvQXJHz5zusXjK/TMYqcn8i/uZFTBw9epSHR4/noZd+YJ+iBsZp1500CubYm2CtU0abX2stEA4thzrtydQUMviR0fy1chkSicRmV7L1eF2N+46LwT/P4pt3gxo1apS6vz27dxHa6PkSXWttzVjHE4pOrKdxtD9Vqtgu4RX57yCKgggABoOBR0ePZ+Ar89ktu526wJ4guLNJyhrrduYiYezPOEkZ72NXHKq0IvHkBr6e9T3PTnyS9X/9hffAPjZjtR6z9bitx1SWQgC2ie+0KeeJjo4uVZ+pqakEVKyOTOlrOlYS15G9mg7arGSUB+azcMdfHo/r4sWLaLXFmVSrVKlSJiusRO4eoiiIAPDbb79TpXlvu4Jgb2J1tB7eEdZvqcbrrcXBnlvJWhy8ek5h2tcDeXzMKM5fSiRSEUB+KVxFjsburKiOpxXZ/Hx9USisQ/Ke8dYHH0PzR4Gydx3pVr/Lirlf210CXFRUxPr16ykqKuLAkROcPnMOQRDwV0o5deoUrVq1IiQkhOTkZJYsWcK6devo1KlTmY5P5N9DFAURALbu3MP1KsMxTtHWguDOWnhnmLc1FwhrcbC2GoxjMBcGqVyJomIdtm7dSmD1ZkikMot7uesqsjd+d6ureRVm2hUGV5XVSsqNGzf486+tBI55pMz7Lrx6gmohCurUqQMUl/g8e/Ysi5cuZ+v2negEGXGNu+DtF0R4TEdatZ6IVCpjUid/5HK5Rfzhiy++oGXLlsycOZOePXuW+VhF7jyiKIgAcPbyVXyaF/u8XQlCaV0t9lbreKlzPbIaiio24adfFqL1CUNl1ca8D/P+ze9vTUlKbXqCsS50Sfnw089RNh1YYteRo/0JWnUeXuvfZ/bvP5Oamsob73/Mrn0Hia/ZlNgGHRn45gsWu8PN+Xq3jsldVBbHQkNDOXr0KF26dKFp06ZERETYvVbk3kVMnX2XSUpK4ptvviEnp+xXkrhLQUEBV26kIPP2sSsIXupcvNS5yAuzLSYgr8JMtz72sDsxW73JOyoII+Rn4le7PRs2bkLmpTAdc3StM0FwNsaypEgRTFKSbUlMd9m29yDKViPKcETFu8H1f05l/dKfCAwMpE3nnuzU1SJi0lo6jX6P6k06OhQEI9M22caUfH19ef/99/noI9fV40TuPURL4S6SlJTEqFGjaNu2Lc2bN+eBBx6wWKHi6+tLt27dTH7eChUq3JEd5W9/8DG+bcY4FATARgw8wZGrxZ31/Y7SO0u9fQhsPoCMXYvxbj4MmSrA1N7i3i4E4d9CGtuIkydPEhsb6/G1CxcvoUAZge8/ye88jSc4+o6Ljq3i4Z7tqFy5MgNGjMav/wcE1utovMrt/qdtymVyF0u3WefOnXnzzTfJy8vDz8/Po/GK3F3ENBd3kRdeeIHBgwfz4IMPAnDu3DkLiyE1NZXt27ebfj569ChKpRIAHx8f6tatS+06dalfry5Vq1Yt0dryjIwMmnR+CN+nfite4ulkl2xpJ1GdKhhBECjKvIkgGFBnJqPzUqAIjEAZHo9UXrxqxZ5f3p4w6AtzuDVjIH7dJ+HXuLfbglBWYmAudK7SRyjTE6h4dBZ/Lpnv8X269BtCYtNn8A6MBEqW1sJ6bIJOg/7XZzm5ZxPJycl0GvoEFV/4w9TWXl1mV1gLw88//8y5c+f48MMPPe5LpOwR01zc42RmZnLo0CE+++wz07GaNWvatDvtfXsncddut4/nZqSQmprEwb+2of59CxlXTzF88ACeGDfaI+F+9e0PkXV6wSQIRtwRBFm2pTtEH2j/LTg3+RK3zu4jL/0GMqUP3gHhSOVK5L7BSPzDyEw6TcHNC0hkXoTU74xfk15I5UrLe9mxGGSqAORVWlCwZwGBtdtanLuTy01Lgl/lRlxYcdXj61JTU7l8MwOf6Foe7xx3hmbLV3z06gvI5XIeHTsBv56vWJxfky73WBisLYZHH32Url27IgiCRaJCkXsbURTuEomJiXTs2NHh2709X605/iGR+IdEUqlWMwDys9PZuXkxn9dtyMMPP8xbb0whMNC5ayY3N5d1m7YSMGmyU5eRtSBYi4H5cXNhEASBm0c3kpd6hQoNOxMb3xiJxDKMZfEmW5BNxrGNJPzwDKqKtQhu1hdV9G2htCcMIZ0ncGFaf4ISjqCqXJw59F5xGdkQEsexY8c8qkuw/M9VUOf224AnNRMcWQmatKtEaG4wdNAAzpw5Q2KOgco1W7s9JmeYC4NUKqVr166sWLGCgQMHlkn/InceMdB8F7H39jRtU65LQbCHb2AobQY+w6R5x8n0q0f9xg+wefNmp9fs378fWdVWUJAFuBYEWXaSQ0EwbwPFgpCwfRF6bRHVuz2Of1QVG0GwxssnkIhWg6ny5BwC63cmbddirvwyGe0/ef6NYzT/ePkGEdqwC9d+fxfBYHDS+10WBEDedBjLV3u2Oez7uT/hVaujUyvBXszAWaxGu/5j3n9jMgBjJ76Ad/eX7bZzlFzQFeZ/v3379mXLli0l6kfk7iCKwj1EScTAHrVb92X0J+sYPf4Zlvz6m8N2i/9Yi7Rm8SYjdwTBExJ3LcUntCKxzfsikUjsBpodTVwSiQTfyo2JHfoOEZ3GkbR4KkXp1xzeK7jLUxgKsii4etztHdb2MIqeO89qL57gCkVQBJcSPXMhZeSpkYe4Dk6bj8FRKm8AdeIRmtaMo3PHDuzdt59kvR+K2Pp2d4NDyYXBSK1atdi6dSsGF4Itcu8gisJdJDPz9qRbVoJgxD84gqe/3cMHS3czasJzdtvs3LMPZcXaZS4IqWf3giAQVb+Dx+O2DjKrKtYidtg7XF/+kUNhkPuHUrVOQzi93uP7maMPjDV9SoJ1kNkan4q1+Pvvv9HpdG71d/DgQbwiqoKbMRGtKtCpQOnkKtj1HbOmf4LBYGD8pFfx7v+e6bwzYfBUHIx/zzKZjHbt2nHhwgWPrhe5e4iicJeIjY1l48aNd6z/Nely1mepCBv6MUdyfGnevitZWVmm85cuXULvXwEvTZ7pWFkIQlF+NqmndhLXZrDTdvYmL0e7geWBkcQOfduhMAh6HUqVDwp1up2ryx5PU1xA8YQrkcqQ1enh9u/967kLoPVY088lSW1h/p0WJB6ld8c2REREMP+XheTHtcXLP8xmnI4oqTBERkZavACJ3NuIonCXCAsLo6ioiKSkpDK1Euy91YX0fxtDuxfo1GcgaWlpQPFbqMYnHMC0MQ1KJwgAlw9tJP7BoUjNqrBZT6KeCIIReWAkFUZ8zLUVH6OTqyzexgtvnOeBxg1RKZV3LM2EaZxuPIszAts8wofTZ7nVNjsnBylls2pHl5+NYs9sXnpmAmq1mg+mz8K7mX3hTsvJLlOroXr16iQkJHg8ZpG7g7j6yANu3LhBfn6+zXFfX98SZcAcPnw42dnZQFCJx+TOP9C0nGyo1IzCByfxYK9BbFy2AJlMhjQgyqEPviSCkJ91C8Ggxy8y3qPr3JnI9coAFMoA/Ot3IXP3r4S0exS9MgCZOgfdzbO0GdCEA8dOOb+PKrhUwWZngmDvGexleQ0LjyNF78O5c+fsLkE25+S5i8ibVnTaxul4zcaUu2seTwzsTVxcHENGjkPSajTSf3aD2xurcbxgWSrViCdLVsuq4pzIv4MoCm6QkpLC22+/zfr16xk82PbtKiUlhZs3b/LEE08wdOhQt9dkazQaTp06BaGeFUb35E3N/I1PVbU5RV5T6TpgBC88fjuxWlltTks6sZNKDdpbHCvtm7W1fz64zXASv3qMoFZDkMq90SsDyN3/K52/epYvZs1F0Fv667WqwDLZp2B8DsGgJ+3Udm6d2YVE5oVE6oXeoEci9UKqUOIVFkdgk96oKtV32Jd/79d44bV3WLd8seP76XRIpDIk/0yoJUlXbiTv9DYqSdJ549XJnDx5ksNXc1D2b2fRpiTi4I4wTNuUS4xHoxW524ii4IBTp04xb948Tp06RWBgIM8++yzfffedw/YajYZ27dqxbNkylixZ4tbbUbdu3ZixcCMdHuvl9rjcFQRHtQUUYbFo2kzgy28+R1qtq91rS2Il6LUaNAU5qCo/4NF1zqwEu+ktvBQEtxpCxq6FhHUs9rdHVoimYsWKdHywJSvPbse3bmeHE2dJrAWdKhhdUT439y0n58pJAut1pMrw95F5+5ieQRAEDJoCCtJvkrF7MdrVXxDa9Un8G3a3eElIy8kG/yiyciR898M8nnx8jN17Hjx4EH1ELUq39qd417d67y98v2IxMpmMkU8+j7zNcw7Thziqgmcce0mEQeT+QhSFf0hPT2fZsmWsW7cOjUZDXFwco0ePpnnz5hbtHPn/J3fxZ+fOnUyaNIknnniCOXPmuBSGJk2acOPND8hOu0lgWAWXYyytIEDxG6eqQg1SpYHoEk8QUaMlUHorIS8zmYAI56t2nC2VNMfR6h0jgc36kfjVY4S2H41EKsXHr7h9j84dWDl7s6lvozBYWwvuCoPROsi6dIjre34juuUgIrs9ZZGq2/gMEokEAivgE1gBnypN0OVlkr59PgXn9xI55B0b61E+eBpvfj6Qq1ev8NF779jce9nq9QjRDYCS107wUudScHgFH7/9GvXq1WPzli3k+FfGJ7iC3X6tv3d71oMoDOWf/7yzb/fu3QwZMoRx48YRFBTEL7/8wpo1a/j2229NgmDcUOYsIDxtUy5fblcT1/9/hISEsHTpUpf3DgsLY9aMT9m/fHqZPIujAKG9jU/elZuTk3CYouxUi+MlsRIAivJzUPp5virHGleCAMXWgk/lxhRcOmBxvFKlSpB5e/zmomMjSKpgh6uIjOcMeh1Xtswj88Lf1Br6Nn4NutgVBHt4+QUTNfRd5GGVuPbDUxi0RRbnJTIvwp9dysLdF2nXva9NIPZmShqyiGpO8zm5QpOdQsGJDTw8bAgGg4GXpkxFUq2tw/bWGwONWGehdRaItkdKSgpBQUFutxe5u/xnLYUrV64wY8YMdu3axcKFC6levbpNm5KuCgrp9Cq/z51AZGQkHTt2dNq2ZcuWZFx7DYPB4NSycGYlOPsH6qhqmlShIqJ+J5K2/UytbuOcjtEd1HmZBEZUcrt9aVcJBbV7jMwtP+BbvYXpWFxcHIU3zqH8JwBtvI8jiwEcLy/VqfO4vPZrgqs3J6j5AKy3XlmP35GYhXYahyI0lpsLJlNxzEyLc1K5Ev/hn3PjylG6DBnN+y9PZMTwYQBcvnwZrwjL+IhHgpCVwqmZj7J92zbkcjlzf/yR/LC6+IfGgJN+XJVJtRdzAOfWwtc/LGDv1nVuj13k7vKftBTS0tJ49NFHqV27Nnv27LERhJKmmjDiJVdQZ9gnvPz6uyQnJ7tsX79OLVKunCnx/RzhLDWCd0g0WRcPgkRK/q2S5/k34qVQoinMszjm6Xp+V1aCxDfY9FFWrIMmM7l4kvpHTH18fAj1V6FJu2rRlzOLwR6a3HTOL/uICs37E9R8gMU5ndLfbUEwfv/+DbshCAYKLh+22847LA7FkOm8/tMmwqIqcvDQIbIKNMj9Q12O1e59DXoy//qCWbO+o127dqxZt56PvvkF3yb9XV5rrJ1h/AAWloO1xeCK7LQbBPrICQsLc9lW5N7gPycKOp2OUaNGMXXqVJ544gmbhHRltWfAPziCpgNe5ONprl1DQwb25fzeVSW6j6N/mM6KzgD4RFUDwC+6Buf/mk1RXkaJ7m/EW+WPTlNYqj6cYf2GKpFKwaC3aTds8AC0WcVCXBJhEASBxA3fU7H3CyjNrBDrPoz9u+PuAgjrNpGMrXOL7/GPO8bcLSP19sG3x0sEj/+ZoSOfQKu1fOt210oQDHpyN83kg9de4MkJ4/ng40+Z+MYn+HV/CW9dkalQkquPvfu6EgZ71uyNS8cZPGiQmCX1PuI/JwpPPPEEI0eOpHv37jbnyjrVRJUGD7Jl+w6XeV+6de1K8rm9ZXpvR5j/I68+4BVSj26gctvhXPhrDkW5Jd8R7O0XRGGOpbCUVQI6Ry4LqaK4FKR5SZCw0BCEvDTTz86EwTothFYVSFZaEl7BFfGpYGk9umsdWGOc+L2DK6DLvInmxjmn7VU+/qgrNuVWfrHryPyN3R2yT2ykQ4N4xox8lFenvsMvG48S2eVplHrPyoGai4O11WB8Lnc4t2MpY0c/5tG9Re4u/ylRWL9+PVFRUQwbNszmXFkLAoDMS05YbG3Onz/vtJ1cLkep9PG4f0+CffZQ+IdSqeMorh1cTUyLfpxfP5ui/JL16e0TgDrPfRFwd6JzJAgAhqJ8NOlJBPvfruzVuX1b5EmWAWhHwmDEXBxS9y4jvPlDFu1LKgjWhPd4htS1X9o9Z+6iUWemIlEFuvyOrN/uDckXKDzyJ69NnsS6dev5fcNugpoNtpud1t3yqY6sBnOc/R0adBrRdXSf8Z8Rhfz8fD799FOmTp1qc+5OCIKRCjWb89vyP+5Y//bwpBhLUNWmhNdqReKOX6naeRRn960j88Zlj+8pV/qgVRdg0DlemljWxW4kChWai3vp37Oz6Vj16tWRF9yyERNXwgBQmJqIROaFMjzOYbuSCgKAT+XGaO3kbrJ27RVeP4NC5TgQb+3iMZJ9eAVTJj2Dt7c3z0yeSlDr0aZz7tTNttfW3v08sRZ0mkLRdXSf8Z8RhQ8++IDJkyfj6+trcfxOCgJA/Q5D+XO16+yder0WNyqj3hEi67ajYpPuXN33BzV7Psm5XctJuXTM437CKtXi1ln33WClSXMd6h+AwssL74Td9Oja2fJcgA/6gmyXwmA96acfWkNYs74OrYPSCIIRmW8wOrM9I/b2IBgKc/EOs13J5UgMAHIu7qeij4Fnnp7IqMefRNVsODJvlVsi4Azra63dSNaYxxUMej0qhUxMc3Gf8Z/4bV27do1z587Rs2dPi+N3WhCg2IXkGxrD2bNnnbarWb0qGcmJd3w89t5+dapgwmu1QhUUxeVtC6k7aArXTu0m7arzMVsTVaMZKad3YjBLNeHMHWGNu5u0wgICUackIPcPQ5KbQrVq1SzOBwUHoy8ovo8zYYDb4qD19iM/+SLKmm1s7lcWYmBEHhiBoajA4bN6qXMx6LUEVrPcGe7sexMMegrPbeXbmZ8z85tZXC1QEhjgfIOeee0I64/NmMwsBpt7O7EWrl04QvWqVRyeF7k3+U+Iwscff8zrr79ucezfEAQjtdoN5+eFvzptExwUiFbt2eode4nKSkNc64GEVmvKpS0/E1brQZJO7HRZzcwcmZec8FqtSD7ufqWtkloLmSc2E1DtASpE2C7bHN6vB+oNX5h+diUMANqsZOTB0TauDncEwbhM1h0kcm+EdNtCO8ZgbsHNCwi628tRnVkHRvJuXqR7+5ak3Erjvfc/IryB7SIKI+5Wz3PWxt7vzF5c4cqRzTz6sPMU6iL3HuVeFG7cuMH58+dp1qxZqfoxpgy2/rhDYHg05/7FIiPuTlAWWT7/2VMQVv0B6vZ/CW1hDjqNmsSjWz26d8XYqmRcPoI6+5bpmCfWgiuMQpj2958oQqJp/UATmzZ9evVEUXDLQtBcCYMm/Rqq6OpO29jD3e/aiHdAGLr8LIfnU/f+hiq0ODOqu99Txs559O7ehSeefJqqfV4wJdEzx92KctbXGHFmLTjCoNcQGlqyvRYid49yLwqTJk1ixowZFsc8tRKcTf7uiEN4THUuX7l+VwuNuLNm3ygMUi85lds9TIUmPbl+Zh95Ga434BmRSKVU7TSKS1vmozdL7eDuqhZ3XEg5F/5GHhgBOTdp0biezfmgoCDqVgqn4OJ+p/1YfCd5GciUfnbPOcJTQQDQZqUgswoiG59fMOjJv/g3EW0fdWvy9SrMRH31GNUqx/LCK1MJav4wygDblT4lTV3iCle/K51GjUwmc9pG5N6jXItCUVEReXl51K5du0TXe2INuGrXuM9TfD/nxxKNA/A44VhJJiyw3IVcoUFHlIHhXDlz0KM+/KRaKjTqwqXN89Fr1CUahyMMOg2XFrxGlRHvY7iwwyZhoZHJLzyL/NAii2P2vhNTCgeDHv7Ja+TJHgR7/+8ImToHvToXeUC46Zi5IOZd/JvwyEj8/UOc9mMMHhdkJpP41ywuXEokrO1YfENtay+UVhAcXe/K7afX6zh/cBO1atUq1f1F/n3KtSh8/vnnjBljmZr4TsYSnAlDxWqN2bR1e5kXMPckrlCSHb41ezxJVuJxNL6RHo0rpHIjwmu15Ny679D+k/6iLKyFK8s+okLH0XiHVESqzScqKspuuwfbtMY77yaatCsux6pXBiANi0On13scVLZOFucKTcYNvBykr5Bc2YeXXIGXyvEYjN9h2sVDnPj1A8LrtqfqQ1OQO1nCWlZ4soop9eo5unTpKloK9yHlWhRSU1Np0uS2z9kTQfC05KCr6wJCo5AGxbNy1eoS9VsSXFkLrtxIAD6hFQmNrED2hX0eFbSXZScRHN+A2Bb9OLvma3JuFMdUPI0vmE+4hVeOk3/1FJHtH0VXmEuQr8LpteNHDkNzcJlb4/XyD6Uo+aJbbUuCUegMmkKkXsXjNhdCTXYqOVdO0rF9e7IP/mZ3ebJXYSaJu39n36yJXNr8E/FthxHZuIdF5laLe94ht5E7ZFy/SGyM59UIRe4+5VoUSkpJBcHV9S0HPs97H31Gbq6tOPmoVORbpYm4E9hbkmnEkTBIpTIKrp0ovt5DYfCPqkLtPs9y4/BfXDuwGsFgcPjG6cglIeh1ZO5aRPJvb1Pjia+QSCRkn91N7y7t7bY3MnbMGIpObXRrrN5R1dEkX3C4d6AsKLx5AUWw/boZmuwURo0aybw5s2hRLYyss7tIP7eHpG2/cGXTXM4tfJ2DP7zArTN7qNFjAk1GfkRkXcdpsO82Z3b8yqTnnr7bwxApAeVaFDIyMlAqlW6312k1JJ7aT/rhdaZPXuIxdAWer5axJwz+wRHU6jCC6TO/tjn31PixHFj+OQa9bZI3VzhzITnzo7vCKAx+FaphKMhCV1Tg8dhk2Ul4F2VQs/fTeCl9ObViGhmXjyIruJ1nyZ61IFPnIOh1ZO1fTsInfdHnZRD33CJypMX5jnRH/6B3t84215nj6+uLj5cEvTrPaTuZOgevoly8/ELQ/ZMYsCzFwdjPra0/EdZ2BGArgPrEv2nTonhvwuxvZyK5uImkTXNQZyWjy0kluHJD6g2dygOPf0FI5YZuuYs8EfCyxGAwYCjKw8/Pz3VjkXuOcl1PISUlhejoYhPWmesoNyOFjb98zM3LJzFUexBlRHzxCUEg69Q2Cm6cR6/OI6RhN6I6PIYiyL4f2xp7OeZrNO/BT6/35bmnn7IoPBITE0P3Tm05sWMZDTsO9eg5XSHxDbbxexuL3oPrKmW+MfXISjxO9tWThFZvjj4w1mPXhFfONaLqdyS4ciNSTm7n2oHVBMbWxq9ac1QhFVEAGmUAhpSLFBkM5J3fR9bpnQQ06Er8S78j9b69E92gUUPaJerXd1wH2Ui/Xt1Zfvwv/JsPsnvefOL3ialD/pXjBNbtYHO+tBvY1CmXEQw6VBVq2JwrTLlMpD6Vfv36YjAYmPD0cxQFxNNwYnHFtrJKLFhazK1HZ/UwBMFAcHDQvzAikTtBuRWFEydOuLXyYd/qHzm8aQndx7zJwOenO3T9GHQa0v7+k9MzRhLcoAuV+k92K6eLtTD4BoZSv/1AVq5ew8hHH7Fo+/bUV2ncvC0NOgz51/PFOBMGv5i6+ASGkXtxL6HV7a/2cQdZdhLegbFUatmf2OZ9yb52juzr50g/vRNtfiaCTIGXbxAS32B8KzcmfuI8pN4+oNOAmShkHljB6BGD3fqOxj72MMsnvAbNB7lMJx5QtwMpG76zEAXrtp6Kg/G6lA3fEdHlcZvz+qJ8zs1+knNnzyIIAr36DSRRG0Jk++IFEqUVBKO1UNL4gjNrw9F3ce3sIeJiYkp0P5G7T7kVhZs3bxIfH++0zdYl0ynMzWTC52uRyZx/FVIvBRGthxDeajDXVk8nYcnbVHn4PbfGYhQaozi07P8srz75AAMe6oe//+03Lm9vb/x9vbl2/jCxNZva7cMRYQGBTrNVurIWwLEw6FTB+FVvw8XNPxOr1SCTOw/wOkOWnYQ+MBaJVEZQpToEVapj8QZqjGvolP4g6LB2phm0aq4ufJUxZ064db/69eujvnYGn8ybSBW3XYn2XEPeYZXQFxWgybyBIth+kNT8OlcCYWybeWg13uFxJivB3HWUv28hK1b8QVBQEF269+KGJJLARn3cejZPKIl154n7yejC7B2qZeuqtXz40liP7iVy71BuYwrbtm2jffviQKQ919HVMwe4fvEYPR9/1yQI7gSYJRIJsX1fxFCUz/UN33s0JmP/XgpvajTrxoaNm2za/DR3Npt+eB11/p0Jdlrj7ptvUJVmqMJiSdy5pPi6f9lfbRS0gnWf8eILzxMREeH2tX369EFzfqfpZ3t1j42fCm2GkrZxtlt1DKxrGturcZx/5QRZxzcR2XWCzfW6gmz81cnUrFGdNh27kSirTECjfm4/l6foA2NNH3fammMUbuvly9YxK0EQuHpmv1uuPZF7k3IrCtevX3e4hh1g4y8f03Pc2yV201Qd9Rk55/eTccx2YneGURgadnmEfQcsyzPO/HoWfQcM4UbiGY5s+NnmmtLizoY2R6uR9L6hRDfpQa6LIjHuYP3G6q6LRJtxnZy/l/Hu1Nc8ut+MTz+kcPtsBL3WQhDsTfx+leqj1xSQm3jMoo2nxW4ANJk3SF7/FZUe/gCJHUs0Z9v3dG7biu79BqNsNY6wBl086r80mAuEvY8znMUTUq+eo1njBjYVDUXuH8rlby4vL4+MjAxTkNmaw5t/JaJSTUIrVC7xPSQSCdXHfMGJj/sTUL05Xj7u+5rXpMvJzVHQyep49WpVycnJodPIt6nZrLOprTuUpuCOtRvJEaqgSCSC56uj7GF0I1kjL8xG+0+BGZ3Sv3gXsDIAQa8jb8EzrFi62GMh9/PzY0CvrqzbMRe/VvZX/5gT22cSlxe9gXLYu8h9gyzOGa9zNjEC6NV5JC19h9ih71qkzzBeX5B8CT99Niv+2kZo95eRe/D3Y8RRDWy9ppDsxONkXz5MUc4tZBIQ9Hpk3iqkMjmqkAoExtTCLyLere/SnpXgyMJMPLaNvu1tM82K3D+US1FYtGiR3epqADcvn+TQhkWM/ci9TU3O8PINIqrjKFJ3LSG623iPr9cKlv8ge/boxh+/L+GHnxax8J3vCH34MwLqdS7ToLO92IIneMmkCILBbjWv0uBVmOlwkgMo2PAlz48ZbnIJesrML6bx+MTnWfnVMIKa9sOnZlvkvsF2l8PKgfiOo7n6+/tU6fk0kgjb9M/momItEHmXD5O6aTYVej5nd1+CYNBza+1n1KtZlYyKnT0SBKff0a0rpBxeR2H6NYKrNiOyaS9UYbFIJFIEQUCvzsOg16G+coRbZ/aQsH0xIVUaUaFBJ2QK+0u3re9n/qxGy9M8nvDrkU088sUat59H5N6jXIrCyZMneeGFF2yO63VaVsx8kRFvzHMZWHaXsOYPcWbGyBKJQmFBAenp6RaZJFu3bk3r1q05ceIE07+dw7oPPqTG1C1OhcETK8GtallmAWdzCq6fIjw8AoNW43ASuRNorx6ngiaJV178wWk7nU7HnytXceLMeU6du0BBYREI5mlFBBrUr0fa9X2cWvMNMqUfoXXaEly1GQFxlj5w36gqVOo4ikurphPWoDNhddohkcrspgQxfle5GTdJ3TIXmdKP2GHvFSfts9cu4QhVYyK5fKuA6CbO6w04EwEjek0hCetnIQgGKjzQD79o22WvEokEr3/2NijqdiKgbicEg5700zs5/ed04tsOwz+qisN7umMl5GXeQimXiK6j+5xy+du7cOECMXaWxK2Z8yYt+44jKNw2cRgUv+l46r+X+4UgCAZSUm8gU95eNukqJ1FhymUWLl7C4kULqdGgGZUrRjL64UH06tkDiURC/fr1+XHWTDp07UnGvqWEtLJv+ZS2TrMrzFchpZ/bg49KibQUq4/MceRCMuKlzkWr8EG77Wt+WWqbTDApKYljx47x2+q/uJx4ldTMXDRxrRAiauIdXgWZT1BxP0W5Fn3Ka0Cj1gI5Sae4sWcpt45uIKJJL6q0uL3qR6cKxic8jhpD3iTl4CpOL3gd/9g6+MfUwSe8El4qf9QSKfqiQvISj5F1Zidy/1Ci2z+GPNY2c6tREDQ5t8jY+BWFPn6EDHBv9Zoz9JpCLq78gvC2j+Af3xAAZ6kTzS0jiVRGWL0OBFZpTMK6bwmu0YLw+tZOTasVYcZrrawEgLP71/PUuMdK8zgi9wDlThQSExOJjo5GoSieuIwrj84f3ExRQS6NO5XtxjCAgBotUV89jm+NVqZjxsnanjjoCrK5OG8Ssf1eIrb3c8XjO7mN5z6ew5T3PkUul/PsuEcZNmQQf63+g/haDQho0B0vK//2nRYEc/QaNeqCPMJrtTK5jkqyzNEdjHEFgIJTmxnWu7NFdTWNRsMrb7zNss17kdVoj6xSFxSd4vBSKPG2s7IIn0BTv5jtBI6sVIuI2DfJuHSE8xtmExBagbBqxUuBjcFvL6BSo85UaDGAvBvnybt+juzEoxRlp6DwCwWlHz7RNak89G3TmzgO4hW6whxS//wAnboQZeeJ+JTyjVqTm86FNV8R3XksfpXcW+1j/sZvFAi5TyDVB7zC5bVfI/cJJKhqU5u2RkFwZCX0DtWy8vQO2j0/rUTPInLvUO5EYdmyZQwZMsTm+PbfZjLi9R/vyKYwfUAUQm663XP2xCH94Bq8VAGEPXB7+WFwvQ4E1+sAgEFbxJdbZ/PeF10Y9/AApv/vPd784SWiH//BNP6SCEJpYgmF6dfQFKkJqm37Jnmn0KvzKNg9n9dnHTIdO3z4MI89NYnCWr3xf2yW6fuQqXNArTG1M3d/WccNzFc7SSQSQqs1oY5qEpfWf4cu4wqRDwyw+TuRF+UQHBqFf4z9NOxaF2kn8hOPkrr6UwKCQwh9+GNUkVWgFMWGiry8ubR+FpX6TkJpVs/ZWQDc2iVo7QqL6T+FC/NfQlm9BTKzzYLWgmDPStCoC8hKvmLXQhe5vyh3opCUlMTAgQMtjmn/yenvG3hnqkBJ5N7octOctknLySYsIBBdQTbXN3yPd3glVMZ0GlZI5d6EdHuWoE4TWPTbG/iu3UDK8YP4tduHtkIdj8dXGjEwknfzAl7+EXaret0pcrbOYtpH7xMQEEBWVhYffvoFyzftwbvb66jC4uyumLKe+CzScztZ+hpYsSa1B7/GxVXTyUk6RYXWD+MXVdVGHIx9WPvdza0bawpvnMX/wmqE8FB0DYaiiqxSqupzWlUg11Z/SXjz/iZBcLUaylEb8+9LKvcmss0wkrcvoGK3CRbtrQXBnN6hWq6cPkmfXt3/9Z34ImVPud2nYM65A5uo0sC9ZXKeFrMBkCr9MLhIugbFwnDz8gn06lwCqrouDyr1UhD58DSkAz4nqGZLckqQRdXd4i8u+9Fp8fIJdCvwWRYUXDlK/dhgHh0xnOvXr9Ox1wCW3QjCZ8CHePkFuxQE89rGxqI01lgXrPejiPo9HicwrCJpexeQvGUWGX//jjrHVvDt9Wdvoi+8cRa/08t4dOgACvwqEVS7bakFIefiAQS9jqBabdAp/W0me70ywO7HHsbrjR+/xr3IT7lMoVlxJHuCYO0WvXZqF+0fbFni5xK5dyh3lkJ+fr4pnmDkzL71tB048Y7cLy0nG11uGorweLfaa29dQZOfTfyQN92+R4F/FAFPzPdoXGVhHRjRqgIpSjmHX2S8zbk7EVcQDHrU+35hwf4drFy1mhfe/Ah5m3H4xdr3m3tqHTgbr0yuILpRV3Kun+XW+f0EKKVcXv05Br0BnUEA66W4Zm/GEiQofXzw9vEjMLS4ulqIrzdr16zggfbdCOv9lstnd4W+KJ+b2+ZT7bFP7IqB02vtnLcnrqEtB5FxfAthXZ4wHXMkCMaXqBund9Ftlvt/0yL3LuVOFJKSkmw2rd26doHI+JKV5HQHTWoifnU7utU278xOvKOqk56f71bVtDsZO/AkNXT2tfNUHzLc47E4w9HKo9yz23j+qcc5deoUz7/5MYG930AqV6KzaudMDMBWEDwRr4CKtfCNqIJer6Xm7Rg3hgDblWs6ZfHvUa8pRJOTztX1XzFmxBA+eLdYBDIyMpD4hSOVK0ttJVxf9QUVOoxCCLTcrV/SLK72rlPV70bGgsmmn51ZCFDsng0K8EX6L7oWRe4c5e63qFAoLPya2Wk38A+OuKO+zsLLB1G5ufpDl5OC9z/BSmcTflpO9j0jCHpNIdrCPFShxUFEaxdSWeZBEgSBlP3LCQ8LoVf/wfh2fBqpvHhPhLOUE2UpCKZr5AoUSl+Lj1KThVzlb/FRSQzIfQJRBkURUKkudR//hl+X/WGqnpaamopEEEotCEWZN9HmZRJQ7QGLc9YTu8Q32OnH5XMrfRH0Wpv21oJgtBLO7F1LLxe1LUTuH8qVKOTl5dlsnElOOEVMjSYOrig9gl4HglCc4tkN9NdP4W9mVdib+Eu61NTd+IGnxWMKky8hkSvLVFgdCUnW+X1UrVqVNz+fQ8zIGSgCXSe+uxOC4Ax7/VmsaJLKkIRUYceOHQDMnb8ASWzJU44bST+8jrCmve0GgE33dmPSdyUaEt9gBKta4o4EAeDm2b107NCuJI8kcg9SrkRh9erV9OzZ0+JYRvJVIirZ7vAsKzRpV1FEuJ9DKTg4GMPfi+yeK6l1AK4FoTSVxDRnNxNaua7FsbK2FnSqYIpy0rjw52cka1QE9X4NuRsT3L8tCO4ijajB/oOHEQSB7Tt3O1xp5i6CIJCbcNjCSiiJILiL+QuAM0FQ5+dQlHGFBg0alNm9Re4u5UoU/vjjDwYMGGBxLO36RYIjKzm4ovSorxxHWcm9fxCatKtUq1qV2hFK1Ge2mo6XRgzAPUHwFPO3UVneTUKiqzhccmnEXWGw105fVMDZX98hqNoDRHd5ymExek+4k4Lgqm+JQkVhYRF//PEHN3K0TstnGldHOVsyq751BVVkFfT/7NK2uV8ZCgKAt48/YQGBTgUB4PTuVQwd2E9cilqOKFeB5tzcXMLCwiyOZaVeJzDMfrbUsqDw6nH8G3Z3q60+P4uGDerxyTuvU79lBzQR1VCE3tm6BKWtM6zXFFKUn4OgCkdldU6nCraZyJxV+nIkGjpVMDd3Lkabn0Xt4e+5FB8jrqyEfxvzpH6F107i07QlL786lYBmIxy2d9aHOfnXTuPrYOOcK9xZ0GCOQVvEzX/iIebYW659ae9yfnp/VYnGJXJvUq5EQSazfLuctikXnbbIo01rnuQ+MmjUFJzfQ+SA192+BkCpVPLnoh+pW7cuLb+9iHdIxTuSsqK0gqBT+qO9dYUa1apyxav4e7FXw9ne5Oau1aBTBZOfkkDWpYOE1n4QSURlClMuk312D5rsFIu28sAIFAHhBNRoaZPS+l7DkHyateuy8W7Qz+4uaE8FLPvsLmL7vGj62dx15MhK8FQMjBQmX7pdp/wf7AlC+s0E4mKi8Pb2LtF9RO5NypUo/JsIBgMX5k2icv+X7RZQcUWdOnX47ocf+Wb/Krw7P+mynKanOBIEZ3UE7O141SSfpVmj+iQcuz2JuSsMrtCpginKSuHC8v+hLcyl2kMvc+WPTzDotIQ07Epo01639wEYDKjTr1GUfo2rf3yKIBiIqNuOkJqtyjyNd2kpyk6lKD+bm7IHCKzygM15V9+VtbVg0GkQDHoUAWE2y3IdUVJBAMi/egLfmOKd8842c57ZuYxJE8Sym+WNe+tfUylITk7Gx8d2BZCX3Jv8bPt5iazxxEq4seF7lBGVCW85yO1rAKRmvtfmTRohybtl+rk0/5DdwVXlMHvnsw+uZMTDD5N1YAU5x9ebjlu7eDzd6axTBSMIAle2zENXVEBQ5cZcWj+LkEY9qDx4KoHVWyD3CymueeAbjNw/FP/4hoQ17U3VRz4ifuBrFKYlcWbhVDIvHvTo3mWBM0vo1p7FePmF2a21XBLxNOi1eJVxzMAZmSe30bdlC6eCoNMUkXRiO23aiAV1yhvlRhTOnz9Pkya2S09jazbh8vFdZXqvosybpO79nUr9is15V5O5MWDnV3iLQP/bicYKCwsxGPQ2be8EnpaShOIVL2ERETRq1IjrSVfoX1NJ9uoPUKdfA0ouDMZ2qUf/Ivf6WbyUfoS0GEj1MV+a0j+DbQoGi+fxCSSy6wRqDH6D7MuHubRmJnqz1Ax3i/yUBDIuHiKwuWU2XleBZGts2lr9nTijNH9DPYPUyG+eIKqy8xxb5w9tYfiAXsjlZVMqVuTeodyIwqZNm2jV6nbqamPK7AbtB3Bww0KX17trJQgGA+fnPEO1kZ9auI2ME7+9jxHtxd0M6nt7yeybH3yCtILlUk/zvu42mvRr1KxSvHLLx8eHz/73Pgu//h+G7TPJP7YaQRDsCoPx4+z4rRNbubJlHt7+odR6+kcCqjY1rWCxJwLG49Z4KX2J7zaesLrtObf+u39FGBxZCUUyJSkbZhIWWx1/O4VuSopMrkT7TxZeo7iXNl5kTe9QLb1DtRzZspQ6LXu5bH9z948MH162O9xF7g3KjShkZ2fbTdsbEhVHQGg0Z/b/5fBaTwThwtznCG/+EP7/5Jx3F/WtK5xZ+a0pBcfRo0dJypMQ3NI2zbeRshKGklgJAAgGQkMtV3O1bNmS00cP0CI4j+Tl7yLodQ5XC9kTCF1hLjc2fEXC+m9QhlSk2tgZyBS31zW5k+3THoHxDYl9oC/n1n9ns/GqLHG2gip9369ERoQR0NQyS29JV0UZr5NIZUglEtMOaWtKmufKKARGN1Fe5i32rf6RNgOedHrdy5390Gg0VKp055Z6i9w9yo0oOKP3+PfZ9uuX3Lh0osR96AqyOT39YfyrPUBUh5EeXSsYDGStncaS35bj4+PDhOdeZvCEyQQNeN/lte4IQ1muUTcXEINOY7eNVCpl/tzZPDG0J7d+nUzG38vQa4tc9p2fksDFRa+QczOBoNptqdh9ot28/c6wbmMuSKoqzYio1ZpLW3922U9JcCYIBbeukHNxP3qpAr9YW+uvtCj8Qyn6x23nCncWLNiLF6yZ8ya9nngPpY/z38PChQtp0aKFW2MRuf8oN6Jw8+ZNgoKCgNuuIyNKH38Gv/gVK2e9yo2Lxy3OubISBEEgefsCjn/Ul4q9nqVCx1EejUswGEhd9CJP9XmACxcvUr1RCw541SfmxVX4RFd3q4+75UoSEvYxpK/9PRgSiYT33nydv7etZ0KHqhj2fU/Gxi/JOrUFTZ7lm6tBpyVp4/ckLP8A3/A4ovpOBomEADNryxMLwVnbsBrN8fL2If3S4TLNyeRMEATBgPrwUpb/vhRBFVJm94Tb1oJ/xZqoLx0oPlZKF5Ld/QbHdmIw6Khcr5WdK24zuYs/K1as4MknnVsTIvcv5WJJ6vXr1xEEgeBgx2/M4THVGPHaXJZ9+RwRlWrSYdgLbNNGOWwPUHD9HJcXvYFffEMavrkemZv5jYwIgsC1ueOp5afm50VLKQitRZW3diP18jw4V9ZLVt1ByLzm0kUQHR3Nq5NfJDHpGlt27CHr+DqubPkJv6AwfP0DKCzIJystBd+wilQZ8g5eMXVJXP4RFTrcFldHk7xxLb69yU+n9DdNjuZLZHWqYGKa9ebM6pmEVGlcJqm97QmCuUss58Je6lSN4evv5yKr0tbj/s3H50h8fCKqkH56B0EO+hDyM92yGO0JQk56Mut/fI8xHyx1eu3kLv7k5ORQVFREXFycy3uJ3J+UC1GYPXs2zz33nMt2AaFRjH7vV07tXs3P7zxKfmAlgmo/aNqoIwgChTfOU3D9LPnXTiMPCCd+6Nv4xbmXAdWajCPrSDuygYRu4wl8ZAz+IbZplz3h3xQGQRDwKrhF3bquXSHfz53H1kv5+A/4CH8gJvM6+Zf2g0GLyktFfK226HyKJyzBoEebneq0Yph1Th9n4mAPL6UvwXENSD29k8i6JU/U5koMTMeuHeO9Hz6n76CHiRr4kNv92xMrWXaSzX29CjNRhcWQn5pw+5g6t8TxF3M06gKWTnuSgc9Px8ffsahM7lJ8r59++olBgzxbhi1yf1EuROHw4cO8+GLx8lBr15E1EomEeg/25UrtgRTcOE/u5cPkXztjOu8dEk1Q/Y6oIiojlZd8p6YmK5kzM0ZS5dGPiej6eIn7sebfEgZN+jVqVYt32e7YsWN8+u18Anvf3tUtBFfEp9lAU4lK8w1XBTfO4RNdE3BPEKzPmQuDM2shunE3Ti7/lIg6bT22Fpy5iqxJP7WNhCPb+Pr7HwhoOsjtHEBOC/3YEQaFNh8vpS/6G2eRRde63Vad43YtBWsrQaMuYNFHY+kwbBIVqtRzeJ1RELKysli4cCF79uxx634i9yf3vSicPHmS+Ph4AgM997v7RNfApwyXDppzfvYz+Fd7gOgyFARnSHyDy6zampc6lyI7K4+suXLlCo8+8Qyqdk/a3dVtb1VSzoW/CahuP420O5Obu8Jg8I8goGJNspNOE1SprtOcTOB8M5o9MSiSq8g+9Adpe5ayc8cORj37KiFdXnA5fnexJwwV2wzj6tb5VH7kf6Xu3ygIDw54imqN2ztsZxQEgJkzZ/Lss8/apJMRKV/c94HmrKwsYmOL//G4shKMeLJzuaRoctMIrP3gHb/PnUJ//TgN69Z0eD45OZluDw3B0HI83kHOYzPmFGUl4xNdo1SuD3ffjMNrtCDtwgHLawNj7X7sYW+/hVYVSPatK1z5YTw9qih497336Dv4YRRtJ7idyM9dq8W6XYBfAIqAMHKPFu8st15q7O5LQUkEISEhge3btzNihP3kfiLlh/veUtixYwe1a9+5UpslRZ18EUXLga4buoEgCORfPUnh1m+Q5KehMxhQ5+WgDatO0ND/lShtsfGN2tFE5pWbTOvm/eye02g0jBgzHknzUXiHlCADrZ1cRSUtJwmOrQXvSg0o3G6/doXT/uwIARTHQ3L2LCBMfYV5K5Yy6ZXX2XQqhdhx3yOV2U8YWFqsLYZK7R/j4srP0QgQ0qh4ZZg7LiSj66gkgqDX6+nXrx9ff/21WHLzP8B9/xvetm0bffv2dbv9v2ElqFOv4COXkrr+S7Q5aSXqQ1eYy62N33L2nXakftmH2hfns2z6q5zcsZqzu9Zy4cBWgm4do3DjDKf92Nu4Zj5plWQCe3bSZK4FNsLHzLftqP87hbsiogipSG5Bvst29jbaaVWBJkEoTLlM5oo3eaZPU35b8BP9Bg0lrVpf/DtMMAnCv4FU7k31ga+iuXmehF/foujWVbeuEwSBU3vW8MOr/T0SBID333+fwYMH076942tEyg/3taWQnJxMcHCwTQnOu01h4iEmvTyZjm1a0HfogzT45BAypa/dttZBY036NQoOLke9fwnPTRhH36e/p3HjxjbXyeVyTh49RKtOPUlPuYR3ZFW3xmZvwjYGhN3hyxlfsXrHQSIGvO20X1eWiDWeBEzt4cha8IuuTsGtK6hquZ+4zXrMuae3cfG3D0hISCAqKorIChUJG/YxPvENTUF0c/G9k9aCMYNqpY6jyMnL4trqL5D7hxLQaiiq2HrIzJalCoJAwY1zpB9awzeH/6BKgwcZ9e5ip6nkrQUhISGBXbt2sXHjxjJ7HpF7m3trNvWQP//8k/79+wPuxxP+DYqO/smouZ8QHx/PLz98y+R3B6Go3wtZVC184hpi0Gu5snMpuUfWIgjFKRn0eZnoclLxV3kz84tP6TRjBxUrOl/CKpFImPHxuwyf8jmK/u+ZjpdkU5MrYVCr1bzwyuus2rqf8H6vW1RGczYBWvcrlcnR5WehVPqVekmlddDZHOPErAyKQp15w63+rJ9f6+1H/qE/yNn5E8nJyURGRpKamkpY7Zb4miXuA0tR+rdQhcdR/eH3ybmVRNbpHaRv/gGDXodM6ccNiYCg06AMjye4YRce+3wdXgrnq+msBcFgMDB8+HDmzp0rVlb7D3Ffi8L69euZNWuW2+3/lQBzVgpKdRrx8fEA9OvTi/Zt2/D333+zZcde/vzuA86fPoE8shrKuAZIJFIkCh/86rTHKyQafcIBprz/GQP+Psg3M790eb8WLVrgW5iCTp2HTOlXqrE7Eobdu3fzyLiJeDcdROSg9yzae9qvMiIe9a0rKENt81SVpbUAxZO8XlNoN4Zhjk1SP6U/2uwU8td8TPNqkSy5nmSyRn19fSm4eRF55k0UwRVKPFZPsbcayYhPbB28q7cEbqc8Md8F7ywFthFrQQCYPn06Xbp0oV49x8tVRcof960oZGRkkJiYSFSU+ytf/g2y1n/BrI/esjh26dIlvpn7C5euXCO/Zm+qPTYPL38Hyz0r1sbQYiiLZw7hTO+BzPj4XerXd7557rnxo3nrhw8IcRF0LolL468NGxj66FgqPVbspihpX0Zh8I2pQ+apbQTValNmG7DMsRaGvOxb+FWq75YbS6f0RxAE1Ge2Izu+jGWzv+KBByyL5Pj6+rJk/lyeenEKeVU7o4hrjMKDTYl3sm50WbJ+/Xpmz57N4cOH7/ZQRP5l7ttA8+rVq+ne3b3ayP8WgiCgTTxA69atgWKXyzMvv8bDL7zHlWrD0D/6I/6dn3QsCP8glSuJfmkVCXVG8tDEN6nVpge1HmjHhBdeYc2aNSQnJ1u0HzPyUYJyLlN4arPF8ZK4M4yTvZB1g5CQEJ6f8iZxo2eaBEFemF1if7m8MBuf6BrkJ51CX1Rgd4yeur7sWRbmQqO+lYgywnlKBmOqbm1uOum/v0lc6g6O7NlqIwhG2rd7kMO7NvNqt8poV75Fwb7FCAZDmQvcv4W1laDVann33XfZu3cvvr72Y2Ei5Zf7VhR27tzJhAkTgHsnnpC6/RdaNm2IXC4nOzubB7v1Y6ekIRWeXoI2rhlSsxTR7uBboxU+I7/Ha/R8pGN+YZN/N55ZfIxWPYfQY9AI/tqwEb1ej1wu58jB/ciPLEGffMFuX55M5F4FWUjUWbzz0adQty9ePoEe9+EIRVEekQ8+zM0t8xy2KYtaAcYJWpubjtxBTiDzug3Zh1ZxYVp/Jj3cnY1rV6JSOf9dKZVKxo8bw7mTR2jkk0b2769RlJpY6nF7irkQlcR1ZC0IarWa4cOHM3nyZEJCyja5n8j9wX3pPsrIyGDnzp33VD53QRC49utUft+5lcuXL9Nj8GMEDv4fwVWbl0laCqlciapSfahUH9qPIyHzJhNn/YzP1Pfo2a0zk59/mj9+mU3dunWp8eJveIeX/Lspykom79Z1dh1TEtynuIJYWa6mCatUl/TDa1GnX0MZGmPXjVTa+AJAbvp1FBGVnb7B64sKUO+Yg9e1I1w8f84UC3IXLy8vfl/0C/v27aP/4GFoancisLnjGhn3EtaCIAgC48aNo3fv3gwcWDZ7bETuP+5LS+GTTz6hZ8+eHm+3dyfgVlKyDqxg1Ogx1K1bl/c/nY53t8n4VrWfzqEskAdXQNl+PNr+n7HkVjQPdOjJ0WPHOXXqFLot05FkJ7vuxAFF6VfJycvHr37vUrmLHCGRSIh88GFu7VtmOmbP1VVaiyF120+EtXnY4XnBoKdgzUd8MnEQF8+ecksQ0tLS+OzLr5g2/SuOHD1qOt6yZUuuXr5A2xgZxz7qTcaehcVB7n8BR+Lpyd+7Wq3m5ZdfJj4+nrFjx5bV0ETuQ+5LUTh16hRTpky528MwoSvI4dYfHzDtw3fYsnUbu84mm3ab3qnkdcaUBjKfQPxrt0M1ei5vLdhGr4HDGNyzI/l75psqdXk6qSf/vZLgBt2RxzV0e5+BpwSFxaBOv0aR2XJRR8LgShzsTYqFN88jkUhRRtnfv6FT+JG6dCpvPzuawYMGur3kcuT4Z/hiXxZfn1MxePzLdO07mM1btgKgUCj4ed4P5OXl8d7TQ0jb/DWCB7WVywJ3a2+YWwnXr19n8ODBNGrUiA8++OBODU3kPuG+E4UTJ04QHx9f4lVHd8JayDq8mr49uiCVSnn+9XeJeGwGEonELUEQ8jNtPu60t0auL8Kn7VhUAz9h4R9/4ZVxiZt/fuSwhKMzCjJuENhqmMfXeYJEIiGu3SNc3zDb4rij4Lg74mDEoC3i5qrpRPV4xuK4Xhlg+hQe+J0awTD6Mfdz+cxfsIjz2hCCWw4hML4BvgM/4mqtEQx74nk+/mSaqZ2vry8PDx/OqEG9ubr8PSc9lhxrsS5p9b3ffvuN4cOHM23aNB577DFxP4LI/RdT2LNnD23auL871R69Q7VltmdB0OvQ7pnLzD1bWLVqNYYa3ZD7hbgtCM6O67RFaFIuASBTqFCEVbLYNGbEfLJUKbxRDvkf6pTLpM6ZiAEvKnd3v0pWfvIlJF4KvMwKCpX1Dl0jvpGVkXmryL92Bt+Y2/mrnC1VdRRrMB4T9DpuLPuQ4A6jkUXXwt57esGJDdRSn2TVRsd1u825dOkST734GpcKVXh3f9ninHdoDFGjv2bmL1PYf/gY8+d8S0BA8VjeeesNvvpqBtlXjhEY19Be16XCWazE2cvP5C7+6HQ6hg8fzoULF9izZ4+4ykjExH1nKWzZsoWePXuWup+ysBgEQSBl0Uu8+sLTAEz9ZCbBHdzzx9oTBMGgJ+/sbq4veIXEr0dyc8ErFJzbQ+GF/aRvmUvCjBGkrpuJNivFad8SiQRVVFVqjP+O9NM7ybjwt9vPlHlqE8G1WtscN88DVJbEthrEjU1zTDu73cGRxaBX55E092n8arcjoEFXu210eZnod37P8kXznaZHMRgMnDt3jomTXqHT4LFcrjMaZa/XkMjkNvdX6LVEDf6AM37N6NjzIX5d+jtQ/Hs4fPAASTsWYdCX7u/NuHHNOlmfuUC64zqa3MWfxMREateuTY0aNTh69KgoCCIW3FeWwvnz5zl+/LipFnNpMRcGTy0HQRC4MW8iFQ03Gdy/LzXrNyZs8Id4+bgugmMtCIJBT/ahVWTuXoxP1QcI6/ok3pFVbK/T68g7s5PrCybjV7sdoR3H4KW5nezN2vUSGBBCzIPDubppLqqQaFR2dhEbMU74+alXCWjUy2m7srQavAPCCWnUgyt/fEpsr2eReRdPUJ5ubCtKvsiNpe8Q2e9lfOIbOWyXv/Jd5syc7nDJqcFgYPHS3/ho+rcU+VZAV7snviPHmNwq1oJg/p37xNZHJ1Pw5re/sXT5H0z/9CPi4+OZMmUKX34/k1rthrr9PJ5g7Tpy9sKj1Wp59tlnmTVrFl26dLkj4xG5v7mvROHKlSt3bGWEvX9IzoQifd0XjOlcn4njp9OhZ38C+07Fr2FPjwPL+ZcOcGvtDHxrtaXSkz86TJwHIJF54V+vI351O5CxcwHXf3yG2OHvI/VSOLwm6oG+ZCUc4dzS96g7chpyX9u3SXMLQFDn4hNVzemYje3LShxCG3XDyzeIi79MIajWg0S0Gmy3aI89BEEgc/cick9tI+axT5EHO07lnX9wBc3iQ+jZo5vNudzcXH5btoIvvvuRwtiWKAZ9ibdChXm2IHdiGsrgKJQthnEu5TKdeg/ip+++5PVXJ3Pg4EFOXzxCZDXb5IaeolUFlmij3EudfGnWrBmFhYXcvHmz1OMQKZ/cV+6jNWvW0KlTJ5vj9vK2lAWO3riyz+/jxrqv6dOjCx37DIaebxPc3LN13YaiApL//JTM3YuJGTWd8K4TnAqCORKJhNB2jxHUuCc3/vi4uJ6yk93LNQa9hszbh4S/bPNEmQuCNi+TosJ8VBWqmTZ2mW/wsndtWbmUAqs3p8bYGciUvpyf9wLpxzY4DZIXpSaQsWsRiV89ir4wl0qPz3IqCAaZnMKdP/LN9GkWx7du286rb71Lo04P8f6ma+gHTkfZZrTNRkN7gmD9nZuLpG9kFULbjGL0Uy+ya/dufp73A5HyXNIveZ42oqxcR/v37+fmzZscPXqUDz/8kNmzZ7u8RuS/x31lKej1esLCnKeIuNPknttF+i/P06dff4Y8+QohI+fg/U9iNHethKwDf5CxazFhHcfg33ByiVZ8yNQ5BNbtgDY7lZtrviS28ziH/Uhlcvwq1ib/5nnTMXuTuV6di0Llg07hi3VP5sJgPRmWxnIwH4dEKiOsWV9CGnYlZfevXJr1OH5Vm6IIiUEeGEFRagLqlMsU3UpEHh6Pb802VHr8W2Q+jidEo2ul8NeXmf3VF+j1etr2eIhCjQ7BYCBTEoCh0SB8xz0OTlY+WeNMEExtFCpCWz/GmKdeZMrzE1i/djXtO3UlN+06/mHu50syx9WqI0cvMpO7+NOnz4c8/vjjeHt7s2fPHp566ilq1KhBhw4dSjQWkfKJRHBjzWJOTg6BgYFkZ2ebVlbcDZ544gmmTp1KXJxtLps7lerC3IWUc/EAR95sT3y9Bwga+CEBtdqYJmK3BWHf7xSc2UnUoDeQlKI4i/lElbZnKYasm0R3uu1as56kCm5d4eyv71Jr2DvIK9km2NMp/Sk4vJKaRac5laPEv9vzLsXKVW4lZyLhysLQKf0xaIsovH4WTeYNdHkZeIfG4h1RGVl0bSQuKoCZT5YFW78n4to2NBIFOUUGpA99gCLM9m/I0WowZ3EEI9bP6lV4uy+9Rs3NPYuJ8IG5s7+lbfuONOjztMtnAFsrweg6MloJEt9gt9JaPFwrm2bNmrFt2zZq1SoujpScnMyAAQPYsWMHcvm/VyhI5O7g7jx+X7mPzp8/T0yM42DpnUJXkM31ueM5/k5nqvd4nJjJ6wms/aDHgpC5cyE5R9YS9di0UgmCNVFNepJ/7QyanFsO2/iEx+EXXYPrB1fbnDNaAVJ1Jm+/8SpP9GxK4a65Fuv6jR/r69xxL9n7OMM0Hrk3vvENCW7ck/C2jxBQpx1eMXWdTqYS32CTIAgGA6mrv+DmmpmkVmxL0cNzUY77xa4gOMKdOIIrC0mmUBLTYQyGsDqMeXwCw4cN5eaZ3W6PwRGeBJjfeecdqlevbhIEgKioKB599FG++OKLUo9FpPxwX4lCYGCgx6ktSkvehX1cnzkY9eUDNP7fPqJHzUTmYWI7gJxDqylMPELsk3OReilMk5f5pzSEN+9PxtENpp/tTbwVej1L1qnt6LVFpmPmE7o+5QIxMTG88cpL9GsQScGG6TZ9lFQg3MHV9a5yIZl/h+prZ0j8fCBZu5dQaepmfDpNdBq8drfofWkK6fiGRqMPjOfw0eMIeaku27uyEsC9WEJj9mMwGOwuPR0/fjyff/45SUn3R0pvkTvPfSUKzijrYHPWreus/+5l0n9+mpjQAMJHfotvbB2bdu5YCfqCbNI2fEvU8A+cumTcFQh7b68B1R4g+/xei+Cs9du5MjgauX+oKUOp+QSs8/ZHjpbo6OJg7ecfvcewB2Ip/H0KgkJld0zuCIQ9sXB13tF9HGH9nWUfXEnKymlI5N5UHP0l8qB/t+aGuevImoDomhR5h5OZloJeq3HYzlFBHSOeWAlfffUVY8aMwd/f9juWy+XMnDmTxYsXO72fyH+H+0YUkpOTXaYzLiuunNnP3Je7MfXp4Tz11JNkx3cioGYrm3buuo2Sf32T8L4vI5Ur3R6Dp5aD1EuBd2gMmmznG9tCm/QkN+GIpYWgDKDg7E6qVoy8fX+JhI/fncpXb0ykcMHTGLRqp6LlSCDM8cSScKc/sPyeBIOBzF2LyD32F14+AQS1GoZvTduNeHeboPhGaAxSTmxa4LKtMyvBHa6c3k9QUBBNmjRxuFlv6NChrF27Fq32ziWMFLl/uG9WH124cIFmzZrd0XsIgsDOXz9DlnWev/fuIjs7mx+Wb6LCRNu3KE/iCF6BEfjXs11KW9Z4B1VAX5gLTt6MA2q0JOfYWgRBwGDmYvJKPsHjo23zHfXu2R2NRsPTH0wgZPx803GLydjK9eJo4nK4E7kEKbLtCVPG1h/R5dxCWak+gkZNUIuySf+syUqhIPEo6tQEhLwMABSBEfjFN8QnumaJ+qzeuh9H18xBU5iPQmXp1rG2EhytOHLlOjLo9Wye+xrrV/5OdnY2CoX9/SxSqZQhQ4bw7bff8vzzz3v6KCLljPvGUgBcroYpjQtJEASWfDQaQ8pxlv26kNRbtxgy5mlChn7q1ioRe+Sf20Pu8Y1EDHijRNc7shYcTaJ6TYHLesQGVSBRkVGorYrxSLx9iY2177IY8FBfVHk3kCefsTsRuRsbsRe49kQQnN3DoCkk99h6fGu1oeDiAcJ6lWxyEwQBfX4W+Rf2kbJyGpe+e4Kba75EX5SPf42WhHYcQ0SrwSjDKpFxdAPn5z7LlU1zyU067VHyQb+QCsi8FFw/vcfiuLkgmO9LcGYlOHIdHVr3I08+Ppq4uDg2bdpEjx49HI5n/PjxLFu2jIsXL7r9DCLlk/vGUrjTbPrhNR7q3Iw3Xn2FvzZsZPDwETT4YK/dUo5uxRHys0j942MqPbugVJknJb7BLoOgxrrERRnXUYY59kXrlP6QfYuIiHCSs27vaHXHVbXgx+8Z9tSrBL72l4Uw2Psu7PXnbiDXkzGZk7L8Q/wbdCd1xUfETpzv8XcuGPRk7FxAzpG1yENjkQdH41e3IxW6PG6ThNBL7Yd3cAUCa7ZCEAxoEo6QdmobSTsWEN1qCEFVGjuNK0DxC05IbE0Ksm+vGLMnCCW1EpLOHuDqodXM+3AVANu2bWPSpEkO28vlcn7++WdeeeUVli5d6rRvkfKNKArA3mXTqRou5+2pr/P2ex+ycfcxmnx5Fi8f2zczd91GGdt+IqTjWGR2+rhTGDSFDlNemPvyK8bEkp5RnH3V3cm3VatWNKoZx43Lh/Gr0sR03JVAGCnt6ipn6HJukXd2FzKf48SMn408KNL1RWYIBj03l3+IIjSG+OcWWYiAAefLUiUSKd5VmhJfoRq6wlySdiwk88LfVHtwsEsLs0LNZlzavRxwHlj21EoozMti3bcvcmDPNnx9fTEYDJw5c4b69W33p5gTFxdHeno6SUlJDq1GkfLPfeM+KkldAHf6PLt3DYa0M3w943NGjXuSI1cKkY+Zb1cQ3O7XYCD32Hr8mzhOLFfWFElkSNwQBIO3n+n/zSdqlQN/szlzv/6c9EUvoM1Nt3s+LCDQ4vNvIAgCV2Y+ilCUR6Wn56MI87wM6a3VX6CsWJuwjmPtpia3t7rKHl4qfyp3f5KA2Dpc3mYbRNYHxlpM/oERlVAoVWRmW1oV1sFlI+5aCTsXfcxLz080JY78a8MGgqq1drnBUyKR8NRTT/Hmm286bSdSvrkvREGv/3975x3fRP3G8XeSjnTvFlqgZU/ZyN4bRAQFVFwsURHFLQ5w4ESZCsJPQVkiW5ZM2RtEkL2hLdBBd5s2635/1IQ0uSSXtIWC93698oJe7r73vUvy/dzzfJ/n+Rpo3749hw4dIiEhoUTaFASBjbPewnhtB2+/NpruvfuiiGlBVrcP7LoeJGct7/mVgAY9HBaqcwV70T6W5F76C98qTYpss472MR3j4+uLPum271jqAB4REcGi2VPRzH0OQ0Ge0/2tRaI0RCN13SR0afFU+3gXHi5aI4Jex/VF7yIIRkI7j3DpWEdRVGF12qLyUpNyZp/o+yZxMARVxD8wmILrp263K+I2csVKyLp1k9ykc4x8vvB6jEYj3075ntptHwMKM/9NLzEeffRRlEol+/aJ913m/ueecB+pVCqWLVuGQqFg+PDhFBQUMHr0aDp37kxQkGuDiyAInD24ke0LJlA+KoL4XD/e+2o2jfq9R3TVB7gi/hAsWRCMWg3puxcS99Yql/pVXDL/2UJEh2clhXyq1T74+3iJLkDjjJYtW/L1J2N57a3e1GzTn8bdn2VTjntWVXGEQRAE0v/8gfTNM2kwfjMB4eVcqlCry7jJ9V9eI7jVIIKaPVK40cH8jUEd6NCNZF1SPLrjUM4sHEtYtaYoPexnr/tHVSb5/F8EPdATZXhckffcsRIOrP6BJwc9an6wOX78OHqvEMpXqWezr6UwmII0FAoFzz//PJMmTaJlS9swbJn7n3tCFKDwCQagf//+7N69m507dzJ37lw0Gg2+vr4YDAa6dOnC8VvBVG3U0ezPNWi1XD19kJSECxzbsYLstCS81T606v0MtVo/gn9IJGrfwh+EvVLZrgw2BTfO4VerTYlZCSYcTTgbCnLRpiWijqxs9/giT5sWlpA7A3OXzp04enAXv8xfyIKpQ8nXQf3uw6jetEuJrWjniLwbF0iYMRhtdhp1X/2FgtDKFLjyGSVd5MaCtyk38BPUFesWec/hfbYSBtMEvxhKD08iarXixvE/iWnc3X5nVF40bNyEVI/bZbot3UYGdaCoINiNONq8iA3zEwHIz89n+Euv0fu1n+yf/18mbsk2C0OLFi2IiIhg3759sjD8B7lnRMGSNm3a0KZNmyLbsrOz2blzJ4az5/junR7k5ORgNBoRUOAXHInaL5B6bfrQoH0/IipUt2mzxAYzwYjC09v5fiWAaZBK2fYzYa3sL+BiKQgGoxGPf0uFFOdJ3cPDg2FDnmXYkGdJTk7mk8++YtYrH9N+8PvUfLA7CoWiVAQi++xeNL+/z1P9erDmsgJdFdeWZtVcPUbS8glEPzvJbg0kd4XB2loIb9aXc4vHEV6jGd7+oaLtKSNqcPPSNjz+7YoUt5E90pOuUb9hY5RKJSkpKXTp/hAtHn8P/5AIScebLIe3ugTQsWNHvvnmG5YvX+5SH2Tufe5JUTCRnJzM+fPnycjI4OTJk+zbt4/kPBVdh35CjQelL9npaPByddGcgqRLeAaXd+mY8EDnq7WB+GBVoDeQd+0E5XqMEj3GemDxuLyHx0f3Zs+R4y710RGRkZF8N/VbMjMz+fCjCfz64XTqdniC3l2eKrJfcURCMBpJ2f0rvscX8fPMqXTrO4DIV1fgSiUsXfp1bi7+kEqj5zsstw2uCYPdNpQqQqs0Ji810a4oGNVB5ok9kyBYV0EF51aCXlvAummjmDd7KgATv51Co75jqNbY9aTJiVuyefPRR5k0aRI6nU6uoPofo8yLgiAInD59ml27dnH69GkEQeDatWvodDp8fHxo0qQJAQEBNG/enOHDh/PTX659gUtSEAC0SZfwqynt6dXyh276v6vnzDi0kqBWg4oMVPaeMBV+ISAUFkZTiUTZFJegoCCmTZ6I0Wjk5VffYPOP71Gv05OUq1wXhULh9vKnBWnXSVn4Gj2aVeeztSvo0udRIkb9ipeD5UWtMeRlkvDTKGKGTHMqCCak5IiAY2vB6C2+cJJpQlnpkUZWZiYB6gC8EZ9HsMSe2+jo5gUMeKQXDRo0YP/+/ew9fpmHX3vHad/t8c3WHAYPHsywYcOYN2+e2+3I3HuUWVG4dOkSM2fO5OjRozRo0IC6desyevRoFAoFUVFRohUfXV1ToTiCYD1YmH7ARl0+HoHOFwKy57pxZjVYDlSG/Fyyj20k9qXC8hPOisYBCCkXRWPQK6uNTvssFaVSyYzpk1mx6ne2/LmUJfPGEV6hRpF9TFWgrmsLn5MFDzVCxab4xdbHJ+r23MjZGcPJP72VbZv+oGHDhjwz9HmSI5oSEFXVpT5dn/8mkQ+/jVdknEvH2RMGqdYCgMHb32bVNBN+5apyPjmZsKDIIvMIljhz8+VkpHLl4O8s3L6J/Px8Xn59LA+9MbdYSZMAWVUe59b69cVqQ+beo0yKwpkzZxg8eDDffvstX3/9dbG/3K7iqiCYtklN0HL2I3dmNZgGqpQ/phLWeQRKL8eF9iz7pUC4Ywsl9X+kL/0f6UtGRgZpaWkO97106RLb9xxkzYJpJOQruf7PbqAwGiYhIQEvLy96D3yaM6k6/B//xGFb1p9P9qkdqALC8Kvh3qSpVIvBhLW14AiNALr8PAy+wQAuu40A/vrjRz758B08PT35+edfqNyiH35BYZL7aw8PTy9SchVyMtt/jDIpCpMnT+b777+nRYsWpXYOdyKNpA4Mgr5kqk06sho0Ny+gy75F4ANdHLZRmpnEUgkODjYnUtmjSpUqdOnShU/HjaVt27Yke3hw9OhR6tWrx+XLlxnwzAiu134cv67dihzntARIdiqpm2dRaeRs876lcU/sRSLpNTmoQ8XXjtb5BJF/7R88/13O1R1ByEhJJP3SYbp1+xSj0cisuQt56M25Nvs5soodld2u/OBD7N27l0GDbIslytyflLnktZycHBISEmjevHmpncOdCU+pguAVEUeBxVrI1rga8SO2vz43nZvLPiH6mW/tFoizt93zDi9S5CoKhYLdu3eTm5uLl5cXbbv3pW7DpiS3G4tf/duCIOSmS/pMbq78gqi+b6FS387kdrUOE0hLILTENGmszU5FHVLe5j3T+wYvX1AqbQRBCrlZt1g4rj9zZ3+HUqnkzJkz+IdXwi/wtpWw7pan0++7o30q1WrGmg1bJfdJ5t6nzFkK165do2rVqnfcZQT2rQTJFkJuOuqY2mT9/QdBD/YrsX5ZupOMei3X575KucfGF8nglTqYCNo8m7r6giCQcOYg0dEvmf/esHEj589fZMv23WRlZxMcFEi3zu1RulkxFsD4b6WSAq2WP/7cTVZ2jt19k1NTwS8cZevhVHlsdmG/XBzMc8/vR+mpxjeukc17pWk1mND5BJGXdh1FRGV0IhP75knlfyvbWvbFmZUgCAJrpr3Cq6NGUr16YYj1nr37qNTotnC6+vCz7panzbkiKlZny6mzLrUjc29T5kRh8eLFDBgwoNTad9Vt5OpApK70ADeXfexyv6QQ6uvDsSkjCW7zJL5VXV9bwr8gA78QXxtRyDq1gxqVyvHHho3sO/gX/5w4QVjVZpSr0YzGg7/ALzCMzNTrHDp/zOVzHsq2HQwVCiWBvSaiFpmQN30OvhbbxD4DZ5O8giCQsnYSsc9843g/iXNBrkYhAeTdvIh3aIxoPSWTIOTnZaFQebkkCHnZ6Wya/TYPdWrOmFdfKfKeKWlT7Htu7ztueT5rYVAoFIRVqiMnsv2HKHOisHz5csaOHXtHz1lSggCFi817l69B7rl9bk9simHUaznz/TAqdhhMeNM+gPTwVdOPPv3oXrq3aAaAtkBD6uF15F0/y431U9FWqYFHXDvKN3uGxx6rZdNGUHg0QeHivnFLrAcj53FYrt1/qRE/Oef241e5ER5+weAkVNeVIAFXuHVkLWFNehfZZl2LypiXhUfg7eQyZ4KQknCBVROH8dMPU2nbtm2R90xFI60/A2ffk9SsTIfCEFG1UYnVHJMp+5QpUTAYDFSqVKnUlt28EyUYAKIeeZdrM4dS+Y0VKCzq3ribQazLSePM98Mp33mIWRCs27P+4VufSxAE0tZ9zfWW9anbtBWJ12+gOfMKPuWqUHX494Q3fYiGDiYcrSmJeylVDKyFwF5pCUvyzu4hpE470XbExMGRO8mVhwPz2hbpN8i/lYBfhTrm7ZZY9sH0HXEkCAaDnr83LeCv9bPZuH41lSvbljRZv+lP6vYfx1WLbdb32F4otWk/Ux8shcGUKyTz36BMicLSpUvp2VN6JnJJUJJWggmPwAjCu73I9UXvEP30t8WaH0k7vpWrSz+l6jNfE1j9Qbv7OROcC3PGkJVyk71+owke+SERIq6bOyGarkR3uSMGJvJTr+ITVQXlv8dYDsqq/CyHVoNU7FktenUAidu/IqrnaAw+tucpcm6vQkeZI0E4d2gLi78cxsiRzzPv2BHRZTULCgqIv55ChjLOvM3yXtu7LmsxtLQaTMJQrVEHNs8azbhxok3ck+h0OjQajfnvzMxMG2soODiYqlWr2l3G9H6lzIiCIAjMnj2b1atXu3W8q4lrpU1go14U3LxI8u9fEdn3HZeFIefaCa4u/xyV2p9676zE099990bGyZ3c+HMOrX5KwkPt6/yAEqYkhUBq/L9SEFBa1KDyyM+WLAzFJefCIZReanytiu2BlYXgF4LCU40xLR5tVgpegREIRgOanAxS4s9z+fhuks4fIMTXg/17d1G3rm17JrRaLfm+4Ziu0J4gWN9fU38sXWjW7iS/wDD8Atxf6rYscOLECfbs2cORI0c4dzmRhPhrlK9SBwWFv0tPtR8B4RWK/E5zM5K5dHw3FSv+u0aHAmrVqE6DerUJDQmhX79H7ssSIGVGFC5evEitWrXw9/d3vnMZxdr1ENFzNCl/TOf6vNepNfhTwPHTvF6TTcr+FSiPrsDT25enh71D+cqmgaDw6dHVp3mjXsfpqU9S7+2Vd1QQXM33cCQGUoXAGk9NZpECcyUpDPasBF1mMklbfyTOaoLb+jym70poUBBdurfn8MwB+ARHoBa0HAkLpUb1ajzWuhqt337CHF3kiISEBAQP20KMpnttr7+WLjWxuZV1tzzpEaQjJTkZQRDuSlSgOwiCQEJCAosXL2bz5s1UqVKF/OiORHcYQ/WBriXimX5zRl0Bh26cZ9eFyxiu/cUH38wkPNCX8W+Nplu3bvfMvXFGmRGF9evX35fRDRE9R5Nzehenpz1LUJ12RLUehDoitkgWsiE/h+Q9S9DsmkOTrk9S/82ZditbWrsWHImEYNBz9rMuBIeXJ6R+55K5IDtImfQurlXgbN1jE5YlJUxtmMRBTBjAtYqk9gZYoy6f+N/GE9NvLCof28WNTFgOvMr4I4yb+A7VqlWTfH4x1q7fgOqBh4Hbn4WYIFjfY9O9MAmkSRgsrQWVhyfl67Rj27ZtdOrkeoG9O4kgCGzbto1vvvmG6OhoevXqhdBwpEsDtr3flNLTG/9K9fCvVA/+ndvTZqUwesrHaF8ewy8/zaZd2zb3vDiUGVFYs2YNGzduvNvdcBtH0StxzR9CaNaLW0f/IH7dVApuJRZZeCVMkU/1xp1oPWkjHp6u+S/tZaOuu+VJ0sbv8dFmEDTomxL9orpStK+4VoFUIbA5RqvBqNeZ77Ol1WAtDJZ9ciQOjiKfjLp8rv36AZGdhqK2qK/kSBDCA4P4e98a/Pzel3ZhDli5YRshz86322d78zEeFnMu9iyndbc8qRBdnQsXL5VZUdBqtWzatIm3336bAQMGMHv2bH49E8RFQOo33505Na/ACKKf+4781HhGfDIeVeb7PNG/D4P6P0zNmjVdbq8sUCZE4fLlywQFBRUrMepuIiWcUaFUEt6kN+FWIYqOSgy4S0rCBTJ/fJe8+HMEx9RkcMf2rHdcesgh7lSLdSYGxbEKVJnxNtusF773DgpHn3QOr5jbfnhrYQDbqCCpIa+WmAQhvNUg/Ks1u90nJ4KgzUqhYdNmlC/vWql1MbQ6HV6e3jZWAjgWXTGhFLMWajTrwutP1eH5EcOL3deSIjExkZUrV3Lp0iUOHjxInz592Lt3L/87rOLXM9LaKImFtQDCwysSPWIOgiCwbP8SFo/5gpC8RF4d/QL9H+lrkxtUlikTPd24cSPPPvvs3e5GEaQWQXMmCI6iglwRBEEQSLxwjBtnD5GVdJm0xHN4e4l/oYMD/Vk4ezIDnhpK/zd+MJetdvVJqDTEAFy3DMREwN4+JnEIrliX1POHqBQabeNOcjTP4Cq6rBQSln1KRLunXRIEAM31c3Ru7noSojWpqankosY0G2fpNjLda3vzMpbuNdO+YvMLPn5B1G3SVrSNO4kgCKxbt47Zs2djNBp54oknGDlyJOGd30Xp7cP/Dktrx5XkPnvjgOX9sQzpDW05CFoOQq/JZuHG6Xz+9RSGPzeYYUOeLbVw+5KkTIiC0Wgsk2Ff9oShJKqhShUEQRA4sv5HzuxZRevmTRjQrjUNG/ahQoUKDr9gb7z9HrWa9ypSLVOqMNxLYmDvmNDKDUg88gcxjbrjQbpTYQBbq8ERgtHArb1LyDzxJ9F938an/O3JYEeCYD5eEMj9ew11Hm8l+Zz2+Hn+IjwaD3Drc3OGyVq4Uzk+9tDr9cyaNYvVq1fTtm1b5s2bR3BwMBO3ZLM6HqQudihFDFwpa2NCLHLLwyeAzC7v8cRjr7Nr489MatCU76d9S88ePaR19i5RJkShLONupmtJCELajStsnv0mA/r2YPGBHZLmBXQ6HW+8PZbjl1Lp9fI0yf0tDsURhJISA2s8shOp+OBDXNqxkGpdhuKhcSwMln10JA4mMcg4tonghj2oMmImCpX0n5Hpe5G2/hs6V1Ix8LFHXbksUVas30LIM/NIyy8wbxOzEuy55PQ+Ieb7YWktWBMQUfGOl7swGo189dVX7Nixg8cff5zly5czc7/wr0UgPQzdHTGQ4kq0DOkFbNxuAH9kqOndaxjVH+zF+x+/QFxsLLVr15bc9zvNf14UpC6F6Up7jpAiCBkpieyc/xFqNCz431Rq1bItOyGGTqfDy8uLXs++Ra+Xp4mKiDNrobiTyGB/7sCZdVASYmBJeEgIOUGRXD+6iZjG3SUJg3WfTQhGA6ln9nJr/zKCG3Sn6gv/ExUDKVaCLisV7T/rmH5oN6piVq01Go1kZGUT6aWG/AKbz8SZIJjesxQGE9YupIiqTYiPj79jopCfn8/jjz9O9+7d6fzmUlKAmfsFl9pwVQwczXtZY5qcB9t8D2thAAgKL0+3FyfzxjsfsO73ZWU2SqnMiIJOV/ITrlIpCWEoCTEw6HUcXvcj8X9vYO6s76hTp45LfRjx4isM/fRXarXo7XznYiJFECy504JgIrZGAy6dPMDlXb8R13qAqDAAouJgIvPsXm7uWkRQzVZUH/wFKm9f9C5YBybCA4MQBIErk/sx65tPS2TyMTc3F0VguSLfX0srwV3EIpGO5XpQcrV/HXPy5EkGDn6OVoPeIad6d5ePd0UMnAmB5XfXnttR7H6JCUNYdBUydN4sWvQrgwc/KfVy7ihlItynefPmzJkzp9TP42hgdqcuUXhgkPnl7nlN5GWns/zLp+lSL4S92ze7LAi/zF/E9WzlHREEqdgNg7QQBFVmfKkJAhRW+YxrPQC/8IqcWDGR9KsnUOXdstnPU5NpG5mTfYvLSz8h68Ihqj0zkXJtn0TlXZgA6O6gm7rkXd5+eQQP9SoZv/Ku3XtQhBXWQXLHSjBhuY/1tVkOpkZjyS3bao/Tp0/Tf9DT9HnjJ2o0c00QxNaGSM3KtMnwFnLTUeVnFQnZtXS3Wb4sEXvPdJypLbEHJss+dX7uY3748WeXrutOUiYshSZNmhAZGcnmzZvp2rXrXeuH2OBuXSjMFaSIgSAIHFw9k4S/N/HDlK9p0qSJy+e5ePEi036Yy8BxS10+1pLSmKgE53MIpY0qM57I2q0Ijq3L9b82En/gd/wiY/GNqQMWJryXfygqtR8GrYb0a6fITTxNTLcX8IsRd9+5GrmUc/UfovXXefWlqcW+JhPX4hPICquJ6RlVih/cOlLLEnsuNQD/yo1Zt2kGjz/+uNv9dYROp2Pp0qV8OeUH+r75E2HlbYv+2UNKaKmYm8idHBkxF6TpuyAlSz4wrBwqj7IXWGOiTIgCwJdffsmAAQPo3LlzqeYruBqaWVpiAKDT5rP082cZ8FBHlkzd7PJ1C4LAt1Oms2Dxcnq/+gPKYvqnS3p+xRmlaSGIncsrqCJxbQYWRv6kxlOQlYrBy69wB8FIbtIlBKMRhUJBaKW6xLYZhEKhwNGnKVUY8i4d4eSXvTlzRmIAvUQ2bt+NV/Wi4dyWA50jN50qM15UGCyxnFfwKV+NM8vtrypYHC5dusSgp4dRsWE3+r8zT9Ia01LnxlwRA1esKpM4iAmpo7mFsk6ZEYXg4GC6devGvHnzeO6550r1XO7E7EttVyrJ8efZ+tO7PPf4I7z68ktunW/BggWs2nqYQR+tcDkTuri4uph9WUKhUOAfUQn/iMJCZ5ZPfmJImXcwIfakmLtvEZGXN7H96lUqVarkZq9tyc3NZeP6NVSZ+JVd11GRvhVThBVKFUrPkq+f9fvqtXzy9VR6jJpBcGQFh/s6+926Mm9QXAvWen6quDkvZYUyIwoAY8aMoVu3bvTu3ZuICPHaPyWFaQAvjjj0DtORn5dNwtm/uPb3ZpZdvwgURkcIgkDlhp1o+tDIIscIgsD2BRPIS/yHn2d8Q/369d06t1arZfbs2ezYvp1J2/LcvgZrXLEW7jVhsPdkbP3jtoc9cbA3GOhz0tCu/5Jy2gS2bViLWq222ac4GAwGKjS+XdPKnWxsR9aCmMBl6AtzBkoqQ/fcuXO8//EXDP70dzy8xJMNXBUCkG4duBMS7cy6ckZeVho6bYHzHe8SZUoUPD09mTRpEv3792fr1q0uJbS91SXArfLZlk/3jr58lvtpNbmc3L2KpQfXEqhW0bxZE1548znq1atXpJTukOEvsPyb56ncoH3hcXmZXDq0nqcGPcqYOV8UKxxx7NixvP7662614cxSup+FwR7WLgFH2MtxMAmD9txeCpLO43F2M7Mnf1Fq82Tx8fEYVV52S1pYT+g7w5E4mtwgqmptWblyZYksmZuVlcUTzwynz2uzRAWhuGIAtoLgyDqQaklZCqnUBwpL4s8eoVePLi4dcycpU6IA0KhRI3r27Mny5ct54okn7ui5Hbl/cjNvcfHIFk7tXk7S1bO8MPJ5Ji6YRUxMjN1jfpo9g02bNpGXV/gkr1ZXouPXrxQ71V2n03HgwAG++uorwH1BdITJDypFHCyFwaAOtHli1fkEuV3+uqRx5kd3xWowCYNRr8WoKyDr+Cbyj6+jQkQwH7zzJj16jC9x68CSeb8uRVe7F94UtRJK4l7bs34Cm/Zj/q/jiy0KWq2WRwc9xYOPvU1ouVjzdneEABwnnjkThNKc2xKbTzAajfgHlt0lAsqcKAAMHz6cFi1a0LlzZyIjI+9qX9JuXOHkntWc2raIMa+OZuqqhYSGhko6VqlU0qMUUtq///57BgwYcEeKbDla8tMSMWGwXsj+XkAwGlFk3USfn0vOuR0IBY77b0SBp0FDdEwMo/r24tlFh22EQKPRcP78ebRard12ypUrZ/5eKRQKSQ8OW/ccwK/PQPPf7txrV10h3mEVuHLlCklJSURFRbl8Pih0ob4wagzRTR+hSsP25u3uFKeTWnjxbgiCPdKunaTOY8Uvb1JalElRiIyMZMmSJYwcOZLly5dLjsopySfm1MSL7F0ykQCPAvo/3IvFkw7h63vnVy2z5ubNm8yfP599+/YVqx13JtulCoQj9D4h5h+lIajiXflRqjLj0QdWwGgotAxzbl7EkHwOY+4t9PnZxMXF4qFS8eXHY+jSxTUz37TM4569ezl89Bjbd+/nn7MX8avWDMGzcKBXeBQVDbWXF8a0eIwFOQDkpiYS6u+N2tcPtZcnA/r0oH3b1kVWXtNqtaTeSsevBCP1pFhICqWK8g90ZseOHQwcONDp/mJ8NOELMj1jaNG+0NpwpTidCVeq8N4NQbDOZLf0Qlz6azOtJ79VaucuLmVSFACaNm1K3759GTlyJLNmzbpjwmDQ69j120QuHVrPrJnf065tG7fbKg02bdpEnz59SqSAYHGisMTcS46shbvpQhKMRoxGA3npSeSnXEIoyKZAqyWmfCTe3mraNWpA3zfeoXXr1hgMBrKzs7lw4QIAhw/fLrup0+n4esr33LiZZP5ba8BcrkBQKinQGVB4qtF7+GGs2g517WcIa1Fo7VovxWnClA4WKeJq0Gal8v2Z3Xw6aTC//TSddm0LK5WeOnUKj/BCt4uY66i4+SCOomjiA91bEMhoNPLBuI85cOYm3UdOdFkMHM1duSoIJYWlkEqJPNLm5xEaHFQmHjDtUWZFATCHpo4YMYLPPvuMcuXKSTrOXWHIzbrFyq+HMuKZgYya83eZq00iCAJz5sxh4cKFJdZmcaOwrMVBijCUtrWg1eSQceMixsxElAjo8nOJjYulRsWKjPhgAi1atKCgoICMjAw2bNxIekYms376hTfe/ZCTx/8iKq426tAKoLB9EPEsXxvfBh0BEHxCbH5AvthGJ+n//dd66UuwX37ZfL7AcCIefARjpcb0G9ybXRt+p06dOrz4xnuoOow173cnXEcmFB5eXL2W4HxHC7KysnhmyDBuZKt49K3ZrE8r+lDjatlqE+5EXEHpWQmWwi82n7BvxXT6P9yrVM5dUigEQXBaYSorK4ugoCAyMzMJDCydxc4dsWbNGj777DMeeOAB2rdvT6tWrahSpYrT46QKg8GgZ/Pcj8m88hc/zZpOgwYNitvlUmH79u0sW7aM7777rsj2kp5ktsQVsRBLGJIa/VGcH6nRYCAvM5WLe1dQkK9BMOiJjIwislw5vL3VGAUjeXn5KJSFkVoFBRpQeSGovDAEVcbDJwCfkHL4hJRDISIEzrDndrERB4snSSmF86zJPbGVkAMz2b9zKzWbtsN36M9276+zUEsxQTBdh84nyNxXgzrQ3DfTIGfU5uO7ZCgb1qxw2F+DwcDKlSuZ+v0sMnO1VG3ag1b9XxYtQ2GJlGg2e2Ig1UooriiY7p/eJ8T8OevVAaL3y/TgpSvQ8O1z9UlJun5XFhSTOo6XaUvBRJ8+fejTpw+XLl1i8+bNjB07lry8PLRaLd7e3giCQIUKFQgKuv0jVCgU9OjRg6ZNm6JSqZi6s8Dmg9Bp8zl7YAPHN/9Csweq893OLWVyXQf41/T+4AOWLi1eKQtXcbTcpzWWoawmi0GqG8lVi0EQBPJz0rl0YC25aUkYjEaiazQmqsaDqP1tn9DEPtXixpubsBxwxIrtQdFFbOxV1wTH4uBXrzPCsYVs/XMbGqUPAQ4EVwxH1+tKWKXC05u0jCwEQRC1prVaLR+M/4T58+ZR88HutB7yDWHRVf6tS3R7P1fEQIpFcKeCGiwFwYRJEOyh1xaw/KvnmPPj/8r8CpP3hCiYqFKlCiNHjmTkSNuEsGvXrplDPwHy8vJYvXo1M2bMACAnJwcfHx/q1KlD06ZNeffdd4mNjaVPnz5MXLXorkc5OWPnzp00adKkRJZuLAnsuZ1cEQZLN5IzBEEoLF995STZiadIT7mBURAIKx9LXLfn8A0KLxPuPmcCURxxEHLTEYwG/ty5G+8Wg13ql2A0kJd2g+wbF9BkJJGfkQQKBR7evgSUq0pIwx6ovHyKWDf2BjmFQoFCJZ5olpqaSs8+j1Kz41O8NGMfar/CNly1Dtx1C91prK1Be1bClrkf8tKQQfTt2+fOdtAN7ilRsIdCoSA2NtZmu3VxuatXr3Lt2jW2bt1Ko0aNStQ3X5ro9Xo+//xzfvnll7vdFRvEJqvFkt/E8hfAeTSS0Wgg5dJxUs8fIl+TgyAoqFC7GZF12hEQbj9HpCwgJhDW4mBy01hnD4s9NWtvJRDhp2bJ7+sJHPy9pD7kJF/h+t+b0Wan4RMaTWB0dSJrt8InpBxKlSf5WbdIu3GJM799TEj1Bwlt/TgqL+fhsBmCN4mJiVSocLsshUajoWffAbR97gvKV33AvN2RILgrBka9jryrx0g/vAZ9XiYKlQdKox6DNh8PnwD8KtYjrFJd1CHS5iGl4qqVIAgCm+Z8iK8uhWFDnhXdp6xxX4iCVGJjY4mNjaVt27u/1qwrLF26lG7dut01K0Gv0yIYDVw+sY/stJtkJp4hLeFckSfzLO8wqNquSNXRHE2h5SYU5ILSg8AqjTCqvPAoyKHA08c8QBr1t11UBUpfNGe3oc9OQactIPlGPJ5eakIqN6Rm9UZ4SF130U1Kytdsjb0iao6sBms0V45SNbYCCQXeKP51QdhzmeSmxHNlz1K8A0KJadwDv3A7/YqqRmRUNSLqdybp/GEuzHuL0JYDCW7seDJUWa8Xe/fuLRKW+u2U6dTpMsQtQZAqBtr066Tu+Q1N/En8qjQmvO1gfKJrFF7Lv/dCl5tBzuWjxG//BYXSg5jWAwnwK36ymPVn68xK6BWqZefCz2hWNYRPP/q22Oe/U/ynROFeRBAEZs2axaJFi+7oeTOSE7h0fBeH1v6PIH81kZGRNGvSiG5Na1J10NM0atSoiChcuXKFQ4cOWbVye2I14fpNVm2Yjqk2lMIU3yAY//278F+lNp/oqGDOZerwCQyjauVmBEWVXBE5E9Y/8JKKRrFux/o8lhnTllnRjqwGc1t/LcezfVN00Y3tnl8QBG4cWElO4hmqdnoGdWC43X0tn3YVShVhDbsRUrcdN/avJGHpJ5Qf/JXdpUZNk/aW592wcQtdX/3RvK04gmApdnp1AHnXTpC8/efCCrYP9if6odfsXpenXzAh9ToSWbUxeclXiN+xAK+gCCo3643Kq/gZ5o6sBMuIo11LJhNkSOKLCT8X+5x3ElkUyjh79+6lfv36REdHl+p5BEEg/uwRTmyZR1ZqAqEBvgx95nHeeGwmTZs2dXp8XFwccXFxDvd57dXRotsNBgMHDx7krffGk5avJNujJsHtu+CVm+TOpdjFbuG3UkxiElu7wF1hiAgJ4NiZi/i1su+XvrF/BYIgUL3/u3jm2594tp5YNvVB6akmquvzZBzbxPXFHxD9+ASkzNQkJydj9ArANyDEaf6BWOVSsG/1pG76AU3yJaIfeg2vUPsuQ+sMep1PEL6RcdR4dCzpFw5xavVkqnUegk9IOZcDG6zdRpYRWlB0DkgQBAyLRnHp8l/8/Zf1g1LZRxaFMowgCEyYMIHx48c73M+dvAyjwYBeV8Cp/X9w6cBqstJu0rFtS2Z9PZYaNWoUp9uS0el0fPLF1yxd/juKiOr4VupEaNDt6rimH6K7g3ZJRReVBNY1l+wJgz2MugIC1F4UaDR4+ItHCt06vZuCzGTiuo9EoVCa23dW7M/y3KaBLqD5YxgUKpJWT6T8U187vb533v+IZo+86pYgOIoaunVsE/rcdCo/9qGk5DAxYfDUZBJSrRl+UVW5sOpLaj/0Ch5qP8nC4MhtJBaCGrRtIhcuHuLEP8fKfKSRGLIolGF27NiBh4cHzZs3d7qvVGG48NefHN80l6xbN6hYIYYuHdry9c/THRb2K0lyc3NZvXoNE6fPIidfi6JKG4K6vXXbHSESjWT5oxT7ERd38L9T5TakLGpTZH8La8GYn4Oftzc3UzPMq6xZDn4FaddJ/nsTNQd+aJNr4SjcVEwQTAQ/2I/rSz8i59QO/Ou0tz7UjCAI7P/7BFFdmtlYFY4mla2vwRpN0iXS//mTqk9+ZncfMezV3PIKCKVSy0e5vPNXqncbDjj/7C0/LymTy+knd2C8sJd/jv99TwoCyKJQZrlx4wavvPIKGzdulBxq+VaXwh+1IAhotVpenrKB9OvnSTp/CK0mF722gAZ1a7B51QL8/e9slcabN28ya848fl60BEXNzvh0H4fa26/QZcLtqBxnYar2BlVBEMhLjSfrxkXyM5PJz0jCoCtA5aXGoM1H5eWDp48/6qBIfMOi8Q2NwTswzK1kteLgbtllzeYpDHy6F9/OW23zniAYubZ2MpW7jUSpkp5saM86sRzsyg38lKtTH8e32oOA+P56vR6Fv/SQYLH1DawRjAbi100l7tH3beYvpGApDJa5MX7VmmM8vpXcW4n4hRU+CIkJg/X3zJnbKDwwiLzEM6T+/AJrdu8oVln8u40sCmUQQRB46aWXmDx5sqSII4PBwB9//MHSpUvJyMggOzub0NBQGjVqRL/ujWgxfighIYVf3jsdy28wGJj94xzGfz4Rda938R8yF4XKs8Ti0HWabG7+s530y8fwi4wlMKYGkdGtC7OTlSoUCgWmpP2CrFQ0GUlo0q6TdvEomoxkvPyCCI6tR2REFB4lMAlZGgiCgP7mWa5cq4suuiGmXpoGvrS/N+IfWx+fMOnWnqNsa0tUvoGEdXme5N+/JHLYFLvtiX2vpGS42yN+/XQimvfHK8j9/CF7whDZvD9Jx7dQpcPtXA8piX2O3EaG/Fxu/PQ8v69YWqKr690NZFEog+zevZuUlBQ6d+5sdx+DwcCpU6f45JNPSEtLo2vXrnz11VfmcsZlIZHrzJkzPPPCq+RU7kz4O5tReqrtZq1a/milJLVp87K4tm8F+VmplHugAzFNeqK0Fynz771QB0WgDoogJLae+b2C7DTSLh/j1J7VKI06oqo0IDyubpm4f6Yn9txT22n8QG227D6Af9ei80uC0UDq4bVUHzoFncpTUtFBqeU3TINeULNHyNi3BE3SZXyiKhe+p/IgM8v+wO7MbWSNZb/TLxxCAYTUte+yEusvSAttDYipRfz2eegL8vDwdlyYzloQxNxGgiCQMHMwM74cLykoo6wji0IZQ6vV0qtXL9EF3gVBYNmyZRw5coSDBw9Sq1YtJk+eTExMTJkYxExoNBpmzvofP/y6muDHJxEZXcNplrM11pOklmQmnuPavuXEtnyUwJjiTYp7B4RSvn5HytfviOHmGW6cO8yxP+ZQuUnXUgmFdQfjyQ288tEoPvhyijk/wYTm5gX8Y+ub3UaOqtGKuYukrikc3n0UiRtnUu2Zwknn4Ac689vq1xgxfJjk67BnJVj21xRSW+Wpr5y2Jxq2a5Ukac9aCKvTjpT4s5Sv1shu+2KCYMIkmGH+AcTPe53GFYPp06e30z7fC9ybMyH3MatXr+ajjz4qMvG7Y8cOHnvsMRo1asTAgQMJDw9n69atzJgxgwoVKpQZQTAajfw0Zy5tOvfk8A0vhn26HN/o4g3aep+QIq+EU3u5cXIX1R/7EN9qzW3et3y5iqpcLWIbtKdupydIPL2fhFP7kFAv0m0cDTqmAS9r93xivfNo3749Kalptk+pRgMqn6IDu84nqIgAWP9tD0e1e3yrtyTr7O01PDx8g7iZlGyuf6TLuz0Qu2IlWAtY7o3z+EbEolK7P+dlfR2W99V0HwIr1SP3xnmb74r198f6s7F0GwUp9FyZNogeVb1ZsvjeqI4gBdlSKGPExMTw5ZdfcuDAAXr16sXly5f55Zdf2LNnD+XLly+sO1NGRMCSM2fOMGzky0TU6Ui/sb/i7VP0Ry1l3Wdnay7cPLwWbfYtqj78hqR74MjacISn2pfa7QcQ/88uzu1ZRbUWD6HycK+0uDVSoo/MdZAMOrJ2zOH3MyfIzs7GI8Q2V0Wvsl/A0ZkQSLUSABRKJf6VG5Jz5Rj+cQ1QKFXoVD7o9Xo8PT3x91Sgy0nD0198VUIxK0Hss866+g/BVZvahOla99WRgJnet+dK0vkEoQ41UpB1uzqf2EOEmCCYUKdfZf97rZgyZQqjX37ZYV/uNWRLoYzRsmVLDh48yOTJk80F/A4ePEhMTAxKpbLMCUJCQgI9+/TjuZffp9WzX9H60VdsBMEZYk9y1mRd/YecG+ep2OEZl++BK5aDadBWKBRUqt+O8Li6nN7+G1pNjkvnlNIncDzw5J3bS/u2bQkLC2P1mrVooxva7FOQcgWvYNfr+zgbZMUK8gVWe5C86+fMfyurtmbt2rUAvD7yWTIOLHd7RT4TWfEnCahQp1htmLC8Juvr1fuGYNQX2D3W3uei8AtBn5tOyi8v8c/x4/edIIAsCmUSpVJJTEwMgwYNYtCgQWW2guvWrVt5+umn+ebLCTz67s9EVnLNVWTvac9aGAqyUkncu5S4bs8XSxTdcSmFVahBXOMunNm1otjC4Go+hSLtGi+OGAKApqAAwc+2ZEV+0mU8XRxEXbEQipzLN5S8xLO3+xcUbV53ukOH9ugv7CqyvyPXkZiVIAgCgkGPytt5QT53sL5uhYiLytLVJiYIALm/vcPbLw2lTp2SEa+yhiwKMm6xdetWJk6cyLp164qsHSwFKQvKmH6YgiBwdfP/qNTpOTy8/dzqqyVShMF68PYPLUfVZt05u2sFRoPezlGu98GRlYBPEIor+3nwwQcBWLtlJ+qYWrf7+O++2lvxeEfEFas/zlwx5i5Vqk/2pSNFjzUYAKhQoQKqrESMBXlih0pCl5uBp1+w0/2k9tc5CrMIOJt3MU8sBwSScmwrw12YYL/XkEVBxmWOHDnCpEmTWLp0aYmtNSv29KrzCSL16j94RVXFK66RzQ/Y3svpudwQBr+QKKKqNeLK0T+lX5SD9hw9jSr8Qsj/40se792RsLAwAFLTMvCqICK+ShVKD0/JT//uWglQmLNg0NyeEwiq3ZZJs34xTza3ad2KgpsXbI+TmJuQdfU4ARVqu90/MRxNOgtGcYHXqwPEhRrIvnCIIc+/hLd36VbrvZvIoiDjEhqNhrfeeosFCxYQEOB8gLFcuU1szVpHfl+A1MNriGw1wKU+lpQwWBNRuR66/FzSr19y6ThHpRLA1j1RcO0YFQuu8tn4923asrSyDOpABJ19v3hpYPS6ba15h1Ugx3h7ontQ314o/lnjdtv56TfwK1/d6X4llfio9PDCoNUU2SYWAWaZpJaxZwEN696Z2mB3C1kUZFzi2rVrNGrUyJwhbcJUYqMk0SRfwcMvRJJLwRopwuAM66d7hUJBlabdSTix26027K2BDLcHHkEQ0P4+ngX/+848f1JQUMCtNDv+eYsSEMWxAqyxOx+gUBSZTLac4+nUsQMeKWdFDpKOdR5GaWC6TwqlCixCjp0JAoAy5RzPPfN0qffxbiKLgoxLnD9/nsqVKxe7HXvzCpY/zOyLhwmu087tczgNyXTDjeSp9sXbL4islASXjrVXKgGK3gvV/p8ZNXRwkRXNUlNT8bCYNyhy7zyKujFKUhjEMOYXTranZmWSmpWJPrgi7477pLBfCgWeHoUiJSWL2RXcXX/ZnlWhVwegy0lH6eVTxF0E9ucscq4ep2mtyve16whkUZBxEb1ej59f8Sd8LRHz++rVAeSnXMUnMq5YbZeGMMTUacGNs47r5DsSBMtSCZYDvF/eLTzObebNV14q0tYfGzeRHycujkatpoif3x3sDZxiA7vCqiyEZ4932Lnvzq8ZIMWF5GgfQ0EuSp8ADD72J62trYSsw7/zaN/7I2vZEbIoyJQ6zuYVwE7JAoUSIaicWSTEXiWBq8LgFxJFfk4GgtHodF+pghDq60vagpdZseAnm5LLWp2ewJAIxAhs2IOsUzud9t8ZrgiDJQoPL66npKHXFz8qyxrrsFVra8HRoO9MNHIvHsE3toHNdrHPxkRo2ilatmzhsN37AVkUZO4azkJTPQPD0d5yvM6BFHEoyYgk04DvGxSOJifd7vuWbTqqnQP/TmBunsbA3p0crl5nKaim4/2qNyf3ylGnfTfhyA3jSBiE3HSMunwEnbbIewqFAkXtbqxZ4/4Ec5Fz2RFae6jys0Rfzsg+f4CAmq2KbBN7MLG8595qnztecv5uIIuCjEt4eXmRmJgo+l5xJ5utf5SegZFoM6QtyVkSVoMrWc/qctXJM3qYhcBe/X3r/lnWzoHCQafgVgLaE3/w6bj3XO6zV0QcmuSrLg2m7ggDQN7J7fjE2T5de9bpzOLVG81/uzuf4B0chSblStG2nVgL7qJJPI26XFXR98QeViyt3fsdWRRkXKJ79+5s3LiRK1euuHScPReS9Q/QUhh84+qTe/Gw5HM4Egap0UjSQ1XtZ1ZbtiEWaWTCdB8y1n/Ngh+muLVSl0KhwK9qU3IuuubX98jPtjvA2nvazj23D9+4hjaDvldUNQ79dbTYxQP9IiuTl3LNZntxhcF0raaX4fpZvEIrOF28x56r835HFgUZl1CpVMydO5fRo0ebs1lLC3W56uSLJEM5oqSEwZk45KXGow6y9fM7EwTryUvNzYvUUGdLrsMvNlCFtn2K1J0LJB1vjVRxEASB3PP78KtWmGFtKQwKpRKlf3jhvIJgtGlDKj7hFclLviL6npgwOBMHe/tkXTxMcJXGRbZJyZI26P8b1oIsCjIuU61aNfr168d7771n83Qo1YUkxVpQKBR4R8S6LAyOcCV/wZEw5Gcmo7ZYFcxaSByFnlpeu9+OSTz31BMO+7F7z37U4bZ1k0zteYaUR12uGpkntjlsxxGWT9LWqPKzMN48h2dYpSJP16a5BiE3HX1sC6bP+MHt80Nh3oBCqcRoEB98xeolWVsBjq7DRPbFwwRUtnWDgX3XkSAIZKcmEhhYUiU2yi6yKMi4xdChQ/Hw8GDcuHGS3Qau+GVNA2lI0z6k7l3iUt9KYuLZ3JbI+gz5mSl4+gahUChExcBRpJGlIHRSp6JNT6DfIw/bPb9Wq+Wfk6fwj63vsJ+RnYaSsnOByxO1YlgPrIJBT9KmHwht0NXuk79Po4dZuvqPYp/br1w1chJsF5gyIWVlOUfoctIx6gvwDLAtLmiJtUV249IJGjVs4JaL717j/r9CmVJjwoQJGAwGhgwZQmpqqnl7SVgLUCgM6lrt0GUmUyDia3aEFGFwNevZJADJl48TUreDjSVhXf/fkSD0DtPxz/ZlvDj8WYfn1Gg0hJYvmiwo6usOiSGgenMyT2x16ZqcodJkkbhkPAG12xJQozAcU0wYFB5eJN5MQShGwUAPTTphFWqQdW6fwzUwPDWZ5perpBxcRVijXpL3Nz3IxJ/aS7dO7idS3kvIoiDjNgqFgs8//5zhw4czcOBAtm/f7vQYR9aCvRDVqMfGkbjqS4wu+nSlhqu6IhAGXQHpFw4TXK2ZTTuW53QU7947TIdeW8Dp7b/y8MN9JJ1XipUV3uYJUncvxqjXir5vOZg6e5lI2rkQn6iqhNdoXsQlYz0ZrVAo8AiKoEndGuSf2yPpmiwxiUBAuapkXT+PIAh4aNKdLpDkyvVoM5PJjT9hkyXv6LMyce3oZgYOdK0G172KLAoyxaZNmzYsX76cqVOnsmDBAgRBcMtasId3RBwBjXqRcnCVW2WTpYarShGI5KMbiajfGaXKo8gxlucRG2Ssr/PEruUMffYpSUUFHVGkRIZPAOGtB5GwfZ7Nfq4+VXvkppG0eTaGjBtEWRQkdJRApq3aibCgADizxeY9qSiUSgKjq5N26e/b55QgDs7w1GSSuHkW0Z2HO12Tw/qzys28hadSwMPjv7FQpSwKMiVCSEgIv/32G+vXr+fDDz90GJnkjrUQ0upxsv/Zij6ncJ1i65czXM2CFivJnVuQT/rlowQ3e8RGPOyFnYKt2yg7LYlTW+cz6sXnJfXFFYIbdEOh8uTGtp/tWgzOyE44zelfP8TTL4i4bs/bWA/WE7kmqyHggS7sOXIMVeo5jFbVR12h4oN9uH50E5r0m0W2F0cc0i8cxtPDGz8XSnObvqe7Fn/F26+Ncuu89yKyKMiUGF5eXixcuJCwsDBeffVVDBL9y9ZPZmLCoFAqierzJjeXfyo6sV2aAgFg1Gu5uvobKvR+FYXq9hOjvdr79uYRAP7ZvoQP3nnd5cJqUsqFAJTrMQrPoEjO//w62VeOObUSTIOtIeUiF5Z+Supf66n+yNtENepRZD9n+QIehgKup6TRpWMHCi7sl3hVtqi81FTvNpxL2xeSffOi3f5KFYiCjCRuHlpNpQ7PuNyXjOQEPDU3efhh+8EA9xuyKMiUKAqFgtdee40aNWrw27udyE4Tz0h25iMXEwbfKo3xiogjffcih8eWtEAY9VqurvySyJaP4RMRW+Q4y3Oa+u1IEM7uX4/m2kH69HnIad9cxTKUN7xxL6oO/oLUw2u4vGEmGZf+Ii/1GoaCPPT5OeSlXqMg4QSZ/2wh5ex+LmyZy/lNP1KxeV+qdx2Kj1Lcpy9mNZhQKBRQuwfV4yrA3yuKdS3qwDBq9n6J+ANrRIXBfH4nAqG5lcClDTOo3OPFIst8OssfMXFo9Qxef+WlMrc2emny33CSydxxXnnlFTp27Mhzzw+n64tTCYuu4nD/8MAgm0XfFX4hNtmzET1Gc3PZJ6Rs/oHwTsNQqDwdtmstDI783GLCoM/NIGHZZ4S26I9frTZY2z5i1oHpekyYBCEvK42/1n7Pvh2b8fK6vThNcRG7TwAePgFUfuwDCi4eIjv+FNnxJ9HcSkShUOAbEAoKBV5+IXh4+1C+YVd8w2JEBz/TgGsZbeWpyTS7zzzys833zq9KY9b/OR9fQYNBk4XKQRVSZ3h4+VCj50jO/TGLmCY9CKpQy/H+Vv1MO7uP5KMbqdJzFN5BkS5Fm/UO05Gfl036tRN06zbd7Wu4F1EIEoLMs7KyCAoKIjMz8z+RvCFTcly+fJluvfry6Nj5osKw7lbRQd1aGMC2lo5gNJK+dzGZf62j3CNj8alUz62+OZsIzYs/yY11Uyjfewy+FYsuhWktNs4EwWgwsGLiUCaOG0O7dtJDGzMzM3l48Is8NGaWeZvlPTPdL9M9srwm01O8aNKXm755Z2G4gkHP+QldWLpkCa/NXI1vu+E2/RHrk6P+6LUaLm1bAAooX78zAeUcP2BoPf1J3L0YfX4OsV2Go/TwFO0rFK1FZf257Vo8ked6NaJ//34Oz3evIHUcly0FmVKlcuXKbNu8nlq16zD867XEVG/kcH97FkORv4Gw7qMIbDGAm7++h8LDi/AeL6OuUMe8j5SibGLuJVV+FvnJl0ne+hMIRmKf+goP/1C7+1v3T0wQBEFg27yPGNyvq0uCAKBWqzm0bXURUbDXByE3HYM60EbsdD5BRV0+xYjksX4aF7MYojoPIz9fgzLhL7TpN/AKKW/TjnWfHJ7Ty4ca3UeQk3SF5DN7ubJ7KSovNZ4+/nh4+6HNTcdUi0owGijQ5BDVuAdhddqLWj6OggJMZKcns3PFDBZPcy0/5n5AthRk7gg3b96kdcfuPPfletR+Rb9DUqwFR2iuHufWltkYcm4R2nkE/nU7ig4GjoTCWJBL7oWDpO/9rVBkur6Aj4XIiGEtVmKCALDpx/doWTuKT8Z/IPWSitCp+0O0e/47/ILCzNukWAv2nswdiYIq07ZUuXUFWHBsMeTl52JYM46xb7zCR7/tI7jjCJv+WPfJWb+sMRp06PKy0Rfkog6OQmFRoNDgH2Hz+TuzEuD259c7TMef8z+jZfUAxn1gu072vYrUcVwWBZk7xtatf/LuJ9/yyJs/4eVTdPU2a2EA18VBm3qV9J3zyT23H4+gSNQxtfCKqopnSDQq/1CM+Tno0q+b99en36Ag8TQFyZdRAL7VmxPUpA9eoTF2zyE2AW49OWkpCPuWTyHaM51pU75xu0TCunXr+Xr2Uh4aPe32NhFRAPvCIGUAFhMEE86Ewdpfn3xsM18+Wo+fFi4lsfpjqKNrlqgo2EOsXpWj0GEx11F75XVWT3yaw/t2olI5rqR6LyGLgkyZZPWatfR9uA9tew+m6/Nfo/Yt/JGKiYIJV8UBQJ+dijb5MtqkS2hvxSPo8kGhwjuqCigKB2elTyBekXF4R1UtEmbqCo4E4difiwnIOsnM76a41bYlTz49FL/aPanx4O0wUUfWAjgWBldFAVwTBm1mEl77f+CPVUtp1b0fvoMmF2Y9l6IwlIQg9A7TsezrYXz65nC6devmdl/KIvKcgkyZ5OE+D1FQUMCOHTv5dOrbPPTqDBQKBb3DdHaFwa269oFBEHN7ERV3hMURYn2yFISkq2e4uPs3tm9eVyLnm/vjTDp06sqB9T8zeNwiu1aHvUikkkCVGW8jDB6adNH5Ba+gKLKVgWRlZdG6aQN2nt1LYK3WTs+h9wlxSxjcFQRLeofpSE28iL9SQ9euXV3uw/2CnKcgc8fx8vKia9cu1KgQzNWTB8zbe4fpSm2Fq/DAINGXu21YY9nvq6cOsPTzwcyf84PLCWr28Pb2ZvfObTzUoQkrvnqWE7vX0DOkoEjfTJgGPNMAaBoQiwySkhcTKooza8ISZe0edOnZh3dfH82NJeLVdMXCRF3pm721L6QKgvVnuWvhp8z6bvJ/Ki/BGlkUZO4aY15+gYOrptlsv5NLH9oTC6kCYi1kl//Zw58/vsPOPzdTrVq1Eu2rSqXi8wmfsPjHycTozzD/vYeIOvSTuVy2WB8dCUNJYflkb+kO8qtQG68K9cnOzqZN23bkXzoomgtiTxjsDfiO3rOuRSVVEHqH6Ti49keqVwgv8c/tXkMWBZm7Rr169QjxVXHj0gmb90rTaigJxPr399ZfObNhOgf37iA2NrbUzl25cmU+n/AJ+7atp05QBnkz+5F9di9we6BzVPHThPWgKjZnIIZL1kL19gwc/CwrlixC2DeX3CvHJAuDZT8dCYHpeHvWgRRBSEk4z8W9y/hu6jeSr+1+RZ5olrmrJCYm0vPhx+j16g9Os55LCkeT2o6wJ1IGg55Vk16kfpVwpk6aiI+Pj+h+pUVaWhojX32LkxmeRDw5CYVS6TRM1dGks5RB35VJ59xdPzFuxCO0bdWChk2bEzXsf3gGRdpdHU1q/oKohSFSegQcC0J+XjYrvnian76fSOPGRZfpvJ+Qo49k7hlOnz7NU8Nfoe9bc/DxD77b3XEJTU4GKycOp32L+kz5duJd7cv0H35k7HvvU+ud1fjHNZAsDKUdiSQY9CQvf5+FMycRHhZK135PEPrkZFQ+gU7XWZaCteUhRQzg33UtdFqWffkso4YMYOhzjhc8uteRRUHmnuLw4cMMGTmaNoPHU6W+8yiVu43BoOfYloWc2v4rU76eQMeOHe92l4BCge3e73EinplBQcRt33hJC4OrCW0FgkDWr2O4fOpvlq9YydgfVuDf7bUi+7sqEFLFAMQFQRAENsx6l5pRKmZ+f//XN5JFQeae4+LFi/R6uB9xDbvQ6ZlxKMtg4pAmJ4O/tyxk/+rZPNrvESZ/+3WZW3zl8uXLDHlxDOl1B6Gv2ckcSeOOK8mEpUDYm3twJAoAuZcOUC3rCGtXLqNWw2boW72IX+wDrlyaDY5qUIH9PBKj0ch3L7Wmd/dOzPxu6n8i2kjqOC5PNMuUGapWrcrJY3/RqlYYk4c15MLRHRRocu5qn3KzbnH11AHWTRvF/LG92DJtBAPaxHH25DGmT51U5gQBCieiN/6+hLYcR/PTs+izC9fPLk6oqiGoovnlLl61O7Nr3yGWr/ydGZO+wrBvrmiYqjPESqNbliwHRCPGTIJw/q9tzB/bk5eGP8sP30/7TwiCK8iWgkyZJDExkUlTv2fbzt1UebAPgVGVqdGkEyoP9yaJXTr3hWNc/ftPcjOSKEi9TIP69Rj94ggqV65cJkXAERs2bmTIi68S3PlFhLrd8bBIbnPHYnCEM0tBrw7AqM0n97fX2LlhFd9On8nyyx6ENLG/toSzNTGcWQZQNEDgr03z2Tz3Y86cPkl4eLjDtu83ZPeRzH2BRqNh8+bNnD5zno1bt6Ep0KFUeaI3gqd3yUT56PLz8PRQYtBrUXt5EhdbiWcHDyQyMpLatWvf80+SeXl5jP/oYxav345XhxdQ1+8JeRlA8YrnWSNFFAAKbiXgt3sKa5cvplb9JsS8swGlp/QkPyn1p6CoGOSkp7Bg/ADatmzK9CnfFHtt7HsRWRRk7mvy8/MdrgPtCt7e3vecBeAOWVlZjPtsIus2bkKo0gavNsNQ/Fsuw50CepY4yyqGohPDKfNfZdon73Dx4gWmbzhOUJ+xdsXXUc6FMzEAMOh1TBrakFkzptPvkb4Or+N+RhYFGRkZUQRBYMb/5vD1tB/wajYQrwZ9AOdWgyViq7FZ40gUjLp8cpe8wdFdm3n3w49ZuXUvoUP/h9KjcEU6V4UAxPNI9NoCfv14AB+8+TIDBzxqt83/ArIoyMjIOESr1fL0sJHsO5OA+qEP8QyKBFwTB0c4EgWA3KvH6Ox5htnTvuXNd8by48/zydNoqDJ+Bx6BETbtuSIGUBgptuKr5/jk/Td4+KFeLvf/fkMWBRkZGUmcPHmSxs0eJPaluXhWqA+IL+sJJZttLBiNXP7wQXKzs1AqlcTHx7Nz507emzoP/2FzUSgLQ5JdFQOApKtnWf3tMH6ZM4uWLVpI6vP9jiwKMjIyksnOzqZtl55kqsujbPE06vI1APviAI4FQmoJivwtU3m0UXm+/nSc+b03xn7Ack09/Ot2lDRnUOQcOi07l0wi99oR5v30A3FxcXb3/a8h5ynIyMhIJiAggL8P7GbVtA9QrPuI3OMbgaIF5SyrjsLtInRiL2vEiuABeHd+haW/r+PGjRvmbZ3atMT31nmXBSEz9Trz3u9LFDfZvP53WRDcRBYFGRkZMw0aNOD4wd1EnV9F2qoJGHIzAMfiUBwUCgXGDq8w+ftZ5m09e/ak4PSfNvs6EoTs9GR+/2Yor73wLD/P/anE1rH4LyKLgoyMTBF8fX3Zt2MrTzYtT9Zvb5Kflmh+zzKZzCQOzgTCUY0iAP+6nfh11R8UFBQuGqRUKgn0L7qGtyNByElPYf4H/Vg09weef36E44uTcYosCjIyMjYolUq+/WYify75kYIFL5F54k/wDQawKTEBRQXC+uUMhVKJb4eRNGndgdTU1H833s5ZsCcIRqORI3/MYd3kofy+dAEPPFC8OkoyhciiICMjY5datWpxYNefdPc+R8aCV8AnqEgNJTGBcIS9AnaeDXqT+cAgXn9vPAB+XkryU67aFYTstCTWTnmRxuWN7Nm2kfr167tzeTIiyKIgIyPjkJiYGH78bjJDOtcn6ZteaG8l2CSXSREHZ+9X6T6SA5du8evS5Yx95Xlyj64R3e/6heOsnTSUL94fxdtvvibPH5QwsijIyMg4RaFQMGH8ByyaMRH/tW+TdWStTWVSKGo9WL9s2rQ6VqFQEDXkf3z0wxLir9/E63zRyeaUhPOs/Po50g7NZ93K32jTuuyvu3EvIucpyMjIuER8fDy169QlqPljhAz6wrzdVH1VKvYqnBr1OgzzhxGqNpKdqzHXRIoID+PjD9+ldu3axbyC/yZynoKMjEypULFiRbIyM6ilzsD78j7zdjHLwR6OSl4rPTzpM+YHcpRBCEYD8+f8wLZNa1my6BdZEO4AsqUgIyPjFvn5+dRq2obY93dyK8f9tZbtLYYDkHztHJNHtuDXRYsYMGCA2+eQkS0FGRmZUqZbz95cPXmEi/97SXSls5IgslIN3v7lGC+MepXFixeXePsytsiiICMj4xZzf5xNTOUaBDfqad7mijg4WjLTkpDIirw0fQffTP2+eB2WkYQsCjIyMm5RtWpV9m7fzMlJj5NzYkuR90wDvphAuGNVBIaVIzpC2nyFTPG4/5ebkpGRKTUqVapEVlYWrTp0wzOmLt4h5W32kSoAjkpZyNw5ZEtBRkamWAQEBLBs0c8U/DKU9srrbrXhTBC6hF0gKirKrbZlXEMWBRkZmWJTs2ZNvvx4LPtWTKZ3mE7yU7/Ufc+ePUu7du2K200ZCcjuIxkZmRKha9eufPjJl+Skp+AfElFi7qC3ugTQq9c8pk2bViLtyThGthRkZGRKBIVCwafj3mX7ws9KrM23ugSQnp5Oeno61apVK7F2Zewji4KMjEyJ0bVrV8r76fhn58pit/VWl8Ky21u2bKFjx47Fbk9GGrL7SEZGpsRQKBTM/G4q5cqVp0rDdvgFhrnVjkkQAA4cOEDPnj0d7C1TksiWgoyMTIkSEhLC1KlTWTBuAEaDweXjLQXBaDSya9cuOnXqVJJdlHGAbCnIyMiUOC+8MBJBqWLJzNfp+vxXeHqpJR1nKQgAM2bM4OGHHzZXSpUpfWRLQUZGplR48fnhvDi4N9Oeb8bpAxsxGo12932rS4CNhfD999/z+eef89RTT92J7kriiy++oFmzZgQEBBAZGckjjzzC2bNnze9/9NFHKBSKIq9atWrdxR67jmwpyMjIlBoDBzxK/QfqsmjRIlaN/5aaNWsiCAKtW7emQoUKVKxY0WZt5fT0dB5++GE6dOjAgQMHqFix4l3qvS07duxg1KhRNGvWDL1ez3vvvUe3bt04deoUfn5+ANStW5ctW26X/fDwuLeGWbl0toyMzB0hPz+fvLw8dDod69evR6vVcuDAAVJTU4FCMYiNjeXw4cO88cYbjBgx4i732DkpKSlERkayY8cO2rVrx0cffcSqVav4+++/XWonLi6OMWPGMGbMGPO2hg0b8sgjj/DRRx/RoUMHHnjgAVQqFb/88gteXl5MmDCBJ598kpdffplly5YRFRXF9OnT7U7KSx3H7y0Jk5GRuWdRq9Wo1YVzC0OGDAFg5MiR5vdNohEcHIxSeW94tjMzMwEIDQ01bzt//jzR0dGo1WpatmzJF198QaVKlYp9rl9++YW3336bgwcP8ttvv/Hiiy+ycuVK+vXrx3vvvcfkyZN5+umnuXbtGr6+vm6f59648zIyMvc9arWa0NDQe0YQjEYjY8aMoXXr1tSrVw+A5s2b8/PPP7NhwwZmzpzJ5cuXadu2LdnZ7i9CZKJBgwZ88MEHVK9enbFjx6JWqwkPD2fEiBFUr16dcePGcevWLY4fP16s88iWgoyMjIwbjBo1ihMnTrB7927zNkvXTf369WnevDmxsbEsWbKEYcOGFet89evXN/9fpVIRFhZWZD7GVDAwOTm5WOeRRUFGRkbGRV5++WXWrl3Lzp07qVChgt39goODqVGjBhcuXHD5HAarHA9PT88ifysUiiLbTGG7jqK8pHBv2GkyMjIyZQBBEHj55ZdZuXIlf/75J5UrV3a4f05ODhcvXqR8edt1JqxJSkoy/1+n0xEfH1/s/rqDbCnIyMjISGTUqFEsWrSI33//nYCAAG7evAlAUFAQPj4+vPnmm/Tp04fY2FiuX7/O+PHjUalUPPHEE07bnjNnDp07dyY2NpapU6eSmZnJxYsXi4jFnUC2FGRkZGQkMnPmTDIzM+nQoQPly5c3v3777TcAEhISeOKJJ6hZsyYDBw4kLCyM/fv3ExER4bTtPn368Morr/DAAw+QlpbGhAkTWLFiRZGchzuBnKcgIyMjc5cRy1MoaaSO47KlICMjIyNjRhYFGRkZGRkz8kSzjIyMzF3mypUrd7sLZmRLQUZGRkbGjCwKMjIyMjJmZFGQkZGRkTEji4KMjIyMjBlZFGRkZGRkzMiiICMjIyNjRhYFGRkZGRkzcp6CjIyMjERM5anLOhKqF9lFthRkZGRkZMzIoiAjIyMjY0YWBRkZGRkZM/KcgoyMjIxEiuOrv1eQLQUZGRkZGTOyKMjIyMjImJHkPjKZTFlZWaXaGRkZGRmZ0sE0fjtzgUkShezsbAAqVqxYzG7JyMjIyNxNsrOzCQoKsvu+pDWajUYj169fJyAg4J5J3pCRkZGRuY0gCGRnZxMdHY1SaX/mQJIoyMjIyMj8N5AnmmVkZGRkzMiiICMjIyNjRhYFGRkZGRkzsijIyMjIyJiRRUFGRkZGxowsCjIyMjIyZmRRkJGRkZEx839/EDXJQx6mEQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.density(adata, kind=\"kde\")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "7231930d", + "metadata": { + "tags": [] + }, + "source": [ + "## Plotting shapes\n", + "\n", + "For finer control over plotting shapes, you can use `bt.pl.shapes()`. Similar to above, cells and nuclei are shown by default. This function wraps the `geopandas` function `GeoDataFrame.plot()`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "e5deef2c", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T21:18:54.433403Z", + "iopub.status.busy": "2023-03-31T21:18:54.433124Z", + "iopub.status.idle": "2023-03-31T21:18:54.763442Z", + "shell.execute_reply": "2023-03-31T21:18:54.763034Z", + "shell.execute_reply.started": "2023-03-31T21:18:54.433388Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAGbCAYAAAA4KMxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADB1klEQVR4nOydd1yO7/v/X4lEVrL3nlkhRZKGMspIKrvIyl7ZIytCIiOjjCSUzETIiqKMNKxSaEd7393H7w9f/T69Ne5x3SOu5+PxfjzeXdd5Hsdx5+46rvM8jyFDRAQWFhYWFhYeqCZpA1hYWFhYqg6s02BhYWFh4RnWabCwsLCw8AzrNFhYWFhYeIZ1GiwsLCwsPMM6DRYWFhYWnmGdBgsLCwsLz7BOg4WFhYWFZ1inwcLCwsLCM6zTYJF6tmzZAhkZGaSmpkraFADAw4cPISMjA09PT0mbwsIidlinwfJPcuTIEZw+fVpi+gsKCmBjY4MWLVqgVq1aGDRoEPz8/CRmDwsLr7BOg+WfRNJOY+bMmdi/fz+mTJkCR0dHyMrKYtSoUXj69KnEbGJh4YXqkjaAheVf48WLF/Dw8IC9vT1WrlwJAJg+fTqUlZWxevVqPHv2TMIWsrCUD7vSYKkypKamYtKkSahXrx6UlJSwZMkS5Ofnlxrj6uoKbW1tNGnSBDVr1kSPHj1w9OjRUmPatWuH8PBwPHr0CDIyMpCRkYGWllbJ/fT0dCxbtgzt2rVDzZo10apVK0yfPv2PMxUul4sdO3agVatWkJeXh46ODj5//lzp5/D09ISsrCzmzJlTck1eXh6zZs3C8+fP8e3bNwF+Oyws4oFdabBUGSZNmoR27dph165dCAwMxMGDB5GWloazZ8+WjDl69Ch69uwJIyMjVK9eHTdu3MCCBQvA5XJhbW0NADhw4AAWLVqEOnXqYP369QCApk2bAgCys7MxdOhQREZGwtLSEioqKkhNTcX169fx/ft3NGrUqESXnZ0dqlWrhpUrVyIjIwN79uzBlClTEBQUVOHneP36Nbp06YJ69eqVuq6qqgoAePPmDVq3bi38L4yFRRQQC4uUs3nzZgJARkZGpa4vWLCAANDbt29LruXm5v4xX19fnzp06FDqWs+ePWnYsGF/jN20aRMBoCtXrvxxj8vlEhGRv78/AaDu3btTQUFByX1HR0cCQO/evavw8/Ts2ZO0tbX/uB4eHk4A6NixYxXOZ2GRJOz2FEuV4fdK4TeLFi0CAPj4+JRcq1WrVsn/Z2RkIDU1FcOGDUN0dDQyMjIq1eHl5YU+ffpg/Pjxf9yTkZEp9bOFhQXk5ORKfh46dCgAIDo6ukIdeXl5qFmz5h/X5eXlS+6zsEgrrNNgqTJ07ty51M8dO3ZEtWrVEBMTU3ItICAAurq6UFBQQIMGDdC4cWOsW7cOAHhyGlFRUVBWVubJnjZt2pT6WVFREQCQlpZW4bxatWqhoKDgj+u/z2f+1/GxsEgb7JkGS5Xlv2/+UVFR0NHRQbdu3bB//360bt0acnJy8PHxgYODA7hcLqP6ZWVly7xOlXRQbt68OeLi4v64npCQAABo0aKF8MaxsIgI1mmwVBk+ffqE9u3bl/z8+fNncLlctGvXDgBw48YNFBQU4Pr166VWAf7+/n/I+q/D+U3Hjh0RFhbGrOH/oW/fvvD390dmZmapw/DfB+h9+/YVqX4WFmFgt6dYqgyHDx8u9fOhQ4cAACNHjgTw/9/8//dNPyMjA66urn/IUlBQQHp6+h/XjY2N8fbtW3h7e/9xr7IVBK9MnDgRxcXFOH78eMm1goICuLq6YtCgQWzkFItUw640WKoMX758gZGREQwMDPD8+XO4ublh8uTJ6NOnDwBgxIgRkJOTg6GhIebOnYvs7GycOHECTZo0Kdn6+U3//v1x9OhRbN++HZ06dUKTJk2gra2NVatWwdPTEyYmJrC0tET//v3x8+dPXL9+HceOHSvRJQyDBg2CiYkJ1q5di+TkZHTq1AlnzpxBTEwMTp06JbR8FhaRIuHoLRaWSvkdchsREUETJ06kunXrkqKiIi1cuJDy8vJKjb1+/Tr17t2b5OXlqV27drR7925ycXEhAPTly5eScYmJiTR69GiqW7cuASgVfvvjxw9auHAhtWzZkuTk5KhVq1Y0Y8YMSk1NJaL/H3J7+fLlUrq/fPlCAMjV1bXSz5SXl0crV66kZs2aUc2aNWngwIHk6+sr8O+IhUVcyBAxtOZmYWFhYfnrYc80WFhYWFh4hnUaLCwsLCw8wzoNFhYWFhaeYZ0GCwsLCwvPsE6DhYWFhYVneMrT4HK5iI+PR926dcvNpGVhYWFhqboQEbKystCiRQtUq1b+eoInpxEfH89mqbKwsLD8A3z79g2tWrUq9z5PTqNu3bolwv7bOIaFhYWFpeqTmZmJ1q1blzzvy4Mnp/F7S6pevXqs02BhYWH5i6nsCII9CGdhYWFh4RnWabCwsLCw8AzrNFhYWFhYeIZ1GiwsLCwsPMP202BhYZEYRIRPnz7h2LFjKCgoABEhISFB6Na81apVQ//+/TFixIiSg92aNWuiZ8+e5bbpZeEN1mmwsLCIhcLCQiQlJeHGjRuIjIxEeHg4atasiTZt2mDevHlo3LgxAKBRo0aQl5cXSldBQQFu3bqFu3fvllzLzMzE48ePMXPmTHTs2JEveXJycujWrVuppLcGDRqgRo0aQtlZFeGpn0ZmZibq16+PjIwMNuSWhYWFZ1JSUnD79m1cuXIFnz9/hqqqKkaPHo1mzZpBTU1N7G/92dnZuHr1KtLS0vie9/nz55KfiQixsbGoW7cu2rVrh+bNm0NXVxf9+/dn2mSxwetznl1psLCwMAqXy8WJEydw/fp1fPjwAebm5jh16hSUlJRKjeNwOCgqKgLwaztJHA6kTp06mDp1KmPyOBwOvnz5gtjYWOzfvx8/fvxA/fr1sWLFCqioqKB69b/vEcuuNFhYWBiBy+Xi2rVrsLW1haWlJcaNG4eWLVuiWrVqKCgowLVr1/Dw4UN8+vQJ8vLyyM3NRYMGDQAAaWlpqFGjBnr16gULCwv07NlTsh9GCD5+/AhXV1eEhIRAWVkZAwcOxIABA6CoqIjatWujdu3akjaxTHh9zrNOg4WFRWhSUlJgaWmJHj16YNmyZWjWrBmAX47k2LFjOH36NCZOnIjRo0ejS5cuZZ4F5Ofn48WLFzh+/Di+ffuGRYsWYcKECRUWz5NmiAghISEIDg7G69evweFwcP78eZiZmaFx48ZQU1PDhAkTpKYILOs0WFhYxMKbN28wY8YMLFmyBJaWliXXU1NTYWFhAU1NTSxevBg1a9bkWWZaWhr27NmDiIgIuLm5VVoPqSoRFxeHN2/e4OHDhwgLC8O1a9cgJycnabN4f84TD2RkZBAAysjI4GU4CwvLP4Knpyf169ePEhISSl3/+vUraWlp0bNnz4SS/+TJExoyZAglJiYKJUdacXJyomXLlknaDCLi/TlfNdd9LCwsEufVq1dYunQpfH19S7ajACAnJwczZsyAs7Mz1NXVhdKhoaEBBwcHWFpaIj8/X1iTpQ5ra2t8+PABjx49krQpPMM6DRYWFr558+YNjI2N8fTpUzRp0qTkOpfLxezZs7FmzRp06dKFEV0DBw6Eubk5tmzZwog8acPFxQX29vaSNoNnWKfBwsLCF8ePH8eGDRvw/PlztG3bttQ9e3t79O3bFyNGjGBU55QpU/Du3TtERUUxKlcaaNq0KVq0aIHAwEBJm8ITrNNgYWHhGQ8PD7i7u+PKlSultqQA4MGDB3j16hVWr17NuF4ZGRlYWVnBy8uLcdnSgLm5eZXZomKdBgsLC09cvnwZ586dw+3bt/+I9snNzcX69etx4sQJkYWQamlp4cGDByKRLWlq1aoldL0tccE6DRYWlkoJCAjAuXPncOXKFdSqVeuP+8ePH4eVlZVIQ/IbNGgADoeDzMxMkelgqRzWabCwsFRIeHg4VqxYgfPnz5eba3Hz5k2YmpqK3JZp06bB2dlZ5HpYyod1GiwsLOXyOzP7woUL5SbY5ebmAgAUFBREbo+ZmRmuXbsmcj0s5cM6DRYWljLhcrmYMWMGDhw4gPbt25c7Ljw8HH379hWLTTVr1kTTpk2RnJwsFn0sf8I6DRYWljJZv349LC0t0bt37wrHhYSEiLUk+KBBgxAcHCw2feLg6dOnaNmypaTN4AnWabCwsPzBq1evEBYWxlMZ8ZCQEAwYMEAMVv1CQ0MDAQEBYtMnCr5//47Xr1/D0dERJiYm+PjxI6ZNmyZps3ji7yv2zsLCIhTp6emYMWMGfH19eRr/9evXP5L8REnXrl2xd+9esekTlMzMTDx//hxhYWGIj48HAFy7dg3du3dHWloadHR00KFDBxw8eBDNmzeXsLW8wzoNFhaWUsyfPx92dnY8b5cUFBSItdmQkpISOByO2PTxytevX+Ho6Ijw8HDExsbi58+fqF27Nlq1aoVOnTohLi4OjRs3hqysLHbu3AlNTU1JmywQrNNgYWEpIT09Hfn5+Rg9ejTPcxo1aoSioiK+Sp//LaSkpMDJyQmnTp1CdnY22rdvjylTpqBHjx7Q19cv1Y2Q/q8LxevXr3H69Gls2LABQ4cOhY2NTZVqOcE6DRYWlhIOHTqE8ePH8zVHQUEBiYmJYt2ikjQJCQmwtrbGmzdvoKSkBEdHx0obKv2+p6KiAhUVFRARzp8/DxMTE7Rv3x7Lli1D165dxfURBIZ1GiwsLCWcP38e796942tO165dER0dLVanQZX3jhMZp06dgr29PT58+ABPT08YGxsLJEdGRgZTp07F1KlTce/ePaxZswbNmzeHsrIyWrRogfbt26NPnz4MWy88rNNgYWEBADx+/BiamppltmKtiO7duyMsLAzDhw8XkWWl+f79u8S2cy5cuIC1a9eidu3aiIyMRLdu3RiRq6urCx0dHYSGhiI2Nhapqam4desWvn//jt69e2PhwoVo3bo1I7qEhXUaLP8cBQUF2LNnDz58+IAfP36U+5DMy8vD5MmTYWFhIWYLJUNAQABMTEz4ntezZ0/cuXNHBBaVTUREBHr27Ck2fb958eIFXFxcUKdOHfj7+zO+spKRkUGfPn1KVhe/W+d6e3tj69atSEhIQMOGDaGiogIZGRnUrl0bHTt2hIKCAlRVVcXWS511Giz/DPHx8bC3t8f79+9hZWUFa2trKCoqlrsPnZubi+3bt6Nv376wtraGpaVlqYNNAMjOzkZoaOgfGcqKiopo166d0DYrKCigUaNGQsupjC9fvuD69etYtWoV33Pbtm2LL1++iMCqsnnx4gUGDhwoNn3FxcVYs2YNUlJSoKKiAhMTE7FuxY0fP77knCkhIQGRkZEAgKysLISGhuLHjx9Yu3YtDAwM0LVrV7Rt2xb9+vUTmT0yxMPmIM8Nx1lYpJQtW7YgICAAlpaWMDc352tuXFwcnJ2d4eDgAAsLixLHkZubiw8fPkBHR+eP8NSEhAQkJSUJbffPnz8RHR2N/v37o0WLFpg1a1apTnlMMXHiRKxevRqqqqoCzR86dCgePXoklrddXV1dXLt2TeS1rogIbm5ucHV1hZWVFeLj43H9+nU8ePDgj5cHSVNQUIBHjx7h+/fveP78OZKSklBcXIwaNWrAyMgIpqamlf6+eH7OM9lwnIVFGsnPzycNDQ3icDhCyUlLS6OoqKhS/xUVFTFkZfnk5eVRVFQU+fn50ZAhQ2jPnj2UmZnJmHx/f39avny5UDJWrVpFDx8+ZMii8ikqKiJtbW2R6uByuXT79m3S0dGhnTt3UkFBAX38+JGGDh1KeXl5ItXNNGlpabRr1y7S0NCge/fuVTiW1+c86zRY/noiIiJo3rx5kjaDEQoKCuj8+fPUpUsXevz4MSMyzc3NKT4+XigZjx8/piVLljBiT0VERkaSlZWVyORnZmaSoaEhzZ49m3JycoiIKDo6mnr16kUfP34UmV5R8+nTJ+rTp0/JZyoLXp/zbO0plr+eK1euQFtbW9JmMIKcnBwmT56MgIAArF69GkuWLEF2drbA8l6/fg0AQpexGDp0KIKCgpCVlSWUnMrw9/eHhoaGyORPnjwZU6ZMwYkTJ1C7dm1kZGRg+vTpsLKyQufOnUWmV9R06tQJGzZswP79+4WWxToNlr8eHx8fqYx3F4ZGjRrB398fysrKmDhxIuLi4gSS8+zZM77PeMpj/vz5cHJyYkRWeVy+fBljxoxhXG5GRgYmTZqE9u3blzST+vHjB8aMGYO1a9di0aJFjOsUN1paWvj8+bPQclinwfLXo6ioiC5dukjaDMaRl5eHlZUVli5dismTJyMhIYFvGT4+PozlV0yZMgU+Pj4lxfmYJjIyEk2bNkXDhg0ZlZuamgotLS3UrFkTDg4OAH5V7jU2NsaCBQswatQoRvVJChkZGUb6t7Mhtyx/Nd+/fxdb/LqkMDAwQJs2bTBx4kR4e3vzHF0VFxcHOTk51KlThxE7ZGVlsXHjRuzYsQOHDx9mROb/YmtrK1BIcEU4Ojri6tWrcHZ2LokcCwwMxNy5c+Hj41Nu0cb09HQEBwcjPj4enz9/RlZWFj59+oTs7GzUq1cPmZmZaNasGYYMGYL+/fujZ8+eqF+/PqO2SwrWabD81dy9exdqamqSNkPk9OjRA3v37sX8+fPh5eXF0xwHBwcsWbKEUTv09PRw5swZ+Pj4MPqGHhgYCCKCioqK0LKICI8ePcLKlSvRvXt33L9/v+TFIikpCatXr8bjx4//eMjHxMTA1dUVfn5+aNSoEQYMGIDu3btDV1cXLVq0QNOmTUu1xI2Li0NAQAB8fHywe/duEBEyMzMhLy+PAQMGYNasWRV2RGQSLpeLI0eOICcnR3hhvJy8s9FTLFUVBwcH8vX1lbQZYmPSpEm0ZcuWSsdlZmaSgYGBSGzIz88nY2NjunXrFiPyfvz4Qerq6pSUlCS0rPz8fLK0tKSFCxdSdHR0qXt5eXmkqalJb968KXU9LS2NZs6cSUZGRnTz5k0qKCgQyobc3Fzy9fUlbW1tcnBwoOLiYqHkVUZSUhLp6urS3LlzKTk5udxxbMgtCwsRHThwoNL49L8JLpdLgwYNouDg4ArHnTt3jo4cOSIyO/Lz82n8+PF0584doeQ8e/aMBg8eTK9fvxbaJm9vb1JVVaWbN2/+cY/L5VKDBg3o3Llzpa4/fPiQ1NXVhf4cZcHlcmnXrl00atQo+vr1K+PyiYh+/vxJ1atXp5cvX1Y6lnUaLCz07zkNIqLY2Fjq378/cbnccseMGDGiwph9Jvjx4weNHDmSXFxcKrSlPI4fP05GRkaUkpIilB1cLpeOHj1Kbdu2pbi4uDLHODg4kLW1dak5Dg4OZGxsLPLnXmhoKGloaNCjR48YlRsWFkZNmzal58+f8zSezdNgYflHadOmDVq1aoXAwMByx9SsWRO1a9cWqR0NGzaEt7c3oqOjMWrUKAQHB/M0LyYmBlOnTkVUVBSuXLkidO2tI0eO4PDhw/j06RNatGjxx/3nz5/Dz88Phw4dAvDrzGPt2rXIyMjAxYsXRV46qVevXvD19YW9vT0ePXrEiEwfHx8sXrwYQUFBjJ/psQfhLCx/IWvWrMGlS5egrq4uUTtq1qyJbdu24ePHj7C1tUVSUhLGjRsHPT29UmHQHA4Hfn5+OH78OLhcLlatWsVYEp+Pjw8uXrxYZjVjDoeDTZs2wc3NDTIyMiUOQ0lJifFIrYpQUFCAh4cHRowYgatXr6Jx48YCyzpw4AB8fHxw+fJlxsOTAdZpsLD8lfTv3x/r1q1DSkqKUA8gpujSpQvc3NyQlpYGb29v2NvbIyEhoSSap3bt2ujfvz927979R07N74x3LpeL3NzckuvVqlVDo0aNKgypfvz4MZo3b44ePXqUef/69evQ1dVF06ZNAfzqXFirVi2xOozfKCgoYO3atdizZw/s7e35np+RkYH169cjJSUFd+7cYSQnoyxYp8HC8hdSo0YNTJs2De7u7oyH1QqDoqIiLC0tS3pFlMfHjx/h6uqKwMBA1K1bFwUFBQgMDESNGjVK8kpiY2PRuHFjfPv2rcz+5FwuF0uXLsXVq1fL1XPs2DE4OzsD+JUBfunSJca2iARh9OjR2L17NzIyMvjK60hNTYWGhgZMTEzg6OgoMocBsBnhLH851atXx+PHjyVthkQwNTWFh4cHfv78KWlTeCYlJQWzZ8/GggULYGBggPnz5yMvLw8dOnTAp0+fkJqaipiYGMTExCAxMRF169Yt9618zZo1WLp0Kdq0aVOuPnl5+ZJciVOnTmHBggUSLXsuIyODiRMn4vr16zyN53K5OHjwIMaMGYOdO3di27ZtorefyVN1FhZpIysriwYNGiTyWHhpxcXFpcy8DUNDQwlYUz5ZWVm0du1aGjZsGD148IBcXV1p2LBhtHLlygrzM4yMjKhOnTp0+/ZtIvpVOj0jI4Ps7Oxo4MCBFeqMi4sjFRUVIvqVO6GqqkqFhYXMfSgB+fbtG5mbm1c67tGjR9S1a1fauHGjQNFp/4WNnmJhAVCnTh2MHj0aN2/elLQpEsHCwgKhoaHw9/cvdV1GRgYZGRkSsur/k5qain379mH06NHgcDioXr06jh8/jpiYGDx48AD29vYVlkXp1asXLl68iCNHjmDChAlo1qwZzM3NUb16dfj6+lao+9q1a7CysgIAODs7w9LSku/+6KKgRYsWlRagdHd3x759+3Dz5k3Y2tqKdDvqv7BnGix/PStWrMDYsWNhZGQkaVMkwpEjR2Bubo7BgweX7P2bm5vj/PnzWLBggdjtISIcPnwYHh4ekJOTw8SJE1GzZk0UFRXh0KFD6N69O1/yWrZsiWvXrqGoqAgyMjI8P/hv3LiBCxcuAPhVPfe/jlVSVKtWDQoKCsjLy0OtWrX+uP/q1StcvnwZFy9ehLy8vPjtE7tGFhYxU7t2bXTs2BEPHjyQtCkSoWnTpjAyMsKVK1dKrjVv3pyZOkR8kJCQABcXF2hqaoLL5cLd3R2rV6/GiRMnYGJiAgcHB74dRu/eveHj4wMZGRnIycnx7DB+/vyJ1NRU1KtXD9++fUPLli0hJycnyMcSCd27d0d4ePgf1z9+/Ijx48fD1tZWIg4DYJ0Gyz/C8uXLS6Jk/kWsrKxw6tQpcDgcAEC7du1w48YNsegOCwvDunXrYGZmhuLiYly+fBmLFi3C/v374ePjU2qbiF/09PRw7949vufNmTMH48ePh4yMDKKiojBw4ECB9IuKxo0bo7Cw8I/rq1evho+PD3r16iUBq37BOg2Wf4IuXbpAQUEB0dHRkjZFIigoKEBTUxOenp4AfmWNN2vWTKAHLi9wuVzcu3cPU6dOxZYtWzBhwgQ8ePAAVlZWaNasGRYtWoSWLVvi4MGDFUY3VYaioiJq1KiBvLw8nufcuHEDeXl5WLNmTck1SUZM8Yqvry8aN26Mnj17StQO9kyD5Z9h1KhR8PPzw9y5cxmXXVRUhCdPnuD+/fv48uUL0tPTS22VZGRklFuO4vcDr1mzZlBTU4OOjg66du3K+OHmokWLYGpqCjMzM8jIyOD48ePo06cPPnz4wNhWB5fLRWBgIFatWgVtbW3s37//j4PsZcuWoUWLFowl0E2aNAlTp07luST848ePsXnzZrEeHvNLQUFBqZ9zc3Oxe/fuCnNOxAXrNFj+GVq2bImAgADG5BER7ty5gzNnziAuLg7q6uoYPXo0unXrhsaNG/P1UCIifPv2DU+ePIG9vT0+fPiAmTNnYsaMGYxF9CgqKqJ27dp49+4devXqhQYNGkBLSwvfvn1jpP+1r68vVq5ciZ49e+LKlSslWdb/S0xMDKKjo0s65DHBjBkz4OLiAiKq9HfO4XDw/PlzrF+/vtT14uJixuxhgsjIyFItZnfs2AFLS0vpaOTEZPwuC4s0w+VyacSIEYzI8vHxIU1NTVq2bBl9+vSJEZn/S1ZWFu3Zs4dUVVXJw8ODkTh8IqJPnz7RlClTSn4+cuQIXb9+XWB5XC6XvLy8aOjQoTRo0KAKS3zHxMTQ8OHD6cuXLwLrK49FixbRlStXKh0XHR1Nc+fOLXUtNjaWZsyYwbhNgsLlcklNTY04HA4REaWmppKBgYHIc43YPA0Wlv8gIyODwsJCcLlcgWV8+vQJo0aNwt27d3Hp0iXs378fnTp1YtDKX9SpUwerVq2Cv78/goKCMGPGjDIPRvmlU6dOyM3NLeknrqCgIJDc+Ph42NnZoXHjxnjx4gU8PT0RGBiI1q1blzm+qKgIVlZWcHFxQbt27YT5CGWyd+9erFmzhqd8nP+WHGnevLlUnXUFBQWhV69eJecs69evx9q1a6WmbbF0WMHCIibq169fEkHEL35+frCyssK+ffvg4OBQ5vYL09SuXRv79+/HxIkTMW3aNEYch56eHs9lyv/Lz58/YWVlBWNjYygoKCAhIQF2dnYVJuBFRUVh4sSJWLBggUgcBgDIycnh3bt3mDt3Lo4ePcrXdlONGjXQpEkTfP78WSS28UNRURHWrFlTsn328eNHREVFQVNTU8KW/X9Yp8HyT9GxY8cy498rw9fXF87Ozrh9+zbfuQRMYGRkhAkTJmDJkiUgIqFkKSgoCFSPKiMjAxMmTEDbtm3x7NkzLFq0qNLzFldXV6xcuRL79u3DuHHjBLSYN+Tk5PD48WMkJSXB0NAQZ8+eRWRkJDIzMyudu2rVKtja2orUPl7YvHkzZsyYgbZt2+Lz58/o2rUrdu3aJWmzSsE6DZZ/ivr16/N96BkZGYndu3fj/PnzZWboigtTU1O0bdsW27ZtE0rOiBEjSkJveSUxMRGzZs3CihUrsGHDhkoPnPPz87FixQq8fPkSXl5eItnCK4uOHTtiy5YtcHd3x48fP3D69GlMmjQJa9euRWxsbLnzBg0aBAASTQA9ffo0fv78CQsLCwQEBKBz584IDAzEgAEDJGZTWbDRUywsFZCbmwtLS0tcvXq1zPLb4mbNmjWYPn067ty5A319fYFkNGvWrNRDvzInGhUVhU6dOuHWrVsYNWpUpfIzMzMxc+ZMWFhYwNDQUCAbhaVBgwZYtmwZgF+Raa6urjA2NoaOjg5CQkJK6lz9LwcOHICRkRE6dOggsm20siAi7NmzB1FRUTh06BD27duHS5cuIT4+Hs2bNxebHbzCrjRYWCpg/fr1WLZsmVjOL3jl0KFD2LJlCyMFB4cMGVKqvMh/iY2NxcSJE3Hv3j2eHEZCQgLGjBmD5cuXS8xh/BcZGRlYWlri5cuXaN++PSIjI7F3794/xjVs2BBHjx6FhYUFXr58KRbbiAgrV64EEWHKlCnQ1tZGZmYmnj9/LpUOAwAbcsvyb7F161Z6+fIlT2Pfvn1LRkZGIrZIMHx9fWn+/PkCz//f0uhlfcb09HQaPHgwqamp0cePH3mSGRERQdra2vTu3TuB7RIH4eHhBIDi4+PLvJ+YmEijR48mV1dXkdqRm5tLpqamdODAAdq/fz+NGTNGos9YNuSWhaUMOnXqhNu3b/M0dvv27dizZ4+ILRIMfX19hIWFIT8/X2hZvzPS09LS4OPjg927d6NFixZYvnw5nj9/zlPi3+HDh7Flyxa4uLhAWVlZaJtESY8ePbBlyxYMGzaszKCCpk2bwtvbGx8+fMC4cePw7t07RvVzuVxcv34d2tramD17NgoLC/H69WtcvXq13KoB0gTrNFj+KTQ0NJCUlFTpuLS0NPz8+RNdu3YVg1WCMXz4cDx//lxoOT9//kTz5s1hbGyM0NBQKCsrIzY2FsbGxjzNf/LkCZ48eQIPDw+0bdtWaHvEwebNm1GtWrVyCyXWqFEDu3btwvbt22Fra4tRo0bBy8uLrxpX/yU/Px+HDx/GkCFD8PTpU3h5ecHDwwNxcXFwdXWtEvWvAPYgnIWlTHx8fDB+/HhJm1EhqqqqePr0KYYPH87XvOzsbGRnZ5f8HBgYiGrVqgmUPHbo0CEEBgbC2dlZqms5lYWfnx8GDhwIdXV1+Pn5lfQe/1+UlZVx+fJlxMfH4+zZs9DX10eTJk2goaEBHR0ddO/evdSBenFxMYqKipCZmVmSMFhQUIBnz57h+vXrmD59Ou7evQsOhwNjY2MoKyvDwcGhSv3uWKfBwlIGb968wdSpUyVtRoWoqqri0qVLfM+LioqCmppayc//jSLilZCQEISEhMDNza1KPfR+07p1awwcOBB9+vTByJEjsWPHjnKT6Fq0aIE1a9ZgzZo1iIuLQ2BgIJycnPD582coKCiUjMvJyYGSkhKqVauGnj17lqwelJWVsXjxYigoKOD169dYuHAhnJyc0K9fP7F8ViZhnQbLP8Xp06dLPTDL4/Pnz0KV7BYHCgoKSE5OFmiusFsh+fn5WLt2Lc6dO1clHcZvjI2NUa9ePSxcuBAbN27Ejh07MHz4cMybNw8NGjQoc07Lli1hbGzM8/bd/5KTkwMrKyt4enqKNayXSdgzDZZ/hpSUFLi6usLc3LzSsVwuF4qKimKwSnBq164tUAXcwMBAdOjQQWC9+fn5MDc3x8qVK6UqFFkYmjVrhhMnTsDHxwe1atWChoYGZs6cifT0dMZ0pKWlYfz48bCzs6uyDgNgnQbLP8Lbt2+hp6eHy5cv8/SWnZWVJQarJMO9e/dgYGAg0NyCggKYm5tj/vz5GDFiBMOWSR5ZWVksWbIEYWFh0NHRgYqKCt6+fSu03JiYGEyYMAF2dnbQ1dVlwFLJwToNlr8eIoK1tTVcXFx4LslQu3ZtEVslGeLj4xEVFSVw4tjmzZsxderUv8ZhlBVy+5tp06bB29u7JPlOUDw9PUtWGCoqKgLLkRZYp8HyV0NEMDMzw7Rp0/j6g5WWMtQVkZubi6KiIr7mjBgxAkuXLhVIn7+/P5KTkwXay5dG0tPT4eHhgR49epQ7pk+fPtDW1sakSZP4ls/hcLBixQq4ubnh0aNHJfWtqjrS/5fBwiIgRIT58+dDXV2d7xavTCTNiZq0tDS+zhRiY2NRp04dTJ8+nW9dsbGx2LZtGw4ePMj3XGnE398fioqKsLW1Rbdu3Socu3z5cmRnZ+Pu3bs8yw8ODkbbtm3Rrl07eHp6VomkPV5ho6dY/koyMjJgZmaGXr16YeHChXzPJyKe2odKklevXlX4lvxfNmzYUFLEjx+Ki4sxf/58nDp1qsxchqpEVlYWVq1ahTNnziA4OBj9+/evdE7NmjXh5uaGSZMmQUlJqdI5YWFhWLVqFR49eiS26r7ihF1psPx1fP78GWPGjIGenh727NkjUB5Cp06dEBkZKQLrmOPx48cYPHgwT2NfvnyJoKAgmJqa8q3H0dEREyZMQPv27fmeKy1ERUVhzJgxGDFiBFRVVZGens6Tw/iNkpISLl26hIULF1ZYVoSIMHnyZNjZ2f2VDgNgVxosVZzc3Fzk5OQgJSUFvr6+uHbtGnJzc+Hi4oJevXoJLHfQoEF4+vQpX2/y4iYwMJDnBj1HjhyBh4cH3zo+fPiAx48fw9vbm6fx2dnZuHXrFvz9/fHp06c/Et+6d++OCRMmQFNTU+CkQn7IzMzE/Pnz8enTJ0yfPh3W1tYCrx6VlJRgb2+PAQMGwN/fv0yH7eHhgUGDBv015xdlwmT1QxYWcfDhwwc6duwYmZmZ0fDhw2nWrFm0fPlyOn78OGVkZBCXyxVax9evX8nU1JQBa0VDdHQ0TZo0iaexiYmJNGHCBL51/Pjxg3R0dCg2NpansevXr6fBgweTvb09RUREEIfDKTWGw+FQSEgI2djYkKqqKrm7uzPyb1UeT548odq1a9OTJ08Ylfvs2TOqXr06eXp6lrqem5tLtWvXppSUFEb1iQten/Os02CpUrx79440NTXpypUr9P79e5HqGj58OP348UOkOgRl6dKl5Ovry9PY7du30/Hjx/mSn52dTXp6evTq1atKxz579ow0NDTIy8uLZyeQm5tLK1asoJUrVzLuODgcDh0/fpw0NDTo+fPnjMr+TXR0NI0dO5aGDBlCT548oYKCArKxsaENGzaIRJ84YJ0Gy18Hl8ulIUOGUEREhFj0HT16lI4ePSoWXfyQkJBAw4YN4+lh++3bNxo0aBDfOtatW0cnT56scAyXy6WtW7eSkZGRwM51//79tHr1aoHmlsX379+pUaNGtGPHDsrJyWFMbkX6bGxsaMKECTRs2DBKSkoSuU5RwToNlr+Ot2/fCrTNIig5OTk0cOBAKiwsFJtOXli0aBHPq4zJkyeTh4cHX/L9/Pxo4cKFFY7Jz88nMzMz2rt3r9ArBWtra7p8+bJQMoiI3N3dSUNDQ2wvFX8bbBMmlr+O4uJioQ63+aV27dqYNm0aDh06JDadlfHq1SvExMTw1B/89evXkJWV5Tti6vz581ixYkW59wsKCjBlyhTMmDEDK1asEDosee/evThw4AASExMFml9QUABLS0uEhITA398f3bt3F8oelophnQYLSwUsWLAAt27dwqdPnyRtCrhcLpYsWYKjR4/yNH737t3YvHkzXzru3r2LmJiYcpsp5efnY/LkyZg9e7bA9av+i7y8PHbs2MG3rQDg7e2NBg0awNjYGHv37hVLRNa/Dus0WFgqQFZWFgcOHMD69eslbQrs7e0xYcIEtGzZstKxISEhyMnJQceOHXmWn5aWhp07d+LGjRtlrh5+rzCsrKwYcxi/GTZsGCIjI5GRkcHzHHt7ezx+/BiJiYkYPXo0o/awlA/rNFhYKqFXr17gcrkIDQ2VmA2PHj1CYGAglixZUulYIsLUqVOxfft2nuXHxcVh3LhxWLduXZlZ30SElStXYvz48Yw7jN/Mnz8fhw8frnRcZmYmjI2NkZ6ejv3796N+/foisYelbNi1HEuVoW7duvj+/btEdNvb28PCwgI+Pj5ir4D76NEj7N27Fx4eHjwVUly+fDkMDQ3Rp08fnuTHx8ejVatW8Pf3h5aWVpljduzYgTZt2oi0m6GRkRFMTEwqHPPhwwcsXboUW7Zs+bsT6KQYdqXBUmXo2LEjgoKCkJCQIHbd7du3x5YtW6CtrY0bN24IVSqbH06ePIkDBw7Aw8OjVHZ1eSQnJyM0NBR79uzhWcelS5ewc+fOch3G2bNnERsbi5UrV/IsUxAUFBQqPJN4+PAhli5dCjs7O9ZhSBDWabBUGWRkZDB79mxs3LhRIvq1tLRw9+5d+Pv7Y/jw4Xj06JHIdEVHR2PixImIjIyEl5cXTw4D+LUi2LJlC1+6YmJiynUYvr6+uHv3LpydnUVevDEtLa3cldTDhw+xb98+eHl58byCYhERTMbvsrCIg8mTJ9OLFy8kakNCQgLNnDmTpkyZQjExMYzJzc3NJXt7e9LR0aGQkBC+5n7//p3Gjx/P15ycnBzS1dUt815RURGpqqqK7e/+1atXtGTJkj+uZ2RkkKqqKmVnZ4vFjn8VNk+D5a/FyckJa9aswfHjx8HlciViQ7NmzeDq6or58+dj7ty5mDFjBl69eiWQLCLCkydPMHPmTGhra6Nu3brw9fXlu8vb6tWr+Tr8BgALCwusXbu2zHs3btyAgYGB2HpBJCcn/1FJNz09HT179sTBgwd5Xm2xiBgmPRALi7hISkqiKVOmUP369SkzM1PS5tDr16/J3NycDA0N6dSpUxQcHEw5OTllZktzuVyKjY2l58+f0+HDh0lDQ4MWLlxIYWFhQtmgp6fH1/irV6/SsmXLyrzH4XBIQ0ODEhIShLKJH75+/Voq4//Nmzc0fPhwCgoKEpsN/zK8PufZ6CmWKkmTJk3g5uaGAwcOQFtbG/Xr10efPn0wadIkDBgwALKysmK1p2/fvnB3d8e3b99w9+5deHl5ITQ0FLm5uX+EsGZlZaFVq1bo1KkTunbtCm9vbzRq1Ego/dHR0Xz1/f727RsOHTqEW7dulXnfyckJEydORLNmzYSyix/evHlTEpnG5XIxbdo0nD17Fn379hWbDSyVI0NUeRhIZmYm6tevj4yMjL+qbSHL30NxcTFu376NFy9e4OXLl2jTpg1MTU2hpqYm9hBZSTBv3jzMmTOH5y2tHTt2QEVFBSNHjvzjXlZWFnR1dfHs2TOxOd+goCBs3LgRV69ehby8PGbPno1evXoJ1GmQRTB4fc6zZxosfwWysrIYM2YMbG1tcfv2bVhaWsLf3x9dunTB06dPJW2eSElNTcXbt2/Rr18/nsY/fPgQwcHBGD58eJn3L1++jBkzZoh1tWZrawsXFxfUrl0be/bsQY0aNbB06VKx6WfhHXZ7iuWv5Hf3NGNjY9jY2GDnzp18tfesSkRHR2PkyJE8h8QeP34c+/fvh7y8/B/3iAhnz56Fp6cn02aWy5cvXyAnJ4dWrVrhx48fcHd3x5MnT6S6P/u/DLvSYPmr6du3Ly5evAhTU1Op7/ktKC9fvuQ5dyEsLAzy8vLl9vsODw9Hhw4dhD5j4Yd9+/ZhwYIFAH5VvN20aRNbGkSKYZ0Gy19PgwYNcPjwYUyaNAnFxcWSNodRiouL4e3tDW1t7UrHcrlcLF68GKNGjSp3zI0bNzB27FgmTayQ+Ph4REZGQk9PDwDg7u7O02dhkRys02D5J9DX10fbtm2xb98+SZvCKA8ePICuri7q1q1b6dioqCi0adMGEydOLHfMkydPMGzYMCZNrJAdO3ZgzZo1AID3799DXV0dDRs2FJt+Fv5hnQbLP8O0adNgY2OD+Ph4SZvCCFwuFy4uLjw95LlcLkaMGIH58+dXOC4vLw8NGjRgyMKKCQ0Nxffv30tWGVu3bsXq1avFoptFcFinwfLPYGxsjNWrV0NfX/+vcByHDx/G0KFDoa6uXunYsLAwjBkzpsJCf9+/f0eLFi2YNLFciouLsWzZMjg6OgL41avj/v37bF2pKgDrNFj+GapXr47du3fDxcUFI0aMwI0bNyRtksDExMTgzp07mDdvHk/j79y5U2n02M+fP/lKEBSG48ePQ1dXF+3atQMAuLm5Ye3atWJPymQRACbTy1lYqgrJycmkqKhIzs7OlJubK2lz+GbmzJk8F23Mz88nTU3NMkua/C8FBQU0evRoJsyrkOTkZBo8eDAVFhYSEVFERAQ1atSIioqKRK6bpXzYgoUsLBXQuHFjREVFITc3F1paWti7dy8ePnwoabN4Ijk5GQUFBRg4cCBP42/dugUjI6NK8x7k5OSQl5fHhInlQv/XAdDW1hY1atTAz58/MWnSJDx//pzt711FYJ0Gyz+LoqIili5disePH0NZWRk7d+6EjY0NCgsLJW1aucTHx2PWrFmYNWsWz3POnDlTaUe838jIyCA/P19Q8yqEiLBx40Z069YNOjo6ePDgAZSUlLBw4UJ06tRJJDpZmId1Giz/PDVr1oSBgQF8fX3RsGFDdO7cGZcuXZI65/Hu3TuMGzcOu3btgo6ODk9zcnJyQERo06YNT+MHDx6MO3fuCGNmuRw4cAA1a9bEggULYG1tjV27diEmJgZz584ViT4W0cA6DRaW/6NatWqwsbHB06dPERMTA319fYSHh0vaLOTn52Px4sXYuXMnXF1doayszPPckJAQviKSrK2tcfjwYUHMrBAPDw+8efMG9erVQ5s2bdCrVy/cuXMHbdu2ZVwXi2hhNxFZWP5D69atsXr1akyaNAlLlixBjRo1sG/fPok84E6cOFESWWRgYMD3/Nu3b/M1r2nTpujRoweuX78OIyMjvvWVxcuXL3Ho0CHk5eWha9euSE9PZ+tKVWHY0ugsLJUQGhqKjRs3ol27dpg8eTJUVFRQo0YNkerMzs7Gzp07kZGRAScnJ4EesmlpaRg7diwePnxYbu/tssjIyMC4cePg6upaEhIrCEQEV1dX2NraonXr1nBycmLzMKQYXp/zrNNg+acgIty7dw+nTp1CRkYG5OTkAPzKmK5WrRp0dHRgbW1dZr7Aw4cPceTIESQkJODy5csia1CUkZEBMzMzLFq0qMI6UZWxefNmyMjIYMuWLXzP/fjxI+bPnw83NzeBcje+f/+OuXPn4uPHj5g+fTpWrVpVZlVdFumB1+c8uz3FIlJ+h3DWqlVLYjZERkbiw4cPOHfuHAoKCqCsrAwnJ6c/KrmmpqbC29sburq6yMrKwsiRIzFhwgR07NgRAKCiooLz58/Dx8cHM2fORHFxMdTV1TFixAj07t0bAFC7dm2hQkczMzNhbm6OlStX8nzYXR4ZGRlYsmSJQHO7dOmCI0eOYMKECZg6dSpmz56NmjVrVjovMzMTu3fvxtWrVyErKwsvL6+S3w3L3wG70mBhnJycHNy7dw8ODg6IjIyEoqIiGjVqBBUVFWzYsAFNmjQRuQ0vX76Er68vPnz4gJycHOjr68PAwIDn7Zb09HTcuHEDISEhSE1NLbkeFhaGDh06QFZWFsrKyigqKsLTp0/B5XIhIyOD7OxstGjRAoMGDULPnj0hLy8PNTU1KCoqlquLw+HgxYsXCAwMxO7du+Hh4VFugyR+MDAwwLlz59C4cWOBZeTn5+PkyZNwc3ODsrIytLW1MWTIkJLznYKCAsTHx+PFixe4c+cOPn/+jD59+uDr169wdnYWa7tYFuFgt6dYxM6XL1/g6uqK+/fvw8TEBGPHji3p25CXlwcfHx9MnToVQ4cOhby8PDgcDtTV1TFp0iR07dpVaP1EhC1btiAkJAS1atXCihUroKSkhE6dOjF28FpcXAwiQlpaGt69e4fo6OhS93NycnD58mXk5+eDw+GAw+EgMjISzZs3R5cuXdC0aVMMGzYMtWvXRmZmJt6/f49Xr15BR0cHPXv2xIQJE0q2zISBy+XC0NCw3B7g/EJEiIyMxL179/D69WvExcVBXl4ehYWFaN++Pbp06QJdXV28f/8eN27cgIuLC5usV8VgnQaLSCkuLkZWVhYeP34MDw8PJCQkoGPHjpg5cyYGDx7M08Frfn4+/P39cfHiRXz48AE9evRAjx49oKGhUWFhvbLIzc2FpqYmzMzMsHLlSkE/lkjgcrm4f/8+Pn78iNevX+Pp06eQk5ND3759YWpqCgMDA8ZrLvn4+ODly5fYvHkzo3Ir4tmzZ9iyZQt8fHxYh1EFYZ0GC2OkpaUhLi4O7u7ueP/+PQDgx48faNWqVcmDr3Xr1kK9zRcUFCAlJQWvXr3CrVu3kJSUhPXr10NFRYWnB+q0adNgbGyMcePGCWyDOPntMD08PFC7dm0cPXqUUfk2Njbo1q0bLCwsGJVbHvHx8Rg3bhx8fHzE2vWPhTlYp8EiFCkpKTh58iTu37+Phg0bolmzZjA2NsbgwYMB/KoYK8pY+y9fvsDJyQlhYWFQUFDA4sWLoaWlVebYb9++Yd68eYxtxYgTIsLw4cMZrXtVXFwMNTU1PHjwgKfmTMJSUFCAUaNG4dixY+jcubPI9bGIBjZ6ikUgsrKysGnTJoSEhGD58uVYvHgxFBQUxG5H+/btS7rsffz4Ef3798fRo0cxderUP8b++PGj0rLf0oqMjAzj/bDT09PRvXt3sTgMAFixYgXmzZvHOox/BLaMCAsAICEhAevXr4ehoSGGDRuGR48eYdy4cRJxGP+lS5cu+PHjB65evcr4Ns7fyI4dOwTKHheEe/fuIScnh+eCiCxVH9Zp/ONERETAxMQE1tbW0NbWxoMHDzBu3DipK/MgJyeHCxcuIDw8HLt27ZK0OYxBRCgqKmJU5qdPnzB58mRGZZYFl8vFjh074OTkJHJdLNID6zT+YQICAjBnzhzs2rULV65cgY6ODl/lJsRNjRo1cOjQIYSFheHmzZuSNocRUlJShMqj+C+/ExnFwd69e6VmNcoiPtgzjX+UL1++YPHixfDz80PDhg0lbQ7PyMjIwMnJCcOHD4eKigpatGiBb9++MfrgFSchISElGedMkJqaKpZVxqtXrxAaGopz586JXBeLdME6jX+Ubdu24ciRI1XKYfxGUVERhw8fxrx583D9+nVs3bpVJOW8xcG7d+8Yyf7+jYODA7Zu3cqYvLLIzs7GypUrcfHiRZ62MX+HbP8mKCgId+/eLSkxExMTAycnJ2hqaorMZhbmYJ3GP8r379/5TqCTJoYMGYLCwkJkZWWhTp06VfqzMHV+9ObNG3z79g29evViRF55ODo6Yt68eX+s7rhcLuLj43H37l08ePAAWVlZKCwsRP369dG+ffuSz9mwYUM4OjqWlBgJCgrCtm3b4O7ujmPHjonUdhbhYZ3GP0hsbOxfUROoR48euHXrlsjak1Y1Nm7cCC8vL5HqiI+Px+3bt2FjY1Nyzd/fH/fv38fTp0/Rpk0b6OjowNbWFh06dOBJ5qBBg+Dp6YmVK1fCzs4Oa9asEZX5LAzAOo1/kK9fv/L8By3NjB07FidPnkSXLl0kbYrA1KxZEykpKULLSU1NRXBwMM9tXQUhKSkJU6dOhaurK6pXr459+/bh6tWr6Nu3L2bMmIFNmzYJXDdLXl4ehw4dwujRozFq1Ci2Mq4UI72hMn8BOTk5WLlyJaPZvkxw6tSpKlNuoyKGDh2KZ8+eIScnR9KmCMyECRPg7e0ttJyLFy+KPBR5w4YNsLe3R+fOnbF3714EBQXh3r17OHToEAYMGCB0ocXfQQ7bt28HD4UqWCQEu9IQETk5OTA1NcX06dOxZMkSNG7cGGpqaqX6StSsWRNGRkaoU6cOgF+lOURdNvz9+/dITEz8KzqoVatWDVu3bsXmzZvx6tUrqKioSNokvmnVqhWSkpKEkpGWlgYHBwcEBAQwZNWfPHr0CHJycujfvz9CQkLw5MkTXL16lfF8ng4dOqB69er4/Pkzm2EupbC1p0TE8ePHISsri1mzZgH4VaDu7du3pcakp6fj5s2b4HA4AIDk5GTk5OSUNLvp0KEDBg4ciHbt2pXUfBKWsWPHwsHBQeLbU7GxscjJyUGjRo2EcpTFxcVQVlbG4MGDcerUKQYtFB/m5uZYu3atwFsyDx8+hKenp8iS7IgII0eOhIeHBxo0aIA5c+bAysoKAwcOFIm+W7du4cqVK1X237OqwtaekiDFxcU4e/ZsqW0HeXn5MiN89PX1y5UTEhKCT58+wd3dHXZ2dsjJycHs2bMxYsQIKCkp8W3XmzdvoKioKDaH8bsHw+XLlxEUFITCwkLUqFEDNWrUQIMGDdCiRQtERUUhJSUFioqKGDduHExMTFC7dm2edcjKymLx4sXYtm0bCgsLGelFIW4mTJiAly9fCuw0XFxcRHp4fPz4cejq6qJBgwYICQnB9+/fMWDAAJHpGz16NA4ePAgOh8OWWJdGiAcyMjIIAGVkZPAy/J/n48ePNHfuXMbl5uTk0N69e6l9+/a0cuVKiouL42v+nDlzKDg4mHG7yiIrK4uMjIxo+vTpdPPmTcrOzq5wfGJiIu3fv5/U1dVp4cKF9O7dO551cblcatiwIdna2gprtkSIiYmhKVOmCDQ3Pz+fNDU1icvlMmzVLzIzM0lPT69EvqmpKd2+fVskuv6XEydO0OHDh0Wuh+X/w+tznnUaIuDjx4+0fPlykclPSUkhX19f0tbWpvXr11f6QCYiKi4ups6dO4vs4fK/xMTEkIaGBj1+/JjvuVwulx49ekRTpkwhTU1Nunz5Mk82nzlzhpo3by6IuVKBgYEBJScn8z3v6tWrtHfvXhFY9AtTU1NydXUlIqLHjx/TpEmTRKbrfyksLKSRI0eKRRfLL3h9zrPRU1WQRo0aQV9fH/fu3YOsrCxGjx6N7OzsCuc8ePAAkydPFnkhwtjYWFhYWODcuXMYOnQo3/NlZGSgqakJNzc3XL16FcHBwTA3N0dubm6F86ZNm4bU1FQsXrxYUNMlSocOHZCRkcH3vN27d0NVVVUEFv36tywqKsLMmTMBAE5OTti9e7dIdP2XGjVqIDMzE1wuVyz6WHiHdRpVGBkZGWzduhVz586FsbExPn36VO7Y27dvi7xcdnZ2NqZOnQoXFxe0a9dOaHmKioqws7ODpaUlzMzMKnQcMjIyWLhwIe7cuVMlwzV79uyJV69e8T2vVq1aAjlnXli7di22bdsGAPD29kbjxo0Z+XflFV1dXZw/f15s+lh4g3UaIuJ3W1RxYG5uDicnJ8ydOxdv3rwpc8zbt2+hpqYmMhu4XC5mzpyJrVu3Mv5gGTFiBJYuXVqp46hXrx6GDBkCPz8/RvWLA01NTVy+fJmvOW/fvoWioqJI7Ll9+zZatGiBHj16gMPh4NChQ9izZ49IdJWHsbHxHxGHLJKHdRoioG3btoiNjRWrzs6dO+PYsWNYt24dbG1tS71tf/nyRaBoK364cOECunTpAm1tbZHI19bWxrJly2BmZlZS6O6/ZGRkQFVVFaGhoSKxQZQoKyujVq1aSExM5HnO/fv3MXfuXJHY4+Hhgfnz5wMAjhw5AjMzM76i2pigfv36SE9PF6tOlsphnYYIkJOTg4KCAp4/fy5WvV26dMGNGzfw8eNHHDlypMRxhIaGirTURn5+PhwdHbFp0yaR6QCA4cOHw8zMDJs3by7zflhYGAYNGoTMzEyR2iEqpk+fDjs7O57H5+TkoEaNGozb4ezsjKZNm5acs1y7dq0k30ictGnTRujERxbmYZ2GiLCyskJqaqrY9crKyuLUqVP48eMHrK2tweVyUa1aNZHWJDpx4gQsLCwgLy8vMh2/MTc3R2Rk5B/bf0VFRZCTk5PqJlKVoauri/DwcGRlZfE0/vHjx4xvOebm5mLx4sUlJUnmz5+PzZs3Q1ZWllE9vCJtHSRZ/uHkvri4OMyZMwcfP35E9+7d/7jP4XBQs2ZNaGpqYunSpXx/eYkI8fHxTJnLFzVr1sSmTZtw4sQJWFtbi/QAPD8/H+fOncPTp09FpuN/kZGRga2tLbZs2QIPD4+S687OzujWrRsAoKCgQCy2/C9v377F6dOnERERUZLR36JFi5Ky4AMGDED//v0r/R7NmzcPBw4cwMaNGyvVWatWLUYdNYfDgbm5Oa5cuQJZWVncuXMHnTp1YvtcsJSGyfhdaSc6Opr27NlD06dPp3HjxlFwcDAVFhaWOz4tLY0cHByobdu2lJKSwpeusLAw0tbWFtZkobG3tycrKys6fvy4SOR7enqSnZ2dSGRXhJmZWalExYkTJ9KHDx8oPz+fevXqRUVFRSK3gcPh0JUrV2jkyJFkampKT548oeLiYiIiSk9Pp7i4OHr+/Dl5e3vTvHnzSF1dnY4ePUq5ubnlyiwoKCBNTU36/Plzhbo/ffpEZmZmjH6eW7dukZ6eHhER5ebmkpaWFn3//p1RHfxiaGgoUf3/EmxyH/3KZr127RqdPHmSxowZQzNmzCA/Pz++M6mPHz9OnTt3pqSkJJ7ncDgcUldXr9ApiYO8vDzq27cvbd++XSTy58yZQxERESKRXRFv3rwp9dCcMWMG/fjxg4iIzM3NKTU1VaT6g4KCaOjQobR582aeH6zp6el05MgRGjhwIPn6+pY7Ljw8nNq0aUNhYWHljvHy8mLUWSclJZGKikrJ38bJkyfpxIkTjMkXFNZpiI9/1mnk5eWRj48PmZqa0tixY+nw4cPk4eFB6enpQsn18/OjYcOG8fUG6+3tTVZWVkLpZQI7Oztq3bq1SN6+R4wYIZa3+rLQ0dEp+Xf9X6cxd+7cSt/UBaWoqIjWrFlD48aN4/vl4zd5eXk0YcIE8vLyKndMVFQU1alThx48eFDm/UWLFtGnT58E0l8Wjo6OdPHiRSL6VT1AWVlZ4i88XC6XxowZI1Eb/iX+yYzwW7duYcCAAXj37h0cHR1x9epVLFiwAKampqhfv75QsnV1dTFt2jSsXr2a5+SxcePGITk5GWlpaULpFpbu3btj8ODBcHBwYFx2QUGBxIrKmZmZ4dy5c39c79Kli0jOWNLS0mBoaIguXbrA29sbLVq0EEiOvLw8zp8/Dx8fHxw4cKDMMR06dEBMTAzc3NwwduzYMg/HmYqcevLkCfbt21fSY+XUqVMwNDQUSWQWP0RERKB169YStYHlT/4Kp/H06VOoqKjAxcUFDx48wOrVq9G0aVPG9cyaNQtNmzbFwYMHeZ4zYMAAkfY54AUZGRkMHToUV69eFahURUXUrVuXUXn8MGHCBPj6+v5xvWPHjkhOTmZU19u3bzFmzBhs27YNFhYWQsuTl5fHiRMn8OLFCzx69KjMMUpKSjh16hRWrlyJsWPHwsPDo+SF5c2bN2jYsKHQdjx58gSamprw9/eHnJwcvn79CldX15JMcEly7NgxkZVfZxECJpctkiAyMpKGDBkitn31/Px8GjVqFD19+pSn8e/fv6cFCxaI2KqK+f79OzVt2pTOnTtHGzduZFT2sGHDGJXHL/r6+kRUensqPj6eBgwYUHIoLSzPnj0jXV1dSkhIYETe/5KYmEjDhw+vdFx2djZZWlpS+/bt6evXr4zs9WdkZNDgwYMpKCiIiIi+fftGmpqa9OHDB6FlM4G6unqFQQMszPJPbE9lZWVh2rRpOHPmTJlhs6KgZs2acHNzw44dO3ga36VLF4SFhaGoqEjElpVPy5YtMWrUKISHh+Pt27dwdXVlTLaCggJjsgSBfp3LlbrWvHlztGrVipEaVHl5eVixYgXc3d3RrFkzoeX9l6ZNm6JNmzaV1p1SUFDAqVOn4OXlhenTpwu9JZiVlQVTU1Ps3bsXqqqq8Pf3x+TJk3HkyBGp6LmekZGBJk2alOp0ySIdVFmnkZubC1NTUzg6OqJjx45i1a2oqIiioiKekrBkZGSgr6+Pu3fvisGy8jl48CAePnwIa2trPHz4sFSOgzDUrVtXolm75T1U6tati5SUFKHlnz59GtOnT0fjxo2FllUey5cvL/ds47/069cPzZs3F7ot8Lp16zBjxgyoq6vD19cXTk5OuH37Nnr27CmUXKY4d+4cJk+eLGkzWMqgyjoNBwcHWFpaMtYGlV8mTpyIS5cu8TS2SZMmKC4uFrFFFVOnTh0cOXIEmzdvhoODA+zs7ODm5ia03ObNm0ssiREACgsLAQAJCQmlHIi6urrQhQu5XC7Onj0r8odX7969kZeXh5CQEJ7GZ2dnCxXYER8fD39/fxgYGCAxMRG7du2Cu7u7xFeN/0tubq7AgQYsoqVKOo2PHz8iJCQExsbGErOhX79+CA4Olph+QejXrx+WLl0KTU1NPHz4EPfv38epU6eEcmhDhw6VaFVZDoeDwsJC5Ofnl3IaY8aMwcOHD4WSffHiRejr61fYL5kp1q1bhxMnTvA0NiYmBj169BBYV8+ePWFvbw8FBYWSLanfWezSQm5ursRKl7BUTJVzGkSEVatWwcHBQaJ1aVRVVRETE4OEhASexjOxv84Epqam2LhxI4yNjbFv3z7ExMRAX19fYMdhYGCAq1evSuzz1apVqyQC6H9p1aoVPn/+LJTsU6dOYeHChULJ4BVlZWWeKiOnp6cjNjZW4O/+lStXMG3aNIwcORIbNmzA7NmzpWZL6n8JCQlBv379JG0GSxlUOadx5coVqKqqom3btpI2BTo6Ojw1zuncuTPevXsnBot4w9TUFObm5li/fj02bdqEmjVrQldXt2Srhx9q166NoUOH4vr16yKwtGIKCwuRl5cHPz8/jB49utQ9GRkZoVYIMTExaNiwIRo1aiSsmTzBa05EcXExGjRogJEjR/KtIycnB1OmTMG+ffsQHByMz58/S+W5ARGhsLBQLAUwWfinSjmN4uJiHD16FMuXL5e0KQCASZMmwdnZudJx6urqAnVlEyWzZ89G27ZtMXLkSDg6OmLIkCFYsGCBQLJWrVoFe3t7sa82Pn78iE6dOuHDhw/o2rVrmWPKa0pVGbdu3cLYsWOFsI5/eHEcubm5KCwsFOhgfvv27Th69Ci+fPmCRYsW8Xz4Lm6CgoLQqVMnSZvBUg5Vyml4enpizJgxUhOG16ZNG54elNJarnvNmjXYs2cPVqxYga9fv+Ldu3f49u0b33IaNWqEUaNG4eTJkyKwsnxu3LiBESNGICcnp8wOdlZWVrh48aJAsl++fCn2IIvfZzMVsW/fPoEip4gIwcHBmDlzJiwtLbFq1SqpzbYODQ0VWTMvFuGRzqdZGRQVFcHZ2RlTpkyRtCmlqFu3Lj58+CBpMwRGRUUFV69exejRo1FUVIRJkyYJtGJYvnw5zpw5g69fv4rAyj8hIly/fh29evUqd6tSTU0NwcHBAp3X/Pz5E+3btxfWTL5QUlKqNJ/H3d0dlpaWfMtetWoVtLS0sGjRIujo6GDChAmCmikWpO1gnuX/U2Wcxt69ezFnzhyRxssLwrhx4+Dl5SVpM4RCRkamJOclNDRUoBpV8vLycHZ2xuzZs8ttx8ok169fh4aGBqKiotCrV68yxzRp0gQtWrQot0xHRUii+19ycnKFD8uAgABwOBy+D+eLiorw5MkTBAcHo3379ti6dauwpooUNnJKuqkyTuPx48cwMTGRtBl/YGJigocPHwp0iCxtDB06FGZmZti5c6dA83v27Im5c+di4cKFIm2ElJGRATs7O2zYsAF37typcBvJysoKZ86cEZktTCIvLw85Obly7x88eBBdu3bl64FaVFQEPT09/PjxA2ZmZlJzHlgRFy9eZLwjIQtzVAmn8fDhQ3To0EEq3z5kZGTQpUsXfPr0SdKmMMKRI0eQn5+PwMBAgeYbGxtDT08PxsbGyM7OZti6X6xYsQKbNm1C/fr18fnzZwwYMKDcsRoaGkhOTsbPnz/50iFsVWR+4XA4yM3NLfc+l8tFbGxshU7lvyQmJqJr164oKiqCv78/TE1NmTBVpHz9+hWdO3cu84yKRTqoEk7j7du3Ur0Hu2LFCixfvlxqcjGEoWbNmjAzM4ONjY3AMn7PHzlyJMLDwxm0DvD19QURlYSc5uXlVZqzYGJighUrVvClR1ZWlm9HIwzx8fEVZkBfvnwZgwYNQmJiYqXnRg8fPsS4cePQtm1b9OzZE48ePZLaQ+//kpaWJpIK1SzMUSWchrTTvn17dO7cGbdv3y53TFVyKO3atUNaWprQmeLnz5/H0qVL4erqysjnf/36NXbt2oX9+/cDAN69e8dTZrS5uTn8/f350jV48GA8fvxYIDsFITAwsMIV0+HDh7Fs2TK4ubnBzMwMXC73jzGPHj2CtrY2Ro0ahczMTBw+fBje3t4S63ciCIcOHcLUqVMlbQZLBbBOgyF27dqFrVu3Iicn5497srKyyMnJkWhhP35o0aIFCgsLhS5q2KZNG9y5cwcfPnyAqampwD0uoqOjYWFhgW3btuHChQslW0eBgYHo27dvpfNr1aqFzp07V7j981+GDRuGBw8eCGSvIJw8ebLCsjjy8vJo164dBg4cCGtra4wcORI9evRAq1at0L59eygpKWH69Ono0KEDvn//jgcPHmD27NlVymEQEb5+/Yo+ffpI2hSWCqgS36hXr17ByMiIrzkpKSm4efMmnj59WuqQunHjxmjfvj00NDSgrKzMWHeyunXrlpSa3rx5c6l7MjIy2LdvH2xsbHD69GlG9IkSAwMDXLlyBbdv3xY6xLlatWqws7NDUFAQxo8fj379+mHOnDno3bt3pXOjoqKwY8cOJCYmYtOmTX8cjnp7e/Ps2EaMGAFvb2+eP8+AAQOwatUqnsYKy8OHD9GxY0e0atWqzPteXl6lVlT9+/fH1KlTsWnTJlhaWkJGRgaNGzeWmvwlQUlJSRFbBj6L4Ei90yAiJCYm8hwz//PnT6xevRoxMTEwNTXFunXrSn0RP3/+jC9fvuD06dN4/vw5NDU1sWjRIkbKklhYWGDs2LFYu3btHweWvXr1QlZWFoKCgjBo0CChdYmSZs2aoVq1arh16xaKi4sZCUAYNGgQnj59iqdPn8Le3h6xsbHQ0NBAnz590LZtWzRu3BhpaWmIjY1FUlISbty4gWrVqmHDhg1QV1f/Q15sbCxq1arFc6kQExMTTJkyhWenISMjg1q1aiEjI0Pkh+Lbt28v92UiISEB27ZtKwkbjomJgZWVFSIjI9GtWzeR2iVuuFwuateuLWkzWCqDyY5OoiAiIoIWLVrE09hLly6Ruro63b9/n6fxXC6X7t69Szo6OmRnZ0dcLlcYU4mIaPXq1XTp0qUy70VERJC5ubnQOsTBw4cPqXXr1vT48WORyM/NzaXHjx/TqVOnaM2aNbR06VJauXIlubi4kIeHB/38+bPC+WvWrCE/Pz++dKqoqPD1HT527BgdPnyYLx384u3tTUuWLCnzXnFxMampqdHp06eJ6FdHwtatW9PHjx9FapOkcHZ2Fvnvm6V8eH3OS73TePLkCW3btq3ScefOnSNLS0vKz8/nW0dxcTHZ2trSrl27BDGxFIWFhdSuXTvKzMz84152dja1bNmSioqKhNYjDpo3b04mJiaSNuMPvn37RkpKSnz/HtesWUMnT57keXxGRgYNGjSIsbax/yU+Pp4GDx5MWVlZZd6/dOkSrV+/noiIAgICqHXr1hQWFiYSW6QBY2NjqWwp/a/w1ziNzZs307Nnzyoc8/nzZ9LT0xPqj5vL5dLMmTPJzc1NYBm/mTVrFt28ebPMe2fOnCFra2tGVjWi5suXL6SgoEBpaWmSNqUELpdLo0aNouvXr/M9NzAwkCZNmsTXHFtbWzp//jzfuiojJyeHRo0aRSEhIeWO0dHRodzcXHJwcKABAwZQdHQ043ZICxwOh6de6Syi46/pEZ6SklJp3PbWrVuxbds2oQoDysjI4OTJk7h58ybu3bsnsBwAWLZsWZmRN1u3bkV4eDi8vLyE1iEO2rVrh+7du/PcHEgcPHjwAPn5+TA0NOR77qBBg1C9enWeO+QBwOLFi3Ho0CFkZGTwra88iAhz587FggULoKKiUuYYJycnNGvWDGvWrMHnz5/x4sULsdfCEideXl5/lLdnkU6k+iC8qKgIHz58QLt27cod8/LlS+Tm5jJyuCwrK4ujR49i5MiRUFNTQ506dQSSU17W7tmzZzFq1CjMmjVL6B7P4qJnz55SEyqckZGBRYsWVZgPUxmrV6+GlZUVgoKCeGpkVL9+fdjZ2cHS0hKenp6MNP7asGED1NTUyn1IFhQUwMPDA506dULXrl0FLlnPC1wuFyEhIXj+/Dk4HA6AX5GAHTt2hKysLFRUVFC3bl2R6f/NmzdvBHoRYBE/Ur3SuHPnDgwMDMpdQaSlpWHJkiVwcnJiTGeDBg2wevVqgesvVURwcDBCQkJK/qsKKCoq4suXL5I2A0SEGTNmwNHRUahItz59+mDixImYNm0az9nqw4YNg6qqKuzs7ATWC/z6DE5OTsjIyIC1tXW549avX48+ffqgRo0aInMYL1++hIWFBYYOHQo3Nze0bt0aKioqUFFRQa1atRAaGlpSekRLSwv79u1DYmKiSGwBgGfPnkl9VCHL/8HkXhfTTJo0iX78+FHufUNDQwoMDGRcb1FREampqQk8/+PHj7R8+fJy73O5XBozZgzp6uqSj4+PwHrEweLFi4X6XTCFm5sbLVu2jO95XC63zP8ePXpEAwYMIFVVVbK3t6efP39WeM7E5XJpw4YNNHfuXMrJyeHbjqCgIBo2bBht3bq1wrO3r1+/Uvv27UlDQ6PSCDJ+4XK55OXlRZqammRlZUWvXr3iaV52djZduHCBhg0bRqtXrxbo81dEXFwcTZ8+nVGZLPzD63NeqrensrOz0aBBgzLvubi4oE+fPiJ5O6levTp69+6N4ODgCks7lAcR4f3799i/fz+mT58OeXn5UltdMjIyuHHjBhITE9G/f39cvXoVAwcOZPIjMEJaWhpu3bqFDh06SNSOjIwMHDp0CA8fPqx0bFpaGq5evQpvb28QEbKzs8vN5WjRogW4XC6cnJywbt06tGzZEm3atIGjo+MfmeYyMjLYtm0brl+/Dm1tbcyfPx9mZmYVljInIvj7+2P//v1o2LAhzp49izZt2lRo/5IlS9C7d2/079+f0aJ9+fn5mDx5Mnr06AFvb280bNiQ57kKCgowMzODqakpLl++jJEjR8LV1ZWx78X+/fulsu0sS9lIrdPIyMhAzZo1y9yaCgsLw4ULF+Dj4yMy/YaGhnjw4IFATiMgIACfP39Gjx49sGTJEiQkJCA3Nxc7d+4s1ZGsWbNmOH/+PNavX49r165JXUbv+/fv0aVLF/Tv31+idqxduxZbt279o2c0l8vFo0eP8PDhQ4SFhaGgoAD16tWDnp4eLl++zFcjn8LCQty/fx9GRkYYMGAAXr16VWbWupGREbS1tXHkyBHo6OigSZMmUFdXR6dOndCgQQOkp6ejqKgIgYGBCAgIwJAhQ3DgwAGe2peeOXMGSUlJaN26NdavX8+z7ZWRmZmJmTNnYs6cOTAwMBBYjoyMDCZNmgRVVVVMnz4d27Ztw7Bhw4S2LzQ0FHv37hVaDouYYHLZwiRnz54lV1fXP64XFxeTpqYmff36VaT6ExIS+A7PJCKKiYmhevXqlQrd5XK5FBQURIsWLaIxY8aQhoYGHTx4kBISEoiIyMbGhg4cOMCY7Uyxfft2at26NSUnJ0vMhtevX5Opqekf13/+/EmTJ0+m+fPnU2BgIGM2FhQUkImJCbVq1apSmVwulxITE+nGjRt06tQpWrt2LR0+fJhcXFwoICCA5xDw4uJiunbtGrVp04Zat25NiYmJTHwUIiJKTEwkLS0tnhNeeSU7O5uGDh0q9N/hz58/aezYscwYxSIUVT5PY+LEiWXmB/j4+NCaNWvEYoOhoSHfc/bs2UN9+vSpMKa+qKiIzp49SxMnTqTp06dTRkYG6ejo0KdPn4Qxl3FUVFRKksskAZfLpcGDB/+R0HbhwgXS1dWlgIAAkemeMWMGtWzZknx9fUWmg+hXfsKYMWNIR0eHBg8ezOh5QUFBAY0ZM4ZevHjBmMz/5e3bt2RkZCSUjHPnzjGSVMsiPFU+T6OwsLDM84zAwECMGDFCLDbw2/IzJiYGt2/fRtOmTSuMqa9evTqmTZuGy5cvo0ePHtDT08OoUaOkriR0dHQ0pk+fLjH9e/bsgaamJnr27AkA+PbtGxYuXAh/f3/4+vpW2LFPWE6fPg1bW1uYmppi+vTpSE1NZVxHcXEx5syZg8GDByMiIgKXL19mtPbS5s2bMXHiRJGdl/Xu3RtNmzaFn5+fwDKuXbuGxYsXM2gVi6iRWqdRHvfv3xfpw+J/4bdQn5+fH2rWrIkhQ4bwPMfGxgZ+fn549eoVIiIipKrvRr169XguCMg0379/h4+PD7Zt2wbg18vC7NmzMWXKFDg7O4uli6OlpSUePXqEt2/fYvDgwThw4ADevHnDSA/03w5DS0sLjx49gqOjY4VNmPjl6dOniI6OxowZMxiTWRa/WwII8r3lcrlIT09nixRWMaT2ILysL2FMTAzatGnD1wGnMPCrJycnBwEBAfD09ORrXr169eDm5sbXHHGQmZkpkbabRISZM2fi6NGjkJWVxbp16xAZGYnLly+L3Yn16dMHr1+/hqWlJS5duoR79+7h3bt36N69O6pXr462bdtWmvBXu3ZtKCoqlgrs8PPzg7m5OWrVqoU+ffrAxMSEMZtzc3NhY2MDb29vxmSWh5KSEgYOHIiHDx9i+PDhfM29c+cOdHV1RWQZi6iQSqeRkZFRZvOYGzduQF9fXyw2ZGZm8v026+3tDT09PSgoKIjIKvERGhoKBQUFsTno/+XevXvo3bs3evTogblz50JFRUUkyZa8Uq1aNZw+fRp37txBeHg4NDU1UVhYiPz8fPz48aPS+Z8+fUJ2djZev34NFxcX1KlTB2PGjEGnTp0wf/58xvt2rF+/HkuXLhVb1QFzc3NcunSJb6dx//59WFpaisgqFlEhlU4jJiamZB/7fwkMDBQ6K5dX3rx5w1NXuP8lPT0dixYtEo1BYsbd3b3MPhaihsvlYseOHfDy8sLq1asBAHPnzhW7HWWhr68v1EvLwYMH4eLigqtXr5Zcy8jIYPThHh4eji9fvsDBwYExmZXRtWtXfPz4ke95ERERaNmypQgsYhElUnmmQURlLvnj4uLQunVrsdjw9OlTaGho8DUnMTGx3AJ0VQ13d3doaWmJXW9QUBAUFRWxePFipKam4ujRo2K3QVQsXrwYycnJyMrKAvDLQUZHRzO6mtu/fz82bNjAmDxeEKRJVU5ODmrXri3yBlcszCOVTiMoKAi9evUqdS0jI0Os+9khISF8JbV9+fIFxcXFUFJSEqFV4iMzMxNmZmZi17t+/XpERERgxIgRcHFxEapysTQyadIk+Pv7A/j1pj148GDGWg5nZmbiw4cPAiWkCgu/RS39/PwkYieL8EjlX+StW7cwatSoUtdSU1MrLcHAJKmpqXz1Ky4qKkKPHj3+iszWO3fuoG7dumJ3gNu3b4e/vz/OnTsn8qgfSdG/f3+EhYUB+PU9ZzLb/vr16xJx9AD4Dpg4depUhUUbWaQXqXMaycnJUFBQ+OMwOSIiAl26dBGLDT9+/OD7gXnr1i1YWVnh5cuXCAoKEpFl4iEkJITR8E9ecHNzw8mTJ3H37l2oqqqKVbc4qVmzJogIubm52Lp1K6M1l27fvi2x8uJlBa6UR3R0NOrUqSOWkusszCN1TiMwMLDMejbfvn1Ds2bNxGLDu3fv0KNHD77mpKamol+/frh06RKWLFmC3NxcEVkner5//y7WbaH8/Hzs3r0bcnJy0NPTE5teSRAYGAgFBQUsWrQINjY2jPTn+M23b9+EKhsvKElJSXz1npHEuQsLc0hd9BSXyy2ziVFqaqrY6u17e3tjwoQJAs2tV68e7Ozs0LBhQ0REREi8QqwgREVFoXHjxmLTt2DBAsjKyuL8+fMAAA6Hg2fPniEmJqbUOHl5eXTt2hXt27eXWNKhsJw7dw5Tp05FrVq1sHnzZsbkRkZGolWrVozJ44eoqCieuwpyuVy8f/+e75cyFulB6lYakubFixf4/PkzNDU1BZahpaUFR0dHeHl5MWiZeEhKSkK9evXA5XLFos/d3R1RUVHo0qUL+vXrh4MHD0JdXR03b96EvLw8ateuXfJfamoqLl68iLFjx2Ls2LE4d+4csrOzxWInE/z8+RPVqlXDjRs3GA8dv3jxosRKvkRERPDsBPz9/TF8+HBGV1gs4kXqVho5OTll7o/KyMiIfMsnOjoaa9aswZUrV4T+UltaWmLSpEkMWSY+/Pz80K9fP4SHh8PJyQkLFy4Uma63b99i4cKFqFmzJmbNmgUtLS0YGxsjMDCw0sTKuLg4eHl5QUdHB+PGjcPChQulfo/84MGDyMjIwN27dwVuJVweUVFREqvhFBQUhOXLl/M01tvbG/PmzROxRSyiROpWGtevX8eYMWP+uN6zZ0+RtkglIlhbW+PgwYPlNn6qbP7/IiMjUyXDRe/cuQNNTU04Ojri2rVrWLJkCX7+/Mm4nqKiIlhbWyM7OxuNGjVCaGgovLy8sGzZMp4y8Vu2bInFixfj2bNnaNmyJUaMGIErV64wbidTxMTEwMHBAfv27RNJboKkvm9EhPDwcHTr1q3Ssd+/f0d8fDyUlZXFYBmLqJC6p9rPnz/LfGgPGzYMvr6+ItN74cIF9OvXT+AvdFBQUKk95ejoaGRkZDBlnthISEiAsrIyGjVqBD8/P4waNQoGBga4fPkyo3pWrFiBly9fYujQoXjy5An27t2Lpk2b8i1HVlYW06dPx7179+Dv749Zs2aBw+EwaisTbNiwAfXr1xdZrSVZWVmJfN+ePn2Kfv368bQy9/T0lFh0FwtzSJXTyMzMRIMGDcp8Y1JSUkK9evUQGhrKuN6oqCg4Oztj48aNAs3PyspCTk5OKWe3detWLF26lBkDxYi8vHypz6Gvr4+bN2/iwYMHsLCwEPrBRESwsLDA6dOnS14EBFnZ/RcFBQUcOnQIBgYGmDlzplQ5jj179iA2Nha2trYiq+XVt29fBAcHi0R2eRARtm/fjpUrV/I0/vLly5g2bZqIrWIRNVLlNLhcboUtT3ft2oXFixejuLiYMZ3R0dGwsrKCm5ubwO1Wp06dWioZ8fHjx8jPzy9zm03aKWtrqEmTJjh69CgGDx6MQYMGCbxdFRQUBGVlZVy6dAndunXDlStXGMuG/o2JiQnGjBkjNTXAfrf5LSwsZLSS7X9RVlZGdHS0yOSXxbFjx6CmpsZT5NTvVrz85HOwSCdS5TQqo2PHjpgyZQqsra0Z6Tvh7++PmTNn4syZMwLXtHr9+jVyc3Oxfv16ZGdnY8aMGTh8+DD2798vtH3ipqioqMLfq5WVFezt7WFoaAhra2skJibyLPvQoUMYM2YM1NTUMHbsWNjb2zN+GPwbMzMzNG3aFPb29iKRzw/Tp0/HwoULoaamJtLqx127dsXr169FJv+//PjxA+fOneM5bHjXrl0Ch7GzSBdS5TQSEhLQsGHDCsdYWVmhWbNmWLFihcBbECkpKZg9ezZOnDiB27dvC+UwbGxscOnSJVhYWEBPTw/Tpk3DxYsXJZJkJSxXr16FtrZ2hWMMDQ1x//59aGhoYPbs2Rg5ciR27tyJqKioMh3O9+/foa2tjV27dmHjxo2wsLCArKxsmQmcTLJlyxY8efIE7969E6meirh69Srat28PRUVFkfeNaNmyJWJjY0Wq439ZsmQJdu3axdPhe3FxMR4/fizRLpAsDMJk71hhWbNmDT158oSnsSdOnCAtLS169eoVz/K5XC5dvHiR1NXV6d69e4KaSUREb968oY4dO9LZs2dp+PDhtHfvXiouLhZKpqRxcnKiS5cu8Tw+Pj6eli5dSgMHDqQ2bdpQo0aNaObMmbRixQqytramPn36UIMGDcjc3JwiIyOJ6Fff9S9fvojoE5Tm3bt3ZGJiIhZd/4XD4VDLli3px48fpKqqStnZ2SLXaWhoKBY9p0+fplWrVvE8PjAwkJYtWyZCi1iYgNfnvNRsMKalpSE0NJTnZjuzZ8+GtrY21q9fj7y8PMyaNQu6urqlziWICGlpaQgLC0NQUBCuX7+OwYMH4969e0K1mCwuLsagQYPQr18/REVFwcPDQ2wNb0SJj48PLl26xNNYLpeLuXPnYtmyZdi3bx+SkpJw7949nDt3ruSNd8WKFRg7dmxJ9nZ6ejry8/PRrl07UX2EUigrK0NGRgYvXrwQez2r8PBwGBgYIDIyEgMGDBBLY67fh+GiXMUFBwfj0qVLfHUF9PHxgY6OjshsYhEvMkSVHw5kZmaifv36Ii1PHhAQgPv372PTpk18z/306RPc3d0REBAAeXn5kut5eXlo0KABlJWVoaysDF1dXUZi5GfMmIGHDx/i8ePHVXIbqiyysrIwevRoPH78mKfx9vb2kJOTw5IlS3jWcfPmTYSHh8PGxkZQM/kmLi4OM2bMwL1798Smk4gwdepU9OjRA/7+/nB2dkbHjh1FrvfJkyfw9vYW2XlaeHg4Fi9ejAsXLvD8kpSSkoLJkyfjzp07VTJv6V+C5+c8k8sWYZg+fTp9+PBBZPKZwsvLixo1akSJiYmSNoVRvn//TvPmzeNp7KtXr8jMzIy4XC5fOubMmUPBwcGCmCcUU6ZMoXfv3olN39y5c6lfv37k6elJW7duFZve4uJiGjJkCCUkJDAuOywsjHR0dCgpKYmveQsWLOBry5NFcvD6nJca15+SkiK20ufCsGfPHowePVqgRDRpprCwkKdxT58+hY2NDQ4cOMB3qZX3798z2j+CV6ysrHDmzBmR63n//j2UlZWRnp6O/fv349ChQyItw/JfqlWrhp07dzJeQTY8PBxLliyBu7s7X9uwYWFhiI2NFWmoMYv4kQqnQUQ8lY6QBqpVqyb2XhPi4PLlyxgxYkSFYz58+IDNmzfjypUrAjlNSbX21NDQQEBAgMjk5+XlYfHixZg4cSJOnjyJYcOGYevWrTh58mSl0YBMo6mpCS6Xi2vXrjEiT1CHQURYsWIFHB0dGbGDRXqQCqfh6+v7R3tXaSU6Oloke7Pfvn3Dzp07oaenByMjIxgZGWHYsGHo27cvCgoKGNf3X4qKiip0hj9//sTChQtx/PhxkeVXiApZWVm0a9dOJCGp79+/x8iRI9GlSxd4e3tj+vTpiI2NxYMHD9CpUyfG9fGCk5MTzp07hwMHDghVrfj3GQa/DgMAduzYgTZt2ojlLIdFzDC51yUo06ZNo+/fv4tENpO8fv2a2rZtS23atKHo6GihZOXl5dGRI0dIX1+fdHV1adq0aXT9+vVS5wRcLpcsLS3J1NSUOByOsOZXyPbt2ykwMLDc++PHj6eQkBChdBgaGgo1XxhcXV3p8OHDjMnjcDi0a9cu0tXVpejoaPrw4QO1a9eOnj17xpgOYeByuWRra0sjRozg+98tMzOTtm/fTsOHD+f7DIOI6P3799S3b1/Ky8vjey6L5KgyZxpcLhffv3+vEls+r169wrp16/D48WMoKysjKyuLbxnp6ek4fvw4hgwZgtjYWKxatQp3797F2bNnYWhoWOqcQEZGBqdOnUK7du1w9epVBj8J73C5XKxYsQKtWrWCioqKRGxggkGDBjGW6JeXl4eGDRsiLy8Pd+/ehZycHDQ1NXHr1i2oq6szokNYZGRksHHjRhw/fhw7duzAlClT8OzZs3JXHsXFxXj58iXmzp2LUaNGoW3btvDz8+N7hUFEWLJkCTw8PEpFMrL8PUg8T+N3A5eq0JTFy8sL7u7uqF+/Pry9vWFkZIS1a9eibdu26NKlS8lniIiIgIeHB16/fg0ZGRnk5eWhsLAQycnJUFJSgomJCc6fP89TOWkAWLlyJcaNG4dx48aJ9ewnLy8PS5cuRX5+PlxcXISWJ8kWuN26dcP379+FlpOVlYVBgwZhxYoVJeHhoaGhmDVrllR2o2vbti28vLzw6tUrnDlzBmvXrkWtWrWgpKSEli1boqioCO/fv0dmZib69OkDS0tLoTpknjhxAn369EHXrl0Z/BQs0oTEnYaPjw+MjIwkbUalZGVlobCwsOQwd8SIEVBRUcGJEydw8+ZNREZGgsPhICIiAlwuF927dy/Z+2/WrBlat26NevXq4cKFC3j16hVfdXgaNWqEAQMG4OXLl1BTUxPJ5/svnp6eOHjwIJYuXYqxY8cy4qxkZWXB4XAkVrSOhKxX5u/vj6lTp8LNzQ3Dhw8vuV69enWkpaUJa55IUVFRKbVSjIuLK1kpt2/fnpHqu9++fcORI0fw5MkToWWxSDFM7nUJgq6uLmVlZTEul2ksLCzo7t27f1zPyMigz58/k4WFBamqqtKNGzcqlXX9+nUCQEFBQTyXHnnx4gWZmZnxbTev/D7T4HK5ZGFhQSNHjmT8HGX16tX06NEjRmXySkREBM2fP1+guenp6TR//nyysLCg5OTkP+5zOBwaPXo0LV68mAoLC4U1tUqSmZlJbdu2LfNvhKVqUCXOND5+/Ijo6Gipj8bJyMhAdHQ09PT0Sq5xuVy4ubmhVatW2L9/P6ysrBAUFMRTOXRDQ0N8+vQJDg4O0NbWxokTJ3DhwoUKq8YOHDgQX79+5bmqKL8UFRVBRkYGN2/eRI0aNXDt2jXGt8J0dXVx+/ZtRmXySlhYmEDbR8+ePYOenh709fXh4uKCxo0b/zFGVlYWN2/ehLa2NgwMDDBt2jSxFg+UBpYvXw47O7tSfyMsfylMeiB+2b59O125coVRmaLg+vXrpTJ74+LiyMDAgOzt7amgoEBgucXFxRQZGUleXl505swZGjt2LOnr69OsWbPo+fPnf2Rc5+Xlkbq6On379k1gneVhYGBA8fHxNGTIEJFFvRQXF5OGhoZEIuW2bNlC9+/f53k8h8MhMzMz6tmzJ8XGxvKl6+7du9ShQwe+9FVlAgICaNKkSZI2g0VIeH3OS9RpTJw4USQPQCbJysqiBg0a0Pv374mIKDQ0lIYOHVryM9MUFxfTp0+faN68eaSrq0vr16+nmJiYkvtv3ryh0aNHU1RUFGM6c3NzacCAATRt2jQKCAhgTG5ZBAQE0OTJk0WqoywMDAzox48fPI19/PgxAaClS5cKXLk4Li6OjI2NSV9fn3JycgSSURV48eIF6ejolLltx1K1kHqn8fnzZ+rVqxdj8kTFhQsXyMrKioh+PUy0tbX5fvMUFC6XS/fu3SMdHR0yMTEpqeHz4MEDql69OmMPo6dPn9LgwYNpypQpjMirjClTptDLly/FoouI6Nu3bzRq1KhKx/3ObVBXV6fHjx8zovvKlSvUoEEDOnHixF/nPD5+/Ei9evWilJQUSZvCwgBS7zQMDQ3p5MmTjMkTBRwOh4YMGUJJSUnE5XLJ0NCQ0Td8fkhLS6PFixeTubk5JSQkkL+/P40ZM4aRw2onJydq2bKlyFZP/yUsLIzMzc3FoouIaP78+fTgwYNKx61du5b27NnDdyHGiIgIOnr0KB09epRev379x/3MzEwyNzcnAGRra/tXOI/g4GDS1tamsLAwSZvCwhBSfRDO5XKRmpoKS0tLSajnmYMHD2LChAlo0qQJzp49C2VlZXTo0EEitjRo0ACOjo5YvHgxrK2t4ezsjF69euHIkSNCyz5w4AAcHBzEFlvfs2dPZGVlITw8XOS6vn//jk+fPpUKkS2L/fv3g8PhYNWqVXzlDOXk5GDBggVo3rw52rRpgw0bNmDmzJkICAgoCfGtW7cu3N3dkZmZiQ4dOmDq1KkCd52UBjw9PWFjY4Nz586hZ8+ekjaHRdww6YF45erVq7Rjxw5GZImK4uJi6tatGyUlJVFmZiZpa2tL1Ruil5cXde7cmXR0dGj//v1CyWrQoAEVFRUxZBlvfPjwgfT19fl+q+cHDodDRkZG9OLFiwrHPX/+nKpXry5QUMPatWtLBXP8Dm6wsLAgU1PTMufs2bOHBg0axLcuSZOWlkazZs2iZcuW/bOhxX8zUr3SCA4OrvTNT9I4OjpiwYIFaNKkCbZv3w4bGxuhuv0xzYQJE/D8+XOMHj0ay5cvx6lTpwSS4+/vDyUlJbEn3HXp0gW9evXCrVu3RKZj9+7d0NDQwMCBA8sdExkZifXr1yMhIQFycnI8y46Li4O1tTWKioowbty4kuvVqlVDt27dcOLECdSpUwcmJib4+fNnqbmrVq1Ceno6Hj58yO9Hkhj37t1Dx44dMX78eOzfvx81atSQtEkskoJJD8QrI0aMkOp+2j9//iQtLS3Ky8ujmJgYGjFiBGNvxFwul16/fk0HDx4kMzMz0tXVJUNDQxo+fDhZWFiQj48P32/93t7epKSkRH5+fnzbo6amRvv27eN7HhMkJyfT4MGDGX9r5XA4tHXrVlq9enWF/26ZmZnUo0cPviL4CgsLadu2baSrq1vpCqa4uJguX75MWlpaJT3SfxMWFkbNmjWrEoU69+zZQ+3ataM7d+5I2hQWESK1B+Hh4eE0depUoeWIiuzsbGrbti29ePGCcnNzydDQkN68eSO03MzMTLK3tyd1dXWaM2cOeXp6UkxMTMlDjcPh0MePH2nt2rWkqqpKR44c4ct5DB8+nNq3b0/p6el82dWmTRuJHe4TER06dIi2bdvGmLzc3FyaOXMmOTg4VOrot2/fTq6urpXK/B3FtnjxYtLQ0KBz587x9dKTkJBA48ePJ2NjY8rMzCy5fvLkSVq5ciXPciTBli1byNjYWKh8JJaqgdQ6jdmzZ0tt+8efP3+Sjo4OHTx4kAoLC2nYsGHk6OgolMysrCzatm0bDRo0iM6ePUu5ubmVzuFwOLR7927S1tbmuQVuQUEBqaurk7q6Os+rorS0NFJSUhLpuUJlcLlcWrNmDVlaWlJ8fLxQst69e0daWlrk5eVV6dgXL16QiopKhY75t7MYNWoUrV+/nt69eydUtNqzZ89IV1eXHB0dicvlUmFhIbVp04bRku1McufOHRo7dqxEvx8s4kNqncbEiROldkluaWlJ9+/fp4KCAhozZgy5ubkJJe/69eukqqpKZ86cEehh8+nTJ9LR0eE5rDEiIoLq1atHRkZGPP2hf/z4kZo2bcq3XaLg/v37pKWlRTY2NqXexnmBy+XS4cOHacSIETz1OSkoKKBWrVrR169fy7yfnZ1Np06dopEjR9L69espNTWVL3sqori4mPbu3UvLli0jLpdLubm5pKamRk+fPmVMBxP4+flR7dq1SVtbm9atWydpc1jEgNQ6DX19faFliIITJ05Qv3796MOHD6Snp0c+Pj4Cy/rx4wfNmjWLZs2aJXQxxt/7/rwmUB0/fpxUVVV5ykvYunUraWlpCWUfk3C5XLp48SKpqqrS/v37K1wFFBcX08OHD2nLli2krq5OO3bs4Nkx7969m2xtbf+4HhgYSDY2NjRs2DA6d+4c386LHxwdHUscR1xcHHXs2FHk2fj8oKenR8uXLyciIg0NDVq+fDm74vjLkVqnIcnubeVx5swZGjp0KC1atIhGjhxJcXFxAsnhcrlkZ2dHGhoadO/ePcbsCw0NJV1dXZ4cR0ZGBjVt2pScnJwqHbt69WoyMDBgwkRG4XA45OjoSKqqqrRw4UI6duwYPXnyhC5dukRbtmwhExMT0tDQoFWrVpGfnx9fodDh4eGko6NDxcXF9OTJExo5ciQZGRmRoaEhjRs3jt6+fStSZ/G/ODo60syZMyklJYUSExNJQ0OD0VWNoBQUFJCSklKJE87NzaU1a9bQiRMnJGwZiyiRSqfB5XJ5KucgTg4cOEANGjSgYcOG0fPnz4WStXnzZtq5c6dIIsNCQ0NJR0eHp5WLqakpqaioVDrO0NCQtLW1hVpViRIOh0MhISHk6elJ27Zto8OHD5O/v79ALUiJfq0Ae/bsSXPmzKHx48eTubm5xMvyHzp0iHr37k2enp504cIFGjdunETtISI6duwYdezYsdS17Oxs0tHRKVUHjeXvQiqdxt27d8nGxkYoGUwRExNDRkZGpKioSJs3b6bs7GyBZXG5XLK3t6fZs2czaOGfuLq6kp2dXaXjUlNTqWHDhpSQkFDhOCMjI0pLS6MJEybQ9evXmTJTKsnMzKTu3bvTgAED6Pbt21KVqFlUVESTJ0+my5cv0+DBgyXakyIlJYU0NTVp3rx5f9y7f/8+zZ07VwJWsYgDqUzuy8rK4rnFqSh58uRJSY/u+/fvY8uWLVBQUBBY3ubNm1FQUIBjx44xaOWfTJs2DZ6eniguLq5wnJKSEgYNGgRzc/Nyx6SlpSEvLw8NGjTAhQsX4OzsjAcPHjBtssQhIhw8eBD9+vXD0KFDERQUBAMDA6lK1KxevTrOnDmDLVu2wMjICCdOnJCYLYsWLcL06dPL7BsyfPhwPHr0CP7+/hKwjEVakGgTJnGTlJQEc3NzHD16FG3btsWVK1fQr18/oWQ+evQIUVFRWL9+vcj7d8vKymLo0KF49uxZpWNPnjyJgIAAZGRklHk/IiKiJCtfTk4OHh4e2L17N86cOcOozZIkISEBhoaGCAsLQ/fu3XHkyBFUqyadX/nq1avjzZs38PPzQ1JSkkRsSEhIwIcPH5CVlQUNDY0/7svIyMDf3x8ODg4SsI5FWhDrX1BRUZE41ZVi3bp1mDRpEjQ0NJCdnQ0nJyehiw8WFBRg3bp1cHR0ZMjKypk5cyZPD/YWLVqUFFosi9evX6NZs2YlP9epUweenp4ICwvDzp07GbNXUiQkJGDq1KmwtrZGdHQ0Ll26JHKnLizVq1fH4cOH8fz5c1y+fFns+rdt24YdO3YgKysLDRs2LHNMs2bNUL16dURERIjZOhZpQaxO49atW9DV1RWnSqSkpGDmzJlISkqCv78/OBwO9PX1hV5hAL8c0YIFC9CoUSMGLOUNZWVlfP36laexenp65a5K1q5di/Hjx5e6VrduXezZswd5eXlV2nE8ePAA5ubm2LlzJ7Zt24bz58+jVq1akjaLJ7p27QpbW1vMnj1brHpfvnyJ5ORkjBw5stKxa9euFeuLEouUweQBSWWIO9w2OjqaevXqRYGBgURE9Pr1axo7diwj0U0XLlyg+fPnCy1HEIyMjHgad+bMGerUqVOZ8fUV/VtwuVxSVVWl0NBQgW2UFLm5uaSjo0Opqak0atSoMvtbCAOHw6HAwEDasWMHmZiYlNQOMzAwICMjI9q3b5/QTbqys7MJALm7uzNkdcUUFxeTurp6SUj3jBkz6MuXLxXOGT16tNiakbGIB16f8+ItbSpGQkND0adPHwQHB6N///7w9/fH1q1b4e7uLvS+dlBQEM6fPy+RLQQOh4Pc3FyexsrIyKBZs2ZITU0t82CzonlOTk4wNjZGZGSk1G/r/C/Ozs6wsrKCra0tpk6dir59+wolLycnB3FxcQgMDMTdu3fx5csXqKqqYvjw4Zg7dy4aNmxY0n8jLS0Nvr6+WLp0KVJSUqCtrY3Zs2ejdevWfOlUUFCAnp4enJ2dKwxmYAo3NzcYGxuXrJh//PiBdu3aVThnw4YNsLa2xsWLF6UqqIBF9EjnqaCQhIWFYeXKlfj8+TP69++PS5cuwczMDJcvX0aLFi2Ekp2bm1tSilxeXp4hi3knLS2t1FlEZbRo0QJv3rzhW8/AgQPRp08f+Pn58T1XUoSHh+Pq1avIzs5GcnIyzMzMBJYVHx8PU1NTjBs3DkePHkV6ejpsbW0REBAABwcHGBkZQUlJqVTDJkVFRZibm+PKlSvw9/eHiooKFixYgKlTp+L79+986Tc0NER8fLzA9vPKixcvcObMGVhYWAAA3r9/j3r16lU6T01NDQYGBrh69aqILWSROphctlSGOLanYmJiqHfv3pSQkEAFBQW0aNEimjdvHmPltx0dHen48eOMyBKEBw8e8FwV9uzZs7Rlyxbas2fPH/d4+bdISkoiAwMDqS5j/7/MmjWLLCwsaM6cOUI1lXr//j1paWlRcHAwI3a9fPmShgwZQhcuXOB5TkpKCjVs2JDRFsv/paCggPr3708/f/4suXbx4kVycHDgaX5CQgJpaGiw5UX+EqQyT0PU5OfnY/HixTh9+jRq1KiBadOmoV+/fjh69CgjTWOICJcuXRLLlkF5vHnzBj169OB5PD+tS/9LkyZNYGhoCFtbW4FliIvAwEBcuXIF9erVw5EjRwRuKpWWlgYLCwu4u7ujf//+jNg2YMAA+Pv7w8/PD+7u7jzNadSoEZo0aYKjR48yYkNZzJ49G3PmzIGiomLJtUOHDmHq1Kk8zW/WrBnatWuHJ0+eiMpEFilEbE7jy5cv+PLlC7hcrkjkv379GlpaWpg/fz7atWuHyZMnY/78+SXLbia4c+cO+vbtizp16jAmk18CAgKgqqrK8/iaNWvi8+fPAuubO3cu3r9/D09PT4FliAN9fX1YWVnhwIEDAp/BREdHw8TEBE5OTmjevDmj9tWoUQPHjx/H6dOnERYWxtOc9u3b4/bt24za8ZuEhAQkJCTAysqq5Nr79+/RrFkzvqIBd+3ahWXLlpWbD8TyF8LksqUi5syZQ7169SJtbW2ys7NjrPEPh8Oh8+fP07Bhw+jp06dkYWFBhoaGQteR+i85OTmkpqZWaikvbgoKCmjw4ME8jz979ixdunSJRo4c+cc9frYKc3Nzafz48eTo6CjS7RJByMvLo2HDhpGamppQcu7fv0+ampp/dNhjmpiYGBo+fDhPWzoODg7Uu3dvgToyVsb27dvpxo0bpa4ZGhpWWnqmLHbs2FGqTzpL1UTqoqecnZ1/OymcPn0ao0aNQps2bTBo0CAYGBiUHO4qKSmhQYMGFcoqLi7GnTt38OzZM7i7u0NOTg79+vXDlStXMH/+/Ap7QgvK7du3YWxsXGopL268vb0xZswYvucJ2/+7Vq1auHz5MlxcXDB27Fjo6upi4MCB0NPTE2r7SxiICNeuXYOtrS2ysrIQGRkpsCwnJyc8efIEPj4+QpWT4YW2bduid+/euHv3LvT19Ssc26pVKxgYGODJkyeM5jdxuVzs3r271EG7j48PFBUV+Qqy+I21tTX09fWhr6/PRlL9A4g95FZGRgYWFhawsLBAamoqPn/+DC8vL3A4HAC/9uzr1q2LJk2aQE1NDUSErKwsJCcn4+3bt0hMTERWVhZkZGTQtm1bODk5QUdHBzVr1hSp3ampqejevbtIdVSGi4uLxMp8yMrKwsrKCpaWlnj48CECAgKwe/duLF68GIaGhmItz8HlcrFhwwaEhYVBVlYWt27dEsgxcrlcrF+/Hvn5+fDw8BCbA7SxsYGpqSk0NDQqdFI9evTAqVOnoK6uzqj+sLAwGBgYlGyzJiQkwN7eHr6+vgLJq1+/PqZOnYqbN29i0qRJTJrKIoVINE+jUaNGaNSoEdTU1EpdT0tLw7lz57B//37Uq1cPtWvXRosWLaCrq4v27dujVq1a0NfXF+uDKj8/X2y6yuLatWvo3r07X2+C4eHh0NbWZtQOWVlZ6OjoQEdHB9nZ2bCzs8OKFStgZ2eHUaNGifxNs6ioCFOnTsWQIUMQFRWFSZMmoUuXLnzL4XK5mD9/Pvr164e5c+eKdcXUvHlzWFhY4MSJE1i6dGm543r06IGcnBzG9R8/fhxTpkwBAERFRcHY2BgeHh5CvXgNGjQIpqamMDExkdjqk0U8SDy5Lz4+Hs+fP0dhYSHev3+PyMhIFBYWwsDAAI8ePeIrKU2UvH//XqCtIabYv38/3zHxYWFhsLOzg5OTk0hsqlOnDrZv347Vq1fj+PHjmDhxInR0dLBixQqR6IuIiMCqVaswefJkNGzYEPfu3cOSJUsEkmVvb4/27dtj3rx5DFvJG0OGDMHx48fFrvd3cuvYsWNBRLCzs8OBAweErj49cOBAaGho4NOnTwI5cZaqg1icRnp6OiIiIuDp6QkOh4Pi4mLExsYC+PXg0dfXR40aNWBoaIgVK1bwlFwkbmJiYhiPqOGVkJAQdOzYke/zFHG98dWrVw8rV67EihUrsHXrVsyZMweLFi1Cjx49GMsmP3jwIK5cuYKDBw+iffv20NXVxf379yEnJ8e3rDNnziA+Ph4HDhxgxDZRkpaWVmkpfF5JTk7GsWPHcPfuXQC/zsiaNm0KLS0tRuRbWlrCxMQEb9++ZUQei3QiMqeRlZWFa9eu4cyZM1BUVESPHj1gZmaGpk2bAgBatmwp9AGtOKlRo4bEDvl27tyJjRs38j0vKytLBNaUj4yMDLZs2YI7d+7Azc0NwcHBMDAw4MlxdOvWDWpqaqhfv36p8W/evMHIkSNhbW2NBw8eoFq1alBVVcWmTZsECn0ODw/H+fPncevWrSqxjaKkpMTYanvfvn1YvXo15OXlkZ6eDicnJ9y8eZMR2QCgpaWF5s2bg4iqxO+WRTBE8tT+8uULjI2NYWVlhatXr4o8IuVvxsfHBy1atBCohpKkVmy/I2kyMzPx6tWrSscTEc6dO4czZ87gw4cPsLKyQnR0NPbv3w8AWLVqFTZs2ICoqCjs3bsXw4YNE2irkIiwZMkSODs7M5LsKQ4iIiL4rl1VFhkZGXj16hXs7OwAAFu2bMHWrVsZfxFSVlZGQEBAmf04WP4OROI0Dh48iEOHDmHIkCGiEP/PkJWVhe3btzP6NihO6tWrx/PWx++GUP+7Jz5mzBicPn0aSkpKJbWgnJycMGjQIIHscXZ2hpaWFjp27CjQfCYpLCzkaVyNGjUYKeNvb2+PJUuWQEZGBunp6Xjz5g327NkjtNz/MnPmTBw5coR1Gn8xjDuNxMREhIeH/3XdvapVq4a0tDSx5mksWLAAtra25TbE+Rvp3Lkz8vLySopBhoeHY9euXQgJCcGpU6fQp08fgeS+f/8eXl5e8PHxYdJcgYmMjOTpwFiQM5v/4unpia9fv2L79u0AfvW1sbCwYET2f2nTpg2+ffvGuFwW6YFxpxEWFoZRo0YxLVbidO3aFR8/fhT4LZdfTpw4gVatWgmV1FVeyZacnJwK7yUnJ0NGRgZt2rQRSVjzjx8/kJmZWeGYZ8+e4cWLFwgKCoKpqSl27twp8EOOiLB8+XIcPHhQaralvn37hk6dOolcz/v37zFv3jzExcWVXLt69Srs7e1Foq9evXqQl5dHamqqWJuTsYgPxp1GYGAgX7WRqgr9+/dHcHCwWJzGnTt34OPjI1S9p/Dw8HJzOvbv31+ShEVEiI+Px7p16/Djxw/IysqiXbt2KCoqwsePHxnf8+ZwOKhfvz6aNGlS4bi2bdti5syZ2Lhxo9APn8uXL6N3794ST878X+7cuYOZM2dWOk6YWm3p6emYMWMGbt26VSoHo6CgoNJ+GcIwevRo3L59G9OmTROZDhYJwmRNEi6XS9ra2lWmlDY/JCUlkZ6ensj1+Pr60vjx4ykvL08oOdu2baP79+8TUek6UxkZGdS/f3/as2cPmZqakp6eHpmZmVF4eLhQ+qSVoqIiUlVVpZycHEmbUsLnz59p3LhxPI1VVFQUqMx7QEAAaWpq0sOHD/+4J+oWBfHx8TR27FiR6mBhHonUngoNDUWDBg3EmqktLpo0aYKmTZsiICBAZAf8d+7cgbOzM9zd3YVu8PT69euSPtMpKSlwcnJCREQEbt++jUaNGqFr166YO3euVObEMImPjw9GjhwpVTWRjh8/jrlz5/I0Vk5Ojq/QdC6XixMnTsDLyws3b95E3bp1/xjDVN5HeTRv3lxk1axZJA+jTiMrK0vo9prSzO7du2FmZgZ/f3/GW6C6uLjg5s2bjDmMlJQU2NjY4OvXr8jOzsaxY8fQtWtXbNq0idFy8dLOw4cPS0pmSAPfvn1DUFAQdu3axbjsmJgYbN26FUQEHx+fMp1NamoqatWqxbju//L+/XtwOJwqlYvFwhuM/os6Oztj8+bNTIqUKlq0aIFFixbB2toax44dY0RmRkYGli1bBiUlJVy6dEnoP7KCggIYGBjAwMAAEyZMwKhRo6Tm8FcSRERE8NW0StRs3rwZtra2jK7GiQiWlpbw8fHBzZs3K6zy7O3tjfHjxzOmuzxatmyJ1NRUgarm/g3k5ub+EVZds2ZNsThsUcOY04iIiAAAsUSESBITExOEhobCzs4Oa9asEVhOUVERzpw5g5MnT8LW1hYjRoxgxD4tLS307dtXYtVwpQ05OTmp+UMNDAxEXl4eNDU1eZ6Tl5dX7hv7x48f8eTJE7i6uqJr165ITEysNBM7Pj4ehoaGfNvOL507dxa5DkmRkpKCb9++4enTp/j58ycCAgJKfceICPLy8n987zIyMpCWllaqiGijRo3Qo0cPdOjQAXXq1KkSEWeMOY1Lly7xvE9b1bG1tcXGjRuxdetWbNiwga+tquTkZFy8eBFubm4wMTGBv78/Yw+1o0ePIi4uDk+fPmVEHgtz/N4uvHjxIs9zuFwu2rVrhyFDhqBHjx6oX78+kpKSkJGRAS6Xizp16mDAgAG4e/cuz2c2v1sQiANx6hI12dnZuHjxIu7cuQMZGRl07twZQ4YMQdOmTTFjxgy0b9+eJzm/Hc5vvn//jqCgIFy9ehWvX79Gy5YtoaOjgzFjxkis1l2lMHWqPnLkSMrPz+fjrL5qw+Vy6eDBgzRw4EC6du1apZ3YQkNDady4cTRy5EhycXFhPJrnw4cP1KFDBzpz5gyjcqs6oo4U4oX8/HwyNDSkZ8+e8TXv+vXrtG3bNsrNzaWoqCiKioqi1NRUoWzR1tam3NxcoWTwwr1798ja2lrkekTNpUuXyMTEhEaOHElnz56l5ORkkeqLi4uj8+fPk5aWFm3atEnof29+EGv0VGRkJBo1aiTyRkjShIyMDBYtWoSZM2di06ZNsLOzw5AhQ9CkSZNSmb6pqam4d+8e8vLysGvXLpHkCuTl5UFVVRXt2rWTqkNfaYCIJK5/+fLlMDMz47uZUnJyMlq3bo1atWqhQ4cOQtsSGxuLFi1aiGW7TkdHp0pUES6LoqIinD17FpcuXYKamhpOnTpVZhSaKGjRogUmT56MyZMnY/fu3dDT04OJiQlGjx6NXr16SUUhSEachp+fH0xMTJgQVeWoW7cuHBwcwOFw8O7dO8THxyMxMbHkvpycHHbu3Mnz8pVffidwtW7dGuvXr2c8qquqQ//X+VFcf/T/1b106VL06NEDkydP5nv+iRMncOLECcbs+fLlCyN1rHilevXq+PnzZ5Upg5Oeno7Tp0/j2rVr0NDQwLVr14SOZBQGGxsbLFy4EPfv34eTkxMSEhIwZMgQLFy4UKAKz0zBiNO4desWTp8+zYSoKkv16tXRr18/Rv8oCwoKyu0YSERwd3fHqVOn0LJlS/Tr1++fddwV0a1bN7x9+1bsBfTo/yrqdu3aFdbW1nzPz8vLQ4MGDdCrVy/GbEpOThZrXs6ECROwaNEinD9/Xmw6+YGIEBgYCGdnZyQlJaG4uBizZs2Cr6+v1OyaKCgowMjICEZGRiWH7hMmTEDjxo2xcuVKsb4E/EZop8HhcFCrVi3pPbSpQkRHRyM4OBi+vr748eMH8vPzKyy3oa6ujhcvXkBPT0+okiN/MxMnTsTp06fF6jQyMjIwe/ZsaGlpCeQwgF81wJj+m/L09MTBgwcZlVkRurq6UhmUkZ6ejqNHj8LPzw+9evWCjY0NunbtKvVJyQ0bNoShoSEMDQ3x9u1bnDhxArGxsbCxscGQIUPEtnXFyEpD2n/Z0s6bN2+wefNm1KhRA2PGjMGWLVvQsmVLnraali9fDn19fZFULP0bUFNTw/r16/H9+3e0atVKpLqICGfOnIGzszN27dolVEc8d3d39OzZkzHbMjIyUFhY+M/mTQC/Eg5dXFzw+vVrLFq0CDY2NlX22dWnTx84OTkhNjYWR44cwdy5cxEcHCye8HJhT9WLiopo/Pjx/B3TsxDRr6iaVatW0eTJkyklJYXv+StXrqRZs2aJwLK/i+DgYBo9ejQVFhaKRD6Hw6ETJ06QmpoabdmyRejopKNHj9KsWbMoOzubIQuJ3Nzc6PTp04zJ44WsrCwaOnSoWHWWxfv372nChAlkYmJCr169qjTSsSri5eVFEydOpIKCAoFl8Bo9VTXdbBUnMzMTTk5OGDVqFHr37o3z58/zldTz9etXtGzZEnl5eYwelP6t9O/fH2PHjsX69esZlUtEuHHjBrS0tJD6/9q787ga8/d/4K9T8hlLijR9GDHWCYNkaRCKGIqKFCopYydjicYMTREZIlT2LMXRHsYkSSmhxMfSIpI2lfaFTqnOef/+8HV+k6VOnfs+p3g/Hw+Px3Q657ouhvvqft/vpagI169fx59//inWT3vV1dU4deoU3N3dGT3xMjs7W+JDyB07doSioqJEc34oKCgINjY2cHNzg5+fH4YPH94iZiAxbfbs2dDS0mrSOqDmok1DwuLi4mBoaIjOnTvj0qVLsLCwaNLn6+rqsHbtWhw6dAju7u5f5D8ANixZsgQdO3aEra0tamtrxYr1vllMmDABN2/eRFBQEH777TexN0Xk8/mYPn06li5dyvisnZiYGEyePJnRmC0Z+b+pzufPn8elS5fQvXt3aZfEOjMzMzg7O+Ply5es5hG7acjIyCArKwtv375lop4vVnV1NVatWoXTp0/Dz88P5ubmzfpJ8ujRo9DR0YGhoSELVX7Z7O3tMXDgQBgZGSEzM7NZMTIzMzFv3jxcv34dQUFB2L17N5SVlRmpz9PTExMnTsQvv/zCSLz3BAIBysvLv6rp2GZmZujbty/8/f2lOm1WkpSVleHg4AA3Nzd2EzEx1rV//35y/PjxJo6gfT2ioqLItGnTyMWLF8WKExMTQ8zNzUldXR1DlX2dHjx4QH7++WdiZWVFbt26JdJ5FVVVVWT//v1EW1ubxMXFMV7TvXv3iLGxMStn0aSnp5MlS5YwHlcUJiYmEl3V/ObNG2JqakqcnZ0llrMlEecZs0RXhC9duhSGhoYwMDBo9ES2r0lNTQ1+//13VFZWwsPDQ6xVvdnZ2di6dSt8fX2/qp8Y2aCuro7Q0FA8ePAAp0+fxqZNm6CgoFDvz5XD4Qg33ywoKEBaWhrMzc1x9epVxmeqFRQUwNbWFh4eHqzM5qmrq5PaT9t6enq4du0a5s2bx2qeuro6eHl54fDhw9i6dSsMDAxYzdeSsT1kzUjTaNeuHZYtWwZ3d3ds27aNiZCtXnFxMWbPng0zMzOxN3LcvHkzHj9+jBMnTjA2FEKhwcWY5eXlKCgoAAB88803UFVVZaWGvLw8aGhowMnJibUt3F1dXcU6a14c48aNE55Dw5bKykpYWlpi6tSpiIqKalEHbn2RmLxtMTY2JomJiaLfD32hbt68SXR0dEhwcLDY0/u8vb3J8uXLGaqMakmuX79Oxo8fT+7du8dqHjU1NVJWVsZqjoawuWlkTk4OGT9+PImMjGQtR2tSW1tLZs+e3azPSuW4Vw8PD5ibmyMsLKzVLpoB3s28SE1NxaVLl5CQkICysrJ63xs9ejS2bNny0ed4PB7WrFmDt2/f4vTp0+jZs6dYdQgEAhw7dgyRkZFixaFalurqauzfvx/+/v64cOECa3cx7/Xv3x8KCgqs5miIuLPVGoo7d+5cHDlyhNGFkK1Zbm4u68PXjDYNFRUVGBoaws7ODnv27GEyNOsEAgFiYmIQEBCAJ0+eYNCgQRg3bhwsLS0/ek6zY8cOGBoaYuPGjcLX4uPjcfHiRaxevRrGxsaMjCva29tj0aJF9BnGF+L58+dITEzE/v37YWFhgfj4eNZ/uKqqqgKPx2M1R2NkZWVRVFTE6AFDhBAsW7YMNjY2tGH8S1hYGOszKxk/wHfVqlUwNTVFSkoK1NTUmA7PKEIIbt26BT8/P4SHh2PixIlYsGABxo4d2+Dn/vjjD3C5XNy+fVv4Wp8+fRAREcHoRSAuLg7bt29nLB4lebW1tbh48SK8vb1RVlYGAwMDcLlcia0biIyMrHdSnDQYGRkhICAAy5cvZyzmwYMHoaqqClNTU8ZifinY3pSS8aYhIyODX3/9FWZmZrh//36LXXzm6uoKHx8fTJ48GXPmzMHOnTubtN1wc7a6borz589j2LBhLfbP72uUkpKCe/fuifTeO3fuIDs7GzweD5MmTcIff/wBdXV1ie8RFhAQINaxxEwYPnw4/P39GYsXEBCAhIQEHDt2jLGYX4r09HQMHTqU1RwcQho/paaiogIKCgooLy8XuYu9P2Pi30M40paVlYWdO3ciJSUFOjo62LhxY4udafF+51ppjkV/rfh8Pu7evYu6ujpcunQJZWVlKCgogKysLObOnStSI+/Ro8dn71gJIcjPz8ehQ4eQnJzc6Jg/n8+HioqK8C62bdu2MDU1RZs2bcDhcDBy5MjPNiN9fX1wuVyp/j0SCARQV1eHl5cX1NXVxYp1+/ZtuLi44Ny5cy3m7PeWgs/nY9KkSQgLC2vW1u6iXucZv9N4b+3atTA1NUVkZCR0dHTYSiOSnJwcbN26FVlZWXB0dMS4ceOkWk9jdu7ciV69etGGwbKSkhJUVVWhoKAAISEhAN79pJaZmYkRI0agS5cu0NfXx6BBgyArKwslJaVPxsnPzxeeh83j8ZCamorS0lL8888/AN4NUT158gQCgQA3b94Eh8OBsrIyDAwMsGnTpkbvcPl8PoqLi4VfJyYmIi4uDsC7s6udnJzw9u1b7NmzBxoaGvU+W1NTI/W/RzIyMpg/fz6qqqrEipOQkIBNmzbhypUrtGF8wosXLzBw4EDWzwJhrWlwOBycOXNGOD9bWo3j+vXrcHR0xMaNG6Gvr98qZnXFxcXh8OHD0i7ji1NcXIzQ0FDU1NTg0qVLePPmDfr16wdZWVnMnj0bHTp0gJKSknBRH/DuVMrAwEC8ePHikzGzsrLA4XDQuXNnAO/uAn744YePFgpqaWmhbdu2sLCwQK9evZpUt6ysbL3JGJMmTfroOUVaWhosLS3h7u4uXHty4sSJRp/PtRZhYWHYuHEjrl69KpVTGFuD+/fvS+Q5MmtNAwDat28PHx8fzJs3Dw8fPsSCBQsYnUHRkNraWuzfvx8PHz7E5cuXJXpimTgSEhLQvn37r2KDNTbx+Xx4eXkhPDwcaWlp+Pbbb0EIgZGREdq0aYO9e/dCRUUFhYWFyMnJwZs3b3D69GnU1NQgOzsbwLtFfZWVlVi9ejV0dHQ+OSzVrl07sadWM6Fv377w9vbG+PHjkZWVBVlZWQQGBgrvoKStZ8+eiIuLa9Y56fv370dwcDBu374tbM5UfdXV1di9e7dE/n+z2jSAd43D19cXPj4+mDlzJr7//nv8/PPP0NTUxMCBA1nJefHiRWzevBnLly/H2bNnW9XDZAcHBzpjqhkEAgFSUlJgb2+P6Oho8Pl8KCoq4rvvvhP+oMLhcBAUFIROnTohNDQUwLs7g4EDB4LD4WDRokXo2bMnOnfu3CoPterTpw8WLlwIJycnrFixAjIyMi3m7/6kSZNgb28v0nvr6urg6+uLU6dOoVOnThg5ciQSEhLQpg3rl6tWy9/fH6NHj5bIIVsS+b/Qrl07WFtbw8rKCmVlZbhw4QKcnJzw5s0bVFdXC/fFkZOTQ+/evev9RedwOJg5cyZGjRrV4FgdIQR37tyBp6cnysvL4evry+j5ypIQGBiIPn36sLadxJeIx+Nh7dq1CAoKAo/Hg46ODvz9/TFhwoQWc8GUJBMTE1y4cAH+/v6sLxpsChUVlUZ3Fq6uroajoyO4XC7mz5+PPXv2SOUM7NYmOjoaZ8+ehY+Pj0TySbR1vx/7tba2hrW19Uffr6ys/Ggv+KqqKgQEBGDPnj0ghIDP56O2thbTp09H9+7dMXz4cHh4eCApKQk//fQT1q9f32oX+/j7+8PBwUHaZbRo1dXViIqKwsmTJxEfH4+ysjL06dMHgYGB0NDQoOPd/ycxMRErV65s1mcJIcjKysK9e/eQnp6OZ8+eAQDk5eUxYsQI6OvrN/nhuoyMTIObJr548QILFy7EmjVr8Ntvv0n94X1rkZ+fD1tbW9y4cUNiM0Fb1P1ehw4d8MMPP3z0+ofT9MrKyhAbGyt8+JeXl4f09PRW8ZD7c27duoUOHTq0+AWR0lBZWYkLFy7AxcUFmZmZ+OabbzBlyhTs2rWLLu76QEJCAmRlZfH06dMm3WkTQhAZGYmTJ08KT4YcM2YMhgwZAlNTU7Rt2xY5OTmIjY3FtGnTMG3aNPz6669NOplPIBDUG1l4LycnB1ZWVvDy8kLv3r1FjseEuro6hISE4Pz58+Dz+cLXFRQUMHLkSIwfP144fNnS5ObmwsDAAG5ubhJdOsDaOg2qaXR0dODn59cid7EVCASIi4tDenp6vdc5HA50dHQYH0dNTk7Gw4cPAQD37t2Dn58fBAIBNmzYAH19fdpYG/Drr79i+PDhKC4uxoYNGxp9P5/Ph4+PDw4dOgQNDQ2sWrWq0T9fgUAAPz8/HDhwAAYGBrC1tYWcnFyjudzc3KCiovJRozc2NoaTkxNrzzg/JTw8HMePH0dubi4mTpyIlStXokuXLsLvZ2Vl4e7du4iIiEBycjKsra2xaNEikX6fkpCZmQlLS0ts3rwZ06ZNYySm1NdpUKJLSEiAqqpqi2gYqampCA4ORlpaGsrKylBeXg45OTmoq6t/NOxXW1uLdevWobKy8rPxCCGoqKgQ+UL/7Nkz9OnTB7W1tUhJSQGHw8HZs2cxceLEFvnTXktCCMHBgwdhaWmJtWvXNvr+58+fY9myZZgwYQKuXLki8g+EMjIymDdvHkxNTXHixAloa2vj0KFDGDZsWIOfU1ZWrvfTPPCuadXU1EikYfB4PHh5eYHL5WLIkCFwdnb+7Bk3AwYMwIABA2BhYYGqqiocPnwYWlpa2LBhA0xMTKT6dzE3Nxdz5syBt7e3dH6AYnLLXKp5Zs+eTZKSkqSSu6ioiCQmJpI1a9aQadOmkT59+hBfX1+Sl5dHiouLGclRUVFB8vLyGvz18uVL4unpSfT19YmxsTE5ffq0VLfzbo3++ecfsmHDBqKlpUUqKysbfG9kZCSZOHEiefHihdh5X716RaZMmUIePHjQ4PvOnz9PuFxuvdeOHj1Kjh49KnYNDREIBOTEiRNk9OjR5PDhw82+jlVWVhI7Ozuip6dHCgoKGK5SNC9fviTa2trE19eX8dhS2RqdarqSkhLU1NRIfMbUxYsX4eXlBTk5Ofz3v//FnDlzoKWlxcpPUPLy8p99QF1ZWYkTJ07g8uXLmDJlCjw9PaGiosJ4DV8DHo+HwYMH4+nTpw2OcaelpcHe3h5Xrlxp1jn1H1JRURGux9q9e7fIW4UQQhAaGor9+/eLXUND7O3tUVdXh5iYGLGGl9q3b49du3bh3r17MDY2hqenJ/r3789gpQ17+fIlBg8ejL/++kuqz/Jo05CyhQsXsv4XICMjA7m5uQgJCUFMTAw6deoEdXV1HD9+vN44riRlZ2dj586dyMzMxC+//IKgoCA680lMT548wciRIxvcSr+iogKWlpbw8fFhpGG816VLF3C5XBgZGeHvv/8WaRHegwcP8P3337O6ONLf3x8FBQU4evQoYzFHjhwJb29vLFy4ECEhIRJ5CF1XV4f58+fD1dUVixYtYj1fQ2jTkKJHjx6Bw+HAwsKC8dg1NTXYsmULEhMT8Z///AejR4+GlpYWNm/ezOjFoimePn2Kc+fOITo6Gr169YKFhQWmTJkilVq+RIWFhbh79y6MjY0/+57ly5djx44drKzh6Nq1KxwcHLBu3TqcPn260feHhoZi8uTJjNfxXmpqKo4cOYIrV64wHrtXr15YuXIlHB0d8ddffzEe/0M2NjYwNTWVesMAaNOQmqKiIixYsAAXL14Ue0goNjYWT548QWxsLPLy8sDhcPDmzRusWbMGu3fvZqji5rtx4wbOnTuHkpISWFhYwMHBgbXp0VVVVYiNjcX9+/eFmw9WVlaiU6dOePv2LQghkJOTg5qaGvr27YtBgwZh4MCBHx201dq8fPkS0dHRWLZs2Wc3QAwMDISysjK0tbVZq0NXVxfe3t6Ijo7GhAkTGnxvVlYWrKysWKmDEIKVK1fCw8ODtdX9JiYm8PDwQGFhIauTWHbt2oXS0tJmr7thGm0aUkAIgY2NDZycnJo0L72qqgrBwcGIiYmBQCBAenq6cBuMUaNG4ffff2/yZnhsysrKgr29Pd68eQMHBwf8+OOPrOWKjY3FkSNHkJaWBm1tbWhqamLmzJno37//Rw2qqqoKL168QFJSEq5fvw53d3e8evUK/fr1g56eHqZPn96ks1VagsePH2P69Ok4f/78J8+uqKiowJ49exAREcF6LS4uLjAyMkJYWJjU7mrt7Owwf/58VmcXcTgcLFmyBGfOnIGtrS0rOW7duoWwsDBcvny55ZzgyeRTdUo00dHRRF9fX6T3vp/5YWVlRaZNm0aOHz9OMjIySE5ODuHxeCxX2jw1NTXE3d2dTJs2jURHR7OWRyAQkICAAKKtrU2sra0bnb3TmISEBLJ3716ira1NjIyMCJfLJVVVVcwUy7Lhw4eTiIgIsmTJkk9+39HRkZw7d05i9Zw9e5Y4ODjUe+38+fPE29tb+PWyZctITk4O47mvXr1KrKysGI/7KdXV1WT06NGEz+czHjs1NZWMGDGCvHz5kvHYnyLqdZ42DQmrrKwkw4cPJ7dv327wfQ8ePCCWlpZER0eHHDx4kDx//lxCFYonJyeHzJ07l2zbto3U1dWxlqesrIzMnj2b/Pbbb4xNDf63rKwssmfPHjJq1Cji5ubGykWBKaWlpWTkyJHkxYsX5Ndff/3ke8aOHSvR3wOfzyeampqkurpa+Fp2djYxNzcXfs1G0xAIBGTMmDESnRK7efNmEhoaymjMmpoa0qNHDxIbG8to3IaIep1vvftutFKnTp3CpEmTPtoiOi8vD3FxcVBRUQGHw4GLiwu2bduGiIgI2NjYoG/fvlKqWDQVFRWws7PDihUrYGdnh61bt7J2O3337l3o6+tjzZo1cHZ2ZmUGmKqqKmxtbRETE4Oamhro6+sjJyeH8TziIoRg2rRpcHV1RWFh4Wf/zJWUlCS6zY6MjAxmzJgh3E0YeHeaYUlJSb33CQQCRvNGRERg7NixEl0oa2JiUu/3Ka78/Hz0798fLi4u0NTUZCwuU2jTkLCUlBTMmjWr3j+effv2wdLSEuHh4bCwsEBUVBS8vb1b1POJz6mpqcG+ffswe/ZsaGtr4+LFi6zuTHrjxg1s27YNgYGBmDhxImt53mvbti3Wr1+PXbt2Yf78+YiNjWU9Z1M4OjpCWVkZWlpa+OeffxqcOSVppqam8PX1rfda+/bthX/3e/bsicTEREZzBgQEsDIbsSH9+vVDamoqI7ECAwPx448/IiAgAHPnzmUkJtPog3AJW7p0Kdzc3JCTkwM+nw+BQIDHjx8LZz21JiEhIXB2dsacOXNw7do11uuPj4+Hi4sL/Pz8JH62+7Bhw/D333/D3NwcpqamsLS0lGj+T6mtrcWRI0eEF6yMjIxP3nVVVlYKj6OVpAEDBny0a3WPHj2QkpKCsWPHwtDQEDt27GBs7yTg3YSAoUOHMhZPFPLy8ozcxbm6uuKvv/7CgwcP0KNHDwYqYwdtGhI2ZMgQHDt2TNpliCU/Px9Lly6Fqqoq/P39JXLwS3l5OdauXYvAwECJN4z3FBQUcPHiRaxcuRKpqanYtm2bVBt9QkICpkyZIlwUWVxc/MnZQs+fP8eAAQMkXR4AoGPHjuDz+cJhM2NjY9y4cQNjx47F4MGDUVhYiJqaGkamxRYWFqJbt25S2e26oqJCrM9fu3YNoaGhreKHRzo8RTVJZGQk5s6dC2dnZ7i7u0ukYRBCYGZmhn379kkkX0NkZWVx9OhRdO7cGXZ2diCNbxLNmrS0NIwfP77R9yUnJ0vtjJl+/frh8ePHwq8/3MZDQ0MDt2/fZiTX//73P2hoaDASq6nE2f2bEAJra2scPHiwxTcMgDYNqgkiIiLw119/4dKlSxLdK8vT0xOjR49uUQ8F169fDw6HgxMnTkglPyEEPj4+whXVjx8//uxkiadPn7K6RqYhI0eOxP379+u99u+dbq2srODp6clIruTk5FZ56uWzZ8/QuXPnT54l1BLRpkGJ5NGjR8LnCZI8U6W8vByenp7YvHmzxHKKytnZGcHBwYw/zBXF3r170aNHD2GjKCoqanChaENHJbNpxIgR9ZrG4MGDERERAR6PBwBQU1NDYWEhI7kiIiJEuvNigzh3nOHh4di6dSuD1bCLNg2qUaWlpVi3bh28vb0lfgjXqVOnsHTpUta2ghCHjIwMjhw5ghUrVqCqqkpieZOTk3H16lWRd4f98AwLSRo0aBCysrKEX8vLy2Py5MnCQ7Y4HA46dOjw0QFfzVFdXQ0lJSWx4zRH165dm/17CAwMbNIpi9JGmwbVqLCwMCxYsEDi/yDfD8HMmzdPonmbomfPnrCyssKhQ4ckkq+2thbLly/HsWPH6o1/Z2dnf/YM7sTExM8eNsQ2Dofz0dqRNm3qz7/55ZdfcOnSJbFztWvXTuwYzaWkpITa2tomf66qqgpFRUUS3WJdXLRpUI3KyclBt27dJJ737t27GDVqlFQvBqIwMzODn5+fRH6iP3v2LPT09D4aigoPD//sGg1CiFSPaf5w6EZGRgbPnj0Tft2nT5+Ppua2NpmZmU06L/29S5cuwdLS8qNG2pLRpkE1Kj8/XyoLDRMTE/HTTz9JPG9TtWvXDjNmzMCFCxdYzVNUVISzZ89i48aN9V4nhCA3N/ezFy0ZGRmUlZWxWtvnpKWlfXSo1uLFi+Hg4CD8ujXMGGpMYWFhs3ZK5nK5rO30yxbaNKgWKzMzs9XMhvnll19YnUlFCMGqVauwbdu2j4Z7CCGQl5f/7Kl0enp64HK5rNXWkJqamo+GNbt06QJ1dXXk5uZKpSam5efnN2votq6uDvfv30fXrl1ZqIo9tGlQLZo0VjI3R/fu3VFbW8vaA/Fdu3ZhzJgxGDduXJM/O3v2bISHh7NQVeNqamo++frcuXMRFBQk4WrYERISAl1d3SZ/rra2tln/P6WNNg2qxRowYACePHki7TJE9sMPPzAyC+hDBQUF+Oeff2Btbd2sz3fp0gVFRUVSmUX14MGDT64/MDIyQkhICKO5qqurGY0nqsjISOjp6UkltzTQpkE16j//+U+9aZOS8t///lcqeZtr0KBByMzMZDyuk5MT1q5dCwUFhWbHGDduHKKiohisSjTR0dEf7egMvHsO1KZNG7G33/iQJKc+A++mM6emprJ6znlLQ5sG1aglS5Zg9+7dqKyslGheTU1N3Lx5U6I5xcHGA91Hjx6huroac+bMESvO3LlzcfbsWYaqEg0hBCkpKRg4cOAnvz9y5EhERkYylk9DQ0PiCy0fP34MDQ2NL+Jhvqho06Aapaqqil9//RXbt2+XaF55eXkIBAKUl5dLNG9zJSYmQlVVldGY9vb2+P3338WOo6GhgezsbGRnZzNQlWju37+PYcOGffb7U6dORVJSEmP5hg0bxtg+VqK6fPnyVzU0BdCmQYlo5syZKCwsZHwcujGTJk1i9KdRNiUmJjK6f1BiYiI4HA6+//77Bt+XnZ392ZlT/7Z161Zs2bKFoeoad/nyZRgZGX32+6qqqoxe5MeNG4f4+HjG4oni1q1bzd66JCIiolUt6nuPNg1KJBwOB+7u7jhy5Aju3bsnsbwmJibw9vaWWL7mKikpQadOnUS6eIvqzz//FGkbfT8/P5FWzU+YMAFv376tt+ssW96+fYuwsDBMmDDhs+/57rvvoKqqiuTkZEZy9uzZU6J3Uu+3MW/uwsm4uDjo6+szXBX7aNOgRNauXTucPHkSGzduRGBgoERy9uvXDzIyMkhISJBIvuYKCgrCjBkzGIuXl5cHHo8n0oKxiIgIkXNv3boVjo6O4pbXoLdv38Lc3BxbtmxpdDX/sGHDGH0O0atXL8aaUGNOnDiBxYsXN/vzcXFxUtvKXRy0aVBN0rVrVwQGBuLy5ctYvny5RB6OOzo6ws7OjvHzpJlCCMG5c+cYPWrV29sb5ubmIr1XTk5O5F1sBw8ejDZt2gg3DGQaIQSLFi2CtbW1SGP9hoaGSElJYewOQV9fH9euXWMkVkOKiooQEhLS4PBbQ54/fw4FBQWp7T4sDto0qCbr0qULTp06hTlz5sDAwID1GSuDBg3CtGnT4OzszGqe5rp+/Tp+/PFHKCsrMxKvqqoKYWFhrJ0RvWvXLqxfv56VA6S2b98OdXV1kYdd5OXlkZ2djY4dOzJyN6mnp4eAgACx4zTG0dERDg4OH63OF1V8fDxmzZrFcFWSQZsG1Wy6uro4c+YMVq9ezfrUWBsbG1y/fp2VxXPiEAgE2LlzJ3777TfGYh45cgTW1taMPh/5t969e0NfXx+7du1iLCaPx8P69etRVFQEW1tbkT/XsWNHdO/eHT/++CMjdwjy8vIYOnQoQkNDxY71OYmJicjIyMDPP//c7BhXrlxpNYcufYg2DUosPXr0AJfLxfbt23Hq1CnW8nA4HLi4uDAy/ZRJx44dw6RJk/Ddd98xEu/p06e4cuUK69vBr1u3DllZWXBxcWnWlt7/9vfff2Py5MkYMWJEs44sNTQ0RMeOHeHj48PI3c+OHTvg7OyM1NRUsWN9SCAQwMbGRuSzTD4lOjoaAoGgVT7PAGjToBjQvXt3/PPPP4iPjxdptk9zaWhoQF5eXuLTfj8nPj4ely9fhp2dHWMxz549K9awh6hkZGTg4eEBOTk5aGlpNetO8fHjx5gyZQrCwsIQFhYm8jOYD40fPx5cLhdqamp49epVs2L8m6KiIry8vLB8+XLExMSIHe/fNmzYgEWLFn32aN3GEELg6OgosfNXWEFEUF5eTgCQ8vJyUd5OfaXq6urI4sWLibGxMSkrK2MlR3l5ORk7dizJzc1lJb6onj17RnR0dMirV68Yi+nj40NMTEwIn89v0udmzpwpVt7S0lIya9YsYmdnR7KysohAIPjk+968eUOKi4vJrVu3yIoVK4i+vj5JT08XK/d7ZmZmhMvlkk2bNjESjxBCXr9+TfT09MjNmzfFjiUQCIirqyvZsGGDWHHi4uLIokWLxK6HDaJe51vPyR9UiycrK4vjx48jODgYpqam8Pb2btYZAw3p1KkTTp48CXNzc5w6dUoq53wkJSXBxsYG3t7eH50V0VxlZWU4ceIELl26BBkZyQ4AKCoqIjAwEMHBwbCzs0NxcTHatm2L169fA4BwHUJdXR2+/fZbKCkpwcLCAmPGjGFs+4wRI0aguroat27dAiGEkbgdO3aEr68v5s6di82bN0NLS6tZcSorK7F69Wr06tULe/bsEaumgwcPwsnJSawYUsdkB6Ko95KSksiwYcNIfn4+K/FTUlLIxIkTiYeHB6mtrWUlx6f4+/sTXV1d8vLlS8ZiCgQCYmJiQuLj45v1eXHvNFqC2NhYYmNjQ+zt7UlwcDCjsV+/fk309fXJ9u3bSXV1dZM+m5mZSbS0tMiFCxfEruPBgwdk7ty5n72TkzZRr/O0aVCsefDgAdHW1ib3799nJX5tbS3ZvXs3mTx5crMvuKLKzc0lixcvJitXriQ8Ho/R2L/99htxdXVt9udHjRrFaBOThsLCQtK7d2+Snp5OJk6cSOrq6hiNz+fziaenJxk9ejRZsWIF8ff3J7m5uYTH4xGBQEBKSkrq/crMzCR79uwh48aNY2wIztrampGhMraIep3nENL4dIWKigooKCigvLxcqmcNU63PrVu3sGrVKly9epWxoZwPpaWlwcHBAaWlpVixYgX09PQYGzbJzMyEi4sLkpKS8PvvvzfrsJ2G7Nu3DwUFBWJNf/3zzz8xfPjwZi80aylcXV3x3XffISMjA8rKys0+P6QhhBA8fPgQERERePz4MfLz80EIgaKiIr755hvh+2RkZKCjo4P58+czMvU5ISEBZmZmiI2NRYcOHcSOxwaRr/NMdiCK+pSQkBBiYmLC+m15RkYGsbW1JePHjyfHjx9v1tCYQCAgL1++JF5eXmTWrFnEwMCAXL16lYVqCXF2diZLliwR+8/lypUrxM7OjqGqpKekpISMGjWKhIaGEh0dHVJVVSXtkhhjbm5O/P39pV1Gg+idBtWinDlzBteuXcOJEyfq/UTHhrKyMpw/fx6XL18Gj8dDjx490L9/f6ioqAgXVL148aLeAUAvX75Eeno6CgsL0b17d2hra2Pq1Kno06cPKzWePHkSd+7cwfHjx8WORQiBvr4+duzYgeHDhzNQnfT4+fnh9evX+Oabb/DkyZPW/9AY77aI3717N3x9faVdSoNEvc7TpkFJzJ49e7Bt2zbMnDkTx44dQ8eOHVnPyefzUVpaiqSkJOTm5grXASgpKdU7+0JeXh79+/cX63Q8UUVHR8PDwwNcLpex9RipqalYvXo1AgMDJfLnypaSkhLMmDEDN2/exMKFC2Frawt1dXVplyWWYcOGISQkhLEFoGyhTYNqkQQCAaKiouDl5YWTJ09+VSeeAUBpaSlmzZqFoKAgdOnShdHYMTExmDRpEiIiIpo9vbQlsLW1hbGxMerq6uDv74+DBw9Ku6Rmu3r1KsLCwrB3715pl9IoUa/zdEU4JVHvHzAqKiri+vXr0i5HolJTU6Grq4udO3cy3jAAQEtLC9HR0diyZQu4XG6rOfHwQ1ZWVrCyssLAgQNx8uRJPH/+XNolNUtdXR2cnZ1b3NY34qJ3GpRUpKenY8mSJQgPD5d2KRLx4sULGBgY4MiRI6zfBVRWVsLLywu+vr4wNDSEsbExevbsyWpOpu3fvx/dunVDQUEB7t692yoO4vqQm5sbysvLJXpaojjonQbVovXu3Rs9e/ZERkaGtEthXXJyMpYsWQI/Pz+JDBt16NABK1aswLVr19C1a1csXrwY9vb2ePPmDeu5mWJqaoo//vgDCxYsAPBumKc1iYiIQFBQ0Bd3lwGATrmlpOf+/ftk/PjxpKKiQtqlsEIgEBAXFxcyY8YM1lbGi1pHUFAQ0dHRIcePH2+xK5I/tH//fuLp6UnKysrI0KFDyenTp6VdkkiKiorIDz/8QIqKiqRdSpOIep2ndxqU1GhoaMDJyQkmJiYt9lS+5uLz+TAzM0N8fDwuXLjA+B5cTcHhcDBr1iz8/fffyM3NxcqVK1FaWiq1ekRlYWEBLpeLnJwcREVF4fTp08jJyZF2WQ2qqqrCwoUL4ebmBiUlJWmXwwraNCipmjBhAoyNjbFq1aovpnHk5+fDxMQEgwcPhre3N+vbnIuqQ4cOsLe3R//+/aGpqYnY2Fhpl9QgJSUlHDp0CJaWlqiqqoKrqyt+/vnnFj3MtnbtWkydOhVTpkyRdinsYfK2haKa6+TJk2TMmDEkIyND2qU025s3b4iLiwuZPHkyuXXrlrTLaVBycjKZMGECiYyMlHYpjQoNDSVr1qwhhBBy4cIFsnz5cilX9DE+n08OHDhApk6dKu1Smo0OT1GtirW1NXbs2IGpU6fCzc1N2uU0SUZGBpycnPDjjz/i9evXCAsLw9ixY6VdVoMGDhwILpeLo0ePgsvlsnJeOFOmTp2KoqIinDlzBoaGhoiPj8ft27elXZYQIQS6urq4efMmrly5Iu1yWEen3FItCo/Hg62tLe7evYvAwECpnJfRGEIIuFwuoqKi8OTJE6ioqGDJkiXQ0dFB27ZtpV1ek9TW1mLHjh24e/cuXF1dW+y51Xl5eejbty+ePXuG1NRUbN++HeHh4RI/e+RDd+7cgaOjI0aNGgVHR0ep1yMOuiKcatUePXqEHTt2oLCwEHZ2dvjpp5/QqVMnqfyj5PF4ePjwIUpKSnDkyBEA7xbSmZqaonfv3l/EqvYHDx5g1qxZcHFxwYwZM1jfH6w5wsPDcezYMfj4+GDXrl0YOHAgZs2aJbV6Dhw4gL179yI2Nhbdu3eXWh1MoU2D+iIUFhbi5MmTePz4MfLy8tClSxcMHDgQcnJy6NevH+P7LFVWViI1NRWEEKSmpqKyshLl5eWYNGkSFBUVYWxsjG7dujGas6UoLi6Gu7s7Tp06hePHj0NXV7fFNUR3d3eUlZXB2toaw4cPR35+vsRrzMvLg729PSoqKnD48GFWVvdLA20a1BdHIBDg7du3ePLkCfh8PpKSklBXV8dojrZt20JNTQ0yMjL4/vvvoaioCFlZ2RZ38WTTo0ePcP78eSQnJ0NTUxPLli1D165dpV0WgHdTmdXV1REXF4etW7dCXl4eDg4OEsufnJwMHR0d7N69G5aWll/U3wvaNCiKEktJSQlu3LiBgwcPwsbGBkZGRi1i+vDZs2cRHByMgIAATJkyBQYGBli1ahXrtRUXF8PQ0BBubm6tfgv6T6HbiFAUJZYuXbpg9uzZCAwMRGJiIsaOHYuoqChplwULCwt0794d169fx5UrV3Dr1i1oa2vXOx+FaTk5OTA2NsauXbu+yIbRJEzO36Uo6sv15MkTYmxsTNatWyf1a0FpaSnR0dEhhBBSU1NDDhw4QACQNm3akOLiYkZzJSYmEh0dHRIXF8do3JaGrtOgKIpRampqCAgIwHfffYdRo0YJD7SSBkVFReTk5CA5ORlycnJYs2YNCCG4du2a8L+ZEBMTg2XLluH48eMYPXo0IzFbO9o0KIpqkg0bNsDV1RUGBgbYuXMncnNzpVKHh4cHVqxYUe81bW1tdOjQAUlJSWLFLioqwurVq3H06FEEBwejb9++YsX7ktCmQVFUk+np6SE2NhaDBg2CgYGBVPax0tXVRf/+/REZGVnv9SFDhuDJkyfNjvvixQtMmTIFCgoK8PLygrKysrilflmYHOuiKOrrk5qaSvr370+CgoJIXV2dRHNXVlYSbW3tetu95+TkEDMzs2bFi42NJaqqquTq1atMldhq0GcaFEVJRL9+/XDnzh38+eefsLKykugutO3bt4euri58fHyEr3Xr1g1FRUVNjvX48WNs2rQJCQkJmDp1KpNlflFo06AoSmxKSkp49OgRJk+ejAEDBuDZs2cSy21mZgZ3d3dkZWUBeHd+SFO2QSGEIDQ0FOvXr8fRo0ehoKDAVqlfBNo0KIpiBIfDgZWVFW7evAldXV3s379fIrvn9u7dG3v37oWWlhZqamoAAG/fvhXpswUFBdDT00NMTAwuXLgANTU1Nkv9ItCmQVEUo/r27YuMjAykpqZi0aJFKCkpYT3nTz/9hD/++AP79u0DAAwdOhTXr19v8DNcLhfz5s3D3r174eTkxPg+Zl8q2jQoimKcjIwM3NzcoKamBjMzM9y7d4/1nIsXL0ZKSgq4XC7mzJnz2dXrZWVl2LZtG27cuIHQ0FAMGjSIkfzOzs4YNWoU5OXl8e2338LIyAhPnz4Vft/BwQEcDqfer9Z4Z0ObBkVRrJCRkYGdnR0OHDiAP/74g/XDnmRlZeHp6YmwsDAkJSXh2rVreP36NXg8Hng8HsrKynDgwAHMmTMH6urqOHr0KKPnn0RFRWHVqlWIjY3FtWvXUFtbi6lTp6KyslL4nsGDByMvL0/4KyYmhrH8kkI3LKQoinXPnz+Hrq4uNDU14evry2ouPp+PxYsX45tvvkFpaalwJ1oZGRno6urC0tJSIhsvFhYW4ttvv0VUVBQmTJgABwcHXLhwAQ8fPmxSnO+//x5r167F2rVrha+pq6vDyMgIDg4O0NbWxpAhQyArK4szZ86gbdu2cHJygpmZGVavXo2AgACoqKjAzc0N06dP/2weumEhRVEtRr9+/ZCeng45OTn4+/uzmktWVhYnTpxAmzZtUFlZiS1btuD8+fM4d+4crK2tJbZTb3l5OQDUO28jNTUV3bt3R58+fWBubi6c8SWuM2fOoGvXrrh79y5sbGywYsUKmJiYYOzYsfjf//6HqVOnYsGCBeDxeOInY3LRB0VRVENqa2vJ2LFjSUlJiUTypaamkuHDh5O//vpLIvne4/P5RF9fn4wbN074WkhICPHz8yOPHj0ioaGhZMyYMaRnz56koqKiwVi9evUirq6u9V4bNmwY+fPPPwkhhEycOJFoaWkJv1dXV0c6dOhAFixYIHwtLy+PACB37tz5bB5Rr/NtxG87FEVRovH398fDhw8xbdo0xMXFsZ6vX79+iIyMFJ62uGnTJtZzAsCqVauQmJhY75nFv4eGhg4dCk1NTfTq1Qt+fn745ZdfxMo3dOhQ4X/LyspCSUkJQ4YMEb6moqIC4N0UY3HR4SmKoiRGVlYWPB4PBgYGEsupoKCA169f49SpU7h//z7r+VavXo3Lly8jMjISPXr0+Oz7FBUVMWDAADx//rzJOfh8fr2v5eTk6n3N4XDqvfb+uY5AIGhyrg/RpkFRlMSYmpoiJiYGW7ZsQUZGhsTyysrKYunSpawe1EQIwerVqxEcHIyIiAj07t27wfe/efMGaWlpIp05n5+fL/zv2tpaZGdni11vc9GmQVGURI0bNw4BAQGYPn06qxdxSVu1ahXOnj0LLpcLeXl5vHr1Cq9evUJVVRUAwNbWFlFRUcjIyMDt27cxa9YsyMrKYv78+Y3GPnnyJMLDw5Gamop169ahvLwcaWlp9ZqJpNCmQVGUxBkbG8PFxQXLly9HbW2tRHISlrc0OXz4MMrLy6GtrY1u3boJf72fYvzy5UvMnz8fP/zwA0xNTaGkpITY2FiRtl6fOXMm1qxZgyFDhqCkpAROTk4ICgpCeHg4q7+nT6HrNCiKkpqgoCAEBwfD29ub9VyGhobw8PBo8DlDS/SpdRpsoOs0KIpq8WbPno327dtL5BAnPp/f6hpGS0SbBkVRUrVmzRq4ubmxOnwUHx8PRUVF1uJ/Teg6DYqipGrw4MFo3749oqOjMXHiRFZyeHl5YcOGDazEZpskZ5mJgt5pUBQldVu3bsX69etZm0rq7e2NPn36sBL7a0ObBkVRUtezZ0/s2LEDNjY2jMfm8XgYM2YMPZGPIbRpUBTVIvz8889ITU1FaGgoo3Hd3d1hbGzMaMyvGX2mQVFUi8DhcHDjxg1oamrC398fI0aMEDsmIQRBQUG4ffs2AxVSAL3ToCiqBVFWVsbt27exadMmREZGih0vMDAQysrKkJGhlzqm0DsNiqJalP/+978ICAjAlClToKurC1NTU2hoaDQpBp/Ph6urK86dO4czZ86wVOnXiTYNiqJanM6dOyM+Ph4RERHYt28f8vPzhdttTJ8+HSoqKlBQUICmpuZHn83KyoKpqSnMzMxw6dIlqKqqSrr8LxrdRoSiqBaPx+NBIBCAx+MhMDAQfD4fSUlJyM7OhoyMDKqqqtCzZ0+0adMGkZGR2LZtG+bNmyeR2t5vO97afHjpF/U6T5sGRVGtHiEET58+hUAggJqamkSfYXxtTYMOT1EU1epxOByoqalJu4yvAp1SQFEURYmM3mlQFEWJge1zOloaeqdBURRFiYw2DYqiKEpkIg1Pvb/9+pLO86UoiqL+v/fX98aG20RqGq9fvwYAukiGoijqC/f69esGdwQWaZ2GQCBAbm4u5OXlW+2cZIqiKOrzCCF4/fo1unfv3uA6F5GaBkVRFEUB9EE4RVEU1QS0aVAURVEio02DoiiKEhltGhRFUZTIaNOgKIqiREabBkVRFCUy2jQoiqIokf0/6Nnz/KXWguwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.shapes(adata)\n" + ] + }, + { + "cell_type": "markdown", + "id": "45d36afd", + "metadata": {}, + "source": [ + "For convenience, `shapes()` provides two coloring styles, `color_style='outline'` (default) and `color_style='fill'`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "f2da8b87", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T21:18:54.765474Z", + "iopub.status.busy": "2023-03-31T21:18:54.765249Z", + "iopub.status.idle": "2023-03-31T21:18:55.100403Z", + "shell.execute_reply": "2023-03-31T21:18:55.100000Z", + "shell.execute_reply.started": "2023-03-31T21:18:54.765459Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAGbCAYAAAA4KMxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADIE0lEQVR4nOyddXQUVxuHn1mPuwAJCe7u7i7FW6SFtkBb6i1UKHVvKXU3qFGKu7u7uwSN2yabrM98f/BBS4nsJisJneecntPMXHk3ZOc3995XBEmSJGRkZGRkZBxA4W0DZGRkZGTKD7JoyMjIyMg4jCwaMjIyMjIOI4uGjIyMjIzDyKIhIyMjI+MwsmjIyMjIyDiMLBoyMjIyMg4ji4aMjIyMjMPIoiEjIyMj4zCyaMiUeV577TUEQSA9Pd3bpgCwadMmBEFg3rx53jZFRsbjyKIh85/kq6++YubMmV6b32w28/zzz1OxYkV8fHxo1aoVa9eu9Zo9MjKOIouGzH8Sb4vGuHHjmDFjBqNHj+bTTz9FqVTSt29ftm3b5jWbZGQcQeVtA2Rk/mvs2bOHP//8kw8//JDJkycDcN9991G/fn2ee+45duzY4WULZWQKR15pyJQb0tPTGTFiBIGBgYSFhfHkk09iMpluafPzzz/TtWtXIiMj0Wq11K1bl6+//vqWNvHx8Rw/fpzNmzcjCAKCINC5c+eb97Ozs3n66aeJj49Hq9USExPDfffdd9uZiiiKvP3228TExKDT6ejWrRvnzp0r9nPMmzcPpVLJxIkTb17T6XQ8+OCD7Ny5kytXrpTgtyMj4xnklYZMuWHEiBHEx8fz7rvvsmvXLj777DOysrL45Zdfbrb5+uuvqVevHgMHDkSlUrF06VImTZqEKIo8+uijAHzyySc8/vjj+Pv789JLLwEQFRUFgMFgoEOHDpw8eZIHHniApk2bkp6ezpIlS7h69Srh4eE353rvvfdQKBRMnjwZvV7PBx98wOjRo9m9e3eRn+PgwYPUrFmTwMDAW663bNkSgEOHDhEbG1v6X5iMjDuQZGTKOK+++qoESAMHDrzl+qRJkyRAOnz48M1r+fn5t/Xv1auXVLVq1Vuu1atXT+rUqdNtbV955RUJkBYsWHDbPVEUJUmSpI0bN0qAVKdOHclsNt+8/+mnn0qAdPTo0SI/T7169aSuXbvedv348eMSIH3zzTdF9peR8Sby9pRMueHGSuEGjz/+OAArVqy4ec3Hx+fm/+v1etLT0+nUqRMXLlxAr9cXO8f8+fNp1KgRgwcPvu2eIAi3/Hz//fej0Whu/tyhQwcALly4UOQcRqMRrVZ723WdTnfzvoxMWUUWDZlyQ40aNW75uVq1aigUCi5evHjz2vbt2+nevTt+fn4EBwcTERHB1KlTARwSjfPnz1O/fn2H7KlcufItP4eEhACQlZVVZD8fHx/MZvNt12+cz/xT+GRkyhrymYZMueXfb/7nz5+nW7du1K5dmxkzZhAbG4tGo2HFihV8/PHHiKLo0vmVSmWB16ViKihXqFCBa9eu3XY9KSkJgIoVK5beOBkZNyGLhky54ezZs1SpUuXmz+fOnUMUReLj4wFYunQpZrOZJUuW3LIK2Lhx421j/VtwblCtWjWOHTvmWsP/RePGjdm4cSM5OTm3HIbfOEBv3LixW+eXkSkN8vaUTLnhyy+/vOXnzz//HIA+ffoAf7/5//NNX6/X8/PPP982lp+fH9nZ2bddHzp0KIcPH2bhwoW33StuBeEow4YNw26389133928Zjab+fnnn2nVqpXsOSVTppFXGjLlhoSEBAYOHEjv3r3ZuXMnv/32G6NGjaJRo0YA9OzZE41Gw4ABA3jooYcwGAx8//33REZG3tz6uUGzZs34+uuveeutt6hevTqRkZF07dqVKVOmMG/ePIYPH84DDzxAs2bNyMzMZMmSJXzzzTc35yoNrVq1Yvjw4bz44oukpqZSvXp1Zs2axcWLF/nxxx9LPb6MjFvxsveWjEyx3HC5PXHihDRs2DApICBACgkJkR577DHJaDTe0nbJkiVSw4YNJZ1OJ8XHx0vvv/++9NNPP0mAlJCQcLNdcnKy1K9fPykgIEACbnG/zcjIkB577DGpUqVKkkajkWJiYqSxY8dK6enpkiT97XI7d+7cW+ZOSEiQAOnnn38u9jMZjUZp8uTJUnR0tKTVaqUWLVpIq1atKvHvSEbGUwiS5KI1t4yMjIzMHY98piEjIyMj4zCyaMjIyMjIOIwsGjIyMjIyDiOLhoyMjIyMw8iiISMjIyPjMA7FaYiiSGJiIgEBAYVG0srIyMjIlF8kSSI3N5eKFSuiUBS+nnBINBITE+UoVRkZGZn/AFeuXCEmJqbQ+w6JRkBAwM3B/l04RkZGRkam/JOTk0NsbOzN531hOCQaN7akAgMDZdGQkZGRuYMp7ghCPgiXkZGRkXEYWTRkZGRkZBxGFg0ZGRkZGYeRRUNGRkZGxmHkehoyMjJeQ5Ikzp49y9vTPyXfaEJC4uq1RMxWe6nG1aiVdGzdiuGD+t082NVqtdSrV6/QMr0yjuFQavScnByCgoLQ6/Wy95SMjEyJsFgspKSk8Nf8RRw5dpyd+w8jKVTYfMMwV++KwicIAKVvIIJKU6q5JJsV26V9qHMTb14TLEbEpJNMfmwitWvWcGo8jUZD7dq1bwl6Cw4ORq1Wl8rOsoSjz3lZNGRkZNxGWloay5Yv5/tf/uRiwgW0FWtijGoEvsFoK9ZCUHj2rV+0GLGc343Kmu9UP8FuQpOX+o8rEoq8DMKCg6hWtQpVKldicP8+NGvWzLUGexBZNGRkZLyCKIrM+PwrFixczJkzZ7BXaYN/87tQ+tz67JBEO9x4/AiCxwXEFUiiHVt2MracNDTnNxOkMBERFsL7r71E06ZNUanKzwmALBoyMjIeRRRFFi1axJPPT0Oo1RWxcnOUAWEIggLJZiX/7C5MV45iy0xEUKmRbGYUWn8A7CYDgkKJJiIevwbd0UTEefnTlBxr5jXU5zcjZCTQqVVTunZoQ5tWLQkJCcHX1xdfX19vm1ggsmjIyMh4jLS0NIaOvJfz1mAUDfqj9A8BQJJEDAdXYji2Dt9a7fCp2gJ1aCUE5e1v4JLNgjnpDIZDq7DlphPQtD++tdoiCOXTyVOSJCzJ5yD9PDr9ZZRIXNqzmh79BxNbMZqeXTowZMiQMpMEVhYNGRkZj3Dw4EH6DxuJuVYv/Bv2vHndnq8nY8UnaGPrE9hsIILK8UNju8lAzu55WNOvEN7/WRTasvl2XhJsuelYUhNQpZwgTshk89oVaDSlO/h3BY4+58unhMvIyJQJ/vxrLr2HjELRZ9otgmHLSSNt8XsEtRlBUKuhTgkGgFLnT0incQS2GkLq3New52W52nSvoQoIx7daCzRtx3LJrxaPPPGMt01yClk0ZGRkSsSevfuYMOlxNP2n3dyOAhAtJtKXf0xYr8fQVqpTqjl0MfUI6TaejBWfItkspTW5zKFp2Jfl2w6wceMmb5viMLJoyMjIOM3Bgwfp1X8QQcPfRekXfPO6JIlkrPqMoNbDUIdWcslc2go18a3biextf7hkvLKGussknnv1LW+b4TCyaMjIyDjFp198zaD7n8B/+HuogiJvuZezewGayKr4VGnq0jn96nbGmnYRa1aSS8ctCyj9Qkix+bJr1y5vm+IQsmjIyMg4zC+//cE7n38PPZ69ZUsKwHjpMJaU8wS2GuryeQVBwL9RL/LPbHf52GUBS1wblq5e520zHEIWDRkZGYeY9ftspn7wJdr+0xCUtx5si1YT2Vt+Iaz3425zIdVVboDp0hG3jO1tBJUGm610+bY8hSwaMjIyxbJ5y1amfvAVyp5TUKi1t903HFpNQKNebnWNVej8QbQjmp1LASLjWmTRkJGRKZJjx44xZuJjKLs+UajrrPH8Hnxrd3S7LX71upJ7aKXb55EpHFk0ZGRkCuXKlSsMHP0gYucnCl1FiFYTAAqNzu32+NXpiPHsbrfPI1M4smjIyMgUiCiK9Bp8N5bm96IOji60nTX9MprIqh6xSVCpUfoFY8/L9sh8Mrcji4aMjEyBTHpqCobKHVBFVCmynSX5HJro6h6yCjQVa2JJPuux+TyBMvU01eIre9sMh5BFQ0ZG5jb27tvPsi17UNQs/pzC06KhrVQP07WTHpvPHdhy0rGknMd+dDnSuhm0Drcw4YFx3jbLIcpPsncZGRmPkJ2dzfCRY6DnCw61t+Wk3Rbk507UYZXI2bvAY/OVFNGcj/naSSxplxCMWaiVCkzndlMxvjqCJY9u3bpRt20zBvV/mQoVKnjbXIeRRUNGRuYWho55AGPju/EJCHeovWS3ggcLKCl9AkEsezENVn0qufuXIuUkIRoykRQaNBWqo/YLQhUQipieQIUK0VQI9uXVqa/RqVMnb5tcImTRkJGRuUl2djYXkrPw6d7C4T5Kn0Cw20H139vttufrsR1dRc6xjYgKFX7NBqKu2wmFxue23FuSJGEETqacZ8y0z1BnP0uf7l149/WXy1XJCVk0ZGRkbvL+Rx9jrtQMZ6o7CBod9rwsj25ReRubIRPrlu8hJwXJN4TA7g+jqdyoyGj4G/e00dUhujp2SWLxmS2s6NibFg1q8+a056lVq5anPkKJkUVDRkbmJj/N+hXd3R871UcdGoMtO9mzolF87Ti3kXdkDapjS0m9kkD0kKloa7Qt0TiCIKCq1QmpVid2XD5Mt3sm0r5hDVo0aUS1+FiqVKlCo0aNXGx96ZFFQ0ZGBoCNmzajrlSvwFKsRaEOi8GSfgldXEM3WXYrtpx0BC9V8rOf3Yp1z59Iag0Vx3+NOizWJeOqKjdCim3IlrQENm5LQ1h3AW3WTwSLObRs1oRXnn+G2FjXzFVaZNGQ+c9hNpuZ+trbHDl+gqSUNBSqgr8GdouZxyaM45GJ4z1soXdYt2kL1sqtnH4oqMPjMCYccItNBWHNuIwmPM5j893AnHiaCtd2YNRo0d31ustXVoIgXA+SvBko2R09sDphN+tHPorOmkOl6Ag6tG6BQlAQGOBHvdo18fPzo2XLligUnjlTkkVD5j9DYmIiU197m+37j5BXpRPKKsNQ1PEvdB9atJp4e/Z83ps+g2lTnuaBBx5AqbzVS8hgMHDkyBFSU1NvuR4SEkJ8fHypbfbz8yM83DEvptKQkJDArNnz0N31ptN9VYGR2LJT3GBVwZiTzqCNruGx+STRjrTnD5qFC8S1bklSeGOPbsUpqrRCrNKKfOCkIZMjR65ct8uiR7v8MILZgH/2eYYM7EfzRvWJi4ujSZMmbrNHkKTiNwcdLTguI1NWefaFl/hz6ToUtbugrNHBqb623HSEU+tI27mQwXePvikcJmM+uw4eQxnTALMm+JY+GosetSW31HZLZgOiPpnWrVpQJTaGpx97mMhI1z+wOvbsz9normgrluwgNvn354ga9R6C4P633ZQ/XyJiyMtuz3UlSRL2M5tRndvMy5MfJykxkS9mzUE78DUED7oYO4Jks2K6chQhLxNt1nm0lhx0KgE/Hy2jhw/h/vtG4+fnV+QYjj7nZdGQueMxm81Ua9wG5YDSfdlFkwG7yXDLNVVghNsfIJLNgs2QiV2fjPbwfMaNHMbkpx4nICDAJeOvX7+BB978FqH1fSUeI2vjT/hUa4GucgOX2FQYkmgn9a+XibrnHffNIUlYLx3A9/RKhg3ozRvTXuTixYt0ueseVP1eRlA541vmXUSTAfHEWtSJh/jh0/fp1q1boW0dfc7L21MydzwXLlxAExGHWMqHu0Lnf72mg4cRVBrUwdGog6ORYurx3f4dfFWnIX/9NpMunUsfIPbuJ19irz+oVA8Dn+otyT+9w+2iYctKRBXsvuhp0ZyPbf2ntG9YnZnb1+Pr60tCQgK9+g+Czk+VK8GA///NNh2MpUor7pv4GGeP7sfXt3ROBP+9aByZ/xwzf59Dflhtb5vhEgSlGm3tTuiGvM3oiY8z/uFHMRgMxXcshP37D3A2JReVf2ip7NLF1secdNrtBZJMl4+ijanrtvEt6z7h3ecm8ddvM/H19UWv13PX8JHo4zreFqxXnlCHVERsNJjX3nm/1GPJoiFzx7Ni5QqUxWRqLW8ofYNQD3ydJZeVdO97F1evXi3ROBu3bMNYubVLbApo0pfcA8tcMlZh5J3ahk+1li4fVzTnYVjxIb1bN2TsmFEAZGRk0K5rT7Jq9CWw2QCXz+lpVDH1OXridKnHkUVD5o7HpvIt12+JhSGoNPg27EVCdCe69h9CUlKS02PMnr8YXWXXxFf41e2M8cI+bLkZLhnv31jTr6D0C0bp45qznBvY8/Xkzp9Gt3qV+PGbLwDYvWcvHXr2J6NyZ5RxzVw6n9cQhOv/lRL5TEPmjubq1asYraK3zXArPlWbYQiMoGOvAWxft8Jh76pr166RaRJRaHxcYoegUBLU9h70O/8irOcjLhnzn2TvmE1gyyGuHfTYCvwS9/PXX7/SpnUrALZt38HgUePQ9n8JbSFJG0WTAXPyOeyGDGxZSYgWI7asRESLEYXWF9Gcj9IvBG1MXTRR1dFEVEahLdp7qbwgi4bMHc2Klaswh1RD621D3IwmvDJ5je9h2JgH2LLGsS2iV99+H1PNni793ejim2A4th7j+b34VHM86WFxmK+dAkm6nreplEiShPnKUcRdv9K2WSMW7NtxMzAuJSWF+yc9hc+Qt257yNv0KRiOrMN08SAK30A00TVQh8Wii2+M0j8UpW/wLSVxbbnpmK+exHhhHzm75wESojkfQaVBE10D/4Y9iqyI6EokSST/0AqkQFOpx5JFQ+aOJjUzGzHszjrPKAxNxTqcPrKc56a+zAfvFB2kl5uby4adB9D2etGlNgiCQHifp0hf+iGAS4TDbswla8MPRAyZVuqxJJsVcdv39KwXw2vrllG16t9lak0mE9363kVes3vR/EMwRJOBzPU/IJpy8W/cm6C2IxCU6mLnUgWEo6rTAb86t8YFiVYz5ivHyFz1GT7VWhHQfIBb41vsednYN3xG35YNmPHBjFKPJ4uGzB2NIAgerfXgbXS9nmXmnBe5e+ggmjUrfC9+7vyFGCs0dssKTFCpCR8whbSlH4BCiU+VpiUey3ztJFkbfyK05ySUfsGlsiv/zE78Ti3jk3ffYPBdA2+5J0kSEVHR+HWegO4f9c5Nl4+SvXkWQe1Hlepz/BOFWotP1WboqjQlZ/c80ua9QWivR1EFRrhk/H9iNxlI/Hocu3buoEUL16z8ZNGQkbmDEAQBTa9nGHHv/Zw7frjQFCmffPMD6nZPus8OlZqw3k+Qvmw69twM/Bp0LzJteEHkHlqF8fxeIoZMQ+kbVGJbJEnCfHQ1yiOL2b5nFxUrVrytzdvvf0RAvc5o6nS+2Sd33xLMV48TOeKNW7adXIUgCAS1Ho6lWgvSl35IcMf70MXWd9n4lrRL5C58lU2bNrtMMED2npKRueNQBUaSpwpi+46dhTdSqlGo3ZuGQ+kTQOTgadiyk0md+xrmpLMO9bPpU0hfOh1bdjIRg6eWSjAA8g+tIChhA5cTzhcoGFu3beer3xeg7nA9MaUkSWRvnoVoziP8rufdIhj/RBMRT+TwN8jZPR/T5aMuGdN4fi8hh3/n6IG9dGhfstTthSGvNGRk7kCERoP46dc/aN/OtQ8Mp+1QqQnueC/WzGvot88mOy8b35qt0cU3ucUNWhLtmBIOknt4FUgSga2GoIup5xIbNEmHWTh/Lmr17ecQNpuNSc++gLLzJARBuCkYCp8AgloNdcn8jqDQ6Agf+Dypf71c6pWV/cgyquWdZtmapYSGli5osyBk0ZCRuQPRRFdn3co5pKWlERHh+r1yZ1GHViJ8wGTsJgPGMzvI2T0fe14WovW6N49CpUUTXZ2QzvffFlMjWozAdQ8gyWr++4agQOkbWOQhsunKMdrVr0bdugVHkS9ctIiMwJpo/EIAyN2/FEGl8ahg3ECh0RHYejg5u+cT0uUBp/uL5jxMO3+nWaSSFZvWO70d6CiyaMjI3IEIShW2ah34ceavvDDlGW+bcxOlzh//hj3xb9izyHbWzGuozm3GnnKGmMhQrBYLJ44dAV0gmqDrIphzdi/awDCiJvyAoLp9FSFJIsKuWczYsLLQed6a/hlC47EA2I055J/aRtSod0vxCUuHT7UW5Oyeh2jOcyquw56vJ/uvF3n0gTG8/eYbbhMMkEVD5g7HV6tBSjoI8Y29bYrHUVZvyxc/vsHEB8e5ZZvCHdjz9Sj2zSbcns1nH7zFtaQk3vv4S3I0YYTf99ktHlSBeVlYl72Faf9CfFqNuH2wPX/w8guTiYsrvGCT0a64GSthOLKGgKZ9vZr2XBAEfGu1I//sbvzrdy22vSSJ2I+tRHVhBz9+8REjhg1zu43yQbjMHc2EB+/HJ/UYknRnR4UXhEKtQ6rZjXc+LL1vvrsRLUZsu34naMfn/PDGUzz0wFgmPPkcz329kKyWD0O7Cbe53Cr9QtCERJGzZz6mhP3A9bMR0ZxP7u55+KSfYtKEwrd5EhMTyUq/XjxKtJrJP70D31rt3fYZHcW3ZjuMF/YX28505Rh5vz/J0DpBJJw46BHBAFk0ZO5w/P39GT54INYL+7xtildQ1+3G3DXbWb123S3XdWolojnPS1b9jT1fj/nAYgI2T2dw4wooFEoemvYB78/birnXNFRt7isyPkMZVpn5c/+iSup2hHUfkfbNWCoc+JYne9Rmx+b1Rc69YOFCFLWv15cwHFqFf8MeTtdHdwfKgFDshqLzd1lOb6FGyiZ2bVrDp9Pfdet21L/x/m9IRsbNvDHtBea17gpuyI5aHhDbPsizU1+lc8cOaLXXw/kenzCO5//YgqZBH4/bI0kS0vFVmE5vJSzQj0fuH8Vvc86y+OBl7A3HoA6PxZlHYKVKldixYRVWqxVBEAr0kiqImbMXoG3xEAD5p7cRNdJ9hZ2cQRAUCGototWMQn17+KU5+Ry18o+xatlCdDr3uk0XhLzSkLnj8fX1pXXjehgvHfa2KV5B6RdCZlgD5sydd/Na5ZhKKO0Wj9phM2RiPLYOlr3KQx2rsG/9Uj544yU++eIbLgU2RNFmHOrwWKfGtATG8uf8xdeDGjUahwUjMzOTtPQ0BI0vtpw0lP5hDqUG8RTqsFis6Zdvu27NvIZp5ft89uG7XhEMkEVD5j/CG9OeR3dug7fN8Bqquj1475OvsNlsAMTHx2O5sNcjc1vSLiLt/QP/7V8wrW8tdq9fztQpz/DKW+/x8Ls/Yun6LD4NivamKgxFbCOWrlztdL9RYx8gv2JTBEHAlp2EpkKNEs3vLpS+QUh2223XNQf+YOv6NTRs6Jp09iVB3p6S+U9Qs2ZNGsZHcSA72WOZRcsSCo0OfVB1/pzzF2NGj6Jy5co0rhXPkUuH0MY1dvl8kiRiuXwEn4vbqB6oZMb7r9GkSROUyuueSSPHTWR7CqjbP1iqeZQ6f/JtYDQa8fFxLMX7okWLOXAhBd/+429ec2fCQFdhvXiANjXjqF/fdalGSoIsGjL/GUYPu4v9v24DN4iGZLdhunoc06XD2LJTEM0GBMXfX6/rfvcFp6OQrNe3iZT+IWgr1kIX1whVaIzLDzcVDfry3qdfMGb0KARBYM6vP1O1Vj00937hstrXkiRivnYa3cE/GNa7By9/Ouu2+h73TpjEzmQ7isauqY1hjGnJ4OH3sGrZYofaL12zAWWz4R49PHYWyWa95WfRakJzYik/bl3rJYv+RhYNmf8McZVjUeY4X92uMCRJwpRwAMOx9dhzM9BWqo1PtRaoQ2NQ+AY59VCSJAl7bhqmK8fR716ALfMafg264V+/m8s8epQ6f3KsCg4fPkKjRg0JDg6mXYeOHMhJc0llQ+OF/Vh2zKJV00bM2rCSqKio29pcvHiRbQdOQI8ppZ7vBpo6Xbi4ZhuSJBX7O7fZbGzdvgN1l1vTq5Q1l2xrxhUC/lFi1rp/PtOeeoSgoNLl4XIFsmjI/Gdo3bo1PnlJuOL413h+H/rd89BEVSO4wxjUIbcnwnMGQRBQBUbiXy8S/3pdEC1Gcg+uIPn35whsMQjf2h1c8mZsbzmGyS+/wdol1w/Fu3Rsx+4tV0ssGpIkYb+wG/uR5UT7KVm2cxOxsQUfZl+8eJEeg+7B2maiSx88gkJJfkBl5sxbwD3Di07/ceXKFawBlVDo/G9eUwVHYzhatHuuJ5EkCVtO6s2Vqd2YQ4wtmfHjxnrZsuvIoiHzn0EQBATRdj29RAn3sK2Z18hc/x3q0Bgi7noe5f9zFrkahcaHoFZDCWjaj+wtv2I8v5ewPk+U2sNHHVKRs/szSEpKokKFCgQH+CPZE50ex5abge30Jgx7FzFm7Dje+HJVkWVmrVYrA+++D2ObiaiCbl+BlBah9b08/MSTqFUqhg6+q8i2CrUa+z9+VvqFYstOdrlNJcWSeBpNRPzNyHTl/jm8++bLN6sLepuyYYWMjIcIDQkG0V5su4IwJhwkY9XnhHYZT2i3CW4TjH+iUOsI7TYB31rtSV82A8luLb5TMZgj67FvX8mCHe3GXMwbviJg22dM7teQrPQUvvlsRpGCcf78eTr27E9WXGe3CAaAoFQTNOZTxj44ga+//hq73fF/Y0GpQukbhDXLefF0NZLdRtbmmQS1uRu4/pISYMmge5cuXrbsb2TRkPlPUbtmjQL934vDeGE/hkMriRz+utOxBK7At0YrfGu2IXPdd0iSVKqx7EotaenpTvcTzXlYV3/Iw/1bc+LQXiY//VSxcRFffvM9XYY/yOWaw1BWbVVSkx1CUKoJGv4Ob87dSYuOPfj2x584efIkOTk5xfYNbDUU/fbZbrXPEbK3/Y5//W6ogiKxZiWS+P1D/PRl2UoDI4uGzH+K4OAgJNG5Q09r+hX0u+cRPmBKgRG6nsKvTkdUQZHod/xZqnG0cU346uc/nOpjN2Rh2/Q1X777Mq++8nKx5ysmk4kHHn6cD35bgdDj2VKf+TiKOqQCmpZ3k97iId6av5d+j71J4459eOTJZ7l06VKh/bQVawF4NQDUcHTd9TrkDXtgunqCxO8msn3HTpdW3XMF8pmGjEwRiFYT6Ss/IXLItALTb3uaoNbDSV/2EcYL+/GpWngN8KJQ+oeQZ/7H9k0xImrNSiLxuwksXrKUgQP6Fzt+Tk4O/YaN5HxwCzTte5fIxtKi0PlDw/6IXD9Ynnt0LQu69GHEXX3IuXoW3xb227LZhnSbSNr8N1EHR7ttG60gJEkiZ/d8bNlJhHR/CPOBxYSl7udgYiIVKlTwmB2OIq80ZGSKIHvLrwQ2H+SR8wtHCe3xMNnb/3BJwsGOHdrjm1h4RlWbPhVp3UesW7fOIcFISkqiSbtuXIjqjKZq2XhDFgQB/4Y90Q3/gHlnLOSnJ2I5v+u2dkqfAEJ7TSJ9xSeYk854xDZJksja+CMg4V+vE7alr3Nvs0iOHthbJgUDZNGQkSkUS2oCtuxk/Op08LYpt6DQ+hHcbhRZm2eVeqzq1aujlG4/XBfNeRjmvkjAji/ZtHIx3bp1K3asEydO0HPgMIwtx6GuVHClPG8iCALaBr0JGvo6KUs/RvxnFcD/o4mIJ2Lgc+i3z8ZwdF0Bo7gO0WomfckHqAIj8NXpqJa0iVN7t/DBu2+VGU+pgii7lsnIuIH6tWuiTnRs31q/Yw4hne93s0Ulw6dqM6xpl5BspY86UfzfI8tuMmA8vxfbgYUkfz2OT9+exsnD+6hZs2axY7w7/RP6jH2CrObj0UTEl9omd6IJr0xIm2HkrP2yQKcCpV8IEYNfwpp5ldQFb2FJu+jS+SVJJP/sblL+nIp/o15oFRKtg3LYvHYFgYGBLp3LHciiIfOfokfXzqitxXvT2E0GRFMu6rAYD1hVMnSVG2K+dqrU4yisBjK/G0fgtk95pIGarx4fROLVy4y+p4BqeAWwadNmvvlrOXR9ClVQ4a63ZYmANvcgZF/BtG1mgfcFpYqQTuMI7jAG/fbZpMx9lbzT2wtcnTiKZLOQe2AZyb9NwXz1OBGDpiKd306fKhr++uPXm3m5yjryQbiMTAEYz+/Ft2Ybb5tRJJqKNTFdPY4uzrmMp6LFiGQ13vz5xKH9KBSKEm2JvP3BDL6btxqp3QQUZTiXU0H49ptK7oJXsCWdwm/Qayg0tyc81ETEEzHoRWy5GeQd30DqX6+g9A1CG1MPXXwj1GGxtxyoS6Id/l898EbAoGS3Yr52kvxzu/Gv342oEW8iSSLS2ukM7NCC77/+okznwfo3smjIyBSANTUBv3qdvW1GkWgr1CT/1Fan+9myk+jcod3Nn1Wqkj0G9u7dx7cL1iF0ebzcCQaAOigCdVglxg/qxuxF72JuMgJtbMEZZFUBYQS1Hk5Q6+HYctMxJ54md/8ybNmJCOq/61pIVhMKXSAIAurwyjcFRR0eR1SzgSg0Oiwp51Ht/plFv/5Is2ZNPfJZXYksGjL/KT756jusodWL3Ze1ZiWiDCzbWy2CWos9T1+ivkpl6XamTSYTDz7+DFKLieVSMG6grtaGVs2b8vQTjzHp6ec5vHoJlsg6CHV63JKf6p+oAsJR1QrHr1a7Au8XhWgxIWz7ji1rlxEfH19K672DfKYh858hLS2NWTNnIlR34MsuSSgLeWiUFRRqHUIJ9sEVaeeoW6v4w+3CMJlMdB8whIyqvcqUK3JpiI6OZsHsWZzZt4VJ3erAslewrP8c0WRw2Rx2kwFxzYd8/8VH5VYwQBYNmf8Ihw8fpkW7zmh6Tb4tqKsgRIux2DblFVXyMYYM7Feivmazme4DhpAQ3g515cauNawMoFQqefG5Z7l87jRvThpJ3pzJWFMvlHpcmz4FYd10Fs78kr69ernAUu8hi4bMHY8kSYy4bzzWdhPROljW05vpQtyJLTcDVV5qiQPHnpjyIheCmqB2Q7U/b1BUHq8H7x/LhlXLEPb8Vqp8X+azO1Cs/4g5339Oi+Yli+IvS8iiIXNHI0kSfe8aiim+Leqo6o53LAf79KLVhORENlcA/YLXeH7yMyWab8269azcexpN9bbFNy4HiCYD2su7qFu38EDERo0acf+w/uSt+NDp8SXRjnHrz9TKPcixfTtp06Z1acwtM8iiIXPHIkkS9z0wgWO2KIQ6PZ3rayt9CnJ3I5oMKP2CHW5v06dSITyYCQ84H7B46dIlHnpmKrQpm8GOzmK6dIQrn97D7G9mULt27SLbTnvxOWqFqTEmHHB4fGvyWTJ/HM+zQ9qxbsWSchG05yiy95TMHYler6f/4GGct4Wibj3a+QEkyaHyod7EknLeqTTtwv45vPqi82VW7XY7Q0bfj6XtRNQFxDKUJ0RzPqbts9AfWc+ePXtp0aJ5sX20Wi1L5s+hU++BZPkGFrtitaRdJOTYHDbv3kH16k6sbssJ8kpD5o7jzJmztOnckzOqKmja3ufQwfe/UYVUwJpxxQ3WuQ7zleNoK9VxrG3SGaTUs4weNdLped56fzopoY1QB0c73besYM1KwrDkLdRr3+WV++8iR5/tkGDcICwsjM2rliDs+KnItCKSJGFe+wk/ffnJHSkYIK80ZMo5+fn55OXlkZaWxsIly5gzfyEpmTkoO0/CpxQ5kLQVa2G+egJNeGXXGetizImnCO7kWN1o9el1LFow1+k5Tp06xU/zVqDs4dgKRbQYMZ7fi+nyEWxZtwe+qcNi8anZFl1s/RKJubOI5nykbd/jZ0zjxUkP8uijj5Z49RgWFsbsH76gS7duhI94B13M7YJtObOVzu3b0qqVewtOeRNZNGTKHWfOnGHVmnUsW72OUwlXUYdEI6p8MPlFo27/DDqNT6m3lXRxjcja+BMBjb1TD6I4rNnJKP3DHHrw2vOyqBIo0LSpc9HHmZmZDL13PPbWD6Iq5vdpN+aSs3cR5stH8KnRhsBmd6EKrXhbig1LagL5p7aRvXkWgc3vwrdOR7dtAZquHidz3musWb2Kzp06umTMDh06sHnjJjp26kT0oOdQ/8MpQLSayVj5Od9edb4yZHlCFg2ZcsXhI0cZOOp+jDV7oY7uhbpeDDf8h1zpJKsKjMCer8duzEXpE+DCkV1D7v6l+Dfo7lBb4fQGp+My8vLy6NJ3EFn1R6ApJjLefO0kWZt+JrD5III7jClUBASFEm10dbTR1RGtZvRbf8OScp7gzve7VDgk0Y75+HpCEneyaNMGWrd2rddSu3ZtOXf2DPc/9ChnF63A3nwk2go1Me2ew5NPPUV4eLhL5ytryGcaMuUGSZIYOfZBbK3H41uzrdsz0PrVbl+i3E7uxm7IwpJyHl2V4lcOtpx0NIkHeeqxR5ya44WXXyczqjmaqGqFtpEkiezts9HvmkfEkJfxrdXW4Ye/Qq0lpOuDKP1Dyd480ynbisKWm07qN2MZ3zyM/ds3uVwwblClShU2rVnBnvXLGBiSTMzB74mxXWXKM0+5Zb6yhLzSkCk3HD16lCzJF60THkOlwa9+V1Jmv4h/w54IyrLzVdHv+oug1sMde0Dv/Z3Xpz7n1Phr165lwe6zqDuML7SNZLOSvuJjtNHViRgyrcQrhcAWg8hc+zV5p7bhV7t9ica4gf3sVvzPb2DNru1Fxl64kkqVKvHd5zM8MldZQV5pyJQb7HY7ush4j82nUOvwq9eV3P1LPTZncZiTz2HTpzhUH9yScp5GsSFOe0x9+u3PCA0HFHpfsllJX/oh/vW7EdhySKm3lkK6PEjuviXYDVkl6i/ZrLDla3pG5nNs3w6PCcZ/FVk0ZGSKIKBJX4wX9mLNvOZtU5Akkaz13xHac5JD7dXHl/LZh+84NceSZSs5eOJMoRl+JZvlumA06uWQcDmCoNIQ3PFesrf97nRfy7ldJH5+DzOem8iPX39W4jTvMo4ji4aMTBEICiUh3SaSveVXb5tCzu4F+NZsiyqg+INWc/I5KvoJVKtW+JnEv8nKyuLZaa+h7P1CgauH6yuM6S4VjBvoKjfAmnEF0ZzncB/x8GJ6hWeRnprCkEEDXWqPTOHIoiEjUwyaiHiQRCypCV6zwXT5KObEUwQ0L/7heCPA7KsZHzg8/rVr12jZuRfmugMLrGAnSRJZG3/Ep2YblwvGDQKa9CX3wPJi24nmfOxrptO/dhA/ff05QUFBbrFHpmBk0ZApNwQEBCDlZXhl7uAuD5C57ltEq8njc5suHyVnzwLC+09GEIr/yoo7Z3HP0ME0adLYofETExOJiYnBUG8wikLSnet3zkEZGIF/vS5OWO4cPtVbYbp6vMg21oyrCBs/4c8v3uGrjz8s02le7lRk0ZApN1SrVg1T4mlshkyPz60Ojia4/ShSZr9E/rndpUqV7Qy5h1eTs28x4QOfR6HRFdvenpdNoDGRrz5z3KNn5m9/ENp5LNrKBdcaNxxbj12fSmDLIQ6PWRIUGl2RwYrWK0epcHIOC3/+knZty3b99jsZWTRkyg2CIDDl8UcQ9/7plfl1lRsSdfebmC4dIWX2i5guH3XbXNbsZNIWvoM14woRg6c6JBgAisML+cLJw+/T5y6giSm4Nrbxwn5MCQcJ7f2Y29/q7SYDFLKSsl45Suy1DWxZs4ymDq6gZNyDLBoy5Ypnn3maBtE+WJLPeGV+hdaX0G4TiBj4PIaj60lfOh2bPtVl44tWM/rdC8hc9TmBbUYQ2nW8Q1tScD2wLUaTT5fOnRyeLz8/n217DhaY+FAS7WRv+53QnpMctqE02PUpqArw2hLN+agPzGb98oX4+vq63Q6ZopH902TKHX/O/J6OPfuTktoUnwY9PfJA+zdK/xDC+z2F6eoJMlZ/gdIvmIBmA9FGO5/ZVJIkzFePYziyFmvmVfwbdCdyxBtOJ/RT7v2Db39yLtCs/7BRmOsNLPBBYDy3G58qzVBoPfOgtudlowqOuuWaaDKQ/duTrFyyED8/P4/YIVM0smjIlDtCQkJYv3whDz/6BMs+H0X0Qz957MH2b3QxddGNeANLygX0u+cjWY341miNOrIq6rAYBJX2tm0dSZKw56Zhz83EknKevJOb0URWJbDlEDQRcSW2RWMzUL9+PYfb/zVvAefzNaga3n6WIYl2cvYuIuKuF0tsj7OowytjOLwamt8FgDX1Auq9v7Fq6SLa3iFV7+4EZNGQKZdERkayYO6fvPfhR3z705sIWj9sQbFY41qjia7ukbTb/0QTVZWIgVOw5aRhTDhI/untWNMuIlrNt51HiBYjqoBwVMEVUIdWImLwSyh9S+c2as1Opm684+lVrly5wvNvfgA9Xijwfu6BZfjWaofSP6RUdjmDJfUCwv9rs0uSiHHtZyxfOpfGjRt7zAaZ4pFFQ6Zc88KUZ3lhyrPY7XYWL13Gxq072bJ1CVmKQMyVW6OtWAuF2rFDZFegCowgoJFzpWVdMu+xpbz56csOt//qu5/Ir9kHH5X6tnuiOZ+8E5uJHuN8XeySYk48Te7+ZUQMeQlJErFs/IqnJk2QBaMMIh+Ey9wRKJVKhgy6i88/eo/DOzcxZ/pU7qmUQ9bMScX6/pd37Pl61NmXHa6XsWbden5fvhFdXMEutvmnt+Ffv5tHV2v67bMJ6/MkCrWO/L0L6Fq3Ii+/4HxpWhn3I4uGzB1Jmzat+XT6e2xdv5ro88uxpJzztkluw5adzID+fR12iZ3+2VfYW96LoNLcdk+SJAzHNuBbyoyzzmDNTgalClVgOHZjDj6Xd/HVpzPkwL0yiiwaMnc0jRs3ZtPKxdjWzsCaXrZrfpcURfp5OrRyLLXHsWPHOJVmKrTetzX9Eqrg6FKfsThD7t6FBDS5XiTKfmgJ7731upwapAwji4bMHU9wcDCzvv+WvJUfIon24juUIyTRjvbafnp0L76KnyiK3D9xEpYKjQptYzy3B98anvNUsuVmYM24gk+VJtfnP7WZ3j0dq0go4x1k0ZD5T9CnT2+a16+J9dASb5viUkyXjjBqcD8CAoovSXv+/HnSpAB0NdsVPt7V4+hiC44Odwf6nX8R2Go4ANaMKzRt3orQ0FCPzS/jPLJoyPxneGDcfSSt/RFbrneSHroaSRLRXNhM7x7dim0riiIdu3TDXKPotpLNgkLn7yoTi8SSmoA9N/3mKoMD83jv9WkemVum5MiiIfOfYcTw4Tz1zLPkLX7jjhAO8dgqnhg1gPbt2hbb9tixY2iqNEdbsVahbWw56Sj9PfOWL4l2sjZ8T2j3idd/tlkxJByS80qVA2TRkPnPoFKp+Pij6axe8Af2FW9hubDX2yaVGJs+hQq5Z3j2ycccaj9v8TLEsCpFthFNuaj8PCMahsOr0cU1RhV0PW2I7cxmnp3yHEqlZ4MyZZxHFg2Z/xwtW7bkyJ7t5K7+lLzDqxCtZm+b5DTKQ/P5/MO3USiK/wqbzWZ+/WshilpF18JQh8VgzbzqKhMLxZ6vJ+/4xpup1q3pVzBs/YWpU55x+9wypUcWDZn/JBEREVy+eIGnu8QhLXsN68HFmC8f8bZZDmHPy6Z6mJZWrVo61H758uWYKjQpNu5BUKqRbO4V0BsVAIPaj0ZQqrAbc7Gs+Yh9e3bJ9b3LCbJoyPxnCQkJYepzkzl3ZC8/Pj2E2MtrMO/4Bclu9bZphWLLzUCx7RsmP/6ww32mf/EdyuqOFi0SkGyWkhlXDJIkkb31N9ShMfjEN8Zy+QhXPxvJqy88Q40aNdwyp4zrkUVD5j+PVquld+/e7Nqynge7NSDnl0kYT28rc+JhSbuItOZDlv3yFX16OZbfKi8vjyS9scA6FQWhrVQHY8KB0phZKLn7FiMoVQQ07Ydp03dEJ6zi4sWLPDbpEbfMJ+MeZNGQkfk/CoWCt16dxpF9u3m0eSDWZW9hSbvkbbOQbBakHT9RN2U9qxbMpkGDBg733bN3H2JIZYfbBzTtR+6B5SUxs0jyTmzGknqBwMBA0r57kOdH9WTf9o3ExZU8FbyMd5BFQ0bmX8TGxvLKSy+yY+U8qlxcgrj2I5dW53MG6dR6FKvf4fPnHmDdsgU0aOBc4N28RUsxRzpeY0PpF4I6LJb8s7udNbVQzElnyD20Er+8RO5pEkW+IYenn3jUoUN8mbKHfPIkI1MI8fHxbF+/ikOHDvPI089x1R6ALb4tmqhqCEr3fnVEixEOLaRtrC+zj+wpUfK+rKwslq7diLb/a071C+4wmtQFb6GJjL/pElsSJEki78RmDHvmEVchgj9//o4mchxGuUeWepn/FJIksXzVKjr3GUTtFh2p2bILNVt2oUaLTrTq0ou3P/gIu/3W/FSNGzdi58bVzHx1Ek3128hd8Ap2Q5bbbBTNeUjrZvD50/fw56zvS5zt9e33p2OLqud0OVyF1o+wXo+RsfJTbIbMEs1ty0knbeHbmA8sYvJDYzm8a4ssGHcIgiRJUnGNcnJyCAoKQq/XExgY6Am7ZO4QjEYjAD4+Pl6z4eTJk5w8eYoZX//AtYwcxOBYxPr9b8vkas/Xw8U9KC5sB5uJkUMGcvfwYVSrVu1mGx8fH5YvX84bH35KlsGEPaIGluj6aCKuB84Jam2p6lCI5nykDZ/w4/TX6dmjdIn7Rj34MJvVLQrNaFsc1oyrpK/4GP96XfBv2AuhgIJN/0Y056PfPQ/Thf1EBWhYOm82jRoVniBRpuzg6HNeFg0Zl5OXl8eaNWt5470POXP6FFq/QCLCw2nXugXvvfkakZGOefKUht279/DXoqWcPHWaQwnJCJUaI1Ru7PB2i2gyYE3Yiyb7EiqL4eZ1S9olYuPiUauVtGjaGJVkZ+OWrRgtNgRAn5OL6BuCEFEDo38FBKUGTaXaKIvI5ySJdsyJZxBSz5C3bwFz5/xJr1IKBkDTdl1IazahVGnOJZuF3MOryTu+CU1EHLq4hmgr1UUVFPn/+1ZshgwsSWcwJhzAlpWEX8Xq1A0wM/e3n4mOLplgyXgeWTRkPE5CQgIff/kti5avxhbXCiH+77dc0WrGkrCfjGUfUadJS9RaLZLdTo8uHbh/zEhq165d6vklSeLJKVPZumsPmSaw1OmLwicAVUhFlxX0uZFaXTQZsKRdRJF76wG5ZDWhuroPjSBhFyXsop2U5BSUWl8U/mEofQLQxdRFodYiWI34GlOwpV5gUL+etGzSiBHDh6HR3F4cyVlEUaRmi87Yejxf6rHg+u/WmnEF08VDWFIuYDdkIKjUSHYbqqAo1KGV0MU3RpmTSEPxPIvn/CYH65UzZNGQcSt2u53c3Fw2btrEVz/+ypmLV1AGRpNfpT3aSnUc2keXbBZMl47gc3U3gj6JevXq0qppQ3p27UyrVq2csic/P5/GLdqQH9sKVeO7Svqx3IYkSdj0KdgS9mE9vQl/nYbWTRtx36gR9OnTx+U5l1asWMH46XPQtBzh0nGLwnLtJBFnl7B/2wZZMMohsmjIuIysrCyuXbvGlz/M5PCxEyBBSloakl8YlqDKULUNyoCIUr3NSzYr9nw9lpTz6JIOEetj5eN3X6dZs2YOPVAHDL2bfUJNtNU9V0CoNNwQTM3lXXSsU4nfZ/7g0vGfnjyFP07Z8KnvmYJGttwM1Bs/Yu+W9YSHh3tkThnXIouGTKlIS0tjxudfs3jFakwKXySfIEwxzdFUrHO9gULp1hrO1uxk1KfXIGRdITYyhNdemEzXrgUn3Lty5Qqt+t6Dpt9Ut9njLiRJQrfmLU4f3OWyMe12O1XqNoa+r6DQ+rps3MKQbFYUa95j9bxfqFmzptvnk3EPjj7n5TWkzC3k5uby9JQXWbl5B1K9fqg6PoNCowNA60E71MHR0Oo+JOB85jV69e3PN998xYPjxt7WNiMjA210NYp9+ymDCIKAj1/xVfecITs7G3VYLHYPCAaAuGsWbz7/pCwY/xHkOA0ZAJKSkpj09BQatevGivQQVAPfQFO99U3B8Cbq0EpUfPx3pn3yMzM+/cLb5pR5np36KtYKDT0yl+XSIZpW9OW+0SM9Mp+M95FXGv9xjh8/zqRnX+RyugFTjW5o+ryMxslgME8gKNVoejzNjL9mkpGZxduvv+xtk1yCJEnYba5NjLj/6AkUHZ916ZgFIUkifieX8sf29W6fS6bsUPaeDjIeY/OWrfQcOoZzcQOQuj+LNq6x09HDnkRQqlC2f5CZy7eweMlSb5vjEsR8PZUqlDxVx785efIkly+cc9l4RSEeXsJ99wzDz8/PI/PJlA3K7hNCxq1cuHCBu+9/CEWv51GHVPS2OQ4jCAKK9uN56KkpJCYmAnDx0mUsateeC3gKe9p56tVy3VlAeno6IQ2KrtDnCszJ56ivy2ba8+5f0ciULeTtqf8oT7/wMkK78Sh9yt/DVqnzx9buQe6+9wG2rl/Fi9NeQWxyn7fNKhFq/VUG9bvXZeNNe/N9LJX7UPrwwMIRLUb8Ds3ml7VLHfKgu+GyfYMNW7azcOkKcvPyAchIvsbM77+mU6dObrNZxnXIovEf5djZBLS9RnnbjBKjrVSXS4cXkpubi1WhQVuxlrdNKjGucl3ef+AgJ85ewK9pvEvGKwzbkeW89/xTRERE3HJdFEUSExNZunwlC5avJi1Tj9lsxqzQgX8k/P9jWlR+CNWHo/QPAcCceJqRj0+lR/O6zPrpe7faLlN6ZNH4D3Lp0iXs2pLnIyorSMGVWLJ0KflGk1vfrMsLjz37PNo+U9w6hy03A7/Uo4wY/vfDffW6dSxevpr1m7Zi0YVgjKiLsmIf1HULzjv174eOtmItpMjJrNkxixdffZN37xAnhzsVWTT+g1y6dAkpIBL3heZ5BmtMM/5csARVOTqT+Td2lCSnpJR6nPT0dI4cOkhEqyddYFXB2POy0G77iuXz/kClUvHmu+/z8x9zsYfEYanSAU33FxCUakripC2oNGg6jOf3Re8yYvBAmjSWM+OWVeSDcDeSl5fH+ElPsGHDRm+bcgsffv4N1pjm3jaj1Ghj67Ft2zYESfS2KSWnSit+/O2vUg/z86+/E9DedWcjBaHYP4c5P35BzZo1efnNd/nqr9XYe01DaPsA2go1EJTFp04vCkEQsLd5gMlTX8WBRBUyXkJeabiJvLw8uvQdxOXQ5swbO5HoyEh6dG6HTvd3lK6fj5ZRI4bi7389bbZKpXJ72vCTJ09y8FQC6r7l9zzjBoKgQNtqJObDixGSz6GNru5tk5xGGRDO5X1JpRojKyuL6R99jGbwWy6y6nYsV4/RsWY0zZs3Z/eevcxcsBJNz+dcnkpGHRzNmf15nDt3jho1arh0bBnXIIuGm/h51q8k+NfFr1Z7dLXaY7RZmJeacEsb0WTgl7UvIvz/rcqWl0WIRkL9/9TYdWvVoGentsTHx9OuXTuX2DX+saeR2o13a94oR7DpUxGtJpQ+gSj9gks8jrZWB4wH5qM7vRbKoWgIgkAeOg4fPlziYkWHDh1CiG2M0i/ExdZdR5IktMeW8M2m5QBM/+xLbA0Ho3XT35CtSjuef+UNFsz+1S3jy5QOWTTcgN1u54vvfkTX8emb1wRVwR4+YtVmf7cBsv9xb03yOVbMOYwucx4a01RUooWXnnmMfn16ExYW5rRdBw4c5GqeosSV3JzlRg2G/FPbMCedBrsNFCoEpRKF1g+lfxi27CTs+XoUOn98a7TBt3Y7FGrHd8UFhRJ1w35kH1hGSHtrqbdIvEFexWbs3rOnxKIx/YtvUdTr5WKr/kY6uZYxQ/sTHBzMvn372H74DJq+w9w2n7ZqC46sWYvNZpNTrJdB5Cy3buDs2bP0uH8KtJ/g0nFFqwnx+BryD61g5IhhvPTCFCpWdPwQePiY+9mmauyRbRzRYiR96XQUOj98a3dAF9ugyDxW9rws8k5sJv/UNjTR1fFv3BtNRLxDc0mSRNr34/FtOgD/5oNc8wE8iE2fSt1ry1mzZJ7Tfc1mMzWatkPo/5pbVo+iOZ/A7Z9xdPcWBEGgR//BHPFtgs8/Xnbcge3EWp7oUpXnnn7CrfPI/I2jz3n5INxNKN2Q6E+h1qFqPBC/Ee8zLzmENr0G8+Tk58nLyyu2ryiKbNi4EU1UtWLblhabPpXUua8S2HIw4f2ewbdai2ITHyr9QghsMYioMR/iW7s9ObvmkfzHC+Sd2lbsoaggCAS0G4X1ZNlyOHAUVVAkpy4lkZaW5nTfVatWYanU1G3bjeZNX/P4hHEIgsC6jZs4nZzrdsEAUNbqwu9zF7p9HhnnkUWjHKL0Dbr+xe37MrP3XqNDt54YDIYi+6xbtx6f2h3dfpZh06eSvuITwvs/iy62vtP9BUFAF1uf8AGTiRgyDUvyOdKXfIBoNRXZT1e3K3mZKRi3/FhS072KOjgavV7vdL9X3ngbIdI9LwI2fSo1w315aMKDALz94ceILTzjQCEoVWRm6RHFcuwZd4cii0Y5RhAEfNuMJKViB9r36MfZs2cLbfvngiXYK7rX9120GElfNp3wvk+iCip9Ej6lzp+QzuPwb9ijWOEQBIEKLXojXj1SLt01Db7R7N23z+l+klKDNsZ5cXYE1YHZfPPJ+wDMmTuf87lKl/y7Ooo1uh6zfpUPw8sasmi4CUPKJY/Npa7ZgbQGo+k2eDSHDh0qsM2OvQfQVqrtNhskSSRj+ccEtR/t8geLT5WmBDS/q1jhUOn86NapPaaLB106vydQVqzL97P+cKrPwYOHyLS55+DfenE/3ZvVpl69ethsNl5+Zzq0HO2WuQpDUbU1m3Y4L6Qy7kUWDTcQFxeH2pjp0TnVoZWwtx1Pv/sm8cK0V255205ISMCo8HHr/HknNqMKrYRPnHtWMz5xjQhsPuj/wmEusI1kzqdTu9Zocq66xQZ3oomI52K2jeTkZIf7LF25GmuNbm6xR3VxJy8+ez26fPrHn2Go1NIprzZXoND6kpWd5dE5ZYpHFg03oNFoCA70x3ztpEfnVYdWQtX7BWau3Mknn31+UziOHDmCydd92wqSzULu/iUEt3Nv9TZdXEP86nREv+33Au8r9Vdo3aoVKnvR5x9lFXOVdjz38hsOtzfk5SMolS63Qzq5ll7Na1G1alX0ej1f/zIHdV33iFNRqAIjuZbouIjKeAZZNNzEIw9NxG7M8fi8gkKJtsujfLR0PyPHTUAURRQKBYqAcLfNmXt4Nf4NeiCo3J820LdOJ6wZV7BmXLnlumS3EeDng0JRfv+k1ZUbs2PfIXJzcx1qv2zNerQVXbvlKFpNXFvxFV9/+hEAw+99AGujoQgK14uTI3g7CFXmdv6zkTPXrl1j5H33c+zEaUIqVbntviTaiA4JoFe3Lrzy4hSn/3glScJu8OwW1Q0ElRpV8xFsP7GWUeMmMHLoQLfNJdks5B3fQPToD9w2xz8RBIHgDmPI3vYHEXc9f/O6+ehqWjVp8H+bXFs+1REsqRcwHF2PNf0ygur6OYPSPxSF1g9VUBSa6BpooqsX+3eUG9+ZN977kA/fLn7FoVRrXSrUkmjHuvYT5sydh1KpZMXKVZzM80VTt57L5pAp//ynRCMhIYGff5vNngOHOXM1FWO9QQQ0fRS7suBfw1WTgR+2beab2DiOHjpAeLjjb+udOrRH88WP0LiPq8x3GmXdHmw5uAjt4iWAv1vmyD+/F9+a7Twaia2JqgaCgPkf+abUaad49rNviIuLw3hhH7rm97j97VgS7RjP7Sb38GoUGl8CmvVH2/VBBEGBaM5DtJiw56Rhz8vCcGQN1nXf4le/K371u6FQawscU1e9JXMXv83DD4ylWrXCXWnPnTtHrs21n8+UcICqwWqGDhqI0WjkmZdeR2rzsEvnkCn/3NGikZuby8aNG0lMTuH7X+eQadeSX7kt6or9UNUKo+Cv7d8odP7QsB82QU3DZi05tHeXwwkF69atg1K0ItltCIWIkidQN+jLinkvoqzX0y3jmxIOEtj8LreMXRRBrYeh3zWPiIHPAaDR+RAeHo5Wq6VBgwacNueh9HFf9gJz4mmyNv6ELq4hYb0fR/Wv7T+F1u/6KiPgeroX35ptEM155J3YTMrsFwhuP6bAIDlBqcbS+gFatO3IlvWrqV+/YHfa/QcPYQ+pjKtkw56Xje/R+czfsBqAn2b9Sm6lVqjduK0pUz6540TDZDKxbv0Gpn/xHZfT9Jgi62FV++HTfCIKrR8l8SHSNuiJMSCSTr0HcnTPNofy4SiVSqa/+TIvfPIjdHioBLO6BkGlwValDaLVWqI6B8Vh06egCvV8PQtNZFXEfD2iOQ+F1u+We0GBgYgm94iGJNrJ3vor1oyrhA987qYoOIJC60dAk774N+hO+tLpSFYzvrXa3tZOE14ZYfAbNGvZiuVLltC9++2H0AtXrEGMb+Uy0RDPbeft116iYsWKiKLI+9NnoBr8votGLxmSJJXLmJs7nfJ7algAy5YtI65WAx7+fCHnqw9D7D4ZTcM++NXpeNuDxVl84huTX7ktEx97yuE/5HuGDyVKY8ZuKjpa292oQmNBcM8/tWS3eu2Q1LdORwzHNtx2vUmDOliunXD5fHaTgdR5b6AOqUTkkGlOCcY/EVQawgdMxnhhHzl7FxfYRh0cTeSEHxj70gw69ehT4OG4oHDNO5/l6jEsh5YwbMgQAD776lvsMU29ukIGsKZfpmp8nFdtkLmdO0I0tm3bRo26DXj4lY/QDHwNVeNBbkkTLdTuxpoLJt7+4COH+3Rs2xqbh11v/40gXA++cwcKjXvjP4rCt2ZbTAkHbrveoE4tdDbXCrUl9QJp814nuMMY/Bv2KPV4gkpDaO/HMSedwXT5aIFtlD6BqLtM4mxUZ5p36snMX3+/+cJy4OCh69unpcR05RhJv7/A7u1b0Gg0XL58mY+++BZVy3tKPXZpMR9dTa/Ot6/EZLxLuReNkydPct/DT5Lf9lFUPSeXqjaDIygb9uf72YvYvGWrQ+3H3zcKXcoRt9pUHJqoauh3/OkW4RAtRpeP6ShKnwAk0X7b9ZYtWyJd2Omyz2u+dpKsDT8RMWgq2gquKwwkCAKh3caTvX12ke00MfUxdp7Mi5//TnRMHFeuXEFS+6LQ+hbZrzhEcz6q/X+ya9cuqlatytWrV+k+cBhix0leWz3+E3/DZUaPKv/Fwu40yrVo5Obm0nfI3ZjbPYI6PNYjcwoqNWLnx5n80msOta9ZsyYq/VUku829hhWBKiAcn6rNyd7i+jw+no4Svo0C9r0rVKhAbEwMuGA/XLSaydrwI+EDp6D0d/3qVekXgiowAnPyuSLbKTQ6tF0fRd1rCn0H3429lF9d0ZyPsOETZv/wBa1atWL12nW06XkXhmbjUIdWKtXYrkA05xEdFYWPj/dWsjIFU25FIz8/ny59BmFpcR/qkAoenVup8yc52+BQEJYgCNw9eABGL+dDCu3+EKbLRzAnnXHpuILGB3ue91I9CIW4rgYFBiDmlz64Mu/Yevzqd0XpG1TqsQojsMUgcvcVfLbxb1SRVblm0WIIr1OqOfO3/8Y7zz9Kh/btWLJsORNeeBuh91Q0EWXjDMF+ejNPTBznbTNkCqDcisbr73zAtajWqCuW7stTUmyVW/HL70VvK9ygYnQkeDnFs0LjQ1jPSWSu+xbRXHz9DUdR+od6LYgRrh/EA9gNWbe8lfbo3AHx6uHSjS2JGI6tx69u51KNUxyayCpINkuxq40bmMwWhKCSe6zZcjPQpp+kX9++JCcn8+hzryJ0ebLYmieeRCVZiYuN8bYZMgVQLkXj9OnTzFm5GU31Nt4zIiyeLTt2e2/+EqCJqkZg87tI/m0KojnfJWPqYup5dxUlimC34asUbxGNEUMHoUk7Vaqh809uxadK01KfHThCUJsRGA6vcqitPScNn/jGJZ4rfdZjfP3ZDPz8/OjWfwj2Ng/cjGIvK0g2M0o35NWSKT3lTjQkSWLsw09ga3mfV/PSaCvWYtfhUyQlJTnYo2z4m/vV6UhQ23tIW/iWS1YcuqpNMZ7Z5TV/ekGlwXT1OD26dr7lekxMDOSULtmd4cgaApr2L9UYjqIOj8OmL75yn2gyYNOX/HPZz+9i6IiRDOzfn8eeeY6s2A5lZkvqn6gyL9KkSRNvmyFTAOVONGb/NZdEdSVUQY5FZrsTsWJ99uwtPt9/3dq10OVe84BFjuFXpyO+dTqRtWlmqQ/oFWod2th6GM95ftUl2a1INgu6lGOMHDbolnuCIBASVPJzCJs+BYUuwK1nGf/E0ZgISRLxialbojlEi4mUJR8y89sv2Lt3Lyt3HEJTq2OJxnInkiShFuzodGVnu0zmb8qVaNjtdt788FNo4Jm3v+KQqrTmvY+/KLZd27ZtUWVddL9BThDQqBeqoEhS576KNbt0b+SBLYeQs3uBx1cb1sxrqEIqIOQkUatWrdvuq5UClpQLJRrbeH4vPjValdZEp3AkzblkNVPS9bVweAEzPv2chIQEho+diNhqbAlHci+WxNM0re+ds0qZ4ilXovH7n3MwRDYsNNmbp1EFRpJhKLgg0D8pq+m6g1oPJ7jz/WSt/570ZTOw5aSWaBylbxA+1ZpjOLzaxRYWjfHcHnTxTfBV2AgJud0dduozj6G+tKtEY5uTzqKt5NkHl2S3IdksRbbJ3bcYXZ1Ozo8tSWizLvLYwxMYOvJejLX7ogqMKKmp7iXrEkP79/K2FTKFUDafZgVgtVr54OMvoHoHb5tyCxaFhtOnT3vbjBKjja5OxJBp+FRrTtrCd7FmlmwbLbDFIPKObSix8DiLJEnkn9uNOiKealXiC2zTpk0bSD9fYABgcYimXNTB0aW00jkUPgHFbheazu5A6R/q9Ni2nb8wtF9PRj/wEIaw2vjULLuR1gLIW1NlmHIjGi+/+Q7ZlTt6bI/ZUcwVmzHrjzneNqNUCIKAX52OhHR9kJQ/ni9RJLWg0hDa61EyVn5eaDlWV2I8txtdTD3s2Um0bl7wgWlkZCTN6lTFdOWY0+O7yrvMqTnz9EV6MZmunkCt0aF18kxDsttQpp5m5+49bE0WkJqOKK2p7sVmkT2nyjDlRjRWr9+EsnrZezvS1GzH7MWrsFiK3lYoD+hi66Or2hLDgWUl6q+JiMO/cW8y137j1kJIojkP/a65BLW9G5+UY3TvVPjq84lJD6NLcCzli7cRVOoi65JIx1YQGV0BwYnkk5LdhmnNDKzGPM74N0DRcIArTHUrQsJOWrdu7W0zZAqhXIjGmvXryVQEl4l8OP9GEAQIrMDZs2e9bYpLCOv5CDk7/yrx4bhfrXb4xDcmbdE7bstLlbXhR4LbjkSh9UPITaFlyxaFtu3cqSPhShN2o2MlVG9Q2qzIziKJdiRb4Ss0SRLxt2VjsTgnxjk7/8Rq0KPsNw1NzbK1tVsQtpxUGtatXeAZlUzZoFyIxt79hzBVau5tMwrFUrcv90189I7I/S+o1ITWaYtl648lHsOvbicCWw0lde6rWNIuudA6MF7YjyRJ+FS7/vegwVZsvM6D943CtmOWcxMpFE4LTWmwGzJQ+heeaj3/1Dbat22DKTez2HMjSZKw5+vJ2jwTc8pFAoa+UXYPvf+FaDIQHRXlbTNkiqBciEZZRx0cTQohLF22vPBG5UhQtKFR+NpySnSAfANdbH3CB0wma/33GI6sdYmgWlLOo981l9Bu46//nHaRlv+vC14U9983BuNl5zINayvWwVyCs5CSYr52Gs3/S9cWhOr0Wl57cQorF/6FsPHTAs+dzElnMBxaSfKPk0hfPgNVcAUiBr9YJlfohaE5vYYnHnrA22bIFMEdV7nPWyhajuKxKS/RrWsX/Pxu3dpQKpX4Kmzo87LcUufD1di0QWgkCdPprejqdC7xOKrASCLvfoPszb+Qvvh9Qns8XKLU9dbsZPTb/0S05BE+YMrfW0epZ2k/sPgVqI+PD7HxVdFbTQ5n5dVVrk/e8Y341vRMqhrDkTWE9XmycHu0WqpUqUKVKlV4ecrTvPHxOxiVflhsdgTAknIOtUqNukJNIkd/gNInwCN2uxJJklDnZ9KkSWNvmyJTBOVCNLbt3IMqyrka1/Z8PcZzezBdPQHi326MCp9AVMHR6GLqog6Pc1l1MoXWF1PlVrz7/ge89cbrt9wTBIE/fviSux56EanTJJfM504UsU2oZDjOtZSjUArRABAEBSGdx2FOPE3awrfRRFXFv1FvNJFViu1rzUpCv3MO9rwsgtuORFup9i33NVf2MfLuNxyyY+Sg/nyycxe+DiYf1ETXIGvjTw61LS2my0dQBUejCiy4Hrf13A66tfzbQ6xj21Zce3AcUZ1Go6vTFUEQUPgElZn4pZIi5uupEuNZN2cZ5ynzoiFJEglXElHXcuyPyW7MJXvTz9j0KfjW7kBQmxEoff+uFW3NSsKWnYzh6DrMiafQxdQnoNkAl6QlUdftxqx5H/DKtJfQaDS33GvYsCExAQIXkk6jrnB79HJZQukfwqlkA8Zrp4joaHfJ9oa2Yi2iRn+A+epxcvYswKZPRRtTF01kFVSBkSh8g67nVcpJRczLJv/cHgRBIKjt3QUG2dn0qcRHBBEY6Fgd8FEj7+bjHweCg6IhCAKCSltgDXJXo98xh7C+Txd4z2bIRDq4gM8PXA9SvHjxIv2Gj6Hi+K9Rh3mmhozHkCR0cv2MMk+ZF41Tp05h9nPsYCzv1DZy9y4iqOO9+MQ1KrCNNro62ujq+NVujyRJmC4eImPlp+jimxDYamipkiAqdf5IUTWZM28B9466vVzmd59+SI97n4AyLhqCoEDdeCAqQ/L/hbWei8YVrrv1xtZHtJqxJJ/FlpVI/rldSLbrtcbVYbEofAKuFz0qopypcGot014ofDvn38THxxOglrCZ8x3OWutbszV5xzcR0LSfw/M4S/6ZnajD4wpcZUiSiHHF+7z/0nMEBQWRlJREk5Zt8R30WpkolORyLu+jfeeW3rZCphjK/EF4RkYGdm3xb5OG4xsxXthP1Mh3CxWMfyMIAj5VmhB595tIdis5u+eV1lxofg9PPTulwAJNlStXJu/S0VIdMHsKXeUG5OYa4OJet4yvUGvRxdbHv2FPQjqNI7TbBEK6PIB/wx741elYpGDYctLJPriK7t26OjVnvz69MZ/Z7nB7vzqdMBzb4Lb66jZDJjl7FhDc8d4C71vP7WT04H6Mf/B+tm/fTt1GzfAZMO3OFAxAlXSUR8aP87YZMsVQ5kVj7pIVWKOKjoC1ZiWRd2wDYX0eL1FdAEFQENT2HqwZ1zAc31hSU6+PpVShimnAxo2bbrvn5+fHe++9g2nLj+XCPTfk7vfIOrbZq6Vq/40kSVi3fMuvs2aiUjm3UB5z9zCUSUcdbq/Q+uJTrTn5J7c4a2axiFYTmSs/I6T7Qyg0BW/JaM9t4P23XuPN9z5k4JgJ+A55s0ymMXcFkmhHZc1zeLtRxnuUedFISk5BUYzHkX77HwR3GONUpOy/EQSBsD6PYzy/F+PFQyUeB0DZsD/zlt2evO/ZF6ax/9BRpITdWC+XrqqcJ1AHR6EOjMCUsN/bptzEdOkw8UFqBt010Om+rVq1okFsiMMV8gACmw8kZ/9Sl1Y7lCSJzNVf4t+0H9pC3GwtR1bQoHock558lq+WbMd/xAcez4XlScxndzL27sHeNkPGAcq0aFitVvYfOVHkIbU56QyS1Yy2YunPCQSFkrCek8je+mupopkL88ia/cdvzN99Ad8GPRB8yscblW9EDIIh3dtmANfTh4jbf+KvP34p8Rjvvz4N25bvHF7pKbR+hHQaR8aKT122Osze+ivairXwrVZwJLtksyJc2IGgVLIuSYm24wS3FRyTJBFz0hly9i0hZ89CcvYsJPfQKoyXDmO6fNRjObg0+st061z2anvI3E6ZFo3lK1Zijm5Y6ArCbjKQte47Qns84rI5FTp/gloNRb/zL5eNeYPjhw8SbU1ESr+AuozV1ygMlU8AKv0Vb5uBJElY1n/OzO+/JC6u5Fs0jRs35qGxo7Bv/NzhaHVd5QZoKtQkZ9fcEs8L1z9Dzv6lSOa8IisCmnf9Tp/OrTl4NRdlvd6lmrPQOZLOkL78E1J+f5684xtRBYajia6GJroaglqLNfUipstHSFvyPsl/vEDOngXYDVlusQVAl3mOVq08W79EpmSUae+pT775EaHWyELvZyyfQUi3CSj9XRsw51O9Ffrd8106JkBISAjHD+5FkiQ69ejDpRXbsdTpi7ZKM5fP5SoUSEilKC/qKmxntjCgfWP69XbuIVrQ6uDNV6bSs0sHJkx6gnyriCm2Jbp63VHo/At9ow9sNRT91t/IWP0FIV3HOxwkeANz4mmyNv2MLq4RId0fKrSdLScNMWE32/IqIHV6xqk5ikOSJIxndpKzfwnq0EoENh+AJqpasf1Eiwnjud2kLXkfbcVaBLUb6fTnLwpbbga1q8SX2bozMrdSpkUjJ9eAQlewj7zhyBo0EVVcsi31bwSFEk1EleuFeCrUKNEYFxISePu9D3lo/P3odDr8/f/2BhIEgS3rVpGcnEy9hk0QfJ5DE13TVea7DLvJgDlhH/4Rlbxa4Vw056E+tYbPZxdfUCkrK4s/587nx9/mYLbZ0efkoiwszkIbjEorYUvYS9qJ/x92q30I7ToeTVTVW5oKgkBwx3vJP7ublNkvEdCkL351OhbpeCFJEqbLR8jduwiFzp/w/s+gCiw6Hihv8w+0aNyEw/lB+BThQeYsks1C2tIPUYdVJmLwS05FjCs0OvzqdsK3TkfyT20jde5rhPV9ymVnLMrjy3l0StmsIihzO2VWNPR6PdlmqcCtKUvaRfJObCFy+Gtum9+nektMlw+XTDREkUMnz3PW6MsPi9ZjN2QSqBb57KMP6Nr1bzfR6Oho5v81m/ueeBGxx5QyF9Fry7hCvbq1OW+PxKvZi/bO5ouP3r2tMI8oimzcuIlFK9dy4NARMnLysCi0mKPqo2r5KIJKjQKKFbyg//8H1/+2kmY+RfTYj9EWELXuW6MVuriG5B5cTsqfL6HwC0JbsTbqkAootP6IZgOS3Y458RTmayfRVqpDSLcJqEMqFv85z2yisq/I8WQDuu7jHfnNOIRozid9xccENOqNT9WSr2qv113pgLZiTdKXzSC4wxh0lYvP/VUcKv0VBvTrW+pxZDyDIDlwupeTk0NQUBB6vd5jLnE//jyLaQuPoK17qy++JImkzJ5KeP9n3Zq5027IInP9d0Tc9bzTfbM3zUQVEYd/vS7A/91Ek8+gvLANnSkDS76BSfePYeyYkURHRzPpyWdZeDofbeOyUfv8Bvl75mI7vQW/oW95rfiVJeUCtVM3sGH5wluuZ2VlMfr+iRxKtSBV74QqONplNpquHCN77deE3/02qiJyZUmShJifjTnpLGJ+NtasJFQB4QgqDarQGLSVajnk0SdJIsZze5F2zcJkNhM8crrLcpTZ87JIW/IBQW3vcTh+yRFEi4nUua8SPmByqb6HdpOB2CM/s2PDKpfZJlMyHH3Ol9mVxs+z56GuO+a266YLB9BWqu32VM9K/5Ai6xsUhSUtAb/Gf++9C4KApkItqFALK4Bo57NtW/lmzhgaV4lk1g/fsLV7XzKzmjr2RuohrAn70Nbr7jXBkCQJcfsPfLbg91uu/zjrN975+CvyGwxBW9v1dbx1sfUJbdgVw/xp+HR8AG180wLbCYKA0i8E3+olj2KWRDvGFe9TPUzLBb8QQu552WXnBZLdSsbKzwjpfD/aCq7d/lRodIT2eJjMtd8QOfTlkg90aT8d25e94moyhVNmT55y840oCtjTNSeexqeQL7GrKYm7oSTakSSxyP1eQaFEXbszUrenOZDrR+PWHbl3+CBMaz4tjbkuJy8jCU297l6b33pgIcP796R+/foAXLlyhVH3T+SN7+di6/lCgTmpXIWm+VAC2txNzvpvsKz/DHu+3uVzSKIdaet3TLq7L8eOHUPV4xmXHjBnb/sd31rtXS4YN9BEVkHpF4wx4WCJx1BfO8ArL0x2oVUy7qbMikZhmC4dduvD4p8IJfDmyFz7LdpKjtdwFhoNwtbrJb6ct5ac5IQyFSmuCgjzeAW7G9hy0gnOPM7HH7wLwLbtO+jQ/2422msitJ/okRoRyhodCB7wArbMa1iXvk7e/iVYUi64pAb6DcF4afwwVq5ZT0DnCagCCi/C5Cymq8exZafg36Cby8YsiOBOY9Fvn12iv1tJElHbjfj6OpYLTKZsUGa3pwr6I7TpU1AGRpQoVUiJKKJec0FIdht5JzcTM8m5KnEKrS90eYJKXZ5wqp/bsXmn7rkkSbDlK+bO+QmlUskjT05m5bb9iF2fRutgskFXoY6simrYu7D1W4KyjxHGJQ6tOIpPRCySoMTmW/yDXqHWofLxv14D/P9nHLYrh3n9qYkE+PtxTRmJuobrtmhEq4nsTTOJGPySy8YsDKVPIJoKNTBfPoourqFTfU0JB7h3YB83WSbjLsqkaOj1egyW20Uj/9wefKp4bmvK2bQkttx0dHGNUGhct8XgLSwpCS5983Vq7suH6d2+BfXq1WPY6HHsyQ1C0WOy15bFgqCAjo+QcekgWfqr+DeNAwkkJATRgWSGuSkImenkJhzh15k/4e/vT+XKz1K9enWGjbkfqXYPl9qbveVXAprfVaKCVyXB7/+uuM6Khl/6SUYNf8VNVsm4izIpGhcvXkQKjrntujnxFCGdxnnEBkvqBTSRVYtv+A9MF/bjV+fOSIWQd3IzvrGuSYnuDJIkojqykOlbVvPIE0+z60Imqk7DPW5HQajjmgBNim1XGLqDy/jws2/Yum7FzWuZWXqUka5zNLCkXcKmTyG02wSXjVkc6rAYrFnXnO4nZl2lUqU7M2PvnUyZPNMobH/Unpvhdq+pG5ivnkAb4/jZBIDp1JYi6zyXJywJ+xDiPB+pbkk8TY3YaO4d/zCLdp1C2dFzDz9349OkP5cTk26mzRdFkYSECwhOboMWRc7eRQS1udtl4zlCSc69RIuJmPBggoK845knU3LKpGhs2roDU8CtbyDXK6h5bj/bknzOKQGwZicjmPTlsjZzQYgmg0uqGTqLfc9szp45w3EhHm3Xx0qVubgsYoltxYYNGwA4ceIEUmQtl5UcFs352DKvlTiLQWmw52U71d56+RAd28q5psojZfIb+dvchajjm99yzZ6f47FVBoDdmONcfIJop2aN6kiHl7rPKA9hu3QQv6AQlB7OxJu9Yw7pl05ha/8wQs3OHp3bU0jhVdix7xAAf85fhDXEdfUx8s/txrdOB5eN5wwFuccXhW/CFl6c/JR7jJFxK2VONFJTU8m0KG47TLZmXEYV4pn9T7sxB4WTKwbF1YM88uBYIs1XsSSddpNlnkGZlUBYiGe3DQzHN2JLv0TMo7+6JZ9YWUFQqhFFifz8fN5/521UNV13Bma8sA/f6t55e3fGBdqanUxcdCgBAXfGqvy/RpkTjV27dmEMuz0YyZ6T7rLUCsVhTbuIOqyyU33UVgNtWjZn48rFqHbPQrSa3GSd+5EMGZg9WJFWslnI2bOQsL5Plbn8W67GknSa4EB/xjz4EJHtR7i0ToY9J907W4p5WQhOBCVqTq7g8w/ecqNFMu6kzHlPiaKIJNxult2Yg8ZDb6D5Z3biW7NkfvOBgYH8+OXH9OnTh6gHviqX1dZ8TRlIvv6UPoTNMTLWfEVwx3sRVBrgeuCb+dpJbPqUW9oJSg3qsEqogqI9er7lSrQJ29Gpa7PnsgF1B9clJbSmX0EZEO6y8ZyaOysZVXCUQ20lSUSTk0Tdus45mciUHcqcaHgbc+JpbFlJaGPrl3iMHt268sknn/Du4l3QZJDrjPMA9rwswkODSc3K8ch8eSc2Idms+FZrgSTayT2wnLzjG68XPoquAf94Exfz9eSdvIA58RQKjS++tdrhW7NNoTW2yxp2Yy7+fr588P0faPs4nwizKPJObcG/ftfiG7oBa8Zlh1fmpktHuKdfT7dVIpRxP2VONPS5uUiFpO+Q3LzlY81OJmvzLCIHTy31H/VDE8Yz46eeOBD6VaYwXjxEu1bNOXL0GPsOLsOvifsy71pSL5C57lsqjP8G4/l96Hf+hW+ttkTfO73YPXJbbjr5p3eQ8udL+NZoTUDT/mV+9SGdWk9mth7fIW+6XOhs2ckENHO+brorsCSeJrCFY/W9fRL3c++0N9xskYw7KXNnGj//MQ9NldtrJ2vC47Akn3fbvJIkkbnma0K7T3TaE+RG/38iCAIoyt/blF/qMfr16MqvP3xN1byT2Lf/hN2Y6/J5JLuNzLXfEtrrUdLnv4np0mEiBr9IYItBDh2qqgLCCWw+kOgxH6IMCCPlr5fJP73D5Xa6Cps+hYzdC1G0uMdt+by88fYuSRLW9Muowm4Pxv03tpx0KmlMNxNQypRPypxoZGRmFlitT1u5PsaE/W6bN//kZjRRVdFExJdsgNSzxMT8/cU5f/485jyDa4zzIGJeFg0bNiA8PJzd2zbx3dQJsOodjKe3uXSerI0/oY6IJ//kNiKHv0ZI1wdL5OggKJT41+9G1N1vY7p8hPQVnyKJHjzFdxBp/1/oNBp84kseUV4kgrJEWZlLi/nqcdRR1RwSLPuFnYwZMcQDVsm4kzIlGjk5ORhETYEBXUqfQBQaXyypCS6f15qVRO6hVQS1vadE/UVzPoLdQnBw8M1rTzz3EtY65S8ZW2RIwC2fo0+f3uzfuo7OAanYNn6JaM4r1fiSJKFf/SmWq8cRjbmED5hcopXdv7lR38GnajMyln9cpoTDsGc+0cp8NK3udluyTU1UFczJZ90ydmFIkoR+xxwCWzq2NaW6tJsJD4xzr1EybqdMiYYoikW6XAZ3Gkvmum9d+kCwZieTsepzwvs/W2J3T9PaTxk19K6bP2/ZsoWTVzNKVZzHWygKOE+KjIxkzi8/8uK4gej/nFLi7SpT4ilyfn8Sw+mdSEoVYX0ed1k09A38arfHp1oLMtd+49JxS4poNZG/Zx5pWdloa7R32zzq8Dhs2cluG78gDIdWXi9164CHoGSzEhochEpV5o5RZZykTIlGcahDKuBXtzOZa792Sd0J06UjZCz/mPB+T5c42tyScp4Kfgpef/VlDAYD/Ybew5hn3kBseV+p7fM0kt1W5O/10Uce5vsvP0Wz/kNMm77DbshyeGzL4eUYV3+MqkpLNFWaEdJpnNu8nvzqdkLpF4x+93y3jO8M1vWfM+mxx1BG13Rr9mN1aAyWlAtuG//f2I055B3bQFD7kY61P7iAB+8t2UpepmxRpkQjKSkJSVP0VkVA494o/ULI2vBDiVcc9nw9GSs/I/fwaiKHv14qwYg4OY9NqxYz5J4x1GnensO6hii6P+2VIKvSkn92FyMG9i6yzYghgzi+bzsfPjaCCkdnoVzzLrb987FmJRUoONacNHIXvIrp0HL8m92FMq4JgqBAV7mBuz4GAMHtR2O+ehxL2kW3zlMU1vO76NeuEcHBweSFuzcuQRkQhj0n1a1z/JOsdd8R3GmsYzXQRTuKlFM89OD9HrBMxt2UqbXiZ9/8QH5Mc4p7HwtuP5rcw6tJmTON0K7j0URVc2h8SZLIP7WN3H2LCeowBp/4xiW21Zp6Aduaj3jyrTfo0KM/hsgGKO56s3wn2DPqqRJXfL0SnU7HvWNG061rF6a+/g7bdu5Gf3Y7WdkZhNZqicY/ELvVgv7yGSx52QQ06I6qWmvUYbFkzX+D0O4PeeDDQHDH+9Bv/5OIQS94ZL5/Iol2cjZ8xwdnT9KkXRd0fdxbN0IQBBQ+AYgWk9vruRiOrkfpH+qw8FuSz9GnfUu02js72v+/QpkRjaysLFZv3YO2h2NBTwGNeqGLa0T2ll+QbBb8G/ZAF9f4lnMJSZIQTQas6ZcwJ57GeG432kp1iLznrVLVYpZEO6m/TSauZl1e/X0DtJmE0i+Y8udgeysBaUfp2/dDh9qKosiQUeO4WKEL2j6voM3LhivHkC7uwGbSI0oSutYjCaxQ82b8hGgyINmsqIIcix4uLZqIeBAEzImnPZ7Pypp+mV69enHy5EmE8GoIHijMpYmsiiX5rFtXceaks+Sf2krEEMerAqquHWLAE8PcZpOMZykzonH8+HHs4Y657t1AHRxNxMDnsGZeI+/EZnL3L7vFO0WyWlDo/FCHx6GOiCNy2Ksu8ZG3nFiPLqwSpg5PlMttqIIQzfloRTN+fo79fl57+z2u+VW/Wa1N5R+Kqk5H+H8RKgW3/3GZrp5AF9fIhVYXT0jXB8lY/jFR97ztsTklScK0bwF1hnZh0jMvYG08Fk8UKNbFNyb/zE63iYYl7RLZm38mfMBzDtcAsefrCTEkcNcA9wWJyniWMiMab8/4HFt8txJ9udShlQhuP8rlNhWEJIlk7l5ExD1vo/JQAkVPIFryqVfPsUp9Bw4c4OclG1F0fdKpOYzn9uDfuOgzE1ejCghH6ReCJe1iyWNwnMS48RuipQwa1KnNT1vOoQ6p4JF5tTF1yd78C3ZDFkp/1/5tWtIukbX+O8IHPOdUGVnhwFyefWJSgV55MuWTMvMvefZSIurQsl/60ZaVhDq6xh0lGHDdc8oRNm7awpD7H4XWY52OQLZmXkXrhcqG/o16kXdsg9vnsWZcQf/bEzSL1vLFp58w9e3pKOp7LlZHEBQEd7qP7K2/unTcvwVjilOCYUu/SJQil7GjHfOwkikflAnRkCQJoZy8idhy0lD6h3rbDJcjXNzFqCFFbyGcOnWKsY9NQez2bImit72VG0obUxfz1RNuG1+0mjFu/gHVxk9YOe93OnfuxOhHp2BsPd7jlRx1sfWRJJH8s7tcMl5JBUOSJKRdv/Lnz9+6xA6ZskOZ2J5asWIlRr9KZcOYYjAeXYM2tKLLx7XlpKE4vxXf9FP4+FyPX8jPyyUpLZOQez50WyTxDVSIxMYUnj8oMzOT4fdNwN5uAupyklX2BoJCiTIoCps+1eVnUNaMKwjbf+DZ8WMYPOADuvTojapqKzQDX/NaJtfQHg+TsWwGtuwUApoPKLFH33XB+NbpLSkAy755dG5ah2rVHPNslCk/lInn9Offz4R6/bxtRrFYUi7gq0/AlnEea73upaqVIdksWE9uwHJ+D8E+SmrHxTDxkVEMvuuHmw8bSZIYM/Z+Nmz4HE33J52qjuZqhoy8j/S6w9B6aH/e1fhUaYLx/F4Cmrrm70wS7XBkKWFZp1m8fC5Wq5VWHbqg7fEUqkp1vOpJp1DrCB/0Ivodf5L616sEdxrr1LagaM4nd/9SjJcOEzHQecGwZlzFL3E/Py/f66TlMuUBr+8JiaJIwuUrKP3DvG1KsdjTLjD1xRfZv3s7aTMfK1GCONFkIPfQKkwLpjK8to45X77D2QPbWbXoL4YMGnTL26kgCPz+y0wGd2iM9cJuV34Ux+0VRR5+7EnOGjReOY9wFdoKtVwW6CdazSR+PophjSI5vGszGo2Glm3ao+v/EtpKdVwyR2kRBIHgdiMJ6/04OTv/Im3ph5iunkSSCk7WL4l2zElnyFj1BanzXkMZFEnU3W86LRiSJCHsmsnyRfPQ6dzvZizjeby+0jh+/Dhm/wrloiiL9upexo55jaCgIObNX8DTU18jr05/lAGRqEIr3fwMlvTL5J/cgiXlPAjC9UNmUQRTDvEVQnlk5D3cNWMBdes69oB54+UXWdqhB1LVVh5dbRiNRsY/8hhrj1zBp/tjpR5PsnqqFuDtqMJisOeml3oc0ZxP9p/P8cJzk3nz9dcAOHLkCJq63dCEO1ci2BOogiKJGDwVc/I58o6tJ3vLLASVBoVPACr/MCTRjjXjKpIlH3VkFfwb9ihVTIv1+BoGdmlDrVp3bp33/zpeF425i5ZirNCEsr5LLprzCfNREBQUBMDAfn1o26oFH332FZeuHGDf2l+w2qykJiUiqnwI7jmJwJZDbjn8NV06Qtr2n9m+ey9jRo5weO7w8HC6dmjDmqSzaCvVdvlnK4hZv//JG+9/hLFGL3y63+UasRIUSKLdq9tspcF06QjGtZ8w/88/6NG9283rKpUKhdXzacmdQRtd/ZaVoi03HcliBEAVFO2SMzNbThqaM+v5cLZrDuFlyiZe355asGRFmVnSF4WwayZvvTL1lmvh4eG8OPkp3pz2HLWrx2Mw5BPSbTxRYz9B+49I6Bvo4hriP+pj9ilqUblyZXbv3o0oOlbb79Hx41CdXOmyz1MYkiRx9+j7eOHdT7H1fhlNjTYue8hroqpivnbSJWM5iy3jKsoS5hgTzXnYtn5Pa/E4504eu0UwALp27UpNfxPSjp8ddl32NqqAcNRhsajDYl0iGKI5n+y/pvLNZzMICPCsx5iMZ/GqaJw5c4bLly+W+RrPojkPH1MG/fr8HZgmiiLf/zyTyAoV6fHAFPbqmuA34n1U8bdXHfw3umotqTjxOwY9MpUWbTvy5dffMnv2bJKTC09t3bJlS8IFA/k7Z7vkM/0byW5DEAQWLFrM1vNZaPq84PIVgS6uMcYL+1w6pqNY0i+hDot1up8t6ST25W/y8TNjWTTnNyIibhcepVLJlnWr+eCJUWjWvYe08XNses8lDywLCHt+5bMZH9C7dy9vmyLjZry6PfXDL38Q0LHsZ760XTtBv949bv6cmJjIgBFjSA2oQdSk3xCVapxNxaYOqYjU4ymSM6/x+prLiFYj/tO/xV8lUiWuMi889Sht27S+5axn59ZNNGrVnrycdFSB4a75cDfsyTxPbGwsdz/wCOre01xe5wJAF98I/Y7Z2HLTUQW41v7isKZfRhvrWMQ7XD8Yzl/9Cb55iWzdsIbKlYs/r7h72BDuHjaE5StXMe7BiYidH0FTuWFpzC4XmK6epF6wggfuG+NtU2Q8gFdXGnv3H0CIKNseOaLFSMbyGUwcd/0LceTIEdr1GkhynbtRNhrocA6eghAEBeqwWHxrtcW/fjfoMYXczlM4ENKJ0c9/QM2m7Xj82ee5dOkScD277JxZP6DY8QNWFxbcEa1mLAY9Ex57GmPjkQgqjcvG/ifXI5bvJ2vTz24ZvyjMiafRRFZ1qK3pyjEuf3gXd7WtS8KZEw4Jxj/p16c3h/ftonbWTkxL30S0mkpicrnAmnyGiDOL+HPm9942RcZDeE00zp8/z5HjJ13+xuxqjOf2cPeI4dSqVYsNmzbTZ+SDWDs8ijqs8EC40iAICtQhFaHdeCw9pzI3MZCO/e+mY++BzPp9No0bN+anj14n+YeHXfYwsqScJyI4gAOXMtHFuPd8SRdTBwEBc5LnSpPactIRBKHY6GxJkpAOzCPk2Fw2b97MD19/UeKcSRUrVmTDyiVMf/lZ0r97gLwja+448bBmXoMt37JxxaICt+1k7ky8JhoTH30cRYO+3preISTRjvbMWqa//y6SJDHtjXegw8OoAj2T2VYQBHRxjRH6vczF2qN5+dv59Bw4lPr16rJq9WpY/4lrSt9mJHDh0lWEJkNLP5YDBLYeTs7eRR6ZC0C/6y8CWw4ptp2wbzb3ta/BiUN76dixo8PjHzt+go8//5KPP/+S/QcO3nJvzD3DSUm8SjvfJK7MGIa4f94dIR7WlHOodv7ImqXzCQ8v2y9+Mq7FK6IhiiJXElPwrd+j+MZeJO/AUh4aO5LIyEh+/Hkml8WwUkWBlwaFzh9F2/s5EdKOtgNG8dFnXzKwSxvE46tLPXbe0XXoujzkttXTv9FExCFZ8rGkXXL7XLacdGyZiTdTuBeG6cBietaJ4M1XpjoVM5SXl8fwex/k3U3JvLcljSEPPEG/oSPZvn37zUqGAQEBLJr3Fzk5Obxxb1fEDZ+7tM69p7Gf30nY8bnsXL3Q4czIMncOXhGNBYsWkx/VqEwH9EmSCKfX89CD48jNzeXtT75B0cwzb+JFoapQC7HbsxxQ1mbevLlUyj2O+eDSUo1pNxvRxLq3/Oq/Cek6nqyNP7qk1nthSKKdzLVfE9yp6Hrt5munSN/4M1/M+MDpOZ6f9hrZVbvhW6M1PtVaQK/nOBTaieFPv8WAIcNvaRsQEMC4++5l/NBe6P960em5vI1oMiBt+YZuodns376RihVdn4NNpuzjFdHYvH0X9mj31kwuLeLRFUx58nEiIyN59sVXMNUdUKpqf67Gt2Zb1EPeIcG3Hqlb/yT3cMlWHMZLR9AER3k84E4dWglNRDzG8+7LT5Szez7amLpoK9QstI01/QohJ+eTnJSERuO4A8C1a9e4Z9wElh68gqZa65vXbzg3qDs/woFEI30GDiYzM/OWvq9NexE/zJguH3H+Q3kJ48VDpP34EJ88P4GZ336BWu2JslIyZRGvuNyu37oDTZfnvDG1Q9hNBrTXDvDkYx9z6dIl1m7bjabX1OI7OoAkSVhTEzBdPY752knE/BwEtQbRYkIVFIlfrfboqjRx6CGu9AnEp3FfKtbqQNr811EFRTld99yyZw6aJneV8NOUjsBWQ0lb8BY+VZq61MVXEu3od/6FZDUR3Glcoe1Ecz7WNdNZs2OTw/vyVquVqa++xV/LVmNpcjfa1gULkqBQou78MAfO7qRFlz4s+3Mmder87WSwZvli2nTojGrkdI+7HzuLeHgxtoMrWDz/L3r27Oltc2S8jMdF48SJExgV/iVO1+xuRIuJrN+eZt3yRdezzD74EOamI9GUcitNNOeTe2gVxjM7UEfEo6vShJBO41AGRiAIApJox5adjOHoOrK3/4F/g+74N+rloHgEED5oKql/voT23ulOlbS1m/Lw9VLOJKVvEL51OqLfPY/gtve4ZEzRaiZzzddoIqsQ0PaeIrdAbUdX8O5rU4kpIiU8XBf6tWvX8ctf89m6cy9izW4o+ryEtpi/YUFQ4FOzHZaKdel77yRiw/xYPm82AQEB1KtXj+nvv8OrvyxH1W5siT6rJxD3zaWOLpully84tRKTuXMRJAc2lXNycggKCkKv1xMYGFiqCYePHss2YyW0NduVahx3YDcZENbP4LH7R/L044/Sqn1nEkMaomtc8vrGosVIzr7FGM9dT8vtW6sdCnXRoYCSaCdn70JMCQcI7fmowxUNzYmnydr4E1Gj3nPovEg0Gcj883nCxn7htfMlSZLI3jILe56e4I73oipFgStL2kUy131LYNMB+NZqW2Rbc9IZAvfP5Pih/ahUBb873RCLF954j3RtBWzxba6n3SjhVp418RS6I/N4YNQwpk55BpvNRuX4qkiN7kLX0HMV/hzFevkgVdO2s2XNijJ9/ijjGhx9zntcNLr0GcjZqkPL5JLcvukrfnrrGTp17ECHHv1IDGuKsqbjrpf/Jv/cbvQ75hDQtB9+dTs7/bCxZiWSufpLQrpNRBMR51CfnH1LMF06TMSQacV+0a1Z18hZ/A5h4750yi53YLx0GP2OP9FWqEVQmxFOVfmTJAnDwRXkn91FaK9Hi/Vwk+xWsn5+mOMH9xIbe3tqkby8PGb99gff/zKbDF1FpPr9UPqU7u/+b1tFxCPL6B6n5qevP8dkMtGgRTtMTUehqlh2crAZEw6Rte4rIitWZmD39nz18YfeNknGzTj6nPf4HtGl5IwyKRj5R9bgZ7hK5dgYmnXoTmLFjiUWDLsxl4yVn2E8u5uoe97Gv363Er2dqkMqEj7wOTJXf4E9X+9Qn8DmAxEUSsyXjxbbVjy3Df9KhR8SexKfuEZE3fMOmqhqpMyZRs7eRUW6pUqSiOnyUbK3/UHKb1MQzXlEDn/NIZdo+5HlPPHow7cJxvYdO5nw2NM0bNuFN1ecIaPlIyhajHSZYMD1LStlo4GsvyLxwCOPo9Pp2LJmGfaNX2BN9E4yx4LIP7SMsP5TUPWbxuzFq5n0+FNu9XSTKT94fKVRo0VnrN2mlGoMVyOe3kRY4g7qN6jPtv3HsbadiCrA+aJQkiSRs3s+xvN7CGo3yulD6cKwpF0ka/0PhA+cgtI3qNj2eWd2Ys/NILBZ0dtqtl2/IuWmo+7xtEvsdBWSaCf3wHLyTmxCW6Em6og41OGVsRuysKZfxpp+GXteJtqKtdFVaYq2Um2HPdss6ZeJOvYH+3dsZsvWbTz14qvXD+EliUyjDWujYaiCojxSz1w8uoJm/nq+//IT7HY7Lbv2Rew+2aUiVRIku5X0X54kfNyXCIKAaDVj3TeXqfd05vFHHvKqbTLuo0xuT0mSRI3mnbD1eL7EY7ga25Hl6LfPJjS2xnVvmFLUq8je9juCUk1g62EuP+i/LhzfEzFkWrFZge15WaQteofo0UVvKUir3yfCR+BKTFd8qjZ3pbkuQRLtWFITsOlTsGZcQakLQB0eizqsstMV5eD6CtCy+BW6dGjPlaRkruXaENtN9GqW5fyDy+H0ej5+701Eu43nPvgGbR/vfj9sx9eQf2w9gXe/f/OaaDEhrPuQLUvnEBfn2FapTPmiTG5PrVu3DlOAY4e67samTyVv1Qyyd80joNkApJ7Pl1gwJElCv3sB9twMgtqMcItnmCYiHr96Xcg9sLzYtkq/EBSCApshs8h2gT4a1q1YTG39XmwJZa+es6BQoo2ujl+tdgS3vYeApv3QVW5YIsGQJJG8FR+g0OjYaqvClUYPQpcnvZ6W37dJP3xGfMiLM35AUCgJU5owJhwsvqObsOfr8buyi+DYW7ctFRod1vp38fzLr3vJMpmygkdFIzc3F1tABU9OWSDWa8cxzJuKQn+NgIHT0LS8G4Wm5IF7+m2/g91KaK9HXWjl7fjV60L+6e0OpaDwr9+VnNWfFXrfbjKA3UJwcDBrly6gUvJ2bFfKT7CZs+Rs/Q0xsCKawW+jjmtapgI1BYUSofNjPD5lKsOHDEJ3YZPXbJF2/MTkRycgav1vu6eObcCKtRvYsGGDFyyTKSuUzWAJN2HPyyJ/1Uc0NuwjJLICql5T0EZXK9WYpstHsWYnEdT2brdHVQsKJdqYug5Vv/Np0BNj6iVEc16B963pl+nfqzsAGo2G9csXEnVxNZaTd94DIe/0DsypFwnqNrHMxgcJCiWBoz5m1tylaKwF/5u5G5shE5/8VFIyszGG1rjtviAIBA19i6lvvl9Ab5n/Ch79BlksFkQveWBYd/1OwPYveOH+wWRm6zG3HFfq5IOSzUr2ll8I7TbRRVYWj3+D7uQdK/7BLggCAS0GYzi2vsD7qqyLxMb8nTvI39+fTauWMiDWjnhwgcvs9TbW9CsYDi4n/K7ny3xtckGhxNxyHBcTzjvsLedSDs7n4w/eJTNbj0JXcBp5pX8ISTkWjh8/7mHjZMoKHhWNmX8uRFO5sSenxJ6vR9z0Ja0rKDm2bwdms4UrvjXQRJVuhQGQtWUW/k36OuTR5CrUEXHYctIcaqvU+SElnynwXtqGmYwaMeyWawEBAXzz+ccMahB+RwjHddfnTwkfMLnYgMqygjosBr/GfdFv+cWj81qTz1DN307//v2KbWupP5DX3p3uAatkyiIeTSOSmZWFqrbnYjSs2cnYVr3Pwtm/0LZNaw4ePMhXs5eg7Dm51GPnndiMZLPgX6+LCyx1HEFQOFxZTxAUCOkXkCTptkC/hi3bEhwcXEAfgU8/fI91jZuTndYUTUS8C6z2PJLNQsayjwjtOQmlX4jrxhXtWJLPYbp0GEvKBUSTAUGtQbLbEZQqdLH18a3drlQ1VwKbDeDKx8MI6fFwqSpDOookiQi7ZjF/2zoATp0+izKqSqHttRVqsmf1Ai5fvux0VUOZ8o9Xa4S7E0tqAkk/P86+ffto1qwZq9as46FnXkTq9Hip97XNiafJO7GJiEGeT28tiXYkq9nh9rExFcg05ji1GhIEgR+//Ypeg4YTct8XZX5bpyCyNv2MX70uaKIcK/FaGKLFhN2QgTnxFKaEg9j0KWgq1ERXuSH+jXuj0AXcFGS7yYDpwn4y13+PmK9HV7kR/o16ogp0rqqdQqNDV7UZpstH8anStFT2O4Ll5GYmjR15M2njxcQUVDWjiuxjaziYEfeNZ8OKRfj6uj+mRabscEeKhiXtIuEn/mLruXNUq1aNWb/9wSOPPk7Y2M9RlXIrSbSayNrwAxGDX3JbLe0i5zcZUPo7/uZcOSaG1LQElHGNnZqnTetWtG3RjKNXDqOOc/+Dy5XkHlmLPV+Pb52Sp4Cx5WaQteEHRGMu6og4VEFRBHUYU+Q5mFLnj1/dTvjV7YQk2jGe30vmmq9QaP0I7jTOqdLGPlWbYTqx0e2iYUk6TfC1HTz60DIATp06RZ6oobhMU+oKtbiQfI6FCxcyevRot9ooU7a440TDpk9F2vAZa3ZuJjQ0lPvGP8ymk0lETPzJJem3DYfX4Fe/W4liBVyBNe0SKgcTGAI0b9yAw7sugZOiAfDLj9/SosdgpMqNy6zX0T+RRDv6HXOwGzIJ7/9siZPsWTOukrHmS0K6PIg2unqJxhAUSnxrtMa3RmvMSWdJX/LB/3OQdXKov2+dzmQfXIpozndbdLpkt6LY8RM79mwlJOT6i8iBQ4ewhVXBkU0xbY22vD39M0aNGiUnNPwPUfafBE4g2Swodv3M8vmzUavV9BtyN2tTfFF0mOgSwZAkifxT2xz+4rsDS+oFNGGO7yOX5sscGRnJY+PuRtw3t8RjeApJtJO+5H1Ek4HQno+UeEvNbjKQseITwgdMKbFg/BtthRpEjXwH48VD5J3Y5FAflW8gGt8ApBOlL+dbGLZN3/DsE5NuCgbA6+/NQFHDsRWa0j+EPE0IW7ZscZeJMmUQj4lGQkICV69cul5G1Q1YUs5jX/oaX7z5PFWqVKH7gKEcDWyJtl43l81hSjiAJqqKV6OIzVdPoCmiEt2/0Wq1kJNc4vmeeeJR6voZMJ/ZXuIxPEHmqs9QBlcktPvEkqcuz04mfdG7hPR4uFQp2gtCUKoI6/0YhqPrsaRddKhPQGgEimuHXWrHDWyGTMIUeTz12CM3r508eRKTKsCp8y97s5GMenASer0XXIRlvILHROP1N99Gq1Lit/49bAcWYs0u+YPsn0iiHcvpLYQc/ZM5P33FD7/8QfMeg0ivORBd5YYumQOun2Vkb/+DoA73umxMZ5HsVux5WU7tjVetWhU/a8m/0EqlkkVzfqd67mGsh5cjmvNLPJY7kGwWDCs/QpmfSWjncSUex3jpMBkrPiG0x8MuW2H8G0GhJKz342Su+86hjLHmqHqoJSvmS4dcbot0agNvT3vulpXouEeeRGx9v1PjqALDEaq0Yu26da42UaaM4rEzjZk//QBc3+L59ocfeeuddyEwAiJrYIpqcNMtUukTgEJ3ewqDgjBfOYpx2y/oFCJ5kZUZM+0zTJVbo+0+Clf7+xgv7Me3ZjuUDtrmDvLP7MSnWgun+ylK6f3k4+PDplVL+Orb7/ni+48wRtTFHFIFXXwTrxZvMp7dhXB0KTZjHkGjZpR4rJz9SzFfPUHksNdKlU7GEVRBkWgi4jElHMCnarMi29p9QhnUtwfzDp0p0ZlUYUiSSObOuXRZ9PnNawsWLyXZpHTKyeIGivq9eealN+jbp4/sSfUfwOMH4YIg8PCE8Tw8YTzp6emcO3eO73/5A7MlAYADWw9iU2qxqgMwhtwIwJOQJBBFEVGSsOtTMF0+gqALJKDlCLRxjUGlRgLcFcIlGnNQh99esMeTGI6sJbzfM16ZW6lU8vikh5n00AQ2bNjI2o1bmLvsLSy1e6Kq0sKjB+WSJCLt/ZP66izOKyVUfZ8r0ZaUJIlkb/kFyWYlfOBzHhPAwNbDSF/8PtqYekWKlDq8Mtv3zAOta2MhrGmX6NClB/7+11+AkpKSmPLKW9CjZC7kCq0f+XHtWLZsGSNGjHClqTJlEK96T4WHhxMeHk7r1q1vuZ6VlcXMWbN4/+MvkNQ+oNIi+gRjC4lHFRSFKiCCoI73efZBZbN4bK6CyD+7C3VYrFNvgprcawQFuTZaXalU0qNHd3r06M4rU5/j+VfeYM6vj6FuPRp1lWZuTwQo2W1Y1n3Kk6P6s2vXTiyxLdE64U12cxxJJHP1V2iiquLfuI9HV0wq/1D8G3THcHg1gS3uKrSdJrwyWfsN4FyYR7EoTq9nwjP3AXD+/Hnade+HsvtTqFUlDyRURtfgqWenMHz4cNmT6g7H6y63iYmJ7Ny5E5PJzK6DRzl87DhX03MwRzVEfdcbHk3RURTWjKv4VGvptflz9i4iYsg0p/poc6/Rs2dPeOU9t9jk7+/PlzM+4N3XpjHjsy9ZsvJLMoJqIjQc4Jb5LOmXUez5jTeemkhUZDgzZs3Hp0/JYgRydi9AFRxFQJO+LrbSMbQxdTEcWuXxecWzW+lUO5LhQwcjSRIvvvomtBmLOqx0q2hthZpQqS5nz56lZs2yUQ1Sxj14RDSys7M5ceIE3878HbPVhmi3ce7CRWyihMGuIi+iHpKgRBkag7pOUxRaX4f8xD2JTZ9aov1eV2D+X3v3HR1F1T5w/Dtb03uBUKQEqQGkSgdpUlRAEbBhw4oIir2+dgX1VVFUUEB6EaVD6FVUaiihlwTS62azfWd+f/CTV1rqzO4G5nNOzjGbmXuvQPbZueV5Mk6gC6tW7vUUj023hITw7puv8c4brzLulTdYvOUHXI37oo+sJd9p8oOrCEvfzbxZP1C3bl0S2nXGr99bFUqzYT6wHrc5l3APJpqsKFNhAfpoqdTDdmXhLi5Ae3QdP+3aBsD8hb/yR5oLv3bybBix1etK/7uGcCL5oCztqXyTYkGjqKiIRYt/Y8KkH7Fr/HGH1sBerfn/Frw73nXxDcW7ZXDKRtBqvVaDwfTHAkI7Di/3fRqXTYHRXJsgCPz3s4+4bflKlqxKZFPiTBzVmoOm9GlER1A1DNUboTEGXBJoHJmnKPjtPzzzzDN8tnQ7Go2Gpi1bY2s2GL8KbH12ZJ+l+PAmYu55p0pMozh0QTj9YgiUo7EDy/nm43fw8/OjoKCA1z6YgND7ZTlaBrhQIOvYyqvmOlNdPxQJGqdPn6Z73ztwNuiBrsu4i4t9VSPPqG+xnvwbbVBEhXIoBQZdPb210u4c2J87B/bHZDKxZ8+eUq+XJInvpkwj9/g+DhxORrz5NiRTJvl//gbACy+OZ+JH73Hy5EnefO9jisIa4FeBXWSSJJG//kci+o6W5bCnJxRlpRJxa+VS+AOI9mIibecZOPBC3fjnxr+GvcXdGGT+IGQLimPbtm106dJF1nZVvkOR35z/fDIRe7uR+NVsokTzNwzRbqFwx3yi73nH20OpkJCQELp3716ma3v0uJAt+N9z4n379Wf2zF+IjIwkLS2N2wYMwtH2YQztG1ZoPOZ9qzDWTkAf7v3qkZLbWabrBL8gjHEV+/+9RNJS3n71QmqVgoICtv+1G33fvpVv9zLO+l35+sdpatC4jsm+/SgjI4ONf+y5/gKGoLlQItWD8tZOJrTLA2j9vfPE4A0NGjTAarUiSRKrV64gIyODZ8eMo33vu3B2fAJjjUYVmvpw5qZiObqD0Pb3lH6xBzhzz5Uph5gc2QdcJ3bQLNTJkEEXdmotWbYMc+3OiqRd14XEcOZsquztqnyH7E8aBw8eRKzRUvbDdd6mj6iBK+88Wjk+9ZVB0b7VaIMj8a/TssJtXOvUseiwwTV+VlxcTFZWFoIgULt2bTRlWI8or9zcXEwmU4nXrN+0ha07/mT1xq1o6nfE0P8NtBV8k5MkibwNU4no9aTPTEu5TdnowuNKv7CSnLmpFK2bzG+Z6Rdf+3nWAgz1BivSn8YYQI5VIicn52KqddX1RfbfoMRNW3GGxl13QcMQG48j47g8UwWlsJ7ajfXUrkrV63Bkn+Wmmld/U3LvX8rTjzwAXHhDTUtL4/HnXiA9M4ciuxuCo5HcLvTmTAIDZVmCvcjpclIsGRH8Q0oev18k7mpNMPTvXOlt15Yj2zBE1/X64cx/s57eQ1RCr9IvrER1ZNFmxr3xW1avWnkhB9n/M1ts6EJLrpdRGcWxCaxcuZKHHnpIsT5U3iNr0JAkiWWr1mLs5fniRErzq51AzvLPCW41UNF+rKd2U7R/NdF3VuyU8z90qbsY88rDV7wu2i3o0/Zx5lxDevQfRGp6Ni5DII6EwRhuvvTksf3/v7xB+/9flSWJbkx//0bsiI9kaE0ezvx0BL2xbNOOkqtCfbjSkzHunc9PP3xFxw63ln6DjAx1WvH9jNlq0LhOyRo0kpKSKHQbMFSB2gvlpQ0MQxsYhu3cYcXWay4GjDteqnSBJ23eGZo2bQpAsakAV2EmkiRh3vQTBhdMTbKha3g/muYXcgV5vpyUZ1hP7sK/nvIn1cvDvH81wS37lena8uYNkyQR16G1VMtPYtP2DQQHXxmY3KK7XG2Wly4oAodT2T5U3iNr0CgqKkIfc+3awlVdWLeHyVn6GbEjPpK9BKo5KRHLyb9lCRiOzJNEa52MGTeeg8dOYrLacaz4HCkoCr967QlsXoZpkeuELSWJQA/XcS+Jy5SNPe0oYd1Gyt92YSbsWUT7uuEs+H0dOt2Vv945OTkUOpQ/Q5F25iQul+uqY1BVbbL+jb4/4WtcdXv73GluueiCIwlufQd5aycT2Xe0LG2K9mLy1k9B6x9C9F2vVjoYSZKIad1kpNhapDvq4n/bUEJ8ZPHXG5y5qZVOkSGngm2zCevygKx50yRJwrpuEvbTu1m7egXt2l073c2c+Yuw12it+JOl2z+cnJwcqlWr/BmTqshiseBwXJqvzmg04u9fFY4yl0y2d5PDhw9zNNOEvrHyO0K8KbBRZ5xZpyncuZDQW4dWuB3J7cJ8cD3m/YmEdblftlrQlp0L0ASEYuz1vCztVXWCVodG7xvHSu3njyC5HPjValbme1zFBUii+6ofJpx553GdP4zh1BZ6tklgzq6sUrcjnzqbihRW/gSP5RUUU1PxPrwlOzub1NRU1qzfRHpWDtu2bccm/e/vR5Ik7JL2ihkDyWHB4LbSp9f/CsPVrBZDm1uaU69ePYKCgqrEjjPZgsaP02dhi78N35k5Vk5olwco2DqLgm1zCO04rFxPB+7iAoqPbKX40EYCGnYmdsRHsr2pOVOTKD6yjaiRX8nSnko+bksh+ZunE33nK2W+R5JEoqNjEJa9hRhaE71/IJK1EMFpIUCvITIshNu6dGD8wm1lrmPhcldsYb0iXC7P9aU0s9nMzNlzmfvbMlLzrEgh1bCGx6MJjEXT4iH0YWV7oiq2FLIwO/vi9+LpXAyJszHYTdgyT3Jz3doMvbMfg++6k+rVvX8I9WoEqQwlxEwmE6GhoRQWFhIScvWtkm069yT71ucQKpFeuSqRJImiPcspPrSB0A7D8Y9vV+KnPEf2GQq2zkJyOwls2JmAxl1kXZx15p3HvuZzNM0HECBjiduqLuvX94i5+22vjkFyOcle8jGhtw7FWKNxme+znPiTx5toeOu1V0hPv3DOIjQ0lMjIyAqPpWGrjlh7jFf86cuZsp+uhjPMnf6jov0obeaceUyZMYe0nHyK4tpjqNtK0czbrqJc7KkHCDi9mSH9evHmKy9W6u+7PMryPg8yPWkkJyeT5dSjuUECBlxIzhfS+g6CmvWkYNtsTDsXYqzZBE1AKPp/nfR1W0zYzu5DcjkI7zpSkbMCotNOzuwXCYuugV/j7rK3X6WVoayqst1fOFgY2LhruQIGgLu4kPp1W+Lv70+9euXPPXa5s2fP4jSGemS6Tl+7BUmbqmYJWKfTyY8/TeP7abMoDK4DCQ+iMQZ4JLGqLjgSXZPu0KQ7c3YtZl67Ljz24AjuHXIXCQkJPpEIUpagsWT5Kuy12lWJbLVy0xgDiOg5Ckl048w+g8uch9ucf/HnglZHWNeyP76Wl2gzY133NbVq18HW9E7Zd3VdD0S7BY3R82VI/0mQaIiqRWCT7uW+X3NsPW1aPSbbeE6fPo0z/CaPHby1uSEvL4+IiAgP9Vg5BQUFfPfjVGbMXYQpNB5Dl3FoKrmTsTL82wxBbN6fKQf380vim1Q3WOnZrSuvvzTuYtVFb5AlaMz9dQn6No/L0VSVJWi0GGLrY4itX/rFZSS5nEjua1QMlCTcx7eiO7GJFvXqkpwThD6+o2x9Xy/0ETVxZJ/Gr2ZTj/b7T8DQR9So0IFQ0WmnekwkLVrIU+sCIC09A5fWz2NBwxrXmodHPcXSXxd4qMfykSSJnTt38v7Er0g9n47F7qTopi7493wVo4/MmmgMfvjHt4f49qRZi5h2OJlZHXrRuF5NPnn3DW655RaPj6nSQcPlcmFyCeiCqsanCV/mLMjAmXGcwOyDYDMTopeIjYm55vV9enXhhaVfcXOrTuj6vOrBkVYdAQ07YT64zqNBQ7QXk7vqa/xqJ1Q4g4DktFEzTt6diN/PmIMu3nM1vDW1mqPJzfJYf2VVUFDAhC+/Yd7vKxDDa+KI74UuvgaCoMHzz6Nlp/UPRlu/HdRvx8GsUwwa8z4xmiK+/PAdOnXq5LGpK1meNARBU5kUOTc8R+YpjEmLqBcZzEPDhtC39zPUqFEDrbb0z4SPPDUasUaCIhlLrwfGGo0o2PoLLlMOuhBltzNKkkTxwfUU7VtFeLeR+NWu+FOC89hW2nWW7ymjsLCQlGwT2pbeqT7pC5KTk5k46Xs2bv8LS4PeGG9/A0HQVMlzZfqYehBTj/TCLO5/61uEc4+TnLTXI+dAbtxTXz5AcjmRds2jaYiTuWt+Lfce7aeeG8uGpDMIXZ9WaITXh7Duj5KX+C3Rg99QJMutJLoxH1iHOSkR/7qtiR1euW3U0uFEOkUU89K4MbKN8felS7FUb+XRT9Iagz/Jycke7PHqjhw5wmOjXyTNZMfe9E70fXvj5wMLynLQhcZA+wdwRNan/5BhrFmyCINB2XWY6y9JVBUg2i04klaiSfyEt0beztql5QsYKSkpRMZUY9W+FOjylIIjvT4Yq8XjH9+egi2/yNquJElYTvxJ5tzXEK0mYod/SFjn+yoXMFwOOL6J2T//KGuG4eMnzyAEevYpQ2Pwx6Xz7oTPvAWL6HvvI5xtOAzptnEYYuv7xA4kuRniO5AsxjF77lzF+1KDhoc50o8iJX7GJyNu5eAf6xn1yMPlut/lcvHA40+j6zIKodNj1+UvgBKCW96OYPAnf8NPSJU84HYxWMx5BXvqIaIHv0HorUMrfe5GEt1Ylr7Pq2NH4+cn7zHZles24XdTC1nb9GWSJPHwk6N58ZNvoc/L6II9c9bBm/QNu/Lq2+9z7tw5RfupdNDQaDTYC7KQXGUrX3mjklwOpO1T6SweZM+mlTz04IMV+iT55TffclJXB/8Gnk13fT0I6zQCXWQtshd/gKuwYgu0rsIscpZ+hu3MfqIHv0F4j0dlO+zlTt7AA4P68fSTo2Rp7x+iKFJUZLqhtmP3vfNuNqQJ6PuMr3QC0KpCGxCK0GooH034UtF+Kj3Bq9FoeP6pR/l8w0b8E/rIMabrji31IMZDS5n41ksMvXtQhdvZsnUbX89dia77s/IN7gYT3KIPxmrx5K6ZhDYwgqAWfTHG3VzqG6rkclC0bxWW4zsJ7/aw7MW47BknaOQ8xeef/C5ru3BhOtMV7J2UFJJGR25ursdONRcXFzNo2AOccEehaXG7R/r0JcYGHdi353tF+5BlVfC5Z55m9sK+5BW3QxsYJkeT1wXJ7UT6ey7dagfx8eKZlTrVm5qaymNjxkOXMTfUJ0YlGGLrEXvvezgyT2I+sI6CTdMuHP67pLStgC78whutaCnElZ9OYNPuxN77nuw71dzFBUg7f+HbxTMVKa/rcrkQdEav7HAsik4gMTGRESNGKNqPy+Xih5+m8flXk7A2vQtj/faK9ufLBJSdspYlaPj7+/Py2NG8NnUZtBkuR5NVnttqonjFp7wz9gmeH/1Mpdp6asyLJG77C3v7UegVzHtzozHE1ifiGocxRXsx7uICAASdAV1ItCJjcJnzyJs1jq8mfEKTJsoU9/rg0wlYIht6JZmooUZj5v6+QtGgUVxcTP8hwzihr4e239sYfajg1vVIto819w+/lzrafBzZZ+VqssqynzuEsP5Lpn72DmOerdx22B9/ms6qPScR+7yqWCoS1ZU0xkD0ETXQR9RQLmCcS8K45Wu2rFvNqFHKZVRYnbgOQyXOjFSGPqIGaemZirWflpZG8w7dORHdGX2zvj5VofF6Jeum9YW//ETbXnci9X9T1iIzniZJEq78NLSpu9EXnkPjtFz6s8h6cMvdV9wnOm24t/1Mm5pBfLtyEbVr177imvIQRZEPv5gEA7ybpVUlL8nlwLF/OX6pf7Fp7Upq1VK2SFRE9ZuwGOXbvlteboVSpDudTnoPHIy17SMYom9SpI+qxm3ORa9Xdvpa1qARGxvLMyOH883SWeg7Vq2i8pIk4jyfjO7snwRYM2jVPIHbH+jO7b17EnNZKo+X3niX6Us+QtvyrouvaXNO4Ze2h09eH8+IYUNl2Qr73PhXkW7uXu460Srf5MxPw5lzFuOR1bw95gmeHDVFkTWMf7NardhsVkX7KE2uxUVOTo6sBYYkSWLoA49QWLenGjD+xZ26n1EPDFO0D9mPx778wvMkrt/IUR8rs3k1kiRhP38Y4dROnKn76XVbd8Z8+iIdO5ac+G/Ch+/S+Ob6nDqTcvG1JgNvY/i938n6JrB9x06Ebi/L1p7K8yS3C9fpv3Ae3Ux1P5Ehg+9k1DdLiZM5r9S1bNiwAXt0Y6+mynDXas0vs+fxwvPylEgG+GTCF+zN1aJr00m2Nq8XJdXCkIPsQUOj0fDua+MZ/OAT6IZP9NnDZ+6k5WhO7WDI7X0Y/sRYWrVqVa50w4+OfFDB0cH0mbPIMVRD56N/fjciZ24qzowTZbrWmH8Soy0fneTkrv59uPvlL2jZsqXiKR4uN3n6HKjbzaN9Xk6MrMuRE6dka2/OvAV8u3gj2m5Pytbm9cJoySE2NlbRPhTJPdW1a1eee/JRpm9bBs3vVKKLCnGZstAlLcFgTmfg7b35YNEfZS6T6WkTv/kBTafnvD2MG5IkunGkH0MS3RjT9qJ3WXGY84mPCeGZRx8s0wehmjWHXPOJVZIkMjMz+eTzr/h7XxLF1mukv//fgKgZV+3iU2ygvx9PPfIAOp0OQRBo06bNNYNRVmYm2pphpY5XSYbYeiyaM4lnHnuIli1bVqqtLVu38eqEyWi6P1el102VIIlupIwjtGih7Ml/xRIWvvPaS2zsdxcnUpPQ1/LOzo1/uIpyEP+eT7SmiK8+/Yju3bp4dTylefWt/1CoDUXrxcXLG4HbWoTksiNaCtGn7UcQQCjKwmjLo1+n9kRGRtL90SdokdAMrVZ7zQNqmZmZF+thWywWjh8/Tn5+PitWrADA4XDw194DuNwiGzZtpsjmwmUIxlHjFjQJj6AxlJyZVBLd5FqL/jfu3BR2fDIbANFhxa/wLAbBzbTvvqJd2zaX3JuRb0bj5X9HgqAhuGk3rNbKra0kJSXxwJNjoO9rHqk+WNW4CjLocEsCRqOyfzaKBQ1BEFi1eB49BwwmBbwWOFypSfgdWMxn773BoDvvVHzhUQ5bd/yB1Oo+bw/juuO2mrCe2g2ii6CM/UTq3dSrXx+DXscTr9xPYGAgkZGRxMfHX7xnzZpE5sxfwP5Dx67a5tmUFE7lFKP1CwZA0mixBcbCvz4FSxJIYTUQtHq0zR+6kJmUsv/yCRrtJYdmtYFh8P9baLWAE7DkpzN05CgWz/yJ1q1bAfDlpMkI1eQ9ue4ty1et4rFnxmIY8BZaL1RhrBJyTtGinTJnff5N0dToAQEBrF/xGz0HDOZ0zhn0DbspWpT93yS3C/HAChL88pm/bb3ii0NyOXDgAKkm9w2RYE1Jkuim+OAGgnKTEYoyiYqKRhBg1APDMBj0dOkyhtjYWLKzszl//jxms5mJk37AZrNzJiUVq8ONpNVRYDKjbXY7+sgmcJWTtkKdW9A1j8H9r9e8kelIH14dZ9fR9Lq9PzkZ59FqtUyfPR+6jvfCaK7k9o9g3eZtdOjQoVz3ZWVl8fFnE5k+ZyFB936C1s97ZU59meRyIO5fyqjvNijelyBJUqnZBUwmE6GhoRQWFlbozddqtTJnzlw+/nIS7sAorDHN0MbejD5Kmd1V1uM7kf6ew/Ojn+H1l17w2cX4q+lx+x0crdkfQ1TlznjcaCRJxJlzjuI/5iLmnMIt6AgICiY0JASj0cg//wTsDheS/n/TQW5BixQaBwg4qzVBGxyNxi+oyha1cuycxX0d6vPyuDG07TME4fbXvD0k4MLJ91bZiSydP7P0a10u5sydy3+/m0KeU4sjrC76VoPU9DklKD60gb5RhcyaNrXCbZT1fd4jRZj8/f157LFHefTRRygoKGDBosX8unwV2UcLKSq2gPbCZzNR0EBQDPzrTV6SwBrXEmO1mxFKqNt7YfvsEYynNtE0VMNXK34nISFB8f83Oc2Zv4Dj1gA1YJSD6LSRv34q7vMHcVlMhLUegLbNIAzVb0YQBNyApZQ2/vnXdl3kQq3bAbsznV9mz8PhF46vzPxrA8M48efpEq+x2Wy8+OqbzJ8/D8PNnaHRPRhi618ffy8Kcp8/RM3c3Xzzy28e6c8jTxplVVxcfEUueKvVypRf5rBrz37coojb7abAbMVerTliQDja6HpIh1YTaMmgT4/OPPPYSJo29Vw9aDn1HDCYI3F9ff58izdJLgfWlAPoT26mKDMFl9NJYHQN9O2GowutdiHx4A3MkXmSuyPTycrKYqvuFgwxdcvdhiRJuE3Z2DOO4yrIxJV/HgDB4H+hoFX9thVaXNeum8DJXZuu+rNTp07Rd9AwzA16o6/d0uuL91WFuzgf7doJHN5T+Z2gPvWkUVaBgYE0bHjlwt23l23TKygoYOfOnRxMPsbPM37AnJ/D0dOnq8Qi97Vs2bqNE3lO9AlqwLic6LDhOPkn0oHlmItM6PyD8bupCSGduqCr29bbw/MpQl4KgXGB7NidhH7g4DLfJ0kStpQkipPW4jJlow2OxBjXCEP0TQQ27oyg0eMy5+JIO0Lmgrfxr9uakDZ3oinHGoMkithstisKTJ0/f57edw3D1ukpjB7OryaJbqwnd1GcvBlE8eLrGmMAhuoNMNZsij6ylk9OcbuKcrGt/JjFv0z16NEBn3rSuJE1btUBc+fnPLZRoDwkScSRdhRX4eWJ5wT8ajdHGyRvGVFHTgrOrAuHwYScUzjP7MElSgS17IemVgv1SawE2j+n89bIAbw1/w+0LUo/IyWJboqTt2DeuxJDbH2CWw0o9c9XkkQsyVsx7V5KQHx7QtoNKVPtdcue5XzzWHeGDbs0zUWXPgM5VXugYmucV2M9sw/z/jW4zbkYayUQfEt/tP7BF3/uMmVjTz+G7ex+nDmpBDXvRVBCb0VqzFeEqzAL3dbvmPTpfxg4oL8sbVbJJ40b1YEDB7Dow3wiYDjzzqNN2YXekoVkKyZY60Sv19OhbSs6DWh9ybV2u4MZC37FVGQusc2s3Hz0kTXL3H+7pg3RB2lISj5KgV3A2P1JQmo188lPe75EkiRObVrEr5E63NU6UNqysTM/jbw1kzDWbEbM0P+UeWpPEDQENulGQOMumPcnkjn3NSL6PI0hpuR6MZJfMG63+5LX3G436XlF6FspHzBEp43igxsoPrwZfXQdwrqNvGbm6H8yHAc17YHotGPeu5KM2S8T0nYwAY06e/XfoqsoF2nd56xetohGjRp5vH81aPiAMS+9jjPhTq8s+LmtJtzmfLTH1hNky8aekcLHn3xMn549MBgMRERElHj/yJGlJ6YsKiqiuLi45HG43axcvYYff5nL/lPpuGrcgtB9IP7q3HaZ2U7t4snRz7Np6w50Pe8p+dqUJAq2zSGy/9gKp9wXBA3BLW8noEF7cpZ/QXj3RzDElq/Q2KTJP2Kr3lLRNyJJkjAnrcW8fzVBCb2Iueedcq19afRGQtoNJuiWfhRun0fxwfVEDhjnlQ95rqIcHOu+5sv33vRKwAA1aHhdXl4eJzMKMLT07I4px8k/8TuzjbrRIdSIq84THz5Ply5dFPkEFRwcTHBw8FV/VlxczH+//Z75v/5OTmhDtM1Hog0ML/VTsupKotNO65YJrNm+p8S6Es78dAq2zr7wdGGofP0JbWA4UXe+TM7Sz8oVOCRJYuHvy+DmoZUeQ0kKt85CktxUu/+zSk0vafR+hHd/GHv6cbJ/+4jIfmPQR9SQcaQlc5lyyJr+LJ9P+Iz7R3iv2J0aNLzsnuH347ypvaJbI12FmbiK8jCk70ObdYzI8FA6tWvNOz8sKvVJQimpqam8+Pq77D50DEvdrug7jsFwg+98qqwASwY147oilZCTSbRbyF3xBVF3vixLwPiH1j+YqDvGk734Q6LvebtMh/D27t3LOVcQupCYUq+tqOIj23BbCom8Xb4Mu8bqDYga+CI5K74gZui7Hin8JIlunOu+5PtJX/Poo48q3l9J1KDhRfv37+dophnD7d1lb1tyO2HXPAKK04kIDqBzx1vpNHwEPXt0JzDQO1M+R48e5YefZrBk9TrEwCgcdTuh7zPEZ84SVHWi1cSOP3Zirt6aa71l5675lrCuDypSjVAbEEpo5/vIXz+FqAHjSr1+/m/LcMQ2UWxa1pl3HvO+lcQM/Y/sbetCYwi+ZQCF2+cS3v0R2du/nHXzFF566mGvBwxQg4bX5OTkcMfdw6HX+EpPCdnPH0HMP0dg4WkEaz4IAhqXnQ/eeIlh9wyRacQVt3HjRr75cRq7j6Vir9MJY7+3EASNIjUeRKcdR9pR7BkncBVm4jZlITptaAwBFwKpJCFodegjaqILr44+shb6yFqX5HaqilymHAxZR4iOuQ2N4eqV8oqPbkcbEIKfgqVf/eu0pPjQBmypB/Gr1azEa4+dPI0m6jZFxiFJEnmJk4no/bRip/sDGnWmaO8K3JZCRdc37LsW07a6gRee942s12rQ8AJJkrjvkSewtRhKQDkWIUWnHcfJnQTknUBAgqIswoL8adWiGb3v6Ej79mO56SbfqWKWkpLCcy++yp/H0tC0GYqh9zCUepC3nz9C0b5VuArS8auVgCGuIQHx7dBFxF2RQlt02nEVZODMScF2dj9Fe5bjLs5HFxaHf/02+NdrXWrmWV/jzD7NPXcM4Puff8F4lZT6ot2C6c/FxI74UPGxhPd4jOzFHxBz7/uyToGVR8GmaQQ26aro9mxBEAhq0RfzgfWEtlfmw5nj/GGqmY+ycGkiWq1vrPSpQcMLNm/ewsGzmQT0f6zUayVJwpW8HkPOMcKkYp54aAR39H8WvV5PeHg4/v6+9+bmdDr5+tvJfD1tPq7md+HX735F+pEkCcuxHRTtWY4uNJaQNneVaRFWozdiiL7p/8uE/i9NviP7DLbTe8n69T00xkACG3Uh4OYOCDrfT2Th/nsedz0zmSU7j6ANvPLcjGnXEkLa3OGR+XdtQChBt/TH9Ndiwjpfmq3Z5XJf4y75WE/vwW0xEd6jj+J9BTbsTMacVwhpN0j2+h7O/DSMf//C8vWrfarujxo0PMxisfD4M6ORWo8s8TpH5imMR1ehLc7j6QeHMXTwaOrXr++hUVZcWloaDz85mv3mIPz6voJeoSRzor2Y3JVfoYuII3rQ65cczKooQ3QdDNF1CGk3GJcpm+LkrWTMeYXAprcR3GqAzxb9EW1mwoP8qFOnDhq9H1d7W7ad3kNox089NqbAJt3ImPkSobcOvZgzzlizKTMXLeGhh5SreilJEoXb5hB991uK9fFvgk6P300tsJ3ei3+91qXfUEaS20XhojdZt2IJNWp4bodWWahBw8MmfT+FwrCGBNZofMnrLnMeblM2Wb++j2gpoP/goXw3d7JPTTeVxGQy8dIb75C4Yy/25kPwb6pcgLOnHSV/w0+EdX0Qv9rKJKXUhUQT2n4IIW3uoGj3crIW/ofIfs+hC45SpL+KkiQJy9L3+WXad2RlZSFeJX07gMY/2KNBTxA0+Me3xXp6NwENbgVAFxJFdk7upReWnpCiXGxn92Os0dijZygCG3XGfHCDbEHDXZxP4byX+ea/X3DrrbfK0qacfPOj03Vsd9IhtPXa4/53JbakZUTtmsIDtUw8OvJBNm7cxPJf51eJgOFwOHjv489o0aUPS7PCkXq/hCFWuYBhS0micMc8oge/pljA+DdBqyek3WDCu48kZ+kE7OePKN5nedj/mk+LBrXp3q0rsxf+jrWG7+TiCmzUheLkrZe8VujUkJeXB0Dj+Ho4c87K2qfl6HYCm/aQtc3S6MKq48pPk6Wt4qPbyZ85hvUrl/DIg8pM61aW+qThYa+PG43t44mk711DlsmKJIpY0k+SkpVZ5dJkLF++gpfffg9TbCu0t7+JUeHx29OPYfrrN6LuesUjc/P/ZoipR8w9b5OzbCIBjToT1KynR/u/GsntomjvKn5PvZBy/NTp02gjrvygITpsSKLyawmX00fUwF2Uc+lYAiI4fDiZzp07MWLoEOY+/iKSjNM6zuwz6GPqyNZeWWiMAZeUc6god9JyxL8Xc+RgEjVrli3tjjeoQcPDWrRozpJ5v3h7GJWSmZnJncMf4pzDH03H59DJnLDwakR7MfnrpxA96HWPB4x/aIyBRA95k7zEybjy0gjt8oBXA70j+ww9e/W6eNr+RGoG+gZX7hZyFaShD/fOvLhg8EMS3RcLKNlrtmHZ6nV07tyJhIRmBGHB5HbKsi3WbSlEGxjulbUn0V5a1ZaS2c/uo4bpCH9nZfj8h0d1ekpVLuvWradtz4Gk1h+Evsso2TPcXo0kSeQsnUD4bY97pL+SCBotkbePRuMXRMGmaZQhSbRipMIMevXoVup1zpxU9F4q7KUPj8OZfebi94Lm0s+pHdq1wX4+WZa+HBknMFSLL/1CBVSmjoskSRSt+ZrZP33v8wED1KChKoc1a9fxyAtvQu+XPVpd0JyUiKH6zRjjrqy14i0h7QaDIGDev8Yr/UuShDFlJwNuv7CtNCkpCZv/1RfpnXnn/n97secZqsVjzzhxyWvuf02VjXvmCYwnN8vSlzM3tUqmzXflnScmKuKqtYR8kRo0VGWyd+8+nnjpXYSeL3i0Op5oL8aclEhoB2WT2lVEWLeRWI7/geNfn6Q9RTiwjB6tG1/chp2Tk4M7sITUIF6qeW6Ijcfxr6Chj6rNbyvWYLFcmM5p1KgRBmfJqfXLynZ2P8ZaXqraWYknTiHtAO+9+46Mg1GWGjRUpcrPz+eeh59C7Pasx8upmpPWEdzidsVSQVSGIGiI7PsseYnfITrtHuvXkZNCeH4y0374tmw3/Ksinafpo2rjNmVf/F5jDMAZ25R9+/YBF05VV4sMw1mQUem+JJcTrb93isRp/EMr/P9gP/EHrW9pIfOIlKMGDVWpEhMTKarVweO/kJIkUZy8hYDGXT3ab3noQmIIbNYL894VHulPcrvQbJ/C4jkzLpn/Pnn6LKJw9cDqyDlb4ZoZlSUIAlxWhlm47MDnq2OfhrO7Kt+X3nsn97X+wVCBHWqi046/aKFBgwYKjEoZatBQlerYqbMIAZ5fgHakH8NYvQEavW/nwQ1s0o3iI9s8sq3VdWwLDw0bTN26dS95fcHSlWjqX/sgmODNtPOXTd24gSNHjl78vn79+hjtBZ4dk8xcpiw0FSgYZjv5J48+PBKdrupsZFWDhqpUZ86lKVrz4Foc2Wcx+NDi97Vo9Eb867fFcnynov24LYWEp+3k/bdev+R1SZJIST1/7TctQUC0lVw5USnO/PQrcmEJDXvywmtv/u97QeAaB9mrjAvbfcPKfZ9/yk5GP/m4/ANSkBo0VD7Lbcry6C6tyghq3gfz/kTF2pckCc0fPzNp4idXZDuVJAmnxnDNqnT+9dpQfHiTYmMrkduF5rK8YFr/YEJrxJOWJs8pam9zF+dXaOpWEt0UnTtGVJRvpaYpjRo0VD7NGyeZK0IXHAmiS7EFceeexYy653a6d+tS+sWXCbi5I7az+xUYVekk0XnV1y012zN/4SIPj0YZ1pO78KvTstz3SW4XCa3ayT8ghalBQ+WzdBE1cOamensYZaaLqImrMFP2dt3FBYRkHeC5p0ZV6H6tfzCixeSVAOzIPHXVOtr+DW5l5oLfZe1Lcl09QCnNlpKEf702XunbG9SgoSpVoL8f7qIsj/erDQzH9a/tmr7OEFULd6H8f07S3l95+7WXCA2teOZWY83G2FIPyjiqsrGlHsQY1/iK1zV6I/k2NyaTSdb+PLn1Gf6/dnd+GloFyuf6KjVoqEr10vPPYji0AtFh82i/xuo3Y0895NE+K0f+1VxH1ina1w7hvuH3VqqdgEZdKD60UaZRlY0kSbhyz6GPuvopbXdEXVYnrpetP0Nsfdmz5pbGmX0GQ2x8lUj/IRc1aKhKVatWLb58/zWkvZ6dg9YYA0CSEO3e2flTXo6cs2hD5F3UNO7/lc8/erfy7VSLx23K8eiTmyPjBPqYutf8ubNaArv3JcnWnyGmrmx5rMrKcuIv/OvfOFNToAYNVRkNGXQXbWN1OE/v9mi/fjc1x3ZWvjcWJTmzz6KPkC+ltSP7DNXDLlTkK0lKSgpuSq+QGNppOAVbZ8o0utJZT/51sQDT1WhDotiwZes1f15expqNcaQfl629srCfT8avZsVSl7jOJdG8qe9vKb+cGjRUZSIIArOn/UjtrO3YPfiLGdCos8enVSrCbS1CYwy45rbXijAm/crvc0tPoz9zzjwstdqXep1frWZILieOrNNyDK9EksuJ7fRejLWaXfMaXXAUme4gDh8+LEufupAYXJfV71CSy5wHCBVOraPLPcV99wyWd1AeoAYNVZn5+/uzbOFsYpIXUnx0u0f61IfHgSB4JSlgeViO7cC/vnxV81zmPMINEjExpR+qXLRsNQH1y7Z1M7TjcAq3z63s8EokuZzkLJtAaMdhpZ7md4fXZtde+bYD60KiceSkyNZeScz71xDUok+F79fmnKBVq1Yyjsgz1KChKpeoqCg2rl5GR/1Z3Ft+9MjieGjn+8nfNA1J8l7ivZJIkkTx4U0ENOwkW5uuI5t5btQjZbpWq9Mj6MqW0NEQfRNotDgyT1VmeNckSRI5q/5LYPPeZQqiQp22/L3vIJJMTwj+9dtiO7NXlrZK4rYUYj21q8Tpt5I489OoXS0Ko9G3U+RcjRo0VOUWERHBkgWz+fGdZ9Gum6D4U4Ahqjb+dVtj+mOhov1UlO3sfgxRN6ENqPiW2H8TnXaiTUd44P4RsrR3ubBuI8nbMFWRAlKFO+ZhiKlHQBmfujQGf1JSUmhRr5os/47867XB4oGn4MLtcwnrdN8VyRfLypF+nCcfGi7zqDxDDRqqCuvXtw9bVy4iZM9Mxc8ABLe+A+vZ/bKk0JaTJIkU/rGAkFvvka1N8XAi4555Ar1emXTw+rBqBNRvg2mnfEFYdNrIWz8F0WoipN2QMt+nMfhj1YfSuV0r3KmVn6bSGAPQR9fFekq5DRuO7DO4CjPxr0Rt84DMAzRq1EjGUXmOGjRUlVKzZk02rFhMjTOrcCVvUKwfQRAI7/EoBVt8q766ed9q/G5qji5Ynq22ztxzRBckM/LB+2Vp71qC2w7CZcqm8M/FSG5XpdqynPiTzHlvYKgWT0SvJ8t9ZsFS/RZCgoLwS9kpy9NPeNcHKdy5EGfe+Uq3dTlJEslb9wPhPZ+ocBuu84doVC2oSq5ngBo0VDKIi4tj56a1dA0vxHlIuaR9xmrxFz6ZnvxbsT7Kw55+DOvJvwltL99Thu70NiZN/OiKpIRyEwQNEX2eRtBqyZj9coWeFB1Zp8mc9ya203uJvfd9gpr2qNBYjDWb8u3UGTRu1Ah3cX6F2vg3jV8QUQNeIC/xW2zn5D0cmr/hJ4ISeqMPr16h+yVJQrf/VxbO/EnWcXmSGjRUstDr9cz86Qc6hxbiXDNRsQN54T0eo/CPBf+/3dF7nHnnyd80nch+Y2TbZms/tpV4YxEdOnSQpb3SCIKGkDZ3EXvve5h2LSF/03RcpuxrftoXHTbc1iJs55LJTfyOgi2/ENnvOSJ6P1Wpio66kCgKCOS+e+5Ce2hlhdu5pM3QGKKHvIXpj4WyBA5JkjD9vQRB0BDU7LYKt+PMOEbLxg0ICfFOhUE5VJ3KHyqfp9VqmT9rOgt//ZWX3vscd9dnK1RjoCQaYwCR/Z4nZ9lEovqPRRfqnTofeet+IGrgC1fUiqgo0WYm+vx2lm9KRKPx7Gc5jV8Q0YNex3rsD/I3TUe0mhC0OkSH9cLP/z8gSKIbbUAYGv9gApv0wFijkWzpM8TIuhRbLEiZR0GSZGlXY/An6q5XyFnyKXSgwofwRIeNvLXfowuNJqzHo5Uak/7IGv47/4dKteFtglSGSUSTyURoaCiFhYVVOkKqPOfQoUPcNvBuDAPfkj1wwIW5/9w1kwhs1IWglrdXeBdLeRUf2YZ532oiB4yVbR1DkiSEDf9l3qSPuLV9+VNlt+rSm7xOY2UZi7fY045yu98JwsPDmHtSizG+YltZr0Z0WMlZ+hmGuIaEtru7zNuT4UJFvpxlEwlpN6TC22v/4cg8RdPsDSQuW+yTuarK+j6vTk+pFNG0aVNWL56LbtNX2DNOyN6+PrImscM/RHTayFrwtuKn1F3mPHJXfY0t5QDRd78lW8AA4O+5PDKkb4UCBoApL9ujJ6GVoAurxpKlyxjz9BNoD6+SNY27xuB/4e8sKIKMOa+Qm/gdxUe24TLnITrtSJKE22a+5MtlyqLwz8XkLJ1I1MAXKx0wANwHVvLOqy/6ZMAoD/VJQ6Wo7du3c+9Dj6Pp/4ZsUzmXc+anU7h9DqLNTNAt/fGv10a2X0xXYRamvxbjyEkhtMO9+Feg2E5JxKRl9I8P4Puvv6hwG2+8+RZTDksE3OyZtRCluPYv49OHunPi5Cmm/J2LrnHF1w6uRZIknFmnsJ3djyP7DO7iApAkNH5Blz2BaPC7KYHAxt1kWbNyZJ/Bb+skDuzdRWBg+WuJe0JZ3+fVoKFS3NLlK3jm7c/R9n5B0U9ZrsIsivYsx552lMBmtxEQ377cU2OSJOE252I7m4Tl+B8gigS3GoB/Xfm3R0r7fqdtpJOFs6ZV6s9lxYqVPDlhJrpbH5BxdJ7ntpkRV37AT19P4InxbyPc/hqCzuDtYcnCtf4rJox/nBHDKpfiXklq0FD5lG9/mMrHUxeg7fa04m8Eos1McfIWrCf+QnTZ0QVHoQuPQxsYdrGKnKsgA9FuvXiPuygHV2Embksh2qAI/Gon4Fe3FfqwaoqM0ZW8nnYBuSyeO6PSbUmSRLuuvUiLvwt9bH0ZRuc9xclb+XBgfQStgfdnr0XTVplT8Z7kyDxB46yNrF/xu7eHUiI1aKh8zvsffcIH779PbLNO0OUJNAZ/xfuURDeizYwzJwW3Oe/iOQCNfzC64P9VWxMM/ugj4tAYlZ86sKceJMG0k1W/L5LtPMbx48fpefdD0OtFj/y5KsVtLcJvwwSO7PuLgXcPZ394Vwyx9bw9rEopmjOOpD82UqPGlWVvfYkaNFQ+SRRF1m3YyONvfoHQ7ekqvyhYXm6bGb9NX/DnhlVERETI2vamzVvo1asnUcM+rPD2Ul8g/vEL8z5+HrfbzX2vf4m202PeHlKF2U7vZmBENlMnf+PtoZRK3T2l8kkajYY+vXrSs0UdHCnypcSuCpx553Et+w8/fj1R9oAB0L1bV7Zs3kJk8m/YjmyuMhUPL+eK78rdIx6kcePGZO9egzM/zdtDqhBJdBOQvJxPP3jX20ORlRo0VF7x9qvjEZKWeHsYHuMsyMCx+jMWTP+BHl27KNZPx44d+GvLOl7qUYuQrV9i3bMUlylLsf6UYIiug6ZJb1YnruWjjz7Cvcs3sxuXRjy0hrsH9iMyMtLbQ5GVOj2l8pqBQ+9nX1RPdKGx3h6Kohw5KYTtm8nCGVNo2tRz00ZOp5OZs+cw6cefyfKrjablXVVmvcNVlIt76dskH9jHfY88wR5DM/zqVjyrrKe5UpOIPbmCv3ds8fgJ/4pSp6dUPu/tl8chbZqEaLd4eyiKkCQJ+54l1DqxmE0rf/dowIAL+cAefXgku7dv4vOnBxGw6XPsh9YqUkdDbrrgSBwN+7Bw0SLmTp9C4L75WA+t9/awysRtNWHfPIXEFUuqTMAoj+vv/0hVZbRr24ZfvvsC97ovfLYqX0VJohvzqs9pHZjHjvWry1S2VSmCIDBs6N3s3rqOh5qH4No6BbfN7LXxlFVA0x589M1UUlPPsfvP7USm/eHzJ99Fpx3nhknM+un7625a6h9q0FB5Vc8e3XnpyYeQtk29bgKHuzgf99oveHpwd35bMFfxNOdlFRgYyKcfvsfzg7tgWfAKrvSj3h5SibT+ITjaP8rAe4ZjtVqZNeU7HMs/uJhI0Re5d0xj3Mh76Nu34rXDfZ26pqHyCd98P4UPP/8GXa9xXslcKwfRYcN1aA2R+Yf59vNP6Nqls7eHdE3Jycn0v/chHM3vRl8rwdvDKZHj7B56B6UxY8pk5i1azMtf/oKmyyhvD+sSkiQiHlxFLfNRdmyuGtNol1PXNFRVynNPjWLGd1/gXPE+9n3LvT2ccnEVZuLatQjznOd5oHUM+3du8emAAdC4cWO2rf6dpqa/cB7d4tPrHPrat7B+30mmTZvO8HuGoMs7he1csreHdZEkSRQsepvmugy2bVzr7eEoTg0aKp/Rt3cvTh85yG3VXRTPfwlXoW9uFZUkCfexLbDtB1j+NvVOLmbKi8PISDnFZx99UGUWP2vUqMGKxfO5t4EOcfXHOHPPeXtIVyUIArR/kCeffppz587x03dfods73yemM13pR2D1Rzw6pC/LfltUZf7uK0OdnlL5pH379jH2tXc4ez4dS6OBGOMaIhgDEATP/1KKThuOzNOItiKCTm0kItBAn9u68fjI+6lbt+51cap979699Ow3EGOnhzHUbeOTiQKtZ/aRUPQ3icsW88a7HzDtkAO/Bt7L7Fu0awm6wyvZu+sv4uLivDYOuahpRFTXhezsbL767gd27trLmdTziPpAxLAaIGix+kcj6fxk7U9w2fC3ZgMSgikDwWXHT7IzoG9voqPCeXDEMKpXr1h9aF+Xm5vLhxO+5Kefp+HX42n86rT0uYDoOrCSES2iGPvsE9zcpDlRT83w+Bhd5jykXfNpFm1g7oypipzu9wY1aKiuO6IoYrfbSU5Oxu12sy/pAE6nU9Y+jEYjCU2boNFoqFOnDmFhYWi1Wp9781TS3r37mDpjJiu37MIdVR+pUS+0AaHeHhZwYSuzbcF4Th/ex9iXXmX1sUI0rT2XbtyRk4Jp0Zt8/eVEHnn44evq34UaNFQqVaXk5eWxZt0G3vloAkXxvTDUa++xsrolcR/dTH3LYTauXkabjt1ID22Kvnk/xcfmtppwrfqU5XN/pnVr+eureJu6e0qlUlVKREQEI+69hz/Wr2REvIC45E1sKQe8PSy0DbtxsthAYuJadm5ZT5uAbPIWvKFoZgFXUQ6s/Zx5U7+5LgNGeahPGiqVqkwOH07mmRde5pTVD1rdi8YY4LWxiDYzgVu/Inn3DpxOJ19P+pbxL4xDo9US9+wstP7BsvXlyD6L4a/pzJ/6De3bt5etXV+jPmmoVCpZNWnSmE2rl/FEv7aY57+E25zvtbFo/IJITzvP4cOH0ev1vDhuLJIkkbgmEWnHz7KdO7GdO0T4nums+23OdR0wykMNGiqVqlzefPVlpk7+BuPGibh2/4qrKNcr4wi67UmGPXRpgaaePW/j1oZxOHPOVqptt6UQy6YfaW3ZzabEFcTHx1eqveuJGjRUKlW5DbnrDo4d2MN/nx6IuOZT7OePeHwMulotMBkiWbNu3SWvt2vVEndexQ8qOgsysC19j0e6N2H5r/OIjo4u/aYbiLqmoVKpKuXEiRN07dkH2t6Pvl5bj+6wEp02AjdO5PDuHRe3v6alpdFx8CPQY0y523OkH8W+5nOm/TSVOwf0k3u4Pk1d01CpVB4RHx/PgT1/E3RoMbZ133g0C61G70dxVGOm/TLr4mvVq1dH7yx/6ndH1mlCkuZz6ujhGy5glIcaNFQqVaVFRkZy9PBB3n9mBPnTn8GZd95jfbvrdeKzL74iJSUFuJCrSm8wlvl+SZJwnN5NxMF5/D53BqGhvnGQ0VepQUOlUslCEASeePxR9v39B/al/0E8sMIj2XP1YdUobD6C1u064HA4AHCVMVOAu7gAYc3HDK5hZueG1TRq1EjJoV4X1KChUqlkVb9+fbLSUulezY1t/STc1iLF+zTWaIS21RA+/GQCAD06tsF2dl+J94jHtxKwfRLLZ/3It198RlBQkOLjvB6oQUOlUslOo9Ewfcpknr+7O651/8WeflzxPo3NejNt5XamTv+Fxx4cgV/O1SsTijYz7l0LaWvM4MDOzTRrJk/t9o8//pi2bdsSHBxMTEwMgwYN4ujR/43h3XffRRCES76q4pONGjRUKpUiNBoNr7/2KpsWz6DmySVYkzcrOl0laLQIXZ/ive/n8ffe/djP7kO0WxCdtgtfNjOu/csJ3fEN/312EItmT8NgkC8F/ObNm3n22WfZuXMna9euxel00qdPH4qLiy9e07RpU9LT0y9+bdu2Tbb+PUXdcqtSqRR34sQJuna/DUdEfYL6j1e0L0l0I235gW7NapF6PuPiVlyNRsM9d/bjicce8Ujd9uzsbGJiYti8eTNdu3bl3Xff5ffff2ffvn3laqdOnTqMHTuWsWPHXnytZcuWDBo0iHfffZfu3buTkJCAVqtlxowZGAwGPvjgA+677z5Gjx7NokWLiI2N5ZtvvqFfv2vvClO33KpUKp8RHx/P+dSztK0XhfvEDkX7uvDE8SRbjmVjtVr4+tP32bjyN9Yv/5Wnn3jcIwEDoLCwEOCSehvHjx8nLi6OevXqcf/991/c8VVZM2bMICoqir/++ovnnnuOp59+mqFDh9KxY0f27NlDnz59ePDBB7FYKp/UUQ0aKpXKIwRBYNmiufgdW4PbVv5zFOXqS6NF6Pgo5xoOpeedQ/nwo08U7e9yoigyduxYOnXqRLNmzQBo374906dPZ/Xq1UyePJnTp0/TpUsXiooqv1GgRYsWvPnmmzRo0IDXXnsNPz8/oqKiGDVqFA0aNODtt98mNzeXpKSkSvelq3QLKpVKVUYzZs3l/IlkdAXvEnHfRMX704fHoR30H975z0PYXG7ef/sNxfsEePbZZzl48OAlaxb/nhpq3rw57du356abbmLBggU89thjV2umzJo3b37xv7VaLZGRkSQkJFx8LTY2FoCsrKxK9QPqk4ZKpfKgAD89VqsFbZ22HutTYwykxvML+HryFHbv3q14f6NHj2b58uVs3LiRmjVrXvO6sLAwbr75Zk6cOFHuPtxu9yXf6/X6S74XBOGS1/5Z1xFFsdx9XU4NGiqVymNGDB/O1q1bKdg6E1dhpsf6FTRaQm7ph8lkUqwPSZIYPXo0v/32Gxs2bKBu3bolXm82mzl58mSZas5nZv7vz8rpdJKamlrp8VaUGjRUKpVHde7cmUWLFmFf/qGi1fY87dlnn2XWrFnMmTOH4OBgMjIyyMjIwGq9kItr/PjxbN68mTNnzrBjxw4GDx6MVqtlxIgRpbb9888/s27dOo4fP864ceMoLCzk5MmTlwQTT1GDhkql8ri7776b77/5ErZNQXK7PNOpwilNJk+eTGFhId27d6d69eoXv+bPnw/AuXPnGDFiBA0bNuTee+8lMjKSnTt3lin1+h133MGYMWNISEggLy+PDz74gMWLF7PusrTwnqCe01CpVF4zZ/5CXvviJ4Qezynel7D2M7YumV3iOoMvuto5DSWo5zRUKpXPu2/YUNo3qO6RIk5GrVDlAoYvUoOGSqXyqndeG4/+6BpFU4zY049RN06twCcH9ZyGSqXyqqZNm9KuQXV2nD+EoWYzRfrwO7ONj/77piJtK+3MmTPeHsIl1CcNlUrldV98/D7av2biMmUr0n7G7rXUq1dPkbZvNGrQUKlUXle7dm2++/IznFt/kr1t0WmjYfNWakU+mahBQ6VS+YSB/fsRZM/BekreU9uuA6t4cuR9srZ5I1ODhkql8gmCILBz+xbY8RP2jPKn1rgaSZLgzF88OepxWdpTqUFDpVL5kOjoaPbv+pOwA/Oxp1Q+I6vt+A7q14pDo1Hf6uSi7p5SqVQ+pVq1auxYt4KOXXtQlJaEWPdWDLHx5WpDEt1Y9iwl+NxOvl0wR6GR3pjUoKFSqXxOeHg4h5P2smHDBj6f9AMHds3FEBiKBJijExACQtEYAzHGNbziXpcpC9faLxj/1KPcd+871KpVy/P/A9cxNY2ISqXyeRaLBVEUsVgszJq3AJfTxe79B0g+cRpB0OCw27Dow0CjwZ5ygImffMgD93tm8fuftONVzeVv/WV9n1eDhkqlqvIkSeLo0aOIokijRo08uoZxowUNdXpKpVJVeYIg0KhRI28P44agbilQqVQqVZmpTxoqlUpVCUomWvRF6pOGSqVSqcpMDRoqlUqlKrMyTU/98/ilZFF2lUqlUnnPP+/vpU23lSloFBUVAaiHZFQqleo6V1RUVGJG4DKd0xBFkbS0NIKDg6vsnmSVSqVSXZskSRQVFREXV3KurjIFDZVKpVKpQF0IV6lUKlU5qEFDpVKpVGWmBg2VSqVSlZkaNFQqlUpVZmrQUKlUKlWZqUFDpVKpVGWmBg2VSqVSldn/AREHP4x2LILEAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.shapes(adata, color_style=\"fill\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "fc15961f", + "metadata": {}, + "source": [ + "You can use the `hue` parameter to color shapes by group e.g. cell, cell type, phenotype, etc.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "65fabc42", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T21:18:55.102421Z", + "iopub.status.busy": "2023-03-31T21:18:55.102197Z", + "iopub.status.idle": "2023-03-31T21:18:55.446768Z", + "shell.execute_reply": "2023-03-31T21:18:55.446367Z", + "shell.execute_reply.started": "2023-03-31T21:18:55.102405Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAGbCAYAAAA4KMxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADJy0lEQVR4nOydZXRUV9uGrzMzmcnEnSREcXd316ItWoqWlpZ6gbq8hQoVaEuFlq+lXkpxd3d3hxgR4joZPef7wVveUiKTZCSh51qrazUz++z9TJic+2x57keQJElCRkZGRkbGChTODkBGRkZGpuogi4aMjIyMjNXIoiEjIyMjYzWyaMjIyMjIWI0sGjIyMjIyViOLhoyMjIyM1ciiISMjIyNjNbJoyMjIyMhYjSwaMjIyMjJWI4uGTKXn7bffRhAE0tPTnR0KALt27UIQBJYtW+bsUGRkHI4sGjL/Sr766it++OEHp41vMBh46aWXCA0NRavV0rZtW7Zu3eq0eGRkrEUWDZl/Jc4WjYkTJzJv3jwefvhhPvvsM5RKJQMGDGDfvn1Oi0lGxhpUzg5ARubfxpEjR1iyZAkfffQRM2bMAGD8+PE0atSIWbNmceDAASdHKCNTPPJMQ6bKkJ6ezsiRI/Hy8sLf359nn30WvV5/V5vFixfTo0cPgoKC0Gg0NGjQgK+//vquNlFRUZw/f57du3cjCAKCINCtW7c772dnZ/P8888TFRWFRqMhLCyM8ePH37OnIooi7777LmFhYbi6utKzZ0+uXbtW6udYtmwZSqWSxx577M5rrq6uTJkyhYMHD5KQkFCO346MjGOQZxoyVYaRI0cSFRXF+++/z6FDh/j888/Jysrip59+utPm66+/pmHDhgwePBiVSsXatWt58sknEUWR6dOnA/Dpp5/y9NNP4+HhwWuvvQZAtWrVAMjPz6dz585cvHiRyZMn06JFC9LT01mzZg03b94kICDgzlgffPABCoWCGTNmkJOTw4cffsjDDz/M4cOHS/wcJ0+epE6dOnh5ed31eps2bQA4deoU4eHhFf+FycjYA0lGppLz1ltvSYA0ePDgu15/8sknJUA6ffr0ndd0Ot091/ft21eqUaPGXa81bNhQ6tq16z1t33zzTQmQVqxYcc97oihKkiRJO3fulACpfv36ksFguPP+Z599JgHS2bNnS/w8DRs2lHr06HHP6+fPn5cAaeHChSVeLyPjTOTlKZkqw18zhb94+umnAdiwYcOd17Ra7Z3/z8nJIT09na5du3Ljxg1ycnJKHWP58uU0bdqUYcOG3fOeIAh3/Txp0iTUavWdnzt37gzAjRs3ShyjsLAQjUZzz+uurq533peRqazIoiFTZahdu/ZdP9esWROFQkFsbOyd1/bv30+vXr1wd3fHx8eHwMBAXn31VQCrROP69es0atTIqngiIiLu+tnX1xeArKysEq/TarUYDIZ7Xv9rf+bvwicjU9mQ9zRkqiz/fPK/fv06PXv2pF69esybN4/w8HDUajUbNmxg/vz5iKJo0/GVSmWRr0ulVFAOCQkhMTHxnteTk5MBCA0NrXhwMjJ2QhYNmSrD1atXiY6OvvPztWvXEEWRqKgoANauXYvBYGDNmjV3zQJ27tx5T1//FJy/qFmzJufOnbNt4P+gWbNm7Ny5k9zc3Ls2w//aQG/WrJldx5eRqQjy8pRMleHLL7+86+cFCxYA0L9/f+B/T/5/f9LPyclh8eLF9/Tl7u5Odnb2Pa8/+OCDnD59mpUrV97zXmkzCGt56KGHsFgsfPvtt3deMxgMLF68mLZt28onp2QqNfJMQ6bKEBMTw+DBg+nXrx8HDx7kl19+YezYsTRt2hSAPn36oFarGTRoEI8//jj5+fksWrSIoKCgO0s/f9GyZUu+/vpr5syZQ61atQgKCqJHjx7MnDmTZcuWMWLECCZPnkzLli3JzMxkzZo1LFy48M5YFaFt27aMGDGCV155hdTUVGrVqsWPP/5IbGws3333XYX7l5GxK04+vSUjUyp/Hbm9cOGC9NBDD0menp6Sr6+v9NRTT0mFhYV3tV2zZo3UpEkTydXVVYqKipLmzp0rff/99xIgxcTE3GmXkpIiDRw4UPL09JSAu47fZmRkSE899ZRUvXp1Sa1WS2FhYdKECROk9PR0SZL+d+T2zz//vGvsmJgYCZAWL15c6mcqLCyUZsyYIQUHB0sajUZq3bq1tGnTpnL/jmRkHIUgSTaac8vIyMjI3PfIexoyMjIyMlYji4aMjIyMjNXIoiEjIyMjYzWyaMjIyMjIWI0sGjIyMjIyVmNVnoYoiiQlJeHp6VlsJq2MjIyMTNVFkiTy8vIIDQ1FoSh+PmGVaCQlJclZqjIyMjL/AhISEggLCyv2fatEw9PT805n/ywcIyMjIyNT9cnNzSU8PPzO/b44rBKNv5akvLy8ZNGQkZGRuY8pbQtC3giXkZGRkbEaWTRkZGRkZKxGFg0ZGRkZGauRRUNGRkZGxmrkehoyMjJOQ5Ikrl69yrwP51Ko0yFJEkmJNzGbTBXqV+XiQrsOnRg8fPidjV2NRkPDhg2LLdMrYx1WWaPn5ubi7e1NTk6OfHpKRkamXBiNRm7dusWKZcs4f/YMJ44eQSkIeKiUNA3wwl2jBsBdo8algjd2s8XC5bQssozmO68ZzBbicvJ48pnnqFO3bpn6U6vV1KtX766kNx8fH1xcXCoUZ2XC2vu8LBoyMjJ2Iy0tjfXr1/PL4u+JiY0lws+HSA8NHmoXIv18USgc6zBhMJm5kJKGQSrbuGZRJMdsAW5fJ0kSuUYzvn6+RNeoSXhkJAMHD6Fly5Z2iNoxyKIhIyPjFERR5IvPPmPVyhVcuXKF+v7edK4ddWcm8RcWUbzz/wKCwwXEFlhEkcyCQrJ0hZxLz0HUuOLvH8Cbc96lRYsWqFRVZwdAFg0ZGRmHIooiq1at4uUZL9IsOIC6/l54aV1RCAJmi4VzSbe4nppBer4OlUKByWJB+9/lHZ3JhFIQCPH2pHV0OMHeJWclV2bS8vI5m5ZDSoGeNh060rFrV9q2a4evry9ubm64ubk5O8QikUVDRkbGYaSlpTF21EgUWem0C6+Gl9YVAFGSOHg9jmOxN2kSFkL9kCACPd1RFmGIZ7JYiM/M5vD1eLIL9XSsFUXjsGAUVdQkVZIkbmblkJSnI8NoQRIE9p+9wKD+/QipXp1uPXsx/G8b9c5GFg0ZGRmHcPLkSUYOG0qLQB/a1PifsWmBwciSI6epEehH59pRqMqwua0zmth16Tq3cvMZ07YZri5VZ5mnNHJ0ehKzc0jIK8Tk6cPm7TtQq9WlX2hnrL3Py3kaMjIy5WbpH38wYsggxjapfZdgZOsK+enAcXrWr0X3ejXLJBgAbmoXBjSpR7e6Nfi/vUfI0xtsHbrT8HZzpUFoNfrWjSLApOO5p55ydkhlQhYNGRmZcnHs6FGmT3uccc3r31mOAjCYzfx+5DQPtWpMVIBvhcaIDvRjcLMG/HH0NCaLpaIhVzraRYZycOc2du3c6exQrEYWDRkZmTJz8uRJBg3oz2MdW+DpqrnzuihJ/Hn0LD3q1STQ08MmY0X4+dA8IpQt56/apL/KxpAGNXn7tVedHYbVyKIhIyNTJr5c8DmPPTyGx9o3w8/97pNAuy7dINTHi7rBgTYds0VEdZJzcknPL7Bpv5UBT1cNFORx6NAhZ4diFbJoyMjIWM0vv/zMV/M+4aEGNe5akgK4eiudxOwcuterYfNxBUGgXY0Izt5MsXnflYH6fh5s2bjB2WFYhSwaMjIyVvHbLz8zf847PNKiASrl3bcOo9nCpnOXGdGqsd2OkNYM9OdaaoZd+nY2LkolFnPV2LORRUNGRqZU9u7Zw7w57zCyUS1cVPeehDp0I5620RG42tGLSat2QRRF9BU0M5SpGLJoyMjIlMi5c+d4fPJEhjUo/ujsxaRbNI0IsXssLaLCOHg93u7jyBSPLBoyMjLFkpCQwPiRDzG0blSxCXbG/y6raBzgs9Q8PITzSbfsPo5M8ciiISMjUySiKPLgoAfoERGMv0fxfkkpuXmE+jjGKUKlVOKp0dxXyX5VDVk0ZGRkiuSFZ56mvreWEO+S8y1uZuYQ5uftoKggwt+Hm1k5DhvPEdzMKyQyOsrZYViFLBoyMjL3cOzYUfZt20qT4IBS2yZm5RDm62P/oP5LdIAvsemZDhvPHmTrCknMyuFQQgrLLtzALbo2k6Y86uywrOL+cQGTkZGxCdnZ2YwdNZrRDaKtap+lK8TXTWvnqP5HoKcHuy7fcNh45UVvMhGXnk1yTi75JgsKlZILSalER4RjsIj06NGDvvXrM3DQYEJC7H+IwFbIoiEjI3MX40ePonN1f7zdXEtvzO2qdo4soOSuUSOWbs7tcLIKdOy5Fk+yKJBtMFLg5YeqXkOUdf1uF2O6fhk/rTeawEDenzmDrl27OjvkciGLhoyMzB2ys7NJvZlA14bWZ3W7a9SIooiignW9qyL5egNHEm5xICkNvZs76gfHoapVB8HNHa+wyLvaSpJENpB+9RJjvlyEZuZLDOjWlfdff61KlZyQRUNGRuYO8z7+iFre7mW6Rq1Ukqs33ONDdT+TW6hn/cUbJKHCGBiMcsaTeLVoW2I2/F/vudSpj1inPjpJYtmOjawbMIg2dWszZ9ZM6tat66iPUG5k0ZCRkbnDj4sXM71DszJdE+TpQWaBzqGi4czVqSMxNzmclEZcYhJ+b3+MS5ee5epHEAToOQBDzwHsPnGY7k88TZcaUbRq2pha4eFER0fTtGlTG0dfcWTRkJGRAWDXrp1E+/sWWYq1JIK8PEjJyaNWUOknrWxBtq7QaZX8ziansS0mEbRu+P+wAlWEdYcFSkPRoi2W5m3YeuMKm1OSUd48jfaH3/DJyaBt82a89fxzhIeHl96RA5BFQ+Zfh8Fg4LXZr3HmwhlSUlNQqIq+SZqNZqZPms4TU59wcITOYfeOndT1LXsNjGBvDy6npNkhoqK5lZtPsJenw8b7i/iMbK7oRQQ3d4QPvkIZHGrT/gVBwKVmXah5e4nK1G8IacC6/TvZ9swLuGZnER4YQOfWrVAIAl7u7jSsUxt3d3fatGmDooxiX+445RrhMv8WkpKSeG32axw4fQBzazPqOmqU7spi16FFg0jhpkLEiyKvvfAakydPRvmPzd78/HzOnDlDamrqXa/7+voSFRVV4Zjd3d0JCLD/E3xMTAwDe/VkYot6ZZ5pmC0Wvt93jMe6trVTdHez7cJVwv18bF6zozhEUWJ7zE28wqMJrFmbP9CiGjjcIWP/E0tGGpa4mNtxFRbgeisZZX4OXpfPM3zgAFo3bEBkZCTNmzcvc9/W3udl0ZD5VzDj1Rn8sfkPNO01aFuXLafAlGXCuM9I0sYkHhz7IIr/2oLrdXoOnz2Mpq4Gk+fdzqvKfCWqgopP5MUCEXO6mfat2xMVHsVzTzxHUFBQhfv9J/169qCuYCTC36dc13+54wBPdG+Pwk626H/nm12HmNipld29riRJ4kxKOmdTs3nupZeJT0vni6XL4IOvECrZSTHJaMR4+jjKjFS0l8+jyc1Cy+2TbQ8PH8rksWNxdy/5gIMsGjIy/8VgMFC7TW28nvNCqEA+gaXAgqXg7poHLv4uCEr73ihFo4g524wpzYS0RWL8iPHMeGYGnp62WaLZsX07H770Ir1rhpW7j3WnL1I/JIiaQf42iak4LKLIoj1HmNatnd3GkCSJK6mZnEjPYeDQYbz25lvExsbSbew4LO8uQFBrSu+kkiDm56FYvxzX4wf57oP36Nmz+E17a+/zso2IzH3PjRs3cA1zrZBgACjdlaiD1Hf9Z2/BAFCoFaiD1Lg3dMftaTd+TvyZmo1qsnP3Tpv0/9nHH9E2tGJLYA1Cq3Eu0f5V9TLydSWaJ1YUvcnM76cuUxgSxZ4jx/jPnHdJTEykz9BhGJ99rUoJBoDCwxNGTST/2dd45Oln0Ol0Fe/TBnHJyFRqflzyI6bo+6Nwj0KlwL2tO/4z/Xlk+iNMfXIq+fn55e7vxPHjpN+Mv6d0a1mpEehHfGY2epO5Qv2UxrXUDKID/OzW//KzV3nhjbf4+fffcXNzIycnh8FjHyaz5wOo/pGsV5VQVY/AMGoSb3/4UYX7kkVD5r5nw4YNuITbr6KcM1B5qvB+1pvN+s30HtSbmzdvlqufPbt3U9enbMl8xdG+ZiT7r8XapK/iOH0zmQYhtt/TKTSa+P34eVp36crDjzwCQEZGBh379id16MO4DR9j8zEdjbJpS85cvlLhfmTRkLnvsbha0ARXrWUFa1CoFXh39Sa5RTK9hvYiOTm5zH2s/HMptQJtsw/RIqI6l5JTySnU26S/f3IrNw9PjQY3jdqm/RYYjHx36BR1Wrflq28XAXD46DE6DxpMSp/BCG062nQ85yHYpH67nKchc19z8+ZN9KIeN+5fiwvPJp7o/fV0G9iNvZv2Wn26KjExEUNeLpoI2xzpVSgEejWozfYL1xjespFN+vw7W89fo1s96z2xrOFwYio3cgv5feUq2rVrD8C+AwcZOmkywuzPUAUW/bsU8/MwXT6PmJGGJTEBSafDnBiPVKhDcHNH0hWg8PNH3bAZqjr1UUXVvL2/cB8gi4bMfc3GTRsxh9l3nb0y4FrdlcIHChk5cSS7Nuyy6pr33nmHFkE+No2jTrUAjsXe5GJyKvVtuIwUl5EFSIT5VrzYkyRJXE/LZNu1BJq3acORPcvuJMbdunWLic+/gOLjb++5yVtSkijctBrjsUMI3j641G2AKqIG6hZtUQQEovD1R+H2v6U+S1oqpvOnMB7ej27JD0iShKQrQFBrcKnTAO2AoShDqlf481j1mUURw5o/kfSFFe5LFg2Z+5rUrFSEcMfZdjsTbU0tV7Zf4aXXX2LunLklts3Ly+PIvj2MblTTpjEIgsCo1k349fApAJsIh85gZM2pC0zs2KrCfZktFjZciadOyzZs/u5XatT438xFr9fTY+hwsqY+h8vfBEPMzyPvy4+R8nLQPvAg7g8/iuBS+h6ZMjAIZbc+0K3PXa9LBj3GMyfI/fgd1O274DZ8DIIds7nFrEwUH77J4Mb1mffNwgr3J4uGzH2NIAgOORZbWfCb6sePc39k5LCRtGzZsth2y5ctI9rTPoWTVEolD7dtxi+HTqIQhAplbsemZ7Hu9EWGt2iEp2vF9qXOJaZwNDWHdz/8iCFDh971niRJBAYHo5k+67aVx38xnj5G/qIFuE+YhqZ1+wqN/xeCxhVN6w6oW7VH9/tisl97Fq/nX0MZFGyT/v+OmJdLxqi+HDpwgNatW9ukT1k0ZGTuIwRBwHuqN6MmjuLqmavFbnx+++UXDIqsZrc4VEolI1s14bfDp8gp1NM6KqzMm7CHrsdzMTmVSZ1a4V6BzW9JkjgSn8SBhFscOXqM0NB7PaPe/WQebr0GIPQacOca3fLfMJ07ic/cL1G4l92TqzQEQcB97GTUN66S8+6reEyejrpp8UJfVswx1zG89AS7du+2mWCAfHpKRua+Q+2vptC9kP0H9hfbRqUQUKvsa4XhplEzsWNLMvN1/N/eoyRkZlt1XWaBjt8OnSSjQMeEDi0rJBgAB28kcC67kJjYuCIFY+/+A3yxei08ORO4LRj5iz5HKsjH+425dhGMv+NSoza+H3xJwR8/YTx9zCZ9Gg7tJej7zzh79AidO3SwSZ9/Ic80ZGTuQ1x7u7L4t8V06tjJqXGolEr6Na5LWl4+W89fJc9gpFFoNeoEBxDo+b+bsUUUuXIrncM34pEk6Fa3BtGBtknii8nTsWzlGlyK2Icwm808+cqrWJ57A6Ug3BEMhZcP7qMn2GR8axC0Wnze+ICsWU/gM3seCp/yf3Zh5e/UO3eM9WtW4edn+0RIWTRkZO5DtFFatq/fTlpaGoGBjnGDLYlATw/GtmuOzmji3M0Udl26Qa7egNF8+2Sbi0pJmK83A5vUu0tMAAz/zTIXJQmT5X/eXwIC7q7qEk0Sr6dlUL9ZSxo0aFDk+ytXreZWw+Yo/W7nqhSu/B1B4+pQwfgLQavFfexkCpb8iOe058t8vZifh+WHr2iDiQ3bt9kkJ6MoZNGQkbkPEVQCytZKvvvpO15+8WVnh3MHN7ULbWqE06ZGyQWF0vLyOZuWTUJ2HoEhoRhNRs5cuIRWq8XH5/ax28uXr+Dt4cErfTuhKsJ1VpQktl5PZNviJcWOM3vBF0iPz7jdPicb/a6t+M7/vwp8woqhbteZgiU/3DYaLENeh5iThe65KTz18Fjefec/dhMMkEVD5j5Hq9ZiumqCoh8072tcW7ry1YKveGzSY3ZZprAH+XoDu+JS0KvUfPDJZyQnJ/Ppp5+i0bjy2GOP3WXvnZ+fz4oVK9h7PYHudaLu6WvHjURmvfoqkZHFe0bplKo7uRKFG1ehHTLSqbbngiDg2qUXhgO70fZ5oNT2kigirF2KdvdWvvj4I0Y+9KDdY5Q3wmXua6ZOnorLNRck0YlFpZ2EQqNA1V7F+5+87+xQSsVgMrPtajzr49N47aN5TJz6GM899xzffvstnTt3pnv37vfUg/Dw8MDPz4+dl29wOSUduL03ojeZ2Hn5BkmFJqY+Pq3YMZOSkshOue3MKxn06Pdsx7VrL/t9SCvRdOmJ8Ujxhxj+wnj6OJapIxmlVRB74phDBANk0ZC5z/Hw8ODBwQ9SeKbimbBVEfeO7izfs5zN2zbf9bpKraHQ6Hzn3wKDkX0xN1l5I5l6nbsjqDW8+dZbrFy5ksGDB9OlS5cSiwcFBATw57JlXJdcWHYhhnc37mFbaj4dHxrLzr17Sxx7xcpVSP2GAKBbuxxt/yEIKucbWyr8A7Gkp5bYxrJjEw23rODQlk189v57dl2O+ify8pTMfc87r77Diq4roJmzI3EOmhEaZrwxg26du6HR3E6QmzLtCVZ/OZ+2ESEOj0eSJI4mpnL6ZgqePr5MeHQqfyxdyumzZ2nVqlWZN+6rV6/Ott17MJlMt+tsW5GtDbB4xUqUz70JgGH3VnznLSrzZ7EHgkKB4KpFMugRNPda1puuXKTRyf1sXrEcV9eKWdqXB3mmIXPf4+bmRttGbcm/UP66E1UZlbeK/Nr5LF229M5rYeHhmB28YpdbqOdYfBI/nrpCq8EPsmXvft5+732+/Oor/Pz86NKlS5kFw8fHh+XLlyMIAmq12mrByMzMJC09HcHdA0tqCoqAIKusQRyFKjIac+z1e143J8QhvjOTBe+96xTBAFk0ZP4l/OeV/yAc+vfYifwTt05ufPDFB5j/e8Q1KiqKSylpDhk7OSePHTGJrItNofO4KWzds5cZs15izpw5zJ07l379+tG8efNy9R0ZGcnGjRvLfN3YKVPIa9sZQRCwJN3EpW7Dco1vLxTevkime5cP3X/4kr2bN9GkSRMnRHUbWTRk/hXUqVOHRqGNMKYanR2KU1BoFOjCdSxZevv4aUREBLUaNuJqaoZdxhMliaupGay+HMd5s4r/fLWIIydP8+T06QQHBzN58mSSkpLo0aMH3t7ld67VarVYLBYKC63fs1q1eg3H0jJRj570vxeVlf9WaDl6gFYR1WnUyPa282VB3tOQ+dcwdthYXtn8Cuog2xbxAZDMEgVXCii4UIAx3YhFZ7nLKNGis6DUFn2UUzSJAKi8VLjVdMOjgQfqELXNNze13bR8+OWHjBs7DkEQ+OnX36hXuxbPdfXBxUbHTEVJIj4ji1030+k7YADLXnn1nvoeU6dOJTU11WZ+SJGRkYwYMYJ169ZZ1X7tzp1IY6c6dPO4rPxzliHpC3Ff8Qvfby77rMrWyKIh868hMjwSIdV2NwpJksg/m0/2/mxMWSbcarnh2dQTTYgGpaeyTDclSZIwZZrQXdaRtjENY4oRn04++Hb0RVDZJmalu5I88jh95jRNmzTFx8eHLp07ka3LIdCz4iVfLyWnsvlKLM1btWbbnpVUq3avIWJsbCynTp1i4MCBFR7vLxo3bsyaNWuQJKnU37nZbGbPgQMoew6/+w2LaLN4bIE5/gZuw0bf+Vn6fTGvTnu8QrMyWyGLhsy/hnbt2qFOt80sI+9MHmnr09BGaQkaHoSmWsVsuwVBQO2vRt1BjU8HHyx6C5k7Mrnx3g0C+gbg1cbLJk/GLkNcmPn2TLas2AJA567dOLns13KLhiRJXEjN4HB8Cq7evuw/epzw8KKzvWNjYxk2bBhdu3Ytd/xFoVAo8PHxYdmyZYwYMaLEtgkJCRjCo+/KtlaGVKdw8xqbxlQRJElCvJWM8F+jRDEnm4jEGzw6vuK1MGyBLBoy/xoEQUCwCEiihKAo3w3YkGIg+bdkNMEaIp6MQOVtnz8hpauSwAGB+Pf059aKW+SdziN0cigKVcXW3jXVNFxPu05ycjIhISF4enlhEcv+lJ1TqOdUUip7rsQyYfwj7Fz6VollZk0mE6NHj6Zr1674+PhU4BMUTefOnXn22WdRqVQMGzasxLYK9d0PDgr/ACxJN20eU3kxXTyLKrr2ncx0zc8L+eCN1+9UF3Q2lSMKGRkH4evjW+7s8Pxz+SQuTiR4dDAhY0PsJhh/R6FREDImBK/WXtz89iaiueLLKJZaFo4dK58Ft85gZPW5q6yNSaH72ImkZWTw2RdfligY169fp2/fvtSqVcsuggGgVCqZMmUKU6ZM4euvv8byN2PD0hBULih8/TAnxtsltrIgmU3kL/oc94enALeP2HqnpdCrWzfnBvY3ZNGQ+VdRr3Y9DImGMl+XdyaPzF2ZRL0YhWuo48/HezX3wrulNym/piBJFUuwEF1E0tLLfty20GhiyZkr9Bo1lhNnzvL8Cy+UmhexcOFCRo0aRaNGjahVq1Z5Q7YKpVLJuHHjWLlyJV27duW7777j4sWL5Obmlnqt+6gJFPz0rV3js4b8Hxai7TMIZXAo5sR4MiYMZfEnHzk7rLuQRUPmX4WPjw+U8WFdn6QnfUM6YY+HoVA770/Gu603Lv4upK2pWH6FW0M3Fv5ctvXx3EI9ay7G8O7H83jzzbdK3V/R6/U88cQT/P777wwcONBhhol+fn506NCBTp06sWrVKp599lm6devGs88+S1xcXLHXudRvDIDxxBGHxFkUhZvW3K5D3n8IxnOnyHhkCPsPHrRp1T1bIO9pyMiUgGgQSfwukchnIlG4OP8ZK/CBQG5+e5O8s3l4NrbeOvvvuPi4UGAuuPOzWMrMJT2/gA827GLNmjUMGjSo1P5zc3N56KGHCAwMpHv37uWKsaK4urreqZEuSRKnTp2iR48eDB48mPzLF1FazAjKu29/ntNnkv36c3iHhqEMvrfCn72QJAndkh+wJN3E4+lZWJb9QvChXZxPSiIkxPE2L6Xh/L8CGZlKzK3ltwjoG+CQ/QtrCRkXQuqqVCw669fti6NT5y7cyNMX+35mgY5l566zbds2qwQjOTmZTp06ER4eTu3atSscny0QBIHmzZszbtw4bty4gSEhDsv+Xfe0U3h54/ncq+R8+BamS+cdEpskSeQvnAeShLZnf5QvT2eSr5ZzR49USsEAeaYhI1Ms+gQ9xjQjIWMr1x+v0k1J0NAgbi27Rej4ij0R16pVCwv3LjUVGk38fOw8bj4+rN+6jTp16pTa14ULF5g4cSKdOnUqcWPcWfwlHtWrV2fh3LcIbNvpHkNAlxq18X79A3I//g+uXXqh7TfYbvFIBj05H76FS4MmuAkCtTYvZ+PuHXh5edltTFsgzzRk/lU0qtsILlnXNnVNKsEjg+0bUDnxbOyJ/qYe0WiD01T/XZ7SGU1cTE5lX0wi727YxTsffsTJs+esEoxPPvmESZMm0aFDh0opGH8nKCiIzh3ao5s3u8hDBUo/f3ze+QRzQizZbzyP6cZVm44viSL6/bvIevExtAOGoRUtdMxMZM/6dZVeMEAWDZl/Gb269UJZULplhqXAgqXAgiakYkl79sS9vju667oK96MXJd7bvI+1MSlE9hzI5Df+Q0JiIqPGjLHq+l27drF06VL69etntyO1tqZ7p054XruI5dtPi3xfULngOfUZPCZPp+Cnb8l6+Sn0e7YhGYpfyisNyWhAt+oPsp6ZiOncKbzf/hjl7q0MFEz8+dNPKJ1YMbAsyMtTMjJFkHc6D68Wlfupzy3aDd0VHR71Pcp0nUVvgb+dOj555iwKhaJcyWMfffQRy5cvp3v37pXay6koRg0Zwg9/Lke8cAbVB1+i0Lrd00YVXQuftz/Ckp6Kfss6spY/icLXD5dGzVG3aIMqMvquDXXJYgGLGamgAHPyfxMGTUZM509jOLAb194P4PPh12CxoHr3ZQa0asGiLz6vUr87WTRkZIpAH6/Hu4PzfX5KQltDS87RnDJfZ0w10rtj7zs/q1Tluw0cPXqUlStX0rdv3yp10/sLb29vqvt4MXDwA/z25nPoxj2OS9OWRbZVBgThPnYy7mMnY0lLxXTxDIWr/sCSmAB/r2uh1yN4eYNCQBVVE0Fxe/agjKqJ77CxCFotpquXcPvmE1Yt+oaWLVo44qPaFFk0ZP5VfPbNZ0gRpSfHGVINqP1t74ZrSxQaBeZcc7murehSiF6v5+mnn6ZTp05VUjD+ok6dOrRt0Zznn5rOky+9wsnlP6Fv2ALLwOF3+VP9HWVgEMrAXrh2KXs9camwEM2C99m7djVRUVEVjN45yHsaMv8a0tLS+OGHH1C3skIMpNuusJUZhUZxl/26tUhxEg3qNCj3uHq9nkGDBlG3bl08PMq2NFZZCQ4OZsWPi7m2awdP1w7HdeZjSB//BzE/z2ZjiHm5KOfM4v8++ajKCgbIoiHzL+H06dO06dIG36m+VpkVivrKZZVtU67AsAdKNvUrDoPBwKBBgwgNDSU6OtrGgTkfpVLJqy++QPyli7w7cijm6eOwXL9c4X4tKUlo3n2J1Qs+ZUCfPjaI1HnIoiFz3yNJEqMmj0I1RoU2WmvVNc60C7EnpiwTikxFuRPHZs6cSUBAwH0jGCX5eD06YQI7165B/d2CCvl9WfZsQ/vuSyz9bD6tWxa9Z1KVuD//MmRk/oskSQwcPhBLCwuukWUwGqwCy/SiQUSylO1mljw/mVkvzCrXeNu2beP48ePUrVu3XNdXNvR6PTExMTRoUPxSXdOmTZk0sD/GOS+XuX/JYsb0zXwaHNnNuQP7ad+uXUXCrTTIoiFz3yJJEuMfHc9lr8u4diqbM+1fJVgrMxadBZWX9WdZjOlGgn2DmTp5apnHiouL48UXX7R5ASVnERMTw9y5c/nqq6+oV69eiW3fmDmDBkoJw9GDVvdvvnwe3cMPMKtdc7avXlklkvasRT49JXNfkpOTw6AHBxHnHofnkPIZ+1lTPtSZFMYWoqluffKhcb2ROS/NKfM4FouFhx9+mG7duqFWV+4TZaVhMBjYtWsXJ0+e5MiRI1Y5yGo0GtYs+Z0uQ4aR6u2NspRDBOaYawT99DVr9u+zux28M5BnGjL3HVeuXqFDrw7EVovFa7hXuU4YaYI0GJLKXnfDkegu63CrdW9CWpFtb+gwxZp4eMzDZR5n7ty5VKtWDV9f3zJfW1nIzMxk2bJlrF27lgkTJpCTk1Mmy3F/f3/2rF6J+utPSrQVkSQJ8YPXWTz/k/tSMECeachUcXQ6HQUFBaSlpbFy3UqWrlhKak4qHg974B1e/uQ8bQ0tuqs6XKs7vuCStehu6Kg2oppVbaUDEmuWlb0O9qVLl1ixYgUDBw60qr3RaOTKlSvExsaSmZl5V5Emk8lEQEAA9evXJzIy0iHlSw0GAzt27ECn0zFt2jSmT59e7tmjv78/SxZ8SvdevfD6+BvUjZrd00bctZlu7dvTtm3bCkZeeZFFQ6bKceXKFTZt28T6reu5HHcZTZAGyVXCFGBCO1GLv6t/hZeV3Bu4c+uPW/h1c0zxoLJiTDOi8lFZNYsy55gJdwmnRRmzjzMzMxk/fjydO3cu9fdZWFjIwYMHiY2NpV69erRt2xZ/f/+7hEEURW7dusX58+fZvn07bdu2pVGjRnZbAoyPj+e3335j8+bNNtuL6dy5M7t37qRL1674v/EBis4977wnGfTkfPwO38Y7v2ysPZFFQ6ZKcfrMaYZOGIrYWUTTVoPn0P/tV2iwnbmg2l+NOc+MOd+MyqPy/ZlkbM3At7N1y0Wmg6Yy52UUFBQwYMAAmjdvjrd3yTO2hIQEtm3bRrt27Ur0oFIobh/1DQkJwWQysXPnTpKTk+ndu7dNhUMURc6cOUN8fDy7du2inY1PLXXs0IFrV64w8amnubpqCfqJT+JSrxGmnxfxzHPPExAQYNPxKhuCZMUB5NzcXLy9vcnJybmvTgHIVC0kSaJR60YYHzQ6pE535o5MAPx6VK7ZhinbRMLXCUS/HF3qzdaUacLyg4Wrp8tm7/3iiy8SGxtL48aNi20jSRJ79uwhOTmZIUOGoNValwPzdw4ePEh+fj69e/cuvbEV5Obm8n//93+88MILzJo1Czc36/Z8yktiYiL/mTefc5evoM/OYtOK5ZXeGr44rL3PV75HKBmZYjh79iw56hx8Qx2zIevT0YeYD2Lw7eKLoKo8p6jS1qUR+ECgVU/n+tV63n353TL1v3XrVo4ePUqPHj2KbWM2m1m9ejUhISGMGjWq3DOF9u3bs2HDBi5cuFBivoQ1XLx4kStXrnDo0KEK92Ut1atX59tPPnbIWJUF+fSUTJXBYrHgFm7fJ8e/o9Ao8OngQ8a2DIeNWRqFsYWY0k1W1QcvjCukUVCjMp+Y+vbbb0vc/zCbzaxYsYKmTZvSoUOHCi8t9enTh0OHDpGfn1+u681mM9u2bcPf35+jR486TDD+rciiISNTAn49/cg7nYchxfnHbyVRIvm3ZEInWFfiVdwh8tn7n5VpjHXr1nHhwoVi9zH+EowWLVrY7EipSqWiR48e7Ny5s8zXXrlyhY8++ogZM2bw1VdfldvmXcZ6ZNGQkSkBQSEQMjaEW8tvOTsU0jem49XSCxdfl1LbFsYWEuwSTM2aNa3uPysrizfeeIMhQ4YUOXuwh2D8RVRUFOnp6ej11lfGO3bsGF5eXqSmpjJ06FCbxiNTPLJoyMiUgmu4K0igTyh/qc+KUnCpAN11Hf69/UttK0kSWd9n8eVHX1rdf2JiIt27d6dp06ZFZn1LksSWLVuoV6+e3ZLWWrVqxdGjR0ttZzAYWLduHbVr1+brr78u9XSXjG2RRUOmyuDp6YmY7RxPqOBRwST9koRocPz4BZcKSN+YTvjj4VbZuuuW6xg9fDTNmzW3qv+kpCTCwsJo1qxZsXUe9u7di7e3N02aNClL6GWibt26xJeS45Cens6mTZv4/PPPmT9/fqW2eblfkUVDpspQs2ZNdNd1mLJNDh9bHagmaGgQMXNjyD2ZWyGr7LKQuTuT9C3phD8ZjkJT+p+rOdeMe7o7X863fpbxyy+/0LNnz2IF4/Tp02RnZ9OhQwer+ywParW6xCzxuLg4Tp8+zffff2/3WGSKRxYNmSqDIAi8OP1FdGt1Thnfo74HUTOjKLhUQMwHMRRcKrDbWMZUI/FfxGNIMhDxVIRVggFg2mLi8w8+L9NY165dIzIystj3rl+/zqBBg+z+VF9YWFjsGHFxccTGxrJ582aaN7duBiVjH2TRkKlSvPj8izTwakDhjUKnjK/UKgkZE0L4E+Fk7csi4ZsEjOlGm/UvGkXSN6aT+EMigQ8EEjImxKolKbhdYCnYFEz3rt2tHk+n03H06FHCw8PvjUUU2bVrFwMHDnTIMlB2djY+Pj73vG4wGDh8+DDr1q2ze7KeTOnI59Nkqhy/f/c7XQd0Jat+Ft6dva2+qdoSFx8Xwh4No+BqAUk/JKHyVuHf2x9tVNmzoiVJQndFR9aeLAwpBnw7+RL1YlSZ3XmNq40s/GJhma4ZMWIEzZo1K/K9y5cvU7NmTTQa29mzlERBQcE9oqHX6/nuu+9YvXo17u7uDolDpmTkmYZMlcPX15dtq7fRuqA1V56+gqXQ4rRY3Gu7EzUjCv8+/qRvSifu0ziy9mRRGFt4u7JeEXsfkiRhzDCiu6YjY3sGMe/HkHMkh4ABAdR8oyZ+3f3KZefuUuhCo4aNrG6/bNkyCgsLi1yaEkWRQ4cOlck+vKIEBgbetRF+69YtNm7cyJo1a+Q9jEqEPNOQqZIEBQWx4o8VzP14Lt988Q1KNyVisAjNQButdfjsQxupJXxaOMYMI/nn8sk5loMhwYBoFO/ZjxD1IipfFZpqGtTBaiKejkDlWbE/RWOqkVoR1h+FTUhIYM6cOTzwwANFvn/kyBHq16+Ph4dHheIqCykpKXes1CVJYv369axZs6bYmZCMc5BFQ6ZK89KMl3hpxktYLBZWr1vNrv272Lt4L7luuYhNRdxqulm9iWwL1P5q/Lo63uDQvMPMO3Pesbr9okWLaNiwYZEZ1AaDgXPnzjF58mRbhlgiN2/e5MiRI4wePRpJkti8eTNPPPGELBiVEHl5Sua+QKlUMnzIcD7/8HNO7jnJL2//whCGkPB6AgVX7HfKqTJgzjOjSFZYXS9j27ZtbNiwgejo6CLfv3DhAk2bNnVIkaS/2LNnD0OGDMHFxYWDBw9Sr149Xn75ZYeNL2M9smjI3Je0b9eeT+d+yp4te/De440+1nnZ3PbGmGZk0EDrj8R+/vnndOzYschZhiRJnD59moYNG9o6zGLJyspCqVTi5eWFTqcjJiaGzz77TE7cq6TIoiFzX9OsWTN2rt1J7ne56JPuT+GQ4iU6tepkVdtz586RkZFRbL3vtLQ0fH19HXq09eDBg7Rq1QqA48ePM3v2bNkapBIji4bMfY+Pjw8/fPsD6d+mI4mOyeR2FJIoIZwT6N2r9CJGoijy+OOPExYWVmyby5cvU7duXVuGWCJ5eXmkp6ffMVY8d+4cffr0cdj4MmVHFg2ZfwX9+/WnVb1W5G8tX82GykrBhQLGDBqDp2fp9TWuX78OQP369YttEx8fX6ydiD3Ys2cPHTt2BG77SrVu3Ro/v8pVKVHmbmTRkPnXMGn8JOJ+j8OU5XjvKnsgiRIchX49+5XaVhRFunfvXqJgwG37c1dX+5fShdt5GHl5eXdmGUeOHOHtt992yNgy5UcWDZl/DSNHjOS5F58j7bO0+0I49Hv0PDnsSTp1LH0/49y5c9SqVavEpanc3FyrZiy2QBRFNm/eTL9+twXPbDZz7do12VeqCiCLhsy/BpVKxfyP57Pxj43kfpGL7rRzjA9tgTHNiH+8Py8+/aJV7VevXk1gYGCJbQoLCx2WzHf8+HGio6Pv2IZcuHCBmTNnolQqHTK+TPmRRUPmX0ebNm04ffA0qd+nkr0rG9HonBodFcG82czn739uVS6FwWDgzz//LLV2dkBAAOnp6bYKsVgKCgo4e/bsHWuQtLQ0du7cycyZM+0+tkzFkUVD5l9JYGAg8THxPNHgCfI+y6NgawG6S1Vj5mHONVPDvQZt27S1qv369esJCwsrNe9BqVRiNpttEWKxSJLE1q1b6datG0qlksLCQtatW8eRI0fk+t5VBFk0ZP61+Pr68urMV7l6/CpfjfuKgAMB5KzIQTRX3pmHKcuE4TcDLzz5gtXXfPnll2U6Rmsv4ZAkiZ07d+Lv70+NGjWIiYnhww8/5KWXXqJ27dp2GVPG9siiIfOvR6PR0K9fPw7uPMiEVhNIfj2ZvCN5lU489Al68r/NZ/W3q+nfp79V1xQUFJCTk2N1slx4eDjXrl2rSJjFcujQIZRKJa1bt2br1q1cvXqV2NhYnnzySbuMJ2MfZNGQkfkvCoWC2W/M5vSR00yuPpmcBTnoE52fRS4aRQr/LCTqWBQbl26kcePGVl979OhR/P39rW7funVrjh49Wp4wS+TcuXPcunULLy8vvvjiC0aNGsW+ffuKrRgoU3mRRUNG5h+Eh4fz5qtvsm/VPqrtqkb+/+XbtDpfWTDuN6L/Ws/8J+azddVWGjeyXjDg9qmpkJAQq9t7eHgQGBjI5cuXyxpqsSQmJnLs2DHy8vJo3LgxeXl5PPPMMw41RJSxHfK/moxMMURFRbFvyz5WfrES/03+FPxZgO66DslsfysSi96Cbo2OFpYWXDt+jUEDB5W5j6ysLLZu3Vrmp/lu3bpx6NAhsrOzyzzm35EkibNnz7J27Vp8fHxYtmwZc+bMkY0IqzjycQWZfxWSJLF50xa++HQhGemZKP/7JyBKIm6eGvoO6MMLM569K1+gWdNmHNh6gO07tjNvwTwOLz9MwGMBuPi42CVGi85CweICPn/jc4YMGlLufj788ENCQkLKfJN2dXXlgQceYM2aNQwbNqxcCX+5ubls2LCB/Px8HnvsMV599VWHZZrL2BdBKqoe5T/Izc3F29ubnJwcvLy8HBGXzH1CYWEhAFpt2Wtn24qLFy9y8eIlvv3yO7LS86jmGUnHmsPw0N69OZxfmMP5pAOcTdyDwVzI0IcGMWLEQ3dsLuD251i/fj1z5s8hS5eFECUg1hFxDb99Q1SoFeUq1foXlkILusU6vp3zLX16V8y4b8qUKXh4eBTraFsa6enprF69msaNG9OiRQurjsQaDAb27dvH9evX8fDw4M8//6Rp06blGl/GsVh7n5dFQ8bmFBQUsHXLFj555x0uXbmCt6srAYGBtOrQgTc/+ICgoCC7x3Dk8BFWr1zHpUuXSbiaSp1qzakT0gp/z2CrrtcZ8rlw8xAp+TfQm/PuvJ6UGUNkZDQqlZLmLZthEYzs3LMTvUmPIAhk52YjeAuoolQYA40ILgJuNd1Quhef6SxZJApvFGKJtZC1MYulfyylb6++Ff4ddOzYkQ4dOuDu7l7uPsxmMydOnODMmTMEBQURHR1NeHj4nUxus9lMXl4eiYmJXL9+nczMTKpXr46bmxu//PILwcHW/b5lnI8sGjIOJyYmhv+bP5+tq1fTC+iuVBGmVgOgF0X26At5OTmZdg0a4OriglmS6NirN6MnTaRevXoVHl+SJF6e8RqHDh7BXCjQPmoI7q5eBHpVt9k6uihakACdIY+kzBiydCl3vW8w67l86zAoRERJxGKxcCvlFko3JQpfwFvCpZ4ShVoBBtBkaDDGGxnSbwitm7Vm5EMjUf/3d1axOEXatm3LwIEDK9wX3P7dpqenc+PGDVJSUsjNzUWlUmGxWPDx8bmTe5GdnY3RaOSPP/6Qk/WqGLJoyNgVi8VCXl4eu3fu5NevviLx6jXCVEoGGU0012pRWHGTNogih3U6tqrVxCLRsGFDGrVpQ5c+fWjb1rps57/Q6XS0bdWB+kEd6FrvofJ+LLshSRIZeclcuHmE4zHb0WhdaN6qCaPHjqR///4291zasGEDn3766R2rDkeQkJDA+fPn2bdvnywYVRBZNGRsRlZWFomJifz01VdcPH0agIxbtwgC6pgt9FUqCVGpKvQ0bxRFMi0WLhj07HNxIa96dd6cN4+WLVtadUMdMXw0foUNaRLZsdwxOBKT2ciVpJOcT9lPzcYhfP/jIpv2P2PGDK5fv+6w/YS8vDw2btzInj17CAgIcMiYMrbF2vu8/DggUyRpaWl8M38+W1etxtNoIADoYTIxzvX2hrZK+V+RUNnmBJFaoSBYoSDYxYUewM2kZL4dM5ZrSHhVr87zb79N9x49irw2ISGBmEs36dblMZvE4ghcVGoaRrSlQXgbfjj0uk37tlgsrFu3jmHDhtm03+Iwm81s27aNVatWyYLxL0AWDZm7yMvL47Xnn+fIpk2MUyqZp3HF7S9hsJFAWEOYWs1fpt+xNxMZ1LcvXy1cyPgpU+5pm5GRQURgHYfFZksEQcDD3bY1LLKzswkICECj0di03+LYu3cvs2bNok6dqvlvIFM2ZNGQASA5OZlP58xh36ZNjDGbmebuUWmSsKLUavbXqMnLb75JXk4O01+w3qzv38hrr71WYrElWxITE0NwcDAPP/ywQ8aTcT6yaPzLOX/+PK9Pn44+IYERZjPjXbUoXCp+esfWqAWBuR6efPTZZ2RlZPD6u+86OySbIEkSZrNtqwiePXuW3r1727TPopAkiTNnzrBv3z67jyVTeZBtRP7F7Nu9m0l9+/F4fALzXNS017pZderJWbgIAq+4ajn600+sXb3a2eHYhHx9NsEh1WzW38WLF7lx44bN+iuJY8eOMXr06ArlgchUPWTR+Jdy48YNnhw9hs+0WiJtkBfgKIT/Cscr06aRlJQEQFxcPBqFY2pb25qbGVepU892tSTS09Np1qyZzforjuTkZNRqNbNmzbL7WDKVC3l56l/K2y+8wKtqNT5VsCazt1LJK2oNU0eNZv3ePbz52lv0qf2os8MqF2kF8Yx6YIzN+pszZw41atSwWX9FYTQaOXLkCFu2bLFq3+uvI9t/sWPPflau3UBewe1KiRkpifyw6Gu6du1qt5hlbIcsGv9S4s6do6kT/aAqSgutlkXxceTl5aEUNERVq+/skMqNrQ4cnDhxgmvXrtG+fXub9FfSOLNmzSIwMPCu10VRJCkpibXrN7Ji/WbSMnMwGAwYFK7gEQT//ZhGlTtCrREoPW57YhmSLjPm6Vfp3aoBP35v23wVGdsji8a/kLi4OAJE+9t725sagsC6NWvumCL+25kxYwaDBw+26xh5eXkkJyczYsSIO69t3raN1es3s33XXoyuvhQGNkAZ2h+XBkX7Tv3zpqMJrYsUNIMtB37klbdm8/5/3rDjJ5CpKLJo/AuJi4ujurODsAHdRIl1f/xBkJdjjpfaAwUqbt26VeF+0tPTOXnyJF26dLFBVEWTn5/P9u3b+fPPP1GpVMx+fy6Lf/sTi28kxujOqHu9jKB0oTwG6IJKjbrzo/y66n1GDhtM82ayM25lRd4ItyMFBQXMeHIyu3bscHYod7Ho44/pJlau+tfloaVWy769exGxODuUctOwegd+//nPCvfz888/0717dxtEVDyHDx/m//7v/6hTpw5vzH6fr5ZuxtL3dYQOk9GE1EZQViz5UxAELO0nM+PVt7DC3UjGScgzDTtRUFDAqIHdGB90kWcnLiMwKJh2XXujdf3fPoLGzZ3BIx7Gw8MDAJVKZXfb8IsXL5Jw6hT1tG52HccRKASB6R4efJN+g4S0K4RXwaxwH/dAki4lV6iPrKws5s2bx6hRo2wU1b3ExcVRs2ZNWrVqxeEjR/lhxUbUfWbZPAHUxSeYK8cLuHbtGrVr2+5UmYztkEXDTvz642KGeV9gZAMVIxuA3pzC6ZQfIOd/bbL1sODx7zD/d8KXmm+hwMUfjfr2E1uNOg1o3bUfUVFRdOhoGyO+GVOn8qrKxenZ3okmE4WiiK9SiX8FHFEHuLmzKDuLI3Ebq6RoCIKAStRy+vTpcpsLnjp1isjIyDsPH7ZGkiROnz7Njv/OmD/+/EvMTYahsdN3yBzdkZfefIcVv/9sl/5lKoYsGnbAYrHw07efs7L3/1b/XFUCbcPu/XX3rZX3j1fy7/zf8aTLXF25nN/SPPlAp6VAdOHR59+gT/+B+Pv7lzmukydOoE1MJFzjmLKbkiRx3Whkc14eZ/SFmCQJlSDggoCnUkGQSkW80USWxYyXUklPD0/6enqiVVi/aqoUBB7Wavku4Qzm5iZUFVwicQa1/dty5MiRcovGF198YVc327NnzzJs2DB8fHw4duwY+09fQT3AfvbzmhqtObNlK2azWbZYr4TI1uh24OrVq3zyaFcWdi+wab86k8TXp1348riFB0eO5fmXXic0NNTq6x8dOZJ+R47S0AG1mgtEkVnJSXgpFPTz9KK1mxtuJYhButnM+txcNufl0cBVwygfX2pbabgnSRI9ktPo1HgU3RtXvloapZGZd4sTuStYubbsexsGg4GWLVvy4IMP2mX2aDAY2LFjB4cOHUIQBHo/MIwzbs3R1mhp87H+jvnCVp7pXoNZzz9j13Fk/oe193l5I9xOuKtt/6t1cxF4sZWZI49Y6JXxI4/0a8PrM5+hoKB0cRJFkZ07dtDAAc6niSYTj99MYJKvH++HhNLVw6NEwQAIUKmY4OfHrxER9PP0YlFGBuPj49icl1vqpqggCDzn5caxG1ts+TEchp9nNRJikklLSyvztZs2bSIiIsJuy41btmzh0UcfRRAEtu3cxeWUPLsLBoCybnd+/XOl3ceRKTuyaFRBAtwU9K2lYtuwXJQnfmBgz07k5+eXeM32bdsY4ADn2kSTiddTkpkbEkIrt7JvtguCQCs3Nz4MDWVB9TDO6/XMSE6isJTTXoPd3UnPSmH1sYXlDd2pBHiFkpOTU3rDfzB79myqVbOdd9Xfyc7Oxt/fn6lTpwLw7kfzEVuPtctY/0RQqsjMykG8D0753W/IolGFEQSB/3QWeDwilgd7d+Dq1avFtl2/ZAn2rmlXIIq8lJzEnOBgqtvAKddbqeSFwCCGe/swI6lk4RAEgVHBgVxNOVklj2v6qkM5duxYma9TKpVERkbaIaLbR2znz58PwB9/Lud6nhKVt30EqihMwQ358Wd5M7yyIYuGnbiU4rgs5TENRL5odYPHh3fj1KlTRbY5eeiQXW1DREniteRknvIPsIlg/J2O7u484utbqnC4q5R06daJSzeP23R8R1AjqDG//PB7ma45efIkFot9clSuX79O8+bNadiwIWazmTfe+xjaOLZmhqJGO3YdKLuQytgXWTTsQGRkJHE6x5xQ+ova/koWdsvh1Qn9eOf1l+562o6JicHLzlYb6/NyiVSraWcnm+x27u6M97stHPpihCNflGjfqS1pBXF2icGehPpFU5BhISUlxeprNm3aRP369vHcun79Oi++eLt24sfzPye/ehsULo79Tis0bmRlZzl0TJnSkUXDDqjVatw9fTiYYHbouHX8lawdouPK5v/jq8/n3xGOM2fOEG402m1cgyjyS1YWT5bjGHBZaOvmTn8vT75ITy/y/esKgbZt22KSqqYXVZOQbrz1+myr2xcUFKC0g0vx2bNnadmyJTVq1CAnJ4evf/oDlwY9bT5Oaai8gkhMsl5EZRyDLBp2YurjT5Cuc/zaulIh8F1fExkb3mP6pNGIoohCoSBYab/z7n/mZDPMyxtNGfIrystATy9uGA3cMBjuet0kSWg8PVE4IAZ7USe0BSeOniIv75+5O0WzZcsWm5d1NZlMrF27lk8//RSAEY9MxtT0QQSFcyz0nZ2EKnMv/9rMmcTERB4dP5krFy5Tp/q99QfMogWtrztdenbnxVdmlPnLK0kSSXnO2ZDVqATebG9i0dltTJ80mn7D7bcWbRBF1ubm8nOEfTZj/4kgCDwVEMiXGel8Evo/28U/Cwpo2L0bACYbl0+1hpsZ1zl8eTPJWXF3Egy93fzRqt3x9wohIrAOEQF1Sv0eNQvuzdz3P2bOe/8pdUwXFxebJr+Josj69etZunQpSqWSDRs3cbHADXWDhjYbQ6bq868SjZiYGJb+soSzJ86QdTONpxuOpn6LmrgU8xSeo89j2b4tRIVHcvzUCQICAqweq0PnbjzzpSePtzKU3thOTG1s5uOjW1m/2hV7+cDuLsint4cnagc+ETZwdUUAzuv1dxIVTygVzH/hBSIjI7mQcITeDcejtPPTsShaOBt3kP0X1+OqdqNrw6EMaz8NhaCg0JCPwawnKz+VXF0mBy9tZFnGF7Sp04e2dfqgVhWdL9Mooj2LV73BpCnjqVmzZrFjX7t2zeab4NevX8fb25uhQ4dSWFjIC6/9B6n9NJuOIVP1ua9FIy8vj507d5KacosVP/+Jl0XLkIhu9AwdSXDd0gXA29WTKU0eRCtoaN+yLfuPHrTaULBegwYUWpSYLBIuSudNsZ9qbqH9r+sIk+zjS7S/QMd4X1+79F0Sj/r583+ZGXz839mGm1pDQEAAGo2GRo0bUWjMx8PV227jx6ZeYuXBhdSp3pyxXV/Ax/3ugkRajQdajQc+7re/Z02jO1FoyOfYtR18tuZ5BraeRIPw1vf0q1K68EDjaXRq34WtOzbTqFGjIsc/efJkuaxkiqOgoIDjx4/f8Zf6/sefyaveFhdP6x+UZP4d3Heiodfr2bF9B4u/WERBWh6dgprh4+LBx62ex0tTvhvn2MYPEO4ZzIP9hrLzyB6rlgSUSiWzZs9j+oIX+baHbe1EyoKrSmB0TR3559SA7U82JZlMTqkxXs/VlUyLhTyLBc9/bAZ7e3lRaCiwi2hYRAvrji7mVnY8k3q9fkcUrEGr8aBzw8G0q9uPH3a8h9Gkp1mNzve0C/GNYlqvubRp3Y61a1fTs9e9m9AbNmwocSZSVi5dusTbb79NaGgooigy9+N5qIbNtVn/5UGSpCqZc3O/U3V3DYtg3bp1NK/bhAMLNvBqrYl82+stxjcZwuD6PcstGH/ROaoVQyO6MeOp563+Ig8dMYZUZXWyCp37xa8foEAh2CcGoySictJm5QBPL9bk5t7zesMm9blx66zNx9MZ8vhm02sEeYfxWN93yiQYf8dFpWZij1c5n3CYnWeWF9kmwCuUt0b9zOxZn9G314AiN8dttekfHx/PsWPHGD58OACff/UNlrAWCHY8PGENpvR4akQ5Zq9MxnruC9HYt28fzRo0YeGbn/L74I+Z1mwUge5+Nh9nVL3+uN8Q+fTDeVZf06pjV/bfdK5oCAJIdrqvuzvxtFIvT0/2Fdxrn1KvQV30onUnkKzlZsZ1Fm58jYGtJ9G+Xr8K9+eiUjO2y4vEpl3iatLpItt4uHozos1zNPToQ4/Offnlp1/vPLCcPHkSrQ2SNePi4li8eDH79+9HrVYTHx/PJ198g6rN6Ar3XVEMZzfTt1sHZ4ch8w+qvGhcvHiRmdOeZ36HmSzs8xYB7vZdX5/cZDgbfl/Dvj17rWo/4pGpbEyy39q6NbQIUbIwIx3RDlP9Aid6A/kolViK+Eht2rTh7M19iJJtYruRcp6VBxfyaJ+3iQysa5M+4fZJsAfbP8HG4z+V2K5mcBPGtHyNRfOXEBEWRUJCAmq1Gk0FzScNBgOHDh3i0KFD1KhRg5s3b9Jr8EOIXZ502hHbv+ORH8/DYx3jdSVjPVVaNPLy8nh4+Bg+6vgitQOiHDKmRqVmfreXmP1a6UciAerUqcO5LA2mou5uDqK6l4IBdVQsyCy7i2pplKX2hT2Q4J7lwpCQEMLCw8AGImk0G1h5aCETe76Gl5vtZ69ebn74egSRkHalxHYaFy0j2z7PuA6v8dDQis8CDAYDmzZtYtGiRbRt25bNW7fRvs8Q8ltOxMXP+RXkRUMBwdWq2WQ2JWNbqqxo6HQ6Huo/jDdbP0aUr2O/5D6unhiydVYlYQmCQN+hY9hy3bHZ4f/ki0EaTgh5nLWxnYi7QkG62XmfTaMoet3Ny8uTfH3ZXWP/yeHLm2lTpw+eWp8K91UcPZo8xM6zK6xqG+ZfC3TaCjvb7t69m5kzZ9KpUyfWrFvP1JffRej3KurAyrGHYLm8m2cem+jsMGSKoMqKxifvfcTwal1pFdrYKeP3j+jIkl+tM5gLCg4pchnFkXioBRYOVTM3J5k8G57vD1SpSHWiaJj+O5tIM5vueirt2r0zV1JOVqhvURI5fGULrWr1qFA/pVHdvyYmi4H4UmYbf6E36vCtwDHnvLw8UlJSGDBgACkpKUyf9RZC92dRqB3rLVUSKslEZLi9sotkKkKVFI3Lly9zeONeBtTq6rQYGvjX4uiBI04bvzy0CFUyo4eSR5JiKRBtIxwttW4ctKIIlL2wSBImScKk1d4lGsMeHEJCzvkK9X3i+i7qh7dGq7aPCePf6dN8LPsvrreqbWZBCjVq3OtiYC3ffPMNn3/+Oe7u7vR8YDiW9pMRVJWrTK5kNtjFV0um4lQ50ZAkiRenPcfrbR53qi9N89AG3Dh9meTkZKvaV5bj5mOauPB2XxXPpiXYZMbRyd2d7fn5TjtPr1EoOFZYSNc+fe56PSwsjIz8pAr1ffDSRro2HFqhPqwl1DearPxbpbbTGfLJzE0t9zhXr15l1KhRPPDAAzz1wiyywjtXmiWpv6PKjKV58+bODkOmCKqcaCxbuoxGLlGEeQc7OxQ6hDbj+NHS/f5r12vI2VxPB0RkHWOauDCxI3yWc+vO8k550SoUtHTTsqOUyoH2wChJGESRIy4qBo++e3NYEAS8fcp/ai0jLwU3jSceWsecfFNamRMhShYiIiLKNYbRaGTZsmUsXLiQo0ePsvHAKdR1u5SrL3siSRIuggVXB9Sylyk7VUo0LBYLX330OVMaP+jsUAAYGN2Vr+d/WWq79h06cCLd/rW5y8LUVmoaNjDyZGocCRW0TZ/s68firEyHzzbijEYi1Gpigbp17z0Kq1AK3Ey/Vq6+z8UdokmUY3MEFIrShcNkNnD7zFjZOXr0KJ9//jkxMTGMmPAYYtsJ5erH3hiTLtOikX3qhMhUnColGkuXLKVbUEu0LpXjBlzdqxqW/NJvuJXVrvvVbmo+G6HkM8tNXktLJMlUPndYX5WKzu7uLCtHjeuKsDM/n45ubhi02iI3hp99cTrnkveVq+/4tMtEV3Osu6vFYsZkLvn7tP3cUho1LtqPqiQkSSIrK4vHH3+cB8c8QmG9Aai8Aku/0BlkxfHgA32dHYVMMVTOu1kRmEwmFs7/kqG1HF8MpiTcFa5cvnzZ2WGUm5ahStZN1DCym5mZmfHElnPWMdHXj9W5OeUWnrIiSRI78/Ooo3ElqhgPpvbt25OYfRWxHJv+BYY8ArxCKhpmmXB39cIilnwS7XTsHjw8ym6Js2fPHgYMGMDDkx8n378e2jqVN9NaAHlpqhJTZUTjw9kfMCqiD/5uPs4O5S56hbbjz9+WOjuMCiEIAqMbu/DpEBfGJ8SVK3Nco1DwVrVg3kxJLrYcqy3ZkZ9PC60b8SYTTdq1K7JNUFAQdRvW4GrymTL3rzfqKhpimckrzLpTi6MorqecQ+2qKvOehsVyu4zsnkPH2ZsiILUYWdFQ7YvZKJ+cqsRUGdHYvX0nA2tVvk27B+p0Y/vqzRjtWE7VUXSJUjGonpLfylmXubZGw0gfH+ak3sJoR+HIs1j4v8wMpvn7c0jtQqeexc8+n5j+OGeSdtotFlviolSXKBoHrq4hODi4TKcGLRYL69atI09n4IpHYxRNBtkiVLsixBykXTEPAjLOp0qIxs7tO6iuCLB7UZ3yIAgC0V7VuXr1qrNDsQlfD9HwbXYWN8spgn08vejg5s6zSYl286X6MC2VJ/wD8FQqSQBat2lTbNsuXbsganQU6O91wy0JR+Rm/B2LaMFoLr5glyiJ6KRMTGVc/tuzZy8JeRYY+CbqOvfasFc2zLmpNGlQr0LJizL2pUqIxqnjJ+lbvfKuwT7aYDjPPvbUfeH9r1EJDGnuzvsVSNgb4OXFFD9/Hr+ZwFWDbSsX7i3IRwK6/Hdd3+CiLvXJe9yEMaw79X9lGkchKMosNBUhpyAdb/fiiyqdvL6bDh3bkZOTQ04pBw4kSaKgoIBt27ZxNjkf9+FzKu+m9z8Q9fkEV9AiRca+VAnRqOxE+IQSQSAb1hWf0VuV5CTKz4UMrSuWCohgKzc3PgwJ5YPUW6zIybaJoF7Q61mUkcFLgberJ14x6GnUulWp1z0yfhxXE0+Vaazo4IZcK8deSHmJTb1IRGCdYt8/EreBl16dycqVK9m8eXORv8/ExESOHz/OV199zfcrtnDFszmeQ9+sFI611qK+vIVnHp/s7DBkSuC+q9znLGa1mcK4mS/RrUd33N3vXtpQKpUUCB7cys+imkfl1+lQVxOSAjboChjkXv7iVaEuLiwKC+fT9DReSE7i9aBq+FtR9fCfJBiNfJ2RQb5o4ePQ0DuV+s6IIi06dSr1eq1WS1RUDYwmPWoX607l1A5pwpGr22gaXXr/tuDApQ083HVmse+7uroSHR1NdHQ0M2bM4LPPPkOpUmEymUEQbjsTqDSIwQ1wH/s5Sm3lSSa1FkmScNFl0rx5M2eHIlMCVUI0jh88xpPVhpbpmgxdNtuuHeDozTOY/naM0U/rQ4RPCK3DGlM3oAYuNqpO5qFxY2BEFz6a+yFvv3O3bbogCHyyaAkvPTmAH3rZtjiQPegXbWZFTigHY1Ko6LapQhB4ITCI04WFPJOYSH1XDSO8fahrxZHKeKORbzIySLeYedI/gKb/sMneqVCyaswYq+IYMnwgp7fvp7WVR7YjAuuy8tC3VrWtKFeSThHgFYqvR9FLSGfi9tKqbbM7P3fo0IEpU6ZQrevDKOv3QBAE3LTeKCpJ/lJ5EXU5RIc53+lBpmQqvWhIkkRyQiIRdUOtap9VmMt7u77mZk4Kg+r14Kn2j+Dn9j8riNisRBKyk/nz7EaOJ52nbVhTJrV80Ca2JCMa9OOxZW/x6uuvof5H3ezGTZqQ5xbF4cQztK3uPM8sawj2EFDcOs+eFDOW8HCUNvD4aqrV8ktEBMcLC/k+K5Mkk4kWWjfqaTSEurjgq1SSK1pIMpnIMFvYWZCPApjmH0CzImoqJJpMeIZVx8vLy6rxR48ZRf9vh1otGoIgoFapKTTko61gqeDS2HziV8Z1m1XkezkFGey8tISjSw4BEBsby8AR4wh99Gtc/MPtGpfDkSRc5foZlZ5KLxqXLl0i2t26ehnrLu3k/44uZWaXR+kY2bLINk2C69IkuC4D63VDkiT2xh5j5sa5dI5qxRNtx1bIBNHH1ZMW1RqwctlKRo0ddc/7cz5bxOwJ3fitur7cYzgChSDwYiszlzI8OFVYSEs3N5v0KwgCrdzcaOXmhl4UOafXE2cysj0/D6MkoUSgpkaNj1LJRyGheJdwVn+ZaOGp116zeuyoqCgUapFCY4HVJ6OaRHXk6LXtdGk4xOpxysrpmH2E+EYVOcsQJZEf98zm5Tdn4e3tTXJyMs3bdMBt6NuVolCSzYk/RqduxZ+Ek6kcVPoF9oyMDPw1pZvGrTi/hV03DvPHmM+KFYx/IggCXaJb8+uoTzBazHx1+NeKhsuLrSYy68UZRRZoioiIYE+sAbNY+bfFu0ap0Olz2GmxT60MV4WCVm5uPOjtwwuBQbwcVI2ZQUEM9/ahv5dXiYKRYjLxZ3o63Xv1KtOY/Qb05VTsHqvbt6zVgyNXttqsbOw/ySnIYPvppQxqU/TG75n4fQx+sD+Tp0xi//79NGjaEu2g1+9PwQBUyWd54tGJzg5DphQqvWhsXrORDtWaltgmNiuRZec28WH/WWhU6hLbFoVCUPBsh/Fcz0hg5fkt5Q0VABelio5hLdi9c/c977m7u/Pe+3N5bruiShzP3TdexabM9Ao74doSSZJ4R6dj8c8/oyrjpvrI0Q9xI/2U1e21ancaRrTl+DXbJwcaTXp+2/MJIzo+hcal6CWZEwlbeOfdt5n9wUcMHjcVt+GzK6WNuS2QRAsqU4HVy40yzqPSi0ZaSioB7iXXZv50/w/M7PwoCqH8H0cQBD7qP4tt1w+yN7Z0u/OSmNLkQbat23zP6/955QXOnzrG8msubIut0BAOIcpXSYS/kj06x1tqFMchnQ4iwhk8dGiZr23bti3VIn2srpAH0K3RMHafW0mhwXbW75Ik8fve+XRuMJjwYo7Z7ru8hhp1Injy2Rf5as1+PEZ+iIvP/btJbLh6kAmjhjk7DBkrqNSiYTKZuHTmAuElbFKfSr5IoUlP89AGFR5PqVDyXp8X+HjvdxRUwHtIXcyJrJ9+/R3dsd+Z0kxFkG22CexO3RANKZVkppFnsfCBQc8PS8vv9fXW7NdYefwLq2d6Wo0HQ9pO5ZfdH9tsdrj26PdEBdWnUWTRVhkmi5GziXswqhRsS1ai6TLVbgXHJEnEkHyF3GNryD2yktwjK8k7tYnCuNPo488iGhzzwKDOiadnt8pnEyRzL5VaNDZt2EiX4BbFziCy9Xm8ve1zZvd+zmZjert6Mq3tGBYc/MVmff7FsdMXOK4P53iqkuMZVcPF09dNyVWl878mkiTxekEBC374gcjI8i/RNGvWjEcmjuGPIx+TnBlr1TW1Q5sSFVSXLaesqwlfHJIksfvcKvTGAro2Glpsu42nfqBj93acvJmHsmG/Co1ZHIbkK6Sv/5Rbv75EwfmdqLwCUAfXRB1cE8FFgyk1Fn38GdLWzCXlt5fJPbICS375PMmswTXzGm3btrVb/zK2o1Kfnvpx4fe8VXdqse8/v/5d3ur5NEEexdsvlIfetTqw8HDFbhBF4evry4GTF5EkicG9u/D7yhheaJxD/1rOvykXh4iCmw5wrS2N9QYDDR4YSN8BA8p0XVGzg9ffepWuPfby1BPPYjGK1AvqQNva/XDTeBT7RN+r6WjWH/uB3/fM58H2T1idJPgXsamXWHXoW+pWb8ZDHZ8qtl1WfirnEw8SZw5G6vpCmcYoDUmSKLxykNzja3Dxq45Xq0GoqxVtK/93RKOewmuHSVszF01oXbw7jkFRxs9fEua8DOpFR1XaujMyd1OpRSM/Lx9v16LPyC85s54GgbVssiz1T1QKFfUDa3A6+RJNQ+qVq4+4mBvMmzuH8VOm4erqelcNBEEQWLttLykpKbRs2pBVWgOtq1c+q4esQon11yyEuZb9cIEtybNY+EOAfZ9/XmrbrKwsli9fwtKl32GxGMnPz8HNrejfrX8QgMSN7D84f+gHRJMrKvwY0nwmYQF37zUIgsADrSdxJvYAn6+bQacGg2hZqzsuyuJ/N5IkcSXpFDvO/Im7xovx3V/Cz7NkX6WVR76mSfNmHNd5oy3mu18eJLORtLUf4eIfQeCw18qUMa5Qu+LeoCtu9bugu7SP1D/fxn/AczbbY1GeX8/0mZWziqDMvVRa0cjJyUFlEIpcmrqUdoM1F7bz44gP7TZ+r1odORB/olyiYRYtJFw6QbJxP8+u/obkPBGdyof3PllAjx497rQLDg7m1z+W89qzD7P6gTy0LpUr6e9SuoU69VsQfS0Oinfstjufm83MWbDgnsI8oiiya9dOtm5dxdmzJygoyMDV1USTpkaef8EFtVqg9K+4APj+9z+4ccPIk9OeZMawbwjzv/cpvElUB+pWb86e86tZsG4mnq4+RFdrQKB3dbRqdwqNBVhEMzG3LnDj1nlqVGvIQx2mE+hd+jHZE3HbUHqZOJ2Sj2uvR6375ViBaNCRvmE+nk37oa1h3XH0ohAEAff6ndGE1iF93Tx8Oo/DNaJxheNT5SQwaGDZZpAyzkOQrNjdy83Nxdvbm5ycHIcdiftx8Y9krrzCiAZ3r+mKksjI35/l8wdeJ9TLfm6YqfkZvLX9c74e8p/SG/+D93Z9TYfQNYxrcvsJV5IkjiaJ/HLVnRidO9k6EyMnTWfEwxMJDg7m5eeeIOTa7zzbqnJsOP/FuwckfjzhwmIfP/zK4RllCy7q9fxWswbLtm+/6/XbpUsfxmw+TY+eEBLigo+PbWZrZ84U8unHep7o8X94llD0S5Ik8gqziEu7TH5hNmk5ifh4BOKi1FDNJ5yoavWtOtEnSiLn4g6x/swicowGfMZ8jNLdNtbgloIs0tZ8iHeH0WgjSz66XhZEo57UP98iYNCMCjnoWvT5hJ9ZzIEdm2wWm0z5sPY+X2lnGqt/X87sBtPueX33jSO0qt7IroIBEOThj76E+gYlcTntPDPb/m/WIAgCbaoraVNdD+gxixK/H/yAp5d+hVtUCxYs+onhvfcyMDOOWn6VZ1137SWB4Vo3pwmGJEm8bzSw+LPP7nr9l1++4+uv32fUaD0NG9r+QEGTJlr6DFCwcNMTPNDkReqHFe2kKwgCXm5+NI5sX+6xRNHCD3vewStIjdnDF99Bb9hsv0CymMjY+Dm+3SahCSneQbc8KNSu+PWeRubWhQQ9+Eb5O4o7TpdOlbfsgcy9VJ471D8w6PR4u9677noi6QJdolo7JIb8chw3NItmBNKI9i3+V6tSCDzSSOLP/jk0KDhI7/ZNGfDQeMatr1z7GrFphQx3dZ4X0PeFOro/9BCNGjUCICEhgcceG8vyFbN5622Rhg3tZ9A3erSG8RNdWXVyNksOfUx+Yck1LMqDKFpYeWIBw8b25/j5s6h6v2DTDebsfb/iVreTzQXjL9RB0SjdfSiMOVnuPlwST/DmyzNsGJWMvam0olEc++OO07J6I4eMpSzHaY43t86jU3ih1e1faqVn6+AMTqz4jAtJ+ZUqUzxI43LHhtzRpJhMHPT05L158wA4cGAfo0d3pnHjPTz1lBKl0v77P127qXjzbR+yxeN8t/8Fdp1fzs30ayVW2LOWvwRj3LThrN26Dc9uU1F52u4UoP7meczZt/BobJ1BY3nx6TqBnP2/l+t7K0kiLpZC3GzkbSbjGCrt8lRRX8KEnGRCvaqVyyqkPKhLqNdcFCaLmTUXt5D4gobbG6zW4aUR+KVvPvR1bInR0tCbnSNgkiTxpsnIt2tWo1QqmTnzCY4f38RLLwu4uzvW/rtmTTXz5rmwYIFIUvo+cnOuc3r3WUIDIhEEJd7qgFL/qTUurrhpPFGpXO7scVxJPslTMx7F1cOdRGUQLrVtt0QjmvRk7/qBwGHWGzqWF6XWC3VIbQzxZ3GNbFKma/UxJ3hkcH87RSZjLyqlaOTk5KAookT1tmsH6BrtmKWpPEMBSqFsT9nJeal0j/bGXW3bEqfO4MwtM9UcJM7/5KBeT4tevWjYsCGTJj2Ev/8xXnvdeUt3CoXAs88qOX4sk/j4bGrVVYJ0EwkJSYwp9frkFMjNFzh5Mpfvv/8ZDw8PIiKepVatWjw0bhJSvd42jTd7z894thqC0t3Hpv0Wh/t/j+KWVTTc0y8ydsSbdopKxl5UStGIjY2ltk/EPa+fSDrPK10fd0gM51Ov0iCoVpmu2XnjEA83zsep51NtxG9nzDS30QmesiBKEt9JIms/+ogXXniCrOzDjHvEuXkif9GylZqWpVeXLZZVK91YuPBjNmz4n9NuZlYOyqDSXZytxZgWhznnFn49i0+KtTUu/mGYshLLfJ2YdZPq1e9Px977mUq5pyFJEkIRc/6UvHS7n5r6i6M3z9I6rGxPTmsubaNFSOXazC4vay4q6OLiePE7o9cTULs2TzwxnitXVjN9etUX4L8YOsyNlJT4O7b5oigSE3MDoYzLoCWRe3QV3u3vreViTxSasi+rikY9YQE+eHvbTjBlHEOlFI2Dew9Qx/Nuf6FcQz4eGsdtmJ1NuUyTYOtPncRnJ5Guz8BfW7kS9MpLll6kuhNEY4G+kEsJV6lV6wLPv6BFobg/fp9/0aGDkR07dgBw4cIFpKC6CDYqOSwadJgzE9GE1LZJf2XBUpBdpvam+FN06SB7TVVFKqVorPtzNT2i7v5CZepyqO6gWQZAZmEOfiUkdv0Ts2ihZu26fHyiatdpBtgcI+Dn7oGPg09OLcxL50xBGs8+Z6Fnr0r51awwtWrBqVMHAViyfBUmX9vVx9BdO4xb/c42668sKMpoeeIWs4dXZjxnn2Bk7Eql+8tMTU1FY1Tipr47P+BqRiw1fB1TEzmrMAdfbdky33fcPMy4KRM4qgvjcKLzDf4qwvF0DV6+tjWBLI1V+mzO1tKz9M9I6tWrGg7A5cFFLSBJFnQ6HXPfexdVHdvZgRfeOIZbLec8vQsK6x8wTNkpRAb74elpvf+VTOWh0onGoUOHaOPf8J7Xk3JTCSylGJOtuJR2g9r+UWW6JsuUR4s2rVi6YTfP7vNGZ6o8+RZl5WaegMLguBNgBlHkB30WM18JQKOpdF9Jm3LxggEPDx/GTXmcoE4jbVonw5Kbjso7yGb9WT1uQRZCGZIS1Rc3sODDOXaMSMaeVLrTU6IoohLuDSurMMcujrZFsenKHvrV6Vqua728vPjgi8X49e/PhSe01CghM7yycr3QCw83JThI994uSGH80z6o1bd/VxaLxPnzelJS7q5PrlYLhIe7EBzsgrt71fu9AuzerSa6hhtH4vNx6Ww7U0JTegJKzwCb9VemsbNSUPlYt3QsSSLq3GQaNHDM37KM7al0ouFsTiZdIDYrkXbh5Td369azN599+inL17/JzNYWG0Znf27li3j5BZCdl0lZEhTLy9rcHPKjRdq1d8dikVizOpet2/Jp1tSVOnU1/H0fPCvbwvVrRi5c0OPmrqBLF3c6dXJHq60aApKba0Gr9eTDRb+h6f+STfsuuLQHj0Y9Sm9oB0wZ8bj433tEvij0cWcYPbCP3SoRytifSica+Xl5qIpcHxUoNOntOnZcdhIf7P6Gb4fNqfCXevLUxxn5w4eA7T2L7MnWG2aat+nEaeU5fj11ioe97Hck8qKhkPdybvHdi2EcOazj19+y6NzZnQULQku1CUlPM7N3bwEzZyTToaMbQ4d64+ZWucVjy2YLiekGNENmolDb1tPLnJ2CZ8vBNu3TWoxJl/FqbV19b23ScR55/R07RyRjTyrdX9mq35bTM/pe19C6AVGcTblst3ElSeL1LfP5T69nizRKLP36u38WBAFFFXya2pzsR5feD/DlTz9xIDycuYWFZFtsP1sySRKzDbd4dkYAb75xi5MnC3n7rWo89JCPVb5SAYEqhg335rPPQwkIUPHSrGT27i2weZy2IiXFxJ/LMjC1mFCuvAZrcMbTuyRJmNLjUfmHldrWnJtOdbX+jgGlTNWk0olGZmZmkdX62kU0Y1fMEbuNu+riNhpWq029wBrluv506iXCwv73h3Pj+nVyCqqenUhygUSjJk0ICAhgx+HDjF74NU8a9GwqyLfpOB/lphLR2oVduwt47/1gHp/mj69f2Se+SqVAnz6efPhRCKdOFfLxR2lYLJXvEMJvv4pYBG+0Uc3tM4CgRCyHK3NFMdw8j0u1mlYJluXGQcaNHO6AqGTsSaUSjdzcXDxEbZGFa3y13niq3bmYet3m48ZmJfLrqTU826F8JSfzDTp0Fj0+Pj53XvvPS0/zXJNcG0XoOFx9qt31Ofr178/mY8e42LEjbxTqyKvgrEOSJF7LSOOwh47cPJFXXw3Cw6Pi+SBarYKnnw6gdRstH86tXMLxxx955OSGom47GkFln4RJdbVoDClX7dJ3cUiSRM6BP/BqY93SlCruMFMnT7RvUDJ2p1KJhiiKuLoUnxz3UtfHeHPbZ1hE2y2XxGUn8dKmD/n8gdfRljB2STy39T0eePB/68l79uxBn3iOB+pUPQuMouzgg4KC+HbJEnrPmsWY1FvlXq46rdMxPD2VbfocVGp48cVAVCrbLql07epBu3ZuLFiQbtN+y4teL7Lk93zi0/Roaney2zguAZGYs1Ps1n9R5J/aiCa0nlW1wiWzCT8fb1ROKuglYzsqlWiURpRvdYY16M3rW+fbpO7EgbgTvLD+PeYPfLXcnlbnbl3B6A6vv/UG+fn5THiwP1/OGM28jnkVjs/RmCzSPXszf+fx6dP5ZNH/8awkMicvlzSzufjG/+C3Qh0zzdm0HqCidRsNjz7qZ7dTT917eODrq+SPP7Lt0n9Z+OQTA08//STK4Doo1PZLWnTxC8N464bd+v8nlsJcCs7twLvTGOvan1zBlEdG2zkqGUdQqUQjOTkZH3XJdgRjmw0i0N2Pd3Z8iVm0/qb1dzJ02czcOJffTq/j5xEfVUgwPrr4E8s3rWLS6GH0bl2XRzwP8seAAiJ9KtWv1ipWXTLTY1DJZndDR45gz7lzDPzgA97z92O62cQifSHxRmORQp5iMvJodho/i3k8OMqTlq1cUCgEmja1b0XACRP8OHdWz40bRXjsO4gDB4w0aTwQrWcQBQH2zUtQevpjyU216xh/J2vbt/h0nYBgRQ10SbSguHWJx6dMckBkMvamUt3ZFi/8jn5hHUtt90KnydQJiGLsHy9y7tYVq/uXJIm1F3cwZfkrDKnfiy8Gv3mPXYm1XEi9xpNbZjPx8Qk82KcjTQ1H2D8yj15RlWctvayk6hRUj4wutZ2rqytjH3mE71eupGH/zuwLcuE5ZR7dk+N5o1DHPIuF941GxuanML4whfoPuPDWbHcGDdKw9I9sJk5yjOX65Cl+/PJLlkPG+icWi8SXX2Tz5ptzWfTjr7hGlD/vxxoEQUCh9UQ02vdYOkD+2e0oPfxwjWhsVXtjyjV6dWqDRlP1fdlkKlGeRlZWFqf2HuPp3tadNR/T9AE6RLbgwz2L0JsNjG4ykE6Rre7al5AkiWx9HpfTb3Aq6SJbru2nVfWG/D56PtoK1GK2iBYG//IEzeuGcn3JyyzpVkiQuwJHJMPZkw0pfiwdMMCqtqIoMmnScPr0iWfwEFeysrScOSOwd4+ZW+LtzN8xQ7TUq+dzJ3s7P9+C0SgRHOyYvZ7oaDWCAJcu6R3uZxUXa6Rv375cvHgRIaAmgh2Xpv5CHVQDY8pVq2/m5cGQfBXdpb0EDre+KqAq8RSDnnnIbjHJOJZKIxrnz5+naUDdMp01j/QJ5cvBbxGTmcCqC9tYfHz5XaVgDSYjXq4e1A2Ipm5gND889AFemrK5cRbFHxc2UsPfmyU90/67DFWpJmzlIs8gkSdqcHe3Lodg7ty3qVsvmWbNb8/U/P1VdO/uQffuxV9z7qye5s3tuyz1T56Y5s/cD9P46KMQh40pSRJLlxbSpUt9nnzhZUzNJjikLJdrVDN0Vw7aTTSMaXFk715MwKBZVtcAsehy8M2PYcigB+wSk4zjqTSisXDelzwWNahc10b7hfN8J8esl4qSyHeHf2XPhAKq2eCoaGUh1yDRsKF1SVcnTpxg164fmDmrbF+fgwd1DHygbO7BFSUgUIWfr5KYGCPR0Y6pAPjFAh1padWoW7cJ6bvicfF1jGBpwhqQvfsnLPlZKD1suwRoTIsja/u3BAyaVaYyssKJP3nxmSdRFHEqT6ZqUmn+JW/FJVPDzzHW5xUhNiuRttUN95VgABitPEW7Z89Onn56OFOnCmXOQE5IMFGnjuPXtQcM9GTLFvufZouPN/L4Y1kolc2ZN+9LXn33YxSN+tt93L8QBAU+XceTvfdnm/b7P8GYWSbBMKfHUk2Rx4SHrTthJVM1qBSiIUlSkfkBlZHE3FuEeFTdze7i+POahj7DHi6xzaVLl5g1awKvvCqUK3vbWc60jRq5cv6c/TaIDQaRr7/SMfcDBb/8soE2Hfvz8PSZFLZ7FKXWsTUjXMMbIUkiuquHbNJfeQVDkiSkQz+zZPE3NolDpvJQKZanNm7YSB1361wync2Ss+toHGTA1nqbkCPy82UtO1N90Gpvb5rm5OvJSU/i8AQFGhsnwf0TEypCw4qf6WVmZvLYYyOY/hRVxlX2L5RKgWrBKm7dMlGtmm13F+LjjXz1JYwb9zzvvz+M7r37oarRFvXgt53m5OrXexoZ6+Zhzr6FZ6tBVh2LLYrbgvFNmZekAIzHltGtRX1q1qxZrrFlKi+VQjR+XfQTzzUc6ewwSuX8rauczrnGqUw1U5oYia5ArQy9WWLxWQWrr4LF1ZeQyNqMeGwarwwZdudmI0kSj04Yx4RNm/l1gBGlE+tlT5jwIGPHZhEaWjWPTbZq6cahQzqGDLGNa6/FIrFiuciFC34sXboKk8lE287d0fR+DlX1+k49R6dwcSVg6CvkHFhC6tK38Ok6AU1wLauvFw068o6vpTDuNIGDyy4YpoybuCcdZ/H6o2WMXKYq4PRHRlEUSYhPINjDOQVkysLZtKu8/MrL7Dl0gkbf6MkzlH2ZKlsv8e1xIx1/VxNXawIzFyxny/Eb/LRyC4OGDr/r6VQQBL776VeiOo1g1VXn3IZEUeTZ56bh6nqV2k7Yj7AV9epriImxTaKfwSAyfFgC/v4Psnv3KdRqNW3ad8L1gdfQVK9vkzEqiiAI+HQcg3+/p8k9uJS0tR+hv3kRSSq6FLEkWjAkXyFj0xekLnsbpXcQ1UbNLrNgSJKEcOgH1q9ahqvr/Vu299+M02ca58+fp5ZHWJUoyrL55gGWjXsZb29vVi5fzuDXnuWVxqlEegvU8Vfc+QznUy38cBqOJUuAgNEiYZZun1DyD41gxJjx/Dp3KPWsrF424/XZDO2ymqG18x062ygsLOSpp6aSlLSV51+ouJ23vhwiaysiIlxIT6u4Z5lOJ/LsMxnMmPEyb789G4AzZ86gbtATdUDlW2JVeQcROOxVDCnXKDi3new9PyKo1Ci0nqg8/JFEC6aMm0hGHS5B0Xg06Y0mtG65xzOd38Lg7u2pW7f8fchUbpwuGutXraVnSBtnh1Eq+QYdFi14e99e3ugzcDAt2nZg0YKPWZcQy8WDxzCbTVy9mYVSUDG0eSN6NfPA1eV/v+JrqelsuhzHvgNHGD7mEavHDggIoFWnXhxNWk67MMf8ky1Z8iPz5s1m4EA9o0a7W1XjojQUitvLOrboqzxU1K7s1MlCPvqogF9/XU7Pnr3vvK5SqVCYHG9LXhY0wbXuWqIy56UjGQsBUHkH28R915ybhvrKdj763Tab8DKVE6cvT21Zs4lW1St/UZb/HPqal9985a7XAgICmP7iqzz72rv4RzXhZqaZAU0a8UzPTkT4+dwlGAC1ggJ4qnNLvDKTiIiI4PDhw4hi0csF/+ThR5/iszP2P4kjSRLjx49iwYKXmfOuSKfOGpvd5GvVVHP+vP1tLooiPt5EULXyCW5+vsiXXxo5eaoNZ89eu0swAHr06EEdDz3SgcVIlvL5oTkalWcALv7huPiH20QwRIOO7KWvsvDzeXh6OvbEmIxjcapoXLlyhZj4WNzVbs4Mo1RyDfnc1N+iT/9+d14TRZHF331HSHA1po16kMCcVKZ1aE7dIL9S+2sQEsTL/bvx7MRH6NiuLQu/+orff/+dlJTira1bt2lDvBTMW3tt8pHuwWS5vQ6+evUKcnP38eZbWpvPCFq00HLkSKFN+7SW2FgjkZFlvzleOG/mjdeNPDJuHr/8vIrAwMB72iiVSvZs28yHz4xFve0DpJ0LMOc4zjywMiAc+ZnP531Iv359nR2KjJ0RJCs8xnNzc/H29iYnJwcvL9tl9M5+/T+EXHahX83ONuvTHmy9cYC4mgW8/f7t2sZJSUmMfnA4gZKJNmHVUCnLp72iJJGeV8Ct3DwMZgs3CgwoNVoioqJ45sUXad++w117PXq9nh5tm7C0ZzJhXrbV+/7r/Ph+7QEGDerI7DkSarXtnydEUeKF55N5/fUgAgIduzL6009ZNG7sarWNicUi8eHcPG7edGfLlj1ERFi/X7F+4yYmTnkMl25PoI5oUt6Qqwz6mxdpmLWP7etXOTsUmQpg7X3eqTONk8dP0DSwcm+YFRh1PL/+PcZMvJ34dubMGfr36E57H1c6RIaUWzAAFIJAkJcHjcNCaBUVxsiGNRlWM4TowizefOpJWjdpxIznnyMuLg647S779Y9LmbbLixtZ1i1rWUOhSSI938zzz09l/ASDXQQDQKEQmPqYH98uyrRL/yVx8YKemjWtsxE5e6aQvn1iqF9/KBcu3CiTYAAM7N+P08cOUS/rIPq1sxFNzlmScwSmlCsEXlnFkh8WOTsUGQfhNNG4fv06l89fIsQryFkhWMW2awcZMfIh6taty65dOxn34DAG1QojyKvixodFoRAEAjzd6V87nNH1o8g/dZihfXszoFdPfv35Z5o2a8aLH/1I3S916Ey2OY10ItmCxieQ7JyTNGxo32OSDRu6IgCXLzuufnpamhlBAV5eJVu/SJLEkt9Ffv3Vm927d7NgwaJyeyaFhoayY+MaPn7jRdK/nUzBmS33nXiYMhNhzzfs3FD0sp3M/YnTROPZ6c8wqfFQZw1vFRbRws9X1vLu3PeRJIk5b73FA3Ui8XV3jFOrIAjUDvJnXNM6dPBU8cP8jxg6cAD1GzZi6+ZNjNroiUWsuHCcSlWRkBTD6NGO+TqMGevDsmXZDhkL4Lffshk5wqfUdj//JBEdPY4jRy7QpUsXq/s/d/4C8xd8yfwFX3L8xMm73hs3egS3km7S0S2ZhHkPIR5fdl+Ih+nWNVQHv2PL2uUEBFT+HCsZ2+EU0RBFkbSkW4xqNNAZw1vN9yeW89CEUQQFBbH4++9xycvG38M5m/ZatQv9akcQacpjeJ9efDr/Uxp3G8pXpyt+8mXhBQvTn3IjPNwxLrBRUWoKdRKxsfavqpeWZibxpumOhXtxLF9eiJ9fb159dXaZcoYKCgoY8cgU3t+Vwgd70hg++RkGPjiG/fv336lk6OnpyaplS8nNzeWdR3og7liAZMM6947Gcv0g/uf/5ODmlTRs2NDZ4cg4GKeIxppVq+lerVWlTugTJZHfL29g/JSJ5OXlseDjD+kSXd3ZYRHh682D9aPwyb7Fr3+sYnVmbeYfrdjvMdck0qy5Y7O9p03zY+HCDJvUei8Oi0Xi88/TmTylZJvwCxf0LPo2lblzvyjzGC+9/jbZNXriVrsd2pqtoe8sTvl1ZcTzcxg0fMRdbT09PZk4/hEefbAvOUtfKabHyouoz0fas5Ceftkc37+T0NBQZ4ck4wScIhpH9h+mfbB9y19WlO/PrmD6s08TFBTEay/Nok01X9SqymOH3rh6MFNaN8TXoOeN7YUsOlG+p/adsWaqBdsuF8NawsLVREerOXzIfklxfyzJplEj1xKr9sXFGVnyuzfJySmo1dbPtBITExk9cSprTyagrtnuzuuCoLid/9DtCU4kFdJ/8DAyM+/e+H/79Vdwx4A+/kzZP5STKIw9Rdp3j/PpS1P54ZsvcHFxTPVFmcqHUzLCD+89yLTujqszUFay9XlsTzzC1qfmEhcXx/5dOxnTyDZunZIkkZSdS0x6JrHp2RQYjbgoFRjMFvzctDQJD6FOtQCrrOLdNWraRYfRJDSI9/cfJcrbQO+aZftjfvOQgiGPOMdTatQoH956M4VWrd1Q2dDF12KR+O3XbPR6kUenFp83o9OJvP+egZ07D1q9Lm8ymXj1rTksXbcZY/NRaNrVKbKdoFDi0m0aJ64epHX3/qxb8gP16//Pl2rL+tW079wN1ZiPUXlW7j0B8fRqzCc3sHr5Uvr06ePscGScjMNF48KFC/gpPFGU067Z3uiMhQz4ZSrL1q+87TI7cSLdwoMqvJSmN5k5dD2Os4kphHh7USc4gAFN6uLrpkUQBERRIqNAx9GYBLacv0rrqDDa1gi3SjzcNGoead+SR9ft58zjEt6u1seaboSISMfsZfwTHx8l3Xt4sGRJNuPG2abSnMEg8vln6dSoqWHcIz4l/rutWW3klVfeJywsrMQ+JUli69Zt/LR0OXsPHkWs0xNF/9fQlPIdFgQF2jodMYY2YMAjTxLu7876Zb/j6elJw4YN+Xjue7z103pUHSeU67M6AvHYn9R3zWZt/I0yzcRk7l8cntw35eFJtC6swQN1ulWoH3uQrc9j+vY5PDhpJE88PZ0uHToQiokONUq+qZSEwWRm79UYLiSl0rFWJE3CQnApZZlLFCV2X7nB5ZQ0HmzZiEBP6473xmVkceDiCY4+6mKVyGXrJVosEfn2u4qLYnmRJInvvssiO8vCpMm++PuX/zkmJsbIFwvSGTrMm86dSzZYvHRJz7ffeHD8+HlUqqLH/EssXn7nA9I1IZij2t+23VCUb5nSlHQJ1zPLmDz2IV6d+QJms5mIqBpITYfg2qTyzbxN8SepkbafPVs2VOr9RxnbYO193uGiMbz/EF6pMYEQz8p3rnvWrk+YMudpOnfpTL8e3QlXWmgSXP6lg/NJt9h24Roda0XSIqI6ijI61KbnFbD8+FmGNG9IsLd1fj77rsRQmH+DjWNLF46rGRb6rBX4v++dnytz8mQhv/ycRb36Gh5+2Bc3N+tnopIksWZNLgcO6HjuuQBCQkpeojOZJCZNTOfIkfOEh99beKqgoIAff/mNRT/9ToZrKFKjgSi1tnFCkCQR8cw6ekW68P3XC9Dr9TRu3RF9i7GoQiuHrTpAYcxJcna/S7XwIB7o+gBffvyls0OSsTOVNiM8JyWrUgrG72fWcTE/hrDwMLq2b0dtDeUWDJ3ByNKjZzifeItpXdvSKiqszIIBEODpzsPtmrPs2FkKDNZtdHeqE02qwYtdsaUf6fz9sgv16tsnSbGsNG+u5eNPQqhdW8OsmcksW5aNxVL884woSpw+XchPP2Xx7DNJFOSLvPdecKmCAbB6lZlp0565RzD2HzjI1Keep0mH7szecIWMNk+gaD3GZoIBt5eslE0Hsz1BYvITT+Pq6sqeLeuw7PwCU9JFm41TUQrPLiVsWnW8nvLij41/MP3Z6XY96SZTdXD4nobaBo6atmb55a2sydhHq9bNGTd8KP1rVsdbW/bMaEmS2HnpBheTb9GnYR1qV6v4BqeHq4YHWzbil0MnGdeuOe6a0teVm0aEc/rWBbpHl9yuwKLC4nyj4zsIgkC3bh507uzOmtW5PPtMEnXraYiOUhMZpSYz00xcnInYWCOZGRYaNNDQspWWkSO9cXW17nPExRo5fz6AL798h1279/DcK28hKFUgSWQWmjE1fQhVjw5oNPbNx1E0HsD2sxsYPvoRFn35KaeOHaZNjwFYfGfYVKTKg2QxIebG4xp1e1m22nPVWLd+HfW/qc9T055yamwyzsehy1OSJNG3VXe+7z273H3YmsVnVjB//w9EhATSJSyQSP/yb8huPncFlVJB93o1Udh4DTg5O5c1py4wsWMrNC4la32e3sDKowc4/VjJ7Qav9STXM5i+fRNp07byOQ1bLBI3rhtJTjERH2/C01NBZKSayEg1vr5l31fIzbXw8kt6mrcZQEJyCol5ZsSOj6FQOybDvyh0J9fD5e3M/2A2osXMrA8Xoun/ktPiATCf34L+6u+EvFLtzmuiQUT3rY5dy3cRGRnpxOhk7IW193mHzjS2bdtGHc/K8YW7mZPChwe/40DccTrUDqdDZCiaYjZES0OSJHZfvkFuoZ4Rre3jahri40WLyOrsvxZHj/olH//1dNVQYHElJc9AsGfxN1dB682qVdt45JGhiNIN2rWrXLNApVKgdh2NTcrMiqLEnDl5FBDMXnM0yqYDUbi4On2e5dZ8IFLTfrwy7wvee34K/ko9aTEn0UY3d0o8Fl0O7gmHcK9598OTQqNA0UvBS2+/xJLFS5wSm0zlwKF/M3l5edTwdH5W9eHEMzy07FnOZp5nTKt6dK8ZUW7BANh8/gpmUeTBlo1tGOW9tIwM48zNZEQr/KZaRoXz8JriZztZhRKFZvDx8WH58i3s2hnCqZMmW4ZbqVi8OIcERUuUQz/AJbIFCpfKU79aUCgRuj3F0zNfZcTwobje2OW0WKQD3zNj+lQk93u/Y9p6WjZt38SOHTucEJlMZcHZD1oOJa0gk6c3zWFZ/h78/DwY0bg2YX7eFerzemoGGfk6ejWoXa7N7rKgUAjUCPQjNiOr1LatI6tzMtlCjr5ogbmQZqF730EAqNVqVq7czrp1gWzd6jj3WUexa4+O7Seroe32FEIlzQ8SFEq8xs7nxz/XojYVOCUGc34mWl0qqdm3MEbee/BCEASCXwzm9fdfd0J0MpUFh/4FGY1GcNIBjA8PfcfT+z+g56QHSM1IoldktQqbD5otFjaevczQ5o4zbWsVFcax2JulthMEgS51ovnpdNGzh5MZrgRX/9/pIQ8PD9as2YW+cCB//FE1SpZaQ1ycke+WaND0n1Pu/ApHISiUGNpMJDbmOhZdjuMDOLmc+R++T2ZOJir3omfeLj4uJBcmc/78eQcHJ1NZcKhorF2yis4RLR05JBm6bGbs+oi8EIk9x/ZTqC/A31RIdd+KzTAANpy9TIdakVadaLIVwd6eZOusK5nq5qLmQHLR/8SvbM1j2MiH73rN09OT+fMX4uc75L4QjtxcC6/NMaPsPQeFi3OsUsqKi38Y7s0GkLPnJ4eOa0q5Qk0PCw88ULrztKKngv98+B8HRCVTGXHoRnh2VhYh9RyXSBafncTUTW/x3e8/0K59O06ePMmfPy5mRKNaFe77ZHwSJouFFpGO3aNRCAIuSiufmAU4luqCJIn3JPp1b9MYHx+fey8RBN5//zNatdpG69Z51KhRNa0jjEaRV/6jR+jyCkp321iUAEiiBWPKNfRxpzHeuoGoz0dwUSNZLAhKFa7hjXCr1xFVBYqLebUcRML8h/DtPQ1Baf/DCZIkIhz6keX7tgFw6eollK2L/4651XDj2JZjxMfHl7mqoUzVxymGhY7gYup1+iyexLFjx2jZsiVbN29mxjNPMaRuZIWPw8ZlZHEiLpHxHVrYKFrrsYgiRov1tRiCq4eTrosl0N36zywIAl999R0jR/Zj0f/5O9wB1xbM/9JATuQYNNUq9oAgGvVY8jMwJF1CH3MSc84t1CF1cI1ogkezfihcPe8IskWfj/7GcTK3L0LU5eAa0RSPpn1QeZUtmVWhdsW1Rkv08WfRRtv/O2a8uJsnJ4y5Y9oYlxyHOrDkhwVlbyWjJo9i+5rtuLlVvuPaMvbjvhSNS2k3+ODCYq5du0bNmjX59eefeerJJ3muRzs8XCu2TGE0W1h76iITOra0/onfhhQaTXiW4TOEhkVx6lYsvWuUbZy2bdvTokV7Tp48T6tWVWu2sXZ9Iafiq6Pt17PcfZjzMsja8X+IhXm4BEai8q6Gd+dxuPgEF3uN0tUD9wZdcW/QFUm0UHj9KJlbvkKhccen60RUXtYne2prtER/YafdRcOYfBmfxANMf3wdAJcuXaJQWYgbJQuBa01XbsbdZOXKlTz88MMltpW5v7jvRONmTgrP7fiAbQd34ufnx2OTJ3HtxFFe6dfZKsfY0jh8I55WUWFlunHbkpTcPII8Szbj+zsNmrXi1NHD9K5R9lNR33zzE8OHt6ZFC8nuJ8NsgcUi8cNP+ey4VA9t3xnlNtkzZdwkY8uX+Hafgia4fDMVQaHErXY73Gq3w5B8lfQ1H+LZYiDuDbpadb1b/W5kn1yLaNChsFN2umQxoTjwPQeO7MXX9/YS3olTJ5DCrTut4t7Cnfc+fY+xY8fKhob/Iirn+cNyojcb+M+hr/hp+a+4uLjw0JAh5F86w8C6UTYRDEmSOH0zmeYRzqtYlpSVSzUv6/2iKvLHHBQUxMiRT/H7b5V/U9xikZg9O40tV1qi6T6j3CelLPp8MjZ8SsCgmeUWjH+iCalNtTHvURh7ioILu6y6RuXmhdrNE+nCZpvEUBTmXQt58Zkn7wgGwOyPZ6NpY90DkYuPC4WehezZs8deIcpUQhwmGjExMcQmxCFKol36P3frCqPXzuCZ2TOIjo5mSP9+VNdn0zI8xGZjXE5JI9THq1QbD3sSk5FFuJ+P1e01Gg3Xcsq/jDZ9+gvk5DRgzx59uftwBJ98nMFlsTse3Z8qv3V5dgrpq97Ht/c0VB7FF28qD4JShX+/p8g/ux1jWqxV13j6BaJIPG3TOP7CnJ+Jv6KA55564s5rFy9exOBmQOVp/fdbPUjNuGnjyMlxwhFhGafgMNF4f/Z7CCoF47e/xtcnlhCXnWSTfi2ihdWXt/P+2cV89v2X/Lj4O/p16URLHy21gvxtMgbc3svYeuEq/RrVtVmfZcVsEckrNODjZr1XUo0aNUgwWmerXhRKpZJfflnJ8WM1WL3KQEGBfUS/vBiNIu+/n8u5+GDcOj1e7n4K406TseFT/HpPs9kM458ICiX+/Z4mc9u3VjnGGqo1xEUyYYg7ZfNYpEs7ePf1WXfNRCc9PQn1g2Xbv3Lxc8GlmQtbt221dYgylRSHPTJ/+/0i4PYSz/f/9z2T33udUK9qNAuqS5dqLQl0v/1k56v1wtvVupvcwYRTvLdvIYWCHn8vV+Y89xR1fNxp3aAUe9dycCkllcbVg3FTO8+f6VxiCvVDy36UU6Ws2LOBVqtl9epdLFr0Fe+/9wWNG+upWctIy5ZapxZvOrBfx4qVEsmZrriO+qjcfeUeX4vh5gWCHnobhdq+9iIq7yDUgVHoY06grVFyzpJF68fQAb1ZduoKRDazWQySJJJ58E+6r1pw57UVa1aQRhpuPmXfP3Ht4sqMt2cwoP8A+STVvwCHr7MIgsCUqVOYMnUK6enpXLt2jT9/WoLJeDtz+dTek7grtfi5eNPc96+neglRkhBFEUmSSMhJZm/sYVQqCy2iA6gTFIHKzieZCgxGgsqwl2APjsQkMLpNU6eMrVQqmTbtaaZOfZKdO3ewZ89W3nh9GQMHmmjbTuXQjXJRlPj5ZwsZ6Q3IKkxH1bd8S1KSJJK95ycks4mAwbMcJoBe7R4iffVcNGENSxQpl4AI9h9ZBhrb5kKY0uLo3L03Hh63v8/Jycm89M5LuE4rn2Aq3ZRYmltYt24dI0eOtGWoMpUQp56eCggIICAggHbt2t31elZWFj/++COfffwRaqUSF6UCd5WSaloNvh5aXFyUjO9c1+b24yVhtjh3WeZcYgrVvDzwKkOdj0yjGW/vime+/x2lUkmvXr3p1as3s2a9yezZL/PolCVMnKShTRu11XUtyovZLPHRR3oGDniG3fuOYwyvgcav7AmWkiSSufkr1NVq4NGsv0NnTCoPPzwa9yL/9Ga8Wg8ptp06IIKs4/lg45plisvbmfrCeACuX79Op/6d8JzkicKl/P926mg1z838//buOzqq4m3g+PduzaYXEiD0XkPvRTooCAJKE7FgRVDxJyoKdsReERQLCCpIFem9915DIIRAes8m2exutt33D17RKJBNcrcE7ucczoFwd2YI2fvs3Jl5nsmMGDFC3kl1m/P4ltuUlBQOHDiA2Wzm1LGjnD19mpz0NGr5+/Bo26blPlchlYwCQ5keDUll98V4Hu3arlSvybU66N+/P9+87Zox+fv789FH3zBt2kzmzPmczz9bTZMmOQwb7ppZ39UrFubPhyeeeIeQsEg++GkNunvKdkYg/9BKVMGVCWg9UOJROkdbvSmGkxvd3q8jdg89Gkcw4v5hiKLI6++8js9wH7SR5Xuf+db1hfoQGxtLw4YNJRqtzBu5JWjo9Xqio6NZOO8nrJYi7HYHl+PicNjtYDFTQ6dGgUB4gC9dA/3wCZN+TaK8cgpNBPp4Jp12Uk4eYX6+pV5PcdvjlsBApk59m1dffYvp019k1td/MOheB7VqqSU7Tb5mtcihwwHM/e536tSpQ1SHbvjc80aZ0mwYzmzDbsgmpM9TkozNlfLz9KjDRaT4LtoL9SgvbOWno3sBWLpiKUcKj+AvUclfR3sHg4YNIvZcrCTtybyTy4JGQUEBK1esYM5XX6Jy2Kmk01DbX0eYz7XdGU1rhElydsJdlAoBjcozWVK3nb9E36al39FjcaLuhpQEQeD9979k/frebNmymnnzdtC6ldWp9Y7IahaaNNHi56coFmguXSpi+rQcnn32Wfbt/RiFQkGzVm0xNx+GTxkq7lkyr1IYvZOIB96qEI9RLCp/rD4ROH+c8xbOrGXWB2/h4+ODXq/ntQ9fQ/eUdFUL/Zv4Y9ttQxTFCvG9lZWNS4JGfHw89/TrS4tKwdxXt0q5Chzd6c6nZhCo05YpK2+Av2cW7gcOHMLAgUPIz8/n+PHjJV4viiLz58/h8KFsYmLO0r+/g7Q0kWXLcgCYMuV/vPPOp8TFxTH93Q8oCG6AT732pR6XKIrkbvue0AGTrtUFrwAKMhIJ7XTz1CXOchQVEmZO5t577wXg+anPoxigQKGV9oObNcLK3r176d69u6TtyryHS945H70/g761KlOnkrQHpO40ZquNrdGxPN6t9DdIbxAYGEjPnj2durZXr15A8WfiAwfezcKFvxIWFkZKSgq9Bw3F0v5RNB3LdlbGcHID2ppRqEOkO/BZVqLduSqJgo8/2kgJzgadXs2bU19CEAT0ej37juzD51npH7cK7QVmzZslB43bmOTPh9LS0ji8d89tFzAEBIwW95ZDXXn8LAOaN8LXjfU6PK1BgwaYTCZEUWTdug2kpaUx8fkX6djvPqxdnkJbrXGZHn1YsxMxXthPUMcHXDDq0rNmJ6FyYteXogyP4P7Ndmk/zYOsDB96bafWn2v+xNbWhkIl/eNhdZiaKwlXJG9X5j0kn2mcPXuWuiFlP4HsrcID/MgsMFArTLraDLdyMC6BYJ0PDSs7nxn1326WsqXQIuK4yQ7iwsJCMjIyEASBmjVronDBulN2djb5+fm3vGbbzt3s2X+IjTv2oKjXBc3AaSjLWFtCFEVytv9IaN+nveaxlD0/E1WI63OYWbMTKdj6LX+kp17/2vzf5+PTyzWbOpQ6JTm2HLKysq6nWpfdXiR/B+3ato1QredOTbtK9dAgknLy3BI0LqRlEpOWwcOdy17lMC2vgOo1bnwo7PNjKkY+NhG4dkNNSUnhief+R2p6FgVFdggIR7TbUBvS8fOTZAn2OqvNSqGoRdAF3vI6i08Y9ipN0QzshtK3fGdNjDF70YTXQV2pRskXu4kp/jiVovqWfGE59jI4zAbsO2azccN6tNq/t9QaTIYS62WUh6WhhfXr1/Pwww+7rA+Z50gaNERRZOP6dYxs5D1vTqnUCw9j8aGTdG1Q26X9XEjL5EDcVcZ2al2uU9ax+gKee/nN/3w9v0hkTWIAdyel0WvgUBJTM7Fp/LBEDUPTsHiQKfr/X56g/P9f5SU67OQf+YPKY2ZK0Jo0rLmpCGotSp0TM3KxbBmGbann0Z5Ywk9zv6JL504lv0BCvs19mfvbXDlo3KYkDRqnT59GKDK59aS2uwT4aPH30RKfleOy9Zp/BozyFnhKLzTTrFkzALLzCrmid+AQYfIWB6lWX348bUbVaCyKFtdyBd2uqyamuKPo6rZFofbMGZsbMZzaSECre5y6VlHK9Cii6MB2bgtVck+zc992AgL+G5gcN3s2KRF1sBqrzb3rfzL3kTRoFBQUUDXo1o8dKrJBLRrz64ETTOjZSfJcS4cvJxKdmi5JwEjOzQOtL8+/OIWzF+MwGlX0/iMQh18lrHW6oY4aKMmn+IrAnHAav2a9PD2M62z5mRSlXCC4xyPSt52XDseX07FOCEtXbUV1g63uWVlZ5Dvy0SHd+YwbSbqchM1mu+EYZBWbpP+jn3/4IU3Dbt+gEaTzoVuD2qw8fpYH2kVJ0qbJYmX1yWh8tRrGdW5T7gOPDlFk5akYimq0Js5SB13vEQhKFX99trz9VptuzZqdiDrMex6X6vf+RnD3hxAE6TYYiKKIaes3FMUfY8vGdXTo0OGm1y5augixuesPfYqBIllZWVSpUv4zJhWR0WjEYrEU+5pWq0Wnc22wdgfJgkZ0dDSZiVfo2ri2VE16pZY1qpKqz2f7+Uv0blL2ugt2h4OjV5I4dDmRAc0b0qiKNFnpdlyMxxBYA/++L0jSXkUnKFUo1N6Rv6woOQbRZsGnRnOnX2Mr1CM67DfM4mvNScaWHI3m8m76tIti0dGMErcjxyfGI1R2/ePjwGq374fHzMxMEhMT2bRzF6nZ2ezZuw+z6u+PYw5RxKJSg/ZfP3eFBrRGA/37/F27vlpEOO2joqhbty7+/v4VYseZZEFj4byfaHkbzzL+aUDzhmw8e5HN5y7St0mDUj2qKjAXcSoxhWNXU2hZvQoTenZCLVF6krjsXA4lZeM3/gdJ2pNJx27MI3fXz4QPedXp14iig/DwCIQ1b+AIqo5a54doykOwGvFVKwgLDqR3985MWbbX6ToWNpubSveKbuzLDQwGA78sXsyitetJMFsQI2tQ0Kg5iprNUDzdGWVV5zItF+pz+C0j/fqfxcx0tEtXo9XnYImNoWHNGoy8uz/DhgyhalXPH0K9EUF0ooRYfn4+QUFB5OXlERh448BwV+dODKoW4vK6Ft5CFEX2XbrCsavJ9G3SgKaREbf8lJeqz2fTuYvY7A5a1KhKqxqRkuayyiwwsOTURQrbjMa3WZ+SX3CHyFjxLhH3/3cXmTuJNiuZf35AUKcRaKs1cfp1xkuHeKKpgjdee5XU1GvnLIKCgggLK3tFyiYdm6B4QoFC49q8b6bzJjpkdWDRj4tc2o+r/fL7Er5f/DvJ+jz0XXujat8FRbDrDi7bszKwnDpG0JY1DO/bmzf+92K5/r9Lw5n7PEg00zh//jxiYQEqpfdPraQiCALdGtShXe0abDp7ke0xl6hdKRR/rYbwgL/PNhQWWYhNz8ZqtzOwRSMqB0p/8NFqszNrxyH8K9dE16Sn5O1XaE6UVXVt99cOFvo1uatUAQPAXphHvTqt0Ol01K1bt9xjuXr1KrYAGz4urk4IoGui48y8My7vxxWsVivfz/+ZbxctIqdeE2xPTUHh6+eWHYbKShHo+tyDpc89/LLkZ5bc1ZPHx4xi5JAhREVFeUUiSEmCxvo1a2gQJO0hsIrCR63ivtZNsTscpOUVkGcyU2D++3SDSqHgnqhGhPm7pgymyWJlxekL1KhVB0PzYWWqYHe7cxQZUWjdX4b0rwSJmko18Gvas9SvV1zcRrs2j0s2nvj4eMRI9wVRs8NMTk4OoaEVI6WQXq9nzk8/8fPylegbNUd47UMEjVb6XEtOUo96FMeQUcw5foj5b82gmjGfPt26M+3FF65XXfQESYLGymVL6Vs1WIqmKiylQkG1kKAyZaO9GZvdjvUWFQNPp2VxJlNPrQZNOJPtQF2/i2R93y7UodWxZMbjU72ZW/v9K2CoQ6sR0ObeUr/eYS2iakQYLVu2kGxMKWkp2DV2ydorib25nceefow/l/3ptj5LQxRFDh48yLuzviExNQ2j1UpO70Fo3/4ChcY7Ti4JOh2arj2xd+3Jlfw8vj93kl/630PTalX56PXXaN26tdvHVO6gYbPZsJuMBOruzK11Uso2GEnMzSPJZMVotaH00VG5cuWbXt/jgQdZPHkyDdt0RdV/qhtHWnH4NuqK4exWtwYNR1Eh2Ru+xqdmVJkCBoBoNVM9UtrcVHN/nYu2n/t2kmkaa1Ae9b6Zr16v5+NZ3/D7+g3YatXDePf9KGvURlAo8J4joP+lCAxC0bkHts49OB53gcEffEoVfTZfvjmdrl27uu3RlSQzDUHig253muTcPPalZBNSuQojxk+gX//+VKtWDaUTmwoee2YSjmpRZapgdyfQVmuMfs9CbPlZqAJdu+YmiiKFZ7dRcHIDIT0ewadm2WcJ1ot76NBNullGXl4eSfokfIPd/5jOW5w/f55P5/7A9iNHyR84HNWMWQgKhedrXpeBql4jbBNe5mpaCqPm/oz6iSc5f+K4W86BVMTv123DZrez80oK2srVWLfzj1Lv0X7muclsP30F4a4JLhrh7SG453hyNs8mfNg0l2S5FR12DGe2Yji9GV2dtlQePbNcZ0PE6M10DS3k5Refl2yMq1avwtbUvVtgFT4Kos9Hu7XPG4mJiWH8lFdIttox3D8O1ZBxqL1gQVkKyiqR2MdPwtqwKQNHP8imZUvQuPjRmhw0PMBstXIyJZO4PCPPTXmZxx4v3WJnQkICrdt1wL9RF+j+jItGefvQVqmPrn5H9LsXEtJrvGTtiqKIKe4w+YdWoKvXnsqj3y93jivRZoHYnfx24hA+EtakvxR/CSHIvTdKpY8Sm49nz2r8vnw5L3/xNebJ01FWirhtMyIouvXmTGY6vy3+nccecW2iSDlouNnVHD27rqYx5Y23GD58eKlTj9tsNh56YgKq7k8iNHBv9tKKLKDV3ej3LSZ3+08E93ikXDOOfwYLbWRjwodNK3f6drg2YzGufo93X5okacAAWL9jPf4Pe27HjbuJosijz73A5piLON78BKXGO7ICuJKi1wBefeUZ+vXpTfXq1V3XT7kbUCjIKSjEZnffroyKyGq3s+FiAnnhNdi67wDjxo0rU62KL2bNJk5VG50cMEotuOsYVGE1yFw5A1teRpnasOVlkLX6Y8xXThE+bBohvcZLEjAA7Oe389DQe5jw9JOStPcXh8OBId9wR6099n9gJFs0AYjTrm2bvRMogkOxP/gEM7/40qX9lHumoVAoeGriJI4s/432tZw7Sn+nicvM5lBqDtNmvM/w+8tebnT3nr18vXg9qp4TJRzdnSWgZX+0VeqTvekblH6h+LccgDayYYnnW0SbhYKTGzDGHiSkx6PS1O3+h6K0SzS2XuazD1dJ2i5ce5zpCHdtOvSbEZUi2dnZbjvVXFhYyH3jHuZC5Zo4Bo9wS5/eRNW9Nye+eMe1fUjRyLMTJ9JnyWIam4sI8LkzorozbHYH2+OTqdK4Oct+/K1cp3oTExN5/Pkp0P15+QBfOWkq16XyyHexpMdhOLMV/c751w7/FcswLKAKuZb7x2HMw5abil+znlQe+a7kO9XshXrEgwuZvfIXl5TXtdlsLk8bcjPmhmY2b97MmDFjXNqPzWZj7vyf+Wz2bPJGPIK6S0+X9ufNXL31VpKgodPpeOF/L/HrF5/Qs44824Br6UMWHTvHpFemMum558rV1jPPv8TmvYcp6vgkaokehchAU7keoZXr3fDvHEWF2Av1AAgqDapAabIQ/5vNkEPOry/y1Scf0rRpU5f08f7H72OpbUHjgVJbuvo6lqxd4tKgUVhYyD2jx3ChUUv4YA5qn4qfftybSbYQPmrMg8z/8UfS8gqoEiR9fqWKJD4rl71JGXzw1SyGDhtWrra+/+lnNhyPQ+g/9bbd+eGNFFo/FFrXpsaxJZ1Ge3olu7dupF27di7rZ+PWjYS87Pra9jeiraIlZXOKy9pPSUmh29DhFDz4BMqWrvseyv4m6e6pBYsWM+Cuboxt2bBCl3wVRZEsQyGxuQVkm60UOcRif1fFT0v3mv9NW2yx2dlw8QqV6zdm9ZbF1KxZ8z/XlIbD4eD9z7+BQZ7N0iqTlmizYDm1Fp/Ew+zcsp4aNVxbJCqsehiCr+fejzara7bdWq1W+g6/n/xnXkZV58YzxjuNIyuz3JU/SyJp0KhcuTLjnniSzYt+oX/DWlI27XIOUeRKtp6LOQXkOaBFq1bc/2A/+vYfQERERLFrp782lV+X/k7XWn+neUg1mrmcb2Lqm28xctQoSZ4rPjdlKmLDnqWuEy3zTtbcFKxZV9HGbOTN55/i6Sd/cMkaxj+ZTCaKzEX4eDBBRq4ll6ysLEkLDImiyAPjHyf77uFywPin44d4amTZN9s4Q/JzGi++NIXtW7aSkW8gItC794WLosiVrFzOZ+m5lJVLr969eee9iXTpcuvEfzM++JCGjRpxJT7++te6N2nKiJEjJb0J7Nt/EKHHK5K1J3M/0W7DFn8Y64VdVPVxMHzYEJ6ctZpIifNK3cz27dux1fXsATtFlIKFixfyv+f+J1mbH3z+BUc1/gg9+knW5u3iVrUwpCB50FAoFLw6fTqPjh7Fs93aeEX+9xs5mJDGuSw9d99zD289MII2bdqUKt3ww48+5sLRwc+//EqWpgoqL/3+3Yms2YlY0y45da02Nw6tOReVaOW+gf25/5XPadWqlctTPPzb3F/nom7t2dUwobrAhbgLkrX329KlzNq9H8fzryO/O4rTZqTeMsmpFFxyIvyuu+7iyWcncGD9GrrUcO0/oDRyC00cSM5Eb7XTf+BAFrz9jtNlMt3t01lzUXQt364rWdmIDjuW1IuIDjvalBOobSYshlzqRwTy7PhxTn0Qql59+E1nrKIokp6ezmeffcapU6cwmUy3Ho8oUrVq1euzWJ1Ox2OPPYZKpUIQBNq1a3fTYJSeno4q0LOJH3xq+rB8wXImPDqBVq1alaut3Xv3MXXuTzhefgfBxY/2KhrRbkc4d4qWLVu6tB+X/TRNnfYGg3btJi4rl3qVPLNz4y95RjM74pOw+fjx0ZezuKtHD4+OpyRT33iHPGUQShfv3rnT2U0FiLYiHMY81CmnEAQQCjLQmnO4p2tHwsLC6Dn+KVpGNUepVN70gFp6evr1ethGo5HY2Fhyc3NZt24dABaLhRMnTmC329m1axdFRUVoNBpq1qx5yxv+XxwOR7HAkpmZySeffAJcWwzOyckBYM6cObRv37742PLTCfD17G5GQSEQ2jm0xOBYktOnTzP2hRcpevcLFFpvTmLuGfbUJDpGNUOrde1ZOZcFDUEQWP7nagbfPQA8GDjisvUcSM3mrRkfMOS++1y+8CiFPfsPILZ50NPDuO3YTfmYLh8Dhw3/tFOEqe3UrVcPjVrFU6+Oxc/Pj7CwMOrXr3/9NZs2bWLJkiVER984W2tCQgLZ2dnXU1IrFAr8/f3/MxsJCQlBqVTSrl07goODSzVuhUJRLOWMn58ftWvXLnZNTk4Ojz76KAsXLqRt27YAfDnnS9R1b4+N2ms3bmT85P8hvv81Sl/5w9SNKC7F0NJFZ33+yaXzVl9fX9Zs3MTguweQdjmRVtUq46d1zzNdu8PBwcR0CI9k14H1Ll8cksqZM2dIzLejCnBP2oXbleiwU3h2O/7Z5xEK0qlUKRxBgCcfGoVGo6Z79+epXLkymZmZJCcnYzAY+OabbygqKiIhIQGLxYJSqSQ/P59WrVoRHn7jw30NGzYkKMjzBy5DQ0Pp27cv99xzD6mpqSiVShb8vgDteO/I0OAIcrBtzzY6d+5cqtdlZGQw87PP+XnZcjRfzkMZUDHex+4mWopQLv+VJ7dtcXlfgiiKJRYNzs/PJygoiLy8vDLdfE0mE4sWLeKrTz8hUKOipq+G6sEBVA50zbT5bEo6Oy4nM3HSc0yZOtVrF+NvpNfdg7lQfSCaSuU743GnEUUH1qwkjAcXocq8hFIB/v5+BAUGotVqr/8MWK1W1Oq/P30LgkBwcDCCIFC1alWCgoLQ6XROFcDyRnv27KFDhw68+OKLdBrSCb8J3vGp3Kq30vhwY1b9tqrEa202G4sW/84XP/5IjlqLqW4jhJEPu6QWyu3CvHktgzKv8tuPP5S5DWfv8275X9DpdDz++OOMHz8evV7PimXLWPvnnxxOyKTQYEAlXHtkJCAS7KMpfpMXRer4+1AjNAjVLd7IoihyNTuXM9n5+EZUZc3GeURFRbn6nyapRUuWEmvylQNGKTisZvTbfkCVcpIio4EOHTpQr/MgqlWrVqE+LEilfv36WK1Wfln8C9ZAq6eHc50qUEVsfOwtrzGbzbz0xhssWfw7ip4DsI99BnWDxuVPxX2bc5w+Tp2D2/lm5Qq39OeWmYazCgsLSUpKKvY1k8nEL/Pnc+L4UUSHiN1mo7Agn1oBPvir1EQG+XEkKYM8UaBH7z6Mf+ppmjVzXz1oKfUZNIyYyAGow1x7QrgiE20WTAlnUMftwpoeh2ArIiIinK5duhASEuLyRUBvl5qaSkBAAEnZSRyrdwyfGqVfMBZFEWu2FVO8CWuWlaK0IuBaJT5dbR0BLQNQ+pZ+Jlb0QxEX91684d9dvnyZ/qMfJG/Q/QhtOqHwv7NTETnLnpON73tTOL9/X7l3gnrVTMNZfn5+NGr035TTrb76qtif9Xo9Bw8eJCY6mgU/zydHbyD+ypUKsch9M7v37OVSjhV1lBww/s1hMWOJO4RwZg2Wghz8fXXUqVOb6k26FVu0ll1bEA8PD+fAqQME9HD+xiuKIoXnC8ndk4s124o6RI1vfV+01bUEdghEUArY9DaMl4xc+ewKAVEBhPULQ+nnfPBwOByYzeb/FJhKTk6mz+gHMUx+A2VV9yY8Fe02ig7uxbx9Izj+Th+v8PNH1agpmqjWKGvV9cpZqz0rA8fbL/HL99+59eiAV8007mRN2nTG0O05yQr6SEkUHVhSLmDLS//X3wj41GyB0l/anXGWrASsGZev9ZB1GeHqYRQOG23btqV27dqSpqO43ezZs4dx48bx3rb38O1b8o1EdIjkHcwjZ3sOPrV8COsThjby1rM10SGSdziP7C3ZBLYOpNLdlRBUJd9U9Vv1fHrvp4waNarY17vdO4SYBx5FVavspQNKq+jYQUzr/sCRnYmmRVt0941AEfj3e8+enoY15iyWE0ewX72Mz91D0N1zH4LKO3aj2dNS8P3iXWa//Rb3DrxHkjYr5EzjTnXmzBmM6mCvCBjWnGSUCUdRGzMQzYUEKK8tHHdu34aug9oWu7aoyMKCpSvILzDcss2M7FzUYc6Vn7TmJNOhWSP8AkSio6OxWq2069eHWrVqeeWnPW8iiiLbt2/Hr5IfQrOSv1dF6UWk/JyCXyM/ar1UC6XOuVmDoBAI7hRMUIcgcnfnEv9hPFUfroquZgkpyf3B/q8Kn3a7ndRCo1sChmg2Ydq8FvO2DajqNsD/iedQRd7451JVoxaqGrXQ9RuEWGTGuHoZOc+Px2/kOLQ9+nn0Z9GelYF65mtsWraExo0bu71/eabhBTy5Y8puysduyEV5cRv+5kz0aQl89OEH9O/TC41GQ2hoaLn7KCgooLCw8NbjsNvZuHEjCxcuxGw2U7NmTerVqyd5rezbWWxsLKGhoWw9sBXFUwoU2ps/rjWcN5CxKoPqT1RHE16+bfC2PBuJ3ydSZWQVdLVuHjj0B/V81P0jHnzw7zNIX377LR9cTkMYWL4SArciiiLmDaswrl2J7u4h+PS5B4Vf6fPiiWYThoXfY4u/RNCr76AILv97o7TsmRnw8Zt8OWUyY0ePlrRteaZRQeTk5BCXpkfTyr0BwxJ3CJ8re6kTHki1yKo89f4LdO/e3SWfoAICAggIuPHz9cLCQmbPns3KlSsJDQ2lffv2pcoBJvub1WqlVatWrD+2Hl/tzR9NFWUUkfFHBrVfqn3LwOIsVZCKGhNqkPhtyYHjn0RRZNna9TjGPYsrNzgXzp+DaLcT+vW8cj1eEnx0BDz1AtYL59C/NYXAl99CVd192bztmenkPf4An330keQBozTkoOFhD4wei7VWR1y558eWl46tIAdN6kmUGRcJCwmia4e2vDV3uSQzibJITExk2rRpnDt3jgYNGtCrV687fudTeRkMBiIjIxGFmz88sJvsJH+fTPUJ1SUJGH9R+auo8UwNEr5OoNbkWk4tkJ84cYKrQWEoK/+3No1UzDu34NDnEvi/6ZK1qW7UjKDXZpD30ZuEfDALwQ2VAkW7DT6czndffcX48eNd3t+tyEHDg06dOsWFdAOau3tK3rZot8LR3/EtTCU0wJduXTrRdfQY+vTqWSwlhTtduHCBefPmsXHjRvz9/alfvz6DBw/2yFhuR0ajkf0H92NpZsGPG/8fpyxIIeL+CDRh0mdmUAWoiBgaQeqiVKo/WfIa1pK16zBHtXXZTciWdBXTmuUEf/iN5G0rq0Tie99IDAu/J+CpFyRv/99ssz9h6sMPeTxggBw0PCYrK4vB94+GvlPK/UioKDkGR24SfnnxCKZcEAQUtiJmTHuZUQ8Ml2jEZbdjxw5++OEHYmNjqVevHkOHDnXZQqLVaiUpKYnU1FRyc3PJy8vDarWi1WqvJxVUKBRUqlSJkJAQwsPDCQ8P91gglUp+fj5paWmER4SjzL3xp/y8I3moAlT4N3Hd4z//Zv7o9+spvFCIX6Nbf08vxF9BGDjqlteUlSiKFHz1AQEvTEVQu2bHk7ZHP4yrluDQ57h0fcP++890VDr433OTXNZHachBwwNEUeTBx57C3HIEvsFVnH6dw1qEJe4gvjmXEBChIINgfx1tWjan3+AudOw4mVq1vKdiYkJCAlOmTOHSpUt06tSJQYMGuayvpKQkjh49Sm5uLrVq1aJ69eo0bNiQsLCw/wQoq9VKbm4umZmZxMfHc+TIEQwGA6GhodSvX58GDRq4ve5FeaWnp3Pvvfcyd8FcfB/673qG3WQna0MWdV6t4/KxVBlVhYSvE6j9sjRrJmVh+P4rfHrfjaqm6/69giCgGzQc06a1+I162CV92M6epHr0cZZv2ug1qW3koOEBu3bt5uzVdHwHPl7itaIoYju/DU3WRYLFQp56eAyDB05ErVYTEhJyPbuqN7FarcyePZsFCxbQpk0bhgwZ4pJ+RFHk/PnzHDlyhODgYDp16kSVKiUHYbVaTUREBBEREcWyB2RkZBAXF8fixYvx8fGhadOmNGnSBJXK+98m+/fvZ968efx59k98gv674yx7czZh/cLcchNXBaoI7R1K1oYsIoYWL5Vss7u+imDRkQM49Lnonp7s8r58evQjZ/Lj+I54SPL6HrbkBPx/+JJ1G9Z5Vd0f73833GaMRiNPPDsJse0jt7zOkn4Z7YUNKAtzmDBuFCOGTaJePe+vhZySksIzzzyDyWRi8ODBLjulbzabWb16NaGhoYwcOVKS4PlXIOncuTN5eXmcO3eO+fPn07JlS9q3b++150TMZvP1dOlK7Y0/jRrOGKjzuutnGX8J6hTE5RmXqTSoEgr1tZ8Bv4Z+/PrHrzw8zjWfyuH/T7Yv+I7gGV+4rI9/EjQaNG06YDl2EG37W5eJLg3RZsU05WnWrvqDatXce0q+JHLQcLNvvvuBvOBG+FVrUuzrNkMO9vxMMla8h8OoZ+CwEcxZ/K1XPW66lfz8fKZPn86BAwdo06YNVau6bkdMcnIymzZtonfv3v+pKyGVoKAgunTpQseOHTl8+DCLFi1i8ODBXndOSRRFli1bxrx588jIyMAhOG54ndJfiaBwX9ATFAIBrQIwnDEQ2Oba90wdqiYrO6v4hSUfEysVy4nDqJu1dOsZCp8e/TBvXitZ0LDnZFP0/CN889lndOrUSZI2pVRxkzVVUMdOn0NZtyN2U8H1r9lPr6HS0R94qEY+4x8Zx44dO1m7YkmFCBgWi4UPPviAu+66i5ycHAYNGuTSgHHlyhV27drFyJEjXRYw/kmpVNK5c2f69OnDihUr/pNQ09P27dtH/fr16dGjB4tWLsLe3F7yi9wkqEMQeYfzin0tX8y/XmmwSZ3a2OKdq7nurKJdW/Hp57q1sxtRVquBLTlBkrbMu7diemok21b9wWNjvbMQmzzTcLPXX5yE+YNPST2xiYx8E6LDgTE1joSMdK99/HEza9eu5c0336RatWrcd999Lh9/cnIy+/fvZ8SIEcVqYrhDlSpVGDNmDCtXrqRZs2Yur8PsDLvdzrFjx0hIuHbDunzlMspW/3085ShyIDqk/UTvDG0VLdacf6VnD4bo89F069qNB4cPY9HLr1PUoatkfdoux6Kq20Cy9pyh8PUDCX72hT8WoVyygLOnTlG9unNpdzxBDhpu1rJlC/78faGnh1Eu6enpjB49GrvdTu/evd1ygttsNrNp0yZGjhzp9oDxFx8fH0aPHs26devIzs6mV69eHg30GRkZ9OnT5/pp+7iUOLQD/3tAsii9CG1lzxycVPgoEB3i9UdjjuYO1mxeQ7eu3Yhq3pyAwnzMVqsk22Id+hwUYZUkX5B2hmi8dZqckliPHaTOmWMcSUvz+g+P8uMpWals3bqVvn370rRpU7cFDFEUWblyJf379/d4ihGFQsHgwYPR6XRs3boVJ1K3uYxer6dXr14lXleUUoS2mmeChiZCgznRfP3PgrL4DbFLu7ZYz52SpC9rbAzqBk1KvtAFhHLULRdFEfMn7/Dbd3O8PmCAHDRkpbBlyxZeeukl7r333pvWzHaFEydOEBkZ6VVT9r9qXR8/ftwj/YuiyOXLl7n77rsBOH36NJZgyw2vLUotwqe6ZxI/6uroMF0xFfvaPzPdvvjkE/htXSNJX7Yrl1G6Mb26VOyJV4kIC71hLSFvJAcNmVNOnDjBK6+8wsCBA92aI8psNnPixAm6d+/utj6d1bdvX2JiYsjIyHB738ePH6d169bXt2FnZWUhht581uNMvQtX0NXWYb7y90xDW03Lnxv/xGg0AtC4cWO0BXk3e3mpWE4cQRPVWpK2Sq0cE07VqSO8++Yb0o3FxeSgIStRbm4ujz32GP369XN7UsGTJ0/Spk0brzkN+0+CIHDvvfeybt06rFb31ePOzMwkKyuLuXPnOveCG+/CdQttpBZL9t8zIKVOCQ2u/b/Cte9hlcBA7KnJ5e/MWoQiKLj87ZSBIii4zP8G255ttPOCjRXOkoOGrESbN2+mdu3abj+VKooiZ8+epXnz5m7ttzSCgoJo2bIlR44ccUt/drudHTt2sGjRomLPv+OuxCEqb/xx15xsLnfNjLISBOG/50P+ddd5bcLTKA7uLn9nGs9lSVYEBiHaSn/aXSwy41tYQIMG7t3xVR5y0JCVKD4+3iML0MnJyURGRnpst5SzoqKiiI6OxuFw/Uf66OhoRo4cSZ06xU93L1+3HG3rm9w0RVDoPPhW/1csc+Ag5kLM9T/Xq1cPn9x/HfqrYOzpqSj8na/J/hfL/l2Mf/jhCpGq5i9y0JCVKDExkaAg95eizcjI8KrF75tRq9U0aNCAmJiYki8uB6PRSGJiIm+8Ufz5tyiKJCQloPS98SM8QSFgN3rm0F9RRhGqoOI3RE0XDS9Ne+n6nwVBwPv3DN2aIy8XRUjpT6H779nKpCdKzkHnTeSgIfNaeXl5bt2lVR5t2rThxIkTLmtfFEV27drFJ5988p/1HVEUsaqtN13s9m/hT95BaRabS0u0iSj9i49X5a8ipE4IKSkpHhmT1Ow52SgCS/+hSrTbMMSco1KlSi4YlevIQUPm1dzxyEcKAQEB2O12ly2IHz58mOHDh9OjR49SvzawbSCGcwYXjKpkou3G6yzWFlaWLFvi5tG4huXQXjRtOpb+hTYbUR29L7dUSeSgIfNaYWFhZGVVnGfdYWFh6PV6ydstLCwkNTWVZ555pkyvV/mrsBvsHkklYr5qRlvlv2stgW0C+fWPX6XtzHLjcyquZjl5BG3Hbh7p2xPkoCErkU6nIz8/3+39+vv7k5fnmccqZREeHu6SoHH48GGmTp1arnUl3wa+FMaUL9VFWRReLERX/79p6xUaBXnWPMl/rsQic8kXSdmf3Y49OQGFC+ucexs5aMhK9MILL3Dq1Cksbv4kV61atevJ+CoCV6SASEtLo3r16owePbpc7QR1CEJ/QC/NoJwkiuK10+iRNzmNXh02bt0oWX+qBo2xxcdJ1p4zbJdjUTVoUiHSf0hFDhqyEtWoUYN33nmHQ4cOubVfrVZ7LS+P2b2fHssqIyND8l1mx44d4/333y93O7raOqw51mIH7VzNfMWMrsbNi2OJDUWOnTomWX+qeg0ly2PlrKKDu++oR1MgBw2Zk4YOHUpERARxce79JFe7dm2uXLni1j7LKiMjg7CwMEnbCwoKKrFuSEJCAg5FyRsGIoZEkLHSfSlP8k/mE9Dm5mcX1GFqdu7dKVl/muatsF44J1l7zrCePYW6jKlL7CeO0KJRQ4lH5Hpy0JA5RRAE5s2bR3Jyslu3SjZr1ozTp0+7rb+yMplMaLVaSdOdHD16lEWLFpV43S+Lf8HWouTTyH6N/BCtYrGss67isDownDPg1+jm2V/VIWqyNFlER0dL0qeyclXsGWmStOUMe3YmCKDwK9vBV21sNGOH3ifxqFxPDhoyp+l0OpYuXcqpU6cke6OXJDQ0FEEQSE9Pd0t/ZXX+/HkaNpTuU2NBQQEajYaIiIgSr125YSUBrZw7jRx+XzgZq1w723BYHSTNTSJicAQKza1vMWKkyNFTRyXrW1m5KrYr7pkNm9b/gW7gsDK/Xn0xmjZt2kg4IveQg4asVCpVqsSGDRsQBIFt27a5ZXG8Z8+eHq9dcSuiKHLmzBmaNJGulkN0dDRPPPGEU9cqVUoUaufeyj7VfEAJpqumki8uA1EUSf4pmZBuIQS0LDmQaVpoOHr6KGKmNB8KtJ26Yznm+rU3R14ulkN70XYtuZ7JjdiSE6gZFur2BKBSkIOGrNRCQ0NZsmQJ06dPZ926dS5PDR4eHk79+vXZs2ePS/spq/j4eMLDw/HzK3shnn+yWq3k5OQwduxYSdr7tyojqpD2e5pLgnDm6kx8avo4PfNR+ChISEigdUQlrJdjy92/pmM3zLu3lrudkhgWzMXvkWcQyvg40hpzjmdGjZB4VO4hBw1ZmQ0YMIB169Zx8OBBrl696tK+OnToQHx8PLm5uS7tp7REUWTPnj106ybdDprTp08zYcIElyVq1IRrCGgRQNY66Q5OOoocpC5OxVZgo9I9zqfFUPooKfIvolvrlnC8/DMEha8fqroNKDq8r9xt3Ywt/hL2tFS07buUuY3Ak4do3LixhKNyHzloyMqlevXqrF27losXL3L27FmX9SMIAv3792f79u0u66Msjh07Rp06dQgMDJSkvaysLLKzsxk3bpwk7d1M2IAwrNlWsjZk3TTVh7PyT+QT/3E8ulo6Ih+KLPWZBWsTK4H+fvjt3SbJ7Mf/8UkULpqHLUn6DzKiw0H+rI8ImDilzG04Th+nqa+2Qq5ngBw0ZBKIjIxk586dBAQEcOqU6/bJV61aFY1GQ2xs+R9jSCE5OZmLFy/StWtXydqMjY29YVJCqQkKgarjqoISLs+8TOGF0p8WNyeaif8kHsNZA7Wn1Ca4S3CZxuLX0I858+fQpHFjHDnln/0o/AMImvoeBV/MxHJG2iSShm8/R3f3faiq1SjT60VRRPf7Tyz78QdJx+VOctCQSUKtVvPjjz/i7+/PmjVrXHYgr3///uzZs4eCggKXtO+s7Oxstm7dypAhQyS7wUdHR6NSqa7XH3c1QSFQqX8lar9Um+zN2aQtTcOSbbnpp31HkQObwYYx1kjKwhTSl6dT7dFqRI6LvFaRr4zUoWoKtAWMHTIYzZ/SJDFUVokkaMYXFC6aJ0ngEEWRwuW/gUKBrv+9ZW7HFnOOVvXrSzYz9YSKU/lD5vWUSiW//PILK1as4L333qNfv36SLQ7/RavVMmTIEFauXMl9991HcHCwpO07IyMjgw0bNjBs2DDJilOZzWYSEhLYsWMHCoV7P8sp/ZTUmFSD/GP5pC9Lx26wIygF7OZrNTj+CgiiQ0QVoELpryS4czC6+jrp0mfUgEJjHoro09hEUZJ2FTpfgt78iLx3X4UHx5e5frhoMpH/9YcoK1fF/5kXyzUm37XL+GrOV+Vqw9ME0YmHiPn5+QQFBZGXl1ehI6TMfc6dO8fgwYO5//77JQ8ccO3Z/9q1a2nWrBlt27Z12402OjqaY8eOcd9990n2XhBFkY0bN/L111/TsWPpU2y3692OokeKJBmLpxjjjNyVcRfBYdVYqAtDXcatrDfiMBnJe28q6iZR+I16BEHjfOlbe3oqeTOn4TtyHD7lHJP10gVab1jGlhXLvDJXlbP3eTloyFzmxIkTPPLII3Tu3JmqVaXPAupwODhw4ABxcXH07duXyMhIyfv4S0FBATt27ECpVNK/f39Jdzbt27eP3r1789prr5Xp9Q1aNkD5mBJ1iHeXxb0VW4GNjA8yOLbvGF1HjsY2c3aZt7PeiOhwYN60GuOaFagbNkHTuj3q5q2ulWjVaBENxR93isZCzDu3ULRvB0Gvv4+ySvl/tmyfvcOqqS9JutNOSnLQkHmFffv28cgjjzB06FCX1RnPyclh165dmEwm2rVrR4MGDST7JKfX69m/fz+ZmZl0796dunXrStLuX/7affX111+XuY1pb0zj17xfCWxbsd+bxm1G3hv4HhfjE/g2z4IwYIjkfYiiiO3SBSwnDmO7HIsjNwdEEcE/oPgMRFCgad0On953I6jKH4ytl2MJ/Oxtzh457JKZtxTkoCHzGmvXruXtt99m0KBBLp2W6/V6Dh8+THJyMi1btqRRo0alfoOKokhBQQHx8fHExMQgiiLt27enXr16ko/36NGjBAcH88svv5Tr+7Ju/Tqe++E5/IZ6583IWfZCOwWzC/jhsx944u13sb7zBYKm4p2YvhHFx2/y2WMPMWbkSE8P5abkoCHzKt9//z0//fQT/fr1Q6Vy7f4Ls9nMmTNniI2NxWq1EhgYSGhoKH5+ftfrMefm5lJU9Pc6QH5+Pnq9nsLCQgICAqhduzb16tUjJCTEJWM8e/YsGo3GqYSEJRFFkY69O6LvrUdbs2LfZPMO5zG91XTQ+PDOzn3YH57g6SGVm+1iNC03rmDbHys8PZRbkoOGzOvMnDmTGTNm0KJFC3r37o2mFAuSZeVwODCbzWRkZFBQUIDBcK1Wtq+vb7GfZa1WS2hoKD4+NykYJKGrV6+SlZXFqlWrJNuuGxsbS/+x/dE9rkPp49ozHq5kM9hw/Ogg+mg0g8aM5Ui/YajrN/L0sMrF8swYzmzfSrVq1Tw9lFuSg4bMKzkcDrZv385bb71F3759vXIXiSuZTCY2b97Mtm3bCA0NlbTtnbt30rdPX2q+UhO/hhX3UZVxpZFfXv0Fu93OqFlzcUwo++lrT7Me2c/QpAv89LX3b7N19j4vH+6TuZVCoaBv375ERUURHx/v6eG4VXZ2NitWrOCrr76SPGAA9LyrJ7t378Z3qy8FBwuwG+2S9+EOig4KHhj7AE2aNCFn3SpsyRWn5O8/iXYbgSt+5eO33vT0UCQlBw2ZR7z66qscP37c08Nwm9zcXFavXs38+fO56667XNZPl85dOLT9EM83fR7lz0rytuS5tcSrFHyq++DT3YdNWzYxc+ZMFL/96OkhlYli7Qruv7u/pNUcvYEcNGQeUadOHZo0aYJer/f0UFwuMzOT/fv3s379erp37+7y/vz8/Pjfc//j+N7jvNPvHQJWBWBYY7h+wrsi0LTRMGXqFMY/8jBtA/2wHtnv6SGViuPEEaoe23fbzTJADhoyD3rllVfYvHlzsV1MtxNRFDly5Ajnzp1j3bp1NGvWzK39q9VqHnvkMY7sOsKHoz+EeWDYY/DaYlb/pA5RI3QTWLZ8Gb9//x1BC+dg2bTG08NyiiNPj+Obj9iy6g+3p4Rxh9vvXySrMNq3b8/s2bNZt25dhbiRlYbD4WD16tVoNBq2bdvmVNlWVxEEgVEPjOLI9iOMrDoSw+8G7IXeP+sI6hLEh3M/JDEpkeN791J59ybsma4t+FVeYpEZ4bN3+O27ObfdY6m/yEFD5lG9evXiqaeeYvv27bdN4DAYDKxbt44hQ4awdOlSl6c5d5afnx8fvfcRz/Z9lowPMyiK8+4ZnspfhfIBJYNHDcZkMvHb7Fkw/TkcJqOnh3ZTirmf87/hQxjQv7+nh+Iy8pZbmVf47rvv+Pzzzxk4cKBHMtdKwWKxcOrUKbKysvj000/dsn5RVufPn+fesfciDBDQNdZ5eji3ZDxrpHtBd37+7md+X/kHU35bgm3SVE8PqxjR4UBYs4w6Z45wYJvry826grzlVlahPPPMM8yePZuVK1dy7NgxTw+nVPR6PQcPHmTevHm0bNmSAwcOeHXAAGjSpAm71+ymXkw9jIeNXj3L0zXTsTNmJ/N/ns/o4cNQX4rBcvakp4d1nSiKGF+ZQNuEi+zbstnTw3E5eaYh8ypGo5GJEyeya9cuhgwZ4pWzDlEUiYmJITU1lZycHKpVq8bkyZPp06ePW065S8lqtfLKm6/wx/Y/0AzToK3qnWlIrHorl6de5nLsZWJjYxk7dRr2md8geHih2RF9Gu3in7i/e1c+f39GhV74lk+Eyyq0kydP8vrrr5OcnExUVBTVq1dHq9V65AS51WolLS0Nk8nExYsX8fX1pXfv3jz88MPUqVPntjjVfuLECfoO6kvQ/UHoWuhQaLzv5mc4Z6B+TH02rdrEtBnvM1fwQ9Ott8fGY1yxCJ9Vizl5+JBL0/K7ixw0ZLeFzMxM5syZw9GjR0lKSkKj0RASEoIgCPj6+kr+yd5qtVJYeK1edn5+PlarFYfDwYABAwgLC2PMmDEuqQ3iDbKzs5n5+Ux+mvcTIQ+F4NfMz+sConGnkftr3M8LT79AwxYt8V+2xe1jtGdnovzle1ooRX7/8XuXnO73BDloyG47DoeDoqIizp8/j91u5/Tp01itVkn70Gq1NGvWDIVCQe3atQkODkapVHrdzdOVTpw8wU8Lf2LDoQ0INQXUXdWoAryjMrToEMl+P5u403G88NrrrDdYsT/0pNv6t12Jw/TyM8z65BMee/SR2+rnQg4aMpmsXHJycti0bRNvf/w21s5WfFv7Iig8f5M0HTJR42oNtq/dTtuevUhs2RHFkJGSVvq7EUeeHuHdKaz/8Xvatmnj0r48Qd49JZPJyiU0NJQxI8awf+N+hgUMo+CzAgpjCj09LHQddVzlKpu3bObQ1i10SrmM4aWncBQaXNanPTMD9cypLP3qi9syYJSGPNOQyWROiT4fzcQpE0lQJqAdqEWp89yhRXuhHRZA9KForFYrX8+ew5QXJyOoVFRavhVFYJBkfdni4/D7/nOWfvU5HTt2lKxdbyPPNGQymaSaNmnKjnU7GN91POkz07HqpV1PKg2ln5LUlFSio6NRq9W8NPkFRFFky6bNqL77TLJzJ5YzJ4iY+wnbfl1wWweM0pCDhkwmK5Vpr07jh29+wD7PTuHGQqy5ngkelR6sxJjHxhT7Wp/evehSJRz7lbhyte3Iy8X6zUd02reZXWvXUL9+/XK1dzuRg4ZMJiu14UOGc+HEBT4e8TEFcwswXnJ/Piifpj4Yggxs3lr8FHaHVi1wJJS9wJctJQnHa5N4omEd1v2+iPDw8PIO9bYiBw2ZTFYmCoWCB4Y/wK41uzD/aqbweCGiw73pSHwe8GHytMnFHkc9NGIE/of3lKk92/kziK88w7zPP+WjD2beVltqpSIHDZlMVi7169fn9NHTqLeqyf05163FnhRaBZa6Fub/Ov/616pWrYqmIL/UbVnjLlJp4bdcjj7HkHvukXKYtxU5aMhksnILCwsj5mwMbz38FknTkyhKc1/adWVbJZ98+QkJCddqiQuCgErrfA4tURSxHdlH1QWzWfXzPIKCpNt5dTuSg4ZMJpOEIAg89fhTnDh4gpyvcjBtN7kle64mXINloIW2ndpisVyrh263OFcX3ZGbg89bLzIqO5GDG9bRuHFjVw71tiAHDZlMJql69eqRkZRBV01XchfmYjPYXN6nb31f/O72Y+bHMwHo3bYNluOHbvkaxY6NBH/6Juu+m83sjz7E39/f5eO8HchBQyaTSU6hUDB/7nwm9ptI/vx8TPEml/fp392fhTsX8tPCn3h8zCh8z5264XUOQwGK336kU8IFzu7cTnOJard/8MEHtG/fnoCAACIiIhg6dCgXLly4/vdvv/02giAU+1URZzZy0JDJZC6hUCh4/bXX2f7bdkJ3hJJ/MN+lj6sEhYDvWF/eX/g+R08dxXb8IA5jIaLZhGg24TAUwKrFRHw8nVn39mXF/HmSZknetWsXEydO5ODBg2zZsgWr1Ur//v2vZ00GaNasGampqdd/7d27V7L+3UVOIyKTyVzu0qVL3NXrLhw1HIQ/7dpzD6JDxLjISLd6fbmann1926xCoWDE3QN46rFH3VK3PTMzk4iICHbt2sVdd93F22+/zapVqzh58mSp2qlduzaTJ09m8uTJ17/WqlUrhg4dyttvv03Pnj2JiopCqVSyYMECNBoNM2bM4MEHH2TSpEksX76cypUrM2vWLO65xa4wOY2ITCbzGvXr1yc5IZk2kW0wHzO7tC9BIeD7oC/7k7ZjKUhh1rtvsXPlcrYvX8qEJx53S8AAyMvLAyhWbyM2NpbIyEjq1q3L2LFjr+/4Kq8FCxZQqVIlDh8+zHPPPceECRMYMWIEXbp04fjx4/Tv359x48ZhNJb/EKYcNGQymVsIgsDq31ej2Ku4lnDQlX0pBHQjdGT3z6bv8L68/+H7Lu3v3xwOB5MnT6Zr1640b94cgI4dO/Lzzz+zceNGvv32W+Lj4+nevTsFBQXl7q9ly5ZMnz6dBg0a8Nprr+Hj40OlSpV48sknadCgAW+++SbZ2dmcPn263H15R2UVmUx2R1iwaAGJFxLRfqml+rTqLu9PW1lL2IthvPXiWxTZinh3+rsu7xNg4sSJnD17ttiaxT8fDbVo0YKOHTtSq1Ytli5dyuOPP16u/lq0aHH990qlkrCwMKKioq5/rXLlygBkZGSUqx+QZxoymcyNfDW+mIwmNFHSlum9FaWvksbfNubr77/m2LFjLu9v0qRJrF27lh07dlC9+s0DY3BwMA0bNuTSpUul7sNuLz5TU6vVxf4sCEKxr/21ruNwOErd17/JQUMmk7nNmNFj2LNnDxkrM7BkOncATwqCQqBSz0rk55c+vYizRFFk0qRJ/PHHH2zfvp06derc8nqDwUBcXJxTNefT09Ov/95qtZKYmFju8ZaVHDRkMplbdevWjeXLl6Ofrcducl+eKlebOHEiv/76K4sWLSIgIIC0tDTS0tIwma6dUZkyZQq7du3iypUr7N+/n2HDhqFUKhkzZkwJLcO8efPYunUrsbGxvPjii+Tl5REXF1csmLiLHDRkMpnb3X///Xz75beYfjch2tyTGVfEtf18++235OXl0bNnT6pWrXr915IlSwBISkpizJgxNGrUiJEjRxIWFsbBgwedSr0+ePBgnn/+eaKiosjJyWHGjBmsXLmSrVu3uvTfdCPyOQ2ZTOYxi5cuZvp30/F9xNflfRm/N7Jrya5brjN4oxud03AF+ZyGTCbzemNGjqFdzXZuKeLko/CpcAHDG8lBQyaTedSbL7+JY6/DpSlGjJeN1Kpcy2Xt30nkcxoymcyjmjVrRrsa7Thx8QS6RjqX9KE4ruD9d917wE8qV65c8fQQipFnGjKZzOM+m/EZllUWLNmu2YabtDOJunXruqTtO40cNGQymcfVrFmTOZ/MoWBp+VNq/JujyEGT1k3kinwSkYOGTCbzCoMGDsJX70vBaWkDh3GnkSfHPilpm3cyOWjIZDKvIAgCB/YcwLzMjOmKNEWbRFHEesrK008+LUl7MjloyGQyLxIeHs7JwyfRbtBijCn/NlzDMQN1q9VFoZBvdVKRv5MymcyrVKlShb0b9qJZr8HwhwHzldLX3xAdIrkbc1FsU/DNp9+4YJR3LnnLrUwm8zohISFEn4xm+/btfP7t55xdcxZtoBYRkaIGRSgCFSh1Snzr/fckuSXbQsGPBUx+YjJjPh5DjRo1PPAvuH3JaURkMpnXMxqNOBwOjEYjvy35DavNyvHTx4m5HIOgELCYLZgCTAgKAWOMkU9mfsJDDz7klrH9lXa8ovn3rd/Z+7wcNGQyWYUniiIXLlzA4XDQuHFjt65h3GlBQ348JZPJKjxBEGjcuLGnh3FHkBfCZTKZTOY0eaYhk8lk5eDKRIveSJ5pyGQymcxpctCQyWQymdOcejz11/TLlUXZZTKZTOY5f93fS3rc5lTQKCi4lkBMPiQjk8lkt7eCgoJbZgR26pyGw+EgJSWFgICACrsnWSaTyWQ3J4oiBQUFREZG3vKci1NBQyaTyWQykBfCZTKZTFYKctCQyWQymdPkoCGTyWQyp8lBQyaTyWROk4OGTCaTyZwmBw2ZTCaTOU0OGjKZTCZz2v8BVCNM4skc7XgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.shapes(adata, hue=\"cell\", color_style=\"fill\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "77abb0e4", + "metadata": {}, + "source": [ + "You can also layer shapes on top of each other in the same plot. This allows you to style shapes differently; for example we can highlight the nucleus with color and the cell membrane with a dashed line.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e5dcc2a4", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T21:18:55.448774Z", + "iopub.status.busy": "2023-03-31T21:18:55.448551Z", + "iopub.status.idle": "2023-03-31T21:18:55.914338Z", + "shell.execute_reply": "2023-03-31T21:18:55.913929Z", + "shell.execute_reply.started": "2023-03-31T21:18:55.448759Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAGbCAYAAAA4KMxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADL50lEQVR4nOyddVhU29eA35mhsQCxULETW+zu7u4Orh3Xuna32HrNa3eAHdiNiaIoCiKIgXQzc74//Ml3uRIzTKLnfZ77PHfO2XutNQhnnb33CokgCAIiIiIiIiJKINW3ASIiIiIiGQfRaYiIiIiIKI3oNERERERElEZ0GiIiIiIiSiM6DRERERERpRGdhoiIiIiI0ohOQ0REREREaUSnISIiIiKiNKLTEBERERFRGtFpiBg8s2bNQiKR8PXrV32bAsCVK1eQSCQcPnxY36aIiOgc0WmI/JasX7+eHTt26E1/bGwskyZNIk+ePJibm1O1alUuXLigN3tERJRFdBoivyX6dhr9+vVjxYoV9OzZE2dnZ2QyGS1atODGjRt6s0lERBmM9G2AiMjvxr1799i/fz9Lly5lwoQJAPTp0wcHBwf+/PNPbt26pWcLRURSRlxpiGQYvn79SpcuXciSJQs2NjaMHj2amJiYJGO2b99OgwYNyJEjB6amppQqVYoNGzYkGVOgQAGeP3/O1atXkUgkSCQS6tWrl3g/JCSEsWPHUqBAAUxNTcmbNy99+vT56UxFoVAwf/588ubNi5mZGQ0bNuTNmzdpfo/Dhw8jk8kYMmRI4jUzMzMGDhzI7du38fPzS8dPR0REN4grDZEMQ5cuXShQoAALFy7kzp07rF69muDgYP7555/EMRs2bKB06dK0adMGIyMjXFxccHJyQqFQ8McffwCwatUqRo4cSaZMmZg2bRoAOXPmBCAiIoLatWvj6enJgAEDqFixIl+/fuXkyZN8+PCB7NmzJ+patGgRUqmUCRMmEBoaypIlS+jZsyd3795N9Xs8evSIYsWKkSVLliTXq1SpAsDjx4/Jly+f+j8wERFtIIiIGDgzZ84UAKFNmzZJrjs5OQmA8OTJk8RrUVFRP81v2rSpUKhQoSTXSpcuLdStW/ensTNmzBAA4ejRoz/dUygUgiAIgpubmwAIJUuWFGJjYxPvOzs7C4Dw7NmzVL9P6dKlhQYNGvx0/fnz5wIgbNy4MdX5IiL6RNyeEskw/Fgp/GDkyJEAnD59OvGaubl54v+Hhoby9etX6taty9u3bwkNDU1Tx5EjRyhXrhzt27f/6Z5EIknyuX///piYmCR+rl27NgBv375NVUd0dDSmpqY/XTczM0u8LyJiqIhOQyTDULRo0SSfCxcujFQqxcfHJ/HazZs3adSoEZaWlmTLlg1bW1umTp0KoJTT8Pb2xsHBQSl78ufPn+SzlZUVAMHBwanOMzc3JzY29qfrP85n/u34REQMDfFMQyTD8t83f29vbxo2bEiJEiVYsWIF+fLlw8TEhNOnT7Ny5UoUCoVG9ctksmSvC2l0UM6dOzf+/v4/Xf/48SMAefLkUd84EREtIToNkQzD69evKViwYOLnN2/eoFAoKFCgAAAuLi7ExsZy8uTJJKsANze3n2T91+H8oHDhwnh4eGjW8P9Qvnx53NzcCAsLS3IY/uMAvXz58lrVLyKiDuL2lEiGYd26dUk+r1mzBoDmzZsD///m/+83/dDQULZv3/6TLEtLS0JCQn663rFjR548ecKxY8d+upfWCkJZOnXqhFwuZ/PmzYnXYmNj2b59O1WrVhUjp0QMGnGlIZJhePfuHW3atKFZs2bcvn2b3bt306NHD8qVKwdAkyZNMDExoXXr1gwdOpSIiAj+/vtvcuTIkbj184NKlSqxYcMG5s2bR5EiRciRIwcNGjRg4sSJHD58mM6dOzNgwAAqVarEt2/fOHnyJBs3bkzUpQ5Vq1alc+fOTJkyhc+fP1OkSBF27tyJj48PW7duVVu+iIhW0XP0lohImvwIuX3x4oXQqVMnIXPmzIKVlZUwYsQIITo6OsnYkydPCmXLlhXMzMyEAgUKCIsXLxa2bdsmAMK7d+8SxwUGBgotW7YUMmfOLABJwm+DgoKEESNGCHZ2doKJiYmQN29eoW/fvsLXr18FQfj/kNtDhw4l0f3u3TsBELZv357md4qOjhYmTJgg5MqVSzA1NRUcHR2Fs2fPpvtnJCKiKySCoKE1t4iIiIjIL494piEiIiIiojSi0xARERERURrRaYiIiIiIKI3oNERERERElEZ0GiIiIiIiSqNUnoZCoSAgIIDMmTOnmEkrIiIiIpJxEQSB8PBw8uTJg1Sa8npCKacREBAgZqmKiIiI/Ab4+fmRN2/eFO8r5TQyZ86cKOy/jWNERERERDI+YWFh5MuXL/F5nxJKOY0fW1JZsmQRnYaIiIjIL0xaRxDiQbiIiIiIiNKITkNERERERGlEpyEiIiIiojSi0xARERERURqxn4aIiIjeEAQBHx8fChQowNSpUwkNDaV48eI0bNiQadOmATBp0iSeP3+Oq6srAMePH2fQoEF8/fqVatWq0blzZ8aPHw/AmDFj+PDhA0ePHqVGjRqMHz8ed3d3AGxsbChUqJB+vugvhFKl0cPCwsiaNSuhoaFi9JSIiEi6CQwM5OjRo+TIkQMLCwvWrFlD/vz5Wbx4MVFRUSgUCrJnz46ZmZlaemJjY7l16xZ16tRh4cKFANSqVQsfHx9iYmJwcHCgRo0aXLp0CQB7e3uyZMnCs2fPAHB0dOT9+/d8+vQJExMT6taty9evXxEEAXNzc4yNjZFKpRgbG6v3AzEglH3OiysNERERrfHlyxfOnDnD0aNHGTt2LHfu3KFIkSIUL14cBwcHWrRokTg2W7ZsGtNrampK/fr1Afjrr78Sr0dERHD8+HG8vb2pXr06L1++BMDc3Bwg8bODgwP+/v68efMGCwsLqlevzuTJkxEEgcaNG1O4cGEmT55M5syZ2bhxI9euXaNw4cJUqlRJY9/BUBFXGiIiIhpFEAQ2b97MyZMnmTRpEp8/f6Z+/frY2NgkGZeQkJDYd10qlSb2eM9IJCQkIJVKuXv3LmvXrqVp06YULFgQU1NTKlasiJFRxnkvV/Y5LzoNERERjaBQKLhw4QKlSpXi/PnzNGnSBDs7O6RSKbGxsRw+dowTF87z4pUXmBgRHhmJzNISACEikqzm5lQqV45xQ4dRunRpPX+b9OPl5cX27dt5//49GzduxNXVlcqVK5M/f35MTU31bV6KiE5DREREp/Tp04fcuXMzduxYcuXKBXx3JCvXrWP135tJcKwIFcthnCc3kmTewBVxccR5vcHkyg0sQsKYMX48XTt1SrV4nqETFxfHtm3bePToEYMGDWLx4sVkypSJ9u3bU6lSJezs7AymCKzoNERERHTC48ePefr0KVWrVqV48eKJ179+/UrrHt15n98O4xZNkKhwaCyPiEB+4jQFQ8M5c/BQmvWQMhL+/v4IgsC1a9fYtWsXJ06cwMTERN9mKf2cz7guXERERO9cunSJgQMH0qRJkyQOw8/PjxqtWuLXpB4mbVuq5DAAZJkyYdKzC+/q1aRC/Xp8+vRJs4brETs7O/LmzUuPHj1o3bo1T58+1bdJKiE6DRERkXTx8OFDLC0tuXDhQuJ2FEBkZCQtunUlql8PjIsXU0uHSakSRPfoRKsePYiJiVHXZIPDyckJPz+/xFySjIDoNERERFTm8ePHdOzYkdy5c2NtbZ14XaFQ0LFPb741bYixXR6N6DIpWoSACg6MmzZVI/IMjRo1ajBz5kx9m6E0otMQERFRCU9PTxQKBbdv38be3j7JvZkLF+CRLTMmFcpqVKdxnZq43LmNt7e3RuUaAjlz5qRx48bExsbq2xSlEJ2GiIiI0uzfv58RI0ZQtmzZJFtSAGcvXGD75UsYtW2pcb0SiYT4erX458B+jcs2BLp06cKTJ0/0bYZSiE5DREREKQRB4P79+7i6uv6UtBYVFcWwiROQDemntRBSE4fSuF64oBXZ+sbX1zexpImhk3HSFUVERPTGzZs3efDgAcuXL0/2/qr164mrVwtTCwut2SDLZMnXqCjCwsLE0H89Iq40REREUuXNmzeMHz+eAQMGpDhm//HjGNespnVb4mtWZfnatVrXo2sqVKjA8OHD9W2GUohOQ0REJEW+fPlCrly52L9/f4oJdlFRUYTExyFVszKtMpjUqs6+o0e1rkfXvHnzBhcXF32boRSi0xAREUkWhUJB165def/+PQUKFEhx3PPnz5Ha59eJTRJjY2IzW/L582ed6NMV4eHhfPjwQd9mKIXoNERERJJl/fr1DBgwgFKlSqU67sa9e8Ta59WRVSAvXJB79+/rTJ8uMDIyIl++fPo2QylEpyEiIvITjx8/pl+/fvTq1SvNsVfv3kFWRHcd8eTFinD6yhWd6dMGYWFhREdH4+zsTJcuXcibN69SP2tDQIyeEhERSUJISAi9e/fm7NmzZMqUKc3xvr6+GLVrkeY4TWFsl4enV27qTF96iYuL486dO7i7uyOVSrG1tcXHx4fbt29ja2vLggULyJYtG87Ozj/lvBgyotMQERFJwtWrV1m0aBF2dnZKjY+MiQGZ7jYtZFkyEx0frzN9yiIIAuvXr+fly5d4enoSExNDqVKlCA8Pp0GDBty7d49nz57Rtm1bhg0bhomJCX379tW32SojOg0REZFEIiIiMDc3p0mTJkrPyWFrywe5HDJw34v08uXLF16+fMmff/5JZGQkhQoVYuzYsURGRtK0adMk3Qh/dKEIDg5m69at7Nu3jyZNmiRpR5sREJ2GiIhIIitXrvypnlRaZLHMhDw4BKMctlqyyjAZMWIEfn5+mJqaMnfuXBo2bJhqNvyPe9bW1gwfPpxhw4bh5+fHuXPnOHbsGGPHjk1SXt5QEZ2GiIhIIp6enkyePFmlOWVKleRh4CedOg0lesdpja1bt+Lt7c26deu4evUqderUSZcciURC/vz5yZ8/PzKZjH379tG7d2/OnTtHnjx5qFChgsoOXBf8futJERGRZLl//z7Ozs4Yq9gwqVrZckj8/LVk1c8kfA3CJms2nen7N8HBwUyZMoWGDRvy8uXLdDuM/9KoUSNmzZqFra0tefPm5du3b2TKlIk///yTSZMmERAQoBE9mkBcaYj8lnh5eTFnzhyCgoKYPXs27u7unDlzBplMxrFjx+jTpw8fP37kjz/+oF27dvo2VydcvHiRypUr07hxY5XmlS5dGvOd29DVu3+83wcql9Vs6XVluHfvHsHBwWTJkoVKlSqRLVs2jevIkiULbdq0Sfy8ZMkSjh07hoeHB0+ePGHv3r1UrFiRwYMHc/nyZSwtLcmSJQuOjo4atyUlxB7hIr8NERERTJ8+PfEgMjQ0FCsrqxT3oaOiooiMjGThwoWULFmSAQMGJDnY/CHz6dOnODo6cu3aNcLDw8mePTuOjo4EBgYCYGNjQ0JCAqGhoQDky5ePwMBA4uPjMTMzw9raOvFN0traGoVCQUhICPC9Neh/K8pqA0EQaNu2LUePHlVZX2xsLCXq14Mp47Ri23+JP3KCv7v1onmzZjrRB/DXX3/x4cMHGjRogEKhoF+/fjrT/W8+fvyIp6cnNWvW5NatWzx+/Jh8+fJRtGhRzp49S/HixalTp06SxljKouxzXlxpiPwW7N27l+LFi1OlShW6d+8OkOYfloWFBRYWFowfP55Nmzbh5ubG1atXiYiIoEKFCpQpU4axY8fSsGFDKleuTGhoKCEhIZiamvL58+fEirA9e/bky5cvnD9/Hvj+9rhjxw4CAwMpVqwYnTt3ThzbqVMnYmJicHV1BWDu3LkMGzaM7Nmz07x5c1q00E4+xI0bN9i9e3e6HJSpqSlG8fHEKxRIdBBBJfV8RZ3atbWuRxAEdu/eTYECBRg0aBBHjhyhZMmSOn2r/y+5c+cmd+7cANSvX5/69esD3x33p0+f+PDhAwkJCYwYMYJ3797h6OjI8OHDyZQpE5aWlhqxQVxpiPzyxMbG0rx5cy5fvqy2LB8fHxQKBZaWlmTNmhUjIyOtrwRiYmIICAggW7ZsbNu2DUEQGDZsWIoFBFXlypUruLi4pFj2XBmGjh3DyRxWmDmkXnJEXQS5HIslq3lx65b2dAgCcXFxdOvWjSpVqjB+/Hh8fX0ZOHAg58+fx0wHhRk1yaVLl5g1axazZs2iYcOGKY5T9jkvHoSL/PJ8/vyZcuXKaURWgQIFKFSoEDlz5sTMzEwnW0dmZmYUKlQIa2trRo0ahZ2dHatWrSIhIUEj8nfu3MmECRPUktGzfQeMHjzSiD2pEf8xkBJFi2hNfnh4OG3btsXLy4ujR48yZcoUwsLCCAkJYe/evRnOYQA0bNiQ7du3I9XQKlB0GiK/PKampixYsEDfZmgEExMTevTowfTp0+nWrRujR48mIiIi3fKio6NZuXJl4pZHeqlTpw4mb31RREWrJSctFB4vaFGvvtbkL1q0iJ49e1KmTBkkEgmhoaG0b98eX19f8ubVXVFGTVOkSBGyZ8/OkiVL1JYlOg2RX5727dvj5+enbzM0zu7du3F0dMTHxwd///SFvG7bto3r169rxJ4po0YhP3dRI7JSwujeQzq0batxuaGhoQwbNoxJkybRtWvXxGtXr15l6tSpdOrUSeM6dU3u3Ll58eKF2nJEpyHyy2NlZUWxYsX0bYbGMTMzo1evXtjY2NCjRw8+fvyosoxTp04lHqaqS/8+fcjs4UlC0DeNyPsvcX4fKJkvf7oig9Ji+vTpREZGJh4Wu7u706VLF6pXr07z5s01rk8fmJqaUrVqVbXliAfhIr88gYGBGaqKaHp48eIFu3fvVnkb7vLlyzRo0EBjdpw5e5bBG9ZhPKiPxmT+IMF5AyeWLKNixYoak+ns7ExkZCQTJkzAxMQE+H4Q3qlTJ1avXp1i0caQkBDu3b/PB39/nrx8SVBYKK+8vAgJD0dibo4QHU2+3LlpUa8+1R0dcXBwIGvWrBqzOz3Ex8fj4+ND0aJFk72v7HNedBoivzS7du0iKCiIMWPG6NsUrSOXy1m+fDl//vmnUuMXL15Mv379yJkzp8ZsEASBFl0686x0cYwrldeY3JiXXpS59YDzx46pLUsQBDw8PHj79i2HDx9m586diYfEnz594uTJkwwePPineT4+Pjhv3oTL2XPEZ7JAUdCe2Fw5kWXLiszaGlm2rEgtzBPHJwR9I9bzJeb+H5G890cqASEqmqyWltSuUpVxw4dTsGBBtb+PssybN4+nT59y8ODBZO+LeRoiIkBQUBAlS5bUtxk6QSaT4e7uzuzZs5k5c2aqY8PDw7ly5QqTJk3SqA0SiYTju/fQtFNH3oBGHIc8PALjPQfZff6C2rJiY2NxcnIif/78zJw5k7b/Oh+JiYmhS5curF69OsmckJAQ+v7hxCO/98TVq43ZXxORGhshJfUHqJGNNUa1aiR+/vF2Hhwbx6HnLzjWpTNDu3Rl2vjxGotsSo7Pnz+TkJCAXC5n3bp1assTVxoivzT379/H1tY21R7XvxKCIHDjxg0cHBywsrJKcdzr16958uSJ1g54Y2NjadyhA6+rVsCsQvrDnWNeemGy9xDHtm2nYoUKatn06tUroqOj8ff3p2XLlknuCYLAo0ePCAkJSbJdd9nNjQHjxhLfvjUmFTRbukQQBBQnTpHH15+D27aRP7/m+6wHBweTI0cOHj16hIODQ6pjxTwNERG+h6j+t/THr4xEIqFGjRo0adIk1Uqwb9680WpEkKmpKcd37SLf1dvEXb6arqq08otXKHzpOu4XLqrtMLZu3UrTpk3JlSvXTw4Dvp9tbNu2LdFhCILAgmXL6DNnFsLksRp3GPD930rWrhV+bZtTq11bLmm4hW1QUBBPnz7l+vXraToMVRCdhsgvzZUrV/Dy8tK3GTpFJpNhZ2fHnTt3UhyzYcMGrdthbW3N9dOn6WRqScLCFcS+9lZqXvynzySs2URzmQlXT50ie/bsatkRGhpKXFwcr1+/TjYgIiYmhps3b7JmzRrgu8MYPn48658+xGi0E1ILC7X0p4VJgfxIpoxjwPRpXHRz04jM06dP06VLF8qXL0+1atU0IvMH4pmGiMgvyKFDh4iKitK3GZiamuK8aDF/eHkxZto0PA4cJb5SeWRlS2NslydxnCCXE/34KaZu18lvbsGi6TM1Vl+qT58+rFmzJtmS7wkJCVy7do39+/cjkUgSHcbp8GCMO7fXiH5lkJqZoRg1jAHjxuJ+/gK2tunvTRIcHMzVq1c5dOiQViK2xDMNkV+a4OBgTExMNFasLSPRoUMHNm3alOwDyM/Pj3z58uncpuDgYA4cPsy569fwCwj4HqIKZMmUiTpVqjK8f/+fcmoiIiIwMTFBoVAQHh6OiYkJEomE+Ph4rKysUj1Ednd3Z8OGDWzZsiXZ+0ePHuX169eJAQELV6xg3eMHOnUY/yb6vjttwqLZvMpZ5bmhoaFMmzaN/PnzKx1B92/EkFsREb4/FAoUKKDR2P6Mwvbt24mJiWH48OE/3ZsxYwZz5szRg1XK8eHDB3Lnzk2bNm2QyWQ0btyYpUuXYmZmRsmSJZHJZJw6dYpcuXLh5eWFqanpTzIUCgUBAQEYGxunGFY8dOhQJk+eTMGCBQkKCqJco4YYzZyCRKafnXtBEJDPWoiH2xWVVgmhoaGcOXMGX19fJkyYkK5zPDHkVkSE7/0Hnjx58ls6ja5du+Lr65vsvcePH+vWGCWJi4vDyckJHx8f9u/fz4ABA/Dy8qJNmzZ07dqVHDlyJI5VKBTMnz+fgICAZPMdJk+ejIODA336pJxouHTp0sQH5JpNm0hoWBdjPTkM+H44LnesyJHjxxnQt2+a4xUKBWvXrmXv3r2cOXMm1Yg5TSEehIv80vTt2/e3ydP4LxYWFnh4eCSbJZ5SprO+iIiIYO7cuYSGhtKzZ08OHz6Mi4sLd+7cYeDAgdjb2ydxGABSqTSx3MfZs2eB72cU4eHhvHv3jtevX6fqMAICAhJLqERHR7Nt/z7Mamr20Dg9yKo5su/kiTTH3b17lydPnmBsbMzt27d14jBAdBoivziZMmWiSJEiXLp0Sd+m6IXOnTvj7u7Olf+Ecy5evJjIyEj9GPUvYmNjCQwMpF27dmTLlo1Zs2axefNmduzYQf/+/Vm6dOlPzuLfVKxYkblz57Jz504UCgUFCxakW7duREdHcyyN7HE3N7fEzO+V69Yhr1sTiQ5K3aeFzNoKnzQKbO7du5cFCxaQOXNmhg8fnmL3SW0gnmmI/PJERUXRtm1bLlxQP6M4IxIbG5tYjO/H3v/Bgwf5+vUrTk5OerHp1atXDBw4EEtLS9avX4+TkxMjR46kZcuWKj8AfzzCfhyOJxcllRxBQUGYmJiQOXNmilaqRPy0CUiM9e80ABSLVvLy4iXMzc1/uicIAvfv36ds2bIa7e8hJveJiPwPCwsLmjVrxocPH/Rtil4wNTXl0KFDHD16NPFazpw5db7S+PjxI9u2baNHjx7kzZuXvXv3snTpUh4/fkynTp1o1aqVyg7DxcWFpUuXJs5T1mF8+/aNXr16kSlTJvz8/IjLlsVgHAaAxC43z58//+m6l5cXZcqUSWwCpg9EpyHyWzB+/PhUk91+dXr16sXWrVuRy+UAlChRQmclvz08PNi9ezdBQUHI5XJWrFiBhYUFK1as4MiRI3Ts2DHZAoHKUKtWLc6dO6fyvJkzZ1KnTh0kEgne3t4oChVIl35tIWTJTFxc3E/XN23axIEDB7C3t9eDVd8xHNcqIqJlTp8+TcWKFSlUqJC+TdE5lpaWrFy5MjGnIWfOnOzcuZPAwEAaNWqkcX0KhYLo6Gj279/PmTNnmDZtGg4ODonlLAIDA8mbN6/abWatrKyYO3euSnO8vb0ZNWoURYr8f9tYiRYLBmoKT09PJkyYoHaXRXURnYbIb0OrVq24fPmyVpxGfHw8V69d49jZs7zy9ubTtyBk/zpUDQ0NTbEchTw2FgsjI/LnzkOT2rVp0aQJxYsX1/jhZsmSJWnfvj3Hjx8HYMiQIZQrV45Xr15pdKvjzp07jB8/nmnTptG3b18GDhyY5P7YsWPp0aOH2g7jBzKZjKFDh7Jp0yalxm/cuJHOnTvr9PBYVYT4+CSfo6KicHJySvy30yei0xD5bejQoQPBwcEakycIAqfOnGH1lr956esLRQsTX84B47ItkGbN8tNDSZGCHAkQJQg8/xrEkxcvcR4/FrPPXxg1aDBDBgxQep8+LYz+58SePXtGmTJlyJYtG9euXdOY/LNnzxIbG0tQUBBHjx5NNqHO19eXt2/f4ujoqBGdAJUrV2b8+PEIgqCUI3j58uVPWeeCIqV/Hf1gFBBIiRIlEj+fO3eOAQMG6L2RE4jRUyK/GR07duTIkSNqy3E9fZpJc2YTljcPQuMGGOfRbGdARXQM8vOXML7/iFmTJtGne3eNvBl/+vSJ8PDwxK2ZkydPYmJiQrNmzdIlTxAEgoODOXLkCFu3buXo0aPkyZMn2bHBwcHEx8cTHR2t8T35GzduULlyZaVWTNHR0Umikt6/f0/dYUNg+MBUZukOQRBQzJjPO/eHyGQyIiIiePv2LQ4ODlrtuyFGT4mIJMO3b99QqPFW6eXlRZWGDRm+7W/CnQZh1LeHxh0GgNTcDOO2LVFMn8hfRw/Rulu3ZA9GVSVnzpwcPXo0sZ94SEhIuqKo4uPjOXHiBLa2tmzdupVBgwZx586dFB1GfHw8Xbt2xcjISCuHuLVq1aJt27a4urqmOu7du3dMnTo1ybXcuXOj+PRZ4zall9hXr6lSvnxiKZAJEyYQEhKiVYehCuL2lMhvhTr76KfOnsXpr2kkDOiFSb68GrQqZaSmpkj79uDx/Yc079KZMwcPJfayTi+ZM2fmwYMHtG7dmly5ciWbC5AS3759Y9KkSWTJkoWpU6fy8eNHpba3Ro8ejZOTE9bW1uqYniouLi7UrVuXKlWqYGNjk2L9pf++NBgbG1MwTx7eBARq5QVAFYSEBIwOHGX5ke/h0QqFgk+fPlGnTh292vVvDMN1iYjoCBMTE/z9/VWed/LUKZwWL4LJ43TmMP6NsWNFXhYvQl+n4elqaPRvChYsmLj9ULVqVcqXL6/UPIVCQVBQEMWLF2fZsmXY2Nik6TC2b9/OuXPncHZ2pl27dmrZnRYmJibcuHEDT09PWrduzcGDB0lISCAsLCxxTObMmalVq9ZPcxdN+wvJ0ZNatU8ZFIeOM3noMOzt7Xnz5g3jx49n586d+jYrCaLTEPmtuH37Np8+fVJpzosXL3CaOQPJyCFITdV7y1cHk1rVuCUkMH76dLXkNGvWLPFQ/MSJE5w/fz7NOYGBgXTt2pUvX74wYcIEpc5XFi9ezP3792ncuLHGDtvTQiaTUbduXfbu3Qv8f9/vKVOmEBgYiLm5eZID5h9Uq1aNclbWxD310ImdyZFw5TrVTC34Y/BgQkNDcXBwoFu3bgZ3jiw6DRGRVIiKiqJVzx5IRw1DoqMHX2pI27Xi0IO7nD5zRi05ixcvTvz/Hwl/aY3v378/NWrUSHNsWFgYV69eZeDAgaxfv14ve/HZsmWjS5cuZMqUiTNnzlC/fn2+fv3K0qVLGT58OAkJCT/N+Wf9BkyPuhCv4/MNQRCIP+5K1aBQdm3cyPLly3F3dyc6OpqqVavq1BZlEJ2GyG/F1KlTVSqT/sfEicQ1a4jMKpv2jFIRab9eDJsymdDQULVl1axZkwqp9N/29fWlbt26zJw5kxYtWqQp7+PHj7Rq1QqZTKZ2m1ZNIZFIaNKkCaVLl07sv/HixYufxllbW3Ns+w4stvxD7Os3OrFNEAQUuw7Qr0ARDm7bzpQpUwgLC6NevXoGm0cihtyK/FasWbOGevXqUaZMmTTHPn7yhNYj/sDoz9E6sEw14h49oe77QPam0JEuLTw8PBKzs1euXMnYsWOT3A8NDeXTp0/Mnj2bWbNmUbRo0TRlhoWF8ezZM7JmzZoo2xBRKBR0796dVatWJZtd/enTJ9r26klA2VLI6mmm5WyydsTGodi4laHNmmMpM0IqlTJ6tP5+18SQWxGRZLCxsVE6q3b8jBkIPTpr16B0YlKhHDcePSQmJiZd8/9dr+nM/7a6goODCQgIwMXFhTx58uDt7c2ePXuUchjr1q1j7Nix1KxZ06AdBnzvw1GqVCnq1q2bbFBBzpw5uX76DK0kxsQvdSbO571G9QsKBXH33RHmLWHTxEnUdqzCo0ePGDFihEb1aAvRaYj8VrRs2ZIqVaqkOS44OBivwACM8yafd2AQlCrB7du30zX16tWrif9foEAB6tatS8eOHQkICKBkyZL4+voqXdAwPDyc27dvp9iH2xCZOXMmlSpVIigoKNn7xsbGrF+2nDPrNlD8wlXkC1cQeesOitj058oo4uKIO3OBhBnzaRUWw53TZ3C/d4/8+fOzffv2dLVo1QdinobIb4VUKlUqL8H11CkSKpU36D+Q2IL2nHFzS+w+pwr/3n7YvHlzum1Yt24dLVq0YOfOnQa7B58S+/bto23btnz+/JkLFy6QKVOmn8aUKVOGyydPEhAQwIZtWzm0xJmYTBbEFi2E1KE0xvnskPzrYS/IFQjyBISoaOID/xell5CA7LU3sodPmDBoMIMWLydz5sz07NkTGxsbChQokKF+dob8NyEionGCg4M5ePBgmslSl+/dRVqiWKpj9I1psSI8dVG9LHhcXBxr1qxRW7+7uzv379/HyckpQz30/o1CoaBhw4bcu3ePkiVLplhBNk+ePMz9azpz/5qOv78/t2/fZp+rC577jiA1M/1/eTExZM+eHSOplIplyyauHmq07UijNRuwtLTk0aNHvHz5kl27dhlMlrcqiE5D5LfCxcWFatXS7gP96vVrZNWVj7LSBxIzUz59Vj081NPTk8OHD6tcUvy/vH37liVLlmRYhwEwe/ZsTE1NKVWqFCNGjODNmzcMHTqUDh06pDjHzs6OTp060alTJ5X1RUZGMnjwYA4fPpwhHQaITkPkN+LLly80bNiQ4sWLpzk2Ti5Hlsx2hSEhNTVFno4Hz507d9QqDx8TE8O4ceNwdnbWWdKetsiSJQvGxsZIJBLWrVuHXC4nNDSUIUOGEBcXh7Ozs8Yqy4aHhxMVFcW6desoUKCARmTqg4zp6kREVOTJkyc0btyY8PBwpd6MI8MjdGCVfqhWrRqdO6cvKiw2Npbu3bvTrl27DO8w4Ht1XHd398TPMpkMa2trNm/eTMOGDXn9+jVPnz5VW4+Pjw9t2rQhKirKIBP2VEF0GiK/PIIgEBMTw7Zt25Tu4yA3+TUX4QEBAWzbti3ZQ19lkEqlzJ8/nyZNmmjYMsOjd+/eFC1aNLFXR3qJjIxkzZo1LFq0iIIFC2rQQv0gOg2RXxpBEOjWrRumpqYqZYJLJIb/p6GIjUWmYpn3Jk2aUKlSpXTpc3NzY86cOZQqVSpd8w2N0NBQOnTokGoIdtasWWnevHm6IswSEhIYP348y5cvZ/ny5Rl+hfEDw//LEBFRgzVr1lC9enWlK7n+IEEDvSu0jSIiklzJdMdLic+fP3P06FH69Omjsq73798zd+5cJk2apPJcQ8TNzY1s2bLx4cMH8uZNvWrxuHHjKFOmDG5ubkrLf/78OdevX6dAgQI/9e/I6Pyaa3CR357Q0FAWLlyIk5NTio2BUsNCJiNcyfah+iLO+y1VypZTevyECRNwcnJSWY9cLsfGxoY9e/ake1vLUAgPD2fnzp3kypWLx48fK71qKl68OF26dCFLlixprtQ8PDwYM2YM586dS1cOjaEjrjREfjkEQaBDhw7kyJGD/PnzJ5YBV4USRYsS76d63w1dYublTWMlm/NERETw8uVLpcKN/4uzszNnzpxJMYchI+Dt7c3r169p1aoVFhYWtG7dmnLllHe4NjY2HDx4kMuXL/Ps2bNUx+7fv5/58+dnmAxvVRFXGiIZmqioKCIjI7G1tWXNmjUcPnyYOXPmsHXrVrXCGpvVqs31R/cgv+4bLinNG2+lncDdu3e5d++eyiq8vLy4du0ax44dU2p8REQEx11cOH7+HM9fvcLoXz27E2JiKFe6NIO7dadu3brpcuaqIggCgwcP5unTp2zevDlJ+RRVsbGxoXr16lSuXJm3b99iZ2f305izZ8/Srl07KleurI7ZBo1Y5VYkw+Hl5UVISAgBAQGsXr2aQoUKsWXLFnbv3k2bNm3InDmz2ttKfn5+1OrfF+no4RqyWrPEB36m+KnzXDp+Is2xnz59wsnJiSNHjqikIzw8nPj4eGJjY9NcZXz79o1Zixdx7Px5FJUqQMWyGOfJg0T2/5sZglxBnI8PRnceIPV8xcyJE+nXs5fWtgBv3LjBw4cP6du3r8ZyLeB7I6+QkBCio6OTJAEKgkCmTJnw9fU1mLLwqiBWuRX5JfHw8GDw4MFERUXRrl07Ll++nFgor1evXmTJkkUjD6F8+fKRJToGuYHma0jOXWT80GFKjb1w4QLNmjVTSX5kZCQdO3YkPDw8TYdx/eZNKjdpzCGZgGz2VEzatsAkX94kDgNAIpNiWrgQsp5dEKZPYsbJYwwZM0bt9rX/RRAE3r59y5QpU6hSpYpGHQZA9erVKVGiBP/88w+LFi3i69evxMXFERcXx86dOzOkw1AFcaUhkmEQBIF3794hCAKFCxfWuj7ndetY5PkUs6aNtK5LFRKCQ8i6YSvPbt1O00F+/PiR8PBwihVTrY7WmjVrsLCwYODAgSmOEQSBiTOms//KFaTDByLLrPohufzUOZqbZ2LTylUqz00Of39/WrRowaVLl7CwsMDCwkIjclPj6NGj7NmzB4A9e/Zg9q8tuYyEss950WmIZBiePn3Kpk2bWLdunU70RUVFUbxaFWSzpyHRwf67ssRv383mIcNpocTqoWfPnrRp04auXbsqLT8wMBATExOsra1THBMbG0vbHt15YZMNaatmaq3u5Ft3Mb9bD3p365ZuGfB9ddS9e3cWL15MyZIl1ZL1OyJuT4n8csjlcmxtbXWmz8LCgj/6D0R+5qLOdKZFnPdb7CNjlHIYwcHB5MiRQyWHASS2HE2J2NhYmnTqiEe5UshaN1d7O1DSuytTlywiMDAwXfNjY2MZMGAAfn5+nDx5UnQYWkZ0GiIZhpw5c1K7tvbabybHxFGjsHnxiviAjzrVmxyCQoH0n30c3LZNqfGvXr1i5cqVKul4+fIl79+/x97ePtn7MTExNOnYAW/H8hhXUD5kNTWkJiYkdG7P6ClTVJ4rl8tp2bIlHTt2pESJEhqxRyR1RKchkmEwMzPT+SGjTCbjn/XrkRw4qlO9yRF/8jRDu/dINtTzv7i7uzN//nyV5AcHB2NqasrZs2eTXT3ExsbStFNHvKtU0JjD+IGZQyluPX1CaGio0nOWLl3Knj17OHv2LC1bttSoPSIpIzoNkQyDr6+v0vkCmqRs2bIUscxM3Dtfnev+QbzHCwp//MLU8RPSHCsIAkeOHGHevHlKyw8ICKBdu3a8fv062eq1giAweNQoXpcoonGH8YOEhnVZtGqVUmNXrlxJSEgIvXv31km+h8j/IzoNkQxD5syZ+fDhg150b3V2RvLPXhSxsTrXHe/xgryXb3Dm0CGlGvdMmjSJcePGKZ3x/OXLF9zd3ZkzZ06K1WsnzZqFmyIO07q1VLJdFUwcK3Lu6pVUx7x69YoVK1YwduxY5s+fb9BlXn5VRKchkmEoXLgw48eP53M6utWpS6FChdi+ZBnC3CVE33ug8dyClJBfukqh63e5dPw4lpaWaY7//Pkz7u7uKm3j7d27l3fv3lG3bt1k72/cto397veRtW6utMz0IDUzQ5GKE7h37x5jxoyhYcOGWrVDJHVEpyGSYZBIJHh6euqtamjjBg3wuH6DFsGRyOcsJtbjhdZ0xQd+ImHFWhrJJVxxdVXKYcD3VcOiRYtU0vXu3bsU+4y4nj7NvP17kQ7uq/W3enlEBBbGJsnee/HiBSVKlODw4cMq1YwS0Tyi0xDJUHTo0IHo6Gi9bVNlyZKFbWvXct/1FI4er0hYs4mEz180Jl8RG0fcidPY/LOf48tWsG3NGqV7Sfv7+/P8+XOlG00BxMXFMXPmTKpXr/7TvYSEBEZOmYJsYG8kOuhnnfDpC4WTaVIUFhZG//79MTY2Vtp5imgP0WmIZDi2bNmCRCJh69atKFRsQqQpcuXKxYk9e9kzYxY5dx8kYd3fxHq/TZcsQRCIee6JYv0WjOYvY2JFR9zdrqjcLOnPP//EwcFBpTm9e/fm48fkw4mPnThBfNlSSHWQVQ2gCA2ldJEiSa4JgsDMmTNZvXo15ubmOrFDJHXEsAORDIe5uTnGxsa4ublx/vx59u/fr7cD0Tq1avHA7QqPHj1iyvx5vDjqQmyFssgK2GOczw6JiclPtgmCgPxrEAlB31C888HkzgMaOjoyZdkKSpcunW5b7OzsVOqq5+rqmuIcuVzO9EWLkIwckm57VMU4X15OHXVl8vjxwPe+7lu2bGH16tXigbcBIZYREcnQREdHM2DAAL58+UKfPn1o3rw51tbWeutl4Ofnh+uZMzz1eoX748cER0RgbJH0DVmIjsE+Xz6KFy1KVYcyNGncWO38k8DAQCQSCTmV7OQXHByMIAhYWlpiamr60/35y5ex8c1LjFo0VcsuVYi9707Zl96cPXgIQRBwdHRky5YtKnddFEkfYu0pkd8KuVxOQkICJ06cYPv27RQvXpxFixahUCh0UrRO3wwbNowhQ4Yo3Qd9/vz51KpVK9mIqfDwcErVrIFszl8/VarVFrGvXpP31HmunDqNmZkZJ0+epH79+hqvUCuSMmLtKZHfCplMhqmpKV26dOHMmTNMnTqVgIAAihUrxo0bN/RtnlYJCQnhxYsXVKhQQanxV65c4cGDB1StWjXZ+7v370deq7rOHAaA0TFXju7ajYWFBUuWLOHGjRuiwzBQRKch8kuSI0cOChUqhKurKz4+PjrLq9AHWbJk4cqVK0rv+5crV46DBw8mW8JbEATWbduKUc3kHYo2iA/8jH3WrOTN+71LolwuZ/r06TrTL6IaotMQ+aUpX748vXr1okWLFnh6eurbHK2wYcMGzp8/r9RYDw8P5s+fn2ypEIDnz58Tbp0NmS63oU+d468xYwFYu3YtQ4cOFVcZBozoNER+C8aMGcPChQv1bYbGkcvlHDt2jJo1ayo1fsaMGan2Fd9/7Bgx5ctqyrw0SQj6hvXXIJr+r3zJ0qVLlc5LEdEPYsityG9B06ZNyZMnD/v376ebms1+DImYmBimT59O5syZ0xz79etXdu3alWqC3Fk3N0wH99GkiakiHHNlyfQZiZ+nT5+eavMnEf0junSR34YXL17QvXt3goOD9W2KRlAoFMyePTvZbO7kxjo6OvL2beoJiJ/Dw5Bl0k3Wddw7XwrGxdOs6few3nnz5tGnj+4clkj6EJ2GyG9Dx44def/+Pb169SIgIEDf5qjNunXrKFCgACYmyddr+jeenp507tyZMmXKpDjmw4cPSK2tNGliighyBZJd+9m1YSPwvVfH6tWr9ZZfI6I8otMQ+W0wMjIiX758zJo1iw4dOiCXy/VtklpYWloybNgwpcZmy5aNJUuWpDrm27dvkE03B9AJF93o26YNBQoUACAiIoLNmzeLTiMDIDoNkd8OR0dHbt68yaxZs9i8eTPR0dH6NkllFixYQO/evZU6NI6NjaVHjx5phh2XKFECiQ7a2spDwzC/c59Zk7+3d/X09GTy5Mm0a9dO67pF1Ed0GiK/JTKZjHHjxhEVFcWePXt4/PgxV65c0bdZSvH582c8PDxSDJv9L6dPn6ZNmzZp5nGYmJigiI3ThIkpIggCit37WbtwUaL9/fv3Z9KkSVrVK6I5xOgpkd8WKysrxowZA3xv8LNgwQLevXtHv379DLpA3r179xg4cKDS45s2bUpISIhSY7OYmBAWF4dUiXMSVREEAcWBo/SuXoumjRtz+fJljh8/zqZNmyjyn+q2IoaLuNIQEQGqVKnC2bNn6du3Lw0aNODgwYPExWn3rVtVnj17RqdOnWjatKnS3esiIyMZM2YMefLkUWp8g1q1iXv0VB0zU0R+6hxdCxdj8pgxXL58mbVr1zJ+/HixqVIGQ3QaIiL/QyqVIpVK+eeffwgICMDLy4s3b97o2yzge4OlBQsWMHv2bKW3pQDc3d2VrnwLMHXsWIwuuqXHxFRJuHmHcqGR5LWxIX/+/NSuXZujR49ib2+vcV0i2kV0GiIi/yFfvnyMGTOGUqVKMXnyZDp16kRoaKhebPn7779p3rw5WbJkYd++fSr32xAEgd69eys9PmfOnDSqVJmYew9UNTVF4l6/IcuVmyybNQsLCwtCQkJUcnwihoXoNEREUkAqlXL48GFmzJhBXFwcixcv5u7du8THx2tdd3x8PKGhoXh4eHD69GmlMr7/S3BwMO/evaNYsWIqzVu1YCFWF68S/+mzyjr/jSAIJNy4jXTrLqz/5yQGDx5s0OdFImkjOg2R345Xr17RrVs3mjdvztOnT1m1ahWtW7dm6NChyOXyn/I3ypYti62tLVWrVmXFihU8e/ZMq+cdoaGhtG/fHiMjI5ydndP9kF21ahU+Pj4qz8uaNSvHduzEZMs/JHxLX/Z8wtcg4patptBTT07vP8CFCxcoUaJEumSJGBZiEyYRrRIXF4dcLtdrf+f4+HgePHjAsmXLyJ07N87OzoSEhGBjY5NkXFhYGP7+/jg5OWFiYsKSJUtQKBQULlwYMzMzBEFAKpXi5+eHk5MTcrmcjRs3EhYWRuHChTExMUm23LgqCIJAx44d+eOPP5Q+7E6J48ePU7t27Z++p7K8fPmSlj26E1PNEeNG9ZAosaWkiIpCfuI0Zp5emMvl7Nm9m7JldVcAUST9iJ37RPRGZGQkFy9e5ObNm9SvX5+xY8dSpEgRTpw4QXBwsNqtTZVBEASWLl3K06dPadGiBSVLlsTKyioxA1kZoqOjmTJlCl+/fqVv375ER0czY8YMqlevzpIlS1i5ciWlS5fm1KlTfPnyhaJFi5ItWzbu379P1apVGT9+PHfv3qVcuXJYWaVenuPBgwdcu3YNS0tL+vfvr1RpkLTQRHHGmJgYVm/cyIYd21HktSOmRFFMShbHKIctAEJ8PAlBwcS9foPZc08svnyjTcOGjBg+HBMTE3LlyqX29xDRDaLTENE5796948OHDwQFBeHj40Pbtm0pWLAg8L1gnpeXFxUqVKBZs2YcO3aMDh06UKFCBbp3766ROH1BEJg1axbu7u7MnTsXY2NjTE1NKVKkiMb20eVy+fd8A4WCGzdu8PbtW6pXr05CQgL3798Hvmecjxs3DktLS7Jly8aBAweoWbMmxsbGNG/enAoVKlCqVCkOHDjAy5cvGTZsGPfv38fc3JwOHTpoxGEoFApat27NqVOn1JYF33+2np6euJ47x5V7d3n/4QPGpqYo4uMpWqgwFUuVonWzZrx8+RIXFxe2bduGkZGYBpaREJ2GiFaRy+WEh4dz8+ZNqlWrxoQJE5DJZDg5OSndpzomJgY3Nzfy5s3L6dOn8fLyom7duumqdBoVFUVAQADXrl1jwIABKs/XJgqFgvj4eHbt2oVcLmffvn0IgkDr1q1p0qQJpUuX1njNpYsXL/LgwQMmT56sUblpMWPGDGbMmCE6jAyI6DRENEZwcDCWlpYsXboUd3d3HB0dadq0KcuXL6d8+fIMGTJE7U5rsbGxfPnyhYCAAORyOYsXL2batGlUqlRJqfpKvXv3pm/fvjRq1EgtO3RFTEwMISEh7N69G29vbzZs2KBR+VevXqVOnTo6i1QKCAhg1apVaRZFFDFclH7OC0oQGhoqAEJoaKgyw0V+AWJjY4V3794JDRs2FDp37iz4+fkJb9++FeLi4oT4+Hit63/79q0wadIkISwsTBg8eLDg5uaW4tiPHz8KXbt21bpN2kChUAh169bVqMyEhAShZs2agkKh0KjclIiNjRUaNGggeHl56USfiHZQ9jkvrjREkhAeHs6MGTP48OED//zzDwqFItVOb7rAy8uL9u3bc+fOnXTlKxg6giBodEUQHBzM2LFj2bFjh8ZkpkZoaChv3ryhUqVKOtEnoh2Ufc6LeRoiAHz8+BEXFxdevnxJ3bp1OXjwIObm5np3GADFihXj+fPnnDp1KtltnMePHzNjxoxkZmYMBg0apFF5xsbGLFiwQKMyU+LixYusWrVKdBi/EaLTEGHZsmX88ccfWFpa4ujoSLt27Qwya7djx448f/6cf/75R9+maAxBEPj4UbM9LHr06KF0gUJ1UCgUzJ8/nwkTJmhdl4jhIIY4/MbcvHmTc+fOMWfOHH2bohTGxsasWbMGHx8fvLy8EstjZM+enapVq+rZuvQRHh5O69atNSbP09OTly9fakxeakRHR7N06VKDWI2K6A5xpfGb8vHjR0aNGpXYTyKjIJFIyJYtG126dEns8x0WFkblypX1bFn6ePv2LV27dtWYPHt7e+7cuaMxeSnx8OFDFi5cmGF/7iLpR3Qavym2tracO3cOa2trfZuiMlZWVqxbt44jR44A0KdPn3TVWDIEzp8/z/PnzzUmb9CgQVrfWoyIiGDChAmMHj1aqfHBwcF4eHgQGRmJn58fW7duZevWrbi7u9OmTRuqVauWYf/9fkdEp/Gb0qJFC52U89AWNWvWpHz58sTGxlK1atUMuz0FaOwh//TpU16/fp1myRJ1kclkrFu3Dltb2yTXFQoFcrmcw4cP06tXL1avXs29e/cYPnw4e/bs4cuXL9y8eZPg4GBatmxJpUqVOHnyJKdPn+br168MGzZMq3aLaAbxTOM3xNfX95eoCXTs2DH8/f1Van1qaPTu3ZtMmTJpRJadnZ3GyoakREBAAJMnT04SjPDmzRt27NjB9evX2bp1K9bW1syZM4dChQoB32tg/SC52l/W1tZYWFhgZGTEtm3bDC6jXyQpYp7Gb8jXr1959eoVNWvW1LcpanH9+nVcXFwIDw/XeEa1rjhz5gyWlpbUqVNHLTlfv36ladOmuLu7a8iyn/n8+TPdunVj06ZNFC1alOXLl3P37l327dvH48ePKVOmjFp1swRBSKw0XKpUKQ1aLqIMYp6GARAZGcnUqVOJiYnRtylJOHLkyC/R26B27do0bdqUz5/VaxakTxwcHNiyZYvacg4ePMjIkSM1YFHKZM2alQMHDlC0aFFCQkJ4+PAhu3btQiaTUalSJbULLUokEr59+8asWbNQ4l1WRE+ITkNLREZG0rVrVxo0aICLiwuNGjVi5syZAKxcuZL58+dz4MABoqOjCQgIICAggNjYWK3b9fLlS44dO5YhD8CT4+PHjxQsWJCvX7/q25R0kTdvXpXKtSdHcHAwtWrVomXLlpoxKhmuXr3KvHnzsLW1xd3dnfPnz7Nnzx5MTU01qqdgwYIYGxvz4cMHjcoV0Rzi9pSWiI+P59WrVzg4OADfC9Q9ffqUKlWq4O7uTkJCArly5eLbt29s3rwZgLFjx7Jx40a8vb0pUaIEf/31Fy4uLhQoUIAaNWpoxK4jR45QsWLFxJLl+sLX15fIyEiyZ89Ojhw50i1HLpfToEEDSpQowaZNmzRooe7w9/cnJCRE5f7fP7hy5Qq3bt1i6tSpGrbsO4Ig0Lx5c/bv30+2bNkYMmQIgwcPxtHRUSv6YmNjeffu3S+xGs5IKPucFw/CtYBcLqdHjx4cOnQo8ZqZmRlVqlQBSFJywd7ePsl+/IoVKxL/PyAgAKlUyt69e7G1tWXHjh04ODjQpEmTdHVje/r0KTlz5tSZwxD+14Nh6949uN26RXRsLDGA1MgIuYUZUisrFJ8+IwkLJ0/27PTv0pUeXbtiYWGhtA6ZTMapU6eoWrUqcXFxGulFoWtu3bpFWFhYup3GP//8o9WsbLlczsyZM8mWLRuCIFC8eHGt5meYmpoyduxYXFxcxBLrBoi40tACr1+/Zvny5WzcuFGjcqOiotiwYQPZs2fH1NSUOnXqqFQuYujQoQwZMkQndYIiIiJo2qkjfhKBOMdKmJYphTSVVqjy4BASbt5GdtedelWrMmnkqMRVWloIgkDBggU5ceIE5cqV09RX0Bm+vr7MnTs3XWcb8fHx+Pv7Y29vr5X8jPDwcKZMmcLatWsBmDhxIvPmzdP4ttR/2bJlC3FxcTg5OWlVj8j/Ix6E6xErKytatWqlcbkWFhaMHz+evn37kj9/fnr37p0knDEtBEFQukGSOvj6+lK5QX186tdC5jQYc8eKqToMAJlVNkxbNUc2ZxoXC9jRctwYSlatwr6DB9M8FJVIJKxYsSLDht7a29unuw/F6dOnuXfvntYS+gYPHpy4qrh+/Trv37/XusMA6Nu3Lx07dtS6HhHVEVcaWiAsLIw3b95o/QEtCALR0dE4OTmxdu3aVOP9X758SdasWcmdO7dWbfL19aVx1y5EDeqDcc70n1UAyCMikJ84Rek4Ocd370lz26pChQoMHz6cIUOGqKVXH4wePZpRo0ZRuHBhlebVqFGDxYsXU7t2bY3bJAgCr169SjxbePz4MVZWVtjb22tcV3IMGDCALVu2KNWES0R9xJWGHvn06RN79uzRuh6JRIKFhQVNmzala9euKBSKFMf+/fff+Pr6atWeiIgImnTqpBGHASDLlAmTnl15Xt6Bhu3bERUVler4Jk2aYGxsnCHDNYsXL56uHIvNmzdrxWEADBw4kJw5cwLfEykDAwN15jAA8ufPr5O/IxHVEJ2GlkhISNCZru7du7Njxw6ePHnCkydPkh3j4eFBtWrVtGaDQqGgTY/uhLdroRGH8W9MKpTFr071NB2HlZUVN27c4MKFCxrVrwvatm2LnZ2dSnOePHmitQzwM2fOYG1tjZWVFQkJCaxZs0btBERVcXJyomjRojrVKZI2otPQAvb29gwePFinOm1tbbG0tGTKlCls3bo1yb2oqCitv7H9s2cPryzNMS2r3OG1qhiXdcCvbg0atm9HdHR0smPGjh1L165defr0qVZs0CZ2dna8ePGCwMBApedcunRJa1ug1tbW/PXXXwD4+PgwdepUlaLaNIGlpSV+fn461SmSNqLT0AImJiYMHDiQ27dv61RvsWLFcHFxoUqVKty9ezdxm8bNzY3du3drTW9MTAwzli7BqFNbrekAMC5TGt+ypRk7dUqy91u3bk2DBg34448/tGqHtihYsCCLFi1SeryDgwP58uXTuB2bNm0iPDycbNmyERoayqVLl2jUqJHG9aSFpaXlL9Vw61dBdBpaYvDgwXrJUpbJZBQrVoxz587xxx9/oFAotN7ne/WGDcjr1ESqgxwJk9rVcb1/D09PzyTX4+PjMTY2xtvb+6eVVkahUaNGKiU6xsbGajwBLiYmhlGjRlG/fn0EQWD48OGULFlSozpUwRA7SP7u/LbRU2FhYXz9+pVmzZpRokQJli9fzqFDh7hz5w7Zs2dnzZo1DBgwgGrVqjFmzBiVf3lDQ0P5/PmzXvdkd+/eTaNGjQgODiYyMlIrCVkxMTEUq+KIdNZUJMa6ScSK9X6Hw9XbnD92LPFaUFAQ165do1ChQuzdu5fFixfrxJYfPH78GOe//+b+s6cYm5hgIpWSJ08ebK2sKFmkKLWqVKFy5cpp/h5FRETg5uamVDe/Nm3acPLkSU19BRISEggKCiI0NJRixYrh7+/PzZs36dKli8Z0qEpsbKxOQnxFxOipZJHL5Tx79oy+ffvSt29frKyseP78OSdPnqRo0aJMnTqVkydPsm3bNiwtLdm0aRMSiQQPD48U99FTwtLSkokTJ2rpmyhHr1698PHx4eDBg2TOnFkrOk64uCCvXFFnDgPAtHBBPMNDk0QbLVq0iPr161OiRAmd1dWSy+UcPnKEKg0b0HrCOM7mz0XE+BGEjB5G4IBePKhXA5c8tiwM8KHTvDkUrVyJVevWpfq7ZGJiwrJly/D29k5Vt7e3t8b/Tc+fP8+AAQMoVqwY0dHRHD9+XK8OA1C60ZOI7vilnUZ4eDgKhYKjR4/SunVr1q5dS86cOVm4cCHHjh3DysoKY2PjFOdny5aNMWPG4OfnR7ly5VSqpiqRSPj8+TPx8fGa+Crppnz58hw/fpzDhw9rRf7BU65QubxWZKeGok1zps6fn/j5y5cvKBQKTE1NKVu2rMpOXlXu3L1L6erVGH38MB97d8Vo9HDMSpVA8r+cAqmlBUY21piVKIZltSpIB/UhfuJolng+pXjVKricPp2sXBMTEzZs2MDNmzdT/d2xtrbWeHDDwYMH+fvvvwHYu3evQbzh/2jpK2I4/JJO49WrV3Tr1o3evXsTHBxM5syZ2b17N6NHjyZHjhwqld6A713u1q9fr1IcvUwmY/Xq1chkMlXN1yhmZmYMHDgQqVSqlTBgr7dvMc6j3YTB5DApWABP/w+EhoYCULly5cQXgBMnTmjtYZOQkMAfE8bT+c8JRDoNwqRLB4xslFvZSC0tMG3aCMnMyfyxdDH7U3DkpUqVonv37uTPnx83N7dkx8yePVujlWDv3r3L+vXrE/82PD096du3r8bkpxddVDAQUY1fymmcOnWKIUOGYG1tjbOzM8ePH8fGxobGjRuTNWtWtWQ3atSI0qVLM3nyZKWTxypXrszAgQMJDg5WS7e69O7dmyxZsrBy5UqNy46KiUGiJ8cYX60yf+/YAUDz5s0xNzcHoESJEloprR0cHEyNJk04Lo/FaMIopZ3Ff5GamCAZMYQJ27cyd+nSZMcYGxvj4eHBxYsXCQwMJCIiIsn9H61VNcH169fp0qVLYnHAw4cPM3ny5FRX4bogODhY7OJngPwSTuPVq1c8fvyYbdu2Jdb8/5HJqkny58+PlZUVq1evVnpO4cKFuXnzpsZtUYVXr15hb2/PiRMn0syqVhnz1GtKaRPjqo4cdPl+EDx37lzCwsIA6NOnj8bLdj9+/BjHRg3xb9UEkwZ11ZYnNTHBaGh/Np0/w6UUVhM2NjbMnz+fb9++0aZNG/bv35/4wtKoUSONnN28fPkST09P3NzcMDEx4f3796xYsULrfcaVYcaMGVy6dEnfZoj8hwzvNF6+fMnAgQMpVqwYR44cUas3gzKMHj2aqlWrKr1nPnToULJly6ZVm9LCzs6OQYMGsW/fPuLi4jQqWxqj/cZRKSHLnImIZL5PbGwstWrVSrWsiircunWLVkMHEzt6OCZFVasNlRoSiQRp7+6M+WtaquNKlSqFi4sLnz9/5tatW/j5+fHt2ze1D8LDwsIYOHAgTZs2pVChQsTExHDnzh127Nih921V+N5gq1u3bvo2Q+Q/ZHinsWvXLnbu3KmzbFUzMzMqVapEnz59lBpva2vLs2fP9Hogbmdnx6pVqwAYMWIE27dv15hsXWcJ/5fI+HgEQWDo0KGJuSi5c+fG3t5eIzWooqOj6T3iD6Qjh2FklU1tef9FZpWN0CyZ0zwvs7S0ZNSoUVhYWNCnTx+NhNr+/fffLFu2DHt7e9zc3Ojbty9dunShWLFiastWl6ioKHbs2JG45ShiOGRYpxEVFcW8efOYP3++ypVB1cXY2JiQkBDCw8OVGh8cHMz58+e1bFXqdOvWjT///JM+ffpw//59vn37phG5NlmzIQ8O0Yis9CD7X4SPn59fkj3+OXPmaKQ66oatW4mpURVZVu3lJ8mbN2aGkqXRK1SoQKVKlShfvrxaOvft20enTp2oXr0679+/Z926dWzbtk0tmZpk27ZtnDt3Tt9miCRDhnUaK1eu1Gs7yOnTpyv9UCpSpIhBhC/++eefbNq0ifXr13P+/HmNlBbJmycPCd/0d9Cv+N8KbuvWrUkS54KCgnB1dVVPtkLB+m1bMapdXS05aWFS0J6nnwN58OCBUuMHDBigVu+QgIAA5s+fT9asWQkMDCQsLIyDBw9qtWqAqkRFRWnlXFJEfTKk0xAEAWNjY702aSlcuLDSb2YdOnSgfv36WrYobSpUqMCePXuYNWsWzZo149KlSxw4cEAtma0aNIBnzzVkoeqYSyRIJBKyZs2aZCujcOHCHD9+XC3Zu/ftI6Z0SaQ62IKTt23J4nXrlBrbrVs3Ll68mG5dQUFBbNq0CUtLS3r06PH9bMXAelY0b95crHBroBjWb4oSCILAxo0b+fPPP/Val8bOzo7Tp0/z8ePHNMfu2LFD7bdeTWFmZkbJkiXp2LEjy5cvp3r16mzcuDHd4ZutWrRA5v5Ybz0sTMzMCAkJ+alVat68edVuOLV84wakzRqqJUNZTOzz8dbnXZrjQkJC8PX1Tffv/tGjR9myZQs1a9bk5s2bDBkyJN29ybXJ9evXsbW11bcZIsmQ4ZzG0aNHNbYfry59+vRRKkKnaNGiPHv2TAcWKUfXrl1xdnYmKiqK3Llz4+LiQrt27dIly8LCglYNGhB7T/UGQuoixCegiI1l4cKFPxUwlEgk9OjRI92yfXx8CDExRqajWmsSIyMi5WknX2bJkoW7d+/SokULlXVER0fzxx9/sGzZMh48eIClpaVBRicJgsCJEycMbvUj8p0M969y9+5dxo0bp28zgO/Nj27dupXmuJo1a+q1UmhyODg4cPr0aZo3b46zszNr167lypUr6ZI1d+o0ZKfO6Xy1ER8QQMlixXj16lWyET+TJk3i8ePH6ZJ99ORJosuXUdNC1ZAZpZ1MFxgYyIABA8iePbvK8j08PPj48SPv3r1j5MiR5MqVKz1map3Xr19Ts2ZNfZshkgIZymk8f/6cmTNnGlQYnjL1/qVSqUEdMv5gyJAhLFmyhFevXuHu7s6kSZPS1fQme/bs9GnfnriLVzRvZGq4P6F76zbMmzcv2WS04cOHp3tb8NKtW5iUKK6uhSoRGRNDTExMqmOWLFlCZGSkyrIFQWDq1KnA90KLixcv1kovDk2QI0cOg3kxFPmZDOM04uPjGTlypOYzmtUke/bsvHuX+l60QqFg8+bNOrJINSpWrEjLli0xNzcnPj4+3SXFZ/w5iUy37pHwRTc9RARBQPrwMRXKl+fGjRvJjmnRogV9+vRJ13nNp6CvGOfSbqLof5FlzpxmPk+RIkWYN2+eyrJXr15N06ZNGTlyJJcuXdJ561ZVOHjwYLpXvSLaJ8M4jZ07dzJ48GCDOxzbtm0bJjpoPqRtmjdvzsaNG+natSsbN25Ueb6ZmRlHd+xAsnkHiljNZp0nR+w9d1rUr4+XlxexsSlnpc+aNYurV6+qLP9HSRJdoggNTTU0++bNm5w8eVKpXhv/Jj4+nrp161KgQAEKFizIiBEj1DVVq0RFRRlERrpI8mQYp9GlSxeDPLSTSCQMHjw41fIcPyreGjpVqlRh//79ib2hVcXBwYFF48aj2L4LQYsZ8IrIKExdz7Fk9hz8/PyoUaNGimMHDBjA/v37Vdahj1gwc3PzVF9A1qxZo3RC6Q/i4+Np3Lgxffv2pX379hli26datWrUqlVL32aIpECGcBpXrlxh+vTpBtv6sVChQrx+/TrF+wqF4qeQUEPlR7G69Fbm7dGlC7O790JYsQ5FdOr78+lFsWs/q+fNI2vWrLRq1SrVjoS1atVi9erVKp8DqFsVWVUEuRxpGnXBpk6dir29vdIyg4ODOXr0KKampri6umaIt/f3799z/fp1rTUNE1GfDOE0njx5Qps2bfRtRopMnDgRa2vrFKOHBEHg6dOnOrYqfZiamuLs7KxW8tiAXr3YMX8BwqIVxL1X/WA9NWIfPsbR2oY2rVoB38u+p/UysX//fpW3ZEyNjJCHR6Q9UEPIvwWT184uxftHjhzh9u3b9OvXj/fv36cq60ctrly5cpEjRw7OnTtnsIfe/yU4OFilZmciuidDOI2WLVtSpoxuwx9Vwd7env3793PmzJkUx9il8kAwNB4+fMjcuXPV6tdQv25drh87To4Dx0hwu6aRcNxY73dkOnWe7Wu/Z04/e/aMUqVKpTmva9eueHh4qKSrSZ26xDx/kS4700P8q9fUrVotxfvOzs40bdoUGxsbunXrlmx+0NWrV2nZsiXTp0/H39+fdevWUbt2bW2arXHev39Pz5499W2GSCpkCKfh7+9PSEiIvs1IlUGDBjF79uxkt0GMjIyYOXMmnz590oNlqlOoUCGyZs3KnTt31JJjb2+P+5WrtJIYI1+1HnlIaLrkxAd+ImH9FopeuMqV4ycSt45y5MjB8OHD05xvbm6Oq6urSpF3zRs0wNwz5S1HTWN89Qa9u3ZN8f6CBQsoUKAAjo6OjB07Fh8fH4YMGYK9vT0VKlRgyZIlzJw5k9y5czNhwgRcXV0ZNGhQYmOljIAgCJiZmaldjFFEu0gEJV4Bw8LCyJo1K6GhoWTRUYbsv+nbty+zZs2iYMGCSs/58uULR06c4PQVN6L/FV1jlzMnpQoXoXG9ejg4OGi0O5mvry+CIFCgQIGf7j1//pylS5ey43+d5gyZuLg4nj17Ro4cOTS2rXHnzh36jPiDmHx2yOvXwaRg2nvz8R8DkR4/Ra7YOJznzad69aSFA2fOnMlff/2l1L/hxo0byZw5s9JvsYIgUMCxMtKZk5Uarw7Rz55Tz9uP/Vu3Jnv/yJEjWFhY0Lx5c+B7D5mSJUty69Yt7OzssLCwSFeyn6Hx+fNnxowZw969e/Vtym+Jss/5DPEaolAolHYY3759Y8iYMdx95UlClcrI6lRLUgri+cdAzn3+wPr5c5C/ek2z+g34a/x4lQ4YU8Le3p5mzZpx8uTJn6JgSpcuTXh4OD4+Psk6FUPCyMiI2bNnc/36db5+/aqRA9Rq1arx6v4Drl2/zuK1a/HYuReKFyUmbx5kttmRZc2CIiKShC9fkIWGY/T4KXYWlqyYM5eayURH+fr64uHhobTTb9asGb1791baaUgkEmwyZyYoMgqppXYLFhofP8Wyo8eSvfft2zfmzp2bJGz4zp07eHp66rXKszYQBMEgk2BFkmLwKw25XE5cXJxSWeA79+3jr8WLUHRuh0lZhzTHC4JAzONnGLmepV+btsydNk3tCK1JkyZRrVo12rdv/9O9mJgYvn37Rp48edTSoQuuXr3KtGnTWLp06U9v+JogOjqa+/fv89LLi/svnhMdHYOpsTHVypXD0sKC5s2apdpy9OrVqxgbG6cabvtfPn/+TPbs2ZWuaeS8fj2Lnz/GtFljpXWoStzdBzT+Fs6O9et/uqdQKAgICOD169fUr1+fjx8/0rVrV65evWqwkYTqkJCQQHBwsMHlYv0uKPucN3incePGDa5cuZJm7sCmHTuYf2g/0oF9kKi45SQoFMiPnqR3keIsmD5DHXOJj4/n4cOHlCpV6qewwcjISIoXL46Pj0+G2GvesmULtra2tG3bVt+mJOHDhw8cPXqUUaNGqTRvypQpFClSROleFGFhYZSqXROjOX8h0ULxvIRvwZis3siTq9fIlCnTT/cPHTqEl5cX06Z9bwdbsWJFdu3aZZBVaTVB79692bRpk967Qf6uKPucN/iD8IsXL9KwYerlqb29vZm3cT3SIf1VdhgAEqkUWce27L59ky07d6bXVOB7V7+LFy9y7dq1n+5ZWlqyYMGCDJOz0bhxY3r27GlQQQg/wklVOd/6Qbt27XBzc1N6fJYsWejRtj2xN26rrCstFLGxSDbv4ODmv5N1GACbNm1i3LhxrFq1inXr1nH//v1f1mHI5XL8/f1Fh5EBMHinUa9evTQrxI6ZNhV5p3ZqvQ1KJBKkQwYwe9dOzqnZmrVdu3Zcvnw52XtSqRRbW1tu3ryplg5dYG9vT6tWrTh9+rS+TUkkKCiIkSNHqlxKA6Bq1aqsXbuWgIAApedMGz8e0wtuKCI1V/NMEATkm3ewetJkKlWqlOyYjx8/4uzszOHDh3nz5g1OTk4ZIjkvvYSEhDBhwgR9myGiBAa9RxIfH4+vry/16tVLccy9e/d4/CkQ0+Kd1NYnkUmRDOzDsEl/8qxGjRTfANOiUKFC/PHHHz9dr169OrVr18bExITOnTura65O6N69e7re6rVBaGgoHTp0SNEhK0NQUBDdunXj3r17Sp0LZM2alW0rV9Fn9kwk40Zo5CxBceAII1u2ol0KCauxsbF07tyZNm3a4OTkRO/evdXWmaItCgXu7u5cun6duP+VfrHKmpXSxYohk8moWLGiTrKzL1y4kK4eISK6x6BXGufOnePLly8p3g8ODqbbsKHQv5fGdMoyWRLTojGTZs9Kt4yQkJBkVxKnT5/m3bt3TJo0CXd33TctSg8PHjxg2bJl+jYD+F58cPr06WqdBxUuXJjOnTtz7NgxQkOVyxtpUL8+fRs1Rn5cve6LgiCQcOYCtS2zMGn0mBTHbdy4kUqVKvH69et0v7ikxf3792nboweFKlWi06L5rPr6kfXyaNbLo1nwxpO+B/fSa+smyjRvSqlq1Zi7eDGBgYFasQW+f2dtfVcRzWLQK40zZ84wd+7cFO+36taNmB6dMbXKplG9po6VOD17UbrnR0RE8Pjx45/eEK2srDh06BCCIHDs2DEuXbrEnj171DVXq2TOnDnVulq64v379wwbNozixVXrcZFcnMfEiRMRBIGOHTsSEBCAs7MzVapUQfK/fuPJMW/aX4RNnsSJv3cg6dMdaSrVaJMj1usN0n2H6Na8BUtmz0lxXFBQEKVKlcLIyEitzoPJIQgCh44cYebSJUTmyE5Cw3qYdm+PBEgtNjEyJoa199zZ1KoFLWvXZeX8+Ro9e/j69SsVKlQQO/VlEAzaaSxfvhwzM7Nk763/+2/eZ7fCtLjmm89LZDIU+ey4f/8+jo6OKs+XSqX4+PgQGxtLVFQUxsbGSd6iJBIJLi4uhIWFMXXqVDp16kTFihU1+RU0QnBwMDVr1tT7XnpoaChdunRRqsdCcHAwEomEzZs3c/36daytrdmwYQPdu3cHvldLzpUrV2LV4e3bt7N582aaNGmCvb09rq6uBAcH/5SVLJFIWLN4CXWOHWP8rJnENqyLSa3qqQZeCIJAzNPnGJ+9QMW8+Vh/9Dj58+dP1f7Bgwdjbm7OjBkzUg05VpWYmBiadOzAu2xZkIwejixzJpT9V5WamWFRpyZC7Rqcun2Xa/Xr4bp3H4ULF9aIbUFBQaxcuVIjskS0j8GG3IaGhjJo0CAOHTr0072nz57RYtAAjCaPQ6Kl0NWo++4MM8vM7KnTVJ574cIFtmzZwqxZs1i0aBF+fn6sW7eOoKCgn0o+X7lyhQULFnDixAmD6kgIcPv2bbZs2cK4ceP0GrUze/ZsqlWrRtOmTZNcVygUXL16FS8vL5o0acLIkSPJkiULkyZNoly5cirpiIuL49KlS3z9+pX+/fvz8OFDypYtm+zYiIgIljg7s//YUWIyWaIoUoi4HLZILS2+H5jLEzB/64vi1Wua1KnLlDFjKFKkSJo2/IgMCwsLY+/evRp78w4LC6NV9268rVoR4wqq/VySI/7TZyQbtrJ92XIa1a+vtrwmTZpwXs3gExH1yfB5Grt27UIul9OvX78k1xUKBaWrVydiaD+MbLVXOiEhOIQiR1xwO3FS5bktWrSgd+/eiW+3giAQExPDpEmTePfuHVOmTAG+H5jnypWLT58+ERERobE3N03h6uqKk5MT7u7ueku4ev/+PdbW1snud+/cuZO7d+8yfPhwjRW0jIuLo1evXhQsWDDNLoaCIPD582fu3LtH4KdPPHrpSQn7AlhYWFC6RAmqV6+u1INfoVDg6urK+vXrmThxIg4ODuTMmVMj3+fTp0/Ua9eWiNbNMCqjOceviIlBWLSSm8dPqFVqJjg4mP79+3P8+HGN2SaSPjJ8GZECBQok+yA4ffYs4YXyY6xFhwFgZJWN8HS0lt22bRtRUVFUq/b/FUslEgnm5uZJGjEdOHCAlStXUqZMGaZPn07fvn1Zu3atUm+kuiJTpkyMHj1abw5DEAS6d+/O5s2bk6x09u/fz9OnT5k3bx59+/bVqE4TExMOHjzIsWPHqFOnDtOmTftphfMDiURCzpw5aZuO8N8fKBQK3r59y/r16wkPD6dGjRoaW3HGxcXRrncvQju3xbSoZn+vpGZmxPXtQffBg7lx9my65VhaWhpMoIWIchjsyZOfnx/ZsmX76frFG9dJcEi7HLYmiFCxS5qPjw979+5l8eLFaYapdu3alUOHDjF9+nT69+9P06ZNmTlzpjrmapy//vpL44exqnD58mVatmyZ6DASEhI4ceIEbm5uzJ07V6sHp+3bt6dfv3706dNHa1sncrmcwYMH8+3bN0qVKsWhQ4c0ukU5esoUPpQpqXGH8QOTgva8N5ZySg2nMXbs2AzT60PkOwbrNA4cOJDs9dPnL2BWUrUImvSiasPS6Oho7O3tVcqglkgkrF69Gnd3dwYPHqyiRu3i5+entxpHHz58QCaTMXXqVOB7kb6pU6fSpk0bNm3apJPD+QEDBvDx40d8fHyoV68eq1atSjUEXFUmTpxIvXr12LhxI7Nnz9ZoTbIr167h+vghRvW03E+jWyfGTf8rXf1SFAoFXl5eqfZFFzE8DHZ7Kjl8fHyItc6KVIPlzFMjq4pvfUFBQRw9elTlfuBZsmRh9+7dKs3RBfny5dNoBI+yCIJAv379En+OFy9eZO3atfzzzz86d2JSqZRBgwZx69Yt7t69S548eTh27FhiZFnlypU5deoUlpaWtG3blidPnvD8+XNy5sxJ+/bt2b9/P3FxcVSqVImmTZsmlsYvUKAAs2bN4sKFC9ja2mo0gS4qKopBY8cgGeOkMZkpIcuSmSj7fFx2c6NhgwYqzf348SODBg3SkmUi2sJgVxrJPUQPHT9GrI62phRRUSonkc2bN4/79+//EuWdAwMDad++vV7eAr99+0aTJk0oVaoU8+bNo2HDhhw/flwvvVzgu+PYsWMH+/btI3v27FSoUIFatWoxduxY3rx5g1wuJ3PmzJiZmeHv749cLidv3ryJAQ4+Pj4ULlwYR0dHChUqRNmyZXFwcCBLliwUL16csWPHatTeEX9OJLpJfWTZdNPnXF69CnuOJV/aPTU+fPhgcMUwRdLGIFcaL1684MyZM4wfPz7J9QvXb2DcspFObIh760O1isnXBUqJ0NBQvL29DeowO72sXr2ad+/e6VyvQqHg0qVL/Pnnn/z555+EhoYaVBnwBg0a0OBfb9QjR45Mcv+/+Tb/LrY5cuRILl++zKpVqxKvPXnyhE6d1C+B8wMPDw/OP32CycTRGpOZFsZ2eXh+TvXSLrNnz2bfvn0p5mKJGCYG6TTi4uKSLfHw1u+9VsNs/43M6w0tuqrWq9jGxoaiRTWfbKgPnj9/TpMmTXSu9+7du+zbt488efLQqVMnKleurHMbtMWoUaPw8fEhPDyczJkzo1AoWLNmDV26dNGYjumLF6Fo10pj8pRBamlBXDI9y1MjMjISCwuLxNa9IhkHg9yeSkhI+CkJLjQ0FLkO30iMfPxUemBFR0fj6+uLjY2NFq3SHUWKFKFbt24613vp0iVevHiBt7c3VapU+eVKS5w8eTKxPPu7d+9o27atxloOh4WFcd/DA9Oius/3+aZigICZmVmGaREgkhSD/IuMj4//6S3369evSG1190CWRUSq1Hc5IiKCChUq/BIx5+fOnePWrVs6d4DLly8nPDycXbt2aTz/wlCoUKECHh4ewPcXjR+Jnprg6PHjyKvpZ2WWJWs2lcZ37dr1lzj7+x0xOKfx+fPnZKOPXrx4QbSOtqbkYeHkVjGhbffu3TRu3JgJEybo5SxAkwQEBOj8DX/37t2sWbOGRo0aUaVKFZ3q1iXly5end+/eREVFafx77j1xAqPK+qlhJjVSPgT67du3GBsba2yFJaJbDM5p3Llzh7p16/503cvHB0VW3UTPxPm+p7xD2j3G/41CoaBq1aoYGxvTvXt3otKRTW4oVKtWDTs7O53pEwSBPHny8Mcff9C4sfb6cRsCJ06cwNPTk8ePHzNp0iSNyn733hejHLrP3pcHh2CTRfmzifDwcBYuXKhFi0S0icEdhNetWxe5XP7T9Q+fApHm0kw9nrQwfvCYjqPGqDRn9OjRSKVSpFIpixYt4s8//2Tt2rXaMVDLjBs3jjNnzuhM39ChQwkKCkrc405ISODmzZt4/2fFZmFuTskSJShYsKDewm/VxdnZmV69elGrVi2NVgDw9PQkLltWvbwFxgd+opiSddMUCgW3b99m2LBhWrZKRFsYnNN48eIF4eHheoncAYjzekO+sAjqJbPaSY2ZM2fSvXt3HBwcqFevHpkyZWLPnj307KlaBJa++fTpE5kyZaJdu3Y6KSJ3+fJlvLy8yJEjB5kzZ2bhihWs374NSakSxBTIB5L/fwwahYVjevIYCV6vyWeTnUHde9ClY8cM1byndevWuLi4MHDgQI3K/Xv3LmJqVkMvHbb9A6hSsapSQ93c3AgKCtKyQSLaxOC2p96+fZtshzCpRIoQG6tV3fGBn8h25CRnDx9WOzegXLlyHD58WEOW6Y7Q0FBWrVqFpaWl1u338PAgLCyMBQsW0LxlC0pXr8b6V8+RzZ2OrFdXLGvVwLJmtcT/TJs3hm4dMZoxGb9uHfjr9nVK1qjOtLlzCFexTpg+WLlyJfXr1+fIkSMad3QeXl6YFtNPfpDJWx+qK3k+c//+fTGhL4NjcE7Dy8uLVq1+jjOvWaECkne+WtMrCAKS7bvZv2lzsoUS06JWrVpJoo0kEgkOKp6LGALr1q3D2NgYZ2dnypQpw4oVK/j27ZvG9cTHxzNs2DC6dO1Ct6FDmHHKheiRQzFq1QyJLO1fSyMba0xbNkU25y+2B3/FoXYt9iXTe8VQ8PHxYdasWchkMi3lJkhAD0mQgiAg/RBAiRIl0hwbERHBwIEDM+Tfhcj/Y3BOY+DAgVhbW/90vW7duhg9fa41vfE3btOmZq1092UICQkhd+7ciZ/fv3//U7vXjMDz588xMTEhe/bsFC9enNKlS9OsWTPevn2rUT2bNm3CKoct1lUcYeoEjHp3Q5aOtr0SmRTT+rVh2gT+3LuL9r17kZCQoFFbNYG5uTlZs2alUiXVqgwoi7GREYIegi/iXrykeuXKSq3Mt2zZgquren3WRfSPQTmNsLCwn0qH/MDGxoaiOXISp4XVRvzHQLJeu8WyOSn3I0+N8PBwnJ2dk1ybPn06Xl5emjBPp0yaNCnJSqtp06a4urqSJ08eBg8enGymvioIgsD48eNZu3EjD4O/YTZuBLJM6sfrS83MMBrQmwd5c9O6e3eDchxLly5l3759nDlzRmu1vGpVrkz8G8069rQQBAHp8VPMV7K75aFDhzLki5RIUgzKaSgUilT7CWxavhx27kWQq1ayIDXiAz9hsW035w4dTncvgxcvXtCuXbvEz0FBQeTOnTvZbTZD59OnTz9dy5EjB2ZmZlSpUoVmzZqlW/b9+/c5dOgQmzdvJlImxWj4II236zWqUQWPQvnpNXSoRuWmF4VCwerVq3FxcaFkyZJa01OlfHmMvnzVmvzkkJ+/TOcGDdLsHQPfe4ecOnVK5SKgIoaHQTkNCwsLhgwZkuL9IkWKMGHgIOK37kxX/f7/EvfsOZZ/7+TSocPpbgTz6NEjbt68yeTJk4mIiKBv377cvHkzQ2aGx8fHc/DgwRTvDx48mHPnzrFlyxb++OOPZAMWUmLNmjX069cPmUxGrWbNUHTriNRcO2VhjGpV41Z8NH/Nn68V+apw8OBBTp8+jYODg1YTJosXL47R+w9ak/9f5GHhmN2+x/J5yv2MFy5cyNWrV7VslYguMCin8eHDB+Li4lIdM9bJia5lKyD/Zx9CMvkcyiAPDSNh4zYc3J/x0O1Kuh3GjwSt/v378+nTJ+bMmUPv3r1p06ZNuuTpm3PnztGyZctUx2TJkiUxz+DkyZNcuXKFBQsW4O3tnawjDwgIYPfu3Wzfvp2hQ4dimyMHHmEhmGi5xL2sc3t2nj3Ns2fPtKonNY4fP467uzsSiYRRo0ZpVZednR2SrzoMZd25l03LlivdA/3y5ctqrVJFDAeJoMQru7INx9Vl6tSptGjR4qdihcnhvGEDS7duQdGrK6aF014ew/c92ITbdzE9d5kNS5bSpFH6y6x7enpiZGTEmzdvWLp0KW3atGHMmDHplmcIfPr0iZw5lU+g/PjxI0uWLOHmzZtUrVqVYsWK8ejRI6ytrWnbti1Lly7l3r17bNy4kRIlSlCiRAmqN22CX+e2GOfMocVv8p043/eUuHCNSydOaF1XckyZMoWJEyeyZs0anbTyrdqkMYGD+yDVcmHPeLfrtFRI2fSvEu+pIQgCDx48wNHRUat2iaiHss95g1lpJCQk4O/vT82aNZUaP3r4cK4dPESZ63dIWOpM9L0HKGKTrlIEQUAeHkGMxwviTpxCPmshLWMUPLtxUy2HIZfLqVChApcvX8bGxob9+/dneIcBMGjQoGSz8VMiLCyMDh06cOfOHdasWYONjQ0fPnygQIECBAQE0L9/f7y8vGjXrh0lSpQgJCSED6EhOnEYACb2+fGKCOPWnTs60fdvfH19adGiBZ6ennz+/FknOqtXqkSclg/DY197Y/f0OWuWLFF6zuLFi8mVK5cWrRLRJQaz0vj27RuZM2dOVxGz169fs2nnTi5cu4riXwdtCbGx2Fpb41iuHFXLladpkyYaiZHft28fU6ZM4erVq9jb26stzxAIDw+nZcuWXLt2TanxK1eupHLlytSurXwPaldXV4YdO4SxDvs9JAR9w2brLh5fv6EznYIg0KtXL0qXLk2RIkWoVKkShZUss6EO169fp4fzCoz69tCK/Lj3fmTbcxi348fJkUM5x//lyxd69OjBuXPnfrky978ayj7nDSaUYezYsUybNo1ixYqpPLdo0aIsmzdPC1b9zN27d4mMjOT+/fvYqlgJ15AxNjZm06ZNSo199OgR9+7dU3l1tePwYRTldNOu9wdGNtZ8Mzfj2bNn6c7BURVPT09q165NqVKlMDc314nDAKhZsyYW48YSFRyCUTpyXlIj7r0f2fYeUclhwPck1+HDh4sO4xfCYP4lv3z5ki6HoWtGjx7NjRs3fimHAd/Lh9y/fz/NcREREchkMlatWqVyqZWnL55jWqRQek1MN/H1a7NaBw1/fHx8cHBwYOnSpZQqVYoZM2bozGHA917mm5YtRzhwRKNyEx3GsWMqOQwPDw927txJhw4dNGqPiH4xGKcxY8YMfZugFGZmZuTJk0ffZmicnTt3kjlz5lTHvHr1ivbt21OyZEmVDsx/INNT0x3TkiW4eF25bbf0EB0dzejRo4mKiuLUqVOMHDkSS0tLtmzZkmx1A21Sr25dHK1siL37QCPy0uswACZPnpwkf0nk18AgnMa5c+eIiYnRtxlKsX79eq30rY6Li2PBggU0btyYu3fvsmHDBurWrUufPn00ris5smfPnmp/c0EQmDx5Mhs3bsxwzXMkMilCdht8fbVTu2z8+PEULVoUW1tbGjduzKFDh6hUqRJFiuingOCezX9T/MkLEk6dRVCxd/e/STzDSIfD+PbtGz169NDpSktENxjEQXifPn1YuHChThv/pIfHjx/TrVs3YmJicHNzUyoTNjXevXvH8OHDsbW1Zf369Vy5coVWrVolbvsIgsCLFy84evQoU6dORSZTvjuaqkRERGBiYoKJiUmy993d3SlTpkyK95WhZP16xIz7I93z1SH60hUmFi7B+JEjNSJPLpezdOlS8uTJQ6dOnfjw4QPBwcGYmZlRrlw5jehQB0EQ+HPmTPafP4eiWwdMCiu/LaiIikZ+5gJWr725dEy1Mwz4viIdPnw4586dy3AvGL8zGSrkNl++fBliy8fPz49x48Zx7do17ty5k67VUXR0NJs3b6Zhw4YYGxszceJE/vnnHzJnzkzr1q2TnBNIJBJKly5NZGSk1ntbODs78+jRo5+uKxQKxo8fz86dO9VyGPpGVqwIdx491Ji8GTNmEBMTQ+/evQkODqZOnTpYWVkZhMOA7787S+fM4caBgxS9eB35mk3EeL5KceUhyBXEvn5Dwt87MFu2hjn1G/H42nWVHQbAX3/9xYYNG0SH8Yui9+gpPz8/RowYoXb/Cl1QuXJlrK2tMTU1xczMjObNmzNlyhTq1q2bpBCdv78/OXPmpH379kgkElq2bElsbCzbt29n/fr1REdHs27dOvLmzUvevHnT1DthwgQeP36sxW+WPNHR0bx//57ixYtrpGlQgh63II3z2uFz7JTacsLDw2ncuDHbtm2jVKnvkWAKhYJdu3YZZCCHvb09V1xdcXd3x3nL39w9fJI4YxlyS0uMbaxRJCQgBHxEFhNLnQoVGDN1OtWqVUu3Pi8vL/7+++90tRcQyRjo3Wns27eP8uXLJykrboiEh4czbNgwTvwvuzhHjhwcOnSIv//+m/LlyzN37lx8fHx49eoVdnZ2ZMqUCblcjpOTEzKZjOvXr9O1a1euXr1KtWrVsFThUDh79ux8+fKF58+fU7p0aa18v3r16iUpp3L48GFWr17NggULUq0HpgqZTEwIlsuRaHGbLTXUrVcWFxfH0KFDWbhwYaLDgO9bVX5+fuqap1UqVarEP/8qy+7v75/YuKpgwYIaqb7r5+dHly5duH79utqyRAwXvTuNCxcu4OTkpG8z0mT06NGMGDEiybXs2bMzceJEfH19iYyMZPXq1bx69SrZGjvNmzdP/P+LFy+SP39+vnz5Qvbs2ZXSX6RIEebNm8e+ffvU+yIpYGZmhkwmQxAErl69Snx8PG5ubho9R6laqRInPF9hpuW6U8kR/8GfQulMxAwNDWXKlCmUK1eOvXv3/nQ/X758HD16lNevX7Nw4UJ1TdUJ2jg/PHr0KEuXLk0zCk8kY6PXM43o6GjWrFmTIXo8L1myhMaNGyd+VigU7N69m1evXrFixQoGDx5MwYIFlSrK1qhRI968eUNkZCQ9evTg77//TrYk+b9xdHTE0dFR7X4WKeHi4oKvry+urq6cO3eO7t27a/zgvWPzFsieemhUprIk+PpRpWz6zht2795N06ZNGZpCuXWZTIarqysTJkzg8uXL9O7dW2uRWobKqFGj6NSpU5K/EZFfE706jRUrVuDp6alPE5Ti1KlTbN++PfFzaGgoLVu2JDAwkGLFirFu3TqqV6+ukszChQuTL18+ZsyYkdgmdvz48TRr1owVK1aQkJDw03bKuHHjEiN1NM3du3cpV64cO3fu1FpxvYYNG5LZ24eEIM23j00L04+fqKhiRnj37t1p0KABw4YNU6qvtY2NDQ0aNKBPnz5s2rTJoBpBaZNbt27x6dMng49+FNEMeg257dy5MytXrlTqMFiflC1blkOHDlG8eHE8PDzInj07CoVCKxFfCoWCkJAQ7t69y4oVK6hevTqzZ89ODBR48uQJ8+fP58CBAxoLHvhx4P3582dq1Kih1dDeGzdv0n32DIxGDtOajuSQL1zBY9dTSiXbXb9+Hblczq1bt5g8eXK6SmD86FD4I2TawsIiPWYbPBEREfj7+2Ntbf3LVUn43TD4kNuwsDDmzp1r8A7Dy8uL/fv3U7x4ca5fv87o0aOJi4vTWoiwVCrF2tqa5s2bc/78eRo0aEBAQABdunTh0KFDlCtXjq1btzJlyhSiNNQT+uHDh0yfPp1NmzZp1WEA1KpZkzJZrYl97a1VPf8m4WsQuSwslHIYu3btYtKkSchkMqZOnZrumkkSiYQVK1YwdOhQPDw8OHXqlMb+vQyF169fU6NGDXLlyiU6jN8IvTmNXr168fLlS32pVwq5XM6AAQMS/yD8/f3ZunUr+fPn14l+iURCvXr1sLOzY/Pmzdy4cYOgoCCioqJo1qwZXbt2VamUeUq8evUKhULB9OnTNWB12iydNQujMxd0oguA464sUKKP9cmTJ+ncuTM3b95UqXpvbGwskZGRbNy48afQ6B9lV/bs2UPZsmUJDw//ZZzHxo0b2bdvn0YqR4tkHPTmNIyMjJTaJ9YnLi4udOjQAVtbW06ePEnJkiUpUKCAXmzJli0bzs7OZMqUCScnJzZt2sSAAQM0sm/+4sUL1q1bR/HixTVgadqULl0aO4mUuPfaD1NN+BpE9uBQGjVokOq4FStWcOPGDczMzFTa9ouMjKRVq1YkJCSQP39+pk2bxocPH3j69GnimVTmzJnZu3cvL168wMPDg169emXo847Dhw+zcuVKlixZorUQcBHDRS9nGuHh4SgUCoN+Q1EoFNy+fZsaNWoQERFBu3btcHFxMZi96QcPHiRWmy1fvjxjx45Nt6z8+fPz9u1bjIx0F4Ht5eVFw769kU0Zr7XETkGuIGH5ag4tW0H1qlVTHJeQkMDkyZNZsGCBylnvM2bMoEKFCrRv3x74/nsDMGbMGD5//sz+/ft/mrN06VJsbW3p16+fSroMgeXLl+Pv78/ixYvFjO9fDIM+01iyZAkvXrzQh2qlcXZ25uHDh0gkEh4+fMi8efMMxmHA9+z0/PnzU758eaZOnZruiKqnT5+SO3dunToMgGLFitG8ajViH/xcukRTyE+4MrB5y1QdhqenJ7169WLp0qUqOQx/f3+uX79Onz59klRylUqlSKVSVq5cSY0aNXjy5AnfviWNFps4cSKxsbFcuXJF1a+kNy5evEinTp0YM2YMK1asEB3Gb4xenMa9e/eomsofsiFw7949Bg8ejK+vL+Hh4SqH1KaEIAg8fvyYxStX0rhDe4rXrIFDg/qUrF6N1j174HLqlNJbFzY2NowdO5bXr1+zcuVKLl68qLI9bm5uLF68WOV5mmD+tL+QnTyNoOGtGkGuIP7QcVpky86sKVNSHduvXz+WLVum0mrH2dmZfv36YWlpSZEiRZKdK5PJGDVqFAkJCXTs2PGn87tatWrRp0+fNPNzDIVly5YxZMgQrQdKiBg+Ot+eCg8P5+HDh9StW1ctOdoiMjKS9evXM3bsWOLj4+natStz585VuxBdeHg4K9atY9fBg8TlzU186ZIYFSmEzDY7Eonk+1bKp09Ir95E+tyTUYOHMGrYMKVXAA0aNMDHx4dHjx6ptO3Xrl07VqxYQaFCum+OBLBo1UrWPnbHuKNmzrcUsXEIW/9hWMPGTBmf+tbX+/fvMTMzS7MonyAIXL58mZMnT1KrVi3q1q1L9uzZlY6sCgwMxM3Njdy5c1OpUqXEjOmAgAAEQTDo/IbZs2cD34sQig7j18Zgt6dmz56tswNXVQkLC6Nt27aYmZkhCAIfP36kcePGajmMiIgIJs+aSclaNdj4JYD4qeORDe6HWY2qGOWwTXyoSWRSjPPkRta9E8yexvJH96lUry6vXr1SSs/Zs2dp06YNcXFxStdYCgkJ4caNG2qXeFeHSaPH0MomJwkbt5LwLVgtWXG+7xEWr2Rh/4FMnTAhVYdx//59OnbsmGqoqCAIXLp0icjISDw8PBg8eDAdOnQgR44cKoXi5sqVi+7du2NqakqHDh0S2+rmzJmTmjVrsn79euW/pA559eoVT58+ZcaMGaLDEElE507D19dXI2Gi2kAqlbJx40aGDh1Khw4dCAoKYqQa/ReOHj+OQ80a7Az7htHsvzCrVxupadr75hKZFJN2rQjq3Y1mffvg4ZF26Q0TExNWrVpFq1ataNeunVKO40forj4rDEskEjYuX862sRPItmk7CXsOooiKVkmGIAjEn7tIzsMnuXrwED27dElzzvbt2zl69GiK3/3t27e0bNkSNzc3BEFg9OjRODg4qPXwrF69OufOnaNJkyZ4eXkhlUrx9PQ0yBDcL1++cPXqVSIjI/nrr7/0bY6IAaFzp9GxY0eDXI5v2bKFDh06UKRIEZYsWYKTkxOOjo7pkvXt2zc69unN6L83IUybiFn9Okhkqv+ojfPkQj5iCG379uHr169KzRk0aBDBwcHcuXMnzbESiSRdbVu1QeNGjXh68xYL2nZAunA5Ca5nEVJ5uRAUCmI8XpBw6DjyGfPpkyMP9y9dVmrVdODAAWbPnp2kqi98L6UyefJkhg4dSp48eThw4ADz5s3TaAE+qVRKwYIFuXDhAuPHj8fMzIwJEybQsGFDbt26pTE96tKzZ09evXrF2bNnqVixIrdu3VK7SrDIr4HOzzRcXFxo3bq1WjI0TVxcHD179iR37twUKVKEUaNGpUuOIAj8NX8eO44cgU5tMSnroBn7fN5jdeAYV44fT7MqblhYGC9evKBSpUppRrhMmzaNR48ecfr0aY3YqSnkcjlLnJ3ZtHMHQuGCxObJhSRfXggOwfhjIDL/j8hCQmlYuzadWrSkZs2aSke2vXjxglGjRnH+/Hni4uLo27cvMTExtGzZkgoVKmBqakrBggV1Uql19erVlC9fnho1ahAUFES/fv1wdXU1iK0gOzs73r9/n2jLwoULsbW1ZdCgQXq2TERbKPuc16nTEASBVq1aceqU+s1wNIWzszOvX7/GysqKli1bqtWAZszUqRwJ/ICsbUsk6Sw/kRLfHcdR7pw9l2ZV4GnTpnHmzBkePky9U12bNm2oWLEi06ZNM8gQSrlczpMnT3jt7c39Z8/InT07lcqWpVSpUunqKCcIAnv37uXatWt8+fKFmTNn6r3Tnre3N4MHD+aPP/6gefPmXLp0Se8vVdeuXSMoKCgx9wS+B4iMGTOG5cuXa6Xls4j+MUincenSJS5dusSCBQvSLUNTBAQE8PjxYwYNGsSSJUvo1atXumUJgsDsRYvYfvM60qH9NWhlUmIvX2Vg9lzMnZb6HnNQUBDFihXD09Mz1YfrsWPHaN++PVOnTqV69ep6f1hpk/DwcOrXr4+rqytPnz6lVq1aBpN38yO5cP78+TRo0IBZs2bprcT4169f6dy5M2PHjqVNmzZJ7sXExHDv3j3q1KmjF9tEtItBRk81bNjQIBzGjRs3qF69Og8ePMDNzU0thwEwespktnq9QDKor4YsTB6TurXZuX9/moEENjY2/PPPP0RGRqY4Jjg4ODEfZNasWWzatIn79+9r1F5D4fLly1SoUIFKlSqRI0cOmjRpYjAOA76X1Fm2bBmrVq2iTZs2REerFgigSTZu3EivXr148ODBT/dMTU0ZOnQobm5uerBMxFDQqdM4deoUBw4c0KXKJHz69Ilnz55x7do12rZty4wZM9QO/73s5saxhw8w6tAmXYfdqiCRSaFEMW7evJnm2IoVK1K6dOkUmza9ePGCN2/eAN8jr44dO0ahQoU4dOiQRm3WJx8/fmTOnDkUK1aMAwcOsH79+nRXrdUF48eP58KFCwQFBelF/8ePH2nSpAnh4eHUqlXrp/sSiQQ3Nze8vXVXoVjE8NDpX1BERITe3qKcnZ3p0qULfn5+3L17l/791d9Gio2NZejECUj69tCAhcohr12DlX9vTnNc7ty5KVCgAOfPn0/2/qdPn5KUpTc2NsbExIR79+4ZxGpQXT5+/EivXr1wdHSkX79+aofL6gIjIyM2bNjAtm3bOHv2rM71z507l+DgYEaNGpXi9liuXLkoXbq00vlDIr8eOn/tatSokU71ffnyhfnz59OzZ0/c3NyoX78+48aNo0KFCmrLdpowgZgGtZHp8GDQ2D4fr969U2psat3j5HL5T9tymTNnZsmSJZQoUYK4uDi1bdUXDx8+xNjYmI0bN7J+/Xr27NmDqampvs1SiqJFi9K5c2d69+6tU70JCQmEhYXRtGlT1q5dy7Nnz1Ica2RkxIoVK3RonYghoVOnYW9vr9OmS6GhoTRs2JBGjRqRPXt2nj59ytKlSzVSwmTHnj2cf++DUe2aGrBUeSRSKUZmyj0AbWxsWLRoUbLx9bt27Uo2sU0ikdChQwd69+6d6oPDUImOjmbixImYm5vj7+/PsWPHNJqLIpfLuXv3LtPmzKFum9aUrFmDMg3qU6pObao3bcr8JUt4//69WjpGjRpFzZo1CQgI0JDVqaNQKLh48SLbtm0Dvjvd1A5CHR0dkUgkBpukK6JddFradMGCBZw8eVInup4+fYqXlxcnTpygYMGCPHnyhDFjxrB37161Zd+6c4cZG9YjHeukAUtVQ5DLkcfEKjXW3d2dLFmy8PXrV5U7q02YMIGRI0dmqEqsAFu3bmXIkCFMnTqVatWqqV29NzIy8ntF21u3OHTKFc833giFCxBXohgmXdsjzZwp0flGRESw9uETNvfphVlkNC0bN2bs8OE/JREqg4mJCU5OThw/flwt+5Vh9+7dfPnyhWbNmgHfKyin1Tdm48aN7Nq1i44dOxpUUIGI9jHcU0E18PDwYMKECVSoUIGCBQty8OBBJBIJx48fV7tNa1RUFL3/cIKh/ZGq2HtBEygiIrHLnVvp8UOHDsXGxuan65s3p34u4ujoyKFDh5KNojFUPD096dixI40aNcLc3Jxu3bqlW1ZAQACN2rWjZMP6NPtrCtPv3MCjST2kc6Yi69sD86qVkWXJnGS1JsuUCbM6NZGOH0nstPHslSRQs0c3WnTurHLp+nbt2qUa/aYpBEHgypUriWd8b968oUEaDat+EBYWphOnJmJY6NRpzJs3T+s6YmNjiYuLY9euXRQuXJjJkyfj5uZGyZIlyZYtm9ry12zcSHTNqsiy6aeBVJzveyqUUq5bWrt27ciTJw8bNmz46Z6zs3Oa8wVBYPr06YmNhQyd5cuXs3DhQu7fv8+iRYvSXVPr5cuX1G7XFs+61ZFNm4jQuxumLZtinEv5bS6JTIZ5NUdkf47hcfVKVGvdim27dys9v02bNuTPn5+wsLD0fAWliIuLY/369Wzbti2xf/rDhw9TDJ74Lx07duT58+das0/EMNGp07h06ZJW5cfExNClSxeyZs2KkZER9+/fZ+DAgWzYsEEjGc+CILB9316Ma9XQgLXpQ/rej8plyig19tatWzx79izZgnjK/LHnyJGD9u3ba2RLT9u8efOGGzduIJVK1UqMCw4OpkWP7sT9MRiTIpopF29atDBGMyYxa99utvzzj1JzMmXKhEwmS9bha4pBgwb99Hdx6tQppfOWcuXKRbdu3Xj69Kk2zBMxUHTmNHx8fNi5c6fW3loFQWDo0KEMHz4ca2trevToQWxsLEWLFtWYjtNnzhBllwepuZnGZKqK8eu3VFey1Mnnz5+Ji4ujfPnyP91Tthz6kCFDqF+/PufOnVPFTJ0zffp0Hj9+zKpVq9IdWuvt7U2d1q2I7dMNI2srjdonMTJCOrg/s9evVapqMcCHDx+0etjcokULBg8enPjZ29ubdevWpVnf7N9YWVnRv3//FPOBRH49dOY0Ll26xOLFi2ncuDGLFy/WWL6GXC5n3759bNy4kQn/66Hg7u7O7Nmzk01QSi9RUVGMmDYVurZPe7CWEOITMAkLVzoCzcrKinLlyiUbPTV37lyl9VpbW7Np0yb+/vtvpefokkaNGuHj44OZWfqd+dkLF2jQtQvfenbGpLB2GlJJZFIY3I8eQ4coVTG2RYsWCIKQro6MaXHo0CHKlSuXZAtv7NixKp+j5M2bl8mTJ/P582dNmyhioOjMaQwcOJCmTZty8eJF8ufPz/v372nSpAnTp0/n7du3+Pv74+3tTUhIiFLy3r59y65du6hSpQre3t74+PiwY8cOrK2tadSokVqFB5PD5dQpYiuVR5ZGsUBtEnv3Hl3btlN6fOPGjalbty5r16796Z4qpVPMzc05dOgQuXPnxtPTk/nz53P+/Hm9lsoWBIHjx4/z7NkzbG1tuX79erplLVq5kiGLFsCkMZjk1W7ZfqMctnzLlYMzSiTvjRgxgqpVq6r13ZJDoVAwcODAJFFdjx8/xtraOl3hyZ07d+batWsG2RdERPPoNOQWvucBdO/eHYC9e/fi7e1N7ty52bx5Mz4+PmTLlo2OHTuyatUqqlWrRvPmzblz5w7fvn1LrI4bHx9PSEhIYtezihUrar1Ka+CXL8jzKB+1pA2Mr91ixLETSo8/ePCgWm/f/0Ymk9GqVSvkcjnVqlXj5s2blChRgs+fP1OxYkWdl+dYvnw5169fJ2vWrOzbty9dMhQKBSP+nIirz1uko4frrBmVpE0Lxs6cQd06dbC0tExx3OvXr1m7dq3GixdGRESwffv2xGrJHz9+JEeOHGzfvj3dMqOjo3F1daWLEg2wRDI2Onca/yZ79uyJ+6ejR49OvB4cHEzHjh25cOECx44dQyKRMGDAAFq3bk3fvn25dOkSjRs31umDKiZGf0XkAGLvPqBpxUrkypVL6TnPnz+nQYMGrF69+qd7PXqkr/SJTCajYcOGNGzYEIVCwebNm+nWrRsXLlzAzs4OEy2HIcfHx+Pi4sKQIUMIDAxMd+KeQqGg28AB3MpkhlGf7jrtXmhkbUVYjaqs2rCBaRMmpDiuaNGiyOXyJOcOmmD16tWJIbbe3t507NiRAwcOqBWOXrVqVa5du6YpE0UMGL3naXz8+JEjR46wf/9+oqKimDhxIv379yc2NpYVK1Zw6tQpXF1d6dChAwMHDsTIyIimTZvq/M327rNnGOdVL8dDHWRnLrBi3nyV5jRv3pwmTZqwc+fOn+5ZWal/0CuVSpk3bx4PHz4kR44cTJw4keXLl6stNyU8PT1p164d0dHRfP78mZ49eyZ52VCFmQsWcEuqwLhJQ720u5WVKIqXr0+a42rWrMmiRYs0pnfv3r18/vw5sXumv78/zs7OahfudHR0pECBAvj7+2vCTBEDRidP3tDQUG7dusWMGTOA76uKVq1asW3bNj58+EBYWBgJCQkoFArmzZvH8ePHadeunS5MU5p3Pj7INBxRoyyxb95SsURJlR/0P6rYuru7/3Rv3bp1GrENIEuWLFhaWrJq1SrCw8O5fPky3t7eGo38+eeff8iTJw8LFy6kTZs29OzZk5IlS6ZrZbNh61Z2PHqAUdtWGrNPW0RFRWns56hQKLCzs2PJkiUAXLhwARsbG42U1YHvZWtatGihEVkihovWtqfCw8M5ceIEMpmMrFmzcu/evcSmLuPHjydPnjyJJR7S24tbp8hkSPVU9M7o5GlmrVil8rxdu3YxcOBAcquQQa4OEomEWbNmAbBq1SpcXFyYNGkShQsX5sSJ72cxHTt2xNPTkxcvXmBiYsKIESNYu3YthQoVokGDBj+dwcTExNCkSRMaN25M1qxZKVu2LLNnz2b69OnpOq/x8PBgwd+bkE0aq5cVhqq8fPlSYy1WZ82aRe/evTEzMyMkJISFCxfi4uKiEdkA9erVY8qUKRqTJ2KYaM1pTJkyhdKlS9OnTx8sLS2TvIHkz59fW2p/OeLcH9GwWIl0VeX9cf6xZs2an+4ld86hScaMGcOAAQMIDAwka9asVKxYEfi+KilQoABmZmaJ+RTlypVj+/btWFhY4ObmRo4cObCxsWHx4sXY2tqyYcMGSpcujbe3N5s2bWLcuHEqne38QBAEeg8fjjCgNxI1a1LpihcvXlCiRAm15YSGhnL79m1mz54NwPXr11m4cGGqB/HpIX/+/Hh6elKyZEmNyhUxHLTyl3PgwAGWLl2Kubm5NsT/NiiiojE6cZpVly6na/7+/fsB6NSp00+FInfs2JG4KtAWWbJkSayWWq9evcTrVlZWSR6EtWvXpnbt2gDY2dlRrFgx4Hti4YIFC7CxsUEQBPr378+SJUvSffi9av06vha2xzi36g5H0wgplKz/L9mzZ09XwcP/EhERwcyZM5FIJISEhCAIAlWrVlVb7n/JkiULa9asYf369RqXLWIYaPxMIzAwkK1bt/5yDsPMyAh5RIROdSq27WLT4iWJdYFUpWvXrinee/jwYXrN0ipFixYlOjoaQRDYtGkTgYGBTJgwgdu3b3P8+HGqVauWrm0lT09Plv2z8//au++oqK7u4ePfGYqAIIiCWIkFsRKM3ViwdzR2TaKx9xa7jxosMRoLaow9xhI7xmAXBLuisSIYFRuggIA0pU657x/+nDcaEYa5MwN6P2tlLRnvPedAZPbcU/bGpEtHPYxae4rIZ9SvXiPH62Qymc4p0n18fLhw4YLmsOuRI0dITEzUqc3slCtXrsDkKpPkjehPGo8ePcrzds78rGbVqoQ/i8bEVby0JB+iDjhNxxo1ademTZ7beHO6t1u3bv/5uze7Z953T2xsLBYWFnpbC8nIyCA6OhoABwcHsrKyNGkoPvvsM+Li4jh79izFihXj7t27lC5dmjp16uR5O68gCAwYMwYG9Ms301JmiUmUapTzz7dUqVI6LYQ/evSIESNGvLWr6cqVK0ycODHPbX5IkSJF8Pb25uXLl9jY2OilD4lxif4bVKFCBRo1Ml5CP31pVr8BR84GggGChuJGMOXvP+LXQ4fz3MbLly81waJChbfTYly8eFFzSlwQBKKiopg5cybLli1j8eLFZGVl4erqStOmTZk5cyYA06dPJzQ0VLNw6uvry+DBg4mPj6dBgwb07NmTSZMmAa/TUURGRuLj4wO8nq78/vvvefbsGe7u7gwcOJAVK1YAMGDAACIjIwkMfD0Ft2zZMs3BMw8PD02NB138sXs3MQ72mJc1XAGwnMhvh9J00dIcrwsJCcnzU/ub7Aq3b99+q3LhkiVL9HqeZu/evcjlcoNXH5QYhkzIRS6IlJQUbG1tSU5O/mBFL0EQaNWqFf7+/gY/R6FvsbGx1PHsjMn/sj+MJQbFjWAqXL6G3/4/dTrNfenSJcqXL4+TkxOenp6aNY2UlBRatGhB7969kcvltG/fnvnz5zN79myqVasm1reRbyiVSlxq10Y9e4rRdr+9SxEdQ/m/jnLu6LEcr/3yyy+5cOGC1n1cvHiRGTNmMH/+fJo2bfrW3/3734M+REdHM3LkSKnWRgGT2/d5UZ80goODsbOz++gCBrxOE16jnDO37tzFvJruu1neR6yAAbB06VLNWYzExEQ2bNjAP//8Q6FChahduzaurq54eHhQpEiRPKfhKAgOHj6Mwq0aZvkkYADIAs8wfey4XF2rbX4vtVpNVFQUUVFRHD58+L1TRPou01qyZEnNmSzJx0fUoFG5cmW95v83tk0rVlC/U0eEOdNfZywVkTLwDBXuPxIlYMTGxmJtbc20adMIDw+nRYsW/Pbbb7Ru3ZoxY8bkabtqQXXwpD/qL9yNPQwNZVw8RcKf0r5t21xdr0026CdPnjB37lzs7Ozw9vZ+7zWCIGhyv+nT5s2bcXNz07ncriT/EfWdb8qUKR/14lepUqVYMGUqqs25K6STG+rUNFRrf6OtWk6g70GdA0ZmZiY9evRg48aNdOvWDX9/f+bOncvly5dZsGDBJxUwAG6GhGCWj9YyBJ+/+HXR4lw/jedm55wgCMyaNYvo6GhGjRqVbcAA8PPzo2XLlrkeb16FhoYSHx+v937ys7S0NJKSkjRrSxkZGcYdkEhE+xhw584dkpOTP7qttu8a0LcvV2/exPevw5h0zXsaCkGpJOv0OczPXGDtosV0EGHBF16nQ7ewsMDc3JwuXbqI0mZBpjYxQV7I8LXc3yfz7n1qWhbGQ4u0Hf/88w8KheK9WZyjoqJwcHCgc+fOlC5dOlfbkYOCgnBwcNB7loChQ4diZWWl1z6MJS4ujsjISCpWrMjRo0fZvHkzbdu2pV27dsycORNBEJg5cyb3798nICAAuVzOli1bGD58OI8fP2bFihWkpKRw+vRpihUrxqhRo4iKisLS0lKrAljGIlrQSEhIYNasWWI1l6+tWrQIYdo0fPf9hUk3T62mqlRJySgvBmFy4TLD+33N1EvLRAu0mZmZlC1blm25LCkqMRxVcgoWew+wVYsdcWq1GgcHB4KDg/H39ycmJgZnZ2c6dOjA+PHjsbOzY/r06Rw7dizXZ1cKGWhtp3r16gUiTUtuvXr1ips3b2JjY8PChQtxcXFh9OjR1KtXjwYNGmgqYf57g0HDhg0ZMGCA5uutW7cSFxeHTCZDoVBQpEgRnj59CsC6des4e/YsU6dOxdHRkXLlyhks/Y+2RNs99eeff773PMDHShAEFq3w5tfNm1F37Yh53dof/CXJehKB6X5fSpiYMrhvP77t10/UT2L3799n9uzZ9OvXT3rC+Be3li14OWGkUccgKBSovX9lx6KfafLll7m+7/Lly4SEhDB48GAiIyNRKBTY2tpSrFixPI8lMzMTtVqt9xmBgIAADhw48N4CYAWJSqXi559/5ty5c4wcOZLOnTvrvc8rV64wbdo0+vXrJ3pa/A/J7e4pUYLGP//8w08//fRJfsJ9+fIl46ZPJ+DCeeSuLmRaF0bt9P/TXMhevcI89C7OZoXYsHy5XnLypKenU7JkST777DOuXbuW5xrZHyO3Fs15OXGU0foXBAHV5u14devJ4P79tbr36dOn2NjYYGtrK8pYwsPDmTVrFtu3bxelvZx07txZ1ISIhrRt2zZ27NjBpEmT8PDw0HudmPd5+PAhmzdvxtraml69elGxYkW99mfQLbfnz583yI6M/MjGxobff/0VpVLJ7du3CX/6VHPaGV5PBzSfMEXz+Cq2pKQkHj9+zLFjx7C3t5cCxjsKyeUkp6UjtzL8WpsgCKi37mR085ZaBwxAs6GhZs2aoozn8ePHeUp8mVcHDhwwWF9iSEpKYsuWLfTo0YPU1FR8fX1Fq3yZFxUrVmTmzJkEBARw9+5d7t27R3BwMGPGjNFUXTQGUYJGx44ddar69TEwNTWlVq1aov9SpqamolQqkcvlWFtbk5KSArwORv7+/nh5eVGhQgUsLS0/ySe9nLhVq8bRJ+FY6OlsTXYEQUC9ZQejmjVn+vgJWt+fkZFBiRIlRAsY8DqvlyE/Mfv4+HDkyBGDPdloSxAEgoKC8Pf3Z9iwYfTv35/Bgwfj6OjIyJHGndJ8o3DhwpqSEomJiahUKiZOnMiKFSu4d++eJnu0Iek8PaVUKunRo4d0+lMESqWSZ8+eMXfuXOLj41m4cCFHjx7l9u3bODk5sWDBAk1thU6dOuHh4UHx4sX59ttv2bJli1EeofO7oKAgei2cj8nQ7wzWpzo1DdX6zYzp+lWeAsYbgiCIupi8detW+vfvb7AF6ujoaLy8vFi/fr1B+sutpKQkIiMjCQkJISgoiDFjxuDiYpiccmJ58OABK1asIDw8HB8fH1E2OBhsTUOpVNKrVy/+/PNPnQf9qbp58yY//PADLi4uzJo1i5SUFEqXLp2rqaYdO3bQt2/fj/IUvlg+b/wlCYO/xbR43heQc0MQBBSnzmJ26jwbli2jjQ7nIVavXo1cLmfUKHHWY5KTkxkwYIBBP9xlZWURERFBpUqVDNZnThYuXMipU6fw8vLiSy02JeRX4eHhODo60rJlSwICAnTa4JDboKHzO41cLjfoCv/HJDMzk7t37xIbG8tvv/3G0qVLsbOzo1y5crkKGFOmTOHUqVNSwMjBphUrETZty3UNC20JKjVZJ0+hmr2AvoXt+OfSJZ0CxoEDBwgJCXlru6auTp48SZ8+fURrLzfkcnm+yBBx7949unfvzq1bt/j666/x8/P7KAIGgLOzM5aWlkyePNlg78OirGlok+pA8pqPjw9r165l6NChWv8yR0REEBAQQJMmTQyyBbCgq1unDtO+7c/i3T6YfSPeG6cgCGRevY7JoeMM6t6dGZeCdN5GnZGRQfXq1fnqq69EGuVr7dq1E71KX05MTU0JCwszaJ/vysjIwMvLi19++eWjXnft1q0bzZo1M0hKep0/oqrVav744w8xxvJJuHz5Mj4+PlSvXp2DBw9qHTCUSiUTJkzA3t4eT0/Pj+oAlT6NHTGCPpWrkrVtl85PHIIgkH7lKkqvhXi+zOCGnz/zZ83WOWCoVCrat2/PuXPndGrnffr27at18kMxGCtzsiAITJw4kcDAQHbt2vVRB4w3rKys+PLLLzUHBvVFlOkphUIhxlg+enPmzGHLli00a9aMqlWr5umT38uXLxk+fLh0gC8Pls5fwMzW7VAuXYUyNi5PbShj41CtXEv7hJfcOOHPeu8VODg4iDK+5ORkvvrqKwYPHixKe2+o1WoSExON8gFDX8WecvLDDz9QqVIlOnToYJT+jcHS0pLZs2ezY8cOvfYjyuG+pKQk4uPj89WCV35y9uxZ0tPTqVOnjk6neS9cuEBYWBjfffedeIP7BF27cYPh308k1qIQiuZNKFS5ErIc1pDUWVko/AKxv32HTd4raCByfe1r167x9OlTvXwYSE1N5dq1a/+pq2EIvXr1Yu3atTr9u9dGamoqS5Ys0dRD/xTlddedQQ/3WVlZMWrUKP744w8cHR3FaPKj8dNPPxEREcGUKVN0+sWJjIxk9uzZ7NmzR8TRfZpq16rF1VOnuXHjBt4b1nNp7wHUlpZv5RBTqAVMS74+2a9KTsEkNo6xA75j3C9rRd/aHBsby+TJkzX1T8SWlpamt5rgOenQoQP+/v4GWYSPjo7G09OT2bNnf7IBQ6lU0qdPH03VTH0QLffU/v37efDgAdOmTRN9kAXRixcv8PX1pUOHDjqnI9+9ezcNGzZEpVL9p3SrRD+Sk5OJjY0FwMLCgrJly+qln+joaO7fvw9AMy2y32pj9OjRtGrVSvTF9dyIiIhApVLpLSMCvH66mDFjBj///DNqtfqjza6bG0qlkt69e7N//36t7zXYlts3unfvzoQJE94qYP+pioiIoGfPntjb21OiRImcb/iAP/74gzNnzuDs7CwFDAOytbXFxcUFFxcXvQWMwMBAevfuTbFixfQWMABKlChBixYt9Nb+h5QrVw5fX1+9tR8XF0f79u3p1q0bFhYWn3TAAJDJZLQTqcxCdkTd4J+amsqAAQNQq9ViNmtwgiBocuHfvHmTLl260KVLF65cucK6detYsGDBe+9LS0tj1qxZWFpasmXLFrp27arzY3J4eHiBzxQqeVtGRgaBgYHI5XJ27NhBjRo19Npfw4YNRUt6mBcnTpzQS7sKhYLMzEz++usvPDw89NJHQRMdHY2bm5te+xA1aNjb29OlSxc2btwoZrMGoVarOXv2LPfv32fOnDn8+uuvZGRk4O7ujq+vL76+vtSrV48RI0Ygl8vx9vYmODiY8+fPc+PGDR4/fkyHDh1wd3enePHilCtXTucxbdq0ialTp0pJCD8SSqWSsLAw2rVrx+PHj2nWrJnenmLeSE9PZ/HixXrtIycVK1bU5EwTiyAIDB8+nIsXL+aquuGn4vjx4zx48ECvfYi2pvGGWq3m8ePHFC1aNN//zxQEgQsXLlC5cmVGjBhBiRIlmDNnTq6Ln+zcuZOnT5/i6OjIgAEDEARB1NPZrVu3xs/P75Nd1PtYnDt3jqVLl+Lo6MisWbMwMzMz2LmBixcvcvr0aWbOnGmQ/t4nOTmZpKQknJ2dRWvz6tWrHDp0iLlz54rW5sdg06ZNlChRIk+Hfg1aT+Nd586dY/z48Vy7di3fvuFlZmbSvHlzPDw8GDt2LA4ODpiailbIUGe3bt3i+PHj0saCfOTu3btcvXqVokWL0qpVK/bt2weAm5sblpaWXL58GXid9Xnt2rUEBQVRt25dxowZQ1hYGO7u7gZPKqlSqUhLS9P7KeEPuXbtGvv27WPRokWitHfixAlcXV0pV66clELnHSqVCiBPsxMG3XL7riZNmjBw4EBu376t9/k1baSmpjJp0iTu3r3L+vXrdU7wpU9xcXFSwDASlUrFjRs3+OKLL5gxYwYJCQn07NmT58+fY25urqnX/SYAmJiYYGJiovlaJpPRp0+ftz7d16tXT/NnQRB4/vw5t27dws7OjoULFwIwb948Tp06xalTp7CysmLXrl307t2b1NRUevfujZubG6tXr8bc3Jzly5cTEhJCZmYmderUyTYYeXp6snPnTr38nHKrVq1amt+7KlV0S1F/8eJF1q9fz44dO6SA8Q6VSkWXLl3eKjmrD3p50njj+vXrJCcn07x5c50Gqatnz54xZ84clixZwj///JPvk5UtXLiQR48esWnTJmMP5aOWmJhI0aJFuXXrFocPH6ZZs2bExMSwfv16GjduzA8//MD58+epXLky1tbW2e7MSU9PR6VSkZycTFpaGs7Ozly7do2EhARsbGxwd3fn119/Ra1W06ZNG06ePMk///xD9+7dc3WY783Tgrm5OcnJyYSEhNCkSRO2bNlCZGQkdnZ21K1bl8KFC/+nvkLr1q3x9/cX5eelC4VCgVwu13l9bsOGDfTt29eoT075VVhYGMuWLWPdunV5ut+oTxpvVKlSRXOox1iBQ6lUMmzYMEaMGEHRokXzfcAAKFOmjHTqWw9evHjBw4cPcXBw4Pvvv0ehUHD48GF27txJ27ZtKV++PI0aNaJHjx6ae9LT09m/fz9Nmzbl/v37XLx4EZlMxs8//8y8efMIDQ3F09OTsmXLsmvXLszNzZk1axZxcXFER0djb29P4cKFady4Mebm5jg6OjJjxgytxm1iYqJ5k3R0dNRsn/13VtOHDx/Sv39/Vq9erSkEJggCkydP1vXHJoqlS5fi4eFBw4YN83S/n58f69atk0owfICDgwPdunXTez96fdKA19tQjx8/jrOzM87OzhQvXjzPg9WGQqFgxYoVNG7cmAYNGuTbtZV33b59WzPlIMk7lUrFtm3bOHnyJPPnz8fb25snT54wZcoUypUrh1qtpkSJElhaWnLjxg3i4+NRq9VYWlpqpot8fX0ZMWIEXbt2pVWrVqSlpZGUlASAq6srDx48wNzcXJSdcmJ49OgRiYmJuLu7Y2JiwoQJE1ixYoWxhwW8rvsSFxfHhAkTtLovNjYWtVpNp06d8Pf3p2jRovoZYAGXkZHBtGnTWLlyZZ7byBdPGvA6xUi3bt0IDAykc+fOdOjQgREjRhAfH0/VqlX10qdKpaJ///40bNiwQAUMAC8vL+bPn2/sYRRICQkJDB8+nDt37tC8eXNOnz6Nu7s7VlZWhIeHI5PJiIuLIyUlRZPU7ZdffuHatWskJibSoUMHKlasyOHDhzVrBFu3btW0b2Nj89ZhzfyWa61ChQps3LiRw4cPM3LkSKOnJf+3r776ips3b+bq2jfljbt27YqpqSmLFy/m6tWr+h1gAbdv3z4yMzMN0pfBtgu1aNGCixcvolQqiYmJYcGCBbx69Yp169axdOlSHjx4QNWqVZkyZYpmX7mnpydqtRq5XE7dunVzLGl45coV1q9fz2effcauXbsM8W2JKjo6mtq1axstnXRBlJaWxoQJEwgODkalUlGyZElOnDhBmTJl3rru3cXBTp06af48bNgwg4zVEOrUqcNff/2FTCbjm2++MfZwNKysrLh9+zaNGjXK9hqVSsWsWbPYuXMnx48fZ9WqVXz22WeGG2QBlZKSQtWqVd/6N61Pep+e0oZarUapVPL48WPg9fxtamoq69atIywsjD179tC7d28SExOZP38+FSpUIDExkV9//ZXBgwfz8OFDKleuTPXq1fU2Rn3au3cvvXr1MvYw8r379+8ze/ZslEolz58/R6lUsmvXLpydnT/5HTXJycnExMQQEBBA586d83R4UBAEIiIiCLpyhXsPH3LtTigA9ra2eNRvQNfOnfN0wtzT0zPbnT2PHj0iIyMDpVKJs7OzUU+wFyTPnz+ne/funDt3TucZFaOe09C3pKQkEhMTuXv3LnPnziU6OprHjx8X6DeMCxcusHnzZn777TdjDyVf8vHxYeXKlZibm5OVlUWFChXw9vbO9wdIDe3o0aMoFApWrlxJQEBArt9IBEHgZGAgy9et5d7jx6iK2qGsVB6VUwnMypYBU1NULxIQwh5iciGIPp09mTV5MnZ2drkeW9++fd87A/Ds2TP69u3Lli1bDJ5fTalU4nv4MGu2bkWh+v/FuYrZ2eHRoCGtPTyoWrVqvp3iHjlypGYqXlcfddD4GE2fPp1JkyaJVtBHbH///TdhYWEUK1aMJk2aaKZAWrRooXNSxnfduXOHSpUq4e/vz7Vr1wgLC+P69etMnjyZgQMHitrXx2b8+PF07NgRgDZt2uR4vUqlYtvOnSxcuYLMsmVQtWmOeZnSH7xHUKvJvBCEyYkA+nfvwdwZMzRnVz4kJSUFS0vL/1y7Z88e3Nzc9LbG+T5+/v4s+nU1DyMjUFdxhdbNkdtYa/5eFReP6sEjzP+5h8mzGMYPG8aooUNz9X0aQnh4OLt372bEiBGiPZXlm4VwSc7u3bvHhAkT8kXACAsLIzU1FbVazeLFi0lOTmbDhg08evQIuVyueZp7U7Hx8ePH+Pv7s3fvXuB1GvcpU6YQGRnJ559/zvDhw/n666+pUqUKEyZMICgoiKCgICwsLFi5ciXjxo0jMzOThg0bUq9ePUaPHo2rqyvVqlVj9+7d1KxZk40bN1KoUKF8+2kvP1GpVKSkpORqfjssLIweA78jvoIzplPGYWJlRW5OUcjkciyaNEL4sgHbAs6wr0F99v62mVru7h+87+jRowiCQN++fd8ab7FixQwSMNLS0tj4+++s3bqVV6VKQMe2mDmVeG8CPnnpUpiVLgXNGqPKzGKx30m866xj/vQZfNOnj1H/LUZFRdGjRw+2b99ulGk86UkjH+jevTvz5883ygL4ixcviImJISYmhsTERKZNm8ayZcto164daWlpokz/vHz5ktTUVIoWLUp6ejoZGRnIZDJKlCjB8+fPEQQBc3NzTp48ybZt21i5ciUvXrzA1dVVmtvWwuXLl0lNTeWHH37gxIkTH0wT7h8YyKCpUxCGD8LMSbfCaarEJEzW/sb+NWv54v/OiLzP7t27/xM0NmzYAOh3M4IgCPy6cQM/r16NomkjzJs0Qp6HFOrqzEwEH19KxSdyaNcuo3zIe/bsGU+ePMHe3l70QGvwehqSvElJScHCwsLgAcPX15fU1FQWLFjAxo0bcXJyokePHjx8+JCuXbtiYWEh2nqBjY0NTk5OFCpUCDs7O5ycnDRTWtbW1vj5+ZGenk5ERAS//fYbFStWpF69elLA0FJkZCTh4eE4ODh8MGA8ePCAwVMmI582QeeAAWBS1A7V2OF0GzWS6zduZHtdtWrV/vPv/NatW3qv/zBu+jQWBZ5EPncmFm1b5SlgAMgLFcLk615EdmhF/fbtNMWzDOXp06dUq1aN6Ohog07lvUt60jCy7du38+233+q1jydPnhAVFcX9+/epWbMmc+fOxd3dnRkzZhgt95ZSqWTnzp2aeVlPT0+jjONjsnr1atzc3GjcuHG2m0JSUlKo1dyDrNFDMXUQ96CtKiUFs+W/cvVkwHsP4b3ZFfmmil9mZiaZmZl6fU/ZumsXs3f9gcnQ70RtVxkbh/XGrVwLPGWQwk9KpZLw8HAiIiL0ll1DWggvAG7dusW8efPyVJoxJ1lZWcyaNQsPDw9SU1N58OABdevWpVWrVqL3pY3Vq1fj4+ODp6cnEydOlNYpRBQZGcnJkycpVqxYtkG4bffu3K5dk0I19bMtXXHrNrXvhOG787+7pN6dnlq4cCGff/65ZuFebGFhYbT8uh/y6d8jMxN/+VZxMYiOGWrWe3uL3va7Ro4cSb169fS6EURaCC8A/Pz8WLp0qc7tZGZmEhISwoYNG4iOjmbPnj0MHz6c7t2706FDBxFGqpvTp0+zY8cOOnXqROvWrRk1apTetkenp6cTFBTE2cuXufMgjAePn5Dy6iWmVlYoFQoKm5hgZmZGjarVcHd1xb1mTapWrYqjo+7TNMb09OlTvvrqK4YOHapJj/2uXXv3cgeV3gIGgNnnNbl+PojA06dpkUM1vYiICL3lWBMEgV6DB6Ea+DUmeggYAKYN63N07iLi4uL0ur4RGRnJq1ev6N+/v9760Ib0pGEEbxLJzZ07F2tr65xv+D/p6ekcOHCAW7dusXjxYjp06ICJiQnfffcdbm5umJubi1roRlfh4eEIgsCRI0do1qyZXsuaXrx0iZ9WreLWvbsI1VzJqvAZZiVLYlrKCdk7AUqdmYXy+XMUEZFYPIvBJDoGWXIKNSq70rdLFzp37KjV/5f84OTJkwQGBtK2bVuqVKnyn23QKSkp1GzaBGZNQZ5DZgVdqZJTMPf+lVtnz1G4cGHN6wkJCQiCQLFixQAICgrCzc1NL9M7wyZM4IRchbx5U9Hb/reMM+cZUbwkP0yfrpf2L1y4QEREBF27dtX7VLI0PZWPnTt3jsWLF3P48OEcrxUEgc2bN+Pm5sadO3dQKBS0bduWsmXLkp6eni/rgajVatatW8ehQ4f48ccf/5OuWyyCILDHx4cFy5eTXNQWVduWFKrwWZ7bywqPQAgOwfTGbZwdHBj69Tf06t4dCwsL8QatJ//88w8WFhacPHnyrey3b0ydPZvtGS+xaGqYLM8ZZ87ztYUNSxcs0Lx27tw5VCqVpp73gQMHaNmypejvKUePH2fYyuWYjfrvz0FsgkKBbN5iHl6/IfrT88OHD+nduze+vr6ULv3hszNikHZP5VNpaWlYW1vzww8/fPC6W7duoVAo+Oabb0hLS9OUlB0yZIgmNUR+DBhRUVHcuXOH6tWrc/jwYb0FjOTkZFp07szk/XtJGTsM05GDdQoYAObO5SjUuQMmc6bxpIcnM06dpHK9uixZsQK1Wi3OwPUgKSlJM3URGhr63mt8jhymUGPdTw3nVqEmjdhz6OBbSfTKly//Vo2YEydO8OrVK1H7FQSBcTNnIv+6t6jtZkdmZoayqivH/fxEbVehUJCVlcWePXsMEjC0IQUNA/v999+5efMmdevWfev16OhoLl++TIkSJZDJZGzcuJHU1FR27NjB2LFj89W0U3bmzJnDyJEjkclkNGvWTOeCO9m5dPkytVu04N6XdTH7uhcmNuJPJZk6FMe8SwfkXjNZcSeY+q1a8uzZM9H7EcPo0aPx9vbG0tIy20+IpkVs/jNNp08yuRx1LTcOHz2qea1MmTKiZw94l39AAJmVymNia7gZEVX9OuwWsVre8+fPcXFxITQ0lIoVK4rWrlik6SkDGzt2LKNHj6ZkyZKacwjLly/n2LFjeHh4kJCQQP/+/fn888+NPNLcycrKYvXq1bRp0wZTU1Ody3nmxD8wkMFzZsOw7zApaqfXvv4t6/ETzLftZvuqX2j8gUythrZmzRp69epF8eLFef78OTY2Nu9dI6js0RTFpLEGHZviWRTV/M/gt///F056+vQpJUqUwMzMjMzMTE0NE7H0HjyIc25VdX7q1IY6LR3HjVv5+2SAzm2dOnUKuVxO4cKFDV5TR5qeyqfGjx9PhQoVGDNmDO3ateP3339HrVbj5+fH//73P5YtW1ZgAgZAz549MTExoXr16noPGJevXGHwnNnIJow0aMAAMC//GerJ4+g7ZTLrNm82aN/ZUSgUzJs3T1MyYOrUqURERPznutTUVLKUyv+8rm9mpUvxIDz8rdeWLl3K33//Dbwutzt48GBR+7x68ybmnxm2KJbcyhIxfrre3t707dsXd3f3fF2ETdpya2BvCvds377dyCPJu+fPnzN06FAmT57M3r17c6xzIobk5GT6jRyBMH4kJgbo733kha2QTRnPT5u3EXrvLqsWLTbqORNBEFi4cKGmFOyLFy/eG7gfPHiAzMnJ0MMDQLAohEql0kxVdu/endOnT9OoUSOcnJyIi4sjKytLU/RKF3Fxcahtixh0Gu6NlJQUne5PSkqiQYMGREdH5/uzS9KThkQrSqWSH374gUWLFtG0aVODBAxBEGjXozsZfXtgauAnjHfJTOTIh36Hb9ILhk+cSC5md/UmODj4rU+kb4qXvSs0NJS0ksY5hyKUcCQ4OFjztbu7+1sZEGbNmiXarqPr16+jcNa+fogYZDpMsQmCQL169ShVqlS+DxggBQ2JFgIDA9m0aRPr1q0zaK6s1Rs28LRkCcxdXQzWZ05MOrXjWMxTflm3zij9C4LATz/9pDkHcfv27Wx3TgWF3EZezjhvpqnlynDl/6ajAGJiYrhy5Yrm61q1ajFv3jxR+roaHIyilHGeqHTx+PFjihcvXiA2u4AUNCS5FBwczNKlS+nXr59B+01OTmbxml8x6WqYUpbaMOnbk5+3byUkJMTgfScmJuLi4qLZXRMXF0dUVFS21+sjjUZumFeqwMmgS5qvnZycWL16NWlpacDrZJb/DiK6OOzvR6Fqxkrkl/cnTicnJ86dOyfiWPRLChqSHAmCgJ2dHdu3bzf47rk1GzeibN7EaG96HyKTy5ENGUD3gQNJT083WL937tzhr7/+YtGiRZrXrKysss1KrM4mrYghmJUtw8N/LYbb2NgwevRoIiMjAZDJZNSvXx+lCAv18a9eYVLERud28kJlXViTkFFbnTp1MnjGXF1IQUOSo3379nHz5k1N+gdDEQSBDX9sp1Dj/LPF9V2mDsV52aguP69aaZD+FAoFI0aM+E+m0+LFi2ebLflGcDCmej4fkR2ZTPafNYuGDRtSqlQpzdeTJk3izp07OvdlaqQNEgByGxsUCoXW92VlZZGQkICLS/6Zes2JFDQkOXr69Kkou1u0deXKFVQVPkNeyPB9a8OsyZds2bUr20SBYkpLS2PGjBma9OJvzJ07l4SEhPfeoxIE5FZGzB7wzmaBHTt2vJXZOSoqqkDvJgRQx8VrVS/9jYyMDM6dO4epaf57ks6OFDQkOXJ2djbK2ZEbwcFkGfCQVl7JC5mT5VaDPw8c0Gs/8fHxrF69mvbt27/1uiAIREVFZX8aXG6COjVNr2PLjiI6htJOJd96bciQIWzZskXzdUHYMZQTk5ev8pQpedCgQfmm7nhuSUFDkqPq1atrzgIYUsiDB8jL5K+8O9mRt2jKz2t+1Vv7giAwevRoTbK/dy1btizbN58+XbqgOn/pvX+nb4JSSfHib09r2tvbc/DgQWJiYgAoW7YsI0eONMbwRKFKTMIpD6nRlUolQUFBBSIh5r9JQUOSo99//12zcGlwauMt4mrDtJg9sampelsQT09Pp1+/fnz55X+z1AqC8MHdN/169sQs9K5expWjbBa4jxw5go+PD/D6YNulS8YJamJQXL9F9/ba162RyWQcO3ZMDyPSLyloSPKtejVqoH6a/TbS/EZeyinPO2g+JDY2lu+//54uXbpke01AQPZ5j+zt7TFLTUVQGT5Tb+ajJzSs6faf17t27crR/0tm+PLlS27evKlzX8qszJwv0oNCd+/TrXNnre9TqVQFaqvtG1LQkORo4MCBmnTshlSqZEnMEpIM3m9eZZV0IvydXEtiWLBgQY5lenOa4mjZtCkZIbrvUNKWddgjvnxPgkdLS0vWrl0LgImJyVvFmvLcl6kZ6swsndvRhqBSI38eS7ly2ue7UqlUnDlzRg+j0i8paEhyVKpUKSZMmEBqaqpB+61fvz6ye2EG7VMneljQFQSBb7/9lh49emR7jVwuZ/fu3R9sZ+jX32B+8bLYw/sgQRAQoqKpWvX9B+5Onz7NkSNHqFSpEl5eXjr3V7d2bRTvSdioT1lPwqlXu3aeF/PzY02cnEhBQ5KjIkWK4Onpyfz58w3ar42NDfZmZkbb+aMts2fRoj+RDRs2DHd39w9eo1ar+frrrz94Te3atSn2KhVlXLyIo/uwrAePaPCBIlyurq7cunWL+/fvM12EcqnN6tRFuPdA53a0YXLjFt90/SpP91paWr61i6ygkIKGJFc6d+5M27ZtRTm5q42OrVuTcdvwaTryQh35FFdXV9HaCwkJIS4uLsctmZGRkWRl5Twts3z+Atir323B/ya/Ecx3PXtl+/dly5alcuXKCIIgyhmXJo0bU+iJYZ805GEPado0b3XIjx49yo8//ijyiPRPChqSXJHJZDRv3pxx48Zx9epVg/U7sG8/Cl0UJzeRPqlevqKkvb2oe+7T09NZv359jtclJSXlWD4YoHmzZlSxLEzWY/HXXd4lKBQQHIJHs2bZXlO6dGlsbW1JSkqifv36OvdZrlw5TBISdW4nt5QJiThaZF8tMSdBQUG0aNFC5FHpnxQ0JFqZN28eU6dO1csuofepVKkSlWxsyTLwJ0htZQVdoV8epyne59/lf3Ny5coVatSokat2VyxYgPxP8UqTvo+gUKD+ZT2/LPgxxzn7hw8fcuXKFapXry5K364VKpAV8VSUtnKiDjjD1FGj83x/kyZN+OID03f5lRQ0JFopXrw4R44cwdzcnPHjxxtkcXz1okXId/kgqA2/ZTQ3BEHA9OIV+vXKfipGW9u3b891WopDhw7lut3q1atTxc6ezEdP8jawHAiCgGrtb6yYOImvcrENtXv37jx58oS5c+eK0v/XXb9CCNb/dKYqJQXLkDt0+ypvHxQePHhAfHy8QerRiE0KGhKtWVpaUrp0aTp37ky3bt1ISkrSa3/VqlVjTI+eqA4c1ms/eZV56zbNa9fGIQ+ngrNjZWVF7969RWvv39YvX47sj916KSCl3n+Qgc1b0s3TM1fXOzg4MGLECKytrbl9+7bO/Xt26oT8yjWd28mJ2seXVQt/0lQk1Nbf/6oxUtBIQUOSZ61atcLX15fHjx9z/vx5vfY1deJEioY9RBETq9d+tCWo1ZgcPMaiOTmvKeTWoUOH6NevX67XRw4e1G66qUKFCgzr0RPlX+IFYXVmJsqtO/GwLMzcGTO0unf27NmMGzeO4sWL6zwOGxsbmtWpS+b1mzq3lZ2s8AjKpWbQoV27PLeRlJQk6qYJQ5KChkQnFhYWlChRgnnz5ul1+6BMJuP3Vb/Anv05X2xAypOn+LpDR0qXFidH1r179/jll1+wtbXN9T2DBg3Sup/ZU6bSWGZKlu9RBB13xGX9fR1hwRJ+6NyVbevWa31moUuXLty6dYuhQ4eK8vTz65IlFD7ihyIqWue23iWo1ci37GTbmjV5buPcuXN06dKlQK5ngBQ0JCIoVaoUR44c4csvv9RrjqratWvTqEw5sq7d0Fsf2sgMe0CZuw9YMGuWaG2GhISwYMECraY94uO1P3shl8vZuXETY6rWQP3DQjJD/9G6jazH4SgXLKH58xeEnjvPkAEDtG4DwMPDg/bt22Nvb69JYqgLOzs7Tu7zoei2PWTdETfnlnr7bv43ejSVKlXK0/2CIODl5YW1tbWo4zIkKWhIRGFmZoaLiwtLliyhR48eJCcn66WfTatWYXnoOEoDbq18H0VUNDb7fPH9Y4do22z37dtHnTp1qFevnlb3NWjQIE/9yeVyZkyaRPDZc7icv4xix16UcfHZftpXZ2SgevmKjH/uodq0jbKHjnNuz17+WL9BpyzIJUuWZOHChfTq1Uu0ui3Ozs5cOnGCUn6nRQkcgiCgPHKC1qXKMGKg9k92byQlJVG5cmWDV8AUk0zIxfNgSkoKtra2JCcnF+hvVmIYvr6+NGzYkMKFC4uSU+hdd+/epcOA/iiGfYepo3iLz7mVFRGJ9R97CfTZL9q0VFJSEj179uTgwYNap5YICwvTufKbIAjs27+fjbt28iw2FrmZKUnJKZjK5ZrfeTNBwMHRkZIODgzp05dGjRqJVgtj+fLlODg4cPv2bRYvXixau69evaJ5ly5EtfHAvFqVPLWhzshAtXk7Pb+ow/IFP+o0trCwMMqXL58viy7l9n1eChoSvYiLi6N169b4+fnlqThNTu7evUv3gd+R+IUb5q1bIMvjLhZtZV68TIkLlzm8a7doAQNeL36XLFmSOnXqaH2vp6en1ovh+U1MTAxPnz7l0KFD1KpVi65du4rW9qtXr2j5VVeiSpfExLM9Mi2eDJVx8bB6A96z59Ajj9tr37h58yaLFi1i165d+bLwVG7f56XpKYleODg4sGXLFmbOnKmX9qtUqcKtc+cZXqY8qp+WkRn2UC/9vKFMSES5fjMe8clcPOEnasDw8vKicePGeQoYAM+fPycqquCkkH8fJycn1q5dy8CBA7MtW5tX1tbWXDrhx/QvmyCbuxj1b9tIvxiEMiERdWbW67Mlr1699Z8yLp4s36NYrf2Ns/v/1DlgAPj5+TFmzJh8GTC0IT1pSPRKEARmzpzJhAkTcnW6OS8ePnzIuBkzuB31FEXLZhSqXUu0X0xlbBzC4eMUjY1n6Q9etG3TRpR231i+fDmxsbEsWrQoz22Eh4fj7Ows4qiMw9vbm9KlS+Pu7s6tW7fo2bOn6H0IgsDNmzc54ufH+evXiHn+nCyVihL29hT6V3p5E7mcr9q0ZcA334iyZhUREcH9+/c107b5kTQ9Jck3jh07xu+//86ePXv0+ikrPDycH72Xc+zsWdRNGmJS5wtM7HK/dRX+70RzQiJZwSEUun6LshaWzJr4Pe3bthV9vMnJydy4cYNmzZrp9HM5e/YsgYGBoqQXN6bExESCg4MpV64cgwcP5ujRowWuFGp2vvnmG7p27frBFPfGltv3+fy3GiP56LRv3x5bW1uio6Oxt7fX2xuBs7MzG1asJCkpic3bt7Nn6y5iU1KQFyuKwtGBLBtrKFUSAHlsHKYZ/7/SmzwxCWLjMXn1ioplyuDZqjWdx0ykQoUKehnr5s2bCQoKYsOGDTq31aRJExYtWsSNGzeoVauWCKMzjqJFi5KQkEBERATjxo0jOTn5owgaCoUCR0fHfB0wtCE9aUgMZsuWLYwdO5bOnTuzYcMGg+xVV6lUJCYmEhoayqPICJ7+34Gvkg4OVPzsM811NjY2uLi4aHWoLq8iIiLw8vJi48aNeU5D8a6kpCRSU1Oxs7PLt9MfuZGQkECnTp04d+4c+/bto0qVKjnWE8nv1qxZw6hRo4w9jBxJ01OSfEmtVnPmzBm2bdvG5s2bC/yioLYSExO5e/cuDRs2FL3t0NBQatWqRWBgII0bNxa9fUO5fPkybm5uXL16lX379rFq1SpjDynPTpw4gZ+fH8uWLTP2UHIk7Z6S5EtyuZzmzZtTv359Xr58aezhGNTDhw9p1aqVXhIFwusMtmfPnkWtVnPz5k29HbDUt/Lly9O3b1+qVq2Ko6OjwQt/ienixYt620FoLFLQkBjFd999x9atW409DIMJDw9HLpezcuVKGjVqpLd+GjRoQNOmTQkJCaFLly74+fnprS99cXR0xMPDg4CAAJo1a8bEiRONPaQ82b59O9OmTaNYsWLGHoqopKAhMQoLCwtu3LjBkydPjD0Uvbtz5w6DBg3CzMzMYNNG33zzDf7+/jg7O7N8+XLmzJnDq1evDNK3GIYOHYqLiws1a9YkKSlJ71mUxRYYGMjmzZs/ioX8d0lBQ2I0Y8aMITAwEHU+La6kK0EQiI+PZ9OmTezatYsyZcoYtH8zMzNcXV2ZOHEitWrVYtWqVaSkpOhtekxMhQsXJiQkhD///JPVq1djZWVVoAJHdHQ0Pj4+yOUf4VuskAvJyckCICQnJ+fmcokk11QqlTB06FBBpVIZeyiiUiqVQp8+fYQ1a9YYeyhv2bp1qzBixAghISHB2EPJUXx8vNCyZUvh+fPnQmJiouDh4SE8ffrU2MP6oLS0NGHgwIHCvXv3jD0UreX2ff4jDIOSgkQul1O3bl1Gjx5dID4B58arV6+4ePEi1atXZ8iQIcYezlv69++Pi4sLAQEB+f4Jr1ixYhw8eJAnT56Qnp6Ot7c3/v7+xh7WB02dOhV3d3cqV65s7KHojbTlVpIv3LhxA5lMRtGiRQtsSoz09HTWrFlDUFAQe/fuzdfbiaOioujXrx9eXl54eHgYezgfdOLECY4ePcrKlSuJj4/np59+yndbWNVqNUeOHKFBgwailv01JGnLraRAqVWrFomJibRp04aTJ08aezhaefLkCatWreLBgwe8evVK7+lSxFCqVCl27NjBwYMHyczMzNdPeW3atEGtVpOYmEjx4sU5c+YMFy9eNPaw3tKxY0e2bdv20e2Ueh/pSUOSr6SlpZGYmMjo0aNZuXJlvnzqEASBnTt3kp6ejqurKytXrmTo0KG0bNkyX9ZJyElISAhTp07F29s7X9etHjJkCF5eXiQkJODk5ETx4sWNvtB86dIlYmJicHFxoVq1akYfjy6kE+GSAu3WrVv8+OOPzJ07l/T0dCpWrIiNjY1RfikzMzO5du0aCQkJVKhQgb/++gu5XE7//v0pVaqUwcejDzdu3GD9+vUsW7YMExOTfLlV9OTJk2zcuJHdu3fzyy+/ULZsWb4SIWV5Xh09epQRI0YQFBT0Ufw7kIKG5KOxfPlyrl+/Tp06dWjQoAFHjhzBzMyMgQMH8vTpU+Li4rC2tqZp06YcPXoUABcXF6ytrblx43U98SZNmhAWFkZMTAwWFha0bt2aQ4cOAa9PIBcrVoyrV6+SmppK06ZNuXjxIr6+vtjY2DBv3jzWr1+PnZ0d3bt3p2TJkkb7Wejb9u3bmT17Nn5+fvlyMff27du4uLjw4sULGjVqRHh4uMHHEB0dzfLlyxk3bhy2trYfzXuilOVW8tH4/vvvNX/OzMzE3NwcpVKJo6MjISEhxMbGaublY2Njgdd1p01NTTVfK5VKkpOTiY2N1ST0e/N3Dg4OWFtbExsbi7m5OUWKFOGLL76gefPm2NnZYWpqyqxZswz8XRvHt99+i5ubG+np6WzcuJHY2FiGDx9O8eLFjT00AGrWrEmTJk04ceIEV65c4erVq3kuXpUX6enpDBw4kL59+1KmTJl8v3alD9KThkQiea+EhAROnz7NkydPGDp0KFZWVqJl5dXFH3/8wYULF1izZg2tW7fG09OT0aNH631sL168YO3atfzvf//7KIOFtHtKIpHoxN7enm7duvH999/j4+NDo0aNOHPmjLGHxTfffMOSJUt49uwZx44dw9bWlqNHj5KSkqK3PtPS0ujevTseHh4fZcDQhhQ0JBJJjgYOHMjWrVspUqQIAQEBen2Dzg2lUkn//v0xMzNjwIABpKamYmtri5mZmeg1xkNDQ3n16hUrV64s0CnnxSIFDYlEkitVqlShVq1a3Lx5k/r165OUlGS0sdjZ2ZGamsrjx48B6NOnD4Ig4O/vz9SpU0Xr5/z58wwfPpz09HQ+//xz0dotyKQ1DYlEorXw8HCeP39OQEAAAwYMMNqW0z179tC7d++3XouJicHJyUmnduPj40lKSuLatWu0aNGiwJ7y1oa0piGRSPTG2dmZOnXqULVqVcaOHWu0cfj7+3Pq1Km3Xjt+/DgHDx7Mc5vJycm0bt2aAwcO0Lt3708iYGhDetKQSCQ6SUpKYt26dbi6uuLp6WnQHVZpaWnMmjWL5cuXa16LiopiypQp7NixQ+v2rl69io2NDREREbRu3VrMoeZ70pOGRCIxCDs7O4YOHcqqVas4c+aMQcuzWllZsWDBAq5cuaJ5rWTJkrRr107rtoKDg5k0aRIlS5b85AKGNqSgIZFIdFasWDFOnTpFtWrVKFeuHPfv3zdY38+fP2fixIlEREQAIJPJtJpSEgSB1NRUrl69yvr166XZlBxIQUMikYjGycmJc+fOsXbtWhISEgySPbd8+fIsW7aMmzdvavpbsWJFru6NjY2lQ4cO+Pj4MGjQIKpUqaLHkX4cpKAhkUhEVbFiRby9vfH29mbQoEGin5t4nwYNGlCiRAmWLl0KgLu7O6dPn/7gPQqFgv3797Ns2TIGDBig9zF+LKSgIZFI9GLu3Ll88cUXJCQkcPv2bb33V6dOHUJDQ9mzZw+LFi2iWbNm770uKSmJefPm4eXlxciRI6lWrZoo/bdt25bChQsjk8mQy+WULFmSY8eOaf7+zWnyf/9XqFAhUfo2JGn3lEQi0avMzEw8PT0ZPHgwvXr10mtfKpWKJ0+eIAgCQ4YM4fDhw1hbW5OWlkZWVhbp6ekcOnQIJycnOnfuLGpKkOLFi9O1a1c6d+5MZmYmY8aMISEhgaioKBwdHfHw8CAoKOitRftChQrlmxomuX6fF7PguEQikbxPWFiYsGjRIuH48eMG6W/IkCHCiBEjhJEjRwqCIAh9+vQR+vXrJxw+fNgg/QuCINy5c0cAhFWrVgmCIAjNmjUTLCwstG7HxMRE6Nq161uvWVhYCM2aNRMEQRBsbW2FmjVrCu7u7oJMJhNkMpnw7bffCs+fPxcqVaokAIKpqakwd+7cD/aT2/d5aXpKIpHoXaVKlZg2bRo7d+5k3759eu9v3bp1mJmZMWHCBBITE9m1axc7duygY8eOeu/7jaioKADKlCmjeS0jIwMTExPMzMz47LPPuHTpkih93b59m2LFinHixAlatGjB9u3bqVGjBg0bNsTPzw9XV1e8vLyIj4/XuS8paEgkEoP57bffuHDhgt77MTExYdWqVTg7O9OqVSuWLFmi9z7/TalU0q9fP2xsbDTVBVu0aMHEiRPZs2cPXl5evHjxgiZNmmiCiy6KFCnCyZMnad26taYQmY2NDdu2baN169bs3LkTQRD466+/dO5LChoSicRg9u3bh7m5OcOGDTNIf4UKFSIwMJD09HQePnxokD4BPv/8c168eEFAQIDmtTlz5rB8+XJ69OjB//73P0JCQlCpVMycOVPn/sqVK6f5s7m5OSYmJm9tH65RowaAJsGjLqSgIZFIDKZs2bJYWFjg7OxssD5tbW2ZM2cOXbt25dq1a3rvz83NjXv37hEYGEjdunWzvc7Z2RkrKyvu3bundR/CO/uXTE3/W4TV3Nxc82e5/PVbvVqt1rqvd0nlXiUSicE0btwYmUxG48aNGTBgwFvz/fo2ZMgQXr58qbf21Wo17u7uhIaGcvz4cZo2bfrB62NiYkhPT89VhuCYmBjNn9PS0sjMzNR5vHklBQ2JRGJQX375JWFhYTx69IgiRYoYbBv/+PHj9dq+m5sboaGhrFixghIlShAcHAy8Xgi3t7enTp06fPvtt9SuXZvQ0FDNtNSCBQtybPvy5cv8/PPP1KpVi0mTJgEQERFBSEiI/r6hbEhBQyKRGFylSpW4d+8eI0aMYOvWrZiZmem9z3Xr1lGjRg29Vd8LDQ0FYMKECW+9PnjwYDZt2kRsbCzff/89arUauVxO6dKl2bdvH1WrVs2xbRcXF2bPnk1WVpZmcf/kyZOsWbNGH9/KB0lBQyKRGEXHjh3JzMzk77//plGjRnrv79ixY3Tq1Elv7b+7zvCuNwkV86JatWrZrn28L3C8L9NwTuPLLWkhXCKRGE23bt1QqVQEBQXpva/evXsbdA3lYyUFDYlEYlT29vb88ssves2IGxoaiqOjo97a/5RIQUMikRhV9erVqVq1KqmpqXrrY926dRQrVkxv7euTUqnkwIEDxh6GhhQ0JBKJ0c2aNYvVq1cTGRmpl/ZVKhUVKlTQS9ufGiloSCSSfMHd3Z2xY8eK3m5aWhqdOnXC1tZW9LY/RdLuKYlEki+0bdsWMzMz4uPjKV68uGjtrl69Gnt7e9Ha+9RJTxoSiSRfkMlkNGzYkPr164ua7uP+/fsMGjRItPY+dVLQkEgk+YaVlRUXLlxg586dorTn5+fHxIkTNbmXJLqTfpISiSRfcXJyYtmyZUyfPp3p06dz8+bNPLVz+vRppk2bZpDT5p8SqdyrRCLJlwRBIDAwkLS0NBQKBT4+PsjlclatWsX169exsbGhfv36/7kvIiKClStXMn78eGQyGWXLljXC6Aue3L7PSwvhEokkX5LJZLRs2RKArKws2rRpA4C1tTVhYWEEBwcTFRWFXC5n9erVVKhQgcWLF9OtWzcmT578Vo0JfY+zIMrrYUrpSUMikRR4giBw//59XF1dDd73xxI0cvs+L61pSCSSAk8mkxklYHyKpKAhkUgkklyT1jQkEolEB/pMtJgfSU8aEolEIsk1KWhIJBKJJNdyNT315vErJSVFr4ORSCQSiXG8eX/PabotV0Hj5cuXANIhGYlEIvnIvXz58oMZgXN1TkOtVhMVFYWNjU2B3ZMskUgkkuwJgsDLly8pVarUB3N15SpoSCQSiUQC0kK4RCKRSLQgBQ2JRCKR5JoUNCQSiUSSa1LQkEgkEkmuSUFDIpFIJLkmBQ2JRCKR5JoUNCQSiUSSa/8P6aIIzLVwcrkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "bt.pl.shapes(adata, shapes=\"cell\", linestyle=\"--\", ax=ax)\n", + "bt.pl.shapes(\n", + " adata,\n", + " shapes=\"nucleus\",\n", + " edgecolor=\"black\",\n", + " facecolor=\"lightseagreen\",\n", + " ax=ax,\n", + ")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "ec81b239-d507-4ff5-872c-d65af4775aa3", + "metadata": {}, + "source": [ + "## Figure aesthetics\n", + "\n", + "To declutter unnecessary plot elements, you can use these convenient parameters:\n", + "\n", + "- `axis_visible`: show/hide axis labels and ticks\n", + "- `frame_visible`: show/hide spines\n", + "- `square`: makes the plot square, useful for lining up multiple subplots\n", + "- `title`: defaults to the `batch` name, override with your own title\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "8da2c28b-0dfc-4a3f-ab18-13c76b2c12d5", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T21:18:55.916353Z", + "iopub.status.busy": "2023-03-31T21:18:55.916127Z", + "iopub.status.idle": "2023-03-31T21:18:58.321803Z", + "shell.execute_reply": "2023-03-31T21:18:58.321368Z", + "shell.execute_reply.started": "2023-03-31T21:18:55.916338Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwoAAAGgCAYAAAAKIJCAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gURR+A3+uX3juEhNB7k96liihdRAUUlI7YsQKWz4IoTQQUQZpIU0R6EelIB+m9pBDS++XKfn/s5fZiCAkQms77PDxsdmdmZzcws7+ukiRJQiAQCAQCgUAgEAicUN/vCQgEAoFAIBAIBIIHDyEoCAQCgUAgEAgEggIIQUEgEAgEAoFAIBAUQAgKAoFAIBAIBAKBoABCUBAIBAKBQCAQCAQFEIKCQCAQCAQCgUAgKIAQFAQCgUAgEAgEAkEBhKAgEAgEAoFAIBAICiAEBYFAIBAIBAKBQFAAISj8Rxk7diwqleq2+8+bN49KlSqh0+nw9vYuuYk5cfHiRVQqFXPmzLkr45cU/fv3JyIiIt85lUrF2LFj78t8BAKBQPDgIPYDmDNnDiqViosXL97vqQhuESEoCG6ZkydP0r9/f6Kiovjuu++YOXPmPbv36tWrS3TBzcrKYuzYsWzZsqXExhQIBAKB4E45fvw4Y8eOFR/XgvuK9n5PQPDwsWXLFmw2G5MmTaJcuXL39N6rV6/mm2++KTFhISsri3HjxgHQsmXLEhkTIDs7G61W/PcSCAQCwe1x/Phxxo0bR8uWLQtYrR82nnvuOXr37o3BYLjfUxHcIsKiILhl4uPjAe6ay9G/AaPRKAQFgUAgeADJzMy831O4Z0RERDwQbk8ajQaj0XhHLs+C+4MQFP4DbN++nUceeQSj0UhUVBQzZswotO38+fOpW7cuLi4u+Pr60rt3b65cueK4HhERwZgxYwAICAjI53u5YsUKOnXqRGhoKAaDgaioKD766COsVmu+e0RERNC/f/8C927ZsuVNtfr9+/fnm2++AWSfz7w/N2Pfvn20b98ef39/XFxciIyM5IUXXgDkGIiAgAAAxo0b5xhv7NixzJ49G5VKxcGDBwuM+b///Q+NRkN0dHSh9/2nT2peTMjZs2fp378/3t7eeHl58fzzz5OVlZWvb3Z2NiNHjsTf3x8PDw+eeOIJoqOjhZ+rQCB44EhPT2fUqFFERERgMBgIDAykbdu2HDhwIF+7mTNnEhUVhYuLC/Xr12fbtm0F1vzC/Ni3bNmCSqXK5yK6bds2evbsSXh4OAaDgdKlS/PKK6+QnZ2dr2///v1xd3fn3LlzPPbYY3h4ePDMM88AYLPZmDhxIlWrVsVoNBIUFMSgQYNITk4u8rnzxj1//jzt27fHzc2N0NBQPvzwQyRJKrL/wYMH6dixI56enri7u/Poo4+ye/fufO+iZ8+eALRq1cqxP90rN9lLly4xdOhQKlasiIuLC35+fvTs2TPf70aSJFq1akVAQIBDgQiQm5tL9erViYqKcghlN/rd3mx/Fjw4CJXnv5yjR4/Srl07AgICGDt2LBaLhTFjxhAUFFSg7SeffML7779Pr169GDhwINevX2fKlCk0b96cgwcP4u3tzcSJE5k7dy6//PIL3377Le7u7tSoUQOQFwJ3d3deffVV3N3d2bx5Mx988AFpaWmMHz/+jp9l0KBBxMTEsGHDBubNm1dk+/j4eMezjx49Gm9vby5evMjy5csBWdD59ttvGTJkCF27dqVbt24A1KhRg8jISIYNG8aCBQuoXbt2vnEXLFhAy5YtCQsLu+Vn6NWrF5GRkXz66accOHCA77//nsDAQD7//HNHm/79+7N48WKee+45GjZsyJ9//kmnTp1u+V4CgUBwtxk8eDBLly5l+PDhVKlShcTERLZv386JEyeoU6cOALNmzWLQoEE0btyYUaNGcf78eZ544gl8fX0pXbr0bd13yZIlZGVlMWTIEPz8/Pjrr7+YMmUKV69eZcmSJfnaWiwW2rdvT9OmTfnyyy9xdXUF5D1lzpw5PP/884wcOZILFy4wdepUDh48yI4dO9DpdDedg9VqpUOHDjRs2JAvvviCtWvXMmbMGCwWCx9++GGh/Y4dO0azZs3w9PTkzTffRKfTMWPGDFq2bMmff/5JgwYNaN68OSNHjmTy5Mm88847VK5cGcDx991m79697Ny5k969e1OqVCkuXrzIt99+S8uWLTl+/Diurq6oVCp++OEHatSoweDBgx1765gxYzh27BhbtmzBzc3thuMXtT8LHiAkwb+aLl26SEajUbp06ZLj3PHjxyWNRiM5//ovXrwoaTQa6ZNPPsnX/+jRo5JWq813fsyYMRIgXb9+PV/brKysAvcfNGiQ5OrqKuXk5DjOlSlTRurXr1+Bti1atJBatGjh+PnChQsSIM2ePdtxbtiwYVJx/9n+8ssvEiDt3bu30DbXr1+XAGnMmDEFrj399NNSaGioZLVaHecOHDhQYE79+vWTypQpk6/vP8fMe2cvvPBCvnZdu3aV/Pz8HD/v379fAqRRo0bla9e/f/9C5ykQCAT3Cy8vL2nYsGGFXs/NzZUCAwOlWrVqSSaTyXF+5syZEpBvzZ89e7YESBcuXMg3xh9//CEB0h9//OE4d6P95tNPP5VUKlW+/a5fv34SII0ePTpf223btkmAtGDBgnzn165de8Pz/yRv3BEjRjjO2Ww2qVOnTpJer8+3P/5z7e7SpYuk1+ulc+fOOc7FxMRIHh4eUvPmzR3nlixZUuC5b5UyZcrc1r5xo/e7a9cuCZDmzp2b7/yMGTMkQJo/f760e/duSaPRFNjD/vm7Lc7+LHgwEK5H/2KsVivr1q2jS5cuhIeHO85XrlyZ9u3b52u7fPlybDYbvXr1IiEhwfEnODiY8uXL88cffxR5PxcXF8dxeno6CQkJNGvWjKysLE6ePFlyD1ZM8mIofv/9d8xm8y3379u3LzExMfmefcGCBbi4uNC9e/fbmtPgwYPz/dysWTMSExNJS0sDYO3atQAMHTo0X7sRI0bc1v0EAoHgbuLt7c2ePXuIiYm54fV9+/YRHx/P4MGD0ev1jvP9+/fHy8vrtu/rvN9kZmaSkJBA48aNkSTphi6jQ4YMyffzkiVL8PLyom3btvn2vLp16+Lu7l6sPQ9g+PDhjmOVSsXw4cPJzc1l48aNN2xvtVpZv349Xbp0oWzZso7zISEh9OnTh+3btzv2g1vFZDLle5aEhARsNhtZWVkFzheF8/s1m80kJiZSrlw5vL29C7iVvfTSS7Rv354RI0bw3HPPERUVxf/+97+bjn+n+7Pg3iEEhX8x169fJzs7m/Llyxe4VrFixXw/nzlzBkmSKF++PAEBAfn+nDhxIp//YWEcO3aMrl274uXlhaenJwEBATz77LMApKamlsxD3QItWrSge/fujBs3Dn9/f5588klmz56NyWQqVv+2bdsSEhLCggULANmf9aeffuLJJ5/Ew8PjtubkLLAB+Pj4ADh8Yi9duoRarSYyMjJfu3udXUogEAiKwxdffMHff/9N6dKlqV+/PmPHjuX8+fOO65cuXQIosA/pdLp8H8q3yuXLl+nfvz++vr64u7sTEBBAixYtgIL7jVarpVSpUvnOnTlzhtTUVAIDAwvseRkZGcXa89RqdYFnqFChAkChKU2vX79OVlZWgT0YZCWezWbLFxd4K/z0008FnuXKlSuMHz++wPmiyM7O5oMPPqB06dIYDAb8/f0JCAggJSXlhvv5rFmzyMrK4syZM8yZMyefoHEj7nR/Ftw7RIyCAJA/glUqFWvWrEGj0RS47u7uftP+KSkptGjRAk9PTz788EOioqIwGo0cOHCAt956C5vN5mhbWACy1Wq94b1vF5VKxdKlS9m9ezcrV65k3bp1vPDCC0yYMIHdu3cX+UwajYY+ffrw3XffMW3aNHbs2EFMTIxD+LkdCns+qRjBbwKBQPCg0atXL5o1a8Yvv/zC+vXrGT9+PJ9//jnLly+nY8eOtzTWzfaGf/7ctm1bkpKSeOutt6hUqRJubm5ER0fTv3//fPsNgMFgQK3Orxe12WwEBgY6FEH/pDgf0w8a7du3Z8OGDfnOPfvss7Rr146+ffve0lgjRoxg9uzZjBo1ikaNGuHl5YVKpaJ3794F3i/IAed5H/lHjx6lUaNGNx3/Tvdnwb1DCAr/YgICAnBxceHMmTMFrp06dSrfz1FRUUiSRGRkpEMjcits2bKFxMREli9fTvPmzR3nL1y4UKCtj48PKSkpBc5funSpSA3T7aRWa9iwIQ0bNuSTTz5h4cKFPPPMMyxatIiBAwcWOV7fvn2ZMGECK1euZM2aNQQEBBRw2ypJypQpg81m48KFC/k0cGfPnr1r9xQIBII7ISQkhKFDhzJ06FDi4+OpU6cOn3zyCR07dqRMmTKArMFv3bq1o4/ZbObChQvUrFnTcS7PwvrP/SHPKpHH0aNHOX36ND/++GO+D+B/fiTfjKioKDZu3EiTJk2K1H4Xhs1m4/z58/n2zNOnTwMUWvcgICAAV1fXAnswyMVM1Wq1I8D7Vve7kJAQQkJC8p0zGo2ULVuWNm3a3NJYS5cupV+/fkyYMMFxLicn54Z7d2xsLCNGjKBdu3bo9Xpef/112rdv7/jd34yb7c+CBwPhevQvRqPR0L59e3799VcuX77sOH/ixAnWrVuXr223bt3QaDSMGzeugHZbkiQSExOLvFde2zxyc3OZNm1agbZRUVHs3r2b3Nxcx7nff/+9WObWvAwKN1qs/klycnKBZ6lVqxaAQ/ORl/2isPFq1KhBjRo1+P7771m2bBm9e/e+q/UR8oSQf763KVOm3LV7CgQCwe1gtVoLuKEEBgYSGhrqWGPr1atHQEAA06dPz7fmz5kzp8C6GxUVBcDWrVvz3WPmzJn52t1ov5EkiUmTJhV77r169cJqtfLRRx8VuGaxWIq1xwBMnTo13xymTp2KTqfj0UcfvWF7jUZDu3btWLFiRT73pGvXrrFw4UKaNm2Kp6cncGv7XUmj0WgK7J9TpkwpYN0BePHFF7HZbMyaNYuZM2ei1WoZMGDATS3lxdmfBQ8GwqLwL2fcuHGsXbuWZs2aMXToUCwWC1OmTKFq1aocOXLE0S4qKoqPP/6Yt99+m4sXL9KlSxc8PDy4cOECv/zyCy+99BKvv/56ofdp3LgxPj4+9OvXj5EjR6JSqZg3b94NF4qBAweydOlSOnToQK9evTh37hzz5893bBI3o27dugCMHDmS9u3bo9Fo6N279w3b/vjjj0ybNo2uXbsSFRVFeno63333HZ6enjz22GOAHLBVpUoVfv75ZypUqICvry/VqlWjWrVqjnH69u3rePY7cTsqDnXr1qV79+5MnDiRxMRER3rUPC2VKFYjEAgeFNLT0ylVqhQ9evSgZs2auLu7s3HjRvbu3evQROt0Oj7++GMGDRpE69ateeqpp7hw4QKzZ88uYEGuWrUqDRs25O233yYpKQlfX18WLVqExWLJ165SpUpERUXx+uuvEx0djaenJ8uWLStW/YM8WrRowaBBg/j00085dOgQ7dq1Q6fTcebMGZYsWcKkSZPo0aPHTccwGo2sXbuWfv360aBBA9asWcOqVat45513buq69PHHH7NhwwaaNm3K0KFD0Wq1zJgxA5PJxBdffOFoV6tWLTQaDZ9//jmpqakYDAZat25NYGBgsZ/zdnn88ceZN28eXl5eVKlShV27drFx40b8/PzytZs9ezarVq1izpw5jjiQKVOm8Oyzz/Ltt98WSMyRR3H2Z8EDwn3ItCS4x/z5559S3bp1Jb1eL5UtW1aaPn26I13nP1m2bJnUtGlTyc3NTXJzc5MqVaokDRs2TDp16pSjTWHpUXfs2CE1bNhQcnFxkUJDQ6U333xTWrdu3Q3Tu02YMEEKCwuTDAaD1KRJE2nfvn3FSo9qsVikESNGSAEBAZJKpbppqtQDBw5ITz/9tBQeHi4ZDAYpMDBQevzxx6V9+/bla7dz507H++EGKUhjY2MljUYjVahQ4Yb3uZX0qP98ZzdKB5iZmSkNGzZM8vX1ldzd3aUuXbpIp06dkgDps88+K/R5BQKB4F5iMpmkN954Q6pZs6bk4eEhubm5STVr1pSmTZtWoO20adOkyMhIyWAwSPXq1ZO2bt1aYM2XJEk6d+6c1KZNG8lgMEhBQUHSO++8I23YsKHAPnL8+HGpTZs2kru7u+Tv7y+9+OKL0uHDh2+YvtrNza3QZ5g5c6ZUt25dycXFRfLw8JCqV68uvfnmm1JMTMxNnz1v3HPnzknt2rWTXF1dpaCgIGnMmDH5UmpLUsH9QJLk/al9+/aSu7u75OrqKrVq1UrauXNngft89913UtmyZR0pzW81VertpkdNTk6Wnn/+ecnf319yd3eX2rdvL508eTJfevMrV65IXl5eUufOnQv079q1q+Tm5iadP39ekqSCe11x92fB/UclSSKKUiC4GQkJCYSEhPDBBx/w/vvv35c5HDp0iNq1azN//nxHVVGBQCB4mMmrynyvqg2XJP3792fp0qVkZGTc76kIBHcVEaMgEBTBnDlzsFqtPPfcc/fkftnZ2QXOTZw4EbVanS9QXCAQCAQCgeBuImIUBIJC2Lx5M8ePH+eTTz6hS5cuhWaxKGm++OIL9u/fT6tWrdBqtaxZs4Y1a9bw0ksvObJhCAQCgUAgENxthKAgEBTChx9+yM6dO2nSpMk9zTrUuHFjNmzYwEcffURGRgbh4eGMHTuWd999957NQSAQCAQCgUDEKAgEAoFAIBAIBIICiBgFgUAgEAgEAoFAUAAhKAgEAoFAIBAIBIICFCtGwWazERMTg4eHhyj4JBAIBLeBJEmkp6cTGhqKWi10NHcLsV8JBAJB0RR3TyqWoBATEyOyrQgEAkEJcOXKFUcFU0HJI/YrgUAgKD5F7UnFEhQ8PDwcg3l6epbMzAQCgeA/RFpaGqVLl3asp4K7g9ivBAKBoGiKuycVS1DIM996enqKhVcgEAjuAOEOc3cR+5VAIBAUn6L2JOEoKxAIBAKBQCAQCAogBAWBQCAQCAQCgUBQACEoCAQCgUAgEAgEggIUK0ZBIBD8+4mJiWH+/PmcPn0agKSkJCwWy22NZbPZiIyMpFOnTo60a35+ftSpU0f46AsEAoFA8JAgBAWB4D/I9evX2b17Nz//to59+/YiufogufqiqvY4uto9APD19EWtN5JhlRz9argqY9TwNAOwK1nnOOepkdtKksS1s3uZ8NsBMqzyNXPCBbLPDeaZp59Cq9WSN6qzWdNZhtBpVKjVaipUqIBGo5HbqtU0btwYo9FYMi9CIBAIBAJBoQhBQSD4jxAdHc3Lr73F6QtXsai06Cu3wavmi6hrjELj6gWAVq98gKv1usKGKhKVSkVQpfoEVapPfK7y9V/WFs+ZC8fAIpFkls+XcbU6rnvqFaGkdRV3cnNzHRYOgP1nkxj7yQRUKhsalYqKFcoxauQwQkNDRdpRgUAgEAhKGCEoCAT/YjIyMpj1wxx+XLCI7JxcQtsOo3b3Lmh0eqLTM0m/dJSsxJPkxl8AQKPVYyxdFZfw6qD3LfH5uHr6UbZmc/nYJNsSKnoq7k1+RpvjuHVDbwA6dOjgOLdkT7Lj2Ga18ve+LUydOpVjx45RvXp12rZtS6dOnYR7k0AgEAgEJYBKkiSpqEZpaWl4eXmRmpoq8lILBA8Jq1avYcSb72Ep3xqPR7qh1uqxuvqQfmgNSVvnoza4YSxdFVe/MAxBUah1BrKSr5F9+Sg5l4+g0urwbtgTj6h6qOxxBvqMBMf4Kpv8gZ/rHqDcVKU4EunTrwFg1bk4zhnS4hzHZjc/ANSWXMe5gOotHcchdutCumJw4HhCkuO4gp/cv4zBhmSzkXT1JDu2/orqzJ94u7tQPioKa24Wb70ygsjISHx9fe+rACHW0XuDeM8CgUBQNMVdK4VFQSD4l5Gbm8ugIcP4fedhSr2xFkvCZfl8UjRXZ43AtWxdSr80Ha1XMABu7l6OvtqMVDzrPi63T7hMys5FJKz7hpAn3sAlvNq9f5hiolKr8Quvglu7MtDuZXJMWVyVcsk4vZ3RE3/m6ok9qCxZfD9tEk2aNLnf0xUIBAKB4KFACAoCwb+I9PR0nujag8i6HSk9ejwqrRxnkHXxMHFrphDafyL6gDLFGkvvV4rAzq/jW/dxon8eg1edjgRWaHA3p19iqA2uGN2DMPo/TT0PK/WArNTrvPBCe1asWEGlSpXu9xQFAoFAIHjgEYKCQPAvITc3l0caNcVUuw/xwe0gTXYTsqk0xG38jsg3V9Ah3M/R/ky2nEkoRvH8oaafYn48nSO76WR7+BP+whSu/DgKo6sX7hG1ANDmpAGgT49X5uAZ7DiWVPL4hvTrjnNqq3IzbXYqAFaDu+Pc9SObHMcp2Snydb2b45zGK8xxfCH+vDxPD3/HOUNqrDKWXk7RtL50niXEn9cm/ELHTp05ffI4Ot3tB2sLBAKBQPBfQBRcEwj+BVitVjp37UF6REtc63RWzmenc/m7wYQPmonG5fazAqnUasL6fEbs2m+wZKeVxJTvC74BITTt2IfFS5bc76kIBAKBQPDAIwQFgeAhJzk5mXoNm+FTuxvejw5ynJdsVmIWvEVwt/fQ+5W64/toDK4EtX6Ba3/MueOx7ietn+jHlG9m3O9pCAQCgUDwwCMEBYHgISYjI4N2nbpQqdPLVGjaI9+1hA0zcCvfEPdKJRe861G+IVlXjlGMZGkPLB5ePhjdvDCZTPd7KgKBQCAQPNCIGAWB4CElLS2NRzt1Janmsxzxqs6RE5fRZcl1BkyJ0WRdOEiZl3+itb/e0Wd9vPJxbE1PLDDmIaeCaxX85bSn53xCHeckiwmdbxim9ARs/uEAaHIyHNc1Tm5JFhd7ETdTuuNcZkAFx7ExNdo+qFI7wWJQYiTyYh9srkpchdqS4zh2Sb4on7OZlevmnALHTb0UfUiPBj4ALPYWlZ0FAoFAICgKYVEQCB5CJEni6f4vEdj2VYwVCloMEvYsI6DjyLtSN8CrWmuSD64p8XEFAoFAIBA8WAhBQSB4yJAkiRdffJGsgDoE1Wh9wzbZMadxLX93Upl6Vm1B+oltSDZb0Y0FAoFAIBA8tAjXI4HgIWP0e2NJ1JYmoeyjJJw+jsYpXsCqd8WWm41Kb0SjMwCwJ0OjXDdlOo7VJtllyKY1KOfSFTeiC66yG1BFL1fHueNmOf2pS/mGZMWewaVMDSQ3Jc2oxqT0d0mU05dandyJ3K6ddBznpVI15LkgARnBVR3HZnvFZ609TSqANkupzGzTyfPSZSouVLkeQcqxn1wvorq34pq0ZI/smpWQbkEgEAgEAsHNERYFgeAhYufOXezYf4JGPV4ttE321eO4lKpyV+fhElWP7MtH7+o97hY2q5W05AQ0Gk3RjQUOPv30Ux555BE8PDwIDAykS5cunDp1Kl+bnJwchg0bhp+fH+7u7nTv3p1r167la3P58mU6deqEq6srgYGBvPHGG1gs+QW3LVu2UKdOHQwGA+XKlWPOnDl3+/EEAoFAcAOEoCAQPCTk5OQwaNjLtBn05U3bZUefxKVU1Zu2uVPcyjcg68LBu3qPkiQt+ToxF0+yfskMJr79DM/364NWKwyqt8Kff/7JsGHD2L17Nxs2bMBsNtOuXTsyMxUr1SuvvMLKlStZsmQJf/75JzExMXTr1s1x3Wq10qlTJ3Jzc9m5cyc//vgjc+bM4YMPPnC0uXDhAp06daJVq1YcOnSIUaNGMXDgQNatW3dPn1cgEAgEwvVIIHgokCSJ1157jYrNe+Hq4XPTtrmJV3Av3/CuzkfrFYglPeGu3uNWsVktZMWcJvXUTqScVNSSlZyY0/xYviwZqYk0bdqUprVrMGbULEqVuvO6Ev811q5dm+/nOXPmEBgYyP79+2nevDmpqanMmjWLhQsX0rq1HDsze/ZsKleuzO7du2nYsCHr16/n+PHjbNy4kaCgIGrVqsVHH33EW2+9xdixY9Hr9UyfPp3IyEgmTJgAQOXKldm+fTtff/017du3v+fPLRAIBP9lhKAgEDwELF3+C/vj1KQ1aM3JI5cAMKbFAWDTKqk+rQY3bBnJ6PQGNDo5LWoloxLDsMequHhI9rSnKqegZJtV8eev4ib3j3JRrp9393Ucq43uoFLhFnvCcS7Xzd9xrLLfS21RUrJKWiVVqzY72d5OuadH9CHHsckrzP63kp7VElpZGV+tIev8QeIWvIk59RrW7HRUBjf0fqXQB5TB6FsK16QLXLx0nkEvvcgLz/YmJCQEQcmQmpoKgK+v/G9i//79mM1m2rRp42hTqVIlwsPD2bVrFw0bNmTXrl1Ur16doCAllqR9+/YMGTKEY8eOUbt2bXbt2pVvjLw2o0aNuuE8TCZTvpoYaWkPb+VwgUAgeNAQgoJA8BAwZ8ESqjz5MX8lZhfZVu8XhiUjGUORLR9Osi8eImvzdBIOb0JS6/AoW4+QdoMx+JdGCoxytNN6ykKLympm7oFfmdNnBJFGE+M+eIcGDRqgVgvPy9vFZrMxatQomjRpQrVq1QCIi4tDr9fj7e2dr21QUBBxcXGONs5CQt71vGs3a5OWlkZ2djYuLi75rn366aeMGzeuxJ5NIBAIBApCUBAIHnBOnDjB6fOXKesbAvZMQjdD6+6HKfEqbvdgbvcSqymL1LnDSD6yGdcyNSjz1ipcSlVGffWYo435Bv3UBlfcGvWBRn1oYj7Ix5Pnknz1Hca8N1q4stwmw4YN4++//2b79u33eyq8/fbbvPqqEtyflpZG6dKl7+OMBAKB4N+DEBQEggec+YsWk1urO5svxuAep7j5SBrZjcfkpbgDGdKu4eruTXbcWXJT5crG4YFOKUNDgh3Hp3LkYmz+TquAp0ZxUyptlF2Osp3KJeQkXFHun52KNisFk4cypkqyOo5tOlnz65zeVGXNVcbyldOXWvXujnPZwZUcx12jAuU56SQSrp7lq4GPElw6Ap9uY/Co+wTYrFgzU7D6OX0UOrlRWbJk1xiLk7vVYl0EtHgHS0YSQ7+eiGbMl/i46nF3MTJ84LM0aNCA0FDF1UlQkOHDh/P777+zdevWfLEewcHB5ObmkpKSks+qcO3aNYKDgx1t/vrrr3zj5WVFcm7zz0xJ165dw9PTs4A1AcBgMGAw/FvtZwKBQHB/EYKC4KHh0KFDnDp9mlPnLuGc2DKv+LBOp6V/32cJCAi4L/O7W/yyeiOuT08vdnuXgDIkHd2M112ckzUnA7XeteiGJYApK53lX7yAX0Agxg5vYKh+51YArbsvum7/A6CcvzdZidF8uWEN6f/7ijKlQ2nWqAHt2rbG19cXjUZDSEjIf95VSZIkRowYwS+//MKWLVuIjIzMd71u3brodDo2bdpE9+7dATh16hSXL1+mUaNGADRq1IhPPvmE+Ph4AgNlQXDDhg14enpSpUoVR5vVq1fnG3vDhg2OMQQCwb+Hs2fPsnPnTiRJIjo6muzsot1rnfH09KRFixaULVsWAFdXV1xd783e9F9BCAqCB55Nm//gq4lTsGg9MIc1wDWoBqVcFc23j17WYqclxdOyTQee6NSR999754aLRWpqKunp6Y6fVSoVoaGhqPKkjQeM3bt3k+MSgIuu+BpTnYc/5vSkohveATlX/sYltMJdvQfA1WM7Obz0E5o0qEOqSznOVLs7rkKufmFEtBlIo579yExN4tLpA4z5+kfMpizUNjOpCXHk5mbTpOEjPP1UT0JCQggJCflP1WIYNmwYCxcuZMWKFXh4eDhiCry8vHBxccHLy4sBAwbw6quv4uvri6enJyNGjKBRo0Y0bChn4WrXrh1VqlThueee44svviAuLo733nuPYcOGOawCgwcPZurUqbz55pu88MILbN68mcWLF7Nq1ar79uwCgeDOSU9PZ+/evazetJWNf/yJRa0n18Wf3IrtUKnUePnVR+vhSZZV3t8r2PN0lHdXrMJH0uTPVje13EbKSuaXz+cgmTLJlSAnJZ7IAHee6v6EokUE/rnD5+35ZcqUQa+XrfN+fn5ERUUhyI9KkpzKuhZCWloaXl5epKam4unpWVRzgaBEOPr33zz9/GByfctieHIcOs8AzLFngPyZdCwuiu78iahg9i77muj9v1M2ojQtmrdAAnJysvl99TrUHkEYPHzJssqLhM2SS0ZyDGr1Pz/4nJYVSXFnUalkrbJeLV+XkDBYMqldoyq1alSnV8/u+Pv7UxJkZ2fTsEkLLP3moveVMwCpz+52XM/LBqTJUbK8SGp5ET3//VDK9fkUlUbDs03rOa6nmpXnijPJz3LNrGjKg3TKs7rZ3ZAMTor0309eBCB+3Td4BkfhUe4RXK+fcVy3GD0cx2qz/DvK9VRcn6xaxXVEa5LnXbFOa8e5LmE5ACTFx7Dip2/R5lyn6xOdeP+LyXgOmI3KoEReqLNl1yJUygQlVUGtv+RS2JolP18Vp8DZ6u6K69TBdPldnkmSszNJkkTDjKNcPbyRnNQEUuPO4+3lSVhIIK2aN+HZZ/pgNBopjId9HS1MmJ49ezb9+/cH5Fofr732Gj/99BMmk4n27dszbdo0h1sRwKVLlxgyZAhbtmzBzc2Nfv368dlnn+Wra7FlyxZeeeUVjh8/TqlSpXj//fcd9yiKh/09CwT/FiRJIiYmhqnTprNq/R9YVDp0UY1xq9qGZPdgtB7+aPXKmuml1wGQYRcUath1fTU8leizXclymzw3WaPT1h2fK69RAdePEH/5JClO+10pF3lt99DL/RqXd8Nms3Hx4kWsVvnarkNnSE+OR60Cf19vhg5+kSpVquRbv/5NFHetFBYFwQPLmE+/wtD5I/RlHyl2H41WR8On3qTcgFGcPryLZMlGjhXQwVNv9yFOI7s7XMpRPihPpWU5jm15KT01OuWcWRFKNPZFray78sHbzDuHi8f2sC8+nu86PknvXt0YOvglPDyUj+bbYdq3M2n8+AvstgsJt4Jr6WpkXDqMR9k6dzSHwsi+dISQ+l1KfNysjDR++eFTspNj+HDMu5QpU4Z6Ldrj2mcKKs39Xa5UKhVlqjWhTLUm8lytKqzmXHxzLrP+j6VM+bYVn330AR07dryv87xbFEOnhNFo5JtvvuGbb74ptE2ZMmUKuBb9k5YtW3Lw4MNT0E8gEORnz549vPn2B+RKWqTwBtR8dTk2q4VTR3eReHw7idejsWaloFKp0QeUwS2qLh612qK+Bet5YQRFViUosqpDGQZQxVPe2/3ssXdPNfQu0G/JHnvKbuDimb/Zs2c7EyZMwN3dnR49etCsWbN/rdBwM4SgIHggkSSJkydOENS5IakWa9Ed/oFaraZSbfsHncVJE5pRUjPMf6+y1WX/6RYt27N741Lq16/PwoULqV279m2NKUkSi5f9wpDPlrP74q3396zSgpQ9y++KoCBJEjaLCbW+cO357ZB0cgefL3ydL8d/xmMdO5CVlUXNWnXRtX8HndeDGXei0enx94mgbZ/XqfPoU7z3Xj+aNWuGu7t70Z0FAoHgX0Z2djZ9Bw5h3+VU9E2GofcNIxcVq6a/hin2DB412mEMr0FIzQ7ofcPITEsi5+oJMs7uY9/yT3EtWw//pr3RevhxKEMu6nnYprge5brb94I86366kvjAak+gcdFeY8js5ue4tsciJ9IIqN4SgPVxcixEutPnxfEEWWlYwc8PjI9Qplpdyld7mZz0JN7+bQ62SfNxJZfoUwd5qvfThAb688Lz/f71BTz/29F5ggeW1NRUsjVuD2zsQGFodXqaduzDqlWr6N+/P0OGDCmWJvafLPhpEVG1Wtx2AK1r6arkxF/AklXyxadMsacwBEQW3fAWyEy4yv6pA9i6ZSOPdexARkYG7To+Tq22z+IaVa/oAR4A/IJKM3r0aGbMmHG/pyIQCAT3nCtXrtC4WSv2q8rjO3g+et8wsi7/zZWZg/Co0Y6IUYvwbz8M98rNcA2vjtbdF61nAO5VmhPQ6RUi31qJW5UWXPnxVTLO7Lnfj+PA6OGLS8tBuD3/PcEjfqHWl8cwV36aPYk+tOrYla1bt97vKd5VhEVB8ECyZu06jKGVcVHDtcRox3m1PV7AzSlNqHPA0obY4wCsCCjnOKfNSnYc5/nQu8cdd5xz0bk5tU0EQHJyPdI4pfe0uvgAEOfkC7/M3gcgqU4PAPplBdDny23sXDKBDp2eYMmiBbfkL735jz+p06ovBo1Eez/lXmsvK3P1vLwPAJOXUm04L0YBwLdFX+L++pUfKzZ1nGvmr7hMlbH7bObFawD46xShJsxVvv7tGSULhTHpIte3ziWgYiOH9iattGK1MCZfdRxnBVYEwO3aSce5nDLK72VQ9RoAlM3ZSofuHdi/fz/+/v6YTCbatH+M+OrPktWoD6QlKC/GyQ0sr6KzNV9cRI7j2ObqLR84uSxpkmOU63YT98nzyr+PExqlcrQ6V9YuSe6KVmrJkTilvz02RqVX3ulPjSpx6NAhBAKB4L/E2bNnadCoCSM+W8xKo6zcyY4+SfyGmZR+aQZad98iRpDdOz2qtcI1KIKr895E36QX7uHV7vbUbxmN0Y2AgKoERFSlTO1Hefnl3mzZsgUvr7uZa/D+IQQFwQNJdGwcbpVb3e9p3BEqlYomvV4n8e/NPNG1J2t+//WGeeD/idVq5ejfx2k/oPId3d+z+qMk7VlObuJV9H4lYxq1mrLIjDlNqbYv3rC42a1gNuWwf9PP/PjnQg4dOkTNmjU5ePAgz780gpqdhpBb7slC+0pWC5asVMyp8eSkJ2HNSETj7otrcDn0PiGF9hMIBAJByXLt2jWaPdoenz4TWJIWAFmxWNITiV0zhTLDfuSxcsr+cyZbjj6OsZfUqemnKNBO22v7ZKcnUOrZL7j83WAin/kUo1N2OX26XB8o11OOFZBUyjVD+nUA1PZ6Pdq8hBeA1SC7g14/sgmAFLsC0KpXlG8aLzke8EK8XNj0tIeSmMSQGiv3t6cFX1/aLsBowmje5SXGf/k1H380tqhX9VAiBAXBA8mPCxcTMnTp/Z5GiVC5XgtyTZl079WH1St/KbL9mjVrqFy35R3fV6VSEdR+KLE/f0D4kFkl4sZ1bfdyAus9fsdjZZ3bx/8+fYM3X3+NH3bsQKPRkJGRwXMDhtDh5Rn4hZblqFPNLVPcOdIOrSXn0mGsWamoNFp0rl5oXDzQBkWh9wsnN/Eycft/x5KeiMbohi6wLCqtHkNYJVyiHsEQVPYOn75ooqOjsVgsRTcUCASCfwF79+7l+cEjcen6CYYyspXYZjYRPfc1wp4dj84r8LbG1bh4ENLmJeI2fkdE+8ElOeUSp1Gb7nw28gnGfPAuOp2u6A4PGUJQEDyQpKRnolYZITMb9+gjjvO5HnIqS5VN0Wc7axR0qbKbkptT+lSNSfHTtxlkNxXJycXE6pRlQWsPmlJblfFtThqHvJSaVqOiBVGbMx3HPod/A2DFMWXMlKimYKxLVvZqxn85gTdef63wBwemTp3K02/MQGP/Fq/ho8xlpZeScSHX4RKlfLTrM647zSsbg5cvFt8g4r/tT3ibAWwxKxmk3D1lbUk9NyUlaoJTOrkVp+R6E7qESwBkx50lI/4iAe2GYVGrMdiDyNRmJWuUyikew2ZPZVqlyROOc41cYvlp8lv4eeh5d9UKatWqBYDFYqHt493IbTyIddeB6+exuXqReXoX11dPRucTgmfdzoR0GukwYeeltLM5VV7WG2SLjTUnA0taApaMRDIuHiFx7RQs6YkEd33HYV1R2f+NaExKhLvZyY1LZbLX23D696FyC3cc6+zuaUMiJCRJYsfK2Tw/5gvmz5+PQCAQ/Ns5c+YMzw0cRquh09iapdQtiv/9K7wbdMPlDt2G3MvWIXbjzDud5l1Hq9VRtlItrly54ij89m9CCAqCBxLPwFtPCfqgY2j7CtO/689jHTtQtWrVG7Y5fvw4YWFhuLmXXP73oLqPcW3/aq5sno3fgOKnmnUm/cwerm2dR5leY1HdRoC1JElc3Tqfg9tn8+2Urx0FuABsNhvlK1ahfNe3yQiW4x1sFjOxi8dgy0qj9ODvHcKB1q1470VjdEdjdMcQGIEurDI+TZ4iJ/YM0bNG4N2gG171uxYowHMnTB/dg+YNanLx4kVH4TCBQCD4t3L58mU69+qH9YlP2Jrlis4eC5hz/TLmxKuEPP0/WvvLCrn18YrizpqemG+cQ07Z8yr4yxmNzvnINYJs1y9gCCxLamYqxhC5wKcmR1bsaLJlBaBzHSWtXbmTGSC3NaYq8Y159ZAsBnkPyXNhsrkqMWhqixzj5pJ8Uf7ZSSGZF/+W93dTL2Uf7NHAh+0BJZsF8EFCZD0SCO4RGqM7A8fN4+ln+xWaCWnatGkMGzasxO8dVPcxNHpXYua/hS03u+gOdiRJ4tqWH0k6uIbIPp+i87j1YnKSzcbB2a8Sv/V79u/ZkU9IAPhq0lRcwmtTqmlvAHKTY7k0aziuUY8Q1v/rYgXBFQdjSHnCh/6AKf4CMQtHY7PcaZQFSBYz373XmyaPVGPyxAlCSBAIBP96rl27xmNdelHtpZmOYqB5pBzdhE+LviV2L596nUna9e9wQ35YEYKCQHAPCQyLRO/uz549N079lpaWdtdMl2HNeuNetSWXvn6K1L2/ItlsN22fE32CK98OQK0zEN7jAzQut1dA7siCdwmxxnBo354C6V7379/PzJ9+o8GIHwDITbxK9M8fEPLkG3jVffy27ncz1Fo9QZ1fw7Nme6J/egfJevvCQm5SNGmz+jNsQB++mTyx5CYpEAgEDygZGRn07t2byKfH4xkSVeB61tVjuJZvVGL3c4uoSXbMqdtKMy4oGYTrkeCBRK9WUcFDNuWdMygfqK7xpwAweSu+4gYn82K2PSWnNsc524GTu0peWlObUmXFkKakvLS4y4FXOqcxbU731+SkyGN6KVoUjdN1lb2oi0pSPsK9zu90HE/yfILMpiNYtGhRAc06QHaujV/3pdC/TUSBawAalbJYfrRTfgfOMRzOaV3z4gVM9rgOAF/PYLyeG0/CjkX8/VY93CJqEl+mBnrvIAz+4ZgSo8mOPU3yoXVoPQMJadUffbXW5L0tyclsbLXHILSppKQ83ZOhxItU0MrxAzGXd/DThg0FAqBtNhvDX3sHVY/x7E3KIPf6JWJ+/YxSQ75H7xuG2p7WtL6X8kxnnSpqJ+TK5ux6PkomqZM5yj1qu8q/Ay9vxSR8wqOMfBD2PHuSY0jYOh//DiOUSTnFtli8ZfM3JiUG47HS3gAkRZ9hw9SnmDv7e5o1a4ZAIBD8Fxj97hhKNXueQ5IrF08fR2PfZ6x6VySbDas5F52b7A6Utx9YTUocn9oeE2bTytZXdboSI3bBVd6rK3rJ8Q7HzXJMnjGsMtmJVzEGl0Nyk/eDvNgyl8Tzjv55e31eSu68zEigfCdkBMtuv2Z74TatU/pzbVaSPDedfH9dprLf5cVH5vrJe0h1b0XJtGRPMicvJaBxys70b0IICgLBPca13CMcmjeezMxM3Nzciu5QwmiMbgQ9OoDAVs+TdekI2VePkXXlGDnxF9D7lcLgF054r7FovOSF0WqzYYo+gSn6JLbsNHIu/41ks6KSrKBSkzZwHJ4BN06/GvPHbJ588km8vb0LXNuyZQvaoErofEORLGauzhpOuF1IuBf4NOzJhSnP4dOi/y1ZS079uZhdC8axef1qqlSpchdnKBAIBA8O27dv5/CZWDq/OpZDB04XuG5OiUPvV/Lrt0tkbbIvHsYYXK7oxveQiycPkhh7kYuHN+PnriU8PLzoTg8hQlAQPJCkJ10vutFDikqtoW/fvnzxxReMGzfu/s1DpcItoibu4U6B1U4ZpEzpiZj++gl98jmqlYsi0MuFFds3YtV5oQ6tgsqmJu34H8weWIVBCy5jdPfON74pNZ7UXXN5c++OG97/oy8mUunpr9hlhpQ9S/Gs89g9ExIAVGo1Po16kLJnGX4t+xfZ3mbKZP+yCfy97ntOHTv6ry2uIxAIBP/k2rVrPPvsszw3flOhbUwJlzAERJb4vY0h5UnZt7LExy0uKRcOE3/6L8wpsagkC5bkWH6s34DQoCDq1KnFiI/fpnLlO6t79CAjBAXBA4mfu46qmYcJi6zMV2HKh6wx4QyQ31xo0ymuJSp7elNJrbirmJ2yGhjSYuznlABZs5tyPS8TAk4VjnHyq7fZTZuGFKUCsTpXMZ3mmSydx9c4pQ/Vn9sNwLnGPVk6qQ2vvfZagYrNN8vGczVTmVdedWrnVK2aXCcTr90NSudUdEZSK4KAZHfDMpeu4TgX7umB1ZRF3OoJGC7tZmifHmRk1mD6jwugZjeCn5mExp6C1ORXhkCblYwJHdgz8VnenrScer7y7K0WC5NH9+enH6aj1yupaJ2JibtGos0Xg4uR1J2LKff6MixOqU77h8u/w9UJyvu/lhCrDGB/lj3XlPer0Ssp+lw9ZNO2XqO4a0UYFZezM54BeDZ5mivTXiCgo+x+JKUqgd6l/WQ3tB4hJg78sZwNi77msRefZ913FwvEWggEAsG/mVdHf0D9kfP45Uo2XLmE0e6ya9PK+6/V4IbaakFlM6PRyWt+JaO89u5xWtcle0YjlT1GzuYUJ1bFTe4X5SJfO29PZGF285bjyVQq3GLlfS/XTU6soXIaW213HZW08jja7GTHNZX9Ph7RhwAw2d2HTV6hjjaWUPljP/PUDhI2zCTz2B+odAY0RndcyzfEo0JjjOHVUR1axqmLh/EOCKZK5UpUqlTpFt7kw4cQFAQPJJO/nsAnUxcQ9tJH93sqdwWVSkWtJ0by0tCR/DRvtsN/X6vVkpOdWUTvu4NktRD3+3jidy2m46MtOeHpyaTZi8it+wwew39FpdGhsS/SeajUGqIq18SosTDv67cIiqzOvj+WYTFl0bZ1c+rWrXvDe2VnZ5OamUMgkLr/d9wrNELr5o0lK+2G7e8WGhcPUKuRLGZU2oKFcmwWMz99OQx3rYk9O/7Ex8fnns5PIBAI7jepqakcPHKMR7vV5fiZ84W207r7YMlMuXcTK0Ekm5XUTTNI/eM7TDnZuFVrQ4VhczD4yoKE2V7DSOvpD9Vb463VcSb6JC/P+JGxH37C4JcG8kyf3ri4uNzsNg8lQlAQPJDUr1+fjLhxpCVfB/6dKSfLN36SLX//ybp16+jQoQMAPbo+wapNyxjU+cZ1FkoaSZJIO7QW6fxOXK79TbtWTfgjMIi/Egzoes/GV6snKzP1pmNotTqWLJrHzp07iY2LY2ivr6lRo8ZNA7uWLVuGsW4XAOLXT6fsiB9L8rFuCUNQFKZrZzGGFTQdX5k9mLf7deK5Z/vch5kJBALB/Wfhop9JK92QzRdjcLdbsvOKlpq8ZK2/Ie0aahcP4uMvkJsqW+bDA+0BwCFKUPEpe8IJf/vXp6eTxbe0UbYkZNtzgeQkXAFAnZmM2mxCm5WCyUMeSyXZC27qlA/zPE8DlVW2puf4lnFcs+rd5bGDZe1/1yjZYuypk8hKT2bqkCakJl8ntOtbuDXpKyvv1Goc9g67BcSSJe+HFqsFtas3xrYvkylJ/G/9j3w2uSWNGtYnIiyUJzq2oXbt2mi1D/9n9sP/BIJ/JSqVihdfeI4zhxaij3zFcd7kEwGATau4s2hzFC20yikDQx7OC4nZTc50kO2v+FFqM5OU8b3tPvLuTkVYkq44jS8vFoa0a8p1p/HzKkbr0xQXGatTViStPVNDsll2Xan81IeM+egp2rVrh1qtpk6d2sxbvp53VitWBS+9kkFp7tkU5V5B8oLnknjRcc5iVPzmTR7ysxpKKQG3PQJkM21udiZ1VHuZPHkyHerVo3a/ViQkVGfEy6Oo+OURdF5BWC7L2ZRc82V+CHQc673k49pVIti7dy/t2rWjuGzbuQcCG5J77Tw2mxWz1Yo55Rqu3sqGciJdfu5wg7KRuAUplZMvZsqFb+p7Kf8W9iQprkObU+S/uwUo/T2cVjyjPcOGW5nqWK5fQB9VF62rku7Pe+MHeAaohJAgEAiKhSRJnDt3jnPnzpGVlVXgekREBLVr174PM7szfliwBLf2HxbZTqM33lKdnuJiun4ZnVdAiY8LYMk18d0rbbCacwh/cTrGKq3yZUUsDmq9EZdWg5CaPc/upBjiNLms/exHMs8OpVWLZrR7tAXNmjXDzc0NnU730LmuCkFB8MDSu3dvWrZsifXZF9EY3e/3dO4KeldPKtVuwdKly+jVqycBAQEc3beNyn2kAulES4KstESObpzPub9Wo+7Ske+++w5fX1/at2/P008/TeUp5275Xffq1Yvvv/+eVq1aFav9gQMHWLToJ0LffQlTzClcImrezqOUGDqfECz/qBaadfU4KTEnWfnr8vs0K4FA8LBgs9lYu3Y9X349iQxjKC7B5VG7eBNo99H31MpKj5PTZhPi78Gbr71CvXr18o2Rnp7O1atK7JvRaKR06dK3PBe1Wl2iH6Lnzp0jMceGi2fxPtTVWgO23GzU+pJzwcmJO4MxuHyJjZdH4tUzrJ7zJuWjIghr8BaHShVvDysMtd4VQ3A5Av29CazcmEfcM4m7dJJFW/YwceZCrJZcJLMJsBEZHkb/vs8QFhZGhQoV7sp+X1IIQUHwwKJSqRgwYADjdvyKZ9Nn78k9zWkJSLnZkJ2uzCNFtg7ovALRaEr+v0zbHi8xZthjdO/eDXd3d9q0asnJLYuo3OrpEhlfkiSyLx3GumMW69Mu8MHoV2n91Wu4uLiQnp7Ok08+yfjx42natCmz5iQXPeA/qFevHi+//DKSVDzh5smu3Xnz2z9YGCdbAlR34Z3eKZm/fMBn337yrzAbCwSCu8eVK1do83g3pDKPYOz2LVJGMnk69SR7cK3FRbb0dn21H+f2beDFV8eQGn2alq3bYANOnzqFWeeFe1AkmVZ7QojsNNKS8yzXeVZRp/U1rwCZfc01amThQLLkYjCnUbduXV58/lkeeeSRO3q+l4aMQNd5LHpv2Y3IkuANKEHAGrtFP9eeFEQbVBbbyW0YwyrhUVm2Opd1VTT0rvZ5XrNb1b20isXXaj802OWcvEDlzPMHCKj3BGqrGdfrckITi1G21KvNSu0bk5dscbZqZSFFa1K8DSrWaQ1Al7AcsjLSWPrjB6RePc4THVrx3ZLVXA9s7LAkqPMSgKgUgUtS5Re+JBenJCR2tyTJJs8l1/4caZIR1/BaVA6vRU6TYQCcSZL32Bq2y3y1aC1p8ZfISryKQacl0NeLUSMG07x58wdKcBC7oOCBpk2bNnwy/00oIUHBZskl/eJhEv+cT+61C0g2CxonNyaV0QOtpx84uxPlpIPNiinhCpI5B71vGN6h5fGt2Ai17s7jJ4wubtRo2JadO3fSrFkzJk2cQFjpCMo36YpWbyx6gJuQc+08meu/olGEF6M/e5nq1avnu969e3fGjRtH06ZN7+g+ERERzJ8/n+eee+6m7ZKSkgivUAO/4HCIi7tp23uFNSsNlVM2qIwDK2lfvwo1a95fS4dAIHjw+X31WrSNB2Jo8gwA5oybK1ui6rUlql5bgiwxWC1msi0qqj5u4JpWdru85FRU8lSa7L5ks38wq50KatrsH8ga+x5R1l3Zs+rrr5OeHM9bYz/H3SAx7v13bsvladWq1fiGVycpolax+7iXa0Damb9wDSu5TECS1YzGeOc1h2xWC7/N+4pLx3bzzug3qFhhBC2e7IPns9NKYJa3RlBkVYIi5VjELLtwaLh2mDHjvyFq7lxmzZp1z+dUGEJQEDzQ+Pv7Y4o7i85eHVdljz3QmBU/yKzACkoHewxBXqAVyNUWTckxxP85n5y0BNyrtsS7cW+Mpaqg0mjzmUht2XYNhFO5eGffSHN2Jrnx58navYQTiz/EPbI2IXUfQ2v3d89LT6pyiitQ2wOrAFT2dG37MpXN4JsGPkRq+/DRRx/RrFkzjEYjzdt1YsXpS+j9SmMz5yj9nZ5LlyWPlVtB+cjvGiJvJClxl9g2fTi5ydeY/f3MGwoCs2fPpmHDhuw01WLnRtmCor2wV7mXXUuSl3IW8qelbecnP8PCXSlUfnQgGzcvKFJQmDpjFhkVOrE4zoDalIHaYsKWloA6U36WLCfrQrZR1lCVMirvMt2qvDcfo7xB7ktX0uvV8VFiUyz2X+GlbEUzk2xRjnNz5H9T2bFn8KjRBovFzODga0za8Blf7th60+cQCAQCgJXrNuHW+A0sRTfNh5evrG3Psq9J1zJu1vrWcHH3wsXdiwHvzuTCyUO8+OKLvPzyyzz77LPF1lRLksTU6TNp2/9DzhYMtygU96h6XN8wnaAWN98Liovp+iV0XoFFNywCm9XKX589wZA+T/Dj5HVcu3aNsmWjCB06D/UdKuRKilJRVXn69alsmTGUvXv33rE1qKQQgoLggUav1+Pv6012Md1a/oklI4nYFZ9hTk8kqEVfXBo/BYA15/ZSkKpUKgxBUbg17oV/o56kndjG2cUf4l+rHX41297WmAB169bFzc2NCxcuEBkZSc2qFTmccAW9X/F9VCVJ4uimn7i093fcNLm888YIunfrdsO2ixcvZteuXUyfPp3xm+88HWvZyrX5Y/l05s6dS9++fQttd+r8ZVxrDHf8bAiMwHSt8HR794LMUzsJeGwkANtXL2D066/el4rZAoHg4UKSJPbt2c0jT1flYswlANSSotjIq3WT5x60Ifa449qKALnKsNau8MlzpXGPU9q46NzsbeQYKsnJoqCxK22sLnLK5jgn15hl9vZJdXoA5ej13i98M/1Nfl+9jjk/fFesFJ6JiYlk50JYWGnaJyljr70sz8nz8j5AcfeRnGoPuVVpTtKZv/gxXLbKNvNX7lfGRXbvydOi++sUpVyY3UXp2zOyItCYdJHk3YvxqNICq93Kn1a6jnwtWY7nyAqsqNz32kkAcsrI73ZQdblGUHZmGhum9OTZx5vz+muvEB0dTePWHSj92nJ0oU6WD7uVJq/mgtWoJCJR2xV2Nldv+YSTUkuTLNdnstk9DE6el3+nJ5wUe+pcWdqS7IlSlhxRLOo2u2uayq60/GbwYDZu3PjACAoPV+i14D9JRHgpcq9fvOV+6Se2cXn2SHxqdaBs3/G4laledKdbQKVS4VWlORWe+5ScpBhi/pyP5GSJuFUGDhzIokWLHGMXF0mSyNowiavv1cM75QDffTWWPzeuKVRI2LNnD7NmzWLatGklGvTWY8hHLFu2jAULFhS7j1pnxJabJRfTuQ9kHN+KISgKjdEdyWLm9IHN9OlTMrEhAoHg343JZMK/3IPvouji7k3X12bgEdGAJ7r2uGFGpn+ybt06ytdqdlv382/2LAnbF2Cz5Bbd+CZINispJ3fiWaXlbY+RkhDLD+/3JjQ0lLFjx7Jh4ybaduqGS8/xuFcq3OXWmpNB9tXjZJ7ZQ25S9G3f/3YorEjp/UJYFAQPPOUiwjmflYyvRy1y4k8BYPJWNO02J6k/L+gr69gfZBzfQsX3N+DnpmTxSbFHS2U7WRRsJqdF076weQUr6VONTt/soe7yf2B9YB3HuT1xCfj1rcv1NVOIObCO4Ma90KUr6VNRKf7vFns1yVCn2l5L9sjah7gkL2Jj7YHTahUdg3VERRj4PUF5vm6BysLrUqkm6SkJfP92c57v04dXvj92U01Rbm4uo0aNwmQy8dNPP7F4r2zrnndYSf+Kp5KeNE9jk1d5E/K7dB3MkJ8r1K4hwjWYzoO+YMyrPVj+60ref3c0tWrVyjcHCYnU3FyyTbkOLYpH7U4kHlqPb9M+4FRl82CsrHE54a2Yneu43UgQU16mUa1o8/Y6TPlKn0ecEjp19MzkpzWf88EXi9AbchjdsyrffjPloUtdJxAI7g8rVqxAV+rBFxRAVj417fQcrh7e9O7Tl99+XVpoW0mS+Omnn+g6YvJt3Uvj4oF33c4krJtGYKdRtzljSDy8EZ8qTW8r4YVks7L8m7dJvHCQn+bMpHr16pw8eZLhr77N0x/9ym/psruwJEnkXD5C+tHN5Fw8JCflsJhQ641oAyPRuvuTvHspluQY1AY39KGVUBtcMIRVxq18Q7Ql4Bb1T65cuYLVemspWu8mQlAQPPBElSmF5XjxK/amH9tC5pGNRAyZheoefvT5dxhO/IyBJP39B6HBpW65v69/MAcPHiz2ApGRmsTCL4fx5ZdfOgq2Fcbly5cZOXIkzz//PE8++aT9bMotz7EovP0C+ezHrVw88zejx00gOz0JjVpi6KABdOva9YZ9fJr24dLkPnjVfgyNh2+Jz+lGWM0mfvt6OI8+PxaNRsN7fWozYvgw+vQRNRMEAkHxOH/+PKk+5SAzG/doue5MrkeQ43peXR3JrizSpSqaaTd7RiSNPTOPzV5vx1kZY7W7smjtcWJqJ8urTZ/nHmmvHWRUsvCozbIizOfwbwCsOCaPkxLVFNzqk5G6ii/GT+DNN1674XPt2rWLChUq4OUtuzXV8FHuu9JeoTjXEa8ma9L0Gded7p9NSOVGXP59MhnLP2RL5zcc19w9ZWVZPTdZqZNgVjRxK07JsXK6hEvkpsZz/e8tRL0wGYOT4k1ttscr2q33NoPiJlqlyRMAlLn2B7989yHte/dgyOzxuLm5ER8fT7dnXoDHx7LszHVsrrlknNjK9dWTMZaqimedToR1exuNi4djD7Y5Ka70BhesORnkJlzBmplM+oUDxMx7HWNYJQLaDkal1aNy/E5lLZXZS6n7ozLZMynaf6cqt3DHNZ3dpWxIhMSOlT/wxuKJLFy4kAcFISgI/lWYk2NI3DCDCu+suqdCAsgamzKdXubsz2Px0j6Km3/YLfXXG12IiIggPV1eUCQnX9d/En/1HB/1rcOy5cuLFBKOHz/OiBEjmDx5MlWr3puKzxHlqzFgtKyNSktJZsrXb/Lx/z4nJDyCnJjT6AOUiplqnYGgLm8Ts+AtSg38BpX27ppdc9IS2TJ1CI079Uej1fPZoBYsmPcjHdoXv2CcQCAQaDQatMWsL/Ag4fr4u3w361ke69ieatWqFbj+ww8/8PLLL3PqFoKY/4lKpSai4xAurJqKafdSvBv2KHbf9HP7iNs0i/Du76HW6qGYHkymjGT2zxhCToQPWzevx9NTFp7MZjNBQUE8/ukfXNT6YLPkEvvzB0i5OZQZuQCNPdWpxsXjZsOjMbrjUqoyAPqIWvi1eoHkXUu4OO15QnqOwcVpX7tVJJuNheNHEORm5ezZs+h0uqI73SOEjV3wr0GSJGIXfUBwjw/uW4E2lVpDmU4vc27bYmy3YTrMi01oWL8uFw9uvGGba5fPsOjT51m3bl2hWvo81q1bx+jRo5k/f/49ExL+ibuXD0PHfsdLY37g77gsrs4YgM2SPybBNaoennU6ceX7YVgykgoZ6c7JTktg44R+VH1sEFf2/c7Z38ezd/cOISQIBIL/DGqtnr5vf8dz/Z6/4fXLly8XSKV9O6hUaiLaDyLr9C7iln6Y3833Bkg2GwnrppG4dwVl+36Jwa/4lnlrVhob32vN023rsXDeHIeQAPDyyy/TfOgkAio1wJqVxqUfRuJarj6hz33hEBJuF59GPSn13Jdc++UzMs7sua0xJJuVlLlDqRjmwc8/LXighAQQFgXBQ4AK8CWHcIPEcVfZNUVyynuP3dyXfmgtrhE18azagjC9Ys48n6oUT7PZP0JVTkFW+vR4x7HVbsZMTVBMxKlOtRJS3WVT7CPuyvidwxV3mbWJnqiNnvhWb0302YME13vcYYYEUNvn6qZW/OYzzQUDl8uXK4fGnEGQi432fvJHdWZaIss+fB6LxcLq35ZSrly5Av3ykCSJBQsWMHfuXH799VdcXeW0oXN3pDjafL5fNhVrnebnnHZWnyG/lyz/KMc5XZbS/3KCbA52D/VynDuXriwpu1Pkxe50bF61USOefadx/aO2nP+yG2VGzANApZXfr3eTp9H5hHJl+osEd38PF3se7rw0pgC7MhVTsCTZBTGTMucEV2XR19vzbj8mJ5kg9sxBtn7/Ot17j2Djz+OY8vUXtG7dGoFAILhdwl31BHgYOWd3HXK1x9EBmLxl9xKD3eUo2ylDjzZHLuplNdjXrLysRTZFwWRIk+O0LO6yH7yz61Keq5ImJ0Uex0uxYGvs1/L2OZXdOu11fqejzRLPJ0i2uZCYmIifn1++ZzLZdCzZk0zPBj4Fnlejkveuj3bKz5bncuWckSnPLchkd8MKf/wVUo5u5tL4rniUb4B39dZs9ysl169RabDmZJB8aB1Jh9fjVf1RwkYuQFKpMKcn2t+R4l7UppK87+2xx8hVsG85lzfOom3ntoz54P188938xx/sPZ9Gdo+niL90mauLPyCkzye4la0LQH0vZd5n7TUsEnLlfbqejxLzdzJH3qdru9rfpbcSu3fCoyGVPvidzR8+jtbDD0OZWvIFi1IMzuIdan+58n72WGlvALLTk1j1QUfGvfMm/fsVnjHwfiIEBcEDT6OGDZi66ENo1uum7ZK2LyTqzV/vzaSKIKB6K04u/ojgeo/fVn9/f3+ux17m5KGdHD64h8Qrx7l65ghvvfYyQ4cOLbL/0KFDKVu2LKtWrXrgtBORo1dy9t3GZB7dgFv1/CllXSNrU/qFqcQuGYPG6I5/m5cwevjf0f1S4i6ya9kkMpOv0XvoR/z+/RiWLppH5cqV72hcgUAgeJgxNu3PN998wwcffHDX7+VdvTVeVZqTfno3CbuWkpscYxeKVKi0ejwrNaHswGmo9Uasko3sKyeQMlPITbyKyq7A0vmGQaWCCjKrKZuUnXP5aOu6Atfeeu8j6o2Yx9Y0K1dmDpJdhMrUKPHn0xhcCOn+LnG/fkb40DnF6hNzci8bJg1kyYI5d1z09G4iBAXBA09ERIRDi1EYpvgL6LyD79iMWFKotXo0Bjespiw0RTd3kJde1cXFBV9PI1f2/ULX5s3o2GEIwcHBRfQGm83GJ598gq+vL2+88UaR7e8Hap2R0k9/yJUfRhD20gzcq+d3+9F6+lN6wDdkndvLtZUTkGwWPOt0wqNWB7TufoWMWpDs6JPELv2QdLWZBl2GY0pP4MtXunDy5AnKlLl9X1KBQCAAeb01Z968EvODjLHW4/z27WO8+uqruLvffXddlUaLZ6UmeFZqohTydMoKmJ0Ug2XPXNSZCVQID+Hg4SMkp6ah9SmFZLOQfekIf9uSqNZxYL5xL/8+gZEvPoe3t3e+83/99Rca/7IY3b1J3TgHtwqN74qQkIfBPxyN0QNT7BkMIeULbSfZrJzcuoR1k4exf99eqlSpctfmVBIIQUHwUJCea+Wv62l42LNIqJwCfT2ij5B1cD0BIWWp4ib/k05yKpMppSiFTfJca1RO5l21k3lQb8+uYM5RsizZ1IpGXpuZAMC2iPqOc09GKBpva7C8OGjiT+EZFEHW5aNoo+opc7G7TB1KVMav46WYN8+dO+dYsFf//tsN38XNGDlyJLVq1WLAgAGOc7O3pzqOvzzglJnCXgDG4OR6ZTEom4XF6GW/7tTHorj5GK/JJvavtns7zjm7MeUVrdE5jZn3rg1hlfBu1J6E38YQaomnQvtBqNRq/kxQ3rVr1CO4Rj2CNTWetKMbifnhZWwZCRj8S2P0C0cKiADAmpmMJT0Ba0YStpwMUKmwZacT6BdMm75j6V0/knVLZmCNPcbly5cICHj4gg8FAsGDR5UqVdg0ezntHmvLV2FyDJgx4Yzjel4le5tOdlNxrnIv2fcVs6us/DCkxdh/VlxZzW7yNYd7rFNRM+zJOmx21yVDylXlUm6G/b6u+cbUmBU3Tv253QCENX+BL7+ayNgP3sv3bIVV8rmaKc8hr5hcXrYlTa6Sclxtd3nSZafan1URBiS7i5W5tPzBHu7pgSk1npjF71LKkE2z9g1YsXYTJ03e+D05hlDfUEx+smIn4/fP2PbD2zzRuhn1wssCcHLvRhJidzFi2IYCcz179izXPSPZGJ9D6vafiHplERZ7JqP+4fL7X52ghOpeS4i1P4A83z3XlPel0cvv0tVDdpXVaxTlZYRR/p444xmAV7M+pP+9CZeydZBSlf2ytJ/sPlYr4U9W/fAhEU0fIf5aHB4eNw+gfhAQgoLggefQ4SOY1XpulgsnJyUO/7Dm92xOxUHv5oU5O73ohk74+/uj1d7ef8s9e/aQm5vLwIEDi278AFCj3QsEZ+7HYDSz5ONOlGrcG0u5tmjd86dI1bp549uwB74Ne6DNSCA3ORZTwmXMbnI7nW8o+oAyqHRGjEFlHf0a2P1Ll34/Bh99Dgvm/ShqJAgEghKjc+fOjP96KpnpKTysuWEqt3yKZZ/0pHvXJx0BzLmm7DsqHlpczMmxXF75IeaLuwn09ycuRcWiEyakLl/h5hWEPvZEvvaqiq3oUwq+/98QPH2DuXrhJNWqVmXmt1NvuLb/smYjUsiTpB/ZgFtUPbQefliyip9q/XZwLd+Q5C1zb3gtfvtC/jw4jyULfqBixYo3bPMgIgQFwQONJEm88e4YNC3euWk7c2YKRu+iXXPuJUbvINKjzxTd0E5a0jWMRmPRDW/AmTNneOedd/j5559vq//9QO/qjtakZdx7oxkxeCC//b6Kt959FNfI2rh2+xi11lCgj0qlwuAbisE3lFy7lglN4c5dl7f/jHvKFb75eaEQEgQCQYmiUqkY+tLzrFg9F6r1v9/TuS20OgNNB07gvffeY8WKFQDUrV2Ti6ePQsMWJX4/yWYl/dhmMuaPIjQ4kHKlQ9iLEUvz13AvL/vpZ6YX4s6lUlMqrDSTJ35NWloafn5+GAwF94k8Dhw9gVvLL7g8rT9l+n9d4s9yIzRGd6w5GQXOJx3fjv7oz/yxce1N5/wgIgQFwQOL1Wql34tDuI4PPtlJqM7tROdkXs0j1yMIi82Gxc2HsybZYGpzUoZIOuXjW50ja/hVTu5G2X4RynV7Tmyj3SwLYPb0dhyb7BUijV7O7ivKzSS7WdNqcEcyuGP7R02AbF/541bvomRx8DfKfU4eWl9kTYQbcebMGQYNGsT8+fPx91fcoGZtk82+X+1TMmXo064V6I+TG5fzfK12lyGb0we7LjPRcazJlc2q2hwnq4mkuHRlBtv9Lj2Ud9UqWDGzPht4lI0b5d+Xv78/L/Tvxwv9+7FlyxaGDu2FodUoSrfqy6WTex19ct2V51PlmbVdlKxLjwYov+u0PyYRknSOmQvmCiFBIBDcFbp3786337ZBV284Ko0Wk0+E41reeqq1u7KqnLT0Vrsri00nWz7NbvI6me0f6WijzZSz9Jm87RmNnGK01ElX7GPK67fBaW1X28fMK/imT5NdaqwGZf3NcxNNNqtRB1VE4xnG9u3badq0KcHBQVyLi+ad1bI7kZde2SPmnk2Rxw6Ss9K5JF4EFFdVAJN9zTeUkveAHgEWstISObJxAdF7f6HvE0/w1P+WMmrUKP6Ks+AxfCmZWj3qs38B4GrfZ3I9ZHcdvb36sbZaKzbPmcq4se8XGVPx88+LycaAMSNRdk3V6MhOuYarXaF4Il1+pnCD8jtxC5ILpF3MzAGgvpeyH+5Jkve7zfLj0y1A6edh/5I22rPuad280Gl16ELkjIG5SdFcnz+UTRvWPXRCAjystjLBf4JPvviKHdcNeNd/ylFfoDAkmw217va08Q8K636aTI8exS9KA2AymRgyZAjz5s0jNDT0Ls3s7lCYabtly5Zs27aNjK0zMKUl3PK4FlM2q8Z2Rpt5lR9mzUSvv7sF3AQCwX8XvV7P008/Tebuh8eaeyMee/plRr8jpxbt0K4Nm5fPKBH3o+yrx9ky5wM2T3mJx+uFsnfvXgYOHMigQYP49NNP8er3rVxUrRioDa74+vqSlnZz96G0tDRee3M07l3Gyv3sQtm9Qq3Nn2kwfdXnzPpuBpGRkYX0eLARFgXBA8mK335n5s8rKfX6Kmx/37jwmDP3ugpzcTClXkdbRKXHPHasXoCPt3u+IjHFYfTo0QwfPpywsFurAn2/yU5LYMLcCYWmevXz82PhnJk0a1Wd8q8uK7DwFsa1MwfY9s0gJnz2Cb163LwYnUAgEJQEvXr14uslQ6DJM7c9hiRJZMWdJXH/GrIvH0Eym1Dbg2ptFjNqvQs4r4PmHGy52WCz4VqqMj5hFfAsU6NIpVphePsF4uYbxpEjR6hXrx6PNm/Ewd+/pU7notNx34ic2LNk/fYhtcsGMvqVQdStWxeVSkV2dja9evVi+vTpclXoQ7eWNerJJ5/k1VdfZdasWYW22bNnD/Ue7ckZn5DbmvudYnOq7ZN54SAVXDJo1arVfZlLSSAEBcEDx+bNmxn61lhKjV6PWqvDVnQXbGYTku3WKyHfTXLTE3HxL7qypM1mY/WCiezeseWWxl+wYAFqtZouXbrc3gTvE3Gn9rL0jZYsW7bspotnvbp1ee/t0cz6Yx6ezV+46ZiSJJG9bgKHL+3gj7W/3bQYnUAgEJQkvr6+mBMuYjZloXLSXudl2csKrCCfcHLzlDSyFl2dGkvi3hUkn9yBS0Rt3Co1xa/9UNR6F1k4AGzZdg26k4ZfZ3d/NWemkX3hAMm7FnNl2yL8HnmSwMqNUKk1jkxEKrvrkNqqFBpVZcsf6PsyZSXbNw18CH59MBMmTODHH3+k73PP0O3tqUTHZmEz5yj97PPWZcn9cyvIcQVdQ2QhJu78UbbPHIbRmsO8uXOoVauW8sySxLhx4xg8eDCr4sqwKi4d7QXFtVRls9n/lt1x87JGtfNTFIEqYwcOf/cDNputUJfSb2bNJ6bWENR29yrJlInansY2y+4+nG2U3bhKGZXfSbpVHs/HHiu4L93suFbHR/69Wuy/gkvZikCWbJGP84qD2swmrMDrZbL4bPwrfLdy2Q3n+bAgBAXBA8Wrb77NvGW/U6b1QDQHVwIguSl+mXlp1tROqdiMSZcw6vWorx4lI0QuolU7OMhx/W+n9J/6DNmVxezk125IjXUcm51iFxzjpyg+/nkVIm1OQkmW1Sn1mz2IKce7FGnJcbg37IXJTbmXzbc0AIPClf7eiVtp06rpLVkFLl68yMKFC/ntt/wpVD/fqMQLzDt8GQCdcwyBk7YpL1Wp2cXbcc7i9F7yNjlNrpIiLs+fFkCyj+Xcx3kje66GHI/hb5AX4vjoC6Tu+Jqd8+axevVqOnbsWORzvjP6Ta5eHYUpZRePdnuJz04oC7c6/hwArzUMZ9X8rwmI0DBlxf7b1qgJBALB7aBSqfD39SXTklt0YzuSJJGy91eSty/At04not5ejUqrw5qTWXRn53trtLiWq4+nlz+23BwS9izj9ML3iOg0Ele3W7NQN23alC+//JL4+HgiIyNROcWk3fRZrBZOblvJnqUTqF61Ml99/iHt2rUr0G7ixIl4eXnx7LPP5turbgWjixs1mnSmf//+zJkz54bCwrWEJNwja5F96ZgyR5tVrgR9l8mJOY3WLsTt/3MlT3bu+NBZ/P+JEBQE952srCz27t3L1Omz2J+kIWDQXPQxR25pDLeAcDKvX3pggm4kqwVzciw6T3+wmgtvJ0l8+OGHzJ8/v/hjSxIvv/wykyZNQnOTjD+O9jYbWdHHMafGOxW5UeMeHIXe886qHheHiycP8uuM97kefZ5p30zhf//7X7GDi1UqFdOmTqRR0xbkZKZDvZEF2physji2cyXbtmwSQoJAILgvREaU4WBSNMWJlLNZzEQvG4POJ4RyA6ei1uqxFdO98mao9UYCmz2DX1RdLq2aTGTbARh9bi0bYKdOndi5cydt27YtVvv03YvJWvcVDdq3YcfmNTeMlcvJyWHy5MkcO3aMOXPm3NJ8bkTrri/y9+/jad26NcuWLcPP7+aFOF3CKpFx9i88KjS643vfDEmSiFs6juDu72LJSGbtoins273trt7zXiAEBcE959KlS8ya/SMHDh0hNzeXq7HX8YuoQUi1jrj63F7VRI+QciSc/gufEp7r7ZIdcwqXUkVXWzy89TeefPLJW6rMOHXqVFq3bl2ke01OzCkStszBnHAZ17BKuIRUQGV35LLmZHL18HosWWl412iLX+0OqDQluxxYLWbWf/cObuZ4vps6ngYNGtzWh7xKpWLnti0EBgbhcjUVr85v55vr9A/6Mfilgfj4PCi/fYFA8F+jaoUozmYl4Zp00XHO5C1bkG3GvFg1CclmI/qnUQS07Id3vc54a+Q1McUqW2OznSwKNpPdmmu3VHgFK8GwRvtSGuouuwLpA+s4ru3xCyc4rCrnp79IVM/3cTfZXZecqiBb3GQlUahdPlmyR3bNOZ1kJC3tHG3btiXIqKJrhIHfE5RYu26B8lxcKtXkr/U/cfbMEpYe2F3o+puSkkKfPn145plneOONN/hpt5ytbt5hOWsTnoogY0yWsxratLK4leeedTBDmXeoixVQU+fJN8hx+4XHnuxJpfJlqVC+PC+9+AIBAQHYJIkkUy42u7Xbp/VAoue/gWuN9qjsmQkPxsqFWE94BzrGruP2z+BtRXgzquW9c68j86nS9hF7AqawfT/gX+MRHq8WwPvP1uCzTz/BxUWxwj+sCEFBcM84ffo0Hbo9jSa0Mpaw2hhafIhaZ0CbkUQqkAq4xcmmQqtTNV9tthLsZAqoYD+Xkm9st5BynN+6iOCY46jUGo55OKWRK1PTcZyZKfdTpzuZVJ38RvNck7LzcvQDWqecyDb7B2p1N+W/zoYrTilH7WMlntiGd/O+2ILK5YuxGFxWTo3mrbciSRIndvzKK5M/o7jMnTuXw4cPM3PmTMe5ESsV16Atp85jy80m9rfxaFUqyj89joplFSHk7wzFuuGPhNWUSfLiMZyf9yaRPd5B5aYUO8uxp3LVZSiZh5yrWDev0xCASp7KmJ56efFMT01i+ddPE+Lry4IlS+84PalarSYmJprWj7Yh4/tePNnvNUIat+L8sb2sSLjMsKFD7mh8gUAguBOMBgNkFd3u+prJuJZvgHe9znd1PjrfMEq3H8SFXz+nWpu+xU74UadJO+Z+0p/BgwcX2sZms/HduOfx0OayevXqQlN+HjlyhJdffpnPP/+c+vXr39ZzFIZaraZpu+40btuN6IunSIi7SuNmralSuSKmnCwki7Iv6XxCcK/SksRN3+HfrvDnul0kSeLE+h/IuHicBk8M5svh7ZgyZRIDXrh5bN3DghAUBPeErKwsuvfqg6bXRPT+pdGXsK+gSqXGq1Ql0i8exrNsnaI73EXMKXHkxl/ArXyDm7Y7cXAnIX5uVKhQoVjjnjt3jtmzZ7Np06ZCP7xzYk4T8+un+LfoR2SHQfazhae40xjcCGrcE4+oulxY9ilh/b5C63ZnmvkNS2ey/fc5TJ82hUcfffSOxnJGr9ezfdtWLl++zHsfjGPj0ulcvXSeiRM+Fy5HAoHggSf74mFMsWcIeOzle3I/1+ByeFdswtWD6yldt3g1erQ6PTqdDoPBQOr16ALXrRYza2Z9gK/RyqqVvxe69v7666/88MMPLF26tEjXoDtBpVJRKrISpSIrUa1+a47v38qWj0eintiL0BdnONr5PfoiMfNeJ2HDdPzaDKKkdgxJktj30yeYszMI9PVj9+xX2b9390OXrvxmCEFBcE9Yu3YtpSrW5bJ/6bt2j6AarTm3ddF9FxQSNswg4LFRN20jSRLzvn6DFcsXF2tMSZJ44YUXHJmObsSFv1YT+/sESj/zOTqvwBu2KQzXoLKEtupP9JJxhPf7+rY+vM2mHGZ/9Qplw/zY99cuvLy8iu50G4SHhzN3TuGp8QQCgeBeo1KBjzWdTFfFKpuXfAOLCclmI/73rygzZBZ67yDC9PIaez5VDuq1ZcjF1VROAdF6eyKOvCQaqQnKh3uqTtbip7rLip1H3JU1u3O4PIe1iZ54N36KC98Nwlelx0Wn1CvIsw67qWVFUqY5/5qv1Wrx9/UhyMVGez9ZO39y9xo+mjiUd999l1de+eaG78FqtfL999+zcuVKli9fjl6vZ+6OFMf1z/dfl8e3ZyTKS5oBoM+QnzfLXy5UpsuS+11OUKz27qHyvnIuXf583Z2iuAedjr0KVCfsg62cGFke9+N/4llDjrVQaw2EDfyW6799QfQPIwnp8R4aF09HpiKAXZmyW5KUVzjUKc1pgr2Ymt4o/y4e8wNTVjrrpr1GRKlQzp/Zy0ujX6V79y+KFTv4MCEEBcE9QaVSUbpcDS7fxXsYPf3R+4SQemYPHuUb38U7FU72pSNY0q7jXrnZTdvt2bic/v2eo3r16sUad+/evdSvX59SpW6cbvXcrt84u30ZZV6YUuziNf/ErVQlXGKqkrRrCX6Ne91S34snD7Bhzlj+N+492rcrXhCcQCAQ/Fto2vARfpn4M4TfOGA269xeXCNqofe9t5pmlUpFQPVHSTq1m7BqzW+pr1aj4scJr5GSnIg1JxUdFo4ePUpISOH1Cd555x2Cg4NZsWLFfftgVqk1RLyymOjpA3D9YDNauyuySqUioN0QMs/s5vKMl3Cv3BzfNoPQeQcVMWJ+LJnJ7N4ylxPbf6Vup4HE7lrEtIlf0Lz5rb3fhwUhKAjuGZkWFZo0WWNgc8o1bUxVtCR5Wg6dU0BYZhnFhccl/pR8oFK06pJWyTNR9pHHOP7LBNzLVEdj18KYwpSP8SbBsqZll1bxqZTswU0AOfbqzi6BEY5zpuiTykP4yh/qh6KVOetSYh3jXFv5JaUHz6JDsPJ8tXwUX0mt2orNZmPJxnmsXbuW4pCdnc2QIUOYPXs2S/co8Rpjj8qap9Q9y0k7sJqwvuNpGRnuuB5skJ/rSo7yrsJcFCGihX1eC2yPKH00Rs5+NwT/Gm3Q2eMxDOWU66+XVTQsPRu4kpOTw9tvj2XFihXs3r2bwMBbs2QIBALBv4HAwEBUklSoo2faobUEdBh+T+eUh2d4FS5v/hGKISiYcrIwm+W94ZspE1m/bh1t27Yt0kXWarXy2muv4e7uziuvvFIi874TXKPq4V2lKVc/60DQoB9wLVvPcc2tfEMiRi4g/chGoueMAsmKe7VHcS1bF2N4dfL8kiSbFclmxZIci6TVYsvOIOHkNjJObCXi8f606vs+yz5+mvXr19GsadP786D3ACEoCP5VaPQuBNd8lPg9vxLS/ParZN4O1/6ci3ejnkVqJ/5YMZtatWoVKxuCxWJh5MiRvPnmm9SoUYPTe/JXsUw/utEhJKg0d55eT6XR4l39UZKPbMCv9s3rHCQnJzNgwAAGDBjA119/fcf3FggEgoeVzMxMEnNy8bUpiiGVPbmFR/QRrkYfp27l2o6g4iS7fkpKkbPv5LngqJxq9OQpzvTpsuuNOSfNcc2mltd7baacbGJbhBIs/GSEnNHIGlxevn/8KWw56fnr4Njdog4lymPW8ZKvXT51inr15I/q8uXKUb6YxSu///57IiMjefllJf5i9nY5w9GXB64rz2Svy2Owu1VZnBKXWIxe9mvX7c8vvxPjtVOONl9t95af2+66pHJKP66zj5X33l4cPYPpg+rgtelTAtK6U7bVc+zUytYFa3oinnU64VWjLZasVLLO/kXa5u+4nnAFyVW+h2QxoXbxROPmjc4zAFQaatdoROm+72M88ANnd3xPwvV43NzcivWOHlaEoCC4Z9juUeVk/woNiP1lAv51HkPnfm9SZiYf2Uhuajxhz35x03bxMZdYPns8Vy9fKnJMm83G448/TufOnenZs2eB69mXjpC48TtKvzClRISEPHwfeZILc9+4qaBw9cJJnnzjLcaOHUvr1q1L7N4CgUDwMPLZ11MwR7UBCq+bU9zMQ3cDm7V4+685N6fQLEaFceTIEVasWMHKlStvZ2p3DaObJxVr1GPrul+Z+u1M5n3VgwSzEbdOb6H3Vdx4ta5eeNZoi1+UHN+Ym5f10Ml1SmOvkh3u40L8qb9I3r6CTRvWotOV3N77oCIEBcE9ITw8nOwl67BG2lPCOeXBzzEr/2HV9kAui9Hbcc6YpHxUq9NlNx+Lv2IGtTm5HuXlXS7T6lkuLfsfZR7tj5tTetPD5+wHTulPcVowMMoaCVO20sdZwyMlylEW7gnnHeeunDlA9pW/Cev9ESq7S5Szu9EzjZVneeqpT/l1+TKMxqLL8owcOZLc3FwC6j7Nsr2yZmbOZXmxykmKJvandwkf+gONykY5+mQ67QVLYuR3Wd1L0SKF6ZVkrWcz5UWwqa+yGO6IltDojah1Osx+shvToaed52pk5syZrFq8mKVLlwpXI4FA8J9n/vz57Dh+Gff+jeHsnwWuS5Lk2BvuFxpd8T7+LxzYwFMvdin2uEeOHOG1115j0aJFD2wQr1arZdSIobw8fAg7duxg+GujSTSG4dF13C1nP4o+sI70nd+xfMmi/4SQAEJQENwjatasyZbVP+MX+STGsMp3/X7uwVGUebQfl/+Yi8EriJCG3TCUcBVic3Y6V7bMQxUYRVivcUWWhz948KCc+7mYvoypqaksWrSIPy/kX8pMadc5PGUAYf0moHHzvt3p3xSb5cZasW+++YZTp06xYcMGkZJUIBD859m1axevfjSR8MdfR315P7qUqwXaZGldULv7cNakrJk2ezCDZI+LU+fI2Y9UTrVqsv0i5GueAQAYz+12XDN7egNgsivdjF4BTneUB8+Lv7Ma3JH+Yc3IttfJ0bvIbjP+RguSJHFw8xKazBlfrGdPS0tj1KhRLFmyJF8K1FnbZMXWV/vkWD592rWCne1uWTan5Bt59ZNs9hhCXaZc70iTq8TGae3vCXtmosxgp2KlHvI7aBUsF4h7v70ruycrUSMqlYqmTZtyaM92XnhpCEfO/IklROmf6y5/I6iy5flLLkrmvla+WvbMeZuc9HOs++0XXF2VOMR/O/dXxBX8Z9Bqtezd+xfSpolINlvRHUoAF79SVOzxNr4VG3F+1WRi9/xa6AfwrSDZbFz/ewtnln+OX+WmBHUcUaSQAPC///2PL764uWtSHllZWVy6dImAgIAC107OfZvyT72PPjDyBj3vHMlmRaUuqENYs2YNBw8eZNKkSUJIEAgE/3nOnTtH9+cGEj5qCeoiNPYl6R56O9jMuUW2+eX7j2nXrm2xLAOSJDF8+HDGjRt3V+sk3C42q5W33nqLSpUq3fD6N5O+4viPr5Mdd+6G153Jjb/ImnGdaVszmM0b1/2nhAQQFgXBPaR8+fK8PbAX835+he4jJ+DpI38Ep+Z6Otro7KKrycmFZs5eJZDJK1d2CbI6ZU3SpcU5js1eYQBoM5XKy16lK+HZ613ij2zmxML38K3UGP9abdHasyKRpCRtzctXbTE6zcmey9mUHEfCkY2knd+PV7n6lOv/FWqtHsmpcnG7KnLg1zON8wc3bdq0idKlS1O6dPHqSAx4aQhNuo3kp92pTDivaFzSL+wn5foVvLzLODI4/ZWqbADmlHjHsdpubTiWoVyv6KaMVdldfsmXs5VNQQqrgjUrFa1/OMeGKu5ZGzZs4N1332X9+vVCSBAIBP95Dh48SM+ePQkesRK9TwiWS4cKbavWGrBkpt67yf0Dm9WSL1Pgjcg15bBp+Sxioq8Ua8yJEydSq1YtmjW7eSrw+0Fa3EV+e78DjepUY9WqVTds4+LiwvG/j9KiUw90T45F63rjuj+m83tJXfgqa35b7gjy/q8hBAXBPeXFgQPwcHfn6SfK0//NSTTv3O+e3FelUhNUsw3+1R8l6eROTi/+CPfQiniWqYbBOwSDd2CB+gOWzBRM1y9hvXaOlFM7kWxW/Gt3JLhZb9TaWwv22rVrF0888USx2q5du5YMi4HqDdoUuHZ9zRT8Wj1/S/e+VdRGd3ITlLiQlStXMnnyZDZs2PBAao4EAoHgXvLzkqX0e34A4a8sw3jhL7jwF5KbvDZKTtZldW4mAK7mHMhKJj0p1qFoqR0sZ8f72579R29XOJmd3F0MqXJMntnJHSkPY4rs1pOn3HJOFpJllecg2ePzkjPS0JeuislLqeFg85WVVoPC5X7Rf8zgtVdH4eHhUeTznzx5km3btrFs2TLHuc83pjuO5x2WlW+6PDchJ+VSXkYis4s3ABan583L/KSxZ0bKy9IkOfV3tJdkl6LnaigKrfTz+1g560PO6cz88O0kunTpclPFVkREBD/PmsqLw15lyCcLmBptz5oUL1sZBlf1YuxHL3Pq2FF8fX0LHeffjhAUBPec3r2fokGD+vR7fiCndv9GtkVF9ZZPUbZGUwKC7m4xGrVWj3+1lvhWa0FG9GkyY06Tcv4AuanXUak1jkXeplKj1hkxBEbi4uJBWMt+GP1L51uwioskSWzZsoXXX3+9yLaxsbGMHz+e596fX+Ba5rn92HIycK90d/M1Z57Zg9q++SQkJDBw4ECuXLmCXn97hdwEAoHgYSUtLY3Va9aQmprGtp1/sW3bNkIqNaDse5tQ610gPbroQQCDhz/m65fQO9XouVekn96FR4UbF4IDyMlKZ+PGjfzxxx9FjmWxWHjllVf47rvvCv0It5lzSD2wmowjG7DmZjkyBtnMJlSSDc9yj+BT53G0Lu437H+rZKQk8McP76I1JTLmrRF07dq12Jbvhg0b8sqwFxnQsSyVJp5C65Qpccm093h79Oj/tJAAQlAQ3CciIyPZumUTAGfPnmX7jp38tvwjrsYmUrZWS2p3fAGdvujMQLeLSqXGo1QlPErl91+8mevR7bJt2zbq1KlTrExHP//8M/369UNrKFhjIfaXTwnsXLSwcSdY0q4Tt2QsEa8sJiMjg+bNm7NixQohJAgEgv8Up0+fptfzg0nNtmAp3xJ8SmP0aonngIFkqdV4JMmZ7/ICcLXZco0bU4CSkU+bneI49oqoTvaOhXg26g7AMXu1YHWZmgBkZspt1emK22xewG+etSHbKVuf1m4tsNmDmau7KZ9zG65cc/SXbDbSL/+Nf+9PsDhZzQeXla3i3noru7dvpHPnzmi1N/8ktFgsDBgwgIEDB1KqlJwtcMRKWfu/5ZT8PlKPbCBl5yKCmvWh0VsLMXoF8HeGEhtozU4jdf9KLsx/i+BmT+NSV7G059gDrHX2582zPjSv09DRppKnPJanXrYo1POLpVK7Svz88883TCNeHF544Xk0GjX9+1dk2AffULVVH65Hn+fbyRvZtGLubY35b0IICoL7Trly5ShXrhz9+/Xl+vXrzJgxg//1qcxnc7bgH1yKwEilsnJyVhIAblf2Oc7lZY0A0NqvqyQl04GzFSDPrOssCLgmKMFMOnv/zECnxT5H8S1Vm3MAyApwLkKjjH8hW/YDda6gvGjyZMaOHVvo8+exf/9+fl27jRffm8Gnx5WFVUqNxpx6Dclsok7Nxo7zBrX8jGrnQGqtEjDn4SabkCsYlHeR7RRHnmmR530kSzlX/dgc2j8/hMb1vOnRowfvvPMODRsqi7RAIBD828nKyuKJLj2wPj0NV79SYF9jNSlxRfQsHL9y9fh7xdcENux2T+O80g6txb1qywKutXmYc02snv8VO7cVbU2YPHky1atXp3v37gWu2SxmYn/9DJVaTa2xm1DrDBh1BetUa1w88G3aB7+A0lz89Qs8XbzwrNLilp9LkiTmf/0GU6OPc+7cOSIj7yy5R79+/Xj88ceZNHkqcz/oyZVL5xk/fryIyUNkPRI8YAQEBPDee+9x6MA+5nwxgqT4mPs9pTsmMzOTatWqFdluzpw5tHzyBTQ30OokbV+IT8OCi3NJIlkt7N++jgYtOxN98TQ6nY5nn332rt5TIBAIHjT+/PNPomo0Ru9XqujGxUSt1eFWqjJp5/YV3biEkKxmkrbOxb/t4ELbbP51Np07dSgy/uzMmTP8+eefvPrqqwWu5WQkc+mHEbhXbExot3eLzAAFshtwRNe3SNy2ANP1oguQOpMcH82kt3ryaKNqbN269Y6FhDz8/Pz4cNwYdm3dwNVL58T+Z0dYFAQPJJGRkXz60Qf07P0otSZfeGil+sT4aDw9PYtsFxMTw19//cUrz3x0w+uZ5/cT2HFkSU8vH0k7FtG45eNotFrmT3mPj9577a7eTyAQCB5ENBoNHsHl0KTJgcY2e5Y9Y6oSj5DnFqNLughAZpkGALjEK1n68jINSfaioOHVW3Dq9yn4+QZiOSvvaaYw2WKel8Vul1OijLw6CDl2q7mLU3yDKfqkfGAvGHooWpmbLkUOgo49sBqfpn3oVDYEyF8IVKu2kpOdyeUjm5i5dm2R72TGjBmMGDGC5fbin2OP2oujJkVzdfZIHhvyJQFRtQEINsjzvpIjP3+Yi2LNaGGfwwLbIwCU6jSK6OWfENX/azTZaQAYysnXXi8rBzf3bCC/f0mSmDlzHpuWLGHOjMlUqeJUQ0Fw1xCCguCBpXXr1jRpWB/Dpg/p8vxbAHyHbKJMd2pnTFbSm6rt6VNxygDh7IZkSJdNxzon31GTR5AyVqpcLEfvlPIUp/5Wg+zOo8tSXIuyStVwHP/cPS+2QP57+PD3GT169E2fE+DlV9/gsf7v89FBeaFUZSnuTrmZKeh8QsHoRqSL4jsUnysvwjanuhQVAoMdxw295QU5LkcxHAY72RBXXpSf8a2aXlgtFj7ZNpMZe/7A1dWVr2yZdOjQoch5CwQCgaB46Fw9CarRipi9qwjsMOyu3suUeIXMUzuIeHVpoW3WLpomx8QVEZuwdetWzp49S+vWrR2CAoA1M4Wrs18m8Ik3HELCrWIMKIPBN4yMi4dxDy/c8m4ymejbty++vr78+uuvuLuXTCC0oGiE65HggebHH39k6fefcfX8ifs9lVsmOTmZw4cPU7v2zRfQvXv3smPHTqrUbnzD6xmntuN+Gz6ct8KGpTNo1L4n7u7urFmzhlatWt3V+wkEAsF/Ef+KDUm5cgxLVtpdu4c1J5MrK8YT1ndCodb4+NjL/PHbj3Tp0uWmY61du5a3336bGTNmoHaq7mwzm7g6azgBj72MS+miXWtvRkDjXiTsLlygOXfuHK1bt6Z///58++23Qki4xwiLguCBxsvLi+49ejJtzPO8Nek3IPx+T6nYjBgxggkTJhTZ7suvJ/POxGWFLui51y/hUf3Rkp6eg5SEOPZv/Z3Rk1cC8O6777JgwYK7dj+BQCB4kPHx8cGcfAlrhUD5hD2zUI5ZiVlQW+yuN0ZvAIxJsp+9Oj3W0cbiLyfFsNldjySN7IJTqmU/Lv/6OZHtB+Fmz150OC+nhlNmozy3Iozyh7EpO8NxSWW3mkuJskXdPUHOOpSbkczZTT8S1Pk1DIFlAcXl6JnG3o7+7dr1YsniRTetm3Ds2DE6duzIjN+Ps/WiHi4mM+eyC5IkETP3Jbwb96JVs04AZDoVSV0SI7+b6l6yZT1Mr1i9z2bKgeFNfeW/d0RLGPxLY81Kxewn7++Hns5LUGJk5cqVvPDml/z888+OTEuCe4uwKAgeaNRqNUuXLOaneT8wflRnkg5vuN9TKhYrVqwgIiKC+vXr37RdZmYmZ86ewz+48AXQlpWG1v3uFTqbP+lteg//GI1Wy7lz5wgPD6dq1ap37X4CgUDwIFOjRg1WL5mFOfnuJNPwLF2V4HqdOPPLeGJ2L8eam10i46ZeOMy5lRMJemwkruHVC223efNmypUrV2RV5cOHDzNt2jR8/IPznT85721cImrhWbtjicy7MJYuXcqiRYtYtWqVEBLuI8KiIHgoaNy4MTu3baFsVBR9hn1I+VZ90dlrDcy9onyM55lzNU6FXKwmp/yfdi2MLkkpU29MddoM7OEIaqdKmGqzsohb7EFllkqKK9DrkU45R5F9KSdNmsQvv/xS5HPNnvMjSZW78tHfZsCMJlXOfy05mXhd3H2QLh1Cr9VyNDPMcb68Ub5vfS/lv/HZHGXssxmyxibEqMxv2Skl4C0itAzXD63H29ub6jXqYDabaNmyJb///nuR8xYIBIJ/KwaDgR3bt9Nt5Fi0vSei0hTd51bxLF2Fyk+PI+H4dk4u/pCQep3xqVh4UbSbkZscS8zKiWj0LpTv8ga5YZUKbStJEhMmTGDu3KLrAyxZsoTJkyez22mLTDq+ndyMJHwfL7maPpLV4khBm8fRo0eZPXs2K1asKDKGQnB3EW9f8NAQEhJCYkICc+b8yPcf9sDFK5CGPV4DXeGL4v1g/fr1tGvXDi8vryLbLly0GJde39+0jcbojjkjqaSm58CUdp2zyz5lwuQFJMbH8NmrvRg7diw1a9Ys8XsJHn62bt3K+PHj2b9/P7Gxsfzyyy/5/Jv79+/Pjz/+mK9P+/btWeuUUSUpKYkRI0awcuVK1Go13bt3Z9KkSfl8jo8cOcKwYcPYu3cvAQEBjBgxgjfffPOuP59A4EydOnV445nH+ObbXjzz1reElKlAaq5TIU67Lsdkd7mZs1fOduSVq7gHWe3ZknRpchINs5ei6NFmyoXVAqs2w698PWL2/k7s3t/wr9Ea/+qPotZoIUl2K7pRIVBtRiJJf/9B4pFNqPVGgps+jVupyvL97Mk42lWR6/0809jN0W/jxo3UqlWryHSos2fPRudXjm1XPZhwXqnPc2b5FwQ9+ZYjS9NfqbKbkTkl3tFG7eYNwLEM+VpFNyXrUWV3+YVdzpYFAymsCtacDNSeARwbKrtdnTlzhk6dOrFz504hJDwAiN+A4KHC1dWVoUOHMGTIYE6cOEGHxzqjb/QMLq2HFit3891m4cKFLF68mO+/v/nHP8CFCxdw8w4iVV+wCrMzbuFVid++CN+a7Upqmlgykjg0awjVXpxK7JWzfPH604z54D0GDBhQYvcQ/LvIzMykZs2avPDCC3Tr1u2GbTp06MDs2bMdPxsM+f9PPvPMM8TGxrJhwwbMZjPPP/88L730EgsXLgQgLS2Ndu3a0aZNG6ZPn87Ro0d54YUX8Pb25qWXXrp7DycQ3IBhQwZToVwU7drVp/fQMXiWqkal+m1LPF23Ru9CqWZ9CG3YnWuHN3Dqpw9Qa/UYfUPRe/qjsn94W1QaTNcukJsSh5STgXfFRkT2eBeti4cjFWtR7Ny5k3btbr6XxMTEsHDhQp55N7/VIf34VtQuHugDyhTS8/ZQ610xJ8oZBw8dOsSgQYPYuXOncDd6QBCCguChRKVSUaVKFc6ePsFXX09kwTeP06LLQB5p2xuAcxnO/7SVj5XyHnJ+56MpAY5zerWSlWhrqtwv5cxexzn3mKOO4+xyj8v9n8sfAHb9+nU+/vhjYmNj+fnnnwt8IN2ILVv+xKNyOwyxJx3n8jRQkkapNm3wLYUp4QqWzFQuJihamyrhskYoy6xsEO39lDzZsXaNzbpk5V20LVsai9nE6s9eof+zA/hr/f/4NfkK+/buoVw552rTAkF+OnbsSMeON/dJNhgMBAcH3/DaiRMnWLt2LXv37qVevXoATJkyhccee4wvv/yS0NBQFixYQG5uLj/88AN6vZ6qVaty6NAhvvrqKyEoCO4Lbdu2JSEhgb1797JqzXoWj5uO2uhJteY9qVCnOSpD4cHAt4paZyD4kc4EP9IZyWbFlHadnMQYbHaXV43eFc+KjdH7lUafLacplW5BaLFarWzatIl33333pu3ee+89vvzyS45lKUosSZKIWfoRYf2+vo0nuzmXZ76EX5uXiI2NZdSoUUycOFEICQ8QQlAQPNTo9XpGv/UmL48cwbvvj2Hq6F606TUSXYWW9+T+ZrOZRYsWMXv2bN5///1bSiu6ZMVqKvf+nIsnz9+0nUqlwu+RJ7i+eyl+Ze7MLUiSJDZOGoynbxDbfp3BKy8P46levR7agnaCB4stW7YQGBiIj48PrVu35uOPP3a4OOzatQtvb2+HkADQpk0b1Go1e/bsoWvXruzatYvmzZuj1yuuCu3bt+fzzz8nOTkZHx+fAvc0mUyYTEpMUVra3Us7Kfhv4ufnR4cOHRy1ZeLi4pg9ezbjeg9i+Ljvqd24LYGRcvBwcpbiJup2Ra7CLNk/9LVO1/Lq++R96JtdZFdVZ/ciV5sFV3cfNLmZAGQGylmUsFnQ5siCgtosB6ZlBTgreuQxL2TLSqSle+S6P6qrm2nRosVN3XnWrl3LlYRsjmeF8+lxWfEkpUaTef4AhsBIalWU6wYZ1PL81XmxBVrFPcnDTRaeKhjkNtlOYXyZFnluR+yhg8+oDrPaz8DwF5+mT59uDBo0iEaNbi9WQ3B3EFmPBP8KXFxc+OrLL/jpx+lc2rucNV/2J+7cESSnYmklTUpKCi+++CJxcXEsWbLkloSE+Ph4Lly+iquXf7Ha+1R/lOy4s2Sd23e708VmNrHyk15kxp2hXhkXtv+5id5PPSWEBEGJ0KFDB+bOncumTZv4/PPP+fPPP+nYsSNWq+yTHBcXR2BgYL4+Wq0WX19f4uLiHG2CgoLytcn7Oa/NP/n000/x8vJy/CldunRJP5pAkI/g4GDefvttLl68yL71c/l735/3e0rF4ujRo3Tu3PmmbWbOnMkTz79dYF9I3rkIn4Y9S3xO65f/QPtuz3P8wA4CAwPp3bt3id9DcGcIi4LgoeDAgQN8M/17Dp6+CGo1bhrQqKBtq+a8PGKoIxiybNmyzJ/7A6dOneKLCRP54fP1LFo4lyZNmgDwzRZZ2xjhZnGM/X20or1UHdsIgDmwvONcy859Hcfl7K5Lly9fpm/fvowdO5aWLVve8vO88sZbpFftxvKz1/BOuug4b3GRNaYWoxLcmesma2RDn/qQq3Nfp/TjozD6l2bbuZ0AZAZVdLQ9qFVcnvKyNY1uGsXf+/5k7ldvopVyWLp4MQ0aNLjlOQsEN8N5g69evTo1atQgKiqKLVu28Oijd68OyNtvv82rr77q+DktLU0IC4J7gq+vLwvmziY0NJSGU05j8Am531MqFJvNxpYtW27qdrRlyxYkSSIgJH+9IslqxpwShzGkfCE9b4/cxKvEx16mfLV6fPBiWxbN/0Eorh5AhKAgKJJr166h1+tvaPa/W1y/fp09e/bw62+r+PvEGbwDS9Oy+xAONquESq3hsUAbOZlpHNu3gdYdu5CZmkT7tq3p1bMHoaGhuLi48PG4Dxg6aCBjxowhOzubevXqkeHXgOAyFdGowScg7LYWpdjLZ3j2ndeYNWsW5cvf3sJ57kocHreYXk7r5k1E93e4uPQTPMvXJ7RKYzQ64037mK5fYuLbY7h46iBdnniCr78aL6paCu4JZcuWxd/fn7Nnz/Loo48SHBxMfHx8vjYWi4WkpCRHXENwcDDXrl3L1ybv58JiHwwGQ7FiggSCu0FAQADTp0/nswndGPPdZr5HSZ2dbv/bmCxnL1I7ZUTKS9Wd54JkSJctZrrsFEcTk4dsTTOmyoG+ens2IwDs/az2GAldVrLjUlYp2T3o5+55MQYu/PHHH7Ru3RqdTnERckaSJN59fxzPvjaJjw7KCjVVluzelHn1OC5R9ZD0RiJdZD+i+FzZIcVmk3+uEKj8/2zoLbssxeXIbYKdfFdWXpSf4a2aXvyw6GPGfjGW+tUNTPJyoUaNGjecm+D+IgQFwQ1JSEhg0c9LmPHd96SnZ2B0ccVmyaVnzx6MHD60gHtASSBJEv/7bDxH/z7G38eO0eDR7lRs8hTN+9VytFFdVHItG908qd6iO+06dMGUncnR3Rv4cuYScrMz0Kgh7soFtGoJdxctwcHBJCcnc3DLl0iosFjMpKamEhRegYyAakgu3qjLNqSwT2iL2cSZnb9x4MIuTh34k3VrVt128K8kScRfv45Rc+v//XQefpTrO56kIxs4texztK6eGKu2xiWsIlqvIGwqNbnxF8mJOUXm6Z2o9S64e8BH48YweJAIBhXcO65evUpiYiIhIbKWtVGjRqSkpLB//37q1q0LyIWfbDabw8LVqFEj3n33Xcxms+ODZsOGDVSsWPGeKioEgluhb9++DBw4kN2blkPFZ+73dApgNpv56quv+N///ldom59/Xgx6dwJCSkNser5r2ZeO4Fa+ZK3QF04eIjMtmZYtWzJu3Dh69ix5tyZBySAEBYGD+Ph4/vrrL5YsX8HJsxep07o3gz5dTpCvHFxlzjWx6dfZNG7WiqqVypGbm4vFYqFLly60bduWihUrFnGHG3Pu3DmGDx+OWq0mvEZr2vV9n64e3mg0slCQZSliAMDg4ka9Vl3QtO4CgItWiU3oXt+bmJgYzp49i2sVOShMrZK4duEYZw5sJuf0NmwWM3FLPsWam4PGxR2tiwc+oWVw8fJnlTkNrcpCnx5daNr9RerVm3FH5tGEhATUnkGo1LdXxUel0eBXuwMh5epgSk8kIT2NtONbseVkIKk16HxLYQgqi1+9zpg2fMVH7w6l02N3t4Km4N9PRkYGZ8+edfx84cIFDh06hK+vL76+vowbN47u3bsTHBzMuXPnePPNNylXrhzt27cHoHLlynTo0IEXX3yR6dOnYzabGT58OL179yY0NBSAPn36MG7cOAYMGMBbb73F33//zaRJk/j665LPtCIQlBQ6nY6rV6/Spl0H1A2SCGg/4n5PKR9ff/013bp1o3r1wqs1r167nh4vvnPDa+akq3jWbFti85GsFhZ98z4vvTsNSZL4448/WLZsWYmNLyhZVFIxoj3T0tLw8vIiNTUVT0/PopoLHnAkSSIuLg5Jkti7bz8H/z7BqnWbSJcMWMu3Ql+pFRqrkmbT6uL0O7fXKtAn2gvBmLLIPL8X1aU9kJlIWIAvPbs9wdBBL6JWFx0rf/XqVVq36UC/17+kYvUG9Gggaw1/3q2YUS025aP8079lv3vJlOk4N6CKEiAZ7CqbQZNylHvPiVVMrdkJsgnXPVpJeWp29XYcaxIvYTPnkJB8HXXiebh2gqqRpXnj1ZG0aNG8yOcpDosWLeL15SfweaQLkN9knJfBwuyqaE+1OUoWl7z0qQCSWpbztSZF+5MTUtlxHLX1f9SvFsl774hiVQ8CD/s6umXLlhsG7Pfr149vv/2WLl26cPDgQVJSUggNDaVdu3Z89NFH+ayPSUlJDB8+PF/BtcmTJxdacM3f358RI0bw1ltvFXueD/t7Fjy85OTk0K1HT5KzoN/rE8k0yHvT3CuytsuSpazlGhf537zVZE//Y3dF0iVdcbQxpsolkVUWuXCZpFH2srwYNIt9rzBXUeKARkbK++DzTb2Ijo7mpZde4vfffy9UwRUbG0uTrv0x9p+FSqVCkyzfV7Lv4dfXTMWjbB3cI2oSWqk+AOWN8j2y7BmNzjrtuVEG+WSIvc2yU9GOaxGhZbi4djr13NLp/MxwTm2cRkxMDN98880N5ya4exR3rRQWhf8IFy9eZNnyXzl49ATHjp/A7Bcla7T9ItCWeQSP/v3wcPUi1SL/xzZfOVascTUGV9yrtYFqbQBoUiWSdetmM7dpK1q1aEbzZo15rGPHQheowYMH8+I73xBZ8cHwTdToDGh0BrzKKCkcW5R3o+dTbbl88RxG481jAorDV5Omoq/9/B2PczNMuxdSylcvhARBidGyZcubZhFbt25dkWP4+vo6iqsVRo0aNdi2bdstz08guN8YjUZWrfyNJUuW8sW4vrj6h1Oz/QDwrHvf5vTtt9/y6quv3tQKPm/+QszVn8SlkDZaN28smSklMp+saxeI3bGYjrN+ZdXP0zm4eQl79+4tuqPgviEEhX8527dv5+NPx5NlVlG7VU8CW7cnslsA27IUDV5J5sjVu7hTt8sISvXsz5Vzx/k/e+cdHkXV9uF7aza995AECL333hXpTRBUFAFFEERFwQIWsCF2RbGCIiJSROm9SO+9d0JI7237fH/M7s6GJJsO+H57X1cultkzZ87M7p6Z85Tfs2DFBvr17cv169eJiipczdFgMNw3i4Ti8AsKp0GLDhiNpYiBKgGTyYRW7oZ79eaVMLKi0cVfJCxhL9+s/7vKjuHEiRMnTgojk8l45JFhDBs2lMuXL9O3/yCMNTviPuCtuzoOQRCYNWsWKSkpdOnSxWHblavW4DH852Lfd4+oR+rRdfg0cNxPSejT4ji1YhaNJv7Iws9f5eqZA2zcsL7YBGsn9wfOhcL/KIcOHeLLufO4nZJDbIvJqAMi2QJ4HT8IgNbHTj7Q4vIEwGJR8EySqgWbVe6211YpTlVuqm2bzluShFv77w6xf99qQADUG8kTXwyi14BhrPnrD2rWrFlgnPkmJUZBsmL8ticDgDyTtHyZe0lve+12zTr+cNu2Xw8k214bvcQwB1VmvHRKRml/lSWB2GSnFmR14QLkhjYodH6Zehkmu4IxFWHTlq3kugXjqc+TxpQrKVnkBtcFwNOuGrRJLS3q7MOQrGFK2RFSEbapddV89uN0lq37xykz58SJEyf3CJlMRq1atbhw7jQ//vgzc+cNpGOfp+jQ+3FkMhlXcqyPX2I4by2L9PapjEBbH2p5MwD+zRTbZlySLO8elntEfkw/cb8npArRZ86c4bXXXqN58+bMmzfP4b0gLS0NQeOLa8o12zZriKugEO+TriEx5N++iFmby/UUUbmsfqQo251nEO/VD/lL4crx+WL+3cZ0cdwP1qiGNieddfPfpXe3rqx5uwvvznqHicuccqj/BZwF1/6HEASBXxb+Ro+efZn56Q806DGap2f8gDogsuSdq5DgmKa0mzCPQSNGc+rUqZJ3uA+prMJtM+d8gbpn2WRRy8LqBR8w883Xq0SVyokTJ06clA2ZTMa4cU9zcN9ugpVpfPpCH07u31wlxUAFQWDq1Km88cYbfPvtt8ycObPEB/HVa9cRWKe9wzYymYzAdkOJ376gXOMyGnRs+GQ0+ak3iPAycf2aKGDiXCT8N3AuFP5HEASBsWPHsnr7CYa+9A2PvfAxUbWKVzi42/hXq0v7535g1JhxpKamlrzDfYY+Lwt3d/eSGzrAaDRydPd2ZGrXkhuXA13SdZJjzzFo4IAq6d+JEydOnBRPVlYWa9euZe7cucydO5cffviBS5cuAWL+wqyZb7Fz63oMtw+yfHovjqz6BrPJVEKvpSM5OZl+/fpRr149/vnnn1IVHTSZTHz40SfU7fJIiW19GnTFlJ9N1rF1ZRpXzrVj/D6pJcaUy6xd+Scfvv8u3t7eZerDyb3FGXr0P8LMmTOpXr06Ud3vL1k2e7yCqvHg8Od5YtQY1q7+m7S0NBTK+z82MT8nA41aUWHrR1paGpEte1SJFcVsNGDa/AlL1ixxWmmcOHHi5C6RlJTEv//u4scFC0lLzySjTh8IqgMyGa1VGSyY+AYqQwY1qkfzypQXqF+/Pl98+jF6vZ4nR43mr2kdGD58OKdDuxFWvQHR7lIu3E9xagBkZ7YAYAiSCnx27f8kADGeRjJTE3nkkfF88cUXNGnShNJy+/ZtshVerEvQ45N23bbd6CoqKRk1Ytir3l0MMwoZ9ja3F7+O6fJBdjTqjEKlsYUjH1NKRQ/lhnyMuRkEHPyJ2we3MnzYEL7++mtnLsJ/FOdC4X+AzMxM/lm3lec/XU2aTnQS/XhWitt3v33a9trg5m/5V5LfdEuWtNFlZnGS0vlI4UqqPMkDoLHE/tvHysvsXKgyoxg3r8xNs23beOqs7XXbeoOI37aZtevWcez4STxC6/HuCUnqFItUnGvSJWl89jkElonSLeWqbVteQA3ba8/rYg6D2W7SUuVJY8kNqg2A0VWyaKjsxupiOT99jda2bUPrJpPRrAEVZfacT5BVa4lr0iXkRp1tu1klSZ5az8vo4mX3vnQuMrP0OidcTAKf0jyEtfPf4+Gpz9n06O8kPz8fg8HA2bNnOXPmLGbLZ7Zpy1au34zD1c2DrMwMDPnZrF2ziujo6AqfrxMnTpzcbW7dusUfS5by3nvv4ubuSUBAAH379GbKSy8QFBRUcgelICMjgzmffMbp02dISsumQcsuPPziN2jcPPjyuvQw3DDITMPOg/EVMjlzcCvTZn5ORnIccrmC9NQEAgP8qV27NhcvXuTUylVkZGSgVKkRkFGrcXsyveuDRxBeGlfkisIP2bfO7ufihW3sWPULmzasK9MiAeDixYtoIhuWur1cqSJ66AzSjm/k/LIP0PiFomn0IJrQWsg8AjBmp6BLukbu2Z0YMhIwuhj5dcF8BgzoV6ZxObm/cC4U/gfYv38/9do8+J+xJMf0mcSKv39Gr9fR/MFJXM0teZ//Ojdv3mTx4j+IGPN9pfedlZ5M4tWjPP7oxwW2Hzx4kHUbNrF5+y7yDTLcPH2oVi2aoKh6KCxJ3U0fGkefWs1s+1w8vJVWbdqxeeN6mjZtWuljdeLEiZPK5saNG2zatJmNW7aTkJpF026PMGfFOfw8XNBr89n6zy906taTOjUjyczMJDg4mEGDBtGjR48y5XOdPn2a5557Dj8/P+p1HkHfsY/gHyQKa+QZi7//atw8aNF1IK27DZS2KUSFjAfryjl9+jS/7xKNVHKZQMKVE1w+sYv83ONkpyVzJTkOuUqDQu2CT3A4ru6ebPJ0pXH9Oox9uB+/fzOzXNb6Hf/uxhjZuuSGdshkMvyb9SKkZjO0abdJyUon/fBqzGYTchd31AGRBHYfi2nHXP788TOaN686hT8ndwfnQuF/gJOnzxIcWa/khvcJ3qExrHrvH3z9/Gg+PBhyKz+pq7KpaOLZe+9/wMPjZ3FAX3LbsiAY9ayY+xYz35qOIAjs2LGD5cuXc+nSJVwCYqjd4gG6TxmPSi2qV8R4FZZ41dmFyDZq0513ftzGU2OfYv+enZVSN8KJEydOKovbt2+zbsNG9HoDm/7dR2xcPHkKL3T1euPe4R1keRn8C/x7KFYqFhrzGMqYx4i1FApNykrh8LI9vP3NYlz1mXTu0IZZb72Bn5+fw+MOf+xJxrz6NVEx9QsVB1VY1gm6XMnbvui8aAWzFgW1FgQFSMwXH78eWKcCWpDvblcM1K8Fmm4tCHLzIQiLip9gJiVfhznpIrLr+/D10DD91SlUr1693Nfyr3/W4PnoPGTabPL9pX6sinpGF1FJSZ0jKfNZFZG0/tHgH02ILhvobCv2KQgCPsue44VXJzkXCf8jOBcKFcBoNHLjxo1Ckp93m517DhAz6CFu5CpYfloMXdFkJdreN6uk5Fl1plghUZUrhSbJzNLkZXIRYxKNGklqTWGZNAAMlpAdvYck4WYvryo3FX4SVudIxzpydDcA1Zr1IC/+AhcMPqhSjktjsexv379LVoLUv0EM2dF52lmBZFJOfoHt1jFb4isB1BbZU/v+zUq17bUo6wquLtI1OxCn4dCx8qs1mUwmNm7fRft3P0J+bJvlPKRwKsEsPbzrPEMAcMlJsm2T2b2fFyOpU0yt68Kyr6fx9HNP0b1bV4Y+MoJrSXl0GvoivYa0Yme6mstAaxcDIC507Nc7GXrxuqnl0sYsgxw8w2k9eDJTX5vO1198Wu7zduLEiZOKYjKZ+OefVSxY+DsJqVnIXTzIaTAImcod97bT8AqMxFuukIqF5mWU2KfaNxR1q6EADG7RiCuHN9F/6BMIhnz69X6AqVOnFrLQf/DBBwwd9yZRMfUr/RxLQiaTgUyBe3QTiG4CrYcRkraP1WvWMfn5ieXq8/bt22RrjXjJKlfTRr/5c0YM6c3wR4ZWar9O7h3OhUI5MRqNDH10FCfPXybI25Vnxz1Ns8ZSrJ9Go6FOnTpVHg509epV4hLTaBl8byVQy0r13s+z++NHSDy/H7i/rdZu7l7oDWZ0Oh0uLi4l73AHmzdvxr9OexQqdcmNy8C188fwUGgZPGggn3/xFa6BtRg5vnIqMddv348F074hISGBkJCQSunTiRMnTkqL2Wxm586dTJ48mYYdBtJj1Eyy3MSindsypEeXyrjD1mzZkwe7dsdoNLBz/isMGTKEP//8Ezc3KX8sJSWFdo3KFqZTlfgGhiGXJ5fcsBj2799Pne5PkFCJzyi6i7upr0ph8qTPK61PJ/ce50KhnMz++HO0YR3oP/J74m+e57e929m0W7I6+6lyuHr1qs0q4eLiQp06ojpAeHg47du3JzQ0tMLJVS+99BLtnny/Qn2UB0EQQDADsnJN1H5RDfAOi2Hf188QNuG3yh5epRMWXYc9e/bSvXu3Mu/7yhtvUfPpXyp1PIIgsOn3j1i9fBF6vZ4Fvy5i+jfriMsved/SIJPJaPvgcH78eT5vTn+jcjp14sSJkxLIzc3lt0W/s2Dh70TUasrzn6ziywtGTsaC141/gGIKhjooFnpnodDii4RCr0e+JX3nEvoNfoQ1K5faFgv5ejNGQYbCUiD0zuKg1sKg1qKg4jjF/AVrUVBrQVCQioJaC4I6KgZaVCHQ3AoKCL3z8dfo+s/G1VL801Hhz6KKft5Z8HNKjIx5v85j/uq/KjYwJ/cdzoVCOTCZTCxa9hcMn0vszQRkLuHQfCSuvpKS0KBq+XS2vB7e1pfY2FjS08VYxnPnzrFs2TKOHTuGXC4nLCyMl156ibp165ZpHMePHyfd5MG1dAHSRWUhL8sPW2Gn9GP0lpRw8iyqPyo796x9uJB1YpPZhROly9Rknd5K/s3TmHS5yFQazLo8FBp38f9mE5qQWng3fQiPcHFClpmkKo1GpY/ttTXMx0UOTR5+jQ0fjkCrUKNwE0OaVNliyI19uBF2Fg/rdvtJTesXZXttjZ9U2FU+ltu9VmizxXa+9hrTUv9qy/HzXewsSVpfGvZ4gj+WLSrzQiElJYV8hQdX8k1w7TIelonfYBf6ZH+tFEbxfb2bFCurD46xvZ7eQPRo7N+8jIDu7QkICGDqq69Tu/soLmZrcFNKYURBStEVX81d+izVCun92Dyxeub+bIVtW65dvkKndqNZ9l4/Zrzx+n8mUd6JEyf/XeLi4ug7YAgtH3yMCe8vQW0LAS2/5bw81OkygpteAQwb/hir//kLufz+KzmVnXKLsLrliyRISUnh5vUrhHv4QXZSyTuUgm0rf+S5Z8cSEBBQKf05uX9wLhTKwalTpzAE1UfjVvqiIdWqVbMVQGncuDHDhw+3vbdnzx5mzpzJ+fPn+eCDD+ndu1ep+vzgo89o3n8i29LLNv7SYjbouLnifVCo8G7yEH6th4BnADK53OJNEJHp8si/dZb0Q3+TsOYKPo164Ne4BwpXTwe9Q3C9dngGhJHy5+sEj/62ak6ikggIq87GU6cRBKFMD82Lfl+MvtYDVGaJNb0un0Ob/2D3js2kpKSw4p+1PPHx9ko8gohcoSCwfhdWrVrFwIEDS97BiRMnTsqJyWRi6NChDJ38KZExDVHe42fzyGYPcPniFuZ88imvTn2F2Js3USorN3y0IiRdO0H9caV7VriTK1euENDsoUobizb2NHmJFxg96p1S75ObKyZ6q1Qq1Or757o6KYxzoVAOBEFA4epRcsNS0qFDBzp06MCpU6d4e853fPzZF3z/7dfUqlWr2H0MBgMHDx1mwpiGcOR8se3KiyEnnZt/vk1Q55G4Nexu224uwrIik8txi2yIW2RDhNx0Mk9t4dofM1D7hhLa42lU3sXLz3V+4WeWTelIgF6LQn3/5iqo1C54h8Zw7NixMik5LP5jKZ4DKjchePEX03jy8eEoFAo+/PBD2g6dglJd9tyJ0lDnwTH8+ed050LBiRMnVcqKv/4iqumDeFRrTJqu6FpAjuoAOaoBdGf9H0e1f+zr/rQa8C4/zuzJgH59ydEa+eCMDrDUwLmj5o+13k+uXVE0a10ca60fa50fkGr9WOv8OKrxU1R9H8+jX5Y5CsHKrPdm4xLxYIGaPo7q+RRVy8dax2dyIz9+WjGZ+WtXFjCiCYLArVu3OHToEEnJKRw6chytVosgCBw7doyA0EiUKhd2rF/Ol1/PZfKk8iVlO6l6nAuF+4hGjRrx6KT3OHt0Dw899BB//fVXsVr2u3fvpmHnwVUSEmLMSePm0ncI7/8SmqDqlKXAvMLFDb+WA/Bv1pvcm6e4/ufbhPeZjFtE0UoRAVH1cfUPI+GbRwl/aWXlnEAV4RscSWJiYskNLeTk5HD79m187MKYKkpqUhyGnGQmjH+WtLQ0jhw5Qo/XZ1Za/3fi6h3IwYsXMRgMzqqaTpw4qTK279xNvdb3l1KOQqUmtEl3/vjjDxq268WFez2gSuDEiRPcTs7AtUl0pfS3d/0ihg7uj6+vL0ajkQ0bNrBq7UYOHzmK2ieM0IZdiQ70ouGDz6BxEw2sDz3thVkhGgafnPol8z+cRGJCEu+/V3X3Miflx7lQKCctg1wZ0EqMxXv3mGiluHlDmkbm6CWrwqrbUoZpr2Bx9Z6mlyzzO1Ilt1tzTxXyGl0Z/M4/jH3+FUY/NoRJE54tdPxflvzF2YAHuHY+CbVdDL7REttuVrvbttnHwGsybwNgsnvfvrKxKjOB60tnUn3Ml3jUbAFAf39p/1SrpKbd+iRfikLitqUy9Omb11DX60q16BbE/foSQT0n4BbZELNFfnX7Jamy8gNDxnF80y88EuXKinPiw6hSJ2lR5/tJ+s7WHAetb4Rtm73Gs1XqVbCTfLM//6zaXQBQZCbYvS/laNhkYXXSNT2eISac54W14dCh/fTu3ZvScOHCBWq37E6mXb6F2ZJDocyX4sXMSikwyWrd0VmsSwDvNJO8V2vnvckXn34EwDMTJtFm6GtcyJVyDAJUkqXM2/LaYJY+rItp0k8+wfJZ5ZikffKzpWS5LUbRmtStUyf27t1Lly5dSnHWTpw4cVJ2Ll2+QuMBNdCV3PSu4hXTnp07viS8xYB7PZQCKBQK0tPT8bXLjSwN78x6jy6DnmZ3TsXHoL+0h9Rbe3jh3UU899xznD59mr59+xLacijPP/4esZZ7k6P6PS4aN8a/8zPz3nySw4cP07Jly4oPzEmlcv9l6PwH8PT0ZM+WqrV++4VEM2j6Un5dtp43ZryNwWAo8P7BYyfRRFR+kbXbO3/Dt34n2yKhoihcPan2+GySNs0j7+bpItvIZDJ69ujO1RN7KuWYVUVgzWasWbMGvb50VdPenf0JLfo/V2nHv37pNG5ubjRp0oSjR4+SpVcR07hdpfVfHE2bNiU5+e4mEzpx4uTekJOTQ4/eA+nVbyCHDx++K8eMi4sjLddIouDNT8eu89Ox62iSr9r+zCpXzCpX1JlxqDPj8Iw7bvtTarPEkCKZHGRyjBpP259Z5Y5Z5Y7B1RuDqzd5gbXIC6yFziPQ9qf3DEZvV39HnZNs+ztydDcJZjWnzpzlRlIyqpQbtj91RhzqjDj0HoHoPQIxK9SYFWrkBp3tT+cZLNb2sYzN+n+dZzAGVx8Mrj62MalzU211fqyYlWrMSjX5fpHk+0WidnG1/QXEtGXLli1lus4Gg4Ezl2NJjhmE3KgT/wz5hf70bv7o3fyRm/TITXoUulzbnzaqGdqoZkyu74Hv0YUsX7KIN9+eyfUcdwa+tRpVywkc927D3wkuKGQCCpmAIGD7S9fJSdfJMZrBaIZkrZwUnYIHxn3ES6+8WinfJyeVi3OhUA5iYmJQq5Tk2VVgrArkcjkDpv1KXI6aYSMet1UHTk5OJj0rB5lcUUIPZUObeJX8hCv4N628JCeQFgsJa7/AkB5f6P3Um2dp07olOck3KvW4lY1K487gwYNZv359qdqnZ2QRWK34PJOyYDQa2PDHVwwbNgxBEJgxYwYPPF45NRNKIjIykkuXLt2VYzlx4uTe8uioZwjoNhlZo+FM+mA+TTv3o2OPvnTs0Zfu3bszYMAABgwYwLhx45g7dy5z585lz549xMbGlvuYU6dOpcXQuzOflRWZTE6Lx97i6IrPMekrSX+6Eoio0YC9+w+W3NCOjz7+DPc6nUVBkgqy5c+vmPH6KyQnJ/Pv3sP0eHJGhUKhfYMiULr6cObMmQqPzUnl4gw9Kied2rehVVAmjRpFYrKE3szeLVldDbekhKjjbj621yevipn+9tWA7aVIL3mKspkublbFIAW0epH8/J/p0mcI65b9RnZ2Nr4RtXFJFR+sVXnpdn2JLj77aswmt8KuSaVO8jta9ZCTN39H83Ff4lO9Kc08JVfhxjQpNj3bKI5Vr5VCc9oFSGFM1TTixQiNibZt2xybjMzdj5BH3yd50cvUevgN8uwSvjS6BKKjo+mcnc1lb3F7jkI6pjUcB6QwI6sMKhRMbJNbNantroneXZJrU2QmFupTHyyNxSXekhguy7Rt2yVFSdGh3RN8/PaoEpN7tVotcSkZ7MtQFfh89R5BlvMouvKyvr6YOP5qTSkcaFgbH+bOnUu7ZnXo1q0bC35ZiEe15lxQ1oA0SDdJk/MlnfRabxS9UEazdC1lMrswI8v31kMh7aOVSYtPhUXX29PTs5BHy4kTJ/97xMbGcvpGAm5do5D51Ifqohy0tyW85clq4oPy8La+nD17lri4OARBYOPGjVy+fJmMjAw8PT157rnnSh2qePHiRa6n6MnJ94BjZx1KfDuS975T2tuQk0bSxUPkXj2MMT8HudoVQZ+PTKnCrMtD6e6DZ/0u+DboglyptoWoFiXnXatxSw4tmknmjRN4Nu8vjuFOKW/LQ7K9tLdVxtsq4W1/37JKeFvlux1Jdxcl2x1YvwOrF35cxBUtnr/WbkTb612OFyHV7Uim+06J7oTYK+xMPk//frMZ9PBwGg58GWRyrHeXO6W5Hcly20ty13pgEp99/T0/f/dVmc7LSdXy/2Kh8NfKv5k27VXCo6UHQr3lIclFpaR3906Mf/ZpvL1LL3caGBhIXl5eyQ0rCdfOY0m5WI9+gx/h688+qvT+tUnXEQx6fKo3rfS+rWjC66F09Sb71nkUloWCNv4SWq24UDGZypI2XX60iVfJPLYWQ1YyyOSoIhsjU2lQB1VHplKh9i6+CJ7G1Z3AanVZv369w1wFnU6He2BUse+XhcuXL7Nw4UL++usvUlNT+fbHX3nmvaXszyx5XydOnDgpLdu2bcNQv1+p2tavX5/69UWRip49e9q2X7x4kQ8++IAnnnyKOXM+4pFhQx3WIfjwo09p3Otp9pYuorNUZJzZQcq+5fi0HkTY4DeQ+1pqCVlkveUGLYasZDKOruPKDxNwj2yIX9NeuIbGFNmfUq2h+bBp7F00E4+mfSrdm18eZDIZbt5BXLlyhZo1a5bYPjY2ljSDEg83rwof+++f3mX+t59y6dIlLt1MoMW4DhXuEyC0Tiu2rPiAtLQ0/Pz8St7ByV3hf3KhIAgCu3btYs+ePezatQuviEY8/+ESBD/px3Q2Wzx1XU4GV69soXad+ixftoROnTqV6hgxMTGsWLGCNm3aVMk5FIVr7fY08Tfz4iuvAqVf1JSG1IN/Edjp8UrtsyjC2g/lxqYfiLBYZQyXdjN69Ghq1KjB7Nmz4bHRVXJcwWwm6+I+Uo+uRa7S4N+8F65hdTDr88lDjik3A33ydW6d3IRgMhDQcgBetdsW6Up94OFxfPbZK3Tp0sVWtfNOtm7bjiqkToXHbTaZmDBhAu+88w4RERE8NfZZOj88EYXyf/Kn68SJk3uMrIIy1bVr1+aXX37h9523+XvR53zw4Wx2bt9aZNKt2Wxmz74DjB3xMXsrSeY7ed8y8m9fosZTnyO4i8c0F9FO5RVIYNdRBHUYTu61YyTt/gPBqCdi4DSU7j6F2jfoPY5/F0wnY88f+HYaWSljrSj1Ogxkw4YNTJxYsrTozz/PR6he8Zy2k/u3EOClJiYmhkGDBtFl1LuW+6RQ4r4lIZPJCG7Unb1799KvX+kWrE6qnv+Zp42EhATWrVtHXFwcO3fupE2bNvTq1YsXXniBVSdFU0VCEQ4AFw8fmnUZiJdfME899RQLFy6kQ4eSV8ddu3Zlw4YNtryBu0X1hu04suk3Mm9fq9QiXtr4y7j1ebESeywaF59gVJ5+5N04iVtUY5QqFVFRUURHR1fZMfMTrxK39gvcIxsRNuAV1L5hyC3a2bh5IwuUVJ9c6nVAn5FI8uHVJO1bRvTDM8ArpEB/QWGRPPvss7Rq1Yo9e/bg4+NT6Jjb/t2LpkaPCo9974bF1K1bl969e3P58mVuJmbS6amK9+vEiRMnRTEsxovWrQJsan4gKfpZ1fysSn5WFT+QlPysKn7NPb1oMPRtlNVa07ZjV1avXEbt2pKaG4jFS81RzVl4Idmm3udIuc+Rap86J4XU45swG/XUmbocmUxmU+y7U62vkFJfnaacrt+V/Bsnub70bSJGvI/KO7CQSl+Xwc9ydPM8Xnj2FX4/LIa3WhX6rOp89mHFVnU+a8isVZUPJGU+67k5UuQrTo0v2TWay5eXUxqOnT6PZ1hvW2jUnQp8jtT3rMp7ZrOZBTN/Yv78+ezbt490nRqP8NZcyHWsuOdIbe9Opb280Lb8+ed850LhPuI/vVDIysri77//5vc/V2CSaYhq0Qsv/1YMeH0irioF5wU4f9iAuyVEe1GCFKudnyVJajbx9ia6YTu2bNnCqFGjWLp0KSEhIXcergC1atWiQ4cOzJ07l+effx6A/amSCtH2S9dsr1UZUgKv0V2cBK3xiAAmS14C2MIcMdglTZnsJoffLp4jL7wDiRuXUe3cZlzcvMitJsmJKa1xjnaxkEq7Y+m8RHUHwS4HQJWXjkIuR63NJMASW6iwi2W3jyHUptwCpLwGgP1ySapUZpn8HgyUJstgf0lRIi09GN8Oj5J7ZhvR7YeQ4iW5Fz08POjkr8XF1YO/zly0bTe4+theWydMg4eUd2A/FpPFJWyNZU3Z8QvcOkX7qUtwD4qipZc4KavsPOF5djH+ZwLai9cnpi26hCtcXfoWoQ+/iUuI6I1654h4UxgY3Zva/bNp0aY9y/5YVKgI2/5jJ8kbNoH0pAQ0dm53syXuX+/uL20Ll2pMjKsmjsVVacZsNnNk2zJ2bFmHTCbj/Q8/Irb+CObFitfWfGmfeC3scjRcU6/bXuvDGwGQ5Rlu29Y5QPLvd7BM5gl5khtdb5dvopaLuRNardZh6IATJ07+NzCbzdy6co7WXftXWp912vQmOLougx8dw6fvz6BXL6ma8Lp16zDU6ERllIvMi79M+pkd1HtnW7mTal2jGhM2ZAa3lkwnYsT7KIIKFlYNrt6QBg0aknDtLNb8gXtJQI0mbP9tInq93mF14/T0dC5fvY5LveLDakvDrnW/079/f0JCQhj++FMMfuk7jhZWPq0QrtWbk7RvduV26qRC/Cfv/gaDgf3799O8eXMMBgNDJn3GmOnf07zbw8Q0bm9Lwiwr1atX57PPPuOpp54iM7PkAPDnnnuu1Ao4lYnCxQ3/yHpcPbC2UvrTZSah8iibFnNFcA2rS07sGczGgkGpHh4exF8pWkK1rJgNOm798QaCyUjb11fiHlT2fAGXkJqEjZxDwl/voUu8Wuj9ep0fodfrfzFxynRmvPVOgRwLo0FfIQUIs9nMp68+Rs8HuuLh4cGpU6e4dDMJr8YPlrvP8rJ//34aN25814/rxImTu0u3bt04c3h7pffrFxJN/1cW8M7sr/jiq29s25csWYJbzdYO9iwdgtnMrY3ziOw/BbmyYoUhXQIjCRsyndjFr2PWFQxDyE2Lo3WLJiTeOFehY1QWMrmcESNGlCiTeuvWLaIbdaxQboU2L4cDW1YwYsQI/vjjD0LrtMHTx7/kHcuITCarkkKyTsrPf9Kj8OCDD+Lr68vatWupU6cOi/dlVFrfLVu25Pnnn+fVV1/lu+++c9hWo9Hg5ubGzZs3iYyMdNi2MpEp1ejzslFp3MlJvY2sWsn7OEIwGpApK8OmUzpkMhnetduSc+Nkge3t27dn4+ljRDdsW6H+9Wlx3Fo2E//OT+LVsHuFJh21Xzihw9/l9pIZRD23oJANyTuoGlM+WsyOVb/SpFkrXnj+OYYOfZgMgwL3InssHT999CJKcx7vvzuTpKQkxo57jmEvfcWfxru7thcEgU8//ZRjx47d1eM6ceLk7lOtWjVUgo4RbX1san4gKfpZ1fysSn5WFT+QQm6sqkOX7DzloopfOMLYP/lm8WQSk97hg3ffxisgnNxsUYnOqlRXGuW+O1X7Mk5uJrx1f2I6DC5Sse9OtT5HSn2bY5NRufvh/+B40v6cTtQDY20qfaqUkzTq25fWri6c0RVU6LOG69gXALV69q1eX7mdccx6vlZVPkeKfI7U+Nq1epQP3x1D7969i73X7d53gBSP6g4V+Byp7w1r48O4ca8yZfJ4zGYzn8/9gQZTVrEvTW1T3XOkuOdIba8opT1H3hEnd5//3ELhqaeeYsSIEYwfP9627Zal+p9dgVnkdj+Y72LFhyuz3Q9Blif94OLzC05Cffv2Zffu3SxZsoQRI0Y4HE/Pnj3ZvXs3jz32GF/3l8J9GsyVEsKMXlJcppAnhq6Y7BLG5BrJvSmYxDFW95EmsitGadza0HoQCgajAf+YVlw5to2G/uHILT8wnX8R6geCtL9LZhwgSbMBaOt2QbvrD/KDanHFEj9op5iJTifdDKxhPmaV3fhTbtpee1QTw680cumYzT2kyWmTZZzeoTUxJV3F3vYzatQofu45EGHQBPL87fIG7OTmFIaUQuMX7KwkehdPbi15k4hnf8AlWLwWTexuHLmWB237cKM92dLDd39/sW1EtBQutT0zHlffEPRntuER3RSAdelxtvc3GPJB1QjZg6/x5o8LOXf5Gi4+QTYvjS4/VDpJS2hWeA3JQj/QLs7X18XE/i0r8HSVsXHXv5w9e5bBj4/B3PVFFt6U45Kx3a4r8bzdUqQwN3s8Yo8CcDJRqhh+ol432+uhQRYZQbvKzcl2FcOb+xrIzc6gS5cuJYbiOXHi5N5x/fp1nhg1muTUdPyDxFBQrRkQBNwURh7o1pXpr09FWYIIgkKhQK1Wk59fNfUCZHI5XiPncnHXx0x9bYYtVLUiCIJAyr5ldJ21uRJGKOHZpCcZG79Gn50KQbUwZqdy4sQJhg4dKir1VbLRWxAEsi/sJePwKgSjDsFsQu4XgdI7CDeVC971Ohbp+Xfz8MInpAa7du2ic+fORfZ9My4el9AO5OnKJy21bt06Ll68yNy5cxk34Xkeeuot4lXOh/n/L/ynFgqzZ88mMjKywCKhqhg/fjyvvPJKiQuFIUOG8MQTT/DYY49V+ZjsqdXnOc6t/JSwln04u2kB9R4YhaKcP1yZTIb5LheS0fhHkJ8SWyA21dXVtcIux9S9f+LdtJdtkVBZBLQbRsKWH20LhaJQefrjN+prFn42ELemfcqVbH7x1EGuHd3EimV/cPDQIZ6e/Dryfu/i4hNc8s5VwLEdKx3KwDpx4uTecP78eRYsWMDJkyfx9/en/zPvUa1mfRLzRQOCVdmvkVsOu//5AX//AG7cuF6k+II9derU4fz580D1Kht7p0emsGruFFKSE6iYxhLkxZ7BNbwu6iKUiipKeIfhxO1eQnDNtuhTYhk8cCCtWrXipZdegocHVcoxBJORlEN/k3F6O27RTQh7aDxq31DMRj16r2D0KbGYzm7n+or3UXsFEtJ5JC7+4QX66D3ieaZOfYZ//vmnSKPOzj0H8HvyWfIuHS3z+LR5Obz++ussXryYM2fOcD0+g071WxKfWvK+Tv43+M8sFLZt20ZsbCxz5869K8eLiooiKyuL9PT0ImXdrAQEBNwTN5mrXzgRbQeTcf04wXVac3r99zTs/Wy5+5PJFXdVwUmw6FmbclMLXD83FyXacla8FswmMo9vpPr4HytljPZoAqNAEMiPv4hraO1i28lkMrQuvqhkZf9OCILA0u9m8vVnH5KamsroiVNpP2UJB+KSSt65ikiLv0a7sX3u2fGdOHEiotVqWbpsOX8uX0lGdj5uPsG0fPBxhvR9AwB3lYCAJNphFexoUtebzkMn4+EfQc+ePdm6dSuenp7FHYaRI0fyySefsGjRIpvhxirUYRXpsAp0WMU5wK5gmCXkyN7mYxXnsApz/HbxHOa6A7m4djGtLmxDpXG3iXI4EuQoSoxDd2wjPhH1HApx3CnC4UiAo4D4Rv1u5O9djp9vIC65EQQoY4mJicFsNvN4hPj4ZBXesIpu2BSKkEQ3rMc12Xm/84Jqo42/RMbStwhvN4RnJmxFpdYUIbQRzZkWXYGZHNm/kRurPiaw/8u4WQrMiQIb3jQb9Ba16tTl9MkTREVJOXl6vZ7bKelk5uQ5FNYoTlRj54bfmDjpeRo0aEC/gQ+T+uAs5sWqC4lpOBLScCSiUZSAxiac3E/8JxYKWq2W999/n+XLl9smru92SqFDyTrxNFzk0gSxKkEK5whwE7+IyTl24Sp2Mfkrb4p91d8nhag81s6Hpk2bcvLkyVJXmLRncE1psll1UtKHNnmJcYFyddH2ZusDdJxeOhchV6pQKbPEhmZFt0YT3Rph+Swy4q8S1WYg57cvpm7TjijVLmQ3HCTtr5DO1RqjqLNUugRwTb6CRuOO7PwO0nIaALAnRHoYti/3bvYUJxWF3fjtVZl0lsDWdIO0j7dSOhd5WF0APC5vo1p4DJc3/k3z5u/Y3h/QpyfxF/9FVU2qfKy9bfc1tVwf+1hL600k/eRWfNoOQRPViKcjpM9yd6o0OZ+3BEhqMxKl/e0sUUeyxfOq5yb1bwiIBsB/yHSS135O5MMzkBvsPDB2d0RN4kWMyddQew7BZEmAFlyk0DKZpdjNg/7SxOlpmTgXfjqFmJrRdOrYkdYdu6NoNJCTJw+isL8Z2x3XekOS66XQML2npGphvUaqXMn0kxt7xvZ6Ubr4Waq8pIS0Vl7S56aQCZiMFUvKduLEScUwGo288sornDx5kpjWAxg08TP0avHhTC0vvXGnebch9G7kwauvvso333xT7O/6oYceYs2aNRw/fpxmzZpVyjkUhVzlgktAJFcOrKVul0fK3Y8+MwnPqCaVOLKC+DZ+kMQ9S/GIamTblpSUhMlkLLdwCkDmiY2k719B+xfm4x4UhUptKHEf16jGRDz9LXG/vIBP26EFxC0im3Rl2Ltr6fPwEzw2pC9vvD4NmUyGwWBA5R3ooNfiuXbxFOv/nMe3Vy9z4sQJ4hJScAmuUfKOFUAQBLKzs0tu6OSu8Z9QPZozZw4TJ050aNmvCsaNG8fXX39dYru7XUvBnpCH30Qwm0iPPUd40x6c2LGM7PSyW6B963Yg7eS2Khhh0QhmEwqlGjeVGHJkpXWrFtw4f7hcfaYeW0/Qg+X3qpSEJqI+hsxkh22M2hwMWalljr1NTbxFWtwl/lz0C6+/8z65gU1wreTwqfKQFHupVFU/nThxUvns2rWLsLAwQkJC2Lp1K10HPoW7Z/mLbQ4dOpSwsDC+/fZbh+369u3L6tWry32c0iKTy0Ewk518q9x9GPOzq1S1z7tBV9JPbS2wLTw8nLTbReeGlYRgNpGw7ktyL+4ncuw3ZVbkU7h6Um3c96TtWoQ+La7AeyExTen/9hquJOno3LUHW7ZsYc+ePRh9o8s8zqy0RKY92YVV/6xEq9Xy9LMTGfWa4+9NZXD93OECCoJO7j33vUfh5s2bHDt2jDfffPOuH7tmzZrk5OSg1WrRaIqPpHR1dSUlJYWAgIBi21QVMpmMmC6PcmHLL+SnJ1KzaReOb11C7ZjuuBVTjr4ovGJaEb9nCf75WShdK17ivSRy0uJRuXrw0IPdC2yvU6cOWWmJxexVPNrUW6i8AlC4VW7F6juRlVQR2WxG4eKKe80WZer3lzmT+ei9t7l06RLLNu4ioHvJlTarGqNBj1yOs4aCEyf3gNOnT/Pqq69y8uRJW9z5ncIdjkQ7rIIdd4p1TJs2jaFDh9KtWzfq169PUXTt2pUvv/zS9n+rUIdVpMMq0GEV5wBJoMMqzmEV5gBJnMMqzKENFUOZXOp0hMRLXDm2lUYBEciVKoeCHEWJccjD6pEtd3EoxHGnCIcjAY47xTfkXgGY87NwsZsGx48fzzfLVhDw6Gs24Q2r6IZVcMN+nFbBDYObL8nb5qNw8yb0yc8ASWzDkdBGUSIbqzo+Rsbm7wjv+yJQUGBD7tMBbeMoHp34GkO6t4bgxqg8fB0Ka9iLarias/hj7mQ2bd6Cv78/bbs+hL7tWH6+YrQJajgS07hTSMORiMadAhpxp3cwc+bMQn06uXfc908As2fP5s0337xn4Q+9e/dm+XLHlQ/r1avHzZs3HbapSmQyGbW7P0Hm7Usk3bxA465Dufr7a5iNJbsy7fsIbj2Y5F2Lq3CkEklXjiPkZ9C8ScMC293c3Dh+YAcmbW4xexZN9tUjeNeueHn6EinBeaTPEj0OxYWWFcXVc8eoFuJPk8aN6dKzL94j594X4T5nj/xLt84lVyl34sRJ5RIXF8fkyZNZvHhxpSuOqdVqxo8fz9KlS4tto9FoCAoK4sKFC8W2qQyCB71K5o2TeEc25NzWhWW6Z1lRevhiyCy7caksKFwKil1HRERg0OYU07p4DFnJ5F49TECXURUek0eN5uTFnsFUjBCJxj+CwEl/sHDJclThRS8Ii+OnDyfx1msvERVZjf7DR2N88HVca7Sq8JhLw/XT+2nTps1dOZaT0nFfexQSExOJj4+3Vb39/l8pL+FKjjT0VEs8vM5O91mwK5WenCPGu9nH2mNfeMQS9x5vV6F2niUHIlZZj+zrBx2O0/pQt/xAum1bfR/pQW+lJa8AQKYS8wXsrS2CSZocaweKMea+dnH9+sho22tfSzz7Va1kJUoKHAdAdLfnSDn4N+eXzMDVN4S0fxcS1mYgCjvN6Xx/UcnCJfN2ofMIiKpH0snNaFPjUNpVQ5b5SDeqrqFivLyn3fiu5UtJZ9Yy7nK759x1KZKFxmwyYEiPJ8TPG+H2cXp0n1JgDO7u7vTt/RA13W4RHCFaai75SvkSG46dEMdkJ3Wr8wkjJ/U2AQ/0o4m7+BnvSZWSidOM0mAMetFqovKU4v79XKQcjtuW1IHa9s/5BsnSolCqELKTMXlLlh2zXWJd/JH1qAKjMNsl4tl/1wTLpL48WfJ83PxzEd9MHMnA4SMJaTUY12sHC0i+uuXa6XLbfS6aVDEHQmtngbNa3AAUlv30vlKND884qR6CyUX0HGVHSzeAWmFSjkOAbxa+NZrixImTu8vLL7/M3LlziY6OrpL+u3XrxmeffeawTUxMDFlZ5ROWKC0ypZo6A6ZwZeP3hNVrx5mNP1NzxLso1KXXQlL5hqNPqVpDnVmfjzb5Bj51fACoXbs2SdfLXhw0be9S/NsPrxRDkEwmI6DDcJJ2/kbog+OKbqNQYTSD0rP00Q6XT+4l9fZVWrZsQffeg2gx4ReOpJZ9UVReXF3F+lRO7h/u64XC1KlTmTJlSskNq5DwGvVZ/fFsZsyYcU/HUVrcarQg5o31ZC6dQcLhNfhUb4Knd+kmCZlMTnj/l4n7Zw7Vnv2pwhUuiyNt56/07T2cA5t+L1J9Y9SoUUx9+03Gzfq91H2atNkoPSu/SmRZMBsNZB1bT9Sz35d6H31GAppbh5j7YzrxQe0IDSt9uNjd4H7wbDhx8v+Jf/75h5iYGFtYkCPhDkeiHVbBDqtYB0iCHY+188Hd3Z3Lly8TE1P6Occq0mEV6LCKc0BhL6pVmAMkcQ6rMIfMznhmajUUf7cAbi5+jZqdHuHKomnENO+Gud1oqS+LIEdRYhx+igyubf+ZtJZ9gaKFOO4U4XAkwFGU+IaXiwrXqzvpMu4VQPTKBPl6EizPRFVNFACxiW7Ynbd1vEptNiZ9Pnk3TxEx+gtkMplNcMMqtuFIaKM4kQ33rmNInTNAHGsRAhvKa4cQ9PkImQmYjDqHwhqeKgGz2cziORPYuG41z0x+BW10V85ePF2koMadYhqOhDQciWjYC2gIJj0IzvyE+437NvQoNjYWuVxOp06d7uk4NG6eNGrUiK1bt5bc+D4irN3DIJi5vLbkZGx7XAIi8W87lPjlM6skSVufEkvuxX3Ub94RD7eiw3M6d+5MbnoCudkZpe7XlJOGTFVRRe6SMRt0KOwK5NmTc2Y7/qERuMe0LlVfgtlE4oIJqNQu3Kw9FO8+L1XmUCvM3r17CQ8PL7mhEydOKoX8/Hy+/PJLpk+fXuXHevrpp1m5cmWx73t6epKc7Fi8obLwbNCVmC4juH1yOzUadeTIxt/It6jGlYTSzQuF2pX8hCtVMjbBaEAQBDJunadu3bq27Y0a1OfWtfMO9ixI+unt+LZ/pFKNLzKZzKFwhj4zCbnaFbm6dBb6RV9MZdLECVy9EcvpdAXeNVtW1lBLRfyNizRsUO+uHtNJydy3HoWfF/yKb80OLD+QTpwlJGjhbcnCHWGXWWQvJWol0kuyVMfrxJW7yS7+UWmnkmDMF0OTliRK/Q8Lktr6NRrI+o2b6dGjR5Fj1RnMbDmVxbRRUp/L7MKQFB7SajzcXfzBxmZKVp6u4ZLF31Uhrqa3pEqhNUqlFEajSxdX72a7ytKtIqSHOU2U+PpkUDUaf3SI49NakOMegNIyUajyM8R+7Cwy1hLuAEaPANzbPIzWoOPWkumEP/kpynhpMtxpEq1Pgp31IjJACk3KsSQoxeVL8p8mS+iOYDaTseQNWj/9OSHG8/R5qOjrCTDhmTEc/3cF3QaOQaOQPl+DrzhuWb6dfJraFYVXIIJMhtnSNFIjWXXcDNLELJeJ1yFBX7TVIsjyFdDaVSvGzrNiMpswuPnYEsEA2tWuA8DB9e/iERhMv7rV2b5zg+19nZeUQCYziddFe34nl5bORCEY8W4/BD99FhxaQn5ALQBc065Lx7ezUJnsF0NuokVGbVe52qySFl+Cp2j9k9kt+PRe0uduDd9Se0uWIE+VeCyjQc+ZM2do2fLu3iicOPn/zHfffcezzz5bQAmuqnjooYeYPXs2U6dOLfL9du3asXHjRvr0uTt1VHyr1UObncqVEzup164fF+a/QMNXliNXuZS4b2inR4nbvoDoR9+r9HHl3zqDZ0A4/oJLAWEHf38/zp0+CC3bl6qfrEsHiHx+YaWPT6ZyKdaoZ8jNQK5Ul+oaZqQmkhZ3kYdef46HR08i4MVVcGlvZQ/XIWcPbGZgl7Z39ZhOSua+XSjs3LWX595ddK+HAUB07SZ8/fNMEhMTCQ6+NxVyy4NLYBQ+UQ1I27WQoB5lq2bt32002QGR3Px2DFEDXkblVXFFp/Rdi/CNaYl3VCNiY391aK0eOfJxXqsWRbeBY0rVt1ylwZRftfG0Zl0ecpeiLTP63Ex06bdJio8jLzOlyDYAuvR40k5sInnPn7gH16DW8HdQ5xff/l6hy8+lRo0aztAjJ07uEkajkX/++Ydt20SZamtOnqN8PIe5eNY8JztDgzUPz5qD5+fnh9FoRFmEmptSqbQ9gFrz76y5d9a8O5ndA6g1786ac2fNtwMp586ab2fNtQMp3y4pcBx+ncchO72dG8tnofENIWnzPCK7jLTl2RWXY+fp4Y1c40HW1aO4FZFfd2dunaO8ujtz6jKPrqV5ZAhNakjeBICnxzzFyJEjeW6IqFBnzaWz5tGBZIzR+YRhMBppGSYZjax5dNYcOkf5c45y59Ru3hiTr0GIFEJmzZtLOLQGl8jGUs6cg3y5uFVLmfjIMEaMehr3+n1Rndpgy5UrKk/uzhw5R/lxjnLj7PPiLmhj6dix6HwLJ/eO+zb0SC5X3DcPKXKFgi6Dx/PBBx8U20YoSQ7nHhFUqxny5Ivl2tezUQ+Ch0zn+pI3ybp0oELjyL24n8zD/1B7sGi92rRpE926dSu2vbe3N126defK2dKVnHet3oy8y46TzitK/s1TaEKKjue9tmMRjw4dyB+LfmHbZ08WsvDoMxK5tepjzn05koyTWwhp2Y86j7x130qPHtm8+K5ZEp04cQKzZs3imWeeuatzQuvWrVm1atVdO15pcAmJIWrir4S26k/S8c3kxF8u1X6hvSaRuOVHjDnpJTcuJWajnuwTm3Bzd6NFs4JF3QICAsjMzCTh5qUS+xHMZmRVlPMnCOYiw4/Mei25Vw4R9FDJRkKzXotu70KWrFiJqeOzeIXXqYqhloggCEUuWp3cW+7PpxTubRGzomjSvhfJycns27ev0Hvt2rTi8I5/7sGoSsbgFoA2KxVtOVUhNBH1qPHUZ2Sc2MytVZ9gKqMkXH7sGW7OG0PavwttCdJGXR5ZWVklFtDr16cXNy+dKtVx3GLakHuhat2k6TsXFqiEaY8pP53uXbvQ88EHGT9mJHF/vcPRL5/k2LfPcPr93lz+biyy3FRqP/s99Sb/RkTHEcgrUNWzqok9f5DevXvf62E4cfL/AkEQ2Lt3L48//vhdPe748eNZsGDBXT1maZDJZPjXbY/GN5Rr60tX5Evp5kVYv5eI++P1SvMuJ6/+FL9uo7l54ThNmhSu/jx58mSObltWYj+CIb/MRThLizE3A7VP4UiH7JObCAithkuQ40rKgtnMjS+Goddqyen2Gp7tRlTJOEvCZDJy5MgR/P3vrSiJk8Lcl08qaWlp+HioGdpGfJCcuEpUKNDZxaVf1Uo/OpfUayTuXkLG1WO2hNaLZhMypRqX4BpoIhvjXrsdrnYVEI12kpcyizqEwSht+/W05Nr0CBbdnQ91e5pJL7zE4QP7Cng7+vfvx+LFv3P16lVq1BB/lPa+kOdrSu6+PaniAijObtWcaSffuT9bfN++NLw2J8P22qokoXCXHrJP24kdBCoLTkZujXvjfWMHqUlXUbUchPyy+DAttztXo0aS6lTkiy5pWY6UoyFXKIka/CqZF/Zy85PBuIbGENC8L64hossxPjXW1tZkSfTVxZ4mafsCkMmp1mYwroGRkHiBnk2DuXB0Nz4dStbnHzJ4ED8PGk6NHlL4kcyyUBHsisIpXD1wr9mCxBWzOHRLdH+OqS9NnGkG6fr7WPIdoj2la35LSqegtZd43n/abZTnpKFNuAy6PDwCI8GgRVVdKqjWjEucubGPtm1nARDg70ty3DWiH/sAt9DaKA35NgUphSEPshNtuQoguWIBXLLFfIPcYMnN7WKXg2BwlyZRs1Jj+VfKYdGkS5+Fwc3PckytbZtVjQIgL0D8/GR66X2zYJHvNeTj5ye5wJ04cVJ1LPlzKdUadCoyJ89RPp6jXDxrHp7R7r5pzcOz5uBtuKgiIx8SEhKKrNdwOUHL8gPptnuxNffOmndnzbkDKe/OmnNnzbcDKefOmm9nzbUDKd/Ommtnn2dXv3ZHjkyIJkfji9LV02GOndEjAHWdjvir3Yn9bSphT36KmyW/7s7cOkd5ddacuvybp5DFnaXlE+9i+GVjkWHHw4cP58133qP3oxPRKMRrYs2jAymXTu7qCQqlLYcOpDw6aw6do/w5R7lzJrO5yLy5favfRuHuWSBn7s58OV1qHMd/fw21xpVavSbikn4NDl0rnCtXVJ7cHTlyjvLjHOXGWfPi4mLP0a1bNxQKO+l6J/cF9+VC4ejRo7baCY4wpMeTsGwmLioVod3H4NP/VZt7T65QYtLlkn/jJFlH15GyYS5eTR4kuP/LxarWlESNes0JiKjLxYsXqVOnoGvu5ZdfZurUqaxYsaJcfVcV7jWacyVHwHRwGd59KiY1612nPZ71OpN38xRJ+5ahT7uN0t0HlVcQSk9/DNkpGHX56NNu4eIXTnD3MWiCa6LOKRiDf3DdfH75Zk6JxwsKCiI1KQ5tbiYa95IrLss1HhgyElD5VG6BIoCkLT8QWIRWtWA2MeflR/jl5+9RKpX88utCPvl5OfVeWWlbHMgFY6H97mdMJmOB2GcnTpxULXG344msVdhifTfoNnQSr0x7nUUL7z/PgsrDl6DouuQeX413u8dKtY977bYoPf24Nf95Qjo8glc5CnGadbnEL5lBx5d+RZ+diqdH0c8Mcrmcfn0e4vDOtYR0fMJhn6b8LMwmY6V6ksV8kMLRF1nxV8lJuEL16tGc2zQfXKQHdUEQyIs9w/UlMzDlZuAV1YjaQ15DlZ9aaeMqD7cvn6B5GaR6ndw97suFwqFDh+jevbvDNnmXD5Kw4l1Chr5NtSZirHtaXl6BNgoXdzxqt8MluCYBvSaRf2kfVz4eQvSEn5HbKb2UhVYPDOf1Ge/w17I/Cmxv2bIlJ0+eJC4u7r6SlJTJZHj1GE/sjxMwaXOoaJSkTCbDPaoxHhH1EAQBsy4PXVYyZl0+chc3FME1kKs0KMxFPxwn3bqK3JBD7dq1i3z/TiZNnMDuHSto1bfkpGbfDo+SsW8Zgb2fL9M5lUT2hb3I1W64htUBXcHQq9zNXzJwQB+6dOnMrwsXMevzH+jw6kpOXyx7MZ77hTP7NtKvd9EhVk6cOPnfolajNuxePZ+dO3fSpUsX2/bAwEDirl+452HAZrmK9FNbSr1QAHAJrU3UxF9JXDiF7EsHCHxsTrFCFPYIZhPp+5aStm0+wUOm4xZQjfgDf9O7Y8di9xn+yDDe/eynEhcKrhENSL9+Ev+aJRtBS0vW0fW4xxSumJybGsfIJ55g1puv06l7LxKyBRIunwClC6bcDOQKBb5NHiK480jczPoier77XDy0kS+WV74qlJOKc18uFM6ePctTTz1l+7/eYtxUWBQWdEnXSVz5IVEv/IFC40FtiwsvT1W0pNwpQXSFqlsNwiWiATd+HE/9V5ajcBXdtnl68YeitEs2MtiVbM/JEi3iKxMCIKgbew+8wKVLl6hVq1aB40ybNo0lS5bw8ssvF1jjJ2kLxyaq7SatVLvQoxoasa1RkLZdM0ltDbmSLKoVvU6KPYo3ih9pHXfpXDLqdEbpFcjtRVOJ6Cd6FRR6aVFldJWs9eocUTdblSclhAlyqS+dR6C4TSG6kOVKF1zsqhRbQ1/sQ5vyG/Wyvd7+4yDemDat0DkUx8ABA/h5xBha9LEsFDzF46tcJJlQQ5ZoCXGv3Z6k1Z/h1+VJFt2WxvSAn/RpWC4vPmrJYp5kJ5+6JFYMw5ElXwPAmJNG8qZvqT7qM+SGfJTVxUl+TLiOnMw0VlzZzEc/bGDEk2PYdfo64V3HcenwZoyhDWx9yu0WTUZrwRs79Qm5UWv3vvidtA8nktldS02GpCxhdeFq7dzwRjcpXEhvCVMS7PpSZ0tSuNbtXu5S+IKPWkvG9aOMHTcMJ06c3B3Onz3N66/3p2ZN30KhttYwW0EQkF89SMrBv8lOuoFMoeSiYEbh5o0mrA6u0U1xjWqCi6/oUbWG11pDa0EKr7WG1lrDarU93mTCpMc5c/K4Law2MjKSlo1i8M05Cjwg9mXpxxpOaw2lBSmc1hpKaw2jBSmU1hpGa1+MzRpGaw2hvTN81r/zE+Rtn4fWNxy3ZLFWQlGhs0WFzUYNfpWMs/9y46O+uFdvTkDzPrj4hRUKlxVMBrKOrCH1wF/41mhG3SGvolCr6BmoY+m5f+g74X2Ko3nz5lw9e4iOMrNY18Auj88aIqtw9cC9XkcOH9iMn4t4b7KGx1pDYx2FxRYVEivLSiFty/fUfPJjFHeEw6b98DqPzfscmUxG40b1OLl4GaE9J6DRuOIeEoNcqRbDYI25tjBYRyGwRYW/3hn66ijs1VHIqzXc1ZifjZeXNAYn9w/3ZTJzRkYGoaGhxb6fsPQdQka8W64QIk1oLUIGT+fiV09gNpZvJV3z0XcLhRjFxcVRrVo15s+ff98VZ5PJZIS/8CcZB+9twnXm/mVER0eXSU2nevXqBPm4k3TzQoltZXIF/l2eIHXrjxUZpg2zQcfNP6YTMfgN26LSnvXzZzFi2BA6dH+IA4oG+D635L5OUC4NRqOBy6f2U6+es+iNEyd3A0EQuHbtGjVr1iy2TX7saa5/OpT0k1sI6zmO6BeXED35d6q/tJSwEe/hGtmYjP0ruPb5cDIOl13FSBMaQ7XazTl+/HiB7ZMnT3ao9nc38Gr/GGlpaWQfKF9Yr0/9zsQ8+wMe0U2J3/IDlxa8yNXfpnFr9adc//Ntrv/8PNe+fxZDVjLVR39BaPtHbBWcczLTyM9IsOUeFoWLiwvVo6O5deGIw3G4125Hztkd5TqHosg8sRGP2u0KPQcl/zWLurWiqFevHq+8Op1DsXpqTPoN3wZd8Iyoj9zOcHS/oNflo1Dcl4+jTrgPPQqJiYm4uBRfHCTv6hGQy3Gt1rDcx3Cv3RYheTC3Vs4mcthbZd5fExBFfs7ZAtt+/PFHvv76a2JiYrh8+TJ+TSvPvVgZqHxCULm6l9ywijDlZ5G9+kPe+ndLmfaTy+XMfu9tRk14kSdmry+xvVfzftz65UVyzu/Go27x7uKSEASB2D/fIqjbaDQWq5s9edkZpN06x6+/nSOr0wt4NHyg3McqDkNGItrEqxgybgGg8QlG5uKOyt0HmbxqEr7SEuNoUL8unp6FF0ZOnDipfPR6Pd7exedgZZ/ZTurm7wkf9Rmh1cX7nt4SZiuTycS5vWkIrtWbYcrPJnXTt+gSr+Lfc0KZxtFl8HieHjeBwwclsY6IiAjy8vI4deoUjRo1KucZVgyFqyfutduSuXMBwTW+LFcfMpkMrzrt8I4RC0iajEZM+VnIFCpk/hEAyK2iD3bFRDcunM3Yp0aW2P8Lzz/Hhz8soVrd4gtUqnxCQK5EnxqL2r9auc7DijEnjdTdf1D92e9BkKz1uqRruF3dxmfbNzJp8ovsuphO83HfcvxU1UqHV5Rzh7YydFD/ez0MJ8Vw3y0UlixZwsiRRf8wTflZ3P5jOlETf63wcQK7Psn5OYPFsu9+FfvRArzxxhvs378fDw8PVKqq0UuuKCq1C/r026jtVBnuBoIgkLVwIgt/+MahZaY4WrduTYeWjdm+4E2MLZ9G6RVYbFuZTEbYiPe4Nf95oib8jDqg7J+tYDISv+oTPOu0xyOmdQHFByuLPniaGtFRBDfpy+6wylsk6DMSSDu8mpxrx1B6+uMW2Qjy0xFMRtKvHEEwC+Snx6Fy88YvpiW+tVpX2rEBDmz+k9GPOsOOnDi5W+zfv79ABXT7UFtDZhLJaz4jesoy5CqNwzDbU0IASq8Awp74hNifJ6E9uoaADsNtobUghddaQ2utYbUAB/ybkJgHV69eLeDdmDt3Li+//DJr1661hdQ6Cqe1htJaw2hBCqW1htE6CqEtKnw29eFZpLzVmfS0RNwjGxYZOusobPbOkFlcPFC4+wCgSb0OSOFM1lBZbdw5tBf2MnrJN4XGeic9evRgzLMT6WEw2MJjQQqRtYbHBvR4muT1XxP+2IcssggrWkNjHYXF2ofEmg06bi1+g7A+z6OUgTJaNEqODtPy5+J3efuTD3iw/xASvBsQWr8n5/b8YwuFdRQG6ygEtqjw1ztDXx2FvToKefVRa0m6sI8xE++uNLCT0nPfLRQ2bNjA6tWrC2wzWSIjk+Y/T72RH+ATEkWyVvpSH8oSV9QP+EkTk5/dj62Gm3iaJ+wqXHrIBVQ9R5N5cCnKvmLMvH2svzxHUgAwe4hf+kgXsc9klZl8Q8GHR7Vazfr160lJSWHChAnc/Pk3Hho+iSZtutsqPgIczzZwJ3U8pXFpLHGKWpO0002dNGEKbmIMX7S7FKNvL5lnjf10tzM4h/oFYdJrSXFzQxd3Ho2nf4GYQ+sECyDIxbHo3aVKzEqtpElttuSJ2E/UMrsCQdaJJTdcsj49eONPzK1j6NundLr8BoOB1NSCCgzvvjODv/5ayYefDkZw9UHe6lG8mvVG7ReOveqDXJeDXC6jes9xXPtsGOFdR7G+mRTqJFgqVtpPfFZZOUEQyDmzg+StP+Lb4VG8Ww/CBPSuFWlr2txPx7lje1iWnczJBFc0Dz2EOvak7X2r/JwyX7oR6j2kayl4i/HDSksOBIA2sCb5sWdI2TAXmUKFf5cnaf3sV7YwJqNdwotVws+Qdpv0rT9w+685BDXoTGCTnshksgL5ClYUdpriZrn0XVNnxgPQIEpaTKWmXKBd29cL9eHEiZOq4cqVK0RHRxf5XvKazwns/QJylabI94tCJpNRbcxXxH79BJqQGOTVSu8JCO46mhMnTtgWCjt27KBv377k5eWxZs0aCOta6r4qE6WHH571O5FzchPukeWPJigLqb9OYuVP35aqAJhKpeKZsWM4un4+NC4+qdmtejPS/v2N3Ev7UbcZUuYxCWYzt1d/im/zPoWuQ8KNCyRcOcGUqW+Q1eUlvBt0R3Z2c5mPcS+Iv3qKVq0KJ2U7uT+4rxYKVnWFon6Yl7YuxC2sNj512lfa8cKa9eT86q+p1rf0ybUgui23b9vG0+OSefzR4dSqVYuIiAhkMhmBgYEsX76c+Ph4qteowedLDoJbdKWNubwk75hPdEQYSSU3rVRM+dls/2c++/fsLPJ9s9lMYmIi58+fZ9EfSzl14RpGkxmzd7itQqm99rRXvU5os9NI2vIdt/+YgdI7EM/GPQkZ/FqBfl18Q6k1YhY3N3yL8dQ2/Ls8gWtk46LHYNCRdXIz6fuX4VqtEVFPz0PuWXQNAUEQ+P7d8Xj7ByJ0mViOK1KY9H3LyDm9jaD+L+Np+X6XlOug8gsjoONj+Ld7hLS1n3N19edE967YeNJjz6PRaJwJZU6c3EX++usvli5dWmh77qUD6NPiCG7Uo8x9yuQKaoz9iotfPUH119YWMOaUtJ89MTExhISE0LNnT2JiYjifV8yOdwFNYDVkKdfvyrFyt//AoAc60qlTp1Lv89LkibTu0BWjRwPcahQfehw67B1u/jgejzrtyyzlnbxzIWq/cLwb9Sjk6V45dyo+vn70fGYOf5srJjNqyEom/fgGsq+IeRcqwYjZqEeuUGEyGnANqIZfjWZ4RTYooaeSuXL2CM2aNHbWT7iPua8WCseOHSsyDjL95lmu7lpGnWl/V+rxFGoNandvTHmZKNxK1um3cm7LrxgNSgy+Dfjx7/1cPDgTfX4W7858Gx8fH9q0aUNoaCjr1q1j1uw3eeiV3yp13OVBlnaVxNQ0PLs3u6vH1W/+jG8+no2ra0FX+cqVK1mwYAG5ubm4+IQTGF6DBp0fJ3RwUwDO5EpfTfsaQ/E6I66At9mMSZdLwrKZpG7/BQQzIUPeKHAMhcad6oOmkpGfS/r+FSSu+hSFpz9K7yBkMhmCyYgxKwlTTgaeDbtRbdTnKC0KHMUJAv4y5wX8/XzQt38a1+imFbo2giCQvGcJ+VnJRIz9ptQ3c3tkCiXhnR8j8+pRLi9/n4jRX6JwKV8uStrlQzzVq1fJDZ04cVIp3Lhxg8DAQNzcJGU7EzK0WSmkLJ9J06nLybBLPr3Te+7Ic+7hEUpOrRbkXzmApyVfy+o1t3rMrd5yED3mWlXBh8+IiAhOnz7N5s2bGThwIC26DKTPo88jl4nhNY485FbvOEgecqt33OoZB8k7bvWMF+cVN3v7k3ntAHKjrkiPuCNv+J2ecEde8HGuF/nt7Ep+2L+n0LndSWpqKlq76Ibf5n/PxCnTuLkkCXXDnri1HGK5T4jnJtflIFfIiXj4Da7PGUS1nuNY30BcCDrydmvjLpC49jM00U0JfGgiJpnM5ulu7qfj6K51/JObTl7D/qw01kAdJ3q57/RwO/JuawNror11luQN34Bgxr/zSJo/PhOlq2cBr/atPB3514+RuuNXbuz/m7CW/fCr296hN9uRJ9sz/iQD+jnvO/cz99VCYenSpTzyyCMALNgthW7s+flVGo+bS7ZMCUXUgQrTiD+wy3YVit100kQQqBK/5f5K6dvurRQ7iqjZiMTz+3CLaUWwn1RbIdE+Dt4yue44fwFd8g2u7FxG5PO/cTiqKQDtu00mM+4iUxb9iaDNxTXxTR4d3J/RTz6GQtBzZM9GoluJYTcGy6Sm9pQm6D3Z0li7eIs3gjBXKUGpPXaVnTMtk7BMOpfGdvLQ/pYopXi7uSbh1iUubfqNkK5PIPiEYgQMdtV6rZUtAYwWyTPrpAUFpTqtcZxyu8rCgsxuRre8nt4ygGsXTrBFSKJHD6kmRnx8PFNee5NLWS7UfuQH/Ny9OXLlIrHA0QRwOf8vAKo8KfTI4C59FgqTpeqo5WZSvUVv/KKbcGXhK/h6uOHSV/QsGO1Co9zdfHDvO1k8l9xMTNoc9DmpqLyDkKtdIVSqglwzSJSsy7YrjtncT0tudibzZ0/kxtXzKBv1IjAwEtmNwwXOGcBoeUhX56bZjV/yTgjWiTOsDon/zAGNO6+8+J7Ne2JFZxdLGpcvvVfPTTpWrLtozTmdFIQyshk+QbW4vepTIh59TzyGJVxBbvdZayyJ0QA5DcXJuZ6neKwrN/bT/vnpOHHi5O5w48YNYu4oMiUIAvu+e4GaI2ah8vADuwfRshLV4WGObf/TtlAoibyMFN6e+R07/t1F+7Zt6dOnN15eXgwYMIB+/foxc9Ysvnv/OQbNWFbuMZWXa2u+Irxe1YanCILA0m/f4rdf5xeak/V6PQcPHuTsufOs+Hs1qTkG5CoNRsvCxOr51vnWxs8nhoQzO7i96UfkGg8863ch9LEPbX25BEZTc9ib3Fw/F+HEVnzbPoxrjRbI7O67gslIzuWDpO9bhkyhImTQ66hDCitj6XVavnt3Aq7+oQR2fbbc55556B8yj60jeMBUm2db6Vo431Imk+FWvTkajQdm/RiS/55NduxZAge9bisyWhZWrVpVKNzcyf3FfbVQOHnyJB9++GGBbZlpSShdPXEPjqYI40WFUbt7W6oblo6kzT+g9g/HJUSa3GUyGT4RdXBtJ8YmmvX57E05xS8P9ObzOe/zzPhJ+EU3wiswotLHXxoEsxmDLh/3zqPv2jGNRgO/zpnM2n+W27Zt37GD56e+SbPhb9OwZodKO5Z7eB1qjfmKuKUzUJzdQ9CzC4otLKdw9UTh6onKXyqKV1Ld5NzsTL6YOpToaiEkNR+Ex4DpyC7vrdCYs46tw5ASS8TYrwvdkMqLR/3OZO1fRu7Vo7g7cH0XhS4/h/zUG1SvXljhyYkTJ1XDypUrGT264Lx8fsMP+EY1wLde+VXbrPjVbEH+rzNK1dZk0HF8zXf0emQ8hsAoth6+zqTna9G7T1+qR0Uwfvx4Zr7zDqdOj+DS4a3Ualn2kKjyYtLn4+Hth6wS7xtFkX9iHQ93aVdAHnrPnj288cYbeHl54R3ZhKDwGB6Z/DnXzKJh0er9tnq+43XiHaUGYDKZSN0+n9u/v4bCw4/QB8fZ+lW5+1Bz6AzSc7PIPLaBpE3zkCtdMGtzULh6YtLm4la9KSH9X0FtUWa609MtCAJfvDoCwWzCe/T3ZcplsSdp92LyMxKp9vS3ZVLUk6tdieo5jtQzO7m1bCbVRrxrU8wqDTkptwgNDcWjmMrXTu4P7quFglKpLPQlO3dkJ3512lbZMT38Q9HfuoZ7KXIfdEnXMOtyUftFOKzhIFe7UrvLcELrd2DmN++SePsm57f9Tuvhr1bm0EuN2aBFrvGw6CffnSqbW5bNY9zYp6hVqxYZGRk88dTTKNwDeXDan7i4e5OgK7mPsuAaXJ3q434kYdWHJH3aF79mvfFo93iFZUQNuRn8NHcsE8ePZcabbxPxccUVtwyZSSRv+JbqUwrHJVeUkD4vcHPhy1R/bkGZ9ku+dYXWrVs540SdOLlLCILA6dOnadSokc2DbjToOb91EZ0++JdEU+F97vSeO/Kci15zGSiUaC2qO1avuc1jbifgsWbFYrQ6LWdqD0OmVNOhYSCDO04iM+4iC08fY/HQp/GT5fH+zBlMenkGnrU7YMjJte1v9ZJbPeRW7zhIHnKrd9zqGQfJO271jBflFb+0/jty8/IIbvkwRrm8SI+4I2/4nZ7worzgU+q58O4X3/DqiaOAKKrx7KSXOH09hRqjf0PjHciRKxcB2HwqG5eM84Dk/bZ6vhV2hkelYCYstAY+k37l0o/jURmy8X3kQ2QKpc3r7eHmg0fPccjMopfcLJiRWYUsvMXQoaI83dV0F3l/Ym8UGndCJv+JjyEH7vBy3+nhLsq7nXL5EHqTkakzfy70/GX1bBfl1bb3aGsim+Hy92zSjq7Br83DhbzZxXmyj+7fRpt27XByf3NfLRTsscqv7dm6CtkjH3NLZ6KRm/RlPYe0cg63xGkekQoiEqIuPIH62cVf7sgU30+MT0bpEwJyBYmpiVIHOmkCtE4yJl0euVcPE/nEJ2A3UR1It85o0kP4lkti3J/w4KvEtH6KZA9f1l++hcwk/vDk3lI4jd6uryv54nkdzpEmsu4+ks17WLB4jEw71SV7e/TGdPGHbrp22LbNaDQhV6oRXL1sVSPNdtU6BaTJQaEXz1thkEJ3TCoptsklWwydso91VOVn2F736Nid5OtnOP/vLhZ8voE9e/Yy+rkXELq8gCayEQkHd4lj0thVg7abnFyyxPhFzNJkK3eRNP2tk6nWWyrIp84RJf4UQOSA18g4tYWck2tRxp8iKT4O9/aPgdoVhV8kqjxxrHKTnTvfEsYkkyugoThpPRCgJz83h81Lv+HTj2YxZvxkHv76KAduXEEA9J5S5WfXVEnBSGm5FtnV20j9252f0t2HuN9eYfCEjwitJk7ankpp9r+VL37u9rHHB9Kkm3k1Tyn/oJZFKtErVPosjiRdxiO8LvnH1+PavJ94eLvvZZadRa62t3hdq3nks3ffUqY+V7JeuBMnTioHnU6Hj49PgYezGxdP4le3vRhDX8RCoTwIgoDZoEOuKr4+kdmgI3nnQjQhtZDZV4W3eMs9dGqo1Ybqhjien/oWGQnXObB4FvR4uXIGWQJ514+himhcrjyu0rLkq9d4d+bbeHh4sGHjJt794CPCuzxN94EDSNBV7LhqnyBqTfiJm4tfJ3dmJ/we/xgfv6JlymWlKNqpS7vNot+ex9vLE9ODr+FRpz2Uw8utvXWOzCNriH7h9zJ5AooioNtors17Gu/GDyIrpWfj6uENfP/m7xU6rpOq575ZKOh0OszmggkIRoOe3KxU/PyrLmTHlJeJOrj4ipj2ZJ/fjdovAo/abYtKlSgSmUxmcxveK7KOb0ATWrpzrAxOrJjNb999xcZNm3nro29QDv0MhevdU9LxafQAQr3umPb/gp+bP/mXdiKYzWTnZoNJvPvKiqiNIBh1ZP67AC93F5oOfwSZILBw/jwSExMJb9kPjYcvcLtCY8vYuxSXkFqE1m5RoX4c4d+sF4m7FtsWCqUh4cZ52rRpU3JDJ06cVBp3Ppwd/Xc1wS1KX7m+VMeQK0Bw7Ek25aZjyEjAr81gh+1C63ck+O2NnFs3F413INmVOVAHCAYtKp/gkhuWk9ybJ6nuKvDYoyOY/dEctuw+xpg3fuSSqfKOqfbwI2L6FnI3fU72H69gDggHzyBcmg0Sw2FdfQAQ7BZDJrV4hQ15ohiI0QT6zCQyFj/PUw/3ZeOuY6S1HFiu8QhGPQl/vU+1536ulAKecqWagE6Pk7p7CQF9JpfY3qDLR2bMw9393hWCdVI67puFwtWrVwvEBQIkXDtDeEwT8ovZpzLIu3ECrw4jStVWnxqLa0T9KhxN1aA9uxX35uWbTMpK3LkDxIT5kJySwvhJLzHysx2svpRQ8o6VjCYkBgaJSb0ai4XGD0lxoUAdCLtFQ5OW3dgyqz/e3t5MeVGc7E6fPo3Kp+JF6kzaHFK2/kTN16o2ccvFPwJ9ZumFcLPSU/D0cE7WTpzcTeLj4/HzE72KVg/62eP78ev1bgEPuiPvuSPPudVrLphNyDXi79vmNbd4zK3ecu2Vw8jVrvi1HYrZ4uGWPOVg9ZbbPOUNxBoAMq2d593iJbd6yK3ecZA85FbvuNUzDpJ33HomRXnFdbcv4N9vqi2kpiiPuCNv+J2ecHsveLd2XVizdhbfb1nDoGGPcVpeA7cOU/jiVDbuiYcAyQPuyPtt9XzL7AyeVs+31evtfusk7vV7oHELQHd2A8a0myT//T4Ggx6zvnBkgti/mXgXFzQuajq0a4dKqeS333/giWeep/nkP9h98bJ4bkV4uQt5uO3Gn7bpW/y6jaJ/XdGI6MizXZRX+06P9pETl/Gv0YxL//5GYM/x4uEs51KUJzvjwiqGDKjcRbGTquG+WSiYTKZCSZ03zx4kumE7zlXlcfMyUVgkMUvCkHwD75b/vTLj2hsnCX7iy7tyrLPrvmVw9+aMGDmGx2ZvQK35bz2AymQyOkz+iZW/PM1LLzyPTCZj0/bdeIY9VOG+M/Ytw6/zE8jV5Us4Ky0ymUxUcyol547tZdCAvlU4IidOnNzJsWPHaN1aqqyuzc3EzcuvUsNrzEY9mEuOYdIlX0PlG1piu3uFPj0Bz0Y9QF/5hRzObP2N4UP6M3LUGFRR7fGIrvhcXxJe0U3Ibyl6b7wthixHRqymrbrz7yeP07pVC16b9goAZpkChYNwMkfok2+Qe+UINQa/UXLjMiBTKFC4emDW55d4D7p54Rg9h/es1OM7qRrum4XCrl27ClTm0ygEUm6eo37LLqjdxYkzzEWa8DyV0mTqb1n1Bqik1XKwqyTf6SIXV7VJWsm9ptfmoU+JRekdbAkpAW2OJGmJfZympSiKRp9Bq1q1qNegNhtSpLwBQ04GAHJvaUUvZMTbXivypR++Vc9ZJrOzBGmkB8cr2WJbc1qcbdufqVKMvtyqkZ8uhcCoLNYKkJK3BEs1TrNRj1GmQhUoahars0WLkn01ZrNaepg3qUULjCpXkic12enyKyz61fbVmvOCRAWo/NizJBzcQnxqMr7jfmXjrSy4lYVCL1kjrGXjreMAyIpsKR3LYgFyS71i26Z3k6RklRarkSZTur5yo11FbYs1y2w3gdpbeJR54mdsX25esLPgHLhwFgBfF08yMzPx8fFh7/EzaNq9z60cGSZPi0UqTUrOMmqksCqzSpwcPa8dsG3Lqd0FQRDIOrKGaV9tQKWWcyVP+vwVdi6zc3nidzRIbxeSYGcFSre75+dZTstfLY3fOhZDXiaC2YRMLi+QwBYdLHlGBoSIFqztq7by9BuVe8Nw4sSJY/Lz81GrpfvMzXOHiazXimQH+5SVvGvH0VQruSiWIfYkruH1Smx3L9Am38RsMlRZfsL5zQtI9fXAr153mvV/jqunrpS80z2g9biv+Pv7x3lt2itcvnwZo6L0xqA7Sdu5kOB+L1Y4L6EolK5emHV5JS4Urp8/SufO71X68Z1UPvfNQmH9+vUsWbKkwLbMlHh8AsNIrAJZVID868dLXTRLMBoIi4jkwqafqNNxaNUMqArQbv6S4KiKVWksDcasZG7+MA7PWu2JmrqCnFvnq/yYVUlYVG2uX7/O7du30bqF4lrBCVWffB11UHVUVexNsKL0KJ1lMiczDa1WS926dUts68SJk8pj48aNNjlwjUIgM/4K4dXrEHaHYcyRUcyRQUyvzSP70gE867QvbAyzGJSsRjCVPotAIYO+dkYwqwEMJCOY1QBmNX4VMMhYjF9Ww5fV6AWS4ctq9JLbF4W0GL2sBq87jV3asztwD6sFcrlDQ5cjI9edBi6rcStx9aeknj2C6qXF5IbWJfbkJYeGLUdGLatBy2rMAsmgZTVm2de0sRkNLYYsR0YsqwHL39OP7Oxsdu78l5xaPTmYI3dovLrTcJVTuwuC2Uze1SO89OrnyGQym9HKocGqCGPVnYYq2zEVKkzaLJSefjYj1Z0GqviblzgfGexU2fuPUHUSAmUgJSUFDw+PAtUpAUwmAxo3z2L2qjjauHNoqjUsVdv82FN06dSBV198jn0LplbZmCobeW4KSpfyWx5KgyAI3PjhWeRqN+pOXVElVop7gclkYtprr6NsP6rCfeWe341H/S6VMKqSEQQBs750RZp2r/6ZRx99tIpH5MSJE3u0Wi1paWmEh0v1XFLjr+MXXK1Sj5N/8xTuNUoWTnDTqAnzUhJ3puRqxHcb85mNhDRoXXLDMpJ9bhfp+5ZRb/o6/Fo7TuK+X3Dz8CE3N5cXXnwRr9YPl6uP/GtHcK/dturu04KAws3HYZNDm/5g7NixVXN8J5XOfeFRSExMJCoqqtB2waJQc10nfqGj7Z53Yzyk0J9MvbjecbUrGR+fL61Ukyzv59qFbag1bmivHyWs/0tEuojvX0qQQo8EO5Wext6upLir8ZV7MnrUSLZs3cruFe/g2e81ZHI5gf6itcXV7ncn95IWONeTpDAZqzypNuGqNFZ3H2lHy/vYue1k+ZK2hDpR1HHW2ZVLF+wUC+RG0cLUI0DUkl57+zTuAREE+4qJZomWvgS70Ce35IvS/i6W87ZL8LWXT9V7hViOKX11cvf8gcxkJKzns+TpxAdUa3l4AHNarO11fqiYDK7PlsKlFDrp/KxJZlbrEIBgV+3RbBJfazIl64nJXQpNklusMkqLggSAvEDMp/glUNlZpPSeUkVuZXhdBLOZlbO+o1qghpyoznhWa0y+VuxD4SZeH/UtyWplVkpeAr2X+F2wl4+VAbkX9xI86HXbd9TfTqpXa5Kur6fFKuhuZ2ix90LkGyT3Wt1AsW2Kzq6xICDotchd3AiKqA3AE+FSUqJSJi0gXJUCt84fYNC8d3Hyv8moUaMYO3YsnTt3vtdDcWLHhQsXaNKkSYFtaQk38AuJ5Eh+wfudo3udo/ucWuOGIekaNcOikCsK3uOs97fG3uJBrgUFsnLpItp37k7+kC9wCYmx3ddAurdZ72vWe5r1fgbSPc12P7N7z3o/s97LrPcxkO5l1vuY/T1MEAT+zE5GEzyIQN9Ah/cvR/euO+9b8tRYkv56H9fgGqhi2pKrzbfdsxzdrxzdq6z3Kes9CqT7lPUeZb0/gXSPst6fHN2bxPuSib17d/D2+3MI6vYkemSgzXN4T7rzfiQD8i4fxK1m60L3Ikf3oaLuQYXuPxZlLWN2KqG1WiCTK2z3Hvv7jlpmJPn6CTp3/gQn/w3ui4VCcaiq0BKec3E/Cnc/FG7eJTe+g1/n/0ij5q3Iv9YTt5otS97hHmHUa/HycCenHGXVS4shO5Wk3X8gU7viXa8z6fuWk75nMYLRiFxjedjX52PW5SFTKFH4ReDdoh9eYXVKpRd9L9AlXaVJyzYs2XaYgIlLMRorFvtm1udjTI9HHRBZSSN0jDbhMpqg6BLbXTl/nCYN6//PeICcFCYzM5MHHniAqKgoRo8ezahRowpYsZ3cO+4MuzAZjbh5+lJZMn85F/ahDopGXsp51t3dnd8W/EiLVm2oM/d65QyigujzswkMCMCoUJfcuAwkbpuPSZdLjSc/JfPIGtJ2/Y5g1Iv3JINWTMZVaXCt3Q6v5n1xdXErudMqRp96i/CwUDYcu4r/+EUYDfqSdyqC7NPbiZxYcS95UQiCgGA2OpRbPX14Bw927+a87/yHuC9Cj4xGY5Hbzaait1eU7PjL3F4+i8hRn5Zrf6VSyXdff4H84rZKHlnlcvPkv3Tu0Ibc2xfJi79c6f2b9Pmc++IxjNps/Fv05+rCV9DdPk/UxF+JnrKUyOd+IfK5X4h+8hNqPPMt0aO/xL/H0+RdPcqVeWNJ2vELJl3lq1hUlOy1H3P15m38nl5QKQl0utsXcavZquSGlUT+7fO4BJecl3Js11qeHOkMO/pf5u+//yYuLo4JEybw559/Eh0dTe/evVm+fDkGQ9kWwP/++y/9+/cnLCwMmUzG33//XeB9QRB46623CA0NxdXVlQceeIBLly4VaJOWlsbjjz+Ol5cXPj4+jB07lpycnAJtTp48SadOndBoNFSrVo05c+aU69zvZ/R6faEHJcFswmyqnCpruUk3uL18FtUen12m/Ro3bszwJ8egi6tKrcHSc3H3Srp16Ujy7t8r7Xkgef8K0k9twSO6KbdWf0ru5YNUG/M1UZN/J3Lir+L96ulviHzsA9SB0SSt+phrPz9PztUjlXL88pK1/lMSUjPxe3p+uR+yBbMZuVKNQuNRyaMTMWQmovT0d9jmyM5VjHry8So5vpOq4b4w6W7evLlI17g2LwehhEIxZUUQBI58P5nI0V+W+IW+Y8cC//Xx8UF+p97xfcbtI2t4/Kl+tG3VnMmvPkrAw+9CUO3K63/jd8jUrihUGnKuHiai30uom4rl2U1FxMjLZDI0YXXQhNVB3vFRMo5v4NpPEwloPwyfJj3vCwuDNuEySQdXU/Pt7ShcKys/RkB2Fy1S2Rf3ETFkusM2udmZxF0+Tps2H9+lUTm5VwQGBjJlyhSmTJnC0aNHWbBgAU888QQeHh6MHDmS5557jlq1apXYT25uLk2aNGHMmDEMGTKk0Ptz5szhq6++4tdff6V69eq8+eabPPTQQ5w9exaNJcH18ccfJz4+ns2bN2MwGBg9ejTjxo1j8eLFAGRlZdGzZ08eeOABvvvuO06dOsWYMWPw8fFh3LhxlXth7iE7d+6kffv2LD+QDoDRrMQ3JJqbl08j9xWNCsYibi96S1SNtXxCtlGaMw8mZQCgUGu49v0LhI+cg9zdh5s6afEh9xOLf1pDjnoG6zAZjSxEeggP9POjsbcLrf2lheT+DNErHaAUB3DDMp89WUcKsfz1rJgwLM+0/GuULN5yk9iXyZJca7bzEAgKsW+ja0Hvfl0vI8dv7GfQy88Q6O/L+u/78vjo94iq3Yi9KdG2drvOWpKZLeFU6gxJEdCk8bS8J/ZtNmhJOvQPZm0ubj7B1Bg8jWx/sa+GHuKYTlg8MDLAO7Q23m0fxpAeT/Kaz0g59A+hD7+F0ivAVsvBKmeqyhXDimR2crR634Ih1cZgSVlKmW/57K0hSCbxetmHVVlDpkyJV4nfsZiol/9CnyWGGCktdSuMeWKCtsEuCVqhK7j4xlIpWdDmIFMoEbQ5GARxsRDgIn6m9mFsbpawpBuWitQymfRlHGFR0TUK4ndvTaIltDWoBjnnduHRvB9PR4r3/3zL99N6RTJSEnAll+joaJz8d7gvFgrXr1+nX79+tkkTxIkzpEYDrp49gjywvbitmOfyOydPKH4CTfv3N2S12qEOroHZ8oO+acmBsE6iIE2kIE6mG7duo2n3xrZtJ06cxF8JDQPcqekuToLWyRSkCRWkSRWkidU6qYI0sYI0uVonVpAmV5AmWOvkCoUnWBAn2d1Z8XTo0J7g4GC6d+vG9OnTObz3e8a+Po8Teik5zDrRguPJVnxfPFZe7BlSj67FJbgGbaevxjVATMKL14qTRtMAH9s+J+xc37biZiEx+PSahFePp0lcNousv2YT9tgHhSZfkCZgkCbhOydg27WwTMTWSVi8PtJYHE3GgiCQ/ec0NJ6+4OKJNlW8BtYJGUo5KYNtYgaxAqYpK6XIyRkcT9BQ9CQNRUzUiN8Fs9mMskbLQpM1SBP20V2rGTygz32xOHNyd7A+oG/evBmFQkGfPn04deoU9evXZ86cObz00ksO9+/duze9e/cu8j1BEPjiiy+YMWMGAweKxR0XLlxIcHAwf//9NyNGjODcuXNs2LCBQ4cO0bKlGLL59ddf06dPHz755BPCwsL4/fff0ev1zJ8/H7VaTYMGDTh+/DifffbZ/9RC4fTp0wwbNoxDdrUo67V5iJM7/0Y2qGLex7R/F6GJaIBrtdIVB7106gBtWomfhyAIrFj6B+1fHV6hMVQW6UmxNG/enE6dOjFq1CgGDh5KaM1mhA55D4WqbOFIZl0ul97riaDPp/XMrfjUbA5AtlZXwp6g9gsn/MlPyTm9nVu/vEDYox+g8SqDobECCGYzGb+/gG+12mhCS17QO0Qmw6Qt4n5VCQiCQPq+ZURN/LXYNgc3L2Hw4P9G4rgTifsi9Ojq1atFyjO27fMUO5Z+VWnH0d46S8b+FQT2eaFM+5nNZg7/u4ZGjRrZ/v/xV/OI6Dyy0sZWFahVMoKDxWQmHx8fvvnmG95782W+nT6c6wfWlKtPQRDI2P071794BJfgmtScvtG2SCgPcpWG4IHT8GrWm7hFUzFXMB+gIqRvmYe3KYOAp76u1Adol5AYdPEXS25YCSSv+4KAB58tsd3pvesYPXr0XRiRk3uJwWBgxYoV9OvXj6ioKJYtW8aLL77I7du3+fXXX9myZQtLly5l1qxZFTrOtWvXSEhI4IEHHrBt8/b2pk2bNuzbtw+Affv24ePjY1skADzwwAPI5XIOHDhga9O5c+cC9QUeeughLly4QHq6tPj/r5OWllZIwKNOqwe4fvYg+ck3yt1v7oU9ZB5dS8iQ0tdF+e2zKTRqIBpYVq9eTWjz3niF1ij3GCoTd3d33N1FQ1ZoaCgH9u1m4AMt+XNCQ/R52SXsLZF1egcXZ7RDplBS/dXVtkVCWXGr3ozwJz/l9pLpGDISS96hEsjctwRFdjzej1Y8BK8qDUPpu3/Ho24Hh5EaV0/vZ9CgQVU2BidVw33hUVCpik62DavZCA+fAJIPryawghWR82+eImnlB0SO/wm5smyWiAvH9+CqFKhZsyY5OTl8+OGHeNbqiE945YXxVAVyWeF14IMPPMD6NQ1o3qotGPKJ7jis1P0ZMhOJ/WoEeYk30UTUJ3LCz5UWnuPZqAdmfT4Jqz4mdPDrldJnWTDmpJG6axHymo3wq9sJY1ZKyTuVErlSjVCK6qgVJffiPgwZCXg2LdrqayU/Lxt9fja+vqWrSO7kv0toaChms5lHH32UgwcP0rRp00JtunXrho+PT4WOk5AgmsathgkrwcHBtvcSEhIICgoq8L5SqcTPz69Am+rVqxfqw/peUd9ZnU6HTidZhbOysgq1uV+xegXPZ4texSajP2HTV08RM20lR+Q+AKjtDMDeFo/jkTRxo7V2gSAI5Bz8i8xjGwgf+zUmgxYPN9F7mWNX8NOkEzX+A9Wi53bDv7tp3LgJ/fr1ZeTTz7H7zHW6TJiHHLiZJ3k6b1miiC4mi/Oih4/4OUa4SyGmo+qLntlFh8UFndm+aKnFk2ytHSDY5X5ZVX+U+ZkA6INqAvBUew+WygsajmQyGWNGP4W3tzfT33yQei26EtpuEm6BkVxMThL3D5S+P3IXD9IXTyFp7wq8mz5E9RoNadGsNRftImNdrGOyhBKbczOkNy3jjgoTF3VxKjUqnyCqjf6SWwteIOqpzxEsHndNeqzlHKUIAIU+x3ItxG32nmx7tTwAmSWKQOcjiQ08U8eNtz/4iYDq9XGJbILMztNvtCgRWZWkDEVIkrqki6pLOl8xWkKuy0HtFYAh7izx1cXjVHMT701ZdqpH2ZbbVaBFEamOm+TV1lvaZVrDivIyMWan4nr4D975ei0KpRKVXNxPsHyFHm/vw6VLl1jsYsbDo2ryI5xUHffFQsFsKThinTRBmjhrP/oBy97sh1bjzZHGUh6Do8kT7CZQs5ns/cvJOLKasNFfgosrRl0u7hopttI6kVonUZAm0qykWNb//hmLf1/E6jXreO29jzE2HUa3oU/a3DHWCfWWnQiBdUIFaVIFaWK1TqogTawgTa4yO4k3+6I21gnWXvLTOsGCNMkOqKvn72Kqu4eGhnLh7Cne+2A2vz5bi4iHnsO3aV88I+oWOdkqNJ7kx54m8cencQ2qjnvbR6nh40GjuqIVytGkC44nXhAnX4CAHmOIT7xM6q7f8e8qqTJYJ2DxWogTrnUCBmkSBmkivnMStlLUZDylTSQ/z3qboS9PYfEFEya9Frld5WmjnTSco0kZCk/MIE7OShdXzKk3ic8vODmD4wkaip6koeBELZhNxC97hw8+W4y3n7jwvnOyBnHC/uGHpYwd9ViR43fyv8Xnn3/OsGHDbDkCReHj48O1a9fu4qgqlw8//JCZM2fe62GUGpPJhF5ftGKNf3QjQh+eztUvH8dn3Ne4h5Rs2dclXOL276/hWacDNV9aQn5u6Twvt05sJ+Xf7+n9YBfqNW6Jx8Pv4DXuXVy9q05tsCxcvHix2NyZh4cMpm+f3qxc+Te//jmDIxcuIUS1Qt18MCq/MARBIO/SARKXvIGLi4bwh8y/2QAA+Q9JREFU5xeTuGwmTV6ZXylj00TUw6/1YJK3zSeoz+RK6bMoVs6bzjdzv+atXzdVWp9uUU3Iv3ESOj5YKf0JgkDC0rd5bsI7KJTFP1IuXryYiRMnVsoxndxd7nnoUXJyss21WBQqVw9ipq0kYfWn3NrxW5mSm/Njz3Dtk0GY8jKImbKsbMnLQFbSTQ7OG8dnH7zJ46PG8uL3a5A9/h1u7R9DUYWSo5XB+fPn6dixY7Hve3l5MWf2B9y4doVpfWoj2zKLw2+0IvOPqeTfPIUh/TaG9NvkXj5I7Jy+3JjTH+96HfEb8x3Zx9fToO9zVTLuwG5jyDq9DWMpb3aVwdF/19CpdWPiEpIRottUyTHcopqQd+NklfQNkLJhLt4tB+DtF1Ri2+XLlxeZjOrkf48nnnjC4SKhsggJEQ0fiYkFwzESExNt74WEhJCUlFTgfaPRSFpaWoE2RfVhf4w7ef3118nMzLT9xcbGFtnufmHp0qX06dOn2Pe9GnYj4omPOP3DRM4tfI3cpMKhSGaDjvybp4hf+ja3f3+NsJEfEz70TYeylPbEn93L1s/HEh+fwKbTmTz6+V40jXqV+5yqgkOHDlG/fvF5FhqNhs6dO3H1+k0CG/VAf/MEt78ZSdLnA4mb/RBpaz8hbMT7VP/oJPrEK3i3GYxSXXm/Ba8mPcm9chhjTlrJjcuBLv02iTfPs37TVmhdeWHOmpAYtAmXSm5YStJ2/opLWG1qN27nsN2WLVts+UtO/lvcc4/Cl19+yTPPPOOwjdLdhxovLSF71UccfLcPNQZMIaxJjyKlKwVBQBd3jvTdf6BPvELEmG/wjLDkP2hLH9OYn5XKP2/0pFadOkx5+xMaPfoBJ3wbl7zjfcLOnTttORWO0Gg0/LN+C8myAII7tuXWgb9ImzcKL19/zCYj2Xk6/Jr3Iuylv1CoXEjZPh/vNkOQV1HpdZlcTkCXUaRsm09I/5er5Bh3smnxZ/y1dBEjR4/H7em3q+QYLsE1ya8iycGcs/+iS7pGeO+SLVtJSUl4eHgUChFx4qQiVK9enZCQELZu3WoLb8rKyuLAgQNMmDABgHbt2pGRkcGRI0do0UKsFrxt2zbMZjNt2rSxtZk+fToGg8EWkrp582bq1KlTbKici4sLLi7FuE/vQ/7++2/mzZsHwPE08Ryv2IkXtPIwQ536XJi+jrTjG7mx+DXys9NQaTxI0QuY9bm4qTW4h9TAo343Qh55B5lMRn6Oxbhi8dBbC2Op1NK16eSvwWQ08tubowmr2xaXMT+TolSxNQfaWjyRjbxFBaRfbkuhQ3q9WNyhZzXR2Nbct7CqXYS76A5tX68hAHvPn7W9JzdaQ8MsYhl2AhU6b4tCg8UbrLYUbNu5YydTpkwp9jrq9XqGjx6Pqu1oZIFRREe3Fu9ZoQ2RyZXINe5ovMXIgZwzOwgeMt0WtVDDRTI4WsVMLHVXcQ2QvMEyS8E2pcWR28BDuiYnlGoCez9PyprPqNZ/CnoPUfSiYAFU8TqZbOIW0nG1PuJxjNbipJZoguHRomDIxu+X0KzHg6zasZ9wr5vIsm8VUFTK94sGJO+2a/otu/fEmj3qHDGyQZN2wzI2JZ5+ISRePcrmG2LRvD7VxePrJCc2jT3E46QZxBP3tvNwH88SHxvdFXB9399EZZzlmTd/ZHRHSVTl511ilMPYTuK2TZs20aFDB5z8N7nnC4VDhw7x7rtiZVjrpAlFTJy4cPGRdwhOiyN23VziVn6Au28wGk9f4rQCgsmAIuM2CAJuITXwbNoXj/rvFTmBQsEKt9aJtJO/ZG1Y//XzGAUB74c/Jd8nmlNAW29pfNbJFKQJ1TqZgjShguNJFaSJFaTJVZpYwTq5gjTB2iZXsE2wIE2yB9cd5Omnny503Dv56+9VHL6ejlfHMQBE9Y3GbNSTZVEPCvDwx9VHUv3JPbuT4GFvFwgTczTpguOJF+6YfFNUeDTqQfru3zHHnsLFL9w2AYN99U7pmppU9lYicSzWSRjsJmIoNBnnZCTzS2YGK9dsIK9+X/zPbhTHWcSEDI4nZSg8MYtjVuIVEEHajl8KTc7geIKGoidpECfq1GsncD/4C9PeW4TGzcPhZA3w8ssv89xzVeMNcvK/TU5ODpcvS/VYrl27xvHjx/Hz8yMyMpIXX3yR9957j1q1atnkUcPCwmzJi/Xq1aNXr14888wzfPfddxgMBiZNmsSIESMICxOr8z722GPMnDmTsWPH8uqrr3L69Gm+/PJLPv/883txypVOUlISer0ePz+/EtvKZDL8m/WieScpRGRLqjg/RLmJ89i17Nwi93XErh9fRunqTdOXlnApt3xFu+4GKSkpNGjQoMj3BEHgnfdnk1z9ITwDpTBWuUJZqIiqIAgY0m+j9A29s5sK41GrDSnrv8Kkza00b4XZZGL30k85ufk3gvs/jPuwj5ClVF4dJLlSjVtYHbJPbcWzUY9y93N939/c2P8P096Z5zBJWhAEZs6cyZIlS8p9LCf3lnu6UDh+/DjVq1cvUya+i184MSM/pLmHifzsNMxGA/+miZNnzZBwm5ehPBOolWsH1xK7Zxm9vz2Hi6cfCffxZFocJpOpWFe9lfj4eKa+/yXePQpaouVKNUrPgELtBaMBQ0YCKh/H/VYUmUxGUMdHSTnwN+G9qy6mMTczhU8ercm3877n4x9/x3vyP3B0ZZUcS+nmhcLFDW3ceTThhRW+ykPqtRMc/nU6095fgMat5ASxS5cucfjwYT79tHyFBp38/+bw4cN069bN9n+rtXfUqFH88ssvTJs2jdzcXMaNG0dGRgYdO3Zkw4YNBUKffv/9dyZNmkSPHj2Qy+U8/PDDfPWVpGzn7e3Npk2bmDhxIi1atCAgIIC33nrrf0Ya9caNGzRvXj7Fncoi4dw+avYef0/HUBKC2UxaWvEhPS+/8TZrrujxGTQV87mdDvsypMXhElKryhR/vOt1IvPiXvwbdq9wX/prh5k36wUe6NGNth06cirPE6/qzaASFwoAIV1HcXnpO7jVKl+o7a39f5Nw4G86Tf4RpdJxOPg333zDwIEDqVat/OqITu4t93Sh8NdffzFmzJhy7+/qKVplVBbrb2VU0QU4uPg9qvd4ChfPkq0+9yOC2VxiLsf169fp/chTuD/yGfKsJIdtreTHnsE1umkljLBkPKo3I37rzwhmE5U9vQuCwKmtv7H91/eY+803LF+9DnX3ScgUVftzCOv5LDf+/pDI536pcF/p105wZtEMur68EA+v0qlIzJo1i9mzy1ap1YkTK127dnU4r8hkMmbNmuVQatXPz89WXK04GjduzK5du8o9zvuZo0ePUq1aNVvNoAt5YuJwhkHyUO/Tiq8beoqe7m3p0jW3qqddSRe9hQq7sCKbmp9FHMJoKXoZ6SUp0zX10fFL6i2a+kLnYB3Xc6U570yOONOuSxb3z8+TRDI0bqJXu0Og2GdT/1TmzZvHpUuXkMlkJCQkMGPGDPr374/Kcm7xBslTfuOCWNVYaQn/NamlvET7sBgAmUKJWdAXa+havvIfVu05jfuDL6K/ehiFxcucEymGs3WNkDzQIS5mMsxmFigUoMvDz+Kd1Zmlu4q7Qnx93eINFwS7gmk68XzllvHm2O1XKzIGgLNNe5G4aZ60ULDz8FvP02zxehtdpM9CVU30lkyIMGA2m9m17HOuHt/OxKkv8uWPv6Lu+yZerh5wcQ8mtViLSe8h5aAZ3cRQPIVFeEPvIRn3XNNuiudiGYvCkGdpI14bpasHod3HEDdvLJt7TUDt6UducB3b/set4VOWCs4KO29JnSuryDz8Dy+/8y0KpYCrZaHwzQ5JAGRTikUMZsk+Ppk9h2tXK3eh4+Tuck8XClqt9q4k2pUVs9GAR2jNSu3TaDSQn5OFwjKHuLi6o3apmnPPvXzQYX5Cfn4+vYY+gcvIH9AEV8d0tnQLBVN+Jiq/8JIbVgIymQyP6Cbk3jyFZ2TJuRalRZ9yk7SfnqFB26ZsXLeKUc9MRN/pOTybOJYUrQxcfENxi2lD6pYfEJ55q9wWrvRrJzj52wx6vPKrZTFbssdr9erVKBQK2rVznHDmxImTqmPt2rUsWbKEdadKLvJVFaQm3MTT050tf35Fq24DgdIbw3JOb2HOt1+SkZJAx/ateeaZZ2zzycmTJ+nTpw81atQAwqpm8IhKSFPfmYPn4Hfvm2KRKt8wDGm3S25YDLcun2LN99N5fPggRvSaxtgXXiP0xb9wCYxEuFB1C2aPGi1QuvtyZcV7+NRqjWefl5A5kI7X3r5I8vqvkLspGPjy9yiUjg2zgtnM/DkvsnrV3wXqojj573HPFgomk4m9e/fy3nvvFbKugGMLCzi2soBjSwtI1haQLC5NfXQIgsCinGRCsi/RN1iczK1WF6vFBSSrC0iWF6vVBUTLi06bR1pyArd3b2Hjxo1ERUUhk8nQarX88ccfJCYmEhQUZLPAgGSFsVpgQLLCgGShuDMG3opMoUQOBAZKVhV79Ho9/YeNhKZDkeWkoMtJsVlkoHirDMBVb1hv1BewzIBj6ww4ttBA0Vaay9cMuNXtROa1YwUXChYLib1FymyXo2C12FitNSBabABO7lrFwdXfseC37/jmh5/pO3ICgeN/wzPtBlzcY+m3eMsNOLbeQGELjtjW7lq2GULC5u9YOGMI1XqMQaFycWjJgYLWnDY5xzm8+B2emLGAmGAPQG+z6EDRVh1h3QXee2EKWzatx4kTJ/eGnJwcTCYTbm5uwL1ZKFw9vZ/XX3+DQH8/Zkzuy7D31+HqKc1vZpORrBtn0WUkkp2bC2YBRcZNUg8uI8Lfk5/mfUXdunULPfg1btyYzZs389prrzHyjV+qZOznz5+n8wO9qTt1NVnZZVTFK4NaYlmRyWQoPQMw5mWivCM/oiRyLuzl/Xcf5MyZMwQGBhIWHk7Db2NR2D1LVCWa4BrUffw9ko9v5trXI3Gr2Qq3yMao/CNQuPtgyM0g/8YJ8s7vRuHhS8CD4xnQ0ZqU7Lg20O3tCxg6eMA9D7VzUnHu2ULh9OnTtG/f3jLhlD+foLK5fHIfTRo3IuHyYa6dPUL1+i3K3EfejZPM/GQy1y+f5+Fhwxk+dDAvv/wySjuN4QEDBjBw4MC77mJ/a+a7pAS3RRN9//943Wo0J+XfhcDwCvWTEn+d1d+/QfMGMezbvYPnJr3AnjR3wt/YikyhRLBbdFU1Mrmc0IeeI/fQSi788SZBzXqjCYwpUdYw/+ZpUjZ+g448hry+wBJ2V7oibku/n8nXX35GTExMJZyBEydOysOmTZsIb9CF5QfSyTNaRR0sRb7shDaUFsPW2VzRQKbPTrW9J3cRDSSC2WhpK4WyyFUWI4rlvaYe4pwSpJbmictnNzL0yy8JDw+nRo3qTJ0xHq3eiEdAFKcuniPz1kWUbj4oNO4YczMQTEZMWYm8PO0NZrw6BU/P4gts1qtXD3d3d45fuEZQtRhqudodN0BMOJZnJQOgsKsDpPMSQ4yU+aKRQy6YEQQzuRaVB7PZzNvvf8SilesJ6TkJ3e0LqO2NY1bhCcsc6qaQFgV/3sjGrFNjTriEa/IV0qJE4Ql/O0OXlcZu4rYMo2QpP4VovGzuKV5Tg91642a+eDyzux8K72AUOamoZCAzSR5ea90eraVuT7vaolFIEASM/37F7rW/cuHCBWrXrs2NGzdo030gWQoVJp1FGCVKfP5oHyiOY9vl67a+3ZMuiqdtET4x2Bm0rAYrueX4tpAjO6Oj1cAoF8wEN+lBYLOe5N6+SF7iBfIv78Ns1COPaIhbRH2eevRZ24KyoY/YZ77lOzz3hmjIysyUvqfjg1L5bNMXvHrmVKHr7OS/xz1bKGzatInOnTuX3PAuc+30Hqa89CJNGjeiWYtWTPl0JYQ1K9TOkJdFzq1zgEBeTi4CYMy8Rf6BJShyk1n/zwrq1KlTaD8rI0aM4NatW/z888/4NX2k6k7Iji+//JIlmw5Q9+WVJFw+eleOWRHkSjWCyVhyQwcYMpN454WWfDdvHk8//TSLFv3O7v1HCHp1R+UMspz41WmHT43mJBz8h/gvH8OjbgdcIxujDoxG6ROMYNChu32B/GtHyT2/C5VfBP4PPMPw9mULHUo+tYPq3mr6969YZXMnTpxUjCVLltBh6Cv37Pjxl46iUqkIDxcfWtu2bctP33zGvv0HePOdWShCGhI5aREqnfjArvQOsVWV33R1D3O8vDh06BAtW7Ys9hgjR45kzg9fM/iFLytlzLm5uTRr3gpDk8G4jpyHa+L5Mvchd3HDqM0tUw2msmLIiEehKV2uWE5KHKd+mUKfTk04ffK4Tdq3WrVqqE3Z5K15H9de05Dd5VpNMpkcj/C6eITXxawQj22qIz6juXqWPsxLMBn44PkBLFuy6L4MLXdSdu7ZQmHthq2EtX68SOsKOLawgGMri7hP8ZYWkKwtIFlcnunszR/v7OWBHq/h4eHBxfNnef7557makI1XcDRX3GuhS7lJxukdyPT5KL0CEExG9BmJmHV5yPU5/LLgZ4YNHVrAe1AcEydO5IEHHuCR2o/atlmtMFYLDEhWGJAsMVYrDEiWGLBYYzCjM0rX8uLFi7z0+jucSTUR1G0c6cc2FG2RgWKtMgDaXA3mW6cLWGbAsXUGHFtooHgrDYDMzQeVXeVpq7XGaqkByVoDksWma5CeUwe3s+zbGfy1YgUDBgwAID0jk07DXmS/TpKytVptwLHlBhxbb6CwBQeKtuLIzEYUCgXh7YYQ0u5hcm6dI+/aIbKOr8Oky0PwCsIlpCbu1Zsx+olJaNxFl7bVmgOFLTpQ0KrzcoyJGT8/y1+HD+DEiZN7h1arZefOnTz8wjf3bAzX9y7jvUmiNHJeXh7vvfceC5espM2giYz6bBd/p1jCJlPEKt2CTJyLZXIF0b0m4le/K08+8zyB/t4EeLvRu3dvOnfuTPXq1W01L3r37s0zz47n+PYV+LcpvwHMmJWCu7sb777/ER2HTuZAULeSd3KAW0hNcm6eglYVVyYqCrMuD4XKcS0PQRC4uHUhNzZ8zfI/FtpqiViRy+Vs27yBX37/gzmfDyHbKxqfx76oNJGWu4VuzQfMmf2Bw4KvTv5b3JOFQmxsLChdcNHcH6XirWzcuJGYmBg8PETLQFBQEH/++ScgKjS9NO11cnJ0eLUfiau7GEMoV2twr9kamVxBmK8f7y/5iidGjiQtLQ0vL8dxhq6urjRs2JDrZw8RXb9VlZzTzwt+4Z1PvkXV+1XcOzdEdvt0uftSB0ajTY2rxNGVjFlX9rA0s9HA0m9moMuIZdP61ZYEO5Hu3brwcf8haMZEVZpMaUWRK5R4RTXCK6pRIUsOgMa97El7gsnI9+8+xycfzy5RJteJEydVy/79++k6aCwXcsR7XpBGNM5Yc7nc7GL+M1PEOdbFRyyKqHCVjF4mrTgfyiwPpS3sjNhhGtH4kmypQRTlJv4/0sNETmY6v+9fQ9tFn3L79m0GD3uM1gPG4zN+KBdlMi5eTkBmMXjYjDByyYJz6cZFQIVs1M8km80kK9UcObQNv1WfkB97kj69ejJl0rOEh4dz8fw5uvfsy/CmrfELEo04Ea7ivXDBfrFqtn1RMqshyGpEidHIuXl1L9WjIvhz2yHch81BYWmj0FmMVr6SoUputIT6WIyLR3KkvgWLYSek4wiurviAI7XaI1Mo6dS4qa1NZ19LeJDFXpZlkh6LWlmur5da7DtZKz20J1pq3chunUKpUGCyfCYGHymZ2xRQHYCRvql8+VJ/vCNDOLJ/l8M6Gk89/ihPjHiETz/9lGXf9+Grr77illy8V2nkkgFxo8VoKLMYQD1vHpI6kRUMZRUsid9mlfTMZTV6GV1FI5RJLX2ZmjcQoygeChFzCtPs6lqZLF+LJK14jNbu4rVpHeXOsd3rOEU8T4x8rNjzc/Lf454sFBYvXkxQxP0XL/3VV18xf/582/9NJhOzZ8/mhwW/ERHTFPVTvxAVLD50Wq0uIFleXP3DqTXyI3xqtaFlu848PLAPAwcMwNvbm3r16hV5zFdffZWYmBjeXXEZD5/CtQvKhdmMDDh27BiffvU9bo9+gdLTv8TdSkKudgXBjEmXV3LjSkAw6pEpyuZ+Tb50hHN/vMFbr0zisUcL5zY0aNCA9av/YuzkqaS7RiA0H/afyNcoK7pdP9MqOphHR4y410Nx4uT/PR/N+ZTm/Sbcs+Ov/u0TRj42gps3bzJ42KMMeeErQqvXY8eBq2XuSyaXI3f3wbP1EGr5PInZaODo2d30feQpqgX7M+GZp5j/wzc0bNiQz/46g29g2VWQ0o+tYcHF/fiO/qnM+xaFytMfnzrtSDu6Fv9WAyulTysZp7bhVbv4kFD92a3M++dt3p4+jfHjny1VnwqFgmnTpjFixAh69epFUHRDhj3zBqhrVdawK52LJ/ay+5/v2eoUzfif4574tP79918eGnZ/FXzJz0rFaDQSHCxacc6cOcNDDz2Ev78/T3yyg14v/YRLcI0SehEJbDOE8R/9Q5Iyhk8XrGHOnDn07t2biRMnsmzZsgJhVTVq1ODnn39m5+KPKu1cZFd206JZY56d+CJPvvlrpSwSrAQ07UnCvhWV1p8j9KmxqP1LV6RFMJtJW/UBR78dy9qlvxS5SLDSoEED9m1Zy4rZkzEvn0LqqtlVGr96tzGkx+NyaSu/LPj5vpEQdOLk/yvp6ens2vUvtRqWr7hVRcnNziTu0nFmzZrJu+99yOAxbxBavWjDVXmQK1UENf4/9s4zMIrq7eK/rdn0XiCNGnrvUgUpioBSVEBEwAYWEOwdLHQBQeBvQZpKEwHpHZEqvXdCEkjvbbNt3g8zm9mQZBNCAsi75wthZ+bO3dndW57nPOc8Sp9PV1PrmW+Y8/MyJnw9kbVr17J0yqgC811pEX/xCC6NnkDrU35Sq/7Ne5FydH25jvUWk5GU45vwbtStyOO5F/6m8oUVXDx3usRNwqlTp+j9VH8GDRrEwYMHsVgshIWFcfbsWZ7o1IJPRnRh/49jEMrwPCsa0Uc3seXXqaxfu1pS9XLgYcI9zyhkZWWRkJbDTUUlbqaJr92ehgX7qViwn44F+ylZkNOyIKZmp018hYFP9wBg0+bNfDx+Es+99wMK30DWSlEXhQ0X3ZYjb03RiulZEZdUGvBpAz5tULr7IQgC15KiOLRqGeNn/EDL+hF88M5oIiIiGDZsGH//c4CT67+n/VOvoVAo8lO1IKdrQU7Z2vL2beVRa+iUHLl6iFVr0kms1oOl1/NQGWU+vt3ULdhN3wJ41e9M0m8fc2DPOpz8xEW8vTQu2E/lQtHpXE1KFBmntuDqF5yf0gU5rWtN6QI8pbzENy935Pmhw/hl93lUKvsKQiBK2tWvX5/TRw8zfvx4dv7vCX7++Wcu5IQARad4oXRpXpBTvWA/3Qv2U75QdNoXCqd+AWq5Z/PjgjEsXfyjY5PggAMPAFb88SePvvAxV7KdqO4uDowXM8QxUZ8rjsc5Rhu5bomuE5cnjqUWozw+V/ETZZvdpDnHVtHIS6oVqynVf1nHioWTPmDs6DfYuXMXMekWWtTvzNxr4nWCTcY2X9pZ+tfkKtNjdJIEtN5bHB8tUt3cxTh5zrsozR3GDh+Te+MU+z+dSkQlDyZ//TbqvhNFGVFJnMIpMzb/OpOzl/ivTpzzzh7aTFZGCjUadkeRKBp1WaQ6RWvtl21dncogzv+qLLE+K97GONMpUZy7lSYDSoUCrxotSNu/jJ1eMh2zVYg4p1yT1h+9/Qr70lzJEtvcGRUv3zcrmaR/fsev9iPojNnk+opzUusaYtQ/6epxts5/kZPx8SUW9ZpMJp4fORZL/5kYzRYGfz4ddeJYpk34mF5P9uS9997lvffeZcEvi5k+oRdDv/4Ts06SApcMU3P9I/Lb02aJrymkud0q+61LkZkQRjdxPWV9tk82bZh/rLGP+H3s30qsxVu8Ly3/WGyOOO+EuJowGQ3c3DAZt+Rk9uzY4vBLeEhxzzMKs76bTUjNB4vqkZWeSkZiFGNGv8X6DRsZ/80MXvh0MZ6+gSVfXEooFAq0/uFUf+ZL6o1bh7rBswx6ZSytO3RlzZp1/DD/e07uWc3uNT/e9b30STdYs2UXLhVgIqZQKAjuMoK4HeWTEraHtFPb8axtvyDKeGAxu5eMZ/PmzSz+5edSbRJs4ezszKRJk1i4cCFPPfUUP08Zy/WLp+6m2/cNZpOR2R8NZt5306lbt+797o4DDjgA/L5iNfW6Db8v905JuEluaiwDBvTniy+/oduLn92T+zqHNyTigy0kBj/KzX83c2PGgFJH8tNObcMlqHqFBDoCWz9N0smtZap9ux25Ny+QeXEfgc2eKHRMn5HE5ZWfcuDAgfyax+Jw/fp1+vQfiKnVizgFVEXjFYjzgCkwaD6vjHyTJUuW5D+74cNewEWp59DGRXfd/7vF1fPH+fjFDjRp0oSFCxc6NgkPMe75RuG72XPo0v/+cTWLwuZls5gyWaSfTJoyjREfzMLZ7c6MU+4UlSOa8uSHy+j63nJ++n0dA54dxI8//I+Uq4e5cuZwmdtNvX6S9NRUvJ/+rERt/rLCJag6Zn0WRhs1pvJG5tWjOPmFoXb1KvYc/aFlNOMqe3dto1u3olO/t2PW7O/p0bMPAwYM4MSJE/kDcN26dbl8+TI92jdizqdD+Xv2y5iNhSNLDyqyU2LZNbkvEz7/iFat7g/FwQEHHCgIg8FARo4Rtfbey0QKgsDmX6fzxacf8fuy5dRo1B5Xj9I7MVthzk4j6dgmItdMIXLOC0T9/Do35o0gZtFYMi4dKJYKo1AqCej2Bk0n/Utu1Bni10ws1f1Sjq3H75GKqa1SqjQEtuhD0rYf7qqd7Iv7ids8h9CBXxeaZwVBYN+0Z/ll9mQaNmxYTAsQHx/PJ598Qt+hbxDY9R2cmz1d4LjGK5Bh07ayeOO/jB07lthYMQvz19o1bPrxEwyJ987/53b8u2kR874YwTdffs6QIUMc2euHHPeUenT+/Hmq1G9DnCqI6q5y6vD2NCzYT8WC/XQs2E/JgpyWvXXjEif+2cSqX2Yy4atJhDd7AoNLZX64Jl9vTc/aymCqbP62pmh1Ng691hQtyGlakFO1F20GV2Pb99HHnKPPqx/QMNiDlT99Bf2/ReMjvm+1jZeANWVrTdeCnLIFOLXqG7TB9fDSaOG2tC3YT92C/fQtyDSlym36EbdhJlWfepedN+Q08u1pXLCfyoXC6VzBYiFxx09U6/022uzk/JQuyGndrob1TDq2iMWHD5d6kDp+/DhzVu/CfdhiIpNj6Dd2Apr0aL786F0G9HsapVLJmDFjGDNmDKvXrOPzif0Y/Pmy/BQv2E/zQuFUL9hP94L9lC8UnfYFMfULUC1jO7MXzWbFgjmOTIIDDjxAmDtvPqE1GxHiIo63FmneCZFksLsHieOEWiGPFxclpmM7L/G3nuchB6081OJ1Z7PFY5tT5fGgk6c4Dga7mhEEgV+mjMFDlYtCpeSTb76l0ed7+OGGeL1JmmsVtlF+aRg1O4kRcEPKLZK2zMWQEoP3I8/i3+EFAkNroVAoSM7KxJAYSfLOBcTt/Z3Apz/CtbI4NuuSxfEuNVke90L7vEvMX9/i51sZ97D6BeYvo7M41pm9ghAEAWNOFtqWT2NKludTTY44L2UHieObc3Jk/jGDq1iDZ5Z8DJSZ8nxrUYu0VbNE/3TKjMe3dhtS104jd+eP+NRtz0lpfjOGi0yH38zyZ2G8cVJ8NNJ86ZKZQOKJrWRcP0HtbiNQZ8WR6yXSeJV+4r/aIz/Rq8sjtGhRtJLh9h07+XzSTOLTc1DU6Y7Ho2M4mZCB5vpf4vsJkutHtl2LgqpdWR93mbU9n2H8uJEMeu5Z1vy5mpdHjeG9n/fx3WHxC6NLt1EklD5Wk6sokGJRifON0mZdZZQ+A6Gq+L4beNvQqW+D1mYvdOvCIS7s/pVLF87h7PxgKVc6UDG4pxuFeT8ton7vMffyliViz5//49tvpxMTE8NfW3YwdMKq+9IPXUhddEO+5+bZTeRdWkTM5+2p/s2/aO6wEDkz8jhB3d+ooF7KcAutS9KJzWRGnUEdVLyxXFmQuHsh3rVaoy3mvWclxTB53mRWrlxZKr8KgJiYGF5+Yxy65/6HQqVG7e6HetB3WPJyeP2tR8nMyGD4sKH55/d9qjcrV6xgz/Lp0PT+0AZKgkGfy9JZ71M10JW1a9fadU11wAEH7j1OnTlPww5D7vl9tyyfR7umEbRr+wgvj/2EOmP/QKnWQF7Jbu4WQy4JW+eTG38V/+6v41KtGSppLLYNymj9qxDY+11MGUnELv8EQ532eBejKORVryN5KTe5supr6gydhjaoaGEQiz4blUohKuxVEBQKBVX7vMPNXYtIOrGFyl1ewrVyRInXmbJTiVozFWe/UKo/9Q5qk77QOXlxV9n4+2wunCsoQ24wGPhr/XqmzV1Ajk8d/J6di2uCVHuYl1XivZ3qd8dSqyN/HdjKilUD+WP5Up7o1pn1v3yDUHfgPYvonz++jznvPkePnk/ek/s58GDgnlKP/j16Ar+Qkn+Q9wopCTdRGdLo3etJ5nw/n5a9RpbLD86YmUzGya0kbp1H4tZ5pB5YgT7uSqmu9ev8CtU/+wensIZcn/gE5uy0Ut/XlJtJXnoS7lULO0lXBCq1H0zsP7+Xq4pEypF1GNJiCSiC9wmQl5XKke+eZ+XKlVSvXr3k9lJSeGPMO/Qd+iaNh0wtpKKhdHLhjR/+5bufl/P0gEFkZ8vZlXlz57Bz+SxyIk/e3ZuqAMTfuMhb/RpRv3ol5s+f79gkOODAA4iLl64QFFa+gZSScP74fv76bQ6BAf589vV06r63Hp13pRKvEwSBrAv/EPnDaziH1iXstZ9xqdasxOvUHn6EjJhL1rm/ybp0oNjzAtsPwsk3mMhNc4o9J/vCXrQe5afSVxyUai2hXV+mSs+3SDiwkmurviKviDnanJdD2qntRP85ieu/fkRg8ycJbj+wWFpv3saJzJwxHY1Gg8lkIiUlhbFjx9KuU1c27L+My3Pzqdz/S7Qedy6FrtToaNvvdYJb9qPvM4OZPm0KHpYksnfNu+O2yorf503gsYGjcavShqZNm5Kbm1vyRQ7853HPMgpJSUloda5U9XECzPkpWCichgX7qViwn46F4lOy+f1JzWDep8+z7o9lnDp1inUHzqJ+cRz/3BApQSYbGlR+etZmD2FNz4qvKzGmxZF0cgeZZ3ag9Q3DN6IFfq2fQqHSkBh5huQ9izClJ+L9yDO4N34cpQ3dR2eTorWma2sMmczpL3tw64dXiHj6vfzj1pStNV0LYsoWIOPKv7hVro6xUgTK2Iv5x61pW7CfugX76VsomMJ1dvfGNbAqudvn49tAdM68PY0L9lO5AK5ZiQiCQMyepaDPIuLR59G7ys7G1pQuQPqG95n0+QcFTNSKwuHDh/n9j7Vs2LoLoXYPPNqN4nhsCporhdO7f12LQtNhJBejz9Cs/WO8/OIQxr01Ci8vL04cP07vfs8x9n9/AzDzYPFpXiic6gX76V6wn/KFgmlfnUrgysl/WDLxFVatWEaXLl3sXuuAAw7cPzg5aXFxkqfZQ8kijdVHIw4a5yUqYapNoD/CSTyWIinA1bKZt+IlBbRYvaieprEZm2PzlETvW8XVP8ZTqWotvt1xFc2A+WTEy9RQpaTgppICYlYVPcFs5ObqiajdvOnx+Tp0nv4E2CjTCYJ4/j5pWuxZSRzT04yu+efsGT6bmAVvwiPP4FazFWobZT5ttjgH+dV+hNjD6xDMJhQSvVUhiO8vwtePSIwYzHrGRDjxg3vb/Otzo0SBCZfEq+I1ZpnOan26BoW4GVLr5bnb+v7cYk9LD0B8/rk+VcRzfcMIf3YCObcukrhkLKacDNQunoCAKTcLlCo8qjUlsEUvdH5hoNZiJQLn+ItUK6dAkRrb6NxickJdUSqVNG3ZFi/fAAxmBU17vkJWr4EcdnLBKepsft+crPOCID5nlT4NAI8bco2iVZ3QPeYYAMuixX+zVOHUqF2PXxcv5PpXk0lMjsJZI9fBOKXHAGCRXnOLOSo+Ix953lRKz3BwsPjZPttaXlOsPJSKLRQImE0mYm9c5ov5m1AoFHi5aBn3zvvM/f47HHi4cc82Ch9+8hnhDdrfq9vZRXpKIjPffZbRo14hJyeHLo/3pumnW0ksQzbBmB5Pwu5FGBIi8e32GgFPjkWhUuNjoyVsDKqNV+v+mLJSSNo0m9T9K6jc90O0Ug1CUVAoVdR6cyFXF4wm7vAaglo+VWJfLFf+QR1YcpS9PBHcbiBX18/ElJNGQPNeoLpz5QNjViqRW/6HR3gDKj/St9jzss/tJi3uGn37Pl3sObt27+ajr6aRpPRBCG6CS7+paIylM4hzDa1PdoMezN/xCzt39GfapC+pU6cOrZs35acJw3jps1/u+L2VNzJSEti+5BvOnTmFr2/FR94ccMCBsiE7O5us7LtX1ykNBEHg4vo5nFvxFcFNOhP80jxu6EumGYG4Sbi1eiLu9Tvj2aovOs87L3gGUGp1hAyfTdSsgegq1URdhAJdYJMexB5eR8b1E3jWaF64L1GHGTP6DVbMGovQb17+ZqKi4VK5FjWeEgNyhtwsFIDaxcOmPlHaWBVzfdaZ7Wxc9DXhEQ1YtfUIY6Ysx8XVg5tS8HLPyehiriwb3MIaEdDhBUaNn8Dbzw9g7Dsv4f7yPJQV+LzWLZxCYKVglEpxs9quxzPM+XQYp0+fpkGDBhV2XwfuP+4Z9Sg5JZWIZo/eq9vZxS9Tx7Di14W0aNGcl19/m2afbcc1sGrJF9pAsFhI2r2I6N8+wqNRd8JfX4hn0552Bza1mw8BT44lqO/H3Fr+OXkJ14s9F8DJJ5hK3V8ndu8yUs7vK7FPebGXcQ65t8WsSrWGan0/QKHScGHRu6Sc2XVHVKSMi/u5smYKlVo/TWDznsWeZ8nLIf6nV1n225JC9LC8vDwWLlpM525PMOb79bg8Nw+XTiNxrdkahfLOvuJKtRanjq/SYuB4nn/pTY4cOcLCX37Cy8nMkZ33p37FCkOengkvtiInJ4fxX5VOQcQBBxy4P0hJSaFSaI0Kv48hNZborzpybcMsGg+bQt3Rv6OxoxZnC0EQiFn2GS5Vm+DZqvggTWmh1Orw7TCElP0rijyuUCoJbNyNqA2zijyem3KL10e+xnO9u5D261sIltJtdsoTGhcP1C4eJZ8IWIx6ope+x9U5w+j71jSGT/idnoPH4OJauuvvBm7BEdR49Rc+njSLtm0fIfNy8bSvu0X01XPEXT9JeHWZRqdQKOjz4nv06tWrTKZ6Dvx3cM8yCnEJyfhVqnKvblcs1iycjovawqF/j/DL0lUM//QXtmSXzN+0RW7MORL+moZ7rbZUffVHBJ19neTb4VSpJsGDviZm6QeEvvgtTnbO9W7wKOlH/+LW37/iU6etnTMhJz4SnwrwTigJCoWSgOZP4teoK7H7V3Hp8Nv4PzMBt7odCy3qBUEgN+YcGef3kn39BLpKNYgY8BkqJ/vFa7nbZvHFpx9TqZL8WcXFxfHZZ59x7NQ5mnV5hoHvzGN1muR9kRBzV+/JOzCU/u//zGtjXuJ/syaxctmvdH+8J3lVE3Bq0OOu2i4r9m5ajqdvJcbO3c3c955m5MiRzJ071yFN54ADDyoUClQKOXASpBMXVFYlvlYq8ZiTSj4nzyz+ngMlSq7eLP++redVd1VgMhq4uGsBW5d9R4C3DxEf/oFPlQYcTpN449IiW9DJ9CCln1WNT2wzefsPOFVtgne3kXTwF88zSoGeSL2cEXCRFAUtEk1oe5oYgKlvM2zXDxTH3rM1W5O0cwFC+0H5Y5NFLVJgLE7u+Hd5iZj9K8kwmHDyD8uP2rfzNpKgU+Dh4cGI4S+Sq89l8f/6MuKzn9juJEasr57OlNqTM9dGiTqrzhHpMs42VF4rbdboLtJzrZQl50TZKM5KF7W2o8mRaTdmqW9mjcgQqFRLVjJqmnee5dPG4C3kMeyLuTRp2x0QSLJ5br9EihQxt1ixuNlkQ1nO8asmHRPpSHpf8f/aLJn2a6U450jKhrZGnZk3LgMQ9MFWzs94ErU2DVXVxuJ1EnVXrc8Qr3MXP5s8N5nSS3gjAELdCm/GrN84KwVp7aJpPPVEd87E6LkhmbFWczcRVqMuvXr1Yv/+/bRrZ9/zyIH/Lu7ZRkGr0eBkk4m0cjWhMF8T7HM2wT5vEwpzNwEmTPkS96STGFAzddM5NM/+wPdRShTZIu9RaePAq7JZfFl5jhYXL+JWfIY5O5XOo3/CvZJI87FyOa08TpC5nCDzOUHmdO5VKgka+BUxv31MyKCvUbuK/EArr9PK6QTwq9uOqN2LsWQlg7dYjGvldYLI7RQEgVtOTvTzTKNWvXrMLYLfCfY5nmCf5wmFuZ4g8z1R6wjq9hq+Wakk7fyZxGUfofOujNYzAHNeNvrUOCymPJz9q+BZ+xEqt34apUaHoNIUy/sE6Jy2l+NZZxn12nhGvPwaF69EYlaoMJsF2g38kJzqruzTOLHvTBZOaRfE623qAqwcULDPA4XCXFBFg34MGDGagb26sG7Natp1741Qv1s+9xNkPigU5oSCfV4o2OeGgsgPBdizfjG9B7+Bl5PAB9+uZNUP41m0aDEvvji00DUOOODA/cWNGzdwdfcu+cQyIDU+moWf9mfcW6MwP9YVvzqdSa9yZ/QPQ8pNUvcvp9p768q1b0q1Bl1QdfKSotH5hxV5jlNQDdKO/kVgj9fzXzt3cBNhobLYxBujRtKkcSPGffgSQS8vQeP84Ag2pF87zorl7+NbuSoNGzWhadtuxdKSKhpKtRbnwXO49FErvJr1xcm9bNSx4hBz/QKuGjN16tThYuKFQsffffddxowZ49goPMS4JxuF3Nxc9Pe5Ov788vFE715CSMsnCR80hdycOzfTSvjzG3TBtfFu/zzu/nf/Y9QF1yGw38fELP2A8FfmFxsZ9qnVmpi9y0g8uR3/Ti8UeU7KpYN069aVLYu+wjtgHnBvlTZsoXHzJuyxEQiCBVNuFrnJMah0bui8K6GQsi9CKaPgeckxLJ/xOn7+AXTp2Z/2jw+k24iJ+dxPAGU58z9toda5Unvsajbs+IFdzwzhf99OpO+LQ6n6zJf3NJJ/5exR0pPjadZezBgpVSr6Df+ASWOeonfvXvj4lO/k4IADDtwdTp0+Q1itpiWfeIe4emw3h5Z/zZoVS4mOiWHb/tN0btODvXfgfymYjET/OJLgF76tkDoArU8wZimaXRR8GnbBEnW0wGuJ104wov9TBV5r+8gjTJrwEUNH96fFJ5vLvZ9lQW5SNJd++4S2bbqRk5XGY0+9WOa28hJvkH1iK9kJNzAY80AQcHH3xqtKIzxCape6HV3lCHTelbm0biYNBk8oc39uhyAILP72XZYvXcD+/QfQOrkUOicsLAy1Wu2oVXiIcU82CidOnKBavaLNRyoaWVf/ZcfPL5GRmkiztxbh06ireMBGCagkCBYLsWsmofQNwavd4HLtny64Drrg2mSd34t73Q5FnqNQKAntNITIrT/g17FoF0RTbhZNGzdi6ldf0PfZIRifX4i2FJJ4FQmFQinyPV3r579W2qiLIAhknNrGjfkv0aFLL54Y/hlunj54ae89F1Lj4kF4r3dIPf8Pb733MbVCA0m+cgiPmq3vyf0FQeCvhZOoXjMCNw+v/Ne1OmceH/QWY8eOZeHChfekLw444EDpoVAocFbLo16gTswEu0qv5Uq0olwbepFGoiqppZcqu8jZY03sHj75eABxcXFs3ryZb2f/wFvfLMZZLXAiR8ycm9IlA0iJnmPrxWM25iEIAnGLxxHY/XWebSFLaUfmijdMlfpySy+rsRkykqQGxNyvSopaR6lkWlNSjpiRV5qNmLNSEFx9881ArUaU1uxogxp1uHpjP4/VrMa2yFsAuGiUVK5cUL4aoFPHjvhq8qh2cwdVW3QGoIoNo+DnGPF9q87vBiCjnkwNVevEhW0LDzEDfuiCSAFS2GSRhUAxi22R+uh0YXv+sVyfcAD6NxYX7WGuepYsm0y/pweyb8MSPpq1GpX0OVktKhbH2gh6pIo0KJNOpAxlpCeRe+siuTfPkxN7Ga1vCO5Nn8S786uo3H0QzGaMSZEkHdvIjfVzcFWrCGzQCbVEd1VYZPNVwUl89prL+wEIGPAF0QtHkxncGI9ocRNmktQRFRbxs1TaMAk6+4rBtqgs8Q0sO5iWf8wisSOcbu2kV4/OREREMOGbKVTr9hYmaQq2XYV8+eWXvPHGG/z555+4ud0ZFduBBx/3jHqk0eqK5GpCYb4m2OdsQvG8TSv8dHq2/DaDMwc24u7lx+NTDnAsR0FGVkH+JsgcTpm/CbY/g/jV3+BUtSlPPzc6/zWjTcGulcvpYuMMbbGhBln5nCBzOq18TgBzy6eI3fgdnjVbgeT4bOV0gsjrdG/UHcvGOSTdvIxHvU75vE4QuZ1br26h3eMDCQsLY8mC+Qx64XmeeXcOgcFV+ctJ3uXb43iCfZ4nFOZ6gn2+J9jnfEJB3md3PwMZKfFs/fFFMm9G8swLb9Lreetzl/mfVu4nyPxPkDmgVv6neFyWpLPHAwX7XFBcAtE3ewGfyI0obh5DFVZPvN5GyvV2TiiUnhcKhbmhAJtXzKfHYx3Zvmd/Pj8URI5os3aPM+OPOY5ojgMOPOQ4eWgnF/cuIzMzkxkzZrB27VrenvwHTrrCUV57yDyxCZWrF97NewGmEs8vCwwpN9H4hBR/gkKBv683mYkxlEZTZcnCBQwePoqun3Uuv06WAeeO7CHq8mmir5xh9Fc/o1SpKE34y2IycGP9TASNDrearfBu9iRBoQ1QKJUofMVNi1mfiUKlwbVma1ytQagtM4k9uQPDmX8I7jkahYtXsfdwq9ECpUKBKbP0QVB7uHb+OHt+n8+qVaKIx/kLl2j6fAi5RcTqatWqRbdu3di8eTP9+/cvl/s78ODgnqgelachV2lwavcqZr7dCzIi0Ti50Pb9P1FrdSVfWAT0sZfJuXIIn84jyrmXMrTelTHnZmC28W4oCj6NuxP/17dFHktPiCEiQjSzq1OnDsuWLmDljLe4dHJ/ufe3IpGaEMOSr0cQVqMu1Wo14smBr5d80T2Ea8sBxLjV5saZw/kRqIqE2WTi6J51PNWnFx7e/oWOK5VKJkyYwOLFiyu8Lw444MD9QcKtG2xcMo2pU6fyyiuv4Obmxv79++94kwCQsmcJlXq/UwG9lGHJy0FlU0RdFHx8vDGUMOdZUa9ePTo80oKr/6wsj+6VGQunjkGfm80bXy/FN6B4eXNbCBYLkeum41O/E6EDPsO7cXdcgmuXSpHP1S+UGl1eJLDjEG6s+gpDcvEiHQqlCo/g6mQe+K3U76c4mE0m5o9/ifnz5+Pp6cm///6Lq28wKjs0teHDhzNz5kxMporZfDpw/3BPMgp7/zlAUFjFOzKbTUb+WTmDxAt72bFlHUNHvEKfV78iyrlsqTDBbOLm4nEEPfd1hfPR3Wu2JifqdJHa0lYEtXuOlJPbCm28UuJukBh9AX9/eSFZq1Ytdm7bRJ++z0AHbYmKSQ8CUi8d5Lc/PqNlj8FcPbSRNyf8iFKlum9FYsVB9/h7mDb+j8g9v1Gty4sVeq/dG37lmb69qVy5crHfwW7dujF16lRSU1Px9q6Y4kkHHHCg9DCZTMz4djrvvvsuCEL+b1cnJQRjc8U/8izi6x5qOUzrKol7jGgvZjXXrFnD8hnfMv/7Wbz0yiiadHkO/xa9WXE4gwvpcmY5xxpJlrLSSPc02kSY9VcPo1Qq8fERM55JBnmxqpX+jIyLA8DJxj1YIXHTQyWjU1+JOuWtkfu9K0OktxhzMlC6eBQwmtRKWWVrdtVTYwFnHdr06zSpLcpi10qzp/8Hk7/5ks5dH6d17Sp4eDXOf72Oi/gMwtuK8utNfOUATpqUeFYqxL61bSeuQwQbxoCV6fBvivjedlo65R/7oIFYQO2sNrJg+vsIFhNfzPkTD29fBrTyAuD73WIWee75NPFZ5UTlX6/ITefWmsm4tuyL66MvMrKK/H6MEisiTi8++E0pYjAzzEb1JbOtSHU2ntyGtsdIbvz6PhHPfo5SpcFok/UG6FqrGsdbdSX6xC5y2z0PgC7lBgBZlUX6r8Vd/kzrexql9y/+/7nWXvnHfv/9d0a9OoLq1UXBlunfzcO346ucz1AT4CSJt1AQ2y6rCK7bjqnTZ/Dh++/iwMODe5JRiIyKIqRanZJPvAvkZqXx83s96dMugr9372DR4qW4BzcgvGbZ6Ri3fv8Yn/bPo6tc8Zsclas3FlOe3XM07n44u7piTI0t8HrSzau8OLSw8o2bmxtrV6/g6MzBWEz23X/vN4zZaVxZPoHer37Fv1t+49WPvkOt1pR8YUntpseTdG4vkTt+4cLqyVxd9jlXfvuEyF1LSIs8hcV859EPhUJB5WZPkHBqZ4VmFbLSUzm8dRlj3x7NzZs30dnR9n799deZNm1ahfXFAQccKD1UKhVNmzbl9OnTTBj1OH/9Oof0lMQ7yq7Hx8czaNAgvvrqK8LCwvj666/p/OwYWnbqVeZ+xf/1LUG9K3YRl3F2J+51SjZXbdKoPqkxF0vdrrOzM+v+XMnGRd+w9uevyM5Iu4telh6CILB11Y/s3vA7X8xdj4e3X8kXIfpbRC4ci0fdDvg++uJd90PnXQmfOu1IOLqx2HO8a7XHnJdF5rVjZb6PyWRi0qRJvPHGGwDExMRw9no8gbValnjtk8+/zYqVf5CVlVXm+zvw4OGe1SgooMiiLihc2HX737cXd0HBAq8OVQxUq1abhQsXMmDAAGbNmsXazX/z8kffoymqyAvyC71ALvYyG+WFeuaBFai0zgR0eJ7u3uJi0lrsBXLBF8hFX/kFX5Bf9AVy4RfIxV/Wwi8Qi78sWcloXTwKFX+BXAAGEBocSnjmVaIDZQ6+u0bAzanorImbmxvvvTOOnctHM/DtmVxoIXIfiyoGA/sFYVC4KAzsF4aB/eIwEAvE1iyYyZAhr7F+7ru8/tl83N3lRXGeDZ0/v1AsVa6hsBaKCYJAVk4GxvR4Mvf/QU7kCVQuXrg37YlH64H4BVZDMBsQTAaMqbdIOfIXURu+x1mhwL92a7zC66MPENWiiioaA7lwzLXnO7B3OfEGqKyTP5/bi8fAfgEZFF1ENqiNF6NHf8H0qRNxdXVl1569+NXtlF9IBgWLyfr06cOCBQv4+++/6dCh6KJ4Bxxw4N5AoVCwfPlyAC5dusT27dvZvOBjrkbF4ubuicUCVes2wy24Pl7+IUSaBHLSk4m68C9JN84Ree5fxuVm0bhVJ9oPGY9/5ap4BwRzI1vN0WS4miuO2efiEwrf3Dp2qcSCOLU0flmMepSu3mirNKadp3hOrF4e++Ml+XGNmzhf5SXJanJhlUW56nRp/NFKmZBKSnlAUkteOGmnthM2fE6BLhlcxHHRohXPUSqszwmCpAj1pVg9JTnU+Pv7s2PbJjZv3syCn8ah1+up3m4Qjdv1JClPHFsHtJKzqssPipkMqwS1tfbLYrNhM0tjrjXC3jFAnktbVsrgueee48qVK2zetIEOHRrlH3t5jTiHHzsmGp1ppLo7k6s3+lsXiVs7hb7jfsAntHb+eudIipwtOJAgSqH3CBbnug5SgiDXbJNdkh6Ud7PHxLbVTlxaMBqvFn1wyhMX40pprt0en0Ou2Z2g4BBuWSwYXbxxyigYVHy2qvxsXmxX9Jrh0qVLuLh54OHhgdls5oVhL5Pb7UP2xqUA0CpQXC81pGDwMduoAIWOZt2HsHDhwvyNhgP/fdyzjUJFQZ+TxeDBw/j777+pX78+48aN48SJE7w6YRkqddneXl7cVVIP/UnN99eWc2+LhyHlJp51O5Z4npu7BxmRR6FG11K3/f6741hQpz5pSbGgDb2bblYIrp49wtkju4iNukyXp4YRGFKV0usjiciJvUL01vloAqvh5BeGW0QbArq+ilKtzS8WAzCbDSjUWlyqNMalSmMAVDvnE39mDzH/biCw+yjcqxdP/7JCoVShC6yKMfoU1GxS4vl3igULFpCSkkLHjuJ3YtOW7bQfPrX4/igU/Prrr/Tr14+tW7eWe38ccMCBsiEiIoKIiAhGjRqV/1piYiI7d+7k+/n/49KVa6BQota64BVYBQ8ffwa9P4+mTVujVKkKBM3uBoJRHPsqEulH/sI5rCEqZ3ew9bK5DZmJ0eiCKwE5xZ5THFQqFT179qRnz56kpaXx9aSpfD3iG9oN+ogazToD5eO3cDPyEj1feommTZvSsWPHUgdgciJPkLh1PsGDJ+ETWnqJ09JAoVJTqfNw4nYvIrzL8ELHncMbEpuQBFWLuLiU+PPPP3nppREIgsCjj/WgUeeBxAdUK/lCCRGNOzD1nScZNWoUylLUYTjw4OM/vVEQBIFZH73AN+M/JCIigqeeeor+/fszbdo0Vh1OK3O7ydvmU7n/JyhsjMYqGnnJMaL2dAnnObu6kZ0ef0dtq1Qq5nw3g1m/zKDekOkPlJOvIAisXzwdi9lC8469ad+1zx23kRV9jth/fqdav49AGtBslZpKgs7Tn/C2/THps7ny7yayrp/At9e4Ep9TwCMDSD+0stw3CjcjL/LnTz+xb98+FAoFubm5xCcm4elXiSw7DDJ3d3d8fHw4deoUDRs2LNc+OeCAA3cGi8WCxWIhJyeH6OhoTp06xeZtu8jIyCAlNR0XT3/qdHmZ/p/0IFeQ5xqdpOKnVJWvFHRe/FW0/uHl2ubtSNwyl9AhxQc0rEiKOkejoT3458qBu7qfl5cXUyd9zccfvMv8H35m5TcD6eo/idatyy5dbbFY2L91Bfs3/8q3337LxIkTmT17dqmuzUu5SfyGGYSNmFtiMXdZ4V6lEUlH/ir2uEKhKHNd35EjRzh27BirPvqIhYsWE1CtCc0e7cvOs6WnEvkGhdGjRw927dpFly5dytgTBx4k3JONgkYp8HhjT47bMHN0Nmvw2wu7wH5xF0BaWhoffPAhb7w6lNq1a9Pt8V48/sIHuNZrzfJD6faLvCC/0AvkYi+FPhNzXg65kccJqjUv/xRrwZfW5nJrwRfIRV8KGzMSa9EXyIVfIBd/WQu/AASFEgEFgsYpvwBMayMpaiuvqVIIqDHTJFhWXOjufp2LF+0vanv06MHq1asxHl1K+x7PkmuSz7cWg4H9gjAoXBQG9gvDoPjiMIADO9dx6dR+3vzifzRr171QgRjIRWIgF4qpjKLMbV7KTWIOrKLqu6tROHvkF4sZbaJwcTbpdXsFYwDV/apya98KMjZ8S6XWfcW2bisaA7FwLNPnBTYc+o1UixKdv3jj24vHwH4BGRQsIgPoPfFrpk+XN3SLl/6Gf8tnChSSQdE5l4gOz/Pm6LHs3rntgdoQOuDA/wfk5uYy/38/snvvPq7fiMbNyx+FUo13YBgeQdXwf3QsgS7uuLuJY0qyQcm1HEgy2oxX0t8J+fRU+ZcuWCStf0mgQ1mEARbSa4LkSG/915AcTXB4HcI93XFTFx6H6kh0Xn+pNszPJhObZBD70MldpCydzhCXDptuyuN07qltaL0CUbp6IQCCrUKOFHQze4ny2qa8XJRKZQE6cUSlsikTgrhh+OC9cbz68nCGDRuGUqnk+eefp0l9cRy+dEmUw46NSs+/xs3DGw8vX6zP99UOXkRFRdFv4Is82r412zZvoG3HLjz21k+sPW0B0pgTJfcxK1VsU+ElysCaNc5ELXqHJz5Yhqskte6mFp+pNSt0PEd+w6FeIg0oxSjeP1Wak2/oZdprdWfxud2UvhNKkwHBbEIhWPIlzlUSBcn5yj4AopMSCUy/hdut0+RJfRvWVCxKHtuleGEXQRB45513+PHHH4mOjubHX36l3pjV7E9Wgj47/7xDt8T31NbXC4BVEp1Lq5TfW61OQ/ny688dG4WHBBW+UVi/fj2zZ8/G1dWV6u1fxMs34K7bvHXrFkOGDOHll18mJSWFPn2fZdj7swkIrXHXbSdu+x++7Qff00VW7s3z6CqVvu9mfRamvBzURU0SdjBnzhx69noan4BgqjUsudisopGWnMCcL15jzNcLaNau+x1fn3nlMPE7FhA+eikq5+ILfe8UlR7pz9VV35AddwXXoOI/F42zKy6uruReOZS/UbhbHD9+HD8/P9q0aQOAXq9n3s9LaPDKT6W6vm7Tdlw8sZcNGzbw5JNPlkufHHDAgZKxZMkS5s6dS9Puw3j8pcnonUSuv8VmR59mvL9UDIXq7gUiioJgsRC3cRahgyaW6nxnZ12F0FK8vb1Zs2YN2dnZzJ8/nwMHCmYs9EY50LLvn38QUBBcvSGB4bV4tceXpKens3XrVmrWrMmwEa9Q9ZEB+AbXoDR+EwlrJ+Pb9dX8TcL9QnZWBk7upSu4tsXKlSvp3r07NWvW5JnnnmfAa19wvoyfUUjV2mTl6DGZTKjLSAF34MFBhX+CnTt35ty5c8TFxTFm7GDUOnfaPzGQoJotCAwpPe/NbDJx48YNJkyYwN9//01ISAgLFizg2WefZdz0VTjpXDDfpY6mMT0B/a2LBPYcc3cN3SHSTm3Hs37pjWRCwkJFFaPSs2sA0Gq1/PnHcl4b9SZbVsyj63NvU6V2Y+64obuExWLh8tljTB73LI8PGEHz9iWVsBWEIAgk7v2NnOizVH1xOmrf8q27UCiUhHV9icjN86j17OfFnqdz88bDL5jIf//Au82z5XLvjz/+mLfffjv//xs3bsS9eitcfQs7lhaHVl36M2nq+zzxxBMOjqgDDtwD5ObmMm/ePP7++2+WHRajr3r7Inb3BYKlJHJr2ZC88yfc63ZA4xVIaQhTFR2Ic3V1Zdy4cSWeZzabGffOO8ya+g7Vq1fn0qVLJCUl8WSffjz3xtcIYe1Kdb+c68cwpd7EvckTd9v1EmExlvDFUqrReQfdUZsGg4EffviBVatWERkZSVxSGqHV6nA+ruRri4JCoaBGg9YcOnSItm0ffGl2B+yjwjcKLi4u1KlThzp16nDsyCEuXbrE1q1b2fPHZFLTMlEoFGTn5BAe0QidX1Uq1RD53klGC6lxN4i5eJSUW1eIuXyKD4151G3Shmfenk1IPTHiagAuZ6shW1aCgBLUICBfEQJkVYicnHTcG3VH6V05XxUCZGWIeJv0sFUZAmR1CKsyBMjqECArRICsEmFViLAY9OTcOEVgn/exKBT51COrSgTIShEgKt0ogEAnC04SDeXv85n4llJ2z83NjaWLfyEqKoq5c+eydMUkXCvVpcuzo/Hw9idReq9FKUdAYfUIsK8gAQVVJB6vr2HYsGHExsbSvFkT/lwyu8CkcbuSBMhqEgBGnTvx67+lZkg4LV9di0KpLKCgZVWVsCpKgKwqAfaVJUBWl7h65gAa78qk3LyId2jd/OO2ChMAOYKGkOq1MUqf1+0qE1A6pQkrzpy7QNeuYqF6XFwcE6fPIXvQT4UUJ6Cw6gSIyhOelSOoVKsNGzZsoFevskspOuCAA6XDosVLaNLlef44mp2v7heiLrwo10psoj0pYmT/Yrr4gkJlw8UVrDUKKum/hcd2kzQO6Zzlwl13qYn4eHE+sqrtWSWgVe7+xJ7ZjlJvwhpYt6Ue6ZTifRp6iOOKVUUIoIW3+Nr1bPG1U1K/BX0W+phzZJ3ZQdhL87AolSBlLRQGm0JlaYOiUNxW9yfI971wq2TVo/KGSqVi5owZTJo4kePHj9N3wECib95i5Dcr8A0K47qkTjf5kGh0ptLLBnFKjUhDUmYmEr9mEq9M24yzuzuJBvnzOpstLrG8pe9EsFZ+4G7S+7auK4K14ofir5HXMdnSVyjPLP6hzstEnxCJzt0HtV6kHBkkarI2W+R2K5RKkWatUNKofgsAwtyKLyy3WCz06tWLt956Cy8vLxYsWMDokcPo18qbL34S6yGdk2SVQYv0+c66Iq7V3o0Q+2v7LTVaFITWasaBAwccG4WHAPc0J6RSqfI3DaNHj85/PT09ncjISJYs/ZWlX80EpQqzBZzcPPGpVB3foHA69X+Dhg2botGK0e/cCgiMCGYT2HEerAgkbp6Nd5sBpYqwGDOTUavKJ0IcFhbGpEmTEASBvXv38t6HL6HzDKTdC1/i4VepXO5xO3JzsujcuT+vvfYa77//PjExMXcUWRLMJm7+/jGuEa1p9VzJ0aK7RXCPkVxZ9A5eL0xGoSj6uSuqtibv9FrKQ0tk7969tG8vKmucPXuW/s8N4YUP/8fSzDtvvWqDR/jqqwmOjYIDDtwDnDpzjvCW/e53N+xCF1KbpI0zy7VNY3o8sasmEPrS3FI5DYM4jptvi4oLgsDFE/sIDX0TgJMnT/LzwiVcunyFvDwTKhXUrhWBVRTalj1gjfMo7U0lAlyLjCQzW19ozjELkJOdjU9QFdoN+ozqdRqX6n1YEf/3r/i16IWzjQx6RSLr1iWc/exk0e/AqwNg5syZeHp60rt3bwCOHTvGiBEj7qaLANRr3onlk4fxzjsV6wLuQMXjvpDHBEFgx44dJCQkEHkjhtNnz3E9Morgum0ZNX0Tnn6VyLYpRrWqQGg05asCcTsMcVfR+oWVfGI5wZyXTcaJLVR59cdSnZ8TdZqnej3Otl17y60PCoWCDh06cHDfbnbt3s30mZ+QmKHnpaYL8fEpv4Hv8pkjrPzfF8yYOoVp06YxY8YMtNrSL4AFQeDW1nm41myNd8uny61f9qDSOqP1DBSLx4qTFSynDHp8fDwfffQRa9euxWKx8MlnE3h2zLdUCqsJd6A4YUWtxu04vdGHxMTEAo7dDjjgQPnCZDJx8OBh2g8qnqb4IEDp5IpgNmLKTgMKCzTcKYypsdxc8i6VB01E7eZTMGNvBzlXDtGrXZsCr105vBlXnYoRr4wiLT0TL//KtO/zMo16huPs6o5Zn0lKYizZJnEzEpMjb0p8teL6wEvKsFsFNWxhMCto2DMAi84LKOjJlJwntuWaLzpS+oW2KTOZrMgTBJWDoVppkXz+HyL6vl/scYvZhKIUdQFGo5F33nmHnJwcli1bVuBYeVDDtE46NBqNYw56CFBhGwVBELh16xaHDh1i7dq1ZGVlYTQaMUspNO/wJvgEVcHTpxYdBz1Fb29/kvX3To60KOTFX8W1FI6S5YW0g3/g1WZAqSMxWMxoNBVTjAbwaKdOPNqpEydOnKBXr16MGjWKzp07A2VXozAa8li1aDKpsZf4c+VvHDx4kFq1ajF48OCSL7ZB4v7lqHTueLe6N5uEfJQwYFp0nmSlpXHnpWMFMWHCBMaNG4ePjw8LFy1G61eDKrUa31Wbo0aNYvDgwQ5fBQccqECcP3+exg1qM7CNSDG0qsBYl5u2I4i/szj/9QsWF7VHdeLYujFSpspaDUCtakW22UyFxBWyvpabJVNAc6y+BVppvJY6YHu936PDif9rOiuf+QKAYGd5Pgm0LrSl009my/Px2ug08Q8pE2BMkzYJQ6biFCgq6pAl0iNVOaIakMlVDjRZvEWVvsZ+Xpzfuo/G/Vtx8uRJVi+cCku/A4uRlv3G4N/9FWq6iVRRvdZCtBnIAIPZB9x8iJKosafyZFpTsCRDmmiSNgw2fKpHJApxhlHJzTzwkp5psLNMSQiS/o6W3u/ymzKl0+34KgBcXMURXu8pZ9u1WYmkHf4T38ffhKpNSTcVniv8JPXG69JmJNXGMdMsUcJaeorLMGsiwJYOZqUl6VPFYgFjZjoa/yqY/aujMIi1MOo8kQ6VVasTAAqtM8YmYnago7+sXmiLuLg4nnnmGUaMGMHQoUMLHMvIyODPY1k46Sy4XBENRm0NRLUSpUx18zgAk9LEuowWVWTq9ZOVxe9icHAwBkPRfXDgv4MK2SgsWbKEuT8swNMvhLA6Lanc6Q38gqthEUAlSa/Zqj8kKiAxQ5SKs8K+XBzYk4wD+7JxIA/Ctn+7qxRUqxSCzkY+DuQfbh0bN2irhBzIMnJJNtxEq4wcyFJyIMvJCclRJG//gSovfY9g49eQLyln85pVUk5jSKN6tRaFgtgd6riXKI96J2jcuDGrV69m06ZNvPrqq6jValQSX3aVdE5ypo1zMQLeAaFUq9OcRo90Q+uk49UOXpw4cYImTZrww08/8/KI6Vy+fJlXR73J6EUXWLIvLf96e5JzALkpN8mMvUzYqEU0D/ACZNk5KOjibZWfs0rPgSw/B/Yl6KCgDB0gy9AVI0WnVGuJTUmiyq3TAIXk6MC+JB3AqVOnSE1N5amnniIuLo55Py6k/pg/2J8sZTGKkKaDwvJ0UFCiTh/Qjmz9DLv3dsABB+4O//7773+Gh+3Zog+pB1aQdekAbhFtSr6gCGSd20PStvlUGjRR3iSUEslXj3Jh2yLGnNqFW+MnCH95LiqvSjgH16ZewN1nOe41sqLPUvnx0SWfWA4QBIHYLfMIffqDMreRm5vL+++/z+HDh5k+fXqh721KSgoqlQon3Z0pKhYHtVrN1q1bGTZsWLm058D9QblvFD799FMMBgMvfLQANw9xsWZN7RWREfx/i8TtP+Lb9jlUzh6lUokAUCDg6loxJi63IzAwkBdffJGhQ4eWGBGwWCysWbOGa9eu89bTDUhLTeY5wMnJiQULFjBs2DC+mTSF1WvWM3TKFtQaLaWRmwORzxr/x5dUHjqj9JmXe4iMqLNwB+ZuRWH69Ol8+eWXAMz+fh6P9R9JoqZ8lKjcfStz8uRJGjVqVC7tOeCAAzJMJhNLlixh06ZN97srpYJCoSD0pblEfjcY9QvToXqDUl9rSLxB4rqpKFQaQl/94Y4lqS0mI9s+6UrrN37A2HxA/uumClJiuhewGA1ovCumpu92ZBxZh0toPbRe9hWNLIZcLIZclJIIislkJC4+ipMHdzD+pcV06dKF7du34+ZWOIB1+fJlmjdvXm597tatG3FxZZROuofIy8vj+PHjnDhxglu3brF91984O7vhqlNiNptRKpX5dKzULAN5uVm0a9cWJ60TWq2Wxg3rERwcTO3atfHwKD+p9gcF5bpRSE1NZdeuXezdu5el+9NLvuABhNlQvDpAeSHn+nH0cVcJ6P56hd/rbqFQKHByKnnROnDgQABGjnwNX19ftm7dymOPPUZWVhYffvwpR89c5b2Za7iYfmeFuYnbf8CjWS+05SyBWlqY9VnFFjIDGDIScbpDKTpb7N+/H41GQ/Xq1cnKymLHrr2MnjSKXcllbrIA6rXsypEjRxwbBQccqAAcPXqURx55BJ1Ozor2b1U0BQnk7LRZ4pk0ltSEko3yGHIkRcycmyWFHVuFPauCkdmaZbTJPGMQTSgVruL9zTlp4vUeMj/ckCnSg4Kf/ZKYn98k+9FhuDfqhkKhIDJRojVJaj7qhDMIZhMZF/eRevkQFkMu/Ya+T3DtloS7Sio8NkPj9gQvALIklb+rKXKms2tlDzZ+8xy+jbrh3moAIVo5PLY/XjxvX1K21H+xHdJlOlZ+1l3q2/O15Pd0IkN8llGxohlnro0j8h9pYl9U+cqB4rnW5wigjrtkewj3hPP5x0zO4rM06UR1KW12Sv4xpTEXpWBGsIjvRSupGFmV/wD2J4ufiUXKUDu5yovIem4iK0Ep3ThTem6xNmyK+MSb4vWXD5G+dym1+r6PMkecHJQSBSinnuhB9EldFTnZGXwbURP99C4EVgpluVqkKwcFBREREcG3+/fj7i4rZd2OpKQkNBoNN7LE5201dVPnycFCi0p8TaET34vnjcMAXL2wTe73QDGDUE2tJiGhCAXKBwAGg4GTJ08ya848rl6/QbW6LfEMrY93WBeGffIi7p4+GGz2sFbmwuYEJ4w5Gay9dBIAS1Y2S/66jjJjP+ZrBwn29+bN4c/Tr1/fh8ZDolzfxbLlK2jeYwTLD6XnS8SBfZk4KCwVB/bl4sSXipeMA/uycSBLx4E8aJgCqnP96mk8PUOx8WXJH9ytMm4gS8iBLCNnlZADWUYOZCk5AFPKTeKWf0rosFkIWp04RNiY4ORLytlEWfIl5aQdrQA4KYX8/uw6l0lAmU3byxc+Pj6YzWauXbvG8JdHsmPHDjr1fY3+Y+eSblDk/9iscnNQtOScOjed3Pjr5EUe56XRU/KPW6XnrLJzIEvPgSw/52bzWdnK2tqToIOCMnSAWBdi1GNVIi0kRWcxiRsJaTNRGjk6K44cOcIbb7zBzp07Adi3bx89HuvAwHaBfC3J0kHR0nRQWJ4OCkvU1Wj4CFsWfVwuKhYOOOBAQWzYsIEOHTrc727cMdTufoQM/ZakvxeT+vcSvB55Fl1IXTRelcBsRjDqyTqzk8R9y3Gv2Yqgfp/iFFiN4MCy1cidXD+PuAuHaPrNwXJ+Jw8/zLmZxKydTFjfj1Fq7Afaoq6cZUC/fnz+2cdluteWLVt45ZVX2FBOSYCuXbsydepUPv64bP2pCGRmZrJ48WIWLl1O9XotaPn4q/SqEgFAmkR/d9faX09pXDxwDm+Y/3+VthMg+pSkZCazaN33jHv3fWbPmkHv3r3yqdv/VZTrRuHCxcsENvrvusHqQuqRffkQnk0rxjRFMBm59fvHBDw5DrW7b8kX3I60W0WqB5w+sIXRLz+T//9du3aze+8+jp84SWZWDmaTkdatmuPq4oIgVTjYuoXa1usWveS0eQ8ouHDhIrHxSfkX2lZHmAXQ5+bgGRCOT+VqvP/L0fxIy51AEARubp5DaK+xd3xtecGYnYaqOLUjK8q4P8vJyWH48OHMmDEDLy8vQHRl7tatW9kaLAaePv5kZGSQl5dXqsyQAw44UHocPHiQ8ePH3+9ulAlqF08Cn/oAY2osGSc2k7JnEeacdBRS9N7FK4iqQ6agdvFECCy9OertyDm3m9NrZlK7bS90PqU3jvxvQIFZn4VKZ78Oraww52YS88tbVO4+Cq13Jcixn2o+tX8LnZrXKPP9rl69Sr169dgQd+dKe0VBrVbj7+9PXFwcQUFlz7yXB27dusWiRYv49ddf+fDDD3l7ygo0WqcCa6HygNrdl54vf0mHAaP5bc0sJnw9mcc6d2LwoGdp1KhRhZsNVgTKdaNw8PBRRg/4qDybvKdwrdGC+L+mV0jbgslI9E+j8GzRB9caLUotJVcAcReoUqVKgZcykm4RF3mGCxcas2zFH1y6fBWvwHCaPtqPnq8MxN3TB6XFyPWLJ7FYzORI8nKxNuZ03ja7Z09t8RJzIEapH2nQBycfudjYvtRc2ZB+/m9cgmvj5BN8V+3cDRLP7Manjv0iRX1aHNo73PRdvnyZ1157ja+++oouXboUOFYRg0ibNm3YunWrw1PBAQfKEf/++y9O3mGsOpxWwKDSiv5FvGalI5kkmoleyrB28JN9BU5mizQZs6RiZMyUF4cKSZBDJdFrzDZCB0qT2IbFSkHSiueOriaPxd9eFF+zSPVeSo0Op6Aa+Pd4A2X8FbFvklpRizBZKrxzgNi2ViXOW9lSltZVZSJPn8O54/vxyhXTrkGSnHlNBE7u30hqbCSZgoWBb07CWSepJtkIUJgRx8/DCeIGRWnNmhrlrKxL8jVAVvbZkSJnNmropPS/rnD9nkISB9Fd+ltsW2pTsMnMmpzERb42U6TImFxkDTulSXyW2qzEAucCGF280QbVJPfoX7hVa8pJ58biNTb3r+MpPu/LuWKQ5lEv+Vi09Pb2p4h/mHMkurbUZ3NOOolL36XO4K/J8Q7FCBht5l1/ye9ogJ/43J9r7c6vX19l+LCvCj2H0kAQBNKzDfxxOI21SeJ3UCc9d5NbQP55Kr3YT6OHuOlzSrwo/t9T7lukxKhYdSiVyvW78vnnn/O///2vTP0qKywWC4cOHWLGd3O4FZuAUu1Eu54v8P68PaBSoZW+pyYbQ1wX6bUkaX2UZ3Ps93jxc8lNvFHoXuoY8TWzVvwO/nhLfF1R7WmE8N6sjb3I6vdn4pYVzbiRw3numQF3JA9/v1FuG4V//vkHN58glA9gwWlpoXJ2R+sXStalAxDQutzaFTcJI/Fs8XSZlSbyEq5Tp3ZtlEolOVlZnN29krT4SM7/vZrKgQFcSXWibudhdB8uRhOMNl9wlVpNjXrNAMiS1KZUWXIqLFAn86x8dfY3CgZpgM8qwz7nTpB0eC1VJAm/+wFBsJB66RB1Bk6we57ZqMclILzU7W7atIkJEyawfPlywmwmYiBfOri80bBhQ5KSkiqkbQcc+P+Ka9euUbVuy/vdjXsOi9nMiX+2cnL3Csz6THy8vejYvi3Vg0TVIttQx5AvP+TbGd/RbvBnklnqg0GRLS94N+hM3L7luFVrWq7tZl34h8S/plN/xEw8qjcnJ7lkLpDZbCYrK6vIIuXSYOfOnVSp06JM19pDtdqNiUw7X/KJ5QS9Xs/GjRuZO3cuvlUa06T7S/Sr3TjfkM9gvrcRfYVKhWtIXYwt+5GXkcgfh7cwfVZnXhk2mFEjX/tPZBjKbaMQFxdH/yc68FxrL6CgZKM9PWkorCkN9nWlwb62NJSgL23bKZvrBEGg0oDPifz+RVZUWYtCkkC1ak1bdaZB1poGWW86X2sa8vWmzTnp3Fz0Nl5tB+JWp31+oZhVcxpk3WmQozlW3WkQtaeP/joN11A3qtZphN6iJPXkfJz8wvB++hPaPf48OcAFIEp6bF42xWK2P4x8HWqbuolgGyUle1rUIOpR396+PU1qsK9LDYW1qS1GPQo3X1R1OyKAXX1qkDWqQdapNtsUq1l1qsG+VjXIetUZl4/hXq8zRu9Q1AY5ane7ZrXZbSHmSnUxNBYpd8XpVqempjJlyhSOHDnC1q1biywo279/P8FthnLjYFq+fjUUrWENhXWsoWgtaxCdTh1wwAEH7gYx1y+wYs5HPPn4YyxfOJdKlewr/kycNIX4DCPNGz5yj3p4b+EcJMrDZt84iW+1xnfdXvalgyTv/Am1VyChI3/GI7RWqa8dMWIE/fqV3R186e8raNGt/GvZNE5O3Lx5s9zbvR25ublMmzaN7du306dPH9auXcv60w+Wh4Paw58mPV+lYffh/PbtULKzc3nv3ftHry4tym2jsHjxYhYsWFBezd03aLyC8O82iphFYwkZ/t1d7fayzu0hcdNsggZ8hnN42VVnzv81mxun9hH4yBy8HvkCrXdlKv+HJeVKQm5CJLrQevft/uacDFKOrqf68Nl33ZYgCEycOJGJEycyZ84cvvnmmyK/U3FxcXh6eqJzKX+ua9euXZkx4+HyUxAEocDkYzabuXr1KkajvKlSKBTUqVOH0ND7o5jlwMOPVjVcGdDKm2UH0/JfswbLioI53wRN/NdNIwY2bOkPSilwZVXqMduM9YJEKxKcpOCOjaiHxVmK6EteL1ZPnll7zsrXS1x6a3DM4ixf36h2YwC6BIiLK3eNHGhoWSmTadOmce3aNVYvX0xIiEwzKQoGg4GIWnWoVr81g9+ZjUWhAARcJEqq2ibQdDpWK70V8TWLFGRTm+Xfcp6HuCERpACbk6fsubA3OhYAZa7oUaSW1J5A9MEBWQTC6OwFgHOyjUCEJG+tEMTnLNiyIiRFI0GKDCptAlDKXPE+Ib3eJnLpB6i9KqH1CkLwl4M1sZmS6IWLeN9NNql4rUT1cs5JJSchkpsH/0Tl7E7V9s/h5BUEKVGkZoqiFu6S2lJW5fr5179RRfouAKf/3YObmxtvvPEGZcXVa9fpFFiFPLOCrBtnAHBzklSabMVVbD4XAH1gXQBUNgG1TRcjAZjasx7gzYYfs6lI3Lhxg0FDhtHuyWGM+mYVSrWajWcMBQKCVliDvFlSgDDLxtPLSjVaHC1+TpaEa/J10vdSIf2GXBKv5h8zukhKYxLdzyld+k7aPCtFjPhM/0wQz1EPX8b8+YPo+3RvatQoe13JvUC5bBT++ecfqlevjp/f3frTPhjwatGbvPirxK36kqD+n97x9blRp0n6azoqNx/CRv2CyqXsurqGpGjOL/2Ex6cewCusLrl5D36a6m4hmIxlK/YuJyRunElAh+dRqktW+FBpndFf2ov50aGoXDzJy80mIzWRSzEXOH9kN5GXTtKudVOio6PxtJncbkdWVlaJ0bmyws3NLb9g+r+KhIQEVq1axaVLl7hy5QqpqaloPYLw8PQm2EeLQqGgWrVqBWQqj11N58KkmZgNObi4ioO7q7OOunVr4+fry2OdO9G4ceP/ROrXgQcTD7vrrMViYceaBcw7spmpU6fSpEmTUv1ePv74Y7oNeps2jw+R2qnont4/qJ09CO33CVHLPqXSE6NxttkolARDeiI3NsxAoVBQqcvL6AKqoM67s0LitOR4Fk4by4F9e++06wVgQSV5HJU/KpKS/ueaNUz4egpDxn1LWFUxA/NfILgpFApcen5Iz77PcfHUkfvdHbsol43Cli1b8nX0rbAt5LKnJw2FNaXBvq40lKAtDXb1pUHWmAZZZ9qqMQ3g06ofSTsXcGP2C+T0eQ+tb0i+zjTIWtMg6k2bczNJizpNxrENqN18GfTGJPyktKFVcxpk3Wmr5jTIutMga093reyBIAgsnTCYGs+Ox1y5HskmaOgsjrhW7WmQ9afF9yi1W5QGNdjVoQb7WtRQWI8a7GtSg31daihCm9qoRxAshfSpQdaotupTg6xRDbJOtVWjGmSdarCvVQ2Q9fcSFDnp+IfVyVeYUNrQfWw1qwGWhvvQrG4o63/qj5e3L1tcRM3qWrVq0XZQTzp2nGJXt9qK69ev4+rqWki/GorWsIbCOtZQtJY1iPrYRqMRjaZs8ob3A3FxcezYsZMfFixC5eRGs45P491sME8+XROFQoGnVIRflNY1QEqgEwGPjOVyajr5U69Rz/nYS5iiEvnh/W9RpkTSqWUTPnp/HOHhpa81ccCBVq1a8fLLLz+0rrMpibH8PucTnnqiM3O/2Vpqice1a9eSnZ1Nmz5DKriHDw6cfCpTZeh0YlZ9hersbvy6voZTpZrFni+YTSQcWEn6hX1U6TQE18BqGFwKF7+XBEEQ+GniG6xetYLg4LILf5w+fRoPn4ozjrPN9JYnNm/ezOdfTubtyctwcfvvGZ3pwhqS4xXGjRs3Huj55643ChaLhX/++YcPPii7rfiDCr/Ow8m+dpRbS9/DObyhaPzlX6WAFJo5O420g3+QemIzPl1fI+y1n1G7eeNXRr1pW2yfPhQVJsK7v3rXbTlQMnKjTpN6YgtVnvsSjKWL6qQlxjD+i58Y/8Xnd3Xvbdu2MXDgQLaWk9Ha7Rg4cCDr1q27Kw7rvcLZs2eZMWMG126mUqtJO4Z//FM+Jcuqc11WqFw9RdUxQGgsbvq0SXvo0KUHXTp14Ntpk//z2RcH7g2qVKlC60faM3rCDzTv8kyh49YAmbmI8KZGCn4cShI3/h42KnHWokux+Fem4thCkIIztgErMq2CBVZXN3FxZnSzyc5KVBwrfeTxMPlYc1+rIhHs3/wrN45uYOIXn9G6demFPS5cuMD4STMZPH4lN2zq1EJdxN28VeUpUy//jnPSxLqwGgFicPBauhgQNHrLUqrKbCkwJlGubCUtlZJDtEUKiFls1JKcU8XAlyBlQfLVi2wW5RrpNYNEb7L+H2TqktFVfE7OSTLdxCRRvZzSRYkblbMnNfp/RNb1EyQt+5i89HhUbj6AAhQKlBodGg8/zPoccmMv4t2oG9WHzUKh1pIHaLLFwV+bYRO4Cm4s9i1M9Mx5vYYcKOrX0oPx48fTo3Pbu3ZTTkxMxCOoKplSAE2XJhm9SZQtK40NwOAlUjmtAUgr5UhhE7BTS8E/628gMDCQ6OjocqOBxsTEMOGrSZy5eJ03Jq1A7exeIGBk/Q2pipgu4iVFo0uZ4nuKtKlxjIoUg5ruN08BYHSRA9IqqT5RUQTt26o4lk9pk6h9ZhuVLJVRMt+TfrNWqp3Op3KFCZmUF+56o3DixAlatGiBq2thabKHAa7VmhH+1q9kX9hL+sFVGJJFozCFTZTeI7QeNV6eB2ENyu2+Vw+sI/PGSRr1fh2VJIn3/wUKlQZzanzJJ5Yj9LGXSFg3jSp9P0KpcSrVRiEnK52zJ8snZXj69GkmT57M1h3lo199O2rWrMnZs2dLPvE+wWw2c+zYMT7//HM8PT157733uGKoAlDuOte3o3aLx4ho+iin/1nL432ewVWnZtyYN3nkkUfs0sUccOCdsaPp+ngfGnd4qsJoG/cSgiCw4vuPISuWv/76646MoiZPmc6aDVt5atz/xGfxcLOyioV7WH3cw+ojCAImrbRQVKowZadi1mehUKrQ+gTnb0LKAkEQ+PTTT9m2bRt///33Xfd52rRp1Hti9F23Uxw6duzIrl27eOGFF+66rd27d/Pll1/y6OBP6TCkUb43lAMVh7veKGzYsAGFf0NWHkotUksa7OtJQ2FNabCvKw32taXBvr40yBrTIOtMWzWmQdaZBlBpdHg0fhwvm1SiVZ0IZL1pq9Y0yHrTIGtOA7hLxWudbdRxrAVtAOnOafz63UccPnUIV68Aej79IjonuV2r/rRVexpk/Wmwr0ENJehQg10taiisRw32NanBvi617TUgFgWpQ+ujP7wWYkV9Zqs+Ncga1VZ9apA1qkHWqY6Wu5evUw2FtaoB3PVpxK6bStNxv5NsNBerVw0FNau3bfuXd8a9TXkgO89SpH41FK1hDYV1rKF4LWujWxM+/aw/r7/+egEe//2EXq9n4aLFHD95mjNnzhBUtT5dXvyKoJBqnMsFJzs612Bf6xrs611DYc1r1DVRdPmIjPRE3py3GT6fSoOaVZg6/qMHvtjMgfsDT09Pxr39BisXT6HPiE/ud3eKhCHlJoaYcwh5mfnFz7qwRmj9CkZ3r5w9wl+/TOS5AU8z5q3v76h2Z+/evWzb+y9vffMrCYb//oapPKBQKFBY1xFKJRp333wFR6DMRPrM1ESWTnqFIf0e5+DBg+VSY5WTk0PVehUn9RsUFMS1a9dKPrEEHDx4kBkzZrBq1So2nhfft1DBgaSKhrmIjOGDhrveKBw8eJChn75eHn15aCEIAjcuniD60jEybl0i4db1Alxx25+5s07LtK8+4u13P6brq9OkKNV//Jdwh1A5uSAY8zDlpKN2qdiIbta5v4nd+RP1Ry9G6+EPpdCrtuL06dM88sjdy/6dP38eL7+KNZbTaLS07/IkeXl5932jcPz4caZPn8616HhqN+9Mw47P06ZvIK7unvdc47ooaD390TZ/GmPljzgdfZZBI9/Hy0lg8pef0qRJk/vdPQceMDzTvx8/LVjE0X/3U7NxO4avEYMhQZKhklJRmFZkkDa3x6SaJH8b6lFlaWq4lJwmXmNTr6SUAhxqjRgcMduoqlT1FqU667oYib18jNTDPxIXeZ5qoQF07NgRf//agMgX/2z8Rzw6cCz9fLIxmUysXr2a/Rcvsnzpz4VMPUuDGTNm0KD3e0TnOuXXH9pu6q9KNI9bEs0j0VbyWqpFu5Igjr0KjXOB1wEskmqQzkNcaLvZtG2lGimzxOChWp+Rf8yqRqOQ2rL+axvoslKOFJIJqtFNrt+zUm+UEm3E9pjKWjMpbQYsSommo3bOPyffKK6SqOKnyZHr8QxSW9ZAm1F6j5qGXfPPedxDpKT4aC0kxVzh5Na/ObJ9BV9/8kG5GWgKgkCeWcn8SAEQ72cOEr8rzpKyj22do8pqWmdVzpJUo7TZsleP9W+rslDDatX4/fffGTVqVJn7GRUVxcg3x9Hrg1/54ai8dI3Jlfumlxg8B5MLqyxZlb5UMScA0OSIwWqVQc7iu0lfKyvVzGITBFXlWf8Vv1+5/jVtjmVLbYn/ZvuLgSWnTDkgmiPRx1SpIq1rTLj4250Zf5bKlR9sx/K73iioVCqHakgxEASBvRuXcmjbKlq1aMLj7R6hZcunCQwMxMWleDrRvP/9gM4nGL9KVe5dZx8w+LbuT+LeX6nUvewDiz0Y0+NJWDMZBAuN3xE5jneCvLw8Nm3axFNPPXXXffnx519o1e3Zu27nQceaNWv47bff8PX1Zfz48RxJFLNyygd4+NCF1uOJdxaRGnudt7+cTcaN4/x7+OAdUTIceLihUChYtnQhnbr2pHqDTcD9EQxIu3acjKOr2ffPCtq3a8fbr79K+/bti5yfW7VqxaIlv7F79y0UCgXPPfccLVu2LNNcnpSUhMlkolLV+ydp/TDCYjKSm5FK5PEdXNz6Ix46JS++MITpO7eWK9X79OnTeAeGUpECphEREVy+fLnM12dkZDD4heE889ZUlJ73TxGxIuDp5X3fg3clodx8FBwoiOSEm/w+8z26dW7Hv/t3lUoezGQyMW/+/1j8+x8M/nz5PejlgwuPeh1JOfoXOdFny8XIxgpTRiLxa6dgTIsl4MmxuNRoecebBIDBgwczfPhwqlWrdtd9OnLsJG/2r3gxAJ+gMPbt28cTTzxR8snliLVr1/L999/Ttm1bvv/+e/z9xUjakcTUEq58cOBdqSqdXv2WlAOLef6FYfy2dJEjQOJAPnx9fXmq1+NsXvglgf2+vmf3FSwW0o+tRzi4hLBwPyaOe4umS75Gq7VP/wkPD+ezTz4slz68/fbbfPjhh+ytWKn8hwKm3AzyUuOwZCZguX4ArQqsnAJrwXWGJMttzEojqkY12rZowo9b1uDv758/5kRHR3Py5EkyMzOLug3e3t75cvV+fn52s0T7DxykTrPOxJTPWywWderUYePGjXc8/1gsFl4Y9jJt+4wipFpdbuWWfM1/BXm52WjUD/48Ui4bBWttQmlNZ6CgEsTt5jNg34AGSjChAbtGNFCwit9qSCPYqBnZujxbTWmshjQgm9KAbEzTv5U38fHxvPfee6SkpDB35kQaNmxIaSAIAjVr1iS8bite+Wo5qGTKkYtNWtpqVGM1qRGvtUnR2jGrAfuGNWDftAYKG9eAffMasG9gA0Wb2Ahu/oT1/4TIpR+icvdD6y0Z7kga1bGZcprTamYDsqGN1cwGREMbY04Gcf+uJSP2KpUeexmvwCriwagTpMbKNQ72jG1A/EQunDiIi4tLIUngsiA7OxuzoMBgEZ9HIaMbsGt2A7LhDdgzvQGnhPb3xCHTFh9+/CmnLsUw7LMlaDRadl8DrkkpXztmOGDfEAfsm+KAfWMcKGyOA/YNcgA0EcPIOHqKAwcOlAvtzIGHB+M//5S+/Z/FNXIPVRs8wnpJ0aiyRh6/L0s+ONYC/QhdYVqpp+Q636SKOEbblrxa6TyVnfXs2/w7p3b+xrM9e9LnlxnUq3fvI/oHDx7kxNlL3FTWJsxNoq1IHc6wqc2zzvfe0rFjqTZFZNa52GpoJSkcCTZy5nUDAwFoIN1jdbz8O1VbTeQkmqo+S66J08Vb5bol9SLp9+9y61T+OVZajeK2cwAsEg1KJUlkW+uaAIw68X4GL5E2opHmqDCdGnNeDvq0eHz01zHn5ZCyayKGnDS0Tjpat2qBWzU3XvnuVwIC5Pozg8GQ78sRGxtLVpa8Xjl8+DAZGRms27SdmJuxZOQa8WvcE6WLNxfTxb6pneT1kbv+DMq8DGq6mIm6eBwnjQKDwYC3hytdHu3EO+PG5J+7Zcduaj75PpqrR+XrU8Q5PTvISpmSgzpGSZbb+rw0uZK6l82awHrsYLL4G3gRGDNmDHPmzLmjjYLFYuG1UW/iU6sDVZt1IccMqxPFNYj53G7xXjZjtpXapfYRpUZt50PrZ2hVLVKaxO+g2WautdKKrLCttbQqGGV7iXWAThnyvGH9Xhhdxe+edR1ksKll9ZQyIUNqi+04qy0c3vMH/Z/uXfKDuM+4642C0WhEEIT/99E1s8nEvHnzWLlyJdOnT79jLvOkSZMYO3Ysbk1EVQDTQ2xQU1qonT0I6/8JN1Z8TlCPN3ENv3NVKYvRQMze38iIPkelFn0I6PGm+F29Q1MbK9KSE/hl6hi2b91UputvR3R0NEFhtcqlrQcJaWlpPNnnaWo26cyL46Y/VOODrts4+g3qya3rFx+q9+XA3UGpVLJ08S/0elqiEVbqVCH3yc5I5ocpY6gZHsjatWvvq9HpH3+upfcL79y3+99vCIJAXtwVLMY8DEf+QMhK4HzkYaqGheLurOOJHo+ic/KkzRvTyc3N5eTJUxw5cZpTZ87x1tj3AHHTKFgsXLp6HQ+/ymgU4OLpi7OrJ1lSLYevtw9aF0+8W4+gVtV6qFRqbkkSs3HxosCF1UMIwFstbn4eqyTJdkobTENOJn/+9BUxY99h5rfTiI2N5er1KFoGVYGr8qK4IuDu7o6Tk1PJJ0qwWCx06/EElWo2p12P5yuwZ/cP188fYdRz793vbpSIu94o1KxZk3Xr1tGnT5/y6M9/EjnZGfw88U2efboHW7duRa2+s8e6Z88ejh8/zvLly1m4L6PkC/4fQetdiSpDvyV6+eek+wTj1/cTNF6Bpbo28/pxYrf/RFDjrgS3G4hCocBwFws7oyGPX6a8xdIlC8uFcgSwf/9+fO9hLYpwDyQikpOT6devH536vUWDlo/ysK2ltb4huDR5ki1bttCjR4/73R0HHiC4ubnx15/LeXrAIKL1C/DqMQ5LtXooy6mm5eLBTRxb/z3fTfua9u3alUubZUV6ejqbt2zns/nv3td+3GvoU26SfvEAhuiT5MZfoV79hvh4exEeEkyei4Xgpr3Jzc3l2o0Y5v+0CEHlxKx5vxAQUh2D0plKdR6h1lPDCZEqZ5OkAu+mzl6oVGq8tXKUMDpH/N5Udhaj4An6u/seObu6M2j0ZL587TE2btxIVlYWNdr0rlDnZCsCAgK4cOFCieclJyezcNESpkyZQp8hY+jW/2WSH3xhoDvGjStnSbl1jfr165d88n3GXW8UPvvsMx7v3Z9U92aobGQubWHPeAYKm8+AfQMasG9CAyUY0UC+GQ3YGNLYUGxs01lWUxqrIQ2IpjSCILBn3S9EHt3A5K+/viNjGiuSk5MZ+8FnPPvpMr7bnUmqQRwIrAY1UFA21mpUYzWpAdmoBkowqwG7hjVg37QGChvXgH3zGtvXoLCBDdg3sQHRyKbmM5+SfuVfbn3/AgqFAtcarWSpOYUSFAqc/KuIbafFEnNsAypnD6q+MA21q1e+pLc9Uxso2timfyuxTz///DN9n+zKI23aUF6IiYnBt2qHYo1uoGizGyhseAP2TW+Sqcrev5fzyiuvlFv/bSEIAocOHeKtt9+l04DR1GrWuYAJDhQsXLZnhgP2DXHAvikO2DfGgcLmOGDfIEd8j5J6SkBN8vIewtnLgbuGm5sb2zat49ChQyz9bTkH1xzByd0Xn8AwqnqJVBN332DUWifSJQPBGrXq4htU0JnVumB0UQvcvHGZFfMn4KzUs239H/c1i2DF+x9+StsBb5OgF3+nKkXBCd72tx4vLXD3ZojnmI02RHOJOmylkPaoLs5dtT3k+VyrFH9rsZLCTQ8/ecEclyeOladzxLaNNnOX2frblWiG6lwx+m62kZxGIVGPpOsMtqpH0two5GaQ9M9SUs/sJC8jFY/QCDShjfGu35V4i4l44GKSE0o3X0xJvoACTa0uqKsbULt4Ynb1JhPQJV4lMQ9Onb6cT3O0zo96iS4TWk+mNF67Lo531rFel1q4ksAtr3CdQmw1cY76wSR+Tzp4is/GmqGoPWQGq/78leioKK43e5OL5+JwsRkbrXQcXcoN6bnJawi1RD0ySx4RSun+uX6yCpBVeeqfBGvfXHBxcUGj0WA0GguoPlqxc+dO5sz7kUOH/6XLwHcYO38/4UFemAS4kinPgfrIEwCopDlSayMZrjCL70EjUZjz3OWgYp6HuE7yjDwk/t+roDwwgFn67K1zqsVGRl8hBdm0maLHk2Azb2gklScr9Ugjfc9MVWUjvGckurqrWsCQl8ve5ZP5/NOPCvXhQcRdbxT8/Px48fnnOLjjD9o+MbQ8+vSfgMlo4KevX+Gxds34YWvp7e1t8evvy5j53fd0GTEJJ+eH07CuPOFZowVeVZtg0meREReJxTrZKJSY9dlknBc9HlQ6Nyp3H4WTb/m4QALMnDmTqVOncvHixZJPvgMcP36cloP6l2ubxcE3IJhbt25hNpvLXbUnOzuboUOHYnENZsBb06kcHlHhRmkOOPAgo1WrVrRq1QqAhIQE4uPjSU1NRRAErl+PxGAUFyOCILB1zSRi45NQqdXo8wyE1H2E8Kq1OH90N1mJkdSsXoXp33xSpmBURSAtLY3jJ0/zwjNf3e+uVAgEQSAvOQr98b9IP7eX3ORYnDx98e06Es/mInvCGohQ6UUaq0KqKTR4yItTVe6DyRBwcvdBrVZzIyoa7eNVS3WNYLGQlRhFZnoS+rR4TBYLKq0LXr6BeFcpHS04IiKC69evExERIbcrCIwZ+y7nr8US0qo/b736A6758rcPJwd72XfvMXzgwHsuLFJWlEsx8ysvj6Bjl+40fORJ3L0eLumqohB/M5Jlsz/kqSce4/33xpWpjW3bdzB7/i+88fVvpCkc7q93ArXODY9aNlF9ZRGL3iKiyWWB0ZCXX5x++fJlu7K2d4orV65w8eJFugdUrIeCLUJCQsjIyMDbu2hzxLLg8uXLvPrqq3zxxRdEq0tXvO+AA/+fEBAQUKBwtWPHjgWOv/rKy/l/Z2dnc/DgQf49cpw1R7Zx4fz5B04+8ZPPvqDrgJH3uxvljrzMZBJWfUH25YPoszPxrd0Sr84vUa1acxQKhcw++I8jLfIk6qwMmnfsxcmi5k8bZMRcIOHIXxhzM3H1C8U1tC5+tdqg9AzCkJVC5vm/iTm6Gd+2A/Gu/2gBIZjb4erqys2bNwtsFN5970Ny1AGM+PBjIrPKV4gzL+UmmRf+If3cXpSSmawyIx61kwsu1ZrjXbstWvd7+5mumPMhAe4qBg0adE/vezcol09Fo9Ewa/pkPhj/MS9+OL88mrwnsORlo486jeb6PoSUqHylJEGwoIrohKbB4wXOFwSB9YunE3PxMLOnfUPz5s2LarZECILABx9/zujJy3HSucBDJPf1MCE+6jKbf5lA2yY1+fHHH8u9cNVgMNC7971XPDCZTCWfVErk5OTwwgsvsGzZMsLDw/l1f1q5tf0gw5wRh1IZUvKJDjhwh3B1daVLly506dKFD95/8AqFMzIy+OfgEcY++wWpMtMRtdWEWPr/Hhsq8elMkRIiSAEcnZtMF3ymuhgoC9BZqVZio8+2FoMZhw4d4o99UUSePURuVhop8VFobWjIJrMF30rhBFkKKkoBWJw88K3REiepU9nSH+5S4a+AwLEjf5MXdZyMtGRS4m/hFRJB6IAvcAmqnk9DUuakAgLOKTIN1yTRFJ0leo5eUsOx0nUAnBPEDLRJojppbGi8BolqlBMgillYTd1uHduWf45nmni+lQqdXlWmJbnHHBP/kNYtRneZgux+db/4/iX1nd0S1dccIvLhkw9uoI5LJjE1RqBLF2nMRmc5YKnJTiY7MZrrB//EyTcE35f+h66SSC0yGw1YAIXWCQ3g0bQ3rvosMjbP5vIvbxPa/TWcwhsB4Hp5DwArD4kmcorAZpw6dYpHH30UgNTUVPb9e4I3Jy7DLMDVbHHTcujsSfG5eYjPTamXxUdck0SVuzzpeQtKmcaU41cTwWwmOSGS1L+X4O4VQECzJ6j7zKckK8VnUd1ZhT49gdMbf+Tahtk4+YUR+OiLaNx88mm+VrUrbYZM8RakZ2lVS7Ko5c279XtivY7qosv14CD5yxjobGLl/M9pUz+EDz8sH2nie4Vy2761aNGC6iG+bF27mNZPvJjvTgn2HSqhsEsl2HeqBPtulVC0Y2U9VxOG3CyuHFhL4okN6FQCTRo35JnPhlOvXr38ImRBEBjw7CAMh69TvX5rWuVcJDU1lZ++XU6PHj1Y+N2GIjl2pcV3331H1RZPEmfygKyCMpFW+burNpy8WzYc7XxHSxvXSqujJdh3tQT7zpZg390SCjtcgn2XS7DvdHn78dvdLkF2vATZ9dLqeAmy6yXI8mi2PFPBhu9vz/0SRAfMy8d28ffhA8RcPMz/Zn1Lo0aNqAjcvHmTG8lmNl6T73+7IyYU7YoJhZ0xwb47JkD79u1Zt24dI0aMuOv+C4LA4BeGU6/Puyy77AOXMwG5r1bHTL1NcseeYybIrplg3zkT7Ltnin8X76AptlvQRRPsO2mC7KY5L2Y/Xbv+twZ7BxwoD0yZ9i1tnxxWYe2nJccTc+0C62avZN26dbz00ktUqVqdvi/3p3LlyoSGhhYI2mRlZZGYmFhkW+cvXOTipStyeaJ1/FCA2WzmzOnTmKLOo3LxQxvRjfDaHXA1PfyRu9zzu4muHIZbjRaYrx0tdDzp4kESL+wntPe7OPlUxlypZhGtyFDp3KjUYTC+TXoQtX4mfu0H4V6tWaHzlEplATbR6tWrady2512/HyvSzu4mYd9yXJo8TuUhU6le3SbDbZDXJDrPALwbdMG7QRcyIk8S+fsn+DbvhVezJytEyc5isbDyh68wpkbx8cfflXv7FY1yzfPMnvUtbdp3pmmXZ7lf7pRFwZCZQuqZ7Vw79DvJMZd4feRIBv88h7CwsGKvWbXid/78809y9Xr0ej0+Pj6sW7furh0RBUFg9+7d1B849a7acaB8kZ2WwPltv3Bqy0Ke6NGdgU/14sl5X1eoGsRvy1bStNPznC2/AH+J6NOnDy+99FK5bBQ++OhT3IPrU7N515JPfsig1mgfODqIAw5UNEwmExs3b+WtaX+Va7tx189yI/YCJ3atoJK/F/Xq1uarr77i119/LfFaNzc33NyKFlKpWrUqTxQkBhAfH8+PCxaxZt1GQhp3JXTUBLTuPly9IXkuZDzcGwWLMY86jZsTn2ko8nhW5AlSLh6kdq8x5PlULvKc4qB196Va/4+59ucUFEo1Tj4BxZ5rsVj4448/6PX6rDu6R3FIOL6FzJRb1HhxBqbQ0isJuVdrhlt4I2K3/0D89h8J6lr+Yh+rp79GZvQpzpw+VfLJDyDKdaPg5OTE2DFvMvPrYTR4e9V91xg3JEWR8+8fZJ5YzZuvj2TgewsJCAgoVb80Gg3PPPNMufdpzZo1VKlSBXef0kl8OlA25N66CMdXojQZKKDPKf2dKqlhGLLT2Kk24u8fwKghz/LEvI8KLQCNRiPXr1/HHsLCwu544Xj56nUef7k+nC/53PJCQEAAqampxMbGUqlSpZIvKAa//PILF6PT6Dfyq4fKKbM0EAQBs+H/2ZsuBb744gvGjx9f4LVatWrlSyLq9XrGjRvHsmXLyMvLo3v37sydO5fAQHksjIqKYuTIkezatQs3NzeGDh3KxIkT71hy2oGKwTsffIyyajumHxbVdyw2JqVWs058JEMqZznr7yuNjU/6iYtTdco5zhzZzaXje1mfm0L9+vWpV68eE9f8jqdn+dfsCYLAb7/9zs49/3D89DnSmw1FN+w3rihV6K4dF/srzQ36yrKBJSaj1F+RTiQo5e+h1cArO7CW9SaAnNUG0EtKQHrJlM3VZi4ySYZtOomOZM18a5PlbLLBp4p0THyWzimR+cesykTWzKjCIrMorOpvVsqSVe2tRePmpN2KIdfHkzizmbzcTFwl1SWlKVes0dg8l+D3/iLDyQWdm8gmsOhtMrES7auZp/iv2kukUMWHyEXRgsnIlWWf49nnbTTO7uxLEM+NTtXQwV0859KlSyhdA8hzDiRBGk4PpogZc+tT8rog0rDMzjasBsnM1fqcc3zDyb5+guSbF3n2q/UolEpqScZ8kTly+kISL8RDLT6Txm1E6vjqRElpsmYrrs8aTNrlQ3jU7Sg9Uzkdbqv8dPuxPE/x87V+TsMqid+FEFcT/+5eR6CTnoNnTt8TGdqKQLmPvs8Peo79+/aTe3IV9ds/BWDXoRLsu1RCYadKKNqtMsRVHIRuRV7i5ObZ6PV6unXrxouLj94VVai8kJWVxYxZcxg0diZebjZ0E5s3Y3WztJWS9bY5nu9oaSOZia0brR1XS7DvbAkluFtCIYdLsO9yefu5tztdgn23S5AdLwHCXcTvUhN3kRZiMujJOb+dswc2kqfPJjUxFh8fHyICfPl07peEhxeUHLwdCoWiUIGyIAhs3bqV8xcvs37jFqIT0/Gv1giFUkWCXvyO2VLfnABD0nWwmPHSCCTciqJevboolUp8fbzp2aMr7du3LyBpmJCQgN6s5HqWBk3kwfzXb3fEhKJdMaGwMybYd8cE0SGzX79+rFmzhpEjy1aMuHHTZpau2siA934kx6zId8oE2S0T5EnKduK0OmaCPMHZfhdsB9/SOGdC0e6ZYN9BEwq7aIJ9J00Q3TTPHvmbFs0bF+qHA1CvXj22b9+e/3/bBf7bb7/Nhg0bWLlyJZ6enrzxxhv07duXffv2ASIVpGfPngQFBbF//35iY2N54YUX0Gg0fPPNN/f8vThQEAcPHmTznsO0+nADx65dLvV1FkMuaZHHMMacZJcxlrzcLBRZNxn5ygi+GvcCfn5+FbaAunnzJr///ju/rVxD7aaPUqPtUJoNqsXcK2WXNraYjeTEXSU3MZq8tDhyM1PAYkbl6oXa1RsXd290fqHofIOLlYy/n7i2azGN/b0RtAUDRYIgcH3HQqp0fgGz092Jdqh1bgQ/OpSo3Uuo/vioIs85ePAQNRu1v6v7AJjzsonb+B1Vhs1EcZffo6BebxP54yjca7dDUUKRd2lw9tg/rFs4mWNHDv9nNwlQARsFgOnTJtO77zO4uHtTvXHHki8oJxjy9Pz545dcP3uQn36YR8uWLe/ZvUuDAwcO4ORZCb/AEEwO6cg7gmAxk3lqO9fPr0dhMXEl8Rr+/n4oFQqe6PooL3/zISEhIbi6upKenk5qqrh4jo+Pz28jJiaGWXN/xGyxoATS0tMRBEX+Z2GxWLCYzQgCOAdFULluOxoOnkIND3lxm2rHBRNgQKU8zCYTKrO4+E28Gcn6A4d594OP2bV9C6GhomTriRMnCKxxZ+7d5YVatWpx48aNkk8sAuvXr+frKd8x6oufyHnYnNRKiZhr5+jXtcv97sYDCbVaTVBQUKHX09PT+fnnn/ntt9/o3LkzIGal6tSpw8GDB2ndujVbt27l3LlzbN++ncDAQBo3bsyXX37J+++/zxdffIFWqy3UrgP3Brm5ubz8xljMT37NkfgkFJ7iZ+xsMw4OqeSP2WyihdNZfv/9d1JSUkhOTsbZ2ZnWrVvTuG9jwsK6o9FoiIiIqFDGgdFo5LvZ3zN73k+0ee599IN+5qRay5m4ZIi7gtamBs9aT5dfwJooZ4+tvjsG9wByYy+TcGILebFXcKneHF14Q1waP05gaD1Uzh6kXz+OOSsZQ9xVMm+cIe/wOiyZSbiE1sO7Rgtcw+qT5ykLIFhrqyxSFNoqr6rKk+k6Cskbyqrhb1vbZ5Ki7FY/BotUvwdgdBXbVjQSeVct3cSgUUsfA1tPbye5UQMU4SJl1FrEnBR5Gk1IfRS1H80PkmRmi5kJi00xsUXqy1HEoEoDdzHQEuEsB3miItriEtGWpFPbSY69xrbrYp1XdlxSfkZBEATUag1Xs22XoeL7NUkBG72PmKWwDSaZpPpDhcWEIAikbZ5D/Re+wb9eG1yU4vu0enrYFrYnSrWe1tlaKwWYe/rKQc0/0kJxrdORjOhzuDfoXCBz7JQmZtHMUrBOYeM7Ye3fkNZivVuIq4mUxFgWzvuILZs2FEuN+6+gQjYKzs7OrFu9gt59n8GQm41QvVe57M7sITUhmmWzXuPNUS8x7NfvK/ReZcUvv/xCl6funhv+sCMn9gp553ahiT+LxWTAnJuCm7sHAzu1ZciMD6lcuTI6nY4rV65w7do1rl6LZNb380lKSmbj+rU0bdeDAH95sLUa1qm0Ohr0+RidizteWgtaJxdUanW++yUU7YCZI9cPlwoqtRpnJ3E0DKvZgKoRDajVuB2tH2nHhXNncHd359MvJ9Pj7QVlfUR3BbVaXWzxX3EQBIFp06bz/f9+YsIPW3B2dSfn/6HfmD43m382/cacr0bf7648kLh8+XL+77NNmzZMnDiRsLAwjh49itFo5LHHHss/t3bt2oSFhXHgwAFat27NgQMHaNCgQQEqUvfu3Rk5ciRnz56lSZP7s7F2AKbPmIV7tVZYAqsXOiYIArmRJ9i4dgnpsZdJ6dCasWPHEhwcjFarLXfPlpJw8eJFhrw4giYd+/HirH9QqdScunJn450tcpNvcmP1JNQu3ng/8SbOkqKPQlroa6QsvFNQdaA6LlXk76kqPZac6DOkndzOzW0/4BLWgID2g9F4+Be6z73AxZMHCAupzK34JJw7t8h/XRAEkvavoPqIOeV6v5Bur3L1t08Ia94XhVKJQuNEcnJyubWfcmo7LkHV8G9YfoEbr7bPEbdqAu4NOpe5DZPRwIz3nuP3pQupWrV0PhUPMiqM+GndLHz22WdEfzGB9o8PpHL9jgSGRaB1cqatzbnWuILt4sxTa+F22Fqbu0iqSCaTkQMrvubcuXOs+HUBNWrUKHTdg4CLFy8Sk5hF26otiM8t7GJphVUNKt7mWVjdLMHG0dJmp6uwUTWy52oJ9p0toQR3SyjkcAn2XS6haKdL29240c2XlL+XkHtyI9mp8WgEM9UiahMUVBmUTuTpfcjM0bNpxx427tpHZmYGKo0zeosCVZWWmD2CUAf2QBMaSK1qz5Kr1hJto3pl6wy9+ZLo+Bxa7xGQaJdW90uw74AJ9l0wobATJkhumC4NqPbYS7w1ZiyTJ35NslHFqhgDYN8RE4p2xYTCzphQkjsmgAudO3dm1qzSFZCdOnWKGbO+59TZC2jc/Jjw8260TroCbplWp0yQ3TJBdsy0umWC7JgJsmum1TETZNdMsO+cCfbdM8G+gyYUdtGE4p00rUg/9if9n+5Vrn4aDwtatWrFwoULqVWrFrGxsYwfP5727dtz5swZ4uLi0Gq1eHl5FbgmMDCQuDhRtS0uLq7AJsF63HqsOOTl5RVwyc7IeDBNrv6ruHXrFpMmT2H4wqvsiJMizMY8zNmpnH0lCP/wCJ7q3ZvnXnuGzpLs5f1Aeno6X30zif2HjzPk3TkEVA7nUvrdLXGSzu4h6dQOgvt/ipNPMEY/+1TW26FQqnANb4RHUA0EQSAj+hw3VozHs047fNoNvmuqzJ1ix8rv+ebz9/jki4JUPlN2Kk5+YSi15SvQoNa54RpSh5xrR3Gt0QLn8MYc37G0XNoWBAuJ//5F+ykHSz75DqD1DUGwmDBnp5VJkseYl8s37/Rh0MABNGtWWPnpv4gKrRBzdnZm6tSpfPbZZxw8eJA/1v7Bph+P4uTshrO7D0qVGoVSgU9QVZQqDdlmKTWkdaFp+yfwsFPwazQaOHFgG5uXz6VLBzFtfb+Lp+1h1BtjeGrYJ/e7Gw8UMi4fInHHj+Sk3ELjEYBP66fxr9cFlbM7gj4bK7NcqVKhcnJBQHS9dEJ0vLQyy8029RjK7LJHjioaNZ94k7glw/lj9Z8YvcJxKvmSCoFKpcJoNNp1aP71t9+ZOu1bBCcv2jw5gqGDJqNUKtE6PZxOmaXBjUun2PHHH6xYseJ+d+WBxOOPy/IyDRs2pFWrVoSHh7NixQqcnZ3tXHl3mDhxYqEiagfKDwcPHqR9r6EE5EXxQcNw/tm4lFM7f6V69epcAk4d3FMk3exewWQy8e2M71iy6i+q9xxDxpB3+DFdAekCuotiMaybFECwBiWslCKArGBJQlMy5PK4JGr/3zy0lhwLhI/4nob1xeh7vI3UtHUkTMkTAwoqJ/H6AG85iJDqLa5hDHqRmuLi6k2VWo+QuOsXbv72AeG93sboXw0AbYYY2LANrKmk+kOFWbyHrdS32qb2C+QCZgC3ln0BeClcDtjtXLMAc24yVcLD0bj7o4uUZVGVpjxw9cYk1QZm5YhBGKVaul+2fC+rn4BOa60jFJ+tu01ApZGbuLQ85uqLe7NepJzehmu9DigQaWwWiwVfXx+ST50iL8LmmUrF41bJdbMUBFKaZIUmq8R1SnYWumrNqOOpASQmgEFcQ+6MFNvR6uTn5a8W73M+VzynmVSvGaST5zQ3H7Fuwzm8MfqbF3Bxl9cWeV5WY1SxHYObXHNYt5ooa97J6xy9e/dm+vTpPPfcczwsuCdSEu7u7nTt2pWuXUVOnCAI+ekno9HI1atXMZtlftuNqGj+XP4FqWnpCIJATq6ewOpNqRwSjrt3IP9uWwaGTPr0eoKtG/4sFIV60HDx4kXQuhJWvS7x/4/FUowZieQcWo7h/G6Sr59Do9XhXr8zgUOfx8lflKq1FrOqbKhqCh6ugo4Dhw6jbnjnRmuG7HTSoy+SmxaPPi0eQalG7eyBp08APlUa3BG9Lzg4mNTU1AIF1iBOugOeG4zGM5TOo74nsEodXFUP1/MvC7Iz0vjt29H8s3s7vr4PhztrRcPLy4uIiAiuXLlC165dMRgMpKWlFcgqxMfH5y8yg4KCOHz4cIE2rDVG9haiH374IWPHjs3/f0ZGRn4tkAN3j65du3Ly9DmOrZ7MzrQMEmKjOXRwP66urixdWj7R4bJAEAT++GM1k6fPolqzbrT/aD0KhYJryXfIFS0C8Sd3YMrLpfJTH5Z7AFKhUBDQeTj6k5u5uuxzKr0wHY1n8TKi5YW1i77l+NHDHDp0GN+QCLJsjhmzUlHeZQFzcXAOrU/ejp/z/x8eHs758+fp1KkTX0/+lhrtx5Wp3eyr/+Jao1V5dbMA1B7+WHLSwWajUBLSo8/R7ZVubN269aHJJFhxXzTnFApFgQVKUTKNLwx5Pv9vk8nE/v37uXL1Gt/NnsSjHTswY8aMe9LXu4UgCLz34Sc8Mejt+92V+4K8zBRSNs8k59wuMlMS8axcDbeG3aj1xHtoJOk1o9v/j4VX8vVTeHl4cP7SNZwa1ynVNfq0BBKOrCMr4QZaFw/cQuviFlAFv1qtEZy9yEuLJ+viP9w8toWgeh1wa1utVBsGa52C7e9QEAT6PTOQ2m360LR9TyKzKnZ4MGWlkH52N+kX9qGwmiZmJ6PWueIeWA2XOp3Q+QaX0ErFIy05npnv9GPenBmOTcIdICsri6tXrzJkyBCaNWuGRqNhx44d9OvXDxADKFFRUbRpI1L32rRpw9dff01CQgIBAeLCadu2bXh4eFC3bt1i7+Pk5IST0/3Kzz38cHd3Z/znD1Y2PDs7m2EvvYJJ48szHyzEzcuXM+nls6DPir1K6rXj1OozltwKZCl4VG+Oxs2XG7++T/AzEyq0WD9Pn0PDRo2pXLkyV65FElSjCTds1D71SdE4Bdk3VSsrbt9otW7dmmvXrlGvXj0CA/zISY7BxffOXe5zIk/g1fKpcuplQWi8K2FIioLAKqW+Zs8nnTl57F8iIiIqpE/3E/8JcWq1Wk2HDh3o0KEDw4e9eL+7c0f4+++/EZwD8K9SjxwT+Qo7ahtqoi1L0Wp7b7W8B9n2HkDnJqoBWG3vAQJ0trUbYoru2dbyTvi3A2mkJsVxM/IimSnx3Dh/GLONHIBSqaRm4044ubjhXoQ8a6ZKSUDVerh6+eMsRZfTjXKvbWtH1h8+Rvax1WSlJZAZF0l6zGWcvQLwe2wk4SH1MPuIkT5R8lNsyzlFtrU3SXJyzjYcfb2XPIhYufvOCRfla2xqJDSSJrXBRoYzJ6CW/F6lGo9bx7blv+aZJt/fKumZXvWR/NfcY47JD0NKYRvd5Qin+9X9+X9bpTZ3u8oLSnOIaP6SdGwPI2qGctQUjHOGrMZkVZ0AOSWeLqi4te0HBMGCb6938avTHoVCgdkofr4GRD1rDeDerA+uedmk/PM7sb+MoVKHwXhUb56fGnW9vCe//ZWHxKyeZ/X27Nq1izp15A3LmjVrcAmMoFG7JzELcDVb3HAcOnsy/xyTh/yslZIShmuS7JKdZ/NZCZKjdo5N3USeXziZp7aTumcxru7e+DXujl/vd/OjWdV0SnKSokm+cIBLOxZjycsloOMLuIaJz1CwkQXOVynJkPnrgo3UqVVe1aKWebcF6mWsLubVZXW0wUHyFz/IxUxWeipLv32VhT/NpUOHDjhQPN555x169epFeHg4t27d4vPPP0elUjFw4EA8PT0ZMWIEY8eOxcfHBw8PD958803atGlD69atAejWrRt169ZlyJAhTJkyhbi4OD755BNef/11x0bAgXxkZmbyVP/naNxtOPVbPca5dDUJWXAkW5yT1Bp5wZ0dLkZ2NSlizZlRoqkaber6NFli3ZLaPwyLIZerRzbQ6MN1aD38ae0izm06lfjvTaMchElMFscdhTSOCBI9J84sSyxX9xLH9usSJcbsKbMf8tQ6lF4hhARWJ2bp+4Q/PwW1qxcgzwfWmjmXxCvSC/Ki2+AljsXOCaJPSXodWShgVIjVj0CiBaUcpHNHsTL0xMlT1H28EyaJDuWcdBVD7EWcHxuJylkU4bBIlCdloqhWZNG557dtrS80SeuSZJPYxxi9vCYI0YnHjvhK872HP4abF9H6hYGzqDAIMOjZ/izbs4KG/d4CIECqu9t3VZxTtJK0dXpVuQ7QKV2sM7SYDGiC67ArRV4faawKhAmiF0Wev1xIHJUj1qI1CRaDT0aL+CxzTDbP1GSV9E7HnJWcP4fYwuqV0KGWvK4ITtzLlTq1HspNAvxHNgr/ZXz3/XyadS9/pz97sFgs7N27lzVr1nD8+HHQuODu6kK7tm2oEebNuKGfFJh4s7Oz2bhpCwZjIvlDnE0QwKQys+XneZhR5L9sKztmLcAWLBZUKqji48PRuMs4BdUluM9neNjIh8o/6f9fEASBzB3zuOTUE0XdIXbPizu5naSo84T0GIlzYDXM4SWrvSidXPHr8hJBtdtwa+cvZFw9SlDPMcWmzbVOOqBgYfa2bdto0HrgHb2v0sKszybx0GrSrh/HrW5HQl6eR9VQcQMRb5AL7xUKBa7+Ybj6h2HwDicv5RZxe38j8cBKKvd4Hc0dOoXeDSxmM+Nf7cra1Sto2rTpPbvvfxUxMTEMHDiQ5ORk/P39adeuHQcPHsTfX9yczZgxA6VSSb9+/QoYrlmhUqlYv349I0eOpE2bNri6ujJ06FAmTJhwv96SAw8YTCYTg54fSpPuL1GvZdlVaYpD/IZZhHR9Fe09VCXSeAYS2PNtbq7+hrDnJ5c71SktOZ7vPv2U/fvFgFZsfAKdgqvCtbP55wgWCypnj+KauGs4hzUgN/oMWr8wOnXqxIcffkifPn3o1KkTsxf+ccftGTKTUbmVnhZUFggmY8knSTj7705mTJ9Wgb25v3BsFCoQly9fJikth6q1K17WLzcnkyPbV5J44yyxNy7SvUsHwsPDGT9+fKk0fN96075a1IfvFc8j1Ov1LPn1d/7382Ko+SiW2o/i1txDHvAyilcs+f8CwZRHvYaNOXfpKrr2tSD2UpHn3Tq6EbMhlxpDJpVJUljt7E5Yz7dI/HcdtzZ+R+Un3irVdSaTiUuXLtH2+fp3fM+SkHPzIjGbZuPX8imq9v/8jpQ+nHwqE/b0B+TEnCNq1QQCOr2Ie0Trcu/j7cjNTmfYkzWZPXuOY5NQSixbtszucZ1Ox/fff8/33xcvXx0eHs7GjRvLu2sOPCSYO+9/hDfsVCGbBIvJQNqx9dT+am+5t10SXKo0IjuoOqlH/8Kn+Z3XrxUHi8XCrzPfZ+HChbLjtVC45sykz0ahLovGT+mg8QvDmCxmdWrWrJmvUhYYGIglNw1jXi4ap9ILHhgyEtGFlv9cZYXWK5D083+X+vydf/3GrK/eqbD+3G84NgoViG9nzUHT5DmmHpBpNFbL+3y7e8i3vAfZ9t5qeQ+y7T1AqJv4AxvQyptz586xevVq9t+4QWRkJMOGDaP9m/2pVKlSAUfUisKFCxeYOWce2w6fQVG7C05Dl+Icc5qcnGx0CtkgRV/Zhl8s7dLVNtQiQSn31Wpckh0op/VsBzary6/ehs6it3FxdpU2JyadnL7VpcrUIqtqhDb5av5rBp8qNsfF5++cEpn/WgFnYEmSU2GRow22ahNW6pLSRvK0RePmZCQkYAwL5dSVG5gAVxvJVqVJpEMlXzpEukVB5eHzULrL6WuLPlu+l1bOBDXzFP9We8k0q/gQMdUa0rAjx34YTeL2Hwlr+WT+8X0J4jWRaRqCbernZs6aQ732/Ui0keU9mGJNX8vwuiBTtsyS4Y9CsEn92ihx5PiGY0yLJ/2fxfSftA0nNy9q2TiSR+aI6edW8keFh1p+ro3biFKlqxNVuFdrRo2Wfbn2bX8ULp64VGmERZLttXVztpWStcL2eJ6n/F2xftbDKsnfrxBXE2aTidf6N2TO7O94+WWH74kDDjwoOHHyNM2eeBUnG4GFep7imFHdTcxM5lnkEetwqpgZOCEp5VjVdKy/fQBCG4j/nt5CcPNeNHQXsOa+L0ly4nkSuzYxTZZXVlhpjpniWK7OE6mYJp0cmLuaKklES8ERZYY87jsFi0o5ualiIC2oTX+u/DIGjw5D84NsusSrUn/FecukkRfTVvnrrBAxkPF+A5keZJWPV8TspnmD6rRoIao2WSwWUlNT8Xay5NOvhICa5Amg0rlhzhbHT4WkNpQ/X9pQZa2U1gYu4nvKlugFGpuJwkmKBQnSfKjOTsWiz0CTHseyg/4kZ+jJycnBxcWFtq1bYIy/SKWaDTFInkdGF3FuMUtUZJGqbIUCUCAY9ViyUgirLM9/kTdFszxdaD0A8uJl8zyrtHuMRK92Vkr9tqEeeWrFtUiGmw+Cm0+B74l17s8OEj+3Vr7iuiwpLor2bVsXEgZ5mODYKFQQLl26xNotu3hs4lfER14r+YJSID0plsPLfiL66hkWuajw8/Ojf//+DBkyhJCQkHtibJOWlsakKdM4cuwk2Qbo9Nw76BqVvzLEw4bc9EQ8nLTkqtwpKm6SmxpL/MkdBH+wodyeZUDLp7i+eiKZNy/iHlzL7rmbt27j+XfmkFYudxZhMRmJWfE5T4z9ESc3r7tuT6VzJXjA59xYMJoqL89FpSt/t0uLxcLiGe8yc8YMhg8bWu7tO+CAA2XHzVu36B4UWiEU1oxrx/AtR+OuO4VS44Rb1aZknd2Ne/2796PIzc7kh5kz2bx5c/5rZ8+epUpEoyJursKck4Hao2IWu4b0eNQ2dSHhdVrx/fff8+6776LRaPJrFh4U6KPPogspXkDBFkd3rmbgwIqh7D4ocGwUKgB6vZ5nnh9Gy9d/Rqkq2yPOS7lJ9s1LCDcOs82UiMVsIi32EjMmf0X16u/cc0nYo0eP8sMPP3D6YhQtHutPz9Ej0bmICzXF5buXoxMsZvTJN8mOv0Zeahz63AxMmcmgUKB29kTl4o6Tbxgubp44+4ejdvP9T21Ozqz8htEv9uXv5MKGNoLFQuTORVR9bBhGVfmlfxUKBWGPv8HVZZ9Q59nP7X4XDSYLbh5epGUXe8odI3HHT3g1eQKv4PIr8FK7eOLTpj8pB1bg/+jwcmvXij9/mYyvi8CwF18o97YdcMCBu4NCoaiwcd+QkYRL4P110fVt3oube5bc9UZBEAQWTh/H+PHjcXV1zX/9xo0bVKpSOGjkUasNGcc34tOxYsY9wWwqENhp2eVpTqz/rkLuVR7IuXwI366vILtlFI9je9cz+8vSUXz/q3BsFCoAY8a+i0fzZ/EKLx2HzpAcjeXEWpTZiRhyUnE2pOPr68XjrZrR6dUuVK4s0iXCw8PvSdbAFtHR0bz//vsYjUbGjh3LNaE2CoWCdEP5DNb6lFsknNhGVsx5XAKr4VK5Ju7hDfCsFIHGKwiFQoEhNRazPhtDcjTZN8+TdGIrxswUVM5ueFZvhq5ZHzReD66XhiAI5KbEcObCJUyV6nO7CF7Cmd14hNTB2bsSpS+fKh3ULh74N3iUWwf/JKTtgGLPUyhKXzdQGqRfP4EhJYaAbq+Va7sAXk0e59rc4fh1HFqmOo7icP3kXm5d/Jctm9b/pzahDjjw/wXOWiX9W3mjtKlz+u1AGgAqhUglicuSx4RTqSIdqHN1kZ5y4NBuAEw2SnMqlbg5yDXoiT7zD8lOvfKPaSSnYrNEoVHZusDHiXVmVuqs1QFeF3sh/xy15ERvVVuz0iUBtJIKiMFF7IuQpkXrF4Y5NRZNukhHUutFWqvSKEVwbGi4FokWM6CFaBjnpLIRhYjZSZUgDzp3LlzLEZ+r4nyaBqSFuyojDs8qjbixeS6+bcQ5QivNp3nS+7a+fwCVpNx0PENSRpLG4OY2KvdROeJriuz0/Ha0lWpiDKiKwQy+lasTFRWF0WhEATirBVw1Amekz04jPTeFlGmwpXOpc9NQ6TNRaHQo3Xxo5i6/b7fQKgC4Sl+Boz6yvLa/ZPqYmCtSfXUuInXsSq78fUnVS0HP5BvUrNeW+POyoqHV/O2VeuJnqVaKffPzD8THR6YKP4xwbBTKGVeuXGHD9j14vP0uyXEiH1HhKUtpOruKfPdnvFzYv3o28VdPUD3YhxeHv0iVKlVwcXHJ3xjcTwiCwJw5c/l1xZ80eOpdwuq3ZXsGLLsividVluxsqdXL9RYKi/ijtdhwKbWJMk/QKv+Zlp5M/O6FoFDi1X0UPrXaitEiKaLu7CIP5CbvYJQg2qmbjHgB6swETFkpZF46SPyq8Zj1WXhGtIEWfVA7e2CxicxbbHiGVrk4VZ5M0FeYbQZYaSC2yqgCmJxtnJ+lAdOilt+f0VW+l6KR6E7b0k2OROTu+5HeT3Tj8NHjOD8vGkNZJVEtxjzizh+gxqv/I0elxtNTlFXNzJbrHix62RrHYjNRHJU0qhq4y3ULEc5yUj4qQpTD8wKu/PoRWXl5bLsuyt1lxafQyUuufbHiarbtkCA+F5OrPAjqfeSIm7WexGQjOaqwmDDlZnLznxW0/WYPamd3XJTys7BO5uJ7Ef9NzJMnfdtlv1biIff0la//I03si2udjmTcOIV7o26YDfJn5ZQWk/+3WSf+1hQ29SLWPgMMaS0W8Ie4mrgVdYU9iz9l57bNBSJwDjjgwIMDtVpNfHx8kd5LdwutVyWMqbfKvd07hVKrQzCb8r1l7hT6nCx+vI1yVBI0bt6Ys1KxmAwo1eXv55AbeRL/Jwt6SbVv376QwWJpoXXz/r/27jo8iquLA/BvVrObbNwhimuCBocWd0qBIKV4PyC4lFKs0KJt0bZ4sUKxQoM7wa1BggZLSICEuMvafH/M7s6mocQ2CZDzPk8elt2Ru5Pszty5556D7Ofn8l6wELJeP4bcpXhqSnyoTHsbkaBLj8/hN2jhW19TJb1BSnAgUn/rhcNLh2Fw10Y4cWAX/vjjD7Rp0wYVK1Z8LzoJERER6NPvC5y/9QxjF+6Ae82mJts2q9Ug6uo+vDm3Fa4dx8JrwEJYVG1WqDu4Igtb2NTtBG//ufDu9wOEckuEbZ2KN2c3GUrBvw/uXT2GoYO/hEQqzZXxJzX8Dqyqtyj0SSE/GIaBc1N/xF7/2/CczKsOgoKCimV/0Rd2wLlFf4hkirwXLiSbll8i8dKfJtlWSmIcFo7rgU0b1hpSeRJC3j9jx47FlCnFk11G7lELac/+KZZtF0zurEQFcTZwM0aPHp2vbIfGLKq3QGrIqSLt+200WWlgBAIIxDnDbtu0aYODBw8WapsShR1UScWTTTH1zgk41ulQLNv+UNGIggmdPXsWFh514ebTCg8juTvnqqRoaG/+BTY1Ds+P/46mLVrh0KH9sLa2Lt3GvsXLly/x49LluHU3FF0GTYNHxRom3b4mOwPh+xdD4VYTnv0XmDS8QyiRwc6nHazrdUNC8CGEbxoH937zIbIo3SHBm3t/QjkHS5QrVw5Ko3oBeqwqC6ISyNlt4emDV2c2wU6rBSMQQGhmgbS0NLAsC4ZhkJ2dmfdG8kGrUSEt4j7KtR1hku39F7GVI7TZGWDfkuqvICJDb+LAspFYt+Y31K9f30StI4QUhxYtWiAoKAhbt27Fl19y8fT9G1vnWGbbpSTDY33KTTfdSOslce45YlnJ3Ci5RYMeeH10FVijEfBGVbmClM+zuFHbGJVRBjVdMS9pZAgAPkwo3Ymfk6Xy4DISsfF85j09fVFTNo7LAKiy4EaTNWoVtLoRdX3IkUZXiIw1Gik3r80VWKtsxX13MwBUKiUeXD+B35e9/W67UsmPIkt1mfXUydy2bZv0wYv1o2Hp0xZqJTcKK5LrRmXN+RF+a10NJqWu/TVl3IhvmNH8tgvRuuxJrAap907DspIfBMlc5qS/orgJ05s+rYmlS5eiWk0fpCoZJGUzqKbLiqf/DSh1o9k5sg+JuR0JGQbaVw/w0JovmGmuuw/3KIu7tjA340f+o5O5NonMuBCiVF22o8fRr/iGa9RIvXsKNlVn49XzEMCMz3ioP/YOugK3EgELlmWRlpI7097HhjoKJiQUCqFJiMCL/fPQ268tUpLisPPXr7F+7Wp4eXnBxuaHYhkyLSqWZbHqt9XYsn0P3DtNRa2x8/BHfBbwkPsmMAvlU2Ja6C7Msi35cCp9OBEApJXj4iVhxodvWD4+B40yC+GHV8GuzUiYe/qgZlVfw+tvVHyHQR9kkpDNf6EJpfy2HG24D3miDT8nQZnFh5MgPgLWjXtB4eSJiK2TUK7NcIhrtjW8rE/zZlyhV6jiQ1MYDbdf4y9kkVHKT8M6RilRLRr2NDwe7sFP7Nao1dh+aBUOPgnF8+fP4Vy5PlThwTm2w2hU0JrbQa1L8ZqWoUvjZ5zTOp3fv3HlYTOJfvSJv1hWiPjHPhbcx/umrkq0mUdtZMU8g8yD+x2VL18esbGxcHR0hJlYhLSUJCSo+N+rflRGn1IQ4OM0AUCgVuqOBX+GiE9NgqxyYyityhnCoGKU/CjKmXB+pEdipvviFfG//4eZ/LL1dCcNZ6PK4xa2/OdHZOkATUpsjjCxbGs+JlWf2FWfzg8AqntXNTxOOb8Iu9evx8mTJ1Gjhmk7xYSQ4jFjxgz4+/vD3Z0r3mUqDMNAVr46Ml8+gCyfGW9MLfvNc0hsCh9VcGLPavxvxNAccziM7d53EM5N314AViizhKVPOyRe2wf7ThMK3QZjLMsi9X4QnNr9L9drtra2EIlESE5ONqpFnX8ytxrIiLgH1GiY98L5pMlMhVaZme+MemkpiShf7v27pjM1Cj0yoRYtWmDPtrUY+0UHZIafgyDuDv7cvg2dO3dG9erV38tOwu7de1C7rh8u3I3G0B/+gmvtVsWyn+cnN8C5bgeYe74lNVsxkDl6okKfOXhzaTeS7xwvkX3+29kDm/H555/D1tYWh46egL1H7ovRrIRXEFmVzERsc09fZEXy1Tjr1KmDEydOAAAmjBuNoANbiryP9KfXYe5dMnfmBRI5tNkZeS/4FpGX9uDq1at48eIFdRII+YAIhUJs2rQJc+fOxdatW4s8qmjMseNYxJzeaLLtFVRqyEkoarQq9PoPg8+j1+c9//P1J89fwMnrv5Os2DbxR9L1v6E1unlWWCzLIubYrzArVw1SB8+3LtOiRQtEvIh4axG4vFhUbIi00Mt5L1gASdf2wap+93wv/+DWZbRoZrrQ7PcVjSiYWMWKFVGxYkV88knR8yAXp6ysLAwbMRJZAit8OXcXLKyKL0Qn6uYxyOzKwdqjFgp3WVc4IrkVvD7/Fi/OboEmPQm2TfxLcO9A7MsnWDybm8AVn5AIe5+2wNPYHMtkxr6AvYvp0oe+i9jKCZnhtw3/r1atGh4/5jJ3tGzZEj+vWgf3Iv7ZZkbchW2TvkXbSD5JHL2gio8ErB3zXtiIMj0Z11YORWJCAsTi4qtGSggpHgqFAocPH8b8+fMxaNAgrFixAjY2XNKJgU2tDcvF6hJtCHW3RJUuXCiRICHSsIzYgluvmlwIVKyOaEcvJD39B5b1uiDoBTe5uYkbd5ffzCjL2tMsbqNZrtV0G+dGXs3i+NAl/eU2a8bN16rowhdXfaWP3dEVXPU2N8PrR+dhN3w1WEPhUO696Ee4s2zcDOtP8eBGUnv7ce3fv38/WjZtwFdgfguZTA5LCQuAhbWYC+eJ0428CpQZEACw9u2AxP3z4dikN1S69yY0muCckMGdxTXpSQCAq7qwJDaeTyQhUmYg/vrfgCoTTm1GQJrETxJ/+oq7W7/nmiNSzatCwJxF1INzqOvrAzNdAotMOy6sS5Iaw23PKGoBLDfCbOHsjejDy/Dk0S3+NV2hNamYG3lvouBDxRKl1gAAVym3/uVU7n1L48K595OVhtQbf6PSkGWQ6grCaiR8NEOWRz3uWOgScvTys8GepYcwYelSfOyoo1AGZWRkoHffL1C5WR/UbtIRD5JFiNEl1vknnfvyE4n5L4Z03QcEAMQJ3JeBypzPBKQyKqQiTuMqV4oc3AEAmS8fIjUhGr7TD4BhGPjJuQ+pmZAPJ3ml4r98Y+O5CUqMUdYk1ij0JlrDdWgqWPNfhmFGoS0a3d35bBEfi+ry+Sy83j0HKRY2sK7WQvcsvz5r9OUvj32qe5IPh1EaXYjKYrjUd8nV2hieG12eD83RZ1XqWc8Cv718iEqVuOwJjx6FonMbR6hfcaE3sjiu4qYmJRZSJ2/DJGf9nRxBLB83qTXjJwUbZ/BR6yoOx6v59r/M4o9FeTPu9X/suJOLxNwWmee2AG+Zj2BjYwOFFPDSvIbChnu/jrq42EvP+IKBkpQow+Nkr8YAAGkyfxLQatQQuXIdn7MJ3P7FIqNcRjF8RWx9jG9ERrLhuTrl+NAhla7CaoZR5Uyl0SR1UWYKhMlvILDg40iN6eNaW1Th84Z/4pSFA9t+Q8CYsbC0fPt6hJD3n1wux/z58xEUFIRu3bph27Zt8PT0LPJ2nT6fiRdL+8C8ajMIxdK8VzCRiLNbUK5pb6AQ+2RZFhs2bMAff/xR5HbYNeqJ8A0BsKrSGAJ9J6iAbYm/EYi0p9fh1n/RO5f1qlwbe16+QlRMPDr2HYOcee/ejRGKIC9XFSlPrsGykl+B2/lvUee2walZXy7sNx8DKtnZ2YiOjka5cuXyXvgDR6FHZYxGo0G/AV+iSvO+qN2kY7HvL3LrFFQd/kup5qVnGAYuPWcg/sKfUCa8ynsFExg3bhz8/f0NdS+yVVqYK6xzLScU586EVFyEZuZglZmGofoqVarg6NGjhv9/+umniHoaUujtq1ITIFTYmaSt+VaIqIOXT+9i5rfTTd8WQkiJa9WqFVavXo0BAwbg0qVLRd6eQGwG+07jEXuo5O4Uq5Lf4OW5HfBs9/b5A3nZvHkzGjVqZBhVKQpGIIRb96mIPPAz0gsY2pMV/RTh60dClRwD974/5HluE0uksHUsj6qVvPHo9pUCt9Xpk8GICdqCrNgXBV7XWMbrx1AmvoZ1tWb5XueXX35Br169irTfDwWNKJQx02fMgledNqjVuH2x7yv96XVIHT0hc/Qo9n3lRSCWwrXXLLzc+z28hq0q1nSkoXeuIjk5GQEBAXkuy2o1eS5jSiIrZ2gzUyCUW8HDwwMODg6IiYmBk5MTGjdujOMrd6BygzZ5b+gtMqKfQV6hgYlb/N9ECjtkJ7wEyuc/53V6Wgoinj+Co2PBwpUIIe+vmjVr4tixY+jSpQsadBiCRp9yceZuujmp6bqEGWIZ94TKKKREEHEHABCiz3AjNoNFxYZIurgDGREhkFdsiMuR3KgpY5RYA7oCa0wal/VGPzKtlvITYfVF2PQFzMLT+dFnre7iVs2yeLlhNJz7/oDw9CxIdQk3AD7kiNHV7xlbnw9dEjLcqHxKSgo2bdqEkyf5pCP/RciwsNOF3sSkciO5ZmlceI9xvSCZpR08P/saUafXIfXUWrh0nwaBrvgcq8scJclI4t5HqgzqjGREn1gLdXoiynWbCkuJBMhIMCS/UJnzN5DM4sMBAK/SuTmbvs06483Dcwi9fRFV6nAX6vUqcKPSN0N12Zcy+cxC+jAkjUQOkYBBxfYjELZ/AdxaDYR5MncjMN2ZGwk5kWiUolufdEN301If/cDER+DVkZWo+NnXMEvUZafSJ22x4kcLRLoMWhpWC7VahYMHD+Ls2bPvONofD+oolDFXrwdj3MKpSC2BMgNvjv0Kl8/enzu3UkdPKKo0RtKdE7Cp26lY9qHMysTu1bNw/swJw3Px8fFQqt5+wEu6o/DvDpJEIjGMKDRt2hRpM+YVetssWAik8rwXNBGRTAG1Lk42vx7fvY727drmvSAh5IOiUCgQGBiIYSP+h1fP76PnsOmGi8KCYhgGrn3mInLzBLgOXAKJdfEkItGqsvHqzxmw+2QIzMoVPMwHAEaMGIG5c+dCKjVtmJREYQePrpOQFHoFzzeNg9jKCUKZJcS25aBKjYNAmQllSiy0Wg2g1cC++RdQVGnCrZyS/xoHdZq0w7qTO5CR8Qzs4GkFjj6QWjmgYreJeHpwBdxaDoC5k1feK+lkRj/D67+XwLP9SIjNrYGs5DzXAYCLh7ejX79+pRopUZKoo1CGqFQqaHXRZlIhH7NRw4q/iK1gweX6z9byH4DriXwq0du6XrlxykzjHMdwqwUAsBcCzxNfw92jGqrK+Yvhx7py6dn8FAXEJsUZHjP69J+p/KRfUTZfmVhfyv1ZIv+BNh7eFKRw60nL8WkwMxP5Ly37Wq0Rtms2FM0GGD7kZrF83Lz+Do7aaI6EyKjydFp5Li/2tFr8nQq5UUrS+6fWY9rk8TlKuj9+/BiVqteDjVRrmM/BOnJ3wbVyG2jS+bsljO4OjHF6VonRHSbjVJ+15Nz7Ttfy+xcbfW9JdYeF1Rh1UjKSIUqJgUiViZ1XHZCQbYa///4bI0eOBADIJGLY6+44KTXcxlRy/k6TxuhumThD327G8C+bnQ5tGjenxN2VG0kKf8VP7jNz4zMMZb/RPW+UcvWlUapcmYB7X2KjOQpWEv4rKzorHSLXKjlzbCv5VK3pztzfgJ8dn2r36J/7MGfOHBBCPj7W1tbYu3snFixcgk0/TcbgKT8X+mJOaG6NckNX4uXGAFj5doJNs/4w5WWhMuEVXu6aDfu2I2FRtXCZc66c/qvYk6dYV2kMi9ptoU5PglaZiazkGCgsHSDRqCCUWYLR1WNgmfzPLzAmk1sgOSUNbVu3wq2LR1G3ecFv4olkFqjYdTyeHlgGm8qNYN6+MhjBu9uTePsEEm4fQ8UeUw0T2vNDo1Yj+OxfWDztQIHb+aGijkIZotFoIJXK8l7QBLLiIyFz9CyRfRWEyNwKMkcvZIYFQ27iNJ6vI57ixo0buS5Ejxw7gQq1Gr11HU1GkqHoWUnQZqfnyBHdbch0rJ/Vx9BR+JBkvgiBQ+cJgDp/xeK0Gg1evHiBqlWr5r0wIeSDxDAMvp3+NZYuXYq1M3rj+PHj2HKFu4HQ2Z77nj0UkWRYXn8jiNGNrLKZ/I0hgcwS3sNXw+rRMYSvH4ZPv/gGXr4tAQDxuiQa53U3qgS6MCNvN2/D+ua6mx23E3T7SIqGJjsDCZd2IvXBObh9PgNCLy5ZiDzsOgBAKc+dgbBHwzoAgCwNf4fNnXmCdUG7ERgYmO9j8+j+bWSmp0BmbglWw90UVCp06bmNUpQKdY81uhtm4oxE7iaU1AxyF+79qXShSgLdzRmB0Q0pfcgRo+X2YXwDRz/K8/sL7rWplQXwrtUUrs7O2LjlZ9Rp0gaVzLmL/Fu6EXe1GZ98hNFyx0Bf4M4Q1iSzQZU+sxH9zyG8WOYPibUTLB09IJIpoFWroBHoLnfVmUgOuwOxc2V4DV4GeUwooKuVJMjgwpqUtp66ffB/C/3Kce2+duJPNParZ5L5IB8K6iiQYqHOSIGZ3fuZDcC2XmfE/nPQpB2FzPRUbFs6Bft25846kZScgoo1nN+yFmDmXAlZEXcNRdCKGyMU5eiUSMxkMDMz44revCOt3vuGZVkoY8MhtncHokPztc7LsIfw8Cj9+TKEkOLFMAwmT56MtLQ0zJ8/H+U/nVD4bQlFqNtzIiq39Mf9/T8jaNv3qN95BJz8PofQKDtgXrKjniDp9AakPw+GbRN/VBjxKxiBEOpCtCn8wXUc+nsx9u7dC5ks/zf/unTtjvg3r1De+/3K+Na29yhsnPslOrVvi+ALx2BT97NCbYcRCOHSsDscm/aBMiUWysgHUGUkQyCWQKTgIiMYTTZsKjYA616nwNtXK7Oxc80PePTwft4Lf0Soo1DG2ClE6OWXsye840qS4bE+R3B0Gj9sF5LIh/58WoG70LpyLcjwnFrGX2AKhVx8YHx8FBLCQvDqeQheOVU0vC7WTYjSGN19EBqFnjDRXF5/VsD/aeonhAGAWRSXnlSUybfZuMqyVj/RSmCUUlNulAo1SQIz16pQnVgHcTIXkqS/MwEAApXuzofR3RWtUWhL7wbcBb1UyH+99/KzwcSJ8zB8cH+4ufF5rvXUWuB5iggpSWJAdzdfqIvhtPLyRcaji5C7cKFI+klv2cZ3Z4yPlVFxtlspulSqRkOs9Y1CaSMyuOeZdD5MS82yUDlyvyOlLiKsS5cuOHLkiC7mEjAXc+/9nu5vQGx0rPV3cwA+DEz/uxAq08AoXCCw4O6I1VNwx8jCzdOwjrnRaHCwLdeRdDA60cVm8qMDZnIuDO1pJr9SYhYX8pYV9QS2btXhYeeINzFPDa8bV47+qgb3dyEScG0WMiwqVuT/FgkhH7cZM2ZgxIgRCD+4CU27DC7StizsXNFh1I/ISktC8JGNuDa7M8QyBTIcKkNsVx5SpwpgBAK8SI8Bq8v1r457geTIR4iPj4LEwRNW1VvAqfMEMAwDRpW/kdB/iwp7gPNbv8PhwL0FvrkzbPAX+Pb7nzBsZukVlXsbSxsH1GreEx7uZti2YwPaVmwBuWXRMuhJLB0g9/Y1/F+jm6wuUHF1ILLetlIebp78AxMnToC9vX3eC39EqKNQxmRklEzJM5HCAeq0hLwXLAV5xS4W1OvXrxEaGoply5YVeF0LTx/E7F8C+0+GmLRNb6OMfwmxde6RjY4dO+Knn35Cv379irR9sdwK2W+e5b2gCaQ9OAf7Wu93UUNCSOkSiURYt24dPvm0Da4e2YweX81DlbotIPDwMSwjvHscAKDVhdmwIn5SsEhXw+dsFHezxd7KBoA90H4aunWfiuz0ZDyLeIashNdIj34MMAwcHJwhNuOyI7HuVWDVZTRux6eCYRhI0uIAXTiL0obLYMTo5v1pdfPSWKOEEwMaclWUbSTcXR2JMhF/rJuKQ3/vgbPz20ep36VJkyaoVWUvzu1bjf7tRkMgEOBgPHdBnhzH18MRaLh5XbJ4roaOVpR7orT+BpE+C1GWHR9ypdXdsNFncBJl8PMQ1TJrAOAy1gGIyuRuXLn59cCfv4zAkkXfY+maRfAfuwisC1cDR/CET3sr1GVAEuhqCgmz+Rt9WbqQIUbXfhjdZBSnc21Qybn3axF1j1s/la8NpLbS3ehjuN9B3fotDK+NbsJg1bDl2P6UvzFVVlBHoQwxMzODRqPBgwcPUL169WLdFyMQgNVqwGrUJp0AZioCiekyREyaNAlLliwp1LoimQKMgIE6NQ4iRfHepUh/chVyfVYKI5UrV0ZoaCiys/NRZeYd5PZuyA4JKtI28iv17mlUDVhfIvsihHy4xGIxLl44h8zMTHzSthPKVagJwDTpkaXmVrCpmDOE1V3Kj7qm6xJCMAlpKKrsrAysmzsUy35aCBeXwmdhWrH0J3Tq3AVXL55G37l7ALwf1ekt7Zxh7eiO9LQ03Ll6Eu36TYCpfk+msGDBAixevBgiUdm7bKaCa2XMli1bMHbsWGRlFWbgrWDk7jWRHn672PdTGJqs9LwXyofHIddgZWWFmjVrFnobtk36Ii5oq0na8y4p905DUav1W1+rVq0aYmNj3/pafglEEmiz0oo95atWlQ1tZioklmVr+JcQUngymQxfTx6HU3t+Le2mFFhWRipWTe6GsaOGoVmz/BcFexuBQICjRw5jxqT/4eCC3kjcNwfKhNd5r1gCugycgjnzFuDLgV9g/4YfSrs5BqkxEbh+/Tr69OlT2k0pFWWva1TGOTo6YuLEiRgzZgzWr18PhmHQv7F1ruW2XUoyPBYbZUpyk3EXgZd0cwH+LStZl560fHVYN+uH5ODDMI/l02M2qsrlin6exd/Rj1HxF5bZDtwwpDSSrxBsPIcg3YkrxKLyqGt4jo2PyNUOjVHFXjaOr9qosrCDKikaQkt7aHTFcwzzEgBoJFzcvXF6UvPafAGyylZcXCkDbkLt2b83YPHcabn2bywsLBw1GnDHUKpLJadO5jMPWVRvifjzf0CZ8AoCXb5ukZyfbMaY83Go1ka5spW691hTxt/BCjPq/1yI5oZoGVYDrSoLWmUmJKwWSOaGg/+K4i60vwRXpfnkyZNgWSApm7sLVs2C+73wvz1Aac5n5NCnJRWK+Z1KrV2gCr0EqYMHHlpzqVDNjW5HPMrix5fMzbhjEp1sVEzHjJ9jkKpLi/o42qiatkaN9CfXYFa+Ol491/2NmPHHyvj35mDGHReJLvNI2N3LaFYr/8XZCCEfl25du2LB4p/Rzz8NEt13zUYVF8KoSeVCaBijrHBMEncBPbwid65QiPlR1+WPufAWqa6IW2YS9736VMPPX3N30oUX6W6eCIzmJYiTdN9r7ty8t6pe3PwpBwn/fe6tUCIpPgZ7VozDssVz0amTaer/MAyDfv690c+/N3bs3IU1a7+Cp3ddtOkTALmFFe4mcXPhziT5AgCEd/m6QKJ/1RrIsq/AbdPofevDkhgtN79OLedv6jBq7ial1XMunGiL0byyb+q6Q2btDO8KFXD12g3UT/gH5Ws0wR0FX/vmeTiXvMLiFff9rzW6FpHoisdBN0fEeE7dvzMx6c9f8XX8+bbJdPMYdJPUG9iooFGrsfTbvtizY0uZqZvwbzSiUAZ16dIFNWvWxIwZM6BWFybnQv6YV26CtEeXoFUr8164BKU/vgrzCg2LvJ3YqEg4WMvQoMF/VyNOSkpCdFwSrB1zT3LWYxgGjp3GIfb4b0Vu03+248YBWFT571zdX331Ffbs2VPk/Zh7+iA97GaRt/MuycGHYOnTrsDrPbt/He3aFXw9QsjHQSQS4duvJ2PvjyOgUZdA1dEiuh98AUun+WPx4sUm6yT8W/++/jh35iQG9WiBtTP74t61vCs8F6dBU1fil19XY+P6Ndg/vz9iXjwstbawLItDG7/DqK+GwcfHJ+8VPlLUUSijxo8fD5FIhEGDBiE93TRhOP/GMAxsW3yBhKt/Fcv2Cysl5AQsaxZ9Iuy5Q1vw1bDB71wmNDQUrtUa57ktuUdtqNOTkB0TlueyBZV04wAyXz6AfavB/7mMubk5VCoVlKqideosKjdCauiVIm3jXTTpSVDGhEHmXqtA62m1WqQmxhZqAiAh5OPRs+dnGNCzI05unmeoSv8+enJuJ9b8MBpBp0/A19e3WPfFMAy6du2CqxeDcO3gWpxZNQqqrJJJfPJvUpk52vQajYCxE3A35DZOr/wfMuMiS6UtFwI3QJz1BhPHjy2V/b8vKPSojGIYBvPmzcORI0fQuXNn/Pzzz6hXr57h9YFNrQ2PY42Kjgh1XUulC19uXpDAf4j1FQ6rybnMQpU7DsXBOZ1gXr87pE7eCHrBDeU2cXM1rGNmlIXoaRa3gyxXo3L2Sn4+hVkcdyFtPO2WNeOrJFd04YZ6XymNTgC25Q0PndOjkWAmh8jKEfol1Gb8e9WHrmTZ8CMAUzz44eLeutSyUVFRWB56Ha1a/Yi8mIkFUIi5IVBr3ZBmnNEUb4GS+0J2ajUIsTu+gUevmVAZvX+hiE/PmmCUtUqTngQAuGoUmsTGvzQ8FikzkB5+G6l3T8J9wBIwGhWkKXyV6qevuCHzPde4CWPmDl5wEasR8+giqvk2gZmuenemnZdhHUlqDL99XbYL/TAvAEgtLKBOjQMykvDk0S3uSaNqzFIxHzrVRMENxydKrQ3PuRpNBLycyh0jaVy44bnII6vg3LgnpEmvINbtXyMxN7ye5cH/DetT/fbys8GRI0fwWbeOIISQcWNGQ6lcgW0zP8Mn4zZDZmkHc1cu7FP/XQ0AIoYLVbTRfS9lGFWJb2zPfe9IdaGNVV11FYqNTj1iIXemilRw36HmIk/Da+7m3Pcfn76ZO889e3gLB7f+hAZ1amD/izCIxSU32VgqleLs6RP4bu48XNg4Gp1GLIOZuRV2ePEj8MJE7hyueM2F/giV3PnRODW1oVCZLuRKmM1P5mZY7rlsW90xeX3P8No+lw4AgP1fD8S0afdw7tw5/L5mBWYu+Bb9ZmwAADyRcyFagQoue5HYKLRY/oZLn57hwIUosyL+2Al151m1uy8AYKgHd/lrbRTqZaa7IhYxLG5dPomdgavx6NGjdxyxsoFGFMq4Tp06Ye/evZg1axZ27Nhh8u0LxRK4DliM6D+/fS/u3oTuXYDKvb4p8nZ27NiBKVOmQCg0XapVuXtNMGIpUp5cN8n20l/cRdSJtXDz/x6MIO+PeoVaTeDq6oLLR7cXab9W1ZsjMcT0w9eZMeFQJkXDqpJfgdd98uQJqlWrlveChJAyYcqk8Zg9bTx2Tm6OB2dMf+7LL61Wi/iYV7hwbA+WT++PAxvnYeVPP2DZzz+WaCdBTyAQYN7c7/D1uGE4tGQQ3oSXTujPrFmzMHPmTJQrVw7xr57gzqUjJbJfrUaD43vXYcXsYbh9+3ap/A7eN9RRILC3t8fff/+N48ePY86cOSaftyBx9ILMux5S/sl/qfnikPHsBliNGtYV6uW98Du8fPkSBw4cQNeuXU3UMl65DmMQc2knMiPu5b3wf9BkpSPq4FLEXtgOz4GLIZDkr3Knb6PWuHTlGuKjwpEUH5P3Cv/BrkF3JAQfhio1Lu+F84nVavDqxGqUaz+qwOumpaVh79696NChg8naQwj58HXv3h337wRDFnUB+77/HA/O7SqRG1pajQbhj0Ow+5dv8NPE7jizfQG8bbIRuOcPXLoQhLp16+a5jeLWsUMHBO7ahODt05F0dDlYTfHNZ3wbCwsL/PLLLxgwYABOHDuCi4HroDWanFwcYl6/wMzBzeBklonEhAQoFIq8VyoDGDYfn4qUlBRYWVkhOTkZlpbvV+lvYjosy2LlypUICQlB++FLINDdhTb+A0lXcUOvK8L4O+mqWD7rkCiDK1CjMcpEoxWbQZOZioi1I+A+7g8I5VY5wokYKR86YiiQksJfqLJGoUmiTC7jgnE1aIk9Hyak1Q11amP54UitSAJ1WiJebhoHt1G/Q2TpAOkr/kKcMUrnyeiqIA/vwBdasTMKh+nlZ4NJkyahb9++aNgw7wnR165dw8oth9BhwGQAwOKH3FC0Wfg/hmXUMr5StlCZBnVGMsIDf4bYwgbl248Cq8hdeRoARBlJ3HO6jgDLsoi/EYjEfw7BoeVAOLpztTKMh4T1RYUAvlDNwFb8HIo/Z/dA+9YtkG1RGXWac5PnjkXx4UI3Q+8aHssSwrl26EOQAGTbuAMAsuJf4sWBpfBsOwxyRz50Kd2Zv6tvCBnLNpojY5RVQpzGdTQkaXF4fXkPBGIzlK/F/170Y/wZjlX459z4NLVfV+J+b9d2zkHr1q3RrVs3lCb6Hi0ZdJxJYcTHx2P12g04efostBDCqbw3bBzKQa6wQfsGuZNRnHnAhdN8Wp0L4bwQyv1fa3TCZMB1ChJiIqFWZsFCE4OwsDAIBAJ4eHhgzJgx8PDwgEyWv5s5pSEtLQ1Lfl6Odes3oPmQ+XhSqSsYhoH25X0AgLku3Me40jSjr0ytK26mNgoPFuiSmxiyJxldguoLtal8uZtwk7yUuHBoK8xVr6BUKpEpdkKLz0YC4MPA1lzgMyTqMy+1rMuNOje05+fcJWZz1xb6LHiWEn3IF/f6rcsncXDTD/jhhx9K/VxRUvL7XUlzFIgBwzAYP348li9fjh8COmPUnPVwcC6f94r5IJQp4Nh5AqJ2TEe5Yb+WaBE2rTITr/+cAceukyGydMh7hXc4evQowsLC3pnpqKhEcitU7Pc9Up7+g6fbZ8Cx9VBYeNcHI8z9cdWqlNBoNUh7+g/iruyBReXG8P7fWghEEsBoPkJ+Nes8EMqUJwgO2mfoKBSGmV15VOr5NZ4dXAH3VgMhd/Qs9LbiH1xEdmI0vDqPBf6Vmi8vGWnJuH37NpYvX17o/RNCPn52dnaY+e00zPx2GlJTUxEREYHo6GhERr5ERETuFNyeMu6CMyKCuzlWXsL9/993XhkG+LR1bUilUnh5ecHW1vaD6sBaWFhg3pyZGDF0EJat/A03V64D490EslodufNMMWve5UvMGdIUe3dtR7cePVG7eQ9Y25s2KcXBP5bj6sk9uHjhHBwcinaN8DGijgLJZcKECWjatCnGjB+DvmMXory3aWK7zSs1QnZcJN7sngOnrlPAlMCXjDojGS93fwe7VoMg9/Qt0rYy01OxatEiHD58uETyKVtWrA+ZszeibxxE7MWdYIRiaDUqgNVCIJFzox+sFoyZAjKXinDrMwdi68JX7AQA76p1cHzrYaQlxSA7KwNSo7oGBSWWKVCh63g8O7gS7q2+KHBngdVqEHVyHZCWAM+OowvVhisn9mDEiBFlNv81IaTgFAoFatSogRo1auS9cBnh5uaGpT8uxM8si23btuGnFdNQr8NAiD4ZDAC4/PSpYVlZPDeiL8pK4v7N5G/wsCJuhDrT1hMAIDEakdaP6GufXgMALGMaAQB6jF+JCVOm449tWxEwujeWLVuGMInuZp2uDgUAsLpbkE5mXJRAptHkc0ddDSh9QhK97du3I/rxVTy4f9ekcw4/JtRRIG/VoEEDHArci6bNW2HknPVwM1FnwfaTwUi6uhcvfh0Mx25TIfeqY5Ltvk3W68d4HbgYjp0nQu5dtJhPrVaLzT9NwqJFi2BhYZH3CiYitrCFS4cAvh3vCD0Cct/NKignVw+EPnqE72bPxMGdq9Bt8LuLyeWF7ywsh8KtOiw7T87XnAl1ajwi//gGVtVbwKVp70LtW61S4vb5/Vg1t3TzghNCyMeCYRh8+eWX+OyzzxAwdjyuLj6AOsN/KdZ9elVvgGe36iAmJgbbt29H+/btER0djVkbzgPi2nlv4C00Gg3Wr1+PkydP4ujRo4ZQa5IbdRTIf3JwcMDF82fRtm1bzJ8/H126dMHGC9ydgc72fE/9UESS4bE+LRpjFHfIZvLpVTUqS9jW+ATtWnbBxQ3TgPtH0fqLr2HlwIU4xSu5D+t5ow+tgOEfe7t5AwDMBfz2byfw22eSoqFOT0L82Y3IfBUKjz5zwJTj7wrJw7iMQko5X2HYWI+GXMclS5NzXsLMmTPR4RM/NG6cd00EY2ZmZrhx7rBhjoJ+QphS4cQvZHSshLrHGqO5BOIMvnIxaxR+pNLNbRAq+Rh/gYYvIvTvSpT/XlY/H+D3F/zrUysL4F2rCZRqNe5ePYHWPYaikjk/zHvLaD6H2sxKt32jdIJGVbRV5rr0dYwIVfrMQdzdM4hcPRRCiQwKz9qQiMSQ2bgiI52/28RospEZ/wqpEffh3H0a5OWrQRz9gH9/GfzdJ6XujpTIKH1vv3L83+X5A7+jVYtmkMsLPypCCCEkN4VCga2bf0dISAiatfSDVdfpsCpEIcz8qurXCT/Mn4DbN/9BeHg47t27h6H/GwPtiN0QygoWypWVlYWAgAA4OTlh165d1EnIA3UUyDs5Ojri6NGj6Natmy4Tg3me6+SHhZ0rOkzbhlf3LuDwynGQyCzQvN80iMoVrJCWMWVcBBIOL0dm5H04NOsL53ajwDAMipKrgWVZLFq0CCzLYsqUKQVe38fHBw4O9nkv+B5p2zsAm9dOw8If5uLPwM2o/lnR08kyDAOH2q1hW68T1BkpSHv5ENrkaCQ9vwWxgzsEuuFohhXC0r0Gyjftg2xbj0LvT6NWYe/GH/Ei/HmR204IIeTtateujTs3/8H38xfjQeBJDJyyHDe82wAAgp9yE531o98AINByN7P4JCX8zR2VOXcDT5LOJbLIDuNq8VwxqwPY1oPSyhtHjx5Fx44dUa9ePYwcNgiLQk7BukEPAED/8twlrb62xbDmfNITvStXrqBTp05YvXo1+vbta4Ij8PGjjgLJk6urK9asWYOBAwei26SNsLC0yXulfCpXszlq1mmKmPAHuLTrZ8THvIRbnbZIc64NiZM3xDauhkQ4LMsaUtdpNWqkvHqM5MiHiLpzDlmR9yCUW8POryecu02FUJ31jr3m3+W/V8Ms6QG2bNlS6Dh393LOeHTzIqrWbWaSNhU3B1cPuFZtgtshd/H87kW4No2EtWPurB+FJZJbwrqynyFu1ThDlkBlmmqgVw+sxbffToeVVe4TBSGEENPx8vLC7xvW4PqNG+jj3w1VBq2AS+1PTL6fqv3nY978EejQoQMYhkHTpk0gObQK0HUU8rJlyxZMmTIFt27dgqenp8nb97GijgLJl/r16+P7779Hpy71MCBgLmq37GmY6Crw8DEsJ7x7HEDONJz6yUsAIErnMkScjeLDTeytbACb2rAbuQV+ggy8CglC8pM7SL/xF7LiX0FoZsGNDGSmIt2cmx+g1mqhcPaGwtkbVjVbw6njeDACASRpcUBWCpQ2fLYmxij9plZXedk4hGdAQz6lpo2EC62xkWpx8dguKDLDsW7TpiJNhv3tlxVo2bo9qtXahy+8uQvXg/F2hteT414bHgs0XDo3WTx/J1xrdPyMiTKTuH+NJoNl2Xnz6+lCj6Qpb/h1MvjaBmqZNQAgO4Gv5hyVyaUydfP7DFf2zMbWTRvQb9BXGL94LwRCIVgXPhWp4MklAIAwkw+NEqj5mtn69KtZuhAhAGA0fLo6fSpccTrfJpWcPy4WUVwKW2FqFN9mK6MOC8P9DuvW51OmTm4tR0JCAnZ+sw9/Lr0IQgghJaNhgwa4fPEcavnUgecnX0Jbp5dJMyPJ7crDq2YT/LVvP3p93pObbB4Xlq919+3bh0OHDuH169dURK2AqKNA8q1JkyY4d/YMTp06hd/nDcaIedshEpn2AyeSmMGjfgdIfN6emtNdV9MgXcNfuKeG5e+LoiAiwx7h7sVAnDx+uMjxizY2Nli59EcMHd4GHSeuRfnKpV9MJy+2Lp7I1oqhVqvRqL4vHt25guofyIjIzz//jFGjRkEqfXsHixBCSPFwdXXFm6hXWLx4MTZtHYFJP+7B2ni+lo4mmsuOJFBydReUcj5CQaKbj5dtyc2Lk8U9AwCEPOE7G2y1Qbg0ow9qVK+GatWqwVZuhtaO3Osihrs+sDWqfZSYmIiVK1fi/v372LhxI3USCoFmcJAC8fHxweTJk/HVoH4I2re2tJtTLF49f4BNS8Zj/dpfTTbJqVWrlti4fjUO/TwcT4PPgC3mCpOm0Lzzl/jiy8EYPnQQNi4MyHuF90BoaCgePnyIoUOHlnZTCCGkTBKJRJgxYwZWLfsRG+YNRsqdEybbtsTeDeaD1sG//0CwLAuNMgPZGSlvXTY4OBi9evVCgwYNsGvXrg+qfsX7hDoKpFCGDBmE4DN/ISsjrbSbYlJR4aHYNG8QtmxcC29v77xXKIBPPvkEd27egF1KMGKXfIq4C9uhyXp/j1/1uk3hUbU+0tLSYGkhR+idK6XdpHditVrMmTOnUJPOCSGEmFbHDu2xf89OSE4tQvLxldAqTTN3UOZeCw3a+GP8pCno16sHIu/mDDNVKbNx8fA2zJ07F1u3bkWnTp2olk4RMCzL5pl6Pb9lnknZsnTZcrxINYd3c3/DcxvDuRxDmlSjIipmfN0BJomLxx9Wv5LhOYWY/xNc/piLYZfK+HUyk/gYe+jSi7o78XMQIiOfGB5Lk7nt61ODcgvzeZZrWnBDlA4S/o5+Uwdun0/u/YMzO5dg7VrTdxL+LSkpCZs2b8HmrX+gSddhaPhpLwhFItxN4oZFzyTxywrv8ndjRG+pTJxt5Wp4rC9hz+GOqyib74ywAn7YldFN+BYabTOpalvD42/q2uPZg2Ds/+1rHDl0AJ26fY6203ZBbsnNI7iTxkUuPg8PNaxj8SrE8Fhf80FgPC+B5Y+7Pq2qxrgOhFH79GlPk70a8esYpcETiLnf5dgKXDtO71oGbyslFixYgPcRfY+WDDrOhLxfMjMzsWXLFvz0008YvvBv2Dm5Yfldbr6iwCh9Oivgvsv18++kya90r/AX+RkOFXULa5F1fSd8hJGIjE5Cs4790bSyBeLj47F9+3b0798fQ4YMoVCjd8jvdyWNKJBCGzJ4EC4f2YzIx7dLuylF9tfGRbgU+Bv27NlT7J0EALC2tsbECeNx/cpFVLVTY8WU7gh7eLPY91tQFarXQ4Uafnjy5Al+XfETVg/3gTLz/RsFiXx8Bw8uH8L8+fNLuymEEEKMyGQyjBw5ElOmTMGy8Z2gzM40yXbNGvaFpWstyIRquErikJKSAktLSxw8eBBfffUVdRJMhDoKpNBsbGxw5ODfOLZmKtKS4vJe4T2k1Wjw8zcDoEwMR+D+vbC2ti7R/UulUowfNwanjgbi6Ka5uLlvaYnuPz+6DJyEKd/MhpubGwL378OJlSOhMtEXvSmkJMRg2+L/4VDgPhpeJoSQ99TIkSOxYd1q/L16usm22d5/NJr1CMCWP3YhOzsb/v7+UCgUJts+oaxHpIgcHByw64/fMeSrYeg5aiE6OXEF08xdXQzLKMRGlXsZLuTIxigrQYaav7hrbM8VdJMaVV6u6spXUdYHyomFfBrOSAWfUcFc5AkAcDfnKwiLBPy+hAwfI/nkfjD2rp2LiWP/hy+++CI/b7fY2Nvb4/SJIxg9ZhxurhmOnmPXGV7b4dXQ8FiYyKdSVbzmwnyESv6i3TjkylCx2KiastAoDIlhueezbY2O3+t7hsf7XDoAAPb3qghfh+Xo1asXLl26BP8ON5ByfTl6dPwaAPBEXtGwTqCCT28qjnsBAJC/eWR4LsOhsuExq8uYJVTytRPU7r6Gx0M9uK8na6MwMTOjbywRwyI7KwOzhrTH/n374O7uDkIIIe+vK5cv4dT+zZj06QB41WiI1SF8aKoslstylG1dDgCQpgs7ZTL48FhWl25VH2abmC1AeZ9PMWheXYzrVRUJSSmYPm1qibyXsoJGFEiR1ahRA7v++B1rZn+B20fWIx/TXkpVZNgjLJ7cGxf3r8L+PdtLvZOgZ25uji2bNqJVIx/89X1vZGeklnaTDOrWrYv+/ftj1apVmDJlCi5evIiUxNIdRYp5HYF5AV0wa9Ys+Pr6lmpbCCGE5K1u3eJJD26usMbG06+wfPnyYtl+WUYdBWISXl5euHvnFhwz7mP7OD/ERjzKe6USkpGWguCLx7F/wwIsntADt49vxII53+DwwcD38i70rBnfYNXi2Ti4uD8eXT1a2s0xmDBhAlasWIELFy5g4sSJWDKmfam1JeTaGSz9pj9mTpuMIUOGlFo7CCGE5F+vXr1w9OhRLB3bFokxL/NeoQAEAgGq1Khj0m0SCj0iJqRQKLD19/W4desWxk+aClZohnZ9x8O5Rj1D7LhQF2XUy8/mrdswu5QEABjY1Nrw3J5rfOVfDcttgAE/amEcmuLfyAZqtRpxcXG4fPkyNm3ahPT0dHTt2hUd+ndEgwazP4j4xaZNmuDc8QMYMHAQbIRBaDZwNiQyCxyU85kJ0nShQ+ZGoT3iFD40idFlGFIbVTtW6grZAIBAzQ35SlKj+R0bjQZFXQsEANTL7mp4buS87Rg/aTKuXT6Pvn2uIOzmaVSt96nhdXdz/tiuucDtP9OoWnQr33qGxw3tuf0nZvP3KyRGIWeWuirZQqNpBz0bWKF3794QCoUIOn0c5cvz2a8IIYS8/zp06IBr165h/vzpmDZpLSRSLkPe93e4bIfi2OcAAK257jrBytGwruT1QwAA68mNTLBG1wISAftB1Cj60FBHgZhcnTp1cP7sKcTGxmL23B9wZtcyqDSAg4sHHFy9IJZIYZte660TTx/c42Lozyr59Kj3HvIhONp/dRS0Gg1iXj2HVqtB4psInFifiefPn6NSpUqoVKkSdu/eDZlMhg+RpaUl/tqzC1u3bcfcic1Qs+P/oKn7BYRG6WZLmkflWuj05Tfo/+UQrPh5CerWb4if9z0skX1HRT5Hpzkz4Ovri0WLFpXIPgkhhJhew4YNERAQgCU/jsfwmaYp3qrVapGVkTuFOCka6iiQYuPg4IDVv6wAAKSmpiIqKgovXrxAQmIiQkJC3rqOrZrrANy5w3ciLDRGcx7+Pf2BAfyaVYaZmRnKl+8KKysrODs7m6yicmmTSCQYPmwI+vT+HL/8thab1/UFyvlA1HQISivxW82Gn+LaiT/x7NkzdO3aFWf3rcEnPUcW6z7vXDuLpdO/xIkTx9G0adNi3RchhJDi165dO6z8dQ1ioyLg4FL0MODol8/h5eWV94KkQKijQEqEQqGAQqFA5cqV816Y5GJpaYlvv5mKyRPH4dr165jw7ddIsa0Oae1OpdKeNn3GYtzESbh2+QJafdoWKpUabfsEwLgwjqlEPHuA3Wu+w/Pnz+Dk5GTy7RNCCCkdC77/Dt999x327duHTF0GxJuJXIjqpWQujEgo4C9VlR6+AABWl/UoQ83fMgv6ax2+HR9QEs0uU6ijQMgHRCqVokXz5rh6+jD+3LUb07/9Cu6Dfkb5+h3BMAwuP31qWFYWz6UnFWUlGZ4TZRqnmZMCADJtPQ3PSdKNKmprVAAA7dNrhueWMboqyZIGqN/5Kyxa8jPOB51G69atseXeGdTv+TUq1PTjRnR0FbFZo86DkxmfqlV/UnCU8c/1/tfclZCQECxdMQmnjh+mTgIhhHxkateuDRcXF2zcuBGCKr2KtK3gSydQe+Ny0zSMGHwc8RmElDESiQSDBn6BW/9ch0vsWQQt/AzKzJJNp1q3tT/+3L0XAoEAFy5cwP/+9z/8OLYjdi8da5Ltb926FZMmTUJgYCDc3NxMsk1CCCHvl6VLl+Kbb77Bm5fPC72N5LgoVK9eE+bm5iZsGQFoRIGQD5qTkxN+X/sr1q7bgNlfN4Wi+0yYeRZPnup/YxgGNs5e2LZtG4YOHQp/f3/4+/tjzLiJuHPxIFC+a94beQuWZfHTTz/h1q1bOHz4MKRSqYlbTggh5H0hlUqxbt06zJz5BW7evIn0y1xBVS9d/VCZiC+waivlJiqyuvvcKg03Iv3P2a0IGDm8BFtddjBsPqpjpaSkwMrKCsnJybC0tMxrcUJIKQgLC8O8+YvwOOwVhk5fjQup9gCA4Kd8+lRRRpLhsUDLhRZpxHxWKGlqrOGxWpddyThcKduqnOFxzWp1oExPxr0lHXHrn6uGC/qwsDBMmD4f4R1+BAD0L8/fjzCuuD3h09zfJeHh4WjUqBFGjx6NWbNmvTUz1oeKvkdLBh1nQj5MR48exW+//Qa/gT/C2sEVSl2mU5mIP2/YSrkn9SGtKg2QGBeFqX3qICUlmW4sFUB+vytpRIGQj4SXlxc2bViL3Xv/wrgvm6DJzKOwdKlQrPuUmFuhfb9xmP3dPCxeOB8AUL58eURFPCnwts6fP4/WrVvj/PnzaNy4sambSggh5D3WsWNHyOVyfDXaH25V6qFWmy8hEkvhWt4NZvK31z+6fmYf9q6ZgwMHAqmTUExojgIhH5k+vT7HiWOHcWB8HTw5thb5GDQskgYtu+Hs+cuIjuYKt4nFYjjY2UKdnpTvbVy7dg0LFixAUlLSOzsJCxcuRIMGDaBQKODo6IgePXogNDTU8Pp3330HhmFy/FStWrXQ740QQkjJadmyJULv38HsCYMhf3USwmeBOLZ8GI789AUO/zgAZzZ9gwt/zIIw8iR2LPgSt47/jrBnT9C+fftSaW9ZOCfRiAIhH6HatWsjOSkJE6Z+i8CNf8B+4AoIpfJi2ZdAKETdlj0wZ+73WPPbL2AYBlbW1oAufd27aLVaHDx4EMuWLcOWLVvynIh27tw5BAQEoEGDBlCr1fj222/Rrl07PHjwwLBujRo1cOrUKcM6IhF9zRFCyIekRYsWaNGiRY7nEhISoFQq8ebNGwQHB+Pbb79FgwYNIBQKS6mVZeOcRCMKhHykzM3Nsf63FVg0LQCqP/6HXpZvoPWsY/hRyW2hkttyRex0P0q5jeFHlJUGUVYasi2dDT+yuGeGn5An9xHy5D5+fCbB9WrDcPK1COMmTAbATXRuYZ6Nzo4SiBgYfmylWsNPXFwcunTpgjt37uDIkSPw8PDI8z0dO3YMgwcPRo0aNeDj44PNmzcjIiICwcHBhmVEIhGcnZ0NP/b29nlu19PTE8uXL8/xnK+vL7777jsAQKtWrTB27FhMmDABNjY2cHJywvr165Geno4hQ4ZAoVCgYsWKOHr0aH5/PYQQQgrA1tYWzs7O8PHxwdChQ9GoUaNS7SQAZeOcRB0FQj5yQ4cOwa1/rmLTogBkXP6jWPbBCASw7r0AV27cwuPHjzFyxBCEntrwn8vfuXQE/fr1w+LFizF79mzI5YUb7UhO5iZa29raGp578uQJXF1d4e3tjQEDBiAiIqJQ2/63LVu2wN7eHtevX8fYsWMxatQo9O7dG02aNMHNmzfRrl07DBw4EBkZGSbZHyGEkA/Lx3hOoo4CIWWAhYUFQh89gEvYMWRsHQV1WqLJ98EwDAZNW40Bg7+CnZ0d4sNCci0T+/oFdq+ciojgwzhy5Ahq1apV6P1ptVpMmDABTZs2Rc2aNQEAfn5+2Lx5M44dO4bVq1cjLCwMzZs3R2pq0WtM+Pj4YObMmahUqRKmT58OMzMz2NvbY8SIEahUqRJmz56N+Ph4hITkft+EEEI+bh/rOenDCpQihBSaVCrF+ROHcPz4cXz+eS2MXrgblXyaYvndBMMygswUw2OVwhEAIMpMMjynFfNZJWTxYQCADAE/9LuO1UL16XR0GzACzgoJnuyZCYmHFQAgNjYWYWFhWLBgAXx9fYv8fgICAnDv3j1cvHjR8FzHjh0Nj2vXrg0/Pz94eHhg9+7dGDZsWJH2V7t2bcNjoVAIOzu7HB0dfeXomJiYIu2HEELIh+djPSdRR4GQMqZ9+/YIDAzEl0OGY+pvZ02+fbGlPdB5NjJP/YDaFezQvl07iEQimJubo3LlyiapjTBmzBgcOnQI58+fR/ny5f9zOWtra1SuXBlPnz4t8D40ukI+emKxOMf/GYbJ8Zz+fWm12gLvixBCyIfrYz4nUegRIWVQ69atcfjAfuxYMrJY0qeKLe0R8P02hL7KwqxZsyCTyVClSpUidxJYlsWYMWOwf/9+nDlzBl5eXu9cPi0tDc+ePYOLi0ue237z5o3hsUqlQmRkZJHaSggh5ONWFs5JNKJASBnFsizu3jiHPs1OoUHbvgCA1SFKw+uy2GcAgGxrvhpzmlcjw2Mmg5u0xYok/HNGKVGVEhs06zsVjy7+jerVq+Px48eoVKlSkdocEBCAHTt2IDAwEAqFwlC7wcrKCjKZDFOmTEHXrl3h4eGB169fY86cORAKhejXr1+e2/7999/RunVreHh4YMWKFUhOTsazZ89yfFkTQgghemXhnEQjCoSUUfv370dWVhbio8KKdT8NP+2O+ZvOwa9RkyJva/Xq1UhOTkarVq3g4uJi+Nm1axcA4OXLl+jXrx+qVKmCPn36wM7ODlevXoWDg0Oe2+7atSvGjRuHWrVqISEhAT/88AP27duXI/81KTm//vorPD09YWZmBj8/P1y/fr20m0QIITmUhXMSjSgQUkbNmzcPHh4eGDNuAlr2HA2ZhVWx7cuzSm3U8G1Y5O3kFSa1c+fOQm+7Zs2a2LAhZ0rXGTNmAAAGDBiQa/nw8PACt4/kz65duzBp0iSsWbMGfn5+WL58Odq3b4/Q0FA4OjqWdvMIIQRA2Tgn0YgCIWXYsGHDsHjRIvy5aChd5JL3xtKlSzFixAgMGTIE1atXx5o1ayCXy/H777+XdtMIIaRMoREFQsq4cWMDoMzORNSpxZjZdaphwvH3dywAAOLY54ZlteY2/IpW3J1dyeuHhqdYz7r8Y3AdD4mA+1eZRYXISN6USiWCg4Mxffp0w3MCgQBt2rTBlStXci2fnZ2N7Oxsw/9TUlJyLUMIIaRwaESBEIIpU6ZALBbj/KFtxbL91OQE2FgrimXbphAeHo4JEyaUdjMIgLi4OGg0GkMOcD0nJyfDREFjCxcuhJWVleHHzc2tpJpKCCHF4n06J1FHgRACAJg2bRqun9pTLCFIUZHP4OHubvLtEjJ9+nQkJycbfiitLSGEmA6FHhFCAAByuRx9e3VDxoN9GDZsGDLVXAjSzcR6hmUuJfOFW4QC7utD6eFreI41So+aoeYKv7DQ4tRfa7Fm+cLibD75SNjb20MoFOZKAfjmzRs4OzvnWl4qlUIqleZ6nhBCSNHRiAIhxCAgIAC//PIL7t+/b7JtZmWkIfjyGVSuXNlk2yQfL4lEgnr16uH06dOG57RaLU6fPo3GjRuXYssIIaTsoY4CIcRALpdj27ZtGD9+PFTZWSbZZmpyIrp272mSbZGyYdKkSVi/fj22bNmChw8fYtSoUUhPT8eQIUNKu2mEEFKmUOgRISSHmjVrQiaTIejv9WjrP7bI2zsT+Dv6de9sgpaRssLf3x+xsbGYPXs2oqOj4evri2PHjuWa4EwIIaR4UUeBEJLLrl270KJFCwzq0gDpFny4h5ecX0Ym4lJS2kr5yc+s0SClSqOBWq3C69Dr6Pn7suJvNPmojBkzBmPGjCntZhBCSJlGoUeEkFzkcjmCgoKwatUq3Dhe+JSpgZsWwcvLy1CbgRBCCCEfDuooEELeysLCAoGBgUh+cg7rp3XBjRM7kJWegqyMVGiMshu9TWJcNDbMG4bUV/ewdu3aEmoxIYQQQkyJQo8IIf9JKBTi7792Iz09HatWrULIzq8BAM+fP4ejoyPkcjnatWsHhmGgUCjQoUMHHDp0CGO/+AI3btxAnTp1TNqeD2VkojhqURBCCHl/vW/nJ1Odh6ijQAjJk7m5Ob755ptczz979gwhISEAgMePH2P48OGoWrUqHjx4QOlQCSGEkA8cdRQIIYVWoUIFVKhQobSbQQghhJBiQHMUCCGEEEIIIbnQiAIh5INBsf+EEELeRx/r+YlGFAghhBBCCCG5UEeBEEIIIYQQkku+Qo/0wykpKSnF2hhCCPlY6b8/P9bh6fcFna8IISRv+T0n5aujkJqaCgBwc3MrYrMIIaRsS01NhZWVVWk346NF5ytCCMm/vM5JDJuP21tarRavX7+GQqF47wpKEELIh4BlWaSmpsLV1RUCAUV9FpfCnq9SUlLg5uaGyMhIWFpaFmMLP0x0fN6Njs+70fF5t9I4Pvk9J+VrREEgEKB8+fImaxwhhJRFNJJQ/Ip6vrK0tKQLmXeg4/NudHzejY7Pu5X08cnPOYluaxFCCCGEEEJyoY4CIYQQQgghJBfqKBBCCCnzpFIp5syZA6lUWtpNeS/R8Xk3Oj7vRsfn3d7n45OvycyEEEIIIYSQsoVGFAghhBBCCCG5UEeBEEIIIYQQkgt1FAghhBBCCCG5UEeBEEIIIYQQkgt1FAghhJRpv/76Kzw9PWFmZgY/Pz9cv369tJtUIr777jswDJPjp2rVqobXs7KyEBAQADs7O1hYWODzzz/HmzdvcmwjIiICnTt3hlwuh6OjI6ZOnQq1Wl3Sb8Ukzp8/j65du8LV1RUMw+Dvv//O8TrLspg9ezZcXFwgk8nQpk0bPHnyJMcyCQkJGDBgACwtLWFtbY1hw4YhLS0txzIhISFo3rw5zMzM4ObmhiVLlhT3WzOJvI7P4MGDc/09dejQIccyH/PxWbhwIRo0aACFQgFHR0f06NEDoaGhOZYx1WcqKCgIdevWhVQqRcWKFbF58+Zie1/UUSCEEFJm7dq1C5MmTcKcOXNw8+ZN+Pj4oH379oiJiSntppWIGjVqICoqyvBz8eJFw2sTJ07EwYMHsWfPHpw7dw6vX79Gz549Da9rNBp07twZSqUSly9fxpYtW7B582bMnj27NN5KkaWnp8PHxwe//vrrW19fsmQJVq5ciTVr1uDatWswNzdH+/btkZWVZVhmwIABuH//Pk6ePIlDhw7h/Pnz+Oqrrwyvp6SkoF27dvDw8EBwcDB+/PFHfPfdd1i3bl2xv7+iyuv4AECHDh1y/D39+eefOV7/mI/PuXPnEBAQgKtXr+LkyZNQqVRo164d0tPTDcuY4jMVFhaGzp0745NPPsHt27cxYcIEDB8+HMePHy+eN8YSQgghZVTDhg3ZgIAAw/81Gg3r6urKLly4sBRbVTLmzJnD+vj4vPW1pKQkViwWs3v27DE89/DhQxYAe+XKFZZlWfbIkSOsQCBgo6OjDcusXr2atbS0ZLOzs4u17cUNALt//37D/7VaLevs7Mz++OOPhueSkpJYqVTK/vnnnyzLsuyDBw9YAOyNGzcMyxw9epRlGIZ99eoVy7Is+9tvv7E2NjY5js+0adPYKlWqFPM7Mq1/Hx+WZdlBgwax3bt3/891ytLxYVmWjYmJYQGw586dY1nWdJ+pr7/+mq1Ro0aOffn7+7Pt27cvlvdBIwqEEELKJKVSieDgYLRp08bwnEAgQJs2bXDlypVSbFnJefLkCVxdXeHt7Y0BAwYgIiICABAcHAyVSpXj2FStWhXu7u6GY3PlyhXUqlULTk5OhmXat2+PlJQU3L9/v2TfSDELCwtDdHR0juNhZWUFPz+/HMfD2toa9evXNyzTpk0bCAQCXLt2zbBMixYtIJFIDMu0b98eoaGhSExMLKF3U3yCgoLg6OiIKlWqYNSoUYiPjze8VtaOT3JyMgDA1tYWgOk+U1euXMmxDf0yxfWdRR0FQgghZVJcXBw0Gk2OkzIAODk5ITo6upRaVXL8/PywefNmHDt2DKtXr0ZYWBiaN2+O1NRUREdHQyKRwNraOsc6xscmOjr6rcdO/9rHRP9+3vW3Eh0dDUdHxxyvi0Qi2Nralolj1qFDB2zduhWnT5/G4sWLce7cOXTs2BEajQZA2To+Wq0WEyZMQNOmTVGzZk0AMNln6r+WSUlJQWZmpsnfi8jkWySEEELIe69jx46Gx7Vr14afnx88PDywe/duyGSyUmwZ+RD17dvX8LhWrVqoXbs2KlSogKCgILRu3boUW1byAgICcO/evRxzfj5UNKJACCGkTLK3t4dQKMyVdeTNmzdwdnYupVaVHmtra1SuXBlPnz6Fs7MzlEolkpKScixjfGycnZ3feuz0r31M9O/nXX8rzs7OuSbBq9VqJCQklMlj5u3tDXt7ezx9+hRA2Tk+Y8aMwaFDh3D27FmUL1/e8LypPlP/tYylpWWxdPCpo0AIIaRMkkgkqFevHk6fPm14TqvV4vTp02jcuHEptqx0pKWl4dmzZ3BxcUG9evUgFotzHJvQ0FBEREQYjk3jxo1x9+7dHBd/J0+ehKWlJapXr17i7S9OXl5ecHZ2znE8UlJScO3atRzHIykpCcHBwYZlzpw5A61WCz8/P8My58+fh0qlMixz8uRJVKlSBTY2NiX0bkrGy5cvER8fDxcXFwAf//FhWRZjxozB/v37cebMGXh5eeV43VSfqcaNG+fYhn6ZYvvOKpYp0oQQQsgHYOfOnaxUKmU3b97MPnjwgP3qq69Ya2vrHFlHPlaTJ09mg4KC2LCwMPbSpUtsmzZtWHt7ezYmJoZlWZYdOXIk6+7uzp45c4b9559/2MaNG7ONGzc2rK9Wq9maNWuy7dq1Y2/fvs0eO3aMdXBwYKdPn15ab6lIUlNT2Vu3brG3bt1iAbBLly5lb926xb548YJlWZZdtGgRa21tzQYGBrIhISFs9+7dWS8vLzYzM9OwjQ4dOrB16tRhr127xl68eJGtVKkS269fP8PrSUlJrJOTEztw4ED23r177M6dO1m5XM6uXbu2xN9vQb3r+KSmprJTpkxhr1y5woaFhbGnTp1i69aty1aqVInNysoybONjPj6jRo1irays2KCgIDYqKsrwk5GRYVjGFJ+p58+fs3K5nJ06dSr78OFD9tdff2WFQiF77NixYnlf1FEghBBSpq1atYp1d3dnJRIJ27BhQ/bq1aul3aQS4e/vz7q4uLASiYQtV64c6+/vzz59+tTwemZmJjt69GjWxsaGlcvl7GeffcZGRUXl2EZ4eDjbsWNHViaTsfb29uzkyZNZlUpV0m/FJM6ePcsCyPUzaNAglmW5FKmzZs1inZycWKlUyrZu3ZoNDQ3NsY34+Hi2X79+rIWFBWtpackOGTKETU1NzbHMnTt32GbNmrFSqZQtV64cu2jRopJ6i0XyruOTkZHBtmvXjnVwcGDFYjHr4eHBjhgxIleH+2M+Pm87NgDYTZs2GZYx1Wfq7NmzrK+vLyuRSFhvb+8c+zA1RvfmCCGEEEIIIcSA5igQQgghhBBCcqGOAiGEEEIIISQX6igQQgghhBBCcqGOAiGEEEIIISQX6igQQgghhBBCcqGOAiGEEEIIISQX6igQQgghhBBCcqGOAiGEEEIIISQX6igQQgghhBBCcqGOAiGEEEIIISQX6igQQgghhJhYbGwsnJ2dsWDBAsNzly9fhkQiwenTp0uxZYTkH8OyLFvajSCEEEII+dgcOXIEPXr0wOXLl1GlShX4+vqie/fuWLp0aWk3jZB8oY4CIYQQQkgxCQgIwKlTp1C/fn3cvXsXN27cgFQqLe1mEZIv1FEghBBCCCkmmZmZqFmzJiIjIxEcHIxatWqVdpMIyTeao0AIIYQQUkyePXuG169fQ6vVIjw8vLSbQ0iB0IgCIYQQQkgxUCqVaNiwIXx9fVGlShUsX74cd+/ehaOjY2k3jZB8oY4CIYQQQkgxmDp1Kvbu3Ys7d+7AwsICLVu2hJWVFQ4dOlTaTSMkXyj0iBBCCCHExIKCgrB8+XJs27YNlpaWEAgE2LZtGy5cuIDVq1eXdvMIyRcaUSCEEEIIIYTkQiMKhBBCCCGEkFyoo0AIIYQQQgjJhToKhBBCCCGEkFyoo0AIIYQQQgjJhToKhBBCCCGEkFyoo0AIIYQQQgjJhToKhBBCCCGEkFyoo0AIIYQQQgjJhToKhBBCCCGEkFyoo0AIIYQQQgjJhToKhBBCCCGEkFyoo0AIIYQQQgjJ5f9TLtRVFQlp+AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(1, 2, figsize=(8, 4))\n", + "\n", + "bt.pl.density(adata, ax=axes[0], title=\"default styling\")\n", + "\n", + "bt.pl.density(\n", + " adata,\n", + " ax=axes[1],\n", + " axis_visible=True,\n", + " frame_visible=True,\n", + " square=True,\n", + " title=\"square plot + axis\",\n", + ")\n", + "plt.tight_layout()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "75a9ea30-4750-41ed-981c-865d240d0853", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T21:18:58.326234Z", + "iopub.status.busy": "2023-03-31T21:18:58.325998Z", + "iopub.status.idle": "2023-03-31T21:18:58.682441Z", + "shell.execute_reply": "2023-03-31T21:18:58.682034Z", + "shell.execute_reply.started": "2023-03-31T21:18:58.326218Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAGbCAYAAAA4KMxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/KklEQVR4nOyddVgU6xfHvzObbLF0SygIit0tYly9due1AwuugWIr99rdhZ3Y3XVtxe5GFFS6YRd25/cHP7kXqY3ZQOfzPPM87sw755wFmTPv+54gAFBgYGBgYGBQAdLQBjAwMDAwlBwYp8HAwMDAoDKM02BgYGBgUBnGaTAwMDAwqAzjNBgYGBgYVIZxGgwMDAwMKsM4DQYGBgYGlWGcBgMDAwODyjBOg4GBgYFBZRinwWD0TJ8+HRRFwcLCwtCmAAAaNWoEiqLQqVMnQ5vCwKB3GKfB8Evi5+eHvn37Gkw/l8vF3LlzERkZifT0dNy6dQtNmzY1mD0MDKrCOA2GX5Lhw4ejX79+BtO/ZcsWjBkzBjt37oS/vz8UCgVOnjyJevXqGcwmBgZVYBvaAAaGX40aNWqgR48eGDduHBYtWgQA2LZtG54+fYr58+czjoPBqGFmGgwlBktLS+zduxdJSUmIjY3F0qVLwePx8ozp168fLly4gG/fviEzMxPPnj3DsGHD8oz58OEDvL290bhxY1AUBYqicOnSpdzrpqamWLx4MT58+IDMzEx8+vQJW7duzbenQpIkJk2ahE+fPiEjIwPnz59H6dKli/0enTt3RnZ2NtavX597TiaTISQkBHXr1oWjo6MmPx4GBr3AzDQYSgyhoaEIDw9HUFAQateuDX9/f5iZmeXZm/Dz88OzZ89w9OhRZGdno02bNlizZg1IksTq1asBAAEBAVixYgVSU1Px999/AwC+ffsGABAKhbh69Sq8vLywadMm3L9/H5aWlmjbti0cHR0RFxeXq2vixIlQKpVYuHAhTE1NERgYiJ07d6J27dpFfo8qVarg9evXSElJyXP+zp07AIDKlSvj8+fP2v/AGBh0BMUczGHMx/Tp0ymKoqjDhw/nOb9y5UqKoiiqQoUKuef4fH6++0+dOkW9ffs2z7knT55Qly5dyjd2xowZFEVRVPv27Qu1p1GjRhRFUdSzZ88oDoeTe37UqFEURVFU+fLli/w+T548oc6fP5/vvJeXF0VRFDVkyBCD/8yZgzkKO5jlKYYSw6pVq/J8XrFiBQCgVatWuecyMzNz/y2RSGBhYYErV66gdOnSkEgkxero1KkTHj58iMOHDxc7dvPmzcjKysr9fPXqVQCAm5tbkfeZmJhAJpPlO//ddhMTk2J1MzAYCsZpMJQY3rx5k+fzu3fvoFAo4OLiknuubt26OHfuHFJTU3P3PubMmQMgZ6+iOEqXLo2nT5+qZE9ERESezwkJCQAAMzOzIu/LyMjItxcDAHw+P/c6A4OxwuxpMJRYKIrK89nNzQ0XLlzAy5cvMWbMGHz69AlyuRytWrXCmDFjQJL0viMpFIoCzxMEUeR9X758gYODQ77zdnZ2AICoqCjtjWNg0BGM02AoMbi7uyM8PDz3c5kyZcBisXLPtWnTBnw+H23btsWnT59yx/n4+OST9aPD+c67d+/g7e1Nq90/8vDhQ/j4+EAsFufZDK9Vq1budQYGY4VZnmIoMYwYMSLP51GjRgEATp06BeDfN///vulLJBL0798/n6y0tDRIpdJ85w8cOIDKlSujffv2NFmdn/3794PNZmPIkCG557hcLvr3749bt24xkVMMRg0z02AoMbi6uuLIkSM4ffo06tSpgz59+mDnzp14/PgxAODs2bOQyWQ4duwY1q1bB5FIhMGDByM6Ohr29vZ5ZN27dw9+fn6YPHky3r59i+joaFy6dAkLFixA586dsW/fPmzatAn37t2Dubk52rZti2HDhuXq0oY7d+4gNDQUc+bMgbW1Nd6+fYu+ffvCxcUFAwcO1Fo+A4OuMXgIF3MwR1HH95BbT09PKjQ0lEpKSqLi4uKo5cuXUzweL8/Y1q1bUw8fPqTS09Op9+/fU+PHj6f69etHURRFOTs7546ztramjh07RiUlJVEUReUJvzUzM6OWL19Offr0icrMzKQiIiKozZs3U+bm5hTwb8htp06d8uh2dnamKIqi+vbtW+x34vF41Pz586moqCgqIyODun37NtW8eXOD/6yZgzmKO4j//4OBgYGBgaFYmD0NBgYGBgaVYZwGAwMDA4PKME6DgYGBgUFlGKfBwMDAwKAyjNNgYGBgYFAZlfM07O3t85VyZmBgYGD4eRCLxcWWsVHJadjb2yMyMpIWoxgYGBgYjBcHB4ciHYdKTuP7DMPBwYGZbTAwMDD8hIjFYkRGRhb7jFerjEhKSgrjNBgYGBh+YZiNcAYGBgYGlWGcBgMDAwODyjBOg4GBgYFBZRinwcDAwMCgMkw/DQYGBoPi4uKC8PBwzJ49G6ampnj16hUuXLiAv//+GwAwb948lC9fHq1btwYAtG/fHhs3boSlpSVu3bqFffv2YdGiRQCApUuXwtHRER07dsSNGzewaNEiVKtWDQAQFxeHDx8+GOZL/kSoVBpdLBYjOTkZEomEiZ5iYGDQGBsbG3Ts2BHR0dFIT0/HqFGjEBERgQkTJkAgEIAkScTGxkImk2mlh8vlom7duvjnn38QFBQEALh27RpcXFzA5/Px9OlT3LhxA76+vgCAjx8/Ijk5GRUqVAAA3L17F6VKlYKNjQ3kcjn++ecfWFhYgCAIZGRkICsrC0qlEtnZ2dr9QIwIVZ/zzEyDgYFBZ1haWqJly5bo2LEjlixZgtq1a+Pt27d49eoVnj17ltuqFwCSkpJo0yuXy3H58mUAyJ2xAEBYWBjat2+P0qVL4+bNm/D09AQAZGRkAEDu56dPn8LBwQFlypRBeno6bt68iblz54IgCJw7dw7v3r3D3LlzkZKSgmHDhqFhw4Z49+4d7t+/T9t3MFaYmQYDAwPtDBkyBG3btsW8efNgbW2NS5cuIT4+3tBm0Q6LxYJSqUStWrUwcuRInDlzBh8+fIBMJsP9+/dz+9aXBFR9zjNOg4GBgRYIgkCzZs3w/PlzNG/eHGfPnkVkZCQo6v+PGJIEKRaBYLNBcLkAiwVSYAIAUKamgsqUgcrKgjIl1YDfQnvc3d3Rv39/lCpVCsOGDUPr1q0RFhaGiIgIyOVyQ5tXKIzTYGBg0Ctbt27Fly9fsGTJEnz79u3fCxwOWGIRRM2bQFi/Ljj2diDY+VfGlXI55K/fIjH0IOQfI6BMSgaUSj1+A/rhcDgYMGAAqlSpgo0bN2LChAlITU3FoUOHcO/ePaOq6cc4DQYGBr1QqVIlVKxYEbdv38br16/zXCNNJRC3bA5plw4gOByVZSpSU5G4Yw/Srt2EMvnneubY29uDIAg0bNgQffr0Qbt27ZCVlWVosxinwcDAoHuaNGmC+fPn4/fff887uwDAsrKE1ZhR4Jf30lh+xpNniF20HIr4BG1NNUr8/Pxw584d3Lt3z9CmqPycZ5L7GBgYNKJKlSpIS0tDs2bN8jkMUmoK21lTtHIYAGBSoTysJo4DKZVqJcdYWbNmDZycnFC1alVDm6IyjNNgYGBQm0qVKuHAgQP48uULEhLyzgJIsQiWo/3AcbCnRRff0x1mvbuBEAhokWds3LhxAzNnzjS0GSrDOA0GBga18PT0BEmSqFOnDiIiIvJcI/h8iFs2h6A6vW/OomZNwLG3o1WmsRAdHY1z586By+Ua2hSVYJwGAwODynTr1g0rV67E48eP8y1JgSTB8ygDaa9utOslCAKmnduD4PNol20MhIaGolKlSoY2QyUYp8HAwKAyNWrUQOvWrQtMWmOZmcF60jgQBKET3fyK3iD4fJ3INjTOzs65JU2MHaaMCAMDQ7HUrVsX1atXx7hx4wq8TvB4MO3SHqQO9x1YIiFYYjGUifSVG2FQH8ZpMDAwFEnp0qWxaNEiNGvWrNAxhIkJRE0a6dwWcdtWSAjZBiozU+e69MmDBw/w8uVLQ5uhEszyFAMDQ6FYWlri69ev6N69O1JTCy/vwRKLQOph6UjcpBFIk59viapMmTJo06aNoc1QCcZpMDAwFAhBENi7dy9KlSqFjx8/FjmW615aPzZxOGDb2uhFlz4Ri8VwdHQ0tBkqwTgNBgaGAhk+fDg2bdqEFy9eFD2Qw4FJxQr6MQoAv2J5venSF9nZ2fj06ZOhzVAJZk+DgYEhH5UqVcKWLVuQlpZW7FhSKADP010PVuVgUrUKkk+cAZVavG3GilgsRlZWFoYMGYJ69eph9OjRRlFKRBUYp8HAwJAHU1NTbN++Hb/99ptKToMgCLCtrPRgWQ4cB3uQHA6MvVMFh8NB7dq1UbVqVSiVSsTExMDV1RV16tRBTEwMJk2ahMTERPj7++fPeTFiGKfBwMCQh0aNGmHixImIiopS7QYWC2Dpb6WbJREDBZRWNwaGDx8OT09PeHp6gs/n48WLFxCLxbh48SJq1qyJihUr4siRI1i7di2ysrKwbds2Q5usNsb5k2dgYDAIQqEQGRkZOHfunOo3KZWAQgGQv94WqaWlJTw9PTFv3jwIhUK8f/8eS5YsgVAoxNmzZ6EsoB+ImZkZBg4ciB49euDs2bN52tGWBBinwcDAkMuff/5ZbKTUj1BKJRQJiWBb62+JyhhYvnw5nJycIJPJMG3aNFy4cEGl+xISErB27VqsXbsWTk5OaN68OTp06IAlS5bk60dijDBOg4GBIRcvLy/MnTtXvZuyspD19Zt+nUaxXYB0x4ABA+Dm5oZRo0ahYcOGuHr1qsayPn36hE+fPkGhUKBHjx7Yvn07WrRogaioKDx48CBfQUhj4NebTzIwMBRI9erV4e/vj+zsbLXuU6alQ/72vY6syk92bBwohWE63UmlUsyePRsXL15E2bJltXIY/+XChQuYOXMmYmJi8PnzZ5ibmyM1NRXz5s3D3LlzYWdnPBV+mZkGwy+Ju7s7pk2bBgsLC0yfPh3VqlVDy5YtoVAo0LFjR2zduhV2dnZYtWoVjhw5Ymhz9ULTpk0RFhaG8+fPq31v5otXMNWBTQWR9ekzqEyZnrT9S40aNSCVSpGSkoJ79+4hKYn+GlgpKSk4duxY7ucJEyagffv28Pb2RqVKldCzZ0/cv38fGzZsQJMmTZCWlobk5GSEhYXRbkthMO1eGX4ZhEIhgoODczciTU1N8zUQ+i8mJiYQCoUICgrCixcvsGnTpnwbm0KhEBUrVsTdu3fRsGFDiMVixMbG4u7du7C1tQUAxMXFgc1mw9Q057H66dMn2NragsPhIDMzE/Hx8bC3z2lYFB8fD5IkIf1/p7rIyMgCK8rqgiNHjqBjx44a6eM4OcJh1WIdWJWf+M07kHzoqF50fSc4OBiOjo64cOECWCwWtm7dqlf937G1tYWXlxeuX7+OunXronLlyvj06RPevHmD3377Da9evcI///xT5P/rwlD1Oc/MNBh+CXr06IFXr17hzp072LNnDwAU+4eVkZGBjIwMLFq0CEOHDoWPjw8aNWoEkUiEBw8e4MmTJ1iyZAkuXLiAsLAwmJqaQiqVQiaTwdraGmPHjgUA7Ny5E1ZWVmjevDkAIDAwEP369YOtrS1ev36Nffv25Y7dv38/+Hw+WrduDQCYOnUq1q5di9jYWJw6dQqnTp3Syc+nfv366N27t8YOSpmWBkqpBKGHCKqMe/d1ruM7vXv3Rnh4ODZu3IhOnTrh5cuXen2r/5GvX7/i69evAIDLly/j8uXLAAAulwsbGxs4OjqCzWZjxYoVcHV1xd27d7FmzRqkpqYiPT2dFhuYmQbDTw+Xy8WpU6do6Vfg7OwMkiSRlpaGpKQkZGdn63wmwOPxYG9vj8TERAwYMAAEQWDt2rVFFhBUh0aNGqFNmzaFlj1XBUIogM3kQPC9y9FiU2FQCgU+DxoBRVy8TvVwuVzs2bMHd+7cwaJFi+Ds7IyQkBA0b94cMpn+l8a0oUmTJpgxYwZmzJiBixcvFjpO1ec8sxHO8NNjbW2NR48e0SLr48eP+PDhA6KjoyGTyfSydCSTyfDhwwckJCRg+fLliIyMREBAAFgsFi3y+/bti4ULF2olg0pLR8q5wh9IdJH15SsoNTfq1UEkEuHIkSPw8PBAx44dMXfuXEgkEkilUvTs2bPEOQwAuHjxIvr3719gzogmME6D4adHJpNh0qRJhjaDFrKysrB792789ddf2LNnD5YuXQqhUKixPD6fjz///DN3yUMbMh8+hjI9Q2s5RZFx7yGUOqw5NXHiROzcuRNPnz4FAEgkEhw6dAjOzs6IjIzUmV5d8+7dO8TGxmL8+PFay2KcBsNPz6FDh+Dk5GRoM2ind+/euHv3LlxcXHI30tVlwIABaNCgAS32KJJTkLT/MC2yCiP17IWc7HOakUgkWLNmDebNm4fQ0NDcc40aNcLs2bNx4MAB2nXqmy9fvqBcOe2XDxmnwfDTk5CQgDdv3hjaDNqRyWTYuXMn4uLisGvXrtxoLXX4/fffcenSJXoMUiiQcv4isnW03yD/9BmKpGSdyA4ODoZQKMwt0Fi1alWEhobi5s2bOH36tE506huZTIbbt29rLYfZCGf46bGxsSlRVUQ1wcvLC71798bkyZPVus/Hx4c+pwEABAFhg7qwGudPn8z/83VqMDIfPaFV5ujRoyEUCrFw4UJkZf2bMLh//36MHj26+KKNBAFCIADBZoNgkQCLBVIggDI9HcjOhiI1FcjS3R6MOrDZbLi4uODt27cFXmdCbhkYkLOEY2FhgWXLlhnaFJ3y4sULTJ06FePHj8eCBQtUuicwMBBbtmyh1xCKQsaDx0i7eQfCOjVpE5v58jXkH8Jpk+ft7Q03NzdUr14dffv2BUXlvDtbW1ujbdu26Ny5c4H3EQIBSB4XLEsL8Mt5gVfWHSypKVjm5mBJTUEKTHLHZsfFQ/biJTIfP4Ps3QdAoYAyPR1UVhaUmTJQKpSdp5MJEyagYsWK6Natm1ZyGKfB8FNjYWFRfOe5nwSlUolq1aph2rRpmDVrVpFjRSIRGjdujPnz59NvR0oK4lZvAABaHIciJRUxC5dBmaz9KgeXy8Xq1asRERGBWbNm4ejRf5MEeTweQkNDMXr06Hz3kWIx2Pa2MO3SAYIqlUFwin90si3Mwa5fF8L6dfOcV8rkkD17jvjN25EdHQMqI1Pr71UUVlZWYLPZYLFYGDFihNbymOUphp+a6tWrIyYmRu3KrSWZ+vXr4+nTp0hMTCx0TJkyZVCpUiWdbvCSphJYBoyAoFoVjWVkvnyNmIXLoIiO0doeDw8PmJiYwMHBASdPnsx3vUqVKpBKpXmX6wgCLAtzWAwfDEH1qlrb8F8oikLC9t1IPXsRymTd7NVIpVJER0ejSpUqePbsWZFjmTwNBgYAcrlcb2U4jIUbN27g7NmzRY4pU6aMziOClEnJiF26Csknz+Yu/6hD0pHjiP57Pi0OY8CAAThz5gy+fv1aoMPw9/fHgAED8jgMgscDr7wnHFYuot1hADkdD83/6Anbv6aBbWtDeyMrc3NzVKxYEQ0aNCjWYagD4zQYfmoaN24MDw8PQ5uhV5RKJSIjI1G7du1Cx/j5+enHlqRkJGzbiS9jgiB7806le7K+RePr9L+RtPcglDRES0kkEnC5XLi7uxcYEMHj8VCvXj2MGjUq9xwhEkL8WzPYBk8HKRBobUNRcF1KwX75AnBdXWlzHC1btkRoaCgePnxIS8TUf2H2NBgYfkK6dOkCgY4fdqpCpWdA/u49vs2YDZa5FKImjSGoWQ0ch39zSyiFAhkPHyNp7wFkff0GZSJ9FWS3bduGUaNGFVjyncVioWHDhujevXvuOUIkhKRVC5j17p5vvK4g+XzYzp6OqJFjka3lzEoqlaJRo0bo0qULknWw7MU4DYafmm3btkEulxvaDL2TnZ2NzZs3Y+jQoYiNjc13nY4NUXVRpqRAmZKChG27kHTwCAgWGwSblbOpmp0NZUYmqIz8GeVCoRByuRwEQUAsFkMul4OiKHA4HCQmJha59FW1alXExMTg06dPBV5v27Yt3N3dc9vbEjwexL4+enUY3yH5fJgN6ofYZatApalfXFAikeDvv/9GREQEJk6cqAMLc2CWpxh+anx8fFC2bFlDm2EQjh07Vmjo6ODBg/VszX9QKKBMSoYiPh7Z0TFQRMdAEZ+Qx2E4ODiAJEkcP34cu3btwpAhQ/DmzRvcuHED27dvx5YtW/Dlyxe8f/8eXC63QDUEQeDbt29F5q60aNEiNwMcAFjmZjDr15u+76omglrVwZJI1L5PIpGgZcuW+PTpExYtWqQDy/6FmWkw/NTY2dmhUqVKePDggaFN0Tt79+6Fs7NzgdcqV66sX2NUhMPhYPXq1XBxcUG3bt0QEhKCsmXL4tixYwgNDUVMzL9LNwRBYPLkybC3t0d4eHg+WXPnzsXTp0+xffv2QvWNHz8+N1KI4HIh7dYpJ0nPQBAEAVFTHyTuClWpXApBEBg5ciR69uyJli1bFhkxRxfMTIPhp2br1q2/TJ7Gj2RkZMDb2xtBQUH5rhlb8T2hUIgpU6ZAIpFgx44d6Ny5M9q2bYs6deogJCQEEREReRwGkBOyWq1aNYSGhqJFixYAcvYoRCIRXFxc4O7uXqTDsLOzyxMtRYrFEDasp5svqAYin4YgxaJix9WsWROVKlVCVlYW6tSpoxeHATBOg+EnJy0tDW/fvkWTJk0MbYpB2L9/P6pVq4ZGjRrlOT9hwgSj2Cj/3jzo8OHDSEhIwIwZMzB06FD069cPW7ZsQWBgYD5n8V/u37+PKVOmoG/fviAIAh8+fMCePXtgYmKCjh07Fqnbx8cHGzbkJCESPC4kHVqDYBt+8YVlblasHT169MCkSZOQkpKCtWvX6smyHJjkPoafHhMTExw5ciS3c96vBpfLzS3G9z0ooEuXLrC0tMSaNWsMYpOHhwdCQkKQlpYGPz8/rFmzBitWrMCJEye0kstmswuMkioIc3NzyOVypKamgjSTwmnjapUyvfVBVEAg5O/DC71eo0YNPH78mNb+HkxyHwPD/8nIyMDp06fh4OBgaFMMglwuR5cuXfK8eX/79k2rPhyaYGtri/79+2Pnzp34/PkzevTogfHjx6NKlSrYv3+/Rg6jdevWeXpEqOowzMzMsGPHjtzuhxx7O6NxGADAcS5V4Hl3d3c8efIE3759M1hDKMZpMPwSLF68uMhkt5+dHTt2YODAgSD/38P75cuXOus3/iPly5dHr169YGFhARaLhTFjxiA9PR1jx45Fp06dcPDgQWzcuFEj2deuXcvdz1CHmTNn4p9//sn9zC/vpZF+XcEyMyvw/NChQ9GtWzdERETo2aJ/MR7XysCgY1q1aoX79+/jw4cPhjZF76Snp+PPP//MbfkZHR2Nvn37wtbWFhcuXKBdH0EQMDExQffu3dGyZUv8/fffePbsWW45CxsbG3z+/Fnr8NDExERMnTpVrXvc3NywfPnyvCXCSeN/f/b09MTChQtp6bKoDcb/k2JgoInjx4/rfEOcEApBmknBtrYC29Ymz8F1cynw4Dg5gmVlCVJqCuhwieTFixc4dOhQ7uf169cjJCQEPB6PVj21atXC1atX0ahRI2zduhVdunTBw4cPc68vXrwYTk5OtOUTKBQKtTaDhw0bBrNC3uSNhuysPB9NTEywevVqpKern/RHN8xMg+GX4dChQ5BKpfQKJUmQYhFIgQD8CuUgatwQHEcHkKYSEAShshiKoqCIjUPG46dIv3ELsjfvcnphq7hGrwrfCzd6e3vj6dOnSEpKQsOGDfM0H9KGFi1agMfjwcLCAh07dkR0dHS+MaVKlYKbmxvCwsJo0QkAYWFhajkgT09PvH79Ou/J/8/AjAXZ2/d5Prdo0QKbNm3SSVkQdWGipxh+Kfbv319olrRaEAApMYVJ9cqQdukEjr36rVaLQpmRiaRDR5F65jyt3d+sra0hFovx7l1O8cA2bdpALpfjzJkzGss0MzNDp06dMHDgQHTs2BFfvnwpcJxUKgWHw4GJiQnta/L16tVDWFiYSpvDfD4fmZl5e1jwq1SC7Uz1uh7qCoqi8HnQCChicsq/CIVCuLm54enTpxpVC1YVJnqKgaEAzM3N1ZoBFARpKoHQpxEcli+Alf8I2h0GAJAmfJj17AqH9SsgbFgfpERMi9zo6Gh07Ngxt5+4VCrVKIqKzWajbdu2iImJwcCBA7Fx40bUqVOnUIfBZrOxd+9eZGdn62QT9/r16zhy5Ah+//33Ise5uLhg9uzZ+c5nfzHsPsF/kb16AyrzX+e3cOFCSKVSnToMdWCWpxh+KRYuXKj5zWwW2NbWsJ48HlwnR/qMKgKSx4OV/3CkXruJ+HUhtJQKT0lJQfXq1XH8+HF8/foVGQUUCSwMMzMzzJs3D8nJyZg9ezbs7OxUCnNdtmwZVq9ejYSEBG1ML5I2bdrgypUruHPnDuLi4nI3/X+ELGDTW5mRgayorzp5AVAHKjsbsctWQ/m9tAlBwMbGBlevXjWoXf+FmWkw/FLI5XLN8jXYLPA83GG/bIHeHMZ/EdWvA7P+fUDSkFvx4cOH3LXx27dv59mkLgqCIGBhYYFXr15h3LhxiI+PL9Zh9OvXD82bN4e/vz+OHDmirelFkpWVhfr168PLywvHjh1Dly5dwGKxIBb/O0tLSUnBtWvX8t2rTEpG/IbNOrVPFeLWb4bi/1WJS5cujUWLFqFv374GtiovjNNg+KWoU6cObGxs1L6PY2cH2+CpIHkFV1TVB+ImjSD6rSlIkXaO48yZM7kP+3bt2qmUKW9jY4O9e/fCyspK5U3nwMBA1KhRA+fOnVM56U5blEol/vnnH/Ts2RNAzv5FaGgoZs+eDRsbG2RkZODly5cF3it7/RbpDx7pxc6CSD5xGuk3boGSySGRSPD06VPs2bPH6PaRGafBwFAMLDMz2P41DQSHY2hTYN63F3hlPQAt92UmTJiQ+28Wi6XS+M2bN+PmzZvFjhWLxWjYsCFCQkIwYsQIg6zFJyUlYd++fUhLS0PLli1x6dIlWFpaYty4cVizZk2B31mZkoK4FWuR9S1/1JcuoSgKCTv2IHHXPhBp6RgzZgyqVasGExMT3LlzR6+2qALjNBh+KWbPno379++rPJ4UCiHt2xMsM6nujFITq3H+YFla0CLr+vXrRZaNL1WqFC5fvoyZM2eqlEFua2uL48ePQ6FQIC4ujhYb6eDcuXN49uwZvn37Bg8PD3h5FZwBroiNw9dJMyB787bA63RDURTilq9B8rGTUKakYP78+ZBIJLh8+bJe9GsCE3LL8EsxcuRIXL58GU+fPlVpPM/TA3bz/9KxVeqTfuceYpeuzMnl0IDy5cvnZmcHBARg6dKlea5LJBLY2Nhg+vTpmDFjRt7s6UIQi8WoUKECkpKScmUbIwRBYNeuXQgICCiwZzgAkKamkHbrBEnr33Rmh1ImR3TwXMjfvsPoIUOhVCqxfPlynekrDibkloGhAOLi4tC+fXuVxpKmEliOHq5bgzREULMaSLHmYbj/rdfUsmVLADnht3Z2dmjdujWioqJQunRp9O7dWyWHMXz4cCxZsgQ3btwwaocB5LzdP3/+HFeuXCl0jDIpCQk79+DLhKmQh9MbIkwplUi7cQuRwwOQ+fwF6levgSpVqmDlypW06tEVjNNg+KU4ceKEyuvELFNTcBztdWyR5phUq6Lxvf/trxEeHo7Lly/jwIEDsLe3x4sXL+Ds7IzTp0+rJEskEqFOnToYNGiQxvbom+DgYNy7dw8WFoUv81Fp6ZC9eIWvU2Yi6s8JSLtxC0qZ5v3mlXI5kg4exeehoxC7Yh04KamYMjEIERER6N+/f6EhwsYGk6fB8EuhVCpVy0sgAFFTH90bpAUmVSoh9cIlUBmZxQ/+gf+Woxg6dKjGNgwfPhwnT540urBQVejVqxcOHz4Ma2trNGvWDGlpBS/1KZNTIE9OQeySVSAFJmDb2sCkRlUIqlcDx8kBxH821SmFEpQiG1R6BrK+/n/pKzsbGfcfIfXyP1AkJQP/L9uycccOxMXFFdiq1phhnAbDL4WZmRm6du1abLIUKZHApJK3nqzSDJ5HGRAmJmo7DQ6Hg1GjRmmtv2rVqqhRowZWr16ttSxDQZIkzp8/j5o1a+LFixdFVpClZDIoZDIoEhIhe/EKyUdOgGCzQfD/LfhIZcoAigIoCpRcnrNrDECZ+m+hwcqVK8PT0xN9+vQxmixvdWCcBsMvRZs2bXDr1q1ixxEkCywrSz1YpDkEnwdNAm+9vLzQuXNnTJs2TSv9bm5uCAwM1EqGoZk+fTpkMhmeP3+OlStXokyZMli3bl2easCFoUl2vkAgwIYNG9C5c+cS6TAAxmkw/EJYWlriwoULePXqVfGD2SywRCLdG6UFJI8Hgqt+WfPatWvj/fv3xQ8sBB6Ph8WLF8Pf319vSXu6Ijk5ObfK78iRI0GSJExNTbFu3TpwuVz4+/vTVllWJBJBIBBgxIgR+PjxIy0yDQGzEc7wS1CxYkWcO3cuT0mJIikhm5KacOvWLezbt0+je7lcLnbv3o3Dhw+XeIcBAPXr10e1atVyPyuVSiQkJGDo0KG4cOEC3N3dUaFCBa31ODs74+jRoxAIBEaZsKcOjNNg+CXg8/kYMGCAyn0cSKFAxxYZBjs7OwwYMKDQTd/iUCqVmDx5Ms6dO0ezZcbHjh078ObNG62bRQkEAowaNQoTJ04scZveBcE4DYafnj179kAmkxWZ+Zwf7cp06AOlTAZKXnz/iP9y9uxZ3Lt3TyN9jRs3xrRp0/DixQuN7jc2JBIJDh48WOSbf3JyMk6dOoUhQ4aoLZ/FYmHhwoUYO3Ysxo0bV+JnGN9hnAbDT82oUaNw8+ZNPHqkXiE66v9d7owZZWoa1NlLtbKyQseOHbF9+3a1dTk5OWHq1KmYN2+e2vcaI40bN0ZSUhIcHR0RGRlZ5NglS5bgyZMnaNy4scryy5UrhwYNGiA8PLzA/h0lGWYjnOGnRCKRICgoCKtXr0ZUVJTa91MZGaAoSuuGTbpE/u49qHTVl5kWLlyoUXgsSZKIi4tDr169NF7WMhZEIhH69u2Lr1+/olKlSirPml69eoXQ0FAkJycXW7usfPnyWLp0KVq0aGHUNaQ0hZlpMPyUHDx4ENHR0fj06VNub2x1oBRKZH0q+g3U0KTfugtKxQxloVAIT09P3L59W209/v7+aNmyZZE5DMaOm5sbypQpg+PHjyM9PR3Hjh3D48ePVb4/Pj4eXbt2RZMmTeDtXXT+Tvfu3TF58uQSk+GtLsxMg6FEY2JiAqFQiNjYWIwcOTI3/2DgwIFahTUqk5OR+fgpuKX033BJVTKfqF7jqVatWqhVq5baOtzd3dGwYUN06NBB9ZtYLJAiIQgOBwT33/4jlFwOKiuLlu6D6rBhwwZUrFgRQ4YMUWuJ6Ufi4+Nx8+ZNhIWFwc3NrcAZbIsWLXD48GGN941KAozTYChxuLu7QyqVwt7eHqNHj8b79+8xePBgJCQkoE2bNvRUYqYopN24pdMqp9qQ9TUaykzVMsGtra0xfPhwXLx4US0dIpEIsbGx8PPzU2k8ITABSyyGsEkjCOvXAcfeHgTr38UMSqGEPDwcKafPI+PuPShSUnNLauiCevXqoWrVqhg7dixtuRbXr19H48aNUbFiRdSqVStfEuCBAwfg7OxMiy5jhVmeYihRlC9fHhs2bIBAIMCRI0fg6+uLwYMHAwB27txJa+n+rM9ROQ82IyRxzz4ok1X7rs2aNVO5+OB3BAIBDhw4ALFYXPyyFEmCZWUJy5FD4bB+Bcx6dAHXyTGPwwAAgkWCV9oNliOGwGHdCogaNwChZRfCwnB1dcWcOXNw584d2hzGd27duoWXL1/ijz/+wIQJE2BhYQEOhwMul4u+ffsaVR8RXcD002AoUbi6uoIgCK0ymlWGw4ZZ394wbdtK97rUIDshEVGjx0OZlFTsWFtbW4jFYrx580YtHSNHjkR6ejo2bdpU5DhSKADHyRHWUyeCJVY/gz5h9z6kHDsFZSo9ztne3h4nT56Er68v0tPTVStOqSUdOnRAr169AOQUQZTJ1AuDNhZUfc4zToOhxFChQgUMHToUI0eO1JtOloU5HDesBME2npXcmMUrkHblqgp/uTkJakePHkVoaKjK8m1sbCCXy5GQkFDkOFIsgrjVb5D27KJVlFn0wmVIv3UXkGtedhzImR3t3r0bEyZMKLQPOEPhME2YGH46WCwWYmJi9KpTmZaGpH3FF6/TF5lv3iHj/kOVHIZUKkV0dLRaDgMA5syZA4lEUuQYUmoKy9F+MOvVVeuwZMvRfmCbm2l8P5fLRUhICJycnNCuXTvGYegYxmkwlBi+fftWbElzuqEyZUg+eQZZUV/0qrdAW5RKxC5cpvJeRtmyZTFmzBi1dJQtWxalSpUqMvKMNDWF5YghENSqoZbsQuVxubAYORSkBvsbJEnixIkTOHDggGqFKBm0hnEaDCWGzMxMxMbG6l2vMikZcavW6V3vjyTu3gdFMUtG36latSomT56slnypVAqZTIbffis8Yow0NYXlSPocxndMKnqr3b523Lhx6NWrF3777TecPHmSVnsYCodxGgwlBmdnZ/XyBWhE/vEz5B8MV84649ETpJw6m9PkRwU6deqEKVOmqCzfzs4Ohw8fhru7e6HVa0mhEGZ/9KDdYXxH2q0jCBMTlcYGBARAKpVi+/btGiVvMmiO8ezuMTAUQ0pKChwdDZNsp0xORvSCJbBfMg8kT/0eFtqQ8egJYhYtV3lZat68eZg/f77KoZ+WlpaoVq0apk2bhn/++afAMYTABOLfW0DcrInKdquLoG5tJGzbDUUREU8eHh74/fffsWTJEp3ZwVA0zEyDocTw7t07LFq0CFZWVgbRnx31FZF+AUi7dVdvXdeSjpxAzMJlUCYWH14L5BQlrFatmlq5Aj179oSrq2vhDoPHBb+CN6S9uqksUxNIPh8El1Po9Ro1amDp0qW4cOGCTu1gKBrGaTCUKLy8vAxXNVSphCI2DrHLViNy+J/IePRUZ6qyvn7Dl6DpSNp7QK2yG1ZWVpg4caJaulxdXXH37t2CL5IkeOXLwTporM6LNypSUwutpeXl5YWXL1+ic+fOatWMYqAfxmkwlCgOHToEExMTODg4GMwGKi0N2ZFRiJm/GF+n/43saPrCgJUyORJ278OXwCmQPXuhVtKbvb09ypcvr3KjKQDgcDiYOXNmoX3TSVMJrAMDQJC6f1Rkf4spsCS9WCzG5s2bkZWVhfT0dJ3bwVA0jNNgKHEMGjQIFEVhwIABBi1drkxJRebDR4gaG4RvM+dA9k6zLHWKopD57AW+zpyDyCEjkbT/sMrLUf9l/vz5ePpUvdnP9u3bYWdnV/BFkoSwQV2QAv10MVQmJRW40T9z5kyMHj0amSrW2mLQLcxGOEOJIzMzE1lZWfDx8UHz5s3RvXt3wxlD5YTkZtx7ANmbt2Db2EDcrAm4ZdzAcXIAweXmc2wURUERG4fsuHjIXr9ByokzUKakal1KIzIyUq2uer///nuR95ASCUw7tdfKJnXgODmCEAhA/T8zvGLFihg0aBBGjx6tNxsYiocpI8JQouHz+di0aROsrKywbds2nDp1CvHx8YbtZcBmg+TzAQ4bJIcD/Kc8OABQ6emglEpAoYCSpoKINjY2oCgK0dHRKo2XSqUgCAJpaWmQF1C+g+DzYNq5A6RdO9Jinyqk3byNuDUbc2dZd+/exaBBg9TuusigGao+55mZBkOJJjMzEz179gRJkmCz2WjXrh369++PV69eYeLEiSBJUi9F6/KQnZ07a9CX65oxYwbWr1+vstMYPnw4rl27VmjEFCkS63WWkfnyFeJWrIUyNQ0EQaBt27bw9fWlvUItg/YwexoMPwVKpRJyuRz79u1Dq1atMHv2bNjb2+P169eoV6+eoc3TKaampihXrhwePHig0vhGjRqhevXqhXfxY7MhadsqX2lzXRK/bjOUqTmtZAMDA1G/fn3GYRgpjNNg+CmJiYnBhw8f0Lp1a7i4uBjaHJ2SnJysVke6R48eoWvXroWW8CaFQoiaNKTJuuLJ+hqN7Nh/80pYLBaCg4P1pp9BPRinwfBT8+jRI+zcuRMnT56Ep6enoc3RCX5+fmjevLlKY8uXL4/JkycXWioEAHgepcEqpsotnSTu3JPbG2TEiBFYt24dM8swYhinwfBLsHTpUgQFBRnaDNohSRIdOnTA9evXVRo/a9asQnMygJwNcFFT3ZUK+ZHsuHhkPHqS+3n8+PGGDWJgKBZmI5zhl+Ds2bOIiopCt27dsHfvXkObQxt8Ph/BwcFIVSFc18LCAn369CkyQY4wMQG/Qnk6TSyShM3b82S8BwcHF9v8icGwMDMNhl+GcuXKYc+ePZBKpYY2hRYIgsD06dNx8+ZNlcbevXsXbm5uRY4jBQKwdNS3+0fkHz4i4+Fj4P91vCZPnoxt27bpRTeD5jBOg+GX4cCBA3BycsKOHTsKz4IuQYwYMQLh4eHIysoqdqyXlxf27dtXbMY428KcLvOKhFIo81Tu5XK5GD16NFPmvATAOA2GXwaFQoHPnz9jxowZOHjwIEg91FPSJWlpaVi7dq1KYxMTEzFhwoRix7EsLbQ1SyWSj55A9n9a94pEIgwZMoTZzygBlOy/GgYGDQgLC0O9evUwY8YMDB48GHw+39AmqU1QUBC2b9+uUol2LpeLXbt2qSRXHq77RlOKpGQkHT4GKiOnlpSnpyfmzp2LI0eO6Fw3g/YwToPhl0SpVGLx4sUQCATo1asXKlWqhEaNGhnaLJWwsrKCt7d3kWGz/6VVq1Y4evSoasLlxS91aQNFUYhdvjrP5vfmzZsxb948neploA8meorhlyUxMRHLli0DkNPgZ9KkSXB1dcWWLVsMa1gx1KxZEyEhISqPP3PmjMqb/8r0dCjlcpA/1MuiA4qiEL82BJnPXgJKJXx8fNC+fXsMHToU7969o10fg25gZhoMDMgpjvfbb79h69atuHjxIrp06QIOp/AucobA29sb+/btw5kzZ3Dx4kWV7hEIBFi6dCm+fPmi0nilTIaMsPvamFkoSXv3I/XKVYjZbPj4+GDkyJFYtGgR01SphME4DQaG/0NRFCiKwh9//AF7e3t4eHigdOnShjYLQE6DpUmTJmH69OkqL0sBQLVq1fDt2zeVx1Np6Ujcc0ATE4sk5fxFJB8/Db9+/REREYGrV6+iU6dOiIiIoF0Xg25hnAYDww98/vwZy5Ytw/PnzzF37lzs27cPEj2W1fgvgwYNwsmTJ5GcnIyePXvi+fPnat1PEAS2b9+u1j3ZMTFIu1lIMUMNyHz1Bpmhh+BiaQW5XA6pVKqW42MwLhinwcBQCBRFoUuXLpg1axa4XC4CAwNRs2ZNsNm63wpks9mQSCTw9vZGq1atVMr4/hGpVApXV1e8efNGrfuotHTEr9uErG+qlVkvVA5FIeXcRSjWhmDXuvXgcDjYuHGjVjIZDA/jNBh+OTw8PLB7926cPHkSFSpUgL+/P44ePYq1a9eCJMl8+RtPnjxBbGwsbt++jTFjxqBChQo63e+QSCQ4dOgQsrOzERAQoLGcgIAAjSv8KuIT8G3aX8iO16ykR3ZsHKKnzILppaswZ3PQtWtXvHr1SiNZDMYF07mPQadwOBywWCyD9ndms9moXr06xo0bhy9fvsDf3x9SqRTx8fF5xonFYjg4OGD16tWQy+UIDAwESZJ49+4dMjMzQRAElEolnJycsHr1arBYLAwbNgwSiQTv3r2DXC4vtNy4Ohw4cACrVq1SebO7MNq1a4erV6/m+57qwDKTQtKuNSRtWoJQwVEq09ORsG038PAxlv09G0sWL8aTJ0+KvY/B8Kj6nGecBgPtCAQCNG3aFPXq1cOlS5ewZMkSvH37Fu3atYOZmRni4uKKF0ID48ePR8WKFXHy5Em8ePECCQkJ+PhR9eQ1Pp+POXPmwNLSElu3boWJiQlmzZqFmzdvIjAwEAEBAXj27Blat24NKysrvH79GomJiahRowbu3LmDRYsWoVatWnj06BESExOL1FWtWjU0bNgQaWlp2Lx5s0qlQYqDruKMBJcLUigE190Nwnp1wC/vBba1FQCAyspCdlwCZK9fI+3KdcjfvkNZp1JIiotDdna2WpvwDIaFcRoMesfFxQWOjo6wsLCAi4sLjhw5gvDwcAA5G7IeHh548OABTp8+jY4dO+LAgQN48OABdu/eTVuc/owZM1CtWjVMnToVWVlZkMlkePv2LS2ygZxS5ARBgCRJ1K9fH25ubrh58ybYbDZq1KgBALhz5w4WL16M9PR0JCYmomvXrrhx4waysrJw8uRJPHz4EM+fP0e3bt3g6emJtWvXokaNGsjIyMDBgwdpcRgEQeDYsWNo3bq11rLywOGAJRIBLBIgSUChAKVQgErPACWXo3PnzmjTpg0GDBjA1JEqYajznKeKO8RiMUVRFCUWi4sdyxy/xkGSJGVqakq1atWKMjc3pzZt2kRt2LCBqlKlisoyeDwe9dtvv1He3t5UYGAgtXHjRqpPnz4a2WNiYkKVLl2a6t+/v8F/Nj8eBEFQHA6HGjBgADV48GDq0qVL1OXLl6kxY8ZQ3t7eFEEQtOv09fWlJkyYoPfvOnPmTIrFYhn8Z84c6h9qPOdpFcYcP+EhlUopDodDTZo0iTpw4AA1ceJEqkqVKtSOHTuocePGURKJRGsdXC6XcnBwoGrUqEHVrl2bOnToEFW9enWVH6jbtm2jfH19Df6zUvXg8XiUjY0NNXbsWGr16tW0y2/YsKFev4+dnR01b948g/9cmUPzg3EazKHVweFwKGdnZ+rcuXPU3r17KQcHB8rFxYVis9l6eZN0cXGh5syZQ4lEImrdunVUo0aNCh1rY2ND7d692+A/M02PS5cu0SqPJEnq6tWrev2/cv78eapMmTIG/1kyh+YH4zSYQ6NDJBJRixcvpkJDQyk+n08JBAKD2+Tu7k49ffqUEolEBrelJBxSqZTavHmz3vRJJBKqatWqBv/ezKHdwTgN5lDrsLW1pVq3bk1Vr16dateuncHtKejo1q0bNWzYsHznK1WqRM2cOdPg9ml6bNy4kVZ5QqGQsrOz04vtvr6+1LRp0wz+M2QO7Q9Vn/NMch8Dxo4di1WrViEtLQ1hYWFG29fgwIEDKF++PPr06WNoU2iF7i6Cu3btUrlAoTYQBIHJkydj4cKFOtfFYFzQ5oGYo2QddevWLZFv6C4uLpS7u3vuZwcHB6pVq1YGt0uTQywWFzh70vTw9PSkXr16pRfbBQIBVa1aNYP/DJmDnoNZnmKOIg9bW1sqLCyMMjMzM7gt6h5SqZR68OBB7hKMl5cXZW1tbXC7NDkqVapE6+/AxMREL7/TKlWqUMHBwQb/+TEHfQfjNJijyIPFYlEWFhYGt0PTo27dutTIkSMpANTdu3epmjVrGtwmTY7x48dT9evXp03ezp07KalUqlObhUIhdeHCBcrS0lKl8VKplCpfvjwlEAgoR0dHasCAAdSAAQOoqlWrUkeOHKFu3rxJOTs7G/x38asfzJ4GQ5GcPHlSb+U8dMGNGzfw8OFDcLlc3L59G3fu3DG0SRqjSp9vVahQoQLc3d2LLVmiLQqFAiNGjEBsbGye898z5Tt16oTt27dj1KhRqFGjBtasWYNevXrBysoK9erVg5mZGU6cOIH79++jXbt2aNWqFSwtLbFmzRqd2s1AH7R5IOYoGUepUqWorVu3GtwObY9FixZRXbt2VSsL3dgOW1tb2kKJzc3NKSsrK53aa2dnl+//TunSpang4GDq8uXLVOnSpSkfHx/K1dVVLbk8Ho9asWKFUWb0/yoHszzFHIUeFhYWVN26dQ1uh7ZH/fr1qblz5+oko1pfx2+//UY1aNCAlt9pWFiYTm21srKiLly4kJvEN2bMGGrv3r0USZJU1apVKQ6Ho7UOiURCeXl5Gfz38isejNMwgkMgEFB///03xePxDG7Lf48hQ4ZQ5ubmBreDjsPHx4fat2+fwe3Q9HB0dKRl1ufn50f17dtXp7ZyudzcfQxTU1Nqx44dFJfLpVWHi4sLtXfvXoP/Xn7Fg9nTMDACgQB79+7FxYsX0aZNG5w7dw4zZswAkNMcZ9KkSejatSv4fD7s7OxgZ2cHLperc7vKli2LDh06aNVjwZiwt7fHhw8fYGFhYWhTNOLz58+5lYA1RSqV4tq1azhx4gQ9RhVAw4YNMWXKFMTGxqJq1apo3rw5evfuDblcTque8PBwZGVlwdHRkVa5DPRCmwdijn8PNptNlS9fPvczj8ejatSoQQGgqlatStWsWZMqVaoUVblyZWr16tXU6tWrKXd3d2rRokXU4cOHqblz51IikYjq0aMHVadOHdrs6tixI+Xi4mLwnw9dB0mS1KVLl6i1a9ca3BZND3t7e6pcuXIa39+oUSMqKChIpzaeOnWKMjU1pQBQ69ato6pXr64zXVwulypbtqzBfy+/2sEsTxnwIEmSCg0N1VqOnZ0d1a1bN2rFihVUmTJlqL/++ovq3r27xktLFSpUoOrVq6f3nwchEFAsczOKZWVJcZxLUVw3F4pfuSIl8m1M8bzKUmxbG4plJqWgYSFEoVBIPX36lJY1dUMcnTt3pgYMGKDx/SEhITrdB2CxWFTt2rVzP48ZM0bnP5OTJ08yJdb1fKj6nGeaMOmAMmXKYOzYsfDz86NVromJCfz8/BAbGwuZTIZ//vlHrXIRa9euxfr163H//n1a7SoM0lQCbhk3iFs2h0lFb5B8fqFjFQmJSDl3EalnL0CZng5lappaut6/f4927dqVyNaipUqVwtSpUzF48GC172Wz2XBwcFCrI6E6iEQizJkzB6NGjQIAzJ8/H1OmTKF9WepHBg4cCC6Xy4Th6hFVn/NsPdr0y5CQkIDjx4/TLjcjIwOLFy8GANSpUwfbt2/Hhg0bVG7pSRCE/hyG1BRW4wNgUqG8SuNZZlJIu3aEaZcOkD17gcTQg5B/jIAyKRlQKou9f+zYsdi0aVNu97ySREREBAIDAzW6t1WrVuDxeDpzGhs2bMDp06cBAPXr10epUqV07jAAYOvWrTA3N9e5Hgb1YTbCdYBcLkdUVJROddy8eRNNmzbF0aNHsXnzZgiFwiLHly1bFtOnT9epTd9hWVvBbsHfKjuM/0IQBPje5WA7awocVi2GuEVTkGJxsfcdOnQIJEli0KBBmphscKZPnw43Nze175swYYJOixPOmDEDW7duBQCkpKRo7NzUJTs7G3PmzAFBEHrRx6A6jNPQATY2NujVq5dedGVkZODMmTPYu3dvkX9ggwcPhrOzs87tYZlJYfv3dHBsrLWXJRLBwm8QLANGgJSaFjv+3LlztPTXNgSvXr1CtWrV1L5vyJAhuHbtmg4sAkJCQvDt2zcAQPv27WFra4uIiAid6CqIiIgIvf0dMagO4zR0BJutv5W/PXv2oF+/fqhUqRIqVqxY4Bhvb2/cvn1bp3aQYjEsAkbQ4jD+i6BGVVgGjCzWcSQkJKB+/fpo1qwZrfr1wZEjRxAZGanWPRUrVsTvv/+uE3t+++03xMfHIzExESwWC6NGjcI///yjE12FsXr1arx580avOhmKh3EaOuDjx4/YsGGDXnXGxsYiLS0Nc+bMwYABA/JcMzEx0f0bG4sFYcO6EFSppBPxgqqVYFWM41iyZAn27t1bqOM0ZqKiolCuXDnY2NiofI+vr6/O9qji4+Px119/AQBcXFwwe/ZsZGRk6ERXYaSlpcHJyUmvOhmKh3EaOiArKwshISGoXbu2XvW+efMGbdq0wZ07d1CzZs3c8z4+Pujdu7dOdbOkpjDrr9vmSCZVK8Hsj54ghIICrx87dgwXL17EqlWrdGqHrvjw4QMmTpyo8vinT5/i06dPtNsxZMgQiMViJCUlQSKRwNfXFxcuXKBdT3Gkp6fjjz/+0LtehqJhnIaO2LBhAywtLfWuV6lU4vXr12jRogVWrVqVW3k0LU29EFZ1ILhcSNr+DlIPGe0i38bgODjkO89ms5GVlYUyZcpg4MCBOrdDF1y4cAHR0dEqj+fxeHj16hWtNvB4PCxfvhyXLl0CAKxZswYvXrygVYc60FUBmIE+flmnIRaL4erqilevXuHIkSMoU6YMgoKCcOTIEYSEhEAgEGDPnj0ICAjQSP6+ffvw8uVLeo1WEblcjuDgYNy4cQPW1tZ48+YNHjx4oDN9pEgESeuWOpP/XwiCgIXfIJCSvBFVEokEGzduBJ/PN9iSBikSgmVpAZaNNVhmZiDNpCBFIoDDUVnG8uXL0bp1a5XGapLXURQsFgumpqaoUKEClEol7O3tcfjwYVy9epVWPerQpUsXg+lmKJhfKk+DJEmUK1cO48aNg0QiwYABA1C+fHlkZ2cDAObMmZNn/NChQ9GvXz94e3vj7du3yMzMVFlXWloaFixYgA4dOtD6HdRh586dqFWrFpo3b65yLofakCREzXxAcPT3X4lX2hVcVxdkPvo3kW/ixIn4+++/kZGRod+6WgQBUiIG17kUpD27gufpAYIkoUxLhzIzE9kxsVAkJiLt8jVkPn8JZVoaUESEl1wux7hx4/D8+XO8f/++0HFubm60J9o2b94cI0aMQOvWrcHn89G+fXusXr2aVh3qsmzZMtqTZBm046eeaYhEIhAEgQ4dOuDo0aMYOXIkvn37hqCgIHTs2BGJiYm5DqMgkpKSsGzZMjg5OeHRo0ewsrJSWTdFUbC2ttZrFFVBPHz4EO3bt0fnzp11Ip8UiyBsWE8nsovCfECfPLMNKysrkCQJuVyOx48fg19E9jldsMykELdtBful82H71zTwy3mCIHP+pEihAGwLc/A9PSCsXRPWE8fAcc1SmPXpAZaFOcBmFSgzKysLfn5+qFevXpH/d+Lj42nfp+ratWvu7KVnz56QyWS0ytcEe3t7Q5vA8AM/pdPw8PDA7t27sX37dpiZmSElJQW9e/fG8uXLERMTo3Yy1KlTpzB8+HC14uiVSiVGjx4NhUKhrvm0IpPJEBISAoVCARar4AeVNhAcDjj2drTLLQ6uqwtYpv9GUoWFheXmaLRr106nDxtCIADPqyzsFs+FxcC+YFuolrlMCgUwbd8aDuuWg+deplDH8eLFC+zevRsRERFo3LhxgWOmT58OhwL2djSlZs2aGD58eO7fhpeXV25SnyHRVwUDBtX5qZxGq1atsG7dOsTHx8Pf3z+3BPj58+eRnJyslewLFy7g2bNn+ZawiuLevXsICQmBVCrVSre27NixA8nJyfjzzz/pF06SIHTgjFRB3Kp57n7BqVOnckNCX758qbPS2qREDLM/esJuXrDKziKfDC4XNsFTIaheDYRJwTOi7OxseHt7o2nTprCxscmX8U+SJG0vAfXr10doaGjurLtTp06YO3dukbNwfSCVSrFp0yaD2sCQn5/CaXh4eKBSpUoYMGBAbs1/daJQVOXTp09ISEjA6NGjVb7n3bt3qFdP/8s3/6Vs2bL4+PEj2rVrBxMTE1plk4KCw1/1gbBhfZCinIfp1KlTIZFIAADbtm3D3bt3adfHMjeD9bSJkLRqrrUsksuFVdBY8Dw9ALLgP8P4+HhMmTIF5ubmOHr0KLp165Z77fz587Ts3ZQtWxZeXl7w8fFBVlYWnJycMGbMGCQkJGgtW1tmzZoFX19fQ5vB8AMl3mmULVsWISEheP36NTp37oyYmBid6lu2bBlu376t8pr5unXrkJiYqFObiiMyMhIhISHo3r077Y2elDoM5S0OllhUYJgvj8fDtWvXaK1bxHFxht2SeeB7uNMmkyCInITF/zu7wnjx4gXatGkDa2tr1K1bF46OjjA3N0dqaqpW+sViMUJCQnDmzBl8+PABPB4PtWvXRr9+/aBUoUikrrGzs8OePXsMbQbDD5R4p9GnTx/07dtXb9mqMpkM9+7dw7Zt21QaHxsbiwoVKhh0QzwqKgoBAQEgCAIrV65Ev3796BNu4IJyxP+d97p163JzUb5+/YqPHz/S5jRY5mawDZ4KtpmUFnl5ZJtJwSvtWuy49PR0rFixAunp6di2bRvatm2rte7Bgwdj3LhxuXsnW7duxb59+4yidIeJiQn69eunVsQig34osU7DxMQEkydPxpQpU4oMTdQF2dnZkEqlEIlEKo03MzND8+baL2low969ezF//nxs3boVNWrUgJmZGS1yKXkWFAmJtMjShO+hvk5OTnnW+KdNm0bP2zKHA0mHNmCZFj0b0AazP3rmyzspjIcPH+LevXta5910794d+/fvx61bt+Dk5IQRI0bkKz9jSAYMGIAWLVoY2gyGAiixTuPPP/80WPIcAAQHB6v8UHr79q1RhC/Onz8fw4YNw4gRI9C8eXN66lEpFciON+D69/+j0wYOHJgne9jCwkLlJLmiIIUCiJs10VpOUXBdncEppXpCYkhIiFYbxHZ2dpg8eTKSkpJgY2MDiUSCrl27Ij09XWOZdCMQCHIr7DIYFyXWaWRlZeHAgQMG0//u3TuV38wOHjyYW5bBkDx8+BC9evXC9OnTcerUKfj6+qJr165ayVSmpiH9Nv2bzirrT89ZlkxKSsqzlPHu3Tu0b99eO+EsVs5mux42+80H9i12b+M7e/fuRdOmTTXWZWFhgaFDhyItLQ27du0CRVFGV67j1KlTRrFMxpCfEuk0hg0bhgULFhjUhqioKLRq1Qq2trbFju3Xrx8tb710IJPJ8OLFCxw8eBBjxozBzZs3MXToUJCFRPAUi1KJtEv/GO6hQ5IwNTXN13zp8+fPWjcnIsViSLvqJ6Of6+wEglX878DU1BTOzs4a/7w7dOiAQYMG4caNG6hXrx7Wr1+P58+fayRLlzRo0EDnQS0MmlHinEbHjh2Npg3ktm3bVHrYvnnzBhUqVNCDRaoRGhoKf39/CIVCfPnyBW3atMHhw4c1lqdISUX6Td326igIKisblFyOoKAgeHl55bu+a9cureRzHOzAUvHtX1sINjt3U78okpOTUbNmTZw8eVJtHXw+H6tWrcK4ceNQrVo1pKWl6a68jJa0a9fO6GY/DDmUOKdRq1at3D7ZhmbPnj2oW7duseOuX79u0EqhBfHs2TO0atUKp06dwujRozFy5Eg0atRII1lUejoStu7S+x95VlQUqOxslC1bFq9fv853fd68eahUScP+Hhw2RM31nCOgwguIra0tNm3ahLi4OLXFe3t7w97eHq6urlixYgW+fv2qiZU6x93dHdevXze0GQyFUKKcRrly5TBz5kyjCsNTpd6/UqnUaWlyTdmwYQMCAwPh6emJqlWrYu7cuRpnUisSEpFy/DTNFhZN2j/XoUxOxpQpUwrMhVmzZo3Gy4KkUAi+l6eWFqoHoUJYdmBgYLH94Atj9uzZAHKq2U6YMAGfP3/WSI6uiY6ONpoXQ4b8lBinwWazsWLFCggMmIFcELGxsXBxcSlyDEmSGDJkiH4MUpMHDx7g5MmTyMzMBIfDQWBgoEZyqMxMJO0/hOyYWJotLEQfRSH1yjVYWliifv36BY45deqUykuIP0Kw2eDY0tu2tjhIcfEh3G/fvsWUKVPUlj169GicOXMGy5cvh6+vr0HLnRdH165dC625xWB4SozT6Nu3LzZs2IDYWP08lFRlwIABkMvlhjZDa06fPg0/Pz/s3btXYwenSEjEt1lzoZTp/ueRfvMOlKlpqFKlCng8XqHjZsyYofGym75RJiYVeb1u3bpo06YNTpw4oZZcNpuNK1euIDw8HB8+fDD6zoYCgcDghT4ZCqfEOI3Q0FCjLSmwYcMGcIpotKNQKNSqV2Uo7t69ix49euT2htaErMgoxC5cBqqInhHaokxLR/yGzaDS0+Hk5IQbN24UOnbTpk3o3r27+koMkOle3J7QqFGjcutrqQqbzcbZs2exZcsWHDp0CEuWLNHGRL1w69YtXLt2zdBmMBRCiXAajRo1QnBwsKHNKJT379/D3b3wmkQkSeYLCTVWvher07gyb3Y2Mh4+wpfAqVBm6GbvKWbZKij+/1Z+/PhxhIWFFTr2+vXrGD16tNEta/4IpVCAyig6ue7vv//Gx48fVZYplUrRoUMHyOVytGnTxijqSRWHk5MTGjRooHVdLQbdUSKcRqVKlXD06FFDm1EoCxYsKLLiKEEQqFixoh4t0hy5XA5/f3+tqotSMjnkH8IR5T8e8ohPNFoHpN+5B9mzF7mZ4Nu3by/2nu7du2PlypXqKcrOhiJFfw8uRXwCKGXhM42OHTuibt262LJli0rtbNesWYMvX74gOjoav/32m9Fuev+ImZkZrK31u5fEoB4lwmmcOHECT548KX6ggYiIiED37t3RsmXhfbIjIyP1aJF2VK1aFdOmTdM84Q8AlEpkf/2Gr1NmIen4KVrCcWXvPiBuzQYo//8w9/b2Vikxbe/evfD29lZLlzI9A5nP9Jf0lvniJagiim76+/vjzJkziIuLw549ewosxtigQQMcO3YMs2bNgoODA0aMGFHilnlKlSqFnTt3GtoMhiIoET3CHRwcQJKkUWeIbty4EefPn8eVK1fy1fBRKBSYOXMmrK2tddLng24+fPiApKQk1K5du8j9AlVQJiYhcedeZNy8A6vxAWBJTYu/6Qeyvn5D/IYtkL1+A2XSv820oqOjsWbNmmLvz8zMROvWrWFiYqJyNWRKJkP6tZsQ1q6ptr2akLT/MKgiAggmTZqEjx8/4uPHj1iyZAmcnZ0RFBSEFi1aIC4uDrt370arVq3w7t07LFy4UOumY4YiMzMTjx49MrQZDEVQIpzGgAEDMGPGDPVvZLNBioS5fZsBgMrOBpUpA0VzxFNqaiq6du0KKyurAtedbWxsMH78ePTv359Wvbpg//79ePnyJW0OjkpLR+aTZ4gcPQ78CuUh7dwBXFfnYu/L+vIV8Ru35nMW3xk+fLjKm/YdOnRASkqKWlnisrf6qZ6c8eQZFLGFJ+t17Ngxz4vIkydP8OHDB9SuXRt//fUX0tPTERcXh4ULF+rDXJ1hZWWF/v374/z584Y2haEISoTTIEkS4eHhqo8XicAyN4O4ZTOYVK2cpxRE1pevyIr6gow7Ych8/hLKjAxQafRU94yIiMCpU6fQtm3b3H7V33n+/DnEYjGcnZ3V2sw0BNnZ2ZgxYwYaNGgAS0tL2jZQlYlJSL96A5mPnoIUCsCvVAEmFcqDZWUJlqkEytQ0ZMfEIDs6FmmXryI7Lq5AZwHkLGN4e3ur3JL09OnT2L59u1pOg8rMhDItHaRQt5vo8es3QZlacPKnmZkZpk6dmidsuHbt2vD09MSrV690ape+IQjCKJNgGfJCACh2sVksFiM5ORkSiQQpKSl6MOtfSJIEl8tVLQucywVbagrzEUMgqFJ8+QiKopD58AniN21DdnRMkWvKqjJ37lzcunWrwFpOPB4P5ubmWhfS0wcNGzbE33//jfHjx+PWrVu6U0QSIMXinBBXpRLK1NSc/5HF7IE0bNgQWVlZuHnzpsqqrKysEBsbq/r+CocDsz7dYdq+jco61CXt2g3Erd5QoNMgCAL29vZwd3fH5cuXYWtri71795aYvBN1YbFYMDMzM7pcrF8FVZ/zRr8RXqdOHYwdO7bYcQSPB5PKFeGwZqlKDgPI+aM0qVIR9svmQ/xbUxAC7ftnT5kyBVFRUQU2aGKxWLhz506eZkHGyj///IMtW7bAyspKt4qUFJRJyVAmJkGZnAIoqWIdhoODAypVqqSWwwByerCotTyYlYXkY6dA6ShUNTs+AfEbtxY6y+jUqRP69u2Ly5cvA8gJCPHz89OJLcbA5s2bmZlGCcDonUbTpk1x4cKFYsex7WxgPWkciCKS7AqDIEmY9esNfjkvEDztemhnZ2ejadOmaNiwYb5r6enpmDRpUonJ2Th37hx27typdkKZrlm3bh0+fPig9n2HDx+Gj4+PWvcoU1ORdukftXUVK1cmQ3TwPCiKaGA1dOhQLFq0CP7+/hg+fDhq1KhhlGXM6YAkSTg4OOitbTOD5hi907h8+XKxFWJJsQiWI4bm2fBWF4IgYD05EDzPslpnAx8+fBhNmhTc7U2pVCImJkal6riGJiIiAidOnMDvv/9uaFNysbCwwIoVK3D8+HG1771z5w5GjhwJOzs7le+hMjKRsHMvlDTtewE5y6IxcxdB/iG80DG2trbw9/dHly5dUKZMGaxevbpEJOdpilQqLfEb+b8KRu002Gw2nJ2dkZRUdE0eTikn8MoWnpGtKgSLhNWEMWCZa9c/+/379wXW97lx4wYqVqyIKlWqlJiM1127dhlNjoxEIsHBgwe1iq6xsLDAkSNH1LpHERePb3/No630e9zaEGQ+ewkU4gS4XC727duHVq1a4dChQxg1ahQteouC4HFBmPBBmPABDWbr2tKsWbMSl1Pyq2LUTqNFixbFrqmzzM1gFfgnbTpZIiHMB/YFoUXEjFQqRb169fKdb9WqFVxdXTFv3jxUq1ZNGzP1RvXq1TFu3DhDmwEgp/hgcHCwVsXs3r9/j3379qFDhw6qL7tRFOQfwpGwbbfGenPEUEjcfxjp126AKiKwY9iwYbh37x48PDx0usZPisVgWVlC2Kg+LANGwnrKBFhPmQALv4GQ9uwKcZtW4Lg4gzSTar1sWxzDhg0rMS9SvzpGHXLbsmVLTJ06tdDrpEQCq4ljwDaT0qpXUKcmyI1boNBwSUIkEqFy5crYsWNHnvOJiYm5Pbk7dOgAX19f9O7dW2t7dUlKSgo8PDwMbQacnJywdu3aApstqcv3VsEHDhyAvb09/P39cefOnSLvodIzkHLmHLK/fIHlnyNBFlFZtyBkr98iZulKKBMSi1zqMjc3x/Pnz5Gdna1158ECIUmwTCXgenpA2rUTeKVd84+pUD7PR2VmJtJvhSExdD8UiUmgCtm41xQLCws8ePCA6dRXQjBqpzF27FjIZLKCL3LYEDasB75nWdr1EiwWeGXdkX6z6AdJYSgUCjg7O4PL5UIgECArKyvfG2Pbtm0hFovx999/Y//+/Xjw4AEdptOKVCrFjRs3DF6mWiKRIDQ0VKUeC1KpFBRFYciQIWjQoAHi4+Ph5+eH3btzZgmhoaH4+vVrbtXh/v37Y+jQoTh79iw+fvyI1q1bw9zcvMCsZCo1Del37iHSLwCm3TpB3KRRkYEXFEUh8/EzJGzbieyv33LLnxTFhg0bkJ6ejuDg4AIbS2kDaWoKYf06kPbsCpYKvTty7+PzIWpcH8JG9ZB66R8kbN0JZQJ9tllYWGDMmDG0yWPQLUabpyGRSLBx48bcN/Mf4biUgv3iuSp1O9OE9Lv3ELNgKajMQpxWEfj6+mLw4MGYMWMGJk6cCCcnJ4wYMQIWFhb52lg2atQIkyZNQrt27YyqIyGQk0Q2cOBALFmyxKBRO9OmTcOtW7dw9uzZPOcJgkCjRo3g4eGBs2fPYsWKFUhOTsa8efPw+PFjtXRwOBz4+vrCwsICW7ZsQZUqVfD06dNCxxN8PkgTPtg21uBXqgCumytIoSBnFqHIRvrdB8h88hTKjExQaiwxrV27FhKJBL169aL1zZs0NYXlyCEQ1Kqhtaysb9H4Nu0vZEdHAwrtN+fPnDmDFi1aaC2HQTtUfc4brdPo3bs3WCwWtm7dmu8aKZXCftFssK0sdaY/OyERX/wDodDgbe/EiRPYtm0b9u7dm3uOz+dj3rx5cHV1xZw5cwDkrK9/+/YN1tbWEIlEeP9eP2UrVKVVq1ZYvXo1qlevbrCEKycnJ8THxxe4tv/HH3+gVq1aWLNmTZEPeHXgcDjYvn07Pnz4gKCgINVuIgCQLJACEyjT/x8yqsbsjCAItG7dGsOHD8f8+fPx7NkzWmuUsczNYTFqKATVqtAmU5mZiajR45H99ZtWcqRSKTZv3owOHTrQZBmDppT45L7w8PACs6pBAMI6NXTqMADk7JOw1U/C69+/PwQCAW7fvp3nfGZmJvz9/dG2bVvcvHkTTk5OWLFiBaZOnYro6GisWrUKpUuXpsl6ekhNTcWyZcsMmqG7e/duODvnrVPVrVs3/P3339i+fTtGjBhBm8MAgKysLHTv3h23bt3C5cuX0axZs+JvogAoFDnLTwqF2g7Dzc0Nw4cPh1gsxs2bN2l1GKSpBNaTx9HqMICcJSvroHEgTbXL4UlLSzOaQAsG1TBap+Hk5FRgqC0hEEBQr45+jFAzLt7Z2Rk9e/ZEYGBgsbWyQkND0bVrVwQHB2Pz5s04c+YMZs6cqYWx9PPXX3/pZjNWRZo0aYITJ07kLo2xWCy0bdsWPj4+mDp1qk43To8cOYKtW7di+/btqjkODSBJEhs2bMjd/O7SpQutS5SEUAhpj67guZehTeZ/4bo6g1/OE9AiP2rJkiX49InenisMusVonUa3bt0KPE9yueB70b/5XRCEmhEyJiYmCA8Ph5mZenkeo0ePRrVq1bBhwwa17tM1pUqVMphuBwcHKBSK3KW8WrVqYfbs2Th69CiGDRuml0S3zZs3w87ODi4uLrh48SL8/f1haUnfDHfBggW4dOkShg0bhunTp9Nbk4wkwSvtCkmr5vTJLACLEUNBSsQa3UsQBDw8PCCnueI0g24x6uipguA4OWpUKkQT1C2fbm5ujo4dO8Lf31+t+1JSUtCnTx+17tEHERERSEgovMyFLtmyZUtuhJOvry9GjhyJP/74Q+92UBSFjRs3om7duqhVqxYiIyPRoUMHmJub4/r167h79y5at26N1NRUHDlyBJUqVYK3tze+fv2KQ4cOoXv37uByubh//z5Onz6dW/sqPDwcM2bMQLNmzRATE0N7jgLL1BRW49T7f6iRHokYJlUrI+3iFbXvtbOzw8aNG3VgFYMuMdqZRkH5CwSXA2HD/ElzukCZnl5k+82CmDJlCmrUqJGvCVNJxMbGBocOHTLIW6C5uTnOnj2LFy9eYPLkybhw4UJuPwxDQFEU+vfvj549eyIuLg4PHz7EtWvXsGTJEpQpUwYkSSIlJQWZmZm5DcM+f/4MGxsbiEQiuLq64u3btwgLC8O7d+/w+PFjPH36FCkpKXj16hWWLFlCq72EUAiz/r01anilCZJWLXIqFauJo6Oj2tn5DIbHKGcaXl5eaNmyJRYvXpznPCEQwETFCrbaIn8frvZMQyqVokyZMkYXBaUJo0ePhouLi971EgQBX19fLFiwAPPmzYOpqX4efKpy6dIlXLp0Kffzj+ViHj58mG/8d1asWAFfX1/8+ee/FQwqVaqE/fv302ojt5QjRI0b0CqzKDgO9hqFvk+fPh09evQoPBeLwSgxSqfB5XILfFgQXK7Oo6a+k37vgVrx9QAQFxeHN2/e6Mgi/VKuXLl8eRH6oFatWujevTuioqKwf/9+hIWF6d0GXbFixQo4OztDJBIhNTUVBEFg1KhRCA0NpU0HKRbDfFA/2uSppFMoALjqLRkLBAKkp6eX2La0vzJGuTzFZrMLLF7G0mAKrCmyZ0VX1v0RPp+PUqVKIS6u8LadJYm3b9/myTPRF02aNEG5cuVQunRp3L1796crLfE9+gsAXF1dceTIEZW7D6oCKRKC526A0G01v0NmZmaJaRHAkBejdBocDgfnzp3Ld55treOGQP8hOy5erfEikQgPHjz4KWLOmzdvjrp16yI+Xr2fgbaMGTMGYrEYf/zxB7Zt26ZX3friwYMH8Pb2BpATbTd37lz6hBMExL/pJjy4WNQMu927dy/TcKmEYnROw8rKKjdq5kd4HrqJN/8RRXIKKDXfnHr37o1z585h4cKFBtkLoBN7e3u9v+H36tULo0aNwvnz53H37l296tYnDx8+xPbt22FiYlJskUR1IU0lENarTatMlVGjB42rqyuysrJonWEx6A+jcxq1a9fGlSsFhO9xOGBZWujFBvnHCFBZWWrdQ5Ik7ty5g6ysLOzevRsmJtq3jjUUt27dQmRkpF51RkZGYuXKlSp1aSzJtGvXDl5eXqhcuTLmzZtHq2yCxdbrbPw7ioREQI2/F7FYrHqJFgajw+icxpUrVwrcGCR5PHAc7PViQ+q5i2qXf162bBnevn2LjIwMTJw4EfPnz9eRdbpn8eLFhSZX6oJ169ZhxIgRCAkJyXuBIH449GaSzvD394eXlxdkMhlmzZpFq2yOg+odCekk6+s3KFV0GgRBoE6dOvj48aOOrWLQFUYXPVWuXDmIxeIC9zT0QebL18i4n78sdnHMnDkTu3fvxrNnz3DlyhWkpqaiZ8+eBi3DoQnW1tZITU3FoUOH9FJEzsfHB+7u7oiJiUFiYiIIHg+kSAiTqpVhUqUiQPz7XpMdE4usz5GQPX8JRWrqv7WeShBHjx5FmzZt8jtILSEEJpB0aEurTFWRv/8AKkO18ic+Pj6wsNDPigGDbjA6p+Hm5gYWq6BCgRQoHcdzZ339hpi5i6CkIQzw0aNHmDx5colzGqampggICMD8+fPRqVMnHDhwQGe6ypcvD4lEgqCgILx9/x6k1BSSVi1g2qUjCFbRk+DsuHikXb6K5BOnoUxNK7ITnrEQEBCAS5cuYfny5bRvApN8vt72/H4k4+FjlZ13jRo1mIS+Eo7RLU95eHjg+PHj+c4rU9OQ+fylzvRSFIWYuYuhiNesbMa1a9fyhNtSFEVr9VV9MWLECGRlZcHf3x9PnjzBn3/+qXYtLVVgs9lYu3YtBg8ZgkfhHyCr5A2HZQsg7d65WIcBAGwLc5h2agfHDatgNqhvzn6Xjnqr0IGzszOmT58OhUKhu9wENTaj6YKiKMjffVBprFAoREhICJ49e6Zjqxh0idE5jZCQkELrHaVdu6EzvakXLiHrm+a9AaRSKb5+/Zr7uVSpUti+fTsdpumV8uXLQy6XIy4uDq9fv8azZ89w+vRpuLoW0BZUC4YOHYqV69ai+5RJsFoyD5aj/cDSoG0vwSIhae4Lh9VLIKxXW6NyFvogPT0dSUlJuH//vm4UUBQoA5SvyXz6XOUVgEGDBqF169Y6tohB1xiV0xCLxVi0aFGh1xVx8ZB/oH8DLevLVyRs2w1Ki57gPxYpDA4ONore2uoyb968PCXpz549i9atWyMqKgrr16+HRKJd/wQgp7qrg4szjj97CoupE8ASCbWWSfL5sBo7GuYD/9C46qquGDduHHr06IFWrVrprJaXMj0dma/1W42AoigkhGxVqY0tAHTp0qVEvkgx5MWonAZJksjIyCj0ujI5JacFKw0tJr+T9fUbvk4NhjIxf+8OVSlXrlyehlHm5ub48uULTpw4QYOF+sXGxibfuZiYGMhkMty5cwenT5/WWHb16tXRpUsXdO7cGdMXLYTFxLG0t+sVNWkEs369QdLgiOiAIAiMHj0abdu2xYsX6lUZUAdKJkfWR/32pUg+dBRZKnbuI0kSv//+u8H7zTNoj1E5jfT0dKxfv77IMdlxcYhZtJyW5LOMB4/wdcI0KKJjNJZRuXJl1KtXD/PmzYNQKMSWLVtQr149jB8/Xmv79A2bzS60JzsAbNy4ES1atMDAgQOxcuXKAh1MYYwYMQKbN29GdnY2ylatCvMRQ0Ga8OkwOx/ipj4Q+jQEIRToRL46dO3aFS1btsTTp091njAp0+Ge348oklOQdPg4qPTCX/L+S1BQEBo1aqRjqxj0gVE5DUdHR3C53CLHUBmZyLj3ALHLVoPS8K1FkZSM6NkLELNoBRRa9IuoVKkS5s2bh82bN8Pa2hrTpk3D9u3bcezYMY1lGpIWLVoUOztKSUnBjh07cO3aNbRt2xaNGjVCUFAQ3NzcChxvZ2eHnj17YsCAAVi3bh0OHToElqszTCpV0MVXyMVicH9wHBx0qqM42rVrh2rVqgEAli9frnN9WV++Fj+IJmIWLYcySbUNfYIg0KRJE61mqQzGg1GFmwwaNAgnT54sdhyVkYH067cQ9eYtLMeMBq+0apu0FEUh9dI/SNy2K8dZaPHi5+npibS0NCxevBgHDhzA0aNHMWHCBM0FGgF3795VaUlNJpNhz549sLW1RWBgIOrVqwdbW1u8fv0aVatWRXx8PA4fPozx48ejZs2aGDZsGHr27IlXr16BlJrC3E8/heosRw3F18mzaAmh1oTv3QZHjx5NeyJfgSgUUGZmguTrZgb3neRT5yB7/RZQceZEURQmTJjAdOj7STCamQaLxYKDgwOuX7+u0nhKJkPWp0h8m/4XvgROQdqtu1DK8v6npCgKipRUZD59joRd+xA5zB/xG7bkhNVq4TBIksSDBw/g4+OD+Ph4dO/eHcuWLdNcoJGwceNGkGoUnpNIJDh48CBq164Nf39/xMfHw9HREeHh4XBwcMDmzZtRtmxZHD16FK9evQIAsKSm4NhY6+or5IHrXApcZyeDhKKWKlUKJ0+eRLly5WBtrZ/vq5TLIX+r214usjfvkLhrr1ptAyZMmJAnspChZENAhcenWCxGcnIyJBKJzrqnmZmZISUlReMiZoTABCSfD+K/b1nZ2VBmZYGSyUFlZKj8ZlQc3bp1w5w5c9C4cWNERETQItPQiEQinDhxQuV154CAAISFhRVYwr4oTLt2hFnv7pqYqBHZcfGICpgAZZLmgQ6asGPHDjx79gxv377FvXv39NaYS9ikEawCRuhEtjziE75N/xsKNSpAW1paYteuXWjRosVPV+b+Z0PV57zRzDSWLFmiVS4AlZ4BRXwCsqO+/HtEx0CZkJgTv07Tf9gaNWpAJBKhZs2aP43DAICsrCwMHTpUpbGVK1dGzZo11XYYpEQMQe2ampinMWwLc3DdXPSq08vLC1evXsXVq1fx4cMHvXZyzLj/ENkJibTL1cRhADmz/TVr1jAO4yfCaJyGlZVVieh6t2zZMtSvXx+xsbGGNoVWTE1NUaNGjWLHCYVCKBQKBAQEqK2D4HLBK1PwhrkukXbpAEKo+xBcZ2dnPHnyBOPHj8fz588RHByMd+/e6Vzvf1EmJiF+zUZaZWrqMMqXL4++ffvi0KFDtNrDYFiMxmnoZaOQBmQyGaKiogxtBu307du32KVHDw8PHDp0CC9evEB0dLTaOkgDlYvneXmC5PN0Jp/P52Pp0qUQCAT4/fffsWLFCqSlpWHQoEGFVjfQJZlPnyPt+i1aZGnqMABg7ty5efKXGH4OjMJpNG/eHHwdR3zQhZ+fn06aBHE4HAQFBeHs2bO5EUeXL1/G1q1baddVELGxscXO9ObOnYthw4aVuOY5BIsEx153ZcMXLVqEN2/eIDo6GufOnUOXLl1w//59vc8yvqNMTUXcmo1I3HsAlFLzRFhtHIaZmRl27dql16U5Bv1gFBvhW7duRVBQkNG/wVeqVAl79uwBn8+Hj48PwsPDtZLn4uKCNWvWICYmBsOHD0fjxo3zFWssV64cOnbsiNmzZ0OpxQOgOIRCIeRyObIK6YtQtWpVPHnypNDrqsBxcoTDqsUa368NKWcuIG79JrWaBRUFSZIYP348oqKisH//fjg6OsLMzAyZmZl4/PgxLTq0hRCYgG1jA4uRQ8FXo2+4Mj0DiaEHkXrxCpSJiWrr9fDwwJo1a9CiRYsS94LxK1OiNsI/ffpk9A4DAJycnLB48WI0bNgQtWvXBo+n/pIHn8/H4MGDcf78eWRlZWHBggX4448/kJqaWmB13+fPn0MoFKJ9+/Y0fIPC8ff3R5UqVfKdJwgCCxcuRN++fbVyGIaGV64sSAF9y2OzZs0Cn8/H9u3bYWZmhn/++QcJCQlG4zCAnOCQrA/hiJ45G1+n/YXMF68KnXlQCiVkb94ieu4iRPr5I/nIcY0cBgD89ddf8PPzYxzGT4rBk/scHR2xcuVKQ5uhEmFhYYiPj4dcLseFCxdw6tQpzJkzB1euXMmTuGRvb49v377h0KFDoCgKx48fB4/Hw4ABAzB8+HCYmJhgxIgRiIyMVKmt6sKFC1G5cmUdfrOC4fP5KFWqFF69ekVL0yB1W+jSCcfRAUSBfVrUQyQS4dy5cxgwYEBuLSmSJNGnTx+jDeRQJqcg8+FjRL99D4LHBSkUgmUmBcvCHFAoIP8YAWVyCqjsbCiTtVtJcHd3x+DBg/MUvWT4uTD4TKNHjx6oUEG3JSXoQCQSYe3atbnOISYmBl26dEG1atVgamqK5cuX48iRI3j16hV27NiBgwcPgiRJrF+/Hp8+fYKdnR327NmDRo0a4dGjR2o14YmLi4OVlRXKlSunq6+Hy5cv49OnfwvederUCWfOnIGVlRU2bNhAy9IYJZNpXPrFGOBwOFi3bh2CgoLyFB9ksVhwcnIyoGWqoUxNhSIuHlkRn5D56AnSLl5B2pVryAqPgCI+QWuH4ejoiNDQUKYo4U+OwWcazZo1w+rVqw1tRrEsW7Ys34woLi4OCxYsgLOzM4RCIfz9/VG2bFmcOXMm3/3/rbvj6+uLT58+wdLSMk/jpqJ4+/YtpkyZgp49e2r3RQohMzMz94+9UaNG4HA48PHxoXUfRSmXQ/biFfjeunN+hZH1OVJjhyWRSDBnzhw8evQIvXr1ynf906dP6NixI9zd3TFp0iRtTS2xdOzYEePHj0dqqmql0hlKJgadafD5fIwaNYr21pe6IDAwEOfPn8/9TBAEevXqhbJly2LMmDHYsGEDwsPDC3QYP3LhwgWULl0aQqEQO3fuxKBBg4otNREWFoa7d+/S0s+iINq0aQNnZ2e0bt0aLVq0wJ49e2jfeKfS0pF2VXeNtIpCHh4BpYoVWX+kd+/eOHPmTKEVmJVKJdq0aYOFCxfCx8cH27ZtQ6lSpbQxt8SxbNky7N+/P8/fCMPPiUGdxpgxY+Dl5WVIE1SiVatW6N+/f+5niUSCEydO5BbpGzlyJG7dUi8u/v379/j06RNmzZqVO9tYuHAhTp06hT///LPAPulLlizB/v374aCD6q21atXCo0eP0LdvX8ycOZN2+d9Ju3kb2RqEcGqL/NUbtSOndu3ahQsXLmDt2rU4evRosePj4+Nx6dIlbNu2DUOHDi2k1/3PR506dWBjY1MiglkYtMegIbehoaH4888/VdoMNiSPHj1Cly5d8Pr1a5QvXx6xsbEgSRJfvnyhXRdBEJBKpahVqxbGjBmDmzdvYvr06bnXK1asiMmTJ6Nbt2606fy+4W1tbY0bN27oNLQXAPiVK8J21hSd6viRyIBAZL0PV2ls/fr1wWKxULduXcydO1fjEhiLFi3KDZkuqrlYSUYoFMLBwQHx8fE/XZWEXw2jD7kVi8WYOnWq0TsMd3d3dO/eHa9fv0b9+vWxbNkycLlcnTgM4P8tNBMScPr0aTRv3hwXL16Evb099u7di86dO+Px48cYOHAg5syZAxOaMqyrVq2K4OBgDB06VOcOAwDk7z9A9kZ/iW/ZsXE5lY1VoHfv3pg3bx4UCgXmzJmjVc2ksWPHYt26dfD29karVq1o+30ZC2XKlMGNGzfw9etXxmH8QhjMaezYsQOenp6GUq8SJEli06ZNiInJ6ezn4OCAgQMH5oky0jVXrlxBVFQUhgwZgvr168Pc3BwCgQCnT5/G3r171SplXhgeHh4gSRLBwcE0WFw8yuQUJGzbpRddABC/ebtKVW7btGmDffv2oV69emoVY+RyuRAIBBg6dCgqVaqU59rhw4fx4sUL9OrVC48fP4ZIJPppnMewYcPQo0cPJBuoXwmDYTCY08jOzsaRI0cMpV4l2rRpg4MHDyI2NhZt2rTBixcv8PHjR4PYkpSUhICAAKSmpmL16tUYOnQoQkJCwKahx3b58uUxfPhwvH79mgZLVUMe/hHyCN073+zYOGQ+flbsIuyff/6J+vXrQyaTqSVfIBDg+PHjYLPZiIiIwN9//w0HB4c8YeSpqano1asXypUrB29vb+zYsaNE73d06tQJAQEBCAwMxPPnzw1tDoOeMciehkgkAkmSRv2GQhAE6tSpgxs3bkAkEuHw4cNo06aN0axNV6tWDQqFAv7+/nj48KFWTaA+fvwINzc3vcfXc91cYLdkHggdNUmiFEp8DZoG2as3RZbGZ7FYmDt3LiZNmqR21vvMmTPx4MGD3MJ837/L0qVLYW1tjR49euS7Z9y4cYiJidFbXTE6GTNmDBwcHDBhwgQm4/snw6j3NAIDA3WaqEYH/v7+qFq1KoCcNf8pU6YYjcMAgHv37iEiIgIPHz7E7NmzNY6oqlChAqKiogySkJX1LRrpt8N0Jj9hx27IP0YU6TA8PT2xY8cOjB8/Xi2HYW9vj/r162Pbtm15KrlSFAWKovDnn3/ixo0bqFixIszMzPLcu3DhQvB4PJUbXhkDvr6+2LdvH5YuXYqxY8cyDuMXxiBOo2bNmrh9+7YhVKtMzZo1sWHDBpQqVQpisVjtkNriIHhckKYSsG2swba3A8vSAqTUFFBjjyI+Ph7Lli2Dh4cHAgIC0KRJE7XtaNy4scF6m1Np6UjYtA0UzQ8gSqFE/KbtSDlzHlRGZpFjt2zZgnHjxqklf/To0diyZQvS0tIKrWSrVCqxYsUKsNlsHDhwAGXLls1z/dq1a9i2bZveWsFqy7hx47B+/Xq9BEowGDd6X54SiUSoWrUq/vnnH63k6AqBQIDhw4djyZIl4HA42Lt3L6ZOnUpLITqCxwMpMAHP0wOC+nXBL+sOlpUlCIIApVAi+9s3JB05jozbYVCkpKqVV3D+/Hm4urqiSpUqai37HTx4EGPHjsWHDx80+UpaQ/D5ELdqDvN+vWmRp5TJETN/CTIfPwVVzP6Ek5MTMjMzcwMdiqJJkyZo27Ytrl27hitXriA2NlblyCobGxv4+Pjgy5cvuHfvXm7GtJ2dHQiCMOr8hmnTpgHIKULIOIyfG6Ndnpo+fTpevXqlb7UqIRaLceTIEWRmZoIgCNjZ2eHcuXNaOwyCzwfLyhLmg/vDYf1KWAeNg6hBXbCtrXLXwL/3fLD0GwzHkDUw7dQWpKmpyjpatmyJI0eOgMPhqHyPqakp6tevbzCHAQBUZiZSzl7At7/nI1vFsNjCkH+MQFRAIDIePSnWYVSvXh0HDhwo1mE0adIEQqEQ3t7e2LBhAw4ePIiYmBi1QnG/ffuGPXv2QCaT4eDBgxgyZEju+evXr8PPz09lWfrE3d0dFSpUwKxZsxiHwZCL3p2Gs7Oz0UaOKJVKDBs2DOvWrcPBgwdhYWGhXQVekgTL3Axmg/rCcf1KiJs3AcnjFnsbwSJh1rMb7OYFg+1gr5KqrKwsjBkzBsePH1e5W9r30F1DQ6WmIePOPUT5ByJ29Xq1y31QFIXEg0fxdWowsiOjgP9UHC6M/v37o2PHjoVed3V1xYkTJ+Dj4wOCILB8+XI8e/ZMq4fnrVu30KJFC5w9exbu7u5QKpXw8vKCQCDQWKausLCwQKNGjSASifDXX38Z2hwGI0LvTuPAgQNGOR0fOHAgDh48iHfv3iEwMBCrV69GWJjmm7SkWARBzWpwWLMMkua+IFjq/6g59rawmzsrp4S1ioSEhMDMzAy1a9cudqxSqcS3b9/UtksnUBSUSUlIPX8Zn/38kbhnf5EFBimlEplPnyM+ZCsiB49E0t79UCaqVo67a9eumD59Oj5//pznfM2aNTFnzhysXbsWUVFR6NatG6ZOnUprAT6KohAeHo5mzZph0aJFyMzMxKJFi3D+/HnUqVOHNj3asmvXLpQtWxYtW7bE/fv3jco2BsOi9z2N1q1bF9hsyJBwOBzs2LEDX758wbt377BixQqNZRECE7CkUpgP6Q9B1cq02CcPj8C3mbNVarspFovh5eWF+/fvFxvhEhwcjKpVq+L333+nxU46IXg8kEIB+N7lwPX0AM/NFdmxsZC/fgvZ2/fIjo6BMiMDVFq6WnK9vLywfPlyNG/eHFwuF1u3bgWfz8eJEyfw4MEDyGQyfPjwQS+VWkeNGoWHDx/ixo0bsLCwwJYtW9C6dWujWAr6/PkznJyccpfhJk6ciJiYGFr6qjAYJ6o+5/XuNI4fP47WrVtrJYNORo0aBQ8PDyQkJODEiRNaRXURIiHELZrBrE93EDRkav8XeXgEvs34W6VyGMHBwWjVqhWqVatW5LjDhw/j/v37mD17tnGHUJIkSIEJKHkWKBWWnoqiZ8+eaNCgAaytrTFz5kyDd9pzc3PDhg0bsGrVKpw6dQq+vr4Gf6lq0KABzM3N8yTfCgSC3HBbXbR8ZjA8RrkR3qRJEzx69EifKgvFzs4Ov/32GyZOnIibN29i2rRp2jkMEz745b1g3rcn7Q4DALgupWDavTMIPr/YsUuWLEGpUqVgaWlZ5LgtW7Zg1qxZmDlzplE58nwolVCmpmnlMIRCIe7cuYPz58/j4MGD6N27t8EdBpBT7bh58+aoU6cOFAoFJk6ciKZNmxrMHgsLC8yYMSNf3k56ejpGjRplkA6SDMaFXp3GxYsXMXnyZH2qLJB69erh5s2bqFGjBnx8fLBrl3Z1kAiREOKWzWE9Ub14f3URN/NVqc91fHw8/vjjDwiFwkLHSKXS3BIkM2bMwNChQ1G9enXabDUmfHx88ODBA9y/fx8xMTE4d+6cUSVqKhQKjB8/HgEBATh69KhBa1MNGzYMO3fuRI0aNfJdk8lkWLduHRo3bqx/wxiMBr06jVatWqFr1676VJkHa2treHt7o2HDhjh8+DCCg4O1r7dEEOCVKQ3zfr012uxWSxWLBL9yRZXGPnjwAM+fPy+0aVO5cuVQpkwZADmRVx06dMD79+/RuXNn2uw1NLa2tpg6dSpevXqFbt26Yfjw4VpVrdU1ixYtQrNmzWBurnrgA53Y2tri7NmzEIvFhRZs9PHxQenSpfVsGYMxoVenYcgKn6NHj0ZoaCgcHR1Rq1YtbNmyhRa5pNQUVuNG0yJLFUzbtQZpWnz3vq9fv+LDhw9o3rx5gddtbGzyRA9lZ2dDLpejZs2aCAoKos1eQ2Fra4sdO3bg7t272Lp1q9bhsvpAoVDAz88PAwcOLPT3pkumTp0KMzMzLF++HOfOnStwzLdv3/Ds2TN4eHjo2ToGY0HvIbf6bgdpaWmJSZMmYefOnfDx8cHly5exePFiPHz4UGvZhEgIs55dwdJRC9aC4Dg7geAWn+sBoMjucSwWCzt27MhzLjU1FYGBgXj58qVaSYLGRpUqVZCVlYVhw4Zh+PDh6NWrF+RabqDri7dv3yI0NDTf70bXsFgsSCQSnD17FiNHjsxTpfdHsrOzMWbMGD1ax2BM6NVpfPz4Ua9NlyQSCS5cuIDz588jLi4OFStWxPjx4+kpYcJhw6RyRYhb6HfTkiBJECqWQ4+Li8PEiRMLvNanT59C7zt06BC2b98Ob29vjWw0JHw+HwsWLEB6ejocHBzQoUMHREdH066H4PPAMpOCbW0Ftr0t2LY2YEmlKjv0oli5ciWuXbsGW1tbGiwtHoIg0LRpUwwYMABAToHOokrRhIWFgaIoWnq5MJQ8tG/GoAaTJk1Cu3bt9KKrQoUK8PDwQLt27RAeHo6KFSti6dKl6Nmzp/bCCYDr4gzLgBHay1ITSqEApWJNqurVqyM5ORmWlpZqd1ZbuHAhVqxYAR8fH03MNBgDBw7E+vXrMWfOHNy6dYu+6r0kCVIsBsHjgF++HAS1a4Jf3gukWJRbCkaRmoqMO/eRcvossr9FQ5kpA6XhhrtcLsfq1auLzFqni969e8PKygpnzpwBkOMUiusb4+fnh969e+PAgQNGFVTAoHv06jT0Rfny5bFw4UL4+fkhPDwcXbp0wcuXL9G+fXskqdDBrThY5uawmToRJA1vleqiTE0D1FibX7duHeLi4vKd/17/qDDCwsLQpUsXVKtWDffu3VPbTkPg6emJAwcOQCaToUqVKtizZ49W8kiJGCypFFyXUuC6OENQvw44tjaFjmeJRBA1aQhRk4agFAqk376HpAOHkP01Gko1cxsOHz6M/v37a2W/qjRu3Di30m/p0qVx8eJFle6TSCRo3749du/erUvzGIwMvc4vp0yZonMdXC4XXC4Xffr0wfv37zFnzhz4+PjgxYsXtDgMgsuFaad2YElVLyZIJ/KPEVAWU+77O4cPH0ZUVFSBBfH8/f2LvZ8gCAQHB+usSRLdjBkzBhMnTqRlM59tawPraUFwWLkIVuP8Ydq5fZEO40cIFgvCujVhv2gObGZMAtvOFgSPp/L9x44dQ0REBMRisSbmqwSHw8Hw4cMxcOBAJCTkJI1WrVpV5U34AwcOoHz58jqzj8E40avT8PX11al8Ho+H0NBQJCUlITs7G9WrV0dISAiGDx9OW8YzITCByNdwSzayl69BZarmNOrWrYsKFSoUWBBPlT/2mJgYHDp0iJ4lPR1TunRpNGjQABRFFRr5oyosc3PYzp0FvkcZWmzjuZeGw6rF4FeqoLLjSEtLy42m0hUbN27M13jq999/V3kT/nv13qI2zRl+PvTmNJydndG3b1+dvrWuW7cOa9asQXx8PHbt2gUej4e3b9/Sp4AgwK/oDdKk+KxsXZFx70GRnej+i7W1NXg8XoGRYqqWQ9+wYQMuXbpkkBBQdQgODkblypXx559/ahVayzI3g9Xk8WCbmxU/WA0INhvWQePAtlN9c9vR0VGnm80nT57Ehg0bcj+7ublhxIgRBS5nFkZCQgI2b95caD4Qw8+H3pyGr68vJkyYgHPnziEwMBB8FcphqAJJkujevTuGDRuGhQsXgqIoVKtWDdOnT8f169dp0fEdlpkUFsMG0ipTHaisbGR9Vb0qbUJCAh49elSgo546darKcuLj4zF06FAMGjRI5Xv0yblz5+Di4gJZMT00ioTFAtvOFjZ/TQPfXTfJawSLhM2UQJX7pJw6dQoEQehkht65c+d8JX2WLFlSZBWBgoiMjMTcuXNLTAdCBu3Rm9PYtGkTzp49i6ZNmyIiIgKlSpXCmTNnMGvWLLi6usLe3h5ubm4wVfEPytXVFb169cKdO3fg5uYGZ2dn9OvXD/Hx8bhw4QL97WRJEqLfmoElEtErVw3Srt9UKxrn3LlzuHLlCkaOHJnvmjp5AJmZmejSpQu+fPkCT09PTJo0Cc2aNVP5fl3Rrl07eHt7Izo6Gg0aNNBYDmHCB7+cJ+yXzQfXUbNe66rCtraCSdVKgAoz7lWrVuH27dtafbeCIAgCISEh+PTpU+65SpUqIT4+XqPw5P3796Nhw4YGLX/CoD8MEj31PaqlZ8+eKF26NL58+YIhQ4bAxcUFiYmJOHDgAAICAnDz5k2cOnUKderUgZmZWW5RPQ6HA6lUimvXrsHPzw8PHjzQfZVWFgu80m661VEMSQePgspU/W26a9euyFRx/6M4lEolTpw4AZIkcevWLdSrVw8vX76EtbU17t+/r/fyHGPHjkWDBg2QmJiIXr16aSyHEAogqFkdlgEj9Lbhb9a3FzIfPSm2YnGZMmUwcuRI2hNiRSIR+vfvj7S0NAA52fPR0dFaRWuZmJigdevW2LdvH11mMhgpBg25jYuLy10/Xb58ee55qVSKAwcOoFmzZujYsSOUSiU2bdqEo0ePYtu2bfD19cW5c+f0+qAydABR2vVbyFahl/V/KV++PC5evIjRo/OXOdG0SKNSqcTFixdx8eJFEASBIUOGYM+ePWjWrBkiIyPzbazSDZvNRps2bbB+/XrY2tpq1USKFItg2rkDJO1b6zVCjG1uBtPunZEQsq3ItrRv374Fi8XKs+9AB6NHj8bmzZsB5OxjHDhwAN26dcOXL180lnn79m00bNiQLhMZjBiDp3Ta2tqiY8eO6NatG0xMTDB//nxs3rwZPB4PY8eORevWrdG2bVscPnwYmzdvhkKhwNmzZ/X+ZksIheA4qtZ6VRckbN+tdsOhU6dO4dy5c+jbt29+eQna9eMGcrrQTZ06FVWrVkV0dDQWLFig0/ISnp6eOHz4MExMTGBtbY2dO3di2bJlGski+HyIf2sG0w5tDBJSbFKhPAh+8ZFU169fLzSrXxN69OgBa2vr3O6ZDg4O8Pf317pwZ1hYGMLDw2Fvb7i/EQb9oBenIZFIUKdOHcycORMAsHTpUhw7dgz9+/eHo6MjJBIJ2Gw2SJLElClT0KFDhzwNYIwBgiDAojmiRlVkb99DqUEnue9VbAtqxjRiBH3Z7CkpKUhPT0dAQADEYjF8fHzg5uZGa+RPnz59EBUVhaCgIBw9ehQ7d+7EixcvNJrZEDwuBLVrQNq7O2326QqhUFho/TB1IQgCkZGRCAwMBAA0bdoUcXFx9JTVQc7KwcmTJ2mRxWC86Gx5SiQSoV27dlAoFEhKSkLNmjVx9OhRADkloKOionJLPGjTi1tvcDgg1UjOopP4jVugTFa/W1qfPn2wadMmrZYd1OX7i4G/vz/atGmDefPm4d27d7nlYw4cOAAvLy+UK1cOcrkcq1atwogRI/D+/XtcvHgxXwQUj8fD2bNnce7cOSQnJ+PJkyeYNm0agoODNY6WYtvZwXK0X4lIWixbtiw2btxIi6wZM2Zg+/btkMlkMDU1RVBQENq0aUOLbAC4cuUK5syZQ5s8BuNEZ05jzpw5ePbsGbZt24b09HScOnUq99p/ozYYiib91l1kfdTs5/X161cAOS1tf6SgfQ46WbZsGTZt2gRbW1skJSXh/v37AIDk5GSEh4cjMzMz96Xh0aNH6N+/P9LT0+Hj44Po6GjExcVhwoQJiImJgZ+fH54/fw43NzcMHToUixcv1ngvgzSVwDporMpFHw1N+fLl8erVK63lfJ/tT58+HUBOS9egoCCkp6u35FkcERER8PT0xMuXL2mVy2A86OQvp2vXrhg/fjxtkTu/Ksr0DMRt2Azl/6Nc1KVHjx4AckIifywU2a9fv9xZga5ISUnJ7TV85cqV3POJiYl5HoTXrl3LbfoTGRmJN2/eAMhJ1pw0aRLi4+MBAJs3b0ZgYKDGDoPgciBq0hgcNRLsdAWlYrRfbGwsLS9ZIpEo9/dtamoKgiBw584dreX+SHJyMkaNGkXr8ieDcUH7noaNjQ0GDhz48zkMeRYUGuwraEPM/MVQxMVrfH9RBfuqVq2qsVxd8vbtW/D5fBAEgWHDhsHW1hYLFixAnTp10L59e63yb9gO9jDrYxz7GFmfIlUqYqhUKrXeXO7UqRPq1auXm+z6+++/w8xMN/tzERERTMn0nxzaZxpubm5a99w2RqisLGRHfgGrrLte9CUdPg7Z63dqVbT9ke/ZvQcPHsx3rbC+JgKBANbW1sjMzMxd3qIbHo8HOzs7ADn1rbhcbm5SZ3h4OKysrNCwYUPExcXB09MTkZGRCAsL0yqclzSVwGqcv9EsS2V9jgSUxUcARkVFabUR7urqirVr18LB4d+kxZo1a2LJkiUayyyKlJQU/PnnnxCJREjV80sWg36g/S/o/fv3uHnzJt1iDY4yPR2Zz16ApwenkX4nDEkHDmsUMfUdkUiU6yzev3+f51qdOnXyZInb29tj9uzZGDt2LCZMmAAul4tXr17hn3/+wezZswEAc+fORfny5XM3Ttu1a4eQkBBYWlri1q1b2LdvHxYtWgQgpxyFk5NTbr/xbt26YfHixXBwcMDDhw+xefNmBAQEAAC2bt0KJycnNGnSBEBO0l7//v2RmpqKy5cv5/Z40Ao2G4LaNcF1ctReFk2k3VBtxlShQgWN+1V8d8QVKlTI07lw/PjxOs2n6dq1K5RKpd67DzLoBwJAsa87YrEYycnJkEgkuWvUhXH+/Hk0a9ZM73kU+oDjXAoOKxbqVEf6nTDErlgHpZZl3GvXro0PHz7g27dvOHLkSO6ehlgsxsWLF7Fnzx5QFIVTp05h6tSpCA4OxosXL+j4CkYHaSaF4/oVBot++5GsL1/xJXAKlEmFd8f7zrVr11C/fn21ddSpUwdz5szB1KlTcfXq1TzX/vv/QRfY2tpizZo16NChg850MNCPqs95WmcaFStWRGJi4k/pMABAkZCAjKcvYOLtpRP5dDkMABg3blzuZqSZmRkGDx4MT09PyGQyhIWF4fXr17h8+TJSUlJKROlzjSFJCBvWMxqHAeSUg1EW0U5VGwiCgL29Pezt7dG6desCl4joyvsojK9fv2LWrFk61cFgOGh1Gq9fv9Zp/X9Do0xOQdzKtXBYtQQEi97NvqRjp5AUepAWh2FlZYWUlBTMmzcPzs7OuHDhAgYOHIizZ89i5cqVOumZbayQIiFEjegt+KcN2TGxSL8dpsL8PoeCeqEUhrOzM6ZPn47ExMQiM/P10WlvwIABCAgIoK/dLoPRQKvTWLBgAcaPH0+nSKMjOzYOMQuXwnoCPeUylGnpiFmyArLnr7Taw/gOh8PBvn370KxZM7Rs2RInT55Edna2zsNrjRWCzQbHiPYy4tZtgjIxUeXx38ONiyM4OBgnTpzA6tWri0yWbd68OS5cuKCyfk0pX748LC0ttaoNVtIxMTEB9/8toZOSksDj8bQr328k0OY0vLy8YGpq+vOF2v6IXI6MR08Qv3UXzPtqvqxDZWcj5fR5JO0/DEViolZRUv/l/PnzyMjIQFZWVm4G/q8MweWC5Om/l3tBZL54BdkL9RL1vLy8wGazC6zibGdnh5iYGBw7dgyRkZG4detWsfJq166NmJgYnUXGfWfDhg20Jw4aC5aWlnBycsK7d+/QqlUrDBgwAGfOnMHp06cxe/ZsEASB2bNnw8PDA76+vlAqlejfvz/WrVsHV1dXBAQEQCKRoHHjxoiLi8Pq1athb2+PjIwMtRpgGQranIa5uTn++usvusQZNVRqGlLOnAOysmDWv49aS1WKxCSkXryM5OOnoUxJLbLKqbpwOBxERETgjz/+oE0mAz0okpIRs2i5SrkZ3yEIAtHR0ahYsSKaNWsGW1tbfPz4ESdPnsSyZcuQmJiIuXPnomXLlirL1Neb7rNnz36qvU2hUIjKlSsjJSUFkyZNwps3b7Bq1SrcuXMHt27dQnh4OADkCTC4desWtm3blvu5X79+sLS0BEVR4HA4SE5OhqNjzix42LBhaNiwIebPn4/o6GhERETo3LFrCm3RUx06dMChQ4fots+oIUz4IIVCmA/qB0GdmkXWMpKHRyB21Tpkf43OWYaiea3X3d0dwcHB2LVrFzPD+A9sWxs4rl9hUBuorCx8mTgd8rfvVG7VC+TkU3h7e2PTpk1wdHQEh8NBUlKSyktWBcHlckGSpM5XBJo0aYIOHToUWMKmJEGSJAIDA9GgQQOsWbMGx48f17nOGjVqYN68edi1axdtdcdUQdXoKVqchqenJ4KCggoswf0rQAqFIIUC8CqUB8fGGlwX59xr2fEJSL9xC/LwCJ1FzPD5fHz58gUfPnxA9erVteqR/bNhaKdBURRiFi5H+q07gJq5EQ4ODkhJSUEyTf9vSpUqhb/++ktvM9GjR4+ibdu2etFFN3369EGvXr2waNEiXL58Wed9YgrCzc0NAwYMQGpqKkJDQ/PlW9GNXkNu69evr5eIDGNFmZYGZVoasi9cBkgyb8cmiqJtv6IgTE1N4erqit9++w0JCQmMw/gBpUwGZXoGSIH+W5FSFIXYJSuREXZPbYcB5NQMGzx4MJ4+fUqLPa6urnjw4AEtslShpOVpmJqaol+/fti/fz+EQiHatWtn0I3r9+/fY/bs2fD19YWnpyfKli2LihUrYuXKlbldFw0BLU7jxIkTei2/bdTQ/NAWCARgs9lQKpVITU2FRCIBkLM23axZM8yYMQPv379HRkbGLzvTK5LsbMjDP4JfzlOvaimKQuziFUi/EwYqQ/2lIB6Ph2/fvtHmMADgzZs3eTLDdU3nzp3x+++/G/UeW+3atdGsWTOsX78e27ZtQ0hICKKjo7F27VpDmwYASE9Px7FjxwDkdDRlsVhYsmQJAgICULZsWb2+BHxH6+UpFouF/fv3l7i3CmOExWLBwcEB06dPh6WlJSZNmoRWrVqhQoUK+Pr1K6ZMmZK7xnn8+HFcvnwZsbGx2L59O/r162eQKXRJQFC3FqwnjtWbPmVaOr7NXgD523caOQxd8ccff+TZmNU1tra2mDFjBoYNG6Y3napgamoKJycneHt7o3bt2li5ciXevn1raLPUonTp0ggICICzszM6d+5My8uA3vY0WCwWQkND0alTJ62N/lWpVKkSZs6ciTdv3uCvv/6CRCJBZGSkSktNPXv2xO7du3+qSBW6IU0lsF8yD2xLC53qoSgqJ4w69AAUCYlazTpHjBgBpVKJNWvW0GKbRCLB1q1b9fpyx+FwUKpUKbx7905vOosjKCgIPj4+mDFjBm7cuGFoc7SmVKlSiI6OxoULF+Dr66tVgIOqTkPrtGalUkl74/tfBS6Xi7Jly8La2hoDBw7E+PHjkZSUhE+fPqnkMObPnw8fHx/GYRSDMikZ0XMWqdzDQl0ohRLJx0/h8+CRSNiyI6ecvRYOo3379vD29sbWrVtps7Fp06ZFlsrXBUql0igqRHh4eGD//v2oWLEidu7ciebNm/8UDgPIKUWfmZmJhQsX6u05TMuehomJ/jcZSzqdOnWCn58fNmzYgL1796p1r5OTE3x9fXH16tXc9U6GopGHf0Tcuk2wHDGENpkURSH99l0kbNkJRVw8LTk3PB4Pz549w+HDh7U38D+cPn1a78l2CoUC7u76aSVQGDweDzNmzMCoUaN+6n3XQ4cO4cqVK3opSa/1TIMkSfTu3ZsOW34JatasiU6dOuHZs2do27at2g6DxWJh6dKliI+PZxyGOmRlIf3aDcSuXKv1jIOiKPyvvfMOa+r+/vg7NyGQQAggYS8RsAoISt0TB60bW1dFW21r1V/xa21tFeuotZXq113F4l61WqtCtbVKFWeddbVu615Mkb2S8/uDytcFhOTe3KCf1/O8n4dc7j3n3JvkntzPOJ+8w8dwZ8QopM+LQ+nde7wkDI7jsH37drRuzX+tLLFGN547d04UvwAwe/ZstG/fHgMGDHihE8Yj8vPzcfDgwSfWThECXpqnLCws+IjlhWfKlCkYPHgw9u7diwsXLhj0y0+lUiE+Pp5N4DMAXV4+cpP34d7YiShNTTPIRmlqGlImTkX6vIUovXsflMffr3e1Wo0tW7Zg+fLlvNkEymaWC7VSX1UItdhTVUyZMgVXrlzB9u3bRfEvBoWFhZg6dSqioqIE9cPL5D61Wg1HR0ez6vAyJ1q3bg2FQoHjx48bNZu3RYsW8Pf357Wt+6VEAnC2algG1IG6dy9YBvhBUkW5cF1xMbITf0HO1l+hzTK+EvHTNGrUCB4eHoL8GFAqlQgLC3tmXQ1TsGHDBowYMcKoz311UCqV+PTTT1/aAp3GUJ11k6gqqVQqIiJSqVTP/b+FhQXt2LGDNBpNlbZeNo0bN47i4uKodu3aRtnx8PCgXbt2kaOjo+jn9CKJs7EhqYM9WXh7kYWPd7nkAX5k3bYVWbdtRVYhwSSt5UASuVyQGDQaDe3evZvq1asniH1HR0fq0aOHKNf3nXfeoX79+pnEl4uLCx09epS6d+8u+udKLEmlUtq4caNBx1Z1n39M/Bh744036LPPPhP9opmLHBwcaMiQIeTs7Gy0rX79+pGXl5fRiYfJ/OTi4kJt2rShNm3aCOZjwYIFFBkZKcr5eXp6ko+Pj6A+lEolzZs3jywtLUmhUIj+noopqVRKP/30k0HHmjxpACC5XE5ubm6iXzix5enpSbt27aKePXsabSsqKori4uJEPycm/hUeHk579+6lwMBAQf1MnDiRbG1tRTvPUaNGCWbb0dGR9u7dS23bthX9/TQHcRxH77//vkHHipI07O3tKSkpiSQSiegXz1j5+/tT+/btKSQkhBISEighIYEaN25Mw4YNo88///y5xygUCpo6dSo5OjqSp6cnL3GMHz+eOI4T/Xow8SdLS0sKDw+ntm3bkoeHh+D+OnbsKOr5/vrrr4LYlclk5O7uTvb29qK/p+Yid3d3atKkiUHHipI0AFB0dDR98MEHol+86koikVDr1q3J39+fvvzyS5o7dy516dLlufvGxMTQRx99RMHBwdSyZUsKDQ0lHx8fSk5OpjfffJO3mN577z2SyWSiXxsmfiSVSsnPz4+Sk5Pp3XffNYlPKysrSkpKEvW8v/32W73uHdXVsmXLqE+fPqK/r+ak9957jwYMGGDQsaIlDYlEQr6+vjUm+7ds2ZI0Gg1t2rSJ4uLiyMXFRe9j33rrLfr000/pnXfeKT93PmPbuXOn6NeHyXi1atWKEhISaPHixeTl5UWurq4m8928eXOKiYkR9fxtbW3Jy8uLV5thYWH0xRdfiP7empvee+896tatm0HHipY0gLIvyZ9//in6BaxMcrmcDh48SF9//TW5uLiQVCoVPabH1aBBAzawwMxUt25dioqKoi5dupBcLqeoqCiKioqi4OBg8vPzK39tZ2dHMTExlJiYSBMmTCA7Oztq3LgxWVhYmDxmjuPIxsZG1OvWqFEjio2N5c1eREQEeXt7vxDN4EK834Y2Z+t7n+dtudfHOXDgAFasWIHg4GD89ddfQrgwCKVSiVmzZuGVV17BsGHDjC7wJSQajQYzZswQO4yXEo7j0LBhQ5w4cQKxsbFwcHDAxo0b4ezsjOLi4vJqwo8qi2q1Wmi12vLXRIT169cjNja23OaxY8ee8OHs7IyQkBBkZWVh/PjxAIBJkyYhPDwc4eHhyM/Px4ABA7B+/XpYW1tjw4YNOHPmDKKjo1FcXIyPP/4YQUFBsLS0xPHjxyuscPzzzz9jwADD17Lng5MnT2LWrFmoW7cuLl6s3hrpT9O8eXMMGzYMUVFRrObaU3Ach8TERJMsfMVbBnpaDRs2pHbt2omefd3c3Gjp0qVkb29PLVq0ED2eqhQTE0NLliwRPY4XXXZ2dgSUPdWNHz+eWrZsSW+++Sbt3LmTJk2aRMD/mi8rG8ppZWVF1tbW5ObmRn5+fmRhYUHNmjWjLl26UOvWrUmlUtG4ceNo/Pjx9Oqrr9K4ceNo1apVes+dePS0IJfLSaPRUHh4OMlkMnr//fdpypQpNHr0aGrVqhU1bNjwmWPNpYlTJpPxMqBj6NChoj85mav8/Pxo0aJFBh8vavPUIykUCkpMTBQ1cUilUtq2bZvB7XxiaNCgQSZt935Z5ODgQI0bNyYfHx/avHkzbd26lQDQN998Q+Hh4eTm5vZMk0fHjh1p+PDhVL9+fYqMjKQZM2bQ9OnTCSgbyrp+/XoaMGAAtW7dmuLi4mju3Lnk6OhI3bt3pw8++IB69+5NHMdRq1atqEmTJry37T+Sr68vHThwgEJDQ5/YHhERIfp1B8omuTZr1szg4zt16kSbNm0S/TzMWWq1mjp16mTw8WaRNICyxNGrVy9q1KgR1apVy2QXUCaT0ZgxY4z6oIqhoKAgCgsLEz2Omi6O42jw4MG0du1aql27Ns2fP59+/vlnat26dflESaVSSRKJhBo1akQRERH0+uuvU9u2bWnHjh20Y8cOsrKyopUrV1JkZCTZ2NiQk5MTBQQEUEBAAAGgOnXq8Da0mg/Vrl2bGjVqVP6Lfs6cOaLH9EgDBgwwaL6GRqMhZ2dnOnbsWPmTIdOzsrS0pLlz5xplQ9Q+jccpKCjAli1bEB4ejq1bt+LXX3/Fd999B0dHR1y4cEEQnxzHYfXq1Th06BAOHz4siA+h+OKLLzBx4kSxw6iR2NnZIT4+HvXr10dycjLCw8Nx8uRJ5OXlwdvbG0QEjUYDW1vb8qJuI0eORFhYGOzt7fHrr7/in3/+Qbdu3cr7CAYPHlxuPzc3F6mpqeWvza3W2rVr19ChQwd069YNixYtEr0s+eNs2bIFoaGheu0rlUqh0+mQkJCA0tJSjB07Fo0bNxY2wBpOnz59YGlpaTJ/vGUgfSSTycjDw4PWrl1LCQkJ5OLiQjNnzqSEhASKjY0lBwcHmj59Ok2fPp1atmxJrVu3ppYtW5Jcj7o/jRs3pqVLl9KECRNEz/yGyMXFRfThkTVNCoWCvvvuO/rjjz/o6NGjlJiY+FJXJQgNDaUvvviCHB0dqX///qLH87iqmr/FcRxNmzaNrl+/Tq+88gp5e3uLHnNNkEqlorCwMKOfxMymeao6kkgkZGFhUd4EYGdnR+7u7jR16lRav349AaD169fTjh07qEmTJuTo6Ej+/v40d+5cCg4OpsjISKpfv77ob6KhYhOV9JOfnx/98MMPtHHjRtq/fz8dOnSIDcH8V7a2thQQEEAjRowwfrY5x5HE0pKk9vYktbcnTmVDMGJoemJiYoX/q127NtWrV4+Cg4NFLXlS0+Tk5ET79+/nxVaNTBr6Sq1Wk4+PD73++ut06NAhun79eo2/YbRo0YKWLl0qehzmqjfeeIP27t1LSUlJtHfvXlq5ciVr436OOnfuTN27d6ddu3ZV/3gJiFPbklSjIcvgQLIb9BY5fzGePJbFkceqxeQ6+xuyHzKIpE4akiirXxhw3bp1z93u5uZGe/fuFa8gJ8eR1N6OpA725eLUtgQR5tVUV3Fxcbz12+p7n+dlPQ2G8cTGxmLWrFlIT08XO5Tn8uqrr8Lf3x8ZGRnYv38/IiMjQUTYvXv3E+38fFCvXj1cuXIFnTp1QlhYGPz8/BAWFoaZM2di5cqVvPp60Zg7dy62bdsGiUSCpKQk/Q6SSsHZqqAIDoS6f2/IPSpf+Y10OuTtPYAH32+ALicHVKDfXCeVSoWCggKUPrVyYt++fXHmzBnB+jgrgrNTg7O0hCKsIdR9eoFT2ZT/T5uWjsLzF5F/6AiKr1yFNjcPqGAujBh4eXmhf//++O6775Cdnc2LTX3v84J3hDOqJiAgAHPnzjWLhOHn5wdra2twHIexY8dCrVbjgw8+gK+vL3Q6HXQ6HYD/rdhYu3ZtdOrUCX379gUA9O/fH//973/h6emJ06dPIz4+Ht9//z0uXLiAuXPnolmzZmjWrBkKCwvx0UcfYd68ebC0tMShQ4dw9OhRLFy4EBcvXsTZs2fRv39//P333xg6dGj5xDlG5UilUqjVamzbtk2v/Tm1GjbhbWDX/01wSqVex0g4DjbhbWDdthWyt/6K7M1boX3woMrjunTpAolEgvXr1//PP8chIyPDdAnDQgapjQ0sgwNhP7A/LFycn7sb5+4GC3c3qDqGQ1dUjOyErcjZvhPa7BzAyOWCjcXV1RU//fQTBg0axFvCqA7sScMM+OmnnzBx4kScP3/e5L4dHBzg4uICFxcX2NvbY/r06fjkk0/w22+/QalU4oEeN4OqsLGxgbW1NR48eACFQgErKysQEVJTU+Hk5ASJRIKioiJ07NgR77zzDkaNGoVatWrh4sWLonwpaipNmjSBUqnEl19+iddeew0FBQUV78xxkLm6wHnyeFi4OBnlV/sgC/cnfImSW7cr3a9fv37PJI2hQ4cCAJYsWWJUDFUhkcvB2apgG9kdqo7t9E6Qj6MrKkLm0lXIP3QUOpE+l25ubvDx8UFmZibviVbf+7zRa4QzjEOlUqGwsNDkCaNHjx5QKpWYMGEChg4divv372PTpk3w8/NDYmIiioqKeEkYQNlQ1ZSUFBQXF+Phw4dISUkpb9LKzc1FREQElEolvL298d577+Hq1as4duwYSxjVxNPTE97e3khLS6s8YQCQOTvBbc43RicMAJDa28Hlmy9h4elR6X7nzp3DuXPnntgWEhKC3377zegYKkNiYw2bju3gsfhbqHt0MShhAABnaQnHDz+A06SxkGo0PEdZNe7u7jh37hxcXV1N3pT3OOxJQ2QGDhyItWvXCurD29sbbm5uCAgIwF9//YXJkyfj1KlTiI2NFa32llQqxYABA8rbZbdu3SpKHC8SH374IU6fPo2DBw9WWpdJ6mAP1/9+DZnGkVf/2uxs3P1oLLTpGc/9v4+PDwDg+vXrAAC5XA5LS0th7ylyOZRhoXCKGcOr2dLUNNz7bAK0mfz8sKoKqVQKb29veHl5Yc+ePYL4YE8aNYAGDRogMjJSENsWFhaYPn06OnfujMaNG6Nt27a4ffs2Tpw4gZ49e2Ly5MmiJIwPP/wQycnJ+M9//oM1a9aga9euLGHwRGJiIvz8/NCtW7cK9+FsVXAcHc17wgAAqa0tav3fB090KD9O06ZN0axZs/LXn3zyCVq3bs17HI9j4ayBZsxHvNuVOWlg9/YASKytebf9PL799lu0adNGsIRRHVhHuIhERERgzBjjfwHJ5XIEBQXhgw8+gKurK/r164f4+Hhs2rQJ27dv5yFS42jbti2ioqKwbds2JCUlIS4uTvAKpRJLS0isLCGRycpGB1lZgbRa0L/NNlSqhS4vD9BqBY3DVLi7u2PLli1YvHgxpFLp83eSyaBoFApFSLBgcShfbQjLuv4oOHEa+HfQREV4eXkJOhqOU6uhiRkDiYUwtzmb8DZ4uHELSvPyBLH/CA8PD9jY2GD16tWC+tEX1jwlEjNnzsTkyZORV40PnJWVFXr16oWQkBCMGzcOv/zyC7RaLVauXIkzZ86guLgYN2/eFDDq6uHl5QWJRIKuXbti7969OHv2rKD+OFsVOKUSilcbQtEwBBaurpC5uUDCPflArSsqRmlKCkpu3kLhuQso/ucaStMzQEVF0OXmVXmzM0c6dOiA9u3bY8eOHbhw4cJzh0FLaznA/bt54AQuN6F9mI27oz59punG3t4eEokEmZmZAMqePM6cOVNl/4shSGysYde/D9Q9uvBu+3Fyft+NzPgVoKIiQey3aNECXl5eSEhIELxlgA25NWNatWqFunXr6p0w3n33XZw5cwb169eHhYUFFixYAAB48803zXI9EIlEguHDh6N79+74/PPPERcXJ5wzjoPU1hbygDqwG9APlr4+VR9iKYfcyxNyL09Yt2pRvr34xk3kHz6G3D37ocvNLUsgNeRJ5M6dO1i8eDE6deqEffv2PfN/icIK9gP7C54wAECqtoXdwP7IXLKy/MkOAAIDAyGVSrF3714AZUNHn+4Y5wWOg1X9eoInDACwadsaD9asFyRp+Pr6Yt68eejZs6dZfc9Z0jAxCoUCubm5mDJlSqX7NWjQAOfOncPKlStx+PBhpKam4vjx40/sY04fpEe4urrCwcEBZ8+eRXx8fPm8DiHgbFWwbtUcdlH9Ia2gHb06yL29IPf2gl2/N1Galo6c35ORu3MXdDm5IDOeJ6JWq7F69Wr07dsXgYGBz92HU1rDOryNyWKyad8WWT9shPaxpHHt2jV888035Unjtddew5EjR3hvveDUtnAcOZxXmxUhsbCAdbMmyPltpx5tNvojk8kgl8vRr18/3L17lz/DPMA6wk3MkCFDEBoa+kwCcHFxQZMmTXD//n0QEYYOHQpra2sMHDgQCxYsMKtmp4qYMmUKFi1aBCLCvn37hEsYkrKmFs2no1Fr+Pu8JIynkWkcYf9WH3gsXgB170hwajXvPvhi4cKFGD16NAoKCiocpszZWD/TTCckEo6DdeuWwGM+79y5g5SUFIEdA8qwhpCqbYX18xg2ER3AqVS82XNycsLly5cRGBiIq1ev8maXL1ifhomZP38+Fi5ciHv37pV/wUePHo3OnTtjz549cHBwwOrVq3HmzBmRI9UPCwsLREdHY+fOnSgtLTV6Oc8q4TjIfX3gPHEcpPZ2wvp6jOJr15H69X9RmpYOmNEyoyNGjMCPP/6IjIwMODk5IScn57l9BBbeXnD/dqZJYyu5cxf3xk2C7uH/Epm7uztSUlJQWloKuVwOjuN4fWLmVCo4T52oVzMlX+jyC3Dn/z7iZfhtu3btoNPpkJeXhz///JOH6PSHDbk1U+bNm4erV69iwYIF2L59OwYPHgyO4xAREYFp06ZhzJgxNSZhAMDGjRuh1Wpx9uxZ4RMGALmvD1xip5g0YQCAvLYP3Ob9F3I/X0jkcpP6rgiZTIZJkyah6N/29BkzZsDLy+v5O0skJoysDAt3N0ie6kMZM2ZM+doY9vb2WLZsGa8+JRYWkPtUcA0EglMqAJnxLf0fffQRfvjhB5w6dcrkCaM6sD4NE/No4Z63335b5EgMx8nJCUuWLMHMmTPRt29fk9WFkjo4wGniOJN05j4PzloJ1xlfI236bBT8fRaUK+xQy6qQSCQYP348cnNzAaC89MrzsPCqfLa2UHBKBR4fSrBp0ya0a9cOhw4dQkpKCjQaDSwsLMoXvTIWmZOjSZvhyjEyKavVahw+fBiurq48BSQc7EmDUS2kUimmTJmCcePGYf/+/SZLGJytCpqxoyEz8RPG00ikHJzGj4Ftt86Q2JhmYldFNGjQ4Im+sbFjx1a4r1W9V0wR0jPIPT2feH3q1CmsWbOm/PVXX33Fa9+XZWA93mxVB06pMOr4o0ePml2Hd0WwpMHQm/DwcLz//vsYMWKEaWtlyS1gE94GVvXqms5nFdgP6AvrFs1EbaqKiYkpH7YdFBRU4cgpicoG8jq1TRlaOYqw0Cd+hT8a8PGIkydPYtKkSbz4kljKYenvx4stU1K7dm2kp6fXiMEuAEsaDD0JDg7GmDFjsG7dOpP7ltrZwf7tKJP7rYpa/zdUtGYfe3t7XL58uXx0jUajgZubW4X7CzUruirkfr7gbP83suj+/fuIjo6GQlH2yzwnJ+eJJGIMEisFrILq82Kr2hgxNuL+/fuCl1PhE5Y0GHqRlZWFQYMGmXz0nEQuh13vSNFuepUh4Tg4xYwxead8vXr1EBkZiZiYmPJt+fn55TOtzQkLT4+yUi7/kpubi4ULF8LzsWarI0eOVFz6pBpwSgWktvwNfa0Oslr2Bh+7bds2BAQE8BiNsLCkwaiSPn36IDQ0VJSbEmdtDevwtib3qy8yjSPU/d6ExMrKNP5kMnz33XdITk5+Ynt6evoTfQWPI5HJIHN+/mJDQiORSJ7pJD506NAT7fezZs1C/frGPyFIZMYnHkMxdJ6GhYUFHBwccPnyZZ4jEg6WNBhV4uHhIdrKeVbB9cFZmscQ14qw6RAOicI0SUOpVCI2Nra8vPgjJk+eDAcHh+ceI5FIjO6oNYqn5rVERUXhzTffLH/t5uaGQYMGmToqXilNMWzJYysrK7Ru3RraGlKuBmBJg6EHN27cwOnTp03vWCqFVcMQ0/utJpylHDYmeBqqVasWoqOjn7tokZubW4WzwYkIurx8ocN7LiX37oNKn7whLl26FIMHDy5/LXTFY1NQmmHYU/jy5ct5G25sKljSYFTJ2bNnRakEwCmVkPt4m9yvIdh27wzOTthSIwsXLqxwPYVPPvkEpRWsXa3LzUPOzl0CRlYxVFqKp3uJHzx4gB49esD53yazW7duYdGiRSJExw/aB1kgA278UqkUzZo1K5+cWVNgSYNRJUOGDHmi49Kk6GrGY7uslgOkPNYfehqFQoF169bhjz/+eOZ/Eomk8tE3JSXI/+OIYLFVSgWJrGvXrujduzcAwM7ODs2bNzdlVLySd+RYWUXkakJE6Ny5swARCQtLGgyzRZeTg+LrNWPsOgBYeLoLYlej0WD27Nn4+eefK9ynQ4cOldrQZmSAtKZfJ6To6nXontNslpCQgC5dykqXq1QqhIaGGu3r6WYwU5F/6Ahg4JNGTRpq+wiWNBhVsmLFCty6dUsU3yW374ji1xAsA/wFsTthwgT8/vvvle5TVdE/XVERCv8WYO2KKsg/eOi5cxgKCwsxYsQIAIBWq63WYmQVoSsogK7ItAM2SKtDyQ3DvhtSqRRt25rvyMCKYEmDUSV3797F3LlzoVQqTe674KQIHfCGIlBRwDVr1mDTpk0V/p+I8NZbb1Vqg/Lykb31F75Dq9wnEYoruaG2a9cOXbp0wT///FPl+jJ6odWixMSzqouv3wAZMfJJiFULhYYlDUaV5OTk4Oeff8bEiRNN7lub9VC0kT/VpejiJd5tLl68GKdOnap0H4lEgrVr11Zpq+jilbLS7iai+MpVUGHFnbwXL15ESEgI/P39ERsba7Q/XU4uCk7/bbSd6pC378ATpd+rQ2FhIYYMGcJzRMLDkgZDL7Zu3YodO3bwMnO3OlBREQpO/2VSn4ZSfPU6r/YCAwOh0WgqHBX1CE9PT8j1qIGly36IjEVL+AqvSnL3HoCuklF3t27dwqVLlyCRSHj7XBWa+LNScNLwZQw6d+6M8ePH8xiNaWBJg6E3e/bswfz58xEWFmYyn1RQiOyfTdusYgjanFzoeF5+V6FQYNiwYVXuZ2dnp1/zDgFFl/5B8bUbPERXhauSEhQcPV7pPnfv3sXDhw+hVqtx5Ag/o7tK7t3nxY4+lGY+gDYry+DjmzVrht27d/MXkIlgSYNRLSZNmoQZM2bAx8fHZD5Lbt81+1FUefsPGjTssiJcXFzQtGlTpKZWPdO4SZMmOHv2rF52ddnZyIjnd+Gjp6GSEtyfOBWl6RlV7lunTp1qxV+l76IiFN+8zYutqsj++RfoHj40+Pj9+/fjxIkTPEZkGljSYFSLjIwMdO3aFcXFxSbrHNdlZyN9XhxIqDXHjYSIkPPLbxXOSTCEQYMGIUvPX7Hdu3evlu2S23dQxHNT2iOICClfzUDRpSt6XY9NmzbBx8cHkydP5sW/LjsH+UeO8WKrMrTZ2chN3mdwdds6derA0dFRtPI8xsCSBqPaFBYW4u7du9i6dSs2b94MtVrYmdAAUHLrNh6sNn1Zdn0oOHkG2gdZvNrMz8/Hhg0beLX5CF12DtJnfytI+Y4Hy1ej6MIlvRNoeno64uPjkZubi6CgIOMDIELurj3G26mCzCWroDOiaerRkrc1EZY0GAaza9cu9OzZE7Vr10bLli0F9UXFxcjdtRcl9w0rDCcUpNPhwbJVvDZNdevWDevWrauyA/wRPXv2rLaP0tQ0ZK1ZX+3jKkJXVIS0eXHI3bUXVM1hpFOnTsW8efOQns7PyC5ddg7yjwm3xnbxjZtlQ8GNyLl2dnYVLs1r7rCkwTCKoqIipKSkYNKkSXjnnXcE9aV7+BAZcfGC+qgu2Ym/oJSnmx0ABAQEYOTIkXhYjbbyZcuq30dBhYXI2ZGEBz9s/Lc+lOHk/XEYd/5vNPL2HYTu3/XKq0NiYiJCQ0OxZAk/I7t0ubnIWLQUJXfv8WLvcUinQ9r0Oc+d5a4vrVq1QmJiIk6ePMljZKaDJQ2G0dy7dw9du3bFwYMH4eEh7Ep2RVeuIv+w8G3W+lB0+Qoebv4ZVMDfqKmgoCBMmDChWutmOzo6GuRLl5OL7M2JuP3BSBT8Vf2O6OJrN3Bn5BhkLFgMbVq6QaU0gLJRedu3b0dmZiZcXFwMsvE02vQM3IuZbNB5VUb6vDijfyR88cUXyDUguZoLLGkweKG0tBRXrlzBp59+io0bN8LW1lYQP5Sbh4zvlqI084Eg9vWl5O49pH4z26jRM0/Tu3dvHD9+HMeOVS8pHj582GCfVFQMbXoG0qbPRkbcEpSmpVfY16ErLIQ2JxeF5y8idcYc3J80FSU3bhr0dPE49+/fx/jx47FhwwZeO4Z1D7KQNnMeL4mDiJC1/icUHD9R6YTFqrCzs8OlS5dEqRrNFxLo0TKnUqmQnZ0NW1vbGn2yDNPQo0cPHDp0CHl5ecjPF2Y2t8zVBS5TJ0LmpBHEfmUU37yFlCmxZb+ueUKtVmPjxo3o0aNHlXWknsbPzw9XrlwxPgiOA2ergkQuL1sFj5MCWm35HYKKikASACUl0OXw+0t59OjRSEtLQ3BwMMaOHcurbc7eDpoxo6AIDjToeF1hIdJmzkfh2XMgI6sT+Pn54dq1a2a56JK+93mWNBiC4OjoiKSkJERERCAtLU0QH5ydHdRvdIdt9y6QmGimeu6+A8hcugq6LP6eMICyzu979+7hzz+r34GbmJhoUGe4OeHs7AwPDw90794dJ0+eRGJiIq/2OTs1bMLbwH5gf0gsLPQ+rjQtHfcnfFm2Mp+RQ75DQkIwbty4KuuEiYW+93nWPMUQhPT0dAwePBjTpk0TzIcuKwtZ3/+Iu6M+Q9HlfwTzA5TN/k2dNhOZ3y3nPWFMnjwZBw4cMChhAGU3XFdXV15jMjUpKSkYMWIEli9fXuGytcagy3qInF924Pb7HyJ1+hzk7v8DpZkPoCsqBhFBm5v7hErT0vHgh424+0kMSu/dNzphAEBERAQWLFjAw9mIC3vSYAjOtGnTMHfuXL1mNxsKZ6uCzNkJ6r5vQNnkVUh4qjhbmpqGB2vWo+D0mbLCdDzPbRg9ejScnJwQExNjsA0vLy/cNHF1VyH46KOPcOfOHZw6dQohISH46aefBPMlkcshsbGGBABksrJO/Mc/M0TQZueUNc/xgKenJwICAnDo0CHBmmyNhTVPMcyG119/HUOGDEG/fv0E9yWxVkKqVsO22+uwbtUC0mouwUpE0GY+QMGpM8jduQsl9+6XdXYLsIy1ra0tGjZsiL179xplp3Xr1mjfvj0/5cVFxM7ODg0aNMDNmzexbNkydOnSpcYthVoRa9asQUJCQqUl7sVG3/u8zIQxMV5SfvvtNzx8+BCurq7IzMwU9EZAefkozcvHg5XfI+vHzeAUCsg0jpDX9oHUWQO5txeAshnmuuz/fTFK7qeg9O49lGZkgkpKoMvLA0r4KwvyNEOGDEGzZs30KkhYFfv378e4ceMQGhpaZRl1cyYrKwsODg7w8vLC/PnzoVarBX06NRUymQypqalmnTCqC1UllUpFREQqlarKfZmYKtI777xD2dnZ9P3335O1tbXpY7CwIImVFUmsrAhSqWjXwdPTk5YtW0Ycx/FmU61Wk5ubGymVStHfZ2Nkb29PBw8eJI7jqF+/fhQSEiJ6TMZqxIgRosegj6pxn+fVGBNTpZJIJNSuXTtavny56LGIITs7O2rWrJkgtuvXr09FRUXUsmVL0c/TGDVp0oSsrKyoVatWNG/ePNHjMUYRERE0c+ZM0ePQR/re59noKYZJISLs2bMHR44cgUqlEjsck+Lr64vff/+dt076pzl37hzatGkDjuMQEhIi2ARLobl27Rp++OEHnD9/HqmpqSZf+ItPWrRoIegIQrHgLQMxMekrS0tLio6OFj0OU8nLy4t8fHxM9hQQFRVFycnJ1KlTJ9HP3RCNGjWK+vbtS61ataL58+eLHo8hGjhwICkUCtHj0FeseYrJ7LVs2TLy9vYWPQ6hVa9ePfr999/J3d3dpH5lMhkFBATQ6NGjacqUKeL0IxkopVJJDRs2JFtbW1q9enWNa3ILDw+n3bt3k0QiET0WfcWSBpPZq2HDhjRkyJAa9cWqrmrVqkWzZs0ijUYjahyRkZEUExNTo77DgwYNoiFDhpCtrS01bNiwRiWOAQMGkIODg+hxVEcsaTDVCEkkEoqPj3/hEgfHcbRu3ToaPny46LE8rkGDBlFcXBzZ2dmJHktVcnBwoKSkJNJoNKRWq2n37t3k5uYmelyVycrKipYtW0b+/v6ix1JdsY5wRo2AiHDs2DEsXLhQ7FB4w9raGi1atMDZs2exdOlSscN5gjVr1uDy5cvo0KGDYB3yfJGZmYkePXrAx8cHCoUCo0ePRqdOncQOq1JmzJiBU6dO4fLly2KHIii8ZSAmJkMVGhpKISEh5OXlJXoshsrKyoo+/vhj+vHHH0WPpSq5urpScnIytW3bVvRYqlJERATNnTuXgLLmPnMcwiqRSKhbt27k6OgoeiyGij1pMGoUp06dgr29PXbu3IkOHTqIHU618Pb2xsiRI+Hn5wcbGxuTlEsxlnv37iEqKgo9evSAXC4XO5xK2blzJziOg52dHTIyMtC2bVs0b95c7LCe4JdffsHbb7+NjIwMsUMxCbxlICYmY6VQKMjNzY22bNli1k8dAwYMoPfee49atWpFGzdupIiICJKKOMvcGAUGBtIvv/xCAQEBosdSmZYsWULu7u4UHBxMGo3GLPrBmjVrRpGRkRQYGGgW8Rgj1hHOVKPVoEED2rBhA73yyivlQy/F+lLK5XJq3rw5de3alerVq0cxMTE0duxYcnV1Ff068aXQ0FBatGgRKZVKsrS0FD2e56lDhw60fv16AkAjR46kyMhIUePp3Lkz3bhx44X5HOh7n2dVbhlmz+jRo9GoUSMcP34chw8fRteuXVFSUoIVK1bAw8MDGo0Gubm52LdvH7p06QIAuHz5MnJzc9GwYUMAZUX9/P394eLigsLCQiQlJaF79+4AymYgZ2Rk4NVXX4W1tTX27duHFi1aoGfPnsjJycGkSZMwbNgwZGVlYdOmTbh//75o10JoBg4ciKlTpyIiIsIsO3ODgoJw+fJl1KpVC3/88Qd8fHxMHoOLiws+/vhjzJ8/Hw8fPnxh7omsyi3jhWHOnDnlf8vlchQXF5dXDg0KCoKTkxMsLS0hkUjg5OQEoKzNvrS0tPy1TCaDWq2Gk5MT8vLyAKD8f2lpacjNzYWTkxOKi4uRnZ2NEydOIDk5GVlZWdBqtfj6669NfNbisHbtWpw5cwYKhQLvv/8+nJycEB8fbzZt9X///Tf27duH1157DU2aNEFYWJjBi1cZgpWVFVasWIEffvgBt2/fNplfc4O3xxYmJqYXR/b29tSrVy8aPXo02djY8FqV1xhFRUVRXFwcAaCkpCQaOXKkSWJzcHCgzz//XPTzF0qsT4OJiYk3DR48mA4fPkxt2rQRPRYAZG1tTe7u7iSTyejtt9+mbt26CXp/UigUlJycXKNmpVdXLGkwMTHxqrp161JoaCi1b99e9HuBWq2mXbt2lb/u168fEREVFxeTvb09r77q169PGo2GGjRoIPp7IKTYPA0Gg8ErFy9exKlTpxAaGoojR45ArVaLFsvDhw9hbW1d3hG+YcMGSCQSdOrUCTNmzODNT8uWLREfHw+FQoEzZ87wZremw1sGYmJiejnk5eVFjRs3pnHjxok65LRv377PbHN2djbabq1atahOnTrUt2/fGj3LuzpiTxoMBkMwbt68iePHj+P8+fP49ttvRYujU6dOaNeu3RPbXn/99fLh1IZga2uLpKQk9OrVCz/++CPS09ONjPLFg7cMxMTE9PJJrVbT2LFjKTIy0uQjrBQKBc2aNeuJba6urrR27VqD7IWFhVFAQAB17NhR9OtqarGOcCYmJpPJwcGBdu/eTeHh4SYvp6JQKKhx48ZPbBs4cGC17QQHB9OePXte2vsca55iMBgmIzMzE+3bt8e5c+dw8+ZN+Pv7m8y3s7Mz5syZA09Pz/JtaWlp1bKhVCrx6quvYtiwYS/MDG8h4S0DMTExMfn6+tLs2bN5H/pamZo2bUrdu3cvf719+3a9jtNoNPTrr7/S22+/Lfp1E1useYqJiUlUffnll7R8+XKTJY8mTZrQmDFjCADFxsZWuVaITCaj4cOHU7169US/VuYgljSYmJhElUQioejoaKpTpw4FBQUJ7o/jOFqxYsVzh+E+LrVaTRMnTqSvvvqKV//bt2+n3Nxc0ul0pNVq6e7du/Taa6+V/z85OZmeprCwUPT36ZFY0mBiYjILyeVy+u2336hPnz6C++I4jnx9fcnX15eSk5PJ2tqagLLOcrVaTS4uLjR06NAnmrL4UmpqKi1ZsoS6d+9OvXv3ppSUFCopKSmf55GcnEwFBQUUFBRULnNaS5wlDSYmJrNRnTp16LPPPqOIiAiT+Fu8eDEtXLiQFi5cSABo3bp1tHbtWurSpYvJzrlu3bpERBQdHU1AWdLIz8+vtp2SkhLavHnzE9vy8/MpOTmZANCDBw/o1KlTdOLECdJqtVRaWkqrVq0iR0dHunTpEul0OioqKqIJEyZU6oclDSYmJrPTypUrqXfv3oL74TiO5s2bR/7+/mRnZyfKubZv356IiHr27ElAWdLQ6XRUWlpKxcXFdPXqVWratGmVdvRJGjqdjpKSkqhDhw6UlJREOp2OUlJSaNWqVdShQwf666+/SKvVkoODQ4V+WNJgYmIyO0mlUpozZ47J/Mnlcjp+/Hh5B7mpxHEc3b9/n7Kyssq3TZgwgWbOnElvvPEGxcTE0MOHD6mkpIRcXFwqtaVP0njcj0wmI51OR1euXCnfFhQURERE7777boV+2DwNBoNhdvTp0wfFxcWIj483ib/i4mK0b98eCoUCvr6+JvEJAGfOnEGtWrXQsWPH8m1fffUVxowZg82bNyM2NhbBwcGQSqWYNm2a0f5u3rxZ/ndpaSm0Wi3Onz9fvu3vv/8GANSuXdtoXyxpMBgMk3Hr1i0UFhbixo0bJvOZnZ2NqVOnIiEhAY0aNRLc3+nTp1G3bl2Eh4fj+PHjFe538+ZN5Ofno27dutX2IZFInnhdWlr6zD4lJSXPbJNKpdX29TRsuVcGg2EyDh48CCLCwYMHsWrVKty5c8dkvpcuXQqVSiWoj9OnTyMwMBCvvfYaDhw4UOm+Tk5OUCgUuHv3bpV2nZ2dy/+2srKCpaWl0bEaCksaDAbDpPzxxx/w8/ODr68vsrOzTVa2Y/78+YLa/+uvvxAYGIhRo0YhJSUFQUFBAIDbt28jKysLR48exZo1a3DixAnUr18fsbGxAIAJEyZUabtp06b49NNPceLECcyePRsSiQReXl4IDAwU9JwqospOHdYRzsTExLe6dOlC33//PclkMpP4GzZsmKDLtVbEkiVLCABdv36dSktLSafTUUlJCV2/fp3atWtXpd2SkhK6cOECFRYWkk6no2vXrtHOnTtJp9PRggUL6MGDB3TixIlnjnm685yIaNq0aRX6YaOnmJiYzF69evWi5s2bm8RXQkICubu7i37O1dXzEoAQYqOnGAyG2bNlyxZIpVI0bdpUcF8bNmwwaR/KiwpLGgwGQ1QyMzMxcuRIQX3Ur18fqampgvp4WWBJg8FgiMq5c+dw/vx5WFtbC+Zj+PDhyMjIEMy+kFhYWOCNN94QO4xyWNJgMBii8/XXXyM6OhoeHh6C2JdKpbh69aogtl82WNJgMBhmwalTp/Dtt9/yblehUGDbtm3Izs7m3fbLCJunwWAwzIIdO3agpKQEtWrV4rUpKTo6GpmZmbzZe9lhTxoMBsNsOHToEI4cOcJruY+AgAAsX76cN3svOyxpMBgMs6GgoAAtW7bEgAEDeLHXqVMnzJkzB0TEiz0GSxoMBsPMSElJwZgxYxAbG4vY2FiEhIQYZKdt27aYPn36cwv3MQxHgrJZfpWiUqmQnZ0NW1tbk9WJYTAYjPbt20OpVMLCwgK9e/eGTqfDf/7zHzRq1Ag5OTk4evToM8d4enpi1KhRmDdvHogIt2/fFiHymoe+93nWEc5gMMyW3bt3Ayibq7Bz504AQF5eHvz9/dGgQQO4ublBp9MhOjoaV69exdixY7F582bMnDkTt27dMkmMNbXp6+ny6nofB/akwWAwXgACAgJw6dIlk/t9UZKGvvd51qfBYDBeCMRIGC8jLGkwGAwGQ29YnwaDwWAYgaF9AzUV9qTBYDAYDL1hSYPBYDAYelOt5imhF2VnMBgMhjjoe3/XK2k8MsZWvWIwGIwXG5VKVemQW73maQCAm5sbm6PBYDAYLzAqlQp3796tdB+9kwaDwWAwGKwjnMFgMBh6w5IGg8FgMPSGJQ0Gg8Fg6A1LGgwGg8HQG5Y0GAwGg6E3LGkwGAwGQ29Y0mAwGAyG3vw/63J0xdBLCg4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "with mpl.style.context(\"dark_background\"):\n", + " fig, ax = plt.subplots()\n", + " bt.pl.shapes(adata, shapes=\"cell\", linestyle=\"--\", ax=ax)\n", + " bt.pl.shapes(\n", + " adata,\n", + " shapes=\"nucleus\",\n", + " edgecolor=\"black\",\n", + " facecolor=\"lightseagreen\",\n", + " ax=ax,\n", + " )\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "dfe00f89-f541-446c-8271-a8234cf97939", + "metadata": {}, + "source": [ + "## Building subplots\n", + "\n", + "Since all plotting functions operate on `matplotlib.Axes` objects, not only can you build plots layer by layer, you can create multiple subplots.\n", + "\n", + "You can tile across individual cells:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "ffe33531-ad58-43df-a4ac-fd7cc6629774", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T21:48:27.812585Z", + "iopub.status.busy": "2023-03-31T21:48:27.812354Z", + "iopub.status.idle": "2023-03-31T21:48:33.895713Z", + "shell.execute_reply": "2023-03-31T21:48:33.895252Z", + "shell.execute_reply.started": "2023-03-31T21:48:27.812569Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmsAAAFACAYAAADjzzuMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gT5R/AP9lJm+5dWsreW9kbZKmIIAi490IUceHeE/fEvX8KKiAuREEQ2XtvKJTuPdLs3O+Pu+aSApbRNh33eZ4+veTee++95M3d9/1OlSAIAgoKCgoKCgoKCnUSdaAHoKCgoKCgoKCgcGoUYU1BQUFBQUFBoQ6jCGsKCgoKCgoKCnUYRVhTUFBQUFBQUKjDKMKagoKCgoKCgkIdRhHWFBQUFBQUFBTqMIqwpqCgoKCgoKBQh1GENQUFBQUFBQWFOoz2dBp5PB4yMjIICQlBpVLV9JgUGglut5uDBw/SqlUrNBpNoIej0EBQ5pVCTaDMK4WaQBAESktLSUxMRK0+tf7stIS1jIwMkpOTq21wCgoKCgoKCgoKImlpaSQlJZ1y/2kJayEhId7OQkNDq2dkCo2e48eP07FjR2VeKVQryrxSqAmUeaVQE5SUlJCcnOyVs07FaQlrFabP0NBQZZIqVBsVc0mZV/WXnTt3sm7dOsrKygDRZWLgwIGcf/75ARtTQ5xXP//8MwkJCQH9XBs7DXFe/Re7du3ir7/+IiEhgUmTJikuUDVMVZ/vaQlrCgoKjQ+Hw8GiRYuw2+3k5OSwefNmiouLvTcVQRBQq9WMHz+ezp07A6L2/YILLuCuu+7iqaeeUm7w1cDbb7/N3r172bVrF0ajkUsuuYQrr7zyhM9Wr9djNBoDNEqFhsZtd85g4KW38feiZWzdupXnn38+0ENq1CjCmoKCgpedO3fy9f/m8eey5aA1UtJ6FEJILJqgltw5+WJCI2Iod8lCQohOAGBTuehwbWp6Ps/Mv5QFb8/kuhtu5rNPPvxPp1mF/+azr7/lzSW70V8wA6GlE1dZAa9v2siXP98GQIhW/PzjwrTk5+cTHR1NcHCw9/jo6Giuv/56r2Cn0+kU/2OFKikqKkKtN9O19zDade3DnIcn8dRTT/HEE08EemiNFkVYU1BoxNhsNnbs2MHLr75Bdm4++tAEugy7glGz7kBvMvN7gXyLCI2wnVafKpWKCXe9zr/fPs9bb7/LjLun19TwGzzfL/wZ3cD7UKlUqLR6TMkdIbkjA2JvBeC8SCcAU/uGA5CTk4PL5fIev3nzZt5++23v65KSEtLS0ggLCyM5OZmpU6ei0Wjo1q2bEuGo4OXYsWNExTcFwGAMYvXq1UyYMIENGzbQs2fPAI+ucaIIawoKjZTNmzdz2WWX0XPYeM4bcxMt2nUjR9KQ5TnOXRs27tp7efW+iVx80RhatWp1zv01Ng4dOsSe9GLC4lviLMo+rWNiY2P9XicmJnLxxRf7vedyufB4PKxcuZIlS5ZQXl7Ogw8+yLRp0xg4cCDR0dHVdg0K9ZO//vqLFl0H+b336aefMnr0aFatWqUI9gFAEdYUFBohBw8e5Kbb7mLas19TFt0VG7C7CJYXibeEDiYPAFfHO7zHaCTrp819ohk0TC+2d/jsK3XrGXrFLN544w3eeeedGryahsnc7+ej6n8jHrcLTXkxAG59EAB7ykVT51/5ohbN7i5CK8nXV/UL/89+tVrxOx4+fDjDhw8HID09nYULF9K/f38mT57MLbfc8p9pBBQaNtm5BYS37sHBEnGufLGqCKNGYPTo0bz55pvMnDkzwCNsfCjOJAoKjQyn08mNt9zOVTNn07RVhxo9V6sufdm/fz9FRUU1ep6Gikqrq5XzNGnShGnTprF06VI6dOjApKtu4rEnnqK8vLxWzq9Qt9i2YyeJzdqc8P5dd93Fxx9/TH5+fgBG1bhRhDUFhUbG5s2bCY9vSVLzdjV+LpVKxaWXXsqcOXNq/FwK505SUhJTpkxh2jNfU6JNolWrVhw6dCjQw1KoZWw2BwZj0AnvR0ZGcv3117N48eIAjKpxo5hBFRQaGfc+8BCT737V65/mS5j0VlOTG4AQybwJoNeIJk+dT8aIXJu43nN5TkzR4RSbE9JxKj8+fBmzZs2qjuE3GvRaFVObqmnXVkN+s7YAfLhb1Gik5mQCoAkS8329flBNUrAJgMN/iDnvWoSIJtJTmUW/XVPk3c6Rvsc0aU7EGAwk9r2cW5t1YcDgYXz1xWdcMHxYNV6dQl3GjZqthTrCdeLv36gRmNwnAoC7776bUaNGccUVVyipeWoRRbOmoNCIWLlyJVaHQFyTZrV2TrVaTZOWXfj7779r7ZwK1UN8Shvu/+AfHn3uDV557U2cTmegh6RQwwiCgNPhOOV+vV5P//79mTdvXi2OSkER1hQUGhEPPvw4tz5W+ybJC6bcw4svvljr563PeDweMlL3B3oYBIeEM/nhL9iU7mHGzPsCPRyFGmbr1q1EN23/n23uv/9+3nzzTYqLi2tpVAqKGVRBoZHw8ccfE5rSnQJdIgUlcnqOcCmiE6BzsGg6q4j81PhYOdySqdM3rUeBtL00LUd8wyObTVV60Sw3LCEMiEGj0eByubzRiAr/zfjx45k49VqGXXp9oIeCWqOh14XXs/rrp+jdbxA/zZ9HfHx8oIelUANs3rKVInMKmXY1iZI7RGXCwsJ44403uPPOO/nqq69qeYSNE+WuqaDQCBAEgblz59Ln1o8CNoZOnTrx77//MmTIkICNoT7RunVr8rOOcWkXLWazGYAwyYdo9rZCADwFGQAIGh2pReJxqfliW7XOAMALmw4CoAuLAaBLiB6AI3axNFVx6g4EKerUmCgGnYyNEgX4Cl/ETUXi/gNDn8TabAvDR1/CymWLiYyMrO7LVggwf6/4l5h+D1bZrlevXmRkZFBQUKDMg1pAMYMqKDQCnn3+JeI6DmejJ54VhTpWFOood6sod6s4aNF4/0pcakpcarRqAa1aQKPC+7etUMe2Qh2p5Rrv3z+FTv4pdDI4KZbBSbGoTSHeP60xCK0xiGWZxSzLLOaKK67gww8/DPRHUa/o168fx44dC/Qw/DA1707fa59j9CUT2bBhQ6CHo1CNFBcXs3XbdkyRCafV/qabblJ+07WEIqwpKDRw8vLy+OWPZQy49NaAjqNr167k5eUFdAz1jRYtWgR6CCelaYe+XDDzKx577DHWrVsX6OEoVBMLFiwgou9V5Hh0RPu4R5Q5Ty4q5Ib1Y9GiRWzevLm2hthoUcygCgoNnKeeeopBk2YEvKC6SqVS/NXOEKfTSVpaGh06iMmLrxsQDoBBSrEy+5Bo2nTkHgNzFACqYjGth0eqdoBGNGG6c44AsKlcLCdVYSb1GENQh4jHOl12AOYeLABAFyKat3Ra0Rza3qyX9mcBEHr5l9w882o+fO1p+vTuXW3XrVD72Gw23nz3IzrePY+s0zwmOCSc9957jzlz5ii5FGsYRbOmoNCA2bRpE9sP55LYcQAWlwq9Gu9fhRk03uDx/m0vV7O9XM0Ri5YjFi1HyzTevzYhLtqEuAjSCN6/biF6uoXo+Se7lH+ySxGKs71/Wq0erVaPSqNFpRGFNLPZTElJSYA/lfrD6NGj+fjjjwM9jFOiDQql311fcMMd91FaWhro4SicA59+/gXtzx+KwRxxRsd16tSJrKwsRbtWwyjCmoJCA8Xj8fDok89ywVUPBXooXoxGIx6fiFGF/+a8885Dr9cHehj/iT4olHZj7+HaG25BEISqD1Cocxw8eJA3v1pE9qCHOWpXk3X8AH8ey8bpUeH0qDDrPMxdW3jCcU4PfLzKQrfLHuW1114LwMgbD4qwpqDQQHn22WeJ6zCU6MRmgR6KwlkSERGBWq3m+++/D/RQ/pOk80ZTLgSxcuW/gR6KwhmybNkyxl9+FTFXvIHqLF0lYpu04IcfflBqANcgigOJgkIDxGq18ssfy5j6zCJsbvj4gGh67BYT5W1TUQ7q59TcE47fjphDK0gja0qOWUVHqfVlcvK1C8JFLdn50WLZo+ywMO++jHIrAEkhIed8PY0VlUrFZ599xtChQ7nkkkswGEQ/s6l9wwEocYpJSd+xx+CxiWWmhGDRz0xVLiUsdYu58zxm0VdNpRa/R0/FfqPZ+5BuGSRq8Q64xe+ziUk8X5ZD/J53FYvfaUK0GC2YWZjHmu2bpfO5mXj5ZHZs20JcXFy1fQYKNYfb7ea5557j1me+YWFZk7PuR63R8NFHH/H1119z5513VuMIFSpQNGsKCg2QG26+jdFT7gr0MBSqAa1Wy7XXXsvcuXMDPZT/xBgcRnLnwdwwbWagh6Jwmrz88ss073UpBMWQVVxIVnEhmVlHEfQmtMHhLMzTsTBPx/ZC3Qn1f79ZXUSITvD+XXTRRTz55JMUFp5oLlU4dxRhTUGhgXHkyBHyiq106jU00ENRqCa6d+/OmjVrAj2MKgkOj+VomUZxNq8H7N69m/Xr19NnzNXV0l9kZCRTp04lMzOzWvpT8EcxgyooNDCefuEV1P2n8VO6kZ0lNgCCjm0FYKujnbedKVusO6kxx3jfc4eK21YpBqBNiMu7T6MWTaK9ZUsq1/YPB+DDf0STWo5N490XHC1uh+ns0jvGc7iqxk2PHj04dOjQCe/fOkg0O7s8Jby/RTRna6Mkc1awtM9WDoBaisgVSsR2mnDRVKnVGXBYLQAcKhcLeKtU4jo+VDKDJwaLXdqDxHQgm/PE71tjMGFr2ReA8tg2AJj+mcOsR55gye8/n9tFK9QojzzyCK+//jpL01RVNz5NLrzwQn788UdvqhmF6kPRrCkoNCCOHj3K0n9WEZbUrurGASAvL4/g4OBAD6PeoVKpaN++PRs3bgz0UKokKDyO4wXlzPnk80APReEU7N27F51OR7NmzQD4PFOHNvsg2uyDaGyl6Ioy0R1cjXXfGqz71rAwtYDUMg1z1xZ6o0K1agGb21/QO2Y4n6VLl9b25TQKFGFNQaGBIAgC0+66h27Tv0YXFBro4ZxAeXk5brcbnU4X6KHUS6666io++OCDQA/jtIjqMIxHn3+NN96rH+NtbHz22Wc89FD1p/TR6vSEhoYquRRrAMUMqqDQABAEgaeee5H9upbo9TGQL94sNXli1nqXQSzubT6+3XuM2imavrR2n2Sm+YcBKHWfB8CrJbLp8u72YlTnLYPkiM9568RV9s5iMWow1iDnUNNVsq4899xzdO3a9SyvUKFnz54888wzgR7GaaFSqYm7/3feWvAowXodN990Q6CHpODDunXreOKJJ2qk79GjR/PHH38wadKkGum/saIIawoK9Ryr1cqTTz/LD7tKiJr8EuXldTOT/I4dO5g/f36gh1GvUalO7l80bUgoW4uaAbCuUEyv4S4WfdNUQaJwLUjJiDURYtoNQRBfu11O2kaImthiyayVZxf9DPdbRZ+1jkHi+xa3dELpWO2xbaha9QHAJfnElQ2bDkDE6i8xN+nAM7PfwlJuZcZd0876uhWql9DQUIIk/8Pq5pJLLuHhhx9WhLVqRhHWFBTqMRaLhcunXkVc+0FETX7krJNa1jROh53S0lKlNmgjQ2cMJmnkHbz/v/mg0TBj2m2BHpJCJfaWaNGvn4crqgUAIcc3Yw9rgssUgbHwGABqt4MF6S6syaJmfGO+nnah4r3GJaVi/GZ1EUYNJCYmcvDgwdq/kAaOcudUUKinWCwWhl98GXkdJ3M09jyCdv6JABj08orZUJQGgNMcC4DL4OPcbxTNmlpr0Ql9R+xZAoBHL7d/09EfgP9lGrzvDQkX/c/amMWo0c8zZX+0iTHiXTzK6GHbil+ZPHnyWV2nQv1GpVIT1XMC7yz8l0W//cGiuV9hNpsDPaxGi8fjwe12V93wLFGr1URHR9dY/40VRVhTUKin3HH3veS2nYCp+XmBHkqVuJwOoqKiqm6o8J84nU4EQTipOfSjS0Uh/bIfxH37c8WUHfqYpgDYLWK6DbdDTOei1onVCvR6E3tzcwBQaUVBXGsQfRVdTtEcmu8yAZCo8/gdO6BHH4pc4vk2ZRSJ/UuLBUf3ywAwHN8GQFxbDzkH1tKmXXsOHzyA0aikcgkEK1asoFevXjV6jvz8fFJTU73RpgrnjiKsKSjUQ9585z2yLFpM5/cJ9FBOD6XAd7XQrVs3Nm7cSM+ePQM9lLMirHUfygsyGTh0BKtWLK3zReobIt9//723JNTctYX8dtyCWR+EsTgdAGewqBULyj2AxiL6Pepz9iAYQgg6vgmAVaFN+D2lF+qIRNx2MVDp9nbhxJhEjd24ceNYs2aNIqxVI4qwpqBQz9izZw9vv/cR8b0nIajln7AtLBGA0KNr5feiWgLgMogmzyAp2hPAGpki/W/mfU8nmURVbqd4nCncu09blgdArkr2i1unEs8ZpxOFMbPmRI3P1L7hrPl2Nx063HoGV6lwMlq1akVGRkagh3FOJPYch7kslVtuv5PPP/kw0MNpdOTn59O8efMaPUdycnKN9t8YUYQ1hRNYunQp2dnZqFQqLrroIkJD617OrsaKy+XirpkPEt5huLcgd33g4MGDtG/fPtDDUKgjDL7qEb59dBxZWVnEx8cHejiNitLS0lNGFVcXKpVKybVWzSjCmoIfmzdv5sHHX6TnyCuwlZfxxjtjuWzcRVx//fXExMRU3YFCjfLenA/QJXbFRP1x0C4pKcFqtaKuo5GqDYF56wpxS4W2x0qyz+xc0ZzlsIlmKoNUfsotaU3VkrBfnpOKVio9FWOSfNP0oqa0qVE0axU45fx5AAOixHZ6tYBZWjMMTpbKV0lyQJBUqmpH+CAA0spE30qP08HcDbtw9LuV8VOvZ83fv5/bxSucNjabDbfb7fUX3F6oA5sFja0EQfJX1BfnoraV4IhqiTtC1L4bMrZSntAZU65Yos4a1YLILd/hjkhBI5lPPw+bxcYrxIX9RRddxLhx47j++uuVJNjVhCKsKXhxOBxMu/s+rn34E8xhkQCcP+QSYsvWM378eG655RauueaaAI+y8fLNN/9j9heLCB3/FCGFRwEwZ+7y7ncZxRulbwSnRyfelA2lWeIbghwFZpQiRVUe+UGsdogPdqf5RMHcnL5VPE+QHChQkCa+lxUszZcusuOyTRIeli79i4suuuh0L1OhkWCMScEd04GXX36ZBx54INDDaRQsXryY0aNH1/h5QkJCaNasGYWFhcTGxtb4+RoDylJXARD9oIZdNAHnwLtYUJbAKzuKeWVHMe+lqlhuuIhWN33BI8++wocffoigOIvXOjk5OTz65LOYht6GWlu/Vqqpqan06NEj0MNQqIM0u/Bunnr2eXJycgI9lEZBbm4urVq1qpVz9ejRg++++65WztUYUDRrjZz8/HxmPvAwq/Zloet5NYbgWAoObia4TL55btmTD0D84Bv45d+9/PTrJH747itMkslEoWaxWCyMGTuekdc/zmpt00AP56yoaR+ZxkZFma/Le0d439OoxUVUUMUS3OUAwBgmajaM0vsWQbRb2gvEQIXI+GaMjhRNo1q1+N8omTD/yRcXBhWVDZpL5cQynGJnLY0e1paI7zlyxQSq8YliclW7tKYbESHm4BsZLfZ1qMzEUrs0prAYWgy9is2bN9eKxqexc+DAAfL1bShYVQTAwv3ZhB36F21pFqXN+gFg8rgRtAb0eftxRLcBoKzVULS2EjwGUXsfcmg52Mu8kaMA1sIsvlktzscr+4Vz+eWXM2LECO66667au8AGjCKsNULcbjdLly7lh4W/smn7bjqNnYG5RUSVx+lMIYy+8kn2b/6bPgOHMW7sxTz1+MPKg7gGSU1N5cJxl2FoNZidGUWEedYBoHKJubIsTbp52wZl7wX8IziDsmQzKUBpUznlg6EkW+zL7fC+p/KID2udZDZV+/TlDEk4YXxqaRxIud4Gx8p9FdnFB7qtBhNwKtR/EnuM4edfa8c815ix2Wxs2bKFG8fPwu6puv25EhsbS0pKSs2fqJGgmEEbEW63m6//9y19Bo/grR/W8pe6O/bxr7JJmyz6Mvn8ufVB3j9rdEvv37u7C/jT2BXXDd/y7T4HY8aOZ+PGjYG+tAaH2+3mxx/nM+7yqzB2HkdQQptAD+ms8LjdLFq0iG7dugV6KAp1lLguw9i7XylPVNOsXLmSIUOG1OriuiYrJTQ2FM1aI6CkpIQffpzPR59+SU7SQPQT3qZcbyQi9xCUiBoUfam/z4jKI//IbOFJ3u1gyaEcIDilO/aUa7jq3gd44o6pTJ08sWYvpJHwxx9/8Oqrr1JuSGDM3R+xcs2KQA/prMlI3U27du2IiKhac6ugoFBzrF69Gl3yAMqcanYUiSbp0KMbUEua9YqcjWp7CSqPG2dkC7RW0dyuKzxKaYuBaBxiVQxXZAtKm3RBW16EIfcAAMbs/Ty/oRk3dZY18KGhoRw6dIiWLVvW2nU2VBRhrYHicrlYv349C3//i4XL1qDuOp6Qm34kZsdiyNgOgNolm6wcIf4RO4JPDi9HqJwHSZdd7NeuNH0/wf2v47HX3kGvVXHZZZfVxOU0CpxOJ3fNfIDfNuwnuPe1hKtc/LNhPSqfxLeWWNE5WC2lXzDv/Mm7z9VEdOL3jeS0xIu5zQzFmQAYC9O8+zw6Kf1CUZY8hhDxuxaCxT6skbKPXIVAr/OpJeqQzqXRiGN0uGX7SpBWoDz3WI2XtmlMBAUFkZeXx43j/IVfX9+1CvZKD+Q/xectF0eLc+aXPClAJVJMaNw92INV8knLLheNLZvKxO/xPLPoeHawTDR32wVxzhRbxahhoyoIe7GY5R69SWojviyX5sIei3gvcZSK/22CisltxHlm0Ij+bP8e2o/FYiE42Kd2rUK1smvXLob3nFKr52zVqhUWi6VWz9lQUYS1BkJ5eTkffvghDocogK1Zs4YOHTrwq7UDEXfWbFi8SqMlbPidzJ//HU6nk8svv1zJqXUGZGRkcMFF40g7doyozsOJGHOfaKooOBrooZ0zuekHCW3ZNtDDaDCMGzeOCy+8kLFjxzaolAgJzdqzZ88ezj///EAPpcFis9kIj4ylzBnokSicDYqwVs/ZvHkzhw8f5q13P6DT4MuJjGuH1aWm8/hhxDdtA7sLKCuUNSfquHbe7fCD/3i3g4rT/Pp1RMlqa4/Gp36f4PJr59XAqTXsGPo6y16/gUeeeo5FP3xHx44dq+MSGwwul8svq7fD4eDH+Qu4c9odtHr0D1q07In62LYAjrD6ObxlKRPfeiTQw2gwmEwmXnzxRV566SVeffXVQA+n2mjWujP5+fmBHkaDJS0tDY1GvFebdR7+2bQaAL1aiz2sCTqNHnPWTrGxWktJ016EHlyOI0qM7CU4muCsndjDmojHlWShL83BUJKFW9LGGwuPovK4iDTE1e7FNRIUYa2ekpaWxmNPv8CBjGLi2/Xjmy8/9dZje/tvUSBwCxB68F+/49wGOfO9PVKO1NHYy/za+ZpIffH1ZQPQWeQbrKMwnajLnsZtKeSGW+/k0w/eUQQ2iezsbHr2H4wxqSNqKeJSEATc4Sl0f+RXVGoVHNmI1lbqPaYiMlPl813orKIZ2h4q3hDtzQd491WYNSv8SgA0NvF71ThFM5bWJpuxHVJ73yS3FccKarF9UK7s+F0R+WmNaOZ9zxktziFVWREA/+SFe/f10R4mOamJomWtZnr16sWsWbPYt28fbdvKWsvK6Txah4oLK42qwpQpVSyQzJMjI6WkxUVqwjTid1RRuUAjmd7DdOLvvVe4mN1+U5nYZ2yQaK7cm52JIUw0hUfqxGOKpVtEhFYt/fdI+8X/fxRq+TlfbFuRTiSyx7VMvXY42zeuJilJ9pFVqB7S0tLo06dPrZ+3Q4cOrF69mi5dutT6uRsayl20npGWlsa0adOYdMPdBHW7gjF3f0D3UdfWmcK5KpUKrTmSmx/9kPETp7B///5ADyngPPr4E3Tudj760bPQX/IUpgtmYrpgJkEj7iWs+9h6VePzTNi+bhkTximVC6oblUrFBx98wCuvvBLooVQbQVFJtBw4gdTU1EAPpUFy6NAhzObaL1HXv39/NmzYUOvnbYgomrV6gtvtZs4HH/LVd/O59MaH6X1Fd2mPuNL9UkpyCDBnl6ztCjb4/0B9c2qVtezv3dYWHPdrF5y586TbhW0v8GunsxR4t4Pyjni387UjGHP3HKZccxNrVvyJwWCo6hIbJJ988gnL1u7koU/X8smewkAPp5YRFIfxGiIuLo4vv/ySN998k6CgoEAPp1pIGH47I0Z0p7i4CL1eX/UBCqfNvffey44dO1h+pOq21UnTpk1JT0+v3ZM2UBRhrR7gdru55ZZbEMJbc8dz/0Or1aFV+5d8yi6XtTPmqCbebWdeql87lU9tSJWlyLttLPR3Zi9r0lXuz6f+ZMjxLf7tEmQzpzplpHf7m2N20LfD3v8ORoybxGfvvt7owrfvfeBhVu44huu8a/hm1TZ0evGhqhLkiElnkFhT05y5Q3xDJX+PtogTE0rqK5LVOsWi3M5g2YSpkiJEPT4CujNcDKPX2kXzqjVC/l7dhmDp3PL3K0jzw2EWndd9zd4V53IbfIQD6VrUOvHh2jtSXgzsKztMeLh8PoXqIywsjDvuuIO1a9cybNiwQA+nWgiObcrAsddy27QZfPrRe4EeToOid+/exMXF4TpUxCt/bkEruTuUJXRE0Jswp21BLd1brDFtMBSnY03o5OeWUZYo/5adwdGE7f8LV0i8N/WHLaIp+pIsrC7/PG6NdaFe3SjCWh3HZrMxbdo0Bg8eDC0vAcDlAW0lA7bG5/dhkfyHACIy/B3WC7qM826HHl7j3Va57H7ttFbZt0nllH2gHOf7p+YQSvLkMexZLreTUj7oEjuQmjeE83v2Ii83x+vk2tB56LGn+Hf7UYbeOYela1cGeji1jsftZv/+/eK8VagRnnnmGcaMGUNsbCydOnXyvl/huya5obG4QEzVMSVefKiWecTXOyxiA4/goZuUoqPYKd5I2kuV5Bwe8XVFeanmRvF1TkWckUbn9VXLtVr9xhcTagTgnyzxXqLRi69DjVpCpdtAS6Mo7C/LEoUCYdgjHJp7L1u2bKF79+4oVA+BrDKjVqs5fvy44ot4jijCWh3G4XBw4YUXcs899zB27Fg/U2d147KXYy3MwmkRb6zOvCyCElqjC4mq4siqCe1yAap1X/HTT4uYMGH8OfdXl3E4HIweN4mjhXYihk1j2ZoVVNwmncGiFq2izBOAScp7Vh4rRulqHHJOIq2Uz6w8Ri687DKGiP+lvHhmnyTFGpvY3hbZzPte5PYFAFjjRA1oRX42AFPWXmlc8nfsNIX5tfMda4VWz5XQ2fueSiuumvWSts0tBUVkph6gTZv6WXWhriMIAo899hgA1157Lffddx+LFy8O8KiqD1eXcfz777+KsFZNrF69mmbNmgXs/OPGjeOXX37htttuC9gYGgKKsFaH+fSzL2jVZzyFkQP5clURRq1s+nR5/FdKP+f4+HiUpHo3i1sO8msXlLkHAMHjpvTIFoqO7aYk8yDq0BgMkUkYo5uCCty5qRRu/xNHSR6Rye2JaNkDU1QSrvS9/oMMlXM9+SbS1Zfm+jXTXPo00+6e3qCFtf379zPhmltw976WSJ/EtI2RIzv+ZXjnzlU3VDgrnnvuOd5//31WrVpFq1atqj6gXqHUGq5Ovv/+e3StxzBnRTFL8ww4Q+PQ5oqaTHPmLuwhcTiDIryLQlP+EbTlhZQm90BQi4mwncFR6Cz5qCULjNZWgj2mDYacPQg6caGmKy9EJbh5Z+Mxbhss//bHjx/Pbbfdpghr54girNVRHA4Hn3z5P2545ntsUnbxa/qHn7L9a0dkU6XgkxfNJBX39ricFOxfR276PhyWIpyWIgxdRmEeejNN2/ZDrdH59ScIHiIAj9OG+9dXyNryB+V5aYS1H0hsjwvRSJoUp1M2fVgT2nu3dQX+edt69+rHvrWdaKisWbOGO+66F8fYFwhq1g32NT7Tpy+HN/7OV6/8EehhNEhUKhV79uxhyJAhfPbZZyQmipUIKlJ2fLumCIACu2i6rDA5fnJcfK1Ri/cTp/TgDdEbSDSKJlKHR3okuMWFYZBG/D8oQtSYlkpm0kO5oi+jwRzurViQFCzaTo1SqpA9ZWKfKZVKjZW4xT/f/tVa8bwjE80czQ8B8lCoHg4ePMhFlz4ZsPOHhIRw8OBBduzYQWdlAXfWKMJaHWXSpEmcN+IqNFpd1Y2roCzrEEf/+oyodn2J6TQYXVAY+uAwyjqOqvJYtc5IWMseRLbsgcflICdtL/u/fZyY7qOJ6jL8nMfWEDh27BiX33IPpstfIaI0E3Yu8QsUqDBdVuQwsyfJOYeEDNG53xkmJpb0TS6ulvwGVW45EbGnQqgWPLhtZWTlHMNZmCG+pQtCbQgi2C6210cmoYsUgzqMBali/z4aP5cpXOxT7TPHVOID3RWZ5DdmkHO7uc0+pnGL6B/VKUbsKzbITVlxIZERoY3GPzEQtGvXjq1bt/LFF1/wySef0KZNG+677z4iIyMDPTSFOoTVaqWgoKDqhjWIWq1m2rRprF+/XhHWzgFFWKuDpKamkl1g4coxEwDPSdu8t7zE73WyT6h7erZsqiwqLiRzzQKaXz0bbXAYQ3r09O7Ld8pRCgaVf3Sp2cfkus082bsdu2EB0c27kr5uAUcXvUL8lS/LecJUPlEPKv8HtVktoDKEnJDIs77jdru5/LpbMYx7Gl1EIpRm1uz5bGUUbVlM6f41eBxWzC3Px9SkPahUCAYzzqJMSg+sRxA8lB/fg2AtJqRJO2KT2xAcXTu5+JYv+pxbb7q+Vs7VmImPj+fBBx8kOzub+fPnM2HCBIYPH07TgTejNxgDPbyzpvjYDiIHNa26oUKV7N69m9D41ry/WnwmhBxbjzbpPFQecUGn8rgwFR7DozV4I7+1tlKc5hg0DiuGIjGlU1D2HkqTzvO+BlCptVgTu6ErFxds1ogUgnL3E35wOTcuFBeJn1wqWmDCw8MDLjTWdxRhrY7h8Xi47777ePyhmVxYqThzRZQXwMfH/TVuLh/H9IrbtKM0n/TlX5By1/9Qh0ThAdqHylqaQocsXOXZ/cNL/8yXUzYM9Vms/x0ualxiLppJ4bY/yf7xGZqOmSaOwekfDeaLXg0RLXtx9OjRBiWsLVr0M7nhHTDG16zfkD33KLn/fIk9L42wbqNpcu3raEwhXu0bgCdInC+6Qjmvkb4ki5K0XWRt/wtrUTYJ/ScT1rxm02lkpx2gV8/ba/QcjQGr1coHH3yAw+FgxowZ6HTib75yZF9cXBy33347t956K0OHDqWzO5b+oyafrMs6j91SzOaf3uWPOWlVN1aoknvuf4gp977LB9sDKyhpNBry8hTT9rmgCGt1jF9//ZXMIgdlUX39hDMAm0/+GkeOf14032S35dEtsB7bSeav79Bs2mcYIuJ9WvqXi6pgp8VfE+b0KSO11CUnNvUV6SK6jsB2aAPFO5YR2bavN2cYgLHIPxFiqVuFQ2PgcOqxk56/PuJ0Orl5+j3E3va1V2iyRYjaK5XHRyMqrVjVUsknl0/uInu4lBNPI/4UDTlyeSd7ZFM8DitZC1/GbSkkdux9dO8mJjLuJ/kQuTxyHT67N+hEDvrYUKIlofdYDva/CldJHnkLniU/dTuJI2/FLZk1BbV8G6hYcetyxOyZHq2soakwwRpzD8nnDBPzuHUMEY8b1tLNR+V5JCQknPJzUzg9XnjpFeYd0eMuOMbXCy9Go9URYRAYNXI406fdfkIyXLVazSeffMKVV17JE9Mm8Os+8ftKKxMXch6neI+4uoWYh+/PfDGS1y5Ahk38/beVvscj0v0gQi/O46NSHsdQSePeM1Tse0OJk4rHSG9pIbin0r2kwt8tV1oQalUQIpWgqkhB5C4XLQVmdzrDhg4JaKqJhkJxcTFWm4OwiBggsMLa6NGjmTNnDg888EBAx1GfUYS1OkRpaSnPv/waU2ecfYFmQRAoXL+Aku1/kXLjOzWu8Wk65Br2fPs44a3Or7Jtk76TmP/dNG675aYaHVNtccG4y4m54mVvsEV143FYOf75DKJG3EpIx6Hn3J82NJqmY2dStOdfjsx9kvjLn0IfVb25j77//ntuueWWau2zMfLTTz+x+N+tJF7/OWqtjm5mUeCPtx/j18+e4+t5I2nTqiUqYOyFo7j26isAaNWqFS+88AKPPfYYfa56MYBXcHaUFefTRMnHVS389ddfaJt05YU1aRikNEAeXRD60iz0pdne1/bQeFQeF8H7/wJACInDrRfbCVJqnuImXTEWHkNbIi7C7bHt0RceRR0c402Mbs7chSWhE8bCY6w7JC7ovliVzLX9w9HpdLhcLgRBUATxs0QR1uoIgiAwevRoHn/0UcaM6XHSNs8ukYutayIT/fYFb56PIAgcW/0j9ujmpMz8HpVaw+R4f180o0Z+fcyn6kELo79vXKemshN5uVv+cQXF+Y9t5d/HiW7fl7xtS4jtLgcsVDivVxCiEXDpNeS4nNR3BEHgttvvIN3cDnOnkbizD1f7ORzFOaTNfYro4TdVi6DmS3j7ARgim5A270kSJz+FLvrESglny7p167w5wBTOnrvvfYBLH/menZUCjCJiErnqgXc5WOjGbi3FqBaY++sc5nz4MeMuGsnll19O9+7defLJJ0nYv52UNvWrgPbqhe/z7CP3BHoYDYKVK1cS2mEYpVU3PSWOskJsRTlY8rOxluUR6i4lKDT6rPpKSUkhPT1dSY57lijCWh3h9ddfZ+LEiYwZM8b7XmUz6I9r5WoElYt/FyX1IOO7RzEmdeLhu+WHpdNfVuP3bLn0R7ZTFsJGRfkLUVtL5KnRNlg2nWorLYpKm56HKb4jxz64mbBWvTCEitGGbp3Jr92KAwcRBAFLRg5WqxWTyX9/fcHj8TB95oMsT3UQ1aYV6q2LcITIZma3ZDYMzt3nfa84pRfgXzu1Ak2r3gA4j4rfrT00HmdxDuk/v87EGW8R06wTcQZZkNaqK8yf4hexv0yeB2E68ctuFiR/X52DRdNUSjNRuF9ulvzamnYlLjKJjB+fpfXlj3vnU4XZ0xUstjMUywETxiIpgW9UC+97uhhR0AuTzGUZGRm0aCHvVzhzPv38C+K7DMcS0Yq8EjG9xu+F4iPXmBIuvi4CCEdI3wNtL0WbNJgP03N5b/RYfps/l2+//Zb+w8Zw4ROLUKnERMeClOj4hxxRAGxvEufLEbuKv/LFedLTKe7rFi6+LnKI86zCPBolzcX1+WJAU79wHWtLxH0lkptGrnRfqTCVljrFY4xSibwYo4d9peL9ZW2JNLclE7tgCmPgALlmscLZYbVaWbt2LW3veZT046cf9GQtKyL38C5KigtxWUvRB4diDIuFJp2gLJ+M1M1YCrII7zSMpGbtq+7QB71ej9t9cjcchapRhLU6wJ49e7j33nspKyuruvFJENwu0r95kPBe4wlpP6jqA6oZtd5IzKg7yNn4E8mDrzplO5VKhT40ut7+YAVBYPbs2fydaqfFDe9StPb7aj+Hx+Ug8/snibt4JjHNajYvnTGxLSFdRpCz5kfi+l9+zv0d3L6GpKQkxcxxDhQXF/POex/SY9aZ5ahTqVQEdRmFLSyeOx98huSYECaOHcmu9b9Dtyk1NFqFusrq1avJju2Nc9cmtLog7JIvrT0skbDUNd46nyGpq9EYQyg7spX9O9ajUqkIG3wtPc8bwXEXqCRfwkEtm7HiaAaREQkILifZS95n++8fY+4ziWZuF2qNlpKUnpjTt6PyuIjYvxSA2SGTuVbKD9q9e3d++eUXpk2bVvsfSANAEdYCjN1uZ/r06Wzbto3g4GC/fbuL/E0gOsnvAMAtFQUXBIH0vz4muE1fQtr1B8FNpu1EbUsFO/KLORlZwSF+r20+FRLWFcvTJKZSfzqpHFGQMRh7eSHacjHiR1uW7dfO3v9aAFyG+qlRAzH4Y8WKFSRf+W2NnSP397cI7ToKU9PayUcUMeAKjs2+lMiuF6Azn1uOrsNb/+Yh5UZ8Tuzdu5f25w1FpVZX3fgkGFO6MnXkh2z/dxE/ffs2mLYTpAhrjY6//voLdWLHKtvZSgs5+M/L6I1mEsfeiz4yESGqKfrQUCg4efSmSqsjov8UkmMSOJaRyq4fXqDZwCmQ0vOk7Svo3LkzS5YsOavrUVCEtYDz0UcfMWbMGLp0EX1LPvxHFqa2lRr82jp8ajhW5MTJWTUPtSmMC66Y5d0XrJU1V0Eaf18030oFeqMsODkqpXOL1spvrCuQU3IkRfoLW04potDlcuPWB+MIFc1t9tB4v3buAlEV79KHsmXLFgYOHEh9oqCggClXXMVlr65iY4FUSiv5PABUgvxZGaQo2LIEWSsWuesXAIpbDwPkup4AZEumUWMolgPriPBYGXL53QB0Dhej9zJ9fAt3FYvfXyvJNJ0SJJ/7u1TRVDYoPsz73iapWLdbEIXszmFyMMSuDNFUGzf8JjL//Y6ki2filBLequ2ilrcioS+Awyz6qhiatDvh8wnR2clO3U379mdmGlE4EZX63DWTXQZcgqnrBAD+zHVU0bpu4HFYseWnYzAYqm6s8J9s2bIF/cBxYD/54hyg7PAmcld8S9LoOwiJSqK8kh90Vag1WiIHTCUpMppDf31KSHgy5tCwqg9UOCsUYS2ArFq1irfeeou9e/dW3fgklKfvpezoNppPebqaR1ZzuFoMYvPmzfVOWLvxtumMuP8rwuKbQ2pGtffvsVvI+e1NJj77a7X3XRXmlj3JWfEVrvIS8K1OcAbk56QTGWo6IZ2Ewpnx888/UxLVla1S7UZBKglVkXB6reRLWqF4c8W3BsBaVuitJvHOAfE79EgJmtUh4muVtFCzWsQHuCFIFMRjtVBiE4X+reVixzopnUu25LPW3CTuz7WJ+zuGif5vNreKtpI8X7FvqJSqwyxp4cskHzarFKj0SaoTj0tcAGokP86EFt2w5R+ndfdO3nxyCmdPTqkbdWg0dlcooUc3QO5+ADT2UopaDUa9/19ylrxPk/t+IqxJa0rLSrzzweVykmZ1kBAeTa5BtPaszCnj0lbxhOnEeVAcFcO66InYnW7KO40mru1QMj+8BVPHgQR3HIpTyvkYsncpV82/jK8n1F+LSl1BEdYCgMPh4PU332He/J+48YWf+HqNXI1A57OqTt291u84j8Esb0cmcfzrh0i+5QPcEQnstsrmySid3Eex0z8QoWWoXOmgQ7CcIDfN5t/Otz+tXl7p6itZZ7TSA8JjLcaj1eM0iSsrc/o2v3ZuSUPjydkPrc5OIAgUFouFo7llDOhWc+W1sn95naihN2AwR1TduJpRqVSEdRpK8e7lhMY2P6s+tq76nRuuvbKaR9b42LNnDwlX3s/hfFugh1LrWDb9SP9+vQI9jHqP3W5Hq9VhP8V+V1kh6Yvfp+XFd+PQV48QpdYZaD5hFoe/nkVSXCtMkUqexepGEdZqGZfLxVPPPMfm1HImPToXnTGIYxZZAlpWKH8lzgR/c5PglG/geb++QUi30WiCw/E4rAyMkzUaUXpZ0Cp2+ptUDpXIlQ6K3bKPnKGS5WVomGxey3bIgtyqIv+oUa1NXKW7LPmoXQ50UnLYivw83naSv53GUQbUL2Ftz5492OI7sa5M/J5M2eIq1da0u/j66CZv24rEscFZu73vFXS6BABB8jPEx2yqi2pC2b7VhKo99LvYP/9cRSFuX//BCvOnQYqsy/epQqHWiYK408ekXV4uamjGJYo35SifyNK9zUQnY0fGfoLaDSB/9VzCJfOnIF1HhU8igC1SLAHU3Oer7Sjl/8q3HqVLl8tQUDhbPAXHuGB4/ay8UJf48ccfSeo6nH0n2ScIAsfnPUHTIVejD4mkOg3kaq2eFqNu4+Bvb9Nm6tOoNIp4UZ0on2YtUVBQwK+//srzL86m3cgb6XXFvdjUamwuSDTJPmbZmXLtNUO0fz4aT/YBQDR/BmftYvSsb72OyPk+QlmySRaojpb7f8XdImShLtl4as3apjL/1xW0N/ubKA7bxIe7M2M/+oS23ioGLh8tIIBRqinn0dQ/fxSPx3NCqpTqQhAEsuY/x8j7v5aiKIUqj6kJdBEJOHKPVt3wJAiCwPbt20lMPDOfF4WT0zHUxW6HqKEutoqLK61O/N3k2UV9iStf9I00xDYDQB2mxV1RdUL6Taqk9Cu64zsAcJjFtDqmBNF0utkiCu7xehWhkv9qrFShYJ2UnCteL95Xfj8gpm3RSRqTkGKDt/0xyVTqcIimzRgpLU9mnmSGNYr3Ak+pXBWlws9T1UT0cRwVbuHR3z7B/NFTp/sxKZwCu91BUHjsSfdl71uHKak95oSaSZZuCIshvF0/cjb+TFzv8TVyjsZKgxTWBEEgIyMDj8dDREQEZrO56oPOgtLSUoqKiv6zTUZGBosXL+aLr75h4NjrueK+d3Annjzp7ekgeDxkLH6PCY/OPeuIsZrAXpKHNqZZoIdRI3z+5Teomo+ukb6tqdswxDbHFB5XdeMaRK3Ve32azpSS3OO0a9dOcQyvBtxuNx6Pp+qGDQyPx83w0RcTHX12CVcVRARB4LNv5tJ26mw0eUXoS7OxhTchKHsPTmsZWQc2k/zAT4QkiO4OTbUCewtL8LgdOB2i5UbwePAUZpAV4v9dLEovxyNZd0YkRROhFbgoxs3RMHGRtiw4ApdaTUR4Mkc/upWolM7ozeFsycxi0o/xFBywUb3pvRsXDUZYczgcvPTSS6xfv5684nKi4pqi0WrJzTiK0aDz5n7y1Vt4KikxND6mQN9UUUGVHLUsdo9YOkNjRBcad9JjACwuFWh0xPa8jCH3jSUquS0lQGuTy6/dJ+nyQ05nkWu42SuVMTKXZJKz7S8iktsRFdfE72qcPnVDPz8qa9ZGxflrhFyCfMzPmbJXw8Bof9+FOJ/ntm9SXIvL/yJ3SaaxwuN7adOqO7p8MZu/R1epbqGzHADVfxR7r6ts2b4bzQ1PYneKn5czqhkAQZL5U1DJ88NtEH3zSpvIxdJ1ZWIIfHCmqOEo7CAnPtat/pwLxt1KN6muYppV/r6KnWK/u3y0nBWpUyqiPMdGyXPJ7aj4bOXvsl24uFA5LlnQfc2gtjLR31AtaTmcJbl4JJ9DXUkOANZkOQN+0wjx5p2gl/t4cpSZd99dRnDfviicO0lJSfz55fNw8QuBHkqtsvOf+XRo1ybQw6j35OTkYCWY8PjmkLfHb9+xjb+R1H/SWS/KTheVRkvKsOs4uvwr2l883W9fY1yIVBf1VlgrLS3l998X88dfy9m7/wCCSkP3YZcz/oHp/5mUc2OBPFHXlPhPnPtauio3B8BVaX5pfWS3IvvpabfuGBLq3f7fmiK/fe7df3u31Ro5AMB8xD/AwK4zk7NrJW2uf+OESgKRWlkIi/bJ13awkmyU5pOjw2SS2xW4/CXXIh+h7LBP6ojcSj5w5vRt2EsL0NhL0YQlUNG7VRLivNcVIppgnNsWM2zYjdQXUlNTQWeqES2m4HFTlLaPuNY9gMAnCtYGnXnYvcfjYf78+Ur+pGrizTffpM+AoWhK89GF1C/fznNhz/Jv+WLV31U3VPhPPB4PRvOJv2OP2015fgYpKZ3PqfzU6RIUlYRGZ8SSmwai1Z2QpHZsmDu7Fs7eMKk3wprH42Hbtm2sXbuWo0ePsmbNGhK7X0zrQTfT+fKmhBlrxqeoLlG4cxmRnYfXOcfN7F3/ENfx9FJxqDwOmjc/u4jDQDB+4uUMu+kVltZA3+UHN5DQrncN9Hx2qLRnvuLevHkzPXv2RKNp+L+/2kCj0fDxnLe5+rZrGDTjC/6WlN9h0sLKIq0nVVJZtyCNuIgoyM8mIVkMSAqT6v8eOLgTkH3VCBX9mMrzRf9RtSScRwWZSbeKruY2j6jlt0n+ZalSiSqV1NaTIQbXFMeJJcUKinOh4n7kFgeXaRO1uWopUjw4dT2AN52DW2vCGSZaJKZLt4KfYsJQ1yG3jvpKfn4+2aUW/ti5B42tFJcpAo9WjyMoCm1EAuUxrdCGRGGSPurdGelogiNQo0eQtF6e4myEoDBUpXkIkr+hKSIevVpFr2DxtU4tUOhSk2dX45DW+V3Cgyh2q0hP7oTN5SCs1wTydi8jpsMwDoREAUYSXCdXiChUTd166ldi9+7dfPHl1+zau5/M7DwsLhVN+08mMmkU3e97lJZmWUtk9ZkD7krmzelDZa3WV3PliMq+of7tfs6UzZHxPqae9qH+E+xoifxgamKS24UbTk/F+9ymfL/XwS7ZHOnrmF+W1M2vXeniD0gcLmqljlfS6O0pk02fPUPlrzW8UsWBQyXy9UdXqpjgS+8w+ZrTrfK50or9kyy6olpTkHucsEnP4i6R84+FHN/s184SX7Olk2qC/fv3k3o8k8VCMzoEyxpPR5D4oEq1iSlXVL6qfSlZcUVULMj1Ngs7j5XeENtb03YS1bE/VjeYpAfs3zlytO6oeNGU3Nan1ue/Up4tS5nYf45ZTlqrM4nb64vk+SRIJs6rk8XxZ/sEklS016duwmUtReOyo5J8UjyJbQG4vZkswIXoxX2+7gLPPvssr7/+OgrVR9euXZk1/SY+/PV96Hd7oIdT4+SkH1H8HauJhYt+xdlsAMZADwQwN+9OzpJ3ifF5r3Xr1uzcuZNOnerf8yDQ1Elhzel0cs0Nt5BRaOdoUAsM/R5BY44kLCKOYqAYOFIGTp8UCE19HmixRn+h6eaF5d7tArsshKyqlIimeZD8QF6WJwc15zv9p36UTu6/wCd1gkl76ki+aYvkMeiK/JOqauxyTVBnnJyuw3x8q187h8OGpusY3EBSJcEwySA/hI/b5aepvpJ1zbdqQZFT/iyS9P6akX0W+bWv4Cq4/IO9c5Z+RMzoO8FgQmOXFey2yGZ+7bTNuwGgMtVMsEd1U1hYyIRJU4m65bMaO0f54U3ETagb5ZmcliIM4fFVN/TBbitHo9HUK01pfWHq1Cms2/wwX7wwgoSZPwV6ODXK3o1Lue666wI9jAbBwUOH0QafaOVwWUtQq2v3ca/SaDGExuIsyaViyde8eXNFWDtL6qSwNmnq1RwM60ns1dMIs8pOVxZJBV/BcoOPZkgnC1Rqrd6vncchazmaRp08pBng8AE5kasrXE7qt7OSeahTsCzI7C2XBaOpwf4auB0+tT1X7djq3db6CGcA2rIc77Yp/4h3W9D4X4faGOJVVVdyMSPZJ/2Hb9qN7bkFfu0qtCngr4GzV+qvyC+QQBZIVVYfgSxzP56sA0QPmooq9xAuU7h8RCWh7vpE8bOZpz+1QFtXsNvtTJx8BcOm3MfS8JpxenYWZSG4HBhD64ZfUnn2YUzRTatu6MPGvxdw4YUX1tCIGjcqlYo3X3mB/fv2ordncahUNENemiTe80wa8X7nFsTflSMsEZvHf2WmbyM+ELcfF9NuYBN/u12aNAFgx1HxXrNVrfaaWUsd4gpWLQXF6BPE+W+X8vXpLaJVwGoTzZhaa5H8u5fMoSqrqHEWpHuoJUosIu4pl+7Dag2GMFHfcuNAM/t/ySEmpn5VNKmr7DucRujAGLDko7WVIKg1GLP3kJ9+EHNQMO7QWEx6I0dLRQ2+2iSalwSPG3XFc87jxpC9H2NROqVNpACjiHiKi/P41yPer5obVERoBQqdapoYpXln0xCtEzhSWAJB4QBoEtrgKM2nQ7DY9/hB45k9ezZTpij1as+UOiesLV26lL3FGhIn1Q2Ng8LJcdssZC54nhaj7/jPgI76hiAI3HDHDNKbX0RR00sgT/Tv0ftc4hFJsjVICWNVPg9Ju+Qf5PueU/IVqvDh8YTGYDm0gdAeF3Jc0sxWxI7e4JNxdmORuK+bjxl+gLRtjBAfrlqVfB63UxSQk0JkgbyjFMmrVUu1RH0WFEKOKPhbYltTvP4XQjoMomVTMf/ShIQKk+eJpn29ZLLdtfo33nh0/gn7FaqP2S88ww2zXoNxDTc6dNu2bbz44ouBHkaDwCOc3BWnvCib4Ij4Ws/iaIxJwZohp+fVauucyFFvqHOf3JIlS3D3u5E8iyT5+2i1BEla9+KT0V/rk+bCZS/3b+czgY/lZXm3p3WI9Gv2br6sTVOXyX5lrpIcv3bb4lp6ty/2yXGxMtdfE7Zun5zFXueQtWmmHH8NoSXRJ81Duc95fTRV4mW4cNsqNFv+plnflA/ZmanebXNcM792iT5KQrtPGo8Qjf/P2NfUu+Rwus/4ChA8bjLmv0Bcv8sJUXugWDTragvlpKplLQf79RdtcuN2uSjLO47JVHfrxP3y629sKDQQctn1NXoeV0kuJsk0XBewpe8hevjpR+kW5WcTFmJSfI1qmMTERPA4q25YT9m2bRsHDhxoUAu+QHHgwAEMEUmczIXfVpJPdPOulJ9kX00SlNiO7NXf+b1nt5+qEJbCf1GnhLWjR4/y7/ptDL7rce+P19dB/jdrpYgzH8duV5mPuc/lf3Pz9Qkb20X2CbO5/Vchap86aTopyzeAu1J/AyLlB9TCfce822GHV/m104fJGd01DtmcK1TKhu8IkV0wfYU1jePUP62gSsJVuVu+2cUlNPNu55b5B2rv9xnHyORTm+DKfMygJp9KCkJ+KpkrviY4rjkRzbtiU/k6rMt1LeM69Pfr7/LeRmw2GwubJdXZyEFBEJj10KMEz/wz0EOpVTz2cgSPC40ptOrGEj9/+QqPPfxADY5KoTGwf/9+Hn300UAPo0FQUlJCUlws+9sNAkC1+Sc8WgMFnS7BvWU5rqjmaCU3GEHS/KvUGnSpG3GExKIuLwLAHRqHoNJQHtUCQfJz6xokYDBHsiJTfD4d8kRwSYxAmlVNrl28n9s90MzsZlxyCH8Uhot9lWRhL8xiX7H4LEtMTCQ7O5ujR4+SkpJSK59LQ6HOCGuCIHD/gw8xaOz15CmrrJPisdZGhpz/JmftfNz2cuIHnXnR7kWLFuF01l0twcaNGyk2JxNWIgvMaknQD1LLwrG1SNS0mqTkki6zLGxX1EAVfBJPNo0Thd1jOVJgidsFggfBRwNcIRz7Csl9I8TP6qssWWM7Itx/3fxDrvwTNkjBG0k+ASFmKegl/yT5ANXHtojXkXuI5n3H0zK5BVOaiNrqinR8vpGfVmlsE7rp+TAvlV69lKLbNc2+fftw2MsZnSh+t5FSxJBVWpxVLNKWFmkYFeE/N3ZJD8ggyRfxpiRRo2GRfoPbpcWp+vhuCuNE87cmX9SOeyLEOWvLFRejKimFh1CRXkN62LuCI0FKCl2RCqTCN01TIJWYk3yLdZIw4AyO5KoEcYLtWrmL884770w/FoUzRHAHJmWGSqVCY5R9y9VqNRMmTGDz5s2KsHaG1Blhbc6cD0gtFOjc8UK66OWJdcwnIaspJMLvGKuPGdQXfUmW32ud9AAFWFMiR6GcZ/Z3yPXY5bQJKWGy38/RSqfZsEZOAGr20e4Vt/DXJunKcr3bvpo1VSVH4NCjG7zbZT6Z7/U+xwNo1BrUmfvQGILQtfQvBbIsW3boNxpkDaFHcvatwBQpm3qzHKcWinf7pPhQHxMDL3LW/IBHZyRl+ldezafdKZ/Xkpvq3Z4cVblEsJF//vmHp56qu7X/7nzwcYJG3Fsr5zImtsV2bCdwea2c71QIHjdH//iQPo/+fNrH/PTTTwwbNqwGR6VQwT2zHidh6F2BHkaNsXHjRp544olAD6NBsGvXLkzm8JPuc1qK0AWHERgDpP9zRjF5nx11QljLy8vj/Y+/5JanviDU7MbokwIjzEdL8Gd+Je2AbwSoj1+Z2u0vKPjmwarwhQMIDvf3tzGEygLQwWJZiyVUEq48wbL5MCjvsLyde5BTUVFuCcARnuy/U5CFU1O+3J8lvqNfM3OrnhQfWE9E15H8U+T/1bUwn/yrNFYqru1b6WCPVf7R5JQU+Q/JV8iLa0Pub2/gcbuJG/8I5RY5utb3s1H7RNDmO07U5KSmptK5c+eTjjPQbNu2jXzBjDGpo/+11xCmlK4Urvqu6oY1TO66BST2uwxd0OmbQLds2cLllwdWyGwM/PvvvwgRLUjqNhxq3TW8dtBoNMrDu5rYsGEDj9xzD+/vEZ93S6Kao3aUixkG9CZcwVFoD6+nXbdBbM0Wo30Ncc2xRSSjctnx6EW/b42tFJ21EJcxlPgk0R2oxC0QioBGJyoCuptV7CpTE6oR0ElWh7YmD7l2NX8Xq7Flis9CtSkcTWk2bqnM4CcriwkNDmbJkiWMGzdOSYR8BtQJYe2d9+bQue9IQiNiqm7ciInoNobUb2YR3mVErZ3TnpNK9k8vY+4wiJiL7jnrG6vFYqG8vLbdW0+fd97/CHX3SagLjqP20di64sXUBUU+PoEVZh9HS7H6gPq4HEhSYf50a+WFRFqaFFAi3QwNuakIHjdCYaY34MUWJi4U4n1yBGbZxPP4mj4XpIq+mXqzqGXu6pO2TqcSb5pxPjn4mpv9zR+v7JXN0NaSfEqO7eSBe59GoxEXOBrpxquXVsM+1cnQqAXsVgsrVqzg8ccfR6FmcLlc/PTLrzzx3Gya3/ARZR4VYZKwliP5ByVIqXpWF4uvy0vy+MUlWgOcRWKUcrME0fzZL0z8zm8d5F+GqMKU+u2OMu+cdoVLizvpN1BRq9gZJfZlq/DrrTDzO+1gkOZ6vpQiJFicmx5pMS1IqZRcRslaYQhi5nBxcbDirTP5ZBT+i71795KUlAR7TnQ1ETwe3HYLWl0A0uVWqgd62WWX8corr2CxWAjxiVxX+G8CKqwJgsCCBQtY8s9Grnn0M2zSzeOYRR5WE59kt5EG/2hLDD4O8uHydtnWo37NyhI6eLfbhMr284XZ/ho4XynfU+pTZUDvP8FNBXL/5TFyIEJQ7gG/duXRLeS+ffKOGbJ2+LWzNJOLYPuaSCv3J6i1hCW1o2zd97ij/LVzXZuEe7fznfJ17Lb6r8gHhsqvW/o81IvSd/m1swZFkvfXh9hzDnPVtOeIay5q+XyT5QIc2vCHd7tdr1He7Si9j1BQVszUqdO46aabqKts37ELw0VX19r5VGoNKo0Wj8OGWl/7N1BBEMj+/W3iLrwbzRmUL9u2+g8mT56M2Vw/khvXN9LS0rh52j3kmlrQfNo8zKERVR9UT7HZbJSU1LwWu7FgMpnQ6/XAicJaWJs+FO5aQUy3USceWMNUznuqVqsZOHAgmzZtYsiQIbU+nvpKwIS1rKws3n//fZYtW8Y1T8zD4FMd/dGR8oNg3rpC73ZcpdJJvn5VvtGg+kopL3x92A6VyNo7t4+PGoAxa69329C6n9yuUjSo26cklNEnXYXFp/oAgKEk07utscrX4Ypo5t+uWG7nMsmrX1Ulc641MoWIC2dw7IuZxLbdiFEqCQSQ7/RPQ1JB70rPVF9BbtNReew6Sb3tshSStexT7NZSIofdSMyER/jHUQ77ROd4Y36qX3++otvFiSf3IVww712uvvpqJk2adNL9gSYjIwO7NgRPhGjGVefJn4s25xAAu8vCve/ppLQuGpd4vbY4WWCv0C64fVLJaG1ikIJbctK2h4tJSfXNe+DMS8Xcpi9hUqoUq48Gr6Lc7V+F8s/06lbiw3tvmfhevOHEYAKtSv6dHJHa7ZISJWvTtwJQsG0Jvbr2ZPSoC7hzqLy6rfi9VWjU9D5Wiil9wvjj3b8Y+fDDKFQvNpuN/oOGoTKG0XTM3TRrPbjqg+o5a9as4YILLgj0MBoM2aUe5qwoJlwn/mj1pdnYIpIxFqdjbj+YjMXvENdpCDtKbGijxACSBJ2Ko2FxeAoz8MRI9yUp8Mge05JcKSl9RIiR9XlyVoUNBVbahgXRPczFUR+/cqdHhcvl9GYycJjCcJjCMYWIypR8qYLQxIkT+eabbxRh7QwIiLDm8Xi4YMQoug66lFufnUu5KgjnKcpqujzywyvb6W+Cc5XIDvgqH4FKb/HP2m+THo4AKh/tmW+qDgB7qFxuJ2jXX3I7rb9vm8fnta/2LGL/35XaySsKlznupO8D6Cz5PvvkvjWVhDWDJHQ2H307qfMeJ2XsPRjCxX53+qTXcNqtnAqPj4bPWCinHVFn7iN902+UZR2mSc+LCeoqrcAydxOUtUe+jmD/dB++vni+VHxvxw/v4cDWlUycU3eTej7w6FO0uOge9lXdtFoxJLTGnnkAc5u+VTeuRmx5xyjYspjh7/xRdWMfSkpKcDgcSqmYakQQBObNm8d7771HxwvvoG2/caTbNGRXjs9pgLhcLoL/oz6xQvWhD4/DWZKLINSu76Pt+G6MPmmwKujTpw+PP/44giAoPounSUCEtZdffpkBF1/LsEvFxKPlSo68M0IfGk3K2Hs4snA2iYOvIvQckqsKbhdZ/35H2YF1JJ43hpQBk1GpVNUSNeRyOfnfG/cy553X6+wP0uPxsGXrDgaNe419GflVH1CNGJu0p3jDQqhFJYrbYSXtp9mkXPYIujM0v/7666/07Vu7gmVD5q33PuTjr74jqNUAUm76lm1uE9syXIQadZTYxAXXLc383Q62SoFFLkF8v7vkk5ioi2RTmbjibZcouki0llxIoiU/yG/XFAEwtW84AI+MFDWqJk0Kn+wX96lLRcfzigh6h5SWRlsopuFwhYqLQ40Uce52OzHkiM7k9thWfmMVjKJaX20VA5I8kh9nvwTRP/OTTz7hmWeeOY1PSqE6CGrSjrLjezC0HVRr5yw/tIGgZt1Puq9FixYcPnyYli1bnnS/gj+1LqwtX76cDRs2cNGMT7BImrLCSpGDb/8t+zHEBckrgQJ7JR+zYNmfw2CSV2gen/qaAKom7b3bvtUNgiuFOZdLeYEAHD4apODsPX7tXEFy1GhwjhwB6mseBRB8NXI+EZ9unb+jb2UNnzxw/6/H41MrVBPXkubXv87xBS+Rv3cV8ZZi9FIh7lCf8VoS/LUgOh/NmvXAWtJWfEN0pyE0ufpFVCoVFR5zvgl5rbFyfUxn0MnNreCvBZ3aJ4wrr7ySJx6+nz69e5/ymEDz2htvYUvoxprtmzGXippL32svixf9HU0+5l+3FCjgMIvzQJ8n76vANwI5OHM7ACVNewKgkyKXtaYQsvavhaPb+cQmPujuaiebT3cWi07czXzqqRZJZuxCyVx6vk9NWKfUzOiTMPn74xVzyIPbZoFlb3LbvS/SptsAwg0n5l6qyKVmkkyql/cWf2NWq5ULH/6IBQsWnHCMwpmRkZHBzAceJlVIpMu9i1BXJIkuPrkbQUNEEARycnJo3fpErYtCzRDRbRR5//6PJsNvrbVzlu1eQeQ1r5103/Dhw/nhhx948MEHa2089ZlaFdZKSkp4+umn+eWXX3hkmfxAef1if1X4l6uKvNsWHx8rp6XIr505XC7K7vRJ+meP8y++rc4+5N02NpH9vM4P9re9bkyShTpLmXwuwSc9h/iGfC7f/Gmacn/zKz7ClSNMTmuhcZ7aTOlbiso35xr4m3ftofFoDGZSpjxDWepW0n99EzxuQlp0JyIiFrUUrWXVpomFk2NSUKlUOHRBWNN2kv/vt6DW0OTWD9EGR+C0Fvudy1Aqm5j1pXJaFK1PzjqA8waN825f0VcWNP766y+aNGnC+PHjT3mtgaawsJDvflhE8IhHAnJ+lVpNUHJHSg6sIyiuVdUHnANum4Uj717HzddNp023AWd8/HfffUf//v0JDw+v/sE1IjIyMujbfxBj7niNNq1qL6q7rrF3716aN28e6GE0KDzArzkGhkk5LsubdCYofQeWuHZ49EHoW/fFsexTyo/vRh8makjz9Um47RYSklqTI6W1MnQYTHFxHiMSI1maLfqp7c4qQhscjkqqvtMvXEuwxkOeQ02M5De7JF9HdmkJmsx9qNQanCW5aILC0ASF4j6wFoAvCpvxwAWiRrddu3asW7eu1j6f+k6tCGuCILB9+3YefPBBXnjhBYKCggBLlccpnB7mZt0Ij2+Os6yA0qM7KDi42bvPkX4Yj6Mce14aaq0OQRDQRycTPeRajMkd/6PXs2fhwoXcf//9LF++vEb6ry7efm8O5426hnVqfdWNa4i4QVdx5JuHaNb3clQ+VQ+qE7fNwpF3riXuortp0+3MzZgul4svv/ySxYsX18DoGhfXXHMN1zz2OUmtOrNctDhSImlJNVId5IlxDqIMUtJpt7ioLZYSWG8okSoJSJrbCh/cJiYtVyWIi8hYk/j/qn7hfueuMIN+slJcmAVJ2tOZw8NJkhKEz00TzZ77CsS2ghQU45KsGCqLGIAiSIs7lUbv1TRTobWX0kOYMsWod4c51tsWIMOpxuVyER8v+wgrnBtbt25F+x9WjwriR95O1g9Pk3zjuzU+prLDmwn9jzRTbdu25d9//6W4uJiwsLBTtlMQqRVhbe7cucx+9zMuufkZttnbsu2fYsJ0si/Ge8srZdnX+iRrtcmaNY3BXwPX1ihr5zZlyVonneR3UYHLKJsnNSq5v5V5/gKj2ydgwbeeaHEzfzNe6LGNcjufWp7FrYf6t0td6932TcnhG1AAYpRnBRU3NoDgzJ1+7eyRzbzbvlGoFWg1akwtumLpO1ken8Nfi+cMln/QIT7XYQtP8munK8nwbvsGFTi6jfVr1zFU1jLOW1fIln9/5+cvX+G3336jSZMm1EXKy8sZd9lkDpWoCR9+B2ilSEnpu7RFyT4UxuKME463SZ+hOUP8fsoSZVOzEBQuNZLnjytI/PwqEii7fKKVNQYjkR0HUbjgOeIGTOV9n+IbnqaiZrW/Ty3afOmh3VfKnbWmUBbwwqSH78pceV53CXLyz5zrWPTGLAYPHuwXXe2WzNYVD3GAHUWS6dUnZc706dO5/fbblaLt58j8+fMZNGgQca3qZmLo2sTjOUVEmcJZ8cMPP9Ck16VV+hqbElqjNoZgPbodU0qXGhuPq7yEgs2/knT7J6dso9frueyyy9i4cSPDhw+vsbE0FGpcWFuzdi3vfPgl5931DTmGIHKKxPe7hsvRm7pKSYzTfUKBM32ENXL9fdGI8NEMCfKP3xnpL3jgUzi9zKfuY+XyVe7j8pPSo5P9yCJ3/+bXzhYjm1ntobJ501CpzJWvGTPIx7xZHtfer53Ox3zqG12pLvUXFPQ+UaRqH2ESoKi3nCNM5ZN6wl3JH86csd27XdJC1rIYcw/5tbNFywKLb5Rskt5/yqwtFAUEweOh9a43OLRzJ1s2rkOnqxkt0bmSkZHB2IlXUt58KOE9+9SJwIeYXpdy+PtnKD28mZAWPaqtX4/dwj9z7qDjuBkMHnx2UQxbtmxh586dvP/++9U2rsZKeno6/fr141DVTRs8n332WZ12kahv7N27lwtuv4vbhhuZu1ZaoKs1CGoNbmOIt6RhSfM+JPSdSPaCZ4kbN5NSW0cwhhChFWgTLT4rcp0ChEWzLNdCiFlMXhwUEkqEVsAmLfBW5pQQYg6ltKwEj5S1QFuQjicoHKdGz/EfZxE74RFC8g7h0RpQu0Qx0uFKpMun+Wy/QVzA9u7dmwULFijC2mlQ48LaJ59/Tdfx9xETakS0qov4OkHb3P4PTJ1P0ex/fLQEnhD/epibD8tJY82JPgLU4c1+7ZwRcsmlptGy4GGsJCTuD5fbhR1e490ubOefSNBXs2YsP3UEoSpKTuvhNvkEQxQfP1lzwF8T5or0j5Lx1XAZKmnM1DmyX52vRq+wjb+2T2OTy2iZsmUB0q3zF+qcobIGTuVTRqqdj8YFoHuEk/Qje5n71n00GTaAb7/9Fo3GP4KtLlBeXs7dd9/N3+u2M/iWN9iaW1b1QbWESqWi6YSHSfvpZayZB4jpO8kvxczZ4LFbSPvgVvpNupf4jgPPqg9beSnXzbiOzz777JzGoiAiCAJLliyh5cU9a+2c2dnZzJ07F7vdzs7jYgCDw+Wh66BLSWkauELa+fn5dOvWLWDnb2icyaLTEN0UjTGYkuP7UCdUryuM4HaSMfcxYkZNw5TUATJ3/Wf7jh07MmfOnGodQ0OlRoW1bdu2sTetkIsvOx+bovVuUNgtxRxc9iU7s3Yi2AtZ8st8YmNjqz4wALjdbsZNmIQrsTfB97zIZq0el1WO4jUViPnmnCGiUOqbl099kmAQtVNcJVriRQ1p2JHV3n0evWiqt4fJfVREl9rD/Ou0ghxRCtDkmlcp/u11Dn92N0kDphAsaU/X+EQZCypREN4oiEKzt4QP0KJFRwS3m5b7fmbjz3MYd/3TfPXASACe/EPsq7lZvqmXSlHYWT7a67/yRbP2w9Eevv7wKWbOnEmPHtWn7WvMXHXVVdxyyy1kLZjDsMtuZVSsOI+ybeJ3WipFx+fa1GySzNFmaVG7usjfV63Cv80uBUINb6Ji5vBQHA4HpaWlbNiwgZtv/pGcnBxuvvlmwsLC6CONY8eOHUyb0o1jx46RnJzsZxr/caK4aJs6X3y9/biY5FklzXlCxd94xXJaVZiOW5rzKslNRZMvavYrXDrckjO7KUMsyzayWxLyclchEKQMnMq+RW/QtOsY8LmHnAuC20XG3McJ6TiEoBbnndYxERERHDlyRMm3dhrUqLC2adMmJo/uw/QRoX7pOABW5somvYr8QBX4ln3qFCE/qLZn+PchmGVNk/WY7N8lxPuHg6uK5WjGcJ9C5tuzsv3a+fq6OUJkwUNXluvXzrfElKFY1kjZIk69UvWtRmAs8teslSbJeWh8E9VqbafW/hT0mOj32nxYjqrxTbp7gs9aiJyctyKHEvibYivj+x1EZq5g1a9fsXnNMh577FFG3/cErVq1qrM/NEEQuP2OaZSHtqbvZfeytKDurhpUKhWJvccT3WEwaSu+wrNlMQn9JqFL7lzl5+ssyeXAgtlkrvuJLn3HMOWZBRiDz95p99CeLXjK87j22mvPug8FfyIjI/nwww8ZcsFoOvUZSWyT6ouGPLZvE1M//pB//vmHHj160KdPH2bNmnXSHFYDBw4kPj6e6667jm+//Raomy4LCmfG2gIdrCgmosK11GFFX5aHMzgaq2Tl0Zbl4zKGoEpoT8zga8j+9iGaX3gne22l7JaENpXLgdpRjkcfRGm+KKQ7C9MoBsqTu4ltNDqKi/Mwpu/CHpaINX0vuT8+TVy7voS06YU6V1wMl8e1Iyh7r/eZaU7fjj0knteXdSVWyv/XtOtwfv75Zy655JLa+aDqKTUmrOXl5fHZZ5+xdOlSADSVnjU9I2WftS5h/js/Pirvy9bIwpDW7B/t4iqShS23KdS77RtEAKCLlYUos4+JNS7KPxop2+FTvsonKMFYlO7XTp8ne5345jHTVPIj8y035fQxYXoqmRx9zaq+udrsIf6F7YN8UogEp27w2+f0KVNV1kQeU1xcU792FfVAC4/txrb6QzxS5Qd3pcTWPvEfhOzTsWvXLqKiorB06MCrzz1Mx47fUB8oLi7mp9//4oq3689aXh8SScuL76asIJ3sdQux/fkRhqhkjHEt0IXFoQuNQSV4sOUdw1qUjfX4btRaPW1G38yA55bTNbTqc/wXHpeD/73zMIt//rF6LkjBS2RkJHO/+YLze/bmzZ8PotWdfSSyIAjY0vdQvuQt1hmsvPXqC7zzzjtERUVVeeyECRPQ6/W88cYbdBt3/1mPQaH+EtauP6qSbPbNfYqo0dMJ6nTmfmOO0nwy/voUV0kOzS6+G7NOx5lmC0xq3Y3169crwloV1Jiw9r///Y877rhDKiyrECjcNgvFm37CY8nDlbGbUpuoPYyNCOGZR+8nMfFE09zJiIiIqLfRgBFte7HSIo7dIdX1RC/nhPN0Fk2FzaXL25Mq+0JW5LYz+ESFVmgkBSlwpcL0CWCJFevDhh6ThelyqWZsRUSw4BPwEpq2CYCSZNFsoHbKPpoh4bGEjLoFjyBgL87BXpSDpSQHR24qADpzBElDriKkVU/UWj0XRIgmzCiD7FdYYeJ6cpToMznuB/lWGiGZ2DYekRcf9/dOYuFHL9Bj/EV1Npq3vtO+fXu++fpLnn/0cibf+TwPThXrEL8rRcXvKtGSKC2q2oWKi6mu4eKCNlirwuPxEGdZxUsvvcTwHj1ofcPF3HLLLWes3b7wwgt57bXXuPdeD9/tELVrX68uAqCTWZyje6RydhwVA5Ncan9/VE9whFyhoFz875KipdWS+b+iKoI1XsxxeagsYCWpFSoR3XEQIc27cXTtQkoPbyH2wrs4nVkkuF0U/PMFZavnETV6OuY2fTDkH4HywqoPrkTn3sP5eNYbWCwWpfzYf1Ajv5qDBw/y7rvvsn79eu970SZ/x/Q8q/yj9/WZAbgiSZ4uXx+VHeKFoky/diqV3Ic6VNZCVXbOHhwu97eiSDaD2fOO+bUzxzXzbpcVypGdNpX/DcrXGd9X6+ab7gL8M/8bfbRxRZVSfPgWmvdNmFvZXOqbXqNyfdEyhwNXaR6Cw0rs6g8QPC5ctnIiY0xMGDKELl16EhU1mi5dai5cuy4SHBxMsDWbos2/Ed7jwkAP56xQqTUYIxIwRiQQVKk2a2i7ftV6ruzjh8lN3cajn/1VdWOFs+bSSy+lV69ezLx/Fpd8+yJut5vQ1kPQ6o1k2jQYJQtAnlG8bzoFFen7NuCyFODxuBjSvxcLFy4kNPTs1ahqtZp77rmHN998k7hh91XLdSkEjiExDnQ6A4V26flXEQ2qDyIoV1yA2iKaYs7chcYuLgxKk3pgVB8jZdwDFG7+jaOvTCA4NgV1s/PQOSxomnbBnnUIBA+qkmzsv72Dx2nHWZxDeMfBtL76RRwRYnkztcuOwxyNxlHurXFtzD+CWx/sXew6gyLQOMv5fN0e7hogLmLNOoGOHTty+PBhOndW0tqcihoR1jZu3Mgtt9zC/B0A4moruJJbhNbHHNkqxF+Q882t5ltGyk6CXzt8ykOpM+Uy3M5KUaMtUmRz595yWcgxJjXza5eolwW5FWVy3USDT9Qk+Gf09/VtM/hEpwIYDLLjptMnxYe+UooPnU9VAKdPDi5fnzIQzafOkjwEl4OxsU4Ob1qCx+Mhbc86hnVp642uGjvrVWJjY1Gr1XU2hUZtodPpmPv5B0x/8DEOpq5FO+hm1Lozq4nZWHCVF/P6vVP56ovP6qwPYkMiMTGR7775EgCLxcLy5ctxu92nbN/m+hG0a9euWscwYMAAXn/9dcYPmennK6zQ+IjsNpKIzsNwZ+ym1BCOKvsA1sz96COTUBuD0YVFE9XjQlQaDTpDMIJa45c/9FwYP348f/zxhyKs/QfVLqwJgsBHH33Ejz/+yIKdVbdXqBpXWSGFf3+ErugoyfHRJDdtiqVIz4M3T8VoNNK69ROK+vg/aNWqFb//+C3fffcdH39+L9n5RVxy+4sktazw7RODP0J04gKizC1rRI/liZoLXyE6OGcvIBemFnzKilUk0bVINUUB9FKASoXw7RvBaW8vmmD1uaI/om/wSkV9UbdONj8LUpWDi9uLjuPtw2SzZqaUnzDcp5ZoRW3PL6QSbllOWVA9Wi5e943dmiIIAt88PoNP5n5L//79UahdgoODueiii2r9vBEREfTt25dtK+bTfejEqg9QqJO4XC4E4dyDp1QaLaboZDwJHTHENCHYJ4Jd75sgvJqEtAri4+OZMWMG9957r7JQPAXVLqx9883/iG/ThyX7BAw+1sMieyWn//9YxFl98q7ZrT551iyV7OGhslbL1w9oaop/QfVyH+/5EVFyVObWEn+t08o82QSp9clb5ltAHcASJ69uK9TLAO5Y/1Wv3aceqG9kp9onMhT8i8arPG5c5cU4CrMoXfIGSU0SCTabeejWiUycOBGT6RRF3xWqZMqUKUyZMoWVK1dyyx13Mmzq/XTqX/sPyLrIrtW/0KVDa0VQa4TcddddxMfHc29MEqGtRbO6RiXeMx9sLf4/ltgNgC/3if5nOsmq4QoK9y5WNGGSJSBbvHe6pUWJN7ejlP4jzuAm02ZTNHnVSExMDMKR36HdBPKlZ63aVootrAlCUBiOENG6pJHeU7tF65PK48Ye1gR9aTYqj+jz6tYHoy/KQOMoJyRNzFnqMMdgi2pG2KF/ASiPaYOp8CiCWostpqW3L42jHI2jHGuEGNimkfqssEBpHFYMxekIag1v7BPnw60tjRTam9Oyc1927typaNdOQbUKa6Wlpbz29gfc8ux3WJxqDpbKAlRKsL8kXnEzANhS6C80rSiqFJooobb7l4fy+JSfurq5vJ0c7PJrZ/cR/nxNrFE6/5WI3igLQlafRLq6gjT/cbhkYcs3ytNt8M9X4+vbVlng88VlCkPwuHFk7EO17A1iIkLp37c3E779jD59+pzyOIWzY+DAgaxasZSbbp3G+t+/4LJ73iYsKq7qAxsoe9f8yrHV3/HTj3MDPRSFABAXF8eePXu46qbpXPzwD6hrOKm1zVKCzWYjJKR68nspwLhx49i+fTtNq9dKXqucN3Q8D8x6hAU/zsNoVFxVKlOtwtrixYvp1Gs4oeYgQCDKxwfMrPMXwLLKZaFpm6WSA79L1nD5BhUIlVJeXNNSdq6tyNlSFSXOU6tYY7TymI75qHmd4f4Rk1qffGyCT/CBbxABgF5/ci1Y7OBrAChN30/x1kVE5myjvDiPtm1bc/1bL511aSCF0ycyMpL533/L0qVLmTbtEm6++WZuv/deAI7/KQe1fC3l0VO75XQyZR1HA2DeJRY2V/nUOdRYRe2vMVvO3O0MFx1wDaViqhlTvqy1rTBrenTiYsPt40+nlXwZS5vKCSav7iDOxVkjTjR7V5g6rS7VCe9VmEi7mOSxDmgqsH/bKv7+9W3++ecftFolSq+x0q5dO666/FKWLnqXnuPvqtFzOW3lpx2FrnB6jBgxgmeffZaru0wEXXzVB9RBOvYYyK4Ny/n7778ZM2ZMoIdT56i2u7PNZuO9995j6qxPq6vLBocgCDjKCjn82R1oLdlkHdnL7JdeYOxFd2M2mxVbfQAYPnw4Gzdu5OabbyYiIoLrrruO4L7TMUfEVH1wPacgJ52fP36aFUsXK4KaAndPv4NjD8zi87v68vC7v2MMMqORAsGah4jWCpW0mHBJCckFjdabosMj5b3USgsbwSX6U1ZUMMAuttu2+GPaRyk+ttWJXq/n5Zdf5smXHuX6h+agUqm44byWfJOlo7sRdoeI35fTZkGTfRAPoh+s1lqE2mVH7bJ7gwUMuQcoa9oLj9aAyygqRAxSZgJBivIMPfAXZS0G4tEYCMoUK1OUx7RCLSVhD87ZI74X3RpjcTrBqWKVF1d4UwStAUGlwbx7CQALQyYyMd7OwRItkZ1GsuCnnxVh7SRU2x36ueee4+677+bSUXJW7v+tKTpl+2gfTViexd+86WuOdPmYOie19jdVxRpl7ZfBp9aob6QpQL5k+rSWFVO0cxVuyYzplorSGkzBtDtvKFkOH9VrrJxjKr3Mf3wqnzQhFTmvAMLb3+rXLjM7DcveleDx0DtKz75lX9IiKZYHHrmTfv2qN+WCwtljNpv59ttvsdvtvPrqqyx880b6XPUMia26BnpoNcbxTYvZt+p9vvv6MyIiIqo+QKHBo1KpeG32SzhsVlYs+oxRU6bXyHk8DgvTpt1TI303ZgYOHMiotRt49rYR3Pvqj6Ctf7/rlE79mD/vOUpKSs4pLU1DpFqENY/Hw+9LltF2xB18+E+xzx5ZU3TLIP/SN68tlUtHue3+ZaRCfSIbNVGy0BRr8HfM98VXQBvTQcuaNWv4448/EASBnTt3YjQaMRgMDBkyBLO5IgBBPCY7+yCLX//Uz+HV14suxi4KllaHm4TkVjh8LK6+QRTubfJ2aWEeKc5CLr30UikoQOC12z4jOTn5lNegEFgMBgMPP/wwN954I2PGXspl015GZ+wGgNOnooV5958AWKNEx1qtT+qVim1bpLxo0ZeJqV7sUqmvoDy5LqnKJTrZWiOaAaBxlnv3lTURc+Ld3V02a4Qb/P0xfes66tXi721fmTwpO4SLWo4Us7iwub2Xh8cff5zmTicvLvxRuSEqnMDbb73JtOkzWPfX9wwcVb0RooLHQ9bhHcoCoYZ44P6ZqNUCr868lCmPfwc0rfKYuoRKpaL/mCu5/fbb+frrrxVrkw/VIqx9//0PtD9/KHqDkXJ7dfR4ZgiCgNNhZ/3yn9m47EceOX6IgQMHct9996HT6WjatGmV2fcfeOCBKs+TlZVFaWlple0ANBoNzZs3VyZbPSQuLo5333yNfv360eXTPNTahlGF4/CeLVz8wOPMnDmT8ePHB3o4CnUUlUrFi88/w/BRF9Ohe1+iYquvkoXHUU6T+FgiIyOrbqxwVtx3771cdOGF3P/wYxRlFFI4+VmE6Pao1DUbOFJd9LlgAj/vXc6BAwdo06ZN1Qc0EqpFWHvvw0+46sEPcXlU5NjkCZHpE3n5yO/+dTN/9amNrgsO99uXnStXBfA1fZq0/ubN4sz9rF78LUf3biIhJoJRo0bxxI//q7EbQXx8PPHx9dN5U+HM6Nu3L1OvvIaVPzxO9JQXAz2cc2bRl6/yw8cvcvToUcW5W6FKQkND+farT5l6zU1c8+D7fJAj3VOl9EmCRnx06Isy0NpEy0hFXWOnVG6qIvhKVZG2KDgCx5afuHLyhNq6jEZL+/bt+WXBPNLS0pj1yOMc3bGLy257hqYd+mDs0IEN+fICVKcW+D29BH2GGBSlteRiztiGymFBkErplce1x5S73+vXZo/vhKEkC0tcOzySNcCUfwS1y45bH4TbECq9dxjUWuzxYk5LlzGUoMwdBFsLvVaF0k0/83Zyd27qKKXiUutJOG88Tz31FN98Uz9qUNcG5yysff/jfI7ZDbyfEwU5YC+QE+dpzD5pLZz+5V3b+BQb3p+b47evqc9Krk2oeJzDbuOSDnr++OMPfvnlF8rKyjAajdw7cya9er2qaLAUqp1PP/6A7uf3YlDu3yyPGuh935UgJq7V7P0HAINPmbGKfEbGIjndi6AWjepOs5jbyGGXFy4ah+gPac7YCkB5fEfvvtFtRVNqiE6ORK1Icnuy1xWRny4fM31BTgY/fzmbY3s3UVhY6OMCoKDw37Rq1YrZzz/JtTeOJ2TWimrpU1OQSicpmlqh5klOTuabLz+jsLCQBx56lOULPuTia2eBuWPVBweQ9t0HcGztPDZv3kyPHj0CPZw6wTkJa4Ig8Mizs9FOfA2HVXwAqXyEMuOBld5t37qWAAd8VLJd4vwj78bEiX14PB6Kt85lyZIl5Ofns6JlSzp37syTTz5J69atUVCoSYxGI3/98TsjLhqPbsYfgR7OGeNy2nlhxniee+YJrrxCKSGlcOYMGTKEls1TSNu8EEOPS8+pL8HjRpu9u9HVJ64LRERE8NGcd9m2bRt3z7yf8P43k3L+hXX2nmAwBXPffffx1FNP8d133ynJ4DlHYW363fdA1/EYYptX3bgKrIVZlOcfp+zAGha5xdqZGUf2cvm4kcybNw+tVltnJ5ZCw6VJkyaMGTGcz54fQdJDS+rNHBQEgX8/e5hXZ7/IxMsUs5PC2bP4t59p1qI19148lE+KWwBglaoUOGJaIFTUaE6WtDVZYr5JFaKKVxMjOrm33jmXvlMn1JvfUEOka9eu/PbzQoaPGEXe+nlccscrRIWGo1eHsD1iAADprfriyD2KymX31sHW2kqwR6RgKDwK4E3r4TZHYc4UzadufRAOcwyGkixvBQNT4THsofHe3JL6/MOoPC6sce3RSpUtPFoDEbt/Z+5RUWnTZ/Al9Ixy0LdvX8aPH8+NN97I119/3egrXpy1sPbDj/NZseUgwSMuhcy93vd9Syn51lNUJ4iOgoLHjWX/Ws4v2ITH7SZ9xzKK1BYiIiLo2ro1/Sf1p0kT0QwaHx9PlI+5VEEhELw6+wWKigpQH/uZHkMu5Z1dYj6p8IIjQKXaoFnijas8SVbdV9yUjAXHxP9SDiIAZ6g41wvbiTVCjdGyBvq8SNH8ObVv+AljqogC9TWDVvh0Ng12s3PtnzQ12xVBTeGc0ev1PPzQg/z8xcsI494+a2HL5bDRtk2rah6dwpkSFBTEmlUreeXV11j0wUOMv/XpOptI97rrrmPnzp0sWrSISy+9NNDDCShnJazZ7XZmPvwksbP+xmop8t/pk/m/X1PxweOyW7k5eSc///wz69evZ+KQIbRv3x6Agfe/S1xc4y31o1A/mP3SC4yfOAVLUQ60nhTo4fwngiCwfO4r/PnbT4EeikID4c5pd+Byv8OHi18heMz9Z9VH5s7ltL5D8VerK9x370zatfuVJ5+9ib53fADGlEAP6aTMmjWLcePG0bFjx0bt/nRWwtrsN95G1aIfGmMwVBbWfCg4upP8nX+Tu20xyaMHMm7cOJ5++ml0Ot0pj1FQqItERkay5PefuWDkGCyuOILbDwr0kE7Jvws/4OorpiiLIIVq5c47buOT/kOxBEehbjvkjI/XCA4lFUMd4+KLLqJtmzbcfPt0QlJ60u/ymXy9NwfUGnTlRd4i7Yb8VEz5h3GbRE2+yxCC+dh6gtK34goTrQOGY+uhaS/U9hJ0Utk9rWRFqIj8tCSfh9plx2Xwz+9Y0qwvpnzRUrFqzV/8FdOKA6VakoPcgI477riDa665hpUrVzbaaitnfNWHDx/m+edfoO1bh3C6XX6aNID44GCW3ZSEMSScfpMncuukSfSafSvh4eHVNWYFhYBgMBhYOP97+g8bQ/cuPdkbLvplaO1y7j21XozurDB9AghSMI1JqhfqMcmmS2ewaOYPyjkAwPDWshn0ZObPCipHhYJckePopl/5/JW/T//CFBROA61Wy/rlS7jgggsYcPHVqNRqftlzGI1DDC5zpYsPZkEqUSSoRB+jcL0BR1E2Wlwn71ghoLRu3Zq/Fv/CI489wbdPXo7jggfQRdWt5O1Tpkxh69atfPLJJ9x6661VH9AAOWNh7eeffyb+pg8RVGoEj4drOiRgs5Sw8pvnKMs6gMYoPjB+X7SAIUOGVPd4FRQCSlRUFG+89DQzn7qHoOE1W/D6bFjzx7ecf/75aDT1IwGmQv3CZDLRqVMnsg5sJKFtr9M+rmT/Gm6eWrfdBxozWq2Wl154jgnr1nHbXTPJ1sUTft54VJF1Q2jTaDQ8//zzXHHFFXTu3LlRlms84/CKrl27Iix9DcsHUyhc9jHblv/Imzf3Yuro81mzYglLlixBEARFUFNosIwePZpYs4rCvasCPRQ/LKXFbFj6Pa+++mqgh6LQgLn++utZ/dWTZ3ycsoCo+/Tu3ZvNa//llTsuI3HvtySueIm+xesZ27sXxc364jKG4jKG4ghPBK0BW1x7NNZCNNZCylsNwa0PQuUoR1BrEdRa3FEtKG3SBVtUC2xRLTAWpWPKPYDOWugtIB90bD1hB5d7x2DMP4wx/whLf5jDa9sLeG17Ad2+LOGDf62kjH2CmffPQhCEU19EA+WMNWtDhgzhyNZVlJeXs2jRIjweD9d8+QmjRyuOowqNh3den83ISddhHHw9YQf/8b4v6MR8QPrCVO97TilRrjtINHlWJM4FsEU1Ezf04nEtzP9tKvp2TRFwoolUEARWf/cUs194WkmNoFCjnH/++XRKiWRcxHYWx3TAHiImexbsoguALkxMweB2ipkBrmti54fjS2lz2XUBGa/CmaFSqbjiiiuYOnUqBw4c4J33P+S3V+dj73k9pgDfWiLiUzBFJvP2O+9x1/RpgR1MLXPWiUuCgoKYMmUKV1xxhSKoKTQ6OnXqRFJCLB57edWNa4GtW7eSm5vLgAEDAj0UhQaOVqvlpZde4vXXXz/tYywFmfTv378GR6VQ3ahUKtq0acNbr7/C28/eR7Ndn5H56yt43M6qD65BrrjnFb769nsKCwsDOo7apnGGVSgoVAOtmzfDHaonzSe3YEW0lEbKwQagljRqtshmAN76egC6snwAOrbvDkCIzn5a566sYfvhhx+YPHnymV+EgsJZ0KZNG8LDwylY9R2h511SZfvGaLZqSPTp04c/F/3A+3M+4P0PX+LS6x8jYcoNrCjQsX//dgCCM3cCYItr7w2qskWkEHpsg7cfZ3A05VEtQK1BLdUUdUa3RlBr0VnyALEOqcZhwRrXnrB9ywAoSenF+8UmOiQ2oZkxlBYX3cczz7/Ia7NfqrXPINA07pTACgrnwMghA0hb/lmgh8GePXvYuXMnU6dODfRQFBoRjzzyCO5/PqyyXfrh3cRGh9XCiBRqmttvu5Wlf/zK9+88wLJvX8HtPL3FZXUT1awjn33ycUDOHSgUYU1B4Sy55qqp7FryeUDH4HQ6mTFjBo888ojiwK1Qq6SkpCCU5GDftQx1wXFQa0CtwWkpxmkpRm8MRm8MZkhzJ317KsW4GwoxMTHs3rWDWG0Re14bj2VP7acJCg6PZewV03jooYdq/dyBQjGDKiicJSqVivO7deag1UFIP1GrFbbpewBK2sp+nIZSsdZtRX083wADe6iYuLZvhOgHsq9E/kl+vboIAI2PU69bsibpNeLG/Pnz6dOnD716nX4aBQWF6mLatDuZs/xvTAmnTna7YsUKb8UahYaBVqtlzntvUVBQwHU33IxubyajrphJBlEctGjYelR0Awk7/C9FHUZjSt8BiJGeKo8bW4cLUB9cDYi1QQFsUj1RR9PuRPw1G1d8Jxyh4r0yNG0z5VEtOBAWyyGruChtN/h+fp89hjvS0khOrhspRmoSRbOmoHAOvPnmm7i3/xKQcwuCwHvvvcesWbMCcn4Fhel33o7r8NpT+qS5ygqYPXs2EydOrOWRKdQGkZGR/LTgB3q0jeO1+yeSn36w1s6t1mgZMuUBPvywalN8Q0AR1hoA//zzD2PHjiUxMRGVSsXChQv99j/55JOoVCq/v3bt2gVmsA2M1q1bYzm+F7etrFbP63TY+fr1B7jqqqswmUw1co6q5hXAu+++S7NmzTAajfTu3Zv169fXyFgU6iahoaEMHdCXPlE6cDvFP6cNnDZGRAj0FLK46qqr/I5R5lXDQqVS8cjDD/PYrJnMf3IC2Vv+QPB4auXcbXsMYt26deTk5DT456AirDUALBYLXbt25d133z1lm44dO5KZmen9+/fff2txhA0XvV7Pay8+i/PfTzGYzAhqNYJajb68wPvn0Znw6EyUJXSiLKETHq3B+5ec3Ibk5DYEaQWCtALBGvlPoxJNoFP7hnv/ruon/h1YOoeLhp7PzTffXGPXVtW8mjt3LjNnzuSJJ55g8+bNdO3alVGjRpGTk1NjY1Koe1w27mKO/Dv3lPtDQ/3rQCrzqmFy5RVT2bhuFfrNHzEm83N2zGjP1RMn0yE2xnu/K0s6D3tYE9RHt3oT53q0BspSzsdQnI6hOJ3gvcuwN+1FSUpPbxtt8XEATFsX4Urfgyt9Dzt3beS9gw6sHSYx8YprKSkpadDPQUVYawCMGTOGZ599lvHjx5+yjVarJT4+3vsXHR1dZb/NmjXjjTfe8HuvW7duPPnkk4CYIHn69OnMmDGDiIgI4uLi+Oijj7BYLFx//fWEhITQqlUrfv/993O5vDrP5MsnUbb5FwRX7eQfWr58OT/99FONCmpQ9bx67bXXuPnmm7n++uvp0KEDc+bMISgoiE8//fQ/+1XmVcNiyKABWAvST7u9Mq8aLgkJCfzyyy/Y7XZGjx5NfubRGj9n/MCr8HQcz5vvzGnQz0FFWGskHDhwgMTERFq0aMGVV17JsWPHqqXfL774gujoaNavX8/06dO5/fbbmTRpEv369WPz5s2MHDmSq6++mvLyupE8tiYwmUxcP/lSSnYurZXzvfPOOyxYsCCg0Z8Oh4NNmzZxwQUXeN9Tq9VccMEFrFmz5pz7V+ZV/SE8PBxrwXEEl6PqxlWgzKv6j0ql4u233+aFF17g/QcvpWDnsho/Z8KgqylxGaqcI/X5OagIa42A3r178/nnn7N48WLef/99jhw5wsCBAyktLT3nvrt27cqjjz5K69ateeihhzAajURHR3PzzTfTunVrHn/8cfLz89m+fXs1XEndZcTQQXTKX0tR66EUtR6KzpLr/VO7HKhdDjwaHR6NDlt0c+/f4AgngyOcmPUezHoP918Q4v3TqAU0an/H7VWrVhEREUGzZs0Cc6ESeXl5uN1u4uLi/N6Pi4sjKyvrnPtX5lX9QaPR0KZFMzTGYAyRiRijkjBGJRFrcBOpPzPfJWVeNRx69OjButUryfvtRSwrP8FTDcL8fzFy2ls8/fTTpxTY6vtzUEnd0QgYM2aMd7tLly707t2blJQU5s2bx4033nhOfXfp0sW7rdFoiIqKonPnzt73Km66Dd3fpHfv3qyaeiVhTUaij0qqkXMIgsB33313gsN2Q0SZVwo1gTKvapcmTZqwbd1KPv74Y1566W5uff4HPBEtWJKvI/fwNgDUjnLwuHEGiyZJR4cLUB3ZhCn3ILYIMSWHPiKFoNz9aIuOoQlrAkBwzl7K1BoOZIoVYfaYo1CdP5MZDz5x0rHU9+egollrhISHh9OmTRsOHjzzMGu32+33WqfT+b1WqVR+71UUFffUUnRQoAgKCuK226fhKs2rsXMUFBTw66+/0q9fvxo7x+kSHR2NRqMhOzvb7/3s7Gzi4+NPcdSpUeZVA6AaKkop86phctNNN3Hffffx9E1DcDpsNXYejTGYqx/+BIB169b9Z5mz+vYcVIS1RkhZWRmHDh0iISGhyra+N02n00laWlpNDq1eY9SpUHlcqNxOHCHx3j+NvRSNvRS9pQC9pYCY2CTv36wRIcwaEcLlvSO4vHeEX3+V39u8eTNjx4494cYQCPR6Peeddx5Ll8p+eh6Ph6VLl9K3b98qj1fmVcPigqEDsa7+Ckd5Kdckurgm0UWsyUOU4cweTsq8arjceuutzJs3l59fu7VGz2MKFqOPd+3axZgxYzh8+PBJ29W356BiBm0AlJWV+a0Ojhw5wtatW4mMjKRp06bcd999jB07lpSUFDIyMnjiiSfQaDSnVUvy008/Zfjw4aSkpPDmm29SXFzMoUOHTlj5KtQ88+bN4/LLL6+181U1r2bOnMm1117L+eefT69evXjjjTe8EVBVocyrhsXAAf2Zveit02qrzKvGy+hRI/nl50VE5v+J4bwhAHy37SDG3EO49cEACOl7UCFWNhCk6gZJ/S/jwO6NuLuMRZUvBgUUdroIbVEmglYPgKowA0fGHp63WQAwpfShZUIiLVu2ZNGiRaxYsaJePwcVYa0BsHHjRoYOHep9PXPmTACuvfZaPv/8c44fP87UqVPJz88nJiaGAQMGsHbtWmJiYqrse+zYsdx1110cPnyYCRMm8Oyzz/L8888zevToKo9VqD6++OILdDodI0aMqLVzVjWvJk+eTG5uLo8//jhZWVl069aNxYsXn+AcfjKUedV4UeZV4+W9996T8qC9yzOLi73mwerAmr6XQ5/e5X09751HAOgx4EJmzpxJfHw8//vf/+rtc1Al/JdRV6KkpISwsDCKi4tPSHCo0HBp1qwZM2bMYMaMGTXS//Hjx0lOTm4w8+r555/ni8OhBCd3QOWWc64JGtFseaFUv7OFWfZ3MEvRcpVNoL44nU4uvPBCfv/9d7Ta+r++UuZVw2Pfvn1c8sBb6C56lJtbixqSKIOH9CN7KdyxkBdffLHGx6DMq7qP3W5n5MiRJLbtS6eJojD13baD6Etlx3uXKRy1oxy124FdCjBo37S5qFlLaOvVrLlDY0XNmlpMYaR2OdBaC7E17cE97YMAMOs8uDwqekbnMH36dP74448zHnNNz6vTla/q/51fQaGOcOTIETSmAdXe79VXX8306dMbhKCm0HARBAHB46bMKWpLzFoVDk/1aU4U6j8Gg4Hly5fTrFkzog0W3nrrLR4Z2Z0vVhXx9lHR5Gle8xX2sCYIai1B2XsB2K3WQGQSuB1gjgIg+OhGNI5ySlJ6AuAGXDHNMZrDATlNiM2tIiUlpd4L2EqAgYJCNSAIArt378ZQzWk7NmzYgE6n45JLLqnWfhUUFBQCgUqlYu/evRQWFirVIs4AZamucEpSU1MDPYR6Q2pqKsfSc0hJ34pKpcIaKxcItid3A6BpsGj+vGFg2Gn3+9Zbb/Hcc89V61gDjTKvFGoCZV7VH0wmE3PmzGHy5MmixkvVqUbPl52dfdYVX+rKvFKENQWFamDz5s2MuOxmDpRWn9ln27ZtCIJA06ZNq61PBYWaQqXWoNYZiDeJfphBWgGjRsAS4HEp1E3MZjNz585l+PDh/PXXX1zb3wTAc9FTSbdpWJlThscp5WRzWNGYQnFbS9AGhwPg6jQK9/5/xaS6gMcYgtEcTrhGvgeXOdXcODCMjz6ax4QJE2r1+qobxQyqoFANuFwuTCHh1dZfamoq99xzD6+++mq19amgoKBQlzCbzUybNo0vv/yyRs+zb9++04omrssomjUFhWoitUyLM0TMsm5N7OB9/+62RgBuGXR65s+KiKl58+bV+xuMgoKCwn8xefJkRowYwdVXX10jQQCFhYVs2rSJV155pdr7rk0UYU1BoY7x3HPPMWTIELp16xbooSgoKCjUKAaDgdtuu40ZM2bw0Ucf8cjIEOasKCZYE0y4TjSN7imLYVtBKYOT41iZUwbA+AQdlogBZNpFA+G2glLaGSHB4CZfeq/creLJd+bRsmXLwFxcNaKYQRUU6ggul4snn3yS9PR03nvvvUAPR0HhjFCpQKVWo1EJaFQCU/uGc1G3+p0uQaF2mDJlCkajkQULFlR73zlpB7juuuuqvd/aRtGsKShUE0FagdSE8wAYnBTrfd+gcZzqEC/p6encfvvtTJw4kccffxy1WllHKSgoNA7UajVPP/00KSkpDB48GNBXS7+CIHBgxzratLmvWvoLJIqwpqAQYNatW8d9993Hs88+K92oFBQaBg5H1QsVBQWA6OhoXn/9dUaPHs26dev4Zl0Zxy1iuo0RcXZaBQfR3OwgWCNWyHhyVDBz1xYyuU9F9ReTt685K4oBcKSuo1/PrsTGxlLfUYQ1BYUAUVhYyBtvvME///zDN998o6ToUKjXGLQ6YoKCsXvsAMxbV8jHz8/muUdnBHZgCvWGW265BZPJxB133EGfK58Hzi43WgVLF3zMsw/fXT2DCzCKraUBo1Kpav2vMRNvcmOMTsIYnUSHEJf379r+4VzbP9yv7YsvvkinTp1o2bIly5Ytq7eCmjKPFE5Fdnoqgq2I888//4yPVe5RjZerr76aESNG8PSNA8hO3Y3H7a76oEq4XU6Wz3uTI7s3MWDAgAbxDFQ0awoK1YTb5fzP/VarlQ0bNvDKK69QVFTEvn37MJvNtTQ6BYXaZdHnL/P8s08qApLCGTNp0iRSUlJ47e05/LljF31HXUGREExuiBZj1wmo/6Mawc6dO/n00el0bNeSI4cPNhj/X0VYa8AIghDoITQaBg0axIuzx1Oydi3q8yaxL0uFtayQosxDbPtfBocPHyY/P59+/foxZ84cEhMTAz3kakGZYwoV5O7bgGbncvZmOji0dQW9urahZ8+eZ9WXMq8UevXqxXdf9SI/P5+lS5cCcOzYMZZ/eAVqtZoBLxTQqlUrfp8DYWFhjB07lrVr1/LYY4+xb98+2rRpAzScuaQIawoK1UBCQgJbNq7lzz//ZNeuXahUKkwJJjqPHE18fDzNmjVTNAwKDZaWLVvy5J1XY7XuA6DfRX2YNGlSgEel0BCIiori8ssv976+7z4xstNqtWKzieWodu/ezcaNG+nYsSPl5eWYTKaT9lWfUQmnIXaWlJQQFhZGcXFxjWQYVmicHD9+nOTkZGVeKVQryrxSqAmUeaVQE5yufHVamjW35OB3/PhxZZIqVBtpaWmAqNoODw8P7GAUGgzKvFKoCZR5pVATlJSUALKcdSpOS7O2YcMGevXqVT0jU1BQUFBQUFBQ8LJ+/fr/9PE8LWGtsLCQyMhI0tLSFM2aQrVx/PhxOnbsqMwrhWpFmVcKNYEyrxRqgpKSEpKTkykoKCAiIuKU7U7LDKqRwmRDQ0OVSapQbVTMJWVenT4Wi4UlS5Zw9OhRBEFg6tSpxMfHB3pYdYq6Oq88Hg9lZWX8+eefHD9+/JTtOnXqxODBg9FqlfivukRdnVcKDQPNf6QjgXoYDerxeNi0aRN5eXkcPXqUDRs2nHEf/fr148Ybb6yB0SkoVD8ul4ujR4/y+eef89ZbbzF69GhuuukmVqxYwb333ktubi42m4177rmH8ePHB3q4CpXYuXMnTzz9PIfS89CYwghvO4Cg+NbsyC/xthnVRMy3JwgCy+b+w4OPPEXr1q3o37cXd95xW6CGrqCgUEeoV8JaTk4OE6deS1CTTuxzmhGMYRha3gBag7eNPjTau903VE6VkBIsO+8tW/IZ733Qj5/mzyMpKal2Bq+gcIZYrVZeeOEFVq5cSdu2bRk7dixPP/20NwXIiBEjvG1Xr17NwoULefjhh5k1axYXXnihX19qtZqoqKhaHX9jZd++faxduxab3cG69ZvYvf8QV9/7OjG08Gt3ODPfu92qVbh3u3WPIQiX3orDZmXJzx+w7robGTZ4IH379qFdu3a1dRkKCgp1iHqRuuPLr77hlbfeJzginu6XziS+ZRfm7k2XG2j13k1DmFywdVCYLKw1N7u829EGD0f372Dx/14lMgjuuOMORo4cWbMXoXACSij8yVmzZg2vv/cJ+46kUdzuYoLOG4dKpUItLUr6x4hamDCd/NNNNImLkSV7jnPo+6dQGYO8+wTBjau8BIM1n6kTLmHUiKH0PIsSQPWFQM2rzMxMXnnlFXJychg3bhxrDtpo2roTsYkpqFQqlmfr/dqv9BHWrvMR1gD0Gvm7LT66k6y0g+xZ8wtOm4XC/Gzuv+dOrrnmmgaTnb0+oNyvFGqCak3dEQisVivT7rqXo2lpuLVmbn5xEYUufdUHniYpbTpz65Ofc15kFtdffz1vvfUWU6ZMYciQIafUtmVmZvLZZ5+xefNmLBYLZY6T3ygjgjW4XKJwqDXK5YSC9HL7crtHPuBUuVJ9xWjVyd8PMpx8DGFhYQwaNIjIyEhGjx6tJGSto1itVoqKinjquZfYs+8ADoeDmKYd0fW/l+4TmrEhO++M+jPHNafrnZ9z2C5/306nWFjbUZrHR/vX8tl9LxHmKSEqIoxP3n6FkJAQzGYzOp2uWq+tobNixQq+//57jh07ht1uJyEhgSlTpjB69GgAXGuLquU8SS07ktSyI+cPGQdAwfE9zP/pE97/6HNCQsx0ateKYcOGnfL48PBwBg0aVC1jUVBQCAx1Uljbvn07N912J11HXMe4y59Gq5OENNd/H3c2tGvXjjVr1pCdnc3777/P7Nmzad26tV+bcocoWB1NTeXVl59nxowZBAUFMXdt4Un7nNxHjOhwOBzMXS0/bCf2liM9vvO5kWtVJ1duugTVSdtY3fL7V/cLP+mx2dnZrFq1iu+//553330Xo9FIVFQUU6dOZfDgwYrwFiBsNht2u520tDR++vk3vv1xEZHxKbQeOJmRlzxDlEGca2sLqm9hUoFaH0RIp2EIHQZhB44c38PE2x4BwYO+9CihoaEMGTKEwYMH07t372o/f32nuLgYj8eDy+Xi119/ZeHChTzwwAP069evVseR1LwdV8yY7X3dxLmDffv2nbL9J598wpIlSwgKCvJ7/+KLLyY5OZnQ0NAqnZsVFBQCS500g856/Bm+K0ghuHVvtD5mzaFRsm/a0r3yzckTFO7dNmXu9m679bJWq10nOU9cmI+JYWCMw7utVQu4nOLrEh+tWZBWbK9SqbEjax/y7HIbH6UZaeXyjS/bKQtFJp826Q75/S4+/nQHrfKxx+WhcV6wrInbZZU7GhQmS7CxRrmNTupeEATMalGzUpCbyT+LPiFUU85rr7wUcB+mhmxWOHbsGH/8scSrBPV4PKxYtZZdu/cRm9CU4LBogtsOpUX3oZj08pqpsrDmq1k7HTPo6gJxfp5Ms+aylwMgeOQ5MzBBnANzxgVhs9lYunQpn3/+OSkpKcycObNe1jCt7nm1adMmHn74YSIjI9Hr9WSXuGja9nz6jpiIKTjklMdlW/213mVO/wXS/w74fLeGYL9997SV73U6tf8t2uLy78fukV+HaP3bBukEbFYLaYd2M6KTPFaHw8HXX3+NzWYjPT2d2NhYv+MqFqjec0gLxLBQM3PenP2fKQYaKg35fqUQOOq1GXTtxs3oevYPyLkrtHhaQb7Ran1vgDWg3atJVCqV95piE1OYeNvTbF29hLGXXUHT+Ahef/11EhISAjzK+k2Fpmz5in8QBIEfFv3OoSI3jo4Xg0uUuNV2C8aES9F3SCBTWlw0S0hmixXSci3evjzSYsFwfC0AwU6bd5+uLAeA1U26AWAszvDusyR0ACA0VTxOCIr07tNW+u8wyw/mbfuXA9DxiOjDdkWHQXS7eRCHNi9j9MTruWh4P/r27M6gQYMwm82NIp1Ebm4uCxcuxOVykZ+fz++//86CBQu8As131WTerC2MpmBad+pJnz7hfu9XmEbdbre3xmIF364p8nv9d64oPBan7WbwmAkEmYLo2LYFXTq2p/Jqv7LHhlqtYtzFF5KSknLuF6Og0Eipk3feojIb+sgmgR5Gg6Vbv5F06zeSTsFHueCCCxg0aBCzZ8/GbDZXfbACIGos5y9YwJ9LV7Bh+37MUQno2wxDrdESeeETZGjjMAGe8mIANOVFAR3vmdKyxzBC2g9n/45/OPb3Ll6b8zW2gmNMnDiR6dOnYzAYqu6kHrJp0ybuv/9+7rjjDsxmM507d+bBBx9s0P58Go2G4GB/zZ7B5PR7rTOK33d06560euRXADL2rOXv/BIsbn9NX7CP5cLiVuF2OfjitkdxWgoxazxEhpqY/eKztGvXTnHHUFA4TeqcsLZ7926Kigoxe0SzjstW5t3318FMuaFaHrquUI4MdRnDvNvB2Xu82/u3yitHW0xL73aUXk4o6vAxJ+h9TA+Zdtk0uT5Pzo2kP75TPjZE1laY8o94t+1hstYqKPegd1trkSPBVgbL5khBLZ9Lby32bm/TGr3bpUndvNuLd8vaFY9PG0esnCbAYJa1LLc3lVWD64ubcfd7q1jz+9fMmjWLV155BaNR7kPhRJxOJ2+9/R7fz19ATLvBJHe8kIvHPgdAto9ZnNyyU/RQf1Cp1SR3HUK70P7ALdw6KJQvvvgCo9HIa6+9xj333BPoIVYb+fn5PPTQQyxevJgtW7YE3EWgPpDYvg8ARZXMsuE+lgjvvl4XAzAo2sH+rSsZc8llJMTHkxQfxcUXX0z//v1p1apV7QxcQaEeUueEtfkLf0boc32gh9FoUKlU9Bo5BceObxg/fjzXXnstkydPVla8lRAEgT///JOpV17NpJtmcdfL80kvF7UtZfXMNH62qFQqrrvuOkaNGsU111xDs/+3d97hUVRdGH+312x6r0ACAULvvUiT3gVBaaJiFxVRFBsoftjALqIoKgKCoNKLgPTeWyghhfRetu9+f2y5904CS0mym2R+z8PDTObOzN1kdubOue95T0xMrTDhtVqtWLp0KVq0aIHvvvvOZftxnOlEGnqKNFjB6r5+SWdfhJS+5EVOxdH3/0zewfBomP62/Xm+173ppxb9W8Ss/5hMBlnGwmxmm8BEXna9rx9kthXbp+UdCI3slCrNlQzbC25Ev2cBAJcV/nh7/QmIPl+Gbq2bQuOtwbRHxqF58+Z3/kF4eOoAHmfSU1paCqFM6bohT6UhFkvw/PPP491338Vff/2Fhx56CHeQd1InsFqtuHbtGoYMGYK9e/fiw18PoeewKXXa3yo0NBQbN27Exo0b8frrr9f4a2XBggXIy8vD5MmT3d2VOodY6Q2/hJ7QPPgqTC2mICtsEB579UN06NEfK1eudHf3eHg8Bo+KrOl0Oiz78Qdopv/s7q7USdq1a4fffvsN7733Hl555RVMnToVTZo0cXe33EJZWRlWr16NH3/8EfXr10efSe8iJLI+Pr4mB+xJfLo02zS7Ot0WLaAjCpIA21S7wGzT/gioDEytj23qPTnJtr+MShQwydgoiTQ/yblc2MAmCBfZpQGyXDKtbpbYojZFDXvatmUmOrdZhLYIoNBi64tVRL72pUE2R3yv1FMAgLV5yc5tjj7vtCcknCxo6tzWWGNC0/Ef4dyKl/Hpp5/ixRdfrJHR2IyMDGzfvh3bt2+vkf2vLQgEAvhHNQYABMcugcVsxs9LxkEkEmH06NFu7h0Pj/vxqMFaVlYW2nV/EKJmxLfoShHR/lipSgUoJpovWufllXKswp/TD0vvK/85l/8pJuVbzAqid5PlpziX9d7EvsAqVZCfBxJdmN/JNeTn/uTnktI857JIW4CKEJhNFS6XBTZ0LisziSWJdxKZhjBRfRbpyUNfVkSWaX3coswezuWusUS7J9lL+ubf6QnknPgPD096DD9+9yVatWpVYb9rI8eOHcOOHTuwdetWjB07Fhs2bIBKpapxGYDVgUAgwFdffYV58+Zh+vTp+Pbbb2ucX9fkyZOxcOFCfqDmYQhFIrz33ntYvHgxP1jj4YGHDdYAAPxN0+1IpDIkdOiDeo3b4KWXpuK7776r9eLfzMxMvDDzFeSVCfD89Ifw8ssv1+mpzjtFIpHgnXfewf/+9z+89NJL+PTTT2vMwOfKlSvQaDRo3bo1Mxi/nSaNyw//FTLrU7uRfbkD/LKcFGZdqCcvopbiLGabSU4irFvELZlt8ZQvI8Bqz7g+a6cLSBbrznPnmG2qrItsf7xJBr7AK5DZpsy+5ly2CtnHhiOy7DyOnvRHG8TWMjUpWH82I2UxsyuPzUCd1SaET3ji4bHjUU+jI0eOQqbkzQY9BZXGF99++y0ef/xxZGVlud6hhlJWVoYRI0Ygut1ITHx5EQYOHMgP1O6Sl19+GVKptEbpjPLz89GsWTN3d4OHh4fHJR4VWVv0xTeYMvdn/JXrui1P9RAXF4c333wTw4YNww8//IDGjRu7u0uVSlZWFoaNHIteD70Cc1xfnC1koyVKe5WAj6/Z3vDLsogtC2Q2XzqtbwwAQF5ILGTMEtt0uclh3ULViNXYjWj19kiGWFfs3CYpy2OOaaE0bAq7nsyhTysNJ9PTjvOJ81LLfUaxns36syjrkfPZ25cGN7J9JEo/J7Jr8Cx+tlq5B08TicEBu+5tSaKtn+Nj1FD1eBWznuuCBg0aoF27duX6wcPDw8Nzb3jMYE2n0+HqlcswiRRITKFD7kQDI8snDyJJGRnR0d5qZcFkMKFKO+FcllPeZ0IDmX5QUiF92itNlXKUtDeRt28Jpf+itWwmdXCFn8vx8AUALaVBM0tJxqsiL8m5TOvaRFQ/RToygLjVuej+yPOJUJz5vNlEeH46mXzG/2K7OZdllKXAdAC9evXC119/je+//x4ff/xxheeuiVgsFowY9RB6P/Qy4lt3xdlC1/vw3BqxRIrRb67E3LmzsWHDBj46ycPDw1NJeMxgLS8vDzHxdUfIXtNo3rw5Ll26hB07duCBBx5wd3cqhdWrVyM6oSviW3d1d1dqDf5h9dG3b1/MmDED3377rbu745JL6XqXySPc7UZKMqbkFDZYvo+0XXCM9SpTZF1m1umyX2YJa1dEv+RdObWH2XY2jJOhbSBZyLQODmAzlLlKQtpcGwBkBSSqSic6AWxWckHrseyBSnKYVSHdH47nmiGYrUFqkRBNmjD5NKeHDcDDw2PDo159NT5+rhvxuAWhUIjFixdj5MiRuHz5susdPByz2YxPFn2JLgMecndXah0vvPACUlJSkJaW5roxDw8PD49LPCayBgBmK1BmFkBgIo7dQspyQ2QgBa91PpHOZZM3KRnlf/Q357LRJ4ocW0Zq30mKM53L9NQhjUlDfi6jphTpaVZ6KtYiIbUSLWKyXBpOnLjl2Vedy7TFCD1NaZESbROdKUXbgQgs5NVeaCS/KzHIPJ6Qmjal96WnjGW5ZLrZ/zgRhtO/t6YlPZ3LAyOD8dCnB/Dg4OG4cPYkpFLKSqWGceXKFfiGN4TIJxKl9kusnsq2kK4l7zC/X9ICAKTJhwAAvlQGXXFUewDEv8yh+wIAVeYlWxu73ktUkOHc5tCqyfNuAABM1N/ZIvICABi9AgAAZVSfHdozh5ZMlkGy8PT+tmxdqd2ypSyI9MWhiXP0z/f8Zuc2R3aeDrY+KajMPm1ogu18OUm2bVR0paiBPRpp78tv18j3VLoTiHrgGXz44YdYvHgxeHh4eHjuD4+KrPF4Pt7B0Yju8hAWLFjg7q7cF/v3H0BUQnd3d6PW0qBFN9y4ccPd3eCpweTl5fHWHTw8djwqssZTM2g57Dmc/e0JXLlypcb6rx08chzeTQe7uxu1mqysLJhMJojFnnubsVhtGjSjhSi6aN0ZAJRyCpWrKC+zlBLWBPjnJK1zWczVcnF0YAoqYl9Srz2zTXSTmGDTEXYAUN04zqzrqcQortaMhs5Wth2X9Tyjvd0cVTIc0FnJVs42BVX1AmCzm7V+0exx7BHjivAJrcesr137P4waNeqW7Xl46hJ8ZI3nrhFJpJg0aRJefvlld3flnkm8eg0NEjq4uxu1mvr162Pt2rXu7gZPDcVgMMDb29t1Qx6eOoBHvfLqLQJk6YTo0pDobfZfJK7bUkprRltoIJPoiPSBcc5ls5To1Jj6iyp/csySis1eS4OJ8zbt0E1bYtClnsqo89Ln0lw74Fw2qsgbspF6GzZLKd8rqjyVd+JO57KF0prpfYmmTOtP9vVKPelczmtDhPPKZGJhok7cQfaN7uhcVtwgJawkBeQzai7tci4f9BnjXG4a0hZJqfNx+fJlNGxILElqCkajEXp7NOWXdKn9Zzb9n7GQ6Msc2XU6P9vvnI5yaJL2AyAu7fTfXWfXpUmykwCwXmeOdo66nDLqGpTbdWEVaSl1Ua0BAF4XtwMAiiPbl2sjtmcROnzXbH22RVAcUZf8Rn2c23wSdzH9M/qSSIijTqkjM5GO2ojtvyNzQAwAwFpW4Nz26wHbZxjYZRJ27PobY8dysgc9BLPZjJpdgr52YzQaXTfi4akj8JE1nntCIpWh44AJ2LVrt7u7ctccOXIEInWQ64Y890Vssw44cPAwTKZbT825k9Vr1iG2OW/b4okYCrNw/PhxxMfHu27Mw1MH4AdrPPdM8079sGX7v+7uxl2za9cuxLUf5O5u1AnqJXTCW2+95e5uVEhaegZCo2teVLguUHBuNyZOnFijM855eCoTj5oG5alZeHn7Izu/FNu3b0efPn1c7+ABaLVarFu3DiPm/unurtQJhk1/B0tnD4TRaIREInG9QzWx+PMvcejIMXR+VIlSkwBL04jdTlkRa2YLrmifWvdKPsZsklKifYGF3c8k92LWRXGdyQpdxgyApCzfuayPaM5sK6VKlwGAr30qGwCElJkuABgpyQTXoNYqYv8eeh+qAgonaYC2l+Ea7yo4BeEN9lJptv18mG1yKnECAGJbkIzsEeGkfwcSjZBI+ExQHh4HHjVYs1gBg0WATCMJ+FmpclBGSmtGe5kxPmiUKzet/zJ4kRJNZZQflpTSJ0lLiCZOVpTuXC6lvNVoPzVl9hVqmZRxElI+cbSujS55RevOaOiyUjrqvLT+ji6FpQ0k2Zi0zkmVdKTC/hhCm1HtSVkpYXhL5zL9O9f5Ej873DjjXPxZaDuOcMxiLFs2p0YM1qxWK1577TU89thjOKRTA/Zng6Pep+NhJqGy3ZQ5tr+xxa4BKwsgruqOh5LjoUxr1iwBCvvPyhvDagNYZ3aBmWhzChvYHl4OnaRD1wYA0vQLAIhPm6NvANFYOv43qUnWndzeL12wPYpEPbSL7X93s2MAQP3tRXYdmtbuFWehdHAioy3rUX3mHwDsNeMo27Ymw/ZdCW7QGlu2bsPgQQPhKZRpdRgx4wNIZQrXjXl4eHjcjEcN1nhqHjKfYGRlZSEnJwcBAbdOy/cEDhw4gNLSUkyZMgWH1pe53oGnUhg+bQ5ef2EI+vfr6zHRtSPHjqPpg13c3Q0eHrdjMplw4MABmM3EbD0pKQmJiYm32ev+ady4MVq3bo0mTZq4bszjWYM1s9Hg7i7w3ANjx47FJ598gvfff9/dXbktK1aswJQpU9zdjWpFn5UEQaYtcqgTKiALa1iuRmRVI5XJERbTCCkpKahfv77rHaqB7NxChNVr7LohD08tIykpCcXFxcjMzMTeA0fwz+ZtsMR0hkhBpulbRQQiJHYgBPa7xcVidqjQ1o/N1B3QQsOsrztezKyLhWzetcViwYEr5/Hd8jmQWA0QCln5fJC/Bg8//DC6dOkCHx+fe/qctQ2PGax5e3vj0qEtePp1I0LkFmoLuaHepKYaZYWUdQc1BSPPT3EuS6kpKCM1DSo0kKiK0ESmhOipRnrqkMbn7F/OZW1kO+cyXQqLNpekpz61lL2HtJjYNUjySNknM5WlSJfFKqtPstakxWQKVUFNxdLWJvS0r7iUTM/RliHqm8SShLYeoT+Lz2Vi9VFUj/Th5o0LzuWSNmOwffl4PHHjBqKjWRNMT+HatWvIzc1F586dXTeuIVhMRmjzbiL/xmnoZbthKi2AIf8mBGIZrGIpYLFAqPCCWmqbjtQlnYU+4wqsFhPkIbFQ1GsNdXB9SP3Cq7yvD4x+CsNGjsWBvbugVqtd71DF5BvM+PxCUYXbuLoq5/SxY3sO+b4KLOxDi9aa0dPGAGCSsVFFQwa5n/ld3Mr2L74fOYeQNd6lzw+wpcX0AayxrCyH3H+4U/Jijr5NXFrgXKantQFAp7618S6tUQOAsgAyIPe5upfZVtRiGLN+6TyRdBhDiETDZAFPJWAwGJCbm4uTJ09i2fIV0Ov1uJ6cisD4LhApNPBr0BbdX3oMVy2snrJtEPv8yy5gr90ozvZmzViD5aOFhcy6RFjeJCc6rhk69au4NvOAhiZ8++23mD9/PiZOnFhp94wWLVogKKi8E4CXl5dH3Jduh8cM1lQqFSZPnoJd675HfP8n3N0dnrtAIBCg2/hZmLfgYyz52jNrQb7w8my0Gfkqmv9oG+RLrpOHhMKuOXN46DnqZQKAzu7Arkq2aQBVlvLeT0Kh7UZGawYdD02hUVuuvSLHViPWoUcrje9NjpVl22aRKAEAVhH5iuq9Q2Ex6lGWeg5FxzfAkHoRipjmUMb3hJ9EAoFACIV/OAQCAbS0KN1geyER2F9MRMW50GUlofjKYWQct2nOvFo+CE3zPhBQ53P4qzn0bPRAQKK2Cc51dr0d7T/n2C9BZZtWOZEnAXxbILzTGPy8/Fc8NcO93++rV68i9coFVFwVmIen5mKxWKDX6/H9D8tw+MxFHD96BAbfekBAA4jazoJQIodQpkS6vcpEKoDTKXmAjB18Lc5jXxCs+lJmPVoZzKz/sr+AWV+SyiaHjAliZ83OFLGDvwi5mVlfvlMOxL0E2dRJ+D7xMMyc5Jh6cnY0H6Vi9xcJ2MFhl4ZqWCwW/PrrryjkDCQBIDU1FSEhIfD390dcXBxCQ0MRGxuL2NhYj6nA4hm9sPPWm69j4PBx/GCtBhIc1Qg7l53BiRMn0KpVK3d3h6GkpASpNzMxMDIWuOaZnl93gjb5LNLXvAdV4+7w7f4IFH62gRkAyAps0VNuBmJFCIQiKEIaQBHSAFaRGPq8NOSd2YHrX06BKq4DfDuMqJJoW5N+0zDvubaY9OhEqFQq1ztUEdeuXYN3t4luOz8PT2VjsViwf/9+zHx5FkxCOZp1GYwj9R6FoNHjUPiEAACslCatpphBSzUBCGxTPjGpkZodnDXz4US4OZG80R1tL+C3M+hOSUlBSUkJLl26hLS0NGzatAlHjhzB448/jmbNmsHPzw9xcXG33L+q8ajBmkajQXRECHJvXod/WD3XO/B4DDKFCgOe+BDvvvsufvjhB/j6+rreqZr49ttvEduyZhdt16acR9bWrxH95BKIfG0xIQFVNeB+kPmFI6j/Uwjs+wSKTm9H5t+fAAD8YttCU791pZwDACQyBToMnYEl3/+AF55/ttKOey8IeVsIj8bbNwinT+/Fww8/7O6ueCxWqxVHjx7FjBdnQ28Cci1SSDvMgLJeaxwViSHRlwJGPazZN2zt7VFzi8kA6eX/mGOZ2oyEWOVDjp3GSgEclUoc/HqUtWsxK1jNmoCz/uu5k8y6jlMz9rCLl0yrVMmsp+ax31+Z0IdZb8oZvK08mM+sP9SRfT7ZIoNetn9BoVAFAZ2aPYQmA7Nx9vhu7D7xD1KvnUdCo2gMGtAPnTp1qvZSaB41WAOAObNfxpPPz8aMt3+AUCRCrI4ID5PUJPRKaypEnBCtg1vZY9DRBzFtleFDbCpo6w6jd4hzObcteSP3SiEFlYvrkdJNknyiDSloSKa4aH2ZWUYiCwaq7BOtF6M1a3QpKdoOxCSnrUFoLY2pwmWaikoa2Y5JvmhGTcURFgWlxTtVaLeX8G2GZn0mY9oTT2HtqhUV7ucO1q9fj7Fz17i7G/dM9q6fUHrtGCImfQwR5yZYmQiEIni37A/vlv1hyE1F2aE1uLbqHcgbdoZfz8kQ+4S4PogL2g2cgq9m9ccDvXuiWbNmrneoIoRiCUQy8gAQpF92Los4Uy607gtgfc90nKLm6rTT5Dh6VhNnDL61AS+3dJhVTB5GUjkbhXSUPnNuLya+cNy+WoRkuknL0ZaZqIczAAgN5HNzi77T9xDu+c2cgS+taSsJTWC2WS1sRMQYyPbJQePWXbF+9zKkpqYiIiKiwjZ1FavViqysLAweNR4Cv/poMvUbqAPCsft6Srl2+syrKL12DNq0izDk34RIpoLFqINa5Q2BiEx1lh7dBIu+DLLg+lDWbwvvyCYQyd0X/fYUvH0D0anvKAC232fi2SM4f/4cvvvuO4SFhaFnz57o0qULAgMDq3y61OMGa02aNEHLhDhcu3gSsU3buLs7PHdJ0zbdsfX3z5GcnIyoqIoHy9VJQUEBxGIxxJKa6YSetXMprEY9oqcsglVafZ5gUv8IeHUeg6BOo5CdchGpPzwL705j4Nvp/up8SmQKtBn6ND766CP89NNPldTbu0Oj0UBQlOG6IY9biY+PR15eHj9YoygtLcUTTz+PqzfzUdRsPOSRCTiVkQNk5EBIeY8WX9yH3J3fQ6oJhHeDNgjoPBoi7xDnAM0QymZC+2mLYDUZYCrOQfG5XUj6ZRYk3kHwazsU6nqtIEs7y7TXcRJZvG4cYdZLQpve9nPI824w65KSHGZd78MGCZha4CgfgNhyjR3KvPu/Mcz6h9vZ7FRupG1nFvvC0TuofIKhQCBAw2btca6gCxKaPI7U8wfx055z+N/Sl6HNuwkvL5u2108pxsszn0fHjh0hl1deBN/jBmsA0KBePZy7fIofrNVQJrz4EcZNmIR9e3Y6NVXuYu2f61C/02h8fsqWfSuzZwubJSSq4iikrrNHYmlHdpHe9iV3FDh3FGgHSPTBkfVHZ/9J8lKZn9HZv9xog4wyMDbYs+5MMjUy9v4OgSYIYQ8vgEAggNEe/ZEH2W6UY2N9nPt5SWx9/zvLdsMeQt1sio2kHQDkGEi0elOmLZqisEd6dWkky9fhcB/hF4Dwoc8i8dhW3Lx8AKGj50J5eZft2HYTajoL0uFKvyG1AACbzfhAsBr+bUfi0IJvYbVa3XJ9tG/fHursN2EoK4RIWb1TGTx3TpMmTbB161Y0b97cdeM6wPXr1/Hg4GFoNeRpDJ/4MH47fLZcG13GVdxctwCKsEaoP2KWMxEIACwiUbn2NAKxFBLfMPh1fRhBrQZAl3UdOftXIevfHxHRazKUYXxpNpqIJh0R0aQjcgzTmZ+bDv2I71bvwpz3PkLq9UQEB3jjpZdewkMPVZz5eqd45GDtmadnYNSoUWjpOxhHc8lblSGEiPusWeTCM4YGOpdl+anOZdqWQ0CF3+nKBvR0qryAhJHp6UU1Nd1JQ2fACajpECv1cJJRViL0z+kqCkIvqjKDgcoe1BOLEfpzman5ewmVfm+hrEfo/kuon9O/B9qehF7mvsVU1EavIdUPmnqRtxytSQCvoBgExSTgyJEjaN+end6pbk6cOoPIFiNwoNh1W08i69A6WIx6hI560+0DXgAQCIQIHT4bxef3IO2316DpOhpC0b3dPsRSOerVq4fMzEyEhNz/1OrdIhAIMPzBvlh6did82o+o9vPz3Bk9e/bEu+++6+5ueAS//LoCb3y6BJJ+r+J0VBecvpwLFSXVsVqtyCjMQ/5/vyFs2heQ+kfCpC8FHX/yDiY6sUZSVoB/9ko6s27yCYXYJxQhDTvDmH8TN397HaroZgjsatMQciNpJoUPsy4vYKfRDSrWMF2sZ2/IjsorZH/OlC7HvoauZgSUl0J9upOVIKRr2XvV8jPs8ZWZrAbvUBTR6o6PZfv+5+nLzDr82MivqKFdKtUe8AXwYqwRv37xOv5Yux6rfv/1nu/nHjlYE4lEeOyxx7Bp0yYgbrrrHXg8jq5Dp+P99+di3bp1butDUVER9h08iqdHvgmczHa9g4dQlnoeRVePoMH4eYAHDNRovJrYomaJW75DXL97/276+fnBYnGfmdYTUx/BLz17o02EN2LbDcBvhT7ObVwfMSHHrkWeTF7exDr2oaOlhNMSjo+ZV+qpW/aHa/FSSg2ELYXslK2qJItZN1L1SOkIJwBoKd2umVOnU8I5rub0H87lkgTWD81MRY3L+aypWd8q+nNzPeq4V3NCIHkQGi2svYNQKIROp0Ndxmq14u335mP3/uNQTvoWAlH5CiBWqxVpe36DTqJE5JPfQ0iVRKwMJL5hiH74fWRuX4Lk1e8gYsRrlXr82o5QJMKE5z/Er4tew6LFX9xzcpVHDtYAoHv37vjoo4/Q/KmxkKn4qYqaRkBoFBo0aIB9+/ahSxf3lPVJTU1FWL0mHhGZulPM2iKk//MpYsfaImqemGLv1aQ7lFmJSNy6BCFTW0Aornl6wJCQEHz/7ddY8ONGxLYb4O7u8FRAcHAwcnNzcfbsWSQkJLjeoRYy7Ymnceh8MvrMWomdFy8x28rqdwIAZG/4DIKwxgjr/zSzfWQjVveVYyAvR1d1bMWAbvFsZGtP4hVmHSIJgvs/hfxj/yBjx1LEtezJbDZ5s9ElaWk2Z53VpJV7IeKY0HNnd7iRO2U6OwVsUgcy6z8eZn9X3ld2sf2JZCVWWr8YZh1G0p8/Dp1gz13MvuQI088x60Ux7GxSmck2ezDsyfex9J1H0Ti+Ifr374+7xWMHaxqNBrNmzcInf3yLVqNmubs7PPfA7NmzMWnSJGzcuNEt51+2YjXOR/RD8hUTVOm2VHSLPWJh9CbRiBJ7GFttj5jQmXlSe5RAYo9mKPKTnNtEevvUt9YWzSgLJBUeNDdsprtF0W1t56Wy8hxT7xapTXzqlXbS9nOLGZf//R0hA56BqPkAWAGYqMzEFzvanOENFtuNJF1Lpgb8OS/TFynTyXSDbbAazzGOBIDWPrYp9Y5+tmP+KyM37RiF7ea+8Zwt7C/2J1Ea8ah34H1yM1JWzkX4xP9BSEVeLpXYIiSinCTm8wKAd4RN2OwJ8ZK2bdsi49W57u4Gzy0QCAT44YcfMHHiRGzZssXd3al2lv70C/YdO4sH3958yzbFZ3dCl3YBkY9/Wy198mk9CJlbvkT6qR0IbfFAtZyztiAUiTB42lt4770X0bNnT8hkdxcB9djBGgA88MADeHfhl87yU+IckkEipaYC6LA7rdWiR+tGJaULoyIBughiHyAoJqN5JVXaKqz9UOdy0vlD5Jhh5MEWriHnzaNeGrSZxE7DStVeE1B9sJhI+F+pIW8I9L76QFLCRUBZDlhzyZ+Q/uz0HL/Wn+wrKSOfkX57EeeQz2sKINpAcREpVSWjHrq0HnB5Gsn8eTqGRLECAwMhEonw77//olevXqhutv93EKpHZlT7ee+VnKvHoYhMgCqmhbu7ckdoWg6AqSQPab/MQvTI1+8qwqbVlq/sUN2oVCq3mvPyuCYwMPCuH2q1gZ+X/4rX312AgKdWYPuVJACAlUoWAABD0knkblqMqMe/BUrzIQ+OYbZLhazMgI6mNeBUAGjJ8SX7z5vVkgrslVUEAEL6PoEbPzwLVcPOUATYk7Lykpj2Vo6elbbFAspH2mQFqcy6qJjV0HE1atxsUB0nsqfiaNCsMraUlCrlGHt8H3Z/C5VZyy0bJyni9I3SbwOAkKOfy6J+76LgeIwaNQr//PMPRo0ahbvBowdrMpkMfhoFivOz4eUb6HoHN6PPT0dp+hUUFBei6OwOWK1WmMuI0NFqf5iZirJgNeggENuiH1YrmewS0YM46o9uNuoh8QmBUO4FrxZ9IfGPgDzc8wtRL126FE899VS1D9aKiopw6cRhNJh0+wwoT8GoK0X6mT2IfGKJu7tyV3g17QlYLbj5z6eIGP7qHe1jtVpx9epVtyQXcOnbqzsOrfkEaHx/liQ8VYdOp4PFYilX7Ls2YjKZ8Omiz/HPtv/gP31ZubqwDsxlhbi56i2Ej59f7TIEgUCAqL6P48aWr9Fw3Ls1SmbiCQwePBgvvvgihg4dComkvAbxVnj0YA0AGjWMQ0l+lkcO1qxmE8oSD6Lk4j7cvHYEYpUPfOO7QAchAh+YDqFcDV1OMtnBXmMRQhGkAWRKiTaKVFJvT3RkzSKRw1SQDnNZIUqvHrXVhsy+AanaF6qYltA06QGpjHV59gSCgoKg1+uh0+kq1XPGFSUlJYjoMsx1Qw8h7cQ2hLXoDZFc7bqxh+GV0Bslxzei+MoReMW2c9k+/cpJdOjQwSMevm+9MRsDBg0DAjtAbLfx4EYFDBzzWNqE1sgpeC6iEgW0oU2Ybb7n2emsosi2zmVFfjKzTV5IItp0AgEAlESxVSUEepKJzk1UcEy1A4Dvpe3MNoOGNcU2RHcixzSzkRZTMIm2q26w2fFlVNQfAPRSclwNp5B7cXwfZv1sNomwxCjYyJGD1q1bY8+ePejZs2eF22sTA4eOgCS2D9o/vQxbz5wDtMS0XWaPFlnMRlz7exGChs2CLJpE4YcHsNGyHD37/UovJS//qelsZGs/x/BaLGOjSSJtAbOur98Osqh9yM1JgzquA0QcTZnIxAoduNmcYs7xuNuLGrAv90pq5gcAzJzzcZOALByjZu66PoTVQBoDWd84eTqxMOKaQOsiW7LnzmOjglz9XbiSlZ/ExcUhISEBx44dQ8eOHXGnePxgTSwWoyg/C6G4vcledWG1mFF85Qjyz/0LXVEO1E26QxXbHrHj3oTIblpKT4NaKCElPQ16twgEAkh8wyDxDYOifht7XyywJB1D0cV9uPHLLMj8whHQfiSU4Y1cHK16adq0KbZt24YhQ4ZU63mFpfmQXj0IgITNLXLb30CZQwbCJnuIXGev6KCgDBsNXrZMN639C0s/yB0PbZndb41+iJcFxNrOk207D/eBBhDH+JzQZsgvWALvCQshDm4AAJgUbvuC01PPxSbbG+yJAtvbmI+YRGQP59luzGp7TbwdmeQBHuVtq3pwsdR2Q2zrXb6ihUPj1iuATMkvTbNNBQxsasvoS9KSm/+53ALbgn1wGTz4Rdz4aSYUcR2gPm8bFDh+r7Rk4Z0B7bBVqMVFK1tuxp1ERoTj/Nmd8Gk3nI8SeCCjR4/GmjVravVgzWKxYNqTz0KrrodWAx67bdv0g3/CK6op1I3dW0LPu+UA5B9ZB3VcB7f2oybSu3dvHDp0qHYN1l558VkMGD4eDdv0glhHphTNjKcYKcFDt7mVhktIacSEhaSkk5AqfUIczoAbZ/fBarUg78QWZJ/bBXWTHvAbPhuysHjnzT07mcyRWyg/OJEvmc8WpJKsEaMXiRQKDeRsWqqf9OBOTEVcTJS2ThjVAj5RLeDd50lId3+Hmzu/Q46+DCEPPAZlaKz9s1f8Z6bLTemoFH9a11YaR8pl0R5tdJkuUy55s9A0ZOfvAeDVV1/FsGHD0KZNG4SFVVziqi6T++8y+HWbUKMHCmIvf/i2HYK8fb9D3bTrbdv++++/GDbMc6Ker89+Bfr33sd/53ZCk8CLpj2Nli1bYubMmbh582atvH9YrVbMmv069pYGQjXoRWzJtr1McTMmS0ObouzacZSUFCJ81NsQcSw6DBwnHJmIzSWnJTbqYPZlqTCPzXD09mMjbaWcSJZX2kmozCZkJ5+GV9rJcrous5SdIbDepiQZAFiF7HSgOoPN9tRzNGlCTuTOoGa90Cyc43EjcypOZE90eRt7vlCiZZcUsX0XUy/6QHkPOe5n4xaVB3BPpancPw/hgqCgICgV1Vdmh4vVYkHu8U24vPQ5GMsKEDNzFYKGzYI8vLFHPVwFQiFUARGI6zMZ0Z1HIvPIelxZ+Q6MJfmud65ifH19MWbMGBw5csR14zqGqawQZUknoGne191duW98249A4amtsJiMt2yTnZ2N5cuXo2FDz3FDr1evHkYOHQQYPSFHlYeLWCzG3Llz8eOPP7q7K5WO2WzG2PETkVoggKrfi7dta7VYkPXPJwgZ/ZZHPHuEIjHEchUMHvCMqQt4fGQNACxW95hnFl/ci+wtX8GnYQfEProQIqkCBpnnZ48pfUNQb+hL0GYl4eof8+HfagD8W/Z36xf84YcfxkMPPYSBAwfelaiytpOz5xf4dX3YI26+94tAKIJv++HIPL4Roe0rjpytXLkSL730Evz8KtYnuYsWLVog9PMf8Ejnl/HFSTbbi2tm65garwjalFaSzD7EuBoxenqYqxETl5CIP1ezxtWBFTXs6VwWZrNv/fI8ooWjNXJA+Yw6E2WaS+8HAKAqtGg5Gh5xaQGzLjKSmQK9N+v1xdX30Ea9jtJnDj4EuddqNBomEau2sPDTxUiXN0TDgbMgOsH+Xc1iNqJTemEPlDEtIVFqAIsZnX3Z+2iqjr2HHL7KRpNkReSaMnD+9gKODiuaU+HgtB+bzVlmjx6pmvdHekYywrjmxxwNmYxT0YBbsUCdfoZZL4xmp1Yl3EiYoYRZ9zv3D7Nu4UT2uD5sBq9gZl3f9EFm3X/3YueyNZqdqpRnsZmmMhV77OLWI5n1hzqy3997pUYM1oID/JCSksT8jJ7ao6c+LdQFbvAlNwq/QBJGLSgjf2jaNsNiv+mYirKR/uPzkGgCEDv5U5iDG8AEwASgWyCZmpRTccl9ylbOZSN1TAkVejbHkDYoIXYjEn/SNxE1DUofp7WG+mJSRW7PlJEvaGErcpFIU89CFhaP2MmfIP3gWtzY8QPChr4MGSNcJunQIgMRnwopQ0AvKsXZTE0r0zd6bWCsc/lWF6a/vz9at26NCxcuVFutP4tU4RSHOvRhDuiHo9gu0HZ8JkkRubE4HOk1yTbftOLwls5tihxbOruj1ictYvVKPWn/maLc+R1i8pKY9ihJPovGT37tHKwN8mdvctdLy39Fs+3ataPZBeSYatvv3ej42+WTz5BUYp/Wtk+ll1jIzSWB4732ewaZWjHbp73DFLb/C43kWpMqbdIDvT2BxnFdhTTqgEu//g1NywchiLNd77oSMq1+4MA8zJrleb6J9erVg6k0B4tffBCCid9BcI+ltHh47pTNW7Zi9a6zaD7t8ztqX3R6G/x7PFrFvbo7vJv0wLVlLyK0eW8IBB4/UVejqRF3pPCwUJiNetcNKwHtjVPIXP8/RPZ/CvJgW4ZIeSvRmoNQLEVw38eRe3ANbv71ERq2HeC2KE7nzp1x4MABvjCzHW3yGcijEmpFVM2BQChCUKfRyDuzA/5Ny+u/FAoFQkPL6xo9gUMH9qF33weRkn4ZsogmrnfgqTZ8fHxw7tw51w1rCCtXrsTL8xdB+fAiHE63G25zol3caJIhNwWymFaA/UXiMBtcgjabjYaqM1kXfzPlNaaPZh38rYYy3A4RJzvUZM+chtIbykadkFNWBnXTns7t4ky2AgK3ooGJ43um41QQkHIqGOg1bCRMmcV+Nj3lDQqUzy6VcX3gODpu6ZX/mHVjCNGscSNp+fFsxRMVpy/1vKpm9q1GDIUVCjmKOQLIqqDk/G7kbPkKYQ8vcA7Uagv+HUdBHtIASbt/c9t0gq+vL0pKSlw3rCNorx6FpsXdlx3xdLwbdUbhhb2w1DANmEAgwMznn4aAY7HB434aNmxYa+4dZ86cwU8//QSv6T9DrLkzSypDUTbE3sEeGfHVtOiPwmN/ubsbtR7P+8tXwOjhg/Hukn+AsNtnmd0PxWd3omDf7wifsthWCDc/zfVONQz/DiORm3waORf3I7Cxe+p1mkzlbSPqKtobJ6FOqP7KDlWNQCiEX4u+KDzyF3w71yyz2cGDB+PleZ9CqAl0Rjy1ZWzmnCWogXPZ+8QaZlt+s8HOZa4fmUnOWvfQWjSLhKNvo3RxJhm7nz6K1Z55XdnnXC4JYy2OHGXPAEDIyVLTc7R3tLRBF8BazQio7DsFR89WytErySmNH/czmwNu/RIsSL/MrP/wH4luTu3mDV9fX1y7dg3165e3wakpJCcnY8rjz+CRlz7F99eKmG3crEKa4ozrkAfFAKXkOjFxfDVFWvZ4paHstUA766su7mC2lVC6RwA4c53Vu2nC2b9xEeVmoIgPhPGP9yBNPX3LqVCu95gq8wKzLubU2zT4cXzPOJExI+d3ZeZG6nxYraS0OJNZ5/q8Gbw4FRsozZ2EE/H0vsZqC7kVDK4XsxUMgMrxF60RgzWhUAgvsRVplF2H2l5PEQAMlAUFfcOR5RK/rCIvos8KU5M/bFpKIkoSD6Fg/++Ie2mNbaAGICKY/AFyqL+VgYpKHSsm01excvLzM9fJeY2U5YafPzmmmfo5rVNrpqSjXkSnlm8i5/Kl/LXGBZOLKqWM3BgvaMhgLDWbCKYDBzyDG2s/gCWwPgIpjRVdXkNE2XLQSHLIzVQbScxPG4aTh9mv+wucyxM6+zD7t27dGnPmzMErr7xSLYao9bwVGN7Gpln7MtF2s7DY9VNKu94MILo078SdAIBCyq7EYXJaYDfzVNhrjAKASWkTyTu0ahbqhsEV0NJicpFdY2kpyoZSLEZ2Dvn7lHjbboKxdp3YhSLyFQ2W2RJtsipItjQk2YoNW0MbluuLY9oEdt1cSgm5maTr7X23a/gklB2A47osMdrO24DSt8nt2/YJbTdVQ1mBc5tYVwTf+M648c8iBEfEwdqw6l6yKhuBQIBHRg/Fz9sXQ973eXd3h4eiR48eOHXqVI0drFksFrz2xtvo9fBsKIIaQL2PjUaVUdpfAFBmk6nEgkv/QdFqCDO9J+DcQ4WhHJF/2nlm3aQiST3cwZnXBdYwuUNvthTSdY4KqZBTUknoH4EydRBEdrspRRY72OMK+rlYONOYXOsOLtzBltTFNCfXSkRyky3OLuMm21BWJWXUsw6owHaEE+0cG85aqvxCPRMBYGJnH+j1+ruWv9SIadCqxFSci+xt3yBs9FvOgVptRiiWInrka8g7sRmFydWrAfHy8sKYMWOwcuXKaj2vx2KpyWrI2yNR+8FqNkKfn+66sYfx+kvPwZp83HVDnmqlXbt2+Oyzz5Camuq6sQfy7ZKlsHg3QFyLzne9b3H6FY8uL6iITEDZlcPu7kaNQKvV4tNPP8XQoUNdN6aoEZG1qsJqsSD111cRNnouxJySMrUZoViKyMEvIGnFHCj8wyGtxs/erFkznDlzxnXDWo6xrAi4Rd2/2kJgm8HIO7sLIR3GuLsrd4VAIIBFVwKr1Vqrkj9qOs2bN8err77qtH+pSSQnJ+ODz76C13PrceaiTcxvjevGtJFxbFdKqGlMvdkCRQQbre/kzd4/0gyslcd1TqRNmE1mfOSZ7JRzCWfKdGcOW7YsVMURzXNeNNXh8Sg6uxM+9W2l0LRBbKRMXMwmGHCTJ2QlrOyIO80p4RR+5xZ2l+mLcTv0nGlRLtzomLiE9JcbxcuPZz0xY0NZw943+lU87bl27VpcvXoVfWetxxtvvIGYmJjb9olLnR6sJf39CbwSekMWVLuSCe4EsdIbUT0mIGn7j4gbyk/3VDcWswnSOxQX11S8G3ZA9rF/XDf0MAQCAZo1iEKguBgq32DsSmWnPaTJZAqFO90iyU5yLpu59Qi9OVmwlBRCz2kLal1cyOp5xNSUM8Dq1Lj+aMURLZ3LDvsZB2X12jPryuskMsLVoSmpgYRByXrkCdXsg7M4is00vB30ZzPfQV3c3r1747vvvqtxg7X58+dDPHw+BKJ785j09GCC1DcUxsIs1w3rAP/88w+KiopgNpuxaNEihIWFwWw2o2XLlujVqxeefPJJeHndfenJGjVYM1FlnISJRCAppdqUUmUiTApShipMSVKP01ISoc+8hoxjmxH57M+w2r9AE0OJr9nBfPKlaqMiGrFtyUSoqKRKSZ2/eNK5LKButHSR9sIbJKJkpsTFAm8i9D2URlKW6eMbDORNp4mGupFTpSwiqYKx9dTkAfN9CbkwaOGyKqwhvKKa4ObRjYhKILoiI9WG9q0DVZLKQJkMtvcmIqoySlu3ZA/Rvk3vTjzaqgOxWAyFOQ9P9rCd91/7m+L1qwcAAMURpACyb+IuAIBZbfvcJqp0iTLJVlvU4almVJPfjdBu/mmxG3v6XCS6D22ATYSuvrQFAFDQfLRzm947DMaCTJgTj8PkF+HUkgGAn12Xlmyv49lYQ/6O10tsX9cg+6WZpSbXkF5i+xaY9bY+yfJTnNtMUbbPanV4ogUQg8sy+zRlQohNYHuphIhT+gfazne62PZ/Zz/yd3aUsnH0JcmbCHQlZTYPQaM6CBYIMMqnBFK5TQzNJrl7LgqFAnCTGTfPrZHL5RCJREhPT/dYCxgur7/1Ho5ezoBfVwGQctL5c2Uaq5vSUnYRAGC066a0aRch8QmGJYXVcQUEsu13X09h1r25JaU05N6l50TGBIFsW679RDsN+8KyIpNTmN0nBGZ9mVNTJ8+5zh6fowmTFXCKn3OiV9xZB66IX0Zpju8E9UU2w7sslk3sEhrZSGJBoz7OZZGW1XB3iLRF6QrTLiP9xFbEXElFSkoKTCYTBAIBXr9+Ha+//jqEQiFWrlyJBg0aoDKoUYO1ysJqsSD9z/cROurNe37TqS0EteyHi7+/g5B6zSBVVe+AqioJCgpCeno69u7di65dPU/gLvbygz490XXDGo5EEwgLR5DLw3M/vPPOO5gxYwb++OOPe6qxWJ38s2EjDlzMxqBXf8XGff+53qECLEYdhFL3lVy8UzzRVqQyMJUVwpCfDhSkQVCcgTP7voahKBuRQT4Y1bUjevWYhPj4eCiVStcHuw9q52/XBYUnNkIRmQBZYDRqXwGTu0MoEiOq9yQk7V+Lhn2nuLs7lcoXX3yBCRMm4OLFi64bVzMCkQQiZe0ZHN8KsVcA0q6cQoMW3Vw35uG5AxISEtCwYUOcOnUKbdrc+ZSrO1i05Gdk9JyLdel6CDjF0LmRtDLO1LNXii3JRamQIz/lDGMZAwCnSjhT8D6s/QS3OLuAsvaQRrEaNV1mErOerWAzbm/q2FzE5uGsBuzMDQMgFDoLtis41hzcck/cSJuBY4rLNbWVc7JDzV5spI3bXnWNHRjntZ/MrItLWNPd4GYk0ma1mDFGdBXXzh7GzWuncHzXOowcORKxHWPRpk1vREdHIzz89hq4qqBGDNYEAgEybqbAWpDpFPwWPUCK3lrSyeSKtJiqt0ddEBlXbCFns64UBUfXo9EbWyEUS9HFi0x1/JJOLkhtGQl9nqZCxkIFNaWYRMLYFmqKlp769Du03LlcGk7KTdHpv8HBRKCYe5mkW+uoc8kpPccVyms0NZNMAsdR9iFNvcjxJ0eTLNcfSskbmtjuEu2j8UWKVI0cv1hIfELge3GLs00JlbasyCW6FSOlW1mZTs77Qn3PGf62bdsWDzzwAN5//30gfqa7u1MnUcW0RE7atRo3WPOWC/BWPyVCQ5VoltmI2WakbvRWTmRe0oB8X6znWS8rrtZMdf2gc9nE0YHR9Te5VgFGP1bQTOu+RBwjYtoTzTE179yP4zJPa9gEJaygm/ZL44qxZUlH2L5THm2yQjYbWMWZ+ius3520LbjJbPv4NLnnTe3GvthERkbixo0bHj1YM5vNuHEzE3Lv29tWuML2zOMTXaqa0puXUXJ6E4pPb0Zo8zi0bd0ST4yYhvglCyGXV45X2v1QIwZrrVq1gsSQC2NuKqSU3uZeKLl6FD6tBkIolrpuXIfQNO+DorM74d/1YXd3pVL54IMP0KxZMzR9eRA04Y1c71CNCCUyGLJvQHqfN3MenrrGpEmTMHz4cLRs2dJjfdfmLVgIS6M+sBhtWmgVR6el82EH3X7nNjDr2mBi1WE0aCHIucFsV/olsOsy1nrKS8FG2lLzyONem8sOjJtHs0l2cUr2BaHIyEbWzuax2ZcibSFgNjn1XRaOSS0321SdztpGcbM7lelsJK00uhOzbuC055Z80lE1nIHyheSNMa2dy2ZtMUbkLcOqv1bhg1deQfuFj8Hfnz2+J1AjBmsikQgN4uKQVAmC37yjf6H+i7zPFxd1fFekrZhT6wZr3t7e2LhxIx577DH8sWMHVgb1BAD8fJPc2HLt0QiLly2xwOccEaMWxNnawx6ldSQjAMQ1W2AvBE8XcjfYHb7N/jajSzrTzRFhUcZ1gKkgE1LKsLnEXix9f6EtYtOWipDuK7bdMNuobN+DlKvlffKE9qiHPphEeuXXbVmAZolNU6FLI1MUjlvwhSJbMs4jkeQl5mihbavDhPmmlkw1OIq6OwrBZ9HJMPZIj8UvAhYvf5wp1SIn1/Z5WNtPnpqAxWRESfJZlNgTpOjImnfTXhCKSNSnujTAGo0GCxcuxHvvvYcff/yxWs55N1itVnz3wzJ4v7jBdeM7QKy4++xBHtdob5yC+Z/3IJkxEevXr7+nLM3qokYM1ioLY2E2BEIRJLXcMuFeEKt8YTUZmCnc2kJCQgKGDBmCuXPnounwue7uDksdyzjMycmBSOT5/nJisRgZGRk1JuOwKtBnXUfunl+gz7gCVWAMfBJ6AhA4q51YjDpk7foJAiMpAm4ozIIoyB7pEooREN8Jqoim5QqBVwZt2rRBenq6R/rhXb16FaqAKKip0lvckkhSzlRzMccpX0aVYJIpvWG6dhjKYBJF7BdkYNrTmfgA8PVlTtkjaoq8R3QYsylAyt73U3Xsd/R0GStvsXAKv0sLMwBtofMzGTjZmyJOxQPu1L6Ck91plbDXiyqFnWpXKHyZdQEnm5P7uxzdoRWz/kY/NbZt24YJr07AH3/8ge7du8PTqTGDNREAsb4YYnuYVX6avLHQ4sKSSBLeFOpIqFZWeBP5JzfCL64dIqgZUD8peVi2obKV/8suqLAf9KNVRZW4oC8Vs4LoK2jNl5Gqp0ZbK2RdPER+riMiUH0uaWMtJGFrnT8JWesN5EuQGE0Eq/4SErY2WsiXWEZFQIqpGoPq9LNQKb0gvrADhgCil5GWEKsSrT+5UXilEM+m0hjyRTiYSy6pNr7l6yLl5+dXS6kpLnPmzMHIkSNRuu13tO87rtrPXxGKqBYoOrkJyqgE141rKOaSfEBBsqRKS0s9coqBy8SJE7F27Vq0atXKdeNahj7jCnI2fAqLvgwBvaZAHhYHGaW3M1MPUq/Ydk6rFsCm1y3V2AYC5uIclB5cjcz/VkDmG4qgruPAsVa9b3r27IlvvvkGM2bMqOQj3x/z5s2DhFPS6X6Q+QTDWJQDBHvmlK+pNJ95tng627Ztw4gRI3DhwgVERt6ftKq6qDGDtcqgNO0iQruNd3c3PBav8EYoTDoN+X3qAm/H559/jrVr11bZ8W/Hr7/+ij79B0Gq1AD1RrilDzTyiCbI+nuhu7tRpZRe3IvoqR8DAAov7kPPhJoxMI2JicHu3btx4cIFPBrDaouWnSe3TYMXG6UXJhMvRQnHMFdWzJqGFjYmXk7CYjbKQk81Ci3sS48kj9U+0VPsJk70hk444PaVNro1lhagMPkc8v9bDrF3CPx6TYUikuiMNFGkqHqRkY3CcGPDUsc5g+tB7hMMfwDa1PNI3fE90gH4NO4Kn8bdIBCJocgnCRAloU2Y46ipkl/zt7KO9g00tj5EdX8cn782Hu3bt/eoZIO0zFyoGoUzBcwlpWwGIjeDkeuUT9cXljTuicLEQ5C3JvrWtDJ2/9+Tbu/iT0fTdBY2CpfIOVZTNfs31lrY7eeK2IoEpblpkPiGOaUgZjEryJdz9HoiQwmzXq52ZyHrGWcVstPrDumJg7wW7P08Ipj9zsZpSDglNysNCxYtQHp6ukdPe3KpU4M1s74Mcv8I1w3rKDKfYOhTclw3vA80Gg38/PxcN6wCFAoFNm9Yj8aNG2PxYhlGjhwJAFj0ry1L7rtLtqhtERVxdOBln86go4uO4uyaG7YoI/2AldrLqxQ0sHu8UQ9ux0PbIpFDJJHDkJcGqZ8tFXzl8YvMsbKoeoD1ZbapiBSDsNz5HMsCje1m3s6f3IROKjoCAMKVtumr1ESSkWeyG/p287NFS35OIjfBR2NsP/s1zfY4nhJFbvCFRtv55HZTZqORPJQsHDf+YeFiyFUG7Nm9H516skJhTyUkJARPPPEETp8+DdTie4ahJA+Zh/+CNicZitZDEPX0zxApvGDhTFvdL4qIJoie9AmsGZeRd2IzEpe9hMAOIxBYr/l9TWEKhUKMe+5DzJ79Ct577z107NixEnt9bxw7dgwCqaZSk9gk3kEwZN9w3dBNaLOuQxlcOeavVYXVasWOtd/jzP6N+OmHb2vUQA2oIYM1nU6HCxcvQND87gvgOrBazDAbtK4b1nUstVtD5eXlhYsXL+Khhx6CTqfDww+7N6FCk9ALxae3wb/nZLf2ozpIu3gEfeY97e5u8NjJu3QAWcc2IrTzaET2ngxtg6ofSEs1gQjp8QgCO4xA1sG1uHRkHeoPfIZJsrlbgsNjsHLlSrRq1QpvvPEGpk+fXok9vjtKS0sxdMQoPPfJRvyco2G2aS79y6xzX2os5aJRJLokB5Belg8pFZ3L0bNykhkN2UnmrTnsYDGNkrhlc3yqDeXu+2wkzZFk5EDKqdVZknQKQW0HO+2yNKf/YLaXxQ9g96ckRAAg5EShy8JZ+YGIE0njRiW5tUqnRrHP+sHNpHjyySfRpk0bfLf3X4/TON4JNWKw9uuKlcgP7wkfUwmQbXN919Glj6jySL7nqUy+hr2dy4Ibx6FSaSDPvY4c6kKVUOWazmnJxS+kbh5WquaZlXKSLgusOLeN1qPRvm/KTOKhZqHCvkX1yU3SQr2N0aJM+ovsc3mnczk/YZBzOS+TvHn5+bMCUgeBWhJOzqM8kCxiGWRBMSg6+CdiKH1cfsMHyHmv7HYul1BfJqOOfJEOg3yuNqwG1GNQq9X4888/0aNHD5t+Suq+aI+mWR9c++Yx+HZ+qEa4lN8rem0pLLpCt0VVeQhmXSnS/3wfMosZsSNmuSXTUCRXI7TnozDHtcPVDZ+jwaBngfuQPPn5+eHEiRN45ZVXYLFY8MQTT1ReZ++Cp5+fifEvfQ7foHAg5/bTkneL1WyCxaiHUCJz3bgasZiNsJpNEHng/austAibfl2Er68dx5tvvokHHnjA9U4eSo0YrP2x7i/49XwD2qST93UcYR0vLeUKsVzttH6oCnJyciCReMbfQCqV4s8//8TEiRPR5/kfoVC7p5qAUCyBb8fRyN+/slZG14x5qRBJpEg8vgcjhg12d3fuCpVKheTkZERG3zpDWpV5mVmnNWMOqxQH9EslAKhuEE0Wtzi60Zv1yKIxh7J+gSLKFFzvw76kCam6s1aVP0ov7EHWPx8jZOQbmNanN9M2hbJmaaxhozx+UnKcY3lsxCZew2rqpFSUZI26MbMtXc/+Ls1egQgJqIfE1W8jLKQx48JfFkeMlFcdZX23pDFs5KXMWAhAhIQhr+Ltp/vCAgGemP5YtSYzXb16FZeTc9B4XE/kGwBwppKNalZ3pw1lfzcCPZthyXXZ9wmOhvb0Zvg1sCXRGTj+4wZOcEzHWW8gJz/INrG/l66c8XqAjP07cSsYGFTks2hvXoY6IBwSKruVG0nj1gLVcwyatdwKBpznkN+Zdcx6ST22hOD4xmxFgb4NDVi0aBH27NmDN998Ez17fuSWxLbKxOMHa5998Q2STX5oEBRz34M1Hvfy4Ycf4oUXXnB3N5yEhITg/fffx4ABLbBp0yY8/2QHAMDyfeTOteCYTXvmcHCnH7iOkL/e2/aAFFJibq/kwwAASVm+7f8SVlwOEJd6/6Y9cfW7JxHY6kGY7Qa5crvzvDaDfEUv+dvaO7RnVuqBHuBtC2M6xN9HbpK0/8AANmQxoGVz5/JZe8H4vZm2fnYNJoPWo4W2qYL+gbab/E1qZsFRYP5Cka1/jdTkQe/rYxtMpBiEyNYE4OX+Qfgt14DiYnZayNMZOHAgRo0ahQntH3V3V+4bq8WMm8tfgkAkQcwLKz0qiisNiETYmLeR9vNL8O0yHt5t7n1Q7+0fjI9Xn8A/Py/E730G4L2330C3bt2qZdrrpdlvouvEqrMG8mvQChmndjoHa55C2Y3TUFIOAu7m7J61GL1gGd544w28+eabHl8/9k7x2E+h1+vx7ZKl+HzZKqhGvI8bNy5CLiNz8kqq9hhdVspEORsrskk5lZKgRjCqz6EkvCXol4gSypumqYK8efxXQJ5MssBo0q9c8oYgKSUp63Qf6J8XxZI3gL5RJJNn+5Uk0p4qFyPWkTJXIsqWozSUZNHpA4nIXUBNQbZvQKZlleLythkAkG0gb0x6KvtKba9DB6vV6aPE/SwllCu0mfpbiKkbv0pMHtoaKesDlJGR4XFu4+3bt8eZM2cwffp0DBgwANOmTav2PgjFEvi1HYLcQ2vh28+zLAjuh9xze6AKs5nzbtu2DW+//bZ7O3SXSKXSGv82DgCGvDRkbP0G6taD4NNxtLu7UyHSgEhEzfgBmWvnw2LQwrfTmHs+llAoxNDJryI7PRnvLPwA7TZuxJNPPomYmJjK6zAHg8GAjMxc9I2qBzgqTstYDRk321NFZbsCgICjuyoNZiOoqqD6KM1dDiMEEHH0bgCQb2Cv1WJOZC2feta1VLIbM43sYFYmYte9OJo1CzUVq826CnXrwUx0TJXF1mMWcj67iKPP8z3/D7Nu5WSH6oPYKGRgY1a//kY/OfLz8zF9+nSEhYXhy9Wra4RF0N3gkXcio9GIydOewBfL/4Jy6DuV8lZUdPkglJFNXTfkqRISExNhNBrdUgDXFeHh4Vi7di1kMhkGDx6MvRuWw2qt3hqnvq0HoejSPhhyU103riGk7/8DoV1sD92UlJQaaTB7+PBhZKYlubsb94w++wZS18xDQOexHjtQcyCUyBAy5m3oks8g/8Dq+z5eYGgUJr/yGTp27Ihp06YhMTGxEnpZMf/73//QuOvwKjs+AAiEIvg0aIOCq8ddN65GdOlXoAhxbyaowWDAE088geHDh2Px4sW1bqAGeGhkbfOWrUg2BeDB17/ArnNnXO9wB1jNRr5ygRtZuHAhBg4c6O5u3BK5XI4nnngCEydOxIcLP8HrE9th0ITnYQ3qXy1TKEKxBCF9HkfO1q8RNn5+lZ+vOihOPguvqATk5+cjJCQEUmnNq8c7adIkGCndFxcrJ4tNRZlF57YYyWzjFnLXeRN9mUXKRhrElP7HqLx9pg6t7xGXknMUXzmMjAN/IHzyIki8gzAogp2GlgrZ6Ep7PxKNP13AaktvisjLi0zEvsj8ncUK3jt7k+PQ5dIAIFPKxgf2G8snQoVPXYzrH4+CumlPSBxGq5xIkvEq62j/aRoVifGlXwgFeKxBb/R4sjHGPfo4Xnj6MTw8flylV9HYvXs3Hn17FQQC8jv19mE1alaOa79F4cOui9nfoyb5KLNeGtwY3r2m4fpPM6HoOA67U1lpxeAY9vlWomU1czcoS+Iyjs+aUsj+TeM1bF8/TWTXHX3T5qVDrVSV01HqTOx3RpnOPsdpDzkAUHD+vvRMFQCUcmqL9qf6Z7VasXjxt1Cr1Zg4cSJqKx43WCsoKMC8/32KppO+gKAWTEHUJKxWa7kbSmVgNpmQlJSEDz/8sNKPXdmoVCq8+/abeHjcGKxevRrDMn7EBx98gBbv2x6e0uLy2jOZPXtWG0G0YFp7JQqT3PaAFFGVKRyo7cWKS4NsNy5FTCsIjm9A2eltEMe2s5+PmE+afG0PtqRc27ESAsnDIEZhm0IJsFfkKAkgN+5Mve1nDex1PFdkkO+Vxv5MHhVlEwfsLiTbOnjZ2ofZj+3QpwHAoWLbwCvvuu0mLNaTzDdNfGcUnNuD9q3aYmwkcOXKFcTG8lVBqwur2YSsfb/DWJiFiEc/gVgT4HonD0IgFCJ80idI++klRD31Y6W8LHkHhGL82yuxc8uPWPhJJ/zw3Vdo3bp1pUxzZ2VlISAgoFpe6kRyNbxiO6Dw7E6ouz9S5edzRea5PfCPa++282uL87H75/cQIshwm9l6deFRg7Xi4mI0adkO6iFzcCRPC+Rdgrwku8K2tM+K6sZB53JRHEnN1STucC5bxHKYZSqYFN4oNRFtwKZc8gULpN76ZGqSnSW8uMu5LJETAbbOP8a5LDARfZagCemD4jzpw3YZyQ7zDSXaLfMBUm6qLJAU4DYqK7Y58L5M+uPVhVRkOF5Ea8TIm7GWeoFWicnnFWaSLDKhUY+SzOtQ+AQxBq60lYiYGnAYg0j/faiIybQI8kb1UEdbRKBhw4YYMmQIfH091MujAuLj4/Hmm29i8ODBWLZsGYBGrna5bwQCAUIGPIvkFXMg9wuH1K9i+5WaQPq/yzBsks0+4fz584iPj3exh2fSqVMnfPjpW3jk5UXwDbh1hqanYCorwo3Vb0MT1xHhg1+EqYYN1BzIgupBGhiN0kv7oI7v6nqHO0AilaP3qCfQrNMAvPbuh0i9egbvz3sXvXv3hrf3vWeDL1u2DBMmTEA2J1oVLWWjVYmcbFDl9f+YdW0UayFUFhDHrJt8bFFGn4HPIfmLSVA17QUR9Uy5WMZen70D2CQSmchMtb19xYICA/tZLAWZzHpZQBwsJgMKc9IQOHwOpNcOsduDGzLrdPJVRXDrpnKjjAIv9nf37gA1CgoKMHbsNLSIjsb8+d/XmkSCW+ExoauSkhI8MHQsvCd9DVlUC3d3p05itZghUVauhUVRURHq16+Pjz/+uFKPW12sWrUKixcvho6yR6hKxCofhAx4Gjc3fAYLVRWgJqHNuApTaQGiG7UEABw/ftyjSgHdDcOGDcPLzz2Bk/s2ubsrd0TqX/9DWL8ZCOw8tkYaf9IE9H8audu+rXT9aGBYNB599SuMfe4jnDt3Di+//PJ9He/kyZNo3Lix64aVhEihgW/3R5C7b0W1nbMi8o5vgE+zPtV+nVmtVuzbtw8jR47EU089he+++w5BQUGud6zheMRQtKSkBI9Oexy5TcbCO64TjOmXXe90lwikChjz0oD6NfOhUR3oC7MrtUQKAHz//ffo0KFDpR6zOlEqlXj77bcx5bnZCJ/+ffWcM6IJ/DuORNrfHyNmyIvVcs7Kwmq14srPs1DvobecP0tKSkJYWM2NEsrlclwpFkOQaftuBAaT2rklWey9Kq/TVOeyOCeJ2UYXPAcARTrxDjN5s78fOqou4kQlrHnJzLrDAib/yHpIwptAHN8NDtWYjIrOJmnZd/N6KlbykE5t5+rSHNPrAHC0kH1sqDl6p9XppO2EcPac0So2Sz1YRiIom3bvYLaJ5V4QCwQQJZ8EAusx28q5/1PrsjTWk231CfKiVRRJl5Lzg0U5DNoLc/DR4q/w8nNP4W65fPky8vViHM32YwzWgfK6MNqbDAAUSnZdwKkBy/2MXtcOOJfV/kE4u28FvDuOcer66slYDWJbfzYb/zIlY4hXspE0XyknO5TjqyYtymDW5SknUHh4LZoNeRbCtBMwatjkIXXaaWZdUpTOrBs5ej15Npv8kd+U1TfPTbDNFJUUFeDrt6ZgdYeWWLt2LXx82OPUZtw+WMvOzsagMRORGfkAVFHNYci+Aa+b5MvG2HIoSNSHtugQUWU5lNQfXR9M3nYC5dnIPLYRyujGKKOmUB9sSGw5co3ky5aaTbRJcmpakJ5+leWTzD2Tgoh3LReJ07+Yst8AVQkBlAkrbYNBf0YZVUmAFhHT7W+WEOuOBB/y805+5It6rpBMiZ7JI1OZMupzFTfth/zz++Hb50no9aQNfcPQU6FqGRWBGx1MzjW5q49zOTk5GWvWrMHq1fef2eVOhg4discOHEZe2Ukck5LpPMe1aVDb3upkmeTas9oNmL3STgIAyoLINKrFXpRYbP890+JygV0zqOgwGoUp55GZeBSBfW3TiYI0WwUMx1/tHC1u9/cBQB7I56+R1Hm5vb6o3H7/HRJAbsx+MtvfLs9euqaHN/m+xdrF4Z9et/W3uYo8fFT2Y2XbTUwtZbbPkHdgNTq0aIX+7RtjajcNLl68iH0BAVCpWBsDnsrFkJuKguMbEPlE9bxQVBcBbQYh87/fEDxyTpWdQzFyPr7+7WUM6tvrriNk7877AD2GVr/dj0AoQvCwV5H+x7uImPxZtVc1SDmxDSFNukAorh6Tc5PJiL0bf8Mf3y/AO+++g6eedE+FCnfi1sHa76vXYPzY0Wjw0ip4hVetrYZIIoehsGL9G48NXeoFiL2DgazyYvh7Yf369ZgxY0aNjqo4mPvGa+jYtRcE/d+AWKF2vUMlEDzqTeT8/TFufDMdkVMXw9MntfTZN1B0cjP6frPV+bPLly+jU6eaUby9JpO9axmCH3wWQkrDVBvQxLVH9uF1MBZmQeJddVNdgm5P4MkXZmH7P2vvuMpKSkoKLCY9Zk/qAQBYeTCf2d6Ok1GZm8Jmd1olrKaM68Pmw/EqM6vYbM9QAIoGzZHx9WQ07PcYtlt6Mtuv61lPyzFhJEK7n1M3lBsVXJPE9kVhIpKMsoyrKCorhe/IuSi2T4GKjGwtTu5n4WZ3SkvZZ3FBHNv3vjHkmXF9/xp8s+o7DB8+HJkZN2uF9+G94JZPbTQasf6vv/DaR98h9q1/IYtu5Xqn+0Si9oXVWruLlN8PptJ8CARCiCpJs7Zr1y4sWbIEnTt3dt24BqBSqfDh/Ldx8/fZ1ebBJhAIEPbQu/DrNgE3vp7m0Ro2q9WKjL8WInjIy8zN1FKuQHTNIzIyEqVp59zdjVtiyEuDuawQyqhm7u5KlaCJbY+SK4er9Bzy0Dgky2KwZ8+eO95n6dKlePRR91a38IlqiuCm3XF56/fVcn/Q56cjddsShA19ucq1asXZqTjy0yyElZ7Ezp078dJLL9XZgRrghsja9evXMWfuOygR+EI2agFE1VhEWCRTQZubBgTXzMy0qqTk7L9QNe1ZacfbuHEjfvzxR4+rWHA/DBw4EBPH7MHGi7uhbtyz2s7rZf+73Pj1NYQOfA7yoJhqO/edkn/wDyiimkERwU4jHT58GMOHD3dPpyqJZs2awZSf7Lqhmyi5dADqhrU3eunfagASf5sDTZMeVfq8EMo1d/xyYbFYsHfvXrz++uvOnzmy3x18uYudoSiI7cGsc3VgQhM72DJxdF0GTmRNbLBJYJQ+EfBTByBryXQ07D8dAoFtQHONo3U8oyRSDG5FglROdqgk+zqzrlMHIf/wnyg4sRERD38AmcILoGye1Nf3Mu25FQcEhhJmnRt5kwQRTaLVasVQ1UF8sPgDPDttGsaNGweeahispaen48aNG3jqlTdgFkqRnHgB/n2ehLJpb6hKsgB7zUQFpTUz0/YYvhXXHGPCqnQZJCnRxtCaL51vFFRRCSjOSoJ/KNG4HSwmg4nulF4HlAZAF0bKMgm0xE9KkZdEnZdMP+gCiZuzND/NuSzWklJShuN/OZdN1OcV6clFzWjWKH2SUUm5M+eSz+LtT76MSaXky7ctjRQEFlAJBHpK1Kzb+h38O46GKOsadDFEhKugUrJj2/YlP6decJQiNsSdmJiI8+fPo3nz5qhtTBg7CmsmPY2Wo2cj+aDtb2ixT2eok4gAOK/ZUNs2YfkpFYelTG7bCQAABSVSN8XZbAr85bbrLzvfNl0gr98awUNfRtr6/8G/w0h4J/SG8jqJNpwvtH9P7IagtMaxLMt2492eYfs7WZU+zm0OixpDWfmpb6nSpsM0ZF0DAJym7FqcSUBeAdBnXUfh6R2ImbkaEAjwfC+i3zx9+nSNKzNVEaFeIrzVvhChoaF44W9ScHuXjDWalVMlhBScaayykARmvTiGRJ25hatN1N9IUpzDbDPLyTS81WxE/umtiH5mOSwSGSSU5RAADAkgD2U/GStg/y6FPSd9DXANdOmkghKOcJ5bnN1EFSTflc8OYIYEsQMSNTVosDbrz2wzptlLCioB/75PIHPHUoSMmA0AUBReY9vS2mYZZ0BnJppaBWfQbaY0uUbOAOJ2rFy5Eg8++KDHGD17N2gDc+o5XNr0LRr2e6xStWRmfRnSN38JkVyNmMe+th2bU6S+Msn7dSZeyjqGdevWITo62vUOdYRKHax9sugL7Ny9F/lFpSgzC2CxmGGU+9neEHrOgiQyAZHU4KW68arfBpkHVsO/RT+39cETsZpN0KZfhiwg0nXjO2D+/PmYP3/+HWs/ahLt2rVD2xZNoctPd924kpEH10fUIwuRuelzlCWfRVT7IRBVs7CYi8WgQ+bqdxAy9u1y0yKXL19GcHCwxzzQ7od3330X8+bNw5dffunurjDkH/0b3q0GVbvAvLpRN+6OvN3LYSzIhMQn2PUOVUxWVhZatbq9fCdAzg5i29djM1pPnWCfhfSLOlA++sSNtHHbqwa/Auvlgzi18VsED3gKXoHsQGfDhavOZYE368kmzLrKrIvtFQgMxblI/vsTBDTpBv/GXYCitAr7og1jfxciTiStsGFfZt3kxz5rzj3iheLiYowfPx7tosPwzaZjdXrKsyLua7C2ceNmbNm+A2fOnofZYoUwKB5Nhr6JFsHR2EO9ieUV5d3mKNWHzC8UupxkWM0mCERuT4T1GMqSTkIZmQCBsHJKsOTk5KBFi9rrlde4UQMcSHaPhkmk8ELY0FdQeGorrv75ISJ7T4GikgbZd0tZyjmk//0JAoe+DEVkQrnt58+fR5cuXdzQs8onNjYWBQUF7u4Gg8WoR8HRvxH13K/u7kqVIxAI4N16IEou7YVvh1Hu7o7Hom7YEfKwRsjY+Bnyj29C0NCXII9o4npHDhajHjnHN6Lgwl6E930cmoCqTxL7+++/oVQq8e2339Z4j8Cq4J5HLAcPHsQ7H3yMEU+8g5ZDXoJUJsf5Qs8eAAkEQnjHdUTe2V3wb9HH3d3xGPL2/oaQXpMr5VgHDx6EWl092ZLuYsSg/vhxwuOIHvqqW84vEAjg07I/vNXeSN7+PbwbtIWm75OVNth2RdmNM0hfNRewWhD59I8Qc6beHJw6dQodO3aslj5VNQqFAunp6R6VMJF/ZD28W/avdRmgt0LTsj9Sl8/ymMHav+eLka0kGaBczRp3PYejYTuiYouNcyNpRs52OSW7AQADx9tMmUOiY5rej0KXnojU5S/BarHAP64dpF0mQii1STbKRdLsUTpDUQ4y96+ENu0iApp0Q/zo1yAUicv5onH1dVyPuOL6rIZSomJ/F6JyXqoR2Lt3L1555RV+oHYL7ml0lZWVhXFPz4ZqylL8klkGZNrTcKnUaquFCgFTywJKlEibROr8KYEhpc+SlhBvMhF1MRu86WK9BBHla8Ycx17TMaR+C1zb/RsCm3YDwEb9rknJBdUhiCwfKyBCTRPVf23CAPK5UkmkhSk9VZ8yYbxGUrdLYisuoSKgCzG3GEL6n3TMuUzr8iShpKxHHFUyZGsuNQVJaUgYWalUAW3KOUAig6rdcNLG7ucFAGXhJMOssYocf25/ekBmuwEYjUb07Tu7xvuquaJdu3Zo2aQhMkvyIL3FQKU6UARGoeFDbyPj0J+48eMLCBn4LOS+FX8vKgNtyllkrP8fYDEjqM/jkIc0gOU2n3/Hjh2YO3dulfWnOhGLxQgLC0NJSQna+JEB2/ZgtuapkSrWzi0XZ+JMPdECbXAi/ZI84uEoMpYx20TGMlitVpSc3IzYCfOZv8GYUO7UEfnG07VdASBOwT4UL5nJoK/QyG47m8GK4WnahbGf60gemQKLlLLZ5ddL2T4ESG89+HX4AwKA8NQGALYatOr08ygJZ/WwAkrHR+sGASC/CTFYVaWfZ7ZZ4ns6l63prMawpqMMiETDQc9CX5SD3MTDuPnDcxBK5JAF14NYIofUPwJS31CUpZ6HtSQPpclnIZTKEdhuKGK6P1ytg6YjR44gMzMT7dq1q7Zz1jTuerCm1WoxdNxkKHo+AYkmEKbsG1XRrypDqvaF1WKCsbQAEpWPu7vjdnK2fYPAB5+rlGNt3rwZDzzwAAIDA103ruH07d4BS/67Aol3F+i9bW+4+rYPO7f7nt8MADBobNMHpaFkKsJgL9wuy7clh9AF4CXJNufvbL8IAICQevhbKNE5AGjtD3ifgS9AnnEVWdu+geWvj+HXbhj86jV3VqNwGPQalbYXEAElWLdkJwEApPVa235wlSSUGLxsf0fdzcvI3v4dBBI5Qka8Bnl4Y4gT9wKFNyG0u+k/2IPUwwWAQ4cOoWXLlrXqLTkhIQFbtmwBwvq6blzFlKUnQuLlV23RVE/BpCthAwGVSVnhXelsezXxQm9O9Ox2PN2TTdr4ZT0rpZAUpjDrRm9W3mBU3f6+qvOJYNYdhtxKuRzKZt0R0GsqrBYztJnXYBaIUHbzMkrz0yHzC4evpQiKdr0glsoBFKNMziZptGzRCSaDDqXZtj6eL2EjacYi1jdtdhMviKhanRc5LwpbhcSRwWIy4KOPnsIbb7xx289X17nrwdrOnTuRYfWGT4tBVdGfaiGw1YPIOLgWkQ9Mdd24FqNNOQeBUAR5aJzrxi64dOkSnnzySezYscN141pA27ZtsWjFFmgaeoYmSx7SAFGPLIS1OAc5+1chce9vUEc3g2+T7pCHxt31Q91iMkJ38xKyt30HwIrA/k9B3bT3He+/efNmDB48+C4/hWfTvXt37NmzB+EeMFjLP7cLQR1GuLsb1Y4yIBr6wmygkmWaxoIMeN08jG7d3nLduAYjEIqgDI2DWSyHktKyeV2quNC6sTgPxTdO4ezpdShMPouundpBJBKjE8dr0krJA44c2Iv/rbfgxU/+glzpWhJTfHA1GjVq5DJho65z14O1xMREWOJ6wmgvnSSkUqYtlK2FwKAtty8ACKkpQmY6r5RMR9LllPQaImwUycmbiVhH5v/prBh6nt/gRaZl6enREIkJ2TdOQnRxB0BFPM7cKHAuN4sm07IhSuI03difZF3tKSQXrEFF1fKjLDr0JeRzCag23ue2OJfp6U4LZa0hu8XUJ/37sVK/z6OFJA09o4z8/r1SyLQAPXWr/+8ntJ34LjSh7BtZdBNSTaKhF/n7KsVkmXbrfqijL5YvX45ly5YhPr5ueNi1bt0ahsxEWMxG142rEZFcjeDeUxHWaRSKr59A9pG/oM1OhlipgapJDwhlSshD4iCze7UJDDqYDVqU/PcrYLUCWVdRfP0EDPnpkIQ1QmD/GZCHxN7+pBxMJhM2b95ca6ZAPZGym5cR3rvuvWxWVWKYLv0yRj/YByLRnb/UuNKscfllfwGzXtyY1U1L0y8w67ICNltUlsd6n+n92OxSs4KdctYGsN9bkZ48nw0cPVxuu0nM+vRYOc4f2oZjB3/G2089hlatWqFevXp3pEc2mUz44IMF2LbiM4ycbisTFsLJjI1S2J5z2tw06I79ipnb/3Z53LrOXV/5AoGgxgtaBQIBwhu1Q8r5/fDp9ay7u+MWCo9vhMw7CJrIu88U4nLx4kWcPXsW77zzTiX0rGagVqvRuXMXnE+7BGGE52W+CgQCaOq3hqZ+a1hFEph1pchPsxW0zju0Bhad7QXHoSHVdBxtq14hUyGk28OQB0Y7p0Hvlk8++QRPPfVUrZoCdXA+TYcY6nn+TCP2Xvh7Bnlg5xSy5YdUlC8eAJioqSbHVLoDZc4V53JhPTZJQ3t2J+TRLWGyv4zKKNsOqZB9eZBSBdkjwT4wvU2svi1eRT7Y2lTWeoGejm8Ty76QHbmRxKy3i45xLqcY2GvgIieAM8ifRGTKOFNpYkq3ZwmwefyZFN7Q+kXCK4f1WaO1zWXcQQrV99Lghuw2u3GsJf0C/CKqz6DdU7Hoy6C79B9+/X0NHnl4LD7Y8Cf8/f1d70ghFovx4osvoEv33rh8qjcatri1YfPN1XOw7tfv61RB9nvFs9M3qxC/8FhkJZ1D2bVjUNZv4+7uVCumknzkbP0KPV5bUynHmzt3LhYtWnRXb6W1geGD+kG09xIuOJzCKcdwR+F2hymupJAItMsCbKbJQntyiEOnRiO0R08VqWSbxW6SLLcbe5ZQJqsmu/7SAnt0lYo8671DAW/A266D82pNJAwCuw5OnGkfHNhtQCygBnLJtsQY4bmNzv2KGnS3tbObir4zwPbGbbVa0W3eX9i5c2e5z1TTEYlESE++ApPJCHE1FbCuCH12crlKETz3h+jqXkz74pcqPcdljm5LfXkXs87NBrWIOd55IvaaE5rYka8qndXAybLYSF1B/IPUvmw257MdGyDp4gls+f1tTBw6EDMW/gk/v3tPnlKr1fjpB1s9zyNHjpTTMU8rKsKLL74IVZAQjRo1usVReGjqrOucQCBAbNt+yFy3ABZDxfP1tZX0FXMQNPQVSCshwSI7PQVisbhOOk0PGzYMV0//5+5ueBSrVq2qNUa4XNq1a4fWjaPwzbuPu7UfxZf2QRNfcTZ5ncBS+bV5rWYDxOI7j12oVCoUF2S7blgD0CadwJLZw3Hy70X4/eclmPParPsaqDlo2bIlPvvsM4wbNw5r1qzB+vXrMXDgQAwdOhSjR49Gly5d8P3331fCJ6gb3FNkTSBXQ2h/0AvKqFD/LbJ06NJQcqrch0hHtF0C6i1BkkFC2oJIYn2h8yGqUuX1fc7lkjiSiabMJG8TQspF2aQmrtemAJugXgAgQmdG4YpZiO42HlrKPuTKUTINYW5Cjt+cyMXQUk3GuvlyUoonMYUN0TuwepFwclEU+VxSKdHEmSkh+K2GkA0pjdm1EqJNSzxORTMo24CScDJNZ7hxChajDpqE3rhSRH4/z8WStzYNlU5vokrLiIXkJunQZzz66POYPXv2LXpau9FoNGjTohl2Xj0CRQM+5dxoNOLZZ5/F8ePHXTeugQiFQny44H106+O+xAmr1Qqr2eT0y6prqGLboeDERnh1GllpxzSV5EMl0N/VC8bgwYOx7rHH8OmcaXc83Z/Irb9ZkMqsGznZnOV91wLY/YvYKipFMex0o9B46yDE673jcfHUAWz57TMkRIdjyfYNUCorX940fPhwJCQkYPfu3QCAiRMn4uGHH3axF09F1NlpUAd+ce2QeXoHjGVFwN1Nzdc4LEY90pbPQswLKyrleMXFxcjMzKyVNUDvlNmzZmLnxGeAOj5Ys1qtGDduHL788ktERES43qEG46cSYVxHHwDAN7sLmW27HiJJPk+uZwXfh5WsoFx8brtzWVLG6ttKQskUN/3Q1WVeg8SX9TXr7UNeknMM7GRJkpasJ2pvb+irzyHWERJf1rG+ZzyZqtp57iyzrV0jtnrF6VJynuYqtj9qThdoTV1CIDsYOUvNeAjtSWSywHoovXqMqZsMsHWO6dqpAOvtCSH7yHskUoovZwzDi7Nfwd0QEhICLy8vFBQUwNf3zu073I3+5DroL+zCs59ew6DBQ7D57z+g0Whc73gfxMbGIjb27pKUeMpT5wdrAoEAIa364ebRDQiK9DyheGVyc/XbCB4xGxLN/fugGQwGDBo0CKNHj66EntVc6tevj9zEE4j0CoD8BokoOYpSS4+vAwAU1+vg3ObQo4kT9wJgzaG1vjEAAMVVW1F4utC0Iyrt8G6zUNvEdjNlx4NK5xdF9rN7oel9bPuJdCSiKs+0OYmXBdZn2gKAOsP2UC4Ob2n7TNSDzmLXv73R3Bbh2blzJ3x8fOrE9aDValFYWAhvb2/XjSsbixliVc0ZHHg6BVmpiI1tgOnTJt/1vnc71a/giI50QWyiBjfb0ypho6ey9DPs/vbvpQNuJM3YzlbpwWo2oSzxAKJ3vYk2bdpg3oq9tTL5p7ZTZzVrNL71W6M0Kwmm0nzXjWsouXt/g1jlC02zyimztX37dgQGBuK55yrHULcm88LMmdBTUZK6yKuvvoonn3yyTjwE3n//fUycONHd3eCpBHYun48JY+9tSlWj0eD69euuG7oJq8WCkrVvouyLYWh8bRV++eUXzJ8/v058R2sj9xRZsxi0ThdpC+V9Js9Nci7rIkiZIkUSKbNkpXxy8uOJuaT3tf3OZRH1Bm9UkrlJpjwVpWWjNXGloeS8ymxSf6w4oiU5vp54rhnt9gR+o95E+tr3ETfENvigpyFkl/c6lzdSn0tJlXnxo36TfWJjnMu78knfTJT33IPxROMmpbRgm3KptzVK49ZEQ6IoZ68SXZ6jjBYXGaVnyL1yCMKyAsQ/8TXyC4l7vYDydJMIK74UJnT2Kfezf//9F1OeeqrWapPulgG9u2PF4s2AG0tPuZMdf36PRo0a1ZlSMW3btkVmZib27NkDoHqj8Var59QmdQeGnORK0+sZD/+OCB8BJk6ccE/7d+3aFS++8SGmv/FthdsLOVPSRy9eYhto2Onscho1NTstbAxlp5utnHt223jb9tzLh5Gy7Uv47s7DMxMmYMqUj2/7OXhqBnc9WOvRowe+2Pol0OwB141rEMp6rWHwC8HNw38hrP1Qd3en0sg8vglGkRT1H/2oUt6orFYr5s+fjyNHjlRKxlBtocpK4Hg4V84dxeGtv+PYkYPu7kq18sorr2DVzguI7nrnrutGXSmzbqjX3rkslLBTasJUUsMynNJDXtizDMrWg2D2IQ96Wpd2Tc9+xwf6maht4ltuA4DdEpJg1VLJDgp3ZJKpc+5dJInjpaaRECG9XMgeJ1jGZnLKhHTtUrYGKm13YwyMAQAU3zgF3+6PoJTz+6J1atJiNkvTTE0nPt2evCQvXbUbX/254q5KTNGMHTsWP//yO65dOIH6jd3rvm81m5C0+xcUJ+6Dn7AUW1d8jYCAANc78tQY7nqwFhERAUPGVUgt5lpXly6i8xik7luNy399Br9hr0Ee0sDdXbpnLCYDkrZ8C7FcjdiZqyot9H3u3DmEhYXVifqfd0p8fDyUyW+gtMN458/8diwCABh9bZYmshwyXcIVkzt0agDglWSLMOd3eBQA62pOi6gBQE6JrB0GqxJ78WtdGtnPLLFleTkeYo4aoQCgtWvblNm2DGaRnvizObRqqkxbgeuy1mS66PVGVpSVFuGX+e9jw9/r7sr2oDYQFRWF5D93IKrL+GqdVjLrtZAFRLluWIsRCO9fvVNSkAuLQXtf9zGBQIAl336JngNHovXzK5CsYI2Ny/T6W+xpQ0xVFABYDSpQPnJm4phUj28UgtLCHBz6/QPk37yEhyaPx6CX5tX6BJ+6yl3fYQMCAjC2b0ds/WkaHn13FZYfSHRu01Hu0H4aEnUppNy5zd7kjVCSQ4rA0yWUSoOJ8NI7kdhRGPypqcMb1Js8NRWrCydvOALK+I/OHqJLW9HO10avYAQPeAa67BtI//01qAIiEN6yDwT+5Oao+u9r0mcf8vNc6kG6LZBkvgipqUyrnrw5bqKyrqXUWyFdngrUYPhcIrESoR8NdEktub0wuElXgqs7lsG3ywSoG3dDiZG4moupcw0OJm+UEiF5y75V2RSz2YwnnngCa9ZUjplubcHb2xsyiQQG101rDVarFUvffwYzpk6tkw+HDh06oGXcFuz+dR56Tnyz2s7r17Qbbh5Zh4B+M6rtnLWRE7v/xIP977zW7a0ICwvDuBGDsP2/FUC/mZXQszvDXFqAc3v24/y2pfjmswXo2LEjr0Wr5dzT6/CC+e9hY6t2KMhKdd24BiIPjEaTQU8h9/opXNzyPVSRTRDadhAkCs8uR2K1mJF9YjPyLuyF/5BZUDXs6Hqnu2D16tUYPXo0QkJCXDeuY/hqlMjLv1nO8qC2cmDrKvTo1LJOeyY99+xTeHD05Go9pzqiMSwXD7tuWEsxFeWUs9+4Wwqyb+L60Y34+p8/K6VPQwYOwMGv/kLByY3shsasVMjMycJXX2KzO4s52Z1WTqRtfKMQlBXlIfnMXhz842PEjhyIT9ev5O/HdYR7uupFIhH+XvcHxk99FujzWmX3ySMQCAQIqN8S/vVaIPvmNSSu/xRBLXojxMcbQg+c/tWmnsf1Ne/BJ7Y9Gk14H9qQyi2objab8f333+Pvv/mCuxURExONRGPdiK1ZjHr8++cSHD9yAMJKmJKqqQQEBMBPLUFJfjbUvrwsoDowl+ZB6h8B5N17oKAgNwO9enavNH+xhg0bojD1PBBcdbo1i74M5/b8iS3fzsL0x6bh+IF/q9wfjcezuOdXlPr166NT22bYeH4HlE1qV7IBjUAggF/D9tBEJyDz5FacP7EZ0S17wsvfMyIoprJC5Oz+Gfqs64gd+Rok6qrxYFq9ejUGDx4MhaJuOqe74mZ2DjSFpyEvtYmi81qPBQAo0m1CcVqnJjTapsNL7T5LCqqqR37TgQAAebIt09agJtPcArtQWpFnkw/ovMOd2xT5SQCA4gybLEFKnU/va6/8Yc+aFlOFrR2GoQ7tGi0XcGhoBg2yeafN6WeLLM+cORMdX591z8Ls2sTjUybip3WLMPKxNyHi6PaCZay43qJnEwwk1IBDTGkFAUAfQ5IKktKI3lGXmQaYDADllRcqJVKL5l5s0oCBqkDSVMGK+3UWdtqsQEdkIwUcDzG5kgwMzBFNmG3ZOayTfmAAkb0cK2UH89w+yKkXXzOV7Q8AlmAiJxHnJAEARFYrxHmpt9V3CcxsMXvf+M7OZR+ZDtmXD6Jrs3qoLLy9vSGx6FCsYTVr3BcZoZStEGBS+DDrFk0Qsz6unjdy064g+cweXN/3B+IG9MKCowfrZGk/nvs0xf1owTykTHgUAeZotOjBetVo6S9MIIny5FGZQ4ZIomsrNrV2Lsupa3wXlWWnyCU3Lasf+bLRparo4rdWallMFba2SMjP5VR5Ki1l+2GWE8NLk1wDyDUI7vEoCrs8gutbv4YlNRn1Y0vhFRhlb0PaK7KJvkxxfpNzOT++H+kb9bksGUT3J1CQ46jTiVN4cT1qSrO0ANrkMyg8vRWGpBMIajMYvh2GwuATDsftli7qW0rdEPvGkEFmE28SCarIosPBtWvXsHTpUvz111+3bFOX0el0OHPxCoK79XB3V6qc8+fP48aNG/jkk0/c3RWPoH379lj48WdIPHMI8a26VPn5hBIZDHlpVX4eT8RQkAGB6P4TWS6f+A9fvV85U6AO/FQiqGLZyFrmpSPMuiiKrfSi5wzuHmtIBsSpl0/i5HeLkJaWhmnTpmHC/C1VUg6Kp+ZwX1e+WCzGyl9/xojR43D83zUYMPlNhMZU7vSbpyELro+IRxZCn3kNN9e8BaO2BEEN20Me1rJSbiS3w5CbioKDq1F64T8oIppA06If/LuMhkBQtVNRZ86cwbhx4/io2i3YsWMHnoCU8wAAJv5JREFU0KBLrRf46vV6PPXUU/j555/d3RWPITIyEiNHjECuqXqmwKWB0bBoi103rIWUXDkK7+b3Z+q988+lgEUPmUzmurEbOPvfOhzf8B2Ucgnef+9t9OhR+18Aee6M+x5diMVirFuzEvv378eU6VPRvPtI9B43E4Dn6boqE1lwfTTq/QhMBi3Sz+5F6g/PIqDdcHg17AhxJY+dyrKTkfrvr7BaLfBuNQhBvaY6bVMEuVXvoH3ixAn07Nmzys9TE9FqtXju9Xchn7YcuLrP3d2pUhxT4VFRdds6gsvAB/thypMz0bRtz2o5n8QvDGVJp6CMqd3l8bgYi7Kg8Lq/YMDZA5uwdtWvldQjFjnnvm+ipnEBYFwo55lIzeRYrVacXzETeTk52L97G/9izFOOSgkFiUQidOvWDds3/4MRI0bghrcW8X1mQO1t008VUU7OESqi4zBZXEciMpu0cS5fPUxsNmirD6GpYj8bEzWlKKW0OMVU9YOywDjnslfqSecy7WlFVwmgrTJ0diuRwNCm8C/NQ86Zf5G64m+YBUIoQ+MgEAihbNIDIpkS8rBGkFMDK7OUWGhYhSJYrVZo0xMBbRGKrhyG1WJBWn4aLCYDRBIFwjuPgjLYbl1SSKZB6GlfumAxreGQ5RKLlIbNSP8ztHc2oD569ChmzZp1R23rGk8+/zIsnR+DQCRBYWPy1i/JTgIAaINsdjaOQtQAoMq0OZk7avnRGhuHF5rj+qvo2nP8L6euA0eFDs0NUi2E7BdoP4/t+mBqkdr755O4CwBgpDRyI5vZvhsNNCaUFBXgq6++wq5duyr6NdRpmjZtipL8dOhK8gAQzShdmQQgNWEd0EauVk5Unta3CZQ+zDZl/XYwZN+Asr7t3rgzh1RGGRHKRozoPviI2f4cKma//+FKsn66lDV5HhJA9s3Us6OSg2bWHDuYOk+MF6vba8TR1G3JIto47u+H1smVaotRnHwWfoNfhkkohCw/hWnr1GUC0AXUZ7ZNDyHPh40+So/LnrRarfj7w4no36U5lixZ4u7u8HgolTpvFxMTg23btuGrr77C8oVPQSgUo0yrQ2iDFug9bibkSrXrg9RQxDIlQtoOQkjbQdAJZTAW58KkK0Fh0klYdCXQblwMsYjcDFnDQwGsZiOk/hGQKjTQxLaDWOkNoUgMmU+wrYXFBHeQk5MDmUzG6yUq4MaNGzhw4gIUk15yd1eqnDXfvYPHHnvsrotX1wUEAgFatmrjumEloYrvgpu/zoZPh3uraVkTKb20H7KQ2EoxxK0qhoewQYPratbqKVzJDoCVYgt02lLsWLsEPTsk4L333qvyPvLUXCpdZBUQEIC5c+dirn29oKAAGzZuwpcfTIYVAoTHNEL9hM6Ib9kJMpVPZZ/eIxDJ1RDZ35rlDTs5f05HSbiRNQd0lNBdAzSaefPm4ZlnnnF3NzyS195+H759nkFJLdeqXb90CmV5qZg6daq7u+LRlBUXVst5xGo/WPQlsBi0lVYn05OxWq3I2f4tIh69v6SWguybHvXSmZmWhEWvTcC0qZPw2qv8zAXP7anyGjE+Pj6Y8PB4THh4PKxWK86cOYN/d+3BknemoGHbB1C/aUc0aNKm1ouzayImkwlnz57FZ5995u6ueCSbN/yFNh+8iRKd0XXjGopRr8VP7zyGbVs2um5ch3ll5nOY9sSzeGFM9egWFTGtYMhJgTysoevGNZzi87shD28Msebea11arVbsWfMFnhg/3nXje6CoqAgnc0VM5O+Clo0C1lOTyJpeW4qZD7XD8uXLMb6K+sRTu6jWgn4CgQDNmzdH8+bNMePJx/HHmrXY899fWP/tG3h99ssYPdrm57TyIPGI8hYR/YOO0iVYpETfQGvB6GUtpUcTa8lbr+b6XueyUUO8qkQ60kaoIt5FRhXRZNC6MCFlGaLzIX2ja7hJ84muiLYPoUte0fo4k4LoNJSUBYiZ+rzS4kzncklognM5hEodT00nOjUBlam2IoNMY3X0un3x8V27dvGJBbchsnEbSDUBgC7ddeMayqEV72Hee+8iLi7OdeM6TOvWrREW5IMfd2dDLLb5z6kl7MNaIGI1YhIq0m6s15bZJjST72aXQFY+8t/1AgglMhhzUyAPqQ9zMbmXFAaE41bEa9iXikQdq28LZDRtbF8z9UR7xhXSCzl6O9rrLVTBatZOF7DefOdyC5zL4swrzDZzPZudU8amzxHZ8xFIKZ0aXd8WYDWhL3ZkNWtTu3ljyZIl6JIQhmHDhqEq6NKlC86f+hfRrVx7jhbkZOCbOWOxYcMG9O/fv0r6w1P7cFv1ZalUiofHj8PD48ehqKgIXbt2xXvvvYf//vvPXV3i4fDWW2/hxx9/dHc3PBYLgFILoLlqG/w7RP4AEYxLCm0muSIjqQvrMLNVZdkKpNNlZhwGuTJ78kBRDPHXU2RdBkCSApTppFyNtNiWGFAWwGagAYCswJZc45hWp6fjtaE2g1NtQAPbDxp0cG6b1DAThwsTMXHC4oo+Pg+H3r174+S+LWjbY3CVn8u77VDk/vsjvJrWbmuH4nP/QhYQBal3kOvGt+GXX37Bhg0bKqlX5YmOjsamayaUUdG0lmr2ZbiN5gbeffdd5ObmYvWK5WjevDn3MDw8t8Qj1JoajQanT5/G4sWLMXbsWJSVFrneiafKCQgIQMOGtX+ahac8Fn0Zpk2bxk+B3wU9e/bEpl8/rpZzidW+0FNm2rURq8WCjPX/Q/CwV+75GBazGR999BESEhKgVldxgpvVestNV/avw+DBg/H4449jx44d/ECN565xW2StInr06AGZTIYXZ03H428tgVLF1z5zF3l5eVCpVK4b1lGsViss5ttPI9dktBvmY/YTT6BRo0bu7kqNoU2bNlCp1DAZDRBLqjZrVihTQeIbBl16IuThjav0XO6i+NwuKKKaQeIdDNjLTd0tR3etQ3HiCSxfvrxyO8ehSZMmGJy6Fe+OtWXo3rhxA9evX8fp06dx6tQpJJ08iWPHjiEwkK8hy3NveNRgDQA6duyIN197EQv+9yKmv/YF2viS4N8BymRQmnTcuUzr1OjMStWlLeTAVDkofTC5udFaMNrrSGQgPkf0MWmfNb2GaM3oWnViu1eW7ThES+Hw1bIdk5xL709qvSnttSQBti6kmNLTGbyCncuKvCTncuFhsqyQk4GuJb6nczlOTt7+6qluPdjYsWMHr1e7Ddu2bYMgsrXrhjUQc1khxDdPYdy4z9zdlRrH1EfHY+2P/0OfyXNhMLNJU5Fq9uUnlfqOmvVlzDYJpV3l1teU+NruO8HDXkX25s8RNvJ157bt6WxG6qAIchw9x9dySBBrNaGiNGu/32Rrb3J1ajTtvdjjFplI4203WY2ainMcgV0mAACyEipbXq9F9rqFqDf4BYjPbS93TouQPe6YDi2dy1O72SwzcnNzMa37NJw5c6Zcnc7Kpl69elixYgX27t0LtVqNzMxMjBs3DmFhYZg1axb/0sNz33jcYA0AevfqhaVLf8DmlV+h5/h7D4Hz3Dvr1q3DggUL3N0Nj2XVmvUQtH8apWagzK4rE1AmpyaZbVlgFz6LCsjD2CvlMAAgr4mtaLv/vm+c20oSbAJogdm2v1fyMec2h6haZR/Q6yh9mtle5N2ktmXMiUtySF9Etge2I8GF1rU5+hfaxFbsesMYOV54YQ4GvvvanfwaeDgMfLA/Nuz9qFrOpYhsCmN+OszaYogUXq53qEFkHP0H/s16Q+rl57pxBRQVFWHcuHE4efIkEhISXO9wn4SHh+ODDz5AvXr10KZN9Xnu8dQdPEKzxkUul2P1qpU4uH0NMpJrty7DEzl69ChkMhkiIyNdN66j5OTmOr30ahMFBQVITExEv3793N2VGklkZCRunDsEs6l67Fx8u4xH/qG11XKu6qIsKwllOTfgfx/JExs3bsTIkSPRokX1leQaPXo0P1DjqTI8MrIGAEKhEB/MfwdvvjkBFy9ehEAggERY4Nz+mbCdc1lHWWjQNhhqyniWttmgS0/R05HCvGvO5ZLGgypsI6KmK2jTWlkROSZt40FPm9KGtyKqnIyEmgqgp2XpqU8aEzWlK7NnDwKAgfrs9HktOjIV+8NEMoUKVGyouWDBAixezGcA3oqMjAxkZOVBcp8Zap7Iyy+/jGnTprm7GzUWqVSKju1b4/iOVWjRZ2KVn8+342hcmdcXfl3GQSjxzOLkd4O+KAc3di5D/QefvmfvzcTERCxZsgTr16+v5N7x8LgPj4ysORg7diwee+wxvPXWW+7uSp1Cr9cjLCzMdcM6ysWLF9GwZXd3d6PSsVqtOHbsGAYPrnrridrMsCGDYbVaXDesBAQiMXzaDUfevt+r5XxVidVqRdre3xHR9SHIvO9diL9q1SrMnTu36rM/eXiqEY+NrDmYP38+CgsL7dMyVa89qI1k/bUQ2X/bLAUE020/a9SoES5evFiu7caNGz2u0LGncfL0aVwrFaIs32aGKyorAADQ6RoOzZjIqLX/TyK7+fG2KUYfuz9bbjdSzkuec61ceweOSG5Zvfa2tskkycahVfM9b6s0YJWQsjoO42SrSGI/NokOG2URAGxataVLlyJn3Lg7rv/59ttv45133mF+dqvrqi4RFxeHyx9+ClVcN/iGNXD+/EZ+PtOuaaOWzuVLJQZmm1FL2xexWfHWtPPMeoMhz+PUvAfhO2o28nNZg+adBcQ8diCnsHyogk0wOltIRPuBnKLvOmrs2d6PneI9nMeK/QuNJCJWZGTPkce5ri12bafVakXSruVQRDZFfupFXPjtTaadzD8CCU8SbWf/Nmxyz5x+ZEZi0KL9eP7558FTt9izZw8WLlyIY8eOIT09HX/++SeGDx/OtPnyyy+xcOFCZGRkoEWLFvj888/Rvn1793T4LvHoyBoALF26FAB4s9z7RBbWCA0/Oo309HSkp6dj79695dqcOnUK33zzDb744gs39LDm8N/BE/Br6tqpvKaxfv16PProo3e1T9OmTZ3X1K2uq7pG06ZNsez7r3B+w+fVcj6hRIbQXlOQuunLajlfVZC5bgHkAZEIbDsEACAPjEajN7c6/8U/+qHLYxgMBnz//fcQCAR8VK0OUlpaihYtWuDLLyv+HqxcuRIzZ87EW2+9hePHj6NFixbo378/srKyKmzvaXj8YG3UqFHQarXYunUrTv7xNsa2lmJyVx+8Emtx/otr3dv5T2jUOf/pvcOc/wQmPflXluv8VxLe0vmvqNlI5z9F7jXnP3l+coX/ZIU3nf/EpbnOf5KyPOc/aXGW859IX+r8Z5HInP/kBSnOf/Qx9ZpQ5z+T3Nv5T1Z00/mvILaH85/Wv57zn9k7xPmve5AIISoJ3u0SgZCQEISEhCAggK2zZzKZMHPmTCxduhQymQwxMTHlDFFbtmyJt99+27nes2dPPPvss3jhhRfg6+uL4OBgLFmyBKWlpZgyZQq8vLwQGxuLTZs2VcOVUn3I5HLI7jFLzVPZs2cPDh06hNDQ0LvaTywWO6+piq4rLnXlumrSpAnK0i/BZNS7blwJBPeYiOJrx6DLuOK6sYdRlnQSpsJM50ANAARCESReAc5/YqX3bY5gu67mzZuHn376CUuWLAFQO68rnlvz4IMPYt68eRgxYkSF2z/55BNMnz4dU6ZMQZMmTfDNN99AqVTihx9+uO1xXd2zquu68vjBGmDLDt20aROaN2+Oxx9/HPmc6QQe12SkXMOMIU1Qv359TJgwAcnJycz2BQsWYNKkSXdt2vjTTz8hICAAhw8fxrPPPosZM2ZgzJgx6Ny5M44fP45+/frhkUceQVlZmeuD8biNJ598Er/99ttd75eYmIiwsLBbXlf3Sk2/rgQCAZ5+8nH89+WT1Xa+2EcXIuPPD2AsyHC9g4dQdv0Esjd/jtBx85if6/PScPG9fri0YAhSfpsDQ6Hr6MfZs2cxderU275w1PTriufeMBgMOHbsGPr06eP8mVAoRJ8+fXDgwIH7Pn51XFcer1lzIJfLMXXqVAgEAvTp0we9HnoJrboOdHe3agSxTdtgxhtfIDQ6Di0CS/HOO++gW7duOHv2LLy8vHD27FlcvHgRc+bMuetjt2jRAm+88QYA4LXXXsOCBQsQEBCA6dNt4ri5c+fi66+/xunTp9GxY8fbHarGIAQQKLMCpTb9jdyeXSxNOepsUxZkM8F0+J/R9TgFZpv2zFGPU5122rnN6c9GZRo7cGQ6y1Jt7SVlpIC3waGbU9oifkVRpDC4IodkOQOAKa6rc3l2rBVXzhxEeteueOCBu5va7dChA5YtW4ZGjRohPT293HV1P9SG62ra5In48MMPIcq+gOCohrBSWdkAkKglWrQJ4ex7869pZJuxJI/ZJgxqwKxnpxNT8JBuE5Gz4TNEDHsVAoEAZUXEoHtNCXu7F3KqLPgpSTYp17xWTa0vZi8nSDgF6w1JJ5zLsmJ2kGWiMtZ1mVeR988niB05G6KSLGcGuyy2I8KjmiO6RS/o8zOQ+Md83Fw9F+8v3w+F0nZdSUSsbm4lgPPnz7usVFAbriueuycnJwdmsxnBwcHMz4ODgytFY1sd11WNiKzRTJkyBevWrcOWXz/GXz8tdHd3agStOvVFxweGIzq2Kfr374+NGzeioKAAq1atAgAsXrwYL7744j2lytM17kQiEfz9/dGsWTPnzxxfjpqiC7gTUlKSIarickLVhV5bil8+fYmZLrpTHnzwQYwZMwbNmzev8Lq6H2rLdfXXn6vxz5czYTaXH3xXBep6raAIjUP23hXVcr57xWLUI2PL1wjrNQUiGVvZwSu+C7yb94UmuhkCW/ZFu9fWoaykEId3rrvl8fLy8hAbG+uyRF5tua54PIvquK5qTGSNJjIyEkcO7UOzlq0hkUgQ23YgQmPiAQBtO5CM0VITGXz8cZIqv0R5mUkDSaknmgKviqcDxaXkLdfkF0F+npfqXBaaSGaXOo28ZWoD45zLyvQzzmUz5ZtWEt6S7Jt+1rksKst1Luv96zuXJVR/4hNIVkvvANKHhzqyeg8fHx80bNgQV65cwV9//QWNRnNHZo7mCmphSiRsJphAIGB+5hgAWizVY2VQHZTqLVB6BwKZlTPl5072/P0TWrdIqBSrFvq6uhtq83UVHx+PV194Ct9++gwsvV6DQCyFoIpLH/m3HYbrv70GVXRzSANjqvRc94LFqEfK72/Av9MYKEPqu2wvUfkgJDIWmanXKtx+cPtaWK1WZooLqN3XFc/dERAQAJFIhMzMTObnmZmZ9+R+wL22quO6qnGRNQdyuRwXzp7G5OFdseenOdi5ahFyM2r+w7M6KCkpwdWrVxEaGopffvkFb775ZoXt6AvbaDQiJSWlurro0QhFIteNagiJp/bg88WLKuVY9HV1O+radTXh4XF4evIoBGx/E2W/vwBDTtXepwQiMaLHvoPM3T+h7Nox1ztUI8bCLKT8/gb8Oo6GV1yHO9rHpCtBVtp1+PhX/FA9e2grvLy86tx1xXPnSKVStGnTBjt27HD+zGKxYMeOHejUqZPL/T3h2qqRkTUHYrEYffr0QZcuXbBh40asWLUAmTn5KCnTYuyc3wAJn74N2FzphwwZgujoaNy8eRNvvfUWRCIRRowYga1bt8Lbu+JMqx9++AEPPPAAoqOjsWjRIhQWFuLq1avIzMwsN/dflwjxEuLDgSr8k2y7vgx2nZhFRL5Oem/bgMWhF9P6kQiud9JBAETXJssimgl9fZvZrtRe1NqoJFmnjkhraVB8uW0Wqdx+3nAAgKSY1AYV2qfgDPE9AQAvxdo8tPZuWI7SiIB79tW71XU1fvz42+5XF6+rh8aMwkNjRmHNmjV45pmJaNu2LczqSIQ0aIlWPYZDJWOrD4wJJe/RiaXs3+fodTZyKS8g1VOclUvkakQ88hFSVrwOTauB8G47FPJ89gHj8N1zkO1NBtkF1PUDAEZqFkHE2aYTsY8Ri5pkBFvs+jpj3k3kbP0S+szrCOj/FJQN2tl8CYNJZM2ab/scGX99BK+mPdE8VIKi3Axs+/l9KGRifDJnKgIDfQAAy/cVAAC+mfsoQgPUkEqldfK64iGUlJQwUf3r16/j5MmT8PPzQ1RUFGbOnIlJkyahbdu2aN++PT777DNnxqYrbndtVRc1erDmQKFQYPSoURg9ahQA4I8//sAbL/fEmOc+RnzLLgCAOT1I8eoMLYmMFBqI+aOKMoJM9CIlo67ryY1zYCC5oUkoidf3qeTBqc8nxpT51HQqPeWaG9XKuex9botz2VFsGwDKAhuSc1HToDStmpOpzweCKrYJSE1Nxfjx45Gbm4vAwEB07doVy5cvx+TJkzF79uwK9wGAIUOG4LnnnsO1a9cwcuRIzJs3D++//z4GDBiACRMm3HI/Hs/HZDLi4JZfcWjfrns+RkXX1cGDB11mFNfl62rUqFEYZb9P7dmzB1u2bsPy9x/DqCffg9rbDwqVxsUR7hyRXIXwRz9B3p6fkbF2PqI6j4ZIpnS9YyViMepRdOxv5O/9FYFDXkZwTEuX+xgLs5D6y6tYuKQQau8AxCR0xKZbXFcCiwF/rPwNMTExdfq64rHVtO7Vq5dzfebMmQCASZMmYdmyZXjooYeQnZ2NuXPnIiMjAy1btsTmzZvvaCB/u2uruqgVgzUuo0ePRrt27TB2/CM4vL0eOvQdh6at6m5mz++/s6VoduzYgY8++gjLly+/rVYpISEB33//PfMzOmN0165d5fZJSkoq9zOr1VruZzzu5bt3pmHi+LGQy+X3fAzudXWn8NeVje7du6Nbt26QznsfZzcuxro/1yAmrgnGz1wMBDaqlHOI5CoE9puBwuMbcXXl2wjt8Qi8opu53vE+sVrMKDy6HvkH/4B368GIeuoniJQaWKiayLci8pH/AQAmNY9x/qxBg/LZxclXzqJpY6ID5q+ruk3Pnj1d/u2eeeYZPPPMM7dtUxG3u7YqehGoiuuqVg7WACA6OhoH9+3GuXPnMHjIMAyc8AIat+mOoNAod3fNbZhMJmzfvh0LFizAypUr+amBe8RkMuHkyZMA/N3dlXsi9dp5mEpz8NyzT7u7K3UegUCAt960Dyh+Woo1a//Ego9fRVizXojrPByagDBUxm3au/VA+PoFI3PfKmQdXIugDsOhqt/mnoul3wqzvgxFZ/5F/v7foW7cDfVm/gGhVFGp5wCA0qICfPLyKHzz9VeVfmweHk+k1g7WANuNMCEhAUcOH8TWrdvw03dzUL9VX8T3mVzpNylP5+rVq3j++efRunVr/Pbbb/xA7T745ZdfEBoaiiNHjthTtm1T5t/sLnS28ZHZ3qIK9LbI5eenSMq22e6l5vBeK4zr7dxm8rbpkxz1O8V64s3l8E5zeLAJKDsIcWmBbX+Zl32/Yue2Xt1sWXIfDlTh4MGD6NGjFy5dugQZRyfF435GjRyBvn0ewP79+/H113MgkUhQ2m0ONBHxzjZW8a2joVKur5mcTKsK/KMRNvQVGAozkbV3BdL2rYKmcXd4Ne4KWVA9iO1efQBg5ejQFOmkHqnem43GCwPrQXv9OPIP/gFt8hl41WuFmAkLIFJ4wWy1MNE0Icemw0olW0hDGzLbQhSsl5pzH6sVu36ajY/+twBjRo+qsA0PT22jVg/WHAQGBmLChIcxbNhQLFiwAP+8PwqLFi1C06ZNsWQPecDuzCHeWXmU7Uc/f3LTCKGKH5sspM2EULJ8VBnuXO5P6cgUYmKn8UMy0bilNqZclSnxrvomse7Q+ZKIoDWG6N36h5DCyA91JEWbHVgsFjz11FPQ6/X46KOPEB8fX65NRVQUxuWx4efnh02bNuGxxx7DlClTMGPGDHd36Y4oLS1Fv379cPbsWcTExLilD/x15RqNRoMBAwagR48e+Prrr/HJonGIGvgCwrtPhFB0/7dsqXcwIga9AKNIgqKzO5G1/XtY9CWQaoIgC4qBMjIByvDbT8NaLRYUntwEffYNaG9ehjyiMbxbD0LY+PdhzUi87z7eCq1WizFjxmDQoEGMMJy/rniqCk+5turEYM2BWq3GvHnzkJycjOnTpyMgIAAh7cYhvnV3d3et0snNzcWff/6Jf/75B8OHD8fkyZPd3aVaRe/evXHo0CG8++676N+/PxYsWADAtWeUu9AV52PMmMcxd+5cxMXFud6Bx+0oFArMnDkTY8aMwWeLv8TWn2aiydTFlXZ8oUQGn1YPwqfVgwAA7dUjMGtLkHtoLTJLbSX9rEYdhFIFrLpiCEUSQCCAxR7ZUzVoC1X9Ngid8D/GO64qFV8nTpxAvXr1aswLEg9PZVGnBmsOoqKisHnzZly7dg2z57yFc/v+wsCpcwHcvgh1TcFkMuHRRx/FI488gsWLFyMqqu7q9KoSgUCAt956C7m5uXj44YcR1GwA2vefAInUs6YXMy4dxsrXB2H/vr1o3bq1u7vDc5dERkbio/99gBdmzcHen18AHni5Ss6jirIlHmgasb5TptICSHRFECts0/fcadCqNvl1sHr1avz444945ZVXquV8PDyeRJ0crAG2B22DBg2wasVybNm6DQsWTkeJbzzqj36nRpcSOnPmDF5//XVMnjwZY8aMcXd36gT+/v7466+/8Oprr+O72SMw8rlP4NOocrL57pfSa8fw88+zcPPmTZdmtTyei0AgwKKF72PBggVY+8cziGndD20HTYdAIMDPJ4iuUcApa6XIJ5ownfftq1RYJEQLR2vWBHI1jGI5HGIQRdZlZr/gmMbMelYUyTbt4sU6tu/IZOujWr2Jh9ysWFajNq6jDwDg33//xaxZm3Ds2DFs2rQJUmnNvT/z8NwrdXaw5kAgEGBA/34Y0L8fVv+xBt8seRilpVo8NGoIXnzxRXsrchP7YBsRbucZyBvlwkFEOLvyYL5z+VIhMZ5ceYUUVYaJCIE1SYedy8VRpOyTSUHMaoPiidt3YwV9AyQauvfeew+JiYn46quvEBkZCZ7qQyaT4bNPPkZKSgqefvppXIlqiwceeh65do8+ZQD5exQ5EgSUPgDAFvi2P2wdhrdmCfHFkhXa/Pv0vrZjWYXkwWyxHysmyDYgk2rzcW3Nu+gcLMKRwkJoNJXn38XjPmbPno1nnnkGX3z1LbZ+NwsPTJ3v7i5VKZs2bcL8+fPxxhtvYM6cOfxAjafOUmPLTVUFY0aPwo4tG/Dfv1uwY8cO9O7dG6mpqa53dDNWqxVbV3+LjIwM/Pzzz/xAzY1ERkZi/fr18BMV4IMne8Fo0LneqRKxWq3I3L8K5z4ZiTcf6YMfv/uCH6jVMtRqNWbPeglTRvbCH++OgjFxr7u7VCX8888/eP7557Fz504MGDDglpVWeHjqAvxgrQIkEgn+/vtvvPrqqxg6dCjGjBmDr776Clqt1uMK/FqtVuz6+yf4CPOweHHliY957h2BQIDPF32CqY+Ow4ZF1edlps+8hhvLZ6KD9TSO7N6M0bytQa1mwviHsGvr30hb/Q5Kj62DxaB1d5cqjZP7N+Pnn3/G2bNn+WgaDw/4adBbIhAI0L9/f/Tp0wc6nQ6///47HnnkEWRnZ2Pq1KlQq9UYOHCgs71Wq4VcLodAIGDKWZ0opn7FlA7E6/pB5zJtyyHyJbqiiS1JPb7ne5X3VjKbzfj44y+g0mdiwYIFENWiAuO1gdmzXkGpdj5WvNoX1tEfQ1mvjeud7gGr1QrjniUo2vsrvvjsY4wdM7pKzsPjeXh5eeHG1ctY99ffeP/TFyCI7wd5y6E12kfy5P7NOP/fH/hj5W/8QI2Hx47Aegc1EIqKiuDt7Y1CXvuC1NRUHDx4EGvXrmWibCaTCfn5+VCpVIju9TgiGraCSCzBvmLy+7qcQzRrXlfI1IVeQ4S/lqjmzuWp0WTw9Xwv9ve+ceNGPProoxg/fjwWL15cI2/OqampiIyMrPXXVUFBAaZOn4FtWzZh+KSZiOj9OKT2zDoAWJta5lwWSWyZpJZ0m4ibFojrm9j8+Ex6W/tnGilhtVqx9otZ6NYyBnNee5UfsKPuXFdczGYzPlz4CdZs2IHGXYahRZ+JOFpIXhAvFJWx7YvzmHU6caBcxieVuKDKushsKwuIZdallA/kxFADs81Pys5MGCmvyqndvPHPP//g559/xi+//OJxA7W6el3xVC13Or7iI2t3SUREBEaPHo3RoyuOXpSUlOD5ma9i/75fkZ+fj1y9EEKhEBarFWVhLSFuNhDSgLu30sjLy8OyZcuwd+9e5OfnIy4uDqmpqfdV29FBZQz0+Hp6t8bHxwdrV69AaWkpVq5aja8XjoNF6oXAes3RcvDTuNevYUlhHtYsegHtm8d55ECNv66qF5FIhNdnv4Kpkx/BzFmvY//6MpiaDYPSP9z1zh6Aq4FaVbyQ8tdX3aA6gxlVdU3xg7VKRq1WY+l3X5b7udFoxIcffogvlz0BRZNesIjlUIbY3khNIpLxZykiFQzO/HcQJflZyLp6An/k38ALL7yAGTNmQKGo/Fp7PFWPSqXC1CmTMXXKZOTm5uLgoUN4f+FUlOUXwtJ6LASBsfBq3M3ljcVqNqJow0f4KfUAln73Jdq3b19Nn4CnJhASEoIvF32MtWv/xKq/30B2SRlKiwqQUaSF39j3IavneV57Zw5sRtrRNR4ZUePh8QT4adBqxmq1YteuXfjqq69c/i7j4+ORkJCA5s2bIzy8Zrwd3w38tIINnU6HFStXY+d/+/HXPxsQ3OcxmBQ2g2YZVevREN0agqTDwKVtGDtsEN554zVIJJJbHbbOwl9X5bFYLDh16hSeeuUN5BjEAAROmxhLaFOYQ5pCWkAy340qf2Z/gYVYBMnzU5ht3ClTcQipkNHHj/VO00jYx43JAty8fh5FycewZuWvHj1Q468rnqrgTsdX/GCNx23wN7/yZGVlYffu3bh582aF2yMjIzF06FCIxXxQ/Fbw19WtsVqtMBqNzPq2bdtw9epVt/XJ19cX48aN8+iBGsBfVzxVA69Z4+GpgQQFBfGVJ3iqDIFAUG5QNHjwYDf1hoeH5065o8GaI/hWVFRUpZ3hqVs4rif+uuKpTPjriqcq4K8rnqrAcT25muS8o2lQR/iXh4eHh4eHh4encklJSUFERMQtt9/RYM1iseDmzZvw8vKqkX5ePJ6J2WzGlStXEBsb63G2Ezw1F/664qkK+OuKpyqwWq0oLi5GWFgYhMJbF5W6o8EaDw8PDw8PDw+Pe+Brg/Lw8PDw8PDweDD8YI2Hh4eHh4eHx4PhB2s8PDw8PDw8PB4MP1jj4eHh4eHh4fFg+MEaDw8PDw8PD48Hww/WeHh4eHh4eHg8GH6wxsPDw8PDw8PjwfwfKWDHmFsvmQoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cells = adata.obs_names[:8] # get some cells\n", + "ncells = len(cells)\n", + "\n", + "ncols = 4\n", + "nrows = 2\n", + "ax_height = 1.5\n", + "fig, axes = plt.subplots(\n", + " nrows, ncols, figsize=(ncols * ax_height, nrows * ax_height)\n", + ") # instantiate\n", + "\n", + "for c, ax in zip(cells, axes.flat):\n", + " bt.pl.density(\n", + " adata[c],\n", + " ax=ax,\n", + " square=True,\n", + " title=\"\",\n", + " )\n", + "\n", + "plt.subplots_adjust(wspace=0, hspace=0, bottom=0, top=1, left=0, right=1)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "a90ba47a-aed5-4048-9819-eaaced37b2d8", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:54:01.670188Z", + "iopub.status.busy": "2023-03-31T20:54:01.669957Z", + "iopub.status.idle": "2023-03-31T20:54:01.673697Z", + "shell.execute_reply": "2023-03-31T20:54:01.673110Z", + "shell.execute_reply.started": "2023-03-31T20:54:01.670173Z" + }, + "tags": [] + }, + "source": [ + "Or tile across each batch:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "4092e61f", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T21:48:52.090904Z", + "iopub.status.busy": "2023-03-31T21:48:52.090533Z", + "iopub.status.idle": "2023-03-31T21:48:59.607664Z", + "shell.execute_reply": "2023-03-31T21:48:59.603696Z", + "shell.execute_reply.started": "2023-03-31T21:48:52.090885Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJrCAYAAAB0smczAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gUVReH3+2bbHpPSKH33nsXBClKEVEBpRe7IGJBEVRAxAqoFAGlKb1IFxCQ3nvvgfReNlvm+2M2O8NHSSAbmvM+Tx6WO3fu3NnduXvPvb9zjkoQBAEFBQUFBQUFBQUFBQUFhQKgftgdUFBQUFBQUFBQUFBQUHj8UYxLBQUFBQUFBQUFBQUFhQKjGJcKCgoKCgoKCgoKCgoKBUYxLhUUFBQUFBQUFBQUFBQKjGJcKigoKCgoKCgoKCgoKBQYxbhUUFBQUFBQUFBQUFBQKDCKcamgoKCgoKCgoKCgoKBQYLT5qWS324mOjsbT0xOVSlXYfVJQUFC4b2w2G2fPnqVkyZJoNJqH3R0FBQWFO6KMVwoKCo8LgiCQlpZGWFgYavWd9yfzZVxGR0cTERHhss4pKCgoKCgoKCgoKCgoPF5cuXKF8PDwOx7Pl3Hp6enpbMzLy8s1PVNQUFAoBK5evUqFChWU8UpBQeGRRxmvFBQUHhdSU1OJiIhw2oV3Il/GZa4U1svLSxn8FBQUHmlyxyhlvFJQUHjUUcYrBQWFx428XCSVgD4KCgoKCgoKCgoKCgoKBUYxLhUUFBQUFBQUFBQUFBQKTL5ksQoKCgoKCvfCjRs3WLt2LadOnbqpPCAggAYNGlCnTp2H1DMFBQUFBQWFwkIxLhUUFBQUXMoXY79i+tL12Kt1RR/WFmtGEgAGnxByoi8z6dNf8E4cysC+vXi2YweCgoIeco8VFBQUFBQUXIFiXCooKCgouIxfpk1n78lreAz8w+n0b0m+AYAxIAK3iApQrQ2t3ZJZveUPpvz6Im1bNmT0pyPvmjdLQUFBQUFB4dFHMS4VFB5hDh06xPnz57Hb7Vy8eBGr1XpP52u1WmrWrEn9+vUBMcKXVqs89gqFw9atW5k2cx6vfTGfiRfuHk3OaPKiWtu+VHm6N1f+nkqlKtVZvnQRJUqUeEC9VVBQUFBQUHA1yixTQeERITExkV179rDt312s3rSNHJuA2ScKW5EauGk1aP0roNYZyLKL9UsYxX9LmiSD82iq+EibNAIAtoxsFk9eSvaob7EIINis6MxJvPf2a/j5+eXZJ41GQ7FixZw7Sn5+fkq4fIXbkpiYyFtvvUW/0X+guYcFDLVaTaOOfShWqR5DhgyhatWq9OvXTzEyFRQUFJ5QBEHgp59+4syZM2RkZDBw4ECqVav2sLul4CJUgiAIeVVKTU3F29ublJQUZWKpoOBCoqOj+fizzzl47DTJGWa8Kz2FNqIaGWGVUBvc0epFC9Jbr3Oek24TH9nK7uL/K3tZnMd2JIn1vDTSY23UiP/G5og7SUWtNzizayWCNYc0q1gWZBAtVneddF7VSDfMZjOXLl1ylh06cQE1dgx6LeXLlWFg/75ERETg5ubmkvfDFVy9epWIiAhlvHqAWCwWOnbsyIgRI1icUh2ATYcOOY9bjR4AaLPTnGWanAzna3ORSgAEenqReGgDWVt/oVKEH1+PHU3RokUfwB0oKDwclPFK4b/Ggj/+ZPrM3wgqXoOQmh25cvRfDq+bga+XifVr/8JkMj3sLircgfzag8rOpYLCA0YQBKZNn8HUGbNJS88kuFlfKr7xOTE5Ainn95OdGE3C39MRbBY0Wj3G8PIYy9TG4Bvqkut7+ARSrfWrANwwizuS5b3E3U9/o91Z74W6Prec++cuMTCLzWrh0M6NfPvttxw9epQaNWrQpUsX6tSpo8hu/4OMGjWKNm3a0KhRIxavzMj7hDugUmvwr9YaqrXGeHkrz/cfTpCbhZ8mfU94eLgLe/xkcObMGSZMmMC5S9duOeauV+Pv70/jxo3p3LmzYrgoKCg8dMaPH8/ClZvoNfxHPH38ic7UEFCkBJ26dOev+T/SsHEzNm1ch4+PzwPv28WLF7ly5cot5WFhYYqS5h5RZoEKCg+QgwcP0nPQ26R4lcCj7edo9W5cy0zj4Nd9sCTdwL14DQyhpfAuWQutyYeM5Fgyrxzl6MZpINjxbfAiniVrolKpOJgeD8AhuySLzfEIFF+opMAo+rQYAGw6cXfxYuoN5zGLyR+AXdYcAAIrNXUeW3cjC4A0m9T/4/GZAJT294eo54gq3ZGqrazEXzvNK1/Nxnb1Q7yNOswZKXR9tj3Vq1amXr16SjTQJ5gtW7Zw+fJlRo8e7dJ2w8rXJ6x8fUKSDtC91wDKloxi3Jdj8iXnfpKxWq3s3LmTWbNmkZiYyJgxY9ideOvCU68GPpw4cYJNmzZRv359atWqxUsvvUTVqlUJCAh4CD1XUFD4L7Np0ybWrl3La18uuu3xti+8RtkqDejQoQNfffXVA01XtXLlSj798ltKVm8GQJpFVHUFGOycPPAPoz9+j1ZPtXxg/XncUWSxCgoPiKnTZzDso1EUGboCtU2UsibtWUby0U0EtnsHU+n6zromD28AMtJTxALBjjU1noSNU8k6v4fw7l/grhIfXdU9GpeG2xiX6tsYl6F6sf2bjctEwGFcAlEGaadzY6y4YxXs4Yk5MZqg6D3En9tLzPFtfPjuYHr06JG/N6qAKDKzB0dOTg5NWrTmlZG/YXQXpa8aRxyfcdsvOOupLdkA2IyezjJj0lXna6vBIZs1p0uNC+J3y+o4J+vSQbzPrKFahZJ89/U4jEaj62/oEefvTZv45LMvCSpWhfJ122AoWhuAP6MlabzN8SxX8ZO++1W8rMRePk3i4b84vm8L3p7uFIsMo1mzZjRt2hQvL69HStr+X0IZrxT+K/R6tS8VmvekSInKzrJcA0Qti/+WFn+NgR0qsnnLFpo0blyofRIEgWm/zmLMzwsw9ZyMxuHCYTeLC+l1wwKxmrP49/O2nDq44z8f0VyRxSooPEK89c5Qdh06Q/HxR1Gp1eRcO0ncpplY0xOIHDITlVqTZxtarwCCnxtB1smtXJ71DiW6fozO5FP4nb8PDH5hlIpqR6l67bDmZDP9286UL1+eGjVqPOyuKbiQTz8bQ7UmzzkNy8LELaoqHbq+ypmdy2nbti39+vXjhRdecKY7edJZuHARE6fMpvuwqZg8fQCIzsr/+UGRpalToThtur9GjjmbWiFpbNmyhREjRhATE4PRaOT999+nRo0a//kJlIKCgmu5ceMGJ8+cp03/Ctjy2NLyDwpj2l+nGP/9F6xcsYKRI0fi6el595Pug+9/nMzsP5eRVbQJ4UPmkWqx3Lae1uCGyTfY5dd/klGMSwWFQmbit98xd/VWAvrNQJUs7iJmXD5GTkYSEX0m8VSgHoAzWZKBGS1uPlDFX1wZOp0tm0AXKUfocx9wcfGXFO/5NTp7jvOQPi0WgByvEGeZoBLbNaTFAaC2SfW1WeLOqM2xcxR3eKPzWHJWsnhMLznXa7yLAHAh9rzYL09JXmdIuS62oRcjDa2LqJh7hJf6juGNt4ayfeumO71NCo8Zx44dY/P23bw1dh5Z95Yhp0CUqtuBqe93YdSoUTRs2JAJEyZQr169B9eBh0B6ejrjJv5A/zHz0OjcC9ye3mCkdOlQSpcuTb9+/QA4deoU06dP55NPPkGj0dChQwcqVqxInTp1FGNTQUGhQCxatIhqjdqjVqux2fKu7+0XyKvDviHn3Gratm3LkCFDaNeuHR4eBVvI3LFjB+cvXODX2fPwLVoNXa/ZuLmLSjHuYFzabTbOHNhaoOv+11CMSwWFQkIQBN7/6FM27jqGf68fnTss2dGnSdj8K0XfnHffbbsVKYtX2YbE71xIaI22rupyoRFVqgJ+ocXYtWvXA/WjUCgcLBYLg19/m64DPkMFTLsiSVQTYy8DoNJIPy/qLDMAVlOksyxLdavBIpfNanIlsjLPjT8OnAQgx14WTaMR1K3Ul9mzxzNlyhTGjh1LWFhYwW/uEeSHH6fQoH1fjAY3orOk923h7gMA6MxSECX3DNEX+7zs/KMBYjAKVXgFZ1l0ZioAfvpcaXsw48ePByAlJYUNGzawevVqPv74Y1q0aEGVKlUoX768Er1XQUHhnvlr7QYadH4Hi01Folkaw3wdrjXJsjIPneRuYyjehp4f1GLlqt/58ssvWbx48T0F18nIyGDcV19z4uwloqOvo/ItyjVjGPomI7nuHQRpyeLf/9GieAQA3hfXsnHxL4z9YswTtci2f/9+YmNjadiwYYEN9tuhGJcKCoXEW0OHs+98Cm2HzmTRCXHCbctK4/ofIyn62mzUOkOB2g+o/Rxnp7/+WBiXAA2f6cGyZcsU4/IJYOSnoylVvSXhxco81H6YfAL5esoU9u/fz/PPP8+IESN45plnHmqfCoNNW/6h6ztTHtj1vL296dy5M507dyYrK4u9e/eya9cuFi1aREyMqL6IiIggNDSUGjVqUKNGDUJCQvJoVUFB4b+Km7uJwNDIvCveBi/fANq//BZ9uzSjTZs2VKhQgdmzZ99RKpucnMy6detYumI1Z8+epWmngQS26UG4yRutzsBfl+Lzdd3Tf//GyaXjWLliORUrVsz7hMcAQRDo8UpfYlKtBISX4pXefdmwbo3L708xLhUUCoG33/uQFceTcGv1NotOXEaXKabwuL5hGoHt3qV1qShn3XWx4q6OLS3hlnYOOvJclg4IdJad8xV3ZwSrGY3JhwyVFq2nGGBHky3u9miyUp31rW6i5ENrFnMMZgSWdh4zpjhSGOQGTzFIDtq5Elu7u7+zTG0VA7O4JV0U/2+XZCS5QVty/23oLa3ydanjyymfMKYdvb3sROHx4erVq/yzYy+vfT4XKRzDw6V69eps2LCBgQMHkp6eTrdu3R52l1zG+fPn0bj5PBC/1tvh5uZGo0aNaNSokbPMarVy/fp1rl27xr59+1i0aBHx8fEIgoAgCKjVaipWrEjNmjWpWLEiJUuWfKJW/RUUFB48TZs25fTp08ydO5eWLVsyePBg/P39iY+PZ8uWLVy9ehU3Nzf0ej3Nmzenfqe3ae3ti9Hdg70J+nu6VvShjdhOr+HkieNPTPC49Rs2MvS9EVRq2IEX+r4OQMOWz9J38Nt8M3409erWddm1FONSQcHF/DTtV3ZcyMCt1ds3ldtysjBfO0nYi2Nddi3vis1JPrCagMYvu6xNBYW7MWDQEBo+09Pl7eYkRpNz5Sjm2PNk3ziLLTUeBDtqnRFUKgz+4RhCS+NRpv5tzzcajUyfPp1GjRpRqVIlypcv7/I+PgwSExMJCI542N24Ca1WS0REBBEREdS9zYTEZrNx6NAhDhw4wJQpUzh79iyCIFC2bFk6dOhAgwYN0GjyDmKmoKDw5CA4/hJypIWmq45YE2czpbJgvbRoqZGFm9i0TIzgiulZ1ANaMm7HIhDS0Rvc8ak/Cp3Jh8tW8dyzgOXSdSBD/JMFflPZJadPQSsZnR4BYi5la0Yyx356j7179z4RhuWVK1cY9NpbxCVl0P+LhWjcvLE4lMfppijavDuTIUNfYe60HyhbtqxLrqkYlwoKLmTRokV8P3MRtd+ez57Ll286lnHxEKZyje5w5v3hXaUV538ZgH+jl/4zUTMVHh5/rV7N9aRsOtZqQ5oFfosWf3iTLx9z1vG6fhy42X8yx5HyRpMULWtNnARkXj7C9bWT0XoG4lasOoZi1fGq9zxav3BxQmCzIliyMcdeIPvKEa4uHcc3i21413gGr6pPk2wpCUDjIFEB0OW1r3j//fdZvHgxWu3j/xO3YeNmAiPLoteI79dv56V0LSpHIC63hIvOMm2mKPkS1NK956Yf0v+721k2z0PMPZsZIPkvXUwXDfIyPpLC4Pk6vvfcZ41GQ/Xq1TlvKUaDip1oAHSq5c3x48dZtGgRo0aNokSJEgwdOpTg4GC8vb3v+RoKCgr/XbTuXvg3fRUAd7kowmoucNsZ22fT+9VXMZlMeVd+hLFarXz73Q9M/mkq3d/5lpKVRJck8/8FVDKavGg54GsGv/42G9auconK5PH/5VVQeEQ4fvw4n301CVWHz9l37hQaWSASm96djBvn8KjUErVGy650adXe5gjGoZbl+LNrRX9MdZpYdsFdkquW8RajRR63iD5O+oAozGkJ6P2KIJh0gCwYCuCWIIb2sDkkr6aYk85juVFlDQ55bHqIFPDD4siZqXVEjQXQZop5Lu2OiJW6DEnKm+MphurO8Rclv5VkE9Q/dyURfSkFhceX6OhoPvx4FD1HLXBZm2mn/iVh5yIiXvkWrckHQSvzQ879gVOrURnccYuogFtkRXwbdMcSd4mUvcu5NKUPNwZ9TUjpms7TIkuUp2rVqnzwwQfOADWPM6vXbaDfZ3MfdjcKTK5UtmLFitjtdo4fP87EiRNJTk4mLS2Np556ii5duhAeHv6wu6qgoPAfRbDbsR1fz5s/rXzYXSkQe/bs4cWXe1Hv6ZcZOX3rTYuNt8M/tBila7bk64nfMWzo23etmx8U41JBwQXY7XZ6D3iNNkO+Y9X1nNvWybp2goD2Q11+bbeoymRdOoTer4jL23YVNquVLSt/49mWtR52VxTug8zMTCpWqkzf97915lgsKEn7/yL1xD9EvvQluN/bzpXOO4iAFn3xrtGOg8t+QK3RUnnYp/j4i7txo0aNokuXLuzfv5/q1au7pL8PC6vN7lhJfjT8W11BrqH5008/AWA2m1m3bh0fffQRcXFxBAQEUKJECZ5//nmXybQUFBQeLirHn1UKBku6VVRcnc2QdhxPJWU7XwsW2U6kTM6KLBp5omwhn5t23aRytclPaiZbpv7IkZIFt/SxcmbXapq1qIvBULCAiw+TOXPnM+z9D+j38VSKlxdzi6tl74WApHLzkkXmDW7Sn3ljOtO3zyv4+t67YkWOYlwqKLiAMWPGEFH9GfxCi8L107etYzdnornHSXR+cIuqTOrBtXhXezSixlrT4smJPsU/F25w5sA/WLPTEaxZvPhCN3r06PGwu6dwjyQmJvJc5+dp/uZULOVa8d0xabdal3jV8ULyS8kNIKW23Rq8Kbcs7dw+Uk7tILzPZAS1hlbFxSBVm5OkHzoPnbgL38RbSqJ5KF38yQpx/iBGcaB0HdJP/cvQd14lpNGLFGnRh2uZaVTp/iVvv92PadOmUapUqQK+Cw+HpKQkTJ4+6NUCky+6AWA6J+Wi1WSLgbtUcpWE0QeQgm8BaB31cnykaI06hwrBFHvKWbZ+/noA/izb2lm29rrku9ooQFw4e6WhT7763yWfklqDwUD79u1p3749FouFtLQ0jh49yuTJkzl9+jTlypWjf//+lCtXLl/tKSgoKNwPF7fNY+wvEx52N+4ZQRCYO3cuX4ybQLEKdfj8t92o79EtRKVSUaXDWwx5cyhzZ08vUH8U41JBoYCsWPkXvy/fhK7bRE4cvoTR4d9k18om3Do3sOag0YnO42WN0mRwl02cPAu+Uo4+lV2cPNsdk/HyJsnpvISbeOy8h7gSZwsujiUlBlQqTNdPAJBjCpDacrSvdvgiyB3YtVlJjjridTyvHXQeM3sXcfwr9csaJk7uVGoNdouZlNXfkxV9mswrR8hJS8Cek43e0weDyk50zeoMHdyHTp065fEOKjyqJCcn0/7ZzjTtPITMEq1c0qbNnMGNDb8Q8dpsVGrXBHXxKFOf6h+v5dLyrzkwpi3V3xxNeMnKzJs3jz59+tC1a1deffXVx84v2WKxoC1gyqLHDZ1Oh5+fH40bN6Zx48aAmJPtu+++48qVKzRq1IhmzZopKY0UFBRcyvUzB4gM9KR48eIPuyv5QhAEbDYbIz78mE2bNhMUWYZ+o37HL0icu92P1iWqSmNWrJrE1atXC+SioMQGV1AoIF//8BNNh85FpdHdsY5KrUatdyuU66tUqpsioRUmdmsOqYfWcuWLpzj+eglubJyK3ZpNQO1OlBi+knJfHaTMhKOEvb+Oc2VeYvhPSyhXuwmTp/yE2VxwR3uFB8uQ19+k8bMDqVq3hcvaTDqwBt9qT6Mxuja1hlqro1in9yk3YAorfvmE80d2EBYWxuLFi7ly5QodOnRg7dq1CMLjIy89ePAgoVGKLLR69er89NNP/PHHH9SvX5+FCxfSpk0bxo4dy+nTt1eKKCgoKNwLpzfMYNRH7z3sbuSLffv20bNnTzp27Ehspp53v1nOK8O+cRqWBaFozTb89ddfBWpD2blUUCgAR44cIS7VTCWTN3Brnko5gvX2vpiPC1nXTnB90svYLTl4N3yZsHeXoYu74Dxu8ZJ2S/X+4bgFF4OaHbDnZLH94C/8VK8xXZ9rx/Dhw9Hr7y3nlMLDoVLFSqxeOZ0fPulP8e/FwFAqmb+K1WEgamV5VQXHbmSWI1gU3Bz6PfnoRoq98i06v1Bn2d/x4rNht0kS2MRMsc2lqdIaaL0gUXIba5XKGnmJbcfmOIzGIlEkvPAdU7/vzdqcUHS+oRA+mKbFU/jq96l8+vkETG4GXu35Iq1aPUVgoJRD9lEjOvo63kFFsAM9ioiLMxPiaziP+x34EwCVIHNicgTzMhep6izKlc+qbfIxSHy/tLKgXGZHDlzv81udZcdlAcD2+Ysr+l8dlk1gHNd295U+z1a+4udYxE3qV6Cb+Dl1vY/os7mYTCbnjmZ2djY7duxg9OjRBAQE8Mknn+Dj43PfbSsoKBQe7no1z9fxwdvbm5FrpN+QzTeSAdDKFt8FmR+k3M9SJZ9DyUKeCjK3DHVOxm2vb89Mlv4jX+iXvc6KOUPJkiXzupWHSnR0NOPGjeP777/ngx9W0qpaA+xADoAVbHZpo8FdJy2kalXS60yrVOdwirQpUslbVLAFPvMif37Zjf79+993PxXjUkGhAMyYPZe0cs/w98VoPG6IklRBIxpOZm/JgdyQGoPO6EHm1RNoPf2JDAp2HssJFSfhp7KlBz7A8WR6OdIPRBilSVqW42V2/BUAVInRqO02tJnJmD3FtlSCNPDadeLgmRv1VSWbYGb7iZFdbXrRSMgKkXZJnishBkfx0gn8u2QSq2eOwhRanNCh88RdJ2sOFn9Z/j2HlNeaKUaFtcoMhYPle2Iv9TwzDq9jZqNncNOp8dBreKlze55p0/qxkaH81xgyeAD7Dhzg+T7vstcF7VlS49G4eaEuZKmnxuRDkZ5fc3X6EML7TkHnE4ynfyi1u4+koq+FzPQUtm5ezty5rxAYGEjXrl1p0aLFI5fT7MixEwRWcI0c+UnDaDTSrFkzmjVrxt9//0337t2Jiori22+/feQ+RwUFhUcba3oiBrvtkQ3kExMTw5w5cxg5ciQrVqygRtdPC83NQ63R4Ofnx4kTJ+7bz10xLhUKFYvFws+/TOXgsdPExMajUYvGUq6nlVar4a3XB1GvXr2H18kCsGbTVjxenpavum6BUZijT6Mt49p7zY49jzGoqEvblHN2/yZO/P074SUqous9A42b181R2/KJWmfEVKsT1BJ9MCPcVPx5ZBOzXxmMm05FpQrlaFivFmq1miJFiuDt7U2FChVcknNJ4d5ISkpi4sSJLF2xmk79R1KhRiP2HrfnfWIeZFw8iGepB+Mrpw8qRki3z4j+fRhRr82+6Zi7hzeN2/Xgxc9f59y5cyxdupQxY8YQHBxMkyZN6NKlCxEREXdo+cGxZ98BhnR+PGRaD5PmzZvTvHlz1q5dS8uWLXnxxRcZNGjQY+djq6Cg8HDIPLubZ5o0fNjduAW73c5PP/3EqFGj+Oqrr0hMTESv1/Pb9uRCve4777zD3LlzGT169H2drxiXCoXCtWvXmDX7NxYtXUXtp14guezL+DUoQnEP0SgJNIj/pqcm8cGoz0i4foEpk3+kbt26aDSi6Xn69Gm2b99OUlKSs11vb29CQkJuvWAeqNVqypQp49IdsoULF5HlFYlJk7/HyBgYScb105hcbFxmXj2Oe7jroyjabVZ2zvkUfxKxCdDz88X8EV1wAyMXvcmbiLrPUq/NM9hsVuIvH2f98RMgCNi2HSc9JZFr5w7TpEkjIsJCeOqpp4iKilJ2JQqRS5cu8dVXX3H27FnefPNNKrV7x6Xt23Oy0HoG5F3RRbhFVESl1WOOOQ+hFW9bp0SJErz77ru8++67JCQksHTpUj755BMuXbpElSpV6NChA7Vr18bd3f2B9TsXQaVRDKR7oHXr1rRs2ZK3336b3r17M378+Eda9qyg8F8kzE22OO1QOFmTY6QymVRVZZEktDdx07go86OXLXwLsqCK8ojm6tQ45+vGjlRHm48sodVHQ/LR+wdHUlISderVp07Lrnyz6DBanZ4/92YCmehksfDScqT3Qq+R3guV7H0x26Q6CWZpwb6kSVKYnU6T5rKN/E3YbPe+iZCLYlwquJxr165Ru0krjE8PxWvwCnZptFiun4HoGxx0RCzNTVcABp57czY3zh3mnQ8/JzstAW/fAARBwGJXEVT3edy8ynEjR3wYLNfiuLFdDJ1vd/j6qFXSU5brs6V2GHz+RlGiqrLmoD73E1gyiQgL5psJYwsUCSszM5Mvxn+DV/+FaAwm8Z7ifQApumqunxNAjskfXbEamFf/gL5SMzzLBTmPFXcXH2B3jfTAx1jE195acXCwycZOg6NabhTYzIuHCKrTCbXNgnvcGbEvRk9nfbUjT5TZW/SJsmmlgVtrFvtYpnpzAJ4tko05O5Nta/5g3ZylvDG4PyM/+wxN/T78cTEdHEnu1Vkpjk5IfRZUN+8wCm5e0n8cklnBLgX1yXWRS8xRA3qOetWEKjUBOJMoLih07mYk+swBTl25xKKRP5Ied5m02Mt0frYDw997Fy8v2TUU7guz2czmzZuZPXcBp89fpcFzQ2j13OecVKnYeVUWpCrmKABeN447izIdPngaq+QjYzWKn4kmJ9NZJjieUbvOiErvhs3oiTVV5qOc6zMoi2SMOcNxrvS92p0ifndVsjxdV81iHy1m6XodI0W/vr/2HyCwUguSVnzFWvMAANbZpR/TL45UBcDo4eMocSfU6yVo8xIl1VlcvXqK4d/ORJv1A3ZLNhpslCxelNIlS1CmVHGKFy9OxYoV0enuHMzrfklKSkJn9CDL4R8Tly2+D1qTj1QpN9puynVnkSWsGgC6dGkCZXdI9TVZ0kKdxVMcD/Tyz8kRlMxqkgyyXFk9gD49VuxDdoqzzOgYc7IMPmTcOIc1M5VZaeJnq9do0LqJY5E9vCLGkJKM3iw9s7nXU/lJY7GHuzieZlmkVDbVPcX7LO8pTXayHS91smEnwCB+jyI6fM7lk3t55tnnWbX0D8XAVFBQuCN2mw1rWixNmjR52F1xEhcXR78Bg2ncoS+tOvd+2N25ZxTjUsHl7NmzB98mvdHX7Zrvc0JKVKbx53OAm52Nzzry2tmzpRlEeqo4GZIMSWliZ3cYUhq9uEoV7iFNjJr49QEg++phnu/RDx+Tnjm/zbyvZLE/TvqJBh36ss1hWOYHvV8RcpJvIMh8EQuKIAjYLWY0Btfsqhz4dz1//T6R1wf35/tR6/ly7HjU1TpjrNbeJe3fKxqtjohytfEvXQeaPA9ApD6DPX8vpFmzZuzdu1fZ2SkAe/bsoXbt2jz36lDKNXqFxn2qADc/g67mQQe28ihenesbp2IzZ97Tc6LRGQgoVpmAYhMpYRItGZPWzo3LZ4iJvcb5PZe48ed6Lp/aR5EiRfD396dW9cq8/PLL+Pv7F7jfO3bsILx01QK3U1hY0hJJOrmdjFPbsOVkg9ETj7DSGLwCMBUpi1qrw5ZwGbs1B0Gwk3ZyOzEbpqLSGvCu/BRe5Ruj9vDL+0L3SWTZmuhfHUfHzt1YMGfWIyFzVlBQePS4vH8dz7Vr/cioosxmM5FRUXQbOJKWnfpwf0lFHi6KcangcuYvXYWhxEuP7OMQUbIiQz6fx/6tf9GqVSs+++wz2rRpk+/zs7Ky+HPxUvqPmc+26Hu7tlepOqSc3AZN6t5jr2+P+cZZDP73vwMrJ/bgOs5v/JGN61bh7+/PpCk/89O0mfi8scgl7bsKnd5A/adfoqQpiQULFvDCCy887C49dthsNr799lsmT57Mp9M3U7RMFbJthW+ku0VUIOGf3/Gu+nShX0uOT8UWJJ/6F//KLQvcVkhkKUIiS2FyqArctAJZmelkZ6ZjvbyZgIAA1q5dS6tWBQvEs337dkpWbl3g/rqa9OjTRO9YjGC34VehCSWbdEdnNGHxliLI5u6Uav2lCLIegWIURktmKskH13J5zvuo3b0JafsmBj/XjGH/T0jRcnQaPI7nurzA3l3bC+UaCgoK94Za9lOjcxdVbFaZakWQqVAEwx1SVslTv8niMsgVU4JFlv5MJpc1yNyImgVnM/XwInp88WG++19Y2O12fvt9Dj9O+YUhH02iVvNnAQG7IL1hWnWumk0qkyvbNLL3Vv4+y3/fg2QBItNlC8laF04BFONSweX8s2kTlZ8az5X4a84ytUP2ZnJEVJXr5ddfF2V2yxyTD22mJN3KlXd6yKR4bjqTo54ovRJkg4zGERHV5ibuRt6QSeoWOeonVu8iFvg0plW/Ygz/dAQXL19h0ID8hV0+fvw4RctUw8vkRmt/qf01l8V+eV0W42rmylABBLXWcckeXJ71DjNbDXEmkG8UIO6uRsn8EDIdA0GAI5R0EXfp2JQzogTRmHiRhB3z8azUEptDupYaUV08lnRVaiuoDAAmR0qB7Cgp1PaASpUB8Li8kOHThrNv3z78/f356edf+HzqAoI/240lU5L34hisVTZRsma7SX6bDYDd3UcskPmiapJEK9wuixJ68rz4OZ9wTETVcnmeh7jz8+fhG+J5Thk1qBz+GHPbt2f+/PmKcXmPrFmzhg8+G0uCqSi+721hkcoNTtvwdpN24Su5i8/r8QtSDsHcJzYjWIoorHOksbDKPx/HzrxNL+0S5kqzDREVyUm+QU56Iu6ySMO5KgQhUfre5srK7XK/mXTHMx9aWrqeYywJMkn916kdfjyOiYtbuUZk/D0VfbGKN7VnuHoYkCIpA8SqxfEkXhbS/pBF/G7mPscAdr14PbvMlyerZBfKTGjIC707sn39qvuOtAeQnpUDGElzuAQs3LgRAM+kS846Ksf7L3hL76U2M1Esk0++HO+R1V3aKcyVG+eOlSCljLHLJno2vfS+xh5YQ9r5/QR2/xK9Y1Er00M832CU6tkcn2eAQepDWkqys15w6XoEA5bNM7g8dwRFarfHO7ICAGaT+OybHHJbgJOO8e2URZJfJ5cSJWwamWFa0Uv8LMqYpPGyVFQpgiJKcf78eSUqtYKCwk2cObYPnZBF+fLlH1ofUlJS+HHyzyxeuoyS1VrwwrCfCQ8LzfvERxjFuFRwKXa7Hd/wkmjkeYQeYUKLV6TbyD9YMn04qanpDB+WdwCTVatWUapqo/u6ntbkg2e5xiRtm4tf4x731UYudmsOqef3U7zt2/fdRk52JjtWzuD4lgX8888/BAUF8WLP3lyMyybotQWotbfPR2nNSMGakUh2ajy2zBS0PiGYQkujMeZfJlxQlCiy986Q199k+8Gz2F/4maBAMQ2NOfv2ecEKC79GL5O840/co6o8sGuqNDoEu+vk6HdD5xOCd6OeXL169b6NS0EQOHDwEO2bv+ni3t0fgiAQs2Mh5rQEinYdSY6L1BLuQUUp1XkEF5Z/jTUzFf+yhRM13NPbn8zMzLwrKigoFAru7u5cunSJypUrP+yu3MTGxT8zeeK4B+5ek5KSwv79+/lr7Xr+3ryNBk+/wJAJq2T9cF3wxIeBYlwquJS1a9eikeVKfBzQGdzo/vZEfhs3mOJF/6Rr1zv7iprNZrZs2ULfzwbf9/X8G77Ahemv41WtLVrP+/fNit27koAqT6G6DyNLEASyTv/LJyPfYfz4ccz7/hAqlYp3ho0gy6ss7XsM4s8YcZCz52SRdng96cc2Y4m/gtpoQqPVoXH3RhdSCp13EJnn9pK06VdsOVlovINQ693RB5fAvXgN3EsXzoTx2LFj5OQ8WP+9x5nExETWbNhMn283syTx4S3+eFZoSvyGn7HnZKF+QItQWVeOYgou9kCuBRQ4j+eVK1fw8AvDzfTwA1YJgsC1jdPRGE2Et3nN5ZMwjcGdks+8zullX2PwCcJQouD+qgoKCo8WHTt2ZO3atVSuXPkmn35LshiMTJWreALQyRa15RFLBZnBZZMCfmGRRYiVyV9z1VQAdq00Jr9TTFTSnDu+jzN+bpQuLSlhCgNBEIiJiWH9ho3ExMaxcdNm4hNTiCpdBd/K7ej46QhUKhWn0qT3pYqvdH9yeavVLv5HHv3Vx5B3hNh4WYRYg1qqo5dNH0t7um4BVjEuFVzK9evXSfQqiiojC49rh53lOZ7BAKjs4gMjyCK86lJE+azJEUlWY5ZkmHaDKLsUNDKZlmPipnXsRKhlg4zdKeFy6NKN0uRMbRF3aHwPLXeWLTsmtpVcoiH2xsPoP7A1tWvXJioq6rb3N3fuXLp164ZOK/a/smwAWOEtpkjJcUrsZOGhHZEb1Q5ZV/GmPbjyTVeKd3yXzeXFSK0eXlKKhpomcRCNt4htLDuV5jymi79EduwFUs4fpPir36FPk0J4qx3yPZUgDR52R9Ch8g06ANDAFMus8a9TpngEHx3Y67zXSVN+Zsm+S5jadOPsofPYDCYSNvxC2pG/8arxDEEdhuERVQmVSuUMUW2XBSfSG0RDwZqRjD0nk7QLB8k4/g9xf31DyHMfYgwthcoq+UBozGKIcYtDPqwyS/eI4zNWmSLF/8okfoOKCvw9/1tGbV7AzJkzUcgfcXFxlK7RDE0+U+cUFiqNloAWfYleMJLwHl89kGvarebHRk0BsH7DRoqVfzD5QO9GrmGp8/QnuM5z2AsrabdWR7FW/Ti3egoli9dSgnQpKDxhtGzZksmTJzNs2LCH3RUAUpPi+XXsa2z5e51L2xUEgQ0bNnDs2DEsNoHMjAxWrV6Dh08wJSrWJiSqDO36jsE/WFR/nEl5Ms2wJ/OuFB4aKpXqgeaxcyVqg4k3JyyhXYfnOLBvN1rtzY+HIAgsWLCA+fPns+FUwcIVuQdFEdGiN+eWjCM0shpaj/xHrE0+spH43UuI6vbZPe9anl47ld3bZzL150nUqyftKM6ZM4ePR48l9I0/UKlU5CRFc23x53hWbkWx4cudk738TPq0Jh8w+eDp7oNnhabkJFzl6rQheJRrhH+DFwo0cRSsFqZ/8ipVyoRz5MgRZ05UhfyjAvqESUb+nOvi4kNSupRe4p9Uxwqxd7CzzJ4b5TVH8nsTHJ+lW+JFZ5nVzUd8YZZWmQXHqrEx8bL4b0Q5LhxcS9rf0/AsWRu7w4dSkEUPtTv8bpGtPjvzn6VJaUwiQ8Qf6QiDdL1VieJzIWj0CDYLSTsXY2jzGukhFXBLlHwWNblty1bEbQ4fSm2GlMojd7FKbZX6krtQps2SxgLLVTFdizpFlrPtPpjz5zIq95vGrPWbnWXGWDEFkypTlsLF4YsoqKXnQPj/dEGA2uFfqZItxAla8XPMXZACsLqL45DOsWAVvX8tgocfvs37kAM8VVH0i9yRLl0vN2VItsw3OzcVVLRs8UlwfG/U7tKCX0ZRMfWQ/sZp8ArFEFaWnMNr8AkvgyBLgaJJF/tj85BSOPmc2ZJ7MWfZeb0Y/OOkp1Tv6XoNHOmOFBQUHhY6ne6ef/szTu0g+d/5WBKuor4ptZkNuzmTwLZvYip978ER7XY7c78dxicfjXBZFOkDBw4wffp0Tpw4QfXq1WnTpg3/nEwHN3hzbG90Rmk8kwfoeVJRjEsFBRkRJSsRXq4us2bNok+fPjcdS05OxtvbGx8fHyDptuffC+5BUYQ37cnFyb0J6jAUj9od71pfsFmIXToWUmIp3mviHf0h78SxBaPIPLGBLZvW35Qq4cqVK4yZ+BMtP13DidRsMi8d5saqbwl9eTyGkBIF3kXQ+4cTOWAqCX9PJ/qPTwjr+okzmNG9IFgtJE17he6NKzH2y8+V3Y3HnCJtXufC78PR+YSgDS08WVL8+p/xrdcVjxK1Cu0arsZut6MzPNyd1tRrp0mPvUjoqz88sGsG1e/KjeXj8Qkv88CuqaCg8GDJksk1dT6i4ssiW5DLSb5BzOIv0PqEENx+KMYioquVWqa6yU66zvXfh5NxdheBTV9xzocE2bxILoV9uqRkRKYcnImP0UavXj1dcj/b//2Xt4Z/StPu75PeoD7/AP/EwPNlxIW3G1bIkcVFXJEgKbE8Zete1TwkSW+WTDosjwaruk1ZRpbUSI5dOi9aVl5SJnmVR4U1aKSGtLK+HD16FA+PO0TqzQeKcangcsLddBTxNHLOIEUSdXesupt9RJmjIUWKJJvliGaam5jbZpCtUOVGe5WHkU4VI4haHavYOllbuTJaTXay2JYsPL7GcUwly7OncuxYeJ//F4DvvDpgqfsak2a+cYtxCZBi1vDnriS61rl1p1GjEh/S0f+K9yiXBTuThTvkqmaHTFhXNphiUVW5sWYyCau+wa9Ge7zK1Gd77q6pSoM1M5XEA6tJObIB/7pd8H5+FHbA5ti9sclybbYsK0aC3SXbWSitBZs5i+3rphITE3PLjmz/197G+vQHHFf7kJ18kNjNsyg6dBE6x25qbW9pIDzryDcanyPufNX0lSbAJ7PFEauaI9Kot48URfOEZzHoNYbdCycQs/IbQjq+h8XH8dk4pLJWnzCpU45Q5G0jfACIyDnPxPe6MfHLMXTp3AmFxx+N0URkl4+5suRL/Ox2PKsULHXH7TDHXiDzwn4iB06HnAcX0EVlzUKvv7fFHzmCUDBlREGx2yxc+nchZdu9gfkBLuLofUKwZKVht9lQKaIEBYX/FILdRsLGaWSc30fI86MwhpVBcwf/da2HH+EDfiF5xx9c+fVNwntOQJOPvON2m5U5c+awfPnyPOvmh23bttGl24sM++Vf3Exe/HPdJc0+dGbMmMGKFSvu+3zFuFRQ+D903sGkqDw5fvz4AwlPrXX3JrzTCHKSbpB8eB0X5wxHpVIj5ErK1Bp8qrWh+IBfUGv12Ox2rMnXEdKTsKYngUOqp3X3Bkre9hpXVk7gu+++u8Ww3L17NykqPwzFqmO+cY4bi78g6rVZaNw8b9tOQfGt/SyXZ7yOOeY8+oiK+Trn2snd/PbNq6xcvoRq1aoVSr/+C6jVai4e2U6Yuw25ufBKEdG43xQnLeociBZ/IbWekky1c6S4irkiUfoOqQ+uBG5OF6JxyB/1ZmklOiNIXHn+/5xlOv8iRPUYT/S6n0jeNoeIPpPQeYuLRpZs0Rh0k/kiezoMjhSrJGM1OoIT7MmQrd5ePoLdmsONPz4htPOHqG05uCWJklybrA86hy+0IFsRV9vExSd52g5DnJiSxZ4r+QWspkDxfmVpTDSlRImW9sBCIiMjuV+SE+Ko6Z/DmhKSdN0YI6ZxsoRUkvqf6lhYk6VIyV3AkvdV7eijXDGQ40j5obJKMufclCyXTuzEr9az2MPKUaykFN3xrEMVnJIUK10vUzzHLUzafQ5xdMdDtip+HLE/csM5N/CRXZa2xiMwkoy4S3h7Sf23+Ip+4VajlPLGkHRRbE+WbirLrygAL9ar6iwLMlo5pXu8Iy8qKDzpCDYrV2a8jqlUXaLenJcvZZJKpcK3fjd0bl5cnT2U8J4T8lR0HV87jY4dOxIQ4Br3rUGDBjFo/PJHIviaK9Hr9RgM9x+YTjEuFVyKIAhYMtPyrvioU7cXP/74I5MnT35gl9T7BBPUuAdBjXugyk2b4Fi+t2t0WFJiyNr+K/aUa0SFBXPqxHHiYq6jdQQSMsec43DcaCo/d3NqkoyYi1jP/M0LL4y65Zqjx31DyafeZj8Qs2gMYS9+WWiGZS6BTw0kfvNMwnpMuGs9wW7nxN9zWT/lbY4dPUKxYg8u2ueTSMmSJYkqEsql04cpWvrRCQevMbgT1uVjMi8d5sJ3L+JZsTneNdqhC779Qkl+yLxyjBurf8C/eR8MgUVd19l8Er1jOT4+Y+77fC+fhxcx1W6zknJqJ2V6f/NQrm/yL0J2StxNxqWCgsKTw/pESQ1lzREVazHLxuHboDu+dTvTJkgyEKNMsqCBammRKDZbMnzm2J4CNy+uzhlBxMvjUevFxU6VV6CzTq0AC9evnOPoxc0M/WGpS+7jt99+x+AVzB/pAXBK1L0abki5oWddkuZSgla6Z7uHZNimyBQ1V2WLf+5+kuqutod032FGUcV3JkMy3wL00nGTbEHPIvPtlEth9bI6eplCROtQ3129cIoiRaTr3w+KcangUiIjI9HOn0yr57sysUgFZ7kxXkyInbsyLk88nmtICY7k5RZ3aWJlSI12lEm7CBbHirs+zbF6Llu1xxHgxu6Q1hqSpaTs6px0x7WlVfLcdjWOoBb6czsB0Om0bD90lrNnz1Ky5M2T3Dutp111POymG+IOgzxSrcaRkF3tkOTqZME2coNxyFfgLRHi5D/SyxNzSiyXlowh0HyNF7o+zZLVG7mUrsan9buEhpXG7C+u6qdumsa+xRNp27wZNYuJ732OOYuvx/Vk2cJ5t+xaApy5cBG9e0lUyddRazToQ0o4I8C+Eil+Hn/FS/2KiXdoPhx93hUjDYwax+6Du6c46MsHsKK5A6JXIG4VmmJeMQGVzohKq0NIEXdOIvylIBzVErayYtonlGxajzkxNwqk/VcQUalU/D57Bi1at6P/p7Pw8Q/O+6QHiHtUZUp9tJbUw+uJXzeF7Bvn8KrRjqCGL6L3zV9C6czLR4he9DmCOYvw50ehDbz/3cP7RRAEipUpj69v/oN0PUqk3ziHZ9Eq9+UX7QpUas1N6QQUFBSebFJ2L0FtcMe3buf7bsNUqg7WpGhi1/xASIfbR6TdunwGX44Z5ZJAgPHx8Xz93WTeHr+A8WcK3NwjxcbFv/Dx0IEFakMxLhVcSsuWLRkz9msy05KBxzdCn0qlonrn9+g76A02rF6OVqtFq9WSnfXgEs5b05O4uvpLUg6vo3SZ0sRl5/D9+lNQ+y3cw8qgv37ipvrGSq0ol3GYqV8Mpl6rF/h33Z9oNdDz5e6UKFHilvYzMzNJSk0nGLi+ZCwh7Yc+oDsDt8hKmGPOOR315Vz/62viT6xixaK5FC1a9IH16b9AQEAAv8+cSs/eveky+HOKla3qDAxQ2iRN6I84/G2tSZIDyWnPomIbst/la2WaAaBxREkF0GUmiue6yYwrh8Qpd5EFwK6RVp41jtVbq8WMe7nGuJdrTDmDwNXdKzg+43Xs1hwx2qhagyGkFIagomg9/NGYvElERfbV46QdXIPWK5CAFn3wzJXzZiQ6r5G7eJMrhQVQCY57ltkyuQtg2X6ynXKHrFebES+d65DPapOvOMua+9o4sWke9qCCGZZZ5hyuZ2rQX97jLMuVucoX5my50ty0G84ywbHII09HJDhSNKls8lRA4mchpW8S285KjUdXsQXm8CoAFJGtih/JdIzpsijVKl/RV9osGxsvOVbgDDIfqGreYr8PpUs7EWW9xeNnr0rSXAKLkxF9GkEu9XVEuc2Vwsr7LU9vVKtSDQD8DVJUXJ365jxxCgoKjw7mmPMk/vMbJd5bWuC2vGo9S/K2eeQkXEHvf3MU2JzsLK6eO+qynJa/z5lLo3a9MLp7AA9uXljYCIJActxVateuXaB2FONSweW8+9YQZi/9BaoXbOXjYVOkXF2ij9Zgzpw59OrVC09PT1Q2M1mZ6UDh7EoIgkDWqS2kLv2MAHcNJcKDOeYbwvWKPXCv3AZ/ICPt9pFqVRodoWFFmDljKsePH+e9/s9Srly5O15rzZo1GKs/hy0zhZzEq3iUqn1TOoHCxBhZiezLR24xLmO2/k4V7RVm7tyuRIN1EZmZmVit0oQ+KiqKeb9Np/+g13DzCaP1q5/i8RBlmHdCb/KmeLOXSavcwVlmM2dgjj5JzrWT5MRfQrhuBpUanW8oEb0moslNcyEzKh8kdpuNo2umcmDn5gK1427QkpP94AIQybFmpaNxe3j+Qzmp8Ri8g/KuqKCg8FiRnGFj4a4ksgUpEGDski8Ie/FLukVIi2YH06TFK2+d9PpYmmSyVPKSftOCZBL6zA5Did04jSK9JvJsmHQd75SNvNClo0tUUPHx8fz463wqDV3GwmtGNMlnncfMPpKcVH1TEDnZfEamzNBkSio2u2wxLjNF8mvfKUi/z8004vsRY5Hai3K7fQC4YMPtFSAaWVdUSOd2qePL0aNHqVGl4LFGFONSweU81bIl48aORVvvHadztdm3KAB2x/+12ZIRk7vCbnOsuNtl+c0sjpX5rABpF0HrmDg6H2IP6cFTJ15xtCmuthtSpaAiake7ufnpAPSp4s6MzRFJVmtOdx5Lsqgp3n4YP4xty4svvohOpyMkJITUtFQ++EtcqfKWrerPPpssth8sGkxuCRedx3IDUZg9xfsxhEsPb5dAK3abDa8zvzF79mxe7tiRhgNHMXXqVDYev07QawvQRJ8g5+xuANwzxCixOY5cbnrHREzr7s25tccJDQ0lLEwWefUOTJsxC1WxLqTuX4V76fpkJcfg7ggLDnAiTby3SIM0+JiCRXnixQwxskdtb8k3YleiuPvwt/g20ClQOs/TMdIYHZN/z2LVSd6/Er3RHa27uKtaN34dc9Z9zXe7diiG5X0SFxfHG2++xemz5/H29cdus2ERNLi5OyIlO95WS44ZvcFAg+plWDCuN8WrtaB0m9fQyPxCHkXUOgNuUVVwCyouFTqC8ageYDTYO3F61yoa1auJu7t73pXvQptWzTl3aDtQuP7Pt8OanYa7b97jR2GRdGoHUW0GQ2Zs3pXvgYcdgVdB4b/MuXPnbsr1CJAdcx57ThaG0FIuu457sWrELhuHLSOZ3E0Am9XC5MmTmTdvnkuuMX78eEKefhut25PnrrN69Wrat29f4HYU41LB5RiNRl599VXGbZuFqWm/h92dAqHWaKndogu/TJ3GkMGDqFalIltWzKLkc5+4pH1z3GW2rvuVpAv76NHtOdatW8eVK1cYOHAgP/30E0f35z/Br1pnoHz58pw4cSLPKLdz583n3OXruLesRfLOheiDihbwTu4NjZsHyGV7dhsrfvuaXTv/deQRVbhX/vnnH94d/hHla7fknYETnIsp2fKcYo7IqmoVJMReY+28b/Hw9OD4v8tZ++dPlKvXjqcGfPVQ+v8kcPyvyaxfvqDA7VSsUJ6tCzZC8add0Kt7Q61zw5YaB2EPPtekJT0JwW5F7+nvUuMyOKoc27dvp1KlSnlXVlBQcDnHjh2jTNWGN5VdWzaBwGfecvm1TGUaknX5MJQXNyVOb19Cu3bt8PPzy+PMvMnJyWH79u2EvXNrgMQngX379vHyyy8XuB3FuFQoFF5++WXGTX8WXGBcCnYbGWd2Yb5+mpzEa6gt4q6ZJTMVuzkT5LstlmzUWgPGoKK4hZfDzy8MTQGTkddr2Ynx7zzH4EEDGfruOzRu2gL3U3sJK1Pzvts0x5wne/EHFAtwp3+vF3j22bEAnDhxgiFDhrBkyRKCg4Nh/+0lsHeiSZMmjB07ltmzZ9+13lcTv2PglwuZdjbrrvUKDfvNqQFS/51Lt9YtHtsgKA+bAwcO8FSr1rz32zE8fAO5mgMnEsTh3VeWhuFkpugwaREASsBzP1BTm4jFnMXpw9vZNOUtjmxZhHeLAQQ+/SZeIZJioIwjat/JDMnp8oZO3Lm2hEqGiBAjRjfQy6SpRkdgLassDYhdLz2Xuf5/hrP/OsuOeou75FqrpDQwpIlKA7tWOjc3P648TQUOqU+uMkG8nribKPebtLmJkw2VXcp9m5u2w/2G5EdqM/o46vtIfXZcN6HuKwBkXTpMXevpAkfZA3imbRsGDhpMeO3+uDkWfuJTRMPI7aLkh6lypCGyekqKg1w/Uo3cPzTpktj/UMm40saLUQ0FWbA0m9EHk6cvqaf/xSNE3B02B0qfbZhOfF81PlK0w6QscQyxpktjldHXkRhdllP4co74XWnuK8ncNiY6PltHHuD4fasIqNQcld12U9qaXLWJRXafub8DKrUkj9tx7hwATYKkRTm1CqrVb82KSW8wcODj7aqhoPA4Y7ZpSLOocVeBzZyJ+epxqg2YhEqlwl0rjRWeMr/+K1nSf4oYpd8yeUSPGh6S/PNvqx+m8LJgt1LRVxwb/tm7mB7v/+6Se5gxczbe4RU4ee64s0yQ+cHr0hOcr22y3zi7zNVAnS4bmwWp72pZTAKbLKWKWZaBYYvaB4AW3tJ55zKl90ie/qmqj/TbKZfCyn3Qu9WV5lxXr14lMTGR0ND8BdC7G4pxqVAoGAwGtLYszOlJqHUGVI6JncYiTkQyg2RO1Q4Jq6BxSGYdAUHSzu0l4fg/WBKv41a8Om5Fq2Gq0BS10dN5ns476KYdMJ13INa0BDLO7yfz7B7i/5mD1sOXwEYv4uUrRseUBxVROWStubntVFnSBGmvI2/epA6R7G3SkHXr1tG6dWsG9OvNyLXb8PAqj90xwQFQOfqvyxTbyCktrdI9FypOnkxxB1g2czyWtFiWz59/U3oNQRAYPXo0P//8MzOPuMORNLQXxImkSmaM5UbXzQ080spfGmYF7zbsPTABm812x4hoMTExZGg8WZEehNp8TAyIkZmCOiOJTFm+vyyjKDcOlw3oaTbxWr5GcTDdmyYNXtV9xc/Y6vg4LmVJI1iSVXyd60eWfvUkGq8grFYLffwuM33Pr3y0fctt+6twd7Kzs3mxxyuMmbYBu29g3if8HwaTFwaTF6UadiaqRms2ftefq+snoT68lPPpmZQcthw3F8qWnlTsf3/PB79+65K21Go1c37/jYFv9CDO6EuRwXNd0m5+8CpSmhs7l0Pjgq9e3wvWjCTSzuwiovunLm/bzeRJVtZDWkhTUFC4hfj9fxFYu0Ohu8DkZGehweYSRZTdbufrid/y7qS/mbTvSt4nPGbMnj2b4cOHu6Stxzecp8IjT/UqlbAk3PsDmH7xIOd+fYuUE9sI6fQRJT5YRfCz7+NVtTWG0NIYgotjCC7uTLb+/2g9/TGVaUDgM29Ros/3BDd7hbht8zi/9CssGcn3dS8jRoxg0qRJANSuXRt96tU8zpAQ7HZO71rN2m/68tOnfRg14i127tx5S97GoUOH0qBBgzwlrXdDrVZTo2lHxo4de8c6hw8fxlC+pfP/Op8QzLEX7vua90Pm2V0YHX6n6xZM4quxY9DpHm1/v0eVKVOm0ODpl4gsWXAnfL2bB23en0vUkN+Jjb5K/do1OPpxA2w5ysQ8L/zcdVSsWNFl7X399decOrwXm18JVHkkBnclOjdPLGkJ2GW7joWNYLNyZfGXFHnmDVSqwpmWVK9enQ0bNhRK2woKCvdG3J4VBNXpVDiNyzYcVv42gdeHDHBJs5989jmNOvRBpzfkXfkx5MSJE0RE5N8V624oO5cKhUaJqHC2xl3GEJK/ZOh2i5kby7+CrBQiO3+IzisQuwt8AY1BxYh6/lOyT//L+cVjKfH0QAze97bDExISgqenJzExMej1eudu690QBIHMv38iactMStetwdQJH9128ikIAjNmzEClUjFkyJB76tftaP3CGyz7dgBjx47l/fffv20dlSzMv1uRsiRsn1/g6+YXa3oSGWd2EdptFNb0RFJjztKsWbMHdv0niQlff8Pkn6cz5PuNxGZpOJgqfa7H08QUDXK5oi5RXBSx+Eiyl8VXbzUcy9doQbmZ1zm7dioa1TrMuxextN6LAJhlCzT1gkQp6kGNj7MsK0RUJaiiTzrL3BLOi2U2WTCtDEk+lCsHkuegNaTecJwjGTm5wb/0qdecZTne4YC0kw9S2hF5cDC1QzVh8ZTuXXDIMQVZTkenqkIW/yVXjivPwat2BAHrX06UlS7WuzYv5PJlS9m7dy+/z13Anp+fo1yJyjRo2xO/0jUwGMX3KTlHvM90i2SQ5SoHcmS+tvNPiu+X55UDzjKVh7g4p5KpL9SOfL9BpWqR8fdUgqu3YacsgmGdSHHiUVwmvTpoEQ3fwEApCFCwQz5rFaQFo2NJoox48/FDUh80egRBIGb1D/gWq4q3bwiC442XfyaoxNf6FOlzx/Fdspkkia7vadF4HKtu7SwbXE38frRo0YK1a9fSsqW0sKagoPDg0KgF9GqBFBukx13C7BdFfW9RiaWXrSn5y1w5wtwk+WemVRrT0mWvrbKxupybmsPxZwmp3JwX6vrw6ydH6fTc1wXu+5YtW5i/fhchry/kzLWbj2kzk52vLR7S3FKTLclZVbJgkbkuGgDqm3KeS7/fOi9ZOzLXr0jdrYHJKnhKrgFmu/S+mLRSXTfZ6y51JCnswl3i/ODI7k0YDAaXpWpRjEuFQqNM8Si8L8cT5OlNduwpAMw+4uTEbpRHQRREw3LuCHzrdqF4w67OI8mOJHxZ2bL8eGZHVEjHyrq3zC/M6HiuwjzECY8+qLrz2C7/SEJKN+Dcz/0p0e1TtEYPdGmOaLKOyYtVNlEJczzPfzoevuLFi3P16lX8/PwoZtLQqqiBlfHSfXQKEvvjVrYK2ZnpzBvdgdb16jHy2D48PW8f9TExMZE+ffpQvXp1KnccztwdyQD8dsix4+sl+hgZk6SdUrtWlKTmyogPpEuTMHEgVvPc69/z1bBu/L1lG8PeeZPq1avj5+fnlKBk2WwkmnOwu3mjdvNGpXcjKyUeg0kadA5cFyf3J3ykHeLqpv8f2KRBz6gWfxD2OMdQqW4th/tUpyIGFn05gq4DRlEzJIM32pZg0qZNSnTYe8RsNjN23DgmTZnKhD/2k2J1/UqqSqUiotUAclLjOLVgFGUcxqXCrWSmJZFjzs674j2gUqmoVasWtWrVQhAEtm/fzk9Tf+T8+fMER5Wjcv22CO7+FCle8B3r/yewcktOzPuYgApNXd72/5Owb6V4zWqFG7yoefPmjB49ulCvoaCgkDfmuEsYQ0oW2u++3WZFZ/Lm/PnzREZGFri9tLQ0Bg0aROB7W13Qu0eT8yf2MaRvX5e1p8hiFQqNsNAQ1Ja8k8sKgsD1eR/i36QHfvW6FGqf9P4RhD/VjwuLv7xn2VejRo1YunRpnvVSk+KY/WV/Bg0axFdffXVHw3LPnj107tyZkSNH8vHHH6N1YRoIvcHIh98v49n+nzNt/hq6vzqEpi1a8/MvU2/KeZhLULt3ubFodKGH698yZxxBxcpj8g7gw+5V+WXqNJo2bVqo13wSGTRoEOu2HmLsnJ0u/d7cjuKdP8SSnUnqiSf3h7UgZKQkMmvkC2SkxDNlyk88370Hz3fvQdcXXmbuPNcoAlQqFQ0bNuT3WdP5d+smPn6nL5rEI1zZNpsZH3dj1/KfyUxLwmJ2jXxZrdUR3qg751dPwm4unAThgt1GzNZ5ZEWfJrxZr0K5hhyVSkVgYCDXrl3Lu7KCgkKhkXnxIO7Fqudd8X7bT7iG3t2bBQsW0LVr17xPuAtpaWk89dRT9O3bF43RlPcJjymXTh9yqVuHsnOp8NBJ3rkQnX84PtWfeSDXM4WVIaBaG66s+5kytfO/Wl6rVi3mzJmDRqMhM/X2UVzTkuP5oFMpfv99Di+9dOednoULFzJ9+nSWLFlSqKk3gsIi6dL/IwCSkxJYMmMs5079QkKaGVMzyQ/BEFoKj3KNiflzFMFdP3H5iqLdZmP71HcJ8PcnKLwU26e+xYZ1a6hdu7ZLr/NfICkpidXrNjJ89mHSVCrSsiUJ5BnZ5pndJi4iqN2kxQ2LtyPapkyeKuTuVssSO5/JEI+rHdLEkGde5/LXz/H+H1dI9Zai3lX0FutFukm758le4jb1Rn01Z1mKrxhB1RR9zFkmj2aaK1/N9pVWmXW5xzXSrqzNEXAqrVgd6UYd/qCG5GhnUW50WrVZJktyRBzN9pOUDmbH+9GsVAlnWW503UzHe2qzWtBYS5ISe4WtyQK2rDSsKbGkHttMzsX9jPr2LF7+QXjV6MjZZCOten6MRqsjyyIwa+oo1Cp44YUXcCXVq1enenVxcpaens6KFStY+ecIsrOziU3Opm2PoRQtVtopn/2krqg+SKzaxtmGwfGR3ciS1ph/PykqObzPbccvtATqnCyif+xBiZZ9MHj6sSdblCUYwsve0qdM2brUofhkAPSyz9vo+M4Zki5hTk/m3IaZ+JSqTUTjbmgyJYm0U6os+9yt7uJ31JCd7CzL8YsSr5Eife52vTj587yy31k22REAbXDTyrRv357ly5czaNCgW/qvoKBQuCSZ1VzO0JATcw638PI3RS09mSaZI/6y/OGXZZFQ/fXSIJMhk/3nyKSgxd1tbE24SMXIUDYv3sx777133/1NS0tjwOA30JZozrXSA0g5ekQ6KPODzx2z4GYprFy9JWil8Uwny7+eO7YBN+Vst6TIcrT7SS4HsVbxfaopkw7LZ2sJOdJ4Xlq2fXinbYMudXyJiYlhYYAHHh6uy9upGJcKhYq3BiINAscd4e6dfjRWhz9YWgIpu5dQ6oPVFNGLj8j5FOnhtKeLkWNVsl1GfZqY/8zm8AVKiZdWolN04gOc4iE+sLU8pMeufaTYhzUJXnhWa0vS+f0kJCfiFVEejUMPr3b0C8DkyAmYYcltQ/x/REQE9swEgt3stPaXJukcm83S335j69atNGx4cz4nOStXrmTlypUsWbIEo9HI7O3JAIzbF+eso3X0Jze6rj5dyvmWGSBOhHUOnf/leGkQ8ggTfeDOyQbqncniwHf6OtDofWwVr5P+dSeuzHyHkK4jAVBpDfg//RqJ6yZzbdoQQl8Y40zhkhvhFWBHhjhRE3LDZ8t2SuLdRaND71jda+sYJ3OyM9j20+tUL1+T6MNrKVrEzq//bChwovn/Kv/++y9tnh/4QKXEvq1ex/LvbPav+pmS7d58YNd9GFw9sZtFn7/sDDCl0ahQqzWiz3VCAnaNEbu7HyqtHo+qban8VF8MDul43aLS86C1qnjx7YnM+eoV1Go1zz//fKH018PDg+7du9O9e3dADMowdfpM/pr5BSafQMKKVSCydBXKVq3HvYqVfKIqojf5cGbNT4TXbo8mrOB5IjPirnBh+0JKNOmOPsQ1/j35pVKlSvlSnygoKNye06dPEx0tLehERERQokSJu5xxKyqtDkG2wOlKkmMu4+EXSk5mGiaT6Y5R8/PDhx9+yOlUI036fejCHj56LFiwgJdeesmlbSrGpUKh4ePjQ8qlQ3etE7duCqFdRqIqZGnf7QhtPYRr8z/EK+LefJZUKhVqtQpBEEiOvcKNC8fZMncs9aqWYenSpXfMEWS1WhkwYABGo5FJkyZhNBpvW6+wMQRGUWTQDC598wK+jXtgCBZ3clQqFX6Ne2AILcXln/sR0LwPHgX0ubpybAebZn7K08/1YNOfk5gze7qyW1lAps6YReOubz/Qa6r1RsrUeoqjG38notkrGEzeeZ/0mHLx4Bb0Rjc6fb7GWWZwLDRtyfFFrRefW0uWYxfP+865WdUaDUuXLuXZZ5+lYsWKBYoEnV/KlSvHxAnjAIiNjWXv3r38u3MP3837hpCSNShWuTGlqjbk5vXuO+MeEE65ju9wYfNv2G5cIrjt/S0uZMVd4vrWuajM6ZRq0QuDpx+2vE9TUFB4RPhqwgRmzV1InWYdnAFZr5w5THLcFebM/jXfwWD0fkWwZaYWSh/P7F5DyZotObllAS9263bf7aSlpbFq1SqeGb/Lhb17NImOjqZx48YubVMxLhUKjapVq6Iy33kAsVtzyL5yDI9yjR5gryR0Hr7YbVbsNiv3urYVHOTPGx1KU7laTVq1bM6rUybe9eG02+0MHz6cRo0a8corrxSo367APaoKoU/15dp3zxM1chNaD0myYSpVl4i+k0nY8DPxG6fiU7crXjU7oPMJzlfbgiCQvGcZv2+Zik9IFNXavMrGBRNZuWwR5cqVK6xb+k9gt9uJiUsgJKIEcQ8uUwQAjV/9kgO9yrJj9ic0HfTtg734A8Q/sgy27DSMnr7oHLv3ucalOv7efZI1Gg3Tp0+ne/fufPDBB7Ro0cKl/b0bQUFBtG3blrZt2/KZ3c7OnTtZtGQ5s5b8SFS5mtRr2wvcQvJsR6M3UrJVP64lJ3Lxl4H4NXiegGavoPUMuOt51sxUko5tJvnENrRGE6ENu+OrV0I9KCg8bvzyyy/8+tsffPTDMvQGIyky+WXs2b306T+YVcsX4+Xldcc2VI6/7PQUrCkxpCdEY/MTVR9eWknmKX+tkakt/GRy2XSrNGvbmSaNy+bdy3nj81msm/ctFSu2uq97BRg4+HVKNO/NllNnnGWCLMqr3U12n7LsAfKIr2pZJG5k5RbfcFm5RvZSqiPopM0Hc7wU0LFecdF1ZFGcVLetn7RM1zhIUt91rXPnhc9crFYre/bs4Ysvvsiz7r2gGJcKhUqmTWB3XCqeDn8nleMh9Lx2mJTLR/ENLU4FD3HXMtERZ0ZIvuE8P1cWqpL5g+VKV/WOSK+WbMmAtavFtrQOf62tRaVdso5FxYmQLURKCO8VXJSsy4fRRFURry170A8miO1W9xYnmAcO7CU8XBwU/pg3R+xXPqSJgiDQs2dPmjZtSq9eYuCKX7dJ4acn7BflsOocSX5qcEh/rQZRA281esuOOepbxffGGHPKeWziNh/x/mVhr3PTP+gcbeW+f0E1O6A5/Tc3RjehzacrCChWmS3xDimgpz/Bz47Abs4g7cBfRM94HZs5HXf/CNzCSqOKEOVxtsxkbBnJWJKvg9WKYDWjvX6CkPINeHP8dI7t28KOv2azfMmfimHpAlauXMnOrX9Tfc0f1GjVw1ludaSGCNZJ38eLqeIPm1onjyTrMJJk3zV9khiZ2BxRxVmW+0xGGaUfzUhPDT2HfsfUMf14qv1LRJapjiH3urJw8eGOmAeVfaUffKtdDKueXL65s+yILG3K1Ryx3408pHYqOPw547KlZzLGLE40jGqp7RKe4jnrYos6y3KnI4cunnOW5frhaXKkADWCw9ezfoBkqZfvUoEzK8LIObiQmq1FX8lvL4r+NfKxRu1I65J5apOz7NOE+s7XQytLP+xBQUHMnDmT3r17U69evYciCVer1dSvX5/69euTkpLCvn37mDp1JJeiE+jw6vuUKFeNYdXEMfJECSmw2tr9UvqSyKwkIp7uzfWrZ7g0/llsOdkYvQLQe/hg8BR18DZzFtbMFLKSY7BlpRJUuhbhjbugNbgDOVj1kkGqTxTz6+ZGvgawOVKkcFO+S/H7kRYp+dpa3X0ASC8ifW8ximOc4foJZ5Eh5brjVeX8v1kKCgpOYmNjmTlzJp9M+eu2MtOS5atT/5lXqVGzNgf2772j715uwEB9cDEyz+1xeT/NsRdwM3nh7uFN/PWLhIWF5X3S/yEIAu+//z67j57n+THfs/LQsbxPeoyZN28eXbt2Ra127aKfYlwqFBpXr17FnJPDnQSv2YnXcQ+MeqB9+n8MXgHkpCfnq+61a9eoWrUqkD+jMpeFCxdSvnx5+rowzLMrUKlUVGvbn+p+KWxc/hkXTOFkVHgOUylpAqc2mPCp2RGfmh0RBAHr2R1kx13CfP2M47gb+sBIjJGVMPiJQVsalCyNWqNh96bJxJ7dzZZNG5z+awoFY9WqVfj6B9O03UukPeCdS4AqDdvSvvfHfDWoGW9OXEXNOvXzPukxIzw8nKysLA5snE/F2i3x8r377lx+iYiI4MMPP+SFF15g/vz5D9Xn2Nvbm+bNm9O8eXOuX7/OZ2O+ZPmvX1K+XjuqNmoPqjurFFRqNYHlGxFYvhGCYMeSfIOc9GSsDpmb3t0LY2R5tG6eGF2b+lNBQeEhMGzYMKZMmcKZ7Ds/0DUbt+X4/q0sXryYnj173nK8QoUKxE1fDLyCIagY2VePu7yfSTsW0qJVV+w2G/acTHx98965kyMIAs2aNaNDhw50++Ivl/fvUWTBggXMn+/6POeKcalQaIwY+Rn2mnd2ErZkpmAKKf4Ae3QrRu9AMuKu5KvuhQsXqFu37j21v2PHDn799VeWLFlyP90rdLwCiuDro2HL+lXs2bOHsd/8wD+/vY5X26EYyze/yYhWqVS4h5XBPawMOf6ORQHZKqZGL+4CqTUaru9fjfngJv5asVQxLF2E3W7n8OHDfPPHw/UBadxpEJdO7GbL76M49FcAFpvNmSc2JyeH4pXq4x0Uibu7iaJlqmJwc0dr9Hpscpn6+/tTpkwZer7yKrPnTqTrENfJhXLT7jRr1owff/yRmjVrPvT3JTQ0lCmTvicrK4vFi5fwx/QRXI9PwhhUivLPDEGw21Cpbz+pVKnUGL0CMXoF3iQNy1WocBe3CAUFhUef9evXk56eTuXKlTm6Q1Jc2WQeAskORUnrV0byxbvtKF68+C1BDUuUKEF2ahw6NagM7qj0blizUlmZIMaoaOQljR9FZMONm1ZSs1zMkEyWdKssWqwj93nK4Q2Mm/0+Z86coU6Ne1cqzP7td2K0RdgdOYDTu3aK9+klLbSpZEGINGnxsjNlUWFvUmH4SVX0ksxVI48ca5DKQ/TSjV+MldRnev8iztfRDjlyEy/pfSnvI6WXy48UNpedO3dSokQJl0aJzUUxLhUKhV79BrLj5DWCG3mhOvcvuuSrNx3P8Qwmx2rFbvLnrFkcJOyO51OuNVc7wjqrZFFcs/yLise8RKmd8dxO5zGLlw8AZod23egdKLuqeAHBJj2IdoMHdtmDnuUn7aTq3UR9X4DRiiAILFyzhhEjRuTvDUDMYzl69GgWLFiAwSBeY/pWcXCeuFeKcKuXhaWWuioOtHZHuGubQXr4c/uryxDD92tyZBEqc8NgC9LAkxHiCCLiKb4XzUKk1BRttVu4eFGFSqWidu3aLJ73G5mZmfTp04c9f66hwlvzuXRSkq/keIi7OKos8T4EN0mu2yJQ/NzMO35BdfQfVixdpBiWLuTq1au4+4Rh1fmQ+n+7lqccEtOE3cucZXqHvNBqkn7gjKmi5Fwj8wXJlYJrb5x2lh20ikGeDskCbTUJEr83ke42nhv+K7+NaEf3rh3p37+/s47ZbObvv/8mOTmZGzeuc3j5erKysjh/+QYmTx/cPX3wCw6nWLmatChbFa1Oj05vwOIIJZ+SI1/MEP8NNMolt+JrjUwWm2ERf2w7F5HuKXfi0ypY8m05X74oAKdloe19tWJFuyC9oQt2JpGebadLp+f49NNRJFw9RTv/CgAsTJMmF7nyco3MgPI8L41Fa4I7AvAqN9O0aVOmT5/OuHHjSE9Pp1evXnTs2PGhG5lubm689NKLzhRKu3btYtq0b/A6ewkPn0DKVm9GeuU6eAaEYXWXxtUzjlQmN8zSe5OTJH7PjPHnnWVqx8RMbZHGq7TmbwAQ6SZ9z85dPgvcHN5fmymmfjLdkOSuuSH87fLJXBnRf99UVprYJl6X+qCgoHBvfPnllyxdujRf45PBzUT/D3/kxZde4vKlC3et69f4ZRI2/Ixnr4ku6aclMRq1wR2j0cjChQtp1qzZPZ3//vvvs2rfJSr2mYTKxRLRR5Hz58/z4YcfFsquJSjGpUIhsHTZcv45k0RAo953HZCsmcno8xkkprCQG5p349jezfj6+ubbWEpPT2f48OEsWbIET0/PvE94SCQlJd2itXd3d2fu3Ll0fflVru5cCD75ky7nZKXzz48DqFrUlyWL/kCrVYYXV9JvwGCe6ZH/xY3CRKVS0fWjOXzxViNq1qzpzLloMBho06bNbc9JS0sjJSWFixcvsmLVahZu+B2LxUJCYhKVGrSjVrPnwN01ElRXsXjhH/Qd8i7N3p3n0nYrVqzIb7/9xqlTp5gzZw5z585l1KhRj5Rfcp06dahTR5TI37hxgxUrV3HizCqOrj5Bit2dCs9/gof/vfs0KSgoPB7Ex8djMBjuGqTn/4koXo7ipSvc9liuzyWAR+WniF//E9aMJLSme5Ov3o7YFRPwbz0EQRD4999/+fjjj/N13pYtWxg7diyRkZFUHDSjwP14HMjJyeGtt95i4sSJBAYG5n3CfaDM/hRcyo4dO3j943GEvb0U4dS2fJxx79EXXYk5OQaDV94T2rnfDGPZ4gX5alMQBAYPHswnn3yCt/ejm7Lh2F8/se/QQlatWnXLMZVKxZwZP+Pj60fRgTMw+N19Epl29G/++vtbPv1gKL169rhrXYV7Z8nSZRh9wogsUZ6Uh+BreTvcPHxYv349pUuX5uTJk5QpU+au9T09PfH09CQ8PPwmyVR2djYrV65i9i/vcz0ukSrNulG9eVfymyqjMCldujR1qlfk2N9zqdD8RZe3X6ZMGT777DMuXrzI+++/j91u59NPP30gKUvuhZCQEPr17eP8//Hjxxn41ttYTWFYK3fGr9yd8/oqKCg8nvz5558Uq9GGhbtE5YBVkMZkd600d9PK1qfvNmprhRzcERUmKpUK3/ovcGPVd/g3602cMdJZL0oWwFEeFTY3oBvAvgQpH3rj7ONssSXz8lPNOXnyJOXLl8/X4vbHH3/Mio07eWboTIwmb/anSb23hItBC7UyOavtxlnna0Gm6pFLYQX5hop88yJL6q/aV6ZEs0ty4Otm6T01OnInA1Rwl+7b2xFJt7y31PYLdX3ucIe3YrPZ6NGjB3379qVKlSp5n3CfKMalgsuYNn06H37+NREtBqA59BcWk7/zWK70Tu2I1GhMvIRRo0W4sI/0yGoAVAsRdzGPOiKlAujTRV27RSa/zI3+Z5FJZXMxJotyU5tBlLTaZYNUpk3sg5AtadnTM1LxKVkXs7doPNn9IpzHBkSK50bkHKB4VBg1atTI1/vwww8/ULVqVZo0aeIsG7dBHFh+O3QZAF22NNDk6v/UsvuxuPkAYHXct0YmJdM4In3aHZEu5YNZbn1kK4Q9Kos7jwEGcVB6rkI23bt3Z++OHVy5cuWOBrDBYGDf3j281Ks/Az6bjae3H2NPOKRtsWIUznfrRnJk51q2HpzBgrXLiYp6uAGanlTGT/iGgaNmPexu3EKpUqXYu3cvXbt2ZcmSJfecTBvAaDTSpUtnunTpjMVi4fMvx/PLe+0oXqE2rV58G6N7/lfNC4NRn3xMzfrNKF7raQrL4C1atCjz589ny5YtvPfee7i5uVGvXj3efPPNAiUBLyzKly/PP+tWcOrUKab/Np9V347FFlgSwc0Xa2QtrJniGJuTet15jsouTobUVml1xGbwwS2iPLj5o6Cg8GixcOFCen7gut28oKAgrBZpnuNd5zkujOuIb/37z0dpSY7hr1kf8NJIMYJ/dHQ0RYoUyeMsccdy48aNdPxgJVqdPs/6TwpHjhzBx8eHDh06FOp1FONSocBkZWXxxbivmfL7QgJ7T0MffybvkwB3/zAy4q9gyLtqoZF57QShTw/hbjuo7777LtOnT89Xe2fPnmXjxo0sXbo0z7qCzYolPVFKFaLRoDGa8nWd+yH64inmfP0Gk9Q5jBgxgrVr1+Z5Tvny5Zn8/Ve8/OqzDPtmKXCzxDczPYU53wzjxLEjj/Qu7ePMzJkzKVK2Nhi9ybDC33HiD+ExWbhY/ckNAGhsUpnWLC5gGFMkf2e7ToxQqs1McJZlBoo7jm6JF2+5ttzvzS1UXMn9M1b62chYkw6U4eVhk3ilz4A885zlhU6n49ORH/LRB8PZvHkzX3zxCkbfcBp36E2xMlVIcqxcq2ULKjrHou6ldKlfATI/zVxCHelSIk3SsVzfzAxZcAhP3c2jgbu7O2M/+5DxP7xOzYFznf44exyGZorMp9UtTkp9cnn7QgB6a6S0HjOedbulX7O2J4v3BKCtQrcRv2PJSGDT8lm0bNkStVpN+/btady4sVN+/KhQpkwZxo/5hLGf2bl06RJxcXH8u2MXGsdnYrXdOp7J39vU1F0cWDOV9PQMzDkW/EKLUTKkIv5FK1EkJBRP32DUGg3RWaLvbHAtSW7npRMXy9Is0qq+lyMPXrpF5v/pLy0YKigo5I+4uDgMBgMmj8Jb3FNpdIQ8N4KrM9+m/LszcfPNO+euHLs5k6vTBtF/2Pd4+IgKtNmzZ/PRRx/d9byEhAQ+/fRTNmzYwNdb7Xet+6QxZswYvv7660K/jmJcKtwTdrudAwcOsGzFX6SmpbF1+w4Sk9Mo1+R5ggf9fk9BKbxCS3Jt/5qHZlxa0xLQunmh0mhBFgVMzok9m2jSpAnVqlXLuz2rlTfffJNJkybd8X0Q7DZSDq4hdd8K7OYsDAERzsAlluQY7DmZeJeuh1+tjs7oqwUlJzuTv2d+gntOLKNGvEOXLp3vaTekXr16jBzxLq+0LUGZCUfQyfxk53wzlPeHD1cMy0Jk9pz5PPXqZw+7G3clqlRFWr/8Hg2btmTOrOlUqlSpQO1ptVpatmxJixYtOH36NJ+O/oKVs+Ko0LgL1Zp1dlGv80/79u2ZNft3Lm1bQNHG3Qv9ep7efnTo8TZd63xGeno6mzdvZsaMGXz00Ue4u7tTunTpfLdVunRpOnbseM9h+e8FtVpNsWLFKFasGLVr1877hDtw8uRJTp8+zeZt6zl/IJaz5y9g9AnDrWgNfCIrE1CpKhqNMm1RUChsfvvtN/r06YN8me5EirTYaNJIy0RFPSSJZl6PpwA3Kavci9cgsO2brP6iK4GtB+NRvgkH4qRZocHkIztb6k05VTpbf3qVBi9+yMQ+NQGYM2cO6RERlCpVirvRq+8gQp8Zycd/C2xJleZCcqVb7sQsyl3a1QwoXdb5eudVKR+7yizlTkZ7h11QWbk17pJU7im5ZXl5SWN0amqS83Wgt2Tgl/US32tv/b0ZxXa7nUmTJlG6dOkHojBTRmmFfPPz9Bl8+f1UVP5R2Ct1QOsZgFvbdnjq3bgKeMSIeYtyI5tqs6SHwxxY2lGW7Cwz+IeTmXQD/bWjqDU6jjmScKujJB14RoZYX50m7bTkRlLNlcxm+UsPitYhebU7RrhKJukrvv5KzE3np+xZgme957EHlyT3MR1YXBrUfPQ2jm6ez7df3n0VDETD8pVXXqFPnz4ULVoUgNdXSInqN586T9a1k8T99S1+VVvTavhcjN6ipv5oeq5hK2AzZ5C8azHnZw0lsv1baEqIuyLZsii2Osd958poG1eX0qOU9RLb8tKLg3dS/A1+/uApWrRowTffLM7zPu5Er169MJlMvPRyTV4c9DG12g/i+qWTzD6xm9dX/3Hf7SrcnRUrVqFx8yU08u4/lo8CpSrW4rUxvzNoUG9mzJhxTwbQnVCpVJQpU4Z5v8/i+vXr/Dj5F6YOb4d/WEla9foQL1/XBiOwmLP59ZthmIw3B+5SqVR8MvIjWrXrRETd59DI/HAKGw8PD9q1a0e7du0AuH79OgkJCXmcJSIIAocOHWLgwIFkZWVhNpvp2bMnrVq1wsfH55GL5ly2bFnKli17k2TrzJkz7Nm3n/0H/2b1+PFkZFtw9/JD41iUk6dE0N6mLHdsP/KrlsuXL/PUU08V7k0oKDzm2O12Vq9ezYoVK1h+KCvvE/4PeeCe/OAWUYGowTOInvsh2dGn8GvRF/VdFteTdixk84YpNHjtZ7zDJV//devWMXr06Lte66/Va0jClzJl738R7HHkzTffJDIykjFjxjyQ6ynGpUK+2LNnD599Nx3vvrNQafWQ60OZfCOPM++MSqXCp2hlUs/sxqdsA1d1NV/YLWZSDqym+Aer71jn5KGdGMimQoXbRz6TM2nSJCpWrEinTp1uezxh2zzSTm2j4ttzMfiGYtTdfvDVGEz4N+6Br08QFxd/SXDnQIzB95cLdP2fU9i6ajZzf5tVoN2EXLp06ULbtm356eepzB/zIjduRDNhwoSHnkLhSWbj5n+o9eybHEmWVj1jLOL7rTm/21mmS3P4IXtIu8rabEe6GFmwAatRXAHVpsv9msVFl1wfXgBDWhwAZk/JeFtzWlxtLRYufR8PpIk/IUUdUlOtZzAvDp1MmTJl2LNnDzVr1rzHO74zoaGhfD76E8Z8NpKtW7fy9dfvYrFYMIWWp27rl7D4lnB+F02OYBPyp0zvUE+mWVSyMsFR387Ov5ewael0XhvYl969e99y/cqVK9P3lR5kX15Hlfqt2XNdvGe1bNU6M1gyqD2vHgTg5CYp0mylRNFoivSUAjok2URD1XpQGosyg8UJ0+enpFV1P4P4OVYzeQHi55gb1OF2q9hdHPnOKlWqxMsvvyy2m5nJnDlzGDZsGFeuXKF27do888wzVKpU6ZFVH5QqVYpSpUrx4guiX5bFYsFsvtXfPr+4ublGEaKg8KQyc+ZMmjZtitFoBO7duPQLjuTQoUO3BIwpUSyKC8f3gdutSjC1wUSRV74hadtcrkzujWC34Va8Or7V2+FetDLm2ItknttL0s5FuBerRuvRa9Hobta9JSUlERkZeUvbuaSkpDD8g5E0++ive76nxxWbzcaAAQOIjIxk2LBhD+y6inGpkC9m/z4XbeP+omHpQkIqNePk2ml4l6nv0nbzImnbHHzrdEZ9h/sRBIHFU0fz6y8/5mk8Xbx4kfXr17N8+fJb27Hb2fLzO1gtKqJe/QGDb2i++qcz+RDVcSjnF42maL8poMv/TklGahILpgyjavliHDm436WTKXd3d955+03eeftNl7WpcGcOHDpMhxZvEv0YuYUEhkYwctIy3nnnHdauXevyybxKpaJx48Y0btyYrKws9uzZw/SZUzh64hR+UZVw9w8nPiKM4uWq4R9c5I7Pr81qISHpOit//ZK4K6eoVrUy27dsvGt/Xxs8gOo161CxdguX3tODwt3dnX79+tGvXz8EQWDv3r2sW7eOzz//nNq1a9O/f/98BcN4mOh0ukdux1Xh8cFms2Gz2dDr/ztBXO4Fu93O+B9+ocLQlXRblMWpDGmBy5ogyTnV3tJC5sDi0vNo1NoICCtKbKy0gJlLw/p1WLf3MqpIabFbMDpW/Sw5qFQq/Bq9jF+jlxBsFjLP7SX54FpurJyIPiCSomVrUend2Ri9gyjtaQNu9q3Pa662evUaKjV+ju3ZbjiC1mKVBVK0yiO6povqkPMqKVfyJdl8sWKoNJc7dlGKInuTLFYlC6Mru45KNg/UG9ydrzOyJUO+W5QU36K4p+S29VJ9n9ve2+0QBIFhw4ZRtWpVXnvttXyf5woU41IhX2j1RgwWHZpUccCw68UHwphyzVknV6apcwQGyYiq4zzmFntKfOF42AStaCzpjSZ8QouTsmMBPo5AGeYikr9WgxBRFrpDK61Q5eamzHYYXG5BRZ3HzNdOii/8xAHh4DWpf7pkcXcnS2ck/eR2ir7zJ0+HiPdR1Vd8eLVqcbA6uGM9zz7zVL4CaEybNo1BgwaxeI+4U/TpETGoij0zlevzP8S9RC26dh0CQIhB7PuVbGnQKeImDkZNfKUBZI69Fmog8MYF4v76jrBWg5zHDCVrATC0uDgQda0jDU7Lly9nwoQJfP755zRq1CjPvis8uhw9ehStRzAGNw/IyLv+o0TFGo0IUV3jpZdeYvHi+5dj54Wbm5vT0BQEgT179rB//wHUajOrZn1GQkISeoM4TuTuYtodL1SCDZO7G2/3f4U2bdrky2AJCQlhyODB7Fz/B4Q9U0h39WBQqVTUqlWLWrVqIQgCGzZs4K233qJo0aJ8+OGH+Pj4POwuKijkC7vdzsGDB7FarVy5coXU1LSbjh87dZa/1m7AwzcAo8rOpfNnePON13jj9SFKPub/Y+3atXhWeAptAYILFi9Xg8VLlxdIgq7S6DCVroepXGNnWdG75GRMS0vDZrs1kFsuqampTPzuR7qNmMmptDtWe6J466238Pf3Z8iQIQ/82spTpfDQKVKrHccWjcWj+jNo3Qo37YAgCFxfMJKQF0aLgXzuUGfN3O9Y99fSPNvbvXs3Bw4c4NNPP2XpPmnEEux2p2HpU+f2Utn84FOxOXH//oHNnIlGtsL1/9jtdt566y1SUlL49ddf7yslhMKjxbr1GylT52m0aoEsu7Qim2gRf0DlkVytJjEogMYspdnJTf9jcZeimeamsbHJylDdnCYIwOo4bkyWIs3mOFJInJftohcNFlP4yKOt6tTia4+KXVgyeDBJSUmFGkwmF5VKRe3atZ0S8P79+xXKdYYNfZu2bdsS2E+UziYnXnYeM8TIgjw4IvfajJLc1HRiIwDXZWmatI7PTO6P7nP671uum+ElvtfbkLax/3Es0lncpffXmHQFgM82SfJlm7cYhdHgKX3udb3EBa6mwY4Vda+a/PnnU6xbt47OnTszYMAAnn/++du9BQoKD52rV68yc+ZMdu87RExsPL7BEfgFR2LyDsTN0xerTO1x2aMhdYa/gc7Ng1YhZqxWC9vX/kHHjh2ZPn06ISH3FqX0SWbMl18R3H1ygdooWaEGU0YP5MiRfgUO7pZfZs+eTa9eve54fOXKVfhEVMTTJwCecOPSYrHw3nvvYbfbGTly5EPpg2JcKjx01BotYdVaE7NjEUWav1qo14rbNg+3YtVxi6h4xzpr//iJSuVLE3iXVTIQ8yQNGzaMpUuX3rL6GbtsHMYi5QpkWOYSUPs5EnYvJajR7ZO4x8fH8/LLL9OpUyf69+9f4OspPBqs3biJ1gO/e9jduG+0Wh0vDhrJgEGv8cf8OQ+7Oy5Dr9dTtmxZth9ej3flJy84TKtWrWjcuDGvvfYadrudbt26KX7VCo8EgiCwfv16Pvp0DB4BUWKU+i49KeolLq7F5KhIBVIBq8zh+kJ8AheScyA5kcpeXoCGMs160q9LY3r16sWKFSsUmSyw4I+FeISW4WpCPCQ4cozL/O71AVJaH0GQrPc02eJikOPfYV8toP+g19j+zybUakmpVbO4iQrFpV3RyUdF/35tWryzzCqLoKp2+P8DnJRFc30u7OYFy/j4eOrWrcvtEASByb/Owb/7ZDbG6dGqpf6ac6QFWXKypXMcC3Ja2SKufBwM0ktfsLMh0kJeTrYUyFFvlDYE5DGOdLJo/QGyqaPeILlkhJvMsvr5D5B0+vRp+vbtS9euXXn99dfzfZ6rUYxLhXzh7+uN+ZoFnZdj6HDs+mVbJD16bnJsq9EHAGOiTJ/vCDhiDRADXti10u6HoNHjXaE5MYu+IOPEP3hnSw/7ody0cbKIsLmSV4xiUAxzllRf5Rh8hARxN8Ej/rz4f0HgysldWLJSCe022jlI5Mphc3Xs165dY9Ta39m+fftd34+DBw/StGlTflp+lO1X3OBKEjMviwND4uZfsOdk8XTfL5zXyXCMiX9Gi+9RJW9pECniCMZxVubb0NBPfL39moB3+cZcWPwFvv6io/rB7rnvnZFdu3bRtev7fP/99w9shVCh8ImLiyMhMRU3j0czyEp+adfjbd54thxpaWl4enrmfcJjwoABA9gw9Ksn0rgEMBqN/PDDD4wdO5auXbsye/Zs3N3vrJxQUChs7HY7w0d8yJ5Dpxjw6a+kaUWj53zG/U9jK1euTL169fj+++8ZOnSoq7r6WLJ//37eePtdhv26n993nyhwe6ERxSlavi6/zpxFn97ipkFoaCj//vsvUfcXo/C++Xrid9iKNsHo7dro4o8as2bN4o8//mDBggWEhuYvvkdhoRiXCvmiQ7u2fNn0KUyjdxbKKrZKpaJk+ze4tOFX4g5vokjDbrj5h+d9Yj6wZmdwedMs1GHlCOkw7K79//LLL/n+++/zlPHt3buXadOm4RUUdlP59Z2LyTy7h7CeLoyiqtaA/daILlu3bmXcuHHMmTOHsLCw25yo8Lhy8OBBStdq/UTsGNVt+gzXrl2jbNmyeVd+TKhUqRI+ljgsqfF5Vy5kctISiD+4nrSzu1GpNahzsrDbLAhGTwRBQLBZ0PgVwbfBixhqtM13u25ubowaNYrNmzfTrVs3FixYoBiYCg8FQRDo0aMHviXqMehT8Tc8zUV+6J988gnt2rWjadOmLo1u/TgRGxtLvyFv03/CKjRa1wXLat1tMO88X5Pnnu2In58fderU4eOPPyaspRmd3rUZzqOjo/Hz87vtsc3//ENA23Euvd6jxowZM9i9ezcrVqy4aaf4YaEYlwr5onLlygwY0J+l+5bhVvPZQrmGRu9G8baDyYi9zJXNszF4B1Ok4Qv37VguCALxx/4h5sBaitTvgr5ut7vWv3TpEnFxcbRs2TLPtpcvX86UKVP4V3JJw5x8g4urfiTsjbl39Oe8HywpMej8bjYeL1y4wKhRo1i2bBkm0/073is8uui1KowOOUwVHynY0z+xonTHII8+51AN5PpZAs50QYIsYp3dEclOXiY4vqs2mS9lrh9gtne4rEx0VFFnpTjLLqeKu5GXZEbH6XSxvQg3cbs+rHYnJk+ezPfff5/nPT9OdOvQhvMxG/nbr6mzrEHlGs7XO/dtA0Blkz47s5cotfK+8K+zLNdfViWTmeX6vMqjDQqOhQZttjirzklP4vzOZdjNmXjWbE/4S+PQuHmitojfj9x8wwC6w38RvWEK55Z8TmitdngVrcwuh5/mvyUkKdlf0WKQsBZB0nerR1Px/l544QXmzJnzRO1AKzz6ZGVl8fIrffArWpMdZXqzw6Fmyk5w/PjKx7ybkC3MyeSUWTZJDbJgp5iLu/Nbkxg27FWWLVuGl1fhxn141BAEgfc/GEmzrm9RLDwCEBDCpfRrGtnCtlwKW9dbMkKLeUrjhTzHrLuHFx1eGsLRo0dp3FgMzNO2bVvO71pJnRbPiXX8xejU2TLFGrIcl3bZa3l0f4NMKpqens7ly5cpVqzYLfe3d+9eMnWB+AeEO73VM9KkHOyC47cTANlcU7CI96R2k8ZR+WJvkiyllcUsS9ciq5OdIi0+GrwkP/viBqnvdtn7Vc5D+p6adNJ7/XydO292WK1WJk+ezLFjx5gyZcojYViCYlwq3ANffvoRRzp2IuxUKk26vIFKpSIlRxqIdY7vtNnxfMzcc8p5zNuha7c5oszqUqXAFxZvcXDRZoihnz0CIyjz3DCSzu3j1MIxeBYpS3Ct9ug9HQ+nI4CGzSAOBLm5+wB0mcmYk2OIP7iW1PP78CpZm1KvTEStMyCkiw96q/IlnfVfqi8NJh999BGffPJJnu/DvHnz0PkWZctlE1+flwbYywvH49GoJw2LiNLh3SnSoGVJFqPsqk0+ABxLl46VMYkDpnxguZzlMAyKlCcnLYmhbSrwwWBRGnz9+nWeeuopxbB8gjl9+jSevsF5V3wMKFapATu3/vKwu+FyXnrxBdq07wK9mj7wa8ef3sWNgxso8vQQTEXKYPa6+3fFzTeEEi1eITM7g5h9f3Ht34WENHsFrxI17npeLk2bNkWn09GpUydeffVVXnzx9v7fCgquJDMzk2c7d6NGm76Uq9GE/RcL5zomT2/eeOMNvv76a0aNGlU4F3lEmfHrTE5fjqN3r+aF0r76/4z/Hj168Gy3V5zGpSs4evToHXedPxkzjsrtR3DttkcfX2w2G0ePHmXEiBG0adPmkTIsQTEuFe4Bg8HAssV/Mvi11+nT2JcPf9qAKbR0ofmF+ZaogXfJ2qRcPMSFv35ErTNgCimBwScEo18YdofPpVWjJzv2AjmJ1zFfPQZ2OwE1niG0ycuoNPmTeAiCwLVr1yhfvvxd68XGxvLLL7/Q65O5N5Vbkm6QcXYPgW3fuq97vRvGsNLs3CBOzs+dO0efPn1YsmQJFSpUyONMhceVI0eOULLF4IfdDYW7EBQURE52GubrZzCElnog17RkpnJ+zWR0Jm/Kd3oPq++9uQ4YvAKIbNYTa3YGFzb9Rk5KLL4lbh8E4/9p0KABa9eu5b333mPbtm388MMPaDR32jVSUCgYmZmZdO/enRpt+1GueuO8Tyggzz77LJMnT8Zisfyn8qhu2baDZ/t/9sCu5+/vjzkzhcyMVNxNrtkl3rhxI61atbqlfO3a9WTrAgiMKMW1JyhC7Pr163nrrbdo3LgxkydPpmjRog+7S7egGJcK94S7uzszZ0zn+S6d2bBpPUunDMcrIJyICvWp9VR3lxuaKpUan2LV8C5eHUt6ElkJVzEn3yDp9E4EjbjjZ9ca0PuH41mqNiFVWqIz+TglZPll27Zt+cppOXToUL755huOZ92caP3agpEEdxiKysUrR4IgED3/Y956tT2ZmZn069ePkSNHKsF7nmDi4uK4ePEidUMjnAobd5kESO2QserTpCTVdp3ov2LXSt9LTa6MVSbLzDFJUfikc0U5rClGCuJgdUgq5Xlsc5839/gLzrJ0kyjX2Zwi7aD3DhNzuWrVYp/tdvtd8489zoz57FPenr8NwssBUNwk3WdOtYYAHNwjpRVROUIGCrK8vfo4UeGRE1hGatghh81NZwKQaQji0sIvCH5hDKaStckC7LkBzGTvrzUzGQCt41+AlLItbul7SYMbF9dNQ1j9Az5VxInZPsd3y1Mr9aWH7By1Ws2ECROYN28eHTp0YOrUqYq/t0Kh8EyH5whp0IuV5ihW7hCDAwresh363IXjO8hiVZmSfF+QpfGafVGSMPYvIbkC/LErmeI12vLrzFn079fXFbfwyBMbG8vRY8dp8rIvetlvTB1faXzafkny/YkIjXS+tghyuazUpiCTI6sQOHd8L1Fv97zpuq/2fIlT+zZTp1l7GnqKY9cG2XFdzDnna6tD7QVQsaikOutaR/qte/G7Y/TsefM17HY7n371HSntJ7DgWg5q2f0ZPaQ2VbL+RsoiwCbZxPL4DMm5t66/fN4n1fVwl37/UhJjpPYCpO9rSTfp/Qo2SOP1kjhpztg2xOp8fScp7KxZs9iyZQsLFy6kXLlyt63zKKAYlwr3Rdu2bWnbVgwOkZaWxpo1a5j6fR8sFgvPDhpHWFQpgopJBlBSZiIApit7ARDk/l2OY86Jl8wwtLiJxqrV6AU+4ejDK+ETLw48Gkdevoyg0s76xpRoyE5x+h1lBkqDUa4PxoUs6WFeuEvU3i/4/nvGjBlz13vevHkLl2JSOZldlC+PixN2IeUalpRYcuKvULthBwAMjkn1TXIQh5O8p0n0Vyot09xnOcYcea7Aw45o1m3iV3OqRAh9+/alY8eOPPvsszRvXjjyFYVHg+TkZCpUqPBEBPMB0SDJysrKu+JjSIMGDbB+9CVCk76F/nldX/0DAQ1fxFSytkvaU6nURLXszYmlE3GPqIDer0i+z+3evTs1atSgR48evP/++wVKlq6g8P9M/mkqWYZgytTvwNEj5/I+wUXUaPwM078YSNUqlZ35cp9kfp87n0bt+2AwFl6gLos5k/DwmxUW1atVZcPk36nTrH2B279+XcxEEBERcVP5999/T2xYA0xeT06E2NmzZ7N161amTZv2SElgb8ej3TuFxwJPT0+6du3KunXrePvtt5nzzVBioy/lfeIjREJCAmXKlLnjcUEQ+HDkp/R679agJMm7l+BTq2Oh9GvDstm0eb4///zzDzk5ObzxxhuFch2FR4dDhw499DDiruZJ9Q0OCAggKjwUQRZcqTBIv3EOW3Y6XmXqu7RdtUZLkU4fcnXx51hS4/I+QUbp0qVZtWoVkydP5rfffnNpvxT+u8TExDB19gJav/bjA7+2t18g/UdOz3Oh+Unhjz8XU6nerXJSV1KkRCV27NhxU1mdOnWIvXQCqyXnDmfln0uXLlG8+M25TVJSUli6dCluDXsVuP1HhePHj7N06VJ++eWXR96wBGXnUsHFdOjQgUqVKlGmbFkaTL2OxvDoh66Pvnz2roYlwJYtWwgIL3NbH4G045sp9rrrk8RnXT6Kl8GIf1AY7wzuycKFC11+DYVHj2vXrlG9enWuPIBrZV07QcrpXQhWM7qMBLQGd7QmH9yLVsF4DztZ/2Xq16jC/NM78KjQrFDat9usXPpnPkVe/qpQ2jf4h1Ok43CuzP+IqH5TborImBdGo5H58+czePBgTp48yUcffYSbm1veJyoo3IH+A18jo+k7rEwUp6d2TynKJlmpzpdabzFwni1BGikFvWy+kZuTG8ChZAKwy17/FSf9npdyyhaD0XiH89fqNbRt83RBbuWRZs+ePXgGRqAxeGCxg0WW7ayUTN6/S7bzdzFOknzaZZJPmyCpNuQSWRsqipWvw5p1G2nYsOFN1+/WtRM7NiyifLOXAFgn++zsBtlipEwBlihTd83angzAtE+/4LepNy/6T5j4LWWbvMTWrDRsWWmOPkodq11MkvdeMUttptul12mOt6CMt3wOK7WxIyFTKrVKrid+frcPrvb3Zem9ezpK+m4+4y+98YY7uLBnZGQwZMgQ5syZ81gYlqAYlwqFQLFixfh8zBj+mPoib42bD8BUmgCQ61NtTLrsrK92RJLNDReukg0ChjQxqqwuK9lZZvYUH15jiugLoE+X5ZpznGsziPJTXaYUcjozvDIACzrLJz9u9Jv2C6+99tpd72nER58Q33gYow+IP265/hzmjCR0QcXA6E4xx49TbI748NtlIbxLB4kpCOo6UkrcyJYGiBDHyxUXpfsYXsWbH6d+ztQfPqd4cQNfCMJtw2wrPLn0auDjfP3dJmlSZXP4Wmb7SjIgQSX+Kmms0sQpNy2JPMUICAg2K8kXDpC4ZTb6wKL4NuyOzisQa3YG1uQbmNMTSfn7V+zWHEIbdMMjTJSd56bRsMl++NWO58CSIkV/noH4nNWWIriTjYljx449kUGo2j7VjE2TllG6aWfsguQz0yRIXJWPatLUWfbH/uMACGopYIjdXfSDVcsmvVY3H/Ffj0Bits3Du+rTaEvVxQ60DpSMvw3x4vWEG2ekc/3F74U65brUScfY6i2b+GSUF6Wsbic24qYFc4nqpOz4g4A6nfj7kvR5Tt4s+ekObnrr4prBYGDq1Kn8+uuvfPjhh3z99ddPjKRb4cGyb98+slTueFZoelO5NT0Jc/RJMo5tIfvKMVCpUOX6mWemojX54BZZEVOFZi4JrvXMy+8wenRfnm7d6rGZzN8rU2fMomHH/oV+nTJVGzBt1E+M4eZI/P369qFugyaUbtgVrS7/C1r/j92SfVNAm5SUFH6ZOpUPpm5j69nCVZQ8KAYOHMiHH374WPm3P5lPjcJDZ+jQoezdtpZ/Vs3Nu/JDJD4+nnPnzlGlSpU71vn99zmodCb0EZVvOZZxYise5Rq5vF+nDv2L3uhGxYoVmTx5Mq+//rrLr6Hw3yP15HbO/dQf8/UzhPedTNhLY/Es3wRjeHmMYWXwKN8En9rPUbLD20Q260XM3pWcW/Y1WQlX8278LjTp8Co//TLdRXfxaFGvXj2ST23Das7Mu/I9ItisJJ/YRkDNgvsm5UVAxaYkH/k774q3Qa1W06dPH3x8fJg0aRKCfPtCQSEfCILASz1foeGzg5xliTsXcmH8c1yf8z4ZJ7fjXrw6RXp9TWT/nyj21jyKvTWPqP5TCHrmTXQ+wST8PZ0LX3cmZtl4si4dvu++ePn44xMYTlzcvUnFHxdiY2PZf+AQweElCv1aRncPYmJiOXny5E3lBoOBPq/2ZP/ff95320nx14kIv9ng+ua7H3i230g8vO6cG/JxwWq1MnToUAIDA/OVf/1RQtm5VCgUVCoVoz77jAkTPqRkxVqgfvSimwqCwODBg5k4ceJd682Y9TsDPpzC+DO3HsuJu4hX9Xau7ZfNwh9TR/HG56If048//siBAwdceg2F/x5JhzeQcm4fxfr+AAFF86xv9A2hRId3yIy5wOX10/Ctn4Z3xfuTfoYXK8PKmV9gNpsxGAx5n/AYodfreX1Ab/7453dqdO7t0rYzo09jiqz4QHYCNXojep9gMq+dROd9fz6/I0aMYPjw4XzwwQd8/vnnT+yuj4LrWbxkKR4VWnPaowr2Gze4OO013MLLUfSt+WjcRCWS3k1STWgdyoyKJUoCJaFGQ/Yk9kKw28g4uZ3ELTOxpsQS/NwIjEWkqJqCLIrs5SRJLVTc6Od8bRdUlK/9FDNn/c7w994trFt+aPw6azbVmnRiZ7ovOIRjB1NlebnTZEa1TJaqNkrv/w2zJAXdHiftPNYPkNqxOdaYmj3Xl3///ZeyZcve1I9+ffvQslVbqlarRe8K0rHfrkmqL2uCFLHcSxbx1V0rcPTkHmrXqOYsu3r1KvP+2kLxNxdz9YYON1lk82xfyc1jR7wUAbaGnySx8dRK7ZsdXQjSS325bpbGs7Le0nvxdJB0z5czrLetH+MtSWF1smExzE0WYVwWVN1isdC4cWN8fHxYtWoVjxuKcalQaIz8+GN6vPwyzzzzDHXbvkqLTv24ESAGpJh9RYrEZs0UJX8aN/Eht8l3ABxyLl2i5FdhTIkWXzjGAbUsmIbaIkaltDqkgNayTZzHhhaTORUAy5Yto3z58lStWvWO93Dx4kUuptkZf06HJve6gOCYNKnSE9FnJqFPusaRDHHwKmUUr1PbW3q8zjoUb2fTxYE61Cj1ZdEpcfAsGhYFwLmlX9H06ecJDQrkt99+o2PHjvj6Pv6rcAr54/Lly3eNVKh2pP+wZkuJu9Q28QdNZZbKLCbRV8mu1ZMVfZqEIxspNnwFKrWGl8Ol72ayRTRcrmVLP37GIuKCya5UG7ryUKxRLy5MegXBL5xmzbs46+09f1bsi7v0/bSli5O3nXZPZ9nxrCBSK3Rl1qxZ9O9f+FKsB02fV3rycZEIStZui0eAOA7MiXZEv5ZJZXM/J026LI2M470TZJO43NdpidEYS9TCYvKncaA4mbmULYumnSHK/g0WKRqv4aIYkTvbW1rRVzm+KymJUp9zfYNSfKOcZUHN+3B97WQiZBFpz2dIUtrfHH5OPWSSbTk6nY6JEyfyyy+/0LRpU9q1a8fbb7/9n8obqHDvpKen88Hor6j67hIubl/I2ZWTiXrlG0xFq5KZkZp3AzJUag0e5RtjKtcQ8/UzxCz9Eq13MCFdP0V1h7Qlt6NcjSYs+v6tJ864vHDhAh9/9CGTV51j2wPK/VilQVuWTB1K7943L74ZDAYG9u/N3lOHCK9X9g5n35nYq+fo9KLkF9vr1X6EvvQtau3jPd5YrRZ69OjBwIED6dmzp8sWF1NSUvjxxx/ZtGU7gwf2pVOnTi5p93Yoy4oKhUqxYsXYvXs3R7ctYdqYflw/fwyL+eGnJRAEge+//5533737D8d3P0zCXv/OOa/0PiFYM5Jd1q+shKvEHVhHy2d7cf3KecaPH8/IkSNd1r7Co8/p06epWzd/ie3zg2Czcn3pWIrc4+RKjkqrI/SlscSv+ZGM+PuTyPrW68a8efOeSMmku7s7v/8+m9Mr7q6CuFesqfHoA6LyrugiDAGR2LPSC9xO//79WbVqFTabjZdffpmEhAQX9E7hSeWll16iaIfhnFr9E7HHt1H2o7WYilYtcLuG0FJEDpqBW2Qlon8fhmDPf75dDy8fUtIy8q74mNGwcVM++GElRnePvCu7CB//YDw9PTl16tQtx1QqFRdOHizwNY4dO0aOXY0ppPClvoVJjjmL2WMH0b17d3r16uUyw/L06dM8++yzVK1alXa9RzJ74Vqeat2m0H6PlZ1LhULHw8OD3Tv/Zd++fUyb+TsLx61B+8K3LsvXdq8IgsCECRNo0KABnp6ed6235Z9tuL865I519N5BZN04i2fx6gXulyUjmSM/DaJ8n2/Ys2UFX3/Qmx07duDv75/3yQpPDCqVyqUyyOQDq/Es2xCdTJZzP2iMHoR0/ZSdv7xFiw/uPXKxxmiiXr16bN68mWbNCiey6sPk6dat+Xj0eGLPHSCoRLW8T8gHtqxUVA94FV6lNyDYrKg0BZseeHp6MmLECLZv307nzp155ZVXeOmll5RdTIWb2Lt3L2evJZEWFk/6tQuEvvgldX20gKju2Y0URKqOh6T4Oe4QOBV3lwzGAL0UvCzTJo2hf9fsgGCzEj37HUK7f4kqV64tW+jeEiNt49XxF6X7Ko2OlJQUvL29C36jjwBLly7FvVxjVnk0gouQmSIpKPRx552vDTIj3Owr5agUsqWFpxxZJoDdWklG7ykbr8p5S9LZhi98RI/eA1i55A+CgmTRUp95hlmzZhHhISk83i4hfXZbvKRAhsVkEtKudXw5uNyKSqXCZrPxSu/+tOv1PltkArWsYCkHujoz2fnanibJoffKgtH5hknBoKqZxIZWJ0p7cAMipPvxlsllM61SnSKy76PcbOvvI5WnWaT6PrKc51xcwzfjxjF27Fhat26Nq1i0aBHjxo1j6dKlhIWFMX1rCu0HjWfpzx/z2muv8eOPP7rc9ULZuVR4YNSoUYMpP3zDur+WEfTvNyT83BNz7IW8T3Qh5qwM+vfvT3JyMp999tld6+7du5dSleuh0tx5MuRRvDqpp3bc8Xh+Eaw5HPi2J8U7vkv8ll/ZsuQXLl265NIdLIXHFx+93fknCOKfyi7/s6KyW8nxDHL+qew2BHMmSftWENTpA7QhJWnsb6CxvwG1CudfqlVNqlWNWcD5Z9IImDQCzwWpnH9FA4IoW60ZquBS7N2yiMs5KgR3bwR3bzC4S38ZSZCRhDXH7PyLv3qa+Kun8a74LDN/m/ew385CQavV8t340ZyZO5w6nom8Xkzg9WICRU1G558x8SLGxIuobDnOP0GtQ1DrsHgEOf9MVVphqtKKnJRYtFFVsXsG4KEV8NAKXMxROf/0cRfQx13ArjU4/zJCypERUg5dREXnn2DyQTD5gEbj/IvSC0TpBWw+Ic4/bXYKGkCfFos+NQZ9agxbtv/t/Jt11cisq0b+3JXk/LsdC3clsdBxrEGDBixbtoycnBzatGnDP//880TuXivcH38uXkaVNn2JXzOJkC4jC82/2KdOJ/TBJUjcNCPf50SVq8mxY8cKpT8PmsuXLzPqi6/x6DLuoVzfL+h/7J1lYBXH18Z/V+PuSnB3d3eKeykOLaVIlVIopaUUChRavEhbihQv7u5S3D2EhLjb9ft+2Jvs5k8ggSRA++b5ks3e2dnZ3dnZOWee8xxfilesy8aNm7Lsd3R0xGw2ExZ896XqMxqNHD9+nOrVqzN/wSKqNulCmWoNcj7wLUV4yH1+/fVXDh06lK+G5e+//86WLVvYs2fPM2qznYZ/h1qtZsOGVxdVeh4KVy4L8dpRqlQpTh7czblz5xg1ZhQla7SiYYeBRMgyhD5EwY+SDoI361qCmGtJLRdWBY4lCt034d75zN/sn14DIL2EEDN27T1hZVKv17Nv3z5mzpzJ2LFj6dSpU44fsd37DqEs2gCrcEHlzCjJw2RWCB5SpbU9Kgc30p7cINgiklIuUFhpTJN4p1q7CR6v8HSBlrg3Xnz1WhT1Z8+sQVQvWYT7f33M+8OH8MnHc1EoXo3CWIhCZCDx1nGca3VBYZ1/FKiivb7h0rctca/Z8aWP9fQNYsPNW/nWlrcNjRo14qsvPubD3nWYtiEfJqVyBXLVv18AycnJieHDh9O5c2fmzJnDuHHj2LBhA/7+/jkfXIj/NMKeRvAwLhyXxv2RF3BebLfmw3g8rx+OVduiykUeX7nsv7H+cvnyZYaOGE239yez1cY15wMKCDWbdmXjskl8+KGoCCyTyXjvvfe4cO86fkGlXnB0Vjx48IBKlSohk8lYt3Ezg75aUhBNfi04tWctt87uYNWqVfmqr7F7925OnjzJihUrshVXk8lkTJ06lS5dulCtWjVKlCiRb+cuNC4L8UYgk8moXbs2Z04d5/c/VjBvYi+KNepLuaZ9Uaqtc67gJZCYmMiwYcMoU6YM27dvfyEVNgMmk4mt23fS7NPV3LrxYo+aT/OhPN78AwHlmr70x9Fk0LNn1mASn1ynVLU2bF5xAVvbgv3AFuL/DxJvHMZvyPx8rVOhtsG9WntiL++FYrVf6lilSo2VjR0mk+k/qyTavXs3Tp05y9Zl39FpaN7ipc16LWaTSaTxvQ7I5Bi1aShtch4nXxaenp5MmzaNa9euMXz4cGrUqMGYMWMKqf//T5GcnMyZyzdJ0pqpMnlepsPX20qkH5Y2iE7gY3HifrmFtv0kXXTCqiWviZuEtljJxztzO63tKOJO/IV3t4mYFRIKo04UEoxMF77BqQY5qan/7rjLz8d9xYUbDyk6fCV3nT3RPBBTgigM4v00SxhaBmvx3ZdLxMIUWvFeGCVCimkSCv05ubgQUMpBImamNOEfVIKHjx5x6tQp6tWrl/lblSpVWLpyIvVaCgIzUjXV0hK6rJ1ELfbzb2YxelhvJk6aTI1W/bBycEdrhEiJAjAGUcVVCpWEFmuW0Hjjnz7I3D7hKcS6f1RE7COOkj4llYcc1ECkTa89k5C5XVwhtj1JJ16Up4Teq72zlbTQf9i7c1u+fhN1Oh2zZ89m3bp1yOVyZh8UhbHMEtLqzmtaarYbwvsfjuLgvt35dv7/5te9EG8FjEYjFy5cYNSoUXTo0IGOHTvSoUMHRo0axblz5zCbzUJ+tMGDOHvyKI2CFKz9vAkHl43HZMx94P2L8OjRIzp16sSIESP47rvvcmVYghCbIHf0xcYhZy+S2skDrwZ9eLryc8zPGcyyQ/Lds9z8qjbxd0+zec3vzP15TqFhWYh8hTEtCbV7YL7X61m3G9FnNr/SsR5+JbIVdvgvYfoP33Pj1E4e3fwnT/UobJ0w616vAJqVizf6lLicC+YBFStWZMeOHTRu3Jhu3bqxffv2Qqrs/0P89MsCUk1qKved/FrS7QDYlWlI2t1TmE2mHMs6eBXn8ePHr6FVBYOYmBiOnjzLwPGLsXHOW8x9fqH70PGsW7cuy76KFStSqUxR9qz/NVd1JEQ/JerJXVycnTl/5TY1mhac6mlB4szevzh+/DhLlizJd2fr3Llz6d+/P66uOa9UV67TErm1E8eOHcu38xeuXP4/QVxcHOfPn6do0aKUKpV76sHLQqPRsG7dek6fPc/5S1fxKVKa+h0Gc7JWeWRyOd09TTy9f4VJMxYTfHs4AX6+9O/XF29vL8qXLcXWTetYs2YNJ2Z1wd7enhsBtfEqWh61SoVvUFnsnd1YFibkVJLdOACA3lMMwm7yTn8ASjgYuHftLAMGTOWPP/6gWLFiL3UdDx49JrJYCzbdi8A5LhgAg41oaBosNEOdJd2DbaUWuJv0PJ7Rka1VW+NSogZpPuUyy19SCtQ2uT4dbXQwbpfXEHH5JO927cKc2bOwsxNzJhWiEP+LZInX06wRvMcmK7HPmA3PDuWmuCcorW0JshE9sycTBU+qxih6+0MtdT9NE40YW2ehv6abxAmfhyUH2PknoaCwITkyGE9L3jNzTEhmOYXFGKpQRBRiuJRiI5wjXYFBZYdOl3snzL8RarWa40cP0bxla/w6jCegTmdkMhnRGasAErqdMklIcSQzaDL3xT4RBDKUjh7owm5h7VuaaJ0wSXCSzEGii1SxVCc+T6VZmDTXkfjRNHbCsefjxWdsIxeep1wlMkX0Ns6Y1LaYtanILPWoUyIzf0+6vBeAabdEmvW3V4RxrmugeMIKuWB2yeVymjdvTs2aNZk3bx4//fQT/fr1Y9CgQYUhAf9PcOT4SQzaNLzKNyTakHP5/IBMrsC2VF3S7p3GtuSLNQ3keRS1etP4+ptvKVmlcc4FXyNKVqzFD4sm8csvv2TZP/PHabRt35HHVRvgV7zCc483GY0s/Kw9m9atYtxXX9Pjw+kF3eQCwcWjW0l+fJ4/f1+W74alTqdj8+bNHD16NNfH9P5wCt9/P5J9+/blSxv+3W9OIV4Is9nM4cOHmbdoKefPnaNc1fpoUhN4cPsKvXv1pFvXLgCULl06T7Sk0NBQLl68yOxfFqDVGShdrTEV6vWkbt/vMr2RsmDx5fEtUZnqFWdjMpkIuXeNE7evob8Sjkpu5taleTgL81DS09O5f2wD146sR6/Xo9fpsHVwJFVhj1Fth7VPORwCK2J2C0KmUGE2GUmMesLDM1s5cOMwCrOWP//4/aUNS4ATJ09hVen5KrHZwal0PewCKhB3fBXhF3Yjc/HB2qckalc/jHoduujHaMJuobBzwt7ezI/TpjJs6JCXblsh/tswm83o9fo8q2pq455iXYBpLORqG4ypCSjsnF/qODv3QC5duUrlypULpmFvCXx9fTl14hi9+w3g8K551P107UvXIVdZwWte0bP2Kk56xEPs/F4+79yrwNHRkQkTJvDll18ya9YsGjduTPPmzenduzdly5Z9LW0oxOvHrVu3uHbjJs6NBvJULyM6RVRr3aQTGTw6icqnlZ2oHKtJEtLbpNiKNMxkvegMi9SJ2y5K8R1SqK1xqtqWlBtHsS0qUXWWvGe2lvJWCjOmXKxwvo2IjY3lzD9XGTp9C6kGGRciLVRQlU1mGTmSnLmSuHxp7nCzTHT0mJTqzG2FhEZMUnTmZrKj+DyiteK8T5Oh3mvnR0CxsqSnp2NjI7bFxsaGNatWUKVaDb7/8ww2lmftLaGQvlfXkWHDhjH9+284e/48vqXr4uwZwKU48VspTxbbYnJwF/enJ2RuG2ydxeuTxLT3LSOq3hZ3fNbbIR2Je9YWPWgbJcJmcskCvLXER2YrUZG9cmY/F/au4MjBfQUSHjJ9+nQGDBjA7KMaQHBankoQn12/ANHJmNFcJxd3rK3zLySt0Lj8j0Gn07F9+3a2bNvF/YeP8C5ehQa9J9JxjD/2KmGQ1Gs17Fq7kCVr91HcQ8HUqVMxm820aNGCKlWqUKNGDRwdHXM4k4Bly5axdOlSevbsybuf/oKLm5hwO83wYpqLXC4nqHRlipcRJpk2SjMtuw2ju+WlNRgMLDwiJGRXyMzcvXySiIdXuJxgJin0NmHH/sJs+AOjNg0HV3fc3Dx4Wqkivdq1ouecra/8ohiNRp48CUPd9OXFJpS2jvjX645/ve4k2nmijQ7GmBqP3N4K25K1sXb0IO3gXMZ/2J0e3bu9UvsK8d9G7dq1OX36NI0aNcpTPbqECNQFSIWyLVqV1AfncazU8qWO8ypemUWLvmRg//cKqGVvD1xcXNi7cxub/97CqE9b4VaxFfaW1cbcQKZQYkx/uSTyeYWVRyBJIVdf6zkBFAoF48aN4/PPP+fEiROMHTuWIkWKMGLECKpWzZ/ULoV4O5CamsrgYR+g8K+Mc7m8jXOvAmv/8sQdXZljOVevAA7un8vw4cNfQ6vyFxO//oYS1Zq9lbHtNZp1Zdny3xj1UVYHvq+vL9u2bGbM50MYPHEZtvZiLOONcweo9+ksKlasSKdOnajXqDljflz3v1W/9Th3dCfn96xgx9bNKJX5b4JduHCBW7duMXHiRGYeerl4Yb1en2+pdwqNy38xQkJCOHfuPBt3HcBgMHL77j1MKltkxRogq/wx6hZFeBB2mwf30uDeXYw2FoNRZQUVhBWzK7EhUKcxeoOOef+cpdS1g4R+Ponmjesx7tMx+Pk9X1Ht8OHDLPtzPWN/2oZKpc40CtedEbw4ColtqU0VJkirbgudfUg5cdLrbSsYvRFpgpunxhrRq5IeI8T+2IcJKrDYV8DO0xm7Ug0pUuMdAFJcgtDFPsF09xB371zBuW/3PHlggoOD0SrtkWsET2q6m0Dvk+tF2prBSqCAqVPEwPAMNdl0V2G1yFabjK2HP3j4o/ERPPAVLy/Gv3pgoWFZiOfC2taeg9fiibQSvaG2SnGCILNQUZF4jhVeQuJo6UQiXa7CrmQ9mriJFNRV4YL30iSRIyhn8ag6KsR3xtYinJAscRB5ZIgZWKhiVgHl0Ty8iF1gJdQSA0huoXdejknI3De6ivC+WyuMeFeswHUH5xfeg/8aunbpTKuWLfhi/EQeRl/iaZWBmb85hF0GwCyhytqHCcZdkrUthN/Byt0PD3UAAJeSxWensIhR6CLFlE5WliTiUZJVnFjLc3SykdLvhXpquYn7LockgNqKhPQk5Hph9cJgLXE0Wqiydk/EWFKbmPsAHLoojo97XIQxcHFwm8x9dRyEflZEItDxfqNnJzFyuZxGjRrRsGFDrly5wsyZM1Gr1UycOJHixf/dCdILIaxY1q5Tly7DJvHo7HmsPQqOXfE8yOQKyEWMp1/xCpz7KybHcm8bjh07xsOweDqOnfKmm5ItqtZrzdLvBvP+8GGo1eosv9WpU4eZP0zi3f4tqFa3OWYgPTUJd0c1a9asoUiRIkyePJl2fcfg6PzvEQJLjItm25+zsCGNzRvX4ezsnO/n+Pvvv1m2bBm///77KzkVunXrxt9//83AgQPz3JZC4/Jfhvv37zP753mcPvsPjn6lcPQuSVTVMciVKtza+qCwdKhEw8tRORRWdjhWaEbd6hUx9/qSRxcPMmjkOKLDHtK8cT1+/PHHZ+Jg5syZw+AvfkalUj+n1tcDuVKFtVcx8CpGB6cEDh7eR8d33nnl+hYvX0FAg3cJy8c2AqTfOIS1LpqZM3IXtF6IQuQFZl06cuuCi+W18i5J8oWdr3TspQtn0el0z0ws/suwt7dn4byfGTDkfR5c3o5NlZzHKFufkkQeX4NrxWavoYUCDGlJyJVvPv2JTCajSpUqrF69mnPnztGjRw+++eYbOnXq9KabVohXxM+/zOPHn+bQd9Yh3PxL4RKWhDnsJg5u3kRLaKkGiSO3uKtIP3wqiptS20egX4ZoRSOxnpPouDBJOIxRkph1Y1wohpQ4Ia5YIpYlM4nHBqeK9Mh/mx6CTqfjq0lTaDP6VxbdE++jLE1wAJolcaRShVi5RIxQmSo6NvUO4kKA0UqkzholTielhLqcFi0KIK3Ricd28BLPVc7JiYCyddm9Zw+dOj6b0qpRw4acPn4Yg0F4Jmq1OjNHo8FgYP+hE4yc8Sl6C9N0V7joaJVeBxJhMqnzTnoPyvgGZG6XchLvV4/auQgczwZ6o9gfM6jAu/74gesntvDtt9/Su3fvV6o3J5w+fZqZM2fiMnIHw47ZAhoeJorX09Aj+zj2RMm70bBhQ5YuXZov7Sk0Lv8lCA8PZ8GCBRw6dIgWA77l4z7fEpwiPL5DCfn7GGUyGcWqt6BF4yYY9DoOLBnLBx98wK+//prFGyKTyXD18HlBTa8fVjZ2aPMQhG82mzlx8jQVR4wg7ElEvrXLkBiF1ZllzDu067Wp4hXi/zesfEuTHnINqFUg9SvtXTFIJiEvg2p1mxMTE/NMUuf/D/h96SK69R3A5Wv7cKjY6oVlbTyLYtCkoJPENBU00iIeYOtVNOeCrxG1atXi8OHDdO/enU2bNjFlyhSKFHn9K16FeHUs/+03vp8+k74zD+LgJswb7H1LkRrxAI9Kr895ApD++GrmCn9OSE5O5qOPPuLRo0fIZDLkcjlms5m0tDSsra3x9PSkZcuWVKlShcDAQOztXz2nsNls5siRI7w3YDC+xcsDoE2Jp1LFCvTo0iFXTvM+7w2ifKuh2Du7Q8zbm0alaZdh/Dh1ULbGJfDcHLjfTP6Wao1fPsfym8LGuZ/i46zi1q1bBUZR/u2339i9ezfbtm1jyJFXzzjg7u7Ow4cP86VNhcblW44zZ84wd8GvhEbGUrdNPz766TOmno+GC9E4Pj4HgMZZ9LxgsrhyLAaMQ5SY08ikEjxwqV6lM/epUoWgeK2TMNjvPHYk8zeNi1Bvm3eXcnXbPPr2G8CaVWIy1jStCYNZNJRWnkwQ9huF3+ffEz1Ito8y2irQbFecFSdLBkchTlOVGC40XeJ5UlkMRaNE0TAj71KqT/ks1wCQrLcmL+H3//zzDxFqX5KiUlBZaIeqVIEWk+olClw4PBVouka1+CFRapIs7RO8Rcn+omCJ38EpTJ03M9epUArx/xcqhYxGZexpLvGc/n4iMXM7IzWFVZKo4qmzF+hBAc7iMZqSdQjf+B1/Pn0/c5+3ZaHwXKw46fC39EmtxNN/N03wGJewFT8Reos4g8zyLipU1iCXg40D8oTQzHJKjdBWjSQn2rIwoV0f+AtUy1ptBzJu/ERWrvjtRbfiPwm5XM6KJQuoULEyXepVYmMJQc3R9eqWzDImy6qAOiUaz1K1Sbm8h50BlQBoWVI0qh5qBG+0LkBUzA6JFsbRmxInm9Ii1qFSiyuSvtbCSLk5TFy9USqs0CZE4eBXKtO7bzaLq8sZY63JThTKUCRanr1ktTNjDEy6djBz3yFLmIHMJC4/Ld0v1JMuUfxW2At9paaLKPbRzFP4Jgz7fj0h929So2ZtoqPyz/lXiILFH3+uZszYT/lo6UUUEsEXx6DK3N00jaBWw15re1LunMKpRs6GWtTDq9y+fZvvvvuOBg0aPOMYNpvNBAcHs2vXLpYtW0ZoaCjp6enExsbSvXt3hgwZkuv4tQMHDzF12gxc/UrR4ou1eBQVFFPt0ZAY9YS5q5cz48cfadmyJQ0aNKBYsWIULZrVCdSpUyd0DsUoW6dtLu/Em4OdgxNmmYqoqCg8PT1JSUlBq9W+UFzSZDLx19r1TFzwaoyZ14mosGCmjmzL6DFjmDThywI7z5IlSzhx4kRmPssMAZ9XgZubGwaDAY1Gk2dxn0Lj8i3GvHnzWLtlP+8MmUiHogWXPiQ3qNRxFKknl/DRqLEsXDD3jbblRYgLf0yVwJcX4snAuk1bMDm/+vHZQfvoAr7uDtSt82LZ80IUAqBEiRJcvnyZ5s2b56ketUcR9Anh+dSqZ2HSpb+ykmmJSnU5uHp6vqji/hvh6OjIxQvnaduhC6Zu85FbPd/b7Fy0Cne3zuLV10NeDsmPLuFT++1dGQgsUY7y1ery5MkTAgICcj6gEG8EOp2OI0eO8MfaTVx+GEPrpY95oFTxIFaSiN7Rn7gndwhOTkcuCa+RGnHBqeJkWSlJeG9jkeWsbCfWZ6MQx6NziWLZu6HB4jn1etKe3MSr2yTMklAfs1x8B7WWFEz3z+ygYsWKNGzYEID+f4uOmKpOGU4SNz4emVWYJjIykkOHDtG7d2+USiVJSUm4u7vTpk0bhg171pA2Go2MmzCZgZNWYufgzN4oNSGWy76vsQZ1SXhnOv2doji37y8e7LxAxPUfadWqFSNHjsTGxoaNGzdx8NARxm1cRYolxtosFQPLGGNMomqpMkV0zBvVojNH5ywySmRGadooCbVSUt4koTHLHUTj0BQdnLl92kZUfva2OLa8S1Tl6dOnREREMHDoCJRqGz4cPuC5Ym9nz56lcp3m2Du7cS9R8uxM4vmlirbSa5VCbi+2sYO3eH3Sr1mGAmz3XNBjpWUuXbrEokWLCA0N5dSJowWa+g9gxcq/MPT9jcbrhetIenQ58zeFUXTk1StbMXNbSvn97bjouF5yLBGVZ1muX79OjRo18tSut09GqhAAHDhwgCNHjjB00m/4FnmzhmUGmnYayOWbD9iydSt6vZ6IiIKbuL4qoh5cpErlijkXfA7uBz9BVSr/1OsMqQkozyxnyeL5uT5Gp9MRFxdHXFwcer0+5wMK8Z9C69at2bt3b77UpXTyQhfzJF/q+l/o48NRubw6Lb54hVocPHgw54L/Ubi7uzNyxHA0u354YTmltR22HkEk3zpe4G1Kj3yIysEtS+7LtxFBpSsTEhKSc8FCvFakpaWxb/9+WrbvQoW6zRg7/29ueLWn/KhVyJXZO5HsStUl+frrGwfijq/GpV7PXIWn3D68+pVifL28vOjTpw+7d+9m+/btHD16lJ9//plz587Rrl077t+/n6X8L/MWULlRZ+xyEDqzd3KlWY+RNO7yPjt27CA4OJjy5ctz7949Zs2ew5Sle/5VYTcxESGEhITQolVbRny3gjHT1zBv4RJu376dbfl9Bw9TsV6bbH97kzCbzezbt48BAwbwww8/8NFHH7Fr164CNywNBgPxiUmo8/Ad/l8oFCrM+ZD+qnDl8i3F99Nn0XnUXBKNajDC0psijdTu6XUA9LZulr+iF8I2Whi0MoLTtc6Bmb+p0gQvlXWiaBRmUDllls4kTeStTBWCofdeuwlAYtnylBy6hC8ndcHTwwNbV3+mXJFw+rUCjdQm6p7QFr3o5Uu10J5sYwQ+d5q7mHvSIVigzJostCpVWpzkOOHlNNiI1BKVpV1WluvQFRNjyjyCV1KhwvMT8L4IYWFhXLp2E48SRoi6l5nryaSyzdJ2AIOVo+U3kQomMwnbKX4Cfe2Tat6smTmdHxf/jK1t1pUJvV7PkSNHSEhI4OKVazx8GAxATEwMUTFxeAcUR5OeyulDO9i2bQft2r19A2ohCgZKpRIvL69MulBe4FyzM7HHV+HTZXw+tU6EPvYJKtfnq0nnhEp1WnHoyGHatPn/27cHDniPUWPH4t9+4gvL+dftxs2d87EvXb9A2xNxZAXeTQYU6DkK8d/CgwcPuHDhApO/+x6VgweeJapRrs8MjCrpqvLzJ6sebUcRPL8/9hWaCiquBQhd9GNS7p6iyPs5i5aYTCbSUpL48MMP8+XcAQEBLF26lBMnTlCyZEmuXLlCpUrCXOHAwcN0GvtyQn9qtZr58+ezb98+KlSoSOO2PQgoWobbiTkfC2A2mUi6d5akm0fRxocjU9ugsHVCJldgXbQqjpVbo7DNe0qK5yElMZbw+5c5cSqILqN+ylR+HfLVIj744AMOHTqUJUbRZDKxffsOPp41uMDa9LJIT09n7dq1rFmzhjp16vD999/j7+//Wgx8rVZL1x69qd+6F9mb4m8WhcblWwiDwUBquh4nNy8SdTmXf52wsndB5eTF4cOHKVWrDRffdIPyEeO++hrbSh3yrb7QBzewMqdn0guuXbvG8RMn+Wv9JhLT9PiVb4CtWwCVSjagWYOByGQyZMiwc3RGa1EZe+/TOEZ+1J5fDDo6PifwvRD/PRQrVozff/+dcePGPfNbr+JCnNo6raiQp4oSnEohaZKk0QYd9gHleLhtJi5V2yJX2xDu86wnNTxdcKLoE6My91m5CrSo+2migqKvtbDykEFf04bfwaZIZZQ2DuhtRAdXhvNHLqFkpacKMx6dSVwR8/AL4uC6y8+/Cf9P8OUXX3Ar5QaXqojpiVxuCDFFqgRh1VkFuBerQvLuOex3+D6zXCNvYfKnlwSaP7XELJqM4rOTWZQSK0t8XFsiBFaE7d1jAGjiI8BkxMaraJaE46oUsV/IdYIzUaYRn63ZEh8q06aI5SyOOXWKmIw9zUNwMPqUrJa5r4Wb0AYvSaJ0nWXs00liM9+t5wyIVLV/z9rMfxeXL19m2bJl7D98gioNO9Dvi4WkeVQRC+QyPavKyROnau2JPbgc95YFl0/SbDTwdO0EfPtMQ5YL0b/z66bj4FEk3w2FBg0a8PjxYzp37syxY8cyBYBkryj20qpVK/489AS5IneGudlkIv7kXySc3YxDkYq41+mOlXsgepkMs1GPUZNCyuNrhPw6HLemg3AqIKXq2PBg6tapw/4jpxj8wxdkOCDcPP1o2rQpe/bsoV27dpnlIyIi8PArniVu/E0hNDSU9evXs2vXLt577z3Wrl37wljR/Mbdu3dp2KgJQ7/8mcp1W3L7Uc7HvG4UGpdvISIjI3Fy83rTzXgunEo34vDRQ5Rq/nqD8HMDlUpFXFwcrq6uL3WcVqtl88b1lPt4fb60Qx//lJ3rvmXz+lVs2bqNn+fMpmjRotgUbcS7E/4kyigK+5RwNDy3HntHFyYtOcD0Cd2pU6dOnleyCvHvwDfffEPz5s357LPPnkkB9DKQKVS4NxlAxO55+Hb6It/aZzYZSTy/jeJfbnvlOhyd3dAaICUlJU8Ki/92FAnw49otbY7lvGq+w521k7GODkbtEZTv7Xh6ZhMedbvne70FgfiYqJwLFaJAcObMGabN+In4VCOt+oylSMOZJMhkHAXiEsRyUmpdkiT0TZcuOiHUlryrXm0/4sGsbjiWa4RtkYqZebEBKro7Z267KMU6L6UJxpjGIFZuNIjfUkO6qGQt0yQRsXUmLtU7YO3sARaGlsla/A7LJHmDPdQmHp/ZSr1OI6i4XGSNyaMeZG7fljDAVoW3ztzu7SW0x9VK9PjoJM4fo0kGONPg3ckMe/9D/lr9p3B+mZh6s4Gr6FgJjhBjCGffEK/pSoJIM67nocIIYIa1jyVsMkkqKplMgS4ulPCVX2BXtiHFxu/EyVl0RlaxFRt5skxD3JoN4elfX5F27ww+73yKTK5AZhLLmCXOH2lKE3N6snhOiREf9VRkfh1TFiXk7HGSLl6k3JDFXEtW08JOHAOHDh1Kp06dqFy5cpZc6zKFmlS98Ny3xUpo1pKUIwqJk0sheaYaL9Gx+klp0UC1ksTp9swhvvL+/fuMGTMGHx8f2rdvz759+wpMATY7GAwGDh8+zFff/IDDB3+x1bYUW69oUEZdzywjk5AEzBIqej+Lg+5/MbihuDq9/mx8lvuRFxQaly/AlStXGDJiNMMG9qNnj+64uLxa3puXxdLlf+BasS2PUxVsvC68kNYSZUiTSgikVicKmRhVqeLgl/HyZ+QjMkgGT4Ul6FovoZjq7C3KbZbAZ7nx2aVSdYpQ/4WLJ4Q6nYtyffMFFNX7ozKIOY0yAr8z6rRKEtX8MhJyax0sRrMk51DmPgv0dqIHSG1RJ8xsJ2LAdoaarY2VGFjuEFSXHTt3MXbM6Geu40X4+++/qdTzK0wGcYDLUKU1Z1CMHbwzf7OyePOlubHSStQD4PMyVvwxdQKLf1vMkydP+HbqTDp8/Csunv4cjVcTlgC1HCUDs+VdTpDkG1LLhZ1JejlgT4OuY5gydRrzfpnzUtdViH8n5HI5ffr0YcmSJYwYMSJPdTlVbE7SjcOk3D+PSzYrl6+CpMt7sS/fBLlV3nLAObl5/r83LnMLmUxOUJsPebDiEwI/WokiH3OYxt05jVyhwj6ocs6F3yCSEmI5sXsNF0/soszctzNB/H8Ze/fupW3btny77BBBpSsjk8k4Hpr3lT2ZQknQ+0t4OLcfAQN+QuGRP6lwzCYTSRd3EHdgCc5V2+JcPXfMpHv/7Cfy0XUqNe3Jg+j8mWz/L0pVa8LDs9sY9+VX+RLjlhN0saE8XfExPu9OxzoX3wG5ygr//j8Ru2c+ISs/x7/39yis82+cTrx7mnS9Gdciz4Yx+fn58c4773D8+PECywuZW5jNZg4cOMCiRYuws7Nj/vz5z6j0vg7cuXOHgQMHonTyp/+E3/g17O2Oiy80Lp+D8PBw3h02lqoDfmLFoXUs/LMPLjYWaXbMuNip8PISjKJixYpRrlw5AKpXr56n3G0RERFs2Labbt/tyPtFFBCUto6UaNCdkwtHUvzz7W9VAHlg8XJc2L3kpY8bOfpjmkw7yZN7V/Lchmtn9lGjYknKlClDnfqNGPntcpLU3jkf+AJUrteKWWN+ITU19V+X1LkQr4YePXrQo99wPKr1Jt0grl7621ocQRJJf5PFQ2sdH8r/QuMWhHf3yYQseR9bvzIorGwxSZJhmywTBpmtmBRbblFiNEpWHEIe3xH2mQxE75hN4KBfMKQInnQrCU0yM9G2ZFxQWFQDNzmIxsv7QWJM9v93+NoaqVteXEVYf1fgr0qdV1Yx97ECfBq+S+jcvgR2Hc/JWEticUeR0SBTC8da24nPMz1ecPRdeBKWuc8mMQyz2UzUsZWkxIRSqlFPjEnCaoxC8jwVaaKipMFe+ObJlOLERmFxtKUG1c3c17uhsO1nJ3agDIeZ0Sw+d0s3y6Je+L8qjWazmZkrj3Hx+A7OH9rMtGnTWDb74WtdMfj/jrS0NCZNmsTq1au5desW52Pzn1mlcvGm+CdrebRgMDYla+PWfDhy1atRIHVxYcQcXEbKjSPYl29K0OB5KGxybxhtmzuWVoO/Q2VlDRTcONVv7HQWTB6KKT2B2xePU6FWwVBQzWYzT1d+mmvDUgqX6h1Qu/jwZPWXBPSbgeIFyta5RWLIDZ7ePk+NMaueSwfu378/o0ePplu3bm9MUTwqKorPP/8cPz8/li1b9tKMuPyATqdj3LhxhISEsHHjRvY9svTjsLQXH/iGUWhcPgfr168nsH4v3ALLYdfnWwCaeImrem3LykhLEx7u+fPniYiIwGw2Z3YCa2trihUrxmeffUbx4rlL1gswd+5cqnX+GHkuYgJeFukxT0h4cIG01ET0iZGYjAZkSjVmgw6lvSv2RaviWrY+ilysRpR6Zyx3jm1AE/0YG8+gfG/rq8K3SEn+vHUHs9mca6P31q1bBNVsjY2LD5A349KkS+fIxgUc2ruN1avX4FO0Ak6uHiSl5HzsiyCTyajapCt/rlzFiA/ez/mAQvzr4eLigpXCSEToI+RuJfJUl8LOGY82H/F0y3QCen2Xp7oid8zBrUEflPYuL5DpKERuceHiZRyLN8x1efugyihsPiR47de41++DU8VXS1mjT03k4b4lODm7U7pJH2QyGdkL978Z6PV69u3bxy+//EKZchUZ2qsdy3+e/Iw4WiEKFtt37GLU6NFUqdeGXzZf51qCnGiNaBBEaUUWjqeVaARES7mgWUYKcdtDLc5zItLSwdqRoE82YDz9F6FzuuNZsxM3mgxCaSc4GoyS1AqGBAubyyICpI8PJ/X2CZKu7AVkuNTugmfTgYJIkEyReVazJIWGPFWkU6r9hFQZSTePkhQXQWi1fqy9H41K6rCTiU4+nSTXqz5aZHCluAmMqgB78TptJJcflireuwiNmq7jVrBu+hCWTxnCmOlrKFmxDk5q8YDO7uI1h9uLxk2AJE45Jv05jha9MGeNP74a/0pNKV22BmVsxeNUMtF5JU3j0shNNOqPmAKwcwsAZx+erB6H/3s/obCyxWwnMuBkqQmZ2/JUkbprkswl5XaiA+n+tu8xK6xILtmECylCP2kuuUcbz8ZjNjuhVTizcOFCxowZA0BwupyFT4S2aR9fyyxvthEdaVJWnFQIskNR0QHnqBbn8j2eQ4XdtWsXU6dOZfLkybRs2TLbMgWJx48fs2nTJrZs2UKpVh9Sr8N3rL0Nv10T+qNCI04qTRJnn1ySFsbsLeYPliLDgQdkyQuvM8owmvNnsajQuHwOdu7cyZM2c3gc/BSZ5QV5ohM7oYx0wJpedVyyCK0MHy4GpF+4cIEvv/ySe/fu8dPs2TRv9mKvVFpaGn/vOoCyVyeuXBIUWh2fCi+QQqKganASvNVpFiVVVVpC5m8ZtFaNs8BTl5mMGNKSCNkwGYWDJ44VmuESUB6VW4DgMTILXcsQ9ZCU26d4sPYb1G5+uNbsjJ1vKWQyGQalM5A1f5Cblz9B1ZoT8vcU/D8T4q5UyYIHO5MOKzHuMvapUmOE9rmKicCNFk97Bj9eLuHJKyyJt40uUuU5oV615XzpEk9arNYFjyLluHz5MlWrViU3WLxkGbEBDbj86D72EoVbvYWKK7N80BQG8TedrTDI67zESf+E8lbs37Cc1mNH4ODgwLSZc2j9yQpuJ6iwtcSKeCqF+x0g9ehbBvUnaeKH60yysJ1qKdbYyYhtjT78Nq8/H7w//K1aLS5EwWHcZ2OZ+9sKmg3MOwXQvmxD0m4eJv7CDhzrvRrVKObYSuRKK5yqvv1Juv8tOHbyDF/2/IqnL7FAYuNVnGIDZhN1Yg2xZzbi1uET7ErWyZVQiVGXTsKVfST8s5UiTQfiYlWwCp0vi9SUJPZvXMKcT47QtWtXFi1a9FIO2kLkHXfu3GHvvv1s/nsbMYlpjJ69g0Cf16MDIZPJ8G8xBN/G/Yg8t5WHc3qhtHPBOqA8SidPFBYDSx8bhi4mBG3EfYzpyahcvLErUQuf3lNQOXkhM+Qcx/y/MJlMBM97D58+L04PlJ+QyWR0GTuPXz9uwebFkxgz62/U+Uh510Y8IPnqPmpM3p2neuxK1sbcbBhhq8cROHjeK9djSI4l6cI2XNt/9sJyMpmMQZ/OZMmkPnTp0gVra2uM2oJfrTt37hzffvstQUFBHDhwABsbm5wPykccPHiQ1atXk5ycTMeOHTly5AhzDqfmfOBbhkLj8jmwtrZ+ZUpGBqpXr86GDRu4ceMGX02dy8SvJ7Nz+5bnLq1v276dIlWa8TQfDQdtbCghm6bi/84nqIMEY8uUTQ4ztYsvrnW7417zHdLCbhP/z3bCd/2CT/Oh2BevmW3ddYb8xI3+QWjCbmHtVzbbMm8ClZr0ZPXq1bkyLo1GI7t378FucL88nzcm4gkHNy9j+az7rF69Gr+KTXD2Csz5wFzC2t4ZK/ei3Lt3r8DzJxXi7UCDBg2Y/fM8nj66iW/Rcnmuz7v1SMK2TCflyU28u054qTEu8eoBNE/v4Ntnap7bkQmz+bXEGxU0UlNTWbduHcnJgjOsXr161KyZ/bgpRWhoKE6unq/kLFKobfBuNQJ9YhRR/2wn7vBvGNOTsQ6ogF3p+piLVkGmtsas05B47yya0Jvogi9j0mtwLteYsj2+FpR/44Jf+tz5BZ1Ww40Lxzm19jQ3b97EysqK+KQ0hg0ZSL8FUwqpr68ZkZGRjBgxgsfhCdRu1YeOH87CxTvDEWx64bH5DbnKCp/6PVHW7IYhJQ5t1CM0UY8wW1Zm5GprHCu3wqrNSDH225y3NoYvHyGo19bqktfmvxSsbOzo+eH3nN+1hFljO/HV4gP5Uq/ZbCZ87QT8+s/OFzacXbFqJJzbTPqT61iXebW0SJqruzGYzHi0yFkZWKW24ttvv2Xq1Kn8+uuvqNMKTsgrIiKCSZMmodVqWbBgAUFBQQV2ruyg1WoZM2YMt2/fZu7cuZlpav6tKDQuXwPKly9PvzHTuXr2EFWrVuX48eMEBj5rdGzbtZ9KzT7iaXj+5B/RJUQQumUGQb2/Q+XokWvKk61fGWz9ymBMjiVs+2w0MaG41352sLV2cMG1TB2i/xxDwPh9+dLm/IC7bxAXjz0be5YdIiMjcXDxRJsPA++BDQv5/bdlaDQalixZQqOP1+W5zv+FQ2Cl15KctxBvB+RyOb16dGX/xVOULlUGgCiNsNLkZi+KdaXdF2LpDNlQ2lUSMTCAwI6fkXDvLCELB+DdZhSOPsLqu1TMS2ehEyk1SWjjw4k4uhKTtSM+705HKaHjqGMsGugSKpLOXqCLqVLFWL0MVkLM/QuZ+07ZVUHjXJLjx0/Qs2ePXN2PtxWdu/bAuVht/EtXxWQ0seaLyTSuXZkvPvsEd3f35x536tQpbIrW4WKsmiN7xfHCpBaeo1wrKi+aLCk/7KJuZe6TGYRn5lSxIVRsiNlsJj38Lil3jxJ3bmNmPJO1gxsuHoHYNuyO0iKAZpKZwaDFaPds+2SSSbrJSuxnWguDROMrcXRYVhNqBojskiitcLy3hLqnNcswGY1cPbmDWxeOEB8dzo3LZxg/fjwde/WiRo0aKJWFU5I3gUePHjH2s/FcvXmHev0m4VmyLY+ARybwiRGcP808xZXAI3Eii6mmo9hXziZI8mRLmE7aNHHMMEv6VniKuCIjV/4PRdYCgzYVZDKUXsVwlDixzZZUO2YJVVYuobyaJPttJXTStHhR5bVWKbG+O399TcL5rYz67Qq7ok2ZSntyST16SRxzxrsHYuodgNupwvi8P0G8nmZOIv1UYxIdSVESEb9y5ZtzZ94EnGxVXDuzl4p1BAVaqZq81AWVYhD/2xgtUWs1SlJAPb6CdUAFVJ5BVLCzCBNKzu/wnNfNTkKRbeguMsNOKQPw6fM9T5aOIKiCyMRTeYoCN9q4p2JFEudlCWdH9OnJnNs/D6fa3Ui3pL6SWRY7/nwiMgMbOov3PEpViX2HR1icT9Zk3DFpPnSFTuxHZgl12b9U9cztmm5in+ouocIajUaWLl3KypUrmTdvHtWqiamSXhcePHjA0KFDqdioOyMH/sDddBlLt4urtIfvhWRuZwhs6h1Emq80Rh5Jrlh5mPitaL2+RuZ2G3exzLKrYhx+h1KBxGjzx6FXOJI/B7GxsYyv6oRSqWLKJeHBZQhaAMzQCVzmbRYuUxsvcXCJswwYR2LFwbWagwp16dZ0n7KDjr0GMePbL2nVSuRxm81mzl65weUa9ljpRMPIYKFfZkw2QKRpWicKL7FR8luaezEAlAlPCdvwHcU/XI6tvzCAvmPJKRYrVSW1jDPplvH+qaRjXQ95hM+guURu/p6oCztwaTIo87fD9wQV26Ytu3H32Bo6eMH2NGGAU2qF+5XuKg44osKrv3DelBjxeiwKt2bLBFUmGcyTSjUGQJEoKs9mqNJmKuFKqBKXEzxB5ktwcDDp6ek5Uhp27NxFkWqteGyh7ZrU4kCqtEiZm5RCHdIPiNZCSZ5cVQiuDr57jauKFJo3a8akyVMo32Iwj3EBy5jnrhIGayfLX71kgL8bJ7yGEZJ7n2IUyqUnCxP0Awbho2as0J2D299n7NixL7yuQvx30LFjR+bMa0ftFt2wtc+fpNaOZRti41eGyH2LiIoLx6lMfawc3TLjrdPTktHGPiH94QUUNg541euJsnKbfDm3FB5lG/L39j/+9calwSSnTd+xGCxzsrI1mvDo7HbatO/E8iULqVSpUrark5cuXcKzdLtn9r8qZDIZ9p6B2HsGZo5bII6ZsmzUwAsS6WnJBN++ghkzj66d5N6VE3Tr/A7zZkx6I4qLhXgWsbGxNGvZhsYjF9F3aC0A4pJzOOg/hrjg65zdspARi89i5+wB0ZE5H5TPkMlk9PrqT3bNGcquP2dQtkYzlMq8Cdmk3j6JfaUW+dRCAWq3AKwDKpB8/RAOFV4c6vW/uLd6PDFPH1Oq/oBcHyOTyRj4zSreGzISPWZUKfEo7fMnc0N4eDitWrWif//+HDp0CCur159DMzo6mtatW7N9+3ZuJOVN+PFtQiHn5Dnw9PTkyYOb+V6vq3cQ7T5ZztdTZjLpm28z9587dw6ZZ8l8i6ULP7Ya10otMg3LV4VMJsOn4+doox4Rf+rZlTh9ejI1q1Ul/MHVPJ0nv9GvXz+2bcs5B9+a9X9Tvd2QPJ/vyLbf+fTTT4mMjGTn3oNUa1IwtBqFtT16vT7ngoX4z8DOzo4vP/+YnSt+zNd6VY4e+HefRJHuX2Pl6ocuPoK08Hukhd8DmQyHkrUp3m8axXpNxi4g75Tc7OBVoir7DxwgNDR3TIN/C2QyGTUbd6D/Zz8zd+5c2rZtS6VKlVi4cCF//PEHBw8exGQyUatWLcKuHX7Tzc03GLRpJEU85PiCDzg0qw+/ffseVolXcUq/y6DuzfjnzHG+Gj+u0LB8izD20y8Y8MlM/MrUetNNeSOIDb7Grgkt6fTpYlx9i73RtngWKU25Zn0JCgxg+ZShea4v5fZxbJ8T1pQXeLb/mJi9C1/qmOTH10i/e5SKnUehkCiT5+p8/sVoOWAiaYnxJP096aWOzQ7h4eF06tSJVq1aMXfuXD7//PM3YlgCzJo1i1mzZlG27NsTWpYfKFy5fA6aNm3KieM7KFo6//N+2Tm5MWraX/w2/SO+mzqNr7/6kpCQENLs/ciP7q1PjCIt9Ba+TQfmQ22igRn8x1hsgqpi7StSMiMfXKRNt9YcD0uFtyhDRt++fenVqxe9evV6Ybm4uFhUVnkL2D61fxP+7nZUrlyZ999/n9YDJxWo4I5arc65UCH+U+japTO/zFtIUnQI3p4Cpb6tmA6W+7UFFsS141sy98ksuWulXKpkfyEOWaEVaUQOhhQcPP0w+YnKcjpbwTOs0iRCxmqXRTXRJvZRZrkMNb7McwEKnbD6L6WTaR0Fj6zDE5EWu889CADHpkO5e/cu/v7+L7oFbzXSTDL2RKm5c/9G5j6zXAEoMZcfC+WFPHMzzt7EbEpBFnMKxSdfUapYINcuXeauXQn8JHRBpUX4DEkqkoxE5QpJcnizQvhiqBKfZO7TeljGZym11fKcbMJFhcVM6qtJSrsTll4TSjTO3Deu1rOptSzECowGA5GP7nD3yimSzkcQcvcSZcuU5ddpn1GmTJk3NmErRO4RFh5JwwqNORsnrjUUsRL7TpqFZbMwRNRqSNWK9NcIdfb59jRJIjsJyfggl+RKNEv2SzZRSnQhTNJjJZQ/U6xAFZS5iSFGCgkVt52PyEJyV4tjkbO/SJF9cGE3W6aOoE3nftRs1pVMJVuj+E6YFOLqoXTclO6Xsq3u3PoHAL2TT+a+v+Ml32yJmqcU0d7CdZjrj+LpyS2YDVrQpxKiEQ2xjHQ+AMkSWmxaukg79ncVaO6J9//BK7AMlfyEcdVWIVyTtWRJKVLClkqU1BeqE7erSsQHHTLmHp4BhCjV6CIfoXR0R6uTqJFJ414l15p44Bd0Wg3VOo3hfJxYXpEk0GODJWWD48R7q8wI9bCuhlXJRmjuHME+/AZRjqLAlDQvagUH8V539stKhQ0LC2PUqFGsASZNmkT16iJt9k1g+W+/c+hGFEl1W7BvWxqnEuSYTUb08U/RX96DLjEKlaMHcu9SqFx9kSvVmOWC2aaUCHlmeb9MYl+U9tGw0PuZ23esJE4UpThGF7c3cEufmC+x7v8p49JsNrNq1SqOnzqbOcgYLTMrfx8vOrZrRZUqVXJVV926dUlKSqJ3HWeMlndl+onozN/1ocKq5mVbZwCuPpQMOpZzSydc9xwE5VEr24z4FWvMvZey+tBCwkaOoUXThljLwCr2Mao0cfKQkefMpBINIKNtVkqAUisOLHK9hpgDS6jU/wc8KjaiqoM4SO61vLDJBrFdOo1AKa3rLrzAAdbiwOBTIgiA/U+E6y7WoBdPNn1LyW7jSfMsiUmvISXiPnZ2XelcyZrrqcLkNMXSoaU00gwabIYyrF5yDXJL7ELGdUslvhWJkRg1KSTePIpJm4rc2g6ZX3lUrr7YJUYKgiSyxMzyxwW2Lge9fbDzKM7+/ftfKCNttHHjdIIq81np7EUeu9qSvy3jGejKiRSQccWFQb51WTlf9fuRffv2sWXrNsJTrTB41SUiDuKN4gB9Tyts6wzCi28wST5MMgsFVjIm2yuE8hpL/IBCEhNaqBT7/xNTv5vErEUL6TFy+ptuSv7iP9CfjXotJsOLGQVqN3+sLblJjfYCDfj2g/Oknj5H9MIBUPMdfKu1FlInvMUwmUw8eXiLK8e38vjWeerVqoafvR0fDxpOhQoVUCiebX9SUhIPHz7MIt5kNpupUKFCobPsDSM1JQWT6fWK9bxpmM1m9q/9hVsnNlO0RFl6fPg9YW9J2l2ZTMagcb+waNJATuxeS+lWOQvfZIcn+5ZQvsOH+dw6EfZlG5F8bT8u9fvkWDb90naalvYmKSIQWxfvVxYRK9lvBpemNOfouHqUnLgXpZ1zro5LToxn/PgZXLhwgTlz5lC+fPlXOn9+4cGDB7w3YBDWzr7UGLoMvSaV0CuHCTm5A234Pay8i2OttsHK1Ze0p3fQ3DuHPj4cs0GLe81OOJdvUmBtiwy+kWs76UX4TxiXN27c4OTJk+zcuROZgz+V67dDbyt4je5bgqtDIx5w8KvpOCo1bN2yOUfL3MPDg7Vr1zJx4sQCa7dMJsO++UgSzs5n3YZNQN6pQkZtGukRD/Co2DTvDfwfWLv6orC2IyXsDnLPkqTePUOHRo3w9PTkwIEDUD5/uf2a6GBi/tlBevgdnMs3wcrFB31SNLrgyyRd2E7E4yuonDzxrN0VW7/SzxzfuvdIZsz4hMaNG2c7gblx4wZKSfLxl4XZbGbgwIF88803eHt7M7XPe7z39SquFLJWC1EAqF+/Pus3bubUnjXUa9P3TTcn35AhzBEREUFMTAwymYySJUv+q4wOdzc3DBKho9zCtnhN7L4/T/LJNcRu/YHQf3ZRrGEPPEvVLoBW5g2atBQe3rrIuvlfUiTAny+/+JTGjb/D2lpYZTIajZw+fZro6GjCwyO5cOkK5/85j5OLOzKFCp8ipZHLxSlHbHQY1sbEXIUvFKLg0LZ1C87uWYW8Tt7DQ/4N0KQls3b2GDwd5BhMZnqOnvHWOWx9A0vg6uHDo5tnX8m4NJvNpIXfw6Vo/jPvMuBcqzOPFw7KlXEZt2ceae1b41s9bymsZDIZZUb8AbM7EbduHB6DFj/32Rm0aayY8xUPbpynSJEAevfoynfffYdKlbc41rwgKiqKtWvXsnr9FjoN/R61tQ2LZvZHl5qAf5VmeLT+EJsAwfCVPxJZPno7gaZk1KQStW0G6eH38W4xLN/7bWpyAo72ttk6CF8W/0rjMj09nT179nD79m1OnDhBYGAgrVq14vfff2ffXcFojEgT/sYkC5fo7FeSas2bs2HuZ7Rs2ZLdu3e/cPISFBSEq6sriYmJzy2TX6jd8X0WjGqKzjfvyaFTH17EsUy9fGhV9vCt15Mnh//Ar2oHAKpUqUKLFi2YOXMm5JMzyKhJ5emeeRi16bjW7YHPO5+iMIqroHoPYUnfKvw2aeH3iDqzGUxGAjt9nqUedy9/+vfvT+3atTl58uQzybePHj2KdYncJy//X1w/ewC5XE7fvn1ZtmwZVZr1xt7RBWJzPrYQhXhZyGQyZkz/gdbtOhJQohLX7UVKT2WLomBCPTHW99ElIZZPyqCwjnv8zD6ThRZjlIhZqS1KfMq02GfKyTXimChTZYhdiZQmY5FWwl9J201xgiJdUhFpXJcZk15LyKZprHFLZEPv/jRs2we9Lp1HV44zZGB/xn3x6QvvyduCtk3rs+b6McweYsiATca9lojoyCyGdLpJpCXJdem4BlXG+eONJN46zqOtM7l/dB1qJ08cS9XBo3ZnrJy9MVgL1FaTu0gDNGsExow6TqTFmi2OU9tokQaVAaOtSAnUuAsqwRpPMVdvoIfglB0dkApmM7cun2bDbyvRJEYTEXyL9m1bcfr4Yby8vEhISODIkSOcvnCFv3cfQmOSobP3wRxQDcwm1N7voHz3Q+IstMlYizhJPV/BoWcPnJnSnDt37lC69LPOwUK8Hnzx2Se0adOG3o3a4+Ak9A+pYuS1JOG5OUj88amSFWhXyTw0SiJAY5A68KWKrhIWjiFdVA6SmUV6nt4kivTJpXWmiaqYSq/iljpEp057CRXWX6JU7G0rbGs16cz5uh+fjhlBTEwsDkVq4x5QBq0RUiW00KzCV+J+o0SN1ixxlNhG38vcTncTFgnkEkaZWZ/9ZF3uLFLO3ZTiPTWYZMiVKoxGEw9TxWMrOon38W6KeH+tJVRj4YRmVI7u+ErozXaW+tMlA7OVhGZ7OV5cujVK6L9PVR6Z2+4SiyFOqUZh44AxJQ5r6fxMomJaO9CfqNtncC9fhr8PnsT7o7+IevQEeTbUYLmE5imT0JINkmsr4REIgX7EBpSmVf0qHLqxnaIdP+fmHVHzo0PT0iQnxjHr6658+dkY3v1z3lvhqFyz5i+mzZxD024fkNJ5Nr+eOEns0RV49fwOR9/SJAFKkxF9ooUh6S4uNmVQyRWAV6/viDvxF0/2/4p3dyEESybJDS+XUJSN1qLSd7mAoMztonbi/bUvKtKL67pdI7ximXy53n+VcXno0CGW/b6Sx6HhlKvVEgf/ajT/aAAOdnbEAJuug51FjXNVhDAgpUt4/5WdnOjy0Szkt1Yzfvx4fvrppxeeb+bMmYwcOZJVq1YBcCZWDLg9fE+IO1IlCLLWBjvxo63QCAOm0UF8KTMcDHrLg5cmg1199xaagJrEnFxLUEAx0ouIXmtlRl1SFVPLPq2Fc26W8KoNEXexdw/EXSkMKgqZOHikWgYVTYwonpHxkp+R+1vaKQ5YLT2EF9LLTThPXLwXcgcvDGZwtndE7uYDxKFQKFAoFLzrL3SnzTfuCtdq4yy2y9LJ9ZY0BdLBxWihgaV5liIt+DIJe6ZRpufXeFVpSQ1HYTBVSb5TaRa66Q33elCxHjcrtiLl1jHub/4Bv3dnoLR3YfIF4SPUKagr/o0TqVGnAb8vXUTt2uK9PXfhCvHFBpASFYG15UNoknz4dBZvkclPEDMZHiB+ZNQyPQfWz2P75r8wmUz8MH0Grl+f5fITNaZ7p4VrlVB/bWKDhTr9KgKQ5OCX+Vsjd+FDVl8lPquINOGe6Cx0ZbVcHAx2aF8+OXQh/huwtrbmt6WLaNCoKU1mX0OhevMfzVeB2WwmYc8vxO5bjEptzTF1LYrNmkJjy1xLm57CsVWTOdO9N78tXYSLS/6oAxYUXF2dMQcbci74AshkMpzLNcK5XCNkSVEk3DtH7NUD3F02CrPRgK2zG87lGqP0LY0sqAYKW2fkSisUNg45V54LmI0G4m+fJO3OMabd3o2npxeVKpTjg25NqFy5Eo6OjsTGxrJt+05WbNxGVLIOWZkW6J2LYT94CFZmc6ZmgDlRUNs0K18cc9n4nYEcPnK00Lh8g7C1tWXixIl8MKoTX/96EOW/dEzJDf5aMJEvPxtN1y6dqVmnAYMm//Wmm/RcuHkFEBcZlnPBbJAe/Ri1g1vOBfMIK6/i6GJCsHbxem6Z4J0/4WOnwKn5+8iV+dO3ijcfSlLsceIvHyWwzahnfv9zxmjm/zzzhSFRrxOrVq1i4W9rGTrpN1w9/Vj/41Q0YbcJHDIfmcROyA1kMhluDfsSe24LkZun4t0t/9iVBw8epE2b/FGF/1cYl3fv3uX333/nyJEj9Ph4Ph0CBI9VfKZ3LfdJuGUyGSNGjGD06NEsX76cIUOeTwWpXbs2EydOxGg05ssy8Ytg5eSFi18pwq4fx7XIq1OitPEROBWvkXPBPMC1aluiTm3A2jMoc19cXBzpqYnY2L16qoSEf7aSeGUfjSdsR/WS9diXbYTC3pXQFR8T+P4S5BJBgIqtBhFQuRljv/iYLh1aMWb0R1hZWREZGYGs1MsPdmazmW8+aEuHVk3x8/Njyvc/0LLXKC5Z5X3lOSfEPH30VnjhCpE/OH36NEOHj8DJzQuTQZ8ldY7ZbMLD3YWPRrxP48aiwErx4sX56aeZTJnfn2pj/3rrKF0vgiEtiaSzG4g+tgqzyYhzw3dxbTkCO5+MFT/BKWZlY0/fMT9y//p5WrfvzOL5c95I/rE3BYWVLW4VmuBSWZgcmc0mEu//Q/zR3whMuEVA+jWcXT24cfMmSTJbTDaOGBz8sC5RD4WDaw61Z4XZbCb11nE48wd1alak94AONG78VaYYz759+5nwzfdcvXEbG48gXIrXIq3XMpws3nSdVnCYmo0vb1zb2DkAL08nLkT+olWrVnTq0JrJQxrzzbIjgA1rZ47EydUT/x7fv+nm5QtuXDiB2pRK925duXjxIl6BpbB1cH7TzXouZLz6uG7UpqJ2fr7Bl1+w8i6JJvQmjs8xLlOiQvB1VHP8yD6CJv+Qb+f1KVObw7N+YtjAd5k6tjKBYzZk/hYbFYadteKtMiwPHTrEB9+uQJOewqJvh2NWeOPXZyoyufwlrJescG3Ql/C1X5N0ZT9OZevnS1vDwsLw9X1WwO1V8NYblyEhIXTr1o0vvviCH374gb/O5J2mKpPJmDt3Li1btqRGjRpUrvx8Xnr9+vU5ePAgrVq1yvN5XwS1oztxyXGkxkfipEtHoX41BVO52gqjrmAj0+0CKxF/YWsW47J9+/bcPbOTys1fLRYsYscczDI5gQN/fmnDMgM2ARVwrNKG+BNrcGv5QZbfnL2KMHbaag5u+R0//0CWLl1KSpoWpcPzE5w/Dye3LMbD2ZaZM39k3YaN7D16liETl3Pp1ZyML4XLh9byzjvvFPyJClHgWLp0KRu2H+KTmRtwdBH7YcbHRg48uH2ZaT8vY+rUqXzzzTfUq1cPmUxG3969+HP1X9z4fQwVBs99I+3PCcb0ZNJDBHVSQ3Qw2mNLiXp4E5eiFfDtPB67Ru/lWEeJCjV5/5vlvD9qGH8uW/ifk2vPLWQyOfYVW2JXvjlJiZHcOrcK2YPz9O3SnkBfb6pVq8bZ8xdYveFXdAYjBr2OiPhE1Lb2mGVKTB6lkMnkyDPobslPMWMmPTmBtPhIevfpw6g1iyldujR37tzhr7/WcvHyFU6eOoNXqVpUbjmUyn1LEpYuOFkjk/LH2frPoU30+O7LfKmrEHnDnJ9mUbRIIGunvUfdLmMY8OFXjOxYjl6OtrTq+xlP08VnnmAnOjilSqzBaWKZC3JxTNNqRJplFkios2YJdRazWI9RKiMroWsaLCyrZn5SZ4qErisRJ+xe24VfJ85l8eLFJCYm0m/AED74bmWWib2/rTG7arIww8yK7B27WidxQq6w0GGl1E6dZ/HMbVm6OIc1SqigRmfROX0tQYXBrRQPTh3CXZKXXJ8gtsVVwnSqaide68nwWFIe30JjlqOQ2KcZpZWSfQdixDZKqbBS9VF3yXmMEjr0XaUa21J1iN49D0PtrpITiW25v+MnKvl6UnXYPFJMOtAILC2jlci2MFmco8rUOHGfhPEgDeE4lJDReDtKV6xDET9v2rVqQUr6EwJrCvmCr55YQI9unXkb8OVXX3PuejBdx8xl2rFbPFnxKT7dJuBRTFwAsrIRab/FbcR+fzdZZPeppIrMNkIYQ3pSDF69viP4p244lKiZuaAiFdJEwj72kDzHYhKhTx8bsUOsDQ6mTJn/B7TYlJQU+vbty6pVqzINwFAJ/zxDDl0u8dwvfmKhN1oUPmVp4oscni5Sq2QyGb///jsjR458oaBA586dWbBgAa1atWLeO+LLX36+8CANjoLH3SyJBTBaOkIWyW3LQFPUWaA5PjCID1fjUxaFT1l0W2bgVqoOD5Z/RMV2H6BQqdG6iYOSWJlwrFWiYM0oJHxrvEuTqrbngWVVVzq4aC2Dh5SSasrokDGCrLd9gDh5s7ZQMavZCy/3PgtlVOHqgzEhArWk7h49evDFjD8wA2lulpjIpIjM3xX6mCxtNUsUEeNCb2PUpOD/wTIAKks6fqpBuI40ifLqyWRh3ztuQjn/INFrdjC2MfeXfohXtXbI5Ap2xYsW3x59OthWw338QT6aMBC1lS1OlmS82nSLbLiEFuxXrBIAnbyEl9XFysiZ/RtRJtzm8KGDjP/6W/46fBH7dyYx+3wYVglhliqEa7ONEVM2ZMD+yUUArkbeydx3pawgvtTdUxxE9Rb592jLh6Wai/DhjQ6+TreZWWNLC/Hvw549e1i3/Qjvfr4AuVyOVjKveWIZ41INMvCsSY3hNbl19xaDP/0aPwf4e+M6nJyc2LN9C8M++JDkfT+wup7QJ5SSET3dR3iXHR+cyNyn0AjjlFR92qQSxjWrOLG/mpXWz5RTpQrxl9IJVgbtUS+ZLLT3VPP09lmOLhxBy+bNCCpajKdpT9lrpcZ90kHklvHRnCSqb5sjHwDwR0JA5r7GgUL6kopOHnQZu4B3B73P1g2rCQgQy7xNUMvAmCJeU8YEyWQlfgcM1kJaAemYnZESJLvUBtL4JWRyUICDqy+0+QKz0cDvDy+iunoXFq9GZSXcV6VCBQoVju42GA0GUhPj0d8+gk6ThkKpQCaT4+rmKVCN7T0x+nhx+epNBo/4mFiNCZmTN2kBdVG4t8R60MeERz8g/HEyPL5IRvyZKj0hs1lmS8oFlUaMn8tQTFdKJqzN6wrx7T+2E/rb9u3b2ernQq2a+Z+HrxCvhtGjR9OrVy9++nkuf6ycSbmq9Vi3+HuUKmtKtx/9r2JJSLFixQrKlStH8eLFGTlqLK37foyblz8aY87HvimUatybMxt+Ij02FBu3l0vTpIsORu1RpIBaJkLl6o8hISLb38wGHWmhN/gnXEbJsd+TEvrsfCgvKFK6Orv27mfez7Nwc3Oj55wTeBavyvWzB5ny6Z/5eq5XwapVqzh1+T49P1vExcObebptLcVGr0Ll4o02LTnnCnIBucoK5zrdSby4E5fa3fJU1/Xzh7Gzy798gm+tcWk2m+nfvz/Tp09/4cpiXhAQEEBqaioJCQk4OztnW6Zy5co8fvy4QM7/vyjT5QturP+OYrXac2PPUsq3GfbSdajd/NHHFmxCcplcgUyhyuJp9PDwICn6yQuOej6iD/1G4Hsz86VtcqUKh5K1SLx5DOcK2SvmKqztMVXsRPSF7bzMGqlOk85vP31BXGwME775nrPhChw6f/faPrgmoxGFWYur68vR3grx9mHG7Ln0GPNLrvNJuRYpT8Nxm7ix9We+GD+RXxfOA+DXhfPp0qMP6Vd2YVO5XUE2Odd4fOUwNzdP5eqlf3BwEIzOPu8NosmQ6ZzVZJ8TLye4ePrRadQvNG3Rhm1/b6BcuXL52eR8wqsSnF4NMoUS1waCUqPBEsNv0qVjvneShBvHMIXfxsrBFceS9fByccHR3ReF2pbUhCju/7OfRK2MFr1GYV+yQWadhxKEKUF8csEK2Z0/f54hQ4bw4MGDAj3P/0fs3buXw4cPc+XKlWyVMVO1EpEXK3H8cXFxoX79+nTq1IkZ06aSkJDAxYsXKVGiBCtWrmHz5I74V25BxRb9wOblGT9vCmmpSaxYtoxDhw6xa9cugiNT6Nun45tuVo6wsnPCwdGJxIeXX9q4NCTHYlPA4VEAZr0GmSJ7MyL93hkqBPkRJvdFaZ3/SdBLVanHsc3zsbGx4e7duzRs1pqOM05gpVbi6fnqWQDyAzt37mTHjh30+GQhp3au4PGdixT/ZD0y5bPvY17hWKMjT5d/lCfj8tTetRzeMI8jhw7kW7veWuNy7dq11KxZkwYNGuRcOA9o1qwZ586dey7tVSaTZUqtFzSsHFwp1nwwT09vxLNUTW4fWkXR7l+jeE6S4uygci9C8vVDBdhKC31CJsMYcoHSHQWKpoeHB6lxT7PkMcsNUh5fw8o9MNf5inIDz4bv8nDFpziVb/Jcw08b8QCFk/dL1Tt1VEdmz57N3r372X/+NnVGLufY3Xs5H5hPMJvNWFu9nr5YiILDjRs3UFg74+Tqgf4l0svJZDIqdP6Ymwt6s3HTZrp364pcLmfDXyupWLsxWt9yKH1KFlzDc4nzG2by+7xZmYYlgI2tPfYunhD+6pR9T/9ifPLjX/Qf8gE/TZ+SJQ71TcPH2xtj7CmwezOTmtR7Z4g7uAxjajzedbrg32EM5QOLIrdoBRSxETpaBtun5jvDkcXc4eD6+UStmUeHUXOxdy34GC2Ax48fM3r0aI4ePZqljxTi1aHT6fhg5GgeBodg6+RNjebdGdDp80zn1YkokWZ4NFakzVX1EFkIB27d5dzlc8z4YxAlncz06dOHJk2a4O/vz9cTvmTC+C9YvHgx8ye1pVrT7nR8b+wz31d/O3EpsLpEfVVrFCfVURIl2lOJopEanS6ODSYJFbKqi2iYXDCJrCYry5whTbL6WMlJ/F0uA4Nex58zRvP91Klcv36dT8dN5KsFu1FYmhAhUVzdECEOxmaVeL8Mkm2pEqdZ4hg0STQe5JbVfbnE+a6KERcojBIBLimz7mqkeI8euwjjiFZhg+bSFtzrCo7Df5LF+VUFO/H811PFtstV1sgUSuRKK5wlVMgMOmyEhGbrYyOeMyRBvLZAH3HVUyvJgeokUbSVaVPRhVzH2qt4poglgLqIsBgUM38+3Sd+wuLT8cjJynjJYNBYagLAaCO6+mUSdp1MQvPUSejVhxJdMAfV5/Lly9StW5d5c2ayae8cTLoUduzYQdGiRd9IPstbt27RuUsXZmy8xbczJ4LJhGeXKdhJ5/GSebI2NSFz+2ac5PsoMcgVEqO0sbNwvw6kCf1S7eyD2ajHbDIiUyiz9EWjRGi0pH32MfGV7R8zfMZYnj59mq8LF2+lcRkfH8/y5cvZvXt35r7FR4WXMForNjlDRnlbhNj53G2FBxKdYqFfSrjbf4cIdZQ7LdzkvnWd6dq1K5MmTXphTGV2BlOX4sKHeNvV2wAYJfkS5dnES5ot1KcwnVCXWcIvl9k6A5AUVAt5UC08YkOIfnAJv8rNufP7GErVaIG5gbiKaVYI15TBRZfy/V1MJiJCrhFz+wxypYqT3qI0vixDEVWiIpYR25mhXqs1igNJvF4onzGgyH0FLrYxMQovV3cMj85Ru7YQ7C+TyahYrjSq2NuoAioAoHkq6V6W689oc4bibdTpDfgPW4TaqxhD/YXnciJWpMzeTheO0yREZu7LMEQvJAttLyuJldC7BwnXZeOA2aBDgWT2bvkQWkfeJe3afhyKVccY+VBonoW6JrN1zCze0k2ID3BQmXl46yLuXh5069qFGs064NT0I86f3o9CqhKsFwaGDGVcuU4cCHUWelvG9WdQDAFSn9wAYFW8+FxUjsJ2TccMerOZkAfXKFVKTBtQiH8nDh0+ilf1TjxKVlDUwfIOS2jfrhb5eL1JfA9OPxRXeBz6LmfUxHaEhDzhk4/HoFar+W3+LAYO64/m4z3iiSxUfI2zSCPNoGDqfMWP7rASwnt0SRLP82DPYiDrhEDrLKTAyKDRAig0CQD06dQdgFtn9/HI3Yp69bKmQ/L38SQl/hFG56qZ+1QxwWJTLeOQTCLff/y2MLae9RNjQEYGFmHIt2v5/Kt+fPv1ONq2ac3bAEdHRxzkRhL0ksmB5bshjb3SW1KBKCWTMblBOEZmFscxraNANTWpJR7/jMmGQZy0GuPCiFg3CbnaFp9eU1B7FKGmmzCWWUvSDKgs2wrJp2y/qjyKdxehv7iPRRN7EjjiN9Qmizq3pH1KyThmVD3r3FJkTLglhobeQpU1WInt99aFcGb3aobOOcuqVasoXjybkI9C5BpGo5FLly7x5YRvSE3X0qTzMFoMFt8HufzlHL22/mWx9S8LjQawo4eK6dOn07lzZ1QqFb/++ivFixfnww8/pGfPnvTp249DW/+geedB+X1Z+YrDW/+gc9umNKhfHzd3DyYt2I5K/WIF47cJrvV7k3pqJclRj3HwLHia68vCmJ6EPBu1amNaEj6e7tx/HIbaqVg2R+YP7IKqsu/QMerWrUuP7t2Yu2AxzZs0YdCgQRw6VLCLLNnh8ePHdOjUjfGLDrBv3XwU9q64/4/+R0FA7VkUbXQw1t65mx8G371GXEwED25eIPLuGR4+fJjvjLjccbJeMyZPnsw333zzWpKdli1blpSUFDSaZ/PuZMDa2pr4+PgCb0sGvMvVx714VaLunqVohfpcOvAX6RG5pw+5VWxG3D8Fl5jakBSNXKnCycEmU1EQoFKF8sRG5V7VxpCehEmvwcor/wcfK7cAdPHhzy8gU+CUy0TlZrOZX8b3ZcPK3xg0Ygw27b56ZcGlvCDs0S2qVqrw2s9biPxFcEgYjm4vt2ouhdLGgWJfHeDP9Tt4t/8gTCYT9evXx8neFkPq6xun/hfxkU9Y9nVvli5d+syKhrOzU6aqaF5hZWPH6Kl/MnfJKj4aNeal2RIFAZlMlhnn/7qQcvsEIQsH4dKwH34D57xyjJVNQAXcW48kavusfG6hAJM2jbR1n7Lp51F0bVaJffv2FRqWeURwcDAdO3bkt99+o8uH0xk7YwNV6uWf6KBCoWDChAn8888/fP/99/zxxx/06tWLsWPHolAo2LN7Jwc3/cqMz3oT+uh2vp03P3H51B4SQi4xetRIVq/5ixad+hNY/G2k0z8ftrV6ojcaebDlxzfdlGyhT4jAyiPomf26uFAqVijP4oULcClbcOxDj4rN2bh1V+b/TRo14OzZs0ybNo2KFSsW2Hmzw8OHD2nXrh3vfrGI8wc34+Dk9loMSwCVsw/6F813gbD7V/n7pw/YNr0va37+FH91LI2rBvH333/nm0KsFG/dymVoaChhYWE0bPjqye1fFm3btuXvv/+mT58+2f5eokQJwsLCXmuuNe9y9TGZjITcPk2pGi0J3jiFsh/9katj3au24c6q8bhUbVsgbUu9fRIXR1eql856P4oXK8rfC36HgblbTUgNuY5DsYKJC5ApVJgM2eeDNBn1GNISsfMtTW5Yiaf2rmX06NFMnzmLy8l2eJZvhvnq3vxtcC5w6+xupo5Z/trPW4j8xbFTZ+jYNG+iTHKVFcOnbWLvyuk0b9mKQwf2M+W7SQydMgGXgQvzqaUvh9N/z2f/vn0UKfKskVOhXBmO/bUPatfL5siXh7WNHUPGzWXtom/p3bs369aty5d6XxVBQUGkRYeAT8GL05jNZqK2z8KQFE2RUatQ2DjmfFAOcCjfhLgjv6OLC0Pt6pfzAbmENuoR97+uz9btO+nY4e2ICf634+HDh/R5bzD9P/sZT98imCS+lRsJ4pRub7zIfEhPFIWmpEqgu1PEL6BMknt78l4xgXsF5xo06FODObWcWbx4MR07duSrr77ixvVr7Nmzhy++GESlSpXo27cvZYoXx8HBgSJFirDhXEK27f+oqdhffzsu0kL/iRcd1edTxXWPm+niBY4tK66SDWskCmVlYP1ZwbmmSU9l6Q+jCXn8iNDQUKbP+pkxc3aTqJNnruIDOEpoo/pUsS2G6BBSH5xHnxgJMjlKB3dsilTCxk3ybpjFNiokwlV6C5vJJMnpKP1dKmZoljATZOkiWyBR8oyKVmnK7ZNbqXj/OHiLKScuxkiopckScTSFCmNiFGZNCo/SxDYGWPzhRxLF8+ul6YMk7Q1LFdtbxlZkK9yXKAabrR3QJkTiEFABg4t4X74uns7fR9dTvWwxjge35l6yBpLDUKWL7TVLzpWRW9wsEVNEypCQ3AuzhEJ63eLATHctxpUrV6hcuTK9enTj8sV/XphisCDw+PFjerw7mK4T1/Pr6uUoHTzxqjcGf7V4vyLTJfNRifNVlireF4VUSVgiCCrNPx+qFY5VSFbgrRzdMCVGINemZKFjNwgUGCQJYff46f2GHDt27LXZVm+dcfnTTz8xapSYFPXXY8LNfpAiNDVWL97kjLh0s4QTHp0ivKAZFFAkL3IGNTPcIpe9yEK1faAvQsK9K89tU4YXfuNZcVWgnIX3/LeF0iqT8PIzlGGlgjelPARapIuFYqoLDMr8zcUywD3UCMZalMdwANwaDUf18BJP101EZjISd2wl3tXbZkpdp7sJHwCrxKfPtNm9YV8iDv2GV1cxwarMWVgtaeIjLn87WNrzKF2gukllp+WW/r8rRni5TZbrSby0i6aNG9KuVd0s5+zcuRNz5szmA38tcrmcey4iJXfPJeH+yizefa2zL8mJMdiWrENlS+zAyVhhwImTxGrodcILqZLkbnO1rJY+FVirlJIuIuqF8taO7hhin2D0F9VvM9QYE0NuYTbqMfqUEWXGLf3ELImp2BjthNlo4P6qeSyc8T2jPhtPkY5fIj+3IfMDYZsak1neaOMsnDtWoNpqJEq/mcq+lvI6l8DM3xzCLgnHW4kf3eQgYZJa0lfoN/3rO7PJVoaHx8sl3C3E24WHDx/i6uFHgAOAkXRLX0+X9Plo7bMKyTJnn8ztxMfXAfhVWwJzw895sK0iR48epUXz5th8Mo5WXrbIFQoitEIMS/3KImU/1DL2lXAQP9j2KmHbWS2Oo9cbvw+A+qxotGW8K4qUqMx9mlq9ALhy5za25iTc3Nxo0q4LWp0uS5Y2hQyCwyJo2nYCSkvsSaSbGG8VHCGIkClTRLp4xjhnvnc6c99PcYLhWi9A8LQ6vfMd/0xvz/QZsxj3+advTM3SwcGBW2f24N/kk8x99uEC3V1KI7aLuguAwTJWAOgsNHqzTJreQxiHbaPEmG69nUCVj719EplRj3/PbyjrL4wjtxNEOvHFJGGcrucsft4fWhSIHSUxU/UdhbF4h0YYW337/MDTNV9StN+PWcJJDLJnCU5myX3OmBQqS4hMkIlFNdy4cJw9W77lxIkT1K+fP3nY/r8jw7Ac+MU83L1fTuQlr8jIET5o0CC+/PJLfvnlF2bPns3t27d58OABhw4d4uTJk6SkpHD37l3ktsL77V2kFFXqtyWg2OtLI7R37QJ+/vln7OzsGPHRaNoNmoRS9eL80MbUBBLObiL5yj4U1nbYl66PXbHqmOVKtFEPiT3yO9rwe9j4l8OlZiesA14Pi6hWz3HcOLaZCxt+RDUqd4w0zdM7WHkVPDvAkBiJ0vHZOUnIvSvYyZKRV2xf4G0wl2vN9u3bqVy5MhUqVGD79u0Ffk4pHj58SMu279D540Xcu3gEzCa82o95rW3QxYZh45/9+2XQpnN52UhOnTpF3bp1sy1TEHirjMvLly8TFRVFo0aNXut5S1VtyJ/jf2DChAkoFPmTvyu/oHR0J3DYYpL//p6QI3/iUqI6tta2OR7nXKEZSbdOkHzzCA7lmuRbe9IfX0Vh50RibFi2io2lS5fm6um9VKmf86qpMSUOhV3BrAYb0pNQu/pk+1vywQU4VmmTq3oSrh2iYqnifDxlNv5txiB/jjLa64Ber8+5UCHeamzavIXAcrXyrT6ZTIb3e7NYtWYdTZo04Z327bl3cjOlG/XIUs5sNpOSGEuqxZOdZBAMSlt7J1DlrU+bzWZOLv+CuhWL0qpDN5wGL0Xp6JHFuDQkRZK+9ktW9fGgbIN38KneHmWNHihUeYt/kiuUTJi7hUVTPiD44QgWLVr0RgxMa2trfHx8MenSs425z08kXtqFT/ev871emyIVsfUrS/ylPbhWe/VVRrPRwLY/fiQ25Brr1q0rpMDmEzIMy0Hj5uHm9XoNSymsra35+eefefDgAZ9//jlOTk4sX76cYcNEXQi9Xo9Go8FsNvPPP/8w7ceplK7Zikbv9C/w9ul1Wu5dOc6qRT9w+MhRHoXG0Hjw88W/tOkpHP37V0IO78KlXm8CR/yGQpKr0SxXYFu0Ki61uyHTpZEWfJnYk2vRJ0bh02U8Vp5Fn1t3fsDGwZUqbQYSc+MQCevH49xzWo7HyJRqzNL8oAUAkyZVSHniHphlf1pqEtcvnyco0A9VQP7TLf8XNuWbs2/FQj755BNsbXOeG+cnduzYwciRIxnw425iw4O5fnInvh+8fhaNISUOpf2zMZNms5kLy0bx7YTPXqthCW+Zcblz504GDx782icHcoWCjh07cvjwYVq0aPFaz51beNdoT+SlPTw9u5USjbOn7/4v/Lt8yaOV45Bb2WFXPO90LbNBT/i6r/EfPI+orZ/i5/csfWrkyJGM+HhiroxLs8nwXBnrvMKQloja4Vm5dENKPObkGByb5qw0mXDjCCG/DiGpRDVcP9qI6ub+gmhqrnDnzp23zvFRiJfHsROnaD08f9LuZMCuUms2fTqK2bN+ZPLEcVSt2yyLcXnp0AbO71mJn48HtvbC6niUHEwmE9ev36BF16HUb93zlc+fcnYDVrp4Lj5ypu/8f9j3UGBSSEdx66LV8Bu/j3qxd7j913hC983H5sxqouKTKTM2bx9juVzOh5N+5fb+BbRu3Zrly5e/kVyYNWrW4mxKPGrXgjMuTQYdxvRkVNmsFuQHPBr05uHvH+NSte0rfYfTHl0kculgOg7tz9eLt/9r8yK+bXj06BFDhw5l49qVBAQEZGFRxUnUV6VUWE1KQua23EqcdMskb6YpURTKM9uKap0bbovaCabSwnc+/aRYn43SDLjS69Nfib60jmbNmjF06FDeffddZDIZKpUqUzOjWbNmNGrUiBat2xFYsjJrzVUy63FUiyvpNV1F56mjJGHv9mCRHRTqKoreZdyDZAmbbVADF5YvX06/Pj3R6XRM+Hoy7325JAsz5FSiqOVx8K+ZxF3eg3ezIYyYfSDTeSzND26Q0I7PJitwCSyHX6O+RNy/wNNV43Bt3B/His0zy8gtYlgmtXjPpblulVIxRwlVVAq9RFhw81MNpvqjiDq7H+XlXdi1GI3azY82vmKdu5/oxIN16diVqEXyjUOEBorssRIWJV+DxOi0ltxnV3fRGV/KRqI+K0mxdC9O7HdJJ9fgXKkF8rR4rHxLZ+7ft3MRHd7pyO27d5GXt85kDOodJGOWxAEn01hYF5I+msUwlswRpdRhs0Tk0btUHa5fv06tWvnnuH0RDAYDw0eMJiLJyKe/nmT+2QeErfyGwA+WUc1BbG+o5LEYJLRzaQYIubv4rTLoxHskHTltFWIf97YwjG7GiPdCE/MEVZHKGBUqlBLqdp2EjaR6KenRtfMrXWde8FYZl+s3b6dE0/f55bD4wv35VBgI/C35mDLUVqUIdBR5+OFagepjtCjqKe3FlTGDpWOutUg+9/AUBzOte01Wr92YrXGp1ZvYdzWRT/qKNIgNloFNYfEW+NmJL8aTRIFu28RPNG5sFMLLciBWaJ9SwjnXxgv8dpNFlrqmv9g5rIsI21c9AyjtGsCNyc3x6/gZMrkiM5G1VC1WbaGsGeyFc/t/sJSnKz9Hr0nBvZig1HjUKCpKmS3qhoHuAmU2xSR26bB04c0wWqimxkO/UqJhL4oElsTsap+tsVO5cmUM6fHEPrmFtZt4v/QuQhszBwe1DUonb4wGXWbMSKC18NLY6sU2yGXCfY3QPeuF87R8IzSSNmORbNYkRCLzLZOZyBygbqnSPDz6F1ZFi1KhfAX8yxTl8FFBXTNDnVFm1GHUpBB1eiMxpzZQtM1wPPxLIbuyhXR3Mc2DTVyw5QaKg3CmkqKt8AFUJ4nJhTOS0ZsdBJVhmUSEROdouTcSQRC1k0BldFAJ9V+4cIFu3fKWJLcQbxaXLl1CY1Jh75i/q/UymYy2Pd9n/FcTmD9vLqVLBBF88SDqMs04OL4BbRvV5PjBnRw+cpQfZs3F2krN+E9H0aJFCzQaDaPGfMy6RTd5Z9i3L31uXVwYqXtmEZeWRr/J+7NIpmcH9+KVaTBxF49PbebGpmnYWys5NqocrjU74JYLj/zzIJPJ+Prrr7lx4wZ9+vRh8ODBDB48+JXrexUUCQzgZFwcateC89anhd7Etli1AqtfobZB7eKDPik6cwzKDUwGHTGL+lDUScHilUtfq2bCfx1xcXH06tWLP//88404TV4EhVLJRx99xNChQxk1ahS7du1i/vz5zyhPKpVKFsydw7CRnzJ6+toCbdP27dtZunQpy3/7Hf+ydXBy9SAuG73G0Ev70UQ/ptLkQ8hkMuSKl1vpU3sUIfCjFUSsm4Qu6hHuzYfm0xU8C7lSjcfojdwaWZS4SQ0oP//hC8s71+lO6IpPoG3BCMqYjXriz2+h6IhlWfebzVw7tpk/lsyja89+2ErUogsSQWVrsm3H7tdiXBoMBgYMGIBz2dZ0btQJs9lM+IZv8eo6ocBZK9nBmBoPmJEpsn57dbGhrNi6gjVr1rz2NsFbZlw6Oru9sdWZkhVqcWTTQm7evPmWJugG+6JVcfXwJun+eZxK1cnVMQpbJ/wGzyNy81RCrx/Et92rccHTHvxD6p3T1Bn/N3G3TtKs2vMnOB++P5Rt+zdQqfeLYxLUHkXQPLkO5I6i+jIwalKQKZ+NsbiybgpLFvzMZxM+p8OkrVl+06fE83T7LBJuHUdp60iJzp/jFFQJWWrUM/W8bhw/fpxBg95u2fdCvBgzZs+leuex7JfknLttEasY6i86urwsTpajseLHQi6JHTfYC84LmU6cMd2q+wVJmyfRrGVbxo4awcefj8POzpE6FYri4eFBzTr1McnVdJ2yC01qIj/Mm8z7I0Zy/uxpli1ZTP369VGbtagscUkjAoT2LLwj0u9UaYLHPSlI+IAb05KIndsdK7UdXv0Xc+jBEwAUFq+z2V0U9lE8FuKKr963xDSrnfEc9ju6hEh8bx8lYt9i4i/tw7f1h7hYKOt6W4sRLln9UiUJ7+LZOwmZ+049cQZg+gMroCjm4TvZsG0sKWkaRn/04TPPoaBgpZIjc/ZGZqGJpVrugzpZ9LCjykgjJTqSFJacbibJ5MAm7pGwTyL4odQkYoi4h0fpunj6CY6uR1pLaitpuhNLfWfkohOjjiWlkbUkF4nW4pSr7yKOk+fvxmPr7IXh6S1s1cJ+raOY/1Kekd5GIiLUSBXDhhmDWbZ4AR07vv3J6f9tOH36NL169aJMmTI5F35DsLa2ZunSpRw9epQ6deqwePFimjVrlqVM+fLlcbK3IjYqDDfP/BONkiI6OhqVSoWHhwdLl//Bh1OzN2Q1STFcXv8jxT7dlKfVdbnKCp93pxO5fjLxp9fjUvfVGSA5QWFtT5U/k7k9vhbB8/rBpFXPLat0cEPl7E3i/fM4lchfkTGz2UzUtlm41OqC/H9SE6VeP0jbxvWZt2AJPT7+hZ2vSUC7Qu0WLJ6wpMDPs2/fPmbOnMmIESOIcRdWq/85tBlrv9LY+L8ZuyHu6Epc6vV6Zr9m51R++OEHvL1fXZk+L3irjMs3jY5DJvHRRx9x4MCBzOTDAMWLBXHt2lngzYsSpCTEobq2M9fGJVgGwF7fkXrsTx4sH4X3ezOxCaqa84GALvYJEVt+xJAUTcPRvyGTyUi9e4wGA58fF9ulSxfmzF9Kpd4vrtu2VB0iNn6X6+vILVLvncXau/gzHw2zyUSRYqXo0rkzSqWaLyb3I/jBbcxmMBr1yEwm1O4BlPt4LWpHd9QS+sqbhMlk4tGjR6+N8lGIgsHTiCjqFC3LkwLIFiKTK3DqPpUSj3ewdNNxytftgI3SBMjApxafzv8YpVLFwxQlKisb+ny+gNO7/qRN2/b8c/4sFStW5PeZnzL8q3m5Op/ZZCLp72+Q61Kx7b8ARTa5znIDtbMX6jo9sW/wLonHVxK2fwnR57dTrO8PIEmq/TKQKVX0+2Q2iyf1p27tmtSsWfAKrq8LRl0aaueCnSzIlSrMhpzju80mE8kn/uRoyHEunjuNv/+biwP8L+Pnn3/mr7/+yrLvliQn7cZw8VmZTBJVUmlqHKM4nzFL2DZSCp0+SaSfSrEpOAEAWyeRidXVXTzneglFt2fjxuzevZvRo0ezcuVKfvnlFxwdRUfEV+M+Y/4fy+kxXIgZ7l5bdIBIqb6lHcW2H3MVnRvnJCzSb9s8qxa7detWKleuTEREBG5e/rg4OwFmHCViZWkmGaeWfk6Fd7+jfVE7QGBoSacLSsl2qoRS281TXN0MdRDbfrD/T9yf0RHX2t0wWcJx5ImiU9pkLY6PCmn+a3uRBinXS5ZXNVJ1WXGabpIrKDH5CHc+rcDt1ePoO0rIM777kfg85BaRSe/u33B16XACR65AYePAX6nCqlpLD9EgdFCJ9zlZwhiTCmeejBNVTuWR9wnfuxCFjSOelZpDWgIAIwKEe/jHH7/Rb9pEeg8eSYO2P0KEKNCGZN1InhqHITWe5Fsn0CYLZWTaFNRu/tgGVUXlVSxz/qaUOCn10rRTEgXeG0lqDLKCM2cMBgOffPIJlx7G0WLUn9y1sWflLYFp+Gj1YoqMWo3M4nB7qhPvY0ya2EYpFdYkcQZKt1USanBVe7GeNIkk9KmMd0CvE8bgy3vwGjIfuWW+2r+iD6mJcRxTJVOnTu7thPzGW2NcXrhwgdpVy9K9tgsjt4ncZK2FRvlQI3R2Z6WMyGNriL20B73JBDIZd40GZCorrP3KYhNUBdsStbC2iLkY9OKLIbNQJPWWFBUrrosqq/ZeRYFyWKnd2LBxE716ijFLw4cNpU2bNqSkDMfeXhjQMh77qOLCG3MyVnz4YRYee6JkUDqTbElibeGPS+MhMgb7DHGb65J0cB7KrEp9RRp0JOH2GQxFqiJ/IKgoyiUpNwzWwoQsQ9JYliIOOi5lG2DvX5aw7bMwatNwrd4epxI1kSvVhMcKqw4Z8se62FBiDv2GLi4MvzpdcAjsQYdidoCWxXcO0azZZJ4HR0dHFBgwpydgbSe0J4NXb7a8gAobexQ2DphSEzgfKsR3DC4nfETi9OIo5GzxtAc5iPcyg8dey1G4tnUSYrs8JY7YHbMJeOdTFHoNqqLVM38zn5jNu906AFCsaBFuXzhGkY6fYFukCmqZGZWdCwp9GmCE5EhkRgst2KLiapUs0lxTvQQvspWE+pqh5mhSWlv+iisC1vHC/c1Ioq6QfEhklhWONHdR+CJjVcpktiIxLvqNeZ8KkX8wHCmI1AABAABJREFUGnOT+CZvKFOnHWXqCGIsXjYZMTbZl63brj+bF39DQkICCxcupEWr1hzbvZZGbXPwCgGJJ1fjrUwnqU5PrAMrYooOzlO7ZXIFzo0H4lapNfdXfMLNX96lxKcbXtmQkslk9Bk7i48/HsKWLVtwd382/jq/ERQUBPv/gQKkrb4OaOKe4lzmxY5Uk0FP6LxedGnXiiWbzqBWv1iJsxCvhgcPHmBtbf1a+m9+oXjx4mzdupXZs2fTqVMnfvjhB2rXro1cLqd69eo8+fr7Ajv3n3/+yZIlS5gyZQote2TPWoi8dhSltS2e5eoD+SOSJ1Oq8O4ynsitM/DsOTlf6nwe5EoVXj2/5fL+nzKNy+ygcvXFq+tEQpeOIHDkH3k+r9lo4MnmqdgFVcWtZkf4n1Rvwbcu4mAFPy9aRuk+PzxX/DA9+Aqxe+Zh1KbiVKE5jtXaCZTOhAg04XeJPrgMbewTHMo3xaV21yzG5YsQG5fIzl27ad8u/1Pw/fzzzxQtWhSfDt9nWbRIf3wVK99SKCQxsq8TKbeOYVe6PnJJOIrJaGTDjwP5ZcaUN9KmDLw1xuXx48dfGKdhNptJPLORx0f/wLvJAMp8uJRkheCJkSuUGNOTSQ++RPzZv4naNhPPth9lu1ScE/p+MocF0wZlMS6VSiWffPIJX3/9NXPmzHn5i8tH2LYdz9PzjUm5dQxX9Yvjm7KDysGNIr2+RZ8UQ9zFnTw8swlkMhQ2TsjV1uhTEzAZdCjtXXGv1Rn7olVRp4gezYc3zlGtcoUsK7v/C5lMRovmzbh1cjtVW/V7cXvcA9GE3cbaL38oPykPzqNy8UHtknVSmnL/HHvWL2bhg/ucOHWaIR9+Qs9l97gbKhh9Sm1KdtW9FUhJiHntKmiFyF+kpaVhNJpwVpu4niQ6FgwW7/YahfgBLWWhxV4PeyJWII1dsaQEMks8zXW8LA4QSQ43rSWViVKyz8mSauiqZeWjbKtBbN26lQEDBrB39y4aNm1N7VZ9eJQiOHiMKjGGRGXxGpdzsuXwmbUkuHthU6MnpujgTAcJiB54c9QDQIjHi40KQRt2G31iBCpnX1ROnjh7G1FaVjxV6cKqhVKbSIXe33Bl6Wgits2iSL8fs+T7UqUKXm6zdPyxUIY1EWIc0nStD+BOgw5j6dytF0cP7SvwkIuePXvy489N6ddvJDKZjNsuAk3qzFOJkIVOcJxKabEyyyqhY+ilzH0mhYWSai/GPSq1SciVahLjI5HrheP7+wp95fcn4nMyZbPqeDNduF9BkvQ25R2EOh6kSkRgnHzQpCWDX3l0lsmh9NkqLOkXPFd05tu5M+nevfuLbkkh8ohly5bx9df5rwxc0FAqlXzxxRc0b96c2bNn89lnn7F582a8vLxwcbAl9NEd/IuWzrmil0RaWhpKpZKrV6/SoM832Za5uWkGtUf9mu/ndijbiMitM9HHPUVVgHHXAEqlClsHe+Kin+Lq8fxz2Rarhkv9PoT9Phr/gb+8shGUFnyZiA3f4lq5Jc4VmmVb5ti2ZfRq15IFq7dTq+2z+csNybFEbp6K2WzCq91orCzhA2YnYa4ms3fBxr8sLjU7YQKSru4n5LfReLQeiUv9nOfyjYbPZvf+zfluXB47dowLFy6watUqZh5Ky/Kb5skN7Eq/OUZj3JHf8e03I8u+W2f3Ub1yBRo3erNx72+NcXnz5k169syer242m4nc+C0yhYrKX+9BkbF0nCZRX7JxwL5sI6x8y2DSpRN/5A/CN3yLZ5fxL9UOa1t7rF382LBhAz16iAZmy5Yt6d27N7Nnz36jCnjWXkUxKaxIP/knNH31RLEqR3e8mgzAu2FfAPTpqYI4jbNXZmBwFpqGBVsXfcWmNb/lWP9HI0fQvseAHI1L1yYDiD/6Jz698u5lMWlTido9n8CBWR0AZqMB7bbJ7NyxnZMnT/LesI+o+8Um7Nz8IPRJ9pW9Rbh5civjhr33pptRiDzg+vXrBJZ++1a0SjYfyObNExkwYABqtRqbXDgxIi9sx9nJgZLvzuTJc8ZCQ1oiCTeOknT7BCa9BpuStbEJqopdqbroE8LRRT8m+PgqFFa2eDV8F3vvrHL+JTt9wvUVX6CJCUXl/+qOpwp1WqFJiua9gUP5fdlirKzylvrkRVCr1ZQsFkRqQgz2LgWj5mrrWZS4RxdxqVtwRp3ZbHyhinfqrhl0a9Kk0LB8DUjXGTn50EiIOR4pAeFOqpRiJ1KdTJI8zVKFWKnQlllKLZRAZvUszRQAS5yzViJWcj9V3M6IEQdYKVGUFQQui9Pmg184s38d7d7pwoK5c/hp5jT6DRrOyCl/svGseBopRVYKpaTOn4PF61hqyYE+rJHAjrpy5QqPHj1ix44ddOvWLUt9fTYL9yXy+jGMnsUItfWFdBPukjRMxexEh8+pePE8DSQqtikSNpqzNCe4xcHl0+kLonfPw6fvD5gkadaUSSJFVuuSvSiT9PnKJMq93k5iPV28BDbVoVOPcalbh9DHj7Bz9UMmee5mCV0Ua3scK7dCrrbh0YxO2JdtyI7GAzJzU8okTnWF5DiTQo1Rk0LSzaPE/7MdlaMHPp3HofIqQcZdqh4g0uDNaU85uXc99y4fx/b91ZyLtdRr6WvpIVeJ/HsaPj2+wa5UXTp4iffXw0q48lSDKDR5MF6FV2BZirf5gGtLR5Ny9xTeXb5CmSrSbA0OouPtQrICrcobqwfB2d7bV4XBYODDj8fRaOxKvtqrYc/l6+KPTt7oo4Kxr9A0M3czZFXaNSE6haNTRHVX6UqjnZV4rEeWYTd7ypE2TeDFJl/bj9rNH5WdM96+wvfTbDKxrE89YmKyp7i/Trw1xmVISAg+PgKVVSe5pwqVFfFnNiKTK/DuNpGyTtZk3PQ01bPKTNfMlsS9Pb4hbPV4Uk6swbulkH8pTSe8mErLg9VLVgNSLPEGf0e4o601lDkLp2QxLlUqFePHj+fHH3/kyy+/zBRnjtI8u4KntgzqsZKBqJi1UM5gFvY9MooDvz41McvxOq04UIQbhEdU2k7sjFHv/8ajHzvi2mo0CitbFDrRyDZY4pTUKdFCu9PEOAazXKhDK+H5my0ecrmz8GHJoG+CSLdNrygIbHjGHKBCyQAqVqz4zDX/LwIDA0lPjCYlMQ5bR1ewyFCrLC+SPkkYJKx9SqOLDkEfF8aqpwIttoWrOGhbbluWBO9RlhWbtU8E41cW/QizyUjYhu/wbPweaisblEUqAzDYT8vFw3/j36kZ2/ccZO6yP/Fr9gFP7lyEOxcx+JQXrtWykmCQfmAtHwy5QWP5TYybyKC8yiTUEOsEgd6bsSqhkaj4Gix0WJ2FOmuWUGbVyVHP7HO0c7Bct4YnN89QvfqbpTgUIu9QvMEcqc+Dk09xzt++DUBkZCT37tzK8Zgrm37C1tUHj1K1ePLgTpbfDGmJRO6aiy42FOeqbQjoNRmljSMGO4t6pMmIta8gj+9TpRWa6BAij60kVqkioM2IzHpsPYNwrdSc0N8/pOjXh/J0jTVavcuJLSlMmDCBWbNm5amunODs5MSFPX9QsWlPjFb+KHJI3P6ysPUuTtj5HflapxSmbByKUiTs+ZmG9rFMmDC/wNpQCBEJ8fEUlT2fJfRvgEKppFG7vlSo0YQ27RqzZfMm5s7+kc/Gv8/oqSsz52N5xeTJk9m4cSNTpkx57mrvwwO/49VlYr6cLzs4lG9M6KYpGJJiUNo5F8g5dJo0rp/cQa8eXdHlXBwA+7INsQ+qTPL1Q4St+Bi1Z1HsKzRHIQNdTAggzPf0idFoY5+gT4pBplRjX7oeAf1nZWZdyN4tAUe2/0mLFi3xKlmbf7yy5rXVRtwnatssin68DoXEaM4N5Eo13l0nELXrF2KPrMCrZofnlrVy9uZpQjoxMTH5RiOfOnUqvtU74uCWfc50Xcxj1B65o+3mJ4yaFGL2LiJw+OIs+59u/IYvvpyAm5vbc458fXgrRi2dTodcLs92RdBsNBCzbzGe73z60vX69v2B5LunSbjycvkJnUvUIMWQ9dZ8+eWXbN68mfHjxxMZGfmcI18PrHxLY+1ZhKRbx1/bOU06DR9++CFLluRekWv6999yekPOkzmPdmOI2DjluR7V3CBy/xJsAirg+D+xQmazme1Lv+HGjVssPXwTz3H7sHJ48y9ebhET8YQigb6FMU2FKDAUK1YMs9lMUlIStZu0f2HZsLNb0Wq1tPz+8DPjddLNYwT/8THOFZpSfPAvuNZ4B6XNi2lY1h6BFOk2AadSdXi0aRpmk+hEcm/5Icb0FIzPyQX3MmjQ+X3S0tJYvnz5c8vcvHmTf/75B73+1eOwFs6bzZAO1Qg7NJ9rc7pwdmY39Bs+Jf3wYoxpiTlXkANkCiUmgxaTXptz4VeAJuwONs8JUUi5tAP5hb9YvvDnAjl3IZ7FnfsP8QkskXPBfwFcPX2Z9sdRxk+ayq9LltOsYW1mfNoTnfbFDo3c4OTJkxQpUoQKFSoQFxdHhQrZK9Wnx0dg5Vk029/yC041O5N8teByYq+dOYKRI4ZhY/NyaS9kcgWOlVoS+NFKHKu/gzb8HmmPLiG3skNh54LC1hm7olXxaf0hRd9fQtCQ+bg36JslnV92MJvN3Dx/kLNnz9KofVaGldlkImLDt/j0/v6lDUspPNqOJvX2cTRRwS8sZ9PoQ2bPnv3K55FCr9ezfvN2Sjft+9wyJp0G2f8o5r4ORG78DveWH2S5p/G3TmAV/g/Tf3g7FiLeClf6zp07ads2e5505N/TcGsyEPkr5MuRyWQUHTSHW9M74lC6LshzP0H/3/icWrVqsWLFCiZPnoyDgwNQMB/33MLOzQdzcvRrO1/q5gl89913L+UR6tatKxMmTSbkxlmwf/5qp21QZdKCqhC9ZwGebT966bbFX9iBSZeGe70eWfJOAhxZP5cqVSpjciqOY8tRL133/8KoSSXx+mGS7p/DmJ6EymzAZNAhlytBrsTOuzguxapg55U/H7Ab5w7SrnXLfKmrEG8WCrkZa4WZMcVFx9XcR4JHNEVi0JxJEIwQ65hHmfs0vqLMudwijmWyqAICHL8trDgetRcdJ6PKC5MCB0miclul8H6cTBD3KRJ1/PzLL3Ro354Hd28SpZGz5YlA4TE7C6vvhpQ4HmydQ8rDC5T6/jRXUkQKWVrINSL2LsLKpyRFRq2kSjFhZbKohC7non6W4hOlDczc3mvtgEar4fE/u/BpITBNHIpVx97FnfSbR7GvLqS40FnyxGaRdrQwDCoHiR7zMAu7YVmoGC9Yu+V0ZkzrxolTZ1k4/xdsbGwwmUwsWbqMpb+vxt4zCGsHV66cfg9fLw86tW/HB8MG4e7unut4TWtra7p06UyXLp0BSElJwWg0cuDAAWbNep9evXoxZMgQyzckK/44USxz+4Yl0fuRRPG8aUnCeO9YpQ2ha8bj1f5j9qqFcSZI8nlMNQqTnTi9+Iz8LBQ+N5X4HO5a4mrP3rmZuS/h8h6cKrfGpBLpw2aLQBkPT3DhzEmUyrdi2vCfx71797B28CDFwl6SqpZeTxbXrKQJ55US1Wapo0bKmlBK0hrpJPG5NnbiRNUoiQk2qi00Tonz92qaOIadiRTpfkrJPK2Vhzjf8rG2tNEugI9nruPOlTPsWv0zgb7ufNqnFj0/mES3WkOzXWCwUYrnHV9CvO6Mq9PpdEybNo05c+awYcMGqlYVlPCl6rMV7IXrv2xvi7davP6jMSIV9FyK2PY2LuL1J0jUP50kVFiDJJa9hbNY5kqddtz5e1Zmzm0Ag2SsVklFAF0k1FK1aMS5SnIht/cQrzni6n6K+zgyauQIvvzqa9QOMtRyM2bJ85VL6K0yi5orgMni6JMZ9dgFVcEuqApI0h/JNaITT50kLqBo3IIyt7ESDdqqTkLfuXJ4I1ZKGRVavMtNvRfoxGPTbh7GoVxDHEvWpJ+PNI+o2Df1lpRI8RKF2mTJ50LlLNBfffpMIWLbTwQMs6zWGcW+mzHWmYrX4vCS70hJSckU33xVfDByNK37fsz+dDtIz0ihJTIOZdpUbHxKoH10MUtuY08rsX/dTRevSW0t9i9vtbi/obN4HZFacb/RLBEEjRBprukPL4DRgJMkNKKvbzpzZk1m99YNbzRsT4q34iuxZs0aFi1alPm/0aLFGnJ+J4qUGEr3m0q0RvBunU8SO2gLV+FBuEomLsVshUu6kiL8tZerMDXsieLiVhS1BRXEDNqpPEXkb5ssk7JAC/87/H+eT9euXQkICMgcvLp/MIUqdVsgt5S7nPyst7u0g3h7M/KLaSyCCiFaSQyEJcg6yE74iIfpxEErQ0nWTjK38XH1ROvsiiHxCXKDNotiaQYdNkO+WmcnGoNKy+AhnThkUGplFoEMqcJpqp9gEHaM2cUDx3Tef//9Z67xRZDJZBw/cpCe/QYRee8Rzg36IW802BILIolX0KbgUb8XkesmER15n11tx2S2x2wZ/KT0Uyw0IUNSDJE7fwalGp8ekzDKFbQtKUxYq7lqiYt+ypdrfsajeAVsO47A6slVALSOIsVBaVHV1dkL9ykjuBxAGS1M7jUexdFGBRO/ZwHaiAe41O9NrRELsPUIxCBZbA2JjyP1zmnCTqxCe+wvfGt0wKWkkD5ESpEFUEhWY0yWZ6VODM/cV76I8EFPCTlHl89zlx6iEIV4FQyf+CuLvx3M5SvXUJrSuHxwLRR5BxAoU6azKwk9uh4r7xKUGb0aKwutFSD10UViDv+B/4A5KB3zRkVyq9ONJ6vHk/LwIvbFqiGTyVDbOqC4ewCq5z1/olyhpPmELaQeW0Czlm3ZsHYV23fsZP/pm3SeuB61tTBx0HSYiiE1ntP3jrBjwMekRAVTr1pFfpj6HV5eXjmcJSsyJjjdunWjXbt2bNiwgVq1atGgQYPMSYCtrS1NmjTh4i0xvCESF2yd3DHZlUKuyhon6lKnO9F7FhC1ex4Bg2ZljpV5hS4hAk3kA3yCKmf7u1yhwsnp1VcfCvFySElJwcM3KN/rNaQmoIl8gEmbjsFoAJkcK+/iyKwdXpvqZenKdShRfhX7Ny2jslaHIeo6AwYMYNKkSZQo8XIrtbNnz6ZGjRoEBgYyZMgQNm7cmG05s9mMPh9WSXOCjasvabGhvNy6Ys54ePUk8z/uzqNHj5DJZJw8fZbhbcfm81leDiaTicsHVuFgY0fJFlk1QEx6LdEHllBqwp58OZdtkcrIVdak3j+LXYna2ZaRq6xo3rw5N27coHbt7MvkBvv27SMq2UyTBu3Zf+f5yTqt/cqiCbuNQ/Xn03XzE7rYJ0RtnUHQmDVZ9p87sJ4mDetmhha+DXgrjMuUlJRnVsQ0idFc3TiD8l/tznP9AXU7c37JGLxq5yyxn4GEuGg++XwcPbp2plixYnh5eVGzppAz7bPPPqNj5y7ERoVRpNnQPLfvZWHQpBB76wwe5eoV+LlMunR2rf6Zk8eyj3tKSkri9u3brFi5hss375KWlo5RJXhoRLtLhqtvIJGHlpG4ZhIqZx+s/cviP3hepnCETC4nsP0oos5uIXjxUNybDsS+VL0snrUMaKMfE3dqLZrQ23i2/hDb5+T8XLfwG3x8/TE0HJGnCVj8ib9IvnYA357fYmtJM2Br82y7FNb2OFZuib1nEYzpycRsn0Xiw4sEtni1PpIWH0FiYuJbwZ8vRN7g6OhIXGTom25GtnB0ceeTmRuZMqYrFYoHEHp+MwlnTqL2DMLu0VHGDnuPr4Kv4t3npyzvkdmgJ2LnzwQNno8sj4ZlBvzajyZ43TeUsLxnjpVaknJtf75N1GQyGU27DMeveEUCAwOpUaseH037i3BJDLxMLkfl4EZQvS4E1esCgOH4PHq+Nww/d3vKli3LiBEjXjqux8bGhv79+9OjRw8SE0WK7I0bNwgODqaCuzhi2oXc4+7lu9zcvYviY9ZiU7Zxlro82owk9sgKri/5kArDF2Su3r4qzCYT4dt/wqf9WGQy2TOxVWazGdNbrKhdiOfDbDISe2It8ac3YDbqUNo4YOVZDJWzF0aTCZMmhbhjf2JKTRTYOM5eOFRqiWOV1ijtXQusXQqlklY9R/DoTj22LptCneoV+OqrrzAajTRv3pxSpUqhVCpJ1gXg4PRsO4wGA6t+/hJTylPWr1/P+fPnqVatGp6entmcDfTadKxsXy0f78tAobbOVrE5LzAaDaydPpTr168TFBTEgQMHsXPxQfGGWQRHVk2lXfP67D93BxffrE6BhNPrca3fG7k6/2ijHh0+IXzNeOxGr35umWbNmrFr165XNi5TUlKYPHkyA79dl2NZK+8SJN84/ErneVnoEyJ4+udnBA5bjMLWCZOFsWAy6Di/bzVnThx5Le3ILd64cRkcHIyvb9ZVHbPJxIkFI6g99CfSrV+eDvu/sHX1RZ+WhNlsztWScULEIx7fv01s63eZ9dtW7l88io2Vgs8+GYuXlxcNGzZk4/p1vNO5O161e2Tmcnxd0MWF4+rmism/asGf69ACpk2akIVicPv2baZOnUpERARGlSPeASWoWLcTLu2EZOU3Ui2rppIZSrjWQDHAqNMSd3oDYSs+5sH09pSYsDezjEwmx6tOV2zr9Sbu5FpiDixDbuuI0skTTEYwGdHFhKB09MSlTne83/k824kQCAHmT+5chKpdsC+fvXR2TjCbzUQdW4VWk0LAB8uwcs79qoXCxoEirYYTd+sE9zf9QMDg+S9UYMwO0Xf/oV3LQkrsfwFlypQhOS4czCbsJez8EUGCsbbwocjIUFnosKr0hMx9srAbmdtKy/4MMS5hn0AB07iIVNMljnUB+LSYlBYrbDd3FftijAbAmtGzd3HhwFoe7PmNkT2aUqtmDapX/5jDhw9TrXF3nCsI73dGPudra6bi2XokdiVr4y3xtaRZiCQJEhqf0RLe720tXqeUcdKqQlkAjpyJQWVliynmMWn2bqS7l0KTvB5sHJHJZKgi7gKgtxMnm4FuwmSympM4oatsaaOUSphkcUDPuW8G2zoEjVjK1d/H8EjrjF5CQcoYt44/ChEvyr8j+HckymzmbNgtlrfrQ3FnFe+0b0vTJo1wcnLCw8MDO7ucv1c2NjZZ4qVelMM2MjKSdu90ppKmC9M+H5h14jx2Ou+OX8KNRe9S66NlmQm4L1koi/WdREdAquW2748WV26MlkTtCr2Gp9tn41CyNtZBVSzjqXg/mhf1I+HpAzTl8z91RCGej9DQUFS2Thgt/XFFuPiSKZTiu6NSOWdu66RqsUolmvB7hP42moq1WtHyi2VYO7iilVAOpS5XneUdSI54xLmz+3k0tx+2ARWo1fdr1HbOGCR9IkJiO8nk2X/Xdj+VOiPEMaiKmzhfCrIxgmd1mn6xgcRre3h88Q9kRqGPXrx8FYPewOlTP2Fvb4+zszNSXL9+nfLly7N4g7AAsXz5csq3GMp6Cx3WJHmn1z7RkB5ygwRbX4Ikdagkho+UInwyUbzXFe3EMctFLW5LJSIS9NJ7I8OgtstkWAGZObMBTM+J0etRVLy+sk6S5yiD88d28+GIDyhfXhAg/HDkR3Qdt4Joi6CkzCg1ZiXMN7l4HarESMs+sV0GR3FOI61DJ1FiVUqptRJnQ4CdkYSQG8TYFMOu8YcEZ4hbKlWYTSYSzm/h07n7UVrCMjLYewApEgpsBpsvTEIJ9ZV8Tx6miffO2rsEKmdvtOF3sZassuslSsYXn6pJ07y6cd+kWUta9hrFoghnAMwJolNYoZc8F106SisbnobfwxjxIJNhcsVBHCfrO4mrnlKlYRtF9vtvp4lOwpCosMxtTegt/o+9sw7Tonrf+Oftd7uTLbpLulMaJSVVQkBQRBRsRVERARVFRZRQUUFaQEpK6e6uBZZlu+Pt+f0x8+7MysLCsgv4/e19XVy8O3PmzJmZk8+5n/u5uWQSIb3fReuw4Ui4wtB64mJ+x+9fMeDlF+8YHvBh4KEvLpctW5Ynab5gp2jNPbFzDS4RtVGXbcC/2aahRrnWXZS+s6uiUgY4fUukSZSX1An7B0eSdf00Ou9ggnzFhhPvqZCLl6iy28+e4/yMPhiiHuNg1JMQBU27vkvqtdNMWL4edfKfeGVPYsQzA3j22WdYPP99mo/6EmuW7P+olwRjdmXK5WrlJXZKoVJg86bIlWhXuvgZjCqxzLUU0QD8pMe9qWCFXl03k4zkNCLqdMWmUmFVKPzps0TlUZvkJyModv6clFe1gmKqljo9QSWVRyWX61m/JJYmHadHD5HjbrFY+HzmLBat2khUv08oE1GNQ5fOkwicSALDxX8A0OWIdGOrm/x+NVLHpRUchPiH4PfaCs58M4zk2U/j8/zPqPUu2CSKrlGjI7TdMGg3DIcpG4clF2tWCloPf7Sunth9RcpohUCxY8xUUPnr+uTy84zxHD3wD9rIxwiq1Bz11YP5ns2m8AvRZ6dIZRU7TUFBV40//CeCmxcTJnx6i1HCLPmk3FBw6qu6ivlfdxMHgJMJgRgi6uLmXYabm74jpPsreQOLMsyLUeq8smp0kvPysHE9egeNnri9M3kp/lsICgwgJzMdN4W0/KOGeu37U7nB43w3sRt+fv60a9cO4BYDWlr0cTJizhHSe3Kxl8EjqjaZ0cdwjXoMl7Dq2Iwu5Bxdh1vdO4sN3fN9GvRC+9ubnNm9hgpN7o52q/UMEGX8q7aku38qV84eIWbhQiwWCydPnuTpp5+md+/eeHoWD70wKCiI3Tu2s+qPPxg9ejSpqal4eXnRpUsXALz8gqnRrCt/vNWJCi37UO3xIYD3XedvTrhC/M+v4lOvGz51O2G/TbrYQ2vp3bLkmTKlkLFnzx7K1+5S5OszT/9N/B/TiHj+B+pXuHsNAI/gsgQ+PoqA9iNJP7aR3R/3oMbgj/CuVnJx8zRaHbWadaFWsy7EXT3Pwnnv0LVjW95+8zVUqtdISkrCbM6vc+Hp6Znnu5yRkUFsbCydK1QrKHsALAlX0JewmE8e7kOc8NasBNb9OpO/1q8GYOPGTVSv35rgqOKJDV5UpCUn4LCbOXToCBGtP8l3LvfKIVzLPpYvREdxwb1mO3IuHcBYs12B5w1GF6KvXi1S3j/MnUdklXo81rwzG84Xnl6lUuFTsx2p+5bj17xk5mppB1aRvn8VYc98hs4nBBQ+tQnXL3D9xN/0nl1wTNeHiYe+uNy7dy8vvPBCvmPxh9ZT+anilYvWGV0xK+P/3AaZ5/egMbrhVUuuuCqVCt/I6rjbxFWf2Wrm+6XTCPOEG0f3cv3EDvB8cA097cIhXGt3KVHHXUFwMO/j0Sz/fSEgiguMGTcRXbmWdHxzKQm2+1MvVesMVB0zj9hlk7j8Zn1CnvsWb/9b4z9p9C5o9C535c8lCAKLvnwNnS0VbWg1/IZ/j/rSniKVL/P0P5jjLhL23Lf3/Z69G/Xi2r5lmBOi0d1GibEgJF89QcOGDe/r3qV4dNCyeRNOHNhG4/a9HnZR7gh3Lz8mfvc3X732JE0a31r/BEHgxG+TqPX0FJILuP6+7x9WjeRjf+EKaD38UHmXIXvPb8W+uARo0utF/vz6Fcbd5eJSCS+/IOo068TQ5mKAb5PJxC+//MKQIUNITk6mRYsWVKtWjSeffPKudjRvB4PBQL+nnqLfU08hCAJbtmzBZDJhtVoJSz7HmZsXCAnw4vrORZzZMA9N+YZ412xHas16eIdWKLD/smUmk7Dmc0wxpwjr8VpeQPOC4LDbiTuynufn/F3kZyhF0aAuIt05+8JekjbOptwrS/PFu7wXqFQqvOt0okq1hhyd+zIuR/+ict93UBdzeJ1/IziyEi9P+YUtq+ZTr2Ez+vftQe3atalbt+5tKa8LFy7kiSfu3IYdVhNaj+Kh7xeGwkL63AsO/fMnrVo0IyQkhGvXrvHe5CmMeOd7HjZJ/cjuTVStVB48y5L6L1ZWxtGNeNYr/v4awBBYlrS9h+A2i8vg8HIkJqcWeO5OiI2NZdTIEfzyd+w9XedfvzuXlk7GJaImrhGFh+m7WwgOO/GrPkWwmYkY8V2BzLdtP01i1dJf71pw7kHioS8uBUHIpz7nsNvJvnkB18CoYr2P0dOPtPQEDP+KwfNvpB3ZgCn2HB5VW942jVpnoPW4+cRfPIJ5/z7izuyBRg9ucSk47BhDKhWe8D6QcWwdzw7qR/Xq1flp4S/88NNiqvadjF+4tOV/ex/nu4ZabyRs4Ke4nNpK6q+vYgsui7Z6J1wiaqL3uTfHZEEQiP/tFQY0LMuXX64maNKeIi8KbdmpJG36lrKvrSq2BXxwt1eIW/cl4SNmF54YSL4ZTflyZR/JTqMURUOzpk3YO+d37A65TjkN3EplR61EvVFSmrQ5KfI1WpF+41CwEnL9RIu81iQrN5qvnQBgqqVi3jE/N5He7qWoVs4qblcY2+Msbrg3HcKZM2fQ6XTYUXE8VhScyjq6DlW5hiQFVuVJP7EjWJ0s9+FWKUxGii2/EA1AQwUlL9xV3ic7KimXOjRatL6h2Cw56DJFhTzX+v24OG8MQddOYAkT6bN6RQy5SEmEbXuKQvlQeqbGCqqsRjpWzVO2pp9q9gKW1fPYsWgazfq/DsDgYJHN8b1Z7oOcwmoOhTLnFanMP+5MyzvmUq0Pvav1wWG3c/HEbv4+foHPv+pM+XJRjH9pDI0aNbqvPkWlUtG+ffu8v3sqzmVmZvLmm29y8eJFGvlf5e81mzkYc5najduicQsg4cYlsm/EYcpIRK3VU6bdSPyHf4GvgoJW20N8vkhFQPncU4sI612yxsxSFAy1Sq63+d+/zJgJU6z1rjp02E1ZxC15n1EfL8VF2tkLc5XbgVKFMlNB59yjpIK6yp2B1s2b4AkL2LB6Pn9/2pfI0fPQGGXfRa1CQVSj6JPsFnmBJSgol0di5FjaxxVhwZR+io0CPKHZWGo3ep5rlzZzdP1x3p/6FfVrV+ap3j1p0SL/LmpaRjYO35roFSy2S1kKBdWEc6gzElFpDegVr9FfJ3eEN9IUrCWrgoKskl2CfBVqse4K5eVUBbUxx2rF8a8ofyqbkhYrL/aVURCqK1RD+zYS2S3Xrl3j9W/f5cyZM6SkpFC2bFmmzN+Ml28AubL+F54Kf8eMGxfk+yrU850x0AWFQJg6V/b9VtJ1lVRYJZttVDnxWkEQmD7jR9yNOppMfJ+zKfJiTqXWYoo+RlDPt/BWvCPluKekgpql46cz5PoS6irXKQ83ua5lZmeidvPBYTXnE18UFHTwHJsndkFDWlraLVTq28FisTBsxPNETVzJ1Is6wIGQfBkgn2CmzUXOz6qgDkd1e5krSz4gtP1zXFDQU88r4qYrxbKU470yrJRGEnW0pMUTs2oqXvWewLtxb1AIbaol9yxN0hkqhAcQFiYrDj9KeOiLS4vFktdpJpjURJ/ch65iE25YxJdf01X8UGcQK34ZhZ/OIcl0o5T1ddJifaVKvT1dPHctMQmvGlGg1hCfLEklK3YynVRRS8JlvOt1Q+PikWd92pfq/Phyx7L5whXAm4CJG0gCVCZFXl4iHdSisF5dyhXLf1CakLT1lgfvvkFivulWsczKbmljqvhu7FcO5h2zZSZiKFcvr9E7tArZeMkvQmNx+tPIPZBd6tQMihAmTpVUp39Xu+ZtyUyKZf/WU7z80lT6DRrCoUQBl8c/4MTFC3BR7LhsRrGj0isGPEOGpHbqEDtJtUHuFFRSYzJ5iRM2fZYsrRxYoREengEk/PUN3ufXcH3rHASVGpvNAXkeQIqZr+Q7m+Lli7unNyF+3mRlpjFmyGD2HTpOm9cWcy4rGSErWQ5dALgki75sWoUvW2ZZyelbeg6duw+xv79HaP8P6RIhvhsPrTjhismVO1mnv9i+FLlTC/cQB4qKUggGzxDZSnoowZsEay62lBvoPAPyPU9GeTE2ZyUv+X1d3fI5L4waRin+d+Dn50di3LXCEz4iUEuW0ouXrqBWSxMTu42kbT9S5f2SEzEQHPZ8MW/dIqpjDCzLzc3fEzTki2K9l0qtJnzUD+z4pAuVmz6Jf0TxGAnVGg3V6zWner3mtO0xlJvXLzFjzi9cfXkCz48YRocOjxMefitT437g4eHBrFmzOHjwIC+88AJG71Bem/4b0eePE5ecQdlq9Ylwq4jO6I5Kreai00fqNqHRUxJucOnMYdb88AnHjx8v1rKWouSQuOk7/NoOw8Wj+MR4VCoVvi0How8qx5XPnyJy9Dx0PqGFX3ifUGt1VGsk6g407zGKlPO7GPXiq5iyU1m5fBm1axesbHx7FB9d9XawJF9H71fmvvNJT0+nU6dO/PDDD7i4uDBlyhRem/Yr5arUuf9C3ieunj1EZsJVIjsOxeDuDVlpeeccllzUBlfU2pLZ4Vbrjdgy78yZCYqoxPXr1+96cfny+FcpU7kJsVWaF6lMOncfyg/8iKsrP8Vw8wL+bYejKgLrQHA4SD++ieQ9ywke9MkdN5E2Lp3N2+NHFKm8DwIPfXFps9ny7VxeOLwNz5rt73BF0WBOiL4r5TN7djpetTsW+/2LC3arBYc5VwwEbCoZYsSJ1V8w9cN3GfrcKOzhLXB9rEmJ3EcJl8By+I9ZjCUrhSDFbp0uQ/QhVTpSIzhwWEyEh4az4YMn+H7rNtq0aQ3Ab2278tiTDTl3Wo7ddi/IOLoBjasX7lWL37/Es3x9cqOPoqtVuEhP9LmjNGz4frGXoRQPD5GRkZgzUwpP+Ijhj/V/0Wj0Ai7E5ZB9fjeeNdvdszjVvcCcHIPeKz/9LaTDGKIXvV3si0sAtwoNaPLUBJZ/NICR3x0q9vwBQsLL03fUJMw5GRze9RcbXnmFwMBAJk+eXKxq0CqVigYNGrB//37mfP8Dn0/sS0SF6lRq3oegiIok58rWc4fdhiU1lnRLBllxl7BcP0pC1g1y05MwagUC/H2pVaMay5YtKzAuZylKFrm5udw8tZ+wcrf3I/w3BLuN9ENrqTRpS4mUyb1yU3RDv+La96OIGDnngSwwlahSuzGTv99IQuw13nzzTdq2bcurr756V9dq3X3JvlryRhJz3CWMofcnfnXz5k06d+7MnDlzaNGiBSaTib///psXp40vplLeH6JP7qZO3XoYQm+tm+bY8xju8/nvBK2HP4LNfMc098Ky+HnhL5yNjmfUO+9z4GzRy6UxulO2/2Tijm0mevZz+LcbjlutjoWWRXA4MF0/QcaR9eSc2oZHleZEDfsSfG+/I5l5+m+8DHaaNn10/eAf+uLy3wGZY84ewq3FS8V6D8Fhz7Om3DGdIGA3ZeIiUa8eRWSe3YGqiD4UdwNTZirRh//iwymXsHtVoF37wVw4canE7qeEWmdA7xOSLyCwXu3ciZV3YJ1Uj7A6bek1cz9z539DmzatsVqtpKWn3Rd9K2H9LKLG/lLk6+8Eg1842enxhaZz2KyoBRsGw620wlL8t6HRaO5atfpRQExMDFlmJAn/HLLP7cK/hIQLnMi6egLXf01OPMrXR7BbyI05jUvY3U+27xYtB73NyS2/sXX+2zz70kfFnr8Trm6eNO/Qmz7vPsfevXvp378/LVu25PnnnycgIKDwDO4Bo0aO4Lnhw7hy5Qpz5i7gt+VfYNa45dU9U3YaNapVI9DfF7Vgo/uwjtSuVYuAgID/TP38X8bbb79Np+69add9AFqdnibuMmvr7xSZZnkdeZzIOfInfvW746I3UM5dnoCfzpDHVLOCnmhUyzt5SmG8GIWkrI9WNPYaJfqrMbIG2ue+5eqckVR8fXU+CqjVLBuBleJ4SlofCkqgPVdhIFdQOPdek689mi1PsivkCTpWosPLP7Hl10/Z+kQvGjVqiMmm4rvr8nOa0hLkvN18MdRox83NP3Au5goqqTwaBb1eoxCf0SqoozfSZMrnJocsxuauoJjFW2QmWvqp7XhUa4kqOy3vmNoun7cZ5XehV0RDMEm0YIs5l969e/PTTz/l7cxmZWVRoUIF1Ip2qVRfHV5G/tbf2svJeSbLiqNqaTNCmyM/jzLmuVJk0OoXKT+cgtIcJLkyxJ/bTcUqNdgfXJekLBXqNDlGt8OcLRodVOo8dXKQVcYBTIo6uD391h0+b8V1StPbkQyxLPbcTFCw39DJNNpUsxqz/e76rwU//sTrH39OxKQ9zLiiRh17OO+cXZpn5xPFVLyvfKq7Cpp4YMMe+FRtQeLfP5P41/cYgsqh9wsDAQzBolueQxAwxZzGFHMawWrGEFoZjxptCe71dp7h1qgIm5OTJCvW9vPL5sc1k/hs87pHup9+qIvLM2fOEBUVlfe3USPgsJl5LMA771ioQazMHlrxQ/opaLH+OvHFBrnIHa1B6iwTTGKFtZhyMMddQB9UDqO72DGYsqTdA0WHp/IOxhxzBoNGRddaNdDo9GxIEjsEq7Tlr/aSKZaC1Jg0EvFdWelUkgR1gFHurC5lSulSxMb+e7JccfJ496miI7FO0WicCq9CuOgonLl5Hi5RdUCtRp8pLlT0CqVah17My64XG4YuW6YP2KX7aBQccq1J7MRzAkXO/m8zX8KenU1K7WcQgqux/PgFNBKf3abgjzvvnRFRX85fot26JouLUYur3C1oJZquUeKUq20KSWepU3O+Q5XS/0zyNbO5yrvOgkRt2XfuNKBCd+ESdrudkydPIpRtzP4sNXbJcV+XIjdKm9FTuo+Cz39lHwBZlVqRe+04lcIj6V1BLPclSdJfIxX1jEImOtCS5wiTdyxVGpydoRj89HIHaTN64jC6Y7t5ERDyhVKIChKtv08EiwPEyX1b8GjVjFL878Hby5P01ES8JMVqqzTIOhQ+OWrpt0NhZLG7yH2PPlvqH5SDnvTbqvAJcaoQqxMv5h3Lls6nusuU7RiTYhLozK9iU9LMdrZu/5vkKt3549JN1OZscq8cof8rM1BrxMqeaBHbiNLv67Lk0uCtmDM4QxfsyZIPxlvkwflmnKju52LKJOPsToIf64RdKz6TUy4/oF5n9Os/pv+UP9mSJj/7zgTRb0jvIvdP4UbxPlcVbTbMRSxXdXd5Fn06U3z/KrWaPu/9zsKJj9N3+BsYXd1xKCaE9mxpQqb4TiskdyWVYlIWECkvfNtIrg/lPBT5SN3Foj1pQBWGvP875w7/TdcnejNm1DD69++P0Vh8CosajYYKFSowferHxZZnKR4M/P396d+3Jxt//4aug+9uxyr16CbKPDmxhEsGxuDy+LcdRuzyjwju816J368g6PQGOg19j7O7VvLTgim0fcobvG/POFJr9Xg37EHavhX4NLv7mOf3AntOOllndxLS5z1sKTcKv6AAbFw0kwEDBuSj/EZHRz8y8a5Tk+LIzkhFrXl4oS+KI3bmnO/nMvuHHynz2ob7ioNeEHQefoR2G49Nq8OSehN7VioOcw7WNHHuLegMeNTqQGC3V/ItEO+GEbR9+TeMGTXslhCOjxoeamCUpUuX0rdv37y/LebcfHGHigs5l49gjKhVaDpbZhLVqlXj9Jafi70MxQXt1b2430Fs6H6QdmA1iXtXEjL6F9wb9C6Re5QEgsqUJSkpiU+nf466StEp1RmH/qRO+wHFWLJbobmLmKgH//qFsWPHlmg5SvFw0LpVC07s/ethF+OusW3737hVEmnxDqsZlVqLugRFphIO/olv1RZodLfu2rvU64HGks75fRtK5N5B5WpRpnJDvn61e4nkXxDUajW1GrZm3NRFOBwOevbsycWLFwu/sBT/L/Dq+HHozPGcPHh3Sr2WlBsYg8oVnrAY4Nu0H7kxpzDdOPNA7nc71G3Zg9Z9X2LLijmFpvVq0JO0vcvyCaoUJ9IO/IFvs/5FXqykJt1k++qfefHFF/MdP3DgAG3atCmOIt43Th7cwSvjXig8YUlCVfSli91uZ8iw55j382JenfE7WreSCw2m0ugw+EfgGlUb98pN8WnUS/zX5Clcyz2Wt4N+t8g6t5uki/t4evCgEipx8eGh7lzu2bOHd96RQ45kJMfhHXj/jtD/hunGGbzqdSs0nfbafj756AM+njaT+IoNwKt6sZflfiA4RAKK1juo0LT3CmtqLPF/fErUkC/wrPLo8rgLgsVsIjo6mtV/rKTGD98XOZ+cy4eIeumDYixZftiy01Argv0WhPjrl/Bx1z8yVspSFC/atmnFzi8WPOxi3BVybpxB6xOKxkVkWdgyEjEElVycOFtWKilndlLl6U8KPK8LKo/VauPYuu/wrVwyC8AnXpvHt0OqkJuVDpSc+8G/YTC6MmjYMFq2bMno0aPp3LkzY8eORafTFX5xKf5noVKpeOv1CXz00UfUrNo273hwrmyEb+wp74zPN+ip7KJC5veI0CjYcwYFFTZZEcw+VKGEmpAhq04nSoaeYIWCp0gJVRE48kt2fj2Sim+sRaVWY1WoVWsVftO2dAVF1SgzDNRZMrPKoVeoqCryMaXJriQnFYuKU8nixLxlsBcpnhXJNDtwzZDzUyk0KQSJ4qhx88KtSgvSD63Bu0GPfIvMdkHyO/0nXX4XLu7y4qOmq5x+d5r83su6imWJ2bcMnwFTsaQngmKsd9gVzBSzXK6GHvKHebqZN+3b92HuD3NuoTva7A52ncuirmJqpqTFKjcRnw6RmRk/XpHfu1Pk0ewt04wblpMNEc395DLqFHUkQ1FHejdw56nGo9i/fz/b9h3FarWgsZpxGBVKqIJd/OewYtDIRkKlWmx5d/ndnZXYJdEW+bxO8fha5atwskkcDgQFk86gqGthbhbcdAULN124cIEBg54hMaQRnsMWM/2yCs31vXnnNUpfTommrWQDKVV/VQoVXSXbzqFUdlWwWuyucj2qECQrkbdXvHc/o5zPjWyZjuwfHsCNK2f489iPrF7/539ifvhQF5c6nQ61wsKTlngD3+BIos1ybYqS2mcFqTKmK6hULlLjuqlQ8UyQzmdL7UtncCH38kHC+08mwiCeuxAnUi0FF7lB1PJy4Ypei5eXF/PnzKJVm/bo+3yKS9VWBPiJizkXRSVXe4oTrugEkeap7MhMcaKE8U0Fnz9PfEfqcFS5cuepjxejtZq9xG1uQaEy5aTItfPXEXt2P2cCfFGHVcLTJ4B4KQ9B0eG6Jop5qQ3Ssyn8GJxKshZPhYSzWqwCcb+8gUqjxaPFYDIzU8m5eABrhki/U2UloTG6owmrjs4vHJVKhUUKE6Axy8/hVJx1UnIFrYK2Zxd/G9NFqp7dTW4caon6qpUasTqff6X4IXUK6q9FkoDWlqmC3ZTNof3/8Ozo60S9uwWT5PPhlH3WxygGL61Ren55ce5Uy3Vkp6HSaHDXa3AqyvlJisMmicvmoehw3aRPpNxpz7WKnUGVADFdklmxwyMIWJKuEdKoBz5hlXha4SOhVYkdkItWYNfBjQx/9tG3SpWiaIiOjgaHDb1Ul7wlmr8gyBMCp0+M2i7XEZO3rCzqDFFiV0zG3BLOAWBzkenWWpPI23QqO4OsHu2WIEeIzg6sJOUrDweqmNPYEqLRONWUAYerFw6VOq89APhIbSRDIS2vkdq90p+rutSPn1Toch2NlnfoNFYzN1d9QlDHMdgkhWeVNJHQpYr0Mp1Oj1tQKL4+niTEX8FFWugK0gBuV8TfM6rEdqmcVMdK6qj++lt3Lf647vRD0uHpF8KfP36Cpseneee1ySJtV62YJOokerJK4ZOUnRyd93u51E+pImV627Nl8n93AIciNESFChVYt24d4z/6no5duvPT/B+KXVW2FP8tVKhQgZycHJJuXMK/zJ1DqZnSE+94vrjhGhCBR5XmpOxegl/zkqGaFjf8O4zm6qxBuFdpjt6l+ISqEk/9g1twhSLH0kxOTsbT07PQeJ0PEytWrKBjx440aNCA737+vcA0GlcvrMkxBZ4rLjgUc8S7xcZNfzHh9bd4asxHLNXWL/yCRwg3rpxl7Zw3Wb3i92L3zS8pPFRabEHQFLMKYeLG2XjWaIu6AJrV7VC2bFkW/7YQ4eDiYi3L/SI1+ijh4WE4FPGjigM3t8zDnHSN0I4vkPTXHC5N7UbW2R3Yc9LFf7mZ5Fw9TuL6WUR/1of41dOxFNGfoLiReWIL7p7eOFq9iEt4jaLnc3wTniUQpF0JU/wV3MLvLEZy5uBWOnXqVKLlKMXDw2dfzKJ2sy4PuxhFgs43DEvClRLJO+PU36jUGjzK33nQtzscvDh6JEmrS86HsNtzk9i5em6JUecKg06no2WXgfQY9TG9+z/N2j/XPZRylOLRwcsvv8z2hR8Wms7gXnIUv9shsPNYkrbOe+D3LSrUOgMBXceTsPbzYs33/PJPqdSr6P6un3zyyS102EcFgiDw9/Jv+eOPP1i9evUd0+oDy2JJjC6xsjgsuYUywP6NJUuW8MLY8Yye/DMVazYq/IJHCPFXz7J2zhusXvE7gYGBhV/wiOCh7VxmZd0aRkOndyErLamA1EVDwsm/ybq4j7Jj7p2G1rRpU/S2wjvzB4mTm35i7qxpdOnahfozjgD3rxSVdeUoyYfXoTG6kbRnCd4tn6bC2xtRqTV5QZDVKWLQY7tHAILDTva53dz4Yxo6T3+C249E51k0S939QhAEkpe/j2+jHnjU73FfedkyknApV694ClYABEHAkhp7S4gFJa6cP0GliuVKqXD/o7h58yaZuVYq12z4sItSJKjUahAEBIejWAUQ7LmZJGz/kXIjZhea1s3Thzp16mCg5KjFtVp0Z/Wcd0nZ8St+rZ4usfsUhuDwcrw8dTEzPhqNzWajx5OP7o5GKUoWTZs2JdjrSzRplwkMjaSlQtnVS0EBdPf0QZ18Ca/gslzNlpkzwUb5gv0KMSxXBbvAUzEbVAqL2K3ibn28SW7zjQLlvC9mGTCEVCTj3F70IRXzjtsU7CyVQ76/oIgvroRSGEulYFypFDRSwUVmYZT3FRfSrho7RpWAWpVfwM+qDOVgVux0GVxxr9aK1B2/kn1+d55RenuqzEJq5Ck/nzPONeRX2tUpmBJHdq/G7hdBrM4bdWaM9Mwy9VPJCnF4yDtPzfxlJsTC48eZPn06BUGrUdOsnDvXFN9AqcQal6OgN7spjGKKeMFOxppGEYNzfg/lIu3WBZvD4eCHP8+w5tevSLhyjN27dioiPAgINisOqwWNIna4NqgCgtWM1uDGtSz5uSMVVNj4nFv99iu5yxtAQQpmRz41WYcdW0YiOp9QVBaZBlPDTX7+nvU9mTb2H8LD38Fms/HFzC/54stZ+E7cxNz0UEgHzfVjeeltijqlVSgcO8Pf5fuOqoL1BpR5KIVCXXxl+uvocPlbD2+h1JYpWGfmtz1pHNi2kr3rf/7PLSzhIS4uL1++TPXqok/jsn0iJSkgshrRP7xPlCKd7V/UaYui3eil+pSpoGTtT0gDRBHPyz+/Q/nXViIgIDjsXJPotmqp06nlJTemDkFmfsm4jJubqKhqs9kgN4sm/m6UdxNpT3sVnbK/VizIVYnL/0xleYH102lREUqdLquyOumtaolCZVcoljo0kiKspPiYr6JKqOxhJdjfhw4dOnDi+DEmTJhARGhNuj09gX1p8hvbcVpSi5Uov/q02Lxzdkku2S7lL9gsRP8xBLs5h7JdXySi4/MkqeWKXsffG4Bj0kCjEhyoAI86HfGs25nsC3uJ/n0Sfq2exbNuZxxasXNwhg3RZcsx/ZyDi8VHIXEtwRYkhn7R5qZKz+8tvzeJhqak/jo7yazdi8hNjsHY7FlMyeJzar3EjtuWI3YSVoXKrMZ8q0EDnTHvXQimLKwKipq/QfzGTtq1q8LH4apZLI9KJR/rL/UjNimPtfEKWqM5B2NUHZ6LEAfQXEWddQ5dp7cu4PXXX7+1jKX4n8DOnTup1eTRjaF7NzCEVibhykmCyhcukHY3EBwObq6YQtDjI0UFQIVPy52gLkKA6ruFVqenz8uf8ePUMQ91cQmiIubId2Yz/9v3WPfnWqZPn46XV+GiYKX438OE8eN4a/IkRk66vWGlbP2OXDm4kTrdnn+AJQPvxn1J27+SwCdfe6D3dcJiys5T6b9bBPebzI0FL1Hm2c/ReRVdx8J08yJJ674iogibGE7ciD5HRETEbUNLNGzYkAULFlCjb8mpyMfExLBt2zYANm7cSFJSEqmpqRhcPeja6XFe/eWbW0IH3g5ar0AsSdchpPjFpSwJV9De4Xvt3LkTT09PvL29mfnlLFZv2snHC/5mVtyj76foxOnTp/lx6keUDwtg07rV/8k4ww9tcbl9+3YaN26c75je6IqnTyCZV4/jEXl/k5ebi9/Fv9MLd60E5XA4uHbxBNWqibTFX375BUNQxUKuenBIjrtGuagIAKpWrcqaNWv4eMonzJzYi4qDpuMfVfOe8rNlp3J5Wg8cpkzKTlhO+dqtxROmOwenVcKtYmMiX/iJuKUf4DDn4Fv3wU2cTfGXyfrjY0I7jEB9j4pbBUHnG4r55rliKFnBSFj7BYHdX7nteZvVwsmTJ6lcueSCD5fi4WLl6j9p+MSLKMmWeUIMCqq70ydYo7DwqxQWaJsUUkifKYs1ZAdWAUBtk/NxxuFS+jCrJWus2Uf249NL4YpMimOanFRUDhsqmxm1ZM0VNDrcI2uxZv1iAjqLRpweFURDT3lX2bofJtmn1qfIZXaVHjRXIc6h9gwm9udX8KjTGfcqTREAlUJQwekfmhsiU8kDPLSYTCYESw4+0voyKVfyLVXsdmS5iZaecI18zCLtOuxOl4c9m/MdKqzT25P9ESo+gcrxPInLPiCw7wcYU6IB0GbKBkOn37igEK1wfhsAt7iTYtbJMpX4h3RxcugMPwTQ0kc0ONb+UY4/Z7eK70GMvWeETtMIT9pBlyf78MuC7ylbtuSElUrxaKJZs6YE+3lw9uhujBUKVowPr9WKrd+Nf+CLS7dKTYhb/vCYXrHH/iIo7FbD9Z2g8w4mpP/H3PjpVco8Pf2OrKLbwXTzIlfnjyVsxOx8MTPvFcd2rOG5AbdXqq9Xrx6vv/461RyOfDolxYGXX36ZXbt2ERYWRq9evTAajfTu3ZsePXoUOY6iZ60OZBz+E2oWv+q9JfEq+oCCv7XDbuPjjz9m3LhxbN68mZ9/W8LEL1YV+zsrCeTm5rJr1y6++uorPDw8mDVt0n96PvjQFpe5ubn4+99Kp+w45G3mTHuZum//iaoI1mnB4SBx7Qy0XoF4N+hx19f9s/ZnygSLE6bjx4/zzTffUOfVtfd8/5KCIAh4eMoCRGq1mnffeZs+vXvRsHFTOr69nKAqje+Qg4y07fNIXP81ajdfQoZ8iVuFotP01DoDIf0/4sYvE9EZXfGoevs4U8WJtNUf4+Hji+vjLxWLb5QxpBIplw4UQ8luRfqhtWg9/e/oE3rlzGGaN2/+SAfFLcX9IfpqDE+G31mQ41GHR412ZCx5j4wj6/Gs27nI+ZgTrhC3+G18Wj6NT+O+CMnX7vraa9euoVGIkpUEVCoVZZ54hehF7xHQ5/0SvdfdomLdVnj6hTBs9Ct0bteCCa++/J+YNJWi+DB65HA+mPolHV6VF5dKNlet8AB22nPxzrzMXo1sHO8SIDMCyrvIhqBzCnpiqkJI0ahQdM3NTgPAmp2ed+xYlrwQqycFtE3x9MbXRz6eliVTDJVxfJV0RsFTTq9OlSmtyljUgqt33u/+ZeXfke6iIU0nmPn9yCb6jHiL3eUeyztvTZZZWxhlo486U3a9MviWIaTvJGIWvIx/wyfxrvU4KpWKHUr2mCJ+LjbRECQIApl7l5KyZylhgz9F6+GPIAmQCRIbyph6Pe8yJVNNSbN00VbAbrNx6djftPr6fe6Eli1bcmXvahq1FenxfRrJGyc/70rL+92/sXfe77Wxsg/70WTxe7xaQc7z5MmTzJ07l/T0dDT3GGLKx82I56VtlK32GKdNMkOMtHhcy9Xj+vyxrO4ux2cdYih4nlbTTXwfMSb5/ilWuS6acuR6pNK7Yrp+Cr8Oo/NRfh8PFI1xv30+nmHPjaBatWq0ad8Rjwmb+OQcgAPi5ZA5asUut6CIF21T1HtDpiiOZfOQ66heESPe6i1TXqOCZQr2oDDZwDuwyZ1pxwAZGRksWLCANWvW0LJlS+bMmUNISEiBaf9LeGiLS7td7uCcNMKzmRrwrIRnswEc/mIQZcf+zKFMcVdKLzEavRTUxEMp4kEnHcKaFkf84ndwq9wEz+YDsZmzcTPKC9isXNESbpd2BAL0osU5+eppju9czZyvpjNm/ET+3HsKw5NfYpSUxK5JHXCMgrF1PlHsoNy9xYoX5iZXqGeriROfXw7KlminPLHTl8ChEBj69w6DNlfuxC2B4mS0YcAFMn3lxaUTVatW5dyZU7ww9mU2/zgej5bPEVCvG9dsYpktAbKFW61zIWnhODJPbMany3hyL+2nUydR4e28VHyDslySaqpDGlyUyrORoaLl6IbkdxD5/PdcntYTnW8ZDJLfhbJzdQ4WGkuW9D4Ug4f0/Zxqrko4lRjN3rKfQBvzUc6XC+ZSthb0rqgV1F+bpN7qVOO1KgYmJwyKQczsI3YKRk8/LLHn8ikPh0u7MRmSOmamws8lQFLJrOyq8GmQ0qVLlFd7TjoOczYJaz/ni7nrMRi16NSSOqiiHx/U1JunvprPhx8+Wj6+pSg+xMfHF8sO+4OE2pKN4JafSqRSqwkd9Cmxv76O4LBBhRH3nG/avuWk7VlK+PCv0QdE3fP1GzZswBBS5Z6vu1d4thmB659fkL5nCS4PVVddRlBEJca8P4+NS7+jZ++nWLL4VwyGuxerK8V/G61bt2bS5Clkpibg4VPwTlunwRPZ+Mt0vJ4teliuokBdzGKMd4NrF07w7tCWNG7agojy1dhdcASKO8IQEEXkqDmkbPiayz+Mwbv247jVewKtx600SsFmIfP4ZpK3zce9QgMiR3x7z+Iy/8a2NT8x9NnBhVJOx4wZQ81adXiseUd0+vtv8w6Hg7feeos9e/bc88IS4PnnhrJp9DsFntMY3dG4eGKKPY8xtNL9FjUPDpsFc9xFjKGVITO/PsuJvZsI8tbRp1dPOnTuxqh3vuN39aPnQiAIAidPniQtLY1ff/2VmzdvMnDgQDZu3Fik7/Co4qENmfv37+eFFwoOxOrXcjCo1Fz6vB/eI7/ExT/ijnkJgkDKtgWk7V9BxMApuFdqQk7m3QkDJVw6xvGFExg6qB9P9O6PyxPv4vnca8UqWFEcOHbsGK1atSrwXGhoKCuXLyE5OZk533/P3M+eIDUzG33V1ujLNQLBgfnCHlL2LsezTAUCR84ncd2XBPebXGzlU+tdCO3xBnFrPyNi+NfFlu+/4bCY2LjsM0Y/P4KvD2QWfsFdQqXWiGIlglCsu4dxK6YQ0PEFDMbbx8yLj48nIyPjP02BKMWdsWvXLqo27JhngHAiRjJcucTLoUGcvsvKUCNOv2wAm2QwUYpE2J1UWUXIHqfvtqDwYTaki4YYjWL3QGMWLcN6hQXXEvkYKocJrbtPnt+zLkMMu2T2DCGs19vErvqUOdNPEthlHDp/mVJrc4pnKMQRzBlJpJ/YTMqR9biUr0/EmAWoje7YpXKonM+isCg7Q6jUDZF3KWMzbOz5bTHh7+0mVTL2CE7XB4WASHSy2P9fy5AnYeqEy/neSz4oJsYXrl0AwBhcAfea7cncNJMy7YaJ13rKFmW1ROHNDpB3iFwTL+T9FqRvpjSMuV8/CkB8vEzBXykZE7WKhbyqnMgmaekrf5N50eJ7fTrCQKXOY2H/Bno/NYAli37B1fXBxeQsxcPFi2NG8svmRTTuPa7A8+VqNGbjr5+hiT2PezFO7AvDg1ZXvnL2CN+8PYgtW7YwZ+6PePsGQXLh1xUEtcGN4A7PY8tJJ/3UdmIXvYlgs6LzCUXt7oM9Jx1bWjyCw4ZbxUZEjJ6HtpgWAueP7Wb62z8Vms7f35+JEyeyc+MS2nS/f1/wk/u2UK1aNWrWvDeXKicqVKiAIyMeQbFRpIR/+5HcWPoB5cf9ej/FzIe0nb/hdRtG4r6/FrPg2xl8/c1sylRuSIXq9eDMw1H8/jdiY2O5dOkSu3fvZssW8b0HBQXx/PPPU6dOnYddvBLBQ1lcHjt2jJCQkDsKE/i1GIhLRA2Ozx6Na1BZoloPwqdCA5AatCkzmezzR8iNPkrG4T/xqNWechNXYXS7e0uFzWJi+ZuPE16uCutPptHvs51sznhETNT/wvbt2xk8ePAd09y4cYMfV20luPfHWKNPYTq0AsvlPeBwYPevQNTEP3AtWxdzYjSoNegLWbTfKwwBEWhcvci+chi3so8VfkERkHVxL727dubnhb+hf+aXYs1b7x9ByvWz+EVULZb8Unf/jsbojket9ndMt23bNjp3LjrFsBSPPlJTU3H1/O8ICgCorBY0CjpZvnMaLaG93iLl8Dqiv3mWwK4v41G7Y17IJ0EQsGckknV2J5knt2HPTMKrehvCR/2QF4O2KMjMzMJgdEPr+mAs0gE93ubih+0eyL3uFZUadiLMW0/LNu1ZsXQxERHF25+X4tFE506dmPbZl3h0fQov30ByFQYr56+B4z7l2yljefLDP1Gp1SQr4oP7KeiJAVb5uDJYfZpiveDm7g2AXUFDrKSg1jopjDZzDrkOOY1OYVC1K2Je2xX+5UrXJyUVVhk7NtxXZp8Fu4gGHbvNxmdTR7Jk8W+0bt2an3/+mSfre6M/K+c9U5D9mnOzZBaZkoGlVvh42w1uqAxueDcfSFDN1qLCe1o8Vlcf0GjRewfniRViycbqL/v9aVJklpZTvNDqKtNW7QoDX9uysrHp5rXTJMddx91dQb29A8a+OIbOnTvzzUcv5TtuUDD6lu6TnzXWKr/TtsEiE++ZZq44HA7avfMtixffPtxeTk4OLi4udzS2N6hVFXXsAdAq+h5pY8YlsiZpB91IOrAG9+qt2Z4sP2NTH/n7ekiqt0oxxXVxsvHTkS0+jzUtnvRdi4ga+R2qtFi8w+V5WtyVA3i7qNm2/W9mrTuMe//POXFOjeb68bw0NqMsimNX+MbrMmWDrENh0LUZxXFKKQRpqCZv8LygiFU+7Dbqr3v27OHHH38kJSWF+vXrU7duXV555ZX/FxEBHspKatu2bXTtKscUPJoivuhLkgJnA3ep8Vevzfm3/yT93B5yD//BteUfkypI9FKdnqCIavhFVien5aK8CUteJyJZ0ZyB7YE8KkELP/HjL3u3G66BZanxxgauOPRszYbGCktxTS+RC/5jrHhPi8La3yFcnCg+5nNrzMkwN7FzaVpV9rHbffY0oOzM5AmWXlJVNXtJVnGF9V7v5o3gsJOUlHTH4KlpaWkMGDkOl6YjsKj1hJYpD2UmkhUlx/QxeomddMq5XbhXFX02nJTkcgaxgV9T+F0YpGK4+IvUUZUi9IlzIKruLu+oHEvSEdjtVWIXvor3s59hcZfLK0iDiFNwxK5TNkbx3iZv8T42L4U/lUQl7BflhdWcy5ef98LlpRdJD6lH0KUdYrkUMue5vlGATId1UVBgc33FDlCfJe9qG1OuSuXT4hVZk43rfyWgk7ij3qWsWA6zVB1rud86oHrp5IHqqGSYcNNA9J5VhCccYtjbs9FqdQxtLk6G5+0QdymGtxD/ttvttHnjW9aufXT8e0tR/Lh27Rr+kW0fdjHuCZa0OPTq2w8RKpUKn8a98ajRlvQj60jetkCU6VZrcJiy0br74FquHsG938EoqWrb72NhCRAU/uB2YgCMoZWwW82Ys9Mx3IPh8kGher2WZGdl0qxZM/bv3/8/4atTijvD3d2dd996je8WTmfAuIJDVwSWKUvZxt04uupL6vYaX2Ca4oQ1NxOtvuCQCiWBmeO70KtXL1q3bl1i91CpVBh8glG5337edb/YuPRb5syedddsKZ1OR/ny5Tlz5gxVqxbdCP7777/TokULgoIKVl399rs5zPhsJsOGPss7b71x23yeHtCHGb9thzrPFHg+qOdbXPv6Gdwq35/KrcOcTezitwnt9WaBMev/Wb2AIYMH8PyYFwmdevqhMg/NZjP79+9n/vz5BAQEMH78eKpUKXk3jkcND2VxuXbtWtatu/vA0F6Vm/BYPZEmtDlZnuBHuooLjyuZBcdNuhOiD6wn9epJOn19Cq2LO2TfnQT+w4DgsN9x0mA2mxk+5mWENq+g0xZuEck6tZ2AbiUz4Og8/dF5+JEbfwXXgOKzpCdeO8vKqc8wfOgQVm36B4/hv8GJ9cWWP4B3lWbE//IGPi0G3rXKcEGI3rOKq3tW8doH4sLyTpg/fz4dOnTA0/P+Jt2lePSRbNFgzNXgoTBIxEg+vkoKrMYi9mf51FuViq+Sn6JsNpPD/lgU4gNO679TfRbAIRl1lJZbbY5o8FAKG3T3MrE+rAwpikHaZri1jqoAnbsPfu1H4Nde9L/Upd4Q0wcoZOgly75O4R+dL1SRIPbrSqpvTngdAJ4oIxvwPklIxCOkKukW+emdPk8dwhSiEgXgr0QpfJBiV8Spnqu2KlSypYmeKe4SAAY3L2xpMRixoDLI1m/n+3JNunTLcwA4JBVZF4VabF7YKcV7VTnE8ugVSrTWC7sA2K0ovyDVhyVGWRSqHxD42JOMmhxOr74DWPvHcvz8/ls75KW4dzzRvTsLf13ExZP7KVO14KDwtbqNYeOng7h2eBMBTe7MnrlfxJ/ZQ0ClBxO/d/3C6aTEXeXTTz99IPcrKeSkxmNKj78lakJhGDNmDF9//TXffPNNke89d+5cli9ffstxQRCYNGkSf+8/xeR52/jm3Wfp1eOJvCgK/4YzdN/toPXww6fVM8St+IiqIz8rUlkFh53Yxe/i1+pZjCG3Ghdz4y/jlp3Ex59MZ8yk7/jjIS0sd+3axaRJkzAajTRp0oRBgwbRvn3JtrtHGQ9lcenm5oZe/3DFLa4f2YxHaCV0LndHR3iYyI0+Snh4eIHnBEGg58AhXA7rhFetx7Gf3l5ofras1CIJadwtfGq1J+3EFlzbDr3vvASHnZx101l2ZDUTX32ZL7+ejWvPD3E1Fv93U2m0BHR+iYRVnxI6aGqR8ojZu4q4fato8dIPaLV3VhdIT09n7ty5bN++vUj3KkUpSgp2m/Wh99EFIeHaWcpUfoyCvK0FibZX3IrLgs6V3PSkPPG2RxFRlWvT8Zm36NV3AIt++ZHQ0NDCLyrFfxpTP/6QAc+O4Jn3f0crCevpFPPqQKPAgDfnsmLacyTHX6dKx+cA0JoKnnyXU1BdYywKf27p/44+8nmdoolFm9QkxF7GJbw6JgWLSFCGT3KKAgIqs2wocyhFzhTCOIJNvn/3QNnwnx5zksObF3HlsmzQUUKrlu85oZzMNPvolJyf0t/cFqhQ786SHTYtbopIBko/cBfZwOZ+eX/eb7PCgOekUwoKP26dt3x+VnfRkDhu3EwmT3q7wOe4EypWrMiJEycwmUwYjaKxUKP4Hpcy5fu6KD51JXeRiedwONBqtXh7e+fLNz09nSHDR+IXWYvn3p2HAHR+5k0mvP42a/9YfltlarUKUBgmNVmy0dAuCHjWbE/2qe3sXj0b70a9ATibKn9rg6tosDPnyL26kwrrMGdz45fX8ajVHvcqzXAo3CEqGsVvfXDDDI6dPo1f/0/Z4NMRFKr/yvplTJcNm8rvpcuVacRmBaPOqQbbt4K8c/1+x1vpr7t372bs2EUkJiayePHiAqNg/H/EA19cHjhwgDJlyrBMwQs/lyNWtDSrWPn3mGSp5hoeovV3a6pYkQRF53UpVbS4axTKWXmKjFJna1Pw+yM8xUpcx9vMIUsKbtZ0ugaJFuvobPFVnMpS8L4TxTxyJcu+UUHpahZgwm63E2A6zvfff092djYqlYrz588zbtw4Ro8ejU7xjDetIkX26rlDAGhNckOy60Xrj5Ki6YRKo8WekUDt2rUpCJOnzuCSzR+XgHKYLx1AI9FPsyLqAdA6TG4YwZKvxTSVCqQO3lfaRTFLMeDcFL1UtESRFSRrvMUsv0u1VOYsh5y+YoSocX3e3Jr4XUvzF1TqoJ3P6lA0Ypu0G6ALrw7A6DDRkp8Sf52ln42hV8d23AjpwsyfVuDzyga0CRfh/K683R6Luzzps0l+DhpThnRObuguKWK4A0ExWDhj6TkpvN5lKmO5tJ+bC8axtfVgNDoD2UGi0M5RZWgcaXGrUVCBKl9eTfrBP3j1/W/RaAVcFIvLb7aL5dmUJNZVjz3JfDC6C++/8xouLvenNleKUjhhy0nHbspC6+ZT6K75nRB9ZAuhwYHEFZ70gSItIQbf4Chu/Ot4zs6f+WXDFyTejKFu+6co26wvkfU6FctCU+0ZhMV07+yYB40KNRqie+ZdunXrxpo1ayhTpkzhF5XiP4vy5cvTv08P9m9cSNNuwwtMo9Ub6fv2QpbPfocDP75F/Wc/huK1vQCQeGoHdYZOJ7bwpEWGKTeLpbMnMX/eD7fsmLm5uXH9+nXgv+F3HB0dzdmzZ+951xLA1dWVzp07s2/fvtuKPN4J+/fvp1at/HHk09PTebJnXzoMfJVKNRuSK03By1apwxHfSJYvX0Hfvn1uyWvO3AXoXO9M+VSpVIQ89T7xf87k+vHNBPd+B0NwhTteA2BJjiF28dsEPP48bhUL3p0/uWomJzYsoPKEZbjV6VpgmpLCjRs3eOaZZ6hfvz4jR46kevXqpaGhFHjgi8sVK1YwdOhQrj5kEafoU3spGxnBsV3rqN2sy11fJ9htpK//jNcPLcXVxUifnk8wbdq0PDGFmJgY2rVrR40aNUB/+7iGxYF16zfw26b9GNsWf6Da+4Faq0OtN2I3ZaEpwg6jIAhsWTyTq0e38NuP3zNl6nS2JxoJnLABlVqNkHCxBEotI7Dl06Sf2cG5Re8RVL8rhsBKd5yk5l49TuL6r9B4e/Dkq3PQaAvvYHb/tYzGDerQt0/v4ix6Kf6fQXA4yDq/h+xjG8lNuILG3Re9dxCWtHgESy4OmwXXqi3xbfXMPbXF9NhztKxXl8MnHg21PYCYK+cQ7DYqN+rEiXj5eNbpv0laNYWKdVpTvn57ki/sJ25rAuf/XkKHVxc8lLI67FZSok+SduUo5jS5sCqdEYfVjCEgEo/waniXr0dxis9HVqrJnDlzePrpp5k7dy7lypUr/KJS/GcxbuwLRJStSMOOT+ftXv4bKpWKhkOncnbD9+ybN4Fmz00v1t39lIsHQRBw8SsDuQUrhxYHVnzxIjM+eZ8WzZvfcm7cuHFMnz6d9sOnldj9iwtO6umnn35a5MWI0WgkKyur8IQFYM2aNTRt2jTfscHPDKPT4NdEhdV/of1TY5n20VCaN292i3vWiTMX6f7OdM5fSb3lOiVUGh3Bvd8l99oJbvz8Cu5VWuLdrD96v7B86ew5GdjS40nfv4KsMzsIeeoDDIFRBeZ5fNl0jq+YwRMzdhMXWvcunrx4kJCQwOTJk7lw4QJz5syhQoXCF8r/H/HAF5dHjhxh0qRJXD2WW3jiEkJGSgI1a9Vm1bJFhIVHMPI9V1yq5udGmzOSSLx8HIfFRGZODg6rCUvSORJ2LGbAgP5MO7gXd3f3WzrpsLAwdu7cSc+ePRn32ZoSe4atW7cy5PmXqDlpO8mxBVNEbo8iBIO6RxhDK2FKvIZbeMFc/dtBEAR+/vg5cpOucGD/Xn7/fQlHT10gcPzGYqe73QleVVvgFxhB3N4VxH45APdKTTCGVUPnWwa1wQ1LZhKmq8fIObcbfUAUAV3G0b2RM2DxnQdYS1Yq21fNY8+uv0v+QUrxyMBL58DP4MgLPwJwPEecXNgUyoIWKXSF2iSH8lDutjuSRZGq3MwU4ha9jUuFBvj3fAuXiJrU9ZDzvmZWITjsnNv4A1e/ew7f5oPwbTsMlUqFShE2wC4F/9blyBMElUolGnJUIKjEPB1Gwy3phFyJ3aCV2SNOv0JNUnTeMafPqJMyBvn9Q9VWkRXhiJAt6i+WFZ/5qUYiFar92+9QrlJ1ynnY6WIXh66c9CS+mT0Un/rdMfebhhkw//YyH70/hjfeeIO47XNp0lWk5wuSK4CQIasDOhkVVneFn6LUz7gki+VX20xg14PNjMomszdypRAkhvSbecdMHsEkHlxL8sltuFdvi+fjYzBWbyO/L4dDVKE8s53sy4eIW/Ep3oERhNTrjEZJ1coRKXqa3LS8Y8ZUkdmSkykvVn9ME8tQLkC+tq1fZZqP/JohQ4YwaNAgRo0aRSn+N6HRaOjV80lWz51M91Ef81eizFZwKLYog3QOanUewekNc9k6bTCtX5iF0cOXfxLkBUrHEHk3sLqL3D+UlQQKc2xyflckX/GclJvsW/AmEaO+53ymCYeSFqsMUWFTaFrcbhxX9HEtyso7kH5GM6t/mkGn1o0KXFgCVKpUiUuXLtFRkbVyltMvXGYHrTTKSvbCNYWaqKIPVsYaVyrK5okuAlZFSCMl/dLp0y0oKLQjFBuq06ZNo1KlSvcVgqJt27Z89dVXecKYmQrV3xOKiAeuCpqwSgUOu5358+fz+uuv5x3fsXMnFo0bnuUakiBNy69ky+NItj2EMt3f5plhI/lrff45rVZvxCKoMN48k3fMoRgLlNRgwW7BNTCSqJFzyDixmbhFb2LPTkUlvUdHbiYaoxta72DcwqtTdvgsVBptPpbb8PLu2KwWlnz2Ikd2riP0mc+4aAxGf2GffB/drWMRgKCod7qctLzfThFIAEOYLJI0MUr87oObykbZ9evXM2XKFD777DMaNnwwPsb/VTzQxWVMTAwYfVl7LDdfR6VViQ3AIU14tIqGejpbnPhYMsXBVq0QohAcNim9LLKglpwO7NK5Ou5yIwnUi52d543t9Ov9BG5ubsRcv8Ybb7zBP3/MQW3wJNaiJv7icWzZGeg8RIEIe24Wgs2M2pTOt998w5Bnn77jQicgIID69euzc/8BytUQaQ8VJX+Gi5J8tVoxwXFOvMyeojqpVhEfTi2IkxGHJPGdkZHB+DfeZevh85TpOpGsc3vyKTrmKadKFE5XhUT171dFKq7GnI3+xkk0ehdSIsVez0936w5FLVfxWJpNfKcnkDvoxzzE92tV9ODXpAHH4eaL2jsUdXYKOqmTVkmx8pwdr0kR+61JJZF2Wk9/k1lvD6Zp03rM2rQUlUpFekYmddoP4piC3kykaF1rGiCWZ+vF6LxTbglivEDngKCUA3dO0NUKQQ8nHdZJU1ZSkrUaDWHN+hICZN04R278BXLP70RwOFBH1sGjclOeGz4RvRSuoYa3mG+uVLe/vip3iunpYv19t7YbX701gvffe6uUDluKIiPrwj6S/v6ZMsNmofMNxeDmXWA6lVqD12Nd8ajZnuTN33Nleg/Chn6Fzq9gH+5HFS+99BJ6vZ5Th7ew9pcvcK3RldgT2zm4SlRaDB76DTazSF3VthjBe++9x5YtW/Dw8KBeu37o7xBntjCYkq6h8i48Fpw5M5kLq7/Eq0J9qjw7A4t3wX6PKpUKY0hFjCEV8W3aD+uuhZz7YybhbZ7FI6x4VAV9AsPYunUrY8eORa1Wc+rUqftSlyzFo4tpU6fw8isT2b1mHjR9/o5pq3V6Dv/Iavz5YW/q93sDwouu4pmTcpN/Zg6nzLOfo/MpOZXiwzvWs3Hp9/ySmHDHdGFhYVy/cpbwso+uMqcpJ5MVK1bwzz//3Fc+NWvW5OLFi8TGxt6Tf/Wxv1fw/PPP5wkICoLAq6+9xcgPfuVOkpbBVZvw95qZrFmzhu7du+cdVxoT7hYqtRqv2h3wqt1BLIPT4KgUrVP8VsJmtfDb1JFkpyfjUbMdnoWEeSsu7N69m/fee4/KlSuzfv36uw4d8/8ZD5QgvHz5cirVafEgb3kL7DarGBPpyScBkas/ffp0Pp/yHuH+LqSe2YNPi2eIfPl3wvu8S0S/D6g0fjGVJ66k3XeXeX/2EqrXqsuNG//2+smPwYMHs++P2cVa9itXrlCxclW2WCri0v8L9B53Vke8HVwCy5Jz80LhCe8D1uSYe4pFd23vaua8N5gvp3/M119/nbd479unFzuWfIbp2J8lVdRCodbo8IyoQcBjnSnTZghh7YYR1PVlPGs9nrewvFtsXj4HT6OKHj16lExhS/E/j9xrJ0n++2fCx8xH53t3Ewu1zkBA57GUeeYzYhaMwxR7roRLWTywmHLo0aMHmzZtYtCgQcyfP5/kywfZ+/0LnNr8E+Xrd6DitGP5pOeN4dUxGAy4u7vz0vgJRJ/ef4c7FA61wRVDIcJvpvRELm6aS3iHUQQ16olKc3d2W5VKhW+F+lTp+So3960i7tDdq6gXBq1Wy+zZszl27Bjdu3fHZLo1bFYp/vtwcXHhs+lTObnlZ64sfT9fHMmCEFKtKU9MXsuFf5YQt2wyDqVS8l0i6eIhtk0fRJNRMzGGVCxq0QuFJTeT76eO4/TpU4Uylzp37syFE/fX1ksaR7avYMSIERgMt4bTuBeo1WqmTp3K119/fU/XXTn+DwMGDMj7e8vWrZSt3gQXN487XAVqjZaWExbx6aefkpwsGspPnjyJ1qPgUCYlAcFu5YvRrajS8HEyUuII7jupxO95/fJpnnjiCaZPn86yZcv45ptvSheWd4kHunM5e/ZsXvrk9wd5y1tw/eROWrRokRczcs+ePYwfPx7Buxw12j9DWCtZ3trpO+fcnNO5eFB3wlKSDq+jcfPW1K5dhzJBvvTo0YNmzZrh4eGR1wHWr18fW3osfy+ZSaunXr6vMqty0zAYvRnz0isMmbSQteb7E2rwqlCflFP/4BFZq/DERYQ54RLGep0KTWfPyWDnZwOpXzGYZdv+uqXhBgYGcv7sKV6c8BZbvvwWoW4f3FsMKaFSlyxM109x/sBfbNuy8WEXpRQPAbl2Fdk2FfFmeSGUYRJ5SA4PmZZpiBN3383+ZeWLJVqZLSORuPVfEjV2IWNryWJdO5PFPMONsiU52ix27wOryHFjf4/xJfy52Vz7dgjhw79G4+qFSoora/ZQqNxdEsP8qG3mvNAoThaCyUte0DoZAg6FWqBOonJa3ORncuSLayvCLsWiBXDxEScplowUBEHAHHuWz5avJHbHEtQaLd6dXuL1zUmorCbwa4kxxIh3eA1y1WrIzcSWmwmK3dscuw6z2Uynx9uy5K/j+DRpiUNSMVRS3mweAfneL4BOUip0iT2O3WrGlh6PObgmORWaoMuWFSUNqWJ4lZSgalxf8zVlhn6FSxXFTlCuSDlsHyTvmm5LFhkf4WWr5x27KtF1K+tciNm7gmub5hDR4VYqq5P14RR+A/ldp5xNyzv2U6DIBHEIdaQjUUyePJlPPvmEDz744JZ8S/Hfh7u7OyeOHeHNt9/l1/eaMeGbLSxMllk7MQraZE0XAfTuNH1pHql7FrN/Zk9qtR+Exb03Lp5im023ywu5VIt4rZ/eQXpSLFt/m8G1mzdo/eZSDB5+aHNk1lNVhTzpySy5TdlVcllc3WS6aFayLAH0ck3ZWO5lEPuVr98ZyTezviQwsHCl5saNG7Ns2QT6fDwOgMV70/LO+RnkfrG7opvbo6uT9zsuR3bVsirYc2pFf6GkwCup9PlDGYn/NQqVy/xCa5GltHzySgZPLh4DUq1atRj36hvU3ZfKziR5sXo8Xd71q+8j9z2OxPNs/eNngn+elXfsx59/o3aH57E4VGQq2ITrLsrxwdXu8neZ9vbbzJ8/n4kTJ5Kbm4vJO5IjWVpMflFyeuUOpFU2dNg18ndXhmLCySRT0GlDQ+Wxb1hELueO7eWX7ybh02cyO8/uxrPTK+gQQKK32hVKwyqFSrEhQ/5eDp2cxhmCCmB4fdln8uW2YhqHw8E773xIdHQ0c+bMKY0fXAQ8sMVlVlYWPsFlSXItT1IaBOabBImV2lWSvk9PkncFDZKEs8ZFtKzYFap9KolbXU+xHgk1ioN3ojSBi3SVlWcj3O1s3/gNr8+cAsDkj6aydc8x+r71Gz+eS2e/AKp0WR8xLx6axFu/cFWc9OFfEc9xq7loyuKc1czmX7dj/GQ2buTwdP8+DB/yDK6uruzetYM27Tuhz+xNDV9xQRgm8fAX7L2edx9BorA6J29KamYFo5qLMfuIjqnFRVUY17MD0FgllVyzSOU0+ciEfrVzkiRRjA9lybRgQZoIukXW4ubupeQkx3D41BEAWtSqA0BLH5kyapI+UYbk39RA8Z499WL+iQpZ83ir+B21SdGQk47g4p7nfWiVKGJ2acI8trKRfRsXsWDKaObPn8/QobcPW6LX6/n+qxmkpqYybNgwPP8+zkcffcTeWPHeRnVkXtqNUsemkmjRHtdkWWpUt0pnOHn4zo5H6V9hk3wB7HrxwR+rLjuNdwwWO80UxULBLvVpCSbxPg3d5EG3uo+V736cwjffz0KjKU4Jj1L8f4E9J52YhRMIG/oVWs+iB/bW+YQQ2O0Vbvz2FuHDvioJ8cgiwRR3ibS104jfuQRv/0CsDjVhA6egrdY+z2inkujrOkXYgIJQoXYrNmzYQIUKFUhLWFvkMmWnxuFWyO5w4sZv8W31DDqf+wv/oVKpCG/Sm5i9K7m57w9CGj15X/kp0a9fP1q0aMFbb71137smpXh08cnHH9Kgfj2mfvQswqiVqNS3H2tUKhXV2zxFpSbdOLn9d9ZOH45aq6d8w05Y/Svi4huC3WoiN+kCiVdOknh+Pxqtjha9X6RCxZKnI+7atByHKY2BAwfeVfqyZcuSlZXFpUuXKF++fOEXPGBs3LiRqlWr5oUPuV+4ubkhOGzYbFag8Da94fev+XPd+jxK7JUrV7iRmEG7yFtjR94OoaGh7N4tRt+d/cMCHC6Vi1T2e8HBHeuZ8dogZq85zQ/nrVxe8DL1vzpH+o2SYd8kJiby8ssv06pVK6ZMmVIi9/j/gAe2uPzuu+8oX7Np4QlLEOeO7eXqhePUqlWLQc8MweYeyYDXv5POpt/x2oKgMbqjC4iC0MpU834VU3oii479xXctHqdty6YM6tebH+fNoXLlynywYAfh5asXmmeB5d65hm/OH8ZnxM9Fur4ghHUYRcymOZQdMrPY8nQi+9pxXO5AlbGbslnx9Xsc3r6K6OhoIiMjb5tWCR8fH1auXMm6deto3rw5HfuPpc0TzwCPXjw+JWzmXL758Gm+nP4RNWsW7rtViv896PV6UjLTiny94LATu+htAjuPwxh695OB28G1bF0863QkftWnhAx+eAqLdnM26eu+wHJ5HwbBjNWhJrzjCFQ1OuNdvTUA5vQ7+1oVBK/AMJKTU2jdOoz0lPjCL7gN4s7uQ63Rob/NYj43LR5LSgzBNd8s8j3+jTKNenBpywLSLh/GN7x4/Mc0Gg2dOnVi165dtG3btljyLMWjiV49e7BuwyZ2bfwc984TC02vM7pSt9NQanYcRmZSLNdP7iT27G5sUtzByIiyRNRqQeeB4/Lo4ScKCjRbjLDZrGxY9BV/rl5xT9dNnDiRgQMH5i2AHiX8+OOPTJ1atPjZBUEQBDQaHeeP74eQO7fpzLgrqG1ZdOkss8nWrFlDrVZFU6vPycnhn32HqPDax0W6/m6RdPQvZn0xgh+3XOPSmSOc/3YytT7Yls8NojgRHx/PwIED+eSTT0oFe+4TD2xx+e677zHl1/0FBr9+UNi28nv+XLuGgwcPEpuYSf/nXinW/I1eAYS3HEi7x3sSd/kEb06eTrXyYRw4cIBRL77CsEk/g96n8IwUMKXFo9Hq0DUfftd+PHdVVr8wNEZ3cuMu4RJcvFa+xJ2LCe38YoHnBLuN3EUvMeLVofT+/btC/Si2btvOtu1/4+PlwYsvvoher6dLly6cOHGCwU8/y8BpE+nywmdU6/xoKiKas9LY8/0LjB09vEgxqUrxv4F27doxadpsGjdpQZBFodQqMQ1Uil11pwiVSkElzdy7DK8abfBv1JN6bk7WgJyPXhprMxTUJqfY1rZUBWXVIN6nbFhZCBvH/mlP4ZqTjGtIBRLjZLolwI3YODSuEXlMCqcKoJJq5IxRqwxubXOIE1B1oExtEiQmRaSHG2mXDhP3z0Ku7VmJw5SF0T8cn84vow+IxKV8/bxrLCZJyVJBWRWk2LaoFIq10u6MSsH4cPP0I/raQby8vLBI1GNVAeITKonpIChovU66m93gSXpiDHpXT9x9g1BZsrC6y4tMu86FuFO7CesyFq8QMeTHk/4y82NjsvhutiTIbBunsNDlBPkdqiUabma1x/OORWgMnFs8Cben3kUrhZBRS0q1SuVgXZYkDGeX35HWLL63Hw/JfvVhbmW5mq6nmaDU0CzF/yrmzvmWRq07Ea4ei0ZnIFnRLxzLlvuNTLvc74QZHBh8Q6nQ8inCFfGrA6X42KeyNSBV7/O5cj2yKuJfH81WtFUFJVIpxJgVH533u1slWVjMQy+3nRu7FjJm1PB7DvPQvn17Zs2axbRp03jzTdngo6TIKtXch3nJ9+zXWJ6bffe33MZmnZbfkVkr98m67JS83/koshKNtKKbzJqLj48nLS3trg3pd4N9+/YRXKkBAVVbsuSUbEDTKVwsGviI3+OPRV/y4duyQmxOTg6//r6CZ977BWeXsPD4tbzzGgW1VR9wa+zQjRs34qjQkphsE2SbQDk3VfRPNjeZUqtS9FEqu1wHneNLpRCZ+dHIy8r5g1s4t/pTqn92gjemTyX95HZC+04iNzeb3Jhz+dwblH27UpFcSYXVVZI3t8ZGynVzcFMx/b59++jf/w1mz55NlSqPrijUfwUPZHF54cIFajXvQrJLFOUlWetzCrlkU6645MyROqOIQNmnMM4sNn6HVayYUf4yj91doqs6VWABvCXV04qSmqmTqnhi7194GKBq1ao0ataage8t4tvLigouTS6UA7dG+u1sIMYUufGZfMT4PA5J9fWc5CcFcM7hANRYO03l6pntrBgwjOb1a/PljDfR9pmGSq1Ba5c7HkOmONGwuXiL/ysax8FFH4FnCEFBkZAoxnd0yl47lU6VDcvpH6WRaGPxikZvSLwMyNTZkEY9iN00m/J932HrVbEMjcLkBn5Zois/4X+rjtjFLDHfrdfkTk2TlUx29DF0Oj0eRhdyveUYRo0riDuZF7/sytDnh9Knd+EWs7i4OEZMnISu+/uYz5zi64atadu8EZ99/D5eXl6s/mMlubm5vPnu+5xY9C7th7yP3ShO6HQZ4m5HboC8y6PPEo+pFJNVuzRZNaZcAcDqLjuoO99zt8dE39Q6vnKH1KeROBD9vCst79hNKcREmDSotPA4wxtfvMHMSe/RunXrQp+3FP+7aNy4MfbsD0mKuw5uZQu/QAG7KZuUfcup8t6WYi9XVMdRxGydT/lBt9J/0jOy0Cj8IosKwW4j+/xeLOf/4cb+5eRkphJUoyUVX/4Nz8rigJ/t9D0tgvpgQXD18Cb1anbhCe+AG0c3oQJ8o2re1giWefkQEU8X/86vRm+kTPP+xGxfSFSn0cWefyn+99G+VTP+ObqJ0AbdC0/8CMFus/HOO++Qm1u0cHUrVqxg8ODBjBs3jqeffpp69W6N3figMXPmTF566aVizXPb3zuJrNmS/X/9Tq49BJfwgplxGSkJmFOu89hjYggWQRCY+PqbtHpyGC6udxbyuR2++uorDD3mFLnshSHl5hW2L/qMCnXbsPfzp/Cu9Th1ph8iM6b4qbCCILBlyxY+/vhjli9fjq9v0YQyS5EfD2Rx+e33C6jebeyDuFWBEASBHWvmMfuLT5j55dfU6zwUD29/SCu5gL9OuFRtjbFyC07vnEfquRXkTutO5Bt379CddWEvXnW7lkjZXAPLovP0J/3CfvTB98+dt5uyiFv/FZWeGF/g+Stbf8TPz4+nn3660LwSEhIYPHQU+h4f41q2Ltoy1RAa9GbTvmXUqFWHwwf3ExAQgIuLC19Mn0pImTAia7UCw8O3ODkcDpb/8BGW5Ev8+uuvpc7gpQDgmUH9WLV6PnUGfHhP12Wd2oZPgyfv6D9VVATUaM2pRe8jFLCou3r9OvpGwQVcdXewpsaS9cdksi7sx2614OobTGS3VwhtOxSVWkNyyXe/OBwOcrLvnS+Te/kg8cc2E9G8HwEVG2ArII0tOw2t0QPNPSpG3y28ytUlbv8qrFmp6NzvjfFSilLUr1ODTX9eftjFuGdsXvbdfdFHNRoNixYt4uTJkyxcuJA333yT4MpNaNiuDwEht+7ClTTMOZkcOHCATz75pNjzVqs16A0uxM1/m7ITVxWYZsWsCUwYMzxP62Hz5s3EZwj0a9WdzDvFHykAGRkZxMbGkp2dnaeDUty4sXcVf80di8HVHTdvf2p+sL1YWXtKJN68xsiRszCZTKULy2LGA1lc7j1wmFbNi5eCei84f2w3dapXJioqipWr1/LMx6uLlI8gCOTGXyY75jQZidcRbBbUBjdco2rjV6kxan3BjtoqtYaQvh8S0O01dr5YiZh5LxLV7eVC7+ewmshJuEpkzXZgvT8r/O0Q0rw/l5dPIbzpgPtqwLbMJGJ/e4uQri+jKyDm3rV9q9Ff3cqSlUvuSIW1Wq188NEn/LllN7V6vUFqkCyio1Kr8WzyFA3KBdG6Q3e+/vwT2rRpg0ql4q+NG6hXrz5lJ21H6/7wOojU+Ov8+u0rqCxp7N61C632gQoyl+IRRteuXZn13Xxq2qxotLrCL5CQfW4XIR3HlEiZVBoNHuXrkR1zBvT5Jws3b8bjWoSFk+CwE7/4TfS5iaRlZOA3YBruVVuiNrhRxiN/ftbMZMwJV0iPOUfmqe1Y027m0VsdVjNarwB0ngEYgirgElkLfcC90cp+X7qMwLDCaf+CIODIzcCWlYLl4h7SNs/GyzeIgIoNbntN9o0zuJYp2diRgY91IeHIBsq0GFB44lKUQoEOHTrw0Rd9qdJnFCtuKHYBFdToC3ZZCMZDEXDeRS2n2ZMutkeFKCxWs0ybdCiYQBrFHEhpOxKUdGyDrGDqq5cz7d/YG7vdzsyX1zL/iz2FPF3hqFGjBp9++il2u51t27bx669fkJSURI8ePWjcuDHVqlW77Vzk+VYyzV9JJDfbvfN+x5lkSu/GZPk5gg1i317eU3znK5d+Se+7YGoVBa46gXrtu/HHT9PoEiWy+ur6ylTfE7v+pGaFUHr36gmI32HmrNm0HTqFTIsagyIOuqBYLNoV41MbL/nZvvxxDUlXrtJ+2BRWZ8uuCUr1VZQScQoV1z7lZEbiGYXQ5Mkborhlmk3g9NdDST+7G9cqLQnsMJrL7j5oLx3MS6tRuI+oBLlcSjVypRKtkgo7sZxcxicfc2fevHls+uMP3nnnHZo0aYK6hPw4/7+ixGe+p0+fRqXREeWtA+w4pLoc5iJ3PR2Dxc5GqxL/P6eIn9rcW6xMZk+xsXtq5etOZYvnNqTKFa61l1ixy0j022OH9zHvo1GcOnmM/s8MQ9duIj9cEwBBlK+XkCdfrGgXdoPo6+KwmEjZtYjME5txCa+BW+WmVOn8AjrPAOKvnyfr5FYuLnwN1wqNCOj0AhpBvLcx+UpeXqnS76j+HxL929tkhVXBp3JjQKbDWl1E67TdW9wtMN28iNbdG3tYNWw3ZTqALkekvGYHVwPAJTk675xT/t/u9NPJTMw75/SZsit46AbBjk/FhqSvmkJIs6c4lihbOq2RIo3iN7v4XaxXj8nvS9rpcMtKJDfpOjc3fU9U86dwN+rJdRXLoPYXrYQOcw43f/ucHdv+um0DPnLkCFNnfsP+Q0fRV22PW5uXOZluRRe7RnyuYHkSdzLbBUP7CYz44BvKfDqT5b/Mo2bNmsya9RW/rf6aZ974lpl7xUpkTFfEI5U+sc1N1iJ3SAOqUzLbKn0LAKGs+Pw1FQq6/4ZesZmktuWw4K2ezPj0I/r06VPaWZUiH/z8/OjQrhXZ5/+hWv3WAAhSH6Q2yX2R0wdFyM0AwHTtBLrQStgk9eogg9hJZSnCBfhJ7gA2xUxII52Oy5B9U+r4iZR7F7XCJSCoAnFnduPVoEfesUsXTqJ190EtOEDyjzFLYTuUfixOVWZB0Vfm/vE+jsSLUKM9lYZ8g1qrx+gsi1WkyabuX0H8ptnovEMwBJVD5xNCcPdX0PmG5RnprLlZWNPjcWQmk3vlMEl/zcEcdxH36q0JeqwzGsmPyznJKOujCHdguczl5GQ+mvoF/T9cRUyORgxjQn4/IEtGMmkbvkB38wR+vj5gtWDNysCvekuCandGkKjxgkbqOxVy+dlZqRgrN6OTj7yv+Y/Cv9VD6hsSFdNTU/atwnEaaWJmzU7LO5ZTXhwb/DPiOLV7CbrHHsfkI05mjamye4ZTxt/qKbMjtFJ4EpPUfwPYBRWl3pb/v+Dm5kb02aM47A+AIlBM2Lt3LzVr3p6GXhRoNBrat29P+/btyc7OZtWqVXz77bdcv36d0aNH07FjxxIbq9cu/Bw/o5nnn3++2PP29HDnZoro6jNg+tYC02xfvYD1q5flPd/WrVtxGP3w8b93NpXDbuPa+SMkxd+gf4WacOLOit33AtPNC+yd0hlrZjK131yNRV8ybBC73c6Zo7v54b1v6N69OytXriw29d5S5EeJLy7Xb/yLqNoPR53u+uUzbFs8nbVrVjFi1BhuulenbO32ZGXfXTBpwW4jZc8SUo9uwLfpAMq9vga1FP7E6CouuAzB5TEEl8e7aT8yDq/l6qynCe3zLsbbiOS4R9UmtPOLXF3/NXovf9yCb++wbj71Fx6BJU/jCGrQnZidv3NxyWRC2gzF9S4FfgRBIOHoJlLP7qZs17G4uhTcIaT9Mo4PX3oBLy+vW84dOnSI19+fSgI+mCu0x6P/EHTWwn0tNDoDxic+IDbmFF16D2bIgF6MfG4433z7HQe3LgPXxwrNozhhNuXw1fju9Ovbi759+xbr4FiK/x0MG/IMPfs9Q5W6LVDfRUgae24mGlfPEqHEOqExuuOw5G9zGocFjfHegkULgkDiD0NJPrOPRi/Nw944fwgBh81Cwub5JO34Be/HulL+1WVo8oSAVFIe8qJXpdGi9y2DJrAsbuXr499+JJbUm6QfWsPlBS8T2OoZvKq2KLAs/sHhbNy4kfbPTckT0fk3LMkxXJ7RC7eKDTG2fZF0tQZQ4eXhi87TH3Xq9QKvc8KWkYi+TvEJdBQEtUaLwdMfU0Yy+IQXfkEpSqFA5arVsFvN8MgEHLozZsyYwYIFC0osfzc3NwYNGsSgQYNITExkypQpfPbZZzz++OP079+/2AR37JZc5kweScvGdZn07r25Qdwt+vTuSduO3anbvAs6w6199Z5NS6hZrTLe3t4A2Gw23nrrLfpMnFek+537ZwlawUz9Nn3QGYpnQWYz5RCz4CUyjm8mqtcblGk/Ar13EIlXTxVL/kpcOnuUZd+9T/u2Lfnuu+8oW/betA9KcW8o8cXlzl17qdfnjZK+zS2w22x88dYzrFy6mA+nTCOsdgfs1Qff9fXm+EvELf8Ij6otKPvy76jUmryFZUFQqVR41euOW8UmxMwbQ9igqRhu05/71OlI5sltXFz6ETWen5MXr/PfyD27C114rbsuc1GhUqko0/ppcpOuE/v3r2iMbgS3HIz6Nv2sw2Ii+/JBkvetxN2vDJWeelec/Fpupe7mXtyHIfEsQ4Ysyzt248YNdu3azVfffo9/mYrYOn9MGf8IYi8eueeyG8KqM7Db76z67nVsNhu7dv5D63YdyCjfBc/Hut1zfkXFsrmfkpOTw/FrmTz77LP89NNPpQvMUtyC8uXLU6taZeKuXyQ0qnA/Z3PcBYxh1Uq0TLaMpHxxMwVBIDcjhZAmbbk7M5yIjH1LSb1wmDbT9+EVVYsYxYZ/1uXDXPrxFXya9qPKu5tR643YHQV5Mt4ZKrUG7wY98Ctfn5g1n2FNj8e7zbBb0rm4eeDq7iFOUlrcGi8y8+RWbix8jeB+H+LduBdqBX1LF3Pirsqi9fDHnHAFqF9o2vuBR3A5shOv4hZZ577y+S/tYJWieNC355Oc3fsLmmrP5R3T5HN/kfezFSLWBOrl4ylSM7Va5RjQylAQSsOX3Wop8LiSOlsjUO5ryrjKeYI4F3F3vzejVlEREBDAF198QUpKCnv37uX1118nMzOTGjVq4FmxLf5BYbh5eDG6tSxMuGyfTAV1suMAqnvJY/2lmwks+fwZpn7wJk90L7k5SFBQEEMG9+fj0Y/z648/5Dt36NAhDqz/mV27duUd2/TXZkIq1MMvSDZSKdkMEX6yWOb1mEt5vz21YqqYnYuoV7sW5hrdOJmuRVAYH5WU2ghf+fsOj5SNln0ayel/2JbIgS1LmPfJS3jV7UyNOTdwmLJJtdohMRa1whgiKKiwDgXtWpMtUxyt3jLltk9l+fcHnYwcPHiQsWPHcqpiRZb89mPpovIBocQXl5lZmZQJi8r7e1+ySBvy1cnV+oykspkqtdVKBkXHZhUrWWWpIccrgtbfNIkdk05BVbppVmMz57D8vf40btyYQc+Px9ZuAheD66O6JjYYtSSzrFFM/p1y9na9C3G/v4ctM4k2L32PZ5lKBEp+AYIgp98lsdi6hohW8TSrc9cumM2DphLz+yTCB3yEVpKFdsom67NFKkFYk16cXzkNa9JV9BFi7EOVRKet5CfSNpNzkujToin1qnvwrUezvHvnXjsOgGui+DxKiWfnB7WoRNqDNh/dTnxG95uKyZNa/B65vlEYgisSNfBjsq+d5OramRi2zsczqjZ6n2BsORnkJseQfeMsDosZt4gahLUbhiGwbJ5vRU6AqAhrCBIb75DADOZ8OYntO7fz+cxZ7N23H5tD4Mq1G2SUaYSh4xTSDK4Y4q6QGXcFg1O6XLF7oTGlAeB5dX/eMZOPuJvrEXMYgN+vH0YIbco3i5YQl5DIxnVraN2lB466XfJx8Q3pMUB+fr57zCHxffmKoQTUinc5qIz4vZ0S5UsVA4sTTrLZ7k1Lef3zpYRGVeLnGa/w8SfTeOet129JX4pSPNm9M38e2ENIVOW8MBtKqilSv6S25KCymtCotagVEzUfvTjb25cmUzB9pQnAzhR5subnIuZpUCgCBkthBdZfl+uyOeYUbq2HEOQrTi6S9q/CnJtFcqUOGLSKGLLOdqlYiAmSb07LQC/mL/2AFs9NJyWgMinZZiLdxH45ds9y4rcvpN2bv1MuwElJt+OrmMA6fy29KU/YjNKEpbWXfMwQKPZrG1LLUPaV37n+4yukH1iF92NduZIqP5O1jAsVazXh2sF1xFSsymOtnqRDtcoIgsCylfO48dvbhPb7AM9GPUEQcD+1US6LUzFc0Q+ZvMT7qhUq3y5+4VhizxKnGJMyFOu3DEkBV6swHlqkCbrGRVYEtzq/rXLX1qlUbvREH1SerJsX8MkQlbkdCt84q7+o7q3LkcMiZFYVQ5q8W0NOp1EJXDjyN7XfeTRDNpWiZPDS2DHUqd8YdZVhJRYbsDjhcDgKT1TM8PX1pUuXLnTp0gWAHTt2sHnrdrZv+430jAwWz7CiVqsxm824B1bIZzRWazT4hZbF7hDfbVZGCou+/YA/Vq8lKNCffgOfITY+Ma89AzgU80irYnWnU9iilYs+nTp/P+lwOAgLCeSLGZ8y4dXxGPR6Nm/enO+ZfHx82LVrV56IT05ODm++O5nxM5ZT1Dfs5u6Gh6cX5sKT3hbXr19n3rx5/DD/J+x2gWcmfM6hKk+jUqlwULy6IjkZybz00lskJiayaNEioqKibps2IyODU6duv1saHBxcuii9R5T44tJURDnposJuMbFxfF3cXAxEe3ZD/ez7GBWToTtBcDi4Me9FvFsMwqNGWzwDiiYMYwiuQEi/D7j+y2tEPvdtgTueLgHhqHV6Eo5uIkxaXOYriyCg16rYsXI2FWs1Bcrckqak4BZRgwpDPsd69Sg58VfIuHQYrasnbqGV8a/bGZ2bN4LUwd7Oj0cQBOZPGkxQgC/de/WjymOt6Dh0Mjdz1DRxceenU3HFWmaVSoVPg6dYdewAy9p35dsZH9P32T5UGDyjRCmFAOeP7wXBQVi5qqjVaoa/9gUz3xhIrx7dqVatZHedSvHfQ9u2bZk5+xladB9SaFoVqlsoq8UNc9xF9AFReX9n/vUlRi9/9L5hIIX0KQzHl07B4OpOuWY9OaxYYMXuXcnNA2tp8cZS1BotFHlqcytUKhVhT3/K+Q8ex7XsY+i88ivb9h09mS9eeYIV371L4s2rpGr8ObthNhlpKUSMmI1Po56YM4ruN6TSG7Hn3OpDWdxw8Q8n6dQ/95WH3WbD3c2Iv79/4YlL8T8DjUZD2agoLmUkovMOKvyCh4gTJ05gtVrzFkQPCy1atKBFi1vp9pmZmcTHx+c7lpWVxbVrsg90QoIrj834nE+mf05Yxbo06D6WbhEV812TYZUXmhcVwjblFDuhdsXEKlRx3CbFH7128SR9BgzBbrfSpGE93nhtAoGB8s7jv7F582Yea9kdvcEF070TRu4bcTFXGDJ7PFevXuX06dP0GDWZRo/3Q6VScfhi8RsUcjKS+euLYUydNJFOnTrdNl1GRgZfffUVO3bsoGXLllyIu1U+VwCuXjgOdku++a6Xi6QHYzZTpkwZ5s+fX8xP8d9GiS4urVYrFtuDkxHIPriC1XNfwN03mOqvr8bFP5yLyXc3eXBYcrm+6B08GvbAo8b9+4gagivgVbczqXuW4tfyVjquSqWmXJexnFsymdCu46SJlwKCQHh4JF9P/5ARLzyHfegitAWosJYkXAMicQ2IzLPkKwON3wnWjESufDUYb1MCj0/4ivI1G+Mt7f66luDAoVKpqPj0dHISr/L8xKE0rV+X88c24lO3S4nd02G3s+bHT6lYpUae07xao6HH8Ld46aWX2LRpU6mwTynywc/PD7VgITUxttC0er8wLMl39v27HzgsuagNbnkGmMzLhwn2diEuuMld52FNi+Pwqlk0eW46Lp7+kCryYdOvHOPq5gU0enPFXfmXFgVqrZ6AdsNJ3vkbwVF1850zGF3xDQpj6aKFrF27Do3OxhMvjWLaURU+jXre971dI2oSv+5LHHbbrf13MUKl0ebb1SwKblw9T/ny5YqpRKX4L6FPz+6s3L+Spj3EeKk70+Tx6GqOPJk+Z5Lb6KlsheCXIK5GlG3YnJaU91ul8PcTzPLuk6BoE0oF+VCDnLdyETXvj/3079//kXUn8fDwwMPj1vAbderUYe2f65j2+SzUbv741u5GneHfslsI5LwZuCBQzVNmSymnxBeyZd+BOIs8v6roKi8o3bTyBZkSk08fWouRHy1GEASO7d5Ixyf60apZA956veBF5jffzaXXS1/hEMinEKt81UnKRaeiv0m0iPXFLog7rUey1bhmaEARvmpYFdlo9Wo7+Vl/3p7KzDcH4umqo2unDuw5doHmry3nQFBdDlyVbhUn7hiqFQxEwUeOt078Rbm8QbJGSfcQ+X1V9ZLfo2/mHt6c9iY/z59PrVq3upUJgsCvv/7KggUL8PDwoHrLATz3wRhUKhXlFbvKko4d17I1OAPcrUqS7xmuYFimrnmXp4cM58d53z9048ijghJdXAqCgJuHJxqV/BGCjeIX89bJlbeRVNmdld6sUEEMklRlTdIxZcMo7yYe81Sl8ftXr5F5/gi1Og2l5sCP2J9mhqzcfA1AkGT11f5ODr18n2uzh+P7+Ci6tpEDDlslBdloqdN1VdATHBKFdbPUUddQbI7WCBIthKdqdeDK/BcJaNIXpAWaQys2PIfBA0M5X9QGV2KPbiag7bC8xVtzHysXDm+nYr3a1K1bl68//4TRL/Vl0Jvf4RtYhjUGcafz0olMKU8FTUpSi9XmiBQxF4VirVMt1uohW/idlFqXxPNAfiVVZ146KS+7YnFp14l04JDKslR/R38LB//6nV0rvyFYo2Xyb3ulgUIgSXqHC6JFUoX7zZN519mkwSnHv5x0TqYnmPzEY/osWfXWqeKbYxSpZTYXWSgo8+oF8fmfnMzlte+jciSgMYtWSLub6AugNWXI9/YQv5XZXfITiKyddy7cPb+PknLIc1Jk1/42i7atmnL2ajJXJStkOQ8b5arUxtfXl40bN9K5c2dKUQolevd4gotnj4BLnTum07j7YstIumOa+0HulSMYFOE0zDfPcfb4UUK7TLvrPCwbP8NszqVC8z55xwRB4OSPE3nspQXSwqvkjIxuFRoSv/FbBEG4ZWLaoMPTTP54Kot++QmARYsWYTcVz2JdrTPgVetxzm39laqPP1sseRYEc3oCeq+AwhPeAeeO7qZzu9bFU6BS/KfQt29fZn7bkcZPjHrkDZ2P6sLydrBarXw6/TO2HrpEy+Gf4RMUToKTJp9wj0EkiwCVSkWdZp0o81hnzuzbSPde/VmzYnG+BWZ8fDwOtRE3T+8SL48SGzZsYOZ7H/LWaxNISkrgo8++ps1bq3DzDeFKZvGPB7nZmRzesY7ow+tYsWIFERH5xTCvX7/OwYMHmTFjBr169WLDhg3odLp8frRFRdeh77BlySy++no248e9eN/5/S+gRBeX9gcgILDnj9mc3v47LZs3Ra1+jPB7DFAOkHF8M2qDa7HsWCqh1hnQ+4ZhiruEa0DBSn8BjXqRsOs3AtrmF6VIjjlH0/ripK9x48Z8/+0XjBk7mt4vTgdjyYv8FAWbf/uM1IQYXFzdmPDprw91oDCUrY+p1Qtc+upZPOr3Q+/uXez3sJhNHN25lr4fvEu86Va+/vvvv8+HH35YurgsxS3o2eMJho6ZAF2lOFwKXyNdukgZt7l6A6DSu5CTdB215CtsDRLp+o95yqZmp/FNaSFXSwu6FJNs1T2VLRqY1JL/XtaBVfhUb4UuI56y4aFYsuPwDiyDAQekXM/z0xYh+YIqhBzq2W7wx/GtlH/5N/ZkApnZOLJSyL16HF1IZXK9ypBrg0oe4vPl2AvuE2JN4oSsmY/ST1C85nyuXIYIadejo4/8vtZetaD3CsIafwmdj+gb+elZ0RD2TrM2/LBJpivVq1cPxxvv4qHJweAfxRX3CIzhNdEofBadRj5BJ6vMOo1hGZEN847pA6MI7PEG+6Z0JqHGE6g0WtoGyTsbu6QYgg6FgbOcr2iw81PsRmQ7xPtYFFbzy1fOAGKYFcFqQqPR5hnR9Bk389IZ0kRKntlHVl97PET8Prk2+bvbU87RsOEgSvH/Dy4uLjzZrRMnd6yiVqteD7s4/3lYrVaWLFnCij/+5GZcAnVbPkGX0Z891PmOSqWiWuNO+IZE0aXbk2zdvBFPT9H4/tfmzVSt3+aBleXatWuMHj2aqlWrsn3zesaNf5Xz0fG0e+9PkdlSzLCactiy5Sf++PkLXn11Ap+vWHFLfPFjx44xYcIEunbtypo1a/D1Ld5Y6CqVigbt+3FgxdRizfe/jBI1Y/39999EVi6ZkBC5WWms+eolhPjjbFy3moNHT9L3xan33MBtmcnE/zGN4F7vlEg53Ss0IvfGmdueD2jwJEJuJsK/HNm3Lf48n9JYg/r1WbtqKatmv0Hq5aMlUtaiQhAETs4ZQ25OJjevnGH0u9/i5nFr2JF7hTUnA0t6AtaslMITFwBjrc64+Edw4c+v77ssBWHD798wcvhQvL29C6x3Tn/Ls2fPlsj9S/HfRWRkJDZT1l2l1QdGYUm4UnjCIsAUdxHXMHnnMu3mJTwi777PPr1uNhazCUPV/JOXzNPb8S8G6undwi2qNjmXD91yXKVS5WubFStW5PtvZtI0xExV6xH8t31M/KcdyEy4WqT7aoxueNbrTtqeJUUue2FIPrsHj/D7892+ePEiQUGPts9dKUoOL44exYlN8xGEB+em9L8Gq9XKggUL6NSpE1lZWXQZ9gHjpy+ldfenH5kd1+DIKtRs2pXnx8i7Zzt376N81WKah6u4rQZAelIsf3wxmvHjxzNr1ixmzJjB3LnzMeuDePGjn4p9YSkIApcPbWblpO60rhvOtatXeG3iK/kWlsePH+fJJ5/kww8/ZPHixbz88svFvrDMw7/Gmv/vKNGdy+zsbDy8/XFRWGmDjKIVV8kjz5Ws2c7/dQoarVb6VqESB71vIx8SExNp164rH3zwAR07duTJnn3pPfI9vNyMHI2TVPbSJSEKBWVUJym32iXFPr1Wz5U5I4kc8gW9KooW7+hcuXKkSuWJlSz/FiU9TVIN1HiIFfWaRo7xmJQjqtGq7aJzusNqwiZROFWSOqRTZVStN+LnH0gtdQbH1SJd1dfgoGbtx/LiE+W9u6Agpn8ymTHjJzLgiz8520AMtB2lcPieFyM+v+bMdgAyqsvOzFop3lsDT5neuu+saJFXSQqsQpDsfO6UDzecFZXIcn1l63ifOiILPcLNxKF/1uJevgxXTh/gmRffJSRUzMus2Lj++ab0HVLFSbLNKC8+rdIOjS3lBpnndnH98mHsOWloPQNQu3hgz8nElh6HIbgiXvW7E3jjOBqtnlxJnValCGkgSIHVdRd2AxDQ402iv3uOVJ+y+CaL3H2bixxsXeUQv61TJbatn7xLci1L/P6L96aJ70Oxs9AiLJM55/by0td/8dEn0zAEVcYm2QeU3ctrr73G22+/zbJly0o7nlLkQ1RkGLFxlzAUEldW6+aNNfUmRgV9tThgSYtDpdHmE7xKuXGJMnUfvytFQMFu49LetTTu9xoJ/6rbOZcP4VEEFklRYQyMIju5YB9WQRAQBIFXJrzG1u07MEbUwzOqDmZTBuevbSHE1w3N9V0k3TyNa0RdXPzvLZ6kb+tnif6sL14NngRu9cm6H1iyUslNjsEzrCpF5QFlpCaRkJDwyPkCCYJwC7tJpVI9cuX8X4Cfnx/1a1cj8+xmmkpqwgDXTfL+gl2xw26zyEGI1JIitDkrDUWCvJ8qo0J1X6dUl1b69slpKnvI47VyHtikojs220NQmykESUlJLP59CQt/W0Ltlj15+r1FaHV6Mq0qkqTXZFXsDTjnsaobp/OOnb8sGxItnrKRR6kSfjxdrvdn0mV2gj2kSt5vIV0WQtT6ybRPjWJBNaLnWJZOEVkKN27c4NiJM7QaXIlk6Vv7u8iFvZEt39OUK0cWUM6prko038zsHLq1bc6pRRupWbc+9SPleVSYaT9vfvYm48aNY9Ag8d5Xr17l89nzaPfRNjbHGziYrohqoJiXC2qx7Bqz/I6suTJrRAivkff7nSpyfVm14GPUufEc2LUVN7f8MdZzc3N5++23OXfuHD/99NMtQmZKKuylTPndpVrk9uB03Vt8Q34XdqvsUxziKff1WrWAVl1quFGixNViixvx8fE88cQTTJw4kWbNmlG1alUGjfuU8lXrFn7xv3D9l9fxbzMEt7J1gZLp1CypsRgD7yxh7OPjQ0r0cagYfMd0ICqZ+Xm6cHL/FrRVOhZXMYsMU04Wm5fNoVq9VpStUocqtZtwt/5VgiCQcnwzyRf247DkonHzxqNKM0IHT0PnLb4LuxRKRePqhen6STKOrOf0niW4B5XFr+ML6NzvbIVyq9AQldaANSPxjunuBTablbfeeov3338flUrF7r37aTz4iQLT1q1bl0aNGjF37lxGjBhRbGUoxX8fzw15mr2z/0Jb7jF0l/blHTd7iP4yKmdoHocdrasXGomO6mxdGsV6zikSUd5FniBekeik1lzZx/h6kuQ/rXfjxqppBPV9H5sUFmN/cjZJMRdx6/sxzimPSsGosEuGG60k1JF2ZD2oVER0HktCmrwcFTQ61HpXqni55JXWVxL08lZ0DbEKAZEQie66O10ekkKlayIVAiCRkpExTjEpVtmtaA2u2FJv5BnvHNJE6dxVMwGBQWzZsoU5CxYSNXk3dktOnuh9SL2BmOMvkfLLS1QKd3B0yzz8Bs/EvU4niJUZB+6xxwBwi5MnjGbJF11bphq+rZ8l9Z+FbGk9NO+83l2cfPnpZWPe9RzxPWUaZfEKH+k1XIyVVSfdky4DcOnvXwlrMRBBrcWQKp63ucv+l046rzH5ct6xDFsrAHTSK7p2Zj+9e/fmUUFcXBwbNm7ihwW/IGiMqNTqPMOczWLG21VNp8fb06RxA5o3b/5wC/s/hC+/mEGLtp3o9/HjhScuBRcuXGDS5I+5mZhO3RbdePnT37Grbx/r/FGB1SwbBuYt+ImWPUYUi2FbH1abjIyMfIwbh8PBwa3Lmb1+Hr/++isVK8qbE0uXLqX6U++iNbgWlF2RcfnMEbb/MZ8ALwM//7Qg73hGRgY7duxg8eLFJCYm8uKLL/LZZw+Xrvz/Gf+pxaUpN5uePZ9i7ty55OTk0Lt3b3788UeSXOvcc17muEtY027i26hkB11z4jW8qra8YxovHz8yLu2Fih3uKs8f5/9Av2dG0aJyh4fecLYs/wGVSk1mejJDx0+56+sEh53o1Z9j8A0lou97aFw88gSHVN63LrJVKhUuETVxiaiJa5lypF8/TfTi9who+hRu9Qte2DnhV6k+uQeWQZ3iGVRXzZtCm4YNad68OTabjYTEZLwDypBlLTj9sGHD6NOnD8OHD3/kBRVK8eDQoEED7K+8h9Bh/B3TuVdsRMquRbhXa1Us9xUEgZuL3sKv3XMYw6pCThoADnM2gsOGxuAG9sL3LnM3zyK84ROSYI9icWmzoLpLZenigtbNG4f11jJbLSbc3N1594MphL2yvMD+0hBUnkof7ebcnFF4eHig2vQpuQYDLlJsy7uBd+M+XJzUCn1gOdyqtCiWmIIZ106CWoNHWJXCE98GgiCwbeUctm1cc9/luV/k5uby/uSP2HHgJBUbdeXJCfNxcRMNG0mKWKHGrOvEXD3Px1/+SPpb7zFy+BB69+pZoFJnKe4ebm5ueHm4kpWWhLt3aUia2yE1NZW+/QagcfGh84BxlClbOe/cA5ARuW/sWv09w54dhMPhYMXKP3jtq3XFkq/WYCQyMpLEc5/n0atXzHmf9Osn2LFjBzqd3OfHxcWxceNGwkevLJZ7AzgsJrb8sYgLBzcx++svqVSpEgBr1v7JN1/PwsXFhdatW/Pee+/lW+Q+KJRSzvOjxNVi65dzy0cTNEpW2psKkQazFLvHUyuaL9108kca3kKkT5pMJl54YQLjx7/CmXPn+eKrOQx/52fiXXw4myY/Rk6mFHrEGbRWMZmwSudUpkxSt/5ARPvheEjFSJK2w/WKOUF0nEhBMEhccZXCAhPuKZbLKczgo1C/3ZYhrTK0eswpN9D6R+TtQugla7dZYX3WatToNAJ1y4ixLIc2d2Gl8faTk6ioKHp3a8fxdVPp8eyr5NrkZ6zqKjbwyGaiD1RdP5mK4NxcUKvkVVCz5mIDFaSvpFT2PZAiPuNWR2sA3qgpD+4uWivpqUl89OM0OvV5jsFjP+CpxqKl/pvt4k7Jt2fS8tKrckSru8aaiyAIXDuwBrdGvfBtOZjRUWIaq0QnUe5KrE8RBUoiDHJ9yWw+GDfApVIzotfNQmfNxbuiKLRhVSjHAjxeuRznuz/Pvp/eIqfNCFRqNcYU2b8qK1SkXDg8xG9cQyFp7dwZ6t/YO+/YmTNnmHH8b16Y/xkAS5Ytx61yG85kaAmUdlj+3cX4+/vj4hfFsuUreKpvH0pRChCFNsoE+pKikO8vCK7hNUg/t5u0/Svxbnh/foyCIBD/50yMETVxr9463zlrahwOcw4631BIvLOPpyAIpFy/QOcP1t9yTuPmjcbNm9jj2wit9WCEJGzZaQXGEz5/cDOG3Cww+qBTytsXgMqj5pB8fAsxiybiWDsV44Av7nqRqNYZiBz3K8nbfiRl2wJCBn6St3NZFGTHXSZ2zwoqPPlKkfMAOHXwbzq0aZkn7vEgIQgCW7duZd26dezevRudmx+NO/ZnwNuv3/E674BQvANCqduoFTmZ6Wzb/Dvfz+lIly5dePvttx+6QfW/jDcmvsJr7w7l5c//AKC+h7wg2J8uj30GF1m0KzddZP2oFfHClWHJHJJxCkClHH8V4SwaeMrjd64i/kifRnIbWR6j5caNG/f0PMWN1NRUnujZl6bdnqNuM9F4n6WIS7knWX7uy4p5ys04eU6hy3TGBpbrqVbRxzvZWEA+ITena454qfy+HAq6KopwHdY0mSIreMnqsA5rLlUqV8LhcODhG4RZ0IINEiUDzooEmZKarIhD78hOk++jk4XhLiaL7mA5PhVZt+EvvF21lMs5jj47GnvKRbZt3XwLlf3TGTMp3340+7IFkAj9aoX7RVNFd7RbCvRh0Mjvs42XzCSs7Wvl8pkjLF8wmar9evL5quW4urpy9uxZXnvtNSpVqsSyZctwd5frbGE4miJ/R4Oii89WCM6tPSeqigsKAbtaQfK8vby7/L3ctAKXr5+lUmm4pzyU2OLS4XDQt29f+vbtSzvfevgFlilyXjdv3mTgwIH069ePw0ePsfvgScZ98isU0TpuSYklJ/oYviNKRujFCXtOBiqdQYpTdnurhkajITUumrDbprgV48ePZ8CgZ9i/fTU1mz95/4W9RzgcDt4Y2paWnZ/i6Zcm3/11FhM3Vk/HWLExvgXE/7wXqLV6Iju/yIXF7+EaXB695FP7b3gGRuDh7k5u/CVcQ+7PojV9+nTmzp2LWq3G4XDw5bdzKT/4y0KvGzD2E94f26V0cVmKfHiyfUvOXllGUoPRecfOx4qDmkvipbxjoU36cmnBODz9y/CzrQ4ARneF37JVHOhsiomI8aZI6zRIg7rdnMv1bQvQB5TFv3EfkCYTgjRpTNv2U57/p13yC1IpJkJOnxibOYfM438hqFQcTDMDZlTZCrVVtZaAji+we9mHRIU1EsuiFu/hpggl5aXwt1JLRq22voq4b9LkLVThI+Sk/25KlAd2u6s3WUnXMUTWBjdxshri5YMp6RrbV83Bxc2TsFf/hHSxjE6/bCBv1zbaLt03tCZ93lvO3Beb0vjScvqNeheAj/8WxxqPmMPyffViPqYUcUKs0xkJ6vYKuddPcWPBOIyhlfBpMQhbWVlMQ5D82hKdRlAgRXp3bqnXEQSBxKObSDu3hwpdX8ThG4HzSXWZ8mTSCWcoKZViIr/vslhvGvpGkJicTLua9ycGVBRcvnyZJ3v2pspjrShfozFjpryM0VWcpFkVE+o9SeJEd3uCPPmu4CUaMTsGmFG7etPkiVFU7TiKdd+MJ/vt9+jW9fZB0bVaLQ0bNixdgN4GHTp04K13PyA9OR4vv0dL4Klr1640bNiQV165P4NKUeFcWHYb+g5RlWsXfsH/M+jCa7J13UIaN2lKUlwMy5d+zcqVKwv0kd65Zz/9P3iDfTcLyOgeIAgCx/ZtYe/aeSz97UeioqIwm808++yzXLlyhSVLlhAcXLg72YPAzavn6NW23sMuxiODEltcqtVqDhw4QEZGBhNeG45NUNO88wAiarQgKKzw1b3FlMPN6HMM/n4uO3fuJCoqivXr11O99SDGTBqHWqPJF4D3XpC4eQ5B3caX+ACUfmo7nlUL9xlRq9W3iPcUBp1Ox2+//MS48RP5+o1faN1rNFFV6gIl39BuXrvID5OH4eXtx4jXP7/r66xp8dz47U0CmvfHq13x+B9qdAbCWg4mdtfvRHUaU2Ca4Er1cPf0In3vL7j2/KDI97py5QqHDh3iscfEyeLmzZtRB1TCMyiq0Gv1RhfqterOnDlzGDVqVJHLUIr/LYwa+RzVa9aldu2haPTG26ZT642EdBxDzMqplBn72z3RLgVBIOPcHuJ3LsL38VF41mhboLHLdOMMHrXvzo/bmnwdfUDUbc/rvAIQBAFbZjLa2xh9ihPpRzYQNuqHvL9TD/9JzG8TKBtVlpw6A8Ug7ul3pzrtFRhOr7cWsvTD/rToNIDQyAqFX6SAS3h1ol76hewL+0j880sEwYF/xzG4Vmh022scNgtpFw8Sd2A1HuHVqdz7dVQq9V0JKz1qWLp0Ka+9+Q5DJ86kap3GxZKnWq2m64szSTr8Bz/8/pd40Dl8K6pyZloS8W9MkqjaIizmHIIDAygbEcqMGTP+XwsGqVQqfv15PgOHjGDsjNUPuzj5YDCIu3LXr18nPPzeRLXuF8qFZbkqtXH8DzAc//zzT2yO4nPD0XkH4xNSgaOHD3H2t1/ZvWtHvniaThw/fhz3gIj7dgGy5Gaxf/HHRLpms2r5Es6fP8+HH37ItWvXeO6553jqqaceKSPS5VP7qfHSwIddjEcGJUqLrV+/PgCHDuwlJiaGv/76iz9XTCMjI5Pc3BxMFjt+QWF4htXAZjWTmppCYswlMhJvkJmWgEqlpka9Fgx//xf8y9YE4Gq2liNpYv6XcsXKezo+4dabO9WuNDKVQytZrO2mbNxqdaC5Yuv9pmQlj7fKldUpFmNOEncSIkJlYZ50yfiqlyi9IWrZGqs1uCAIAqlH1hEx9EscWgNqiRZrcRUt6w4FxcR5x2CJVrl0XypZpvyhSQqCXq9n9jdfEhcXx08//cS6bxeAZwSte7+AXS92zn0VtJPf94qU3H6N5WNLJdUshzTZtCsUUZ0U0VaBosW5TyNvFixYwK8zZ6J2mDlw4EA+utWIVaJK7uHDewDQKeLEZaUncHPVVPpMnIdPmYp5qsEAB1PEwX5PQjoAncrIebaUNmdy7fL7cFOLZfSp1x6ASwY3zAdWk5mWgLu0S6OWhD02x4tlSjdbMfgGYXX1wZBxqzmtX1nxnQxpfntqxfR5a+nXrz8A0dHRvPX+FLIHzmVHnDhpbRQkTqJrcavzZbZVRfNeY5n3RldGjhz5SHWKpXh4cHd3p2PHDpy7ehzfig3vnDaqNpbkGGJ/foWQgZ8AhYf7yb5xlpv//IrBJ5Tygz/BHnB7w541+Toe/6LK3g62zOS8uJu3g2ftjmQc/hPfVs/cVZ5FRda5Peh8Q9F6+GGOu4h143RUpgRc/MpgbjwS//o97jnPsnVaU75Kbd4d8Tg/rL9YpHK5VWyEW8VGWDOTSdk2n7hlk3Gr1AS3qi1x5KRjSYjGmhKDJfYcgt2GV3BZynV/Gb27Lypb8S0rH6QvkMlkYs6cOXy04G90+uIVP1GpVNRvJYfnkoaBfAsB5zGLMp6q4MBiyuHvhe+wfPlynnrqqWIt138NVapUoUWjOtzYPotazV7KO74vTaHgnyzTU53GIYcibqpGoQpry5bHZkFB7dQo3IiUFNJyrvK3cSqxA2hVAiPenc/I0S+yfu0f9/xcRcXu3bt555136Dp0EpGVa2MXyFNWBTiscLvae1OOGKDOktkHLumyUrVDK8UjdpPFBm1W5bxCfn6Ngi6rM6Xn/dbmymqmdgXd32FQ5KOYQ2gU6qtOJCQkUr1FD0z/8hONT7wN9VjBftAqROBsCjpr92HvMPPVJ1m75g/Kly9Y5fzq1au4l6lGqkWNoMizsZf8HiMUwnPVPcU0PtL8Nycrgw2LviLm4lHGvzSG2Ng4OnXrSWBkNT595/U8X8u7wc+70vJ+f35Rfl92hX9+XT/Z3evwZbmvd7JB9B7yd6yjiC3trnDfa13ezmIXCAu7F/7h/zYeiKCPSqUiPDycYcOGMWzYMEAc8I4ePcqsb79j64af8Q0KR+/pT1iV+pTpOICAMuUILV8DL8mXMbcYHakdCpntkkL6/pW4RtVB43JnXxdz4lX8fL1JSkm/Y7o7ITg4mNdff53XX3+djZs28dobzxJUuQmVm/WE9sXn8zRlyhTOnDlDcnIyCxcuvGs/ntz4S8T99T3hT0/Hp0zJOFqHdx3HjU3fUaHHxALP67yD70hNLgxWq5X9W5bzysK5ZGZm0rl7T55583t+ybzzBFsJrU5PcHAwa9as4Ykn7ixCVIr/P2jdqjlH/jlR6OISwLdeV4g5x9UvBxD21Pu4V2uZz1Ah2G3kRh8h6/Q/5B7/C6N/OGU6jsYohde4Uzcq2KwYImre7+PkwbtJX6587gzR4VJo+qLAYcklYcPXRI6cTe6Zf8hY8hoVK1Uhxbcu5Qd+hnAf1vO3Z63mnWFt+fSV3tDrsyLnYwgqR0j/jxAcDrJObSM3+ggq1OgDo3Cr0gwXVw/UOiPG1OtFvsftEBxZiY1bFjJw4IOxqG/YsIGOHTsW+8LyfqBWqzG6uvP444+Xim5ImDFjBm3atKG/YnH5KCAkojzZFjWdOnViw4YNJXovu93Ohx9+yNWrV1m+fDkbz/1vGXxX/7mR1s/NKNY8Xdw86T78PV5/6z22/nWrvz3AsBGj6P/JxnvOWxAEls+dwpEdf/LF59OpUP45xr0ykai6HRk6aSF6gwuVKnnf5xOUDD7//HPGjCmYOff/FSW6uExKEuNrWa1WLl++zJUrV1i7fjMCYLMLBJQpT702/ajTbypqjSbPmdaoKbkBQHDY81l8SgpJm78n/OnCG7Y1LY7GDRuwdsPmYrlvxw4d6PD44+zdu5dv5szjgw/+4d13370vikJSfAyLv3mPlo1qUr9+fWrUqEGbNne3aLWkJ3Djz68o88x0tB4lp1Cn9w7KZ1n9NwRBQLjLECkFYdq0aYwcNpgKFSow8vkX6DRoAiERFeFUVuEXKzBjxgxGjBhBt27dSpVjSwFAi+bN+fSLQXToL/og+2tF//QaNWWfqO+PxuT99gsui+cTE4jfMo/Y395CpdGi1rtgN2UjCA5cw6riUb4+wSNmo9YZUDlsOO3HTn9DVT5RCXHJqbflUCMkFE8fd05kSEODm7w7assV67ou4TLq7FRUllxUknCaoBCaUEkxgDFnEfLEBK7OepptYxagcfVCq6D+NvaWfeYTLaJ1PE2x42STWBRbkhVhomLEuLy6so8hOBxEz30Bvy7jSFj3FTnHN+DuHYDL42+i8atIXEYqKrViiHORLNR2RX6S375KUf5q3mI/0q+xH08e3oOvry+9Gv1Fh6dG89leucw+p9aK2ellH05NmrwrkOsXBYAjW96F8Aoqi1dQWVwTz4sHTEk4bOJ7de54AGhzxJ0QjWI3w+lfqVX4Xpp9xZ1ofZbM3nGLvwDAsbTy2L1rcPr8FQRBeCBsiSnTPmfsR7/k2fGUTBinG4uyFBXcxW+xLV7e4TifLO4InY+R66jeT2wTXgrGjzOEizL8To5Uf3anymPBk0Fiwrvf7/jfh06no06dOpz9P/bOOs6K6g3j39u13WywdHe3hCAhJSGiEopYYKFiNyomdmCAIIKECEiJdEuDdOwubHffnt8fM3dnVsCF3buA/vb5fPjsMHPmzJm5M+e85z3P+7x//k6DtjdWapLJr33LT+9MoE2bNvz888/UquV9kZS4uDgeeeQRhg0bxiuvvCLtzfH6da4H4o/tISzsQewORylhJm+hSdsebFk+i1mzZjFu3LhSx/bt20f9dn0IrPbP6feUsNuK2bd+Ice3LaVD2xYUN2zIS6++SVTN+vS/52WCIq+98uvVID8nk0OHDvHmm1eeLeH/AV6fXJ47d4533p/BX8dOYHOpCYttCKjwCY3FJziWjo/MRaPTo/NQWoCzEr01Q6KkpiioqWlFRdKWODIJbpl24flw1JfKoyPtUy7LC4Ibl62QgKBwavn74qO9WBm0oVkeqEKl5MEhUrLaDLtiGVxKBOwxwlYlyjSC4kO/o/MLRW0JKJnOCJ4YEI+4hiePI278fEsr6o5oH8icf1CLLQsqlYqOHTvSoUMHZsyYwS233ELTpk3p168fAL//Lpc9dCy/5Jw6jVthMMurkfd3C2D69OksXLyUTz76AIfDwYNPPM+IV5cxR6IbfJogG0QF2aKqnCpApAYI5gASfnqBiHEz6NisLQA+WvH5FiuMyP1F4nZMgEhNzXLIzzlbUsKNt8oGYW2T+AwTpffEQ4FVCW7cEj3EIz5iOr0NgFxBhzsniZCkw9gCZOrC+FYiteOJXpfvhM+cOcO6dev4/fffWbNmLWl5TsIaDmV7JmCVaS27ksR76xwcAJRO1KuX+FoHs0PJKXSQmZlJaKisPFaF/1/ExMTgY9JhLcrHaL6ydAs6vxCi+08u+b+zIFvMg2lQKDqqr7x7FwQBe2EuGv2VrTBqLQG4r4C6aYppTHj/R0j4dAzV7noHnxreEcpwFmSR8N2jGMJrkfXz8wg6E93f3IpPpBgfmZJxZfGVZcFsNrNjxw5atWpFxz7/PjqlRmdAX60Re/bsoW3btpV6rTVr1hBVsxEmi2+59RAqE9nZ2YSH31giNtcT06ZNIyq6Ot+uPYtarSbaLH/7Ca6Aku16vuIYf6pQpkc6bUUl22pFTLXeKNti/lq5fAsf2a7yUQh52RVUipIwWZWKJUuWsHnzZoYNG8aKFSuIiiq/IKQSVquVaW9NZ9O2Pxl2/8too+ry4/YcALIV6XDiiuS27868tJq3VqGS6zTKTjiNXSyvU4icufSyfaErunTf5DDL4Uoqt2zvaBTPuiQLAuDWy8/arSjvZ9YTExODWgUZNg0ap3gvi85KNF5lSFaBoi2KVX23Rjl2yLZafKG4v/P46Tz1eFfuuOOOklhZu93Ocy++guHmVzhcIJYbESHb2Gat3MYAvXit+BMHmPbUMO6fOJHtmRks3XyAuvd+zm21IkWlXiBIkYNeaVMplYZnbpadcF8kyG1XH99esq1VLC4o7+5Aphw3qlPk8HRI+aYfjpVfUoNi4avYqcLtdjPvo6eY/vJzVKE0vDq5fPnll9m/fz8tBkzi3ttfJtshVq+Michx3ACrNarKa4PgdpOy6mNiRr91ReXVtnyqx1SOZ0alUvH444/z+OOPs23bNvbv339RmWCpQ8nLzeOjqdPJyc2jzU0D+W3BV4zKFz9Yh8PB8uUreGXau3QbNx2NVgeKD/5yyFz/Db7N+mCMrF9m2cpGQWYKhkukKrgSvPnmm3z44YdotVpeef1NHnxtNlvzyz7vcuhwszhgjh8/vuzCVfi/wOBb+3F4xxra9iqfmrBWWmEsr00vOO2AgNH/YoGGS8FlK0KlujJhFFNMY6InfE7S3KfJDooipPf9mGIal6ud9uwUsg+sJvvoJgJDIshZt4bgmyfg338KPiGVIxzUsmVLOt1yO9MeuoXQRxZXyjUqE9W7j+Ott15n8eJL5/n0BnJzc3n62Rd5fPqCSqnfG3jttdc4efLk9W7GDQN/f3/efPNN1i2eSZ8RN57IXLdu3Vi4cCH3338/Xbp04ZlnnqlQfTk5OQy+bSTtbrmTSW9MRqVSlZrcVuHK4R8WzSuvvML06dN56aWXAFi/fj0BUY2wxZStTn3mrz/ZseI7sOXw+GOPsXbzbmIn/4wppDoqlQqVqmz78kZA0rmjRIf50alTp+vdlBsOXptcJicns3v3blauXMnc7eWPH7wWEFyV9+Jm/v4Ffo27o/MPo2xJnmuHzp0707lz538s89KLz5OdnU1QkBjAvHTpUm699VZmzZ7D17Pm0e+puVgCrmy1zZZ2jvyDa6nxxKIKt/1K4HbaS61S/x32gmwCGne76nqPHTtGQUEBLVq0YMWK34ip2wKzxQ8qMLnsePMwVnz5ZNXksgolGDTwVr4feRd9B9xGGykdh0fgAODJtrLn/sdEkSaWrshR5swTWQOaIrnvFTwiD4r8jobzB8W/ClGrouYDKT7/F2b/EAJNOkCgpb+4WvFnmuzZVkme+mHtWrL+yGJOGwRUuSJFUzDKK65qu+hpdyk861qfQKo/MJPioxtJ++VN7NlJJDfrg6lWKwwRddFdwvGjctoQ3G5sRbnk7llGwfGt+Fp80buKMNqyCNQGoOv3MH59n0ClUhFnlydO9YLFiWaGoqvPLRJXFFwO+blhFVkP6iw53vFgVkMA0jfIbJRNK+YSGhpKzcRttLxFFChakyqukqrcsoWqcsmeep+kw+I+xYqAIDk2nSbZ664rzJSel0yvFSSKrNomt8GtE1ccNAparFq6ntMUIJ8rsWP+LJScqIENqRlUh/Xr19OrVy+8DafTyX0PPMSw+1/F5BuAS4BcKW+0pVS6GfHvPkWOudXHPel2FJNeibqtK0gv2aWSBFPyFH18llFk2ZxSvGe3NaoBwHMNFPkDcbNx+Rxq1Khx1ars/3U8/NAD1G/YhI59RgDeWR30JurUqcOKFSu4/fbbOXHiBPXrl89RvW3bNqY8/TxD7nuJ2g1bermV/5946KGHGDp0KBs3bqR79+68+/5HDLz/LTZdprzDbuXCyQMc27wQa2YcA/r2Zs68nzmbb2bM87NYmXkJBuINDKfDzm8zX2D54nnXuyk3JLw2ufzsi69o1e9+FuzKxSQNKNHai91CemmFf5NigDmRK+5UeSTCFYOxWtp3qUB8p0SHNJpkw8ZXqiI1VTQWNAqlJ7fLCVoDeTlpnLc6cSjmIh5arFEtX6eZnzhwZ9jEStsGyobDOYkickhqu2AtoDj+EIXHtxEz4TPcKlWpPJwqyeDyxDd5vP4qxSqq59rzd+aQ700Fo6tAYGAggiCQkpLCjz8toHrN2jTvMpBxL//IeZu5RFhp+i4xBkyjiN3yqEdqCrOJX/AiY1/6kYBw0QBIlyjFf0m0ikCF0RGlFx++j3T/SsXeKL34I4Xq5OdUKLXB5hI3tLZ8HNkpGH0C0Uq0BruPOAnWF0rqboJbjKtSqWneRKaHVfe5vLhTQkICI0eOLBEWWLx4EW88+yz16gXyyjepAJgy5GTzbun3/ui0OHg9VU9us+duHW4VOrM/mZmZ1ywOqgo3Pho0aEBkRCg5mWngc+3zdjnzMspUf1XCln0Bk0GP2+lArb3yfMOWGi2w1GiB22El7+x+Co9vI2vjLNwFWaWStAO4bYWoNDoMUY2wNOiC4/BqOtarRWGxg5MmH+yDXsYvsj64XTiL83DYCymKP4wjNw2MeiLaDACNdwwWrVbLmjVr6NipE/Xa97tiJ9uNgo797mLa9Ge8PrnMzc1l8LCRNO86lPrNvZN2xNvY/vsSvv3gGdJSU693U244aDQa3nl7Gpt++5g7bpfTdO3Nkr/FTMns6RYom4u7CgJKtouKZBugqVke8+r7yPaSSUEnPKOg1zZV2AG2y5g8i3Zl0330C4y7bxLvv/3qFa8S2Ww2Tp48yatvvIVVMHLfy9/j4xdAWrF8faVZeSxfvr/N6TIV1p0vK8Tq8+TYZrWCiupWjOMeh4/S1a3Pl9+9ojA5+ldtl6/jk3K0ZLs4SI5Z1CmUY1WC/JDsCuVYR56sXKvE8kyNbFd7whjsMs22VOiEIrxMUDjJ9JkJJdtLM+SQourbc6nebjhff/M93bt3Jycvn8CAAIaZZZvqzo7+bNq0iQULFrBp6w6aNG7EjFefp379+nS/uR+T313CzPQQjiSB+qisO/JTdDP5+j6yI86eKzuc3lh7RC5TJN+/3iFf36VU11U4pqyBcqobXZH8fN0Km/2upmI4nEUnP3MPC9PpsLPhq0m89sJTVKtWjSpcDK9NLv86epxb7rnxc7yoVCpUaq2kGOs9RTtHdjIpS9+i+oQvrmrCoMpJJCTk5lL7zh4/QIgUtycIAj/+NJ+t23dy/PhJUGkwm/TUrlVTIZogn+vxDqv/qQkCZOfkkHA+sSTQwVPcU5fDrSYwvDpTv9+HSSd1Tleojp+1byU+tVoTEB57ZSd4AQWJJzCFVL98gatUCXS5XIwfP56pU6eWxHtkZGRclQz25aBSqejUqRM7duyoolNUoQQ9undj/dLv6XHXs9f82m5bIRqDpeyCgNvtJv3CaW65+SaW7lpEYOc7rvp6ap0Rv1b98WvVHwCVMq5Igicdh2AJJHFaTwb37cWWfcepP+5jVPGnSF/xIc68NNRaA1q/EDQ6A4awWhgj62HLTWHry33wbzOYgKY98KlZ8dWKdu3a0W7ABL5+qD2PzD5e4fquJUIiquNSG4mPjyc21jv9cm5uLrfffju3jH6K2o1bV0SMu9JwbP82fvvxfRIvXMDX98rimf/fMGTIED744AMCGu+mbpOyFauvB0Ijohn75Ad8991HVzRmHjt2jGG330m9Jm3pOWLKFeVWr8LVo3W3ASw5vpvvZ//AffeM4e1HBxMRKU/cftS6aNeuHY8//jhffPEFIPYbHTvfRJehD2Ky+EH65Wq/MZGccJrZ70zmzVefp3///te7OTcsvDK5LC4u5nxiMgFBVxavc71hqd+JvMPrIHqAV+qzZyWS+ONUou6cjsYSIOfYvAKokw7SokWLUvt+/XYaLZrUo0//QRQWWanTrCPNut5N59troNFqseZnkp+TSaFT9BJeKJK9hcFSoHSARKnTqC4e8e0uFXWNJvqFR1MgCeZopdllpiKoXaY0XbnV4LYXk7nvN+rc8/EVn+MNZPy1idoDH7vscUdRHuaQK0vMfOHCBe69917uuece7rzzzpL93lxl7N27N8uXL6+aXFahBE889igDBw7k/OEtNGrVpdQxs1b2ut5fo/jvp3IkW6S+ptpkz3JzSfVUuWrwkb49AHnZMrVyTJSG9ZtPctTsV+Jkqi0Jm+1RCDuoA0UPbVthK0UDb+H+++9n/bA7ueOhF/jxnLx64ZIYJRhlr7FKoutqFIIJSnjyt2n95RXBzoF6rHmZbH9/BI3rxLLndCZ+A55j+2cPUq1Be5qNfR3farXx6Ky18JX7XaMGXLeP5/D2lZzbO48L856k8X2fElC9MX8pVigc0h27FLncfj0t5axTUHU9KqSDHnqL07t/Y/eCNynsKcaA+R2Qc/Ipe0q3RHPVKrzqtkBxYqdcyfCMF8YsmQXhobY6/GRKs0cl1uUrr2zrCsR6BKXQh0SfVf7GzphAet85lZdffplZs2ZRUezfv58nnniC6dOnEy+ImgEOt9w/enLAKdITo5eYKev27yvZZ5SE1wTF81dLOegM2XEl+2zSSo6SduwRRnG3lNM6NQuUvw2Hw84vM99g984d+PuXnRP2/xVqtZpZs2ZRt25dXv9+EzXqNSv7pOsAg9GMy1U2o2v+/Pl8/fXXPPDSTCJixEnljej4qAy4ivOvKRtKpVIx4O6neWZMe7Zt2cQD90/8x/Lx8fGMvGMMt4x9nrrN/122jyAI7Ph9IQc2LGTNiiVVK5ZlwCuTy02bNnFLzy6M6hAAyIpOnu9Z+aqHSrLhw6LkUWevUaRjrYwTKQc6hfqYJ47OQx9VaeTaPPuKC+Rl7SLPkrhH8l7RqXjKB3W7m/gvJ/Bz81tQSekgokzicni4Is5JI43XByUax6/nc+TKpAHQkZNM4pyniBr7IfpQySMsKXBpimSXjFNKqOsOFFfBWoQEkJ9yluLICM6cOcORIwfZPrYJgtuFr8lESO9Hie7ZCT/p2eTr3eRLzn27KwJ8IkiQEv0eUnj9o4yiQZPulCaZiufVyV80YvIkUaWzmRAg0U6jpN8lQiHrfl667wWJ4oDus1+OnzRbxLQiVn/5A9MXpJN9dDP+Xe9EVacduc6LO7kQyUg+p5jEZjvFfS4pFradItmuZ1BQ3EYJbdYqGU8uqw2Vbyju8Hq4JJqJ1iYauwX1uwMi3UHV6Q7sPkHcFCorDv8dW7Zs4bHHHmPWrFk0bSrn/BMEgYycopKkz+bTogqZyq2gj0h0E02iKJz0do7s1WpbQzSObo0U38/Y2FiKiy+eJFTh/xdms5mPPvqInr1606XfHdw0YDTVql86UbW3cWzLYqq1vDIv7Nq1axk3bhy1atVi2KB+rJ35HEKPp1BpvKoPhyAI7P7yAbRuO0K1zvipDZxZ/x3Npy4hOjCwzPM1Wh1Nuw6madfB5GelMvONidTsPhpajyh3mzQaLT1HP82ZrfOw8jnGnv+e3GZRNRuQaDKxe/du2rUr/wpVbm4uU6ZMYfHixQQFBRGvUHC8kbB24ReMH3tX1cTyClCnTh1OnjzJ0KFDeeqpp4gxNyU8qiYqlQqt5BSwKcbzJv7ydpFTdsK4BXk8DDTIxpdOEW5kVSjF6xWOr7s6BZRsK1VBh7bxIz09nS+/nFPmxGnp0mV8+9MyJry+kDynlizJHDQr6LdnC2RHxlGFKmxCjkI51S6PzUqHmKDo45S0V7VLtimKokS7wZh6omSfzV/hJFKoyGocsu1m85NtKYMirtqhiKdWWtNqqxyPHVBdFEjL+u1dJj14HwAmvRprYZ7cL0vGlMqtbLkym4LCWFaUsQfKsbjqCzJ1VxUrjk0msw9PfLCUunXrsuDnhYwccWlRurVr1/LQI08w+c15bHTX4y8p7N+eLD4njeI+zRcOye1SUHfNioWbUs9F0Xblc/RkDwDQF8j0ZqWSr91XXhR7tK3MfgswiNdSAQV5OcyZ8RQ9OrZg/dqV6HRXHgry/wqvWAMHDx6kffv23qjqmkAfFIl/q/6k/fYh4QOnlLuegmNbSF/zKVF3vydPLK8Cuz8eh9aRT/fh9+J/84OY9X6YYhrTtXnbf20sXkHCEQIGPH5Nr5m05nMib3mwQnWcOnWKKVOm4Ovry/Lly4mMjCx1fP/+/YTHek/11mKx8OuvvzJjxgyv1VmFfz+aNGnCqZPHWbduHV9/8wrHjh+nTbd+1GvelfCoGqjUajxumT1bVhEeVYNaDVvgpFqpHJJXg71rfiQvPZF6ETXKLOu2FbFmzRree0/M4fvSC8/y9rvv8+XHQ7Fawgke+Qa6K0xnUhY2vHcnJ7evpt8TX3J650qqN+9Ok0EvSn3j1S1F+AaF0/Ol5Wx4fRBBtbqgCyy/17lln7vZuexLmhQe5q+Fz+JX98aMNbwUHn30UV5++WV++umncuXZtdlsjBo1iunTp5cIv92IcLvd7N+2mu9m7LjeTfnXoG7duqxevZqtW7dydN23LD19BregKnlPlKr/peYhXHq/Vi1OWOq36U3b7oNQS6vTxUVK/QT57Oxs+eSCvBwEQWD/tlV88dwSYmNj6d27Ny+//PJl25+bm8tb737A5Ld/FrU6/h2Co16FWnBelxW1atXr8tXa87z/2nga1K9Hs2alV7/j4uJ4dMozTHn/F/yDQiHxMhXdYCgqzGPjr99z9M8NfDLj3Qo55f7fUOHJZUFBAWvXruWpp57yRnuuGUJveZiEryaSu2c5/m0GXtW5juwk0n99FxCo/sA3aEx+ZZ7zd+z6chL52RkM/Hg/Z92iUegsEfv5d04sAey5aRijy5ai9hbyD/+BPrAaxtAa/1zQ7UJwOi7anXLhHAe2rWbMl28wa9YsRo68dC673bt3U7d5Vy+0WERYWFipldEbHW63m7S0NPbu3UtqairLVqzC6XJj0qtxOBy4XK6S9za/2IXgctC/b++SXJ61atWkQYMG+Pr6Yjb/u1ThrjX8/f0ZNmwYw4YNA2Dz5s3s3XeA09t2lJpTzfl0BhaLhRGj7iIxJZ1iqxWbS0xcrzb6ckEy/jUqgYhazaherwW2dB9UKjWCWovgsGI7spadG7/gg/ffY97BsoOqC1e/z6QJE9BqxaFDp9Px4nPPcN894xgwcBBJ858kYPSHqBUe4/IgffFrZO1bz7D3t/DXso9pfPNd1GrblwMF5e8bVWo1NW66g4Q/lxLap/zOKLVGw7i3f+PjBzty68Ah7Duzh4Dabcpd37VEgwYN6NevHyNHjmTRoqtT8hYEgSeffJKJEydWes7MiuLcyUN0aPfvddJeL0RHRzNq1ChGjRrllfqcTiezZs9h7VxZLEhJlT6m8G/smC//p9guFurauQPvrlxZkkvxn65zxx13MOieF9HqKtb3VKF8MJp9GD5pOm+88QY///xzyX5BEHjwwQd54NVZ4sTyXwBBENj5xxK2r5rLs089wcz3XygZ86pwZajw01q7di233XZbKS+oJ7np3+mxINMbXQoXVwtJhTXTIcaS7MmSqQIuSY1U5yPRShVpRFyeBPaKeA0PnUFlEdvgUiS61fmJL7Y9X1wSrzbkGS7Mew57yhns3e5GpVYTl66g3Urqidq0I6IkfnEe2dsXYE+PZ8iYqcQ260qsRVIsVXSS69ICAChQxKCcyRKfRe9IP9LPHWbB1oV0+/goOSojzUxiR7o9VSyzLUNWEFNZxLrIlVXKSuJTpPbdVV/+YA/kic81IVlU+Co2yiIdi3PE9pROlC6W9zxXbcrJvx/CN+0YUFo+3ymlHtAr6AVqRzEqwQ2CmO9Tr6DCuATx2tszxd/H7ZRpJAaLODlv7CNSDdSKNyZfeobJCgXZ1HTJ7RV/kKw1n1Fv6NMlcU2eNAhFjW8B4IVG4rN6tXoUwsyR+EXEsC7EQnZ2Ng6HA61Wy8iRI/kiN/cfqQ5FRUVk2EOJlyg1HrqF1ibfh1sj7lNJEvn+8btLjp05/rvY9jvk9CM2mw2Xy4VGo3h/bzDEx8fzxVcz2bh5G4Fh0QTHNsMSFE63258mtFp17C7RaNdqdRRLdKfVaQYchbl8uvM3OOtCENwY165Dnfk1hYknadqgHrf26cEDE8bf0Pd+o6Bbt25063ZxGp3PPvnwsudkZWWRk5MDiI6B39f9wYEdP9LFLVBYWEhyaioFeXn07tCO908d57fffuPgwkfJP7yKe16ZU0KXv1/RV+SeP8LSpN1MmTLjoutFRESw98/drFixgmffnEqPx2ezxSr3PVopf2ZRtpwCBcfFSs1qh4246QMoSDlL90+OEXd6DyqjH2Et+1HghIZmsV3+ihhUPym+z08n78uXqP/KsccpQGSHoRx8vjf+XUaL4m7SN2sKlmNVbQmeFCJyiMAPh6QUL4rcno2GPk164iYKziXg7nAnGrMf/ufklTKdJ0bSKDsftZIyocMih37YpRADFBMhQ16q9DzksdAeWEPap6Ts5YinKmh5aolGZkr6q2TflsieYr07ctDXH0LSrPlkZWVd1erju+++S2xsLEOHDi2139PqAgVt0iD1/QqRb+ZfMEn3pkil4lGwLBUUJ247FLGl+hxR/d3uL/9OWokWaFFcw2N7/JqSR0jrFld2Y1WoNGi1WibcO54J91Zu2q3vvp9NZNObIaYdZyS2qKCgkP6aKJu6NqtsXyljttQ58nspKJxjynhghylELq/svxTpnigUv3G74hs35sr9nlOpYFoq57r8DZT0CYCuWE4v5XbKDkBP6A9ATpHInLM5/uZAF9yySqp0T8LlHC7K+1GGOChT9ynauyhZZsoMiRDbFRJVm/Mp2eTl5eHnJ/Z7mzZtokWLFhT71iRBYhifPXVArlLlsalkB4LToBTfUmSPcNkvud+p7GMVz8XtlG06QTFHUV7rtsayMu993XxYtWoVn376KR06dGDTH2vQ66ucFeVBhSeXv//+OxMn/nMQ740KlUZH9Og3SV//LfEzRhHUawK+jXugUnYsgkDeyZ2kbpyFuUFngrrdjblWa2LDy8e5tuZnserNkdTuPR69X0jZJ1ThknA7bFxYPI2oWx9Hayxb5TLAz5ctG9eRlyeOPIGBgVfl1f7999/p9ND35W7vpdCnTx8WLVrE7bff7tV6Kwq73c6iRYv45POZ+IdUo32f0Tzy9qNotFpypPx1/pJwlHAZfQWdxR+/VrJglkYvduYGt4tzGef5cNtvvP9eEx6d/BCPTJ5UtcLgZQQFBZWaONSpU+cfyzdo0IBxd49myS/L2P7bD/joxd85z6FGEAQyzx9ny/JZHD929B/rufXWW1FrdDz+9K0I7UZj6jL2ilcxHXkZHH28AX6xTWn+5Xl0OjVnlrzN4Be9lytXazBjrt+R/P0rS72f5UHdvg9weF4S1QKziFv4HCFjP/VSKysfnQeM4cMPP+T1118vs6wgCDz77LPk5OSUKD7e6EhJScFk8g49uwo3NlJSUvh29jwefHM+iZfPLFaFa4R2fe5g5jffMeWJxwDRKfXVV18x99j1bdeVYM6cOWzYsIEff/yxKiduBXH1QRcK2Gw24uLiaNny35uUVqXREdb7AaLu/RRb4nESvrqP+E/uIuHLCSR8Ooa494eRf3o3Ne98m8g73sRcq3W5ryW4HGz8+D50GjWxt5c9qP8boVKpcRXnlV2wAnA7bCT+MIXQzqMwhZcteJJy/iz5eTlotdoSo/tqJjOCIOB2u9GbrixVw5Wic+fOHD36z8b6tURubi5fffUVzZs3Jz09nUlvzuPeZz+jUavOaLxICdGHxGDu8QD3TV/GhoNJtGrbiUmPPMbevXsvmc+2CpWPBg0a8O70t1i5fAlDOkRzc6tIbm4VyW3tIxjWoRovThpFdlYm0dHRZdbVv98tHNi9hXGNNBR+MpjCVe/itl9evEoQBAqObiburb6EthlA3de3oVJryDj0B4ENOmNQ5DnzBkL6TiLzj2+8UleTO14lyVIHe8op7FlJXqnzWqBll/4cOXKE5OTkfyyXm5vLkCFDqFmzJl9++eW/xgm0d+9eevbseb2bUYVKRlJSEiNHj2HoA2+gvYp8u/9VOM/uvKI+ujLRtF1P1m3YBIjK+waD4bq3qSzkZyaz5v2xHDp0iJkzZ1ZNLL2AClmMGzduxD+qMQt3ZTOi/cUGwPBL7PNQZZ0KyqhHPaxbiLi0frBQ9ji6pKV6R75Ie1QpEr1qpBUrl4Lm4KHZeIwZlV4u/2gt0XD94IS4z61YJjf4hxE+9FnUqadL9nkUXttWFxWkeobJlAS9RqQKFEp0TV+JkmWzFtPJIq79+yhoWmeS9/Dtu0+g06jpfdfTdIkW8CSOdEj370KkUexOU8iye5K6KigL5syzgKyE+keW3KnWMUrXvMRqnkc1zHhys1y/VK8gXUdJ2dDni1Rcp1lcYVU7ZQNRX5B+UXmHORB9tXpYD6zCp3YbDppayNeR/jb0F5/9qWKZltAjQPx7XrrF7VnyvbqkFAYemobbYSNrwQvU6jMRR2xLHIAjSO64QkPEYPYRISI9ZFQHXz7ft5OXXnjuoudxpSgsLMShMvNrhvycjdJv4PSRlcY0VrGtnvQBhnRZLc4h0bniJAXeRbuycblq8+GMj3n22WcxGssnxlJRxMfH8+XX33Di5GkSzifStvconvlqM1qtDoOk5Kf8Vs3Svoxi8Re1KY79lCr+RsXp8RddR3tB3OfSy+/lgiSg1q1QvQ+/xx9i9SvfoEs5wkP33M24u+6oykt3HVC/fn3q16+4cJXJZOK5KY/y1CMPsXLlSt55fxiRdVrSru/dhEXVAOCD01BwfBuFC6eSnXKByHs/w1K7LcUZFwAoOnsAnya9yFeoS0ZoxP7NoHCLelKteFIzAaRJatQhBqXciIjaUTXJi6hJNR3YLKKS6B0RMt3qe5UYC12UJr/HOklp0KUYT/adEJN497z/Y7a+0Y/0r8cjPLoYvUSxNaSJY4k5RaanFkS3AsS+0oPQSDFdwrgoud+zu5sAMCdJ7ifzk06J9aXJY1RxZHPxGWTFlexTSyEHWpuscrnvyB4ADhS0KtnXtd1wZv0wl2enXlov4cSJE9z3wCTemz6tRMjCM34r0454QkLWp8sr1H/Fi23UFchpWIzZIrVVo1B8VEmUPaUipIcK7FSoQTp9wsW/CvqbZzzKV/zEnvapVKqqGKn/OH6Y8yOffPU9N495Ef+YRuQ7KAnNAFiTo0g5dPbPkm2NW6bbeOweAKfim1TuVwfIAjlGgzxOOxUaDs39DNgLc1GpNRx2ieOWoAj9KQ6WBR9VrksrDXmo8AAqQRH+pZOvqVSrVX4LRintk9nfUiLok5Gdh9EnoMTuc0sKsJ4MDAD2XEWSSSUVVknXVT6LIlnF92yuTD+1hcrffrC/P3a7+GxefOU12g2ezM+7splzWi6vUyrWSpdSqtgqVV7ditAMY1aCfJ6C0+xW9B9Kir2yv1YpfndXNXmM80ndw6qvXuHrzz78Vy+U3WioUO+7adMm2nQf4qWm/DthLSpg9+/zST21h4K8bEwGLWaL+KErnby1asayYN4cnp32Ce1vufMytf374V+vI+l7V+BTCQIXjqwkkuY+RZ2BjxPSqh/JmSlln4RoJPXu3bvc152/4Gcat+vF3nLXcGlotFo63NQHu91+TSeXgiCwYsUKvvjiCxwaX1p2G8yg++/FZPHFKVz7GEiVSoW5RnMcnUbhdtqZsfMnvpk9iJGD+/HIpAerJpn/Yuh0OgYPHszAgQP57PPP+eDZEYRERKPTGzlz9ChuWyFhHYZQ9/Hn0foG48guvZKm1v2zkEd5oTX5gbvsnHlXArVGQ/spC1j5RBvOvtqD2q9tRRcQ7pW6KxPNO93CVy/cwehRI4mNLa12vmfPHh5+7GlunzStSiGxCjcc9u3bx4effMmj7y2lWLg+TgRnQRYFRzZQcHwrySknMPgFg9tNVl42Wt8QLDVb4tu4B7rrEP7kdrs5dPAAtVUVIidWCA6Hg1+XLuXjMa+WXfg6oej0blbumsEvP8+94VdX/22o8FepUv87aDLeRlFBLstnv0dm4gkemDCebo+9+48vZ2ZmJj1v7sutkz8ql5T+vwXmqPo4N87ClpEAtVp4pU5nfiZZm+dQdHo3EaNeJ6Rxl7JPkrB//362bt3K9OnTy339BQuXcPfTn7E3reyyVw1BwGYrW6XTG8jOzmbBggUsWbKELl26MG/ePNYcF9/Dks/YO/Z2uaHW6jF1GcvgkRM5tH050THVOXniOOHhN76xXoXLQ61WM3nSJCZPmsSZM2foP3AoQZ3vwH/AE6i1+pIcxNcMXqZfG3wC6fHSSra8PQTrd+OwtRqGpmZrNEafsk++TtBotfQa9RgzZ87kjTfeKNn/1vR3WLrid+5/+Vt8/AKuXwOrUIVLYOu2bUy4fxIPvD73uqQcKU48Tsovb+MoyMKveR9Cbr6Pdg2al+RM35eegz3rAoUHVpO08BVwOQm+6W586ne6Zm1ctHgJfYdP4PRl0g25HTbyD/9BYdwBQBTV0UfUxlS9aYn4WkWxZMkvDBz9MHrD5R3nbqeD3ONbyD2yHmdhDipUqHR6zDFN8G/as+wsAOWEMz8T+9r3aBkCn8//kbAw79xzFWRUeHJ5SzN/mjQJLEkuDzCqQ8Bly7ukMV25quehj3rod2qFoeFRNnVJXmZBEbsjGCSKncJQcJtEmpNKogQpaQQfbRLpSYLRs7KoUI8yiXU0b9CiZF+vMJHW4KsT6UrD2wditVrZsGED06ZN47nnnqN//08ue68ezJ8/n6nPPs+dT31KjTqNAaFUUl+tpMx4OFlS81LQFtwOceKhdckUDE+SWKFAVGo1KJJEbzkvev7VUtyjVqGW66EguRU0B08iWlPmOfGYQkXLo5ZYorKloC0IGnGfWkHxUBeL14oa8Bjnf3kbbUAEaonSIYSKilzJ+SK9TGUOKDlvVYFYh16iJJsk6oXLXkziwT/IP7uX8JZ9iR32LCpnMdlHRVqvr6RUWxDZpKSuSTXE90MA3C4X999/P6tXry73yqAgCBRZHWiM/hTEHynZ72OQKCmK1Q+Vq7RSmzVcTsmisYvU7VUn4gB4d4CY9DitX3fWr19f6aI+Gzdu4qlnX6JD7xHc8/KPaLRafj8hlKg3l7RTMRYVSJTvAoe800OD/eG8+Ju5087K50rvqspD0Uk/U3LMQwNU0lQMkoKeWnpuqgvy8/01zQzmOkQ/v57+I8ewd9Oactx1FW40HDp0iD59+/PI9IUscDe8bu2wZiehNQfgTbdOQHR9gp9YQeb3D1Ez4Q+EC1vIKbJhC62HX0zjcuchrUzUatSGhcs+RhAEVCoVe/fuZfGy1Tz65hwMxqqUQVW4sZCQkMBzL7zChBe+JioyEhBQrm8sS5a/aF3ctpJtjcLgtPlHyWUkujuAoHRwKcKK1BK92pmfSfKsybisBdQf9hy3tmxcUibYINtB9S0+UKMBu+s0heFPYc1KYs/cl8jcvoCo0W+jV7RFqWzqMMl2nFKhVq2wKzR2WT1aSeO9yddN0qE/yNaJdb/17oeMemUxx9Jkqn20xURe3CGOLfsIW9o5/Jr1pmWr7qjUGhxFeVxIPEvmwpdxO6zo6nQgoP0wNJYAUNB7lWEtBsUz+jJObuPksHSSE8/z/ozPqPPwAlYmefo9+V6tGj1Zm38g/69N+LXsR+jtb2CJEZ+n21ZEzv5VpGz5CbetiKgeYzGGifaj0yg/I4fPpZWuhVICcvKzdppEu8RlK8J/8STeffNlunb1Xnq5KpRGVVDCVWD//v088cQT9OvXj2XLll2RjPvRo0d58cUXefCtRYRH18J5cQjQfw6G4GjCu48jYd7zRA9/Ca3Fv+yTFHDZraTuW0n2qd0EdxhGnbEfoFNI8l8pZs+YyrBhw0pyLZYHx44dI0SKiaoMBAcH43JV7nLhW9Pf49ff1vLIm3MxmX3+VWvmpqgG5PrXYebMmdx3333XuzlVqCBee/sDej85h9zgZjhPy5m0tZJ8P0aZAm11CTiTzxLUqkPJvhpS6ie95uK3+ELxxZRupd8+U0qVkVKQT2F+Nok2J0YpnCfLLpd8vIZokGlqyt7sdSkxAOw4KztMtJIDb9/hPSX7dJENCJ+8gIxjmwj483ta1KtGl85tmDlrLpGNutC0/h3oDGbWJ8vpBXoFSM41RfO1UiqPO6vJxrJPdbENhc7qJfu+uSA6AwtCapTs02SKsaLGnAsl+9xa0cBzZMgxSx8RA2ipVa0++/bto3Xr1kyY+AA9x7+FU+ODJ6RswU45zspjyKtV8vN/ZZcYt2VSxIKqfcQ+1xObD3IcmzI1iyFTPMceKNNyXVIcvzJGSpallq9rDRSfgytfbl+GtWpC/F+E1Wpl3rx5fD1rAQPHP09kbF2uJfsra9t8Mtd/R+O73ySwQWdp78V5sy8FY1AkEbc9T1HcARJmPkj1ES+hV6Yu8RJSj2zm7RemsnbtWqwuNXqjGQ8VyZ55gUOz38NpzSd8yHOYq4sO+Qij/Aw1zVXE9p+EozCHk5vmk/DVfQT3GI9f05uvqh0JZ48RHhZK486DKbiE7VdwdDPpK94nqMtoaj76EypTaXaH2mDGt3kffJv3wZZ2jsQ5Uwhs2ougCqp7A7gdVqyLnuaT91+vmlhWMio0uQwNDWXbtm00adKk7ML/YrhcLhbPnIZZyOaHH34gJibmis4rLCxk8uTJbN68mdVn/r8GPd/arVEZLcTPeZKwHvdgCalxRUqDead2kbZhFqEtetPozmk4fMoXr3Bgx+9Y1MU89dSlxSquFKdOncIvOKLsgjcgBEHg6aefJj7TzSNv/ohe9+/0JfmNnM77b7RhwoQJ/xq1yipcGjm5edSs26rsgoAxtjm5u5fAgNFebUPBXxsx1fJ+TLgHKo0WS5Ne3D5gAJvnv8fjjz3Cjh07SEpKZvpHd1LsVFEY1Q5T94kire86o1Pf0Xzw0ae8/sqLmINjqNm4Hd423F22IorT4rDmpmHNE0V+fKIbEupjQqW+/s+gCjcudu3axfPPP0+vXr2Y9Oa8a/rNuB1WEuY8hdY3mNrPriDQp/zx/+YaLYi++x3O//AkNcZ+4FXKvNNuJeHPFVSv/gixsbG8ukh29KSt+piCvzbRZMRzBDXqQloZNGKdJQD/NoPwa9mfpB+nIjgd+Lfsd8Vt2b5qHimp6TzQ7w5WyRpFuB1WUpdMQ7AXU33iV2hMfpevRIIhrCa17n6PxBUf4LIWEtr+tnLbANbzR1Bt+4rP33mVXr2qlKQrGxWyNh944AG63HQz2lp90Zsv9lB4lNtclxindGp5564McRnbT/u3+C9AJ+XH89BDlRAkSqZKoaZFvofmIFWioBQ4fKSkthI9VElj7FddPNYmWL6OwwVn/trD1p/f5s4772T8+KtLBPzoE09Tr89D/HzcQrbkGY8xi54kq0LVLN8qHiuSkvjWCZMnMx5FLofC06X2ePklWrBb8XzV0gfrlgZst0Jl1pQteq2VSXRLVF8lioVO4Wm2S/Rbzz6Vgq7rSQJuypA9+U6J1mHIFSX5NaExWEa8SPLmH0lf9zX+tVtjrNFKzHunVoNKhT4oGpUKrGlxJO74GY3Zn9jxM9Ca/LADukLRENHnyascBVEtxPZVF5W9Hq4j0yCGt/cnPz+fDx6fwYYNG1BfJubgSnHgwAGim9xEvkOFMUdug4darKRd2wNEp4OH0uKhwgKoPAqOEpXX822czvOn8Jys3ust5Obm8sBDk7Fpgxhy38u4VCqKpUFF+X1p/vZ4UovlHSfzxXuLs8n7EuLEZFW+iYcAcJjl1XuNRPFRXUIoxaPi7KFfiwXFej0rFRpFcni3h04tuEGlokGDBiXUvSr8f8BUsyWpi1/DXlyA3uQ9Qyxr/bdUu2Oa1+r7J3Qb9STVW9zMsJF3sGv7Fn75qT1DRowmbucirKs+I7r3PcR36k1YbEPwuz7CVdE167M6p5ix4yfQfexbXqtXEARyzh0gdc9voFLhE1Ebg18ofjWagyCQe24fSad3Exhdn5BOo9BdJcOlCv9txMXF8egTT4ExmNse+ZigsEhcbjkKyiWIY0FikTzZFBTji3JsUtJPlY4Tp4IpoQuSVWFb+ekpzkljy1cP0r7vvdRsfysAzfwvTaRXhpd4Qp46Bcj2ZbTeszIfy6/xY0nfs5zQfpPRFWdzKbj8ZI0BTYZ8T0qFWI/9B7D30zG8/soL3DZ8JK3u/4idrkjIBNP66URRTNtpywk1CIATiyIkK1vB2GjoK9t3f+nEZ+F++gdWvDceR3YSIX0eKLGdAawZ50u2q1cT7y/7+HZyMpOIaT+E/Tkm9ueK9qezIIuEz8cT2PVO/FsPpG24vGhglOYCIXq57jS7/NttsxYQNupN0la8T8bmH4joOAwAVb4iJEmhQO3WyPZgWIMOuF1O0jfMpGXODr7+Y0VVmpFrhApNLk0mE1OfeoxlS7/jltGPe6tNNwQEQeCPxV+TenIHP//88xVRYD04f/48z73wMvm6CHq0K79K6X8BWrMfMX0fxF2cT0HCEQqTjosHVGrc9mLsuWmgUqHzCSS8xz2YwmtBBTzZubm5VKtWjYULF2IwVFxp8q+//qJ5/aEVrudyqNWwJbMWfejVOr/99ltmzp5PlwHjaNl1QCnnQxWqcD2h1Rs4kF6A3jcYlcJh6InFVSucYYJPEAEdRrB82fcE97gHgDApBt9PYYh4YvVr+8gGRryU8ufHREW5zFPk7luJxhKA1uyPuzAHQYobMiicnaM7BlzUbk9E9MJdsmjbh+fqAlB0Sk5zoDPIsvlFUnMsNVsR03EEmzdvZulvq0mp3ov7nn2cfYveoX2kE0PhbtbMeJPc5o3p3LkzXbp0YVeyaPReSi9PaRw+XlN8XnaXfN0ZZ8VY7wJ/2Vg2pIlpTNwK9V17qmi0vpYKxbWGEvfFOPLvaQAJAoLCAFfHH5K3neL1TOmnSvb5WkRD0fMbCoJAbtxBMv6YiTGqIWH3fobOPxytr+iQjLbIbT2XGEf+Xxs4/cs7RHcYin9sEwrDxDQBapci1iuiHlBaJ8GTpqxGoBx7tjtbbHdVxsN/L/bs2cM7788gMSWDQWOfJrbBlTEdvInshKNs/2IS7Se8R3Rd76an8Gs9kHPv30bILQ95rU6j2snvv/9BcGxTND3F8JEzS9/F4iii3Z0vlVtEUq3REnXXdNJWfkTyzy9TbfDUf2QaZCx/A6PTSsfe95TsEwSBC99OJuzWJzDXKZ/ytEqtJuzWKSR9OZ6iWq0wh9e8ovPseekk/ziFewd14YlHfkJzAzBF/l9QYZ7c8GHD+OKrb8lISSAkonrZJ/wLUJCXw4o576O1ZbBk4U+YTKayT5JQWFjI3ePupcvgBwlt2qsSW/nvgkZvwr9OWywGyVN4qQ6qgqkBzp88wOCXX2b58uX06lXxZ5+ZmcmePXvo+XBs2YXLCZ1Oj16vL7vgFWLy5Mn4+voy6a2fq1b5qnDD4c6RQ3lz1nPUvOfzKyof0Pl24t4fTmCnUagNFQstyNw8F2vKaard/nqF6ikPLMGRLF/xG8tX/0GDGZ8BULvr7Xz7XG8S4s7w4vPPcurUKfbu3ctTTz1FdrGKarH1qNW0C3WatK30b1ltMKHxrXjKBLfTwamFr6Gr3pyou95FF/TPsWUqjRa/Zr2JNBk4tVJ8LtqwiudZrcK/E7t372by5MmMe+4bgsOjUKlUl2S+VSasSSfZ9dNUej2zAKN/KN6miKvUaix1O1B4YjumCobcOPPSsf3yIhYhn/gMG2OmfsAvqZBxeAMFF47T44mvvdJ3hPV/lIx1M8ncMpeQm8ZeskzW0a1EB5lRBTXH7C/3JRmrP8VSr0O5J5YeqNRqonuOJ3HDbGqPeOGKzklb9ibTJt3OsGHDKnTtKlw9Kjy5VKvVfP7Jh4x78EnuelGUhr5nqUhvi5CMZmXwv8cTa1ckYd5XIE40QiWPbKTC7XgyM0c8T1KAUitoiFrJC+tS0FtrBtYGoLFFdBvXNBRw9uheTh3cTP6FQ+h0upKPLbPQzR2Pz8A3IJgxnS0IgsDKlSt589lnefvtt+nXr99Vf5jz5s0juGl//BrdXEq8x5N8/oxENUxSUA3TJaEJjxrr6TQ5f6NKZyp1DMAtKa0a/URPsI9C3MJDg1VLyau11rySYx7FTmWyWs+2Z8XAQ4UVj4nP0CGJMyhVZtUShdFzDEBjlagnEhXVrZbLC1rxPsyZorpoQTVZaU1XJFJF7VJdygTGDuledc3kFeB+fuIkNEhavQjQO1n782fs2/gr8+f9QMOG3lGhdDqdNGpzE5+fFa/nimhQcswkKaEqVd000jP0qM4plXf1hRml/nqUWEGM6S0qKsJsrpjx/MGHH3Ou0Jeug58lUWaYlgidWKW5+87MwovO9awIaC4cKNmnk1R7NXY5GbuP9Kp5aNHKd0Jj8/wV37ni0LqKY4VSXfK1C0PrAGDIF2nXRdVlD7EmW6QgPxYrftsz4uIuec9V+Hfh7jtGMnfuXI59cS+Wgc+XWV6tMxLQ7jZydi4k6DJGTVlwO2wk/jgVtUpN5IiXQes9Z86VIOXkXrbNeoG6HfpT//2jUsoCAf/wWGLb3cqqVasYOnQoDRo0oEGDBtx5550kJSVx+vRp5sxbwIrvXieqTnNuHfsUBqMFAdUNEav5dwiCQPzqzwlt2Rdjt6sLIVFr9dTt/zCnVn5GQGAMPhU0RKvw70J+fj4PPPwIien5jH5uFn6h1XBcQvxQKeSVL1E65yXKTmmdFHYCYPeTBblcCjqnUkHfESgrx6qcTpx56VyY/QSPv/g5QREBgAOtwgRU0kidChtWqf5fJNlzyrb6KI7rsi8Q0qAz6dsXEDxoSsl+ZViIWkGFVYYjOQNk++z+WIEvn3uIAMGGoWYb+j34Hhk2FUkFBZyc9zJ1nv6FMIOAZ3Jc4BE0U9ieSjvcqZhD1zLLz3SfRL8N6TeZuOmDCGg5AK1vML1qydojLQJszJj+Iq07tGWNrSYZSeI4X3j4DwqObiZm/EdUD5JtxWMyQYW6kpl0Ll+27UMVz6tedI2S7TPWVmBZRnb6hVKTVbVC0VYZ7hZReJIhQz6lCtceXlH4aNiwIf17dWLz4k/oPvIxb1RZIQguFxeO7eLUxrmsSj3JgH59uX9UH3r2fLvUZHHTpk3ceffN1GvahlV+WtLT02ncuDE7duzAYrH8wxUuj9mzZ9N36iJv3UoVLgNBEEhLOMn+lV+Tce4gd91xO1/v3o5O5z1C1IEDB/ALrPz8Rz169GDlypUMHz683HVs2LCBpas30m/K915s2Y2DqKioCsfPVuHGwOoVvzJq1Cj2/rmQsCHPAZCbLimbyjZCSdop//a3kfDpGMy127LHvz0AwQrjI9IgGkKnCuRvf9spkbZpjT9E8m8fEtx5FD5tBosHFdTQTr5iPU/d7IvL5WL+/PlMmrTjku2OiYnBaDQSHR1Nv379ALF9bzpalJRxK5SfF/8VT95fG0n+cSqR7W5F32kc9pRTuICwcNEBVrvBpSl3kZGRREZG0q1btxKn5+yZT+FyuViyZAmdO3dm0aJFbI0X72V0R5kaatDkAFDkDCjZF18oKu6uypaH/MaSUuSe9BwozAGVBs6LFFiVSuk0k5W6PY4zuyKdg1ZyDhad2kmtDgOp1/d+DueLniZXVlJJOWe+6PBMcMmxlZ60RXl1xNzF4bU6kfT1RHC7sDSU1RzdVsnBpUh9ZQ4RjdvzZ+UURg0ai89VdodV4UZHfn4+g28bQaehj9CnWcfrxrhx5qWT8NVEIu+cTlBE5bGVAIzhNbGmnUNwu8olaOXYvYAP3vsWnU5N6/7jadzvgZJj5+c8RcStj6O1BODNVVeVWkPwTWPJ2j6fsFseLnUs8dwx3I5i/tx/GNM4sU935qWRsuwdqt/zqVd/04i+k7iw8FVqlOGAKvzzZ3q3alVFhb1O8Jp85EsvPEeT5m1o0nUImOqWWb4yYE06yelNn6POTSA6NIBXH32Im/+BHnnTTTdx9vQJHA7R06HX6ys0OVmzZg0tWrRAbyrfxPT/HW6nHXvmBVCshnnEh4rcotXpOH+Q/flxXDj0B+GBvkx+cAIDBnziVWqpB/PmL6T1zeM5Yi+7bEUwYMAAZs6cWe7J5ZEjR5jy7CtMfOUHcv+DEzBrUYFX4mercGNApVIxd+5c2t/UG1v6nRhC/9mQU+uNRI3/iMTvH8V/4CSiOo8s8xqCy0HGpjkUxe0nesQr6AOr8U+k+xUrVvDSSy9xxx138MQTT1w0Drjdbs6ePYvL5eK3337jtddeo6DYjlqtoeAy6ot2axG56cnUueMNfGIaXbrQFUClUjFgwAAGDBCl+KdMmcIHH3xAtWrVWLA9wytOF8HtKpVD+mqRfnwHWoOZen3vr1A71Hoj1W9/jfh5z6H2DcEUff1yoVah8uGZWPYY+SixjTpet3a4HTbOfzmByLvewRh5bWjZlupNKbxwDJ/qV55twVWch2PfL9i2/YC1qIBxz35F/VY3kSmxhnLSLuAqzCGg7aBKabNvo25kbv4B/ja5XL/gQwYNGshfCXmcVasR3G4SZz1OtaHPovUJvExt5YPOLwS10Qd7VhL6f6Ld56UwfvwrXr12Fa4cXptcqlQqPv7wHV556zmGPPMjKpWKFZIKbKRO9p6csomTBaXISD1jae+Kv1amAbSsIXo5PXvMCqpBtMWOIAhE2g7w/vvvY7Vaee211+jY8cq9X3q992LeXn/zHSa88A1GH4lGqaB15Ek0SE/8QKDi2L5siSPgofwqhC5UkjKsYJE/0EbhopJYU+k6S1JlGoBW8gSrJPVea4FClSv1pLihVH2VqLLmJNFjraR5eugYnjJunRx76knmq0yq65AS3NoDxA9eFyhTOGLN4jNu6St66mv5OIk/dZjczFSOnN6K22kj5eRebunWBbVbfi09v7ZaEmqNiYmkQ/tetGgxBR8fWUEyOTmZ2XPmsWXnXvLy87FJD1+lUMTQa7XEVo/BpAEVKvr27o6fnx9hYWE0a9aMv+PYydM0uKMJum27AfDNkqkqhREirddDHRXv36/Uc1MqwblMAaWO7cyU37k729dlxYoVPP3001SrJj+zK0FiYiLj7nuYEU9+jsocwJJEKZfc0Y0lZTw0EQ/9WBskG/Memqrn91QqvXrEO1wGWaHOQ3n1QJ+fJt+jpPpaGCCKnhjykuVj0nvisMjvo4c2bLeIYln+/sElx+5uINZl0ro5dmgr7dpV0eT+S9DpdHz+4TuMnPwoUY8tKbt8YDWqT/qBnPVfkbBhDp3GvkFQzdLfrNNWTOqJXcTtWsHZQ5sJaD2Q2Lvfu6Kx4P333+f777+nevXq/PLLL6SlpbFlyxa0Wi02m61kjHC5XKhUKoYPH06xT31UKhXzExVqlYqBzWQrICyyPpbLKEKWF++//z5PP/00n3/+Oe89NZJhE56H9hWT1rfGH0RTTkVeR3E+KYc3cOuMfRVqgwdqnYGowU9x/pe3qTnxS6/UWYUbDwUFBQy6bQQ9RjxG3aYdGNUhoOTYvB05JdsaRViVQ0HjXJUmfpPas1tL9gkKwSdDjrxqbguQhbgEZey2VD55/vN0G/EE1Zu2ACDYIHuUzxbI9ohS+MuhMFuTrfJ1/SVWRZ4i9EUZIuXwE+Ms9fU6UVSQg8HiGffkClUKmqfLXyzvzM/A+tVoMpLiqddxADc9+AnojZzIhw05Ytms7Tup3aQLDUySErsgj+cOSV03X5GpoJZJQSlW+KhMCju7cZDMNPirIAuNJRBHTgo7CsQQNFvqOWqaNaz+Ywu9n/6Z04kFZO9YiDG2Ob1uurXk3F05Mhe2uZ/sLN6XIdoUBrOy/5H71CYKiu4pyY4w1WiBrTgfrSc7giLUq06kyGg4uzKLBg3kUKYqXFt4NfFdr169OHDwCBvnTqP7XWXH01QUF84d5/u3J9GtY2u+++47wsIqn8J4OXw98xvMARH4+AWU4q5XARw5qST+uVmcQJ7+A9wuBGsOTRs3pHGjhgybdDsRERGEh4eXiju02WwsWrQYu110Ipw8c47ElBQWLl3Bz78s53zCeQoK8olLSCSiZmNC67Yl9LZ3iPENYmuqmKTcYJEnRma3g3M5KfQPs5Gfk8mSrXvRqQQyEs9w5ugeJt47jscenQyI8ZZ2l/qaUDF1Oh2DBg2isPDiWMh/QmpqKreNGMWAB98jKCy67BP+pTi2Zx3vvfb09W5GFbyMDu3b0TLGn+MrpqPteHeZ5dV6I43HvEVB8hmOLHmLoqwktAYTRrWA027DqdIQWrsVtbsOR7hpIiqVqpSRdjk47TZSU1N56623WLp0KS+//DJNmjTh4YcfxmKxiPVcYoK6UEontPKkwhmmMHKcGfHihpcnlwDh4eG8+uqrTJ6cwf0PTWbSniW8++67VyU+p4QmO57AkPKNn5mn9hDRtAcanffYI/qACPTBMRTFHcRco7nX6q3CjYNffllKnVa9qdesw3VtR+HJ7ahUGqq36XtNr+suzkejuTIT3J6ZyPn3hhAcEsptH+zELzwWreZiQ7PgxDYa3/qgt5taCr4Nu1IUfwi/hp0ByF/1LiPu7s8XP61GZzQjCPnkbF9A7KQfKrEVZTsMDUYzarUaQRA4cuQIxcXFXEhMZP3GrVzO32g2mxjYvy8NGjTAbDZXWAfj/xlez6o+5YlHyX1tGhvnTkO45RVJvMD72L92Dhd2L+bnH7+nadOmlXKNq8HSX5czcNxL17sZ1xWCIGBNO4f9r3WonVZsqSfQCA6CLTruveM2AgMiaPf8R6Snp5OXl8eJk6e4kJTM3ePuISgsGqNBNE48Xj6n00Fs6wGY/EKw6NwEVe+Bv8FIilX0anXuFoLR4kum01hi/CVZL/++afRGTGE1CKlmI6RaDWo2bF3ioVMJbr569R40alFx9e2336Zxj1GV+LQuRlFRUdmFJBw7doybuvfkibfnEljjv+udsxYVcOboPmrWvDLp8Sr8u7B00XwmTJjA2a2fcNPY11icIrMwcIrbqlxZ4CyuwB98I+kweWbJviij2GGsTrPjBM4BKik2z6VggWikNCGuYjnn3YolMzk3+wn8YxvjDO1PvZceY0FkQxZkQd21WkA83xPjuTVNPleXLOZ81StERNQKwSqHtCKvtcrneKCXVkC0qop5IkNCQli0YB6//vorvXr14vvvv+eOjpen9TXdpWBaSKtAN4UY+WbBKWy+Otw1RGaJ6pQcd6orzCjZ9rAYVG75d8rMSSdi8FQuKFdqskXWgspHkcLLk4suW15RQhJdubWGLPax4pyU967tINK3zsMnqj6GQHH1xlooMyeKpDx7/ZrI1Nn3BogrG/cvv+wjqMINAEEQ+HbWHO5+5uvr3o7032YQPeHK1Ku9CeuFo4R0+meKvzX1LOnL3iPv4FpCbhrD4Pvf+kcmhi31LH5R9bzd1FIQ88qL36jgcpLx53I+tyfS7r4vxDYnHMYY3bDC6t4VQUHyGTLOnyIlJYWnn34arVZLoT4Kg9mXum1G4me49DMsyMvm659Wk3bhM4oK86kZE8HHM97H378qB+/VwuuTS4DXXnqeTz75hBkvtaLzLSOJaNSN6NqN0RvNdJbKKH/aNGmy4K/IXeZBoLTPo8ZVz3Se559/noYNG/LD76u9KuBSXhw4cIA8px51SF1Si0vTODzwsDNTpXvdkieXcXlUwqSYF5WkkArQt7ZIMW3gJwf26NWiwZMsqYD2DZEpBCk28XkcLhLrdyjyxrmkxPTo5Y9eWyyu8Ll8JK+1QshB5VGQ9ajFmuRVQJVTbIPDJ5js9TMpPLoJa1YSJoOeevUb4OvriybYSFauHafdweezF1BYbMPtdOD0iUAVFIMjqBaawIb49H0Ol38YxR76ZoGoHqoFzgSIFM6YBp3wmCRn00WjbmthAVCAMfsCf4eP7WKDLrmWGNPxtVOmZnbzl5XU6k2cxfMTajJ8+HDWb9pGUs/XOHA0BbN0r0p6qDErXnp+srGmlWixLr1I71Ar2lAcIsYhe9R7lUYqmOnevTvr16+/JD3XA7vdzrfffc/CX5Zz+vQZpn70K1E16rE3U/6MrXEHANAo4lb1VvE3VrnE+9AV55Qcs/mKFGubRNXxj9slHwuQ1eA8cEnvgodO61a8Syopu7U+PxUoTVHyGKhKWqxOevecNdsAMDJMXmXy5PI7s/4bxt416ob4zqvgfahUKmbOnMm0t6az8JWB5DUbgU/rQagNlRu37izMIeW7hyg8e4Dqd0wjoEmPSr1eZUKlUjFkyBA6dOjAXXfdxeTJkxk8ePAVn596/gzhQT5kqt1c3GuWDVdhLjp/77OGTNXq4shLx2UrrMpb+R/Djh07iKjZFKPFvyR86LstuSXHlRMok8JK3Zkhr46fOCUKOQk+8pgiKFYCBYVafanUZwpBr6K/NmGq0RJdYCT1fWUby2NbARQraKQexVWAakbZXk1UOLUtksM61CAf35WjfIPF4/bM82ijG+P2ZEIokJ04AXt/JPHUfpLOHMbccgBBHUcSevN9bDqXIFej6CNLJnJqLVFmNZ5AMq3C155qv3hCtTxFdr71CjWWbBcq7jNTsS3oTdgyL2Cp256GRoG4NV8zauQINhy5wLpCCxQWkr3tJwLaDQWnHaPi+m385d9u5wXZwdS9uhgKtDFRvv+oarKzSZnrVzBJqewMJlEMyZNbVxHOMyLSyuqNC+kxfgwduvak9aiXqNPhVpoofq9wi7ytpGMv2pVN/aZiCE5KkYaT+zbS79bBbFr/e5UNcpWolMkliKs/DzzwAJs3b2bZb6v5cd40VGotKq0BlUqFxS8Qs6/o1bS6VGjN/jRu3xvfwDC0egNmn4BS9aUlJbB11TxO7F3He++9R48eN44x8OgTT3PzvdOvdzOuGQSXg9zj20lZ+zm2/Az0QVEEdxxBaO32aAxm8m2F5COmqdH6BKFSqbD7haMB9MXi5MplCcTTlemltB7XGxqdnv4j7uX48eOcOnUKv4EB1+zaTZo0YfnyS7vbc3NzeXLqc/z222807DSQmyfO4LagMEJMl9Bq/w/hzF+72bJlC0uXLr3eTalCJUKtVvPi88/y5BOP8dlX3/DF57ehCa6BO7IpmpZD8BbZ0pGbhi35FEVrZpB2eDM+NZvTYOoyNB6D5V+OiIgIVq5cyZNPPsns2bOZPHnyFY2TJw9uY9CAvnz/48/luq5aXz4q7pXAp2ZrihNPYKzfuezCCpw/f56AgIDKaVQVKozNW7dTq/H1j6PP2bmI0AGPXZdrC047qr+lRXI7HaSu/JgLp7ZiCQjFaPZFY/YntPeVCWUJbhdOuxWt3lh24XKi6OweQm55CIC4zfNRRYeh7vei2H6HFVvyKUyxlUtl14fWxJF58aKCB6cO7+Tg9hyGvLEWo2/5BYXqtepO9tk9fPTxJzw55Yly1/P/iEqbXIIYS9arV6+ShPaCIK/WpaSkkJsre6rOnj3HyjVLuJCTS1FhIWfjEwgKj8UnIITffvyE0XeNY8L4u7npizdvKGnhffv2YfANJjSq9vVuSqVBEASsyacoPLwa++md5GckozP7EdKiD6Yud6PzEz2HHjEYjSQbr/Jy8uFrAUEQOHDgID0G3sXeKyxfnJ1CXspZ8rNSsOdngtaA2+nA7BtAROOumIP/OZE4QM2aNUlOTr5o/7lz5xg2cjTNBz/Ow1+9ilZvKPGMeguCIOCySQJNDisqtbZUPtnrgfycTOZ/9BR/7tiCn59f2SdU4V8Pk8nEk49N5snHJpObm8vy5ctZs+Z9tu46QJfbn6LpTUNZmiF6jw9my2tsjgCRKTAwXPYsN/QX3d1atZaczDRmPDeWUyePoLcE4FevLXVe/B1TzZYgjUnuDHlFwHhiEwDnFKv/Z6VVeKNbwSCRxKyUImhOs4IGKkGZ29XWXFR8rWYW67kUW6ci0Ov1fPzxx5w9e5bx48fz7bffcuedd0qpU2BE+9KGlsvl4p3J8/nwudXM/vFnnqsrskcOBMvKnRtWzVecIToHCyIa83cUKLLdqyRKsKCgz3qGA7dCnC7UX9wO0StE6SR1SZVPEIa67bHbiugbKI4ty2xyvzSknrjiUaSQAf52Sy5utxuXy4XRWHkGdhXKD0EQWP7bKiZNm8f1dI8KbheOzPMYIupc82vbM86jC4gotc+Rl0HC7CfwqduemKadSYs/hm9QBH59HrhMLRdDcDnRVHIeX5VWj1pnoDg7BaPKTo4qEH1YDQAKjqzHp9FNlZ9O5h/C7TLTEjl2cDfvzt/HOXfFlWr7jXqIGVNvr5pcXiWuqQWpfOGqVatWShmzQYMG9O/fr+T/drudtLQ01q1bx4N3rCiRYb+R4HK5eGzKVIZO+qCUiI+HiqB8/TdJdA5P/i/lMr5RiksZWVvkdYcplu/NWpEqeHsH+SPxKKlV93EhCALhijG0iUp8zm2kRLlOxTPOsou5yZRKYLkOsZyHfrw9R1fiBDhz7igF238kY/aTaFQgmIMI7HwHoXXaY5YoAhp7EWSJhplTUgs1SZRRq0KhzUMjNaWdEMv6yDQqXbZ4vl1SMS0Kk2OG1BJlOGnf7yX7/HPE8h4V1NyanUqO+V6QFAule3D4yh2475ntgKxSCrBRUmpzRYty4EVHDnH27F/YRnyJLlOM6XGYxN9FV5hZcl6RJZTM/avIOrkTY1RDzHU64derJbrgaHQWfwSng/zDf3Bmw/eo1Gqi2g/BFFYDu0ThsZzaVFLXwl29AcjKysLlcpU4TwoLCxl113jGTP2Co7p6xDsAB+z666D4DKV4JbUnBxxgyTgL/E0dT6IHFUnUXHu4OJjaM8+jPbGF1D+XI/gEo9IaKNCosBdk4rLbUAdGEdx6APoQWV3WQzvyKAfr8+R4OEF6rh6VWbdWfjFLqNUKxWFqi57rOyPE3ypCUoXLTL3AO48MYP78+VUTy/9T+Pv7c9ddd3HXXXdx+vRpHpr8GOf2rqSg66P41Lx0bshLYeOKH/n6rceo3agFdaftQm0we10a/0ZErVq12LRpE2fPnuWBBx7gq6++onr16heVO3HiBFMem1yhmCJ3BVKYlAWtTzBFion/lSDp3LEqlcgbGDt27CCmbkt0Oj1WhWNAOR9RK0KLChWxvH/EKxywUpiOISexZJdLEaYhKEJ81IrwIIdbHItsyacwxjRGJY1pVgX9VUnFVGY2yFNQROvrZDstRC9bexl2cXtPvmxex2XIqupBYdVJ2reC8PZDaO2rIiv+KMlHt3FgyQfow2pRlHqWcz5BBA6Yirlmq1KLMiidvgobUijJr6tiXx6oteK9DwiVQ03CpTZmKZ6nkgrrr7u00zrdKj+7ei/zykoAAQAASURBVL5Gsk1mmkREULx3CZkZGdz+/Ouc1Ij9R8bBVQQOfBKNv/iMz9vk55Jgk9urUlB6NyaLMetmBbU+W5HeKVQxV1Z5FObT4zGG1UAjrdBGmmW74pVnR2Co2YqvM0OxZsirm1pF/Q185fs+v052VNrcskPxXJHY9m8GhzPHv0rY52pxfZcn/gF6vZ7o6GjGjRt3vZtyWfz555/4htUkOCKG7ErOhQiQlJTEihUr2H4sg7NHduC02zDoNei08geRm5eHzmApSXmi7C4cboho1BWTImegJ57AE9OakJZF0fGNCPYiUlOSQWekWu+J+NXvjEOKzwNAkYLjvwK3rZDkY38i1GtBgH8YLmly+XdknNhJ4uFNBLfqR62nfimJD3M55JdApdVhrtEc8/gZWJNOkLj0bYzBUUT0nVQymP0dMTEx2O32EsXHX3/9laZdBhMWVYOjaZc85aohCAIFx7aQvWUugstJ7R530+rJn8nSi9TA2iZxUHI77Bxc9Q2Jqz5FYwmkWu+J6HxD/qlqryD1wjlmvzOJ33//nXr1KleYoAr/DtSpU4e1q1Zw9OhRXnrzfbbP3o+h9W0Y29yG1i/0kufYrEWs/PFDNi6bzZhHp9F35ERe25tzbRt+A6BWrVqsXbuW1NRUiosvngQajUYiIiIuceaVQ6Uz4FYY796EKbYZGeu/uapzMpPjqF2rVqW0pwoVR1ZWFoFhUde7GdhSTmGMLn/+2YogbetPhAf4EHfyF4L9TcRt3UnMmPexNJFSCgnlYycZIuuRf3Yv/vUqR4E349h2QhqIzvydc1+hdoeBmP1DoQBc9mJsWUkYwiufxVdwZAPBD39/0f7sEzvIOb6Lpp+e9tq1BEGolDzq/3XcsJPLfwNeff1Nut/1YqXVby0qIDHhL47u2cB3L+/j1KlTvPrqq9zRtzVd3ngUi+XqRC9yc3PZvn37ZY+fPn2atCN7seqMWFrcCmFN0IfEYFCsTv2XUbRnKaNH38mmpEt37IIgELd5Hiq1hjpj30WjN+G6AuERY2R96ox6lazD60lYPI3qw64sTc8vv/xCt7teuZpb+EcUJZ8icdWnGOp2IGzwVAzhtagWJBnn9tKZ4NU6Pb61WuFbqxUFF44Rt+Blglr1J7DNoEqjvCTGneDTF8fx3defV00sq3ARGjVqxKK535Kdnc13s+eybO0LJCSnc65BZ9RB1bHqBfwiapF17gCr9q9kyKB+HAgOp+/IiZet020rInfvcopP7y7Zpy3ORWsJwLdmS0zhtSqV4uUbFMr585d2YnkT4eHhZRcqJ3QB4biKcssuWA5ofYNxFWSVXVCBP9f9zOhpz1RKe6pQcXzz3Q/cNOKx690M7BnnsTS4ulheb6DowjHUWj1P3X+XuIAy4X76v72JfbkVX6Hwa3UrKdsXVtrkMmnvSmr3vpfi7BRyM1Ppet+7JcdyT+0moFG3SrmuEi5rIahUaC0BFx079Om9RI56HV2A9/q7ZcuWUbv2fzfsrbJQNbksJ1JTU0nIcTA3UQ+J8biNcgJYtSRaQ5BMTTSYRM9HsBQHcmuI3JHE+IhU2RHtA8nKymLjxo1s2bKFEydO0LFjR+4a1JXevV+rsFqVv79/SeyNB8XFxSxfsYIPvppNhioAQ50hWEJE+pSvSgW5yVgjJe+eUxEXI9FcBbX8CmnsYtxeYbhEa1V433RFooFglaiZ1gA5DtEiGW9Oo0itMGbLNChBinvSZ8qiP/agGtIx8ZmasuJKjnkUXT1xTkrJfI2k3uqh0wKoJSXYti3acFSVj7+fhWJVPfTF+Vgk1Vq1U/T4n0uKwxXVmLCBT5ZQ69xWOZ5KoxdXhFv7i3+1ATKdNDW6JtHNbuLIgmlcWPgadfreX2K0bkuTV5I9OHPmDOl5dly+MaQVw84seWXAY+oGHBepwi6TTPNTSUmTPc8boCg4FmvKaYp3zmfwK7/QqrpMD4krEqk97SVWnJ9WfjYtOooqrkvS2+Pb9S4SF7xE6pa5hPW8F7ekPKxSUHO0f8vnpzxm8xd/b89vBjC+mvh+RFucZKRcYPLojsyZM+eGEuuqwo2HwMBApjw2mSmPTaawsJCDBw+Snp6OIAjs3LmJEf07cfMHjzJ+/HiGP/0tyUXiarw5UVSXLIoSKfDWxGNkLHqNsM4jqd1vImqJclXoEihKPsn5rT9jz/yBsH6T8YkVVZw9KtlKqBX9iaCYiHpSkBSGy6kybg4SqVZuKaF5RHRdjm/Y6JXnUlH4mjQMl2Iyhyv2T3HdUbK9ft8eADQ2ud9Tm/xw5GfjVDA3PJ2U3izTbU3S+JWXJ/cTdSVFzT258jgyPEI8Oa5YovH5B5LrFLcb+sn0tDSb2H/EKBLB69UCtoIs2rZteyW3XIXrgMy8IgqCmnEsB6LM8m9XpKCchptlyun2dNnu0eXItFgPBdZhlsc/QREnjYJp485LL9n2pAty56aiM/og5Iq0IKNGVkdPVKjFKkKJcQpyG9MUCrHKUCOPcmxTi3xvCXkybbNw6afUa9eXhPh4nn31TaKeW89fmlDQK5woLueltxVjKjpFPJQU/20Or8G5RTtJykhGrTcxyyqXuT9WrEdJ83Uotj0hUiCngwNwFoqOI8HtxpZwiNb16jFzchdMtdqwo0D8bnPzssg6sx9tWG2qKRY91ArunDVf/u41ChEwlyBeLEQxG2muUO49ViD/FnqTD/nn9uJTp02pnMKpdifZu5diK8jCt0VfmQ6reB+UzLIjCrX+Iwq1fZXCkXV3M9F+WzRrEe+88w5VuDpUTS7Lif6DbiPqlqe5WILl6mArLmTTpsWcO7qHr3MT0Wq1DB48mOHDh9O5c+V51TZv3sJvq9ewavXvNO4yhNzBMzCafDHG76+0a97osGcncio3F33dnhcdy004QnH8MaLu+bRC1whs0Blr5gVS968molW/y5abv2AhHW8ZXaFreeAqzifpl7cY8uIiLEHVAFeZ5/wdKo2W6NFvcua9YRSc/hOfuu290jYQ85nO+3gqq1evpk+fPl6rtwr/fVgsFjp1kmOuhwwZAsCpU6cAiLhMDtj8Q+vI3Pg9zZ9aiN4vlACFRpzKBT4xjXBHN8ORl07qig/IXP8dwV1H41vDuyqIgaHV+PPPP71a57WGIaIO1gtH8Wveu1LqdyoceFcCs8XnhhL9q0JpCOWkfP4XILicZMUdIaplb9b88TnhD89D5++9VTaVSkVw7wdInv8CkXe9W/YJV4HC41uo3rQLCUe24iguIOrOx0sdd6THV7pKLEDO7l8I6nrXRfvjv5hA9YlfolEs9HgDNpuNkJDKDwn6r6FqclkOfPf9LFThjYhs2YfkMyev+DxBEMg/ux9r0gnW5x1BcLtJOrWPRx+4h/uGPU7z5pX7YRYVFbF8+XI++uwr/EOr06HvnUx89zE0Wh2HT5U/ZsbtclCUcpbijARs2SkU52eKqmUGC1rfYPRBkVh8AjCFVkdruVhN8UaAy+ngzJ+rcdZtgCGmtBKi01bE+a0LiZq6wisUuYhOIzg1+0kC67TF4HfpTmv7zt2MnjKG9KufB16E5OXvE3bzRCxXoFpbFqoNepKEH57EUqedV56FIAh89fqD9O3ZpWpiWQWvYcOGDfTr14+cv+13u5yk/vIWzoIsqj/4HfrLxGx6oPMLJXr0WzjSzpG+/ltydi0hov8j6HyDvdJOvcFYStju3whLnfakrvig8i5wFf1MZuoFVMI1EECoQrnw559/gukGsQHUalzFBWWX8yLy9q8iqnlP8pJOk5SeS0RME69fw7/NQNzWfFIWvEj02Pe9UqfgdpPx+1cMeeFb5r80jPDazfBvdnPpMk47Gp/K/W1dxXkUn/8Lc63WuBwyiyR1xQy0/mEEdhiGPSvpH2qowrVC1eTyKnHu3DnenvEV6jFf82dKOip/UQzBZJFVLe+uFoogCPSJSGTOnDlcuHCBjIwM1Go1TZo0oWn7pjRvPg6NRkP16tXx8fGup+VSWLt2LQ9OfpyG3UeT2X86ub4hJNhBsycOAL1VpPKqFFL7JYqg6eeA0mqpdt8wipNPkXZgDbbk05hrt8EY2wxT876ExzRB6xNEXsJhnPmZ2NPiyEo6ge3IJtw5KegDq+FfqxV+9Tqg0Zuw+Yv0YbdEYXArqJOedCYam0zlVEk0EZXkAfUoygI4JYqoh6rm1sr0C4dFrF/VXF4xbOcjUiuCU3bQqX07dh89g6/UDo9KbMKWnwi+eSJBETVKzssvFGkVboVSq1tqz17EDrapr0x3rSdRtxLqiavRUf0mcXbDbGrf/iq/nxPV7poiQxAENFotZ/I8n6j8uzilCbo1qKb4bCQ6MoBTUmX1/I6ZB38nsFotGva5B7NavFeNQonPQ5FJl1TdlP5+vUT1GRAs008Wh9XCUL0ZhelxmOu0w6VQijTkiFQUl1H8FpQUQk8b7+4gy75HW5ysX/o91UNNvPD8s1ShCt7Cxi076DDsSWYel2lOWp8Qktd+SdN6jWk9+GEAjGrxO/FVKCUa1OJ2sq+C1l6jJrTryaaNv5Cw4GWixrwPkuK1KVuOmdS4FfR16Rv0uSAnNdpVuxUArYMUKTpucLx/q0xzG+cQFZ4PHJUZLtrQKOyZ53G7XSUOJ6NZ7AOq6eSJ4dlEcRxRJn8vcIvHW/jJ/dtWKeF8mvSIijRm/pKUG7Ns8sRRqxX7xpNWRQqa4zuZeM/Y8txmFa4BXp02nRr9nyNNUlQNUKTiCTIoaI5F8ki09oJMp1SZZJq1YBBpsWpFvK+gSMOhzpYnGUrqulOqQx9RF3t+OkaT+E6nWOVrHlBQMZX01kwFdbeJggqbr1BF3Z+RLdUh20uCyR9HbioZv3+J5eHZJM17BnV4Q+xFeSVlNAaZ8u12yt+DoBjfVQoqrKCgpqv85NVPt9tJQOdRpP7yFqlL3iLkpjEAfCWIzuWW/nIdyiwH6Yp7U2Y6uK+2kYWfPE3Lgbcz/5cfyMxMw9D/KfLSFXkmjRZUOiOu/AySC+R2hSkosqqinJJtl6LtukDRhjar5cakK56nXUFFVu/4kYY976KWWcNpifJbGHeAlGXvUOfVzTjtVlA8RxTUWZUyfYkiY4CgDJMKkB19Dnclp1P5j6NqcnmVGHvPfTQd8TzHFbEkStjS49mwYQ4Xju7geNN63HvvvdSrVw+DwXBd8m4VFxdz99h7cGj9GfHaCiwBoZw7nV72if+AorQ44he9ic43mMB+k0uoECppUqaTno0uKApdUBSm2GYl8Zra/DSs6fEUHNnA2XnPozH7EdLxdnxqtapQmyqKX795nQljRrBf17DUipw9Lx1bxnmibvVujiNzRG2MQVHknd6NIVQMFtfr9eTk5JSoxVYU9tw0Mvevocvb27xSnweBXUeTseZzzHUqlgT74M4/OL5rJb+vWVn5ebGq8H8FlUqFVlda4c+Rl07xhWO0evKzctdrrtWa8EFPkbL4dWJHveGV99aTl/F6Uzndbjd2u/2qlRFVKhXmWq0pPLENnwZdvNome3YSmsuMtZeDZ9JZhRsP+QVF1Iy5MdLE6MNrU3BqJ36tKj/NneBykvTDk1Qb+SpqowVQoSmDNVFRhA15hrT5L5Cx6YeSCebVojDlDF+8/RBdB91Dkw63MH9YA6ImfIFv45vgb3R1fVgN7OnxULdyxIQEl4uErT/T/ZXVJfsc+ZmcevVmQm99An3QxQrEjtw0BFsRaqMFfWjsRcerUHmo6oWvAqvXrCE+NYfWLXpw/LzslXIV5nDgkdpUq9uMNk0bMnLQLdwxc9p1bKloKMyd9xOffTGTm4c/RLOOvTmZWzFBIEEQSD+4luwTu4gZ/gL6gAgcIVf/wRpDY7F0GkF4pxHYspNJ3bGI9O0LiLztea/Rza4GWeePo3LbqFu3LuzMKXWsMOEI/o0rR2AmrONwEn77mOiOomBG9+7d2bp1KyNGjPBK/SlbfiKy53jU2or97n+HsVo9nPkZpcSMrhZnDmxmyXuPsmvn9iqZ7ypcE6RvnUdI59srPCE0xTbDEF6b7D3LCGo7uMLtat68OXv27KF9e+/FMZcHdevW5ezZs+XKERnQYTjZW+Z4fXJZcHIHZklMqQr/buzZsweN+QahxALm2GakrfgAQRAq3bmZvupj/Fr0xfi3kJvKhEqlIvzWKaSu+ICUZe8SOeb90qt3ZSB5xyLO//4Nk6Z+iN1WxMeP9MJo9hEnlpeAoVo9Co6s91bzL8L5rQuIbDMArUF2vp+a1o+QLiMJHfAYAPasRPL2riD/4BpQqdBYAtH6heHMScaZl45vi774tx2MLvD6p8L5r6NqcnkVmLtgKR3vfQ+XtArnOLAM5445+PhYcFkL+WPRrBsihcK6det44eXXadiuDw9P+xGDseIJYAVBIOGPb9EaLNQb8TwO/4rlRvPAEFiN6MFPU5R4jIR5z1Kt3yP4htfwSt1Xil+m9mTFr0tYsXINRHYsdUwQBNT6yllx1vsGIzjtuIry0Jj9aNq0KT///DMjRozAz8+X7PQU0NQpu6JLQBDcFKedw6d65QxmpurNsKWcwnCVMRaCILB96eccWPM927dtITa2yptYBe+j0ObgWJ4Oc4DYT1lTz2IozKDXkAeIVqiL2iXqk11BgfLQofy0MqWqmlE8J7C2ROF/+G2+ebof5rZD0JrkkAhZyxkwBYhlg+R33JEpSsBpawaU7FNHdWbl6t+v++SyR48erF279h8nl7dGirTf/bmyAq4m9QwW/1BSEw4jHF2P1uyPu47Yj3YJlJ9hsLYGAH5amf7mlEIJchRKlXEpEt1ObyJz52JC+j9KatJZoHRohjVM7BtjgmS10CrcuEhPTyesdksa+SnUlRWUx3MFsjlq1sjvTXigrEuQqgzDyBQV651GX/kiSrVYxYTRraDLaotz5OvU60DRqZ34NunJiriMkv31wmSaaYpdfjfrKfoOpaLsasVig6pYpOl6wney965AZS8mcsBjqFQqirKTAQEEAUFB6XUplFVVSjqnIG8LijjDUvRP5eRY6fTV6ggfMpWcXYs582ZfgrqNYU/H4ail56FT2DaP1nBgLSpg5x9L2L1uEbF1G/P0F/P5de85Tvz0LDqzPzHjv4diMSRIUyy33e20YgqqRvqpHbidMnXdoJZpsdpgWY3XpSyjEymqkQpa9JZshcq/RofgdnFi1Zf0fmUFnlJ5v3+JPfUsDafv5vT6WeRsm4/a6ENwu9uIeGIhWksA1fXyM43PLyLnwCrSfn4Zp91K+JBnMETUKSUApKTr5jquPdPwv4SqyeVV4L5xo5nxyRds/TmBQIsfxw/vITkpscIpQryFY8eO8eIrb5BeKNB08s/ozb68d84KUqdlPCGmrvBRqLXZ/ETjyzNoF0QpvMRGsWPwO7mJhC3z0UY2JKTDMOxAkwYtAEh1KDpw6a8nLkajiK0JCxQ7wuxAsdO2W+U4AjITMNRoQZ1hzxK37ANs7Yfh31KMi9TnpYrlfWQKiUbqYFUu8TpK+XGtIgUHyOlHAHza3QbAhFg5LurIn5vo3KkjPXv25J0PPsGndlN0cXKMlLsgCyG2Bc6ASAqKFPL7ntXAQvl6gsTjN+o9wjnyc/aVDKrmPuInt88irtBaGnSl6PwhfJv1plGjSPbvF2OZRgwbyq+//4yrl5gT061IA6OWEpZ7pNjVio7akyIgq7gIQ42W2PyqlQyInjiX9XFyXXqjeB+hWvF3PFYsD6StfcTzIoxyp+8TJMYkZAVWw1WQjVrhRbQFeLyBksHuIxsFjWqJBuuxnyaRffYsfx064DX6bxWq8HdcSEymnl8ISPZP8tK36XzHi15boVBrtAR0HEnhsc341KzYylpkbD1+W/udV9pVEfTp04dhw4bxyCOPlOv8yJ73cP63j6kx/AW88ZSL4w/idlgxRNSBSsqjWYVrA0EQeOu9j+ky5o3r3ZRSCLnlIc5/cS+W+p3KLlwOFJzaRd6R9dSbuvy6hn4EtB+GT+OeZO9cyNm3bsVcqzW+zXtjCq+JuzifonMH+DRhMzkZyXS4eRhT3pyFzmBg/mcvknz+DCaTkbrDn+Oo/vIUdbXehNrggyM7CV1gxcUDlcjYMIuANgPRmURHgtvpIGHxG9Qd/yFH3huBKrwO0RM+R2MJwHwZurHGaCG4w3CCOwwn89g2Uhe/gblOW8IGPV0VllMJuPI18ipwU7eu/LJwHvt2bWXr+pVkpKfdEBNLp9PJ69Pe4t6HnqBur4mMeuoL9Gbfsk+8QmSd3oOjKI+QDsO8VueloDX7U3vkSxSe3kX6upmVei0PTuzfyEsvPAdAQbEdnW/plThrRoJo3FQS9MFROLJEQR+LxVIy4Rp46wD+2rup3PUWnduHuWblxbFq/UKxZ1xd8vdz674jLy+PDRs2VE0sq1Bp2L9/P2npGSUGg9tejC31LGH1vJv7UBcYiSMntcL1+AWGkJiUSkpKihdaVX4YjUaCg4NJTEws1/k+sU0xBEWRdfD3CrdFcDlJWfgqEbe/flXnBYVW49CRoxW+fhW8i507d+If05SwmLrXuymloPMPJ6jnvSTPf8HrKVKKLxwlY8uPxIx+E5Xm+q/jaP1CCO3zILVfWIN/28EUxx8ma+t8cvatROMTyOhHpvHCF6u5edh9GM0W3p0ykofHj+DuUUMx1OxKWP2ymRUBbQeRveVHr7bbmZ9B1tZ5hPeTnV7bX+qBPiCC1C3zqDXqVcIGP4XGEnDFdRoi6hDz4Heg1pK84MX/6/Q4lYXr/8ZXoUJwuVzce98DqPxrMHnaXHIc3v1JHTkpJO/5jUYjnqf8yUquHCq1hmrDXyZt5Udkbv2Jas0uzjnpLQiCQPzJQ7Rs+TqFhYU4Xe6LythyUtCHVK+0Npgi65O3dV7J/9VSTIRerycyIozCtAQsYVd/fWvyKUIadvNaO/8OtckP8q5OGOr4z68ze+uGSmpRFaogYvny5dTpKsct5x5ci18z7+dgVOmNCAqaXkXQZcDdfPnll7zyyiteqa+8GDt2LF9++SWvv351kzoPIrrfzenZT+HXayK6wPKnWMnc+D3+rQeiC7i68IvqdZvy2x8/lPu6VagcFBQUUC00hGiLi1N5so3io6BIx1pkhVS1YiHJoNhW22R1druvqNasVCVXKY4LpSZ0ciVOBY1d5Xbh32YQrsIcEr+eSNTot1DrDJxMcV7y3EMKNpI5+VjJtkah1qq15mPPTSN5xQyi73oHlcmfIsVY2Tc2jEX2HKJDW6BWKNDnnTsot9FH1p5QK6iaglqm4qrz5TrdZpkarnLKlpqgUzhxJYaXWqPFp0FnfBp05qYgmS782ECZZnvr2Kfws+ho1qwpdz/4OMEPzCX93HlQKdej5OfiofH6NexG5rq7UDe/GY3BTIJGDsvpFioz2dQqeVEmX5Ks3Z6nULGX1HIFQSBxztOED56KG6hucHNi43zSzx4htMNtNHngS9Q6A40Uat8NfByKuuU2dlJQZM9apNXN8S+wZO67JM9/nvDbnkeloE+bNVUTzoqganL5L4YgCDw06VF0Ec3oPGAsVjecleIW9hSKnYBSMbEwtjUAuixZQtphETslhzlAPFYgxx1oQ6uT/P2jNJw0C99areholidfRikmItEhd3bpmaLnXSV1aIKCMpriElcEaweItIpzijgGl5RE2KYVOe4qwUVY34c5P3sKedXqYq7eBFBIkEsdrDn9tLRDoe4aIKUHSDsOQG5DORfTQ9Fip+tJb7L+l2/o0KoxPj4+HDt2jIjq9YmT4qQATBln0CCglUSG3Ip4B3W66N13K+I9PIOc0y3SSTOd8rO5YBXvN1qK3dojxR9oAqOwL54GNtFIjYqKYseOHXTs2JEhA/uz7sxWmtUZSZhejgvYdkaMP9LnifFbuTXlOFFDrii/bs9OwlC7LSqVig1Z4jV1Wqk9aWdKyttCxXQmCRLtrGWUHOjuiT0rUnTQdo/qb24qzoIs1M6LXQ6ClEqmW/36JftaGxIp6NyJhg0bXlS+ClXwJtRqNXFhrUhLzEdwWEnfMpewwVNJc4rf4J5E+X3WlBigsiExLFT8XpIVqQn0DvH4xmxFLJS9GH1wdEnKJgCNwrj1hBoo0yAIWWKc2Ct0Ltk3pVkQLXqM5KvnhtHr5q107eJdUZyrQc+ePfnoo4/4/JeDhEWKTq3h7WXD1bOdbpVpqp/mBwBgiGmCBoi591MSZj1O7EPfsShd7h+7+4nPNUcRSnFBGgfO5yjSTZzYQtHBNdQe+wGqVLGPt/uKxqDLIPeDnhQC+YpcwA6tL/Hny7fyWoXKw8Ilv1KjzaDr3YzLIuimMegtAcTPfJBqQ5/BEHv1OccFQSD/+FZy967AWZhDtRGvoAsIv2RZs9rO9rmv0bRmF/wbda1o870Ku93Oka3LOHxgDw88/Ch+g19Abbgy3Q6VWkNoxxGkbv6RyN73VagdgiCQ8vNLmGq0wLeJKKrodjnZMPNpwmo3p+nk7ytUvwdBPcZz4bvJFCccxlyrtVfqrEIVLfZfja9nfkOROoDOAyonr5ct7Rxupx2/65AmRKXWEDn8RZJ/m1EqyNpbSE2M48iO35gxY4biohfz7t0u50X7vAmVWo1KEVQ/ceJEli1bBkCnTp1IPHT1K32Cy4na6FupcQRanyDs2VeerHjPlpU0rH/9xa6q8P8HZ146+uBor9dbnHAYYzXv0PxUKhUPvjST8fdOxG63l31CJUGlUvHBBx/w06fPlZsq5lO3AwEdbiNh5gO4FHmArwQuawEJKz8hpu/DqNRXn5pFrVZj9r261CVVqFzs3buXhOQc6jXxLi3d2/Cp34nIka+QtuoTUha/gasw54rPdVkLOL/gJQrP7KVaj3HUHfsexkuE0zgLslk9bShDBvZn7969FP3yLKkzx5G+5Uesqee8eDflx8cff8zDDz3IwYMHScyyYqhxdfZfQOPuFKeeoSj5VLnb4JlY6oKiCe3zYMn+zd8+i7Uwj2GvLy933ZdCaP9HyVj58SWPRUZGcvjwYa9e7/8BVSuX/2L8tmotIx75gMqa/qSt/YowxYd9raH1DSawzSCy//yVkC6jvVr3/E+f4+svPi2hoe7dfwCfQO8o4F4tVApBImUMb8OGDXEVZlzqlDJRWQq3JfXr9AhuV9kFJZw8sIVP3ysf1a4KVbgaBAQE4EpKBloCpROPexMFxzYT0udByIjzSn0+/oEMGfcUL73yGoUFBRw7eRqLQUP37t1p1qwZXbt2vSZpe+rUqcOQW/uw/tfv6TXknnLVEdB2CBqjDyff7E/4gMcIbDe0zHOceRmc/+o+orvfjSm0OhcHKVwZ3G6BrKwsgoJunLQX/8/49vsfaHnLOLJt4lhb3SKPG06F/6LYpRAHVOw/n3i2ZLuUw9RD0QxWhI3kynHLKsX4pFE4qJ0KloJWUd4REIk+qiExD35H/tFNXJgt5ra2xDbFHNscQ3AMqpBY1DoDrqJcUrNSKU44jDXhCG5rPiG3TMKnQWdUDit2SqupWqrVwpaVSNa8yTw0bhiPSqJZpw/v4eTJk/zxxx98MON9Ytv3oWXP2zngIzvDzuXJbdcoWEdKIUN1UY78DBROGY2SOqsXGRZOuyymaA8ordZeWFjIsmXL2LRpEyPHTCCl3YMYC2QlXK01r2TbpqACK1Wc7b6hRN71DhfmTiVEZ8ZSuw0Am3Ll+HRBSU2WhBA1evGv224l7cep+MY2JarfJPyk23EU5fH78i/oMGIKFosPsQ65h3Ap3peThfK0plBhokQqwp4a+MpW87GgMAgKI/c3Pfb0hJJ8mHkSY+vOO+/k+++/p3XrqlXNq0HV5PJfjJzcPIwmCw6Fh7mxv0gVqu0jfjw2hcT+7myRWnRA0dF6lEc9VEZimpYccyY8T60xb9FQGgxOKqS3bdJ3mp4jT348nQRSh6ZVUMScktzzmWxJpluRb0ktxSMYokRF0eJsucMPbtiZ098/RkDvB0s82cb0M1Kbxc7VqaCleTq/gmjR2za1qUzLMkvxHY6zq+nRqRVNmjQpObZ3336atujL/uyAkn1CWF3cBh9chSJlS6WXqSGea3vUbEFWR21qFu+tUDFC6qSfwSDdtqCgylGYgy43hfk7Q8nPNfHjTz8zZcoUQkJCMOi1hBjc2BUDr0OKr/BQxHRFMqVMjINQITjtuAtEWnL1SLGzjEsUPaPKXFs2j7dUurcLCsqaSS22X6egxfrrxS4joygPbUwT+b0BNHbxvSqMEH/H9sHiCkxxYR4nrNnlyp9XhSpcLcLCwnDtikcozEFQq9H6BqO1BNBOSoGQoAiTdEo07xCD/B5n2sX3/kiR3Ec1MIkdXpcAsQ/KOHeYrKBwmoQGcUihZOr29IGARupbnQojUGMX+8TAv1aW7Huf/gBMahJEzfaD+eWdsZxKycbnwQVoBTefx+2Hz1eif/I5Bt/anymPTSI4uHLzAT/+6GQGDRpE9aFdmb1NZhzkSDTWfEU4xNA6olPulwTZwMTtwlSnPTGT5pC+6hOSlk4nvnEPzHXaYTL5oguIQKVSoS3OwWUvxlpcROqqj6nWbzI+gWJog1ORIsAnRYxvs/nJcZwqaWKQonjmGYEWguu2Z9euXfTr189bj6MK5URKSgp/nTjLXSNv7FXLv8OvRV/8WvTFZS2k+MAqiuIOkPPnrzhtRSAIgIBPs974Ne9DaP9HUV1mld9RkEXOwbVcWPo22uTDTH7wPiwWH379dRmDB4s04Xr16lGvXj0efPBB/vjjD15/6zXS8Se4x/0E1u94yXorC99++y33338/8fHx7IvPxv+WVrjjD5Z94t+g9Qkkesy7JC+eRtGpXQT3vBeN5p+ZCILLSe6eZWSs+YLYoVMJbnNrqeNnFr+JRmeg06ipV92eK0Fkn4kkbfuJ8CHPlNrftm1bXn755Uq55n8ZVZPLfzG0Wp3oyaukuGOVRitNAq98hcrbUOsM+NZuQ8HRzSW8+4ogOzOVuV9+yZo1a0rtP3DgMA8NfwZ2lFZsFFwOnIXZaC2Vl0tNucro6x9E6659iYuLIyQk5B/Our4oTjiMb9Obyy4IHN75B61aXXtqdRWqoNYbEezelyI7tn4u9fo/5PV6PdR8T6ojrW8wfk1vhqY308eSz+H182ndvjMNGjTgrlEjGDCgP4GB3u+b1Go1s2fPZuzYsbQd+iQ1pNRTV12P0UL40GcQXE9SdGo3xfEHyU84jCM/A8HpQI0blVaPLqwm4X0nYYpqAAXlY2t40OTmMbzzzj307NkTg8FQ9glVqDQcPnyYOk07XO9mlBsaowXfBp3xbSDGSLtNMuVabZId1+7i/IvOzdg6j7RtC9AYLQS2GYS5ZT/mZAbS2ubi5I/fM/2jr8FRxF2jR6LViqZ4h/bt2LhuFSdOnGDaex+xc+nr5NrdmNoOw9y0T6Ub7Nu2bePtt99mwsOPomt7R4VCa7Rmf6LGfkjOrsXEfz4OfXA0pujG6EOqo4tqgNY/HGdeOvbUs+QfWY896QS+zftQc8oiAoNKx6q6XU7i186k/bDH0Hkhb/ulENikB6cXvXnRfpVKhU6nw2q1YjRW5b68UlRNLqtwedwg8swBjW8i7a9NFZ5cCoLAJy+O56cfvrmok1BrNJfsSH0bdKbo5A78Wvav0LUv2ya3u1TSYYDG7fqwZMkS2rRpUynX9AaKz+4l7NYnIP1smWWtxfl0b9fuGrSqClUoDY3JD/dVxv2VBUEQSDm2i/p3vuXVegHSL5whNTkRq08N/m5C6Y0WWvW/l6EjxlJUkMvv637mxx9HYzKZeOGFF7zuwAkODubbb79l8LBR9Bv/crknmCA6Kn0adcOnUTfUCkE5T0J7h8V7K7E+AaFMmDCB119/nTfeuLHyKv4/QRAE3njrXUY8/DZ+epmSKChURl0Kv7W/osz00/Jqv1IN1q1gD3nsE5XifRKUgk8Kr7tKMcYqt10R8qq88r10K6ilgkK5VWkTlWJfSRTY7L0ryNq+AMHlxJmfQdigp/FvcQuG8FolZf9yOaFmPxyAyV7Apyd3AmBQCXy05ENaR5vo0LpFyb/Q4EDy8vJ5/qXeGMJqoGk5lICb7sGmzP2qUHFtFCq3N0/BeMpwiA/bmilrJWQqWEkzN+eSmFFAdk4O5zKtmCIbY0s5g0ovM8NKKfMq9CiUjA2tgqLrCKlJ4E1jCbxpLPakE9iST2JNO0fhobW47cWodAZ0NVoR1PVOjDVEESUByM6T2VgNw/3ZPec1VMCwe6ai1oj3kWST35GDeXK7mvrKbbErxB6VAjN5CoZWiRqxVotab8LtKEatM5IisTQW7comrF5nli5dyqhRo6jClaFqcvkvhllfWskPYN6OHAA0KrETTCmQO8lD2aKR1bO2zLPfsWsjAE7JI6fR1Cw5ZrMWknj2EInhYmC6TrHC5pJonRpFZ69KOQmAoBZfK0HR4RmTRfVWjzFh95ET3bqlmCi9pD9uNyuUYXP06MPr4Fz3LTqJBqW1il5CtUOi9yo6fLdE0xzRVkxsbtDIHWBA/l56dGlH48YyLdQDhxuO5ehAQcXS5KXgF9OYtANr8W/cA71C+c0m3b9LQW/VSKq3+6WOTq0YoNpIbK6EInGfqlAcGBxZiWhCa+AIq4ldGmjrtuzGnF8/EcsBFp3AEcXvqJOeoUf+W0kf0xbniBNWhw21jxhz1FqKL/CJqQGARcFO2RskqsOGSnkn04tlzqDRLHbSpxV06GyrFWdBNhafQGLDokjNjC855pLehYmNxd9Wqxbbp1Grboh8sFX4/4HK7ULlchBoNKJRQYBez9ECsX/pFSQbsdmSkVFfIV+fK+0LV8jb78gVP05BEMjdsxx33c4cjRMFK0y5srGmVI51eFY5lAapW/wWrcGysRlwYj0AMy+EcOKr+xFcDprecS+av1aXuqeVvmL/UhQuqTDHDkEVPQBbymmGjnkYH4OaMaNuo1ePm2jatKlXVu3Cw8NZsXQho+8ai37k49RtLMYdDW8vx0z9JI05y9PkVAMuKQeuMVvOhevp50vFwklUer0iZstpEFeELqb7g5Km45LCA1SC/HvuyBXHntq1BrBv6R+sW7eOm2++MoZFFbyLDz78mHqtehARXbNUTNx/Ea7ifNI3fIczPxO1zoi5bnNC+j1SKrXFpaDzCyW4zUAAzGqg7SCOH9tKQnwOAG6Xg7x5s9BpVFSvXZ/bBvVj0eLFnD+xjeBRb5dZ/9WgKD8Ht6OYz76YidDe+yKR+uBo9MHR+AK6/LSS/Y6gf061ZivI5vCyj6nV+TbUZVBrKwqNXwiCwwZ/i9Ov26Qt+w+up2pueeWoUov9FyMsLIzNmzdXWv0akx/2nOub2BtArdWjqmCn4nTYef3113n22Wev6jxTeC2sSSevSrzmalB4ahfmOqVX9VQqFQEBAeVOqq5Sq6GS2guQf2gtIS36VFr9VahCRbBpy3Y0itUGv7rtyTr4u1fqdhXnkbbyI8IHPO6V+jwoSIvj8EdjMARH0fCh79BchSCXIaIOvd5YT5tnfmPFeV8envIi7bv04K233yUnJ6fCbQsJCWHuD9/z63dvkBhffgXIa42+dzzGI48/TXr61eXjrYJ38NuqNfQZfv/1bkalw1WUR9yX95F3ZD3Owmwib3uW8FseKvfEL7BhF6LbDiC67QCqdxhC5ycX0u7xn2k0/ku+SalBdufHcVkLOTm1FWnfPkDxmT1euQ9rcQE1a9Zk/8HDmKs3LfuEawC3w8aqVwejM5hpOmhSpV/PmZtWaqXWg8jYuhz562ilX/+/hKqVy38x3nvvPW677TaWL1+Or69v2SdcJXzqtKPg5E6C6l+/vGsALlsRgru82oEi1i/9jnvuuYeIiKtThFWpVPg26UHu3hWEDXi0Qm24FPKPrCdizLsX7e/duzc7duwod726wEhsqWdL0XG8hfxD66h5x6tXfsINQq+uwn8fxcXFrFm7Dst9ssppZO/7OPHFfTRtc3MpKlt5kDh3KuFDnkFjCcClUFGsCOyFuZxcMxNTRC1qjny13HFOGp2Buj3vpsftI3E6HWz+9TsaNWnOyBHDeHPaG5jN5Y9VCgsL45eFP3HbyNH0veMxhrcfXO66rhVCq1Xn7ikzGDBwCJs3/lEVL3UNkZycjEulw+4WvzflK62+zOs9/4Js1DsvHCrZVlJd9Up1V4mZIwTIIk9qBVvK10deXY/RxZRsH8uV1VJdSmqpkv7qkOO0fULllbVufrLT9uzetaT9tZn4PSvR6XXUmLpMnFBqdbgBk69cX6xinhlkzeLMjmWknd5PXMYF1GotWqMFoW4XgtoNQR8QTpZNIeCXL9F41SEYJOVVY+22BBfmkLfoeUzrpxN0pDo33/0swRGxTOp18eQI4Put4r1+5Awr2Xc0TXa8HC50oT78F0Xt7yNAoQqrUubpVYiTuRWTMHWhIq5dKehbqGQfyHAEyPm08ajXCorvU2JBpSx4EVtWCkbfIMJrNWdfrvz7HsqX6c1yvmLQKq4fqL207WFUrFUkFSva7nKgkVYt4+1iRcPbB+J0+vLLJ5esqgqXQdXk8l+MoKAgXn/9de69917mzZuHVqtldMeAUmXmbMsp2dYZxM4gxiR3kNv+tvxvzZU7m4CbxnDhhykEpouKoh0aNCw5dtYqUq7SHHJdtlCRUms4Lw4MHvoqQGG4GNvgiBXjgoTMhIvux0OdETJkqqXDJ5iCpJMYY5rgMoi0Kw8d1qUXBx1lh2dpJlKg6vmL9E4VUFiQx+71S/jy7e0XXRPA6XSSnS0qqxp8Zfl6Z65Yf1CX0cR/eR8BN41FLXWoWrM4cKksMoU3QKKhSWKTNDHJE+JzEoN3S4qkPCu4cDvtuKwFGFQqyE1lcbIs4DO1aVNmzZqFIECOTUVDH/k5e7Jh2S3S4KpUbNWJF7JUq0PxoTUYW/bnWIBIA7ZI/fJxq9z7Wozi/aTkiu3SKoLl86V4jJMpclJywWHHlnKa7KICss8eAqM8gHt+h1CjeN96SW02/ugu6o+pWumsQuXj7Xfeo9ttD7BbYc0aQ2IIv+ludn81iXb3f1ruuguOb0Wl0eLXzHs0S2dxPkcXvI5Krab28Be8lptWq9XRZ8T99Bx6D0u/m86gQYNYsmQJfn5+ZZ98GVSrVo01v/3KoKEjGNK5Bs2bX32i+WuNGvWb0an/GN58+x1ee+Wl692c/xvMmzeP9n3uvN7NqBSc3LKQv5bN4JY+vWlU35dlqQ0x9n7mH1cqC1PPEbfhBzKObsXP158abfvTeviT6IKiUGt1FGYmsWvXH5z9dhLOgmz8WtxCyE1j0PmHX7ZOfVAkwfd9h23tB+Sf2cCGb58h3+okMncSAwcOvOpQFOvh38mIj6PGfb0h63zZJ1QyrBeOkn94HcFhMYTVb1upebsB7Jnn0fqFlV2wCleEqsnlvxxdu3bl3Llz3HvvvcycOdOredD0QZG4HTbs2cnoA6uVfUIlofD4VvzqlV+S++DOdYy7+87Ldra7du0irPblcxhpDGYC2g0mc8P3hN7iPYXIjA3fX9ZQ7dixIy+88AKCtnyrDeYaLcjYNIdALwsRFZ7cjrnW1QkNpSfHU79+fa+2owpV+DuWLFvBp7PmE/7UStTFoufdk+fMt/OdJBcXsfrjB4id8HnJCmaUlBtIJ2dnKhG5OKFc4bDmk7TwNaLGvI8jT1Qz1UsiHmqFQIjS0aOz5gDgMAfIx6V4dGPGaRzWQuI2L8DttFOr01B0Gi1IIhkuKV5TW5RVcq4+T4zt1OfLqzc5NTsBYFcQO1KkGOkCpwrQ0uT2V7AeWU7vW/qyc/u2Chlpfn5+/PzTHO69916mTJlC9+7d0UlOpN4h8r2vyhOdVkqhD08MvuoS6uNFwXKsvyX1hHhPvkpDz+N5lG/Us6Kiykku2ZfmI8ZhHs6W+/rw9rez8NVh3H3nKerWrXvlN1uFcsHtdrNq1SrufnHe9W5KhWFPjyf3wHJUCAhJh9lqT6dVs8YMevIxziVcYNGy1XR9bDbb8i/NiCg8t4+UX98jCRc1bx5Pw+HPEWORzW6r9DpbgiMJ6zGWsB5jcdmLydizgnOfT0AfGkvE8JfQKHQolFCpVBhvmcLt/mNZ8dXzjB7ehePHj/PJJ59w22230b17d2rXrl0ma8FVnEf+7x8T1mEIaoPlH8teKyQveAlXUR51uo7AHFT5OciLTu3GXLf9JY+p1Wry8vIueawKl0bV5PI/gDFjxmC32xk8eDCffvoptWvX9lrdEYOmkLbqU6JHvuK1Oq8GgttF4endRJRzUicIAjvWzGfNisWXLRMfH09w7X+eMAW2G8q5L+4luMf4ktXLiiBj42wEl4OgzqPA7bzouEqlonHjxuzacxCX0wFcXcypMawm1vQ4BC9SUgVBIGvTD0QMe/GKz0lNiqdGbEylex2r8P+NH3+azzPvfU3oI4tK8uH+HYGdRTWGs+8PJ3rchxhCYy9Z7u9wFeVxfuYDhA99Fl2Ad4wcQXBzYNE7uJ12Gtw8loDo+tjLPq3caN21L8f2bmDDhg307NmzQnWFhYUxe/ZsWrVqxXfffQeWll5qZeVArdHQ95HPmThxIosXLyYoKKjsk6pQbrw+7S1qteqD0aDD4xS4XPd/Jl92AsQVK+iXilVAQfE920NqlGx3jRKF41oHyufd1+3Sk7BFu7I5dmAHZ4/+iXbPVnwsImNLOTwqR0qXxO2MCAni/rGj0Ov1+Ph044/N21i0fA1/JIK9VlfM99/DDocOjUmeXLpdDlzF+eTNHonBEsBt45+jS9N6JVexKmimboWaadtATwvULDWNgK4jSD/wO0c/GUP0xC/RWgLRKCZ+rnw5ZU9wnWoMefAtlnzxLA+PG8b69et56KGHeOSRR7jllluYM2cO47uIz8tHJ1NVz+QFIggCS958mNAmTUhpfydup72UGItSMMutpJ8qVGHdOoOivPwkNYpc50qlX5VCrMsj8CXYZWee0+XElnyC2s+twpi6F18fX8waAafiR4o1y9cMVtBf/bVye5UU2Qs2+a6sivzvnkiJorN7COw8GrVOfPeK7GKPvGCnyIIzBcdy4sSJKkf5FaJqcvkfwYQJE+jatSsPPfQQEydOZNiwYQDc3TmgpEy6xKPXKHoOezWR6qqWaBA6H1l9tqFZAy27sWrrfHJO72GjIsdTp5hIAIyKjv+0VazYGinRZxX55YwZIpnTIxgtGOUY0TrVogFI9PBJg6Ll8w4so2aXEaDRlnT+TqN4Tx4apjVQjqd4MlbsCEZIKrrr1q2jXctGZdLBTBo3vjo3ATp5UMuQBhi11OmFtuxHxk/PUa3XPTike9QoBsGsIrGcqzAHgJ0KyqyQKcqca+1F5P61CVviMaJHvILKaceQJ65EnE6UY0sW7grDZoqhWRMbh9Z+T8eB95UcK5a8/HpJcU2rUFr0ePbVjmLMEbWxnv2TU57BLEakxxoUA0EnX7FjzzYEABBpkDvm7fni/Rsy4gDIPbkTk18wvlo1uiyRuuzSy4OdNVZc/fUoFQ9vH8gnn8xlwvgxVKEKlYVTp05x//0PUP3NfWWKaAR2HoVv3fYkzHyQmHEfQs1G/1i+8NROUha9RviwF7HUbX/JfHblwbntSxFcThr0uQf/at5zBv4Tug0cyyOP3M/hw4cr7OwJCgpi9+7d9OnTh6mfrkGn8x5jpjLgHxLJc889x1tvvcW7714c414F7+Cd9z7kaHw2t0147no3BQCHw8GECRP4Y8NmIiIiaNWyBQNv6VHC8Lqc61UA9h44zOnzKTzz9mcAuNwC1nbjMI/8DN+gKKxFl+4L3A4bF76eyOBxzxPdyMO4utiBfCUIbdGbcLWJC1/fT/WHvkd9mRVMAP/gcIY+9DZvvXgbPXr04IsvvuCLL77gyJEj3H777XzwwQe0aNHiovPOH9tNkFnF6VwVpog65Wqnt5H6y1voQ6pjqFYXUvfirIRcxX+H9fxfGCLrXfZ4lwFjef3115k7d26lt+W/gKrJ5X8I9evXZ/ny5YwZM4a4uDimTJnilXrDb3ue+A9H4lOvwzWlTLgdVuLWfEXHF38jPi257BP+BkEQmDFjBl988YVX2hPY7GbOzX+RgrgDGCIbln3C39vjcpK2eQ5FCUeIGTWtTAOvVdf+LP50KpkHj5aaXF4pQjuOIPG3j6g5tnmFjUm3007K5rnUvmv6VZ23du1ahgwZUqFrV6EKl4MgCAwZOZqIcZ+hz5Fjg7WSI82h8K57VAD1gouYIU+T8NV9pEQ2wFK7HceDqqELiEBt9MGVepr8kzvJObkTrW8I0WNnoDcYIesCPhnnSurzePG1xQrRCsV35klFYguRKZ/a3BTSNs8h/dQeYvo+hKFJd9ySk0hQnmsR469tPnLMlaFAjId3KZxD5vQzABwQZKrp4WDR2WYxyPH0AkBQc8KqN2TRosWMGDH80g/0KhAWFkazZs2orjpN5/adObdOYWxLTkenwoloSRNTVbl18gqG2iE65EqnHRGkfTIl2JOyxK7Ih1kyMQiUxUHcknNtebK8CqI3imPW06Nv5ocffuDw4cM0bXpjqGH+l+BwOPhl2W889s7PqFSq66rjdv78eUaPHs2ZM2do2LAh9zz9IVqt6Iw+lSc7xF0K9ZkiRU7IPKcKU7f+NAqXv12As/ayx9GU+c8T2PUuxcSyYjBVb0pwrwmkLHyV6LEf/GNZv6AwPv74Yx577DEWLFgAQJMmTZg7dy5du3YlKCiI0JrNiIgUWRtnz50hPe4op08c+R975xkeRdWG4XtrNr0nJJCE3ntVOoJ0pHepioWOIkVAKQqKNAUERVAQEKQLSBEQpCMC0nsnEEJ63zbfj9nsDB/BdBJg7uvKxTB75syZ2d3ZU573eQmZsCdH2ptdrGYjcSe2Uuj9xQB4BBTj0a3cdWo1Rd1HbXBBrXt6+qbCJSsghJbnk08+YfLkybnanhcBZXD5gqHX61m+fDmTJk1i0KBBzJs3L9sDC7XeEa+G/Xj0x3f4tf4gh1qaPmFrp1CkxUC0jq5A5geXa9eupVatWgQFBaVfOAOoVCpCOozj1ppJOITfxqf5kMdWLp+GIAjEnt/Hoz9/xKNCY0J6TAVt+jnovP0KEhUTS0ABX2IiwnD3fnpwf1o4+AThVqYed9Z9RqF2Y7KVdyj0j0X41mqP1tEl/cI2li9fTsWKFXPs/iso/D9fTP+KhAJVcQ0qCzIJVnroXLwo2n8u8Y/uknT7DFFXj2JJjscYcQcHd39cilWnUN85aBxtigdT0n9XmEGMUfd5uHsxpfrPwcmvcI7UmRneHDaNqePepFOnjjkiVe/UqRM7d+6kTp06OdC63EWlUtG1a1d27dqlDC5zgSmfTaNCndaYUh1in1LubqI0uDsWK3VBzUZpckLtI0nWuwVKZUq5SyuAnWqlHUc4c+ZMvvzyS9q2bcvnn39O7dq1WXdcqnvTNek325gsTUJYZc6mKrNRDIi8dQ2VzFTHyUmaLNHIVutT1UDRp3YQ7GKgSetuVPCQ5c41Sr++HjJ10DXZQNdDL+1v5SuJ5H9Icca7Vnui/voZVVKs3f/CpJUkxX8+kra9ClYmMkYWRA4EBgZy7do1YmJiOHPmjH3/o4hK9Ht7B8HvLcag0diNfFQW2UqrbJZALXPRlU8IpbhJ4QIW2YSSQ4zUb7PIwn8sMgdglSDuF2yfmIiDv2I1JuJRrgEAFw3BPLy1lYQYzWNuvV46afuh7P7K+zmXZTm6q7tK5z8tyxtew03D37/9wCst+hEmeyamOtAej5DKBtcayD+/zqZ95+7M/PJzihbNeTf+FwVlcPkCotVqmTJlCrNmzaJqrQYMmrgID28/gmzf5wST9AXS2QYLJpu8UX37X/trp1OdQHUG3Cq+zt1T20i8fQan4jU4dEc0l1DJVzJTDRvixYeOPFbCbHuYpJo66D2kB/ZNm421NVyUWlq1eqKPbUAwJpJSrhnXIqNwiA2zl0+Vw6YaOgypLsloNSrxAR0eHs7cuXNZt+7psZZyXHQC3g5WHsZJ1uSGeHFFwewoSmzVFiNqrYZi3SYRdW4fd6a3pUDLYTgFidI6wea8q7etllhiDSTeOUf4Xz+j8wwk5M3pOFuSITEKiyz+wGSbjTdE3LTvu5cg/oBUrtMSTcJtzhzYRJOO7wBQrZgo3ThxSRQZy1dOUiWyqfUXqNiIWK2auytHU6zVUNGZroC06rozyvZDkGL7MZI9XHXxYkxH7N8bUVmM+JWogTbK5vJr+8FJcZdWDbQ2N2KLYMVqtfLDDz+wdevWtG+4gkI2MJvNrN+wkdlz5uI7ZE2W6lCpVDiGVMQxpCJq2eBRY5PBmxyz7qz6NG4s/QDfV9rnycASwM3DG68CIfyy+ld6dOua7freeOMNFi5cmAMtezYULFiQv//+O6+b8cIxfcZsroTG0bLvkDxtx8yZM5k1axb79u2jTJnMq4uyy/3fZtDr09wxMnKr0JiEa8fRV2+T5Trc3d2pW1dMLXf02DHGTZmOV9cvMBQsA7JY0Lwk+vgmCnQcb/+/zjMAU2Rorp3ParFw798/qdZ9PGHx6S+31+8ygtDr5+jZ9z18vd2pXKkCBr04lKpUqRKtWrXKtbY+TyiDyxeYDz74gMpVqjD64wH0HfUNfoEZM7BIC5VKReCbX3J30UD82o3GMbB0DrZUQhAEog6tJun2WQK6ZCKX4v/VMWjQIGbNmoWvr28Ot1C8F17lG+FcqAz3D63hwc4FopzONqunUWuwGpNQ6R3Rewbi3/htDKn3K/bBf9T8JKWr1OXUziWcP7nZPrjMLJ7Fq4NKxbWtcynWKuM//oLFzP0/vkOVFEtwk7cydc6Lpw5Ro0YNnJ3zh/OcwvON2WzmzJkzbNiwgd9++w2z2kCpao0Y+8MBlpyPTL+CPEawWoj9bSqWhCj8mg+F5Jj0D8ol+nwwnQnvNKVNq5Y5kh9ZEAQSExPTL6jwQmI2m9n421ZGTP+VFGv2V8OzSpMmTTh16hQHDx7ME9OV5AfX0HsXwtE1dwyjnIpUIfbE73hmY3AJ4vf162/msXLdVsxNx+GUh5kA/h9TTBgpD2/g07CvfZ/WyR1zQiSC9UmX6Zzg/tm/CChfD7VGC2RsgB1YtBzDpv9KQlwMobcu81p5VwRBoH///vz222+0bt2aV199FR8fn/Qre0FRBpcvOK81asS61cVo/HoLhn+xIlsDTI2zJwXfns/9nz9C5x2EX4uhj7mXZRerKZn7m75C7eROQJdJWU54vm/rCkqUKEH16plLmZFZHDwKUKj9WEB8YFs1OlBr0NlSFMiTDGc1/KRwifLM+XgPbd5ox/l/9lO2Wr0s1eNZrBoq1FxcPRnPZoNwLVMPlebpX39TTDh3VozFvVxDAkqlbc/9X/y5dj6rf16UpbYqKID4nbp27Rrnzp1j9ITJWFwCMZdogFOvZaDRcRG4eCURR/uEjdSxNdtUF06Prtv3pbiLJmRyaVfqSr0+Tsrvm5o6RL6aqUs1zRIkaVWSt5jWomeThvZ9cSbpmeVpk7ldOH+SQ79MQfPgNsEf/YbFJwTt1QP2cmrbQFNvSbHvS3VZlMvHBNvzMDWdCYAuUVRXOD+4KF1S6DkAkl2kibUttusMaFgNNB5Ueb0n8+bNY+zYsWSXzp07s27dOnyLSJ1eVbLYfnmuY6OtPbqkaOlgW4ykQ4y0MpHsJf5GaVIkaV98gGhGhpssNMAqdgQF2fvUzFO8X1tO35SKFcydiVAFkYmTP6dS3VZYUT0mhdWqpV+9uwnSZ3bNQ2m7nY/0ffL0k0JFfAzSQKLrK2lPgKw5Kip2Otfy5LPPPuPSpUvcuHEjzQmTyzGSbNSYIn1e5DLXeLlZl6ukWrCmSBMn8WbpO1raW4r/vZ5kIvL0LpzLNsBgu+5Es3Q35KmC7stkwfdlDqbhMmlnQVkucrNRPKdDSGXiVn+KydaGmu7SNVX3lGS0nWp5skyfdt8pPj6eYaPGse3Eddy7fY1DSqzdrV4uc338uSO1V20xpllGLqPVy1RmZnkZuSu+TCGVWo/aowB3Fg/Bu8k7FPeQ7v+NZDPOJV8l6sRW/qrxhn1/S0+pvjIu0naMTJlXXPY5kkthb6ZIZa5uXUJAx3H8Ew+mOGmi0mIQ23U9SbqGvTEyJ3IVgAGc/SloEt+Tkd8d5uKxHWw6cIXpX3+Hh6sjX02bQqlSpV46x3xlcPkSEBwczO4/tlGtWjV27tzJCaOkE2/lI37gt9yOBiQjDJAspQVbzjiLyQ09ENzzS4IiznFy0VtUa9aLiq91Q2dwIsL2cPzL1glSq6QHXNEg8ZzOtgfvqUhZzqCIu0T9s5mow2vwa9AL51e62F9yunEMAKPTk7OB7WqKFvjJFunJ7Z14itBzfzJjZcalKd7e3pxYPJ9XGndAkD0kja62joztPmhksQcWnThwlD+QBdtgzWST0aaaUACobZKTVLmq/EFrLyd7+Cy5Jb7+UUk1pavUp36dV5jxzQzKVa1NCWfxtZO2mTyzQXKQU1nFeyHv1KXKbj2K18A5sCQPTu3k9q6FaAwu6B2ccHD3JSUx3t4uc0o8poQY/Nt8hFPBUugeSMH06kSxk230Kmw7j/Q+di8otv/iP39iNcZTqJAkV1ZQyCiCIPDb5i3MmvsdSQ4+CH6lKTF8PQZ3Py7cuiqWyeM2/hdmYwq3zx3CGH6V0Csn8HYCS1IUdbuO5FRA/nBjbNR5MOM6FGXkyJGZTrb+/zRr1ozhw4fTalj2VlQUnj+mfTmDaw8Sadsvb+SwgiCwfPly5s6dy6VLl3JkJT6rJFw9RoG2o3KtfpVag9bZI91yT0s/ZjabqVytJpbXRuDZ2+adkZJ/cjemhF0n+e45io3+7YnXfJsN5MbcXnhWa/XUVFNZIfLwGtQ6PY45NAGlUqmoXLsZAI3a9uffk0cYNm46MRH30TxlscSYFI+vjxcD+vembdu2qLO4qJLfUAaXLwnBwcGcOnWK1q1b8/YXWzA4ZdyY5f9RqVQUr9OewtWbc2P3jywb04riNZoS0rA3rr4ZM28RBIGUexeJO7Wd2H8241GpGcXenoda75hF0264euJPtu6Yz8aNGzEYDOkfYKNu3bqYJn2RxbPmPq91fI/ZX4+ifNmyXDh5EF3xRlmuS+fkTmCDNwEwJ8dDVCjGuAg8/YqiUmtQm5JQqTXonN1J9si8EY8gCKxd9Dkrl/6Q5TYqvJzcu3ePtevWs+Snnyn/SjNCeszBxTuQcFP+nvGNDr/H/RsXeHjtBPduXuLaqf2079iRHm1aEty3CZ9/MQPngDKUf607p64/vTNnMRmJu3+VhEd3SYqLwpQUa48v1+gccPIvikeJGuh8izy1joyi1mgYM2YMa9asoUePHtmqKzAwkNu3byMIwks3O/8yExoayu9//MmgKT/nyftuTElm0dTBXD//Nxs3bsTDw+OZt0GOKeIODv65bPCSgfs8ffr0J1KOHDx4kBGjxlPm9f5cL9s0lxqXPR6snYR35bTbpnP3w6NGO8K2zaNAq2E5cr6o45uJOv4bIe/kXsx48QqvUryC6Bps0MgWJ2T5TV10Vh6G3ubX7av4+OOP2bBhA6VLP/9qC2Vw+RJRsGBBZs+ezUfj+9L1g2/w9A3MVn1aB0dqtn2P6q0HcOnwFg4tGUti9EMSnLxx8CuKzjMAjZM7xoi7GNXiipo1/hEJYTeJTojFIaAkLmXqU2zIz/aBTVa5ef5v/t4wh22b1+PklLaL3NNwdnamUvky/HtoG7jVz3IbcougYuUoUu4Vund+nXGffkbLMVUxyHJoZhWtwQWthz8GD38sNhlhamqArHL1xG7q1n4lzXxaCgr/z/379/n9923M+2E5gsEdlxpdKPbBFsyOrpyNT4EoI+YEKT5RZzPL0sgSbqttMjG5XFRtFuVbMcUlGXm9INHRMEImV7tpSy1gMkpyN5NN0im3pS9RVPyx97Ql606Kfojbvf2c3L2a427ONKpfmz79WuLh0YMiRYqg0+k4fvw4I8dP5k6MgFv1TmzasRUX26y0RhZzGa91IfTQGhKiH+JcrDpOpRvgFlQenVchfH3EeChj9APunNjJrePbsTy8hlOhcvjV7oLJXzQt0cqkpk7hVwAwy/ISGyJEefC8s9LAdGztvswc2THbg0uVSkWdOnXYtmIWLd4cCUBQkCgZvntTimHS2OTIKlnslMWmDpErIFLVHUYXKV5JcBHVF04ustzBthUakywHXpjt/dSmSMoND332VmYVnkQQBN4ZOIx6PSZwIUZyTQ12lt7buGRpBUYl0xr0DZA+E4MbZc0069atW8z7dBDB/m6412vFHXVp7hyNokstKU/3zwej7dsbZW6q1kTpsxafIJXROEvHavXSd98kWymTh+rcTJG5u/qo+MXJQCsfFQZb8UcyyetD2XaETDofIHOOfUxSLPtPgIsUehRhTqC2h3gt376Rdj+n4+K7jBvWz/7/v/YfoHnL1hToP5/EkIpoZLJVtUzmK89ZLd8vxyiT2mtk7txyJZbaLH0fVYJ0fY+lEZLdU8HBCavVStLF/bT6/gp6JyfOyrqCXjrxue7R4n2OTmqGoXQ9HPyLsTFF+tzJXfvl42+LTIkmWKW2JF4/wcNd3xM88EcEjRZLqpmRrL2pdd5Ilvb56qV2O8kWGA9ESOd3lg0iY2S/NX4yN+CaPpK8WAB8A4Np338UXZrX5Ouvv86x9Hl5iTK4fMlo2LAhHw4OY+L4LhQsUoqeo79HrVajDqkEgObMDntZq036KdjSZmgTJD36n/fFzpGPuyeghQodaVKjPYIgcDsqmqRHd0gIu4FgMaPzf4UQb/HBbdQ44uJfmH/uSRbVqa6kRk9RRqmSxdpYbTP3giw+sGfN8gB46sUfMnVCGIdWTOL3zRvw9JR+IDLD7Blf8HqLNtTr7EtIOTHGcHOE+DCMeSTGA8njDRxtnTVrGilFUjt6qc6tAMne4oym1dZxkrvfahPF6zc7etj3pUTeBeB+ktgZrNGoPd8vnsekCWNZtvEb2vb/GCFANC1QXzloP05jc46V/zhobB2tZJuUVSW7jlSHX12C2AaTk/QD4HL/rHh8nPRemd1tq5kq8f2oWl0ajA9roKfcwDEcOXLkiXuioJCKIAjs3buPud8uJDreRPlaTag6bBU6RxeizPlz5ctqNhF3/wp3DvxI0qNbeBg0tG7WiM/Wr8DdXRrwhIeHM+ubb1m+ag0m7xKoq/bE0/L0SbMHZ//i4dUTFKzXHf+qUjyR1eZUmxoX7eBdCPcabXGv0Rbdg8vEXT3GzbWTMRQsi1+jvmg1mZdS6fQOePoV5OrVqxQvnj257hdffEFgwSCqvdYJv8DC2aorN1m8eHGux+K/DIz/dDIuwVUJLFKW8LTHIbnCrVu3mDZtGtHR0Uz4aCBjJkxh9JwNz64BT8GYFI/OIeNqqaxgTk5AK/NxeBo3LxynYsXZAHwwehw7j5yj5cLLXAwLS+fIvOPR9nm4+QWjd3q6rFmt0VKwz2zuLh5EQPepuBTP2vc45eEN7q+eQNA736POwP18lrRv355du3axcePG5z4/uDK4fAnp1q0r3bp15Zu589m38XsadXgvx+pWqVToXb3Ru3rjXqSyfb+vbYYuwZKznceEuGiWTurP4oXf4C0LsM8sbm5ubFq3moCAAHqOW0y5Bp1zsJXZJ6REOX4NfYifny/7t/1C407vA9lfvcxJlixZwoABA7I8wFd4sTGbzcybv4C16zbg5FmAN3qPokAhcfJk14P0874+awSziaTLh1Bf3MmNmOuUKV2Srz59j9KlS9vjFC0WC5cuXWL23G/559RZTA6eeFZrT4UPN3Eh9B4AqoeXn6xbELh3Ygfm5HhK95iCSq0ho7oNlUqFW4lauBavScytM9z6+SO8yjXAp3prVKrMDTKLl3+F/fv3Z3twqdfr+W3TBvoO6Meo+X8A+e/9vHnzJleuXGHOnDl53ZTnmitXrrD/+AW6fPT9MzmfxWJhzZo1/PLLL7i5ufHhhx/i5uZGm/Zd6PzhfHT6vP+sRT+4hbNn5vJQZ/oclw7jV6Laf5axWq14enqh1WqZOGkyixYvodV312yy5fw5uDQnxBC1bymtPtuRblm9bwjBA3/k3rIPiC9SBb/WH6DOQK5xAFPUfSL2/kTC5cMU7DsHXT5yyZUzffp0OnbsqAwuFZ5fBg18j0rValG7RS/y20AlIyTERTNv5Bt8NW0yVatWzXZ9BQoUwGw2M3LMeFaPb0VKzX64VXsj/QOfET2GTmP0xxPo1LEDW5fPhsYT87pJdpJiwlm+fDl79+7N66Yo5DPi4+PZvXs3Q4YNp/wrzek2ehGuHt7EGdU8sKlbY2yTTvGyVAbmaLEzpJXlxDWliBNIJlnSbuf7NndUDynnql3eJMvdZrTFuVR1k6RSLQxWzCYj5Rwuc/XqVXbs2EF8fDwWiwWtVkvFihXp+sUQypUr90Rc2S+r1zB1xhzMDp6og6rhUustnMzJpKSkcPfvrTg5iLPwcsmYymY+dvnfv9C4+OPbdhx1y4mS238TJMlVjFksV1AnSawK+YqmZr4Fa9j37Q6uiPOrnYlY9xlXV4yjUIdxpJRoCIA+Rkp7ZLYZomlkrriJZi8KlKzO+fObyQlq165N3ze7cO7ABpJKiHHdVpnUUBcuqj3kChCzRvzdkStAUiXP6kLl7Pv6FhLvg59BktxF2GSX4SmS5NHfIN7ryHK17fvqeoqfgcWLF/Puu++i1SrdnqwSFxfHiBEjKPPKs5l8vXXrFsOHD6dBgwasXLkSR0dHfv/9dxYsWECXD78loHApwJpuPbmNs6cfxsS49Atmg0cnt1OtUaf/LNO2bVteqVWDDh27EG/W0mLe+XwdB21JTuD6jA641WiHZ0j5DB2jdfMleNAyYg6v5voXrfGq3wv3Ss3QunihdnhcKmw1JhHzz1Yi9y1F7eCCZ52u+LcbYzdpzI84OztToEABLly4kCe5WnMK5Sn7EqPRaBjQvzen/9pAn9d6A7DYJJnFWOJEWafKZsmsipbs4t8uLurzXXWSJmbOZbHT4OAolk+KlmbKrtq078H+NumrLO4mNdZSFy3O9BNc0f5a6SLijLqvTK9e1NVIxMNQfp0zlEXfzqFRo6wb3Pw/Go2G2V9NIykpiRmz5rD2mxa81u5dqjVsx7k4qZO7J7qyWP7MTvs+7f/lrkv2KWbfTrXqTpXMqqxSp9fsJMYWqWSxCu7XRanrUpuMdkxVH7wLleJ+WAQTJ3Rk/KeTeDXxIv7FKvKv6+v2467fvASAy73T9n1WnSjX0ceLaQvkcQWp7rJpudgKGnFGMKKKlGxdZZPrqXXiazVsHbdvp/Xlq88+eWGczhSyT3x8PEOGf8iZsxeoULsFo77Ziqt39uK8cwKzMYXr/+7j+pGNWOIfgdVCk4a1KVu2LHPmzMHPz+8/jzcajVSpWo1En3I4NvwQdyFzusCwM3tRqTX4NRmQjauQUGv1+DXojVvZBtxZMxn/zp9gCMxYnr+CRcqwdvXnOdIOgM6dOvLRxBlgG1zmBjGRD9nxy9eE3rmOg16D2SJg8ClM3b7TnnrM0S2LMd44w+TJk3OtXS8Dn039gqJVm1O32RuA+BvuK0ubcSZKGujLc176yGILP2iUtvRx7VHJeT3JJHD59GE2fPcJK5YtoVKlSlitVtp06kGk2pey/ZazJioFLiXxdjFpQLH6iFTH4QhpwiJZFlsp//1TO0mT6hZZOI4lXgppURmk9qrU0ipZimww6eBtQAVoVFLaEb1auv7LSdLEUQGddP79sdL+foHSc+ShLF71QVIygsVM+KUjtB0zEY02dXJGuu61R6M4eXAHV6/f5G5kEupSr+HX/APO3b9lL6O1pVSRu9hbNdL1WGRp5cxayZ1fJfPCkMe6y/sKDrJJq/hAaVJILYvL5LE4SxcEQeDG7G44aPW0HjqfBr7SpJNGFiN7KkEaCGp0Unvdq7+BS7mGxP6zhburxiNYzJhjwtDI3i9rcjzOpV6lYO9ZOBSQ+mPywEyTLAWNSpY6xWq7PkEWLxwaK927hv5SWb1KKnNMlvKkpov03ajsKfX55MP9tIb+LVq04OjRo8rgUuH5pV/fvjRt0RpDQFmCyzwfsSgnD/3BlmVfsWrlslz78jk6OjJh3FhGfjCcufMWMGtEG2q9/x0eAbnsBpcO73y6hMmfj2b50iWUq1CRvnP+ArdnnzBazuGtP/JKtQo0adIkT9uhkL+YPmMWgmswH835wu6OZ3rGiwyCIJB8+wzqW0f4N+4u1vhw7ni60aBubSbPn0pQUOYdkbu/2YcSlRtyo3RXcVUg6naGj02Ji+TRxcMED1qa6fOmh8E3hKAuE7m1ZhLBb8/P0DFanR6dTkdUVFSOyNkDAgK4f/MyuRXJlBAXw5LP3+HrmdMoVaoUXl5iJ3jBdz/w+dDaNGwrGpncixe7NoLVwk+nNuKks7J96+Z8vYqT3zl58iQnzl7j3fEjc3Wt0GQy8sNn71OnegU2rf+VYsWKkZycTI83exNm9aFqny9tJZ9hsGceE7l/Be7VWqN5yqr7kd3r+WPtApzd/fB8dzVaQ87lH88tHm76EmPYDRpN2ZblOjSObnjW7YHXa2+n+bqQFJPm/vxOYGAgR48ezetmZAtlcPmS4+bmxuaN63i9ZTvaf7QY+O9Z+7xEEAQubP+e85u/4czpU8/EetzR0ZFRH31Aj+5dqF2/EWWav0eFlu+S9nxT7uMbEEzRig2YOWsOZ0//S7M3OlN4yK8Y8ih+4N+Dv3N+/zoO7t+bJ+dXyL94uLtzNy7rDtBZQRAEkkMvYY59COe3465KpkrZ0rw1qDOVK1e2D0ayislk4sbNO4z+5lum7T6f/gH/R9i/uyhYo7XdqCen0Xv44996BKG/jKNIu9Gotek7pdaqVYv9+/fzxhvZDwFwcXGhbOkSnL5+Atei2Q9V+H/+/nMj7w7oy6uvvvrY/vfffZtaNary8OHDJ46pNLk7AQH5M77qeWLMuE/p8G7OrXKnhclk5PvP3mfEe31p1078PMbExNCtZ28q1O+EV/G2uXr+rKLWaEmKj0q/YBYwx0cStX8FRcekLV/fvHkzqxdO4dUmHen8zjiW3M6cW35eYEmOJ2r/CoIH/4RvyZp53RyFXEAZXCrg6+vLulXL6NK9N6VajqBYzRYAOAeKP8iuNhmHVlXCfoynTeaSKHN3fNVHnC1zUIsSgdKBUkcuVeKu04izjXdcJUt8Z21hQLIx16pldtAqUSp66+p51n4/mXqvVmPbzevPXH5ZqFAhzpw8TpduPQjflUS75kNQq9WsLCI9GDVRomzYNVSUpGqMUsc6VXZqt9yXyYJTLb1VgrQvxUu8P86homPr+oDm9tfWfvkRvXv35tq1a3w9fQpfzB1Lt7HfAXDFSZQRb3KVzI10j0RpjFPYRQASfUvaXxNsnc9UuYs5uLL9tf4hNgtwmSTZYHtiaFUCt66eZ/qc4Vy9ehWNJucSGyu8GAx8/10aNW7KvaunqVyvDS5uHo9NyZhlub6CbM8ReSRMaZusLDxcWhlMtfm3KfJIjI3k/q2jxD28gbslCa1WTfkypShcLpimw7+kYsWK5CQ//rQUd98gzFYVukSxMym31bcYJJmdPkr83lkNUrqFmPA7+LwxhiZlJbVBmFF8lqXGWQIINunemWhpdUarF+XtZZGefbW9xDXCq06V7PvMTh5YkuK4uXkWBXvPRKVW21NzuDy4YC+382EFABYMGcLbb7+dI4NLgImfjKNb34G8OXE5C8xSKEGKTZ5v0UuumhaTKIWzRkjvscXJA4APCsueOxqBlORELhxcx7zJu9M8b07E3SukzdWrVzHhgItPEElmiJf97ltl32NPvSDbln7P+tdL39PhtRICb7/9Ph8M6kebNm0wmUz8sPhHvvzuZwzNP+J+gQZokqQuaylPsU6DRpJTJsjSfOwLlaStyFJSqGTyT7V8kkfmHGqVGWPJJ4J0ss9uAVmKkEsmgXirhrPxGpxtjwN/2e+mr1Z2X2Rx1PVl9yhClq4kzixtF9g1hTaDRlOxnAM9XvWw719zNIoju9dz6s81mBw8iGryKT/c1nM36pHU3jhpssVik3yqzDL5qUwiK3+OqWRyVp1s9c/kJPXpNDK5bKJ3iH3bITW8CbBqpftl8pRSCyUseY/A8vV4rX4bzLbb4SBL4VHbW5KQWgRJCvtPpCwLuvy9k6cQcZDeR4vMS8ScLF2TRi8NwLWyz4NFltbIxVHcn5Ai7UPW75SnGQmTfe5aydoeJEvNIzf0TpYd66jNv/Gf2UEZXCoAUKxYMbZsWkvrdp249fdmaveZirN73pr8JCclcOnkAQ5uW0l46A02bVxPiRIl0j8wl3B3d2fr5k18Mf0rts8bQsP+nwPPPsZQo9EwY8YMGjduzN69e0mMmMLZo7soX+vZyVJPHtzJ1A+7cfv2bVxdn24frvDyYjAYOHRgH1euXGH7jj+ICb/12OBRPh3h8h+/r/JP1//rBTy93ag+uBPVqlVDr9fnuuxx9979dH5/UpaOtZpNqA0uj+XKyy1cy79GysPrRO5fjneD3v9d1tWVBw8e/GeZzBASEkKjOtVZ9+1YeGNWjtUbExlOqVKl7E69Cs8GQRAYPHgwbQZ8lWvn2LdvH5MnT2batGlUqVKFRT8s4bslyyhdpz1uQ9Zn2BE0LzEnxdtyr+bcM+jfHT9hcHSh4iuNn3jt1KGdnDuwkXPnzlL2s2PPxT0CiN46gwf/7qb7T3fyuin5lujo6Ezna89vKINLBTsBAQH8c/QgX8+dzzeftqR8496UbdgZVy+PZ9aGq2ePce3sYS6f3IdOo6JRgwasWvZdvpE1abVaxn88llp/7GL4Rx2JqzsY1wpPPvhzm4CAAN577z0GDBjA0h9/4M3+71O2eiNy+ysd8fAeK+aMJsjfg/DwcHx8fNI/SOGlRaVSUbJkSUqWLJl+4ecAlUr1+GpHJjAmRKNzyZ4sNzN4N+jDja974Fmn23+W02g0FClShOvXr1O0aM7ElE+Z9AkVK1dFKH8cx6I5E8u/bcVMPhrYK0fqUsg4U6dOpU2bNrgVyHx8cnpYLBZ+/vln1q1bx6ZNm7hx4wYdOnTArWQjek5ci1an5+yd52Nlx7VQaaKuHseldI30C2eA0It/c/XI73wy48n47NjYWP749VsSEmIZOX0Vf+if3XMlO5hiHhJzYAV13vsGvbNb+ge8pPz7779PSP+fN5TBpcITDBsyiF49u/PHH38wd25/dI4uBJesQkBwSdw9ffD0LUDLyoVspaUHv+WIKMHo+oq44rnxeLT0mk06ozKJ5b1iwkhMiCMq/D5Bnkn8/vvvHDCbKVasGD1atqTh9NEYDLmblDg7vP56E7b9VpJ3Bg3nxoHvaDr8Ow4UFFMKxNvkrc42GSqALlaUzKps8g2zkyRbNdrSKqhlchV9nG0lwaYnvn90k/21ailtAPigem+0J66zZ+8+GtatxaFNC2nQcSAAwc7Ses/C/eI5k7zFjmPDylKurJo+4jmjbJIcvVp6P91skh2NbSL23s3LrJw1lO7duzN8+PB075GCwouIYPtLDKoMgNulP6UXZSunSf5lxfK2fYnJJgx6Bxxi75NkrWwvp7ctZFpk0j0PB3EVItIoyWJTQwHiZC6cqccWN0iysEhvMSWLcP0fPIrXJPmfzXgEiLI1s0yiG24S61l6MBqVd2lu3LiRY4NLjUbDoQN/0aZdJ5oFf0JIiQqcihLPfUvmhBllFiVsMS4V7PuqOYnXIpc79qztwUpjBK+/LjljK+Q+x44dY9+xc/Qf+y2JJulz5yST8t1NkN7P4rI0P11f+W+DqAMHDvDFF19QrFgxVq9ezScTJ3Pm6n0a95jAWUMFTtoUm1VlY5AiMmfa1JzZ1+KlbuyeaNkJZGEpyFLd6J2k30adbKLILAtVSZF9FzWyFUFjsuSWmqSVaSrUKgIa9uLKju/RFBVDZUo4SfeogEGqT/4be1Tmrutsk4UKgsCrpl1MXzedvzauJSBAmsBdfSSKxIRYvp3QFz8/Hwz+LTntXI27t25Il5oUa982eUju3CqT+CzRmCXZrEqWkkPe/7DIZKNq80PZtiQRlTvN6hKjpXshV48EydIJBarZNOcTrIWKUK/lm6TGNkTZJKVhSdLnaFeEVPedeEm6W8VLcmg9GSmdRpC9X2Z57Ktsv1zSKuikvqVglt53B9mANy5BDCXQG6R7UdxF+hyZZHMeRWRuyPL31yorY5FO85iCp1Otx78nMTExbNmy5bnvYymDS4U08fLyomvXrnTt2pWkpCT27dvH5SvXeHTnCuf23eTwOssTxyTaPLgPrxK/xEnGp3vK+fh44+vjTXF/P7y9vVm2bBnueSzDzSzBwcFs37yev/YfYOyED4h3CkJVuikG76BnIn0DaD/gUz57pyF/bN9C9Rq1qP56D5zdPHL8PHs2/cTq76eyb++flC+fsXxUCgovGr7eXty7cYHSletk+li1VvdY3M+zwKNcA8L+WkGBgJD/LFeySgMWLlpI48Y5p8Jwd3dn6ZLv6dy9FzWadMP51X5Zrmvr1q05Hj+r8N8IgsA333zDG/3G5mi9Bw8e5McffyQsLIz58+cTGBjIsGHDuHArkv4fL0ClUnE2LP168hsexWtwbcNXxN04hWuRylmqIzkhlo2zBxJbqzibNm16QhmUmBDLzJFdMBuT8Hh9BIUrPz+TLaf/2sCpvzbx1pdb8rop+RZBEBg0aBCfffYZLi4u6R+Qj1EGlwrp4ujoSPPmzWnePP2yLyP169Xl4N6dnD9/nm++W8K2DYtweLW3PbA/N1GpVLTqOYTBQ0ewZMlixo7vQe/R3+LiXyT9gzPIv0d2cWj7Sh7cD1XinRReakYMG0zf9z/M0uDSwTOAlOhn22t28A7CGH0/3XJBxcuz7N9/SU5OzlHFSJEiRTj01x4+HDWGoz+OolLnsaD1Tv9AGQlxMSz66it+/fXXHGuXQvqEhoZy9uxZmr2TfQf569evM3/+fKKjowkLC+Pbb78lMDAQrVbLmDFj0Ov19B0977lPFVO2/yxOftOPCsNXgEfmpKrhty+yee4IGvUax4yPnuxsrV69mo+GjqBQSDGGTV3O/uRCadSSPzFFP2DTN8Op06YfhUpUItqU/jEvG0ajkREjRmC1WnN0ki+vUAaXCgo5RNmyZVn49QxOnjzJ8A9HEetUmMq9pqIzOHPo6lUAHCNEB0ltcrT9OK3NjU2QSXeSvAoDoE8QHe9UFulpbL0q5j+arXoFgH61u3D6xBH0ej1zZ02jYcMqNO70Lk06D8K7QDAEizP+gs1owN8grTon2VzL/Gxyo87/J9HYsmUL/+z4kf379igDS4WXniJFiuDqoOLB3Rtoo0QZWbKnFIvmcvtv+7bFQZTN6WPu2veZBUh2LcC+25KBTskConTNFCPJz+K8xH1yBURSrChnuy5ztSzkI0q2kmRS2SCbpfNtBFQq0Dq6kaLSo3FwQm2RZLalHEVlSaok3r94FQ4ePJjjHRu9Xs/cObPY+vs2Jk7uTs22gyj/ajPUarXdWVzuOKqz7etZ24Pdu3fz2RefMXPmTPz88m+arBeR+/fvU6Tcq6i1Dlis4KyTlEgRydLM6bimkjx0zdHH03Fcv36dadOmkZiYyIcffkihQoXw8vJCa8vXGB0dzYFjpxn4+UriTSqwqRhLOEm/UZ4y19VUKSzAlkixjmSZw6dFJiPXuEiTGILMTdSYGCc1UCaRNSbJVAWyQa5ZVr/8++gumzyOSW2uZyGCe8/g1Myu3KjdDe+GfVCpNZhTJImuIJOi1vfXYkpJ5MreVfx7bA2jpnyLb4HHB42f//QXu9fM59SRPRRqO5qCLQazMR5uhoXay6hNUhvN7gWkg2X7Ux3qk32kiWe1oyQD1eik/oclWno+JRFs37a73fO4u6ygld0MmdNu1wA1FrOJ9Ys/wK9AIG36fYxWZ+VQtHSuajYptXxaoYDss/ZqQalsKXfpeko5S5Ngv5yTmQM95iIr3WuV7H0UZA6x8jImmTOsRidKcys4SddTyCD/XErHOcqcbj1kElmNStovdzKWf5cAEhIS6NatG3379qVjx468CDx7q0sFhRecKlWqsHf3Tkb1bMyGwRWJvnMx/YOySa3W7/DZ1C9o0KABERERuFkesWRiT5ITsy7DGz9+PKtWrWL9+vWKI6yCAqJS4MMRQ1gy9b0sHW/wK0LS/Ss53Kr/RuPo8lhM0tMoW6cdly5dyrV2tGrZgh2/b8Ij8SLzhjflz1+/Jj4mMs2yt6+coU2bNmzevJnNmzdTrVq1NMsp5A7x8fEMHPIBzbsNznIdBw8eZODAgQwbNowVK1ZQtWpV/Pz87ANLgK9mzqFum6zLpfMjzoUrUXbCTiyJMVyZ3IT766eScPkwVttAz5IYS9LtM0QfWcuuWf3ZOqk9ZmMyY2asfGxgmZyczIoVK5gzuisP713nwxlrCWqR9fcjr1jw/qsU9XejTM1maHXPh6PtsyQ8PJz27dszatSoF2ZgCcrKpYJCrqBSqejevRsVK1agVbtOqEs3Rl+jc66dzz+oBKEPIzl48CB16tRh/fq1bN6yhR9/nQMNx2eqrhs3bjBs2DBq1arF8uXLc6fBCgrPKa81akRU+D28EmPQOmUuTty9XEOiTm3Dr0z9XGpd1lGpwGTKXb2al5cXn0+ZyOSJE1j28wqWfz2YuMRkAopWQK8XVyjiIsNw1Vv47rvvCAwMTKdGhdzg4sWLFCxaFm+/QFKetFf4T66ePc6Wn7+iXMnCrFmz5qkTk9HR0ez56xCDpw3LgRbnL9RaHf6tR+Db9H3iLx4g7tyfhG+fhyU+Aq2bH3q/wjgElKJalzF4FhKdtB0M4qprSnISs2f/xPfff09SUhJd3v2UWk06odFqOXTvv86a/9i7fCoFC3hz8co1+k35Iq+bk68QBIF9m5fx08kdTJ8+ncqVK+d1k3IUZXCpoJCLlCtXjhuXz7Nq9WomTRlGgb5z8S5enX+uSquZWpvTmtoqdewkyYkoFjE5S/Eb+gRRHpdy4yQAhw1VAB2l3/mBTyeP54/tW1CpVDSoX58vZ85DqC9KMHoUEr/uDjI3s7f+L7n1li1bGDp0KFOnTqVbt/9OYaCg8LLyyYRP+OyHmfh0nJyp41yKViNs708YI++h9yqYS63LGiFlarDt2+8ZNiz3O/sajYZ+fXvTr29vUlJSuHhReh46Ojq+MKlrnkfCw8MZOHQk/T5eiFlQ2RWiJpn02k/m2rpWJoUNEi6xZO0stv22Fje3/0418euvv/JWry70rC2GYqw6Em1/TaeWucLKXGrNMjVhqou5Xi/JIxPjIuzbFo0UxqF1ktqikq2epcicRXWyMhaz9FssjwO1miUFwB2j9DuaIpPUprrLWq1mUKtxLlsfx5JSWglHZw/79utBKYB4rk61PLlz5w69e/cmJj6J8g06Ua/DYG4ZXfjXpka9lyQ5uqKVrs8jqIx9O142QVTSSeriV7HJT4u5PU3FIN3cm3HSpM7yu5Ic3fRQcqWVh/HoYyUZbctatQC4feYvHoX/y3cL5vPdd99RyMfNfo4OAZL8NNXtVyvTxb7iJV2Dm0wWLZfOno6Trk1lke6LxktquzlOUkYIBkkKG+zuYd9OkVm3yqXOnjZH5KIyiXaA7HOvlfWj5G2X708NO/r/6yjvHsaIESNo0qQJ87dutTuBv0gog0sFhVxGpVLRvVs3alSvzit1G1C69TAolfMub+6FSqP1Lcxff/1FgwYNcHNzQ40Fq9mYoQTLO3fuZO7cuWzevJly5cqlW15B4WXlvXcHsOevg0SEnyVBJ8UpxxWWOpGpk0AmVylHrz4xgpDX+nJnxWgK956JSq3mqq1TWz5QGmyG2Tol8Sqp46y3xVo2dJc6OBG2jreLLObnTKK4z2rr/JkS47A4e4LeEa2sJ7XvihgHXq5aYbF+N3f0+mcvW3NwcKBSpUrP/LwKTyIIAuPGjaNl71F4+hRI/wAZl88cY/G6OaxevTrdgSXA+vXr2bhxYxZb+mKRnBjPe++N5p9//kGtVtPi/VkUKmZzZTf+97H5kesndnN717fs3LqBTZs2Ub16zuS6fd6JiQxn64o5mGLusHDhQkJC/tvF+3nmxRsuKyjkU4oXL87l82fwjPyHyBUjsJpz/lfj9a6DGT12PImJYj4uPz8/BFkg+9PYunUr48ePZ+PGjcrAUkEhHVQqFd/Pn8OjAz9hSoxN/wAZTn6FcSlRi7A9i3OpdY8jmJLRyEyA/ovn3a1TIXts27YNLy8vSleuneFjLBYLK775mH/3LM/wwBJEo6f8nMv6WXD28HZ+nvYW80e15eTJk7Rs2ZKdO3dKA8vnkMTYCNZM6sx382bh5OTEsmXL6Nw590KCngcEQWDnmu9Y9fUIRg58k82bN7/QA0tQVi4VFJ4pXl5ebF6/miU/LWXSlN68M24hv/pVAcDy4Kq9nNqWANroJK6K6BMl+U6Kmzij7PjoGgCnr0irDRcKlSWqbBeatWjFX3v3YBUEGntYcfbQo1WJsgwvmZtZZGQkAwYMICQkhP379+PgIEldpk2bxvr167l48SKOjo7Url2bL7/8klKlSgEwceJEJk2a9Nj1lSpV6jGJm4LCi4qnpyejhr3P2NlLCWz8bqaO9andlbA/viP8wEq8O07IpRZCSuQ9NI4ZN+PSaDQ5no7kWaE8r7LHgwcPmDB5Gu9OXs6teEkfGGiTAvaq4/HEMWazmbfeeouubVpkO4yi2ytS/T8eiLFvO2ql1fYYmUTW19Z7vZUoOcRqXaTwEZXMtVSup5Q7yqp1hjTLyyd+HV0kZUKKRXKaTY6Ptm9rZNLcIs7ib+jtFEm2WsdHmtz5po2BEydOMG3aNJL8Anivb1e+mj2Xyn1mYgkpw1eHIEnminsgTnovKrtKbVS7STkwK7pJ7Y2TuZJ6O0jy0oENxUG/XMYs9yyVmabiY5BeqeIuXdvfibI0QjIHe48ydWx1CGz6uDz7//rLPkmt0+lsOczTPm85D7GeFNk1R6dI12CU7dfI3tJGPtI1n4uUVtnNMeGyi5LO5OUjyWW7F5Q5x8raInd0TcVXJoWNkrXLVfa5lN+7Lv/nuH/79m1GjRpF9erV+e6rLfYJvBf9eaWsXCoo5AH9+/bhxLFDfDf5LZKOr8/Ruj0bvYWbf3E2bNhI147tuLx3ZZrlzh/fS+fOnRk/fjyzZs16bGAJsG/fPgYNGsSRI0f4448/MJlMNG3alISEBHuZcuXKcf/+ffvfgQMHcvRaFBTyMx07tKd2SX8cIy5Sq25zrFq9/c+id8aid0ZlNdn/LA4uWBxcsDq64dNmJEnht4jcOgci7nDx0in7X7xFIN4ikBQXaf9DBajgbILG/ldAb6WA3sqeqzftfym3z5By+wyG6Ds8/G06Bas2xRBzF0PMXaw6g/1PmxiDNjGGW4ka+59LUFW2bN2a17c1SyjPq+wx/tPJ1G3dDyeXjJlUPXz4kP79+9OiRfYHli8DppREji8eQbNmzVi8eDH9+vXj3IWLrNtxmOFfrMI3pEz6leRz7m/4jFatWvHKK6/kdVPynKSkJCZOnEivXr149913GTly5GPKkBf9eaUMLhUU8ghvb28unj9LwJVNJPz8fo7KZDu8N4XZ3/6IRqsl7OKhx16LenSflbNHcPnAajZv3kyVKlXSrGP79u307duXcuXKUalSJX766Sdu377NP//8Yy+j1WopUKCA/c/HxyfNuuQULlyYOXPmPLavcuXKTJw4EYCGDRsyZMgQhg8fjqenJ/7+/ixatIiEhAT69euHq6srxYsXZ9u2bZm7KQoKOYyjoyNLFi1AfecQx5d9bE83kBFUKhWBXSZjignj1o/DMCdEpX9QJnh0fj8GzwBcChTL8DEVa7fk9+27crQdzwrleZV1Hj16xMWLl6nwarMMlTeZTHTu3Jlu3bopA8sMcGbt5+z5rA2fDuzE77//Tv/+/ZkzZw59x35Hp3cmoDdkTLaenzEnxhJ9dA0zZ8607zMajY8Nll4W9u/fT5s2bahUqRK7d++mUaNGT5R50Z9XiixWQSEPcXJyYt/2TXz55ZeMGVOHqav+xScghDlnRJczdZIYz2VylRzbtEnRAFhtSY8dIyQHt0Sby+yce1asjcYwavpE/DRJ/DWjE14uOqxWK4Ig8MXnn2fa+jomRpQqeXlJ0qMrV64QGBiIwWDg1VdfZdq0aQQHBz+tigyzdOlSRo0axbFjx1i9ejXvv/8+GzZsoH379nz88cfMnj2bXr16cfv2bZycnLJ9PgWFrOLs7Mzu7ZuZMWMmk2f2ImTQz4/J7f4LlUaLf7OBJN27yM0VH1Ogydu4FM1eTkdBEIg++TvxFw9R/I0RmTrWw9uf8xcuZOv8+QXleZVxho0YSfWmb2JwFB01A2VSwP+Xw6ZKYT/44ANatmyZK+3pV1daPf1VJuPUy5w43XXi9kmZa+qFZGm9xCTTXibGSlJJB5nM1STzIzDLtnUGF/u2XP76GDIZbb9gSbo6/DXxu7/6SBRXzv7N5p++pFLNquw+cRC1Wk1oaCjvDR3JW+N/xOzgSbRNpeuoEUiLfoEpae531Unl5aHSV+K1sjJyAapIJ5lsUy6RlUtx5TLP4s7SZ6F4cUkWuzlCOk//oGSWfjWKIQP6otNJ70f/t95iz549/Ho0CrPMbVgnW9aSy2FTGdxIittdI2ujvKS3QWpku0LS+xWaIn12EmRpdHxk90LeFmfZfketdIDJ1i6546uzTAorX5nr9Ip4T41GI2PHjiU8PJyVK1fi5+dHRnnRnlfKyqWCQj5g9OjR/P7772z8djSmlIyvfvwXap0Djm9MxMnDn5CC/vz8889s2bKFrVu3ZnpgabVaGT58OHXq1KF8edFsoFatWvz0009s376dBQsWcOPGDerVq0dcXFw6taVPpUqVGD9+PCVKlGDs2LEYDAZ8fHwYMGAAJUqU4JNPPiEiIoLTp09n+1wKCtlFpVLx0UcjmfvlFG593Q1zfGT6B8lwLFiakB6fE316F9cWvU/Y799ginmY6XYkXDnKjUXvY4y8R/E3PsiQS7QcB0dnvAOKce3atUyfOz+hPK8yzsWLF7kdGk71Ru3SLWu1WhkwYAAtW7akbdu22TpviRIlXli32OTkZH6e9SE/TBvEwnkzmTPrK9RqNcnJyQwd/iGNOg7G2c0jr5uZYyTGx3D93BFGjfrosf0rXqI82X/99RdNmzalWrVq/PDDD5kaWL6Izytl5VJBIZ/QokULrly9zuHfl0HxTjlSp1rnwLufLOLc8b/w8PDgwIED1KlTJ9P1DBo0iLNnzz6m+W/RooV9u2LFitSqVYuQkBAxf9lbb2Wr3RUrVrRvazQavL29qVChgn2fv78/IMb9KCjkF/r26U1AQABjx03ApWZP3IpW53pgGftKphAVCoAuTv65FWfGBe9gArpOwZqSSPzJrdz45k0spmQcCpTAMaQSprL10br6YJLllLtnTCb+1mkSrv1Nwp3zOPqGULJxbxxcvbA4ONvNKlKcxNlwbbLUMdHb2rDlTlH7vqpeTgSElOTMmTMUK5ZxOW1+Q3leZZyv5y2g/Vsfp1tOEAQ+/PBD6tatmyNS2M8//5x27drRrl27bNeVX7CYTcyaNYu1a9cy4ZNPafHrksde/3TiFLxL1KVCrcZ51MLc4eSBbQx4++3HVi1TqVyzXh606NkRE/WIYcMmEhoayubNm3F1zbiBWiov4vNKGVwqKOQTjEYjw4YOBmDW9r7o9A4sOC3GYTqGSysJKR5iPrz4ImLQvCpRctYTbCsVKouUKDkqRU1ghYZM+HYr7dp35M89u+yzYxlh8ODBbNmyhb/++otChQo9tZyHhwclS5bk6tWrTy3zNCwWy2P///8fKZVK9di+1MB4q/VJ2Y+CQl7SrOnrNGn8GjPmzOXI0bnE/nsWXc2uONbuxZMCsCdROzjhWaUFnlVaYHJwwRh+i4SrR3m4aTrmuAg0Mq9FwWLGqWAZ3Eu+QkDDPqi1ehxiQ7PV/jLV6rNhw8LnttOvPK8yzoULFzhx8jS1O4/CIJNldvo/x0sQB4N6vT7bHdtUDAYDpUqVYvfu3TRu/PTBllxe9zBZkp8WsEl3y7tJv3UaldSlPRYjuZlqZY7JKfGSzNJB5i7rq5fqfkVWp4B07N+xUv2hiUn27VQH9sN71+CcGMqBAwdQqx8XBh48eJAjp69S6K1x7AgTPw9N/SXJq6deuv8FNNLnxFkmf5U76srlwnIZayGZpNlNJ/Dw3g3OHd5Gl4UnSU5+UhWl1Wpp0qQJif4N8fIT+xYpso+pn0GWV1fmlvpOoRTbuQWWzF3G7D17HqtXsDXqleY9STGrHnN61aqflJfKvxlrnyKFfax+2XZ5T+n9KitI21ZZIfm2Wlbp07Iv6WzfhxSj1PDe9STJbXJyMoMHDyY6Opphw4ZRt27dLKVyelGfV8rgUkEhn6DX61m/fj3vv/8+cZFheBXIvrZeTunKtWnTdxRHjx7N0OBSEASGDBnChg0b2Lt3L0WKFPnP8vHx8Vy7do1evXqlW3dYWJh922QycefOnfQvQEHhOUGj0TD6w+GA+AM9e+63/LLqbSIEVzRV2qPzfnonQo5Ko8OhQHEcChQH28SRLvreE+XUOWgGVqhIaf6KjiYlJeUJB+n8jPK8yhyCIPDhqLF0Hz4dB8N/x1XNmTOHCRMm8PHH6a9wZoZWrVoxadIkKlWqlCGzktzAGBmK8dFtdLZAQFNsOFv/XvbYoMYrpBxlmw0AbdrfW5MxheN7N3Lr5HbWr1n1xMAS4IsZc3hjwBROCs8ml2xKUjyrvh2Nt7OaPm92o27dIbi4uDxRLjY2lm3btrF01vvUbjuQCq82z9R5bl48Sc2aNZ9IX3Tz5k0AylZrmNVLyLecO3eOESNGMHLkSJo2bZqlOl7055UyuFRQyEe0b9+e2NhYxo1tz8jvD+d4/R5e/qhUaRsE/D+DBg1i5cqVbNq0CVdXVx48EOV47u7uODo6MnLkSNq0aUNISAihoaF8+umnaDQaunfvnm7dS5YsoXHjxoSEhPD1118TExPDtWvXHnsoKii8CKjVaj4cNpgPhw3m+PHjfP7FVzyKLEaFjh+jUqs5fEL8nqss0gDR4iAaq6SadwGozOJKjEG+MmkVZ6RNLk92zFVWabZaZ8uTqzEmys4hrsjI8/slmsXtsmXLcuzYMerVe34kbcrzKnP89NNPmNXOBAYX/89y8+fPZ8QI0Rhq7NixOdqGpk2bEhAQQI8ePVizZo0tH2LuYooJI+X2GbQnVmPWanHCyBtNGpG6mKbz1DBs43I8PDzsx6xZt4EZc97DFFIb/zfEAbYgCCTfvYBwaDFzwy/SoV1rZq9ZlWaO2D927cLi4IOHTwCEP/FyjnPj3784vu4rvvrsExo3fu0/y7q5udG1a1fat29Px649AShZK+MDTKvFbJdRytm6dSu9h0/Fw/vJ1/6L5KQErCbTY/scnVzQaPN+uBIdHc2PP/7I3r17WbZsGQUKFEj/oKfwoj+v8v7dUlBQeIw+ffrg4eHB6p+GMnbg12i1Oqb8K8046sKvA2B1tkmX3KXAcX2o6PQoFK5q3yfYBCR6tYAlJYGMfu0XLFgAiNbVcn788Uf69u3L3bt36d69OxEREfj6+lK3bl2OHDmCr69vunW3adOGoUOHcv36dTp06MBnn33G1KlTad48c7OmCgrPE9WrV2f9mlWM/3QyK8c1pO7wn/O6SWny7rvvMnXq1OdqcKk8rzLHmvWbWPztXIKCnpTAprJo0SIGDx7M119/TVhYWJorX9mlQoUK9OnTh44dO7J69Wq8vb2fWlbuAGtNw1zVVy8VKO8imVmVcrYgCAK3zx9h96IhvNm9K8N/+zlD7z1A547txb9ub3J3QXvUKjUu5hTqV6lIl7H9qF//v78nE7+aS0Tzqcy6kMBrAZL8MCxJkuJ6O0htd5FdR5c0JMoAyTIXU4tsNdR4fT+3di9g387Mxf/p9XrWrV5B5649EMC+gqmTSVj9DFK7Up175RJXOdu2baNxrwno03DB7fJ/jrUmk5G9m5dx7u896NQCIYWkQZsgCNy+fZsaNWpQrF4fvP0Cgcfl0nLxpry90TIZ74D60sTF6iOS7FbuHCt3I460HevhYCUhLoY9G35g8Zg/GTJkCOvXr0ejkd67rPCiP6+UwaWCQj6kbdu2REdH89uPX9JhwPgcq/famUMM6Zmx+gQh7R+NVFatWpXldpQvX54ffvjhsX3jxo0DoGfPnk+UT5XYZKZ9Cgr5EZVKxeeTP+Xdt/vRpksfUip1xSmgRF436zFcXV1JTExMv2A+QnleZZyEhAQSUqwEBQWl+brZbObQoUPs3LmTSpUqsXDhQvbv359r7enZsyeOjo506tSJtWvX/ucAM7MIgsCZ3cu5uG8VtWtU5rsF82j6epMs1bVmVdbcT5OMJjTOTx/E5wRms4m133xIIW9Hli/7MUvGMnq9njWrVxIUXBjvrwoTWLh0ltujVqspWLhUmq8JgsD169eZM2cOp85dRadR8WbPrsydsgm9/kmH65SUFE6dOsXosSPwLlSKiq82I7hYGVzdvdKoPWcQBIHLJ/dzcudP6FVmOndsx0/fTMr2oFJe/3/xvD+vlMGlgkI+pVevXnz7fSOSk3ImCbHVauXercsEBATkSH0KCgpZJzg4mC1rltGmXSc6j1zI8nBn6UWbIZdDrCRjMtuksgiyfG12F9h4+z5BLa6MWPRSHJ02STT9sjjIFBBx98XyJsnkI9kiHvPHZRVXbtxDEIQsmVQo5H/iY2PY838mLAC//fYbJ0+epG7dutSrV49ffvkF7TOQJHbo0AFBEOjZsye//vorLi4uLFq0iFCTPzcvneT6uWOY0KA1uNDknZng5JxunVazicu/jKV11YIs378zzYHLi8Clk/vZ/ctMxo/+gLZt22SrLr1ez6xZM/lxzUK6fzAny/XUrl2bye80wdvv/6SjgsAyg4rChQvTu3dv5taqlW5dDg4O1KpVi717drJi5S/cvHmOTd/9TGRUDEaTiZJVGhJcshK+BYJwcnK0H5ekcsbR2e3pFadB6O2rnDy4g9NHdtDktYYs+XYmhQsXzlQdCsrgUkEh36JWqxn94TAO/z6HkW2l1cYTUWKS9YMxYidTo5a+xsaQyoDoIplKolnsbD44e4Aa1avi7Jz+j7KCgkLuExQUxG8b1tCxay+MTT9B7532StKzRqVSEVC4NP/++2+mc+Iq5H8cHR3p06NzmnnsWrduzZw5c559o4COHTty8eJFmjVrhouLC7t27QKgfv36/LV3LyqViqNHjzJ0aAc6DJlNULGypFikyQ/5NEgd3Q2+m/Y2Hw4bTK83ezzjK3kclUqNziBO7MTI5KyOMsmoXM75NCms3CEWVFgtFvZuWozl4Rn27PgtS6uVadG6VUtmfT0fS0IUelcP+36LbDHLaJOTymWlcsaOHZvjMboAPXs8HnNoNpv59ddfefDgKlf27sRolGLXjx0/hbuXL1q9gb2/lKJSnRa4eXinKakNu3OdW3+vJy4ujp49e7JoxphnMqnyoqLcOQWFfEyHDh1YsmQJqkL7KFOtQbbqunjiL1o3fCWHWpZ10pJgKCi8rAQHB7Nu9c/UbdUZXb/FqLT5Y3XFr1AxTpxSBpcv4vNKrVYz1Jb2Kr8xbtw4u4QvLWrVqsW7777L/pP7CSpWNs0yEXcvs23xCMaN+oDOnXMmZ3R20AhWkh7dRu+Tcw7w4aG3+HXuR3Rt34rhXy1N06E2q7i7uzN+7EcsX/U17QZ8+p9lD21ZQtfW9XPs3JlFq9XSo8d/Tx5ER0ezd+9eNvy2jKclN9HrtIwdO5YSJfJXiEJmyS/PK2VwqaCQz1m0aBFFihZj9qYrGJyyZqggCAJ3r5/jtckf5HDrFBQUsktwcDAzJo5h6MT38Oq38DEH17yicOmqXLv2V143Q0HhCfr06cPet99l9sj2FK7dFRdP0dTu9uVTRF05RNHggqxc+j2lSqUd8/es+eSjIfT/oC8BY3blSH0P7t7gp6nvMu/rmTSonzsDu/bt2rJ6zTqO7V5Hjdc6pCmPt1qtJESF8v777+dKG3IKDw8P2rVr99zm7n0eUQaXCgr5nICAAGZ8NZ3VU3uyZ88eEvaJ8VVFbCFVjloptYiXg6hbEWTCD5PFQtjd6xTyc6dgwYLPruEKCgoZpkvH9iTExTLv+6E49/0JvbsfUdF37a9rUmMjZUYLapOYyF2THG3fZ3QLtJWTUpHIYy3/v5zb1QP2fReCOwJQw8uI6SlyNwWFvEaj0bDsxx+4fPmyTTorpnGoUbMAPeasfSyNSH6gdcsW1Prue25+2x7vcZtQ20xhTDKZaa86HunWI1gs3Lx8mg2LJrNt8wYKFcpYvtys8vNPi/ngo9H8MGUrVRt1oEiN1vYVUn8nC3s3/0ygf97kJ1XI3yiDSwWF54DBgwfj4OBAnz59qNhlKo4uGc8HZrVaWTxtEJ9/8lEutlBBQSG79Ovbh7i4WIa9G0K5QYtx8M7dzqOCwvNMyZIlKVmyZF43I0Ns2rCO+d8uZPGM7tToNxM3v4zFVwuCwI4dOzh16hSr1v5GtSoVWbt6ea4PLAF0Oh1z58zi7NmzbNm6nZUTO6HVi3k8tSorAf4+rP01666mCi8uyuBSQeE5YcCAAXh6evLRB00p90pzKjTpjUanw8/HF53Dk4mbAe7fucYPnw+kTo3KiiREQeE5YOiQIbR94w1eb/kGxuINca3cKq+bpKCgkE3UajVDBg+kRfOmdHpzAOW6TMLB15X46Ef8veEb/pyTtlLAaDRSpUoVWrVqxYABA3I0TUtGKV++POXLl2fM6JHP/NwKzyfK4FJB4TmiU6dOdOrUiU2bNrF7949YrVYOnjuHi4sLBoOB4sWLA6K73oULFxgzZgwXLlygWLFiedxyBQWFjBISEsK5U8fp9/b77Fg0gJFLz7DseiwAqgTJMdIl9CwAKe4yubstXtMhOtS+K/V1jVHKXalLjAQg2UNaATmfKB5b109AbU15mveFgoJCFilevDgbV/3IvHnzSL5rxc3JiV+XfvvUnKMKCs8jyuBSQeE5pG3btrRt2/axfbdv3yYuLo6EhAT27t1LgQIFCA0NxcdHiYlQUHje0Ol0LF/6A/O+Xci0d2ri/tE2VBrdMzl32L2bLJ05ko1rFcmbgkJOU7hwYWbMmJHXzVBQyDWUwaWCwgtCcLBkc16zZs08bImCgkJOMXjge5w9e44dmybj2H5yji8mCoKA1WYW9PDYRh5tn4PR14VlS76nfPnyOXw2BQUFBYUXHWVwqaCg8J+kZUGe1wgyx0wFhRedhd/OZcCQD/nh/WAK1miGQ91+qDQ61I/uAGA2xEqFbd9XS9wD+y5jigkQ3WWNYVfRmBPRmJMRBIH4B1cpUqgAWp0OT1dn1qxfmm9SOGSF/Pa8Up5VCgoK/09+e06lRXaeXcrgUkFBQUFBIZ/z7awv0JgSqFOnDhcvnhZ/+ANTX41+8gBP+X9u2beS3HR07Njf3rkpXrw4/v7+udRqBQUFBYWXDWVwqaCgoKCgkM/R6XQsXLgwr5uhoKCgoKDwnyiDSwUFhf9EkXUpKCg8LyjPKwUFhfzOi/6cUud1AxQUFBQUFBQUFBQUFBSef5TBpYKCgoKCgoKCgoKCgkK2yZAs1mKxAHD37l3c3NxytUEKCgoK2eHOHdFB8/bt23h4eORtYxQUFBT+A+V5paCg8LwQGys6k6eOC5+GSsiA8Pfvv/9W8uYpKCgoKCgoKCgoKCi8xBw7dowaNWo89fUMDS6joqLw8vLizp07ysqlgoJCvubu3buUK1dOeV4pKCjke5TnlYKCwvNCbGwsQUFBREZG4unp+dRyGZLFajQaANzc3JSHn4KCQr4m9RmlPK8UFBTyO8rzSkFB4XkjdVz4NBRDHwUFBQUFBQUFBQUFBYVsowwuFRQUFBQUFBQUFBQUFLJNhmSxCgovKyaTibVr13Lu3DmsVisAPj4+NGrUiKCgILy9vVGpVHncSgUFhaxgMpn4559/ADCbzezdu5fExMQMHSsIAl5eXgwePBhHR8fcbKaCgsILREREBKdOneL69evcvHmTDFifPIGfn99/xrw9jZCQEBo2bJjp4xQUMoMyuFRQkBEeHs7169e5ffs22/74k4uXrlCq+uvc9G2GRi92IK9cO8f8bbMwRd3HVWXC0dERvV6LKT4Gfz8fKleuDCooGFCAJo1fo0SJEnl7UQoKCgBcvHiRvXv3sm3HLm7cfYDVKqByC8CnSAXuG0EIqYnGzYdAvThhFOAgTigVdhJt1w1aqROoVwls+PFL7oY+YM6sGcokk4KCwmMcP36ced9+x9Ubt9Bq9fb9Ko2WkNLV8Q4ogl/p5mjUkojQZJWeIxrZI0Wrlp49VgFCQ29x657Zvi9FlhniSrzUtb+SKJWp5qbhwYYV3Or7NqVKlWLQu2/RoUOHbF+ngsL/owwuFV56Lly4wLhPpxAeEYVFpSeoeAVcvAtSsGZXXutbCYANoQ728q4uBaFSUxyBRgHu9v2VXJO5ffUMCAIOGoFL92+zZthYnDUpjB49mrp16z7rS1NQeOmJj4/n22+/ZfPvO3H1DqRw6Wq80uY9KvjXQK3R8Mgoduxi46Rj3B3EXp2PQRxcBrqKHTQn2eDSoBEY9vlS1i36jPIVKjFjxnRaNG/+jK5KQUEhPxIbG8vPy1ewes16dM5eNGjdm1bv1n6inEWQRo4qpOeK0SLt18oC13TywSUQXLwsFtlANNEsbZsjdfbt8BiTfbu0r4bSddsCIISe5s1eTfkZ6KgMMBVymAylIomNjcXd3Z2YmBjFzUzhhWLjxt+Y+NkXNBs4m4DCZQBw1UlfCQeNuC0fXF6KjLZvyweXVTykh7ijrBNa0y+CLl260KZNGyZMmJCuy5ZC9rh79y5BQUHK8+ol586dO/z4449s27aNUaNGYSpQH7VsheB0lNgBSx1cHpUNLgvbBpfBtsFlyacMLgFUKgi9dYWDv6/gwa0LeLoanmhLQrL1sf/Lf3StFjPdOrejdu3aaDQaypQp81g7FV5slOfV88/Dhw9Zvnw563/bhs7gQqU6LalevyUOBqenHpPdwSXw1MHlUdng8phscNnKV+p7BDpauXv1DCc3fsX2LRv/+wIVFGxkdDyoDC4VXlrWrVvHlOnfMPCz5Vw3edn3bw+XZCRODuKgMib8rn2fNi7cvm32LGjf9vL0s2+38ZEe6D4OVsxmEwvHv4m/p56fFi/C398/Zy9GwY7SWXu5uXbtGqMnTOFqaBRF6/UguEpjdA6OuNsmjR6miD224wnivwkpyQBoNJKQR6USX7OYxe+xg158DpRwkH4u63gbAXDXP/4Tmipfk3cSU+VtybZ9qb+6bnorFrOZP3du4NHdK5hSknh45zLurs4EFQwE4J0B/ahRvXqW74dC/kZ5Xj2fJCYmcvjwYRYs/pmrt+5R/PV3MJRvjtr2HDmbIOpUjYmyWav4R9K27LFRs1hx+3ZD3xT7tlomi5U/T5Js2z/dl6S2KbdOp9lOi7PUtzF4Bdi33w0S+zkrp/Rg7x9bn3qdCgpyMjoeVGSxCi8lCxYsYPHydbw/eRmOTq4Qk7vn02p1DJq2ipvnj1KiZGm++24B7dq2VYxAFBRyAEEQiIiI4IvpM9mz7yCl3pxB3ZByOD4HIgGNVkvNJl3t/zcLkJQQiz4lioT4GHr2fou3+vVh9Ecf5GErFRQUQIzbnjD5C26ERuBdrDpFm42lmG8hAO6nPH+KAyVWXCE3eP6+CQoK2WT79u3s2rWLIdNW4+Tinv4BOYRKpaJEhVp8ufoU6/44wSt1G/HD4iXP7PwKCi8iMTExtGjdji6938fqW5WBX27Ep3D557rT5Ojshm9AEIVLlGfKkj/ZvH03q1evzutmKSi8tOz580/q1G/MhxOm41Z3IE1GraJKx5G42QaWCgoKEsrKpcJLxZ07d/hw1Fg+mrMRRwc1qdoUrUrSqJiNyfbt+AeXAVCr0p6H0Ubds29HJcXat39OkGSv9X2d7dueOivgTelOn1CvaxK/LBzD/QdhTBg3NlvXpaDwMjJlyhS2bt1Ky7enUqRM1cecFl8UVCoVg6csZdLb9alQoQJly5bN6yYpKLw0xMbG8uWXX3L41BX6TViCk4u7PV5bQcJisbBr1y527dr12H6dTsewYcOUUKCXDGVwqfBS8cHIUbR/ewJOznkf26LTO9B+8Ex2LR7L7K/nMWLY4LxukoLCc8HJkyd5b/BwAopXpd/nG3F1Ek10Yk3i4PJykjgZdDf8/hPHap09ANBoxQ6icP8KAFazNKlkcisAgKOPuCqRlJQAwOkkqZ4zcaLmVrCIsVWN/cQ2FHcR/58gM9hINePwsqU2sSK+dvSRGDMVbpQmr/5+IMZ0V/b3BaB1QAqotKxevZpp06bx888//9etUVBQyAHCwsKYPmM2h/4+ySvNehD41nj2xgFx8G9UvL2cNVbyYECTRpfaKuUIkc1ho7JK3g7/njxg3z6llrT8apP0TBI00oDWIVr0gNDoJPMwjbvk/2AuKE1A1fCUJrcLOEjGYtbMp9Z8Ktu2bWPGjBk0btyYvn37sv6k9KA0xYTyRqc3eXT/FhM/nUD37t3RapWhx4uO8g4rvDT06t2Xe48SaF/jNcyPmzc+5hCrCb8uvWCT1qllHU+Lg+QAp0uMlorKvLEsFsnQZ2+KlOjYybOAfbtMsli+08CpfDm4OS2aNaF06dKZvCoFhZeLNWvXMenzLxny+c/o3VK/TznYU8qnVKhQgYcPH+Z1MxQUXmhu377Np5M+4+a9h9Ru9RYD241GpVKx/UFetyx/Mnv2bP7880+WLFlCSEgIAIciJBMLN30xylWrR2J8LFf3L8Hb25tevXpRq1Yt6tevn2Vn7MDAQMV5Px+jDC4VXgq+mD6DWw/jGTj5p7xuyhOoVCrenvADXbq/yb49f+Dp6Zn+QQoK2cRqtZKcnPzEfkdHx3wbr5iUlMSUqdMZPWcTegcDsvzgLwUGw5NpThQUFLJHcnIyZ86cYeXKlZw4e5U2fUbRqkR5u7uzQtpcvHiRPXv2sHnz5nTLOrm4MWnSJCZNmsQ///zDmTNnmD59OvcijfYyBb0k99un7Qfx/bp27RqNGjViwoQJSuqmfIgyuFR4YUlKSmLfvn0cOfo3h09d4e1x3+Xbh5BPgSDqtH6b8ePHM3/+/LxujsILjMViYcUvq5i/4AcMrl72gaRaBdcvn6Va5YqsXrUy30mXjEYjXbu/yetvjiVZ5USyUVqvTO0ELrwm2vhr7/4jvuAvWfyrNGIHxWKLqRasqfIFsRaTV7C9rNqmSEh+cBUAfay4YiiXsgk2+ZraLJ5zd7gYU7Q3WUw9oDFLKQVS3MUUAFabjC1V7qaylZFL3lweXQPgfLgoi3VQ1wQgaX8Mj2KlDpeCgkL2OH78OJu3bGP7rj8pXLoaleq2453OFVGpVBitcCNOegbeMkoDTavsu61y8bZvCzIlkzpFlM7Kv9tq2XGCWpvmfrVZ+o7LUmFikdVjdvR44lq0yZLnQwNfSV0V5CQ9s1Jz84KYs9dqsSDIZLuZZdSoUcyZMweAVUei7fuN1rT7WSsPi2V06qI4lylKwzJtMxQnL0/JkmQLN6gL7F41h+49e7Fq5fJ8OyH6spK/eg8KCjmA2Wxm2pczWL9xM6VrNMYjoDgdhg4iRdDwIEGWRD1W+vifDI+0b6tlcQy6xCgALDopZYhVL8UwqGU5Ly0Osv2yHwgSouybSUlSzqt/vcV4Ll+d2OnVV+nMidkrMnGlCgoZx2Qy0eqN9kTGxFO4eive/HQVOgeD/YfbSStgNpvYtPhzWrVuw+9bt+Qr2dGPPy0lzqSldPVGed2UPCE5MR6VVRlcKihkl8TERGbOnMmBE1eo1qAtw6YPtg9OXnyBvcSpwzto2fz1LB0bGhqKk5MTxYoVy+FWZZwW3YewcclUmjZvyY5tW/Pt4sHLiPJOKLwwxMbGMm/+t7xatwG34wwMm7WZFj0/oGqDtqjzUSf5aWj1BooXL86NGzfyuikKLxg3b96k3mvNKPZqJzpN3ETNN95D5/CkxFKr1dHp3U+5H5HAp5OmYDbnD93p2bNnWfTTSgaM/Savm5JnnDu2i2LF864jp6DwvGOxWPjxxx9p1qwZAQEB9PloDhVfafzSrnpF3r9BtSqVMn1ccnIy7777LuPHj8+FVmUctVpN+7fGUeqVNpQpU4aEhIQ8bY+ChLJyqfBCEBoaSr0Gr9G02xAGfr4KjcE1r5uUJYKCgoiJiUm/oIJCBjEajbTs2he6zeewdxAHTouGVVbbd8TBQ5RzVncV5xrr+BgZMWsjh7etoG/fvsybNw8PD4+8aDoAgiDw2dQvKd39C/6OduGhzFn1bJxNVmpzfE3tJJpcfGwlpE6jKkZ0jhVsElVVmHiMoLJNPBkT7WXVtu1UqZnJ2SZ9EyQnMIOtPrNNsaBLFNUPugTxX41RcpREEKVnuqRo8VTOYvv0CY8AiC8guTv6VW8NQJdAUTrbpGg0CxcuZOfOnWzfvj2NO6SgoJAem37bzFcz51CiSgMGTd+IWq3GaFFhtYJeJhe9FC3JT9c9kCSjVplqQLBYMIZdxxwfYd+nMbjg7OiCyuYYa9U6AKBNltRKyEz/dImSQ5A2WfrNT/QtIdWZIh2rkTnHamyS2yQfabKpZvnK9m2TbPk1SRY36muQrsegsXLlxF6qfjqQzDJmzBgGDhxI+fLl7fsikqXncopMaRuRLE3s+zqKL4QmSvs89dIzVT7El7fbUfb+yOu+myDea//avSl89yFfz/2Wj8d8lOnrUch5lMGlwnOPIAi8P3g47UYuolCJSkQDgsynJMYkPfTkkpeToVKaAo3sR0IlSE+vVDmsXOaaagMOkOLqJ9WtlYLONSmyGTRZh1Qef2GJEOuJ9pB+IB6Em4iLk/0YKShkA0EQqF23AULdwTh4B2X4OLVaTZ1WvQg2lqd79+68WqcBE8aNzpMZ/l9+WYVZ701AkfLpF37BCA+9RY/xwxk5ciRjxozB0dEx/YMUFBTsJCQkMHrsOO5GpNBn9HzcvbOWb1EQBOJObSdy/3IsiTEYCpZB5xMsTWhFhXL/wn5ci9fEq8YbaH0L5+BV5Dx3rl2gTKlimTYQTEpK4syZM/ZYy/xC9fbD+Hl8cz76cDg6nZKHNK9RBpcKzz1TPp+GU4EyFCqReXlHfqNag7b89PNS6tWrl9dNUXjOEQSBYSM+xLtwBcyV22SpjkaNGtGwYUPeHjOHhk1a8PGoEdSrVw8nJ6f0D84h1qzfSNM+E7j8zM6YPxAEgbULPmb+rFlUqVIlr5ujoPDcYTQaadG6LXXbvE3PHk1RqVRY0z/sCeIv7Of+2sk4l65L4JvT0br5pllO/fAacZcPc++3GWicPfFvMRSNo3OaZfOarctnsvT7rzN1jCAIDBo0iNGjR+dSq7KORqvDK7AoycnJyuAyH6AMLhWea44fP85X06fz1dqzJKVfPN/j6VOA2Fhl5VIh+3z99deEGd1oM2AUP9xPv/zTUKlU1G3Tn8oN2vPPPyuZNm0ab775Jj169Mj1QabRaOTA/n10HDoHYtMt/kJx+vBOqlUspQwsFRSygNVqpU27jtRvO4BKrzYFnjTr0anFPXJJ56YISbIpYCZizxLiz/9F0KCf0DqLq3xqmQLJapHi0i0uPjhVbYNT1TYk3jjJ7ZVj8W/2Ps7FRcdnuQLKJHN8FWRGNHLX11SpPYBFJz1rU1VS8rKHL1+yb7ctL0lrfRwkJVaCzWk1KT4GTycVQUEZV7MAfP/995QoUYKmTcX7ufaoZFb4wx1pOFHLTbqHPjLZq4NN3hroJLXpYZJUVp76ZXmodF7zfWlqUdBICjFD1G37trHoKySnZGXqQCE3UAaXCs81v/32G90//BqVwRWDLJ7hUqz08Jfbb59JkBv7SPstjm72bW2i9MC06sUHutwq3OLgkmYdGllshcXRXSohk8uqZWU0yWLcxCmZgnZmQw/+XKb4bClkj3PnzjH/ly3oOnzBuTPhj9ve2/7VxIsdF2u0+Cv+ty01xyEXL3vZ3x+IcUO1PFTg4IVv3UF0rNqH3ZsWMGlyGf45/jd+fpI0PKf54YcfqNb9U47FuLP3kah1t0RLsUqpKT30tk6YxUGMI9XaYhuJl9ycUwqUEjeSxA6Z2fYdtXf4bB1Ga0oCiYni99QYeQ/BZAStKGF3tabg6CsmCk9Ojd20Wfk7xIrtSnET92tM0nSXJkU8p0UvPjtSXai9XukIwDsB0vOlX10Dv/zyC9NXTmfPnj0ZuEsKCgpyTCYTbdp1pEytllR+tWmWHWAf/v41lrgIgt//AavZlKljnQpXIuS9Rdxb9iGmmDA8qmVNPZIbHPptEb17987UMXfu3GHr1q1s3LgxdxqVExjcuHv3LmXKlMnrlrz0KINLheeav//+mzYfDcvrZigo5Btu3bpF97cH49pvKcbEnDeHMji50L7vhwQGF6Nt5zcZPvgdunbulOPnAdiwYQPFBuReep648/uIPbYRq9ko5q5TqQEVDv5FAdA4u4urFRodgiAQemobap0D/rXaoS2etjQuO1jMZnr16oWDgwN79uzJdDyUgoICfPjhh1So255ar7XLch1RxzaScv8KhfrPFeMqMzm4BFDrHQnqM5vQdVPAKuBVpXmW25NTRNy/RdStk7zxxuRMHTdt2jQmTpyYr9N9JBeqwapVq5g0aVJeN+WlRxlcKjzX6HQ6NPks2Xt2cHR05NGjR3ndDIXnmLVr1xJTvAUF3P1yZXCZSq3X2lG9fmtWzhvHyl9Ws2rFshw1nElKSsJsNqN3dEm/cCYxRYby8Pc5qHUOFHhjJFoXL6wOzqjUNmVDamLxVDMuW+5bx+JVSAy7zv0Dq1Gf+ZMCLYag1efMNZ86sJUDGxcy6J2+9O/fP0fqVFB42Th48CAqlSpbA8uEq8eIPPgLQe8vybaJmUqtJrDjBELXTUGFgGeVFtmqLztYzGY2LxjNz4u+ztR1bdmyBbPZTNWqVXOxddnHuVQdfpjZVBlc5gNenF65wktLoi2OIFqWoiDAUdL0R8r2e8oksjdldWhksQtWmaZfnyp185RiE1QWKW7CqpVyBVrdZPJAmUTX0V1a4UhOkM5jsqU7MD+UWrLhZCDJ5vw7M6iQ/1mxbgseDT/AdOkAOrUo9UxNeQFgsslBU+Xdqf8aokTppy5Rck6+/ugmAGcDRJlR48KBANTwSv0O6Nj0y/fs2bOHRq+3pH692gwZ+F6mY3nS4uLFizgVKMPuO6K0VW2TkuqTpO+Qymq2XYMoh7WmSlu1HsDjUvVa/l5E3jrL/vVzMUbeo2THsXiWqUtqxFSSLFwnxSjKVHU6URb8uofteVLED2gI7fuzeuU8bv04nMKN++LkV8R+rFPYebEOL2mf2RZf5VCmPgC9bTLY9xqIz49//jlH/7E9uX37do7cOwWFl5Hk5GRGjZ1Ar9ELSZHF71lkuli1bEx1PEL8rd/1QHpOWBPDuLNiLAHdPiPEVZrYipDlBY67c8G+LU8RkiqRBzC5ia60aptzfKG2o7mx6H2cC5XBwbsQFoNUt6CRuuIqmbv8Y07z8tAGi/j8sMpCbpqUKWnflvd/LIJ0wQdXfcGgAW9SsqRUNiMsWLCAdevWAY/HWZ6JksKPXnWX+i377km/N4W8pX6Ru058I45ESMddS5GOi7x6wr6tS5B+h7SygXCqgz+APl72uxZ2BT3g5V8og1elkJsog8tnQGxsLH/88Qft27fP15IChaxjjo8ieu+PJN06Y/9B0PkEofMIwL1UbVxK1UalzZiDWUJiEpGRkXh5eaVfWEFBxgejPsbBK5iUHFpNyyivvfYa72vKcf3iSapUq86gQYOZ+Mn4bM367/5zH4Ur1ntsEiirWI3J7J/7DubkRLwaD8S5WHU8DQ7ZqtOtRE0M/kW49eskirYeioN71mJP//jjDzp37sy9e/cIDAzMVpsUFF5mZsyaQ81mvXD38sOaxUDL2JNbcQyphD4TqZsygkqtpmC7Udzb+CWFe88AbfaeP5nl0vFdaI0R9H6zZ6aOu3r1Kr6+vhgMhvQL5wMCgopy6dIlSpUqlddNealRRjq5zPbtO2jQuDkrVqxgwIABed0chVwg7tyf3FkyGL1/MQLf/JJC7yykYJ/ZeNbuit4nmNizu7k05XVuLRpIStj1dOurXK8Ne/fuzf2GK7xwHDx2glffmZcn59bpHShV8RW+XnOSh8lOFCtekrt376Z/YBrcvHmTzz/7jMKlq2W7Xaa4SK6tGEuROp1o9NFynItVz3adqejdfCnSajA3fp+HIGS+N3v48GFGjhzJ+fPnlYGlgkI22Lt3L7v+Okb1hm2zXIc1JZHIvUvxef3dHGyZhME3BK8abbm/fX6u1P80wm5f4fhv8/l+YebPO2bMGD799NNcaFXuEFKyCnfu3MnrZrz0KCuXuciuXbsY9sUPhAxaT0U/RzZ9+SZ/7NrF602a5HXTXhgEQSA2WUCt0bDpoSQFae4jfbS9ZFbYp+JlbrEySYnFTUqsrEqS4tRSPESJheAgswE3iyuQgtVC+NbZCBYTxcdspmlBySFWqwIIBl5ld4wGQRBIuPY399ZOArUGr4Z9cCnTQKxHZmV+K16D4F2Cw8cO06FDh0zeDYWXmdjYWO7fu8MtoxaTszcguZImeksSzdR9Gpss22qbQU+xfQc0KZJ9caoLqy72IQD/7NgNwO5iUh7WL86K5d8uIUpT/R2dqPfGW7gFlKRjj/40rv8qEz8Zh14vfd/S4+33h+Leay7LIj3RxN0CJOmYXJauMSbZrkGcVU+15rfapFORkQ8I3zqbgv3n4Ve+GkYrmGLEa3mEuNIo2LwkrQ9v2OtNdYdOssltdwji/TMmS/emZQ0xvcC2M65oCxQn5d4FnH2DMbmJg8Qkr2B72V7lxVWQMa+nzv4b2L17N1179WP//v3KwFJBIRtcu3aNj8Z+wsDPf7Grw3Y/lFYGzyRKCoqU26ft2xZnmzrINjEUsWcxXo36obc5QpeSpczYGSbJX63OktGWJlKaQNOmxEv7I8Tna4pbAfs+wcETlzrdibl2nLh7F3EuVsP2gtRHUVsk4yBdqus1j4frCCrxGoWiNez7KnpI/Qi5Q75OLfDbuhks/2lRpmPir1y5goeHB0WKSL8fd2WO+xvuSy7X1ijJxVslSPftrkwq/Mt5cXJdnmJFLXueO8vun8lFUoLoY+7Zt80uUpiRVSetpqZKZPcneVP63EWaKP3sPEVZucxFevYdQHDvOeicPVBrNDQdNJeR46Zw79699A9WyBCFChUi+uHt9AvmMILFxJ3Fg3AqWpWgfl+jcXT9z/IqlQqX4jUJGbqcgG6fEXdyO3cXD8KS9GROy6KV6rFn/2FSUlLSqElBIW1Onz6NQ1ClvG6GnVJV6vPu52uI0QZStHgp/v333wwdN+6TiVicC+JaMXudgwd7lhD7z2ZChqzAIaBE+gdkA+ciVUiQxU7/F2fOnGHo0KHMnz+fw4cPExISkqttU1B4kbl58ybde/Xn7Y+/xeDonK264k7/gVed7jnUsqfj98ZHhG+bm+vnEQSBZbM+omKZIhQtWjTTxw4ePJhRo0blUutyB0OJOpw4eyn9ggq5irJymUsIgoB7waI8wAHi4rkVbQYMGJuMoUv33qxdvZyAgIC8buZzT5cuXZj/809UeWsCr5ulmMYbSdK8SaIssD8sWZol08oC6s2xUmC4fOXGbMtlp5YFjuMTwoM1k3Gv1YFBnXvYdztpZMmKZedsLC1o4uRlgIIloNI3LP79N27P60XwgAWobSujK26L7Uso1ZqVK1fSr1+/DNwFBQWIiYnBs3CFvG7GE7zyeleKlK3JOwOHsXLZYooVK/bUslevXuWPg6dp9eFi1t43P7VcekQc/w1zQhQF3/o2y3VkBr1nIElXjz31dWNyIid3/kyjqVspVqwYvXr1okGDBs+kbQoKLyqXLl2id/936fvRN3j7FcRkTf+Yp2FOiELr6pNhb4TsoPMogIN/MRKuHMW5RK1cOYcgCCye+h4VSwXz1RdTM338mTNnqFChQqbNf/KcbLr7KuQMyuAyl5jy+TRi1a78fyY0feEqVDD0pVmLVpw+dSLNYxUyTt26dfno44lZinfKKsl3z5MSdo0CnT/JVj0upeuiUqm59/NICvaehVovSTwcKrdm8eJ+yuBSIcMsXrwY31az87oZaeJfsAidhsykXr16HDt2jEKF0nb0MxqNeAUWQaPVAVkbXN7fuwxTcjwFW43Akn7xHMEUG46Dm0+arxkjQ1k/dQgD+3Wjx7TNuLjkfGoVBYWXjTNnzjBixAg2rv3FPlE/ZYckq/z35AH7tiZFUgjp9NLqZqq7q9mrECm3bmMILk9pV+l32EMne4LIBi0O4ZJ3gtwxPlkmhdcmiNJPucurJkFyWvWp3JRHh1bhXqDoY/JOuUuq2UFSRJkN0rbJNuk9uqjUPoNW6gN1qeXJzJkzadu0DkOHDiWzmM1mxowZw9dffw3AikPR9td++DdUdo0yR1eZnFctc9BNdcqGx+WyqRidpeemSlZWLjE2ukthA6khCwCaZCmEyWiTy1qBZ9cbVHgayuAyF0hOTmb9pq14v7Uqzdcr13+Dv3csZ//+/dSrVy/NMgoZQ6fTUbN6FW5fPQu+zyYHU9SBX3Is4N+5VG0EUzL3ln1Aof6SEYvWxYsiRYpw+fLl52/mUOGZEx4ezm+bN1OhwvuoVFfAHnNpi22RW9rbYndSOz3OD0RbfbU5mf9HsMVjapPETpHRFk/oeXWfvYzKLK62r7wtrkgmFRHjgD4sLXaYUvtkAcHFWLNmDXXq1OHWrVtPvZbbySo2PtKgvSem9EjtkEidNKmTl+xR8LHrfBR2ixSLhTdGLwfg33hpgBpuS1mELb2Ig178NyFB7KAIrlInRx0lhi6kxlqbjOK9qeQpDQyNVvGeOsQ+wHzrX5xDKmIxuJFQoDQAn9Ty4+H920z5sjcLV/xM48aNn3rNCgoKGSd1YLlq1Sp8fNKe1MkslrgINLJYytzG4F+MlPCnPwezw+nTp/njjz/Ytm1blo6fMGECvXv3pkSJ3A0nUHhxUWIuc4Fvv1+MoWpHsJixJsVhTYpD7+hq/1t4E+Kbf8Lkr77O66a+EAzo34fr+5ZQzdtk/yvnYrH/6dWC/e8Vd639r6Srwf6nSYq2/1m1DvY/TWwYmtgwBI0eQaPHqtaRcv04/pVfx9XJBRXY/w5G6ex/Wx5Jf4kWlf0vWfb3WiEfXivkg1u11rhWa034jvlYzCn2v8DafZi34Ps8vrsKzwNTp8+mw/hV2U74ndvUqVOHwYMHM25CzrsPWk0pPNo+D7+2zz5GKPbWaZwDH58EMhlTWDjxLdauWa0MLBUUcoiDBw/ywQcf5OjAEsAYfhO9X+Ecqy89VCoVeq9AjDaDsZwiIS6GYcOGsXTp0iz9Hhw9epSHDx/SrVu3HG2XwsuFsnKZw0RHRzN16jTqzjpDXFT0U8s5BpXnxrECbNz0G+3avvHsGvgCUqVKFe7du0dE2F28czmBbsr9yzgVrpTjnXjPuj25s/Btkm6fwTFYjJsrXKYa3/04iaSkpEy7vCm8PMTHxzPv6xm8v+IWV8+dy+vmpMtHH31E/2GTqduwKcGBPqxcudL+mqOjI6aIrNnI39uxEO+m76Nxck+/cA6S+OAaBs8A1LJYLUEQmPRecyZ8/BH1FXWKgkKOsGrVKtasWcP69etxdRVlotP+kCSvv56+at82yKSZgsxp1RAtubsm+IsqA3XsQ8wPruJQohYVXCXpprNWUnyUcZN+g5PL1bZv3zl70L7tEC35NahNopO12UlaDbW4ygKlBCv6kEokxITj7i31W1KdrgG0Mud6jUnqrjcpKspitWpJipraI1kybSCzv/oKf3/JAT+jJCYmMmrUKNauXcvKw9H2/TOvS+fWx0qusA4yF1eTk7fUbplcVY7V5tCf7CFdr052jWpL2qEQcmmxWZafWJVG+Vcf7KREmafH9Ss8G5TBZQ6zaNEigloMRaNPP+GsY8sxjB7bgvr16uLl5fUMWvfiMnXqVLr17Er/0XMpWjb35LFxFw/iWblZjterUqnwbz+W0JUfEzJUlPSp1WrKvNKCjRs30r177jvYKTyfLPhuESHtR7Hvyk2sNjmsywNRUmqxdVQe77BEA9IPttUWg5QqgZXLY1W2OJrUTk7qa3EFK9vLOEbdtr0mxsJ4nFgLwHeXxFWFFDfJuGz6flFmKhRsDQVbc2DdOL6Zv5Chg94DoEiRIrha4gnRwy1jwmPnTI3dETTSIC71nGFXjmN186V+s14AmGxBN2q1ZJtf3pZW4O4D8Zj4aHHFIDX1kMpFFvsTWAaAwk7iPQnUiZ3Mo1FJ0rlDL2AxJnFn1w8Ubv4+ulgxFql9/caYTSkc8HLJdMJyBQWFJ0lJSWHcuHGYTCZWr16NVpvzXVdj9H30Xs82JZChUDmSbp/GvWiVHKnv/MlDFC9ciOrVs5bLd926dfTo0QNfX1+4Gp0jbXrWHNn5C7P/2pXXzXjpUQaXOczaDZux9l/D9SSzPbYHwGKWXEpVtjxMGidXKrV8j4lTpvLN7BnPpH2JiYmsX7+ejTv2cub8RVTyWX6bKY5WI3XIHNTiLLwlMYaObZrz7jtvZ2lGLLepXr06fx85QM/e/Xh4twWl6ne1ry56WaVVxkijpATffzPavq2SBdTLZ8MsDmKMlcYWXG6JukedUqXxcBE7qo9k9QUbpFlOF7V0ztOJUhmLLNK8gbt4Hg8nWxxX0co88gwk4fQunIvXJCzJjaA63VmwaLAyuFRIk4iICJavWo9T22l53ZQs4fX2YqZMb0WRkCDatG4FgKuTHmN8VDpHSljNRiIP/EIR26TMs0KwWrm7cToFar6BwbMAxIU99rqSu1JBIfvcuXOHAQMG8N5779GuXbtcO49aq8cqy2P7LND7FSH21PYcqctiNvP78hls2fBrlo6/fv06K1asYOPGjTnSnrzAGB1GcIAfTk5O6RdWyFWUwWUOEhMTw727d/F1yPgHu1qzXqwc35bbt28THByc/gFZ4OHDh2zYtJmz5y+yfedukgu/imv993BuUgKjUSYdsYqDHR8PSd5Q0jZgMhuTufTXt3Tu2pPRH31Aq1Ytc6Wt2cHT05PfNqxlyNAR/P7jFVr2G5/j8lVTXATaTLy/mcWrbnfCdy7AubiYoN3FwxeT2kBoaKjSWVV4golTplK7w1AOCZr0C+dDtM6eBAz9lVFjOlG3Tm08PT0pVqQw9zIxuEy6ewGX0nVQafXpF85Bwg+uwjGwBB7FqqX5+qVLSq41BYWsIggC33//PZs2bWLevHkUL148V8/n4F+M5LDrQI1cPY8cnUcBzFGh6RfMAMf3b6Nz+zfEVcdMIggC06ZN45NPPsFgSF91l19JuHuezh3a5nUzFFAGlznKR6PG8EbfURzOxDEqlYra3cfSum0H/j3xd44Ohs6dO8fEyVO59zCKwKot8AppwZtfjee3KFkeJ+OTDpFpodUbaNx9MNcr12HClEns2bObr776CrU6f3lCabVa5s2dw6gx49i+9HNe7zkKNA7pH5hBdO5+mI1J6RfMIg7+xTBHP8Aim0Gt2nE0w4cP59dfszYjqfBisnv3brZciMS1chPUd88C4BhxA5Bs2VNX3J3DLtiPM7qIygNdgigLFWyDMqstLinBVzKmcYoQLfdTXAsAoLaIklK9LO9rql2+LlG0pU/xDAEkh9nU2COxrLhK7/zwMgCW6Hs4AAn1h9L9rYFsX/8LWpVACScL9139AHC7cUisx6b+SPIubK9PkxKPypiAxskD1BqquYsy3liz+Fy6J4tT2hkmxmapjYkAqBKjxTa4iedxd5Nio2KixHtz/8YVAG76iOfUxIvXGH/1GEl3zlG48wRUtutM8SoCwJ4YLYKgyXfPRgWF54Xk5GQ++OADChYsyJYtW1Cr1Y/FAC64JQ2A4q+ctG+7REvx2hZZKIA8fYXJSQpBSk1FYtU7ofUqhCkplrAU6XsbpJakRv56aXtfhGxSPriydJ7Q80+cU3CUUohoZdvmmIdY4h6hdnBGLUvjgSytmjycwegsTfqfSxAnE8vbnndWi4Xj25ewbNkyssKJEycwGAzUrl2b5ba0I9NOS6lANDFSnKXBFlYhIvVX5alSHrv3FqOsuHhvnR5JsbEWWboVvSwe1uwiDZI1tme2iHR/VLK6jYHlMN+7gl7/bCcZFdJGGVzmEDt2/sH6rTup89WXWFPEFUCV/IsnGyxo9NIXb9l1IzhVINq7HK+++iqHDx/O9gDzxMmTtGnbgSSNMz49vsLQvBYXzbaH171kNOHSAxDZAyG1vRGxknvZIfcC9u0jEXpQVUR4+1cObP+cbj17s+zHH/LdTJdGo2HG9Gl8Of0rtn43ho5DZtrvqSz+nYq+0sP6tLyCBFmAuc0UwGILylc5eXA5LBwvD3EWtYyTFPx/J1n6Ufo3QqrD4CxJj4P00nt7I0n8gXjdU5Lhro50xK1aG+Iu7GO1W2r7/PCNNRIREYG3t9RmhZeb8V/MwdBiWr53iM0IjlVac3Hjcfbs2ZP5g63PKpulKIWNPrmN6NN/ULTjx0+99yqVijp16nDo0CFq166dZhkFBYUnSUpKon379gwePJjWrVs/s/PqfUNIuPb3MzsfgCkyFJ1XwWzX8++BLdSpUydL6jdBEJg9ezaDBw/OdjsUFFJRplZzgEuXLvHO8DHUnPQnal3WZk08unxBUFBQ1jpXMhZ8v5iWbTvR/JPNFPrkLwzFa2WrvrRQqTVUe/NzIj2rUap8Zbbv2JHj58guKpWKMaNHUbF4AbYu+SzH6nUsXIVHZ/elXzAbuJRvTMKlQ4/tq92iN1/P/TZXz6vw/HDv3j3C443ovXPXHflZoinXjAEDh5KYmLm4p6TwW+g8A9IvmA1MMWE83DyTa9/2xxh9n5A3v0STjjx+6NChjznhKigo/DcJCQm8/fbbjBgx4pkOLAEMQeVJun7imZ7T+OgWet+QbNdzav8mRo4cmaVjlyxZQunSpXnllVey3Q4FhVSUlcscYMyYMQS0GYuDu1+26hk6dCi//PJLlnKixcbGMnToUG6keNNl9lF0Do4QnpL+gVlEpVZTqvm7+JVvxIiP3mbnH7uZ9OkEuz14fmHqZ5Np1bYDty6dIqRU5WzX51zyVcJ/GkzJjmOy37inoPMqiCny3mP7ylarx+fvTWbyxAm5dl6F54czZ85AiYZ53YwcxbHEq1TsPp7Tv82mfiaydxijw3Ctknsd0ZhLh3nw9294v/4uBRr0QpXqQJti+s/jDAYDiYmJ/1lGQUFB4q233qJ///7Eutdg7VFRbh5pk6keipDCWxLMklrB6FfUvi2X6+sSI+3bcsfqFA9ppdAQJcowtcmx4vEaDTvOnLHnuxxYPO0UYObYcOk/Mvdqq0y6avISVxENbpILtVolreeYtXqMEXdxKvGK3ZUbHk/NYZXVrZLJZWvZzACddAI3L58h0NsFT09J1p9Rjh49yu+//07b4d/b5bBfXhTr1odfl84ta1+qazeAxeY0ntpuQRCIv3uemLuXSIm8i2C1YE4UwxG0zu4Y/IrgVqo2Kg//NFUfRnfJV0IlSAaJcqmwyipLPyJLUSIkxSAYk7BaFTOf/IAyuMwmW7Zu5VpoDLzxGtfixI6Eg21GO8UqfTmsMrdYOQ4yyWTt2rX58ssvM3zupKQktu/YwfLV69m1YzvNP1zMI4/y7H4QB8SBRnp7VYmxUlu00kNaLc8FpX7SFESQS85kz4IDkbaBq1MIqoEbWHd8I2tqNqByyRBW/LwUNze3DF9HbqLRaPj+27k0aNyMyUsOUNRVekh5O0jXdi5GeiBZkuJkFYgPd5XtPmlUYNQauHLvJjp3f4o4pB3PqZE7BcvcZ51lD8MAB5tZksxBFsGKSgUqjRaV7H26m2TAt3BZwsPDsxSwr/DiYDab+WLmXHTNptr3pXZI7LGWthiVJK/CwOM/1Kk/zsle4ox56vc+9VmgTo7DGHmPxPtXiLRaQaXCVXsRBw9/LAVKolKpUKmlz3Rq3anxQfJUJgC6RMmcx6IXv2em1Nxvtg6G1pa6qeqrzdi3ZBxuOqs9VtNoy4mW2rlyiJEMMFLcAtD5BJNy5xwG/6JcjBe/X6VdxPZVc5a+47uSbd9lPzE20skWm1PPTSyzNVQmh48TO6nhdy8Re+UoRfrMQq1zEOOHLOL16uMeT36emuLFcnILAPNcmnHi/A0UFBTS58iRI3h4eNC0aVP7wPJZ41WuAdHH1uPX+oNncr6Eq8fwbjwAZAPhzHJk52oGv90v08fdvXuXli1bcuTIEY6GZ88QThAEIi8cJOzvTTj7F8Ot4ut4V2uN2sEJlYMzIGBOjCHp7gUeHV5DaPhtfKo0w7NsfdQ5aMTmUKA423asoVevXjlWp0LWUGSx2UAQBEZ8OIre4xblSH0aTcZNIOLi4nizdz++mPM9uso9GfDzDYIqv5Yj7cgsKpUKlxrtcR22CcGrFLUbNuWbufNJSHi2tt5PIzg4mI7t2nJs97ocqc/z1c5EHfglR+p6GhpnD8yxjx7b516guLhipfBSc+XKFVQeITkip5IjWC1EntnN1SVDefDXcizJ8WhdPFHrHYm/f4W7f63gyuIh3Ns+n8Sw6+lXmAXioh4S+eghBqeMT065l21IzIktOd6WpNDLRB38hYJvTkety7wpmEqtxtEniNOnT6dfWEHhJcZqtfLpp5/yySef5Gk7PErUJP7M7mdyLnN8FGqtHnU23ecf3rvOa40aZeqYK1eu0Lp1a/bu3UuJEiWydf7kiLtcWT6GpIc3KNH5E4KbvYtLkcro3HzQODihUqtRqTXoXLxwK/UqQe3HUKzLJ5gSormy4mNSosPSP0kGcShQnDsPItm9588cq1Mhaygrl9ng6tWrBBYth6uHD0TkjKmEyfTfUisQVyxbt+1Inbbv0rlWY45H6NI95lmgUqlo0utjzN1Gsv2XGaz65XVGjRqVq7mpMsrUzydTsUoNytdqjKtH9kxx3Kq25tq0Vvg0fQ/IOSdaORondwTL458FZ69Arl6/wWt5M4egkE8wGo3o9DlrohV/81/ub5+HW/GaFO35BRqDKHey2Ay/HINKAZDi6En8zX8JO7oRc0IUgfV74hJY8qn1ZpYTe37FxdMfh9TcrxlA5y6u1pqiQqFwUI60w5IUx/1NX1LwrXmoNFl/vpZrPYwxn3zG7xsVp2cFhaexevVqmjVrZk+3dTFG+s5Fm0R1QwEHSX1x2yittIXJJJOCbHI+2UN6FqhkCiwnmdzTmGrUJ3MgdfHww7L/Z1wKleayv/Rj66OXzt+4iBTrfjxBOmdBnVRPWZtqIkr2M773kTThHndyKy5lG4DZiFwWppIpP6wOkuy0Yoly9u1gJ1EJ16y0msU6mXw0A+z5cy9jxn3K+1OWcymxIJeORvHFeUlZp30gOmSnOnsDOEbetG/L3V3D7l4m6tAqAvp+Te2KNe37TTI11uUkqX2NPMR/t1+8hkdAKZxqdeT2zyMp2vw9HNx8JUULoEuIsG/L3XTNBmniUZMiqcyc74uO6C6dZ9G8eTlu37pFQEDuxuIrPB1lcJkNJkyehl+9t7gQo8NqkR4IJpsEVi2TpWpkRj+mJMni2cdFenisPRoFjj6cPXuW8uXLP/W8o0aPxalsc0zFm/NPBOx4IMX1qB/T60vnVJukMoJMmqk2yeS6gvgwNDtKUl2Dq2TbnSKTiwopUn26KMk+epHJFs9Q/R1ebzmEcV/0xeDoSPNmzZ56Pc8CvV7PooXz+Pbb8axcuRKVSvWY9KZ/iHRPfr4vc1y7fBCAFA/px0R7/xLeZRsQue4z/uwmmQW97ivd70DZ9p8x0g+HfArCwWZzrpaHHtjSnFiTEyApFmyDiK0RnphLt2f1pqG88/ZbmbhyhRcJq9XK0JEfU6TtJxRylyY2/vYUP59ut/8BINn2eU21w7foZLJvW5yMLjEKU2IMt0/+gSUhmlLjd6Jz88Eq6xiYbd95S5DYsdEIAu4lXsFQoQnGiLuE/v41hit/E9BkABZbvIzOJg+Vy2FT0dnSfwi2AZtgk8UWdBKvxVltpljpiujj72ENLAuA9t9NYhtsnQqTkxTD5BB7H4CAKs2I3jqbQ66fA3AvWJyNL+kofeNa+YrndNaKnR2TIEpn11wU45u1tvYKgsDdpcMoXK8bGq0OEiLt0l/HR1LHNPUaVFaT7V+xjNHWzt2H9wMQExrBnTt3CArKmYGvgsKLxtatW5kzZ05eNwMAv2qtufvnjxTvnHurqJakOKIOr6Xw4KXZqmf//v288cYbGS4/ecpUtuzYzXufLsYtG5PsgiBwf+9SUtQ6QgYvy/IEnN6rIEWbvce13+dTsv0ocMp83Oj/4+RdiLoT/+CVJm/Qrc3rfPnF1PQPUshxFFlsFrl+/Tr7/jpAwfKZcJ7IAMXK1eKff57uWNa3X3+27/6LMq/3z9Hz5gYGFw9e/+An3h06imPHjuV1c6hXrx7FihXj888/z3Zd3tVaEXftb+JySUJjjn6A1u3x2EqtkzuPIvImFkUhf7Doh8U4l26Cb5GnTz5llIQH17i6bhou5RpSqN8cdDLjiYyg9y5EUK+v0Lv7E7pjQbbbk0pWEqu4FalCSvQDUrIp1xUsZu6u/xyP4jVwCciZpO0OVTszdETWnBxfBgRBYNqXM6n9ehvK129Fvcbi36uvtebV11pTtl4L+1+tJm3o1Oc9evZ7j4lTpuV10xVyCJVKlW/yEzr6BuMSVI6woxty7Rz3V3+Cb/NBqPVpGwZllOTk5AyZKAqCwJIlSzh56Q4fzViT/YHlnz+h1hkI6Do5W8oOAAd3XwrV6cLNP37IVj1yvErWpOqE3azftIU3e/VGEIT0D1LIUZSVyywgCAJDh4/EtftX/BkhrgzoHJywGpMwRd3HN7Aoaq2OcKNkemHQSrfaGCOt+mlV0kyNRQAnN2+SkmWGMjIuXLjAihUr+HzzfZbeiJe9In1x1PIvkaMkH1DLJAbylUmL/OFmP1a20nb9H/u2SpYAGFXa8xLaOMlF7UFKAOi8qDNhO117vsayJd9Tr17ODsYzy5QpU+jYsSO7du2iU5Mm9v2rjkTbt5t4SpKbLb5iB1MfKSVnNvqKhiAFBy7l3rIPsCTH41K6LiccpdXNhh7Se1/VWbqffnppJcXXIK50/BMtPZzV5hQEq0WUxGq09ne2opNY9rDWQGRkJF5e0oqywsvD8ROnCKjydrbrib99hod7l1Gi83hSimXPgt6nZlvu/DaTuIsHcC1dN9ttyypBr7/DzY1fEPzW/Cwdb0mK49Yv4/Cu2QH/QjkzsAQw+BYm/mb+iD/PL5hMJlavXs3KlSt5lCBQuOrrmLosxM3Vm54B4m/qw2TxObz6RrT9OKNOz+XkOOq4CuzZ8jW7G7cCID42krf79sLZWVqhFwSBsmXLUqtWzqfjUshZUlJSsMoMEEu6SzLILrX+ezVr1RGpXzLdRfpNt9w5Z99WG+WuzTLnUZtaS96fSXH1w/P197n50wi27NmMY8HSAGh8C9vL+Bik/lxlJ6ndwTKlxM5I8Xc9LFrqe+nCrxN76TCq+Aj8vQMg7LLYPpns0yKTfSb7FrNvn0+UzlPOllM7+vZtSpb877AEi8XCgAEDKFq0KGuXzkOjEb9X3/0lqdxUj7nTi/dHL+szprrtClYrofuWofEOxqvZQMr7SRPgZ+KlPo9WK/VpjMnSvd9xX6y7UhEpzvO0IKApUAbh9kWib/yLW0nx9yjVcA4edwGWv39mR+mzoUkRTSsvRkjtHjBnL7uWTqZWnUZ069KRD4YPeeL+KOQOyuAyC6xa/StJWk8MJWoT8edPxJ3+A0tyHGqtDr1fUe6HXsTB3Q+v9h9jsD2YMoqbpze3bl5I87UPP/yQd6dvFqVazxF6Zw8+nr+dD8b0Zc70z6hTp06etUWlUrF06VKGDx/OkSNHGDduXJaT0KsNzgT2mMbdxYPRuvuDX87kHEy89S+OT4lj8y7fmL1799KhQ4ccOZfC88PVq1c5fvYq1leLooqw0LmA1Nk4anNqtdjiZFKdTFNjjYwu0qpk7O7viL15hqIfb0Pj7ElpvfhjfSnSJguVxSep48UfausdcdLIZLPa1xWQBl8mNz98+8zh1uzOGMrUxzFVmp8qszdIk1mODy8BkFig7GPtvPlQlLdGR2pIStCw5K6ewoVE+e59V3/xYJXYKXKMlBxYU91nLXondAEl8a7dhTs/DUXVbjQ6Fy9uusrSQ9mMM9QxNgOJ1PgsnSPJoZd4sGEa/h0/wbFwJUwPxE6fY5Q4qZRsk/xaZcY+SV7iJJPKdi88HcX3IMkodhQ7+Uun3vv3PBREpn81ix+XLadcw25U7z2TrZZgrgEWsxlTSgqrHoj3+O0gm3txvNRZ1ASWROPoitZVoFKvL7HY+pn+lkcc+/cAZpmBr9WYSP/+rzDg3feZMulT/P1lb4hCvsLT05O///6b119/Pa+bAoj9hEKdJnBr+Rh8G7+NW9n6OVJvSuQ9Hu5fQZHeX4E5+6ni/vzzT/r06fPU1+/fv0+fPn1455136NSpU7bP9+jgKlBr8Gk2MNt1/T/+LYZw64f3cS1eE1UGjS3TQ6PV0eytKQiCwOnNs2nXsQurVizDYMhZzwKFJ1EGl5kkKSmJL2bMoevHS/liYg9cyjUk6N3v0Dl72Mv4OeiIv3Oe86unIAhWgvrMxOCTsYGHX2Bh1qz9Js3XoqOjCSn3fM7COru60/6dyXTu3Jlz5849NSfTqVOnWPGLaH7h7e3FG61bUrZs2Rxti6urK4sXL2by5Mn06tWLH37IuhxDY3ARB5hLP8DDaQbuJbL//jzau5QCbT5M8zX3IlX5++/flcHlS8i6jZsp22Ig57I4GQLw6OBqrFFhFG/3IYJz9uNbUtE4uuLVsC8RexbjVinrjlMJV4+h88j6IMCtfCN07n7cXPExbqXr4PH6e6hlphhyBKuVuIv7iTi8FrWDE4F9ZqH3zpkJoifO9ZLLshITE5m/4Dt279mLzr0Q/WfuQpPqSfAg+/U7uXpSvm4bjDJvE50aKjbowMU/V9C8bRc+HjmUzp06Zv9kCjnOxIkT6dKlC8eOHcPJyYn7Zn/7AMMp3AU3Nzfq1q2bYTf9nEDn6k3hAQt4sHU2saf/oFD/uWhk/bzMEnd2D5FbZhHc+RM0esdsDy4j7l3DYDDg7Z22xDU6Opo333yTBQsWpLu6mRHMiTHEnPuTkNE578wNoHFyw7VoNWLO78OjfObcb9NDpVLRovtQDmz7hdZvtOePHb9neVFBIWMog8tMMvvreRRt0ItfvhlHq/b9KVO7DQC+Bmm232I1gm9x1hf6hbgbJ7kyrzf+PafjGFwBACdvKYlvQZkDWddXPAFPNs570v3r/v37hD6M5LYtV5tWJtM0e0tGEVY32Uy9zRwGwOQrJRpWy6Sr2iQp/6XRU2yXSnac2UladZBLE4yyFYHU/HZifdH27ZMXTtm3a3uXxadIRQZ8/C3Fi5cgLOwBWu3jH7/4+Hjad+xC06EL0Tk4cT4ilAWt2zH50/H06dObnOaTTz5hxYoVvPbaayxZsoTSpcVVZuNB6RpO+YkrFndlhkyYZfZvKjU6r4IEv/cDl5cMwb1KMzyqtWF1jLRS5O4mSVjLyfqYf8eJ1383Uno/Eo+sweDiiauDAZPsvXlkc8xTh1Rj78ZPs37RCs812VEtxF06TPL9yxRv1AuVSu6PmDO4VW7OzdldIYuDy8Rrx9E4uT91MJhRHIPKUXzAfKJO7eTWt/1xCCiOc/Fa6IPKY01JwHzrNEmhF0m6cw6XErUI7D4Vnfv/2DvrOCvKL4x/5/bd7t6lu0O6u7tLEQsDEUVQsAMQAxFBVFBEpFUUEQmVBumSzoVNtuv2/P6YuTuDxLKwC/pjn8+Hzw73vvPOO3Nn3jnnvM95Tkj+yuadQhRFLJeP8df2DSSc3E2uHVrWLjpF3f8a9u/fT6vWbWjVfRjtHp5CQEgk6ba7Y9hpdXoadRlB3bb9mfhMew4ePMjIhx6kXLlyBe9cgruG8PBwfvvtN/bv309aWhqmSwpNMy4ukz179vDee+9hNBp577337trvpzV5Etl3Mtknd3J2xiAih07Fo3TtQvVhT4snftEE9EExlB7yDjpzwTmSt4Kjvy9iwlNPXfe7+Ph4HnnkEd58880icSwBEn+fR2i7R4tsVfF6CG4ygHPfvVzkzqUbzToPJicjhYcffpivvvqqWI5RAgklzmUhsGfPHpb8+CsuYwCVm3bPdyxvBu8ydajxwnIOfDiE4C7P4lOjbYH7iKJIZmYmPj4K937e/Pl0HfLsHY3/34AaD7SkVqM27N69m8aNG1/13TvvTqPng88TVEWStA4rW50OzRvz6qjWdOrUsVhoTUOHDqVRo0ZMmjSJypUr89prt+e4ac3exIz8iITVM8g6upng3i9hLGSJhqyD68g+vp1SvW4s/iEIAiGR5Thw4AC1a9e+rbGW4P6DKIokb/mW6IFvItivn9N9pxA0WozhFclNOo9HSOlC729LOodf/e5kn9heJGMJqNsZrxYjsF4+Rt7FQ2Qd+FUao5c/AQ16Y+zxAoJWd1Vw7HbhyEkn5dAaXMc3IGRconHt6gzp04UqVR7kzz//pFWrVnd8jP8aHA4Hs2bNYvPmzUxduI2A4HBy7PdGQ9BgNPPmlxvYt+03Hn/8cZ544okioQmWoOjg4eFRYMrMyZMnef755xkyZAgDBgwAYFAjv/zvXWJ6/vZCQ6387SsH1udvG1MV0S+7jxQ8FjWKzoLOogq4e0k5hb6lquPReyKxiyZiDq9AdvNhGELLIWg0pFw5n99+i4oNYs1OJ23ncnJPbCei10RM4RXQWnPyUwZdOiVgrd62hNwg3/vMrvzNjICG2OyO65baiI+PZ9iwYXz00UfUrFnz+n0B8y8rFH/vyweU4weUBsBhUpxgq6AjN+EsoQPfpmmEEjjfnqRcK7USm+2KQmVXB+00chpDrktpbIqolL+dJwjoAqLIyc3CV6OEP9XaIFrV4oegylW1+kqLI1qDcrzYXOV3dYdTq3d/lmVvDiQuLi6/9E0Jih4lzuUtYs+ePbz88suSY9mkG9Vb3jq9Ru8dSJlxyzk7vRemiErow28edatUqRJXrly5yrn8efVaHn5lPkeKppzmPUW3oc/y2efzrnEut2zbwbPTlnFCNV8ZjCYeHPc+U6d/wEfvv1cs4ylXrhxLlixhzpw5tGnThh5PzyQwrPBlAwStnvCe48m79DfJv3yEy24htPfL4HNzqqztykWS13wMokiZXi+gKUB9rePAp3lnynssX7qo0GMswX8XAuClc+FySsIJiVYlb2RwFenFulQWrshnJMglNHLO7MYYXBq9dyBVKrUCYE+ylGN5QhazEOUyIWohMJe8bdVLx9LK+ZRqmmcZP4ndcC4d/JoOJmn7YiLL1MsvRWLIVhLh7D5hABiz5LxHWcRDa/ZBMJixpyfgzEnHmnyB2JxUADQ66dju0h/qEkuCPA7BKZVUMmRK/bproRmyr2DwDca7RlsEmYamlcsy6ROl3HaXTjKycoMVkQljZhwAFl+JJuuSzz83RDGE2peN4Mjaz8n97RUC/X3o3qUDHZ9785qSI8OGDeN+w549exj++BhC6nSjwvCFOLycJOXB4UzJ5NiVplACted3AyDKRuGVEIllM/2U9LuIfmH5be12ab+t6ZLRGGKU7gm3kIpZq9yXiVapjbu0jkNnpnTDXkwZN4i6detStmxZ6tatW4RnXYLiRsWKFVmxYgVjx45l48aNTJky5a6J2+m9Aykz/D0yj28j5Y+vsF25AIBXcCk8IiujMZjJy0nHGn8KS+IZtN5B+NbvQWjLBxG0d8fUdjqdPPHEE8yaNYsqVaoUWb8Ze3/Gr0GvIuvvZvAoV5/cc/vxLVe72I5RtUk31q1bz0MP3ThftQR3hhLn8hawd+9eHn/2JYIrPEApoxf12/QFRPxUlNadqYrBU8NHMv6a+yrqWXs0Png/NI2Lv7xPizGKmuHRPCWSu0yuu5jq9GX79u2ULatQWS1WKx6+wYTmSMcsX7F2/nfHryh0VfUkpqa9qamw6jqXdm9F7UtdIzP/M6dyDg5V8VxRFWlzqqJ16kiSw0+JqrnHcjxDjxhYkw1/bCI+Pj4/8padnY0oaHEh4KcqChybrcNUuhGL336SF59/rliL4o4ePZoWLVrw3HPP8fLLL9OqVSti10mrPN+lqyLudnWuhOoqyxx+c3Q1okZ9iiXuBMmrPyLum0uYwitiiq5Golzw3ZGdhiM3g+zTuxFz0wlrMQyvmOo4jV64z15jt3A9hETEcCUjp6R2XgluGUl/fE30wDeK/TgeFRuTvPz/g7YtiiJZ5/bjsuXhdFN1ZUfcZctj1aLVhHrCiy88n6/AeODAAQ4cOHBNX0FBQTRq1Oi+yPM5ePAgjZs1p8mMo1QMCyt4h7sMg8HA6NGjSU5OLrhxCf510Ol0zJo1iz///JMhQ4YwaNAgHnroobtybEEQ8K3SDI8mAwEQHTYch9aRG38KRBe6kDJ4lqmDMbQcojxnCNa7pxQ9fvx4+vfvX6SOpehykbF7FaWenF9kfd4MXhUakrR2FhSjc2n29EEU/w9Wav7FKHEuC4Ddbmfog49QpdVg4s8dpceY64vt3Ap8y9Un++vxBbYrV70hp07tuuozL7/C1aD7N0MQBKo178Xx48fzncVz584RVa7addvrDEb6PD+XFq3bMXH8OPr06XNDQaA7RbVq1Vi5ciVPPPEEq1evxrfdK7ctImCKqETUqFmIdgvWuBNY406Qe+EwAILehN4/jLDOT+Np9ip03237PM7MWXOYPq2kQHAJbo70vzdjjqyM/h91U4sDgiAg6P4d9eruBJb0RE7/+hl2mwWnLQ+tlyya4XYORZGajTvgH1OZdbvPA1Cn9NW5ovtU5Uf8xR28++6713UuExMTCbuJE1a2bFnq1atH48aN/9W5gqIo8umnnzJ23PM0nXkMU0AEcK1+QAlKUBRo1aoVLVq04LHHHsPPz49evXoxpLGfqkV6/tb7NiUPPC27Tv62x0WpprheVXbDrbgN5LMvAFWpNoX9AGCv0BDTP4X8XA70qReltqoyKLkq7QtylbmgWtV6+ds9IpSgstWpKgsnKjZghs2JSXvts7V7924++OCDaz53Y/oGJSUiOykuf1sXqjij7nN2jzv16GZ863XLV7DfnqT0IaQpubGiv6IlogtQ6KYulUaFziAzQFRDd6gWJESdEX1oOWzpCTgQ0MjvEjVFV1CVrBFUyuZaq1Sez6q63mW8FBcnyKjsF6e7vwXW7gZKnMsCMHXqVLxCSnP+6E6GTZqPXbz9nBFBEDAFRJKTGo9nwI1X4MpUrMGyn2dfve9tlRb/9yK6Vls2bNhA69ZK4rZwg9qZAOVqNaP+x6v468+fWTjoIXxNUK9ePfr160flypULdABdLherV6/m77//zjfwKlWqRPfu3fNXHdzw9vbm22+/5b333uP7Dx6h41Mf38GZyr97ZGVMkZXRqmT18/M83HTEQqBMpVp89t0HiKJ4X6yGlEBaI7c6hXwjp16ALf87rXwL5K92y3RYj0v7OfPnVzR5bxd6WZwrT+YJRvpJAZp0+f3s5yt938JPednvyZRohyeTJWpr/qtcZTAk2CUDwHBZCpxo9EYQReweUv9qkS+NvOrvvvedcptS3p5oTEayDD5oPXwxBMWgDZVKfYindkj9y/RaUcXOcNNi3TXZBId0TbQ2ybHTOJRrJObTzaV9LP5SHTVboPT3yarSWHZvWM7K1TNx2CxUbtYH7+BobDJl1pChGGQOr2BSgQStZPTtiL9a3l7vVJ713JD20Br0siiaLag0AHXCQvAWRU5YlGe4V5BdHqX0WdaZnfx58iJLVr1FxpU4cnKyeHjEUJ566ql/xbOflZXFhQsX6N1/EMmZFuqMmIrj7z/IBo7IFObjufK1cN+XXkqgw01L1snGoUM2DvNrEJZ5IL+t6JQ+Gxgh3T8GjfT7esjGoqfKaPQ3ivJ30jElwTwJhw8fLslZ/z+ARqNh9uzZDBs2DD8/v/srt/kfCtSxsbFUrFixyOeE1L83E/3c0iLtsyD41u1K2tFNBNb6d5SmKUHhUeJc3gSnTp3ix182kGFx8eArX6PVaPBURYtMqvyOUqriuWmyEp5R5e/EW6XvdZWasfmvP/FvJIkJlPJUkqrz+/Xw4kqm9SpRH1H+FyEfZ2XitXRM+T/KliqC4zIrqq96VbTJ7qnkK2hlCqx4VX/Xj/AY0uPzt50qdUd1JEmjcppmn5WO3ylEuuUE7xByLl1LFxERyFNF65YkKhfx0ahgand6mNqdHsZDzOLQzg1MencWiReO8cmM96lXr941/Z05c4aFi5aw6udf8AmOpmK7UZJSpsvF9u9/4e33ZlCzWhXat21J506d8PPzk8YnCEyYMIFKlX7iramDKPfkcvQe0m9xQpX8r00+n799VXRNFfEUVddYVOVT6mQasjqZXy0sIBoUY/WMVZXcLoLOaKZU1UasXbuWzp07X3PeJSgBQMKx7QSVq5PvWJagYCyfOR6thy9V2j2Il0/xMCTUEAThKoNQ2Zb+lq3WgLLVGhDQVSo/ZLNa2L1yKl26dMHi1P6zO7mNlciIUPz9/LE7HNSoWpnnnis6QbgDBw5w/Phxvl6yklPx6eiiqqNp/DClKjTBEH+04A7uEXJzc3njjTeIiIi4p/WWS1B0MBgMzJo1ixEjRtCsWbNrVOj/H5GVlkz8mYNXpQl99dVXDB06tMiP5bTlofO+frmT4oAjK4WMfWso3eHxYjvG8QPbqNqxUbH1X4IS5/KGsFgsNG7SlIcnfMJvPy3C279oKGXGkLLkxZ0osF3Vus1Zv34Dffv+f9YzDIiswKEfjt/2/iazJw1a96RB655kXEmgZ++uPPPUEzRs2IC8vDw+/ewLLl++THBkWWq0GsTjUx9FbzCSoMpxbdZIorKcPbaPP/bv46WXH2DWzI/o2rVrvoHXq1cPQkKDGfFUfyo/8x3GuzjJFoQq9VqxadOGEufyPkHd2jXZ8OWP0OHWX4pXTu+jerfry9UXB2yZVxAKEKS6EQStHntmUsENixmB4aWwOAU8A8KKpNB5UcNgNPHxxxKbYoWcp++UY09uv9TlErmScAlRdGG3O1i/8jNW/NQJpy2PMmXL0K1T+3y2h5eXF61atbruikdKSgrbtyvqvampacyev4igcvXI8I5GX2MkHt0bSA5y4qliPOvbhyiK5GRlMHnyB8ybN49p06YxYkTRl7Yqwb1DSEgIo0aNos+w0QwbOw1BEEi3KoGXByOVoPe3CQq91E2BVQd13WJgAFq7okyqps66WRkATg+//O2e5RVq6Jp9EuXWkKUUcs07vRtjaBm8Kzamk7+iZ1HVT6HCqlfYr4e8vDx6936Kb+fPyV98cLlc/LF5G5GNhrJsVxoDGip9fLFZ0dJYcF45jl4116ppvgrrQ5r7BJcdjer66E2KGqtNXfrOpbBZXA7FznJlpyrtZdXXOLvSx1WBNYeN9B3LCGr5IELVVrhH6x27X+lPq067UBZ73L9lz2jl3H30yjXWyIc5tHMjf/3+Az8snEUJig8lzuUN8MUX8+g86BnSUxKpWLdVkfVrTTiF3q9gkYNG7frxw/IP7qpz6cjNIPP4Vqwpl9DoTZijqmAKiETnE4zmDurrXQ+CRoPBUDS5Wf5BYbz37TY2/7qYUz9tAwS6PvImgSHSRJ9luzlltmyVulSvUYcm7fvx3fI5zJgxg8GDB/Pwww8jCAJNGjfm29nvMeLZkVR//sciGXNRoFzVuny1bHoJNfY+Qft2bXlryoeMrSBN2waVVPvRdOkzd56MqNFhy0xG5xuC0y+Sej7KS/bXVKltdrJUK7dOlKSIWtZDMsC+O6UIhCGvqrtXPssES8ZElkoLITFbysHRlWtI+m+z8a3SDAQhnwGhNtaMaVIeUk64lF/dvoGkGO2pdVCzbWe+Hd+e8OAIhkXZEQMkw2GRUypNZI09fM01cdfedVNv7R4SS0CfI4u1qKj22gzpfG0yHZbSUu7VxLLSyexL0+J02EmOv0j1bqOl/vwkwSzNdZxMp14ykMwpUmkDl/x/wSVda0FlsImyQeRWtTWdkq7DsUSpvJJWJfrxk0wHdZ+LIVMyTm3eSimmqb9Kv73VN0JuI6nkuo1EtVHs0pmgQi90UWmIDht/Z6WzZ/GufCNNl3ERzVsfIgCifL0EeX/R5Ivdvywal/v+0RBcsTmizoC3VguJxzElSU6lkCvfNzqFjaMxSAaf0+x39bUzeKm2petmk5WEXV7SeQuy8Fw1b4XBUcnTfeNJ5x/uId0jg1W5dk6nkwsXLnDp0iU2bdrE2rVrCQkJoWvXrsTGxt4XK1v3I/r378+p0+f4eeGH9Bjx/L0ezlUQXU5O//oZKSd34R0SSUDlJrhe/AKN9vrMgxvBarUybNgwxo8fT9WqVfM/P3jwIN5BpfD2LXrlXK3eVHCjIoQrLwtDQGTBDW8D6SmJfPPh86xevRq9vmht2hJcjZJZ9jpITU1l9pcL6Pv6KhZO7s1Dby/HIlM17ar6PA6XYtxdjzzqpVI9rSMnFu9MPUtA7XZ4maUXcKpi8+FQ9a35h3S1RgC9BuJypZe/TrU6YHMqlp6oMqYElRKskK0YjPYQVVJ55hWyjvxO2q7v0RjNeNdsT0i7R3Fkp5Fzbi8JJ7ZjT0sA0YXe7ENY93HovAJw3EC0Q03FVecEONMkGq0ruNR19wOZ+itCaW/loninKPWNZp1UEsmbhSgGa/NgG+jMNO/+cP5nNpdAjhxIU9c6sqgot7tSlM/DjS4giCp9XqGLRy4/LZjOzr+e5PPPZiMIAo0aNaJf+8Yk7Z5DzzZP5O/3k0YR2NCpo5+qaJ2atqxW6nXT3jySlYh/bkjl/G2nqj6U3aaS7s9nzQmEln+AH39cRe/evShBCdSwJJ3DM+zuCsDknNpFZKvbWxUymr146s2vmDqmO+uWfEr9vs/hHxpTxCO8Oc7s+AmzbxAmr+Knw94LaHQGzIGRmAMj8+t76nOUd4Pb4dRfkeYkW6hkwGrUKxup5+/SaG8Noihy4MABVq5cya5du3A6nZQrV46AgADatWvH+PHjMZnuroH8/wqbzcbly0paTXBwMF5ehRekKy68/NKLPP7kM/z1xyrKNPr3sL7ObfwaBAGDTxDLFnzJhk3bWDm5E/7hZanRfQxV6xRcEzs2Npbhw4fz1FNP0bbt1fXSbTYbPv7/H6KPeRcPE9T20SLvNzsznW8/eoHlS7+jQYMGRd5/Ca5GiXN5HUx+7Q2aDHuD4zt/ocIDHTB7+RVp/xrDv+NFl3fxCImLX8azfAMiBryOR3lJOMEgr1L61mhDdpbiJOUdXMeFr8fiW6sjgU0G3Db97Xo4ePAQXn7Fr2Z5K9DpDfR6+CUWfvgC06ZNY+LEiQC8/ebrDBw0lNPfvknTYa/e20HK6ND/Cd57ZXiJc1mCayGKdzXqLDrs2FIuofe6/eh5eEx5mnfoTdlQM3/OfRbP8ErYGo7GEHR3nMyUC0cJjCk6Gf9bgSiKWNMTybsSi+hyIshUr9y8HBBFPIwmTL4hOCwW9D5BaI2eBfR4f+D0vj9Yvf4LBKeVBnVr0K5dOyZNmlTiSBYDcnJyeOedd9jw5zYiy1RGEDRkZ2VwePdmatSsxRuvTaZBgwbXiOPdC3wy4wOGPzSK2MuXadH3mXs2jty4E2Sf3oPl7B5s2aloDWYMGpEHHniATp068f6Utzh16hTDRj5GKfOrlK1c+5o+RFFk3bp1fPzxx/j7+zN37lwqVap0TbuNGzcSXaFWsZyH02bBaclBayr+eSfn3D70/hFoTZ43UPu4PWSkJrFi5vMM7duFJk2aFGHPJbgRSpzLf2Dzli3sOXiCnt3e5MsXujDirWVX6eWkqSiWCSo5ZaeoNAozSSuJLtVnJy3Sfim5eTxgBh+ztPMpVQ5gvGqFTe8Qrnq4nCJk2QV85dqanqo5PM+ikob2VahTYobC9QfViiYC2Uf/JGXjFzz42nf4BEkUBHd9yQSLcmI6H0UIJDVkIK42/Tj+61wOznqQgCaD8G/QS1H1uwncQjYbUpW+ffKk7by8PMaNn8CzX+4jNkdLiuoap1tVao82heq1/Vhs/va2EzKVS1ZgBBBTle9dBmUF0CjLg8PVeRNq+pwpUjIuxV6fsPzTrjRp2pQWzZuj0WhYtvQ7uvXoxa9v9mDMlEXEeCt9JCkpB/nF5wHqBKikzUP88rf3Z0tqmBkBUfmfGVRiS6jEkcQEZXXTUVmJcg5rFcXe+rXZsWMHjRs3pgQlUEMUi/IVfXOk7liGb92ud9yPRqPh6aeeZKKXF/Pnz+edN1vg3XQY3qXr4BFRcIT/TpB6Yjth1e6O0Is9N5O4vWvJPLsPs38YHsGl0Zo8EWRFVYNfOIKgwZZ4iuy4Uzj1ZnLjT6EzexNYtzPeZevelXH+GyCKIpb0BI7u2khG/EkSju3Ez0PL55/NvooeWIKixY4dO5g8dQaXUnPR1u9PwDOvcEU2iPJcIhH9XVw8/RfvfPwV6Qmv8Pbrk2nZsuU9TdMwGAws/W4hT495jsMbv6VJpyEk5KmE8q4zJ7rp5XB1bqW6tregqvltD1SCXaMq+uVvR3hKRsDyz9/FfvoiVVsN5TAClhPbKfXYHMrtmkpgoKLbUKFCBX5Ytog27ToQGlEKQRD4zkObP06r1UqLFi2YO3fuTWtaWywWAqLD8628b7al5393PFNZBBCtKgaCio2gsyh5mW5Fa6u/dI46n2By4k+j95Nsy9AgRUQoxak4nI48xQ4lRbG/1PmaLpNkC/l5KDZRpkWm4LucJK35mOhh7yGITgSVvec0KMfRWjLzt7OilTmwerTEijNpFbspI/4MuzYu5/ieP/jo/an3l5rwPUaJc6nC5i1beGHSOwx+aR6X4s/iExyBydOn4B0LgbyEM3gH39vC9zknd5Cy8QuiHvscn6Abl0S5HjRaLVW7PUlWxTZcWvwyev9wvMvXv+2x2Gw2unTvTevB49EbzQXvcBchaLQ8+fY3vDDxQZYsnEfZsmURBIFffl7FrE8/Ze7rozAP/Bhz0L39PQcMGMC6detKnMv7ACKQ45AMt3hVYCpQruFl95KoUYasRAwe3iQ5XXhG1cKhCoTVlANbOz39AEiW+/OwSv3VCVdywoPlYJb7SCfl9318/DmlQ5M3tqRzpGycR8xjn+WLNnjKuXhOVXDHJYsuaOWSKWuTJWOsqb9Exww3C/niNA89/Ai5oie1eo3h4OovubJ1KcbISsQ8/kV+LU2nTO30lnMuBVlUwu4l5Ya6cxwBtLmp8nikMZj3rgRgWrKkMt3V30pm4jlKV6xBniBfAzno5KaJusyqVVn5O7tnoHxsecUxWMonVRupbuNN1Bpx2iyc27eevNgjBHd/gZCRn+DITFb6lenwGnnVWZT7FfMko8qadJ70PT9yedsygut0xr9OJwxyqQ/3uekzFTVvl2wg518LQaLYa21S6Q+LnzJ/eZ7cAIAjrJrcRsoF1WYn5rdxykanINenc+eaOuTPTZcV8Q1rmBRAM6RdACCzjLRqYI6prpyvHERr7SOQkXAeL/tFrsSeJO30DkRR5LdNqzGazPj5+hIVFUlwUBB1OrWTDPEly0EQGNivNzVq1KAEd46LFy+yeMlyVq3+lZBSVUhu/y5e/tLz8E+nUdBo8KrYiIHt65Acd4FPFizgzXem8cjIEQwaNPC2a0QXBWbO+ID+g4ZyKrIs3uXvnjLw5jVLyEy/QpVuT3HguzfQRNei7JPzEDTXX9WNiIjg+N9H7tr4CgvPyEpkH9uEf+MBxXqcK+vn4lO1FXqfO6P3iqJI/OkDHPx5FlH+eoYO6odn3zYIgsCmTZtuuF/16tWvcvxLcGcocS5lTJs2jW+WruKRd5Zj8vDi3MHvqfRA0dbYsaUnoDV53dOoni0llqSfphPz9MI7ojkIWh1hPV7k0sLn8Sw997YFf3r06kOFxr0o37LoJbSLAh6ePvR69DWGDBnCjh078n+7p596iubNmvHMhPFc9qtEaJcXQOddQG/Fg7p16/Lmm2/ek2OX4N8LnYcvTnXubzFBFEUuLxhH1LD30BiKJkCUk5PDxUvxTJy9nj+STVTsMZ4/tqwmfslkTr/eiuBeE/EoWw+TKi/5jo53cgezF43nwIF99B70ID51KhTLPJ1x/iCXN39HYKsHCev0NNqIayluBcEYUprQXhNx2fJIWzWN2JXvUL79wzc0Xv8LcGRdYc3ssSSe3IPTlotfcBRly1VEbzRRv9czRFRtCoJAqk0gGzggByAa+Tuw5mUz5sXXMeuctGvdgt69e1OmTJl7ej7/ReTl5fHkk0+Snp5OqUYDGPXmErQ6HZ9cuLV3e3BEKXo98iqiNYMNPy9k4cKujBkz5p6pmWs0Gr76ci7tOvWgy/Nf4+lb/I5D2pUENq9ZzMjn3+ON54fR4oWFXHBeW26uqHH06FG6NXuoWPoOqtWeY8vfwa9h32KbY9J2rsQSe5SIHncmxBS391c2fjWWOrVq0KRmdfYfPMzMzxcSXaEWOlWgQxVrxSVK77AL734ETvu1naKocasXvTUCiKILg07g/alvU7fu1UwSh8OBw+HgejAajf/3IowlziXw3gczWLPzFNVe/IW/8kyQB8fOnKZs62EczdJRx1e5Qayqu9JPr9xpYWaljVtA5tcryuUdHGJj67YVlG3fA3UsLz5PEWrJtCsPbqRW5J+3ngCczpL6TE5TRbpVIjFCmlLkW/RUKJvazCREUSRuySsMmvAl/pHSiqWXquh0gkUrf6aixaoGm2FX2jYsVw4ox6n00fy97jNCe4wHwGFS2rjUqoFyBNyel630l2fj5JlY/EaNYOF55XOXSyUfrZLLVk9sokpQSCvTgkW1FL6K5qpX0YavGpOqwLr6c8vlY/nb71MJDA2o9EA3pkybzssTX8z/rlatWmxe+yO//rqWt6YMpFSdbtRsPwy90czPKYqj2TpY+Y3VCp+dwqXtM5mKnPeKZGUl2XX+oHKOKvXHM5lXT/BGoxGTyURGRga+viX1DEsgweATdFdKe2TtX4NnxUb5tKmiwKZNm3ig3YD8F7Cg0eBZvgHlJ68jc8dSstZ9THJaMt5+AXjV64nVbkVrMGEuWw8EAY1Zf8svb1EUufzdJERLLqVKlaJerersiT+DX0T5IjsfgKQD68m4+DeVBr6GPeTO+9YYzIS1foj0I39wds2nlO1y90rOFBUc2WmkrXyZc+sXEl7pAdo8/Sl16jVGbzARbJLeQ2eylfebRl5dlzMqKBMizeH1GzUjPSWJwLwjtGjRgtGjR/Pyyy/f3ZP5DyMhIYE+A4bQsOsjtGzahelHc1h/wgpYr3oHW1Q53BovxVk7laUEeSr6+NKm/9OkJPXhjWkvMP/rhXz0wXtERSnpH3cLPj4+fDbrQ8a+/DzDX/oSjUbDi+WUchxngyWdCXXN8jAPJTCRalHsiM/OKXaJ1/Hf87fnOWrnb1vO7CdNH8L4B1tRZeSHJKSmUrpWG2VAW4rktK6CKIokXMkgUQgmMfPa79U2nrr2uF5Vi1stSemUmQ5utW+N0YPAUtWxrP2YoBptSFSl64SGKL+pxqwEFhNVQcZa/goFNs4u9ZluV9WF37WS7CO/EzXqE0g6C045LSBbRU9W0WLtlZrnb3cKkOaGtMunWfpiC3LPHyC8xRDiKrQiwWWm7WNjMcr1yVNtyvtgd5pyD4R7SveuqSnE56hqw6deyt/2TDoJQE6oEgzU5aRL48lOo+/j4wl2q1rL1y0pOfkflSGkz9MunaJv+2bMnTuX/2fc987ljz+uYtXve+j67GwOZ6sidKKIroii8ADWvBz2bljCE9N/IvHupUFdhdzzBzCFV8A/suiMpgqth3Jo569kHf0D72qtCzee7AxKtRz2n4jgtO77JF+8Nozo6CiGDx1y1XedO3eiQ4f2zP5sLl+8O5z+k78D7q7MdZs2bdi0aRM9evS4q8ctwd2FKEKGXTJ4vFVq1EY5aOHO9RUyJFqkThTRxh5if6RiMNWSyzm0DpFe2JkOad8I2Zj/JUV5LQQb3P1Lf8+lK7k5AM68TFLWzqLMwx9jlEtmuHTSS9Zh8lYGLcNhloIf7rwZzXmJQlk6UqLWm7QiWgH+2LSV6HbPcilHy95jUpDFK13KR/aKrADDpmPPzSD78K9kHV6Ll78fCAKx+34iJzMdhyjRST2rtca/2VC0Ji8IkaieGpmS6/IMBRGSPx6IIyeN8gMn88pbU3jqiUfo2KMv1ftu5vzhrdJ5ekmOs8aqBKpMCRKVzRYkzafuciUesiGiUVFyL53YgzUzlbDHv8AiCBhlKr3DLrdRqYPrZKPG4a4h5w6Uqdr4yuJnmRodXm3Ko3HaOLthPtG9JPExq3/p/LYahxSYMmRIv51LFgTSyDRhoyo46QypJF8jaR+HSfq97CGKyJEhXcqncnhK9DVRDsy5zz+1+ej8tpF+UoCzY6B0nnmyWve3u/eRtnQiBksquZnplH/4YwL9gkjMzmP5Jdmp0Uv9uuyqa+4t0ZLDDNI1cQdb/Q0uMERg9g3llXnbeO3h5vTq1askH/MW4HK5GDlyJN0fn0p4qaLLaQ4IjuCpd77j+P5tjBgxgq+//pqYmLur/gwSs6d98/rs2/Qj9VsXn4KsLS2ei/PH4FWtFbXnXkJzZlexHUuNVT/9TEDojVX4iwJh9btxfPGr+FVsWGR9iqJI8rrZ5J47QNSoTxA02kKJ+Ngzk7l46STbFr5ByoVjeNbtRpkXfyTETwl6GD0K1gO5U+i9/PF46Evyi0nJ87Q0y6pqeMqLIx6/z0WnS+b/Hfe1c+lyuXj93en0nrziGgdHo9NjkyMTRYEfZo2n44iXMZq9ILfg9nk5WUWer5BxaAN+dToVaZ8A4X0mc+GzUXiUroPGcOsUkNzsLEIC7v7L5nag0Wp5aNKXfDh5IK1btrgmCqvVannmqSfJzMzi5xmjEUYuuKtOc/fu3XnxxRdLnMsSXAX/ai1IPfIH0Y16FnnfLruVywvHE9FtrOS8WbML3ukWYLNauHj2PPXLVLtpO72HL36NBuPXaDAZ3uHgchKcm04wgCBgS4sjcetSLs4cil9oBO4XvVsqzWqx4NQa8PAJpMLTCwlo1IsF77ShYb06vPv6ZL7Z+AWE3LlybE5yLBmn/6L8wDewFNOc4F+1BdkXj5BxfBu+le9efllhceSPxZzZ9QuBGjvlK0Zy6KxAUJunMJaqA6kXiuQYZk8fOgx8hp07d5Y4lwXA5XIxZcoUWrVqRWgROpZqVK7TlFFdqjBkyBAeeeQRRowYcddzMZ979hnadulNvVa9i6V/Z142p19vhX/DPpR95ptiOcb1cPjwYV6e/DqTZq0m1lZw+9uFRm8ksvlgLq7/kpDHGt6xbWNNPMOlbyfgWaFRvmN5qxBdLpJ+fp/MwxtJtGbiH1mBNo9/yBH/6gXvfI/htGQTt/Jdpmek3+uhFDvua+dy9erV6Cu04pTDF7LgrFX1wISU4/LlM7hK10enojKGmZTVAq2gfJ5lV/Z1C2608ZWiJqf/+pXLOiMVHmiPU4RjKiGOULPijGkFhXZx8uB2unRUahlpBPDUi2zNkh9C1WqAoKKRqotxCyr+uNMnhLzkC4RUa4NJdT5G1fY5mXIUqKoFqVOdY7rq82peSkRI4xuMf4vhZBxeT0itDtcdl7umWrSfQtU9dyWZdvU7oteIdI1QaA+Hc5SJ5qKa1ncD5Uv3aoi60Lmomqycqsi8PlfJQbP5KOIcgmpf9XWzXzgEwG/GWoAB/+6vMmjQILZu3XrdsUx6aQJm44fMebspQ8ZMo3z1B66KxiWpaDbPtblWLKr8LoWqci5EmSy/PqYIamxMU1ZFy+1Ml7f8yMlRfvsSlADAv2pzTn4zAdHlQihCg050OYlf9hp+jfvjEVO0Qionj+ylbouuhTJAdXL5E527FIIgoPcOJObhpoo6pDwnuFflXDop70WfkybvIhA1bhXjX+nOlt9WMXvhSDzu0LkURZHzmxcT03N8sQebwluN4MziV/+VzmXixZOsnD6KCmVK4alzctnpQ0rtpwjsXh1n3PEiP55fYBiCcP38qRIoePHlVzmT7UXDnqP58NT101G0FiVo5F71B3Co3sebM5Ta2TX8pet+PF15T2kTA3jk7RVsXfMt89t25JVJE2jfrl3RnsxN4OXlRavGdamq+5tLKM90eR/pnNU5eAMaKjbKCtX7eFi0cj4/HFHsBUfqJU6+0QajXygVmvRB2P8ToCicdglR2v5aNKcDwOnTp+nRZyBdx3/DGYsPGtX0UspT+S3/SFZsTJ2KFqtWyzdmKCr1Tll07erPvPGProwt9RJXvh5DTNtRaHR6klUpR26VfQCXyg49fPx0/rYt6RzJ25dhTYsjotPTmEPL4ko6l28j6VXjywtS2DYx4dLKrDUjifPvdcAkuoiKLkNmh5cwBMVwECDxDADJqnl2tYdf/ragrqqgovbGJ6nue1WqlKCyG20egfI1ib9uWzFDRd1X2ZI2v8j87frRUZxet4yOz4zBw6NotAL+zbivncu8vDyMN8h98a3QkAurZxDedOAdHSMz+RJ/rfiIx6esKNR+LpfjqnpdmWlXbtK6YDhzMxAMpmIzcLxrdeDSF6Ovci4LgqDRoDcXXQFm0ekgN/YolvgTWFMu4czLRmP0wLN0bbwqNy2S+nDBVZtxaa2I0+m8YU2vcePG0aBBA76cv4C137yLl38Ipas3wds/GF2AQl85GOhFVFQUnp6eRVKb7d9QY6wExQuNoAR8nCqLKMEm/fYmWaFVa5Vop1pBi3+Z2hz8aSZ+DaSo/QX5hdsrSnoe/GSbya0oW82sGI0X5WDImRzpRaq9cg5RFEldNQ1/3yBCA0Kwy7k7elmxVSv/dTtzOaGK0WFHOrYtUnJIn64o3fdBJukFfykxmfjL5+kweBzb0qTXk/slbvOQHEh16SN30MqQqQRfQDGczCkqVdt/ZLEbsiQar9NN/Ty0XvqiXCve//hTypcK56CowxhTk8C9i+UDKg6Ly0cqX+BWoXV4SVRVNy0YSyZpZ/bhGV4esXYXLECdACmgFCDn62+Wz1FUlS5yq+tqtFe/nr09lTzuUPmrhhHSfuvypHnF4BuKIzMZl6ouqCFLomDZfeT8H9kp0FiuTdDSJh6VxhAqBbb0WfHyvoqRJMrjc6vNZsi/ZceKkoNRP1AV1BQt/Lr4Ez6Y8yYVqtXiZJqIoWYPvMLKg8MK5/aik4OQboVbQ/JZABzua6JX0lNsstMTXEG6p366LI1hcClpTHaXIB/3mlMrwT9w6NAhdhw4QY8X5t+V4xmMJtr0foS6zbry1vRJHDt2gjHP3L084WeeeYbx48fTe+zsIukv6/JJ4vf/RsblEwQ1HURw9xcQkk8VvGMR4bO5X9Dq0fcJKVX5rh0ztFY7kk/t4fjiyUS1HI7+FplntowkEjd8jisvm6DG/fAqU6fQx86OP81fr7UjJCiYwWOnU75mYz45VYzLtcWAE6s+ZPXfBwtu+H+A+9q5vBm8Y6phy0ol6+IRCL49uojDZuHXj56gw1MzJDpsIXBw+1pef1ahV4SGBpOVngJE3ninmyDnxDY8KxVfRFvrIRloLrslX0L/ZrBlpyIUUQ0+ly2P9L2rSd+1Es9y9fGIqoZH2XrofENxZCSSfeovLswfgymiEhGN+9xRkXeArl27snjxYoYNG3bDNs2aNaNZs2aSLHZ8PBt//529+/ZB6tH8NssvCJw/f560NMk4j46OJt3hibd/CPVbdAVz8eZRlOD+QHiDHhxdOQ2vKi3Qed+5YmLqnp9BdBFa59YDSbeKeW89Sv3mXdHcw0CJb6Um/PDLFFZ+8xltuvUlbOz3t91X0qGNlG47kru1hmYOr0Bu4hm8gu5tuoHDYWf3pp9ZNHMSogjtxn9D6Qbd+OvQbqnBXay/WoJrkZCQwKOjx9Dhua/u+rH9g8N54rV5fPvh8yDOZMyYMXfluFFRUej1ehIvnyc0svQd9XV51ypSTuxEFEViRn2CR6laRTPIW0ReXh5btv9F50l3X7QqsGoLfMvUJvaPBVj2/IJ/g954V2l+TTtRFLElneXKpm/IiT1CaJtReJeqeVvHzLp4lG0TGlK+32Sef2LMPX0/3C7y0pOoUKUafn5+93oodwX3tXPp7+9P0u5FlG0hrU7anUpEvLynQMgT7/P7x49xudLq/ChysFFZLjCrVLiuWJSb3a08tuC9Z4jo+DRJQTU4osrftVgV5c/6fgplIUpOPrZbLfh76ggNVdQX33x1Em9Of4OYoZLC1PEsZSVT1Cp0DTUV1emr1C+zXDyMX6N+6MzeV9En9mUqt0CGfPrnspSk0FJeymrf+Sx1TpXyuUk2WL2rtCArPRHPys0A0KQrFAJRphjkyZcsJz0JX18f6vhJ4/05SVF/LauiHl9UrTa4I/AAdg8/RJeL1F3fk3FoA/5NBjDyo03o5dIEFtWqzu563QkX3yTryEbOrZqOoDfh32wI/lpFDtqpWtXUqegTblGSIJUysKl0S3buXHFT59INQRCIiIhg+LBhDL9J+5ycHDIyMkhKSuLMmTN8v2QKZ86cYdy4cfTv358ws3JvHs1Qtm3Fn69egv84NDoDYX0mEbdkMtGjZl2jQl0Y2DKSSNu3hur9JhTZ+NzYsm45pw7vZvQ7i4q878JAEDSUfWgWI596niH9evLzkQ3cTuU1hyUHURQx+gTdNefSGBiJJekCXjdPVy02iKLIuuWfsXrRx+i0GjoNfJLOg59h+xVDwTuX4K7A4XDQb8hDNBz5Ad8nAomyLaGmBKrU051m1YyhohMashUbJPOY8q7/VisFsTsGKf2lqNJBkuX0m7ojP2Ldwhfx9/+W4cMLfpcWBcaMGcO33y7gmRkzrvp8uYr+uiQ/1QT+vCyQfvkkTruNUJOTnPQrbFr6EbFHd+HbsA9B7Z8gKCcB4iRxL61K8Msq19o1FkN66edfzKNuu0FEegFIv4mXykZRp9/sPn0yf9sjR7GhDBlKZQFrgEJBdacN2GRmBoA+W6FJu3RGdCZPynR+EkdGIslHNnHxj3noPXwxB8dgTU/EmpOBIGgw+Ibm9NozAAEAAElEQVTgXbUlYW1GSUw1mdWiVud3hJRTxldKSQV6QK7HfHjVTPYsfZfBL82nRsvezLngIJ/IrGLimaKl/Gp3OhrA8VzFLr9kVexpq0yhhX+kQXkqwVddniJe55LFPV0odFa12q4gKganS7W4Iqho5A+krGLQ049yv+C+di7btWuH4dVpN/zeJ7QU1TqN4rdPx9Lp6Zm3nLMkiiK7Vn6MR0hpQut3LfS4UpPjKFu27FWf1apViz1b19FigA2NvvAvamvCGUzhFQq9X2HgWbYu2RcO5TuXxYmsY1tJ/mM+3lVbUPHVDQhaHXrjjc1mQRDwqdEOQ3QN7GnxpPz+JekbPye654RCF+319Q8m7R+qmXcCu93O2rVryczMRBAEWrZsSc+ePcnLy2PcuHG8//77dHl0CuWq1iuyY5bg/oK5VE186nQmdv4zRD/+BZpCUsRFUSTn1E4Slr1BVK8JCELRWkw52Zn8snAGvR99GbPHvakXq4ZPTDVy6g7AYDiP7shquE5kviDkpV7GM7R00Q/uJjCHliPz1F939ZgAotPOwZXvEX9gLZXKlaJ27TpEVm1Gu/5P3vWxlODmmDFjBpEP9CY4uhKcvneqlRqtlr6Pvconk4cwbNjQuyKAV79+fV5//XXS09OvWkESRZETB3dx7vhersSfJzc7E2teNrkWG5GhARj0ehIFkb/+2k1wxcaIXSbiUbq2tPPphFs+/pkzZ7BarRiNd1b7Mic3D/+Qe1/L1eAVQGSj3kQ26o01NxN7Tjo6szfawFL5v6fDeHupTw6bhS1zxnDpwEbGzN2Bf+h/Q/zxehBFkd9++42vvrr7TIF7hfvaudRoNOgLWF2v0GIAzoxENn/zBi1GvFZgnw67jbVzXsQrIIyKA165rXFt++lznn34aslsDw8Ppkx5l8/XzaZU17GF71QQCm1QFhaGoBjs+9YU6zFEl5NLa2fj1GiJeegjdB6+CNrC3cZ6/3DC+r6C4+9NnF/6KpFdx2K8jRyAokBGRgYDBgygTZs2VKxYkaysLN555x0uXrxISEgI48ePR6vV8uHHn7L6q7eo1rADAU1H5tduKsH9BRFFhMItHAawN1FiL5hSzwNgl8tE5AVKBoguN42gqs0xmb248NEAIvq/zs9XpDbuVXtT6kVpnxAlDUB7egdxm7/FkhqHOaw85To+htFkwqGqM+t5aR8AtkApIJZeoZV0zBw5F9Gs1F6tHiMVmm4bLK1q6DXSnPnhhMGEhYexL6ozR09JkWftxZ2ASt1VFngwpFxUroec12n3Cso/T1Ci73aPAFVb9zwh5xzKEet88S8VVfPs338hBpRnzU9fUa9GdY5jwjO4FPrEv/PbuCPe7txFd26ow1M6Zo7BBzGkArkhFdHK18tdnzHAIG047bL4Q5oiniHK+4vyKpHeLDnbzX2UiLxZZsdkyEJy7pxTbXYSWksm5pTz+W11uVK9OJcsMKJ1r14I0nlrVRF6e0Tdf+wjGYZOlYGYVUYqRxAVLNXkrZ+4mfULXqbX44/Q8MlZdOnWk84vfE1EtaYsvSwd42yqXLPOX2LTmK6cze9PK0f3bX7SdwZ5lcR9fdXCI24hjj0p0jU3efrI10Nq6/ZPLp3cS7+mRa+Q/F9HbGysVEP2qe/u9VAAMJk9ialYm3379lGv3t0Jnj7yyCN8+eWXPP7446xevZo///yTo8fPULtWDXq0acnJUyaMJiN//LmVrLhkjp5PpmzTPvjpXPQc/yQR5Wux8MztBZdr1KjBokWLePjhh4v4rO49DF7+GLykZ9VZBIGC9e8N48qZAwyafQj/wDvXpLiXyD6yAavVek9qvd4r3NfOJYDZw4MDl+PQ+4fhUlFK9+QokaVSHZ8hZfUnLJjUG482j+BZoSF6n2BcsniAKIqIlnQy9q/hyoYvCe04Gm3TwWTkKvRXh1WhmmpV9TPr+CrH1GlEzp84CLmJtG/f/pqxDhzQn+mzu+LdY2x+rTK4elnf5huu2kN5wD0EF+U8JRqoUaNSpc1TDCqnbBwFeCh956jopQajQgnwVjnlIXppFcMZVYHLaZcxe/kBkJenUEQ0Nun8g2UqsVErkgB4yrX6LiYpxlWs6lqpa8W5gNjVH+FVuhZlBr6e/3l7WZ0uV6Vma7EpKyvu8QFERSrUiB3GzkSXb0DsnFFEP/EFOh9JkMNqUlZOtLKxuu3Q3vzPqtYJK1Q9phtBFEXatu9I+a7Pk1mzM3uAd3p7MWLECAA2b97MoEGDeOWVV5j/xRwsFguLFy9m5cKnSc/KpW3fJ7DUaJXfn9Vqvf6BSvB/gZycnDuW8PcqU4fIgW8R//3b6Mw+eMbUQBMYhTG0bL4QjxjkxJmbQdr2peQdWk9Uu0cwx0h0Jd11RGDuBE6HgyUfPsug/r159513KD3i35NnLGh1+FRrj0ETz/mfPqLayBmF2t+WnoAh8PZy5G8XOrM3tuy0ghsWEXLiTrHp29eYP3cWG3/fRKcu3ej43Dyiqt1bxdrYk/uoX/+tezqGfxtcLhcTJkzgjTfe4Jfkf09t6cDwMsTHxxfcsIjQvXt3fHx8ePvtt3nkkUd49tlnqVy5MpNeeY03351O4y4jMLm8aDd8Msc0CmUz2nznOSjffvstnTt3plOnTkRERBS8w32Kc4snk3p6L/0//gu92RM39fe/BlEUsVw+xsUFz7P90qV7PZy7ivveuRz72AgmrV6GvsONk8oFQaBS9zFENujOgc0rSdn0Da7cTPSBUbisOTiyUtB6BeBVqQnlXvwR4x0Ixvy9ewOPPzLyut95e3tTq0o5kk/+BcawQvWr9/DDlnkFo2/wbY+tIGgNJkQVx7yokbjlO8xhFQioXXS1OnXegYT2mUTcoolEP/HlXa1N+fPPPxNTpQHlGnS+7vctWrRg3759tG3bFq1Wy8CBAxk5ciQjR47k4sWLTJn2Ph+/8givL9wDcFfHXoK7j+8WL6F2s2533I8hMIpSj36G/dJRbCmx5KVcIvv4VtLzMqWXoeUzNAYz3rU6Ej18KoJGe5VUf1HBkpvNj5+Op2mdirw88UXeWbiDJfa7W/+uIJTu9RIbnq9F2zZtOX58C8H+ty6IpNEZcFmyC25YlBBF/qmKW1xwOR3ELXyGyhFhjB47gTptBvL28hPE5uoL3rkYkZebhafZhJdX0SmR/z/gtbemkO5bk5WJFfk5Xg5Eqlg/giqoqy7lpbUpQXL1CrbDrLQRVPmaZzOkoHJAlHIfuFTRWF+DqpybRkQQRKVc0F2AVqu9pmzXo088RVyqlRc+/JGdaZ7YgZPA9n278tuIqtIU3umx+dvqfDt1iQujrH785WVlocK0O5tGvZ7lldffYt7nc277HATAqJWC9G6oy+F9cVr5LU3pilOj/i1zw5QasGq1bbfSuD5L+czqr1BSdXlK8MrqqwTP1PeGPiclf1u9QGApK7EeuoQrCxVlvZTFDsGeztfvjSFuw/dM/nITUaX9ADsfH0lXzsdXSWOq56Wcs1Ej/Q7rUpTfQ6MSGFEHZnUqwTNXvJKT6ma8AIhX2VMyQ0SVZ6yt1iZ/W1WlhtysVJy2PFw2C+lLxlEuxJv1Z84QGXl3A433Gve9c9myRQvEGQvgJs6lG16hZQjt9hyhPCcpYaXFI+iN6Dz9i8ywv/D3Ljp/cmP67ZB+PXlp5hw0Pd8oVL9Gn0AsGUnF6lwCCFoDLrsVjf7Ocgr+iZyz+8iLO0npQW8Wab8AHuUfwHT0D9K3L8G/6eAi7/96cDqdPPf8i4z/+Cdib9LObDbzww8/0Lx5cxo3bkxMjDQpxsTEMOfTmXTt3IGnx3YmvHRlxjz84F0ZewnuDdIzMvEPLodNZkzkqmixB89JtcS8DVdT370vS7LnNm8lGOV9aT8AOSGV8fALxU82JPU50ovTpVde/BqHFVyO/Npd7jIgauqsrVxjaT+HxCDw9ZZosB6CtArZ2l9hVpTxlvr56+BRNn01ER9vDz5ftpoy439kUVoQ2hxFaMENq9/VL+VcoyfWuJPoAyIxmCRapD0vE43BA114JQCcGRK10qhaObQlXQDAM1Gqq5gnG0wahxQQM6UpT6Jdpqae37se7zq9CAq14X34KFfCq2KOkI5hSpFLZvjJVCeZZuruTx9djaxD6/E2eqKXc1RLy2JlO+S6aG4VcYtTYVS4hVV0HtJ3LqdkfDlcyuv6zyxp2/2JWR5Lnt2KwTcYjV0xLp1mP2k8SScAEOX/u0xuar1yH7nLi2RFSxRFN91Yq65n5xeKJfkCW5+thtloQDd0KtWjqrDfqmF/LDizk7GnJ+LISELUmzGElMaUcuGq65pfrgWlnIwgG6Hue80tjKEWqcsfq1ySJE++Ns4Q6VyMWhfnzx2hZfN/X63Pe4kjR46wbttB2j13d8qOFAahUeX4ec1vdO/e/Z4cf9HiJSRnOhkxbvpdOV7lOk05uG01c+bMYfTo0XflmP922K0WvnxtKIkXT+IbHM30ZfvxDv7351ha4k+Tt/Y9rNYUBEGQBNwEJ6VLlwZg3Mtj6Na18Lor/w+4753L0NBQ/AxQwazhSKpCK1QTDBM1iqOkV0X6HJ4yv9xuvUrsx2GTjAuXqphq5yglb+SYSsHqWJYSZansOImPpwmd7tqfZePGjfyydj3R0dEEiqkkHl2HoY6UUyKqIlY6VWTFoSog64ipw8lDWwgOrUItUWnfyleJfJ3Mk87zfKZiSKihVeVZHc5TqcmpVHZ13kGIdhuC3oxGVUjXnQzjEN11yAQERDxkmqyginppcpTImMZmwZ6dSsLaT4l5fiUOk9ROvb6RaJWu5xmVQpqazlvTQ/mPhyrSVyNAyVs82Gwo52c/hE+FxuhUgknuAtI2laLZhWwnfx87Tp/+g1myaAEGQ+EFlg4cOECNBq0IDAxm9lHlPvntO+Uc9gyRjPzQ0FBGjx7Nk08+yerVq6/qp1u3boSGhnLixAkGDBhQ6HGUoAR3G+dPHGLHojeoUrE8u7VVCB06CudNqJyiKJJ1eCPZf/+JNekcOu8gDCGlcVlz81MMXA67VN8xLxMEAWNYBbyqtsDg173QOdn/hF/lpmz8/VMmPDaU9z+ehb7TS+jMBYsOmWNqkPjj1Lu6KpN9+SQm/8KxWgqDrFO7SPx8NK68TDwiK1Njwo+4Yvdy5If3OX1wM2i06L0D0PuFoQ+MJvfCIawJZzAYjIQ06oe+UtO7wrC4nTn5/xnTpk2j/pCCNSPuBSrVbMiO1V/e9eOKosjX3yzkuxVrGDnhk7t2XEEQGPj0FDZ9PYGNGzfStm3bQveh1WrIzrx79PfiREZKAp+O70OPzu04V7oi/Z58FwBbcdBligh5iWdw/D6TCH9Pprw5nkaNGt3rIf3rcN87l/8mvP/CAH5YseS63z3x9Fi6j3qFpet/w5KZhnb3t+R4h+NZvsEt9e1Tsy0XvxpLcPvHinLI18CZk46gLVpaVPz6uYS3exStqfhoThqdHp/ancj++0/8at28fp/TbuPIwb1UbD2czp07s3TpUoKCCqc4u2PHDqrUa33L7ceOHcumTZu4fPnyNfSKBx54gAceeKBQxy/Bfw9//rmZzg+1vNfDuG2kJ8Xy+YzXuHTmKDq9CW2LQXhU7H/TfXLjT3Fp4YuYy9QlqONT6AOj1erzGHwluX97nhQE0hpMuBw2sg6uI/vvzSSvmYlPzbYEtRl12+MWBIFyj37BE4+WYcGCb3j9k8/w7zy+4P00WozhFbElncUQcHcoUSknd1Kq1fAi79eRk0Hixi/IObcfrdkHn9qd8A6IYP+rrQgvW5Po+l1wtX8Wjd54Ff3Mki6tMLr+/oMru38id+M8ApsOIqD8A3fs9Jfg1jBz1qdY9MFc8SgHctzYaZXEtrSZSokJMUjJdxZVgWFdqpJnrc65dhqVAItDrVOQKLEo4sso9XBCzYqnYFKVcHO6BAStEbtdvTp9d/D0mOeIyzHSY+xsPryo6GA4zir6CqZMJRfU6qPoWbhUDBGnuvSESnzKXdIsI1mhpV4IVBgKdbo9w6RXn6FWrVqFth969ezOE8++RO1mXfODNYnZyqKFJlU5ps6qouarWAAauxLUVtOg3ds2X0V8Rifn48M/mQQKRJWCuK1Si/ztvmHKcx7jKe3rpbdhteSx8cevWPv7Mvr17MSpU6do8NiXxOdJx//2b6VUSp1oZRXTX69eEFGO6aWRPjfrFfszU+WAtw5XhOX2qjRVsoTrq3qqS/xFlKoCQGPLQX77+m38DS6Wrv6OgIA7q5n+/4yS2R3w1Il0CrVyOFW5aR0WhVaUYlMeQp1RmYRcKiEdslWrfbLYzojyys08oZ0yGb29TnnYQ0zSqt/2Nd9g0gvUrVv3mvFZrVZMQTEklu1OrqM0mUd+x7L9G3LmP4Gz83OEVFAcC5u3il6loju5DJ7Y0hKw5GSQ7OOX/3kVb7WgkPQ33q44cVqVJedwKS+IBp7K9p8JKrXBvEys1lyw5oJq5dRtEdaSj5fs6eAEAnkytc/fW7lWWQkKBz7XbsVuycFUvS3dopSVRg3XKifmqHK+Ux3KpLMpRfn9mgYok0pZVYL+34FR+DboTfJvs/Fv+4hyzsnyyqpKUXHBt++gDynL8YD69Btei+69B/DzD8sK9YLYvHkzLUdOI9ch4MxNz//crjr3ap8qKxCT6/pTueVQ3v9wBh99cHfoOyX4dyErz4ZHSDmccgJTilV5KXolSCqmFtkg8D79BwDWcEmIx5ihGBsOWUFVK1MnzcmnAIU+qTYsXQZp9Ty7tDTH9C8r7VtOlSdjlI3FkxnSHBdhlp43k04k7sIpss8mc2jbL5z7ezeX4xPwajYMY6VWHNEb0VyQaLsGOW9J45IVXEWR+KNbyD27j0lTFuAfEsnfmdLLPktFB96XLuXIGGXVUFEU0er0hDbpT2iT/mhEF6l7f+bygnFYM5IwRVXFv343TOEV0WdLBrYxSyolIKhkugxyvpGbvpl28TjVn5rP1I/nUCYinMsmP1whlaXrFiMVUNfESXRbD/l6Bu5fig0Lmi3z8MyRjnGwqVTPzy2IdkU+b51KLM0pO11RHtKxQ2VjyqxV5qssh7RtTTwPgJfORF5qPC6nA31AJFiU+UqUjSd7kFSKKidUovXqo6V7o54qZmdzCVizUjltEbHnpJO3YQ5pJ3chWLMAgfo9niKjelcufP4EVWLK0HHqWhxaaU5tJlN+PbXKu0EXLuWoWiv2h179WXI+m+R1n3Fq3tN4xtQgpPnQfCE1N53YIdN13TlrLq2KJSO/W20G6dqYZPE4P4N0P+o0Ilrh7q0U/9uxdds2flzzB4++8gXf3Cz/4h7D4bx7y1SiKPLy5Fc5eTGJXmPn3DOtgqDQKGo27cIHH3zIlCnvFmrfihUrUioikMO7NlCz0bXij/9mWC25xB49yKr57/LQiMH0az+FSZMm8csvv7DgqLngDu4Bsi4eIePX6RzwE1i2YDbR0dEF73Sfo8S5/Bdg4/JPOfLnUvbs2XPd72fOnotvDUXExqd6Gzzq90K/+3suL3+T1JAyBD/QncCa7W56HM8KDck9tQvCOxbp+N1w5qShURlJN8OF/b+juYU5PX3nSgKa3B26pzGiEta444iieNMXTtbJHZjCJEMtqlw1Oo16i6EjHubX1T/esppndnY2Xj7+BTdUoWbDdny3cx3r1q2jQ4ebr66WoAT3EtmZaSz78hUMgoWo8HCyk86QlZOH7xOLMEVWRnP575vuH//HAoSoapQeuxj/kNsfh6DREPhATwIf6ElGRiqWCwdJ/OFd/Bv3J7B0rUL1ZfQPJ71yZ8p4J3BmxYuYur9aYO1j/4hynNrxM4F1uhSrESuKLs5vnE9Mh8cLtZ8tLZ7U1DSyLx/HknSWpOM7CPbUkpNyhXPnL+AZURnvmGpUfqAjpRp0JSvxPAdnjiJ6xHRqVqsBgKMQfoHO04/w3hMJrtGGrNO7Ob/kFSK6jcMjomLBO5egUEhPT2fci5N44o0F/3qxN1EUcblcd6yGXRA2bdrEpFfewDMohofGzyTDcW+vS+P2/Zk+ri8jRz5ExYqFewZmzfyI1u27ULV+K3S6eyuidStwuVwc2LqGravm0r5NC35cuRgvLy+6d+/OL7/8IqnnHr1+Sta9giiK5O1ajH/2CVZ/+TFlytz72qL/FZQ4l/cY547tZc9vC9m5bTPe3tfP4zl49ARBDzx71WeCIODToC8eVVpy6o02XNm3FoNvKMbqodftA8CrRlsy9/8KLYrHubQmnMYcXaPAdk6HnU2LplK3XsFUzpyzewnucHeS3gVBQOcTAk4H3GCyduSk48hJx6usUpMrulx1Qio24YMPPmD8+ILpcsBt5WEJgkDPhyfx+ecvlDiX9xlyc3PzVyz/rRBFkaOblrPn8mHSLh3jrdcnsWLlj2z4fRMdBz7Fgy27MvVEwcac5UosuYlnKPPoZ+6ei2R8giBgLl2b6Ac/IHH1R2Tv+Zmobs8Vqg/Pdk/x08wBBIs5ZO38Dp8mw27a3uTlh6d/COkXjuBfuuC58XaRsG8tfqVrYS6g9InL6SD77D4cp7ZgsKVTNtSXsNIxGHUaPKMN7Er2ICHTjtD0MWq/MJAguRB0uMGFNTudP2c+Ruknvr7jEiuCIOBToQEekZU5t+RVovu8jIdXSe3eosTEl1+lYf8XydT4k5kLsRnpypeyqqlTzS5SaySolGPdIkxwtSKoGlrVvm510u82KPoPHZorKSBVVeXX3FNaSKmq7Ny5kyZNmhR4XreLtb+t453pn9DwiS/wCgjlZDasOC6NVVApmnqqqLBOk3JPOlXl39QKqGqqsKhV5/pKJ6fLSlb6EBU2UppVA8YAHnrjOx5+7Ek2/76uUM61p6cnnTq0ZePy2XQa/CzlfJTr2rCSogS73UeJzullYS3pHFTMOxVsPtIY7Z6KMrao6sOgqrE9PEJhU6ipz+pXVdrl4+zcuJLTh7bTpWMbfv/tZ3x8pD7GjZ9A6Y7P8vlhHziczYqj55UdVfdajEnpO856/WvkK3szaSoGW3SgX/52gvKTkZWt/GYuVWlAQ6BCBe6Vt5PVC6YysEs7Jr64Er3+3+/A/5tQ4lwikUdNWpFekcrk8cNZZUIQVY6G3aI8NRqVwI3go6iwdgyRaDxqKqwakztID83u3bt54qXxfL98CcHBN1ZxzczO5rwNDBYRp3uil3nxOv8IqrYZSvLZQ5xa8ALln/kGc6RE10JdCzMtDs+gGBJP7WRLQjo6WYwo2KA8qH5yzckGKnnn3TnKtt2mlBnRCEqegU5+OMWcdLTe/vlsXEOqwsOpXF3KDX29o5nExEROde5AXl4eI5r6AbBomdJ3hrs/UURj9MQQKkWLnKoJS6dR5W3If9Vc/ExV48b+Cq3KX69MUn6q9g5ZUER0OXFasvPzRjXyC8Lr8mEA0s7uR6s3EFS2FvqcFM7IeQ5R7Z7g+/f6069fv1uKbmXbBLLkWpw6b2USd+Upk55a2OjtPcqM6Z+jZfv27cX6Ii7BvwufffYZtVsPvNfDuC7OHj/IkZ3rOPH3QXp0bE6HJwdRrlw5nnz6WUIrt+C1zyerWhecW5WwdQkRrUYU23g1BjPhfV7Gcmg955a+Svl2IzH63BqlXdDqCB+zjLgp7aiQd47U45swxNx8BTSqWjP+3vojvlGVi2L418CScIb0M3up3H/SDd1wpy2P5IMbiP/rB9q0bce5lMu4DB5cTBZITjlCalI80Y17E9btHcJDSnHSem0Q4Mjq2dTo/jSpRVi7U+fhQ3Sfl7j0wxRK9xyHwado1MzvpojSvxG/rVvPxaQMOvRrdq+HcksIjalEbGzx8HZdLhfvTf+QNRs289jkuZy2/LuCGH5B4dRt1YdXXnuDd94qXBWA116ZhE6no37rPgSG/buomueO7Wf7rwsRrKmMe/Zp2s5596oV9OzsbLbt2E2nyZNv0su9Qe6pncycPYRdO3dQvnz5ez2c/yRKnEvA6bDd9ZfR9u3bmTBhAj/99FOB9W9OnruIZ/cbt/GLrEj8sZ1U6zSKo5+MoPyzizCHV7imnSAIBDUfStKvnxDR79U7Pod/wnLpGMZSNQtst2LFCjp06MDy5ctv3lAU0Ziu76DfK6Sc2InOwxf9P2qZarQ6hj//IYOGPsTv69fg6Vl84241/DXGPP8Ea1atICTkDjiDJfhPwOVy8csvv9Bn8gqsLshzSkGJJUfO5bfxkIMhHlckMY2sClINLs84KadRLUDhFmwQ5Bxqh4cU3HBHqq2+inBFz+rSPFLOWwpuGLWSc2jQiNisFj5/92migz145umnKV/+eQIDAzly5Ai16jdmxAszqVCrCSoRbrRyiSK3WIJTDiTpc6VASp5XCHmZV9BUaU2PEOk8VydJr6nYbGk1RaMWgvnHvG3NlOqr6f0lBkePQCU6b/OXmCE2l/R3deAodJWacXr2SCoMegONh5L37RawcItXiHLen8feFQCUbvkg53+bSRXTLmodfpv333+fFbsl0YctSbUB+PPY8fz+wqwuTv2xiDI6I1q9iSv+siEoO6bVvJVA5TmbdKw4izT2BJv0e+0+rZRp0ck54PbkC8Svmk6FLs+AzohLJ+2bVUORv9cknOTirMFUrlgeZ+22HPFrjkfduvjYsxE0Wpx6E4FALnA+9gzEnsFhloKP2XIA9axfOOf3bqBUs1HUMUu/y1458NhUvjfWpUm/i8WhBBBKmaTf2SDnQbb1k+65vysrQnRnL50lbPA7nP/2RcoOfA1Rzgl2C6i4VMIahuxk+fylIJxDLn9jkZ8JHxEiS1Vi5eovuF9htVp57c13eeadb0n+j9SeD4upyLFjm4ul79WrV7N599+MfuMraWWw+Epx3zaadx7M7NdHMXPWp4x5+qlb3k+r1bJx40amzJjCyJdmF+MIbx3xF0/z2+IZBHhqeGviGOrXr3/ddj/88CM1mvX411G28878hXP1a5w4fqzQQkslUFDiXAKlYmJITogFU7mCG98BrFYrGzduZNasWcTFxbFw4cICHcuEhAScBu+bPoCCIBBasT5xR7ZSZtQsrmxaSNSA68uO+9Rox/kvnySk8zP5q5dFhayjfxBQgBqty+Vi3rx5bN26lRUrVhTp8YsCztyM/Hp110NeyiW8S11/pSIoLIr6bfvx4YyZvDLppeIaIv6h0TQZ8hojH32SH1csLqFr/J9j//79NGzYsNjzkQqLVx7tQJuWTfh87meKYmFiIq3adaLaCz9QoVbh8+hyzu69ZQXsooApohLhTfsTu+ELShWCIqv38GbUtJ95Z2h1RgwdxPDhw+n+9Mwb/kYBFR5A0Gg5vnIakY16Y/SLumOjKvfyMeLWf0GZoe9idFqv+d6adA7Xli/IObaZoNAIrlTshU/t7ggy5VFIOXfNPjeC7cpFtJ7+CDpDwY1vA4agGMJbjeDCTx8S/eCHCJobz8EFwcvXn+zsnIIb/p/i5cmvUb/LKHIEL76KVYkrqeh/djdDRqXwKegUho+6HrYlLSF/W5OnphMq+gpqpVCrb4S7x/zPVl1Sfo9km5L+s+2ipAhqzzBS+dDN87BvB1u2bGX6zC/o/sI8EizSe/L7I6eVBrLKrTHtYv5HFn9FmVRQUUf1KsVUh4oua/WLUNqo2EYurRT41ahK0i0+pTDiBpZXrrGPQeTRV75k9isjaN+2DVWqVLnlc2zdujUzZn5K3NmjxJSX6LANApRxNw9Wr9Qq1PzLqpJ4iRZlO0wWmSyjEnsc2KhgW9FqtfLss8+Sm5vLzKmTqVz5xkyNo0eP8uHsr+gyYRHLTyr3lzEzMX/bUUq5rllO5V5Sl5NTJ4GdldkW2SrWWl0v5f4/p1KWNamovW0ipMCr027j0s9v4MqO5/Pf1+Dn53ez0y1BAShxLoFRDw3j4y/mcKqlanleNVm2iVBWqWr4Kg+th0pSW6eyKRyuq7nsWVlZLF68mIULF9K5c2c++eQTypW7NUf2zJkzCEFlyJMl3d21IzX2vPw2ltAqeIZWwXn2CJ4nNyCQR+r80YQO+yC/jXo1wr/NKOJ+ep+QnhPYplOi9dU9pEklxKg8kJ0NynamXaHC/pWjqutpySH33H4MIWUQRBFkiWtboDJJtwyUCO9//XWQmJgYjh49etUEGqy6lpfM0phEUcSZl4lTjk4HGxUnyqqabBzyrruylAmylEHpL0BFf3UXoAfIUP9MogtHdiqCznCVSIdLlha3yoXSHXYb3g17Y/OSVnl+PKXIZftWDSemxYMsebUXL4wbi9l8Y+Uzf08dwbJardOuJANonMqErpb81mYoE/CC3amANxb/BvQbPIIVi78pcTD/j5GWlkZo6I1zqe82LLnZTBk/gF49uvLB9Kn5n1++fJnmrdpQ6akF+JSqwdXVgm8Nuaf/wrPi3aV7+5arT/L+teQlncccUvqW9/MPiaJ+8448+OCDxMXFMfWZbrTqOQqx1uDrOo7+5eriFVqGy3+tIvfwn4S1fQSPAii114PLlkfCn9+Qe+lvSg18XQoSZirzg8tuIXP9p1xe+Q7hpSvi3/dNfOt2IzMt6Sa93hwZf/2IX5PipWV7l6pBXsIZkjd9Q0jrkXfUl8HDh6SkpPuO2bFjxw72HbvI4BeLJrjpslnIPbcfnU/wVfloRQ29byh5opkjR45QvXr1IukzNzeXya+9Sf+n38dpMBW8wz2GRqOhYYfBrFu3rlDOpSAITJvyNg0bN+WzX47fE3Gf06dP88QTTzBu3Di6dOlSYPt+AwfT8onZGM1eQHaB7YsbLqeTTfMm4pV9mt83bvjXrab+F1HiXAKtWrXiqafHkKv5Bo8mg8m7cAhL7N/YT21DiD/Cb37++PoFkJqawoV6LanZsg8xFWsX2G9aWho9e/bEaDTSt29f/vzzT7TawkVkt27dijWqPrcyXcR0eIxT34ynRsu+7Fu/CO+4k9dV4fOp152L25aQe3o31L25wuytQHQ5Sf55OuGD3imwrcVioVGjRsTHx1O1atWbthUE4RraW3EifecKfOt1v2kblyULU+iNAwOCIBBevi6HDh2iYcOGRT3Eq2Cq3ArPvEg6duvN8u8WEBgYWPBOJfjPYfWv69CVbs2ZZGll4fS5Y4B6XQA0DilAoZXLarjXFDSy2ITdR4kCG1LPApAXJkWx84Kk+7l21ToANApQgh1aQQqAmORoscOWw4tDGjBi2JB8x1IURT6f/zXTPpxFTM/JeFZuigv4aJd7ZUwVdU46ASirA/ocicbqlGm71oTTBLUcgeByEm+RgjxX5BiLQS4DZUlQVh4MIVJ+s8tdJsmmCJEAHMlSXnHBcqAsUA489QiV5uKVWVUIGvQusUtfoexwqcyPO3gnaqT9dVbpOuYGK+kGHjoRnVYa40svvcSTTz7JRx99xPZZvRkzZgy16tXFaJJ+iZkXpLnOsHclZVoPJ9NqJX7TtzjWzSH4gR4crNYGjVwvzyUH5TSykejEjtOSDenxpO75iazTf1G542PEPP4xlWXNi7qBNjLSrnBp13f89vtvjOk/gFdWmxg48Wt+tYWSmZGCOV66b9yUX1FehXSqVqDcrA13WRA3DdVy4QDBHUaj1Zto4C9F5WrLAb7NadI4M9zOq2rO1pgk566Sp3Qf+cu/wdpkJbLXs5JUX3HVeU+8e0wg9oM+uKq2wKyXrr3NU6GmuUtteSZI55LpJX2nL60IpQBUqd+WX375hZEj78xJ/S/hypUrjH3hJQa/vOC2+3BkpZB3/gDJZ/eQF3sE0W7FGF0d+5WLOLKu4FOpKZ4VGmK6TtrNnaJ532f4YMYsvvrys4IbFwBRFOk/cCgt+40hODyGhLyC9/k3oFbDNix8ZwTPPvtswY1VqFKlCnVq12LPptU0atu7mEZ3LZxOJ59//jk//fQTX3/9NVFRBQcg/vjjD8KrtiCiQu3iH+AtwGGzsHX+BEj6m19+L3EsiwolziWSQ7Bt62bqN2rGyVUfoDF6IDpseNfqhLn985QJ9ObPT59k3W9r0QgCjz7xNIMnfEG58tc6bqnJ8Rzbv4NTBzbxnSWZsWPH0qdPnzsan8Zwa7V/TAERVG/ei73rFlK2ZnPiNs6n/PCp17QTBIGoxz/n4sxhREaUxSOs7B2N78qamXjXaC8Zeo6br1aMGzeO2bNnk5R0a1F0rVcA9owk9L7FG4EWXS4yD/xGmbGLb9LGiVarQaM33rANQK1OI3nvvVdZuXJlUQ/zGlRo3BOtwYumrTowY/o7dOrUqeCdSvCfgdPpZPuufTzcYxJnkgtuX5xwOOx898lk+vXpxYcfvA/Axo0befixJzE90J+Gr/6OVm+4Sq2v0HA50ZrvvuCGIVhycBw56eg8/Qq9vyiKmEwmXnnlFc6ePcuKFSv4ac0HBISXo/vDrwBXr5yYAqMo02ci9uxUruxdQ9K+tdL8YvZG8AzAmZ2CoDPgsuWikYXZfMrUJqhJf0o/+AE+V86QdmYvm7bPx5F9hU0uKxFhIXTt3J7t27cz7oUX6fLwq4SUqgyn0q4z4kKen8OO1nx9NfOihCAIBNRoS9aZ3XhWbnzb/dRo0IZvpj9+XzmX4ye8TI+HJuLh7VfofS3xp0ha/SEAHuUb4Fe/G5EDXkfQ6fNpsS5rDjkH1pK6YzmW+BMEtBqJb92uN+u2UAiNLs8vJ89y6dKlW3JSbobt27fjFVqeKnX+G4JGbhhM5psynm6G96e/x5ARj9wV5zInJ4fly5ezbNky2rVrx88//4xOd2vuxI4dO4is1baYR3hrcNks/PJhX1569hFGDPuixLEsQpQ4l8CX875ixqdzsZZvRXTXlggaLaaIyvk3WmjpMnQp14De/dqx+fd1LPz6SwYOGc6732zLz7EZ0NCfqVOnsnbtWgYNGsST70wsFLXhpnDaQV6ZEOXjuQUwQIn6A9D4IapUas+FVdMxmr3J/Ot7gqo0uzo6nZeJFojp8zL7Zj5ISKdn8CxbjyuhpQGobFZWVz1Uqqx7shSr0Z4siUtkHvkDW9wxoodMgewUBIey6iGEKSpbXjI1NSoqikaNGrFy5Uo2nbRg/VNaEThlVXJ5NDYlP8OzVC0ydyzHv2EfXFEKzVajKpQtitdOCJEq6eobtf0xVqmplL5hLn7VWqCzZl+1+uEWPyldpQHZ8ae55O2XL5oBoM9QcgS+i3NTF6MQz10iJyfnpsI+7jyGaaeV8xWtCkVELZGtpmmjmgB/3vUX4I2x+5u8MO1L9uw/xNhnnsTL62rJ+KysLOZ8Po9KFcrSsUMHTKZ/P02oBLB582ZKVb99I7uokJ2ZzncznueBWpXo2qUTEye9yuYt2zAHl8XvsW/xLFUDrf7OWQai01FgndnigmdUNfLiT+FdvuASSf/E4sWLmTx5Mnl5eZw/f56XXnqJl156iZ9//oUPpj9OmkWHru1Y/pm5pPcKILzlMILM/oguFy5bLi7/KAS9EZ1ZeYadeVlY9v1Mzo+voffz41ziBTp16cbAiY/StGnTq/q02WzM+PB93l59+zTYf6K4ci2vB+8ydbi87jPC7sC59PEPwmQysW3btmuuz/8jvlu8lFSbiYgqjfkxQXk/Oa+czN8W1SJ08jtMa/Yi/a8fSNuyiKgRH+SvSJY2K1yptGBFFyI9uBQB7R/HZbdy+ZsXyD2zm7C+k3GpAkIuOY/RkH45/zPjpUP52/vPKYo6HqrnfI5Pc/Lav8qYia/y/bfzC38RVEhJScEzKIY8uY7lvDPK0qV6ZhFkBXynTnnXOm9Qq1u0KtfEqUr50arKe6jLkrjZD4Ko2CLqsi6RHsq2UATllh544AHMBg1njx8ksnxt5ZiqVCCH6jBRHoo9V/Ym+ZVOp5OsrCyuXLnC3LlzOXToEHq9np49ezJ//nzCwq5mDdwMoiiyePmPGMY9zfFUyf3QqMrYqEvdaFRCXr465RpeUuWHZqjSo0rLjJSyqvNKVJUtKaMqldLQz0Xc6UOs+vAxXp88kQeH37ykVAkKj/veufzuu8W8P2cBfV79kVUXlYkB59WS+d5hZWj55kZGjHyY39b8xKOjRrF/22/UadqRbb8tZ8oTc4mOjmbNmjV4eFx/crpbMAZEUqr3RE59+TR5Vy7hV7r2ddsZfEOIeehjLi97lbzYo0QOuHUFWZfDRsofX5N9ahelHppxS/uIoojVKq1snjt3joCwgqX5vau1JmHVNPwb3tnq782QfXwrOecPEDP47Zu2yzy7F80t2rz1W/diw4YN9OzZswhGWDC0RjMVHp/Hr7tXsbRNF6a+PpGuqtyHWbM/Y/muOHSbjvL6ux8wb/ZH1K1b966MrQS3jyXLv8e79kOcydZx0Sq9HN0CEV5xisGmkamOLrMfANo0yeBxyYqbWktGftvUeoMBaCnnkjeW86GvWCWqYoAqMOOwWpj33lhSEi4yacI45s5fxOYDZ0mtOwKvR1/EqtHgyE4jIyOFo0lSwMkgU3O95UCJ1VcxTp1GH/kc3MEyyYAwy4IaZi8/xOObMYeXJ8EuGbr1PKXxbLoo159T1ZKzpkvBHXOARPt150xq5ef0hEV5YAP00vbZXMng8JSpvhrZMPby8ccWexhDaAwOOe/bTQvNDpfzwPwVevHnZ52c2LuTX3/9lfFvfYjvQwvQxR6g54Bh/PL9ErRaLd27d6V7964cO3aMzz//nO1/7cfoFUitdg9SoU7LfCd6XNurV2tFUeTMmTPs2rWLdevWERcXR/v27ek5/gsqVarEzbBr1y46DnicAE894KJhuCQcsi/VDwC7nEeusUuGtVqoxK0Y7A5e5gZLrBaXNQen3Yag0XAwQ3q/uQ0+dwCyTqh0nINpSoDs+BWp1uHJDCmYVdNfMh5rqBZBIz2k+65ssBScu5wUgiMvE5f8O2tV+gLIhrpaTAbgaKZ0H0WbFcOyRpuh/LZ+4/+9cxkbG8vHc+bx6Js3Zt1cD6IokvD9uzhzMyg1ZhH6QqxMa/RGwvpOJmP/Gi7MGUXk8PfR+926k3EjmGNqcGSzlZMnT1KxYuEFwdw4c+YMfjIb4XbhsuWRc3YvtiuxGAIi0NhtaIweeETdPJ3nTrDmu4/vSLjt4xkf0r1HD95esJ3A0Buv/jodDhITLpKXncnZo7sQXHYSY0+RlZ7MIg/FeRNFEbvdTmBgIDqdjtGjR/Pmm29iMFwbbBJFkd9//x2LRQkemEwm2rRpkz/PnT9/nsDw0uTcxWDVP+FyOtgw7xXsV07z08ol1KhRfPWH72fc187lvHnzGD9xMg999CcGsxeQedP23qGlGfbc+/TqO5CFX39J63ad2Ll+GSG+JtasWUN4ePhN97+bMPqFUXXQ65z44T0OLZhAqQenX3dS1Hr4Ev3gDJLWfsLF+WMI7zsJzDc+D5fNQuaBX0la8zF+D/Sm9BNfcKtTYdyFk/mOtyiKt6QIqPcNwZ6eUGylYhzZKST9OI0yI94rcDxZh38lNCLylmKMQWEx/H3sBDfyLd1OdlFCqzcQ1aQ/eVWa8cm8N3n/o5mY5Jyv2MtxNH9lHRqtjuyUOB55chTW7DQOHzrwr1MhLYEEh8PBoUOHaNCm+IQ0boZL547z/edv0aNzW65cKcuMzxZQd/h7+IbG8Gtq8dwz3qVrk3XhIB7hd7+2mNE/nJz40wU3BJyWbI6OrUTVajV5euoX+Ax6H62HD9pKLTiVm0qfoSP5ftFX+Tn2VapU4aOPPsLpdLJmzRqWLFvJdz9/RqOeoylXu2V+v/Xq1cNsNuPr60vZsmWpX78+06ZNK9TqwKw5n1O/45OFO/kCYAgthy3pLMawu/O73GoqyM1Qp0lHpo7pzrixY/5vlR8zMzN58OFH6f7oW2hvkZYI0vs36af30PuGENbn5ds+vm+dLpgiKnF54Xgih08vEgdTbPQQM2bMYPbs2y+tsWXLFto9PuC29rUknObK7/Oxp8XjVbkper9w7BlJaOw27JnJJKz7DH14RYLaPYYputptj1GN3X+sYu6UsbRs1ZrVP/142/20bt2agwf28/hTz2J1agmNKotLhNTEi7jsFtzrthrBRcXy5fD29qJ/2+Z4eHgQFTXwpjUd7XY7GRkZZGZm4nQ62bRpEzt372Xz5i0YzT44EQgtUx3vwMj8muTJsSeYO3cukyZNolatWnz51TfUbT+MLbd9hneG2H3rObHmYwb07MLLE2feo1HcH7hvncvU1FTefGca9d74kzOmUpAFqJbh1TTEIzlKNLRJdHWqtB7OshUrWbZ4IZ6enkWmbnYjCAYPBJlqIqRLVE6rt6IeacpQFEtRUTCIqk7ZoVM4vXACl5e9QUiN1oTV6UB2pFKLUpRrxoV0G0fu/jWc/+RBztgtGMPKYy5dB31gNBqTJ6LNQs7OZeTEHsWvclOihr2H3l3w2qVcH3ekH6BlkOLMGrU29v6+nJYtJUPq/PnzxLTokC8UkpujOPY6ldy5w+SNd8VGpP4xnyXBr+dHwCJMym9VT6Z0NPFRxpFhV1Ysdmcr25Z0hcZqO7ObuB+mENl7InqdPj9f1CGv/oBCaWkfZCPXz5MrmSIWFb3Iqb7eSefzN6Pqduarl3vy0sQXuR40Gg1OpxOtVkt7FVtpTbxybK1NidiLKvqQ+nM1zebvcyeU9k2fx+Ww59/HgkbL5gvKfVL6+d84Pf9pnhn3Ip/OeP+6YyzBvcW7U6fToN0gOfB19xB/8Qxrv/sYs87OjPfe5KefV7Nm/SZemLGK0zl3bvTfDN6la3Huh6mENupbrMe5XYguJ9l7VpG9egqBYTE4Ok7GI7jMVW282o/h+O4V9O0/mDmffnxV0FFazexO9+7dOXToEE88+Qw7lk/n6HcVCAwMZN++fQBMnz6dF1544bbG2L9PL6bMeJ1H31l2+yf6D2jNPrJx+t+BVqejfsse/PrrrwwePPheD6fIER8fT4dOXek0/EVyA6tzSn5tnr6kKjGjzl/OU9JAMv76ARw2ug9V3k+1fBW2lt2lpLcsSlRWmToGKSbjRp1Uq9UcFI3GYePyV89SauTHCLI+gt1b0UnQqNI9NHplDlGvmrsSTkn9eflzdNclsrKy8PYufJ5vYmIiqbkiKfhKxVsBMVc5Dr6KAyzK97Td6IHLbiX5l4+wJZ8ntNdEzKVqYlbV2Y5RKdBfOn2QsyunQJnamDo8nW+X5KlW1M2pEhvDqTpfTYDC4jDLCvmWvBxmvfEEu3fvLpJVtHLlyrFh7Wri4uLIyJAYK2FhYfj7F670XE5ODufPnyctLY3nX3yJHJuIX3hZUh1SwMwRVReXqSrmXn2waTToc9O4JO8ryMw/sXw5TiReoG69+qxb9xsHT5zjUptRaI9tyj+OSVXuxa6yveyZii15RVXtINKkovOqqzTIP8/aNOUe7Rss9e1yudi3chpXzuxl159rMRpvrptRgjvHfetcDh02gt6Pvsa5kMJTJ+q06MH8SX2YMP6Ff30CsDEgkvIPvk/sirfJuHiEnMSzhI66fkTQp1JjfCo1xu4RgDXhNNb4k+Sc3A6CBgEB34oNiezwGIKgweYdfN0+boTU5Hj2b/mFxXOPAFIUzK3+WBCC2z5K0oa5nJsxmOiHPkLvf2crxC67ldTf55F7YivRQ6eh9w0G1cvvRsjJTMEu3tqKjVarQ2cwkZeXd90E/WbNmrFp0ybatGlT6PHfKjQ6/VU1O/+54lpu5CesnTmEd6dM4+WXJhTbOEpwe7iSkkK5xm3zX9h3Aw67jVWfvcbY0SPp168fb7z5Fsu/X834mavvisS9zuwNCNizU4v9WP+E05p3dW6zCqLLSe6+VWRu+5a87AyC2zyMb6vHMARGYYk7cU170wP9qJgWSJkyZXlxwgRemjjhmnmgZs2abN+6CVEUOXXqFE6nM1+A5k5YMP369eXgkb/Z8ctXNO5aNII2xrDy5J7aiTm6eAOpRY0mnQby5rPd6N69+zV56P9liKLI0BEP023U61St14JjGQXv44Y9LY70v36g1JNfFdl4jEExhLR7lLiVbxH58Cd33F+TLg/x4sTJzPn040Lv+/m8r2jYoXDBhNzzB0hc8SYBLR8kfPA7Bdp1PmVqU/uFpZxf/TGX5j5GxIMfob3NIODeTT/RoUOHIqdnRkREEBERUXBDFex2O2vWrGH9+vVs3v4XlWs1QavXU7HvG0RWkdTv/8hQbIq8i4dv2p+g0RLQfCheVVowbGQfIkqXR3ODnNbiQk5GCt9Pe4i+PTqyYObP16X0lqDocV86lxcuXCA910m9Fl05F1/4/bU6HTFVG7JlyxZatGhR9AP8B8Q7TPY2+oVRsec4Tv08A0yexH7zPJFDpqC5Ae9d0GgwRVTEFFHxKmPLeOXsbY/h6J4tDB86pNClWNzjCe0wGlteFudnPUhoz/FENCi4ltI/IbqcZB78jSvrPsO/6SBKjfq0UMEBuyUPH/9gblV7MahUdWZ9OofxL4y75rsuXbrw6aefFqtzWRAEQaDiUwtYO38Y9euto0OHDvdsLCW4Plwi+MpCOZXN0rN4WA4YOE1KjVr3ti5HynGzREplRSyVJKbAkCjFMQyVhQ1EUYrqptrkkh+n9rLyk3EMGdgXb29vBg4eRuyVXMbOWEMWJrBCpkNq285fmZOyvKWIeEhpKYc3TxZZSJPZA9sTFctXyEySxyk5j1q7tLTg1Mt0eY2GkEZ9SNixAp23lP93LkpiWlQPlwyl0xbl2JYsqZSJzSqt5nuZpX4qm6Q2aQ7l+TbKuYFBcjmMzelymZFLUsArNyUWs28wGocVrSzqlRtYBpfTybmPB6GzZRFWpwOmSq0w+ATjSI/DkR6Hb8JRQMnLNB9eA8CO7CvUHjCZb3/eyOIVP/DKhOfp37//NU6mIAh3lF92PTw/9hlq161Pg8atCDRIuasumaViyJbuETcrQ10Q3l1GRJ8psRz08kqCd9UWXJg9Ep9qrTjoId1bTX2ka9s6SFrlOpcj9X9Yq5gVolPaFuU6vQedUumQFmHKvWuW2StnU6SVCg+7BdGSky9e51L1586/zF/hkFkzh+U82hyVwEe0pxMP70DatWvHoUOHaNLk7tZPLU78unYtwaVrUbVe4e2PhB+nEdpzAoK2aINFXhUaknNuP6lbFxPQ7M5Wiqs3aMPXf6xg3759hdYGWPvbBp58ZylncwpuC5B7di9Xfv2EmNHz0Xr6FcomKN3tWWzB5Yid+wjRj395yylCaqTGX+CNN964jT2LDjk5OUyYMIGvv/6aF198kdGjR9N44GT0BmmFb1/KnTlkhqBo9EExZHpE4mswF4F80a0hJe4ca2eP5ZsvZlKzZs2CdyhBkeG+dC7PnDlDtfotMerEq9SzUNN+NMqlsSUpamDL9FJNuOyqA/no4/do3rx5sa5eVqlSBf9VxwmtL5WYuJQp0Tq1KoqLQ62wpaIYuGuVAdhiahMx4n0uLnoJg8lJ+uoPiWg5DKuKuuI2LLQ5ivvkUpXdsPoplA5DpqJE6FBRb2xeyopmeZmu6nI6WbFpCUuXLlUdSsTidOHWDqnop9BfjtuU1WRtlnIcvac/MQ/N4PLSVzmYGo9vvW4AnJfrrKnrqwk56dJ4UuPIOrCG3ItHsKcn4Fn+Aco8PBOtyUtShpXhvEqZVdkcXksStPDXW4i7cJKOA0Zz0Eepu2ZPUihIospZ35aqR6zdn8TUdVwPderU4fJlSU1PLUIhqISk1FRYp0m5PqKaLqvKExVcCkVXY7fK/dmv2/Z8nHJPt3lkNj16VuLvo4cpW/bOytKU4L8Hl8vFn0tn8Ncv89HqjZxJETj3235qdnqCjmWlaLrFUUAnRQjvcvWI3/Id9uxU9GqFy2JG2pm9xLQYctVnWad2EbvkFTQGM1HjV+GTUzgFVr3Zi8gHepKAmTeWbuetOYvwEOyEhEhpDSb5kdQKIh5mMz26dqJVq5b4+vredkkCAD8/PxYu+IopMz6k2sNzbrsfNzQGM2F9JxO39FUqTvz5jvu7GWyZyWhNRbfKOHnyZB555BF+/rl4x303sXjJChr1eDZfOHxtqvLu06nyHh2ZV67aL+fUTnReAbRoJpUQqeqtvB9sqgyP7WmK41nFpPS9JVN5hzhV7xaXnJ4R1HMCFz7oi2/lJmhViqru9xGAOfW8ckwfJb0nqLSyKi5ioc/jb/HMc4+x+fd1txyU3rt3L8FRFUGjJUMVWOIqPQWVempGEok/TGH4u79g8JDesf561YVAmfj0qu4u5ilu5KXo6gQ0G8rl+c8QPejNfHvQrdCvUSnoOy2Kxytw90sugaSkm5GRQV5eHsu+/4nVazeQ5tQjlm1K6Q9OsNTlZOlmEHIVWqpRlXp1VTBKdV3Vn6ttEVeStCiRZRdI2/8HQVVWYvFTdAScRsW2sasYcZpcJSi587ByfLuKIusbrPSTmSW1bxcm9ZedEsec51qydetWqlUrmtzYEtw67kvnsijgFV2NnC06jhw5UqxqU+XKlYOcrUXSl947iDKPzObsJyPISzqHV0wNjDXbF0nfN0PCxZPUrVuXkBDFka1RowZH/95N7RY9CtWXxuhB5JApJP76CWmbvkHnF5I/wWkMZnR+YTjS4nGkxiE6rGg9/fGt1pKIXi+i9fRHuAHtrSAc3buF0JAQfANunQ5s9Apk/x8Hb/i9Xl/8NMNbgcnLnx6TlzJuwmR+XP7dvR5OCWR4ephJijuPp3/xqRO6nE7eHlITs6cP/cZ8QM3GSh40gN11k53/Absll5yMKxgCY+4o4CYIAtGdnuTCTx9Qpu+k2+6nMLBciUV0OTH5hSK6nCQfWE/cpoWIWh0BjfoS1PU5SfCrkM6lG54x1SGmOkJMDUkUTZazbRYgGejRnk5yczL5c9dG1q17mYSEBC5evMjMmTNvm93QvHlzPp41h8tHNhNZ/c4ZNubo6hiCS5Gy9TsCmw0peIfbRPKB9QTWaF1k/YWGhuJwOLDZbP8XlDhRFDlx+gwdw2MKbvwPpG5dQmiP28vlvRUIGi1BLR8kdcdygrs9f0d9efsFUqVhF+bOncuTT96aQNW70z6g9aCXbqmt6HIRt3gSob1eyncsbxdeFRuTc3wrGfvW4Fev6Gp/FhVOnz7N4cOH+eGXdfz04w9Ua90Pm6jBo1Ibyj77NMcz88g9s5usg+sRNQLWuJO4MhLRevqj8w7ELzACo19owQe6CTTewehzC8HfvgM47TZ2znmc7du3F11JwBIUCvetcymK4BIFanspkakLnqqEZ9XKnKhKyE5MVT5v1fU53nj3fVYsXlCsYw3Si/miNQnuVUVVxEhdd1Et2y6qaC9OVaJ02eeWcHn5G5xe8SYRJm/8GkhFdx0WeSVPtVqJVan5KKiuj021SqfLUlV3V60eWmSK0qrPX2Nw91ZXnVO7du1Y8dxkmrftDkCPcCWyeTxZMUx1FmWF1hosOacCEN5zPKLLiWi3opVrS9nzsnBastGafdD4R6KRz0Njd5+DiOBUoojukg5AfukBAEOIsnoX4yUZf+99/TaiKDL1hWG8sUHZb5Uqf0Bde/TgBWlFMzUhm2UrVjKg37UCJZl5LuZvycCsegr1uUqumUtVckG96qheIRVFsCaeJef0LkTVarYuIBKNzoCnlx9mWZLdGqycl0a1Ov3r5UwIroclZSFnz54tWb38l+Cp0Y/z+NhJ9KzXEYAkq7vGrXSPqFkCokyVzQmR6JUdqkh/vWVKbahqddxDLiHRIDSdVq1a4evtwRtfbpBXylz5zy2Aj0wh9ZSnEkfyGTLTkzmx6zdizxzCoDfgLdfFPZGTQ3h4OFeuXKFr164807u3XAxdnWMjRZ2/2ioZGd/HS8/ouYuSmIdepsuaoqoR3HgAF36ZSdTgMAStjmNp0kq/00+JXHvIomJh8vjKy+cZKItvJKnqnB3PlcYZmyfNAfZU6Rk1W7KI//UTopsOIDvhLOc3zMOal0VIu0fwrdkRXA6s5/bhyEohw5KNztMPQ2A0Pq50BEHA6icJmxhlloUgzyvZkbXzj21Kj5XGniPRePXysdfLz3VWdD2podcDNO01itJAW8tJ3p8zi8++mM+sjz+8Kjh3q5j/xWc0aN6OCtM24gqU5gFHeCX5/KXr6aFKd7DL82BeiNTGkCPN7YIoXdeY5oM599tc8hLPsaHDaARB4I8kaT4ymqW/dXyVGrpZTmn7vKe0qhFmkM430aa8Jz46Kf0eXmd34HI6OH9mL+HNB+e/1/R5ikHqFkcR5SChu5xKaq40x2fYlHeeS5T335WGRfz/EfC4fPkyYVHlCr2fMzcDZ24GhsDiVZ/2rtyE5D/mEVQE9Wpb9BjJd28PYeDAgQQGBt60bVJSEqlZFoLCom+p7+Q1H+FVuRkeZYumJFdw5zFcmDX8X+VcpqamMn36dKZOncrbb7/NlbC2DPzyfQRBIM0hkJeWwNn18zizcSGeFRujD4jEacnCGFYBQ9l62NPisGcmc3nDFzhy0vGv2gLfxgMlPYdCwp4Wj/4WKgTcKURRZOmz9Zn4wtgSx/Ie4r50Lvft20dA6K1NQDdDcKnK7LqcRGpqKgEBxUPfCggIIEtFyy0KCFo9UYPexvj7fOIWjkfv4Y1n9XZFegw1jBoXEydOvOqzKlWq4FA5jrcDQaNFMHqgcUkOoEFdyFlfdMbEhdNHEEWRHj16yKuNt15GxLfvW3w6+7XrOpeIDrIzUvH0Lfy9I7pcZBz8jZStSzCGlcOrclMMEZJDITod2NIScFhzSDq0HkdOKlGdnobgmzuNzurdmThxIsuWFZ3KZAluH35+fqz7aTEdH3kXk0fRipHEXTjFI5NeYunSpZw+e44PxvcnspQkQ++WkV/7/TfX7Ofh6ckLL05kRN92dOo0/bplbBITE9m2bRsvvfRSvlohSGIRQUFBTJ8+HSiY8ulTvj4uu4XzC8YRM+RdtIWow3erEEWRuC3fofcK4Ny6L7CkxWMKjMS3ZnvSD64j68QOtGZv9IFR6Dz80PmGYE06T+aRP4iPO47e0x/PqMr4lquPp1/hnb+bISSyNIPHvs+JA1vpPWgk3mYtz499hnbt2t2y0e7j40Pfnl35fe7ziJ1ev6XyTzeDoNES8eCHpKybw+V5TxM+5F00PoUTd7sZkvb/RkD1Vgga7V3Ly/qv4cKFC3gHR7M8TnHibarApqhaHVIHUzOP/IFvva6g1RNqlIJGetXj66FTrngjPyXovjhRMRPzshSarZCtHNOsKh1ky0rGI7Iq1jO78Sgl5bk5PJTgrcWlOLca1fgi9Kq0FvmvVqNh7NixzJkzh8mTJ3MzLPpuCVWa9yNLzvXek62619XB2Zw0ck7/hTX2CD0mr0AQBOJUr/TDucr5qg3khEzlurYIVeYinWpFz9M/DNfxzXiEls1PV8oLVxwcQRUoOZ/tT2ZKPEeOHOCHH4yULl260IquN4Ldbmf16tWMe2ECYf3fpfuiNPYYTBz85TP+/K4FWk8/XNZcdD7BeFVrRfd31qGTA+V+8n2gpgf/cPFRXHYL6VuXcO6zR4ho3A//8vXJDVIpZbuUe0adjiOILuyZybis2QhBMeQFlkVrUyXEqto6rdd/L6jThTQquzEjTbXYEymlK0Uen8Ww/j0Y9+zTt3StSlA8uC+dy7i4OGIaF42QSrkWQ/hk9lxem3xrVIzCIjw8HC+dA2tuFsY7pG78E8FtHkbn4cPlL0ajMXoQOuwDvCo2KtJjWPNyEFz2a4whQRBwOe9iItcd4M8f51GzZk3atSu8A641++ATVp7NmzdfI/7UuUN7zh7dRY0mnQvVpyM7ldjvJuFZurZUZ1R+KagndA/5ZWqo3oq8xLNc+nUW+mNbCen+/A2FHDyqteHy3jn5JVJKcG/h5eVF774DcRbhc5KadJlZ7z1BTFQ4ixYtIiwsjEaNGtGzezfy8vKubjxnev6my+UiOzubcuXKFejYhIaG0qdPH/r06XPNdwcOHGD06NGcjU0gLKYiV4LrgkZPdnoKHjWuFZTyq9IMTWApzi94jogeL2KOKDrhG9HlIunXmdhi/yY77gQeQdF4hpZB7+GDd4WGhHd6Kv9ZcZdsQnXuptRY7DlpZMX+TcKOFVhTLhFSpyOh5WoX2RgBKtdpRuU6zYi/cIIvlq7kuefHs2Pbllsu0/D2G6/Sp/8gLm39Gs8Wo+54PIIgENTxSbKPb+PiJ8Pwqt6GoI5PwR2WzEk+/Ac5CWco1atEufpmiI+Px+wdSMH65lfDkZGIV5XiFyAE8K7SjOzTf+U7l3eCjh078uGHH5KdnX1Txd8Tp04TXP+BAvsTnQ4Sf/6AUk98UeR6Gf5Vm5N2fDseobfG/tmyfCZ2p8jvOw+xefBIokL9+WTGh7ftZIqiyLr163ntzXcJKVWNMe+tZLNYIf/7zH1riH7qa3Re/mj0SnBCdwsKrhq9iYDWDxERVorzaz9Do9WhVzuXN0HWyZ1Yk85TetDbhT+pQsBuzWXSpEnXvstKcNdxXzqXK1eu5IU2T2FxQDkvhS6mNhxEFU1Sm6nURlTTNJdbIxD9a3Fw8edMmjgeXSGKGBcGkRHhiHnpmLy9sYVIdBh9irKaKarU9NR1Lm2eSiTdpFZ6VZ1njQGTcPV+gaNzn+DS3FHUbDuEMROn5auEGbWKAaOehp2istq2I1mhqW1RSlTio7ezdvHHPDX60eueV5nSMVw+f4LI0pWu+jzAXxl3qopmq1FFZ1EljDuNUi0qNc31qsIb6s2rci5VkVKVY9YlUPm8T10P5mVcIj5ToHbt2gCEm1XCOWpRA70yQQsqevK5JuN4eNzDLPx0Oo0bNsj/fOiQgQx7+CmqNlacS6dBqaulpsK6qWGW1Mtc+v1roh78EI9SNajkobTx0CjjjnMrgDoq4lWxKRWaDSN+7SwuzHqQiKFTMYSpaFUqwQFzQCkuXbpEqVKFL9FTgmKA04o9JwOdj1++2qklQhInMMX/nd/MGiK95J+sJlHH/I3SfZlske4DnSCSmnSZJe8/xbJFX0m53Cp4e3vfVk25wqJ27dr88MMPgETvO3DgAC6Xi6QkE59/9TIh/abhGyOd34FUaTLxNHhQatBbxC19BZ+YGgS2GJa/AifGSvfu2WDpfC6nSfRTh1s916KakOTnvXatpuSmxrP288expcdjTbqAV4WGaLwDCev3KobgUujlMkkBemluDdVfu44WUUUy2qyufgBs3rWJuA1fIGYlE16zNaYMpYiMRp4P3KsZDrlOsS5birx7x+7Nb7tPnqu3hEkrHq0ry/OjVw3CetYgRRfKgMHD+HX1qgKutgRBEFi5bDEPjXqUhY9JYi9frr/IQpNkAF/xUuiGpgt7AKVesc1LmotdqoCUNkN6H3rHVMPrqa/JOLSR89N7E9ZnEj61OnAEhbZvvXxcGkOQNJ9cSJCouCb5dwLQpV7m4u9fowuKIarfa5IQncuZP+cJqhURnVV6/7rnSffKl+ailNtuU7Ez7J5Fu5L8b8H3q36hbo/nSC646VWwp8Wj9fQrjiFdA1NYBdL2/1okfQmCwIQJExg3bhyff/75dduIosj+A4d4qP+bBfaXsX8NPjXaoTUXvaCOR3BpUg5tvOX2LpeTgPAydO8zmDKVanJ0z2YGDhzI0qVLC+VgpqSksHnzZmZ+OpewsjUZMekrvHzk/ePBkZfNyVUfoPPyR+d1Z6ujOqMnpTs+wYnlb1GqTtcbVh1QI2n954R3G4dOtYJdHDj+wzSWLFlSbLZ4CW4dt6du8h9GdnY2FSpUwNvv5vz9W4Wg1eMIr8nWrUUjunMvoNEbqfH0Vzw2axtH/ljGU90qsPKz13jjkVZ8Onl4/r9Zk4cz5/VRbPhhHi5XwUofGSmJnD+ynaGDB173+57dunB8zx9FfTpFis8++wyTyUSdOnVu2/jW+QSh6zedoQ89gsOhGEpRUVH8ffAvsjNuraaf05rDhR+nE/PwTDxKFU5EShAE/Br0JnzA68QtHE/20etf9yY9HuPFl25OPyrB3cOIESP4cc6dsyIy064we/JQliycd41jea8QGRlJ165d6d69O6NGPcyir+fi3PQ+xxaMJS8t4aq2ep9gKvabhKAzcHLes8T/sQBresINer4+RKeDjFO72DrzUX6fOgBdThL21Mt4lq1LWJcxxIyehyH49oMqGr2RyI6jSbtwhKz4M7fdT0Go1nU0Vpuz4IYqaDQaFsz/kgULJH2A98f1wS6XcbkTCIKAb90ulHryKzL2/MSFzx4l89CGq1QxrwfR5ST70t/Erv+cMz9/RGj9rkS0fwxBW2IUFoRLcQkE3YaYjz0tHp3vnYmy3Cp0Mu2yqNC2bVt0Oh379u277vcbN26kbLWGBa5EiqJI+o5l+DXqV2RjU0Pn6YcjN7PghjdAtfotmDp1KgMGDLjhuaqRl5fHlClT6NWrF2u2n2LQsx/QZ9RLimOJpIK9/Z3ueIWXJ3z4+7c9NjV0Jk9CanfgyqZrUyf+ibQDvyHgwrdW8YtHZl4+QceOHYv9OCUoGPfdTB4fH1/k9W40dfswffp0WrVqVaT95vev0eCwWQpueIcILlWFCd/Hk3XwJ35ZMI3JL7/IQw+OuKpNcnIy3y5azAfP9+WxVz7PV08VXS5EUUR0kb+qkBh7ml49ut0witSjR3emvd+Wpl2Hozd5XrfNvYQoiqxatQq73c7bb98ZncMUUQmxw/OMHTuWWbNm5X8+46MP+em3b2kzYEyBfcRvWkRo04EYb5Fycz0YQ8sRM3oecUtfJevgOkL7TL6KHlOqUm1+mH0Su93+r1GzvZ/RrVs3Pp/3DXHnT0DA7cmppydfZvWM0bw35a274lgeO3bshoaRVqulTZs2+Pj4YDKZrvqufPnyrPlhCb//8SdPjulLll85fId+iHttXhAEwup1JqBxfzJP7+by2jm4rDl4RlTEWKcbpsjKuJx2cLlwuDKwpV7GlXweW0YiufGnsKXF4RFRGdeFPRiMelIzUgnt9BQBTYcUGT1O0Gip2PERjq+eTRmfEMz+YQXvVEg4bBZyc7PZs2fPLbUPDAykTJkyCILAiBEjGDFiBAcPHqT/Yw8S/OgCisIM0Bg9iB41i9wLB8k+uI6EX2aAyynlq/qFI8grFs6sFCxxJxAsWXiEl8evUhNKtRyKIGiw3fwQd4TU5ITr5gf/15Ceno5g8MTqEvJF/gDOpKvOTZ1X66HkwwpaHRqtDlzO/Fqv6jzLHSnKfB+rEsKyq0pf6VV5z3ZVgLmmilX5V2C0ZAs47flMITULx800AjCkKuuv+y8pK/0dQ5Vxr9glMZYeeeQRVq5ced26lydPnSGkfD1+TVa0FpJTlOCTIIsVZv+9Ca/KTfEsLQVn3fmFh7OVYI09T0U4Vt0zoqpU3aY4hbEU6q+UJks3euJyOXHojPkia+o8S3Xu4LcnkkhIyyPv0lEy276A/qT0HNbwqoKu7WQGPDqOIE8der2BmtWrEB6qBAaMeoHVq1eTkeeidusBDHz9J75KMLIvE8gEi1yKLefULjI2zKXc2CUY/EKpa1J+sxgVA+uMKg6wX64ZW0f1mzYJVZhq2wUpdcpUpgEJ73QipMVwBI0GrVUJKIllpN/ImZNO0g/v0OnBl2hWvwpfn5QC6br4Y0rnonLt1ewzl8ouuXpbyctU2y4G0Y7emXNT6nQJ7h7uO+cyMzMTg8GAST7zhFwVFdaiTCraHGU1yV1QG66eJHW56dJfowexxvJ8MHM2z4+5NcnswqBT2+Zs3L+ZslXKUFOedA+rk/ZVVFhRpTBqVNWIVNMttVaF2ht7SYmwD28s1bEc8vJwpo3rT/v27Vn329r84tMOWelDEATatmzCu093xSc4GotLgzU3Cy//EJyWHFxOB016jGL33rWMGnLjUiMeHh68N+UtZsyZxIPjP8r/vKWvMgGvdSnUJlfSaWVbrZArJ4fbvJRJXquqYamejNS1I+2CSkgnRMkdqOEvvTi2rl2KXq+nUqVKVzlaV5mhKtquu6A3gEZdr1KmhhmDy/Prkk+4ePEiMTFS5LlPn94MHWqmSodHMZg9r7q/1LDqjGTFHSek53hKmZTH1l+n/PY7M5Wx+MjDreGhfOYyK3VKd4/8mLRti0lZP5fQVkoA4YotgOrtH+LjT2bzwrhnrzuWEtxdfPbpDAaMeJzGzy0p9L42Sy7ffzia7xcV34ql1Wpl2bJlbN26ldjYWMLCwujQocN1HbacnBxeeOEFUlJSiIyMpFGjRrRv357oaEVgrU3rVhw7tJcZn87h+afKUPGJuRijFMda0OrwrdQY30qNwZJNzqVjpJ7cQdqOZYgZiQiCgODpj8E/AqPJE6N/OL4VG5N9cgteCfvwLl+OYydPE/PwLExh5a+aE4oCOoOZCu1HcmrDfMp2eBST750L3lhzMriwdx27l71H2qUTVKham/e//AG9ID3f7qdclGcnjYryr7cmkJyczL4Dh2jUuAleXpKDMKx7az6b2gFn5fYEdhqDxnjnAT6PUrXwKS/lvYkuJ9nHtuDMzUCQFX5dGUmEdHgCjxyVMIy9ePOjvpg6hn59ev5fUOUWLvqOig9cm5v8b4MgCAi3QJcsDGJiYrhw4c7EDVM2fUOZcUsLbngHMAZEYktPRB9UMAvClnIJY1hF9P8o8xFcqQHBk3+lipdDEh07fZBElQjOgHqetGrVit05lf7ZZT4y/vqBjN2rqPrcYrTFELwXNBo8YqqRd+lvPGKqX7dN0oJn8PT2o3GfZ4r8+GqIosjuhZN4fNSDxXqcu4Xdu3ezd99+RBHCw0KuKxgqiiI1atQoNjHRO8V/f7YtJKZOnco777zDvltjIt4ywgZOZc5HvalbowqtWxddjS6QFP/s9nNF2mdBMJlMbNmyhZ07d5KZKdE8Nh9XnFIxNJJ+T9Xh+L6tnL9wFtHpxC84EpPJhMNmZeE7j1C7dh169+p50+O0b9+Or79ZyO5Nq3mgZbdiPafCYO+WtXz/5TuMGD7stuvM/ROCVkfV9g8z7MGHWb/2F4xGIyaTie+WLGXWZ8/RdezcG+6bcXQTvjXaFqkAgV+j/pz7oC9BjfuhVSX0V23Rh0Vv9uX558YUueBBCQqPiIgIGtSsQMaZ3URVqo/ZR6L0i97N8ts8GSkFMwJkFci87DQ2r/6GS0e38OZLzxWpYymKIvv27eObxSs4cOgICRm52Cq2Q1dxOMZ65Sgf7st2INQoBVt8VPmKFqdAjRH9+TNNz4nLJ1i/+y/enjeaiqE+xERH0qFVU/r26okgCDz39JO0a9mcF19+DaslnoQ60gqjOeFEfn82v0iMfv9j76zDrKq6MP47t6e7h2Ho7u6UkG5pUAQJEURAbMWiFBSVVhBBkQ4RBAUpKQmRjoEJmO6Z2/f745yZc/iIYeAOoPI+jw/XM/vsvU/tWOtd7wojTIq9s0jJ3PPi9EoUE+MiE45tR0g4TnJmLlcSMonsOw2hTH1sQJ1Q0buoU8Qs77suThB6P9FgFSh5erbHpuWXKV7MGwA/g3idXeuL8dRrD2shCMJzsog/voPiTfqQ4y/2Iy8GNG9Da9eLcV/ppeVnWScsFIC6PiaunD7Mnk/ewG7O5uq1q9Tv8zrlGnXFohG/15Ju4nWezhCn8hDJMxGqSD2zJ1mHJ+Adn8jfORmo1GocNit7zu1BV68fiYc2kHpgNYLOBc8a7Qns9AomnWiQU98QU8S4JMtGyDxDpcXVT3oGYn9tUrJ0FIY9V4MbGNywSR4GmyTwkmuQvQt5Ka4c0jOzam/2aDsUxtNy3uL9OndNbMsheZZcs8TNqj1NTrberpoXW5fPonbFCN58vWgE9x4mTCYTy1b8yNCpq+/rfIfNit1iyk/RVZRwOBzYLc71Rfv5+ZGamkp6ejpeXjfH7u3es49qncYTdZfzbTkZCDoXtE5UN74ddN7BGBOv3tPm0m7KRh98dyaSIAiElal+U/7hJk3E7+DwrlspuA6Hg8TNn2JNv0GxkYuLZGOZB7fI6hjjL992c5kTdZzc8wd4ZvJC1EVMdzdePUHKuX0MWz234MKPMbZt28Z7H07HNbA0IRUbo9HosJ47JzJyALMiTZg54wYHfx1Io8aN6d6lI5UqVaJq1aqPzZrtP7W5vHTpEgaDgbJly/LnH2lOrVsQBCKGL6H/iKdZ+OkHdOjgvFxHDRs25KNPvqJ1jxFOq/NeUb++rB6b7iUL6hit4gtcrf5TxOWqsdmsJMdeRi8NgM16jCT94h/0fqY/8778XMp3d3ssnP8VLVq1xcPLj/LVGxTRldw7Th76jRmT+nH48GEmTJjAhx9+6LS6Kz01mKPZ6Ux67S0+nfERKpWKvn16c/rseY7//DX4173teZln9xLc1rlecUGtIaD9WG5snEFYr7fzj+sMrgSVq8e2bdto166dU9t8gvtD/fr1WbbrEOHlat+1XPSl0+zesAhLdhKjRwyj06dvOoUO6HA42LNnD8u/X8PJv06hD61EeP1eVGswgaS4NDSAUEjPl3tYOdw9QqF2V6JSr3MxM5kD6/byxoezKRERRqPa1Xht8itsWPM9r7/1Hut2zEH/1LhCtWFMieP63pXEbP0M3yb9yb78F+EtuqD3CS5SGiaAq184N45tK/R52UkxxO3/gVMXfqdaxdK8++pYRo8dx1Nj5xNWqREAlgJCLsUQBTspCdGkx9tQ61wQNL5ovYNEaiSgb9QfAI+Ww8m9ehLTjYskrP+YlF+/pvi4lbiVqVfovj9O+HPvT/y1bxPfnTj2qLviFKxZs4ZKjbvle2DDXeWXYFCkbBw8myUL1RxKlBlOusBIzCkxGELLEZVzK0Mm1SovShMUL5hVETtpUIjBVFBQV70UDBqH2YjDZkGlVucLWaksMt1Ro/DAWdwUbCOFYF9Mjkwnn/KU6Gn/8WAqXuGVOH/+PHXq3KwKezY6EbO2AheTZY+4KuvmmOKcS4dwjahMgE5e9polaq85Q3GewvBhVzDEUG6QFCy3xKuy4KPV1Ze0y0fxfGpEfmoOraIfZl+ZoVEjNJQstZFgVy3myzLF/ZSCdXBGwZrLCZDTvSw6KRlRFBtHQa3FZswm7ttX8Cxdh+J9pwLQxkdmUaVb5Gd8XUF9PpktP++8jeABBROqsptcVhAUaV30bjisZuw6F2yesvf1hWICK5Z/gaFMZU5EtOOExH423BBZXHaFV1tQML6srgqxIYURxOElvw/1AmTDQlVPcdO19dfN9HhxJP9UnDp1ipffeI8LJk90HT9Bq1ZxPe+Pwc3zy6lSruX/1oZXIrTdNE7HniXlwEEyl39C/Jl9bFj7IzVq1Hio/b8d/lOby6NHj+JdsgGrD6byTH3xJV6yRx48fP1l2mCqYjBUKwZXm06mWCrpsnFXRQ65d/85TFi0jtkLlrLosxlOUd309PTEbrOiEuBUmjgwK9VNHQolP6UaqtVVdpdrjIpE1EqKrEJN8YOT4kdrVzA9dQprmc0uD0zKROsOB6hUGgKKlcWoKBPgX5IbJgOt23fmxxVLqVLl9iI0rq6urFvzAw0aNubZyXMoWVmWS++qmAP3aRrl/465dlZuX7p+jWLAV1nl+AiLSn7Ntblp+b/tannw8nUV74nVmMVv38/k6tWrrFmzhrFjb/XepZoV166o2ypZ8AFUOXI7GsWkuenSdajSi6hD33OibQfmff4p5cuX5503ptCwYUPCxw3NV1+LPidPOJacDNThlbABxfXyRH40W37edrv8zmZK84lZkcgsVfHMkN5vj/KNyfn7V9KOb8OrRntWxol1W2oN46PpL9G2bdvHxhL2X0aXLl2Yv6Qn5w+VglJP3/Q3h93Gyb2bOfnrd1QoVYwZ775CxYoVndZ2ZmYmo8eOIwcPSjXqQ68ubxBnUUrXpz1wGxrPADSeAfhVbICj/QQyslL4adcXfODhRet2HWnVvDFs2EiaxYq2Yks092CNt+VmsGNCVfwCg4loOZjcUk3RZ2XjVuz+YlcLC43BDWsBwjZKmK5fwH7wW04mnOXFEc9Srt9E1qzfzOtTZ9L95a8QihWcZiE55gLnD27l0v71ePj44+7lR5ouCGNGIvHXo8TUKg47Wt9QAtqMxKWY6HFwKV4Vl+JV8W3Ym8RtX3H1s/64lq5LsbYj0Xk7P260KGG3mEjZ9BE7LQns37fnXzN+JScn4x1YeCGfPLgUq0Tu1ZMYQu9MpXQWLGnxaFydr8ZarkYzNm3ZetPmMioqCrVPwXnLU49sJPjpgrUNHgQZx7fhUa2NqESbfXd6XEbcBcKCAzGnXrtruXuFJe0GMQtHEvD0WALqdXNKnQVBjEO99ftyOBycPbqL4R+vY1cR9+HwLyu5emIXz337acGFHxOYTCb++usvdu3ew6r1W7C7BpBadziueam2FHG6BcElrDzly5eHpwaTGn2W50e9TPs2LZj0yviHogB/J/ynNpeLvv6WbiM+KNI21K6e+PX5mKSoE/QcMAwfDxe6du7IqBeGP1C9Vqul4EKPIao0606x8rUZNno8k8ePpHu3rrctFxoaytEjh+jesw9VEpOp1eLhDI7/j+QfX2POe+8RHBzM9OnTuXKlaOjIurrP0DqgEwOGjaV/j/a8+OKLjBgxgslvNKbeh38g/J+3SXUPeajuF4Htx3J1/nDcStdFI6llan1D8QqMZNmybxn8f6JOT/Dwodfr+fyTadSrV5+xUxdRrcFTWO0CJw5sZ9earyjfszPT1n6Ht7e3U9tNS0ujW69+5NYdjl/1duww2yAJjCn5dtX8pNYGSaTh90SRLmmQFk25fpH5ZfOMYlrJ+OKZKdUjGcVs2aKVXwXY/MtQY9gcElJiWfjTSVSlmpN2cB3Xty+ieIvBBFVrhdFHNAiqs0RDn0oSHzHlZnPhnaYElKiIT5c3EQIjiV/xOsGdXsHq6n3TNf6ZJp5jV4yxefktozPFzWGAREN18ZANdllSDHqWTbSAVZSs6Hn1my1BYPDA6OqD2VOMHc+LD3dIhi1THTEUwOv0L/w1dwgb168lMTGRhd/9yLEZX+DbaiRuLTuw47oNk1EWPHGVvtN96eJ9y0m6RuzXY/Fy9yKkTkcGT/sJjZROKs0iljkreavizDZyok4Qt+5jBK2ekNbD0XiIz0wXXpGwTi9TrP1ITr3dgjMze9Dg5W/JqdY5f0wyZylSQgEqyeCaJ3hi08ueH6UGAMiGNqVxtG7JSADq+4rH1BI9OW8EVCuGQo1KbOOqt7jJis4Vr6lu3RAy01NYM2s4f/zxB6NGjWLatGn/mo2lM2CIqErK78vwadCryNuypMSgVRhbnQUPLx+iL95ssDl58iTqsGoFnuuwmtH73//m/F6Qdmgt4YPvbZOTdvVvnh/cj08Wff/AC3GHw0HMotGEDpr1QIJ/hYU5KRrXErd6yf7Y+i0Gdx/CS1eBwol63zNyUq6zfc0X6HNj2bNr5z8iN/dff/3FtBmf8teZ8wRHViSyekuqjfwGg4cvv8YkFVxBAfApVp7xs9Zy6Nd1lC5bnuHDnuW99957JOPgf2ZzmZubi9kGASEFW7icAffIavSduobM1ER+27aMKV5ezJgxg2HDht0XTU0jFJz643GFd1AEI6d+y5RRT9Glc6c7DgL+/v5s27qZ9h06cXLfJnq9OBN0RRsfoYQ5IxFt6iVat27Nl19+yVtvvXWLoqUz4R8SybNTfyDj4HwaNGjAjh072P7rbs5vnklY50lF1u7/Q6XVE9huNPFbP6P46G/yj7d/Zgwj+zWgT5/eRXofnuDeULFiRZKSEnlu+EgO/LQMu8NB1Url2bXjJ1xcXAqu4D7w7IjRlGw1nBulHh09WufqiW9ERaxuvviVrUNWUizn188k4djPRLy8GrX+5mvPvX6RS7Ofwa9OJ4K7TkEQBOwWI7bcTHR+4fl0tYcBla7g78aanUb21um0eKodo9/+lMyIhhhqjqFYbXFBoNyI3f78VGIWvEBQjzeoWk2M3dTo7n6Oa2Q1ig2fT/aFg1z7diJe1drg21BOGaXWuVDtoz9wHPyBI1+NBN3LhPafjke1x09MJjc9kc2b53Puz9+Y+fH7NGvW7F8h3nM7eGjt+XHVSvZQhCJfdwmFiqzdIVMID5nLY4o7Byo1u6SY4omVZENAOQVlUqegPqoVDKg/o2Rj6/lAmZWVZpXLG+LPk3psCy7lGmOXDA1K0UGzVq5PpcixrBQgXH5FDqOJPCBem1YFWq0eo/Fm5fzLly9T1kNDXT8z5xPka9cqGEOmoLLYbVZsrj54K9hYR7Klb0wnG2/tuTKbS+0m0zRVClqsq6/Mesq5JOaozbpyHBe/YhjUasjNyM85rlKON4o6dOc3U73fK7g5vibD1SefsaRSMOJsCjFCnVKgMS+GWSMawWwZSRh8Q/EtJaq09g2S7+uyOHm9aZJUZAFcPeV0fFaFqFZemrk6nnJfIxQx3EcVrKzcK3/iX7sTalNOfi7bjJM7WLXgXQI7vcLCKCu2dDkOWuUhCTQqNjvK8a1ZCXl9Hmq4/Zr35cYOZsyYwffff8/bb79Nr17TH/uNZXZ2NsNGjWXf2Thcu72LoVU54oF4wBYXBSTf9J7YDQqPo+J+O5SU5It/5P8+ovB07vGLBH0NAsZt4PufprO+XjN6dW5Hty6diIyMfGjezH/nCHwbnDp1irCSlfLZ7Mv3pwGwNUEeJGq5yS/zb0ZZvMau4H5rFGIFZnfFxkdBR826cAiA+ZclumpEOxrMn8QX69/n83n12fnzZgIDC5fg2WAwoBEc1PcVB8EjMfIAqOyTSjFIKI8rvQdqxbWpFB+2JkVMcP3RKfkDD/CSJ4Kn/RTy24rBJsksX/uOZPkDCXOR71sbfwN+ERXZvn077du3v+N1uri4sOvXHezevZuJE/uwYMECqlevDsjPDGC+vXz+77z7rUyYbnGTB07l9Sqt6rri1fN/1/GwcfrgFka8MBSArVu3snLlyvy/58mhAxzKUKjPKgwFLnF/5/82ecsUa7OfPAlrU2Pzf39+RpwgpjQZQe1sT7y9vTl06BBt27VnzMABzPKVJ1iH1YRainc5kyu3qb3JIKVQwjWJE/DxHPl5+HjIC40aihjYY7GxuFZsTtLvy8m59CdaH1HZMSagJO1f+oLRY8exeME8nuDRQ6/Xs3zpkofS1i+//EKWyo+6tVpxI+2hNHlPcAsqQbXnPyfql4Wce6MhkS99h5dE3bQZs7j8xSC863YlsP80BMkTmnnuAO7lGt2t2keG7PXvYMtIIsanJ6X6jORyguTNTYku8FxT/GWuLniBoN7v4RJRuNy3AG5l6lFixHwSf/uG+K2fEzn85u88onFvIhr3Zu/az0jYMpvoxS+id3HBNygUF3dPHIFlsZVshMorBIeUN9MQGHmTQFhRIfn6FY6s/ZKYk7uY+tYUvp377pP0SXeBIAjoQ8uTe/UELiVrFWlbmVeOUaz9OKfX6+Xrz40b8TcdW/zNcrpMWFjguS4la5F79QSEhDi9XwDJh9YR2HLYPZc3ZaVRo0YNAgIDybAXEERdACxp1zHkUSofEqyZSTjsdjSu8roi5+oJbqz9AEGtxbfZQKe2l5ORwomtC2j+xnaaNm3K8ePH0euLXpzqQWG323mqXQdiQprgM2qW6EV0FHzeg0JQqak+dikOm43ki+t54+OviIs6S41KpXn33XcJKaLvIA//mc2lw+EocsWqu0FQqQnt/jZpfzViwIABNG/enAkTJvwjPg5noV6H59i8ed1dN5d5aNasGQsWLKB///6sWbNG5JQXMeyWXAICIrl48SK+vr4PLV+SIAg0bt+PkhVr07P3M3zwwft8Pf0lrE+9k09X03gHY068+kBJ3guCd8M+pP7xI4Ht5biUUvU6sO7tefzxxx83iTs9wb8bcXFxvPbW+zw1cQVmu0C8RZwNjcmiFVpQxFPliTM4wsRvtJTEhIwyiVQ11cVD+WVdE8+L52jFzUcejTXPSONQ5jCTDGV2SShIKymWOqRzy9Vth97Dh/TlL+EoXhmhVm9urJ6Kd7EKlGwzHBIvYZRisTKiTuBXpwsqqwmblEheI+Xss+aKxidBQeE0uInXV1nqjqvk7ejqLxsgL0s003BJLfZCpji/ODSi0cjoWxyLzYbJrwRaybKcF+9uChNjYq27FuGWcJIkgz+q4ApcP7kLfd79lKzU2lzRsGX2kA2S9rO7MaXdIGrbfMIGzaJtVfFex0hh12sTZQu3VfIOGXTisZbe4nEPf/H6f8j1xr/DOG6s+4jENVPxrdISu2RF/9tbNEIFlqtPYLn6OGxWclKvk3tiCwGqFHq2rsjhY7swJlhAELDZrJzacS4/17EMB9k5uWj9I1DX6A56NzQeAbiUrMVlo/jsG0i2MbX0r1IdE+D0sf2oko5x9epVEhMTSU5O5tOZM6lX74nh617h07gvKbuWElaEm0tjSixaD7978toXFnq96y2eSx//QALCC1bD1nj43ZSr0pmwGbOwZqViCCpRcOEiwq3fXNEidd8P+NaSFf5zrvzJhXdaIOjdKDXlp5tyUD4IbFYLu5dMQci+zqRxo2nw6SQ8PZ0fz1sU2LdvH9179qZRjxfJqftoBIcEtZpazTpSS8rGYD23ltDQUP744w/q1Ss60bb/zOYSwO4QsEiCM1K4zE0UiQwFzUTprVQrhGKUylYOxWZVo3BL5yWCdSg8SdcSJI9VUAXajF/Nid9/pFX7Luz4af09Uw7tQHVvcdI/4C575nSKwHGlx04p3IOClqJWqLXZFHSQvH6rU2TvWooin+RKs7z4Ku8mH49RCNxYcmUPn90gl4nOUaOKrM/FTTPudHm3oHr16kyZMoUKFSqwZNslPLxkisrQMFm8ZlZqJCDSw/KvRUEtUfLNlQI8NgUNoZiLnRiteI+mfvAxlVoOZfXBVHrWk2TyFf26HCWLCWkUiYNNCrU0u8KahzkXa1YKmX//hj0rFVtuOtasVASNDq1vOJOPlkQfVh5DaDnGfPITk4bUZ+q777BhxwwGvyounF4rU5+sc/vx8g6muIIGGKIQ9/kpVX4+JinPpjJ206i4iHMm+Z6o3UXvtHf9nlza9iVC436otHrWR4nvlXrwYsZMGMvKb+ZRpkwZnuDfj/GvTKb7iKlY3LwKLvwIEdKwN2kurrhkXCHr9y8wuHtTpttk/t8PYEmJwxBUNHk+7wZBrUG4g1HTbjFhObic5Ix0Qrq/W6h6HTYr1zbPJmTgLLQ+zoltC+w0gZi5A3ELL4/B6/bMGkGtwSWkNC4hL5FoNjHn2AEEaylQA3lqwbUVSe4lih02MzqrGSEriewdYroAY042uTlZnBcEHA47J111lC9fEZ1kcFWSMhwOB1UqV6RVi2YMHy7qF3h7e6PTOTeX4r8dLhFVsGUmY066hq6I4g9T//oVn0rNiqTu/8e1a9ewq+/NS67xCsac6BzxnP9HyrGf8a7aqkjqvhfYcjMf6ubSYTWTeXoXwcPF9GnGhCguzH4GrX8EJcb/gD7kwb2oNpuVI2s/Je7U70yZ+BI9u3d94DofFmJiYnjttdc4ejqKQR9tIiC8DJfjHo/QtmeffZbWrVszatQomjZtyqRJRROC9Z/aXD4uEFQqKjTvg1pnoEevZ9iwbvW/NkZECUEQ8PX1JSoqisjIyHs6p3///gwcOJBn25bixz+cnJz0Njhz5gxXYhLoVL5ggYB7RfbFQyRsmYN3/e64RFRG0GjR+oRhMxuxpsdjTk8geftXWNMTsLw1h1fn72L57BfRqh0c/nUNdVr2EBdpRTx5CCo1nhUak3XxEJ4VmuQfV7t40H7Y+4ybMJnNG9Y8Ecn4lyM6Opq4+FS6lqvKhVvTqD1WEAQBn5qdSHUPQTDnUMaYevv3U6W6RSSrqGHNTMZxl3jJxK9H0bZGJfZEW9C6eReq7vg/1uJdvjF6J26YVRod4e1fJHrzbEr3nVrgYlXnH4HOPwIhT01dMlI5FHF0efGtgmTs0wZE4gvYFDkQA93ETWmthB38tnIGzZo1oXGDeoSG3rpp9vX1LXRIyb8VSs+uctmqzIV3SWFERDI4+jYdSNre7wnq/jpnMmQasa9OriU2Qz4vRJGntnak7Jnz1MjHd14SYzFtxmzSLx4mqGl/HIqYR6WKvcDtDd045PrcL8nxZHuCxXjvhv5mbDbhJkPvex98TEKjsSy5JtapTZFFr5ShSqrsFDTYsRgzuKiwsuoltahchTEapQFaYbC2KTxxmYp3XJedTNqfWyg38GMEpRq9xMKwKuLn1JmyaEveMCUIIHgGIORRyfPyxQKC7fbx4XlGcpUUH2q8eJCKNVsSphev7YZR/nZLGOT7cE0tOx9MRvma9Yo0UnlG9wSrfN6BqwrniSmb+G1f4levO/rsRHISr3F1zUe4lahOiX4fo7ZZsCVdlTurcISEh0YC0NJXHhfTFLG+LmrxOWanJ7F1xjBeGDaIwQve+cesOU6cOMErb77PpYQMbHUH4f5sY37KAc6noM5MzC9nU4jKqaUczXaFM0ibIcfXKuOVHYoxWXtTLKZ8f9zi5TzQ15LE73JrPZktaDiYCngw8I1lbPx6Gu2f7sQP33/ndG/wv39H8xijbMMuZBksNGjailHDn2PokDurcoaFhnD1wt+4hld9iD10PkqWLElmZmbBBSUIgkBCQgKBgYF8/EpfXp25suCT7hNaFw++nPcpo95Z7LQ6U35fTs7ZvUQMn4faxSM/uTuARqVFH1gCN1dPfJoOwBR/ia8/GEmD9n1p1GMs388aS+oPn1OreTfU7r4kbfsSfXBpCCq62DH30vVIO7Htps0lQFjJilwt24iJr77OzGnOy/v5BIWD3W4nNjb2pmNarZbgYOeli1jx/SoadRzqtPoeBrSSp02ISbvt31U6Vyzp8Wi9gm7796JA0s6F+Da9fdxR7uUjlPO0ci0hlYC2r+LISrvneh02C2ln91Fu6CeYCi5eKLgERuJZpj6JRzYTWLeLk2u/O8rXaEJI8XIkx17k6zW7EBy3bsz/2LGG9evXU62a84x//zW4lW9E4s9zsVuMgHNDP1L2fIt/nc4IKnWRhJU5FAtti8XC32cu4NLw3tZEGq9AMv7e5fQ+Xd+3Cv9qT6HS6h9GKN1tkXP5T4IGvvNQ2sq6dARTYhQBrYeTsPtrYn5bhtbdh5IDZqDSPniYV8zZI/yx4l2WLZhD1ar/jPVuWloaI158mR37j+Az6HNcpXQ/DouzR2jnQRAEuj37KqeO/k7Lpzow/8vZ1KrlPLr8f2pzabI5yJSsJD9JQj5RWbIAjqdBphsqLUZWF3lHr7QiKMvYFbFCeUd1WbKVyp4t/33NibT8391q9KRNlS4snPcSO3bu5Jsli24rStCwfh1CvdNIkKyVDpVcxuglB+baFXk4NQrVM6XQj0mRE0qTrUjw6xGIw2bBrrhGfezpfKuRWSEtXjZAth6fyVLYTU1yOzFRp/N/X5NU17recmUFIyAggB07dvDiy69iczgQBIEkRQLgGlIyZ51KFliq7ytbFmMVCaNXR6Xl/7ZlyNeeFOCH3T0Eh6DGP7xMPn06D4m5ch03KXkpqbgKa6ZdUJF5cgc5lw7TYMq6/HtYVaHqpxHEZ3k5r27/2qSV3saBtdPI3LWTF6cuYforfblw6GdG9ehDduvWLHuzF3u8v86PZ6keJgsHuSkdMwbRChqhsDrntQeQo7g+u7tMK7oaUgrLrjgQQKuwPi6OqwO1RrP/y948f+4c5coVfa60J5AxZ+6X7Ni5i/j4eDQ+EWgNrnhJNO6UxOvoNQ5cXWXLp0p6vC46FfXr12fkyJH3HN9tsVhx8XRFJTh4q624+KwoCVqlhovfvVnx/uxPEcfHNMljcuXUXgA0kpCWxi5vEsye4hiizRatuEIejV6ynAvKBOt+olcuP9ZSL7Zj9pHjjvMs+J5RYlynUYoR1EriXm7xYnoUL+8Asq9fxNM/Ai9vcZwoqRO/h0QX8VuKTZet8w7Ji2JxiNeULM0b3hr5uiMlUbM8D9KaKxKzQq3BmpmE8dpfBHV6Bew29OmiSI9JGqstK17i7bkzGfXGdFytNlwzZZGSrOAK4r2QxmGLizcAuizxnqWfP4hr5ZaYgsrSt7ToFUiQ1jCXMiVvRPyl/PryDFpZ0vj9kyS6lqeQ2bC4PB/8mRxFQM12nFv+Gt7NhuTnQba4y8JuLklR0r+ihyUnUKTA6aJPiPdO4SEWJFpsftL0DPE6VYpwiyTJwzQzTpwjXINaQPMWNPUU72+u4l2r71OKbdt3PNlcPgAElRqfpgNJ/mU+PP+60+q1ZiaRfXYfYf2LLt1bYtxVSkisp+joaALCS3H17qfkwyW0HKYbl7Bmp6EpJFPgTsi5dITc+MuE9Hit0Oc6pG/DZDTepJ56P3DYbagVa7+igiX1Ogm/zCO40ytcmNkDa0YixVoNJbBmeywPuLHMTk9kxzevE+YJa75bRKlSDz+MobDIysri87lf8fGsWfh2mULo69Nx3MHb/Liicq2mFCtRgQkThrNp0yanqcn+ZzaXJUuW5OrpQwUXfARQa7S0HvMl137+lNmfzWXihPEPtX1TSizJB9eRHX8ZQaNH4+kPCNitJmxJ1/Cu0gq/Ol0fap/+H61ateLptq34fct3NOs4oEjaCClTnYT4+PyF5YPAmpVK0ra5FB/3Q6EoHSqNlrK93yDh2DZ+WfcNz778EbNef5bJK87h5uVH3Y7PsXvHAgKLKBm0SmvAZs69499de89k8OBBbNmyBT8/vzuWewLnYd36Dfy09zRPvzAHQVARaxU3fNV95E1bcubNz8xHisXtWtubNWvW0Lp1a3x8pPhhh4PKlSvTpEkTatas6VSv5+MK16BIUuMvQpWWD6W9pO3z8Gv53G2//ZzYcwR6u/H10uU4SjQsdN1ZUcfxbFI0YyCI9Fi9XzHMydEYfJ2fq/BBUKNlDxa9/BQTXh732KcfKAo0reDBU5IOwI8KBXObYgOeaJQ392nRZ+STFRt6r2ptuDb/eb5dYMO3YR8EQcAQViH/7y29ZSOoTTEdKtXgLQpvuz75Kjc2ziKsYS8xP+ld1E+Vqu7KTZXGpFB7d5H1FQ5KRKca3gI5Zlu+kWzvvgMYDYFYM2Qjvk7BDFIr9BDMHqJBya/ls8Qte5nQp18S25RyNDYMkxkNNyzy/SurUMXfdkOhvZF4BUt6PDe+f5OIIbMxS5tVZboQQaI75tEeASwR1QEwRv9NOckonpyRi06x2TUrKJOqDNnopExLkqf3kZdH1hBZnd93rMCzxtMAVC4pO0SCdfI9tioimVME2ahcz0O+zgyJDnswVZ5Tagd4Y8pMYfeKiWh9I7i6cCSGYhUp8+omBLWWXEDlLc8jQW6yobNnsOy98zVIAm6KdyoC+PvoHtbNnMC4saMYP/7hrn/vB8nJyQwbPoJTf5/F4BdBldZDURkT4dfZpNSQUzppFHRrqyKtDYpwCbuvGPusukkdXL5BVr071uw0HDYLuswEVGoNGlcvLAqnV55eCigMecjG19PnTuYfa+Yni2PqpFddcA9i6NChrFq1iueee+5eb8Nd8Z/ZXPr7+1OzagW2LHmPDs++9ai7c1u07z2S2VP60bJ5U6e6p+8Eu8VEzKZPMKfFE9CoN/493hbjkpRiRolXSDm6mUtLxuLf8WXcKz6cQP3b4aMPphJRvATBxUqjL9nY6fW7ePig0hpIiY8hKPzBEhFfXzmFoB5v3jdNJLBGW1RR27FYrZSqUIMVUwfy7LRN1HyqH9u39yTnyrHbJi92BgTVnYcFvX8EU6ZMYdasWXz44RN6bFHD4XCwYMlSGvSbik7yRnMbw2j+3yTopc2lm5sbgwYNYtCgmyn3e/bs4eTJk3z33XckJSXRtGlTBgwYQPHixTl2/DhNe7Uukut5VHAPLs21g5/g3+r5Im8r6/TvWNMTcK/Q9LZ/t0afoE6tGhy9nIZrgxaFrt+UEouPIk1RUcCjXAMyzx/AUL9HkbZTWGh1BnzDy/L777/TokXh790/HRbL3fOX3isElZqIEQtJ3v4lcWs/ILRb4T1veXA4HCQcXIvG1QuPEtWd0r87Ifr8nzSoXAGj0cjHs7+iw9ubib1678nnPSu3IP2P1WRfPYlb8funXFrS44le9S7hPd+6Ly+o49xOOndoh9FodEosuH+r4Vxb8Dwe1dsXSXxixvVL7Hy/CyqbmZzcHEpPWIPWK+AmgcT7QVJ8DL+tX4LKmMCe3TuJiCgakSlnYtOWrQx5fiShJasQUkUScXKioctmzCLjzB6yoo5hSryKQ6VFbXBH7eaN2pyDzZiJJSsVnW8ovtXa4B7pHBZHaGgoZ8+eLbjgPeI/s7kE+OKzT6jfpBUqu43L6bfG/eXaZXqnzUVWSdSnKiwKCsqoRpk/UbGJsEkUL2VAu05Be7Ia5LrXX5ctDmU8NAx6dT7PDOjML1s33Vb0xlMKutf7y4sL+1VZ6EarVI6V6FQAWkWguSZLpINeXfUOFdoNI6x+VwAqSZRN5WdyITQYqjXAmDGenYumkLrnO8L7f8xPKbJF25KrCFJXSH3fZE0pIBH4vUCr1XL82FHq1q3Lu0v24OImuu/zcm66KQQGlAIHvgpF1au5srftVK5cPtgg9i8wMJCj+3+hZY8XABi+QbQ87bsiJwLWZsmB2WZfBcVYCtg2Jkah0hpwK9sAgJqKpNaXlfRaqXk/BXXVQyHSoO71EVunD6Rch3Hsnj2MxMOrafRUd0IHf0L0V88R8dIKTiSl5ZevG+id/zvKlEfjk+tTqhf7aeV78leOPLmJllABh1qHzUWmXltuyCID0VUbs/yHydSuXZvu3bvzBEWHbdu2cVYdSWxuCDVTpCTb0mP86Kwi0F/yFORRchoGiWOM+UAaAP0aeN9Ub5MmTWjSpAmjR4/GbrezY8cO2rZtS9OmTYlPSCQkQjSufL1XpIpqpUZPZ4hTxi/n5Pchb2xzTbwAgEFKFZJHj1RS8hFuVggyhVQW65e+qbw0HgBqKU+vTaLSIqXmUCbd1kmUWZubPwDucaKF1ugnGYek8AGVixav0NLk7luBuq74zp6V8kK28BLvnbdatgSXcxOP5X2jGukTSVeIT2xPE/uTmxAl9svVm+yLB8nYPpcynSdgVYp7SNbk5gFaNp35mbWndYT2fA9Dtjh2GhWhCoa0WOkccU6xuImU1DyKqc1sRCN5CfKo0WbpVchbqNqUm09JRCQvD2+e4nmOFL+fpBDuMEuK14agEqQd34bVXbyvbnGn8svkLSjzlMkNqaICZ37IiGKOzHtmjv9b8CrnBpNvcamNvwAoESGKxuSN524KK77DAcXK185P9P5fQpMmTZg8eTJt2rRxigCgoFIT2GoYqYfXE718IiVGLkHrXTgWg92YzY2172MQHIS1do7H425IibtM7d4DsdlsePqHotYUPq9psZ5vEfXtK4T3eAPDfRhoc6+dIv6Htwnr8QZ6v/BCx1nactLRnP+NAd+9y4iRYyhWrRVXCt2Lm6E2uOFWsRnph9biXc+5BqH0P7ewY+WrBPl741a8IZbmL6G6j/v+/9j78yq2//A5X3w+m1atWj32oj1JSUn0f/YFLlq8CX5zNz6/fuK0uh12O1mXj5K87wfs5hw8StbEr1ZHDEElsRvkeUmfcSP/d3ZKHMlHtxC/dyURbV947Fgm/6nNpVqtpt1TLTl/Yh+4P545+9w9fRgy+UtGjBjB+vXrcXEpGh596slf0HoF5W8sC4LB05+Q7q+RfekI0d++QplX1j6URNn/j6CgIBYtWsSIke2Z8tkGPL2dS8309g3gxpW/HqiOjDN78aje7oH7olJraPXSAja/141ewyaz4KPxBIVFovGsTGDXV4ldMpZiIxY6dVB22CzYrXcPQldrNLzy1W4+mPL0k81lESM7Oxt7QOkibUOlUtGmTRsOHDjAwYMH+a5Xb/ZsXUWT9r2LtN2HjeBGz3BhxRvoKzRD6+F8Src5OYaEDTMo12HsHRkLxzZ/hZ+fH641h6DS6MBceKObUtSkqKDzDsGUeK/RbE/wMFC9enUGDh7CM8+9TJ9RN6eu0ajkLc75LHlZpxSQE9wVSdMlNUq73h2vxgPQhlXi/KxeuFdojHe9Hmx3yOc5FPlfhbw0a3YbGX/vJvngWoJaDMW7TF0ciGS+PNqrTcF9dNy0GZbnK6WRQWl0tyuUWcu5iOV99HbSrl+idGlxPHQAVgc3qajrFUZ8JQwKyqFdoyOy6ySifnwPS3IMHiVrcUDpfVTkk71842YnROZfO0n5fRkleryO1t0bTFlYVPK5gsLoobKbpWMy5bRFoAupsTFoG9QhPj6evX/+TcOJU3FX3J/jcbemtQNQKYxqgj0NuFmJNrhGey5/Mx6/sAp865Apzj0j5f5lKpSEr+XKz3hHsvysKruLG8dwRy5H5gwi59oJwsIjMJdsgvmplxDU2nzjvU6RqsqqEK+p7CrfhxeayWV+PJhKWnI8Wxa8io+PD/v27MLf35/HHXa7nU49+3EjvCUeVVpDRiIZ1Xrl/90tXtYXcU2S492V/F+lkdXsJ+sG5Jzczo1NM3Gv0JSQAdMxhJa9ifLfzleuI9MqU1p3JeYSXLsbphsXiVo8msCm/fEo2yA/vh/AptdKfbqYf2zBLoWuQXiV/N8Dkv50qmLsw9VmfwzQq0dXju4oOsVRZyCiTBWKFy/O9u3b848ZDAZSU1Pvcta9w5KZTNKh9QS3fLbQ57qVqo1P/Z5cW/JivrfkYeOpp57im0VfMWtCDy6d/tOpdQsCCDzYZi3jzO9O2VwC6Fw9aPzcdE4d3Uun/mP4+OXeZBzdhGuZ+riWqk3ilk+d0k4esq8cx7V4wTQLrd5Aq1at+O6775za/hPcjOvXryMID8cG6OPjQ7t27ahSpwWbV37BjEkDMOVmF3ziPwRqnYHIji8RvfIN7GbnJlPPvniI2CVjCO3/MRrD7RU47VYz1y/8id3gi/4BclOqdUVv1FMb3LArU4o8wWOBAf36Euqj4eien5xar2uJGkSOXY4uIJIba6ZyYclLJOxbRU7sORx2Ow67DWPiVdLP7Sd+zwouLB6LJSORUsPn3aIsXpQwG7Nxc3MjISEBvbtPwSfcATqvQEr1e5/kQ+tJ3PdDvrjOnWDNSCLuu1fJOLGNiBEL0T5A24nnD1KtcgX+OHiIgIrN0ejuLc95QVDrXAhqNojoDdOx30U3oSAYM5I4vuIddk+uT5g2B71Oh7FmP1zavvxAuTQdDge/b/mOl3rWYsCAAXz99df/iI0lwMxZn6KNbCRuLJ2IrDN7SPp1MRHPzSW07wcYQgufH1QfXJoSg2eRuHclxhuXCj7hDti/fz/PPPPMfZ////hPeS4BqlatSmSAgaDsy/iXqMKv0TLFMVdheVErcshYFW5pmyIfEMrfCu+ROi3PciAfyw2tlP9bq7CiOZLl3xczZQ9Fw2feYu70F+jSRZSDb968OR999BEtynYU+2SW+6ozypYumyJXjiFNzvmUU6x6/u/Yr18idMinqErVpqSLPKhG5dw6cPgqaJVNS0WKP0o9y8a1Fs5N60Jo/4/yKVoADoVimVVhfcTuXAWtpk2bsnHdj7Rv357ixYtTo0YNQkJCbioTFhZGyZIlqVevXv6xG7/JtLwjifLC+ZdEbwDiU9JIxIPProh2F2u8SPXTKd4HiyJvk0ohGmD1CsaamYTaN5zawbJy7VXFOO+qtDBLwgvhCtquUSHMcDlPmKFYbdxL1CbXoxgVmvYg58CXaP5ez9jXljH7iw+Jnv88wX2mopSrqubvfUt9SsrtVYXabto12eqWeWY3npWaAw5UiglKbZMtuHP/Er0yQ+oO5IvPxtG/f3+eoGjw/ZqNuLd+FxIuc9QuWjvbBYubi64hskdh08HDAGgl9dVDieI3+VeKSLj64E9ZOKZdcdEyX0aia/sabl5YdZ0wny8ndMCh82DGy91p0/clDoSJQhGqK2L+OXcFNdyhFq2juf6iul+earJGGpeUVHmHND6ps0TPiU2i0OapbVvc5MWGy3WJQSB56ux60UqvVo4lavFdVKpng+yxERyyAUyfnYhep8H/6bFcW/0exUYvQ1Cp2WYUp0Fl3GqUWTxmksbZIBexncqucn29A61kJN9g2Zp3UWn1hD8/D42nPzkqaRxXxFKpDG5kXThIYlI8mq4f4oYdHA7M0vXmUV9Bpv3m3VebdN26PEqU3ZIv/vBXhkgrruQpXW/enKPI8eeQhCRypbFZcBHr00hU3VSFjTDvOahN2Qg48u99TqA8N+V5gfLosWaPPDEUsW0XheXe6CPGUJn9xH+9/MQx2lVhv8uUXr9saVN+Jj1PBEN8HqGK8VGvErDaH2/6XFFj+scf0rNPP9KS4mjVbZjT6hVUarxqdsCrZgfUN86TefkoqSd3YPztGwSVGq13EHrvYAxBJfGv2xXB4+FuDBJvxBAWKr5rh48cwUMSx7lfqPWuFO/zHol7V3LliyG4Fq+KPrAEuoiqaH3D0fpHYDNmkbLrG7LP7SPg6XG4lalXcMUFIPXiQbpOeJ8ezwyk1KCvHrg+JTzLieP81Tn9CH5mKi7FKt/zubacdJJ+XUzcX9vxL1sHXzcdSVlGKo1ZRpJfmfvuk91uZ+rUqWzZsoUy5SqSkBCPu7tzU+AUJXJzc3nn3XcZsOQSf1xxDpvDYbeTtP1LjLFnCB8084FTuKi0esK7v0bM2g/x6jGl0OfbLSZSUlLyRf+cgf/c5hJg6NChPDv+Ndq9velRd+WOMLi6k2W0cuHCBcqUKeOUGAuA3KgTqPQuuJWq/UD1eNXpii6wBNELR+LX6nk8az59T+c5Q4k1D2XLluXChQskJCSQkpJCUpIc++lwOIiOjmbJkiU899xzdOjQgX79+gEl7lifzWIi5sJJyr4//777ZMvJQFsEYhv1uo3huymd6P/RZn76sAfjh/dj/JCq+L74I5aUOGIWjyH82c/QPoBHxJqdRs7VkwR3uDe1Nv/gCLSuXly6dOkfIRv+T8OpU6fQuPg4Jb6lMNAZXBk5czNr5rxMcPFyrPnydYy+S4h88dt/BdXFrXRdLKnXif3mJUL7T0flWngqUFbydY5tm8+Vk3sp+cwH+JVvwNmkOwuLOOx2Er59GbVXKFpPf1CoShYW1txMHFJKpqKCNScdQfNgC56ihNn83/WqGgwGNq1fw5QpU4j6fRETJ05kpRRbDaDIloN7cZn2lhF3If+3QzJmaFJlA7SSwmf3Csa9Rgfca3TAkC7rDZjd5Q2lkuanpM5a8vQqFAYOvUL1VBl/q6SMWhQ6F7Wr1s3/Xd1bNLYk7VlPl45iMvijx/6iTOnmhLnYQOFhVyuUaM0estFbqbSqTNeGw0FA80F4tXwOc9JVTDcukXt2H6k3LmBOuoZKZ8C7VicCh8/HJT0OboiCJ7l+8jpCqcGQqzDCaNNFY5BKoRabbROwOQR2//47F6/FEeFTjFQrnIq5ll9GZ5RVaZWODWW/DSlieSV9OO9ue1Rqhr5kTaK/fxOPco1YVa8b6nxlUfneO9Ra7FYzWWd+J/PUr1hSr+PdsA+6Bv048/WLBDfuiWfn10nyCgSTrHqqfE/UnrKhPVgvz1N+OtkA+OmnnxIfH8/Bgwcf+7jK22HVqlUEPPU8+9Pt6BWp+5Sp5/Jiy/8fsuFNhs2YRczCF3ArU4/wQZ9QJjwSgFizfF9z0+V36pRepmknKuyqtX1lY+hBUygq71A0QaVJTU3ArVglqY+icdToLcf02xXjep9i4jt1csca6nZxbl7j/+TmskmTJvi6qshOuc7jfAs6D53Ci+Mm8POWjU6rM+3AKvxbD3dKXS7Fq1H8xeVcm/cc+vAK6APvvHEDsJuNfP/990yYMMEp7YMYLxYcHHzHdAoDBgzAYrGwfPlyxo4dS4YRBK0LrQe8it1SDJUibvT0d2/hGVwSfdCDKcUWBXQu7pSq04bLx3ZS/amBnPjrb3bt+Jkug0ZiGLiAkD7vEbN4DIGdJuBWrlGh63fYbcSufo+Qji8XSr2uYefhTJv5KQu+mlvoNp/g7khNTSW0ZGVSCi7qdOhd3Og7eR4XD2/l+O8bcatSgajPB5J7+QilB05H5+acXFiPCt51uqDxCSNqVg/cyjXEo0orvKu0FOMg74CchChOnv2Fy4e24nDYadJxMG2Hvsmh9II3/xm/LYT0ONw7TH7gvrtHVCHzzB48K95ejdYZMKdexxAYWWT1PwiCytZmx44ttG/f/lF35ZFBEAQ++ugjXnvtNWbMmEF446JXQX7U2LhxI1u2bCExMZEdu/fxzFvOS8el0rtiCKuAIawCgmLzJDiZcQWQm5nCZ18tps4rPzq97jxo3H2JHDqH1MMbiPluCg6LCZWrJ1pPeaNizUnHkhKDe6UWBHR6BX1QSeI3TCNuy2xCe7yBd5uRD9QHq8XMobWfokk8zsaNG/+RG0uAH1avQ1dvklPqctisXP3hbXzbjXlgB8/t4N2wN+kHfszfXN5TnxwOLvz+PYt/ca6z7fHdWRUxRj47gDW/zYMG4/KPGRQ8eqNCCRa1YvGg/EAUlgtBQZF1SJYBo7fsRVJSYa2uMgVKWd/GRHlQWx8PUI0cjyosXrw4fyK1SAHZyg2ASWEdUeaQylUIgQgSrdMcf4mwcvXyP3RvrRwkflFSDdUp9haHsuX/KaGT+xfkL1NQja2eJ23nIoK7TEKl8Jw5kmVrnD60LNmXjlC9evWHnh9Rq9UydOhQhg4dit1u588//2T5ih848+lMqrXsiV9YaXYc+IXMa6cp895ezIq8WVrpPXAoYg3UindDORGpzDnYspJQmbM5mSm/GyEG2VLkq/ji8tSJlSq3qYocZSkKutq6a2mYK3bi+Kq3ST/2MwMHDiQ6Opq5H77BzLlv8+yrXzKj2BquLhqDJe4cx5oOFJ+x0lOssBILimtQZcQTu+kTfCo0wqVEjXz1O2W+JI1S7Veij/8cr8MR2JQzF77m3LlzlCtXjif490AQBKo2bM8bS/bzzsh2eNXpik+J6lzftZR4mwWDl7hQEXQuhNTrCoZ/1obTo1ob3Ku0wnjlTzL/2knST3NAEFDp3XAJEWlgprR4LCmxRKtV6H1CqVKjMa3HfI67bzBBhtvHaRnP7oKdn+IfIN6fgzu3UKVmXXIjKuNVqfkD9zu4aX8ufPca7qXrFlz4PmA35xK/ayn+9R5PsS437wCsl/5ZicqLAoIg8OGHH/LGG2+w74vX6TbsTXR658TvPW64cfUcJUuWJDAwkAULFlDlqSFotHc2BD2uMOdmYkuPI95hICKkaNk+glqDb/0e+DQS4+hsuRnYFDH0gsENjURtFty8yY05Q/K2rwhsNwbfet15ENkwU04mqz/oR5PaFVjwD95Y5uTkkJSSjj7owZ+Vw+Hg2toP8KvTGdci2FgCqN18MKfdKLigAjHnjtCofh08PJw7f/9nN5d9+z7DtJl1sIU2Q1u8aPIF2q0WsFkwp8SiMeeg9wtHUBfulusaDeXNN5vStKmTrNQOu9M/dNcSNUnY9mWB5azXjtGqVSuntl1YqFQqateuTe3atfnog/dYuGgRXy74GpfAEoS+8DUqJWXmPqB29caSer3ggvcBnV84Doedq1evMnfuXHr06MGOHTtISU1l7cL3UD31ISXGLCXh57lEzeyOd6Nn8KrZ8Sbv7P/DeP0CN9ZMJbBRH7zKNqCw2pWCIBDUahRLlixh2rRpD3aBT3ALMq2q/Lg3tbTZz5YMTGUVKW7a1xE3GhsuiDQ3jZSSyC4ZxjQKWtr2M2niv5LhwSOiIgAZWWKMpM4gG8rMOZmANyVeWUfOxUPkXj6CQ6PHaMrFJFF3hIxEEv78GbVfOF41O1CySW8EQaB+aAXcfW+mBZmkeDkXKf73YrZotDmWKPlnFfGZuVKKCl1emhIpxk+ZisRFSkVil2JWbNIGV7Df+ibnxf/5nP1FrE+K/zR7BOFbvRW2up3EOkw5cF2kv5krNUPnHZxPJYo35xIfHQ/R8dik70qwim31qlGBvd++gz7rKmsO/s7x48c5ffo0Ib5eHD1zCc9n5LyweUnQXaSYWIfCgKmRUrA4JFqhVX/zpK/Wu+FfvweJvy5mf7C4CTaoREphzxDxXUkwyed4asRjZ6R7nSU9g3ijaABLTFZQFu12Yr+diE/r4RgqNkcnxZwr6Xcm7zAA9FLKFJOXZGiU3s/qFeX5tKqneG8ipDRXdkQqpZIbYZOsWYIgtnFe8gS7qi3ScblssIsdlzQzT3RsRQiCwAcffMDSZd+ydcWndBla+HirfwL2/DibL6aJ+ckPHDhAaAvneS0fJhJO7yMrK4uGE5feLl1xkULt4olaQT1Wjjk2YzZxXw3Bs1ZHAu9D6FEJm9nI9+88zZuvvszgQQMfqK5HjejoaCLKVMUZ2R+TDvyIwb84XhWbFXqdda8QVOpCZ3GIOvITrz3X0el9+c9uLvV6PTu3/0z99j3RvPCDUxLZOmxWMv7cTMYfq7HlZiBoXRC0OnQ+oWDKwhh/GbWLJy5lGuBWqg4u4RUKrFPj6c/YsWN57bXXnBKvKDxg0tvb16lCpXPBkp5QgAqiQIkSd6fOPkzs3befD2d8RvePtrM7xTnKtxpXT6zZzlH1vR0MoeWJjo4mMjKSNm3aMHPWbCa+Mp6NGzdx/ctBhI7+lqCnx+JesyNpB9cSNacvbmXq416lFS5hFVDpXbFmJpF5dBPpf/6E1iuIiC6T0D9AjiTvEtXZN/d1kpOTH7pX+gmKBpln9pJ+dDM2ixFr2g3sxiwcVgsOqwl9QCTu1driVq4hWq8gPK4dxZSRRJLVQcLaqZw79D0lS5fhcmgICUmp2KxWVG5+1Oj+Ch5h5Qtu/BFDrXdFl/c9FCLv34ltS4k+upVhzz1L3YZNcQssSbFqLSnb9S2iOgYjqNRYY52TpNq7Wluilk7AGHf+vhQG74TEn+fiWrou7hWbO61OZ+PkgW20rlPnUXfjscKggQNY+UNXUuKjqeEvJ6KvJO8luOAhh3tsOyPFX95EAZXnQIe3zEzKUagT6xUigcqYSnWuPOflGWLyjCQAWkWKkFx/mVHlUMlbrLwcqwC1feXld9SRnykb7k2lSpW4cOECsSlGmpYsCRLHxiVAvl5rrHzBgiJljzLuUVDEttklITC3+HNyPxRxpTbFtSuZPGrFtSn7nRdnCbJRLLuEzDA4ObMtep9QjD7FORstm0i0WbeP11Yy0SyKWDmzlC5Fl6kQVlOwq+wKgTCVwmBn95dTYHQKFUV1zMZsfny5IaHernww60tyHZIhLVd+vqcyZVbfsRvys/RWy5afOu5mLv25k782z+WrOdN56qmnbntN/yTY7aIzpoKvGLN6KVYRW6mwemUFV8z/rVbEItsko6fxxiXSo44TMXopFpWK0v6y4GNUllhep1c4NhTiolcyZG9z11D5HTAphc0k8UWthz/mnAyskhEhL+bSNVFORWKr2TX/95RWWpaP3UTTpdPvdAvuG//ZzSVAaGgoXVo3ZduVI7hXfQpzrjxgKAfam5RjXRVqStLH7HA4SN/+JSl/rMazUgtCn5uL1isQf1fZAxCfLlrmLenxGP/aQere70jISCB00CdoPMUXzXH1RH55m4scyO1WZwRXtvTFaszgdLr4yMp7yC/52Tj5RVQORkrlWE24+PKrXL3IsMmDa3SuXM956SVWejZdFF4Mo4InUUKh4Bev0eHTuB/Je1cQpIi7VMpWh2hVONSPFzVizrwllJ2wjivaEDSZx/KPK630ecqwakWQvdosB7crJxyrNMkIHgEYk2LRSLn0SnjLFkKL4h7WkOatDIs8iGsE+dlUUow1B1PFSdhhs/DtCdiZk4Wj2iiyfnmHzz//nBXLl1GyZEmmBR2gdevWvLetBFSewA91u5F98TDZJ38hZevnYv80OtxL1SZy0EzUBnccgirfiupQUBsdCg+RTSHVnjdpn1JMjvXqd+a3Xbvo2cO5CZyf4OHC4XAQu/INrBmJBLZ/ERsCKhcP1JKVWzBlYYq/THbMaa6vegeH1Ux4pUZ4Fa+KZ7HqeFZtTXhoCRK2zOD0we95563XsdvtuLm58cWC98hWeVK1x6sYQiP+sVSp28GUeJVDP87glQkv8/Xq7bSftBJPXzm+SUhw7rUKgkBo5wlEr3yNiBcWAV4FnnM32I3ZXP/+dXT+Efg2fTy9DVaziRWL3yPj+lm6vLf2UXfnsYIgCMyeNY0hz49h4GuLcfXwftRdchqO7lrHN/PEhPXzFy6haeehj7hH94fsP1Zx49pFGgya/ai7kg+Hw8GxdbMZOngAew8cQaPRcj9utYzLf/LtstFULBPJmm/nUabM/avLPk74fc8ePP1CySi46B3hsNu5sWU2wf0+cooT626wpsejLoRA3apVqxg1alSRzMX/6c0lwMjnBrH5hTeh6v1bWeLXvo9araXUyCUi7dUr8I5ltV5B6Cu3xKtyS4zXLxCzdDzhz36Oxu3OEsAqtZqOL3zEp2Nak5VyA3ffe7em/z+UGwZnwr1ScxK3f4nDbi/yD8hZSE3PwDPE+Qnq3UrXI/vcPrxqd3Z63Tq/CDISYwgtUwNBEJg5cyblypWjY8eO/Pbbb9SuXZvoaDm+V1CpcS9bH/ey9fMTYMPNVl1noP5TfZj53qAnm0snw6B2YJOskKXcRKtlsF40BegUqWXKSKkoepQTKYsbjomeBJOXqFysyZXTFeWlm8jzWqSnSJbohMvErvsYl0rNCOkm0utKe4ltJ0jWh3CtA0qUx1fTHphAdsp1fv76LWLPHiSk6xR0vqHEXT0DlTtiV3nw2vpzmFGhOvYjzw0ZgN1iZt/aNzlpVhFWvh5NGjUlLLIsXcNES4vNIXsKBEG0vveuJypefr1XvIYcqzwRZlpEr8BfmeJUdiJKtNB6XhVTs+QEyIucPIuyVUr/YZeMb1bpX2XqJpOX6LnMo+DaJdVGpUfAIClH9m/WgIUTx7F44XyO/Hmcds+MoVSoPyny58aY4qKx0hYh9ifVLI6RydK/dgUp5VhWTfFeSzHuUWbxehMT5P6pXL3QBpUmSFBz7YvBbO06GUNQSeySYEeAt8wgSDOJD8+SGitdk+jFyacZn99HzJY5BDd6Bu8S1SDxYn4cvzlQjDUKUGyU3aThvVQ58VqqeIn3yFOXN6bInhKbQ5D+Ff8/z77Ys97N811KSgqHDh3CbreTfU405OUA6UnXsaec5dq1a5jNZqpUqcJ789f9o1IZPCyUL1+ezz/5iDEvD2Po28vQGwpHj3sckZOZhmDLJTRU/B7/PHaCEd0nkvMPC7m1ZaeSsvFjgsrVxb9C4QX3igpndv/IxT3fs23xWdp26Faocx02C+ln95Lx6xeUD/Zg7tL51K1bNHHgjwoJiSn4h5Z8oM1l6qG1uJWs9VCEInOvnsQQcm/aFw6Hg+9/+J6vvnJuOpw8/Oc3lxUrVqSCl4PicTvY5y8nA1bnyDQPpcy2UszFodaQtPtb1Fo9T4/+LP94GTdx5Is3yQv45t6yNeGMvzSxlq7IHw6IWzaB8MGf3hRLpJSMnnfkCqDCavDm8qGt1Hp6KC6K/ZvVQ3ax2xSeJ43iGkyZooSyLScdFbJ3MtJVHqUPu4gTts0me22zUmUKRJSX3A6KhRMqDQLgWqoOOef24SYJTegUcV5x5pJk2Jy7oXlQ2BwO4s3S9SsoPnbFPVRLIk+lwmWPrNKDey1eXvBpJIqKR3AJUs/9gWeFxgDoBLm+YEVeUaMUO+ejk4/FKjzJWpWC1pMler61Bld2/XWKv/xFWlhlbz8GT/yMqR98zJJF81m8eDE9evTg559/BiDCLSy/jll/RMnXdZOXXn4H7Iq8nQ6FV9auiBXOiwVTxrXtzCqOObgaO3bupPUjjqv9t2D7zl14BUYUXNAJMCdeJe6b8QQ9NQLXQgi5uPmGENLjDYxx54ldOYWA1sPxKC2+mx4lxU2S2d0fW42nWRp9CiEtGnXMdb6Y9g42m40fVi/iu7MXeKrXKKrVb3XTd/hPQfy185QvFUG7dm1JSUtj+YZNRJStBkLRb4BcilclbPAs4r6dhGtEFfy6TLqnuHGH3Ybx+kUyTv6C8dw+Iju/gt47yOn5iG/btsNBcnIyMTExHDt2jCNHjnD+/Hk6duyITqcjTNpUC0DFCv40b/46Li4uTyj394A6derwwduTmTfvRZYtW8byI/IYXdlL/u0oLxoG9mbK801WikIrQMHUQZEKya6WaXnKHLLKtAx5VDwlPdDiLq8dtApDlzItiVIQLE/k7tzf+2nXujkAUVFRmGwqcqxqTIooltERctvHPOTYsf0Hf5OrTpXFBa0u3rf8vok2q6AK6xSpJ4yBsqHqhYryu+iqEOQ7lS6P166S8a+Cl5VPJz2LTgXeLyzlilHsvHJ9pjT23nRfbfL3qFOmL7qNcdikoGbqEuRcs8Hl5A1f/3DZ8NO+nJFGL0/j11+2odPpKB0Zyv4fpmI2m9m5cyedRk6nQk1R6yPTKvcpsoQ/8VdO8f2bHWjVsgU/fD2LkiUfP4V9Z0ClUuHm5k6nYPGdnnFFpkzrbpzJ/61Vrh8V9GWb3p3UYz9T/MVv6VpcNqhtTZbvZx4d1qKgwqKgyNoUtOZz2bLByOiQv508jYWsY1vwazs6nyKd96+xiqys/UYp8bs8cfA3hGrV8g03zsZ/fnMJMGXSeN6d/Q10aFJgWSVSDq7DkplEcIdx9922a2R1fBr1Je6HtyjRafxd3dM+jfpybMsCaj19/7QQrW84poQrGIrAiuJZtQ2ZJ7fnby7/qzAElSZn6xdFkotOpdbhsN8cH1quaj22/TCXixcv0q1bN1577TVOnz5NxYoV71BL0SD0qdG8/eHLtGzRAtU/xHv9OGP/H4foPPklDpwsGoGoPNhyM4hdNoHifd9H6xV0XyqBhtCyRAz7irhVb2GKPYt/s5uplWqDm5iA3NAKa7UOvPnx27Rr3oB33nwNDw8Pps/8hE8mL2Lo5M/w9rs1N9jjjEPrPmPWOxMB6PdMH5KTU5jSqwKtB0ymRM2nEFQqAkqVLDIasNYnlMhhX5B+bCtRn/TCrUw91LWexj2yKlrPQBx2Ow6rCeP1CxhjTpN9dg/m5BgMYRVwL9+IiDodER7Cpt7hcLB3+48c3LGaTZEhuLq60rp1a4YPH06VKlX+VTTpR4nWrVujUqno2bMn7cYuwOD6z1JxVuLk7+t5ed4sAGJjY4ms+M+LtTXmZHE96gxtnxnNGc+Agk94CLDbbIwdO5YpU6bkU1iHDh1Ko0ayV9Vz7Vec2rMei9mEzTuSgJLVSbl0iIwblwnzMXDowF4qVChYN+S/DNONi+iDSt01xZWzYDNlY0m7cU/Ktna7nR2rv2TjmpVF1p8nm0sgIiKCv/7YSWA76z2rudrNuaQeWkvJ0d888KToUbEZuVeOkXryF3yrtbljOX1oeVJ2LcRszAYKn/gbwK18IzJP/14km0tDscokbS9YNfbfDpXOgD6oJMZrf+FSvKpT6zYmXEYXeOuza9d3LGXKlBG9QT/8wIQJE9i6datT2y4IbgERxIfVZenSpQwd+s+Mi3mc4HA4sDugYXExAbKvTjQqqKW43CxFrG7esQpeoqV7rZ8o3KCPOSnWpVAGzKNF2rWiFTRh/TQCnh5LyZqtAbiaKlvULydLirAShfKiToxHViu8Gc9VEb3jqxN1eE9ay+XPB5H++zJ86/cU+5Aub46tJk/UwDNvrODEzpU0a9aMH3/8kekff8iJEycYPmok46Z9j1arI1O6vm/3pQFgkjz9vop4bx/JSFxSogXX8hKv+2QJke4ebpANMesuiUwKTa5Yn8oqWoRVNvGalIIYebHWGkmcSycJbhhi5NhsS63uZF84iFtaFDVr1sw//uLokYwZ9QJfffUVV8//yJ49ezjp5pbvfRs0aBBCXqb720w3fYLcqV27NqsPim3nUUgX/i4vTK9kiSf6SM8j1xYE1cqiHjyKa6cPEXVqP/EHv8VizBXjqR0O0lyC0PkXJ+yZ9zGElMFfK97fJIs9P/2Q2SzekwqeouW8o2Sxd9EovFCSkIRadbPAXN7bqKS8/vBHKqlJNwg0n+Hrr7+mUaNGrPl+aZFZy59ARMuWLdHpdLzy5gh6jpuDp8/jsakpDMwmIxmp8YSHi9R+ZwgaPgrMf2coVquNxk8P4ExyweWLGnabjYVTn6dT6/oMHjw4/3itWrW4du0aarX6pvJGo5HNW7aiUidR86mulCtX7gmL4B6R9sdqPGu0eyhtJR9ch0/NDvdUdt+2VXTp0I6AgKIbF55sLhE3l2VLlyD+xkX0Un4zq6t3/t+VYi52SeY3af8P+LcZhTZU5Dd7KKgRx6X4n0hFHrQ8GXgAL0WslN5fHDjD+k7lwocd0NfshNYnBG2avCCzSQIzLqHlsTjU/HnyOD6V5NQkKgWVUaugcVjCq+T/FiR6hWvJ2iTvXIhHwz4AmGzyIrGSQezXn2myG75OiBxrczxTptVYTfJiQ5BoWGqdC3aLCSSvlU0v08LsxhxslqISYL4/WDJTaWC9indQcdyDZC9fXhwUQLiLuDj10smUBVeNgq5aXB5kV8XIFNSsls+RvHMhYaXrsitVvu4eQUraq3i/0yy3N078dFGhzOcVhMPhIOPsPopXb5tP2z6YJKn6BTeie/fu7N+/n8aNG1O8eHG2bdvGkLZt86u4mCnHl27+82T+b4fCa6GkVQsKqhOKhXce7cmhUB7++5qYUsFW4WkWfT2Z/v37o9P98/KQPS64ceMG6dmmggs+IHJvXMKakYh7xWZOqU8QBEJbD+PSyjdxKV4tP1/k7VCtVV/eG9GOcuXK8cknnzBq1CjGvzSKDUtn0mPYa07pT1Eja8tHbFi+6JbjgiAwatSoW47/9ttvHDt27JbjSqxfvx5BENB7BhFRriYNwgcSEhJy13PyoFZrKFGlISWqNMw/liNtytdcFDfXBp97q+tBYLPZuH79OqvmzSD63J/069ODL7/8kmLFihV5208gonHjxnz1yftMnPgCEydOJNNbZhRFuonz2qkchcKo4r2wXDma//um+UGR5kCfISujKlVV889TK8MqFKJ2SlHEIHlOespfFtLTqMz8sXs9A/v2yj+2ev1m3Es0Jz5XRairgjqqmD4respz7V6tTC00eclzs0qhPWBIiQLA7Clfu0pB57WWlO/ZiyXk++CnMFopt7z1/eU5Mzc7g03LZqHTOPBoN46FyYFY4mRVWq1ZXrepzbmKWuQalfdVST3OU7S1KZRqVRkybdZeTF779QuT13N6tYNNK+bQq1NLxr44BiX0ev0dv8+xL46+7fH/CuJy8mim8nusXP8oRSDzwoysuRmYrp8nbNAsBEFgS6L8zjztL5/7c8qtoQh6N2+5bkWYWqJCbyDFKL/HZmM2GWf3UeKFhTfnNpfo00185X6bjKlsXz2PQwf23uWKHxxPNpeIC4E+vXvx6bGjcJfFkBKZp36l9OuTndYHlc6FkGfeJ+67Vyk+Zunt+6lSUbZpDy6s+5C6is1lYaALLo054cqDdPWueBjuf2fh9Vdf4f0v3qP9hMU3HTdlp3P2txXsmDeRSrWa4BcYglrBGssTpXA4HARHlKVx+2fw8gkA5AHGEFYeW1YKxpgzaJ0UwJ957CdcIqujUQw8SkyePJmZM2fSuHFjPvzwQyIjI9m4cSPNmzd3Svv3ArXBjapNu/HVvAW8NHZMwSc8wW2RkZFBcGTRU46SD63Dv51zFw6CSk3xzhO4/ONUSj37GXcjXBYvXpyoqCjKly9Ply5deKZ3LxYvWUp2ZjoY7ixy9jgg4+QOKga5UrbsvacCadGiBS1atLhrmZdffhmj0UhOTg4///wzEyZM4MqVK9TvMZGSlevi6v5gyrBFhevXLvH30d0cWhPP4cOHCQkJ4YWhQ2nefCZarbbgCp7A6ahRowabNm3i2WefJaL6Deo0d77IXFHAbrNx+Jcf+Hjbpvxjp/4+Q8vWrz7CXt0ZdpuNtJQEUpPiOX9iP+lJcURfOsWEl0Yx/s3fCRo05FF3EYC4axeJPnuIr+dsedRd+dcjJ/Y8ntXaFjnd3+FwELv2Q4I7jkdQayjIv7901gQ+mTkdD4+ipcs/tptLu91OXFwchw+Lqn8qlYqOHTve4rJ3Frp07sSH8/viUq9PgS+DKfEqWu9gVDrDXcsVFvqQMggqlej9uwM8StYl5dROTBlJ6D3971juThAEAZXOgC03E7WL818uQe+CNSsFjbtvwYUfMTp36sTCxV+z5b3OGFxkC2F2RhovjRzKD8nJd/W+ORwOduzYwarvZ3Dl6lWo3JXw1sPz35+Qvh8Qt3wS1pTB+DTq80B9tVtMJG3/iuIvrQRT5m3L1K1bFw8PD3bv3k2zZs04c+YM/fv356uvvnqosRGN2vblkwldGdC/7xP6zGOO3BuXCCxezen1aj388KvblYTd3xLabMBdywYHB7Np0ybGjRvHjz/+SItmTfn76O9UaNTF6f1yFqzGbOx7FjP3u/lFUr/BYMBgMNCvXz/69etHRkYGMz6Zw5a533LhwgXCqzTDp1gFylZtSFDxe1MHLApcv3aJX9ctJPXGVXy8PXhuyEB8fesxbdq0JzGUjwlcXFxYtmwZffsPwpibQ5P2zzzqLhWI+LgoKlcqn68KbLPZSE1Lf6RK9GZjDvHRYn7Q6+Y0oi+cJPriSUzZGej1WkKCgwkM8Kdv+xaULFkSHx8fFi5ajHuzZ+9JZKuocSP6EvPeGsTe3b8W2Tr6CWSYM5PQhBR9Xuf49R/jXqo2rvcQghVzdCvlS4bRvl3bAss+KB67zaXJZOKzzz/niwVfYwgug7Zsc9xdXEk7v59Jb33A4Ge6M3nSRKd/HMWKFcNHbaKymxqNwY1jCoUmm8L2rrLkkn36dzzLNaKsq3z79Aplz+ISvTSPjgTgob69PaFPsHz8u5gk3COqkLVvJer6ckoHnSI+Up14mk7tWvPbjsX4d8qz4imSAmvkDa9KoRhm9ZZjXAzhlcg4vhWPCk0xSPEMAP6Saqkyt+WpXAUFVDGwl/ORYz6TFdeZGFQK05Vj6Mo1wOqhyPPmsD92MRMajYatmzc+UB3dunWjW7dumEwmZs2axc6vOtGrVy/qlu2LSuWPrc4mNs17DfWmv+g04n2+viJTrD2lXGTp6XICZUFShQVQSffLYbeRsGU2vnW7o7Hb8lNTAPx0QVbBK/t7KFW6vckrrw7i0P7dhIWF8fbbb/P888+za9cu3m8v05TXXZNV7TTJitQlSiqsYnGofK9cE8QJ1uQlU4mUFOhDaa6U7PYmnbr1Yv/vv97t9j3BHZCYmIgVDdlWFfvjRQp0x2LeAARKdPssBUXGYhe/zXXxkocoU3ymedQ1s4dMn7JIlH+jSovaNzSfbXDDfKuUj5AjibB7iIYsq1GkcrUpJnsVc2xi2139RUra0hDRkOGr0nJxyVjMDXuhkQxZbonnAdiZItK2wqW4wt5NmjBjxgwAunfrzJw5c/Bo3km8FCn20l+6bosiebRGopbnDS1hEt3PXSse2JogK/fpUkSaeR5FLo9yZpf+tbjJhpC8+EuVJE72bJhYr8lWHbMxh0+G12fVd9+QlJzMpHfFBNR6aXjMo7u76G5eCFepUoUxY8bc16bL09OTqe+8CYhpO2JiYjh8+DB79szl1y9OYle7El6iDA4H6A1ulKhYh2KlKxIaURqbdL/GVBGfobtG/Mazrbf2w2QX5zRfKQwgr6t5b0Z6SiLB1nPs27eP/fv3U7FiRV59cQgNGjQo9DU9wcODVqvlh5XL6dq9F+Glq5DkWwOAPiGyITvBKL+vW1S18n+npCXKFeXKhs1chXqqPlUO4bBJdFSl6qrFQzaEqxSGZ7VC46KcgtIqxB6meROZ2r18xUqqNHyaEFfxTdQpln9pJvk9/vys3D8PBW1X+W1bDfLaJbu4eJ01guTYsyqeVqLPHuHc76vI2StnAfgi9iKVKlWiatWquLu7079jA2rWHI2Pz+0ZFkajkblfzqPVe7/i4iHe231+8rxrUdCNzR7Kpbh835T51u1e8hju6iHew0idXDZcL9/jyl4y1XJgIy9OnTrF2DcnsmXjunum2D+BCAFwkcLelGFnSh0DZaqvPFqsPfU63tXa4mkQv4cabgpFYEH+3TtIrDvOKNd3IVd+N2Kz5TVZYpb8fttN2aQdWoc5NY7wNi8gSHsWQRHGZ5FSU1XxsmCzWtn382d89+vD0eJ4rDaXubm5tG7fCdcyLek6dRvnBPFj8VQ7iGg+EFNmCmtWTmblmqZ4ePmIXGS7BbXgoHGjBowcPozIyMj7br9i+fIk/rWDkDp3t5hnXThIWPeiiQnyrd+Tq8sm4KXYXCoRVLEh6999B5+QCKw5I9G4Fp4i5RJRGWPMaTwq3B+19m7Q+RfDlpPm9Hofd+j1el577TWmTJnCnDlzWDv9Wbq+PB+NTk+3MdM5uPVbFr3eC3uPj9H63LuYhTUzmeiVr+NZpTXedQvOQ+Xm6UPxKo1Zu3YtPXr0oEWLFvTs2ZNOnTqxadMmNJqH88mHVm7Cld++Yfv27bRpc2eRqie4FXa7nVdee5emLxStOJY5/jL64KJLdi0IAt6VW5JxZi++NdsXfIKE8uXLExMTU3DBR4ATv37P0W3LmDLxZVGRs9czuD+7GH1QSZp6iYuE6j7iIrlTLe+bzl28eDGjR4+mVq1alClThqZN72/89fX1xdfXl6pVq/Lcc89ht9tJTJQ3AMnJyezdt5+d6z7j3LnzePmH0GHgJNzDK963NzEjLZntP3xBzIXjDOrfhxYtWvDRRx898U7+g6BWq5n/1Vx69x1Iqa5vElzu8VVeXb9+PZs2yZTY7b/8Su1urxRZezaLidhDG0jdv5zLLjpKRoQy7dWRNwl1FRZDnx1G856jcfG+c97zokZ6cjz9+o1Ep9Px3XffPdlYPkSYs1IwBJUouOB9IuvsXjJP/kL4kNkIWXdXinI4HKyaPY5xo4fj6vpw8t8+NptLs9lMy5YtCW7yHOWa9xUPZt1cRu/hS/tx8/L/Py+QOz0hGnvyGdp37kXrlk2YMumV+1KjW/DlZzRq152guyguOWxWbLmZaD2Khu6n1rvekuvNZswChx21iyeuPsG4+YXwxsSxvLfqU/y7vVPoNqxZKagVgkXOhMNiQvgHxV06G4IgMG7cOFRqDV9/NJQBb68AoF77gYSXqca8WaNxLVOPgALS1zgcDjJO7iB573eEdp2CPvze04o07jKCscMb0qOHaKAYN24cBw8epE+fPqxZs+a+r62wqDfiCz75pB9lypShRImiG2T/bZg6dSoR9brh4RdcpO1ovAKxKkQgigLeFZsSvemTQm0ugcdu0+JwONiy6G0Mphvs+nk9SUlJDHlhAsPeW8FmXXUA3HzEzaW3n2hpDgq62aPx2muvsXv3btLS0li6dCkzZszAarUyZswYKlaseN/fiEqlIihI9moEBQVRsWJFhj8/DIfDQVRUFG++PZULl6+i1RtQCeBARWjZ2pSq0Ry1Yry2SLnTcrSSZV2AM4d/I+rkb0yeOIGn23/y2D2bJ7h3hIaGsmXjWpq160rQG5sKPuERICMlAVdX1/w43bi4OC5ciaaVr3NTFNmtZrJP7UR7Yg3XXAQ6tmnB2B3rMRgMfPHVAqZ98jmXL11G7+pOzNVLNKxbkxUrVtxT3SaTiVPnLjNy+FxOphdc3tnISk9h6zcfkJMSzfvvvH7fhqz/OgRE1eL7O1mF3ZhdcLn7gDk5mqSfPqPYyMX3tN7ev/kbmtYqy6CB/YukP7fDY7O57NajN9qAcpwv1Y7z0ZIUvuTxV6YHOZVsxy4pa2m0BgStAUEVDD7BaMc3Z8uZ3/m553O4qyy0bNqIspHh1K5Vk5o1axY4Kfr4+NC5VWOExAOc85JFWExKN7PBHbVPCDbPQLwUCrEaRdXnJGWpIK3s+lYyQrMUtC69Qs5dEy7SyTTeQTgMnqhcPEjb/wNJm2ZhzUzCNbQsQR2HYjXl0qtbF2Z8MpcuAWYWpcl0CLVJpkkqpfWVSXfdKzQjevFovOr3ZFWC7IrvESBa3Dv7yWXjjHIdSRb5d6CCjnHuelr+78wLhwjsMgm7ixeG+PP5x22l6qO6xzQv/waMfGEEa9espqHrKZky1qoxlSpu5Y9ffmTH3J7kthpFeNN+pCsSJduMWWRfPEzqwbXowytQbPRS1G7ekEdP5GbqqkOh7jr3ct5z86Rhm96sWr2G3j3FDeaKFSsYPHgwO3fupFWrVtQIkI0jfylosQ4F9VmjeO+V9ByLlHhaeUypsLfzYlT+77ZdXuXF8RPZtO7HJ4vSe8B3K79n9c/7GPnRKgRBvL8TKoqUY51a/D5t0qdnUIwpeYa2mDhRrMv76iEAcn3F1Bwmv0i5sPTcNOocrKnXcUh0mlCduBm6du1qflGrRMF2cROpZAJiQ78ky+9gdQ9xDImQlJX7lRDLrrluQefqiS07FcFiQhAEbFL6k7gzBwE47yXT7/4feXRYvRRSYJTo95kKdeWLmWLbv6WJZUxpoiJqHgVWly179ByeosHRLk3GeQqNDilkQOUtb+YnlJbqS49h6w9f8uXhX+jZsydvvDEdnU7HBx9+TJmqDShdtiLNU8WyO6Rp62KOSCHffiMnv77WUkqP3s1EVd4uXUR2TEZGBp9++imLFy/Gz8+PTz/9ND/OzBkQBIESJUqwfNmSm47Hx8dz6NAhDhzYhjJrbt7Xr4zqDnN1MG/Lxodm8X6CooWXlxe9u3bkjx3fUL77wIJPeMi4dOoP2ipUzhcu/pqGHYeiclIolN1qJufw9zjizzG8f29qdhrDhctR/PTLLpav3467XktE1RaU7/Imjbzd0er02KxWNk3vR0xMTH5qlLvhvffeo1rzng99zstMjOHCL4vYf/UwH773Jq1atXqo7f/bUK5sKbYdvIR/ldaFPtc1IIKsK8dxDXeu3oUx9gzXV75O6KCZ96SbYjq/j7TrB3jjh+VO7UdBeCxW+9t/2UGGVUffyZ/xxbmMm/5my83EknSV3KsnyT63H2vaDdRu3ghaPQKiF04QVLiUrIVfi6F4VGyGZ8122IxZ7Ij+m2uXL/Hjr9+Qcf11MhJjmTljGh07PH3HvrR9qiVfrvwFmt1e4VNl8Chya78hrALZZ/di+e1zMuIu41m2MWqtC9bcDI5t/IKwAG8yMzNp1qguZw/+Ar71ClW/xtMf32aDSNg4HffhzhOksJtzsGYmofOPuO3fBTdfTp8+zdNP3/n+/1ug1WpZt24dQ4YMoW7duowePRpvb28EQaBBm97UbNKBt18dhkexitz4eSGm+EuiEcViwrVkLYK7TET3AEIrzbsNY8aHI3i6XVvc3d0RBIH333+fTp06sXjxYqCS8y72LogoV5PoU9UZOGQYS5cseCIkcBdYLBYWL/maGl3GPpRFiShIVvRx0Ab/CExJ1zAEFC/ytpwFu93O4V9Xs2nxh7zzztssm/v+Tep6h/88wdC3lj1wO56enrz99ts4HA5mz55Nnz59aN++Pc2aNaNKlSoFV3CfCAoKolOnTnTq1KnI2niCxxevThxPhw4dyEp9Cm8/0SOoTO/xrItsYL7oJXvgt6fJsYnG6L/zf+cZHAHsbmL5TiVkOmiGIr43S6HRoJB0wM8gGrku/7GBN+d9CsAvv+xg75EzDHrlhZsIXSpBHrd2Jslx1S7RJxWF5LnGHCHGmNpyM/H/dRo9m5bnzHkNqzbvYMkvxzCXaY2+znh0fuHUCxX7nw5cyczrq45aTw/ny3kL+PD997gbfly9hnWbtzPu0y1o1TenSlF6GYIi5E1HusLCU99DvimRimcSqEh/ki2lU/GV4tCNudlMG90WT09P3n33XZo2nYrB4FzByf8iWrRowTfffMOC6RMBSDfLNOlVf8tZF/Rpcfm/VTbRCOxeshbXDm9EW11c7+YqHAFGu/wyZ0u+BeV3EZslezxtilSDpnP7uPHTZ4T3fge1TyhIjgll/KfVTY5p7hbhwZYV37Dyt58fumL3Y7G5fGXiZLq+fPMmx5ISx/WVr+OwWTAUq4whvCJBPd5A6yvTXTWSApfDZiXr9C6iF43Cq3ZnPNqPQm1wx7NMPar61AJ6A1BMm8zk8T1xd3O9Y3qGunXr8urbH8Id0r4JgoA+sASm6+chtPBqrfcCrU8IxpjTNKtalj3uQYQ+NTz/b60aNOXC/vV06Nydr+bOZujoSdCvcJtLAK+aHcg8+Qs5USdwjXSOWmT2+T9wK3fntBu6knW4fGGuU9r6J8DHx4f169ezfPly+vbtS/ny5anc7S1UKhV6FzfK95vKiS+eR1+tDcE9RbEOwSj7DB5k2e8XGEblRh3p3LkzO3fuRBAEIiIi2L17N3369OFiqoO6E1ah1uoLruwB0ajHWA79tITBgwezfPnDtZ79U2Cz2Rg8eDA+1bpSvHLDgk9wEuxmIw6b9SZ2iLPhElwKU9qNe95c5ubmPlIjhN1sZOUnE6lZoTiXLp6/RTH6/PnzuHsHoNM7TwFSEATGjx/P8OHD+e2333j99ddp0aIFvXr1uidPyRM8QWGgUqkYN24c81fOo+vzbz/q7twEqyk7P9/ihk2bqd+2Lyq1+oHNYNaMBLKXDici3J8fNpynSuuBOFp0xw3Qm3IKPL9K3ZbMHDebSa+k4e3tfdsyDoeDaTM+YdKnq3Hoin5uvX7tEgs/HINWDe+//z5du3Z9whByInx9fcnMzOT48eNUr169UOcafEOxZSZjSbuB1vvBQlwcDgepe74j8+gmIgZMQ+3qya3ye7di/4r3+eCdKY+EdfLIN5fHjx/H5FGMPw2VEBIFsFow3bjE9VVvEdLvIwyh5WgYKKt7lXKTrTem/J2+li2unfCv0Z4bP33GsXdaE/bsZ+j8I7jhKlsLDGpf+ry3jhfGdmPupx/T+jaUATc3N/y9PYjMPYd/uJi/bHWiwmRmysa9fGMyjmwis7q8kYpQWPpCJdVVreIbz1G8CWUV16Ck04boxceRnhqNZ048B04cptqY5UQjq7duPncV/GpQv60bI8a8TKXSkRw6vRO3emKqC3OKQghDYSUTFIOnNlP0vAbX6UzMqrcpNkhUaczyuTXmJ8YsX7uS5nsgU9FxKZg4+6+deFRtDZLlxuQtJy7WqlSo9a5cvSpT7v4LEASBgQMHMnDgQBYtWsSIlgHs2LGD5s2b46EtCY138sF5+TO0KKmo2Wn5v1VWhXqxh2w9VlKPleqts66UhtrjKJubzbz5C3hhhJgixdvbm59//pnVa9bSu5cPb8zbzqkwOVG0XWElC/aWLWAJFvmdtV4VrcNWd5lae5PKrEJkauEFcbPsKNWDgMtnWLxkKc89O/hOt+s/Cbvdzutvvs2Jy0m8MqofAFbFePFsE/F+vrdNfDc8pO8wLlfegP10RVRG1GaL3MycAEmoRxoDdArLqllKvK3zC8e9QhOyT+/GvUITEiQLqluJ6vllLVI/TNL4kbehclVsuMq4id97mkRjDZXosXmUWrveDZvWFavBE4tkVbVLVtzyXrJCZB4OHz5M3bp1GdpYPL/2CpG+arvwh/ivwgKslowxrkmigrHWVXwnc/zEsUxwyO+t2izeP4unqL5dLFjctPWVkow3j8hkzpw5HDhwgBcnT76jV2/d+k1Ua94rP/ftrI7i+Dxvtxhc9XeGaCHemya3nWMTvQimfWkADGzkfVOdb/0sf/fZtKD0sGaEGbcyZswYWrduzZgxT3LGPoFz0bZtW9567yNSk67j4/94CL1Enf+LcmVKAbBr1y6uXM+gfp8HN7ZlHNmIeu9X5GZmUmzIVBqUr4NKpeLv67eOP3eCIAg07DCINWvW8txzz962zOIlX1OxTitc3TzJvveqCwWzKZcT+3dy8rfv8XHX8/WCz6lT5/EVZ/qnY86cOUyePJkNGzYU+ly/1sNJ+XUxQd1fv+/2HVYzN358F7WHH5HD5iKo7s3wak6JRciM4en2hdM7cBYe+eZywYIFBHd9M9/aknlyBym7lxI2YDq64NKFqktQawjp9DKGam2IXfwiwb3ehsCbA5ld3Lzo+dp3jJ/QjwN7d902vuWTGR/x/KSPaTHy89u241GpOUk7F+FwOIrESpR24TAlK9fG7B2Id2QVoqMu31KmTO1WGNw8+fKlVlSpexpjRE0MIYVTfnQNLYtKqyf74mHcSj/Y4ORwOMi5fITAzhPuWEbj4XdTOpP/GoYNG0bNmjV57rnnGDVqFF6Vuxf5/WjTZwzTx3XB29uLvs+I+c0EQaBXzx7ExMTQreczZFXpjVuDAUWaQ0xQqWg5bDrLFk0i6lo0U995o8ja+ifBbrfTrv3TZGiC6PHWjw+9ff/WzxP1+SDcyjd+6G0rsWHDBtLTxc3ZoUOHqFbN+bk374ajuzcy9K3n2Lp1K9OnT7/ruB517Rphteve8e/OgKBS0bt3b3r16sWbb75J586dATG9QdOmTRk/fjxubm4F1PIET3B3vPXaRL7/aQUdBt48byvThuWlPgJo4K6weilyJ+9Nl8v3CRbL+OoUWgIKt+OfaTI9L0Ar/6F3PR+mbt/NkEGi6MjRP49TqW4rVBKvVKvQp0hWpE05HR2V/1unSIllLlUPuymHnG9H4WNN4cqNWPyfnc8hozuHjp8BQC3ljLZ5ypvrnVGyfgAKsZQOIZ4EhpbgzLmd3A52u50v5y1k+EfryDKrSDaJfUxWxIiHe8qOkhKK+9okQDbOWhS32FXS9UhPSeTC7uUcOHAAg8FAq1at+GjN8jt6UJ/AeahWrRrDhw9n6NChNwk6uWtkJs6yA2n5v5XsM+/A4iRvnoXt7G4OpsgpBW1KQc28b03JHpJ0ESwpcVz/dgI+NZ/Gp3o7bBpdvgdfpXAE2BRpasr6B2C3WTnz3Wg+XfTJfVyxc/DIV/o5OTkYfMUPOyv2HCm7vyFi1BK0vmEFnHln6PyKETH6G26seofslOu3/N3LP4T2/cby7tQPbnt+uXLliD5ziMyUG7f9u6DW4l62AXFHttx3H+8Ea24mKq2e3NR4dP53Vw8sVqEO4xcdJjsrm6zdC++rvaCO40n8ZV7BBQtA+p9bcC/XEEF9d173f42y8dtvvxEbG5v//zVr1uTAgQMkJCSw6OOx2KzWu5z94NDq9Ix67xtGjBjJmTNn8o9fvHiRwc8OR+/qQcyK1zk/sQpWRY7NooBKrabl8zP4/XgU77//fpG29U/BT1t/Jj41lzajP3OaYEVhoPMNwxBWgdwrfz70tpW4fPky7777LiaTia1btz609DV2q4Wfv/uUA5sXcfnyZVq3bn3XMSopKYmTf5+neJmii4dUIi9WeuPGjWzcuJFt27ZRrFgx+vXrx9NPP03nzp1v+q9Lly5ER0cXXPETPAHQrFkz/jr4C7FR5wsuXMRwOBwcPHiQMmXKEBsby6q1G6nR8P7HAWtmMmdeKospOZbMkm0Im7Kj0Ab4/0epirXYu//gbXN2b926lRJVmzmFLu9wODj86zqWz3mVj17swOZFojjPhg0b2LRpE+PGjXuysXyI6N69O76+vsyePbtQ+doFlYqIHq8Ts24axoSoQrWZeepXYr+dQGjHl/Gp3q5Q515a+TqDurWhatWqhTrPmXjknksAiwNMKdc5uXAsxUcsROcjbjZ7BImTvE4l04uMiqBXZaB09wCZg/CX3hN8PSk+bDob5r9KidFfi+fa5cXbU00788mEJeTm5uLicutg8M7rk9m893ua9Rp7k/UqL0jcp/lQ/vz2FZKK1UUQBEq5yBRCH21eknN57+6vsNAply4JJrnMtcws0g+tR1O+KcbEM6g9fYm3CAh2Bb9CimpffjWP5lqMOt0nsGfZW1Rr1YMDHsXyi+qSZQqqXWtQ/Jav18Wcg1bvju3yn6yTaGxVFQmFw3WyGS1dEZRvUkgsC6mxpP6+jFLPfoYqMyn/uEOxSDNn3j0Pz78Vzz0/Ei+/APr37s6El8chCAIGg4HXX38d9fQZTB7UiGHvLCOshGgFnh2t0GlU3D+rqyyqoKQ4GxUGCI2nHAOckyxuaKdbAoBQwt/eQ/deffn1l62EhIQw/pUplG41jPK1W1Et1cqOz0Zw7uVKTJz2LVXri3RxtSBbcM2K726zS3UA/kpKyz/m0Cm+IYWKrKBIuv1bmkhZVD3zOXu/6cbff/9NpUoPR1jocYTdbmfKG+8wbtYGoi2PLsbQo0pLMv/eRWD97kVSvzUjCUNQqbuXkYwsp06dom7dug8lH2tW7DmuLBzOmCG9+Xbu7nsyfE2f+SnNuo8q8r7dCYIgMHjwYAYPvj21fPPmzbz44ouEhYXx6quv5seuPcET3A7u7u7Mmzub16bOYPib92egdhZiYmIICgrC39+fLVu2UKlOK9QazU0hAvcKa24Gl74Yim/r4fj1fAubpCL9oBAEAe/AcE6fPn3L3PXNN99Qo/PEB6o/PSWRfdu+5++D2+nYrjVDXxnxQLk2n8B5mD17NsOHD+ett97ivffuLuqkhM4nhGLdX+Pahmm4hlXAt263u6YCtGalkLhpFg6bhYgXFqMzFy6dSfLpvaSf3MqkVacKdZ6z8VhsLgGiNs2mZPdXsfk7bzL0L1MHh9WE8fqF21qsWvUcxYsvvsiiRYtu+Vvfvs/w5cK2pLfsze1uk9YnBNey9UnZuRC/1sNv+fv9InX/KkIHzcT205mCC0so26grf/60iI3TBuA1fDm6Qt7DwMZ9id44kyDPQAzFCrfYdzgcxP30GYFNB6J6COIw/zQUK1GKYW99w/ol02jWvBWvTBhHx44dUalUvDppIs8OGUyXHn2o1KQ79dv0u682zH//ghBzHJt0/20uPtjCa+ISUTm/jM4/gv6vL6Rbz76sX/M9qZnZtKotbiI1OgPtXlnKwRXvMeeNIfR4bjJP9y26GC9BEPjiiy/44IMPWLJkScEn/Esxe/ZsfMPKIGhdKesibq6uZIqbzAyFYerFTaIxwWgTj/1xQvQyuKTIxqM8gqRVikfUZYvGnDwVR4urbPzSpYuMDKuUgsS7dmeSfplPdpZIS20ZrIhplFQZ92SIxgOdZNHLypUNHH9Kf6vnLV5DXsyhVupDTvxlfNqMxObqlW+om1RVpIflUcB+++03XnjhBV57421Ca3Rk1cFUPtr+l9hmlhgj7hpzFAC7t0KNWorvthvE+myS4cwlJUo8rlEoJlZsAUAfxxl+XTEdP4OFz1cuLJR19+8z5+jQaixGm4D6/xa9XlJ6pgb+IsXNZJeNkvuuicaeY9Gi4eXjY+K9CQnIY+jIc0ySUVSCzIuxzWsmXUGvqy+10af+zbk0O3bsSMeOHfnzzz+ZPHkymZmZuLi4MGDAgFvUI9VqNc2bN3+i4PwfR/369VFZs0m5fhXfwBA0Gu1NFvBUhe5CiuIdLK3Qjngu/NYdoLdePpZlkes4kSP/7ugrM3c2bNhA+/btMZvNfDDtE/pMnE+2RYWbZKxXOoyUTgYl8uK8L84bjlrnSkj9ngjXz6OzKDQLDDJ11ibRaDU5MmvHotAuaFdM1hWwOcSxpnWfl/jss8+YP18WodyyZQsajQZ7YEVicvLKi/8295cpr0qNDQ9FOjev1AN89dVXAAwZMoSls1//T4cQPY7QaDQsXryYzz//nNatW/Pjjz/i6yvOqyvj5bAy1XE5f6xFcgpofUMp0+9DMi4eIv6nOVgzEnEJKonBvxh2mxVz2g2MGcnYLUZUGi0BtTvhVaYeZCVi08liPJpcOZuG1SBTrCN8RYdQTvwVYpe/yP7dO28RonvYeCw2l75qB6cuHabs0I+IdJE/uFzp68xVDCSJioHuqsLrZ1B8h2Vd5EHPp+lgknYtJbjHmxxMkD9yb40nlOlA1M4fOXjwIPXq3ay4qtPp6Ph0W278vYuG1QbkH98fn5r/O6DpQGK/f4PMQ+tYJ/TIP17aX/QgVXeXB07loJKtuJ6tij7lHlqHRq3BYDFiTrlCiYhImvpaWB4rPyZBkqC2K8RePDSuPD9tE2umP8vFFeMJHL8eQRBQ2eX2dZly+hSbTo7VsWsNGCIqE97rLeI3zRCDhTtPRCOJslh9ZHVepVcShx2bMYu4tR/iWqIm7tXaYENe1AKYPWQp8pv9tf8deLmoQaWl89ApxF09z6INm3j7w1mUKB5Oh7at6NihAzt+3syncz7ni8ndSa83HNdyjURV4sRLgJj70pGTTsbp3aT/9Svm1OsI5izUag0IKjzdDIwd/QICAoIgUKxYMbb/uo29Wz/A3GM6Oj9RuOQ7r7Jkt3qDN96fjtGh5pdkcfCpIb2nrQa9gV/mKbb/MJcw12wqt3sRnUFcrOflGgSo4SmWN9rlha1RsbaIzZY3HoIiD1O6VfFd+vhgt9+HSfpfgrS0NDZt2kTf11c+6q4gqDXoAiIxxpzGEF7RqXXbzEbsxizUCpGn20GtVmOxWDhw8AgT+xZdPG7O8Z/4/JvR7N2zm3LlyhVZO48aNWvKCd+jo6PZtGnTLd9bQkIC3377LV988cWT+M3/OKZMmsCb77/GgV0/8d3uOHT6h5/GYvPmzWzcuJFFixZRqUk3PH0CCj7pNkjYuQhTwhXKvvRdkahgu7p75TMt8rBhwwamTJnC+lujsO6KtOR4tn3/OSnX/mLjxo14ed19nHyCRwtBEBg7diy1a9emS5cuvPbaa7S/R8EcQaXCq2x9vMrWh9xMTKnXRUafAF6l66AKKiOlBwO1KauA2m6F3Wohdukoft2x7bFgrDwWm8vc1OsYvAIlWpJz8665l2tE4pZP7/j3/mOnMXRYdw7s3X3Lhz35lZdp0rIdVRWbSyUEQSC01ztEfzMOTVBJXCJr3Hc/bbmZXP95LsX7fQSARqNGZyicfHCXcV/x0eCqpG6dje/T4wt1rt4vnMieb5J55ThRSyfgWbEpfvV73ras3WIi/fjPpPyxhqC2I3EvU/hUKP81qNRqwktWoHloJRwOBynXo9iwczlz5y/F3UVH40YNaNKwDmvWvcXlHBsOQYVgt4LdDoIKQWfAZszGvVQt/JoNxrV4VQRBwO4RQO6VY3x5KRWVRgdWE6ofvqJ322a8MLg3c478jq6R7BF1LVWbvds+xPUOObBUKhXR0dF88MEHfDqlP8Nf/xIf/weT0X6CW/HTTz8xYMAABCems3gQBHZ4iZjlr1J87HdOrTfxyCa86na7a5m/j+6hVKlSfPjhh3QY9EqRxWXnHN9C2NkfOB5z7ZFbdR8mihUrxqhRt6fyrlmzhho1ajBy5EiGDBmCj4/Pbcs9wb8brVq1IiMjg+67fmLY02VZtvPaQ23/2umDVKlShf379/Prr7/Sbsz95d82pcSRtHsZZSauQ+9eNO+yi5sH165dyxd0PH/+PAcPHmT+/Pmsv35vFEaHw8Gvaxdy7sgvvDb5Fdq2/e+kaPs3oGHDhmzdupXhw4dz/PhxHMVeKpQgokqrxyUwEpfAyPzwMavuwQw619e+zcQXBhERcfs88w8bj3xz6eLiwvUTOwmu1rJI6hc0WlS6Oy/g3L186DJkEv0GDGb92h9vSjSq0+moXaMKUad+J7Ry09uer9JoCev3IdHLXiF0yJx8L1FhYDdlE7PkRYJaPofWww9rbgZqe+GFXjQ6PX693iN99ZsYBSv6ah0LvVDzKFEd1+HzSD3+M1HLXkHw8EMfUgaNux/kpmOMu4A5JQavyi0pMXxevqXlCe4dgiDgF1qCrs+JHhqz2UT0xVN44EDXoz6+8VfQ+oZhyJW95DadK/rASNQGdxyCgsamc8GtnCjVrs7L+1q3B6f+/pEbP36H8do1DBWaoZMEsgRBwFK6GVl/b71j/7RaLe+88w5t2hxg9Nih9B07jZLlHl1g+L8Vx2OhRKSkhCjFMx+RKKXnY+QEzWopPU1e3LRWUqMze8gKcQ5pYsujyuT9q8tKBMDz6h/5ZXMDxBRLKrPoYTan3kDt5ot7xaYk71zAr21G5pet7SfW0ydQStYsHb9ulCnwoQbxbztSxL7HXxDpq2Y7pF08TPHOk/Jj1V28RG+ETiUyMPo28ObTPy5Sp0ULZs+eTUj9d7kYK16LIFFeVRYx9je1hqh27HntSH7bNgXdFyC3mKgy21JKhN44QGzn2L6fuXxwHctXf/dAG0uVAJ56Ozq9nd71xDaW708DZDXLK5nitHo0SzaU6qX4d12mGPtllejKCZKI1s0pU8Tn8kOKaNRxOByYEq5gir+EMeY05oQolqjV6P0j+KB4JdzCylEqrBgeAcUwSBQZ5TInTGLyBErpsvJULF3VDghozaA3w7l07QJtO/XExcWViLAgRgwbAkDx4sUfCyv4ExQ9unXrRmxsLLVr16ZRhJGQEJEealEoYSrjH4MM8jvrpaB4ppvFd/CsQhU2VqHumpUqCyWWKO4NwNYN01m94mv6DXqWHi9+iqDWYJeqjMkSxw5fBc12xQ35G85bc5lTYrk8uw9BzYdicPdBUMT+O1TyUteuYG5p8sIHFFTYwRXkcdVPL6/D8r5vrUGHS0Bpzp49S9myZXlu+Cj6TfyCHw6mE2CQ11sOh/jbXSPfG4PGgcPhYM3CD6he2p95O35+Qn/9h8Ld3Z1ly5bx0ksvcWNeFSbN/IGQiFJcDJDFdzZsk0U/lTRWhyKdiFqa35Tvq1IjJW8+ALCr5fc+OFwO9St7bjnu6uuMGPbo1GH/H498c1msWDF+336Emj3HE+Riy/8gAX5KEj/KUINikMqVaaTKXGuJZvnB1PWUByFbbgY2YxbW7DRULjLX/rJRfLh1HALVGj3NycO7Wbp0KcOGDbupf6NeGM6QURNpXl/MaXkkU35BzNLiR+3iSWi/j4ldPBq/5kO5UKUVglrDldz0/LKCIq2KPUFeOObGnOb6plkEtHwOt7INsANWi5nwsDBSrCrOZ2tuCjZQS2IuygHy+3j5Ra3cpDc7lo6nc5CVk39tpMwAUVb/7KmD+WW0uWny/dEq+NxS4LCGbILL1SO4XD1yUGNOjcNuNqJy98K/TD103kH5sQrYrKgVAcd5MV4A2mw5jsEsCRFl5MrP6b8Ao9GIi2JyUU7CZuk1vZDrBmGi99fVmoBryVoAaNMUHJu8xafFiFWxoFZlyEIFDkGepKLKdyYrIYVw+2aM+xZTYth8Yk3iRKnSu2O1O4jJEeNQmvncPuaqYcMGzPlkOs2aNWPLli08/fTTACz4XXyvL2UopLAV8tvPl5f7l0e9BfBUO5eV8ATOhW/zwVz9fCDulVtiCH1wymj8zkUEtnj2rgrScXFxbNmyhQoVKjBmzBjWCs5faB3b9zOn965h9Q8r/jEeS4fNSsbJX0g/uhlbTjqGsPK4lKyNd8M+GELLo3N1xxh7Bs2Nc6SdP8iRPcvISY3Hbs7BK6QUJWs9Rcl6HdDcQxx8aGR5QiPLU7NpJ0x2uHjsdz5b+RsAUSd+Y/7ns6hR4/5ZOU/wz0FoaCg//fQTU6ZM4ZtvvnkobZ45+ju1qlXi0KEj+ISWwScgBFMhlwmWrBTiZnTEp0or/Bv1KZqOKhBWqir7D/zBjRvx2FQGipeuXPBJiIaiDUs/oUyYB1OmTCniXj5BUUOj0fDFF18wbtwFxowdDy5+NB3x2UM1GDgcDr75ZDJn/v7robV5L3jkm0uAtBtX8Qm7u5rgg0BQawt0WXcb+irz3n2Oy1HRvPv2G/kezEqVKqG1ZRN97k+KlbuzapfOL5yIFxaR/Otikn9bjD6oNN6VmuFWsqZIV/w/GK9fIGHHQlCpKNb/Y7RegSIFEnDY7j/7rkqro1jD7nh5etCrTDBz32xO/Skb77s+jZs3Gjdv4GYLyhPcG7y8vIiPjSIoLPKht+3edAimpAtkn9/Lha9fwrXfrALPSUlJwWKx5L//TZs2JTk5mT59+nDt2jUqV66MMScSg6tHATU9wd2QnJKCSvV4xbkJai1hgz8l9uuXiHxlzT0na74dMi8dxZabgUe5Btxtnfj5558zYsQIVqxYQY8ePVi7NvcupQuPpPgY9m1azM7tPzllY1mubBmO7/uZui27Pnjn7oCsqJPE7liAW+VWBHedjNZfzKemksZhAEGlxqVYZUJLiZ7aYpJXRyfYSYu7yKX9G/hhchsqtepPSPehhVrslK7RlMhqzQBo2WkAA4f0ZNXKb6lY0bnxuE/weKJ69eq4u7uze/dumjVrVqRtWS1mtq/8hB1bN9C2Q1eGT72/GPT0la+ARkdwh/EPJd1ZeJmq/HViA+s2bKb/uGn3dI7ZlMu6rz8gMsiVt998u4h7+AQPE2XKlGHb1s28PGEiu5e9TYshUx9a22knd1ChQnlCQ0MLLvwQ8VhsLvWuHpiyM9AZimix5ShYOMTdy4eJn6zmt41Lady0BatXrcynA/Xr15fd5+++uQRQG9wJfPolHO3HYoo7S+bhDST+vgxBUCG4+aDzDUVQ68i9dASNhx+BrZ/HEFr2lnosUUeoU70SvxcyODwP5YfPY/ucnmxZNoIqFcsy/rUuqBsMxSW0/P1V+AT3je7du7N2ywr6DH/tkbQf3msqR99ujnvcUTL2Lsez8QAcdhtZqUncbntYokQJ0tLSCAiQxRR8fX3Ztm0b9erVo06dOhw+eZ6e4z8HAm9TwxPcC75fvYEBry9DI6Uomh8jbnxy0yXhLYW3L8+oo7KKnmaVTaR6WvTyeKmV1A41ElvC6CvGXRiuHRb/31+m0Nj04pPPo+M4ctLE47oQtD6heNXtzrW5gwkbMpvDElPiiETT8fQUqaDZRnkTaE0TaW5qyXuddvVvUv5YTfjz87G5eKBNluO3TJJSo1qlwWa1snfvXqKjoyndcjjzdqdz8nJUfllXiWFhcRPfRY+Y4wBkVOucX6aOn1hfE0mR0UNSluxZz5UbN27Qr99LLF2yyGkeyzdff5Xeg0ZQX7G5VP/fWtZLSt+kEuRnaJFUbPPufb5KpVFU/zP5FcduMZGwcQaediPtp26jukTtzUtXFWuSG8oTiPPSiG0dlxQ4G3k4CAgvg6XLJMI7TuDM+ll88PYIQgfNQpUpUqT16XEAGH3EdySsmPxuVHQVTQHlPESWwx+5wUQ8M5PnR79Cm5ZNePvNJ96W/wLeffddBgwYUOSby90bFjP6hec4cOAAZWq2vC8hIVPiVa4f2U65jw6hUrClihL+IREsn74dn8BwfANuv6hPS4wjIzUBV7Wdq2ePsvyz15k5axYvjhn9UPr4BA8fn8yaQaduvYg5d5TwcrWKvD1rTjpRS0Zy9eLZIm+rsHjkm8s6derw2derSDIJ5JpUHM+VLazuWtFyHp2loN8pcvylp5vkihR0qu/NMnXVzScYjasn7r4h5GTLMr7nE8VF3GaVvIjuEmakVZchRJatRu/evdm4cSMBAQG8MHwYS5u0oEPXvljNCmu+oi/KnIQCAoaQsri2l9M5CBkJWDIScdgsqFsMRaWRFh4KBT+7h6gyK+hc8PE2YIwxkmoVbsohaLlN/KgxQ6HiGiAKIwV3f4+33n2f5UuX0LhRI1q074Kvz0iC63Th5OVz+cUNqTH5v/N44DZFHkwl5VWtkPNWWeV7r+SH67KSbnscQY3DZkGvKnws6T8Zbdq0YfqsOfmxasrcrBmSPHuMQvVY+R5Z3GUZdI20AQBwKKTUyTJhSY/HbspB8ApG7eaNxt0PQWrxhsqFoMnbuDCpOtqoN4hZPwNbTho+FZtgzRVj+aJzZRprixYt+Prrr5k0adJN16FSqTh8WNyo/P3337z00ov06TuJMpVFCe4fouU4FbMiXrh/uPzO3FBI0GdnFy53078NWq0evcE1X67+cYJPw95oPAO49vkAfJsPwbNWp3vSerZbjNzY9hU2q4ViQz9H5XJ37/aen1ZQr1490tPTKVW1oXM6LyEhIYHevXszbdo0SpYs6bR63dzcSEuKx2ZzLr3fmplM7LIJeNfvQaPOL0hHH6wNlVpNpR6TSNqyhOsrphDW6eX7qiewfH261fyCHUufeFv+K/Dz8yPLaOPHP1JQRvBGKNKPuCtyd5sUCvh5sZEXM+Xl5d4EOWwiyE+MJTYmRXP5+G8snvkzq1evxtMnMH9+tCrGxbxQkl2JMsXbbJaNWxffa4Vfi8Gg0WH1VWheWOUQKnW2rF8gWJXrRnHNo1GsW35LkesYHCHPXxcyZGNRttGNa9HXaDVhOQ4E4mOvcmjHj2Sm3MBut5OaEE1ogBeVK1fGDjxVqzxTr1x+7LxLT+B8LPjyM0aNGsUXY9ax/O/q+cddEy/m/9Yo8n/n+kYCsj4CgF2lMEwq3unyQbK4YusAEz/MfIWvF87D3V2xJnxM8Mg3l7Vq1UJlt5B08U/c/Jz/4WVdOIjev3DqSaUq1GD69Om0bNmSQ4cO4eLiwvgXR7F++SxoMKngCm4Dtc4FtdQPq+bOMUgAwvVTBLZ9mozYHYTdteSd4RlRiYMLj3Lq1CkqV67M7m2b6NpnAPt/WYxrzw9uS9UtalgzkylRosRDb/dRws/Pj44d2vPL6gU81dM5+VAddjsZf24i7Y81YDGi9QpC4+mP4OKJOTkGW046DosRv6dewLNaWzTuvlT48hrW3Axyo04ADgzFbh8j0rdvXypUqHDL5lKJSpUqsWbNGp4dNoIrp4/QpvfIO5a9E6ZOncrw4c7LD/sEzoVH5Ra4lalH4tbPyPhzC4FdJqMPq3DbsnnxgSm/fY1/47641+t5T9S0kwe24aK2sHLlSlb/7by+H923jbmT5/HBBx/QoEED51WMGGPz3NABbPhmOn0aTndKnXarmZjvXiK4xxsYwpzPLvGu1x1T3DmSD/yIX4Ne91VH1PmTTu7VEzzu8PH2JCM1CVfvomGoZO78nKUzPyYhIYHPv5xP636TC11H2pFNWLPT8Ws/zvkdvAuundqH3s2Hq0e3cnjRFkJDghj9wvNUqCCOkcHBwU/yx/5HERISgouLCzdu3Ci48APg8t+HOH3oFzpv+rZI27lfPPLNpaenJ27unlw7spXi9To6tW5LShxxq96h1MhFhT63SZMmzJw5k3HjxjF//nz69n2GGZ/MwVHvlUJJDhcWDocDa/xFevXqxbuz5j1QXW16DufzuV8yf96XeHp68uvWjSz9djkfzXkZs94ba6WOaL39UWsfjuKrzZiNRvPIX7mHjvfeeYsmLdo4ZXNpTLxKzJKxuJVvTNiQOeiUTk9fWdXRnBJL4tbPSf5lHsE93sK1ZE0EjQ7X0lKyX8ftXWYuLi7UqFGDixcvUrp06duWATGWdPWqlfTs3ZcLpw6DV5N7vgaL2cilS5eoX7/+PZ/zBA8fKr0rQV0mYYw5TfLOhZiuX8C7QmNcwspjM3hiN2WTfXYvuVdP4F6hKSWGforaxRPbPWwsUxKvgzWXSlWr4e/vD6QXeE5BSE2M49sFbxDk68qPP/54E7XbmRg+7DlWfH9vuc3uBUmHN+JVu3ORbCzzENhlEtfm9MUtsjp618KHn+zdtJi5sz4ogp49weOKgf2eYdGCqQyZ9LnT63Y4HAjxZ6hZsyarVq2ibK3WlKlSt1B12HIyuL5sPKEDpj2UOEsl/lgzh4zEaJ6u6sOIz359ovj6BDehXLlyXL16FSi6vKWHti5l3ryviqz+B8UjX+lrNBrcdQJJV49T0dPKWaPsUStrEOkVRxQy1koaqTJBu5ub/BDVgujdOfvdJKoNmYZnkOhWvq7IG2mWaIPHYhS0UGT387ntWSA04sTlhZw+fZqKFSsSHh5Gedd0PP1FD+v35xQeSIUIj2vSJQByAuVYFodRkRRVsbBXStDXCg4g4e/fKduuNVlZWeDqyTWTnfIhsv8yxiLlxFHcB1O2vDArrpDrrtH0aRZNXZ2fjwlg8MABDB44gHPnzvH9qtUsWzkPk2sgHvX7Ygsqg9rNG7WHvChTigu5xJyQ2/SWvcz/Y++so6u4uij+e/7ibiQkwd2huBYrFCvuDsVqlALFWqhASwuFIsWKFSjQ4sUpLoXi7iSEJMQ9efr9MZPM8CEREqCQvRaLybw7d+7YlXP22UdOrU1zlNz2KpmCqFVni+XMerp9+T5vGhQKBX7ebjQsYmb3DWkQ9BDf79sRsoFRJpmuTJPiR0w2jiReO0rknoU0GrkMe09B5MNLRk0yytaLSS7FYPgsjl69yMNN08BixrvLFNSOwrO1JsVmlD2b5J6xvepYLJ6lGrL/wMFnLi7Tr+vXxQvo1KkT5cvv4dNPP8XT05M1x2OfWN5XpFStWDieLl26vLEDcnBwMNevXECltHIhRuhDUmIFmr4iRaDuy6XKDS7C96+NCRHKpAt/yRKEm8RYPpOtMwA2kbcBiCtcBwCNKLkPUoqP9FjO9GPV0cHifomybNI7YufkgW3b0VgtZtLunMYQE4olIgiFQoF7+cY41BI8lcnugZiB9sWEPqC4o0CPTjaVyajPVWfBaDSwcOJwKlUoS/Pmgmz7+/WF/vtyvNRn/p0eKy+GPHRvKFBnfWXUvE7Vbbh27Rp//fUX2//6i59/+umFCM+UKOLP9u3beeedd+ha0/mJZVyPS1S87xHUVg33hD7UZCvEU1q1NkRdO8bI2VNQi2mdTKIkfbhIl08SKYe3kmVjjBhDejVBoO2ZxO/Zxln4vkvZS/foYrxQr3fDPsQc/R27dz8CQB8rvE+x4Vcyyh7UC8/h7yKC4eez4gKFcL29OsMrk483Ax06tGf+/Hkc2rmWtxp3AsBkkcYqlUKaa9jIZpJGsYxG1r2/5SGFKjXxSuXske0YagjfxOKlK+n+6Wy0SmkAc9NJ2+mhAyXtpXCLC8k6ku78i1png2O1thnhJGrZnFAhI/MbZUwtZaLUF5rE8mrZePjQKEsJIRtT3XTS/unjhzF/voohgx7NLpCPfAAULlyYmzdv8n6FVhn7lu29lbFtlCn+q9OzN8i0YYyiiBtA/+LOGduuOqE/Drp5gX+VCbzX7tk5pF8mXonZXbOmTXArUIirJ/fkWp3hexfjWKoujoEVnqueGl3H8eEno7BarUz4fDTnts3NpRY+GcHbvmfYwD40at0ZXesvn6sue0dnnDwKcu3atcd+K1GiBB3bt8PNywcHkknZ+xOhszpz98v6RCzoR/K2b0nbOwvDvjmk7ZlF4j/rMcl44jmBIiaIWrVyN7bqv4LWrVuzZcuWHB+fGnqDyL0L8R84L2NhmRVo3fzw6zcb14Z9CZ7Xn8RL+zM9plyNxqxctQajMXPVYkdHRzZs2EC1atUYNGgQzZo1Y8Oir7ly5gjW//OOpqYk8fOEvhRwVjNw4MAsX8PrhmvXrlGjaaeX3YxsQ6FUYVewDC7lG+NW9V1cq7TExrtItr0Gu9YvoFy5cly5coW6dbPu8f5/mExGfv/9d0aMGEGxYsXYuHHjC1M0/emnn5g+ffpzx14mXz+GbdFqGQvLvISNbykMMdlXiUuIi+bhw4dvrDHoTYVCoWDnzp2c2LEyV+u1mM0c2LiQad9+BQheTFs7x0yO+r86LBaCFg/Ho83YF+61BCEnqNVqzfXY63y8HihatCg3b97MvGAOcOvSSRZM6sOsWbPypP7cwkv3XAI4OzlSrk5L9q6eic+YFs9dn8Vk5OGBZZSd+PyLVXe/Yti5B7B582aaN29O2I2Rz13n05AQdpvU6FC69RuKufW3T42Lyw6KlqvJ7j17KVnyUcpVeHg4jRo3JWDSUdydhJgKu6hQDFH3Sdo7l+jjf+Lq7QdYMSQnobSaCIqLxdbdD717QXQtRmc7btPFLvOca68rGjduTO/evek1MfuWJnNaEqG/T6TggDkoczgJtS1SDf8PVxG6YhRpYTdxrdHhqWVdPQqQalJx/fp1ypQp89Ry6bCxsaFjx4507CjEc+3YsYO/duziuyXf4OAkeGjiYqJIjI/mi0mT6NG9a46u4XWCo7N75oVeQ8RFR3D55F42rl/NoEGDsLPLmUK4yWhg4ddDaVynMps3b0avfzHU/nTo9XqKFSvG/v37adCgQY7jqyJ3zcOn2ze53LonQ6FQYE5NxGqxZCu049blf99opsGbDLVaTa3qVTm0+Vfqtu6bK3VuXf49Qwb1ey4F5/CN36JU63Bv2PdRQUMZLMY0jLGhGCLugdYWnXfhZ+bczS6KFi1KUFDQG6cjkY/M4ebmRmRkJK6ZF80yUhJjWfbjKNzslOzYtomAgKw7GV4GXonFZbMmjVg36lucAsrx4N+/cCzfBAClXhiw7fSSemmyjC5WyFbqnILSJJey3a2j+JZriK+tjtspkvfFLFMPsxoF97LS3iVj39mwhxnb51IlZdlebYYwfcbHtGnTBpMhBUtqHHo7R2zcJbpqaqjk8k5zEJQzVSlSHXIKm1wRVGmQlMtSQx+gUIDPO6NwLVEuY7+nVrq26s7Ctlz+fl+0dA1/h0vnrOOpoVj5GmyYN5ZhQ4c8Mjlo174TjfpP45wFiHmYfoPQOnuj6zEj46Mo4+qE1WIhNTYMu+hbhF45xt1/thDyVWMK12zNW0MXcDpOeslV985K12aW7retiw8qzX8jgXlewNPTk5s3b2JIicuw0tqIz7CwVvLwXZZRdiyiMnDEngVU7PAZBUsJqXBsnjLHc9FI74mzOIa6FZAswjtDlfj2n8vDjd/ycNtMfLp9g0KhIDpGeu8TCwi0uEbdRzPpy69Yvzb7eceaN2+eQXfMx5OhUYGN2spbbkL/9JabcN9VSuF5PekRR6cJlMelDwQjjTFNUjIs5yDsS09RcUqkx6ofCtZTk156D2yi7wKQ6iyEAdiFCzLmRjvhq7cq5X2V0JJ0JTul2G+adJI6XXraE2WaQP2PEVWQo0Ra54cNpXN/8smXTPx8FMnJyTg6SvsrLhf6LaPMs6bxFFRePy4qfB+9awvlk5OT6dNnMB8P6U3r1lJakheNr776ih49ehAbG0v79u0f+71zDalfVikEiuyXIcJz0kffI+HeBbQegeg8CuGolr5ds1V4iEbR85+a7hyRMQHiYtJp1EJIhMJeMFYEpQjjo0YhC71IVwHX2qIvUBJD2A1sPAMx2Alq1FYHSbAlPaWNQuzHFcUrcPbABtqOlpTP8/FmYeaP39O+fXvK6utStWrVJ5b5XUYBT6fDqmTv4Ds+Ql/1z/4t3I66Qe9eUzN+syJQX+UOSHn/l06zvZ0svMcpsRGEb/+ZgCGLMJuNNPCVDHVXUpTE3/qX4C0zMMaFY1+wDFpnL2KjQkkLu4HVZMC+TEOcq7dHZeuY8U0ZHaQ+TyELOboZL+2X03bXnYghLP4VlPrOxysBPz8/IiIiqGsrebYNsn5WFx+esW0WNU/KVGuSse/dAtLY3rQULFq0iL1bt/LFpEl5nh4ot/BKLC4rVqwIphTe6jiSFV/3xqFc4+eiOiSG3sS5cMVca5+btz8GixKTycRHwwezY/cKqrfN/VxFZ1aMwcHTH+/SdTBkXjxL8PINRKm1JyEhAScnYQJ77tw5sPehVJ02nLudeV4ohVKJjWsBfAt441u2NlU7fsrx9TNIubiVq6vHQYuJudTa1xvTp09n8YKv6Plx9lQmk278g++A6bnSBoVCgVe7z4naNZeIbTPwfPfJ6QkCS1bi8NpE7t69S2BgYK6cOx+Pw2KxEBsVxsOQu0SGBhEXcY/I0HskxcegVikf6QctVjAp1MT51sSqtUNZqTUqm+zRyV4mjh49SkpKCi1atODQoUNUqlQp23XExMTg7u7Oxo0badWqVeYH5CHc3d1ZuXIlnTt3fuLiMjMYYsOwK1E7D1r2dJhT4lHbZv2duX/7Chpr6hsbzpAPUKlULFy4kDp16nDu3LmnsgSsVitR4SHcu3mJf/9eT1xCEhalGueASqSWLMw/e9dRskgAS5Ysea72/PVFK2wKlsWxQtNH9qfERXD5l9FYzEYKd/oCJ18pfjs8VTCKWUwGIvcuImh+fzxbf4ZdkScvlvORj5eNa+eOc3zPWpalRNKrVy/27Nnzn2KPvBKLSwCMKZQo4E6R8vWwO7mGIo168kAUr2nsLAVyJ5kkz6W3XvJKBoVLN/3upaO4NxtGSkIy5hSZkI7M64kosGORC+3IaJ5WrST+A+Bfsipbt/1Fh/btmTWvJXXbvY+bLKXIfVn+SVWyYMUzy/cZpbxMSpkHVSHLCZhqMODc5GPOpamp5yBZPOSha8GiZVons6JVcZDquJ8sXUN6XLpXYFn2799PmzZtiIuLo+eQjzG0+4H1YaZHckEp0vNYyias5WV1B8hEIqr0H8iX768n9co+6tdsTqFywuRjeaREBNB4F8nY7uRp5C/Vm23pa9OmDUuWrSQq/D7uXn4ZzzX9PQdA9j5g44Yh6j4adz+K2SsAwaIaLSvvLPNqJ8j2G0Xvh4PMI9KzkPROr3r3E+4vGUHcyU3YlaqXsX/7Q4m63G7gBHr16c++PTvfSJXfvIK7uztrfvmWG2cPoFYqKVDAh2JFi1CvTCEKF65C4cKFcXV1faKB7ebNm4SEhBASGsb8ZR8SHRVJqksRbrkIXiiVjTPeNTphShL7RlGoQuGkfymxSXKsXbuW8uXL57gd27ZtY8aMGRw+fDjTFCPh4eFcuHCBoKCgR/brdDo6duz4XJQ8Odzd3dFqtURHR+Pqmn0S1It+Jsb4CNR2LpkXFHHm4GYmjR+Thy3Kx38BHh4ezJkzh27durFq1aqMBabRaOTSpUusnDGb4NtXKFe6FDY2OpbM/YGAgADu3r3LkqXLUBiC2bR2RY6+ETmi7l4g7sENin19LGOfKS2FSzsXc/Pwn/h2n4pT8aerkCvVWlxqdsKp8rsEze+PttePaJy9n1o+H/l40Xh45QgzZ02nXOni/PDVWIoXL/6ym5QjvBIzRoVCgU4jNKVs+1HsnvgOBSo1AQefbNdlNZtIDb2OrkDuPpBqTbqycvU02rZpTcniRUlOiAGy376nwWoxkxgbjX3p3Hd5F6tQi3nzfqRNmzZs2rSJxOLNcfB8vjgBtUZL9bc7kPbwCovHtuXLjSGonpG/887FYxTyz16+0dcR48aM4vu5C+k8JGtiTWkhV7AJrJjr7VAoFPj2/pHb37VF61MCjbPXY2UKBBTD3b8U586do0qVKrnehjcVFStWJC42OkdWyKJFi2ao+Hbr0hmr1cr169exiFSuoKAgVq6ZTvE0wRBktZixmC3cDQ5BJ6rOpic/dxWNPV5O4ncbw2NwLlqP4hVqoXYSvAAHI4VFWYRJpnqsFqllorGkoI1gIPHUW5Dj3LlzfPONFF944X4qlVcKxj1jonDyNsUkxe5vWkjxmCdPnuTrhQvZvn07Gs2T+xmDwcDWrdv4dflvPIiIpWjFevgVLJSxgAtJVhF5+xwTJ39D544dmDBuDDY2Nk+sKzv48MMPmT17NpMmTXpqmQ7VhQXduvvCpPzKDRMKl4KkBF/CoWJzUmRJ6KMNwnuRfvcK2ghbRqu0ID6ZJNxsq5gEXhUtKHaHOgvnCU+RjIbp4SCmO6fR2jqhEVWC1WLoR4p74Yyy6YZPg70jFmMa1y+cQKP574lP5SP30bhxYywWC+3atcv4Bi0WC0WKFOH7L0c9pusAEBgYyOQvnv5dZBf7fxpEsfpd0XkWwmqxEHN4FRsP/krJt3vS9pudXDdmTddBqbPFo/kHRO6aj0+nL3KtffnIB4BWqyU2Njbbx93bPR/HiFNs3bAGZ2fnXG/Xi8QrsbgEsIqpQVQaHW8N/JGjPw+m/Kg/UD5jwfIkJFzaj33JOrluEXbz9udOUAgPHjygbu0a/HNoI1TPfvL4pyHx/mWUNvZ5YskuWqYafy0S6K9r165F3zh3kn+36DKEHz/rwogRH/Dbl53pNeXPp5a9cWQ9M7/4MFfO+19GtWrVCL0zluSkeDQ2medAMkaFoHHPm0W5Uq3Fp9MXPNw0Fd/eM55YpmrDdkz8YgrbtmzMkza8qcgteotCoUCtVnPv3j3CwsJZvmotRpOJZHGxYhHTWjjb29C3QwNqVK9OgQIFnlVlBsxmM/N+WcTamR/i4F2c2m0Hg6pI5gc+AcnJyWg0GmxtbTMv/H8IDg5mzJgx/PHHH09dWN6/fx9/f3/qtejKu30nYyfGw7vKUjM5xmmgVis6DhjD7tUzee+991i3bh329vZPrDOraNCgQYZybHaEfeyKVOXh4d+AvBOJS4fVauXB7l8o0GRwlo8xJ8fi7e5EuXLlMi+cjzcCTZs2pWnTppkXzAZstUo613Bh/QnJuiXnOIWKsZbXdy3BYkyl4bDZHLh7n+Alw7ErUo13v9mNSqPDAsSlSN97AVkS6Iau0lT3gk7UyvDowLFtP2KJD8fGKMW4mZNjM7b/tEqCduNKSMytjtVdOLzqzdWQyMezoVarSU4zY7FK83mzbL6Xopao5UOqCJolJUxHWBJ7kt/W/vbSWUa5gVdmcZmaEE1K0L80LlYJPEvhE92W47/0o+2oBYSkStYoD5n4yeZIaaKhFJ/Fwx1z8O01HWW6gI4s75GcX2oRF61WkzzdgvT7J2UkaqijSD1s2mEwP8+dz6QJ41jRoCnV60sDdahMGMiYYRmWKLcKWb5Ik63UpnShnwf7l+PmV4KiYn6nBwapY7wQJYn0VPcQjrWVzWHSA90B6rlKx20MlV5QvYMHJ06cAFtvFGo9pgRRuMEg0XWt6fcqSYrDXH1PuifVZbmq3vYyACo6Df+W+RN7Uq1aNeKv7EXrIw08DZ2lY6+rLBkxn28yFAoFHdq1wjb6JEbfxgA4yp5ltEwoBUMqxugQbAMrEGGQnqU8f1hwivRHqiwHma1Im7aXKz/J3u/2XuJxXjX4cedcTFHB2BaqxPXIiIwya3EHh1qEaDZx4MCB/0wg+ZuC+Ph4du7cyZw5c/Ct2ByNzpamQ2dhY+fIilChz0yMFoQDSjjoWXz4NyZP7cR3UyZSpUoVihUr9qzqAZg4fiwTx49l1+49fDHlQyjfCaXWhngzuJaui84lc/ZGdHQ0nTt3ZvTo0dm+xsTERPr168eCBQueasmNjY2la48+jP9lL4ElBdGrNMsTiwLCN9i028cUTD5G3bp16d27Nx999FG225YOvV5P0aJFCQ0Nxc/PL/MDRCjVGhQa/WMpe3IbVouF0DXjcCxRC71nIMjE6jKDp6dXPiU+H68ELmydh0eRylzZs5x7u1bg1+sHbPzLotLkTKkZwKVGB2L+2YhNpXwBunzkLgr6+XLv5kUCimae9cFoSGPyV5PZsWPHa7GwhFdocblg/lwGjxjFh9M3oFAoqNuiG4kaN1aOa0u1IfNw8ArMtI7YszvQeRVG65E3Er1lq9Rj8VfL0Ol0FC0cQGzIDZx9M5+gZQZj3EPMyfEUbvdxLrTyydA7uLBo8a9UatCOO8+YeGUXPv5FadC6D962qfz6/ce4TzgmqLDl46no0KEDffr0of+UxpmWVWp0mJPi8rQ9Ph0nEbLyMwqPXP/E3z3q9ubXZfPzF5evCG7evMmYMWMwGo20bt2auXPncjhSsMabn7JO0dg64t90CHaBVdhx8SYLVn2JJUXwFDjaqDAav/Z96AABAABJREFUjQQGBlKyZElKlSr1mHeiaZPGVKtahR07dgBgMplYtm40UYkpxIpGC6u4P9qnMA16fcH9h7c5d2Q7i68doW/fvrz99tvZuk6LxUK/fv2YMGECRYo82WN66NAhBg0aRPsPZ1GoVGWys05r3rw5tWrVonfv3ty5c4cff/wxxylFChQowLVr17K1uATQ+ZYk8dLfUCRvkmFbjGkEz++PQ/kmuAeWz5Nz5CMfeYm0lERWTx1IYtQDPItXJT7sDkVGb0apef7UZo7l3iZ4xSjIX1zmI5fRplULundvxPKD4ZkuGM8e2EiXLl1yxOx5VfHKLC6rVatGy2YNObZzFbWad8dqtVKiZkvc/IqxfsYgCtV+jxJN+sJThBjizu4kfPtsinzwG3llB9bqbUhOScVoNDJp/Fj6fDqVqoPnPXe9aeG3saQl4VKo4vM38ilw8fRn+bIfWdTrGzgb+8yyxtgwkq4fwxj3EIXWBrWDO/qCZbC41kb5hMlX4/aDmDm6C31792D1n+Nw6jE7j67i9YCfnx9qtRpDWgpa3bNjvjQuPpjiHz6zzPNC51UYlYM7SbdOovF+3Fji4FeK0ysvkJaWhk735uYqfVkwm81ER0fz26o1bNuxizSzgg5DvsbDuyAA5+Jg3j3BE20KvQGAfeglALQuAqX6dsiFjPpCCzYDv2Y08hXENdKHPb/kqzwIC2bfsk1Mnf4TPbt3plOH9hm5KF1cXOjaVcpR2rNnzye296/tO5jxUz+83J3p06cPtWqNfuKgaTBDV2+ht07xEASJCjsIDI+QO1dp1WoKLVu2pF69eo8dGxoaysiRI9l/+DhjZ29ja1ohTj4Af5FlEiQyP8JSJLqbRvRw2ItskX82JgNqOo5awrFdv9OpUydmzJiBfw5iw4cMGUK/fv0yXUC39xPaM/WC4D30qNON4OUjWVVcEihqX1zwBjuLqYXSYzA9ZOJdA0oKTJkbiUJ6mn8Shad4P0JI5aIU02CF75qHQ6FKuJaoiUpkpFjF9DLp0vhKGSUwHRa3ACxKDfq4/446YT7+m0gxWB6hxAKcEGO7o4KvsnX6ICxmI/qSdUgMeAtN7a54yvoTjUL6LhzU0vt6O0pi4YQ5eWRsm2RsNaXWFqvJiNFWYp5Z7N0yticWf5QK+zIQFRXFzJkz2XfwGAqVFoVCgZOYx6xz5840btwYH5/c0//IR+6gQ4cOnD53kb93/kmVRh0eERTtXFbSPBnWwJ6m36yj+2frXkYz8wyvzOIS4IuJ42nRqi0ahYK5X49g9dFIcC6E/w9/cvyv5eyb0Bi7YrVxKlgKvbMnSQlxJNy/QvS1Yyh8SuI/ZAkWjQ5zanJGnVZZrknkuSbTk+nK6KrIEuw+kFFN7WX5A32LCMqrTZo0QZkURqCYx+ZwtNSpaROFpL5yKqxZI3WGKkNSxrbSlEbCv1vQ2DkT516MOFGHoYBGlqdMZvW4nzHRkDq9IrJcOl4yEY1DMqHExm8PQrNuMTcTtZIqLCCnSqZFBvHwz69x1WkpXKUprhVqkmpRkBh2m6izW1i7Zjx2Jevi3nQwaRbJO1zP3cDbPccxe1RbGjVqjO35pVRq2pODMdL99HPNj0+Qo02bNhzf+yf1WnQnXnp8KMwytVhTGnqPQGJO/EmsWYrvDZS9jwqkd8NbJ8upJFJkb8los2Vkar1yD5fZaMCj5ceErZ2EXx8p9vJajPTtVGjQmfkLFvHhiNxPwZOPJ2PGT7M59e8Zbt68ibOHH6WrNaLXmAWotM8vQvMkePkVxsuvMGWr1ictNZkjO9ewcGlH3JzsKODlSt++fZ9KTS1YsGDGIrTFO81p8c6zPQH29vYc2b6Kym0ejcO2WCycO7qTE9sW8tOP3z8iJGW1Wjl//jyff/45ycnJDB06lHeGzRH6x/s5v26FQkGtZl0o814thgwZwsCBA2nbtm226vDw8KBkyZKcOHGC6tWrZ/k4tb0rWnd/ku+ewzawQjZb/mykRdwj+c5ZvPr9lKv15iMfLwJX9q/l2JqpaB3cKNNkCBevnsaldtfMD8wmrMY0rFZrtumI4eHheSq6YrVa2bFjB99//z0TJ06kXIuPMmL1O1R3ISgoiMOHD9O7d2/ef/993nvvvTxrSz6yD6VSyZcTx1GufCUi7t+Giv2eWC41NRW9Xv/ahY29UotLlUrF8l8X0blLN5xdJOuRRqunbttB1G49gN3/nicx7A4p0aFYVVp83mpN8fZjuG96MRZWJzdfzp47R5MmTShSKIDQ2xfxKZw5p/pZSH5wHZeyDXKngU9BxL0r6GyfLlwReXAFiTf/wavDRN6uLFnRk80KPEpUp1D9rmjjUog/8xfBi4aR5OBMxR6TcfAWlAb9i1egabePeXjlAOFn/6ZS0yd7NfIhoEWLFmwf/RXQ/Znl9L4lSQ25gsVskuKI8wA6z0JYjKmYEqNR2z8uF1+0UkOuHF+aZ+fPx6OY8dPPbNmxn+4fTuVttR4bOweUYlLyp1FfcxM6vS312/SjVqv+JCXE0rhQMsuWLctQpb0XkZZR1mK1EnzrEhXLFGPUqFFPpbDKUblyZXy93Jj9fg2aDfwGs0rwiJ88vZnS/i5sWP87Hh6St2H37t2MGDGCevXq8emnn9KwYUMAVh6NzbVrLl++PBs3bmT48OEcPXqU777LnvBZ2bJluXPnTrYWlwAejQbwYONU/AcvRJFLQk/m1CRC1n2JX5cpr00MTz5eT8TFxRJy7wa+ARJrJuTyMfYvGo1bQGnqfvgr+6b3wnPQojw5v0Jrk+1vZPv27Tg5OeHikjfezL179zJ9+nRq1KjBxo0bcXR0fMy76+/vT7du3Wjbti0dO3bE2dmZRo0a5Ul7XjRu3LjB6NGjSU1NJTIyEhcXF5o3b0758gK1v2LFiri5uWVSy8tDamoqX0z+iujYeOo1bMShg5swhMVg0+QDFKpHRemOHz+eaWqt/yJeqcUlgJeXF/v/3ssnn37GP39v5q2GrTN+UyqVuBerhnuxagAkyARMSEz5/6ryBJVrN2X1zJGM+vRTvhw/mn4fTuDdj355rjqVag0KZc6D0rOC1MRYlOonew8j//4VS1oy/sNXPHNyo1AocKrcEqfKLfGLucmJuUOp0u97cC8BQKMOw1g46RiGyJvcPHsAAjKPKXxTkVW1UIVCgX3xmoSd2UWBqi3ytE0OZRuRfOvUY8mp8/Fi8e+///L7H5sY+vUq1GpNhm/aLCrPGUXH9f0kqc9Q3jgKgGNssFDGVhh4tYmCoI9SxqKwuX8OgBN3BZpEkpfw/Z4Iu/LUNi065wtObfEuUhGAAJkKawG9hTLAn/+colmvD+javA6Txo7KVAjm2JFDnD9/nj179mSI2ji/XYV+/fplTPYePnzIp59+ilarpefXW3B09WJVnJpVGwV2ytF74vWJeYRDlKJQW/r3JRvITRoxN59e8LAeTzSJdQh00d3hIuX7nZlE7JtGz979WL50cZYnnk2aNKFnz54kJiYyYMCAJ5bpJFLrvjwrpm1IjkPjGYizd2HiN36FT61ObBTVKs0O7gDU9hPSBJWS5RwOSxWeffq7kBIfBYCtiw9Ws4kbi4bi/s4I1F5FsIjpRYyiWqEuPky4NSKDxqyVUr4oTYLRoISLI8mWrAv/5CMfOcX4sZ+xcOFX1Bu2hPioMPb99g1nju6hYKuRBLYYwcG9yzEWKEPtgIIZxxyPlN7NsATJ2mYV8/oCj+Qt95cxwe4j9Qnq6HsoDck0LCWlUantIRnOOtd4fPEYExPD119/zebNm7N/sVnAsmXL+Pvvv1m9evUjntEOMlru78eFheZ3t4Q+y/zeUkZP6MJUqzXbse2vEtLS0vh49Di2H/4Xn5ZjcCtbH0+LmdJpt/n3+ikObfgXFSaCpvyAMTmeqpUr0KBebapUqUKJEiVeatutVitbtmzh5JlzrFi/FdVb3dA6VwTA6BqCbdAxHk7dQv2un+Ea0AQXd2/MJhNLFi5h0KBBL7XteYFXbnGZjgnjxlK2XAVS4qOp16pXxmT8TpLU5IvRUi6vdMl9AGSTAZWje8a2OVk2WIqTGYVWFgukkCb8cbI8btfjpM6oaIHCKDS2hIeHU6RIEVJiwvCxMeEiy5cWZSdM7Kzydhgkqq4yTWq3wcETi0qLWfeoV7Gcg4ziaJUEctIndfZqqbNMkV36HdmE01knbR8Niyc2PpbV/15A4yTlNEx9cI2UsFv4D/2VfoHCdV6W3SZfGc3WXy911tsoimv/eeyf149CU9ajt3cB1LTu9Sn/bJrF+W3zKPmBZEU7e+VORuLlVxFnz57l5MlT3A4KQSmP2hUfoZ1eS/ny5fHx8aFkyZIZFMDngkJ4VVMs0vlUMiXH9HfCuVpbzm+ZTlyhWgD4+kj0CQfZe5Ag895n5t2S/67WCgOUXeHKxF8+hEqc1MrVUVIsCiwvwGP2psNqtTJ77i+07jcBdTbTML1s2BStgX7YerYfW8n6Gg0YOaQf/fv1febirHz58hnW6P/HgQMH+OSTT1iwYAFVqlRh9t9ZW+xYrVZSQ29gio8Q4lwUCrRuBVHohG9W5V00Uw9hy+4fsmrORKZMmcLEiROzdN4CBQowb948unXrRseOHbNFc/Ku8R53t84k7vYZ9BXfyfJx/w+r2cSdXwbhUKEZ9sVfP2t4Pl4/tGrVirt37zKlT2XiYyLwLVyKSp9vwyGgHFaLmcjd8wn8YFWenNuQEIXGLuvf6YMHD+jZsydTp07F1fVxhs/zICgoiNGjR+Pr68uSJUuyla5Kpbej60c/MmrsUA7uq/7c6ZVeBjZu2swXU38kpkB1XD7YhJuNMN9UKFW4+gTi6hMIgI3aCu2HYzIaMIVe4MTNm3w7vTcD+3RjxIgRL5ypYTAYCA4O5pvpP3E6xo5ovScOPeejUCpRpQkGPN07o6hkvkfS1e3UL6Jk++LxRERGY7FaGT6oD3Xq1HmhbX4ReGWj9V1cXAi6dwe9MYxpH7Uh5O71l92kDNRp1Y8fZwqiNa1bNuPIXyufr0JrLsq3PgNaz0IgW4RbLRbC1k7Ct+f0HH2QGhcfCnSbyobJnYgNuwNA4VKVeRAehcpqIE1mRVQpLLi7uz+lppcHk8lEl67d6Tn4Yw7cU5HkVRd1QP2Mf46F6+FYuB716tUjKCiITZs20bh5awYPGc6pU6cwm82Zn+Q5oXXzQ+tZiLhTeWMpTYfOqzDGyHt5eo58PBszf5pNZLKSgkVKv+ym5AgKhQKvej0pOOIP1m4/zrut27J8+fJs1zNs2DAWLFjAtm3bHom7fBaSbp/m/srR3P25F9EHV5IWfgtD+G1Sgy8R9fevRO6aR8S2mdye1oq08NuZ1tf5/UkcOnSIJUuWZLndxYoVo0qVKoSGhmb5GBDum3/TwTw4vBpjfGS2jk2HOTWRG9Pb41K1FU6Vcr5AzUc+XjS8vLzw9PFl2IztjPh5Pw4BQm7V4L1LcKz0Dkp9Lhhzn4D426ex9yuV5fKLFy9m5MiRub4YOHnyJH379mXy5MlMnz49R3mQPQoEULf1AD4bMy5X2/YiMGv2HHr07EVa2x9wbTs+S/NRtUZL4ZIVqdOsA5/P2sTp06f5/PPPMZlMmR6bW7hx4wadu3anWffh3LSrQtGOE3Es2+iJxsti1VsQp3Bj7sKlbN24nv27t7Hnr4307t37hbX3ReKV9VyCEIP5w/fTuH79Oj1796dszWbYNfzkZTeL0pXr8M2wKYz5bCSjR31CzbqNsC8/MMf1mRKjH/WqviAkXtqHXam6qB1zvuizDaxAw1G/smPGIJp+MAec/WjRczRLvxtK8tovqdB3BmHn/6Z40cK52PLcgdVqpd17HdG5F6XPN/Mz9rvJhHHsRTpNneouGQNKuRMx3L1+ge/m/kbYzU+YNWsWFStWzNa5L168SEpycuYFRXi1n8C9n7qiL1gWfCpl61xZhVKjJ1u5HPKRq9ixcxd/bN1N388XEm3SgjhGumofNT6liKyK30Mkqqt9vLCYyaDDJgjUR6WYbsSik3LrquMfAJDsI3gMXa/uAiCpgPC3bdiljLJK0ZOuNAkiYDFxwrHxRikM4YpYn9LeW/gtSVBpTCzcjLToByzYeYmL1yYxceyoLFnUP/x4JHsO/0uHb3bx8xklWyOENpjDbwGgkuXmVSsUpEXdJ/7AEuzcCzJg2CS8AkriaSN8w6EyYTatmPt155Vgzi0ZSZpaj2fzYajdAwE4ESSpAp2+JFxDpQFrmPZ9B8qXL0/VqlUzbbtCoaBv375MmDCBdeuerv73YSnhPvx8THhuaU6C2qPPe+MJWj4SO/8yOJVrjK1fKc7ePw/ASZmipclGYLPoYsV7r9QQsuFbnGt2RhdQAU1iVEbZ9GeXLjBnzaAKC++RVSlNA9Ip0jZKsL6ypud8/Fdx+vRpfpj5M5evXsPB0Tljv6NbAYqN3sVdlZq70RAUEYo5OY6gPUvoPn0/KrWGU0myvN12EpsrOV5619FI7CiNLPe4UrZWSbt9OmNbEX6NFh/OZVYruZr148rWVquVFStWcPr0acaPH5/Nq346rFYrK1euZMHSNQwYu5hz0U48LbndsM3SfGH/7UfDAQCOOZSA8p05ffIY3077nrGjR+VaO/MKBoOBDt37cjE0iUIjN2IffhnCLwMQ7BKYUW6tRRrr0pwKZGx/UDldJVdPxV4/cf7vddSs04Afp0+lTu3aeebFfPDgAXMXLGL19sMoK7TDqYgHyWotd//djUOylCfeaCt5tw/F6VC2+RZNSAcAbGxssLHJG3G+VwGv9OIyHcWLF+f40YOMGTOGKwu7MHnyZCpWrMjU3QkZZTZHSZOWxBRJjdUsm4jIKbBWMbbEmpqYsa9aQSlHWRF7ibp6LFqigwrKsTbU6TyK2bNnM3HiRPy83SAxFBsXYXIVIao5KtNk7ZDRXh+RflcosStSFVNiFHHJUnmNu3TOArLJ5YFYYdJU1UGaNGlkk4Bwg/QxJZik41TJMShMBlQJESjshE439vBqGn3wC3ZOQntTRaXSwnbS4irVLNX3IFU6UTsfibK37p4D+q7TWf39YEI/WIh9gbfxrPIuuqjLqE/+inPsQ/r2erZwzctA9159sbiXplq3MY/QRGMM0nWmiVzQNcdjM/aFJqtQ+1akZo+KRIYGMfSzSTjrFUyfOpnSpbPmcTp69Cilar5LikmBVea5NuulQVNhkt4TZUocvh0mEvLrCHaMWInKVqDy9CoilXeSXUOiuACxV0vPT6OUCjjIYlCMacK3YEiMwWpIwRLzQCwkGR20Wiv5uiB5i2+n/UDf8cvQ6vRgyLz8qw6VVo+td2HKv9WfI2u/xt3DgwchIc+kk81bsJCTl+7wwczthKZmvrqJu3SAqOPraTRiHi4BZfFyyNxqbe9dmNqfb+DMgfXc/20M7k2HYl/q8XQnAGqdDW99sIwhH/bht1/nU7x48Uzrr1GjBoULF+bo0aPUqlUr0/Jy2PiWoHj/WSQGXSDm7A5Cts3Eo3Q93Ms1BNvH478sxjRib/xD+L/b8GrQC5tSdbN1vnzkI69hsVj4888NTP7qa7wDStK0+yiaDgx4zDu3MfTR6WjUnoW4NR6EKo/CA1LDb6PW6rBz8XpqGbPZzIYNG1i6dCm1a9dm3bp1ubZgiY2NZeDAgVSqVInhk5eiyiRGPauo1PdH5n9ciZ7du2Y77+6LhNFoxNbWliI9vsGh5fPn0FYoFFRo1Im6dRsxdeaXGL+eyob1v+dOCBPCQjgiIoJvZsxhx9+HsRZvjEPLcSiUSpTJMZlX8IbhP2ObVCgUTJs2jR9++IEPPviAjz76iJjwoMwPzCOUrPEOBw8eBKB///7cWP9VjuvSeRfFlPhiX06r2YjFkIKdR8HMC2cBGldffPvM5NS8oSRFBFOkyzdYVLbsWjOThLjoHCcnzyvcv3+fMxevUbfr6Oeqx9U7gPajl1K+/TgGDvuEjz/9DIMh85XBmTNnqFAre4mbta4F8G49ivuLhmJOjstpk5+K5OvH0GeDIpSP3MPv69Zj7+otLCxfQ1ToNI4mnyzh7XfasmHj4/TutLQ0Br4/nKWrN9Pj86zFGyU/uE70qc0U6jMDl4DsK3bbFqqIf/85xJ3cTNS+xU8tp3d0p8unc+nYtRcPH2Yt52zVqlXZunVrttsEoFAqcQisgF+rTyg6YA4KBdzc8B03f/2YO79P5N6f33B34TDuLHifW+u/whAbSmC3b3DM5RjLW+u+oEyZMrlaZz7eLNy+fRtHJyfmLl1Lv3G/MODzOXj5Fsr0+zYnxZJ08wQOFZrlSbusViuhu+dTs+vnT/zdYDAwbdo0mjVrxv3791m+fDljx47NVKQsqzCbzfTr149PPvmEzz//PNcWliD0H0Mn/cJ7HbsRFRWV+QEvCd37DKLj+BXoSzz/wlIOBycX+o6aSd22Q2nVqhWrV6/OlXp/nPkTNd8bwD5jcRw/2oZjmYa5pu79OuI/d2eKFSvG/v376dy5Mze2fMuaie24dHgj5rSsUwxzAyqVGr1ez61bt2jcuDFx1w5jNqZlfuArgrSIe+h8iuZqnRpXXyr1m87phR+gVGtpN3gyOp2OvZuyH3OV1xg4cCC1Onyca1ZID7+ifDR1NVrPcjRu1pJLly49s7xSqcxRXIVNwTJ4tBpJyOLhWC25G6sbe2wtjuX+u0pz/2UsWLiEXh9Pf9nNyFMUrN6GduPXMXfNbrp165axPzk5mcbN30VZoCq9J63I0jdptVoJ3TkH31YjUTxHih6V3o4CPb/HnJbEgzXjsRhSn1jOxd2HRp1H0qtXL8LCwjKtt169euzdu5egoOczgCrVGjwrt6BE50kU7TuDgq1H4dt8GAH9fqLQoPkU6zoF71qdHqEA5gYsZjPG+HCGDcvPa5uPnMFsNtN3wGB6fzyV9yfMp4B/1ucb8Wf+wrl6+zyjNUYcXoWtXxk8Cj1ulDp58iQtWrQgMDCQXbt28dFHH+WqeI/VauWjjz6iTZs2eZaCokipStRv0493WrTMSB/1KuHYsWMExxgoUr1Vnp2jVMWa7Nq1i8OHD/Pdd9/l6D7cuHGDxo0bU79JS/YePoPLoGXoq7bPg9a+fvhP0GL/H0qlkpo1a/JnzZoEBQWxZcsWbi7qQGD5erzdYQgn4qX4ontpkkv8fqzEhVZoBIVMtZ1zxr5AW4kOaidT4Swro1ptipDoqiXLNeLatWsUKVKEcaNHcvLEPBp3HML5hwLN1CJTn5XLYsupuhrvIuiM8Sh0aswpUtzlziifjO1KMpqqty6dIiJ9KPLuVx5bkBolxRCpDCkoLGbUaYkojMkYw66jc/amiOya3UQl2ggZHS3OKG3HyyiyBWQUzFZ+ktra1hAlBrdAju9ZRbl2XfAu2wgbm2NZyn33orB6ze8oHfwoU6M5iMqwvrJ7PPWG9FkUtRXud3NPyRvpZSPd+2CZOm+iUUnJWq1xDSjHmCkziH5wm0W/zKFUqSd7A1Vi3sIKdtI9/keWY9Iip0/LhJhsAyrgUL4J4WsnsbzLlIzJdX1P6b1XiY+qoI10XJLs+Z2Nl67RkvyQxCuH0Dh7o/GVaL1W2TnNVgXkh2PmCYKDg4lNhQvxNjiKdGUv2XNLEZ9bolH4f+k9If5Edf9iRhl1yBlhn2shAAxiXIpGpFwrDBLl3ujsL5QV3680lwAA9DHCQshk75lRViHGjCjThPABdYIQ62NykKhkJjHWUmkQypjFY2zE2JmTx6XvRZMcDd5VCT27iStXrlCqVCk6du5CTPG23CrRhWO3ZaEEcSFCG8T30CrGUymNqcRfP47epxjasoIidW23R9kC9xKF91veH0aJ/Vojd+H+BeqFOPAdd0LxbPEhSUfX8GDR+wR0+gKteC2nzxwG4KizH2jKYF97NPVbdmTL6sXPpMh6eXkxf/58Jk+ezKJFUn6+9Fx19hqhYRqRKWAIvZFRJj02ErVOvH5h/FGaUtFqhP5IJT6r9PgjtRgbaxN1WzxGuucmkWqfVLAiACW9hOdV1FYoo1FIH3b6++cbvokkr7wRUcnHm4ETJ06gd/WnYuMehMjiJeXfZHSaNPbdSJDmRQmX9uPX/2eUOjuK2Qvfv9kqjbX/Jkrvt1KeN1C2bZYZiq7KDP9JkcGkpSZSsN9spreU3vGQkBA+/fRTnJ2dWb169SN5dnMLRqORESNGUK5cuUeEXExW6aYM2iQ5So7cDc7YTu+DAXQpInNJFlJz4t/DGduBdWviXuU9Qn6Zyp9//kmHDh1y9TqeBxaLhX4jRkH3BWx6kIImTQpvsyplaWJkY5ZSFiIkz7ywNTwwY7tTAaGMUZaiUK1W8/PPP/PLL7/QrVs35s+f/0h6l6fhwoULjB43ibCHUXT97BdWXhPutzrorKxN0phjVUnze4Ns/EyPpQdo7SW8g6v+k6uu7OM/57n8f/j7+zNs2DCOHtxLuYK2zBn9Hlc3/YDF/AIUo2RWtUED+nPl1N85qkaTFoeNMu9VR+UwxoSidfHJvGAO4NFqFJG7fyE5PoraXcZw5fLlV4aekZKSwvc/zqL9kCl5dg5P30J0/2g6XT/5iT6DPqBnrz6cPn2atLTc82y71O2OvmBpbn/bgshd87A+x/tuTo4nYsfPeLz7bLEss/nVs4D+12G1WundfzDVe3/7spuSbVhMBkwpiZkXfAIKd/iSrv2GkpKSwplzF/Gsnz3FvMSb/+CSy5Q55zL18ajVibtrJpAa+2TvpHOJmngPXEar7oM4f/78M+urWLEiSqWSZcuW5Wo7XwQWLFjA0qVLX3Yz8vEfxqQp39Ks15Npp8+C1WLBkpKA2i53vfEgjHXhW6bj233qI17Ry5cv07NnTyZOnMi8efPyZGF5//592rVrR9OmTV8II0ChUDBg+g7mz5+feeEXiA8++ABT2VaoHXP/Hj8JCoWC999/n169etG4cWMuX778zPI7duxg+PDhlGsygMFTN+Lsnjfz5Ncdr80aWqFQMHbMZ3z04QjGT/yCXwcWYcqi3TQOCMgoc9jGOWP7VJKwrjbIkvdteihN0HuoJSvZqgfSpHqgv2StUAdIAkEqlYpAfx8igq9T10egWpxPkdbuepm1LlzWqXXwgL+sCVgdbEmUeYoiZUqiu2WM32aegjVbbp1Jls35r8VL1j+5cprCYkJhtaAwGzHbOGNGAQ4exMg8kz7Wxxe43nq5N1c6p5ytkiDLCVrCxQlwwqPX18z97kP8BszBd+QGxo7/go1//P5Y/S8a3/8wkyotB5GisCVRlhfSJLP0f1xYLmgk7L+TKL0P8bLjAmzlZaXznIrWgrIIVUdtQn9pPdPmruLWxROUKF6MyZPGERwSSujtCwQUK0d1V+mdKilT0/w3zjlj+2qCZLmzRApeC9fyTXCq1JKYo2u4M7UV8Y0H4lCusTBoKoX2qmwkwR9LXHjGdroXKDX0OmFrxuPT5jM0WlusMu+5/CFfsS/IjVOnsVqtLzyP1OuMc+fOYe9ZGNcCr45n/2kwpiYRefkgiQ+DSElOQK23F7zmYr9lTktCpdbiUaYerkWfrazqWKAo+kI12Lx5MwWLlkOZTWprWmQQOo+AzAtmE/aFK6OyceTetpno3XzxqNUJnWuBR8roXQvg0X02Q0d8xOEDe59al0KhYP78+VSoUAGNRvMIFfhVxpUjG7G1tcXFJfcn9/l4M2C1WklISMTBOftK9IaHt9H7lsz9NpmMhCz7GJ+Ok1DppXH28uXLjBgxgjVr1uDp6fmMGnKOffv28e233zJ79mxKlsz9a3sa7JzccHFxyWCJvGxs2bKFc+fOoe8z6YWfu0WLFly9epWIiIgn/n7q1Cm+/fZbHBwc2LlzJyv++e+Eub2KeG0Wl+mwsbHhh++n0bb1u/Tu25nhXy3Dr1CJF3LuYe8P5MtpMyjcf1G2JuAqlQpDWjJWixmF8sUI32jc/DBEh+RZ/R5l6qL6exUJF/biUO5tEq84sGfPHho3bpxn58wMRqORPzdto+83G1/oeas1bE21hq0BCLpzg2593qdY0aIs/nY4Xyzcx/N8hgqVGte6PXCs3JKofUuI2rMQp2ptcKzyLmr7J8eJWC0WUu9fJuboWoxRwfh2/Rbt/02g/x8qnQ0qt0Bu3779SlGc/+tYuvJ3nCp3YHOoMJDZ2wo0rfhEyaKkEOn1yvCbAKhE2qRduGSBNflWFsqahXrUqQLVKNVNeFa6OBlFPk0wIFhE2mW6nL05XU1bRuc3a2xJibhHyOkdGKIf4FyvJ84ta/BOqQoZfdylFOH/crZWUmLD2bfsCx78NZ/Ael2wdS+IRQxBAEgoIOSvO3v3Nik+VZmzaDGR3tXhtCB+Y/atIN0csX6rTmhXutq3IikGhUKJSq3FJFLfEk3CfUun3F0SjUGXYyXPanqMcroIg1Yv1NethEDxNVu9xZKV+LN6exKvHOLuxqk41eiAh1ao//6DO2IZNcYCtRg9cQrTJk/gaVAqlZw+fZphw4Zx5swZoowOlKhYG09x8d3DR1iYH9ZJY9S1IIEapkkQxIPM4rmtCtnYIG5rE4WcmCYx1UyqSHlWmqWJUbmKgoJsY6/0fY9OmvQqycB66uA2Lu1YxF9b/njqNeUjH5nh2LFjOAZUJjRFeE+dZIr36fsA9sZJ21aL0A+lhd1E41YQixg+FGMQvtNomRHbVSaRb9JIBtTI+FipPpnona+3Pxdm96FQ/W6Ma1ub9DxPV69eZcSIEaxevTpPFpbbtm1j7ty5FClShA0bNrDtopFzxwVq/N/hUr946J4kFGZ//2zGtk6WysIkU5KXU0Mz9slos+seSvTS8T16sHPnzpe+uIyMjKTf+yOo/tVhUm6dzNivMkrXYpGFj6kM0vXIU3qkhwkA3L13NWM7wlUIc3DVSe/auhOSUGbH6k82ll2+fJmRn43FqnWk3Duf4lO4DHOPGFhyVoqXV4pjkULGELPIKNgKmWNILaP5pqgDM7bTQ+2Ub0h80X+eFvs01K1bl1+XLOSnz3ty/861F3LOOnXqULpoAS5t/AFrNvMFuru6PRe1MSuQx9DpvIqQcuf0M0o/PzxajSRy+2ysZiMNu3xKr779SUpKyvzAPMKVK1coULQ8ao0288J5BB//Ygz9eg3ORepgNqbyzfBWxEWFZ35gJlDbueDV+lMChv2KQqXmwYpPuTuzK/eXjODhlh+I2DGbiD0LCV7xKXd+7knM4VU4VnoH/yGLM11YpsOlcmumTJvx3G3NhwCr1cqhY//gUyLz/IkvA4aEKG5tmMaDQ6txr9OVIu8vwPmttmicvZ9qPLNx9sK7yWB8W40k+O/lhJ3a9tT6FUol90MeoCqTfXqrQqPDGP9kC3Ruwb5UXfyHLyM1+BL3fp+E5f8E2/TNPmHN4avMmPXzM+vRaDTMnz+fdu3a0ee9Buxe/QM3zh3Jy6bnCHExkexeN5cN61fh7p7z3Mf5yMehQ4fwLl0nR8daLRYU6twdo2//ORXnYtXxqt42Y19KUgLDhg3jt99+y/WFpdFoZMqUKWzZsoXVq1cza9asLOX4zQu0bNmSbdue3g+/CMTExNCtWzcqfvw7Oge3l9oWOW7cuEGfgUNpPfAr+o+ehU/hfHXs3MJr57mUo369evy9ZycdOnWjfO0WNGo3EK1eENupIY6dsbKA8jlXYjO214RLnU0TN2lR5qCRkrmGxsYSEPAoNev7ad8ybvwkrv8xhsGDJ2dMwuTCL+G20sfloDGhVIBCYRWojKLn0izLv4nMm7nzgpBI3OzqK/0s64itMaHScTLLir54LdL2/YpJ74RCrUUfUIG08C85HJmKUitQJEuLhjGVbN4ot2rLg86DZJRfB1mZak7Svbrh6otTlZYknP6LDY364tzhaxo1bsrO7duyFFSd25j6/Qw8ar/PHfFZ2MnabZRRi5NltNfzccInIk/gnBp6M2Nb4xmYsT3IX6qjtKPMwiWzM0SlKQElpRv3xN23EH/OHcO22cNw8ipEyUp1KVKxPjZiguh3ZaIudV2ld+Cuh6S6t+uhNOG1xDxApVThWq0NLjU7YhVj4gyR9wBQGNNwrtwSjYsP1vR3ymTAKqMIyfM1WdQSrfpaTDwUrs/d7bNISEjAwUESD8pHzrB161bcS9Z7JWnGkZcP8fDsLgo2GYydd5FHhAmyAp17QYp3+JzgAyuJOLUVj6rvPrFcfHwcXq6+EH//ib8/DY7FahB7YS8uRd7K1nHZhUKlwbvDBFKPr+fe2i/wHTAvw/OpUChw6jmLDWuHoFIq+WD40KfWo1QqM3JebqpShdbtOnH1333U7DRapATnTS6/rMJisbDwq/dZtmQBvr6+mR+Qj3w8A/v27aP68AE5OlbrEUDC+V250g6r1UrMoZVY7l+kwidSSgqLxcKib4fxzZdf4u3t/Ywasg6LxcLZs2fZsGEDx48fp2/fvowfP/6l9+9qtRpvb2/u37//UvJexsTE0LlzZ6ZOncrXtx/3nhqT4kiLj8CUHI9RzA2vVGmw8wxE75I7z+ZJCA8P57PPPqP3pzNx935184H+V/FaLy4BChcuzD/HD/Pbb6v4YWRbKtRuSa1mnXF0fXri3Kzg2rmjLJ01iwkTJrBgwQJatmyJr68vWq2Wqd9+xaD3hzK2SyU6jfiGstUaAs+2Wmm1GkxxD9G6507eyf+HysYR6/9Z3h2rtCL6yBrcG/bJk3MCuNTtyb3ZPfBs2Afbau0JMNylR+9+LF284IVbx0PCHlLtCdLjLwslKtai7eApnNm+kCG92nHk2Ak+6/wh9Vp0o16b/nj7Fnqu+hVqLRpnLzTOwruuyIV0PdbSzdm9ezfvvffec9f1JsNqtTLth5/oNPpXbOxMlHcWqF8Xrgqqr05hEuXVmk4PFY1FmkjBwGTwlGJ3VKKyXjo9J8lb+E2TJNAmjTKDVjoNyeAgGNDsHgjCNEkFKmC1mLm/ZxFYzRT8cA2FAgS6pq9Ia7snGuNOPpCMWHrx/fonQqADVShZEYBzkYG4Fq5J0I8dsCn6FnqvIlQoKkwuzoSEYFEoSUlNQ5kURYqoWGsbJtGczDqBDprmJvyWropstHfDrlZn7s7uiXObMSgUCraJKt5emkcZI/6OMuXwGMFwohSV/VLjBZGxdWZnACo7SsNhC3fhnocZhD7qnzrdsElJIHrvAjwa9BHac/8SCiCuy0Km/zoYtUrF0CGDyQx2dnbs2r6Z8ePHs3/uYK5cucqIqWtw9xasU4oCwuJuS6hA88qg9sY8yKhDaRL6cpNeuL50tViTjUD9alW9SkbZUk4CdTjeIDy7ZFF92EeMF29WWk27du3o2K4FZcu+Ov1jPv6bCAkJwaCwpaynEhCM8UcfShTQ3UESU0eZJCn4W2ydAdA4e5N65wyKpGgUCgVXkoR+ylsrfduhydKCTa5nUcTFWdqfco+jSz8nsHwDPpqxCJVK+A46VHdhwYIFtH+3MXXq5My7KkdaWhrbt29nwYIFaN2LUrJqE7pN/ISbyRqm7ErirowG/M9tyYimkKmNamTK8Ca9pL5v1knzRl2CRJ01ifvTQxsAtDK2XGGdtD13fzxqv5ps2rKNYVnon3ITcXFxtG3fmcY9xnExpTC3rglsOaudK4boB0QeW0dy+B3silVHobXBLlDotwyJ0UT+uwNDdAh2hStTsGQNNHbCfTHJtFNsI25nbK/ZIxjRU4tJz3R0ySeHmV2+fJneA4ZQv1Uf9phLgijKG3T+QEYZ+yRJhNJoL4wD8vstp/AqZPdeTpFVyHRMbEVarM7Gjrt37xIYGPjEtr0ueG1psXKo1Wp69+7F6X+O8k7N4kwZ3IRFXw1kzx+/kJIUn3kF/4dtK3/iu4/aMWDAAAoUKEBUVBTvvfceI0eOJDU1FZVKxeKFv3Dx/GnUkef5elAjbpzc+cw6323WmNTgCzm9xEyhUChQ27sSe0lStHWu0YGoQyvz7JwAansXbItWI/7CHgDe7jwCfYGKNGnWgps3b2ZydO5CqXj1XvdSVerTuNtnjBn/JVUqVSQmKpLOLWqxdf5oju/KneS/uQl1QBWOHj36spvxn8e+ffsILPVWhpf6VYDZkMLd38ai9y2JV7vPc4WaplCq8GvzGQ+2/fSEX60oZKJj2YFSo8OpUnOi9y7KvHAuwa3xIFJDrpFw7VFKq0KhwKX3XFZv2Mlff23PUl0qlYpvv/2WbZv/ZMG8WayaPgJDWkrmB+YBhg0bRrt27Rg5cuRLOX8+Xi/MnDWHhu8NyvHxCqUSfYESpAQ/O1f002Axm7i0fCwnV31N3YE/ULn9SFQqaZFx48YNtm3bxogRI3LcxnScPXuWdu3acePGDRYtWkTbQZMpWbnuS/dW/j+KV23Mjl1PFx/LCxw9epR27dpRrUV/AkoIsfRWq5X4Gye4s2wkD/6ahUPxGgQMX45H8+G4N+qPS432uNRoj0fjgfh1+4ZCQ5dgG1iRG5t+JPz0jlxr2/APRzJw/EKqNWyba3VmFTWbdeP331++uGVe47X3XMqhUqno2rULXbt2ISwsjL179/LL9D5YVTa06zeGsRUkvvU6yUiMrYw++ce6FexbO58a7YYRXXU0uwHKNua9iv05vnkBzs4u3Lt3Fy8vL1xdXZn+/VQG9O9Dnz598E0+w8iRI/njosTBdNJZUCusqNVqlDq7jLyb8hxN1uTYjG2LaM0nSbbPVrJ0qWR0WatIhwSw+JbGo81oov6agdvbAwHBsqArWJaHfy/FsXJLbjoJ1pniMkqnUZYbMVkWUF9ElhcyQkYtjjRI2+62gjdGU6s9d/ctR+tfgflmV6j1Mcmetaleqy5zZ/9E586deBFwtFFSSnZtD5KlAWfBfWmS6yX7Km7EiqIA8ZEZ+6wyifTitlLhny9JFlmVXvKYfFJcOo9O9i6tChHO2a9YOT794U9++GowR48eYdq0aXTr2oWevfux/uczvNvjY9zdJFqih4wuW8ZJqjs4KTBjO13Q5HqydL2GWFlsp1ydUxYgb7GR3iVk1lSrKBCj9y7Cvt++Jh/Ph/DwcDx8C7/sZmTAbEwj6PdJeNTpik7MHZlb0Lr4oHP3J/HWKRC9mgCGiHtY1TlbXAK41u/NnR874tZ4YC60MnMoFAoKdJjA3YXvY1/s0eTnCpWarp/MoFvXysydMztbyrCNGzcmLPwh29bOoUXPT3O72c/Evwe2olarX0hqhHy8GUhJTaWA05PF5LIK1xrvEXV4Dbb+2fOkmw2p/DuzFz7V21BzwOPjVFJCHMMmDGPOnDkolTk3Np89e5aJk7/GqnZg3rx5UnjU7dhnty81CWNMCIaokIzxVanRYedZCE0exiI6uXkTn2olLCws12jAz8KSJUs4cOAAf/zxB1suC/NGk8lI8PqvUOrt8G0zCq2z0A7TMxbiCqUKh9L18XLx4N6+pURc+BuXt9rluF1Wq5XExEQSEpNwcn0xqVD+H3pbe4yxxswL/sfxRi0u5fD29qZ79+50796dw4cP89W300hKs1Dl7S5UrN0MeHTSExsexMHFo7h18R+6f/kHvsUr81CWt1uj1VO3wwc4ewXw5ZdfMnfu3IzfSpYsycGDB1m+fDnvvvsuPmUb0ajjcLQ6G07u34ydrY4XAYeyjQj77TMshhSUWiH21PPdT7j3cy9sClUG/7yhqToUqkxa2KOKirZF3+KjxWf4/PM2HD12nJ9m/pgn55bDYDBgsViea1DJK2j1Noz4ajmR/67ivffeY+HChfy2Yil/bd/O9z98jINHAOVrtaBM1Xq8TKOoQqlEo7MhJSUFGxubl9eQ/zhCwx6i0z8fNT+3YDGbuL5rMR6N38e+UCXyYtjzqNeTkM3ToaUUhxV/5i8UNjn33Maf3Yldybq50bwsQ6WzxTagAsl3zuBY8NH4ITsHJ75bf4FvP2pGYGBgRoxlVtC9W1dW/NaayLBgPHzyJjRCjuN/LefU5rk0btyYX375Jc/Pl483B5cuXaFWhwDkmobBadKgpZQZy1UGyVtvcZIWPfqC5bBaVpJw8xQ3RKHDa27SdyFX1U9MDxswm7BbNYi+3XtToXojOteQUsWtO5GG1Wrlt9mfM2nSJIoVK5ajawsNDWXUmHFEJZhp3mMCHj7+7LqngHuCEXrOHek6jfFCrlxTajKxR1aTeHk/Sr09er9SaJy9M9TcDfGRxGyejjk1CedyjfAqWhmVqLBtlV1nmqN0f6wiC0udJldUdc7YLqiXHBiu4ra7pzfBwcF5vrj8448/2Lp1K+vXr0epVPLDzVisJiNBCwbjVKcbjpXeobGX9GzcZHTnh7L3xGAvaUscsnXGLfAtgn8ZhNbrAvYFBUdQqkwLQCPqRdhe3p2xb2qUpMKdbCrMn9sPYPpzEzENPmPyaeGZOdyR4nuN7pISfoZ6OqAUFdotKonNo02UaMpW2f5UZ5mDRyPNkYJEg394ioo3QS7tjV1cylGnTh12bKtDREQECxctYc6YjlCqOQ7l30Gtt+PquRP8vWgMri7OtPrwZ3yLV35qXeXqtuHe5lMsW7aM3r2lxOBarZYBAwbQpUsXpn03nV/Hd+CtVoPZtWIa+/fuomu37ijK98/T61TZOWPv4IAxNhydKESj1Nrg3WESob9PwFp+Q57QOZRqDQrV4xQ7rY0dfadt5ZtORbG3s+Hrr/PWI2ZjYyOkI3gFF5fpGDZsGLVr16Zz585MmjSJFu+8Q4t33uHAwYNs2LiZn9bPpc+ombi457318WnwK16JCxcu8NZbeSum8rrCaDTy+x+b6DtlHfZijGAVZ2HwuijOyFJdpImUNlFQRTWLA5XSSVD3VaVKUvtmMRWFxU4ctsS4j1RnQahAFy95rY1izIo6JRaA2w+CsGv8Pp6Nhf7HQfZ5BKenRLEXBtr7MUIcijbybkaZtHTxMSchNursQ6GMQowRNbn4onTxxQKU1cWgs7HnQrQ9SVcO41qrEwqTEaVZsNTJ5fbTY1oUouy+VYwZVjp7YzUZiT64glpT9qHS6nEX41nSRbpOJQgTKleNNMSlx2yaUkSpeHHCoBPVo/+Nkzz1avHcgwsK7XJRCzFOO0weODcaSPj6L7EZtlQoe1+g732XJEwqeoxfyYhPP6FV07qMGzcOjSZzsR6FQsEXEz7nxx8n03zIbLQ6PVWdhEm1p5iKZJ9BYkxoQoQ42fR3gtKCt3l0ISEWU6WUTATpjzPBKPTtaaEXufr3b+zbs5OCBfN+IZuPNwcPHz5Ea+uERqt7RMguJ/B5bzz3Fg/Dpvu3aByePR1PCbpI6Jpx9O7UgwrVH2deWK1Wfp87kSZ1q1G7du1styUyMpJvpn3PP/9epEWvzwgsUSHTYwxR94nYMRtT3ENc6vUioNlQ1HrZgkUmuGgt/zbmtCRiz+7k2upJ+NRoh0vx6tlu57PQsN0gpkwZx+bNm3O1XjmmTZvGgwcPWLNmTYYR32q1ErRgMM41OuBQvkmO61ao1Pj2m0XIT10JfPcjdC7ZE5lLS03m4f3bFClXk8SC+bHleY03bnGZnJxMcvKThU0UCgWDBvanR/eubN+5i/0HfyIkJJhDN2+SajRhafgRZz1rcva2GIQuj+GTUQh71ujFnFkfPbK4TIe9vT1TJn9B925daPB2UzQuBWjYbTiWkp2xLVoNU4IYRGyVyZfKzqMQxThUsvNJJEkwy3I7yWMM09VnDWYrRmMqmnRqp0KJTWAFbPzLs/7PRXg2GYzBKnV6vnqpdhsZpfOWTP1WI1uPeshyDMkYmyiUShRqLYZkKcY1KNkFsKPXsrusm/g21aq9Rdu2bcgr2Dm6cD/oNt6iSMnFRKmB8YnSfUuQCWdYRc+KTrRCAqSppftz5YZUViuzwhocJbXhGTelheBYWf7kGiJFd1eY5LlWnIgBAug1/ld+/XUS586dY9iwYdSvV4/69epx9uxZRo/+CB8fH4oWLYqmYG0KlRByDpZylu59KXGxIs/t9LVMgG9DpPTppz2QUvVYZNY6eWC61Uai+ZpUNtlOtZMPCUeOHCGwfF1Uag285JxXifevkHr/El7vfZ7n57IpVInQ25cJLPMW0Yd+w7lG+xwbs+LP7cShQlNU2pzTanMKnXcR1M7epARdwMa/3GO/u/sEMvjbP9g3732aNm3K33///YRaHkfNmjXR6/Uc2/U79Vs9PnY8L6xWKye3LeLMzl/ZsH5t/sIyH7mOuLg4HFxyh26osnHAt9OX3FvxGQ7FqmNbpRU2/uVQinlvLYYU4k5uIv70NhQqDX59Z1Gv3pNF8PZt+pUKxQsw6tOPs9WGS5cuMWvOfC5dvUWj9kMZ9t5YIPNeO/rQb0QdWIZX2zHYFs8ag0Gls8Ot+nt4Fi7PgyPriDi/F59mQ7DxCMj84CzA3TvvvverV68yZswYatSowcyZMx/p18PWT8a+ZB2cKrfAYno+XoxKb49P7S5Ent2JbzaFKP/9ewNOTo406vwxyx5mXj4fz4c3ZnF548YNFixcwsKFC6jVsEVG52CRpdeQz5eNVmEwdi3ZCPu3RlCgXGMUSiXJsZm/ld4Fi2A0Cx6K/7daR0REsGzFKlb/uY1OE1Zx0La8dM64vH/jHQLKkHJyPbbFH40Zcn9nBCGL3sc2oAJUyV2LWWZQaXSMmb2FPh0qcKd+PVxcnpzsNjMEBwezeOkKDhw6QprBRLkyJfH29qJD21aUK1eOfr17MG/d9ozF5asMWztHfv31V7799ltGjBjBTz/9hEajoWLFiuzcuZOgoCCCgoJY/+cmNiycjLd/ceq37oO7d0H0NnZ52jZH78IcPnqc6tVf7HvyumDTpk34l8zduMacwJyWzP09iwgct/OFCFBoXH2JCQ8isMxbxBxfj2/3qcTsX5ajuuJObsK746RcbmHW4VCuMcnXjz1xcQmCoXLNmjW0bt2aOXPmZDmmcf78+bRu1xHfwBLYF82+h+VpsFqt7F/5NRUC7Jl/9PBLSQWVj9cfFy5cwMUz99I66DwLUWTwAhJunCDx4j6ids7FnBKPysYBS1oKDhWa4tvzezTP8GLt3LmTkCtHmfvnuiyf9+LFi0yZMoUkqy31W/ejce+ymCyZ95FWi4WQFZ+i1NkRMGxZBlsiO1Dr7PBv1IeUyGDu7ZiLR432OBV7dVlCly9fZsSIESxfvvyxNEYbN27EnBCNWy721fYBZQnZv4wCDbJnmL19dh/ubh5i6qd85DVe67ucnJzMtGnT+PvvvylUqBBFa3Vh/tZPUKnVGR1FqkywxiRzFkbLhGlCIrKfg8ze1YsTJ048InV99epV2r7XkdJv96TDxHUCbeDBi/VcqP0rE7t/Ca5W6yMTSoVKTeHhy7k9uydByuH4V3o7185pMRqwyDytT4Lexo72/UezceMm+vbtk+1zzJ8/ny8mf807Q36g7qCuqO3dCLt1njsx4Yya+B2xD4P48ftvuXPhEPU6fPBKxl3+PxQKBZ9//jkrVqygRYsWrFq1Cg8PwSrs7++Pv78/derUwWg0cu3aNWbMmkNoaBhpZiXNu36If5HSedKu4m81Z+20roz8+MM8qf91xoMHDzhx5jINmnzF3US4JeaLvZYo0C+Nosdb+yAi45j0fKPW/6OWWzSSlzk9vUh6TlxdovC9mYwO4rFSH5aeviLk1HZc3vkQRxch9tNHpJbeuHkxo6zVIxCAoHuCd1shts/sL9HCrGJuMq3oUbCxF86VZhY832lJQseqdQ/g+sNwlHEadMnR2J9cQ4xShVWtRS3Gr8jbmXGdorXbKjIGLMZUTAkRqB3dKS8Ki/mLaTX+jRXTtYgTiAoy4TGDrUgvDRJYHOkxT+7iKBhikI0FYtqmi3ECq6CUo9AGtY1Aj7UvWZv7x9bi1nQISrFvU8UJ1ONZNwSqqlYVS5uRi5n5cSvatGmTpRxzdnZ2bPpzLW3btqXSh7VQqlQZgnJjK0iU4S2eHQC4dUbwirqphbanU1/NMqPp+/UcmThxIjWLO/P553nvoc7Hm4vbt2/jW7gMVh7Nl30rSRKosMhiA+VQyNKSyHMvWx3csHP3x0EpTVfTYxIBxpSQ5lBKhbS99kQMkWH3+f2nH9j51+YsjflWq5X9+w8wfvJUun34HW5ieiCzlUe0Du4lSKynv2OkPitoSX/silXHuWYn2hcUruF8otRuk2y65y9jeTm4S06GHZHCuK0CirgFcH3lGJwLVczoZwCMDsI8QCGGNgCY7CRBILmwolq8Jw8fBBEaKsuDngtIX1iuXr0aT0+JrTV5ZyKx4UH8OX06hUduzcilXsdNuFd2aulGHImV7o+jjB3nI4vFrOQlecMvRruh8y5KckoitrJnmh5GkeYgaRnoY6TUL7du3cSvbC3uqXzBLN0Hs2wctRXTfIEUPgKgEEUP5alIDPZSm0y2koCVLi4kYztVRud2FZ93rEa20HiN8douLv/6azsjPxtDtUbt6T1uKfZOLlisCqwIi8j0QThMloPITfaxx8k+ztRgKeccMul8paP0clllyed/vGEhpVIfli1blrG4NBqNVH2rOu/POUq0Q2FuiHNBY4qUS0dOhVXKA91lKmIWcfJlsZcpi8nyJamSpHZY5RYaMb5I7RGAk6MDlvBbOJSoRUqiVN7fyZECI1dyZO4QrkTF4V6zA/8kSvehtZtEafDUSm2VL4/l1Nk7yUK7Yv/ZgG2Ralj/b4F5ICxOdpwj2grt+WBo5WwvLid//S2zl63D9cON/OPgzj8PgbAIwAecfSjavSWOUSEM+GgAFUsEcuf6eQoWr0i8zLCgt5UmbmnRUoekTkjPEyh5U/WRd6SysoBy+cRYkyipy1pEpVWA7zUS13+An3A/t0VL7+CpK9J1JRtjhY1CrZgwIYBu3bqxZMmSx+hsGo2GsmXLsnjBPEBQspszfwGrZp0lflBf6tatS8mSJSnqYGDzylm06fkhY5wkhdjVWsmTe/WhLEgd2WhqkZ73hlg7IhVu/Pnnn/n5LrOJyMhIAoo92dv1ImG1mEm8ehiP1qNedlNyBKUub73zmUHj7IU5KRar+dk0L7VaQ4teY5g0aRKLFy/OUt329vb07duXH2f0plKncbj5P554PKuwWq1MnDgRGxub/IVlPvIcJ0+e5O3erV52MwAwGtJY+t0IVi9fjF6fNfp8rz79iU6yMHjSIvQ2dtmKG31w4DfUDm4418w99XuVVo9buUaEHV6DR+Ocp3cB2Ll2Dt9++20utQyCgoIYMGAAGzdufGRhCUK/s/Xnj2kxZDr/5kHogt6zEKkP72BbKPPY13SE37lEm2kHMmXpmA2pJEcGkxgfhdViRufig51X4QzDYj6yhlfffZNNpKam0qlLNyZM+Y6B4xfQstsI7J1yRrN8HtgUr8WOHTuIjBQXJ0YjFWo1xcXL/4W3RQ6NXznMRiOG0GtP/F1t40Cx4UuJ+XcbkcfWP/f5rFYrkXsW4lK7S6Zl7Vy88C5agZMnT2ap7mvXrtGhU1fmrd9DwTG7UT8j6N/GzRe//os4f+ECJ7fMz3L7XxXUq1ePGTNm0L9/f1JSnp0Pr2LFiiycP5cDe3dgZ2fHjBkzaNCgAf8e2s6quZMZ1qYsUQ9DnllHZnDs8BWdOnXKeL/zkTVs3LKNwJJVMi+Yx0i6ew67ErVeaD42Y8wDNLLY3ZzCYkzNECx6mdAHlCf1/uVMy5Wu1oBLly5x+XLmZdPRvXt3Jn7Yh7N/Ticq6GqO23h6z+8ZDIh85CMvkZqaSlhYGM5unpkXzmMkxsfy3cfv8cW4MRQpUiTzA4DPx09EYe9L71Ezsh1akhodwv29i/F4N/dzxXpUbUVabBhxVw7nuI4rZ4+itSTSuHHjXGlTamoqffr0Ye7cuY8tLAFObl2EX8m38C6cN8I5es9ADNFZn8NYzEacnJxEnYMnIy3uITe3/cz1Dd8Te+sUCpUGjZ0zSSHXuLPpe26s+YL468dyo/lvBF4rz2VCQgINGjWlUuOujBjeC4A02RxEPo26JVIVtt6XvGdqWV5Ik4y6oZZZp60ytzhRwdJ+maR++gvcccQ0Jn35FXNmzwRAowQPvYVrSbI2yageVrlAkNwfKE+uLXo3FQapElW6WuP/tVsj82KmiwJptTZoXHwwHZyPa+O+hCRKVJTbYrsVCgXefWZyf+lHxF47jnvjQWg9AjibINHyTDLaVaTkBCM2SfLSWZJiiDn6O3q/0qjFnEaIdDN4NH/njutCW00lm/Dvv6epVq0az8LNmzdp2PxddE0+wWVgC9LSklDI7oNVK0lA30sSz6l3p2jLkfw9/0NKBT+kezFpMfr9del+W2SKlcoMD6Tsd5m8tEL2bshl1eUURo3Mq20IvZ6x/XNE+rsk3UtVmszLmSS1L9mkBPwp885w2rVrx8qVK3F3f7aCnqOjI926daNbt26EhYWxYsUK6tevz4EDB/hpdCfGjh1Ljx49SDVL38BRreSNPxwl854bJe94WnwUqPW0HL2CLj16s2fHtme2Ix8SDh0+So/RfdkdLXyPgTbC93zlhvBe2McIfZBVIZPa9xOss453hIHNIqqHWmV9R7KrIPqgThUEs8wiwyJdlEkte69S3AKID72JY9lGqG0dsRVfv1Txm7a4SvRNZcRdoT5RAEwh9hdKGR3LLHr1TYkCCyPVW5CQdxSVWo0xwiQg9doRrF2/INSowGjjTLxvZbh+DIXJgMnGRbxuGVVf7OtUxpRHzpni4I1S7wAWC6Fijl1PkXXilcE+EfZflTFTXERWhUK8NxrRon4vRvg+7RwkI2Q6VbaYvfDe68SuuZyD1P9HuxbAeOMEirL1hbaLlGRVqLAYnKWXVMXfHfgdU76ZxuqVWY8xbdOmDba2tsycOZFeo0dTr1a9jN96iP/3UzUE4ESwwLa4ZS8wKaq4GYiPieT8vlXM3b+bfOQjrxEaGkpgYCCdqj9uzP/+tsRaMsnGZotszJTTPrFKY3k6W8ySJs15RpaUxleVjArbsboLZrOZLl0GMXnCaFq0aJ6lto8dP4lbERaa9RjFvQQZ1VJWZvktaZwkRWqfKi2B4N8n4dZkMJW9pYWWi1aYG5SxkyZIt2T9kVk2xZNfQwMXaQG0N1AwRHoO/IXg71rjWlT425yuoC2fM8qYbxeSpe0Flez4efT3rFmz5skXnwN88803dO3alYoVK2bsW3o4FoCIB/fY//dmAj9ew7qQVJxtJY/fGVEI0kNGi7VVSttOsv3hRmkskItGWtRaLIhMsUfmzEIh+VhnLCH0zcHLRpJq1ZEq3haFbB6a6lyAuPN7iD62Ds+OX2ATIFCU1aIh1B5wiQ3DGBtO3MZvSDq3k8C3+5LsJTG+VKmSUKVJL+UKb+QnzdH61BHot/9oHdglE1d8XfFaeC6Tk5OZO+8X3m72Lq36j6dOy14vu0kAVKjdgoOHjwJCKpKEqFAiHtx9qW1SKBS4Nf8EizGN5LBbTy+nUuPXbzb2ZRpwf+VnBC/5gLSEqKeWfxJijq4l8fIBPFt8kOVjbCq25JfFyzAan043u3btGjXqNkDfdgou9Xpmy/tSpGZrbJ08ObLi5YmBPA+KVWrA119/TceOHbl3716m5dPh7e3NqFGj2L9/Py1btuTKlSsEBQXRpUsX4mIiMq/gCShasxX//HOKZSt+y9HxbxqSkpIwmECre/EKp/+PtNDr6APKZ14wN88ZFYytt+BFcChei+SQK5kc8WpDyBWcNd5cQPEK3LgdjMlkyrywDE2aNGHt2rVMmDAhWwrN8TGRLPxqEL8unItW+3gaqHzkI7fxww8/8OGHLz8O/4MPPqBNmza0aZM15fmfZs/h1kMTzXrkPETAEPMAW7+80TgAQSVVqbPDbHg2a+lJWLduHcWLF8+1/Ja7d+/m2rVrDBgw4Im/H935O25vD3gkF2luwxgfgdYt68JR1tBLlG019LH95rRkgtdMIOnOaQL6z85YWD4JGmcvCjXpj4NfKW5tn4fVnL2+/E3Df35xefbsWapWr83Zu0kM/XoVJSvmnsJebqBsjaZ069ELtVrNxvWrmf3JuxiSYl9qmzyqtCQtLY348882nygUChzLN6Hwx7/j/FY7jk7rzOkFH5AYdvuZx5niHhK8cAiGqGD8+s5Coc765Eap0VGrRU+++mbqY789fPiQge8Pp3PP/rj2nIVzlXezXK8crb/YyLVDf/Dg3o0cHf+yUaVKFX799Vd69uxJYmJi5gf8H7Zu3UpSUhLjxo1j7Nix/DZ1MP8e3JLtehQKBX0XXuCjkaMYPHhwtifObxqSkpKwc3TNvOALgMWQgsbpxdHXLCYjWKXk51pnb0zxOaRUKxRYDU9OJ/Uqw8Xdh/j4+MwL/h/s7Ozo3r07I0aMyNICMzkugoVfDWLx/NmUKVMmJ03NRz6yjfPnz1OhQtZj4PICK1aswM7Ojh49emReGEEVduny32jSLed0VkNsOFrn7OVczAn07v6khN/JvOD/4eDBgwwePDhX2rBt2za+//57Fi1a9ESjvslo4NyxndiXaZAr53sazElxKOUswkygUKmxcf6/uFCLmZDVY3EoWYcCbT5DmcV5qnup2rgUqcyDjdPyU7I9A/9pWqzVamXUmHH0/ewngp2rcjoRSIQKzpLX62KcdIkH4iVLSnK0oBald5aUpVLTpAmLTbhEX5SLuchpixaZuI8mXhJCMYiqiaHJDpRp9THLRr/DocOHqVunDvPnzWHS5Hb0/3weXr6BLG8nWZNWHo2VzmmR6IlHIyWaxGmRGZIaLeVXNCml39UyupqcYmaRic2ExERiKVyLByc34Vm1o1Q+XRgoRbpGs0gN0Bd7C9tPN5J07ShHl4zGlBCFzqcYugIlyKB1mo0kXTuKJS0R9+YjsEu3AplNktSazJqlktFizXbSpDu0dE92ftOEkR9/iKOjQFH9fPxEFq/+A9t2k7Hp9TEahZK0OMHjpkiny8hzg8pisowp0oRuZ6gWcMClZie+/vIDAsf8JZw/ShLxkXeZZpEia5Wp01lllAo5hdaqlt4HhUV6B1NdZBM8GbUno722jiSc340pNhyFUoXG3R+Niw/6+AgUohra/BPSRHzLw3KAN6a3J1CxUhUunD+LjY1ENcoKbG2Fd7RixYr8vWc7vXv3pmTjUui8pPgUR9n1bLkna7fordl+W/iGCkw4yPlLW2jYvDW/L19EgQIFstWWNwWv1ECkeLF2xYQrh7ArIsWa6j0DebB9NvoC2U8LpNTZYkqMeQUsx9l8ns8R3zpo0CDmzp3L5MmTGT169FMFShIiQzgy731+WzibsmXzE4Xn48Xg2rVrOHsXZcOpeDqItNjfj0vhIGar9L7Kv1ulSTaWykUKLVIZhdhXdSgizYmUise//WO71xN980iWhbOioqLo+/4HuLcYy58PJcXQkCRprDPHhmdsq2XCfCbZfCU+6CI2Jetgtnenpqs07u8T523eMtVTd420fSFZ6oMryrpjuWq1ra0Uo64PqEBiZDD6YjUyQm0ssjHa6iKNux8XEtphNplYdfcuVao8f5z/tGnTuHz5MuvXr8fB4fHY+QX39YRsmo26zgDKusvUU2W013SBpHMxklG8qJNU14kYiRqt1sjCsGRhOUpjKmlhN3Cr/A4Ks7QfMUzErJNouEPFtKdfp0Zxz6wjPsEi1pFCxP5l2AdWwqOF5G330krzU6Osey/kLISd/COGd9mWaUr8oqHEHfoN92qtMbhIKVgUMnp3jIzau/6E8MxuXMq+gfG/iP/04nLTps0UKFaFwOLlCH5Fk6KqNVp6fLWRMRMG0PztOoz69BPKlS1Dw7eb0KLrCJqX6oeTk1PmFeUyXJoO5c4XDXBLikVl55zl4+xK1MKuRC1MyXEYo+5jiAx6ZFHnXb4xmvROLgcUDgCFSoVv23F06zOArX+upUWbDhgcCuH6wZ8o0xd5zzlRd+/8Ddc+LkHKvfPPpELkJaxmE3GnNhNz4g/sy76NTWAFrCYjaQ+uEX96K2l3z6Jz98ejQW90T0ik7FSqLk0/mkaT5u/y2/IlBATkLNmyTqdj1qxZdO3alZ5jF2PnkP330b/J+zz0KUWthk1ZtmAu9evXy/ygNwxnzpzBxqsYYSlKAm0E48eNZHEwExf1yU+gEqUbupI8hYWYSjRQWGWWVvsH5wEyYhfTY4GNokR6mmzA1cY/RGkyYL5+DLWtE8lFhNjAGIPQJo1MFc8sLqD0kQJbIV2eXRVYKaNMelxnOiPDKMaIR8QLxjqVewCRJ/4g8IOVhAQLbAFl4aootDaYTUbMdi5oIgSKvko2MFv+zzJtlv1tE1CelHvnuOIqDPY24n0rZi+0JT2tVKCt1E/YiTGXXlrBIJQgBj15uwqTm7A0qR9z0Tzav0SKsZ1no6SJQWp8JLbFamLWPGrYKVRSiBdvX0C6lh61nFn1ZRjPgwEDBjBw4EAaN25MixYtsLGxIV13uBzCZHnTgk2sWbMm32OZjxeKa9eu4VMo72ihmeHY7vWEXT3MimVLUKkyp2NGRkbS5r2OODf8EN+KjQl/tujzM5F07ShebUfnvIIsQufuT2r4s1lj/49//t5AkyZNnvvc+/fv5/LlyyxduvSZYUjR/26l7Bf7nvt8z4LVYsYQE4rG3hVS4zItb7FYUGJFZSvNawxR90m4fpxCA+fmuB0+bw/g5rKROJWsA7LFZT4E/GdpsdHR0UyYNJm32z2Z9/0qQWfrwNApK7gYFI+nlze/LFzC1csXKeahoGXLlpQqVYqlS5cSERr0iIUmL6F19cO2QDHClwzJ0fFKjR6dd1EcyjZ65J/GJXe8Vm5lGnLy1GlmzZmPwrsCtXpMkhaWuQClWoNjldbcm9M71+rMDhKvH+POrO6YEqMJHLkez9af4lC+CU5VW+He9H18e/1AkSGLca3ZkbDtPxPy57eYUx+nwJatWp9uH/1Ip269uX07ewOPHJ6enkybNo1fJg8iNSUp8wOeVEfZ+pQftYU+A96nb/+BJCQkZH7QG4Ttu/+mUKWGL7sZADgUqkTCjX9eyLlCf5+IW6P+qGWpmwBsi9fEakgh+fbpbNfpVK0tMUdW51YTsw2r1UrCpf3YFa+ZpfKhoaGo1WpcXHKuXK7Valm2bBm7du2iZs2aVKxY8ZF/b7/9Njt37sxfWObjhcJqtTL3l8VUqdvipZz//p1rXDuxLcsLS4ChIz6mca+J+FZu9tznt6Ql59q855nIJvPBbDJxatcqhg59PNYwO1i3bh1z5sxh9uzZz1xYmhJj0Lr45GmsJUDc5YM4ZrHfBTi6ZQlly0jpnKxWKyGbvqNA65HPpZauUCrxqtOV8MOrclzH64z/rOfy4MGDlKrTjlS1E6lpj+ZXDEmWXu7dEdJizSzLX4hIa/DWSuvrezKZ/BQPiR6okFEs1TIqpzpZspqYZEl/FWJuxJV3pXa09bOjWLvxBL7zCSH/bqN2w2a0b9OKr776ioCAAA4cOMCRtVPZvXM7HfuPou473TI8SOnWeIAAUdrxhFYKZr4TLMUOmrWyxOoyCqbSKFMytQoZDH3fX8qNrxqj3fojHo36g5hUXJ4fUxUjyT2bHSUKsUp2vWZ5DKk8RYCsk1GKYkByRTjTIzQY6birUUJZ28KVWL9pKzEtvic8WoWcsCpXq7SIid3l+T4faYdJMksqZfen9NCFHO3hiC4llmRZH6OQ0XbSVV/lVIf0JPTwf9Re2T1RGmQqsnGyhL16R2KO/k7S9WP0mLYLra0j1VyldicapffxsntpKFUamnRg66713FkxGu9OX3D/rpTS4KuUIkAghnaz6NChAzNnzqRevZx5DatWrcroT4by81d9GDduHGWdJe9UlEFSPUu0CDfrfISkNHwxWBIXcp94gmNntlK4TGVWLZ6bK5bT1wFXrl6jbp1XgzLsWKImoX8vxaVC3j6b2GNrsWLFpdbjud/c3h5A6OpxpARfgNJ1slWvTUB5jJFBmJJiUNu9+FRTqcEXsfEvl2WD188//0yjRo1yJfWLra0tDRu+GkaKfORj48aNuPqVxNnDBwuw5ngsACaL9K6nxMi89vJwHdl4LKfCyplJFd0EpoG7ThpT02swGtLYvXwy8+bNy/LCcs+ePVyItBDpUJPI6xeAR6mUNrI81kYZ/VUXL12DPMwIpTJjrvMwVRq/r0XHAnBdlv5C/v3LFdjvqKQ+TO7xSZOF4JhT4oUwGaslgy1hkSnvtvWV0qfoVUaO7N1Aq5bNMkJgcoIDBw6wePFi/vjjD+zsHk/PMnKrNMeMP78XpUJN8o2TuJSXaLhyxV1/UR29pL3U7gsJ0rN2k4X3PEyQ5tdWWcha1MnN+HeYAFYrmiRpDpLgL5yzSxkp3Z86JYy9a2cxZPBgLt+4icXeldhL+3EvXRf/Gm0BCI2SnmuQbO6rjJeEDsNE40FNd2nudzShILq3/Eg6uhYSop44FnhoLY/te1Pwn11cAtg5Or/sJmQbGr0tpep1wK9MHW4HX+PE/FVcO3OQ76ZN5bflv6LVapn63XTGD2jMJ1NXULBQyTxri1pvR+EP13D35x6kBF2g4NClGTF+rwSqdSV422TyKnWtUqXGuUx9rv3Uk4KD5uXRWR5F7KnNpNw7j2+vH9DaOmZ+gAiHcm9jE1CBB8s+RlGvJ7aBjwonaD0C2LFjB++++y7t2rVj7NixOWpf27ZtqVKlClOmTOFexBKadRuJp29gtupQqjU4VWuHTZG3aNq0KMeOH6dG9eo5as/rgrXr1qPzKI6doxtWK1wRJdmv3xUor+mS8tb0OG65oSt98SQaPSyuBYWysljiVBdhQE2PwcmQqBcp6xZZahyFUoXGqzBpidGk2ThivX1GqN49EBD6hXQULCJQxh+K8zqlaMDRqaR+IuneOWGfmB7J/t5xAMKUTiSe3ERg96koxHyQGjHGyuJeCaWNA4bIIBRqLWlOwuCtjwnKqDd9ApUuLW9wKya0X/Tge7w9kHuLP8C33xyORovnLiQIa6TbDB3V0uCuE+eeHmK6Em9xnqcVDZMuT5gIaMR4oSX3hcJW0ciUcOYv7ErUxpyaiEqM9SldRLCON/cSrlEl1v/Pvg1sXP0716/9t9Vx85GPJ+H333+n2YDHBfjyGkZDGr9+M4jPPxmR5ZCQe/fu0blnP0p9mfOckS8LqaHX0XtnLWdnTFQ4x3b+xoG9O5/rnN999x3Tp09/4sLy/2GMe4jWJW+FjRKvHUHr4o3GPmsGxf1bVzDjh+8JDXsICP1yxNG1VJ2UO7lAFAoF9qXrkXj9KI5l8g1+crxCK4k3Cw5u3hSpWJ8eH02l45ApbNh3Fjd3D8Z8Pp4Phg9l5bLFrJk1htDgnFMdswKdRwBFx24n+doR7k+uQ6o4UXwVoLJ3zfPFbmCv74i/duSJlNPchik5jpgjq/Hp9EWOqCNqR3d8B87j4b7FJAdfeux3T09PDh48yNGjRxkzZkyO21mwYEEWLFjAzG8+Z92sj7l08u8c1aN19WXmtnv07Pc+48ZPyHF7XgfcvHUH/wqv1uDjWq8nkbvm50ndSTFhhP69FP82o576DStUGhRKNWmhN3N0DvviNbEv3YCw38c/T1OzDVNCFImXD2SqiHjvxgV+HPkev8+bRLkKFencrRftOnalXceuvCf+GzxkOFu3buXs2bOP/Ltw4QJJSUmkpKQ885/F8uZaxvPx8hEUFITBYMhRnH5OYTSkcvivlcwY2ZrRHw3mnXfeyfKxAwYPpfCw5WhfoFJ2biEl9AZ6r8wXl2ajgZ8n9mfB3FnodM8XSuTo6EihQoWyVNaUFINSn/kiNKewGFKJ2DYTn8aDsnzMtX//pl27dhl/p4TeQO8RkOXFaVbgUK4xideP5Vp9rwv+055LvQocROEFT500yB6PlS7LlCyTu9c/rnAVkiLRDuSud7lIjVVGdzTK5Yrl1EsZ3UEj0mKNOulD23hFcrFbZfu1ju7g1hzcmvNl6484f3ADgYWLsnXzRv5ct4o69Roy6PvtOLgI8Urp1vA6LhJF5KGpWMZ28n3JOm6VUTesMjEMpUGiMli0dqj09pT46ij3f+pI2Jzu+JStgbXhR+h8S2XQQoUDZQmAZYsxtexDlacXUNpLlBLlQ2GRLKeUKlNktAfZfc3YNptRAYV1YK+Hc7JzWmQ0FoVIkrHKaLOFvaQAa5NMmyMkUbr2YnorFC/LNWcvwv6ahf9AwXtpERPHg6S4K8txjFXWgaoTZc9Vdn/k15NOoYk6vAbfFiNwLiAkma/qKrx7GtncO9Ig/VFV9ozVivR77MLO7lMJXjIC//5z4KHc+FAJvV7Pxo0b8fDwYNy4cU9UdcsqSpUqxZ4dW/n00085u/ZnGnX6gFJV6vNPtHBt9o4Srdkg88ImJUgqgQsTNKgH/c68H1tTqXJlOrwndfT5eLlwrNKK4F8GkRx8CduCuRenF3HnAmHXTxHYYzpqW8enaqoqFAp03kUwxjx4SonM4VyrM8l3zxB7chPO1bKW1+55Ef7HFDxbj0Ihp8bJkBgXzZ9zx6I2xXPjyjlGfreGgoUFMSaLVehP0j2iN6+cYcPec6QkH8w43moV1BGjw4MfqVeuYZa+qTTEYm9vj5+fH+7u7rz11lu0bNkyl640H/l4NsaOHcvUqVM5G5N52dxAcmIsM4bUY9CAfpw9eTTLVFgAs9lMYooRh2I1crdRViuWtGSUupzTTzM9hcVMWsQ9tK7PFo6xWq3smzOEYYP7Ur78ixUqNKclo7LJ+XzjWbBarYStn4zb2wNQZ1GA8v61f1ErQaOR+umY87txLtc4V9um8y5G6sO7uVrn64D/9OLydYNSqaRig/b4Fa9Ex84d2Lr5T/r26cWNsweo3LBDnp5bodLgP/kYSdumYbx+kMg53XGq3Q2Xen1yJU7oVUbzKdvZ8FF1PN75ABu/UpkfkANYrVYSzu+hUKeJz12X2t4V7zajebB2EgE9v3vsd5VKxeDBg9m0aVOW8309DXZ2dsybN4/Y2Fg6dulOSlI8lG2frTpUNg54f7aDb7/vi7+fL2+99dZztem/ChedBU8x5qSySHG9LcaMKMXUNelUUJMsjjA9TlgZehUAhYugkGqVTWZSbYTFvVKMKzc7CDGy2iiBZqpJlmJTTDaCl0EfeYdC7wzl9u9f4P/e59iK8vaapKiMsg8y6LaCQUEfKyx4zLJUJrYi1dWcFMfdg6tQafWUeG8MZrUa0hJRJcqkvMUVUmo6DdhkQKHRYwo6j94zMEPtFkBpSn3knihFGrDcsERqAt5tRhO2fjIKs5HdOkGgK0AUzrmYJE0+XUT6a1E7wSiYLotvEg06SpkF6X6qcNyVVIVYRqDmRu9bjMa1AHaFKqGNuvfINV2KisUQGcQfk+rSs98AVq/Yglfnr1irrIjlhkiVjRXir1Vink6DSxkoXOYRQ6U2Xkh/oHcV7nWyu+CtUMi8lOnPw2zvhtVk4EpSLKb4h/w8bBTfhDxg8KCB5CMfeYkjR4/yMN7EmWgPkk1Sf5BuOJFrX2gdpZh9Y6pk4LXK+hF5Pmw5s6eIrfBtdK9gokuXAaxcuojGjbO/QJg9dz6elVpyO/haxr50dWpdvJRyRK5SLY+tTPaQjPhyA73esxBpt//FtlAltkRKBld3J6EPioiV+lNForRtlWlO2MrSdTjJ9ENuiuqwcRf24li4CmqxT0zX0DAqpPvqY2Phyj+7efutUgwamHdClz/ulcIx9p67kLHt7luUe3sW4x1YhpMyIti7brLQBPE6tbJrrOwkS88SLy1J5AkgEvfMR6dW4+5XEl28ZIxMD6cAKOhbGIDiTsK9CY28RN8+kmCjycmbxJBrePT6kfBESWxQ7yQJzaUlSddmleUuVYnxlG6ytDI6GQVYodZh1tqiUCpRynIwF7aT+vX0FD3/KBzZlXN76n8G+bTYVxDuBQrT99PpDPvgYz768AP+3b74heXIs2s5Gtuh6/H56E9izu7m6oRaxJ3f80LO/bLg7FcS19pdufNd2zw7R2rIVfR+pXJN8dYmoDxKjZ7U0OtP/H3AgAHs378/V84F4OzszKY/1xF1dR8X1k7Bks0cg0qNjkGTfqVho7e5detWrrUrH88Hta0T/u+NJXjTdyTev5z5AU9BzK3TXNk8A49StSnUoGeWE1KrHdxxrtKKiCO/5/jcCpWagMG/YEqMJuyPr7DmEVU09p8NpASdx6PZsCf+HvfPRu5Pb4V7QHH2W8tR6Kt/cKzzfMadrECh1qJxLYBNYEUKjdnOd/NXEBoamvmB+chHDmG1Whk7/gu6f/T9Czlfclwk1apVo2vXrjlaWCYlJTFn7nyK1X1cWOx5YVOwDEm3TuV6vemwWq1EHV6F+1uZMzPO7V3F0MEvJ4OCztEdq9mEITE2V+s1JUYT9e82vOr1zNZxp/aup21b6Z6lhVzFrmTtPHGWqJ29MSVEZF7wDcJ/2nOpxJphJbPXSBOKMFniUrmCqEK2nU5bfGp6I40sSbU8Ps5sxJwST1r4HVCp0Th5oXb0QCFb/JlFj4JCptYqt1KpZDQwk4wauihG8kT0LPU2Fv1vKBQKypQuza2QUJw8/NgWLbRFJftAPGVP8Y6cxorseuVJ0+XWQnmyYpEOqrZaUGu1FB32K/G3T3Nv4RB0n6yhZID0od69K9FvzSmylBN2stgLmTqvOZ0OK1PjsuhlqQnkMY/pVBeVCjNwx6BAl6ZA711YKp4k3bd0q1LjAhI1s4CNXFlOejYGF+n+RBmkdyZw0DzO9nMn8dxO9EUl2ky6eMgjyXpl+fDSHL2l/TK6s1qmEGtRaUi+/S+2Rd+ipF5qS5L4noYYpffLYJae612Z10UuTILopXJt+j7Re37Br50g3pOepBeg/VuFefAgd81jtra2/Lb8V35ZuIhlP3ViwLhF6G0FL1KCTOU23ih5llYFS/dtdZwLxT5eR/9hH7N/x+ZcbVs+cg6dqy+Bnb/k/sZpRF34m4KVmqBzcMv8QCDu3gVCj/2Brasvpdt+ikqrz/wgGZQaHXqfYsQdfb60IgqFAp8OEwjfOY/g+f0p8MFitFm8hqwg9vh6Ei/9TYEuXz8xXjp4ywyiTm/Fu9VIXBoNQKFQoJTlVXtR0Dp74dD+az766CN+/z3nC/Z85ONZmD9/PsUqNsDGLm9okHIkx0Wyd84w5s6dS7NmOUsdcubMGVwKVUJn68CjPrHnh33p+kTuXYR7o/65Wm86Eq8exsavDJpn0EGtFjMrv+pF47pV8fPze2q57CI0NDRb1GP3sg2IunwQj9rdc+X8VouFB8s/xbfZEJSarBks02Fna4u7u+TZTQu9gVP193KlXf8PpfrJIRJvMv7Ti8sXCUPEPeJPbyXxwj5hQuRbEqtCiTkxGkPEXRRKNbaFK2NbpBr2BUujUD3/rbV19ub8+fNotNpHA25eINwb9EKl1XFzRlecP1mFd/W2L6UdeQ2FQkHB9mN48OsICk05ketCQmmh17EvVTdX67QJqED4wztP/E2hUKBW583nPXjgAEqXKsmo0T0oX68ddVr2yvKxzmUbEH76Dw4dOkTdurl7P/KRc6htnSjS/nMS7p3n9u7FqLR6HP1KofQri96zEEonIQ1RWlwEKZHBJIRcIz74EnZehSna/H209i6PpPDJFqxWzGnJmFOTHklxlF0oFApc6/VE71uKf7/rQKF3P8TrrTbPZalODbvF/bVfgI0jvn1+ekShV2i6lQe7fiHmwh4Kj9mGTUB5rGk5yxObW7AtUo0CkQWYP38+77///kttSz5eP5jNZtas20C7j+dnpM7SymidNxOEceeBLC2HyShRBa3ylGHydGUyCuo73oKR6uwf07gTd5kZUz6jfv36OW7zhr92Y36rFyfi1Y+maBPbkuYgCfxo5GnONFJqDLXMESDX2FDYOGBbohaJd8+gkNF/lRpnAHycJSNXjEyfooKdVIfMXs2RGxIbyWq1ErF/Kf49p2PWSsbrdKN2VzHtxo5Z7zO4d3t69syed+9ZSEpKQq/Xo9frmX9AuvZl/1zN2NbL6MRWpRrn4jW4unoizpcPoBK1KXarpDCYRk7CGKEySdd+OkGap9xLlL0nidE83D4b24AK2BSukpHSJNldcjLIU5G09RZCDzqJ9NOVeun9i4mNI+3hbXQ+xbBazFhlDhGTTLfC6iA9P2Tvo0lMt3fPQVIlDtBL13AHhHdZqcJiL9XhIHN6rTom1HHrcgKvd6CZgPzFZSZICb5ExF8zUag0OFVri//AuSjTcwvJXj5LcjzJd86QeOUQDzd/j1OFJrjU7vpcNEi3QhUJDg7OvGAew6VWZ4ocXcKVhUNxCCiPncyDmJdQam0IDb6L/QtaWLu1/JTIv5cSsXo0nt1zl+5jSoxG61YwV+sEgVZoSolHbZP1tCa5gbp16nD00D6+nPINS6e+T4vB32HrkDUFNqcWo1i48Ks3anGpVStItIJZfJWvJApdr2cpIRl0yH2RKixOTnwdJa9XSJwwsFcuXRmABDGM41qMLD5EjNkzi4tAtZif1iiKaslz9abnmk2PaUyzFZ6bOiUOx4Jl0I5YgSE2jNTgy5jvnCT+9FbMYr41tVqDrZsfLn4l8K/2LkqVGmVqHCRFYXAWLObqVKFdmiSBJmTRPq4gaIoU+jWNowfGiDu4+pXEfO0guhJSvst0MS1dXMgj9aa6SN9ReixpqthHaOLDcHRwxrbjlwQf+o2rG37AqVprXBv25a5476+J9zg5Wszhm06jFUXcrGYTyWf/IurEBhT2rrg1Hox9cYHNoEyVJiUJlw9wb8sMFDpbiny4Gp2LN8Q/zGDF2F4/IF2vTvDwGO2EiWZ6ehWLSKV6NCbWGQCDnbt4/QIDQR4LhkKYlCtkufcADCHCe7XDfxC/ftWKKlWrUq1qVfKRj9zCyt9WUaJKYxycc48Z8CQcXvwZjoYQ1m/Z+Nx1mcwWVLKckLkNpyrvErVvCQ7lczdvcOT+pThVaIbawQ1kubblOLNtPr6OylxdWAJ88803DB8+PFvHKDU6fOt1I3jzdAI6THguI33k3kVYLSZc6/UA+cI+CzCbzZhMwkL2zp07bNl9AKwW1HmkEmyKDUNl65wndf9X8Z9eXFqRJmt6WYCwp1rajpbRWx+hhooWM4V8n6ysxWQgcsdsUoMu4tvze3SeghxzTWfJNW+UrXmupPrhElAaGnQnISmR6P2/cmf+ABzKvo17o/4oDClS3bJOzqp5Mo3sUKyGkGQVJpMJBaBUCEqxhcT5hVJG9fSSBRkb/CSp6vsREjVTI042AYwyy4pWRt9MvycmmWBGeVthgnfeyYllf21lyPDe2BYrR1qskeRoYWJjFSdlhsQ4iAujaOkKKJUKsEJCciqOXgEYLaDzKkFEmTYoReqcQmY9sso6IUWyMInU6h2wdXEn8eIulK59QGbvkdPv6ohU15KOEhXWKE/gLKOammXPzF2mMFzaRgko8Bu3kc0fVMK56XB0PsVQihZXuZiGST7JkxkYFI8oxD6qsqtQCImWb6RKbakgrh/iZDTuOJlFz0XGtJCXUSRL9FedfzkSw+9iX6puRsD4i4JSqeTLSePZt28f4yf1xsu/JC4evvgXr0ChEhWws3fkw2JSFzM3SFzgOPsSGxv7Qtv6spGYmAi2/x17pdbZG62zN3buIu1b7BuUT5ngPM95Em8cxzYHqXmeBZWNAz5N38fiUYjYE39y98dOKHR22ARWwLNeT2wKlHikvDk1kdSg8yRc2Efy3bM4FnsL33ZjUQVWeqzutKj73JrbF6shFd8mg3Bq0CdX254bUGr1eA1fTYO3m3Dv1o1H6GH5yMfzYPGvKxgyeTnJmRfNMe6c2oVdagjbtvyZK/V1atOCTR9/ie3QlblS3/9D71caq9lE4qX9maYoyiriL+wjNfQGft2+fWqZkGunSLh5hJ1bc+c+pSMxMZEjR44wYUL2U4g5BVYgMSac8IMr8G7QO/MDnoDIvQsxJ8fj+e7HOWKenD17lgoVhFzgU6fPpHj9btw5ciCTo54DSlWu6Wm8LvhPLy7zClarlfA/pqB28sRv0C9o7LIXO6NQKnFr1B+nKq2JPbGeu7N74N1+PDYBFTI/WAanQpX446+ZONnlncR1dlC7di1OHj/M3bt3adGuE8pybVBo9FiMArVEDxSzsRBx7SjujnpavdOMtLRUbG301Kj+Fif/PcOshb2JdyqCc6dvsnROTcU2xP+zAcd6ffLuwmRw8i2GR412PFwyhILjck/ISFiA574H1qZgWVIfXMt1ym120KhRI440bMjVq1cJDw9n798HWPrnXOycvXHxLUGlhu1xcvN6ae172Th16hQXLlygxYihL7sprxycKjQl5tRmbH2ylhw8u1Bq9bjW7YZr3W6kRQaTcvcsD9ZPwZQQidlkEFgoVitYzOgLlsGxYjO82o7J8CzKkk2R9uAGQXN6Y4wNxTagPMU6jkehVMki218tqB3c8Rn2G23ad2brxvW4uLxY41M+Xj9cuXIFJ68ArGo9IfGSQUgnM+6n02FPJUj79DaSwVpjK20nJEkGZoUsti/+7J+MH/0JylwKT6ldqybTRvZj6dpRJLWfl7HfJOYnVMmMZkZbKYWaNkGKz5SnZZM7KtQi+8C/zafc/20M1iv7ca/YlIfFagtljVK6O52DVPfJaOmclnhJDEZhsRB99HeS757Dv8MEFKIat8IsGc+rBBYiLSGKa0uHs3z58lwXqdm5cydeJeuw5lQqkMqcf6TwG6fgfzO2E33KZWxrUiXvonfVloQeXEXQ2i/wbD4craisuk28zwZPqb9XyhR0zWYTEXsWYoqPwLf9eOnaZakBVbLQBGUpiSrtppMcOH/99RdOTsK8PfRhNGkOemx8S6ERU6UoZXN6ue6JXqYAazRIz0ctxu8XtpFGhJ0xstRzJgOK9JCOOOmdSbNIMcm2IkVWpbCSN5Jzrxb+84tLpfhNaWV90J1U6dGpZXl3TAnSS8wTrAzpAcMRO+dS1MePKp0+A6CKi9wjJm0ny7xMlZ2lemIMQj0XHP2h4CekNunJvhl9sS/TENd6PbCqZRRGWYehTJZe8pYeBgyO3kyespV27TtS2MGEu5MJfzvB1W+vkTpuucdqxZHYjO1psTJPrMyrZhcuSXEb7CRqi1kUpGlTVpLcdtKYsFgsHI8WPhidTseosRMxvz0Sh/QPWxZDEWnviqLehzx4eIdZd24AAnVLt3sJRN5G7+jGwysHsMztjHP7r3EsKXTASTKFMbXMs1u4XH3OHFhKgNLIbdksTiPzXHqIHsgk2fOwPGUdlySTTHeTeS5L2EnxYkHDlnBkQAF0D29g0AodhkWW21JhlToY2SbaB5LaplmeLiEtEZ2zF4Y7/5LqJVGK00SPqryt7rLnej9NaqunVmqrwkkSEdL6lSbh6hGwdXpE0KdDdZcXpjAMQrxbqVKlKFWqFA0aNMBqtRIcHMzp06dZsWIs8fHxOOvcqNOqP4VLVea31Nz1gL3KOH7iHwq91Q6tTJDARXzOZ0JFWqM4MGlFMbCyttKL5aMR+ou7BuF9MYiPVRCnEJCRZ0v0pGtE77ZZrFclo3NqE4VctFal0P3rYwVWg8FBENiSeyetYux4OiXVLNI7VTIaZ7pXUxsvsCCM9h5i/UJb5HTO9DQnduFC3E6V2u/w0GogyapA6RaI3IyW3r4kLyE9kEacBNhG3Mwok163TYRAKzbpHR851hwrxQTpUxPQexfB7R1hkZ8et5R+PwyOkgEkI0ew2D8nHlzO3dXj8KrfG4+aHVDbOKBOiQWzMSPuR5Mi3PN04TiLjJWS3h9oE4T2mMXf0mO+UtwLY7VaMSdGYwq7LeTOE8vosaJ19UWXJE1AU9wFJk16/JhZTFdjGynEDznc/Uf4H4h2rUitOvW4fPH8a59WKh95i18WLuGtJl3z9BxpF3fhYqOgTp06mRfOBjp36sSNm3dY9lMrtI1GYFuuaa7Wr9ToKNx2FBGnt3N1xRgc6nTHLZsiP8a4h4T/+TU6z0L4dfvmkQWlHGmJMZz8sTNrFszIVQEfgOPHj/P111/Td/K6HNehUCgoUL87icGXCNnyI0qNFveaHbEvUOKJfZDVaiX29Daij67FpWYnPJsPf2SelV2EhYUxbNgwkpKSuHP3Dh6+idkWBMoqLGnJKPIFfR7Df3ZxWbBgQaI2576b2xBxj8QLe6n8zbZcq1Pv5EHBwQt4uPl7InfNw/0pUvb/D63OhjJV6xMdHUlMZBju3rkfs5cVxEc+wNFeWPAtWryUGKMeO5nF6EnQeRZCI0v4qxYXZ1arBd/EGOK3fsvtH9rj6OaFxzsfQoV3n5i+wKNMPfRaLXf3LoW6fXLtmp4FpVqLd5maRO6YiWPr8blSp13RaiRcP4ZLjY65Ul86DFH3nxhHcPXqVby8Xp63UKFQ4O/vj7+/P23btgUgKCiI6TNmMXJCT+rUyuVE1q8wNmzaRq+xv7zsZryyKN96OCd2LH/ZzXgqYjdMJuLI7xTtMx37Qrkbv2hOTSTq1Fbi7p3HajGhdvRA5+qLUqPPWODGP7hG6sPb2HsG4FKsOg4B5TKp9VE4Fa5C0PWjjBr1GdOnv5jUEfl4/ZCSksLxf04zosPneXYOq8VCzMavWXD6cK55LeUY//loPvpgGA2bvUvspd3Yln/yvCOnUKo0eFVrjWfVdwkJusydaa1wKN8U+3Jvo/Mp/tTjTPERxJz4g8Qrh/FpMQLbZ7DczGnJnJ8/gO8nfpqrOaPv3bvHhAkTsFqtbNiwgb+Dn1/t2r5gGQqVqEtq+G2iT20hbOc8lFoblK5+WIypYLWgMBkwJkRiX6QqhYYvQ5Fu2MuhbdxsNnPx4kVKlSrFoUOHcC3bRBBgUuXNAjDx5j/oC2avT34T8J9dXJYvX57wdBGMXETEjjl4tv401y28CqUKr7ZjCFkxioTze3Aon7VcTeUbdODIuh+4/+u3jPwhd3n12UGJUqUBWLh0JW3HrWXl7YRMjng61PYuuHb5Du8u04jd/iPXfx2J2TAM3x7TcKr7aFC6Uq3Bwb0Ad7fNpGDtnk9MA5AXKNB5KqfG16VUy9FSZ/ccsC9Wg6hDq3KhZY/CGHEPnU+xx/Z/9913DB36atEw/f39mTVjOhPHjUGjeTMsfVarFaPJhN7GDkPODbGvNQrXbMPBpRNfdjMeQ1r0A0K+b4PFmIp/75+wDSgHMorb8yL2yiHCj67HvXo7CvafnSEUl+7NtIjeSE1ChPAeXTtEzPXjPDj+B95dvkLn7p/lc/k2Gsj+UxtZ+dtqenTPW89TPl5PTJ06lbpt+uep9zvpxjGKFfTGwSHvUpzY29tz8sh+vp81j4WLxmEt2hC78u/kisJ/OhQKJW4N++FSpzsJZ7YTc3AFqQ+uonFwQ+0oGIMtFjNYrRijglEoVThVeZfA4ctQPcVbCWBOTSJx/zy+GPK/9s47PIqqi8Pvluym9w4hofdepYP03nsXEAQUFSliQRFBFBQFEWxIkd47CALSkSK9hJIQ0kmvW78/ZrMz+SihbChh3ufhYTJ7586d2Z079577O+f0o2uXzjZr78KFC1m/fj3Tp0+nSpUqws7bSTar396vGIFt30Gpz8JsNJKhdUapdURp7yzIYhVKFEqlVXHyNHz33XdUq1YNhULBX3v3oVDZ4ewThP7W3za4kntJOr4Bl5qd8qXul5mXdnKpUCgsAX2Ejs4gETG/5ip2fvsiJPpsiVbbbJF+KdzE1R1DchyZN07i13ECwRJZWookmIo0n580yIo0oJD9fQxuKos8t/DA2dz8qgOOXoWxc/PBJMl/aZLkRXO05DWs2aAVHkFl+GZ4PWZO6MebH87DycUtV2AaKdJ+v6SnKJe9niBGnTXYix23USJBVfuXAHIHwCnqbASNiUgFREZGkuXgzb9pDmCQSIwlkgCTNJeoTnT5Vzu5k379BN6RpzEZdDi4+xLuWhTHVu9TofU47u78gdgts4nbNofivabiXq4B9t5BxBrAqeV7uO3/lrR9P+PQUJCZ6CRpD2KzBSmc9DfgKpGXSr8/pULcL81/Kc0baqcA9+DyOLh6knTtOG5VWuXKkQr3zxOaIysEMGskAj9L3So3PxIu/YO9JZhIhCXstTSM+zlJbssQe/GCXCVBqqQTbHN6As6lauPo6kW2UfhNJyfGER4eTo0XNErkqxRc5ODBg7j4lSBFp0Qj6SN8LDLnYr6Cj8fNREFS2djj3s6jpEWynWwUnrNrYYLcvFCQaFSIsPzGFJZ+zWz5jThFC/lojRpRpp3pKYRTz/EzyukPOpUTpJZFnMS+b84poU/yuCL4HyssMlTp7z4nGmyOhEttkeQaLFFoFWaxf8hZjcspe/Cu0AZ7sx7fsANkvzbXWtaQbfGhSREk+Tl+kDnRVKVtd0i4JbTFMkDUpAly0UzJqoS1fTmpBix+PNk+gv9P9xLC85udnsKeTauJ2rkAZ88AgjuMQ2k2Q0IYesm5lTrhHGqLfCtHBmyXJchX091E5YbS4juk0gvXFHX7ChkRV6gw7SAqjQMpaaJLhJ1F5VHUPuc5F2RvXhWrAm+THHWdLbOG4dv+fRyLVADAKeaq5Tw537/4alfpM1EpIKnFh3w4bRRNmzQiMDAQGZlHJTMzk937jtD/s3dJscjzi0hcSRIkLhwnUoTnwUsjPvdxmaI/XIYkp7UiI8m63a2EF4vWTeS3TWtt3v778cHbI3n3rWHM/fEnvpj9Fj5DFuJYvAb6GNG/UBrFOdtJ9Jc0S6T+SklqkywPUaKqiruJCvAKroBXsPCcGkxmYcUO0Yik1DpidBd9/UwSY3bh4LLW7fqq26ybNYJ5H39Am9atnvi6c4iLi+PIkSOMHj2aYcOGsXXrVpRKpdW16ttQyZg2SQwIKU3PgnR1WeKGI/WR1KSLY8Wca3PJTobsZEghV454KXZpEjcArxCxbsm7p4u3OBHvVtuD9PR0Wry3jt27d6PT6VixZQ9BI/8kJTsdQ0q8Naq6k0Z8L6QXKmPd9lBLxvdKcQxXQiu08a8kieuVyYBJn036zVP49pxqNbqYHpBOy2RW5Pq/oGN73cEzJEvSYdmC7Mgr2BepkK+WOaXWEb82bxO7+6dHPsY7sBiTl54j4tpZvnjzdS6d+iff2vcwoqOj0fqWeOTyZpORpKNrifhtDJenNCbx6Boc3LzxKFIWfWYaCfuXcO3z17n962hUviUoPuMkXs3f5OaS94n6vhORv71JVlwYHtXbk2TUkH7syX0AngTP4lXIPGM7ebR3y7eI3/a9zeoDIVWO/f+tXG74+XM+/DD/pEsyj05GRgZegc8mdc/LTNex3xJ6+sBzbYPZbObi3yvY9U1fWhbRY+fsSXCHD3JHFLcBcWf3knnzNIH9Zz1RegS3gOIEDZtP/M55JJ3Y+MjHKe20aFuOp1ffJ4vgKPPqsnXrNirWaZGvY6MDy6bx/ayvKFXqwfJRW6NWqxn79miO7dlK1bDlJCzoh0ES+8LWKDX2qJ3cc/17FFluavgF1n/9Bot//v6pJ5Z6vZ6VK1cSFBTE4cOH+eeff/j444/zRYb8rPn5558ZPXo0jo6OrFq1CpdaPdG4eJEZG45KEkzJViQdW4d7zafLpVxQeWl/TUqlkhtXztm0zqzIy48d0fVJcAyuTHZcGMbMR5eWurh7M2nJOarWb8XvM0ZxYv+WfGxhbkLPHgaJtehRMGVncHvhCAxpCfh1/Yiyn+0nqN9MitXtTOHKTSnbYjCFB3xDqU/34t3yLdKvHOLW151Qe4dQ84drqMu1Ii30GDenNyft2lFc231E+t1IMm6cyqervJeiA+eQfPWYzeqzL1QGkz4L3V3b5C41ZqZgykqzRjIDiL1zi8gb52natKlNziEj8ywoW6s5aYmxpF16PhPMrIiLbJ7emyBjKDM++5D5P/9G9fdX2XzQkBh6kpTw8wT0mfFUOeBU9s4EDf2RzPBzxO/99ZGPsw8shVnjyq+//f7E55Z5tTCbzcxf+Ct1XredDPP/yY68THbcddq2bZNv53gYxYsX589f57N0xjgU68aRuvnLZxoQ70Gkhp3j0rTXuTm3J4t/+4ny5cs/cV1Xrlzhvffeo1GjRoSFhXHjxg1mzJhBcHCwDVv8/IiMjGTXrl306NEDEHxI1X6CoULt4IxBEtzNViQcXolXw342r7cg8NLKYpVKJa/VqUWvOu73fLZvgyjHlOYelEoZcqIgau3FpW9jeiKuFZuh8fAnKlOUHqokUsokSUTSDNP9Bx6X04WJWE1X8bgWvmLkwO3p7ri91p3Ec3vxbDrEur+EvyijCk0VJ3Oe1kihCloP/YKsbB17VszGh0gmTJiQK0ro3Wyx3dcSxP0KiUxK5ypGG61VtKh1u5hFClzSVZSAKhQQcfEgc2Z8TEpKCh5qM6UdTVyVSHhN0uiSFulZ5J+T6Nh7DCVqCEmFfbVCndLuulCO7Mu/IhtCvsKQnkj0+un8d3glhQZ9h6b5GBR/vsfFb7oRPHErLkUqkLnre0pO3MidOzes9YS5uwPgIJGXpkiiwvpKosJKI/zqJN+fVJrqlyOp9Q/ksNGAW3ocqWqJfFgir5ZGNNNJ8ofmhCeH3AnsvZu+QeyGGRTu/w0Hk4V2DSwkts9e0g6tZOx5USKXVVsiHScf2saXI7sxurfw21pzLJNNv0xh7eoVyMi8TKjUdpQsX5WMbV9gDF6NStK/5Ccmg47042vRnlnJTz/P47+z53hnwqdUe381Tj5FiLtpOwNmdkIk0Sc2U7rbJDJtsEqgUNnh32Uy0as/I+n6SdyLV3+k43qPncW8j3vyxpDBT90GmYLP4cOH8QgsiYOrFw6SN3hi9v3fpe19hO0r6ZKykuj8JolLS5OSxTGbTOxe+R5TZ9omeN7TUK9uXS6dOsyMmbNZu3YM5teG4FazGwqFgqg4URoqdbHKPaoR74PBQejDlBKXGpODmCnAKHXFcRZdmDr5qbh7J5QTa2fjqUpiw56NT+VKEhoaytRpM7h5J55GnYYxurvg3745VAGhwiqtNGJ9fJYwVuxTWNxpF9TQuv1rqOTaJd9lTtRtAINWjK6vlJTJkcBaXRMgly+X1O3ALPGBld7DbDdR0i914Vi1ahVDhgxBpVKRmZnJjh07SOnUgbSYCMwOXmTdOo0h7D9UWkeql69gPU7qEhWpE6+5sjRCv6XI5XRxn+5uBAo7e1TOXuhSRfl09UBxfI0kUVWyRU6eZlBwf+FsweKlnVwCxMfHExMTY9OomLYI3vIouFZqwZ2l43NNLh8FhUJBu6GfsfbLXly8eJFhw4bRbPB0VKr8C3STkhhPiRIlOHXq0VYN0y79g0Klsk4sHxW1kweF+80k6eI/hH3fF++Wb+E+ZCGZyycTOqUJZYfMJmbbt09yCU9MoVptCV8xEY9+c2xSn2PRqiQdW0fqxQNoGzx5YA2zyUj8378z8Nu91n3n/t1PmRJFKF269EOOlHnWqJVm7FVmrqeJ3W1O+pyGljRH9dxzXjfC/qvpYtmc11mi5T2qcBdeXndSRPmWUie4CJgt/s9Ki5EnvZQlqrNJ8qK0vLT1lgGS2lmQC22OEY4ZUVSc+EyqJfgCXSwl9FNbzgk+nC6SXGdKix+hIlvwpVJY/sZi0DJJAlSoLak4zBa/HddjQlJzQ9BgStRsibsunHPLhtF3yipC0wV/Sm2AcG8OJAu+kSaJP4/e8lLXuwhBMjSJEcLflkGKKlv078rx98zwEWTklUKKc+rbXrSuWpzKo4YzfOx4Iu6m4/PGQmKz0oi99C8mDyFojskiX3WMvWatz+p7ZJHN5vhgZvgI1nJNmmgpz3b0IXzLd/j1n0WGXzHaFBIGmdtuRVlujGgEzU4WDFM3EXxATZbvzstN/E20KyEMsLbciser1WhiVn2CQ5XWaO8jhsnxv3SKFfwyY5VtcfX0ubegjMx9mDlrDi0GfZpv9Yf+s4oGVUvRqNHDI9A/SyaOf49x773NhE+msnFmC5yqdcZYqgkqR9e8D34KsiKvsmvFt3jZm3hnQBd69ej+xOqJs2fP8tXXswmPukurvu/TsnTl3EE5ChAGvY41a9awf7+QQSIiIoISJUqQYOm3FQoF7pVbkHRmB161u9jknElH1+Jho7oKIi+tLBagcePGnD171mb1aTwKkR0dmndBG6Bycn/iYzX2jrz11lsUKlSIEiVKsOCLN0lOiMv7wCfk5NFHT/liNpuJ3/4Dvh0+eOLzOZWoSdHxG0m7uJ/otVPx7/UFrlVbcX3l5xQNCiQ59N8nrvtxCer8Ial3rqK3oaTCr9ME4v9agC4h8onriNu9AI86Xa1R9f755x92/fktX03/wlbNlJF5ptTuNJoTF24RfvU/0pLi8z7gKdAl3OHfL1sT4gbb/trLt0dTyGj5OX5vLUWpdcy7gsck5ephnAqXQ+tne/9bjXcRFCo1Gbcv5l1YRuYxuHHjBplGNV6+hfIu/ASkxIQRdXAJU6d8nC/1Pw1qtZpZX37G2YM7GdfYD8/dH5O5oBcZB34jKzrUZrJZs1FP6smNpP0ykIqXfmbBV5PYvG4FvXv2eOyJZVJSEosXL6ZC5eqMnzKL4q91562pSyhWpkqB9gvcvuxbXnvtNVQqFbGxsbz55pt89FHulXCPGu1J/HczJsODo/E+KvqkaJJPb8OtRoenrqug8lKvXFarVo3//vuP5s2bs+JoknV/UUfxso5KnLOVrpJonpbofUaDuGSvLVKRxANLcKvdhUuZ4gpmGx9xaTs1Raw7TCc+rGXsxY7GwZJmIUoSYPSURCIiRtgyo7JEQgS44yZKH6pI1s1dJJFPc6LSqkJacOy3xezZuZUmTY4zYkQvhg4dineV3tZOxCz1k5RIDMwSiUqqJD3CRy3uXaxPT0+nZQtxBdJTa6K8u56wLDHi7Jk7okwiO/w8jsWr4+BXHAdJdMycyLpqSf8m7Zrbe4urEadTHQFHio+az8kNc4j8bTRBg77jwujiJCV44XtuI+bGY63lb6cKKwbF7EXpqlTmYZBsS1QP3MkSV3t9JBKIk1HiRHJwhRDigoqRfuAXvIcLfkrGyMvWz9WS5PRS6YbRXrRwKoySH4JCicrBlYBunxI2dwDBA2ezMEV8cVfxF3NWpkmkRqExUdbtFpoYtl7awZBpa8nKyuLjjz8mLi6OrZvX4+qav5ZVmcdDqVSSmZr0vJvxUqBS2zFo6iqm9ijJrj++pNJQ2wa/yiEj/Bwxi9/By8ePpGod8OvSF7WTO8kxYflyPoDU6yfxrJZ//mQBLUZyZ/NsPDo/uVFPRub/Wbd+I9Ubd7JGWc+WuJVEZIjvTy/J+9PLosqQTmWUCrFscU/hPX3tyCYiDv/GxpWL8PeXSglfLBwdHenfry/9+/UlOzubhQsX8uNPU3EPqUjDXh+wz070gzT8t9O6rbNEl9W7isq6qgHiddZ3TWHjL58RHXqatwb1peXorylZ8t60YnmRmprK+fPnWfD7Uk6fvURw7Y40encx7n7BGIG9MeIaUnGJjDRRkvkgwF7c72n5/qTjtyxJBoHJlcRxYpbk97DTr4V1O/SsGHTSoBXL50TNzpa4ZuXs+/9tvZMYS0IvyapglkRjNQN3YyJIibrMzAVCqr7Tp0/jXr41q2744hyx21o229Ufj0rNSDqxgb/8ilv3dywsaR8iKZJrO5oguNqp1HaYTSZu//4OQf1nWiN7S7mQIT4LQfbi7z7QQdhvfIA7XUHjpZ5cdujQgQ4dOjBu3Dib1OcQXInI2+cxpCeB4+NH8XtcTJIQ1k9CziSyVq1aHD16lDFjxnBq+Qbe+nxRLl/Sp+HAgQM0adLkkcsnndiAd7NhNjk3gE/Lt0g6uYU7Sz6gw6wjXFg9jXPbf6dwnWEo7/Ng2xqFQkG3D37h61FNsWUCDftCZfCo2YHITV/jP+DbR7YqGlLj2bDsPfpM/h2DLovOnXvTt29f+vTpUyCivRU0GjVqxCeff0lW9ii8NOLvVWd5/0Rm5f7Ocv5KlLzYEg3CC8rPko4mRSv0TTnySQDHRCFIlDXNkMWqrowXJkyqQmJI+3JOQrfv5iO0x8VSb04KojS9ONBwVgvbFSzy3bL1hWjRCToxomOoRe67N0wwgHieXgOIRhWjo+hPpLZISE05/u+W//+4IKzij63qz3tztjJzVEu6DpuMk5snjpb2hTgJx0ZK/OG13sIATmm5XdfShVQAlzMtaUbSRcOXKSWW6M2zSTm2hqCWI3Cs2YV0jQOOVw5gBNTuQdayORJao2WAaB8n5FTWO4qDHLsMS4j9HL/rnGuzs7fUIRrxspNj0RYqg8ZbaF+SXrgmO4skWeqHZrYYHPWWQZTJkrrhpEo0PDWz3NKaAcK+00kBmA06sjROKO20uQxddhb/Jp2T0IMFKe/i6mz71VmZgseFi5ep2fHRcnI/DlcPbeTI0k84c/I4Xl5eeR/wgqDVahkzZgyjR4/m4MGD9O7bGeda3XBqPOyR886mRt/g7sX9hJ5exeCB/Ri+fN4TrSqGhYWxc/df/PTLHwSUqo1f9Z6071wNyG24L+hs/OVzfpj5hfUezv95EYUaD79vWa+anbj+62hcmrzxxOrBu3t+wbFYdZyKPZqP+/8Tee0k1Ws9etaFl5WXejSq0WhsOqBWKBR4txhB/I55NqvzoeezoX+nRqNhwYIF/HtwN0Oa2k7Ckp6ejqPjow9EsqOuYl/4ySOa3Q/36u1wr9ONc+tnU/utBZhMRrKuPLuokh5+Qbnyd9oK90rNcQgoRfi8AaRfO/pQmY3ZZCTp+Hpu/zySTm/Pxs07kH1LPmfw4MH069dPnli+oGg0Gnr36MZ/h3Y876a8NBQqWpbiFWuz9kfbptOJWDyOtAt/U2Lwd3hUa4vyCdKAPClmfZZ18plfOASWIuPO5TzLXb94Ck8P93xti0zBIC4+Hhc326ZwyM5I5ciyKZw8fuSlmlhKUSgUNGjQgIjwm3zQrgJ3v+9M3OqPSbxy+KFjhfCdc0nd8hE9yynZv3cnbw4f+lgTS51Ox/QZX1OzbmMGvPku+68b6fbJWhoP+ITAUtVscWniubIzuXb2CEd3rST8ymmb1m0rTEYjxsxkypcvj8FgoHv37qSrvSlc+v45vpV2WvybjyBq+YdPJGtOOraejBv/4tt27BO3+erxHXTr1u2Jj39ZeKlXLgFq167NL7/8gnMF8ctK0kseVsmDKw0sQbYloqxDbhmhW42OxO+cz62wK6gtEbxO24lyWjtJ5Fh7yWnSJfLSTL1wHp1SnDwW0oiFb6bEYkhLQKVUYpRE1cpKFyWWiS6i7NQsBr+ltKtg4e5W24PFmnsHKwkJCXh6evJG0wDm7oq27j+RIHbix1LExl6MESWgn+wQLNuftxJlAvv27WPMmDHWv5UKM2qlmc6FxAixaSYxcfBtBxfMJiNmQCO5/nRL9FZHtSgZkMpVYyQS1dfcxO+pgpPlvrVsz1VtGjfXfUHNFn24tecHurfugJ3WgeMpwnlSJRVKZa7SUEdOEqlHkKN4Hy5I5M7SQeAfYcKLQqtU8FrsfkpWbciv2aKFUp8QYd1WS1ailZIIutLkwtJts1KNZ71eOFZ4nYR/lhKz7ktiQyrjVrkFDkHlMTu6Y9Jnk3hwGSmntuJapTVF319D3UpuxEZeR5sZZQ27LfPiMmTwQFq060rp+l2fd1NeGvq+O5tpwxuxf8MvtO72xlPXlx56jIzr/xLQYwqO/sXzPsDGmDHnu8+Te6VmxB9ZjXPIw9NpHdmxlO9mfJKvbZEpGJj0mThIVFBKyU9YGqlTq7x3oO6slrgKSYYqp+f2Z+533+Dr63vPMS8jbwwayJCBA9i+fTvnL1xi4+afCCpTA/+SQsC+wk6pXDt7mP8ObKRDx1a8/9O6J+oLUlJSKFuuPO36vM2gaetRKpVEZ6rIBrINcFAyhqntIn43dbzE8ZR0zCX9xqKzVKTGR6LLTCXh0G/E3rmByphB9erVqVW2LL8t+hidEarUa03lOi3wKxSCUqlEMsSjQ4Aoac3yrW3dnn1BHNc6hgtBIRWSoGzpfmIAQm2y6P6T7S1mMuhdUhyDu9iJx/plHKFZk/oAxMXFkW5yJKrFZJbdEsZiGgcx6rgqW2iHe+FSZMeEEvPzmxRqNYoNmeJ5lFmSAHBq8eLMzt7EbZmFPi6MgJ5TMaQlYtBJxngSFzSjRIWiVYqjz7vZSq4c3kT9OjVQq1/6qVeevPRX+NFHH9GiRQsGftwWjf3TW6IVCgUBvaYSsXA4QSN/ReWQPz5syRf24VK6rs3r9fDwIDIykkqVKpGcEIub59N14EajEWdnYbIZEBBAzO3rDy1vys58qvM9jCqv9yL05F6CarUg5sohjq/7jnq9J+Xb+aSUqdWCk3+toGTVhnkXfkw0PsH4d5mM2WQi6+ohkv7dTMy271E4uGDSZeJatQ3FJ21DYensDHodS78dz/ezptm8LTK2x9nZmRJFgwgLu4F3IWFik2aRvWZb/C9UlrFGgsUwVkziA7MjQoiI6uwmvGDtLP7TBkm6jmxLtFS7zNwJwNVZgizUVSO+KGt5CAYTV4svd44/VU6anp9viy/ETj7CuXws7XHXCGW9JOl91ArhZVq7mmDAyqw0AoB5N4XPNZf2iA0yCQMdhcXQlyM/dYwRIplGZVpUF24hfPTDBj4d1oJiTkl8/vnn1gHZn0eSxOosIySNxWhUwkVoS2vL5zdSXTDodUwf05silRrRtdtQtlt8xM2WaLkZ3oJESXGfXL7au4KsOMf/xy5DDDmfM0BSWY1KQhu0yULKAqNWfHeoNA4ozGacLV+0q8XIVtRJkM5ejZHUa/l+zTkDHYuxKytNvO6rWqE9jpZBvcHJE3WJOhjWT8cx/gaqdNGXX+cpBBHKDigj3CtTGpUr538+Z5mXm9jY2HyZAF66dIm2bdvavN7niUKhoE2bNrRp04bxH7zPH4uXcPj4HwDcUED1ShX44dNtaDSaPGp6MDdv3qRh65407zqUuCzbqCDCLx7j9I5F3Dh7CFcXZzRaLaWKF6Va5fLY2ympWrUqderUYejQoZjNZr6bM5d/t84n9OZtPP2D6TzsIxydnl+ch7/++ovevYVJ/E8//0rRcjUJf4TjfGp1IvHsHm4s+xD/fl+hyUPSHL1iMhrfYnj3fvOpjIQJty8zuI/tZeYvIi/95FKlUjFy5EjW/PkdnYbYZqLhVKIWfl0mE/HraIqMfPQE1Y9D8rm9FOn95JODs2fPPjAFS0BAAPv372fQ8JEM+mQxWgfb+CYGBARg0qeTlpKEm5v7fcso1HaY9NkoJUGDbEmr4dNYPrU/hYpU4tzfKylUoREE538I8yJlqnFq5+J8PYdCqcSpeA2ciguSDpPE6qaQWNF2rPyRMSOHULNmzXxtj4ztGDvmLcbPWECzYTOfd1NeGkJKVqDjgHdYtGgR69atY+nSpVStWvWx6zm+aQFaRxdajpmbD618NMzGeyeutkahUKDKQ+prSIl7qgGuzKvDnj17aNCggU3rDP97ESNHjizwKzcDB/Rn4ID+Nq3Ty8uLFb/MosOAccCjLaSYjEbOHtnJleM7iI24QXZGCqmpqaQkJ2Mwg0arpWTVRjR84yvcAwXDZzl3wfDXsqILe/fuZcKECUTfTcNg0OHj5YlWq6Ve7er4+nrz00d90Tq54Vu4OI06DcfN0xeVSk3ucE75g9ls5tSpU3z00Uf89ddfrFy9nk8X7mH/+ay8DwY8Kr2OQ2BJbq/8FDuvQjiXbYhr0ar3uEsY0hLQxd0ioM90zJn3yfX0iBgNeqLO7aFBg8lPXMfLRIF4wrt06cK48RNp2W04Lm6e+Ems6koXUQ6qiLtp3TZaIlgZskXNqVkiFHDyDsKrRnsif3mLY4O/t4an10qS3QZIstyXySUREW5rqKgSICLxrnU79cpRtP4lUHoE5so/Z05PtG6724kTwgAHse4cS/3KlSsZMWLEvTfDQrly5Zj5xUf8+ONYli9fjtMJ8aFoIElxNvumaJm8liF0CLP2PPgB+mjiOObMGUuvDxaithMGKX2DxNXKE2Xqk3FpPx41O2Iyi+3Osmw6qMROJ0En3j97iVxVUgSjWfwj0wgqF1+8gsvRrG0nloWe4sCv43ln1gacXT0ITRV/zhsixZtfw1OU9agk3/EZSd7B0FhRQpxLumopX8jPh5O6dFQpt2nkK8oo9hnE+6eTHKeJvyXWZxLvg0onSmf1bkIOQU2SmJLEJMl3J51cjixmyU2oy2bton30/E6Wtb1MVKtWjajQ/zCZTLJ/7GPQZcgEygRouXLlCmPHjqVkyZJU6fAenj6BeR4bFxXOniXfcfafLXR6/yecvQKeQYvvj0mXabPUBQ/DqH/4wCrtxAbatWuX7+2Qefm5dOkSHTt25KYN7SJ3z+1m5OqfbVfhK0R0dDQ+vn7MGNuZul1GU6FuG3I7/YiYjEau7lvG1b1/ULFUUTLi4zAaDVRvOQC/4DIUKVWZNIXo/pQsiRxb2EtQtpQv70H58uUZM2YMq48JY9OMtBRMRiOhF/9l647lFAoM5NOPJ3H37l3mzJ2CTq8nMjIKJ1cPKjfqSo3Xu+fb/Th/aCvFihXDzc2Nb775hhGfPv5CkL13EYJH/U5WxCXSrhzi1t5fKdxzKhpP4f1iMuiJWvsFXi1GPXV7TSYjAQGBaLX5s/DyolEgJpdKpZIOHToQHnqR8tXr26xe1wpNUai1hP3Qn8C+09EGlMr7oDzIDD9H4tHVBA389qnqSU9Px8PD46FlGjduTGRkJGPHjqVun89t4vPTtGlTdu7cyfF9W6jb/N4Esl6NBhD+yyg8anZ86nM9iKqtBnNw5wKGfjiPuR8PZObbbZny28F8Ox9A4WJlcXZ15ZdpI6j/0Y7nljPqxI4l9O7dG5Xq/i8VmReXTu1aEnpyD6VqNs+7sIyVKVOm8Mknn+Dq6sqAAQN4f8IIKtRtT8N2A1DdRyGRmZ7CtsVfk5V4mw9GDOWz5HhK1WxBav4vHj4Qlb0LZuPT51d7GIb0RNQa+wd+bjabSdv/K/U/lYNLyeTNiRMnmDBhAjfOS1JsSewjUp9KKTlpK0ySffW8dCTGRXLNnPbSBvF53tSoUYPYmGiioqJ4c+Qojm2cj7ZUQzKS4q1xLgBS4yM5EXoKZ1d3fAMKczzbH02Lsdh5BHAyxwfwpglFxm1r3dL0dJU87v1+utfOGWta/m9RDMb24PMF23lr7AScHTT06NaFalUr4+rqSkhICB9MmMS6Oe8wfuy3VoPqd1HCqqBZEtdCnSlJZecnScUi8X+U+op6WxaPbhxZx9dTJ6HT6YTxmGcxYjJBJVlEMkt8HnPFX7ET+0l12l2c3X1xrt2ZrApNiFg+GeeSdVC7+5N8aiteDQfg4e4DUVfQSyKfoxMXVczOYtArg8Q1LMRZPE+P6s4MWPJqpCGBAjK5BOjZvSs/LtlM+er1CXYRRxGdA8Uvd12i5MWb46+UJq4oohRvh8lNkJw61e5CUMk63Fn8Pq5V2+Ber5d1YnErWVyRuhUj/vqVOXl4EsSHV+FRGH1yLDFrPqfwgFkonNwxA0pJnkSz1t267S5xWpau5GUYH+/H2adPH8LCwog8/Bvvv//+PZ/bqcTV0r3RQgdzOFG8D/fzuJg8eTI9e/ZkQNtqVK1alTfeeIOJEydSsmRJ0vVKZqoyeNM/lf/SxaBEQZbV1yxJ4CNPSdAdgyT3T7ZkW1omJwWBU5HKXL96iTaFqtDhnbnsXjie8T0qM27xBet3o5BMvk4liy9HvSTvqb2rpBOVdBRIOiSTxWk7yqcihRoN5eKm2RiOLqRZp0EAXMoUl4Fj7orBkawpISBXgCCzpINTWvzjpGVNEh/f0RXEDmtkIzcuXbrE7/+s5I+vjyLz8jGofx/GfTqLwo2bkmbxrfSzKBdSLH+7WRLBJkgsyTX9hEBbOd3N1TjBn04q31EWKgeA6eYJAMwaYbXeWLgCAKXsxedIY/HTU1t8LXP8FTMtPpf9AsSySZZ2JFtUBi52kgfYgpvlGc0ZeObU964l2vrdwqKPyR/HBYuw21XBD9PoIuQ7s0sX0qr89ec31rKrK3YG4Gi8BmpPJODETPbt28c/f//Fr7/+ytBmhUlMTMTZ2RmTycSRI0eYM2cOiYmJvPXWW3Tu3Jmx731Aw7b9CXY2kGS5hoHFhP45Nlt41iKzhf1nYsTULtrYUOE+WnxCc3xXpXlt9Q7uABgsOW1V2cJgKNtNuEZtitgfOLj7or9+gniLkkZXUpCguVnuVRVJ/ruL6cL7S2XxvdRZBivSwCo5vpb/3RTaaZeVSuaVwziEVCXb1Z+ssuI9H1RcaN+5jbOp27Ed5cvbNpq3TMHj6tWrhISE4OTkBNgmUvq+1d8z88vPbFLXq0xAQACbNqxj2bI/+Wr2D2Q7+qJ19bEKUd2LViZo4Hc4+gQDEHE39sGVPSWlK9ehdOUVJMZHc+zQLvYcX0Py3Whiwy8xc8Y0UpevZMfyObTp+65Nz5uemozSmEXlypXp3bs3o0eP5poN6tV4BBD8xlwyw85iyEyjUO8vsXP3h/S7eR8sk4sCo88KDAzkyN5N+VK3nWchgscsxZB2l7Dv+5AZdvaxjjebTCQe/JPbPw4ioOcXqF198j7IhkycOJHw8HDGjx+P0Xjv4PBxcXV1ZebMmUycOBGj0UhGRgalSpUiLU0YXFWs1YwDW5c89XkehEKhwNXLH4M+mxJVGtKiz7v4+3rz12/5q2Uv12II/uUbcmLXn1w4mb8rpffjs88+4+eff5ZllS8pfn5+3I2JyLugzH2ZMmUKer2emTNnMnLkSDp16oSLiwv79++nRYsWrF+/npkzZ7J79246d+5MVlYWBw4epWKd5x9Awa1YNZKu5a9RKOXKIVyK3d8nNfTUPv6cP5VvZk7P1zbIFAz27dtHixYtbFZfXOQtshJv89prr9mszledg0eOEdB9BjXeXUHFN36gvOVf2Z6fWieWzwoPb38athtImwHj6f3ubHqOnkH79h34af48Qs/st/n5Th/cRu+eXQkPD8fHx8emAaJUWkecS9XBrWprYWIp80QUmJXLokWLUrxYURLvxuDmdf9AN0+DQqXGt+27ZNfsROzGrzBmJONesxNOpes+cLJoNhlJvfQP8QeW4FylDSHvrUGpdcSc9eROwU/UdoWCOXPmsHz5clq2bEmfPn0YMmTIU9VZsWJFatWqxZtvvskPP/zAihUrGDVqFI2HfU/L3mP4fcZoXLSbKPZaBxtdRW6UktXFqg3ac3j7Mg5u/I2QSo0oWbNlvpwToEzrt0j+awafj+rArOWHQfH4AUaehFOnTmEwGOQojy8xrq6u2KvNpKUkgoNtc8e9CigUCqZMmcKUKVOYOXMm77zzDtHR0axfv57ly5fj45O7H96zZw/FKtZ5bhJ2KS5FKnBn3xI8jQZrNFhbok+9S1bMDRxbvHnPZwa9jqOrZxIdHY27u7vNzy1T8Lh8+TL16wsuRiaJJDEmU3zvSlNCxElSid20lHGQpCdJ3vw1X0+fml/NfSVRq9WU8HbB25JSbd3Zq9bPpLJPaVo0kyT1nUIvkXVK6p1+6BYAB2JFN7BqHqKkP90g9qe/XBNjlkiDib1VrApV6zRCrVbj5uZKZHI2dloHjBrh/NKo2ypJO3LUHwDGEDFvZzFnUY2oMus4uv0Pvty9ncjISCJTYNnhJH63CAXNkv5VmSVKbqUKMoUkwJq0vELiuqCUqtkscTOkKVSksTSksVg6eYtlrkuG+muPJ5Kpk4rFCzYFZnJpMploUK8OS7+fzNCPRcfeO5KQzWYnd+u2MlmQLJnVEp8d6SBE8iOSxmHQ+hYlaNhP6BMjST61lag1n2NMjUfl4o194bKonb1QKFVkhv1H1u0LOJWuS+E3f8HOTgPZqcI/R7EdJmdRmhniLYpQne3EgDRSWazhKWJC9O7dm+7duzNy5Eiio6MZO3YsPWqLD8Xd/YJM83yyGJn0YY/CZ599xtSpU2nUpDmDxk5j0XeTCQ8PZ8OGDfRZ+wuV6rakSqli+IeUsb6UpCkMpLmxpLlJpZJg6bN4NkP8Lm+mZvNnpAKlRkEpRzcC+v1AzFcdOLR2Ds7lmuFlL3auMXFiwBwkPklZiaJsDXvRuV2q9VdYJrG7b1ukJSpfXBJT2bFjB2PeGUbN91bj4idYCWMkEV3xKGTd7Bokytl0EllzjsRZGswoxEns9LwtUkajwcDw4cPZsGEDMi83fXt1Y/tvE+j2/gIAsi0var1J+G0HOgrfuZfkh29Rylqf/RtpgozaKMmzpbcMILQl6gBgynl5WpQKdyTBs1wsga9qeeeWu+X83jIlg4ecoFs3MoTn4Lzl2KY+4rEqy3Ps9H8+WPGWvrews/gSntxUyGm2sFgVAOKuC8m5cwKsuUle7u6XdwLwtyXVx8+ugpzz448/xtXVlXnz5vHPP/9wPzIzMxn+5kjemvcPCdm5V/pz5LteFjlvYcvgrKSTOOEP9RNWWHKu6I6lfypkJwkIZpHRqlKEvsGkEt4lDndvAaI8VqjIjHvlFiRs/wH/Rv05ckwYCemKC99XNXdxYNbHEnfoZoZFvuwi9FnHxG6JM+HCObAEAIs8+CfenSZag4RJX1qxZ7bStkVjvL29kZHJi+zsbM6ePUvZsmVtUl/Yie0U9/J6okjPMg/Gy8ODK7cv41346WOB5Admi8uHvb29TYOZbVr8HT27d8XDw4NBb7zJa13G2qxuGdvx0uvr9Ho9y5b9ScVKVVi2agMdB41/Jue18wjEq+kQgob/RMj7awjo+TmOJeugcvIAhRKP+n0IeW8Nvu3eR+384qxSqNVqFi5ciKenJz169Hiqh16pVPLpp59y7Mg/BDoLk2GDwUCvXr0YMWIEVRt2ZOXsd0hLtq1e3Ww2Y0xLRCmZKLoElKDxmJ/ITI5j6du1MZueXv77IOq37sOGjZuZ+/1srm78Kt/Ok8PeTX8wZMgQChcunO/nkslfBg8eTHZ2NvHRsjz2SVGr1Zw8eZJTp049sMyaNWspX7sFji4PD3r2LPGu0xV9cixJl+4/IX5SsuNuoY+/jWPx+6cmWrPgc0a8Ocym55QpuOzevZsOHTrYZMXfbDZzc9u3fP755zZomYyUUW+9yeW//njezXggTp4B/Pfffzat8999m4gL+493x77N6dOnOXv2LEHFytn0HDK24aVeuczKyqJm7deoULslI6YuwduvMEqlEl3+zSseiNrNF7WbZeXRYLG+P4PQ80+CQqFgxIgRxMbGMnHiRGbMmPFULxJnZ2emTf2MIYMGEBYWRtOmTYmJiaFFy9a4uHjz54wRdPhoDQob+QpmxdxE61/8nv2FytenWNPBhB9YwpXprSnx3lrUDi73qeHpqNmwHeP7fclXM77EadZckqOu4xZwb3tswYn9W7h98R/mfrEmX+qXefZMmzaND7/4jn7vfv28m/LS4u7uzvXr1zEYDPfNmRcZFU2l12znM2YLFAoFhVqP5vqS8Th5+GPv9fTGImNGCpHLJ1No4OwH9uHFS5ahSJGHJwmXkclh37599OrVy/p3hkGi/pKUk6avWHFTDAxY1VdYIX/dV8d/h3fSrGEd3NzckLEtPj4+uGrBV5GEvaOLNfgYgF1GknVbYZQoVCQyUYNEQYdEGppjmP/nZph139HzooxV7xlk3dbGiFJco1Yca213qUysQxHWb95KusHMH9dTUGr0aA2Cwkaaci3bTUwRZZYE1RxQWNy2Vxs4fWgX+1bN5tDBf9BqtUybPpMe784hw6K0MaQL16zQiNJfqbpHikkaDE8if9WkiUHdpDLaDB9hfGefEG7dl+VbwrpdWCsd24qqoyxJcMrn75zxbHmpJ5eRkZEUL1+Lzm9MIFWnJMMI/N/EsrFEvuWvFa3YG24J3aTKXvwhmhKjrNvmLDEfoVRbrZYMCPTJYhQupUQrbrL8uFUZYocrfWjUd8WH1hhQxrpdXRLlNlkiY5NKUz00ttNsf/LJJ3z77bd0796dlStXWmVxWWKzeZx028WLF6d4ceEh9PPz478zp5j04cfsP3aGPfPH0n7MbJbHiB1gKw/xWnwk0Syl0WJvZYi+HIk6YdIee3Q9LuWboLA8/DGWziU0CWg4GmWGDvvjKzg7oSplPtyJ4gH+bdIXpUYimdZJOiQxfYDYpr/jnajQ53M+mDyFof17sm73LzQe+RlnM8XzeEkiYJdxE+vLidAJojxPKel19JJrP7JnPaEntrF+zSrs7CSSW5mXmgoVKqBPvkOP2h6sseQPC3DMHXHVWdIzJ1r6Ap3ltzGiaE50V7HvCk0XDnCxSFP9LC+7k8mCVLO+lyizd7SUMVlyyOacU2GRZztI5K3Blvy9OXL2HOmrSiJpz5F65/RYOdFirf2JRAqe81vvW0hozyaVIJW7kSa84NOzKljLalKF/lWdKdyj784JAxzBTcAR3/LNWLhwIW+99Rb/z+FD/7Bq1SpW/CsOHA7FC71ZWUs/m9Pn5LgdSCX7Of2sGFlX2H9XIrGtaFkVvZMlDKZvWWTANxIEpYbD7TPWsjn5bfWOnoR0mUj4xq/xe60bnjrhvXHGVRxgnVILigyjVKoPqDPFSNdKlQZDWiJRyyYQ3HgA9mYj3BUHPno3MRDFi2nilHkR0ev1nD17lm+++Sbvwnlw4+JJzv69jPVrVtqgZTL3w9vHxyZBGvMDn7q9Ob7HNtGB01KS2LZ0FocPHcTZWegXY+4m07JiHZvUL2N7XmpZrFqtZv/OdRj0tgmV/Sry7rvv0rFjR9q2bcupQ7tsXv+X0z7n1uXTOLi4s/ijLmRGXHyq+vTJsSSd2IB77XtzbObg1Oo9PDpNwSWwBKcm1iZh/x82T2AeVKsjq1etol27toRdfrA870k5fXAr1//dzsrlS1+ZpLuvEu7u7ly8+HTPwqtOYNEKpKSk3PczPz8/tm7d+oxb9Gho3Hwp1uNTEs7vI2zvIkyGx8t/aTabSbmwj/DF71OoySCcAl9MnyuZl4/Tp0/bJKKr2Wxm77qf+HLqFBwcHPI+QOaJqFC+LDcvHH/ezbgvjr7BRMcl5l0wD8xmM6t/msK0zz+xTiyBFyJQm8yDealXLosUKcKgQQNZ/9tXvN53InYaeRD+JPTv35/27dvzzrvjuBsdBnVH26xuhULB0SOH6dC9H036fszq5V+gUKrwbTUKatd6rLqy7lzh9qKxFBn6I0r1w9dU3aq1x61ae9yPb+TyvMEY/12F28Cf0HgHPfS4x6F8y8H8c/Agbq7O6LIygQcnMH8cLp48wLl9K9mycd19JX8yLz/vv/8+b731FuXrd6VJ+37PuzkFjq+//pr69etTrOoBSlVrhKdPIFmmQLQunlZDk/V/yzHP0otBpXEgpOM4ks9s5/Kqqfg0GYxLqdceOmAyZqWReu04Cf9uQutfguAh3+Ooz3hg+RyuX7lIQkICnp4vju+/zItJdHQ0Hh4eLD+SZN2XkC3KcO5KFFVRklV8Pw8xUnMr/yyO7V5FqdoVqFZNjPgpY3veGT2SDj0GUr1ec1QSVZ3dVTFVmlR2arITJ/rSKKnS3N5my7bKVQwwaZBEV0USfdbgIMqdpVFpQy25mDNNdthnZoDRAEaDtS3SaK0Kd7F9ro7i5NFbK6hbNv48hcolA2jXrl2ua3d3VFkDzgFU8hfae/HyGes+dbYYrlWaT1ybLKoUc12DQbyGDG9R9uoYd124dEtuYwBPbzFoY2VJNNtkSUC8Yk7iqvKrpiB56Ueu3876hp9++olFn/Wn8+iZ+AaG5AqdLaWYJGph40KClOlwsrjPu5D4Y9JK3vFxBlEuZdCLVmYHLzEaYFaG+CNWx94AcuvKc2RRkPvH3LeIOCHx1opt8dDeX/6abZGYJSYm2jTfobu7O4t++5n33nuPhH/m0bDTcAD+tUHdRYoU4cspH/LxZ1/QZ+JGkqOuc3rjD3y36jN8Wo3CsXhNlBLfSLOk41Gq7TDps0k6uobEQyso/MY8VB4BGCVRJZMssmWjXpT+xRgsq9ml6lPsiyOkb/uGW1+2wK1uLwJ7foba3pksk3geQ3SodVshkZSRLljezFox4uvRZOHcyZ7luHjpMs2bNeH0iQNk+rexlnHViI9Wrzru970vOZLIHIwGA8dXTyMpKYl1q1fIE8sCTI0aNdi/fz/79+8nLvIG7Qd/iFotS59thZubG2fPnmXt2nXcuHWT2ycOER8WQXp6BjcsUlflA+ZxGenp6LDDv2gFKjXqgl/hEqjtbWM4+n+8ytTFNag8EWf/JmbfYjQegWh8Q9D6FkXpWRgUCtKvHSUj9DhKpQrn4jUo3GkCam9LHrtHmFw26zmapcuW8/aYUflyDTIFhx9//JHly5ez4/KT15GcEMupvSvZv2en7Romc1/c3d25fvE0CbF3gMA8yz9r7Nx8MWfdeeLjU5PuEnfzDDMW/23DVsk8CwrE6HXEiBE0bdqUd8dNJDlDT/n6nahSvy0abcGUY2Smp3L16lWCg22bKFehUDB79myGjRjFoW2LqddmgM3qbtO6FbpsHROntuf1j7bw+pgf2X76JHd3zSdmw1c4lqiFY4maqN18MVt8CAzJMaSd+wtdXBiu1doQ/PYylJrH/07Vrj649foKh6YjuT23Pxf+WYp77W74dJmcK+Ls4+JcriH7No2mQ7tW3IpKzvuAhxAbGc6qnz5lxOBeuYIpyBRc/v33X2rUqEGzOmVZNq0/8+fP52SsO5B7Fc07x9/RLrcPo7PEN9JDKxg8cuxgaovdqWOhewMaJFh8Ax0sPoc57pPStEQ5rLIYQNwsopD7re4NrCe0eenhpFzty0mx06+uu7XsyqNCfTl+n3XdhXa39xPatNKxurVsdIbgL2lMEFIJad2E1ZEIy3wqNluJ673NsaJQKOjWretDSjwYnU7H0aNHWbJkESfCwsg2a6lcvwNFK9TB219QP2gt1+Bu8c8s42LxPfUVrO9ZJRtY6/vlqtA/KDIEGa/D3ZvWz+yc3PDp+jE+gCElDsPt82TH3sIUdwt9ajwOZRvj+/pwtOnx1mNMllUCdZZQr9lR+O5MFn9Nu+gr1rLHi3Zl/ZS6dOzQzubvDJmCQ1xcHL6+vnh4eABJT1SHyaBn5Q8TmDrlY9k4+gxQKpXMnPkVe/ZvgsojHvt4s0FHZvg5sqKuonbzQ2nvjIN/CVSOtgnAZEKJXvfkbmv71/3Ix5M+sElbZJ4tBebpL1WqFFs3rSMiIoItW7cxd1x76nceRe1GbVDbPU5YmhefNT99Qr9+/fJFc65QKJgz+2uqVKtB0XK1uXnzJvY2stp36tSBDZs3E/rPGko36Y3GqzABvadhNpnIjrpC5u0L6OLCwJIfSWnvhE+797APKAnw2L5J/4/GN4Tys86ScfM0N+cOIvHD2vh1noRHvSebzCk1DkRFR+Hj7cXdE8ehRN7H3I/tK+Zx9fQ+5n0/m0qVKj1ZJTIvHdWrV7dKM5s3b87IkSOp2LgXtZt0fKbtSEtO5PJ/R4j7917/mLPhuVfG7icKiftXWNU/FSZMBnMmoGrLrDXnc4D/wjNw9fCl1jO+xsdFo9HQsGFDGjZsCEBCQgJLlizj0JqZ3I6MwadQCSrUaoJ/UHHSTFo8fAphi3iAalcf7ItWxbloVdSWyI658mU+AUq1BsemIxj73jjWr1391G2UKZiEhoZSrFixp6rj7u4fGNmpFU2bNLZJm2Typnu3rnz8aSUcgzth5+6f9wGAISOZ6A0z0CdF4RBSFYeQKhiSYzBGh5Kw91dMWWl4NOyPx2s9UTyFoiY7+DXu7jv2RA5D4Vf/w5xym5YtW97z2SeffEKZMmXuc5TMi0KBmVzmULhwYUa8OZxmrzflp59+4oMeE2jdYwSN2vbF7ORnLednWQ3o4CPRR7uIVn4VZowWeaZKoj41StSqKqVokVFKJnrJxYTJ0J3wGxxa9wMtBn1Ksr34IFyRRED10opSTheNOHTrdp9VBICbN28y9cIRRq39/QF34OlxcnLi158XMHr0ULp27YqXl5fN6v72m5lUq1GLFjXKUMJPXKUINWRj7xMi/CGxmqklclSzVOsvCR+t1ApRM6W5LRVpYm5Ns7PY/qzkeJSeQRT/ZA9ZN08TvmAYCXt+IbDvVzgUEhK8ky2JFJzjfyDR6xt14ndWrGozkpKSSU6+i1Lit9DcVyyz5pjY7pr+KZw8eZLr169z9epVIiIiaNq0KfO/2oZGU7CMIDKPTtGiRdm8eTPjJ37I4tkH6fjm1HxTXpiMRiKun+P4xX+49t8hvDxcada0MSVLlLzHYFXqMWLFPErZUqXg0OFjjOpQllqN2qByFlYj7VVmDAYjWbVGYOfihUry3N+PlLtRLPuoM8uW/IFeryc9PZ1Lly6xefNmQkNDydTd61aQ07s6apRUrFiRkJAQChcuTJMmTfJst6enJ++8M4Z33gGTycSevXs5feYs53bvIzUtnes3w/ErVhHvIhUoUbE2bt4BoHxxYgB4NnmD7L8/Z9LkT5g+Tc45KHMvv/y+mHKN+rH6WCJmiaFEKYlwnimJ/BynF7dbeOqJun6OS7HHGTli/bNpsAwA9vb2DBnYjwuZtwgqKaQc2qEX41mY08U0Iqjs0MWFEbn8QwJ7T8OphFDOkC0aEdVaB0zZGcT/9TM3vmqHS6XmuNboiNbPYniQjLOMkvQnipQY8TwWtySFUoVCocTezRel1hF9tjBuMxnEsXPPwuLU00ElLCCYzWb2/DGdBQsWoFJJQu9bSElJ4e2332bZNfE3mJSTksRF9P9VSNqqTRWzO5ilPqaSd57BQRx32yeJct4cFze9pO7UbHGM91+a2NfbS56XYEfJmPSeqyjYFLjJZQ4lSpTgm2++4fPPP2fFipUs/mY0Go8i1O/4Jmo7jVUaluOfmZ2Zxu1bRzAZ9KSnJnLj7CF8fLxQKBS5fhRSy/2Dfiw5dcbGRDNqxDAWzR0FbkVwDapAcI3W4PhkOceMRiPjx49n9er8tz43bNiQI0eO4Oj48EHe4+Lh4cG6NasYPHwMhd7ZiFqSCuZZ41a5ORXmXuf2b2MIm9sfjzrd8ev4eBKM6i0HMferAURGhOFV9QyOIVVyfW42m4m4eYXb1y8Seu4IP8XfpE+fPlSrVo1evXrh5eVl83ss83JiZ2fHt7O+ZteuXXz0US8CipTEJ7AYhUtVxsPLjxRAoVDiH1jkPi9codPJMUrlyFnblLfjypUr1n/nz58nKyuLypUr06t1YxpOH2czZcKj0qJFC955exS3b9/OtX/nrt3s2z6ehIREnL0CcXcNIqh+HzSWGA+l1Vcwm00c27iLK4c3Mm7c++w5cJipM+fg6hWAe0AxyldrzOtN37EGVYjJEu9TMSfBWGg0m7l+7hi3r0RxYOYH1KlVjTmzv37kXHxKpZLmzZrRvFkz6z6TycTJkye5evUqf+38ljNnzqBHQ4uebxNcsgKjy4YAcPCu4Ot/1ZKnN9OS8kpz+6zkBEKbcwZAOSlZlAZxMGOXIRjPdJbJuTozyXKM8EpXSPzJHW8K0SRvVx7C5b++p/TiJQwa0P+RrlXm1eH69Zu0euPJEtJnZ6axe8F77N+1WY7i+Rzo2rUrf/QaQkCZbagf4uqjiw8ncsVHBPabiVPRqg8sp9Q64tv2HXxajSLlzA5i1n+J2tWHgF7THqtdKgdX0lLTeFyRbeipfVSrVk3Oz/sSozA/Qo6GlJQU3NzcSE5OxtX1YV4uLzabN29mz5499/3M3t6eevXq4eDggEqlokGDBo/sM6DT6YiKiiIsLAyT6f6BeG7evMmtsDC27/gLoxnUGnsKFStPyUp1KVetHvYOTrkCTEi/lBxfqHnz5pGUlMTkyZMfqV0vMhMmTGDnobMM/2I5CoWCn26K98143zyToLATrUNKlVSqIdwtoyWJLgB2kg5WYiXLWeX8fxzTYjkxrhpFWo2k7ICvrPvvpKffU1YtaYfRoCcr/DwZy0YRcfUcfcfOpHarvvSsqmb69Ol89913ACxatIjXXnuNUo+zFCTzRERERBAUFPRS91cZGRkkJCRw6dIljhz7l5gYYYKhN+i5du06ehOolPdadD0sCTLjU7JRKcDf25XSpUtTunRpypQpQ5kyZXByen4GnUfBbDYTExPDkWMn2Lx9F/FxsRj0BjLSUggLC0epcaBI6ar4l66Nb4nqeBUqjrNWuG53i/oj2bKqEi2ZXBa3RPTLMf7l5PO8evoQWxdNZemiX6hQQcyz+bRERUWx4OdfOXjoMGERUVRt2AFdlb44+QRxNUtoX7Zlcqm6z+RSTH5u8eWUTC5VlvyYeidhspozuTRYohlKJ5cqi8ojyy0Qk0HPtS9eJzzsFn5+opJH5vnxIvRXERERDB75HsM/WgDkzrcckylKt26mi2Oia5L9mX+OZPKovjRvLhpcZJ4tA4YMx1C+N4FlarEjUsy7nrNyadJlEv7LKAJ7fYHGJxg7N0k02P9bufx/jLpsEg+vJOXUFgIHzEJtUYNJ1WRqycqlwdnbun1rSgMKvbUYlzL17rty2StEVIU5qMyYjEaWTGrNgT3bcXd3v6ctR48eZfLkyaxcuZL5J8Vx3uFk4bcZHhNh3WeXHG3dftDKpc5JjKKtklyPNPptzspllleIWLdEghzsdP+Vy/qe4vjVS5XO8tlj2LxhzT3X9DLxqPPBV2py+TSYzWYiIyPZvn07N2/eJDo6mvT0dDIyMjCZTAQHBxMcHJxrQnoxQpRuGiR3OTE+mqQ7VyhVsjhajYbzl66gUqmtK6Emk4mEpCSq1G9LwzZ96FzDnSNHjjB//nw2bNhwX5nAy4ZOp6NTl24EVu1A9Wbdn/vk0sfFlcyYm/w7vgY+ZWpRaeIWFErVI00uAUzZGRQ/+i2Xj+8EhYorF/6zljlw4AANGjS4px6Z/OFFGKzlNw8yYuWgUChemhWEmJgY4uPFYDVRUVHs/+cwew4eIzU1Db/yjVFpnShdJJBCxcqi8BYNNHrLbXBQ5QTXefzJpRJIuhvDyplv8Pvvv1OyZEmbX2NCQgLHjx9nzoJFHNy3h0JtRqGu2hmFeyAoFKgjzomF83FyCfCa/jLXDyxl964dL81vpCDzIvRX3333HTEGP6o3aAWIUelBDNAF4vMGkKwXJpe3L/+L7uxyFi5c+GwaK3NfoqOj6dChA0eOHKHPBnHMcz5eUDlEr5qCW8WmeNQU/N2L2YvGgVs68TsubBlauajEQevJKGFilnHjJLFbZlF4yFzUrt4opGMuhVifWeKnqd4yFUN2Ou0mLKGoRT0i7XaSJelEgpyM7Fm7kErBTg+Mbl2/cXNaDfqEIiUrEp0p9u8roi0GuySJPFcyvbG3pBMBsMsQpcJS6axRI6rIpJNLnaswkcz2FQNrlPERJbL1PMRxaopBvJ5gSSoSrSnjlZpcFlhZ7OOSlZWF2Wzm6tWrXLhwgXPnzhEVFUVKSgpxSRkoFErcPP3o06UFPXv2xM/PD1dXVzQazQMne9JUEzpT7g46Neku0eHXuHh4CzqdnmZN69K+bWtq1qwJCKlGBg5+g52/X+HAMiWJiYn89ttvBWJiCULAjKWLFxFYqBD2zq7g1/x5NwkHv6JUm3aQyHk9ufBVeypM2vbIxyq1jrQZ/DF+IRXY/tsUFi5cyMaNG/n222/zZbAq82pjyzRE+YXRaCQ6OjrXvtDQUM6eu8Ct8DucPPMfd9OzyLb3hhxLt0KB0cETo18ZnFu0RaFQcDdbmEhFqRwhzAy3LonnsFid7Sx5y8wWo5PRYkTSpMZZy261+MvYWXy7W3gJ97CMqwFnT3/aDp9Ol+69WLV8KWXLlrXlrcDT05NWrVrRqlUrUlNTOXr0KPPnf8axEyeJjAhn4BerKVNLCFzhYicMiH6NENrnaie8pqUv6/gsYaKpTxLub7a/4C9uf+c8ACaV6L9tdBbuRU6AINfqHbm5+kfCw8Pl6LEyAOzbt4+e7//0RMf+u2EOK375zrYNknls/P39KV++PBs3bgRa5/pMnxxDdtRVPIbMeapzOBarTkDPz7m9YBiB/WZi7+qT5zH1B0zhtxHViL15jqIVHt6vXjixj4hLB/nxywdPwNRqO4qUrPjYbZd5tryyk0uDwcC2bdv4/Jt5GFBjUmnJVqhQuPmjL1Qdh0Kd0BYLQqGyo5qXuNoV6WwkMg6IgwDHbEB4yUvXf/tKQu/nEJoi3mpntQnsffAs5UOHinUwGgyEnj/G1Nk/kxA1iV7duzBwQH82bViXT1f/YuDp6cnNGzeoWKkKTfuMo3YHIZT2qWR3a5lzSaJcQyqlMOpF2QeWwEsKidXJbBYtRrkSBEu+KLNkJcBNJVhg3ILL4l2zCWmx1yl9azMxgULuyuw00dIlzacpXUFN1NlTrF5Xip8/js5gZMuWLXncARmZgkdKSgrNWrTCoLDHMyAEk0J8/nx9/fEvWpHMQmV4/fWJrLiVgh2I6gKVmpwnSpES9/9V5yvBJSsy9JPfGfDGSCa8N+aJ05jkhYuLC82bN6d58+akpqYyd+5cPvywOxP/vIybd/7nqlOqVIRUqkf6fVQZMq8eBoMBnU6HnebxA1Cd3L6IUkE+hISE2L5hMo/NlClTGD58OM4DGuaKZ5Hy72bc6/a0yTm0AaUIenMhEb+MonDPz/OMUOvs6U+VlgNY9l5jrjTuQLWm3XMFLMmwqEzSEmNIubST9WtWPjC44eXLl7Fzun+wS5kXi1dycnnp0iUGvzkGz1L1CRz8C1pXwWp+U5wzoMolF3q4BO1pUanVlK5Sj6o162IyGjm4YwVtOvagRLEiTBj3LqVLly6w8qWAgACio+4w9M23+PPTLtTu8h5ZHuWxd8vbIpZfFCpdkzK1S/P++z2ouiQt7wP+j2ZDpvLH1C7079unwMoyZWTux/Xr1xk0dASNeo0noGJTADKM4iprIUv0vDsZL6YCwyegCCOnLmXF0ll8N/cnunRoTZUqVQgJCcHFxQUfH9v2Sy4uLkyaNIk2bdrQa0A/gsrUxNMvCIVCSVqK0OfrlUrMjh64laqPg69tVhrv3r72Uqx+y+Q/W7dupWXLlrki1P/6j5i3WaMUDbIJ2eJzq02P4ur+Pzl+eP+zaahMngQHBzNs2DBW7v2Rhj3GAnAhQU121DVcq7WlspP4zIc4SAzwaeL3muM2IO0dyviK/plXEpKwcw8goM907iz/kKBhP6G00+aSxSJxZ9oZbyS77jCCrx5iQOemwF3uh9pPS9+pK3FweHCU9C+//JLmvd61zk133RWN+wZdes6GdZ99Qrh1W+oqYNSKfp4myQKBUtLudE+xr81xLVA7iMcV0orPhdEsjs/97cX7mpObGkCylvFK8MpNLg8ePMjEiROpP/I3XL0DOZf2Yg1ylCoVDdv2pWHbvty4fIZJX8whM/4mkyZNomHDhgVykqlWq1n060KuXbvGr4uWcnrzHPQuQWj9S2Os3A2V5IF+VgQEBBAUUhxjVjqqx4xoq7bTUK1he9av38DAgQPyqYUyMi8Ohw4dYuqXM1E5etFi0GcULl6exJf0ZWrv6EyX4Z9iMhpxuXuQU6dO8cNvq8lMS0ZjEoxNTZo0YdiwYTg7O9vknJUrV+bYP3uIiYkhPFwYEA2VfB4ecYffl40j1WAiywjZej0GlwB0PmUAhdXHPDstDq1vMZSSkPk5/k9Ki+LixvEdJN+5QunSpW3SdpmXm927d/P2228/9nEn9qzmvbffklNovWC0b9+eGd/+SGPL5BIAkwmlxrZR6e0DS+Neqwvxu37Et+27Dy2r9QkhLbgeGo2GIUOGPPE5Y2NjCSjyhAnFZZ4pr9TkMisri6FvjmbkzA38p/cjIRMuRoq5bBR6MQCP2U60nhyW7D/kIAmqLLHUKDJE/8rpFwRH4Kb+4qpViKNoNdkSL3bGpexFy0YhyXYpNz1FS1ehaOkqNAzO4scff+TLL7/E3d2devXq0aJFiwKXRLZkyZLMmPYZYPHNOnuWr2YNIrhyUxp0epOjae7WshfTJVYovWCpMmamiJVJnLRVzh6S3eJxnh6iNa6iJdhHZmoie3Yv482O3/DmsDf4a+/XNBn4KZuV4mAtWxJZzSjJt3kuRRxoNmjclS/GdqBHj+4PtcTJyLyM6PV6Tp8+zbYdu9i+cw+BxStQtd9M3LwD8bU3YTbDonBLAJ1EsY/VWnwjs7yFnGlKS05Zk2VypEoVA/vkRH3IieyntFikc4LZgBiMwagRDEAKs9CHmu2Fvle0YYPa0j8YYm4AcN5emFzlWOorS4IyKBWCoS/LryFBfg3pUEfo67UqMymJ8ezbvIhf6jVi1IhhjHhzuE1WAV1dXXF1dX2gj/ZgiaHKbDZz/vx5rl69mqtMSoobZ86cISos4f8Px0EjtDE4OJg5B/YWSEOlzOORmJjI1atXHzuKedjF4/y3bw1LvjuZTy2TeVK0Wi0ebi6kJsXj4u6d9wFPgWv1dtz6oR+GtETULg/Ph+7a8h2mT2/N4MGDn7jvkQ0ZLw+v1OTyx58WUqfNAJxdPR60Mv9CEhAQwNSpUwEh6uDhw4eZOnUqFSpUYNKkSc+5dflDiRIlKFGiBJ06dWLuvPksn9aXNJU79kWqULzN2+RHStoLf/3Bpb/+oEfntlSrVo1ixYqxpnkrdn3/Jqnlu6H2DgGlEoVHIRR5DCadXT0IKVkevV4vTy5lCgy3bt3ip59/ZfffBwksUwePoPK8NX01KrWaiPQXSwWSX7h6eNNhwDja9X2XnSvnsqlNG+bNm0fx4sWfWRsUCgUVK1akYkU5sIXMk/Prr79aVy3/PJJk3a+UDP4zJdFi/R2MmEwm1q6ZyYZ1q2Vp9QvK6BFvsGLrQjoPmYBa44BCpUKtceBGtvhdlnEWZZ3+mnuTRiTqxbIhkoWPIoHiosmeWA2+bd8l4eCf+HYYJx4sSWeSE6NC6eiGg3cIO3fupFWrVo99TcuWLUOlUpFuENuVZBTbrVQJ0xmj8v7TGoUk3kZO5GzLgdZNkySbgNLJ3brt6CgsHDRzFxcnDKb7J9rIlgTv1EmjLl/diqvT4/s1v6y8Mj3DtWvXWLN5N/XaDX7eTXkqPD09adeuHUuXLiUuLo4pU6bwCNlkXlqUSiVvjxnF4f1/sWXRbBr6pXPx206kLOhL6inbBMxJu3GK7TP7UtI+jnMnjzDl009RKBR4eHhw+t9j/Dl/Oh2056gbuYIKF+aT9n07sg4ussm5ZWReZIxGI5s2bWLyx5/Spn1nhr39IepCr9Hzs4007PMhFRt0RPWI+YALGkqVitZ93mH27Nm8//77TJw48Z7ouDIyLzIHDhygfv36j1xel53Jgk/6MbBvN0qUkOWJLyrt27Xj+tnD1pRVaicPdPHheRz1ZLhUbklG6DGMWXnHp+j49hy+/nbuE53nwIEDfP/990907PMmJTGeJUuW8PPPPz/vpjwzXplRwdJly0muPoTFUYJFJSXL4qArCVWvkshfsyWWDbOjJDqVRAap1InySJVEkqlXC9aJvdfEus1aiW+OxCoYI4k8Wju4iHU70FGUdUpTmuQ43SsUCmbNmsXChQtp3rw5n3zyCQ0bNrz3wgsQRYoU4ZuvpgNw+/Ztvvt+LmeWLCE+KZ0ydTugLtMc90DhhRcvsbq5qcXJd3lXwfKUmhjH7WNLOHt0Nxmxt9m0Yf0DfZCKFCnCzKmfWP/W6XR89MkU1s5oRMORPxBYugYAOxPF89TMVubKCSYj86ISHR2NTqfDYDBw5coVLl+5xp6/95OZmUW23kDpqo0oUaEBPRsPIUPtDoBKYcaaX/b/8kb+ckfo/4yZQr4xTbrYf2X5CpJPhSW9iFW+brE650qA5lNUKBIr5CczWyzSekm0wByprFVWmykEItHE3wJA5yX2qWSmCqewHHMrMgyAcEs+s0OFxee/qMWSH6gVHmKlpVk5edoAPCyfXUwNoO/E3/DXX6BPnz4sXbqUwMD8j/oqI/M03LlzBw8Pj/smqr8fBr2OHz/swwdvD6Nv3z752ziZp0KpVNLs9cacPf43uDfHIbgyGTdOQtk6Nj+XQqHA/bXupJzYiEeDvg8t6+FbmMS0bBISEvD09Hzsc6lfUkPmnVtXaN++PY6OtvV7fZF5Ob+pJ2Dd+o24fzD2eTfDpigUCt588026d+/OyJEjOXjwIO++++4rIcMMCgpi1tdfAULqg7179/LzH9O4FJ+ESm2HRC1hHRgCXFAKPpqB/j40bVyfedO2PnaHpdFomDnjS5q/3oRPv/iCK66FqNV3CuD39BcmI5OPJCYm8v3cHzl77jx3E5Ixm01kZusJLFKcIC8tJUuWJN7sT9dRX+Pidm/I94ys+1Qqg0KhoEGDBsyfP59Bb7zJzm2bZJ9GmRea9evX06VLl0cuv3nhRwwb2FOeWL4k9OnVg/GfzoQOzXEqVYeoVVOg7ah8OZdbjU6ELxia5+QSoFbHt5g4cSILFy585PpNJhPXr1/Hw8ODnPR/LxO3Lh6jbpvaz7sZz5RXZnJpMJlQqgumM7Cnpyd//vknX3/9NfXq1WPjxo0EBQU972Y9M1xdXenUqROdOnV6pufNyVV39OhRho7sSZJ/NdyaDsehUMEKtCTzcmM2m/n7779ZsmQJsbGxlGvQgxb9O+Hlm3t1LUcVIVVKvEgY0hJAqUKpeXGNZ6VLl6ZIhQZM/+obPpz4wfNujozMA9m1axcrV660/m2QKG0cJGofF4WZ/VuWUrGoF6PeGvEsmyjzFJQoUYKYiJt4aNQQWJw7CbdJ1RtQWHwMVRLbl6ckZYadxVkuUS/6ImZJ/Ailx2ktkfS19k6YjXqhf7bTopAEuzRJ0ntkmxQUrtiIlUtEJdijcPbsWapVq4a9vT2RmaJ6JEgjNuZajCVwnMSol+UvGYtJlIY4iH6jyuQY67bGXVwgKOUoTo9MFpWOl1a8T5kS389kiVJOmnxOozJjNpu5/t9B2sz97GGXWOB4JSaXhw8fpnTl1yjnKkpNt1os8AZHd+s+g1kSCVYtyX2TJkYwNLmKEUZNkrw5ZidxiV+R88OV+kJKHrBcSNJcnAgVI/+diA+wbrfwF8uYLQO/7rVzryqoVComTpxImzZt6NmzJwMGDGDQoEHY29vf/7wyNqNOnTqcOXGYJUuXsmbtVDIMSv4rW51bl0/J91/mmZOens5///1HUlISu/fu4+iJ0wQWLUfdlsMpXLSMdXCQ85r8f8d7vWQgYWfJcdft//qbVZIJaFymMAj55YZgUTYnCXLTnFoMEpcAhSXSco6bgNlR6GdVWkEuZOchJuQub0og6uIhzvz7Nxm3zliSdZvRJUahcnTHPqg8rpVb4li8Bqq4W8K1WJKJGRwtfbkk55nekp5DkxQJgDpLcGUwWSKDZ4SesJY9a2nfmZz3Q06UaYmBMif3W7IlaMOJu0Lk26YdBzNnfDcmjn9fDngi80ISFxeHk5PTI6mctq+YS9Kdi6xavvQZtEzGVtjb29OkYV32XDqER/mGeFRoSvKprbjX6JA/5wsojT4xEq1v0YeWU6ntKFKkCOHh4RQpUuShZXM4c+YMAQEBeRd8ATm0YwVtWzd/5ZQsr8Tkcv3GLdRp3oOUvIu+9FSqVIndu3ezbt06OnXqhJ2dHQMGDKBVq1a4uDz7fJGvCmq1msGDBjF40CCuXLlCVFQU44d3kUNnyzwzIiMjeX/8JG6FRVCkQl3s7F3xDW7IwPaTrf6BLwO6+NvcXvIBcegJrNgIz/p9KNT/a8wW/0x9Rgqm7HQyb50h5eQWolZ+jGNAKTyqtsLRN+S5v8RVajWuXn6kpqbi5uaW9wEyMs+YTZs20bFjx4eWyc7K4Pfpo6hfuzK/rPzzuT9XMo9Ps2ZN2fHbHijfkMKt3+K/Wb1xq9Yuz2j3T4KddxD6uLA8J5cAH3zwAb/99htTpkx5pLpXrFjB5s2bn7KFz4eUxDh6dH/9eTfjmVPgJ5dms5kzZ8/Sq+lQUox5ly8IODk50b9/f/r3709UVBSrV6+mdevWdO7cmQEDBuDj45N3JTJPTOnSpeUE5TLPnO3bt+NZtBZdRn9Lok5YTXxAtPQXlsTj64nbOZ+gQbOpX1ZIs3HC0nHnXIpCoUBl74xzmfq4VWmF2Wwm/cgqEo5vIDLqKv6vD8WxfOPncwHWNsorljIvLmvWb6b3e3NYdjjJus9eIoW9c/MyK36YxLTPPqZZs1dvYFxQaNyoEYpPZlDGwQQOXoRVa0Pcrvn4tR7Nv8ni8N9ZKX73VSzpNiq7ivuk6WiyJXZKo0n8Q5mZAomRKGJvYPYRJ5hmSV7wK2mCqq931RDCwsIe+TqyTXb8fkSo50SKmM4jPF6Mzq20qAPNEnWJnTSdiKcoeXWTdM+xkjzotSXrL//EidFvK3kISpZknXigj704ofB3EO+VnbTrN5m4du4ofqNfPT/lAj+5PHfuHGVLFuONlsVy7f8SQWq6+JD40Mw8HmndVqXEWreN9pJIrybJDNVOlDwqHUULtVGXSVbERXS3TmO0RJHVp8RjSEtEqXHAPrgSjsVqYOcdlCtbo0nyUGgiL1m3d6SLUrF0o+BLqZO8FPrWdb/fpQNCjsy3336bt956i6+++gpfX1/+/fdfqlev/sBjZGRkXk6cXd1f2hWG2C2zMSZHU2LCJpSaR5eTKxQKnIvXwLl4DUypcURu+56kK0fwb/8u2D0f/8z46AhZEi/zQpKcnEyW3oyjkyvZ9zG4h144ydZFX7J5/Sp8fX3vLSDz0mBvb4+9VovZZEKhVOLX5m2uzmiPe432UPjRJKmPSlbsTVxK132ksiEhIcTHx+dd0IJe/wC3shec0IsnKRlSmJIlSz7vpjxzCvzk8u+//36ihK1Pgj45hvhd80m/9A8OIVVxq/Q6Tt6vAWBW2aHxKowhOZbkMzuJ3/0T2Xcuoy1cFtdqbXEqVZf8HBKq1WomT57M0KFD6d69O/PmzZMTcMvIFDDqlnKmY20PVh4VfCIzDIIZNTRF7OrTLfvUytxBCub8LRjCPCVKbpXFCvv/QX6kxtlb6cIqqSJesETbWXwZdS4WS7FEgmW2pBzRugnqiXKOwrFXT+xAkxhBpRHzrZPjf1MFC7ouPUmoP8f4JlkVNKYI6Z7UAcLL279oRfwrNeXKzoXc+mU0gV0mYe9XXDi3UvDvNGos/p0ZCbmuSe/kZd32CRSMkW28hEHNf5b7d0USLfdKonCdZovFfHu6MJGt6JhJgL8vWu2rkzBb5uVh69atVKjd/J79KYnxbF8xl8y7t1i/ZoU8sSwg1KpWgTsXDxFYoQEKlZrCfb4k/PexlJm4ApWdbdx2zCYTWVGhaLwePZDkoxpBb9y4gaPny+dvGXb1LNuXzGTT+tXPuynPhQI/uTx48CBDhgx54OcD6rlbt+OzxEHLr6GSaFKpd63bZkmiWIUl2IMxM5XMzV+RdOUIIR3ep+s7U1EqlbmiajmqcpbNXUmvJgyEzGYzZy6c49qBNURsnw3lmuPZZAgqR1d0anFgopDk1jx05TIAiYay1n2qo0nW7V51xOu5H35+fqxdu5aePXuyZcuWVyrvjoyMzIuHLj2Za2tnUOfjbTZbdXWt1ByHoApELv+QgHbvYR9Yyib1PgoRN69QvFjefkcyMs+DWbNmUb1ZX2Ijw+nduAgzZszg9OnTODg48MYbb9CuXTs5EFUBone3Tvz053aavF6LwGQ78KrIZcNgdn83hPKjf0ep1pAmydd2J0Mw+LlIIshK07ndyhSjyGYn3AYg9fxenMrUw2zvghkw60UrnNJB1JqWcxGDYD4qO3ft5rJHTeb8Z8kbL836IAnYZlJZgnBKIsEaJZ/7OIlj6oqSfMXSSLixEtlrx0BR9VLYUajHxU6Uv0rzmDtJ9ht02RzZs5HT+1azaf1qS/qUV48C3YMkJiai1+vzNZBN+tUjhH3XC+eg8tT4ZCc+VVs+csesUCjwLV6VeoOn0W3GX2h8ggn7ridpF/7Ot/YC+Pj40KZNG/bt25ev55GRkXl22NnZkZGRkXfBF4zLW36gaJtRqCWRs22BnUcAQX1nELlhBvrk2LwPsBGHdvzJ4IH9ntn5ZGQehwULFlCntAd//TmdoUOH0rRpU3bt2sXGjRvp0KGDPLEsYFSqVImrZw5iMIjS0jJ12uDfoA8X5g7GJJmAPQlms5mE/YvxfK3H0zb1vuh0ehQvcPopKUl3Y1nwxQiKuKS/0hNLKOArl5s3b6Zbt275Vn/6lUPc/WshIe+tJsCv0FPVpbLT4FarMy5VWnFn0Vh0cbfwyKeHFaBfv34MHz6cNm3a5Ns5ZGRknh0NGjRgxIgR9O7d26qacFQL5lVXO9E6q1EK+25aLNTn0oTXQGhy6j11ah0Ef3O9TrBEl3ER/AivZoiWX11ChFCvLvfEVmn52+jibd1nlxQlHGNRfVxXunDz5C4GzZqEQmkiQZIvLDJnFdNybpRCO+1dxLRPRotVPMdCXdZRsGoXKxoMwOE4TwIGzCZi9RRKdZmAQqlC5yLI/XSugmzXbPn/jeLi5DbAUThnrEXN0sxXqF8RK1rN/VyFexPiJDiueWhNxETc5K+USKpWrYqMzItIjRo1qFGjBkOGDH7eTZF5Bri6ulK9amWuXzgJIQ2s+32qtwXg/Jz+VB05H42z54OqeChJR1bhEFzZkirK9hgMj7/a+TyIj4ngm/d78OO872nZ4l7Z+atGgZ5cXr58mU6dOt33sxyfJKl0NdBJ/GNyJTGIz7TTEq93y3J/+vV/0R35k9cnLEetdaScZJldbakmXrLEniaJxuWgErfLSGQChR0cAUdM0/5g1jcTid81H/+uH2Gy5HADMFksOBduhVr33dCJzsIxmWLCFWnCV6nYTKsyA1oMGg9Onz4tD4RkZAoARYsWJTAwkE2bNoFfg7wPeAFIuXwIl9J18yU0fg72hcviXL4JcSc241u701PXZzLoSbhxmuRkQRKWqDXh6uGLgyKbncu+YcWSX5/6HDIyMjK24vMpH9Nr4AiajM39XvCp3ha1oxvHp3fGt0oLirYdDU7OD6jlXlLO/kXqhX0EvTEXTLZPd2U2m9mweSsOrWfavG5bcfHkAQ6um4u/rxfr166kUqVKz7tJLwQFenJ59uxZvvjiC5vXa9JnE7NxJi2/2IVaa3ufRaVSSaF+XxGz8Wvitn+PVz4lva3XsjdLly6VJ5cyMgWEOXPm0KFDB974pAoOTi9+Xtvk83vxsFjQ8xOvZsO49VlTvKo0hye8LYlxkYSuXkRW2L80bViXSmVKWH1EQ2+eQKvRsG7lEkJCQmzXcBkZGZmnxNvbG28XNVnXD1GiYm0ASuXEGKlWl7a1dnPhwFqOTm/HxTp98Go0EINZnCyaUsTIrgqjnuy4MOJ2/YjS3oXC/b5GYTajMIkLJWajuG2S+F8GOAhTjjXHEknLynsyqtfrUagd6FRB9JnfESfWrU8W61ZZVk6NmaICp0Uhd+t2CZds67arxEfyXJKddbucs1i3j73YPoOleIZBXKaxN6WSGBfNzkWfs37tKooVy52R4lWnQE8ulUplvvgPJJ/cjFv1dtg5uuZd+Cnwbf8+YT8Oxt4rCKeitp8ABhUvy6KZY5gxYwZ2dnZ5HyAjI/NC4+rqyqeffsrUqYOYNm0ar732Wp7HrLJEgo3xEgIeREkCNmyLF/x0jBZp6qXQ6/ccb6cXAo4ZHIR0TCZnIeqqfdRFQMw/BmDUCtJTs0Uym3LzP5zr9cFOIby9QxzEF3ohe+FFnukquBzsTxCkqUaJ71AhR6HNdzKFsoeSheOL2gvX8Jq3OJNMajyIqEuH8a0nSGZzVCA+boJfjJ1S9D0yWJoR4GgkIy2F439+xe3bt5k9aRKvvTbjpU33IiMj8+qhUCiYN28ejZq14a3pq3Bycc/9uVJJhcbdKVuvI3+sWcTVL1rgWKYejiVqY1+4HCqlCl38bbKjQ0k9uwtjZiq+zUdgH1I5/9v+AvkAGwx6Tu9bR1JMODf/20fpUqVYvfJPeWJ5Hwr05NJsfnAG8ZyxQZYkOaxGIlfVS/Y7e4jJV9MSokg5vZ3Cb8wjRGLZMEpOlZNwNipbfCgcJbLY2xK5bLBEulrUUZTfdvBVAkpSx37Ngk/7EPLeGhRKJXYWiazes7B4vugb1u2T9mKUwqY+oqUmIuN+X7UXZWu+TmhoKGXLlr3P5zIyMi8bTZo0oXTp0owcOZISJUrwzjvvUKSIbXOa2QqzUY9Kkug6P3Gt0oqw+W/gW6/3Ix8TGXaNpbPf5+vpn9O4cWN5UikjI/NS4u3tzYT332bpwk/o8/739y2jstPg22IEPk3fIPHCPjJvnSbl340YU++idvVF4xOMd5PB2AcIK4kPHmEXPOIib7F+zjsMHdiHKq3bUqnSJJycbBuEriBRoCeXxYsX5+zZszbVQBtS4lDYaVHl86plDi6e/jiVqE3ahX24VGxq8/rL1mnNz78tYvbXX9m8bhkZmedDYGAgGzduZM+ePYwfPx6TycSwYcNo1qzZKztBUtppUTm5YczOQPUI7gwGg56FU0ewY+uGF3ZyLiMjI/OoDOjfj7P/ncEv9QiNfOtY959LFJVrvnZKsNOiL/UazqUE5YspI8n6uVKXAWbLQohZsqookcUq08W8yCZpahDzo/tzWutSQLZEQVvWRQyqFqoR+2X7nPhv9mLf7msvqlw8tPefCheVSGElce+si03Xzh5h37r5uDjYsXb5Itnt4RF5cdab84HKlStz7tw5m9aZGXYWp5J18i5oQ9xqdSbl3035UnfZag3Zf+DQQ1d5ZWRkXk5ef/11VqxYwbx589i2bRvNmzdn3rx5JCUlPe+mAaDUOmF4hmlCNB6F0CfceaSy/x3eSft2reWJpYyMTIFh0qRJTJ06FV1WZt6FnzOrVq/BL6hk3gXzgayMNFbM+YBzexezfsUitmxcK08sH4MCvXLZtWtX2nTsgbaEkG6jW20x50yOgUItmV4/yJ7vLblLN2+fx7FYDTAZrSHoAeIkEtgMiyz2ZrZYYy1n0fQSlS0edztNlK7ezhYtLpUk1hStdxEMiVGgy8JgCeGvTLtr/VwpcZ4+fe2idftsSgnrdrCTeBHJkuC3zQD3oPLcunWLokXlxN8yMgURHx8fvv32W3Q6HRs3bmTgwIF4e3vTu3dvOjVsiEajue9xX1r+//mAYHw6m1wOgH2x6dYyep1lkGISOhZlqpDsOsv7Xj8UZXYaAIos4X87jwCMGckcSRN8JBu7ip1TiCUCd44PqFEv9JWuzm7WMu45rgwOQvsj0oW2eNkJ/XFZSTTuw/bOaAJLoYsLw8GvGOrMZADiIgW3Aq8igdayKoWZS8e2M/frKfe9LzIyMjIvI15eXgwdOpTdaxfQtu/Y592ch7Jh01Zav/EF558uFedjc/HEXvat/o4ZX3xCs9dff7YnLyAU6Mmlq6sr9epU598D26jR0Db5HM0mI0qH5xCFMR+VbL6larF81Vo+nDAu/04iIyPz3NFoNHTv3p3u3bsTGhrKunXrmD59Oj169KB+/fqULVv2mSZRdyxWnfQrh6Fs3WdyPvvC5Ug/tQ23Ck3yLJueFEfJks/Hai4jIyOTXwwYMIA5c6ozdnBHqlWrhuqYKGO9bjHm3U6Otu5T6ySrnJIoskatGPxNazEqAmT6iIZFhV5cQInLEsoPqu/CYvuHv2fCwsIIvxONnb0LwWrjfcuoJOLLEpbFnkxJvJQikgUglUJU52VKor5KU/aZzGb+3vg7mTGX+Wv7Rtzd3R/aRpkHU6BlsQBTPvmIfRt+wSCJMPjUmJ59UleFnX2+1V2uUQ+27dqbb/XLyMi8eJQoUYLx48ezdetW3N3d+f3332nXrh3NmjVj69atZGVl5V3JU6Kw02JIjc+7oI1Qap0wG/N+F2Skp2B+Dv28jIyMTH6jVqtZsmQJX375Zd6FnxPh4eGUqd4YlfrZrIEd+WsdM95uj6c6hd9/XShPLJ+SAr1yCeDg4MCbQwcQdvB3VquHW/fn2C2UEmtGd4lsduVR0ZJTWWL9OO0ZiC4+HIeQKqTqReuHQeJwnJMTp6jEgfh0umjhAbG+4i6iFFYtaUu6Ife832SxHCkMgj7ALkNsn1ErOkmbJNsayUMZKZEVFJYo4FINCkBBulHNlStXKF26NDIyMq8O9vb29OzZk549ewJw8+ZN1q5dy+zZs6nRagjVG7ZhWEOPXMesOSZao2My3QHYFCt0LHci0nKfwCB2PiZnbwDU9k5k3blE0v7FFHt7KclJgtX7P5WPtayjWugPAxyE/nJIUSF1SIzErSCn361uKXNWLRjhPOyED3Is5QCKjCR0ERfQevijMBtxjL0GQJa7EHk7WVfIWvbWqcN079r5vvdLRkZG5mWnUqVKmEwmoqOjAe3zbs5z4+yxvfy19iccNCq2b16Hn59f3gfJ5EmBn1wCDBo0iKFDh5Jkt4Nq9Vo9VV0anxBBxvWMUajyNw+lb/HqxMbGypNLGZlXnKJFizJu3DhGjBjB5I8/Zel3+2m9cBYuLrZ1B0g+tQ3/Dh+gdnRDlxKX9wE2IDPsLO6l85bgxkffokWbWs+gRTIyMjLPh3bt2jFv3jwqt3vPuq+QRSZ6VjLmNGrFhRQ7SbwP6SKH3lES00QSB8TsKPrIL48WFk38DiWRmiVZkckDabjJsq5i3Z6SnMwXLQs4tdxFZcqDFo9SUlJYsGABR44cwc/Pjz07NuHg4PDI7ZHJmwIviwUhgeyPP/7IgU2/PXVdDkHlSb965JlGV9XFhaGyf/wQzo+DxqsIt2/fztdzyMjIvDw4Ozsz59tZjB7cnU6dOrFy5Uqb1m8fUJK4vxYQ+9fP3JjWmrRLB2xa//9j0mWScfMUjkUq5Fn20sn9cpRYGRmZAk2nTp3Yu3cvd25dfebn1useHqUn9PoNHF08HlrmcTCbzWzfvp02bdowaNAgSpUqxS+//ML8+fPliWU+8EqsXAJotVpqVC6H4vYeunXrxhqLA7N0dr1a4tQcL5FTbbwSZt1WOrjhUqkFd/f+ylLt29b9XYqIVv1ki1y2sMRRODRbrK+QxAm6tptoZbkjOeeeGFFaFr/+S/zqdEWTeAeDvXCe7MByYsMzU62bCks0WYBSDuLV1XYXH+Rsk2iFcrPIx7L8PImMvIaMjIyMlBYtmtO4cSM+++wz1q9fzwcffACIARt8LJLUnT0ESeqaY4LM9LbFkvx7mCT/mVLYZzabcKvRAXfvQmRGXaPr1E0cWvAu581mnMs1BuCWxUBe198TgEIOQl9VXBJJ+0SCYF13sbgR+GiEMnuShL+zIy5Zy8bvW4xH3V7YWSLW6lwF+ZPOMwgAe0v3m56ahI+bVg7mIyMjU6Dx9PRk+fLl9Bn0JmOn//lMzx0VHcMnU6by+ZSP7/v5H0tXMHDy0y8IAcTcuUXv3l9RtmxZ/vzzT9mf8hnwSqxc5jBr1iwWLlz41DnevJoNJ+v2BdIu7LNJux5G4sE/sXP1wSmofL6ex8nVnfT09LwLysjIvHJoNBqmTZvGV199xS+//MIv00eTmpyY94F54F62PgFNB+Po4U+T934n8Z9lpF3c9/QN/j+y794m48ZJ3Gp2yrPs0e1Lrf6nMjIyMgWZIkWKEBTgw7G/Nz7T837yyz6Onb3O2rVr7/lMr9eTrdOj0T79iuKWJbP5e/kMatWqxaeffipPLJ8Rr8zKJQgRsiZOnMiECRNYsGABkDtwj1mS78PXQQwa8V4NMdDD3FvCfDx4xEKuf90ZO59gtP7FWRueYi2jskR2reIuPhilJMF9HFXi9upYcX6flSJGTdQ4exK7/Qcybp6iSJu3MSulAYHg9QB367aL2lU8tyRlicEkrpxqJGYEnUTqnrPfTgHZ+kfXwMvIyLx6BAcHM3/+fI4fP864CW8SXK42zbuPwN7B6anrVmvsKTTkB+78NgazPhuXyi1t0GIwG/VErvsS/64fo1A8PKdTemoS549s48cvttvk3DIyMjIvOvPnfU9ISAi9mlckza04ALvcfK2fmxIirdsGiTpO7yKWMWskE0GVOLXQOIk+l9npwnh72R0hsJuh49dMn96acuXKUbZsWWu5qdOmU7NZT3K660KSoJoJWeJgtrTEv9LTohR0tTNhNptZOe8j0iLP06pVKybOXZFn3y9jW16plUuApk2bYjabuXTpUt6FH4JK60ThN+YRuWQcuru29VU06TKJWDQWU1YaIW/9juL/JpYyMs+C6dOnU7NmTVxcXPD19aVTp05cuXLF+vmUKVNQKBS5/pUpU+Y5tljmWVGrVi32791Fl2Y1+OHDfqQk3c37oEdAaSdMMFPP7yXi19Hok6Keqj6zUU/YonfxqtsDrV+xPMtv+WUK38+ajqura55lZV4s5P5KRubJcHd35++//2by5MnPNJ6I2sGFBQsW8NFHH+Xav+fvA9R6vesT13vryn+kRV9h8+bNTJo06YWcWBb0/uqVWrnMoWPHjuzduzeXpeRJsPMsRGC/mUT+PhY77yJ4tx6NxifkqepMu3yQuC2z8WvzDh61uwC5I2XJyDwr9u/fz6hRo6hZsyYGg4EPP/yQFi1acPHiRZychJWq8uXL89dff1mPUT+jnFQyzx+FQkHnzp0ICQnmgw9GYMj+Fm+/wugsPt1BFmvzJ+XEF7veJPRme2OE0PdH7wr+4mEKwZc8x7+S93/mzPl/ubZoLPs7jMetSkurT2S4JELgySQhF6chLFbYoRbSoWjuhpOdcIfwrXPwfK07rhWbgV4oa1YKv1GTpazWw1+o9+xevJ2gYcOGtrg9Ms8Yub+SkXlyqlatSv369Tm0dTH12w18ZuetVKkS165dw2QyoVQquXDhAn5BpVAqn2ztKz76NtsXfc6mdStfaCNhQe+vXp6W2hB3d3c2nYwmcnsaKoUYbrmih7jELg1bvEoS6Od0f3GJf9ouoEhlzLW28fv+Q0Sv/BSNV2H8Wo1GqXHgZKrk9kpCMyORDyiyMzCbjKRf/5e7+xahdvcjaNAc7Jxc0cXeEMpoxVyYORk6HSTS2gB7Uc7qqhG39ZLAPZkGcVsqyx3SQLiev7L1nEp4emmbTMFhx44duf5etGgRvr6+nDx50joAV6vV+Pv7P1a9ISEhjB07lrFjx1r3ValShU6dOjFlyhQaN25MxYoVUalU/PHHH2g0Gr744gv69OnD6NGjWbNmDX5+fvzwww+0bt36qa9T5umoWrUqCxcupHuvfrQbOIHS1RrZpF63krWoMnEDF5d8SMzOH/FuPYBiddoDeadlSji7m7v/biGw5+dofYLzLG82mdiy5Bv27Nxig5bLPA/k/kpG5umYNGkSDRo0YO6UNzGZxVzGs85KshVkiQEkzQpxAljYJ8C6XdZBHIfuTxIlra0LC+NqV7U4Hl5xPIvCpWpw48YNSpQowdI/V1C1YXukC6h6ozh+9ZAEykzTiecf1diV9PR0mjd/k8kffoiPj5gz+UWkoPdXr5wsFqB27drEXjlms/oUCgWOxaoT8vYynMs34daPg4n7ayEpZ3aScmYnGTdPo0uIxGwyYjbqMemz0SfFkHphH1HrpnHzh/6kXTqAf9ePCOzxGWpn24VfflSOHj1KgwYNnvl5ZV4ekpOTASHCXA7Xrl0jMDCQYsWK0bdvX8LDw21yrj/++ANvb2+OHz/OmDFjGDlyJN27d6du3bqcOnWKFi1a0L9/fzIyMmxyPpmno1ixYuzZtY3oC3/x89RhZGWk5X3QI6B2cCH4jR8IGTqXpDuhrPmgCYd/epvwE1vJTk3IVdZsNpMddY3bC0eQFX2D4gO+fqSJJUDatpl079rphbZ0yzwecn8lI/N4qFQqPvjgAz777LNnel6to5NVjnvg4BFKVaxFVkYaBv3D05X8P1OnTmXcuHG0a9cuP5qZrxS0/uqVXLlUq9UUCfTmbsQ1fINsG27etUornIIqkB56DENmCphMpN25hD4xCkNyLCgUKB1dUao1aANK4Va9Pf6dP0ShUGB+jrrwmJgYnJ3zN5emzMuLyWRi7Nix1KtXjwoVhDyBtWvXZtGiRZQuXZqoqCg+++wzGjRowPnz53FxccmjxodTuXJlqx/GpEmTmDFjBt7e3gwbNgyATz75hPnz53P27Fnq1KnzdBcnYxPc3d1Z8OMP7N9/gPcn9Kb5wE8pVr4mRokF2tlO+KOpnzBoaOgjrELuiRX2B0ks3jkyWI3CDK6B3AoYT0CHDzDfPsPtk7u4vncpmQbBKp6uywaTCbXWEd/GA9EWr4kBUBiyrPWZLYEosi0B1+x9QwAY7hnFr+EHeH/Z3za9HzLPD7m/kpF5Mjp37syyZcvwjovEwyfwmZwzO1OYxERERPDv0YNs+/N79m9bgX9AIEXK1KB2i974F364z/zvv//O1atXmT59+rNosk0piP3VKzm5BPh4wnusXbuKSpXGW/d1q33/FcMeD9g/uYX4BZc4Ki7z748tA2XLsD9KlNOqJdJWQ6ok+IXF78cMqJJjrLul0WFNEhmtKltIF7LrrjgIe7uoOHozmO4/QdVLB3jqe704z58/b/1Ry8j8P6NGjeL8+fMcPHjQuk8qmahUqRK1a9cmODiYVatW8cYbbzzV+SpVqmTdVqlUeHl5UbFiRes+Pz8hR2FsbOxTnUfG9jRq1JAdW9Yz6u33uHx8B017f4Cd1t4mdSsUCryKVcG7WBUAovWC+ObGXSHStjI1DoBHjXttMuhYOvt9Pv90MiqVHDitoCD3VzIyT86ECRNYvPhH3v/hBwC2xmisn0XoRfmrXuLuVUTikqVWimPMph6iQLKcq1BeK3HNMoZuIu7WWYoVK4ZKpeLgwX8wGAxMfKsXpUqV4ujRo0yZ+glR0TGM+3oVKhcP4qLCuXzqH878sxGNxg6zyUTDujWZO3fuCxm8Jy8KYn/1yk4uK1euzPjx4yndNAlnV/fn3ZznjouLy0v5UMrkP6NHj2bLli0cOHCAwoULP7Ccu7s7pUqVIjQ09LHPYTQac/1tZ5fbr06hUOTal/NbNZnk9DkvIt7e3qz8czGr16zli8ldadTjXcrWfP15NysXxowU7v42jLbNqtKqpW3Snsg8f+T+Skbm6ahZsyZffvkliYmJeHjkn5tWVHgoi2bO5MCBA1bjXs2aNXOVqVevHrt3bGHNuvVM/2gA7t7+ZKcl8MbgAcyavAl7e9sYLp8XBbW/emUnl3Z2drRt25ZzJ/7mtdc7P+/mPFcOHDhA0aJFn3czZF4wzGYzY8aMYf369ezbty/P30haWhrXr1+nf//+edYdEyOu0uv1em7ftm06H5kXg+7dutLs9abMmTOHjTN+pnCFxtRs0hGNmyC3irfkLGsTKMhXpSqRMZsFqdQtSxkvi6T2ULSoCKnqk+OfInxmUgtRaJU6QeFhVoovTHWSkKutXoXKGLIzuf1bPz4eN5SuXZ885L3Mi4PcX8nI2I7atWtz4sQJWrRoYfO6szLT+fHj/vh7u7Njx45cfoYPoluXzrRr0xqj0Yi9vf1LrzQp6P3VKzu5BOjbty9t27Zl1odDHljGaDSyfft2TCYTpUqVAkCpVFKyZMlcK30964iDop6W/38/KEafXRWptW6Hp0seCklILHW2GIVL5ypGiFIaRKdmo8Yir428bN132aucdTtNEhVWKn4NchAtF+82zR204rvvvmPu3LnIyEgZNWoUf/75Jxs3bsTFxYXo6GgA3NzccHBwYNy4cbRv357g4GAiIyP59NNPUalU9O7dO8+6f/vtN15//XWCg4OZM2cOycnJXL9+PVenKFMw8PDwYMqUKaSlpXHgwAG++2E8LoFleL3H26Byfy5tur53Ef169JAnlgUIub+SkbEdzZo1Y/HixbRo0YKabqL89XqUuJpllqxsJRjEFURfSUTXqGxxvOtoZyb82jnmfzKAyZMnM3To0Mdq08u+SimloPdXr/Tk0t/fn2LFijF9+vR7HGRjYmI4fvw49vb2nDp1ioiICEBY8WzVqhVGo5Fp06ZRpUqV59By23H8+HECAwMJDHw2jtsyLw/z588HoHHjxrn2//777wwaNIiIiAh69+7N3bt38fHxoX79+hw9evSRQoC3b9+et99+mxs3btClSxe++OILvvzyS1q1apUflyLzAuDs7EybNm1o06YNGzZu4otP+1Ch1XDK1+/0TNthyM4k+vg6Bs7755meVyZ/kfsrGRnbUaNGDcaNG2eZ9NgmTV3S3RhWz/+YjRs35vL7exUp6P2Vwmw23xvd5f9ISUnBzc2N5OTkAheqPSkpiePHj9+z38PDg6pVq1qTlmZmZvLll1+ycOFCmjVrxvnz5zl//jzDhw9n6tSpeHt731PH7weTrdu5Vi7josRCkjxB2rjr1m3pyqXCKK6AmlSCzEtlkX0BtK74eCuXk5qLE+lu3brxww8/EBAQgIzMs+B+eZhsSUREBEFBQQWyvypI6HQ6xo6bwKXwJOo2bUelWk3oWUeUR+XIYiOzhT7tYbLY07FCQB8yBfWH0iioPaSyWFVWCmazGfU/PzJ+SCd69eiWT1cmU5CQ+yuZV5U9e/Zw/PhxFDVGW/eteMDKZQlncVWxjJM43sxZucxIjObGL0NY/Ot8ypQpk5/NfqXJ7/7qUeeDr/TKJQhOso+iKXdwcGDq1Kk0atSIzz//nG+//RaDwcDmzZtp2rQpa9asscpmcxhc303cluz/+YA4gFoWJU4647MkueHMkgdYKU5AVdlCGZNnkHXfllvx4ucOYjqRzgFi3cHOuR16QZD83r17V55YysjIPHM0Gg0/fv8t586dY/nK1SyYupxiUyZQpkwZXFxcqO8jJPH+964QqTBHanXKRew/z6dZDG8WG6nCSXBPMKULE1C7DHEi2rhSZU4tnUy7ppXkiaWMjIxMHtSpU4fPPvuMVtXeQikZhz4J19d/ydzZM+SJ5SvCKz+5fFyaNWtGhQoVmD59OhcvXqREiRL8+OOPlCxp23yZz4Jvv/2WTp06Pe9myMjIvMJUrFiRihUrcubMGdavX8/UqVNxc3OjcuuRBBUra7Pz3Dy0hlIeJsaPH593YRkZGZlXHCcnJxo2bEjS9RMULS9EcTVJ0o9otaJc1stOXBDZkSAq6N4vlk349QtEGmOoXbv2M2i1zIuAPLl8Avz9/ZkzZw4A165dY/HixUyZMoW6devy7rvv5hm6eVhDcUXTfECUzt71LGLdPpAoyrki0sQVTaUlL2ZLL9FJek+iKID10Yhf6dYE8WGv6CGWMZlMzJkzh8uXL7Nw4cKHtlVGxtbcunXreTdB5gWkSpUqVh/2mzdvMuzNUZSr2x5tzQFPXXd2QiS3D/3Gmn/2PHVdMq8Wcn8l8yrToEEDfll/wDq5fFzuxkSwaPpb/LVzq41bJnM/XpT+6unWuWUoWbIkU6dOZffu3TRs2JCBAwfSt29fDh8+/ELmtIqJDGPo0KFERESwcOHCp5Y6yMjIyNiaokWLsn3rRmIu7ePckgkUttcTr1MSr1NSXIv1nz4pBn1SjOC7rlBiTk/EnJ6Ic9R5nKPO83rlKrxeuQra0yuYO3vGPfm9ZGRkZGQeTOPGjQk7f4hHCM9yX/Zu+J1B/Xs/NIejTMFDnlnYCIVCQbNmzdi0aRMzZsxg7dq1NG3alNWrV6PT6fKuIB8x6bPZveZnZn/Qnf0rv2HEiBHMmjVLnljKyMi8sNjZ2bFixQpql/Vjww/vYjLe6zf+KMTeOEupAFfq1q1r4xbKyMjIFGy0Wi2v1apKYugxvO1NNPJ2sP7zVmP9ZzaL/xq7Cf8aOhu5eHw3w4cPf96XIfOMkWWx+UBQUBCzZs0iKyuLH374gU6dOuHv78+YMWOoWrVqrrLDJRLZ5UeSrNuOatFKFOXsYN320girofEPmK9WkkTpKudm4MCm3/lv3ypqvfkG87/aJU8oZWRkXhoUCgWfffoxo995lz3fD6P5u7891vFms5nzq6eydeUv+dRCGRkZmYLNhxM+oFufwZSquOyxjrt+ZAN9evfE09Mz78IyBQp5cpmP2Nvb88EHH/DBBx9w69Ytxo0bR6FChZg8eTK+vr75dl6zycTt8/9wfP+vVC1XjAN7d+Hs7Jz3gTIyMjIvIHPnfMsbw0Zwc8M0qnefiEIhBIzIMAlRs29EC3mIsRMiZOsqtgZA/c/nBLoq5Dy+MjIyMk+In58frk72bFr6PXY1++Pk4Z/nMWazmWs757P84F/PoIUyLxryMtYzIiQkhDVr1tClSxeGDh3K6NGjyczMtPl5UuIi2PZZW/xi/2b+7Kl8N/treWIpIyPz0vPrzz8R5GZi18+TMOjzdjUwZqby9ddf069fv2fQOhkZGZmCy++//MTSuVNY9bYY8TUiNdX6z0tjtv6r6qkn+9SftH69AU5OTg+pVaagIq9cPmMaNWpEo0aN2LNnDy1btqRhw4aMGzcOd3d3lApRCmuUxAKSulFnGQWLvUmys2+A8Md/e1eybfFn7N69W84lJCMjU+D4ZuZ0li1fwRcftqfrhN9BFfzAsnf3ChLa3r17P6vmycjIyBRIfHx8CA4OJiwsLM+y8dG3Obp1EUcO7sv/hsm8kMiTy+fE66+/TpMmTdi3bx99+vShcOHCeJZpRpnKdXBwcnmsurIz09m+YAIe6gyuXr2Kg4ND3gfJyMjIvGQoFAr69emNt5cnH382An2J1/FpcP+VSTuzjj/++OMZt1BGRkam4KFQKDh//jzVX2uELiMVjeO941SzycS/G37g9sE/2bl9MxqN5jm0VOZFQGF+hPjCKSkpuLm5kZycjKur67No1yvH+fPn2bV7D7v2/E16pp6ACk0oXLYWKrWGuzpRvexoSW+ZlJ5JfOgJ4i8fxJyZyPtjRtCtW1f5YZaxOTn+bS8SD+u2IiIiCAoKkvurAo5er2fGjBmsWrWKTp060bZtW6sLQHp6Op07d+batWuyLOsV4kXsq0Dur2QKDjNnzgSgTZs2ufYfOHCAAwcOULFiRYYOHYqfn9/zaN5LxcvYXz3qfFCeXL6AZGdns23bNk6dOoXxAeH3tVot5cuXp2nTpnIkLpl85UXsAOXBmoyU7du3c/z4cbKzswHhN9unTx/Kly//nFsm8yx5EfsqkPsrmYLD3bt3mTlzJiqVKtd+nU7H4MGD5T73MXgZ+yt5cikjI2MTXsQOUB6sycjI/D8vYl8Fcn8lIyNzLy9jf/Wo80HZ51JGRuahPIL9SUZGRua5I/dVMjIyLwsFub+SU5HIyMjIyMjIyMjIyMjIPDXy5FJGRkZGRkZGRkZGRkbmqXkkWWzO0m1KSkq+NkZGRkbmacnpp+T+SkZG5kVH7q9kZGReFnL6qbwkvY8U0CfH4VxGRkZGRkZGRkZGRkbm1eT27dsULlz4gZ8/0uTSZDIRGRmJi4vLCxvdSEZGRgbAaDQSGhpKiRIl7gmXLiMjI/MiIfdXMjIyLwtms5nU1FQCAwNRKh/sWflIk0sZGRkZGRkZGRkZGRkZmYchB/SRkZGRkZGRkZGRkZGReWrkyaWMjIyMjIyMjIyMjIzMUyNPLmVkZGRkZCrPxOoAAABUSURBVGRkZGRkZGSeGnlyKSMjIyMjIyMjIyMjI/PUyJNLGRkZGRkZGRkZGRkZmadGnlzKyMjIyMjIyMjIyMjIPDXy5FJGRkZGRkZGRkZGRkbmqfkfPmXJYnHZkCsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "batches = adata.obs[\"batch\"].unique()[:6] # get 6 batches\n", + "nbatches = len(batches)\n", + "\n", + "ncols = 3\n", + "nrows = 2\n", + "ax_height = 3\n", + "fig, axes = plt.subplots(\n", + " nrows, ncols, figsize=(ncols * ax_height, nrows * ax_height)\n", + ") # instantiate\n", + "\n", + "for b, ax in zip(batches, axes.flat):\n", + " bt.pl.density(\n", + " adata,\n", + " batch=b,\n", + " ax=ax,\n", + " square=True,\n", + " title=\"\",\n", + " )\n", + "\n", + "# remove empty axes\n", + "for ax in axes.flat[nbatches:]:\n", + " ax.remove()\n", + "\n", + "plt.subplots_adjust(wspace=0, hspace=0, bottom=0, top=1, left=0, right=1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "18589040-085c-4b83-aaec-aea14d458599", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:bento-v2]", + "language": "python", + "name": "conda-env-bento-v2-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.16" + }, + "toc-autonumbering": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/source/tutorial_gallery/Main_Guide.ipynb b/docs/source/tutorial_gallery/Main_Guide.ipynb new file mode 100644 index 0000000..67849c0 --- /dev/null +++ b/docs/source/tutorial_gallery/Main_Guide.ipynb @@ -0,0 +1,1297 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "id": "ded53b22-45c5-458e-9ec1-c15bc49f4b0a", + "metadata": {}, + "source": [ + "# Main Guide\n", + "\n", + "**Author**: Clarence Mah | **Last Updated**: {sub-ref}`today`\n", + "\n", + "Here we will analyze a subset of the U2-OS cell dataset from the Bento paper, in which 130 genes and 5 non-targeting controls are spatially profiled with MERFISH. The full dataset includes 1153 cells, each with cell/nuclear segmentation masks and 2D transcript coordinates. Here we demonstrate Bento's key functionality on a representative subset.\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "13e3f4a0-42ef-4654-b23f-57d3aca2440b", + "metadata": {}, + "source": [ + "## Setup\n", + "\n", + "Load libraries and configure paths.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "7a6f07d4-cf04-4293-a241-b238b5ba59e9", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:37:23.644574Z", + "iopub.status.busy": "2023-03-31T20:37:23.644332Z", + "iopub.status.idle": "2023-03-31T20:37:48.125768Z", + "shell.execute_reply": "2023-03-31T20:37:48.125094Z", + "shell.execute_reply.started": "2023-03-31T20:37:23.644556Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n" + ] + } + ], + "source": [ + "import bento as bt\n", + "import matplotlib as mpl\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import scanpy as sc\n", + "import seaborn as sns\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "9a591fb8-4830-48f9-9c7d-1dfa5dc20ab4", + "metadata": { + "tags": [] + }, + "source": [ + "## Load Data\n", + "\n", + "Bento includes access to datasets with the package. Datasets are downloaded and stored in `data_home`, which by default is set to `~/bento-data`.\n", + "\n", + "The loaded object is an `AnnData` object, structured similarly to single-cell omics analysis, where observations are cells, features are genes, and the main matrix is an expression count matrix. Bento additionally stores molecular coordinates in `uns['points']` and polygons as columns in `obs`.\n", + "\n", + "```{note}\n", + "See the docs on Bento [data structures](../howitworks.md) for more details.\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "437a4123-b60b-480a-83b9-7f701ff9ef1e", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:37:48.128575Z", + "iopub.status.busy": "2023-03-31T20:37:48.128360Z", + "iopub.status.idle": "2023-03-31T20:37:48.193444Z", + "shell.execute_reply": "2023-03-31T20:37:48.192974Z", + "shell.execute_reply.started": "2023-03-31T20:37:48.128555Z" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "adata = bt.ds.sample_data()\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "41b1b9f6-99cc-4a7c-951c-1b24fe259e1f", + "metadata": {}, + "source": [ + "You can use built-in plotting functions to visualize data. Here we plot RNA distributions and cell/nuclear segmentation masks.\n", + "\n", + "```{seealso}\n", + "See the [data visualization tutorial](Data_Visualization) for a more comprehensive guide on plotting.\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "80acf16b-27e8-42c0-8893-6fdcf100190b", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:37:48.195533Z", + "iopub.status.busy": "2023-03-31T20:37:48.195338Z", + "iopub.status.idle": "2023-03-31T20:37:49.022250Z", + "shell.execute_reply": "2023-03-31T20:37:49.021722Z", + "shell.execute_reply.started": "2023-03-31T20:37:48.195518Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAGbCAYAAAAhj+C0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChrUlEQVR4nO2dd3hUVfrHv3PbzKSR0EsSEqoUK7pYV3dddwUVFekkoSrSUVQUVFRAKdKrKBAC0m3YdnV31f1ZV10LCNJDEnqA9MnU+/tj5k7mnHMhbXrO53l4mHty7rnnlnnnve973vc1qKqqgsPhcDhRiRDqCXA4HA4ncHAhz+FwOFEMF/IcDocTxXAhz+FwOFEMF/IcDocTxXAhz+FwOFEMF/IcDocTxXAhz+FwOFEMF/IcDocTxXAhzwkZL7zwAgwGAwoLC0M9FQDA559/DoPBgF27doV6KhyO3+BCnhNVrFq1CtnZ2SE7/qFDhzBo0CAkJycjJiYGV1xxBV566SVUVFSEbE6cho0U6glwOP5k1apVaNq0KYYPHx70Y+fn5+MPf/gDGjVqhAkTJqBx48b45ptvMHPmTPz444947733gj4nDocLeQ7HT2zatAlFRUX48ssv0a1bNwDAI488ApfLhZycHFy8eBFJSUkhniWnocHNNZyQU1hYiAEDBiAhIQFNmjTB5MmTUVlZSfTZsGED/vznP6N58+YwGo3o2rUrVq9eTfRJS0vDb7/9hi+++AIGgwEGgwF33HGH9+9FRUV47LHHkJaWBqPRiOTkZGRlZTE+AZfLhTlz5iA5ORkmkwl33nknDh8+XO15lJSUAABatGhBtLdq1QqCIEBRlNpcFg7HL3BNnhNyBgwYgLS0NLzyyiv49ttvsWzZMly8eBE5OTnePqtXr0a3bt3Qp08fSJKE999/H+PGjYPL5cL48eMBAEuWLMHEiRMRFxeHGTNmAKgSuGVlZbjtttuwf/9+jBw5Etdddx0KCwuxe/duFBQUoGnTpt5jzZ07F4Ig4IknnkBxcTHmz5+PoUOH4rvvvrvsedxxxx2YN28eRo0ahRdffBFNmjTB119/jdWrV2PSpEmIjY3196XjcKpH5XBCxMyZM1UAap8+fYj2cePGqQDUX375xdtWUVHB7P+3v/1NbdeuHdHWrVs39fbbb2f6Pv/88yoA9e2332b+5nK5VFVV1c8++0wFoHbp0kW1Wq3evy9dulQFoO7Zs6fac5o1a5ZqNptVAN5/M2bMqHY/DidQcHMNJ+RomrjGxIkTAQAfffSRt81sNns/FxcXo7CwELfffjuOHj2K4uLiao/x1ltv4eqrr8aDDz7I/M1gMBDbI0aMIEwrt912GwDg6NGj1R4nLS0Nf/zjH7F27Vq89dZbGDlyJF5++WWsWLGi2n05nEDAzTWckNOxY0diu3379hAEAbm5ud62r776CjNnzsQ333zDLEcsLi5Go0aNLnuMI0eO4KGHHqrRfFJTU4ltzVl68eLFy+63bds2PPLIIzh48CCSk5MBAH379oXL5cK0adMwePBgNGnSpEZz4HD8BdfkOWEHrVkfOXIEd955JwoLC7Fo0SJ8+OGH+PTTT/HYY48BcDtK/YkoirrtajWVMletWoVrr73WK+A1+vTpg4qKCvz0009+myOHU1O4Js8JOYcOHUJ6erp3+/Dhw3C5XEhLSwMAvP/++7Bardi9ezehZX/22WfMWPQPhEb79u2xd+9e/06c4syZM7pLJO12OwDA4XAE9Pgcjh5ck+eEnJUrVxLby5cvBwD06tULQJVm7atJFxcXY8OGDcxYsbGxKCoqYtofeugh/PLLL3jnnXeYv1WnodeUTp064aeffsLBgweJ9q1bt0IQBFx11VV+OQ6HUxu4Js8JOceOHUOfPn1w991345tvvsHmzZsxZMgQXH311QCAv/71r1AUBffddx/GjBmDsrIyvP7662jevDlOnTpFjNWjRw+sXr0as2fPRocOHdC8eXP8+c9/xpNPPoldu3ahf//+GDlyJHr06IELFy5g9+7dWLNmjfdY9eHJJ5/Exx9/jNtuuw0TJkxAkyZN8MEHH+Djjz/G6NGj0bp163ofg8OpNSFe3cNpwGhLKPft26f269dPjY+PV5OSktQJEyaoFouF6Lt79271qquuUk0mk5qWlqbOmzdPXb9+vQpAPXbsmLff6dOn1XvuuUeNj49XARDLKc+fP69OmDBBbdOmjaooipqcnKwOGzZMLSwsVFW1agnlzp07iWMfO3ZMBaBu2LCh2nP67rvv1F69eqktW7ZUZVlWO3XqpM6ZM0e12+11vk4cTn0wqKqf3lU5HA6HE3ZwmzyHw+FEMVzIczgcThTDhTyHw+FEMVzIczgcThTDhTyHw+FEMTVaJ+9yuXDy5EnEx8dfMqKQw+FwOMFDVVWUlpaidevWEIRL6+s1EvInT55ESkqK3ybH4XA4HP+Qn5/P5EvypUZCPj4+3jtYQkKCf2bG4XA4nDpTUlKClJQUr3y+FDUS8pqJJiEhgQt5DofDCSOqM6FzxyuHw+FEMVzIczgcThTDhTyHw+FEMVzIczgcThTDhTyHw+FEMbxoCOeSDBw4EBaLpdp+ZrMZ27dvD8KMOBxObeFCnnNJLBYLdu/eXW2/Pn36BGE2HA6nLnAhz2HQNHiz2Vyj/mazGX369OEaPYcThnAhz2GoqQavoQl2rtFzOOFH1Av5mtiVuQbqprYaPIfDCX+iXsjXRCvlGqib2mrwHA4n/IlaIV8brVSzKVfXJ1q1fX9p8Nw2z+GEH1Er5GujldZEIEWztu8vDZ7b5jmc8IMHQ3E4HE4UE7WavL+JNpOOr0OaO1o5nOglaoX8/jNOTP+o3LttV9k++ypEpq217CK2vy447f5w2yveNoNCCsXY+CQAQIutA+o63aDzW34pjON3erd7vOm+Vh1M5Mvd3jNnmX17tm7OtN2QZPPzDDkcjj+IWiEfaPLXjoFqrwQAiJICAPjp2P8gJ7aAwSCieYdrif7xkvtX5qrU+JBq+9f+qS/s1krIRlPAjnGiTOIOWA4nTOBCvpYUrJ8I1WmHQTYhdfxGAFWavMbhZRmAwwJRMePWqZsAAF3jHACA71YMDe6EKezWSjw8ZxsAIOdkYI4xeuYGjL29EXfAcjhhABfyNaRg/US47FYIstEr3C9Fh0mb0cGo4suFmfhyYaZX0APAsWIZXW7qDQCQdNzekoG0K3Vqk+AXbXjgwIH4Lb80oBo8ja8fg2v1HE5o4EK+hrjsVqSOWVurfW6duskr6LvO3AAAGDQj2/v3RIV1FMRTPoFd87JqP1kdLBaLV4MPFr5CnWv1HE5oiFohbzCokIQqIbo7v5zpozqsTFuujUyBICY0Rd7qURDNcRBjGwEArkuMIfr8Wu5gxmlrchfXbTtjI96dm4UFz2Yidew6oo/ZFMvs18Wk4yH2A0cKHWhaLBNtSRJbAHh/CXmd5Lgkps+eCna/JjL5KK36vKQu0+RwOH6Gr5OvAS57JSOga8MDT+cAAPJWj6r1vr+cV5B8wz3Ev2tv7YWBAwfWeT6h4ESphOtvi7x5cziRTtRq8v4ib/UoCHL97dipY9chb/Uo5K0eVasfjNt87Pkadza34Z35mfWeUzAZNTMbzc1O5MwZFuqpcDgNCi7kL0NB9mMwyEq9tHhfUseuQ+4y/6yuOV0u4dpbewEAHCprPnGpwInDv6JNh6sAALISPIfr5SisEHH9bb3QvrV/HMocDufyRK2QNwpAc2OVE3NkOzaqc90BNgVxhzZtvZ/PiwKaP7oOoMzkv1WSQtV6Lo8ZpzA+jZyP0W1/l4xxKHhtDNpP2ox4HWPZD+dJW3bL+EZMn/9dlNFzymbvdoGVHahHggNzB7XH4Bd2eNt2nqwkx45hr4mz7CKxLSW1ZPu4WB/Ev4vIa9KuUmb6dI0VcNcT7jeTn1YNYf7O4XD8T9QK+a4p8fhkcQYKSiWMfD471NPx0n7SZhxa2C/U0wg5R4pldL+5N9HWLSW0gWIcTjQStUJeExZXUoKkpvywKANigEwcgmzCkWUZuO6xzdV3jlL6PbMRSQq5XPTfSzJCNBsOJ3qJWiFfX5y2SvR8eheOlbBLL+tL+0mbcWRZBvYsycCVU/wn6P/xaEe4HO4cMp8KgLU8cMsYj60YBpfPclMDDDAoJrSbmFPnMfNLJVzn8TP44mst81dwGIfTUOBCPkS0n7QZuYv8a7ZxOWzo9cZxAFU2eX/iK9gFxYz2j1fZ+w0GA44uz8KRhe4kbadEQFTMuPFxdnXQpRj2XDaamVxMu9NHyvsrOIzDaShEvZCXBRWJRhe+PKcwfzNIRqbtaFEJ8l57GDCIOFpUAlVlg5OGtiAzLr5xihVMXx85RmyrApvxstJqwalzJ6hJkU7UZo0TmP0UKvXBXU3d8/mXUPXZ6nIHQcRKVXNTqOyZbXQibhNbtyG29546RaR0SB65Ar3TWzD77asQ0XLqm97tU1Ynjq3Iwidz+kFQTEifkIM0E+mc/eE8e0/aKOy1TNYR/BwOp2ZEvZDv2CYBO+Zm4bcLCu56smamBNVeibYTaq6BhpoZA7rC6bBDlNgVLfWlYP1EAKh1SgcASJ/gvt7HVmThyKIBqIgz4b5pdTfnAMDRYhk9buuFDnwJJodTI6I+4nX79u3YvXs3nDZ2uWSoEWQTCtZPqvc4Tocdc98+hDk79vlhVlV8s8gdcJU8cnm9xkmfkOM17bxfT3PLgOkb8cT8rd6CJxwO5/JEvZAPZ5JHLoPLXll9Rx3WjuiMNZntsCazXUA0eH8JeF80Lb6+gp7D4dScqDfXaMRJKq6IJ4N48m1s8q2LTkASZcTHuW3hjXR+Bjd8+xOxLYjsZWycdiWx3dHI2pW/vVABgyhDiKkKeFKM1ZfiMxgAl8OOsZuPAgDSY510vBaMAvk/ANzflDz/rb+fYsYW4pKQt2Y0ACD10TfgspQyff5dxM6psvQcsd21WVOmz2GLAV0mvYnvF2Vg65xh6KazsqjUyUbvKgJ5dlYne3wOh6MP1+QjjPce6YTVGe0gBEB711BtlUh99I2AjX/D427h/gtfF8/hBBwu5CMMl8OGsZuPYkz2gYCMn7dmNAxByHPDBT2HExy4kI8Q3nukE94ZmQZBYpcd+pNAa/G+XD2FC3oOJ9BwIR8huBw2PLg+F/evPRjqqfiVq6dshstWN+czh8OpngbjeLW5gAs28jctv6yC6eesLIPdbkXxxbMAgPIi1jnpak5Gkt7ULI7p89WpQmK7KIYNalIvngTsle7/PdzdtR3R57DPFF0e/6OT8rLqxGtBEVUAKmQfp+V7heTtNjUhA5+OLs9CUmwcrkqsqli1x8DqAc7cn9kDNkklNg+UsEscaQd1Y6P7rcQgm/Dz4gx0m7IZbXUCn+Jl8gRj5MBUz+JwohGuyXO8qDYLUXQ8WHSbshnOOi4l5XA4l4cLeU5YIMom/MZt8xyO3+FCPsx5f0wnvDcq8A7XUFNbbV6rMMVrxnI4l4cL+TDH5bDh/nW5uO+16HK46iHKJrw3t2bRsFPmrMdTr27h6Q04nGpoMI5Xp2pAuYOMpuwYz0aXHnDYYTAI3gyVjphEps9fW8YS259dYMvhGaiskw4rK4yK334JjRKboktaR29bt0Qr0UcFUOYi502X+8utZDNc9khwwAUDzvj8rTX1MnC83E4eS3XhlwtkDnq1vIgZW067hmmzFxYQ2511Il73Hz9MbBe3IB3YyRNykL94AH4pI8/nvI26bw42KpbD4ejDNfkQ4rRZapVvvSEgKib8zG3zHI7f4EKeE1ZcM2UznHzdPIfjN7iQ53A4nCimwdjkFUFFUyoT5D9OsjVQY+OTIEoyYuPcmSEt548zfT45Qdrkzfm/Mn3sbboT22LJGaaPSzXAppL25SE3JRLbowAkipcP/omv5u8aBVT6Rqedsv+rLrRt1IhocySQ2wBg1TmcvZK8lvtOnmD6SI2Tie3KCyeZPt3btcKxGCOOrRjqTU1cSfkkWpl5GkoOp6ZwTV4HQTHh8LKGZxc2yCb8tDj0533ftBw4rNxkw+H4Ay7kdegwqWHmU0kd8zq3h3M4UQYX8pcg0Np83pbpEIOQ0jfaOVMu4bpbe6FPnz48MIrD0YEL+UsQaG3eZbfi+sfZykic2jHhpfV4bN5W7N69mwdGcTg6NBjHqyyoSFRIx+tNzVmnYqq5KrDpTdkFJ+UsBABQwt9COVkBQL6QT2zbk6rGKVg3HgZzAk7Y2IyLW74pIrZFA5BGORrjJNLz+flFtkpUY9kAVQWK7FVOy9YKGWTUJCae2e9dQcJXCwYh9dF1AACDwOoBjqLTTBsSWhCbaU2bM11OUY5fmcqCCQCNZHcfSVDRyJNtsrVE7ndWJ/iLw+HowzX5yyAbzShY+6jfx3XZrUgetdLv4/qD1EfXNUh/BIcTrXAhfxkGTN8Il59T4BasGw9BNvp1TH8jKCbkrRkV6mlwOBw/0GCEfP7hPZj2YEdMH9CtVvsJssmv2nw4a/EamqkmVIJ++5xhkBU2r1B1mM1m7oDlcCgajE0+Ke1q9Hl2J17PSseBErcN2wk20dV/S8hLkpz1Kgqyp6BgzWgkD18CALg9jbTTf5FLJucCAHtsY7JBFFHw+lgIigkQ3Tblzib2+N8WklnEHCpw1ELaoA9UkLZ8Ueen+oJdgMvzv0YbyifxzUUraBSTW7h2mLIFhxf2h6Tz1tEhOY1pO1RCVtlKUVh/A0CeR+5p9rr9YmyD8xWVuOXpXfil1N1mNJD7dY5lg6E2flWE3pNeAwC8Na9mmSw5nIZAg9HkNQRJwetZ6Xg9Kx3bR3eq0T6acC/InlKvY7vslUh+eHW9xggmgmzGkYX9cXR5ZAlNbVkl1+g5nAakyWuMWn/A+/m1rPQa75c8fAnyXq+72abg9bEQ5MhaF99uUg5UFTiysH+op1Irxr20HpIB2F7D3PQcTjTT4IS8L4KoYOuINGL7z6sPXbq/bELe64/ik0aN8dencmp8nIKNjwOiFFFavC8GxYyjy7PQbmLNzzkcOOvR6DUEA9C+dQK2b98ewllxOMGlQQv5gW+Q1ZZ8Bb4emtnGumM6PpmfVSNBX7Dxcfe+ESrgAaDdxBwcXZ4VcYJ+4qz1xLZRVJEzZ1iIZsPhhIYGI+RjRBXpcWQFp02nyNN3qEBLmXQYHo9nKxz97akc/GN+Fj6e3R+iYkbMqLXE3/NWj4LT4vYaCrIRySOXAxVsxssDlY2Zth/6xhDbrwMwUv5Z29mjxPbdndsx4+yvEOFSgTM+wVCdzOS5XRHPmo9KnOTB8i6cAwC0Hr4YeatGorL0PE6JzZj9VJABWt+XsakqHXYyIrVrazYYKtdqQIXLgFxr1TzaGcmxPitiH9u+lKM3TmYdv4KBV5TiNDwajJCvCQZRwZsj0iGICga/ceCyff/m0eI/mt0fucuGEn8TZBNSx6zV2y2iERQTCt4Yh0ZP7AzYMY4sywio7+JchYQet/VCB2624TQQuJD34arlB3BtDPDmiJo7ZHs/uxP/d54NmHLq1EaNdJJHr0LeqpEBPYbLXomOU3cFbPxJHhPO1le4U5bTMIg4IT9w4EAcoYp9+NuZJng0egBwGGRcsZAtChJIUlNTYbPZ3HORlGp6XxpBUvDPh9t6P3fK/r3ecxMUEw4uzUCnyf5PrvbtosygrUA6VyHh+tt6IffgHqR1utLb3jqpKg+Q2Wzm2j4n4ok4If9bfil6PvUW0XZu/aBq9xMMKhSBtO3ezObnglFQMXZjlTBck9kOGSlkArCcY+SPjJ4gjmvSmtguKylk+jST2DCFnK+KUFxWieXvu53C836+iO9PUgnBYhKJzc+LWVvzdbEuZK6rMjltHp4OC2Vvz7Wx+6Up5DUyiOS5pYx5A/mrhuO3eQ8iedhib7uxaQrRr7L4HDO2gRLg+86VEdtFpcW4e+ZugLLvN5XJ7RYKa+8/XUley3gne26+FaXGvrgehZUCZvbviCEvVAnykz7Jzw6+NpgZg8OJNMJeyF/7p76w+1QJko2spneuQsT1t/UKyPI4UZIxa0AHiJKM6Vv2+3XsSCV52GLkvTHOr2MWvDHOHQ0cRhwoktG+5z1o5OPE7diG2/I5kUXYC3m7tRKjZ28j2vZQC1WmzHbbWd982f/L4zTBPmtAB7+PHckIshEFGx8jtPn64LJVInXc+uo7BhGtxuzViXZv206eMoETYYStkL/xzr6wWS2QjTVPVKVp9AAPegk0ycMWo2DjY34R9OGoxV+KM+WS9xkD+HPGCX/CVsjbrBY8Pn8rCitrnl5H0+iBwGj1HBJN0Oe9MQ5SXBLSJ9Q+UKrAY/ZJHr3K39MLCBNeWg9FrPIJ8OeME+6ErZA/bxPwxVkF35wtrrZvW7OOB5VCAKBQvxeHLOwPSAvKyedSq/4/4/nBubs1ebz/lbGVis6cyiW2W7VKY/pkJLNLL/PLRbhgwMkK95ipzVoxffLOnSK2U+gTA/Dt+XJi2+ZSCbMDABQ7WYfxb8VUNslGbPWsfLXKRp0y1v3Dmr9qOA6/cg8MshGpGfOB2CRmP0NR1bzzNk+Dy+WAIJvckcQ2d6DUvvMXmf0OU/e3VxOdalUq6WiVDWwwVImN3E8wAAbP/xp01S0A2HyCfMvI1LlvHE64ElZCvt2t/eD0fNnFOuQT90XLLa5RG7OPHoIkY01mOwiSjDHZlw+UqiuTHuwOm90OUWLL+dUXQZQx7cGOEGUFL+/4ze/jp2bMBwDkbX4KxzdMhiqy52Bw2Ko+y0akPrzG7/MINlp+HIMBPMCKE5aElZB32iz463T/RFPSX7Z1/1f9G8HleGSDW7CvyWRTCPgLh92GGduPBGTsK179FWPbS5j2YMeAjK+hCXuXjiYvlJ0ntvUyzkcaEzzBVaKBB1hxwpOwEPI9PU5WUYkN9VSqRZBkrM4IrEbPiUy0lAmA2wzEnbKccCAshLzNasFj87bi/87VPbozWDyy4QAMBmB1RuA0ek5kMskn66Us8IyXnPAgLIS85vyiMyACgKqypd5gIx1fhTbWOVgT2plYg0Gxg5xDgZV18sWJKlwALnoyPN4Yz87x73YyAvRKnZJ1TtbHhx1nyONbzx9n+hioiNdci53pc2dzdknieasKg6TgyQc7QZRkjNV5EzluI9+mCh1MFwxKYx3d2wtIG7xoYK+bnNCE2LZWlDJ9ujRm72Vzyhn+31J27JZUnxIH+yy1p+5BucMAlwqU+JRILLWz+/WII/f78QLrb4gRyeN3iHfidLmEa2/thU48gIoTQsJCyHOCx5Ob3Skb5g5qH+KZRD9jX9wAAHhnfmaIZ8JpyDS4Gq8cDofTkAgLTb5jmwTsmJuFn88ruOnxTaGeTtB5rG93OOw2SHL4+yQ4tUcz26Q05hkuOcEnLIS89rC3vP5eVLhIm+g1zZow/fdQATv/OnGe6XNNDmlM/lNj9lRzdeztCmWSrdRZ5/eHRAckA9DVY4s3gDWuiwIpsH+vYLrglmbudeNOhw3rPnbbx2f+7wLRp1VLd6rgPUsy4LK7fRFWB2mDF0UZgmJCh0lV6X//9dse5nh3duvq/ayqQJLCntxDzci2PSXsdfullA3+MpniiG2rlT3hJIncL0nH/r7/fBHTltYmgdi+XscHYq/BekwzZTc/bxWgAqj08QU11rkmZ6zkvGn7OwB8QlWr+s7nuiU8ssU978SqZ/KHlUOqnzCH4wfCQshHIqIk44X+Hbyfn9+6LyDH0YS7IJtw9ZPuYhpnSskMbTGxCTi8LAMHX+3HCPtLIUgyZg+omv8zPMNmUDlaLOOKG3t7I3V7pMVxzZ4TELiQryPPba0Sipqw9zcFb4yHSTF6hfvl0AS7JuxVhxWpQ16+ZP/RGw6gpWd10WyeYTPoDJi+EQBQ6lkFdIDnrucEiLAS8re3j4Vl0wAAwA+FCno85v/qQ5FCwRvjAQBXTqndNdCE/YG59yFvy/TLCnoN0aPVi5JM/HhFMzMGdA1YCom6cLBIRoee9yBBJ3f9wIEDYbFUFUE/eZFdMutLXYKwtGMUXGDH1qt/7qIsVqJPHx4EFl6ElZD3fTBaXn9vCGcSWjQBnzx6ZZ3HSB3yMvK2TK+RoNdMNQ1Jo3c67Jj85tFQT8OLN3d9UpWQ3THXnSbBYrFg9+7d3vad37FJ3HzlcF2CsLRjvPl1ETu2jpB3UK6LGJ/EbjwILLwIKyHvS7LZiYwUC1YfZxOLiVS5PdfFU0wfQ2wisf1TOessvOijHWnEmsjj3Z3ERgPFyaxzTgX5TbDZyLHbxRmZfQ4Uuy+/UzV4P8c0ag4DVG8x61On2WCoRi3aEtu0sxgAYtOuRNPp7+O3JRk48+48dJuyGfsoX2gClXFRkGTMGlC1fl6UFMzWSWZW4WAd1ndR1+SHi2wwVgUV/UWX9QMAqWki01ZkJ/t1jGMdr7RmadJxju4vrXrcHSrQ1KjjwFXZi0k7Wj+5wHTBtXHk+Zt0FidfsLGNX5WRbVf6ZAr9v2++x7W39oJiNCPnqyJvu971P++ziOBYsYwuN/VmHM16wXcuz3OrKCas/LwE56ysSCjWCRBrQpeJ9Fl8cKnj86paoSFshXxD5ciyDL8Ws+42ZTN+W5KB35Zk4JpqzF9Tcn5H50ZVP2rj7u3kt3lwao/L6cRj87bWer9BM7IBAG2pH8MKnShgu0tHQ6gn2vFTqQhjXlUrNER9MFTuiuE4ungg9i7oh31LMkI9ncuybc5wAED7GqyOqQ3dPHb9X8L8/Dkcjv+JSk0+P+cJQHD/fgmyGe0e245Giox9SzKwd0E/CLIJXWvp0Lwc2nLK+jouHTYL2k9622/z8qXblM3Yu6BfrfapKCvVTU2swhCxTtrskZ3hdNgYk184IskKJt7XCZKsYPHbe0M9nXpD13ioSX9u3qk/YSvkWyfJGHhjEt4+wdrNjQZyRcTJxJbez3lrRgOKCSmDZnvb7OeO45xiRrOh8wAABesn4cfZ90BQzEgeuZwYq5QKNNqvsMm4Eij785wd7jXyz/Tt6LUF39WMFCL/LGRXLaTEuO30NhfwbbGMi3YB3Y1UwE7Ltsx+RuoNO7+YzZVvjIlj2sxGE35fmoHbprqjik/qlFZsJFe1GWMTsPYjNomZ3QlMuK8TmpuqXsfPUWPd2cLK7HeRCj7Tc+g105kT/dpfqBPE9tifE5g2mh3fXcQmlxXr/u4+p415rKDvqJO07gxlk+4cw4590kb2EXTO7axOsrdbqcCugz5BVGOz3XmGlg1tB4tPwFacji8jTmb9C2wlLHY/K7VbkY7foKWJHXv3efI72KcJ+3x/VUhe3wcfe43pc7qCPN5Fn+P/tIoHjPmDsBXy2q9+bVId5K0ZDQBIffQNqEWnL9kveeQyAEDBhskoWD+REfSh4MfFGQEvZn3b1E34/JXaafOXQhBFTLivymbvohzPoo5AoZ2jetAObAAQqIhivT7z9LzPFJV2FyrK2MyX4Y4kK3jygY7ez8veiXytviYcKZbR+cbeuj9qvApXzQlbIa/dwDY33FOj/r4CvqYkj1yOvDUP135yAcBlq8QN03YBOikSwpFl75KmGlqTb6OTWrkmmrxe4XZ/avKP9O5cbb9w45WdVSucNGHfEOj3jDtgrEsi+wq05WXuxK0pYSvka4tqq0TbOjgsBcUUEm1+3+PdsN/pfsUVIsA+zAkPJFnBeJ9VT5KsYGkD0ex9oe373H5/aaJCyOetGQ1DHU0dySOXo2D9xKALetVhw9/eyAPgNtVwODXhlZ2/IdYnvmF8A13mSgv02jh0GxphL+RNApBCOcN+P2cjttWyi2g7fDFQmOdt++MVVxB9vjjKBhU1a5Xu/v+pXdi3JAPnNj+J1Ik5RJ+OMazZwUatLU4yVmWj1AKlkqkYrr4tyWCsw4IBzTy2RslhwV+mu001//vtJ6KfPak1c/zuLVoQ239qyTqHPzul44yNbQTFaMbXizLxpydycEFn3fTjd1aZPeYrBth1CnPpOefKqACds6y/HCWUA/OclQ1Qs+lYq+h+FToZJ2f9o4zY1jMFpcQaIEoKHu7VGZKs4OWdbKDX3mI2zcGe8+S1VFV2ApJC3vC0ODaIT4+TlOnJrLOo2Uo9b7LPpioqGHNPZ8T7eOMVRUFeXh52UZGx+ToBgeXUfWtqZM+tUOd+t6WCoX4pZUVJZ8rM9q/T7BvraTs5do8E1jTz+Rl2v+P/JH0rZ33q62pwu72bsBfywaJrHZYYRiJ/eiIHn77cP9TTCBmLPEsRJ90XPhrwN4sy4fRESOsFrhg9jZLR5E1/oDFho3ul0Mu9q8o2tmzZEg0N3/q6Gtte4XZ7gAt5AkE24eiyLLSblFN9Zz/x2auZEJWaaX2c6OObRe7SgLc+7U5joafJN/PkuH9/XhbeeWkADABkowkPPB2855QTuUS8kD++aiQMMpsXpi50nbIZvy7OCKigX5h5BZx2O0TZbRZw2jRTTfiQmpoKm80GRYleh7C2LFGSFWL1SjA5siwDcQJqvERY0+JlA/Du3CzsfNGdsVU2mvBy77e8/RRFQcuWLVHpqaQiSQrW7GaLyEQ7mnO2oTtlw17IqwAclE3SUVllf3VWliF15HLQlsSLlL3ZEJvEjH3x6M9MW/tJm3FoYT8YPC/ONp3F3YkKaWvUMvAZDFWfS0m3Ad49555PhdWOK1e6sx/+VOpAsUPFT6VVdkg5/TpiP0cFa1s/9sMnxPbh7ncxfR7uGMu0HfCYMQW4TQAHi8uYPmu+sKGorBLz3znkPg+d5FR6RZhamak8KU52v6Y6gUY0enb6RlTwWUud5GO/l5GPcksd27LLJ/nYq2/9hjK7ATMe6gibz1xPWtl5i5QSIYjs14a205/TCXyynDzk/Zy/6UkAQJOpO3GwoqqzILDn39JBtnUyO/G3p6qUkA/nZSG95z2QFDPufioH9690B1G19gQxvTywAw6VSGisc01KqRimWJHts7+M9VMUUd+vkxWsE+aolXxDdbjYsf/YiHxuTAJ7b/USq52mltqm6CzZ/cv4tQCA919t2IXUoz53TV0QZBOOLAv8ipfcFcMhyME31UiKGZ/M5/bKUKLaK5GSucAvY90zLQf3PrsTAPDB7P74YHZ//N3n/oqSjJcHdsCTD3TEM/27+eWYkcSpMglX39ILAwcODPVUQgIX8jpoCcICLehddgvSJmQH9Bh6/PWpHDhsOstfOBHN3U+5hb0m8Ld6Et5Ne3M/pm8/jAXvHoLDbrvMCNHJIy9swIRXthGFVxoSYW+uqQ5BMaFg42NIHrbYr+NqZpvaEGuSsWnOMBRWiBgyYyPxt72TO0N12GEIk0pEHDeiJGPGQx29n/+86lA1e0QGdz+Vgy8WZiLn+YGQjWYM9qT/9U2RAAAGScHUTb+HaJbBRS9BWkOw10e8kE8evQp5KwJTiUaQTXhvbhbur+Eqhh49emD37t24nlqvCwCqo8oWzwkfXtpeVYBdE/bRgibYt84ZjpznByLWbGKczFPvD5+lpIFGT5g3hCCqsBfyMaKKtrGUF8tJbot2C0wX84m23ypLiG2pFZuzpH3Hq5m24z7ROO0mbcLJFZnImT0M1/oU3CiinJFr7nenJdTWSLROkpHEOLlUuFzkvA0GARKl2VcUnSW2Ew79h5lj05vIN4zmOpWqvr7AvjH4BtE4VKBTIzZTpdVlB2DwBuDQTm8AUHScY+WUIy5G0suUSLZV6njUBAPrQHNS1ZpOV7LOySTqGlzQcRgfp4KB2lLOOgNU/EEnT4pJIKOpC3WCyOhKUK107sn/+RSDUQURqmyCraSQ6JParBWzn0Qd7p+ny5k+GWmsb+esxzl51xNuJeXj+Vl49ckhzPJL39uQqlN1q0SnEhUd/CQr7Aq35pR0sbjYcf55mvye/qkF+0ya2NvN2Jn3FbGirCXl6NcrbdgQCHshH2qufWwzfphX9yCpSQ92h8Nug4Hnp+GEGE2wvzs3C+/OzcIDT+dAlGUsHNweoixjSk54mG0+np/lDQ4D2JR9kmJGn2kb4Q/OlEu49tZe6BTFpQm5kA8wDrsNqz44iAWH/V9mjRO5CLIRBdmTkTyq7sXa68oDT+d4Bb0m2BcObl/NXsHhY8+qIM15DLBC/u/zs/DurAGQFBPunVa/eJbxL7kjZXdFcWnCsBfy3VLi8dmSDOSXSsh6LjskcxAVE35anEGYbPTQHDuffvopvvjSbeuUZH0N/pdhif6eJqeeiLKC2QPcFb6e2RLYqlfJw5ci7/VHA3qMy6EJ+l2vDEO/ZzZ6NXrJxxQXzCCqvNcehmqvRIv4ePR66vKC++6ncqAYVHwwr0rY959eP81e0+gBIKWx29QZLU7ZsBfy2kXufnPvkM2hpiYbba4tW7bEwrcv/+p79cYi5C4d6pf5cfzDwrd+w9lKAbMHdAjK8QTZGNKiNQ88nYP35rkFvabRX5lUFR01Oki59/Nec9d0aDthk65N/lJoWvwH87KwwxP9Kylm9H2m9gJf0+gBIOuWRADR45QNeyGvoQiqN0Nei6akc+pUUhsc+8drRCoC4djPRB+nnS1HdzD3GNPmim1MbOeb3A+dVZDx1YLBSB27Dq5Ysv7bZsqhY1cljLnH/QURZRlPbPoddgvZBwBMBqAldQeUZs2I7QOVZAQsANxMRZf+Pe8c0+fG1s2ZtngfB5YiAEcqyDXT+x7rhg+ddgiSgv94yrt113HESTopHunScopOBEYxtURbx5+mWz3qPFVaT9Jx/P7rAulkuy1RL+MiOU6lToZN2aBClGSvRv/81n1wUIcrOHuS3ZGKVC1u0oLpYjCRAizl0XU4vjwDcFVN5FQl+5zai8n7O7gzm4DsvUL2q9yNcjye1XGgDpq+ETteHoa3XxmGAdM3wuoT/auqgNVpYBy/AHBbEnkzt55l31iPnsglG3TSj5zMeQKCIHnjRb4rY+dotbHXRPRZsBD36Cb8Lcl9k96dm4XtLwyEbDRh6LPZxD4XbOw1aqITBbzt2yIAwDlPZstIz2YZFcFQ7SblwGUPbKBD6th1cNkra9R36Tt7MW3bEUzbdgROO1v7MtR8ND+LSY0LuHPc3/NGLnqtORiCWYUPz2/dhxd3HoLTEfh7J8gmFGyYHPDjXI4BHlPHmzMHYPlzI4N6bH8HBD7wdA76z9wBANjmCQarK5Nnr8eTC7ZGfBBVVAj5YCHIJuStHhXqadQbh82C3tXYPTnBIXnEUgAIC0E/9EW3cNQEvSQrGHdvJyzIuOJyu9aZgvUTA5bWQ1tJtHnmwHoLe83XFqlpEbiQrwW10eY5nJqSPGJp2DxXEz152Zc/NxLL3tmLVR8cDNgbjctWGdC0HoNmZCPjRbeZZfPMgdjxct2CJrdv347du3dHrEYfMTZ5gwGQPD9JdM7tIrsKg2zCkWWZSJ/g/gV3tiSjF43HvmfGtLRgo/0EyowhUsFKBh179M8X2cCjZh5bn8EAKKIKo04WTMGgMln39p05Qx5PZ7/PqcSUsk6fQh37a5FDxXeLMgHRjHyrAZ1jSTvq7wYDercgba1ndQprl+kEA7UxV1+AnK4oZdLJJqmbvVIh7aZ0NSMAGJ5MjnXBytpaz1HH17M1x/sEbBmgIl5W0YGqDlbUnK3WdaKYvCnFthoKRk9gnyApKFg/Ee0feJLt0ziV2CywsOdfcpJNx2BoTy6LPFyQy/RRUtoS202MLmQ9l411Lw7HohkjMWpmNqACFsp/IVLfg0HN2fP93UzOu8Tn3n6zKBNJCYmwV1aQczaz2VNbmVlbft4F0k9hasp+By547vdfn3TLhH8syMKWmQMgGc1eE9WJCtZ389E58ntRbmczwUYSUaPJp0/IgcsWeG1IkM34eYl/EpeJihnfLgpuGlSnzYKeNcxf3tCRZAVTH+iI5VmBMVf4kjxsMVw6iwNCxaiZ2QCAdS8OhyDJWDqkPZYOae+3a+G0WWqcR99fDJi+EUM8Jqm6aPWnyiRcc0svXHNLL/Tp0ydiTDhRI+SDRdqEbDj99GNy4+ObiMg+Tngxb+dvWPjuIbiC4IAF3Esqj+2cFZRj1YRRM7Nht1ViYs7vmLzlCCZvORK0axFINC2+toL+0Rc3YOLcbZg4dxt2794dMSaciBHyHVonYOsrWVh2Ge+/oJhwbEX0Rq7Vl+8W8VKDdSEQmqweWibVcBL0smLCO69UCUPtWswb2iWEs6o/mqB/d2795EUkOGUjRshrzg+b9dK/nMEy2fiTYJpsuKmmbgRTk03v/1zYmW18aw9o1yIYy0sDjSbod744oM7CPhKcshHjeNUwALizMekczLdUOU/KYk0oey0LcsZSakf290yKb8K0OSylxLZoZiPw4k0mHFyWgbs8Dh06EAcAMjy+OS2wxiEouIPKVb6v4DgSBsxB3utjsa8gDwBgbpZC9LFcOMWM/cfWCcT2RTsbiLKngo30sahkls0Bzck+HwmAkXKGNpJ1sknqZJikg6EKdBxaZmrsPSWsw/qMTvbIFtQc/lfCFr74SxPyUW6isPekjYk832Nl7OPf2sxety6NqjJTigYV1+oEiFnVRsR2kZWdo6iYmDYn9Vw6rKUwmGJx9O1XkDrkZQCAMYkMfvqerdqI5m3YNMntYkhB/EPTZKbPvsLzxPaBEvZNz2wy44N5w4jgIqMsY96g9pAkBat378HvRey9LKAc3WdsVdetzAkcsrggUmk/OprZ52b/4b1MG8zk9d5+9ALbx0Heg0bN2PPP9KRK2TpnOD6Yn4XBM7KRKJLz/kQv0Otj8ib4pkXQCJekZxGjydeUe6bl+M1mfinuejKnxrb057buxws7D8PluHRFHkE2oSD7MX9NT5ejy7NCUmqQU3s04Z67cSrytkwP8WyAoc9mw069Qa/evQevf3QAjss815GEb+79ujD+pfV4bN5W4l+4aPcRJ+Tbt07A50sz8PnSDOTMGh7q6fiF5OGLA7pO+uhy96uob9oHTt2QZAXLh7bDqmGBzeuSOuRlpA1bGFamGz0kScHDvTvj1cza+SrC0X82eAb7Y1YfNHt9qFfiRJyQ12xgu3fvhv0SGruomFDw+tggzyx8UW2VaDeRC3h/sPSdvZj45tGg2aQF2YhjAap8Vhtkoxlvzh7OtGsafW3Td4Sr/0w2mvHlQv/4yHxlVSjt9hFnk/fFLKpIjXOiVQxpf/3D/HV4bGIG2jVu6m07GXcbs/8fE1j7r1Eg7W9WnYxZ/zlvxQW7C99cdGtZf0hkgzUcKmu3FejD+ax0EYyxKMh5whvm7sVVfaWkn3Vs1PYyt42yYP1EwGBAZdFZZHZqSvR56i/xxPYixYD/nifPnw5EAoAEnapHAjWnC3ZWf8inkk9dEcOem0tl9ztFJSj7YxJr//04n7Qtd23WlOlzjFKKM1uxgumgjp0+kQqsamV2QjS4/9eIpapOFanVB4cBgDGGvAc2AxmclDLxTeStHAaXs+pYgk5mtxKdILJ/UtXBbk9kr3eT5onE9s6T7DU5VCbiD1M24ZOX++NQmfvg9DMQZzTgub+R/qtXPiX9W8coP01xjBln1j6Mq6dUpfDeX8xWvXIaWb+YXHya2P7TtWwiv69LyePdpVP1a8txSvBmrIZt/Tj8+9VMXOOZV37RRWY/FxKJbb0gvgv/LmHaQkHEafLhgiCbcHyV/5I5JY92F48oWD/Rb2MC7tDx6lLZpqamomXLllAUXr2qpoiSjOce6ogXBnYN+LEMihnHlgxC7qoRAT9WXVEUBS1btkTLli2Rmppa/Q4A7nwyPLV5Tbj7K+hRI7/UndUy2GYbLuTrSNtx6/1uR08evdKvNtiC9RMh6KzooLHZbDh9+jTy8vL8duxo54Xt+zDrreBkqkwbtwHpU7YBQEgFvaiY8a9X9e3oeXl5OH36NE6fPg2bLfKdsYEQ9MOey8bU+cF3yEa0kG/fOgE5c4bpBkgJigk/LvbvL3Ew0ApJ1BdtjFAVpGgoaBr9Px9ui3+PZZcx+pO0cRsAIGQ2+jufqNmqMk2rr0nAlKCY8IufNWZ/4TXXrB3j13HPevLUB0urj2ghf7kAqR6eUn2RJug1oVwfQa9pe1zABx5No//L68cvu0zWX6SN2wBXmKfC0LT6mrzlXD1lc1iabDQCIegnzVqPqfO3Bk2rj2jHq4aW8uBshYRJnlSpp+wutJ6Qg8ML++OU3YWe8axj5N8ndQIoKknHj7kZa1/UMlMaDAaIkoyTOk7GG43kAy4bgGviSMfPyUo2c57DbkXqhI3IWzMa+W+Mg0GUGGF9jMoMmRJT5fj9cXEGYkQB9zyzgxnbSTmDd33ndihV2l3ez53jSWdVvI6T9biOc/IsFfhS6WKv91+akkJwfwk7jhaw9M4rw7yRlueo6/u1i52T2RPAIiomXP/4Zuw7wZqe7kwng2F+KWYduJKBdZjSVa6Kbez9vibOgf+TZXzxSFsIkozrVhxm+pQ52XnT/lmDjlfVcb6AbHA5ceTVh5CaMa9qnEatQHOGyhR5qoj9ETLFkc+gqrJzbKJUTVIxuLffOUMuNjB+yWZqVGQZcwe2hyQrWPrOXt2qX6VOA0xGE/YvzcAtUzfhjMQ+Ey4X6zBF26uIzS9+/I7pYmvdjdjeVVjK9BHj2O+ghZpn2/HZyF02FIJPZat9J08QfdqksZlJN+Sxju4/NyX9XoUVIq6/rRfaB7D6VFQIee3i9LitVzU9I4fUR98AAOStHF6jOqA/Ls6Ay1YJQTF53mLYL2skoAl3STF7K/z8s4h8TK12Vli1jXF/eX5YlIHv5vaDxeVC8vAlAZ+vLxM9dVKXDmlfTc/6kZoxD3mbp+H4hskwyCZC2AcayWjCe3OzkDrhzWr7Ln3HHak6/l42pbcvt0zdhP+8Un0N5VCiFQxKHbvOr+NOmeNWSjfPCZwJLiqE/OUQZDOOLsvCH6ZH5jrx5JHLUbB+IvLWPOxtO29knamCYsIN03YFc2p+5dMFWXDaLIgxmbzCvS5c/7j79frzl/si7/VHIcimoAv7YKAJ9rzN05C3eRpSxgfn+b7/6Ry85Sma7U9ExYyvFmai8Rj/ClF/kTp2HXKXDQ31NOpE1Av5dpPcJptIhtbi2zVnX80jmU8XuFds3D1jp27OmbqgCfaC7CleYY8Xg/MjKEgyvh7TFoKo4MZVbDEPf6Jp9flrH0HKI2sDeiwAeG9uFiQdJaO+3DJ1E75amInclSOQNn6D38cPdwJptoloxysnsvl0QRb+Psf9A6wle/M3ycOXIPXhNQCAD2b3x8fzAx9KPzHnd9z82nG4nMFZSujV6ldkIX/tIwE9lsNaifufDsy9umWqO0Nq7srwjQcIFFPmrMdTr24JiCM2qjT5Dq0TsO0V95e4okhG32fcqUTfjjXh3blZuPaxzeQOOlGJUgUZ3VZZkcj0Mce6M+AZDAJEUUKcwI5TTEVpirI7D7coy3hik9t2K4o6mRplMrqvTKfcYF45+SA0M+tkDtSJiqQjbh0+UaraZzqS8YKOkzE5VicKl9puzh4e/yyscjr9uDgDFpeK9ElureW/pe7j3pnEni9tg1d1ooDjqXtwW1sq4+DMXfi+zJ3HJ2dmfxgUM/7yJJt2OU/nfC9S5Q71nMp3NyPn2Mnmwg+Sgv8+6tboh6w7gGKdsokV1FgnoWOKa0na+GUd1SztwacBAMe3PYe8RW77tiGuMVLGVGn3qUlsFDDtVD4nsuX33j9c5cQ+XWHB+4dPwExltPyfTgnMZE9EsEFSMPbezpAkGS9t30f0ob87Q2dsxj/mZ6Fs7Sj8zVNs/ssTOmk3KW7v0ZNpS6Kyl35T3IjpE6P33aUeL2epO5paddi8nyGSovOfZ1inriYnfPmkgCxbGC+xjl9/E1WavG+uCN8c2H2f2ej3zJRHlmXUKNBI44lNv2PatiO1zvERrbhslUifsDHox203MQftp+6EGoRliEPWHUBG9rGgafQA0HbQLKRnzkd65nwAHu3+Nf9o9wXZU9xmr1ryzJb9eHbH4RoHjmnC/R9BeOuqDWV7/419ky/vRA5HokrIBxOXrRLtJ22uviOH4cfFtfuBDASGIBZrEUQFm4en471RaXh/TPCERMqYtUj1FLb3h6B32Svr5cQWJRkzHuqIGQ91xPPVpIMIR0Ef1/3P6Lr0YECPcaRY9nvWygYj5EXFhJ8iLDAqWnHZKr3BaqFCy8oZDEGvafT3r8sNSsAUjWay+XF+vzqH6ddVi/flpe37MOetQ5hTw3QQmqA/vvXZeh03knjomY1+z1oZVTZ5X65tG49fVw/BmXIJE15aj8HTN+KDeVk4vGwo7p3mfnhOxCQw+zmpB/maJDYDngoVpwQVnYxue97VCWywhp3KytjSY58UDKr3s8HAXn47ZSJUdfwG1yWSc/y5lBUc+SKbbKyEsglrWRRVFaj0nMLwWxOJPov+xWbSKyhnDf57qIx/zXQqSqUYXfhkfhbiTCakGF14oCVrW//sHDtve1khsW2oZG20v5wjr4EroRnTxzcrKQBc+cQmfPFqJn5YlInbn3Db5806ak9z6lxiRHYF0NdUxscDOtbBEa3t+ESR8fHDae6KYTv24Rtqv1M6FcxuiCOPd9DC9qlIZjVj36crfWIOnDYr8l57GF+9fH/VH1TAoJiQ8shrAICWCYnEGHuWZMBSUgiDbERK5gLAk68pjqqelKtzvi2M5LyNPiunJFnGjIc6wGow4poVVSuQnNTznjhuE5Q1GbC89xIkxez1s31NBdJ9dkEv5xP5vN/VROd5+/Y/TFuTK/9ENggC+5nyCxl07ltFYQHTZjCSPo/fysjvjbRzOPqscgt3s46vrS5ErZDXliFd51OS695pOfhgXhY+mJflFfSc4OKwWdD72Z2hnoaX2z2C/otXqwR9IJm9w+14fKZvYPPcXIrUMa8T26rqQt6KYcjz5MM5I5M/OoJsQurIZX6fx9ydvwEAxvep3nzlXUDxyjC8/cow73Y0YrFYsHv3br+OGbVC/lL4Cnrzw+vrNMaXCzMhKryUXm35ZH4WpDC8br6Cvm0D9LOk+jjAaU0eAE4XBNYOXVP6PrMRb78yDDteHIBiQwy6TQnevSpYP6ne5qpQ0WBs8r7cOy0Hjjqutvk/T9WYW6cGXuuLNhw2C/76VHi+QWla/L4gZUQUJRnP9O2It0am4a2RaXjnkchbtREK+j6zEQM8EdG/LuiH34J0v1z2SiQH4I0mGDQ4TV5DUkw4tngQDIq5VhF2TpsFtz8TuekDOJfm9ic24aP5mdi3JANdA6wlamYbzSb/1si0gB4v2tC0+N+WZODXBf3gEJWARMr+siQD5aUXI1aLBxqAkO/YJgE752XhwEWZsMPfOy0HnxUBx1Zk4fiqkUj3LDVr24jMrre3zO3Qy105HKqtEgbFhHiRdA79qpNN8a4WpCNo/P1XwuW0QRCN+LnI/cV+oAm7wuCdQnKsB1uzD9dFyjv7lyasI/QC7cEFUEz5h32DarTPG78qIvq0imGGwXeF7Pl2jyMdUXrl0M5X2vCFT+bPL06yY0Nn/bqUQDpMjfk/MX0q2t1IbBtKzjJ98gvJzJSn0q9h+iSP34gjiwagxF51PocN5PXtYq4+9UJbnSJbJyrY+3RtI/dN+UCR8d7oNAhQIckKFr2919uHzvpJB2cBQJGTPWA6VZUyV2bLVIJ6TEp1Tu2PHTswbSUOcsdUE7tjkZ129LNjm2UZv41zZ+6cmPM7DutcIz2MnqGve6yquMdJT24ZUTHhmimbcdZOzumTc6xz1pV+A9N2ptLdT4u8TX+MzaVEZ+t0lbMlAsX4JkzbDUnkRfhTc/ex3l86BhaLxW/OVl+iXshrDtj2Pe/R/Xv6hBwcW5GFI4sGQFBMSHmCza6Xu3K4u+9j2+o8D5fThhEbj9V5f07wEBQTjq3I8v7wB4Pntu4HADQ1OTHpvoZjuvFX5s5rfN68fl6SgR/n94PNpcKgmOtUxF4T8GnjN8Dl0El17GcC4XDViHohXxO0L/ORRQPw3Vwy5anF6YJBMSFtfHYIZsYJBekTcnBkkf8zLdYUSVZIQS8pmOpJhcGpHk3gn7W7cHR5Fo54EhS6VBcE2YS24y694CJvzWjAbq21GTec4ULeh/aP70CKiXxdPF4R+fUqObUnFNq8hq+pBgDG39s56HOIFny1eIfdiuOrRuLY0iFVHah1+QbFVK839nCkwQj569PicGjtYBRWiN5E/RcdrL07lzLb9W7K2gjfO3aG2H7i6sZMH3rZkgAwaXRPVrJjXxdLPnQHdAKPaPvnKSu7SKpdDBv40Yqyv571VJhSYfB+TqACfwTaaAsgRmTbnFSTXSeJVyOjgmubV9kpD1nZPk6dykSWs6Qt3dmMfbWnKyoZdIqsC22vJrZtlaz9v02cO1ilxeNv4sf5/dBCEZFM3bdKHbt1CeWDOKvzhm+qZO8T7Tox6FzvxvFGrBrmtosrioJXd/7C9LHq2OlpH0AXHT8J3dLYyJ6cSed+m6m2CzrPoEQNfqyMfZbbePwbsixj+dD2kGQZC9/6jejz3Xk2+RldvanUwT7vAuVLSTKbkTR1K9F2vpQN9rOXs1WuGKhgKGPjNtXvA+Bmyg8XSFu8RoMR8ppt/vooqh4VaYiKGf+3MBO38eWntSIvr+pHrmXLliGcSeCY4w0SY5280UwgbfEaDXKdPCc03DZ1E5xhXoTaF1Ex1TnXC4cTLjQYTT5UTOnbHQ67DaKss6YuhCzPugJwul8dLeXsKyvH7cD7cX541R4tLi7GI71ZG71OiiO4KGOMbx9RljE5p+7O3Mc8z7V3bMbwozMfnTnSNQ4qy0sxpU9HzxwVxnTDqT1cyAcYh92GFe8fxKHS8LrULocds95yJ4aa2S94eVS4yaZ+NGrUCMve28+018Qm7xu7sGhw/ZYsOuw2LH+/Kt1BTWzyp3V8Eq2pmAOzVPVLoAl7Tv0IL8kTBFonyRjQ012N5f/er2D+XlhBmhP2CGw00G3JLYhto8iuwLlorXJqltgFNNFxaBl1qtIUUpWJ9OxpMvXloSvgAMBZ6ku3eVRnqD7FK0RJxgmLWwioooxnH+oIQZIxYwspQFLjWIdW9yQ2iOswFRDWMZ71PKY6geteWo91zw3CdY3siCljHz+9IKqLbdKI7dwzJ5g+MpWfvlH6VUwf3wAnAHA52TmesVX1ObYiC5CM+O4C+UwYBPauXJlAHv/GRuzY/y1hHYjfU87I65keQGLzZG9qXlGS8fN59q3QouMMdlCZUFPMVecmiAIW66xN19PHdRRwyLICi8+90utTRv3wGHUeZtphX+4TQCVICib36eR1Rvtq9vHF5LOjt/ggiapydtbGnl2Jia2EpRpJJ6i9spzp84dmZNWnn8vYG/BXdj0GHHoXKsA0OCHfUHE5bZj05lGiTXvgxmQfAACszmgXlLnIigk5s4bjDyHOKR8pOB12vLDzsHf7vF5W3Vry7Da3Fi4ZSKkj6gjiMjsrHJvqRLj6m1meUoGxHiWGa/Z1gwv5KGbzqM7e0nOCTn55GkGSMWdg1eoGUZKx6r29l9mjbmQ9l411zw3y+7j+JtRBUa8N7wyXww5ZZt8AGiKirHgFvfaWIkqyV0nh6MOFfBTjctqQle2bSuHy74pjsg+gqc+acF+B729kxYR/LcjCnU+GZ1bKcMDlsGPs5qNoFQStORLwdcLu85hrVgXp7TOSaXBC/uRFO3Z8504m1NLInr4gkjZSva9XJRXoI+vY1hM89kADVCTILhToJF46bWXb2sWSttzDOnZrmlidYJUinWCk5kbSJv2pjm33T5TvwKFzAZwqO3YzE2Xv1unzY3GVRtpt0pv4cO5g7JgzBKmPrvO2t4pjbaQniqjkT3bWXmEwkMc7V3iK6fNAO7Ja1DlbPNPnf+VV4xxd5q4bIFM22pYKa9OwUEtHPrvIat+NdO7TXUmXzosiGNx25T2Uv6OtmfWTfHCG9Qvd3Jj0E+RbdJ5Byk7dUSf52mkbe75nrOS5KDrfAdrnpPfcSJTdvtTOHqu9xF6j9Fj3NRAN7s90cBYApFP+pFydYKxGEnu8c3by3nVpwj4nx6hYO5ullOlzwc5WnkvV+V4GmgYn5IPB2D5Xwu5ZXiaFYOnkqmGd4XDYa2SiuRyiJGOiJ4eKJCtY/LZ/TTepj65D3ppRyFszihD04YLLbkGHqbt0SzAGkvkZXeBy2CFI3ExTHaIk4+m+Hb3LM+u7NDQYfLH6YW/91kBGumpwIR8AHA73sslQ4XTYKTNN3Zi+Zb+3Hu3EAGVGTH10HXI9KWI5blwOO57edrj6jhxvpKy2PLO+S0ODQTCiXH3hQj6KWDWsM5wOO8QAaICSrGDifZ0gyQpe9XOAiqCYwk6bP7osE4IcfqUKOZdHlGWvoBcN7NLLhggX8lGE02HHRM8yySJ2KXu90Ew1gdDoNbNN7rKhOBsTh6uDWLvzUmimGk5k4Wuq0WzyDX3pZYMT8jaXAYUeB9RRHWeo6iKdPIqOn8REOZTOUg4tl2rABcpZ1UgnYMnqYp1ctMPyD01Yh9ohyhFX6tACr4ByT4BKmU5Q0ZYz5H4pOib7n6ixm9LnJhoxmfrSiLKCF7btI9ocOg6mrnHktY0RqjTlntO3AAB+WJqBs6uHYNhz2d6/fS8lEvs1aUUGogDACSqjZeO4FkyfSiry5tsLenV+VeStHgWIMmxWd7CcIJDXJMbEXrg0agWMXhbOIzoRn5rf75UhXeB02KGqbm3U9znIpZyjnePYZ6l5DBu0d4zyT+tVfSopIZ3aStNEpo9eAM8VlFNzx1lWlDShQl6v1wmQO0VlYk2PZfsU6gQ6WajnW+950xYNiLKCyX066jp+FVn2rsfXsFJjXdQJoqKrw3VpzD6TtJwAAMEQ/GioBifkOTXnq4WZEB1V0Z6SYsbw9QfQNYF8TZj2oP80pWHPZWPjrOF449lBkI0mQtgHg7zVowAAqWODazpyOux4dsdh2HR+nDn1Y95Ot6nmgE5qkbWZ0b8Es8EI+R5/6gu7rZIJf48Gskd2htNhgyjVfyXPVwszvZkiRcWMe5/d6f3b3+dn4YPZ/fGF5IJsNGP0THflHFFW8NxDHSFKMl6gtKK6oAn2jbOGY+Os4eg6kS3JGAhCIeA1DT4QfhRO9YiSjOkPdSS2n93K5gaKZBqMkLfbKvHonOiq+KLhdNgwKqf+q2m+X5QBwQD88RlfW3TV6+XdT7kDl7om2PHGiyPwxosjMHrmBry84zfYXAY895B/bZ+aVv/lwkzcGoSEZi57JdImBdcfoGnwnNBAm2qm+/kZDgd4PnkOALeAB4BbaihMNS1+9fRBeOPFEQGbl6bVf/FKP3y5MDNgx8lbPQqCHH1veRxOg9HkXSpbak0vK96IVNIRVGRnHUF0dj2bjkOLjsDTs7W20YlcPEs55/QcSm2o0n5OFThK7Ren4/S5PYFs++SMO0ovb83DAIDUR19n9snVcRbGi+7H5m9PuH8Q3p2bhTdeGAGDJGOGpgl5HIiP+RSglimn0wW99Lg6UZnNJ7i16yPLMvDhnP5oEWvEfdPIdAinHOQ8fz97lhlHiWfTAuatHgWXvRKCbELq2HVwOVhHd5tGZBRuK4W94bSjVS8K+mofx/OyrCu8AU+lPgnAPjrP7IZbG5HHO66zYOBMeRnTpjrJ5+T6pmwE5vmkJGI7XmTP7b8+HttjK4bBZbPgJ8oyeNZmgEExEzVVu8aQYx3UmfctVEbTeJ0FCicr2GcwQSLHjjOz+9GLH1J0SmI2ou6lLMt4qb97CaYkK1j6zl6IBvb4jan9inUidWWqac+6UcgNcKk/PRqMkOfoczkBX1MeeDoH78/LQqv2V0FWzBg4YyMcKvDqIP8GprT3mFJKVg/FOy+5E4dJRhMj8Ksjd8VwuOwWqKoKQTYhbVJwbP6+uBx2TNlyJOjHrQ2fLsiC02bBRZ/lNYJiRvvHd6BXE7Lv3y8IOLo8C0cW9ve2Fcnu6lr31PL+hJIlb++FliFj/L3+XS4c7CAojagX8jf+pS/sVguTf4TjRrVXou3E+tu7B87YCADYPmcYts8Zhoemb4Qoy15BL8oyntrsH4eWr1B/f14W3nlpAC5SbwV2nfw2WpoAQTaj3WPbvTnaOSSacBcVM+6esZPQ5C+HrxYPAH9spOLDeVnYPcv9g2yTzLjx8cgpFiPJCsbf28lb9UqUZMzcVvOFBXvWjfKmLwCCk8JAj6gX8narBVPnb8U5HbNDQydvzcMw+NkOPXDGRmyfMwxbZw5ASpee6DfdLfz9rdVraAL/61LSFFB84QzTV89cw6nix8UZ2OOoEu7+wFeL3/XKMHw1tx9EJTKE/dJ33AGAhR7Z8XwtK6iFSnOniXohr6ruf0d0sjnS5ckA4BwVeKG3apmuOBMr0fZAlbH1lenY7Kw6dvqWVBbA30vYeXeId+CZ/t28NTZlyYg0KnvkD+Xs8Vr4RHZ9PD8LgiAibUI20WfvRdK226NxHDPOR+dYP4W9orhqY9BidGraHD8uzsDaF4ejx2Ob4RQVzPcR9KKsYM4ONtRc7z7d15g8XomOLb8bFYxkSmnG9KEtwj9XsMsW/5zILkP9qpjcFnUCWn6n7M33NWdt+y4VeG5gVzg9OeJbmlz4RyF5PNr+DrC+m591nomrEtnsnT+fLSS3S9k3F0mScXRZJlx2CwTZjKThKwEA/3eiyqehpwi8e4jKuqhTLaskthWxPeFFt7N+y+zhOLg8A0OezcY6KmJrQDKr7cbJ7DWhv08mHV8CbTcv13luinQybNJ1Z7Wko6Ik4/l+7qXCdGqP79aSWjsQOs2dJuqFfLTisNuw4F13jdZfi2q3xvrj+VkAwAh4f9Pjsc34cXEGflycgb+sPoSHWlVFmE7uE5iEZ+GO02HHy57auuHA0WXuFUtaCgdLEfsG5G+GPJuNLbOHY+NzA3HCodTLHxRMtGRoT/dlNfpw0dr14DaMBojTZkGvp4LjDOvhKfH34+KMoByPU3NyVw4HALSbFHzTyZBnszFs1nYAVc5/TmCIek2+Y5sEbJ+bhf0XlaAJtnDm4/lZEJXgvkZqGv2qmSMx7sX1ANzmGjodgigrGLU+ekq5zRjQlXHuWspLQjQbklAKeF9SH30deWseRt6ahyNGoxcEAY/f735248wyevToETamGT2iXshv3+7WFtr1vCfEMwkPnDYLkaogWPR4bDPOrBniFfSL3trLJJnyZw6ccMDpsGPu21WmGZcaHhGVmoBPG58d0nlo+Ap6zA59BtLqeHnXARg9cTDvLcgMWzONRtQLeY0b0uKQ+/ogmM1mr+Df8GUx0492qp3SK5lGrdRprlODs4IKztFzslp1VqbZqUx5HXQy9120ClBhwEWPk5gO8gIAi6WcaftaNeOCA/ja4zNzOdmxTWay1BkddAIA1ySwzsnvreSjRDuvAMA16k0cXtgPK/KMAID7m5AORYOk6CaMUuHJMbLFvQQzPY6d91kqm+FJC2uJzKOc6lfFsOf2zln2Yib7+B3/ObYjPtMJmKKP9pXgnrNvVcB9pRIcqvt/jVN2cg49dRyv9LNDZ0AEgO9L2ECfmATS+Wx3WJG70h2dnDZ+A/Rq/oql55g2p8I6dY3N2pJj2yxMn28LyBKMJ5u3Yfq0iHP7k1o8sQ2/LOiHt06z5+F0sg7jDgnkgoA/yjr3hHoGk4zstS3RcbyaqOs76jYyw+TAgQODWtmpvjQYIa8J9j59+oR4Jg0bQTbj6LJMXTPBE5t+R7zOSgqby4BZAwJXVLw2uBw23Pzacaa9GbXC6vbG4bcGnxTw4Ycgm5C7agTSxoXn/DTC2cmqR4MR8hpms9kr6E+XSxj7Yng/UDTP9O8Guz1ysxa2m7QJR5dluld1vJhd4/1ESfYKegEqJFnBEj/XnNX4bUoXqD629H0+GqFQz0yfgqgge1g6BFFBVpD9D6rNgvTHwjdJ35VTNuP7uQ+GehqXRNPgI0F796XBCXlNoweAa2/tFcKZ1A2H3YYZ28M7HL462k3ahMML+9VqH81UAwCtzE5MCFDNWQBQHXZ0X1GVGTLZRP6g1jAAVBdNsGcPS6/7IJyQEGkavEZUCXkthQFQFcTUvnUCIdh96dQmAe/MzyTs9Ju+KiL6xDGBTmwwjpGy4RkAWCnTYoldL/CJtT/aqERXdKIzA9iAra9OkkEvgDvHCM2hRYMAg4jKMrcvIrMdG+i06VdyDfe/y5oyfVQ7W1GpUwsy8OVQHrsWXDVV2fuddiu+KGIfv85mVoKepisj2QSoooJH7+3sbZMFFZKkYNXuPQCAc1ZW425L+U4+OWvF71OvgsvpY89VVRgkGbbyIm9TwVEyFbBkY/0dpSL5Q1DW/XamTw8f/4okycgZlg5QGn2Bji/hGHW/9a6Rnn/F6vM2krd6FGAwwF5EJm5zxZFRwFKbLsw4zsJ8dmyqLb7gJ6ZPWZurie28c6eYPvRzY5BNyF05nMjprxfo1VwhvztHy9lnqTFl+kvWSVDWQqftLBXYFqkavEZUCXkthQFQlQVw05xhl+zf0Oz0qr0SqeM3hnoaANz21z1LMnBlHeu5TthImjquaWLDI707X6L3pXE5bei6pCpTptPKCvBAMMlTi3TRkMCke6Bx2SuRMmJZUI5VH1LHrkPusqGhngZBpGrwGjwYihMSkketgEvnjYDD4fiXqNDk65tpUnPGms1m3DvpNT/PjhMsJEnxavN2lwGiJGMcpfG/NrwzXB4zhtWlQhDrXzKxPoTSEctpGESFkPc109SFhma2CRfqa7Kh0ezxAPC/8wqWD2XX3LscdozdfBSA2yZfF468M0+nuAjpNzjZNBnX1OC8uCOWE2iiQsi7VICKKcGQm9wVb2oTtG02m7FzXhbOVkiYNMsdfn/Bylq07mhGfsHpQBwXDGhKZ0XUCWChIz4BoAm1n9PjiJ3wQHc4HTZIsoIkhRxLNLGOKcUYw7SpLhfhNM05xK7lFigHnmpg53hXagum7d+FFcR2+1Q2srOU8nHdOC0Hn77cH219glT0gqho3su/yLS1jSODuK5OssMoCViTmY6KslLExMXD4dHujR5/javoNDNO473vM21Fne/yfs5782mIjVqgI1ULtuIiOVbB2jH46sW7YZCNSM2YDwBI78Rek1jPcyFJMjYOS4cB7tz7k3N8KmpRj6CF9RVC0XmLtduqfsQMAFq1SGH6JFPP0qF/sak//tqbzTv08c+/kg061ZOubkv+cLXUqaj16TnyuWkaE4OTooimMVXPb5nOaqYrqcAmh8o+OPSiBZ2YQQzomcS0aUGSf1/+SEQ7XDWiQsj7C02j73Fb+C2tdDpsWP3BQQDAkdJqOnMAACt3u5ddjr23E1Z/cBB7dVbz1IS8N5+G6ilCYpCN3gpVl0MT7Hmbn8LxDZNhkI3AS+9csv+YbLdGbxZVLBocHGcs5/JEusNVI6KF/I139oXNatHVYupDh9YJ2PaKOx3vsWIZA6bXbEXKrMFd4HTYUVlegtEe27AkKVjjY0aoCeP6XAkHZQ6oKCvF2Hs7QZQUom4qp3pEScHYezvB4TJAkGRMzKn59fv9sy1AfAu0Hb64Tsf2FfafzM/CX2uQJE+UZSwa3J7R6BsCvy3JgBiCguq+qQo0Il2D14hoIW/z2OIdeu9h9cB3Xf0VN/au8X5Ohx0v7HSvqW7rya8yug7L+hwOG9Z+5NbsnNS6+bH1qDspKCYUrJ+I5JHL6zxGJLLiXXdk7N4iCUtrsWTx98+2AABSh86t9xxSM+bD8u4sfDS7PyTFfFlhrwl2f2r0BsXsV/9HoHDaK3HVk7uCftxo0dr1iGghrwJwqvrVm/yFYGCDnehSglqgk6pWfS71VK5RVffnszrlB/WCoU6Wi3CpBpwsd9v5nZSt0aka0IYK4Biawq4Q+baIvSqW4UuQt3YM4HLvb7CWMX1MyVQwzJ5PmD6fG+9g2iSZnMPh/KNMH3OLNGJ715whAGT893zV2vRmlG0dANKMlA9CYf0Ny34mg3z+nM4mw0oxO2EwAI1k93hKCWuTL0+5HgBwbNcsICYJ6f2eg7M5aVuO1Vl4XGkk/SKDOjRh+mzDcwCA4xsm4/8OuoPFbqPs9J+er7q3Vhew+6wL3eNIn8+VCWzgU4FOoq3G8VX3pNu0N/HhnH4oclIJ+E5TCck6/ZkZ57+lbJI+kQoIK213E9Pn54ICYrtrm2SmD20pbya7cBeV9+dwOXt82sfl1FH0pt5JPktbvinSOX70E3FCfuDAgTh4wp2T299mGj0KDv1UbXIs1fOAiTKbT0YQRUzp0xEunZ8iQccVpMJw2bw0oiRjSp+OEGUFC99iy+dVhyCbULBhMpJHLK31vv7GX0XE/c2xXbMAAOn9ngvI+AbZiLzNT3lNOZfsJ8n4bWJHHJIVPLj2YEDm0lB5b8kYWCwWaJl8osU0o0fECXmLxYLH5tV9uWRtSe54LYbPItMiSFQ64mKd+q0ai95xv3rXVJO/qLOax5fntu5HY6MLU/rULS958oilKNgwGQUbJiMlo/5miGgj0AIecJtujm+YXG2/rovd5eYOTPJPDvrLZQANB/JWj0JqTHCEbTSbZ2giTsgHA18nTF0DrAKNKCteQW+QFDzjk8CrOjRBn5/zJFKyFgRqipfl6LIs3QLRgUbLZplgltCjRw/839FSpPevEuguuw3tB88K+rwuhyApeGtkmvfzldv21Wkc3wyg4Sbo81aPAgAMnpEdsGNo2jsQ3Zo7DRfyOvj+ys//Z3iuV/Q11UyqQ1Hs5BFLkb9mtD+nVCtcdgtSx2UH/bhaNssvlw3F7t270ajzzUGfQ23xNdVowr6u1CUDaDBw2SuRNunNgB6jIWnvvkSMkPfNBFdBZYFMUPyzvGbgwIHYl18K2WjCis/cdv8WOhn/yinzzHm2KA2O6ziLaA4Us7Z3uspTro6Z5+p40swjSTLmDOjg1lK3u7W8no3YQKcjhy8Q2wZTPPLfnI7k0Su9bRWnSYepYiKr4gBAwr9Ze/75awcQ26KtguljP14VQOOqKIFawlYhYluAUifpQOvWiNXChEakUy9BYk1hFT7BZ59/9T0aXXELDIoJLk8GydztM4GEZrC16U7sl/Q1WXPgfM9MdpIqeeP+W8LeW1XwfSYMUAUREuWquSWR/UrG+1TnkmUZL/V332vfJG1/0ilS8mMxOZblzDH3PFwuHFrQF8lZCxHTgowKrtC5J2cLdPwB8WRAnFTEZph0xJOVqXJtrF/q5sZmfLogC81i43BzYzMOlLF9knQKycRQ2WGTjDoRYh4iPYtkfYkYIe/7K7zmC7Zsn7+OMWZO+BZVuBSaYK9t/dDk0Su9r8kNDZfLhQ6UT0K1W5EyKXj+nrowbuMBCACW6qRsqCnJWQuRt268/yZVDz5d4I5HuevJ6uMH6kpD1eA1eBbKBo4gm1DwRnC/8Me3PgtBNgb1mNGGKMlYOrQdVgyrfRwG4LnvOVP9PKuac2RZBg696jYbBUrADxw40Jt4sCHDhXwDRzPVBFPQu+xWtB08O2jHi0YmbDyAyW8ehdNRt1qyyVkLAQCHFvbDkWVsbppAoh2v4xO7gqLBX6poUEOBC3lOUAU91+LDh+Ssheg41R1dGixBrx2nJvl/OP4hYmzyJy/asf1bd/ZBtQa/TTu/YzMVXoqePjlwmlKO1lydaL8z1Fr2GJ0Mk3SJvo5xbJTiORd7Hukx5PG1jIm+0Nn1mnsiYBVZxrP9OkCSFCzSKXJ9Zacrie29B6ocoWn9nsXxrTNwct14pPV/vqqTTnbBotvHMW0oI6+3wcWeb+7brwDGWKSOeR0uQDfoy+FTdk/jmiZkNGmaTsk2+prQZRQBIN2n/J5RkbF3wUMQRBlXLHRfB9UcD0lhl3WW//ERYvuhZkwX7DxKOrXjBTZyF6r73uZvehIGWQFUF/ZWkNe3i46jv5RaaLDfp0SgXQW+LRXxp0T2ObkqnrwH+xLYidsdNqSOW4/clcNxcEFfGBQT0saRjmZHOftdEhq3JvuUnmf69EyuKu332auZKKiwQFBMSJ+QA6fTfQ9/pzK4DmrJpn9ONLLnZqMegV2LHo3a3DP1JWKEfCCxWYMbYBUotHzqdSmDBwBtB89B3ptPI3fnS6Sg9xOqvRJtJ4TH+uxV7+3BnP0u7JvC1jQNNKrditSR4VWKL218NgAgd+Vw5K4awQj6uvLZq5lw2iwQFTPaP77DL2Pq0dCdq5cj7IX8TX95EHZrJWRj8ANnGiJp/Z9H7s6XcHTLDAiyEWkDXvDLuMe3PguDkc1739Bwa/H+M1cJooIvx7TFj4qMJ/yQnTRt3AbkrhqBY0sGAXAnNkuu5TNQkD0FLnslSs1miIoZf5nuNgn9rJcYvp58uGxMg14eWRPCXsjbrZV4csGWUE+jQaFp8W5hPx2CZETagJl1Guv41mfhslshyEakjnndn9P0O4Js8qsWS5O/6UkAQEqm/6KMb17lTnT230fb+m1M3/PPXTUCeesnsZ0os5bqkxpbkE1IfXgNeqayRUr8DdfgqydshbymwYuKGZVUBSUXlZnxdAVrf20T6zbanasQcf1tvdC+dQLjZdeOYTKZvJkma1KZKJmym8ZKrIYikeZB3ao0jXWCuI7WIIhKMJDHq6n3fH8Fud/1Xa5k+pT4XOsO3T9CG0XFR/OzUPzhfEiKGb2fysE/T7NRwEoiGRxjt1W4hZogIlULthLImTps1EUCENe4FdMmUuf7cyn72PagMjPqVQpyUHb6Ce0lPG1SkDvVbbKRZAXOVt1wbPEAInmYUyWPv7M4kRkbAnnf8j5kA8ZcTidSx6wlnoUmVFCPXjbFplRFpQtF7IoagyRj7iB3amJBkjF6wwHEU5fpD03YN6lfLeQ9aUw9fi2mbkFTiZ3UBcpP0M7Efgfiqe9FZmvWl3KGquUu6nz/Bt2YyLQ19ACn2hC2Ql7T4GkBX1umzHaX8Xvz5WGXPAbn8vT25D7/aH4WPpqfBSVr5WX7564YDmfZeRhko1+11kAwd2dVeognHuiItjVMHlZb9n+2BUJi4DTb0Ruqol/XZtY9UCpS4Bp8zQlbIR8oyORj3M5fG3o/lYOP5mchb0UW8zeDWKUCCrI57ByLtcEgG70l+6pLB1wd+z/bApfDAUGSglasRZBkrM1sBynKKkv5fne5Bl9zGpyQ99UAtCWZnJpzKXONbCILedjPHgvWlPwOU59VUpCaMa/W4+z3VJbqdpf7R5FdZBgYNK3+9SjT6Ln2Xjd4MBSHcwlSM+ajrae4yvENU5C3eVqN99UEfJc/DQnI3DicmhJWmvy1f+oLu9XtiZGNZpysEHFep4hGY6X6pVh08Y2TZRKuvqUXjh/4Ga/9x53gTFXZsWWqya4TVFNGxfkoOt7aAip7ZJmD7XNSp2TbcSpTX49Y9lytlJ+CzsqpqsBPF3UCjWykl+vnctZc1bcZ6Rw7Uck6gtsnsZkpO1IFUGKasVrkB4XkPFvExTF9TltZp2Kli3xMb0xkA60aG8nrZNBxdStUwJSBuiWyrODYnL9ClGWiWPq/r7sdALD/8204uXwIVKlqCaQgyujcawzEsrPY/9k2uJzu+TtadELKI6/BN0TqmibsdbuSClj6qoi9bx3jyGvbpzl7T0rZSwJJlrGYqmkrSDKe2lxVe6AVdd1yLezYv1cyTfhLIjknq85Xki7RR28D7Hc50cgOxJ2s9SOshLzdWolRswOTBfLhF9zLwp58wD9VdjjRx/J39+JgiYRXB+kX0O5yh3vtuNMnze7+D1Zg/wcrYHBYIYgyuv3FnYb4wk0jAz/hanhuK1lIptIJzB10+VKW4Qg309SPsBDy2i81d4RyIo0u904AAIhlZ6vpGR4Ikoy5gzowGn04oqUq4Bp8/QgLIa/9Ui/+d0mop8LhRDWaYI8EjZ5r8P4h6EL+D3f2hd3qXgalmURloxmbviqCnh+4pU6QhUgl7aKTUwHAKcq2OH9oFzgddoiSAovHhk1Xl9Hb7+ti9hLR1XxO6yzS6WYmx26sVJ9UCwAEkMc/bGGvCW3/bEvZbA0GoK1OEi/6Tclazv6ofigmEdtddK5/ks68aZ8DfY0AYEALciyLTuRPu3h23qeoIlNNTTpVn6jjx+k82bYaxFx0iHegUYyE/62scpgm+vy9sEJEzylsBsUE6ll68W7W36AHnUgvVueZNFLXW88H1DGevU//vaCQ+/kWoBdlvDywAyRZxpObq/wP7XWem3MO9mK2oxLu0YFmAPD1BdK/0EinwlMiZZOn7yOn/gRdyNutFkya67a7Swa9ONDA4HTY8dKuQ0E7Hidy6dGjxyU1yOtv6xXk2QSGRzzLLF/Liq5llhwWvoSSw+FwopiwsMlz/IsoKXi+X0eIkoyZ2/aFejpRRfvWCTiydnC1/fqs0m83m81hValI9OS8ESXSbBMqHu/bHQ67O9mZIIi49tZe0DPgaMtfO+jkpLoU1/+5ylSscUVyzfePVLiQj0JWvLsXZywCnu/Hl4v6m/oKhD59+vhpJv5BE+xzL7FsNNg47DYse/8g0abn3xE9NogtL7MpNi6F3WrBuFfIJdofvppZ6zlGGkEX8oKhypF0qoJ0Mp6uZK1HJ3WCoVpTARMX7OxT0I5yILkAlDnIsSQD6wg6Sc3hjI2NMrk9kTxebkkF08cUS2b8O2dlg0z+dbacaftjM3K/Yzb23LoyVZCYLh6nsko4lzuYyHPbb1NA04i63D+WsOefYmb3O0s5zLrrVDgqd5LXQC/f5sES9pGsoBymdOATADgpx995K3vdaKdmEjXOziAs2TObzYSgpzX7XToVzY6XkdfkB53FALc2ZoPIrksi274sZAOtmnqugSTJmDeoPaE1i5KM57ftw+DWbDRUnExey7wy9m7+samN2C7T+Z7OzrgSNltVP1lWYKbuU6WOM7bc873QghzpIEaA/V7EmM2Ip+ZdUCrhypt7o2tKfNRq9FyT53A8BGPJHi1IwkWzn/ame2mlb1TqzCC8CdpsNpw+fdq7vaMWZTsB4BFPkCP9gw0A5ymFLUEntfeI57MBAJ8uDm4x82ASNCF/41/c9jDZyAMbOOHDTp/aoKEIutE0+3Cz1QNuTX5mv46QZBmL3mJrBteHlwZ3hdNhR1JceBR1j2aNPmhC3m61YOr8yK+jyokuQh1wowmUcNHofXne47R/oZ//A6ecDjte3HkIj9+Z4Pex60I0a/RBE/IWhwH5VNWjBCo4ol0c+8qVW8naf+mXLlnHMdOUCuKRDCo6NyJtlId17L/flpCjWy+cYvr8y96YPL7O2wldcceuExJgEFhD4lnKbvkHnQRlFynfwjeF7DX6S0srFFnBUw+6X7klScHgN0iH1t4KNhjqBLWWISUuhulzXTxrp0+gbJ3HK1gbrUjFRbSPZQNvftW5J12p413USexG01wniCvO53kLt5B5X1s9rdW7AwWruNfMXjc6IZ+7jUpcp7NOxUr5Ms7oJKSTZAVT7u9EtImSgpXvVWn3jXRMIZptfeID3eF02KD6dFFkBU1NLrz0jzJin3iZPX6Rzv2m4+jO6fjzWlJ+IYeO74quRHWiVMJ1t7pjITq2iY6VN9wmH8Ws2b3H+3l0784hnEn4EWoNnsZXmISbVu8rzDUevaeTTk99nA4bVn1wUFfIhhujZmYj3qMM7JxX85U74QwPhuJwOJwoJuCa/I139oXNaoFsZF/7ORxOZCJKCh69pxNjtvFFM9OIEmtO5ASPgAt5m8fhWqBjo+VwOJGJJtgvZ7bRzDSc0BJwIa8FPyXpVHOiBX+5TtBDFx3n3IfnSStTZivWEVhMOWtcKlBEOaf+dYENDgHI43VqncL0yLOSfQSB/QErPptHbEsJzZg+ZlMs03aCimm5qHNNjIyRje1zgAqYKS8rxfqsdIiSjAkb3cmp7kptwexXTl3urgk2po9epsAWlDOwjc59O0c5o/Wcsy111jvbKOfgYZ3Amx5U4I8ssI7A/j2TIqLKEL2skr4iejZWOoAIAEopZ+RNjdl7GU85TO3sbcMFHaemdjyDIGJM705w+TyDleUlMMUmAKKCH89Xfcc66jjs46nFFyd0KlN9Xcq20QsSDlWwz+T/qHUFLXWcw0115JJ2bqfLJVx7ay90inAHLHe8NhBMsQmYuPkolg5t2FkHw83hqkc4L6ukWfSOOy2C70qemf074sWdh3QFdiQx9kV3oNU78yM79QEX8g0MUZIvK+hpXUcvb4hegmiBaqXrpwKAS61qFCUZoz3pbgPN5AfdSa+eUAQoCrcPc2pHOAes1QQu5BsYmqkGYHPCAHrmGvYVW89cQxcukXRsCr7mmhkPBS95msNuw8oPDiLj5sSI0I454UUkvVnpETAhf/NfHoTNWgmF123l6GAQBKzKYN8oLpdWVkOnoBS2U4FWvrtIcpX2HulaWbiipSkA3G9p0UikPjsBE/JF5VYMn7UDAHC0FCjWyUDXidIS88vZ6ezXcbJdSa3GLNSJ9quknHUuGJhovmIdJ5P9NFk9Kr81G0Sk5bvW0HuoxbgmxPZfmrJmgi9KWKeP3Um2sfn/gHQTeR6tjazUo6MbVQACJQhTdUq9naWyZR4uY++JXoTxvy6S1+BqHcfrRXvVfXrw9aO6Ti+9Nlqo/7eEvd7J1H43NiHvkaoCG78qQu9JrwEA3oqgQJdhtyQS23TJQED/7YrO1qm3sCGR6lPiZL9LcTpl++z098thw6vv+n53VLShFjHomfnOUd/Jz4rYOVaWnmPa/m0hhYCzjL0mcglZXL2s43VMnws614SWS1rStIceXwMA2DxnGLNPOMODoTgcDieK4Tb5OnJ81Ui47G492+CxJwiKGekTNoZyWhxOUHmyXzc47TbCJMYJL7iQryFHl2XCZXenpHW5XBBkE9InbwFQZa45tmIYjiwaAABQXVWvuIJiAp5/M8gz5nACj9Nuw6L3DsGhZ4vhhAUBE/KiQFbiOatjN/+VsuPqLburcLGNzSgb4SmdsVOoDHQGAGaqolKvxuzKkf+IVxDbdyY6sOPlYWhjBAa86Ha2bD9eCgBw2tya/PWJ7pzY1z69ybvfzz5Fn44uz8L6WVlIm5BNjN3SyNqWXZQFTc/JeJ4yd6fpVLjaQwWQOFxAE8r+SgcZAcAvlA/EqnP8VjLbmEb5Bb4sYX0pyZSyt1+nTxcTey+viCPvU6pOwJSRCn7Sy1zoa5POLZFx1S290CWMa3xeytF3Vmf9eROdrJsS5YNx6ijbJ6jMsHoZPjvqrLDyDTaTBRUWnf3o7/NxHZ/bhyep6mhFJ9lxRHbizkoyeyVE9rvklMlFHwWFp5k+JxQ2KG5/Gbnfw6nkuZ0odQdJAYiIQCmuyVfDjpfdTpYB0+tuhmk3MQdHl2Xi6OKBEGQzI+w5wWfIjGwkKi58tDB8A10ifemev8nPmQrVYyJl0iZTvyiCbELqoFkBmcdIn0yVuyLAgc+F/GXYtyQDLZT6CXgNTbDnrhiO3BXDuaAPE06WSbjqFrdWFs5afbjx4bIxsFgsuik9/EXe5mluoW5wa9IG2YTUUSsBACr9mkBp8gUbJuN49mOe/YxIHTo3YPMMd7iQvwT7lrgrxPhDwPuSNiEbuSuG4+jigThtisE1Uzb7dXxO7Rg9c4P3czhr9eGGlh5CM1v4E024G2QT2o5YClXHXFMdySOWQrC4k9fkvfk0jmc/BoM5HsmjVvh7umEPF/I6aAK+65TNAFh7ZH3RtPjTq0fgx/n9IComLuw5DZ681x6GWlHkFe7+QtPi87Y/j7w1owG4zTkNReD7Vcjf9Bd37ngAcEkxOOOTvS5BJ0veHsrJl2djHYEddQJ9YigfzzdlrNOHPp5LBU5R2fRoZx0A7PUI+E6TN8OmAjvyK5g+KLtAbH5/IZ/pkt7hKmK7g4k91t8Hux++gg2T8fXch5A8YimMSa2IPok65dBiqdPN1ckSeG0C6Z39UABiqGtSaWWvN+2+O1fKlgh0xbN1OY3UUC5VrwxQ9WEZv1Wyc7oqgZx3hU4QG32/9ZzKZVTgS4WTvLZHimVcf1svtG8dXmYbujTgg4+9xvTJ0wkajKWuCX3+AKBQ3wG9solWn/QX2pJJp0FC+573QFRi8NNFGbEi+3y/f4bMDOqwlTF9khPdpTR/WZIBsyyj2fAl7j/41AqMK/iZ2a+8BblAIjktnelTkPc7sd1uSlWN6dwVw1Hwxjio1goYZCNSMhd4/2YXSLH4n1h27PtaWQEAZ8vd5QLDuVSgX4W8zWrBkwvcF3JfUWS+JLhslbjiyV1BPWbyiKUo2DAZBRsmo/3jO4J6bE4VDz2zEd0S7Xjz5fCKaAyn0oDaksm9xf75fv+yJAMuWyUExYSrp2zGyeP7/TJudWhv0/azx5C/6UnkrZ/ECPuaMGHWegDAjrnh64CNTEkcIN55ZZh7TXsI0AT9sRVZSJ+QE5I5cMIfs9mMLS9XCZRzFRImz14fkGM9O8Cdj8bgk5BA9HPQk8tWiWufCq5SRaMJdq+wV8xIzloY0jn5Ey7kfXDYLOg05e2QHT95xFKcfHNaWAv6vNceximVtZf4GmIExYQ248Nz/pEObRLocZv/HZ8aTocdr7x9CCYdU0x9KVj7KFz2SsTGsqa/UOEV9punIW/deLfdPgqEvV+FvKrCW5G9kAqOOK4TsNRex/5HU6pjWy2nbMkOFyt0OsaxyZHoJGlmkRpHNaA7FURljI1jxv6cWr7FLOcCcOQ4mejsiM5SM8lSzLTd8cSb+H5RBs6uGoYbHt+MxhJ7jU5S1/aYlT3/eFHEzoc7weVwJ+oSJAXfXSC1sFwdm3wpNdT59eO8QV8AEKuYcMPjrO3xWGlVUEve6lG4sKw/JMWMu5+qEvb/zjtF7qRz30yNWzFtX1FBc9fEs/vRYui3UvbRvpGqjLSnmA2gKSiXkFcio9vNvdE9JT5s7awabZJkQrP3B19+8z1cLidkWUFTk5MJWgTYYDdBJ5DRYSF9VxCr7onLXonU8dkwwIATRVXJxYxlhcw4zuv7Mm2G43uI7YIy1t7vSmhOzvHQ10wftSWbgLDH0+8AAH5bkoHCHc/jsI7C9XUh+V06VyGGpT8H4Jp8WHLD45vx7dx+9R7H5bBh4IbcWu93ZFmGNy9PjNGE66fV7nU6dew63N7UjL/Pz8IHs/sDACTFDGVQ7eydoSLzuWwAwBdLh4Z2IjUgEFWurr+tF55csMXv42oUrH0Ughz+Kci7TdmM35Zk4OjyLLSbePk30ykek1m4+XOABiTkBVHBmyPSIYgKBr/BViT6eH4WRJ0Q51AhKiZ8vygDf3squGaPI8vcq4s6TnUL9ub1SA3uq8X/fX4W8tY8DMBtzkkeubzuAwcJTaP3XYUVzqsoIgVNi48Euk3ZjJ8W10zQhysNRshrgv3NEexyKABw2iy499mdqKzeghQU/KXN14bfPMtH20/y/5r9u5/Kwb/zzgAACtZP9Aj8KuEpyCYk+3FttD/QNPqWPkXKt4fxKgpOYGg3MQdHFvYP9TTqTIMR8pGIqJjw2atZ+NMTgdUgfluSAae9EqJsCoiAp/Fq8T42+YINk5G3dgxE2QSDYopYrYlzeSLFVENjUMwRq837Vcg71aoKNXSFH1HHMZNPOWP/0MjO9Nmr40DbX0GOfRUdHQTgqwtkm5bN0qUChQ73364zV0WzKgYVzRQXdhRYiP1cpawjyEA5DONO7mH6lKbfSO5DZ80D0OjgP5m2yg7Xej9fOWUzzix7EH9qTjoMl+aSX5KOZtapW+p068m+jtRcKqVkBxPwzaJMGAXgpmd2uo8ZT0b4Hq1gx07ScQa71FhiO8/KdGHyiwimKqe29vouiBKOrxqJI0sz0Hac28554CzpsD2Y0IwZ+uok0kGeZmads+eooLGuCezzdkFngYDvVYuE4Jf6UmI3EM7WX3Wqg90QRz4D/zl8jOmjlJ8ntlVBAsovID1jPnAuFwDgNJLPja3ttaDppJP19FhyV2LbcOgrpo/DGE9sN+p2O9On8vwZpu3MGSq4UTai9bBFyFs9CpUlbnnwHcjKb53i3N+T/FIJ3W/uDQDoFiaOe14ZyoNsNHszToYTitGMFc+NDMjY3yxy52q56fFN1fQMLppwP74qMOddHybMWo/H52+FxWKpvjOHwSAZkbvtuVBPo04IsgkFb4y/bJ9hz2Vj9OxtGD17W9g8I1zIexgwfSPs1vC4Kb5MmLXemyrC3zhtlrAT8BrhLOiBKo1+4MCBoZ6KX7jxzr647tZe6HRjb0gBXICQNmgWVIfea174kzx6pXfVWSTBbfINlKPLsxAfRquJ9Gg7bj2OrxqJ/JypSAmzoJRICGevDTarBY/P34r9fkpXwAkfuCbvg2w0e5f5hRO1Ndm8P6YTPhydBkG6dAi6GsZavC+aRp+fMzXEM9FH0+j79OkTNVo9xz9oieVC/Vz49WdbMABGTwg0XbYuvgah0e+fZxdll5RcZNraN04itn8tZ9MBu5yk483lcZY6VBVHSt2ZJTvHGIk+90zLweoZ/SD6CEc1ljyWe1LniM3KpLZMFzGGDNd2VZYyfdrd/wTTttdCOrRyyyTcOy0Hm2cOQK7HAdaSukw3JZEOxI9dNnRfcxwAcMrn0nTw+Gu/WZSJBLMZHWNY5+QvVNnA34vLmT6KkX0DsNvIfk4rm73TUEFG+IpNUpg+gsg6elMyX0V+zlTkb3wcKVkLoepkuIyhnq89OqXmulDn61TZ1QCVTrbtJHUqCT7lJ4c/785HbxJVvD0/crV6bdFEuYPV+05Y2e/X0fNFxLaY2JId005eOIPTPY4KQ1WUOHUvxVNsDMvvZc2Ztvi8H8j9rOz3yyWRz6kt779Mn0SJXelT1PVussHXRKM6AXslupjJ69TYyDrxH3p8DQBg85zQ+voanCYviAr2TbkC+6ZcgVXD2JBmg2JG7qoRIZhZ8AhnW/ylSMlaCNUe3rbc0+Xu2p/XRpBmf/2f++LqW3pB1vnhDhSCbMTxCHS+FmRPqdPyz0JPyoNQPQ8NzgB3xcJfvZ+PPN6F+XvauA3IXTUCuatGIG3cBubvnNBhkI1u+/wE/1br8hfjXqzKBjn81sSQpwWuCXarBeNf2RbUY7YdNAvHNj0V1GOGkilz3M9FqDT6BqfJ14S0cRug2sJvpU1DJxK0eU7NiERtPnn4Er66xpeWVIbJ9QWsrdNgIO2osshOR7WyNuETtkbEdguF3S9RIm27FTrZLA+qwAEq2KdPC/ec3kqIQcXqwTjjEJE8ejXRR6CqN4nHTzNjO5ykHVPRya73UzFrk24ZQ742F9vd83G4DN4smh2oQJ986hycKhCjE3x21JN1stxlwFGrAUesrP3bUkQGh5gTWzB97Md/YdpcTdPIBp0fyavT2hPbP59mA1EAnepFzVK9n8W4xihYnoHUIa8QfS4mdSO272pCBpABwAUqe2dqLGtrrtCxScdQwV96GRf1bPma481sNodFUIweggGQfU65ROc8rEXsfTJR3wHplw+YPmWtyepoTb6q+h5d1bkb9n/7MU6tfQSdez1atU9LMsgJAGLOsHZ6h4mUAS4d23p5myvJOZaeY/qoAis7DJVkNTTBR7AbnA6IlmL8dIp0jP1cyB5/+pXhsXot7M01BRsmM7+ecmwS2k0KbHjxQ8+4TQJLnx2MgjfGMoKeExrSJmTj2Kt9kbflGUbQhxuaYI8Es00o6HJjL+z98YtQT6PG5G2ZDkE2Vt8xzAhbIX94mbssGACkPkLWtDz15tM4vLA/BNkccGGfPHo18iLEEbt2RGe4HHYIUj1SR0YAqUNeQe7Gx0M9jRpD12gNV60+FAiijAMfryG0+XDFZbcibVjd4zXOVkghebMLOyGvCXdBMaHTE7tQVljA9NEE+9FlWTi8sD/yDAaIignXTAlMci1BMUWENu9y2PHopqMAgF9YKxcnRIRTjdZwo3OvR7H/g/BPO+0PJs1ajyE3Bd8hHzaO12MrhuHgq+7Uup2e2IUONciG2G5SDjpM3YkenhqRP87vh5896XJrgiAp+Hh0W/zj0Y6X7acJ94I3xtZ4bE5gEWQj8rY8E+ppRCwDBw5Enz59grp08lJo2jwnMPhVk3epgNXjuNlTQg7dU6eUY6c4t+MrZ9ZwtDUB4sQdAACHq8rRZTDHsztSnLE50GpcNgD3j8W3i4bir0+SPxJ6v2aPbHA7dF7PSkdbo/uY+8tJZ6Qc4z5++qTNyF05Aic2TEJK/5lEH3vadezglLPKHsMGVck6EakK5fdyeHzTqs/nFMrx+k2R2zzjVIE8TxbF8zY2OEP1XFfV5YTdboXTyfa5pQ0ZeHK0knXEnTay98ScSwanWBPY4Jg9xWRwjKhzb2WdVAvWcjKIqluHbujy/G58ObcfunRwO1zPOMh5bjjJOpUHtiAdqOd1HM96nLeSz3InnWyp5yrJsXZ9xwbx9eupE1gXIg6dKMHU+VtRYjeg0udxSjaxAXJIbs00/fdsEbHt6HoXux8VNFjW/X6mS1zuN+h66wPY//k2HHx/CVqOZZfHWtJuYNpUqnSmwaQjJ6haxC19MrxqnNvPlgSkHiW4kpLdH2ST97N4gbQwOBPZspV6ZROHsLMMOCHX5HNmDQcAZHkKNNSXdM8aai3Doj9JG8+XVoYTomIOyH3mBJ8udwyCy8mudgoX8teOgSEC8+ADYSDk7bZKvwl4jUAK+lDw4bwsiEpkPmCB5KbHN8HJf3SjBkGUkPfm06Gehi6qvRIp1AKQuqI54oMVFR1SIZ8zazjkAAkvLWw/GgS901aJe6b5bxVRQ0jdwIk8utwxCADCTtD7W4vfvn07du/ejd27dwcl57zfE5QpnqLHralgqHNUxZ1/zM+CYBDQ+6kc5HlMtS4Xaw80GNjfodsTyCCqT8+xgS+HoKDp2GwcWzEMnyzIwB1PvMn0sfnYu7XPhyvIV0bm+AYDkETaKNvEktVtACDPSjohDCVnmT56ibbaUEb5PeUiSpwG7PHxFTSmKuV8MKYTXA4bBEnxBn3ZLDoJ0ZIaAwBSntiC7+f1g6u8iOnzFVXBSr54gp13UhumTS4j7a8VyVcxfVBJLvm5K7kp0+WUjfUBnJdIW/bec1XHKrHasPdcIQSJXL/cNzmGGcdMJTEro42vAGIkNpFeokK2HS7RCdqjgrj0KkyFEx3bJGD73CycLpeIdAx5FtZPUawTIAUquM/QNJXpYj53lNi2tGLTiNDBSFc074yDb81FzPmqfbt1Yvf7Lp98vmOPfMNOkXoGS79m0zc4W1zBtLmUqu9zfs5UQHUhNWM+4PMdFm2kf0ktI6tgAcD7h9glbqffIa/TGU++I41OAag4FrIllE6bBfc+tzPgx0mfsBHHVgzD94sycMPjga9fGgpcDhv+8vrxWu0jKCYUbJgcdsWzOcFBEyS+AiZcECQFh99bhA73hz4WQrVXou3wJQEbf9xL64ntt+b5P5NpSNSNf8zPghjEghXpEzbCabt0zglBVJA9LB05I9mslKFmz5KMgBQ+7vHY5ojMw8HxL53aJODt+VlYNTN8KnBpwv3we4tCOo/8nKkR62z1JSRC3mmz4G9PBbfquaiY8P0i/TX0WesPYPjGY3A5WbNPqHHZK3FloIK8ZLc2H6kUvDEOAndI1wvNPhxupS873P84XI7Qfh9Ve2XYVSSrC+FtOPQjmqnmUoK+IaKZaiJR0Be8MQ4AkDx6VYhnEh1oGv2FDQPxxavhsVhBM9uEglBp8WfKJb+vvPGrTd7qNOC0x3GTbyF/P2SP7+bTBVkQFDOcKpBKVepxnGG1CWNMHNOWTmUPdJ1if/FVKn9LsRPoNHkzfluSga8XZqDblM3oSQUViQagQwx5SbrGkn12xZtR8PpYtJtY9SaSd+4Uc3xTIhlUVCmwv6fJJjZYorFcdbx352bBIZlw0UE6aK2Uv9apqsgvIx1BcfGNmbFPU8uQxbjGaDtxE3KXDYUY5+7vtJAZ+FytWaeXQU/DopzI3Zs3Y7rsPUEGkPx73z6mz8BrWZPZp1RQiSAZoTpsaDuhqvBJ98ZkMMwRtjAV43gttbP3pLmJXat9pJR8JgQD65yNp5zhxhpUQgsnfJ19XW/qja7xVdfheAXrjD3aOLnaMS1NyIppptO/M31cIhkQKPpkgOz8t9E4+PEavDWrP5JHkqkP5CLyO+fQCYaSE8hnsLj9rUyfGJ05Hdz5EmAwIHn4UqgAVJ3suDaFdOwLsYlMH5OJdf5bqcfiQDH5bN85dRNe7u12/Por/UHQNXmnzYK7ngyuqcaXblM2w1kPW3S/ZzYGLSDKbq0kfkwChSCbkLd6VMCP4y/yXns4KmylnOrp5ElcVrB+YlCOd+SdeQCA5OHRsyDBL0L+qjseQtebekMKgzwYNUGUTfitFjluwpFlWVdgyZD2WDKkPQTx0gW7a0Lq2HUAEDGCXrVXInXM66GeRtRyZWo8vlw2FG/OHh7qqQAAkkcu92akDSThJuD9VQjcL0LeYbUg66XtGDIj2x/DBZz6avPB4N25WZCNl9ZWXQ47pmw5gilbjhAlDeuKJugL1k2o91iBZN+SDK7FB5hwdMYKiimg2rwm4Ns/OC1gx6gt2n2ob8CUX2zyLhWwU5WXnCq5ne6xv5tEFclmt/22gAq80POmWyvKmLY38snAl/ZJiUyfw2epajZNyApHomzCipkj0NOnoLVTUPDR6DQIkowx2e7kZWf0glokBUeWDkXbce41rh1asMmJjleQ56LoJOM6ZWeDoY4eP4+CN8YDAJJHr8RdSaxtt7XZBcHg/h8AeiaxQu/HMta2TH9pZSNpM2w3aTOOzr8f+cszIchGtB08ByIV0AIADhObba64C5mgKl0nfkZKIIOfklqwlbF+KGGaUGJ3PzvHVrjXEN/wBBss8utpsjpXz9ZsRavtVAGvQa3Y63+olP1KOKlbQAejAUBjhRxL5/QjDk2j18t/vukr8vleeFhnAJG0N9sS2HuitCIzwN6c+Aemz+fFBnScugNHl2XhxHq3EuJyOiEoJqQ+6lZOHEVsdbaejcjjHzeRfoQ9SzJQUeoOYhKMcUjOWogKsM+py8EmpIuPI78DE9uySuPgm9ggSTpx3eWS1g0cOBAWiwVmc/0sJGGXTz5YdJuyGfsXPES09VpzEOlmF1ZntLvsvm3HrcfxVSNxfNVIr6D3Jy57pVezDjZtB88BABzfOgPHcp6AKEpI7x/6WpyagE+fEDp/TkMj3Cpb+RYIslVakLdmFPLWjPIK+pqwZ0mGNz5EkE1IHbXS7/P0FxaLBbt37673OA1WyNcXX0Gf9tRWv41b8Mb4gAQ/1RZN2Oe9+TSObHnW2y7IRqRkLgjqXLiADy2+la00zpRLmPCS/xWc2pD66DrkrRmF3GVDAZ0C7yWx5JuqxWWAIJtw9ZO7vG2nTrJvqv5C08Qvx+We6Ppq8BpcyNcDTdD/sCgD19czZcLRZVlw2S0ABCSPDh/tgtbij+2c5S29J8jGgNdZ1eIauIAPHXq5VK4Lk3QImhbv0jPXtEsnto8HOZ+QvzTx+tJggqH0EBUzvqtnlkrNXPPd3H74oQ6BVloJQwDoMHVnWAl4PdL7P4e0YYuQNswdpBLI6kxcwHM49ccvmrxNNeC8jfy9iKey+cVJbseUZKj6/FsZ6XgdlJ7IjP3OOdaFdX082dZc0QlgoaoulbI+NrSasBmHFvZDnk/mw0pVhEMF9nsCQE5Z2cyYIhVolTTSLZjzX3sEn82+HwbZhL8+TWa8c/g4or9flAGnrRLlDjsMsgmpYzcAcDuZ6SAi0cAe366S/yfoZE50udgTVotJZ7SpdQemT3EjsqKTQ6d6lFDpzgCYkjEfeZunIXfjVBgUE2HG2V/BBmM1o14/T5cUM33OVZaiYMNkuOyVEGQTkkcsxdhU8v4aRXZO++LJ69Y+jnXit48hn1GTTsBSksJeN6NA9mtu1nmYKIbclOj9rL2274L/XsFDTcc2Cdjpk0yrs45z9s2v6ayfbIDcmD+Szkk9E4dcIWHSLNI0JFHBhZUOncyoIvkMSDpBbLZUtuqV770DgE1fFTF9Mm8hTaoDBw5j5h0u97rBm2sE2YQjyzLQvgY1ZasjZcxaAG5h/9XcfsTfVB8hLyom3Pj0Lhwu0llKEmGkZriXnuW9+TTy1k8CABhkI9o/8VaNx8hf+whUzzpo1eVwO8T8VKAhHAiX13Z/Qgt0fzln9a5Vj9vCwzR0OcL5HgddyMtGEzbOGo5hfq4GVVfaT3Jr874IkoJ/PuwOyVZFGd2XHqjVmClj1qJLErnEyqFGw6K6S+OrxedvehJHFg1g+uRT2pfV7tbIDYoJqR6TjFrJ5sH3ZVr/bnDaWS2dvr6iQYUkK5i387eanYAfeG/JGK825/seFy4aXSDRc86eLZcwcZa+c/bfKx+BxWLBh6+y49B0aJ2Ara/4PwXvpWCzzrPQSdLD+R4HXcgPey4bbzw7KNiHrRV/Xn3I+/mT0W0v05OjR0rmAigt2GWojWXycdMz11SHw27DivcPMu37qBwg7eMcmPpAR6ZfIAlnbS7Q1NY5W5tr5e8iGg2NBm+u4YQfB5//I1QfX8BUqUpLl+Sap3CQZIUQ9HT1Jr13KxVun8szW/bjf6+PrlW0YThrc6EgubGM7XP1NXB+rYKHX4S8UVDRwkQ6COnMdUfKqw5lFWOwcuZIxmSzPY9NHSjKRqbt+xLytd92voDpY4glHX9XmlmnS/sYt0NvW5wRla8NxaAZ2Xj7HDm2YADaGMlzsVFDnXawgudQGWlSsFtY+7tsZiNHD1LlB1sb2QVQF6wCXGpViblEnQjM9jFshsvfqVJrNh3nrBxHRuA5dELbb0hhnVw/lZLztuqUFpSTyEjCvilsRGBBZQKOwonBOXnetmLKr/5rETtvGxVx/cFZI25bSYZhXhtPDtRIZsdJiXVidO/OaB/vwFcNWDP3B/zahQch0eTvfioHH8zuH4pD6zJoRjY2zwx81XQO8Pm4jt70Ff+no0o7gXonXKsvkqRgdO/OSIgNfVAah1NfuLmGE1RcDhv+vNZdj/aGBHbpa0Elm7s82KzZvQcAkDNnWIhnwuHUn5AFQ0mKGdv5l4jD4XACil80+atS4/HN8qE4WixjwPSNAIAmVFDJQcpGf82UTfj05X54t9Cn/eIJZmw2FAgwXcwntm0p17CdqEpF3529yHRJaJXo/Wx1GXDOKqKdibQh/KoCJ6ykxplIrRJxlLFjg0plLDdh7diqjk28SyxpqrC6SHt7zsjOEFw2yLLsDdw5Ws7ext/pLJwAEEP6AO5oxNryyxzkWDc3ZX0i5VS20OkDusFuJwOUVJ3CSHkGwKTIuDXR3XdfGTvv/RXsHRcE8tlJMbJ2nl8rSH2lm07A0gmqWlm5gx2nsbFqvzPlEq69tRc6tUngKzw4EYtfhLz2Bbjixt7+GI5zGVxOG2a/daj6jkHEabfh6W1koqcyHQEaL1UfKRpOjPMk4HprXvDWaHM4/obb5Dm14rG+3WGngpHEWixr5HA4wSWkQl6QzTi6LBPtJm2qvjMnLHDYbZj3DvsmcZ7N9MrhcMKAkAr5dpM24TCVUoATejaP6gyX062tb6WSOtUmGCla8A3Z16uSxOGEM34V8jGSivaegJOvCklh0EphPXEHSirhcrlg8wTcNEntwvQ5d+4k01ZBZRwUys4zfUytO5P7FOYxffZ6MiXuWZIBCGbsrRBwuqSI6UfHRiZR2QvP2tggLtVIBvo4z+YyfVxxbKbG9ObkdWtqJB2RooEN/LlgZ+3feuXvrogjHcjt4tkcMBaHAVtdVqz+wJ06QC/nzrnK6hdl/VDKLoWUDWTbWTvrZO0aw+4XR13vb8rY418fS9r7c3VyhxeUk4Fdg9qwj/+eIjaIzFeoh0uVJA6npnCbPNzl9nyrxXA4HE60wIU8B4/2uRIOz7JIVY0+k8xPi935+62CXO+avJrphpttOJFCyIW8IJuQt3pUyApXcwCHw4Y3PnKnU7boLH2MNP4xPwullVVxCqJiwvXTduGrBYNxbOkQb/vWRjEYPCO7VmOHW3FrDqc6/C7kNetpSyNpI3XqBMfc2sQEPPsmPprdH7c2MeE7nfJNYmwjps3lJG3LhibJTB/LaTI5VWoyWwUpwWPrVQwqmniqK52ykvZ1k6Lg94ntIEoKhq93C8ICKykIpSYp7Lyp6lFWhc26JxtjmDbavt6C2k2SZMwe0AGiJGPmtn0AgMY6CcrKnKywbhNTZQOf9GB3OD3auyQp3vtWaidt2aU6Qv+cjr27NZWg7vZENmWBg5qm1cWOfVpnlc7vlA9Ab7X95wVnUbBugrei1PR5dHF1OxKf3kK0/HdxJl73pL0WFTN6PZWDH8rZc5v6QTmxfVMzGworRFx/Wy+0b80DpTjhTcg1+XBHE+zrstKr6RkcXti+D6oKPN+vfrnSHXYb3vi4dsVQwpUjyzJgLy9yV5R69I0a79frqarasR/Pz8LH87PQbHzNKoQ9Psdt9uH5bTjhTlgIeUkx45P5WWg0NvgFm79ZlAlRR8uOViY92B0Ouy1q7O5HlrmLfddGuOvR66kcfDw/C78v6AdBMaHT5JoJe02jb50kczs9JywJCyH/16dy8FGIUg87bRbc+nTDWVnjsNuw6gOtspKODS2C0AR8+0mbUXHxdL3H08w1vy+oeeyGptH365nE7fScsCQshDwn8Gwf3QlvuaxRp8H7owA7jaCYcHBpRo21eQ26zinX7DnhgF+FvMEASB6/Va6FDGpprug4VX38brLRjKLVWbjzSdJk82MZa0q5jioo9PXxfKZPXCvS0Xqygq1w9PXKEQBk7Csq87a1a9Ga6LPf44d1qsB+T6bDVCOpARfoVK+yUJkp/9yKdSBbdFJsnqMcr6fOs0L5z03cDlODp6toYDXyPzcnA53eclmx7H0twMnddqyYDfyhx2puYu9bgk5FpQIqy6hOQSsmE+lRK+t4ba7zRBbbyAyXla8PRwsZuP/pHGh5St8vIg/4n4vsucUI5Ln954Kd7WM0otPkzTi4NMMr6P9+kqxF61QTmf3y/lWCno+87t02Syo+XpjJngyHE2RClk+e5u6ncuCw1byepj9Q7ZVIffT16jtywobcFcMBaAI+cHSavBkuW2X1HTmcMCdshDzgdsD+a0Fw0roeXzUSBjm6y7tNfrA7xt/bCePv7RQVZppgCXgNzWxTV06USbjqll4YOJCXluSEjrAS8pqpJtCC/viqkQAQ9Vq8w27Dyg8OYuUHB7H0nb2hnk6dyV0xHEcXuwVl2oTsoB23vtr86JkbMPblbbBYgvuGyuH44lebfIfWCdjysltAHy+RMeTZbO/f/lfMHuoMFWhT5lSRNG4Tji7LxI6X+kOQzUjVCUP/uuAc2SCwSa0seXuIbVeTVABA/muPAABSxqxFj8ZxzH5NZNJQbvYETH1rAG701CStpIJ4/hDH2pb3i0nkfJysHfuQTlBRGyqw6Y6mbHSQLKgwQEUjj228SwK5z9P9u2GDwwZZVmD0Se51kTqeS2dxTWMqkdxHZ9g3gG5xrDOh1EGO/atOEjMt4Ezj2hj2mlyknolvFmWilRHo+8IOb9s7xwqZ/eSLBcR23+6sD2TRXtK2LlJJ5ADAqZL+FYNigm3TJGJN/Skbe79jRPIZjNep+sXhhAK/avLbt2/H7t27sXv3btitddde2k3ahA5T3csac1cO99PsSAEfzTjsNrz+0QGs3r2n+s5hzDeL3I7Lvs9sDNkcOnhW73w8n1eH4kQmYb2Est2kTTi8dCiOLR4Eg2JC2vjsOo2Tt2U6XAYBBtkUlQL+6f7d4PCp1hQN9ndNwN/0+CboV/oNHlqg1Aez+0NUzLhuSu2K3OSWyOhyU290bCbxZZWcoBPWQh6AV7DnrhzuFfZtMhdUu1/elulw2d2mDkE2InVC8KNpg4XDbsOr79LVmiLXXEAK+PBAM9d8UIegPS0J2jN3xfOAKU7QCXshr+Er7PM8ZhdBNiF55DIAQMGGyXDZfTIPCgLShi30bkeuyCP558pHYLFYYCkvxeQ+nQBEh+YOAJ8uyEKl1QJRMYeVgPdFVMz4ZlFm2M6Pw6EJmJCvdBlwyicg6pxeNsOLpAP1xpZNmD4/FJGv6m3HroPD6s4KmLdqBPJefxQGjykmbVxV5kHZRGZ4tJaw1aMsrgSmzUxVIermyaYoCar3s0gF1ZTbWddG3inSgVfoYPt0NbM/PZ2o6k1JVDZPi8WC3bt345pbemHi3G3M/holNvZ49B3wzUqpcZ5yzt7RhA0Y+r2UfWxoH+7R86xztBl1f7/d+xOxXXj+NFKmvgUA+O1iic/xqB8xFztvY7sexPYaNj4OnZo1J7bzbez111MGvvApYBsz6nUUrhmNTxZkoN3EqrfDfUVk9tLk+HhmnA7fXWTaOJxAEzGavB6p4zYAAAQxOjTZhkzutudhkNjI4XCk3cQcHF2ehaPLswhBz+GEIxEt5IPBu0vGwGKxICHWhK2vVK2wKKwQMWVO/aoM1Yadix6FxWKB2Rx9GTNztz0PAEgb9BLYLPThSbuJOTiycECop8HhVAsX8tWgmUdorr+tV1jMIxpQHVakZ8wL9TQ4nKiEC/k60r51AjZTBSNOl0sY++KGoBy/c3IC3lvgXoVyqkzCo0E6rr+JJDONP+AVpTjBJmBCXkX1q5tTGzcjtjvFsU6+EiebXybXWL3JwlWDiENZp5xpxwTSYPDrJfbV+4L26dMHI251R1oqXxcRf9Mrf1iu44weezsbqQkAtOXX9/hX3dILdup0TSJ7QLq0X5tY9g79+xzp30gzs32a6GQUtVDlBs0JjZk+ZsphbU9oASeA1Edeg3bnzTGsM7wt5XJp0bgl0+eMjcoMamev7Z1NyMycG0+zvpzbE3SuCZXR0uVyIXfFcBhkk/c5c1HJ9U7olBF0qiImzXb/GGuR4RxOoOGavA4fLRvjzTdSGxs4nU9cjzPlEsa/pG/L/3zVI/h4oX6k8OXm0SU5AR8tzMTJMgmjZ0aORl+wYTKECEwS93OW+4fompySanqyvLN4TNT6VjjhCRfyOtTV/l2T1+9rb720Lb++x73qluD6CeqLy16J1EdeC/U0as01OSXehGm1JZp9K5zwJKyyUHI4HA7HvwRMk0+UXeiRVGUDvWhnnWt7S0kb6Q/FrI00VudnqCmVdNKk0+d4JWk3Nic2Y/p0oGzS+9ePwlsBfpVOaSxj1zx9e2x9j6uZbQorREyYxZptaDv9OQubvbM9FSCVohMw9e0FtupSIpVh0mFn/Sv/OUfeb6gqE9jUXecSxFDz/iL3BNOnVYsUYttSWcH0WZtLjvNoOnssusIVALQ1kV+Tf88fBEgKHHafIKlGZKBVZxPrE5EMvAgJJ/hwc40PwXiVDuT4mtkm2Ms7GxqqrRJtA1BblsMJBNxcE4W0b52Aba9kYdlzI0M9FQ6HE2K4Jh+FaBp9D67R+53vF2XAoETeiiBOwyVgQr5TmwS8PT8Lp8sljHsxeOH/nCo6eDR6ADhbIWH4c5GzvDJccdoqkTouO9TT4HBqTMCEvKZN9unTB8NvTcRvH5YzffaWVT+OoBOw1JbKzPhVITu2y0GWzUtr3JTpEyOGthhFoPFd0tmnTx8YKZ/iyQr24tKOVpuL7dM1nr1u+ZTD0umwMX3U4rPEdrNYM+5qRzpMPz3BZq8EPZbAWhkv/vYF2ZB+PdPH5SCdwW+fYcv/xbN+V7QzVZ3vr6KKro3Y/VpRAWJdGrGOZw4nFATcXKMFCB0sknHfNJ6xL1SYzWa8Mz8zqKkXqkNSzPhofhZ6PxUZz8UH87Ig1cFU829PDQCg/iuoOJzaEnAhr2mTHXreE+hDcS6Ddh8uF4wVbHo/lYOP5mdFhKD/wLPs9d5pOShga6tfFh4AxQklfHUNJ6T0fioHDlvdi74HC4etEvfyN1FOBBK01TWJigs3NCVtq3mV5KtvqolNfPX3U6y9XTaRNlGjmbWROqnEZiYDG5zS2mN/fn9pw8kn0qlNAt6Zn0m0+ebGp6tcVei4LU5aWN3gqzKyrUUcWxnplJ1UgT89eQEAcN4pYMOLA5H88GoYdArAdG5K+lMOFpUyfRxmMrFbl4QYps8hC/l8nbOwPy6xcewzsH52FmAw4bMi9zPUhR0atzYnz82h6jiTOJwQwJdQomG9Tuvl1wl18FTyw6tR8PpYFLw+Filj3gjpXGh+WJQBAEifsDHEM+Fw6kbQhLyWfz3YFZU41eN7bx5+ITskc9AEfd6KLBgUE1IeWRuSefhSVwGvVfHSaAhviJzwJWhCnofchy/hcm+SH14NgyAjf+0jyF/7SEgFvSbgr398M/Ira1eUsCG9GXLCn6Cba3wrKv18XsFNj28K9hQ4l6B964SwWGaZ8sjakAp6XwFfG6K5Di8ncgm6kPe1CXfoeQ/hbD2skxXxpmZxTNsPpaQDzeFgvYNOG5nx765UNgtmxs2JAIAdl59yg0G7N9fd2guKp4rT/hI246ReZahbqQCpgzr30lB+kdiWm6cxfWwXTwMAkjNfRUH2ZOSvHgHDeNJc0imRdep2T+5ObP9Qyjo+rRdOEtsdWpOBWD8sykC504J4o8kT0+E+p6YS6VT+c3N2DWW/nknI4Ro8JwzhjldO2JI8fCkKsifj+PJMGGQTUh99PWDH0rT3B5/nP/mc6CKkQr5HWhwOvDY4ZNGwAwcO5K/XOnRsk4Dtc7NwtlzCNSFOqZs8fCmE2ETkrXnYK+w7Tdvql7F/WJThfeMTFZPHPFOzVBe7l44hnKvbwR2snPAkpEI+1NGw3EGmj6/ZJlzQtPi8NQ/j67n9vO2iYkbPS/h1flqcQZjtKqzkuviE+CT0fHpXnebDnx1OpBAW5hpNoz9eImPos9nE3z45z9qE2xhJG6mDjXNC9yakTbiRwhNG1ZaObRJwct0gAMC5CgmTZrmXvubks/lb6KRxLWXWbl+e3JHYLnWwfegKTwBw6lyVLT152CLICVXBUccWD8I/5zyEf4J8COIlAbJixp+m7/S23d+G9NO4rfak4O/fM8n7WXvTo+FaOyeSCAshr2mOXW/qHeKZcHzxdZKHa2769Me2eT6RQr5bHBs5W1u4ts6JBsJCyGtcmRqPL5cNBQBdrZ4TOjq0TsDWV7JwrkJC4iNbQj0dv7GLClzyNfxwbZ0TDYSVkPfVHLlWH15Ea7Uprq03XF555RW8/fbb+P3332E2m3HzzTdj3rx56Ny5MwDghRdewIsvvkjs07lzZ/z++++hmG6dCSsh74um1e85p+DKKbxoMqfuOLYPh8Vigd5TxLX1hssXX3yB8ePH44YbboDD4cD06dPx17/+Ffv27UNsrDvpYbdu3fDPf/7Tu48kha3IvCRhO2NfzXFkKukwW59HOv66xLAOvGaUI3DwTYlMH/8sxGtYqCrQRGI93f9XcIbY7tSiFdPHSMUnFTlZZ3ihTgaBuCatiW068AoArmtMjjX05irh3Seba+sclr///e/EdnZ2Npo3b44ff/wRf/zjHwG4hXrLli1rNW5aWhqmTJmCKVOmeNuuueYaPPDAA3jhhRdwxx134Morr4Qoiti4cSMURcHs2bMxZMgQTJgwAbt27UKLFi2wfPly9OpV/zdnnk+ew+FwABQXFwMAGjdu7G07dOgQWrdujXbt2mHo0KHIy8vzy7E2btyIpk2b4r///S8mTpyIsWPHon///rj55pvxv//9D3/961+RmZmJioqKeh8rbDV5Da0Y9VmfJXyc0NGxTQJKsgfil/MKbpsaXnmHfAOUfBMqc5MMpzpcLhemTJmCW265Bd27u1Nk9OzZE9nZ2ejcuTNOnTqFF198Ebfddhv27t2L+Hg2tUZtuPrqq/Hss88CAJ555hnMnTsXTZs2xcMPPwwAeP7557F69Wr8+uuvuPHGG+t1rLAX8tHq8ItUtPuRfEP4lXPkTlROXRk/fjz27t2LL7/80tvmayq56qqr0LNnT7Rt2xY7duzAqFGj6nW8q666yvtZFEU0adIEV155pbetRYsWAICzZ8/W6zhABAh5DV+NPu7hui/h8w1w4Rpe3bmlXRxKsgcCAH45ryBuyIKgHr9g00hi6eMh8PvJqRsTJkzABx98gP/85z9ITk6+ZL/ExER06tQJhw8frvUxnE7SjyTLZJCnwWAg2gwGtwPL5WL9jbUlYoS8pkH26dMHBirBYRsT64g7a9V3N3Btzz/4Lnft06cPendvTPz9s0LWOVtMlcRz2m1Mn6uT2KyjNyaR/RqbXDjE7yOnnqiqiokTJ+Kdd97B559/jvT09Mv2Lysrw5EjR5CZmXnZfgBw5kzVQgS73Y78/Px6z7euRIyQ54QvZrMZHy2sevBPlkloP/7Neo9r9yx9/OQSx+Rw6sP48eOxZcsWvPfee4iPj8fp0+40140aNYLZbMYTTzyB++67D23btsXJkycxc+ZMiKKIwYMHVzv2+vXrceedd6Jt27ZYunQpiouLceTIEUL4Bwsu5Dn1hq4be9Ut/vGf8LcuTiBZvXo1AOCOO+4g2jds2IDhw4ejoKAAgwcPxvnz59GsWTPceuut+Pbbb9GsWbNqx77vvvswadIkHD16FH379sXs2bPx8ssv4+677w7EqVyWiBPyZrMZlpwBAIAfC5VaV+/hBJ4uyQmwbBxItP18XkGHGqYt1jR4rq1zAomq6mQ29GHbtm2X/fvl6N69O954gyxKP2PGDADA0KFDmf65ubm1nl9NiTgh76s1Xn1LL/RubsVZnSpEetWLOMGB1uwB9+qoh6mgtlI7m0QsVrJiO9fgORy/wYOhOBwOJ4qJOE3elyuSE/Dhq5k4VixjwPSN1e/ACRlaFkuNcxUSRjzvLhb+r5WPEMshuZmGE8nomV5CSUQLec0scMWNPGNluEObcHyD27iDlcMJHBEt5DWubhuP71cO4Rp9BNEmScYHr7qXXXLNncMJHFEh5DUt8apbeqGZJzDK6iIDb7Z8UxTsaXEuA9fcOZzgEBVCXqNLcoI3KCe/VMLw57NDOyEOh8MJMVEl5H3tvt1v5nZ6DofDiSoh70u3lHj8a3GGd5unKuZwOA2RqBXy9GqOPn36YMhNiah7DBuHw+FEHlEr5DkcDscXLX1vJFOXVAcNKuK1T58+fLkeh8NpUDQYTZ4v2eNwOA2RBqXJczgcTkOjwWjyHA6nYeOv1L2RBtfkORwOJ4rhQp7D4XCimBqZa7TXnJKSkoBOhsPhcDg1Q5PH1ZmhaiTkS0tLAQApKSn1nBaHw+Fw/ElpaSkaNWp0yb8b1Bp4I1wuF06ePIn4+PioCCjgcDicSEdVVZSWlqJ169YQhEtb3msk5DkcDocTmXDHK4fD4UQxXMhzOBxOFMOFPIfD4UQxXMhzOBxOFMOFPIfD4UQxXMhzOBxOFMOFPIfD4UQx/w+ZBXnbTSI14gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.density(adata)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "5a7ae7c6-ecda-4860-8fa6-f630c92c4b2f", + "metadata": {}, + "source": [ + "Or visualize a specific gene of interest with `bt.pl.points()`.\n", + "\n", + "```{tip}\n", + "Plotting multiple genes can get slow quickly due to plotting the legend; if all you need is a visual, you can set `legend=False` and the plot should render more quickly.\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "4940cfbf-53d8-492f-970b-bf2b98db36b4", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:37:49.023219Z", + "iopub.status.busy": "2023-03-31T20:37:49.023004Z", + "iopub.status.idle": "2023-03-31T20:37:52.378453Z", + "shell.execute_reply": "2023-03-31T20:37:52.377895Z", + "shell.execute_reply.started": "2023-03-31T20:37:49.023204Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAGbCAYAAAAhj+C0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddZQc1b73/3e167SMu3tm4u5uJCEEIri7Owd3zcEJECAhgUBIAsQFQtxdJsm4u/W0THvX7488h3t5zr33nPN7uAcI9VqLteie6t67qvd88p1d1bUFURRFJBKJRHJBkv3WHZBIJBLJ/x4p5CUSieQCJoW8RCKRXMCkkJdIJJILmBTyEolEcgGTQl4ikUguYFLISyQSyQVMCnmJRCK5gEkhL5FIJBcwKeQlv5lnnnkGQRBoa2v7rbsCwPbt2xEEgZUrV/7WXZFIfjVSyEsuKB988AGLFy/+zdovLS1l7ty5JCQkoNPpyMnJ4bnnnqO7u/s365Pkz03xW3dAIvk1ffDBB0RERHDttdf+29uura1lwIABmEwm7rzzTqxWK/v27ePpp5/myJEjrF69+t/eJ4lECnmJ5FeydOlSbDYbu3fvJj8/H4Cbb76ZUCjEkiVL6OzsxGKx/Ma9lPzZSNM1kt9cW1sbs2fPJiwsjPDwcO655x48Hs8vtlm0aBFjxowhKioKtVpNXl4eCxYs+MU2KSkpFBUVsWPHDgRBQBAERo0a9fPPbTYb9913HykpKajVahISErj66qv/7pxAKBTixRdfJCEhAY1Gw9ixYykrK/uH+2G32wGIjo7+xfOxsbHIZDJUKtW/clgkkl+FVMlLfnOzZ88mJSWFl19+mf379/POO+/Q2dnJkiVLft5mwYIF5OfnM336dBQKBWvXruX2228nFApxxx13APDWW29x1113YTAYePzxx4H/CFyn08nw4cM5e/Ys119/PX369KGtrY01a9ZQV1dHRETEz2298soryGQyHnzwQbq6unjttde44oorOHDgwP+4H6NGjeLVV1/lhhtu4NlnnyU8PJy9e/eyYMEC7r77bvR6/a996CSSf0yUSH4jTz/9tAiI06dP/8Xzt99+uwiIJ06c+Pm57u7uv3v9xIkTxbS0tF88l5+fL44cOfLvtn3qqadEQPz222//7mehUEgURVHctm2bCIi5ubmi1+v9+edvv/22CIinTp36h/v0/PPPi1qtVgR+/u/xxx//h6+TSP63SNM1kt/c3yrxv7nrrrsA2LBhw8/PabXan/+/q6uLtrY2Ro4cSUVFBV1dXf+wjVWrVtGzZ09mzpz5dz8TBOEXj6+77rpfTK0MHz4cgIqKin/YTkpKCiNGjODjjz9m1apVXH/99bz00ku89957//C1Esn/Bmm6RvKby8zM/MXj9PR0ZDIZVVVVPz+3Z88enn76afbt2/d3lyN2dXVhMpn+xzbKy8uZNWvWP9WfpKSkXzz+28nSzs7O//F1X3/9NTfffDMlJSUkJCQAcMkllxAKhXjkkUeYN28e4eHh/1QfJJJfi1TJS353/u/Kury8nLFjx9LW1sZf//pX1q9fzw8//MB9990HnD9R+muSy+X/5fPiP1gp84MPPqB3794/B/zfTJ8+ne7ubo4dO/ar9VEi+WdJlbzkN1daWkpqaurPj8vKygiFQqSkpACwdu1avF4va9as+UWVvW3btr97r//7H4i/SU9P5/Tp079ux/8vzc3N/+Ulkn6/H4BAIPC/2r5E8l+RKnnJb+7999//xeN3330XgMmTJwP/UVn/50q6q6uLRYsW/d176fV6bDbb3z0/a9YsTpw4wXffffd3P/tHFfo/Kysri2PHjlFSUvKL57/66itkMhmFhYW/SjsSyb9CquQlv7nKykqmT5/OpEmT2LdvH1988QWXX345PXv2BGDChAmoVCqmTZvGLbfcgtPpZOHChURFRdHY2PiL9+rbty8LFizghRdeICMjg6ioKMaMGcNDDz3EypUrueyyy7j++uvp27cvHR0drFmzhg8//PDntv5fPPTQQ2zcuJHhw4dz5513Eh4ezrp169i4cSM33ngjcXFx/89tSCT/st/46h7Jn9jfLqE8c+aMeOmll4pGo1G0WCzinXfeKbrd7l9su2bNGrGwsFDUaDRiSkqK+Oqrr4qfffaZCIiVlZU/b9fU1CROnTpVNBqNIvCLyynb29vFO++8U4yPjxdVKpWYkJAgXnPNNWJbW5soiv9xCeWKFSt+0XZlZaUIiIsWLfqH+3TgwAFx8uTJYkxMjKhUKsWsrCzxxRdfFP1+///v4ySR/L8QRPFX+ltVIpFIJL870py8RCKRXMCkkJdIJJILmBTyEolEcgGTQl4ikUguYFLISyQSyQXsn7pOPhQK0dDQgNFo/G+/USiRSCSSfx9RFHE4HMTFxSGT/ff1+j8V8g0NDSQmJv5qnZNIJBLJr6O2tvbv7pf0n/1TIW80Gn9+s7CwsF+nZxKJRCL5/81ut5OYmPhzPv93/qmQ/9sUTVhYmBTyEolE8jvyj6bQpROvEolEcgGTQl4ikUguYFLISyQSyQVMCnmJRCK5gEkhL5FIJBcwadEQyX9rzpw5uN3uf7idVqtl+fLl/4YeSSSSf5UU8pL/ltvtZs2aNf9wu+nTp/8beiORSP7/kEJe8nf+VsFrtdp/anutVsv06dOlil4i+R2SQl7yd/7ZCv5v/hbsUkUvkfz+XPAh/8/MK0sV6Hn/agUvkUh+/y74kP9nqlKpAj3vX63gJRLJ798FG/L/SlX6tznlf7TNhVrt/1oVvDQ3L5H8/lywIf+vVKX/TCBdyNX+r1XBS3PzEsnvj/RlKIlEIrmAXbCV/N8RQxAKglxJIODm6NFriN6UTMTUuehlAmRlg17/dy8LiiK7mpvRKhVMn3YRoaAHmSjgairH5hKIz8rG3R1CI9jRRST+YaYpLp01C5/fz/HqDnpZXNBVB6ZfLjxgK1pHlS6GwuieuCvaOKPzsfRAO+/M60MgEMDW6qKjtpQD33/LlS++KK0aJpH8Dl34IX/sK5rW3IW6/3WYlQqE/rfQ7DpEMNhFdcxJ6pcZGDKqNyQm/TLkmxqh08Zb1cWs0aTzU8EuPJpYnPp4DLkDUAf68OEXp7i98BwH+j9Diy6ZT1+c/9vt57+o5PABThYXMX/pJt6Pz+Cx9w7y8uO/DPmbi9+iT3gm3rbHiavbiifBxpoTGfxQtJFlcxMp6fSzYNURpjWdZt9PrzNk7MO/0d5IJJL/zgUd8u7tR6h9aimtYjTm1E5MsVEIugiqqyMI+CfhzJpIxyAz9VqYZjajCXhBoQYgtPpbBASGRwxg6lkbJdkL6NTm0Byj5aDCwecP3kuev5aNx1toXfcRXrmOokNHMavUqEIhsgf0wyS206AyEd4VQKNx0dYVRlJh+m9a7Y+bejGCo4k0XTvUHcGapuSBn5oR200UH1xGtv0UpIzBXglnHS2cqk9k7iwdCV3n0HdbeOzqQhauOsc5px+lIopJ01NJOqNn38c7ycicRVRSunQCViL5HblgQ97pDiArPsb2jBTemvEQlziO83hHDNqAjGZXNihzAQjKgzhFCGx4DE4s4tTF2zh8+DCjYmJQl6/HHzkMLE5SrWepabXy6j0vckweQK5Ss2Dx7YiBIFm1PQgaOpmzZSw3D/mEx+9wIcpE9Ao5L15/G4FOCPScgKiSs/iVW37T43KorZMPpo3ict9Z/K2VTFS4kBW62F2hwV+3l4Axk3JnLBk7hvGFOp9Zrktpe+cw7oFDcClUTDl3OzcblewKvE6TswPlonfIvuUeana9jdfZDUgnYCWS3xNBFEXxH21kt9sxmUx0dXX9YZb/mzRyME8+/hyoZeiK3qB3y164ZCdoW2mqOEWbcgqpXh+nBT+lrR4iyxr5XO9mrLmNoTTSmH4VwfYO4p66hbfe/JIVrz5EnrsdBRqmXPMeme4AhvBqOg58xtzog0AIl0HPkTwtJWWTUY5/gPcfuBtjl58X7nudQEEce956ive27EBQKomIjwQgTq3A0x2gU2xBUInEa5MJBrtp6ZIR9HaTmRb/q1TD+jETyVIIaDUaliSMZ026hvzh/fC4dUT4q2ncd45F0au5xnwXuU8/SsJIJ96LhrBmZw4qIYDlosFYzt6N+RMdSnuAhLl92alWs7vIx6rEuSxJlmEoyKXH0BQ4uQJcrcx5a8fPX0STqnqJ5Nf1z+byBVvJy7RmzN01RCgCRF/2DpRupjEhC/2JPUQLLZg9bkRkVDm7GFkkxy2PwpQVxpGOWmae2YZ88fXsvuNdWv76MfdTx86Am69ufgRFZzcHnUGaarqxpG9jcGYQvGH4kvuhaz7L4CNtpFvOULvjBXZ8t4pLL5vLS0uf5vI33yc2NZ4Dsx2IISNFskfRZXcjC1ZD+Cg6rCYEr5u+R2rpnPwDxc7ptLQ3sf6TRb/K8RiskbNl+SKErlZcHz7HbM0xznVdiqC/nchyP3HdPZC1qnktK5zB02czsvIcF01YQorjGFqlCmXLSjSrFCjsAURBoD1XiSzyGCURI8hvdmN6+0mSv/gASIHNfwGfk+XLG39uX6rqJZLfxgV7CWVxg4MHdsZx6V4XJ+iGIXfifeMwjXt6szViPGf0AQ4rypla9QQHw31EZmu43FDNc3V3oRl0NfJ5Y5gVsY5psp+Y88QryPQWTuTp8fQ5zcUPD+TW98YQaXdRplAgemzcIjZxMHMYIgJxbUeIGXsdWrWK9Wu+xdXayIdXX0aPSZM5MuV7Nt1wE2naECnFJqLzWul/biqCzE9IpURuCJKT9zzTBhZyy/SZv9rx0NkqkS2+iO9aXGgVPyIolMjV/QjIlJTnxHFkaiJFY0cxsFFJR95wLBOG0VlXQ6FJQ6ZaJMgczj6xmvobJ2J74CriL/kYOS5uS1vLvL5hKJ9/gnZ7JR/tKIP7z8Kjtecbbj4DRd/9avshkUj+NRdsyEcFBeb61MwKzyPTnInH78Eu66I6P4waQzbvetcR3roJves0m5NOc0hRSXzXGar7PsLaYAepuQJ6WYDv2+I4p1bS8cgLRNbeSbNjFUe3zINnTNwafSV9u04hCjA5aR6mwfejumwJrqAV16KtuF9MQnzGxIeXTUPpF3ng7sfQd2vAqeevmjYaJ39CyKJC4XPgWb+KvNpu9vUvpMMfQKHQ4/MH0Wq1GLMGYcoaRHa/LAYP0TN6TG/mzJnzrx0QMQDZYzhS8SE+IURkYysedzIWeTc9e2bT59hWRpa38ECwjZt0Kzmg/4G1dhV6gmhlAY7/0IbbrKdl0mQsw7I59OVnWJumIgCJJgMt+h4sKcnisx9OcfPW2+n5Rd/z7Tad4vCxIEW1TvIHjfnX+y2RSP6fXLAhb5CVMmfgAW5zP0fLjLEcrDrNe6PPUZdvxrD3R8a8t4P7LUPYPyCVZ8JaUFkXU2FZyOnUYXg7unD6FMgarCx/+2NUShV3t2ymb3EXg451ERMxFVCwdP79BE6LeOThxLWNpuyEmoqvH0Qud5Gp/pBQKEBIkKNvTeLjqa8TFerm48evxHxURZdoxuEvoqatlXnm73lIzKXa1YpNH2BtTRtHPz7BoT21vHDvq/zw2kLWzf+M6+Yv49rXr2Hj5v3/1GIevxCWCPmz0ZkDXJ0Yzdc1fVHXlpFq97H+0bso6zMYZZqcCE8TOw6mUfNtHj1eeoqihDpaU7cxSVjIhHUbGH9AS3rceMRgAK87EZmox2TeRnRGKSMUJ5mf2sBVeVcxOXXy+XZ7zsEjwrO33Y5l5hP/er8lEsn/kwt2Tl6pBNx7UHUVEZWmpOZ4GRkpF7F1Vyl3l3dSqYzmepkZjSyDitI0XLpMnJYPObX3J9JbqtCSw6WfLcYWVLH5/rdABEH4K57wKOLWPk1d4qUUz4bx1V/jIYyVdZ2sO1DFmr69qZP1I+PUk6h0cQRvPUNbWTWpqal8kxbFpDdPkWDN5C6rBmXlR3gsKh7sq6Y91cDJr57DF34NI+vjiGz0Yo2HkA8adDr8hEgzttJpSeFk+za0Wi19R05AEShGHnKgFPVoVHoEhQZHt556r4yu+nIsyXoy3bGoggpav6ghd+hc+icdZnhOLXVNa3H1bGLEDVnYSnbhTBrDwQFjmP7mdORBP13R8dz5nZLvdIt57KJX6EUydwoyDn2/E2ddF51DR5LeVYaixYLvlRdg6HhaJkzm69YYvhnxys+fhV4foFekjoW9Mnl8r1K6vFIi+Te6YEM+FN6T8h7jSbOaaUu6mwG9+lJwcAk/9BpFICKK3kPGkiSKeAOPcK63n9Yta6k4mUOUbT95idORC510I+f9JVdQ1ywnoekkQYUSjb0NsWAqraFofLGDoW4lqlAL9V1fkKgags4cSZLQBYDoaMAjUxEKheiuKEOefgN6xdM8/cbjLJjwNAqvDEdciIMFVhRWLYMH3IGtrhKboZ2+IxsIddewQdYL0TILuS9AeE0LU7s6UQXKmZ9xF/seSkNUNqP17iLm7Pekdwg0FFxPvLUn5zZ3MP6VKRjujOALcQHec204I7tA3hd/0ZVoXK+hyu5DcOUe0KsYEPoJf6eMn7JG4brjZUyWel5x5NLHs4/nImMZ0NlFa6qKU88/zpCZE6jMz2FHQhJ+5+3UdhYT6/OiKzrKg7OvJHSqideaAjw8+fxlqr0vmUuospL9J+w8fNPzDLooTzoRK5H8m1ywIW+ymvnLK1vR2kspuf5m3o59hxwhiMugxBMrYNbKqba5OGFRkuywkTF2Eu3HH0KouYJyTxxKfzhK+1HSNrk4Ov1iCmq+otQRQY+0SEJqK70OvU3h2U+Ra2KokEfytTaeE5GVJO355P/0QABEalfdS8Kl79G0/xsOaJK44sMlLLxmKqVxApZ9G7CnyBhZdh1xY1MoTevg6EYZ0dngUbXSoO6L+MU2nNeN5pkNlYSI4OnrbmNEaR1dWTpeWHsSmdfJff1bmFpxBAFYtFCLo6CcVrUBn1zD8atPsLuoli3ZbWzwJ6HffYbr9LnsiHuB+P5+hEANusN+Su98CHmom7EVX3FwzBXsVJ/hoqCDpK0+imVhxDdV8UFRBNt6z2a3vg6NRseVFjWttmK6osO4892vmeAV+CDKzK42JedOt/Njy2nGXdMDANmZIuKdMmL6pALQWOyksNdIOsQ6kHXTxxCONi5fqu4lkl/ZBRvyfwuLaTkqXmuJIcGQQNTQEVzt8VDSqzeO5GTci7/i8ff28U3PKHLD7PR0dNCdsJfymOG8+tpdaBUCemcdw4pewTtsONa4MOpO7MarOEdnWl+SGrxEeM6SETEPFFayzi5BQIlf0FCriaQp/REa0vvgrWognRD5BjOn7FWoxSZuXPAAKwQR85QHqU60ULvrDHLPIVIH9uJt+XMUiePJ1Q0hcbKBZrmZeX2SWXWyhovrFrI/Xk10cDQiXgiI7Pxew+l+t+OJNLKj/zCWnHiaGp+ZLwWB+oZ2WtoFPgmaQAClx8/ZntkoEvtiVeiImaJCJ26i3daIJtiNcPhjGq1zUZojUAYi6D3nQUx7rsTd4wv+cqiWQ1GZrInUM7wthHzt95wLiyTM2cDt/iAxugQadx5iYJ9hlB6uoLjBh7FwAxpXBHmjxpJMCPR67N1+vv1pNR3FHWxfcY4BF6kZXKBi+p2v/INPVSKR/Ksu2JD/G0GQMd6SBeYUKk410FRhw6TVc0YZovTeq8jOmM36M/sJAubSPO669ibEFCNOhZ4Flz6BO2Y3epsD+9laoo58j1wAKqE1IxqFUAMEoe0NNgbHcLv/CY4k1WCRQ4XjBWxp3yLTDoVgN4O234WIwI19VpJx4zO0f7eF690OIsqjuC/Rj1ap5dGTUVw0VCBXGMo9/lZOnt1JeYGXXh3bGWsq48Xe1YhiFKM6RE745XzYO4NQTwdLdzbREtLw9f3zUfjfZKK3HQBvUE2Cr4gt33ZzRZqVmD5WvOKTGLYOxZKWQnnPuTQ0u5jo6aDgpAp/9Zd0npNRUPwsK+Y+zP2NB/HM64WlfjTByGfI6OFnvX47S70+lr61GK/XS2dIhkUeol1npMEZ4OmFy6jXuhifvhZb3GzaWp+gV8dIgkXHUN5yC2d//I46mxJnQn8EnYZ7FkykuXk7WytewR+sZdrkybS7RcJ0ClSK89cFVNtdmJQqzFqlNJcvkfyLLviQJyoXkvoR2vQgPxrGkE8q8oXf0XV4NcL2zSwK/4wdzlw8oW4CVz/EZ5HRXBEfj1KtIDIqgSsjYnlVH092VxkIIMiUMOohopKGYv/hHX7MfojhO+9mPDvoyRwsMih3dZAgSyP5RB1p1X1YrlxKsPdcyk6d5l3Z1wQSrZRe66f27VZ66lWkKANkdXgQhyTwvVLGYzGXU1xfgV5ThaYmmejT36BN7kSM78EzjcP5vCjIsmFhNEVpyTYn81HjXEIeFxu6QwxaOpnRyVcyN7onhYWFCKkjUc4qJv2H7Wi8PQim3gg5Q4iRd1PnFYnVdeKfMZHlbWt4vupJPu98l0NDerFUK/DdOROPLF7NtM43iHct5NqvFNgDPgRvJWZ9OmvuuI0fHUpGWGDFkPE8dOX1vP7oLejtNn7yNSDXbeWppwYT25VBUOmFLc9zsC2bo5pILtmziY6hk1h/qBmfppQu9yTm3eVidr2VjfkXMXz/XNBZcExbwoRz5XQhck9uEp/ffO1vPaIkkj+UCz/kw+IRBQFBFHnKH4/e6ONQioz+JUWYB+uJ7NxJz+QsOkzbONFUiEY+lGtefJxQyEBFrYVsdRPb913ChOxuDDFprGoeSmrElaTrTCxXzmJoZwInc5ZjtC3mw+xGmgVwfL2U3uFNLCr9jB2inOEj65DrrERm98dbUcOp9MM8YfXzdnct10SvJ6stDpkwCoNGjrnag7/FRlG/DIymTARk7InvT5/yZRDRxcz4ShyqIXTOv4f2J59HRiRVGa8Q096EGHqea/MuYUhcL47tPEbA72PDe3+ldddPzHjqA2avKubKSWMwG9VEb3+Ib3Ofp785SFOYlkSbksFxRrx3vU0/AV53/4UjsZMYVJ/L1Ws76Za1Y1Bncs9HX2IOC0feVkVdeyvjr50ESiWzF35E9SP3oPE7mdLahE7VwvWLtvDksz8SrTzG17dfC6U/cXnXxxSlfoXlxnw6zsL73R0cdfTjInk34+OtaHwlDG/7BpupgKbwobRUOYlUiNgDLowK+W89miSSP5wLPuS1Oj0z3imiq8HDgHeV3K5rwXLsG/TWeNrEBPxJFjJPLCMoU+MsGIHWqaOxuo2XJ+bSLi7hofoDePVVtHhDnM0PIcQc4S+Hr2Tc0QfZJQ9j6EgdQUUI1bBMutwQYdPTO7yJoCjDJzOiiVbSqsvEGwzHGHsMY6eHkfWXoxaNvGRYTJdxPOfkfyFdVc1Oay9kgSK+KUnA7++DnGSMimpkHRFs7XcZueXLyB02mldycsgwv4hPVPBeaTtzr78LnRDAZDFySeYlAMR3liELhUj0F1Esl6ONMRIIBQgzadC3VlNjuZcmr4rg6stozUijY/B8BgzX0+QLMSTOirwmwNP1IS5e/BQe7QBOvvYq8Z4A+p0nOFumxtormjDPVlDPgF07UQJjum2siqxhe0WQUcZoNu/dh/zzxcxd+jYz5i9GLdhYMSvEbdOjkQkyLh4YxYmibrKCKrJV4XQrFPgHjMPz1iG8ebXUZ/ejufwMl+tMCF++z6j3PuVT6Q6XEsm/5IIP+b8FwchhQ1mzeSj1/iWIBWbkHXXEti+jNONWsoE2RSLaoJMsRzl6XxexyigE3yy0wm7QhTiSEk6c2Eofh5Z37J3o+ioY1ymQ3UeL9fMhVCZdT9LhMFRBGR5DMsW13UzLeguXKZs9OQ+AMIAUFCRUthDhkCMKAYx+L289fBffzZ+OXISWtmYiBUjIXoyn+X2sUY8h9zYi8yawaHsM67oyWTklD1cgiEZUkFbfjdNeiUwMcry8hrRII7jdcOQIqWMuQc5DFNz6BgX3WfiytIH7ZvdA7wCN34cgaHh6ZxeK4OO0RWq575QHYXsl+eEKkgebCZVexMRPF+KV+3n6xju5UgREGckTmhhpfx7HIQ3d5jz2naxjcM9ekJdP69m1zCi2IisYidvTRUfFJtYOm8zMGCsj3E5mLPqQQRt9vNLDhSojQPLmHjwQCPLd9E1kdxcxsM/5L1BFj6nhuG4goUAtrppytKYogg47x3/YcP7zPPQR059f/5uNKYnkj+SCD/m/kWlNYE1H2RUi0CSitK8mpNZTkTibenU/3rGk0Oa1sbu9E5W3mrg+07F1VVFVHIFWbaB+RQae+IkMC/satbcJf24rMYkpPPP5t7yhMJCy+j3EiDsRZSJqVzW2QDIzGm4jstHJY3nlhBCIqPiA8qQ4Ere/g6iI5I2RuTxw4MD/udgSnC0JbCm4jPjqWWj8KkLNNVSt30IgPYsJjg5WecrA1caGWjuNV02m1uXkkExBjFF1PuABjh+j9ccOvOtEkBlAa6H++X2kZoaxo+5HkqNziEqM4ljxtyQGxuJQJ+HV5PKcMsjTNHK23U95RASL7lsIwOpHHsdob+WZDfcw+pIcFEf70WgYjVew4fG62HTuKF/td5LRXkl0eQURaSm445S0WRLpveYqrpMpWDZ6BWutm7k2ZwarH/yJ519/jJdemo8vayraYyu57NgKNueI1JzTsM+uJ+++1zC8ugJ1t4xLwvfjlbXyvvEyBkybhSiK0FX1Ww0jieQP508T8katAu4+ytmGdkz7DhF3TE79xJuYeHwvAQFaYweh9IYQgZA2HkGmQNDGcJPvAa60/8CHsbNBlBHr3ENi/GWE7fmEyvgMXvV/z+fzHqL3kZ9Ir/wQfXcQr8aCIa0ftAqMSulkQPdO3M0NnI0bgbUN/OE1nEmcRwqPI3S1IWuvwG2IR+vZQI96kfyjD3MiexHlwQY+7Hecl/aEEz56EIV9A3DoA/oKVtyBABseWU1q8maaUy7+jx0dPATv+t2AeP5fDkBuVJF4uhmlqhWbQ4losrIk+id8u3bRN30c4ze+jhDsZJaxlc782Vx7w3ugiuDuh3tSp1/J6W0m4q+6mLKgA1dbOFbLDHrNtCPUNfCU5yNezn6M9m0lRNu6sCxZhimxJxGCDyIHQtdp+jWUc0q00jdrOFMfn8F9D97I6/MfY8ob79LvjJmzu88g9htL9DdzmBUU+aHnJDRiiKBMQ2NZH4KWGhJvHAHAmoMtKAy3A3f8m0eQRPLHdMHeu+a/k167kbqMGZxOvpI6VyIl1gr8YjcDf5iKVeNiT1YhsqCAouUUh031fJ+/DPPkwXwceAmT6CBPbmfvmRHs6bye0bUr0BAgJAjkdE3AHPYc+/pHYfB0kuvfwOWhnVy74zucvgRQWIlp/5AwmQVDTj/660p5PfFWQoKc5VV5tB7dRUzNWnwyBQh+nMZ6fgzbS6sZVAVfole+Tcizi6QrP2LwzMeJDjrJMe6gKOM+WjUZhP7TsgCRt/Qk5pH+yLQK+u85Ta9CGXszqpijrCNtwExe9rpwqu00jcqgadRYvOpaBHUVGkMEiYYQXr+X5x5+k05lf3qQwZBr++NRz8GrugWQ4czqwwLXIUzNi7B3VRKx5mMG5aooHNwb+bXTyOuuJ9LVit2Sh5A/DZ9oIb5uENq2CDTVpXxz0w3IRZEP7pvG3pkqWrJ6cl9NLh9pbmJ5+0O8lhXg1NkVZO2oQ+7U0mEt5LKe55cmTIzQEBf5x1jTQCL5PfjThLzfb0MURRIcRUxuXk26JhUtr1Fv/RZf33DitSFkihBujQbwoHS3c9HRrwirD3JJlZK4rEu4uSuKTS0vkpdWT0q+nXPWeYi6Udy4UY3KGwBg5LDtADSlX8IV2RH4ckdRX2Ulo60/ovZmck4+QjknmKsYwRcJ09kZ6El8fj9eSn0JD3IG7LuF9GEbecsYx2PZPRitXsiOSfuITh1NSmACTTYX9z7xLa9d/Qlbj+6kh6aOyb3Daez2/Lyv6kQj22ucBIIiQUAQRTqTczg2+AW8HpGv+g/nzf6bWVE6g971J6ie8TA70xZSusDG5FkfoFapCQohRmia8XjlJLmrMCgaUPq99IuV0S0Po17MZNf4ldSk3U9HtwK/w0xgWCa+ET0IplZBag1GrQunS8a5wz56jk5Hc/ItfCYvZ+P68dXUySgCAktuW8mnhSNRCH7WDJhH3JVX8Ny8G1lrPsTtwU5MD/elulrk+NZKAPqkm+h9QlpLViL5Z/1ppmsCASeiGEAY+yI1n39EkteDIeF5ZCdO4diSilv5Bic6vKz0tCDrbiEkegmGjaEp2EUCMvy5A7m05n6CgRCx+eM42RJLiU+J+FkxkfPGYew3nk3bnqJ7fhmj9QU06jcw4JydoH4W6pCFpqwUWlInIdrO4nSe4K32A9zoH0BFjJ7a2Ayi6rdxJOdyhlm1WENe+vvbUJbbWX+8lbvUrSTf+gG+QAiTWo6hZxKxMY2cWBNG6akydoX24ws3og1NZF56DEqZDLNOiQAcHdqDlatX48jtR+yeTioKjuP0j6G01kayKUiMJ0R3K/QML6Yj3Ewg4OeNZ9/F7fTT2tmXVNMaEGF4+1aKXaM4mCZHhYp8xxAsxOHQO4kfNBJNrIr4XQ9jVZoR8yYBEApp+Hb/WLptbpoPniZSbyCqaSfRnd9wRj+eW95Zz5JbrkPz7GjeeCocR/LTlLq0qMX+zOl8Fm2uDr1BgzEUwuYNsXp3PQMzjlOh2AD0/k3Hk0TyR/GnCXmtNgGZTAlA6pU3QUkx4Z4WaBHwKiuQKSPp61PRV5bLfYpEPjqwiwEzB/ChL4yPzzxGT+VgPJFubIXDEHctJDfzQQpludSk/UTH+mXgPsGZGhGEElZaHyGmoIZ1Y6cx48QqEAPE7rmJacMq4dxaunvupMYKa5t3cXHrbmJbajCkFHLYVsRQRI5713CKAdS+tIa1bSvoHDQeP0qqSk+is0bDoQ+xNygZOn4GZz77CPmsIUTJUxGmqVDKzv9x1i/TRLc/QOqj6zn17FR8oRBhV8cidtnZVWonJszMI+PT2ObrQz+nk1MGAecbc1E/PInCoss5kLyIdlMUrbIonGojMY2HCItSEqZw4VHsZ5jBRPzB5wA//bXXcK6hhoezB3PJPjn+5DiGD7oUa0wc03I6OLNyNQn+7ZQf7STR3YRevpX9BzoYExHBtXNnMnxJN30dIwicq+C7sALivAewDxmOIJchiCIjCw3UIFLp8VFW9hpeveo3HEkSyR/Ln2a65hdEkcbSVdjOrabRuZybUl5n83gHupAR5DJ0MhMq3bXU7E3k2oqP6UBEqNmLt95JsKbz/DlNuZZg0/MkDagj7OY+NBRMJCtnNCOGDGewYTExoXxEhQq3yojg/RKCTngpBia8jkLmRZTJ2JFuQZTJyD/zKpYDDxFXVYBfMOBviaBTrWfRJXejeWoat9m3Ifq70dX8AAg49h1CZqlhX1hPYj/8hP7Z1xDRYMYiKH+xm1qlnEFpVuQykX7Pb+GFV5ZTUR+NGy2B2t2E2rpIaq3BKwSI62pg2T0Xo3Wr8WUuxKKrwqvXs1c7m0Z9b7TlWxC7axm79VMu3muhZ7scRepgItTzUIVEzvaZyy1h4zhbbqP2y01om1tBDGEpfZ3e6U2U+vqjxYQzlM8u33Bsfh2lliacGgGVRssNr2+kTd2LuGBfxg+cjPvIfl5x1ZC34xSt/dOJG5JKnM7FkCFbGTxk+28ybCSSP6I/ZcgHf3qamGPzCZXv4mzMJdh04bRoYsmyF5NSWYlSrMMr0zBG9yK9fU0Uq9RM7PUh92Tfg/OVUyzXXc9+fQZeRND0JSaQR6IxREx5MQknV5GZmUKP2h+wuop4x9HFKuH8akg+ZLz6Yy29FLsZoFtOmyUdr8bCsUkPMEQ4iyyhDPW4J9mQPpuAJ4zXc6tIjZKzP24KMgFC7cW8c/XFHPniJCc221EpdagOHkZnOU3s2C2caOj6xX4q5DK+vL4/eza9hsVcztxIH3k15cSWdCG3rsdmWIG2vZTEij2Iym66RVh6642gkJNsTiFF28ZAzzoybQchZwIZB5egdNsI+ZshUIVZLYeUZuqN4bg1OirNQ5kwMoFJKQl8LTOy7MQ5TvnjcThScaLBkf4FdbINXOu/kdh5IU4278Bb/AJbx52jxWcGTzYHTzbx2GsniO3fH5dciVsmcLi0i+IDNThaZdSVt9DRLvwGo0Yi+WP604V8U3Undr8ZAJ0QYGS8n51Rwxh8vJ5iVSSWnCT88i6MMz9EIetELYrUGm/gZFgO+xP7oZv4MHN9yxh+9Aa+NTxMqzuAze3CPGYKcd42wgZew/res1g+6lbkWxSYGvrQ1BYFyPjGcBOpKhfB459wzHEJfbZ9iNprI4CSm8Jf57XS/viKfyAxp4my3B0cys+nK244uvw5BOUq1rVP4qIeg8m/6nr63juL/vIKrHmptHW3IiPA+GyB+tI2nGfKIRQCoHhAH7zdo3hi+ByMYeV0afzYTBWoym7ne/9YFKLIQmMU+eOnIdOqUQWCeEp2oGv9iqySp4jd8TARDVtoj4tHzBpHW49nkKl2geIU1MRAyRYadMlEtHiYemg3OkOIuAkxoFZT5DnD040rqIlt5WTuORqThnOp/1nCQkFSSysYW3kUU6QJl2AkRqPmqTcfxjfgHFGzj5IQJrJEbWZR1w9k7b2NTo0cGT4sFcsQAtLqUhLJP+tPMyePzwkHPqLGNhxfcAr+wd8SHnM78Y5qquytuAUbh2qqUSlbKQ/GsOXkWJzmmRRExvNjmJHBnSf4smYB2qmjcB8x4ZYrCV7sQ/NyMf52cHun0vHcGCK/ex0x+BnIZTRlhbixajaqMQ/D9hBZvsMIsZegiRXoW3sfwUANQjBAr/aVnAsV8ky/IpS1XvLTn+Js6zr6rn+S9PkOQoEgSsGPPz6NH7s7GBddTtvUW1Dl5pL+3bf4mvLpMCgJN2hoPXKOJnk9WbVF5/fbGyLm8xfxvvQiZ6JWYDG3EF13N7IYkUu/+46UnEJuaXyT2r2xdHgULPYbsTk7GecfQ4TmDDogVLUPb/4g6iMmk7j7XkL9r0dQqWmuq8JsayYqpZKoAzLajX72HUzAObgXkWECzUXPkqXvRcHo62nedSlKjw2j4KafAL0nLsV9ppKlNiOf5YWzuaeOOW88yNVmPeXuFqydX5JhSuHu9TZScq/j6l7xRAfqoSjAfq2VgFLFiEHjiE0Ol25vIJH8D/40IR/yedjV6Se98TlOpEZgsTeStuM5msbfwrXl27AGT/P6+Hs46konJ1jPAtuLVGa8jEFexnBfAUXdzWjlfgh40HqaWN00iHHnjqFO0eBJuAzdu4NJV1k4k3Epu2pV3HPgU1LlIsh87Nn+PQMVOnr5DnG6sZ1Q7FhkAR9ymQAyI7HHldxvewF8es4NeI1chZYrl78FhJB5ZGz5fB29G49z2FGPMSmeE/pBRAws5xFjf5ZV1bHhlRLkgpOxc2sxpHjwdpv4/mwHwVCQ+vlf0lojEDylwpyzib69kwj1AofNxuZ1QaZ1/BVRnkpToxqA1JhskGtwiHIi6izYtQL27HwSWmzYtT0hvh+ywfcwbc1MqoUAm0MPozcr8XV5iTEomTggh11pAwg5qxhfk00apRxcc4IE71Qsnc/jQMsZdSeab8fT5X2PCSEDI1OPoT/xEnpTL+67/RM2DD6EjCCH8iZwe1Q/VpQfZenHJdxyx720Zd3N1pWLmDp0IHfc/5C0wpRE8g/8aaZrHEElgYhJ+OPvZ3TkVch8N9GmuZRA8wjuTV7M/IinEHecxP9TCc2WfLaO30tSdBNJhjLeVLlYGjeO9d5CHHuWcLh7FJfm9qX1SDc8cJbI6icAcGuslGTMZnqSiijhBKLopq9nAY8E76BqzoN0DJ5Ous7HyZOTWDx2JUO25qCTu8BXiiMsjlMtPTh7KPF8hx9vwnVfNbJgkMTGYkICmB1tDExMJMrRiKPnABoMEWz8cRdx6X46oiu5bbsVpSfIwYZcTla24/Q7ichKobOoE/vBJnqlRkIohFwM8NTOH1l3xXV8OftWTveZjdHTiMbXzNC2n5AJImLHbqo1hYjhWcR2TUCsjkGfWgg3bQVrCpGhaOL8WqoGOfCdfpaI9NUQdoYKYzKKwD50oac4kn4rVUI0ek87bs0oKsK2cKdNy3O6b/GrI5A7lmMKPECTewd+r5t75t1F0NaO0Hs2NbEXERk/HZ2YiF4pYA4zcajUzvFKB1luByhUNHZ7f8MRJZH8MfxpKnmj0cjgNjehoAr35uvo56hhb79tmHGQ7LUQf/wW/F4n7sQRqJQGQgoD6sOf4JMr+KlQjzkUoDgqlTBdFv2uW4R92a2cOuYiqaMNZfpcGtsbsGrcZB2y0ZYppyropUfXAg4ZVAiBADUNV7Mp9UUyhC2kn3uRUGgJQsjPzW+n8Y5tCCOL3yVfU0vUzIzzHVaq2XGuDXdIyfqOdKwjE4ho9XL608N0NdiYmbGNvUNTmSiM4LYjn3Jf9CauDJr4smUN2eZwbp53Px+/9gkbmioZckMOBxo6aVk4gz0HEkj0V/F2/6OcM6SzVz6P4oCDHpxA5y5loaKdvadLuCwiRLwnwJF+7zOk5ASaoB/FutfhljcB+DQ0Fa/fibrKRK0hHVW0HFeXkjOZTrKankWHnuS9Ata0K+gXWMRJ39V4fRFEC5DjvAtb1hNYNXXIA06MFR6Wzjt+/h4+GjMT3zzA7M8ehmAcEX0jGdLRk85QgH6p7TjcDvShEexSmemuKf3tBpRE8gfxpwl5mUzG7txo3F4/ouUlEqp+4tnO+5C3ePhUk4c1WIFCGSJR3htL4DQsHsuTfQRuaJ1PnKMC0VhJZ+02RIWGFU8upNV1E+Nu+4Guyuco6j+Bvxx4njBFGGvOHiWvfgn3h83jr7FTkXtrCHZ8QNTe9UQOm0566XKiA1HkbNpCZZ0DX/UrbNQv4LZ+16JCRkya+ec+uw0eEEVy08xUaxXUBI8wSfUE3ZEm1BmD6VYL6KqVDHj6Nr5p6UPWikJu2TkJX3h/DNcswyHAwi43mv1f0uOSy8kvbSHyuuHM3zOYMFM4ad5TmLeEs3fqKI5mqjkZvpbHnDXsc5m419WLAmULSyuLaLBGsju3J9cUHYPOajDGQxDU7iJEw1ASq2vwdzbiu+obvLZvqEmYQ2ydlqAcBEM3Qf9YTNZamlprGRXWEwClOwZ5j0wQZJy1ZSEQQhkKcserX3DN/XMYfMJIflcVkRYTCErKFN3ktW6n6NRW0h8pJcli5fQbz/w2g0ki+QP504R887kOar1+EASiTpRQWg/6dD9dCg+Hk3RYo26jf7EBNSD3OLFMn8fLdSaOagXQBbE4guQq9RA2HVdtEmmqvdS5VmLuTmTqmb7ko6U1bRba2vdReNq4Mez8wRXUSeztM5XC4nN4ymTEtB7AYchAH3UxaXo1kf44nk24DcF1jJBS9ov5M6dKi6CTk3pRNvs2bcZt83As9x7yVNWs2VNLwa33MqChhb7fH6NnIIxmvwrr6PfYqC3Ed64LtUzGLZogySPDOVS7DVmvWYSVRTLookGcsE7Baa8m+icHAZkAoRDxjS0kq67krkFDUFScY2RcF2XhAXoE8plTYecosfR6uxC3MBld1Ei8hkLUQGv+FI52yjC8+Qrmiw0UlZnx2Ku4o4+Ko3UCW7rjsUZ+QGLO/WBUo+uqwK3oh+7QZ1RO/4Q5yUH8ywvZdOlCDjlUJDucPNVSQ6VWR6u1mBLTIKbu+ILyyMup3lpOOqW0TJhMeFzKbzKWJJI/kj9NyKuCIsPOONidH0bLuMu4LjOOOa2teA7v44dANvGV89EoTYghCCpVJNl7IhfriFaV88NxH5lhZuJnTqbN3kZe1W4GaLfQeM6IJ2Io7fpwFML19Bdq8BZcjP/EcrozJ3HUV4pL30Z4hZ3q1Ik07QyxXv0gnikzSayxgVygI8JHUnkDh02zySlMxPqf+nxleiyPyOVE6zV0V5XSafdhm3AVx0Q/uaYPSSn7iHeTNFAag8d1/lbDVdmtmGyldLgzMSnkPDp6GIvWfoTGl4exJI7jhTnEh4VhFwSiGiuIjXOQ3VpL3gkf3xr0aLq7yTA3MHtsBcYzZ/Ap+gIO1BWHKSSGsoQJJLUEQYBNEY3cZhlP4+hebFu1meoRIb5q20Gjo4u46NHY/bswlxRR7JlD9pnrSB5kQ8YJOkzJqNydqH2tpG28CbwOHDoBv20/CamFGKJjmfn2St78chZRhna27/yC9Fwwu7czcv6bCB3t5EVHAfDav30kSSR/LH+akDelm0jTVXHWFke7KZzi4lcxNJQTc3gXvaL6Et+4Dgpn0jHuI8LWrOfBF29k1Z1P0yH30D/RibV6N15hOqgt9NduAWB/9c1osy7HYzAwoHwnp+q7CQXd5PtDDDjzLnsi+jGgbhPaugOI7KLA+gHdRCActaBtepJar8jrnqe5QnYTZIVhUom/CHm5TED0Obj649u5JSGBCJxsbjhBdlIy4T0nsD48lYGNX/Ghog/DI2wMvSqefbazxKtO08e+CzEUYsOCk1x11QcIGg2nCvvQKy2Wvvf3RV0Xjt9nAKWS0gQbBQ16tFo5N325inv8emJzukiISueRYAbjsvKZV34Gr7+EFFVvqn/YhOUiOc2j7mJiu51jq4/iV9oRBQMIMuKSRIr3nSJtmIqMQQlUal+gUikSd9KM3HQ5Fncnp3Wp+PQaYrpbCYkCZzPHYfQdYFjsc0xelMWlY29Ft38wFXEB3klVskp0cadZwfCXl6PpTiThlajfZiBJJH8wf5qra2QaBZ9knqIzbDOzfW10d9cSdWgTsmADZmUKXstllAbnsPNMJ++MiiTgtyGKPmIDJymseo9E8TjxOzWk7dEgIuBAR8a+nVgO7ST91inoW2tw+lW4gyoUootg206uOZ7O1V1XQFQ6AF5DOMowA161CXf0I+SoslhguQ9ran/0TjllFX//JZ9QMEC3eJLuUDfGpHz8yfk0WK001pvxaZXsbs/myxQVO1KS2NC2lcfaCvjWMxVV4c0gCOgsamweGUJIhvyBR+hz8SyaPb0oSdDxxbAgLcEgyxoHci5LYPmLk7EpA3gVTpIdvVETxgZZEg9WNFKRXIYnToYSM+mz59D51UJmvzSI+ZVFaD1OLkHDKUFJrHw2r2wfznF7FGJAzkH9pXQb1mLX7eRkjJUf5C00FXp507Geq9JyOZg5ms8vP01p8gtUuq7GsmwR1vXHCBP1BKtdfFriIazBw/V2O3GOxVQNnU9rXAdBMfjvHkISyR/Sn6aSB9DLjZjCLCiDEXTtv4mjafP4tOtp+nfIiWq6jGx3AxZzK+GGQQi6EiZ/uYH106oBCALLy/XkGILEpN7Mi2c1PD7wCwo891FrMRMo2Utk78E8IS5iOSDQRYXmCvweM6H0SewovIS0dUNwarzY+5p54vEviXCfJKq1mUDDKSp6XEbPtJi/67NcbWRJrYP2wETqO5yU2OsYOCIB7WVpKMo7eTIjk0SUBOQyTnoTKPS4yFGF8/q+Pbi6vTjTzewqdWALtxE9fgK+0+XUmxLpV/M1/lQRQa/lptZ68tzg0KQRkslJKsxDZ2zGVXKcF4wpDPQEiXakUZUWSb3RRvpRBxGDB3K6PQPLoGF07duKOmwUD9XswG5pYFLMcRJbllPc0Ic3xGNck/ACIVUAh7UCpdjMSfunDBbXUdztpF3rxnLyGzoLZyNLGQH1W+m0d+FXy1CNjuORggi8wRA9y47xfdj1uIWhlE8vQe88R5YxH+3/WfMVkNZ9lUj+C3+aSr6x08uVSbdy0bEjqFZOIUHfQFBrYG7qE4xvG43Br+LHuniSKvahVCj54uH5CF1OZJlTqM9+ni59P14elkG0931qToT4QPUByYZ2hLgCvhx7PeGFo0n1+1jeWE8IOKPKQQDkgkigfBsHq8cjQ4YmKKJtLSLkqmHpvFiMlQ/wYJUJpS6MreUt5zvrtsHCseevZBEUnMv8HIC6/Ax6W12kVDnIM8q55Mhc7CGRStFPnQg36RNZXFnGSNtKHlacQCeKFJxdQ2SwAWOnnCFFlSQH5MScXU+sXc+IshTKG3TsaRXpkdaP4jgbRtrIrq5DU1+JtWYDfWQ2yMhkjzuAtaSVgg4TYmEvPm+uovjOh9j8ybvsX/ctB1aXoztj5mpFKyqfE6Xcxa1CLQaNg0TP+4yOF0lyJVHo7Eu/lkquUcxiXdxcLLEPMm3m3WgFgTkHD0BQwbYON7buGqInppMTZ6JnogVGj+Hi3gOY1+sqLvNeSaY+Dzi/hu+aNWtYs2YNbrd0uwOJ5P/2pwl5QYCqa67Fs/FTxM4q0soeB6uH6FAtYdN2kj61haE3paBLHkZrWxaiUoc8woij1IraHYbBU8KC05/xbUkiTL6eZyMXIALVTVdxmdcEITunO/bjVCVzoNde/srD5PiWIgu6UThamVd7E+1F76JzPMYzLzyFTJ/ET+qrADkjTB62n2vk2TVnz3dWpYfci0BnBQHSp2bSMCEeG3LCkrNxdvjwVB5G0VZCnNhNvkbFPYkG4sPTaFKa8dojOKOw0KmQs1hjxdF0jLLGWhQhJRqFki3aUvb2SiSnoo3hWi+OVCvtCiWekAKloGHORy+C/QRCzEskNgh0G/bgLYhnj9KIM96KXrWNGy9PY9KeL7CRxM0jxzCiz1mmjziCWdVGtGcfyqFvstVzA/PU11IR8TyL7GX4kiZhNMRgFOpptMZwvCMKQ7ceuUzGnK+HYHA7kRNCHucnlKon+PEC/N+s4MgPJYRCIUKhAIc2n+Dc2Q4CLd2/5XCSSP4w/jTTNTFmNdYbbqDqtsNkXy8g9r2BQBukZcVhd9dilVUwZ62Vx8b0IMnsI83WiKK9kRs/f4FvruiFaL2bEXI1I0fIuet0KxuadUzKX05CSRd1PbM4FqmkaLufAeZCtNoQb6k2cXbYKDqL+iAG7ehCbuqu+QvNtpOENt3OGzO7+BgLOQULeKj4HpyVH9F71g/nOytXwrD7fu67JujhyPIKkMnoBqIHxxDSpFMWWsLaAVkc//grHqgKIz4pgV19c/io3UODT4tG9iqH9Vr8FR2s1jxIcaOTeZvdeG/rSeHpMkCNKJdxp72ZXZHxnDVOZfnVei7+4F3EqGEIjbC3RQan28jM8HKgug+nglX0b12IXi5Hac7m+dQMRBSktO3AdawNTfxpTiW+xrruGJ6ngsLalZww5TC3x0CUB3awNN0C6X7myLNR/7iddMVxxLVrCGqUBGVN+FPmYFvTjLx7EzIRGnw6vC4/zZ9uo6P/Zpycw/KJmhXfarns03dQKIwIgvw3GVMSyR/BnybkAcJGDCes6DQAoigSmZtHVaQJxWeXsbuhmgLrD7S40xkzLZaw9Xu55Is1vHX3jSDzI8j1rDy+lzm9hnC3tQuhw8uJPVZiB5+kuuAm0rxniRurpao4mpS2HVicy+l3eB1no+7AGT2dlOBSBKWMhz9dglkbTZZQwaaeg7gosA0hfCzNukx6GFy/6K/f7wfAV1VGr4RG1D1y0ETEERTclPxUSYTfStjBLrI3bqax7610djoII4Lqbi0RBh8q/HzjXof2trdo/+kovY/WIBveh6cNecgcNpYOmoxK5mVE4ylucXeSZ/MQ8KtQKIwMfX0jO+e/Q/9kL63NRpz715PZbyLIYyjtzCI9NQlVVCqNTVVEtLdjd9wOZgEij7HQEsc6YwR3GxTEnE6nxtHIntOpTEZOj3YXHoUcV/1KYgquwFG9AqHMSfupFDRzL8XjcXMi/Sdq9lYj3HIbFpsb9eoNWH3tGLV3oUr8Gn/ZZySbTTSeWEwoXI81+lrCdMq/+7wlEsmfKOSPHz9OTEwMKpWKmpoaBEFAERdHYPo4xJBIqN7H2NgezBubCl1dQIiYxlNY/O3MXlbMkstbGZkxELH1KeL7z+LGIhkN5Sp0+i1Mb/kep3E0Z7TpaPNncnrnGyQoYykxz8QiOnAJMgRlNL2MG/GKzdzzymOs2J7FVScaaY5XYEh7BJtCjXXLehbJwzAq5YwzqykpKQHA2LsH8XUn8XXton3kjVy/4Xp6aCNYcueHBFzd1F7xGC+0diDkRKPRxlAuNlHe7UCQg2LGq9i6mrgmeDclt3XSoDJD1WK29L+I5LJjWIPbMbQdZcIqBcmXXIxMreTbWy7jko+/4bL7HuOjD+aT1m3D1dJIhVyBV3ByzHgf4YpSonDyrT2Dvrky+inOIbqPEgyW8fG0uyjv9hL53Teg70GcX4nbdhTNqS9Q9PyI3KZWWq0izgYHQV0teR4HppRRfPblM8TPuIv6rzYik4t0ebswmU1oEkx0tLgpLz1MuD9I9sF9yIpL4MgRatNga3MHPZINP5+ElU7ASiT/4U8T8r169WLNd6uIsRrwL5pJqz+J5I0bUalVLHv5RZpLuhk9Q4739ULUogfcHkYLIxl59UAmfB3JuK1ats910O4bgKsqH8OBj0hrDlHpM7Jl9BRu8K7Goj1GVH0JKzOmkkFvdJ2nSZQfIrVmC0JHBbNXRyJa0rGWrUI74g7M9mRmVr9IR2cDvQJjKNcPIfOMjcZMKyecAfr36HG+8yeXkRRWznfVLp44cgJnzDO869rE0td3IY+LwjKwDd/QfvRdvpwVWSYOe51cNiQHBC3V1Z/x9aEoLJ5M8oSFhFQ7aaoZRb7uJA1pyeRvXsnWwWbMllRi/CbodlDldrLqlisZ89ECam21bO3cy1cRTdyRqSKnwsDFjhfRdVTTah3LUE0Sekdvql3nSFN6qFINpnXDGW6xQC9TAp81lnAmPJYJeyZD0Iesw4i3SkUPoRJZ9z4+P/0eAxKXoIlK4wqLG5vKxVKvn+aH30amNgHw+fdfkVXYC8HtwJOYhvzIW3TLVIhhKSSNno2zwUN69H8Eu3RnSonkP/xpQh4AmQKFECTxrtXnHz6xjLNLrieyKECP0mYyhwqolMMI2b5EiH4Wlaim8/LZrHHO4+ZFm5jymZwtE5QY2s6hHd1Oe5maqoRUAE6EDaIpI5bR+76mShxPTthxuoQqqgrGY97vYu+g8di/u551E2rQt9azXC2Qmv8+Ryx/RWZrQX3UQoTg4Zysk5SivbSlTkOn04EYBFsF/mCA1osTuSW4i/wfcpBnQEWWiT6KZk7vOM7chIU0583gXqWSd1M9EAiBKBIZOZZFJ6vZNWQtfmVv1pcPYdS8i6kq/4BwjYf6rmXEFG1HE3MOldPDoNo0YpFxlWk9arnIvQ8/TQ1VhN0WgbvuLH5TIgEuRxT+StT4Z7ArtqA7UozgmsTBcCdmg4kY+REiai1sjEpkbf5UgnIVIctdCN4yCCumatpEUt0C/hNH8QQFPo5PIcvhwWjIRWivwStX0dRvALIV37DzoAmtz8CpXTtwez30nz4LeqRjb+ugpVSL2HyaQGuQx3b76W81M2titlTRSyT/yZ8r5P1+ijd/webSw7RFXsx9c2fQFkgiJyuDQNgA5O5m3PJs/FFDOIqXgbYVlK2vIsdxko+u680lX55CBCoTLyOx9Qc0OXYmBvbhzLiI1PfXknlRKr6VIRbabkbTpw++sFjcVc14jBG89MzrxGn96EIuQqZ4rjZP5Mi2dcTrD7K782qqRheTs7sK18mzjDf9SFdSDHARIgJtnVYqTpbiN0bwsm8S5AiMIINOWzMz0jtIjxjG2cjZxDrAKa9hkPNlVJ25iIEQ81ssJI0VMQVP0O5XoW1v5btmPw79DcTs3kqeGCAkjsXabsGtcrHWHEnA5mXL8Ed5WpvNEKeC8Z9/wbNh71IrbCG1eiV1hnwe0r/ATN0WLhLjMTUupSsUTr9sJQ6Pna2x03hAVkxYzQFMR85hSy0AXTiiTKSv4iQnuvrTtfULjLKvGdR7ICfy+/HUia95z34PCn0YbreL6tZm1FHRZGS005scIIfF5RqMNj2hBhVRw6dzk/1KWn9s5a/mOxkTloPBE+TA+nN8/fXXCIIgVfQSCX+ikBdDIUKLFqEjRFjXKAzfLEEmhBhy5cP4ZGrcgowwmYIP1xwn2TqXzg6RrcGetEXm0yifiMaYiFJ2B9NXNeEMP8kL7/1ApKccy56nGRNWwI55DxA5oImMrgqUOjmy6mOo5dGEpfTjskWLqGnvZv1tD1EckUKDNZOotcvIlh8kx7uXSnMGNTERJCoH0jflOF2WKzEPmAqAN+jn6tLeTEgZSWenG3QyEGCQ0sAl/c9SqSugURFDZHMHPlHkmDkfUbYETfB2AAZpWumlj2GPfTaqkI/IsUEMOjUOl5emYeNJ0u2j0NaCK9yP3tSGf4ibs8W3EWH/GKsuCZwNqORqnvrrX7j+rT6EH9/KJZ1T8KtViHQRmzoX3z2X4ak6ibN0KW2lxYyzZ9KucNAYFGib0QbB0xS/U0riRVPR1liIdZQSCMUhyEUKGw6Qm7OSvNLpyNU+NpXvQhHyMKioiEOqJA63uegVIXDOr8NtD6eh3k6vrAOIew7wUeG7nDhegQwr4yYXcHp3NXEZVgTh/BqwKqWaUcPGEWbV4XH58HkCRCdIK0lJ/lz+NCFPeyWBsHgUIRsaq5mg3U9HXzOhkdfxqFjAV6TivXQcAnDG7iK6yYEnJosYjYowZTSKNhdrLp+DUu9n0pJveeb2K9k85gBujYUq92pWtiYy54ddROiqKXVdQq5uBSpzDpe/9w6u8CiWvv4gDW4tLX4r2QEb+rwcQm1AFIyddyOyYASOHtU4HK8ScXX+z92WCzJGRbej72rAljWCNL+DjTVPUWR+EUv1GiID5Xhu2klbZQeHi23okgIo0ix06j8kJBYwwqLl+xIbOx21jOhVgM0TxF8TICZKTn2dg9MpSSTt3sKp6Luwus6RvWw6o4GQeSkymZmN4hQunvgii3c+wne3LufyixzsiDnJk6RwcV04pMCqqhY8oWgG1Z0gx3UYe/hEwvoNpGm/EaVzACIKctf3IrTgPYSggoqepZxt1nF9eyay9lLUlQfI66pDTgjbwQPsVeoB0Bk0pJpSWJ2ZTKjsKEMGV5FkdOP3xiMqBWIiwzlaswxrYR5yeS96jkz7xUf+4HXPEQqKJOZEEpNiwev2c/nVc/5tQ04i+T3483wZShZEPjAe2RVXIrPsR5XTTWnL/ZyWFXBLfCW7j96MKthN3++LSK0+hcMagWdbK5OO7iG8pQK16zRqXTedKgvPPvQmatHPjOVerl3eSltefz7ULGZ6cBvos3hkXTmTl8Uy4bNFKF3HODBgJ+OK/0KGYhOd9W72typ5LVZHRD8fxGTy+YHNlL13nKNGDRHX5P+i30q5kph9a7Af+AaPIKIWQ8i9Q+nftBut4xwaZyXHPztKy5ET9Pn6RsZXrkTb7kbX5cMZDCIIKuxhp+mRnYHQJqB0AqKIsbKJNOdijJ7HEEx90fsd2HTRBIMK7EIEpepUvPavGdR2J6leP0/f9SGuYBjEvoSYriI1I5c9snp2HHiU0YYgYQo55lFLabLO4KxiAmfWHcbjPcO29vn0bN5J6KMFeBxboOkxWs4d4ojLyE/WW3DqrqOr3Ep7WSVtR3YSW1KCP+jnvdY2lMWP0kNYTkJbEzMjgnSbRlGhmkRXiQy1vA7hwEuMSqgnLXQQm9f3d595WmEM5mgdcenhKNUKDGbtv2m0SSS/H3+eSh6Qr7sWRj1Bcuq1dJwdhkZeS+jjA7hfv53ezhdQi176vDkVtSZEyeNZyHtdzAbDFYQL++hjFMHRBoEgg5s7WHflLJYN+YxP77mIR+/4AIJWIp1BBJzI5Aq+uLEflrxYAsXVlIb1Qh8VRU1HCmpBwCUIrNAk8HwQdhmvJ16ppzHNg8Og+i/7PffWeykpKSbf/TGd5zJRa1QoRD9V9llsdA5kUDjQfhKAkMmEXuHAdKoRUSmgVkfR+mM5QoSHofkRJKu70HYc50D3HERZP8TgV3h19RR2BPgxdiSHLlpPQnw84T9tQdkuw2SMZ4iiGqG6goVyGXMXfsbSW25hwNAEqnz5NNFJukrLwLfOIEQ58U14jSsbqxgaruES3SO0OHPo0mjQe4KImlTE7l2YOsYyLuxHumqisemGoW5RUhrKJnOonpsOnqHKp+STyAis3EZb+3ecGh3NWWLIKHXSy1PEh0c/YOLZeCw5N+CzGSm7yMWxmjbmpcWgkf9H3RKVZCEqyfLz45aWFtRqtXRSVvKn8ucJeWMcpPXAE1mIT6FBNi2X6i9PUW4NJ3NfJ19Meob1c+PJ8GWTMrQXOnct+Jrpd/wBTI4ilEmXgtmAs1aPwr0Jc/cuph2zc9nn6zn81qdEDR5MensFCAI1ThthpgCyo1/Tab6ClvBpiEEZqxrW831nHkujy1lWIqLMBLsyGrO9iEZdO8mRY//Lrpe3nkRXvB+3S0awIxpFtJcms569hhTexMMHHd8RNdBAWs9+qO99ENacobngU8KwI3O46dmrF/UBPbkFaeBz4q6sosC5DWZeRejQRGrNERiq/kpqNbTGZRLzzSSCU1ZS+lcT2bdNRyZzoRFFHrj5Wp57/2M8xiAF348mV6Zm8+hlHD/WSi9RJNDq5/DX+5ljaWWiYiP+PLhSfo74ed/Ctp/QD5xH2bgN9O3zNE7rXxCTnyUY6SQsOoaRgU7k0Z0YVU4KbvqIc4VKYjvs1Mc8S1zDaXzGXGJCB/FVLSI3dTaBgxsh8gwqUU5j3K0kygQCNXY61K0I4SbCFGGUlb1Gevr9nNnXitXoZeO2bTz66KP07dtXOikr+dP4w4V8n1FT8Pm9RBlF6p31ZFuz/7mqTGWAi96h95ObcPvLOFDwE1ZNKb7Eq1HIFZxsyUfhz6WkuRWFIZzod12ExG9Ry0R2PToPdWs9Z9WXc9yoY3x7LWZ8hE2eSahoOWdvvpEHD1xKlJDNQ5EP05GioURnp0CMRehYgj1sKrpuJRMzRrG1+TXKfQ+SGv49bd4g8YdfpZ93ERXjLyEj4/x8cVJSEj7f+ekHlUqFQq2kWxFP+7mh/Dg3DQwFtK7+kvGD9Ty4vhNhaAreOgeVqTfQvvoMtUk6ZN58ZEoNMXExCEYrao2aO2pqYcVyhh7LpU96PBNONDCdSLA7UQW8pNd+RVRxNTtsk2n+qpkr3n2bpm3bETMzkLs97DDGYVCquPGNT/hiTn9EzykyTu4j0i/DnOVFl9DE6HMVWKsS6R12hIbaqQgDU3B9dTF6Vz6h9DRUlxfg70jEb+3H5PpF3FikoL+lmWHxMqY8s4uAIo7bRyZQq1Ch93xOWlsy673RhDprmOj8HqXrFL6Ji+nsNxND3QsUZ96O+5saJt3fh7rHdiMgok48yNmRR2lu+Z6oqItQVB0jtuIvTHZ/Q2RyDg1/PYRapWb62LEcLy6mV58++L0B3E4fYeG6n4eMVO1LLgR/uJD3eJoRX17ExevaCMld3PvatH+pKpt/WQHXNzUxKnQRx8tm837aLO6zruRc90Q2VVfzqtvG99+uJis3F53RSGxEFJsqZjGifzVhUXqSu5VcW/I4O5JqEBffTJjrGJMUS3grUUSmsRHm7aQlJoNA0Ed0cinINUzYMZKysVvxuprZmZ4E1Sfw2/IJRNYRbK1GMCnIGPjRz330+Xw0NTX9/Hj79xdBLwHDybF0CnYiPHpEUc7ZsmYG2o8ReK0B62Ozsbu0IAsiKr1gGMHHqw8yY8NYRGMCCS+fIbDhISpa07jOqGN+qRxtYAfhaR0M9I+CqEd51+FhkN5FgsqIKOuGXkOxtbahPnQIR1wWN4ZaePjGGxnw/gf0+byIE7ffQd+gQEgJQmITIKBOz2Jk5/sIYghVLytuj5GDya8Q2vYTyWVOAqMyae8owyUGORbaQyAo8PXa0fRPasURaOeuS67mxDef0yYUErQVkj8qlXVn61AIQUYU9qM290M0Hh8iMj7PfYYclYnmsnO8+dlRLkpuwur2ovduR2W5C6ejhLN7Q1h6T+TxhDjuMGUR+nEBLt8QXrlpHOndEUTceAuPzP+E/okWjv5YxbENtdz6/mjpEkzJBeN3H/Jz5sw5fwtZnwufz0mCyslA6pihfYM2eV9g2r/05ZcphfHobW3YgxZq7yll4NGjmNenEuynIBAF+ZWNFJ2soLD/AJQyGTq9lmdXzkO9ykv1p1fQ1xnOtB6ZHHHLCEZfTUZNJxGFozip1bFJOx1TXQP5VV5MPZKgO0SlQoUx9TrSjm9BKQsidh2jrrsnrdp8qvW9yVLcQ2vgDhrtXnpafzknf7rDzqF2J+mp76B741Hcx28hXzuB7sGP0nuKiVdLTvJlDzWDxAYe7z5NgzxIpWUKZl8raeqtqI6n0hp+NREjesLLN/FAUR/itXEMLl3KrjfeQbb4RswHffjc+wiqbYxMuZuYMBNRTSqyqcZ23MR8g5kPUpNxidAVkcM3m73cNvUePvz+JU5ae5PXVQS6ThrVAeRHm7jGPosf1CZ8HhfRqz9CHnUPstg2DP5v0O1cQEfvniQ5U5HX/wV5/8Egilzbq5TLP/qECKWeZI2CYq+P/lO7OFGmYniqlWe9flDKCSyys2b8bu6/dBKLz3zLlo44TCVbsWcIPNnzMTK6NyPYG+DwCoQj15KQOIfWuDrqugS0iYWEJUeiae+gW+klOmEo5PfAcfVNPPDlMfbP9WCyOxEDURztP4Y+h34i4OhiWK8C1EYTesv5Nbuk6l7yR/O7D/nubhcrvl+JattLBMUQIn4O7n+QRGUzxuwesO0Zlj89D/Iu/qcrr9LhhcgEAXa/wejjFs66E3l3r4ujkc14k6009RvAsrIGJiREUFNbC0BMVARit40KeyqhzkzU+cdQRnqpMn1BEw4yQzswu9RoxAAxrkqOHhE562xFrp1ABiUEPfWI3k0IwU5qI5poKhiL3OdHFM3o5Z+QJM4Dcn/Rzwi1CkEMoXA0EPRqEQMia+t+oLGuneviHqDY3JfacBFZZCKOUwuI7X05Jv85KsMzaQpdSiDyB9LUc9HWqEFlpL64mezajURUH8J8+jDfjXoWx74t9LVHkS0/RAZaPCo4G5VDTEcV7bEH8FRl4lGIaFNTMZWc5sqULXgsQ1geHsfTbz7Mqhuuoc2opcF2FaQoWFC6nv3eJ4k6Np+M3vW0hI5iadEiGKHeehOhQD7p1VexuWYsg5uWENbrIQA6QrDp2huQiSKGlCROGpzEFpQz48ct/DjnNVpOOtCeXEfHqHy2nf6aKaIbc30tq5pG88pFTvQGD7J+f4G2Uprr2zDFxKEwO/A3aNEHAjydEX/+oI5/iZ7/6RjrFTIeDrey+usaZtw/isDS2/ENHM62R5/msZtvICkrm+S+AyHghbcKmL4z5/91SEsk/1a/25CfPH4aSrETbdMBfjz4OOP8l+IPBZi2r4FX1/xI3ZYqOirqsLqWEOw4i0yc8c+tEiSK8HIyncNepjruOhSR7xARm0/3izeTH/CTdEcYY3+K4vWCvzLXuwp/azFNAx7DJ8qQzf4S+TN70Hj8HI9So7P6UXUpEd1hHHVMxaVTUmlIIcZfSygsFlWoL6IooE2KRexcys1Zd6M19eaKkI2R+8ZRLU4hWlXOydQRVDV8wTzLcyA7f9vcNq+PPgfP8ai8gv6+o/x41xx+8t3A+NBtGGQy7LIYbjlXybGOfcSVHWLPtWuYEljC+x4XR+tbmXHiAEp3J3Fx5zCG54GrjQXad2jOnELU+EdY2GpEZZmIdtxkTpfYKTYquLj6ADU1fmryMrDIzBi6SlgY0NOhsnOseRsDvKmsV57lK107VyxcxvIrruaST5dy1Ye3EawvQdOhZ0hsDHUrTuNujwC1HVNMEsf9ySjEGaQp4zlmSWPd2K95dJ0PvTCDT4NtPPHFQqwy4f9czxsise4DKiK+5PPae7CE11N1bCB5xU60b73CKyo9ByILaHKXII9qY4jOyOC2IoorTvOZpwe1Wzws7riCNSNEClInE3P+rhPYqovQKZJRxRt+HgqLShsIyQX89iCtHeEEMVKwcTVFPXvTEablWNVRPrsuhssr7YxPHQ+9L0O7fvX5MRbyI7aXo0vqLVX2kt+1323IO7qcPPtKE8GaQvb6tAxMT+fOVXt4sV8Pgv0+Z+vSl6l2qeh178OUtSzFX/o17y/9krerm3gyPY5LL774v35jjx3B10VNbRGVqrGMmvEYRdvKOJc+m4y2nXypimFU52G6dEFOl7+J1mOmuN1OEBG3w0dnhhxDjRyLowcNfh1iipFomUBLlZP2hQ+Q3aMfYXG9ST7UROSAKlRqJUV/+ZEmQwQPPGbhFZmB9JCA3KfDE+2n1HgTSSUpFDbdBHHXQ/j59WAbPT7kwEpnHOEJWfg0Fm7/vgeH+1oIiccJ+twkJ5pwJ4+lVubFrwxDzLufu7+eyxWF89F1dPDw5FEUnTlKYtvHIIbYfe0SwuQifnUSA4tb2NbeSUqiDnVWDT2byvkx9xKcx/djO7SGGbddR2jZcbwpB4iMdTBFDNGuaGFm151MqHoVfdM8Rlz8CjdueoGl17yMN0zLu+P8BIbcy5heH9MRfTFebxP12eFYz9ZgsW8koE1EXTCBVpuCQdqDfBxt5/KFS5Cr1Dz98At4O0tQK/xsNSs5Ehmizf8kN8dGErl7GkaHDXvnKeozLiarejGNxlvpl7CZAbpUbir7lLLuMj7a6+e6sHx2y/TkZqXiO9OAPCOKptYVtG06SqRqCnHXjSZotyMPC0MARAHmPD6IysuvoGTAUVK++5ay+Uvo0InEWYyYkLHj84/R9TjH0BFXsPybqyEym46VJQTtXdzw/fP/rl8JieT/l99tyIvKZhAFXlKrqO5U82GogaeyF9PB4ygNJl62DUEWDNCry4fgGYOmHezbHqd28E0ExP/hjbUmFvRdRqZRR13tQvZ1DmfKjFGcMIYRm3EnH5bUsMmk5m6Zi1bLS9TXWJnY6UErl7P5kyLqi130vOopBhd+hqF0D101DTx1agjN+RaUM25gkNZMqvMojdYUqpzthMVMJGv0B+SooOTeFxg8bCSn5u5iKA30ramn1P8WqrhY9LfXnV++6v8oMBnYlR6Oe9ZMAqKMn279AFdXGj3LUli/30gg8Qvkk27kImcZNwf7UXTgHIUaCyMDTeyv+AltTDhHdr2Bdc67xC7/KwAx+mo65cnYZU2MMHzPmw27iAsOYXZ9Fa3jPsbudGLKzSGv1g+hEGLAy3FtTzoOuZiSdxSPycLm/AnMXf0NomAiaDrHnN4PclVeOVd8eB93fSXDv/Yjtk5XImQM5Ye0PFL9CsI7NUToxtKuVJJ+7Cf8yhw61r/DTG83GpWSZ+9+lnJjDO6ucvoE1Qx2RzJy41h29PmW1BYncxPno82ycp86ikjbU5gb/EQo1hKfdxnarAjG9fj2/Jh5xkTAmMvHs65H5h9OoLodBIjLmY1nXDMxqUMIOp2UDB1GyrIvubaggEfl5/9y6px6A1p7N+r0dGbkqnBve5H2mnhObDpDvUnH1tOtDBypQRH5f75VKxOQhZn+V8a+RPJr+l2F/JxZM+gu2oyrQYEqIRrzqaG8K7h4PnME+4JB4htkPJQjcne4j3hXIza5iQFnmlmqEphy0kNLj++4qm0lOnn5L6Zu4Pz0zd/cfuRyyg2v8anuMBHLV8PBClp7XkF+7JtcXKyi0WQgrv0A/UQVn+6Vs+VgC37kXPfCBLQqNQ0f1iGKIi0piewt/pYbYw4wVxxGSmIWXTIdSsOPyGNdnHHdi6VRgTYyH11nCTJliMj2Y8hFL05DGFHpYyiYPffnfv3t0kmV6vwJ2BSTDKaWIgL6sof4sutVRqrbGTDWyklLPKIgsMcYQZWnAllAwB2RwuohP+KuauWxU008O/ltarzQ++FylO/Ec9Hw21Erlew9fZjjgWE8WTiXgs8vxW6bSqj0GD16b6AmbgoW7xrEFYd4N2IOSbI6zEkJnDpbT25mPJMP72Kb+hqSY/egDp1hZMCMRimy7FIjam0f5qxooffiDEKLFqGJ60LdfX4SxogMl9KEydeJEOxGpvQx4OHPmBboQJt3nCjBQ5NmKA313xFe8yNqn49vSr4jNiZAMLI3VWHpBHwitYeHUiHKyY/NwvhDNaoEA7Lo87dBEGJ60tSjN8EOJwtfvAZrYgqXTnoRQRBIS7uHjm++wTztYpIWf4EmP5/S0lJCoRABfxCPIYbQ3a8gU6kIBALYPALN/lyyK5Zi6TsQ1f5DrI6LYNbNdwNgvSST6hY39o9h+PDhaDQarFarNHUj+d0RRFH8n+peAOx2OyaTia6uLsLCwv7XOjN26Bg2jz7NuW8j8A/qzyFPHTdlHcalTcDr6MAcm0R1xlw+bO7kcHhf3nxzPpn3v0sTfqLTUjnUPJXypnTmTvsUvU7z3zdU9D2tJyIo2/QRzlGX0h0jsntfDYWikcxRWZxNSCLuo6UwZBKirJKhoyaxsr0LWQAeGdOHgSs34QwG2TysN/U/3EPMkbUcDb+K5rzrEJVaYlra+KC8nr/EKenQxhB7pBNRIdBo9mK/OJ/X915PfMDKF1cu/UW3YmJiaGpqwrl3Lwf/8jD33PUMo84VcZ/7E+KFDhp6vUmTLhXRq6NBDvvManpEa9FVdtF3/dccnH0FY2qK8AXVbFGb0WWl0S3aCCx4gStnDEE3YB6xBXksP3aGAZEmdpxtwVhbSsbhJta0tbEuPMDFc2Zi6pIR1dVOhbeLVTU+nhuTwTGflyuyElDt2w+lxYgifFmdi9F1immRf8UV8QjdqnoERTeR7gzWtRtpvLSR3ENq4knh2vAwVtadIzIUYumpWDwBOYcmabm+o5HYnm2EBCWnzkQSE+ZC88oi2p94ki6ZiC21BxDC5NpMh7GNad7L6Nr8DBmO9XiVevb3eZP+o2Zi0Co4fGoZGzva6XG4ivKyBrrjczEUn+D2Dz+n6bY7cB88CLMK0Y6YzQ5tP2L1CuZO6k17SzMNtbuwVv2AXa+kyL4Kp/gYk8QzbDSPx/rW84QfqqVo0f1E+hcyasRBAIKhIMvOfs2srJnolDqmT5/OmjVr/td+PySS/+yfzeXfxb1r5lw8lfGF6QjI6My7mMjLXWQnb2LsxTdQq+3JoZ69EFLz8GWO5H5vNUsTZlCjT8b/7B3YZctp6BvOAct+CvJX8f3JoXQ0lP+P7dmr8/GeFEnsryVePIBDkcXZUeOIyksm4XgLV3/dkwmmV6k3m7njiJb1r9xJ/ruPcWmaiXZ3iHXTxrL9sqk0fHEYMZhM5ZjbsKVchowQA701rOwqY1dLgPdPbserUhFUyRHdXqqDp9H45FzTdyGLL/8cgFAwiN/j/kX/ZMF6Rg0/xbaKRdyqlfGJfC6tOW+Q0tZOwOAlwVVNYtwPXGtYS2xVLYXPPMC+qt28WjoXewj0zd3keo6BeALv0b143H5OBkYgFp1B8HpRyWTIBDjb5ED/yD10bn6N1oECSREG5q0YS1zDMTqa6zCYkrku20qp1wNaPYrt2xFLzxEkQFDQoNYoCckMII9BkIlYAvFYatYQ6D6EJrGcS08YUXTksEFtpURt4j5rGqGQgCMQhh89HzeVMsjbTuwBHd8tjeekr4SS5BHoZUH27TnEbepogqIPbXcrQ/Z/hrWlnegeGaTmJNCR2B9VwIvB3cnZegfdH42n76rbKOhOIjtSw+zUdj7vNwFbWAzXvLGJuDdfQzt+NIrZvWlRd9GtrOJUq52gKHKuy0m37yzKQAi6uyHkQRER5IvEW/Ca02lKnErKjTej9g7EJjzD96+8xo7Fn9Id6GZNxfe0u9sRA0GEMxVM6tmP6dOnM31ACnPmSDdDk/z2fhfTNW6vl/V/GcaapL+wP3iOi0qWE5Tp2dAZxDr+VbpNO3AbEhh/aCNphhTyxDKGxfehe+sW5ufezoADLlwpVbjDHax98fZ/2J6mXzTaY1dwUnspHlGPP0aJ4AqS4WuC9ljQZmAL02NVBkmN8WOblofmwCaULw0l47ZFuIGuj65B3riGxIr3CcjU2ArH0V7RweaSbm6avg9bg4obm1dgd82kIaGFJGc4gwM57F/zFSl5I1BkxgFQt+ZdOprb6XXrf5zAq8zNw3RqCDVJ0+g4fZDBowajPDaf8oi7UVaeJjx/AJquEgRRxrG1n1Fw19XEtURz6clGFucZye6dgR8ZI47PZ2TqtRhS+pISYeILtZk2QcZztc1sijZzQ/94imbNQSkW0y+vlk0lZwjV6Uk88RnfBAtIVkYRl6jFg8DQ4kpkiXGEasrxyO0oZ1/DZbt3IdZ66VJcj8nvB0HEo0pAMKQSSvWz0TqJiV07CMh7s7KhnKQiA7JkuCSzCo1cJBCU4XbEUR7+PSbtGMwRI7D6nZjGXca9cQaG2JUUZkdg+fEKhNSBFGzr4oD9OO3K6TQNvwuFr5JZKSkUvLCXFPV1/KQ8wegBQwjTT0CUqfipoYuv9hYQI9YSaj1N4J4sZIKGVKGATn8lYw5fxms+G/tbHRxoG8UVjgCpniD5tdOx3NSHtGPniJYpePJWMyeKbGiUSjqCUYS7ItCfVWNUGfli0nLUShmBxkZW3nIVzcVlxH30Icc/n88z3+/+3/qVkUj+ab+LkMfRiCqiP2Ozwzjz7jb2qtTcGRfO5Sk/MaX+GKa1nxGQGWjrzODWg42YH6umrC5EL7MPRCUBBPoclpHQIx7i/3FzqqgwxOmPEKqN5sxmOxmWPdwRPYpuZQrCmHN0p/6VB1Z76XNiF5/3SqWi00BEWzh1EZfybN98HvzhHKIYJM7zLqJciRCeSI/629iomE8wyYAx2MlN+ds5EvUE2QeWExbdg+hxOkrbjtO5si9ylZeyRhcZsXrMzXuIbDkAPA+iSMmY2XTZT3Fs/tMImk68g2MoOLudgL2DHVF+8mJ7017Tgunkx2gUJsSsKwnTarmz3UtQb+W20iY6T3pI7R/EFjaPB5PMFHXZed7Rxa1aK0qVin2ThxMf6GDHWwNonriKmuoO6k7WkCbbT3XPmVjDlDxUsRFl8RoO1L1Jj09uI5iazorXP0BWeAmaQICpB/ZDbQ1NMy9jk83LlL1bOGjzMFB2LZEhFz2q5LQ2HuH+GjWPaBvJ7GylRQynvj6ZePmVoB9NSDUOv1+Lvykadc42ntoTw+ulX6MYOQKt2IU+4MfnD9CVtBjZqavICBSzvzpEbOEjNAvQ87PVVO/4iX7DpzNwRjolEY8SJ2/BL9Mg7H8NS7eagf07ySq4Fo1egWvL5+zf6+HmmdVMEJQQ8J3/Zq5MoEMm4jJrYGMDfqBiyRme7ReNBTnf7NDxgADjFUt52HaKHalNvGV9jqqaTo41eInWBxmSDBtGXolukga9J8AlJXkYOn5i+uBMtEl9pLl6yW/mdxHyoiWV7UmJpGs9nHG5WK8bQShUTtY5J4I7lk7/A/hU9XRs3oMQDFD26XYG9TmCEPAyJGYAZ7OS6LTF4wkkkh8MgPx/3q0bt9zIoOOX4S5pAJkGb0BBt0JDc0Yq/W1nUO09zq7WZCo0VsLCk7jq9AJo20xdrBxL/KUER8bgfRtEtRnZ1DeQiQEMFdsJxqcjN4vsEx7jzMt2dO6VlD77IQZPgKPLahmYqaX/JDs92mtYfTYSkyGOyFtX4PcFAQgGfHgsSpTWTLLNURxT2vA7QrTYk7Bl34YpzMgHNQGSGyrJFgdwhX818VF9+dJZwYren9Cpr0FRPB13lY9IpZ+kxJkMEItx95rI0nW7uFpdyU1NjQBEhymIbK3HmNWB1b+JPIOH0FEfDRnRFCdPZ7zrS0L+bqrLQkQOGEPNdbfiVELQEOC9b4upnHsWRZqX778ez7Xp9/J5sIIPmgbyqbGYQncKmsizxO/ZyANbK7E/dgeuiIPUYOMNWRnfescRCom0R+7GIZ5EFzcPn+kq0k6VEF1QwNJ8B8bEaVhrWyjyukkpMDK64Rrcvq8ZXNCX0JYBqJPfJ6y8BIfbw5SBqQihNhTOTipa9vLjWw9x29V56DTdhJQrUezbRVVbCENVM862PHxZl6Iyx9CZ/xCdb0Xw46q/kNedzOD77kMd5if0/a0Qez8ZXh3VMoF9RVq+VzRTX5GHeYKBwvYW7Godhz/5lJye0wjFOwhUliAGBiMIGkzKEFadihc++JQp8d1Mv+6B//XfIYnkv/P7CHmgRNVNyHmGen08wwI9uc/0LPHZGzjUMpDSgJHkBc+QKvpRTI4lPOVi6lrvwdnnLAmlH7Pa04tgw0m+bn2ZXT9MIeKJk/9t0G/65BQjI+ZQMCaJk13tzHi4D2uq2hn34zTqEwdSK4sgSZHFdbomMgakIFN2IdQeY7dlFg29nydga2Z+0wZukymQPVbNiopGEvUaBvWcR2DPGhSBDJJOfoMlOZGSRgcAHp+bS6bWsss0hCatH1UZODoaseiT2d/aRU+LAaHpCG6/j8PzriNF7iby0LcoR/6FJFcHQl8FXehJObKHiWGnieozEO2ZZgTt44TJBIaZzMj9agRRRp4CDOYdBCrqUdkzgXKOnUmiV7cZwd3x83EIIeOOXu+zyPUl1bFRHO60MunWT6lc9TjyYDhnCq+glT7kdsZSlvc4cb5Keoc20rZpG07vXeiJptvTRijgY+b+e0Cl4epeXURZtKw2XUF6VQf6AxWo/F408z8hbEoJOYKRT6MeQtQrEREwdSmoqjyMK9eHIcLEp3eNIrH0HQbKZBxvr8SMjCKnnYIzR/lBMZCS47nMUX+BQQXN8U+RNeUeQuYCrrCUo/jhLQBWqO5EFAQOfdFEzFVWRh1uQya2Ubktk7S5d/LAo/Mg8vxUmTUMtAotCb5EdKIKhVKJrfhjooVjhNftpBUVV86aQL88KNsbok+PXFYUrUMMxOEwJFMoOqgtaWRoWBXuUA1TttzFq9YnaGASC2ck0rf9HBT+13cWlUj+XX4XIa/X6Vl390602kN8+eWXyOVyBEFgV4WNzqCRqGgN1iduwbrhMcrHvEjAB2mbA5yKv4RDubN5pH4BIXMCi7eLlOY8iXvrYRLGDUSQCb9oRxRFyg+3glyO+w4jcbeFs/bQTr52tnCFo4RQk4aWxE66d7iYU56OfvQ03J5OzoX1ZEO/vxCQewidWc1jFR8RFEV+rNpK+zoTDNAxKNrC3IHjWLbsMzZUiFzvnYb5/2PvveOrKrd97+9cvWTVJCu9d0IIvfcqCggKgqJiwY69buwVu257r4iCoAgivXcIkATSe19pK8nqfb5/sLfn+O593nvv+7nFc+7+/ZXMZK01xhzP85tjjWeUcQY8hzZT6lJxenQJDS02VNk6mrWxzNi6Aa4YizsQIistlYDfS0ii4JhTRXaoCokylUlVhzF7w+zsq+R9/wFu63mEtJzBmPq7yNHFgCjii/KicYhk9c4ksXsqGhEqU1aR02cl7CqnKLOd9oQyJh35GUXNLpi8iB1nuwjIDNzvq0emFMkcModMSx7lLU6GLX2NpqrlfDSQxXtmN/IYCWs1txJV/SOf+SZxyJNP7fRTcKyIkGE2K3ouw1a2juYR1zM8/xoCooL5+RZ2aLVEPDEM+cBdCFI5DWIthT0/Exts4YAMNsur2Jn4BFum3Ibe7sNY9jNtI69DZYogKBVIlHVSnzCeqAuV6Fx2/NKLtrQPuZLOhp0Q0vOsIZPsfpEM1QxUeWOps7XyW2EiA+Ou5oFJ2fBCDGFByk8jvyeucy9lBYuZ39QOOjOoVJQ2DoCgQIy5jCvr/Zxp8NKa/DCarFu478d6dvdoaS86SvJDIxi0IAf2rOZbdRrF8atwdwdpu2II4zc1ITsXy4m0JsokNzEyOsCU9p34gtPZJDEy3dr+D+m88K8eOP/C/z78KUj+74u9IHU8m450oNUqmDcymvpAEsT5CCvUyLuAIasp7lRRH/CzvOJx8pvisd74PEGlFm/IwgXDfZwyPkdd0Ejziz8wYUYHjL0HJDL6O90U1dUQG99KyJIIji95tymXdyrWkqYU6ZBFUlqoxGC3ExM3wMEFX6Gw6dH21BJjW0dO+3YCOVfQm3gppTGFCJLl9DTbifUGmGQ9TSiUi0ymYdmyW9m1ax/q5nLidW2EcicRJ3Ni9UYwwjaaQJmKZx0P8ORVN5MhkTA93kwwEKCzs5tNJ6zEfPI8wrhctB4tSDSonc2Mwcyqz8+zTngaxwEdmqALRcBHu1tFOFFHfbuDLI3A7gnDaGq3Ynh0Ep0qkbbmxaw8Z2fr1GEoNj9ASKFECgSCIggCBbPu4LbXn6X72LcMH34NI+NjiNKZOOdbxBnfWvrk6cQbUrg0MRLz/lJGD3mM/PQgSJoQmw5jlxyldOpmbJOvYGTjX3HV1KBUZ/LDmUNkRBbQmmJnuKeeLmkm7pjJKCeN5kLpafbbj5HjF9kgk1PS4SelpoEzextxWvVUX3Y9cc0rkQtf09P+CBim479pJFsOPEyRsoi7xp2hbc9GdO4gjxj8HMsYjyFC5IqUOGSyTFbJd3B/k4Hry1p4sfBxKgy9eGIU9K+4F4UgwJnTUFcLS5dRZ/VCGM7naDFNSCM1x8DlRbVUugKcvboW/44AXvsIOkoPYsgw4987B1lhL90qkQluO/F2kF2dRdEAtJTZGLnnY7Ll+QSis6lz2xjTIHD8509464Xn6G1rpmDqrN/X/L86XP4L/7vwpyD5v0MEHP4Qeh2ce7+UEQoXA8PCRJX+RpYjhTJTPkOVKgaplRS/upCc8jkc6zjMjthUZvMOM7zdpNVvJZCkImPceVpr+jErapDkpnD6twbW1RZxf7aVFqsZv8vIjdogzcbZxHrKidPWkzB+G13Hd9KvvxFp2IFCE0/SkEswB35lRvlaph7PICyK3BTzBvqwnzsvvwUpQZRyJRs3Xs/YySn0vfsewbHLiGproNvlprLtHrJ6puGN2U1I1kuleQkWXzujx13yD/rPP76IulYP/i/O4rvzapLdnaz49AucwRBDvIls/Pw+zn1ympimC9Qv+QsdLS5ekkUyzChD9sMzrDh8BKnZzLvdctwpalwhPU6Pky0Pv8ons7/kkaJfuB6YZ7pAhFpJcnISLrsPqUSO5b0ruW6UBotazsDucXwxZCEH9vTQb/Ww8k0p5cPfxNBYwqORsYwfPReVOY3FJ1bzqCGLiPozeD48Q8NKE/cNSmNeVznjWgeTWf815pxJdChi+bijlt+OO3kiJ5JVrec5ObyQN0xt2LRa5JFp5Hu6iNV9R9fREAcCNzDcaEA8oaJfUsu6IRu5Rr+MB4c+iM8f4sycdEJheClBxntdvTT7HLgM+5EF5yKTXEebsomaXjuPdUQiGBIZG+oj2RBC6LTCyFFQMATf8TomRBsIInIyGGBwZztfWbfyxcTrqO9vwfjBUwjA9kveZGy3j7Z1RjShEK3VIgm6OhRtlfREjWJQshFDg4OY+HwMXV2UNrppGaUh2VSL+dxiQjGFbPv1V+wn9pNaOJqt71Yyf34KSomCmTOH4fQbiLA3EJkz9l+e/b/wvwR/KpI3RCsZ376NuFMnsbtvAYmAcaKB2MseYP/xXvoNcrLqfkNfGUvKkVH0FnbxtWUQMoWCy0QDG4JTENKeJMtno1+wcCHpCsR3PqZOO4MlwzZyr2Qpb1V3MCGliXRVPxrv99gzLmeA8Tji7qGgrJqGviSkg+Yh8/ag1gxmdflRtkbfz8d5Fowbi7DI3US7Knnumh8IyIzc/KiZuPzJKCO19GytZVW9mrsr3uTbq0YTTijHYv2Q7igV54rSeVAfwVDdYfJjvfi9TWiUxt91DwWDnEt+G3FxL9ubelD1dbL7qy+IFGT8cv9fONAepnlHFHoxHVuuB7e0i4nyN/EH3iApLHDnk58Q7Whn2SsPsuSJT0hSKFiz4hQHU6bSp9SjrzjBjIIxVHz0GfLaBlpfnQjXfI8oisTGxjLdIqWi2U5zaima+EToc6LWyXEMeNl10kqqSYZV4ufjYC1N5zoYkC/hzqHbcGthaOJkwmfz6Rn+BKn+HrxNA4RP3I9ybif7k7IxaS28aPWgTe5D7AtRk/Y2xt5SVIo6lhasIrTzadojukhpKMOXNJiEqavpCgRJ6TyNo8lC1skJnO8+y5DsoTiLS0i/ZSU9y24jaVoCTxiiqJb2saZ1Mucm5CGv2krlsHE8vepBdvgH+HnQS7hbfJxq3YGMENx2BwCy1Cjkx6wQFlGHYJBcibqpCYtCgcWSgQgEwtEMqkrjnpYAuX4XHb4j3DQhhxRNEKkYJirVjEanIgUb6qNnEBet4dyMb4j3dCDvmcye67Np6/IzSDaOUQWRzCwqYUFvkJNfVfLIPQ9iTDqGJ2hCcraK1esr/s9sun/hvzz+VCSfmG7hsZ92AiDpuZ8rvtzIYHsxrg4NKl+YSw4sRB4hYffUzUhDImpHJ1UHL8VqmIB12OO87KpkgesnIqJl1JyYwGCHh/Ll95Gi/IVjsnvYuUhOwvvXILTDvswEJHgZaD+K3HgJtvabaenIRlTdg3HgavqEKJx9vcSXf8L9w26lWxnFt9c20V/WQnH4JZYNO029ZxLSuAKQKchO0lL6YwWndcn8VZ7KrJ0eDNemEFCmUK2VEQiEOa7L5viWHRgufZaUERkY/53uUpkMlUpHiTVEvVNKyY5vUASj2XPH5QQCPfyQa8ApgdVRsZSF+/Are7lca6bB2IhV30lzYy6tvx3lwJPLcNlMrFjzMnc/voltTwXRxY+joamKvUOvI7vfiqvBR+a8VQAIgoBMImHlFWNQqETePrSCyOFzmZu4iELtO0gLrfwmT6TaF0GyJguNqhNXIB5kIhq/g4geAXdEkPpr3mJM0cNMlbr5SgnmIQVYd8tRpifxstTFsqgIeiujMM+NR93vJPnFrzgxZQYdSb00pN3Cquh51NbfQVr8BAwdv9A8kA8pRvzlARpPhIjx/My57W0YjCPQ+DxodOAICAjBFlQhDwRkyCUSaD2BoqWICWmptAV9xDjaccgtVKVPwCJ1UbC/mChBwH79fDy9TgwyOQ1xTZx/ah2y8lIut8+ktN1Bw8sDePY3kTI5iXmPHyASkfGXm2kI6ygecJHkHol0Qwv2oifoSJuHJTIbda+Twk/0XLViJTOifTy+60Y6IkbRnHUH1aLAgFTF+LEODHEuwvIj2GzjkctVDKu5H3W9mwX5EZAxnZ6evQAkJc1j/fr1/zZT4f8NnwOUOsKiSJ8/iEkhQyII/7/i/UuXLsXtdBHqdSLRqZCoFYTCYSSCQEAUuTDgYrC/G4XJwk57iBiZjESVnKAoEqtWAhAKeREEKVqt/l/fSv5E+FOR/L9fGHNnTeP51h4ecDixxGiQxepQFVvxuJIYe+FazP0XqEtbRVeZnrB8gGhnmNunBtDpvqVf8gALnbfSHXgPuUGFyv0Nfn8fzceuoivrHpKDrUxrGE+LRs2RqmoiFF1kz8tF22BA270HZecozBoPHbGlBNRq6tt2YknK4hlbLsWGUWxtrSKkEMlPbQcgGAhRcqCB4avHU3dsDS6XH6HmKEf6XyVCI0NZ20JS/qXoQy7GTryc6lGTOdLRT6XDzbwky+86F16aR422hcpVN6GL1fLg8x/j3jGU4ymTWF1dTbvxMqT5BUhtbspj5Kw99wRX6VrRaXXESdpoDB5D063lXc8sJlyxkF9+2sRlP5Tx3e3jCIb6UL31V2KzL0VrUEGXE/SAo4u2271UZV7H2FVfkS8qGR43ny/rOhgmn0yBez9+qQ5BKjJ4dBSmyFwO7axA0PUz+cJJjmuHctwZZEdVJ0MK5hIU2snIuIIqmx25eSsKuYaVEVHYQyESg2HittWjSNmEYUEk5fk5vF3TTghYXleL/2eRkwtnEhRdSAJPIqGcQaOHM6VxI7eNfZppejdNmeNJ2LyXKV3fofAeoW9ATUh+ho9oY9v504x1Gdlf5ceUFEd2jMDUtAtIzDfQ2eUmMTGV7NJzfBo8xGS3k5P7S0ndNRY2riDn4U9o6rwGe5UfEaC9GENoPRQlsfCWaxCFEG3hUvqcOnxKE9qOYjykoWnbjiZyAr25WUT070by00k+e7qC7l+3E1N0ghjbaZR5t9DvHsVGrYBXISNklSAYTMg0RjzNmzlmuYJvl25HHvIgPLOF0vOr8HpaeOGFi8Tu8Xj+sV2CrZ7QybcR02ciy/ljfP//T7zf4/Hw0Q8bGH+6mj2JsWRlx/JlzcX1XRg4gE5uxdSawcGWEH8ZOQJbfwhBH0FMrIoRURdL6js6fkGlSmTFimf/hz//X/hfhz8Vyf97yNU6tmTGc9wXhx2RmKZGvkz7mVTfHiZ1fgkIKF39yCfHsWjwY0zVxpOljWJd7Wes7n0BpWQAIeJ17IEPGF8WhTd4ltbspXTFLydN7aTvm88xF6TzFG/TFX0tmz9Zxo15VUQlWdibbcYU4yVQpmbukAcYP2oEVc4GVrebSQ14KQnvJEOZhNhXjWAtRx7oQxXtY+/pFuaEgrS+f5LWoeNoTYjh085+Lo2MYG53Gx0aGVOC36G2X8L5SIEopfx3fbub++k8coEZ/kbekXewa5qH8qpt1AbGkvbDOdLHdeOQ7SPnwlaqBt9BcW8y2V4Zn59PZ2RCNGplJyXTtjNYmsjdscV8UiJwzdihnGht4vaPPif20oU8UmghQV578QOjojlybAYDooVLBBk5fis6XTyXztkInm/xS2VIVSrqy8s53/EjcmmA+YqbaN5wApXJgBhSMK8jji57K1uuiKTdbaBXnYxGaiXWZyNmcBTxsh467CfoYwnDS9ei8UzHE9GDNZxESprIF+JxXtboeddtInPltTiWLkHY9BYBBVQVLCa2dy2S2Dvxtx9imLOJgcQHkdY2Mq1oEfLsuZQFB5FuHsBheInoKCmywAZq9ApURhFTDMQF21F7Ehj30SlcSgkVVyRyiEOIZz9G9LuxdthRzvyJhMPLkWYMQWJRsHlaFAaDAZxdhBEo8rrorSxFd+I0bw7Zxg99ctwmI6GcfsKsY+3UsyAIDD7+PUm6MDMXPA76XmIO30nC5X9l5LAbyPD6OHHgRUzpt2DyWrB9W07ruEgEh4DLMJmm0HhG924hMOQaFMCQgveg/CfOHFvBginDUIe10NEBcXEAiCERny6FOks+8ZGxmP7dvrE5AsjkSubOnUs43I9UqkLmFqHPhl/U4/ZDUShARqSWFGxIBBcBtZZgyELJD9XcoxTImBbDBwdq6ZWGyLAoaRfSyMZKa5+bJysNXOXczRPZTQRHPYNKLv39s+PiLgf4QzaRa8CLSqNAKpf8K6Po/xD+tCQPkBBrIa/eykDXcWJrzhLSx7FBNBK230VUegQtQ1Lp1zyEoeE4CQ3fIXrGEq2dirtwMU+0FHNpgg29TIXa3UFo4FFSOntoGmfibLsTJY24VVUEBn1JIJSGKPbhCChRXSgiwmwjZBxMX+5QEu2dlJ45iTbXwPuWekZWnMHY+BuHCj5kSsalCEXvIyCSfuJevHG3U5m2kqab5zApYj/Sti00M45+WxUZ1rf4efY6ply6h+FSCcP7mkB/0YsPBkI0vvgUgbm38cB7z6BSaJHGpTIsvhoh7xIqt1ZxrmYqRy7LpaD9J8bsSeQ79Ozxf8OUxx/He3YDqYYAVWO/xsSHhCp3cNtoEA1XcpUwi9s++4q6I2tJWHoviAIDtmhCXjluXwBB7sU++TMMtZ001/0Mcjl0d4PZTGxCAhEGPVW1scRrJHR9eA76fKRNFxidGWJR/37C5izW1cShR2TY1Az4eBciYWwoIKoQPOfQu9z0JxaiVH5O6ciXeXCLCqMmgreGFZHHewyqup6rKt18pXyP1M4ypMFO9sRMJDqUhlQjsmfSPq6v2cteiYzckYVQPwWxbxT5+dHgL6E9LEdbt4Ux7dsQDEn404YQkNhpRsaAvY/HZqehKW1DaFdw4nwXw/wSQmEpgWCYjoCOX2S3E2XTkdPpIz1dz5eN7yAGJuPZPgchKFIwXES360e6Yp1UyQsQu7XUtf3Aov51jC5S0DP0FnTvr0e9xM/YSdfxmywNSUcdysMqbMmncXmqCCq+o6fxCAnmW9GsWUZooAnLsQG+zTyBsk+DtDKEpHQd6KJh1nMEu8OEwiJbvv4Ydp6BPbvguhWEPUHanz1OSAJ3GyN5/bJSGoRcOj0eCiI9NLUaeP6p15D1d2OJ9eD4ZCNJa15HKC+jdZOLykCQT9OVrL91HGGbFUnxBxxTHiJgW0hfvZ/8mqNIPn+Ybs19lNp8PLlqEeUdao73xDOqzkrpc6OQ9dVDyefIqn+G/MV/2LPF+2u595qnyRosIdq6k8aIhVjSYtHolf/KKPo/hD81yW9q7mKkzU1cyUaSbTvIU85mVspCjpmykdQ+jTPiVcIqBQ8WN9Akm4q/LUiq6jKezYFSy1hy/HfzzcN7+WsAPD0voNVYeNg4CSF1BtpFq5FTy2/lUYTCVm5N+hBF9nDUUhgn1IGzgRpVNgNdRgoOzUbovJ3WvknEu5JwjX6AN5vWMW341TBjNWjewnjXDsYISk7+VkWBpoHd/qGMiy3hQNlZcuwejqVdyfJGF77yYrpOO9HLPqZy4hW0GycikQoUB1388Ph4DKmj+WLVMmSybroVUVTpLAR+fIPppT9Q0LEHSd4lcFJACMDw2ES+/XYtUkmQe5Q/Mt/zHs35N9KRsQxx3U6Mp7+DMdN4+8HnefylB5nx9Y+8c88zaAeCRERIcSRuYIb9JIYT39OtmMGy05XsG18A0dG/20AQBL4bOQ+AQJIP2w+VmMem09x8HoujD8XsGzE2nUcS8bf5tEuWItT9TORALT5XJNXHzdgulaA15TOy8ka+qLwGlUTC4qw8pqpbKHXfxOvxYVy2swjN+1EIQQ7Nv4sJSiniN5MpFrzEz/ZxbzCBvOKfmVJ4C23q0WhFCU/4lLwk1bDFH+A9SS9IpAhXfk7Qr0TRuB1Ldwm/Zt3IJZYQ7mEJVKw+xXFrPRF3fkbwtcXYdI20h4fgLT6JOm44LnUMVc4L+PEhkdQhy0lH6wgzZHEBzoVbuO5AB263QGS9i7LhNzCls5WIxOGkxEXSce8dtHfHcbnmXrL6xrKk7hGCoRgqTpZitEK/4U6e1WTT36nng59KWW//HKe0ndXK1cgOOvEKMajpRrDkX7zv+XMQpRpIHQ3XDb748AWCvX8L4Sgl1NvUHN8WzfgbRTxeK+K5Lxm7/3sCE3eBW4Uot+CNMBMEalKzyH1OS0JQZKb8Yl/Cr597CntXB/d8vI7Pn6ll+nVppO9Yitjax2PyW6m48iW6+n30nNmINy9I1aSl9JR2YexvpkCEUMc5ymNmY1LJqLW7mBYfjdvhRxRFfnnnY6bKfiJzRTzol/xvYox/4Z/hT03ysSoZjYlGPD1/IblvD/4OATEplaShhwkNnoZn3VaGDh9HZ5SW8MRkMs/1M6b5Ok6vqmZ0UORD6RACfgk3znyTMLDr4PO8/tUeiCri+YdfYHiPhzb/URq9Ho4lP06GuBNCcorUE7GpTERHHWRNkZoHJSNp+bUca38VsVNmkxWfy4b8h6k/34ExSotCpSY2OR2FQkFDQyNSsqjpGOCoKxFpmpn1uiDJSjlpTQPouQAkgEmLXi2nXymBcBjN6EwCZwU2PTCGUPIwgk1nMdZLEUt/YKi0hQ5ZLnF5MxEF8F1fR9yv3yJ3yDHpX0ba5aMqrZ+hTRuwJl1Gdk0Nn2YFubxEQfwTD7DTI/LGEw9zzXPf0a82k35nFku/P8OiKan0JVqQ3LqWIYfPI/hCf7j/AwMDxMbG/uGa3xeER0QkChXbj5QR2/YDucO6SUu75eI/mM1gXAF1u1HueIpQeAGqY1XMe2Q6W84s4dtqHy/Mz+ea3cMR7UMQzbOI6NyPSx1LSB3Nr5O34/VKMLV1EXMNFMh1xK7voEHby51D2+g/+xaW5D7ODLuFLaX1XJtVyMbEVGDN7zJq1UDOdKIUAjck/5v81ok+1txyB6/s3o9ep+PI/rPUGOU8u/wGCmdMJhQWEaQQtioItMsovPXilK5T+36kQ72f6NwbyIsqwK2GhzfcjKJlD/qoOL7tmUrhWBmasgF2HXgfZfsONri+J/OyG7AlTmZe6z42K5IZp1aDW49W6mTMmU5iLSp6Qv34zX3c1f8QL0yXoE0aSg4gjdKhVKuIjTKikIg0d/YBoEjUkfjypItytdqR7GvFbIig5UIzivbTCAEvqhFxEGHh62ONtI1eyLza52gO55OhW4pSLuHbpg/xiR7MsQm4HQMIunhWvBSDXCmlt+5yzK5aBG0cjb2z6HUPkJRUSE+fk7hADfH9VTT7xrKrfzGnIxUMH3DzwrYmLhmXyNRwmAz3Jo5lzsQXpUd33bv8wihctR1ckxn3T4vC/r/wr/DO/xz8qUl+7t8OJd+qreJY4V7KFGe4vq2EqsZ4lG45bQPl5EU/j9LQiMLqYPaYfJa9WUVYUPDz1WravW8SFsK0JZ6goqiKl+mi95H3+Mu6d7h/zb1YBhR8svxB6mPPcfhsD8ssg1k4ZAhpkUY00WV0kMiaK6aQmXgVgbWfYzu0n+ybbkcggPqNPJqGfEpIkk9zczNwsR/8E8UNnPL5eCAhEqckirrIEJ+19TNWr6ag6guMyQKJmnvB4UfMf4sMgwIx6Mc1S4b8QyPhkIjr2CfoxREIfiUbu0ailPeiHDqP2J5avH4VykMjOLF0MW37PsI8PZnsqj3oK1qpPZcHs2V801qLJZxF7tEXqG8M8vymch4bMpaAYx2PPv0A38ru4EZFC5sPVjNjthTvFjMLe70c7bBzKL6LyTkX77vBYMD6/nzcdUGky/5K0/LLcDz6AQOik6U3LUDsq8Zn7gWC9PUUo1FkozFFgkQGWXMhaTyXrF8BS+8BlY45d67h3ZIjXDY6A/bK8fpFogYUGNLmkD51GBLtXcSUNLKhx8UlBi2dnfUYokV235TJnQmjUXimoC7fiMznYFKkgfZJhQiy/6BbtsoAeQv/cCl2SQGS28C6YRXkLcLqluKr2IpySzF1v63l1JUPcqFHwhK9mk1aH2U7SsjOTCE2YSxdx88TFTpN47bX0GuMyC41QChA49kkyJKxxTkJm9HKONcAobg0HP0uGtUqTgdhyYqbyDjXjNlRQ0Xxl7w9aAZXZQ1GfvI4hu/uJGCM5Ja3NhJ2F3GsR0uM1o9Rqbi4rvY8QexVb+E6up7HqtN5d3oA9r0IN23HkqiH6wfRt62OsUfaiFZeQAAo+QYyLyH76EEkCXr6e3cxKCEKpfTivfKKbsKEueKxpwEIh0XkSim/lbRx5+lZLDHN57pIJYXbf8V7+n2cn00lxZdOriwSmdJGb8BHUrWbPNw81uHiVF0vKonATck6TDXfMMZXhmbCMFp6KxmQ5ZH4zedYk+P+uwn7TM8ApX0ufn7w9v8hvvgX/jn+tCT/96e+WiFj+bPT+MEYyd273yYotSA0r8Qoj2TJkT1UL70LuSiQ6tnMjNu2E4XAmmc+obPYjkCYgNxHwNNPQDoHkSJURzbw0PMf4+ws5dGXX+XO7Y/x8gPL+EIdxu9QElVezhW5Onpc5xj7wxpqTBN53TuRWdlZzIu6nabnj5I6YSeip5e09o+QT/wGgJ7vygk5/cxr9bKk1UVFRAQhpcjxk3cxKf4e7uvvIS06hEqpxFewlMPnsul+bS+6y4YgIuObWw4RodTSWN6IGic6hQwx0EK2GZILVqHqcBLwGhGlCWiGWTj60v3csiiFmIb38JWu53T8QxhcBxissCGPD+B0afDaA5SeacbuCxJuqeTJDz/ixQdXkiqeJD1GRqpkFuqOdiIvSWfhtiC7GmzUdtsZlalFLb04bQm3DUnAgxgIE/f882SOSkei1SKXy5k7dy5SqRSJAAGfD1EUUajUfxhjCMCjOf8v694OThsh6VnC0ssRRQGpy45PrkKqlCOEAqyThCDgAW00CAL/kK8R/hQxEEIEQoBMcbEVxn8LA54gDF4G5kx2NthIM89gWISbNrWFHl+QH072kDkklqdNvxFmCDuaI0gdGc+0BfdybusmrMNGEB9r5mTPYazDLYwuGUNkUzsGlQxBmcng6HfpdZ6DSfcSkiUwWNDx29le5KIGg7ODOwLrmGZcgckSS6RTh9DyE+Eps0j46DnQChjvj+WLFpgfYyZLp4EpT6BQfEDU3Lvwh0V+1Kmw/voSwbDI/VXNPJQay8sDL3G/7GoiL1+LNKUARD/oEoj3bUGtS2fopItDTtzFv3Hqm3vIv+9LxidPYu1Tx0EXZE+rmwcWDmLOlERG7K7l3n4pR6acJ2fXQVQ+H4LMg9v/I56krUQlGhm68SZ8Q7M5H32Eu1UhpvtHkuFxguotgvefQ1e2nQjHWQx9YKr9Ese2X+gDom+4AYlKS7DGiiwvHkH6jw/oFR8d4+HB3Yxo3c8mX/9/6Pn/y8v/78efluT/bsAFBSYW/LiXBTfv4XRikFRbF5dG3s66rucYPVeJQjGaQFjk0UffRpEcxZtP3IM2cBJPcApqySEUo2VU9Xcj0oh8ai5DW35l2I4NHMt7m9fv/5B3X72WZL+RLyc/j9k1k+6YBbT9XEe5JIXMgB9XIIgY4SduUA5ddXa8Rj+p0hDWWbcRjIxC3ukCnRpFog5BIjCEXxloGYt8r5XNE3twiN3sEfcjIEE0qRCBvabb6PW2Y7fLKDSHCEkk+Px+nnt/DwPhZqIdBxBqFYSlsdyY3Ir82CqORzzLMK0X7SUxaPQRPFGyC9F4B4giX3Z+xQ2WOs7fvBppz37SkuLoShJo2f8Ml/gCVE1eQas8jkPxWvwGJfGaZZgEgW/tDmo9cfTEexgzN5OtY0Qu+7CCX+uPcK48mn63H67bxN9nbKkypv5un/b29t9/bnvyeZrMcoKmCHQ5CQxLz4GYQf9g03DYT2PTJ6SnrYK+RsJ2K6UNkQhIsbnauX1/N0lxJvY8OBW+vxqqfoOVv0HiCABCwRCnd1Tj1twKQhcT4g7Q9n091qFG8sYlY4rV/TfXVWxsLMQWApBh8OEPJ+BInkJdShxToj8nc/pBZvIM8vYIOsu/Z+CGN7C6HERr1Azt/5Ga6AwiW9cQkZRDQG6ht7CMQMQ8JD1N2HY9TUKijUz5UaydUTQmP4BcIQNPgHe2H6QpEM3B6RvZV38UaXIvsnvuhNX3AlA7fT7y9EnIfPHc0dXJGy2dtE0bAXIVzVYb4bDIp4freHphIWx7AAZfxVR3HyGvgdjUZM4N7yU7949DSlKeWI3txE98X1bJ1fm5qDdfwxSdyBf1JzG2J+Hq84BKTo88gG5PI9JpSWx6aApf3/kr3hgHp+/PxVx7FWr7GWJ1qUQlGgE42ZPEp5rdXNdzC3LZIBZ7bkHfXcXGqgm4vAbCxrFM7WvEXlvHkFveIDjsci6U9lB+3sbgURrEYBhE6KqpQKU3ImjMNGzfStyU6dxo0VNc7WB+dxFbXroDyYjl/9SO/zrE/e/Hn5bkf4ffCcZBkDQKl2QBvph6RKeX2NhaSJ7FpTkKajt/IEpxAd0db7NOL+Fh7wl02Z+z1zgcRfrNeCseY1fcFlSyWLJ8TgBGVL3ImPxZ/KR3sPibz7h64SxyqKZXo6ZOEk1STjX1e0cRsXwKqb1O7P7dSCcOpt2fTa87Gm1yAWHBTXxCJAD6KUlINHIU8amo0sPkLR+K/uxZnmioROjo5sAV20kr3US8zomp28eNn1+HIJfw/Do3OpmUGI+D8V4HfRnJtB2Mp8sRomZBDyF5NMlHcrjDHYtBd54T2/dzznIZ0sG/0hf0MvXsLcxJzUIlDzFC2EPz2RwadE6SUmwMmAcTV/MhEROuJCN5BMpd+1nv9dAGmOUSHFI9ymCY1lNWrIoQZnMxYKSlJZpJRhu/SP+bkyHp2VtK+4IqPI5TNMZcTWnvWYZt/QBW7oYzRTjOnKX13ffIPVNE6ck1qBp7aVWsJzFhKRJTKkNTwFfXzzvnPdxxiYV7+Br272fr0KfpH/o8l+w4QNTNwxFCfhBkCBIBAQERAWVuHNKew8TtqsG0KP9/eGlNjDVDrJl2pxJXUKDOvZJEySmItODtc/HLnSOYff8qrlv5ML2yAOV9pyjkFG7zGBKyniXaCSWigzm2tznTPQRHVzsS4zncERZarnyFMfGx1Dba0dVs4PIEkc9bNLR5LLg8w0n0bUK/bQdMmgXx8SRdN52QV2C/u4/p/Wf55MLj1IWvIWPGxSHsEonAbVMyeVEuJfZ1O+H30gmFQqg1Kl498RSXxV76D/pVHi4naDUwJPg+4qB3YNbzCFIZN4+9g2O/lDF4ZgTD6x8kcd53lMrktNocjFarcIY1DD04EW3HYWpCZ5l19fMopHBu2ylUMQGSDUdYampD6koCpKyPfBW3voUMaSSDFHBCkLCnPxHTgIsop5SmARWSqCQ8vW4EpRzF0GQA5OuX0uWLYKPvejonj2JmSQlxugRytGlcMH9MpKuPXODFF18kGAzy9NNP/67bP5vh/C/P/p/jz0/yACo9Pe0DdCdcx63OL5g/5SVynAroP4b7+6t47KNitAoJTze8T9hrxKXuw58xhu70BL5vLOZXfRLzZXqqPErafZtAVJCgmo+o07B+9eVc+shWPvrgEJab7kBtqyHK1IVR3o339ABiUyc9W/vwXZuHb0CPNELETDdCWzmnXYP5ddsn3Hbbbb+LWtQwFGOeFoUnxNlNZ0k2wqlBN3N1mwe1aQ414k/ER1QRDAXo7e3D8/ln3PDll1iNUXxviWC5xULcsuvIDgSwnX6cHmUCiWELiySHeUrnQnCPoq/JTm8XLNR/hczrQocb1yAfUp8aeb+FkfK/0li7gJGXPkxo9n2EDzyBxHqSxP4ERK+ftQOgshjo1Emxfl/FbIMMlSDgzc/l7elGwroIVL5udsn+GP6w26vwfzmVKJcEVrcBoElJxNFYDIg43GqONJXADccuvqC5GZspjb5n1+LxhVlzeBjz5P2MDY0ELrZyKOtoo6F6JwnGKfQ1Hqc9ohtjlA5bm4/UTR/Qs383vrIiEgzf0x+4iwTFPBKfPgS1u+Dg87j3rkNQKul1zOdCQwVThkz8g8ydHxQTaO0jVnEdbbMf/7c/iGEGOmtR6xOIH5VA8oVi5J4upBFvoBw2mTqZmbSzIY6YaqlXqRBQYZUaiQ710667hiNxKQhhkUuOFqGKU5JtNWIprcWeOJLz2nF017aQWtzA7q1eBsUbuH/cBSbHDUOikaMaEHDoZqBvbYGaaoiPpzhjO7VHRQY2tfH51FyUI5dyymIkA7jQ0k7CeRemS7No7rID0HDBSkedjStum85wwzjUUs0/bBupNYgqpCRf4WXUVwX4JVJKVpQAkD0uSHn5oyju2Y3qghNbj4e9b5xj0ouTybgpCB0G1MOW8f7pFTR+8zb3FsYwWF5DWWUucbVFeMc8RP/IIL7zfta1ukiLC3DfumsJRt1Ld/anVBy9BWl6OnW7tmKOz0Psa0T2yuPU7J/C2ZUP82B3B7WhDtKlAfyKfhYd/oohjz3Blp4QwUAA8+ljSC/Uw+SJpCt6sMn0BEJhZIEQweZefvjhhz+E5/7l2f/H+POTfGQG4RW/UnxsHtEMsCxhA4JPR87kKPrOZ9BZPRaXr5jP75xOpLuC9oCJkmFPYRRbuWzTyzw74QdapBEknfuAJHk8osqD2zMVh2kob9QmkqJ1sO2u25j81ne8+N7r/OWGy4iK1GHpnIh0hQV9vYTSLC/OljDjrxxO6KUk/FIjivvPYvtlM93d3b+LKoZFive1IZEK3PF+IgvfugNBuJPymjYeaznKTcfupXPEXWi1tUgkQfp++YX2197AFa5j95wottgEttm6WGS+QP+595lZEqC7IwrXqUreXLId0QYNg504jkfj8aqwhW6hTrUArSKVjlYJMQol0I/UHUSUxOH2hXC+s4hoeQMULIKQFL3Kw7tP3srqJ78gTiXBOb0e69lMOpUOFlp2kzn5IZrtCkwRkSC9mBZZ3+nGHwjh6HiCiEiBSLsfwdMHgoAm08zU9DNIJEpmAHcXPsDRbz4jbexk4lVF6MpPQsZfEUX4610z2fDjt1S0KQgMtHPybB3iuHQmqn0cideijp1O56ZPiSsrx5QyG0NxKaHEZPbd9gQR9qsZ/ZMf0RNi67q1zLKUoRRh7uWvkaqT8dK+DmSiiUBuCLniYoFOx0ef0VabToxCRiCURW9bI3JJ+GLIRgjQ8vUt7KtLpu58Lnd+MJ3i4mJyT92DfWcLMclP4VKmEVdTxknHJiwKNfbkB9nRV0dg0Fx0nW4UNg8uu4C3ZgpSlKhulRKZk8WgHccIf3QO1fyVIIjEKn1446+iTW0j2ash7Osiurec0wVmFvgMPN5oZbnnZcSsVrZVC9wUNiPKqnD1LOWrhk8JBlOJ0h9inv0JZPqLLQTSBseSNjgWxd0KpmbN+sOWUSguHtpmLRkCzm5YV8NgcxJ2+cUHQefew9Q5VUQ2LaFjx2myl2bQYmskY2ok5Sea+Nm1kSFpBVybeT3+Mz685UbOmAcTK5dTHTmamEl17Hu/lCh9Bgk5ERycNwyqduLe5Od4zufIPfdisCiJMMmQ+j1kpukR0wtp9Pg50tzJM/urCeabuXrSS3x6WsWtyhAxd6xCcFmR+QOEBBm/hL7hybZMOvfsJU1RS+6ExdTUfISc+aS0NkByBKgiLirssqFW/WMe/r+8+4v485O8ZwBJwE2E9gqCjh+Ql97GzA4liu0nqRy+k6ByKQ7tEc4Uvsq8vWMwaCJo72whtfOvhIVYtkj7iZ/wEBcObGBDYA7P8TF601FK1DOYnP4u6Q2FbNOM4onVV7L60520L7mHkV+twzx1HwjQ15pFx75tdABjF16FXZGNS5NHgkzG5ZdfziuvvEJLSwtJSUkIEoG8cZHooiPwuvyotBdJcqSlE1X5WTRBDyMODWb9qDKkhBmnT+Wr+z7E9ca17DWPwBcW0Qa99G/uxuw6SB93IbeMRdD9SjBuJNLkQvSin4xlXzFcfivfnjlImaKHq80pDJk9HNnfqg/D4WNUH26gb9PrxGujKA73UizCIxIJX8+2sXidn8zhcQxsriE2TsazOW8zLzKVAe0QIhVaUix/XBYlDReHn8wfuZbW6K9g+a1QvpEgEn5jHPN/zAN9Isx9mabyWhAVNJw8TPzIEZiLPmP8nCRQqzhaZmXMuFm0Dshpr+0hSaKjb+9JmsdfzVWpBlSvJEAohIQQcxuv4nzMTFpuTSGufQ6dMZ/iv6WQxh4vMvsadquuY0TqPKR7D5ER5QDjh8hdd3FqexUedRv97b8hesfT6/aQc+kT7E+6Cb/MS8udAty8C8vQmbwUdGJWFFKUDrnnSmk8d5ahUcl0NTZRljeMvpCCxOV/ISV8BHm/EqNXxaC06dibvydL0cU5YTkdGZl4Uz2ca/mOFCGHxBYDx/PnsAiRdeUn8UfJCUXlUNF1gN54M5G1FjxiNukRp+n1r2ea6OTne46xo6EeiSDSKfhZ8FIbYamAftBm3Bo5AURUbgfrEsq5/7pniE3RkzzkYsjj75ld/x5/SHuNiIZbD/AlF7852Y4coXndZgKLliMVswFoKu2CYCmOUBpedyqXRowh4vbX8c5x85bpLYqcbjx2G7WGNFQWJcWHNuKzZ9H2bTWGO/P4qsbNlPhJtC15F7HlKcLKJrSTLuXIgS/RReiI376VRCTkfXAn2dVhlnk3E65vpiR6DZKhx6iWvcXZD75n9qChLDhZiTZ8kKTcJ5llyOZ+RRRbhr7Iw6WnCA6ajBeB9IqHqRbeIWfGmIs6vpbG+nwpPH1xKE4wGMThcLBixYr/SST0nxt/epIfkMaBPo7XPAUknmhnXuIgNqaaWFZxkrjWF2mKehEENdm9P3Jo9JX0R6xm7MB3CI0qrJ0Z9LU20Wyrxpm/hKcNTkTvUiQaE3LrToTAJNqjH6K+owiPoh6XX+SjVTcy550liM3dCEip0SXRMv1hJuYYePn5ZzDpljIhOZ/EPU+jmP0c119/PfHx8b/LqzYrUEYInN1Ty9Dp6Wh0KuTntrKvdTjX3Gfls/OHGSLIEeUaPvHcxYvrAlSbc4ma9jbGw/cxrPMo4Yhb6DUupiVChkTahGv8R/irrsPu70K09XDToRUsNNdxc0QLYxxjUX72KMGsT6mzdZEzdiK/Fq8loE8iuslFRMc1jCk4zYOt67i74Gc8DZ0IvI0GGR6bnwS9ly8CwylWqShJXch0yT8uicn5JqQCyGQKUlNvo6LkK0TBS2LGPFTNErqlWjaLo1h5bh3qAR/d2XeTl50DSfGI+Ytw9PagV8PB840MClsJiikMhMIsnpdDSUUAe0cz7fsdZIX89JSrMaSEkGtFTNQirfbQWxhimFeB1d6F3z3AzBOn+W3qG3ja7CREa9jbIHKJfiLqJB0mm4NWKRzTtHLPnGlEe+3I9O/Q4j5POCQgPtqMIFciESQ8fel7VDfbOF3dxrHtvxL0+9i18A3EZCczR6XSbw+wxdZGT9S96B1O4q09tMQkkVl3HI0xjNfRjj0hnaBMTX1vHG+kX4dQtoPuiiwah29mg2o87xaMwupYQ49gZ2rHItS+7XS7C/HXHmKkpI1Xf30NnTSZ79fMh4EBNLajVG0ejX7SZCxTNTTGS9DbwxgGnFz7wQXuePB2xGCYqEQ/d137FlfcNukfs5n+CXz+HtY/dBV4tfQ4wqRFnSQ4JokZ0TPRHzuHeF7GmdgM4mVWxCovqvShBLqr8ZsCHE3OIVqTj98hsGiakeOe1zCOupz+onm01fWh1t3F+JY3OFLj4mvPGoYWRqL1hwhqwkyePJnkmmokTjuBBjXScemotn+IL6CFaHCkLCCVERxf/zn41yEmpuAPPcMMQzd35rkp7FWR0dJLfW0qRr2UxFQJJ5O/RHT1EdtXj8GUDhkz8caO5Pzp0xQWFnL+/HmOHPnXEPW/409P8vpAEIBlngs0tLUjy1tGqlyFRARzRz+3v38/MpkX/Zm3iNGaMHh/BGMKYWOYLOU+jkwbywXvdsZ2t1A/IEGdGEdcxU68tfOwC1osU8Jc3pZCykOTefj6J7h88gzuW/kOG268mX6Nnd6ELKYkqBiSJqXpjJQuZzs5Jx8lJBGRzn6OlJSUP8ibkRpE8AS4s9HO1RfMxPSeZULRm5CxiqKW6Vx/7c34XXaQhQnIB7D52/j06hjcXVZGWtJRWvfh8n/FoaknUIcdRHU9gMf5JQ32MBv6B/Ns0xpOKk6zJ/pDzqaNI/v+j/B53BS//hRHB5zUGrrx3D4Nta2TQYFjMNlPa1DKL/5M+nZ3EA5PZYDfaP6qhJwJxzltnEJS0QtIw1OZoq8FIklOTsbv96NQXPwmEqlT/EFHmeaixySEneRFFDEjKRJJoI7R2Q9TYxyJUwT0F5tWfVvegM3eQUnRo6ziEryeXiIyCwiHRXSmi2maYZ0BT8IeHDcdwfXAqyg8u6hQJaBZ/hiDK++mSPUDovQA487rKIuowhlW8fquMq6NS6c9W0e+t48oVQo2iYTd5zYweMZNvL/oU+RyI40OLVa3joSam0lPfxBBfjHcoVAoiI2N/T20UZIXw+7dZ/h2TyUzR6TRO+DjeJWdnp8+JzBoIvFJGsqS4jAOaFEHCgl1bSbxw1vRpmez74XLmZvXjPvkYZDC5AmlRGZeweK8dH7efwGtfxKMbcHQnYtKkkdMTzFKxwVWbHShTh7Ehw8Uonb3EI42M6CdxrG3buWGGCM7jpbSr8glS9PJ+cQYXvkyiuOvFTEwvpLP33+P576+i/fXtBM1duYfwhJ/1+3f/15dfYKsCUEGxc2jeiCaYaPn8/djdb1jMw5NCtMTJfQbRtDV5CTzr4vpP7WGcbmLkVjvp/y3xwnYg2ivzcMpfZzqYVLGznAg+eEEwZFhXu37kHRxOKODDna3JbBU52NR4XWMHJ2NrSWCCN85romOZ4Emg+5z2UiB+2KLWPWzD4czwDu5YwlFNRIwZBBhVXK4Op1LF04hNzkGsaeK2jYNR1R6eno9mAIhWi50ItduIui8maSxH5KYGU1GXx+uPi8RRHPzzTdz7Nixi2nY/5eHbf70JC/4GvD+eC/jhz7Dko/uI+DzcO/BvST7tiIg4lc8xfIZIWIlAYK+AUAgaEhE1nSUsAjmXX6ahqfxW4eDKI+O2QvG8PGWyYzXihTo7SR1r0IqraXs7K8MmZbKsmnP8OYPj0NQibVTR4LqAp6oOKzbjjNjUhwV2umcrBiG0HWSSf9E3mJtJRqVCqErRDCUxtcRqQQLHmBd7wwmNtfh93qoeTSZjYtuY3jdBHTiPTxq6uPuzs/QJd3PUOVWHOMex244TMML3zJkaR3S2ADVh5OQynpoDSbhapSRk7KZ47GvUfNcDql9PYQDbRRW7GC4ycuFisH4NSbCSb0MaOWoPCai6gtRWc5TYWihQi1hnujis5O/kmwqosqwFPrSKCpRMubAAvx+P1arFTZthIYGiDPDkZcheRJkX0pa2m0cOjSKzq6t+HzN0PQIK+KCWLwt2CSDWZKeDsD5394mlHEl2shEztacJTb7Rry2IBlTLlaSUv4LSoxkRepo831G78nNTBx9JfLwOJY3JfKMIYu+4VuJsoRQqycgXJVLUZeLA6PiWSY04DkRzwyJhtf1h9B117F7yHvkxkC0001jw0a0AQUa4yx0Sj0uQrjd9b/b6d8XsAEoZkxh+rg5jFywkoRkDb922dBIw0h1RlTtlYTHTkFRspp+/Zco+vch7d9J2txITua/TkK5G0dkHR/bn2dH9CpEUUGNN8DujkYm9Qn4XClcWuqi3qJB6q2hI3MfD74ZS8gUpGXIauKO3IookfPtlcUI3i7ifL3saghzoykKhdtK066ZJJgL0d2+l4V/SaNy2/NoX16KoiHMuG/WsdLq4LJL51FsdVN3bMc/hHBiY2NRqeIZt/QQANl9FZw+tYjCIZ8i18ThEZSc149Go40iHPJjGVTI0NdO8k6aCb2lgoy0lyjS/ES/TAZMJUWWiC+gQVfuIjI3gRPJ6zD297KvvomBXg1ZTR6+TB5gcKCZEQ17UWv8SDRV/MW5jFNv1xJnvAKN5Ci4XJh83UTKwsj1MvbKVuJssDJz9gQm5wwC6cXwo9+YTU1DBwpFEGO4l86OPcQXxKMRh2MXwghhCAXDmM1mjm8pRxQhfXD8v6Vh/19+KPunJ3mXKpFttZcT31ZF7AIzwUovj4STuBBvZ3iom6Dg55aHv4JPZyDLm0s4IgZZwAnNxxmwpGHsqaO7bRqKuH58F9Iwv38DTTEf8PYEA18F9hPtyMbnDlOnjqNrfxXRyQaUGg0jX13Pszdfyzz9WXrqGqkLZVM4MECcbTd18ikkTB/zD7KGAmFqX49k8WMjmNxzms7vDiK7bQy18SsR160npmoTYV+YzulPktgTyQ1rHiFCqWHrgAtrZC6lUUaapuwluqcMf9w5CIZp2ZrD1HFDMMZ/xqLwGWYXLMI40sBlTdlIQwIxkQ6Gqk7T6p/OhcY01rdrmDS+g1ixDklIxDT6cUSPC++RdxDDYfZXTCY9eIqW7a/juSqD1pgpOCzDGLN/HzLPz+A6ByEZiCL0dMPxo3DlQkCAvx3cOV2ViPjw+ZrJzX2FiW2pOESIHJrL9IiI3+9HWvVRLDYNkfWPc5MgQbpiMp2NfTSWdZKaHwMJI6C3krVWHw+3L+fL3ceR5HsZG2PGPjuRqKCEYFBLRmIGHDtC56lDXDf8JD+mmLBLpAyOVpFqiGOP+REu35lHzuGHSercSbXKRCA+kpjN9yDyBAPXPEVe9if01KX9g81E8aI/K42MJMaiYuiCXOp+XYsrYTijD9UyOno5NcuyqBLDLOsfoK/ySYLSMNXpN9A/aCFCkwu/aGDagSKU+KExl4G5n1ATt4ypcSKLg/uxd3RhtkUw/VQ9k3UeXk+YwYDnOE/e9gADwV7eblzI/TdcTaxWhdKrwFRVj7DlHa567D4m9BTB8GuoPBei7YVbyZh7I1llU0hzZWGaMZJuXyLPykdTooDiZ25k0NiRODxy4oxqoh95nq80x1D8/bAZkAZEvtkQQZ9nKF/sWManVxyk3VfIaM0GHG05hMMhesqKqdas4zn9D/Tos8Ehkpjh5rCtjgHfAPlp8RTZ5LhNqeCA/IGzHNwW4KH4Ts4lwPHiVNRZ7ZikfgKtIbYrislsTsaeZEQmtzFem445TkHbgJ2b5l/Cpv2HeCRUiEsuZ/DJL/jJbSc17hQ5Q/KI/20RQsiPJPJ6ludqEOuT2WupQSIXkCUsoNcRRbCyh87mAUbMyqJgaiodtX3Ilf9Gbb8XVv5f6tH/6Unep4gldlAMeXKR5jO1yINe6hqUSHKSOWhXIXUIbPxuL/O1GnrV/cRJLCDRgaBFo45kStc6Et0yVIP06KKKsI5YRY7bi7MnhpJD3YyTbUCHgMprZWj7BaKWzSPWfw33fvExb/38AYNU2aQPKyTq5AeIhY8SunCSKImXmORV/yCrRCaQPSoWU0wEYxdmkJA1AmOsjHN7d6GVVmOcHUL4wsse9RhUoV30es9x+MoYMKWTVLeWsUUvEIx6GKnMTOH5/Yi5NZwfKueDgURGjX+HmK5KsktEOgt0pOovkNnQT4LKSRhI7CgnJl7Fp2YV33msvKgLI8SOAZkSQadE8/Qz2L5Yj0Yq4bYZN7Bu3X1kbAsiiy4nd8znRCkuYF+yj9DRl0FyEAQB75TFKNJNiKJA2965nLKbGCVpYuPGLTTqF9PltrBuyqV8eN0/pu/5fAM4swuJbQ3TwysESMJvdyFVCaglQfbuy0AipiF1/pXBgsjS8H6mjJtEim0K7TExNE/LIuwNEnYHKdmylcfPS3lOr0PdkcTlWVeiiNEialo471YR6q7kmyWPYfsijUyJlPJQM6OMgzElziY80I+jJQ+nJAbPgBe/L4Diby2emy+U4LEPcNWZKl599hIOEoWk7DxXaatxN+/hnCqRyfrxeEpP0OOTogr2ItFJcUyaynFxMSIylo2F8u+qqIpZzWhXJRMDNmy2O+hSn0ctC1AWCtFvCGMdMZUHLB7OVLZz4ucLOBo9SHETL+tn9LKbIWcyM31BLpzrId/Why1nCssaniO97QK9cjmm/heRB/uR9FViDH+GpMEF259AIijozleiilLx5Lrl9O7oZ5qugPs/v5uytx5Dcv80mra9gjDsRgBiLBainZeji01lScjCa+u2csu0yZyuD+MxFzAtWIup+T4QRe6fP5KdnQ68YaiL09MRaOPEoV04TmzkliQ3nUvWs/7relZ2vERSMA7HoCepVVeTp6pjvlXKWZmc7Zaf0RsbGGieR8exDtIiGzDnRFLVFcGp+ljQ+TkzZR7mKhdDHT0Mik3kuDIOvSilo6yY+KAfuRBmpvQsXvcMZCMm0CO9FJlMQqRWR3DAS0guRaGWIYoi1sWLUD+3mJ6eHE7b1MRE5/5f79H/6UneqBrgu/AnHO0+yBr5Gxg1KTgtbnb29XCi1k2sTMmnX73HsMevoadeiSu6m6NDHsSsvoL4gZcYKbkEtf041RYFw2xmELMYV3aItsovCKROINwbgzNvKbHNewkkONixczF15av55uZbueODB0m113G8+waG3HoWjSmSM4FYtMGXyVDe+Q+yymQy3vn5MT7d8W8eg629jQ7tIO5+bxXSgB2FXEqouB1d5LeEpB7uiLiOvbGTiYt28FZyBZ/WJTB3IIhFNgeZbCaarz7isulVTGlax9kThSzr9aDb4yL/6ck8oczkCfEMOkHK5lQ5swJtGEIxTKtYj2TKPf/Wu8XvgbKNmAJOrixo4XTmhwS2e/H39hDoEQmnjOfcAjXatr+QZY6Bv0Vre76qJGJiPMZ5GYQMClRGGSe27cXhENjVOwlBIkX67/Kzi7Zt5uA3nzH7jnvxaN/HoTqP9Iov6Dt5llj1THZ0DgCwIiMKoVqCXJKIzhKBLygw0OfHp9dRH2PEF/6OyvLrGPJtO4jQskCF3h5Gu2gkFw7FI5T0YGhbS3rfJ+QsWIva8TM5fVre0tRTrhlKysRkDEoDLXHPI0aFGCyVIYzLQAgGaavpJW3wRa82cdBgdCYz2+ZM5NdwEI0Q4Mevn+V87HhmiDPJ0Ley/rgazSUa3hvw4k2aTESynnlATPcBnAO57DAl48pyckXESQ76o5nSAsaedlQ9jXQkXkvYmIpeFLAHBbJFKQv0A7RaS1C4nXRFpzPnwn141Ut4YP05LMf60PlEskfIsYxv4reMT6gaLDK56hqiOhKJCifSVxqmi8uJGS6nXXoGd2Y+eb4znBLHMco8mcDEFnLbU8h/+iUuPPcNK1e/jX7wJazfdJHklSoVs29bd3FZBP1oJGFWddg41jeEpbtuR7AeQ1jxKySOxCxXk1BzijptDt6jBp5OmEzV6R5Ga0Zha/6A06cqsXV1cnPBc8yyHaB973GQ6ZitCKHX6zhsg/7z9yGTuJkXLSE5p4ydipOU1AziHksMrYU+NLkVRET8hcP6JkoVfu5JMjBRZUM2/m5kEoH6z7W4ItKQuCrJddiRtday7PJFeP1h9rYfwJwepL2tgvxBC0AUCXZ1IVQPUBF8jFv8bxNsrcU6fRjwjwVUf7/2X927/9OTvMTewq32amzByfSbaphQ9Qxqdy0/hl/ELzHzxtrpPHLtC5RXnMc77knaDAnQXolMVFKR/SgD1uWkHIzCbE2noquE1KY3iQhKEHSgMEVDSgEGdw9Dmz5gvWMeUXkNjJ30OSmOCXRERJK+M4I7RsnIOvkNiggJ4xRGamwaAnvfw1twC2J5O9op2QgyKSNGjGDLli0sWLCAvk4HxaVWhoxLpjDfSCgUonP3XxGSJnBuUxGK1gewS//Ks+Gv+U0yi2aZmlpHOpHydk5FOFko89KaMgf1LCO9QwtpavqUwLAYsrv9WB0DVPQm8aC2hAi9hEavk/JAPNkOyC4tZlBEHXRX/p51ES76AMHVw7GkKB7r/prV0jQMMZGsuOcF/lr5FTkcQh4WwaMhIvIqEHYDYFk1FHmcFlpPkjZyM9HWJCQpExg1YixPjcpFIvlb75E3B4O3D/Nlv4IgoDUZCQspGAxjUKvjceQVo09PJqG1B7VUIHC6jSnOm5DKeziVGcTZrmVDwmNoanbi7n+GxK7dWAfqQZxOSIhF35XC/OE6un1htJFSVGoF0cNX4vEswLtxA86uSirjljL7ykH8UBFkaXwuhzoH0JslqN1eytxe9m0+yuQEJWK3DkOUFnOsDknAS3NLAxKJAkEQiDWoyDwyku5EPb0TtHxaZWNiYStt51vxTZjHrvAzvHW4g8guB2lXLaT4+E5GuDazJXUhs22zsakVHB6tx5ygIfLZ0cTWfYk36RI2JD/ADUWHESUy9jaYaRp6Jx5rJZaAjTODduD6oZ+lUUW0LV2KWNuNa2EWPae2onSU0S3N5trzj/Hb/fk4nnuetgvn6U6wo+83Yx87D6nER1SolWulFSCMBpkM5g5mVH0MVU9k8XHpazz43REWTJiAOiGB5uZmvE4HFeePE4yK5bJRU/nwmzO8liqnM2MlrwZ6IGU8SKQQ8jO5dzf9JRUoh2zB4pvGTMtZQoFsnjRNxlL7Gz/5hrDYVsZR/yRUYRtyV4DOzZvQbNyE4dyT2DxT0Pqisdw3g1aXyLr3Ipgzfhjr42OJa9iGolVkec0OYhKSeUWRRDCsQB2fD1IJfn8f4tR+VHvqiBmUR+sbr6O/JhHp2rV0T56H1lVAa//nfOxZS2LzXpzm1/h87c/ENnoZ1LeJm9UfcFAyA7hI8v+MzP9v8O7/gxZ+fx6IXjtDexoxEs8nGgOfRA5DHnZj9NXjEwRyt75OOARzxUMM6tiAJBRgZP3bRIbPo3EkotcNQ3PNJzRa5mNOU6LXBFAnRVKRm8hO/TE+KNdSHUqhJ6yisieFs90386N0OkHRx91rDxGpT+KVV1+mvkfB2VoJVqccU2ACpRIIChIcKiX8k0ZLSo2C3c02ys63kxmnRSGT4M1azJt3P4zf34o7qgOzP0SUMpb9kkpeUsWQ6Ohlri+KO9wwvPIhFuwcgkUjJc79ATb1AsYEmrDISogMNNBl+IUKSQUDgoyE9kHc1NdE3vhchloOXfTDL/m31rs2SSYBB5iEfL7YP4xA52ROuWp5UqhljyGWWz13Yum/lVFcjXyg4/fXKRJ1hMMibswgSJGPHE+VKKWtE4rPl/H888/jdDohOpewOZ2DmhgsL3xMTPA4g3oiOM1VSEIpaLgBgKHRAfLMQWQpkUjGXEV4wr1cEH9lTKEfzamD2L/bRV3mXVgH30nc3JcIkY6gVKPWypiXYaGrycfpxN/o17cRVf0Oqh8vpWT5zfy28i1yF44i6vwn5Nj209Bnx+zqI/q7lzBu/ICA08VoswUuBHB0ezH/vcfNmniay17B2n0IXyiAT6EGJEQhMrl7HQvUAZJiJERNuZSRKKgRJJh8elTlH1N08Cs61UZsggmNPhaXXcnYkI7m9hZ2namn+VQUEjmoI0XKz+7hGauOE5a1BIZ+SVBQEFIaUWi1EHSh9YZp98YgiGFGZ9UQ3VlFt7+G7KOvUH22ikRfJ3tbT2OQ7CY33sJJywzWTZxKma0Aj2sOfUYBf/IocDqhrRWA29IsbB45DP/wW9iw6iW2XL+ccKeVkTNnM/HSy7hlu4tRmQWAhMtRkqZS8JcpC+Du0xcJHi4Ww81cQ4e8mASm0SQbSjgxBSG9i0lJFaRnp3BDloYb+n5mmP8c/bogj83WcOqbDXgFFX0592BcMpzs8cm0lhyiZOdarozyoRlw4nUGWK4bS7X+dqpjUshJquTD7ExCE5/Apx1D6+o9hJv7yMhYRfbtN6IbP46QTEHv8HY6h3ZS132GyTmRXJa8jCfjQ0SnX8Ohnp0USANozveTnfALK0Y9xUOpJlpbW3n11Vex2+3/8wnqPwH+9CQvZM6AlXuYOPl6aqV5fBc3j9ZgNAWtp1g3rRpXTDoDoSg+tX4DTX1ceuFasmMTGSk0kOs5gko+np4tTyA0eoiTaFGF/TQNXkWfKROJABFpE+mIn8WRgg8AAYM7QLJgRlCqkAjwyGtvM7G/CzFiEjKvEXP5R+SUvs83Xj2GWB1xE9L/afdDjU7JC1cWsHzh+N9T9eQqDTKZhDFKA8PDEiKMWiQr91KzS8vg/QeZ0FREsquBaPMpEKQQDKDr+BW3/wzHd8n5bO8i+p1OSsa+jjJsQogcTrl2Hk6Nh7KUd+jceyMKdwfCMwN8+dVXvPnmm9SXlfD2mYeRl35AiquV4IlT6N7diI8g2YZfmTD4F+aPLaM3cxmHlZdyRLOQUMhHY+OnAFSdaaP4TIDO9PsQhDiUUTp6Y1UcO3UKqVSKrK2IjuGv81O6wCHraQR/GDVqBFEgKKipPd3J4e+rLr6X8wK1rkpcCgU7tzlw7HiXFQNJxJf8hnmUicCtD9KvyaDdMhOK3if24RFE3qxmiOkESoUCuS9MQWs6WcEwNB6meNCPDPnlUbSuZrqWXEnjMRkR+sGce3wV0V4HyiQNuqNbkXa3E33OiSs2gZQcGcu3Lae6uJmOvEcw6PI578/miLUTV8DFrhsiSbgtD43Eh6M0QJ/bgCI6jmfSYxipUtI9Uk3IGMJocZBtOMtewzW0uGHlTjfTDvZRnF2Adv06RCfIZtyHzJLGGUkGl4z6Ep++FY2lgoxFDyKxKGjVjUKXWkfmmHWkKUtIPVdE7J77Eb9bTErFMEYOGsNNzS9zq+4wvRHFcNk8YqL2EyEqSGwfhSSQyC+l5TQ0vI+tehObz9RSlXIxc0kiCEQbVWROnYsQGYCwn3ueW8NdH3yJJMJA6pl3CATDKHRqJvxlNs1L5rCn1PpP9+DouEcJa2fygyUbaVMkkuY4xtcbGJQ+kwXybn5WX0nc1Bi+SWqgQ5HKKNk2mrYvJeaTh1maMwS1oov+Uy0MidOgUMhx9+xg5bh0hnGOLCQ4hGhCMvD4PBTtb+DKK67ixh+fZtG80YzKm8qQtPEsHGLg7oZT3HrbF9x9/1o+KW2l8NldlB5y0Bu9i+PuKaxIuBNx8/e4K16nvXonafo0zOfTaTtei1GnQaFQYO3cSjDo+F23v4dwli5d+k91/6+AP324BokMDAlca4CZJjmS05uxXPMWa9qi+bRkNT/pV6LQvMrNCbcwkHkTjd480hVdCAJILfWIUgm9UXoK3Lvo6WinS1VAXcteJlvLkagfQLhqFL82uyE+gWd62hAVNoJaNyIpTPH9QlSflG+VSrJajtG/5ScMcxfhUdXyWMsT1JcuIn1I9H8sulFDQBBZsucAq0PVSF6KwXnX83yp8TJLnI389bsIvzmYkH81Po8DMRgi0d1OW3gUfcPGY2n/kOTuY9R0LEUqCaISHJSPvZVIRTujxmzi8NkyQuWVWF/9lIQnhhG56EX6airRHnmd5uZ+RFFK2cBxtkeoeSrlNrTnVpN7lY/U+KlMfLOK9MBgnPEFRGjaGbDdihhs49TJpUCYUOhvE4gUUkRAbOgh5A3QHxCwIMGJnsUr5qP66VI0BQ9QffRuWgq1zOh0IVl8CxLgBqB9/QlMzgAAkyIvlt/bOpzInC3oWz9BqP0GonMI+by0mD5GWtLNiNx9AMjMak4W/YWA04KyeSy+6gGMcgsOZ4Djl35DeuUW4mw/s+hUFT+/cDu2Y/lEpaVjyCxE2d+FKzKOc9ML0ORJSeky4NMpeM39EaU9pezyHGKobi4T04YzIRBCKhEwq8zcnHuxe6Zv8uOMiHmX4rYkAM679qNr+YVbvCUcufFXYovf4ULUXJJ6uoiM83M6zUODKEN6qJWjhqEsnSNh0OSHqTh7kveGn6PZFImCAgo8PWzqkOGTd/HCiw9x15SbuM7zA17FSyRmb+RQv4ri0CTu9Ozll7LrkCtziEu8jInFpchtcZSkTiQqcQg9GiPXbx3GQomW/f2LiRHrOHvBSmWlnBtvuIGmpiZGd1qh0wrZLrwOKaaDG2gdeQ1f+Hw81tDM1LlX8O6G0wzrrmPItfN5eGMpcwviiPhbZorTG6TR6iQQ6CLF28qr/mKEqVMJbFiIMWjl7d9e4vKQkmSfnzE1efTKMzA4EglFNxIedhll+/cTc7Adrd3NOZeOslN2jFxgXuZcvNvP80D/RrJt3QTaxmCwGWiKL2XN448ja6rjs1t+RIKEs5dkIGnoY37TFBDsFKTqaf2gidiPv6bVEUI25WkS+7upaLHwwZuVXPPM/RxocGILB7Btex1RvBSVSsKtN91I+Nhh6pSvo1YlYjD8MYTzXzls86cn+T+kP625E6o2sUNTyMM7fczUnqG/qoINfhvSsJYfqy5lRGIVjlAbMgE09n7cRjOO8FgSxTVINU4cCg0upYtiSYjB6sNExN3OVL0S/ckXICmM2KJCGnkear8htcLFOh6kTqpk9Pc/sPehmUgHlMid13HB9yPhEy1/IPm/y7p79+7fU9YCUinXy3dzss7LPEGgr1tGKD5I8ugCAKSONi7L/phQRwmIaxCCQSzuDoiIpLHwEWK6vmKuAhBfxCvT80vv7XTv/ZXCJ8aQUWjm1/omJksEUlwmmk+WE13xOr/MeZeUxTpGr72c9MpBpMW/RJtdTmKEmhZNiI6Yq/HJixFPf4Vb+gxtluUk1mxk20AQpBEgUSG1XJz0pInWYxVlXIiRMlGj5MT5dsb0h0i35ENABqtO422yY+g8w+oOE7F3ZP/BfsaFGXgq+v5wzdpkIz43CqF/Pq6Jz1DVI0FQt5Pgr8Fkz4OoyyEtnxPnGkmUvkOL6yijlmUx7PCH9O2JxEc8wVAI26gF+KNTcIgqJPossicNkB2nIuGZp2g4dQRHcwPODi+v7gxhEGr5cEoGT+c/xSfGDRSW9WPUtQHD0f6tHUTAI2KxxKBQKrDc+jnPZqQiO/cTY7buoeWahUwonIU5HI1MFoNWVBBujyYYBpeqjNFXDFDlWojeHmTJ6CuZNeRuAPpD7QzWdEJ4HNZgFOcbzpCibeCVhBk8dGQjjmQdzUMup8/TgVfM4q7EZnztOdwd2Em924guFMQ9PJ+QJ5K0DBGvmEPN/goW2F8hpDbSVbiQis0L6Gp388nsRKRimIXd3YTDYUJdnUhCQZ5s6uehis/Quq/m80M9XNnWwqtKJY+4G3j3L1fxwr3vo5Ir6HlvKXHvC2i1F4vUZHI5m/edJm5QA5qTJ3mj6FIKJgnMXXWSM4cfQ+gYwvHSdLJUh9AXNKOWxmB3pRM+GUmSup+rnviAC6d7qKs2YlIFuccoYs7Ow9dxEG/EtUzqn4dCCnujW/jsvfexhsKcCeiY/Jd1uPx96B0ywgopUXIpzF0Dvl5K9r1MaK7A2oVf8OHqe3n+6XvQK8KMuuZmZJJ89FEadJ0+FI5OzI1bGC2PQDZ/PrYftiArOcWEJWvAMIyA34dcoYRvv6Y1LwqXxP5f9lD2T0/yf3jSpk+B+84z8vXhdOr/Qv1eC4F+OcFIE4cGFmCeF2JEqAbpyW9oVehoYghdkWo6z95IWeRQ8oTjhA0xWFKyiI7KRdJZRfeAkwu/bWZEXi76lsMIHd9Dh0hAoqSbaOrEAINXP8+BF56ksUPFNiFIVHYie3oXcDxGQmtLJ7cmxfxB1tjY2IvFRH/DweKjzLeeJxT3CnNVx8B+mMCmZ7nitW8Rxy5gb28OM8TziPadEPLQH3sLnWICEkclIW00GxJvYK5fQb10DIXH9ezPGMycNRvo0XVRMtKN5M4I/Gkq2mr24+3xEuFqQ/RLyFO2EeqBAcGKS5dFcfcE+q9qIL7LSr+YTEXGSvyGBDacaGOIJ529/XpWmkvBO0Cv202qIkReko6bmpq4xW3igCvA985ixoj59BsiKA3V0GdXk5c6hLs+mk44LHJ8awUSKYydd9Ej1gyORkyz4/f2oQgrQRQxxUQQNGZC7loadu+mRZlB2JvJyEEGYracA3sk9fbHqdReT1VCNIYiGzKvm1tVs1gxV4JR7yato5pcexSiNoUvvtmAqGli4rThuPq9BAJ2Lpgk9ExbzANZ/QxyeVH7lURIekls2c3S7DHYy84Q8nl/t1FzRS/PXf09cRl6Vq6Zzaql+fQEfCy/ZA51W/fwV/8I0ttjuT9UDW/ncizydoQkGXIRGvtGowx2EXOqm8tsK0Hqo3+jE2PuNIjqokQspGJDHgG/HOSJTDr4MPLAZ8RE6Phiz3P4+3WIYi9fRTURVGbz8rwrEQc/yTW/vE17h5y6lv2csdYzL34JE61l3OIoxpiewve9PbzSuY/buYzZYy+wSBQZUxKFLhyifyKcHlxA+p6ltGQ/BBopacqvKZ+QSOjGH2jf8gGbh0Sy9NXdvLn2WZ5d9ShdYRdxpkRufeCG39fxyKxYYDn0KSjoaEBET/P5RtDuIyFxMJKKAIGMKfRKytHTgE1ZTWPq1ZRgQm2ToreoiXP6SUzMQGVzQDAS5aJl5L16nHh1EskWDb988jRpOjUPfvcDzV8WI5WrCWT3kFDxFxKr88GYAoox4AkikchwiEaSdh/inZtuYnhWHMvuuo21P+zCE/yR49PvY/2nf2WXdCg7st5kbtMZQoKcugY7pvZm6srLMEol7Pvuc8YuWkq+243pQiPXvHEZN6U/9F+ys+WfnuT/GfTJoxix4yNan3oMjS2Z8MfP8/L54/xk+oyBxALMY24gIRwi/uRnnHfm0yOFXE7hblbQNWkUEQoBoeYMtJZgejOZDttSqrtFcnNj+N7xAzfrrkYe9hFCyg3CBm6TziBf5+HlXb/y2Uef0nKujlnZc9jp9LC5s/93kgdg3VUogi5iY2Pxeb1IEOlZuxJ7Rw16DpLjs9CZfBXS7mjARMV9vxEdeY62Sb+gMTXil51kv7yUJEkerSobN4QWQIeT8Ak3EzVqZB4JC9zJdKe1408tpTF+DJnHG7F3Bgi2RfC9fCrmCjuXvPYC3WPmYrnyakZYP0JZcQbX4w0cOLsR3amP6db006srQBiIoLi5hvNE4v9iOU96fSikAmU7n2Nox1GEyJtpzRiH6/0a6nxhlJPe4k3SuDbmLWwuO43SI+QZhgDgPHECwaNE4fqjvU4cmIOqXssExe0QchJ3x0MgCIRDYTyhZHItSiqtdWx7s5+bVy9n+1krGsejJDh2MbztMcwmA4Hjh/lNHs/gre+Q7apg2sxVnExLwmpSI1c4QJDh6/mJcOIKztjPYZWVoQimQMjLjI4NNEcuJeDvx+OsA/twJt58F06/kyu2XMGbU94kNS+VKx8dTmyakVVvqXhg7GC0ogfT9jqyv9zOtSEZSkcfppM/oaEPhSUSRdMvdNnTCEWOxSuLRtpYhFenpk2VykTfEcTqXxnse4DGvhgGZ1aQoQhTpmukKWYGmRIXq0zX89wPq0m74SoWHr8boc+IRzjF3NrLqIjYRUHl29h9WrK7oJcoZPFX0KGJIjKoJMU1GqcyzCWJCdy1yg5WOx+Ej9PScylOvQSFQoG00kfZzGeY1tyFLOp2ROvrOHa9xodqO0aZmYXV1Tx99WXc+d4mPj59jKeXr2DqiLEEQiHkf6s2hYsFY+H8K7m663Hcchf9+XeycdezxJhHMyr+NwSPHku7mrsVpbyRMJ1qTSShdgc6mRazz4q/V0ooQUW/o59tIxIY8eNmPmw6TXTJUR7Rq5lo0vPaLbdwBpGzI37ivPZyNN4qrOoUvLrJVLV14/AILBk3BQqu5ui3TcyRXiDc3EORp4hFN9+AfnAMEd11fPLIc8xbvJT9wUJiFz5K7Uu3IRUEsu5ajsyaSeeJWrwVpcy77zFMsXEEh4+mo6yWV75sp6ygmDeXDsNab6P+vBUJsv8SRVR/+oPXf4ZjRaOo1VyOqfg3RpYv5pm7P8Rll/D1rJMslN9JSASCPiQinPTN47Z3Z6G8cz8DV91DWks8lhMOJI3HEIMupJIwV0y7jPzU+RSZCpHdVkCXqQBh4cckS23o4q7lu7YaYh95E3tXgMbTQVr18bjVX/N5aDEvS8v+KJyjk+b3L8dqtfLjm48ghv1ccPj4IjyBTuJxRi9CFarFIRERDTpcU0KE1VJ8IQdCahIWZQH7/UX0REWQ5RiHKyRFCHgZfFkKp3N+ojOjnaq8+7hFfZbnGqeSnr2SS6b9RGHC54SGz2bUxPlIk7NRXT0D9UNPsFf7IG0zZnPstm/YWt5E+uku7vqkA7XgR5QEUPuCXHtJGo/NT8XuClB95jCnH1uGw7yMrsHLCOgkPJdoQaaWYhgfx02x3zPLvITslTMx7VjHNNPlv6veUVdPXaqSjQNO/IEQfX0l+P39oBLx5rkIxJih7x0o3wyiiKS3h6HTUhDC2/GdHCBkVdPX48IrEXAIz2EM3kcgtY/uCANNrcUcGprMFdJ9jI9qpEpaTb1BhVeEhCtuQTpNQ3ewC1ubk05fG2HBxbJUMzO4gqrWVQglsRwNJbHL2oGz/2sANHINVyQvRLajH5pOEJt4cQZWe3s7/U8mEgoGkeOiChUjEzVc4u2htXkCDbKfUNiGo/TOQDVkEIfEFnxiPTdF30aOvAqJJYX6RBU+mYxv3DX8ZLcyRC6nWNvEx5JzDBovRzJIhkLegyxCw2tvfA0CXHVewyjlyxztu4GmNSuoCAwlkzYKaGMqJew9+yg3SAKoTakgClgGIpmYkkZnqB2cvYTLtrF3RRolV6VivRDkyCE3E2y1XG/op6RqEvtc7/KT4yvkgoQY4knp3Y1aYmPXR59jsMTy2bZtzHnlYdbVd/5u04A/xAd37Oeju/dxgMnslC/nbL2TvQ2RFB1Yx0j3c2QmKVGrz/BZRwO1oS2k1q2kpb6L2RU7EP2Qpu0jsreGKnMEYkcXb/tEks8fRRUOMmDr45lH3sLgP4qxt45fC57GKYkmWdVLbN5Ydp/o5FS3mrKqOkLJY/EqNQwZHEXQ46W7+Bgb2mOosKtZ0F/CaEHKWx++yNqXX2JIooHCo+/i23GB8O5XMHZuJ6JgBkPkXUSYtxOTloFCrWFXtZetbhO+kMBP59rZV9kJijAyFfz443q2bNmCx+P5X8pn/6vxn4rkRVHEfqKNZlkeuolzsOVfoCpDg9HzIVq/nTghgvuaKnDXXUAo+hZ35EgylYnsfHYznKolpeA6ZH6QKuMhrhBhwh0UD38Tp1yH4P+ZQlc1Kq8Ni62EmnWfEQhJMcgiMIt+vggfQS1Ts/qth5HKYkisLySlxUNJTwTf7fnx34S87SAsXQtAevVBkMo5PexRcnW1GMdfiS42DUntJNqrU+mo6kI/2YdqyXQuXD6MusHDkSyayTupo/F5WtDY+/mg7iw/H7Jj2jaMwugV3JQ1iG7JJCL9eUjDYaRl22nsDQECMlMMUxpu4Z6js4gbdTPSBg8a7ygCx/cRHRpDTlcPGvVc/KEw41d/hsoXRoaXkVEB9AotUrkWw447ifP8jCEhHqFuOtJ5NzLJomfFc+Mw50fSOuDjneMaaj7bjXrys9TW6mnvubgJkvPzsEsVrOty8PL2Ss6eu4Jjx6cwfvxhCoa8j2T+lfhv3oM7bQ588Rn8vIkdP7zByhOfkT23ldHzY6k93Up20EWCfijDZ1yHO0HBfmMjS2rSsHySS0pEP96M8ZQU3Ia2vxNZ6Vbkag2DJQIxiTcQmajn8pombpBOosjq4qVwMdFja2iLcxJjWoM8JYcc6RwAJIKEaU3jOHi6ljOv3wivpGDt3ErRmavg/vOgjSIjWg2hIP6tr6AuWUhS+nlcNw1mQAtueYCQ5g3G6lX4zXHIg06slplMbP6BrE45ymAQwZAJiLgIM1EcxNrgMtQ9aZw9OBtbc5iH17yMHzkTP9WiT4VORwoN3tGYFE4qcqvxygUQ4eDQNVh87UyhiSOjl3Gdt5CBWc8ilwSxaQMErVWI7n6GNRwh5sd36WluQyoECIcujtobVOjAJeoRUfDYfXdy1YxRMPwGvFFLEMoucHDXHrbdfy/qgJ/vHr5Yza1QKEhIiOeJtcvA7KEqqoZBOjnjcg3sG+LnuQQT12bm0DN7BNhqOGdYznCmMFI2CkORhs01CeTZajBlXGBvRTSt3cNxVGZjzRhK3fLHecIUgTZKhjZKQpG6m4ZwN/GOHvT6AAdUJ/GW2xg5Jp7bWM8ik5W+NyahfD0P5bn7CIy5BOvcaxml6eWla6YjCBJCcWMwW6aiT5nE4R1bkAiw+Nm7WfrCz2w61sB7T7+G029E6zTz5eNHCYXDFKTq8ChFYhN1vL54CHlxekRpgJhcLfK/VUb/Z8/A+U9F8od3NHHAD7Oz9WSWdhFTdgeN+mXUR96D168htbufjFAXuozBiKljCSQPZmJ2BS4xRDtN9OzdBtYnoPN1EOSIgoSivuNoq+5E2VGEMTjAVR3fIsiVJGiqkYS9PN2Rz+CmRMDPtqcmExY8oPSg8nrRDtzKogEltp9MHHzsUxpXP0ljbyeVvRdTBlNVp5AH3ZicPcyx2OhRxVEqbaJ9xNv0J72DWdZGjr+QqEYZuSXrGbE2GX58FpUrTNvxDeyoPU6Ey4g6qEIqCmS5qpgUctAtvwmlPwDBrzh58ijSE92sOLSXY0etuCx5lGflccrzE+qOIsa0Tia94QxlTT7E7DxK+i7mwd+jAtPTKzGLNSTX2Ehqc4MAkowJ/NT7MvoNZQTandi+ryTxdDOBXgd2aQsTCs0cfGgqcWY16emReAJhLnRcHKmoDoe489xevrt+GI/PG0RERD6JiTegVsdTd8jG5lefJ/vtWgY9tx8mTgaZnEnTl/Kw+mYuuMeS23aCYZ2H0Fp0ZCZGIpWqSZTPY8rZME8P8lGVq6YjdQjm/Fu5zn+GK7bNwldzmEH79uHQ5NApV3PWOoAYsOOs3otyUwXyjsFUKMYw8bY59EU/i1u/EmP3WU4eO035kSLecp7l3WA/1e44+qOex/+RltSUO35fc/a31pJ9/xK8msuwGq5AJhdoarDjjotgnfsw7QEfKZ07kHv78KgiiYkIIxcCBCLzCckiUI1Wkz0+n5YBC1ZjLqUFEznf6yA+t4mBbjWOn2y8fedreE2R6ELtXOu6jOQrEsiKF9FF+jky0kL1VaupPXKcNxp1vH5iLZ8FXDRmdpPl28SspFuJjZyNx9OHR6IkuuMgUlMMFq2NFZcfQ1b0KUJjMkZfK6P1pdy5YDfStzORHn0ToS2NrEArSqMOzGa48WYO7t6JTgyxeOF8mpub6eruRKGGyVtXo3nzIAc/fgRzhAJldiZhjZfzoQG+OfYt520+/DIznoAMaXsmB9QBFEoJfd2JqEy5jMhRI/N142+2MqboFF2TavH3lbFpcQYZ5x9lk6eIrxreIq2nlKAzgqDmE1Su3xh24XkiFVL8BffRaxoFgNl1jsaufQQ6HifR/SEd390Lx77CaFSiyhmFZPAQajpc3PPBOn49cQCnRMnr733Dd1vW0iyqOVZ9A+aSHZybt4gkiZVHx6ZwZOV4RkT+TFXxOOLi4kgxmaD94vSz9ev/c3v0/6lIPqnzDRBC6CYmcu6KZHqGTUAVug6TJ0iEUsZTf12BPn844VAYUa5CK8hRyEUKC5tosWkx+APsnH6arsRheBzQdczF9c0/o3B18PVpM0c8cznpuYZjcU/RFT8Wf9xQHo27wIWkdhweE80defQ3eLFVD/DyCSfFrW7qzpxFKgr0Rg2ieOaNnK0W+bmoAYDPx/+EIGhYcOYEgjmXSIeVvpJh1NcPxR91B50R+bwW+yqm5x6gP3oETnUeojCacK2dFaFtyHQmosf6Cc6vwK7fSLi+lNNHe/nlRBd+T4CQJ4dN/VEsUl7AIHERCIdxt7r5KX0eec3bED0VVEXG0z3rPWKdToZnRrGupILMkWMZOmUMcfctJa7qdQZV3E5ICCAV/dB0kisfGUHiyAGEoVrMK3IR1HK0oo+lm6cz7ZdpHOvaieP0HuJCIulZGnThd9mzL4PKyEq49XYmDIpHKhEYM3oLe/86jKKXXyIneyQjpy9GLYckkwJycuDmlfyIgRpLHrOqztGUEEeJKoKszFjMMQYAHAcO0Ld+PfPtDkpKbsQ58mraI5rplUYRCGcwq/9qIsLRJFc62WwI8IAmQEnPAiobDBj7nRjqwyQOSqOrtoahbbUsydUjiRvK52cH+LC0l5vGRZJVkM/Vn+/DL4xG4pETaZry+5orXH0jhmnJmNXnMGvaUHprCYlhbNFqdhdm0WB4in7tUnxaCycu+QJP4jDOXnaAiuSX+MH5Hc0fDCPVnoI/xoW1pwzL/8PdX0fHdW3bvvBvFXNJKjEzgy3ZsswcY0yxYwecxGGH7cRhjsPMaDsxxXHAGDMzyiDLFjNzkYprvT98dvbe37nne7e1d8+9d+/RWrUmNZWkuXrN1edYfY7Zx9bb8RusSJQ+ftO6+EXlQCbxEqE3cPPvIg1BUzD2306Av5FzJW4IXEJ0l41xWUbGlikYWz+U27eW8Wf9x3h3vcKKJ4vp7t5LxQ0v8uekIxwf9ARpo27COVTNnwH3cDb1Cbq939MubyQoW8BX2339sJzEDLLN+IzHORURxqlTp/665o2j1IhXDzB/9o1c2bcTl9dLx+ClhGoKCegPYt+PS8AvUjr9Ho4tOMYwxXDKfbHEuOwo0u9AXjQOR4ifb6VWfqn7Ea88lYwYFSUaiE1poih3BOuePYY7OIXyxHfo8cdQqvyAjqgvmSTLoFcfhcdronHkIlxjP0MIfpJBlYeIa9yA36ekV0ig+sM/sZwPJeRHI+Z2JYhOsHf8dQ0peitDztyL22ZnwdC3+OLVN9EGBfPYb7+x8sh8VKlO4oYZEYu/4+qJBor3VaEobmBo5W3w83OwbhVs20q/x4vP///e6/j/5vjX2Xj1OkmoW02sWInZO5rApHupMkYhv/IJm62VvPXVCzzx9DOoNEb8pXupEh6lVzOEIOs1frlwmSGRgXQplYyuOUh11mzqG7LIvzqf2gg5Cn0BRf5a6rQ2DNZAfg5vRembyLsN36Pu2YxoWECXV4msNASFXMnqz5bSMuZJrlbvpIxrBBWAekAoTnUS3a1XOWe5Akwm0XW9xhyNAyF6KOa2dgYmBdLTPA6JV4FUpuD0SwuRhn2N0d1OXdTjpFuuILNtJ5BuzmaP4P7+bUjxsGVsNI2do1mdfhKJAJvrBjO8vJE1mdPIdLSzU12PrQG6/RPJ/vMAp1QDSIgroJtY4rMy0Lt9CIKAuaqGZ24M5Mf3ljEl0Epb2D2EtnxKTYQZt1SOe+zbKKIHkx9TeB33fc8hMWUhhN6KkDwRIXkMM+pO0nRlKl3lJ0mfUEZ5oBU7Ag7J9bLROquDLqcbvbOLEN0V+hzH0P2xGofrPvaIg1HcLIV3E+CxYuZ2HySgro2C2gQWGMwMinkfr+tGZNVHoPQPTAtXYVq4EJ/NxsimH1BpjAQHj6a6upcRnpcwuGycyd1FhKWRn4v2kfXKLma5fGxJFenO66MlIp8Mr0jVketWDaWihMshRUQXbmZc5Agyowew5rozMqGTLBCW99cJZqlHIDY3F6Wni9on9/HDHc9yvOt5qhx2Asqf4EP3ZDpDk2kPCEAQoV6bSr02BW1ZHVE+A6MkUkYplYQVTwGlj8aw54kWGzkxWEaL3EFbjY8Aax9X4uL45Z5F3Pzei0QKeVRpz3J2QAA3tt1EcvcgJOwkLEzPhx98RcKvl1HbArHrbuCXq0/hF/24e7VohB7iaxuIEHZhv/Izgbmv0B2hxGSrwdRZDer1oL8fJAOwC/vR6qfidqyimH0Edw2k3+LHeu0j9Is2gruVbwcGstjm5/HnXkQpiMz75SmkfhG5VM7h7I8RDx+izhjGwQGDeGv8BNpDIok8ewz27KckIpv1I5tRWit4vV5DS185ccWPE6i5n6nZDs73O/G4bfz88lTKlPOJ7mxikjKM9cRxp0vOjJrfkCDhqr+L/WXlTM2cTLAIJ1VLyH5oGSWnLzM+qoSVW48TJbYj2V0Bp5tBrv6LLmQ7n0JWv59jLz2NrX8O7WU+/tjwM2q5gimzs3j65FrWPfUyp0IG4xAkDArWEt43h+7uCwSb1filLqThcfxS1465t5bFlkP/st43/zokL1PB07UIx95jZ4mdDFkrqhA9UkM78yM+xOprQee1IhR/hlnQoXEngNmNxt7I474mVHE3g7UVeV8lta1+guQmGoNuxtB/kdCmYyCBOm8DaRX3M2uQCpvPhLSzHK9XxU8zu/FK5WguyVn+wae89u6TbEkM41LhY3Q6+wkPfgG54GS0rRJN6Vfcd9t1jT5/XBEemQyhbR2rKpKZnRaFK2Uw2qZKwj1mTr7zKvOWPsyVc6Xk9H+H215Pk2YYQSjQRTzLipoT7E69hyEXpmGevg3P8TdQu4xIktV4IkyUiXF861vIHvVyajrMhPiaCRGMTI6NQhIdRHXgaAJ9btR6FWqAP35H0V/NGHwciygipHM1evsVPMOeQKKKBkGC/OdZoAmEZ+qu4x4+kNZNKlqLH0Iy8AFMUgXd8nhK7kgg/VIv9V0RkJJGUMzNpCpC8XrtHGy7bkQm9/gZV9DKobZxFEcsJ7x4I4JXYIcjkpsmfUC/2UWYrQ4hJ5qeSgmpfTvo6yrglGcUhfLZKJrOwdaHofEsH/VNxe6Bm2dEU1ExlVii+CzKgOKKhMsZy8g5exbJ1as8NS2d/ZU15Ia24Bc6qXJlkFpxkmvduzmqGsecnDzOWXykiHMw9NZC9D/MsaqdUH8EhjwKKiOVBy+jiNQRnRVH2bwvMfT7WGDQYOv/nKzsInr3KYna28gJRxfFMVpmjopD1/sq0oALlAbOQtc5GvmJQ4jZ8cTZqkns+on14T8xpdXKGZmRpxfm07prE759R5DoXah00dz+0298cvMy3vb3MDy2kHCvHNv6K0TdFMkXig0IH7zF4e+/ozmmiPmOa1gCDTjOXWKfrgjZ1RaGKD8CIOLK8xzbUMBNU8sYEBXDB6k3E3rwPTxSDfsnnCCmfTu9Rgtjk36iZ9M5finPxR4xklFr1yB97jAmr5dfZTJunD6dpmMnkCuViKJIoCmEnkg7nl415vzBvGPdTcVOBQ3EEj1zKPhDcLT3c0xWT741kNBhI/EpFUhFF4/71kLAMmKqJSh7RFQh96APTKE81swS2XQGb9hMVc4NuGQq1F43Mtz4lF7O6lQEaotQy47S0W6jRubDLZPzwK2FHKkZQLXUjvRaCXM39ZISpuelISa0thASgeHGtRi6bKidMUilo5H/8jP7FrzI/N17eeOLjQy8JxPtMTM7EVjwRjYV14ppCtmNTVfLyBHH8TX0sN1vIrOm5F/W++ZfRq5Rq9XMWHAX855fRZtDBefXMmnbLRRUR9Ih2UZpyGm8eh0LN3VjrV2EpB+iQlqIHRGDQncZOvdg792DVd9EgtSDvnMrYT0bCei5Xh3TFqBmUp1IQMSDhLf2M+5CLfX6iUhiX0JvlyARZbisNqTlbeidNdSX7ccWGYZD6OSi8TmGhjyDJiIbHj0PCaMACNQqUMgkmG1tvOZZSIcllfRLp0g2RBEQkYnPb6JdFsCjzQps2aOQFt7GtKwnyBi6DmQGRKmSoF4LzrBl5B18k4HaOLLri0n6bQdFvyzlZ8tBwgz55O+Vk1zxJlh/RusLpFsn45J0P8m7B5GhOgfADz/8wOB338Op0tImCSW5dRhOzVjk/l5O+caSf/EMamf3dU+zsJy/A599M91JpzDH72XrlqOs2nSQreocLIj4FVKUHhHfuRJ0dgWnTk/m7LmbGB0ewOzoYBYkx7In34RrvAa5Xk/Vo8P47bZyPvi1glOBI6nbtZwrB/dC4a3UvTONIHkKQYZoRGKpFwu5vCMMd8JsSJvK+Fg3areRg98FEeUYQQp5JCR7iJs3DZkkAAGRUp/AwkGxrL1tHJ3uKEpUtaRWn8VRY6Y98RXUsjAqz7eQ59+HvLudpqNnoeMadNex973D/Fk9lj+Vg+CdWBBFNLkhyILVKJQqRo28j4eHL+a+IaM4Is7hwIUETjTH4HCpqKk+SsvlMuLLO5F3qLBIRyLqVSQsGEj4V8/SuzOIDlL4IysZQ1E7nRHdxB81oem1kpY2BJdXRbEUli6+C5vcyRPbPuf9gXZOdpiZd6kWS+1lKg5V09umh6+HY5T3UXBkNvqW5+lptpEk5KDUOpH44WTUS5yMfIWm0W8RdMeDHPE8wNLxm9kcq8IrUSD12QlvP4iro4OghvG0vbyBsqofKJoTwIg4PdhtbDndzuZz3QDIVWpuv+MOAARBQKLwMem+pcQ/8wyjLjsRzE1Ea80EaBo5SC1ERmHR1tKsamNbsoqgkdnUhcUhx4fU1UtXzAJ6Y4KQqe1oDbVkNtShazXQ+Nlx2kv3Extq5behY+hu7Cdt8UruffcPJkr3I7h7yGt9l2MfncR+pZfBTctRlD3PcL2E8AkTOC8JxOry0dJnY9fVz3E4rzdOaTNNRzEunyTtetp73FAwGOIb+OWBNESlii8/eg2HQYrGKEejNiIEe2nV30RbcB5Vv37InesL+SJJw8T7NvzXvPR/+absv0wm/7dVdPqwDBYPEFC1XOGqcBOWwGkIP9dTHX2Me+64lx/fWILzzLfIYobhl85Eo3sQuVKDzfIHpu5SntQ/T3iXwNKmd3AJCvrDR3PaUYEjxcXp5n4m2vcQqp/JlsZ6wqddIr4ql3lnQqjRw6kFDib6avhik4SzoT8w2juIo4YurHVH0Ix4ByLy/vPARRGpPpkf5SvpkY/CI+8n3qXCr7RQrlYRI3dTseNTbOPGYRFTiECB2QsnRs+jSvQSqZQRU1pKjLUSX4IJiXQI3+5pI1XfwoLAUoZIfsY5qItt7qkMajuFaXA4Fb3fgc+PH2jf9zUWx1ASQmLodjtYPWU9/TYnsUN24TeEIwiLGCDuIqhfBEECk96Gwvv/6RK84QuJKfMw+sAhuocNp9+oxWL20BYVTKHvEJH9XQjGKNQpr2Iw5GDU/91+OL89hEajg5ThCfzavhud3sHppybwa4uXQb2n0Ig9UHMIEscQkrSQnjYb9XUDae++SEZ7B17CUEx4lfyTnxOj7eVLdRhnj7TwgSqVoAFhpKsCSXN4cd91Dy2dFpLF65M6YOICSk98zcqhd7Aw4Xbku6+RqPXjM5egFSwEezv5STOMSesWIUkbgqV3LH2SSCRBkdefGv1ekP6H7/x/dFryf5xL5EtXWBpaRlO1DiHFyrdHrDx38Vc6ZtyP0XyKn2LvpMQswYucyeXL8VubUHV207NNyuBGBdzrwHMtGoXDRYHvIHs2pZA/IZ2GxAAiXB5eX6jnpRXvoZD4edZYQZtfQXe2Ht+0KiSlE9HbGxkwqAl/kwq8LnQeLRLBzt00cSLVjYgS/BIcKjuxjg4C/HIUDVZGPvQTjQYDiU8/T1RpJKI9iWt4kI8GMfghQs88Sf3RDhJ2F6Mpbqer3sYvT21n4dLP+PTpW/76PHvaenGUdhE7NI3OGAPCzo/RAyl3HKS7/7oBmKwqGd8FJ5JRzSjCnGgNUqZLPmV2RAgjtlyiJflObOpeJFdO4tJJqJR8jn+GlYUnfOiOL8bmmcVhcyyVt9zEiBk3EGjfRmL3JWTBUdxfdIyLnUNoZD7a7h8o19oJaT7Dea8Jn1/DEefN2KqhQsjA59Nh7NvPXoWMNJcT98X1MPdJ2LcJ/H42rltL4cJF/Hz+LaJVCkJL30KlnIza1U2LvotI/QQ6/BNpOG7nTFYrd6REwoG38J5dRdmQvWSPif+XsEX4l8nk/xZNGgnn2YpQf5zMureQJahQ3ZlJVMEYSkzgDE7mhQAHqpyb8Pml+H1unFIlckcPZRIppYHpBBnc/HDnC/wy9wksihRWhrzACvP7LEso4rIvEWlvKpKwhXg67uda9CHwWVA3b2fin69jVUmx9Pk5uAKqN2/hVk0M7wTk4SzdxOGLpygp+5Ud5/9eZ6yQQtIb57nto934E8vpjh7JzpQJ/JoRj6uzmyUvvI1Ub0B2PhB1k5wXzZXsDvaTF65CQGTQrsWIp7/mVMQEOLsSa0MFQ0cs5QHH4zRaEyA9gws6KUWtbq6oB+O1+RmjeYGRMZ+hMD1EbMAt9PdYUUsDiZSbUKokqE1GGlJG0B2/ABl+wmhDPmvcdVIrvA+kf1/72+t7cVr9IEtAMnws1nsf5Y7zb/BI/WdMGmCiN3AkLlUG6MMp3ZXL4Z98+P2+67/s9ZJzycbkExJq9x1h+MUkpqsyOX16PLGNkynO66VLFY7z2AlEj4uUQTHU9F6muvsKlX4vF595Bk12Nv4fJiEKMnw5k9hr9DNfdZSJ4klygyYiFfUMv7QPz9pvCP1jO+LFs/j9HhSKYL7QruaF1mA2Hj3NiJn5yGUupAGhaMSpDGisJ0xho+JbM7XfVjH2BjN3PDaQhYcXgdKAKJHhcnX/09yTLLkM2mC0QfmkjJ1Mnk/goTHVVA2biTOpAEe6lDHBl4mTO2lw+Rgpu4ngyiP0PP8NPoUKu6WT2N2voK48iXtGGYT0c2/Mu6hFEYnopu3YTprqy/Brg1nw5mZCfEaydTrCT/Yz0j+B5LQe5MG3Q1MSksWnKJF9R097HHuuddHWEoqUTvy602g8zcgMDnqTfBRnJPDHkT+RBmfg8scjzl6Ez64GETrwUZmZRXdIEEaxmYj0evwXfmXs8enMvDSJvMg/kbtcyIGb5837Cwd1VjDqAC0Pzswj7lMnxI0gaP8pUjZ/j+jzUpukIDgnDLkrArN8O7uOL+dqfyAog7E7rwGg94RwLHg8xXuaEOquG4Z1RA1Ekjcd49gomiUCQSntnDvwJ6FmHxJXDW+5ZZR2B/J0aADN9WUoBRvRygqKzjzLjb+9xwNxeuxhgzH4RfLcTjwkIxPdfKg4T48yhfTeFnqad9Gl8YMEPE4nP/V18/WCsdgsJ/np4UVE2q+iMYoMtoylT6XAHixBa3eT1X6I+u2f0lB9Dqmjg7od6/5pbvwto//H1/8t2f2/HMmrpBoGTzhEc/p0in3RzF9/DYlWSvKOQ0SaRnLbj3vpk4dRN0pChd7BzOBPaTMZ8Al2Uv0+3it5hSxrBT6fQGW7gpi673m88QPaxFA+kzVS1HOMTsFN0sTfUEZ/g90QTV/gZWoZwBHzPej+fIXVb41HIZURWHwBRdIQkvcP56ZLRTirt+Pp6UTwdSAefQcOvsbWXfvZvHUjNomGXbJHcckElD47cXVLKDksIaqnHYMA9/34HRrbVeTVG5DsWIbyu9HcdWQzQS378MlMhDniENQjKNM9hA0ZvxeVs6BvMr6+PoaV/oq0q5rGtiVslYyn7ewmqo9fpTNCi90vsLrPx7Pvv4JSocQUe4VI00WMCVO5fPUKvs56GP8maEzXM3nh+pQoPlzGqSPnCYsLJD3Jhjc6Fc+4W4mRy6BiF5Rtx+31I99cgbspk55j59Fe66G1vItL61+hvvIqSKW0qUP4ZfA4itPT6NcqCQkoIsyqA5zgi+CO7M8oVWXhXr2SN7eVYEgQiZyj4pmsTm4SXKz4/SI0n8F5/Auu1XxFRsW3dBXcxvzhCcxqOIn1QDtfX0jlF1MmjUYdVxuOcG1bPrxqJKiig8K+bors/QDkhA0hWxJNdFM1rQoN49oFNKmZOKfdxLpiB5Xrv0XWfAbR3kln536OHS/iu3078Llc9G3ZCi2Xwd7FoT+u0FlTgwGB6IRoemMjcDZfIMBkI1fh5JF+Iw/1Q65WSfmUzXQNukzzggzspmyc8gj0ug7059YQt+kLem23Eth8ErdvK1OSmjFGuHjz4efo8kUx9euvmbf2G6ofHsxLbfH0KSQQORCfQkW77xrhki8IVP2BcbiCQI2PIS0rkMQ/Tk/mZNIzHiVOupBUSzgavwVx6mNcGzKXsmdvojrFTMXoNygK/ZzE9q24JT6ODHkZ/6D7kZz9FKlSTaPWxJiBLxNo2MvKEa/Tc6kFd4vtr/uwoaGBtrY23MpAWPQn2H8Ay3aE098xp2UNczTbkclzkUnkvG2MZWNBPZkGNY7ooeh1G+hTR1AVFU/Dvc/T37UK94dT0XWGXv/j7l5uXqInZlQrObNHYDFNpCsmi1aZihPebCYEhVM0eTJeYzxqYxDtIUNonfMDoyOCUSQVcVESgjklB4W+GXn8CNYr5lNuuomWYXdi/H4+pt1f0dPbQYNb4HTuY5w/X8jyRx/BrpDzyLtvIkqlNHocHI/W0TJEgzlOTV/vJSLa27gy6H1+mr0VycICupwu7E4v28528MFHj/D77z+xdevWv17/t5Rc/svINX+LuIBEbp59fYU80tJD/gINd6VE07b0US588y23Jrn4o+UcQ5tLkYb4ONotkth1jYbwUdR6zzJ58EpA4M9zb3FXxQn8EhGty0OX5XWe9jQywdOD0xRIeFU71WECbcEziJTUE+coIS7OQ581Fmd6MkfdlygveJobL3zME1Ibv0omcH5TFUb9aAoKX8QXk42IB1F0IiqDEIEZFRfIFh2UpDWSUjcGbWgP23ev5+mseL491AaCjmx9MJUJHZzT30t8vAaXfQlNPj8jz9lAN57B126iuvArkqRd+CUhtLU2Yo6dyfGi1wnZuxWJGIlPHUJaw6vU6eIo6nob9j9NlF7Fx488jX37dwhDhjL83f24vQY2Z9eTJ/rBEAlK/V9e4k6LF9QS3E4PQdlD0KV4kF5qIzUuBJ64BJfWEiDrpyzcjOhowe1MIWtkFIMGOfhitZRQz0nuPH2O7oLRuOTXe8ZGRMdSu+sEmRfrSFmwgrL2ARS5+8npaeWiIZi49ADcTVnknG+h888O6rTFeAYnse7GsyQ0LsMvO8YQx1T8Xj0o/ahtXu4K7WF9r5FdjnUkhmYwKXwY47p6QLaKG8IDOF5Sxrs+Ka8c/o2ayx3EDxyKQaIk3WkhNSUIs+5Jtl/qQZ9hJ85wjtK8N6mImMeMsvUIivt5b4efqbtfxLptO4a1L6KQwn3PvIQoeHlx5jieSExldnY3bW8f5rw0l2mGKvbFj6WpzcUHhzpQ6QyIw48jyQqhOWkh9hOJbKlpxhkWz7OKjUQrlrO94VOc5Sr0N+1nSKqEYz4Xbzz9DI2xcXz5+CKeSHsQm0/OntO1hOlDWDHPg8N6jT2d0yhM6aArfAHKznV4Mu5iaOEg/Duehc5Inir7CLfNyldsQ3j0aRJXLaelz0Rnl4EYRQ5JlpVw6Qp+qw2zz83BxGymnlhHky6dFSFvsrZ3LylZRXSbpIiChFMN3aQFyAnTKP+6HxUKxXUrbYlIw2sFMOR+VD3NnN25ndsce8n1j2LwsrtQxYagnFGEw+Slz6NDptax5u57eGPZR7T4VPTGFyJkZnHaq4biDqbvv5mEGOiITaY20E9wQDbvHD1OcbCNsMufUa25GY/uIcKPJ3A6K4BCeRv1klgsgQOIk29nW90Chge6OJv7PIWVZYR2rKL6rI/dETO4q3Urns7zJP6USWPCYhpLMyia/QpbZj7PlOnTidE5KGrfS7FsOJeDBoJ4FV94AMMlE8mt2EKtJoj6+BvY1tBF0jUzBokEZ+B5rFYlQUGFf2Hz/1uN83+qEudfjuT/EaQRE0dw4KmxwHUzpSeeXILm43Q0Mhe3ffsea+55GHnSn/R2DmL3qPcZtHkEhd3nqTTF0hrRS36ZjZ9uKUHwQ+KV+2l3qXCNXYwupp/IjQ3EVVroDXmLLRO3IdoKGXl8PvL44dS0jEIi+R21DJ48XEac7jzTFVrO3fcWBReXcTbnTVq9QQh+N6Pi2ggKKkIlleAPj2Z7aDRRl/YgBQbpdhAZXUyNIx2nRI4CE348uDXFUC9SV9+PNdfPjsuVyAkltU2K2peFNn0MljoJBkcfksNr8GYtRhB95LGF+LLfECJyEBtlKLW3k+NRctRs5c75z/JyXRlvni/m3JDRPD47nfjq70mMvPHvTSL+IQZPSsfc2Y9CcMDlX1FkzSWt8LrtLhIZBMRy5kALsugM5ssdtCPSMisJiSCw7IUcOH8Wzp0jyLqd4SYX+rD7aDzSiFdIIubBK2jCY1D3NzO9z4287RkS2pNo0LzFtspeFqQX4plt4mpeD5nF+xnSJUNUDaBcvYSh+gtcMeZRrTUyijPoFH4Cs80M7Cokd+hcRlqOgAi3yd7l1cFGIjU2rlz2EXF6OWKXhxjzR5RHRLMkJot77YEMqunjhkAd3s46tA+/T7TdQ9+RswjSTkZp4ql6azo+9ySM029EMmgUVSVTkYXoCQoLICg4ikrJRdKNBQS9vYS5p55F2udgU10H9W02Zhl7CYq3IVH2Y/PsYFxgIvWbV7JIhNBvX0DdvQA3fUzNHk7pvuMIgEvs5/C2g1zJH8uMNC1Ot5bQJx/mvVeyedI+F4e9C3tnMgmZN4PjCKcvFHNn62iuCTNJl6QhuVqKpNICl8eSNGkZ3lAvwvgXYe+ryHsuECf6aUy5l8zmLtCOA5kJp1uGssuM6as3WL3yTtyKm8kgCLHhLs6d6GDiE++gPR7KU68/ymvfrmCK5u/Oq3/brwgPD4f7rltEb7Yq6C+aiaaijEfEX5F6fUj6jRhq+3EZvER3H2Dn88OY8PRaUu1XuFRvQqJpYVNVL1PaI2jqC+LDmIUsC/ewddWPIFNzV/aNQByDapdzesAGtC5QKqwoRRVjKgZgPv46AckZ9A5yotHHU+ozMKmjGl1TNSvERtI1wTg0er4LvZ07Wv/kQtp3TOycQl7JKhS+fKTyOwAlgUFBzHnmE5a+8y5ph0uguQTN1FLs4Wr2S+BITBj3ui0Ma/+cP8NupiMigASHB/XKAuzyVrQv+lDKpRxp62HNuvUoZH+/t/5P6fb/cnLNP0aQOuifvtfpDUhebuGXEic2j4aTcjsGu5Jzqd+QfXIrZsbzmcXP5sZWusK+wSPXkdJ6keHll1gxbRPrZh/DnjkWEHkj4Rt2eAezITgQ/dl3cGx3o4wYT23uUgwaSJH2UKx8gJbkkZxoHEd9wEzkCg123xMM/bWL3Pe/JumzlwgKKsJd0oTg9qGsVpFyuptcr592YxAbAmM4G6FGXzAKn0LOzJXf0S05yuDeV5D5BVwawNzMU3UXUMskSMPj8PhTkZ6zYBx3C6Ujh1ATmIW2aj/pR28iTjzJb+FhuPIfwx/xKhGCDnH1coaIcpJPXCCzLwbj9K+xjZ9CZJCGjoGPoh/x7P8QW7lCRnCUAQQp1coWampXcq3Rhsvjx+wQOeEejFylRKmW82pGDAN0aiT/2DwlK4fqgDRsRi8eVOxqt+DquIDYdxxNeAzf1r7PJ13bmWNwUxGYS/DQ6YyLjeDG4C7wOTDIAgnvhv6mPhztYSjrgokrraKmdhcx558luOsIy+1q0utjONdegaezk7LLJ1kvDGLehfFcsAfz3PqLqFt2kZlbhDPkKawlqTR3d9Dc2kizVE7OQB8NYyJojGrgOVU2e660oJdLyDFLcXkX0NNTxL41l2h94wzWowoAen6rwXGlC6Vai1xzA9VtOkREjMNv5NKwY+wYfprnigy8fs9ALNOG4YrIJbYyiRh/Bkp7E9WPv4bhpsH0WX1oNR4UGj19T7+KCgn1PeAou0ZkSCeO+hayi6fz8ZJ3cZhMBGW8wl7ZMxxSLmPjlq1s/+VRrBEfM7BIRWXeci61d3Gls4Zq+zF8aemgf5SHG2OYG3ErPoUe8dI6LPUSWk9rKay6hY4oK87AQfjVA0jr12Dcvw+VNhCnVo9fvgvTns+QAHL9Htp2L+P1UcOxVJcz+PBuVlW0YHd7/sv7MsuoBUFCaUwmEepH8W17jfTdv/FxnJTNxhiOh96FVLQTqpVw9xtfcGvQL3wweRhb8kZSNDyJriiBrNSRWBqyKKhsZNzMBRhU3TQItTh8SVRsbqXPqKM5OZd+XwWymCNEPTwC9bBEamLGopAGMDVNRqV+DhNOP0JGXzNa7VhyFEPZ2HCI+rCHCNWG4/MpUOi9KEtqcTc2cmFfAy8kC8jdVr59/DHy0i4yc4iMVPdITF03oVIa6LwQwvQ9MeCH4NNnMcuhOliCTLxCqPg0xy4101B5gt7mNkoarzvRNl7twe30/n+huv9P8S+Xyf+Pwuf3I5X883plUZhQBk1hyeUPqBJeIypER2L8MkCgofoYRyyniC3aRuLRBgz6IIxXGjjncHF+yCAcjjqenzWAq4O/JMG9GnO3D5NiPwEqAXl0OMKxlYQrXdy1sZMP775A5SOvc6qyCs2qZ4i4ZRDBBx3IhD24A4Kx2xtQRJsAH6LqZ5Lj9GhkHry9R/hcUo01SMVQ4TJbF93BwtXf8/jXl1m/pJXOjGKsxoHcVB0PaT5cJW7MIU5+UiYyWF+HsjuSW9sl3G2MYMGBz0hMrUIE8utL2GEAadYsRnT/jMtr4evZT7LLHM4s7zn80mGUCiJbW7o4PiQDgNjYWNxuNwqFAlEUr3e9d7gQW2zUX+0kNFqFUBlET56HaK+fug4H7WY3M0bHI5VKyQFmhxqhv/u6tg98WXKcgZowVGe1qD2HseSMx+aFULEP55YDaKPVTCnfxtasQSjv2IygFDBu/IVCm4c6fz3xKi09V2KxjFtA5aFNJMkE+gJPUaqbyF4hg7ujBpCi6eHXI+Ucyk7n6J6rvJxcRztqJvk1fB/+HlVtZvL62ll18DQXvdkMjRtDot3L8zVSFi+IoKrjMlPCbGwJHkfLznJKmizckB2J9dhm5KExmAeOQq0XME6KQ2JQcPbMHGTRZ9Fm12DzwLPfP4xc4ufK2iJ+bl9JiqcIlzGRIK+NMfZugtrA5T2EQmyi23U3UuUxHBlJHC18kcRmF/ZSIyVtevKbnyesLQwDSZxw6rjRdJVE2UFqOoaTIjyNQgIv3nsLhjY17017DPyn8DTV0JI1Do/hFN6Aem6ZPRhR9GI7uwvPrO+QNv6C227jUpOPty9WESY+wXBdMEk59VxIHoAuUIczW6D2mIya1Ch4LJLJGjnZvTJSzv6E/zz0fKHg9JQkRj50CypLFyEaI9VOG8qOPrqMTWjD/i5N/E22+dvXDQ0N9Fpc7D1aw1FNPsbHPuJCQDabG3p5fG4ED2ruYsorzWy+exdG+SVG6CdxwiVnf3QQaRd/x6i/C0VMJkNetbJmhw4hRs8BqZ/x0qGo+9vRvLuazBHVhGhKuFYVhsO5DK8Mppx6Eh+gHzGeHFcdkmI3w12thHavpWrg5yRlBHKufSDu3n5OOR4l5OAaNIjUv/Ii/TeMYqhsN6/MTuTDdVrmvr6dz3PthOU6aM5+hBqXgqwrUryjw/lKdQ/iuXp0IxRYJX5C9cvZZhzM9+Yqxp57nu1KkYOZn0BCFHt/vMqEOzP+uTfG/0bZ5l+e5FMOX8bq91M3KhfVP/Ra1Zm0lJ/fRrrUQHvQIozSncz113JOGoFXtpEhp+Vo095gkOE8Izx2Tp1KYlhgHdphb9Ff5kFV9QWKpLvpF6ZRMCSTOtUJGg/cyZVfjnBjvZNPb76TpRtWsyvrUVb2eHEGJbIsOZGK6CkkmmYSnN0Et3+NRhOJoJUheMzkta7ictiTGOVZ+BtnMMj4EsPJY4wvjqMeFV9/No87F39G7eU/sRQ8R2z/OXpKClAGK2kuNIBThb/Sx/nz57k7P58HQ3SMl4YTn9bI9uAxFCUXEDvyQaJ+/gOF18f8n3/CG6Pjaa2K6fEaIvxVBN69lLtFH71eH9L/SLzdbjdtbW04+92c3HKVriA5Rm0DyZ3NKNt96E+pcAkacmN3oIkYRmOXHJBz+sFlGI/vxPP2w2QNGo60YivOYS8ikwosNu/Dpglkf9BtBLcO4IHedXRGJxJw9VecEZMxusfjizfQNCQO67GVuIR+FFFOvG4TtnI7f4glnJZ1cvNxN4PTEum67EFrjWRuUDtjlF1sWVXB+KhGSLCj/dPErXUn8VvHEuMvZ6i8BE3naQYBLZ3hSEsO0zUsjrSQSDrtkSxJukq/chCd3lSqr55i5o1yZg4YA1Ip7mNfoMsJwKINI2RIHImBGqRyKaIool9/lrRKC6vKHifkvhW8MzuXR24cjG3AY+S3foPFdAK1fTNKWwjl/RPIFpWY6rchsTcwL/5RooQJ3NIoos5WEMnPdCZNQ11/lZ6nP8Pi9BGq1zLRuxhFdwni4O9o0CTQ5riH5c84sEq38c77z/BQ2SZGjx/MVOsOBsdm4NT4CEr7mTPnWskrmY0sawWOkgaUCc3IxDbGD7iVZ7acZq4CbKOrqApWowudQnZ6IJ4t20nAyunEYCQE06I8Q7CzBpNQiFAEK4pm8KdaSlB3IPHhVsJk8NKPP7L0nbGEGiJxu7sRRS9KZdhfsg3wF9lLPR6ivSIp58pxHP6J71bdjVnZQV/vr8w3PYxGO4o1CRW0KPQ8136RU5kDmL9vF77gKBpadtDR14e3+ioucSC9iYMoVEiQPbeAoWoT9HegieukTxnKIe+XFDXKCIrvACTUyATuOv8uf3RHUTH6AKb24ygUftRJg6lXDCUsUYJTKudKwN3ED+1HUrYLpbKM8I4SfDIFjT0fc8+IFn68spaRe8/zguohxs7WY33/d/xJwyhQyxG6nIy800Bz1UWUknjOBz2C3H2cm6LC+bXbRLejEbGwiILDJYyaFsTdWab/Y+WW/9Ikr1aryfjwRfZbXcj27/qnn8m0Kr4sLmbc6HAGXn0cjbuez/kWr1zPwPw1sPexdgABAABJREFUrKv+gGPN39Pd1Exg5kxmcA1veRuO7c8iRQ86aG5owaFMQ7/+CMpqGSq9gvT4G7k4oJSmTh12i8iKEx3cVaThDgx03TCLfaKazTlfQ9BJbomcgSD8B8QyFYIALuNEWiwGEjTFPBuQSVh3EiKw2qzkhosGpMZw7tvbzTtzHcSb1TSHlyN3N9MkDScy/BL3p0upj7iT+ppaJgAbL3Yx2G9mphEEiZ3PDnUzMziVZ15/AMFVx50by9C+9gYbUqaj1c3A8sox/H6Rrz4c95/wVHYWo7dW0hgzgnxHBd4uO7WX1aQFHMI9YAKdVyvQB4to5Zn0+aLozxuCp7aY8ooqzp/Owm3PJ//wZ6zS5xCvzWB+sg9Jtw13rxOXzwRSB1eL3uCw14b8/Cmy8r2csXnoMkwmvqsVtbqPS0Gj0Izw42vbzfjWvYyxfUe/7hM2qUvZq9OwIj6Z0Koqpk+9RGh/KJXWeGTuNvLSPOhPnmG/OJNE7QAadG42twYSPfwSGWMSGRbdRY1VS2J5DTd75JjP7OHn85EExHno+nUnWqkc9Z234bXbUMUNxRKahNPmoV3porhxC6sutLJctoWK9JUYQ2aw9L3VJNwzAolURkFWMnaHHQ8K1u8qweyxIdPpOUolvpgPmdO4im21t1F3Xk+FN48pYbmEKBx0Ofyk1G3HPTsfwQyhsit41YH0BhewPaqID5uv8vJP8YzNjePXkmUczD/FnVvslG7s4OK7nyCTx5I/MJf2JgdeiZYzQ6dQWFODzlxF5fAQ5v0YRWbJKC4vfJ7OgKGUVzyLzNbDsMJncZZX4O7sQCoVmGUyItMraa1NoPjCEU6U1BAr8/NESi5TRy5F4+miR1Sz5JF7eeWbTyjwXuTir3a6InLx6sOZXfTP8+ivzViFgmslFSyvU/Lc93NpDxJp2NlHb0IcI/xdKMVOorsvs/RnFz/MKyXIWkCJpYMmQY02LZQPLqrJ0+Yz5PZUJJ3FOJU6UGgQg7SkP5JI6zY/Zx//EvE3KVdsLdw6YyrOK0f48MLT5FSZOdkhY1zAjwS2n2WNLYrjP23lkRuHATBkyBCinEc5XJ2NVdZDjlpEkhNCf5UbZ7GPRVm9zMm8ibzP1rFqx9eEThBRjLeywKPkdIAa0SmhzdbPsMuv0XgkClldGcFvvsvU9Ewyqj7ArxQ50WdllkZNlijlXFUfjV0u6KhCpVT+RfT/O7L6f2lN/m/ucOP1SmSSf26m/dHK1SAI3LED3GnT8JtG4UPP83EP0aUM4LakpQTXbWWvJptqRT+vaqPZH3cbe5pUXGhTcKIhiokHZzErroOYYZEo5EZCbrtKqD2X3NI+ctLcSJJMHHU9zODwEM7r9NT3X6Gup5a7xwznnpxl7Cs3021zXR+QygCvmskfUUha3zrOdbXQWl/MynE2Vg93kSFx4BdEPv3mDgzhTt5Y8jZN9kGEqlu5MuohPJnjKSz5iaDzR+k49SDnzHYSy0pJNF/GMutXTovzWGcu4PuTNdzy3jvga2Hd/GB8NTYqFEqi++oYd+swghLkBISp8NvtuJua/wkzYccysqofoaHqCxQSEUXiMOKnTUO3/DdqQldQk7iVYz0T8AlRzC4KI736FK6YBDqUJsRFlQycGUbF3Hm0uZ2sbDCRYHSTYCjHqy3n94FzORFnRpT6mR5mxNxlZln5Wh7fMx9/k59TbjgSU4RO7mdYdjCDAkeTk/sg3LiU2TvaeSU9kyMJiRT17qVVsLF59UG+2vI7Tu8pZM+M4OKiFzHrR6Hwm+iUCDSoRtETBoaAdvr0Fnp708lxnEcfX4tHKuVSTAZThtowyq0EeZzIXHYoPs9F5wxKJBGEZMpo++kcY86Xw4GvKYkayT3hUJd1B5aoDCYWjIDqNvZsOMLO9cdY/NADSEQnRtds9PYHOHegkvYtPoR+HT93jaazcgShSht+XQh+awdSAbIVCiJGFlJUEEhPaBCXAkfQMnosV8cs5lyXGac6jJO3TwZTFIIgoJT6WDlrJlazBqmzH4XgQa7RErtlMMMuDCXtzBYa1G7cGj+CRMApqBl3MQ3pL7fy23udXNryCtnF4H8/jeYz62hM66DP9RnVuz7n7PFSUhUG7NTS0+GhtM1N17AQTDo1aampDMzNpl2noAUtvVeb8LsdBFkuEiUcxnry5D/No7/KK91utEYVwwN1yHwitqpeSovtvH7iSe6uS+TsNR0b7rsXiyqYy8M2kNpxkQHOTxjhX0dMVg9XnZFs65NwrW836exgtGwv2kei4L5oBH0gCkMwSksfAy2riZgQx+EWN9LIAL56cB3rYm5n/sjxRDWuoKLwUZImP8RRbwrp3Qe5FBBFTZ+Nq+403Ekj0BoT6VFkoTl4jNiGvVBURpPET6kqlNV330uE3snyV9YwwGlCqSymLViN3NFDbMQp+uIewzX4RgSAivUA5IxKIH1wJJLzP3DR2kh+kI7GLheiKGLtauezt9/k502b2LR58/+WMst/6Uz+b/E/0rpSjFrObPud8UWpBBhEKL8AWNH2j+LNik9Y0LEDmeDjEf+PyKqlHBYWc8F3kZfFL/AD7wcmUzjnW6Q/TkXjsqORSGj6/HcgDa2ymvStn6HslOEOiqLX5SPz8gzCO+sZNPxhbGUxGDPj+OZwNWEGFUN1fy85kymkVEviOeFJZXPKeF5wfIfcZ2Ssys87bU5uqDWRuegLvnr5OV58+3bUgomPHpVSa0rjUO0iUuNNGBLeZk7bT4Q7BjM8OIuWcBXpFy0M6fHzxfnt+I1yNh638PXna/hSamPZrCIyIiei1nlZ4/UzNchC74ZfsOzcScJv/+CF/+ARLCc/Zn/zXmZmPECCOpYI1fVGGoIAAiICAlEKC95eL5EffEDH5o3kZUZjsynRy1XonS6+0n9LpdTACscb5JpKSKwKo9Lp5XvPdE4Oy4a6Oh4OCiPKexNivYk8p5lL2aF0IsHbt5uqpqksXDwDv0xOUkwMzSWd+DYLiAFSar2NJCjiCDR3E2Tu4ZUjDYjsICNUitRhRa3SM/z+RTS7GxgVWY7o8zLAHEW1yUelJ5I0lRvL7Yuor+0gr6acdvtVwvVZyCSq602vhQTcfpFjJ0YQmDCRjddup7CvmmvuNnJ0BQws6yYEM72FI8Htp999fRFfOH0pK1auYfKcCjQSDzF3W/le1BKzuZH2wkAkmh6yNe2Uj5DReyiBtuE6TOu/ov/sYboH2jFJTdh8Z7AJ2Rj72lkhFnPCOpehmibS6kdAchZ5w94i7qwVheJFFny0nob916tZcJrxI9Cki2RDYAsPrDlL9KlLfFGfS26MgfqYG4geOQxRrcZSthhl71o6ks5gChqFUS4lsuJtfsuaju1KKZ0uPfkLT9DafDvdF1IwbrkIzxWgPHacPGcE4T6BrsjJyDxtnIouZWqQGdvH+1FnpCEL+OdCiH/M6BsaGsirP0beGxKWhBXy6YfvcdLnZ9CAscgjL7P89cf4ZaqIf9hDKFwKzuz3cjH0OfqMkdzU1MptifNwS0SmNz+IrdrJh7ptDLvxEYYJidT7rbSHJSL6RPa2rWZswDxUCEhRYfZFctHXxenuA7yu6OCEbwwyQeBocy+zLrxCmNXO6ZCZTLnyMAJ+AIb191EraqhtqMVek8mdY1/g+d/ep7omCY1Ngspo5aJYSpazh5gBMs6aBjPmdBDnYiAB0BpUyK2XSbeWU2IcTvn1JYAQjcDEW2agVUmJPHSJGCQk/m/Q6f8tSP5v4BSMn4TD68N3oRjd4MGIEhnmXj1WazBaTz/bJj/GPZv96GVatGOXcGXnKjI1HVib5NwZsZE2IRBBAL8P7mppRbjyG/6wHCT2DizdzZyXXyao389p4UmSk2z0yw9yYvxnWD2BHBz6M8Mrv0RzqQDXgRqMb8ex64lR/2ms/b09OOKHkp8YyAOVZ2jVzEEeEk6+7iTDdVoITWa9TUHIzGcYqKykds8mnv36BE8sTaZwihL9qadIOS7ybmwQX6YN5+3gQ3g9zSz/+ifcLjdCuIkHP1+N2e4mbNAE3rZUMEzXxSmfG4kqhIstVuxyN/cum0vAvLn/PDhBwJtawOrkPIINSXyxaD6znn6J2Ow8Ro449R9vkSLu+wRvvZ/uzIfw+7yMNMRjDQmm+Uw9IT0uIrqOYJJosXT7afDlc7VpH/NG63kkN44hb+2jw+KielwD93bU4zEOQB5Ryi9pN7D2p6PIzr+Hx/sBIHD/kifZF5nC4t9t3BF8N8pBs/BcKidl5Ec8rvMSbgin8b2tKJRpLJl+mBO+4bz+4bvc/O2XtLm9vPpCLAXNPkK9Oty+bn6JnsFj1mqC1/6IrGgCG9wGJoeNob9djkUio/SCjeTsjZwPn4HUfQsJtlBkopQfWlfzaP4QSpsdSJxSIvOCqG/uw+e+TgoJgXr2bKuloaKej977nE/ffZ610xtxl0kwOqqJMkiw3TCIUe5lNPg0HFS24u+9iK36Gn6DghPKZgYqWvFYz2ByvkRTlxPb1ZsodK+kLP8HnlVJsQsiVysuMrywlpUjb+SuV9cwIi8JdaCFpW+MpDX8OwSvlylX9pN4nwDWBIZ1y/jhWA85iQvJ4jS1/lxCVDX4Mm/mQs8mBJeRe8wuOvKWMPSPNspvzCU/EV75ahwjjAomSBuQh4aDICBUneQbXQPl3jZeeedebn71bX4o+x6dfBh35w6Cz4dA9niY/c1f0+mfyiuB+jNH8SHl3MB4IubdRbjSTnOAGn/Qi1iWPUdDxA1keh2IXpiY6OFN8V6SU13cf8LOq4p5PHq6hyC5E53QhmVwNfaWXDqVVrzDi8nZex9txTIaX5nDBqeWIflOgjob6f0N0g9+hvrmYObJqni3uQaXsp/HrhzCp4+kSyhi+JWP/yJ4P5DV/jlNwYNpsSYTOTKSHFc/0YF+3tv+CS8u+Qy3Tk9IylAKD2i5UfkFbmEtIzN6iDzrxnuzG5lCwUmcWGR6Nlr7qOv0ounr5OTBPVQVB7Fo0SJu90pJLffgeXwyDw9b9N+q0/9bkPzfIlApo/fddzGvWYM8KYmE3zcjCCZmvb6Ltfdkk9nRg/+xaDzbu+m6YGFXagT+q3YMLUbiIluJoQ2boEUWHkV4ZwW+ssN4FX7kXi8eIqmXVhEglDBQbiMxeAhadxemtiZq0q4gF6chSRhKcOB1QzBx3x6Esa+DVI6ruhqfxYLo9eLzerj243LunPsCB9Iy6TBpmdS8iU69iRMJ48kt3cvClA2MOu1kmmkwirsWMOuL57nn2ffQSEUCFRIEUU6r6QpdzidY6+6my+FFGZPK8um3obI5cZa72d73G0p5AOmJ1+gFouu3sbd0LrvvqaTHAvv2H2fi7Cn/CcPg4NFYuh1IpFLmvfwmoZExmNdvpDV3GOnZ0bD3FYTSHZRlfYu3rJbMaZNQKLUEyNT4EwOpru3h6IA3MB64gtN6ms5aMx10cOToGealTGZoQhCnqzuQSKAp/VGs/XZSxSpWP/0w1U095MbqeG3Vk0yKvBGpVEPkW89RGDAMnawP4eKPCC4ZO1RlNHoMdAuRjNTtRZ9whg5/IkmijreXPkTqhGlEDZrCvc91MyIqkDu+8OAVLhN0oAuv1oNfgLC+bgaGSmjXx6Kst3EppYPmExF48nZSeM2FesoLhBbq2PTcdkRRDV4/YwaGwMDrNeLhueE0V3Zh7rTh217HjYPC8HlEptY18KlMRm+NnCClE1XLShDvQWkTedqpZo9RjTjaRsahzzixaCYU5GBuVBMQEorX9ghdPdfwyxNokgdh7h7Dhf16Bo3w4qpcyRvW+7lD0oTK42LH06Op7JPy8LereOflUyz8xoPC6+RKQBCjEbgmi6YiIIzUASnUeSS0NLWSleBFFRIEYj/vKb7BiZz57jY6ezUYXUoSbV7OyC1EJ8tZPCGJg6fq0KfqSTm4G428lEkdJWhvn82xrWVMPiQhU/Ym127OxKfoQrqhA3ob/tN8+sfo0KfR3a9FRABEdtUf4OmDX7B09Es8I5Fz5xtHuXfyK0hjrrK+II1yWRAf9ZxDUZfL3CgXQd0+3nMJxI0M4mTXFLxZEnTb07mYl8xQdymyIbdTZ84DPYRduIbUZkMUQe7UMcWvxJJ5O/f11iM79SHVOQ+hcNmxiJMZ0PYqAD7RSI8mk9+ix5PQtZ/ChFaSbpvDiU0lfPXc3dz14Q+YPCeJ7tIS23+CNZPyuLNkDAlMpyr0FG2lW+l8ZDSzvjvJiZIIYi33ceJoMzfkv8afYXejMnqJTBRZVdHMXIWfloJIavrrcJ+v+1/Igv85/q1IXiOTEvbE41g3/0Zo+BkkH8TxwW1f8NS+rwnzdhOhULK7v4yqwMkEiRq0jSfR68PZk/Qg90WU43S30qpPQJPeTvD5LSg6rtKnDcAknUuAq46Fjl8x6BxIRJH+Ib9iUV+iLmgkm4sf4tbcNHz9EsxCAEqvFbnXRmPxJyQMXoZEp0OQynD74PQFO5lTllIbfoId50xMTE8kwt9Ko16Jzmml3fgNeNVkL5rM/aW55CgtbP7oQdpqg9hy4jxOj537k06zpvATbnEc5isU/O6P5IH+buqGjyRk959IPD24A0bj9XUh67+Apt/OzYcLKUpuxTUglLqaHkIt1+2Amxz1+ETfXxju3XGQc0dP8bTyI74JjKY2OYfbEt/C1S8nuMWC6dQ3CD4n1n4DuBWUlJymRRxEUOt+Bsgj0YUakH+1E/mlNlJH5jMpsY2SkBsYIC2lbf0bvDP9aVSGfGrtSRxp0eIfC6+++D0Jve3sunkq/in3I792ikOVedRs+4K8ijZCXzfSpCzG89IcXGVujFOcdPaI3Nb8IbKkBNLaJ6LpgSMBf4DvKgfTi1h51z1o9R28+ud6Pnh4DVK5lPsfu4vXJWoG6mFL5bNMKfgWv0pNiNBA3TY5Y57JwbblYeJkdsw9bYhnV3BDkYPhFyaRd2wrjvGzGfX+ISZkhDJsWBRhShmF57bhEduRFY5AX3uQgWs+Rb3nV+Y+tgy/z0fFlhco65hAWugxDEEC80M9JNZdoC1YJEJ+nm9KCgjz9RHbtIL26BWI8f10ek3UR36Bbv95glN0xI5MRdX7By+HRbCfGXT4W8i0FzPMZuP1Jw7z3MdP88eSmbzz1I10HL/EexRRMD6e5PcPUKd0IOsNQSE0E+J4g07PNCwh1TwddJiV8jEYpD+ha/aw0ldI4LbjePN+Zs4NE9mnbkYpJOATFMi7LlNasBSFJIW9y+4lPNiARdtKe2QSMpmSk9/tYdgrDUgEO64Ta1GlT4EgE44vJiAX/q45D5k8hxNbrnK0oou1ai8jO2xMjp3OuJb9/PxaK18vk7Fl/x0Mn/0An195m/a0D9H2DSLaakNeWUrTbDdN3klozYdJ7M1E0FRRO8CMaFrMXtsXjFCepnXLGBJ8xykf8yD7ne1MeT2a743D+XrijbSe2cf3jqM0pI9gUvR0FB6RaQPj4NpXlFd/hKb4AwSXlDPpXt4MH0ft6dls//gd9OF5xIXUYKCHbEMl/X0KzHWDyFa2I1EH4vDrkY2Ywl2+d1D57Hx6+408llHKlZjHaE0vwjsmhdK+VtLPtaKLj8XQK0WhCqA3aDsFl7QQoUSlUP63yTb/ViQPINVqSTuwG8cXhVxIWYBXYiJwWy0+hwfJqRWMKd6MZeBnXC09h0yiJZ7dqAPu4HNXA5MHB+I4n8HeH2OZEbSVaAXYB8+itrmGgdeO0fFHAO1eAwfmTmXIFTciMo7YyhgnjiHVIKe0dSRy0YGh7yhDeruJcVTiGdCLYNIh0Wq4uLcSpDJkKjUKvZ2G9BQe8UpxW+dRcHwDmhvS0MVOw+Gycso/j9wMAZ1UQmVXL5LkNqb2J1AZtZ9TvENq32l+HzyWhTsXITKP5MgReCrN1Bw4S+R4PZq4aKJ6O0hoPM7mjFW8cqOPLz19fNxXhyLQijDnutNkt7sD/z+QfF1zFS6lEz9+In1mbJ5rSKy3U5C6iYqzTURNPkNkkIv8kFja3zpDvTwRQkX8Dht1Qc0otX2kPf4iHR8vxxDSi9qvojTiJFcR0f+aRq53M5nRJh7QutDfNw+HX4E+axJbLl5g1Mt/0Ln1CqtGN+OyRyKRqcj++Vtk9kZ6D56mda6fsJ0uMg4sRRjzPTKPGo+g4aOAQMJSvRh2r0Ih6Llh80SKJ3/Cc1fW8MjSpST1ynlv+RNse+NT1I5Wln25AVfBLcxr+w5ZdwuCbAZTZ2cQr3XB4tvB5+P8ph0U6aGsV86bYTacjlgqj9ciESDVcR6/P4Imh5txk27AY+nAXfEDEIGk7RI1py7RXNPJwHkjuKYcS+2AEKpkN6HqF1CVnMSpmYslspfucxXccWQlug+m4KwxEBvtYeOqX/nR2MHihl0MT7TTuesyW1puxS8sYuKRjwg5epyEKe2AgCvlNZKayrnvk6/56O4Z3LLwe9QyP4umPIG0PpyAjChSsy/T5RXI6jqGsfM8bslxOuVTuCNEy2h7Dd85Z2EJlaNr9tFFBDnBjxLQ4+NCWBW3B+3HUrubIJ2UeJmSuv6TyErP8FJWOHUj+1BL5QRcq8c6Rc3h4mGcOXULA3JkTNy1E+bdgrznClK/C1CCtQ023kFOVx9FjnIWBg/ljr6neKqogJjKt+khnF/vGsqC7z7nSvFelj3yAclIqHOcpTn3LPXxryL6IKV9H+lXltI39H6C2vwoUtPYLUknSP0aXRe2E33fRXrVAvpDVtrdIqawwXw78kaQSAjNHw9X9/BE+xqsigkIgoBMKaXCO5p+YwgykxVZv4pP+pajulDKacVNRJgEsuNqae1PxSIEcUI1A6ldzuCMzVTWiBQfLSb2vgS6wgZzaehnaJo6mGQzoXI/gKnzGJ7x0zhrj2WHPZq7p5rI7bvCJfk4kmKD8RwOJepcIN5MBRv/Y2/sv0O2+bci+X/0ivAKeSyY+RCJlVb8Uj23/VzGxpvkCH4BeUABA0clM3TjSDrQk657hmdjRe44o6PT7UdBJkZJMyJgaC5HoXmcXnUtAcmdtLYFEq1PJ79mP+USD4aKBu77/Gv2zwskf5CBnkAjHZGT8Y5wIo9J5tLl+1GrY1EoFEy7YxRSiYxfftpPbH0Xga1q/JF+vGd+o//kMUJyIrD5tXhVA0mw1eEMieUXs42BgS4UMiV5lbGE997LnqhQtI4mRH87wbYaFhv+pE1Mo8dppmLB42jjDCjcAlmtzdBXj8xfhlMRS4JczjrZLO72nwfh+nHrPONg5BLFXxjm5uZSVFSEPOc17u7r48qDw+ld2IMpyIJiYAj+7c10dDooM1lIEiEnNpAzpzspSs+nKdWBU+fnaF0o437awYkzp4jrqCfW30if3MicuA9wt7s509xO668WAvwe/pyrxPvUl3z54C7GSbRsNblJP38IQ04GfZHvoVBvo/XwJhLrvsUT2U/3TbM4bDiMKLxHrDgev2YcE7R6VJcfpzzxFirjZxFf18reU29zQ8xLXG7sJcNTz9vPPEtVnZk1az/g5ocfJyRzKAvvCEWo2sPxgfPwu90Im/9gu0zJ1cQR3KpI5rc6Bw1dZUwakITFKeOF0jZOJQiEJtTye/tRCvfE0OXz0X3jWvTBWQTbJRCWg1wqwxRrArWaKTPGY1DJOPD4VnwyOWdmFHHY7WF802z8vy0BQcC8rgL3Q1O5dugaw/M01Jr76Eh+jMODEol49jOkd4chlQlEdhdjnZuLw3eZrvYArmoG01kYg76rn3nPfcSDV+/ggV+7+W7XMxgvGFE1lPPErt/pVoUyvLGCbls07so2XISilZgJkNfytXMEy8T9WBckMLDzIAcudpI49VaCmhKQXnqFIMD/XDfun/dSLphxeEHa6aHfHYBMH0LBhGR2nbiP+FaRBqUdvbOYUVM/RyOX4vKKSAT/9Q3Y5DwUopOGJwyAQJTEDIKTOV+foHjZMtqv3UPJADcbHk1iwQ8ruPntJdy/6Ha6mtcSNaybRtGL0+9jcssutkx9iMK+GiAKsSMUebQGvVtFfs8xWmyDcKkiSFyxhMnP3UCVr4OAsmQ2fNnNlOy9YNRTN3IFblHFRKOUppqDNHdu4sLqOgIHKZgUcBJfgxKfUktJl5bFg/vA3keFsQjB0UuPX0GApJsDfdM40bSLBeE1+C5u4N7sOAa5WxG0R/lGcTO1h4fjbiulKbuJuWeexpv0HYNDnEjlfvZ4rhK7H8r2b6N7/CNMzTT9t/LivxXJ/+NjzqBBg4isOIvPm8Kcgvf4Ze8iHEoVHc44BtVsxHTyDcpK4+griCY+vYl9zfW4hVaCUw4yeXgbuj19CICxPZWTYW52OWeSkFVHakwG7S0ZLNj2IGOVfl519yDGDuOkNATDtVbyTTZU3Z181hVFfulhUhJfIiTWSEPDixwu7WbWyHR6jTraLHLmJCfyntCNZdJYlK0t/OYLplDazyBZCXt8oeytsXFLu50mg5P0dAP9Xjnt8hCKVJv5LHEQMdJUvKGvcSxTTea1Hylq3sfFgWkE+03I/e8yMSqbo2HjUTvu5rRzPGP1t5FcdxBmv/pfYrhz504AcnJyaPr8c5QX/SQFT0FlfR5VQCy+ha/is3sp31dLnUlD4vFWzrUcxUY0c4bPoqHXxk3rD/Oo7TkS7ngPe5SJiMYhRHWeZsMNv2NZ/zYZvj/xe+CDWW/iH9pHybnPCM7qhaszWRlqpnaPGm/GNAr8TyNZN4OY+mOcG/4j55PqmFM9HLc7gwcav+IJYQcrOuzE+0qoimnj8LEX0Sl6SbRe5UVhEjNLPWwfcIk13ankrX8XfV8OL933AZFBwcz56DX85w4hSHz0BOTh7Pdyt1VNSqQDZ28DGk8oAxU20sJMvLTrPFfzUxAHB+E5cBpf02puMG/lWvzDePQiTsdB7O01JM3e/xeOermMRR+MYVjXAB584026k77Aon8TQYSAECNSlR5TlpXaWS/QMnASDdVH2dCp4Klxg1GUpGI0RVJxupQpq19k1IUvkHTXIaeGfpma8yM24bBqcAVAwuVPGFLxG2fSNtEWvYSfb3mPcvU40i3fMG6dnOV334bKGMzCxwajlM4nUFfHnrPnqcl9CWXjEd6cEkX/942cit7FlMCdTM8dz2n7zwT0ncGuSUNXeBNXl5/i1bwgzJ+9jTMwneMvfIxzSw9ysYyNE87zrVXG5doG8uWr+NK7gJaFTyEdMpKOvK2EN/9Eff2XmM0XSU2dAM83crKsh9ZeN+HlPxDZOQSpBTouOTELVch87Wy4925u3rKdT7bs5OW3llLlziFTcBDo6mK7P5Gv/kjmg7EWOoI7sLZoSCvtJr/rMIIxnRlnDsOYp7F99gim/jbUhU+z66s6/D4Jlc6htEWuJbJ3EJVRqRiO7KEk/ltEtZW+ia8RNjiYzqMCIZESXBlJhChvo7z/KMV1LvIvbObQxUoOjRnE0Y2PYZDeQIK5FVv2A9THjcKIj+SAIQxxJiMN+xRNSgUXVLHIWi3sM83g9UsuPvEP4+k7khjslmHS9zNv5sNIz0/j5NY9DB4dTFPP1v8WXvy3Ivl/DKPRA/pl+CQKZi45wa4D7WgixxMninS2H0MV5CEmqYVm+UACai18HzOVyIoZKLz9JBsasOkLaDUNIUyayaja75niP8p3vilMePVBrr55iU0WGdvfn0bbkQx8+fnMnRCNLUhFt6jkwx4ttxx8mZH+w6zY+QfTFucQnQ4D4g0IgsC0ikeplGUjBkF3ZAy+WjXH84t4PyGHNLGfXY7tVPjDOKaJYGxAFeGmRBQOP91demReKVWBxYw27YeWFUi0U4jxzKI8ayhWbz+hslvpse1G4xKZfeAPtlY20PfiR1zrWMOE87eT6vHBrFeu10T+D2LKlKm0lR2hvLqauCWPUxuuQ1+QB4kp2G0daHRyPBIJA8YlEBSpxWVxEbi2mORhKXgFkfqqMk6qlyJReNCc+xKFLIavilPIK7QQW3Eeza1P8uRDpWT7W3BLBuBxniCwy0FkYD39S9Kpa9dizLsdwRbJ1jGb6DUYGFe/h4RLTkJPDubT5N2sCJ9OfGAQt1x7Gc1P+2m9N4v2yCayp9RzzqVgfsp0Sk7MYOfQx/EOvo+Yi8dQVYhEUoK8Uk3VhCWIcjWZW7P55asV9K0rxeJREVt0muSIwUxSxmPrPkdazXqq0j7lhvFQVtHK8CArciT0iXEcd93NQcmfPBmch7pqGf21GTQX9uGwV5OcWoDX4+bes2cJCy5HgpaZ929CFHcgSOXs+G0bwuGpBOdAm0HO0KgovtgdS7u9H6vuRgakCJgdHiqcRkKDghHx0hw+moaocURtTyTu0DUSPPfybsFs/hQzWJnxCk41PGrNJ37g/YSJZiynlCwckcGi8UbCvzhC4fNVnFqSjSCRYFi8lPTGcvqiYig0avjFInL2aBgXxjiYNeVR4v7YiuWH3bTMH06nMJwQPGT47RzwOFg+MJeA/T/Qqp1Kt0OJ+1os8+SzEEZIqeopYqQyFqf5MWT7d9JbNJdI50Q8339P9dhJf5VUiiIgkbJ91Z+4fMcpPt5BqDqT3sBctoScp9vt5NcdOyicOoMHn1rBU198R5PDSorhFPd1FuD0wrlVFYQnGwkqkuDyCySFDeWqIx7j/B8AkHh9WJ1uglRqJt5s5+sL7bQlZDC9dykFVy8R29dAv1KFTnibrNZKhiX10SDkciHiZfIqprGyI4bs2T3YFVrWt0YTaOkiqnAA/nd+4FDlJV5suZUhYXFck2ayDjlPN54mzTAcpFqupn2OahiorxzFk1FA2+kQdEIvZhkU1/kZadJy2XWSQTUraAmbgF/ipXXbc3iLsvD7W/+XH5T6lz4M9f8vVMoYFEIe8fGPE5UaiDrnRmav7IX+HkIte5BIICDWT4P1FjTyEmQSAW3eRTw1gcgvqKkNvZ0W5RD66wPw2wJBgFlpbbQ1/EqI0U+nPIgfoh7iUNpaxIeyMYep6D+4DW9DKcVeL97hnRweHszd740gNF5PZXEzerUMhVyCYtFmMnJmMKVkG4rTf2Ct3ktJnRuFswdX91vc4J/Jh/I8nmxtoaP0KvWmVC6Vh9M1tp22pl8xvGRHtWsigV/3UWuPIdUhIb3fSUxLM5GuLEJ6niL3tIWJR3eTUVuNI6yQ9NYb+EY2iZ+Tb6LR0onL7WNvcyerKlsQxb93ox9SOJiM+AgiA3V4aUc+VkKP4SK1rQfp+dJKV/MRzu+s5c+vLwJwtc9NQv4o2s/uYtfKYyi7tFTk/o5h6DzM0dHYpVrmPp1Pw+DpNMcXgm8HPkcpn86ejcwtoNS4iBGCGFFXQqTfzaVD+4jRBpB4tJ+4fbvQdTuQOhPYV3aK0zHNnA4dCUCHLpHFo+4naWYPSdOXEyi+RkxUO3eMnsjKSBUN7jD+PN3L5XO3ofZ+SNzX71Eyfwqzpt2DW5CwfNm7JKgtvPPsVGZPOElctMC+hSv4PGUMg848x7BTS7nYOo4s6TYeNW6iNriO1T0VhCS5+MI5j2uD80lvS+D4mgDOmGIJe3QgFTVvUtd0J36/h4aSS+xpTWWNNQvtLzv5btmzPD9pFH5RoEUZT7/fiJA+jayazwn4KYeVc2t4454cRJWMNKuVQW4Hc5XgE2Gr5kGuaQcQEtZDZYif+zNiKDeNRmGJQtEdwDVDBmelfpK1FxGlEsZ0H+b1wgf5/JY38AZn8ufjM9HpshjzzRom/7QKj8ZPemcNQzrPMbXHzdWFwag0bhRxX/LNw4fZXhKG/84p9Kqz6VCGYC5cTtl7zxIo6yL58gl0PiUDhmmJXJDIMbebNIUKqxP6FdEEmE/gXXIj2tWrcOg0CFIpXqmcph4lp39bTktLCxv2Xsbl9uCx9QICCq0CR/5lfEIlkYEJ9Mu7aPlxLuteeIpOcx+PPbCIXxsvcUDm5/nZZ1jrf4d56QrKhBTqLLV8b7NxZ4AEps9A9Hrg2KdoRC/SV17i5JiZrH73JEPbahh8ch8Fh9+kxaynyuznqq8azcfPUlJegu/kl1jP/I4jI4B6WSiNLj17fz9BcNjN3DzwEIfznPT7lSjdXhoVWpCHUDt0Bd+Ej+O4TORwxGDMOjnR8nMU9HxCWutKdDmx+EUZ3ugANql1SCeEs17rxu9y0R4cTXHiaCr0Y/B1nWKrcxiU2fkiII31Tz75v9SPXhD/8Q7/L8JisWA0GjGbzRgMhv8l//i/O+bPn4/D4UDt6uSX3Se5dnYtjyxZh9LVwo65VixtGvySbvShGkSJHKk2gC7pMBwhFmTnS/AFhRLgqETuC+WiZza6Ya0kCAuQIKNJ2cbEZW8gnfQc991UztCOUQwsSGD9y08QkpGCe3IyNLxDgiGSoiE76WmzUn6mkYETkolPjKWtrY3uFhuyzSuxazqp84ZT6Yfy4EpctT3MsNzO21k+ZvkFWmquoCuYwNoDtZwenYTLZqXrmyeJemAIda/soW/mnWTfuYi9ZhGZtZHAHj9dsXFkb73IrvqvWfz9Gmx2Gfkf70eGn9yc93B3zEfjzeWeWVl09ntZOmkgjZV1tH9UTPD9uagidH/h6Hb30tDwIybTDdhX9uANUqOdkoDPKSE8PpDP69o5Un2NuWUl1PaLZGVPw+hpZ6R6Kx2eOILOvYk8JI4fO99D7rGx8dgLyE1xrFr1I9IOO6rqT6GhGImzBx45S2/vJdQfzKbL9yMubQ/2ob0kNKzk/IkCwmMriFHUsi0+nHllF/DI5tKlstAZaORydiB3WKQgQM1JFYdbq+nt7mH6QzdSF5BDtL2NzyVWjvUn8KlvMQHBs4i1a3nkxTUAvLexGL8o0m618suqr7hdsgOVaQ7ehKFc7CphTL+SGW3hLEhuZ0ZOHCslcm7cchCuXaV/8SJCl39KYGoMTWMms/SqnNXh27CEZ6NuHIHqrgzSDTo6Sg+RP+k2PB4vCpmMiw/PRJt3H2LHJtYWjEGBjPCvT2HIHow/KvT6ERrJbuKaDiFNn0R4zni6dYm8Xd3McOv1Q2rqpnLG3zQauUTgxJariEB1kozZEU7qfq2hPygJnwJCVj+Do1fkydaz9Bv9BBKBRHBzVgwFr5dfYkOQpC7lkhn6YpXMnBpEu3Q/zz7zPYreeoxKNZufvgWpVM4JeSz9fanoesrQrdmErLsT69L7EdUetO2rmZ67gk98Z5kz8UHO763A2e8lVGjC+/xSQnfv5kyjk4UzR+EXPZiR4F2/iPKaPk768khIzWdg2YcYOnfTprqFpg2nuS8wEDMCJk0XX7w8jwG/fol37iY8u27n5IT36TQNQN3Ygbn2CvG//Ux0Sz2R9w7AoB5DV8lWfo3MoSApkTyLH3fLBbo882mNr6Q5NI3Ahj+4PPpOQl0ymiuu8klEFg8LH3O2cTIlkWmU2pw02g5T5+vm3Y1lvPxoKQOuWLElvo0yrJBzPXIOBSqZXH8SPAISWQCZVUu5bLqXvj4LlgWLMUkFrl2x8rPKgc4l8uK5HvqmJ+EwyGk6eYHfawXGFkZzk+0yn/+x/S9y/3/L5P9nefnfluT/FjPSFWz9eRUl8tNIO+7h6fdfwOUSWZdUgWXpvYTu/g4dKqoGvoqrKRhT7xqkLRcJMPai6O/BqxlFc2Au4W2rcYWmciR3LV+5+jjw3AMMn/Eyj4xMJUtmRR6sIjElicNdu9lw8U/OtJ5i88zfiTHE/NN4wsPDWXX2FIZP36fMMY3EyU8S+ZGBlAcep88ppafShNKnwCt42eb20z7fz2B7MpqSs8RmZdOpUdGFhjixGuvGLYwK+I4L6es53NqEyRBBcnAy4pG1VJ8tRT57CpM9G9D1X+V91RpyJicja1xOk/V+YpQ6BoxLod/lZ9iARMp+OontYBP6G2Ixjov7a7w+n5+JHx/h5YGRxB/s4ARXEfL30+vrwRPwOQtSIvFLBSJi9Gz45QRebxCqbCNCpxlvXztp7l60znJk7nDi6WfcypXsWb+dporX6DlyEs1mJ+ETJATe/wrk3kxV1UeEH9qAtrGCS7L5uO23EDvkAJbQQro6E4hrep+y9GNY1H9iMWkZcuJr7G4FnqhxDPIewll9mL0JizG0HaS+0s3NUUdROnvYlDqfGwQltXFN9NjOYHQXkJe3DF9wFjOn5+PytPPsK8sZ2dFDmVTCwhPJxGil3J+o5e1KO+t8Rn4G1qh9fDXyaSTYkTr+ROn1U5miRZRKKZo5kcsTZ/JZSBEfRtRjM00g7UwPPSNCyBsC4qWfEJHgilxKwphMmhvq6Vu3jzPZ6bzvaqCz9nEeOZeNZM6jGMJMTN8yF7WrCYfSRPvYDzH39aOwBrLr9y/RhscyeM5MgmlniCeLP2Iuc/pYOntabayVPIeTcTQk3oqolNEn66I9NZm83yrQ9UqQKC3ITHLizPNpM81k+pt7MdhsSAPCqAkwIfrshARGEEIzojaM1x9dTr5mO1WyPPyCgkBPDVcao0jq/YMo8RLefhm27Nsw6WyIw5cxcsdSEjV+lshf5FLdFpJjowmLyMNnt1AhJCDgZ2ZRBLvae5iakULZ+iUc2HiR0Jw0kselUHPaTlpBF6aWapZeHsvsiZO4qXQn839cDeHh14lv33OIV7pxySqoGzUDwQEN3TmEP/c0UpeT6rvuYnqAHmffzzgVVqpHLCMgYTxJwWG46y3cc2gbP9U9ggSR8qS5aPvbmRn3HC0KDbf4V1IlTGJ2zEBCrTYm/zkdJz5S1odQuSQAbespquI0tIbr0B0ool8ewlDlGk5GrUUqSnDHPUT9L6PRZE/Cn2QkKTiWnRc6kBREEFZqI1XfTEBDEMXTYqm+1MWGyy1MjNBzy/gs3nv2LrZu/Z/T5v9nefnfVpP/K2KGQPo0ctS34fH4WOL8iBc/fop7L4h8vi+DvtaVkPg9okSCIOlA6u7A6tPg7FIQq+nBLwRh1xWCdAMyr5a9vn5Ovf4EAT458WEBCHIl0el6HFVVuKu8ZFac5+rlObww+nnsVgVedT+CIEMq+3sFi0lvwhddz119D1Lr+oijXw8h+uReNF6oy4pDWdtMd4QV/cjx6JAgv3yU5jY1K6obsUX0MrdQh0c1COOMMLwn9Ig4MJtb8Xss3GLcwrmpg3ldVcQctYz55ksI+Jkz0UVqXiK/m8cy+tLLtIz4gvBAFaLXj+j2oRsWhUQlQz8y+p/gK2+3Utdlo6LajD9Nz6xJC/hgbzlaqRNbWxUlrX40emgtl1MUeZWzygkoq/voaj0Hzn76k0fgDIgiJ+Q08x//ji6nn/ayzWjazqEaFI6t2I/22ZUQHQWA3D+c3xqSOB61Aa3kFjR1e5hoyeMF23s8I3uQEL8UtW0LXlGCXGEhpHc/N2W9hU2p4dWIuyBzEQgC/pRoFtrvojluFhFVG5ApdzPbquKdC1m0jNqHp74H84X9qLz7+Pjul3jom8V8/vyHTLrnCfKj2njZdIH9NT5GxmUxMl6kvkbBVL2RZwKvoqx8gB9j+/AfbCc+z0hO1T5sMhWq3AyScoexx7+dho+PEbiwnbPBs3C0OTCdKUEliaDLkEXw2TZEn4hEqUR7+yTaKxp4872vabr9dozzC+jUhNN6qRefRIVHF83+kZ/QHZhO0OUKqos9rI66ldfk10i/tgJB5WO8PpbQmB7MHi8yiUD9IQmBtl+xvlaFrH0WHQNHA9AQokTe4yFTCIQOP1XCi3zTbWTukwUMC/8KjyGJfXV3EtTfjHbsVO68egirR85+Uc2+qtHkSh0EpQWQKvaw26FhvM9JXHgasrpTyBS9CMjZesHOUzHvYA7yI1otJMr9GAKa6TjlRJYxEL/ah8zpwul0MtroJUjqIXrEI+Q4m0EAV/1P9F6uJzk1meNHcpk33I9R2MKpgBF8/1QM9/34LTMmT0btqOeXpbdwsS8UZbsUd7AWiykHx5e/Ubv7W+7Saznato8RQgUqt4jMfAqtV0NF5SXSIp/iYkUAbpmAUiISYWtC33mOdZalXI4ZRXDoDlSChgoGUnDuCaT+Du75rZ/I6CAu1ScgM47DZjrEr/4Cuj3DWSQ5AYgYL2/Ae6UO++NZrIqdQ0snfFyYiNpVyuSoDtr8VvqzMxi2czwSfKjlrxKQfhODw4MQJS7iji/9b6HAf3+SVxkRvx1N47QHuVb/ER2aTdz/1Tf88NAiOuqlmHStNCojiSpbi0Fi4ZQQSZP9RjLV+0Aox+u7RmbTdzhcSbR1LWPFyw/hA1ZtXM+saAPVpT1s+/RH7FVHiQ/SEftIIbeI1XhJJjksmFFvrmWIqo97MsLJiLnuYVOg1eDyBiDFjL93LwhFdO/aQ9CAWPJHRzE7OZthOjX13TZMCgnZcc00tWbQ4PbjsCt4gSjeNJ8n0j2Rk4WtVBz4nNzp68iu/AB522WMpht5fEwiEf3VnIlYxhbTKCobm5i87mH8D8diyVQiutZy9kAwmSmzEL1+BFHEMDrmP8GXqYWy+EY6AtQE3DCcYZ8eZlL67bQd/4Ps+3IxaxQE1ljp8foojp5McJ+Uzroe5LI0YmPcpOcG0zpzAvtvmI2tr4lLtyjY7wJD/HMUZiWys6OScI2Kvy2BMlKxdViZJS9nSNB7qFU1bByymPskIyi89gOu+lqI8TGg/09C+6/hslXRrQgEESReF365ksS6RtKOVIDKjBAQS3feg1i71tGFj/WhSgqkEnqijBjbbcgUXkzNaexfvoObn1jK7E9X8fvie5kTKMGQ5CfE68SLgCH6dS4lJGO2TERrgzl597FhWwmx0SpOx8zFJ4Jl2UzUcgm/fPojM4bY0Di/Z4p5OHfbjdhLoomaPQa3VMnsO8NQvqQiPOj66VmfzI+Iix1LF1NpSCek1UaAzI9z/g6uXOpk/N5JHA8fQ3niSzj7OzC3uTkREc2sWx/B/VE6L9Vfwnz8edIcGyl4dAmyswHUhOvZXjyM/XlpLLdbSUyMIc1Twgm5ipoCC81X5YyyFbH80Xz+aK1n2B8v45F70WXH4vPn0CpVciBrIM6KLkJsUvRiMyk1VYRosjhvGk/Y0c/QzVlAv/ICx8a9j9ZlR+7zIEpkSPwech59kPYpSwnJGEpmaiaN8rU4/B04hSAkLTb2Hy9BqevDIyrpc7fhUe6gOXIukZoHWTQtht7tX1LTn8HQpGtI++W0uTygK+WNh26lJULN13e8xIyXf8Oi1fLCPbMZfuk7aiYWEtB7P9mju9BWP8kAWSUNoZGYjVlsCZrD1ppAticC/f1czqqiP/VH/uzPIMW7jmZDGwn1btKCZJxRTqJTvJ2i848T3noCEbD6pXy2JA7tORkXzMMptw9mTq2Sj8L6aRcmcjpjAe+UXKWhUOSVkBHcM8zMNM86Stw6rtgjuPHKQ+SIPvZnb8SuTkaQWDm1JgdDwRp8wdPROHqIbtoEjP5fToH/9iTv6rgEfRYcx3/DGynng/0XeePeGwjXaXhx793oBDdLb7uJUxU25k1JYlhfA86gt5GKEnryl1M9eCgXrv7O/X4v8cJWsg45WPzVGno8XsTVM/EEP0Jk7hTKb5VS1h+F2t7BuNAcUgdfz4i7HUFUC6FUBQ8g4MTHAJi3lRKYGYx1pwnvxsOk942m15SAXh2K3RLE1znxHNqzk6c057gon0id/nasAdu4Oy0BvWBjgHkvEYW3U3q2m7DQh4m7XcKOX/aT6ZvMOt8U+q7Iccbuokwh4Js0H9PFH4gbEYgvIpyIUg1VoYMw+bcTZLkbuQQkGjlSg/I/Yef3+5AYjSjuu59oqZS+1mZsLg+hnSWMzoqk3OzD5/BT4PqGD4MXo3Z6yQ5cT3dGAF73CEItDbiWPcy2O97hty4r4X4XPkHJ97pUMt02UjZ+Sf21OaQ0LkQ/YTCkTMHZH0PaJBUTah3QdZK+yIdIK++jL9hLeMNm/Pp62mo2UTtIheviUYIlRj6v/JJUczEx0eGY2zQ0pD98/elJoSXAH4ah+CUW2NU0ZL/Ei4ZaaPiGJl8sTpmX1uJ9xGQvwGZV8uSLK3nrvccY//MfLPp2JX+s3gJz59Au+rnxWhdBqSn0tQTxYtvHfG4LxXTtHf78ykjAWz8g9YDXJ1JhqyApZhryKfNQ7n2C08pHuBb2EeU9Ggam6lDqtFRYS9l5eRtJ1QZEn8hn3jW8NGU5OXnZ5EjUkBqG5otMrMdcKBSLccfE0ihRERvYxA3mW3lW6eQ+XSZ1ny8nLm8OpthWkJYTa+zGULwW19I7CFQ2E7Snnxm95xk0cCQxBjWi1M+QTJEC3VDeMS4nPreSumdXEz8zG68sAI1CwYDYAM73OxDVRqZlDuaYrpfENaV0aSK5FtWIRFpKk3YU+bNvoqDpC5Q5YwjwVeJLzeGqQ0FC8xck9qdTOSqWxmovLXUyYn9/gdAMD9qcbmx5I5ElBvNrXQeTfnwfmdWCXJ1AsHkvCncVA7Ju5vcWJTtqB5Pvc9JcOZ7UMz2EyNswjO6gK8RIfl8JG16ZTqNyBI8+vJh3lr2DKdLGBtsYjuZPwOdTkF4fx3TT43zQuoyYljreVM6gxRhIj3cUra316LL6OWqoYE5qDiWny3GHeTlx+mNu9Ryk53wCZslaztwwkFe+uoitw4FCEk/R2f0sT3qIwqREwjqLSfC7mJPfwXpHGo83lLAwvImTnX6u+QtIDRAJ6PNR6N7NyAuDyJ/zGKqyUkYIFzg0fCWG/kvY90hR6eYRJXmKjIEraDvy31Mv/29P8gHxw5hZ7EB+wMzvtz2KeqIe075PeCY3iayIYyw8LOHTn7ew/oFXkXZKQGynXzGCftv9dJ9uZ3Pv6zgU6cz78g/sPjcE5IJURpJGTkvzC4RaymkerSPYPxcx+Ciyg3qCQ7VcPLaGeiGS4vsHoHFYiRqeh1d0ozIaCUorR2xV03RQg+D3En7tR67d9glmlYeYAC0JaiUDX3kG1wtz6IrTIHjdpAUkYfH0MiSogXCFnfbV4xjqakOYZaayzkyBNg1tnxu96KIPUDcMJDKoke82XmZQxk2oLxwizq4jwC2lK/0+ckOeJClQ/1/iVnvyGC1XL5EyZiKhSakAGELCeH1GKNfESIw1p+nUQXBfKxT/yEO3PUTdjdPx3FOI4WwnrgfGI+luQqG7zLpeODzyGncejuKUeQYTDnUzx32cQP0v3Bf6Cz65gmMuHYVX+tDnvo7uXBu/+b/ipth3MUT5UfY6GHjlHdbL05kqdGDIFJnlG8L87AoWXFMx03GCknHz6QlQ0FMqwVXVjHpUF17fbP5IHIIQe5o74sN5qq6N8+cuE6OxIlHlUWdvRBffjYCIyy+AIOHnOxcyYf1K/FIZm1XLeXtPPOPSAzEpC+hVD+PPyhc5LWtgbc0FolKGIqWH7J5zJPbW8Ycvje+6nmVK4AgmOoKQpIwiqPYU1eOHECj8wbU9VYy/62F+r9lJyqkoejW5CILAMzNf4UvjChKTc4H/6Ky0eTldj7+K2ngMy2sHGN38JSIXWW78hg1tEr7rfJY4txm/JhSlNpkeZzidRhspG1fS2xFM4KPxLIxS0BA1HVNgIsjlPB6eR19PHRueX4zSaqPmBiO+C8fIN26hQSxi3oRn6OvsZ79Hild5Eakkil6rl9qcUNKzBYSYIG68oiYYC597lBQn/EBMwFUs1hZ8TXsQTM8hUIc0ciTW+OksvLadxg/O09vbS+CoOXTYwjj8bQlFixJ5pr2P2pGzUPywj6xIEyp/P1u//p3HLv7OeXUarXmjmZ4SCBcOczg2hbzJQyAglVCFgL94PT19wdBi4x2lATFUzqKYoRQeaCfyQCv9gp4v7pfyVXkgN+d8RL6a/4e8t4yT6lr3dZ9y76rq6mp3N7rpBhp3J0FDAvGEuK64C3FZcQ8x4gkECBAI7g4NTTdNu7uWu8z7gb3XOuvsc+6553fPXvf+9vp/q/owxxxzjvnMMcd43/fPOtl5Lp74iLrdCs4bFzBxiYygCNZ313HrsR0EBRmp6rdRnT5Ba/M0rOEwH/1wjlRFLtuuNHGk9FrWOFpIiI9HO2jjdfvn3F+2mgRNBpvqb0M2WMW2vaXoS4s4gItRbjW2rkI8AQvPlllJ2/RXCIXZN34JQ6YIBpQTSUy3MXZEIlHmLf8WKFKISqX6P87A//KQ/5sby9y5oPQwtWI1NesVaDwe2p1RvL/4c27e8hTzP/oUo1zBzzeIMDia8MXM42XFL5idvfz5pZ3RainbX1zOIc81tCEwMsqIwy3C7U4n+tePOKUfzfyRZloEA9bmU8hL+yCQQmOPlOKJBQRkXo4ff4EY0818+uDNlC25ivyfrka6+3Yk4h4ao8zYbBYKj91Gm3cF6lXLOe4ws09u5Li7h4ckvbQ1XGTF088jlUp5qsvMU+4DiMdPpOeRD3FlmcgdaSS6vwGDQ0zVRhcp4ww85Esmr8oN0jIuzFDTookkJECeQft/e92kMTbCrV0YEpMRbN34+hwos3O4JlkG2x4h0NcIkVOwKaJwPVhD5+4/IRwi/NUpROEQ8wQ7qyUV3JY+yMe3FjJ4Now7vB3Lkvu4anAtrae0mACJGPrCcTjVEbzsHcX3p6pY7NbwsvMuRM4+RIkjMdnX4R7U8M7oVVywlTDqdIjMkR1kBHM4MWMlml1Xs8I+nR9CG1Ea4pFUtCPrEdgTmA3poBQJ8GYiLv9DxIXL8Md/Rpx0iGiJEm+agQvGctIOb0Ibewfi5YuI//Ftvr9uEbLrX2BNhwRbfy/X+NT83HOURaESrtZEETv5EbqPnKUwJGAJ9hIp6aFMiCDVsAZ1hJKgfQ09+isYmvomMXXlJH/wGSG5lK0FV1DijyNKCu0BCY5YJYIQulSx8fi74HMSu/JjKL2BqO1LKShvQjhVQ83o69h04iITxiRiPVWBOv5V7JpTRIgEvg3MJyXRzIO/x/DGwlEs6tuIc9DMhfylWNXJDB/aQWK3hQjVOP5s1GNO9ODpCPOKNZOZIz2kiPfg7TNwR1M1r+SN5nqRn7cb5BzrqEYvETHKeIgfmuUoZD5CwgS0MhFxfd8zGLMcWYuOaG0sO895iDLs5OjUvyKN1FG27V4CLXswr7iFwZ93sT3tHnQqGbNNftwtTh5VipmfaOO5HS8j+JzEXvYcqT2fcFXRQ6weO5pOexj5O3sJnP2Nrg/WUDnsoKlfx8yiSBSZD7D5dBXjbCGUU5/gXFQ79y2bxdRtTey4vJZf7j7Mq++9is43hPiAwDPPLYJZr5F3XE+eDLSucUQ0H+GangX8lp/IGuNTLBbtI2P4OG5VGvJ7P2TTU9ehFMu4bc23nDx7gsjOOjI/X0viE9MY7jTzg3EJcnMl9tgYgj83IdNBrrWT3L1dJBgvJzA3g36ViabsEcjUOoSosYh7j5DdvJGGmFIyozzMumsEYkGAI3/F4/H8P95w/d/Vf3nI/00KBSxcgsQ2CmHtw5jHhFEsuAlnWz/X3XwLQ94m/njzfWa/BL4YE0PST8hKNrG1WopVEeClD7/gkVOt2O0nOKcbQ5dY4JbkDzD1HqRnazZ3fhRH0N8Lv+yka3QBc8pewNLrIqTx8cC+B/AFBTq7fmSgaxuBEel4aupRLbkGik7gPN5N5rlmbucupofMRJ8XUxebx5P6ZDoHLTwuqiE9tYUs42Ia3zzOyRQHk8/u5rQKzJGTMTmdjFatoyvyaWrCKRQny7hnjpmG8leQdsYjCYU5Hw5iDYmICHlYdvQwopwbL10XWxcEff/hcjW0PYoQ4wMepu+pu7DsrSe3+gKis99DUhlC3EQMIQmSIQeb3r2fmAkXiNj+Abajw3QdUqIVCZRnrGLasjvIk8XgLpmEWxxBnvcIerWX1OkGbOUzGVKloR48yPSDf3LbpDsIGKS8GjyGypSP0NBHTyieuLlTcB77gbuUSbgGXUQFd7Pl3AeIy67BWvcFnYnZVIXW8d2380kd1U+Z7lv+UORwVHmUm7/Us3zWfSyVpBMp+wi7KJGzuV4SWxQIhPlY2sEW2yhey7+XzKGjaD68lm/+uobL73wZjy+eJxfnUtz/PYdOjyXOHMf+lk7mVCkQrhQT9VguwoCU40IGEe3deBIzKIorYsN3PzJh+Dv82YWEnQ2cFg2SLJchEYsR9zcjyymhTnqAIWkfxYdEXJA6GDF+xCWPXCH8D36pnlAYiUzGhepaHpUYkPsdvD9uEr2CgKxOSVv8MBac3Dv0C/snj+bF7k/5JjaK1uhbyLJ42bBzAvWtKkTHdSwpGs3LX76JsKMImo+wYsJ8Gn6eyFf2O1n4YCSFNjhsP4hy/XsM9hbjvOcVPEoV9RkLKKiwI6l1crGwj253JC0R07FkzqA8BJWqADnBDMZ6rGTs/52LyWHmJT9IRNzNHCmKx/TAiwina4nJykByppchYYCFCXp6utcQCGhJ9i9DECnRO04xpzSXVsHJbXsXcVNXMiRHEKkMEz3YgVuRjVQMingd45fm0fFDNZ0rxxJUTiSh3gd2M7EtNp558iWSmvdS3VjO/TvrGPPsNvRPbUYW1KHz9fPOwjnUiTZxOnIjk4xibNPTOOlYQ4zFxTOvP8TAplWYw0pe+Px2/P3HsasHUcjl2PR6iDWgq5PgcmRgjDrIcHsfm+4/ScjhotR1H6rqYfKavufsF0GCeQ50kldoHyGjffQyUrZUkNy7FbN9FTMKxrBs8zKuS1rKFIfhPxV9/zqQB4hMh8h09Dt2Yf4sD3vTPvbOvRpBJuGO5k+Zet3N1MnERObNIagsJyiPo/NoOjGpcjrEkazURnCsdYCqILQ3WWgpeZLh76LRePYzuGYb4Udm4r59NcWFlzbUjLEaOuzDlPeX4wsH0A1J8OmMKJZlUxdcSMY3D2CQuwmMex17Qx9Lh69inyyFhQErxX0PsUshMHfkdu6W1tKoTcBQLqFW5mK8ezMXL7+TqH17iGzajClk44KwHMu5ekiKpbHThyrsIG/U02w79REqaSYjotvJbQJrXCnd+giS7D0oI+Lg9McQ9v+HSzVu3B6amz9A3ldL9MOPo71OhEgigcvfAUAOpJT30vT9Ifp6QigyJzNqXDEXNR0seDqH6869SO/6M8S/+BoH6GHYqiIyHMLkzWStO8Snmkw+MSiorE0kdZxAQpaJxhMP0ObMJxiXw4CmjPNjX8KpN6GqaCIvPpatlteZtnIpt22YzYOxadwh7caoDfDb5qvQLnZxU/HL+KRGluqfY0G2GZm7ifzqB3nGuYBeUZhB3qAvGOT7im6MxWmE+o9DWzTNqVkEhluIHD0TWtZQ7noWqb6Hb797m1Vzf8QrK+Kj1n6qXH6k2eNw8xw221QaT0kI+jS48w3Eiuykdm3nYmU0Ewdi2OBdSqomB79gZmXvXnRPPExbeysJgU4ipWm4eqci9fTS7e9EJM5i8RPbmF2wmO2JMlYf+Qu3JMf87V7Exl6q6R4nlzJNr0Lr68LrDZARGCK7dCqDth+gFd4RzvCcPoucnLuQdZ0l2dGBz1yEcns7DjF0XS1j5JoZiIsWESq5hryadah1lxGHCNs+G5NjPkKkVNPnl6LwOYjvdxN1Uy5Ltu7kuoEAE8R7kOw+RdSqP/BpRcT5z5BweIBEYwaTalbi15Yg1y0l0S7wQdI5eugjdN5GOPtGhOuXMpicTNaunYTPDSISiYiKmoHdUY/LOhuR+BW4aTtEppCy92nOx1/G4cad9ETriJB0822XGtdAPXMKDHgQsbe/C+1lcQSHutAnpjKgD3IqYS9Lj1YTM9ePxrmGctJR3vManmw1n9kv0J54Je9fN5GbfnuMzo1+zAO1hGM+wx2fhiT4BeJQAK1Izoa1c+lq+g6H7SQ2cz6xomxKul+n7vNH6A/oObk0DrUrwNIGM/p0C0aXBU2/hFfGubjVHEXqjyeYJZGgy14DZ4aIHP6dlrRvidO/yJDch/O4BnummGfHPYulq4M+0f/9V/X/W/3LQP6/d49ylawlJHeR0epCCLXR5Iyk64a7kVq7MO56EO98CXLv8zy0zMjPEi02nwRTVy9XxO1n4sA4ApHpiLocRKWdZaN0ApnjlpAqNZCYHUVCejTLPjnC2XYbVavncHjlYWIfiGVUwwBh0RB7okoxS0M0iRahUUnwXOglUXyRkpS5pPV+wvWtK3g2X40lIswWAb7MNCEjTPaoQfq8iRhqY2iobCFm7Bx8ddVI+2dSoG+nQu4iN+oA8m0lSOPbYNWVhJtHkHT2RwzdR3ju0++JV2tZoHwZS10CZWO2QP6VIPqIr9bcjedMPZfd81fSiktQq+IpLHid3j/OMWQMkz+hBLv9IjpdDpd/eJSYsIu3rxqD9tn56GszEIgiUpvIpAvFhAZHENIXI4vQI27ZxlSJgk26OzkgDnFVsJWwLpMOuYoEjRNj8rukDAiE7RFc8I6nUcgkJpBGkdRAqqidep8OjWBkX+zVLImF6/eupz4pnTEmDy3lZ9B6dOi0Y9F07EHecw45sDpzPrY2NVkiDVXJN5GrzuYn8wdMiYkkUbaHrgMG0vr60XiMjOp5n5HKg+SbH0GVPpbQuJspEll4/fkqnngswIQLDRzdvQ6b2834kTcTihogY8VrtL70FsqSAhz6OeT6g7gCIvrFSfisDQw5unDmz6NPrCEiLMIw5y/0150mHGkke/pc5v+5iGcVbxFVFMeIWWX4VXJEv4sIi0UEBIEv2nr/AfJyuZwluZkAbJDLeaGxmRqbC+PEcQTDQRRuDadLJlAmTeMlXTyIJew/Uk7FkUrCsbcRUWbli4XRXN8pRnBtIXzya55LuY1r3t/MwIQxxBZqkc+9iMg2h/6aX9i+eh8RNS1MHJbiCQxRHZnAoyoXx4MqwoXvIAiXJgVJ624hbLqdgqxpSGqCKBynOD3xNYyG07gi1Nj9EvxKParkXIiLR3njzQCUlJTg8bQjl7/MhYODnG4aQqFRETduEXIJtH27CpEIxm/ahFin52zAw5zMQWL2raXyYDRBCQy3HiYt5CPHKGNn6gXGbfmYvvZEKNNRV+skqTGXguvvIEOUjshVR1CUjM5hZ+EtY5l0eADLXyyYvo3hWMm1aBbdjMTWhtHWSVhdhvXUt+j6oxkdOMKuaZ9SUNuFpWUViul2/JZIzJIagl4LSWnj+d0qJuHQUSxbf6LlsscJjU6C8keIKXDxTq6Ge6o/xhm9guz8MUgTUnH/0Q8zY1CopPjDdr548+dLSZv/CWvx/65/Gcj/907prrFyxOJIwsfBOHyBkLqa8T4VOpUdeXQ7wzUSnKYu1hxYj2P+YdQyOYPLnmHMpg+Jq1vDici/0nW4mzizD9+sHCJLppCersfjcCASibhhfBpOXyNy6X9TOeLxFqz+AEd/3cLyZA/2jGTGtj/L9qi7EfuGGXF+Hhq83GC6HHnpESS/rEc6upuFDbNxieXIlEdokqlwhxOYafRiKS2lLeMT8iq2oIjpZ6KlHd/xZvo1yQSTwwxYTpOTFolWG0N4OJ858bFE2CQck/3IE8WXvjaIL0GQqIgMS9AubyUhO+cfrtsxpZoMo4FQyM3Q0BEkxNJvtfDEiExqTvVQrBaTFadmcOvXMPEFXBGp1JgmEmlUo56chSg6kj7pEKNUexEp5FS89SH7H1vA6fMhuqXbMcRa6U2bR9yeb5FmpxDIszE+bTIBSxcZMSVUvr0BWVQEith4VE4r4YDAB6JtiAxmulHjCPmYEv4Ew9XbEbaPozXsRCXpZFzje9QWPYnMJaIlFOSkM0i5tZfF57fxUI8EXdoiRCIZIbGa7M6FSOWttDa8T5N4HSbDbGSWCAJiN4NqE7H6SLz+ACZlFAqdm9Cnk/DticR4YQ/uuyeRE6lH3+3CpvBxZpqVKGkDhvQnsIkkHO77E+3ZdNCKCBLi7j2P8eTBEfyc9TBjVHfT061C7ffz3bhUfopU8HFnBbHqXNou9pGSfwn0/+6wBJdm9RFyKWPNegCkYik3pdx3aUz7glS32ShLi2T6rX8hf8pS7L92Yp/q5FXvOdoUYzhVFk1Q5ObFKc/gXfok5zd9j71QRaRUy3v6ebyVOoaXGm4nxnMdrqn9OLsE3lRcg1cR4oD0OtK7bYxNSyAz8yGYYEEi0xBdkkOwZjGS+t8p8DRQ74hmwdFViLLmwvJLGcXzxz6EvDrM9pUrmH/HE3waWoGkfxYXdg1wx2c/s/Sejn/rXwydVheJPYeQT3kW5GrKMFL+4tscuO4GrnTZiT4f5jJNCWmB59G2nGWOLwll2nJ0fZUcTphGod2Pvc2NS6LhbpWJxv1/4h9/GQmOtcR/dw4QcDkDCA+W4e1byfffH+ek7E5sgWgOxjyEcuNxVDHDnEweyXMHq9hbHIvenM5Q8zDt/moMnkGaRWWYYsW8FCfnB8sF7i+ew7h8A56YGHJHngEEbHYrxvAGyiq3USPfRPD8ECqbwGU2ERqDgvFM5zXPu/9pa/H/rv+ytWv+V2qvSKLuqJbBKCOVuddwavRMLmTnohp/B/abz+Obd4CwWkd+XgEiuQk/0UjOm+mJSuBCejEdrig09h4c+70kR86l1+qnfPvvfHLr1VQd2MOSkgR2PTgVhVSCIAhYAkF+benG4fVDbDx7Lw7hv1hBY+dfGHFMzIm6GCZ63+d8eAaDfQo66oexCgI+XwCj14OkuZuO3lwMJ3aSkgstA+MJCSK8ChWyEXG090dxvHUWqrTp+O6YTyjLhsfXhdFcjXSMGNX905B4XTgFL3VSEXL5v4VrBQIIfjcxnpGUlf2BXKUmEPx7ffmcSieDa2rwXnCRlnY7Fw5YeSvKioQQogAolTvo+PFjWs+Xs7PyK3qLvqc5+w6iRt9NjHaA8OkhPLIA4XA/9e/PolhuIdrWgaEzglLHReJlI7loy2VBwQbmRN/J+G4nx359nhe++4KCl3ez2WZG276XmUceIPfCDzgDm9l87iI/b8/EEzWZTOlxtFMu59A7xxEpmmmQxdKmmozEM0zipmcI/HyIZOsJJrn3cIfnbTQx8ZxeOAt/wE/N+x9TfywOjf1Xuhor6ejfB4IIV0cTSvM0GkTVLH1xGtFqNQsensCg9jzqQCsgQVQyiti/fkxo+BQ1WzZyisk07u/B8dopSuMfQGfv4Pk/a3jR0MNI/RHqDEVsNbfy+IgsTKo4bo5cTWFoJBEuDxrspAa6iBJLOZ2UiTlBQ6d9iHNbLiKE/pcJ6X/T/uZ6ntl+9G+/Y7KTqb4hE0uMjp4eLcYqKbnB3xGd/Y5bXzxM17fn6egaYFvdEH+8th99OMgtURHMK3sZiaYEryWfkCgSkUhEcZyWiCgz6QVFf29wzksw/QkApNd8i+j2A2inriDTfQYkKro6i2Dt17gDbuKz1nDbhFoCwgCJzY1YRXqCfhHhYBCZ/O8YCoZhwZnJrHONArn6b/8rb7yDvLhICjS7UDgCHArsYVFkO40R+aQOWxArZzAv7j6mXEjnXdlGCl95iZTiiYjNIs6F6qk/IGar3cpwbAKxd91F6ayNREaOIT3Kz0dXtGNJH0VFaCZTbK/TfeWDWOa9RuTkB3hgbDRnxQL4exjV0cJq7Tj8qbczIi6HR9qq8ITDyEof4KGF8UwfEUnIaKE5LY7urPu4xhTiWOx45GEnZ23V1CcoEelkmMri/rdY9f9W/zIz+f9egsuCCCVOzzmcxnyKpHMYGxdF1U97iAoMEe+3snb6IgJOF7Hm21H3zGDY6KGkuRuj3UHzdD39Vz7B1G82kN/0ENy6l1N/5pA8Yix5E/7u7ZqcnIzT6yUokXLQ4sTjd7B95jje1DQQ0IhwnPchq+1AZbmI3pjG6ezVFNjb6bS006D0kjNqKhf2fs/FyVcSdAaJil7Kr9IODsQ9xcaEXUiEAJXlSVT0Z+F2uHBmzqe/x44gWcnNGgWmST5c/gnIVdGUbdiD2B9Fwe35JCcn43c4IBTC4fMyYUQTGG5h17kBXN4QC8V/ILU0ox5/D0K/G3V+FACjF6QSPrwFybGFDPAeYsMg1yzN54BxJk2iFiZ6AyQPOCivP8qUoApxSEJG8q3Q2YlQvg1ZSEvHuNdwhXrY51QywxJitiXMRaGaZkUx1t4+pF43e5KqCdeN4ZzYzpjELHx9jUjV3fRf+Qbt519HagvSUCfDlfEXPL1iQud+p2aCAl1/GjqU1EkmIb14EYnFQe7wj1hCkagn3sXs2VewOBjmz61nSOczxINioiSDmNw7GDi6lm7nZhRBJ69fiGHJgyvZ/twv7FH7GDP0GZGbpbhMELxyJdk3X8+PjghERUmk79zIqWPfkzq5nYyYJPYoAqxTRvLNBDktPh9RHGdr8yEWlYhoc1qJmLoSu1qJ+sg2LGOnM+qQF79SzZOTTChjU9i3vwmrKhJRlIDyeCN5k7L+Np5sNhuxsbH4w34kIgkSkQSc/QD41QYAYl/6e3b1pcEeJuz3IviliL+SEgyEEYXFvHL3BgaKp7Hjoo0vxyXQs+5dXnzhg0vHyugjNi0DpUbBv60UUYD+H8a1x+NFLBYh+m8rmgphcA0SlOvxe99BpQDR86tx+51cFB/mDasd0Zbj3K1UEwjWEibMaoMZhVoGgNVqxfrRbVwrE/PIxzvp6Lg0w39zaxNV0huxsxwRIqYpM7DF3E2TKZusJXMxH/yYztoM7EkxfBJeiavyYw4p3sGlhjdyFrPhbIAd3kayb7iOHaXTCDS4iQhcjSACnVaMZfw8TinSMetGMhiVwbBMhhCSkGzx4NErqI8N0uH14HSJaHP1sKj/IMOJpfx45nZ+bgmSH/U0YrMKJMO0JvrxS/pwquPwZkwkuOk4L5my8UtE7M2NR6L97+7Pf7L+ZSFfelkplTvGEI79knd/uohcKuKRWTEUtLTTl5WLES+TnF00lg+SXjyHoZ5e9Jm/c8D2LNokBbFnDxMfv4/W0e+Qp6tA5LWRWZJI6aynkMokf2vH73Ey9NPttNhl1EqOs/1QHZrB+1hemEClxUl9UxMaczTXPvpXloi8vL3/eaoibiKxbYi5bSocy+cTuGUlxotH6TyTQK6pFX1uDKqUa5FIxICCYWU2unEhAvTg6GhDq0jCLwFh/zqUgog/RkdjaXNweSALwRlE29WKz+tj2wu/khUaJuv5OwkWP4rf5qN9UwNJU3RIhUb8fbWochwobyxgZ9UQ80dFI5GKkUx/AKY/wLETfWgoZuboFD47VYtLnk+hJEhp6DdsSim/JF8FYhnXKlVgjMQf1hIIGnnuvuuIG9nNnNQZeEijQyGiTrubO82gT36Eko1l7AmMQFHo5sfecryOiTgD9+Nx2jH0y1h0+w0YOs4i8qqoFqdgULhwz1VyJlpOVv8gYRK5atxdLE3YzDdx1/LR8BnGh3+n3HTp5SuRipm5oJTQjAqsr58iGHqYQOxk1MpuvHXjEEsPc9/UNBIaDdTqzrPiQiIDxo/wL5Whe+ce7DNHYPz2akJX/ElJw+dkB38ncsx9dKSfQhy2k5PtInF3LSJNNoOyfLqVLzMmUkaudi7B+PF85erm7g+eRehspyvHhkiYRkAmoWXAhcM7QM6JQc6XgTzspQOB7IAfiewSGPR6PXv27OGEeg8GhYHlCTfBZ5MJDbUiebrjb+Nu/Gt7mZZj5jXhAxhxFaF9r3Mq7n2S8uJIzI4iNiaWuKfG8pYWHu04yppvtNx6/d+N3VMLY+hx9iDqFeFwOMjK+vuLBsDn8/Piip9InvYK6YVTyctdDb294HET1Ebht4epsnaRlmQm+rclCMNNHCh6nkx9DP1VO1nZeRlvLiqDYJjun2pZ9ugozMk6jm+rxaj1czZk4bEbr/lbe7/fPZHWNVEEhCK0CMROGEF+wIw7HKJzdQ5ReiOG4mLqe8ayyTyKcNoUVGqBEY0HGFJmMXJqGir3lWSrTZxSS5kwcJKawFSs8jCHZUHSW9cxyuxlcHAZkw914dNc5Kyrmpq5N7PAdIhW22SEYBmH28YhTXyEEyMXcOW68YgJcVVcHjtnxJBzrhx3eTlDC9eT1fMlR7McJChCDJZdhl4mIS1CTe6oZAB+7vyCEdrR/2eh9j/RvyzkJXIZwxoHyd03s7zkBzKjVOilEcS5sglcBJ65AfXAr+TPlCC7eJKQRIxlYDd9RW/TJk9kxOmrGHX+IpVzPuRXeyxXyrVExkr+oQ37oBtBLCPsDRLZ1E3R9If58nA5iVFysvQasvQavg004rJ4cXf3UXf6Eeq8LlY6GzlsHaA0/jVq/DFE50ylOuswcZFNOOpnYdMlUjzUC0ONYMpk6ogogl0WPnjkWVLmXc7PZjeK6CjmiMVUtprxZxt56r5beC4gJeTzIP5MjFJwk9G7A3t4CVIUxGdkIUikrF7xE127Qgi3zcCWcwtWdwi7K4gv+B+XDcJOP4JBS2BPDd+Gwnx+1g75egIyEcbYGJbkprGvto+zrUOUJhtoTC7mpUcn8Ogb9xFbNoc40WjWOxw8njCShP6tpPYcJ6H6dYL6RYgo5l1LGgQE/AEFTqWIwC/Pcci6kun6eowTYvENDqEMKSisfZHcEPwuvZMo1ye059zPzvMP8Ni4Twh45HxqmkowcQl9x9tYpw9gUshp9/hZbJDSnOPkxJ5rSWAYo0lDqfFVpOEhrBUV3PuNEqNEyZDrJF19sdiTk4m67gaGXXZi1U+T0Xw9+Q01iAGLxET1oWu4MvgnFn0MqtAFOgUvEYNeXLbnMA6fJn/RFPJO1uMMhvjo1gwuKq5BL24jwl3LwdHzsVn7Uf7hwzolicbWPqZ3W2kbEYXZlIRcfWm2LJPJcDqdFNmyKN13Pa9PV1JX/CZHt1k54w0Qobw0I+6xedlc0c1rC8eDIQlR73nk5mGUqkuQkUglxGYkEg6GkYlBkEr49LPP/+H+DnuH0cq0CB4BmVKGWCoG1wDItSgUKpbf1krlUBf+/stwevux1NWj1rpxibyoesPkLU++tKF49S90bnkRTaIPdXI0JdFLOLPxIQ571xMVHU36ymziMgz0NA8hEYmwuxXEt28Gf+BvoaQAAb+bL786jXPEYjShIOqOWpwX95NAL/bIEiIMckZp2nG48rD4BQSXg/Lf/0A/dQ5ywcdTMSN5whmmqKcXQZ/DHRY7M92tTBFgWLcC1eAeUocXEZZ4qJo+l7l+NwrHTs5fmMIvRh1z/C1ktDk5FpVEQtMw5/LXofb8xmDMKjK+vxldQhQdyz9DLigYiLqHCWdexj3qRrq1WYT39HP/ynS6rR5i9HLsQStnbEf5Z+hfFvIAU4/Z8EnVzLjeD+UfET63DpES9kzchnrNElqL5pIZDTKpG7H0D2KCMYzuEiER7efLwlfAUUvXl9t5b1YP67ceYsPiDX87ttcVYPPmFvz+EDXPHSB72xYMkQauKtVy2NGFqyKM3RMid04sIZuP7qoG0gaDTGt7BktIzMOGV+hOyKT5s9WYLBqWG29hr70Dj0FKTGsz+fVbIBnOnJawf/chRs0p5tbrnsMj6+a2aDXjivPodX1OQ001zs81yMMKegd6EVYbECEAGvyiTciveIKay86gHRVLdGoCkSURpEQrsEcX0Vxby5gxY8gV/4+3bmw7WxlxZRaSgniGagbIiQ7jD4a4qLyasjFZyIAHfqpAIhZR/1AOBWeW0LfsGGKNltpPLtL36t3Mch+k3PYLCbnXc+HQZygCDkLekxgvf5jY+k4WSVoxDZjQLL+W1qRHKIgV0A5bEUvFiEUiSmPaEbXCesUiFPZ20i0H8UVWYnIM87D1Mabp3+NyiYX2Q59Raqngg+0JxCUbMec/R29HC+1dAjZtIa3BYRaEHkWiiaEuNI0k+zG8YgUueQsX3vyRzKbfKQn10SGLQRr0Y4t+E0GeSfmYfEYaJ6A/EMnloreJlfYQO/wV9bos0pPyCAy4SA5WIIpOZ/2P21neqsedb6W7dhzZhQdI0RvRTCigoO4olYYYPIMS1BqB9V0WFnuVpNS5QeSns6MPqUyOIAi0HjqE/4nHsE+/k+VBJ62RFdw8azyWh76gt+obUBi4uO1PFDIJPzzzKIlFhcRO3EpqpwLblxdQPziKrq4uTu+oI+ALMXZ8FGKzmVqrkzyjjvHHL3JPcjSzDEF+WP8FyuNlZBokzHssFT4cBbkLoW4b/q2Pop50D08ftfOg0MBJ/yFORp+hRdNM5apKzg1YqOrZzlTzRHoV92MUQtQdVSAOqxgb6GF637t4im/ifP8t2O0biEsvQm/W0ODzM+7st7S/WID83r+DMDY2lkVLvmRX1yA9rhB6t4GojKv5vewOnnK384kDJAEp3VW/MXfSDRxyq4i54hleFwawisXsLUli+NAQ/QoVYZOW98rbsZkzuGyNid5kDS2latrzItCVKnDoFLQPpCCJdRNqUnDd28+huzGVDlkBYU0q4p5mPLpsOuPbmW2T8YW9gIgl9yGK1zBFWs1wYxISXzPBQR0ORSUmeQROi5cJ35xmz0NTuDXlQcRI2Miu/1TGwb845OtnlmPtd5LTUolJHYlYG4Pg7CO9+SfMg0cwbDxGs+FJrCULCPu7wQPxGhcymZW7ZqzkxO54TGOTGas4yLNzHv+HYys1MvLHGAiFAqhKR8LW5Qg91bTlPc54VwO+jNX4xFI0WVEYfUEq2qW0RX2IxXkeRaaf9s/VDDz2AuZkNVqURERo0QqRdGVD6fYhbOH7GTphJX6mmqDSQkK0CnvvGZpk7zN1+HIQj6FoxRqCQQFcItRRZnyBMHKJHHSxCLEF1Mas4JeOLczLzWOKOgnEYu58ej6SkBe5QoNMJvvbmuj/SCueKUOtkyMSi4hNjGSaxU3V4VYQu9m7JxeVP8CbTKFZdQuYMuCpLmKAgzt/Z9TsuTj1YipOpBAZlcWhtd0sjagjqE5FklwABYXcGqvC8cNvXEgQeGrnGeaeSGLhxDOYcnJxxs3DI/qSiN5TSHJm01iXTpatHjECeoeftwpTePTkRUYY70AaW0SUezuDkZlEWjOIUDSyWPcpLVW1lPxczZHJL/Ftzot8i46zUz4g+fvliEYs4tvnHFz36GliBs6R27SOkCIaY/G9xLT4GWn4kbAgUN9yCrnRTs6YRo5k/Ip+5y3oxCqyDTnkT0glaO1DesLLQMsGWovfo1WwMHdULjVJJ5D+1oRn4hzGH5GxwiojI0Yg4/o0Jo1M4PDIBBIijHgkEmQyOS6bDafPj9Vqpd69l8R7lxPqG0CzR0NOpoPeivswmXsZFMJ4B0OID9RSKdOhXvgI7u5uWtxykiLDOFCyfdhKxuAejJlDRBjm4YyQc77PQpPDiwjo9vnpPXWK2KUL+CB1PpLEMJ/ld/GdZQM3jL8N5r4Fb2Xjk/vxCOu5fdx15JakUCYpYt+mK0jgUqG7hoPdhAsCHO0YYIKuBn+bmqAiE6VYyxbDM1jOtnLV4iROVFzO6bZTPHJ9Nt19n5FqnoP46R7ksn8MK5TL5STEXdq0dPmCiMICCoWCL7ac48bUJJzVVqLVcOVj9zN44C/o0h8mO66crxOvRuyFnv2tnF2/GonRwPBDI5jSW4Sw9j38CTEcTppC/gUVEcZhdJZ1jMuNZ/h0EMuXa6mZkEixBzqK32ekUUG89wAXBQPWhBMYwsW4RQquevh1ttrtGB0b6FdPRxUTpGrEa+w7cYbn7ljGsk1Pkjp+HKvjY8mM/p+XE/nP0L8s5EPhMCfNElIMRvSDg/R98jOnC0qQ6L7BLN6IP1NNbqOTgL0LCGO0JtFvnsDRbV8y56HFVHXv4Q61iffSE3l/wmpQaf5DG6kJSkQiiFz1PHUtk4kxynkkL4M+y0jarDbSsvXUdvtIL4pEVN9IUGnmp3EpHJ00gtoZ80iXSxllikCUKuKXF1/DnTsJY1IWwXAIvypAOMFJXIaOO5+/HqPcRHV7HIU1ZoJCPZYuB8FABFvX7kbSeQQheSR9f/5JcM73pI2cSGD/b8gcPXiDXVQda8G2VcNrK9cSGefkWMFm3rn8e2JjYwlavHhr+hGPjmflmhO8c9VIMqMvJW9oTr2KLXcJ1dosJvQfxrnVTdxgNN1TFYhERlTuXnJCLorsYYY3NhC5LIvms80oPEFidBq+uvs2rs58hF6JBb0CagzvkZubj08ToOvL+zAbZGj6DiHz6yhMECjMScUkqoQOCULLXtSRGXgcbiQ6FZvijiCW93F1GyT2OPHpF1An7yHT58Md9KMVApicjaxI7KUnNIYujYrCgQPIlvhBu4cDoVx6xbXIvpuDBBh02KlKOM6gUYslYgTd476kORSJ0tGHq/ZXSjUz0Dcq+b4+k0ajncv1JUhCPgx97ZyMXQEiEZY+B2KtnhOFj+LUBxlvcXBZggp7aIgLnx7CdfNbHOt34/S18bVSxLXdfrIaLTAyCQYbCYVtNKxOpHzUPFqr7AS0g2h0Z0jMnETh4RrOZW7mgmYS45qPEDRI6NOk0Twzhm9YzmcyB0HRMVzny+jvXsfrvkncX7WZq4quZ0SiC39iMiLxADbrNvbbpNyYdBcdZxrY9sxLfDFqKYlfv8WgfYBPx8gxiQcZFscRksoIJU0n6A4g3H0BuTJMrq+fWEUS2zZWUZomo0/oocRciuvcOXJO7MI0+W522x1EKxqpMI2jyaTnplQjP/yyHatPxep2CWJ3FHa/hYYRpfi+foWBmjAJCZUoNDr06akoJCpEYtE/hJJWd9lY9e1pWt+/DrlURFYntO/oI3SThyd23c7zusvIFR1ArpJB7e8EpTORSRQYxy6kqEVBtd9CYJodyfct+AZa8Cea0JQtRhL205x+J0M4cBsrSZRJOD5djSHjE8RDIrxSKZpegUxzIupR8xj44SLHtHL8v9dxQ+kJJLIQfwRicYjOEgxJkYh06PqOE0hK4Fm/iCeTpIROn0YyZsw/B3T8C0Pe1XSM+bueY1vMLB4NjGSzPAKXZiIj7WECwmhaxuyiOu4eZNKrMNf8gW9iBG2KSBKuvptw81oGJKn0Ecf7kWqma/4j4AFMJhMqlQr/6QGqvI9RJeui+LedaMYvIVOxF3WXixrNDew8N0RETCrtTTXMF0ATBG2lg6zRMZwcsGNSiEnYvRPZbxtgzFyUOfOJFf2F9pb3OXRmO53xXaxa+wI5uhzqv7RzZN5ozN5OxGE/BbX3sKf3YWLMEOj8A9mRCH7sT6ChNZ0rjL3MU+ixxDmZPCebTW87KZhSjLm1kAuHOxAEAWttOQO33cnwM7EsKv6c6AgFDWe7aK4YYIbJy/GhYW5qbOTE0CFikoz4BqNJtbWiiPwYw/JShGUC5z6tYPeuDhYXmjioVYBWwVUvfsDH19zEt92P8NaTy8jMlPNntJT45gAXQy8zMvJenCotGvkxNNY3uddcjtF8hHLLWX60+7HHv8Ld7X0gW07UOx+x8IlH8Jw5wS/eApYXWkk+5UJ9PpXgJC2/jnyOEzGFLNWVsq8+joMt/Ryo7cEeewUNKit1k59hkctNaeW7TBs1i7ebNyFxJfDCC0OItOn4VSp61GoiGu20Oaowmo08aemlcTiVkAY2n1NwW2YndvNIXA80INrfjE7q4GCzElk4TL9ZRaIiTPHYBJyHv0C25HOmAnX+AHOm3sb4OXkIp7YQE+tDv6cZlhfha5fhkyi5K2U1X4++lqFjLQS0NQgSH9UeK2OuWM65e3axaF4kMfEziJZuJDP5ee536YgYcjAQvRuDQsbk4jBJupfo/eorlk2PRXzcS1pBLKLja5FWfUDTiGVoc1ZS3elGZUpBoo3EM34GgwOdGKeNozR0Dlc4yNioZQhOB019A7hOtbO/6QJWqYPF1ggkN5n5y5kONkkT2HPFHoxyIy2z5yBRyImQ3suIZge7o5cSkh0jyx7ih9Z8rhwRgTfqWiKyE5lWNEjaUDdirZb0nDl0BBppP3eGdpmK8iPnOSVL4f3FxZTq//6cFSToOfnULGI/ALEIJHIxW5dF0+0M81XiGuIr3sG9by9VEYvIH5tBnOEbOlWZqMpmEjvYRV9nGUH/IfRFcUQvK6Rwk4a6YIjF2l9I0HVgHXMzZ8fNwvPFLD7TnuFEZx/6nAy0qc+Dz8ehajvS84M4MnVgs6GJ66bCqSI7aKNC8TMbm78mbggeFV3DL/rrGTnFQYsfwohpEyJI/ydxDv6FIR+RMR6Fa4CP1JMZkmvRp+fA1IUoj26jQ1fNl4r1xGvlTG1vQnH6HNoZxVzZ0oOnr4nNWX8hLApzk9rHM3n/sQZ7cnIyfv+lrEC5XI72pgL6X7Tz7fgxPOSTUaBR0uGPJDrUhr/hN55vzGdrgZ+JjgFcS5ejNajoqLfSHgZ7lhyxtJWEV+Ziuu97DlhP0++S8oxkEKWiA9f+JHLHZtIiUWJN6sBzxcOs+vglQl/+jkomRRkYwiJEkWgw0ie+A9JlxKRH8kf9IBW9JqIkr2FuG0HXls3M1ieTOD6Ofd/WIJEBITF5i5YQ8luRPtxJf/elodli99F23srQX57iWNAOw4N87YSrk/LIe30y9nMtOCwH0TjTkGmNGCYlQrWFUDBE4NwQOmkHshY5qyY/zRet7/DIz6c5/us6pv5ZiSmpmlLbDHoVabSZ4om+fxeRe07TdHaY8/oFCP2ZXBe9BpXjYzz6KxBkIirf+JQC90VEZJKzeDyH0fJVXTUTu8/RuttPcIWIPmc9Okkkm6pDiERiVMUj0RmnsaPzTTSO39Bbuonq+ZNr/V6KVj5Fw+c3IbIa+OPFFez1uVD0QlPtEAklZUTFVNDjyCQuUk10v4fvPH7okTGu8BDdg1eRpzxABEMMW69AJdXi3l6Pa0wWB+vsJAoJyKPiqE9NIu2550ne14vt9YcYWD4TQayD28eRlJSI3+lFqYigwjya7e+dJ9hTg2zFBGoUJ/k9kM5N+gTSHnsH44CX87J0qjPm8HLYi3FQTpZBTer6dwjK5JxYPooIaZB7cppxBLTUhJWUmDwcKstgYvssBoV7mWLMJjZQhWFwP2NvnMatCh+GrDl8sO9TglYJmikT6Tm4Bm/rAdrSLmO8No+6zp/Ikk/B4NFg7Klj731RhB95lZ4aKa0z/kLqD9/T3tVF4/lu/J4guj4ncpMdhSSa1Fde5ELpo6RHxrL51AC3pdyBkCuQc3MeADHHVrE59RE+N2dzT7efkXIF8cpL0UWhYIC2ijOc3bmNEdrZWPwWrp6bg0Iqx+kPE5ZJKe3qote/kLhQHYxbQfLITHqbG3CRiEasRjZRjydOQXNgEiPucyB2diK6sZDnZRFMZDyiDhkbDp3n0Rl9KLxdNNbFINFnE3A6uf2HOsaVJaAOi1AGJGgkHQSVWg4ZWlgYdxnCiYeJrckiznA1Y0NncI1MA0S0Jy9hibWBfn8i77391D9Y/P1n618W8m53kIqcX3kkRk1D5QDq+XOJdleS7HqJRJeI6ZEB/sh9iOHMbJwqI86vO0mTzUItEYhMOIDIGMetUVGEA2GQ/eOx/X4/vb29f/sdDIYwpw8jGOXoCtMpjTWx5UQPg2TyS/ta7rmpkqGLiaRY/bjUKmz79hPpbWLIeDkxrQv4s3U5C0dNRn/HIfrb/IyIdSBdspvWhs1Eqg2k9fdhWW/A/o4Y6SwfwfeDPPTQQ0zSxKK8cynXiLW88847zB17BWG/iFn5McwuiKNh+nSGr9fiTN6K5PcGFNc8jMPqRndfFgUKMb9M2453UMqMG3JJTI0nEAogk8gonpZO8bRLwF/y2kXEsXXcIh8kaeZCAFr0Blq8cym0isjQhIlKG+Cuj6eyZv2v1Iku8rovBbEWlq0Yi1nxBn1PPUD7G6fZuygStXEuywqupuvgK0gHApQfiMRXUICuaBQGa4ihxHiiTiei0b7IkMpAc1EMziiBUDAF345Whto7yZ0a5N0bxEhmLObYxiJm773A5Jh7KLxwL3ETXiZN7kU6ciQA16d8QjgcpKfvEMYjn3FL92Z69xoIxE1F73+X/qEquporOSCWc310MiVeaC8fQarDyblgFeKYHDIIYsyuQLBbaOnpQ/7jWVzzVuBLVlMg+52u4okIPivtzn5OtgZZ8f2P7D7URP1vpzjw1EKG3qvH8G4DR15/i64tW7DZbFz46AaSRk5HVFREm7KB5G3301c+lr5EEa+nTaHGmkuvUktVrgxVRysqXzbFpkiGGjpR9nkYDtzOYFos4voYDlpsdO6GwZgoFinllFuP0u+30RD7EpJQCJfLT8Nvi9lRfBeG6DnM8Qu839ZMg+UUmpTJ6HsDhDFzNusG/LpEBgZkLBcf4kDZGVoEEee3uuiYchuzzlUR9oRJWSXCbE6gekiKvr2boqGL9IwsI+OsiuHMLrY+8SyIxWgj1dDoJ27oBqRSMULWcZrqPoaJjzL6+Hc4dW8w6awDz8p0hnccI3pMFj61kv1rv8Q60EdZ6mzeeuwpMufJkA9/RU7OK4we9QASqZioEbNRzFjMvwd+puQ9gmz7RzQFBhmKLODyziGqhUc5629kdIUN37zHWDN0mtjaT2mKnkVMXAKqmATCW94jThdHXV4GA/JislMNhEJhPHoJuUYVTY0ilKEQLd7z+Pr9KHAzJ+Ict/pbOTM6jEP6FumRs6gY8uIMySjT1/HVf2LFyf+R/uUgH+h1ET66BrWjhRGTn2W8UYVoVCr064h6/G06FbkYc8NojAlMGtjDufAfTHp/J/WFo2iJMJM4P5Pifd+wf+FTDLW7CXQ5UEdLuTwl+h/aCQXDNP7xO4f26lj25ATmFnQwxhlCtF0Nq0zMHx2N3R1CXK9C9fF+pMc7+W7tFsQd/ayoOEvUnzuI2vAlRx6L4lRPNMGjNezsWUZj1xak/c1klzXxYX8bJfLfkbcGKPnkZWYtvRZv8FkUKj2zx08hmFfIz/0hQmEbiStWEZ9govfYafYfuAKNJo2Ln/+Aur+NScefQLnIylZNP66DdajzohEZdIyfF82J35sQi8XYgjaMZiORGuOltdF/S4CJtgVZaMnAdvls/v2bpjjdSLrZT88vF2gZb0CsPYpSGc9nnrcIEmCZ9idiOy0kWAc5G/AT2+Pl6o0PMk96OTnzF9DNJgTNTyAINCW9SoTJTH9CIiVdf8XecZS0qDa6vM34tNmY/QYUgxasFh2KPB3GmI3k7DzMqfQ3aKocjU7sxBgbwJUWS8eo1bzd/xZR8mn0vXaRmCefBEAUBokon4aZX5PlK6elLZZnv/yRsLGYRmMGm1wHGSkrZpz3KEhGQXA7X5sjGIzK5KXseiKOvEpg0lZqG6ppdosZdeEs+8eu4Ki9n+uGstAv8PNr16ecch/CZbuD3788x8dF7WSFfqJ8Vza+19aToBdjlsjpk59HIhFzMnYl8fnjOdY9TMV5JzeX3ovk3BfkZabSe9rFszsP4hm08VDnduRXjGdH6FMmjnuNPbZOvLZBHnjmOSTH1pIV/pEK5yJO5oxDkhJBedJRRtUvJFCXRKXTw4f9fXxrUhEaeR1RkSMJikWYwy4ec1rpLP4QU66ZoK0VT1DB+MlJvP1rA/IYDfaZO0mPaUSFhxvaP2b2mgtUx5sYN3sBelkhZ35ahS3jBZyJsWTZbWjNOk7royguLmHSzjc5IkzgxnoVP87Op01wIkLLxvaL5ItCBHAw4trvGLG5k4BcTL9BgaptCNHaB/Gt3MIVz33I8FAbPouOO4vGIQhWWiwnqat7moDgJCoqGiEYRiKAWCVFLpfzdfnHyExgqjkNxUaUqTNIG36JQOt+3m5cg8R9jrFiFXZtFqpQAimZs/hzUGCeqx+NZ5j02FiKP2mlt0CPyjmIUemgs0FHpGgHPeZFXK37hGmHFtIiW8h9TQmUaVxMCM2k3deOoz5Afu8xfJYBBsWufyLtLulfDvJBixdfOAdVagK6SDUtb51ECEP6/A4OyVcwSh5A2buL32c9gObUfrLfGqB15ka63w+TlfoCw2uT8Y9qpSDyJ9z2pVRoZbj8QUJhAYn475l/4bBAr8WMPxDg/N427qnP5vPSZJQmEYIgIBKLMWrFLLz+fmpb/fQti2Z6nAHloX0o1CpEPZ0ALDw3m+ueu4nQwW+ZmdVM6kkf/XF309CZzcr8AjqRURMXovq7ZsJ+Eef+uoyzhe+QWPksp033EtQaSXG20KrMonrYznjREVySOQiJs7joEpHbuZ5413k6PDOJLd+B78kiYm1nya1oQbH8PqZdmwvAvvP7KIgqIMOUTN1nb5Bz16V09sTXJxPlCmD9tpr27c24Ficj6HV0bq5H212FSlbKen0XMyT13Fi8BqGjDb9YwTmpgndHj0Co7GDHyoW8u2sX69atw7TnEG989BB5yU8h2/IoyeFHGERJxtjdmIcUZETnEEydwoHhVuTZkzAHZMjO/obl4kwIi5gqWLFp7iIo15F74XvCOdMwXXkb9m2P4xwOoFWoUPqCSKLi8Q8P49y+nc7X38FePJLxWb8TuK+SeNFZCAb46vIPEO/08E7uAvx6DXbn6zQNTwXdq2w0WbmtqIRNmpmkl2UwZeseVMYk4hQKtIs+YXvISduADakpSNb5NSwsuBL6W5mSLOGK+OOoK76DkJU2kxap1wb7LATMzWyL34HDL+bRfXaunCPllvJTzOtR8dPZAeKuPYHYL2dKazPvqh04pFr0PhdCSMcU5RJ2B5XcFXeI+r9upTK/iFzZEBJRiKJcBQmTLudUwx/0SsIEAn6UainB84PMM3upjpcxwvAcV5z6gLNOC8eDw6iCIwk1/0l5cAM3ZS1EETbQ8+0UnstO5uhgG7t/fJsFTy9FtqGOd9fbGHzkbjpjm/FPXcWBs+8jjndTan2PJKmS0NVPceFYIxp/CoFaP1nXvkf1uU4+fW0RdSenM/arU8giusgpd4MwlQsxscgqe3CMkKCNHiA5xwAX94C/ibMHhpCqXETGN6Hv2IVUMxmRo4WcUD6DtPDa5ueIkV2LzBpkxggT3a5vmTD+JRRiJaLMXFLyZyORXFoiiYycyKdPfcaCAxqOZL1NldFA9E0vc/FIB4lxtdScG6Z55VMIUiX5caUMj6zDqhNwCw5Mnj8Rgjdz1CPjgvVT7lZexZESBVbpndx0/kOO+trJPTiaXyRnSKs7SNG7q0kMBxB+vx74x3ya/2z9y0FelWdClZMH27aCqhXZoB8BWKsYh0eyizLjJkQCyLrriLa0gkjCQKEHsShA8PDLpL14ge5eD/WdNvaca2flmEQCiaF/ADyATC5h6s2TGbfCz1tHNrAwzoMifQxj0kyMPFZNnz/AVnMbYm8S1gnjsGuzSdKoEJ++DhCIuXIhkgnXIlYocXS2Ej3zJkT91STbkqg+0EtIJ+cFUxJGsZ9bQkFifA0g1xC38AWmBxx4K+yMOfchcSmJgITJx5biSZyI3bwC96ABxZ8yphlaSY3IwhexEuXVDzH30AFazx5GoxtguGIiZNTTdOEwGb29TLrnAVBqEUQqyh55E9UL7/2tr3K5nPOf7GcwEMDe72LgyGGaL+xELli4vvMtFiSso8CcAtXdqMJ5KNUOfNkR/Ox0k6tXkj12ETPGJXGm63M8n9l4ctWL/L4qFbUtjp6EMSjjL6Ol/DCdXhNZrqN4UnNIrvYyGN2PRujCULoEQ1YEaf1hfA1XohaOoLEV8v3Nj3Nj9wBVBzrJqfmVgM6E5o7ySyc9DY5edwM2yzCxBgPt6gmMEzajCLn4y5vPEhURQFD2oPJ3MaLlOwZkT7Ez7RaUPgOjZGNYrdOwtv0wS3JnoPdGYNfoSZ4ziW87rFyni+ATdRoiQU7J5k/pb4gkcec6XrtrKcGWE/R9V0nCD0fpaujA3GzFnRvDxLvm4PX7sHq9KCUKnsxowjpwisskf6LNCzFXfpi+/rHY1SMwlA5y5qplsOdJQlMz+X3TEZqmTmP2cA2NvkL6F+oYlMpJ0M/F52hn7GedlIb7mWQxUDp5BBHDaxjOS+WuhYO0/3mc+sY7yKt+kgtRmzHVe1EVKdHcoGP+yUfxWocQohdx0BGHMtuHvduCzmhGt2QZV517hy+XvkpKZAI2qYrYUZfT2zSMRrSEfvNKdptCyOoPs6NuF8tCZsbWgmt4iD1R7cjtCShSk8gYPIDd/x3J6lspCV0kBTjqENEm7cC98SkeErdzQddKfnwBYt3dzJhZxLB3mPp37yY3eJEzXzcxetdmBmsPIdI8gsThItDlQqLXUtf5PIPW3xGJPFxZcD0AoZAbEF0CvSAQ8vv4cvkKvAErsSlpROg0ZI1L48zRLxkZtQB/eQrpMZsRiQ9gShjArphKr13MkbPRPH2jkmNtaiSVHpSCFbfaT2zjEI6F6cRJWzgi7mXyJzspa3KSnfg2jXPnoZBK/tmM/9eDPAAD/ZeWG5Qq+lcMEJY4EELJjEs/AQ5w+rRoujsQDHqkv95MVNCPpeVm5IFziKRi4o/u49aOaVxWlkR55EbwhCkJ3YdS8t9sojTuheTx/Lj6XgokBrpW3ETbxibOqPZy0/xi+qytOMQ9XO9I5hf1GeYUF9Pa+im6klnIa8+B9AgR6iIupIzgnsNX80Xwc3KyS+kvOUve6jcQEPHtfevZ2VmFOGYiqkfnwsankfefpaftAk3R16NQ55IyJ4dv6ru46dh7qAnynZDG3IGfQcilTT2MXtWJVVyG6g8H/fMnc3D/PlrbA6zYdDcPftKDLSuDCL8Pxe4DKEUOeiq2obzwHSz58G9djY2NxXh5BgYhnb4L/biHICw4WFVYjSrkYtLsYgBSY130t1pJ2nEPrRNWg7iIQZGYAa2GQskU9g29w+vPXMvTb+9l0dpaIgN9vPTsXDz2fAzBbdhDSoQxN9DPEPHbNhHzx1YSP/yBBrucgC+Et24YVU4kx7PvIuw/ypmAiAZTIc9YvVzQv4G7YAwxnU6yErUMvPQGpspzlC1rJzRmJcqH3+ZU/Ej+uulqwlI9z321CmuDkYyLt4Eg0CNSIejSCatltIRuxSw+xfuVnxPuC2FMepC6xJEsOtdKmkzC7GN/IitbjFpQIFl+LZoblyHWqNGfOsFQqw5/b4C+T1dzWvBRqrgF1CqCoSCDAwP8UVvF+Hg1lt5NuPydvDf/XY5tqcSROJ6RtU/RO+5RGtQjSOt30PfYDiSxZmK0kRTXS4isFiGXxlFY1o6e78AGvWEjX82LobItAZ0vhr40E9pQFZHs4ixiCldez95d23G6fciSL9AbPQJprRfB6CK0eA1Wx1EqLtiQpyTiUSvwximRyFX81h1EoVOSkz2ZIZ+Rn/88wgE/bEs7jRARhbI3gKPgRsJZo7jGdoAfKyMxjzEzbWkhvoqTSMQKHLe/SJq+Ds3ZfmrbG3nWJSezNA6pQYNuKILqJVcydGAdacHpCNZDtA1EYtnbTm6ZjOr86Qx+kktR/nQG1l6kf/ZoYi7uZ6BCTVeHlDv/Op6g7CnOHT1G5+aHkZTdDcDQ0DFkYiNd06+m2eDjpouDDD/2PDpgqSAh1NTPy4ka1k1byW+2i2Qo+hB55Qi7a/EXJBI2dZOk0uNQFFD3/U/M2bqHOy8P0BesRT5mJ+elPmTi3xjnj0bhHUHRTxvQ6BLwVA+iHFGMc99uSEz8J8LuXwjylzwUPaiUKoYvypGrj6L++gWGxv1Aevdmrmg9hG5sNG3Bl0iQ9ZAfaKLvaAGSDAt77EEG4pbwzJKn6XS4SZh8NVc5TXT6g7R0xpDdcoxNI3dzdVLhJWMSgA23wFXfc9WMVOzKOAz5eaxdc4SRqkOU1Z5DtuB1XriwhxAibJk3oFFFoNHk4CpW86lnNk80PE2och0ZY1dxd9EtZGYWs/aJI7isSSy4617sliBpETHc7thO/tIxhDwBVIRpGMylRvEJ0rARVSgLS8UHjNBMpP220/Sd9TJSJKEz8m4k/j5WGz7i2awnUFXW4E8WyO0W2LpnP3annSP9rcjCUo69PAeRxggVHaz47FOWXzYJMWFUP/Xy67r1BO0+JD6IjYlFJpNx/LqfGHfFTPqmzODXUIhlKdGoe2yIjRoyRyaQnirGVRcmrr+aMdZ1OEQTsOrHU9DyLjMTTBz3O3jhk+8YdPh5ccUobnz1QVY+eCWPxWroO5tPQ7eK0lEj4W0ru2wd3NhyNSfnrMOnTUc+P4Mv7rmF/GE5PdMX8rD3GK3OQvRxMvKXrKDl7VN4Tg5RkQndzjqSRyfRHT9Am+YMsVtu4/nrv8RoEPHhpLeo7o5FrxYIXr2RU3ubIOzH/MwKnM9/T1Au5jrlSK5LvYfZsbPpiInDbJJATSvG4W4eOv0tbT1/EnXVt0SInThDISyfzENWcQiTaoCY626ls62J0GAl41++DJlSh1wu5/FDj5OuT0eQXUFK2h382O3m6QOVrE+LpWPIgF33B7n+w3SHIqk5VoF09nTUe44w4rtNNP1ah8tTh0gE3mE94igYkuXRI+zE79vCIk8G67gDk0+He7gUcXQfDukf1FQPIIufyGF/NPN8P7MnZRxLxFvo1sZz7JiB9GIl6tRMnKc38dvEmVQEA+wfmcxi0XRuKr4St+sCIck+SoLVSOQhkro+pa8rkkyVlubCGxld/z22YR0PaNrIGDcKS083kVEZlObouPaCE3N/NN8MD2HuuofasWsojdXSUlJKXDDIjNoamPo0fZuOU98fyenyWLRRPbSHggQqpnPZn+NxHOhAXRxNtEGEu7YGb0Y6M5ekI9YokaMkxjeWO/vW80HJzZz7swWpIhJnayvZhVH8kNNDqDbEIxOKkYR8PClXI5fJuGHDfgiECSZmUeXUUL/vItenZSEaOZnIvlMM/X4YTeNJhPJKJIEQVZ1JCFMuZ3fVN1xTJKczeAuDwhhKvBdQrX8Pf28DFyN+QFw2h4rb74dH7vqnsu9fBvIej4ctP3yO8G4B7eevRNmwC02uneknbsDvKWbY/xdEhmzM1i9oV8n4VZTGSKULw45MhoqUFESs4vipVOqM7yL168m1trPdFaRZks39HU+i6VgHwSA8WA3AptlHyPIFiJKYMWYWo5LLuOvjaYheWIKvPo0P4q/kSMPH9F65CQIeOPAiMSNvhpiZrNA6qYxQYNSqyFBGsbL+JBz9lqnXbGHftzXETrwM5e5+rvyiiq6hfLwePxfv2oxICLBlnZUR5ntgrAZnYJjjnwropj9LU0SQBt4gz1rO2JZXESmm8oL8bYYwoYiuxmCwc8/zzyISYPXHX5LS8QIiiR7EYZAqIWEs39/QiiPKgMlVxxX7BWZOms/Xt7/JyTvWE3WZh9SFi7lubgRp3V08ORjBMTVIDV4sP9cgSTISOSVI4/BvxN/zE6Mb5YR7ZhIb2ET/6TwCK27iwsCdZKQuJUbjR50bw4KaepJmpvLmhz9y1erXkFpSiWpywvQEEElIMs7hblsTYmMCvuN7uPj9J3i9UhBcSEIDBCVZXJ4URWr+pfonEdJvCGiWY/UbaCqYwkDZVGaeeROpoow2awkBxRf89OiV+IZaMPufJqGzkb3Jb6BTBBB8nTgf/gBJ3xAHD/3G2AlLuMWXQqskGqc3TELbbxwb0JEW3cLJ6TGkWmTYz8+hd3cmx3bux9yynvLsRLpFNyHop+I5toWOqm7CklaOnWsk/btiHm4/xYGIDg62HeSz0NX8EJNKCOjBT2jAgcwXwq01UGA7Sn38eNJvu4v6SbdRfbQNc66Rc3YnWqmfN9WTmK1QMcsV4KneZ5gh6FhecA+5CjWBgIK+8YWsOSHjoaQb8ShOkhmUk+cqoUadiPn0IWJGBjk9XED3ERuJdoFBQzNxMQnkVdnoSe7gVLsFU28v6noLEi3YxmpRrXiJJyqeZ789lYcMqwlVitj956NED2/DLUmkR/IhVTt+5tyeHSQ9/QrW9p/QKOdzWKGn56SF0HAv6sJyZJIMPLPnMmSOJe/fnl35tFxGVB8lXttO9NInONDUTFrYiVgiRp87TNe5clQXviaY9QxWqZOCvL8X/qrKmsnJI/uoOHKQUCCW9io3Qx0ySpZPZKG4gxknCpg5ECTdZoVRd2HOLKH7fC/KJhvDi0fhjBpAvnQkvabZJGuNjBEms2dsFFdltCAvnMMbJyTsjpyDyH0HYk+IrO+nkjJbR9FXzxP95DWIFRGIpQlII+U4VXrS+jv/ueDjX62e/EADIiGMSm7F6iljXc6vrB38hsfDy9HFdHCxawCh7B4WOWaTKcsicmYulSEZeS3fEQzn0O+7icT2JmJ7rViGRNzXUYm5vItklZSsYBBSpoL+0qfY1soezrXuxZ7k4cSF+xgePsmRrv18fuMztIx5jcTqFpT8W+xv834IeqBpDwA5UVpGzb+RtLFL4PNPQciHnAWkFZm5YamW8JmLxD1Rxi2T05mcHYsgghcjKum+I46yXB0ZgguTqwJx5wDZw8OkVjxBZOVjfHCqA228D3moD5xnSasYJLJxB7o0D3fe/TwOe4gfXvuIyBgDAwnjIDoSbyAMuUthwIFcPw9T+2YYquPjtz4BYNXX9/JA9VsosxNBLGO81M9SZRDFwT5+9boZ6HMQWOJHm1mJUPU96q4LnN87zLk2B5KSVKylD5L40kS8in7CYQ9Hvn6ar+67DeFUM9JhP+W7ykk3p3LvJ5t5qPo9EnPOIOqpJDDlefSxWdzcUcPX3/+FM43P4by8jjuumIUxNhLz8FtEDr+BvvZTZEP98PmnRIbFZLm2kjjwE9OVbm448AdxvT3oB6J57bHHCcoz2aWr5WDaT/hFU4ge8jN+y/ckNuTTEzkFW3Is3VoR5uI8bnC7MIi1jG7YxpQsOWKtlfCIPkRTn2TcA4eIv+dJ9L8pCDW0cYVMRccvBXTWa4iPEGFY8wESQcR3SdciCAItHQ4EzyAvdNq5I/wYS2U1nNR8zFURKl41q7msy0ZGv4szbXvZMAD7sxfQb4qj6qIYiSxEW8NeTE4n1zR+wpLab5AEwvgH+4gIBrkndQ0rTJ8iGVBT6RARFAnIJCIeGZ+JUiLB6HdS1PMhX07wY5VGMFg8Ftfx3wjGJpB/pZaAIkiO8yLj80eQpmwh3PkGA6Jk+jRpWEICFaZUMjMfYuKGfqKaDjJtoJX8LoFrHTpihv9g2HcfFtcnLJlsouSyxWgTopGLhunRhPitOIOjB1yEFGb6M0OMK05HIETDfXfSNn85d+2swucNcMIZpNK/i9bITezfWk35xTBlkwv4qKkNx9cLMJ56FKemkJssz/Ll0Jl/eOST2vP5zPAL5376nvjUAAsXapBOjOINUxpe41+QuzPoSyxln6YIjMkEfF4ezQ/x50It7Z/ex7SIUrI1V1LeLae3dydVbXsIBhxEm9X0T8tk56I9XLNIx+Ppm/hw8haqVf24v99D8PgZcERzWryIPuubmOq8mDNDFLZV/fN492/6l5nJhztOIXy3kL65a7lRls8Dty3B1eciqrWbh5JL8MbXkOgpRztsY9XXf6VbJqH4nrsYmJZF7FcO1D9WsPPDIrLUVyOubce8cw13Fl6DxRWg+4EviQwZIWHU39r7+qYxtDQeR+wKkzX8MhtXu0m80o8uNoTE1U28qICtZW8AcGrHOorch9E80Uj9N39BPqxGcs0j+F1hMgDEKTDzKgCCpmS6cRIxZOHK0YkoJAp+D8HDcjntTZ+hSbsDY/gNZOTRpSxmcFIxBrcMQR9kY4Yfi2Msrvs7+KiiiwLPILJABA/c+RMag5aX7n+TwX39ZBarsR/7GVnsa1h/uhdffTfByFLqtdOJsY4nw3McWZye6796n0lsYfnV3zB1+gxkISdfLJ7L1xIpAX8I6ZdyzD/ei0ripGfU9cQPVWDMuZv2qghCChlV9b14hkPs6WwloSWLnPPfMHH8HrylbgKJRk5dfJj++gy+Kn6Ln4xeLnx6J0sf2opKJuLRrU3sVsbzmEjEp8krSZRfy+Pe78GtYq9pOdsaB7m3OR1zegJDOzYSKYjo9Q5hCQ9yY/8d3BclQ2UQcfU6N22b3iZRsHPtQz+gCC1HhI948XPUFI+BbiVSFESGJRwr7+fx2QUcll+LEDLTEn6B+/a40Xx8iL1lNkKhMM7yOchWbmZozqN4JiixLfIy3NxE3PRacgtzyYy9nMY9r3NtewNuhR6lTE7OxgbqTW9xPmssiSIpAZGbPJGBD3dsxKwe5PobXmTESA/HtjaRMGIGsXoRidZj/L49ApFUYCBygAk7zjGU8D7dxSYeC0HBT59gnTka1YhJEBaDXEL3oQE2TQ5yanoR3n0fcDY8GanPgi01Eb27iw2R9ezYFYMu9BSrxRIc2gw0UX34BnoJ7z/MuGAOv/weyRfSO5EEwnxjseDxO8mIeZdAjwulLJfvdj7Ea+W70cqLCE/6Hu9vBkJSF284TrJr7UREd2fRx3GU9Zkcq/sW0/IwkUfNjNakI4kqo8F5kbDoGHSN5ZAqhMvtprmhnubQDEzxw3h6grzvsPD2SQ/vZSTwdvJN3JlUQPKM63jqw61INWbcTi9qrRIAjVGJ2+HjrjU/4PUEqFj7B2GThlzpCLpddawyTOPy6lY6JWY+bdiCzmhg+hUrwO9ECMOdn2kZ6Akh4EGjyUa0eSuhgokMHXCS+NgNqMpr+XRdP7/NUDLyxNskGB2o855CcrmELmU1ESVW6lOVTD12K9eszvtPt/r7H+lfBvKBqHw81vPUn+6isiiNGk8AQ72D14eGeSLPgltk473hT9im+Z60mSHSpToyXEcYDCUT8+nnbG85yf4zHlJHSckPrSdx5CnOPrkWAPuwm+2t++nx/oRZEUFIuOSsJLOVokbAV3OKCVNmkJsVh1g9go7BPlJ626F6EFJSERFE7RvEZx2gY68Yrt5AcnUVjY13kHzFjcjMf3fIkWYY6KrspqdGwkBCJsNyJwFRmM78Y4jFFYiDq2jVPIavwE+zuoHCqvl0iEIUWQYIOYNYIkHSvJvpajnNukI+fPoN1HIR9y9bjmrgCAnBJ/F/FE3n0Bgye1biHZDj3V2JdTq4JYWEhmKpLXgZx6EmDPo1uFXRWOe8QeemN0kzxRBhkvL1V7/wxycdPP3jcrok43EN1GPc2wHLX0EDFJqCnN5US9+AiznuK5hQ4WDz/N3YdB6iJGH0UhndracR/DPxtioxSKWMHpdJ7vyDzPzrbG7vEHPbykUMCAqOJ03mg+RGosVj6R+6C0fREN7ztRT6i9ldoGXewG4ciQsxDH7M+uEyJimKSN35Bh/vi+CXUIgBeYCMl97gsXAl6zZtY8VlNxMIKdm330XhXCuu2Q46nMm4rWICf3bi0utxGP9A4bhI2eLZOA5uRe2V0+IegbHtI/SWOn5r+5x8nxfNETGt+jKOT+wiIb4eqSKZtweGWLbkPgIfPUZ/Xz9SmRjH71W8rB7BCa2YWz1/YB+4kkX+WJYOp3FAL6P41b3clm4kY/oM7B4vGTvuIyAzMTvzOiJumYDhw4foH8yjxjAbe/NZchLyUVZWsDOcyIMJh9EqvNzum0OepZfLGs6yqe4X3E1OFCY5P5svJ69hHu5jfRwq/RWJsIQ0/zBlyYe5bcVfCfrs2KUR6AYvZfzJY/Q8+OWlcf9sWz9POYIoCmOZ9VUjd+97hKtW/AWv14I6kIRiXwpSaYh77q3FJB6DXxdmgigfj8qIrtLBQKYChSmR6LsnAYsJBoNkavJIUWciTpSg7/8Oq1TJFJtAfVoyQwoZrsTD5KnmEBSJWJEazZD0fkyJcQSDQRKzc+m3e5EpJHj+rMQddJG1cDxZIxNg7eW05z6LOz6Z5Hg3Z0N/EhwaoLXWwDsBEduTcoi1PMeZ8i+JiZwOB14gdsUn+DZ+T37NZ9x+2Y/gToDiq8i5uIGosRrCQRF3FD7AWnsb6BXU++U0mRczJsoJfRK8TgeaSFAPf4TY2YbHk/pPTYL6d4kEQfhf+ovZ7Xb0ej02m42IiIh/xnn9H9PcGZchUYAuQsvXjzyKLL+QTRubUWabOH9yM193J7BmchdBXSQRGbFMjJ+IIIQIOTo5a5cyOiEeic/OcFjF0xvP89bcVC4e/gO5z4onYh5lUYfxHHuTEzkf0541grDIwaMTxzPcb2HLBxWkjjBRND0Jzp2FsztAeQ5W/IynogJLXArxCWZ+Pd2OXuvBvaESj1tK7JQvkPsmE1U3BdWsLHraHIxfmvG3PgmCgEgkosHqZOeJMzyx/HI+//BHit9+hvhrSvCMLsCZrCI67VouLrgWmSDguPNZWtOMKH1SrtlThgCke39C9tsjrJfByZJ81OZlZEoOkbx4LjvWe5ls+JhdQiZTHE2oZAPIJB8hEcnpmGACRHxYc5gbp+n5TlyKstfDqyNSWbpoObpIJQ9d9xq3vrCAoN9LyOdHIVPS1tKISKNh9/5GFL0WvJYhNsTVMm6wkrzke+gzJhPfsgu9FvTTpvHkxosMd8u5sySKUNc5LJOnk+7YQovBR/phNYaYBF5c+wNddRcRBAlhRTtIfbhDhbQIUnxSKfk+D3qxDLVUgkfUhF+UToLPw4MvfUWRRMzUnht5w1jENGUsh7ekIUwvRSFRIR78A+koBQMRISKtEsq2rCYkMhK+7xiH1x1H01xJ7uWZ2M1zaOpw4VAq8ET0Et97BK2+iPOOOqZWunkzIYMdCamcKArTNHCaZV1jmFRXwZHVT9LQcBC5NA2RHNYc+5lS83z27X4bXUwmCy9kIvNL8CEwT+TksmQ902ZlULjjEXRCGLtuEuJSgSPqhYw9+TK5Det4W30T6UE5o6P8XGgfwyZdDJ+V7gcxfJtyD5mDbRTZ9Gxz/oFsz2GCUWOw6OeTkBAgXtpJ0GPnuo4h+n7cxrj4YTQhGb/cPZqaxGtxOr4ipiKXntgzeFKCPMjL2MICCyxNvDttNI5zf9LnziIQpUbbsYujeddj27OZ8q+foCeciydGgqAJ89tdY7G25qC0q5GVHKTP9BwyfRxpkSHam+spzUkGfSKnf16LqCCGgoyRyLY9RfeYKTxfcZCbY1YxuaoakTGS4UmT+ObBO7j5qXfYXX4Gm9vP7TNMsOkObEUbOGbW0h1tYlLVh+Sc+wRSpnJq3rOUxpQgDfoRDr2EQzWCiHHLQfIf3ZqSk5PxuV3gdxNSRqBSyPlg/Rm00hAlRzaDYxv1Ra9SOiePIa+fmW8f5JpROuI4z6r2r7nmWNbfyhfApRIG/+41/X9C/0+5/F9+Ju9yuvnrgx9TMiuFI+tPIW1qwNHiRpaqp3TkVMaNDGGXlvKCt59Z5wUeaK6iSK/hs9wk/JVvU1HXxKgj69GV3M3T1QuwN51kNA9yvOQIgZBAhmc038eqkKjewDi8ljHZiTwtVgCw6P6Rfz+RklLsZypRawWkUimhznXIzzbB7RtIilDQ7hhENUlKcpuEwrEvcs25cyQsiOdFhZyEk90MNpcTNWkAxt7zN7u1LIOWrHnTWK1QMTHagCcYxD0Uw2nV9YisIWI8Ug6NvYwEcTZRKiubG95Hp4phYtzlRKXmo372PhI9A8ilidw8ZiIylY3aFivGU69ybXQvyogoXOoivNl3IBnuJbNyOY6kfKoSVpIpcTHduxeJq5N94l8xqATEndW8/cZdPPvq03yw6QFKUkfw0tPvYL24h6UvPo1ILuWxmnbKvb285K0iMlbGA22/0B81AV3IhiAeIqwrIeeyAm7afgNHW6YT9sWQtfMiwT9f40i4np6CO5hy4Ve2HUtjdG4dPzw2h2DWGuq/3oFWUcen8k7OdF7GjCIlVTKYXH6SxJhMxDMm4/uxGemUeJLw4wk4qZXI2VD5Kl0XPubggw1kaS+jsdmJxvAbnWnnUA0OM3bgFuo9ZdSmP4UvkELW+6swDZegOPAHzql/oc06QKSmA6PfRdipJDM+AUlmNoMn7yYh+TEeaPNzsLKT7xQuouK8PCYPkmjScgSBvr5tuPoLsVpiiHcUM+LQdISCn4lKECGdqEDTqaGjx8rP6jh6DHqCQwLHZv2VsASKxSfQCa2EQgIVRfeT3biB3LybCJqiaLe20F4dZIkjyBftE4mQdqGZ/w26KDP7TuYhjZ5KzohB8LVzpN7J4HAzEVO+4JX3Dcgcw4CK1557mcJjn6G+uJ4Wjw9j4jEs8S4Ucg8iTx93Ohuxhvp5Qd/Om5V+3hONpjr0HTuNI4kIpyBTKpHEJfPLFSqsmlSOl77GS399kGtfbyKs6ebhZ58kqfUQblUQd9jPqEwz6soDuDd00vb+Mfz3rELfHYlKU49Quxn96MV8veRrgsEQw31DhJOTGVY6ueWDL5GX95EQIWXavNnUrn2eJK8UT5qDXnkyNQ4vHxuWcmB+Kqs9dbwUlY9ULAW5FFHaTCI8Fri4AUZc/R/YMfnZX5mUaeau6Zf8D2NiY4gbHEalVRBQS5CgB0GCz+0nwaSh9uUFrDvdgeLiKSS2djyexP9PZu7/vf7LQ14kEpE3Npmjv/xAKJyMoA9QUiCjvKaFm/tWIhF8rB9/jEUVByhxhvh52gy6hxwEAl34A1/hlkQSMqRyXjSaGFGQusJ0WvkdcCNEBXg/NZ+8/G8QQnEcbpdR3vgf05YbGhqIj4/HLx+DsvQKALRznkAbuPSWP9VVRbQihVkTZ6OZpqWjYy2vx/dRlJOKrWo7Q0vacZfH02ZVcO2XY3DKAgw/O8yA04UPiFTKaVLdSt6+VxEUlyOqsVC4p4OTNi0jy6KZW3U9Hb9m81BzAPX7LzFV6yHuzSfJNptZP8NCQDkWvzYLWaiNAclcUvNbUMh8cPw7ik0WzgggdioQEINIRFHPaQLHGlku6UWaPJE1OTDFF8ar6ScuuZU9q5fgFHm4/KkKHn7lAX7buB7te68Tn5IGgCUQZLkI2jvakX/wKnlaO2HjBTqjM4kfGc+mN14g/8Iw85eo8eWPRNXhpyvzTTD48De8iliUjCGtmdGFPYgsINVFoJ+aRZxUSv4pA8sjBijsDPKV/xvGFr6HRHyRNvt2/ENphLd3k7ZYSk8QBns0RMs0mHKu4GTSeNT5HkrmZHKsqwBz3TN4tdEMtsrw5fvpjJmPTVChCZ1Ed2QfvmCQfSmzUW7roVT3EeqBI4QiVyGOHsVZya+IgiLOBoYQifMIMMRI3UQmJ0aSPTkHv30AuVRKcvIqfuywYLVZ8bn8TPC50O1/jtDOOmL27sWdpoNeGwmZkThdIHRVMKfpR/rnfYxWezkvf/ou6U0vc8XyQrbMPk70YAhLQCByRDETW+rpq20kFI6hL5TJ1y0xRFVIWd4TwDZoJaE4BUPWZVzpf4GbfzuF5SCoxJP59tVPCIcV9IvVHC5+G3XD+wRavIzptmO33YlIPowfFTne3TjOn6Pz4WX8EE4mLJLymV1F2wU/mZ0XMYkyuMPUjSfxEXqiYgibfTzy4RvYiebzv9zOu8/fy1eTHufM4UHSinqx7nucSJmTfbGP4782i1x1HxdSVhLQKyh5bvhv7rKd7xziqzQ5cpeNTX/cyuGrDvC+bB0/ubbwvt9EbcdyBGE5t3XVMEsWZN6o6TynTiEcysZU8TFi0X8Ta5IxC/zOS760QPmuOhS+TrLHJOGTJ3K8eZjmQTd3TstgZ00NAbGfy2+cglwuJ/Geb+h3JtD6QAHw9xDtf9dXTPinr73/z/RfHvLGGC0G22lmhjdSWfoa1RFxmC/0E5EkwW6LI0JsYcmEGMJfnyKtqZlVvedR+n24ch9AHBiLQv00wr3JDO9fjHtMLpa4Z4keFCMKC4wvy0UhExNsCBAacpC59i0y/voKAC6bj4A3hCFGjUKhQCKR4JiTjE8hI+GnH0EmZV1ZBrE+G7rIPhINetwd0N7cQM6MGzj70duc/uR2rh1bjFASRKYux3T0Q0IJKYjlYvx+Px/uP8wLAx72j0qlv/ZKVPYgS7/byh1lJSicIYp6A2gikxDJtOjufYoK19f0Wf8g6sldRLqCfLVpO8GG91CXLKZDaOB8+Zt01T/L4PkoZqjq0Cs09BbFoLddQN/5Nt9GP4kw6Vo879SSrjjKPMPbfNsQhbp+LfbCHJK6BNwJMaAYpE6m4S/3r+Kzr3/gtrtW0dHxj6FjsbGxyFVqeLwVcTiEGNB0Ozi7q4n8KTPoaq5BEV2E3CYhcW4a9rQgc4UwST/fQpfcTG9VHsdVl5Hqy+ZQ+leY+yZzLmICN14bSVddE0erBrm3sRmh+gr8MU+RU1DGsaQ/mZaUQTh+AdpvKqjIdlE7pp+dMikjJDJM06UYYrXMMal47VsNhoRUooc/5v7BV5gVG2RSaQw1xY+wYGob9s1vYXZYkOfBxbZp5MjaUIoMhBw1qEQC/tBcQj4Vo5Ym05Ax7m/99vv9dP9FgVgENpuMPpuf6Bgj4yR9xIYfx6s4Tnjao2z5axVXvjeXcQvzeHd3HVeNSUZWU45MFUG6Sc3QuvXMqWvDtGoxBtsxJhvr6K00sK78HJZKM/PyjFRJmpkRLeXzqDR8NhkLfftJTjzLo+6bKC5bSr7HzV0/HEWDlJUzt1GStA2zfTciRw8ua4iw4CfCpCPPUok0rOLj/COsS1hERc3PaAd/oO2eJzmWsoLPam0ECTLKm0HzUC+FhWr6mt/F1XYLPiFMMH43E92dOK0WjmsfY9+GT1m0qIxb172I1xeFV/8gY9Wr+Mr3DCn6IY6Mugq7SMAtDjJkCVIS9XcDcad4gHFeaI8uYn/ZfrRth1jpkTNtyvuUNMRQeq0ScW4c/W9JEQGtrlbGLshBLDPw9Lin6XzyMIJcTPnNmVyeFIXU2gnRudy39z7mBZaTIhbz6/td2C2dbLqmiBGTEnH7QrjtkWzaW83UvHhiY2Nx+cLoZX9/YXj+yUXH/nf0rxFC+fNVdDQ4OPy5hXmaCBZECDygUPK7dgk/X7abDQ3DZLs9dN10G7NTFNwyOw5D5CgU3qeI1bjw+YZJNBeRaChD03KB8ZKfiLZ+SVe/g1AwiD/VxGlHF5JDu3Gs/RqA83s72PbJeZrO9pOcnIxUKqW5rYPWtk68RjFClIlwKJZA0MQtI69lSuoYtCYzp2PS2FZVzWCPkRAZqK64lSv6xuPsOoZMBDtmfcHZa04CMNug5dZjfxJ0SBg3dg/KqiN0BJX0yqBydjI7xsWwISsJa1hKz4ZPKeQcM0SfIbPYePONN7mn5zR+FQgX11Ff/zQenYyrcjxM1ouJsPwE3kFiT0h43prEd4mLMF08yPi2fYjEIkKiKJxCIiUrEyi5I4nB6BTCiJAODuI5uR5lVRqKHj33P3YbnfWDjMmdCC/HgaPvH25NdbuDbmuAMGKG+xyEQ2GG+9SMW/gkM0ZlUpCk4eNzH7Pi+DI8pjBvpt3GgpGfMC27DVHUGJweOfoLKlS+IJO8u5E0/8EJt52hJCW2rJfxxb+AvTMHu1dD9dnTdLc0MXT2BBJJgFnO40yvvBXfqTpu+LkE8dF3WfvBV+z98BjS8Hh6rBA3dj5phk7mOTcxVVdD6b42Brc6MDz6G18KIj6OkGHqTKRaeSPOns+odfXSZBlHRLKMYNZa3JG9/9Bfl9fPqMAXuB9sRiqXkKiR4j27gfNSI0GxhCg6kRsyyYiWUF5RgSMYYs/xcs79sYVm+eWcld+FdXsVKk0W6WfP0tgJPc1Z7GxKI6TsI75pIwn2Fn6SumlIW4Balsf1njC31VdSkJhI0egiaqafJD3UwYKXr6bVHM3db8eQPPdBvDE/Ex74hT+nmjANHyCtax+R8kFMMRJ6zV6uadvKg93rUQ9+hYAYxcB51py9GUEQIQ2JUQshkmxdCL0XiS6cgTP8E58bqznWeAStaSrb1y/FsKEFj9XAZ389y5G964hyXED/66NMCZ1AEMB4ci36Q8PEVg1R1OvlmvRY3O4WfL4BWi/0Qd4Ixs+bwZ5NJ7jsvXLa9eOYfmw0SRcOIRf9QkSBmYgoNfplWRhvzKdkehpia/Pfb4BUREuenGF/kNoT2whV/ACVv6CQKDhpPMeZ7Bx0uiAQxmhWIxaL0CilTCtSk+TbzPeP34vLauGKeD3vlfzHMuP/f9R/+Zm8SqVi0ZnxuFq7WDZB9H+xd1ZxUl3buv+vcq/q7mp3NxpoGmjcXZOgISEJCRHinhCDeIgSD1GihBju7t7Q0O7uVl1dLus+sHf2ztnn3HPvufdhZ5/zvVT95lpTaq41vxpzjDHHQETkDWkZa8QUtFNvo8dlpddXh/vNDxAB2VuHqY0KJ1IpZ8Tcq1sxl6sHnSSIaG8x/k/exzsvgIIhX2HZuY/tB38k8a3bkKUPIXvbNrSJCfDyywy7JpGKvFYq8tpIHBSCTCYjUdFMdNch6lIiKJIOx+EWCG73UVTVRMaoCNRGE5UqG82/fsfQoEFIM0bSg4RWUcHKlFd4O89JZMVW2DgXvE5iY2N46OFH8W++C6fMD+kzeQcHzqA+LJJT+CVTEJs70DjaiVcG4iz7mCc+WIUHJTKljdG+ZtaTxD15qxkm2jiW2w+7SqAxupf85BWMv7ADKQLfFDyKLCYTyZxBtB5ay7jo+8kIADH1TiKqz2CqOsqpTIEzYX5SGgdwbsRPuFQhJLg+5VSsnlvGPcWnO1ayYCvkRs5n0ex1KORywsLCcHn8yPAiiB5EhYHmhjrO7ijG6/djVIG+ZA2RQRNQtC7g0xYN/qH3cc57AVeFGW3lNPaOPoCyI4sAVx3yVnDbjnBNxXFamt/CLslAt3o4Zz69RHTtUwy6qQhPyHwaLI8SNnEkwdkv0XPOx3v+DgTfci5XTSGx4BADgl4k12ygdvxmhN+m8WqxDIlCh6R/CP6+XHwSGRK/F79CRWhLBaqBCdSX1HKyMof+gxchUQxAY1YxYfzb+HzDkcsDfn8f3XYrd2SHcKjMi667gXC7jbb8k4ipo1nm6c9YZRCjZuRz6riAcFGH89hpfg69QHdWEq4CGQfOmcmYGIBNUUbcq3OxA3WuIfhqrXgnZ1PVtZ4V48NY1nCBvd4IkPZnEtuZmC5wUJHD49IIPnGfZ+mSxxHDRY5OcnHBLwN3DzmRK+mpWgMOB8UDnkWuVpDdex5RpUN2sYqwgk4WipuQyDW0+F3crajA5nayo3g72cpRCL7n0EtF/FU+Chou0B27haAhx6iuXsbzGw7hTzFzR/AJ7J33oDekcO7B13k+dywPl9Ty3aY8bnz6Oro7Uxg7L4WiLd/gduvBH8yp09PQ6ZJQ2tdSrbdQVF7LqOAa3qvQEBMWzMlr+oiwi+D3gtQGGPjp62IGqqTELOlF0XUCydjnQKFBclM/+n7dy2jDCbr8k6nHRmDQEF7vt5BL+z+g2z6a5DGTmOTRokuf9Ptzu1j2OF3qWBIiZEgkEj56bi4fe/0o7lOSk5PzT6Oa+ffwL0/yf7Vmz5kzh3s+mQCiyA2/vYMu52U8QhiRrkr68s+T/N0zhH/1C87D52gvaYSbrtZv7HOwt9mG0enCHq3E9eVumi35jE4MYNu3h8kJmkxzZR0zho9BIzP/3u/e2j0MeCCc/uZ0RLcbQaEgTt4Boo9Y/TgUkiAuFLeiPdxGk1kL1ktUm1OZ2mSlytJC4uxAPirsZoHXxwPNZQg1NUQ8vgypJA7CsuDde7E5vZwsszK1YjM2fyBdJQ6m2/fTdGoDgqIfpsDx/Jb4Jm2eLVjdXRSPSsP7lchLy27CfPFJlkqcuAQXfpsGu/duTK17KUzX06YYSLdSh79Di7TlDHJ3A7aKXn46KWOwOoxTfTGkj2yEvDcI7qlBBAq2/0Bwyiaye7eTaLhCu9sB0VKq65X0RuZzy/BIDtQ4OP1WHo/UDqfuNuCZNpAp4cDTiKIf/cJPkMmkGI01yPxO6JRR5x6Ao7CG5fa3qIu4E5/KhFJzHcr6M4hn87AH+DnsPUdIyRWmfnWYDctuIcoynRFBWkxyKRKJgDFBg9ttRCEzU+SdRrpUSqK7AOH0u1QqJ5PhOYlGauXRFDO6uIVcLNqEXRtKmN7D2emfka27F5esk2ddWVyTXMqoG2/n650n8Bc0Mj9ZQ5G8leRpaYSmR9LX14LHm4XbMQAfejo6uq4ays9+BqW7MN+7nyU1T1MRvQG7w40KGTnXPkl7oAHDhVbatL145R3cfe9q3l48G7sTxOun49K5ILeZJbNnIcn7kApnPaJiIF6vAp9aQlKknuBvm0kKGsvMTh239lhZUKHC6O1EPk5A6vMyWzxFilvCtOf3gE/P2gWz0bS+A+7ZjK67CMlVFCQvJ6HqW4YUfEre9HWc6BpHtq8EffJ0TCNCcQsSvC4Hulo7n/hiUXRf4Uh3NgvGfwPZm3nng9cIRIUhsRdlSgQhViU3dLQz3ZPKMEkdHaZANK5a5B/fj0/MpWz+Iyw51cm2E09y/QfnefWNqWj0LoyRUVhVeo5dsWBRH0HdcJH+lwcTo0/kyuznGRQi5b0KOHZyDqKvlYhxJ8FSD4arOWDVASp6nF4KJR2Uu9p4UXHVDTkwQkvC2FHUlLbRXm+hXtbO+IEKBEFAXrsbfzxUe05SLjoZ5X4KpeLqms6KWERN6csMfWA/lgfWUlVTQO/uWp7bue6fVk3zV/zLk/xfoVarmTNnzl/cmE4x9y/lxWczMbvB2PQ97N+MZtgwcu677/d6e5u7QITMhMeoqHYwru9TioiG6rME3vkkaQ1OcnIjUMn+4svu7AVRJL89H4fXga73CN7bfyLsoScxzl4E/RZy6uAAEumPzteJI/EGRsyaDxtO0m0PBokSZcsZZO0judZbQNuevRi6zHT7PBxrkJAp0yArGwiCBKlEQCYRuZL0Hh02Gb5mKXKNCqnz6kGQxo4cYiId+CU+7D4rwk/v43QU4w5oJU9xHUP7Z2Jwd+Kw9VJXVUeeNo3LYiAxniZGn2/H4w9CpjHhueYuWi8XoKvsIXHFCvr/cA3igbO4CaImcCH1ueMQ16uwVY6F6DyCu67Qq00n2SbwKs18JJFzz5hpDB+TwKp3FiPKVQh+Pxx6DpKmQ+YCTvW6MWq/IywsDLxO8PtAoUX0+8FlQyEVqF8d+rcHOmMNwow1zHT5+GbrO8SlTKf23SwmF+0mdL6U+oujSVk4gKRndxGkEHh26qvY5W7UooA9Ygrd52NQ686TpqlnU8AyYt96linRe1Anp2FN/4kan5TvzxdzbYKOo8Pf4PL500SazSy7bSGu++/BLddidUk5qpCCAH6JgNLVg0+U4xVUKFVStGr9755QeY2JiIq78EuOUpr6Hjk5EZzZdQancABB3oXRvpOM9o+Jz7bR1TUUt9uNzBRC+6Kn2CJTcn1CGD4PnN9TznBNB4Pkakp6C4i1dPNbVDGJTRPYZTrGiN4krBYHzzuCqVPo8QsSzjsWcbmzh8H9Wnl25Stg0BE54zqCVXW0TX+B4hAHuZpgFKKEFecGkmXW4825gFajxxdwHwV2D5K0FUTn1bN7TzU3DGpElz6NiG4pnZOnMrojlDV1fZzdeT8v7rhqfDw642PG6j4g0Xoaefwd7Gl8heNV8/ixYCGWZQrmHfRh4DiDLfkcSlrDmvn3c9+2d8mTjGHvhb2UNAsUd2p4JHYfLU4zJfWFDJUFoHC30OvR46wxY0hdTY0riDi5wPHSHjp61VyTC3d8c56Ri83UydWMJIne7TE0pfWgj9PzYm0jd0TLUNbLCE8yMP76+7l920xmFpdQHfIEtQ0KHoraQrhxHAqFGa/Xis/nICRkPCEh44E/Gln/mSX4v+K/Dcn/vUT/90gfGo2/XxAtaWsJHzsF4bY/hgzWS6V4fH5cdhG3V2Sz+VpcSgPSfb+wqt4OwIyyOt7ODKErOZzwqjfB08cTQ5+A0+/hrz9N3+1j0Y4fj6vLTtsbF7BNMdEk6cZPGV3R73O5eybfKgfw9tR4/G8m0jtkFMbZ1+HfL2KICCZgYAoaH/R0+SjGT3bgVRJX/XoTk8p2cyRnOz0pzfRMqydV/Qktx8pROvwcP3E/CbUFFCv28krAAOZXTqPPfoBV0g08ZnwN3a/Xgwda95oxLLcTrkvnBdutaPw+xgod1A0YSNrQYVSVlqKWBLNA58HV3McZ+0LoiyM8xQdiLDXOoagfUnPNkVewybIItCvIislBGR1M9alqslpS8K4YykCZBs/m0Qw96mXlS08yr+oTkOshbCAjwqCxvv4/fH5hYWHQmAdFm2HyC7+Xq5RSXkp7lGPVNu7Z1cmNsmgWlrYybn4GNqGHoS0F5IYrGXLCjdgTSGNWJU7VQMr0ZqQhI7B7RTR2CZWPPM28E9sZF3oaj9iE2zOOrBYj1a4DjO38kfEjbkDITGOt10/D40HsHh7FG00ynvPMpMemZVTKZCqbjiH6BULDkkk+vwBRpUasOY0QNwx/choS19VDcqWCksLdBSSLJtS+JJ5F5L6GySBCU/twhM5LuF3HuC5gGWXeG+n2LGLnrgmkhgci+ERKj05AL3ciJv2KyhpHSttIPEopP4YfQOE4x2s8BFIvMdI7sYcvYmtFP+LNdu5ZtQmpLJiXnygF1pJyxIbYBHPD0nH1GvHGruZb7VO41FqKU9Yid1yh/7PBRC20oit6j12V/el2gN/eA/YOAlvPE5x2K+6EKHK6p9Kt9CMqisEgJ3rqEdQaGXJXLoKYj07ai8orIAGWRcZzasBAlG2tDOnvY/GD/dn7lQq1QsKbzyzlkw+X8OX+ILrtLq6YLnG6OYWV9kx+ax2EJ0pDw7qNmEcMQZQ4KVAspfe3KOTDmjEmBtFudbK3qBWzyUVqiolWxzcMmbqY4GgtvX6RWquNxu4OxkaepaNQQXHaAhZ/lIoowjX9fcTH3wIlgRA/gc6jn1ChakQhryU7+5vf37l/ZiPrv4f/NiT/V/xVov/r940bNyLRaAgfO4XznVbSjVrUXX14i5tRjktjfkLY73XjdF42tcoRRD+Lb7+b0u3FnK7u4NF4E/hFZIKAWxkOwl+mVSJDog7E4OkEnZaNq06h85fQE/oV6sAATnxXSJQbPpXk0drt4C1tEJLVFkx/6S9x2FyqWu0Eq7w02t1M6h9IRmoiNocTv1QKpdsRAXdKHu6OmbTlZxIzR0tfiB5ZrIHpU5KpfukZCm13sELTikelQiV1s6R6GsOr3kIQQZDD/qnzub7lB6Z5nNR1TaRWEY019kHCjn0M7mPEntuAzK/GG38blLXR7Mqm0Z7AbY7H6VBZGHy+mUDVKHoHzCUwOJi+I7spqD/NwKGLsVZAvFyLf++n2BUXefGGHO797DBrVr3B6JVTCSn5BX68HvpaISoXRB/cfuAPz6y614ZcLickaRj4fUgCPkWhUFBbU0ttcRsBpiAm9jPx/rluzBGZNHbpSKpoY6txK4seVxF6Wkajr4XkODfdpn4YXB70EUWojG1Y69cR5F9JWOtQlP0m4Wh+l7R7HsdlcYMo4FRpkIhe1PI3EYQ3kenNLB93kFk6LZ8E1ZB+IQ9rhA1FdhzDJ2Xi9/vwNl7B3zacvroIXBtbCXrMT3KsleaiJnw+NytuGolSoeHzzeeZve9+dvk9XGA77muCscbpWBS1AKlUpLe2ju7zSYQMT0Lubqe1UU7I0BicrV5avH6UcU30uKvJ9rZQeHY37wgyziyeSmNnMcEhM7jYNJBoi5fGljJiUq7B5/iBN1evRGp9DYekB3vAdLS2n6G+DoVoBdNmBvjO4m/zUurrQ3fpO6xvvYlY/w2VXiMa8xgmpTnYoRyJybKPhslP4tzfTm5WH8PiQsiyjMW5bgH60vVURUo5IlMwoQEitTp8MgWqubUMEWdSt38HAVNHoa47jNSVi/6z0SygjaGvbmTeCw/w3qWBPDa2nfBD9dwtP4g+rJaQyofRBizjrOxtMvulEhQSxjMVAxkp8bHF6cfX6eLR4FYK5EEcvncggWIP6rBInI3Tab24G/HEPoImPM77/ZO50G6GhvPIQkJAImFo1GoU0SEoVVdVPaTNgYJtvL23nJ6QQaxd8Sjwd5Fs/wTS+9/jvx3J//2Js7+X6v2iyKK3jyGXSrj8+ARk/f4Y87n+9kXs7pWjWzaLXKsPya5WnszMImVQMAsVMk4OTSdELoX4+0H+ytVKQ+/m4m8/Ej9sFCZg0q2ZbPvxEMMbLxKZfA2fJ2gQi6+QkxTCvS89h/f+bOSRkb/3KZeKqP12hkZG4Ld78Dt9eDxuvth8EWlHC/vStWhLN2PvyQC1QKbDweElS2gfmEan7iYKqhtZaroRzbUj0dDD2EsP8rHXhdg7CH/pDiSD4TfFffTJJbT7QvCdSSDEV4Og0hNU/j3NpxpxhVkx9LaA34XXfgC5wcJc2/PYcqejrKkgzGgmOGEqwvn76FaMxOsfymXnMPwSL+2f30KrcwLFvgSmmfrYajSTpNnGqgkRvLK/nd6+Hrwt5ZgMSQiiBHXDWUQEWPch3n7JNO2U0zU2HqW3mpJPtyPxuqj7Yi0xq+cTN3oh4tfX4Mh4n/iIQKICdBS/GE1FRQUBBhP3NfawyDaF6M4qxMNvoJt7D8djsjEquqBWjqCw4/coGFn1KHuUaoxqB8kJSZwsG4PD+zUbPtqAuvUkvuiBNAZJ0AROJlQnQGUvl76vR7JYoFpIwhRSQYswjNMv5pE5roRcZQkubxzK6Gw6lWMITsri27pP8Pi7YUMV/dauY+DAQXw3ZRSjTk5B6nczcvA3NGh1SAQHxUFBVK37lJb+65h43QHmqD7F2t1F4GeZOKQx1EbtIvS6RNxbK0mof4/A3DZa9u8kpKiL8MROwn78hO3zbqa+qZ0ApPSX7iIr18dOz6/I3V142+/h4q5BjBo3CumoOLrf+ZWm/tehSDIQoLdhV06lLTCdm7ZMoqVHoM5mJ7DtALZQNZKUn3CUjEQX38u40w8jnPKDCHnVH1ERkUmwYj9+q4NzoY8jbQpnhv0bmjtVdH30OfbUGMZmBpFX7qbbm48/WUDttVMa+R6m4wOwz/yA4NZmDBY1luYW2mReXnEH4XcFMTX7DgoizITVKBmTNQZfqB5t+ymGxUciyNy4cgvw+fxMNE1BeaiUyLafkLuOwx2HkMeNoyRdhstgIhPQyqXE6LUw4hFMgOmavxyC2r8SJHKY8Jdd4pkGnp2QhH/EPOTyqzvnP5sE/1f8S5H8vz2QAP/7o8R/1NNvJFCtYHiMiQsHKxk8Jfn3BC6iKKKelI4LMx6dhjhXHi3ny/EUFHPX6CAGaiI5UxbB6MzAP7Tf2tqKPigEy7rPaN74E+rx47ntsUfhm0Fw/mFevP4IX12p5e5+w4he+zay8PA/1K87c4Qzm38i673PsZ5owl1jAcC84U0qHngUba9ARsNpzJ0liK130aLt5AJ25rV9inPzT7zuXkOmtZa3fL1s0ldy0yYrZl03iRGnURX14rFLCBlyhTmNbchaKigo9dHaZ8SwcCKRxgrecacy4eRurGYJ28qGIa/o5vYbEhFj7qXQpyFU7yTGchhsSTR1BnOsxkp1UwaGdhlv6+0Mbh7Ji2c+ZNL1bYj+u9AVxuFKCWLWCA+f7v6V/MAJJDicXIoaxpBTj6K2iZC7HBxdWM59S1PsaJSKKCK6L/OGsp7nLn1ObH8N8q0HUEhEzI8cQ5AORu52gkKJQq2mrq6OQ23d7Ojp47THRf7pmzgdfD1hhW+S2TYb16TZdCOhu3IwcWdsxH6+ELe3D6lEgtxrxyPRI5fqUamcOMapyCjeQGjTJE6qXLRpRTSxAij8lCuL8B9y0D8tg+Rz15IYFcT+sO18+P4OSAlgcUw38XPj6DHo+HXvDp4c+jDBS28itaqRlh6BjVKBfquKUEohdEc8Mo8fuyjSuGM3xrZc9JeOwfEsSJlLe/qTlCfdR1RBDuqfqpk6w0hrop8zvVKC4sbw6zkXaCdxN/MIdVu4tc7JhY42/LHF+H2AIOXtJ95CJ/eyiZUUDVVSpLTwyu5nsfeZCO7zktckJal3P5LwTJp1aWwryMYWEs0D6YnY2y6h7+ojyKFjS3M8stZqJsYNo7ejAH2fA2+VlDukS3mno43RVifVOc8T7tVgl6fiMKeht32DobCVb2Up+GXrWNi3DcVFkaboQYRf7MFmLKNMkNMaWY9UV4Js85P0v/973s+VUdVtZErFt+TF3MKlyf3IPjKQhKZtbKiLYFq/IGIzrmHk5VsoDBjB4PWF+KamQNJNyIes/H0dGbXRhMeY8fp8bKltZUakma6uU6hUcWg04fh8frwoUAal0tTXxKW2S8yYOhZVybdQvZtFqzf8KSX4v+JfiuSPt3bQePgvW32XCzo7mXPXXf/h/f9WT3/+2ckA2K0uFGr57/dZO50cvTKA26ZbkFNBh0JLd0Ml/j43t6Z6CXd145l+yz+0v2/3ToIsvcTtuxpC2HHsGI5581DJ4xFUUmLWD2RVzEhIWwVpV3OpfrtrD5Vnz7D8tltJzB3Juch0fqtp5doJMYg+PzwLg954mcrGHqRegaqx6/jsdDk3hakZbLyMJy0M5YBNNPqkvOoqx6xaxA1OKRXasdRJ3+DBn25B13SUK+m/Efb5G2Q/8QTy4CGIFzYg27ia3qR0EsXfwFrPjOwH0Z8bhFBzhoQoC0HxycjFw1h6LiDlBpTeVgREDgbpGB3ZzBxXLVNGrUJwiEw6eZTxlefxy5Vc0+9tOiXxzLVf5pq6I9S0eulRR7Pm+dfYuWA+6b2dSI1p4BVBJqdFaEGIDMJnTKRZ6kOeZaek6AqN6lRaQhej8Q/lbEEGp2rsOE8fZ8myCRAYRFhEBABjzCbeTfUyXe3n6b7vmFKTT22PgtC6FJoPWjEoOlCLfvZ7TbhFL6dOvQx7PSR0fIZVb6Yi9hn8rnasFSpkm4rwD0ljSmUtx8YG07u/Ge0NCbi7LSwXn6b9vI7KVBlOkxLBY0OQyNEYVFxMvp/6Y7sZNu8hts7eDj43LpmXsNZeNoWq+Xb9G4wt/5iEV2qIrq7i65dXcnTieLrvG4HxsxcR5b3Y56ZRqbuJA++9hG7AOCIJQgq8EGbgWO8lxGQnLk8ig+cGU/XTXi6fz6Xfff0RRMg7pmaMQ8pLtQqCnDacLhOvrZbQ6vyVm2w2DHY7Jm8vbUtuQ2qMZ/lhEzeqPMys6E9MmY6L2ruJ1p3i/VMd3OCREKkzYVLO4KBEgUanxRXZD01tPvmpT/FbdStuEV4wR7BPq0XUvE+7AH5/JN6O5bhXLUbZ0UxcVQ+jWrdSHa1E4RIo9DxMW9cLxMYOYuiVPA6nbOTp58J5+mktiH7sWjXBwW+QV7aOkBO3cy77CUaM7o/V/CGB+45T5oyg+9XnGSo7hqZrNqWZ27ncbaVf5qs4T/6MRZaErKWedlkWHS1uggaH4/LD6Q4LmsvHkHq0jJwbzks7i/nqxFAqX55OaeMRfiv/jRmjX7+qdjVE/Wkl+L/iX4rkwxV/CzLkbaigt/74f6mdQttljpcdZ3FEKjZbCdHRtzL3+bl8U9WCShDQ+Byo7h9A0/efcaI7kRefe55wlRLOngG9/vd2rq97jAu+VB67/jW23TUMv93OxnYbnsjNLFXUI/l2FsQNv3rz5t8AAa8uAEEq4edVT6EJDkJ922PE61QIUgFBenVvodVomBPkJDA5kD2HspkWFc5x4XX0jukYBojUI0eUCphFDSpByWQ3tPtBFLR4ZKEorZ8Tqy0icnkqmitbYcIQhJzrSbt8HZ5OD96PpvB6UBR3mz04LWPx+7uZmBONyhCGy+VFIvagEFqRKJs5mGPGKtlNv1Eb2Hz0Zd4tricz7gJa5fu0ToonKOk5kmQKzghG3kodzQD/u6xzmnltyBJW/PIpjs2/IrnuOjqzZxJUMJWznXvQNT1OZ7qLOWVP4IqcT83Tm/n6geFYwpJJTZ5DabKB/MYeAjxPYRh0mlo+p7Sj9/d5l0oEFkUEU97Vw9emYHSDRvNE7mDe/j6P0NHhpD+9luAlj5AZ2oZf9NNYPQZNjJRNGbmoJDJmHb+WV8TbkegCieiJQf3jbuzqk4xSpnHGPYKeFjMjZAp03iaUhgHsSDzCj1fKCWw5yVNJbezyqXHL5bzTmMFGgNcTwdFJWexhlHU2VKF+3isJoMP0IT7rZOYHJtATn8yaGTcQ3m3iy763kGX041DOiwxvOkf4zHHs9ZUwSDmQwAYXYV+fRye/QsgMM1euHMeqXEHIUif26n7Md1mpPDOTCJOFm4VydO0ygtxW+jq9pNc8QlKNlAjFPVTe+BxVvRZ+tUUwyBuAgISd/hzuDQ3H1XkJpahDq2wlLaOG1vyhiForfb0SbnHZUXs30edZgtlvI63sXQrcnyK2zGdf/25KCyGgZh/W+EFE+WTUBzbRLlMwqXQDyUh4zbkaRZEBzSwzUw3pnPTPxqEIpEOUkV/+GOqcAbjVD+Hw1NMWEkK9zcvy8Fu4XVZDffNXZLjfQdbdg1YWSmJDLQXhk3EqRjPg+mtoPrEWm8zNY5vquTExC4lPiUdch8d1jg7hblJqraT5/QR1luLWZCLT6gBYMCiKkmYrEonA+JjxjI+56kXDxBf/S/zxz4Z/CZKfOGoaErlIYojp9zJ/dBgOVdD/Uf2/qm1UShUb7kwhwmtAoZKi0cRit1cgk6mQSiXIrL0YzIFkJerpfvcztNWVNOmVhKuUnNtdSmC+hzBpPogino0rqItOYXPnPCw9Du797iJ5LVbumJ8OMjmWyKEErO752yDa2wFYds21tHeGUZXoovTyd9yUHAHnv4IjJ2De5wD09fVRVlpK/LmvkfTzYNTIGWMvQLHrIrJQBdZBCxBFP6sr5TTba/h+VCIIIkqPgpzzbiI7XiG0Yxdc9wmED4K+NtCF0FzvZP+XhQyNms8omZLiyFQSOl5nU+FKkn0VROq06ByVFMevQdNdRUXcfUT2vYeo6+Oevg9JUE2mMtPIttpUZoSPIMhpQWq5xKr6nYwV0lkTOotRnkeJUKs5d8t4fFu/5pWhN/CS+BOq9gT2lAzBlGkgv8yBtF3F8aFfUZcVgPrLGcT/NIVgl42jxWHU3z4cj0aOw/EaKvFdjPp+BNhLUSgUV71w/gKFQsE9n32Dw1FN3hYpU/oFM2n0YCROJxzcj8fnRQA65HYSjp/FPWcmod2ncLinYJZKkdb2o2HBYIK+fhiZ0UVySBMxxh/59FAwbgIonvo2iuYKkk83cCQnEAjkVmaRIEmlu2U5dwdksWZTJVMS1+DvqsapbEMYGM3jP1czNSWCcVU9yKVy7lk6EaXXw6trH0bVoeXN+z/n7vGxJJyeQE3fHYQYIni2fj41UV1EWR1orHJAoEdhJVIowSpqwCtFDJQwIigVb6ACpaDim/wl3Hh3GCHHDvDh4XN45CcIUZ7grtyfWHmsD/rkXF/zIaYhQ1nnbyB1/ALy8nqI0vqZ3fYw2utmcUZejnOwQOS5dnw9BfRqVahcTRSJ4dSP+QZ9zTbWWQ/gCxiBJ+8O4kQpna5hOB1zMDWtoz3Iy4D8vVi0WSgFB8aWfggSO+naMHp6inCMl1Iks3Gj/jbM2/dQd2Q3Rk8n42dPZdfBcgzROjb1lPC47gXsgpPxo6NZvPMxrhXn4pteQ39BTVxjN5x9EXfJw3Rr5AwcGEl5mJ5Zei1FeQq8FhFrcSnWxmDibKBfloogCGiDrvrAZ0Qa2XDHX0JPuKz4j72GxW0gYMYT/0VG+ufCvwTJK/VSft28Bb+9+/cyhSKIyMj5wDf/ccW/4K9qm9mzZuMXpYSplKwYchfbCnowaW4gUarCVnWFwUsWovlyLTH2w0StnIo/7hpGXX4Pjq9BrpiHO9qAwhwDgoAgxBA3eAmv9BuNc9cVvCL8kBjETYlhOH1+tHIZfr+fr1eeYPg1SaTdfufv45EppGQMjCX3+jeuFrSXQEfZ79d1Oh2Gch+G9nKyztlYqFvCF5aX4KwT7SA//YT3QRT5Vp7MT2nvk6k4gKLbgNzRQ8Xx8ziiAggdcif0vx6OvAyePpj0Kue3V2HtcOKP0QJeEroOYvC1MHX2OcoNSZwKHM7oipP0JQxELjqYyjkc7amU6afy8MUXQVVBeqWe5XVh+CZ/ztSz82mV7aBs3C5U3W08crgKdWIPKVYn9fvK0EeGUrf7C2wLwzm1JZ0udyC66a+SdbtA8TelxKQFUyG6UIiBlCSvJrzodZYjo4xivu2JxFjh42xLLodbq3g+SkFdXd0fnmtYWBhTBgucq/QysFOFYFQiFUXSfznCPLma7iMbCE0ZRkjtKZwjDKjr7ZQnjyNaHcUYox5pUg/dxkAqRs3ieuNbuHstFKe+y9bv7+OXVgeqUwaQCPg6X6fflwLl2jjukwfglR7E1dPNzlkLOVfzBi2DJ2AI0CI4yhh07Xg+TTTR2wdChYWzd//EwUESHrzrGmboAygvsVHb3M358w1McbvR+nfT63+ZeqUbweMjKKuYoAvv4Us30+l+nt52D4LkISIrAmhNCOQR78cYggLQd3jQNrQQ1OjmFfUxHIoaXIMX02lIYe25pVyU/kpQ8BUSRiQhM3qZpPkN75Hf8DhzkUZGEjgtEUtvHUKwkqQmP8fTHsegG8Tq0k8J7YvjGlkTJvVI6gwTabOGUqgOJG7Uftb4vXxRVous1o97xM1oG08S5Ie+7kS8o2NYEnUIZ89BwncWYtPGIu6MJ1Vtom3EIXIyMhlp93L6l1661xcxqLaXrttMSOKzCCs+yUWXH+mZX/go9Q6eOiGSt8PJ88tmQ9nnoPIw9a6beOnVVwgUa4gUG3E6ZlMen0Jynoneix+xQz+Aez+/GluKHQ+DFJi8BqR/U81iqUcQ/XS4IxCbOwgMN/Nnx78Eycu8Vioun8fm8mMKaAapgrS/6Lj/b6DRapj3/sWrhthxD+AXwfYX32ZlTAL+j26n4IqK2H5BSMKykJjN4PeAqw+/KKIeGMJ7zz+Fw9qLbOHfDD+SKBMKg4o7YoMB0EquhgzKO99AyvBAumq7qY1WExtlAiDg2uQ/jMs25jlSUlLwrQpDgYeCo+WkLxlOVeVzXFRaadmr4mKmhmiHE40kGwIraWmV05s6hwX2N9H26qiJWINX+RVzpjzMkbN1dNRuwvhyJPIhN+DVReB3u5kz1EmDDbrCExmqPoakr40u/9MENtgYHHySgad/RDx5jgGz1ISrW1EKCXRPXkeAw03j5EAiLZfYEDWV62OdqOVSzma/T1b1YoJ6y/E0QU2vAVtfH4WiBsvQcO6Y9jlf3zmN+pSlTEws5bNjFjxkQMsZbjHfzz79Wg5d2s+dKY9QFTUHb+IYntXoEZu/p10RwZSiPFJNBRTp0zgqD2HMv3meUqmUuZmLsFgsvKRR4Jcq8UlllMngLRy8M/l2BIkUWedlfJJL9MuyYvdKeFGVydIwGan5D1Efeg8jfef4ub4/s6LrWPPcfMSQDLbdNx6huQT/hDdR7ZxFm+sVPPTjYHQZzaUmfj3yJjcffgCLO4A7Zo5jTWEDT4zSU9L2MRnaqeiO2dDfFkWjMoigZh9SmZLM9HGISFCrVeR89gt1qu/JnZZOwdZ6eu0ORg3Lp6+6BIPXQXrXTNzpwykTj+BQB9A6qheh/QBteb0MzigkvyWAIa9o6W4Fgy6UbrWJ5vYx3H0+lQ8UExn5xHCefKuJTtkt3DMggewTHyED4vSX8GvkXEofx+VQDfGdnfj0wdwQOgVR9HPOm8aGhh1URkyj87ffEP0+Jpl/oy/kFWIUegRHE+rGGk5aRHL6j2BNWBDv+A7R61+O56yUhOuawDgXvpyE1lZLpr4Ot+oRjJ2RlPVCU9xobBoFTZMv0raxnaHX3o1x3jp040axvqCcEEkTZZXH2N+QxZ4HZqKTAPUqiPHg7ylna8xWplcsRXF5GAfSVTw773qazeeZOCYO/dDbQRTh5NugVF793lMDQX+33sr3YBMD6RSyeObBe/7UBte/4l+C5Kk7Rab9EKI2lDOWNCSS/1rctb+X6M/uLGHKyDi0RhV2ewNF+zdhuJTCQLkSRj76t0qTXgXAuaUIa/vVMMP/Ng+LIutvgYzintyCTFvN6Ufu4opRQrzayB3f5+O/VE3FazP/YUx2ex1Waydut5v25gZqvl1DU7eHglO1JLn2EturQR4/lW0tKxm3qB35qk2YF47F3jMOU2kwljmD8B57lniOoWwtp/zKCZp749AG1CDx2ClsM+M3DMF9KZ8BR26nN+tuekiiSMwkUtHG6f5mgnRjqfzxOFlGM9H951FSmE7oTIEtmhVYGgrofO9dUtN1RLCLhecuogy9nl+D4rGFpqMwLkZhlKMKEJgi7KT+/YPonL3Enk+h9aERyCR+QvUNGPoknB+wkydtrYj1R8HXy0Mfy7hj1DTkRZVMGJSBvnIjQV057CjpJjvqMn3hB3Hr+9Ov5kWc0S8BoX+Yu8bGRgDMISHs/+YdZJnTuNThplPuZVrHdtr9o0kpX42ypZKqrTKkH0diaqlBbVch9+vZ3xlOcryf28824m5s4YHocLLkDmatiOC0MYvAyJuJzMilZnks2qmpSGQSJtbHIgv/jRGvvIBVIbL+mSfZ8VIu/VSBjA9I5lDiNXTUWUivc/NYrYpPJ5gpa2xl3cOrkdc0MjBgEoM/n49V20u9uZ5RJ7YToxiNJTWUMlcow6cuxD/7c4QfX0b980Bk2vdILdbSNeECDTYfjaet+BNjyEyxInW62ROwiKmFUWwXy+luOIeFTLZhJutcM3cf+AyfQU/MTb+wbVoxw9sfROJ2oKgNwrByC0lPpWPucFLmXsoUfET3XiLU/S3O+OUEKAJQzV5Mct7bDNcqEU99waN9g8lP+pWHdNdxwqNmcPuNfJDfztmAbCwGN83aEBKy5kNPPb7gdLoUCsyN+cjFT+kVBhJbpSandBIfO3Wo2iqJbS3DmpGLwe2nvLSdedMSiW8rZ7i+mjKNkQR5K+2ORgKGDkIWIkNpjOLz+ucJ8Zl4UO2gqN5G4291rDefwmvfxnlVEnFfaZAOSeDb3nI+6brEiaDX/vDO+G1taAQYNncgji/+3AbXv+JPTfKLxmXg0MWjThqFJPc+UKgZIZH+5xX/E2i0Gl765HH4BFq88O4na6BXwK23Exj6xwws9ivteNvsWJv3sfiOVTgdAm6vn9DQUARBQKH4oxpB6hcZVdpOj8sDEgktWoExaSEoZX/7Y4qJicHtdgPg93sQRT/WPgfB4dEoVUrWrb+JgDgz2u5+iOJl3jjVSpNdzl3REXgWVXOpUUqQMA+VO4/ozFv5YtfH1HvUXA6Mo9aWRERUK3JbLRL8dDu1fNxio03nZE9YHPruQpTGdmIr92N3y1DlRJHRL5ABNz2N+sBcBNlgpoRUcIRNuO2ZvFP/Njf2m4IuahDU7qLFPJSLWXPxdNajrjmFpvUwQsQcFIIN5Y8/4nRq8IVI6RiYiKZhLmrJboL6AtgqplHu2owdGeezV1ARmMJLbVH0tx0kTXuKb+xpDFUl4GjaxKxkExVNJ4m2HKBVsBPeuQc27KWDAPruLeDSN6UEDniNtP63ERI8FZsgYcyiFciVKkBkw/eHadMMQtJRi7b6AlJsmBLjsHySj2vJbHoHRfJpVz73Zk/moXVfIffC2k9/4nOllv3+NiKrdtMQdy2luz5g/pVnKf9sFwPO3kuwtQmZvw1JzkIUyGnqq2fjizMQ87xc85ONJzaUstQ0kLb8RhLNITy7vwuyu/EJrUjGD8GYL8WUrUL5vZJ585YgkypIfOljLl6CxSv1BMXeBsDRwk4yFa18JdxKrqkTvcKMNkHDnfIZyJ5xU1S3FWnjp1Rcug5Pro4fE4fiFP2Yw0/ws9GBK3Qain3XEjG2H0SOpKziM3xcg6rZgq7xNIfaB5A9sz+HukzM7MnCE1rGxPPxdFfG0hS2jlnuTrJ+yEAERGDh4C3cLC2m3avCYUrmK+FbTvUbieB7AniUgWoVp32l2Ao7gCz4aSl9IenYI4OoN6XhGpiK0FNBUu5AJj2Qjc0gI/jsHu4ddxfXhw+nQi7DadQSUnwWS3QS9g4dY9R+2vZ8T0n4d8hkRsZm59FS3YVOHYIgFVl/91CyXz9Au7cJ+9THqTqWgiQkFGFiFsTE8l3pJ/R6/5b74R/cr9+f86eX4P+KPzXJN/vCeO/LHxh44QR8/S0sv+P/S7t/71efPXEKB8u3MTegioiwqShHJ/3hXnt+B1X5Zyio20evzcPpLzZT0FbO+rAtbJ+7ibCYBDo6jqDRxKPRxFD84FAsm5sIDtATrlOjkkpYnPBH/3i3283D6w+TExtAbrSFJ0+9QaZuCCPdk5iyaATjR0XhF5x8WpVEoHYMK3U7OBuYykDXAY6Z3YjBtfQUX2KQ43M+fjAZETk57hokGjlv7v2A/i+9S6T1ITaVeJllq+RQ/DD8ggQhMos8SRR5XgUV0Tew9PxhIlS/0too0JqXhizsGmLbqgi3bGW45haszUd51+cjqV8wOaYahIn7cDz4LOIgCYIhkGGnSvjl5h9AImVS/iecfehjWnb6ua7/C+glFRQZFfhdPZgk1Si103nesJuWmg8YUrYO2fSP2Sh3MdPghT5A4kNRLSXCFssRWy+6ilZOjvmCqlMidUPvYdaFF2n3aRl37DUG5YzlhP8Ghuj6AdDd1ITM50WmUBAWoCVHeYorXYPwd7TT7vqMtsgfkKZOx04UPZYWnjoNUm809+37AK2/m/XTNuA/6+G2uRWM6zYRd6AR1fobMd6gJbC7AF1rDdVRj+EUvyJMVKDzyJFJTxN16QNmuJ+mRrqGg3fVcN3Xm3nq82dIpYMFjzyBxNpOYWUEoj8QUdKLWxeORaenurCQgupfmDTuQTqSz9A/9Ab2n6pmmGMTMan302n1cib5OfZ0V9Au8ZOkrGRRyPXMaitC3VJJra2H7xU3s1C8yJC806Sp0jiki+C51RdY8tlbiHINOZImFBonXde+zeU9nxHsr+Sny3cxIdiOOzSQR0JLOOd24r0yF1WFj4AbOknOSsA3VMZje+4gu3UVr/Y8jwBE9JQxu+9JxmTeiVblp5E0lL4ZiEgRBAlK0U5fUBDtTSUAXB58J8mdhYTV1uDqaabIspyhO6fhFwW6egew4M0P2WGSM62tmFyXDWHXMbr7e+h2aIgZvgBV+lj2P3SMZsUwcqf0ETN6Ge8dKKO9w0ZiqJfB4U6iAlWceC6bzW3fs9/yG0PS+oj0GJDExgGwa94uOh2dv6+5P7ub5P8Of2qS75PLKLPk02ruYkifjEDp/7sU/29hlohsbdhAs8yEpDiaXQ4zRUNTkYeGUH/33XgrL5HzyFjyt4UiV6ixaRXUTejBWv8Ab+z4GACJREWvGzZVVzP10kmC77xqZNXK/zb9PosLiU6BIL0aO+fTo5XEmbXsjKtnbVcOkmW3IpFevV8lF3C8NZSM0GnUxi3FY3YxoHMzComBQdk/oZSH4zw8E49Gi2bMKwzxmMlQp/LbEAlPrS7jGtlBUgy9SEQJFm0aZecX06GOYJPucYbqvmBO0QF2mUYwRTzJpXwH0twMLKWn6YpZyMXyHrbH++GsnB/TlBwv2UtNkhGdqw57fRP+ojreuTCJHh0sUtRj6N2K1RiPb+g9+MtaEeliZ9VzLB59mCdemIldpuaQZBMm7Z00Vbs4VhrCrMFZSCt2o4lZiLzRAiJEtD5PX1kEsSERJGqzuHLNMFw+KBzfwHHBTerQBxjcdRxJRw2tebt50/MQXb+WsfSFAAyBmr/l8FTqqVP2Ybbuwxo/k0aNjVJhBmfl7SxyBRBqrcLoHcLdW97EpOxg4ywHrd42BE8QxYo+Qtr0xEnPsi9rAP3CU9if/hD9z4gEIOAbcIXallx62nJxzk5G0X8oXfm9TE+PwJrvw7bqJXrcAvmPL0Nf8ih+RFr7zUeKjNAzV2iJ6EeFTY91yFCaM5NwevwomvZyyXsN75X2ciGgk3JJOc7qPAbF5nDn+Dg+qm5gjzcedfFhFlvrkWvjuKQfzvOpRbR6JlKkeA+N7QNWrXyRNx8ai/uLKmQLU5DdfhjM8ehfDEU1pRCruxdZiJuOwKFMlZ0it7actdFpSKUSQrx53NE7GZWyj8JNJ3Aq3KTOWMiP5/rTdQxm6iuxGydirx2GMewcQSot3e4mDBs/ps8goX5DO8maZxi1WIXT8wwXdGO4qB2E0dlEQlwzwd2FVCs+QGlRoOx+lW93lHJ0VB6Bcg8Wx1BUwyai1/+CIkTKwLfPkxpm4K2lqQR0f0+oSoElbzvHjwVy1hnJM5HNWLwuYBKhmgjGBk4jRZeJw1GDWh3Nb8erUMdomR4TSrAm+P87X/wz4k9H8osWLcLRXgPN+SRnTMXrbaBQ1kyA7Bj9moejCe/3/7W/y5cvIzwhUGmvxOU7i1f+JtGqqzlcfS4XeJxIz+WDXIdEJqWtp41lhw/B+GsZ5K1E9DvJyJiDKILL50fhcSN55JF/7MjVd/VTqUMmgadDdhHoC2fP+WzaLSHcegt0d3Xh9bgJDQlB4bXR+OAXjEqMQAzvZHf5FXzHC6nsSEbS9RuZYhMlkluJlB+lXYjm9a/LSJ/dhMJgYe1L7zH+6cVkh6gIDgjBq5yA/eWj2OavpXh8Neem/Uh04xmEnpNE1l0ioK+OEvfThFTuItdwlr0947lCAobul/FF5NLnUlIgH84Zi48bn07hvoYCBnhzsZuDGbX5XpDKUARHEz37S0KHu/AUNaE+tw5bl5QbJ60noPQ0/cu381VpFJBOsepzwmnm2bi7+OhnK3eZY1HEZHFx4Whqm0rJKdmDql2DV5fILLmXqaZC4mR9FKnvprOyhEz9Ks7bV1AvZFFy5QfKI2XMjQlBJwNEP656Db0OGVluEINUWEoLebrxMp8G/cIzCbEs3PMuSkknb0QlUfqLm5RFy7H7g0lfk4Kyqx7F6D6m15+jPPUZOuShXPYfY3LTC3iLnkQfGIHolCOvOEFSp4/9I2PpO9aBlwDaekWU5ztoFwOZvMfH2lWj8FveRKleiRiTiRASSK8Xhr83H+s+O1LxEDMeqEHqm8mo+9/C3T6XriYPG1U7iQtsZ1ifi4c0k/AJGuYOHEJ11XkKrhjQSA8hAQIDBiBtC2R4y3H6nDYElZ5B/a3Ixfc5V3WZEaXTsch0iIKAX95F8mQVrsJULiaOpV/nPayuLaYn7hZMNgvZvdGMTB2B1trHIQbyo7MblbMPqVRDWPdx3AE2Sge2osVLR+MWMhvXIk6cjrwvFvWVbmTxBsS0MeS8uJfXZ/rof+4V6iPX0dcWAAVNhCp6aTZVYdS4+C2sFcShnFGcoFfYhFexkuEDbsWw6wzBaj/XD40kY0Qk31XrmFM2CqHuXd6eNJe60CFs/m4Xkd0H8PfMRWKKIs2QBYBWm4Cvz43C7qXP6vkH9cy/imrm38OfjuQdDgdb170Cvy6D+74CbSCOtmJUW17Cnz8SHiwA0/+/jC25ubl8e//9NN17H26DkQFnT/9+LezQJQCKRvVDtuVjfA0l1Fe8jYkiHpY1UikVOXNwDVFpS5H9NRTxfwD//qdAFPm5KYQLCimjBnsRvIEc/lyHy+flrRvmkTxmLF+89igz5y8lMm0wrKwCqQxvez5TshbRtNaCtspClXoQ+ZZ3GUc4fY1TGaDvIST4MYpCdrDg6SscfekZpq0+xKNvvUhobC43bH+eN4CgXisgYNfF4japEMKC6Q3eRZGukHDzc4SWDSAiws1TQW68bz1JxdRkDM2zSA1vRC5U4PZLuJR5J+ERGuJObqHxVAPypddSbN6AQ30tXR4Xk8v66HRF8TE7cHM7N6fVUx1QCz0RJMztJsjTxPFf36FE4WHMyuFM6fOzbdKDjPV8SVvkBKZLjiFLlSIWfEBnwBDUI3TQ68DmGkFwlxVRUFEYs5b4/cuoWXgTXlUher+RltY8ksougNtGilCFT21DK3QhuHsYGRROVbecC6FqFr13BkeTjS1Pp9HbG4h+XAzeGBnS0m20qwKIbqihjFjc0x5HWXaex3Vl2MvOUJs+gaSQyyjEaiIie6ClkPquUcgBqTQalw8IUpGV4mDwkqmc/+VdQvrS8B6sx1v9IO6VK0gNMNN1qhlpNOgGJPHRSx/iTu3HI0vHs+u5G2ndVE5rlJ7ZpQ9gEE4RYemkzChQ4zVx7lAjGVFSsmMDCQ1fCkf3oKqqY0jvVhb4b6e3pw2jUsojG16n9MmPMIrTKLj0GFrBSnffTfT3dxF6bAYavQu/fw+d2mgCe8o5IZ3JdPEHBhacYJl1B1Ru40TscGT1m1H2kzK/tobANDc99giOW1OwVO6jdc5CUooljDt7NQ6M8PJr2Lv3UqrdyQ83rCTtwG2Ixghs9o3o7W0cH72CkEobj3y6F6spgMtjomlSZiD19SPKLcHqaOG6rXeyKmkCP3d9h69cwbj6GNyiE90QLXOn/MjZhk6anW4eG6nFfGInwq+dcNveP6wxqU7BiBGxKJQyvv0XVs/8W/zpSB7Anzie6gUPES8YkADqkHS8Q+5C5ugAten/uf1/Gy/aOGkSzYlJ+CIz6G7r44cTd9JPE4dEsYBkjYJAuYyl5Ubq3eM4+MxbCM2FEJ1DvHcCOFyIdgl1rx+hw9RMyJQ0ovoP/L0vj8+DTCLDNeoJVMdeY0ZIBz2eqQjY8QZHsW/8i3w0+C2+exyCaWf49PkQEI1SEAgLDgeNBrBy7PizKMYvoFYSTmhzMZGZ4QQPG8Q7my8TebGRzlGP49zcyKg0DXc9fQ3ml88wZ+UbXLl+ACNM0XSuUDBCyEBWU80FTxO5J+bRVqIhsT8YTD5qhEwSxF20OXLJltZRMjiV/RmzMKWNZMq5LewavoRI60Ui7Ofo2dxCW0Q18UPyEcuLKAsxEmZ5k9SYYQQu7s+xT6/w9eGXiAuUQEAPIfU2qs2heMQBWK1ukjJKED29qNwDsZ8uZOOItXgjJ+KXFPCZ18yKk8+iSFyFdvyNVLV/S0R1JG+0t5EhVTG38zXc5+RURc2m3TSH6N3zkM+7E7/QSUFrIhKpisQ7v0ChVJCTk4Oio5jrV35GWEQMz/hE7rV/wMZhgciSBpG38zJ3XncXV6xf0RQ1hmHxi2k9mYdqqxLLCCUJzYUIyKmVKniseRjvBdSQqHZyRHEjmdoNaA58hj7Nzb5Z5/h1Tz3LRTVPeLuoktdx3GNnqvVrvpWPQdXeQOqggRw9VI0sQIfLnYS5ycAo3XEa3NnIfCqiI4KQiBK8fiWr573OxOSRvJ8WwfxQMyGtFkqEeqwX3ia1NZ/OsNGI9uHU6OPZ1JpJvkOCRhlH2fh1KA88Sc8LTyF96iWkdhedATJG114iucFFg3cSzm6BS9enITacJ+fUGmZqstjuf5ss7wdEVFZhSXiOnOBJ/OrahqGhHof7RpquuDnVfxtLv7yL6Ieu4eTecpy6TC4whBBqiTz0DOViMjEZC0FXjKztNJWya9nZ7OIhcSNPVV+Da+8nxMllRDz5Ertk0SzVaaitd9Fi9JMuFvJsxHLkTcMJc1Xg62tk3rh5nKz+Dn3tCxTY8+nWPo4fME+eh81fj27i3f/puv7vgj9ljte2tq10V1+i8YWTNH13EGtjDbKZa2D+F6DU/+cN/Cf4qxFm69atvxthI7/7CdesWxClAsc91dR5ijlsL+OIsgTcbvK6tTT2yaiu/Jhf++TsrGtn8Nlijnu8CCoZ3QHNOEyd1J49wekjh1m9ejXl5eUs27OMrwu/RpTKeU4BQtVehmrbsXjjCNdHc03SNVhlVmY8PY7m5kFYL2wBoLiwhJZ9e2lpaUH0ygmyx3I4Qc34MXEc2fEZh9avQa5TMD1BQd+gGD61X8HiFKlp13Os7waSVz2P3+XC5izioVYthmOlXMj8noLAO2nwhHHu3CB6qzTUG+/ma+ka1DYXB/sf4tSA9zh5TE7fhJeJ1wzFqTTQRQnX/zSEsTvv4JRnDL6URHpV8YjCVe+g8cc6uNi5lDtKGtlXdJBaRQH2RhsvP3AT7zu7MPQdJcbZSkTjBfwyCfoQPVGhXcRcF8WBSS/R6FNjcO8jrP1OssRoQETU2DnWUMgjl79ic1QsJ+t0BE0+xrHrxnJp0kj6vfIMg0LVRN+7l86OYKJqe9iuTeVyQTVfHfqYnJwctm7dSotdRZfZyKDuXQypuRNXUz7PzE3mxBE5/ksiq2T1CEXbqRXHUeRpQDYtBqal0RgxhDq5irbyCuq0DzLwxCnE9kJslmgS/EWIjR66S7U4egXeOHsUeX8NOWoj+ZE5NEfPpFwShkcCnqduJ/nECWyFNZhHaLGpd1IUso/ayE6MjvM4z7Tz2i3f8Nt7r9B8rw+51MXEE68y6tIpQi6cxLW/CG1BIxLxZ6JaChEcPbSK8cxqCqVGE80v7vF4kLP+1qGIErC+9jVxrWVsOPUCNq+PslgNxu6ru0yvvAOrWcbpqk4MTScI6SumS1NLXNwPXDdiCcLtRyiyKZHYaxmqi6XrRAKI4BVsbJal0nldKhK5lGijgduvJDHf+QDRtNGpT2P71O+YcnEEa7ccRiL6ie/LI9s8iFNpzzFrfAsmLSyZ+zyT601kN1xkwOmnubbkLjKDtRTlZ9B2KgNBEChOfRH3bfu5L+c+3hzxGCAgk5uRNGzi+pggSrdu57JzCm6v8H+0rv874E8jyf99LOewkNkoOz7BEViBs+U0/u1+9Hd+zuW2yzx74lk2XbMJifB////1b+NF76jawYXWC+RdmMClBgulL01DKZPy1ZxfuXz4FHZPBFSdgIZXKRzfg0+uwZnfSm/2Qly9VtbUXWKE/TskEUPJvO86Gq9cQnXpIiHFRZyUgnbjIsZlLEBdIiCpeZkXR61A9EBQ3W8MJxZlazVV466n5OyPXPSNpsvWx/YCFcqqtwhJjidK0kwcw1CqNCSNvxcUKkZu/JnrxgTSa0jk6JVOTHbQOmzcbriLqGn7qPKmUqYVcNc/QJLEwnMfm/jq1vNE9I+joXAsOb4HqTbOIHjaHOIsL1AluYgxfjhV1U8R2dVFXcMV4k1VJJTeTGXoDYw+9wsasQCHIhC1LImbHTvpC+tDV/gDAH7kSPFgbGxmQ8PzXJDFo1JftZvsjLmO9T2t9HYOI73wKG0yP7oVY5h8/iGilCGIRHLXwPXcEzqZvYEz8Dlt5J84QFd4NIMGX0vqJVgfsZHasCBWLfPi8hbi7RX5PGY0e8qbebRVJHlACCG19Wwx5eBNCsbZ2Mnmyq/Ze2wvc2bPRmkMQr37c07HzGL1l0eIsHbywBeF2OffweGVsTQodESMnExHaxpJvQVoU7wIqQ8RvXsXnV1RRAiZRPoiyB59M5HND9KiURLvLUUYYKBlSxS78lMRZwYQHphH5k9Wnsz18l35cox9SazjFgaEDKDtjTfp+uorYrdtw7XqKxpXKfDGP4m57xSqAAnz2x7nkn4ZT/d7DZnqFca0tuB/7lHuWPsmnp4v6BSzmXLnGyikN+KPDKdfRBTrzxdSW23nS4Ucp7Ib1YHvOGMO4Mw5By8LCTx7zM5X47MY2GdANI3APz6E+O4ziALc1W5hd6mHIXITlyI2I7VFInt2C5fu7+EV9RbWlbST5E8hx2ynbMzHyG0isyzP06V/mWN2OWlqG/0Vdeh8LTgkOuptq1hxaDqB0myOh9/IfttURjg85KTUcll3Lcdfu5EQfyDC1BBe31hMSpOCm1zfgwBd1U5k/WoZGB1FldbHyNy/2Nz6Ooi0B3FBdxKp9DtAgsfSQnzlCzB4PQq14j9c1//d8Kch+T+4OHmcmKquoBt3LXLNOIjKRRRF1l1eR1VvFQXtBfQP6f9f6uPLH7/E+sRqHOtXMCLKxIe9+eQnzURQ+FBIJbS5mjnYsYORB0uRiS5YkgPKZGg4gc/tx+YI5Gazj5KD9fTqE5GKBWBvx3n+O9olqWQMzeb03iMk+BrQepvJUMTjJ4FeVz1eaydaiZKAjosk6eu4xe2FSi1pAUZOieFob3fiOZNC056viY81EChpBaCuoYmOU3mkjhtB+L6dWFKG0xGWRpP8JBqFFZ9qAClVzxHcfYCq3CCSu2+B4CfwvZSO/84cAmwaSswB9DgzeCg+k2FR/VC3neaQ6gYcYgaa8mPMbV8LQFHQclYOeJTpISKLD9yJhmbcoQOQ+kVaDFpCmy+i66lDRMCOirbwXI6M/4jhJ3+l2J/G14GxrMkoYfdWG/deOsx9TavwiW42WrPxOlVMzN9MRPkZHKIBhcmMtKcKX+g9dKmCGWEtpD45GamyhfqKDQhNgwhoPU6CZwXd0jM0MpzOkECeMRiI0SrJnGCkdNgwPA8tRxIaSYxcjqrDygrdK2wWTrN12zZObv+WcJudsh5oUZo5Oc+Pp18EnaFqVrV42ZCcQQMv0NteSqZBxTn5bUi9xQiGCsJre+hKvpWWxDAsNcUcTX+e9M7dWM8fRJ86mIzHB6EpPsQQo4cQgwWvIOG0zswRxTxE2Vm03iYay69QPPVGtKPmEnziOBvDp1G6L5s1yxTY3z+Hb5SOJ8ZO54iiP/0iwvhs8zzsdie3z8rEHDeFuiYllVU6Zir8SPPO478o0GcOIbi9lWDgZKQfBIGs8HYk0S0E9lzHyyvf5uk1C4gZOBCpVApBVVg7c/EqUzF5v6W23UxQQjGlyrtQ9/ZD5ihF4BsGnv+BYTFSstSBlGj7ca5VQ6p/Mx61QIDmQ1TWT5GIIuqhSWwquAaJp4/ajFcIPa9CrezlVvkehhuPktIhQ+g/E4myh+deuIdeQnjg7U8xOCVMMtcwK6QBMeVtdjhzCc5vRx7fid4fgbFLypcnKrjeuhH16TcQEZn2TCc+3/0kJ0mvplp8+Bz/9qz7v7J75P8J/jQk/wfIVRxO2IlY42DCkmH4OvvwHCjmg4kf0OPsIUAd8F9uetamWWQZ7Ty7JYDgpVPZed1OZl0oIznWjCAIGOWBDDINQ7VsBA5LDwg1cGItxOciV8oIjgDP0a8pilhG6ulmbMHR6MKMSHY/TqH6RqJvvI8zoof+0WHohqxHWmJGkCvZlXEDQp+FOaPux5N2M7XvFWIId8DRY4g33ULYtz/TGjUYfdooYnXxOKRq6oO1ZAK0tGAO0iHTqDkaHkWDLJCl44fzTcMHpPilDL8yHmvSHB5qW0HLlRA+DlNwquwBTkVdyye6AOZv9fHN/FLSNB8R7Z2Jp9uHznIRT+sKyrx9jFV34pPIcWlCGTA2gSU7r6d+jRK7wQ+5oGjLB6BJ+SR90kbOTZyKQuVhToOVNs0AAKw5g1jRosAqlfPAg0+hVchxRwxG1h5GJzL6xUwkzBTCcl00ZY4vEfxSzg+4gDbVSqVbyaLGTfi0/Zk+eCiX8iTYeZWwz37CI6jRjdTSEhFOe08xOX0S8uTTiYsy4u9uwfz6kxzJ0xOcFEnf5UK2ndnJgqdfQiL1Y3fUU1H6HDXcycftUdTbJHRPHk59YTaWAdk0lJzFXFGHz99GtryVLFUNWQK0p97C4fwA8jwWJp25FSSP41C3INd9jr1yCKbyVnD9igxIFOGOB57AFzCe6CHvU3fUwiDnN1QKF3EZJtJ9Jh+FfBDKLjcHprm5uTaSSykyjql3kP71DlY6e6mxXMArM6IWvRhbbqFLuxCNzsD0xbnIvVZKt32ARKmkW6Oj1OUhYt2naK6bhgQlgToDTWlmTrhsNF1Qs7KujaMjiwnVq7jh9V18eu8KLle+THTGJGSeQALOf0iocyRdwh1UZ2fg9smYfPxpKu//BK+knkB7Cdq211FEG+gvi8LdvBJ/9Brk/i40DZ9QFD6PUquJQNWrjDJ/hsm9CU2OSJ/5C6odRzDXfIUUBzPeyqOox0tMsJHlr64kXK6gz+tjeWQFQ3oTOeQYjS7IhEHtRlacg83ThNqyiXXpo1l27nVQBdEQEIDHVUVJSQD9Y/VEmVV/WMv/3SX4v+LPSfJAybFOZAo/E5aAxKRBnhmMUH+WgJjc/6d23xn/DqqRjYhveOipS0YNbM9J+f26UqIkRdePEyc/BKDe2J/BU9bgqd+JLmIMtio7/q4q+oVAb8gXaENM0NqI6qlqprS2EnSxgBWDJ6DwbIW2w/hlN6D0C8QbNDjK3qLts8ukzBhJYtJAHouIY97UXI6WNDAyNJ3VW9Zz89lD2J5ahyCBzBGxVzPauGVgmoagVKIMs1JtAZVMxR1xj2LVX8Ih7eGk8lZuMZ4mTlnHKcVYplW7GV/7A+NmQ8Ivccw8aGTFXYvJkvWSXPwxx92dfGuuYaUzlszWPVwY/S0Zvp1omncgc/ahiwSbLQ5n1BiK7A6M3U00pc3F2bkXZHIQe3EiJbf2F4bsvRsJPjZF3stv4aM43CZjwwMLafB/SZirgSrXPC70DEG25BKPtfr4wKSm0B5Itc9Pacxyuou72NOSxx2zk2mrsGBSDOftSy8z54kIUoUrXHIpsVYloNPcQ4j/Wqaen4DqlAxf0rUolV789VNRXrnCJNNZ8mNC0ZnUeH0WTp2YyTxhKOsjfKxUdHK3vZveT9R4pkYRXViIct3rNN9yL3G+eJyOdi5mDmFg4DncxzYxKD6BWGk9dQciaPc34FXrkGueo13vRnb5PEK0FcOI5Xzceo5RezowxEwnL3wAwxue4UvPRm6S+vAIDhyCHrkKlDYnKT8peK7ZwAPXpiAJCKN/ZDgPX5Kji57OlKxgqDhAYWkB+sCRNDQ2cvHnuUxfto22wqMo2+o5OOhGHE4/g6ZNQXLgbpjyIjHyGPbs380DQV08YUtERKTB7mFo7lvsOLSKxQ8/ilcn49ZXb0da8SSBCe8SO7yL0M90XPHPZkZ3N1+7riFXqkTwx5Kv7aM45z7aGjIY1f44G+cfwS+dzp6C3SyaMIRgRQdazhCT2YHVOg1D3a9IDefQGZ30n/oaziNKJvy0FqnayJvPPIOjQ0O2N4isgcH8tOpR+lRmjibG0Ks2YJZJuegCaYyJRYPD4bNHOdNTBYt/gLixmOUCKomGkEwfGsU/npH57y7B/xV/SsMrwLzHc7jppbEACFIJUss5+HHJ/3O7OeZM9N46JEHhnLblU7Lns9+vNduawdaJd99zmPQSatxafmmChqYCWkL1NFwpRejoQR/dxNvHjvBYdQ5FnnK6zcFIJBKC1Cp8XXacVqjt0nK2MJ4MQw/B5zrpqOpjytEfSNLmc+j7i0SpTpDibQapjCqFlE0JJt4Keh+FrQehrxeJSsFbi+dQ22QDgwFGjARg9Og5rF68+PcxXyl7hIvKo+jbbTi8/Tgp6cAlD2fTsAMggh+BU7cY8FltfPDou9RVh3Iu8kviPG5GeAPxWusRBAkD/SexnLQg5D3Kg5a1vJX9Jp5OB16rQLb7Mo7028h2/Ez86WBmtk9hTI2by5pRiM0ltOkzQZFKiieKPU+tQpCIuEKVnOpNZJL/bQpFAx8anJQfjaT1bBp5Fj0eP5zvvwKLW8uPFR7ebkik7pcVZHe9RP9pKdzc/zmijM9QqDvJuvZjqL/7EKm6P2dcN1IdehcdnXfxSV8Je0NbyHkqkGH9mojNSmfOfY//ZWYUSGWjOD3kMUL8CqYorMS6enDNHM97gZ9ibg5E+dgAjGxD1aMhUh2O1q/G75cSFtxFhLMNqUqJOjaLEZGTSRCVDLWWkRHXQvQ1HTRFqeHUuyyrOknhtDAOKRWoA8yUm+YiRoeTJOYT0vwRWTlBSE1+SkeH05ECI26WkBLXjxFBEyg7fQwBiLq4ljqLlfOWUBJ0XzIn+xH2rS/k5KF7cMtkOKauRfLdema/NYauPb+iCA/F31mJz2VDduI1lnEQgNuiKgnz99B9opHZzl2cfCaVtzUJyBpkvP+GAXuSHsGUSGu3jbfT1rJWp+CAPpodnsFsP/cbwy+PY1vxagyZyahyJZw1TCYl/yfK2ht5QMgh5swOoikiXKimt8NHU6+REzkvYbOcRzrqVr6tbmXGG0dBUPLiiy/QWF3E9TULCC55B+/elagcjei7dhBl2UeoxsvojCBeO/Uzz579CsEQhvBIMdzwE6TNpGH1RbrXFCAIAjqVDInkHw2t/4Or+NNJ8qdLumju8TBniPlvgcjyvoT48fBw8X+pzb/f1v168RU+rNjPoefuJmLDATS2q1EoD1/8jPsuv8emGb+g9iRhI5TPLVLqLFbuvxiIb7iNdx3pvFC9G2q+Z0i/HzBUthHmDkfRUY7j5FYulTaTMDiXr7dsYlaSl1b/QIaKm5CkR+GKSMZ3y25kSh3jwzLIcnRgVptx+9wsafyEjsAwhNU9hPU/TXSMlvJAM4EBKnwF2yHrqj+yQqEgOmvs3+LltBYzJOFN+hQSSj2b8NqCUPMLCudsNC4Vx3oTGWRqAVUgj/ebyquNP/P69+t54ZkPeSh6ICOFSbwZZ2C1sZ4k0YH/cj6FDyQjeJpIEB0Ujt1Ksegnu/sQLnUsNk0fofr1lDKUB0/056n9b3Ju5VdU1++j2eZl8/pfUcqk/HLbzfS0VuDMEhgs0WHwTUFe4CT0ShCdXhdrE04yqHsPR5repU9dzg0zRqKqaCOhsAhv8RV6ZzVj0EQicRkZYBnKsLZ6xJJLiJZPEL0i8kELkagsJEsOI+k5Q272AIi4qjay2aqwWkvQ6cwsXvwbiJs48cMvFMsvIjVISZIdZUqfDAky6mLOIMYl4HYaeL+njqldMnSVw9DfOpD6rvdJT34BS/YgbEX5dD36BhfbLUTYb6C6n5ak8048ggyl1M/YsBaIiuaKTM6ZBB9bXrgXoxziOw/zSev9TInci01Mx2kbQpJLj04hQxRF8rf9zLT4aoJ7L/Bt2wokGjUZhU9zPu496oZF8qPzATw/SEhzFuFa9guVbzyKOqYDXgzmfPLbeE52ImiWkjbYx+XGYpxB0TwQdhzO2lBUXMaRbidgcghv7hMY46jlwdV3MzF2DPfMnkCmZyDnu4YS7tzKtoh3ONR+K6gDkDs6iPr6HlQD5+ORn6GrPZQ56lIQBtEVOpIdbS0sV/Ygii4EQSS79Vf0WTOYOXM8jUIIJpmMQ2+u4St9DIZJsRxoCSenajcSQWRmtgdJTR2vCOE83f9qjuWvb5rK4fpD/7BmBZUUZfrf1LL/UerP/8GfjOTXrVuHqDITmjqKktJy3C4HBrsFsU9DUroJZIr/tI1/Dw6Hg62bNgFwoWEfyW3VyGUqcq97AOztuDqKGdtRyZ7QSUi7WnGcCuJy1c8sMIRhjp1NaFY+6o5G7jUHc7YxmyExWqb1i2akHdQ9mRTUXSAi0IbWlo6qxcjjC4aCVEF8XA5lTTpSB0qY+MZ99EigfPIaWqpbGJxkwK/088q+H1kl8xLW56Tw/geo0g5EKfTjke1n2B9VRIi7k+rSfOKzb/w9EFpQcBCt9lZCPx6OHBHLTW9g864HpZ+g52PoejIEAS+/me/muKKbaVGVJHy6kQPXt3DjryWsfnkKu5Y/SVLSSFyChN6yZD7pvgepo5tRW6cRPXE2LcpFyFtKQdDSoUnE3dxBUfxcisfNJ7ijh4Mhh8h78l18IiRHj2F+8g5+3e5l20O3oLH7KQjIIqH9a84VRWBbmsZjg7yElFZz1xkbP8jKCFdUM+3yA7yf2Y9l7g7qgofR7M5Ao+5mV8vPpMg/oNpsZP4gKVrdezSnz4b3X0F+7c0UCkH05rThl0zixviNbGz4klhNAsMCxyGTGVCrI3+fq2BzEGZ3HYZOAZ3KS7D1PDMCr+UWXT1plYOZP+BmIuwlvFC1B5f7CRoybQzZtpU0Rx+SX0IIuuNllGnDuGzYTGuXHEdrLik942j+5WME9PSsepXuuA5GdIBPrcPjTuOQoj8L736E52pMuhQAAQAASURBVDSbmaS3kVjbQV98Iv7uFqwSLx19gYQb1cx76R1KCvfSKevGZJUQ0rATlasEbWAokj6R+Q0BlAkyXCe+RB42EO9La7nl7P34bRISjM1oLr9FefIL7PINwR8wnIRqGxdVI9g+dDAx0zp5Ne8jGp06EmjnxejBDF2cyd3fVPH2F5/x+QIjO9wr6JIkUzdpKLFeOLk7h6EcxmUPwqwxc1A6A1OEkZxQO9XKfZhVPhaVTqUXgaKWsywMqmHZR5fweu2oNFpWr5rKNKeVA6FzoKQbn05OtykDqa+Vy12hDPAU8FFgKEtiH0T0+RGkEgaFZzAoPOMf1qz7umQsVjdBf7+G/0c18+/in57k/17K7u7uRiazcvuNM2lorKSxZyf9Dn6IBAVMvepp4rBaUev/73zle1wemrZsJ8xkImfCNL6KnQaA2yLFXyfHpThHfrOUpMFzqKv4iUDftaQmDMEWLWXQ1Dg05ZtBoeP08Tg66vsYNcDJ5V2bic4dwbzWLNaEyJH42jH4gtEOCoOLn+FSm8moD8YhwvdWGRG7SsHvQzYVZB4vre1WLFIvA1SD8B95BGnSJMRTdSRMnE49HaxflsuVjt/4fH8eX1w7/w+/p9fdy/Mnn+ejsU9CwS/ExC3HGDCYhjvuQezuwV1xmoD4/qyov0TR0uuosZgJfFVBxrmv+eUmFRP3xHDdO0+TrFLQ9cr3fKrNwxTzHXuitjK38g2Czn4L4seIKLD1fw5Lg5aArrMcDwnCqwhE585D0rsFC7cQEV5EnLuCxc9uxhmi4EzLRSoaFPQPvRMtwRz0gaakneCwVroNMYhUcSLrKUxlEZwqGI8HCVHKVoJlFVxrfIxgwcrL0jQqpGqcR9v4+mIPd8+KIjx9FMFfP4D1SiHvScIYZw+hT2vky7Jmdp1VcM+Mq+kBa2o6UasDMBqvzpVUJmfmEYEDceAVAvAYkgh1NiGTqziFhreTU1E2ncGq9OMwXqJtbxP2G5egO/UuIuCaMxtbSw3tvhl0l23B6oylOT2IAZOz0bbaCGoJJKe3BWvUh0yvHMiA9d8jUWoZHhBNpm0JYl8BPkFgQPshJKZa3i82s+Otb7l//G00KlT4uxPokcBo7c8oVC7yR57mkx+reaZDSsmoV/F/eoKwx39Bp97DLx9PoTDpQ9Jt+Uj7XEiUSrwtDWQNyMVRV45c8JKcG8dyuYwhb3xIeEI4TuN4Mj4XaNu/ldCIZFasfZwdt93E8q+KCfHexUaJB7v3BrRiDSUEs2H482gKQnnA2Y1GIkVVkc4P6dHEV23EL6ulMmE/P9/yPV0eJ1slAiqFkqde2En1pXZsOh2/+m247R6IUhLnqiH4lIuqyETcvnDEBdsYeeAIYR7j7yQP8NXDKxi16AaSc0f9/o7v+vgKogjPv/fw/xhX/xP805P8H/6hfV54J4POC1ZqnNvQapLpNWkI0l51l/zh6Ydprihj7pPvsfezWuY+MOD/qA+r18e+zEEM6/GQ+nfl/suNiKIfrewyjhQdAcnDCMwYj2j+gL6eBCTOWLqb63FHPUZUWiALRvnpqW2iyhXKlfPb6S4vZpBNoObH7Ujbqsncvx+3UUnb4KeRVVp51t3AB14fEqmcgF/3YI4wIFz6kB63kkPuRVg7+1iQ4EZ62E1zl4rgyZH0ZiiZdu3VHJSOL1PIRoVW+TcdPD4PAYKMtwbcD8FpMP5JJEB9kwmhykeFOY6dYgjvyk9TdNMM+gVfos4rp9LzEDETtOR3jefpARGMbnqHGz/+DvVDc7hbEcoLr6QiJi3npNzA/Zej2WV6n2D7RSx7NtN67RPolAJTTs6iWGbgOfkolhoD8IVoWPncG9iqu+hSBrL5s/U8WyqhJa6ZXKEbjTGPCbHJDCm/zEeXpYiCk9evTyNbsx1/dDqpX32KuUxJ1Y3TicoO4ZWAXCoLfuB8ZwfTM26jbXcHHX4gMQmSByADArxH+NBtgXFv80thPZVWN70dUYwJvEoQFosFj8cDQPm5VuxWNzuXpFHzw3to1XoWbOjmtoWvsyolkEQxEf++X2kQ8rB1voHGD8ZAkfo3XiF9SAu112zgaHcviUVXUDuktIZPJzzESGvWHroZji1Lw0uH6pnTdYSZ7ZXM/yUPU28P2+YtQetx4Wq7yMWjdTQ/spLQy51klkZxnWY1wapK6iTz8KhCMD85H4nRiPnVySCXkuL0sjYjiP1XOgnoauen9QepTtLz8PABtHbmM2n2HHQ7L4ExCvfor1GV1xJe9Qv1vmgsbhcyQyYREoF77nge0d3HZf9WmiUz+Skzh/7BIUzsqGLstTcR3b8E6clPuX6jm+82r8CmN+OU6XCfOIK/Tctuh4Sw6F46hQh8OyUoRRdOSQcKj4s4dxPPP/AKXU4pPXqBhh35tHn1mBr7MNZUYbpwgNKxU1FpingqJZut7u1IVCJ7SuYjv1KP8puHuZJyB+Oi5xKiDKersZ4TP2/4A8lf9/ggXHYve1b+jwT/n+GfluT/4P7ksQMSkKsQg9PouqIlc+oBzFEBMBhKz5xEV1pC5Egb1l45EYkRZIzyEBJn/D1/q1qt/odTbosWLKB9715ihgwlWqcmITnyD9evxITR2eUisiKaqivxjM296qIlJM9Afn4vErkOCUkc+q6EpS+NQCKVEJgQRWBzB49ODOPYju/oMk5h+OK5fLqtkN7PfqRi3GzWHytjS38pt3Re5tY+FSy+Howm2uos4PSg1rqZnRbAlaISdIkDYbWF6i1FBHoshHRVAVA2egwyMZiE21P+MGYECRJBglrxt91MZ2cnSV17aL89mabOTMa2H6CsQYrb2YB7yQTiy7+iNmYSvziX847RSn+PnQG+Ln544z4kcjlTVl9g+Wsf4Vd/xFMvfs9Nynb2MIm0zTb6insYfc0BJKESjuvGU1D6KJNqugiKfpBHH16BtsnKBzoDq2csoqm0nNmBo0jtKSZGUo2iKpKXUtrRl5uQByXwa0MLC1q/5ojEiFE9nADrhwR6ZAQeeglFjQ179kkaHLkUVtoIrStn7A1JGCo+QdzwOsJzXSCRwMl3KIufy4nyJsIcSlJQEDI3hZt+yGOgWc8T0wb/bssJjtGjUipJmTQJvA5kEhVpqYN5Yd1Kvl46GLt+CM3yNroyLtAeeJhU93AMVifelzI52dHE8NTRZH5yBY+sl4ldB2keEYfBYSPmoBarDHpNscxR7iLb5EbRYaVeZ+RrpwxdxS/oFA4s0ul8PVHPhIpvCOo4jVN8jJPjHyDVUkhHuA1TQAD2WUvxRSZAXCgEp1F38h1CvHMwB3nxG40EhUmoASQKGXfcfwPCfRLkAeG8su8oS7/MJX3YclyWQEwXg5AMcZNZYyXR0MQT3gDkuKmkmU63yON5Nt6u30VLbyPLnONpOBqKIV3DUwvMyJITOZuTgVQq0LquBE0fxE36BLlpJKdbJZRV9JCQICUty4VdpmG5tB+uuAk4u6owfDaSTv1DdPlHcSK9i9bkRDTtYWiCL7KqeQIrevdga6/HGhDNbudBbt63A5wO0m1R/NDk5u2aSxR+8g060x/doh948s7/keD/D/FPS/J/kOD3r7waKnb88xCZRZLYzR3bj/HB8pkoZVK2v/0KAHd9/gnDJ6lRKFSMW3JVJv8rsc+ZM+cf+3C52HHsGKqMDATZP05FRoyGczYLSSkS3FFGihtsCFIRe0s9kZxGGu8kojmYhLuv6gzvL6zh57Yemnwbkfm8HCUXiaWPYkkL5rDJSNsKmJ8TRXzeQaQeFxJzMyxZA3mf81xJMqHH/AjCMBY8GcHn32xDeXQDg+csgoWLGD4nnZK979OlshAI+Lq68CKDm7f8cdAS6dXQDsZIKvIbcTodfLf3cxYNH0DNgLdIL/gNwadFsnELqfNXo+00oWw9Sa7nBT7IfIG18lCC9a10DJlC0J6n8OPnnSc2YfcH8Mb3L/HaY0u59pq5FKacpSLMzJDaHuq9CXQ6/KBOJ2RMIqs2PELd6Q70Uh87rptE4ggFDwvBBDy6CvOTs+kbEEC5JJ6IPTokhXpajQ1ofCUYRC3eJjMR8XVEtBXDnSvpnC1y5NQFzot6wtQesmOjSA+qx+StIrjie76LmIS46BKTWlpw2Gwk33mMlvyjaPoa+MiiRY7APdGhjEkKZnCI/m/GelHEZPTQ1tUMeV/i7qwndN57PDjxKdZtnERoeSWnKou4NOsmQvfXMvxmNTWnj7LX0MyMliRCrT4u/DYLxy4ztYtn4VPPIe6QD5dCgj7sFCa9kUvNOdwSGYLMpCB9/Tmi7SbOz36RG7XLaZW6uTQ6ieVSLbFn19FrkHD0OjNp5esI43q+bP+N94oXcbHfq3TqEzh/xYubLqIThtLzQx8D7xnB4X2bie8eiCFByse7vuHabYuRizKC3nfhFRQcWnwcejXE7ziOxWghs7mDD881YBjajyVaH6bW7/kp6DaWSrQ0xG4msNGPwiTjp5APkFy+i5/tgziZVEez3AJSCaklp7EZDvKFZjqLawfidQcRUnCJYdIStJV2lC1+KufMoidyItuef5Jrn3gO50N1+C02EgPMpOiv2szag/PwX3yAd4NnI2EKhcGTyBibwAtrk7BMSCLqvovk/jIaT/A9uBUDURlMVw86/Uf88D/43+KfluT/gOiR2JUhaAAhcwEniwsYPiGH/OYeXFoFUwpr8ABqZQgSxf/e+Pq7Fb6rC7Vajbr/X07GFhdBUxNMnPT7vVp/N2MdP/LxF8WELZtCuNVFc68Xv5CCLFSHsmoLSlcFhL0HQEuXHakIlcGjkbQ3s2RGMCeOnqRSTGbsM8NIjZjCko9PMKo6iszmB1DLmmDq64hdNfT2mknOjCaMS5QdKCYjcByRk67DFdKBEhAEgV8ah3HMJGUvEHLkGD4HtP38ChfKkxn+4FxMmj/+9raWdgSll6r+VeQpVcTb+2EwDUZX4ab60SlEnXqbPtcCbINvQxNl5D5DCGVVPVQZTIieQSTEDsWTf4mjO/ykx7Wy4fOvGDhiFF999j6RQV7Ubjd5MjXdz3/PRYuLFL0cjN8RGBJK+E3JLIp4GkPdR6jldiQOE16NAvlr2zD+fAuCqgl7QzcqYzxOVwfR+77liVsXsNs2A22NBYeQz/KssYy2B5CZO4lD9XW84nZTL/XQog9E3SwjRmIEQYooU9Cn1BKu1YLRiO7Ajxi1DUzsSkJsLqahfCPhA1bQ3OGBv+R88b3bH0lPHf5nW5HaOyhyTMLnfZeYCBUKzSAW5jkhUMqiiBQipQ+j9h9jUoyfzojVFHf1Ems/QJOpGrOkhRkXSvEOuQe5zkW5zYSvNpPIoGR8ye1Mf/91RKsPqdTEB7NW0121gdP3vkOHfxISuZLB/VLI77qeJHU4UrdITv52BHErt+duB993lLd9wRq/yFdR6/A2tND27U6CE2+i9LHnMEyYiNBYz+AagaIxX3F0ZCiTJhQjfhjOwyMGolYpufLZpwSkdJBaH89wZQbyIDu3KlVcF2ngWsXdeIEVVWWoAwXEFhktSQMJaD9An+dHrqtvZYVmFPPHzcTv9SBtOU5mRDrTbAK6iFh+tn/LYucTTH7rTea+so2bo6KYXbOLH09+Q3d1Jdt3bcSTOYalA/4SiqD6MLV9SbR0XJW+NZoEOsMNBDWW0dSuJI9JtNuCeFCpxOVzke07xKXxt/zj2uV/PGf+b/BPTfIdjT1U5jczcPwU1r7zJvPnm0hJGUhuaH/crd3ssdj5sLyOg34/Ur+Ip6UFZUwMAG02J4dbe7g2Nhj53yUT+V0CaGkGqZSu777HXVVJ2L33wr99cXpbsBvn4ep7iLiX7kOLncD1WwkwyLhyfheoROLVN6L4i3T4fVYwBRf62HjoKH6fjwcDqrjl3qdpuLKFA702qtsdnKqzcE4BN0iTuFw/kMifPiao6AOeC/8Z/VQjx8q+wanqJESYjhAUTYtUy7LtZ6jWyCjUnuZxjZ3qfIHyigqGTpzCmdI42j0BjFpziILnp/5h+CnZcbT29vJR7kfoFXq8+8tArqCrz4FTK6MtpReF+yYi/HvR19fj7ddJV4+TGomML5R6Ji7bg/TCj5i/qibRWEn50If4SSVSu+lrYtcvJcTvxTxzOS3todhrTnBh+H3IBCPRqQHc+NZxruDGZboJ1+538AXtIuGeiWS8sYvGh/ex59bHSHs2HbGkg6QvV3NhxHTGNlrQFn9O9+hBJMf5mGyXMrbRjj0AWiRKtIOjCLYLqLtLCJf3URl+C7NNOs6u30bUcAcl3pEEp4mUj7oBq7eD5e6t1Pi09NRWEHV6EfLhbwJXs3AJE1bhPv8+CokMcu8jvc+GUikhOUbDty9/xrmOS7z64bt8+f6DhMlg061LIbQVQ9U+ogIuE6tIJqmgDnFgO2LYJARTEnJXBffalPwmDkfdIfDZ7ffhNzj59XolBu3DNIvlHBy0gJ5LDaSNdlBzdBcn7d1Ep6m49hfo9vjJTs0kuLmI/mdm8qPrVp5zjeMh0UHI2Bga3l+Fx2pj/DIJXxb3Qx6cgN62ii4ZHLE+y82DEgE4dvoiV3o93D0pB1NoMO7yHoLVclLCjLQGHmOLXM9cq49ExXjC3D4OFOzDbNYT3DKLgK5ukuJW/i/2/jo6rjNZ+4Z/u5m7xcyMlswyM7NjJ7EDTuIwzMRhZmYHHGZwyEnMzEyyJEuyLGa1pJZaUjPt9w/NZGbO5Jz3+c4zmTPzvedaS2tJ2rvvfe+6a19du6ruKpRN+6isbeZd1escrsimq6UeW5idgdBhjOoWmWU6RpZnKOedAeprfmbJEjOmxnCqjJmstG5GkXmILp2GNX2Z7N9zhhdzYwip3YGOMtL8IsdCjpGSEk54rA/rhmMIZy4ySivSGjmE0k0/Unp16d/xwf9a7/89/MuSvMPhoKmqG79XpK2xl+8G0mk61su76SCVSMhWVlFx0Me8C07Ex27F12ZHGRQENdWQmkaz043dH6DH4yNC/ReSD/h8VF6xiLjFGeiWvoB6SD5yeT+O9Ytg1M1oEpMA8Hh6kX46m/KQBcxfeQ3+518i/LYb6Tr8Iy2vfkpUvxzF6tmISyb/Orb89VTy1REcND1AkOigLnU84ce/IcZXj145FKGzg+/FR7G1Dqej1orU0Yo5dinOlCfxVamQfXwvlhgboi+TZ3PtTJAqmOpvJ0cTQE4QmtBOAsCO9z8hsXA2pp4eZob14UsOZVTemL+ToUeroqLJRVK8iR1nLBg0StKOtaAu2I/f7UQ351Oig2TQ0wXnNtD1tpa4wnCa44y8HxuCr8dFIHo+2cZb2V56KRNGNNKV3kcbPgLTw+juf4LE4PG0WgYgqYA0xwtozf2kj9pI9uR4ZlUfJDY4ip4YORcWFGCR2pAuvArj0KkcrKomfZgUIdNO9VuT2FQ3ksLz95PX0UbfMTm26gBPJs9AGnCzN+57XMnhdFXchLZXQ6TsKuwGOfUOCDhKmDn8HK6AAqswjpZGB0PzJTQOdKMN2IkR/aTOXoXj7Dr0w4f+KhtJ/iUo8/+UlSSXoQxSI1VIEaIMdFWVMc5pY8sVQdR1m7ntJzUL3lmHRiFn5gcGXJIB2s87SHDZ6fUoaTZqGardS31EGl/Iujl2YAufn9mFUq5m52QZjfI4bM0FtMXYiG1rwuqxkVr2Bhe6DYj1UtQZGbhECTqFlMbofHT9VYg2CcrgXiR9oOndSZM9g6euM7Ew+yluePF95OYu9KohNH10HiEgUj1yF3HjIzhvEZHOnsyw8HCUEgmdxlQURg27x4aiHR7BI+9+S0uxBunkHlbFBxHp7aXg1geoKLPiTDjNnZFN+ANyiifOI/OKsYidDWgdiUwtjKNFugynxodE34+51s3QcZchCeomYu86okcWUZPuYcipPuQVG/B7BYRiGzVjgshAQHreQk/kBE53pBIcsDB3yGDM6ELjAPFDQzAGd+NrHMKpmigCft8/nlD+P4x/KZIfmTUVfZgMtUGOXC4nMy2Uzq+qMI1OwCqqOdvUB2YzRERwrvRWPMbruXnmcHKkLTD3TujuhspKSE2DYjNZHj8RadEAvwZgjx86jBgTg1NZgmfkjegz0lHvWMrh3NsJ2GEC0NS0Hqe9m/Arf+HQ0U+43XSRwLpX6O2REuovpi1vAsq6w4Tf8QLKP7mHao7sJyH3cuSJo7g5ewVtFzs47VbQaw6gOXuaiYt96OueRK6qYYvbSNLuPdzy1vdM7Q4iqEJPdeP3TCu+QOjMUSim3MMan5wXvI30qmq519COdECPd/zdlOxvIH1cHx16ke1+KbMKhiIUDMXU7vw7ebptfmQ+gYbjTfjlGkwff40YOZlS9wBvdB7izpo+QnRyLJKXMcm2Eq/IxNAbRIFUy67TFib02KHHhWvco4RVdtOb+gjDh0GDp4rg2CegPBonv9ATuQivX8oUyTSMUWYCgQCfDUmmpP4o2pBQZF+dJFBwG1v8NWgnjyBF7uCGLR/S9eSPaO+fj1QaIE4XhA8JXUF69IYw2kZkkdr+E33ycJrSg6iJC+ZH251k7HPTI3cj9QgkXiaiEk9zUthFTNIawm56kBCtjqjPHwJ7Cz36Rez+5AwxQiyPxNzKih3ruH7ubf+p/imUShJnj0Lm83L8tdc5lf4K+ccfZ96kCFwhJvbuPM5bf/gRqd+NViHjoiuW4dY+7ozN5sc+N+9//wSCQ4nTHsCj8fLu3VN5NXIcRWfGECEI/BQh4XJJEmq5BZW1lGt0pzC6lLxx+nKO+mbQr4+lVvI8gc5F7MsPRoix8xwWnnWsZrFGyi0pyxhjSqK15Cz+sBhyrsmm9OtQLOMnc1tGO+t/qCUQEczQ6Bj2TxiHt6SSzPwUNAYFAX8AQRDwSSW89MVWyJWx0ltP+8aXqTdOoixuHN6Y8XQECxjUUs6e/YyLli5qv7DjHtjPDe99S8xXVxNhPc7FmDs5MOQ2FL4DyIL1uCtExh34hZa5W9ghNPJKdBHTpqVzpV/HhrfXEZwnUpG9HNfFOPRSL1JDGMjVbHrrJH57HTHXL0IVnM2cDXMoypEyb8aNf1mU/c9z6bri/w2y/l/gX4rkI9O0bNy4EaeziePHpuEs+xJZfwGarmrqnpzKptdP8dZj5xmzagPJqe/jlWymQxUDQx8HmRKzuZqazmbyOs24HT5EYNuZTmYPC/81ABsWEUHTOx8g0YVz9o93MKS8Fk1hPqNvuQIkcgCMhpFYGuqQDyngj/Y2pIEQHJ0l6PRLOKeN54s/+hinupGTjV1ckxaDKIqYK8txqEdy96FkbrvwFhNCusk3H6E92oIh8lY+UwYRmPIVhzaf4kCinI9fOMF+aRt7BDXrg8uZJgWKQR4egkQYwNDYwhpvJ0kr1yBxHueoaSSuhh4mnuvFmN5JQ/o4Wv0BJlbfyUPel2n43svq1ybg73bi9/vYWLORBakLUMqkBPdDdZsfx/wlNAkSklMjyWofit7jRn33rcTdF4NbEYpklRybKoWamj70Sikhc5Ip7rMT5PGj1/ro3/YKJTuLeVN2G4usXzBm+RUIXgWxLhdtchXS09/SlhWLo+51Wk/NpbZ3GB6riigg+K0XaZ1+BwWZvTidUobHXkeVyU6/cjpBbhcrDMGEFj2Dc66cKIOS0PKfcCfeirbpEEuPr6LmNgWxo8fiufZmosvM+GsktB5cT1O6nle6ZLyz5nkMBdcgCw9Bq03hjGMST29r44OHL2FESgif7/yCENH1m3rncPmot9ioqanB6/GQEhdBT+UZ3Oo4HA2TybmwgYFIPUMfewzTm2sxdZYRN1VJde5S7njyLZ79aB2VKgupgsiaZ9agsqUQX7uBuPpf+C74Y17xSTghiqwu0ZIoX0QHj6CUKzky5kvCtj3DJ23NrFEnYRB7ybHvRKY/zJuOdxh17hjGMcNp7+0nrDMMiSuUfkk/Na9/j0wmUlc6gP7yGwjL1CD1N1HxsxuEdnRvzSWnJIySbccoPdrNHSNUCAGRHSnxDCuIZRXf4avWMRCfj0ZmpyduAoV2AZ/Lx9EuLUG1exiijeJ8cwkKu5LmkDSeOl3Pc/JeRH0YIV1BLGn7hPbcGXiyowg+3II4/AY69jVzoGWAOq+Xh76ZQq8sCKXZjMLYR5RnLu52O2fGO0nIGWzJlzM2gUAgiOhgFT8+/wSjKgL4ru7CEPpXZB47Aqfz6P+6af4v8C9B8n+TLimKqDCg81zC5tjZjCrcx6HmXia0fM67smaWBE/DMvAqA11vovAfoCjnDnB64JO76RWdoCuk4eRRihYsYtMJM36viCiKv0bnpYLArCnjcB76COOUIVjLa9GmhSHTBOHz+Nn+Xhljl6WhTg5nU91hFhvzGPCEUOGdiknq40KomtE7n+bt1unE6gxcsyYGQRDI0hqRZei5uuYNYjIX0qJJJ6P5Y2JiVyMsXERrv59dnV18Y/4c60kpupG388NcKbKGD0kcfyvyqDH45t1Glu1T4Bcci27G5tfTVNZLn2I4zlABn6jEbVeiaU5lafUsnJohZOhmMHRUAZOGD75R9O9uRHA6sf18E2ZVHKFXpSH7LJP5goyy8J8ZiAzirH0ZE4I68NU045t3FdbjF9DPm0zLyVh8mU58MimxXjPWt4t4u+AjMiIzyVE76V55L6mvP8pKWRSxQ/9A1x4/wRIj4jgXJjw4RBvSxiZIyGNI+C/0JF5FcKgcrllOf+oyLosKJsGyizPtqewMk1Nw8SLjsCPIpKRm/oE9e1dBqxRZShn+igdxWXVos6JQlJ0EUy4aNcTFGjBrfiba+TXytCfx15vZfMlW3F1focwvQD9hPO01fSzJzCH88gi6v9lI1eSp5Mx/9j/Vv/wnd+ILiBy5vYD+/n5QaEkrcFOqCKJ43FBGVx7CWVtH/c5SetR6hocm0VtWT3j1WrbMdVF+3MiXsxKwJFzCga4o8rPycUYEkbFvL9vP3UupNxTj3C9QppiQRVuIEUUcXa20PHGROskCjjw0DoXxyKB+PpoD+GhydRMfPpknT68mRqoiw/MZ2dXPU530NIQH0ycTUHkh6/IlxMgstHZm0BW6gVGZMs60elnnXs/29BnMHJ3MpdUtaF99GXtLI3qZnOjla1GotDTd6KVn0S4a1/USX6DDEKVj/u7RNEgL6ZHmsOBoO/qsKTw7ayFyaz+xp+4juyiE4OR6JIoQbN5gnO4gahKW0ykrImJiLNO7TYyL7CH7y14kfguBzzsQfQ4a97QRlqikJ0FNf1+A4cFuLrNW04SW0q4BfG4XOreMJaHX/TYv/C/+2/iXIPme7j62bN2EomEP9leK6E6/jSD5BAzVtSisJ9CHr2TAe4jho7Sk+z/A51Ghbkln4vz9bH2nhLbzZq7LzyKzdz2uGZfRs9VIa/FxFjxS9CvB157rZPu75xEDIgDqi9+hlrmI2vg6hA+mQApOC1r3RSTuUNIa1zOglWCZeAP+8yfBNoCqoZFVGZNoNf9E8IgTfFG2Ar9lDD1qOd+njyHGdYb+vgBn9m8gde4osh5oQSsbfDtYrLIxrKoHV5sf2it5NXcdw3tEkowvca60HW/DaKZMrmLfk21kpkTSfMBCa5wclFo+OXqBuCYP2S4p1igbgV4HMf5mjFIJkde9R2XNc2iky7E0qSi8LBPJjS4yHJlUp9gQ9++mMOlBFPjJUv2CX2/gs6/GIub4qek4zPSJUwjeUseoH56lMeNREmXNeJzV7FEuxZySzpjzLyFI3mZ8rJRzGx+lov8cZZNfYYjuOcqaa2nVmhlNJOawILpjvyM5HrpLJ5MsLiRT00HS5mtQOuuoG5LCuPpK7Both2pOokPOwegotljSeSLCjNdrQ+qdhuBPBYmcC7ZKpAcMeCbcTMCUhOqpCbT09tHmEkjKWoPTcD17nB5iE+XIVEYeCR/PK+OHEBBFNq4tZt6t+UxJD0UU7kI8HQWTLvyn+nd1UTwHLnYTExND1d4+XA4/6il30XloIyljhmE5HseAIgpJQiLSJcsxVH6D+aUP6L5TwJuqIFAQxg1P9LEnv5OtE0Yy1f405tBnEAo/Y0dyDyEdFzCM/0vfYUEQ0IbHcu2LITQ1NxKkVbHjvTeZcvX19IZ9ga/Lxp0ZIYgSgY2OSCYlTmB0Vji+agvDgw7Slb2Kdm8XhR9PQHrMgHPGo4S0n8FobiF62DiGFc4hIXMaV1c0c7nMxzBBSuqJA5AxlL2lbXi8IlNGpML1BwkKzSBrbC3yjPW4bV9SeySM3uhuTiqqyLn2GvzGcQRkXpLoRyBASPdpYkxeulUx5MWnIkildIy4BmtPD4JEwKqUoTJkI32kE5/Px/mzH9D93l5M8x/D4pei9igICZKDRIZXUCD1C5QeaaRw7q1MucbI98+f5tqX4lBp5f8baP0H4Z9O8v+xkFAgECDgFji9vZox6X5EP3hVUegqjIzocDKXmUzsr2feXY/wFOBwXMsPLx7HZ28lZUwXScOVtNWqEJYtx6leiFSqw2c5hyAOWu5/tuAnzR+GfcCFzvAnq+C6HQCIokjtvHnEvvYaQs9pQt95io7tCYTdMZz4PjkRBUkca3ZiqTVT261kculpaqbp0Xnc/OB6hm9Px7FGkcX8r3ZyMCqJSbcUMXCkD0t9DR2bH8Q0dTgDwZFYW0wYBBldV97LwOUSBlyvkSVLxeUDCR7SEp+g9cljZFzyKsfae8g7dRJXcwny5CTKOm1YlQIT05So1j2Mz+elruhhFBF5RL2aT9sokEq2MmzoIQSJgF+lo1YxlRghGALBXNGmY0TaRqa744lt0hBbJCMuxcLZ3hGk9BziSPYU7M27kYSdxNGiRd2kxZh2gdqGJ8lusFM5WcmP/QLijJdQ973O1J17UC2XUDBRQrwrioQpKRw+dxqj20JvTxwRMVdQ2j2Gr/pURBleYqz7VdybvyGyv5umsjDGP/EKL508R39IHHeqjfj9F7Gdfx+193b8fgG8NqKv/wDPjBbcDjnxj91MSccAZusAWpeKNJkajymAx+3lps/Okhmmo7ilnzl5kYyLUeHqfQuN4Q2QhGANnkiHfgZZv6GLXV37kMuDeWT+EB5hMCgv9xxDa1Cx4No1AOxn/18+UPsRvh8fZsnD86i7/0bsngZ67EcZoh1N0NRGVkeFMyz5AZw+P6q+g7BwNZcB5P32s6DRqsnMzKSxtJjze3cQk56JdPpBusynyEpZj62tjR3pHyM1xSKKIp6hXyMdFkGMTkGd5SLdYiIhqdM5r9TzdV8Fr77+CfV7PkZmt9HdpeeIP0CMxMkMqcDDD8RTEHk9X689wLSMCBQKBZGZY5HLZHxT/R3pgfHsKNtH7yM25JZEhqmmkmQT6JF8x91ds1lkPELTSBPReiXaPpEKTyIZTgvO5ioObVQw5cpswo1yHmy5wKhH30NXWYq4ZCbS7Z8SV+9B1v4oQbc8RYtDSqjKTke3hiPjh/N9xRcc6m7jjvjrCAnXc+1L41Bp5f9tfvlf/D3+6SRvt9vZsGEDir/KZz+3r5bIZBMkZKPLmktr8wFKNIdZun0424cnYw6c/vVcjSaJqx4fzICpqXkVqUHg6uduAYWSo3tTQJShjv8Ddvd2Lt1k5YvRk0kJ0+P1eumxdgHQ0dFBY2MjI0eOxHbqNO7aOoq/+YrRE7TIYmMJu/s+7mpQ0KyEOfuKmdvbQUZCJdaQcWgi5QRJ57BdPgRJlgKlYTLPNLQTarmIMi4eWVcyuqALBKXfQ/9zS7Dt3IX/zlfBKCOl5m7Ojn4Nl9TEFfY1ZPp2crilC0uhidTOEkxZjVjWvYTRXk9KXB1sCscX0FDz4hxOGiYACqpuvJuIbz5kIDyOPDRY5/2Eou9moqOXoQ8e7NUplaqZdf1DWDtd3LH9BBfVeuQhNzCp7jAtSND6ZOgsfawwdxGQnmI0hzgxbQlxNV/S0XuS+/qeZ3hUG8sa9ChkCvrbGom55QZst1xH5LkzOC44qYs04VGN4ULpbiY0HyeubDe1hdmE9O3m6PpKBMlE5k6QYOrRUx73KAvrLkfESVPUeCaEynhu7nSO1dmICwoi0Z6FrOcIo8bqERsPgi8cVV0OsjNt6MaF8GVNO3IbGF1SJsRUQ5eRkLBMrjFqecpzDoVMSunjMzCoBsnhtk/WI5MP/l6X/Qpuu/c3dbG//zxSqQqTaQiiKGIZ6EAilfza//W3MGHGbLxJCxBbyjCflvC88QFOjS2mfe5QetrljDzZjvTeStD8nzeuScgv5MoX3yQ8IYkDBx+gevutGKcNEFW+iPXqZUxU3EAYETgre1BlBCPVKYi59WMs5zo5ll1J0vx8XrtmcL7JC+4BYNGeD4mVKrGPn4Da3sZluS8jurUszNUxPs3Iu01NcOggEQvmkV4i4E/J5x5hLfcerUfr8qHOVrJ99Dm0goXZv/Sj0iah2/MpvcuycVYso3VJMBx/A0VARKVZjtagIkQrp7goi95XmsHah+dUHZLMpfi8J6m56lr8kUEka/eioYMDrxcwckQwY3N6ycuS4fmwHtsdvWi16f+VqP4X/w3800m+vb2d3bt3M2fOnF//VzA55W/O0cq1mIKCUaSZ0CtOEyFrwmW1oDKFYO1sxxAagaRqI+HqfEoPVdB17FNGX7Wa6OgrEDuqCI1qwltxgRC7hXeeeopXFkhxezx8sP478t7/mLtzL+ehFUMRBAH9yBG0ff8LGm89dfc8Ck4XhimT+QBYsucYivJy2gxyktueR5y6HkNlKYU+PcnCAMeTVhDcZ8co9dI/ZhG1NWq6fv6S1aGLUdWeY2D2LLD1wgkz1qEGgkJ1zMpU0tdZSbFdz5o9caQ7XNxuXoZM9OAqXEnf7kr0IVKcScFYbn8Lg7cMidCNNmBljSSRkMKR3HriCK/nKmgN1XI4M5vx8iN/J2dDiBGrvI8uxWPc5HiAixVqYmMMVIceps0IbZLpRBotjDr8GqG+TrzJcrR9YfRb/ExKk+H6YiM/AUsefR9aJtI9TEAzuoiQFCd7txUyKy+E88dbCIkMorXjOi5GzyatYzilRy/S12Fjzdfjf52L45cKyoZswj0qAkuPlS3dPpal64gvUOA58DpHXdPYHpjJs0EJCEFXAiBRdaI09CEEDMgkAjKnDxDoqjpFiNiOZPozANQ9NxeAiupNmBtjGD8hH4lMxqa15xgzS8ewaWmIovibupiScvuvx05bj3DafBS1I+G/1F+TSo48pYiRKUWMXAVzPz1P00kNG5Qn+OOaW5Hq7/8vP/+fITxh0HCZOOE08dG9DARA0paKBAGVW8vzbzzHtazn1JEviJRfJPz2G2i7/zF6dR7Somy/jtPoqMXu7Cdz8WUYbliE9MzjXLx2JtLAfShOHOZ+zTaU3kx6Nl2C45QEkQBGTw3y0HGcCjcgT0jCGK5GrVNQdsKGMyKH/rHxRDqiUE2YilBt4NWoL+lqTOKycZfi7yhhzrQhSCUCvoCPKLWSyF++ondvNfXH9lJy9nsGokNZFmung+Okp0xmYOACReONhAQE2oUABqUW7SoDJ07OYZTySnRON0x77r8lx//F3+OfTvIROgmTNZXQlw8/3QSFV8KQS389bm7uxXNWw4KEBLYWBujWTOejxiyusXpZsb6EL/Y9hCEsgusXhWOQyBFUycQOK+LMyWNkpt/M6datDMjrGbFsC/O//gZj2J8GFgTUBiNidzceUcIeq8DsPx2ampPKU79YuHTATXlMMj29A4wK0tOu1lMt8TLReQZ8bg5I1PizppBt3shPvsn0/HiWDIWKtPECEbteIT4xB59SxO9S4XLqSXzpeSpuu4uBPBMPBXnZt+Br+OlHTJOnMPm7NCbnjIdVm6HqK+hroP58JTWvfMfEFDVnrQpCf/kae1UxG4cvwJuXTJb8IstbWihK/YFf6rbQPuw4JvnfL6FCoSAyMhKFQsH6D16j9OcTZImh7GwNJ3nxeJIGnGjvv4buCVOoTVlApKyFwv4kmoIz0L2/jSm+hzFfczPe2lIOPL0TMe0O0m7egqPTyCnbPByebtQBCUVjotndoEJhK2B/RRGR1s2kjgln9Hk9zW+8jenaRVD6HgbJeI4TyeqIML7ot+IKqECmomHAS2lvLokdEm4w+7kssQZ3QGRDbgLaIeEw5A4ALgOOnD2Jz1VHS2QnhqwVKP90r/0+P49XVDOx8x1MnmnUngsjY2QcCXF2Qr6eCHecQwhOAo8TOkrhP3QO+7M7L183DIlDRsSCWDZs/+o/1d8/p+L+FlauXPn/pv6/WUPpP+J8jwdfAPKXfM/l5edxynVkJeUQ2uqnw9tCgr6Cc5pQSj9ez6VuG0KzG4CfjptxKy04jEdI7TYS+cZr7PngJJb34llwp44jvlQkMYnoPG7aGnoQPSKCICfqsvtQaZ+kpbkZSbISl8vM8S2NZKu6Oa70I/WqeDCwB1N3G6urd3LZ8GswjVwMwRmkv9FMyt793LvEw0BHDhFGDeNSDOjULoaKDxGapue8JBev0UdURDBqdRRqdRRHB7biCChpbfwaiWsWpsRg8nLeJTtvKR6fHxSfIJFIGDVpEuG2PgSNnn6lhur2egSPknitQGhcwv+RPP+MSy+9lK6t2xCBE5FZqOVSpuXF/R9//t8V/3SSl3msqH3dcO5zcFjA3v03x7urLLQJPpb0GJltUrOzuYsC5NxW8xb9nigitSlMvPVGiAtBlOsYq9Ti8/kItpWga7xIAtHEdMloOtvKgpGX4M05SYPfhVIu5wrlQXh1BvemzMAbCPx6TYlEwmOLiwjoZxOCktO+wc0Yx8bk4h+VzddrNsPhnTA6QKhSINqTxIdnWxihkJHi8jJ+Zj6NQxaQUNuBVGJgt13A0Hue2P270Nx4D71NNuxBIhUtdtItx7HajBiK1lDdl4l/byX5U2YMNolQ1KFyqlFtnUP36O2EbPgMLSJhRhP9BQpW+c7jIhQBkS1akc3FT7EuYS0qrRLOrR9su5e79Nda6ZGRkYyZuZQx2bG0XzjAUwPfkxH1MyHftCAIOqwd7fQVJKHPiyS+pYcnbOHcmiShpSeWKZoDNBaXEDNwBEvQVVhUH6FQ2ymS+mkb38fW3VcSHlGCzv002O/nmrQ2THKBEOMFAk4PFZFxmFo85PsDpKr3c9dPJqSfvMaY6y6lOnWw1fLnpW2ca+9nQUQpGb2xuNrLmN/iwbqtFOV9a1FKVQiiFJfPhzZbR+duK6YhaShdLRws20TAZiRSvwRXxSYiNR6EcDvpIwabTeTPG0qJ72tMZg0Jik5cr6cj94tIbz4B4X9p9VxWdhuu1jxKt53mujf+0gXsP8P/LSH8Z18Qf42pQ0KwDHjA44YeC3ari9igXIS8pxhuryEw6lGe+uwsE4e5EfJiESNdWDsHEIBIeTJF8UOQJylQCAKdlg4QBLpbrMTGq5kuzqNNlCHNhTLld7Q/9wwNxnhG3Ho1DocDnU6Hd0BJwKultmsYe91liPpeYsKW8V3ZbVxtiGXUuAdAFwpAiFbBFSMTGBMdxtb2ToxqA001HxBTDULRg/h6T1Iw+y7CNSE4fSIXzjYRcIsMy8xDbLOSMnEXJza2ceLHamYsy8EjUdNRtoVAaCEe0cu5khKGxEQPlg83mnh3fw3yj28kU9/F2Lc3/h/J889o6erjUHcX5747zQNmH1XdNpwV7/13l/LfBv/87Bq5BiILIWUmTHwQr9fB2s05pIRPZNHIdzDubqdA0UdsloQMUc+lahmtDj9S0Uewby0rJ+dR1qXmQqudAR3MGKLgjZ21hOlzGaGoIcfs4ojSQpwiiR/qd1GUHkacLgpEEQQ5fm00SyKCkcj/tKvu7VHQ3wYPNCPJXILGKzCl6Rjt68Ay4ij2gJcVuncpnxJMR/srBEXcQNDABZ4omkF7XRVRszo5v+dDqo/EIbtwCsXKKYxuvIee8bchhoylt/w0/ZoYHhJaqeoIpTdqFfXuXZiyUplbdQ6v7zype5awJzsFl1bNsLJHUPTVM/fIGDqXz8C+7RzSeCVG01eod5QwxOfGmfUhz/ifY7K8B7MYIAFg460gSCB36d+J3H9xO+En3+e6RAn6Ha/j/2wnfjFA7YSRmI41EchK5rDXxIaoGUyecQBbqIf2fVXEjLFSW55GrZjD4YM1ZKjlJMcYqKkuJTJaSmioQNlnXyAPiydm4RXIX92Ge0g3568bRdTFFDTVToo1sTiEl2gNeoYdA34WN9bSFhXL5uveJESezTVX+IAUlE0ibx3LQHu1AmVHOD83fElWSCENVYn0mfwEpEbcZYm0lPRwPNjBiFvSMB+0Ud17gXeKXDDiazBE0O+1opMZ8O19g0QxlA6HF1RhNKZGoOnrIy407Ve52A4dwihPJ2bYOGKSJ/xTUvb+45vAb1miGoUUjUkKsiCYNQeDx4MkvB+xvxkCA0hkCs7V9uA5forxzd/QdtPlhKonUpDlJDFhNPxVMa/LHx2H2qBgoNdBfWkH9xs0rLHbMdqdlMTPJLKnF8eIfASliqT4RHyCH4dXQC+KKAQFkz5cSn3PeTYv2cZd+ceQCHJYWwAL34bEcZx5ZDpuh5eKI0183HMLa6LXoLF5EaO76dcOJXn6XfTcPhFJloQfZ36DLuBnWt9GLN297Bemc3/KEDwez+DzuU5AoVASCCuk7dGj6MZGMXLuiL8UlQNumpSKL+FJJKc+/E15/jUCYoDG8z0IIqhjtTT0e3FV9jH0yrH8oawNp8fPx49JGTdyMjFJ4f9/a9H/80ne6xhUQvVg14byinsYonbR1buTLSdfJj97OKqyEr54ej1Js9qpm/MGHXETOfyphlB5DHf0LmSd63t0EWNRRGZS2WrnkxN1LMqLIzRxJBXsY3JQHy1jUwk9u46k2liCp79IwOvE4xPoOhuC9fheMnP3I5XIsPm7UQYcyAFvaC5V199CRupBIgQbb2nuQdceR81lxwjufJL4QBl7zUeY1LyW8aNUFGfOpk+IwNLZwZejR5Op6idQV06Uu5594hkOSVLQJczCrDVR2rqDxf1BdJ47RIExnl5bDv0yC2cELa8Jes42ODhX186T5YspjzqFBDdlsSNIfTUJr9HJidrF5Mhk7I0UiNyziRcSRjJtjIF9P5xG7TUgqN8m7Jrhfydue7+Lzb6ZECqjb8d+lsQYcERYsbVpmF5Tiab4HGczRmAe38cTql3E1Y/h3PEcHNb7UIZ7yRlXiTnFz/IsIzLLKXolW5mafj2CM5QNjVeil37J2ImTmXjiMr6OfBp9lBmZDBaemUxn0HSqM9X4pWk8ntpIYl4MtdF6Rnb42NbdA3ECoxOWUn22HXmIDbeyhZikxWwfMCK7UEPoqc3Ir70XNCIV/Ta0c2tp35mJc0AgNWkKqVdYufDKBJbsvZ71E8NQAD+0fcaUsDnY5Flk+hvJGBZLY+On4JyG7bNiulZ6MCjkKBUyer/9Fv248QSNzoGwf05tlP9IJL9JUMfXwfkf4Pq9HN+wnuM/fcfqdZ/j9Cho3v81jqmzWHvva6TeORhkzWpX0V/oRlfXA2UbYf7CX4f688ai4Ag9F90tRHTt5FP1mxi+VxO44mOCZo+jpKePlw6cYnlNF3X6DuZv9nJprJNPHrye96c9iS44lMrKB+gQveRkvwzTnoCI3F+vUX++HXXzDh7UF5JjGImiro2A2I3L66bt4kUMo65EHBJHkFxKcIQOg9XCWYuB7xq78Hg8dHR0/J0IVDkhaEZG/w3B/xmypLGkfdCH4vx2yv+DPL3efmy2KoKCRlBvr+aIZS8TbcvoM0g4f6gJv81LS6+DHfvrGF8QxeqH38Wu9vLdI7f8ny/ivxn+aST/q5UUEs8h1SQO7qjkoeprydFlcyYjg2DZjWzeUUbyVTaSIhcSOmUeMvtXZPnPY+nKJTsijYPd46n12Yl3eonvK+NUqY7eRJE3VxbQUtGJ4C2jTdyBSxhNS4vA4pDRCLYoXMdrESUqSpyzSRgdQ7lkK70BFXGGHJoVe/EHTEwEJDIlrqV3UybezqiSyfzimMLE8g2ERCdwzD+Phe4A0/3R+DKWo3ZkkBhURkmbh42SHgptZ0mRbaLJY6DbNAVdhwGJSyT9WDt3FvkYYrqc6FsW0rl4FbI2F9Hej9ijm0GkTYnS5MHS0spycynX/fIyZ5cnMEJdibUvh0N1DorDt/FLvol7CmT0OFx4nBXIamREZk9EqjXhOtuLRIyB0NS/k7u9z4VOF4p58ip0zZHI0mTE6nxsmvI6YT3l+KKgxqiioTeIibp2RsU1kBxvRr+pm7odYewbkoK74WuC815GaWogYCtF7nUhAwYiN7M5ezJjgqLoMWaTsiAfAZFodxL+vhcJdFTjTreRm3+GCt8yFJIB5N7FOLvTEZ+6ikinmoaOMkIlIqqYGqqVb5ByUcoodzOdJVbCxrqJq34eRt5GbqQSb10rp+bJUKnH4HS2ojbGEB5sYox9gC1fnaO3KAJF9zAS4lMZGJeEIJNC/T4k9h7E3RcRe3o5UdxGkDfA2ClpxL311qBefj3og/+f2HTzm/0OhlwGyZMASCoYgd1qRafT0dJSjZAXhW5mKKZoI94fHkK24nn6vvqaPSnjuW98LtjteHx+jtf1MSLRiFohJRAIUDVpMroHHiMmeQXOHgM9N2eht1TQd7iDy+YvIOD14GvYQ4I6nvrnZiAUf8FnMpGEpGS0RhMXq0+C+CcXZ86iv7mHzJHxWO1a+vf4OdxYz8CIsZg6HYyoTUKXpiN4+VXIVCryW/qIjtAitWSxasVNeAQVSqWS30LolX9p+Vdb2o5EJiEpOwKfx08gIJKnU3JHn5SejTUEL/iL3g8MlNPTcwyTqZAkbRqJmlSaulxc/d4hLHYvlyzLpr+9lcsMF4kKz8AqV1Ds89HlF/7TvhP/7vinkfyfrSS/3csPtWZqu+yI3RUInZW4fM+S5JFzg/dHZN9HcJTDTLrjaTy7JhLwVNCjDkU2SU989U6+GUihXBlPetQpIlorSSjv44cJc1Fmh5B8+4PMXPc6rZs6yRVqUNx5O+4d58HpQSqTMGJ2NlT+zILES/ms5z3KhXom216i3JTM3u9/oPSXL9lx1d0M7T1NVsRjrBzowbv4Bk401rLFmEN+q4+cgJ0ezU2ERSUSFRfCLd/s4vjoGDp8Aq25t4NaxcWqWUh7O0h+5Hbcl13BJ/ZhDB9fhPyVy0kWZiNt/RSzpwVfagiH9h0mI9HIAvtLWBReeoJUHAxaRMjnZqasOsUbS41MOncJyUfMKPuUxA09jXj7tWTZ6+h35PD+yZMUZkZw15y0wYdQ+FvLJzzOxNw4E29UtKCdMYMm7zGS4m8lOWkourIv+amlD0f4HpYahpLrkgIi/h4FHYafWfm8Gu2pE3g6FDzfOICEy9hgDqbZUs1neZM5ZLCwfEo2OjEK002b8e25Dqm/EHtDCO2GX5DKfQTOV3LGeCPy4PHYPHvJShuD4cxSZmk+YZcjkeiBSqJVDXhMN+COmo544X2MHi8XDxynKLqHGZ6hvFB/BVy/h4L2fbg0oziVFYm58xwv2Sfw9h8PMn5LFV19HgQgPSaZkxvLCEhktF9wkJ5tIGf0Aux3jEUeHY0CLZEmzd/p5f8UfrPfgSZ48AeISE4hIjmFLoebXc7x5OilFN5kYODjEvZ2anAXZHFIN47yfXXcNysbtFp21XfSiQ9rsZUoq49MtRmxs5P+I2ew+SIJBEYhD6tHau+m3+3ksNkKPg/jhAosKgvmmjOEp1xL2ekxKDQaUmLjqR8ymdjNX9KnLyUiYtbf3Yd27BX4euuZOjEWm0ykf+cQfB4XoVufR3Xd6/h9ATpON9LoKWby8qvxSu7E/FcWvMfpQKHW4PH0AyIKxeCbfq/bQ1PLANYgA54WG/KeATwuH6937iPQH4d/QODX+tFAcHARJtMIBEGG52wDJ/abKWt0sfbmoXiFAF6vF2fjGUa3PISQsBRHwEb38Yl8OvF+TNphXL/jsX/4Gv9P45/urjG/epoGk5U2mwfX9cf45rUHKRrpJSh4JP4tl+HXCgzPKEAil+HS9uPYXUi+WMeJqwI86dzPH9rHkx9RioVgOgQ7XXKRCbGhnPvia3w+DzssOlLSB5B7PAgeN8pZuQjfrwK/BySywYYaPgcKt5N0IQ1VVT/qLA/9nW3EqdKoQkO79ycmRycx54OTyGtKuPjap8wPCUctGY+3rQ3J7jmIpz00pz/HsTCRLnkUZkUY29U5xNT9xMTjFqz7n8GTm41Ofp5xJa+zNexSCs3FmGLm0+OewLHkmSzYs4jP5u9Aa70Cb1M3oW4XG758mFAGED/w0H3oILPz7qL0eB8a2QBep5yF9Sl4zodQOeEDwpzpzAo+x6s1k7mr9HMYdRvoIhjYuw+JRvNrlg0MZtysf+9N8k9cT/X2aE59dhW9w25Be+xblLqLSDzpdAgjUZZ9S0vHLPrT+7nWFEq5Lp+Nqn4CARG5zI8mbSST+r9AefY1Vtx4mtMd53jpQDeTWtvIjL2fj5uuZUb7DnLkK9iqsKOJshBlP0zOic2cHx3E2dIrkOe+if9EHeGuMyhmL0SQWNiGgZsqm7lUcTXXvvk0mogi7un1MjtkKBtyMiiwXSRSN4eO0PFsCByjuTGJbaKVmoRwRs39S9PGtpperA9dgSd7BO3BKzE3COTOHYYuZJAI/kwH/2pb5v/at/xb1qTV7QFAFBTUnG4ltMtLtiIE4zU3c8W21ZSEzad9l4mwKWOZHGPiu8ZuFJ4APrcP/czxpB04gOfcp5i9ZbRIRUR3LS35qxmSYKCq30W1w0f4iAcJFTvY3xnAfqGbEFFPdJACuVTG+JpqpKNnIEpEJBIFCoXi1wA/gFwhZcySQemOfXw7b/jV5Mb5UHR8TUz8D/j9EHANIJGrEG+/F9E3aIzsr/sI9/EyJFU9TH/ic5qaPgQRUtPW8HNDB73eAGNGhGOrd+MXfKRkhVNeehbTuETMT6/l2fn5vO0fg9A2gMSgRmJUI5EM0po0Npg+rxm5BMZkhPyaSZU6bgkULQCpDA1GbLIUND3peK02VHL5f7kO/474p5L8ofWfkbZoLGO2vkykaRyq6AVkTLyHXssOFPmhiLl6BEcN2LUAGL2laIdrOJZzA6oLp9hTV4HF/Tg91ZEk58zC2PkxAY8b39ejmFQ0j5KJixD7vESPSSfkxy9h/QUG5s3jh+Br8LEVZCrIXIgKyD6+jD6lkgt5ciYl6FHNuIOBN36k6EAPcl8Y3r5uLJFRBBqlOMTvWZ73HMW7yvGqTVgOm7AHewhNHECQ6NgRsgifQkr2oR3MXHALzRU1pM6qprUqCVnqXKoPKojbVU60vwyhZTr1kd+yRh3EHeN38PZDDxK4x8MPQzKQ2YeS0iFglsRw/s0tTLpwD8EX3iJk11m+njmPE6uuZH5tF442BR7D3RScXEz3uDcJbo3iTddSblWHIgVc58uQGo1/8xBGRkYyZtYC1rofx9FaQ0hTJbO3PUJyvoKK5JdwefUEh2mp9D1Omd3DJU0PMapjgIrCr5iebsRpd3BX/xpudt3N9K4rsC17glZBjU0TR01HE1Z3BRtmLOOVRhmFRidnZVnIJb04MieRpc3llCIVv2QrY63lhBy7lANpbyMq1IRFxwKxnKtuRQAmR9gIyroWAVgcfwSzNYBVdLDPvJcdDd9RadCyon0cIWIwL6tCUDuBQXXh89Zu+j+pJF+fThuD/X1XPDbyN3Xxf9qC/4/4azL5Oz/9qXdJ6WtGHPEgpV39PHq4li+K4snNCSMmJRTGlBJ16E0stjNUV9USG7WcVTEK/DuXIvQ2wYJW5BHhyKS9GIVq6qR78ZNOm/QamlssTG/fTHXUfC6WdNDd60WRqkEakLPf8iWOxvPUbD2Ndmru30zpz8bDf8SFjn76XX6uxUb9rXN5r+EBBt58kv6ugcFdu21tnDnppHhHEzarm1BC2bOtjuQRo6nrsKFWJiHaBwvJjQ03saOthwiDllk/HUEUoeH5uUTVrcdYuxuLy0t31XmOt59ktDWBo7WLcQfacDhvJT61gAyimX1jBj3eEvbtz2ZM0QFUqvDBiUr/Qn2P1LchybydfUU/8PjCCkLuvpuI1df9/5S586+MfyrJn/zpe6qOHuLKh14kvXwXvWfPgLweo2EM1O5DGHUddFVB+OAm9GbTAvbGxVEoOjix/xfG6cDkbqLvuI2OiAxis8PwdJynxmVHs78WEo1kROg5X25mjExBefwmLDsb8F9w/xrAKS4uprm5mYkFBVyoKKbNNBpXpBZVSwt6dReKqGaO7QxwYWQspulXknf0GIVrtlBdHkFOvgdz5ykcfgnWXjWbDlczo76M0YZ0zCojgsTNZ3VnWLY6HuU7bjbmFbH+XB7rlBK6YyYgNXvwD5Sh/OlBnnz6JvbWBtMSpuFVvsCtUvCF8APhTfn4I9JxaBQEWXYhIqVPE09rWgYLHCXEhZdTnJhLXnYaXuctDPSWkKWMwvfNe3xzOBGFrQ4MCYxd+Ie/k//x9qN40vIYfZlAqG0XafKL+Hq03Hq8jcfTNeQqCpH1BYgP6yJk1HgqUdGp/5Go+Bk4z9ezKOE6Uj7ehU86kh1uMx53L/NCLmHm5F94s/cYOmZw+PLDBPwByo80MiU/h+qmLeijC0lQh2ETriFsqBLXni0kbf6crtVrOb6lktFzs7gnOZLhlVYSB0rw5Uqp0edgi7qUxNCzZFSUoxo6E9maewl9OpGuMT8hyANkxGiJDhnsu+sLiHzeZuHZO4eQHreAxro4VAEZxnDtr/fv8js5dW4LeXF/X3v/XxoeBxICJOrUWD0+tv9hPPFBf3E5odAgpR+77jSdjXmoN3+G5dhm+i+9FzFY5M/t7N9PCcZnURLbqEIXNZ00vRKTJEBYcxczvTW4gtLpcQ0gGVAT4+vHpgjiI0sl5+WNjCL3N6cGUHvyCJHp2WhNQSQG4MPwEKbeObgfIU83HLmgwNfdTd3SS/CbzYy5UMnQ6QmodHKMTx2kKDaT5qFXUdJkJzxhMmPjTACEaVRckTpYKnxmdgQWm4dfTlSTGjccbcECeiJ7uSJlGJYWOZJhYfiOOggPm0ux2otH2Yh69fMoU1PovcFHQPRw6NRJfP420kdMJEWbga+hm4b6c1wdfzkyVSJb24+SqJficNcS8Xus4/8QfneSn7doKZKAF7VKyeW3XUJwwWyU1guEBxrxoyY0vhGVvAu+eR5uOABR+VD2M/y4Ckfqs2gzj9DsikB2QxEfyNPJOT6JBPVFBFEBV/3E4xdaGG214rd2E+Ex0NHTidyv4UDaSEyabegT4tmp347wp3TYiIgI5HI5ur5ihlU8TvqSvbS+e5aDY9VMC++ktFlBWGMdE4fuwb/jB04MXUBEYwlSgw+1xMYrqn6ShgqgS6U/OoqQwjRC+i9yoCFAls/I6uaV9J7MYFrn43hDk+jyBahesgSXSYb5zdNIgyci1m9g+qZvWJWqoWWImvBd29GtXMSxcjfRujJWnHwCV4+HrYs+wh/VT3JkHjeaYPTAx3QGD6NJEkKiVItHpiS/I4x8sZb1AQkxWRPoPFpNPna6d24j5vqb/2YttlWvRy+VkK2NwXLMijdtGU5DBNENAdLrDPRdvIjdJCfZ/jBiUyTu/DVECUE0lfThVuXxwJ6Z7L5qK+eUMbj0W3EF7AQHB0PVRp7uqYPlyYMXOrYWfZMP34XjdOXPxl5xgWqTEoNSgWhpQGnwEjnJw3l1PQr3IAlrpVKCEXB0ZxO+QEGr2QgBsHUkIZXJMHhMALw7fBERTavYv3A/er2auvkLMF1+GSErV3JrpZ8zn51hSJ6HK5fruKDTU1dXR3Ly4LwCBPD32HAF9f/eav+PxdjBOjoKINK1geamT4gbsx9/v5dOiQWtQoty0tOEN3cQKvTAvs/p9Yh06TLpVcgwmh3UnnoPv8FJSlQKRVO+paLyD2w4eYxHZ31MV/zNuOweErLCeON8OyNUGrxKP6Oq0rhi6T4UQWru+fQUI1MNLBs36Br7sytQ6gqwY/ULtC52kT52KtYfasjs9OLtsJM6KhuPx4NWpaVh+aV4Jk7ke6+Ex0URlW6w7IRty1b0gPfKG3FLRSYagvil5Ru8godLYq6GhoPYy7ez3BPJuOtvY/3FWk7KJnDO58czJpWEi32c3/AsW4cuYOzs++gJNLIgeDLGoEIOOT8mdM9eCt6upKplAEf/JnzdaqJVcYiiiL+jD0NQBKOlK7h2fSVr3L/QMHcYo2aE8m11xf/QYv/j8buT/KHWLoJfeI6NITtxK5tQnXoFAh6E7EvorD6HxzUCtTGVhLGTkV/wUHNhHT0eB/KY8XRlzSSobx5SUcbM8luQydUY5uWjvnwEW06ZOffzca7e8gxnZtxEnLUOW/gupMoKPL4VTB33BILkB2wDrSxqa+KQcAiA6Oho7AYrZY5YKPyB0K+rMPR78Vh0fLJ9LFkZDfj/cAMe74/4O+0wLp+OycMY4xGhzkj0oTI+nreE+0Knozt7lJDhw2ioqqPF3UI73RRJFRgZxYPDIyjd/xGX3vMIOyUqTp5sJr+9nE1hkxh9x1Im921A8CcQog9jyAffIrt5NZP0K5EqlDQf+QVvq8j0R2bh2foxA3V2BlL1WOc/h+aFBKZ670W/totzByLo9UUQqXEw50IbvkwzpkuvwvXyF6g2r8Mak4Dpr8pHPDb+VUTRh9ftpcvyOgFBwOnyUtanxpinRG2QEc5GSuzv0BEdjX7gAMn139OW9iBTz69DEF1MKr6N7pxL2VMbyuqcEGh5GZZ8CMVf/HodwWUmQdPBQMlBpPElpCiW0KWJY9RP2xHuv4+a5Cfo0k/AmVCK3x9J3uM72LdmAqmjzfj9dk5UjSBRaaNbA0VzC3Fas3D1uHCUdPJwayZhwVLev+tW9GHhTK6poXvtm4SsXMnRBgsR/gCnQ0aS8EMfMq0d8zQlyYmJULkRTeY8Jk1f9Xur/O8GS5+Lpu5haLUHAIHOtWd5LOcD8uJySIi4ihSTkdygGC4+cD2CKBC6O0B/iJ7SGgvKgSKEbQ7irkhBiI/mjWY35a5KunYs40ZeRRShr8tGcXEVNz6xEuWMm1BoCrH+XEP4qlxMOgnrKl5leN79JBmTfnUFRhjUZKTvQz72c2pr16JdnoWxIRtvkAqH0013lxkAT0srdTo95+rM3H/oES7NWEKWIQv7s88QZY5iyLY2WmcqaNl/hillj/LTxKuwR/rRSmQEfB6qj+xj/DW3Ebv3SzrGzmZO+hB2lbcji3SiUmvZahXY+LmLD9ZcCsZYHA4H+ydPYql58PoZsXoam0MIT8pD1mDDp3RhSY8hUusnXKnlZLgUY3MzbYbxFEsCyKUh/0Or/I/H707yqUEaXIIbuwDxvXZQ6vEjRVq9hYjYCUhKT1PTnsSoBA0GlQwMUzjapkKefwnTNg3h6PBXyJbGMrDhU9wTijh5vpPuUClej4+AXkfDkkW8JAtjzeHdyDx/JGbMp0xZtOLXDSE6EVbqk7gL+K6+A7svgOJMHZEZWia5f6bb045omsPiM9dQnbmS1Fsfpf7EQX5yv0RA7Cet8xTyqACC+RlcIddz95ufcOPW7wiqr8AXHMqxvkjSZ6Zj2nWYEclDsBiXEnr6EKPcnchWVCFr/IDi+kWMnJJFX/Ayslqj0ASncqZjCLFhh4hBSdwyHff/fJi1maUE/AK117yCxxRCrk6NZvpshCIDRq2G84caELISkdf1k1FpRnrqLBdilvKxSsMDDgueLe/xy9g7uOfeZThvfJq2NXfRHJ9MamYafX19REfHoVAo2L7rEeRpBmotCbSVwuggDQ8f3cxkqZWFM2T0t7aRcvpjQvNsGHrL8UtllMfMIb2inRD2oG/cjrmviEC0D0nAz4O135GekMeqP625b8z9iBI5ysJHib3ySoK/upnMBYvoc7uJvv8+nEkLEXuczNQup+TLm3C5FvHNoVpmZ5QAAXz+EUhKjpAnnkIa/yqqhm7kSg17v/6ENvNpokdNpVNtpyh4KeLVy0i/f9D9Mmp2Iv29blxaF4qIdiTJubjdnbh6WpD+dBvCDTmsvP3hf6mA62/hN9Mq3TZKzrWS01JNRPKNIAiE317Im3WTUW68jYGbFtM8dRZdN97It/lmhnSOI61ZQ87OjfiOfELUhm2kZKg4ofNzsqmLoTnTSO9uZnHyAtQdOno7bGSMjGOzsoPWjaDP0xB0xWhO1b7N1keKyQ1OZ+mqO0kyJv3NXKVKJXFrvoQHN+HDjyAI2GwedGodclHCsZ59FAVPpnT3FoSycn568FF+PGVE2XeA5t7DnOyQMbsrGJ1TwrTcUVzo+gido5MZJ7fjOPoL5QorhRYrEbkb+fSdrxn98WbKYibwk66X7w41MSIpmCf/uJDlH7YSKemjX2LiSEM7sxOjuNtkQB0VAaKI3dGM112OIBTgrjbTqJVTL1Mz4chSDHefxlT1OXhsxOQsI0Y9WFzu299ah39D/O4kH6NSsHHyFBAnwZ6HcSiUrHt7B4q4FOL9Gyl8+hnMfQ6+iw7BHQiw6VgTo6QKwvYVISAyvuwJeKAJW3ga5jOVOCVSBJeLWqGfC7sPUEIqunECpmuKcH0qwSC9m30VQQToZPHoCDDEQMEq4H6iKroRu9zEjxhGSLSJvgM7EXq6MEw8jaSsiwzr6wjyJ0gbN5lP1p8gLt+I8stGcnQGnKKUeyxhrPhpAyZnC0GyGLxIeeeiGZPHzqLkMFyyVyjtPUxd/53kZsSS63kar9DFC6rzVNf6adY3sD08im36AG8Fu8ia/BJf1zRiOp3E2tSzSAQJDpePIZ8+TficOaTtV3OZXmSpVEGsICFKkcQrviEkJkRh+KwMU+6VdAR/wKS0W9iRfA3v5U3AKlHy0sg8qlI2oJf6aZIoiPYHMBqNdHR0EBkZyTnvdNwKOXqxH5XJy8ogmFroYXvy3Ry+YCW9o5uBfS30VAYIG9qDJzGIjIJx9G37GXv45YT3bmfq9Lkca5pKXHows7U1hGj/UnVRrhlMfyMpiYzDhwEwbthE1+kv6ejYQd74PzUcF0XGW3/hWJyFZu6hrXUe44uiSFWUULnqOUQBxHkeAt0DKMdGcHpqKOqtl2PMHMrkUfOQbK5G5ZDR3+WAhn4MZX2MnJNIQ10VhiIrljgjXUfLccsL2RDzFJfpY//lAq6/hd9Mqzz8KhPKtuMNuRVyB/3jMpMKWe4S6G9DozAhcTiw7d/HIzd+w9FfKnCZXGT+8VK6Qy2YMuIIkkig30aX08c1EY8DYDbvgKRuonPz0WlkMGECj6z/mWU7ekheW4zrygQcAxpkkgDpDjvoXSBXUXvmJOGJyXy//yg9/S0keQJUKwuJ1fmYP20Yp1f/gOgL8P2JNtYLj7PcHwaZqUh+3sAyn45asQfv1/u57rLx9M9KY8/6M1j2lpGUt5RTSbNoPbSWKQNOZN8fozTFQ5HvA3pHDqN39jScxlAMoojcXI9fHQDDIa6NSUQXMxXX4feJNUVyQDadxhmXk+3yMlwQUKtjCO51oGz9iOLQpVww6FjW/CG6gtlQtxsMsRBbBBI5vuIvkOReyrf3TGW9dhJf33f3P1sF/qH4pwVe/Qjs+qGPcStnExpfRVZCCuoffmLKwXP4FGqiTpnxJpymyneM8M7beF56N0dGJrOjcDilX5aSWN6HZ9o6ZrfG0fLgPoZJJUj9IsLN9/Od8zzvVf7C2ms/wNMgYJGISH+j8GB6qwNPvQP76D4sFxtJtL6LOXUUz4cWoFqwkYWNdspKq5ly7DaKxNWcvXiB0uRMGqITsIo+IqNG4ffuwpy6hbTqmWgI5qItCnljgOsDTcgUPfRKIpgVCMHQ3USLJhOHtxWHQwkVVs6keikqP8CpUdFMz6qm5tApQpUmpGo/ja8dIvDHAorjLmf2qxrkX0xDLnmJgYAGjd9Dp7OSQ/2HmTRyOlXGYJZFKLnd0silL51GVN7M/hljuVd2nJFvvUdnXjBDxrbgmvoiadnJfyMDhULBH6aMwhMIILr8CCJIVRKkoge/9H0kgoDE40dQShHqfXA4gH9dPoIIXk8A8RcBScALLz4J/ieQyiR4Ax4ECSgDIshVwJ+21fsGC2eJMiVubwAJfhD7UShC/pKCN/pW1I5+omVVHFDHI7QX09F7EPe7j2DStFF/7Xy8F9rJKC3h/IUMJro8qP0S0gtjaEh1UnLMilhhJf1AIzVmNznjY1BIvVQqg0k3BVi2bBnx8fF4PB4eeOCBvylx/W+FCfcgS52GLH40CBJmnLzAhGAdD6fGwqT7kAGRB04ikw8mGIzuuR+aDyNZWkrc88/zeXUbeVWfU1g4HZxeOoQkjtWBKTQFh1dCZL+dYSmDX84rj64hzLqGgETJlOgljH3eS9vJ4/jKNyCt3U1vyi0c/Pobhs0bjyw1FVFfQE5sKOLxQ6R37IeAn4g7hmLdXk+VZzfl1kM8s2QLWpMaOs1QUY7m+Emsp1oQZ7YRunE2Id7b8QZlYpBJmZMYA4kv8MnFVqSj+8m/bTVrloxkTGgYV8UXUTRlCBc/fQChu54VCWMxKzMJ1jnJ129BCHgJs3XxmXMSMj+0et0MfSYKQaEnuHCw5EdR3+f0lUbTqrQgLZpGatRQCE7j6AE7wbJi7F09SGq/pXB0PhKbBKdE9m9t0f/TSP6dRjPPLF/Na0Y1V7/0Fk1NTTimzWD1nt0IxceIm5pEeLuH3sgsWux97Ap7D7trHqdLk+nKMiD1O/EJldjCptI5VkNLUSYtNZsYvSSZx+Ku5jHuG7zQEPjkYiuSAS+dzb3IQtVsbeog4PcSIX0ET0grA1GnMB4+yPPCA3xkzkDe/AY+RQI3t9ai7onkVOLjJJUriFf20JUroyM6mSsrr6BJ8wNlCRGopXZcAx/ygvt2hqSWszVmBgesFq7tm0scLszZShzdYfSpw8kylGCKMuN0t/GoUk3p3B52/mLFIwzFHasir62N6BGt/OKcgNZ4FXNL7udkfAdJkQreSu/D5SnEMuDj3IavWHf5AyT3+3jm3jtYedXlRBn1bLh8CvrwZMboJfxSY2WkQoUnMhSJ5zwtHSrSxcH2h71eH++UXvjVl9p9+BTP7nZQUaDkxdAIBixOMs8vwTrhTgJpl3P7N+d4NCUEFX1Ic8K4sP8C+jAFyrihDA/qxBiVAEodAL29fTS076B8252sKLgZydSHB9fiyFqQKWHUjXx+8hCRqnoMoUGMjp7/awqeOPMZGp7cz5fGFnLGBvigMYqlOdNxOEvxDKwnbFE03pdlCFIpt6/MY8/mHWTSyntn6sns1hIwLkbqCxB7dwzXSlWoVEG0nhRQKnvp7t6HVnvV32yd/7dNi5OrIeEvWUGldhcXne5Bkv8TqvfWE1Xah+zeETSm3ECGtR4M0XzS+CYis6lIXEiBQqDfXIs9oAQxiovNIjU2Oy/N/4sxMPKSl0FlBMNgZovy9RRitTGY4xYRVngZ3bUDmNriaPIewdpxkRV5dyN0V5Ln2E7A40P0uqj1+KlMD+WO6Ls598lMdn5STPacnWRmPoE3LILXotO5c81dyJwBOp66hNyFCUwv/Est+a1vvYJs3DwyhdNIX7yewydjWHfxOja7hpFwzk7C3JcZKaliX3whXXINy9PWI3XaWXEum7VTDehkAkpfM/7OYvYMX0947yHysROQapAOWUH5+3+gUqWiIFuLt+oEaefXQNg9qCy5COFpGHPjITaX5cDynzcA/76687uR/LLly3G7XL/6Pm9LiMAjilyaGInL1UF1zTT00tvI9UODe4D9hy4QFqJm6NA8OuUm7htxH2mOQlwuH0O6S8mKOYYYWE5F9BVUT2xGOjQUq8FMV7edyvMHebtdzlvXFgGQe2AbH1fE8azaz5uzQ/FGxOBDgNYzNA17hrbqVlITQwknA7kEeiIeJ8rrBtlbqBpOEmz/mpCYWCIvvgzHPexRf06fdBE9Mh2KwFDKe5p4O+kwM6zRRHW1MDvqBNlqAwM+NQaHgw5C6HZvY7y8gi7bMGR6HxKHDI+iEW2LSMChwY2G6lER6DrKiTm4DmPMZQyoVfww/DWizTMp1cVT/9VO1i4fyejOGh4qbsJxfxxqjwtZpodg/48w+xNe3P0RcslxDg7fRFLYh9RMeZkBUmm2NGMRg+hu60Nf2YbPG+CFb2tZEhNNZIiB0HEjaBXLGa5TExuu5YLZjD0mjWU1a8lrd9NojqMnXoladpo45UL67G2oYqOYUxgGj6eCKhjurx9UIq2G73u72RQaTCAynqv+pAPuoTex8fUSig6fYm3wH3k+7jUC3Wp8EX6kUumvRO9x+/BJBAQBHG4/9yvsDJZ59yOT1SORyCEmBgCnY4DXlBJkPi8Krwe/5BH8Ug0ywYUogFSuw+n1AwFUMhkC96JQ/sV6/01/978hdg9PJ0L5lw5KVquVoxU/khucwCfNieQpRpBwyzks1VbcVgnS8O1cmnILgkRCTJubD/c7GZ5uYdXoVDz/YZf0n1OYLRYLMpkMY+EK5OoQYicO1srJDIcYey67BTPik1/QoG1k0pHNeNwu/L29yASBGJNAVSv4HriD6Gk3IZgaaG35lszMJ3A6PfjbG+no9lG3oYkw32r69h4gasKMX6fQbRaZ2/oplZF57O/J5p6u17Eo9TzquxqJXeCNGtAbsrGrdATJBNrO1hGZZKKo/iS1Z+cyPH4vUWIJ766vJPW26dSrVtE90EmQsYe44o+4YnEqF2Wr6Kt10iOLpDPnXkbKL3Jx9GzSk4YiUw5So9vtpq6ujvT09H9b3fndSP7i3sMc2LULTfDggywIAnclRYG9E+dAJU7kuP07yZn8IfNuvQmfH6y1x+lafCPaqChCn/+UNlHJrAEzO0wjwdFMa7edLZ+8weqq3fTf+Rorl96P1O1kW8MvZAlRv157xOKJuFrq8Hf3EHfDPcSEhqKQSCHgIvn8CyQrmxDEANe0vMOYmJm8JbmSZ2UnsaRPJ8Gyn1BXC5KqXbj9AvaQWQTrrfT7x5CMQFyvnha1gVBpLDfIwVao5YxsJJXaKGKCPyPDOhSVX05W8lBC+qpoFFXEn/2WI6FrGGby4xczKYmWkhrpYPLx44QPMyIIUtIDIrv0gznfJWfnscBxnBZ9CAmCnXmyKoRgA9M+eZaDIwp4L2M5k5QZzD/0Ck+pUyHtMpTpUXhbZOR3fIGnqgaVwkm5MYewmM/xejzIRBD8sPF8J1M/uh3fFbO4beOLtIXNIuiRZ8gc4UAZuZ6V265j/ogiNjUewD5gR++LpnPvIVJtAe5qf5ikrkTSlNFUJL2GpspMVkYEFRVHGSnPZHz6jczIWgll34A2irJdwXQ2DmDVS3izehF+owG/TI7V7qP4wYcwTJ+GIjWVY5sucMHj5aDbQUHyNpbGZlJz4Vsk/quZNHvJr+t6ouE7ztHIsqhr2FzRyphTNzAQO4uYIXcSVvkCAUHAM/FJfjrRSJe3kQWHVDiS1IQs/otu/Ka/+98QuXrN3/zt9Xqx2Xs531HLh+FpGBocLB49ky3vlOJ3ZzHt+hxkSRL8Hj/6HxdwVdg0WgyPo1Qr+e3qMeBwOJDL5RhnPf93x+zJo/CuDyKvdT+OcVo8Xi8dnV10vv0aNdHTqDjYgi9bj3DuNClBX6G+7wb6ewebqV/YXc5L5xZSOfwXigMQnh1E5mUrOXJ0Esn5H6IoMzPqVC1nJmZxvMeIo8vFXcpiQsfO51j1YQy6fL41aOkXXLQdPc7o4dnUy6fT6k5l3PAqsrte4GzQFXxnnsW8qCIy+j/G1hZF/8U83NcU46h1oS1uxpDawC0NclKD+rh3YisXLUPotUoIdDjITTAAIJVK0el0CILwb6s7vxvJB7ttiKWttG15CWfpCRJeXEydcQShOiVtCimrha9IUck5kjf4JSCTQmj6GDwL5mIIbEHR8R01MStpGZLEWFy8+XI9Qk8rt4Qsw684izNej0wu0NVUTGtBOwkVAfo3bsQ2bgbnmw3ERnZz57fPIJhMRNx0A9x1F6+Ev4Szv4/7ChYjHHoeKQLtcZN4wX0QlUxGqUNCpCMaVeRkjvYvxOrRER8ZTV+fnRx/DWYpfC8J8LJ0HB8OFNCpN6O3WRnWU8LZqHa+cobQWTzA25ENeHrP0hGdzJdh4ZxwrGFiVyMF2iqS5RbM0dPY1FBOmmIcnZ/bGbvwZxwHnqXtxw+w6lK4XdfPH9Nu56wxm10GH2etTVS9/C5K+xHeDAxHXSgns8qOcHEz7Ve9g72lj8MlOxjffhxqDyAHNuhnMmr4GNj9APKgDIIkdir/EMWe/VupCJ5JtiMcpUKKzlaNcORFgjPm03D942Sq3dQd+4LcaxejqQxF8IPZAJLUEJ6KXYCh5Ds8SfNxKaPZeaqdnzd8jLorlVXaR7CExJK+KZlNw2vJNpTimbUGzZQQ4oPU7L2YhihIKWp4gbPfTyS0oh334aeRPP46nRHBBIkQ39JKnvMrqmukOBV341WOZPNJM0ZVgPG9XzFy31MoJ6ykc/VyZhcYccWOI9o3B/HEx/SW1uKLGk/tpzeS3dRI+s6N9PRcoEx7nK+2bmDTsl0A2Dts1G6u+b3U/p8GX3MPkigjEpkUgLCwMB5+dS0APzy4DfOf+iXMvy6Wo1uaELz1QAS1xZ20DSxnf0oKt+dGUW0eID5Eg/JP48Bg3+M3i99keeJsIttPkrZWTYJKyrYluchK1kDMSIzDbidnfDSXup/kxdof8DtcYOsiLKOTXncDzuAU0lx76P7+JvKzbxucY9xgs9vUkWmcdHxEvyGUhferCC59j+5T4Uil17Op8zvGXfMFfkCsvYwhmUlMlh7g3Ki3cAXLyEmowlMtkO5uojkskmBdCv0eKRGWcAIBF7VdA+gzHsMoVTEuUovG7KbP48Dq8mENrSK7vQ+lXEFbQzvuSzIZqK0lzFZCxv5P6bjhR6yV7bTWP0u4+gbCw6chk8mIi4vD7rOhQIlc8u/Xf/Z3I3lrcAgnLpwnUy0HhQK5Wkq0v5HSjtnE1NxPfO5dfJA7dPDkzgroLIUtDxB9/fuwcRO6kudI6d1HX8k8+qpzWXHkHKcKY/HvfRJEGNK9lQ/ueQtbWytR8QsIWDoRwisojspHDHipT49E/RBEzXif0Ig8uOsuPP29+FxOGnoChBuSsQ+9ncm+Bj4UxrLxmJbbFC4atspJvlWBNTabo/IuRvZX0FZhxhN/kEjdUgqcTsI1Nt55/zE8jl6kogqF34soQJNERd/MR3nneDF3x/2IyxJHRsJ8hgV5iUpII6jieQRpCPqU8VzrX09l/AzC4mVkVR5n46QPSJfKONSyHUlTFc3qm5H4RGq9etSJa1BvXUP4gX4SHs6m02DCMDmd6rKl1NhGsvrEcpR+J7tzPqNzwVJWpM9msSaMTSfa6JOdIkenQfR7WbHpcooKriCjIwGFMQ7pHTsoe/deEvftJjlnFc6TJ7FlB/H0spvg/A9crU5hnGksiw4sR/T7MU94hFbbJ/RJHEiN57jROJ9DzVJCl0Szz/c+UZ5u3nMFoywbR++obmTbahEmxbKnt48032lEVBh0MkLUobgnLUXWG+BkRTs2m5vR53dydXYi9tT5CJqx1FsnEKKVESZ2oOqrojfrCvSlPxDm7qJD0gc7zOjuHMvAQC3yutOo44Np6jRjnTIOaedkLM02BrRtTPK7mOrW/aqXfqmAQ/X35Wv/nSD6AvjOtyLz+JGkhP3d8X33TcZdXwVvjSQ6cyqLhwk0MrhfIn1UFKGpT/JKdR0nFy7mkZE383heJ/NyQiFr3uD4iFRbqxkobidShE8LTTxXPbhv1h97JQFpEGq9gpzxMfStGM1V7e0olDpEtQkBgYxcE49/8h0xsedITi7DnbIcpXKwnMCkE5XcEGHkYGo2I41aWvuOMKbeRokkCvvYiZg6TxEy3sH2kGE8Vm9jmboHT0wO3+zq5pK8IBoNo4hR1xL03bsMWZPMEylDmN1WjaT0Hcr9d5I4S87K4mDGuSu4J/gT1P0yLG9nYh4+nKghXZzvmcGuo0cYXwOCUUG00cejur1oerX8eAEWxNdgqSpBo0n8G5nu7PqZRHUqhabRv+PK/j74/Sz5pBQmP3YrStXgy2DA58FR24VQ3UOCvZST8R5qanqxmt/jLcchCiKHMW/kKgjOhlHXI7YW447JRqz1E5B46HngdTLCtByxP8OkjiOEnHsGxfivkR7YQphRj250Lv1hJ8gMqaCluRyh6wjeaA+dR1/ildTHCYgiU3IXIFNKSUuMxt0/DE1DPSy7HM+hcmyCjUMZMeTNu56gtliUU2WEeTU8MhDBazM6WXXPXpy+g/QbcwhRedG5ZKy/4VY6O74mXKzhaNwzPPreJ2j2Pc8GlYMtVS68ghTdu9ejlyr5w00LOD/uQ9RPPEfc9FPoFXJM1kNYwnI5nJGPXughKSUNB5OYf0bN/T9VIU0swbX3JCmhBvpmvEiQppdvzu1BsfxKyooXENHTRBwP8lTQnTgHpCwLrWcgqJMeQcapM+34BQl1miII1+JS6qhRKrjCkI2usIAqrZJbPjiBR1yMrvJNIh0ehCNf4ej4mmd7Xycq9Q5s9UEE7HKcdhcSAaT2fnpdSwjuCidJ4SE4WkrK11/RXlJJ75NPs/DrBYhSIyeGbMViVjPQ14Tq9C9MTUmhfCAWX28b/rRrKRz4lq2ahbgi9Li+baI8TsGQpVfRXGXFezaPadekky+RU139ItVtbbS0T+f7usOEpT3CamUPDW9PIam8FQVaQl++iUB3NyF//COdy6Np9xeQqFAQGx+GkDqPfo+PHxsvJbXdwvioEAy0URDk+73U/p8CQSZBMTEDQfXbVqXcqEIeFgCPHSIKkEoVJGePA6ChoQGr1cqG5BjqujrYONVIlKwe+MvmH4mlgYfj7kG6+4+Up01A0dvCy5M0yHNjEANRf5O55vV6qd17AFVKDoJUDtMGXTJJSXWoVCb0A2cRX8uC4Hxw9XEh9yPeOVPDc/mZdOLHVJZJd3gOgTwjBCREhCRQO+0BXKoRmIotFEQKWAhGputjqHcjTabZNO08hH36Jaj9VcRb5VzwSBiX5qDXqyO1IZmf/XJqRkVwPngd+XuOgaqO+EAwPo0T0eFhQscuguy9pOjkvGoycy75TeIrBrhkUz8hjyxkyORLfr2/kj1N+Lx+Zk1fTOVAKU2O2n/8gv7O+N1IXmvQ/ErwXDiP5MBP9C66gbqMEGKGFRNlUtO9uwatzEi+3EhI2Aj6GovRf/8zEp1AIDKaTkkHnjFKBHErCNdgbmvi4etu5WFhMTfsvpYMeTSemdcjVbxFwHYnVa6fmBC/G68ngYxxd1P++hv4TXFs7u6n1+snPCEIhUoGJ95C6e6jed5UzIduI+aCiXWZk3jfbiMnLoKwztuIr7uRqPChrNLUsuqTEpAY2HhTNoy8lJb4cKQN7bgleYQ5c6GvDKk2wHN334jLKdI21o3UYSf7bBSzEgvIv+N2/vj+hyy57CqWyMKQnNhG8GwN8eZPeEQZR6ulhg0pt9Fdq2aMXsGcuTH0P3YzzdPn0FOqgwYbQpCObal6Jqz+iWBPAmJ8Omejp6FRqTmQks+OT18h84Z34cK3lDUfx64YiiX0e8Z1SQlUmZAGFLwX9C2j49M4WlOLRCrw9fWj2F1p5rbZOwA41+oFuYnR7sVofWmU9HsQfQH2GG+nw9pPimkslogE0sS9OLwNeHxabplxN20SPZc19xEwxCI1hCPVtTKw7xi7R9lwBtWycEDNsDbY01TD3pozTBq7hLk7JlERdxPymZeTrvLg9AtIksCQYqX080+w4aPgksuo7lhPeEIGdf2dZPiaiWk9SnloLhczD2NoSyb9y29wr/sRedRUlLpQIjoG6KmwUNbmJr8oHp180A3R4/Hz83EziS07yO7vQjHgZM6EmeijTP+yQbT/KtAn0ShwOdyUHKincEoqCqUMPDaQKkEqh5hCWFP+d2NqtVqOe/ciUfoQf9hDj+gnOmksf/jmLL98toUDM4NJOLKKttSXiPGImDFSfPgwwZXfkDlmAsJfNfEwm/fj9zvxDs9g0g+TeaToEZakLcEvirSOm871cWGEfX+MnjQXzbJ0tB43B4elEnxyE9auAHUXrVS40hgXpiN/x4s0pC+jNSwRU14OsUc/586BVsLDbkLeJeWJkA/IaNrCwZI2jtgjealvLe7TN5M9PIdt/hjqllxOdu9zWA/FoZSrcKSmkXf6ZVwh47DPvxK3oZd+z3BEhQzD3ZOxO3vZ0tKLvWg2OqccuasHhQDDd5ewb0QG8SEa5FIpx364gF+UMWxWErWdh3HbBzfSTZ86GZe9n+iE1H9Z/fkzfr8USq/zr35vZFlcFknNR7kheRzNB7ro8dkZ3XIFAdGH5ornuNCXTUVoIqHNR0nOnIXNeJjkvU+jCR1Ca9w15Jz/Ax0Rj/Ca9BkC4akcuPYUxtO1oAjBqThCoDKToD0a/JkdONtUXKAOa8JczM028gQFexA5aBK4OlgA/RzEviYEREyWRuLkDWwuuJ+xXftRhJv5btNiWswBJgWFsOKFH9FHR/PtHc/hMb9K9/Gd+MsErpX3sMUtQVAPoT+kDlXSGRIz70IlTcR+/n00fQ5UXhsL9BpeOPwzaSNn8dVPW9hj0rP2ztvxBir4oC6aeTKwaVV0Dcgx+y8gdz7ERfMEJt0ykSdbpqEWlIQWOin3t6HddRFJ0c3o80YSaU/ky+pjpMsrmB+Ah2ZdR8VzBziWX4/ypTeZ8eJtqBtaEfra8Hu8CF4PMgm4aqykVNmIumuwz+nwxBBEUaTZZqXRrkJZEYuq9DHedbWgcqSQX5/KieQhTE5NIOAV6HHVEqc/RbHqKPUDCq5KeZZkby25PUeQrTlPzZE9jHTupmyanJVhtyOm1LK9pZUwSS4dbcUkxedSNhBMgmsT8jYbC1omIuojsUSNISw8kjXr05iRFIPX1sXJ77eRP/9mIhUK5ktM1JSIdJ+U8SnX8UTsKIyOVj7fE8UHQiqLL7SSnq1BkMIppUiIXyDZ6WXWCzu52nmYyaMz2BM5g87YWaQlSvjh2ieAf+0g2v9boK/8aDN+T4DGi52k5UVD8Sew+5lBor+/8Tc/ExoaisMxgNvvpt5pwSpAhktkZm4khy80E96zA1E9hFxhAwPTX2RKdhpTpl3DztOtWD9YjGnpqxA8uOt1YOAsEEAn1xGiDiFWN5jO6fEHONszwEcfvMrEoj+QkLifI6orEQUp1xj1MPEuPFYHkzZfQKoHwfgJTk8P1fUdOLsDOKIuIFR24rSbsDuTmH9yJhd9QUzbNYqu1gP0CloWqr0Emdbi+amdDmsAZ2QKWk8v8Y7P6VCm4z8YzuPPfYLK5kDRP0DYa08hmXs1hq9fhYVjsE+Q05cYjCAKiA6RL1I/ZqDLwH2bZtFU/TOH5kzCpFSwdNSHWEKygClcYpiJ0LOf0evX88Xj+zGEdfPxzi9+U87/Svj9SN7aMNjE4qU0BhwyNHmfsdMu8ODpFrTtIuFJGxBz59BXvI+uJgGV1IvotmLU9lKqVrMy7Woq5CMwBhtJ/3k3au2l/Egp0f46PHYdJ3t7+FEtsK/3BTbk7EWu68GtD0IzfQaq63O4tqmRqzSJXH3dV3T29LIH6Ojvh6qP8avCef+bAjLmxKMrupGubj1ZF/tZ6/6RtKAxVPXrAQ8vPjYVmTyUb78drHtjWbuP9pAGktuq2WH3EhDqKBvyJkiXoGk1Y+xfjxAzAlVPE6JCy/TkbFZ17UTX20L9HzVsyV/HHx+5iznPfMGU5fdxrNFGXftKBoY9wd7iTmzeLobkpNIr9qExxZFu6SBz/lIEnYIxX76CbWYWdSPHsVVcSZzeh8a5kPEXtvPOsMtwSztx+kS6jtXgH3DRcaqFlEIBROgo2Y3gcpCbKqHno5cIvfVW7tt+A0d7Kzl0+SFOtp9ix4492NUT2XA+nC/0b2J1KLiheoDSVieLJifgquvi4qFdJMyLReaxISoDGFtGMLNJii5ZhR8ZB8/U4lVmo9GcRGXux7NqFp8/+RzaYDlDbZ8yfaoEaccOdtrsJOlTCQ4cwus2ohg5h1CllipJGsftQRTkFNL77F1MPXaOnaVtrAsaxxWRrSw8uIfeWbczyrKcYRc3UyH2kDAzBqHeQmjBYN1AtVrGB0ovq1Xn6e0+hChVcu00EDt3E24ZhlOuZmeDlkURIsV1/YhdPSwoLIC4+H+b1DhRFOnrtlJe2kdoYSihwfrBA0OugqazEJzyN+fvbNjJqKhRGJVGBEHg2oTBCqVh/k5+ajyN6M5hTl4CWdIqXHYJ6rGPIDv/NUHKZmCwJ+7waD+Go83g7AGSfq3HL/M6kQ40sWv+tl/dR9vPmVnhMxI1ZT6x8UlE9JxkwsAOusLmw1MRWInl/fQPGDsqmHNf34/0rJ9LXdWMeOA2OrYcQB0Yzx+UsRjPrEN93Sw+DjTikfeAaSTv3v0MZ88bEIBVBW9j+b4Hu1vCpgkjcGg13Md77Jj2Is8+u46nH7gGb3MjJoWaL2ZPxxwbiSY+HVv+dXTLYETgJ5LaerloyKHbMYphYgtV8ja+8kRxeccpxvoqUMam4DNIcZ4+hjJ1CIH4eLz+ANIFSYzW5/9/nOQlUkAApR5RHsmNMgP6gR60ukbkS2bT81U2muxeLg59Ck2PnEnSHzCIPXyTeTtL2z+go9rLt+dkbB9exEeje4gJm8i16+YhNinpjj6Py/kz9yWtYmfOq8yNMCJr/oKziTmQMYn0vo2skCuYEDqW73p7uDkuhCckfu6LUUFLAElYNvmTY4kuDKHGHo5WZgS/SIw3i0MeDQ+P6mbF0z8iCTjYeKmEwCtZCNOfIqJ3G5E9ImajmqPGbALx4ynUX+SAPZ6p/iDc/nRUttN0HjvGD93P8UzBITRBRXiNZlTOTpYWhDNr52Yips7k/AsPkmjyISyWUu6ZxJBTz5A0YzJ0z6BPpqH61HnGdxSjnpZFcHArvsezaehajKL+ArZGFb3xCVwXpEfsV7C54mbUriaU954A6w0EnhlJQCrF4/PRd+YtLqbqwPAdn+/bx4RNm3CeOsyl9+RxxOfgXKeVsu4gIo7WMv7Q59yyeDkfKJKxR4ygSL0Nb3gnTS4Z1tLN9LVcZGXlKQT5XEZ1jeDkhFyEgJaSsBzE1Fr6+kU8tl6+aYcFH+1GYVRwq+QkP1Ym0pW9iG/qKmluNnG143sMU5agbBeQ2+4n4NDRdjESX0g7h32raGp5jObCOUiOnaNg548k3zQFzdgphF5zJU2vfk2/NJZ7NcM4btXypCgwKTmcqyem0NZmx364nRN1Dlg9gEqVwKbbTdjdw9ApDMQcb6bZ7SVYG+DsTUOxLu/n6+vvQOdV0Lf4Cq5avfJ3exz+kdh/oIBAwMaI+adxaCWkR/+J5FVGWPbJ352/tngtjygfYVTUKGwn2tHkhSLRyEkMC+fOn14Ez1IYcztaD7Q1m9i80caV995B54Af044HIGo4wflL4Y7Tv4755/IQ87OUSOwDuE9VIc8JQvrdDEZcto9TTQGGThqLUiHDZb2SoINrSc62Q8CD1NvDY5WTOW28jI8Sr+O26g95Zf5q+PJj5o29kuffWUOKtweHTsd7P1yPuPQT/Opgch8aDufvJzUuHpztrHdaOTchhdW7obBQj+SDfTS0m5j3hzyyXngO6alX2NGUwC/7LnDJqXMIF6q458F1RFi62edtwN+owPDVYWQ3JCNXymj2F5Lf8BbquKsJ6dvF6dYjZBtnYzu4iUjhFfxXlyPWHkEVNIclOgPKBOM/a8n/r/C7kbzLkMpXX1Yx44pjnKmw4JRIkVgl9JSdw3LzKFofeg9zzDiWuvoZVZBO1/u1dOmT0WjhtGwi+tb1ZCXn8ZNGj+iRIxZX45RFUJzbj1sjoy8sHsn+LpSxIfQ01pARsJKnqcGTvYJ2zwpuz9mBTwxwsXwTlDRDwEvn8bWEiT5o3EfXW2/SIn+O0W1bSLBvw//H84wpzYL8FSy/ZTR+bzCfXxrArMym0ZmPZ/vLpGUsps+2myrTCqa370JpL6anvp2PC5+jUDFAkCilfetzHJryDVd3bcCjzaDSH0tf3t3INLEYj76Cti+EyEeeQ7mjk+ItzxG+PQPFtlvZbe2hRQrWBfNIDSkkLrKAMxEn2BHo5pOdK2jLuZTQ/q0Ev/Q2iVIJkncnwoCUAdMGvPrn6BswMPTsh0gJIOmuQDLyVmSnDhF+4lMm+r1IZVJGjByJ8bZb6Fy3jsifmzj8zlG+39FMZIeNqJvXEBW8iWbnz4yOyOLt4+E8HjmedZJzHP7yXcJp54/DjEhiUhHVPTRVtVKssuFYmEtn7wCjYobj81rZ9/CbXEgr4KYrCukPCUcilxIWpOe15j/iw89nh30oe+RYrl2N2dFOomQXFdq3KXQ+id4egNCpJNYI9GtkfLZsFSt+/JwrF2bR5fbRUHIGx9lvuXTMBKYvXU3ne6W8XVXF6J5W3v7Ox6iQfjTR1ZiCItHFLoedO6CpHC69DPfOD4nCQ7d+CZkGHzVlToSFAu1zimguMaA81vx7PQr/cERGzKPDvBGbVKC1z01hsBff+VbaQvYgkcqJj7vy1wJ9AJsXbwZA9IvYj7ejiNGh0PwpaHvVRpAP5tyHJKxGUttEtM4B+ihMvjbkEqCrGEtlESFZ0X8/Gb+I8Nk8FHc2IHxUhNjfwhcfrUNmiMBXsBol8MUDdxIhJhGj6ObiinKyao6Sc+x+YvQFlGrrODS9kqHiZOa8VckHp+9jisTNL9f+kSqNHff6c8gBqR+clmb2x17Kd+ZjPOGzUDEwjYqwUZS9P5fAx+chKobo9peRfbMUhyOaHG8zN0dfw4IX83HXZrHmzcd55oHr0DjaaNaEkn/TdTT7Yxm2935C0FAecylqv5NEXwvyFj3Ba6Xon5cRlBhFoKmds2UdjNSeg3OdqItu/13X+B+JfyjJ//kVDkCrUmE83UFXeSeBSzKQ+GH03Ey6Pz0+eLy1mcJ2BSr9WTh3iO631oJUyvS1K/j2xzJ6LQOMGTmWsw2LOX5iJJL2DoQ7V6No+xi3NEBoajRTr82mfGsdkX4zgaoveSPoY5YW6KnMCiYt9DaGaSUsLj8HHQJeQcnW5Du42ncSy/HTuIcNx5ViIubc1yC6kTwdiggsv/lBHPo8HrrtRS4OlBDfe5J4+0ReTQpjetibeMN1SMLm4a5dj9JSiykgZbizkRMSCY3eQ1jcT/KAczNqk8D/w91fhsd1bfn66LuKUSqpxMxoyTLIJDM7ZogpzJwdhh1mdshJHAcccGKKHUPsxMxsybJlMTNLxVy17od09znndh+6/3Tv/b/vp1X1VNV6ao4xfs9cY445h9Z2gjGJIIm9nWuHTQRHA14dJ3O7WG+Rc1j5OLVTExl47Rle9rn4ckoRMS4nZ3usmHs8fDIkm0a1nrOT7iMlawIJsgxUfY30FmixhUbjCROpT8gi91gXoT4ZpImgNNCxO4yjsiaCFCEkxLyOQxmLV1zIiBEjIDMef9gA5YFkuu0lmLLPEqe4jmtaPVkyP0NUTXSTywTlNbLCxjJEWUjx4BYEk51+s5VAkxzhUh3OknYKE3LJmDSZq1WNKNUhJB68l5SUNop2NbN7ZQ5xkUc42/ICqUNTiSqJoE3sxHmfG/8ugYGjexCjfDQkj2ZoQwj6tGb61XoaeZ685mPo1G4uFozi7qLRjDUEs7uzn4tBcdz16TcER0RSP385hyNvIcGk4iOjgaGRUoqUb5BMODp1OrAUAgHw+6G6GEVwL6I8iJGTMuj9tgz1dRs4Jg8i2WyAZDAMmv5pdzT+R60Bs7Pf+PP1H7vo8iUSjohddNHqHSR04wJ0GfO40KBEHx7BLm8KlZ0Wvr99FJEPDwO77d9++2C/G5XEz4ToEITi99Bp5lM0LAh/vw2FTIRpr1P72xX6Tc0EecJITUvD4/EgcfQyd3gSSnUQPUFzkO97BkNyEWXeIgw2PVGRiWhVf8pLcnY+6e0jKA4OwyWKtCVmknuyl7NiBKMawpGGvMoz635EIQ0gefsz+mzN2Cv2wOVO1DcVEuk6y+XV7xESn0npt2txaYLZ5F+FW4zki+MfUa/NRj9ehrdKSvbtiwic+Zr44GiKM79mRMdFLO27Cfe1sP2hRViCTczr34X9swo+evVtUow+/DUS9s0bxBApo/Lmh3CrchFk51AIh2n77CxRo11IFDpyK++BG9ZCzMh/Gz+5Q2DO6GkEJYX9U/nMf89fKvL/+gjn9rqovdKO4ZcOROBFezcr4sMAMC++nrL8QuLqB7Bpg+kuiUei8OC+VYPDayfOM4rp06dRuW8Lqt2b2Td+Cj12HyO8bs4fOsuEKxD+wUpkogyvyYcQALkgR5TI8cl8OEzbSfUPp71Kj8/US/7URWhGKZDc9jRjugII4xei7q5nVtE4dMI1ZDOewa2agnlnKX7fJuzBAvsO7KV427cU1D9KICiO1swsRjtPIEo0hPjlDC3fit8v47v+rxmn+opnLj5Fm24Y0/wmVKp2Tte8wXjDPmTdxVRLFyOXthM6ah69Pj8RoR4idzzAi73VrCrMIv1EJe5p4dz8axD3/LiZTY8/TK7kMCfFEdztTkBRuY3Rns183z+MPc7n2DE8FaWgo39jFDVjIhg0TqB8isDw/Y20/z4J+5FXeOClTwluGWBZVAh2XQ6iKOL1BfB5fIjVB3AlJtNunIqy9DfS2+TkzTeSrghGXnAPvspv0GieY8lIObq8aO5t6MOonY5UuMDTntXcnp+GKVFBfMo7vO2NpOLcZc53XsEd8IJiBS5XB5L+XzAeq0ORHiBOaMYszWZ5wafceu4IJX1Krjw9C4mvl7iO5bSef5oEiRbrEDmCS4tblGNpPEfZ0hVo/UaqvCqSTB40NgiJkBMcEc6lLT8gzBhNQXAUlTUOthXK6VcK1EZ8jl1iIj46Ekufkx93KhkydyfZ/RMxuDX0Fg8nZlgnfrOHvjg1yfEG5C4Bs62DxEPP8cTN68gZH8Oqm67/K8Pi/zH/q9aA5vY2gso3ILceJfX5TvpMJ9FMmUSfy4Cs7RIShRLR2YlS9i8pnY1rQWGlKS4Ho7yTtpCFCD4XcQ0VqAdToMVJ6PQ4aLoIgwcgNJ2qsEu4tWMYoxiLx+PhVOUp5m+5n48Xfkn3eQcNop880+sEgjIYGl3P0JofECadxmar5lrDOu7smIxS3s8bJ+rpj7WygA5kCpjYdp7bd12i91AAqSGYC798z/OXP8ZlOk+j3YfCJuKRW+k9A6L4OodvLuKmIW1UKy9zwZxKmMeJyZODafO3NKXoWT1tCEx/i0s96eh07ejTLnDgqgd1Wh3tQQ3MDCxGJ6h5NuVVPr37Hb7InEWCw8/wZw4y/rCd8BMH2P6Mi3OuZGyBVkKemoDpqhxRcKI0SIge2E5zxTESJQoIywSlju2HdmG1VXHD6qf+K13i/4r/lHTN1TMNeEwizQtiGX5+EKfTx9qWHgKdXqKD5cTUXQWnhRiPC1FMRZD6cE+Ox2ktw2dSo5PLCR4zm+KVSxhWv4YhQ3LYuVuOxG1HPvtJrDYZod5cOpoGGOMro7i9h/2Oh1h+y0icf5xgTN95rG4d15jLxbNNhPgcSEQfmckyMLej9Q9CxyEsigjkl7cSKIiiL7GARzf+giEYWFdEQXgaICCJySNS5Wa6OZOSq+E0R0bT2jaNkJYE5EXt9NXHki6REme/DIIEUarEdOVrpCmN1Ix9F6mkC7Q7iEp7EInfDeZWJL/V0x0STlp5CyJSrI7b+fHOEK7fsokFH3zGntcmkh/aSJkvnYHr7iaw8zsyZLksktuxeRo5UhqLzn2QGIuFk9fuYHy0BplWTl1OIqqI2+jSC0QGK7l85Awn5cl8+sBotEoZ+0t68Hsms6AokvDeXkw1Sj7wHuWRXzdQon6Sp9WzcY9eznKHl3jLLjTnrcxQTEMuDQb1cJ5zXcB1XIV3fAbR0oOc0d9JvEOBzWzEYuugpLeR61Jiybj/HmRIEMxuMv1qtnoCyDQ6EtPH8JjfjPPwHuKnyjAHvYFvaiEH5TKGV53ApG2lInUM0ZWPEtzUREyYl8w6L2lTMsj9YxG13RZqV/5MTvunBPpMkDiCEK2S+N5KwtUy/IZ0anRRYEylrdtCn15CVesceuyZFGFEdLvg/CdEDZWzU3Iz85vdyPvc7AgJEDLnRVrPmUkZ9u83F/0z8d/P6gGUCgVbnl4IjRpU/XVMipzF1RMN2Aac6FuTqXLeTWG0nWfn/0t9d3Q3FquT4uO/MXVKHKODZPRcMtPp06OLjyQmJgvF0FjwRpAQtxhPQArOQdzqjTwofQqFQkG4KgFJx2NsPudmmKSTopoX0WBily0LlSKb617eBMB3W+/k7OUU1PgYkxBBIH84K4srsdtGItCLRv0zPaFSHliyGJluAqYLA/xQ/TkXY57BHeMi2nAG17H9qJKdOLJsVOvl2KRWAG7Ii8XReBkhwU1Y6Eg+jd3G59bTfLU2GElUDl5HL990FzFV+TFd1jx6Aw7ys+6l6swp/Lnj+Sq9E1+kB3e3hVcW3U1ZoIONu3djfOUkObrjvPick6bkH/EOlxN9rJJAeAJN0bdgDGqCXfdDTxW8bKbRXktPz97/ajf4v+KvF/nSjQz3NvBB8DLWuCxMmBzEpfxURp66ykeeQdZVnUNWU4qiYDaR6vP4gtrQzHuXcGE5otdDZd5QHAvvJGZoKpUJuQw7dRSh8xi3jrkHmfM47WhR6ILg5FmkOpENBePRB3owhJtoP9aN1beMsQNfovCHMdp6gR8mz8U8YMAtU2DZeA5Loo4WVxyCCDkSPaq+Sjh0P9K5ZXh8Hra8/yzU7kMik+EwRKEJTUCtdNLTUUpE+ngud7UjV/nR9zeir21HMjaKfvkHGC+9hChV8fPsXWgqjiO2f0FUbzsqmQqZu5P1a/5AJhe5PepOulJfI8jXiJDpB8cgR07nE+Xu5u+3TeOFV75nyeNbeOX61yColnBPKuv836PX1hAceR3iwOcYU6qRarsJccK9YX8QJ9UjFrRyUfcgitjplF09gDDEztnsENpCkpDK/qxt9iJFopTS4vazzSHw+LzbMO0+S5g1EsFkorpThlIlYbzhEl4V2Nyh6LtA9IPgbsYgKWHe5jNYzwZh9eVhPPIS9m4PS/1+XL01KNQSvkiIQB7QsGbZUJK6fmFx4Fsy+1qYER9GY/BWur0q1neLRNVkULV7JyNmr8ce0sCa3jeoERpxX/uM/KRVyKQZHBJFZlucpK19GrHvEpFI+OT3TTxj7sbntNFw4BR6/ST2543j8zAPt23dTFSIEfIex1SyjiURm7k87VdyemQcHaxG5ZKzQB3GDksOXxc3Ej4tj4RGC8pRcWhNpwlXVbDp+cq/PCT+Sv6/UwILFiwgkDUHr6Mer0xEB7gHm0A0Ep1voqv5Vpzlp2Hav3whZjjOpiYCAz0YbC5CZBYccinGBAPJefn/9ruiVInLbqPyjcUYH/gJZAoCXj9dH1yitrOP63OjyI4yMGdMJkc3aZFJNRQptqNQ/Hmcwpvn36SlIZIfFe9QFbqSyvxXcCq9lCYlMFfxM4tfv4yp20OcTkJm4VI6FGnEOyq4qJlEhr2CDudQJPYAlu9FfAlDGOIaS+rWDajz55AZWE5lagBZWjaeG65QtPAjbLIYQMAVm4VcUFNw7X3WVL3NZ8PeYExzO8sjWrhY60SpDWPB5V+QSGX0u1X8JmjYmhPPsGvtnFvch1mhY+leD0++oqGx8z6m3fQ8KlkwF0s72ZISj64kFpY+iP/EOwy2m+mqcKEbPRk4/l9g/f/f+OtF3tmHFCe3FyYib+5neIgO5dEX+Maq4JbQRQzzXKLfVk0TCxkmSpBoNNB+kREVVRQefJ+HBQHv0CI8iSqCB2rYN3kXe0/28JjlI9L85eiHNELIaNwNATwbNzG68gV+WLCaP6Zdx2MnTVj7PdSeLybmhTkM7t1ORl0N4sL5CH4XTmM7HXolesFDizYVW0CBofAHcPSRPDwWVbCSvEYdacVFfO55nCihH858iQgIt39DQn0lj4YHOCfup/ORv2NvLmV4oB2n3473kTrOtVXiDQRhy5+Dq+MbHPJ0zgRlMqz4LmYYKnC6UxG8diIGqkEfjSgbAH04vcA3QbksSczglo0L+XjpfGZu+4j1t9gJd/5IZ3A/8jIP0nFm9Eov3fk3El4WwNfUS+xcIz5LMxJLKzrHJARpNu3NTyE0w9KvFuB1eXnA7UIdHY3C4cETU8kNpZHUugJM7enhb9qn8HeZaWt0sH36QWoVSiwNRoJiCpBVVvDquodxOWoJyOORSHT4JH4++eZbLtv9DHz0AuMfmAQuN0FvfISgkNL/6GrmvPw7N/5wEYcQx7r3syjw+7l8phjJJDDIPMzMUtF/sQa3xUxLUypGQxMLhqVTlDMFISBQdmES8o7FvO3IxxOdgehIYFvS67zNt2j8vzNm4A1CporEKpMQG9SkxsHCn77k+jfeo+rQJdr6nNypnMg76tNkim4u15xgZ1uAoIhYRo9bwdKoaIpt15AKIrGLkrnaPki7283IFA/6hCWc3LCdBXkG1Dmz/mnzrP89S264+1+urv5PP/PVoX9fa/9jjRl47N+9X1xcjN/vRyKoaPMOw9heCmXb6O+ai98kxX2mi+jIUJQdvfx+0oSx/iADkdfRMPdvjI01QncZoR313D0qn5PO7QjeaCQixJdUczK0hokKNZ2+SM5+MhdB9GM7ex+taU/zS3Uz8fNHwKEfMBw9jT3SSOaDD2By2KH/A9Sii6r6MiRRE1DGOhDlSvxBakSryF02L9NzlvFy/zNMVsQzXO6hVxaGPH0WFVkKRv0+h4jIP9haPcCY8FBEVIR2WFgZ08eXunSeD9qGxOJAKU3l0tQSzgatZvb6a1T++j7vfrCBjMuH6UjOI2ZROtR9iZi3kFr8ZA9NJkiv/addz4H/DJEf+wid1k4+vPQm2dH309VhwecXGKa0U+XZzOCUpzlcqMUgl3JSMZoH119gXGklQuQGbJoA+uwMEiSX0TlbaI19iEEkPJNgQDvmI041XM/o4pexyR9Go+7FWVmBItyHRy8hSdrLkNCvkCYUUL18Gz6Jhcg51/GZQ8ZxrwG5xE9kdDWBkCwi5WZCbV0UFyqJS7wFzw+rqDO76HN5udpwCXOowPVtz/Gz4kXCsBEAIn98CJ5oQtiynDGBenZE+NBpbfRaTiINSWPf7lIKQ5tZXHIvatkIBOMcXB1bmF1+GFfOUiIqtiOoztDtHYHl6mVSlysRTF3gc3PTbCUV4nBafIl094k89+hzvPfDWuZbOjgr60A2bTRTP/uEy52/UfVbCQljumi581nkygj0x69yLW4NTdGfEtu9ld/rItDjZJVUjd/vo+Trp/BtvEDk9p0MvnwWp1rOsyva6TSJmG3JOKRyQnUChJro0+Yy6PPz7GdvEHDLEQURpcTFrlUa7PIAPv1i9nQMp3rQhNhbT5g8lKTIXJz6FsJnqxgx633UKiOJi4bwbXQXj//wGW8+tQq/IMOrDeO18PnUY2dPXzoL/SpGFqXja6mi1rOUwKQwND/citoQDoYJOIPUhHvC0YtKzodOJSohmMf3KTmjucCe/H6GRc9n+OA3iP0/cG19BNvyH2DW8VNkdtaxqdbD6fGT6Oj2ctJcgUql49E8D+p9m9HGLUQ2P463l+VzeNNl9h3pxd0q577Fmdwv8zPeE8/bt60kefoPLFjyz5Wb/4/4z+hytWDBAnbv3o1Y9gtieym+7+cjFfyEjZVhzb0XTZCA0CkSYJCs2i2k+zdSo+/CdwxadXOIVl3gJk08mkAX3vZkAm4bH6i9HOr9Gyr/NBZ/WMygvw8CIwlIJOhc7QSpvsUTGsx1XVm45Ok8pR/BYye3U1v8DYonn6TDsIaY6u/J6juPM3MCF76xUBk8D+VXKykZ7GVYVwuqY09wa9xoxs55gA5tH+OlrxLUa2NTrwm38kEmR47iRt+vUP8q5bKHGRIWTfWpKxwZB970uXhOC+iio8BWQohNyhm9jyflHtY+u4q1d9+IrvopvNmrsAz2IxcCjOzcRWPUMq6VNvDSSy+Rk5PzT7m57j8lJ//ikRcJaexmyfnVXMv4HMvIx3F1fUbMgJ3qA5UkRibRkhBCmlaF6Ic+bwinsj7AZT9BcIwa06Ac0QifbDrJ2zFBaN2h9F+uJ175FqYxV9m1q4jQUBvqR3OZ0/EsT0QeIxorlRMfo9qbAoEAXp0WdWEumvNV3BZl4FvRS9Tqdfh0UfTeB81jb6Ar8Gf+1elp4aG31mK0OxElHh6NLqAo5AKGOvDk30p57WEGraFM+fl7ROcE/Kb3OJu6hU26GXzXNpvJ0hMobJvIClVBejbtxQ043TJS3IcBOJgZQ3TFnegc1bD7z9zogOwIYYunIEgk6AJe1gpneWCvnFPKAB+k+Pg4NYSVlblseGwGMe9dxKO/jjaTFWlOJCOSW+gQdAS/MBtbpoG0T9bTf3Iv9p0pvJO9g+Lw86Q6+pFKAiSEOxH2/llC1xylIajLTtZ2DVPjK/FazXT0JiC94QLukVBtnsq6e8Yj+GS8deNnRA51E9bqRBQktORpyEkt5Ib9zzPpXCdyMZybjBO5ar2bJMNStIYGTMpQLH4fv+srSKhfw2c3TMcWnIEjazovPfECb27+hAt9RqwyObc/9zgZlm8I01/jh4g9pHWYuZS4EP2FjfjF6/AUTiMoJw13XTf4/RT1f82XzePJJRW6lbjKe+hc9RjN1mXIIj6hIm0E74QFc/ZKMWHVL3Pj8W4Mrh5kbjg97isCzVXIXG58HR0ASCQCXXU23F1yEvNCeSs3llHGfJoP1CH314HPhdwO06YOAUQ02hQEQfinnKn9Z+E0xeHsHKA67yAKbyfpijIGow6i81kIlyzBZLdR3NJBgqDEF5FHzslnsPpcdMhvoK2ohS+vqsns0DAyxMs7Th3y4Qvp7V+A374X7cM61mpnEaPIYMkLbyA7mkVWggnx9DEqjRHoY9OgWCTgsqGqakKbORy9ejZ1+hF0txjpMeYRaHcj7+hhXt0lmgwN1IwXaB3oYNZPK+mMV7I2pgFLRCFDq07TEWrgkagwTME3UBE1i8fdHswWHY9WSMkUG5F1GWjcu4WEm5ZTlvELmv5Ghn4xgverJDz66Zc8uPYr3njhQSyVr/LrD1FIEAm+dTZDPBcZ3m0mMGXKP9pc/1P+cpG/o6wR5fkk7r9YjH5sPUX6nQROVuCPyKbOXkB3ygjUbg96qwTnyTquyw7ieoOc370xXDd1LM5DX/Nh0lLGGWbwVMIl9I1KdMNsdLmlFJ8Lw2ydzog5SfQ0W8je/xkNeYX0VyZgXrMTf8g5Nr+zji63k01R8XR1tBJ/8lccE+zM2rSaJQlPcuOEKXy/9BLTzj/O6Lib8VdW8lvBg/Rtfo3ZT9wB8aH87jSAfiZ/r3oHT8Uf3Op4D4tXwlGVjURdI7K0W4ioj0AXaiNhag89FiPpHb2c75Tyc/QKnoo8To8qCtGxjAjfScw+AwlJCqL0BQxqp+E+tQ2NphPz5XoUqSNQB5tBEBgREJkd2k955BSeeDSdd//+LqVHG8idkYBUAoEt9bSnLsY+LY2X3H28bwwj2ZqEo6yGzEorsrsn4LtQiyJiFYGWL/CIbo46a1D9+D0EFTL87jxaP36OuSOX8qvHTawkQItDRmfZBLR5Ut5+8HZiJAp+umU0g5N76TdI6OxPIXdwO8kHfuPnsCcIO2tjlkbPb4Wd5Azfhk1lQfBYcHpz+OJ0J+WBM1w/cQkrGk38nXoY2I2n2cTeT55AuLwGS8ELrLrvST744CkUrgH8TivOiEdo0hh5duolAlIVtZs34Tx3BuWTH9JBAFeIip8ibmLUrc3kZI1FqZEjkQp0NPQjSlVkRf6dx/VybkiPpWL+9Uw8pWdAVUtVjINktZocSwdjZkzDN3UKMul/O3tl9MIreM7nk3VzLicGzEQr5cSOCTC48TLtR66w7r73sOjO4ImWkz30RuCf+xiEvxr1uNFcjUqhuaSDsUPyCc6dhcRaT2/rdr45V881i8ionGWc1Cwm/kgASUc+kqFLIKmXtPw0FocaaV/fRa1zkOWSx7mW8xayyl70XhWbj2Uy8Na9lL//KcKrWTSk3oMohOEdMh6d7U5mTj8GGg3p8jbcaWrk3b/jse3AHGdA4A6GzO1i4Pb3iYpfhCFER3L3VToVBpIjmhGrbVytyCYivB+n6KE9v5H7xDmUdA/wUbgBjdRAqqeC7JPQL6bhbpSgFHyUr7yRygk3E9FaQ+Lgz7RVjSdEmc0Xj9/MHa+9iz9RROceSX70Nep0I/lBrWF1TzcFXaX8WJLN7VMN/2iT/Yf85SI/XadGVjgcx46NHFr4NWNbtqJrPoA1YjiCUYo9REA0Bxh5pQxln49ZQ6LQ9VgRRD+DB18ksu8KzqgZfOd0cvOw8YxNusL6Hge7e2NYLLMxVKUktrKM/LwSGj7r4LeUxaQvf4hIyVqC9u+mwe0k2y8QqnITOHSaOoeONUfXUz3sd3xVbvD6EWUyevJuIuHECUDgs5B8fG4tK/suIKn4kLV3VhJbVs1TvQ+jH5PG1uAfebJ0FhHey9h6ndhTU1mU1I9t3TUCwU6OdKez2Chgb2+kT9eG0rqZhOGfIa8uQd3pIaNYJCRIpMOr5eugkZwZl8NJ2d2onKdou3Ifg5Nb+LzPybEZOvY37KaTQtLDCggJD+bVT55iz+df42/oZeoDV/A5MuhXqZD0C2z7cD3P7WkhpGoPpiMneTRGwmP57+BzGyibfxz/hyMZDFuL11tMvChy+NfD9CSYSFco8SdNpvz0FTRpWjZ88ihqjYIgJSz6sQzbxW30Dg6l35JCzfkGUhZE4+6/FYMsC+WocrTyPPb73cgqDzEw8CWh4e9ic2RT6NcxXd/Ibbo63hi6nBL3YwwZdogplzs5cXgxWmc3EvsT/P63dMT6fdg0CVycsgmvJZhX33ydov25KN0mpCEKls5awOiTh1HYO+i4+x5ARFv1Ox1tZ0lza+ifPJU+o4OYvMs0NG3l7pDtXKy2kHj+CFdCIbduLy+GfME1XThvBUfQWNuBC8jQqyiKCmV7YzchPetI7H2e9h4zzR4P25p6WNHwM4Y8BaqZN9D/cw9KMY3QxUZOHx9Ffs7avzpc/mkRAwEQYEx6BL12H+V+kdO1HfhRc33wMpal9/FKYQERmmtUngpCOVIOvlaKdSGoDSOJaCtn0cXjvJySQrr6F0L7q9iXnsbGt29G0GvpVPpQIqBwNGKXh/NNWwF35aTgQ8+noV+y9sw8WryxPJX3DDdEH2NozWlU+hQKGpuRii/SPeUirtDdtLe0k+rcQJVtFZ09y4iYdQ6p+AvYC7lY4uBJvsItKnldegmzKGP70Y/5Rh/DftcMnNf5IW8VshMDXOhT0VS2HoNaT0T6ZH5ZsQyvwsnd+82g8KJSCDz5wPc8+d5mJCMvMT0zhREdDuxVR6lwHGFs+1Zelt/+jzbbf8hfK/IBPxOaBriUlkP41xtoc4WhKSjEsqeZUv8hQlTvI9NKMCvVJHAN0TmAPXAz8R3nyby0gsqF6zmkHcFN8aH0XL6Cu78Lc+8eCi0unBlPkaj4g7j2XCLzipHJvTQvG8O24UWsbfmVvNDNXHnuF74vc2FKC+La+xvwOF0MhCTgkWiQSiWo60tQy9wUXr2EQi2nJiYWZ46Chf5q3vBryVICop+lmyZxZdSb3D9PzqpTKmYnj+c942m6vjuFp0MKE1OQihLmz1tEh1XAW5CMe+dspmZNYkzbWepD1zLE9DtCeDx4nqJQehbUOky2XB4wP8AamvF4pQQkIlHKu0k41c87CTdwrnMPSeZzeOLGUddfyBs3j+fZdb8iy4hEGhOMvO8YvTUmMgaP8WGPnNKpWSSMPYgo0fDHrG9J6dyGGBKB05eIxqlCIciRSgRSR6TQfXYQvddOr1TO7UIk1cWdBCPnnfefAKOXPSvCkNSe5qi/j6gbHqG/xUZh2YfIVP1oBQUDynTy84qICz3HJNEE9bHUq/KI0D6MOiBDE1IMWQIORwTRJf08UdRB42AndtMJnk2aSHfpGOI9R/887sI1AECfMRurTMHs0wv4dOIH3DNtIhG2Bu79+99Y9+0nJCYmk9zVTtaEUQT6XRibjoOik3bNU+h/XkTJ7NvI6TyNS9JC36kmVOe34Duyi+EP3wDKkbzWdRXF0ruobeonXOWhTa4nI+jPdpSeQIDesAdRzg/BZxUY7i5mwJDDqegFjBdbUSdGEn27AzF8KH6lHcl5ODXgp8cP8xcsQPP/z2kbMUBVTi4IAklbt/LQ5mYEQeTp29wohbE4BCOxYi/7tqxn9MgfkcZ/QVC3jSbPaMZwhm5fgFxZG6ZRQ7iv6QCzBlegbsvBL5PiNzv4YtVjXFAlYsGJzlJCmT+R1Z6zhERM5StrG4rufqTISJa3c0fbQXLKzhAAhJSn6G1sQ2ysZnBnLZ2v3UVB9WVojqJQt4XA9HmEM5a64C4koyYQnpZJ7bVzpPd0MyyiAVFiZmKPiVVDfuEP3yBFlPK7XcqUDC/y+Dz07Sbict7H54pjdoOdZl8vmCro9/UyYdFtbNu+EzEgEikqGKivx6tK4beE1SRV9LAgSsU8yXVs6/+IYSNjiI8Z+U+T2vtrRd7USJjLx8xWE+dN/ei0QXT0B3FP0kN4Az5a+/rQtLcyIjuTIsMqYi2VLBB/Zt+oBUz3vUreiLnkSeXQ2kp7sIYS/1HOaoOZefBnyiunkRu0EXXoCvb6lxIj7yQ7u5d3XA/hD53CtcwfCatzoDL5yX4km7OiiIjAb5ofQVhKWEwn1e/+hN8nUtsajmGIDrM+AovrLDOcLRyUqFj8vYe9RSC1daKPMSEG5Lzc2QCimn5fCuMm7MDlE+gvE4i1qxjQ9eGQtKKqtxMcGU+AAF3GECwaJ1d93YjNndSbpMz1X8PaAG1eCVH9MrwJao4U7WJYw3rMmkJi2zdjiAtiqNlBZ8hsjv+xmwVJazH6WlGbZaxcuZIff/ycnpZd1KQvwN0romyI5aELh3B2SmnZup2J80uZmJ5P4nU6+i3tNDe14vY76Q3dxCLNDVyseIDQ2ulkj/Swp70ZT6+ZX45/gFICG+9ehdSXAno5U7OH4vf7GTj8IUbbeVKMXqxn60iQ2mHp3ZxwzaNXEsTS0+OJkxnpDl+CzqviTKCHsVU70Gimgj4d/fmjtEw4QovZz+Qr76EjQG3SS6S1vkpv5PO01mk4PTCWNwaD0I3aySueFuYdGgLqUF7Om8lrlZd5vqaC1ybHklt6GzbFHNyBoTyVsIaxvTBRvZT8Fj2SjXpiroWivM7KuHefpebmKvZq46mVpbFiTCaRfhmRW9somR3FjZOiqcrOpQ+RVVWVwH3sPFMCdDLJcYYWZzuHw+ch8WWi+209edVvIbxsRoaKsZMvcKxjgPs/XsdNqdEsXLjwLw2dfyr6qvGNm06g34x5507m5s1GHXMBQRZALgoYY4KxStvwO91Uu9cwWhmOLrMYjneRPJhEctI+cEHg/DPoAiLz3FNptRQiW1OJsq2K29e9zqMPfsyy/Dquxvcyou0y8UILsuImJjhElLYwPKEPEnCd40XvKr6L6cXvdbI7s5EFg0oaZBbi+l+j2jaCgXgDsY1dCAJIpCEEb3uJZv0o9NY6bIFUpIO9CAL4K3+hRZKOdc7LzFeH0aWN4URbAg65HlW/hDjJRRjdwaBcZETxLWij7ybam4zLfpJQSSM3a1O5Fmzn53vT2bxYiVTiY9/4SxRFGhkVlENQxS46TVLuenwieR4lU5d/y8JFi/7RlgT+YpHv7HOzOFjCxCAdEckhzDgxgFBaj3PqMHwuH4LGh0sjx+noJdWyD7+QQgCBPn0Yp64GSO/fzGmzyGS1llifl0OFIm5RT9+4kwy/WMLBnhcZrzQQ6pDg8cUTOWko9VUvY/Wdouf4UpaOKIc0OFczhOThMVyqGaDWP5T9HW6GX1jDkPkDeCt1vGy2Uir5jUrPaFJixyErvsC2N29lycIHaPYYSVgqJ/mwjQu54zBmCxjO76G8PZVzk/5OY385J/xn+EScx56Laq4fGoTBW4EsJh9PzTkEjY8RNiMeayef20ayJ3U44y4dB7Wd9CIjgyWFNI3x41HZ8ceMwismUxXpQ2ufTFJkJweq47GaSzlZV8j0jAHeSR7Fww4HNRdsDK1bQnm0nZ5QD9MmNtA+GMUFRQKSvDSWqE8w4JDTMjhAQt4sbOc2ILe5iPv6AjvnzyPpUjeent/oLXNw00MK2oRB9uLj8wejCbn0GkiUMHcflGzEfuRDxtvq6Mq8mS5dIoo+HzpXGb4OGw3yBHQuO9x0AWVSCkabF7+zmaAeLz0lChSyEKRRpfT4DCB60ZuaSKxahzd3EV09KvrCHiak5i4K1E5S0h/nE1FgZK+HlbUPYNbqMTx8hZmfj0F6y2e89PTTvHasmfmrPVwXU8OIUCP71XJGDHpxOa/HGjlIePc2pDopYbLHuHL4A3rvX8O0slXMM8YiydvB4l2LWb5sDS6dguPTF2AJjiH8X2bzAGG+D+hrNkPKZNT7ixm99WM89/+dnuRCeqTDkLSZCI8zMGjzYnBJmZz25/ktcoWKwgmzSIn55z2P/v+G5blKrBYIhGQSZFTDklW4JBFEzslkVF0nAouYbGmkv+Mwh79oIOnqRaIfe4a3tKFstge4dUsbjn4zlpUPUtE5yNDYUCbU/4JteCEJNgXS4Do89h42P/Y447/bT2+rH1WonzRbFELBCiJdVmQ98VSFZfFUgZHdp28lx/MtblFAmH4fjpq9mHdc4/zElWRrrIRpjYzUy9E1XPizxBlIP/8WshA/BYXB7C8TcVy6Sn9OHS7jOHI6BwnpqaLuj4lkzvRwTatgVLCViIO/guhCrw4hPOF6PPZOvL497LQewD79F3Tm2UR2mRhdNp0tSxOZsz6ITv8wdjcGcMh2MM6YRMwdD9PaombEtBRGqzb9o0357/hLRd7ldKNWygmRyxAEga+TWzD6jRwYlcmhwzW0KEVu8WjZuruTp3QhlPqU3Dr3dkSJjJEuHcp+CyMm2jD+8SV9g+NYeuoE6lAzrdHnkEWsJMXdToO2BYV6HHsCAzxS7uXo6FJOfF2GxetkS0kGAyPdpJk9pKrUuEobGCg9ji5rNDXT1hLt/B6ZsIZ110uhV0GurB6CF4AIKmUzkpRkhEkapLYreNQOAh4lgseMOf4cYfXt9LlnMsILUwLlYHqLG4Y+woWoyfSpZCyof5h+RyONWTK63LsobLZwm38ST3UfpH/UfKqbsgjubEQ6K4NcRzlSy2e4GoNIcn7AmZw7aNK5UXjmMiP1AtnqG0m2P4fM1Y/qmYcJPP8WLY0dBLKHc7NUh6vrM7QEowwdpCBEy4b7n2HC6ToiTEcJuSLngtWLy6hHQEZGQxzXJBba3toAg1Zm1ldyrjGSRzZ9jlSv4RbDnRzjLE6Zh+ae18k6fxSpMgkQCGv8ldPX7ST6wlW8nkEUG4dRNOoh0qqkIEjgnky0nkaIyia29iAa1yCe4EjO+kpZd/F5vqrbS4N/kK3xb/NWcBbdocHstOQTobtKZ42NnrYdfKyewsi2bupDp9Kad4n24zeQlfwIXnkSb779I++8upI53/Zhes1OlVPGN4q/oU5cz6DHyTd1dnqH3smEnGTusn1MAzKapB5mmKsQ7Y2IZVsJU4UR2taNIzIJx4MvotvwHqkzXZy4WIMyOAKD9O9I9c3sa66jSjeauYoL5N5wHdeOVRE8cjJNbf2ExxnoNrlp6XOREFJDWdUX/LJtC4M2L7fesOx/Fxb/r8AVnscvK4P5qS4Kh9/NayEq/J0Xmb7oYVR/fx+5Xk10zx/4AkOxDy1iIDYFa3AityJDIgi0DNqRKDWMqHmVkW0nOdj0IgPWKGLlFRRkKTBeScbhCWUwdRCLwsuhIC8ZuTuRus1M9E3H7fEiyKJI91hZUZxAl+djzoa8j85ehnSnSGfuk4TJBLrrepgQ60cQ1YQf34TCbaMjdQRnclfQta8B3covkXlsWHe3giiQiJZvzyhpKFyIMjaa6I+2kBMXykhHG3Xt4aj9feicZYiqAqylzQRlZqGIf4wZ7T+w229D6lcjCHYCghynR6BVlcxj4iKmB51lWIgct9qM+Z5UgqNzEI4PwqxX/tGm/Hf8pSKfPHQ4X8Yb6T55HNnwAnwpHfiCU5Ar5biDDUR5nIg4GZYailWaRY1Fi6z2GMM0Ebzbf4Ful4pnpZH4vHauTDyL/oScAlkQDanzqUvyEr/pPInrTxN11ze8m/IwbbIhaFVSJiQU80hXEl9I9MyoUHDN9Amh3Z8TsH+MMSSYa6P1bHcM8GyyFo8AHpWKredmg1BBbMN7jDFaaQ8NIzQulGd+O8qWx2ejlJxF2fgrFmEAa4yK8M5JVF5OYrr0aZQaJd7oPOQ+kXEtJzkdPZ1zTgNSbgL/AeLKe5AKdnTCZqyRgxjyb2RsaBmyi29hPh1DuzATtdmBUzKULp2ORq0eUddCZbFIV0kH8YH1SG5dQFPXJpqqb0KjGcF3ez5kwzffU+epo1+4TG7sg2xVduKukBDXWk1b4vVE1H+CpC+cpQ8sxCYNRakJQhy6iFzLRdI8vQR6ImnNF8iSDuIX7aQ/9wZTMrL5PbsEVfMMMswOfFnz8IQMQ138MTK5nsVla6k2GJGXBQhNj8QU2A8WKUil8P0f0HgMovJxTX6QXVPfweP1Yz0ezWW7hPO+OhIVxVgDU5mrG8IBXQdXr5agU0xGsvk95IUqElcocHfF0Jr8KFaVD2ntB7QPnQ9iAJ3NwfOPpfLBG1UEbQhj9ZJxnLw4yKxJbqzmADPzLzDipZ047Ys4Nu9VXlC7GB+moC7/RbxZGhTyVu533ou9pQ51hJayfV8S8cCNdNrOMrx1LS32yVhsevJHZHFx/VuEyVLIvHoFm8tDZ3YCTeISIkJDALBIKxiSHkF5Sz8DvMneyi6y44L/w8PD/l9JUAzaF3YT9+U2zole5pd/xsjByxwRokl+/zHG3TMamRAgUl7LxdQpJB36mf6cGLwxqUSYGpkxNhZ9zWjCO29lEAVWJKTntSB0mTB53md44Ay9KiV9QRvIlzawTXU7JReWYx2SS091O4G235FodyP1+RAknyLBhCFoJb5HD9P14x041AnEpA2jt6cMb+UBGrsfo1frZmJyKxd7Mogu8ZIerqfcOYhxsJIl2b30dP2OqScLudeO0+0iKKIdx9SZ1JnMxPeEUlyRhJJkHpdO5idTKaF/1GAbUkfU0ARkHivLfpmCPPZV6oyp+CNfQRcIEKLYTGxqMkaPH7ng4tLve9Bd/xojy55CIo7+H4b0n2WD1F9eXVNeWcvthiTet3hI7L2OlNNtnA9cxmBWIfOJKCekENw+SGGfgzxCMfafRStRkxicgyBz4rroRbHiNELDHEJCFTTFvkVzyFB2HbvKvGHLCc55iBDVBR7ssTJJdgS+O8uPjkGk0jga/R5STU2MUDVQdTUe7ax1NJ5L5k4xGL8IhoAOmc9PZ/nvyKVFqIxZDA7sRmY5T7JCx/c/fMqKedfD1Oc4VwUmUydlJ1vY3GTkgbwBDEuDad63hszhpcj7GxCq38GvCccnq6Zo4CitYX3kSmZQFeFkuyqB/Kh9vGi8k3cHjlIkNUPGXIIGhmKrNeKXzUQ1UkKD205Ofy+mzVvpffQz+uYvwHr4DFGjhtN+5QSy1gBvPvsuj738MMc31iLtPsBMVQdC4Bp3CAI/9aTRYbdTGXMLp3pHoQ/pxi5Rs+bFAzgbBlkwRkOWP4mNAyJYJRgvawn/eROTVXpCxTAUUilWu5nxJUrkvmrQ9tKUeifMmUrceRuCfDrFzjgs8oUMV1WRdKERlz4F27Q5hLd9D43HaGuVELy/H9kMH/kP3UGQpRnP7JXMGQ1Cr45cswd3XwlvlD/PVTLpjH+YwilmxNhyZNJL7FmyAtwaVE6ReHkK8S8tpnduHM2tMTg16Twx/3rWHiph57efs22xhB/SnmXE5RuY2XCFK4YMvukX+VuQmbKqMi5dCCNe/AivKZ7u8cuIMDrxdlwhadwKevtuh5BkkofnIy/9nPv39TOufQeRcY8yesHtWLVD6Cv7nIuu63D6lVhCjShr+rFp1Gyu3sz1r5xHYnWhevJZxiaakKhu/TN4r24CSysL3j31V4fTfzm5y67j7qu1BMQsPmo7wz3PyaHjGtKLP2ILnc7J4Ey8ehU+bTZ6lxanzYmmtpLu0BSUEhuVWT/gEd08UXUDLXItGtL5MekOdiTcxs6gSJ7t7cAXUCEok8iUpuOrcdNrFtjZO4mx2TP5NDSMm/VPYQjMwi2LQlm+Fe2sFzn4TQXZ4W6GaPsJ6irHm3SBOE8Zp1rGok+qQWqOI1MIRlX9CclGI6/7EnlZcQq/rIEbM3+gPEFHytEPCTFs4Pe+SmKTpxIiFbDZDGTrXCSpBExOF365hvPprxPT8hlhXbs5maykOSmPxYd2ofDpwSfjfWkbA4nlBF34iaZHviS86zyCEID+xv9hLP93nb3+q/hLRd5vtRKRn8dvEsgJ1tG7sQK300+8uZ+z+hgGd7SQXr4Lx4R6RrojEJpi+Kw4h5Gj2hmh15MUvZ4uhRXJwBIkph8wFwxQH5pNQC7wrK6WISNv5NdjvSiNSTgzs+ntPk58fBX9F6XcFdFI1LQ5GM430ClOZP1tBSzWbqIoM4Uzqlnc1l/O2Q/OovW7uP/Gt5HJghHkSnbs2ckl7wySs0L5/chWDsqiiLj+MX59+En6S3ZyR9B+7gnNps91C/Hbp4NfCeINWGTBrEtYzRxJGyM6dgLQFhdMlOjknroi5s1vozKQxRL7VmQNTXj94VxLnE1y6WnMe0voG7MCe5WX5C07yDp7DDF6kJMDDeTWtdKalIRs93HGiHcjddTiaf2OgN3F6OgAj/XGkpH/OMlCF+1uD6lhp9k2eCM3RchJyA5FrqlCFPyEpLfzY7+EmOou3k200GgRyGp7mm7deIY6zaxf8D6FYQIl7V0cLL0fmddGbcZKNMXXaP+5hFH5Ag7VTKCNxsZaIpbMpypiPiN2/Y3D3VHkt5QhnnkfAKk+G50SIg7tQtPdjkQLzyTocAw40DWeRoycg0KQgaAmn2p2JEXi6kshcrCM0uoepO5qfNEZXHdoEuUmI267nKGmY+h/C8MXGYlrYQbfvHgL817cyZ7J9+O4upWD14LwxSfhfOoDjhWb2Pf7IFdytLjKSylbdAdDzedJEgrpOgCthbfSsauCUEMMV0t7GGITeS9IxUjxMqE+Ex1NKnoK5vFGZy9bNH0M7XmH0tA5jKKQVpOX3hYzT458kkuyOcS6fLSe3orBmAoKGTgHoeEI6ML/3eFh/+gZ3P8Js2dnoFBkoVareWNvOV+dbGLFhFiMChute//gt4spWB56ipvUaqR2KTNKnyBQK+PC1N8IQkO3UY80pZCEkB00K7vpjH6WII8Ff7kC62k5393+KWGOFzE7VEyTPsZ8l49TMjMrfyrl58Xt2GUPkR5Yyz1JSoLc4xja1sj6hHwmK11oWk7BsRP49DlY3O9gau8lLuxXdk8+SUCuJfveHeQvjyQ4PJnfPHvYeO4hho2/iKT6MJesd3IpZRyjHLPwKQ6hdrcSK7kDvzGRZdnTwWpjWnIFnYeOM39yAa29kwlbrCFE+RatQEdIDmLfMVQOOUaLA116CCue+JRwaRx+Vw/mzwSOv3WWCKeCbXFxyIKG89i01f/j4La3QWQUapWKeUVT0caF/0P8QfK//8j/Oc7SUtZ19rOvqx6rrQXvJDX9qzdxIDiNgFuPxOvH09JKh+kopyT7cGUNoWipjk5zAWn9PkZ1zyPaNpJap5aARE+1ZAhChxnFgZ1IPAZu+Xkvm0zV2PbtJ819leOZI7HrDAybsxJ31mwsVhGlTI5BEcpS6Tyktu/wB6R4JaCR92PvH+TpJ++i7M1HODVjCm7RR2NQFLEp2UgEHzNr9MQ88yrRPhsffbGG7GQn/cmTcMeNJNhVhVTwI5U5cLjlXAyO5ePEm2m0eOk3K/GqdYwtPYXcPMCX8g+JCvegDovmYWs4w1vqaJfZaTN7qR9yHa6EVC5kq7jglSL6RMTtd1MTIeKWhBDqsjEkRorg8yG4emgLz0LRGQYODxqlhO/GXiVR0YN9YBI1myvJcMSxZ1Uoy8cksPjBcczTlaPweokMDeOpMRHUtwZIKr6XrKankYg+oi3HCDeVoHlpFB9kxvF0VAQdQx9GfeseQk0ODIo2ivTbMA54SKCEBKOJuWleYsu2YSk7zUjFarKys+guq6O98Gk8PhWW7ScwX9lApkGP9ce3ufb+HvqSHLiCEvEqjVxMiaOlaRvWrFH06Y04NZHU6VZxIftTxKEPo1C4OdbxNT9rJWwdYiR2cRi5Y3/ljVvuB38AVf5DtEuSiZabePOdzWhSJoFMSfWsn4grCbBWGUSmpIez13rIktqIb5mDvLsU/+43EL0iwqAbEDFfaEJa0s/NvV4+azxH+Tgzo59di10rpd/q4tzYHJRVbXibr6J0PopLspFxC7JJzjLy8NGH+fuNftKPHGXpfa/gHP0iPq8f6o9CyyVskat4+cpVPo2MZPfu3ezevfvfeiv8M2OxtLN79262bFhH2tnnGK9y8KbRzUJdEj5ZGoazJYw+/SaH+2L4I/Ihflp5Fm9ENkXixzRHQHxtBaW9z/Je+RnKPX8jvsnNlLP1uII+pe7JP0jO7kdbN4k+l5JbTT4GQ6J4b8FD2OWhiOEJuFxqAqgRdDouRcpxBk7xuCSKE71dVMorEGXRKBWFHJP1szj6MRw9A/i9AggCYVMCeO1mOqxa7J2r8KBE3+RB1l3N33PegJIafE4vsd45DGm9E0HwYJeF4vXLQe9GjBpEFixFIvfh6t6IU3YCsyyUmiwt1aMWc0yYTHDrblLMG3AFRJz2GNwdFtqVcgwFWpb2fI/CasX9wy984Ur8HwdWFOG3PXDpApu3bGHX1u3/MH/4S2fy2nHj2NdnJlywMst1BnOJgDnRjTdGoMJj49bn8oiNnEHt8aEM1uayoXgtM5Y9QLcoEiS3IwZC0E35is07qznd3s+zhm6mCg5sCpEgBzwd7KJimA+PJ4gyZQReQU1z2BzyN8/jLc/z3C2J4fLodCCciBgdlpYWOjpldI4/iDVCTt7KN+hNCyGsZR3ybg2Kwz5mRIfRdrYbTYhAQOVgj2kXOQ/exsKPN1Aw6KV7+iQUHT0EsYOOsHEQWcQF5QqUShclF2/kgisKn0SK6Hb9ucofHM0w5XFyduznbH4D3W1WqscZkdtaSOusIcK0g6pVd7G6cx0lGXFsei6JhJIIika6yYi+ijDm3j+Ncu4xJH0VlIzYQmx0Bh3b11OT7SStWsMZWwhPllg5cv0EHL+34r8uFem/GiF3MQg/oW+vJiAbyW3JofS7Iwg19/Gu/24eFb7CJ1NztGuQ1fYzbCILadMeckljZfBsnrWD1PQTpeFp5LkqCVhTSAyXEaeVMvfKXSzLfQmNfDiXBwvoPhYg4+x21EH9CHEqOg35SPttRPX/hsTZSEvobPwpH1N49kb8KgnSqgCNmXoy3n4c74yFmJQqOqIUjO+PJrlxCBVTf+W1Ew8gD2hxSLVcHD6UFzLsfOU8iru5ma8/XsvSm25kvPwgS+55CYffx0GpnAyFlHFiCy5FPE0LwvEOKydqoxulvIuYN4poP7WZKH0HtTmrGNnhQ+H1kqu/nW51KoMGDf1aBQBVVgfTe1aRrJDzcXwtyUnLYfs2ymwuTsc8wvdhVej27gGPm4tRE1GFyBg+cQnkLkY8+WcfYGVO7l8ZUv/paDQpf178uIjl0lLaFNNQShIwJoYSOXMRPQXdTGr6mWRBwXbdcKJsWsSwIQh6NcPvvxl3pJrLy/rpFLTcqZUgEaAqToO+IgRfkB6f3ITMl8ONmjnItSq0irPETZPivhDPDTt6+Wn5fn6s/Ab6BlnlfA+Frwmn2sjIgJoL7oWkh2Ygw8FvcWX0if2odTo6KvbgTziJce4SvD4pFZ+fZOjATtJmtCCVaVhTNp7xZQ70FV34nmlD5srApU+FrM/w+iqQS9wEumupDP4btnm3Yu7ehzMqitjOT9iftQq1tQWPOpZpDTV8ldzK0c5OVhUt5p1vP+HJJ9/EJRlAMI7BKYuixxDK85MHeKT2eU7vmUfmtAcJEQSkagUsux5CQhEEAWlsyD/Mxn+pyAtSKXUT8/npi/foiclEqraTlP4kA24FOfEKjthERrT3MbrgCNu2PoTT5MLl8zEsa5CApOPP5hZlVbzqKMZq9NHsyOCn6Rlc98erfLfgdVydHYy5cp6cLDhSeZ4BSycZ+gR6QmYzRhVOurqJzojJWEK1BO1tR2no5nCbD92GOjzTJuNSHMQsu541faN4fIwK6ecezlcOEhbkIM+1k860fAYUOfRc+Ai1TMbCjZdRHnPwxav3cc2r56WGcYwYkBJmamP83vsxK2DqTY38cv1xYloPM9ZfTr3EwFDtjagEGWMvXqI8SQOIRHc7aE27lSxxNyPbdiDzVDGzrp7kRY9R1thB34UsJlyXAnVHIW0K3LIH52dj0OjDkCSlIBPkmOqknLIu4pGrrXxdUIYQJMV+9iSuzk46uj4nJeVvsO0WhICPligD3aF6RhkU+DP3UXbwN6abvPTOOI7jyH0svPwSQn8dq5JGUpwwn+cqPsDiMBJQJ+JXDaOsJ5MhBfHIxQDi0V8wapwEUBBV+Q6u7BVMSbZSUZmKouh9QmVvYq6pp1/5CYHqesKVZtoLFpN35QZkEU8iSgw4ZcHoPM0kBM8ieNPnSNZP54x0Pq4TgyQvv56P3Q1M7zuCPHsqlkAOTUNDCHw2k67QPMZnvsJdymruGaxGExTMhLs/wvjGZKbKwzh+QzhCWR/WoAR60vroFgQyNdlwz1GIGorfYyIurwh7PcyMDMWYKKf897OMDmhJG10IQKfdgcsvEqlWYsw3MsWgp0qSynCZFkaO4lptM0q/lLjn1uL/+ENkg4MgFXENev/F8QX0EyeSXVUJZ9bCD4vg5p3/NAtv/ytcXh2OI6+jue49BGs3j+fMZ2dLOd5mM0s6H0LnasGDht8cz7CyZD5+QcKFglMIbj9G2QHk3Wbe2ZQDPgdH5h0lzRBKzaTJqJK8qDwygvvHkzDQSKHLjjXKzfkReZSGTWLxmjvY8sTdrPqmjemjZATpfFwOPENxl5HZulZSdA7mygUu1V4gP7sDnWM4NQkR5CRPIsxeyjpnL9e3ZqHrOkq0vJxBTxqDuunYgt2ERgn4pryD29+PUv87F47/xvOKB9kf1Yne1oBZ/zjvhHoY39lLmniBJPVFpJGZfH15PXcHViH42yE0kdJaK6ohN9JFJBcuQ48ynENS+E01kmXZXlp83cwbPAz1x1G4vCj8Ns6XnmCaOQp/YSKKsLB/tHmBv3zHqw8c/YxvH0u/Qot0aB85go3ctCw21HYgd5s4+XUn3dnHuWVJOha/Ek91J2FKG4IYQY9TT8/uV0hbOgxrz3hCvBq+v/0ePtSKCHtvwWC3ssPvw2M0sOnWOxCLpsDB3wlW5hJQbiYgjiZeI6NDIkFmVFDQ9gb5fjtBEZH86pvAamU/n1iq+TQ+kceiC3GKHzDQvI5xE+5H2peB0xqET9WEJU3Dh4b57Gl/la8OvcfcN/dx30frWJjrY0X7l8gFLzV7QZRI0do7kPg8+G0gVcqI83dzMrWaONNQpL1ZxHQI+A/G4+2rwDl5L+SDMzgfUWNG4apjzYk0VuQX4rf34v1+ERLHILblZaitdjTTnmf0hY/oPuQhwuagoOMqT7eFkRNtpCdxCrWh0YzV7SEQ7aPl4npMAxfIUKUDl1C47SCX0h7l5eSm9VwvTWSYSsO1uipE6wAngm4ire8rEs5vQDViF8t6D9AlUfCe42525T7FdYqf6XXGE60ScBnS8KXnElDNR9q6H1NxETLtb3iUcQTpe7E3RxMIacYREsrI8BKU/SZk3lZkAROugBm3KovybWZWv3uQFImXgwE/QupMos+fYkjuaGQhoaxuP4g1UMCgUYrtdDJ7ZWew3/Qk6lowy/TUaJORR0zlySdH8dJ7z2F94yXmvPkD0s5mPq63o/UHkd1qR0wrZPLEMQB8+9QRUld206ifQLxSwjiZB5ermQLtvn9x2PkARGs1+AZdSBGYFB7MDz9dI1anYvWz0ZCUxKqkJFYB4qwShH/pnRpW3IZ18M/H79qKChwN1QyZPR9p7iKIGQ4u8z/Nwtv/ClEiRxSAoCiIyge3lUG7AYJAHrAA4B+ylFHmAWwVCo7rhyH1XUGuGUPJiA8Y0rgR+Yo8hsb0kX7yCjVlPSSNTGPcwEGuSIagHdyL67IZ98R7cWgqGFkWhFvWxhCxl/CV9/LDxy+xMvckYtocbOfXUCVdRrzaiTsgElAPEJvuwpk0jWOt8XhDbya94SWWD15lemwyFlsk+JcTkXsQR/oUOjxDyeu4jVsNIhsyJqF26zm320mPZDjb9E/QH/oMBrcPofRmphgSKbBW05X3JdbOo4R0X+PO6O9p7ZiDMV+L6tpvJC0t5FF9GEWuPfRGrWfdUzcgVSgZ668jWdZHDEqcAR37c9fgFSXMLr2HJkMzA9G3se+rfcx65BG0Mimh8v+0Vtr/R/y1d7e0wqV1qBPnk9D8Hd2qIAYuXEI5bQ2CX4HWOUDRtCOUlCpoGsjHnBhAUVhBmMlPT+hcwq5cpq+rgV2ndXxXvRe/TYJ8sJWX9h4izGUhpbODiynZfPD0vdzz9hsoaWfrEimXRu9jkT+TIuVBbuyr4rQkhpvCpdwf/y07O8vp6TdR+PyXVH9xH/fvW809ooBNHodVkLE2fDpjJRaqW18iII+gK/EOnGGTqRSbET/x8OLqe3n1xDryGrfTrZnLoDyBSLGDiKdfwKaR8rppEy+c/IMOpR1NbICLTXr8KVVci5lKoGYy0nADwcoa3IMGugZccPprTk0+QnKUlGBFJG/1PEiD5gA6iZa3tBqed/Qg3beCQNQwSoKz0RhHkNHyOmZHKuVBo3kzq5GQ3qucOjEIc5cRefgIeqUcbexqZk35BNEiopCH0dqZQbf3bUYo9hGerUD5KFRJZWi+2UWw0sWWgS95RdaLzx8g0VbK94lLsevO8bfyr4hua+NobA7HVL8yrKEdU9oernklRFz8hQx5J0b5u8h91UwyCggSNW1NJ7nnvvcp0yZwtnU/luN6vE0DNN6yjns8r/O2I5nCpFbULi/P2D6l/GAsOce+J04pIdATz3VnrvJrwyFOWYr4QRHP56KI9KCXxhUabnbUU9awi5b2diTVS5CO+pLXnnybeS9Oht0fMydoO0WRd/Jr1EQ+PiPjvr7N7JbFMG9MHDJpF2VfV+B/aCxHyi9z7YOtjL8rk+y8FdhEDRH/4ramS51Yttchjokkf0QIu/3Qbnb9m1s3N/3CoOl3Cgq++bf3MkbE/du16HHi6OvB73EjDY4jsOMeJP318EQV8B/3aP1nwag3oB12I+hjYf0U2np0BM/4FilexBGruKwdQpajGWmrlsulhfxt1P3kNStZOE+JZm44iXEZHLrYj9GpZPoIPxPVlzlTGaA2fDI+Uye2kFZCg1o4qGsj3y+itHvIlrooTR/O7L5yfhHbuGvd23z4lASbX8Z84wd4vNfjVqgIjbOjJhGx4RIjYp1U2LS4OhpQi3aMZhuavONc7o7nj9L1RAjl/E0i5T3ZOBbLTjO08g9a4yegl0UzadP39Bu9JM14FI8iArXYy4zBDkQE9mbn4vCPItHiJjI0A23SSDTld+MTJQSH/9knOHnJl/S1gtftpnnxdey5kEvGuGs0R43AWL2Ja4nziffLOTziOOGNJk4XFzMrWsX7V6qICA/nudQ/N9D9o57s/lKRb20Y5I/1pcze+ByBH1sojvk7qqlPENnXyIhbVmGbOZnw8asZ7XgLp2IigVYfigQJfoWbGo+fcOBxg5GGy6XI5XKuPf0wHSnjiC79M99JSgszbFUsmHQNwh5h6YbtTNk6iHjwEbzacDa8sIRadxDJ9jZSAk6apyzjymUN6oZrlD/zMm59Bq6wOPK7GwlSuNCLXo5cvIPGirupyv6aTMVhlm96i0OdNxBIG0pEmhN1ZwPaXjPvPv0Rq75YzqXAZKacX0ZPwkeY8fNwdzHVBbMQ0qTYjyQx2XuJwHkJ3SlxiIpaekMu0blyGAU1oxBjd3JMGklaxTPE2qq4Ipfh1mQwGCFhSpeaO4PyaZdO4j19OE+2/MCa/hnMUJtJnvwy1o2bEYEzLS0om68xKm8E2xVadrb0cmt6DCPTX0R0f8brN/5CWHIXao5R219Evj+NGuNZUF/BOO92dP1dCILACr+ZKFMziF505c9wJwKOtDtRyBu4TVXIysp1yIRm5H6wme5FN3watUOh53IHCo1ItE+FxPzn7j7LrJnsrn+Z78rG4xfGgvQCHcGxuHoqeEQ+lin6HMzjJBxq2kZ9fBUDriouhBgY7VchGorYvv8hZAgcl5gpIxq761625b7Ip8d3IRUl7GmZwXXptfRETcWpuAubTEq6vhDmPcSQP8axtv475rW4KYjwERCVOLqbEQPR3PTGSioaz1Iru0aaLIzghc8w2FjKdImcBpeda1f2Y5w5ncv93YTGaqlwXEW6v4OfxieRPWU2AA6Li7YriQSks6EAvAERuURg94Vu/AFYPCaSA7Yg1kcWclauoN7UzLu+LtZMeZp/zcL+r3q0/lNgSKJ77WcMrBvE/eYrDJ7tZELqcTTWKsqSH2Rd8RXqFDb+/v79fNSjIczhogqRGH0lDlFJfqiOxIoPwTuAQhSRt/7AYNSdtEelU9+nY+mjw0lQ51LxUz8SQYJnuQ0s3eg8LjZfH8L8TR6UvaXY0xZgsBdxvqee+uUPM6TzGkMb6vmpbAzWEg0zs7fx27KbkLq1LKgoJaRqJ+bW1YRo9MwJ+5Z8vYXadC0NjSrsobcxvO4QjUNmMTBrOdHdOwgIDnpD59LuiaEuOB1dWDiizUlq8++EWFs4MPFnQvsuEAL0iXoODQhMGCFyrMfEmy4X8Q4bFm04TpeCqqZxZHS+SZTpDMsbb8LhaEU8uxbL3S+yJjeIDtVx7CVqnrr3rn8b5n/Uk91fKvKDEeG0r55O16Ev6UpdiV0Sw9VmO4nNNpwv/kB77ackal3EXpdOg+0khzsjeQQ1UpysefIh3rCJqIL1XLnBgjzghxQ9Ed1r8TICtztAlWcVOk8TadetpaOxn+1vz6ct9RYO+fRsvn8Zj7z4A0GmcnYtElHIlNwcW8DdF6zo8jXI921DXznIN/1+3pp1PxopBGu/J/P1RgKydxm35QCDitFMKNQwqeRXJo4voseZxV1V6aRmDsW8/iV+eHgh26+r5uclp0huPsGv7l/4m06FjONoO8cikbmwBVxo0RHutNE2sIC4qou0TiukM8KFT7UL8FM1vJB6bwSXi/sY5R2kS5Ci9W8AT4Dz0fPZGhTG78GT+L70NMGdJ/G6HEgkAnsrTexLS2ansQ59XDfpQWpi1H8uGpq7XPidYBgTQWz0IJ1Rs0hTh2JpP0DgRDw1843oM8ci9vXhQcmU2jMQ8NI7ZhHh53YiIqKu+xpBNQ4QUAUGEABBF4PM7wBEYoxufjb9DZWzkolhH2LO/hplTAiagxp2yOzMnnuOruN1KIYMQVW0hGERdkw1NpSRSloyhnLGPIIpX3fi8zaTMtWMxGtC2vAufqEXmzqFOy5f4NVVlRgsoWy1v86puI/R1ZQztvYTmle8gMJ6FQKH+LX2OtSycj567m5iF95MRW0EtvwUPjJF02d18XWCgeYv3sL68ybib3iJzugEPOoq3MqvyZl0iBsvNBPxyYv09raiU81jLFI+TpzMz6ooRha7SRdbCXL3wKG3Uc14E4mgJUGVzOXDB9n14zeMufthQg1ZuL1/trrTVJlxx0v4/mI3kVY7qyK+I2RE3l8ZWn85K1aswOFwotH8ecSDr7UVfD6yxw7hQuRJHin7kt0tnXxQe5UJw41MS4WxQQJqnUDT9t8Zc2UVYvJEDrhGUJkwDn3SdLS1FznSEc+U/AC+5u+5GqRAo26j2BtKo1PJmNnbCApZQpCun4wqFwGkuIZ8hyPsbe79/igf3J+KX0jEIo9Hbb1AaqsVr1eBXxNANPs5XT2M5e430TksuJ6uxLnhCo3u8eAGibqHaLuI1x7NKf/H5GobiKrZRjybqR7zMEneeCQNLQSCLNzj3U9h8AImHBzFXM19hGna6A2+g7H11ag1pUikcqJFE/1TJ/CTIYXglj7uDfKzW6ciMmDm/gILvugO/jhXwNywULwTLxKoaCddUcmX9Vv4++UWfC8Mwx7wYff5MCjk/1Bb/6Uin6fxcZuynY1R9xLZcxHUoJQJuKVe+kL0DCl6lIG2PsoaCog3/cITw6tw9Ixh2dsnkMdE8Oujj6A0N0LPp4j0Ih6/l4Bcw5XIFPr2tBPyyDhkA6fodqrRyGWISFBcKmYyaiY8dweaMxk89PMqbton8MU3+zjYY8MW5WWb9QzC6BnY3/+Ke3t8dCdpSM52cH7dXbzsWsjOuyby47VH0StssGIj8hPv4d/7EJLCPdyQHI4nJpbXEj+i983XmHJ2KPulc7AGZXCfMobL+fMxagKMuyoHRM7FPk1GZT3B9gZk0nQkpkHGnn+NQ+Nuo8v/BWESCTFdu/EpLjDfkoLBZyLz0pfIOrYQ6ndRkB3NWN8U3qjaTXb4UH5b/C4XlKEEb7+FsElhmB1ywq55kaROYJiul4rKp0kesQW1ToEgE1BnhtHn0aPoduIzWrhqyCfCqyfOr2Rrt4dNGZEY3SGIgTYEBExmOargTAIuL+3+CLJdp7G2V3E2PAZvrZLJmSvptvnpdMWQL/GwOr8JHPtwpkzhcmIcTkGPMvIwoWmfYnENI1tzFiHCjd/Xwuv6TPYlXqLAforbFL2cCEog36Gg4M110LcT/7m1SP2NSIBeTTrRRd0MspSQrl8BEatUT9iPXwDQpVTTc2E4aT3LuG/cjfge9fLEu/fziFiJuOpZkCn4myjirSlhaHoIF8UdxN9opkbZSdimt3AkDKdjpoDV7Sc9Joy0+XMIT3MhCwwilfk5HZDQLdVQFvUREc4bkcllEPAheTeRsQSgaBttLY3onDZkNdcYf+u4f/P7G28dTkGzBRBw9VtAFKiyltHsqGNW5OK/MsT+Mhoryumd9w4fXD8UgJi33yJ2/Dgunu0myR/HktSX+eLwBh6Y0482PZ2ALAppxzfYOqKItfwCCnC09nHv2Ll81XKJxtTlaE0LGWK5Qk/qSEbKj/Kw6EXCOGqswWgiQnB7n2KM7We6jCp2tGYxQXWYcGc5ax98ljvXv8293xzl2VX3U9+SxILaS+jDLVia4rgppYvdRdNYdLEK+sbgVVTg9Zp4w/c80zODwXYRp9eAKJWQbG3CIj9BatshpEgIKLOJCtZi148lqOEs8W370UeF0DWwj56031FLEhDSZhDWEIPgE/l7/FyWx84m59CTzHBdZHpvKOHuAI8ecCKq1Dj7EmlNb6S9PIeWwRg6w5tRigLuvFTElg1cV3yVQHY+MYWvcj7JhcMXwKAAx5UePM1WDAtS/8tt/ddW14Qmc6zEhJ3v6YpLIHiyjFydkkZ3LAGJgr6q38Ewkq6FRcRdvIwwdim3LZqLIjKHbX/8wcXtuxkpiohSJaJf5ITlTiZlppItVeKLfx9dXz3S1j9TN+6gR/HIJxIxUAeY6bgUTuhTw/lp+AZuePoJHli1mrqH7qU8biPu7nzEDCVdHy5nqHQMfl0ivVe/ZNeJfDomgk2Q0ajM4KOqMNbsOkK//iZk6Qamyj04/E6+OHAJMW0oVTObuPNnM735j3AwOI+SZgN/Cy/FYguhSVlMXMevqCJz8CGj1hRJ5tR9iKY+fBV1/FCczrKiVDwSKZMurebemFfpj9WwPdcP7afAbISEkajMA2xy7UDhPoyo15J0x/eEJafjcXsYa/bxWNMRUGVD2TXU9TJyhDEIIxV89eAyEL10WWwUtf+Gp9FEg99O/LgJXI7qQt8pJ1dvxK+SYbcFkCDiUxqQSQppTVxEboYfQ1814rFz2MNSIKKNseHjaRlsp7RDx3DaCQrIQSrF4e0i7GoJ3ftvxB7pZVeEilcDcgadWWSrDuBRSFFaK4hlJXCJZP1wAqYstl17jA+ztlHxdT9VMb08IRFJ+HMyjMF1CZ2zGbG7HeH2Q1gHrOhOf8vAgqkMK/SgtP+GqLtGX0sIV/Y1M3esC5VUwzvbz/Bgwa34+koY/sHbyPt66bl3MvL49XTHaumJkmEOryLMfwOvdD/Ai79+x/UPPERg3zsIp0209d9M37RxPD1wjbCxcyhX7yEQr4X1owgU/Q3R3kenRYYkNYmxM2biUowkNiP2f/D7vZd6UchAX2ciOlFF2oFCnHFvoc6Zxj8r9oFebhmbRFFaGI2XztBx5TLxKRmkJUfwR0s/EcqRfB3axhxjNGnOWlZbIphpGEL0yhUEGt4BN/yhvpPbq2vpTBtH6qAUwxerCfgD1BsyyC2S875YwAv1n5IlBmhqi+Y6lZ/XXEnc39LHuNA+zueuYk5tMeeaqom/5UUG1ixjlO8X3BOf4F3NMG7r7aQgrJot2Xcwu/cXiB3A33YKadZqerp/Z8nkWNrapERXmHC4glHIHXSpRhBtbKBLMoVAlJ5MRwTBrQIbInK4/cbxSE+t4XT0UIovrUcpiuj8TdgyYrB7D9CoyKd6sJ+yxKfIy19FbmCA5zwV3N9jZun+DYSrNFwODSO41cfHYSE8KHhoTh6FztWOz9tKdepkknJi0cXoOPxRCZFJTVSHvkm/7Q70qizCY0b8Q2z9l26GAhjs6kHbUMxCXRabylsZd6mGydcOsPDqTrRaLXq1jqxjHRhcIyAqD5dtkG1PTwbg83ofnvZXOOpZQUPmO4RNmodHYsXpukZQnBtp43/bNl7TUYHy8nIEtlMnc3MtwcHRb0sRxSg2PL0GQe/m1m+/wq2wU3ahmF7tcGTk4Tu2kt9/qeWSYTUabTA/SqToRBk1HYk8MElPcFI7XSm3UJwxj+v0Fh4xXyFSaWfP5S+I9VpQCDpirqzleF8LD9QJqHamkXvNTnzbHqR+FwU9L+GM+51rVg1ms4szHoFtcfOYe8lH4kAdAGcKv2ZRuo+7g/Zic9YhSgBLO6Klh2L9XKQz3+Vs1BPURmajiYrkjbNn8IaaOBXbQd34+YiCwKHBdFxR6ahSJuKsNyH1SpEIAuvbF/FcSDFBKR1MMNXgbimh3uUiVRrCjEA9H1f6iBVF6tlOv3ECCVWvkFB7H7a9jxI49iaCxkjYzT/iij9ITyCNW/3jec43lAFRRp0Q4EDCZbrbVfS0xhAbAoUuP59HNRFrLaIjyckrKS+S6fmBp/z3MtI3jW3Br5DuCpBW8RPfNw5D6F6DGOigL6Saw3odICB5rpv0kd+TVHQQieYuOHMQXf5ExvRvoneUk6HGe/EEhRHRc5nkhF5uza4h2DPAordep9fvpk7s4Nc2H/bIOBTBfsyDw5HaPHilAlddfpZO+Zi0+GTWx79GrPDnIph/5c/01oQgDdKTO2cRpySV7LXtZHhKEB7RT8DcQcfxfVxO/pCLBR/S7gqC9naiUmLQharw+wOUnamjo6MDQQABgbJj7Rzc2IQw8lY06XNJ1PzXz9r+T0kuGMFLnfdj3Ps4MQdvQgh40GXnEJIUwfedL5ARsot3HoknbkQfBboxFPcH4TopwfzcvTQbx9AVO5eY9DHMjg7l1+p+fpTZ6LjxZjqSxtHeEUJ3Twx5Mel0CCH8oStkvPVNjsXGMjUnjYPZU3EH+xhjKUWQSXB5eohsqSfYb+KWH46TYqrHM+ih1vA79davmPzsFOQXuwj01CD1O5D0pxJy+ShCaxeWOhFVz3GM8iZ0/kGigpYQNOROjqREsbv9CBdqf+fvnW4+Pd/NH0caEZtO4Dv9ObExn4L0bvZFTOIs+7G3PkJ80xTe6ghmwr7DHBvIYEebwNSaAfyBAD1WG7+sXoGlxcylATXPREYSkmZkwKikOG0IAwE1Mo+O88a7uLJNhV4iI6HpWVQOG0mtX5AgOY1imBH4bwuwCxYsYMWKFf/ptv7LRf6lRc/xzPLnUcoU3OsSuSfUgmnuCs5FTiBzxmIkwRJOW86y09vD9atXYI3VcbuvhA9+ms26uybRo4gkIMjor62i8lANZ5svM1hRhiCAiPhv98nTHcAmj6Hf6WXQMApXfD63j9Ri3rMBSe0xvn9xOQFfF++skRD28C2YBjLRtdZy1LYIiUqGRyYhYZSBc+FGAgQYkZVNhtb256BYatCaZRRcOkvEkJlk9HyHbEwk1phHQKJDkBj4+sob/BJvpS7qEkpRQFAWIEiViAONJHaXsjSlBXfrVkrcQXyvn0tw8n2Ipl5EMYC7pYq8fflEDijYlKCj05ANQ5ZToUpF4ulnQ+fX1EyYx5ncuQT/+AuXQ2zkLM4hvktOZ4PA7qZoqhsFSk16mjRJKOJ1LB3+JFKHnclXYXHO69RGz8JwsZI2t5L0MZOITLRTk/w+qpE7CJF38szOZ4gMFNGpXYHOacGvjMEn1+PNWYbs41yy6z7BYkjj76mphAQ8aMwV9KaUMk0IIWr8ROrnbUWXH8Z4/Qqye46RYnIiUUQTPSLAJJWTiV0BdHvWEiNcYUpvB3s99/FxzL38LfMssTlruS+nnbSRH/DdDRV4pQpAIBIFVzweenuOI/70A77g60kJn8qtnQLbLmuoUUXhkUeheOgBtk2cQV7tNSJFE4MXm7jaLmHD1HtJmmsh1mslsriL6tYaNh5qRq1VkFkYT238KMwLJtHdOsgWRxXn17xNzJtvolCpOR7UQLgskmMfXmblZ6dJdW+kPXg1rm4zET0D5NWeR9yzm2xpCzFpBnpbTFh7PfgcMDNLSfCVbeRP8HDDK6Nh7gcQHPsfB8g/CRKpDDpLoWwjSncfo+VHkQdH4jpaxvqERzhqT4SQfMJ8adQcbObwsXY8lyvxSOOxaKbhT8tCJbNhtXh4P7WBVEcX8XUmdDMNFEyFUy4ngx27qMkZRVtRLEqJE4OtGrtSj8nuJdkbIGJA5O4BA6IikTVhFjY+8A79QUXc9OtuPKFH2OG6isILmjAPUlcw0t4e/Lnv8WpYAmtDbqQ8/XrE2dn4lDI8MnCEz0QQBaRHv8a4TcdieTr+zGkoRBPjFY0kyYPpiFzOUPdaxORuYkYbkPYsRlr5OF5Ril8ikNH5JU5pKeEuFRGmNLJk/Yz6fB06nQ6bXEXSKCOjEn/CVb0Bb+slgkwOUmrM7FLlMTPnMeSv34jixGYwH6O3N4P0WgnafgvnjZl82/IR8OcC7H/lrui/XOQDYoAAUFlxFJWo5g6lg/qaG4i1t6DZv5vmS4OEmRP54489CK3F/P2uLEY315EuSeCd4wc44r2PbOcwRni+I2bKVEbJM4lSDeWM5XFqol6FcffiD8+k3D6NPlsk9TMeJWToOXyKZ3lNfJ6e9jpOa8dy0Z/Ot0veQ2KFu27/hhmO7ykYlkOE4Sq1Q/0MDXzB8JobcAkCfmkAs0KBWHGGrrPj8A8kM9S8j1m5VlIquqnUrybVL6UxyAAICLoJlBTEkBFv54quj3b3CQKOEwih6Qg+N1ZLEp3iHuQSL6M6dUzbu5mWcBlTrj5OwcaVHCALEEBzA6t+/Y4v2gZYOwDBjm6Gn3mHOza9TUzbSQiA+9dDaAU50dVN5D3yAA1WO/HFa5nU+RpjOu4iLS+SlPRUCt6fh0wucH99ArGWdjSOKBJfXsYtaQ6CDSFcHDsFr8xGhO0sW+4Lo8tlZ9AtY3v7eK7GraZs7Iscm/Ykp2suM+jNJrLGgczmJ3BlM38f7cU37AIqVQKHrNG8W2XA6XUhdjcg+N0Iopftea8QUZfKvDNqvovqZWqKSN7IIeh7jBiDQ5ktBPOsdBMSCeSHj8V05mnii3eTGaxBLpHQ4drCmfPzcIsi9pBsfigYy+7pL5LUco6Y0y0seeddxEMOPDIr/tIfcF/4BHnQcBTmds4NyhmJhedKqunse4/6jFkMdh0iVuni1AvTweWn95syJA4ffRYPjVe6SGwYyWBjAkvf3wPAvqX7mBezCIfFzbT4UFKCfOTPjqdHpcAUpOWu5mpKZB0wciQA7VoJmjHRJDhOoGzch0QmI6soneAwLY233kbVh/dyrfwJRI+PgM31PwuXfxhqtZqFJZNYXTEFXuhjX85XlJ+rB7sTWVeAXXWfcLXDRNVOgZoOO/0+P77zW2m7Vo3sjY/QNg0ScMlRa4JIUdSzUNZC4PJRdIeaaKo4yVo2c95ZS3cgnJntVmwFd6Jf9xUZjb+yqqcSp1zO1rThHLUEscmmYK9FiVKQsPn2W3F53cyIeJAHFT/TZfwV6YRHMLtS8U98BG/dJ/wcFES7diiKRivBzdVIEpJxoqJXUcOOoJMoHAeZrP+CRGkFxoyJPJFYxyOTkkjx9qFSRrAr7B1OGcZTEjKWmaPLGZvcSrp2EZEhdyIgUtZcgMElMkZrZ/m6NcSqRF5/4m20LY8TduJLdOpuAsP2UNYcRZi7gh5rHxZBJKPThSVsJgFAv/UHPCeVuC3rqc16ivSgsQzRDfsP7fCvs/r/rJn9X16lfzi9mfJbP0Xd3oXrjek01NfjUfYxPFqOoHUzvG89FSl9tG7tJ/upzZw4voNRBj95uU7qSo4S4lkAyAEJRa3LqI+5hTC3lRxZDPbmNIRxYcg0CeT2/B3S56CPzqalPIhJpt0c0mhJLbqIOjSdxOZ0rP44vhj/IYt+e4Ab3t3KlqetzOg9RVbLpzhHDEWbXcQI+zcQCJAXfpb9YavAk04gupHggQBShxPf57fiaPFy7pNbOBwWAqEGvEOTiS8/R3NiBA/UbkSG/88/7zZRP7cMVd3PiGTS5eolc2o0vq0leOIC7E7fwdjTd/Fc192cmH2ICWfuQ+vpoj9Ki0buJLr5FwQxgCBAvK+BUaZCDM5msvxGlM6x+IUDdJv82JKfZZrrNSQD9Xham3C73Xz563EEsYeugRYU5QPI2oJoyojk8LFsBqN/4saICOJ4nPuTkvkgWUVIyLPM3vAx+265gS0nO1iQdoq4Yx9zMudOKhzhjNZpyI3ooyvuZgKBs5g9A1h9Ktxh44gJKUclWOjRZ7Df+yaTLJuwG9T0unLxJliIOfAhulGzoEGg0emnL8RI7YRKluy+Qod6LL1JS3HXdRJauJRkRwtgQNJ8GonPijx9Bh0KJT6JDLkg8Mewp3gpsoP9R0SCu60kmS/S3p3OFe988rQSJOpoRibXUy8vYuDku2jUSiKDv8CVOot7krIYf6WRddkJuFssTKo1cXFhOnnTUhH8Iu++v5Wixt84urEHafznDC34jvs/nwrAlCPHmHjFzb1yNyHqIBYMC2WHWMTTp2rYNDaNqyY7AAU9V3C3mghuyabW4MYQ4cZbWkrPeCvebpHwQBEGx1CUo1P+6lD7f8S/lvPNnz+Xju49pEVNor/Rh8lSTpNmJPuWHmH34WMkqqQYDNB4Uz41N+1HCEDUmie5JyiLBq2D51rr+V2chlymIvX1s5w/FMlAfQXrE+aSr3LSXF+BLioC44X30EyPpMoaQ7TOTYk+B0VSAocnnSJF2o+1KYWACDZzExGuXr547kHeffANEATahVoy5G/jCzmHZdnv7G+poqNPBDEAYiSD+pUU1M8CW4AomZ/EpCGkBPUhaypDk5HEgOp6YsxXERQCoVE+9No8YnbMxjd6NR6PG4VzEItUg85molYWT68vlW2tPsbaz1NuD+PI/SlskHdQOv8QU7b0o6gMIBFfp5AnSC+10pN1D3eX5mNNiKV39mLKLTFknr+ExhBDSHo5McZ+3q9zUuSOYXPILprFYB4fOwGZQvrv6uX/M8or/1KRdzqd/PZbEyt+/hTdHxfxNx2g7usN+B5+BeGu6fhPryE6K5Kb3zyDVIwg5ZqLE5Jclu76ENPDx7kh7BfM0SVE//oBEgEaQvKYEjOON1o3sEJzGN2y1RCuwXfyA6QCUPc7fYevQy0mEZCuZmzNGlROJ2eDFAQVpCDb04FqipJVDSlsKSnF7hlE4g+iNkFCaNcuJMpx/Cyk4JCpiVnyKaLKy8e/niNU5qOCZQRsbpwP7EXSJiPy2HAmBz/C5c5anGFP0T1xLHOOPIYXkbK02xmMmcKUKCXhP09ALji5nPQUIJB6qZjxE4dTcmAy9usMuCQaTubcwdTzK3EJQQQBH9S9iwLw+NJpC36IkMHdhDd9z/GZej7Z/APhCjkjJIN4ohPIGRJBf7KX8xk/EVl5BUNCMngdzHVspOOznwnN9DN96vc0J+i51itlfsJeml0V6OMfgZZm0itruU8th5tupHDtZxjNb3NfEmBP5ErcNMI9vcgysxAGfaiPv8Qc5Vpac26iXxvPtJrf6A+yEKROwtOyjkrVjeSHKuj16Jn2bTUelYJTKydRmeFFp8kmLnkPEguE15yhNWc8uwfTcQWiSO8PZlb0G+jL5iOWtWNe7kTrt0Lmo1R5RBLcHjIcfkxBfoxKOU+LMLjuFmKOl+OMHsG+JjNdPpEDqja6/VI+I5x5dWY+uOlpblU5kDtr6Zs5A6HFzvCAh4P7LzFnUTo9fzSijxDQ/kvZ6Y7nVvPJjVtoKCsm1biEmqpPKBz9FZU2Jw0SA6LCwaFzJ3l+2TIiDCvY3NFJlcNBwO0npKUKpdUEU+6l+W9zIHACaXgKHQecxFw3m3B/GB1RPWgSclCok/7KMPtL0Wh03Hvvd6hUm/j+y7XUmhNAFGlt/YHwATmd/i6Op9pJrVYhDUvArgtw+qU3ODEwCAj0yttI9R3GACS3TEQztZdf9sznwlUvGfIfCeo6Tl/EA3SnPEJr3HwKO0tpLbShq2xjyHfLcOa+R6fSCHIpj4s5jDr/BV+P9vPYkUOsWVPN3K9PIPG9RtLSt1G29xJZfITisIlEKZzo/z/s/XdwVOearw1fq3NudSu0cs6AEDnnHAzYgHEGB2yMbZxztnEO2xHbOOeIMWBMzklCIgqBcs6xc+5e3x/e2zN79syc97yHObPn/XxVqUqlVq1aupPu9Tz3+j2+IM2iSGy7hF8iTGzUt/Jts5Kk6CARGiXhjnkULZvHkNtnoDIFaFMOgj7YMXwN3rQHGV57gjyHnYCmBWPQBYMWkamPYX3icW5q+5LVG1XYtRaWNV3L3HAPpGqwmWupzxlK984niF2SQw+dGOxy3IUqXH4bSVlRfHsyjYgnPeS0ZdCn6kIpNRETlgEiYX0/U9qbObHNSFTMAaRxSlJTb/0v9fFFLfIKhYK4/HnsqdYyMToJQ0cHBPzEdF/AF7wExdi7OXCiHqXnKDsfjqbBeJqzZww8eMfDjHj+JLcbPkKZM52/vjnO97Ez8EuVNEgH4h47k5peJz2NNnpllzFreheRh78js/8LHMIUjCYJYUcHDrmOkLWDHv8ZkiJ+4UzHHUgvuY6yTj/jH21izZzPSe34EIdSRqffw66YRB4/coI7+ltJmjsfW28XebY6CppaAIHeRV/QVPwAgsdKf38K7WIvqzbU86nyZRTmhxDUAkNqHqa9bhAdEiede+OIyelEkdoI3uF4QgqU4RoGqV7lSJOTksETuLZsM1KFjIqUt+m1l5Av241YuwflsNFkTJ5Fx0sVxMz5Cz2B7+mT+hn24AguWfopvkCYwfsfoVotRyJJRzZlDAgiYSk0JxgxDAKtxMarth2srhnNJrmaayPi8RtGoujswovAfCFMv1SOCgk6hZRlW2R8edMAiqvTyE9Ssf60HFHVxhWXykncakIW0tKu2oybbmjrxdDZgDz6boLSMNJ4J76+PlTlKfQW303Jx5sRJTJC6Vbs4hGKK+OJ0/YRb9JTU19IhvATyNvw+3ZRHFfDhNp6FL4aLhS/wVCrjXb7N9w9aiEZQSe/DS0gFAxjjjUwjlQ8/hEc5CwHz3iY+N6NTLraxpoNJVgideQJPvbmiZzOSKXjbBGqzi6qwkrAhaqzlcb2BnxT8kh/eDR/66crKytpe+IJbrjlAX7WVkJvAXm5v8+2H++2w642Pp66Bskk6Dk3DYfGwYaF2VR32hn13B6Gm+Gx7CABTSLG9d+ibqmkKTqfmHAA3XPPgyBgAsTvr2WjPJPLLnvyYqbaReNfv6CzowrMQhwySYBAoJ/s0ZkMCKaR2wPHSsvIEQz0h5XINGqm4ufRxgqSzSm0VyTQMyiGrrCbM/GDkCRIaLG1sLPWzkypF63Ejc4XjbK/nf48P4fFy0kTe+nSPUwgfjyq5lpCJzdxdFgiv628i+nFV3LLG4k88Vg3A3rP0ODLYWs/XFZ9FGfAj3ZPI2vjpFTmeDlY8RAhWTIVyju4V3qex9MsfJVyGZH2BjLW38uo8S4iK94kmLGAOFcCYWQIQEChYmDXDlSqiYRtJkKxj+MPdyEJq7jN1UWyrw1nMJW6xdV0FT8MmVdh+XUGVQXriMSLbmgEdqcfn0mH0lWCxqzk1gMaJsV2s2tgMsMDnehDg0gJlNLUZ2Nr73ney2rBI7gZqnASkG7F5azB2eDHW1yKmHs56sGz/kt8fFGLvLS7nELvXjxSI/aIPvovkZBtuI3LvYM48dg2Nk8vJf6z08jUAhHuZIZlZ/HkvVMosXuYPlvBtvWvESFU073gMOEvP+c6azn3XbgHGUF6h4wmuXcXElk29213M1+9EeGGX5Ctn4yJEpi7G6H8RYwhJ8u7ihAaonD3xJAX6qMkOhXjEy/B/TeyZf99rJz1NWkRPiQtm/hR34QuYxKv7fgcfGGiwxFoM4OcEvKItdlIsIzg19yv2GZt4XjP7UQbn+TVYUHkpz10+D0o0FKmfwKPR0VRlJ6koZPJo4dxyTLCnOF29yQKvvoJtWwIx8aM4euiGxDCAXxZzxGMa2V2xGiapq4icLoJQS5Fbool/sUX4KVpXK1MYGOPlEm6k3xweC1P+udREQpwwt7GVZMeRSJR0tm5GzEsIGwZREfaZzQ3/EbfwR4ilP18EmHgcrOHI+VxZEbbEPPPIFOeYGr4WV5tLeP11bfzwl++59pP7CyfmsBvHWqiu45jizJhqm5F7upAoAvtp/OIOG3l1I1GhrisBLqfRx4SUOjjUQdV6AcVUNOnRlf/IwX9JZi0LlT1Zyg13U+gy4w8+jq0cXncq76PcROHE2mOp+W1k0wfkUFAlU6SfDT90b9hbqtE53Xy9sAkjFG634Oqu4beoo84qf2N+/evxe6Xsk0u58Gfd+OOTuTGt9fjPrSbKNHOC/5uGnPTuXViIktio2jo8ZOvigCJBVEU/y5Wjx0rImbQJHyhfiK3Gcgdp4VKG4zUcIlKi16qxxR1DbXUE8jax4DAVVSVluLpr0QV1jBt5w8UPvAtez/7FrdLTtKAYRg1SizVT8FPUlj6KQD9NQe5c/Qafjy5k2+HzryY6XZRUavVfPLc729ndvnDvDn1YayySgbmd5MsjqRoxlxaHH5mtW9gY5+Rc8djMBklWNuiObJkEFK/SH2CFGrK6ZqcxL7SJD7vXMU9oTv48kgvW9Ia8Bl9KPReOusaGVMTxmMYQdSvDbjKP8Rrb+OFuFjmJdggdxK17AOFnFfWPMaM0S8S0qrxD9fS0xVCK5NQNEBLn0JHgxgi1l7KdrebuzMtSIGwxsT8jeNgCeydEEltyMyEmoF41CqOp6Rw1cGtnJPUoe7/DXF4BhKPDpc9llrZWFwuJRGqImZ/H4E8Pp6A0MnxkZOZpOhAEbJT0WNFEiUii1ER1NuR7T2ErngflrsuY//oOhRimMwWgfShlxArqcDs8xI8buElWQyexihcV7ZwTBeDLxDHdN+3RAVEukQvntNbSRk8679EAuPibrzaWvG63cQHa5B7PGjcPoIpqdwX/pDBkS4s/iruOn2SXpme7yfdAzmjWXqmnqfr2uk98SmjMu9lXEUfyh8biZqTiTWgxqv8XWEkcuNsok6+Tb/nNOOVfoxrSiB+COQuhBt2Iu56Bne3gk7VMjrlY2hsUnHaNJlKQeTOU9fx9YVqXrvrFgIhKS89cw+qpExiFj3Jz18e4q3li7n01FQUosgkTzGqE22cTR/IzsHjEEWRoTIXj45W8MWiTLTmRO58Zxv1jtUcbTjLXUEbUq8NVaADy+kIYhRyhkVvg6p9iMBWXSTpI2LJL4ii3WfCqYrHhRxf8Dwqt4+3f/kCV1Ex8pxYZBkx/2JLzwlWfPQtOrkCde1kRvT2URX+kh9rZjGhdCWd738OwLnyuwh6QCbWE9Z3c6hzBued8bwX0vOO1sy+vOm41To0HSHiDxcS0xLPZuczRMc+i9Iyik8fuBWvP8CwlE6GJduZmDaECMkAmtoVOCPScMhi8Ky5FdfrrxErwhFTOvKQHzk+pIqfCfd9z+GcAiJuGEdH13ks0XEYwxqUbgeO8k7E4e2EzWUEvrmJy8QD6No7kPi8XBZ3Cl/YwyGvgp0WP5unz8M+aDWfIePY83VsXXeW5uYN+D6ZgfnEeyS0TGeX6WXWqLZSfO+L1Icl3FVYyJxfr8A6cSSOIz/x/Pk30IaCjBVMJMtk7N5UQWX/HmSmJ3GG1H8XqpPHTkAYNoTy3gCWIdEYrOcQXT4A+j48y0g/RG6eQqcmB3/Yh0ouwRifTIf4Cq9MkjM0N5Pf7n0YvVlBWkE0EqmE3I4vUVdv4nxHA8t//Q6AiIfrmBrRxuUW60VNtYvNv5740Asile1W3M1l9KhGIQGW9e5gqWcDBqGFLG0r8ZpeuvceQJ/UgOBzo+xsZ9bGmVhc1Xy2tRaPN8gHE1OQO2V8KNmFtvMjwh1+fj5YwPv7+siKfwN3fIBgdyVOQiRMvZOZoQuc8Jtpb5eirr+bD1c8iSD62H7kHsxJ3yNNSSZZFiJa+zTFxy/h8toTjBv5KQsGrEPvU/CZLpr9cbDo6A7CgokGcTaJzW4GlNmQdn9Cn28zzXFpnB8LQzq+xJN/NYe7BJwGGRcis8nT7iJauMBTr9+DSenj0LK5aGPu51LJz2xLfxR33ItMajWSc9ZOe9hKyWEb3ePn4cnLQiLaiTvzKpGnX2bq8U+Iu/dqUlV7UGkbkHZuxDD8AMohp5h7fAMRZ634fTo8shhEBEob5RSX9bP5RAdPvffcRZ+8uaidfG/kGCpCGRx0HmfYkz8g8/lQbN1KbnAYj7piiTn+GzLCPPb+RwgSwBLNQb2Bkw4v8X1DqDtehE/STo0QQ+LuTYzWHEWISIOHbVD0AQf3/ULFwXweWBBD9ZkTiMp8Yqa8D0KYjuI4xMMWdHOvQpAHMSs/Qtu7kzbDOLzEEOfwgEPN5c+9zHvPLqC2fCpqtlA4az7lVZWUTo5DeCVIZGQ7YliFxSfg8Yh82riOBRs/RuVx8kFZDo/cfB/Pvn479fMnsqFzEvuizCTYT/PMyUfIiMiie+B8fKeDqMIV1LXJWS81oxj1MHaJnKTz1zIuJowY+z03aTVM6j1PfnYc0pY9CA1vwdxXQRWH1efHcG8Vnl+H8d6Dt3MmrKcl+jBGdw2JaQZaAkk49em01VjpP/0hTuUlxHqfIOFcgANsQDdiFsbGINawil6zHvUwLwOKVxIWZcgczxDps1KcWkaqZx96rwSlEGThOy/yzZypqBxGzENt1Bc8S4/oZqrnSwxeKS55BLW5b5EXGULsO8p3LXWMcOdgD4ymx2zA72xmbfqtbOmz8WVXKUZhH2kTc4mmFqlE5EB4GHE2Ox1lp1GUleAVByO3/khMUYCNoauYGF9EZcwJ+sqlSENDST/xEa9EnydDLXCnRyC9dTNSMcCdsk6Gv1uEyh8gf/MvdKq1zBoS4O2CWcyu/ZkyfQk1sUN49uhX3LTgWlzSdOyBFM7U20i1aP+I1YTkOFqL9yHKLIhiDOpzl9LpG0RY+IaEy3Ox7W/COsjPLXUulHIfTNWxozvIO7U3cnNSCsHpqbziaeLVAWNRFL2EWJhBxJ4XcKsk5PWe5J3+OwnPXYzd00XE4b1ohs6Ff+6pyj9w9PcyK/kpYqxVlO0XONvnZPZ8MxKJQL3DS5xGwwMZ6dRMa+aIupdw8QHmZfRDSiEBqYEBQoCZJh0aUWBO4SHs1V50Qg85NfchuewBJkRN5ZBnOUm97fhGd9HXs4h4UzXhzlO82XEJa+1biPXJsBjy+fa6mczatJc3NpUzePsawrVukh+dhNjWzRWhbRxzxrPxwo1oo6PZc3olGfItmJIX02O4lTOjrmFy0WUI1iZq/EEyOw6wcNtSRJ2aZmEc2/bOYar+Zcqb4CHjML6xjeaub1+iSTuWkpWXIiIiSr10KQczu3gFSt0y+tJC2C0nCZ1OJLPNQEJ7L7FJ1ew03Y1laDzJTWvxD3mGhMznKPXlotSLyNckUxq6hEwOc0F4lZwt2whojnMicjLagJs2t8CkOwewo6GJDw69wtaFX1xUf16UIr9s2TJcbjdavQ6jpJVgcj5eyVb0goBpx26kUhW9ubF8Meg03i2TmKvvhdNfwAUvSXNeJ8nfC2nDSc77Af/RTyjcuYbWaCNhlwSpw0nwk3kEF31K6m4jSfoW2ssaAAGT38+PrQZK5D6emzkd/fxr6Ct1oM+oRFe7DT1QPOQJ6o1rWHhsOwD5kt/4Tq7jxUcvsHbObVTf8B4qy2iibR6CKAiHBdZ76kiseJ8CyRCelQ/njYF5nChIJKrBjUceBIkBo7ccj7aKV4K5TJFL6IidSazBQ7Klj2/cH3GZ+knUqYkYB44lqqaOlmP7MJs1EOnkdU8rhSUPExVy8l5kHBENL2GtGc5l5vXEzniCjY3d+N1uyoRUNhXOJNnah7HubTqNIrMUPoSBNcRc8xiEw4jeIEaVgvXOqwmFvax+exL1DW/hccoo2T4aU4eTuvLvaCMBuVGNJrIQbfXdTLMnIKpU4Cvns0s1TPlZy737z/P8vKE4Jz9LrdWK2d1Kki6PA1s+RzVqAUpjPMP3X0VAmcADw9+gprwEwdSD94OPsZuz2WF4mRnDP6akejzDI89gVw5Hdz4RWV4mlqV2jD8fxNFrYUrCBQpNE+jrldFZWcotVR+RdVUrR2Ii8fsMyGQB5NXl3DPyWTY++Qq2hMPo5C4CY3Yil/UR+Holj1yvxb7BTejKO7jDI6E/MISN8UPRj5FgFWO5rjqVkqlqJAE12qY+UrauYJNyFn3aKxh1to7M3nK8g6ei6X8UtTiefkUODtdKKO/BmNOPeqmeYIsV0RogJFMz84mv6fErWBQZJrHxFGnXXsp3imyOnehEkXAV447cTOuKn4jqbcDdcRqZz0Zz86d0dm1D138d9dZ/Dm3x/yekpKSwcp8Hr0PBh4tj8QY6kYy9h4BURXf5AcSAFIeuF3dFgJiEaRRMPMHCrrG8EDjOHPtr5E58mGD6CbrPT6c5ahZSYwHHxEVEpLWS0OanEwFvZCphYzWCIhvZ8BgcQg0njmZwv/sT2gd+gIQQ6Z4XuRA/jpeX9PDkW98RNdxMF2Zcgp4IXw8jOlpZEbeSQ9mPMafycZrFbEL2oST0vo8u+lZs28sJJifyU3UqV0btx4+M05aH2Fd9nkzdQEJoOZb5Ll/ElHOlz8X1376FoAjinPkgA5rhu0V+dDW1XMh7ieyzz1JvMBNQ+hhz9FnGRN3Nl4bh9LeJtCTM5WT3RgosC0mR3YLBeZozNhnr5XloBB2v9YYJGWSUWjMxmnR0luyiIHyQVjGV842L8Bkm0rSvFbe/iI8Ssv7ww8VSrbwoRd7j8fDrli0cO92CtduJtrObwFNfUG/SE9lQiyVLSWpOHB09DgIRWfDuKBAk9PjU2LOvo/j1UobpN5M9JgPFqU9oFiO5O3A778dpiBTDhFpfpOjXbUwKrMHnyyBsmUFSxyaUEYPQBSKJb2kh0nqa/uR76RjtR6Jth4YINniGUd6iZZn1J7YVSshwusgWZWx8fAWjbvyUw+Vedhcd58aEYbhkv2/ItHo1xMh6iDJexzpzDrv77BydOBi5WoXlzDY0LXUgkTL8+FoY+CBtXZW4dfHI/AEcfW4UQhf5MecJp9xOTNfDuOsd2BzRRGRn8YhpNM/27aV7VDsrHLFsrathlcfPzmGpWJv76XP1Y3H6CHU28/G9q4iOTiYcCuOvrCB6bTfmFbdh66mjY3khguijuaWdjkd2gMtBRcMmqkYM4eCmr4lMjCUhI4MbHh7JI18e4bBrPFGLYuk45iSr7RSXBlsJOCVIvN9xmOup6JjDW9dVsPq7jSz+tZzbFwXxqLS84EmgXpnD6KmlJPR/xIGOAKpgL6IQ4LruKn7RBrms8RmWRHl5uc/MInOQ0cFmTAWVKKe/zQiFGSGcQ2NFD/n7dzPG/AQ7u6ZBIBcCXgz+XXiGyPl4yGXcpDxFmBswjdAw1vAxaYvHEy75EG1EL9s1lzDskkE8vbuRI9+uJTk5n8XufYTnwA/DYZn3ADHpfXy9fRyajhSMaie5yXUkHd3F3uxZ2CMy8C4yIfpbCGv7ESQVyEWRhuZOJutXEqOIRPfQHUQgIpFK4acbQWUgYezd8PNHdCk+Yr62khNhHRJXP9ahH3Ci9GkmjC9lxtBYAtYgxsnHUDj8NOy+QEpiJG3pU0lNnINaNp24jgaUpb6/ydf/0/O3gjJj7BSSc/tJyVWALgY5MMxahE1ioUkyip3t3YyPMxMKqPGLAt3+MGFnO9qoCiLafai3LeHx0GJumn81ikAL2QfuI5i/DKskSG9QZLismuj2Y2T7U3EJBixmI92mRSiOn8eQ2MDu+LtxCE5GJnWhNMZww3kJd74Qx94ds+kwzsG/OJLFzzyJur0V7yU68iL3Mtr3IR2mkWyfvIDSLdsY751AwQg57QlRpJz6nkmmY9RLwtSYbJTMzmKeOky5Io9jT93POL+dbZfV8VSsiQyNnPZQM5EeNX1xB2m2TqfI5eDps/cAEPSdY8h4GYeEKF4+GIkn7hcKQzpaGUNsoYK4jDweqtqMVqKiyzOd+/eX8tjIGvJPtRNuqsaVquRsZArKiYPJitcxbUE+lj2lWITgP/jh/3Ss8qIU+V6Hn0AwRIVGQEzRY7mwC9Xz7xO87z2KcvJZOMpCnqef3ua5+Nw1iMgQxDCLCv5CXV2AVYkqLvcdg1MHEIFNnR8yHpFrol9gsZDJTSEbE+vWICLBZXfSd7SLjDQ3vQEzHao7mLs6B+eXyyiPOEakI4ip4jwNQSPPh6/li+qnGBY+TUAihUvX42k9xW+JV6BI3cl39dW8NWEU8vqjKBwhpJIQQ657GZUyxIfrXiXH72WcWUnqkYMwbAT1Z04xKMpIr0RB4Z5sSq8ajfubrzgYkUx/biLuAACjFklEQVSrZABpJgezqr+kULILp/NaFB4nOSlz2RqoJyOowDFWhcs+DVEmY3U4ku0DRLxSNaLWQsM8kZNhB4klZfz6zBpSPRU8fPurnG1qxpOaiXDpcj7WRnFr2fNEtHQRDgepq6vCNDINx8dvMH3kDiaGTtBSsBqPNxPzx0sR08ez4cIyfGEpA8846LZ5KVZ6eGTkN5w5dQV+byMXan9FFnc1o3RaVjz4HOteeZqN11+KVgOfXDkZn2UZMc5GUnzdjM+aSLnWR67zBK4+D/tNcqYaCxnXsRK/TsH9KRK+O3YTEp0JSZsOSXQMXLaE5CMbkMnVtGQ8zyzpk+wP2Ql3VxISM0nIKeMxz+fsH/QsLUkzWP7NQATC0HkUSXQuSy0NHBF0KO/dzZ6mGJR6OX+Z/RhN9mi2F87C7Mqk1ysSK99G3tQYvihtpay3n9zRU3FHq3FbwB8KUbzhdrxBB1kLl1EbZeTsyJu4MXEC2093Ui/pYppEwBMSqTpfzemBTzKzexNdDeW0zfgcQZ/PTef9XDdxNrroEIcP/4halYJcHoFCIdDTI6GtqoL6s1JOnxjI4hEqTjoq0LgcxCWks/ShSKKTDRcj1f6vYk6KYeFb5agVEr6f/vvPpNOfwwxkNPSx7IGHyNj6DYnv3kvJ3rm0aifjGnUlDqMWr0PCj5YV7PMXcFeriyT3y0g9NnZoruDSxgdYEn0jmphlDOp3YurvIz5OhiQqAWNDJa9SwqDvO/A8fR2+QB+XHRnA20/8yGPPPc3zD/fhjrgUny8F3ekYrpTLCYWDqHEy0v8FVt9yTD0bmLvzahJiB5PiyMYbCuIOVVAyzMQEj4/rdH18q1Dw4psPUOH20S+FwW0tvKlRIpiv4yZNO5/2KHjqgoIj9CL3xRJU+llo1lI5fB8lZ34gbtxUnnREUycRydH3cPvJREae2UnCrW5kGatAEGDI0D9sWfevdOqqZ8Sg3PU1l0y4FnfeAuSS38cJB0677u/sv2zZMjweD2r13+8n/e9yUYq8PyhSdrKRfIuGz3ubmd9cxIvLwwwsf43H5/9ES1U3B/02LIILBDg7cQSDexLxWNIIh2VkrZiD9NRZwsc+4Lw+FbdcQCvtoVXexTtCFzcBAnBU8hGSzEpGKyII6XP5VTuaSJ2cZ8+3kHhSz9SWg4h9WjrmJpMtFHNE9iDRxoWgXMb24E4eO/E0t4z4Co3CzGtJZu4t6yFGLmBHpD+QzbMvrKNSm84nq2cQIZMR4RZZ7ilF7HRCbQWrMjPYkprIioEF/PDgfSy89Smuy72TqFQlmTHxtKRkIky+AdvXN2OQJyIal9AfPZkp9W3IEuqxlnXhNC0i6NHyXdZjLPdejx4bv4VspP/ch0+ykKqZz9DvtrHxztfo6O7mWnc/tfuPYJu/nKldDXgHW9BLIhEESEuL42RNF9x2Lxmnfkbl6+HsEYGI1LU4lEF0XherdZWISVKs8Z8xwTiSwWoRfdkZ9ipWYXY5mJQhJzr+DM44L3OFOBavuZVAi4d7v1vLex8dQFAUceMjjxDw2LBUd2HtsxIOhljy5QbGzDhCVdKtPNq/h0PKKfjbK6mOvgm3IoHRYQEiIji3bxe2ukp6rVbmRY7n2OBPiDn/Kg73IPwSHweHrmbxyXVMLHmeg9Uuim2jGJEKp+PO0lz4KhJZKnO+GMS1bVYG2wPcv+JZelKsDD67gbBkNZYWK8HIaH6RXkqySmC1+1VqkeA3rUap6kJmO4vF+jKpoyaTfH4Lh8LppLd3Eh/ysreulu5INTqHCVH04w9J8N6zCt76giPRs3EJatBLmHniMDp7P4KvlzqPgVWSz9hZWMBb+3eSpBpM/Ru3AXDv978yzFGMssiBd8Akjp0XWTQyTLccLH9N5P9J/GedZL63C7W9A2lMNNuPlXGZqEbWexn46tE0QYMwmKjrhvLp2Z30BRNwy1/mnOc3RFUMVerLWe3X0KiXc6LgRnT9KgrO3kF2+04YdjUzEyw8luPk0+IrCXRkMsO0iwPx37PxqYnQZqLMNJoMx1fctu4n1goy6lau42XZz/QNjuD8Vg2S8A080PwF4yvOQ7SSqIgRnPXeTMy3G5l5dBeeyEQIv0+EtArN0seJyh3DU5XH6OwpIs/6GUnWT/jW8xV51BOvfI2otnj6KyzIU62UZl2NJlmGhmpeOWWgLaacqEQthp1HUM6ZhWz0/3rmPS3tVqS33gOCgOY/+T2Px8PmzZv/37rvDy5KkRdDXRTYPuGC5UFqQgZiVek8JpNzbtFD7P6gjJg0FSazgq7k/cikw9Emz0Q8+BylvUPpSM4kLm4IfPUzggDSVh9fzoMnrGd5xeQiuxF+nb+VyXtvQq5MwptgwW87w576NGwtISw3VpPnqySmsY66S5LoTH+RzL2H6JSv4czSDOZV7ie+H5yaAeiEaiL7PyMQP5rRY2ZiKetk55qbycyLpW1KHOrYTMZveZpPBEjqOIcpJZPOvACydi8J5XL2W1LIp58F/YcY8lgPz60tZ905G+/MeoImnRJZSKR2x3s0Rw1hvNpGjXckLWVSBkckYjUPwFfuIKfuNV41BhnodjDZLtKXtIBRLTPZFPU1xkg5t77XQLQoI0LmR6Huo27zTqRxs8gdE43qzDZ6zs9GP+t5pNLvUKmiyBomp6Omj4cXFCNtbKS8S8W7nia0tk+R2A7Q3GDBcqYNxfWj0BmHogj2kCoLcdwB4wdcQaHtKaQtJTT0vEjbSg2mHx0MiLLx6aq70YgCV370Me898zSiKCIPBFCFG3leHUdiegCHNo+qnFsZKHQzuasLbewQCnoTOReCIlmI9BwfcdJ8zhX1M3fNc/g37Sa52U/SiLH4TnxPhM/GfH8WItATPRJVwURGKwzgLkGU5GMVkiAYYv72SIKmLF4ZMpCIuhKiV8ykyXkNSRjIqHbwRdPP3BEqJeBRo5ceIU+j4kLYjSiEcWvnEFBkYu5dgVz0oXXdjEf1JOfcbyPKp6Fx24k/fAph6KWYiv7Cmks7KSy5mvfkiWwLXUryR+8Qve4+RO1YhMREKo5XslmoI63bh1bxLx2WJTsfr9fLNz3tLNaqGWfS4JRJeXNPNW/uqaHu+TlIJBddReT/Cv96rO9vKIF1q1cTveYO0o++iUf3IOGGWHSKCmrcU7FrogmLYNUNI+uB5fhGzaIj2ciA84+hGTcDVSCZ5HoHJ5xHWWseRmbcEp5xtROWzyBL7mXLvPfhmyv5ua6AweoyCk+so33YQIJNR4jqdWBv3onqhmi2fFjD0Pdu4eEYLf4fwNscAkHgmNaM1F1DSK3GquonzFvIu7tR+3ysvfsp5KpIcoZ7GFgtY65MwDdtKvrG0XicIgGrhl0tOiTaaGyKQdhVi1DU/4pKrsEyKAefrZujR4PM6fUw6rbrkGrlcMMV/2C3v3Xi/yd2vxhclCKvlUmRKTUMStGzMz6dgLCQ7xUxyFRS7muvJduj4vEBcUjd/UR09ZJ56gIhiRIJEmJr9sDzKxEjc7DrMsk1NlLk28a2pLvQ928kZBiC6IulSjOeLsV35DlFyvPG01EVjVwRJuBMxRReg/qxAs4bXkQQFQyN3YD0lruoPl+Fof4VfFd+RVJFFa9JFGQ6PWj6JmOVNIDkK0YNiyQ3W89XsafRO7TMV5YTEGScjBBYODaT4x/1c6FaYGb0g3xpFNgWOY7n0m8jvnUPTzxUyBMvu1n57of8MjtMe8wKfo1K5WA4jkln7yYm9zXSqhdQNOUOdI5WSk8NIKjN55OCW5je+i4Sx148gyOJ7Ixhyy93YgsEuOCPIOeO1bSOaMLQ6ESpFgjpo6iVplMQnUps3K+/Gz0UgJbjRCeORL/pcjw5TzI4I58h8SLyktNI/+qb0ao0XGIV+ZU2jg59HrfwGZ1Fu5EOGI0j8iMkYTmVipc41JSIpO8kK6UaCPmxufvoxMRXK2+kNEVFeuWnxCqv4Ip37uVOqQNffwvi+35uiCzFbUjGNFwO9RFIEIhS++mM/5ryCz7i1NcSPeowrnATco+SpMQaREHgN989jB1iJObknQiA3lGLVBAROp9DFJ2Ezw0mc6DAQ6tvwRAW+WDeFUSvvh6tWomgUGC47i1kZ5rgzGk0kak4GgdQLffjGjAJZ9pCjtR3csfAKOLDVpSSetxJBRSlzGZQKMRB6V30K7PIscSQsGU3wZ/WURV1kuyG9aRlD8VDGJmjg7muZpxTC5A0F3HhroeQWeLQP/YBuaHTiNWnuWna85S89SqpSZloJw9FKpUSzsqlavhIwnffhSwhnttffYWRaZH/Yws88O9u+i1YsIDoNXcAIBu4BJ3uILr4w5xwXoJO8hvTQiKuTZvoLI8n5PeirfmNhPu2MbjmBxLk5bR6TOhcMdx97nEenHEf9aNWk3zJ5UiFf/XEc9W3dB3dR4n0TS5fPhDfx+NRW610u4uIkvZQrcgkaXUSX8mycI8YS9QRK2q7k0+dBax67MZ/928J9PXR9Zc3iH3yKc64PCCpZmC0GUvd9xSWr2fXlIPkFq9jjzXILcpbkYRC7BLzGaseQmf2dKzdfVT2efD2uqmI0jFA+x8fCHKxOvH/Uy5KkXfIzQQzVuH5YR/Nz9yLfv4bjHcWE07pYsDOzzm84EYKJo/jYKWNkCoStHEE7qlGeGc4Cm8XDv04GuMf5LIiN1+Mjsbgrmb+7sG4BCVVgRpGdt5F1Ny7Sdv4DJ6keOorUtEZ/Mwbvpdfdk4mbe46yiMGsTg5CsP6sWBthueiGZU6nfbLbsNh38O4o5+wO/cB/PkSTHE6JNpM1PtzeXhHK08PXcnZLhnj5NEcGPEFMv9sFkaegopeYsNmzmMmWuggwtuLCITDYSqiHyazNpPbr+7hu3UPc8vHLlTK53jhqyu485u7EYHDiU4mtShpb/OwwCEnOasNKV0keTpY4vEiCQZ48JYP8WjSUePmtYfeYWd/DwXDqvDKZYxUzWfuisEsNA7n86JXuaf9G8bZe/7e+AEvyq5SbmYTtZo1ZCcZaOq/D3PGEVouzGGYaCdFeJnWtIU0fvYEhjnJmBJWkO5SM7T2Z2Rpk8g0V6EMaYk9qqYoPoKRF37luDuaBjms0VoYXbaZ+vBqqmw27pm3FsMyN4JKxV3jXuDjN5/jiSVJdAx4FnnDXkJBL8H6V/GmD0IWOk57qYbqqg8JxF5gkEZCOCQgESHOfgHqvQgZU1nvjUCZNZ8cQcJx8SqGGHZzgoX8cMNylFIZ1977PmnLpvxD3CUOTuZg3URc/bt5NaOA5n45yvNGFuY4GVWgpvvgYZLffYakr7/iB/M0BBQ0F/2ENAjaAcNx1TQSPW4CgVkzKK/vwK0W+LJgEsq8eQBIN2+iN28hb5S5WRLagEIfSYZvPyc5RYF0OnJE1AkJhHqtaPclEMzxcNOi33dXD9+8ChISkMskjMv8nzNZ8/8KQwIUXAn7nmKYcRdfx95Io7eFSf4f0Q6IpHHO8/hay8ko343uh3fwjcolMTgUTegwiqu/hMyppP0Hl171zhR2Fp0isO561NY63ElzMaqUCLIwBy75GN+6aeidewlWHUQmBNmuuoHFy5fgtnnRGFX/cL3a6TMQ3W48x49T8P13/DQ4g8F6NbUb36dBqqJwgIGjqtXEjBQJBx+ny9VO7ohraT/o5WjUBYravqBM0sn2idNImDXiv9auF4mLUuQFP+xt8DBBF4nMpMerEmgfGKYzNZ0BHztY0FiM1nALc0aoeC/shePvouqpAFkc0IWPMeS0VXLowetQeAJIP1pJixhHbLgPG3r0ttOcagvByIcJ9XfSa/8V0T+WNkkvU6+IpsydgdQXYltLL8vuKIU9T0DNAXZGKJgBRHfU0RmRhc1h5lyVlYQCLbJoLd9//z2zxw4gJ3SI+b6x9MulOHWpyAQgLIBCTf51k0iuqaX51kial48lo/wEZulPjI9uYHLBtygMETTe/PuGyRUffsTN12wgOmoIH98zjj5LkMWJWVyRNY/OHZtJUsvoba/g+KYPeLrXz7PiQCLVtaxYcSPSUB820cP1Vw+j6PBD7P7idVKme5ila+H1fgNtVjWhpV9B7F+V7KQySs7fRYR9NllP9hLR5yFc0Y031MS24lJOKGGV4hZsIy7j7UOXkK+2EpUynr62RPKHZzJwiJdXL7zEAkcvBRMnk+E/SrhTQsqE4dQSw/kzx8mISqBZbSBOuIRW80Aavv0ZhSyCDbvG0imGeD8xkZsVEm7/6hwR381hzy15qN1OpMgoaNpMbN2PVPIolSERs/0UdU4PolxNtCyGzktvob95D/rwLmLk3Qyue5HDzS8SXHYnd9xzAUv3h6hVMSz78FOWZlj+w9iTHv6NHQO2c0PcAKalZKJXhhnp+BLRKeFkygKkUVFoCguZZnfQUldMf1QK+q5OusMC2ubt2Ovj6TONRKbXkmStQvn9B/BwK6JcC/Mv4UBtB9Xqj1n2oJT9i1/l8J5L6avNYtjYOBAkDFxyFdaIBpy7m3EfbkN9xe8brONnTPrjHv/1Y/vFegT/7+bfLuH86zG/vB4brS4tyocvEP9MFOYeBe4bX8L0/VLI7iPkOIVx4BD0l679h+v+e0sc9hCMXPsguMZTJ1lIwKRkSF4sZTur0Az+C/k9r+JKvwfVb/OZ5fuE0rJbCIdFRs/P++MaAw+VERBFTrz5Ju6ys8jNZiRKJePVaqx71uMduopjne3catQSSA3jc4E08S7iBIE4gMVQubWYQsFCT9CDXh7xv7zvfxZfX5QiL5MEsPmcbNfpiXn6aTbr4rDK+xily6X8p50sGfD7yfbu5wfgFqJAFYBrfiL4jAkpsDwri1Fpw3nCUQ51uzkx9jm2HCgmsnsoE7Tfo7VYKax5lUbDGExTH8RwYB9VA3OR1BxH23YOW9ooDDYbmVIJEAdiAF/aUMyhhTS/u5lxsbvpSJjIYoeNE/s+hyUPc9ZWynnHaY4p41j8zJe8flUaoTQzYZ8HKX4o+ohXrzlNhNWDbO27JM2ez+P73yGv8BgyqY+weTIvlW/FPWEpn01ZwGVhF2vsUURqy3hsQzHLHtlLm15Pi+0sfbKRvNGqRSKKWFRuRg0w8NH4OxGQ0ZWvI9Z1jp5mJ7tP/Mx1p+eyLnA7XnUbhzuaCcvDnE2Q823GHA77LUyU/7U7CYWwS7rwNJdjiXXh8oiY+9xY+/zMzQih7TlPoK+HypMNZPZW0mN/Cf1gK4HI0Uh27CJ0ZjMVU54kKzKV3lYX02Zcgu+NZcSVNCKqJQwctRCpJgF7ayPdmhTy7WcYP8mDQ9JKSuI0vrV2880Tb3LT4GwuObqbghffJvKtfoZLpYjaZ/gsys2r41exuNfLrdEVdMnSKMq/GnmkksRvUtFFpdI8ZCb9remse/41DN1NtIYfx7KhCosphk0vLGSnMIpWicCPTT1clRH378Zesr+dzw5l0rEohX1NXWTmxxEOgMMSw8gJOcgX/H6SWHKEkWLpIIJZIjMG97O+z4q3YBELd92ILkpHlyufqMK5oAqDUofnRA2Sjn3I02chE0JIBAHz1ocYW9HFWSLBVvbHPURMT8U4ORlB9u8vyfyzPLZfTP4z9cShUUaGRgHhMGiikOeNJ9IYS92AxykqfYMZD75GdGoW/x7/nq0WLFhAxJBx7GjNpdjhZl17B09qBRamR7Pzo26yn/mKCIUUZK9AdyU5w5MIh/9exkIhFSAMuvHj0U0YjxgOUzVqNBHPvICIFENMMkNGjQQg06wH8z/e27TxN/Hr0ZF8NTUVQ0zM3332z+xjQfy3oh7/Dna7HaPRiM1mw2D4x1EwwxADqxffzsDCS4kyhbCrUunyBdAaQ6SaDEyJ/91iZ7/6hrvf/4KoBCPff/M14WcjEYC4ifuZ4Ojlx+4aSGgjPOspDh5awzsn+1mfmY5Z4YG2c4jNJdQormdnw1ySJyp4xHcrEomURwZ8wOw9y1EmjEB1zZdgb6O0+FLKUn5G4nYS138po2oXYQgmEuh+E0V0DM3DlqAo/YnbEx7k/PNPcm52Dd5ABPXb4phZc46g6CGAFIfKyI/fbKY/KZGBd61C1d9KzuUW6lNuxxkto8lgwKpJZujaFzHFL0MQQkQPPIei/gWWTN3E2uRE7jpbxYKeL7k5swBvTzNbytRUBQVGD5pP39E+JmZ3URMRzdnTNTTUd/Fo7n4+NF3Ng8owboWcU+oouqNrWWSMRDj5OecGfsqUBSOoOrePC8UCGqGHvNhuPDYdymACSsW3iIh8uGceRlclV5rv4WjhOmy+JIJGF1rXerKO307dwChk6hAxZglxex/HGxqDfnQnuxImYlJZkYcjCB6JJbe3C1NUx+/Srl2vUxuRQbxXxC2xMHDYvezdtJH3W73syBjPjwNl3P3BW/S6OnGbQmjCYXQ2CWG5gbBMgiLkR2isQ2EKYY3OQxkWkMrrqXnwE0KKaGKBZ+QGLjk6BbcT/BHZ7Jm8liUD80FpIDk5Gb/f//cBKILfHwTCeMICRrWcsBhGpVTR1NSE02ZDppCjUv/LLEOz00Nxj50lgVOQPA6U+j8+a+xyY+vsIr/lF4LiVN5Q/kJIK+XR9CVw7B2Y+wrI/3Ep4D/aaLtYGiT/zPxHnex3331Dbd3rJCUuR6mMIeDzIVcq/7ds9X+6gfl/g/8OH/+v6vLfuCidfIZpFONSJhGbFkuLQ0HQ3ojm1CHcVYVUqyUMe3oYBoOB/Csu57ORI1myeCHhk59TMW4EVk8V7UXzQEgF0zUw4CYkIR+ouomP60enziCMAknjMYgbTHzXMQYlTyXGeQad2oAgkbL019kIhBEs2b/fkCGe4TOKUd3+CJJTp3F+8RU/x0WDACMO1jGg9UOStp4F1QB+FMtYoJDjN6Rj947F+sRqyrtP0O38AbPjNHkvtxHSp5BRdYLTt7+CVrCiyi7Cec6Mp19LdJeD7Nevwvrg+9DUhz6qnNdsWvqGPccPno38/Go91/sULI77Fbm/lr26p0nOCOLp7+SoSs6tg7qIdLuoEQaTMjeDdKOPbQEJA3cdpmyvHfuCmQjudpKUYxC3LYSwn7DuOOGwiFSXRV7lZEwRCi482IWgVCJ961sqzavQ2u5FOj6K/i4t7WmPY3VFoNSt5mNhOUdNj/FkrJdd/ioGN9eSWXgJS2TVINGSW7aCxxIEhHIVBaf0vCnZx93aHTT4ljNE6YeYOwmGalAbUlEj40VlJO5pM1m+Zx8PxrXzoSqey+55iFGtH3DSlMbKmnWUJd7IqeE3E3duN0+dU5Me9PGs1I5baGV7fS25V+j4sLkFl9nIZKlAvdbPk4abmag0ExupZfSX71BbXk/GriP4/X46OjoAsPr8nLe6GGsxsWXjSVzdYeZfNZCg0s33rR/zxOhXAdi78Ucis/IoyDCjj/39ET5JpyZJpwZm/0M8lzc58QXVxNbKkVsaeGjuE//y4cK3/8M8+Gfu5v6r+Y82Z0UxhMtZRTDoRKmMQa5UAv97tvr/+j/I/2ouSpHX+UVGumLRpsfRebqNCI2B7hgT0U1HiJw5gLq6KgoLhyOTydi+cxs+FIRrD5DT1oVgtwEC6PrA8Ra0SeCTBymfvYvYurNsPeomZZaPwRlTkESl0/fTRrLmrsDXmsU1nc8Qf2kGvfY7MPWfRjbuVr47Vs1Dm6p4dWomo3VzaL99CSN3F3O7NYtwCB4ceRNRVV8Sq/VybsBr9FaVQ+cJlEI23ZIg3V89walIEwcjB7JE2YZAGxMP7EblWE847zki8uoAsHjOEE4dQFPFeXIO7uHkoY9pzt1KS9ZEumriuLHVyXHzfGqd75Mhh7AylXbzJehlkRh9fUzR65imDGGyRqGtiiVzvEhkn5+WzhCahFUYqp+kv/08wxNtVLgncOHkLaxKiOIHfx7J44YhV8rYe96KdMQ36Ox9qGZ+TEbaCBqVMkIGJaHuU3jEMkxx2Zz2zmV/eD2zBA9X8xUXxJl8Ed9PsymF4QGRk6fOMyz1Lr50Shgt1SE99TN3pC1labqDq9p+I95fzovVlUSndWP2GPDuq6TLsAHTYCc2VzIpuma86gmEOyQUpUr5qe59tCjQCwuok05BL3uFcaXX0xX1IatzXTx+vhOTbCOGcD0SVFR8l8Hlo+0onW4yJHqmPz+dkK+f9UEvIYmasC+IEAohM2mRClI8tbVU9XazouJ2Vgz5iPr3Khk0KYGOPjs6nQpQcU3irTyneJsYiwXRY0UiBvFJIxACQZTKMAgSkP/7a6ZyuYLq2nqW/+Xg7x3klx/9P8qDf5Y12H8mFi1a8tfv7vq7n/9pq/97XJw5eXeYWp2CsWoZ6UEXDk2AIVGN+DIPocrUItJIWX02g9IM0JSDnCgue7eFTTeNRQwHEe47T88X55FbNEi2j0ZrWMrq06U4fd+xtVuG+wsPDKhCqD8EY5NY0LmWhaYKxg3380t9A0UZL3KZqY6kg8/RcDiDKxw5vN3ZT8rwCLrjP+GAcxOOva8QQsrIGA/OlfdTA0Spc2izdaKWw7KPq/julVkYdAIvFcdSqCqlfZoN/xtajmrz0QSuQNNRgjd9LKri42w+m82NmkNE65QcPNqB1KMjItzNjG1uXi0cxIpED05JmOK0/bSmPovEPY4GYQQ+/zHmnbRQIO1n3w/rkYwaQ++1RqT685yyzef5gIN4awevXHoXwpVVaMQioo0uFMY4kqQu+oY8QkqECTxWRmbrOVjnxtxdj+axBzhSHsDeUs80Qw714d8ItBYT8Jai8knpTW4ntn8Gtow7eCDCQGPRNoIqIyfVQzjp6mNF7khSon8ij1NcvrUFb8cGvukcyVjtUHS9DtJ6LuBqVuCoLMY2byH6s43Y5QLzTz1Ny4APMQsewhI/j4kRnMl4kISiOlRdXiSoKJJkkqOvRuc4iD/cjigZxeeSPC47d5JVL79JvduI8vse2obo6TQaCQUDlBx/Gl3NaWo7b6ErN5t4WyvDnOsJl/zEqX0b6O1NJmjxES+tRVQkoTEomLQil0/PlpGm6GdC9ngOlFwgPlLJiWPrSe4+gvWp89RkXAaZ8SwatBmu2/T3gfzBexAXR+zNq1AppP9/3ZlfDP603T8HF6XIq6JV7LCc5fjR77htzBPc8WUpMxKmUJI7nHG+bpSihHFdb/GDdxkV02O4VbifX7bfxwXbLD5WDqTnTB0fTk/m8h9u4GtBiiTYiYiIUtLE4hw7/Rg4k/EYyVorlhNvICXISM9pptz0LK88toELVi9fjYzjE/kWMkZbGOudwwtGFyVH8hhYOg9Z0gaOm1ZydFgk1215gS+vjkH0WYmteINI3RCm3/0Kl7z+NGGZjIaUXi6JSGeI9lnUtfVIQisYMiOZiN3FKCVqTkX7SL3hKpb2eeDj66gUB7P67EAOpngRhZVI5SFMrW1YlAouT4yiI+ceAmISuzTdPKb1seysF6kYJiZci3d8Bglxp4n0Z9H1/WTGSWpInRuFRaehVurE3W7ElH8fjuI1nO07z8YBN8DQ4XjXToaQn/iz77Lw4DvMjzewbMtMsk3jsSgzaaxyUnmoG3HucEY+fTsBpZopL71MmaAiujNEdJ+TiMkKfiCWZX4TC7UXsHWkkIyeeLOZYMaNZNe285pCwlf+fCriCklfegT5tiYcQxbSPGwENauu4oVPm7h5dDb5Bg2NV57DHepG43Kjsms4tWAESWWttJVvo+nXRkqm3ohcuZk37tmGWv4+z9ptrNWoCI1dDIIEiTdAWPb7dL9SoSDgAVwqxl43gV21vfh7FRTL16CxOuhOmUVUej3HRv2KvLQTcaQClfsT6t8Ns9T6EecTJxPccC0lk44hqRFI392BY8d52rIzOVpgJnHQaLj0X81ROzoRfXZsIYHyFgcymYzY2FgUCsXFSI8/+ZP/Vi7KGxqahl3sPAM9bYk4XG6OBFx0aCIY26FBXzuKT/qykRDEK1FyW9d5cof2gj5EeOhwOp0bmRL8mAb7MX6w7kAjOhHdB2nZ/CZF5pGEAVGnJ616P+ZTbyGTwjHVGqaPvZFQKMRNcU08dPIrQkjpFOPZqZlEX4SMcBiuGDeIb5O1mJwREDWC706tYtkQNcktvaTs+hoEKWPP6dhacDk27RDWuSdyk/Z+JljsIPXhTk4joFDS4XqWB1VDmNsax3nOoFBEot64izMDVpIxYgh3JFdzXG7kPVMs+2Vqbuyr4NONH3HJzYuJrLQzuL+COd29rAo0YEjQsLphPfPC7ShHj0SMzkDjDyP45bidMhZp5IzXqtG5WvkmDJ/1NeBWzqQ0dhQh+e/ukq78BYCSPpGjGbfQJ5VQIlRROHI0+hdvR6gpx7w4h3FtF0j4yxOY5udyZde3zO37Hn/vbzgFJ93BQezxp2Epf5bZFeUkFfUy1OvC0tmGvLMKTfVx8hw/oIpJJCnHiNE7hkDOTDJVu+k8cYTeailLC2JJMaoRVXIWDZjGnB1/IblVgmndewihEO5YDfEKFaOrW8gflYfUW0UoGGT/rXl0P6Ri5vtTWf7ZXXxy7BRnPltJ550CbSX7+WX7TorUVyJ21rN0/Qc83trGa5FS0gosDPngG8aPkBCVXMepthM0xx2m097KoXoHMZ6NaEN9jOzYjTxg57X957H5Ash/3YJo9SBK5Hh9DtadbPr7AC5+g0DRu+g6H6a/dyM7d+6ko6ODwsLCi5Eef/In/61cHD15iYxj9y2jpNpKY1s3t888wcbmsTxoUrHF8T2LSUUwXo6i30u8206yTof3XCc3rF7LtPcLQBPJlvLXuFWqpDgxgxHmB0jkRkYMeBhZ6AHOHrgWo7kWFLn400cRcnagPboc8ShMrFZhrdOyaMMuTHESrtINRTpABCnM7j3A9HNfICSo0DQX8fAALw5THN2DLid6+A2gMvJWWg8hvwRDtJY5o0ey70QFZ23jsbaW4EtIRBq2Ye//jafSoFNZSPnpKL5p/4wlMi+y1izORp9jelIc9cU2bo3sQqWQI0NEmphIeXUHI84exb9oFKpaD1MmewgFVRw8Fk+TMZ3BjioOSpO4oJ1Gcvp5uk8Z+Liqk3ZTiCdj8nit6TMSaorQ29pI9HyEN7IJLSC3ROBXGGhIWEBf9Bb2WXbQViuiiYpCEfJj+uI5auNfZnXwGca0TeT+/Hz8biPhxBxMLilWpY5IZTI/WKsZLx9HZckuROcL7Ll+PSohyOyurziXpGeoayO58mhUEY/jEUP0Kfqoy5jGuhOdvByjZfHcAX+EgCiKGMJdxGjKKXn0bVRSH1LRhXVEDuG0x0nov5VARx5BsYaQOozHKucWyXjiCy/hkAd8MpAKfuqsbs5s62dqQhCXOpfFiYOQqKJp1fVw0OtHs7EGoTVI/BU30drZTkKlh0rbJqTJe6gfsJqBeTcgvpyGgMgHugaqa9z0POzAsE/kYEQKFQNP8E7eTXx7vo2gHK5KtyDNvQyFuxdKP2W+4hTk51+UtPiTP/ln4KIUeXXBgj90jz9//xN8L/QzcdutdLz3Fjt6NnLSp2e+fATdvgDpWaOp8vv44tXvmPuXJ3nUugLBKrBMfoH5KRbG1/1CWFZNKONebtC3oPxOjkuq4fn4q9limszTldsZq9yPUpAgEcNEZnoxj4hHzJgDzblIJFJKjh1HGaHgrehuqvd66Ez1EzMGrq2bQk+pnmciDnN10hQOrV2BM6KA2XI1stZmMi0xlMkb+UAT5MaEUeQf+BSZV0aKdST9CZOpyRiLOhRk/u5BSLRR1I78AeG8kY5dRZxNkKHwapms0PPZlAW8+ukJXONH8u7iEajLNxOcOojErv1YnbkMnDKevOAH1Eri6T1rIbO3nYjxWbimmFh5eBsbwgIfhwWa6ucxzDGUnAl2FNVBdBOWkvfXEUKtVs+iNBNlRUfY64lkdc9QlD+eZkT2pTxz/FMyDGGSHGZuz0mjIpjMftlgxBNWMpQiOrePrlglVlMa/SlZKLscmE4cx3biAwpbtvO5dBC/2Cex+JoNjKspxVf9OmeGrCHT6cEcoaRsUhLKgf9yAkZyXBR+nxePRI1UeAUpawmLSsRwP9KgQEAegSjxoQyex6KSolnyCTtPlbBIe5yW8nOM3VWCZ9tWet9/hwN7XmO690YU1XY81zyKRwzzUdNOQtXreEdzPS0Ji4hpqaOvJQmdGEFZl4aX1WW8pB1EdPJSPnzrGCrVC0wcOpKsvhr8njRkpt0MeSeFC/v2kBl/C/rzb9M84BYAdrT2MTd5BBvbe3li8hYOjx2D8W9xfZH0vP/kT/47uShF/m8JMG9CPpX1v6HQmhBlArWiEnvU03wfL9IWOMxf3GNJlfqQVZ3EIkKipheVZBvhsXfy2rHluDKj8bUUo6pfRyBuMEua8jju13HI8AJq3z4cMoFxjs8J2JbRZ+ik2mgiqmUnWSnDOCkEWBt7nFd9y8kKBfnuxAEKliSSdl2YLy//kORyDfc3dCEKZxh+oJpQ7z3kuSWcjV2AGOoEmRQ2bcRhSKVEpeOBh67HZ4og7PdzWHYJiY4AaH2EFR5EiQJrMJbysByZ1E+U2M7Q1GUkhm04JS4GdDfwzeXVFDWl4A+K+FNngKBEEidH3enF45NhdUVyKjmbphE+8jvMyENg7vHSXTCBR5vqKffCLwPVLLTKKM2aTZTpYbpOPoLf7+dc/TkWb1zMGWsz+dPepECVyMZAA7VRNrQ9CsJKJZ6mJq7uuxRHVCq/nG5k9PgYJutP8XVdCgOHDyIkDQEQcIo0KUUKb1tE4/7TDJZXkyc0slJdzPq1uaycBprGPVhHXEvqiCwQBGRyNVLVXzU7tt6L32WndfOjbDQvo+fHHpZNiKRJJif/yHBkIZH+jEvZMjQbfYOWy1rgtc2bcTgcVEsl1PYGuaK0jphwGP3We1mp9lGkrkMa8QhqTxpr+7pxqwtYrJ9OleBgft1OtLogH3kH4AuFSSoYzVOOLxhUoGBXmxyzQYcptYCYoJxGdyrIJJh1KoSqrSxp345j6xF+vWUzCCKDjCp0nccI7DHjs9TwYFIXG9srWJFy89/F9f+pnvef/Ml/Jxf1+D/EIC6ZHuukyxmgGsTU2g4UyQX0lB7BUrSFVxdmEhF08Hi/mQf0VrxhONkWYPiva9EdDpI47TLkA2YhBvuRGeIpEEtwjLsSQ/Aki2o/YrK1lMSRi3C4JTjr2hmraOcJ9VUUHTewNuNXBliG0iNE011/CAtt2MvtlOd+Q265nDjdWeSV24mbkU1daxUSpQ7NrC+JdQqUKbJB9ilojlMRa2F9aynud15jmSyO/kunEpttZFBLMd2R3cglIRrTPyC0cwtL5rRRWTCONzSJ1Mcp2NhnwGLZQUZ/IzpXGE+HHUXPdlJDfvRCkE/iQiS7LET2H8EujedKdYgt5gnovUGEsuPIQxbUmTGo4yMY2iVhBBqMLzzC2LcWE0xIIhjSA/VEKCK4PPZy8uMz0Rx/C4beyPuZcpqU+yibfwsldy3F/uIDBF023GPfZEevhMhfD3Bd5lGWpMey4fNvmXvlcgYMHcBZax1jJ+YR0/IzFS2dVI1dSrY/HuQWrn1yOtqsHBBFJggCW954iVvXvk4gFEJQSEAMI3odyIUwExq38ZRiNpNWFuDeWEFAo6Q4+whm31HamlQkRccjM2mo7vuROW/tIH7Lr0z78jzjC+MoMtyOsVBN7MR4Wrd9h8SRRWZaPbLSzbz/i4xd86+lQRaFc2AKldY0XFEqfvLa6NjfzPAEM5MmWfHUnyPSl0WFVM0PFSH6JD3YeprRzZ2MNk5Le1E555tGYXJHovjqRTqae8n44B1+s9cj9CgYkuClyplJpzqbT6vbWJ4Zh0T4nycP/Cd/8m+5qNJ4UmMGGW2n2di/hy1mEwZ9HvHulXRpfPQlTUJSf45JZ2/hkXHRNCVnEZJoePi9XxCiRUTbKRpfWo3k3A9giCccCnFespD3zx3g0nNR/JR+FWeyFiMGA+iVLtBJOd4i4hIS6ZUlERl7PY+kjWVI4wpG6A8w3NKNqFsEEiVSUUKGr4Sm8XnIdW4akz20zn+cxmuvQVh9NYbP1uLXm7Aj45cukTsCU0j1qhkQ7EKPHb3tPWypEURpx9B2AdKd7YiLL+O4ZgCx3n7u18lZ5u6k36KiK1ZPZ1QkbSWDkfW7GBJwY5fo+bU6jsJDblJ6t+HOGIy++Cfsb36Orn0j6HdwxhFFlFRLWmOYWoUckBE3OZ6+wUMIv7YXid3M4IJ3Adj93RZsFVKKf/iBI7Vm7O0dnDmxkra2L7k0SUXYHUBvyEI98yqiZEqem5HPA9Thq+/n516RM4o0up2dBHc8jrevk+q6fsRzW3B6BSrbVQi9HyNIqohMz/zdsX8tdrNWrSEghGn84QAdu9+k49tVNJ7oYM3TD2IX3dy9q5qT3W5687uJN+wmfqoKh2k8Eyf2kmRyEhMTQ9juRlBK2ba/mndni6xOqyf30myumDOA8j2VtJlMpAZXI204i77jZ6ZPOIhW42acagj9ASXvGr9F6XXzUPhaRptO8+gluQxyeGk+quDhTSKJ6WlMyoinQ2ekfHIVC4bHIJk1ivKPG6hsiefUyuuJTRtEVGQUzRVtNH7TQ48ygfayfGT9Fg6XOn5PjD8L/J/8f4SL28lL5VhKXudy4xBSsydS40lBUDWhPfsXwoU/YiGMdNFoTCljyK2q5+sbr+eqj98CwH6NhsSubPbFbyfK9iODzvUQlzCLIWYtLTYfi+XRaOQNEJLgdLVzp2Mks6I9XBLbz+22cxzZM5RZCe8Q7awjnDSeSKWZ3anzMdp8xNX+Boocfmu3svZ8BrcOfpjOR79DI0pBFPGfrMYpMbBYXERPIMyEAJhlAi/5axmCivOhfCaIEkL1BzH0uimOmk678zhSYSgDXF5kKhlZujKyvQdp645BsjMPqV/Jz4MjkZZLOemxs2LGEZrs8Hm5HH3TASyn3Hj7rLRNLyXL2E6s/kkMoxMINhXj/ekopS11jJz3A64zpwjLFdQfH0nemN/NPH5ILm2ykfTUVxDbXEH50d/Y2TiaKxat4ZN7zqC9TMfQ7d/Tn/sqYr+dvFeWYpjciteh5daTDtoO+ElKBW3Axrjbn0PQmBCcM7k5KEdliCA5fTN+//fwxPcEQ2E8gTB6lYxgTw9yqRTVjAEQzoGsecgDKu5fs5Z7xKepbvfQ2usjJJPhjnTRI3Sie+gm2rPNJK2axj2dpQSSZUx751NGRjjo67WjFN1IfCLGwy/g1s3B4KqhTzGG6rgbmNBaRG3BAhIKG5h6UssmEknWDMQ42Iin3EptXiLvtbSxXDmU7Q4lXoK8UFLDtVHV/NAWS1PNWF6ZqkKRkUFSoIH2O3IISgWaxi2AsQvYdK6XFAOohTa6YnN5eu8FpOEwtxj0kBX/R1j/azGuP9fn/+R/Ghe1k+/1Bdi69BCTNDkkqiYQmzmR6IeNGJM/RBAgJuEQ777g5siGKvKabcyLLURqjaH12Axc7pWEI6ah8ysxy9MhvhBB2s9KZxU6n5ot0nn0nvIiCgI6QyLDo5zMSVbQnDodaSgCl09Plzya7qgopN4JaKzZhGUyumK0qJRWEP08JVnHNdNS6B88HvWFKlJ/3kDk1VdxbUwcEr3AklPPM6y9m3rgIec3KNUO9GGRo18lcvhNNYFtQ5GkJpDT+AQLqx9nNBvYE7ud28N1uPwiQalAfcco1hkU7L8qhamHfuZnswtZCPAoWGRcgsEcy9SYDrqv1qKdZCJfPw9R0cCQ1gcQD39Cdyga89w7iYpQIpdK0c+ejevSNTReCFBR3A6ALj8PhUSgIzaTVyQmzkVFEa2Ts69TD9kqYqrtKNZ/jmpBFo2hGvpVCVRujOVQ1sv0hweBICEQlQ9LPkWii0SQSMAQh9YchVQm+0M6oKOjg2Pnann6+yN0dHRwKDePo4uX4AjYaOxvJazQ0f58Mbbf6jhY0kW4qpOEcCPZg0fSbLiBVNlQpKEw7ooeSlpiSFYPZ6R0DGmKNhT6VvKHj6cukIZT1UO7LY22rGT6jNfgFh7kghDJLZFvk3f+c3KOx+CS2Lnr4GVMcJxm5+Hf6Gy/EzfpDNDrOBd28XLMZvblfUabPcAnLXG8OqSD+mmHCWx6Gm2mnvIHPiCzsZtBdb8Q236E6K7TjMqM4ax+Nh4xHnNXJ8cfm8a6kakoQmF8xXX8Tdbp+++/Z/PmzWzevPmfXkPlT/7k33JRO3m5RCBSlBCyLMdTVkV/9R6i73iSF8wqLPhY3DwY8HF6Vwv6K6NwGGSYpSIRyUeJ1znY19pFgUuKvziKDn0fpvR3CBmXc8Et8vGpEq4w/QqN8YR0V3P/VdfybVULU4sexR2TxOgr+ugOxpJ3QgGyRkRtCoPM35LR1IsY1Qtn/4JCAP3pHURUFBPz9hpe3rCBbIOGsM3GDe++zejrV3Dd3bvYEfkAs623kxj8EalEJGniRAS1khVnGvll4EzKrecwqKehwoOubxfbVLPZRgpJ+xq45eokhqQLxLS6iN+zi2vPFKGf+zgdZ4ZxZMJO9oybhN+bT2xpC5/rHqFASCLhw5EEes6RZ36FlJPr6XDmYrz0d/30pDf+wp5vvyN5cCy5o35XYhTFEFIBdBo5ackOdp818G1BI++YJKROFHB119Ab2U2yUEhTVj71bzyNI1hNfks+joJECt/+5D93pBj649ssi577ZuUAkHfud+XFE31HqWypJuHkOBLMcupsPmxROpJEN+e8CVSedyHK5Hx3rouRr/yEJSWSeGcV7r5arNYIZskyabNKebDXyYzEEGGZwP68kVxeXkx53CHaChYR7tLhEWVU5mzAMqKPKN0KiquOMePcx8wA0rxfc0VUA4mOPqyJcXjkqZzomEfJ/RMxmzRIgl6CXy1F2VLElwM2UV7TzmMdAfqTxhKl6STL9Q6G639m5uAx7P3pKJaIXhSSYQyxn6A3LoM2uxxJt4eUmP/sgLY/+ZN/fi5qkTfIZYzu78JVsg3tdSsInz6JtLyEtnmp9MrlLO1U0Zl+gKyosaz3ioT8ETycIKDV1YIkli8S5jGY6QyPrkQbmUOHREuktZZ9+R7ijj5JMBSBXVGIsvUtPDUartz4JuXWFFoq9YyZ4WKwKAPzKsS2NxFsfaT+YkQYdxfdJaOJkJ1BMWI6i8q+p3vq41ilfRjbMhns7kXlsjKx4wjxryxCGvCRV1SNViLHYxxF0O7jLmELjuKJbJTBDy1BVLl3Mb5pIzF7vueLnPc53byBasM51kXmI2E4okSCr/4ke+6/iWFZU5DscGLKrkAbsmHXxhLRs52s/h2MmXMKeffd9E9dSrfiSgRhA6ljbkM4thFrspLw00Pp+8FF6dwlXKb7lBNRdyKKIo2NnzNCtJKesYZrMq5HZvwEp1VGvf1XsjlCvT2K3PipNJ+NoLFyN7kDnQxOlmIZr8HjceBvbsZ58CDmq68G+F3Z0ev+Xc8FUIg+8NpAZaShcT0+Xz852Q/+4edh5rE4iyJxaOV0pTQwovohyvJ2kTU8h6Pnu9DbfOT5SkgUm4jIDYHNQ8bYR4mvP86gSgfC3miEHAMPOEPkKM0ckDkwegz0d1/gTucu3pS30x59L9+oy9H1i9jN47A2uzjZeD2xiXZUOi13JcYRp08j9fgusnsa+WHsIlyFasYeWk9Jgg2rfRLRurv4OfUQ+z95Hn8oyB3WEE9c9TTB/CCTfM3w5QhOLC0l29dNrKoa/DOR2+2E+vuoTo5m4KZvYeXfnzD051jln/xP4+KuyQOMHYd27DhEUcS34HpalDLGR0gxhHu507GG2xb9RBCBQFkf8f52ElxBrnixjG9vG8C84vW0LXuehNhOfI5oMsTtBPVG9qoXUjf+dZL6csnsSWJnepjPv5PxReyNVHQn4AgpaQs0YpTVI4aCCIqRhFRJ2JK8yIffyHW1lzNDdRXTD52mIG8gESeP4NOt5MoLn2JJGURYq8NAAInLRcgT4GRnPxWqVuZ/8zmCXEp9OEzA9As3OyJxKwsAP1/61MRn3E6nTKBBLaAKDudt3oOvPudc36VE799Nz/dbKG/xcqrfysr6Z/D2TOCywJf0NbTjlwoIQphQ7E46B71NRKOD3shbyModTmS8ha6OH3HKEhFVTbTkneJ9Ong+1AeA01mJSmUhEOijtbaPhpZkvKMvx1r5LR55KkOS76Gr6gzygJ4oUzJeWRY5mVns37+furo6lqbKcR29gPn3Gv/78szzhZC/CMbezoXiWor3tHPn6eM8Neo15JLgvxR5dz9hv42RUafprWvAlGRAdb6fDHsp/PIC/emrUUg0JPprqDZm43Za0Xa1EXhrONclz8F64AxV02bwq9WNptnJA+mRaOw6wlIRq2E8d5l89BsWMN+lpi81H2XTBYRaKSklG7h8bD27Bl2JxjeStKAE3fHDiN99hG/vHs6fK6bA345G4eD2pzcS8P5ISnMVIqAwFvD8Pffz6EffcsWOJ1H+0oAhFIlRZaKt+iiSoBkuvQ2USjzRmWh6DUQd34tj5yewYD7ExPyx+fznWOWf/E/j4hd5oLulH7vzAgnZGWBWkWV30dbTyupRGzA4bETGRLOqtAGZAPuefZYb7r2PhnYVPR4tl7RtpD2QQZ4lGjkSwqIU3DtokKyiIFTC4UQ5JvsMzvi01HjdTMz4nlPaK2isVZBoGY4+3AbGiUgFgSG6JE5+9iPfSBdQbYzncO8ABjufQtaxj4iEXtTx4wgTxtR3hta+OTikmfT1+dk2MZ2D8hiujj+L+okLzFnzNhKkbP/gDoqOdTJosIUNujSKkXFHtIEI1wKyTiwjFHQikwg03rSGhIlzGNnay9myXnrDMuQ4kDj3U6tbToT6axQhkf6uJBLVWtJtdgQhRMWG9zjzxfv8NOBGxuTP5ZKkKHyr3bTKPiEkSMmceg1K5SNMnfohSrmC6sY1dDcUozbp2N7dywHfMK6tlVITFUUgazqjNt/MFZ6zlET8AsD48eMZOXIkoRN9jP72Y0IbfldXVCgUsGIrSBX80tCJGBaICYYZm9yDU/UMU/N+l3AO2zwIJS8jAL/2T6WiJMCqaXO5+3Q2S6PzmSHWU1y/Ho3MzKWKq9G45Zw0qJnQ8Az2sA6zNoB0dBqRsrPcMqqN5rZhbGhrYWSMhZimSnr0ej4Lz+ZdhxK/QuBgYhrT+jpobAKjXgeGFhKsexg/oYRQKIzM20fffC1tNdUk1P3C++uP8ZIyHr08huVrXmJR3XX4lN3Uam9Co5ZyePcmXqhr56GvRtE24WpWPLWBG359EElAQf+XzXx+2evEDU1GbXHjU/pIyh5Pw1erSZz+OLLBhX8X43929H/yP4X/kiJffaINESPD50hRKoyssBhxbX6Nn2d/Ruq9dxChVfPMQ6/QdOI0utogbS4NvzUN4LqFDZT1x+Lz9NHjf5OuAQ8i9J7EpXHhR0uopRdppJyIGfdTttBMoLYM6sswhC2oZAGkThtb1BOJrv+B1CQnObZ4jIFGZKIFJAO5Kn4u7n4vaokMbUwMoUYJAhK6owv5OGsZZ+weBsZAokTNp7X1VAwex4d7r8RYbOCSu6ZTeOkjHLltP23VPVy7CDLqf6I18kra87PJOiuSNWory5pCPNS5kWDSAiIPXkJmxky6mjv4+OqHGReWkNBThJ5OgjIpA02ZeKLiee1IPavs61isLOUF3wIGJcqJNcmRf7sbTUkZv0xeTcJfVgLQ1NSEePZb4iav5Nv6LlILRhNVeoAb23u4qeUDuk0LULrtBLQR9Got9KknYIgx4g/78IoeDJoIiC8hJPXT0dH7d34LhkRGRBk47A2Smx7F9U4vVFRQ8thuxt1gQSH4kSmTcPntyKU6knU7qT5ayPKEWMq6uhk+4n5W1NQhkaih10WqVEpuYQqN8W+jUvrxl77ON0NuJ1IQSe5ooM5gQR6tRTy1FbM/iL+vl0pTAnWBEJPry5iSMBmZuQt8AzjZ0UySN42xiokc/62Cc/s6MQWlzI33cO199xJUOZDo1dz76kfknKykrPw0vw33YlHoKBw8kMjICQA8nB4HlkL85hB3XbOK7upYVrw8hSFjZ/H4sRe4a+E1XMj0I+1ajPO7D5mi38e6vidY829i/M+O/k/+p3DRi/wHpxto0whcF6NHqYjix6/LeUHp4c6Y61h+YCPts2cSeesqMoJdBKxN1FVOxhQbwcaq53DEj2PO3p+pHZJDQmQUueIB2pK6mduv5IMIC04cWOK6iT+/jt1FQTL3HiTj2cWMdv/EPvNoTkgGE9kvJxRvwGHSsbG1igZXM5LAAVp29FA0dBEStYk7Hn6YcDjA9p9e5e3XvkURE8sig5Z5fWU8ozDQJsLCCwZSGkzsvzYRSW4vEkmQnO2nuHzQWUYNTSC5pYJQr5OY8rPYRhTTO34FK7z1XB/VRK1CTZ87TOEpH+5dh+mMSiO5MRdRUUb/mz/RUQ+h3AxsBb1EGfO5bkw7I7afQinzce0YB1FmNRWf7KSurpE8v4/wvPH0dzoxWXQA+Nrz8EvkSLDS4InAGZeJV6lmfl0FsepoBoWjqbhQS47SSmjRx+RFRHDWUUK9q5o7R9yP39b5+3Fo/4rmHg8na+1MLTDjlgrss7uR9iZQ89NzOEUntQE1q8feTt+XBvyjLyHjmmU4Hv4QoeYc/txBXDsmn5N1dgTRTIpZxTmNAX9AZCyQEqOhvdyOMnUOivZOLC8+Q+Gvm5C2dFPdHKKyN5emmCYKYkS+qj+OVxFLa2YuyY3v0ra9hciYUjyjD5PYtBx/WE2arYK+RUMI2iJY9Pq36IP93HrjndQOGs1l7R8hxnkY3PIxjzTFYxi0ijGvO/hw7AWCKhVTp6by9bT3iWmajmiKQgzfRfjou+zZ8Su3Th3LE49+iCNKxuq/XEl74WyCdZ9jcvnYur+RwhQV4qZaYpbkoUg0AX+OV/7JPz8XdYQSQKKSkZRkIEmnpP3lYqJEkIshOkZMpmXuUox33Ib8+Is0/bqVhl8F7JEO1j78F7Q6LUvzQsQMMzO66hy5wxQEo814zGE2uluwnC6mKDCIZxnAGUeYGdqtOFdkEvD0szX2GrpNA9Er7Lg1j2FWv0nW2RfRyrXEGUdSq8pnWO9nWNFjCynp+eI8oZCLWf1qlF4PL7/2Hi6VgtvkKbwTPMSRE9cjyz5G5yAjuadaGH6uAlEiZdpJNyk9w9H26DD0HcGqWEqvPA6sAZy7xjBcMgGXfjzOFzejdvRwevk9VNy5mAvPvoWgtyA+tRt3eZD6GCO1aancfvISOjp/wd/dxK/j9/JM1p2ciovlmHiKZONAZt/1Fql3rsVSd5hzhxv+sLEsLwkEGB8nQyZAnzEKp1bPd0uL+TD5Ggz58xl2/iMeti9DqdHTazvL+ZqtzI1dij8UpuOT5TTt/+Lv/BZrUhJrUtLr8uNz+JmSaEavkpAx7R4ycmayZPDlbGzoxLZ9O33nSjF8/QVxtGPa9ikTp6SiVckIBsO4fGHOnGqlucNNY6eLznWfUrb2K35+q5zwrirG/PQV0VIv9NdzvOwMAbWdZqOf4fYQu7u05AdDqALVxBy+itOVrdjL6hGOnkbhD9Ei2tDU3QnBHvwKNX958x5UvhYuHfcU9rhc5KpIHE4pfrsLgEWZT3CgZyr+kEggJOKRy/Gum8TQ7+5EIvpQmTsQbxrOj+4CpGErH+7fzzVfbCPkiUYQwwjDUxBGrUIfmUSEzUX7ufOEO720v3eGIqsT+HO88k/++bnoRX5lbiI35SbiqnEQ7PORVbeH34z7GNy8g+H1/RxubicYkiDrTEBpGonuL/cSlf0bbncj6bPvIGpOIckvriQkhwDH6KxIpjbkoSpKYIN2Ges1bkYYldRFTSJCksQk6WxW9gYpbT1N9uChDCm4g2T7CADEnpeRaIqZITuIOcfJWE0S+WMnY64bh/yj+QRScwEwnz6D7tzPPCDW4RBziXE1k2J/hVHnJ+Ho/IH9eRPxS2Rcm1aNUWmjP6RE2XYMs+9dHC1+Atd+hm/Ha0S0VRBZX0bWdZMwefYxqGojH4d/Pzu0Lyyj/+rLMa1biX11GraB11JgSKPDNpK+/oFUuP28F38Zh1XLIFnN9huKsJ110t8UgV8XQe6IxD9sLEuORCFVkqHL5tDx58mssDG5tId0ayV37l2O9Z3JfGJ4it869JxssnL8xGLumPM8yfHJKBRKuPxTGHL1H9ez9p/m2JGRFKYEOd7Qx/oD3zDv54mEfA7O1uxmfOwEapwKzK+8QFt6BT+cOc2nX31F2qLpxL13DX3lLwIQ6H8QmX8H285U8NnhCxw9XM8JazTpcV6GnH0Lv0lF+ht/oWntnSw5VUFiehz+mjomaLuIFN1cniTFn6Ykq2InKl8HhV0buXv8KnqnXklO+D5GqDUIUfdSFn+M7+6YhzJ0jg1L1UhUAhcOHyJy29cYz69HW/UjPGkl6B/Kpalmqu6cxLRL8lC4ZqHsPkNeYCfNOz5l1LD9JHW343I4qKk8jGz3gwQBlXiOz++8jhHlO5FL3SxwvYU/2sC6xnaaRj/NjulKaty+f4j9v3X1f/tatmzZxU6vP/mT/20u6nKN58wZ7Hv3Ypg6leMRUqLyXAytf5yqrlvpj8klKhRkmFGHrDGRnrR24q8aRZKqAXvxbpQKDXNmX8ZTN1wJlf2MzhGR6ZQIQipz7C5SzGpiI36gRJNIfihIV9JSMjvaSO6/QL1pBMdcMrZUnUGydzuD4gaQ21+LXTsRY7wBYufirdlP4tmfiJR8CISh8xwrdryPSi7H1G4j7PucAYV51IdvoaRwM6NPzgWZkmhpL7ZWG2IoxLWnI3lffYihg1dR6XyCBtM4vMZEMr/Qsi8+nemjs6kvi8GpqycgTeMdbQYRlXJSD1ZwYkkJTYOkDANGhGfRKmZyYwaohj3K6Z5+3Bea2VD1BJZgArXSG0mdJNA2J5V151rIjEvkoSQjTr+H6tYAKVEqREQGfT4ICRKy2vPIyJqK1JNL0dD3wSdh6vBhLE9MQuFsobQ3HzHYRGdf5x++8h58ipY4PSbzOLQ/3k1GsBtXgYPLh6fx87kzrFa9xyBLBAPj4xDadzPWMpJz8+cik0B0TST5+YPA58DWuBGP4MT640sI0W4kQpD3otp5u16LPhxk2vNzCe56DduN45kQlUmN281LnhSs9NHw0xcYTUPxxA/mbMpujrRYGegSUQ17loOCSJR4mtpTOg7rc9C6ZSR27kSjmsW7T25CptOyZUczPYe3s9B9nNJOgQnJTqypnxLReYGgvZcIRRW6OgU9v3VQPvwV/BVqDo0pZH1oAqNkz3H4sIu8wo+J7JBgqarBLjSgat7M2sfVrH26nPtffprNz1+LKyinqOochZmj2XHeyzPO+Qg9T0LvJli15w+b/tulmj/X6//kn4GLWuRDvX20P/Y4hhdKMPcoID2bYymbcEhjkLSV8fKFtURe6APFVRR4DJCYTEjQYOhK5MeFC1j26QcoxDDm0H4+PjWA9kInm6UNmC2j+CxQhKCLZojVR0CfhENMRRUfzefnnkPR9RnE5tNd1Ikh6wmQNhOOzcQY9CHkzwVpP6XnpzDDuRKZzcVZ63xkqnTOdx1iyYKFbBpfwNhzj+FOtpCw0UnYAa6caUgtmbzb3M6TZ6yEAz4eL/uWSV++ifXuCYRKJSTzEd0vbaDmvV85dKIW9bEi8nUDKPAX45d9icU7C1VnFkaFhNTSQnoi4/BWXU1r1ou4YyRoUowMjjZwtqEBb1c7o9Jy2LsT8owKlAfCSM07GBFOZGbJAawHz3Fo4tOE1BpcniB9/hCShPeY4FmHNyTDmmyg0C/BnOolwjiAiIiU351S/RvDg+NQKEr+8JMohrG6fWicCrRJGag6K1EaCzlQoWGW7CQvNd5OZ44MSVig/403kIRFTGtWM3DOTGAmubP+eiG/m2Ry6euIY0eml+l2C+LgNE70W8hT+GjRyNhU1smS6bdRc+wV/uKpR3x5Du8c1tO8aBX2hCyiWqtxDvBRGefn2yozj4XVyFQ6YhHosizi2CSRyP2f47WeQ6mcyvQvf0CFn7uHTubDO4+yankP0jPbmaQ3InZo0Rz/gk+XPM/1Ja+Tj0iXfygBi5MyIYfDWbOZoZzI0bCVbO8JZOouairnYVIlEd93OZ9PnM70Awdw5d7PCy8O5oFHH+JK2zT2myO5Sl6D5tRXPJrdCoaV+JpUWFWLkZ/bQ0dYoNrQxrDWGhINeTBoGVzY9G/T40/+5L+Fi1rkNePHkbN9O4TDnK9qQhIKcU37R4RCChoz55F04QjeQDyqO27lwqkOjrxVSvKVJdz33hE8cjVDjRZe3nWUvLwhyOUS5iTomHVWQYOjjhjL76/0t8QbSc9fzQxRxPFbKWXJy5B0v84QrZmoso34k9QQSuGl8LOMlQ1nsiUe6nxMGmmjVr2d2zodlCvV5Nx/OVYxmcxLBiOzv8XarmW81PwR/eMeIDrJiE75CLWnW7lB3kVzwVkECcSNVuDfvYHIrG7ODHyUmF82IQkGGNj1NjcXFGCUGFFI99NcYSHO42FIbjvhxQI9R6Pp05sJqqT4/Br6T3VimZOFeKEe2fmnuL58E6EZjyNxRDJicTQVzRJi5TJMTglWVRMb41VcXT6T3L6jpC28EplUQCUViFcb+GH6NwAM+nwQizRXsCxxPkmJvy9DJScn4/f5CIU9KJU66O6Gn38iPHkCW3c2M3DSXExZBt6c/yQT795Mculj2IfOQvBZKJiQzJHKYYSeEdmzV8UTSvk/OlyhgenP0Vq6G4/5JBqXBuvB46jVC5Hlm7CZBIrdbia9M52Jng5Wx6cwTZ0GPgf+keOYb/8VpzEWgz0C8WwdHa5K+kbMZWhMJBWu3w94Dx0tQbAZUErGceXHHxEZaOWlcdmEqOa8FMT0xXA2ACGRgOokMo2JATUOwnIRlGooTGX91+VcZxvH3coA68pbeOqGFPI2DsWQdpKWFB39miYq8oPMK9pJVOcxtmQmk+N34woFKX7uLm6e+Q43DYqgUXuYrtYwyfqRnMgcjt2gx4kXpzKEs2gLEy0qXP0dtLY6ydZEouy+wMzUWEyjJv25Ifsn/21c1CIv+euZmN6d5SwG9uQaKYuciP9EFV6hhNPTdiNPjsd4qpZer5bIFLBUnCUz/jy3Dv2axMvuYeJDP3GhvIwnb1hKXrEMbVwUA0/ej7s/A0liLHr9eKjciti0n96+IrotbQyr7qe6K43o0GCCpZfiDQf4IdVAX8DGZOER2P0jWrOMbt1Apgs6Sp65hwjRxttvf4KhexUBSSP19lnUSHYht03mxkAa24KbkaYa0evUBBpDaPAwg01QsYmmNfUM27YNbr0Vi/5LKqS/IQlsoDxhL9F2NRZO4Yl14Q9paDJaCUw5SV//MfTi1zSHF5P+26tUDqlgoUWKKJipu+wu5B4b52KMGF1awmYD9ejxj9Az7bWbSfB0ENSoUJa8hlNdj2luBip8fG/ZTTCYicwd5Iz3Vo7rx2HvkvPLa+fIGxuL3++nseY4zR0/YdQNBLkcJFKkagNXPvkOYVHOqT21qP3RKLvaEPq7abz/eWQygYRYPf6TelC4ueuR/Rz/rZIRk3PRGX9/zf/Ezirob2BYwy3E31TKFV/cj9pWT3BBKeb4WFQWLe0tnZS3bkcqdJIXCHPHxhBtyyeiu2M6006XQaoSWzAackyEq97meo+OrT0zse8qZ+DEXzC0ZUJkL8u+2IDLmIJHY2TtNAP2kl4irxnD4kgTwZPVIJEjDbqRR0QRiJhL24Fo+odaiTz2Kv6495FwM8dcXlLUGgZeAXHqbQRXTSd203YqLwxHd8KKbNlkJPpUlueGmVfvRiaBLzv7uK2lBcuoEG6PyJuJT7C46zzGkh6iB/fxct/bLBr4DCG6mREuw3jwJIdm7GbfuU0YIjv54LJZ/P/au8/AKKq1geP/2d432fTeKxAglNAJvQihKCAqxV7AriiiYsFesVxUbFhQsCBNOtJ7SwgkIb33ur2/H7h69b6334t1f5+ym83MOTM7T55z5sw5mp56rnjj7P/yMvPx+bf8T4P8j4eTybqcvLHlG3bYvPRrtOFNqyPA3Uj04YPsO3QIv6kPk3N6DK3q3vTwk3LMLGKwVsHMh26hYs4tfLD6Y1Yqwth4XQBZYRJebJQz9sxa1LV5nERHin8vOoIjkInryA+9l5QmNWJBxEmNiIU9l3L+cA4bYmcRuecMXzgOkuEdgad9PSeef55xMhWPXbGKMy2NxFY/ikrRxbOZcqLOTCBifA+q6k30d0xic8NJLLZhhCpewivIaXarEUQCayrWsUilp8nsQS32x0/0KPWiOII7O7jepCM0qh93lWkodicwJzoPpTOC5qKr0AUbEQZkkzRBy5NtO+nlicEqLsTtHohzRz2m0X60alLQu+S0B7hosneR1a+S5k0y9NZYxP4gctUBCcDFIZAej42Ut15kgKqOZcd6EHRPbyLnJYLIjUqjRK6JIlGdDSE9QSSBGy8uiKHi4pJ9skNb6Ft4jPTCArweD1UFhbSUXaCgphu1W5/H7vZyrCwbV7gLz3EBmfVzmjo6SU+NR1RXQGHUUtoONNLf0oYgiLhQ78TWWk5bqYGB9gZUwmucydATur8XfTJtNIaeprn5WmoigzFIvAS4WqjPfw1HhAKNujvPn65kOVYOlhciEsVx5atrQQoP3fwCdSmnuFDoIGhiPm2SGWSdegZ59XYcA57B66zgEFtwiR3kSN9ByINn5NdytyiRRaEiVLfcxgdFtcRUdiCIjlErOk3gdZu5zCKnOu4AfuYmRMooWp0hbA6GHGMAR9LSsFpMrC2YwoiZM1ncMhrVq69QB5R3C6LKeJZd31XzaEwenZLF1AZ/iUSwsL92BUGmTAZ0H8JAUe7/8hLz8fm3/U+D/I+bpDmD0ghVypmTGoM9YCnVPTJQ28sZ5B1E1PBoFh14nR3Bl3HakMXCs2bUYek4giZwq92CslsS4df3Z9KKYia+/xVfPDab2MC+eEotiDOu5tD5E2Qag0nSjubg8RmU1vizMXQHL3nW8ULSm3RIdbjcAmu06bgEMXmyIIya7jz33OMYvE7WPr+aF6rdfOUn54EgK92NTQjNAutqshltrESXuwn/zgFsDe/N8LQ6Yo5+g9fjwN+vFxLjYcLUo/BE70DfUcc2rkF/dD/iTBlDPV8xzZtBqysQmbUeSW0128QT6OlWExTkBc16UkRtSFwKLguYyqrvylg8IIOOeimHPUMIP9OOPCABk20v9REOtLU5CPa5RL49k9xqPYN155GvmweTKxGLlYS559H06GlcsmgkCgPScCWKYA0SBTSczgW938X5aML7/HBevB4vjhoj8mgdgiCg/vZDVH2TobmEwzsOIJdKkSqUpAulqIZ52V8kYWSzmtZQGw6vFJFbjMQQRKNCSfb8Oyk+XQuVHYj18/CMH4nYuA9xc18EIM99DW5xAhUb59NH8wgS7NhkDyP3/5A95T25fMI4xAN7Er2pGOwjaZIf5RHph+wyDKFN4uH6T98Gr4u1a79mzdpc2jPqKdJp2LdtPE/1asfdWoUXEV53D5CL8PeeoMlbj0tQ4XYL2Fsy+TBwL9cpxmB3uzlttTKg+jESq7eTP3MR62pWYXpoHzOmJLOiPpTidg+Tr1qC1+HhuZKXGT4+iY0DSrntk0buXfwZ3074ippJQzioGkhnzw5uM83D3xRPrllDmFxCRcjttHTt45Gs+7C3JdDicCHoOoFz/8vLzMfn3yJ4v59P9R/o6upCr9fT2dmJTqf7lzY8oW8STyzbhDbBn+JGJ5/ba8mJj+Le8loSvS3c3NjMqdpWimOUZNXnEnisiOsST3Ei8WWsiT3p1b6ZQvd4Hn11ITJjEyqlikXX3kEfmxuL20ZRgIcYjZFjBQ5UaZG0Kz4gIeZW7j+0FoNYT9YmIy6viOtzruGyDz7DYbMS03WYL6aLWRY2l26mg5iDbqFOkkz/lGgWbSii2ebh+t6FjFSM55P2Kr4L8qdDreDpw49z15PfsvSdJ5ijFNjbZy7xpfuIoYL23e24vv6G8DffoEHTyEaLBHNhNQ/GNXO8Qczs6Ct4t10CeOhZOR0hJoEFQffjKNpMZq2eRwY5sEp0FCvD8Ber0RVrUehD+CJeR+DxYuJfX0zAx7s42mxjZL8g1FIP5dWryMp6kOIvcmnckEv/FTOQiSWIVCoQBGQyGVXLX4HUNEj76aLUjnozTa+fJmxJFmK1FPO2Z1AeeRm7VMnXk3aSWHaGrKkzaShq5EiDnfF7+iD3OvhTwxqkUgfdE8uxRV2GX5KeXt0CEIlEWPbvxdzRjl3bxmnZSDy2u8j2DKFJFkC+dAKjirZSGhpBiykMsbiKpG0LqQoaxmDZZtzT1nGqEbxOAanNi9RZz96gSp55/At6a3Qsf2ow0Zve4gHpK6zvVONyibgtrZn7Iy6A24n38MqLbZpBt2D2qDmRl8lwXTVVTQF4xB5UkU0Yhs1GGhdE7IObAS+FwU9yoPtI/BtP4p97AWfOSwh4UJx6n6iOQziXtHL407eR2lrp499IvSuQe95bh6u2gEZNJpUvvEXBqcuRut3sHH4EDwIusZfBGwoQFCrClwygorOCCG0EUpGUMcMnYrFauWBxMLJbpK9/3ud/4l+Ny5dkWgMAr0SB0+6m+XwLglrBPpGMCeUWlm1uIDu6mWK5kUiXmS9OJdKkCuBB/xJEePhE2skXNhF1Mgup6m+58c23MYmCWHNVf5Y8/wB6TRxj5gynrTGORQF2hoQ0oKiPY2OfjzhSKcFkWU2dqoDyU21Y7RJ2V7yNTtTFbTc+wem6ebQ1H+Nr83jc4nHsstmoMZkZmiJwk/sMOzR2nIIUQRB4buIgFEFaRh4v5LPRz+B6ZhttHTqCypagrF2J/GM55+dM53zVCa5Y9xX6tHQOVTfzUkkN4f5+RG2wctn9Q3nGvJcH9oE+cCt+qiBekARxbcdDDFfeiqBZwS63DcE2lVhVF4bKNuQqJ9L4wURIQ1hUbOHAxCrE2nompaQjiC520bjdJpxuF5ZegSQPn4SwUkpFZSUqf/+/fS48XmqX7EUdUYH/EBEbOiJRLTvG/GcGk2ubjDoxkZpwIw6lhoxJl/NNYzsdu0qICIe2wD7IXe3oJkTT266n25BJ1L73Bl8KdVhL56DSytFEh9MmkdLffBSjXcyafZeTk30OnaOVik4dMqeNM/Hp6MyVFG08gqgqDZVESXvWraw4m8flaj0WTR889lY6JansuXsx/aUG2sYtoF7pRp44npdGD+AlQxxb1q9ju6EHy+1iZgs76IjWk1TVhSAI7AqfiscfTnapafZ2MpxjqJIHQFwQAAO0zXSYLIhcvcn4Loog2Z8wK/xpNrXhdEtxq0LwdoopqWxF4gavxA9pwctIry7hnbGjOXP2Wu5/VMzrgf7ozR04xRoSgiWUmGroNnsO9jAN5kUvE+C2U/7OEGLMRj4b/jx3vPgiGk0bqsAePHX9nEt1yfn4/E2XLMjLJG76T0jCZnViWvcoh41XUGRzUWhTs7NVT2JCIQP8pEyqa2FqSAPBPR/gmCSCqVmhSLYXkhOYzS3WuxljgV2Bk7n+xUOEd5p48aVrWL96M5VGFXsUbpbdcyfdnGLuv/duVJVGJGIBf38dobJCrrzqS6JiQvBceIyZF7zE2LT0uqBCntDC9HQrd6eosPRMRebUUyaCu92pDJx1Jbbt+bj35SMe35sDWRczYZ1XYEjjQZB4cDrMYFcgO1BI/INPE/jnbHlCVBCfNz9Oy7lmGjw3sbL4T6ypW8O8tIVcq1dzoXEG4tyefKI5SI0ykiuCpmGqLqejLIutSQYmpmhJqjpPeFwSQ6WBLE88iajUy9pH72bO+9sBmDVrFlarFbPJQa/kOAQBtH5+yDQ63C4PYsnfeL7N7UEQe5D7t2MPGkpx+kYmBV+BzeGmHilBMjEjB4xDqby4GlKXy41kRARKSxd1rkXURkpw+WnpnhJBg8XOIkMvduuHMsVYy9PdslBoJbTlOdhdlsXbxk5uC7BCWSS5PSeiLHuPzT1yiLIcIUZTSc/+0D7tRdqb3LR4zhO6diutsSPI6vUpU17aSaVdSpsqgNy1G9m96U1y6/tQ2fNJPA1iBthNWAND0crlhDeVk+93BGKkJOqnYmluoi3GAHIPHf4BfO46zYQJTwPQYLNT0mJm3Iyx4PVw+rgclSsVseFV6pqlHPvWgCREjiZkOGeGLKb9qyoczWlcr5uGZfgdRCQFYrOl8pTwJLXyD7n5mvnkLT9ETrg/cSozp8yHacqOJTNMStjhSVQ0DyfbbMTjn4RFGYC/ezcq4xay0jZfqsvNx+fvumRBHkMiJ3aV4nI4GVKxknohngRbDyTXp3O+YwcOs5mApmrmJPdAtWQNwSOPEjwxlZo366jy5PBqWxuJC89TtXsNIks4Iux4Ebh/8QoGSdezoSWHt56YyNIn7qBW3x+H28FzH3xEz65TGBRNnFG+R5z1FC/v3sjrssO8oYknr3wq1dGjedhvL7dETCSg/l2GWl9lYOTVmHqdYLuokYFciVGQ0fbCg4RI7sFv2jQAVCoVE7Kj8IZ/xOjEEZRmbaG2fAUj0+N+Uu2ksGx0hsdRJ+1jv9fAVUxjgGwQba4QIqpPcWZkBHdGL+C9D3OZ7O3J1IFGNiSaGKrqjafLTnjJnUheESO55zxD5j5JU8W1DDUZqaysJCYmBqvVyoYNG5g0YAQbJ55D8Njh1l0c+rYIQQQDJ6dz5syNtLbtZeSIAgRBjCAVE7FsJDCSVmsrDbEXyBgZiqL4K6aFdyJKHAPKCAA8Xi9zIwIhIhCAo4VfEVrVQXRiTwCMThc9goPY7bQxijAO7CsnLMpBhlJJVXgkx85KkLnqyJBBoSDH2e9qtLYaRq6/gaaBM9E54gk+sQevHUzaaOKadXQESsAixWJzk3v9PA6Z3ZRsyycsdDLuouN4denI7WrOdplIbLUwQbqD+rpSytUvo5cdQKQXcbYqgrjWs0S4S0m01nBV9iMAvLG7mINN1VxhPYJ/Wl9sggGZu4vu/TbhGrCYgPYiun97CAQZK0eZ0LQcwFoRg1guYveYh0iOnExZWTkZRSspkM9AtORZopYsYssjN5D85CNUtyeR2JhNcsKnaKxliLxukqpOIQAbTQOxHTMxzvk63lsPXrJLzcfnH/mfT2vwgz939QsIHBn4NFuvzOHA7BgGd35MN9tSROrXiW38hvNJoyh48nk6pmZQ66/FdKgMf7WNIel96XMgn5DSLgzGeno2HscW6ELcmcv5NilWrYe7X1zJS4sG8u69Xr4LETHGr4H4oqWojryBurqKNo+WyJBwqgMHMjHJw1z9YwgiqAzvTYVGQV7naL5ukROmjOc6TQJLWmI5vf4kxWYnnux7qddrf3SkxHiHPom9Kh61XUovPzeXJ4zHXxn4k2o3nOtJU/AXGAfczIhKGRNaU+nwuFGGJqOWRjNg2xp6FCynJl3HCbkfD0k9BAUX4bTsRZBW4lCp8biseBvyqTh+mLayYrxaPz799FPc7r+s2CQEqCFzLigN0FSAIAKZvpaSxiM4XUbAjc1WB4CrvozmAytwu60EKAN4Z9THaCUGiOiPKC0HDr4O740FIHxPLjF7/jIipJv2CIfWfQP11QAk6dXMCw9ipVKLw+zim9pOApKT8QoQFSAnbZyVa9JepyjIjFzdxDWtH2OQOGmJ6ENtWTy5TWoUdjfrhVOEm6oYNCGFfMUFRr28BVNgKHUqNdoPV6J76U4C/M8zKTWbYSWfE1pdREDZQdwo6CASRVQirQfyOPBxDfW6vvRLExhu2ofVE4oTOfLPVnOgoQ1VhIoxmSl0Dp7H4BOrke3fj0Ml4EVg1vO7cZ1fB6GN0PENCF7Ebjdj0ldws9/lWL2zGVjiYGxlBx2yIN49+zBnD+awakggce3H+fruK1HKW1DYO5HGjaJ85n0cnfwBHm0wXmC0Yw27z1s5/6kMb0fH//oK8/H5l1yyTN508CADZi6G0t1w/W4KrAJOiRdJ4wkG10B9awYaTRUA5tR0LMY2jJ1B9Pz2QZ5xudh26Dwjmq3IPC5S2ospwh9vowhHXCJnPz+AquQZAjts1C6tQGFzE3j3ZBT19YiMDUi8Svy751GfF8LYQDfRoZlQvJdgaTFDtW9zZ81Ytoi8jEtLpc7yConbbganC9Q3EFn4CmUxi8hr2kfrZw089vZKrFYrMpmMKTOmX6zcn/484+Dnn/+/ep/ViGhttZH+2dP4OY109JlH+e4/kTBzFi9VdJA5MAqJaigVMivxY9KZpBvI4ytfIDg3FG3OE1Rddi1uIZjYkB6EB4nwuFwo9X7k5uYybdo0lEolAHvr9jHR5mbLA+UAZMSbqavbirlTTL++Py2Xd88BArugs/4syvHd+S6vA5VcTNaG0bRIexEX68bVXEZFbTl6ZzErzz5L3fkYDnd05/LFz+GvOchpmR+xG0sxH6xDtTAJSXweOlUSC/qnkhDgBxP88Ho8bBG60/X+BuzGY1ikCTg9Ekr1vagc/ja9ys/hbuvA3N5GT794XJ3gMprZ9c06gsVibn7oYQoaRQQMnUy00oLfeRO5ujMQnonQpsFi0FDR9R37pGoy9CPo9vUt9JgopuC0jMaguXSXl1MtSaTRm8zw+FZa6+uQSEBhUeCWGtmbdT8htXC45Du+Ec2kWtxMVUUD8q5ywi2niNyRSoiojcTWnXgRiCt7D8IvtuTu6Mrm/a5nEbttvB11lML7kwh9rZERLdvYX1BHQPkh3NHX4S31MDzxVW4YG4vc0cnlr+dSETye6IJKtOGJl+Zi8/H5By7djVdBzJf9XiBN9AKpkZlk3PQw7oZzbM/sxqdDrubF00txd5TR66t3SYpMQGR3cCS2L90f30awzMvu6jwkIUNZO2U8YxIC2LX2PFd1vEmKVk95RAfmnRU4RGIUa0Pp3teKLNaAqakeP5eXlobu1Hb50RU9DHFnB86mc0j16Zzt3orhwiEm7d/J264oZiREMrblKE31LTiiwO2fR0hbHWF5baTdex+a9BC2TpvGhg0b/l/9cnJyflgt6MfG94rivUeXEX1wFwJQfdvzhPV6CGXeIu6dm8rXZhkhzftp98ukdvJkvMZGHrs1AttzdyOIVlPV6qC4zoO3CbrHaH7Y7vfdND/m8Dh++FmtVhMRNQ8jalrbDtDctJWEhAeQSrUIIyZQ9/pZpspuRblRxdP6lUQk+KMWtSKVFuK9+iwbX/mA5etmItPaGNhVg8RYgt/QxRwv6WTywCy6nG5sm/IBEIvFtDRUY9GV4nEl0Mc7DcFo5ER7Iz1376dWfR3tAcEorbCttRGXtZGZF6aiclgp6bWSNouZnp0iyvQdLJdm0iaRYXniJSLMOxFLwmgYPRWZ7Rh0eanz78LgP4Bw527qq2yEWWrp0Z5Is76Wq695jm8d1xDcZqNMlEZL5wl0aRc49pEH7/BRxPdoQizuRueFeA5teYr4qdfSEjuE7mF9uCurF1O6txHz+ZWsrehOk2w2WTUCQrcvL47WEeRk1J9gomoIZmUbB3QRiN028uP0hOqVhJhEmBUWqmvqGSjZjWpsBvmbAnFHNvKoR0R7VwROmYZIXTXnJ03gsd1NHPMu+59cWz4+/45LFuStcSlEuvYSFBVBV/Fq6vxGQhf497qSrC4rj5qncse6z5CLvqLlzluJ8IroUimJD9bQ49AWHKfWkff+PGROgXabhIHjYii+sQxJ3Aj257xFmPo1Cg4WM0l3E51lKr6KlDJx9VwMWeA3MAPXdyp6hp+l3hBHZ5uZQK0RR7GUopAFdJsm4rDcypPsoqTJxFc1vUgZVYrEe4pGy804PeeITuwNr/UC4v5m/X784NeP31uzZg333XYdZdvWowl3IAAywUZs1wHOBvRjctnXxF44zWDpSxjbmvG6POzdb2eweyVSkYjkm28lOsSNQib+h8d3QvIErJ9YyfkkB7lXyooJ1xOQfBDVkPvZWy0iTGWgtvZztLo0/IL64l6UimF7GC+2NNJD8xakvgqPtaP48/Z6ZPfgzvobKQ3uYlZjGmP1tYQoI+lqdSASIN9rpbtaRKhRjD4siKa7duAdGsIb2o8YXKEjqKyYPyl3MFren2lVazja8RDJffzpb5dRIhYjdrnA4+RcYH9STQfxOuuJNXRw6rmn0Eik9De3EKK3olRXYO30R1X0IADasD+hrT1Iu0ODsVOEW5PEV4Yq/DVB3DA4DvdOMQ2WYBwiFZXhU+kwXE5S95X0bk7EZavErGvDWFoBCBg8q+n09qO74xAwkKyvemBJmcZlslN84lXzmDubh7WRVHn3EW09D4pevH5hH0ppESu7t4NIikV0GTrVeN4Qq7jL8zAt2hyiVCepX1dDqP8zVKc+jUrRQh/9V+SdiERXfYELKjXdPO1c6ExFWbeOnMmTUapUvqGUPj+LSxbk/VV2shpK8AKeqlqM6lii58WhkFnpu+oDEoZOwHFnAhSfpVYEtf6D8R6tZu21fZEN6eKzLzxITa1EhQQRnfc0Jd5Q3nz8ZWYF+IHbQ/d5j1OUXk3ptjKULjdtjRqGLVrLE6GBSCQiZu7bhtrZiXXxIpq9XqqeWUlEQAuNby0hdOSjPBHiJEVipGP4QJrGX0eVTMG4kAAkA0QX+75NtdBVy98L8n/rAv3had/YWFK3fgRf3UBkbzUdb17DkdRv6BnZG+XqZSBA5KK5MK0fhR98xsnqfKpOHWbu4FEA/zTA//X+J/VLQy6vBK8HuupJie6DUpKAXOrl6LEJyAIe5KbjT2EtXkx3yS14Whrw9HqETvXFf0wqlYrEPv1IpB8lBw8RoclnYKSFQOsqWtNu5HilBYleQD0wjLC0EADGL1qKs/4UA85tRjUlA8qLecqbRX3/sdT0ldOjUk/oniYc7hREoV4aeywhqOYr/I1nibZvZ39aFENtYrS086eB8+h47UXOXdGMvCqa7vq3MUmhTp5A/sb1pPfMRKzU4gqOos/EqZxfOJ+mgVqUfQdzyNYHUfx4xB4v5vArcAlSxi68D+eKL2lwX8a6LQcRqcUsXpDNMbGey6RbEWfdDkCxPIPC6rOo+3Vxs0dK/64XWeNZQLg0idtrj2D319CVV0dD7mmW9l7La/3t3Ol10MsmZ+ELSxGpAvBIo7EWNOBCRICqi4CvP0LmdHLuyafxxhsomx/Gy6fmIRLa8OpvY800MwweTM7Lh/6Nq8nH5z93yYJ8p7OQ1Szku45EKqsc3OfeTUiSCkE4RmmblKhXH0L+9kwqBt5OI16ySk8wSF2Pt0FJx8Hn0Fz2KPLWcnqExCBu8tDf2cUsUytylZICm5vhhwp5IMifc+mf4ie6AWXeUdJk4Vj9dOi0cjZkjiZx8w6ConWU3LMAWVsJmQVWar0hmL58jYaHX6fN68/Anr05smUX+rAkyrxq3Jtv4M3jkj8vADHkhz7wf8X/z+7DYPtVgBJYBqtAWSNizSw9yGQQHUpqyFeYMm4jfep1zLrxJqxfr/u72/571PEZXL1+C0q3mzWb0wgF4GIwHpaxFb5cz5N+L7BDZaU9aSUqbTLec3W0JSrw8/NDpbo4H40prxHVNiMjejSj1AUjs7ehk15AZ1mIxfsWgbIavLZMkMWgCw6ltTOInkSyq9zCuHAR4fIO5NIG2p1eulffR71qFC5lNl6RlPa2Afgn9GdI3l24zEXEup5m/IoPaQ004DizBlmTCa8jCGVLE3K1FaUArm56rrvtA/YezEfTfpZgczHq1+bQPecBxEPnceLkaKKi/SiTScADw4pfxmrqRsvO5US7KlEVXU2SPBL/1FSMJ25Gq/Wnbk4+UeKLcyzNc9yHx1nF08IyyvPD8Y/tTZJOSaU4Anffq1GPW0ztxzm4lVEs+eBNPu03k1cabBQ+MwWAP+1+ny67iPOd2bwfkcq2odkcPriUzswcuvDncNsqRsk8VEy7A+U5N0pk3JLXE+vRQ//W98rH579xyYJ8sxDCF359KKpoYZwAIQ4xh89mYikU8E/xJ3uBBofIRZPrLH7nmlmjDeQaiZwIgxT/lrNM0ltRDJrMzuONtNsvJ/X+OWT2K+b0I08Rr/TyJH9CZxqFvdujuNcXUS1v4sVGM71Fa9kTPIY21TAC8ks5G9eL1ohBNHZWM4wCtvfIZMWACcyw2EknkMy9n+AqqEdcfYL4/pEESMt50Rr5N/vh/5l/pfmdk5MDD/x529oQuL+Yvn/+3d/qd/939pvTM+Onv9j3DIKjC0Zfy9ToRKbuWYrX4+asTsq5jlquSFiA0eLCbHOjVohxtdrwOJSIWuM4HlxCpc3M2QOVTNJ0EH98F44BWsoby9CXZeCQp9BLOMvOIa/SqpZS4deDFEzszNPyWUEK31ieIFZVw+nkRnrlbaNO8xKNA3rgYDHRBXv4qK6TNpuVNz79lsDzH9H40PsEvtuG31VBvF33IpOjj5EgmUjLxiOYo7thUUWSs38grboh5HkVaF3HOGmPoS2lBp1ff7TSSkrWX6BN8i75ijiu9+rYZupCIm5gfGQAJ8Ozkasjiar5DsxG8Mbz9hUmFJIw4rcvpDzsCCGe/lyHGYm/BfTd8Xq9uCuLAbgMNwuHlLJjjImkq57lqms+x7MmmqjACpqTZrA3WMx7HXlE+hVyPuEOPBIX/dHi1Y9H9d2NNCSNIyDZ7z8+xz4+/6lLFuSdQhDzu9pJThGIsihpGRuARxqH8lQ10sgkDkpTiQn8DmdjEWJ7B06rilXSNh5eMQBhwgu0HNqDqciCPWIYh9y7iJF7CcJL3PkOgvOaeTAhl97h4WR2JtNhERFp709SYiu2fotx7jrFyoYSXinaRkxcN4STZ1CJ5ACEpPRBIQgMa7OSlqlAUVnKjaldoNBSJdIiuukw7JpxqQ7LpRUR+dPX2jBo7YKQYMwOD6Juc5B3dZJUIsc/QYNUJFBUa8agkZISocZvRAwtejHlLRE4vQbKa4xEnw+g+vb99BXbkXQT8JSvpbXRSYeujni3jaG1h9lnhzpBQny7k6XH2rEh0Bn7KDoUhFQ+xdnB/UBuwCv30JDSl1aVgcZ8M2LPZ2gKO/imVEWmoECOHb8+c7lp8WjE0rHYtp7l7PnDsH8v424Yx5nk2yk6L0awV7Dp62q+alyISmrm2QleJN5ISt2zOaTx56EMCaclPVlVbeTxC0FUf6mizyMzYfc+UO7BUx6G4GmmK/FDJJqBiEkhSZgMV8zG+VwvSifNQqZTEyUIdI4ajsF+iMhwD2aVH0ERclxCB0HRUVw220F+ay7vte6luO4YGMNoCZ1OcOkpdE1nOZt0NftXFHE47FFaj5bzZoL+l/le+PyhXbIgb1Bo8cojueAVEdK3AWdpEwHNJ9D1S0fi9RLUVEdsmZrJUf14fqiMBeflHM5vwibrhtKdQETt/dD4KQma6/EP78fHU6/h0RvuoKq9nfjDrXxinUGrUUSDYCT9pgJW7m/k3GtnOLdLwbl0EY9EFGObdC22PsMJ83h5t/IQY6SVJLQm8EpQAAathYSIGEyGG2hZ9zFtftm8uGoFVusnl7wp/fdWDPpv96vUasnJycF1+DAbi4sR957/w+92HakhomYbsuThJCcGE+hSUnnjjfRf8TaFR6ux+UlRqGUkZkYi1BuRn1iLn66Vc1NnEnLqAF6vB43mSkracnBJq4gz76et04JfezQovLQHxVIYPo1Dw8r4pqKNz9WBZNq6SGu5Ev2SI5geN7OmrpUh5504U1TcFmTiWq+Ufasv4JGGcGD0FQzs0ca2ynhqb9/DvJcHoxnfgzh/DUnGdxEFSsnsdT+Jgw/T1OXFcMTA0XYpgyOiKNQEMa3rNCUDMugXcQPB/i0c27yBg6lTeFzu5IWzDrwvxOFJvQWxQuB13WFiTWGMH7KN2sr3cUXVIjWpAWjWxIPXiyBcvDRsWX0R521HKqqlS+4gVxjPozfOJ94lxio0ERYi40/9V7Li4E2MlIRxIXkOaeWFfKP2ECc4idSIae6wslcI4qXV+f/V+fXx+U9csiDf1m5jW3Ebt49MBKcfrrnzSRCB/PAJgpwWZCcquUqXSptCzCfmTlTSAI4oVAzXzWONIRm/KdvJLlmHXvAQ336KWGsCyNzMSQ/DLRuAKHouKpcE1+lU5uTGYrRG8dACN82lbkJ7xeIuzyUtXGBNih9eiQjDqQuoxJ9T39mHtG4iJBUWxEYXFkM0NYpYkGh+lqb0pdz+9902E7KyEOl/mjVO2D8KibmBMvEDSKc8yPnptyC+UIDwQhx+2Z8ill5sBbS1nyKvIgDBcA2W6DYkykAGt5fgqG0BYGfHEZReC2myC8j1fhwJ6UFbbRNpNRZ0KSGUuWUY+pRiK4vFi4BVGgztnbj27ue58GCq3QEc3aVjRHg5wXIrOTGvsb7ybmhMosJRitHSSrdeLRz/qBSDoZ3oqp0IPTNprSlGoUlCFdifU6UBDPf/kjUpOio1EfhbjqJz1GHapSM2J4wtthKGWbeTZh9DjqsM7eACnEVB1BhKiBOSyAjPIM7djnz/m8QPuAO2zAf5MWAujhmf0FVjJNh8sd8+W32E84Y+OB3bkdeuRS/rTbzNwROL36DVchrHkSbOjWtC0XslG9+5hk+OVzIq1IIqI5VpG6YiE+tpkjwK8jzum5LO7GO+G64+P69LFuQVYgl7Spt4a34fyvLqMI3uh9x+hrhji1GOeQ3GTyTzyfu4O8ZEi8lCQf100hoDyE+OQ+yCQnkog9Kzmd4gkIc/347+jG8tFuYZbkAstlJjbMMlG07LCBnvRQ2mrM6LrusUOTFFePbeTFfkMsQaG0qPCa9NSv9YJUvUt9NPL6NGLCbU4OH4oQoiU4MJHn05Z2vNl+pQ/Ox0sbFMmTIFpVLJ6k8/QywRIb1xF7zWi4Tc52DyfRRecw0RdYcQWt9j5+cdjPLvJDLVQH39WhT2eqzN48gZdxnHqh3UZI7HrjqAweVk9ZkgHFYrtym+4FjPJaQkhxNbU4Hc2M6BzfsJConGLywOV+pgLN8cY21TIrFPTaSq8ji9vVZCFV0MDvqUU1VJuL1uGro9Sp9YM/kHoKE1iqHJX2OWDsRoktBZGURJtz60iIZhI5OGF19DpXQQ028kwR4HLm8D/tbdKI1aqmsz6DksEndzMxF1X2AcNYbHjq1ns6iEbaYRDI5+kkNtS3nW6EImGkNIpBGnyIy0uQVueg+cFgBia7+mtSKdSrGCzrzdJJbv4ZXQAGKih9Bb0UxWQztqL/RtOYfCaeKdqmp0Jw6g7TuJAFMWX8ZVkRjbiddZCtZqkFRRaviKF9q/gJQa4N1f9svh84dzyYJ8VICKHU9OACA+I5zA62+m9pP7EAtqCk/m4l6+mGAhCPk3uexcFMpTwSdoCU+lq9KC3u3ilQA3Q8++wksz3uHchSrC9+6g9f1SPh2pY3J6Nl2RoWik1eQ363iqWMFKRweHGUjQtkNU9LuC9vhRCHYND9dX8UJDLR1tMnYoRhAhDyGz7DgudQL2LifHv60keW4yZp3nUh2Kn933Gf24MRM4s2YfqidvRTUim5hF38Dpj0EiY8qUKQjCVFrfS6VfdwMGg8CnF56lu0VFni2Or1qfI+V0KP2zhuH49jHWbc1DkhHMqzcNIORoPraID3Hl1VKyextHdu5g5vhIzP170OZMoo9bSXCAiledVaiCCwkNvJGooDHsby1hlHI7Bv1M7N/GYfUcpdeZiZQNvY9Z+q9pkEaRkBTA56cyUTmKGWpbQlX3nrQIR5GKPmHoFTIEj5a0DZdTox2GX8rNKCUKLOdXoe1sI7n2OHUGCa2qwfivPUS7aDSDBoVx2fGlzOj5NmbZYkIL76EicjSWinCqA9YQ/JqTslATQTfOI4VwWtacJkAIpC4rCrMiHotUz4ToG3DpE4myH2Hh4wux68LZlj4cweni8aQBjJfKeK7pONeF9Gf6qe+I0ybSdPA0w2JXMzBey8fzB4H47V/0O+Hzx3Xp+uT1anJycn54QEjXezC63odpbzTiqtmA9MoM+t2zHrdEQlDAPMTkEzN4Mij1dL6+gyuqzpMx9l5KSy3srtrHZc5qVKJwgr0dWAddy+0XQilpO02w+QmmhjzAiMM3gVegyZNG9rlCPvHM44ytFGNMBOuiQnle48Qk1hGuViLLLQRXPp2BfYmIqCUjuB/tuc2X6lD8YvwMOh5f8zIkJyGcOMGt229j4PRX0QNSqRSXw05tfBSy26+nSq9B9v5kRIKEakktTqkb6ZNPo9mejUukZNCUOAqrY7HKbQSel/LBVh0BYTKmZ+0jdv4EgjxlNKBCKnFhVsN3B79FEt7JBI+C8IKDdHV6MKfH4xFEuFtqMQ2LwfGtFAta6rabqLQ8ztngNqZXdJGdmUfnyncoborCYw5gwjufcPC9t1AMk+EFbEIAbc4o7LYu4nW1qNIHoepqwNNZzttCDx5yyiEmG7oK6KgP47TsMjrlCXRZm+n070OIfQOt1iDCq80ExYEWG7UF62nqPI6dSUi8YpKPbcEROxjNnScY7XKhRETFJ+U4RAKvLniAIo+L0K5alGo5iV0uCoUMPulxiNaucYwvtfPaySI8UR5cbjEdHg9lRguZftp/csZ8fP73LlmQ/2FY349uMno8Xp48WU5s3FC0idn0mBOHNO8IYkkK90sjGPfRt3zqt50RknR6BfqRX2TlxMancM19iFkxE3hifgBpMZEgFlOVfwq3NpXpFR08WHY9ti6BVtmXOMVidomKsOxxMmFsGJu88PB2sAphREw2MHL/JI4WBSBrMdNnWBb2yDCaazqQWhx/ryq/WT8e0jl58mQ0/gok0r/MSbfr/bfI/24HM2+4gZr4UaSe3syJrHncFKflvg9uw/DozdDQgLjeD7/cavyudWA2ujgZoEDU5KS+ZAvb5GomPXA9m1fkMS6iAKm3AuHh9yie+izhDXGIBpoRlHKUStDV7qNQKiUdOWK9jU5LG9/1fBbp2Z1kRFbRE/ATQVt5J4arb+L8sQo6rr2BXoDKHILq3oUE9gAxFowdMhqTJRzuamWoXUW4s5mb/GfQQ7+FY22tdImm0713Io15F6hVZqA8U4XNDc6rV2Pee5J2iY288jKmK96h2v9eYo9+gFJ1DW7dY9hpRGxTYg50cW6Tg7h+KRw/1sbrwWmckcpZWtTBu/Kj+DU3Utz4PIK3ncrw+ZR5ryNA3smEpvfY0jOBsmcnAfDw0o2s7hfMLIdvbLzPz+/STTX8Z98/IKRUKnlr+SscbyygUd+DGU4pIpUCacEZchbOR6SPQz30Xo4Ga3k94CM+NE+j19jpJPbtizI4mIaTmxFqi+nIk9C1eSu7DddQaKtBIx6I2+8oQuZdmDov0GwJRBufQVKkklqFQGBDDc31r6CPG0BNuRKdpZiM/hLkRgdK1Q18FrmPOeE6wjttl/pQ/KJUKhXPf3Ivii/kfPbuKsTHl6Hx1xA66zaipk+kZXs+QvgA8ILTZiX2008AOHGukW45lxM8Zhxh/ireXJKHRCriltezOXzGRKFfCS6vB3N5EYfPqpg3PZfmGT04LxZIxkpo21Y6FXqEgTdQe/ggTY0KAmK8dLpVBPuF8eGjt/P1NDue5nU4iEQitLClYTnDKjcxzLCLqg29aQgoJq37ccpX6FkeNBZvmI7JvSLxiMVMLNzJYOPT2DyDedTRQvSkPGr99SwQ7uK7ubPRJCWQM6CYAbpI9stnUZ9/gqZyIy3qQhoHj6atcQudwU5ujXmIqUWH6SuUczDxcSYfehB/TScOVxkKXX8k0g6aX7iDcLGHD69MZ5NEyxUXtiJpaAcgRlePn1aNubyLSH0gdY4uLhw/hN6QTHHhJ3Q/beUc//0IKh+ff9clD/I/ZPSDU7npxGkscjkjtn5OlLqJ3rbP2L7sHYKa2/FufIOuxE+o9JvNuOJY4g1SRF+u5WuLnmca9Zwcfhq9xEXp+VO4DlTSufQmZKLuGOsDaROPQm1IpzZsNhJZCKnW+Wwu6cmcmomMvRBIe4kA5zfyRb8EIpS3EpgaSX/Xq4i9FiSCgFgQiO0WeqkPxS/q+/MwaUA2zkOlCNo45p0OxYWXq6dD77Hd8Xq7UXW0irp2EX3CwW12MLOujrdkEYxNSmTlypVIe3vo1/cCbRuP09VRgGNoGkZXJ1lj9Gz4wsQWdzCBfpHc5MyjMzUDpyiEDk8KTbuL6BXmz+DIBqqVeoL99vHsHXfyxMcrmXXWzfsPz6eoWE6sXwPjt3xIx5ZiTAPtNE1fhamoFq1Xh3bp9VTXZqKqdlLaVUuG5TT+jjpytBc4YEzCObIvFaGb+ayxmg/su0ApwRWXgdx5gIhmE8Odqdj9qik1bSIlfRwjEu0E6NOot37HNNVQJvibkZd2kj1mMNtVuXTv2oey2snBk7k88MbTuGs0pE29j63VTURaXRRGDiJmxGK6VEaCTV7k/ttx3J3IgEfMfOlwsPHFp7l3zSbfA1A+v6hLHuS/1yEKYHhEBG2iWqbes5DHN79DZgkY7A30jm6g5KpZlKj9cQgGBieNRBJWzqiuYIpkSkL31FDg2UFEgT9rHX1oma9nusiNVQ7Jno8Ikg8mt7GKVaarGDsggKy4fiiaZIhKPDiH9eTcbU+Q8OWXvNy/kbC8Kg570rGO3oy+Zyxz1PKf6xD8OqhkIBXjib2Cm7MbqemwwsEX+brlNKucblZpl9AYf3E45YldNbxnVZM9OghXl536+npEbi/uglbKviwgurCcIYuHs36wHZNHitvyCRNF6VSo9DQHyWlQ55JyJpBYTwt1/gWUhWcjspVh/Wo9ZSOHU+mEexY8w2NP3YKm9zTSE+1IOy7gsp2mPsxLvXcC/cLlnHAkgtsM5HGlugLdxFhajx3gQ3Mm1w/6kul+cpZUnGFdUiYekZjnpVX08bRSdddwalX92O4cw9ii71ALWynVbEUz2si+jS7uHvcS3s2fkS4S80BZIW9LvGy68yxSSQhCUwdmZy/E1bVo7acQd3XwyuyFBFwfz4n2o4gqA+hq9fJFshqJV8wckw1vZx106LDs28sYQcDx0lO/7Ln28eFnDPJqjY4nevVE6N0LgKs/O051QhZiRRKn6sHmFOHPcJZdMNKSJOZkvRhPmJKs9jbWhtXRsP9pJIYq4hJ60x6wHZcgJrptG3Gdm2iUhXF7bRLVpiyGrqpm/UwD7f5WWm4rpPloBTEN1ZhcrdQ3a1APy8QWM5pT1VZGteeCuv8PS+r9EZrS6iB/Zr724E/em2Wp4arbu+GnS+SYXk3nV6WkPNiXs3tqEEtF1OY14XV5WHDHdVhXVGBskXPk+XBCjh1CWnkeS20d0vhUZl/ZC6nITnCYwDn/K4n3fkdRUBGtZ1IwJJWBu47qzt74b3meNEMqAaOy8Tg7kMrFjM8ax7UfXoekxIw1fgEB+tvQ1h4kXLGIZMcJxK2tyJw1dB0upaKlmEmKEwSPvo0yIklrK0dnETNn70a2Np6jasQkIi98wrGOqQy4fgTvb1vLqJi+KMSVuDFhbVRAhw2HVERloIbEpjayEtMxlB5l0NcTWT9pEwMcG6lWjcKycymPlJYQFRNO3+Amvv32BcwT0rDrqriqMow5ZhXJaidI5chtFoJHXkVnyLsoo6J4wPM5z3dk/kJn2sfnop8tyEulFxfI/l6PtJMotSbsKYX4N1nRmizUx4dQ7gVH3UHqx01gtmothEP1hiYkhnTUlg8YYCoiXhrI8jAt87VTSVMUUCq+lqVhXopwM/iRxdT0jyOIDiw7nfQ1Gqnw1xAzUcI06zgqMZB8oAJjWzuID4Au4g/VnP57s2dOmfIx411upCIRrp7RdO7fz+WPaOnsPImmeDRHvvycc/c8T7cHPiA5QkWky8rQnlLkIVaqti5jmPIguyZ9yfD23awPnYkXB4XnAik+VotfVwijIyLQiesRdYlw3j+JU+m3Md28gsqD2Sy59wUeeH0pt193J/fedxshYgUNYR/z+Bc7UJzP5bvsUqymAIq/rKHuwbcxuFs4VCDm3KlcwnuGskFUxV1KCyJ9G135zQxr38H+8BwU/jHUdDgZFHGcI6hJyhtDuWMUNbmHCFR00tl5imNJkexPuonbTEfBbaZQmsbhNjtxJGG1iHikuBDB5WBxSByn/HoSZNaT9GUY+hYZ9/bawB37liOfsw6GDANAAJL37uFQzSHO77qZpYeX/sxn2Mfnp362IP/jG7Br1qxBPesJ3Dsexy4MpyY4l+5KCbHJwTQGKcmUSJFa3ZRKs+noaKWl8UM8XavQRdQhihATmNeX7PyjxGx8kZ33r+EFr5G8CDmLZAYU1zTj7niIMWljMV7opNIdSEswxHhU3N7UjFMqoi77ON0rFCCIQBPycx2CX62/Pjd1N12P9dgxXNdNI7Z7HNoeIoJyUkmrkGF1eKhvczDMY4fWULxeMUG9+7PR70E61BF8pklEbrKjk7YwtPwT9HkNeOYdRNx+GZWSeAK7FDRGHqbOsA6ryYytp4jI02YeefZ+Hp31COsf2UC47HOesHkJ8gtn2+QOrm2NZYrmSgKvnYDTacUmURKj02EsPc2GtjC2apK4Xt6AQeVhxsQ4jodoiDsSRUhVALfqarjHCPLv3LTvfQ/tiGHcP6gaVVgf2j9axnShgyXRHiZ1NBEYMIs7+t9FSmoiTUIH9z+8EEuvASy9fxH26qP4qetAH4DqqBwnHgYqplMX4SQuqh+4bCC5ODv/9y3DOOJoo+0P0UL0+fX62YL89xnkqOFj6TQ7+KpIwvS+t3JQshuA2s4ZjLS70Kwvp6HOSlNfE2Hm/WzI8zLozgV0SGPRvX8zU2Insa3UzvguNTa7C3nZGQbGp3BegKiOBgKx4XBU84J7OCOrzyPOf5vOdD3HjC+TYl6Npngv1fHPkDxsLCgU/6jIfxh/Pdw14rlnKbnjDnaXF3FDQAyuiA76XDb1J39j21IDqBEkcr50DmWESobL3IFTqaDrcBdR9gLU3aPI7jWI+u5Xsr20CAQtRXvqEY2bw0ufnuS9xIN8KA4mw/ECDedepX3K/WwdcpQ7XvyCe0/Vcv9jkNGawDS/GDbVt/CUqpZBrS6mBkVwotJEnjyPJ85u5cDgjxG1acG/HjeQXmPlrCoRL0YeeuxuKiJv5UR8Ihcel/FR41bkteeoTeiD1N3CZb3f4N42P7SKYI5mh/DqyftZ0vUMjy25F5ncyttZj9JWvgW7LIxgcQF+Sje17hHIsOPw6pGHx0HtCSjfBSMeA/7z2UR9fC6Fny3Ify8w1J85s68A4LN2Mw88/BhSVwsSl4WCrfupDAsjrdZCe6sd78eHuGtBX1TubzlYFc+FgYOJLq3kpZRwnnJ2YOs5ixPmDTxWsoV71LexpyOWI/2CsLYkMbe9gbJBI9ApwxjmLWVrx6eYJTKGXvMKpqJITpeVM3By2s9d/V+1n2T0X3xBbsU7bG0ah8giZ8iBlynQXcOw/ZNh+POUOgNwScUUhMxngLaSgaYNrP6yib7RfjR09qehRz+2hLcSa6vHcW4vrSXNyBSBaBV60j1ynkpI5W23hA6RgEOspyV2Ak+uvB2PXMbrD97GvLtW8dwHBua/9ia15Q303PgM3bLHENenP2vOtiD260Ob5xtkZje2fBu65BKKpSmIGowoPQVYou/gmGIRotTb8MYPYaBYxITtq3k9uCfa2vFcseVJjAlDyQxMIN1cjsLswliZy+SIaB5fMAdXkJzly6+mc68IW8g1dE+op66ukVyJhJioO4hqcLPT+yIDzR3UrRYIv/2mP9S9HZ/fjp89yP+4T7j/4EF0E+ez27yDUG6mf/48mvrtoSN2NwnLViO43Zw81RPR8Ok0p8ShO/4xN313Fk+/ADz9WzFGa+gs7Ibn1DaaC4oICInkwtaXsJjUNKZbiAwJoG5oJx3lOtI1DhQiEyJzA4JDhyE68Oeu+q/eDxn9wCQ49AqXD1hAITY6Gk9xOHAgrV4HX9gXsfzAeWRBEZT49UbRJea2TV2kBw5lZP2rmFRaRsY08G1IXxzGPhRLZURteY+Jl/XlVERfogxnELUaiW8tYpFrGpqwVCx9NuK1t9KnLp+2tSKCRVfxxU33c9mmj3lo3g189NBymh/M4p7cWqILtnDcbedw9xiuaRmCNtDF82HhvHtaSWgfPeOMRhBikNoO0ZXZG4CAdglut5s4QwaWC2eodwWyp+UeorMc9PXTcqFIg0JWw3OPnEBlrEclkfLVW59yVOVHa8otKCwCyl1l4D+Myn534LTeT0H8cqYNG4ttdyqKNA9ow30ZvM+v0s8e5H+yc28uftHreOuLJMTuLjbHX43N358G3Xw8D4/h2JEveXbwlbzn0OOVQlnbUDLjbYSFKtFb61DuOkDkyM/YZZ+C1+ggYPeThPe7gwcjdTj0Bmbuex9B5EQ50IhRPoC3z0Zz5mQHF6QTkDUmQNaJX7L6v27WdqQiGbHhAluaopCbjaCEjU1ymtUhfJZwmCZRKO2ecFINSlL8vAydeysZAUG4ay4waWc3vAJ8OiufsInJRLjLSa/8ExKFh2+6ZdK9OoaqulXMjhiDW/DyWZKBN1es5b6N6zG1mxCCw1k7+wYmfvYW0x6Yz8gQI9fMnopWLhDln8pYYwHJx8fjwMNlGVtY3vISre13orjxMexvvkF21c1UnHoDaes+gvxlGCOXY2+Xkaldwzn3vWRHmJFUu+jYe5Iao5r39r0Nhnjeu0xCoLiEyh33cmbIq4S7qxHEbtoSriVpzLWU5zaQVt6D6NtOXTxOkxJ+2fPk4/NP/KJBPipqErPuuxF1YzlfTrUib1aSIAokYsIC8muNpEsEplubiRMJOEVy2tutyDuLqVFnIHKIMTRVU/j1GganX44QIEESKjDStJBV6fchFtsxjhtH/flzKIQ/8Z1sFjk9Q8mr6YSYgZA6zte8/juU0ZnkLD+DaMUMLn/2NULqbai9UlJ7qri1XxQ93DbK7G4GZfdEkMqZNCyS/G/Xo4+MpkZ+AG+Ak7hzMsReB9Pdu2lznWCj5nlkXhuK+gpsAcnIgrcRHjyGux2ruSAag0uZwIu2Zqxjp7DBsYWU/ccw1Lfw7KLn6eU9wMLnXue5VTtBHcJX1yXiPf4mn3/3LZ8OiGWHq4FvbillsNeOyWSi3c+PUJOR0yl2JtszkTS2EajOx7P0Sjx5nxGwbiZSRy9mr86jy+ai3S4lPDCCXWNKwOvGC7R0VOMUQJ38DbLjTdTYagl7KoTL7sqDvpk/fHd+ctx83yOfXyHB6/V6/9mHurq60Ov1dHZ2otPp/ueF6Dd0HHtn1KKMGQQqA95RT7NrZzEKm5uSVD0awU2cn544hZimfv3oSknj/LPLobCcxsJDhCf35QunlSvD01BJNaT7f468yIv04DYsWY9iq5fiSven98jEn+w3JyfH17z+Bybn5PD2519w4Zsy2htM9LwqnbwKE1FWI/ZOO72yo2ivakQZEkLhxo+xeTr4OjKOuwzVNJ1rpp/rJIXawZxrtNLTcDWKIjPnhkgIcrVTlpiCQVJOovcMIsMtbM1vYJDNRZWphEnnrsYqM3DG/1MI1SEVW7D5exG3FnPv66tw2QW8Da2oPB3oDQrWLLidPSkj0Is6cCtUPGoTU2ixk7LkfkRnj6KMDkKiF9PaWUeA+y9zFMnkch7T9aR6ajr9b3+KAJcYNt2Fu/dclkvSuSc+AoDvjlYQf3YZMTVfwPwtEDvI993x+cX9q3H5F83kvxcf7seVO+UonedZ88YyBJGI0PydmGMHElsmQpaoo6SqlUXl9/DUZeMpGDSKqnMPMNyvFzaHGc0bj/FcfSsfvfokA/wGYSkJIObkK8hVpWzY/zXK8dehMf7+JiC71FRKJbdceXEpRLlMwcTL3yUyVg319Qjlp5Ce205+yzCocSOiO0esa3jF08j6IgeXV39Gaep9NLUG01qUyIVoM57x4Xhq85AfP0CPZU8gWXE5Nq+BIyeOs6WhldDBQ1AoYmn2G8SZjKuw2GQcET5jamAoW79tZplnOc/c+DDymIGc+siOSG7lk2OLGfvWg5xqS0EA0kP0+LnqycSNwiLhg6vC0EV2UT38VT68sIMH6tZTaxjMHksPegxIxH3bS3TsaaH15hYCtOkw62PEwD3wN7L14XDqWcCXtfv8dvwqgvxPhvAlZNNsbyA9tQKrqIUU6WReqJQSo6jnCpWBSOk0lHUq6sNslDZ0ciikO7feMZPO2nKmnKzAMmAo5uMi1knnkxASSutV4xEEgWuTwn+yz4qW388iIZfKj2+S5+Tk0La6kNbQbTRGfIjX8xxG0XjGK9+h/Kk9BM6cRa/J85GUfEXf0DBa7APpCOxHvOMC6ekfExrixJ61kis+XcADeypRigycPpZC9wQZKUo9V6dJwONlQOnjaAJnEOmOoNLuZnPXBgpaQvH6PcqHY2/CsqKE2qNdDL/idTwSG/fOno7W9Albaqaji5hChtqPotbTfHjIyebgJsxuONUthoCYLBbqs5H0WEm8WET8n+t1z2Pp6BUKZmvT/1/9fTdSfX4PfhVB/nvfD+EDUHYVc+rh93GLBAqkIoIUagZbJJjUR3DHhzMlbjnXfpVP7/B2BIkYcVcbXmsrcstyXGF387E7itXXXoVhwyZMKjX8KMiXNZsY+dJeMn6piv4GKZVKbj68DI+rjpkvfY5BpkFweWg6riCu11kUzWewVezG2P0u6jrl6OOvw3poE2HVryEXTAgWJblnvsOtErHu2bl8vTsDSZWLZ8W7MQtGQpKHYPMYUMVE4XAeI0mopFA5ijn+zzK8Xkt8rIb64zU0BJup9rbx6IEZbMoqwlQnsNYvk/qAArwKNQMz5tNeWMK4UA1GsYNDLZEo/WOJkIow9Pr/k9DVfvkSJVYrOSv/dp19fH7rflVB/seZ44ShvZihD+W0x4zS4uaIU8fYRSeRyI5gH/A6XTUOjj8yAcvJ9Sg3DsQVfzlnTsbhbPPnyfSvGB+kwm/vI/i5QkGUyrnqNrRflRN+YwbxQRoOPTiSW+b6Vuv5V/24teW1+yNU5uP0U7EnZwa9c6OJb1qL/EAO0v0OBi1twulwc+b9XOz6AOQiMd64IRRq05iZ+Q7RpjKCkuWMiJQQfygbkaEGT6WIneodnNFGIpd1kmRW4ohMJEgL8ZZWNHgxnHfQLbqaMWIvWdowPj2loSzEyeiwJ9DHbKTDbOXc5r2kascyJ+swdnM77n4qLJ6jJBsNwEQAHG4Hy44sY2Hvhb5s/Q/smWee4euvv6awsBClUsmgQYN47rnnSElJAeCxxx7j8ccf/8nfpKSkUFhY+EsU9z/2qwryP6YLTyH/yTuR1zeQ+trFi7Bmyw4uDzVw/EI7mTEa6hYvpqrvZfQTySlgCPIxPZmxvx4udOJ/eTeQKGH4SE7mK8izWkkIkRHSakWilhLu58vS/hMdRw6RVGFHn9Sb+pYdSLpEOI8WseXypfQufQe/5t3ctXYe7UUzsWoH4A0fxXdzp1BX9y0vvXWOpb3NBKhbmJw2CXm4GtfuC0jdJRx26nnNtJ46xWJCVAk8YNBjq6lieLdE8vRqdG2F9JItwCHP4tNjMqJHXUmVW0Kaug/Uu0hs8Kf8yHH6jLehEJ3Gk3Iz5x0Syk121i2+kxetVuCtn9TlBm7wZet/YHv37mXBggX069cPl8vFQw89xNixYzl//jxqtRqAbt26sXPnzh/+RiL51YbMv+tXW+IfMsfJk5mkOYs4LhOxxsDmymZer65gXcEWbAN74g2ScFS2GzwicMN1wa2EauVka7+iPqw3YaE9sB89T1JhJ0Nm9/iFa/Xb546+2HcdES0lbfv9CHg4lByASiSQl74Ug3M2YXXbSQpRk99UQWx4JF6XFdO2o7zZbwYtgYE0NOTiFJXiX7qKWG7A2BjKeXsh46wTye90MDXTH4/TTu25/cw9XMaiiX2REkd1+t3kavQ4sxVIdGpkI0Yj/+gZIvplsiVyGNGzMxG1b0UhMiM4m8kKTicrGFb7snWfv2Hr1q0/ef3hhx8SHBzMyZMnGTbs4oRzEomE0NB/b62J2NhY7rrrLu66664f3uvVqxdTp07lscceIzs7mx49eiAWi1m1ahUymYxly5Zx1VVXsXDhQr788ktCQkJ4/fXXmTBhwn9dT9E//8gvTBBw736Uvi8cJre6gwCdAvH5E7SfyES6T4526UNEt35GZGogvUbG0y8zk1CDDq+gQq1OwFZRgd+Sywlp93XN/C/IZF6UolbqTVZy+77COWkm6moJ7rrDWDvMlBTquD0khMDeFvIsUWSZLYAEU0hPRGIX4rZcNG0lGGoKMdx2HMvhP1HRezc90k9TJElhjaqNycW7GVd2mBHpExmvKiVg51baZF7K+s1GiE8jqk8kS2XRXFFRRafRSULF6/SoehttdCz68UsQRj8NQf//RqqPzz/S2dkJgMFg+OG94uJiwsPDiY+P5+qrr6aqqup/sq9Vq1YRGBjIsWPHuP3227n11luZMWMGgwYN4tSpU4wdO5Y5c+ZgsVj+6339ajP57ymVSmbtCkJpfgfP/CEM8NfyWd/elD75JNFh5wnt1UFrs4gLZ3ejCp2KTRmEPFKD3RqFTpeOtbkUhwDHW8pI+qUr8zsQHBXO0ndfpMnu4dD9GTj7DOaND04zwFzNIe3HrPX2QzpoEHqhhFMjCmiVxtByYCWHUqfyTGUDoVVLeD3gOfwzojC/9wViWxWeoOMogbnjH0dcuBql3Mk5VT8E+1YyR/Qg36ggSGdAubmURHU9dWk2TgXFoFIOJqLbSXTO/Uyp38Ssu1x88FcPKIHvBqrPP+fxeLjrrrsYPHgw3bt3ByArK4sPP/yQlJQU6uvrefzxxxk6dCj5+flotf/douw9e/bk4YcfBmDx4sU8++yzBAYGcuONNwLw6KOPsmLFCvLy8hgwYMB/ta9ffZD/vtum39BxeN1wtL2LtrhEXrvpar45sxCpAMfT70bfXMOBc00IIjnJIRI0yiAAlAkJzL9fTqDSyrxfsiK/E9+fj6ysRA6optA/cDC96/cQetlAxqJigiYCY2MLxR+swTg9HpWuDX9vK7Z6B8mClHZbIl7nDlx7lZx/egUHRVKmWicjc0bilbtYFz6aZXvKuXpCBDrRlUgM4LfnbZ5UfUai9zpuDU9Go+lA5TIjFunIWfwkIvHT4LRivXyWr1vG5z+yYMEC8vPzOXDgwA/v/birJCMjg6ysLGJiYli7di3XX3/9f7W/jIy/jO0Ti8UEBATQo8dfupNDQi5Ogd7U1PRf7Qd+A0H+e/Hhfjx2z1zyWzv405x7eKcikrI+z3A2bQAOeSBaIQFtp50W9RkSGytAoYfQi2H9zNwzP2znxw+4+DK8/1xsbB9efHYjsBFlWASvDOhDdlU5DY4znD5gxeN0cNrsQqQNZxh2BnkbGOAxsqjlBno5rsKCnFlXL6Jp/1wkXgfKwnYC992PacFcVE4LyS3bESn9qNl4Fg9Snkw9zkZrd8ozrkLSVsO3r7yG1Wrl3R+VyXc+ff4TCxcuZNOmTezbt4/IyMi/+zk/Pz+Sk5MpKSn5t/fhdrt/8loqlf7ktSAIP3nv+wWWPB7Pv72vv/abCfLfZ5A9BgxGESjDZXVwRFSIVzYJqeBFcLqx4SZLmgs2I1haYd9T4LTAqL+stekbMve/8dcPStmlF1dFkhZKSJT3RjYhiTRDHQ3tCVxwVmEPd+PwyOmuqOA98XXs6AznrbYubj+0A5nbi33BPqp7vU2k+iQfhbcRLZUgRswTMXIKvfncplrKHdFpPN7ewShtou88+vzXvF4vt99+O+vWrWPPnj3ExcX9w8+bTCZKS0uZM2fOP912Y2PjDz87nU6qq6v/6/L+p34zQf57saJWhuoK8ZgeJ8M0hU3lOxgWMRC1QoRaISVWEwMbb4cbdlFxdhXlTjMjmpogOPiXLvrvllKp5M47N/351TnsLU6eWPISMqGUiPwThApPYyzVUpNyDT3i+rAwdwVjpLG8uXUdxN7Mwo4DlOZ+iDrSgFnTF1PsKhqMbSz/SvJDq+sFPv1hf5vxZe0+/70FCxawevVq1q9fj1arpaGhAQC9Xo9SqeS+++5j8uTJxMTEUFdXx9KlSxGLxcyePfufbvv9999n1KhRxMTEsHz5cjo7OyktLf1J8P+5/OaCvCASI9YraJ33Ptb91YzxppCZHIeiYSlEZEPIWE4MWELH7HvB28y5a/syYvcuuPKfnxif/8xfrxubmTKUpN4xGM5/ijtLQsvJYHJdCbxW0Z8nbh1Pdds43Ap/FHY19sjehIWJCMFMn+LRrD/owBBkJ8q4k2etw33Zus8ls2LFCgCys7N/8v4HH3zA/PnzqampYfbs2bS2thIUFMSQIUM4cuQIQUFB/3TbkydP5o477qCsrIzp06ezbNkynn76acaPH38pqvIP/eaCvDKiOzlPXRzfam618cSiMVSXFFAaMo0AVQz9tCFsT7gG0QN9ubKimGERIZAS8AuX+o8lqVc482/58T/VNKy1jex4swYqNuOt3karEENEdRzTo+0g6GiUhbBofwEiErjvmB2rdbgvW/e5pP7ZBLyff/75f7zt7t278+677/7kvSVLlgBw9dVX/7/PV1RU/Nvl+1f95oL8j7PG3sNHYdN4Candirg2j7DGo2BtYfp1xziWmsrbxRe4z5aH/utDSO7cBL/Bp9V+i/46swfQ9dYxvWw9X458k42KywnRDSM49H1K5KNQO7qTOGQw/lGnUa1bhPW8ny+D9/H5H/n1Pwz1DxhUCrL8q9EKXcRrFCiVF+dUThUZmZsYzqb2MGpPfY3YUgwm4y9cWp/ggmFYlDF0RY7AmSFDlVyLQ/IN6QGVyKqOEFxWg6Er95cupo/P78pvOrUN1Gm46rEVuE8UsmLum4gmPUTkkASoOgCmBs4+MQWMWbD6Gng9GR5p/qWL/Ic1IXkCdbknuWrOLODijdNPHnwQcWsJs5Zv/dG87b5uGp/ftr/V9fJL+k0H+e+7BcZl9MVVeRzZli3QezGUbIOQeuhqgX3PwrD7oCbqFy7tH9tfd+Hk5OTgsXciQeQbDunjcwn9poP89/zSErjLfATZ/lKe/2Q4/ho//DXNIFNj1cSh7H8LDJT+8w35/KxmPL0P8A2H9PG5lH4XQf77LHHMyHG4zEEI8iboKqPDoea9/VpuHLgJXe8pIPymb0H8rvgydx+fn8fvIsh/zxDkx317/rwGp6OVNQ9O5O7ruyFqOwbWYaDyDaX08fH5Y/ldBfmfPGo/eRJIpHgVEbRaPdQU19Cz/Y1fsHQ+Pj4+P7/fVZD/MaVKTc7zf5lRzmR+md1vLAdO/nKF8vHx8fmZ/W6D/F+P5hg0SI0nZRLw/i9TIB8fH59fwO82yP+1gICRiER/mOr6+Pj8le+n7/0t+0+mOvjDDDcRBIGcnBzfcD0fH58/lD9Mausbsufj4/NH9IfJ5H18fHz+iP4wmbyPj88f2/9q6t7fGl8m7+Pj4/M75gvyPj4+Pr9j/1J3zffNnK6urktaGB8fHx+ff8338fifdUP9S0HeaLy44EZUlG+6Xh8fH59fE6PRiF6v/7u/F7z/wt0Ij8dDXV0dWq32d/FAgY+Pj89vndfrxWg0Eh4ejkj093ve/6Ug7+Pj4+Pz2+S78erj4+PzO+YL8j4+Pj6/Y74g7+Pj4/M75gvyPj4+Pr9jviDv4+Pj8zvmC/I+Pj4+v2O+IO/j4+PzO/Z/DeABHhFG6joAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.points(adata, hue=\"gene\", legend=False, s=1, palette=\"tab20\")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "bdb2ac05-4690-4a22-8f20-e5dcfc6ca20f", + "metadata": {}, + "source": [ + "Let's filter out cells without a nucleus. There are several reasons why this may occur including missing segmentation, overlapping nuclei, or disagreement with cell segmentation. Accurate cell segmentation is a difficult task, especially in samples with high cell density (cells can overlap) and tissue sections.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "ad9d33a7-bb47-4876-ba9b-f87fd9580c62", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:37:52.379472Z", + "iopub.status.busy": "2023-03-31T20:37:52.379217Z", + "iopub.status.idle": "2023-03-31T20:37:52.416206Z", + "shell.execute_reply": "2023-03-31T20:37:52.415645Z", + "shell.execute_reply.started": "2023-03-31T20:37:52.379456Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Trying to set attribute `._uns` of view, copying.\n" + ] + }, + { + "data": { + "text/plain": [ + "AnnData object with n_obs × n_vars = 15 × 135\n", + " obs: 'cell_shape', 'nucleus_shape', 'batch'\n", + " uns: 'point_sets', 'points'\n", + " layers: 'spliced', 'unspliced'" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "adata = adata[adata.obs[\"nucleus_shape\"] != None]\n", + "bt.sync(adata)\n", + "adata\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "764e69b7-de3a-4864-a017-892122e5858e", + "metadata": {}, + "source": [ + "Keep genes where at least 10 molecules are detected in at least one cell.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b80f8253-c856-4782-8051-cd809b71a7aa", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:37:52.417095Z", + "iopub.status.busy": "2023-03-31T20:37:52.416945Z", + "iopub.status.idle": "2023-03-31T20:37:52.450730Z", + "shell.execute_reply": "2023-03-31T20:37:52.450181Z", + "shell.execute_reply.started": "2023-03-31T20:37:52.417080Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Trying to set attribute `._uns` of view, copying.\n" + ] + }, + { + "data": { + "text/plain": [ + "AnnData object with n_obs × n_vars = 15 × 133\n", + " obs: 'cell_shape', 'nucleus_shape', 'batch'\n", + " uns: 'point_sets', 'points'\n", + " layers: 'spliced', 'unspliced'" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gene_filter = (adata.X >= 10).sum(axis=0) > 0\n", + "adata = adata[:, gene_filter]\n", + "bt.sync(adata)\n", + "adata\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "b180c98e-fc97-4a1b-83c8-3263034ea228", + "metadata": {}, + "source": [ + "## Spatial summary statistics\n", + "\n", + "You can get a quick summary of cell and nuclear properties, including area, shape i.e. aspect ratio, and RNA density.\n", + "\n", + "```{seealso}\n", + "See the [spatial features tutorial](Spatial_Features) for additional features and how to implement custom ones.\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "0da1bb09-cc89-45eb-abea-c4bab0acc699", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:37:52.451565Z", + "iopub.status.busy": "2023-03-31T20:37:52.451417Z", + "iopub.status.idle": "2023-03-31T20:37:52.650335Z", + "shell.execute_reply": "2023-03-31T20:37:52.649804Z", + "shell.execute_reply.started": "2023-03-31T20:37:52.451551Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5d433c54a44e4a8cab2b5f3e10aaba11", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.obs_stats(adata)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "b571d2b6-1638-4065-9f98-877364cb43d4", + "metadata": { + "tags": [] + }, + "source": [ + "## Predict subcellular domains\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "c255ea0a-9776-47a3-93af-7efb17856ce7", + "metadata": {}, + "source": [ + "### RNAflux embedding\n", + "\n", + "RNAflux quantifies spatial composition gradients to capture subcellular changes in expression, represented as a `[pixel x gene]` embedding.\n", + "\n", + "```{seealso}\n", + "Learn more about [the algorithm here](../howitworks.md).\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "4d962f71-04dd-4cbe-b19e-fff510bc250d", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:38:51.755858Z", + "iopub.status.busy": "2023-03-31T20:38:51.755653Z", + "iopub.status.idle": "2023-03-31T20:38:53.288083Z", + "shell.execute_reply": "2023-03-31T20:38:53.287537Z", + "shell.execute_reply.started": "2023-03-31T20:38:51.755843Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3d9e4260e01f46da9f00a2c79f9b58ae", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.flux(adata, res=res)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "6c60e71a-ed06-4de1-a3a5-beaf563e1cd7", + "metadata": { + "tags": [] + }, + "source": [ + "### Fluxmaps (RNAflux domains)\n", + "\n", + "To identify distinct subcellular domains in a data-driven manner, we can cluster pixels by their RNAflux embeddings. The `bt.tl.fluxmap()` function fits a self-organizing map (SOM) to the reduced PCA space for a range of cluster numbers. We use the [elbow method heuristic]() to recommend the optimal number of clusters. By default, a line plot will be rendered showing the model fit error for each cluster number and draw a vertical dotted line indicating the recommended number.\n", + "\n", + "```{note}\n", + "\n", + "Determining the number of clusters is not trivial and can be highly subjective. Occasionally, no number is suggested. You can either try a wider range of cluster numbers or manually pick one. We generally recommend settling on a smaller number of clusters i.e. less than 10 for interpretability.\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "c84ff44d-72d6-4f6d-a923-f64d0b25971d", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:38:53.903666Z", + "iopub.status.busy": "2023-03-31T20:38:53.903442Z", + "iopub.status.idle": "2023-03-31T20:38:57.055002Z", + "shell.execute_reply": "2023-03-31T20:38:57.054455Z", + "shell.execute_reply.started": "2023-03-31T20:38:53.903650Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "323595d11f3e457dabe90f423942b8d8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/4 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "855ec9a53bba45b09b741d182b116083", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/15 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.fluxmap(adata)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "e2dbcb46-9050-4842-b789-30af5b57f8b1", + "metadata": { + "tags": [] + }, + "source": [ + "### Functional enrichment of fluxmaps\n", + "\n", + "We can utilize RNAflux embeddings to compute enrichment scores across the entire area of each cell. Given the appropriate genesets, they can help us identify functionally relevant domains such as organelles and subcellular compartments e.g. the nucleus and cytoplasm. Here we employ published [APEX-seq data](https://doi.org/10.1016/j.cell.2019.05.027) measuring the relative expression (log2 fold change) of genes in various compartments. We can compare geneset enrichment scores to the fluxmaps.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "bdbe65a8-399e-4219-9f48-ee543697f621", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:38:57.784517Z", + "iopub.status.busy": "2023-03-31T20:38:57.784278Z", + "iopub.status.idle": "2023-03-31T20:39:03.556006Z", + "shell.execute_reply": "2023-03-31T20:39:03.555406Z", + "shell.execute_reply.started": "2023-03-31T20:38:57.784500Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4 samples of mat are empty, they will be removed.\n", + "Running wsum on mat with 19323 samples and 133 targets for 8 sources.\n", + "Infering activities on 2 batches.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 2/2 [00:04<00:00, 2.14s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AnnData object modified:\n", + " uns:\n", + " + flux_Lamina, flux_Nucleus, flux_ER Lumen, flux_Cytosol, flux_OMM, flux_ERM, flux_Nuclear Pore, fe_stats, fe_ngenes, flux_Nucleolus\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "bt.tl.fe_fazal2019(adata)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "1f125139-95c8-435d-9b8c-eac01d070301", + "metadata": {}, + "source": [ + "You can visualize functional enrichment scores with `bt.pl.fe()` as well as specific shapes to overlay. In this case, we showcase the striking correspondence of `fluxmap2` with \"OMM\" expression (outer mitochondrial membrane).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "aa3f742f-c42a-4068-b970-5be0a40780f5", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:49:37.645210Z", + "iopub.status.busy": "2023-03-31T20:49:37.644946Z", + "iopub.status.idle": "2023-03-31T20:49:38.250788Z", + "shell.execute_reply": "2023-03-31T20:49:38.250222Z", + "shell.execute_reply.started": "2023-03-31T20:49:37.645193Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Trying to set attribute `._uns` of view, copying.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAGbCAYAAADOTYuKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOxdd5gV1fl+5947d2a2F5beEbDXRFMsiSX2S2cRQVGxg11jbAR7jxWxIIiILGBb0xOTmJ/RGJNo7IoIIlIXtu/cPr8/znnP3BlA2sIW53uefWbvvVPOnJk5837feb/30xzHcRBYYIEFFlins1BbNyCwwAILLLBdY8EAH1hggQXWSS0Y4AMLLLDAOqkFA3xggQUWWCe1YIAPLLDAAuukFgzwgQUWWGCd1IIBPrDAAgusk1owwAcWWGCBdVILBvjAAgsssE5qwQAfWJvYL3/5S2iahpqamrZuCgDgb3/7GzRNw+LFi9u6KYEF1moWDPCBdRqbMWMG5syZ02bHX7JkCcaNG4fevXsjLy8Pe+65J26++Wa0tLS0WZsC+25bpK0bEFhgrWUzZsxAly5dMGnSpN1+7K+//hqHHnooiouLMWXKFJSVleGtt97CtGnT8J///AevvPLKbm9TYIEFA3xggbWCPfvss6irq8Mbb7yBffbZBwBw3nnnIZvNYu7cuaitrUVpaWkbtzKw75oFIZrA2tRqamowduxYFBUVoby8HJdeeini8bhnndmzZ+Poo49G165dYRgG9t57bzz22GOedfr374+PPvoIr7/+OjRNg6Zp+MlPfqJ+r6urw+WXX47+/fvDMAz07t0bZ5xxxiZzANlsFrfddht69+4N0zRxzDHH4IsvvtjqeTQ0NAAAunXr5vm+R48eCIVCiEaj29MtgQXWKhYg+MDa1MaOHYv+/fvjjjvuwD//+U889NBDqK2txdy5c9U6jz32GPbZZx/EYjFEIhG8+uqruOiii5DNZnHxxRcDAB544AFMnToVBQUFuP766wG4g21TUxOOOOIIfPLJJzj77LNx8MEHo6amBtXV1Vi5ciW6dOmijnXnnXciFArhqquuQn19Pe6++26cfvrpePvtt7/1PH7yk5/grrvuwjnnnIPp06ejvLwcb775Jh577DFccsklyM/Pb+2uCyywrZsTWGBtYNOmTXMAOLFYzPP9RRdd5ABw/ve//6nvWlpaNtn++OOPdwYOHOj5bp999nGOOuqoTda96aabHADOiy++uMlv2WzWcRzH+etf/+oAcPbaay8nkUio3x988EEHgPPBBx9s9ZxuueUWx7IsB4D6u/7667e6XWCB7SoLQjSBtakRgdOmTp0KAPjtb3+rvrMsS/1fX1+PmpoaHHXUUfjyyy9RX1+/1WO88MILOOCAAzBixIhNftM0zfP5rLPO8oRTjjjiCADAl19+udXj9O/fH0ceeSSeeOIJvPDCCzj77LNx++2345FHHtnqtoEFtissCNEE1qY2ePBgz+dBgwYhFAph+fLl6rt//OMfmDZtGt56661NKIf19fUoLi7+1mMsXboUo0aN2qb29O3b1/OZE6O1tbXfut2CBQtw3nnn4fPPP0fv3r0BACNHjkQ2m8XPf/5znHbaaSgvL9+mNgQWWGtZgOADa1fmR9RLly7FMcccg5qaGtx///34zW9+gz/96U+4/PLLAYhJ0da0cDi82e+drVS2nDFjBg466CA1uNNisRhaWlrw7rvvtlobAwtsWy1A8IG1qS1ZsgQDBgxQn7/44gtks1n0798fAPDqq68ikUigurrag67/+te/brIv/8uBNmjQIHz44Yet23CfrV27drM0yFQqBQBIp9O79PiBBbY5CxB8YG1qjz76qOfzww8/DAA48cQTAbiIOhdB19fXY/bs2ZvsKz8/H3V1dZt8P2rUKPzvf//DSy+9tMlvW0Pm22pDhgzBu+++i88//9zz/fPPP49QKIT999+/VY4TWGDbYwGCD6xNbdmyZYjFYjjhhBPw1ltvYd68eRg/fjwOOOAAAMDPfvYzRKNRnHrqqTj//PPR1NSEJ598El27dsXq1as9+zrkkEPw2GOP4dZbb8Uee+yBrl274uijj8bVV1+NxYsXY8yYMTj77LNxyCGHYOPGjaiursbMmTPVsXbGrr76avzud7/DEUccgSlTpqC8vBy//vWv8bvf/Q6TJ09Gz549d/oYgQW23dbGLJ7AvqNGmuTHH3/sjB492iksLHRKS0udKVOmOLZte9atrq529t9/f8c0Tad///7OXXfd5Tz99NMOAGfZsmVqvTVr1jgnn3yyU1hY6ADwUCY3bNjgTJkyxenVq5cTjUad3r17O2eeeaZTU1PjOI5Lk1y0aJHn2MuWLXMAOLNnz97qOb399tvOiSee6HTv3t3Rdd0ZMmSIc9tttzmpVGqH+ymwwHbGNMdpJR81sMACCyywdmVBDD6wwAILrJNaMMAHFlhggXVSCwb4wAILLLBOasEAH1hggQXWSS0Y4AMLLLDAOqltEw8+m81i1apVKCws3GK2YGCBBRZYYLveHMdBY2MjevbsiVDo2zH6Ng3wq1atQp8+fVqlcYEFFlhgge28ff3115toH/ltmwb4wsJCtcOioqKdb1lg7dYqKytRVVXVausFFlhgrWsNDQ3o06ePGpe/zbZpgGdYpqioKBjgO6kdcuwopBI2dCMPz32s4cIfFKKyshK2bQMAqqurPeunIwU4ZdR49CjLDwb6wAJrA9uWcHmgRRMYACCVsHHhPd6B2rZtVFdXIxaLbbL+7Y/NAwDcctGY3dK+wAILbPstGOAD26y9/mUcTZkojvzZKTBNCx+sSQIA1jUL/fUiI5hsDyyw9m6dYoD/0QmjkYzb6nNLyiuvEwkBe/UsDEIJPtvvpyORToh+y8vL2+T3aQ/PQ4ERMGkDC6yjWqcY4JNxG9c+vEh9/nKjKK7AWj8lZgi/vW18G7SsfVs6YWPCbQsAAHV2Fl9uTGNQuS4+x0XvfVYj+nJDi/jcs0jos1fkBwN/YIG1d+uwA/yPTxiNpESfUdPaytrAqhYdBx11svggBTSjERFmMOUyP6qhMD+v0yP9PQ4fAT0bR8TYer9tzTamojj0pydjQNeCTt9vgQXW0azDDvDJhBe1Ay7KrCgQ6DIkZ5lDGnDpPXORlZGbrBzgu+QJNNq7WCwHlUcwYczwXd30Nrd0Mo7jrntus78tk97PynrxOesTk17dKJYZ+cOV984FAMz+xbjWb2hggQW2U9ZhB/hdZRHDxEmnnArAHdwc9WIQy7KijonyB/xoOJx0ApGo2dZNCSywwHaDddgBPpVxUGtnPd8l0mIELogKBM+BWX4NQwB19C8VcebyPLFeRv5e25LFr56YD9JL86OaPJZ3/1PPHNmq57K7LJOM49hrvch9ea04uQYZc0/5IHtFvui0ElP01dpGsf76JrHsJWPygQUWWPuzYKYssMACC6yTWodF8BnHRdQ0PSwRtwT2BRKBxyVtskwi9rT8vYtEp2mJWpsSYhneCsU7alg45ZQYGhJiR2H5mmTMnzH+riVtn+XZ74fDkUnFAQBhfdPQzEY5b5GRbbZlXxly4rlOekmN8ly7FYg+S0i3Jyn78utmHfsefhJCWkBJDSyw9mIddoBvS5s3X1ALP1grkn8sXYzwlhwUbfniue7cUW3QOq9lUnH85OrNT6i2pk26eQ4A8WIIKKmBBdY+rMMO8Jks0Jj0Ivgehd6BNiKRdXcZJ5aheYW8l9cKxkiZRdaN+J2eQaFK8nE8231dL+LPxlZ6z4mYOO7EU9V2jdJDYJ3zhIztM+x92ICiVkO+fX84HJlkHOGoiUzWQVieHNtQI5G7Id0V9mRErpeve90YejuM0efLl9qaBnESRTJG37MoLCipR56EIT0CJB9YYG1pHXaA7wj22Oz5AID3VqcAAB+uFUtSDNc2iUGWIaKVsya12rEzyTiOvGpeq+1ve2zybc/AiAAvTQ+QfGCBtaV12AFeAxDxxcr3qhCnQ0ScknHi7oUSwUu0yhg8szU32t4sTYZYapoFOs2Phjy/V+SL7Rl7z8j9WRL1rqhL57SyfVih1I4psZgb4J0vqLO5FOesS3JMD9l3PX1eED2AA3oKRtKHa8TLqy4u9tutIJi/DyywtrYOO8C3VztrwjhsbGyBaVp4au7z27Xte+tD6HXICZuEijRNw0+GFLe7cMfLt58NwxETuA0J7+SsEQa++vx9/OBokT3cryLIdA0ssN1tHXaALzZDOKhXdLO/kbu9UaLR9c1evjzRLBF+ieVFm80yts+BtkzqcJFfbyxZKb6obRLLH+6ptk0n43jyuZdwwYQR6rjcT1ep30KtnCYZm0/KWPyPL3kKgMsGWiu55pGQBvvFczZ7rlsyK6KpDF1xrmJJjj/nBfg9GUZFpliBLxfy34tln/UrFbdMQzyLP2gJ3P30iwCALnL7UtmXSzekcf15o3HTYyLbeMZVldvV/sACC2znrcMO8O3NKseNg23bsCyh72KYFi6bNFIs75m70/v/95oQ+nzvBLFv+QKglk5SvqjWLf0AXQftB0Bk5O4qu/PyiWhusRHdyjEM08QvLxgNw7QARPGDo08OkHxgge1G67ADvAM3U5VGpghj6AwbFCnELtaLp73hhC82CETdX6JTIm7y6IliwwkRZ0axDMITwb/2PuwVa1H99LMAgGUhDY8+/TxSGQcXTByh9kcGi78dTdJjaJHLZvL2JRoOh4DvTXlSfaaSIz0VavA8NmEornlIIOYP16YUSwcAmiVhnfMFPKdmn7QyGUjU6Un4+spOObBtG88ufNmzHc+xWO734F5RvPzCQhRENQwfNgyvviiQfmxUx8wCDuzbLR6PI5lMtnUz2q1Fo1GY5u6XCOmwA3zfLvl46IqxAICGTBQ3PNg2jBGaZRiIXXw2LMPEnc+91KZt2VU28xdnwknHEd1OFUrLshAbMQKWZcEyTMROORV18mW3oSWLfXsHdMqObPF4HPld+yHbuK6tm9JurXv37li2bNluH+Q77ACfOyAcfuwpMHNiztRVIcJnJms5EW8zoa34fq8K3bPvEpNMELF+uFlMJLYYBgAgr0epWDEp2TKNNqoefgKIhBC7+GwMqKsBALwTLUU647J2GOsnTXJFnfierB+GWiK+SVaydcj6oYYOPRV+zrV9u4lzIrpvkOwWsmEY52dfMQa/WmrNEMkfMlCcsxHREEUCj85/ydM2ehV9S8R+tc+/EQ3oWc5GY+FDM4HyQsRGjMCNMxcDcK/NG8sT+Ns9EzZpf2Adx5LJJLKN69D/hn/Dyi+CHhLhw2hYgxER7DU9rMEIa9DDYgLeiGiIhDUYYUAPaXJ9eZ+FNfkd1HZGRIMeyt1O7FsPub9FI/L/sIZwOgOk0kA8CSRSwm1OpMQzm/s5kRSTYImUXD8FJNLutqm0+Jz7eyojtoun3N+TaSCZs391rDQakjb6rHkVyWQyGOBb0269dAIS8Tgsy8T0h3ctwq+8+mLYyQT+8+EHiJ13JizDxFWPL4RhWrjlotGIGhYm3/bMLm3DrrKbL5mAVDIOYyf14y3LwpVnjYJhWrhtRtt6XIG1voXMQoTNQoTDQEQOxBE5SOthDbocxKNhMaDrvkGaA7wRzvlNDuZmRL4cIlrOoA/5EnEH/00G+GjOQKzLQZfLSAoIJ4FIGgjL77QUEEoB4TSAiFymxP9aGshyGQIyYQBpIJMCsmEgEwLCYaF1EtKAUEgstfS3d9wutE4xwBeaGvbr7qLwlOSjO6k4Zjz7In4+eRQGlesKdVZIZE6Umhf1MkeYlcnPDWHB1inPyAu1sVksSwvEMhKCnUmj+r7HEbvsPFTf8xhil52HviURzHt+AdY0ZnDpmSPV8VzELpZrGnOC5QDydO96TCoNSwoMY/ZPnbUPMukkNMm3jzc3KO+ARnRP5M42FBjMWBW3AHMB3JwBqL7IpOJ4TsbcuR159KVZxl3lBnJ/+HwV5Ipimc6g6lcz8A4KceVZXgmHFU0R7H/ESQBcHSFmEPBs9g/COIEFtt3WKQZ4v1141njEbVuyNwDTtDBp3HBEDQsPz5q/S45pmSZil52H9z77GLHLzoMlwzm70jLpJK6oWoIiQ8O8X07Ch2/8Bo9dXYkL72n9gXDy+BEA3HARB2CdQ3A4BMuyUHXHg1vcR+WFk7E6nlbXhXbG9DkqSawu7hV8o5TzW/cHYZzAAtte6xQDfFF+HiaOHY6kZuDeJ+ajqbkFjz77kqIT3v6YENu69MyRyDrA0C7e06aCIhE7+fFUWiTbpaSr8BIUu3yliLWjvhlVv7gDKMxDbOpkVM+VL5GmBvFzpEB5a4CoHAUAK6WmzTrJd6c4JtfjYEp2EAD87tID4GQEm6dLoYlpxxQBAF7PT2NZYQnCGmDm6MhwHqHWV1OV5s8BIJOI8X0rouHZqpcVc4dsmjCD6F/LPkhnEDv/TKA5IT6n0t6T+HwV7A11+PVf/wIAWCJrvWqa29Zvs483htH/0BORdRz8cGD7S/oKLLD2aJ1igOfD3rV7T0w9Y0Qbt2bzZpoW7pw6BlHTwtX37TgvPptO4fSnP8Ff7z8H+5RlMXzYMADAe++9h5bGOujbUJ92V5llmohNnSw+ZHyZVenMTnk1P7t6FgDxEl7/zFk708zAAvvOWKcY4GmZTAZ3PPkCAMEOIcODiN2IeDVSVjd6xb5YIYqot2uBF+2SDRMulINovYzFZ3OgtwYX2fetENuFgHufmI8NzRlce+5ol59veuPjzHylSqWfqx4NA9CAWT/UEMtPoLr6t+K8HWD4sGH4xz/fxu0zvNLA1HHnPANj64O7CG+E3ksfyUCi18Jjd18usnbrB/cR+/nka7GDYpnem5Wd0mij6tYHgPW+Yq4RecA+klWzXMTmI0VdAbjZveuavddireqL9qPnE1hgHc0CRajdbIZp4oHLx2LGtWds13Z/uvxAvHTh3giFxcBsmSZiw4ahcpwodm1ZFpoa6nDj+aNbvc2BBRZYx7ROheAjIQ3757Bp8jTKRoqM00gmi4J4HKmIQOAMbZOVolgrEnRSfyUuw8mMzYdMEWrQNfl+7N1FLFdtEBzZuhbxOb0WADDoRwK97p2fwV+q5uGDxhCmnjlScdWZMbtcqlAyXs74uBFxgEwKX61cLX4Pa5hZ9QJKTQ2xYcMQrm/Gwsdnoei1v6E5mcWSmpTqg97F4hJzfoHnSBXJkA8gDyiU/ywTbecKxbY8J0P2b1weg9m8jLkzBq8Qvq9iedcS8VGuxnmHYpN9LZbl+V7ssaJO9Am9nsACC2zr1qkGeL9Vjh8P27aBtEzeyctr4xa5ZpoW7r5kDACgJeVAN0z8+NKnNlnv2cn7I5NOIhTRN/kNkFmi40VGb0tjHfSd5KoHFlhgncc63QCfW6bVbmhE9TPzXZjakgRqm6AXiUEw62OtMOvzoKjIXEWNgJlGH4HQ19WL31npqbSfiLFjuUS7ekTsrEBmq325Rmzfs0x8joru3q9XOX7/YhXWSg32z9encO25o7GfRPTkpK9tysLJJPHmxyIOzhg9de/RYKPqidkq5l985Pdx4R3eZKo8pacjlnvLY7DWKjXyVR1aIvI8qdQpvR2sWC87SyJoBvNNuR4RPMtomfKFRG+mRfLlG22xmvSCqBO0Rs6H0NPwM5uYM1DjUwYNLLDAtmydboBva7MMA7FfTIFlGKg64+od2sfdlfsgm04i6wChyOYlkQMLLLDAtmadaoB34KolAkAyEsGGoiIkmCksgXU3idzJ7WYFJkOC0lVRoRbZU8aRCW6J3EntVgyRQhn60UKoevQpYPlaxKZdBuTLA25oFMtyGeCWzJNuCYFmo93zUWRo+F5vMZiHnRSq/71CeRbrpXbOUMl8oecRpqcgM2rDoU05/ozjE7Gz1mqRbMP6rDgHzgO0lAhefZ6XQKTCXCr2rjJm5fc81wbbe67UpKHJPi1wRLuoH8R5kGZfnV0mQK2TfbChJYtdn0IWWGCdwzrVAN+RzczRadmVdprUrc8zDFQ9+9zWNwgssG20bLwRmbCGUAhIRzSEwhrCESAU1oCwJpeAFga0iIas/JwNaXAiGrJhyKWGdEhDRmrRZMIaMlJvJi01blJhDSmpY5OUvyV2h9hYUm6bSgIp+V1a/mVSQIbaNCkgmwayaTQ4qa133i6yTjXAO46rew6IcLgR1hR6ZbWiFXUCDfYvFeiRdUfJNydCX1LPik/e+DC9hA0SbHbrUgIAyEtvEF/07wZYBlAh0DDyJOYkkl9TK5YS9Zb2BV56fBbiRQUYPWIYNAj+N+PQ1H2nmiSzTHtL/nyBPE7Wcbn9NLJohkj039zSgkUvvoIxI4ehJRxBSZQlngTyDuWJF0xT2qtNnyoU51hUISs/1Uq+uyHPkbF7mg/pO3v2BgBodSJ3gH1OZlJfieTpTRGx9y8R7TclH77ICCGBwNqTRaNRdO/eHctv/V5bN6XdWvfu3RGN7v5wa6ca4AMLLLDdb6ZpYtmyZbu14EdDQwP69OmDr7/+GkVFRbvtuDvalqDgRyuZirdDIO2mpKMUEMkYIUGEeijkVnNJXfYWiV5X1gs0Sg31lfViO4ah95DaModWFIsvNjQIN4AxeurHU7dFsmmwWiJ5yTgZcsDeWLt+HYrLu8JOOciP+kjq0hinZkYs5NxAJATs291Lp2SWLNF/Oiu2S2eBxqSj1CcrCiSzKOOt4EQEz3NVVbQs6ZVwHoDVrrj0/a5tbPJ8bpSeFpUMGpOsviWzd015XHk4eiJrmzL484Yw9v7xSdgvUJhsN2aaZpsMYEVFRW0+wNPaU1tonW6AB4BLzhmPeNxGQX7H4YRXXnER1q5fh+Enn4oL7mk9rfQJ40XMnaEQU9aMNS0LZ4wdDsO0MHPO8612vN1hx141C4PKInjjvkBhMrDAvs061QCfzjr4rCaFmoZmTHtsMQaWRVAXz0KXdBR/zVNWdspVTgQAhvHJYiEvfVWDWJ+DJa2LZOMkdIFgjKjgw8cP2wsAYDJeTXQr49CKM/7eMtjrNsIsKMHx181R7fEfnx5EVG62dIP4flC5QO0aAN2X6Fnb2IInn3tJzSuQVfPKYoF8TzwlBkvX3Pi+7Ju+suysGWEVKvGZFZ/MUllcPC4j4sxwlV5MqrTQs50p7zRqzPBarG2SuQXSW2F2715SufPtr8X+qWvfo1AsWd82sMAC27J1qgE+FA5j+oWjdzkT5dtswvhxSNQ3wGrDNgDApZPHIxG3YVntJ3s3sMBaywzDwLRp02DshroLHaktfutUA3z/vQ7C5b9aCECoSbLeKOPHjLGvahAxdPLKv5HInOuRK/7aUoEe+5VSjZLVjMR6RNSllhsDj9s2Xp0t6YcNMu7MbM4GubTlZBR3lHUAB8g4DlbUZdR+s74arop6LttBvXtmg6azwJIN4tw2NLRg2mOLka9rWFGXVjHs9RIxr5E7i6cdfNOQUQia8w9Nkh9PNUoaVSapvNmdBT/IFJLzDmubvFWq2HfFMsbuOGJ7qljW+a4Vs4oP7yf2yxg9vahuhYEmzXfZDMPAL3/5y7ZuBoD21Ra/daoBPjDgzssnIhG3t+rFXHaumKdoS29na3brpROQSgjZiHTWQdSwMHH6nLZtVGCBdSDrVAN8KuOokm8AsLzWiyIr8sVvjMn7tWiInN9fk/L8/tl6gYr7lvh1270sl/dWp1CfyCLTXbBmwlX/J36Q2jdYK2PxZM/kS9Rbkg84DkLQUJ4XUp4HPYteqp6qWJ1x7fx8cXyiXVHfN46Z815SbWKGKmPX5MlnU3EsevEVNMj+IpuFFZ3YJyvqvdowLYr9IhF/ifCCoknxuUG2mYibmvyct4iG5TVQmbKyRmyU7RPbhzUgGY/j6QXiXBriWVx19ih1PoFOfGCBbd0CP/c7aqZl4fQxwzH1nPFt3ZRtNsO0cN+lY/HQz7dPSz+wwL6rFgzw31GbNfd5PLfoZcTjdls3ZZvtthnzcOWDC5GKx9u6KYEF1iGsU4VowiFNiVMB7sQdjUUu8qNekTFuQ0kDhmYohMWi1xT9olIuJz9TMhI0tCKMsqI8jDj2eFimiarr7hQ//PodsdRld3OSlSGaBqFZHwoJATSGmUJyApNSvjx+d5nmz5ASE7lCmpjoLchJkOK5ko5IuYZyGTrJczIY4NhAi6Rw5otEjaZsSO0TAJoSXqomQyzLNoo+TMmuZtvIAGWbWQaxXl6TSMjbdk7ebmihjEQE+VENg8pEn+lZqemvayg0NbSkHKyN6zj4qJMxuHtBkPAUWGCbsQDBt7LNmvs8qmfOgR2gzF1uU+6ai8sfWCiKugT2nbJHH30U/fv3h2maOOyww/Cvf/1rtx7/l7/8JTRN8/ztueeeu7UN22KdCsE7jpt6D7gImxOCFBmrKBDf50nJgL5S0Gp5rUCjlBEm/qfIGNP0KXxF5N9FJuFwIhIVRbCKCxG75iKhC3/02eJ7Ugmb5eDPIhpH7AOYUTiOkEfgRCaPT2ogBbo4qQqI9tJT0TQN0YjmKRZeTOUCWTG8hWUGk1LTQdMEtZEFO2SRkuZePQC4BTaI3CnfsHqjaNNgKdOQ54MKnDS1U14KKr0Lej3cjJO8pKRaugY9DOjf1KDy4nPRAlfaoFtJvhInG1AWwSIE9l2yqqoqXHHFFZg5cyYOO+wwPPDAAzj++OPx2WefoWvXrrutHfvssw/+/Oc/q8+RSPsbTttfizqJVT39DPDul4jdcElbN6XDmx2P4+U//A6AGzL6+7JAU/K7avfffz/OPfdcnHXWWQCAmTNn4je/+Q2efvppXHvttbutHZFIBN27d99tx9sR61QDfCoDbGxx4+4sIkF6I6l1jEdbEQEjawoYa5f7kXBzQGnEsz4ROql/pBQyjqyoe+vjqLxwMuy6BlEH9uCB4vtvNopl/25i2UuW8qtvBtIZOHBL0+Ua90vJAsoN0LNYWe9uZJgWKkcNg2lZmDX3eTTIItZF//kCAJC3X38AQG1EeBPh/HycOL6SAB8WMrBMC088L3CxX/CMsXU7Jf6hlLEh7yRSSFWBEZYMlG1eLxOgSiXkT0j6ZEGjSArrBqBy8iQ0Z9LIz8sTQmwhTc1DLJPU14Am+d20ZDKJ//znP/jFL36hvguFQjj22GPx1ltv7da2LFmyBD179oRpmvjhD3+IO+64A3379t2tbdiadaoB/psv3sf04YMR1nXcsOjjNm2LHY+j+t6Z4kNN/W477qy5Qjjs9DHDt2n9p59dAMDNWO3rxFUR77YyOx7HC7/+jfiwcet950RMHHfiqQCAsqK8YMK1E1tNTQ0ymQy6devm+b5bt2749NNPd1s7DjvsMMyZMwdDhw7F6tWrMX36dBxxxBH48MMPUVhYuNvasTXrVAN814H7Yez05/HAuCGoi2cRkoFdClMR9TEe3L/UlaAFNi3oQeRO1HriECEmRplef6JUUX2D+OfLtUBLwh3YWcaOsXcKcxHJ50WB0nzgK+ElUGyMcwMUQUtnvTLB6xNe1o/jAE0J9xyaEg76FcnG9ZUFwuU8QClL8Mki2Opzgw1Li2D0iGEwTAsPPjUfgCuRXGAQuYdkW0Qb9pUJT2TH1EhPijIKTN7qJucReC7lmjxuSwKVF58L27ZhGSaMeinzEE+JE5QCbQWGSBpbLWunNCQc3PGYW5nqunNHIbDAdrWdeOKJ6v/9998fhx12GPr164eFCxfinHPOacOWea1TDfCBtY5VPTATX1V0xeTxI3brce14HNVPPLNbjxlYx7IuXbogHA5j7dq1nu/Xrl3bpvHwkpISDBkyBF988UWbtWFz1qkG+IFlEVz640I8ZRl47PShiKcdhPWoCtcQaX+/t7d0luWL51JsjDH3rjLOnGcLBM6ydkoGmKX4ivNRecE5sNdvhBU1gK8kS4YBblJFuD7L3O27N5BnIBwCBpaF0ZyUImMSmRPRE/XSoyDC/3BtSq7vKG5/S0r8X2TKQt4VIt5vOJwvkEwbcvMLpZzCeuGF9KvfCCuVxKAysV6JRSTulVxmn1KKgPMYROwhydoZKL0lUxbpXp+RG1reAiWqnOEnX4vlfv1hmSZi4ythWRbmL17k6QMypZirsC6h45CjTsYeATe+U1o0GsUhhxyC1157DcOHDwcAZLNZvPbaa5gyZUqbtaupqQlLly7FxIkT26wNm7NONcDTfvfOUgDAwvdb8NBpQ3brse14HNXTHxAfvli9W4/dWa3q0SeB4nzExo3Z6rqX3DUXALDgptN2dbMCayO74oorcOaZZ+J73/seDj30UDzwwANobm5WrJrdYVdddRVOPfVU9OvXD6tWrcK0adMQDodx2mnt677rVAN8c9LB0g1phSJH7mthtmVg+vA9ALgl+/RoFFX/twS1tkB/gySXu0Tuh1ztvmGZ3VkvkfoHqwAAZmmB+Ly2TiwTKVTecz3sFhlr/494wajC0wWS/87tWPijogiV10yFfXcGlmnCgQD7axq9gl0sY0dj8YwGyQ1nWT7A5fybpoVfnDsaRQUWHnhyPoYk5DkUy0oeDNyT/75e/t4oJY2zWVhhHTFm5T74OACgvFxOIJWIc/rfRrEfxtyZK1BokO8uviBbxmwWfVQBoPKcSbA5b5F1YBmGyzRaLl3wjbI4yhF7A6m04vxzPoXHzc1/AIA1cR0HHXkSLFkBJZV1MLBrgOo7g1VWVmL9+vW46aabsGbNGhx44IH4/e9/v8nE6660lStX4rTTTsOGDRtQUVGBww8/HP/85z9RUVGx29qwLdapBvjN2av/+gKLPxCDyuH9xaB05pH9W/04djKB6itvFx+YwLQt2yXiqJ4vNOxL9t+r1doz/RFR9u+mC3Z80rHq7oeBfBOx889srWZ5zI7bqH5klvjAxKtW8nouvEPE8hnGqrOzeOa6ca2y78Da3qZMmdKmIZkFCxa02bG3xzrVAO84AgGrgtESAZ80VLBfQjmh9kgI2LNCnH4XGWMvNVkjT8bGV9eJZVgiZKLflbJ4NhH66lqhL/O/Zd4GMa5dKKsqcRDrWS6W9S2CvC+LcjuOYKWwZCA9DqJfFvggWE2o2DzU9/5CGxo0EZ9mEWzG/Vn4m+wZ7pQInUVKVtcCzQngc+G9YEhPz/77l4pz+0jOA5DvTn48vaGC1bLPyCSyouLY9Bz4Pb0ctkvOIeDLNUBLwi2rKPtkrfR2OF8R9k6nBBbYd9q+k1o0uh7FsEP74cgDBrZ1UwLbjbYhGcVhR5+MysrKtm5KYIHtFutUCJ5G5cM6XzELMi9m/eVzAMA5Rw1Ar6Iwzjh9HGzbVkwMKwNUPfg4Ki+9AHYiAasgH1UPPw70lzoXa2ScmKGYcEjAb7oIRKFkqtQ2ofL5+2EXSDRKZJ91YJUVK30XBwLQs6g22TN5qvC15MFLR4BolaUIqWWTayFNZJkm8kWbDCJ4hkKYTUtvhAwfIvyKYlhFBYjdcTUsw0TVrx4T38vYfXGeQNCMubPoNx0CZhMXsEGct9jQKLjtIbkBvRr2YbcSsWxJoPL6y2CnU7CKClQOAPV54rKP6uNehhH7hJmzdtrB5NvmoFtBGDOvdgf4yspKj1iZZVlBnD6wTmPtcoDf76cjkUqIh07TNOzfu3CXPHTRqI4BfXqioaEeG+qblXjYsGOPBwDYiQSqH3gCsasv3Olj2akkqm+Vma179xHLZBp9f3AgBvQRYY+Irm9h622ziK5jyrED1f8P/O6zndofreqOh4B0BrGrLmiV/W2v2Yk4qmfMBgCsaYX91aUFkgeA9978Cw780dEARG2pz978m/qtf0UwKRtYx7Z2OcCnEzZOv1VMYkRCGt66f8I2bZdxBKJL+jjZzEylPgo/X/rcRwCAa4+twIx/NuHKI0T82SouQmzqZFhlxUD/rrAK8hG76GyXIkJ4ms4IVPvIE7D+1B2xf4usTyWVyAPFk7BKit0YvuSer8kvQjyTQfU7XwFw1S6V9oxkiBCl0hK+z/lR8fnh37sD+nlHD8Dy2jTSWQcNCQe9TQn76V18tlIsDelVtEiNepnZquYLuNy/v5iLiMv1WHZQzk/sJxG8ivEzdt4iRcGogd+7CyovuwB2c4vo357Sg6iRbJo9hIolvZwWLYxo9y445bqpsCwL9z3xnKePqHbJjFq+pOkINHBqIc8tHXjlvXNlv4Vw0j7FuOHRxbj7iolIJWwM3f97uP7RxQCAJ38ehHIC69jW5gP8nkeORDppK9ceACKGtxD08sYI9vrxSQCwS9C8poUwffhg3BvVEI1GseIDqWmRFYNG1VNzPJ9VOKPRRmyKSEuuevBxd1SplxOUthzcvt7Qqu3t6GbH46h+4IltXn/ucwughzWMGD5sl7UpmbAxfaYY2Pl+rk0JpM/Pmgbs0S1A9YF1HGvzAT6dtDFq2vMKddM4VmYdB5U3zVbfv/2rLWeKJdMO1jVlVPyVsXgqHJJtwmxPHmPgYScgnYjje91MvP7WP4CERJtknshYe+X0q0W8luWM4ilYhQXujvp0EctyuX2eQLEbDhTJVswCJdOkJKJBg1tomnx27m55SLSTmjjUgyF6VVo1+qaFqPWQhgN7RPHrlMgNGNpFMInCRd6MVbwlX2YVxXJZJHcgbw2yW75cAyvtIHbZubCiJqqm3CS+//QbeBpN78bHtkGjjcpfXgk7Hhd8d1qJ8Gri/brLzV1e/cVnj0dTc4vavWFa+M83om95TckworNk+fSGaHGfpj8A5Esng56e38M7+9Y5AICoPLdwCJh/Y/tKZAkssG+zNh/g24Od8vOnAQBLHvz2AtS2baN6wSI4cpDUGKZg2KKTW9XVtwHFeYhdP3WHtrcTCVTf+tA2rx+3bTz67EsA3MlbyjIEFlhgW7c2G+AHHz4C6WQchukNx5AFwdgqPxOdflEfwZAfnoiD+hZt4ipHwgIdE92xMhKR+6oGL3Kn8iE/r4hrsLMaHIlmR4yuRDxuK7aKVZCPFstEjdRfTxkC7fbtJpA3szYbQgKhbqwVB17bmPa0s1tarJ91hH7M0YNMnDVBMHlMy1Vw3KurmHT9bL0Y1GpaxOWiZ0KGCi1XFz6kAd0LQyjKz8M9l4zBk9JrsPQoqubOAw4R2b34WGq+MJwkvQ7FotngY9d0LxXMF35mjN6P4FXsvp9Y9iwT2u5kEJElky88i3p5TrUSRYcg+oZVtti3S2rEZ6r+b5DXOk/y7Zn9GwlRK0fmREh2UZec0lNCa0jDbRePQb5lKc+PSJ77pqa9Htaw2tax3xEiXAgH2LvXriEABBZYa1ibDfDpZBwn3/Ac8nOD79tgI68XaPv9R87YFc3yWDxu49mFLyvxsV1pdtzG/MWvYPzo1o0z3/6YyGj9Xi8xcA875dRW3X9Ht/zCYtz+hIi9N/soppuz829/Rk1yZx3gT3eevkvbF1hgO2O7dYDf88gRSCdETDcSFcitTqkOinVY+zPly95krJV1SXMnXksl8qI3wFg1ee0MTedLgjlVGYnuSi33JRPWdXTr3gPRqI4DDzgIhdEQlkgUy1qn9BDoVby3WoRoehVFPPvf0OxlxRDcGmENR+w/APFkEroeRTztIJsVYQhNA7rJ45DTvn93geQ/WS+VIn0VpBijZ1YnIPR2TjyoLyLRKP7w76UK2ULTBDonu6WP5J8TcVMBk2wY6ub0lvMLkbCbWAC48w7UvDcl1ZOegEToqGkQxxgg9EJSpYKxxOsekqiZ2cd18SziKaBFfmaGLhH+Otm3rE/LGrB9ZK1Wf+4DLVzg/t8QzyLruJWyeC/GZb9zboNtstPeGL2mAV82RNDneycAAH40qDhA84G1K9utA3w6EceIaSL8YKe3jpa+zU6bNkf9/4d7zkYyHkcibmP6haPR4hgYlzMxuz3Wd8j+GNi1AG/83993qn1bs1Qqhep3VmDalAk4Y+xwmJZ4OVmWhVEjBIrPqBeR2IaDdCYLGKaJO3MKXfjtD/8WgmfH7N+n1dtumSZij06DpRuouvHuVt9/R7IxN87G0g2y+Pm83admGFhg22K7ZYDf5yciccmw3Hi7LkctxslZizQhUVIXWTGIcdESc9MwCX9LxuO45YnFikEx9YyRqp4q4MaqLV1qmXOg9FVkuuAeIfo18+qxSGsR/OlPf8DA/n3x6r/EYMkHubdEiUvk577y85cbxWdmdVLZkfsn2oyGBVvksD5RWFoCv35FTCSuTzqYOed5lMjz0pf6hLdKpKZNOovYpNPV+X8tY+8VBS5c/XBNSrWhxAyhVh7bzgArmoG+/aTqHdUbqT1DdUny2HtInjrZNXlRVD04U7Rh6mQ3lv6NpIJWyKILCslLxsxhQ4DSAjQVCghdANH5TdJBYPuI0Nc2ZhBPO/hC9umSGrEivZavfLVZ/Z4gmUplUseemjhGjlgNGTWci+H9Qx0dXi8jIlZcKhk8ZsTrVdLerwmhz/dOUJ5hOAR8v/+mc0WBBba7bLcM8KmEjXE3i8QlO5Xdytrbb1HTxI3njVZZ719+8l/cd6lbV1SLmjjvtm2vFKQbFvoO2R+9ygrwrzd3LZLfUbNMExdNHAHDtDD51m0/N9OycM5pI2BlxcBpOSGRqbpDbTAQu/pCkew1clNlv8rpV8Pm/IWpw7KsTdbZnN166QQ0NNmIGuYOtaut7MjLhDImXzr5uoYvn9w1SpyBBbYtttsnWf1MBcbJJWhSsXciLsVMkSHjAWVuk4mkb31UhCqIqKZdMBp3P/WCir9eOmkk+peGVW1WIjdOqjFGz2zIy+8RmY6FRghvHtFfeRn9pFdAPRQyMpZJpkdCgt8WiUqJCNc3i/W/kIjfToWRcQA9nkAom4UjNWsqqCe/tE4syWRhPLxeaqMX56Pq3kdVWb39ugm0vLzOZevU2ZsPgd01U/QVJ47PGT8Cywb0Q9+DhMRB+J0lYsX/yNJjVHVctk4sqTYJoOqeR4H6ZsSuvRj4sZQ6Zsw9k4GtZVD9/IsAAKdMIPfVjZLT3yCWLPbNWPvy2jTqGltwzM9FOzmvQDRNRpQ/W9lfWYqZq5zPoAdYUeBq53crCEMPu9x7ztFwElXdF/I+GdJF9HOLBCkf+SibTIgyIpt6m4EF1hbWqXjwt1wyAcl4fBOkGDUsTLtgtBocOMBnHOCyXy3cza1sXTNMCxdMFLVT7RwWiBaxcNk9c6FHdXxvaG8AgB7V8ef/funZ3jQtnHv6CPUy0uqatojIt2aV10yFnZY5AY4Dy9w+BD596gRsbGyBbmwb0u8I9mltGAMOPRGHDghCNYHtftstA3xYKhoC7iDEuDhrd5bLmDvjyAWyitEaX5YnOeAAsKFZDEqsyJROxHH3rBdQluf1Eu6Qk5FZFXMVy6vOGYXB5RGX9iaTOwvlsY2IYEowls4kG54DWS5Fho9tkSJxXizojRSbRPQZ0ZYvVgPNcWify2zQJummUBJhlYyPk8HCE8iIPumXaMSvH3tc9UdtcbH6/6RTTkWJpeG51wUi75Ifwk/376MmbtdJJtC9T3j7pswK4czK4cBZx4ovWOGpSWa0Uk9HInI0xYGiPGCPHrAjQPVzgnJIaJ0oFOuvkTo7RNzkt7PP1jdnUdPQgpOvF5Pwn8mY+3rJECLTpUzG1sm2IqNlkNT2J8sq5APR9Bxz6++mMg4cx0Xe6aw3v4DeAPuG8wO8Xyxf7V5+drNxHRw65SmUWBpWPDUJgQW2u223DPD79ynC27+aiGWNEQz7xdO77DiGaeHayaNQmG/hvifnb319w8I1k0ep8TQTNjBF1vTcVXbB4V2RzWagaSHELj0X1i6KM9NrMU0LNz00b7u2NS0LsdEjhXTujCe3ur5lWYiNHb3diJ12/1VnoLG5BdFOhNz99snGsKL1cp53nyBJKrBdbLtlgOdNvNePTlSIjajIj8RaJDpKyNjvITJBp5CVgQwXge3bTfzGmOhTc58HAJw+ZjjWNmYUk4IIixzpUonwZ88T6xPtjR89HHtWRBRS61EYRkhzkRu9DfoQKqNUAm+GgCqkN7KxRSJBFTcGstkMmlsEGjb++Yn4geJljLHzM/Vg6HKw+hGzSNmJMju09MOlqm9ef24OAOCUiePxw74GNtpZaJqG8jwyRET/Ui89T8afG7Qs7pFx+gsmjsA7SbHv7w8Q3sEH0ovR1gkEXmTouGfWAhXrRkJ2hpzxNmrqxP4LizxNZl8t3ZBGbWMLht0oXshkIlFJs0YxWcRFWqdyEMT2So/Hl2tg+eLgTXLeJF93w1hFZgiaBnQvZH6D6IuEr8gV6Va8T0jxJVumSc7RMGevb4nYX0S+r1Y3ZnHY1Kewj5wrIQvnr3cHSVKB7VrrVDH4nTXDtHDlWaOg6Sauf/DZtm5Oq5hpWRg9YhhC0e1H16bsD8O08Kfq1p+ruOvyidjQ0AK9g7FlAguso9huHeCTGRcFkcXBOCcRF2O03+8dleuJL3oUennxgIucmIlKhN7FcPDTrg7QLBGxRm63jFHXC1ZKETNOiwS6fGmx8DTGjByG7/c20JzMIhqNYpIs0h3Ro1j4xhIwR+urWi9TpTjizTAlM4SIvneRJlQRJapVuixE7GTL7CeOpzqLXPL3hW489uwllpbkqi9f5/0MKPi5eIHwUo46MYZwRMd+g3pCj0ZR9X9LPG2nd7JKCqh/si6Fn1w+C0VmCDOuGovXlyU86/McB5YKVEovp1uBaKvGzFjJqvH3STzlwLZtnHaLaB91dMiEYhycwp30lugN9ZeMpsHlXkVNGtdzZDyc2cXhnOC8ERZFPvwa8vT4uC3nLYjo6fWQe8+2cLv6uJcKPFAyv8j84XJFUwT7/PgkdfwiU0NFcX4Qtgms1axTIfhx44Rg17byrbdkpmVh/OhhiBgW/vXRMjX4nHRI39ZoJgCg8vyzYdc3CsbKzfdv+vtlF8CWsg6q6HdNgxALe+QJVF53KWxHxhJYTCPsvvysshJUzZqjPhumhaH7HAAAeOv1P2H61AmY9vC2xeajhoXrzhvt+Y6DISeYGXL5/W+qt7ifSRPGoblZUEE3tGQRNTtvzH1bbMIv5wBww0z799BxzTmj2rBFgXU2260D/Pf6F2HJ4yLx4/M6MeFKdgyRHVkS1OBmvPMbWYPTzEFqjNv3LZGx9oYmVC9YBCxfC3y5xq1OJBFxKirQpk6ZX8k/L+hSIo4px9FnnxNJWaNGDEMkpClvIhrWcHh/A2+tEAMqY7esxES0qZC7ZAQxa3f/Hjo0ACgtgJ1JoXrhYsQmnuby3Zn9WdsEu7EJ1S+8qD4DAJauRWz65UCRJbZ/Qk4Ic3vWOwUQu26qUIiUv/3xObnuyhr0Pfow/OPPr2LcEYPxrGTZEHVGfdo/yzamccyVsxQzZLDkgtMrYRZo98KQCG8tkdm3zHCVmjSplIOWFhtT71+o9gu4KJjvptziGrntychTLJcvFCo8Ev1yLocU2DzdqzNEZpXjOBj948FIpZIIaaIAO70D5jf4WTGc96mLkwkkPjPjmPMFNL78yAxTWbTSi2Fb6FVQCRMAUiEDPzrmFHWOZUV5CtEfe+oYJOK2RwsHcD2LBp/nsO8OFsf5/nGjVMlMWsRHS6LvmvLp8fMcufYe3YMCKW1pu3WAz73Qe/zgxN156O2yM3Oke3e1WaaF2GXniQ/UlY9GtsiusQwTsQvP2ipjxTJNxM6aoN46lmWhao6YV1jxl7dx0i+uwGu/q8atl07ADQ9uH8tmS2aYFmIXTJIf5MtKjtxJB7ulP7fFUqkkXvnXV2pieHWOSFtb26+enI/VEswMLItg6pkj1W+JuI17Zr2gEvRYnJ2Twu+v9tYl+Ns921bq0m+phI0p94kXMcd1irnR+MJnYXsmAzKRjEyhBTcFBVLa0tosRGNGNPQsCis+NNEIdUCIIIslSqK+S25FHqI2VaM0kQTWbHT1VYgiJQtFb/FxuSU/0vjSizrjto3FL76iHiSGaDJZ8T8ZHGWSKUKUSd69Xz2SujqrG7NwAKyMa7AzGtbnF+KR+YtURqz23jJ4NmTcg597laHq4cfdbFEqPfL3IncAnffyS/KYou0XTRiJuGnClJz63z7/HPoOGYS3/vwqxv+4v6p4FIrouG7hxwpJM7uXfVwimSZkQ3FuJD8awYOzXGoqM1CJfpdtFJ/9BTs4gNBz43GJwDnPsgmqjvK+8KJhouM8H2om6uZgmMi4GvRE7pwH6iY9L96D1MnhoOby3cW+NvgQvF/TJt/XFm5XYnoHTSLwHtKr/bo+g7fe/jdOkhLP/toJWzJ6vV8369j38JNU30R9jDW2i4+UYiC14otY000cf9Kp6twzWfcBLsjPC9D9LrZOFYNvLbMsC2NGDoNuWHhSUi9byzRNw1njRrQLNLvi86U4ftQozF34Ml76SLjkV584qI1bFViuZbIZLHzhFQDbX83qjOlzALgvSQIJvpwHd6G8tVg/lSOe5i8ms6P2+Bzx/HQrCGHcuHGqBCMAvPHGG61yjMC2bG0+wBOh8w1PpF5kMMYr1mtUKMu98RjzVin6RhToXuZCEU5OMoZNtgonJTfI1FUi4jUiNr/4LiG+dfyUcxXaAQAHDppTjtIsofdhRfxoke3zxi3r7CzyC4tx04xFAID3peIjGUUDBvcDAHSLN3vbRbaNZNO0EOVulLx48uUb3bgpkTf7NwMHiYwDzfKGdox0Gt0a6nH8YMEkusJxlLYO4CJ3v/Y8rwPRLPuC/cVrs2q9lx1DD6zBF3tn5nKzGlhCnv2EQ0ShsmuiXq+JqJuXnuwrtq8hh/GiwdWqAVxWCz02hhuYwZxW5+RF+KtkKCXsUw39QV9xnXjv+mvt0psoZgZ0ikwfb9/UxbMej9XvARANK3ZOK+r4sQYB2+rP6mUWtx6WGvnSA6M+VInl9U4AUfJy0YviZVXTksWhe/ZuvQYHtllr8wG+I5muR3Hkvr2h61G89u6XW9+gHZllWhg3ehgK8vIwb/6CnO9NxCadjmx+IR6eNR/J5kY8c9ae6ncOMJoGhMJRnD37g93d9Fazc48dCiedhB6Nbn3lXWx3XT4R2VQchmnimvu3nHMR0aMY1FcUMNciOn73ztItrtte7fxJp8FJbaoRFYro6F7RVXzgjcY3PpFCxBWHC4fDOPzww4OwznZYmw3wmiYQDhGmP+auKv1IdMQam4mc+TDGwhVacByhfkgoRP0UslN4sxC5r5DVi3rKqkZEynK9cEjEcpld+d5nywEA+w3qhfK8EOyUWI8VpNhWxlYZD6Y2e+/iMDTkZkoSOcrmSDXIRIHQfXdk86mkaSa8mZaDJfvHSIkdJIrdckVpiQI3Srh/z+MiPn7xGSPQkMgqVsT8lwVT5/iTYwCALmXFWPPNKtRKJ4fspYffbMSzZ+2pED2RM68TefAFOfVLARdxM6bOZVjzXmelKhr1omE9zL4Un5mRyvg2kSVRsouyw3I7VyHSSSdx7+/FAPne6qQaU5S+uzy3jUpzBp62ECmzjWxzn2Kvt0GEzzb4efYFRgiRbBxzFr2MyeNHYKDk0a+Qcz3soz3KI/i/97/Ef1aKi3HJz4TiJ41omksel0qi7Ju9KnTPegPKxP7pxXCOqVdRzmAa8sbMuS9bZZqL9Rj24eRqwlfIR9PEnNZCidxz8xD++eEy9N1YIz5wPqm/qPgFqc+UkQy4cH0zYmeOh2172T2Bfbu12QC/d89C/OGO0/F1s65ihTtrlmkhdnolLISElG1gW7XTZO6AuQ0TeFoojGcluleBFN+LWD2+mmfhUvqYgOTft1xm4Q3l+NfzAz1+9ofD3Ha56zU1NmzhzFrfHrzmDGhp8WZmW9nCcAiqv71qoKJS1+0zNl+pS49GcewBfRDRo3jprS92aft3xn5+wemKZhkNa60232SFdbzx9lvo3q0bMvDeb3okjEMOOUSwxQKEr6zNBnhehH0PFwJMjNj5lfqo402Um1sO1B//fWaRUDIce+IJAo1T24UI/mtZdahFwlNDuupUcyyVCFjGusOahnxdU4jNzGECrGrIqMFDMX9k28lcIdebsfbPajQkM45C7v1lggtL8RUZ3kGKiJGDF2vCrpOZlF/J86aOTG29OwnHbchXL5caLNF0GhXNjYAlzrG5pQWLXnxFodasA2xIOEq3nRzxKT8swJSPv1JxaWZ51khtmG4yJ4BxacZiqYFPdEkmB+dNyJ4hHz7tiyMTOTIz1a8fT8BI1k6tj8mUG2u//pQ90BB3Xxn0Lnhd/fVbeT05QDepzGSx4UCJhHlPUi+pLC8EpON4bpFArQNqZKbxABmO+HyVWK5ZjV/ffh8yUs55bVMWk8YNV54AETdj9C/LQf3kQ/rC0jXVN/4ckoa49xqw/UkykeSJsvbsPl3F85ELvsntL/QppebJuY3B5TKHxPB6J1kHCGXi+OuvXxZfsMbvvz8Vy56iQlhfOd+lagFTX4kmb4Twvz4Xn4f2QtXTz6hKY6tS3nmN804fgerqasRiMQTmWqeMwVumidjkiaJa0fT7dnw/loXhw4YhqRm4+/Et1z/tyEbGUChq4bHZW1fgDOzb7ekbJyHqxHdYGTNX/yeXdro5mz51AhKJOJywicvu2bUqqNti55xxGuLb6A0GtnuszQd4PQSUWJpSZCSnmIp8jDdT7yMvJ5OVsUN3XYEyqp4T1KzYqBECMRCxN8ugNqsSrZTxP7JPiCbWC1d+YZWYjDzupBhKrZCqfappAiEv+J/wEIiWiRprVfUh2Z4L9kcqmULGcVBgGYp187VEuwwzpDJeFg7DHkS7769Oyb4Q58sKU0SekZAbQ+U8QFrxjhnLiAClBUhoYt3Fc8TAcNipo/DuqpRsh5tEU+BjM7H+7PpmL0uH9oM+AmF9VsMqV95cAnpDg8sFaiQ6JYJn5qmfqUR07MN5yqhRRARv+rRpaA059QTYR7zn2AbOLxCx8xx4naleSmXOwpxMVCcVx1u/FzkIeFuqhdIteVuiUda9lXNEYZm30fOofVBdNR/4ZiNikydi7wqvxg3vr2g0ip8d2AcN9XUoLS7Bhro6XHT8UMz9m9j/ULldQ9yL8NlHvKb0znheee7tg0RafEcvksdWuvqyf1UOR10zss1N+P20X3nPlVnjrAz24QqxZFIf6wp8Kr1ozosxFt+73Pu9zMzuKRlyX8lJ2qhh4uRTTsWb//wXDjv6ZLGLiiCLts0H+I5grGMajpq494ntR7mpZApLVqxSkga1LZmtbNH6Vjl+/Lfq9EQNC7dePBr1dbU4f9JpSjI4sG2zh39+BpKJ+E7Xka0cPx52bf23Zir//X+CwXXD5ErY8ThWxTV88eG/d+q4AHDhWeMRl5OYyYwDw7Rw2ww3y/nGiycgm7JhmBbmzFug2DEAgFQaVhsi97lSXuSnJ5yKaY+JUO3MqyvbrD3txdp8gE9lBdIwfHFQohbqzDDeuD4nAWMvGTtsTnoZHPWQD4cVBfp1BVbLzNavJWKnOiPRBREV+fLMgH3mLwCAV58UxZSPmzAehVEN8bSDFz5s2SSTlsiPRo9Cg4OibBr7ysSSjzd4+4DxTsYTiXbZJ0TLRFzhTfooIpcuBPPr7dtxG9WvvCKQUzINY63oi/qeAgEtXiSQzn6DeiERt5WOymfrRd+wUtKSDWQMif2TvUKmEb0RomP2DTNl+5ZEZbtkQ7cvd0cdN+Gbn6D566G6bBwNkaiOe8YMQUTXcWf1p5twu8ksiijutxfh8t7kvAP7pKIgBC0Tx+wFErl/ulIsv5AZ0kStNFbqknVw8eUaNgD2qnWonjFbbCY195WSpvTwhsoaCVWzZVjGTqLv9/fH2Yf3kweQ8xNhEzP++Jk7ySv7grr3vYu9VbDito1Zz4tziIY1nFk5XLEVuxWEgXQcL75cjfGjh6F7NAsn0YLq6+4RK9BL5rkzps4YfLGkQdFbpm4SmW185hp8v/OZPXSwWPpi9j0H9ZB9452Oz2SB2lQUg32SKAf3+26VTmzzAX5XmmVZiA0fBgthVD32VFs3JzCfXXjWeDQ1t8AwLVxx71zcdulEOKn4NsWfd8TurBYTfVd1wmzdFe+87w5+MhwS3WcA7r5kjGIiRULAjTMWq22uOm88EnFbJYX52S6mZeFqqW4ZDWsqtm5aFmKjRrSqpEFrmWFamH7haEQNC9fc/yzeWuGVuf7w0TPaqGVtY20+wOfpGvqXhtUsPdkSftRE9sbAsrBnWwAopZiiRMLMDK26Rcjwxs49U6B1IvWsZNVUiOxNVh9SD8jytWJJFCKRWCQkYpB5egiX/KgQv3pD/O7qbIjVyRWeN3l/ZNJJlJsRgdLk8YZ2KQbgxqnJ5mj0xXwZ5yQ7osyXHUjkxfVqcjRRmA05WE43MEcgHhXei91DIHcC4EP26o9UMoVQWEdL0lHxW3K58xQ/3dsG8tLdmL/8fgtplTxXI6IhlbDx1PyXcd7pI/CzsjQeybbg3vmv4IKJI9Q1ZJ8yvEUUmltgXJye+EzWDO8fP7Irs0KIRqO45iQxyEf0KC6f/6E8N2auim0Yx2/xsWc4j6CyfMMaQpqGA7rKG/ET6QlSv5+VuMj1JlvrG+nK8T6MhMUJygxPp9bLPec5kfEEXQyw+XkCHRckWVrMVb1c+fG/lVtV29iILnkhdb/E4zYefuZFDJEKoYYdB12q2oiBOfMWbOJd5ukaFiyogtEoGWofSe+E81v0guuavedKRht/5zwYLzBj8t3Es6HmxyTDSLkhewjEjgLhpevy9bVW9sn8510l2Fw7ZU/RV29nDRx+3CnoVfbd0N1v8wG+Ixl14hvq67Zp/Uw6iYue+wz39NvS1GD7sZr163H0scehKeFss6jVttpDPz9DxXaZlGZGchAh8xd2Uwx35h8/U/9P/umAndrXUzdMgokEjHZYlSp2wkmw47ZScPvD/70OALjm/NORiO8etdS2Ms4p8QX1dpcC3PLoPNzyqJhTuHPqmLZs3m6zNh/gQ5pAc37GiJ97TkYDs0Zzjdxc6nUf0lMidPLcEylgXZ2r7UI1yXopfERU4efDMxNWxkhfumK62O2fDkDpu58hlekhj+tFicS4hTpwz/c0YK3jaQ9jviqeLBEaY63MCtzQ7I25k0NOBEY1RIJlKjsCrif0z7Xinw1x4PVvMugmgVOBT089k3Uw5b6FijdPLj/riDKGTlYL0aS/WhFj6/y8X3cdJhK4a47ImGXcl1nIlq5h7vznUW6La9FQEIYZ0Tz5Drn2lUTyBdHNr0AET2ZMkY/lszmjgmW9vH94rmwD98nYPLMxi4wQnFQcc2WWpoobM/ZO1EoGCOPNlFLuUSqWjF+vrhV6SXI/YbMEgHt/pKT+D/nrrC3M+QhL3t9hiaarFgvNIzSIvu0ydBBKrBBSSRszn3tJ3ae8D5ukdwcAlvySSqjsC2ZN48u1bpsB9xniM8MaBeS7cwe5mWeA4sW74SV54xK5s4/k0ikRz66W9T5z/vkwltykB5oru/xdsjYf4HeHWYaB2M1XwgrrqLr85rZuTqe3i88ej/pGMaiEcrI2O6NFDRPnnT4CpmnhNzNm7vT+rKiB2DkTYZkmps1a1AotdE3Xozh8n95obKjHgX2KcPQJp+CBJ78buQ+GYeGayaNgGJZA8RETPztJyDCXFnZe2eI2H+BTWcE+YSiOsV6iqrhP24Iqk4Crk5KW+e/kI9dKRF1qi5hk1QJx8WLDYgJBEKmTTaOI53JJXfYBkov7l/fF8if7AQAy0HBTc0+FVgskKMn4w86aJrwFohNZ3ci/nq0QvGQKNYv1WTGKYIeZrkTnxVRglIiOiB9wdW2IOjUI5MnYvC4587mx8lTG2aRt7H9mzfJYJT72SjTnc9y2seglgWrrqfYoz4VMo96QqHWjeBG0dBVIzskKDggrTBGpr2/mnIA4Z7f+KZebz4SllkpYoW9sYvQ2GK435LlwV/5qRsxjSGQcnHf7MxhcHsG15452dRh4vZVqqQzRUetoXZ1YVsh48z59xTLfRNUNdwN790Fs8kQVXqCHWCRvV/L1iVo5Z1DCKBHva187Vr8sWGErBg/AIUN6I52Mo8AIqexj3m+AqxbJeS6F3DlvwJi7vKdh695zrJXeC70Vsmf4jC1d412fMXkqvmYomSr3L1k2WoucZ+A1kQy5sh6CL8+YfEgTx6Un+vDT4kV29dkjcWAPHTOljHFzMosrz+68ZRLbfIDviBYJaXjv4YkAgKUNovQg7bEz9kUmLR6o8gJjs9vvTrv10glIxOPI20K89fJzBZNC21JMZDvs4rPHt0ps1zItTD1zJEzTws+/RWmxNSyiR/HguCEI61FMmrX9Spkzf3EmdCcBYysVttqb6VEdr//lTxhQkae+C4fDqG1obsNW7Xpj5jZBUibr4MP//RcVXbsDAMLhEI468ohOg+jbfIDPOiJblS9kcttZx3SjLd7AZZZAF8kcVoSqRm8w+1F8VvFZmZGqYqLprEASjIkSLVCrhoiHnFzG7Pm9nLkvKSlBdXU1AKGlQ3ZFJuvAyaTQ/M7/3P2ur3ePI+OT9ZL9QIYH0SURIxEif2fVIlYeImL7YiPZHeL3viW66ht6QuFMHHOrXlIIm8yQJZLB09QsysCdcHBfZB23qATRXBfbixbLLG9fJ3Li1Ym4jRdeFsidCJtFJTSJYgvKBFJrSYu+DOWJvmhQCNzBQ7PmY31zFpdNGqm8G+qqbFTVlSD7RHxmLoSrH+/VSAlpZNm4t3wm62DWa2LCddKRA9R9w/keagZxfojXg+dcZAom0EPzJP99uZTyJc/dr2bKeDTneIjs/yc9RqmciOY4kMnisD6sBSw3sxhzh6d9PXKQt+gU4RU1kV3z/nLxvfQY+mpJrProMyzLiP3zOerXJU95dKrerLz+Fabst88kz51sKj5jvCD0HtgH/J10OD5TMpau5i2I8Pk7kb/UTFJV2qRXDlmZjL/zmpVmBbjqLZtbVCHOkSysu2YKJM/7wl/tavL4EZ1KsbLNB/hce+TnZyA/lIBhWnhkVutWUvqummFauGDCCFhWHh59etN4q2EKrnNLY/1OH8u0LIwbNQymZeGx2cH1C2z3W+UZE2DH47BME1Vzt7/WsGFa+Ndbf0dlZWWnQPFtPsCHNMAIi7hyKhHH4y+8jAsmjMhhWbBSj5cbnvs/Y6S5yoFiBZ9aZCYr0DSRFRGUqXu3IxqRE4UKWfXvukn7o2ENXfNDuOTEodATNkojurtfBs+5nYxbdusl0IuLfkX7/TVdCXqKTW+slRooRFucr3h/jbfoMgA8/azgBZ82ehgak46KQVP7+4GnxKB/cN8ChZIBF+Ew3juoPOI51mfrBdJnjL5HYRiPzZ6PXkVhDBs2DN02SsT1d8GTdk48GADAI+StFAqLib7dZB9A9gnUueZWM6IRrbKyFM9no0/+gXH0AsN7T7TkZEIbvrvfn3fQ7NOAYTyfrJWMnC/Y5L4jCvV7hr7KYSovg/FsrldeCNhJ6E0CSQ4qFyiVfT/YlO3QvJr4zINoSYv194Tc4GCZMUsULNu1eo34PaKmoELYe2AvRPUoPlyyHABQYcuQzVr5LAzu5T2HDaRNSWTNzFMyhrhzxuT5bPSRCJwIn14N+4IsHc6DcT8yR4COfJ2sKNUk71M7lUT1r1/FcSfF8FUygmaZtbtvRO6XngO1ccj2kX3/6zvvR+XlF+L11/6C2NHHwaoo69ADfZsP8LvTrKiB2IxfKnfQymio+vH2V54Ph8NKlnTZJ+8CABpqa3DigYcCAGJXXQDLMFF1669ap+HfUWNWomFauOHBXRuLDww45dQYbNvGn/74B4wbPQyWaeHFme0zA5x1DFJZ92ULAGVFeZ71rjx3POJxG10tA1Wz5mzTvqt+9RgqL78Qdjze4evGtvkAv0e3Asy/8TSsjQtU0ZR0kM66aIV68PycqzVClMlUa86gN0ggpO/dR64ofq+6VPDYicxjD90E7N3Hjf8x7scYPVkORGIyM/Hwww9XcbqGDWtx5TF9EYGD6hvuFet1LUHsqgtcji/3S7RSLjIXM1mvzg6TgMjdXS9136Nhr6dCY0zW/z3gcuq/9uUNMFbJeHNZjgh6fXwzkFka9XHYNpr/2A0JRz10ABQbQiNiktfiq1KB4Jqlhg0zV4mOh1boeGFxFSIaMGbkMKU+SXYQOf9fbBTnST6+Pydhg0Rw5XKeJOtxC8Qxm5MOQhEd940dIr4O67hp8cfq/qLWPKtD5Wqfe47G/ApqHynGB/uYab4+xO5H+B+tEPfkB8tF26UHucIRHulSeRsNkrfX57WSTSYbw2tfXyhzGPLEvEe3A8X9TD0hzqNw/uMRGcI7eM/+ePedd1BbV4vuMjkqahj46quvoDFmzmzvwTKzlN/TS1guNfDppfSSjSXC57xUKRG17BuFrMPe34m05e+1jS2Y9fxLWLrBm5fRNT+Ez2vSSGUdNCSy0DJxvFJdjQmjYkCBCYesMnn8RFjmZfCaSKu64W7R7JFHI3b8ie7xAVh5HYdW2eYDPDvq4KNOhm6YuGzSSHz8/n9xruQWz5zT/ni6Cxa4NU1N08SaBX9GbNplnnUsw1R85h2JBbaWXXfhBCTiNvLydj0X/cKzxiOdtNtUVXBH7eHff6YG7nN/OnCbt9MNMcdhmBZ+e8u9u6h1u9f+++lydDMcoWzZIsDQH/78J4wbNw5VD+48139njKqoW2NqmZKJ5Uf022uHH/ZDkQ2cY6+//nqHidG3+QBPMyLA9EfnoVtBGJeeORKPz3sJ550+wq3QI9/QK+o21TjJOuItzpl/Il6Vxbiv5BlzBv7fX7ifidYBF2lLtozi/PL7A0Vau7ZktdokpGnoXnks6pubXGiXSqPql/cC3UsRO/9MhWIc2Q4yTAaUivX/+qVXO52xeJ5psw91M1bMmDl1Y3LVJFlFCuk4nl34sopVk5Gzoi6Nnx0yCKmUiNtrmk9PXXpK7NMi+ZkslXJfTdRCI4R00sbvXpKMEup7S91ulVsgvaJ+Un+lVlbo4fwC495Fkmq6Mh1BMuPONzCm3iI/k0GVkAhwSBepjOiLn/eTGvpmjgdIjjTj+cwzsMwobh05GNmQjusWfqyQO5FuWZ7L6R97w2yM2EcM8kox8ah9xZKZ0s2+OR9mffqTDsgFb4oLpEo0LD3BbnK+gl7OmiZvjgG9G2oa1TR799+SFOdLVlB5njxfH2sLAGrTIcycuwClkDkZ/frArm/ctBCsLocQtyiBWDKmznksejNR3/pkw9DLIYKnN8RCETILvNG2seCFV7CqIYOWlKPul6hsz+cbxDnf/IgAVUMrdDgOkEUI8VAEiswq6zIb1Lyh8ZmXY0DVk5ICLb1uAKgcOxav/+1vHWKQbzcDfK4ZpoXzTh+xy49jhXXE/vi4+4W8yaywjqrjJ2/TPmJH/wx2TS1+8+83RbasYaDq9gfdY5gmYhNPg2VaWPDyC63a/m0xw7QwefwIyWzxekOpVBLf/+GRiMdtOJH2y+M2LUulmnNc4diYzDiIGhYmtlJdXwCo+r8lAIDY9/u12j631yw9itg918LSDVQ9993V5q/8xSWw43H1YjBLi3doP6ZlYfSIYeo9YmU0VD38+LdvtAWrmjsPlWdM6BBIvt0M8Im0QFKJNDDlrrmKVUH0WiRjrnZOZisRFVEdEbuauJenV1ovg5ZEBTIOW3XWz+WKElHJqx979RGga4lbQ5Oxc2qGSI2RNyr6YuqMRTAiwO8HFaH6mjsRu/MaN6a6rg5V198lYvLnn6my8BqkmuV/vhH7WyazRBmGNCLUG5eVd2QfSACm4tUlqkKP+Mw4OeBqsfzqSTE4XDBhJBJpYEWdQPb5UQ1wgPomG7c8sRgr6tL4uj6NRsm1Z7/3KZbZtXI+gN4F+5ox+WId0DW4sVWqA9IbInrlEyb7sJTzHBLxVTRIBBUX1653noFXn3gK8WKBbolei1OiL5cm9W0CA5tkGecYGUKMtdM0TfRTXUNWHlt8Tw+M80MbWrJIZoCW7iKbMk8yPVRVI76VLF/iG+d+iPzZd5+uRNV+o0RG63P3AJ98DQAweggk3+SEPe3gPAs9Ed4XnAthkjGfk24WJxFkpxRFPOcHAEZC9G9GtjmraUiEwkh1E5ow+sHyOvK68hyZQ0LjuTEWz2eQ81r0Wmjcj+xDO51E9ZPPoLZvTwDi/tvQnFXeBp913q+sMEXNI+bNLF4gaLsrZK3hKaNOEsfi8fweBnWsODbkpkgX56Fq7jzEThvb7jnz7WaA7+xmmSZiY0fDMk08OKf9vvE7opmmhRlXjQUgQjJRw8JFdzyz2XWvPv90xOOibugV985V399yyQQ0NtnQTRN3zNh+xGyYIkPSsiwsvumeHTuRdmy6LjJfiwrycMqpMSx6ZMfQ77Za5S+vhJ1IwCou2CX7t0xThE8p1BbRUXXbA9u1D8O08I833kCvXr1w+OGHt0sk324G+HBI6F4wI5FIvU+xt5JQOoehYfiyKy1fHU7GFlUcmDP9fSvEkuiDb23G0I2I0OgmciePfYjkAEtN6l42NdAdwcc4aKBAKGRDULsaQNXc54BGG7HJE9E9KeKSiRJLnrs4LpUamUbN2Lq/cr2HpQKX212aw8c+xKRypfgtP+JgUIGDEkuc6/rmLKCJ31MZR/WljxeirgORPdkqjPcWdGUOgeSKU9EQWzGiV/Y950K6yFgn49YK5fqQXo49NGs+NkgefDIDXDt5FA7oKc5/jQ+VUwN96pkjXe/Q1JCMx/Hzhxfh7kvGKO9Eg8gIJvGGcyScz2Cse0VdBufd9gz26hoRoaR8idR/OFQs3/rMe05E8vT0aJwjchi/tkVMmhWhugsEXz5EoNmULs6xUNVYldc66o2ppzXv3A1ZZkXyPFQsvyCHzy8zUsNSLfKb9z4STdh7MBINje4zRUTOe96vKcNzzkpErEvPjtr4fMaI9KUHYOfrqP7Tb/HB+jQ+AFAsmUHMrFV5MRGXCQW4Xoqac2JxYXgzVp+RGdfmh2JuKHbR2aK/qc3PsYFzCDnmSGXLefMF2WLMyGHtFsm3mwE+sF1rlqzCEzLzMGtu584yNUwLU88QYZu4HMxUpnyeq0F/+xShCa6HNESllkzUsHD5WUIHJ6zruOxng+CEdVw898PdexLt1KK6jj/+7S8wenZBOBRGy9KVbd2kVjHLMBC78VJYRQWouvvh7drWNC288cYbKKvohlAojCH7How+XdpHQZF2M8BHwxq65IVUNh5BKuPUg2WclEgS8CpL5hrjreTFK2REdMHPRFKMG6qyNSYwsLubrUeUKd/uCV2iVpuZgLnEaMfdH7cnmtnQIBCNRAf9BgukRrRBVsyyjd66p0TRRClkiPSW8fGhXXJQuTRq0ayuF9/d+piYYD1/wgisb86id1EYYU2DA+oBiX3565TS2KeM85PRQ3TrhDR4RNz3lROUf5UCXuRBM+b+qW9gIDOJCH6Z5FH3E96W+aVg5Zjsy4FCHGrQ20L3Z9ARewMQlYgWL6pSSqP7JurE4awSAMCemSYAzfj940+gSU7YKWSbcHDcywtR05zBBRNGYNE/BNtqzA/64djBJl792Pb0hdKmkcuNLVmkMkC8j2C7mMzmJPeb5+ymjoolO5tomP348dcCVZKBVOzNwuwu65Ry80Se99oV+7Twea24+yX14ouuErlTL0jsRJ4kb0J5k654SyT2odGGcdBgl2FGDRoyh6gCmZCInbVWmcFKnnyRpDuyU4ns0xmgoQUV+eJ3zjeQ4+9P/ShROSHe3ZkNTZ79didLh14RFWevvhUAELvz50J9k3MEhXne9gPQpFdjSCXM5yVt+u/LErj+vNH4xSOL8OTP20fB73YzwPcuz8d9l4k46oZkFBffufkYanuzqeeITLktVqjwmRU1ELtgkuDH/+aVXdw61y6dLJQeW7ta03fBInoUY37QD4m0g1Akisvnf7TFdQ3DxOgRQo9n8X2P7MZW7n4Lh0Mukv/ru62yz8oZt8BOJWH177H1lXeBWYaJ2NUXwooaquTnjlhtKorDjj4ZANC/oqDN0Hy7GeBzO+DAI09SzBG+qRmDz0Ulqsp9C2OI5DpLpJuVCopESowHMhbPuCEr73QtEUs9LDQrJEqEI+FA3Ku/UmBoSCdtPPbsi/jR3r3dmprcH41aON1KUDXtXmCPHoidM1HN3JdJzRyqRTIGTMYKvZZCGYtXPH/qw6usX7dvGKsk4yaViOOZqpcVEipoaYHmOAhrGoyIphQxN/i4039dKtpIj4Dr7SE9qnUyU5Qc/DCVEVmHVMVgJXxkBiQrAfFakGXx6r/Ekt6VRPDKiPz+KAeUfaSn8MKbAIBSicxKj95ffC9zD/Z8R2r6U5cFQMHXoi0ZXmefHd5PtGHJl1+p7wb366kUTjlvQa9GDwHn3f4MLF3DbRePcbngvQS7RqFcyYZRaJV9Q89SaadrAorSE2DMng+FRJX5slxgOOTNAeB9QQ9lnWRCEe0OtuQKMmNWtQ9wrwsrKn2+Siyp375nb7Qs/QYoL4RRVODy4Zm9TT55yOdl00tghipNegK2lkX1bQ8DR+0jvpbn+qX0anku7DLON8R9c0WlllyBLC66L7wv5TwGGUpkzVRdcQsAIHbblaK/eb75OX2T76UUU6+pW2FY6RtdkyNz3ZZovt0M8JuzJ64/E+mEDd2wcOEWWBG7wtRbvLAAVQ9sX+aeZZqIXXqu0KLZzlheR7XrLpwAS0vA6sQ1PrfXoqaFWOVoWJaFqnGXt3VzAttOs6ImYtdPhVVajKpHnmzr5uywtcsBXoN4U2eTcdzw6GLcOXWMysozcioHEfH2LRYooUYyKXpHZTZm3KeuyBgmERuRUmGJWErExdBJbNgwoKxAIae1RSJmy/f3p+tSaEw4aEo6COtRVBy6P/SojlV/eRuxCyYB734pViQaImIrlfuU6CYvI/afjXovR1meN664TvYBvRhy3bvIzEqzxY0TZiEQSW4Fo0zWVZGEYwCa4AnXtmSxXiJxanpw3zTyi1k1iwqXfYojCGXiqH5aUg6JzGlEn4w/E6n7485k0TCGKzXNFeLyo9hVEiESWbLv2NdvfCyWb34ilpx/IWIDBOsJQFjOlZTKfYd/vC+MiAZDXheD1w1AyHEwsFQci54j8zHq4qKP8qMh/Pz+Z7F3V8nR55xMVzn/wLkZeow0InjmW+zZG1iiuyjab/KcqZFPdEu2DzN1+5ZQp0esR9bNv+rE+ofu31/sj30JuMiV14M3IWPTvM5frkEIGrqd/GNE9Si+rvqD+J45JETsddKrJd+csXjOTxBp62ERl5f3h53xerXvrhJ9c2R/b05BqWwun4Uk7y8+Uv7KUWTv8Hsfw6lq+n0AgNgNl4hzyL0GW6jwpYfET2QCcm5ubVzHQUedjKS8Lvv2LtxtIZt2OcDTdMNs0+rnlmkiNmGciMfNnIXzzjwNcdtGfp6F2fMWeNb93TtLUWaF8D0WC24nduFZ4xG3g9j79popWUcAgIwjkPjsud++0eb2Y1qI/WKKyHDee9dnZ7eFxQ7/KZrzdPzpj39A7JqLxblecfM2b1/54sOwHfEysnp02VXN3CGzTBOxy8+DVVKEqpmzdmgfF90p7hsK3/3tnu1XsN1Ra5cD/JAehVg07TQAOibeJgZS28dBBnLqRUa8fPilEjQMLJMV2Fkbk8wAxhqJ+gp9g59Ulpv3gpAWGBU7FSgtQDYZx29/XY1hw4YhT9dgpx1kHUchJSOiwYEjKvQ0tLgoh6iH6GV9PZBMAStEPDkjNbYLJIo4qIdAM//8WrS7VKKSj9YJRMkYPM+fnkt+1I0NWjLmmE3aeOWVVxQy15Mpty0ykS+RdlSlJ1dz3qucSFsh4812jg581nFXzBwg9HrC9F6+XOLtA2YGdt8CKiUfmjFcIv7+3Ta//uYyDQHBQAFcHaL/yvZIPaHNmkSbRX/+D16cdDWwl1QjLS9CbNwY1BsmIkYUd44egmhUx7lzBHWSMe+1TbwOoi/WN2dw40PPYt9uOsaOGgaMP1Ls78V/iqV/Tkhld8qbvFcZYEZdL4cx/e/tAcC9FsxJ6C89C14bXrtEjsYM4F7joRVUOZWaN7lx8UbZBrJHOCfCfu6ap9pc9dDjwMDu6DtkEP7x2UdobKhD3w/exYr5fwDqpAfAHBIaz31Qd9jREKqvlUJtPUrFTSk9tiJ5Ep+tF+c6SOZhUIOGRq+F9zm9mQ3Syy9vkh6EqjzFWrJU/JTnwzFCxtkprhabco77/Pr0crhLxxFse7Zhc/UMAEEi+f5PT/Y8W7tqIrZdDvC5CpPtwSzLQmz0SFj5+erziOHDsKElg6ixY8jYihqIXXgWLNPE/F9Xt2ZzA9sFZlkWxo0ehkMP+yFmz1uAwf16bvf2Ct0eNHbbt4voiM27C1Ykiqprbt/eZu9W++FhP8CqehuffvBfrFy3Bn3HH48VN2xZT77yqTtgZ1KwZMJWezaV+Qq4E8eRMCzLwqznF27XvphBnSt9/sQ1u2Yitl0O8DQNbr1R6rXk8rMZUyRyoUoeZ7IJNlJdSgAAeUqT3KdwRyPHWsYDyaWtmiEnWSwDaI7jpofEDDmRO/n4ekjmc9oJsTHjxzKrVGXQptKouuY2oEsxYlddgDCZJTJWu0EyYFif9vMa0S7Gz5nFR+2QFpn6urzWzdokRzuZEYwaMmzsUAR779EP6VQKUdNASBOIg/iXdcKZRcuap+zLaNgL6T+rSaM56aCpWPDXCxivJhKnMXbepdj7Pc+dMfZ0xvv7IXt4f5cqgArNcsmYKq8h4RE9Ac63/Podd9/vSO+CHtzPDsJm7YvVQlPowAGIDR+GZMaBrut4dPxQ6LqOYY8KLr4RcVUmAcGLBoBvGjIYP20OjhtsYtyoYcDEn4j9smoR7xO2nfHebiWoOmU2UFGE2MVnA+MOB+Ai96/kM9Hs8yD4jNRL9Kpp1Dby5hcX2/I54P2Z+zzwXqUXytg1vQzmM9CD2tAAu74Rdzwp5q+G/WAQVq5bhb63n4sVr/7dnXegN2LosK0wqqc/7N2/VJdcnxVtXSnPkdncuRW5cs1fBY2mmGXrpBfP+4AeBG9s3gPMZF0p7xuZT1H1TI7kt7xHE11KMGrEMDUXSCPDzM1Lkdn5UV/jpFm6hoZMFD865pRWT5Da/BED69SWSqawevVqfPXVV1tfObDN2nufLcdHX36DVCq19ZW/g3b/bz9DYWkFkgyxBfatduND83DLE4tbXfKgXSP4jOMofitnqrvloBAyOhiX59JfdShvo4+TzVqtzMIj11rG3pukkkpKHtuQaIXVgm64eBzito26eBaGaeGmh8TbvSmZEdpFn34j9kVkRHTCmL/KbG2EpUUQO18kPs1a/CIAIMt4ItPr5Zt/daPYLte1y+2bZE6s9bbLJopCH1aeoFJLRGtGBFX/+8eNRjJhI2payhMCoNg09IZYI5U68NQr8ed1cR8F9LbZ14q1UO/dYEsPPpE4q3Hlm6h8eLpbdCGZhqVHUXXied7tyFT5aj2+1XwcZo/Rm6CSILMYt7DN8to0MllH9T+RM3M2OCdEjf3XvoijPm3gyKumAgB+/xsRmlP3J6sK0Sspk8usA+Sb+F+N2A+ROo2oNU/eJ9TfUZr+lld1VGni6/L8WIEqnvOy4r1LDj+VUAsEAqd3W8pnKN+EVVSgZJ0TaQeOFkJtQy0qf3GpK83L+yEUglVegtj914sJ7KfmiO+l97xKzjf5FWOpw0TmED1VV7PfkecsxwbmpPjrLnO+gZ4hLx77np4LSwKWuVpIzC9YUZtGNmxg7MhhYh0HMExTeXB8HvlMkaPPCENFxDtO7Qq03a4H+KE9CvHyzeOxxtYx7qbZbd0cZXHbxjNVL+O/q5KYfuHondpX1bV3APv3Q+ys1p1ZT8RtzHj2JVdwzWfJhI2L7l24ySRqezQ7mUD1JSIBBRsaEJt9R9s2KMd0PYqZE4SoWESP4tLntpzlCgBX3TcXvYvDuPKsUbujebvVquY8i2eWyJeQfMk8MnYoXv77n9H36MOw4i9ve9d/ag5QnIfYiI7LLnrgyfmKvhxPbz58tD3WKEM1AFolXNOuB3ie3IFHnqRQeZccxUTG17jUs/LVSlaCX3+b1WPIuZWopFbG+xrDIg7XJGOc5LOSN8zwM5knvYrCsCKayihdUZcRL/x4UszGM6ZJZKb7upvxvw2NQCqNgrhYr0Ai/Y8lT5mxfmrRcFnb4q1IxPkK0VYNBVFNeR0lGaIHej2ayDWQ8XwinzzpNmQkcknIc+Y8B72KAiOEuy6fiGRCUDDdLFp5k28p1qk+y2vFa6LmRzRUzr0HdqGruGgV5ruI/sOvYOXnIfYHiQhTEtGPFKhYKXhmfccjWsrl6fM+UZWU5PWSNVBVVqbUS6lPASnHRciRkIbf/XupYqX8ZL8+aE5mVfYws4aZhblcHnp5bRiNWQNHHX8qADe3IxISQmn3PTkfV503Ho3Nog+zjoOlH7+vdO9veXwxAFeFlCiWVa7oXdGDsOUczVJZ7Wj/7mTP+GL/mRzPgLF13rOyD4oaBCJOlUika0pELy/7Sll7gffopHmf4oXbzsIXb/4GlZde4Jb8I4sqEgZCGj5Pypq7y0SsvDHh1aSicicRfVc5HrAusd+rpVYSZD6I8kj0hPdcOUbI+8ORSD8r537CkmUTzumbtbbYd71sI58VPks1LWJJz8r2MX44j1AbYvU0eW9qwE0PzVMsnLsv2XmKeLse4GlDexSiatppAIC5MHD349/dCjftyZIJG9MeW9zq+7VTSVTfJz22XAEsaVXnX++GuzY2IfbUra3ehh2xUESg+bAe3ar65BnT56C/LCNI+YdCQ8OlDHHEbdz+hOjbRMbBtAtG48YZi3faY2wLG3X9bMyZuBde/tuf0f2IgxHVdaz4+PO2bla7t+asgcOPOwW9ynYcyXeIAT735I478VSFFvtR0JrInfHbHBoTABXLJOskId+g0ah4eyflm5iaImSOEAERITXzJR4xMXHscOhhEffnG1rFpXuUivg+B6F/yGxKxkOoh0LUWtskYvGjR3pi8Ym0QH5Larw6HOT8/neVQF6sSFSRM/eQSDsYP3q4W5dWGuVys44jxLNkk4g2iJSIMsI+FLJe9s2AMg1ZBxjaRSAeeh/4co1YkjVDRE0eOo0qghsaBV0Osi/0MKzyEvfa0Yj4Ptx0YtjSo4j97jHxgd5SPCmQ/fHnelfOzXkguvcb5weIYmU2Z3H/MIoiUVx9jgivtKQcmKaFq+4TtLdbXxbX+YZT90B5XkgpWpapOrKiDz9dL67bOl8svW+JQPbnnDYcUcNSsfysA6RCJm44bzSihqm8rfXN3kpgPSXLahWPK+/fvbuJa8T7+s0VApUe1FMwRkJFYllOVk1uH/BjSPTbehm3L0jzfhDLd1YmPG3h/bJSVps68sEP8H8PnIMDytL442t/Vtf3q7oM7JSDL2vp5UiGitw/a/GyQhNRsiFvD6JnxsV5t6+oE1/0KtJlu8R6BXLMaMjKbHAyXaQTYzeKdijGUUgg/7ycSSdbHozXk88M28z5CS5ZvzjhC+HQO2Foh3MjnC245VExt7czyZ4dYoBvb3bbDNHxdA/5QO2MVU27BxjYXYiQtYLdN1skaR3Yg4U/xPdj5IRQezI7mUD19TLRxS9CtQ1WdeY1gD/d/psNiFXd1zoNzD3WrDnYYIlBbnltBpefNbJV9z/51jlqMMudTD3vtmdU6Kej2hGXzcK8WCGMki0Xbwmsda3DDfDJjKOUElnBKCPfxnp5CQCgICvRh9SiYYUkZvQxjse4HbndhUqd0RtDZYybb2Ae14gQ5Yr11zTKGPzefQRSJLPj+0K3W2XNbZTIkFxiao/UNsEKRTD+1JNhmSZG3CJeJGQLMdu0Pu6NT9LzKDbcAYDInS8fZqY2Zw1srK3FQCsPJWYop0IONmtE9k2JTdeLGhYunzRi82n85DvznBlDJ2r2K24yDs4+k95NRnLTw9SqYUYk16cXxFAO+dvlhbBeK1XI3grrqBpzqVeH/sh9xZKa5fQqmL1Jb4C6KevqAACp3mKAr8gPebSR2FdhXcf04YPV/9NeEMg+JSFdkeEdqHmffbLei2Kp0JlQmaniAOQ8sUYvvbDPpafHa837xa/hLy8lPlwjYGsPifz1IvflWtQi0bxssy69STsl9kFvgFm0H/tYL0TQUTrRsk3rs2FomoZjx4pkryseWIiGRBafyXP3ayDRg+R+Oc/kn3fiM0jmSpEMrX+0Tpwj2V+pKLcns4VxcJkVLhH9hmYvaCMTCXC9FFXOlfMDcl8EfhxX6Mk5vtTWfElN49dsA68n2TfrEzoO+cnJ2KPb9me7drgBvrNb1d0PAxXFiE06fZfs/5ZH5+GU7/XFZfdsv66K3666by5G7GkiNrz9eQUAUHX5zQrRx+beuduOe9Pij9X/04YN3m3H7ShWVFyCJ597CeduQ7H0wIBL7xbP6vwbT9vubTvcAN+9NB/TLhiNOAwsWijeZjXyTUemR8IRUay6jIQPEqUSzTKGT9YBtc41GWcj4ufbndr0bnaoWPLN+4WMlRoRDRFdR9EZp8Buqof1XiViPzgKVSdIzjaz5Ijoi73hCEfy8b/cmEEmrxAPXjEWUcPCVfeJzFmiDiI6IjhqnxDVAC4X248KIiHNg8LJyW3yZeOR976+iTxksQPGJjnTv7Qui+YUXDjD+rWM4eZkQlZecRHsuC/uHU/CKi1yGR3MIj50CAA3S3NptAQAULSPYLYwq5ftVAif7B1mvFJz5LeFQmN8zxwxOMbY6TWQD646y8eRztG7OX/SaahrbIFhWoqTTSRONNmUzCIU0XFjbBDCkShulAO/EaHOD/V/Mp5zVYQjX9bmZzJ2Xya1iRhXJsuKSoqKO66UP0OyPd79kVPO+3xNQ85vspJSuSaZWilmlKc85+pniJBxlh/1er1kpN32lwZsrKvHkO75yGQyWHPOKOiGpdAv1+e5dZHxa7adXnOJVDNln4U0L/Jf2+TNn6F39eZXwlvjfAXvf3pN/vNhlbXca8F7X9VI9mn98FwMpUnDOTov64maQXnyXFlXmJPuvD+65LDjttc63ABPF+Won53Sxi3ZvN396qfqAf3lCf1gJxLfvsEW7KFZ87F0YwrTLuh4rIktmZ2Io/oRnyIfpQQ2w5Zpzxa3bTwwR0yGc+DdnF21QPDi7xodIHla3wN/guseWYQLf1yOc+8SzzMHxcBa1zrcAE8Lh9xkCr4JidCJsKkREfURMjizzzcx3/ZuLUvx/Tr5/XqJnDkbztga0TFRANkNnni247hcb7JqiDa/XyK2k7VBbRn/K5LH10MaTNPCzReNRtSwMOGXsz3tJnplfNzKmYQjEiGKsKIuAg9rLlogqmDMnjF5f71bPwOAiGijnUEq46BeF0HP4pCMZ5fko3LcONhU8bMTsIycjNCkl6WhbPDmRbw4X8JqSkrX3mdr+guEnjdEnldatMd6MB+xmy4T0s+3/kqsTM0Xvlw4T0Cvg7H3Bq92UZGhoTDfwpQzRsIwTEy+7RkAuWjSy0T6vCaNdAZ4a4Voy08Gir7KzSAG3OpbvG/Xyhg548wEikS3vMbRkJddFZL3D9kZZOskfJ4nUSyPl8m67SHHe6O8L1bUi7bQW6EuO4/BtvFe5DyAQrPy+uVFxT394OVjAWj4YV/hYb0s693avixuxvh5P6r7OuLNERlaIVUmk14mC9dXKqjyc3PKq9nOqRTObw2QqpXs09wXEI9Nj9mfVcu5vNoW1gmQSF06k5SkSfnGKTfHhPMImtx+x19+HXaA/67YTQ/NQ108i9untJ0u/o6abduoXih58nypbWk2dxdb1R0PAQBil527lTW3zeY+twDvrEziuvO2zcMKRXT85uK9EYro+Mmrn7ZKGzqqDb/uafQoDOOmEXvhxIP7QtejOHv2B23drHZv9ekofnjMyUint13/qMMO8OmMizIivnx7areUkGrdQgaIjF3LF6LuC7FS54YogEiHtLXyfC+fmZ4A9VoYI1dIOhIWcfaTDpENkUiRDBCZHVckWT9ORBynUZ0XMG3qBLS02MizLKUOWCwZAo2+Gq55OQhe99XCJE84mRG5pgwjNSS82jNEh36JA2qBsKvpGaxvzgK6iXGjh8EyLbz4jG/ylhmEZL8wJEMET1hzmEj3JyuGcwhEOf408P9KBMkcgH+2iFyHw8qx7cZqQnm+jGd/HVjaIFEJLC+V3OzPjH2TccF6tS2pLI66910YEQ2/n7IPXlsq5iG+39tbi5dzQ/QIw77Qa0ppm3hj7IbSwvH+ToTOa0dNHFrunA3gMk3EvsSSbBgiW8438Xpwn0TGlvJCmOUp9lMY9TJLSqwQHvr9Z+hfEsawQ/th/IFiPuq5d73sKiJ61jzguZJhwng1z4Xc/2/Y9/Jh5374LLO9TljOr8njsa8YDSAjRs9hS5GVRKM32yL3Wc8EdtkH3JaInh4Z+5heQkT2HbVs6AlwTuf6B8VcXHNTA0YevPk6wn7rsAN8j7J83HKRQLVxGLhrZufMbk3E4/jlTIGC31vdPpULr/3Vs/hxPwPjRrdPNk17Mi2i4/dTREHpvxpRXFP17do13wXT9Sh+sp8IrSWhbzUL+Ltqs26YBNu2t0vBtMMO8Ll80B8fewqaElkMlHEzvgH55mP8bmVcImUfKYIZoM2+jDTyiMlC4PdE2ERqXfIla8I3UZQNhZCKRhAbLzi/dki0T3GnNVEI4uFZ8wEADfGM57hf12cQTzkq265FxRdlTE8nKhK7c/WnvfF40VZNfa/ltJ1xY6JP/3aML5I9Q8VC6vMT4axuzIj+iUZQOX48bNuGZVlIQc4X1EnGCl0AySlX3oy0lRHpdm1B9zvuY6owRktjTJZouCgu4+cyvm4V5CN23RTxXRawTANV598gPlM9krx4cuzJepIMn9q02HfaScJxXBYTa58u27hlidzjH3hPocyF5+2FdHZTREfj/vwsDV4TomPO2ZAnz2vJzO2M7Y0Rq/oFTNbUvKwQwEW47O88333B+SfeF5y74T54LmVUdQx5v8/NBVj8jyVKa+ogf+UnaXxm1za63m3u/gw1kkU8v/M+Tzd7dWNUidmId76C83r0itkPuXFwIvLltfTgvXMuPFeOK3SG/Vr1HG/K8tz5idxzohdtyXOzbRvV1dVoaGhAcXExtsU67ADfUWzB4ldQ3CD4ZysNEUYgnS0cAka0Uw75zpht26h+6SUAruvbXqzq/hnuh3QWsamT26wt4UgU94xx2TWOA4T1KCbNCuLRgbWOBQN8G5tlWTizcjgAl5cclohqY0sWuvkt+uXtzAzTQmyEyGztKGaZBmK3Xy3YNQ89vs3bnT1xHNbWtiC6E9fniudFeIbIOusAD44bssP7Cywwv3WKAT6ecvB1fQYDyihMJBAyU4RbfGJgjJDQ7dpkclQaHzxOLKl06QKv+8ZJ3H2lDCtDJdmsg+W1aXQrEGGIFOVjc1y76x54Vk0YMeRCCiPTvz+rYZo4U6FZolC0019vGnDFmPzJLU2JLHK/IWVL0RDlufAc2Fd0WUnlK7HEAeja2ikHt894DgdViPUclSQkD0S5VU660uiSS3kATpAzoYXU074l4vv/fiPCJ7Y86Tpb/M5rzdAN3dyGkPCajCbx/Z59cyZQv9mIqoeeAGrqEbvmYjfZihv3knLBTJ6SIZoVdWnUNrRgyn0iTOhPSCrN8/riebr4vWuBNxTD8AflhA/vbyCsaehdxEQXsV6XQiY2ic/+AiO8HzmRzrDDkhqvGB1DCzUtXskEhu9WN7o3Eq8zz4XPCBOZkr6wkZHyhinr5XUrzxPHZviin1TQZFs3d+8mM46635JSNoTbc+LR9oWOuB+G6BgW4dw8ZTyYHMhnrMzyXiv2uZ+OGc9JgCK5g6Fg0k+5TtI7B6vGFYax6MEzvMmQDo/N0BvJIFuo9LdN1ikG+D26F2DBTafh+YiJx2bPx/BhMuyhm3j06fm7tS1nHDUEiaTkXvsHs8AC24qFdR23jBiMsK7jhkUfb32DTmaUXI7oUeXhfNftkWvPVHNa22udYoDnhOthR5+Md1el0JTM4tFnX8IFp4/AmsaMmzou6Wh8k/KNy4osLJbLt3etL+mHKeZEH9yeE3rdCsLIpJO49dUvRHv6RJFIO5tMQKk3v09yoFn+QxrWRokyeDzKBRB98LicZM1NTuIEG1GbomLJRpBiVyd/5+QTRaHcBA85+dTkRTxEiURy9Hb+s06c29AuIc9xFMTKl9TAQwQtUoo3IFXgnVw1VBIZ+8iLGBOKZSnWI8Uv45uppCdCr+7zFjdBakgJJ1VTm8oTA660sJSUqM+wb4SoHCcY6WElfAl3PIc+8thE2n4aLuV8P1ybwtiZ7wMAnj1rT/U971tOKHPicGgXcb9+TZnruHcikccnPY8UQN4vROPcf+5kbtbnJeRL77K7nBP3J/Xx3mYbC6JeSjEpxkwi5AQv70+2tWb11wCALl27w4ho6n7kfcvrzWfPL6HBZ4nyAKR5huCdWPbLGpM8wP2zjyK+2xfIkQWW585EM0t6QqRkErkTkavCRHLfnJz3ezMkPhQxoU1Oru6IdYoBnvbFR+/i1otHo4xsiMAC20azTAOxX14uPjgOLMNE1ZydF2TbUQtFojj9x/1Fc/hl+LuJ6gPbcetUA3wmncGl9y9EoRHC0g1pJDIO1jVn1ZuTk5j+OqREf3x7M47HNH7GLEtUARApMSrRBWP7RDOkQxE99JMZ8SpGJ9/UKV/sjkiM6IHHI+InmiatjvHFsP+E4CJtzjNw23xf1Ij7YqyeiU4Nm0F1mzOV+OQTNaNRuE2Xgl4ZdpY851WN3uQPxlQTWzguj+OfW/CbX1qBMfo+W5A4qLrnUbcI+5JvELv5SvWbQxlhnyAbk3no6YV9506Braj/B2lEn0RuRKGJtIOp8z70JNcAwMOnDcHgLhF1bXhOCoknvfc317M1Uv3E+gf1FOep+zw/O6fP+D+vA5vC+DHFvZjs9/HalFxPrMjrydJ63J7I3vWKxfeK7ujTbuK93b/Um3DE+4Dp/Wwvnx3OJxChdy8U6/PZJC1TJTw5Xo8kCXq+XoopAHTN93q57HdLyY57f+ctTy+ES3r2lAP3X7/NzU9sr3WqAb4o38AVJwxCKhvCHvsehKghHsxpUyYgEbeRkRcxpLtVeAILbEsWO+9MWIaJBb9+WX131oRxqKkXKpK728J6FJOOHIBQRMcDv/tstx9/d1pY13HbCFdT/45XPmnjFu1+e+amSTsce6d1qgF+xYoVAEQs/oZHF2N1YwarGjJoaG7BdY8sUkjriWsqZcFpsR1jZZytZoo3iyt3UaJMYvs83xuXsVQyVPyz6J/KYgZEGzwuY7WMjRJFFBheESiiDaJxv1Sr4RMfA9wkDH9CSCLtIJN198mSaIxVr6z3wgYiJrIqlIywSgV3PL8zuWOjSq4R69N7KvWVQWSSjUJgPhcgN2cAyCkc0czYqoxzbsGbYZ8TidbkFJQIFwiGTe+9RNKI0SjT5NfVofq+mUDvLohNditsrW3MoK6pBdNlZnGDr1gEGUVEbn6pAcbe/Yh+sJz7YcEOxt65OY9zy0siPHPdKXugxAyp+9DtS7F+kS8xj56gv0AFr82GjBeNA0LoDnCvP2PnCcmGYlyZKLN7IevKeiUtKDrml9bl9SLbJj8qlm82ihXf/WQ5AOC1pXFcecIgdRwi/v6yGArnz/yyC5wjSPoSm/issR2mbwRUCD7l9WBymSy8hxSzKOr1Lvhcsv8LDO914n3BZ4bjhb+oyc7E3mmdaoDfkkUNC7dPGZNzUTfvMgcWmN8s08QwycpqSmZhtgFyDyywHbVOOcA3xLN4f40rCHXCNUKD3MiJ3322Pr2J8D4LSPuRcqOkpJANQXTMmGnWAS762VAgm4QRjSrEROaHm1rujcHzDU50Q0+C7eorj6fmAEwvGuIcAeOOuSJIRCKMFxoRDdecuicyqRTspgZPcg3gooz+kqfMGGaR+t57q6iUdPmZQmgllpxXgPd3ohIidjI3ehV5YW5jksJw4rMN7zwFjV4W5zk4d8Dz9UusMvbrLwkHuAwbJecsi4L8J2HimscXKb33qJKX9rKd/F4D48NkEGV8h6QXw/XoKRapmLxkNCmhK++8QVNjA8bLCVggp9i7NF9lODhwNvu7EdEQiUQx7++fAwDyorpah94jOfe8PxgvJnLOOsC1sT0Ryoo+0qRHxWOGfI3jJ/W1PNeM/MV/Lumsg3hzA26M7YFwRMdjfxRtzeXsA0AXlqSU9wnvjxZZqKRBCfNxv2IZ9rHKuJ5b3Nsbuweg5o+I3N05OF8M3eHcBxG9+J7FSprkdMO+3cXEGHGn/37ZGeuUA3xbWDqdxD8/EfU+3/5682qDbW2ZVAqP/PlLTDl2YFs3JbCdMDO/CNNeXuJSGOXgxMGKrr5K2iGtjzQ8+RI9brCJcT/qv9PtSadS6t7ngNgiZ9c5yRpRYQnSbOXGUmF1RUQw3/jS40uIQG1jSxYXHBPct9trnXKAzzpufBFw37CMpxHFUfRfxYGlDCwfGMYhmT1HlgvjzLwZexaFEdJcETIiL8Y0LRW/9iI6PohuhpuXJ02zfWJGjO1lfVCNcXUAuG3M3sikUyqOm3HEZNXaxgy0iI4Rh/WDrkfxzN8EIqLs6teSx8zsRxY78SMrWk8fK4WDDgXTOO9BxMRiGBx8yARxY6ReloSfDUNj7NZvjMUavjvbFdpyT8Qv/kRLlAiyt71S3A/01OgVfF3vFWbjObN0JNvOrFxepxJVOo/bi/3SE2N7lLfiiwadf9wQZFIphHUdrWG/+yyOZDaEkYf1A+BF/vyXvUV2DLwLAIDeSu3ZnNGr/mR9ClE9iguOGQAgR5gtrOO6hR8rqW96yX7hNnqQvA/KfHNBzHZX3pw0XpNcRstrXwj/lF3Cbf2ZqH45YEYEWGybCP9TWRic8xitaZ1ygA8MyKRTuOs3X+CZaZOQisfVBODsX4xDrz32R7eSPLz3r/9r41YGtj2WSaVwy6tfbJW6uj127jMfq4nR3LAWw0QMI/YsEkMFw4EqIWgzFN1dZXNf/1xRDPkyPfenAar/NuuUA3w4pHnkTRkT59u9It/ryi6XqJUMEsqvEnFlHC9H242Bi6UREZFHIiCiRLqnJQrRi5syLl/xLqdXbKfihHJ7xbqgVoV8qBjD9ety3DRiL2SkVnRY15HOAs3NNs67u0qhTcYa77lkLLSwjtN8LnpYj2LWa5+puCFLl9GIfBqTXiREL8Sfccq2fSh50vt33zza4zxDY1K0j57Dvr71iaTY95RyJmpiDgOZKWo+RXoOP+jrFvco9pUlhC0Q+5qk95xZno7mlg+kdC3nQuQcylaqVnE+gPcRB01eIyK+FXWZTa4p4OY/EOm3+FhVZGnwfmThEd7PvM9UlvFOGLVq2O+qbKDcNT1DzkMZko++vkXe25LJ1FX2HQu58N5mV7LtS6UuFO8Xw4ji9lGD1XoaRD/dLatmkf1DpkqJYgOJDfiM9Sgkk02sx7GBnmiud3NYH2+hlvdWizbz+scdMnfkseBlT5GJViIvfJ5v7q01rVMO8N9VI8IDBIf2iWsqoRubZ33opon+Qw9QNxtvrf++8Wfcc+UZOFfWGQ2sbS33mga2qc38o8gH4MtWDwOX/WxQWzapXVmnHOCjYaBL/uYCrOJNycxQFq1QhaklWFzdIH7nhFCpLyuURQGI5D6vSSOZcRHYNz4tEraEqCbPJw83oMyr28GY+4ZmL0uDbjH58izZR+ZLOOT+H8nGMe2JxZtMxPWXRSSuvk+U//J7AZOOHIBUwlbZveTHk0/OB4nnSgTPzMTPpIIh0Y1iLsnlP2Xhab5YiPASvkxEtyA6GU1iSdTNLmT8mvMpPN+3ZfycrJruKkYLZWyDyva1hOZMVra90Ph2hMt5HraNRrTJ6xXRiOzF78wmJmLjemRZyLo0m8wRkPtPY7vdDGrvtYz4kDzvvzJV7EVsT5ZQbuYs5wnIY886olEsds7rxaIk9Lg4n0VEzPukO6QiK7xqkswUTcpnpUh5ZF5PgF5JjY8F9cVGbxGfIkODA/cZb/bFxyMhb3Ef93wg+0B8T+2chrj3GuWeI+eTmKvBuRZ6lZyT47NBenaFYnpJLzjPm7HemtYpB/jdaTeN2AvpVArhyK6baNqanXvsUKRTSUT0nVevjOhRvPuP13DqviUIh8N48s31rdDCwLbXbh61V6tOqH6XLBzRMX24yIJ14CAcieKqBR1DmfKdR8+FbQt56taoq/CdGODX+Ure8U1L9PjFBoFgyJYokDCSOt2MLxLVqnJeaQepVBJNa1cBAJbJmtrkjKtsUokED+opBmDynrnfNWr/1P0W7esn98NYKxEWkZdCV+kkFr61XLF+ABHvK88LK0TvMoXEvvbr5h046HXcJlPCB5ZFcNI+xdizQiK0Zq8GNvuOMUrOL7CPmaW7Z4X3OP/5xlssmzxrMpOI3PJ98WH2KZURy32xXaJmf0k4enLfputBlFawBcR+wlDxoL2xXBCXqbNu6V4mBtEiEbIhYafKvpUol8jNTbjzXl9AhGaue2kJABdN08gCa/TpBbHPTBXTFetzvkJp08j7hxmzvYvF77mZrF2kjjtj7Hw26EXQI2M5yW4+OiTv3WKJ/JljwEnb9U3e3BBmhfuzOYnMa/gMyz6m0iqZStSZ39CcxfWLPlaew/rmLO4dO1jlXXwWF9fuuMGmPJ63D+nls13cT25yJGst8FniM/LxOnpCcr2Id26GXgivP9fLpbW2RvZqrn0nBvjOahf9bCjS6SSiOcj95ksmIBGPt8rbPxQK48eDihAKhfHiext2en+BBQYAp40bhw0NolauAwemaeH+J3dd3YZwJIpHxnsrZT1jGirBqzNbpxzgNXh528y+a1FqbeIzEXSXfC/PWcWX87zsmcgWKGEZmWmohyWqkOvv1VUgJKIPxo2JgonAiUqJohljZ6x+kGSyLN1IfRmJMtJJzP/HcgACoebpGlKJOO6e9YLyNnQ1v6DJ9SSXXsWPvbFI8oC7FYaxrq4J+bqGPMtUKIT7YSLL5zJ+S1RCFg0R828+Fe4mq+AQ8dVIBNa32Cvt/I6MndPb6eLTAyeiJDpltm9d3BvbfWuFV5Vw327eLOXcc0/4snptpSWz+etNPRN6LX7OPeP8qmqQr8ITzaUcen9fujGJtOMoxK80ZGR7a5q9iJ7XoqLAWz2J1FiiXMad/dr5Sskx14OQh2D8mIiaLCg+O7zHGZPns0LqZUqepL6hHgAQtgzEm5qw4AWBUkMacPqY4W6RdJ8SI6/Xm/J6suoZ7wdTMY9ke306PIf0imLe60s2yac496cDkHU29dqIsi0fY46oXawjWXJUlZT3HNlW9ODYJj9bSXkHvnmHXWGdcoAPrHVN0zTceP5oAOIFETUsTHv42TZuVWAdzSrPPRt2KoH33n8fE8cOh2lamPXs823drE5tnXKAd+BlS/jVHRmD51taKSWGvHFcMkf88eCCHMQVgqbih3xj89BERHt1Fd1M/QzG5hjX5vHJLSeKKZZIwK0spXnao2nCO+H+yvPCMCIaehSGFQpl7JGxTKKLYqnJwdiiYYvsvNqI4Ikzhj6oLIKKiq5Y9tG/Vd/U19Xi9COH4Jm/fZ7jIYj91bR4kVfaxwknWuF8wVtS1qGXLyOW3kyPHczu4/78GjqsGQoA8PHg2WaivSJfXN8P6BmPptdDRMZzbk5tfjuaPzfh1U9sLLpwf2TTKYQiukLs9IpYf7bFx9rpXeytRMZlgU/ZkcwWfs+4OY+fu1uCeXo3tm8eiOdML7TIdyy9QSpzfi4n6bMO7LoGVD8yC7Gpk1H962rEhg1DSBM5JOyLel+dZFbLotdN5hufYfY1vRbup2KzLDo3J8U0ophweP9NMl41CKLBC29+4Tn/xpzs8qjvlmS0gPu2fWqi/vuH/c197wr+O61TDvCBta59ufwrNXm2rjmLM8YOx7/+9a+2bVQntWw6hconO6/2eWzqZFimsfUVd7H98T9LAWwqeREJAScf0rctmrRLrFMN8CPHjEXcttG3SwFOGmophOVngLBuZNbxsmv8cWrGkf3qbrl85IzjoDgskbkPhZLtQmTfkvSiWvLpFZLzxQP97co6wPnHDUVKFvU2jSj0sKa46YKv7yDrOJsITbEeKPcVTgh4uSFJXR1Z6T0uJr/qwqZsu9g+w6y8tIOsI1DO6T/uDz0aRdX/LVHnRI+BzJ+Uz3viNagToXmV9clr8kOZacrjMtarlBnl88iYrWKUJL3cb2qTsE/pueR6BLpkr6yQnhVFuIjEmIfgj5GS9UQvhHkTzJpk3gTt/dXUOOK8iPieqHjK8YORTaegaUAoom+SDUzutx/p+Xnv9OwYY7d9WaVE35zXIArn9mU5nirv2ZS8XuS7c132Efs13Cw8wLWamDvplicH8XzpKtY2ofrex4A9eojPX9cAdhKlUeEpf7CGip3iZ3pT9G5pA6RHRvTL+4CInfc3PVB6Av44OPtij3JvHyyvTSOsRxH7vhjkuVU0GsVr734JICcrV46enJ9iWzhu8Bx4TzJWr7xmuW9/hKE1rVMN8HHbxoIXXlGDTGe0dCqJGX8WNxqphrvKpp4zHtmUGIlZWCORcWBaFp752+e48/KJ+Odrr+LmSybg578KYvI7atl0Cic9+pEKc/gH+F1t9155BpIJ25NYpQpfyMEnX9dgmBamPzKvVY8dGz6sVRhfrWlV/7dEhVkZFj3x4I6J6jvVAO83vqVzNWMAl3PN2fBlkp3iVuDx8pPJRihWb2j3AdQ0qFe22dgEAMh0EcRiI+udifdX1NF9+uKJtBdZMc64UcZeM1kHjuOiF1cLRex3fXMWiYxYMgbNwaIoJG9Zx4suGTdWAViJvIoyGtJJG7/7tWA7NKoqQC4yt5BAaUkpLM1lrBBBMYsv7dPlIMrcilzLVo19RrS8l4+v78/61CT/OTdXABGvx8WYNFdZUSdj4Fkyf8TSr6yZUMwhL++ZmY5NyrvwXve/fell+vBaMd7MPiJK9p9T90IviiYPn8iR9zO9qD0rvPe98q7Scdw76wUvD18enJnCa5syuHPqmE2yYd9bLfq1V5FA7t1bZDIIkbsKQMvG1DbJY2ZR/ejT+E9+F3nO8PQN5wnowe0nE744l8Trz2eaWcec96JeDFlZvC+TvjmFsKwtS9bPUJm3Qc2aFfVufWYidC75/L35VcJzDOYn0FNy59Z8XkTUm0exK6xTD/DfJZt2wWiEQxqMLWjPbM0qz5gAOx4HNJFBN+OZBVvdxrQsNDTU4w+/+y3+9McS9b0WCmPqC9/sUDu+S/abSw5QE6q70566/kwkE7ZLMtgKgp42ZQIamltUjePvokV1HQcM7qX+f+fj5a26/78/MHmn669uzjrVAJ/JCnRc5tOOsXza4gQqjFWyGxhb5VuesXe/Rnlxji8bggbHFA9o1hDIPex4kZs/5lrsax8RAVHLWl+WHz0OOwNPzVfGnwuiGtJZ4Pe/cTPg3Gry8uDNMuhdL9kNEqnnGaLtdkMTqmc9C0QjiJ05HuUtzYhmMioLWMURZWy2Z8bGK089DXzyNWLXXIzq2x8WP/StgDG0j+orpZXtYx7YPrQ5tIu4BtRF4TVkLP+gXgKRkffur8zU5NfQl9sxG7lcbo+km62JOFUARR/wuq/38cyZp0D0yCWLuBM10jsh59+tY+tF5MyezKZTOHXGx7DTjrym3vuT941b51Ryv6lxpHHOSK6nVCq9GihRH/NFy8QxfeZi1UfHDxFoe0POedMbsHQNTtrGvbNeAODOYfg1iVRYqVSoQyrELmu4biKsLj8Pltf9QxmD96PjPWQOCBUxeT+UStoW5274TCQV68WbSb1kA7V0yKOHpw95bej18Pi8L79Ztkz1TdfevREOueMK73Wy7vJ07z5ZRYoMLt4P5Tn5Ea2dwUrrFAP86DGViNs2zHYWy9udFjUsjBs9DJZpYfa8raPvbzPLNBGbMA6Wae7Q9uFQCHef0g1aOIzJC1buVFt2tVWeMQF1tnCxn5z/Uhu3ZtfY4lvPQiph4zdy8NxWJP7zC05HOmnDCOrQekzXdew3qJd60WdDEdz/28+2efs/3XuO0puh7ap5iE4xwMdtG4tfekXV86TCHI3IqiUlZ7tVppm4QpysZByQGYqc0Wf8mLH3TepMbhRxxaZ8oUbImD3RKBkdROKQ8cM8X6k1v/6FnfK2xwgL9Eg2TkV+RJ3H1LuewcE9o7hg4gisbcyouDBjlX1LxGCd11PcSIZE9OS9IxIGivOBtXWouudRoFxUNYpz4k+2rVxm66JFnnxpgeiofcQkVFNBPtbVNWN1Ywb79ipQfcQCDYz78pqE5DkmfN+TuWJEvH3tNz/DiQhsSxWoPHH3dAZ2PI5nql7BmZXDN6llSoTGODNZNkkfg4PokciNiJlI3p8BzbiyA8F04X2m6uNGvfcbz4ksHfahy18nP156fPlenjvScVx070J1n/M+GyjRsb8+qWizg2TCxsPPvAjAZY645f+klyqPOahMekgrJe+dGcqsJ2vSbS4Ryy9WAwCK+omPbBs9M/bJWvWs0KPzZntTa4jXgKfAea6WiGQYqWdKeo4SofNZ7aKJAxb5+pj7zSV2fvOnN8U/lvi25JD9oIfce7d5M+w3wNW42lVofXPWKQb474LdNVaU4NtRdcGzJ45D3LbVQxxKywFXutJFuwBBhEJhPDGmh/uFpsEoLMfJD/1vp/Z75oRxaGgSLygHgGlaeO75b/daKseNE6gpdxTPOnjvf//DmZXDd5v399gZ+yIlS0Pu6tj77BsnIZWwt1gTwG+XnDMe8bjo14wjNGLa2q6/aAIScRt5eRbufWLX6dXQzjnjNMRt0WePzd7y8SqvuAh2KgnLNBHWdVx0zEBomiiY89DvPvWsu/CWszyIfXeyhjrFAJ+Bg0TGUTHI9Zpf+VB8z5gXY2EqTpz0xsxZZ5RoJd+nS+FngHyaFeg4JJEZszAJLqkqyYxD7ocIkHFoqg+S0ML2b2zJIJVK4qLnhBtIJUWOVZvTyPHXd0wl4nj5lWo1Y0+eMOP+ZVYIcQDJfuJciiB+N+OC32zKF4JL7ZDoPM8A8gykSsRnW55L14Iw1tQ2obhmo1jPjCI2YRz+9M9/o9DQ3Ao7lvfasH1U2CNLJjc239RsY/7ilwGIazNm5DAVlyaqbUqI82eMdkVNE6bPXKy0TET/Obj23NG492kRX2aclmqRftbTijoqGNLzEr/r8lwYKyfS53UpyeHRZzNJjHlCJDJtaMnCcdzjcEkESHRKL4Xxb/LpG1WsX76kCxlrF/dZNmXj8gcWKi0jepIbffMX1NhPJmw8UyXCVES69EZ4vXhuvH/Ij6fHaEiE3hQS3xf0kPch534kXx6lwtslqyYTFZ95ecqssGrTg8+8iMsmjUQq4yhGCvuKzzK9Y+aW8Br553q6+Rh09MbpTTc22XjiuZdw3ukj1HwTAKAhJ6QSDsNOJFA9vwqxM8djw4cfAwD+WKtj3I/6qz7jddudiN1vnWKAD8w107RwwcQR6iajFebnbWGLnTfLsjBi+DAAblhB0wDLtPDiAzPc9UwTyeZ6/PnO09XLL6xpiERNnHHznG0+nmlZSstk/vMLYFkWRo0Qx+dZ8+WsBiofip02ZYJCq53NZlx7BpKJeKdgvRimhcsmjdxtxzNNC+edPmK3HW9XW6cY4Ivy8zBx7HBkwyYefXp+DuL2ImS+kRlzVFrTUvWP6KTUEt3CmXaV/Snf+lZOXDgUctGmv8KOv54k1QFJOCDK0GWcssWXjclBsDw/jJCmKeTO/UCiEaKempYsbnhwnufY1MHJOkBDIquOQe+FCMiPOtcq1CjijAVJgcAykiVBQI9wBHOfX5iD6ESbmpIOxo0epuKUiIRR9cw89B0yCMkv/636L53JYp3drLaniiT7tNBXnxYAHp/zPBJpB5PHiwdx7nMLkNcsJgUyxQIJEm0z3u3XVE/EbUyfudjzne+duEUNebJm0v6gvW+7EIBZZ++HbFqGZDQNieZGtR5j9mTjhCWaZKzdz2PnvITLsxef6XHSe7GQwBMLXlL3XT9OhayulTsSA39Tnnjp++esANcb4XwDGWeKuSV/5/XmfZWS93JKfi4okBP1Ug+eLKZUt1IALltlY7NXB8iQsXPKCL+/OolP1qXcuRtflaz1Pl68qgVre711Puv0fpgv0pQQ53PrDPH8kIHEeQ0j10uORoCQhnh5CbK6ruYbjisPw4pGMOW4gQiHwzjkkEMA7N6QjN86xQBfVVUFADjuxFPbuCWBbc1WLPqz+IdviC/XwLzwFPz+9tMBAG+ZLvVPN0wc+PhzW9yXYVoYM1JkQi5+4ulvPe5tl05EMmGrQXR3MUOy6STOnStCa31Lwpg2bPBuOW5gbWMrVwrW2LBhw9osLJNrnWKAp5UV5WHqmSMVkieSYswyIzMSWdnGVZwT3UC2itKQ2CTmLjNIc5BdNuuiA/KbS5Rio/ie8UQq4REpkiXjqg96ISM9kU/Wp5BxHBVP3ktyexuUYqNYv17yugFgcBexzrurxEGGdPEyJsi8oLY447vkP/s1QJoKBDJOxL1InyEQIrxwSrSx2E5Az2SAJavcjgIUOwfvL1f77lpYgsSStwEA62SQJalH0NRQhwlHDvEUZvhIVs3ZoyyCR5+ej35FIcRkeAjYFLHRkolNETvts/WSKy/nAZixWqR038XvN/y0CEcdOFBNkqZ80xKOvD8o6+DAQUSPYoCMgS/ZIK6jv230LBnHZk1WXWmcSJ697mUYEbFTMZNMlAWGhgO6RoAWmSmblY85s0u/XCu2l7owJabwmiIh91nhdSXvnPcF7zkKqjKeTy+XiqkplTFKTSDJ0Q9LD63eq5XP/eXLZ+fDteI6F/kUP2nUgeE8FefP/EwmeqZE+Mwx4bNPb5p9nfIpPPK88grz3WMnUkA4BDMiPPiEZOBEAYyTk/ntRX6hUw3wAZLvmLbi7nmbJMj834EH4tpzR+OT/73Thi3b1FKpJN78SKC0f8giFCw/5xfAakhsIcYTWKe1tpxQ3Zx1qgGeRiQPAOmQgdtmCDdfqeZZzGYTb+eP1jJGKrZXfHQJK4iYlF5GDqgIhVzWDDMPGd8j73W1L0PWX/Ve1W70VakpjAIX/Gwo4okEdD2qqrczs5az9ETluVrnX0vUSZYD9XYYx6dSoqoXKj8zdklE3uzjDRPhhSTDj0iIaoLKEikBbQslkmmUE5pf14gl1+9Z7q4PAI0ilr5/j6jgJId1jPlBf8VrD2lCyfKtD0Rm4YrGLBzdwk/HjfP0CVkRRJiF+XnI00PKCwJc1EdkTNbKjImCyqixPqeMkb8MQNej6nrzPuJ1I8ODeQpkr9Ax21+PwjSieH7yngAALRzFWU9/4KnJmXsOZHwQTfI+5LUhW+YQTeq7rJMeXHMCWLoGKJET6wyHRXyMFpngFcmXCp4ZR/HOU757NeGrcsW20ttdUS+ZaGpOx7s9287vqWm/p7yRiPDJYHpfZrbyXHnv87ryEaTnyUl17p+eHK8tvXY+o34t9rdlXQLOKTA2z6pctAsmnQbYzXjvow8ROzUGADjj9HGtWii7Na1TDvBE8gBw9AmntGFLdt7SqSSuqFrS1s1oM7v314JTTLpkkRnCmB/086zz6NPz1WDNAYZhEQpBledte+GQVCqJv77/tQoP8KXAwc1f/m177M7qT9UL/+7RQTy+o1k8buOPCxYhNm4Mql8SlNLYqJHtCrXnWqcc4P1GhEy0SiS9RFaLMZS2h1engtlzRGpED11yNCQimqtdwlipfwAgg4Oue0QqO1J1jiiCcUCSM97+OoFUxoHNmpsSXTPW7/L4JWpKucdtqs141i3x6d+QhZDIsCqRuBWIYBhe4CDnj7kztpknIVFKyhqYX60RDbCTsLQwYpefD8s0UXXNbeJ7apOQXSNRJHoIVgVZFsWr1qHICWHeDeNkH8mfMw6aGurx9tdiO3LX2YeKhaPmWbwoOLc6F9Efrx/PzXHE/2ub5P0h3w1+1ErvSFXcktuvJ0BOe+PYCs364sr0yLj/fjKm7mrZiPUZD+YczBBHHmh1PQCg8pqpsBNxWFFDeEz0kvoIxUaslIXT98hJPgNw6dmnwbZtFObnqRfpx2tZa1ecG1kyzGjmPdq1gH1IRVTxPT07xWCjRoy8Lop9k+L33hg5nxUex1/3lvMNRkRs959vBALns7tRVhZbnfHOt7E91Ciih8d7od7nTfF+4X1kWRZOPr1SUJwi2w4a2so63AD/4xNGI5mQGuXyIvSvKPCg9lyrKM7HtZNHIaUZuHPmlhkZgbW+UfIgNun0Hdv+4cfxeaEI4dDlXt+cxeiDynDRMQMBCKpiOBLF1Hkf7tAxKo8YjKQsoKJEvvToDu1rey0UiWLWGUMRCkdx5tPv7/T+7EQc1Q8+uWV+55a2s21Uv/QS1ia+XRYiMEHRpexvZTubUN2cdbgBPpmwce3DiwC4CPaJayq3uD4H/p8ef4piG/zmU6Zji3WIvFNZL8+9VCJ1kh7CPhQLCF7NpmwbYWom3qdmyfWoL0+dFqJsxZ6wQghp7vd+TySsEKVY+nVZABfRtCgeOBkYkG0Sy2ZLxlIlf5wvzyIJtEsbG8T3RUVye7EfjiXMeFUnxzhvfTPQEnfjwPyd6OfDFWK5XuwfebJhawRn2ywT6PMQqXWybGMaP/7JMbjzSZF9+k1DBmcdNWCT8/5CIvujB4oTYFgkN1SzoSWDVDKJZ/4u4vn+ikecS9F9FZqI9tinzBpWGvVZmTEtUS81abrme+PQk2d/AAB4YuJQFEZDSj9e1c+V7XBVKL16MJDr4xuZLWwngRXrAV0+1uxj9innQ6Q2PqQKasoBatMhT7yZ3iA9J3Ly8+U//Fxvk1UjbxjJXydfXs3lJMm2Em0iz17lFOjk1Yvd+Guq0ss6pJdoc5NP74WH/7zGy+kv9mm4M2dAKXrKzvZnqd98oSgyH5XPnGVZuPEhwZGnB9XeJlQ3Zx1igP/R8aORSopBeUez87qW5GPi2OEAgHUJHZfcNbe1mhdYG1tEj+KBcUPE/5wEDOu4vdqrCTL28MGK4giIgTS8m9D6t1lYj+Kh00T7Q5Eornz+ozZuUWAAcMmvFqrQzO0Xj2nj1uyYdYgBPpmwcc1Di9RnItV4ytnCFptabgjn4KNORsbJQQ/ytU12DOODijOu9OG9CAtwFQEBF/UQafMz0QF1UMgoICLrku/NSCViL4iGoEFTaNnvAayWbI6IQtuui03E4+d0F/sUgP21VKklTjW/TFZm+hUK5E6vgTFuIqCozFjUmLFo6Ki87lLYTS2wDANYK+LEHmQPuMh+g8zwXCs/S5TZdx8xobrWNnDemaehtrEFpmkpbZRuBWFU//MLhXY5qXrZ8YM855nKisnThW99pb6r8dXs1X0aIq4Ou/hM74Ya5pYvV4DIntejRTaSKJb3DVEsvavrFgktk2Ub03j2rD3V/WP6NPX9NT+xSjCSKm++GnYyAcswgZYkAPkSU+wZeSBqtFMT/3+CfaOHgNIosDxn7ojnxtg72VPk3jOng8icOQT0VsssmVCmNIKYi+Llq/uNfW35tPQZwz9zwjgk40Ia/NpfPauORw+txffMmfKceD9zfU7CL93g1R2adcOZSCbisKw85Osh3H7ZRCTjNvLzLDUOvL/GBQnt3TrEAN/aNrh7ARZNOw01iSguu6f9IfnjvzcI6WQSyQx2WD2yPZidSKD6lgfFBw7gO2Fx28avZgv5WnsrL/dQKIRrThqEaBhoamhAXmERIu0ArW/NQpEobh85GOGIjhl/3DaNcTuZQPWVt3eISb+dtWTcxvWPLsLtU3YNok4m4rj6wYWKhJCMi5BwQQ54mn3jpHYfe6d1iAE+GtZQLmNyuRmWNS3bN5lEI5r/yfGnYK+uESyXjBMiYMbaiW7zfPoXBEQHFGQQDW3KhiEC91fwSUjo1SJDoD2LRPf7a27acbewNuCiE+qycHAjyqGnkMmZBGBcmAwexleJbLgvIiv2ZJHhPVfGj4nwi3xMoTp5btyPQb57bZNg0Vx5PizdQNWIKeJ7osqVkg8vdcGVTvjhe4slY/IrhL54N0NHCTRcfpbIb6An4UAIRD02+3kAwLF7CE9i3v+J/ltZn8E1Jw3C7b9eKg63wY3RuhpD4rPhGx/JFCqWcVt6duxDnjO51awIxv0eIBk9ZEGxD5dKBge9Kj3M+yOMq6s+Qp2dxRMThypGh5r7kX3OWD/qpSh/JiMYM3yJ5vv0X2qlt2TJFxxPoG8FACALDSloHr0fzkNw3iCukDDvOWq4uJPfQE6MW55rj6iXAcTs7a+kB8DcgYNlX9XJa8H7i0295RIpNaGbqh+zjhvrZ2jOX5lpz64CIBG5sx2JjDevgzH9RNrB6sasp3awnXbceQ90jNg7rUMM8IF1TKu6/i5g+TrEHp3WOvt7YKYq0swHNZN1VFJbYJ3Xkgkb1z2ySIWMAts2a9cD/NEnj4YdtxE1LBW/zOV6F/uqlG+vdSvJx/XnjUZjJoqbHpq3yYy8q1wnPhNJHXfIQKSSKYTgYH1NDa49pgtCWgiDvvdTAMDIaQJNEt0we9Rf4WVDcwZjDx8MzW5BXXOT0jJJZzI45wdl0PNLENZ1XLtQxGjJOSZHPV+hI7ldjkNDbjbRDhENjZmp9D7orbD+qF+nneiuLu4OrIAbTyaS6jmwmzjAasnsaI6LoDY7kYhd6oAr5E697V9LaYKzjhVLWTOW+vOHII7KyZOwXuruaNCQb+WpPrUkwmQtzTIrBMuI4rKjugCahr1+dBLOmD4HgIsS9+2uq3WBXC61OCdys/k7J95UVqTcD9EiPTluR2M8mXMver6XfcP75cCeIuP1mpMGIRSJ4taXP/EcX0lB/3gvueOIqMbF3IKEjBGrTpHIXXpDav7jIDFPEUqlodc24uCebgWuFfXeDE7e+9R0USwr08v8Wio9pL1kX3AegedID5zZvWS20XPsViA+v7NSnMMV552OZNyGFjFRa2exd9fNhyyZ6TxY8uP5jJT5qrfRS2a7uF1hjsZ/flTD0zIWX7PsAyyadprnWB0hNENr1wN8IhHfokBUaxhDNT86ZvuyXVPJFD5Z9g3KM0nEKkej+ul56L7/UJx7VxWe/PmWKZub3VcqiY3P/RGx6Zej+lePiy+7FCN2wST8aNpi3DYiyHb0mx2PY8azrwAA9M0UO/HbS299gekXjsa7/3kHqUTH0IC//7efYWV9GneO+m5ff8bc/UXWd/lxE3Fc+cBCVE07rcOEYzZn7XKAP/rk0Ugk4jAMUzFd7M2mh7dOYsbnH/4Xo37QT+2NaEUV1ZX/8G0fjUbRnHRQnq/Dys9HbHwl6hsacEdsIGobG/DEaXtwR9yBWJK9wB2HNBSEdaBXGWBFEZt+hWqTVViAc76Xj4fzorhz1GBE9Cie/LOYdGOfMM7J+pS5CJ6MHBVzTHv5yYplIAERY6z+cyayJ2LnqRC5c/JJaeQ3SPQoddlh6OJgVDakPjjRJCcGCZupMkIPgBzuimKx7FsBK2rgEhmWyToiBn+3lBXWFXHEe29kHXFukZA7/0CGh6r6I2ciWPmIcy/+PmRsnvMU1C1Z1+xFt0SPXJ/XiaiXGvj0FNgeViUywhrCehS/OEUgbV2P4uaXPlH5GWo+o8gCDuwPfPqN+Pyh7FvOc7z9ueo7z3b/EJ4BNjQAr3+IvNihqr/UHAfnkXxV0HjvsY/olQytEEMKs8WZOVoY9SJ3smjIMKKeP++HQeXiupsRDT0KwyrTWuk3hTV0KwipbHTOj/DZyI96hzZ/djkzoHl+JVYIf7jnHNQs/R9uiu2BcDiMqmmndSi0vjlrlwN8IhHH7U/sOuTutyH7HozbnlisBiumoJOGySxK3lzFOSXYqubPB5atQ+yCSai+byZil52H6hlSm3xgd7HkYPV3yW9mokmxW2Wp+sEn3XR9aesBvPfZcryxPLHZZJ7vqlXNnIVVBWLAT6QdnNuJKvD47YZFH6sJwPvHDmnj1nRus20b33zzTVs3o1WtXQ7wRsRFUYz9Fsjwol/drTUs4zhoTjkeKtS3GWOgjhzxtX4VsMqLEbvsPMH5/harnHELbGZ9MojbrQSWZWHBYsH1J8cbEjWRl81lvg8NbWjeVItG6abY3uzH8jxvMJ6sByIqcrmJvJjJyutBLrZioJDjv0JojCv9k8+lDrydFCnDRFQff+1toEohhOoLAC7CZ+1Xxpdl7N4oKcY5Z5yG5mYbpmmp3SiWh0SQROsRw0R9fS0GhDWVJckXN2PmBQVe9hON8WXqn9iKay356knhnfQtFKgz4Xi520SJRO4/6ifOZdY7TZ71eA5Ey/SSqF4JTayj8kCk/g8SaZFnUOwry0gJ5gaJjr+UOkHsY1nZycrLQ+yeX8B6ohBVdz8svuvfB4B7LF53sqp6F3tZNC1KIdX7DCk9dXnPMreAHl95i5wPoHcrlxOnnCPWz89DeV5Y3b+rGqT2UNZBrZ1V15vHpdPsZ30RwDP2TpYQvfVk6w8r7cLa5QC/u+z7x41CKmG3Sr3Sqnnz3cHrW8xOJVF90S/FBz6Qp3wfscrR37pdRI9i8k8HIKJHMeu1beNHd3aL2zaemv8SgC2F8Fz71ZPz8dMDB2LJB//GRccNVuXU1sR1/OJXz+7ytraGhSM6fnHKHjCiUTz9l8+3vsE2WtUv7gQAxO68ptX22Rq28IVXNpmo3hX21/vP6TC89u21djnAGzLuBrixvIqQeMXWl7sIuXknKVOphI0p9y1UnHEiMsYTGWckI4XxaOqZaHUSfRCdsloRFRIZd2Y8um8FrJJCxGbf7m3IUwKJEUUwHk7+/BEDDHy0ZDkiIWCvAb0Ue6YunpHtEtvlqlx+IqsU8Rs3dipWJoJqUBWaxJocKFUG4RYGTiIhldXLGPkqGY5aVyeWq2tFSIrfk6O9QfLcCZepk0J2DfdHPjy321sgSyOsIT/PwuTxI2CYFmbMFrU7yZLgNbLTzGkA/vTfL3Hz1An4+99fh2VZqKqqwg+POUWhSmaqlljec14vVSV5T/aWSJ9tTZWK605PIC8jQnChqJjgOLS7RLtSo+alj8VEr+HLVKVR/4X7I8Knds1TZ+zp+R6GDnQvBf78nvisivoy4C2fGWay9pbqkrxP2cdNceV59ZaKkw0R4ZWQXZXvbJqPArgML7JiqNPjn7PhvEQB5Eku990HsqZrJJVGQX0DjHJxH7DaGrWT4ikH3zRkMFRWLuMcUX3C6w3RSe5b7K2qRs8V6Fi89u21djPAnzJiLBJxG5EwYO3iepkHHyOQu9kGb+yqG+9xY/CUzt1LDFqJbdhej+oY+0ORvq+Fddz/2+8umn9m3gJsaMmq4tvbYrZtIxQK4/XXX8cPjzkFhmlufaN2ZhE9ijOO6A89rCEa1XHw4L3aukkdzhbcfFa7LdLRmtZuBvhEXLjbjO2FPxNl0VRsTlox0TAAvWeXHTpWKmHjvLurYKccbGzJKg1scnUTaWa3ebnifoZJiwztKF0NIvkmGYf2KyQyPh32pUyWiHOip5CnYuxkvohlmRXCfz5erlQOD92zN0pMzW1vTkUn8oqZYUg0qJg2clxj3L5Mfk2vgd5KVLbV1TIX6xFRDcqTO6z3ZUsO6en2RSQErK0Tn/2oki87okmyargfekVsuKz4ZBcLZEdmk6F4zWL53mrB5lHqhVGX95zNZnDooYfikvsXAnCVC+ktEq1y3yU+LrUjkXCiWLSNoo6NvrqgXD8TkgwPeXsQTTK2zvkOInfGjb+QGa/cDxUbr5BiZMfuYeCEg/rCys9D7OKz8f/tfXd4HdW1/ZpbZ66uuuVe6b3lURJayg9ClW1cZBvbdDC9l0DonUDoHdwwxqIZlLwkL3klL708AiGEAKYa3C1bkiXN7fP74+x15s5YLrJVzezv8ze+V3Nnzpw5c2btfdZe21rRjPpJl7oxdl+foUbpCeFzWS/hfuJtWeEoau++BlY0hvr9VNiqTOL4liBpOgfMYOY6BjNRS3QlLbUlUo5n5T63yzNgC9uKz4KsS9VdPQt2KgWrUp1PZ5jKvWEfOlDrA2TDUBGWMXWuGbjjX1hAZOXtwKi92PrMBB9YYIF13qLRGP73T39ALBrFAaWDt+tY9RepjOPaB2/oiqZtk9mpFBoefAYYUd0tx2+458wdNt7ekfWZCT4eMTC4NIwwY7eMwRZ8iyxEfAASS77apnNFwgbKzBCyEiJZLcidYUDtRQga0BV7dN1IickKOmH2nC0x1pAg+5aIGkSD04JuB1aoLTVD5BrzVQoJbhDE9vl6OZ+gkCqftg0Rn2EopNKkta3dGDyRFa+FbX9/teo/okUiXK5nVMq4J2otN8lSUN9TfY9U0mZDbcsZI2dtVV4ja7OSe01aRosv4YhB050EZZLTTeooPQRZqIiEDJw5Ywpa21SojayJVl+ha12RR64zHDOxfv16ZPOO7hteO9cliOi5JkMlQiJpQ9puZsW7FP31WEz1wVeS7Tu8TNY55PgxePn3RJlLpa303PyIPStdQ44510feXp7FbW/8CxVmCOd+d4zyekYMACTLVyN33ht6UXRF6R1TT55Zw9kc8Img/N0ka5fegNwPIuYDq2UdwfB6jGSkxdPimVH3n/eTay30yLkGk82p9ZkDFC04YwvDSfrm7stmIJ1KIRKzkCu45RR5z/iMUF20zJ/z8DVB7rQ+M8EHFlhnLWXbmLNIsWjSuS3sLDb7hUXYffRQLHz1TVe0K7B+Y+lUCnc+8yo+XLuVN/xrbn1mgg+lMogvX6tqSQIaMraOVrFcIjGD8W3ArTW5FXbIMRN0qb/K0gRGlod1XJpbxguJrMiiIbJjXJoYMaEV8rzMkzU6o1GgF+PIX0pmoaAT0iTJ3qD+BxkB5PQyK5VqhYz1hiMxjDtkFMLRGJ765Ydahxxw9VKIPvcZpNAZkQy9EiJy8oj9fUHkz3UInptKnmQgaSNaXLEe0gkq4divcMiqQ/zMv5O7vb9kXcYlFi+cbYjWzdq2PDJ5R18H6XTs8ojuOy8/urGtgEg0it1GDYUDB9FoDEuXKnRJ9EkjA4N9UwmZVN4VzzHhzXlI7jVSzuXNNRDRUIjjpT2H96Tu6QjJ0qSaJb9nQt1OVV7+Pa1SVwCTLyJhhYQ5zojQc4Lk6VUxm1iqZuk4uHgkViSK2usuhBWLo/5aYXzxvlADiEqWsr6UkPs3ivtxvYnnpLfD/AZCbXrqxeOiugyrBLnTu774rGlIp1IwIibWtBU2ejnTq7WKsoH/+vg5eiGV9nUJzdD6zATf3ZZJ23pRbUzljnHZ5ELPOHJ07zakn9nv3/0MgHqZfWvv4b3cmr5n9TOvBqw4ap+4pbeboi2dSuH2p1/Vsg5bY1+3cExH1usz3bgJk5FK2YiXlWFlZRUGjfDG0pKM1QnTxEm6tDYi7K0xM2JoVOrPYCRKbdWKiQptcMX9c4nz7exDUoxn70RFPJNsC3VO1thcKegyM0YhPIZAl65WOzZL3JqcdPLgqVPPGDHD1ETh9GqiYQPfGhX3VJohkuU+ZGTQO+Dfrai3Uk/Yl4noR42WT7+FLIZ9qgQZEYmNrEHtA9cDmSyskoTLjuH9Gyn7+2u0ktlBozLiNw9Q57PDuPTsaVi/oR2fvP8uLpypNGl4rwxDadPc9aRo08hhP1yj+tgscnOGloXR2tKMCd8/TrfBMk3UPzcXdWefDrvJV6SkUFB/f+AJ9Zmxbrl/0Q9Uotu6UcPU13IfyRlfZ4uiouQx0PthtjHHJdc3qGFDpM71BTKF0gJiS2IGotEYfvGP/0N8xv/DuN0PQv30K11v2MdE02ic2cFE203t7j4ttrournnxPhD107MaKouhvO/NbmZq3flnw25rV3121R3e/ejVAqibdRbstGrDT3773zjh5suAiImHnl2IL5uZ6+GgOVXQSJ3Pir+2KwCN3L9uaL0j6/UJPpWy8cLLb3RYMDqw/m8NZwkj42+fbn7HTlg6ZePWp17FzbMm6gpPTPKKhg2cPmXcVh/LcRw0PCeZrEkTtdOnABA2x6PPeXfO5FB7+bnb3f7usNn//REMA5hxxGjY2b5RUs5OpdDw1FzUzjp9y/vNV4lqJ5w9E4teexPjxtZu+3kD5K6t1yf4fEHVfSSiXC1xUKKfIRUKbWgN9Q3um2BTWZYdWU1JWCMpok8q1PFzm4i7sKhAq0N2ijoGud9tWa+CHWPvjvydyIxxYK706wpMGfLbvddKT4EMF/KyGQMmGs0LMKOuTKHgYFlLDsXgm78hw4bH9NdS5TGJ9Pl3vnDJxY/rSj7ydwJvucZ2YfAkinVOomGXHbGP8l40N5usGnKziSr59yphV0hGJWO1yz9LI5VTMfdC2MTlpysEn/Z5Y42yDmJF1D32a+gAEnM3DBxz/lkwLQs/ue9hWOEIak84EVYsDnwgsXZeU8iAFY2h9qzpkE5U1aoeeEx9lnWHQRww0vbGnDdT+uNGMpm8azf8O+PLx+6qvB2i1ljYq71Oj5SqlMPLwjAMwN55NI765WwM+WAp6g+d5q53+OPdNGYVM/cAAPYZDau6ArU/vl6uVe5LNKKu+fYfo+6Oa2D7a6syea8trXSZ/vwRrLYsam+7Un1Pr6co38EyTTSWqXEQCRmYPmkcKpIJDCoN62uPxi3cfdEkZEJxTLt5rtagIUumzPSuewSmrNcm+FMmTUbKthHvgqzVuGnhpJNrUZKwPMW1AWDy5LrAXdtB7aJ75+vCHlz03U+Kd3zSuHUsi6rqGrzz1l+xYUMzcN/DqH/4aeCfQunzhzYA1N/6gLtwmMqi9kfXbedVdK1FojH87U+/AQD8dd267TpW/eW3uQloWgG1RF+znU6jYf4r3h9xfxZ2Wdem+PUkFixrVFsumotsgnyLhjffBOBKDtCukNrJN83qWLPpV/ef9bXITO2s9doE37yhHU8tWIyQYSBXcJEikSbRKFHu4IIaOEPJ5QX0IHnl+bkAgNpTNy62sX5DO37x78pdIwJf265QhMt+UftG8uqkGyT2qSXOBUWskbYxDk3kRL4yERVjqsyE5TUxZk8jWE3rWpuiMy5/zxTcDFbA1YtJ+ipN0YonNcbSGddlm8nI4blcXXeufRTk95DPakuNGiJh8uTZVq1hI7os0ZpyhRT3lwebWjREibx4siuo28OsX8aHhSe9XDy36pIwYmE3Lv1PX5/+conq7D1q1ETPe2D52EOA8ure/uBzpHMOdhtcAjB7mgwgZuNyovfHmaMRhegvPUd9dqCYJ8/Okc6TNq9pUpcomddr2nx8eLkWsqTIsiGrh+NUy/ZI13wm6yq8h+vsAp785YfYRfIyDh2ZRO1Hi4HVzaoPqitQf8rFriYN+3qP4d7rA9yJWLR/MERynb9cq9Qnf6BYNrouLO+fLn8mDxV5739dorajB6otPTPxLui9cFrntdJbIZK3sw6+as7pa9b1aoOwTIfW6yGa7rC6406CnUrDtswu8RACC2xTVn/JLe7EWHBQe++1vdqeYhuYLMdfPv8IsWwBS4+5GrUfvN4lx62/7m4Xqfey/eGRswMPfTPWixO8gZBhoD3rRSl8YxMpEqkhLdtdh+gjrBKEc+EZ05Cybbz99lsAgLZICK/+6pc6lunGztU5vjlSQaA/f6kGKZESwQcryZP7nfUhd6JbgtAvBclTqZGogvFBxrOJSsglpwdAVE00TA+CbAv+nvtVWIanPQ5U7Nwsji9vQmaVaJGImwi/yqcTr8kt5JHTm0l7s2zbuA4ifahVKA/cFdHBA3DSbVfCsiy8QlRLVhQ9MX4mohOEv2qg4sETcScdB+efMQ0tre2Imxaabe/1MZNVe1E+lcyk9OWy9a6XQ0+rzAzBExCgjDPXCagppGlMMXjMLyBPhM9rFOZQwvAqLPL+cZxwTYWqlcwG5ZpNc8rrXfHepH1a/xyXP3lfZQN/f5+hwA2TYd36Z9T+fq6meVnlSdQ/+KSr3V9cEox6NWXSFwy58NoYsiEyp6fGY9A74MtP/50Pk3oGswkT06ZOQVu78gR07YOwiTseX4DrLzgV6VRKX7tlWagwQ/qaA+S+eevRCf77tZOQTqk4WUli+zXYaSnbxquL38TOI4ei9rgT8Ld3/95lxw5s223egkWIhg1MGD+2S46Xsm08NFeh0PdXZbewd+fMMEIYPF3RJWOhCJY+9soWftF/LBaJYvAJ33K5sQVHadfsvU/vNkzMtm28/JqKvROETZQxk06lcM+zr+L/lqn7zYI/S54/L0DuW2E9OsGnUzYenqce0LaM48lGIxtDoxFB0WQapMIKEYSLNOAZn3ciJk48uVYN4EgI69ap+CHBBBXoyAGnbsWhIxSK+Fhi14zXkn9OnW4yL74QlgszDJnJSvS7zvbGSu0sEbj6ggwVsmOImf0UUXoz+QLjx6KZIt+H5TxWqaHP12QX3MxZuKwYegtE7HlfXL8t7GXJLJUHiOiRbJtlLaot1CAhS2WdD0l/JH3JDNpoyEBbIYbjp6n1ESJ8fdES305FVcycV8A+5HgIGWoxnVxwsmaIzKlyqXV75DiJmNczKQap7M9EDDj62JP0ov8/fvNfqgFE7gxHEI1yfcCPZhNxWKEIai89V8XiH5Ei6sJHzw8o97TVLQXpZYLwntE54jX58yBo/P0AGddE/ENKVXu/ceSRSNk20nkHT7ywGJVWCPvuPAxWTRVqr74Alp1D/V0Pe46p2U9cf+DaidaQEYDGG0WEz5j9MOHH090g136nQYofL5r567MG4qaFt5erdTGuBeVDJi6aeQrCMROfN+X1tTND+90AuW+V7RAx+EeeVxzay08bh4bXFiNeluzlFgVWbDc9sgAHiJxspbwg9KKcMFKWV6hFPD7InNhZyJq0OC54d7Xd/eSLKDgOrjxjwnYdp37WD4HKJGrvurqLWrb9lrJtLHz1TUwY7+WW1y9aBACoPfr/9Wh77FQKDa8rDaE/rfcCOdplwppJ+74PrHPWIxP8CeMmIZWykUhY+oXvaq97ud5kEDA+XenT4u7IOCmkQhaOPnk8AIWOGC8eKiIf/kxWl1+sfs9YOz8TvbINzWlvW8hmISqk5jjRMlkRRIrUGuHfI4Y3pk+Pge1wHGa0KhTFajlE9sVxc8dxY/TFfUJkzgelMuFVSoxHxOuQ37Hu6Arpf94HIqflguTpPWkOt/z+w7XerFwelywp8tRrSiQHIV4hneJlu7RmCrjmvFNRyCrk98yLakJg3JwKnu69pLeltsxloMfCCk/FzCP2sy6A5BgqihE2FD+fdEiyTvwKmETuRVmZPKBlmqi96VKVxfngk55zM8yg1Snle45Ptn3FBva9NzbPWrysC0CNpNQmqnFlQyZqa2uRsCykcw7aMw4i0SgGDBqMaDSGo/baF7VXzoIVj7tIXjR/tBfDfAUyi379ntqSJcMHm32x61DUnXU67JSt+uC+x1B32SyscxyYpWX4hQD+xjbJGpf7/k/J7mbuSHGVsj8/dk5Aheyk9cgEn0rZeOoF9YC2ZbvvjXzvUyo9/dgDR3bbOQLrOUunbMx/+Q2cNXV8bzel01Z/zZ3Ad/dD7eTN19rtCbvj8QUAvElev3/3M63Fw0m99spZXXpeO2WjYcEiT3bwnMU/A+AKqnXqeEFYptPW5RP88ePUQioRYibvwDQtjVoZH9xdeMpfNas3tR/Za+1z28twKY75Mv5K927qUbsim8nAjMcQMlwVvvLVKibviPokj8FzEIETdTanvIyMNT7OONErESARlz82Ws76k3FhrMjv/KiaEursG7aLNVr5YBLR8broYeQKDv65Oos9pU+Lr4kon9fWJPF7U5A7mULs1WFyzYMELfJ37DOymwzvperPg5JeL4fo8ldLFBLfb4gK1dC7Ih+f6JQoNJt3kA2ZmDF5HOKmpfnu5XptQJ3PX5+W9yLh866I5CNFXg6vhZWVBiRCcBygqb0Ng2cej44slsph6Y0iYcAMUXL5Ga8WRlBrJIZoIoHac0+DZZp4tv5VAO79pLeS9bFwrBIv04kLyvSu/PUBXFVU9ZkVoT5ZxzUjr3dMrSQ7p9Q0B5x4BACgraUFGCUqniUm6mZOhy3sloJkBId4rRy07T665M8UY8iOxWEmkmgtTSJamsQRF5yLeKJc6z1pbr/8jGNbM8vC3vu84JbTsfL9v6Curm6jZMbANm1dPsGnUzaeeGGxnsT8i3DdadlMBv/59y/1ZBFY/7arHpivw1KchLvb7p/9Gu64cNImkeLg0spOHW/egkVIbmjVKLav2X+9/akGT/sP965d2akUGhYqBdZsmUo4izbJIitFx0in5Ews9YW/qqnRx5m3YBHeWbF9rKdsOoVDDjlkI/nfwDZvXT7BJ8PAHkkHaUE3RHCMdxN9Mg5JI/ogio2Gvfz4rE+XRe2rfkRWiwOFrqkRQ5bLF/JQmj6+O7VpWEGJCHxYmfcF0R7zsmmKmR2AG1cmc4XMDb7kGDMdUuqNkb71lWIOrGFM1qenwmvmefztIhILGwaGlYU9L1Oeg8iV19bq8z6oXU/vRGv+tHk9KZJReN/8mYasM0oWRDqXk74Qrr7sTy9mrdwLcvqJ3NnHbDfXH/jS9qNfThy8J/QgOG6Idvm5OD+gLcY4vfpsR7ccPgyHDNTOFo103hjqqvAihTuek20kl4dlmnjXN8nRu6IX5dY79TKWQoY6PjOVC/IMsU/I/iILh0wjxu45npgP4jd6OYZh4PunzwAAxEOAlUjAERXXKL0TsmHIZ2eVMtHGf69UpAekrWQE0bP6Qu4npSV4zbyvWkVWxg2vsTRp4S9/+T0OOeSQDq8hsI5th2DRfN0tHI3iyuN2RjgSxV0NH/R2c3ZoO+K4Y7YaReqHKxaBXcjhvksmoa0Qx62PLei29m2PVQ+owdtv/RXRaBTLPvsMALDlV1732yXH7458NgsjHMayljy+8e0TNQBgKJjhyrBhYJfByU6FcQ47dgLyspifLwC7dvL3fdm6foIvOEAmh7igG+o1E8V+us7LOSeSJMIiKOIbn3rQGnXHXASvq9zLKHQcFfNvkRj6GlmhZyyd4dekxBXrZolAkQyWTNjEj55+USMargcMLVNxYyKrvaQ6kl/vm6ik3Kdsx6o0RIpr5PMYQWJE12QO0OshqmFmLBeombFIhsHP/vIJAOCYA0aiPeMNiTVKG4mYuX7gHtt7rczqJRL268OTCeRvGxlD1SVeL4Ook/eN11ru085n7JVZnRwv7AtmtFJjhqiXazhas0T2Y/ya18t28N4BG8frt8a298E/4v+dpP/vr0pELyrH2r6GNy+DRs+O18Y+SES9ipnMt/DrCHGcUdCLGvm/+bua1A/bczj+spI67Gr7jWHqGYiT3y5smVWO6k/25Z8+URMl70OLL8PYj9T5TDET2X8vPl6XQzqTwQ9eUxmz9PB5Lbzv9IaiIWDRTVPRGcukU7jgfnVf4xEDr9zcud/3ZftaI3jbtpV6nbib3z5pXO82KLBes0W3ndEjFLxh1SW475JJnu+aczHc8PAL3XbOzlo0GsXxBykmGhF8iRnHx5990e3n/vHUvZHPZWCAMhwOwpHYFn7ltdXpKA446gQA7kvPv5BNyxeAWNz0fLcqFcWB8vvdhpT2azTf5RN8NhxCc9yELW/ajK/uKWOtfGOTTUHmCo0aNX4XrD3rvuGJZKndYhiKi75W4sS3zxS0RFBLrWo5phVTetWpb+wGAKhIJnD1WRM20o6JxEzc9/SLaBHCAK+FXGx6EHsMVGhGM1Y0K8cbhybqJZrdY6A6DrNH+XsyDohaiNiJgnjdLWn2iaPRGo3eCM9N5Uwi95R4BeXiaZH5w98xRs74PtcVGO+lN0LvwpI21SSJsCBtDnmumYiengK/5xoLOd5E+Iztc7zQS8voe+Vdo1kifHyehx5icRx6VIWLKnuKgtfRZHHCSSfjsJFxjYKJmjneGEvns8O+4rPFNR+yZsiW4bpJTLKVm3xJQ/71jLeWqTWhh37+oT4nx9MZR42B4wBZeXaippp006Ly+celqrF8Nqh5tM5WbaKXQUTPhGZ/foSTy+Lun36ivRPmoLTo8eBd0+MzQc81lQPqbpyrxy3XYPzXzPHAZ5HrFksaczjputm6T35z/3T0Z+uyCf6UiZMlqaFvJSA0PDnH5RtygYizm08j4Nn5LwFA0YOmvj9r6rjubmZgvWRv3n1mr2ualJYkMH3SOACAETVx0yN9L0Yfi8UwavgQxGIxfPp51yL5eWfuh0I+o8/Tl2x9NoZDv3siRtf0z7h8l03wuVQ7fv7aYmQjrBCv3oDMbCTNzY/c+Ub2pyQToVFHRmePFhWyJ7ItKWJqNKUcnDxYJnAHapb+aJm3sb66kObfVHzP/Ldd1PcrVquf7zwYADCo1MSNZ58CuyAMD0GLTJ8nUiqAWZ3ygnAA07Jw22MqAWu9eBbMJmXcmuhl5yovP75UDryrFLX441L1EJBdwbg0ue2AsVHMnE42kbSrayKx7rw3J4DXEg17j+N4b4+OsRJZ876QFeHq+tNbgVyr4dnPrzmTlvaW+vTp2zPe6/BnQq/yxd5dPR/I+WUdo2iNoj0b6hPJM8UTx1HHujF6XjO9koFJL7uK959sMWZC//Yzhab3H6I8St4jjjMOEfb9krXMJnXb1KKzZNXn5//7QwDAtMNH45N1OY1w/0ti7lqfSQYQ11SWNrEOrXc88Rp2ro4AhQyuf109g1bEQDbvaM+O2Ix9kfax6Xi/eVu5+Oo4ZLyp78lA0ywd6QuuzXBckZY7Wry73X+sQmfPXrtxrYn+YF/rGPzWWv18haiWZlV3MaxBQbRqLgzKBB+VSaolB0yZMLZH2xpYYIEFRuuyCb6AEFKhCJgNHaLuiq8aDVFCtt0bBiFyZIyO7Im1LV4GSjziNlmjfinzmC04+NvyDBZcNRN2OgXLNBVc8asCSpUgXXVmdZPaUhFPKkUZrFYjaGFkiVqMye6sMhWjy9aqv4vud5THFdRZFo+hFCFce9Yp0kdyutYCYnETP3paiaSRUaTr0JLzHfHy7g8aqhAZY6Wmrx5mPB7DPRN2VW0PR3HL6/8C9RnpURHxEBFV6Zi7N77r3yZ9LJgKH1OI9Ww/WydsGq0hor6ntxUOedlSRHpcv2AyMGP6pXFm8arjfCqMEu6ntWt8aqSM7dLLcq8HePepc2HbNt5F39M0GVJZglvPn4gN+ZgO1TDLk+skVC1N+rSP3FrDavwwSzgeoffMtSpZ65HP9CjXtxfnUXjbRSSMcAyH7Tlcf+84iqZ76+v/AuAye7gORnZLcdu4kEoLR2JudTNGU7Nedg3bE5WBw4hAQWoBc7zQ0yQzaM+B6u9k7/lZPFodtd2bO8DxMrJCYvxOHEceo7yroVUl/SZcs0MieDudQsMz89x06l60+see1aXaSP37+Yc2fnTp5C4/11O//FD//8yjx3T58XcU6wthmU0ZJ45vfe+kLezZO/b0r9QYyxZRMC87dudOHSOfy+DqV5Z0edu606jnAwB3XTRpM3v2LduuCb5u8mRNLQvHLTSnC/oNShYEY7l8o5K/zFhxi09Zz/aJkTFuSAYBObzFpt/KBWFJ5PJKg/vPH6kdPl2ptlS6YxYe/86YPCu+8yKsooA/oJXzotQBZ7r2O4o/DNG6QaWkfA+qAAAkeD7R+Th+dwsvDyjBDedOQNy0cO2DKs5H1MBsT6KfNl+OwCiJExJx0ZOpLlLeMwyXyQBgIx31cp9KJ4URGY89bCQ1Y7zrHLxvCV9dWDI+hpR6ERBZT36dHr/WCNktVMTk/eb5yJKI6/EEz+/tnPohY/NxfXzvcfqLNaUK+PNXGc93OhvZp+dCFdMxVQrmstoV9ycqHZBgHVN1vJUilknviho2gJvxS/46tebpTdAzDIcMxOMx3Dx2F0SjMdz02vueczKT9c6Je6GQy8BxgFAktpEsNNtA86/RMD/jS182bsG3Hsbjcp5Jr1B9SK+4SXgW9EBXtXoZaszsLtP6PWqglfSttd+ttu2a4G3bRsMbbwIAVtnOFvYOrNjmLFiET9flcNnpp/R2UwILbLvspd8uQcQAxh86apP7FHIZnDP/w25Vkw1sY9uuCT7rAM2C/PjGLREIxqxOoot2ASN2yMuiYAxVa6D4dMYZZ9Th9iK2DVfSdUagITH+pjbgrU/chlLXmzCVn3UleAZwpZFaqlASIKigxzqTHwgrZ+U6tV0uW4aEWDmeNrBcbZep/crlOIOSpShPJnDb+RMRNy3cKMkunzd5UQqROlE39erJmye6KS6GkWlvwdXH74xYLIp/fPQFnv+rEolirJMudsLHhQ6H1A4frPFWryKrgUhO88o3eHVTqgQlMkZKr4JdSo17Iq0K0+tJMIxF/fmC3t8b06fx9361S7aPbAkrYuCtJ87pdUrk1tq+w0vxhwem48u2KE6/bS4Ad70kLR5hgWSwEu96CL0rrlsxFk9mEmR4kUtOxlqxx8c8Bz5ujGHTE6JHXqz5Ew6FcfNYYaLJ75paWmCWlCIcjSEZN7S3TXYNPUtXw4gsGfV7Xb826p03qCRLT09r4Ye88wnrF5CxxmxhHocxfp6Xo4vt66gOxZp0FN/49onYZVDfp07ukDH4/mRPzX0Jq1rzXY7kS8vK8eHny7H76KFdetz+bH059u43Thz7HHFCL7dk6+3Nv3ymF8U5wR6+93BctuijXmxV19ul980HACy8se9LGmzXBJ/OOTomR6TdZKvPtkCxtKzY63qi8uYkv1XHcFNeBEak/plv9bs4lspjMU5oQHjX+QLQmnJj5PyNnw/PajQ0iZlrd0NqacKMevdbrvTl8aWwaBjb16L2zWrLWPzfP1dbVsOR9tRUqwtoShUQMlyvh3FoxqUZSyXvmaiYKNdf25NGZkyu4OCqw1VbUgVvDJtezPqQ8ireW6munV6Ei4TU5198pIKY9LSIcEZVSqw24UXeNGrUUHWSFtXeiDeD1tS8dS+riswhHp5rCpYvxs+YLHWC+mtoQI1p9X8+awMFha7a4L1HRKVE1Xxm2JesPUxPIBH1ekVmUR/y/nEtLe5jdHHLfiYTbNcBahxxLcdx1OPItrNNfN7pqTPTdWSFVynT1bRRW2rik9XDdvAZ4Djxa+Qz65vrW9zyPHaWOvRqf/ZM2pc9rPoG/cYCBL+DWzQaxd47DdOTBCdGXbDDoWuqvuAD4i8E7hZH8dJeab8nPXYTa5lMeIrFonj0Fx92vFM32R2T9kIum0FV0tzyzn3Mln7wNp65RiXZ/OCxV3q5NYEV2+pUFAcdfWKfVp/c7gmeCY+rWr0zAieSz9Z7ay7yTc43bJsv47CMq+/yxianl2/6YmDor3XqQJBHwVFx8zWCpDkbaagjP2Asniwafk/Wi53x/l347mhNeTtBH18ugtrZrEBPJP/BV2q7jxJy4mQYDan/+/W82adEEYytrvdrafu0SQAg5DioydhY9g/FT6ZeNzONGbdnHJaaMksE5a3znYP9/4cv0p7f7TdYITZysZmpSvYT9f/pbZ1xlKJvMh7M43yyXK1fEIkR4fF3rNzEviDSYrZvc9rrARJZNqUKyGUVLe+th2egv5mBAm556lXcc/EkPR6oOXOgFDInY4XXrLWOfOiaXlijriymzkFUHQ+744f3b1DSi9zpHZBdxTGnvUw5NjNcDUPdw2kHKG18rs34lTyZfcv7x4zjSp/eFNcLCDTYDq5L8e/+DOmY9Al59hyvnwsrL+7Ll+Bx+WwVr09wn/PvUaGa127pu6GabZrgWUTb7GO6M/3Z4qaFG8+diJhp4nKpKL8jmhEO4YLv7aQ9CD6IlH9wfO9imt8DEYeDG/i+9pQUDIka4actEex7xAnYa1j/Vgik3Xv5DGTStp6ctPcUNXFjL+vZ3D9FJTOFOqkE2R9tWXsU+x2p1kr2HNq3xtY2TfDFRbQD6xp7+LmFWNqcx43n9n6R5u60x3/5MYAOEDw9hy5G8LmiN8WkG+egygrhV/ec2sVX1TuWSdu48YlXNcOJ13z+9N6n3uZzGVz76pIOWSg7mp19x1z9/5/f1bfG1jZN8OmcS03k4hlFfrQ4kCyyDpZFDH6mO8gQDWlLpD0x0cAviKRpW0UPrD98EzLUwuPSpKlqQ5IWybqRVRIqYWhmjSQsMUGJ3zOkUmp5t/7SbAzFcBbifpW+8/AzQz2yiMsFxS+aWFzBQcFx9GQWCckCtkyGXBMjlfCfq7xFlelW6zZSagHQIRo/Mq72pZLzGBt0MQi1X5O4vuzzo3dS8WyOg/0GSyEOcb118e4kXW7SHVXjGapjOIpdyMX6pU1ccJbFUh8QpOvM9oSlq3WoT0JFolarE3d4vn5jRgi3XzAR0bilnwlS+1rTDq49a4Luu2FVJXjg2YUYXJXAA5dOQjhm4fHZC/GVRCp3H8A+Ub/3C8ZZRdIXcR99mWO1Rp7X4eXq7wxxaLpr3vXE7KyDb45U446Lrv5ERo6XI0Z7xydDOf4XRJWWIaYciPq+xUd35M/4RHBxflNlN2k6qVCisH6JD8Adq/QS/bIdfcmCRdbAAuvDNnrPA3HRA6rwtT/b86x7FgFwJ62XpRLR3AXq+wnjxvZUMwEAJx6yM3JZBV7C0R0/NNMfbJsm+LDhvhFZnNnW9Cn/3upNS0ToL9bMN7IlBY9Lfck7RG5EgsWLrKQJsihAPGzghN1NvJUvKIojF1mJrIm4h1apbVzoj3yNf3c/tRW0i8FCo2ShkCZBxBQn46Irkbmfdpkzvd8TyYtnETfUxdDLiYWAqrKEljCYddc8zzWv9yXzsK+afLKxABS8KGKNrJFU/rhEq5mYRAR1y8XTkbJt5B0HpmnhvLvm4UdXzkQhk0LcNHHKDXOkrarPSIfcs0ZdO2UVKGTVXlSEBXA9ML0wHuF9Fpobi4HLADlilLoH9BDo6fFWEVFyHNFj4GciRSK9QdLH0RDQsxye7TMDxeULvOEpw/Ci7EjMwqxTx+tnszxpYUAiVFTsxYte+WLQNNui4bNBSxWrz36aJD2/wwWhL23KIZfN4MbFKgTHEn9vL894fsfnencZN7yP9PyZGMliOqQK+0kBfmTPdqbyXg+S4yVsGJ7f+2WtLd9U4F9UjhSB9IT2MtV8ssZH0e1LFiD4PmYPPbsQH6/L4dbzezYWn7JtzFm0GO0ZB7NmjAcAZFI27n3uNdywg60LLG2NYO/DT4ADlTHalxbF/LbbkFIsvnUaANXumbfO3eS+dz2pFlaHlanHusLsuxPPjmofNoWx62HH46BRZX1iXG1bDD7vYKWkqDNmyjcwaVM6rTrvTYggFcsTL4aLCNp1rFZ9v7k4F6WHiR4duG9khAxgFyXri7cUqsDoQe7fAOB7gtiHSiFhJjYxcYmSAzXlakvETlnhXUTqQCc4yd8pgVBd5m0wOeb7K6og0QvjyWxWRGiTpGYRoROB/WuN8gCIwLh+8ddicSrHAVIZ1J1/NuxUyg1O+2kqAk2qTAvDG9cCgypQU2Li+WvqMGZACQ4YGsOgygT+/U41ybT7iqy4VFUDpmVhwUIVHiiX6lmOrHv8a403VstrtSIKOlUnVPvopdDYB4z1UgqDxbOZyEQRqtXiUQ70SSqwcAgAnHDtbADKq/jDA327JFvxJHHAUSegzAxp6iDjw7sI2iX9cbQ4jEyc4zPJ8UZvmIlxHEeMewMuAmZYqMWX8KSTqET3oNwKIWQYGpl/JIV+KFpH6QuumTAvggWBOLazee9LicJqnGdIc2REgKX5II/cTiLEx3mHtEkWpNlU0RNe36byONYVjcuwaKFT/oDz0JjKCE66djbiEQPvPT6z4wP1sAUIfgc3O5VCw5wFbnYudXUYrmL4qmhk189foMNO63PA7BcWaTYKM4t3HaAmWGqUDEqGcMaU8d15KYEFFlgnbZsm+EzO0Q882RVEzhTA0skTWjZW7VdpqVO6MTCJ3cvvCxILY8rzP1dlZX/GG93YG70Gt0yXvGkLjopzS+EOnHSw2hKhMxY+XNgz5SoJg/tPvPA8pGxbk6p5rX4pgNCGdlhxE/V3Pay+YGITJQkoWcDJVQqMEPWSWUCpUsb2Kq0QkokEbhURsjtFi/pXHyuYwng0Y4CtWtLX9XKaWlpQe8Z0VfRENV5tKZH/98/UdidVlhAjlZSxZv6IF1MpxZUJdWqk6Ai+UGUN9xw+UF9TScLCjIm16u9kMPF+lZiwLAu3P6auZaBPfpYoyC2150WdjPmzkARj9mWVXrZOq479k2XjXSMotpABrEopDnNf4y93ZGHDQCJqaG+4RTOQ1OedfDLSgwWFrxRkbsuzlhRBOYrsbfB5zYA75omQ4xEiX2FsQbvsqDvzNNi2jTzcPj5MYvNr9BoKvVFvolKJrwAHY99cs2HCI70U7jcoWfD8nuOI18DYPb3b0TJO6OVwXHG8OfKwU76hUcZZk09CRR3bK5/SIowbv/fZFyxA8B1Yyrbx6uI39eIWHyR/WCn63ueovfScbmnDXU8uwJq2wjbH4h04Crn3oD07/yXURGSQr1ivtswK3nkwasf2LKtja+yie+ejLePgZxKCCqzzRhG3w757Ym83JTCfdWqCP+K4CQhHooialk6bpvwrJz+iXL4hydEmUicyY3FbIoJlLRIykLdh1Jc6TCsWGyMo1W2B1EvNZIG1zS6SptQs2SxErcKimXjumbBtW7fZiJpY0uhWg2qyvW99CiLV7DEKkZoq1N50qfoDSwJq9ApY8TjqH31GfZbJjkwBbjV3V46vBZzSDvIF4J0VWfm72o9ohYid6xQRP0jNFSEKcvi5PsDQDNcblq5RW647iLfjCKMoXVC/NzPeKlkkM2w0sbMoCr2l9jSsaAxXnTYOlmXhiRcUWiZS+1DWFQ4ers5DiQt/yUcypsggIv+ZC4pEWkRXA3yp7lYHolEtqQK+aI3ggKNUNuLuQ/ommt9lcBKLbpqKddkYrn5gvu6LvQcyB0FdI5dbOG5ZkJrXnoLq4xzZNPL9zlXudPCheJchH1NHl9yMRLDT6FGwU2mEwmEc+t0TEYtb+hh03Mixr9IacxQjVJ8oHsb9/nOJmgB4//aV/AquN3Cscz6h97G3rMnoAvbVXtYN20PmHT09V8xMHZjzUkuKHqNXnEwdw7t+MMCXS5KIGXivMYSdDj0eAHDw6N5bcO3UBD/r7nmwkmrhcGM6ZP8127bxyutv6sGyujW/hV+4NnfBIpSxviQnSU5yBQe1N17alU3t11Y/f4Hqk7q+x8o59ea5Wuv+jdv6JprnJHHId/oGUs5kM/ivd78EsHGlpa+7feeK53WW9afPntZr7ejUBO847puQQJpZlZwcK4ke5M2Zyslqe8TAzRdNRz6jkKG/KAEAmJaFH0rRC74NGXsrXuGnEfm25NwYfDrnKOJwienCjnKJQwtyr7t0FmzbdtkpcQvvrMjqa6LYP7Nq/dLGuixcxMvlP5osHcazU1lYg6pRe8V5qq/Iu3fUtb7w4iLP9TCXICKx0YLjiICa+jvRKRksRBdsxwB/nJnoGcCqsELig/xCatyHXg0F02SRlQiZLAZHWC+GFDIvI8OI6w/0Yug9fK5i9Tq2P6QSVjSGUyeNg2lauFVi8vTMWLhh9wHq/ESSZHP4MxEHlzJm6o1/1vhYNESpxR6hX4Z5dVvfi6F2ZGMGJvH8dVP05zkAIjETcyTBKSrDjFm8WhbCpoidGgOjEqpvUiHV19F2V0QvIt9x3+//m0piYu8ZBhAtSmY6dISUeJQ1OWoLsW/pbXAbkhwQV/JY7Xe4ZLTyfnLc0WMje2afwV7EzvvM9a19BNG3pL3XTI+E4wPi1HONsMknyU1W1oCioirMN9lzoPKC3xGhPM6B9EpCxYJIvWQ9GoNPp2w8/sLrAIAx4srpRQ4HOK1uXI+0w7ZtNLz5Jv66TE1y2W4EH/XPzwWEMtg8UNExCw4wbWLfi0f3lNU/PRtrSsswY/K43m5Kv7SO3P3jTzq5W8+Zy2bw8h+/0BM01Rv7kzb619E6NcE3pwpIh70ox8+L5eo1tUBSUnQ5GTeQKzgahVK6lG/DfEEh6evOVu47NVDai7QrTNPCg88t1J8JEplNGw4BNckQkDAVImU8WYpu1806C3YqBbOsFHnHRTb+FHAidyJkrtQTwn+2Xv1dZ9BKHzQ6atS3pNX3NUmFarKJEtUHcpxoCChLJjB5gprkIyEDlmXhkefda+P3RlHfkhNOJtGIKIsVOJh94+kYZLo8eMMwkC919UsGkRbJLN1v7Ky2UkZQZ/Um4qibcSra0mlYloWn5qo2hfkWJNefrhzDUcsbUXfr1bAZrqKnQMxXKCjG0Y8eU32yZxkKjtuHbeImrZW+/3SdOj6zNkt86xUlcS9y99/D9T7vhp7IkGKmke39bT6YrbR9vr7jGCxj3+x3XYSdme3yPdepjhiltm1ZShSr/d5dqVAvefH06LmGt1u114Pg2N+5ysuW4i0jYuf6FNd2KGLHcVDi8wAJNN9f7eXjU+yO11GcOcuoA+efSfsmPMdgASJmeb+D3rM+xaJ59PmF+oYNKWWCiwuvL5yxfTxrO5VCw4JFyFeVbtdxusLqFy3yJHFsL8Mkk7bx7of/QFYWQWtqBm7hF5s227bx2ps/wYTxnWuTnUmh4ceyoMxFVta7zeRQe+vl29ymnrT+VHOTFg0ZXe4R/f7P/4eCyHREY4G2zLZaYyaGg79zInYa2PPjqVMT/Ia0g0xETUqkECZiXlRJxMhV8WJWQ6wo/uknfBAZ0D9g5iM9gUjIQDhkaHVBAPh8fVbOrT4bEERYUQIcvKvWoql7/DbYqRSsRAIIh/RbnW9lKgyu8/FY/VWN2EbGBWlELcwkJU+dx2PRC61IR10POZ7d7iAUNTFz8jiYloVL7puP2y+ZrgtEE334z88+/qQxB8cBspksPvtyOQAXUbXISyQeVm2IF7FaAAAVCn3UnXsG7FQKhVAIVkmJytKLmDiDYTPmEMSjsEwL9ZffqhB7OqU7y4rF3USq8hLpHIm922lYkShqLzxTfa4uRaVp6qLetPdWee8pOf7rpBQk1xn0eOH6hNUxYvOX6itGYtoryHv3ufje+QCARTf13UIOfuuOWrNHHXMS7p/9GgAXra7xrVOkc15kXmG5zztQpArp04ip8hVjJ7IeVSZZ6fKc+7n8vGet4igeOEimMPFQuX5VLs/GnsIwYgERrgkQZbM9jBS0CAMuH2Nkwls6UJ3bu05EZpHfS2CfvbRIrY1cNPMU9LT1KQS/vRaNxnDcgSPR3tri+d5OpdAwb6EbhuiD9uz8l1BwgJmCwjKpFH74+KsANn7xdIfZqRQaXn4V6bgK4azckMfjsxfqBw7vfaG2QypRO0NNfHYmhYY7HlHft6X8h9zI6q+43R31R+8NAGjuukvociPyKham2rkfofrAAuvUBJ/JOzDkTdzUxlVuNfqJWhmqZQHfOy6djlRKVZ2pLE1oHutQn/ofERnLkRGoM05ecICEZWHW9PGIm0rnmvE6am3M/bWq3l67byUOGz8JA6Fe81YyqQ5QptBqZq1Xa5o8emaGElXQSyFTiF7KALlmrrS7awFeNENOLd/+RPBE4JqJxCxeRykCXnf2BMTilm6fZrA4Xk5ycW6B4wAGHCTSCpk7UcUcKmtVoZKWpELUK9vVMUZWqM9TJk5SnoJpAbkC4m1qyq0uV3TYRkHQ1WQIfboSlhNC7bUXKsRO499plYLgxUPQsXrR4Wm21PfMVG7SRZjVbh+sVveCMVLmDLjaIfRM1OdlLeo4RHjUCWHuQJVmb7hN9GczjignR1p9vvjeeQDcuHBLutBnKZTdYXbO0Qic/HHGyomo+YzwJahVSsUrrtLPiOpTPv8s9ck1mEFR4fDLDuEW5THGSxRThTr0jLFTgZWeaL5EjfeEuN1mSgEOU85rJSxpn3ccsB18xsiA4XikrS9iafGa/bo1nNOI5OkY+nN5etK6HcGnUjYenfe6rgS/PRVenpr7ErJ5B2dP23wsvqS0HLc89SqOcxrVF6WJbT5nT9sjzy/EuyvVi8kfIuoOs20bDfWvdooOUX/vo8BXa7uxVX3XVtpR7P7N43HAyL6hFhhY/zErbqL2pJNhlSR6bOx0aoJP5x2dusg3ITUbqC3CN+Bdl81AKmWjrCSB6kRY7x9fJ075atFWF751XKoqcdW6zacnzlXtde0FjSxY4Yhaz4z7RUIGdh8QBVZxxVbIrsLs2GeAetn8Y40g5LiXAcC5joibOhrk3Pp16Pm2r/Kxavwr+kSbRJ87iT4Gud4MxfD4jFsSqTO2x7gyjx8OGaqfHEfz0A2GTORizjlnMmzbRptD1oPo30Tj6jdcDBWkHa1S/HaiWSRkkU2Qks4SZox9kPDhGXv/SK0F6IzZvUaoaylTf/9ohXqJhXz3l31MNMRrJ6OJAIHekZ8lQx52xqdiymxO9hng3i8Sgojo4z4GF8diU6qAk38wG/kC8LdH+l8B785aruD26+fr1f3aVeLOxB4ZuR/UfS8Rr86MGLj07GmIFNR4pM5/VDqbjPqYU4BlWaifrdY9wmRfrVTsrvhIRRZIGeq8zJTV6FnW4cKShzGI1dlavOPWv0aYsFOymynfS3t0KUj1md4d5wAA2LnaG+rlPn9aqq6VGcUcw3xu6xcqRlrthJ6LxXcbgk+lbMxd9EZ3HT6wTppt22hY9AqWZNXg5MJveG1fjoIH1p8tnbLx7z//CQD3RVGeVy+CRkNkovOZPpnZvKNYpyZ4K2IgLm+jalb0GagOceBQ9aY8a8ZUpFM2qsoSGFIagvGJ4qBrWMyMR8ZmiQBNeSuWKyTImD7NjVc7iIRUZltKCBv+gsy5goN/rcniuusuhZ2yYcXiqH/yOeSHuolGgLt+sHKDGnTk5BJJEwXqLMqIN46Y9bEvyCDgG71EZ+uqz8vbvGwdKu0R4ZOizf0Zu2cWX5sv247IMxZm/xhAPObpMMYmc+EQWkwT6ZQ6J2OrI8PefsZ+owEAX6z1slE+apKTVaos3d3KZH9q3kfVOPhCYvyD9xwJwI3N8v6tkDwJIuulgqgZ52YWMftO91Wb10sij9rvNdGaU179oDLTy7Mu/ttuwlem1rxf+7wlTf0UN1a/rD2KvQ4/oc8XDNkWO+TYCcimbERNayN1T+a5tPqULLl+wazvfQsbUFLIw2hVSLmcz71kQFdzYDS3w0rlUXu80gHiPGCVJlH/9GwgpZ7N8uUyj/B3rOFAE/ZLu9aDkamNN1kC54m1TepzjRq3Zc2qXWVCwIiWejNyl4tG1m41LmrXJZnl+WfkgN4N+4RN1ZHWTM/ru3Q5gk+nbDy3cDFGVoS3vHM3m52y0fDCS6g9dcqWdw4ssE7Y2XfMxYa0g9/18YIh22LZlI1LHlR1YHtCc6r+lgfcxDgJp9Zedm73n/hrYJ2a4CutEEwq2An/9KGrZyKVsnWWZlWJiVFmAfib0OpY/YixWCL1tMjJEVF9oYS6Kvdh/VQv9CuLE2UZKIka2LkqotGdv16k/lm+ALRn4Jgx5IdWbyRJwIzV3aR4BdcT/Dx2txaml/GTl/OWC8LWVayiXmRPxL8h7WeCSFw57z1+iU8JkZ7Bx8LxzmpIADz1g9Pwj9/9DI7jYGBNjVsfVox94kAhD/J+GfNeL1m29CbSwmohEmPbdbV5+bzUFvZDhUoai3+q7nP1KKVpw0xDThBkx/AeMBaua1/q2Lq3Wg4jnzwv9eD9mjSMe3KtZ9/BrCSUld9zHLkIniwoelCM/48MeQkB3NJz4n2IhQ0saY5g3yMV+tyrH2jKb40V4N4nri+RGebXR2d/8nvGulMDK1GIRYFXfq8ONFwQN1VNOaG3ST4GEb7kW1h5A7WTJsAaVI36F1508zY4b1jC4OLAMKk9I89SwhsnT3yxynt+8SR0LQh5bkocb+yd9W2bi6jKoyq9iplmiDkZ6tjDWZtAxn5SFDTz0uZY3MJJJ9WiOV3A0KqSbh0z243gUykbT72wGLtRD7QX3JCvs2XSNspLy7ByyWcbTe6Bdb+N+8FsHdr7j7tP7eXW7DhWf8eDAIDa26/s5ZZ0vbGs5TsrMrjrokndeq5OzQgDk2EkBN3ef+VMpFM2BoeA3VYuB2x5E1ILnanqVCfkG5pGTRQyXJLCzqA2ClkgEkPOj1bIMOcAccvCxFPGIhq38My8lzSPnRaNxTDt8NFobWlGfI9R+P53vovwBhtpSx2L+xOpU+qUKI/1G9dJ8iaRHT0FxnHJoWXMbZkv244ogL8j2CCKpt4Hw4TDyryInYiR2xLNh1f7x8OGaovjqP5lnwNwJJY+bWKdykMwLaRyjq6pSuYQ44hE6jrzkJV15NqppkeGz2DJMUCbbOX+8U7QG5ECXlghNXxZW5XqjsxUpVfUkvb+nvFvf81eIn4qJzJzkZmKRJQ8zzpB/sPL3ZR7jgPGbXm/eO28bww3kivt50jzM4t5kydtRQ2Mruk/iVHfPnEiMqkUKksTG+ny0LtN+mqacizy/vA+mK1tCOVzLnJnJjSfa7KtJNtcI3LRjeLWak6h9ujvwSorRf2dD+nYubb1MuaF1VUhbLDoelnbI+BkBrfMO45PLbVcRm7C5z1zjkgVRQfieTlmq7fu8PCIfN+YQt05Z8JuVXOeNaASixYt0t5oceZ0uxPHkcec1G1IfpshXzpl46G5r+PAxhVd2Z6tsrkiizppE1op9b9dAkANwvGHjkLDold6rG19zVIpGy+8/Eag+tcDNv2WuQDcSXB4eRjPXFPXiy3qnGVSKdz+jMqe/mhNdgt794zVX30nAKD2/h/0cks6Z3bKRsPTKlGOcuEd2R1SjrO7kHynJvhRFRHcc93pSKdtDCuJ48B42q0ItEySilY3qa0uTySnIIIn35osmqFVaktEX/CiI4xRPNhETuqPhtwmR+MWTp00DiUJheTJzGhn9Z6ooZCGxOc4yfnrc1LzmVl4jL0PKSUzQOLY8nvGk6l0R062u2BvePZjTD2pdTS8MXfy71OsWyvtY0y/xleDlWjbzjoqW65QUCqPRXIBhvDZYwZQE3OwPidaLRvUMaryIc81LvWxTmgMP7BvB8fokcm5Gr1IqYwxTbnfzQPU/SUPmsgwEvauRxA9s6/bZaHBzfIVdC1/Z99HfYyFCl/Gak2SfH8vwwnYWKGS5vhehjwHFVA5gfN+VMGb0RwN98+3aTrnaH121lqm0XMjG2lTWufMN0DSVDWIidRZn/hLmSeIrLklcmeMnJEA8eit5hRqT58Ga9hAheRpohjbIlWqymR6aC1VqDrZLvk2Mr9kI8Kjl8vjGkI6L1mogsoTOtavPL446ycUmzB8jE9kblvdhLobr4CdScOKm0oTC4rVtyHj6GxY2+chdqd1GsGn0zbue+41fCvZwQX3sD0q8rqzpm8+szWwwHrL1mdjOPz/nYTh1d27mLajW/3UKwAAtT97opdbsnmz02k0PPBUbzdDW6cm+J2rI0jGDMX3fPsT9SUhGHXCafyeq+Xt8kJgxR9mQjLlnW/6QRXSMoWKWD8yLXVVy5FH3fRpqoaqZMNZltI9Z+yTHP2lTTnVDGlDMqEulywUImdL0F2pOBFrtca4MAYEFVI6gHFjXqJbOIpxZy/bxtb8fM+l6fgeOdvlch7+nbFdolHGw4kQS2KOyo7NF1TlpCP3gjbG47M5YH0rKqXy0gFDlDezpNGru9MsiI0ZfG0CYEaUqz4zRdMGrfKDL9e6xweAvUepremVlS2X+gFNOp6tjsf1B2aNEkUbhrcPWw2vt+Nq0PCzNwOWwNLvGYQFsg2Iut6bFfEeQ3OoxeMiwqf38Y1h6trIwSfSp5fB+8RsyC/W5zDlpjkoM0N45ea+r0xZgPts0JNyc0vUxcUFYTe2q/vHXBJ6MWRjoSykOojP83JZW+OaG2PvvFH0BDlf0KNnbF5YNFa6gNrzToM1tAb1Dz2FFsmcjYWIxOVnrOHAyIEg8qgcr9VUa0ZJqV8Q4Xk4P/nzdprb3Y4SVK+ror2vyhai1FLtT5qou/JC2PKchuMJtKQK+pB/lIxXf95Fd1i/pF3Yto2G1xajVSZ/ezv0bfqzzTx6N6xvXI0hpRW93ZTAtmCrUlF84+gTscvg/rPo2hetftYPAQC1C+7r5ZZs3ux0Cg0/VVm8X+W2PM2usKP47nEnoaa8az29Tk3wF86YjPJkKWrsNveNS20SvpmFz66NmiTDJNbOmL0WgpbfSyaZI38vSFGOTNbB6dOnICPqcLmCA9NKoDEfgmJ3u0a2CeO3FVYIBoDjT52BdMpGaUkCT899SSNjog1/LU4idlZP5/GI+KlLUXA6jqHpDDZpHpEdmQhE8jtpXQ117YzxRjT336t1Q+5xNu/g7stmoLlxNU45+nuov/UBdcDWIsle5h0IgsenigccPXg3ubaO1fnodexeoz6ba1QsXyMrv4QePS9BPnk5b1jrzmfkGlit3nst7AtmCxOhMwZMr4bG9laXePXE2Sx6Wf5FZbIiigB8kefljdv7WVD0HjSzSGsLqe/Jzad3wrqhPE5bxsEZt89DWdzo0xrz+YKzEfOL96tVZ3N7PSyOTY4b3b98pJj3QtQrGkQ61s5O52d6+uI56vmBa3Mc4+EQYEb1/W7Le9VttQ2ReWepqg2cH1ihPst1psQDWCvjajjPR/VTDpJUB4vObHsqi7rHboUdD8EqS6prDYf0NYXyar8/LlVtX7KW2vUuS+u8u+bhiNFxXHPWhI3Psx3WqQm+/tk5KCst2/KOXWwp28biNxoAuAk0nbF0ysYTLyzGpaf1vOB+d1k6ZaOytAz1dz3shkkCCyywXjE7m0HDE/N7uxkbWedCNF81Alxc5RtupNIm0W9Yxs4YAyac1XxU3ykLDup+cAla5NUfFVTuCNsm7ziwLKvD5hBZuXoZ6nuyWMIhIBaL4Xf/85/Yf0QZqqoqcfqUcUgmEliwcJFGIQVHtY3okBQxZqzxuNyfzBOen5jB1lmVXvjo1q0ULnfWy28nSIj70BHPEzK8oaihZWGtk49QyL0XRCeA5gdbVgK1F56lJEqfno1owavvTSNzyI+w/ZmC+GCZ53e6cwT5hMl3FhW/lQWyLrwMFJ0dSiVO8twloM1rJ7OJnPX9JEOV+jx//tK72F9leZE9vSR+ZoxW7auO4SeENNne+0fdFeYOsI8YO6UXwvuZZp1hh9me6u8rN3RfrHVb7bBjJyAjVbmicUuznJhv0K7XMLy/ozYQM4izMl6o3/9VLgK7UNSxUvpPaxd9LpmljG0T4dPza5HvKYbHm0QWXjoLrGnRa0utYa/KZJgsGFkbzO4yTF2j/D3qy8zVRqTOCAXB0x7D3X243rimBXW3XAk7l4VVXQ6YUR17tyrKsEQO8ck6NUap4+O3sk3Uhu4K6xMxeDuVwsI3fwUAqCyIFrosetjZ7bvo/3r7UyxvyWPyN0dh/wO/gRdfeQOnTf76sG7qH30aAFB7/hm93JLA+qJl0ilc+ZDSndlosgtsi2an02h46Jmizyk0/OzfAQBL2jb1q56zzk3wa1sAajIQsfNNKZom+g1LlgV58HwzkyddYqLuB5fAjhqwBlahUpAaMgq5hSWmG4qqN7s/9AtsrKrIOGCVry5kxFC/DxsKHZeUWJg8YSzsrIPnFi7WyJmxd7JbPhOmB6tTxTXiV+fz12alEcH7USo5t1UJr+Y9jcdjO4iaSmIGzpqpVDoB5TH88+9vufrvjBsWl83j6n+kwv0uZGi4GTXD+ivA5aezzzRiYyyfyFx4x/jl22q7k8ow1qwIsqLk+8FyvzdIPNLPU29dnvVcOxkpRO7UwCGid9k2aj8yWwgEuI5B/j7REb2zYu6xq/PueNrEPtCoX875sVQb43hj7YO1gmaZ7chrXNtGrr5kLjf1vVBaJu/oNajibE2//g77u8IULnfWyyQjL55980ljTqF/xtYHSyyc44TlMzl2ffkTWC377T7M22CO8fa04s7L/sl9lHrpRosvsnYUbZLjiifa5Kgt5wyOL7TJfCWZ4Hj3c7X9qMhz3U3aZMXUP64rliXUdQnCHzFMRTfeWub1MplTwj7l2IyGVZnI/UTbaM8u0DbqVQRvp1JoePPnPX7eeimCe8wJtT1+7m21lG2j/rU3AaiFrDEjhqL70yQCCyywnrSrHpivw5E/u3P7y0N2boI/cCeAi6x8UzK2RoTHWPsuQwAAdff+AHYm7fKjBRoWrDiswQPwXovEK5sUkiN6rjClaQIJsrq6kdscZn4SBxNtNEtsdJiktW20LquzKRXa4qW0aiaH+gHLDJoauQuv3cc04Gp4vuA9P+OX/H2VRRQrHO80WRjeWDxRpxU1cM7MqchlUigtSSAZM1CaLEE+n0cum8WwIUOBPUe4WYDFRr1sRy6ebBoiJok1hgVdUkuEg0tnczIWuVTYUby//hqs/Dv3p6bQgTsBAHaVSjtfpLx9N1KQNlHkISNi0jdqP6Ibrlswdsp4JfuMLBnG8pmRyYxXxsmLvS5dY0D+xrqhfg10fqbCJe8nkRj7ikwkLksQFZIZVOpnePQB23tYKf7nPiWS9mlLBJNunAOgKKekxJsBvNxXo7Wlzbt2w/yKtmwYuVAch02eirhp4X9fUMdFWtAsO42Vwojo6fmzpi+55hx3gvStaAy191wDKxpH/cU3u8cRNN0yWuXZlA4RtNwk8RJh9Q2i57lBYv3N0h5WhCJi55qiJDfUXX4+7GxWX4NlmrrWMyqTQDSMlCD3f8laHtfOSnxaRlp9Vv7+wRp1jbpSXC6GQ797oq5YN2JA5ymU3Y7g7UwaDbc+BAyTCUcmmOwI1QksVxdYx5ZK2fhJQ4P+nM/nkf7n56g97zQ0vPxaL7YssB3BiieM3b91fJce+4J75mNQMoRbZnV9xab6S24BANT+qGc1auxUCg3zX1If/LoeXWzXPfgCABcMPXz55E4fo1MTfL4iiXyZiqWH+Wbjm1diW3UXnqMQOzMSB1ereJZM7I1h9ab9VPiwRIymT5eBbzWdECv/KdYJ8SN326dZ/jepE9mSKiCXB1rycXznuJMxuLIET899CWWmiRkTamGHLNz15ALN4SWCJmuCSI1sGJ7vc3+MPuxF6qVxb9YlY7tsJ8cH2+tq2rgoN2S4nkWu4MAwDNRecCbe+uc/3PUPbotX+ulRkb9uGEobRJB7XtZEaiSmuV74wLtUUxVQGvVxk3S2dLzW05YYKddW3lsKjxHRjxKW1a7Ko0s67Duv8mbpJuri8vuQZDITIVJviIOfHgCP52dY+dk6gLsmolVB5T9E6lSgJMOISpW8n9TFIeOISI1eQouEi6mHU2mF8U/0XSsUXK+YRm+EnjPHMJ+tPQeq5559UelDpW8ty6DNieOA8XWIxS28+op6oYyUCmD480dqSzXZnQVZM5+GsXki+TLL+zlkqDE5WPJwhKVTJpnX6XI1PuNE2Xwu/v6Z2lJnnselB8q8Hq4JsPKZYWhdnfZ9x+h+mnnqFLTbNizL0h48vcdGGZtk0egaC1Ihjho1XDfifMA+1Iy2bbAuR/B2Jo2GG+7XJdxw0E5dfYptsnA0ivf++lsAwN/blNh//QsvAgCOqu0//Piy8go0zH0Rg/ffo7ebEtgOZgeNKsM/n5iJJc0RjPvB7C477pSb5mBIaRiPXNF5BNpfzLZtvCxrZG3byfzrSuvUBG9nHUQZfz5c6Z5MnVIH27Y1mi4bUAHsMcxdNacSnyM6Hl9JZqPWOFdvJ8aAyQFPxLyIboXO8nTbk4h5Mz39mYeORoEhzP2fJdggb9bTD63Cig15REXnuyRmYJfq6EY1FnkqehlMsir18aEZgx9c6n3TspqR5qyLUW+lTHQwvhCFTOqy1MTDmDZ1Cta1tCFuWprt0ZJ20NzchNrJE5VIA5lMst6REn0NAIgLIjIY03QctV4iCCZMfq9kBlZSM4Sspy+EW09EQyTDv5NdQ1YDWQxvf+r9e6N6mRKS+ysrERUT+bGvuC7BPuZDQ+TObFHG4lnBnro+HDc0ItCvmjcOCfI+8VyZgne9h3Fnjiv6mjz3OtFl4VgmEov7PLtI3wvBe4zhml0PO14rrNL4TLAKGq+Nipr0ev/rYzUeWPOAiqrxsAFETNTW1iIWt/CXlyQmz3HINZtWQe7f2EVtOX6E777R+DOjbpY84HqsElGgLpB2p/Ya4d2PmfZ7qu9rx45Vn+WZtkoSqH/4adRdOgt2OgXLtPS5E3YKdWfMRHM6DdO09Dzx4VrlJX8oMXV6NxxXROYc+/760+wz9vn2qE5uN4K3bRuvvP6mXqgq/2L59h4yMKh+fWrB4o2+dxwHDfc9jtprLuyFVgX2dbCDRpVhzbwz8F5jCN+54vkuO+70W+aiKhHq80i+4cFn9NuYWu52OoWGZ+apHYpi77Zt44VX1RpZS6p7kXsacXz72JOQy229Vn+nJvj2rIOwIKmpU6cgZdsohE28syKr448HjFBokivEZBAsW0u+s1fHg11FdEOUxLgU2TOMrRbrxqxuy3n2SRaxTwCXSUGEzdiWAZXheMb0KbBTNpLCUGlnmVh420IN7KhQC5p9CSGM0daUeFUnyURgjJcvQX52ZB1jlIQHOTwMaStj8u/IeoXjAAYM1N5+Fd765AM4snBtfKayAs1Vn7uN2meU2lIrxoEamAME+egMQWkks/PWCmIiiyAu7ARmsBJxkftbnD0LuPr+jNVL7HKV7UUvLT4EPrjU8PzdznqROz0+3hMykXhPyVjaoJU+vawPegiJqIuWOOa+SgnTxvGyXXhfGQPluKLyJsdye8YbW6WnWHC8nP/qRB+H8GLFSH6gsGW+EKTO/mWmK6tdEdnTQ3tPavseOUaNccajswWgEDax59gpAIAxlWFYloXXbhM9JVZsYs1UjiMtwSpIfqTkY5QlgP3HuCyb4lwQAAbZe4Lo26WqW6JJjs9MfHoGsQhQXYq6Ky6Abdt454P3UXvBmbCSSfdZEm/WKbNcuA2Xfccs3yWNXtVR7cnJXKbzJOQQZCxxvHF8cSzf97QKKa9rasZ39xqIrbFtRvAp28acRYuxtKnj9Nv+YHbKxqJX39TysP3BkmXlaFj0CgbvOmbLOwcWWB+0qTfP1f+/+JtJTJ4wtvcaswmzbRsNi15B7aQJaJj7oksm6WfWqQk+GjZwyamTYKdsVCVLMDyURdlgr6RAm2Z8qLcYGSj+VXgqMlIbhDrkZE+Qu76unTogav+9B27c0XGf/jqPQdRHFgoRtmEYqJswFslEQr9VAVe7XLtgoudSUVMBACiJevnQQ4Vn70cvZQnvGgCRe2VOrdizNiy9EV57wlboI19qwTQtTBhbC8uycNZd81C7XzUKhTwMI4Tjp9UhEo/h6GNPRty0sKheJW5VV6fdTmF8XpCPVZJA7aXnwMoUUH/tXS4rgIiHCL7goG72vbCJcAoFWJEo6k86X30mu0Brdsh+pMGuFnYDkZEgJ953sjQqfAqOZBhwfYOxeOq3lGgOuay35Lxxcr8SJHXLh4sqIXnya4piy0Tobq1ctS/ZMwSNROY8Vk2JOjdjrazA5c+EJZuGsVny5PuLcdEVAN5rDON7Vz6v+GtJQwAAOnBJREFUx7he98p5162o40Mm2AerVR+V6fvt1fX5jyUpNOfi+N7lFwAABkRCqH/sWZedxVg5WTaC3Otuuwq2bSOeTCJtmYjb4pHKeVPC9lstz+oAqRGRYD1VTdMSj5a1WsvKccz5Z6GiNIls0oJVWYbaWafDipuoX6gKDLEGayavDsPQzPvitbyz3PW4i419QG+GjC7mS2ilTmoZFfisSH7FNkSAOo3g7ZSNhhdecoX4+6GVlVfghZff6JOJJ7SXFi1COJ9H7fjxAIBCIY+fvtcEADh4uOr7jxuzuPKMrZMXrX/sWQBAbd2WOcl2No2G2ovUh3QWtT9/spOtD2xHsGKO/KiDu5YjX2xX3D8fBwxRoZTL607cqt+wJkQ63LVEwCfnqEmcC5+LJOt97Mn9J+u92DrVO44oO9bOnAbLtFD//FyUSewqJhSQQky9ZshXZviD6DnlK87B71mNfZnETC2fPkyxQqTfqPbHfbhqzZV8tkVfdDSKvcYMgxWPYunHnwJSp1EH4cnxlphbNKWQcRMUGvXzUqlJwlg/ea9EKXyRrMypQVzwry8wRJRzsy4njB+LfMGBaVlosh04jouO3pWY/Nr2AvJhE2PHjkU8bmHxa+4DmRWkXE1vZKVixVimido7rnL5v+QTs2PzBViRmKspk8rCyjiofeVB9ZmuaqmpsggnXCzHkeMJG8FVoYx5rnGVXDPjlETJaV+dSuYY+OvY0oh6eJzdB6h7wPFDL8sRGMXLIwoHgDGyXPCnpaoPVrd6ufk8tr+GL9Ep2TLMuuUl+1kPXMPZFgTWV+ywncqwau7peH9dGMdc9TzSOS/Dg/Hnap83w79v2KhqkdrvfUH4/H0+WY7vzTpL3wPLCaH+8WfdGLtYHgbajbCLyKlSGVceKRkrWpOfOTIxNX5NYeVkhRPVnvZmLdO747h1DAN58XrtjIPTpk9B0wYbpmnpOg9E5vQ+S2QuJMOI938viUJw3YiIXbP3pO/IDKP3uqat8+HwTr/+6p+bCwConT6l0yfrK/b7d1WSwzf3HLaFPXvXFr6qeLW/WpLa5D5X3D8fQ0rDuObsrUTyN9yr/vO5KoCgE5L8gmUffOX+5qDJritLOuVeI1D7+M1bdc7A+r8RzY8+pPuQPAA8InWWd65Sk1vtsd17vm0127bxzIuK5cYJvi9apyb4SisExNREkI+E0V5a4tZAFJDD0NZ+g9Vb6nefK2THmDr5z0I8QEpQKxEc0TeRG10lvlGL+c1Jn7aDX1OG4XUqDv5L0IIrOGcAIQOrBKkNooY9432rm9RW3vY1lYLAHS9bpkZQS6PtRe5EA63SSUSREZ83EtGiKDnpEwd5x9F/97/hPxV0W1qUB5DNO/ikyFMh8rDKhTXg5/2S3+43anYwUY3IiUiffbNsnYrDc+JnyI7aNwXVtvX776oO007lRm/slu3kZ7uVPGt1GCp60hHhvcvKGsPoCm9ce42vOhe9Oloxk4UxTo6PXwmHm2PR7y2SJ09kRQTGtRnLt1hP9Eovtj8t5m/KDh1ThmWzT9ef0wDeXRvCUZcpOiXHPO8nPS2uYxDFMs+FbBx6p5+sU8+o7kthtbAiGXM+wiFD9WeLeN0yLL+C1AvweUuuh+jo3xebLjAnzxTXDjmesgWnqHqVevbX2WqsUi+J+S3VCW8MnWqlHHt/eORs2LaNbbVstptoklOmTEFZSVJngAbW9VZ33ployedUQkUnLG5auOz0UxA3Ldz7VM/cHysSQ+3Tt0kDorBicdTfcE+PnDuw3rGOxK5G/Ntx3XY+yzRRO3kirDxQ/6PH3e8tC7Vjx8KKxFA/Z363nf/is6YhlbKRLOnc87g5s20bDUX6Up21lpYWlJeXb9W+nZrgFyxchNNmzkA6GoVhGIiGDf0WC4sO/Bc6duqNnacFwjf6ApF8kZItw5j7el9VHSK49iJpyHXyEvSr/ulKS3LsRold8dg6o7BQAFasxyCiUPJciXYFLWiFO+GbDxLFuaywa9hSTb6xvSgy6UMrjMlaIn7DqjhtZWVozuXwyNzXAbiog7E3bln781PRJ19nqyQSO+vg2Wvr8JvP0rqSESvs6Ng4Qy/Ur2GGKlk0DNVUlHiuQWt1MAZfcFA/+VIX0Vsx1D51q7u/sG2IgrNaI18OL+sYzITUyFzGB9Ex+yCls4K9jCmiJvYFOcUcAzEZBMzLKKIt67bwO+7DjGZ6SHFfdrU/w9AUBM9h5ddlyRd8cHIHNn//0/PWWb0yHLluRg+dfUZtfd7P+vkLAAC1J56sfiieW/1slXR0fN0kNMdNnekeAr0prosI95w6UyGZh0TJtVr2q2xTqpKVTV4vPpRP4T9/1oAljTk9R61qLaAt42jmF593jk3e7q+au1eMbGus0zF4y7IwYfzYTZbRC6xr7LJzpqGQVSGDlRvyG9eV24RF4xaevbYOlaUJXPPjF7qziRuZFY2j9rYrYcXjqH/46R49d1+33zyk3PId8bn51s7laFpwhue7v68J4fBLn+uS49edeRr+8sE/MPiYQ/V3sUgUSz9cAsu0MGXiWCBi4sFnF27/uS49D3Yq5SZYCaC59OxpuuBOOqc85q21D5871xOS6ckx0KkJfm1bAU8Ijag1rd5gXJ3+qtkbF4qG1fcRHWdW27R3MVyzaPiGJ3fdX/eUleuLa2oSsbtxVfVbrlqTd0q0SHRBXnLeMLAkUYF2iZHtHxMmCJUyP5OFSLoCVEYUlOtXGdQ1VHltRCd6fYHZmOrvle1exbv2rAMDCnWH8mnMXvQGAOCJP7Xi47pdtQIjmSJ+5okVMXDqzXMAAAt+OAVr2vJ6zWIwWTGlkjZL7+SvS9SWsfYvvlRbVrQhomFGK+HJGMmko9tSXYr6m34ElCdQe8PFWptmfasXkTGmSS+m1Vf9itfCbFHG4OM+ZMjr+o+P1EuQ3hnZV9SVd3nxajuwqBZtLOxFl8x61bVVZRgQ0fsZPxxffu+jI9tet7wvW0dhm+Hf8IZt2GfUkSdHnMjdHxOn/W6NAdu2sXKlt+bB4EGqHsGcBYrGOH5c19AY7VQKDU/Pcz1TIRWkU650COePrWW19Oa97xM1WXvLItEYvrXXcISjMfzH/32yxf3rzjkTdsrWb/e0Y8C0ujbmbVoWxo/bfg8pFrfwyBWT8WZNEk/PfamLWtd79vRp+yKfc0ufcYKgE8yXKh2dF+IxPPqLD3usfQDw1hPnbHLxbEdE7puzw3cpR+vCM/Xn4oVYv737lItw/9DB3zvqu1g8jsE7j9afw+Ewrjlr65hkm7O3PvgnBh9x4Ebfh8NhXHnmth2/N+99pyb4bN7RcWS+cLklmvFnkzJ7j29u/r3NxwH1a+cvbWblGB5XfU/NdgAoS3qROo3H8ouwEUXsM0C15Td/V8qH39prhPICPhbETqogY/OCbu31zUqIaITK2vwknMS5p4531w+kHYzVrhFGCD+zL9i+1qSKczfqVXjg4ecW6mulh6A1bRjPlr8za5jIs1iV7oRrZwMA/vPeU/HpuhzK9hyl2kIkzwxUxtzJi2fsnYwiuqoJH4LnRewhVFNmrrZnXLSPjdlRVOSkvjvRMsdDs68GKDnn+VwG58z/0FWZ9PGq6bURZdefsyd+9mFKs7nYl/QkAJevzDH4vZ1VX/z5S/Ui+WSdz93cgu3IKL2z5kf1m1uI3ZZ+W7p06Ta16+tmX2sEv7VWe9UsAB2/iU3T0hx0Uv4KjkLiDzz99WQbWaaJ2vHjYVkWbn9i6/vgnsl7IZvxFihm0CMciW38g81YKBzFa+ftiTc7EJqj8SXCLUujOaEonvjlh3jnyU0j8o7s64bSO2MHDo2hacEZaOrgb0G/dZ91aoIPh9x4JHmimj/qy1itgYrJf5KSDFfxqZnIGtUaNV4GTFg/kNS0UPsz3lWciUiLkikhsXgei/o1ZEeQP94qoLU4O7LgwFWqE+6+ZtNEwmh47Hlk9xiBLFz02Nqcx11PLnAnD5kgdqoMY9IpYzG4zMvR9l8r48jUe2dlKLIvGn0Zr9wSFZNpQl42MyqLbX17AX9amtZ9s8feCsljhcps1VraZNNQJbJFJjYid8buqUVDxM7vmUk4KIT6N1/H++sdXDhjvNbb4f0eIwqZbT6WTHncQCGXxSUvqQo/jItzvLX76uUS+TP27rfTZv9DXZ70DfsoUhTr9WckMxv2sL2Go7okFCDyLrSgH3vHAgRfZHXnn61W0Jl2L9RPK5HY5G+uOe9UpNNqMuTUkYgafQaVROMmnr9uCn5VU9IlLIMd3S47ZxpaW5pw47kTMaCk72oVBRbY1linJvhELIRw1IvciY4Zx6wMCer9VKXA78zq5YKG14cUIqTWiMtdV7uR9cA4MyuyEI3HikAxf8tMMmpT87Ek4qUuBdvKLLsDq9W5DEMhRrutDQ2Pz3bRLZkmEoOPFlhjUf1+UDIM5FJ4fuEb6rw+/Q2iU+qiJKLUGVefmQnr0qS918Ptpox91hHNmrHrcdcrVs0v7z4VK1ry2GMnQd77jlZbShUwc5UxesbmafuN8n7eSbEYWFF+aVq0Rb50df+zeVd7aMK3dvEskobgjZk4jiqruK/EzNlna9vV78kc8huR/a7VvuzipFdTu0T6vrUoj8L19FzO9oY2G9UDBuL/fvcrzdQILLD+agGC74TVTZsG27aRi5h4qJ+h4bhp4oZzJ2LEgBLUi0JeT1o+l8EV9Uv0S8kvF5zOdfCW6gWLmxb22Gd/fPDe35HJZFBXV9chDTCwwPqDdWqCX9eeR1L47btWypMq7It0VBCfENWdPYYDAAzGsUNed5exenK7ySVnPJ04y49ihxXFtXXGqnwm6ieCpk73ptT+HFHCdByFBHMJEy07DUOZxJdZcYlIb4MU1j2pthbpvIOlTTnYWUfHhXlcomeyWxgnptoc9ydnW0tTi5fCqjn/WpPDPZP3Qj6bRSQa0+iUHkiZ9mrUcUqLasK6VYXU53+7UMkFv/3oTHy2Po8xB4yBp1NMN0NVbQmFy73b3RVrpnKPPZDPZuFOy172VMgwYLc2YfwhCvmHwjGkc46+Z1z/4HpDfBMj0c8tP2KUuid/WJr2fM/qV352DX/PClAVljt+eG5mOy5tyuHCe+Zh95ooLpwxHsmSBP77f/43mOQD67fWaQTPjK4BZQnUv9TzSLAnbcqUKbBtW6eaM65umhYuPu0UFAqdy2jbFstns7hhsUpGavZJIGyLmaaFc04dj+qkifoF2+aF1J15GjasX4M9Dvmey0fnIro0MRo2EI2bmHHLXAAbi4D1Vbv/ypmIOSmYpoUn5yzEGVPGb5cwVGCB9aZ1aoLfOQlEcjZ+9uZi1E48BQCQTSjkLmASjYZopjO7DwoxmVIotiKp/r5BABgRFisrkS9NJM/MV8Zgi+PN1FtJ+gp30N3/cI06J6u5UL/b3U9t846DFRvyCBkGrIiBbEShxMaWdjwrkqCAink3pQp45Dk1MVJdjiCYVarItWYlJyJ3KuZxMmxjjUZpPnXrqV1DHn9Eg2wyS7wMpHwHcydzA6j5QZW8Y65SySYLfjgFiz/OYrzo6mhtmuHymewZqWr1Qlx5ZIllBj5tSsFKVmD6nYs2muDJzWdsnEidazRkW/mzjElV5P7VkjexnxSC4N953AOGRqWv1O/fWualV/qNFe6HFnmACUrbS8bqkNIwQvkUnl6o7nlL2hFvrP+rQAb29bRt0qKpnTB+q7VRAuv/lvj2AVqeF1B00ETFgF5sUfdZ3LQwa8Z4mKaF+5/pX+ssgQXmt05N8L/6Mocz7lTSnN8eYyJVcOf5Ne1efjJjrWVkTgjMbUlT10N9JoPBX7+w4EOGZNcUZ63S7Wd24xBfzUtmdrb72DY81h+XuqgvnXOQzjlY1ZrXMfdMzsGatjwSghItx7s+4GevMOZORM2+MH064ET29FaokV/mU6NrbC+g4DiaD0/NHVbT4Xn4faTIkWE/M06fpeKmeDe5vNK3/kNasWBq9lC67WS9sG8ikQpkCwXM/vM63U+A2+e0Nl+Gs+HzOnh/yYaiN0XPbUiZlwEV961PaDkgqCxjRzJueV7ee/7ur18pF5G6IcxkLR5n7K/iLOvn57+ETN7BrOnjETECHBNY/7ZOI/i7L5uBdMrG8OokFizcsWLwpmXhjCnj9Uulu+PrvW2PXD4ZJTLh/t9v/wuOU9CLppxYDQBGqHuLRd92yXQYeW/VKp1VCrcdAGCBmhVq6OYKqozk/U9vG9r+4YXTEZJzF4ebiu/97//8f6geNBS77XMgRg5IBguugfUb69QEn8k5sG0bNzz+Ch67sg6r2/IaJZNjzupGWoWQM4UwVlgjl5MoNdFbfFWZiG7JcBiUJGp1IVh1gtmJ6jNZKUR75SYZGt7MUcaD+buCo/520yNKXpexeTI7iMQbC94MWXopXFgkumUsvcznnfB4ZPvkHGZzwmNUUPSby8LxZoEStRZXICLyJM5mG6nKePdzr3muYdJho7D4z1/otQ56GVo7SJAy28At+5peD7XqB5V610X8tmeNCoCPSgIPGmkskkxHXgs9hEErRR+IJQYZKpJ70fqdAzB5wthNnofrNMN92cCA8gbzGRvzX3kTgMvA0cqHyTBeW9yAkAFMmTgWP/9JA2rHbvpcgQXW16zTCD5mWrjzwklY+sHbOGvqeLcYgmXhpV7gVwfWebtj0l4w8mpRlS+CaLRzWi/bYi/derpG6q9IWMQKb78WiWUpZpBpWnhmXueUM03TwulTxsE0Ldy3Ge0gy1QVhN566y0MHDQYZjwWCF4F1uetUxN8rgBc/iMVg3/u2josfPVNnblaO24cwhts5EWBMStKieaa9Z5jhOKKssC4ZzTsRU3+uqqM0TPeHC3SEiGKZE3NmEbU8luJtXPLv7NObHF1n3AISPkqqhPxs21UgyS65XmI8Fl70VXUdHXai6+BcXBWhGEMndfDuHk45HhiwFy3oCfAdpHNU1IU6y8nvzzsbcPoyjCMfBaP/UopaVIvx6+8OaSUFZdUm1hJi5pArHbEa9mUFjr7dI+aCKJOGg/NU9WqjqwQL4XsneWSQSsVpwaxZuwGoShSA2dNMw8MAEiuXI/XTjwPGD4AtTdeiqGt6u+1e1ZK33jXX4o9wLZMAbc9vgCl8RAumDFeeyH08DYUceofem4hRsq6waq2AvbfpW8XbA8sMGAbEPyPr5qJTNrG8OqSLe8cWGA9YHVP3A47DFgCHrbFimvaPvL8luP54XAYtbW1sCwriMkH1metUxP8kaPjeDGcxov/3qBjt6uyEmsNGUAsouPLZkEQWrkIdYnGSaJKVS9q9CXtEFkxDko0W+1TiIwWBZoZ/yd6HCTZsXnHG8dlgpCf+fGZ8NVD4ShOO2oMDACRaBRP/0opGrpysuo/RMpE4v7jubU6Ie1SW8fxeic6MzbtZXgQgRdnY4YiMTw+bXeEo1Hc8vq/PNcr1VU3YpwUH4ttKouHcMGxuyObzSAcjer9dN1XubaB0qdEvDntrcg1yrmI5OltkJlEr4RrMpP3S0jbHJREDRwxWibhd1eoLStJMdOZyP1znzb/hnbZnwqf7rizUzYabvyxZz9DMqwrheffIv3wrzXu+kaxmuSDzy7EkrU53HHhRH2N7Fd6IezeQU4GRxz2TbSk03jrd79DYIH1VetSLZraiacglijpd+yauxo+AKAmw0uO2amXW+O1Sxa8h5qSMG48eZftPlYul8GD/7HlylVdZW/efSb+aAoV1ek6VlLdogdhyxoCIiFY0W1H7n6LxS2cPW084qaF51/YdDy/fu4LaI7GsdfOIwIkH1iftU5N8K1pB/mC2lIRcddqdYg5wkQ4ddI4bMgU0FRQ6GiwMF0wUtXwTGsAptARVSX96Jg6IVGf7jw/q++8LJQP1qr/uNmUXk4+vQTqr5MNs0YzQlRNdnK3TQnS83f+9QEaEbotcw4VLxnjJz9eezdRrx4LY/nZvDcQzr71G9HyGGGIsJr7P1a6dXHZr3PO2he5rPo+Eo3qdQQib17b+nbv7+goRXxkGGq+VJeo3x0kGaWM9TNT1HGAvyYymF//hjqfT3sdb6s1ANSIjvwqia3Ho9isrW+F3W6j4dwfqs+sukXNo4+Wqy316sVGmeqef1mU9UxPys66FbWuffAFRELALbMm6jyLGp9scNpS2duZdAEHH3Y4cukUfv3rQLMmsL5nnZrgLz57Gj781z9x9rTxMKJmh7VITdPCjMnjEDetHaIWaH+3XDaL+3/evaj9zktnIJdRoRRTRpQDNRb6q8VNCxfPVEh+3otb9kiPPOroQLMmsD5nnZrgH352Ia44/zQ88+JiTJk4Fsta8jp+fNBQxWQhghk7tlYxUwqChiNePe53VyhUqTNemXEZYcalOid58CTPFLM18gWvfg1jqkNKJWYubSO3m1WEyPxoFIRGpdqWVAGO46Ja7S3IyZvaydWXmKxG7twf8n3H/UdUTM4/r8X06bRwbYHVrWJhAIbrGXBNIBLyctQPGuZSHZuKMjdbUoWNEbTP/Gq9/tq7+w1RyJoI/o331WRWaYXgZFP4/c/fUDsKu0VXiPpKEDUPxGA+K0YxBk/36P0v5TgS2jHlmt6Sl9Tuw5Vb0ZpiQ70Nr1RrPCgv8bZDvs8XSS4wxs6+KYgnVxI1cO9TL2JkRQSnTxmHAb51IN6X9e0FtLS142c/+QkAbJaPH1hgvWHbHIOPxS3cfsFEWJaFGx9ZsNHfieSTiUSfickzC7cQMXH+3fN6uzndajeN3xP5bNazoLq9dvdlMxAuqIl15QY1Uf4sEeqxjN+6PyyA/XYEVifrs26PmaaFcWPHwrIszF2weY/UduI46piTNOAAgNE1QeZrYL1nnZrgV7Xmkcop5UVOkI9dWQcA+POXirVATZCHRXHx4hnjXEYNgFzBq+dCC3nDzzquHg55FROHVbjk9bivhinjxeXCrY8LEqYeu5FP4dmFizFj8jjkCy5oJJJuzwMOHB2b1wyTNq/GDL2NlpRX4ZIegm6fj4PO9Qd6CGQIMTZPb4XX5bJyDBhw1wwYs6cmDZU81xZJ8uayWVz/+hJEfcCdx3bXBbxt5n0gSiV6HVYWhpFP4ef//hNPn2gZ4Ajvi7sO4LFlSstGs6r2Gam2H6/oeH8aETgAO59Fw5Tr1AfG7te0yHF9tF3JnPZ/T5VKwPWkmHG8Rk5FpN6UKuCep15EWdzAGVPGa2+V4yAcMmDAwDsrlBdxwT3z9O9oi2+dtvnrCyywbrROTfA3XjwdkYgXEcZMEzeeOxHRuIkfPPSC/v7CM5VufFWy5+OwrLxUEAWTvBDc+nNMeGvstgkKtQNAONJ1yD0wV6fItCw8thU8edrKVBQHHnUCdhtSGiD5wHrcOjXB3/7oAqQjSayz3ZjuBXerzNb7LpmElpQDK6LQS0trOx6Y8xoGJcNYartolJWbiBxJatCaNGkvR7xZ0NDw8o2bOlp0T5pl32rWXG1vR8OrryMlkxwRVUWRBvnBw2N4R9YBiGZbUnk4jhu/ZpuZtUl+OmPpvAZ/ZmuJVlAUpC6okaweU9Du8hblptDDIFuDfUsPgsfllkg/JtW1TGbKZrO486cfy76qTe3SOLJbyE9v9zF4SPJe1+5lGDGTeLcBUSRjIX3/yABiHVxW9sLyRrUlm4Ux8upSeIyx99GKXaWRPN2wQRVqy/YNqwI+KN/4OCd8w/v7vUagI/vtcnWPKxMugvd7jf7P2rPLAA88/SISMYXkMz6dpE3Z+vYCptw4BwDw6x9N3+y+gQXWHdapCf7HV89ENBrF+mwM1z6o0PpDV6vM1ljci47jpoUrz5iA8tIEHp/dM7radVKBaUvaJnHTwqWnnYJmeZnkQ3FMvXluD7Swe+zi43bv8nh7sd192Qw8Fs5st2bMtlrdKw/DjgBWD+jlbMlMy8Ks6ePlk7HDe4WB9W/r1ARfX1+PsrIy7HPECVginPPW9nZccP/LulYq45QPixt78czxSOeconql6lhEkkxMZPyYoIj7mzoTU20Zty7ed6AgX9u20fDmm0jlgBRcdEp2C9kzbNs7yxW6vOuiSai0Qig4DkKGG3d2OfhsmxfJE2kTdHJ/slr4fSOzPk2yMbz69VqwTfjtRO70OMIhda38zNqtZAflc1k89d+f6usD3Dq0jKWvFobIQB+nm+fOZjqOxZfFQ8hnU3jx9QZp+yYoQoyF08imWdWktu99obb7jFJbxuJN36S9t/ydnffRctjZDBp++nP1ueEvakvkzvMes7/3vBKjf3uNV5OffV9s9BordI1W9b1WC5VLXtVawC2PLtDInmOZGc2/+Ux5McxToJbR/kN6/8UU2NfTtjuTNRa38MRVk10J3piFqx6Yr/8eNxXiiYQMmJaFO5/YtGLfttqUrUTugXXOnrnhNJhIIx7v2X6te+xW2CwU05rqE8g9sMD6o23TBB8y3Pj0FferyZxKjT+6dJJGhQDw3HxFkSw4Ds6YMh7r272cdMariZqIUsklp6Y70dTwhNsOh8i8tQ0NL7+q4rWtKWRiKnVd1zQNeVUmGeuuEqRecBQyTcZCMGBgd9EqJ1OkPVvER4fKeAXc2D3XD8iaKSv1InlmqPKzZvVI+0qiXnaMlLHViB5QBS+sqIGZR++GbNbL/Y5EY3KNLromAC4tOgYA/PlL9du9Bsk1rlfXQK+BXsXQsjBihTSeeWmxp630hrhGskcoxcaqrS2xeCJpU8JGvKFE9IylE8kftLPatrTDDhXQ8ISKXZO/nhommannn6gO2yKUF2rYyPk+SyoVybjNXAFpljSnWE2S/12xQf2R+QesNuWvBMbxxD6SJRX89SvVp0TuvM/0dt5fncW/1oex62HH46BRZcFia2A9Zl2qRbMlMy0L150zEXHTxDU/fmHLP9iCaeRuml3Quv5h2WwGc3/zGQA3/JLaVNikn1ndDy+H3dYGK9Z12jJ9xY6/ZjZKogb++cTM3m5KYF8j26YJPhY2dAydyHtDxtVOX96S1983xV2UfO2Plc7H1WdNwE6SEfl5kzBJfJmWew3smAFTTHWwm1rQMG+h4kovXaN1ScoiClXmB1YAAHJZr5aMW+fTRXnlpqEQl+EirzZfXNrNWPXy1Kk372rLqP0Z22XmaU2J2hIBcn+iYuYIEOzmC8CCW06Hbdtoa23B1G+NRjga26hGK5F/e1F7ichZT3a1rHGUy1rGe6Jbw/UGsmcqJRrT2F5AJu+gNc2MWG8N1QFko4Rl++lK6STxLholNv6VsGpM3wIw2TbkswOw0yk03PqQ+vBvIq4mGa1UF6XnN1pqsq4JWXJ4GRe+e8br4jjiuC22Yn2jYlsqY3NomRqr7AvG3ItVP4uNipx5Pd7Uf1IdF+oKLLBusy5H8NG4hceunIzyZMLDiy+24sr1l/1ofof7bM7qpn59kLtt22hoaMAh3zkRNzz+CgB38S6wwAILbHO2TRN8wXH1X6jEyHjkSdfNBgC8futULG3KY3i5+p7ZfwXHwcX3zsM+g2I499TxOFA0bGqEP+8idCIxctfl+4+Xw167Hg1PzlENWd/q6poQTQrrJSwMi5K9VdYk49GfrlNtJnBb88nf8cZtKuOwoiSOS08/RV/r2kwMV8hLiCwV1odNxrxoMBGlVnrBcz7Gr8l+Kc5QBVy0TST/zPWnaeGqzS0ckylDdJouYtEwfEMuPpErGSDcd4MgXmrMlEk/t6S83gpZTPRqxoiaJLy1soF3VPgIq5u935P3vodUQqIbRf766EGqoxhTl/0/ag9LO4V/L6iZ8fBleh3E8PQFs42pT0+E/6V8BtyYua5t0Opdj9iS8RyM87NGcCrnXV9a1dqxKmVggXW39WgM3m/UqzFNC28s3DK7ZuapU5BpXN9lyP22S6YjnVIzVIMUffbbv337xC45V2eMqL237M5LZ6Ct3UaspzRmfnyjqsj0NfDIAgusJ20bEbyjUQ6RYpwoNebGkQuOizJZ5YgopyRm4PkXXsJg00Ht+PFu5iNrb4pVVyi2RbzNRqa1DQ0/fED9Ydk6t9pPiUwMeUFnEnunSEv4Q6l9NFxV9xlQohbxnFwKT7/4Om44d+JWXTfRI7eMbxOM0kvxx3l57WTFEEUTOWblAAm/cIzPiFLJ8iAy1OSb4vUJuT9U5ayyvHFm7srs2rS0bW2bg9Y2G9dLOMhvydY29Z+la9SWmi8JWRjNygn3FT47a67yHnGBgrC3xISdz6HhmvvUZ2HVrJehmc6r47HPeF2fim491zOI5Fmla6RkOTOYxbBWcbYqETzXIdh/ZNoMLlXHYL+zDcx09msP0ehtUiuIWcT+NZ3AAutu61UET7MsC7UXnw3LjKN+wcZZr9OnTUF6Q2uX8dzPmD4FdsreqizEnQclMf+GKZ7vlrVHcfYdc7ukLVtrYwYm8diVdWjOxXDDw9vPQAqsd+yD9WHs9s3jAQAHjgwok4F1r/WJCb5+4ULgg2WovfjsDv9u2zZ+ukgQ5Vsfb/f57JSNRa++qVkSm21bBw/gfkeesN1t6KyxHd/8Xs+HjALrOjvx2tl6LeadR2f0cmsC29Ftmyb4XMF1N4sTRwCgLePu05Qq6L/vOkCdqtz0Ugt1YQcrplY9P1uFuusvhU3nOp9HSdwEVorcbKZoUmaBZibV7DZUbZMSDqAA1gZZhP2jqr0azeRQvq4Jd1x+/jZlwO45tBQ/v+vULe63Phvz8P1Jf8wVgKeKFlL9trn2jByQ1BLNq1NRXHzvfJ041VRUyJyhMi46MjThUkTVts1H/RxeHoYVM3QBFy6mc2F6Z6En6otZI4upv31fTkBd52q15f1tbvdeyMr1qHv8dthGAVZ8Y94720eRubVtXnljf3iEIcOkXlzNeT5zgTNfREDiGCaF1B2rXkonF5xJR+XieI3QIUdIyOxTCQ/9RZLJuJ+7wF3A53PP26oF9MAC6wrrEwjeb3Y6jYaFgpw3dF8ZtG1dzNxat/rQ724abXfFuQ86un+jeTuTRsPdj6kP6U3oyO9g1tsL6IF9vWybJvhwyF14amyXxVZBXERekZBKqiGC4gLWF00KiRExjixX6C1RXQqrrBS1N14Kq6p8YxodUXqiSJeEhZU/X622XKjlS+HLtWq7x3AAQN2Td8BO7Xj8efZ9SZEsQSbv3YfIl2ubbZuZT+NxC+ecqvIU7n/mRc/vdKk8aiaHfDeexkVWLrp+IYuy6Szqbr4SdioFq7IMKBMU+ze5z7IQTvMflkaKKlE4PRWibZcEIJLNspC6viiHYAtqv9pIHV0nw2r3GvXYrNjgzUdg6IVWrmU3KC+8decLLLCusj6F4Otnz3N9aIZXutDslI2GhS+jbtZZqJ11ere7yIOSYTx7bV2Hf+uKc+86OIn6m6didTqKS+7tfMLYpuz2xxdgSGkY55w6fss7b4PZ6ZSL3AMLLLBus22a4D2FqVn8QuZlIqm8xOnNqDdWytgw0/6Z9j2SiL1JaHgUo4pLPDSslb7cg5F6F5XLYDr8ToPV9sCd1JbUvFAIiEV6zE3u7nMwXPMNCdV0hEjjm0jDp/F9OrpS9S8Ft1a35WFETFx62ikwLQsvvSR1ddMM3ktsnQU99h0tBxTXwS8fzM9JU+Ww8T6ylB8t4kXBFDVzE7HU3ylXXSxsB7ixdiY4sSBJYTMMRVIrDx2hvEOuZVSY6pzso70HRjHz1ClobVdQ3oDSV5q7QPXNGumTGQepdYr/+CjVYRsDC6ynrE8h+MC2zXYZnMSim6ZiZSrapcXE73pyAUaUR3Ba3bguO2Z/N9u28eIrbwBQWkbTJo7t3QYFFthmbJulCiic5Ao1KYjE2LwDVSjhyetOQyZtw4wYiJsW7nh8gedYLBSCfwqSqxSWBpkwSV+CTHHohsk1oyQWL9Ky6YEqWYpED1visFnDQHN4x9MWJ5I/8CiXvunKIXhL9NGI7HepUkOAhVqYIDRC2Cu5goOYaWHyKeNgWhZenS+sIBF2Q04QO8XGYpsYUkTsVgxWwkLt1efDisVRf9HNvv28CH54VrFvslAe3aC4xNgFmVMW4tARaiywiMug0rDnOH4xO6C45KJ3nahSksJKYgbOmD4FuTaRJs7kkDRNVK+VsVpTjjLLxKmTxsGyLMxb8BIAV7KisU15lEsa1cOSiAVIPrCetW2a4PceVor/ue9UfNkWxem3zd3svpm0jUt+/DKGloVxy6ytyxgNbNtstyGlWHyr0tRZlYrignu6Ji7/5JyFGJAIY+L4rkGr9Xc9DKxvRe3Nl3XJ8brT7JSNny98WX0gLbfI6l94EeloFBO6qG8CC6wrbZsmeCLGvQ8/QcfiyZYZUyXiYMkEXr15KkpLEqgpCWNQMoyyZAI3yiRvQKlKvvqyOlaShR8YV6eA2GCRLiAybCtSt9KSBBJ7H6MKOMcN1SYn7BWTas84mqu8I1oxhfJAH4WSCJZrJCxeQg59zhekJkkm7e+uFYJeibR533YTETEylxhLp+eV2ITGO+8rvTBLeVjlK+U4woiKtigknx89SH6oPAfKNlCKgJx0Fjrn+NwgkhkrN7j0ouLyj8XGQjDNqYJ2UAC4Y8+W39UoJb34ykaUIIQp42thWRbqX3m5w+NSfCywwHrKui0GTxlgq2hQ3/vUi/q5NwwDF8/sHpZGYIH1tNU/+RxQXYbaiadseefAAush264Jfp/hpfj1j6YDAD5ujmDc9bNRU6IQGIscMK5JvnKpqJIVCg4KDpBMseSbCIBJpqQh0MmpUnF1g6XeyJApNiIrcaFZ6IP4LLxexVCLC5Xs6Lbb4CReu2WqR+4YcPnxJb54MHnlGYlLV8U6jt1jUIXaFrNiACAiLsGwKjmRQP8KQfgr13v3Gz0IsOLAN6RU39ufes/DDFne23Y1PsKyzjJSxgnZW0TmXENgvJtlFVmcg38HXCZXhVwCvRtdM5FW5vMuydZiURMyiQrNQCaHz6QMIjNda5Jh3HzR9KBucGA9bts1wReHBHY97PhO/z5uWqidMkl94IooXfaCA8uysOjlQIxpW4z3pivljk3LQu1kWUdJZ2GZJuoXv9bp49RdezHsXLZfJJyZloXacWNV6OWuh7f5OEEGa2C9YV0WomF263phYzCGO1xi84z5FnOCH3l+oc7C3FV42GlH2B9OHrXjx7uZipZiUTSudbMHiTrzcRULZTw2LLvERWr2q4iFK889Ff94+6+4+LRTvlYoqiM1zDXpKC69T6F6agIx85OFpkeWqE5MZoVBsiyDV3/0KPKSPbysJY+zpo7HX1YqtLrrAIWwK6HyGD6rUBmp5KWn/03dv+rWDbCNAhqemuttaLmwp/iCJ/m8Wkr6yXlb5KXAQn/cjfeeqNz2lWmk51ZczIOZqJW+v5FDv3+VgZ+89CIQMpSkNdcRmF0thWRgCjOrqQ0oFPS6RmXEHauBBdYb1qd58JZlYfIExU7ISmiB1DYAKEkk8MjzG8sL++38M6bhr3/4DY4++uivnTxrR9f7jS5C9aZl4aozJyBuWni5yNOqO/9sNObyME0LixYt6pJzBRZYYJ23LpvgK60wvjnSZUoQmZPn7mqFqC2RPBkujWmvVspnGxzc+sSLWtKXBbI3FBU6vv2CSfjD0rQuJ/fhWhZ7UOckws+mbRxyyCFfu8m9M+avUvdBk/piaLnCymW5JgDFcWrg8dkL8cGaLG6eNRH//YmKlZfESvBFWxavv9GA06eMw7tS3JvlCD9xLDQVwvhtVMXq96hU8eyKw5X6ZLRVsWacEcoDMN7/EgCQLlFeV2u7t2QfEXpE1nq4xrNqg1fzyJ/hCrjMIq2r1OYtqo2qcNFJijqIzCHq7FAnKWRsvcBNYIH1gHXZBD9yQAkeuWIyWvIx/PDhBVv+QRdYNG7iwcsm65dC3LQ88ryBdWy7DEpi4Y1TsSYdxYPPbtkD2pLF4hbuuVitpYQNdR9o15w9AYBa8I6bFu58omfGRk9Z3Xlnwm5TFM6GZ1QW8azTp24kBf11CgsG1nesyyZ4tyDFSQDcTEKWWGOst0USUcnWIMuG2iJkd7A4MrVrmGk5oIi7/NhsNTl9IayFBy6bhHjE/W0kJAyKlIMBJQGyohUXDyG7hPeBOix+lg2NCPhjyc5szzo4+855sARSJ+Pu7+YuegPLWlhyz53sN2fNcRVjz0k7RFVeJ8IOzcvEmZe4tzBauHZANL5BNHPiAsZb0lsul8fSeum8d98v2g3Y+Y37o6WyHBvyOfxswSLUnjZNfx8sqAbWV6zLOYNE8leeM23LO3exxeIWbp41EfdeHlTK2Rpj8ZDHrqzD7ZdM7/bzxeNuzL6v2+2XTEfthPGonTAeZ08bv8k2m5aF2tOm4Se//AWGHfkNvPWv9wK03oft7rvvxsEHH4zS0lIMHDgQ48aNw4cffqj/fsstt8AwDM+/PfbYoxdbvH3W5YusRIff+f5Jnu8ZQ4+FiY4M+V594uIpmQ3UGMnmvTz6qqJnp1m0v8l5ptDWw1dMRiwMRAMB7s1a8ZrEN793EhwHWCGxa8ancwWFwNM5xXJpSau/k3dOZMzQMzVu/rVa/Y6ZpXbOwem3z8UK4aV/LBnFg0u9ao+meAKfiIfQOlRV6Qq3qt8NE/77UqkrMFKYlglHKj4V1JCmNjvZNMWeBY1JtvRWGOprsh1k0ylcP/s1+a384aulaluUTT13wSKUrW9WCD4eDZB7H7f//d//xYUXXoiDDz4YuVwO119/PY499li8//77KClRY2vvvffGf/7nf+rfRCJ9mouyWeu2lg+sKMF14pJnjTgem/1Sd51qIyOSN2Dgiw/eBgCMOOKIHjt/fzR6Xo2ZGK56oOu05XdUGzb1WOTz7oJtOBzGEcEY6/P2i1/8wvN57ty5GDhwIN566y0cddRRANSEPnhwBwmVm7HRo0fjsssuw2WXXaa/O+CAAzBu3Djccsst+Pa3v419990X4XAY8+bNQywWwx133IFp06bhoosuwquvvopBgwbh0UcfxfHHdz6naFPWbRN8MTo87sSTdVWcbMGLpIiiwhptK8RVotUQWTlK7biq1WVxkBlBb4CZg1SsTMZDuHnWxABVbYXxfh38HS+FkkiaPHMa71cm7635Sk+M948xfiL0Ab7aqFRa5L18e7lipPC+/3GpyhIlM6qlRsXcyaJhZm5EagJwzqUnQY9krXiEBw11661yn5a0l69uGAa25Pvl83msXLlyC3sF1tetuVllTFdVVenvlixZgqFDh8I0TXzzm9/E3XffjZEjR273uebNm4drrrkGf/nLX1BfX4/zzz8fixcvxvjx43H99dfjwQcfxIwZM7B06VIkEontPh/Qx3nwgQXWWxY3LVx9lvJAGbopJTMmX0A4HN7ELwPrL1YoFHDZZZfh8MMPxz777AMAOPTQQzF37lzsvvvuWLFiBW699VYceeSReO+991BaWrpd59t///3xwx/+EADwgx/8APfccw8GDBiAc845BwBw00034cknn8S7776Lww47bPsuTqxHJvjyZAJnTR0PJ2LiyTmK+UIER2RXKqmua9uJDBXyYnYhGQ6suQkUVbeXeDF1R3RsNVDv67TtNDCJOT9Qma/FOjZU4VwqLJqUxLa1dg2zQeVzm2a1qK0/3k37cI067p+Wqh3oKRB5UwtnUFId/90VCtEfNLRjXf9VEqtf1kIevPp+iMT6iz1AMm7W2Y7sox6H5lQOtz62AI9eO9NLd4yX6P8eMTwIx/R3u/DCC/Hee+/hd7/7nf6uODyy33774dBDD8WoUaPw8ssv46yzztqu8+233376/+FwGNXV1dh33331d4MGKaXU1atXb9d5iq1HJni6/8ccf3JPnC6w7bDi0FpX6tj0RwvojjuuXXTRRfjpT3+K3/zmNxg+fPgm96uoqMBuu+2Gjz/+uNPnKF6jAYBoNOr5bBiG5zvDoBBj10lc9GiIpqosgQtmKDnVUNTEs/NfQk1MoadPRJiPqIqI0B8frS5xmZ38G1E+9b15jMFlgRu9PUYdm45KAVJrKOQbi2St0LsikqaRTWWLDCR1W9a2q/3WtKkt2TXcj94Za8Y2y70nm4ex/HiY7ds67+3yc6ZtlJREC+iOO545joOLL74Yixcvxq9//WuMGTNms/u3trbik08+wYwZW6Zer1q1Sv8/m83iyy+/3O72bq/16ATvX3gNrG9bR6UAdzQLUPrXyy688EIsXLgQb775JkpLS/VCeXl5OSzLwlVXXYWTTz4Zo0aNwvLly3HzzTcjHA5j6tSpWzz27Nmz8b3vfQ+jRo3Cww8/jObmZnzyySeeib+nrdcWWbN5FU9vYZEcQeGswMNYLXnwjO06RUmGNVK1hygxZIhOSWgTWuaBbZNlC4obDrj3h14T8xPW2QpBD0iEPX9v9fHkyZKKhb0IOxbyMlr4e81B9xmzl/++QrFuxlR5h3KxamlggdGefPJJAMC3v/1tz/dz5szB6aefjq+++gpTp05FY2MjampqcMQRR+BPf/oTampqtnjsk08+GZdccgk+/fRTnHLKKbjjjjtw11134bjjjuuOS9kq67UJfkB5ApefcQryIXOrFCEDC2xb7b4rZgRhmMAAqBDN5mx71E/32WcfPPfcc57vbrjhBgDAqaeeutH+n3/+eafb11nrtQme7v//O/5khAyX8SJAEG0ZheTIflgtPObiDqBuCtHeBq0wKKqAbYEed1dbSENxLxI3fYg54stroAcW9yF33qMys+M1F2oUkUVDds6u1R0PXbJ1imWlgzBMYF9X63UefHVZApeefgoKYROPBki+T9rew0rxP/edii/boph845zebs5G9qv7z9okQgcClB7Y19d6fYIvRvKAG+MlIiTyKzepEuj+Nlcgf9mrOV8IQu9darxHex7uLraytim9KOLurA+pZ2QNJSP5C8xktTWP3nsuxs6Ldee3ZAFCD6y3raNwS1+wXp/gaUTyAJAx4vjR0y9u87Geuv40jegC9NZ1tt/wUvzxx0p1crkdxbl3ztvCL7rH3nv6XPy1CLEH9ziwwDq2PjPBF1Mov3fcyUhEFdIjL5ox2mFlG/Pgo764boDouseK79H+naRODttETgJD9VxHIbKnQijZVPTK1rUXgvsbWGBbaV2uBx9YYIEFFljfsD6D4Ist7zho92U6shZrW8bdb5dqleb7caPiQjMWH1j32x5DSvHTO9yiLsx2Ze4BdeKJ3InAqQrKHAbW3KVmDBF948LzA2pjYIFtp/XJCT6wvm/+AuZdne0ahGECC2z7rU9O8IMqSnDDuRORRhz3yWIr+daJIoVIxms1agwHvPfest2GlGLxrd4yjcvaozjz9rme75I+NcmSmPLQCo6DJc+fFyyOBxZYF1qfnOCJDr997Elb2DOwvmJ+RA8A+x7ZOVQfoPbAAuta65MTPG1QZQluPE8h+TkLVApxuGhZ+KM1KvZeJSqS/mzKwHrX9hpaiv+425uizVj9L+7bODkpQO2BdaUZxo4zH2yrhEGfnuADJN+/rSNUz1h9gNYDC6z7rU9P8LRYxNBsi2JjDVZmT+aDDNbAAgssMG39YoKvLE3grosmAQDanbguqh1Y/7MRFREsvnVaEI4JLLAesH4xwRe7+t/5/klaI5zKgWTTsI5nYH3XgrBMYD1lXS292x+t32WyDqwowfXnTMBV507b8s6BBRZYYF9j6xcIvtiI5r/z/Y0XXr81Mg4AeKxHWxRYYIEF1jdtqyZ4ujotLS3d2pjOWC6XResG1Z52KQ7SYirpgmw226faGlhggQXWVca5bWtCUIazFXt99dVXGDFixPa3LLDAAgsssC6xL7/8EsOHD9/sPls1wRcKBSxfvhylpaU7VPJAYIEFFlh/M8dxsGHDBgwdOhSh0OaXUbdqgg8ssMACC6z/Wb9j0QQWWGCBBbZ1FkzwgQUWWGA7qAUTfGCBBRbYDmrBBB9YYIEFtoNaMMEHFlhgge2gFkzwgQUWWGA7qAUTfGCBBRbYDmr/H+1kma3pmGoPAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.fe(\n", + " adata,\n", + " \"flux_OMM\",\n", + " res=res,\n", + " shapes=[\"cell\", \"fluxmap2\"],\n", + ")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "b0a86954-71c6-4c10-95fc-941a5680397b", + "metadata": {}, + "source": [ + "Here, `fluxmap1` strongly associates with \"Nucleus\" expression.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "337522af-1fb7-4019-8f78-fc311ab50c31", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:43:32.442683Z", + "iopub.status.busy": "2023-03-31T20:43:32.442472Z", + "iopub.status.idle": "2023-03-31T20:43:33.125678Z", + "shell.execute_reply": "2023-03-31T20:43:33.125235Z", + "shell.execute_reply.started": "2023-03-31T20:43:32.442666Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Trying to set attribute `._uns` of view, copying.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAGbCAYAAADOTYuKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d3wc1fX9md2dnRl1WZYl94Y7nQCBhE7oyDa2kTGmY3pNICGExCFACKQAoXcwxlh0RELyTcKPQAiE3kwx7r1bXdt3fn+8e2Z2xjY2tmQV5n4+/ox3NeXNm7dvzr3v3HM127ZtBBZYYIEF1u0s1NENCCywwAILrH0smOADCyywwLqpBRN8YIEFFlg3tWCCDyywwALrphZM8IEFFlhg3dSCCT6wwAILrJtaMMEHFlhggXVTCyb4wAILLLBuasEEH1hggQXWTS2Y4APrEPv1r38NTdOwfv36jm4KAODf//43NE3Ds88+29FNCSywNrNggg+s29g999yDxx57rMOuP2/ePEyePBn9+vVDXl4eRo4cid/85jdobW3tsDYF9t22SEc3ILDA2sruuece9OzZE2eeeeZOv/ayZcuw3377obi4GJdccgl69OiBt99+G9OnT8cHH3yAl156aae3KbDAggk+sMDawJ544gnU19fjzTffxJgxYwAA5513HrLZLGbMmIG6ujqUlpZ2cCsD+65ZEKIJrENt/fr1OPnkk1FUVISysjJcfvnliMfjnn0effRRHH744ejVqxcMw8Do0aNx7733evYZNGgQPv/8c7z++uvQNA2apuHQQw91/l5fX48rr7wSgwYNgmEY6NevH04//fRN1gCy2Sxuuukm9OvXD6Zp4ogjjsD8+fO3eh+NjY0AgIqKCs/3vXv3RigUQjQa/TbdElhgbWIBgg+sQ+3kk0/GoEGDcPPNN+N///sf/vznP6Ourg4zZsxw9rn33nsxZswYVFVVIRKJ4OWXX8ZFF12EbDaLiy++GABw++2349JLL0VBQQF+8YtfAHAn2+bmZhx00EH48ssvcfbZZ2PvvffG+vXrUVtbi+XLl6Nnz57OtX73u98hFArhqquuQkNDA2699VaceuqpeOedd77xPg499FDccsstOOecc3D99dejrKwMb731Fu69915cdtllyM/Pb+uuCyywrZsdWGAdYNOnT7cB2FVVVZ7vL7roIhuA/cknnzjftba2bnL80UcfbQ8ZMsTz3ZgxY+xDDjlkk31/9atf2QDs559/fpO/ZbNZ27Zt+7XXXrMB2KNGjbITiYTz9zvuuMMGYH/22WdbvacbbrjBtizLBuD8+8UvfrHV4wILrL0sCNEE1qFGBE679NJLAQCvvPKK851lWc7/GxoasH79ehxyyCFYuHAhGhoatnqN5557DnvssQfGjx+/yd80TfN8PuusszzhlIMOOggAsHDhwq1eZ9CgQTj44IPxwAMP4LnnnsPZZ5+N3/72t7jrrru2emxggbWHBSGawDrUhg0b5vk8dOhQhEIhLF682Pnuv//9L6ZPn4633357E8phQ0MDiouLv/EaCxYswIQJE7apPQMGDPB85sJoXV3dNx43e/ZsnHfeefj666/Rr18/AMBJJ52EbDaLn/3sZzjllFNQVla2TW0ILLC2sgDBB9apzI+oFyxYgCOOOALr16/Hn/70J/z1r3/FP//5T1x55ZUA1KJoW1o4HN7s9/ZWKlvec8892GuvvZzJnVZVVYXW1lZ89NFHbdbGwALbVgsQfGAdavPmzcPgwYOdz/Pnz0c2m8WgQYMAAC+//DISiQRqa2s96Pq1117b5Fz+lwNt6NChmDNnTts23Gdr1qzZLA0ylUoBANLpdLteP7DANmcBgg+sQ+3uu+/2fL7zzjsBAMceeywAF1HnIuiGhgY8+uijm5wrPz8f9fX1m3w/YcIEfPLJJ3jhhRc2+dvWkPm22vDhw/HRRx/h66+/9nz/1FNPIRQKYffdd2+T6wQW2LexAMEH1qG2aNEiVFVV4ZhjjsHbb7+NmTNnYsqUKdhjjz0AAEcddRSi0ShOPPFEnH/++WhubsaDDz6IXr16YdWqVZ5z7bPPPrj33ntx4403YpdddkGvXr1w+OGH4+qrr8azzz6LSZMm4eyzz8Y+++yDjRs3ora2Fvfdd59zrR2xq6++Gn/7299w0EEH4ZJLLkFZWRn+8pe/4G9/+xvOPfdc9OnTZ4evEVhg39o6mMUT2HfUSJP84osv7IkTJ9qFhYV2aWmpfckll9ixWMyzb21trb377rvbpmnagwYNsm+55Rb7kUcesQHYixYtcvZbvXq1ffzxx9uFhYU2AA9lcsOGDfYll1xi9+3b145Go3a/fv3sM844w16/fr1t2y5N8plnnvFce9GiRTYA+9FHH93qPb3zzjv2sccea1dWVtq6rtvDhw+3b7rpJjuVSm13PwUW2I6YZttt5KMGFlhggQXWqSyIwQcWWGCBdVMLJvjAAgsssG5qwQQfWGCBBdZNLZjgAwsssMC6qQUTfGCBBRZYN7Vt4sFns1msXLkShYWFW8wWDCywwAILrP3Ntm00NTWhT58+CIW+GaNv0wS/cuVK9O/fv00aF1hggQUW2I7bsmXLNtE+8ts2TfCFhYXOCYuKina8ZYF1WquurgYA1NTU7NA+gQUWWPtYY2Mj+vfv78zL32TblOjU2NiI4uJiNDQ0BBN8N7WjqiYhHo/BNJX2uonEFve1LAutKRvxWAw9ivKCiT6wwHaifZv5ONCiCQwAEI/HcNujzzuf9+n7zTVEl9YrdcRLTj+pXdsVWGCBbb8FE3xgm7V/zVeFr8O+NfUR5XoHtCawwALbHusWE/zBx01EIh5zPkdlVmLwKWsD/XvmB6EEnzEsA8AJzQQWWGDdx7rFBJ+IxzD93medzz0sRR1KS7GfRMbGHVee3BFN69SWG5aJSiGjeFq9FcvyVB9+uVYVrCiRPp27Tn229IAuG1hgnd267AT/oxMnOajd2Ab02ZiJ4odHngAAaE2pSUyXSa0gqiavrG2jV0n3R/oTJp2MdQ2tbYLaNd3E0cediJLCYLE1sMA6m3XZCT4Rj+GPjz7n+Y4hmZak+k8PQaHNTVlcc9sTzkS+pE4tEBaZ6vPoXiqunMjYuObcbSvO3JUtFovhlZdrAQBz13tLya1uUm7PqqYMAGBYmXeI7C2Lr3mC4F98Vk3qY8eObb8GBxZYYNtlXXaCby9LaQYOO1oh/cK1G9WXpflqKy8Qq1ePLolWqydOQlM8DssK4u2BBfZdsC47wYdDgKV703SbEwp9xiSOPGd1yvO5yFDbFgnR9ClSKJSUvwMHGnjxuadx+vEnIpaIb/Hab775Zlvdxk61WCyGV55VMfdm+S6TVX0Rl5dXRYHq07yo6puMfE8kXx9TfaxLirQeCmLxgQXWWa3LTvDtabFEHLV3PAh8tFB9sf9wtZXJsPKI/TqoZYEFFlhg225ddoJvTtqYtz7l+a5VYu9Nsl3ZqOLIfYrUaupc2X9pvfreiCj0OXXPPADAlBPHIhaPwzLMb7x2NAtU9igDNPEgGPwPaQiHwtjne/sAAKzCgg4P5VSddHIOFTJvk7+XyDrE1xuUF1NsqD6hN8Q+WtuSke/Vvc5dr7YDStQQyoZN/OjYE5GxbZQXd/+F6sAC6wrWZSf49rBYPI7a+x8HWrYcngGApTP/pv5TWiAHJp3PVZeei9oaRdmsOrW6vZq6zRaPx/DY7Bdzvsm0y3XufmQWACCRtnHVOd1/oTqwwLqCddkJPpG2saY56/muNak+ywYlpubsC7ic7lHCmtmzt9pOmTgJsVgMVgrA1yuB1XXqBKtk+5f31LZMdB/iMqHvO+wb2xg1TBx/wokIy+psLKPaI5EepOU/DGO3JUWTyN1PhVyeVIi9SJyUsnz1eXdd9cWaZvUCKA8pr4frF/OEbZOSvjWEYpqnqy965bvrIemQgWOPPxFFBQF1MrDAOtK67ATflhaLxVA7+xngv1+26XlnPDkbAJBnq0lzeZwvHPX3Rl8YpC0pmpsi951ntz84C+UFYZxRPa5Drh9YYIEp69ITvF8Is8BQKJKIPSKgcqMwPw4aZAAAehUo+LlCYvSIJ4Hl6wFTdFYiPhH9DU1qS+htqfPgzS/U9tRD1GlKi5EtsFxI3omMMfVyuXeyYTa0CvMo5e1Lfh+WriBy57pHSAq/cJ2D4mRc7wgssMA63rr0BN/dLKkZOPToE5CRyZTbUAjo26PrLVyGoyaOPPZEAEBZICscWGA73brsBB/S3NAGbW2LmhEJ7JltycxWPaS2g3uo7w8bogLR96UyQEMLsKZeHdgqMfa+PeTMsi2WhKd9d1Fbxuib1aKsOX8VQvXNzqJrXlR1bysUql1cp9AvueZpJxivNr+//0lPe8nXtyIafnfppK11icc0eB2JsHxICrG9IZ71tIHhIiJ7ZgEzl4B93a9Y3ROzgdc0q+M/XKn2q48z7JTG+b99HCN6Kq/o8jMDWeHAAtvZ1mUn+LawqVMmIxaLId8wdvhc1Zeej1hDE6w2ONfmrCVr4MAjVIZtRKIglPLl5PvZJx9jtz32BACYnSxbNRtWaD5A8oEFtvOsy07wRkRzYum0jRI3Tggq5WImlQ/zJTuTmjSJlhb85elngTlL1Y5E6EUyOc5bpbbfE8ReLiwaJkDlKw+gefehaNKyuKHm7/K92mTCqn15MhGPKFfd/dFKhfCLZM0gniKaVvsRTZNzXmyFcOUfZiBf7oMaOryvcmGw7Da0L/72F6Uxs6op6ywZAEDvwpCcW33J4ulkHq1r4TWz0ldq/+Gi/75atGlKnGur79kmsm34suG1+X31rx4FADwz/RQE1v0sHo8jmUx2dDM6rUWjUZjmN+fXtId12Ql+UHkBHvip4pnXpaL42W1PbPOx0y+ZikQ8hr7FbdfhlmXhyrNOgmla+EfNk2123u5ma+I69j7keCdUFNKAUX0KA1TfhS0ejyO/10Bkm9Z2dFM6rVVWVmLRokU7fZLvshN87oSwz6HHozmRhS4xCyJbotJiQZ2VhQpRZ5Ix3P3E89gj3KqSmhhrJ3JPCvSvlO+bWtX27blqu8dgta0oAQAUrNuI5267B5+Ei3D5GSfhrbVq8hrSQzwKQbHkmDPGbkW8mbd14oH46ZPM0KVuDO+PZB/eZ64RsdMr4L71IjqzQTJT18s12abBPSKe43itffsplkyFeE28F/YpvRIifJ53TZM3seqsGx739IkR0fDKTVM2aX9gXceSySSyTWsx6Lr3YeUXQQ8B0YiGaFiDEVEFePSwBiOsQQ+rHAojoiES1mCElZ6R2l99Hw1r8h2c44yIBj2Ue5w6tx5y/xaNyP/DGsLpDJBKK4ZcIgWkMmqbTHs/J5JAUv6fSgPxlHL9eWwqrT7n/j2VUcfFU+7fk2kgmXN+51ppNCZj6L/6ZSSTyWCCb0/701WnI5mIoUfhpin7O2rVF56LNYk0vvj0Q/z03AkwDAtPPjW7za8TWGCd1UJmIcJmIcJhICITcUQmaT2sQZdJPBpWE7rum6Q5wRvhnL/JZG5G5OUQ0XImfchLxJ38N5ngozkTsS6TLreRFBBOApE0EJbvtBQQSgHhNICIbFPq/1oayHIbAjJhAGkgkwKyYSATAsJhtTgW0hT9LaSp/TvIuscEb6uYL2PRjBeTrUJLJWK47u5nMEyYHQ5bhtIETVL2r1EQe4G8bcmWaZS/k21TqBD/nMKeWJtM48YHnsM1507ArQ89h5+eO8HhlhOJc0umCbnmZPsQuTN+7W5t2ar9iK6P/t5QpJJJSDgdLU2Nm/DZeW74smYZx2dMfkTPiKeNzt+lrXsUCBKXdYykVHhiDP6AAWpx+b3lqk8Zy1+00XtPfuYTAKxs1bH7Qcd52heR//DehvTqeF2fwALratY9JvhOYIZp4ZpzJ2DeF584CL69LZVM4l+fLHPCL0fuMaBNz3/VeVPQ3Kpeaj10V1ANcGUXWBXLBmCZFi763YxvfZ1zb3rc+T/vhaEeJlo9+vPJ3/q8gQX2XbduMcHvUlmA2b86BesSOi6/dYbD1V6wUSo3GS4aDIc0FAgKxYaE2r79ldqKxjmGVKgtYafw2R2ET5iZEL15M4sb7p6JhriNX54/ET/78zMAgA9WKDR74ECFbomGUwKGF4iCI+PeZLYkUt6Yep4Tc9dw9uHDkUmr8+p6FM2JLBocZgyQ50skrZOYu5/fzoxTxt7J8GHbWpJZpBIx/OOvipWT16K8GrtEUYToKTBGr62qQ9WZpzqx+v8uUX1b4WM6cZ3k3WXq78xZ4L1vyVbHdOx58HHI00NBAfXAAttG6xYTPH/s+xx6fAe3pP0tnUrixXeXAGhbRYRpp5+CeDzmvNMyWXubat3mmmWamDxRle4jZTWcM3Ebpokb7t4+htEFNyuUP7g0gtuCAuqBBbZN1i0meFoma6M5aYO19agm2SQI17bVPn2pl7JRYvFE5mWFatsgMXjOduS98+9rGtR2pSrpt+8Z/dVhCRslluag4w2tCg4zts5MW4dNk/Jyz2mcuIl2Gbe2dA2a5rJmOHdSyTFrA+vi3hg8GThugXFvdi/XKbItzfj7zNmAroZEg2ji562vVwfOUS8VbfdB6nuuR4gXAyuKmj/d46xbfBVWUsoJp5pWCNNOHY+otOPEUerlsbxB9QX58vRyWBOWfRANJG4CC+xbW7ea4Luznf+jEcimk4jo0TY97+XnTkEiHkPPnUDfMk0LV509AYZp4Z5HZ7X79QIL7Ltu3WqCL4iGMFIyLwFXL+X7A9R3/zRD2LN3FOGNog75mUKl6FWitp8sUlvG3MmWGdnPeyFC7N2HqG2riicXWAYimoaeEucmW4YoNe5juDDT9gvRqS+T48ryha/vZOTaSCeTePp/iwEo2i7govPFUqEqk7WxaKOXkkWFzZakN/7PmquRbAKv/O1lJZX81XInB6CYXo3h83KWrFPbjJyIXs58yfodLX3VQyH4crmXAkPDrNmzsaYpgwumjkdv4c/Tm6JX8ulq6vWo7+n9kDnUnPT2YWCBBbZl61YTvN/u/NnpSCbiKJRF1sL8tue/t7ddO3YU7HQKYV3f+s5dxAzTwskTxsKyLDzxZJArEFhg7WXdaoKPhIFi013Uywsl8NizLzqaL320JIAUkBD0yThyDxGP6V2qthKHxi691ZaInWh1cC+1pS68oNswAC2bdbnkTn1TdRx16V1OuNrWSzOo/8KMVisSRiaVwkvvLfEcH5W4dIGc35Db0UPAfj29K69rMqIdI21KiURAsxCIUlkbDQkbxUMq1RcserJUkPpuA9XWKU8oB3KdIi4x+A2NchOqT/oN6gPAVcQk/b1nfhhPPlWDcAiYPGGsozPPbN4mQewFEnSnB8A+5fpFYIEFtnXrVhN8Z7EzqsfBtCxcd8e26+Pk2r2n74pMOomwprUbcr/snCmIx2MoLug41UnTsjB54lhYpoXfbCe7JrDAAtuydasJ3oxojjYKoFKgS60QKlaLCBJ1dhlbZxz5v8KDZxyZcecjdldbolSiWFGJdGq35qmFz4Rh4JmXXsa6lgzOmjzeQeRrmlVcm/FkMksYQ2em6rIGtV8EKTz/3lJHqz0lW8b2iYp5PIW7YNuubo5YhdSRrQszC1YyWjNx/OOVWqxozKAhnkVxsYSviNzptbBP8sRb6dfT2ycNLWrLGL30ScGnC9SWzKOByuuh82SENTz1VA1SGRsnTxiLOmEcMSa/UNZPhpWpZ9HD8q5rBBZYYFu3bjXBBxZYYB1n2XgTMmENoRCQjmgIhTWEI0AorAFhTbaAFga0iIasfM6GNNgRDdkwZKshHdKQES2aTFhDRvRm0qJxkwprSImOTVL+ltgZYmNJOTaVBFLyXVr+ZVJAhto0KSCbBrJpNNqpDnsm3WqC91d50kMaio2QegiAizK/Xqm2jMFLRaZNbNYbalu1n9oy/rxwtdr6ePGGoON+pQWwtCzWSbyYmjOsY8pasmTNfLlOtc+UtmtQawkEyXlRry4MS/mR257OBbVZL8ukQc7BxKOhprqWlkwhvL4BRp7cQ12z2lIbgCmmyzeobVx0exbIvZOJROVN9sVi8ZZEK9/pc2lkqbBrqOMTjUYQEbEpwNXAIS8+wTUDYQENKe1WQ7ZbWDQaRWVlJRbf+L2ObkqntcrKSkSjbUtx3hYLfi2BdbhZlsuPv/ORgB/f1cw0TSxatOhbF/xobGxE//79sWzZMhQVFe1wO9r6fG15zqDgRxtYJguPmmIIWZjZtItq10kG6kcqPuzElSWGjhWCVvuWqW15sdq+8bnaVpZ6L0jU+r2hattfHZewTGTDYZRI3Lgi7dWDMWUtYGm9Qr8Md88+f3dk0ymUFBiIhDSUCsLn3w05LtWojktnyYzhDYccjXramvVqXyJilKh7TUUiqCssQkqQcWO50r4vOk5Q2OdS5YpuRNz342X1K0v6jqwafl4nrBoyk9ZL39MLkr7T4inU3HQ7MLQSVWPHOhm2jMWvb/Eyj9JZG+mQgf0PPx6DygOFyc5ipmlu9wRWVFTUZhNye5yvvc65M6xbTfC08844BfFYDCX5nasu6dYsm07hxHu+wLWHtf9AMi0LUyaORcSwcG8Xyyq946FZmLchjfuuru7opgQWWKe2bjXBh0Iqjp1MxPD08y9B04BGAEWspeqvvcr4sCmsGbJsVimNGYfnzu/JUOndw3scdeUZiy8rQgiuJ2GEGV9W2y/WKFRMhE9uepEZwl1jS7GyUfRZhCTeIPoyhjSjVI77ep1XjdK2gVZftiy1XGgrW9Tf//SAmtTPnDwO61rcalhFtgT0K8R7+Viye6m0Sa+Hxj6gJk3YJxpD3R6ucxDRk8m0p1THak0AmSwKo5QhFlnilFfHPmDRBBbYtlu3muBplin8asvCYzN3bqZk9dUXI6ZrsKyu5T10BrNMExecNh6maeHuR57q6OYE1s5mGAamT58OwzC2vnMHnK+9zrkzrVtN8OmMinPf9qBCp2dMHocldWnsxgpN5Hozdk4jkqcOfIvEiRmzH9bbuz/j0WScMHY/oByxlla89MarAFx2TH7Ui6LJGMn4wGhIU1x3fk+VyULf2CKqrRDOPzNc42kbz30e8+zLDFYqXBIBU89Gk+uywAZ6CnJfIV7Mfruo7YI1artYtoz1ky1DZhKzgJnt+/UKuWl6SXIdxuy5zrH7INQ8/TQW1Gdx3qnjnTUDtrOJawVxb73awLquGYaBX//61532fO11zp1p3WqCD2zbbfolU5GIx5Cf1/k8DdO0cLEg+V/cMbOjmxNYYF3Wut0En1sYqEjXsFtZCFgsnO0vl6ltvaDHlYK8iUJZjJvxZiJ+olJ/VicDwzHJ7iyyAD3s6L4TFa8RbXOyXbids0Z5Anm62s+GYosw27RBEDzrk5Jh4ujFSzNbfNz3XCNiZ/bsyF4KSWeSMdz9xPMYKvF7AmuH48+MVuYKsO/o1ZA3T7aM8Nqxq2jXsI4t29bHt3CcFTeF6yKi+9O3yMRzz9RgYV0aF5823qlARa+FCH5Mr+4jvhZYYO1loa3vElh3NMO0cPkZJ+GMqUGt08AC667W7RB8YNtmt96vxL1+Pm1CB7cksMACay/rVhO8FbIxwHBXLq1IFFUnVsFKAzU33uZS+AokxMKFvrTETFjog/GKRZJ270uvd6QPeKl9h6ltvgkrPx/nnjIelmXh57crNUmKjFFaYI7QJBlu0IT2aNuqoAWlDVgghKX9GNrheRgCyo3Q+KM16ymTIJ8HlIgMrxTUiKVsLG3IYLQl9zSwXG2Z7PXaZ9IXsrjKkEx/CUtJ2UKM6Ku2jB/5JZYTsjAt69cO9bRF6JNvzAEAmEftheopU7CxOYaC/DyndB+Lt5Ai2pS0kdQMHHb0CehVEhThDiywzVm3DtHUPPwYap+sQSyxBa2Z9rjm3Q/ixZdeQiwW2/rOgW3WYrEYHn7qBdy9FdmCPzwwC3fOeCHo6y5gixcvxjnnnIPBgwfDsiwMHToU06dP36q8waGHHgpN0zz/CgsLYZom9t9/f7z77rvfePwzzzyDkSNHwjRN7LbbbnjllVecv918883Yd999UVhYiF69emHcuHGYO3fuN57vscce26Q9HSFBsK3WrRA8sllPSn2iWJB3Sb5C2VyBZWm+A0aoLRdPKaRVIolQRJlE+ETwpFnu7ZUooAfQkrKhmyYuP+MkGKaFK/8wA4Bb+IOURS4cMi0/k7WxuC7tLIhysZZmO+hc3Ye/gIgGd+GV5i/0sbDOW+Q6EtJQZGhojiqvRrfUYDXqZWGa5QoPGqO2XGQltZTeTozJXvXeBjABin1I76ePJItxwZplExtagXQGAyzVvq/l3ijERsrphhZ1PoqTBda57auvvkI2m8X999+PXXbZBXPmzMG0adPQ0tKCP/zhD9947LRp0/Cb3/wGL730Ei677DLccsstOPTQQ3H77bfj6KOPxty5c9GrV69Njnvrrbdwyimn4Oabb8YJJ5yAWbNmYdy4cfjwww+x66674vXXX8fFF1+MfffdF+l0Gtdeey2OOuoofPHFF8jPz99ie4qKijwvAk3rvJTd7jXBdyJ7bOZszF2Xwk/OCmLcgQV2zDHH4JhjjnE+DxkyBHPnzsW999671Qk+Ly8PlZWVeOSRRzBt2jRcdNFFAID77rsPf/3rX/HII4/gmmuu2eS4O+64A8cccwyuvvpqAMANN9yAf/7zn7jrrrtw33334e9//7tn/8ceewy9evXCBx98gIMPPniL7dE0DZWVldt87x1p3WuCz9ouQgRgJFTA18rLQ9X4cbCyGmruehA4YKTagQlKRI9E6I6ylaBOUgKJNhmr59+p15tm8Wvg7NMmY2NjK0zLcsLRvX2JSSz0sdBXKLsltXnaI/OqWOovz4Hrcn1t0wQgS1ef565XSJrIPZVRbcnLs3DOKePdMoJhDaZl4dlb7pDGSHiL5QulJJ+TjfW2FEuh50TpgvfmqS37lrRIUlKJ7JnoVGS558lkHZGzAweo/d9YLM9S7s/UOy9qCmzbrKGhAT169Njqfk8++SSeeOIJbNy4Ef369UNrayvy8vIQCoVw5JFH4u23397scW+//TZ+/OMfe747+uij8eKLL26xPQC22qbm5mYMHDgQ2WwWe++9N377299izJgxW72PjrBuNcF/POczVO46HFE9iqUfzXG+nz1byRWM/dExWzq0zS0ei+H2x54H0LnriN7/mJIEYFWoXvlhTBw/tiOb9K0tDgOHHHUCAKCyNFhw7Qo2f/583HnnnVtF71OmTMHAgQMRiURw5JFH4o033sDUqVPx/PPqt1VRUYGvvvpqs8euXr0aFRUVnu8qKiqwevXqTfbNZrO44oor8IMf/AC77rrrFtszYsQIPPLII9h9993R0NCAP/zhDzjwwAPx+eefo1+/flu77Z1u3WqCH73nXnjymRcxanBfbCgodES+UiLWZVsGMgPKEU74JHCJyJnM0ypUDzJJKJBFtMk0fh4nEgd1ZerNn7Vt2HDj3o5wVppsGPV9Xcybdm9DMWuIy1mmbp3E4iNyuaYES/2p73Mlkm0f+Oe1ouJGsE/eWpKQc6j9WHxkSI8IkiEDVRedDcu0UPPLW70n5PoE+2iAsG6YGEWEXukTZJPSgegnfcq+pdfUqwTVZ5+BWDIBq7jQkRVOGep8+T7EzvWM8oIQ/vTgLFQUqPafc8p4BLbz7JprrsEtt9zyjft8+eWXGDlypPN5xYoVOOaYYzBp0iRMmzbtG48977zzAAArVyopjF/96le47LLLsGDBAgwdOnQHW+/axRdfjDlz5uDNN9/8xv0OOOAAHHDAAc7nAw88EKNGjcL999+PG264oc3a01bWrSb4wNrGbrnvSexlJFB16s6V443FY6h9/kX1gbVeA+vU9pOf/ARnnnnmN+4zZMgQ5/8rV67EYYcdhgMPPBAPPPDANl+nZ8+eCIfDKC9XgGL+/PkYOnQo1qxZs8V4eGVlJdasWeP5bnP7X3LJJfjLX/6CN95441ujcF3Xsddee2H+/Pnf6ridZd1qgl/fksWr8xPIaBEM7d9H1WeM6vjoq8UAlAb62LFjYZoWZs6ajcRuCgHkCTrUiSZZdo6fyRApFfRK+eFhivvd2kuhVd0Gzpg6GS2tMZg5apJ+XSwW42ZB6U9Xq/OHoCSE01n//uoEZNesEDnhja1euB7S4BQJoS0W/ji9BIaL6FVkWNg7492u1PMQD4WBQcJO2CD8d0oms5QfGUjsI/LiS32SzH45CH6mdPPKjUA8heVJ1X69QPVxSNpDaWX2De+DuQRE8OmQgSOOOQE9i4NQzc6w8vJyZ9Ldmq1YsQKHHXYY9tlnHzz66KMIhbadARWNRrHPPvvg2WefBQD07t0b2WwWr776Ki655JLNHnPAAQfg1VdfxRVXXOF8989//tNB4LZt49JLL8ULL7yAf//73xg8ePA2t4eWyWTw2Wef4bjjjvvWx+4M61YTPO3OvysKU9UoC0MH9HG+n/WUisWPH9t+MeZYLIYnn3kRALBgQ/qbdw6sze2OhxR3/idnB+ylzmQrVqzAoYceioEDB+IPf/gD1q1b5/yNiHrFihU44ogjMGPGDOy3335YsGABZs2aheOOOw5lZWU4+OCD8cc//hHDhw+Hruu48MIL0dLSgrPOOgsAcPrpp6Nv3764+eabAQCXX345DjnkEPzxj3/E8ccfj9mzZ+P99993PIeLL74Ys2bNwksvvYTCwkInNl9cXOzIffvP+Zvf/Abf//73scsuu6C+vh6///3vsWTJEpx77rk7pyO/pXWrCT5jK5YIUejMj1uRQgS7DpEsS0HSTY2NmHTSWERNE4/PnO0gY3247CfZnKkyFXPX0zJRs8C0sGXiBQp9LtyYxlXnTQHScZiWhQ0SM5+/wVuSb3mDOq4l6RUAGy3CWe9AxddZlJtsGxbrJuuG3G+i19zsVT8mIvJl9iyZPHrYe42BUsyama9ZO41s2ETV6afAMk3UTLxMnfCrFd4LlEquwVLJLSBPnusUe4l7TnnhcombZrOovulniKVlPaSsEFavHijP9xYMcYufiNiYxN6LDK5PqL8XGsKuEU+lPh3F/ocfj7Dmrm8M6Bmg+o6yf/7zn5g/fz7mz5+/SRiE4z2VSmHu3LlobVVeYjQaxb/+9S/cfvvtaGlpQf/+/XH44Yfj66+/xp577ok999wTf//7352F1KVLl3q8ggMPPBCzZs3Cddddh2uvvRbDhg3Diy++6Cyi3nvvvQBUMlWuPfroo07YyX/Ouro6TJs2DatXr0ZpaSn22WcfvPXWWxg9enTbdVYbWrea4Ddnv639CqfvpcICYZlpB/brjRdfegknVlW12XUS8RiefeElAHAm+K5uN949E98vs1F18sR2OX8smUDtLfcAAOyD1A8k2UaEo2tuUzIRzgK2Dfz5xye3zckD+9Z25plnbjVWP2jQIGeyB4D+/fvj9ddf3+Zr/Pvf/97ku0mTJmHSpEmb3d/2MxK24Zy33XYbbrvttm1uU0db95rgbRtZ28awMnVbnNDfW67iw4kMi0jYeHVBHFlB/JTjTUgN17gwN7Iiz5tIEzGr8/YpUlzwmCDxaEglya5pVp+J0HneBcJzLxKUOX+DmsUGCWpmex+xgeZk1tGcoTyw5dTK0GTr/ZxrGd+YZaHvArn2WmaACgLmNegN9PDF8O08QxHwyYN/52u15SIog+L0bqjvQ6bSeond081gzH7Pweq8wkDShPfebCsE7zKIMtJu6WsB+DG5HO9jWYP3vgILLLDuNsFvo0UiUUw+cBBamxs7uimB7URrzETxwx+dgL49glBNYN8N61YTfLEZwt59og4abRYkTZBJwPvw/1ModNJepThrssubpuqjYVi46Z6Z+MVFquqRbli44e6ZThbo1xJbZ9EJPawhpGlOnJhqkFSBJHKfu14dN0SKbAwWBL977ygABXI35BTA9gszNkn7NgoxpcT0IngNrtoiTZrsAGgyeHivPfJUGxijp1ehh9Xfy/JCSIcMVF13meLFn36VOhFL9NGdYGk+Inny5LllzoHw21FZqsr4sbiJpq5LAL5wo0LkLFjC8oVcj+iRJ3o8cXpL6jh6SyxQ7hY2B37yhydQlhfC7y7dvMseWGDdzTrlBH9U1SQk4moWs22gdzshrvLyXnjvvXcR1aNYuHgJPl2tJrkrzzwJgIqr/+GR5/DjdmRkXHrMCGhZdd2IvmNVivRoFEft2d/5/1/fXbDD7QMUM2VYtgVVp53SJufraGvJGvjhj1Tm67zPP8Gw0XsAcCUguBrfszgvQPqBdWnrlBN8PB7DHZLmn87auOGibUNcaVvFlAW4O6iVzArGxvn9rDcUkh+730D8b2nCUYUzTAtXnT0BumEhmQHyLAs/nzbByRJ19VxYQk9D1DDx6vy45+/Uc2eW6Khy1d1E2YNKI0AmhTkLFRr+v3lxpG1grTBH/CF2olSuLTC7s0iQ/LP/dZMtxu47AKmM7SBfari0Spu4XpDJKsTLbNmPV6mXDb0OtqHHiEIkIxFgiCSJ9BM9eGrOkE3DTFdm/+4h3GLq+FT2QPVd1yNWexcsw3T48AXC9Sdi/3KdakeDrCHQ+xkpfcgyiPRQqMi5roXMJUH44k1Rk6c5mcXPblPqnqN76dhrWD/87qHnALhceh575VknIbDAurJ1+AR/tKD1XN6JaXoLQcdsAwcL4moPNK/rUYzdb6Dz/7+8qybKhEQbbrlPVT/ihM5EI4ZiOHny+8C+2WKpJGr//GhHN2OrlgmZOOKYE51Es3TWRmF+gOoD6zrW4RN8Ih7DHY8/76BSxk4lfI1IFvjTg086+//ivK1T9pid6WeG8BpFguZIoXv5HU7oNsbuN9CZuMlT/2qd+sys0AIJFEs4G0vjXkSfJxNCsSB16r8zvl2eH3KuH9I0zFvvRc1G2BtHX1qvXhz5ch+M0ZMZQ0vkUGiSGeC1hQkn5v7lWhUDH95TELBkglLJkpMYs2vlEk5b565LI6WZqPrJ+YoXf5OoTTJTVWiOTmYqWTYRl9de/dSfEHvLgFVa5KhHthaq/d8TtcilDSxQru6F6xp8FswlICAYIfdD74xdR6FNxuDJyqks9PLsAbfKFT2uikK1b+3zNZ6+aEzamDpp3CbHBxZYZ7UOn+AD6zp2w90zcWB8HaouPGu7jo+lkqj93UNt3KrAAgtsS9ZhE/yJJ52MeCwGwxeOWedLEmL9USf+LeGazYVqMlkVY2bclTzxdRJvpk4L48pk1zALstQKIawptAq4LByGahi7Z/yX52F9U6JfegCM6TJ7tF+x6m6iZU1T52Bopz5ue85LT6SnoGhy2pnJSiTPvsnkpLRqmmLZ3Hu1EgzLhE1M+MWjDjLeq49i7jBHgN4FfYdeck8VsmX8H6x+SC18atWwM6lZw0pQ+TnlzIrygP2Hq/9LduDbi9X16Q29sUgheXozw3qqPuWzy/fF6tnXROYMl7Gv+QxZdIeZsIBC/6EQUCge2YB8WZeQfmU92FxWU0g3cdRxJzqfiwuCkE1gndc6bIKPS91NSuZuq910z0wAwI0XB1S3bbULf1+D264Msjjbwh6c8ZSn+HkgTxxYZ7adOsFXT5zkFEg2LSUfUCDQjTFhbvkjIpplbJWx1OZMFD84Ui28Mv5qmBZWNGbQu5CZp6KbLtenhnjKl+4ZCSn0Z0Y0RPQoflm1CyK6juue+QKAG/+lkZERDTNurbqxWJB1s2SHDhVEz3UFtt1sjWHAmBFIJhIwdN1hbWSk6lFM7j0u1y1QYNtB+nnSZ18Id52oNtcKzCh+VTUMTY0NOGqYhUfNEPbpqzvsGd7TrhW6XFsdt75VXcOKe7NmHX79x2uB1qSDwJ2MVfLfeSLG3hmjP2QMUJKPhow6bqF4SevkeSfknuntMIN1wQZ1fsbSkxnVLq6nUAnUdCQ7veOJFgmp+y023O8aE1nYtrtWE6JipSwAEdnTI0yLh8Tv62NZpEMGDpViIxVBsZHAOpnt1Ak+Fouh9llFf1ya2LGU8ul3znT+z+SW8GZS97+tvfHJQry2MIGrjm27YgKbs2QyidXvqapTT7dDQu1/PlXiX6P7bLl48PaaZRiouvI8tdg65cdbP6Ab2x0PzXKop788v300ewILbHttp0zw1RMmIhaLORKcgMtgmScIjSiKRuVEao6Qz010DABL69UfifrI+BhQom6LmZ+MUVOvhDHVOkFmTQZVGtV+u1bosAyF5MORKKY99hkAN67b6mSoqustkhfMDwcpePjDgWpL9g4ZHU4izboGwM7ivjV5cu/qeKJlolnG3KldQ49kcZ36vHtvhb5DWkju32WI5CLY/KiGUiuE/fsbTlz5TWGtlIjX8dU6MnlEo0YmLZ6zMqT+njlqL8w66v8Q/mwxqi6fprJRc418eJp4JY2lxUjrEac04Nx13hqxc1Z7PzOkTxYQlxe+FsYRY+4cD42SXUw+PD0UrlcwBs9nn3sNV0ETnjbQKUj4KnOxb6nj4+j1Q6F5eps2gPJAlz6wDrSdMsHHYjHU1jy7My7VZvbC2/Px0hcx3DVleEc3ZYdM0zScUT3OU4CkLa3qDz+HFTVQc/4vNvlb9R+uQ0wyktNP9mi3NnQWu/V+Redl2ChjAz89J9ClD6zjbKcvsraGhd0gqInZmLGUZFoKKlpU59UBjwlqzkVgROYfNytUN1aYIIxVH1Ev+iiihLhfpQpmJzSF8hjReUPQ7DzJlhwqMfVDhhh4IKw5MVfGxOkh8Icc8UWbeF56Jf2K1fWIEFUoSXPkSum7MJM2nfVyuhm7/0K47IzpL9ggvH5D3VeJ5fYNwwaFRcW4a4YKizUlsk5bdq9UyJu8csa4qQ/fS7whIv1dZf9Uk+rr3Qot1D4yE6hrQdWV5wGr6tSFRyupBAypREzXUPuv1wC4ITl6DPS63lqa9PQdWTBkIHGdg94YY+30NPy5B+wzMo+IsqlCmevZVBSEYdvuOeqd6lBqZ8bceW56nVzLKZX3VU/x1IJEt8A6mwU8+G5uET2KA0f3c/7/6deL2+1a1U/9CTFTZtI8E5ZpfPMB3wFLhQyceGIV8vKsIFQT2E63nTLBJxDCaiiU2SQohwiTMWHGUtcLD77eqWakzkFkSU464Ma0+xap/5BVculeMrH0UFrjzkmE6WGEvPH+I/qpSenNVcLGEdRYGNWgaW7253JflqUlyM3yFV1lzJb6KuT2E5WitADQNAwvF968/J0KjylhihC5E/kfLAg/z8eaWVTnjeEDrtfA8oWHDDEwhpWt4PLeGW8Ox9hGZrp62TbvLFNImzFurbAMALA6W4J1ugVU/xCxVx9E7QsvqnuJqmewXFDxv0SnhwiclZrWkjUlN0lk77/3EnlxkEHEv7Mvhsj9MLuXCJ8L8DxPUU72bzSsni9LK44foyA5SVMbWgT9M+Qiw4bcejLAuP+wUtVGISJhTXMW9zzyFAaUhDF+XPuViQwssC3ZTpngSwrzcN6p46HpJv5w/5NbP6Ab28CBA5GMJxCN7phyZGcywzRRdd4ZSjwssM2aaVqoOvpY9UE4wFZ5aYDqA2tX2ykTPAfx0ced6DBEyKYgKiLCcrTPBSWRocJYam6VLcZMS0y1z1UHF6pjYsxYVRNOmSCtAlFOJNRdkxAOtSDjH1aok7+6kpri6nuiSmbGEsETzbLtToxd7oExWyJ8rTWBZCKBp95eAsBF7GQMEXUT+TNDlg4C28HYMPtyhAg7pnIcE1cgi7eseba8JuPNVLwkcue9lIvXwQxTPxM1rAHT/zwTi4XRNGsB9X/U/mT80Nuip0aWjr8CFZ8z1yF4z4NKvZmqVAwdwD4TZF7OilRyA6Mt1a4NYeVBGjlrOAVNzQjZNvaQrF6HW089pIzmOYaemb9qVCE9KqlHm1dWBMD12JqTNh6c8RSK69Xf0agWnquuugCBBdaeFtQ3CyywwALrprZzE53SthPTpSYIP5MZwjjyaonNM+buR6QAUCHZkqZOfrL645tLFHokEiYKJPIuEfYDUSqRdoFkni6pa5E2adDCOiZ8X0kJRyJRzHzja7QI8cOfLVkm0I/rC+TVsx2tWhQ2NBw2SCHGBkkCbYh7491k65BBxPUHR0tHrsf4OfVYeucoJRKo5laFikZ1jBjUB9Gojve/WAwAaJZ70YV+Uiw5AftKPLrClnq2aRVTJ598fYt37YTsld2EbdMgnP0xvbyIm/Fuem7sm0IZAIzJ0ztizJzjgNchy4cMp01y3NK+Z8NM3GTOIk6+CWjumPt0tejihP1MHVkXkufEdQAywFhP1nXlqEEv6wa8JrN789Tzt5I2qg77kfO9bUaDxdjA2tQCFs1W7M9/m4sKmThPPmBgm523+pTJaGyNwTIt3P7QrE3+fvX5p6K1VbnyydzCIqaJ6X+eid9cNhWtIvtAWQcjZ7HXNE386s8zPef8fJ4KDQ0b2KfN7iOw7beaP96t/lOoXqaZfj2DxdjA2tR26gTfuzQf11+o0rkb0lH84o4nHA64gB4HofsR2whRFYzl6MKQd/yjXRRUpn4JGRZrmrzaIcWmF+kzDk1uNlEv0WfPfK+qYCarjmXGLAEb49rMtqX+OzVraF+uS6v4eTaLWGsMM59+EadOGuegT2Zd9tY1hDJx3PqwqjREZF5ihTB54ljsWqnDQAKPPPsSADcbOE93I27XnjcBRWbI8TLeWaa8moUbM0gjgj2G9UVUj+LVD1VZPyLsUvFCiE7fXavOecRQ1f+Mnb8lXhKNbeczYQYsGUTMHaDiJZE71w2oiT+mwq1zC7gvLY4DHs9xwlyDsnxv7N0t5yWL2Rua1LY4DwOGDEYymUIqa0PXo45HRE2gJvEuN7aqQejPEWDbykVHfnVSfa5kFq8gco1tqGvefNsqSwEAdg85zlaLsSeeWAVA1fTNzYQ9btwkxOMxxznhb4cc/0yOd6tOv31ZtAccPQHJhGI9cUhxrYT9zpHN58K1Eb92VM8gk7dDbadO8LkP+oAjjt+Zl+60ZlqWU/g798dhbSHr0zItnHbyuE2qXm1yXtPClWed5IR9TNPCL+54AgDw29qvcNY++RjQr3cb3UXXsmQyhdXLl+Pd1Z0vMemp2bOd/8/bkPZkwsbjMdz3xAtocOi06nsmWvHlS5t+wfZp4yQTcVx9x9MA3Jcbw4UMrdJZJE2VBAGGt5gE+JN2rGcc2Natw0I06axiTJARQvRETRSi5D16q3ily1hxBzEH256iyUJkvrxBIS8H1Ynx7zwXkTEB1QZBaIwjM87MtmmaistTE4YI3ZJe5I+BTWRWLlkYkZBCPg2ZEFIAVjVlcePdLm2U6xA8frgtVZHyRDCsrgHP33W/49InDDfmDngrOv35YRX2+UD03u/48cmIpWxnMnj8wxakEMEBkgRFRBaJRvF/7y/AF2tTzj0DwP9bqBA7vSPq8jAu7c/m5PdEdpwgnIpRIfWMvpbnTX16PhsyjOhdEcnzheX3evIJNePiWTAuTnTc2Kq26QxgZ4ENTQiH8j1t1bwOl4NaqZvDccJ7IJd/cA8ZAGmvXhIBdVF5sfpPq7RtTb3a5qn9WLGL9zafVbZ0DW+9875TILwof9ukHniedMjAEcecsAlDzfWSvb89aizpRttJSqyN69j7kOPBkZmbM9K/Z4Du29uCGPxOtqbGBkyeOBbWVhD4zrDf1X7lSBbwZXXE7v07skmB+SybzeBWKQrOl+i22h2ytkM6LfEAX0AM3xGAMCmsLe3SW2YAcJPBSGsFENQo2AnWYRO8HtJQZIYclEv3khMO+dBE0wRoRGyAi6jmSAZr1Sg1aX640hsTJ3p0NM3FGLNnzFz36Z6MkEzTXNToZKPmtJn8acZuGRcmouZ10lnAho2/vaRi57bDSVfnC8cE4TUI2ly2Xm1T8sNjHFmqJBl7DlZ9IgjfykllZWx7YKn3EYd9oepX5qpYK13tLLzKng0Jr5YLL8G+ZRYuvaExvbyx+kElXi+JLxKiZurRE1USqeuiTcT6tzxe07xcdC5AOwqOecL2oV49UTNRtKkDWggoKwTWku3ifQ681yWSIeznvxPp+vX/s7aX0cNxFOHEbKi25fVWsfe6kPJa6iWHgOOPsfQSK+ThMXOdhH/v7ShqenMX2sK4ruT3Ltx75fP1Zj5zjWRr0t1+Blpg7WNdGsH//MJTEY/HnIn1xfJ8PPLE7K0ctf2m61GM338gdD2Kp9+c127XaQ+LmhZuungSdMPCVX+cscX9WpoaMXY/ly1kOxOroon+5d357d3UdrMBo4YjmUp1aBbx6adORrJVvcAff7YWZ582GXUSPrpn5gub7B+JRnHC9wYAAIxoFP/8cOHOa2w727qEjh9K0R6+2Fm8R/fF8gGVER+EdL6dddgEHwmpDMAN8iBHiOvG2O++/YQrzDg3Occ5gdJkIoa7RSkRAH5+7kRYEQ17SzyXsVOiQNb9JHqMSZj2y7UKQdFb4GAbIOizTFezHCf18furCZCIjqqQRC1CvnDYN4w7HjTIULFuqVuqCbsi3CwoUzIhIcgcq+vUltCsWQqiSgwei9ao9g0WzR0/xxvAoFLVF9fcphZYb7p4EgqNkIO4WPOWrJnS4mKsXr7cuWZdVu3w3JxW/OSYofhUdNsZd96rjzfEw8xYf3zXkjnVX9+2fJP9Ie1S/2HFJz4TbgdLZiuzQtHqI/4vXguPlRchmUzgX58phdE5G20nt4J1BWI+j4zXIk3Wn5/Qq8Dr8XHRs0eed8yuanI9hcaWGJ585iWcdvI4LK1Po66xFffMfAEXnzberfEra0eJtI3a/813PNSfHuctQpP2oeWUTI68L6JwomW2h94XGU7MNciNjy/0hWvo0/FeDSejWLWhQdavPl6l1nwcRU55zgQK9MRDGnD5rTOctRx6I2SEce2FmklFhobJE8chsG9nHTbB9+6RjxsvnoT1iSiu+P2WEeXm7KrzpiARj23CJDEtCxPHj4Vumu2K5L+rpoVC+MkxapJhSMTN/BeaHGMKvnAB38v8oXNyct7X3F8++8MNfoffkY12Yje+HfycwZCGhsYmdLSZPhaUYVq4+LTxzucrp01Bc4t6afGWuODc3NiIfQYWoqRHOV76X9f1pLbXooaJquMV4s/KQAsxqawgWLDdnHXYBM+H8YMjT0BFQQhNEtvrLzE98qZZFcnMQReRbAIv/fVlB/EwLvjsLMVIqTr2eJSuWovvE9lKHDYl8rUfrfRqkPMa//e1Qshk5ZCZ0SqzEis2aXC9AsCttJT2zUpEr9x3icQznXjwf79S27i0h/VLv16ptgn5vlBVfnKSBaSdGFCutmvr1XZUzgJpsTpmXYM6ZkgPtxrVwo1ptBLtCarj2kYWQF065EzgvKcJu+ZhwtIVrjCnT0uI3gq54u8Je6e/rG8Q8VNrn+ch6i3zLSAany3yfEa50ndBVB3/93qvFDGVHXleZhNX5mT3HrpbP8eLA9yYNo1tIYK2ijRPH7Q0ZuXe1X5cj1gqCDka9r5lqM/PePWa5iyuv2umg07XNGdw/V0znb5OpG3EWmP42Z3PAHCfDZu5vCGD2688GUu/eB96WHMymInY2Yd+vR+iY64d8LdW4FMlTfiFgeCqfHKNhN4LvQGuwSwVpVV2AZVXmbdCL6I+pn5bXPeKpRVi5zoVrV+xuheuBxUZYcx4cjbyMsqzSEmYTU/K+lt1UC5xc9apY/CXnjMFmZSa9MI5oZktccSdvxuiblhWgprZnQPJ/+yCU2Gn4pty8QILLMcM08INF01E1LDwm7tmbvL3qGGiqbEeV551EqKGhRvv3nSfwAKjdZoJnvxnoooSK4RMMoba2loAbty8PEIqQdqJOZd+tVx9J+yE2X95EQAw9vCjgC+WITVSIVsyAsim+Y9UK/KzbMjlJo9+Y6uXPx8JaRhVHsGX67w67NTEITOIyP2E/YZi/bq1KC0tRUWvXsDHPnRaplQw0SLIfLmwZ5auU1sic2ZE9u2htozRV4hHsBkaBVEgudUhTYMR0RylRCfzVGKmGhSdjnHd3EVWwNXpJ1pdLEwTIjQid2ayEkUeMECtBRDhs0+d2KwAbcaBo7IOoc1bpf5gRuUefbBbrL+s4fB+cvMltmQlJmPS6jnpIXUMNYtSvlqsRK30EqiRT/oi12SIWuet964fcJw0+uoLfy4x9qFlEVx66wxksjZuuniSg8znrqemvY0Lbn4cPzl+JD754D20NNXjqL0GIBpWBID/zVHjikqcKUfiQl2YtRYYL+f4ZiWzXGYLUX+9eKcc02xzXNJp6ckVimtExE9kz+fPvvlc1thayLmXzuwl449rK/S0Sn2eXZ1MWSukzWSOabqJo487EUbIfe5WfhC26TQTfHe2VCqFQ484Cv/3V/Wy2mSC3wn2uytPQyIeQzTQbO/Udguf0zfkSdz6sgrt3fvzM5BMxFCWF8Jb//4nzp2iMqIdAT/Twk33fDcQ/gOPPwUAqNBdAFA1Kcii7RQTfEhz0c2wxg3qP/MboDe2QF+h0Gw5YZMoPQIA3hOqYh9BtILytIWKXYJ8A9ilt4MavxRWTaEvZklmCFEnPy8XNDh2tCyICRJLZe1NaokCbqyW2uRkK4QAGCE4rBeQ724JKk0InYfZl+Ru877oodDYF1KLlYwZD4KXeL5hKO8gaifw+LMvOSyFhSly9AWRi8ojNIVYW31p78zaZPyYl/Knx3PdgSi1b5GKlTJuTTRMnn5kOyNWfFb+5B+nbqpP8fMHAwxYhoGDdu2PaDSKeQuXYKF4H0TmPJZxX3Yz773AUbb03vOyBq/+zmJfha3SEFkx6jO9UWrlE6nbtmKG/fo+VaCefUyqYKsMD7K2xl37CAAlE/Dp8SPx3nvvAnAXZ1ubG5HObvqscnNJgNxKYu5382U8EFlTGbVIKmutExYW116I4Pm9u8ZC5J/19Mlc8X53kTUZelxc01nW6I3hc42Fnl4u02hzlghHYJgWjjz2RM/3ZUXfLaplp5jgaVeffyqiLYpCiERqhysEWZaFqgnjoRl5zhs+sO+uzVu4BAAwsBtq8Pzxr185L1++RE/ao6QDW9TxNnPWbOflTLv8zJM6qDUdYx0+wUfDSsFw155hRLNx1P76NvUHotiFq9V2Vd2WT5KRh/iPj9R2N8VTr7n3YQDA4VOnoC6WdWLoRGrM3iSyIspgJiMRPhE/kVE0rOHIoQY+WpXy7EdtHKKXE/cfgnQyiTwz6i1FVSzaMu8rJUfnACofSkUglAh7hiwaYZA4HgCZJZQXZOweAHZRk1hFmfCRMzYaE1lnncGIqGPIGPrluFFIp1MoMSLQl62D2U8xdKjLz3WKlPQ1efTUbycKJRIzwl6USCsKeREeUaUpW3K3Gfst5T2WSJ/Jukt2ncTyY95sVIpe1Tk1Zr16PQAQjUadST4ajeKfoqjJdQGyScgc8a8P+Dn57BMqbHIdgFWuyAgrNsibt+Ue1QWIYkutEPSQ5pyXTBNmVL8pa0bkrY+U78kCy3PqIqjra1oIJ3xvgFv3IBrFc2/Nd8Y5UTRVSNM56xuDxBvZ6NRGVucmm03T1PdE1ht9NZSJ7Pk8ORxKHO8h6zkfvQeu9ayR47k378226R2rm+Jv2ozL+lVE2FU+YE/vy0oDVYcf9Z0pl9jhE3yuWZaFqmsuhmWYqPnZbzu6OTts6WQS+xxwMIxMbKvMn462dDqFW19ZgAsqWju6Ke1uRPJA90TztAOOOB7JeNxZ+PzkrVc7uEUdbzW33wfgu1MuscMn+HRWxarXxEL48yNPoWLBUlRdPs1Fq4xLi8aIZ4FSuN5OBiihCtknh+3m7BpCDsqTt35Io2678Id97AYKIzlh4vcluSSVAd6fj2wf5Skwjs34ooAMhEMawtk4Hn76JfVFXZ23fWTD0Dux5B7JilnT4OkrB6l/sUxtmcU5Wlg2BTkhLVa7yrpx5gElEXwpLAayJMh2iIaBgwcbgKTRE7mTFUP+OpEZEZ2f+01klS/LA0SpL3yuzstcArInWmyv10NWhv+8NFvGRXNCoVlyzWmM4e4hngk/L/Wh6Vzjpcgrp7fCNg0UZkexMEHWt3KceNHtskavQia9pTi9EzkfPQQidXpD4VAaLSnbQblUJ/VL8/K4UaL7Q8+AazwD+pYBAB6eoSjCCzaq9hw/pgTLG9JOn9BTpe4TdYEAd0z711zmim4/+4ieEpE4ufZE5MxgJnPHqaom52UIhS+hgRmpbiXX4/pAJKSeG2PvoS3QjVPwrgERuX9XrcMn+J1hpmnhgtPGwzAt3PbgptWTAguss1jUMHHlWSfBNC08+0zbhhBCoTBO27cHoGkoKu2JG1/8sk3P35XMStmoOvxH6v/lPbptuKbDJ/hkxsa6lixGlFOIoxiI6kCr0CAYX6fOSipHIyOW9P6NCJa1L0W75e5H1ALrpWechMGlERiaN0BHxUOiBMZQGXv9THjKuwk3OxUK4b3eAxyYkS9xSMOHOjXYiMBG+XLhctMbGSQZtmS/OGmCCe/fyRiaL5mtjMXTyIvnefScx0m0L2sYejaL0mQcJQKpiE6JxLK2QlN6icolEADu8Ofdakbq+/7F3qGT8q5lOUwUMovIdnl1gbrHSbuqkJWjTulo56vPUUHmiUIVe/9KmE2MX9MbY/vJpiAapY4QPxM1k39Ns4FNYt7M8iWCpv4RjySzg7kCMTkn6xCwIlipROUqHU65d12A3hDRbyZr4/zfPo7KwjCuv3AiiqRuLhrUODiCazfUIloinV4pniAzpOX3MFQe4tA+6vxr69V4OfLYEzHvs/edPI2WpFerBshB93IJt3ay5tmSH7/CQeJqf67FsH4xY/Axh72l2sj6AlxHoLfD9QWOUyJxrtnQ2+Yz0uU3QA+Sz5Ttc2xwLwBAzZ/uUZ+L81F1wZnortbhE3xXNDMawQ0XTQIAxGwDdzzsegUH7T4YqVQKjY31CGlah8feq398EWKJOKyS4g5tR2c1Papjn+H9oEd1vPzOgo5uzk6xqGGhtbkRZ++vXgycAsPhMF74eEPHNayDzEIYVUcf634uKeo2iL7DJ/hk2sb61owTI82WFCOpR4Bj91Y7kDu+XAbeLjmLYgwMki9OBUHuI7rqgwbmy+42UhkbhsQyWcGpIOplfBA1ULOGyI62zz77OBm2Rx57osOuyNoqqel/Xy7HeaeOx6vPqLJnjrYMWTKs6EOj5ox/DYGZrSNV1SVnXaJIXhpE7vRySnIQvjBqYok4au99VKH7DY0wint67jGXOm9GNKfoAxkljP8SbfaSGCifF7Mjif6G9VRtpBbJAuFTN8a9fcxYLK8zWuK/RHTMeGSslrFeWkHUi6p5PjKaGEOmEW1TORQARpRH8PFXiwEAY4b0dbyJSke7RTonR0sGyM2yFD0V2Y/KiIs2Ki+FiH2B5B7Q01sqtC0/w4dh5XxdU+yT3QepL/4roRSuOa3cqLb02BbIb2TvIWr72mdqy/oB4vUWi1f338kXApMvdNeupJZs5KITnefG50mPzWHiOKwX9QW9GbKo+Fvi99SHZx9xP3pU7Gt6BPS4OD657lCeld+IeLnlThEFWbdKCzPOUr8JMomKffWW14iT3GO4+k3pa+pQc9/D7gUBVJ13BrqLdfgE392ssbEe5506fqs1U3eWWaaJqgvPgmXloebO+zu6OYF1YtM0DXdfdTJ0w8Llt347hdfOYlOnTEYsFoOmm7j7kWC9rcMn+CxU/JYxvDxdQypjY6VoaPcZ2Et2lDe2VKIHAPy/T9X2A3GtGav+zxdqO0TFsjVBwJFsFgXJBObUq9smv315g0JYTBBhfI/InSv6dsSLuAAVqyzLD2H0LgMRTyShQcPs515U5xUU048eBZH5l8KCMQTRMyO1VWLqoqnD9jseAK/fh+LqEtP3s4gAJ05bc9MdAICq6VcAgyugU/VPEAtj1RoUaktkyIbwxi4ZG2VGKtku5CET4VNVkLF3RxNf31L2sChtSvZnNKyeTWYzujoAsL6VGihe5cTcSluAixhHlavzMUehR05Vr1z9cw0u+qz3ZbLqvrgz74XrDIzz8ty8R37ft0hQpFyaMX3GtYlm+0jW79CyiOJ9MxeESJxGJM+1G6qJPvwv735Sd8BB/Fyr4vjqIRpIK9Tfe5v5WPPhW2hItDq67bxXxuSNiOpPPi+yktj/zM5NSfCeazPcGjLjDBGdd56XSJ19zzWf7w9Q49iW/TSO+Vbxbt/5Wu5V9VFi1Tr85Q/3oerGn2BAYQh1Avzp8RVIHkaCw4u/QfFyvggVIKUZOOxoJUvcq6Rr69l0+AS/M82yLFRVT0STTGL5eXlt9pZPJVN47dNluPr8Ux2977sCBBFYF7KlV6mFR/P60/D7y1W91KytmD3n//bxjmzaJlZ9yTTE4nG3mLq8vKyepZ79zj5tMuKxGArz8/DUNirL/jGHaXfNuV1bz6bDJ/iRvQvxlxunoC4Vxc9uewIrGzOIp110k5JcNp3smdyM1kGC7t+Zq7ZknTB2zaCqcOhrLvwlAMA+YncAwJHHViGddeOKvCbZBVROJKp4W/RnrJCOqmOOAwC89u/XMKBvb0T0KPSwhtsfmoWwBlwwdbzL1SXxmPz2XiVqS2Q2X1UZchhC5MeTNUF2hLApILr2zvFkVaRzqCyMzwvTJmur4sv+WDbjwnbOfW7OtqRy7D/Gn786mlxtiYXSK2JfUxeFyo6fr/HquMz1KXb61QVpRIirm7zeF+PmbnUlt4+GCbd/ZWMGoYiOA0aLpxfR8Z9PF21SAYm5A42+qkZEpX5vhffIPiKzxM2IlSxjX7cn0up5ZeQZhunJUWOJvwGu6TBGT69nhaxXkWXFC3Dthuqlny3x7ldRAgDoFc3Dinf/o77TI6hrbcZPTxyFh1+d6/QnOf79ir1cfnpezCimF8Pxw98Es3H9uQdk0+zTV3m1RobsObk3Wb+KrdmI2mt/73o59G5b4sDnS9WEv6ERmaYm/O2Jp3D82achkbaR5xvHrcLSoufJFWc+u4Z0FAcccTxyK8oM6Nl1UH2HT/DsqP0PP975zjBMTJM49gvPdr6OrHn4Mef/laN2wV2vLtpkH8O0cOZkheRrH35kJ7bOa9U3XI1YIgGrX0WHtaEr2OsfL3ReHqMH9+3g1nSsLT3hWjcM9INRqLrjl/jPss7BMKr+ycWKFRY1vnE/y7RQddopsHZwLewXd6hSl7mJVX/+8ck7dM6daR0+wdNakjYWbEhjz946pt85E0PLIjhr8njocXlDE2WwihEAvPSO2u4ltSrfEiSzSmKOjNczRi0IV/taEDNsZG3bQSNEExskfkiVQMZIiTK+ynMzRjU9irMPHYyIruMtqULUmLBxw92qutSVZ53keBDL4+q48qMUQ8h4Q9gOKwVxlQpyJ+IiYue9C9vBYd0Q4fsQGAAnzhozwqh99mWF9hIJFAncLLFC2G34QCSlIk5EV4jJr/2xqsnLfiB7oreP201+Mmt0MuuTaoTMjE058WbJDjWpg+KNufN6jNETIfr59uSek6XDOHhloTeeTv17YzPylbovf8GKhPGDkX0QNgy898ViZ+Jn5S56E3xMfsYOmUHMzpwn2Z9kzTCWP0fWIYhWCw03GzRj2876QjH7hhf+UJA349GMrXMtqlTGRX/FmMLrn6vt7gPlPCzEK+OYsfr8nEmT3uFrnwHrG5G1lT4Qnwe9W39/UlGTLJo8CqamvbfAW6IHVyjj5ehhqk2OSuhyYca1SO2GFWtRO+2XKuelrtlF8MKYY1C/5tLp6vO+w9T1M2oMuewgelVsn/oPn2loCx4rACxpjmD0D47Dbv0KOz2S7zQTfEeYYVq4YOp4RxCJC4eabuL6O7dNR/u1jxfijUUJXHXs0M3+3TSVoqVlWfjjQztf0dIyLVSdWg0rPw81M7z3lEym8NkCKUItyVyBAUvf/QQAUL7Prh3WBtO0MHniWFimhed/8bsOa0dHW/Wl5yOWiDszr6VHt3LE5s00LUw7dbxDl7TyLDw8Y/t+j6dOfwwA8OYfp27X8TvTOs0EHwkpBFMmCKCHFVIvY2Z/Erl/tcI9iIiWCy2MbTNGycxQ2udL1VZikK+ceoX6fNIBAFwdix8deyKKzBB6CVokImP8mhVwTtxFxUBH7mXiVxEN/16ornfcCIVComENM56cjcqWRlSdMQX96sSzWCiIm/DBH4QlT57qfuT3sw/IgmDfCEpxYrKAw5mv+eWtAICqay8BmmIoK1Xx/OUNGWRt262d6csIpRYMUeegUm+8mAiOrBrW1Owp3HDGWONpH99ZEF/c0TJRfUmWA5E7q2/RXHFK9Z//LVV97cZ08Y1G/ZgSa9MYvpGTx5BrGhSSc9aDnELhwviIkZEEaUPIcw9klBCJkxkySJgnmzz2Zjcv41d/nol+xWGcc8p4YNcBaoePFqotY/EcH2TRpH3ujbBjXM0mQeocL8wfGSjjimtZAHDifmpbkg98WgQsXYeQ5vYV2Ve8N3pkX631AgV6XC2SHUyPjcw06j0NKvX2Cb2qWKwVtXc/4q4zLNugvAvmfiyS3wY/MzeAv43hfQAAf7njbgDAgnz127lg6ni0JG0H3PnXbD5Y4a33QI1/wMu+6uzWaSb47m6WaaLq3NNgmSZqbrito5sTWGDbbJYeRay5EWd/vwwlPcrx+L+/bvdrTjlF8dnz26kCmWlZOOeU8c7ib55l4cFviehXtOrY7aDjMLpP5w3VdJoJXoNaaWeMTw9rCimt9KEQ6sMDLiJhzJHsgP2Hqy3jc4QFRDhS7YgxSFve4sS/eVENg3tEUGQQYqm3N5kBjC9+Xa+2yxozSGZtB7UOkPivc/1kGjV3PgBkbVSde5rbfrJ9+iv1P2wUZM/YKtkxlo81w1g7kTwDm0RsgBtEZJw1lQEaY7BFsqA5kYVtuwyRfB/zg0amyfKcPAXAXZfw89WJ7Op9bB2/sc7ofv2Vy021wRYf64JInzxpGj29ulZq3qjv50nmbJOch7VgaUSSALCm2ctrZ5d9ZbiyDnrYjR8zdr5evJWMExrnedTnkcIcImKPhLw5ASmHaaL6lusSIyQLuCWn/mk6ayMTVvcapqfKNRjqNXFc8LfCGDvXcGiH7Oo9jh4wM6QPGOnuS+ZWkaW8wOJ8VP38Erwx9wvEUrbjOTEvodnHLOK9MhPW7zlVCmKmt1MkLCrmVSTWbsBf7ngQeOD/gLv+6q43cb2B606cF0KM2UtNBNYrZk7M0Eq1kRj/y48+BgCI56nf2LEnnIg1zVmskwxYtuNjyWZnBjcAlImXevYN6hz/d/Op6KzWaSb4wNrXLNNE1QVnItKjBI/O3DY+8Hfd9KiOUYP7IqLrePuzTZlS3zWzDAOtzY04ZZ8eyCssRiQSxVU1n3d0s9rEDNPCpaePByImfvXnb1fHdn0iiu8dejyKTReE9CzuHFTKTjPBx9IqHkzK+KqmjEKTjBNSKZJvciCHZSJbvs2JSJI+Xvlwob9RW14QtMaYd4hIToMR1hymCJEdVSWZtbdW2BP+qO6CekHFUYUerV4KoaezNpJGdNOYKtvN9hbJZyJz6sIT2TOD94ej1TYryI7VjwAXxQ1W9MhZf3kJAHDcCVWIpWwUmSFoWk72rqNtrg7rmU92i/pMplGroxXiZaUM7ZET/wewe29WIVIIqEkQ3jp5VP5aqlStLPLlIFBpkesgjIUO66nO7yh+rlbXYayf9sLnylujJ0KEn3tPZK/QQyNCe2eOmtT3GtYP4RCQTFGpkGfwcrpXiZdDL2iUKCK+IZWYGGceLFsqLxLRM/7L86cyNmwbCDO+zPE7TzKblwla9Qfz+RDpsRKx0/OjZ8gtfz89c8aPIF6MUWM1lWdi5j//hpAGjBs7Fof9dCamjx2G7wkDiHUD6N0QkTsaNmFmxKrt7pWqb5hNzsxqh9GUtdV90XvlvZIZROYPvWB6I5wT6IEQ6c8TRVdRmMUPRgFwK0HddI9ivV12xkmIhABL2jFlTzXfvLPMXc9jVjS7/YrfK1mHvSTDPJXtPAlSnWaC36N/Ed67/TS8BwARE3c9MgumpRggAIBICJZloWbi5R3ZzB0207JQNV6xamqOPW+nXfeUySqmaXbyylKd0fSojr2G9QNgI6JHUfvO/I5uUoeaZVl4+JrJiLc04rgxxQiFwpj+t9VbP3Ab7IIzT0E8HkOp2T6x962ZYZq4ZtpEWJaFG+/+dkg+1zqL3EGnmeBzO+BHx56ISEjD/Y895fCjKwrCmDB+rFeJkW/3daLxQsTLtzrRPpELY+LM9GMsPu5d+Q/ZNgw74yCfgZQPFMXDt5d62Tk9JR68e2+FZhi/IyeczIIR5ToenzkbxV8uRtUV57mql0QVXF9gexhXJE+eyKxZrv+mxBf7CarpkePd6F4vpqG5FTOefhHrWrJY35p1TsX4c2uK7qU3pk5+O2OQepGXD884M1UaqcPCz/7M1XmirEj+M9kKPX11bYlqQz5iCI25CvQgiKZeXaD68sABamyQtbG5LN0tyN04RiXMf3yw0Pnu0N36Od5Lz3zvegTbUiFeBDn6P9pFTVbsA2a09vDFpamAyGpUfYrCMHXN0UDSOL77yJqNU8C0Xm33EjVJsmvoEbK+APcTZonz++gtHi7XdAB3XUu8xqyoNC7amMaNd8/E8CYZky0JGPsMd5pC1hW1jOi5sa+ZU8C1NlZT408smYjhyWdeRPn/+0CNe8bU2XbG1ut9SJ3MOXr6RPQfyMtYELvj1cgcsc5S97l7pWrAM0+reWjKxHGOxwW4v2kA6MksbHlOHMOfSI3m0RV6p5E72Hze93fcLEHZ1Wed3tFNCSywTm+aBsy4djJmXX9mRzelzcy0LJxRPQ7nn3lKRzdlh6zTIPhcy9i2w8tmLNjQbIRgAxcf5+747FtqSw0XsgnIphH2gRODdJC+fE8+MFGBxCBr7nsYAHDcGVPQaJpOnLA0otpEpP6FxOQ1TWWC/nBMP0T0KNYvVohvVQtju6qbyfVGMq1QFj0KpvsRadHD4IIEUcp8iSMydkpePGvP5ur08B4tdW5bTsfqQ8wcLHdi7bZ8Vm0lEv9YUMkecs/UYWGMnMisZ/7msQLVAqkRQw4xEVsviXszxs7z5utEeJrne+f2xAXhlp4EY71frPVmj2qa976AHFaLKFNSTbLEVDfFOH9JzuJZWNMc5gfbxDNyzYaI/rgR6jmxj4jQifTJAOK6AL0q5gDsVhFFRNOgMf7MEznFYuX5MzbvR7t7DJbOkocwROLqHD99NoPcaTxGkLIhEH04q6FJNbXU6AEo71WBjV+9i4bmZkefn+sSlYWqD5knQaYQjV5Nvngz0XQa5S1NwBzJWaHaI2Pp9Ez9DCAZ5w6C53G52d2Ay5eX31I5GXfi7ZQ1quu8dMsdAICqC89CZUMdKslgArC0r/KA+BhYy3b+Bm9OxwBdBNDSQNXhRzl5KlZhwU4L2XTKCX5LZlkWqsaNVfHrp9qfCWJaFiZPGIvC/DzMnj0bZ05VynR22PS4YADw1H/moTGexVmHDG73dn0bqz77DMTiMZhWQUc3JbBuagsXL4H+/jwYB21f5u/PLzwV2ZQKmZR1kjoKNMs0UXXWVFhhHTV/vHu7zlFz+33qP/IiddYVd4J1ygm+vDgfV551EjIh05HcLS4Nq7femnpUnTFF6csslSw2vqUZXyNyJ7J3WAW+2CRj20TOREiyEv/8HerBVJ17GrTmOOKxGJ5+7iVMmTQOo8ojzmk/EAZBMqtYD++u9SrulQlaZjZlRSajIDXRh5+3zExFsmu4ZVyU98G1BjIKck2052Otrah9fBb+l8zD0vq0E4uOhjXAdp0Eascw5k5kzPgxMw+ZmUg2hKMpYnjZEETeRKPsCyK2ckHWjOXT6FG0+DJrt2REw3wWjJv6K1Z9Kp7IoUO2nPLaw7cOwFi5IbHv8MoNMMJhHDq6L6K6jqf/t9Bzr6N60UtQ99Yno9Z4WFeWbaK3QW74+DFqUmN1LGb/zt+YRksqiw09FdIuO0CeP/nuHO9E+ETo9GCJ1Mm+Ilol8meDpB5BIt+dXOl5aczN4G+J3uQcpYejU+dpUAVCoRBuO1ldI4UIflv7lTPeWJmLfcWM5z5FYUTtBF5+pVZdb8k65XGzitl789SW6wXM66CXUiLfs/oV+4S/EXq51KviOpcsYzgZsjyO3oxkyNZcJ5ngP7vI2WeArX53jZb6XfI3xLHGdR9sYf3Iakqi6geHunr8AKy8vHZB9Z1ygueNHnHMiZ7vqydPRqy+EdZOXmGnjryVn7/1nbf1nIaBqusug2UYQWZrFzLq1FTuNXqnXM8wLZw6aRxMy8KLOSqmndF+9MNDMPOvfwMA9OvTeyt7A5eeMwVIxzu8bvG2mGWYqLp8mnxQL8R0OAzTsnDbA9+u7kPN9N+r/xw0xvmuavy4tmjmJtYpJ3haJJRT6b01gVhzC1742ysA1MsxdNV4AIDGbDUaWShEuIx1M/5GtsGnCoU4bBy+xZ0sOTWh1zz0GAAXiSGZhraxGeuaVUyNcelSS3HLidQXCrd7SA/VzdRtqRjeV73ElqxD1ZXnudffxfejoKdBhO+P0fO+GJdszmH3kPuvh4HSAhgbXEXMaUeOQDadhK5HnYxPZ51BUCxRCWOn/OxXXnSyMIXz7SgpyvcrhRvO7F9/fdvdhA/tr+FKO0DYMFRkLJDYql87hywcsjnI1y8Tj4C5C4yD595TZPPLBzn3qLZhU+K8q+oQjUQwbu9+iOo6/v6JGkej4/UAALtCWE0r1PgzMtSTV+OHXge9HrJyRrKebaPbxodmPIV+dRtVBjS1lUb3V9uPJfmqyDdB+vntHAuC7BM9S1Q7mlhfQPVpNOfRsH/zGNOW30TClvwHMnkWK28z3rccWdNw1lhKrCh+XTUUCej49fNfOucjkjciGpKJGP7xpJIHoCMX9im/Ol6J8PEd1Uh6rYy1s1oafwt8qE2yP718egCvz/H0ifM9z1MoXvMQFdqs+dM9bufkeBFVV12AgStVXkLeILUWUsyUEEONXXuY+l07ZWThs5CmQGRVlQo/tyGS79QTfGDtY+lUEi+/t6Sjm9Glbek/3gYAVB72vQ5uSee0pV8qvZqigYM6tiFdxGqk2lTV2LFtet5OPcGns64uBwrCgOaNyeZpAsFGCouArAHGCxm7Zt3GJfJ2/kJqojLeRvYNET9ftUTWEhM35HxZPYJUSQH6aQplLBTVwN6FYYQ0N6uPq+vOPYgtCavzDBxYDqtHMap+eqESIfv1H9UOx8mkwXghNWaI6CU71UFqjKnu7UoWV59/NmKxGKx8dS1miPawQghpwB59FBpd1+zVcnEFLomQPU1Hi7BwGn28cjJK6M1QeZOZpeQRMxP1kMGqb3MRNQAMExTLSlN5uoZfXjwVqwWNRsKAblg47dePeY5j3JPX35IRQQKb6rjTSyBjqJ+waeJbOFfj8P6ww2EHiWOVQrkaPS4i6LRCm5W9ZT1CEDT7yF8ti8+AOjyp/uXIWobLHPGrqJJdRSP6ZLxcKp8lBik0zKxlg7+TZtH/yVEjzeN/ZJ1oZZ5imPVZKfF+eg3i5TYkskhlbWfNZWiJer6hkNInoufHdYel9WlkwyaOO+0UmJaF56+7RZ2PuSlE8vxNshoa75UZrUT4bDu9WnpbzAkgw2xv8d75W+L5GPP3J0eQR8/rAK6H3xyHFYqg6tJz1OdwGJZpYsYLL6g/+5hf9NRK9x+hvuA6gsxDi+q2ELTfAevUE3zP4jxnsfWvNU92dHPaxWoeegyob0HV+We06XljsRhqa551F3K7sCUSMZzzO4VwCowQ7r6q81TUcbNcASsUwtL/+28Ht6hzWUSP4qxDBkPXo3j0Na8K5Y13z8ToCh2TJ7Qtat2ZVvPz3wGDpXSoZaDqnNO++YCtWDZs4shj1dpjWdGOL7x26l9/7mJrPBRBFiFHvwMA6myFBkqJtBmjrBdkwxgl+cH+zD6q8hHx8DMzS4keGJfLKfOS+6KnV1FihRCCWxmK6wcMB7JClFMqtpdCP+XhkJqIyRTgpMx2OIp5cn2/58Hj1tS7Jc1KioB0BkszCtlQ36RHnkLwjJEX+GpjtgqiJ+LncSwIQiTOe+N52B/0VpoSVEwMe86zl3gO7LMBoo2+b6nE7DM6LjjzFIc2F0/bKCnIw3EjFWKMpWxUlORj1i8nAwCSaRu66SJ6ctv7y3W5HrI5+74oTbLt1DbnOd50OP5q3AwoVsi5yVT93SOiYdHipQ5TZLeBlcrF8KNPjkdBp4Z4ZpVkePD5CfodIBnMzUUq1tuYyCJimKiaeBIsy8Ks2ep3EabbxfFLFEsUzFi9jBdDOOwR8WISUYWKyZDK9aYGFql9WCOhjy3nJHqV7OnWvXZRl866idcAsLJFnXT9UvUbzO/VB28tSWDP3swtUM+9KB5HJJN1vVQyfuh9TPqB2n61XG2JtP00KSJ3Hse/s28db8WnXcNG877ISPIj+lxlzuWyBsb4P/fZbxgQDsFYLX+vVOsUzIugjHyjLV6qVJxb0+SO0TsfnoXBsixQNeEk7Kh16gme1rM4DydPGIv3338XZ02dHKghfoPFEnHU3vWwm8TSBS0ej+GvLyva3HJf2UQAuOW+J53v17dm8OcrOweij+o6Kg/ZB9GI3uZI/uEZT6HM0FA1rmui3bAexR2Th+NBPQQ9quPDLxd3dJM6vVlaGFVHHwurpGi7kXyXmOB5c9XV1Xj9tX/jvMmTUPPwY7B7MHnHR5skGiCi4Qo83+KNgkaIzP01T3vL+Ri3I2KWF20onoSxcj2yUh2GaDadVfR2MjaoQUNEyHqVZNVQPXBlNoqEno+qK89Tq+j3PKguxNg6mQPkMTPzNqSh+pc/RoxPMZOFlZcHWFEs1UzuIlvJriuJIKRpTszdYZLIfiXCTyayZ4yeRo42WSpEr/VSr5S64OSzR32sG9ouou6oNcZQfdbpiDULQgqHUGpZ0JfJsylSL6p+4jnM87FsAEA3LQfRh+U+GxNZ6IaFcdc+4tnXYWV9g7HPyCpZI8+P6w7+qlTsq3teUzVRzz2wn4qvkoHCGsAcr0SVRI/M2mRcW+K99VAeBvs6nQ1Bi1oYf8gR6l5CERUiIBOE5ye/ukSQPfNClihud1jGeViu3yi043AOAl/dqq5JjfsCWe8J9y3ztDUEDVOnTMb6hhYYpuX0HTOGG+XFXLdarXt9vCqFo/bs73rATa2KMcOYuqMO6aMk83sqwfq5/lRcZVY4vVv+5pnpSiVW1msmMmdODX8YZOKxXbnGSAC9it0Gqe2y9UAsiYQgd5eVJMyjmNyDeOiL6jlvCJPN4ANQn2vuV2O36rztD992iQmeVlNTg6pjjkMsHuvoprS53Xr/k9ijBKia+O3cslgigdonn1MfWhPfvHMntVgshtrHZI2FFDS+dLfBLrz5cSd0lCcSB5+tTuLeq3dexuDOsgcefwoVc9TCX9UVO0+N9JssHovhjsef7+hmBLYZ61ITPAD37bmhCRqRLN+2fj34yBZQgL9kOo/jSr1TaUne3oISqm+9FrF4AlaeCcQSGFqu3vYLCsgd9zJPGJ9OSGiTaJdc78GC5BmTX5oIwzbycOI5p8OyLDz985vVH3pJrFSy9jTGKfv1BIosxMtKAADhcveW1qxS6wlE0OQnJ9IabNttGznexhbqTBKdMibf6mME8Xh/ZSdmhfLv1ECvKNyEBayM3P6vRetc1P8Gv/0RAKD5yH0AuCwY6omTCfOp6MHTO6ooCOHlsny89JspAIBw1MQlt8zwsH+oHcPY+4hybzUq5giwyg+ze6l1zvUGvlz4HDNGHkqnHKO+06NY94C8gIkO+SJ2ON/yvXicX4QUws6KV0TdHnpbROhWNIqq6VfAikRRc9WNLnecqJUaTH6iv+jIIK62ob6M9bvPsEAAL/nr8bS6516CnLUVG1B94bmI2WnkW5bjnTL7l+OrSNI5P1urPg/pEUE4pG2Sodw6Qq0X5K2l9y0NoFfN3zjRMu+JfeevAcH4OM9DpE6mHXNOqMjKcbfbQLXlHEDGHecGwH1uDIPSm6goAQzdyf1gLN2Qtq8LqbZEsqove8i0Q8VNelANoo1ULJ6eldVQdeTRsMpKvnWoputN8B1osXgCtXc+5M0IaWO7+5FZ6FsUxrg25sN+F+2Oh2Y5Eq6/vWTSTrtubs3SU38wqN2uU/Oz3wIAqn7943a7xjdZLB5H7V9eBgCs7JrOY5ewmrtUyLbqsnO/9bFdboK3ykvx5ptvou9Be+OHe++rMswYa1/v02Rx4nP1akuWjSavSj86YKybb2SyHPhZDyu0L0juAwEbRHKlFqDrUdx/muK5xrMRXDnrc4c5QLBBZEgUoxtejnA4lUaeaaDq6gthGSZq7lfqlhqr0jS0oPrayxEL2bBM06lqlGv+SkhZQb6peBZZ23YQO2Os9THJXBTAQ7TIxUy/iiTZTPQMqMRYLBEWIjrG4gekW1F97pmIra9XOzAEY+qwooaLoFjl6nOJSwsqLZCYagFjpxKnrpTs5MpKhaZScj0qPg7ryViyhkElYeTmEVJpMix1RXlv9LSW1aflntQ5qSGjC9Ta2Kr+/tYSNa7onfC5FkQ1hCI6Ss46EeGIjg0z1GS4Sa1grhFJzJ51Y/sWReR66s+OfrwvXm2Vl6Lqzl/B0sKouf6P7nhmnQAie6JbJ1Be5OkrMp5y+4LXNiMazpo6GXEJj0biSViGiTn16u9FhsskA9zM1NUp9TkpzymkAdGojn1H9oWuR/Hmp4vQEtYdTyxtlQBwufplsgbUT7wOWzRnNEf/XQasE5MXWEwET2+XfPhPyKwTj5EInc/k7x+qrY+BhJwcAbcffZ5ROgPLMHDx6aqgD6tEDS5Vz7W5kWqianc+z43yeFY2SlUzGW+6qNDm+RUxv4V1uQmeLkrV4UchlthSCkrH2cvvzseekihTWl6x3eepmTkLWLFhiwsssUQCtU8/C2CLmkadzmLxOGpvFUW+t+eqLd3crVXf6KJ29/+p+7zgiCHtdg2qFVad3b7Fn2PxGJ557iUAQMEKtSg5ZzvO8/m8JVjTlMGBY/q1Yes6h9Xc/SCaK8pwcifh9ne5Cd4xBqzyTXfFnIidCMVfPZ5v3nWN3v1YCUkQjS1sFU1WyVN9FRKySotQdfHZiBgWHp05G7tIUxixoYqgXq/QqR7S8P0BUWfuelNqc5LJQZ3xAnmlM74dMWTBsG8ZYOqoOv9MdQKeKJuFVVrkIDMiy5U5Gib+ZQZqVC9vyMIGUM5SSXKOsh4KZaxrpfofVf/cDFgAeG2heqkyJp8X9apKMq69Z28dp0yejHi929cekThW5PHTOSUuvEmCFrOQ+axzMwtzTP9aPbNiYY6MHKJirfl5Fq47fyIM08It9ylkRd53gdyLbXsZQ+TQa8LMsW0yh0RlUp47w8mNPuVEZnX2LgrDtoEnytW4Om3d++oAoky57pywQqEiye+gZze7WG3DjA/Tw5T4smWYqLrmYlh2WMXkGXemFg3FkCQuvSasGCmtkkFJ9hcA9MoPY+qUyWhoVl5tSFPy2Y4WkaDKTKPE6AUobxCkTDVQGj25D6X6Edct1rVkoOkmzpg8Tt1z1MJv752JBvYx14YkNq7JuFldWCx9IvkW/YRxpEuehdxqaVSQORlzh++htsxg5TgjQqcqJesbt/pyYwCX3caMZUYGGlpRffXFaNVDKMjLw1BZD9Lj/N3Tk1dt/myNd52M44Z9x61h5XgP39K67gTfAUYN+mN3Yny89rkXNpVA5YBKd27sHovF8DLZMfwhkTK4k42T+hVn7njyyPZYRNdxyZFDENF1nPbH9snKrrleSV1UXXl+m5wvHovhoVkq7X5Li/A7YroexfH7DEBEj+JfHyqK6cWndczzaSuLxRN48ZV/AGgHpzRi4qjjTkQ6ldr6vjykjZuw84yr6IWWi8j51mUcjnFeokLG6Ri/Y8YfJ58hKqSiySp5arhyIRlTPWWqFK42LWRtN1bK+DNja42G8gjSWVX1iRrp5LkSBLFu5RdSv5QIfN9+ClnlWbKj3/Mg31kQ4Eontuf+CHW5ZtqXImDpmmLlMuZIqC/rFCXlJQA21c9ZKvFoInfGqfuJdN4WM0Y/Uj9cLPPFPImYHn1VbYmKiGrJMab3RdRK9sNzUs2LmYtEWD/aY/Pt2Ix9uU79UNjftK2toTM+nYt4AVcLn0YmkRHWcO8/vkYqY+OiI4fgydFKa+jUfDXO3owq3nRE1jnIIed1GM+mds1I8uXZl4wzy/i28ixU3fozAEDt9bej+vTTEEsl3fEvyLMp6+ZvAF5tfj2swTAtZ72IXuJc6TN6La3iFZARFkt7ayEQnS6T+rSsAxBL2/j7+2psHLF7f2fNyLQs/OTsCTBNCzff+6STg7BGHLfB4mkmEt6chI8aWJVL7U8vuTQrIIjjgyqUr32mtn4FV9J0/Xo+/A0C7nzheFA5mkAtcYQFgFF9NB5V4yvsmy/4POlYUXGV98TnT/bWfY8p5c2mxkaM7L9tiYxddoK3igrx+uuvo+qMKbDiGdTc/Od2v2YsFsMzz7/kuH+BBfZtLaLruOhIFY//eTSCpa+/1+bXqPmFEu6qmn4FACCWSqL2ypuAw6TikkxeXyRE7tpJVnNf0rmibO1tkWgUB45WYCqsR/HXdxfgyrO6NpJvD7ty2hTEYjGkvgsIvqamBtXV1YjFYnjzkw9U5ptUpnH0JPim5VuYWXD8LFrWzlubW3JnxVocLrCNFY0Z9BIUwlgs49VEtwRyYU2pKZJfvFxQTI88L0Qkd7iiQLWXHsPKmOiAsN0UNSJikO2IvspjWFzvogym9vNcuQjcBjbNDPQH7cWIKvjnfSXWmczwe/UHIriKBUtR/dNLEWtuRl7UBD4UVgwROxkBudoeucYY+5ZsgShskknir9UpqJBIfrUgQPK5I1ELl56uJo+mpMp2PXX6YwCAAwZ4nztZJfSQiLzYF9TvIU+dCDhtbzmc8ee/zXXG0y9O3AUrKyswSJ4/2RNErQQSHF9kNtniYmjsS3o7RJkyLqz8fFTd8BNYvXsCPxiJjGi4r3fq36r9OUZyuelktZAVw3wG3vtqYVexzWSAMNEsJEqvK6TvyLbiOgdVRqNhDR9/tdhBrYP798biujTssImLThu/Sf8ZpoVrbnsCu8h447MhEyjf501juSD2obJm844s7vO3xPHEvjvGV8iFWce5uQSM3/NvRPupNGDqsOU3xTHXlPQqsGZknuA8wjFKD9DVd1Kf+duNxWKora1FY2MjiotzePnfYF12ggdcRk1lea8ObklguRZLxFF7053qg78YSwfb9XfNdP7/xdpUhypTRnUdewzry8x0hDSlTvkaqaI7aDU33a7+w9BlF7Kf3fYEAPeFwpfbjRdP7KAWdU3r0hP8zrLzzjgF8VgMRicrCNzZ7LwzToG9YSMsY+eWVNwR0w0LD19TDd2wcMCj36702o7ae18sBuB6cEVmCMMG9NmpbehqZpgWrr9wooPY6Vnk51n4/f0dJyle/fPLVP2FTjb2u8UEb4dCaO3XywkXmFFx2wW5pExxmcQFbUwK9W+oKhSSJwsydFAZUlkv5eoamltx5+PPI562UR/POosew0Qwiy4VvThN2C0ZW7mQHIxlFBuTtP2hcvwGSbRhSIDnd+KgTI1mCMm3aOxMEIbrRrLUHtPwSQX01bgGXhHKnixm6kfuqba+9HYWCOHCD0XHSH+rWLYSdl0dau8QobS4L05ISkG+hIQYomEZxX8oSQLH3SV9kvfsX2zlgjOpsZSb6C9iWLKoJonnGNhPubRLGt04cyJj45b7nsS89Wncc9XJ+PcitThGaYJdRQ6BYQfnuLSXxuYkIIlRZI4yD054SHZjOOKFz1UohYuqe/aJImPbTsLUoo1MfBHJZVmwJFXQCSswVMA+zfdOMokBijywXOiQc9d7pZ9pFZvJmGNohYvui4X6ySInLFbiL7bOz67YndrmluwDXGTOhLyQpsJC7DP/QuOVv58BwO1zPoM/XD4JelhzFr4p8OeEZthXkhC3iTS4UKSdItxV+6ktV6Bzk5qYQMZCQnsOVutzrynCwGLpZ5aL5GIqfwKk53Ihmn21zlf8psBX0nF7rFtM8IYRxZABfaDrUcxbuATVl0xDLB6HVVyImhkzt36CLdhl50xBPK5YM9tqAwcORFIGT1jffv5qVzQWJrYMEzW/+VNHN6dLmq5HMWxAH+hRHX99d0FHN2enW0SPYtL3ByIc2bRAyDeZYVq46LTx6FmUj6dmt7+cePUNVyO2QYBXcV67Ivdbf3ya8g62ozh5t5jgly5Vae2VlZXQw0CDncWTta/grKrjgHWNWFOq3tpcFGXCChOLGoRyxcIHRBfJRAyPzn4BG1qzSGddeVjmWBHFElklM0AimcQrH6r2EEUTTZAORcTvLCwJoifaHmmLB7JStpQ/plASZV6FflUv6Cd3kYznJvhkQpJTgu95VVPUWfQkQp6zRG2FSjeShQ/WKJpjkSxuLhdQwQQqWAZq7lWSClXnnuZKGh8wUm25GMqFbXolND9pWAoVO0jdz/kn1ZWoNS0p5SwGTcult8EtZAEAG2Pq/z3zQpuVNY4KskoIzPQ/f44XInAuTJqCYpn0RQ+RSKzeV+6wp3h2c9elcN8/1SLgmQcPdko+hnmhOlmAJoL/t1D9SC5gwh6Tc6SUJT0HerD09L4UT6OfpMTnrrMTuLJIDRf6ynxF2Ymk/XpmJBQw+Y8y0vQkmxNer4bOw/tfKCmBPXZRbeciLhcomWg1d706P8ffpbcoZH/f1dUIaUC/iPp7c1r1TQFvjloc9PwopcxEKI5XSmdQRoIUUwBoaEUsm0HtA48DANbtplIeWVCFYnR19ErkMC62+r0YSF9QDoTeS1ZkNbi4uj3WLSZ4WiikRLrM7XjTBfbdtqhpYca1SlM+kbYRMUzsfcf2e387amE9ir59vBztaDiCpZ90rkXrzmaWZWHs2LHOGygtL9UIA7COpLZMrqK8aWU01Fz5G+c81ffcoHIH+CLIzaxOKc2ZrmDdaoIfOGpPXPqnGpRaISzcmEbajKK5d0+kWvhm9MbzVgi1i5+Zet5HYpMhTb1licTWU3rXKfChBg1DZIVRlUREsEAUxDhmfiFjbup70uuI4EpXSdEBogdSBplq7isdWCSoNtZD/T2TAwwNH3K3BMo3+kn8TLfmQCbiZRIYM0+J8H1WkJQfDBF7oeVtCM9HwTcmPNEYc6f1EwRO+lqRr1zhIvEAGDPdkpH+SeQvxS4wcPOMqx//fgY+XJl0LvX09FOcv+XL84770u+JOut8xZVppFWSsmr4QtwsV+i33oVhvPLu/E2+r9q7v1p/odwvY8GkoNJ7EbTJgjgs2sL1Ev4OiI7paebKBZOaSSooE5H4GMoLKeomwlikikpX7NOXazZeb3Vpvdej4m/J2kKmLCmE9Bzo5Q4o8a5L0O54SC2UV0ZFFC8icgFpuS6Tw3zjvursU4HdBzpChDEzjNp7n3AS8BIlLoJngiLk98q2ZzTKdniF17iO0FO8Ba4b0Iuh503kHvN93hHrVhP8gJ4FuOsn1YjZBn5770xYloWTJ4x1QiNJ6TjTcvVIAgtscxaJWvjjFScjapg4Veq9drRFdR2Ve41GNBLB0n+83dHNaVeL6FGc9sNByNpqLevhV7c9Hr+9VnXhWSCy9+gmdZA9Mf3M7Y6907rVBE9e/ME/OgEAMO0mFSNzy9OpCf7Wy052YoKAG0sfILFIoo2srd6ulMwlkme4uFxQTkISErR0BrDdNzbjhkQ9jM3xeKLrUgp/caWe6JOCWuslXs2UdKJSQW4Vmnyfw+b4z2pvPJjrDrGUrWLHRDDcMnmK6deOt0B3Q/UNWThupqMMIbolUrbMiY07SlkZ3rTakj1DNHqkSAyw9BrlXVlqjclnTnVvYT9Ql4eFIHyCYZuweZiqDmCoeAF8XuPHqB/SP+bFceqvH8WInjp+d6mrI2/6yv35i5xw3FCgzW/0+PxZov7wvyNa50P8b36h1kf2G1Kp+peFPdiH9GpEdliTey8VsSqiYXoOZkTE6gSlF+ZEHfgdBbOYHMXfQJlPhI7on/dI9EnZXzJFiGpZgpFPqygkSUCCcte9/QEA4NVMESZ9f6Aj7dxXus4vwFYojJPKPLVtzUhxeHY1yyJy7Ydej5QGrL3jITlhxvd35QXlDivG/TdUqt9KvtybIw4m44BrfLxn9g3X4Dh+iPhXNTG5TNhXOxB7p3WrCf7b2DXTJjodzJ8p6YxccAti+dtnlmGg6rbrYEUN1Fx4XUc3Z4csalp44KeKJ3/yrx7t6OYEFti3sm45waezKr7lxufUFN5TkNGN9ysddSKZhJN2r/bmYUwl5hu5l8QwKcDEt70R0jBgyGAk4wlEdR3LJX2a4IHOAtOqGbP/SELtCwR9HFLuKyRM5okjEyzoYp2LQlXDStTuphvPLrEUumNh7zXpLM46bDjSqSRamxtdL4ExdoousRPItSfNQZA+E0sYC92YUfsPoAfQFEPNJdOBxWtQ9ejNwMeKFeEUTqBRVEza7iB6lkZjbN5fio3tXiXMInLAP5CY9e7CfOf6BePS9Ahy+MyMgZKZQYbR7pXKW/jRLiZOePkZNCSyOP3kcRg3Wj2X1xYo72FYT7UfBbhoRJUU6CJn3Ll1uSWK1eWJ9ADHI/nPFbqcyMcgaoi1oHLi4R75aADOwMqGKH+svg5z3HDgSV8nwxFE9Cie+s88AMDaHB42wQ5RKWPljY7InOtejBg6EKmkjBcfa8m5pkOIZ7KI/D2T3ez+2ZznFGtuxNj9BiKq63jzUzWe6Bmwz+iFk9duiSAbc1IwSNZeyIZhO8nG4jhi/gXHT6Ma12aBG7LJaF5P3hSGmSm/kdYeagzTUzOloPy6qGrTMpkHGEUg+4qAc0PLjsfead1ygu8ISyZTWP2RYjg8sa6DG7MFS6eSeOLNxTjth4M6uimB7YAVFxdj9YqVbpIOF7BlElpTpCYYhgL6rRTtFL5URUvl1aGjMOn7TAXbfksmU1izVPRwqNLI8JFF/ScJHw2SIjic8DnBMvwo4GZ1mXoxM/KXykDJOgT2raxbTvCtqSwWbHSRxOheamCzAMOwnuq2ydVl5iAzyxwFXYlZDhSeuiY/qCLG57h6W9cMZLN4eiMRtBcZalkv775PTrEDAAiH1OfPWsgMkFJd5Wqw5/dVP4rSuEITTvFtom+JT+cyEY7ZdyhSyZQT94tqNgqNKE4oiaPQ0FF55cmKdvezezffiX19fPJsdrO79Rck13zQbgCAgpp/qz+UF6sJhTx6/pDJuyf8aRS2TpN4AETcK4VtE5M+tny0NJ7HH2NnbD7qY/3Q6yE7CEDBSLVPsayNsMgEx4EpDKFsNIpIyGVsHDFUTaQU0qLQGtdqHPTLAi5OxqK6LvnwCV8s1s8l99uAUcORTCYRbaMEuiMaV8ICcOr3ZOIM5zSACJpuAJE2fxyCVm0A0ahXpK0tbe469Rvdt18UZjSKA0Z5J/moYWDJkiXOcFqnqXFSTgTOcSvjxCYrRqYHc84i7wXFY1wnvzlef0TU/W0tb1DnYuF3REvUVthvnAVSIr3N36twnnBAf/H8hMvfklTnK8vzTsdvYMetW07wgQGpZApfLlrhDNADjVbnb0s/+Ax45QNUXtlxQluBfXtLJpNYvWpVm1aSWPGPt92XaW6VLCquMlT3lYAJhtqkZqnDus34QjPtYPMXLYHhu07lwP7tft2ubN1ygk9ngaYcTi/R/IDizTMAyI5oiHlX/Pm90SSMEDJOhEubEeZGOJYENM3JRCOvlVozXB2nRCrj2HuJvguRPBG/PxMyTHdXkLqDPgaouGI8opDE0MEDHK3oaFSHEdYclJGKlABwdTAw4VCEfpWPyhvPgdy0Oi6iY+m9z7u8d2ZFCrA2GxQyqhTtl1Y/V3fSD9W25j9qS6TNLTNZ/Ub9FK47MMOQsXkWSybLh/uzb4jYKBfMNQV6CJywGtwXXdFiWQQpVv3I/h7aIHLTUG3OC6t1GYY8GJcmO2KR8Oc5nvyZqn5jDJ68dKf8oU/z5q3VWYw/YBfYGfVMTclYjUuhDpOQXybdVJ7qkxJ5JGTNOGERrluwoLR/LWc7zLBFd0nkmsN8AZDZQwTtW1fKyHMMMyZO1pbIfFQuV8/mfU3h3neXKW+K2eh79VHjOqqF0bu8lzN+s9Cg6zpWvCE6+xwfsqajbVTXN8XTi++qssNbhMC/QeLhn64W7036MrcIDCMCNDJ/wgyByVjXGUIjmUPWBZjZzEziqC+/pi2tW07w31VLpVL4dL5CWgXRrQ+Wdz9fhH73vaQ+yIRYec4JbdYeS4+i6rdXKzbNVTe22Xl3plWfPhWxZGKHuMg7YqlUEouWqZh5sdH2E0BXN6dgiiQDrrF17DY0iNXTuuUEHwm5vFjAZcXwDUmEzQxWIh0i7ELqttD9NFUMjWg1T1BHmPHcQgvQ3ONpfPuTw8sVf6oELq5TW5byY0zXz6Mm+ycPan+zVa4r6ChhqfOms/YmjI69JKOQGYnsA3oRi6aNBQAMzgqyjYQVE4X6JoKUl0pM+ys5f0EL1zPU+ZgTgGZBTJN+gJpJf4edZ6jU8X2lRLlU7nE6h/xkaqAzhk7kx8zXylJPexyPgMiesWF6CMwG3lW0RJj1yUIPAFCnPLPdVkkRCMb/c4LhsXjc4SJ/vdHLZlmwQd1rsellrRCh1TsqguoPvfO944OeIlla5aKE+L+lCj0yE5a2utn7DLNSYJqfdWGGNNjqOgMhfRmRPmNWMJElUTURfu46h7BP4hWqT4h4yXqKs7ZIglm+sl7FNRd6VGSrsCSjfB/2F5zh8yRrSkJDuxcoVMwlgAEl8Niinup5lsiaQUW8FSHbds8nXkqG40csLJnXiV5e3j6ZT6XyG6TXVp7z7Ji9HQ+pfjUXySK2eC/MFVmVVW3nmkufem8kgKysNxar83GeaEvrlhP8zrQBY0YgmUq260LT1mzMsIFIJlPQ9R1vQ1TXUfmDvQBNQ1TXsfStj3b4nJZloeqsqepDJgPLNFHzx3t2+Lzd2aYePBzpdLJNnul3zaJRHZVDhB2UtRHVdSxavrxjG7WN9rsrlXIkgDbxGrvlBG9ENA+aJr+XyJ2Ih6iAfFV/ybXSiOhZZJlZ6OPytsSRTCTw/PsqJk8QSY442RjU3yC6dvQ3JObK8nc/HGR42+EQF+TERDeCruwi8SziSTz3vyVOQWPAzVz9ROLDjOv3l2xdtq1c6L+YqzL8lr4u+vB5UVTuNRrryhWCW7RGtX2QeCGfyWd6NWSi1MW4fqDOv2seMHv2bGgrBIl/vRJV113mxsa5riEFz/GBxOCZlUkEv+8wtWW5NL8aJVGpE3OX45dLPJ0IfnMmSH4TJUqxdRL39cfWqT3OuDDDYtyPbCk+F38mLGOvTqnHnL+l00nMW6K8EDKhmPlM/n4fS6CijLd4SDw5CsLQSxJvJjNKxd6zpcoD5fg36xq8+wMOX5yxaZP5CkLF5Jgm/Zyc/rT8VirKSuR4tUO+tDFbKJmhPm9Hd1hRSc+WGbL0qgfK0tB7a9RvgF44+3xOIoIn/zPf8Y4OLEiictQuWLjR6y2v6aEWlPNkbiADis4b11PoXRXkhsfWKS/ErJCxKwqrGYnBc82sp7BizA318JispfmzcVc0ZtokezXXuuUE/12xgQMHIplMItJOKC+q6xgzpC90XcesN+a1yzUCC6y9LarrTlFvTcBSKKLj/7gg343tOzHBl/rYMm7mopcBQtRvCBMlI3xjnUwOxhOtnAlV0xwWzNAy2T/szYwdJDz6jwRNGxEv754owVH9K/BqVzAuSIW/PIlbtsQS+MfHyxzET9QOwEEsZIZQ9Y+ogcc4OuikyDGG/fZcLL3jaaBvD1SecJBzHJE71wmY1VsuLIaR5aoPGPNnbDOPbJyWuIKOjJ2T3UJjJiFZGET21JwhMuezoPwr2Rj+zFcakb+Zw4DgORnXJ9of3sc912aq6fCe2LctKe+1hggvnhmKfqPnVuLTJuLe5NsT2fFZ0dMk8q5Ly3iQcW3KuCWbI2VIlS4Zb2w3+fdOJSphwJCvDbiJpro0bmVYhQvmLFbPhZ7ce8vVZ3ovHIL8TbCPqMTJODPZXAVCT0mJ16xTc6i3GgehDWo//nY3yBITc1ocTyDq9crDIfWHBQUWXvt0scNwo/1oz/4IhzQsknUw9i3b5yT9ymHMYQHgMr2ooCrx/TDhvzB2zDXCDFpbr7a+KmVGnnpOe/Zuv8JA34kJPrDOZVbUQNXd02HpBmp+cUtHNyewdrLrLp4KLR13PhumhWefrunAFn33rFtO8CVmCN/r66LspoRXB94fi6cxnhwVlBcmOgx52Qx+Iy/d0crOZ0xfff54lUI51LbhfqyJ+bnwYY8YopB5o6AFtpMsDcbiN8j9aJpC//QAmhObIkZ6K6RY89qMjRZwBDDdnbCRMdE1DYiGwjjlAGGjEG3qBma9Mc/hB/M6RFREdHlMTKGm/fL1qLn+j0A8harrr3RrtPpk4lmNCO/6QkNMad9ancrdB6ktM12J6HPjzIy5U/mSjA4f+uchjOuyE5Y2eFk1fA6MqXP/DYJm/bIrHB9UjXxveRKnHDQM6VQSkUjUQZUEhmnf8Y6WDU8g41an/goPEK+GoXl6CFw7aNIUoqzIuR3qJhFpsw+o7/5xTPUrmUQ0eqmje+moa2zFdfc8A0CxUK45dwIW1nkrMdHo8dGrpca+/7dULH3LDGr+RkyfZj/16JmDQuMjNKJRHL57f8dLdmvHaohGdbwvBdEbU9QLymkvPT+u+/QQ73GNIPv+8sDoETI3gHo2wr5r1dV4I0uuPaxbTvCBta0tffAl4IAR6oNMmD323W2Hz2sZJqqmX6E+xJKw9Chqqi7a4fO2hVVfej5iWnan89/TqSRmv7V4p16TNnXKZIfBcefjz2/y919ePBUNza2e7/yhD1phNATdp6lumBYuPm08AAW2TMvCi892DKL/4MvFANxQJouf9C8OY9jAPh3SpvawbjXBf//oCUjF47DyLLyzLOHUf2S82F9JSdO8SN6RGpfwbwEZHk459HoAwGd5PZxrpgHMk8CgozHT7D0vkZ1bf1I0ahij9zFThkksn2gkIYisxAphzxGDnGzViB5FIm2jVZBcLloh8iEyKjEjnmuyQo/DRiEqkXisI0zFuCE/C9SJ6FGcfMBA6HoUT785z0F8ZNPsLVm6DqRfJmiGSL6sCDXPP+teP55C1RXnAef8yLs/WTHMdPRr0DBeTtYNO5ntZWxeGCQOWgeA/oLg9xqitlIBCfUtiGVTjkZ4Qn78/go81O0m+mP2NGPmrJzE50+NGmoGURHxsL2GIp1KIqSpfvWvkxg2y8+p8UV1yrRktNLzpIeQxzUB8UgWCH8/JaqSfk+AazcrN7bgdw8+i2umTXSqCjEm/X/z4ljX0ILL/vQ0APe39J9FwgmX/XcTJU6uC3AdIqQBl936uLMWFEvZuPHiiZgjY57eyjzxCLg+sEq8JK5rkNVDnR+yW8i24W/JZaqp7caYd82JOSi8P657RUMajGjUqQnL30tE1/HV/CXqnvYYro55T8oncmwyd4P1G7iuxd8UIwH8iTFzPe6GsdrautUEn4rH8ZM7nnZ+SN3RUqkU5kqK/cKN6a3svWNW/YsrEEvI4KN7KbPP0FF7wDBNfPruf9rsepZhoOrMUxVP/jsUm0+nknj434sc6QNO7DvbDNPENdMmwthJ1YyihoXLzzgJhmnhgcef2inX3Babt3AJklkvPbOysvc3HdJprVtN8H5jTLqnUwlePbS1MS/SomYM43xlTOiLyxeMTwvftTTHS9WgOZoyPeQ6ZA6QtdAkanH5Po0ZxhMtXe3XmlR/XyWZteT2kqlSH88ik7UxXzwGonMiyA2tbhCV90QkH/WVDXLS3hmvLc6H32LZNGr/cJ/6wAmeyHlgOaqmTkZUAw4pTuFfdQoxk2fMe6C30ksyGakF4jARcqzmljuBihJUnXnqJn/bxIjcP/JlZRKx0/uiZ0LPgR4A4OieOCbjo87MQyoUdvalU8B+HlEudQTk/cpYuOkgc+F+R73qpH6NsPU+lg0nE0MuSKCyIcbsY+/+/mUIVl3iz7pQYuwMoxAQENUys5rUwevvdIuMMwu3We59TK8ICo2Qg/55rn7F/O2oaxEZHyw5HZwoWZdgWJk64cZYFufe9DhWNWUw49rJTj1crktRd55ejlsHWV3fqeEgj5BomAqxZPGM6uX1hvmb8esG0RN4a6UaL/ytHlSp9tNsGwWi675RGEWOLtJiqfc7QBhfHNsci0TwwqZJiJSCyfUpjtF2sG49wQe27VZ9/tmIiatomSZqfn/3Vo+xTBMNjY0w+5Yjr1DRHUMaoOtRvPfFou1ui2WaqLrqAvWB6d2xJKyIjppp1273ebfFqk+ZjMaW2E6p5lXNBdVOnq36i4umojUW22nIvjNaVNdROUrJbYSiUfzPLzO8g1Z96fk7XH91c9atJngbSgeC7ADGKols+JnMDyJ2atFQbyIlOYUp+eHl5aI+eFe9Q5qLkpnZWJpVsKJUqCsVg71a5kS33Jbk1FIFXN471xDWt6o3faPcI+ONRIb0FMjeAFzUyRC47ltOaJBzFAiTJGZn8NLfX4G2bD2qzjlNIfZI2FVzZKx8hSgSptKoueZm4KbbUXXJOah95jm5UASVwwY7MdXEFsIN9lAVn3QQPT2E5jhqHp3hNlyUO9GaQNWvr3Q56/m+yeaI3dWWFaQYXydThnx76tIDwHCFpMhaKoKqg3nbY1xgVN4K0ScZF/nSmeksPSgvlM6X8D/TLLg242fRpFMqA5lGlMrnOV/i0buIN8a4M7uUzCheh+OZ55m3XrWfHmDcF6tfIJ4gxwTRM+AygIoMDdlUDDOffhGA6w0cMED9Nt5eKhmngoS5WEnWiS4VvyyplUoEvWuF6qT6WBYhzW37Wl91I3/9Wlqj/Mb1fHXeMrJvWr3rDJ+tVvc4wLfO5dZ+kPUR6bNDB5tyvDr/crmvv3/kTuiH7tYfRkTD14VqbA3fRfrtK5FD4FgWJL+klxrrfSSub6yQ9SXq9aBt6q9uzrrFBH9U1STE4zHoxncXYbSlWabpxMK3x6LRKIYO6AM9quOTuYvbrl2Ggap7fq3UKX/zpzY5Z/XkyWhqUTG3iNY2+h/dxX5+4anIJGMwzPbtE92wcOtlqrg5F291w8LVf5zRrtfdXtN1pVhJEbm8SARL//fxNh9fffUlDluJ1l7jrltM8PF4DLc9+jw+WZVEKmM7SCdrk73iZS847AT5TBVHvuVp/HtcqsQkHI0YF4rZAPYVTYo1DKXxDS3x6vCuAwEADJHTU1gi8Uo/EudnMlOcajXNGWRttQVctMR2M26aew5HSyPqXYcg6qM3gFQaWn0LEI2g5sFHXTXGRRJfbPIqWILaMpGwyk7l59ICLH3rQ6C8GJWD3GIMTvxZdOZjXFeIqIFdV0f9FpUF6NDxxwj//r15qPn574DFa1F1z6+d8+KX1Wq7cLXqo3FKj768SbTO/RWfCr0/pFgshtnPvQTAZckQpX7Sqvp1Y6sXBSZ93GnquztaRfAyOPxWajI3QcO+/aLOceScmxF1fiJqxvp5Pucycm/rRP+FXhvj2eSSMz5NdEz2T4mljutTpG4gV7xS04BMMoaXXlKosgCi2SIzMNcZfrSLAgHM9eB6F/uGz5F5F0T2jJGfMNLCCU/XYGOMelFq/5+dOwElZsgZ4/zNcp1jVC/VZjKXDD/hrcnL4wdknczi+oavJoQ/H0RsTlKNx6IcT2K21LCl2uypPxiExooyFPnGVrxArWuV2974f3uh9c1Zt5jgvwt21mHDkUolEY5sX1ozOc6kxHG+ZSSkqB1QWjQaxajByi3lD17Xo1i8ZMk3HLV1s6KGSpICgLuLYFmWSp76BqueOkWhplyOYDSy0xH7bsMHIi00Vz3afinq22NXTJuCeFy9yDWg3ZH7N5lhmLj2vInIz7Nwy31Pdlg7tsX0qI5hA/pAs21EozqWfvaV5+9nnXaKB7HvzDHXLSZ4DWoC4ds95os1Mp7GFXnG9RhndDi3TV7EzJg6ERpRyCYV0ySuW8E6pj0l3stY3Bw1oVFHnvVOh5sKrqxMenn6RHTklJeHQ7DTSbz+mYpHMzZLtMT9c+mhZGgQudc3teKhWS84bIGyeompS2Um1DUrJL5QtGiIyMmpJtuGsWxyf/v1VB1CjRdh46zLhvHBV4tR1+plAh2/zwCEbdtpa8b2Zi7Sa+EzLKxQ55szZgwAYO2gUTjt0ENw/AjVt8kMMGH8WLeEnBxfV6zaGZYkwsbWOGY9W4vcokmMZXOckIVU76vsRTVIuuRFogdOnvkGyuFI32Ykrhtm1m2O/k06lVJl9+C+ZFnal+yq5b4MWVPQczyj/r5K2klNI2aTktlCbjlf3ow3s0bCLsIp//4Aw3P/mWQcTz2rvJmK9fL8hTlCD66fZMVSX52/BUuyMvlc2c/0jsmT53jkb42/rT17K4RNHvw9jyna5AVTxyMScp8J+fl+HSdud5fzcPy8tUQ9HI6r/aUeKhl2/I3TI4kVqnwKXm9wgTebGHC9CeZDPP3mfACq1vOYIX2xWrxSxHc+Yvdbt5jgA3PtFxdNRSIec4AqXWKzHdGYFTVQdeFZ6oMUCkmGQjBNC7fuJPRVNXYsAPeHzR+kk9gVxNa7pJmmhUvPOAkh3fTQOAPbNusWE3xlaT6mXzARzdkorr9zpoPM/OvvVGskumVMlRodZMMQVZAjy7igEwf0a9hUKkQeYq1MIjdmTVIXhdoVjsaN2r9PUtw3QfyrBcpTaW/OmhRsuJOXU2fVJ/tdZIaQScXwwKwXsFGQ8xhhKxBBOUwb6m4zpk4uL1krZARQn4WsFXol9FIKLdT86veO3kbrKLXesDGWxVmTxzt9SPW/tKajpMJNGrFtlSW4Ypm67peimc+JeWGdF83S/jpX9eWPdjHx3AsvOdfhM8r3IcXevmpbgKvDzzWamK++7BYT5tKbbxMtTF7zqjoMOPh7SKZUX2dDYTQ1NjixW8aN+TIiiiQapdYNPc5SeUeR+UEmCRE84828HzKneB9USxVH1umz8uXKozAyaVS0CrOD6puszfu1FN2WbEwqJ4bFc+pDRgjzE+TzMHLA6d0mVV8MljGMjxd6rlPWp8LTJ/c+qpD8aSePg6ZpTp0BjmdmuHJ9bX2rd31qWE9v/QMa+5YeBtc36KUzI9bJgt/oMl7mxKKea9ArXtOcBbQQdh3aB4YewT777KPO3YHgoltM8DU1Ss/iB0e2XT3RwNrHHvyXKo+XyVl8u+xHQzqwRd/OLj93CiKJFlimhZpnn9nq/slUEqvf/hQAsK53L4wZEtQL7c72/z5R4dhrp03osLBMrnWLCZ7Wrywfv7/8ZKyJ67jklhmodLRhvFmVRAFEMIzdMwsz7ePg+mPuzUnvF4zVkqHir/9I7KC1+BA8kT5XICMK5VQS+Quq4fkZo8/V8wCAobF69QfLQAGyGBmKAynhly9Q1yimNst6YZeQnfKBih/iv7IwRBbBSonBNkja7vjvqy2z99hm5ggIpzyWcDMXExnbib2T29/Dh6TydQ16NIpelZWe74moQmEd//xwofOsqK3PjEkykYp97IhGX/WlT1f5slYBjBbvxl8XYLho2jM/guhwSI8wXvu/v6C4uBh1dXWo7KvQKmPdHCe2RNc1AJGoia+LVQb08HQCIdt29mddUzOr/qOJ1gwRYTjk1cApMtS2j4zfV75W44kxdzce7l1bYoyfSJ4yRE4dXVd4HqiX581sTCoi0vvkmCUyZwY012SYJ+FIq4pGEGvukmnCcUPkLx5khVx3w25DAbjeTKGhYUyF7nhd/G3SC/J7VYyh++ss59lqv4pB1OmhJo063+I6zhXerkmXFDrn3rdItYFa+ETyeljDDZdNbZeEpe21bjXBE8nvfcjxHdySwL6N3fePuU54gS/hM/ZWE0ffPpVbPK4jLJvNYtWqVRg7dixeekktSPoLNjPRjpOPbW96nsC6p3XkgurmrFtN8LRhlQV4ZvopAIDGTBRX/l4lTBANvL9CoRDyjH8wUCok+ZA5kR1RaGgLIVljocQriXpYQZ6oWaBVomeJ+rpFYu5kqCwR9CNcbuc8B4zEgF2GIJZQRb2d7FBp19A6OY66KxualJb5hiY3/s9rEN4xtkqddWpV07ugPgv544NU1XqnwhIR1wDfPUqbU0a+XM4GbDcmTu/G1UuR05R4dXuYI0DEHolEcciu/RzGCaUQflv7pTRT/WUPqYrD48g5tny5DrmaPHPXqb7pJWsv+61eqtq078FIptJuWSMA9U2NsAGEw6p9lmXhxBPHeu4lLTN5MmPDzBHQ4nOLhyLQDQOD+qk1iGgkgqWffOGsbxSJYkFKLlwkDJaEaJ9QmZE8/dcXJpzrAa4HSq11IneiU5qjbc51GI6VljgwV9ZeOF6o5slxwe+J6Llmw6pFlqzZcNwQuftLJHHNx1+JS9g6ZatlbEvsXjcsVE8Yi+KCPMycNRtGk7SZVagirJu8eU9Rb/YmFhkJdXyJqa5PL4lzAptrUC8mJ59igzCG2BVtXSi7La1bTvBE8gBw4BFdOy6fTCbx1hddoyJ8e9jL76oQEmmUfYoiOHS3fu16zWQqjdV/f8tdYA5pqLr4bNS+oBC7DVVInIvvtCZZvaxrzeIC0T3327yFSxzaY2XfIB6/rXaf0CbPO3Xz/dqR1tlQe651ywneb3w7E7GRS1vVV71tifL8VY/IUmGMniv3RHzOvkTB3JIrLHHKsKBjolgHDa1p8H5OyXnrFLr4rM5G2nav2yCu/yaMENaGBBRi39jkVpmxnWQAtSXCopdQ+67a7jtMbRkz3WOw2r4nSJ9InUjmna/VVlgU+MEoda8sIhTWYFkWbr5kEgzTwtifPwIAyGa9TBEyQBiaod4348j7sl4lEWM2gQhc5L5/fy+jqIdkZ/YST2BpvTp/q48hk/u3+rjq9+F8fiEN1b+5GrGWFliGiZo7H1CQTtgxLSLhQF+E7Kye+SGcNXUyUok45n3+KaZNUZNRJKT64qEn1CTlkVcJh5xnwbUbpwYw9emF8UGk/umqlKevyKZhKIix+75Fkr0s35eJhpKjORNX8fbqay5HLBGHldXcNRj295eC0PncOY6I+jmmOZ44jqhdRNYVxwtj5T8crba8HnMFDpLvieilLkCoQnkEpmlhwrix0E0TjzwxG6X1XiRP9o1/XSWTp37rDjIvUp/rZU5gn5i+2g3Q5D9cN4Obb0D12M5sXW6CP+S4iUhIth0f4aDyAg9qz7X+PfNRM/0UrI3rOOkXj+6kVgYGALfe/ySyNnDFmSe16XmjUR0/O14p+0XDKmTzKkMB39IuPWYEsmk1eRlSACaq64jF46i9+xFUXXz2tzpfLB7DX2prMW7sWMwQga4iQ8O4sWM32Tca1VE5Yiiiuo6l7326Xe1vC4sl4qidfpu7sN6Jbeas2QCA8eOqOrglwG+vOK1TLahuzrrUBF9dXY1P3/0PRuz+PQAqlfqa257AfVdXb/GY3IVXIveLvq+QEfnC1BYRSQ4nBsqYKlkHusQuc7PdbcDVcyajQM7HTMYGidkVf75Y/d0v1EHFQ8a3BT5Qp5tb6oEP3SDxS1aOyTdR/dNLEUslYBXkq+xUIvd1wpohAlksmapEXOQ509gGVjnaZxfplLT3eLIpiPjlfKESxY/PreiTsd3YOrNF2QVcXOXfC4UFM1f48Ky4M2eNOqBnno5n317gxJcHlYax17BNQzZc8NwY88b8l9S7bIufD0ngx5kkVn/4ufpipTBAivPUxB4OwzItJbxmGE6cl5pE9Ax7ikdXHM6iyLIwduxYfPLxx5gycSxMyy00TSYHGpXHRoGqyr1GA8k0wnwmguBTZaovyX4he8vJAhWvp8yn1Gj5qimVCdKkuiQzcgvKZbzWtyiEnatL7lQpIjVHFgj44LiWw+dPVgzXkVjX1r/CTJYNY/bMjObxkijnrAmJl1s2WC22V1dXIxZXk2pIAxrzRCsmSV0nYSKF1L2vSQgLR06bxx+zjPMK0YshcjeEZYM63zoZPRoAhcKK6syhGVqXmOAPPX4i4rEY5n76Pnbf7yD8/PYnAADTL5i4zecYVlmAD+44DQAw7R4TD87oPBVk2sJiiThq7/1ueih6VMfBu6pJXpOXc1jX8bf3Fnj2++mJI5FKuotld4RtRPVv1oOpuf0+90W6DVYzaxYSWhgTxo/FE0+/iCkTN0XufovqOir33RXQNIXmP5qzzdf7rlksHsNskVMIbOvWJSb4z95/C8N33Rt77H8QrrvDTVcOa5oTy92a5YZwjjvhRBgRzdGAdjRDssI7TnvZCIzHEcx4Mh5tICNZncyCiwnCq9DE9SdyI1pmzJ1ohXFIomdhariV3tW2n1SSRz1dihzmQTrj0Zd2Yqa8FjNPeRPMTGVMnkiF56RuOpEUjyNCY4yeGYpyD/nlpdJEG5edMwUbm1oQNSyHV8y+W9bgzSBkxiC18YmOG4Qsbvl0hnKfxesfL3QWYfcLq5hs2R6jkGvnppbhumQcG/+SU2KQ90AvJ5uzXpGFi2jJ9Nig9itjQoKhXHNH30ZQXiY/D6ZpYuqksfjkow9w3AlVMC3LIeWsCas+r2hSIZGlcyUXIZFC5ehhTvP0tKwZpdSR9b46ATHJASBIdjOvJeO5t5fnv9yn2T6olMH5QuCQMcBrn7l9wxg62VJOKSd5/tQw4jgjwqcXxFg7VUgdHaYe3uM43vjb4DPg3+XHpzeq56pnsyhOJVAXUX3IxOx1sn5VHpI+EVG+HvJ3knec3ANZU6IXb4gA3KbMIjUG7F0lbwRA74TPK+nE1iUmeDubwQ33P9tm5yvMz8PUSeNgmhaemj27zc7bVjbgjOORTKeQ1iPQO3m1n2+yeDyG6+9Tz81PQW1vC4XDOHKP/sjaQEtzI3rk5W8VrbelzXhSjatJJ43Fw0+9uM3HRXUdlbsOR1SPYunCRe3UusB2xM4745ROH3undYkJHnCTRnJ1YCKhnLjmtzCi+aqDDkf43a+BUolF7tLHsx9jmv5qSLm661nbxjvLvBltQ0rlAIm9m0QjjLFSr4PohnQ81mwMAQvIA4bL1qAyo8MwIOq2DKURkovg/XF+7stYJ2Ok/1V8chCh8CbJaiALgjH8QVJ3ktx7X8FRxnf1MJCX57JozvzNYwBctb83FqnzsZIP10d4/PwN6g+sZkRPjc+E/HkyRMiO+E9CIctPvlbsjz5zF6LymAMV7TG33YCLEgtMVJ97JmJUTkykYBmm23efqvRz5MnLto4aQ2p9gpnGzBXIY/ZvWSEKDANnnzLO6SLTtDBDFgqdrE6i3XQGSz/4DKgoQWXv3lidpNKm+jtZWPRiWpPezxwfjYJalzcw21N9X5oX8uxHrwmhkHreHCMAMFLWNSyXKgrAHT+fyMuH7Cr26wEj1JaVtegp0s3o6cts5XWI7IUB5GRQy/mrzzwdsXgMRnERUnkmSoVi0eivOy8qqJrE9iPCluFaDPMgEvLbpC5VcaoFm7V+ykPV6t2/d4XYO63LTPCBdT27+5FZaEzYuPT0zsdd9lssHkftQ2ptx0M73UGreewJNEfVZBJL2zjt5HFtdu7vksXiMdQ+8ZSz8BzYtlmnnuB79+2PZFJlcRb5sjgBhWxzGS3f1qw+5aj67dWw6uOqvmiZQhfZPIXoiRoZcmVW5qF7DUEqmYJt22hqasS4/QZC13W8+D8VS10o8wO9jkGlCoXoRGyMb3+yCAPOH4+NToUgiTM3N6JPn97I02XRbbFCkERm8/JKAADDygRVN8vWygnnEHkzzu9XQPSzaYjcidQYlzZ9/HfG5Ml/5/qBaNHkiXLihla3Ek8mm6NwKPcwslwNvS/WqvMyw/VL+bxnH5EdzjAW71XHJIOElYH4rJh8RK2aNX0HAqaJnsf9EJFoFKtf/H+ePqqeOgWx5hblbhNFUkmTfUNPa4DE7AcrTnaZLX3ymVS/IroVZoktnllC0GO+riGsAUVS3Bxm1GkHAAe9fr0+DS2sysLpUR2PvaY45OTbs/oQGUbUPKfuCr0hInt6N8wdYF87a0mZjFo/2Guo2zfsA2exQ8YYvcc+RNzUnJGJl8ibGaaLZJz17+k9fowb0wbgxvZ3G+Q5b/XNP3eRe1nxJlXOyEW3Ir52rFZrAVpKPYv8QhXjJwOJeRNsfmsPYX9J+cZ4WQkA4Iypk3daeb32sE49wadSSfzrk2Xtdn4nVLP/wd/quFQyhS8XrXAkeUus0HarBCbTKVz9nHJn+YOlK37xfvmOoFVg229/e28BQhpwxO79N/lbLBZD7aynO6BV32yvf7wQpq5hn+Htm7Xb2S0Wj6H2yRqkSgq2vnN7XL8LhWM2Z51ygj9m7CQk4jHoehQ/PuskmKaF30nhiFzWTAjeSivbax/M/xKVpx6FRFh1hy+s7KBPqgRahoEiI+RU3glpNrRQCEfv5UUlPA+pe+RPM86sQUPYyHPuiUwQsnce/ySGFCIo760KWL/7+SJPe5yYeyikYpxEkICLPslS4L78TKTFY4joGWMni6BOOsGXpetokByxu9qKd9IcUai0okAdt6E1g1AIGFjKl5c0R16OvBfW0CTXm+sc9NiI0OixLa2XsndbEAgiit1bPIG1LRmVTzDEFS9rRhhpaE4Fnsr5gsSJNtlnRPbkbu/i6tkDcBkngvSb91cMHku6jlWMjEwaYdiomiiJX+mMypSdqcb2BvEc14r3kR/VENZ1TPnBIABAKBzFjNe/dhA4pRGoPlkhKpPU3ud+o/LVM6MXzPE2d724Oz2LgCP2cLJG2TYALrLm8+f3ZLu0Jr19EPVNKQNFk8a3TuHkWbBvxwyU80qnSR9n9QhSJQXOPb0p3grHQ5nkIOzfj+sjPo9UvFreM3MDuK5miUuZyAAXnHlKl0brm7NOOcEn4jHcOeMFAGpcXLwFXY+2sn12GYXa6bfhpUHqh0kkTdrZ6F5SNENc2sE9Nu22t+YsdVLfGTXqX0QBJDW4/jlfueZ0M/2FQzZnf3plLo4Yamw2mSewrme1z73ghrWaYqi65Jxv3P9v7y1wxs9BY4Ix0J7W1dH65qxTTvB5uuYwUVpSNooL8vCzcycAUAjQMC3c/cgs2NhMfdTtsPUFRXhtxBggsW0BfaLPPkVhTDv9FDQ0KzT8q3uexW8um4pEPI6oaeKBx7YtmYpOSMrJ+vNO/IVGCJrmqgWulezPBSMUZ3ro8mWw8vJQdcFZsAwDNdfd6ro2rLFKphDT0cnkYaydCw3U/2bglrF2xt4dHXDhQXOyEp5zgQhppXT35RbSXBIFtWeoiOj3Xsh2eG+5OoAVe/hSXSQ6IC1J6r+E5XyicSPIjDU3EzlKi5oGjySopWsIa5qD5hzjGglRK1EmcwmoFbNY9iOrpkK1saCp2dMnfMBxW/3dFA8hYwN2geX0KVEqHx3jxazCFQ4pzRTut6+gVgccCwDhWtG+/QznOMDVyGe9A35OhU0cfnwVyvNN1DwmC83fk3g82TFvSPKVnxdP/joVVLlWQw+QiJ41fslUYw5CSZ53f+mz6kvOU0Xi9Twsrc84XsoAyQXhOOFaDD0/S9rH5nGc1cm44XijwmdX0JPZEeuUE7zfcrNOW5M2zp3SNoieujY74obF4zHc/cQLjpeRiMdxwwPP4pfnbXuW7bZYNKpj2MA+iEZ1vLYZ3ZWaW+8E1jWi6peXt+l1u5NR+yWcU07tgw8+6OBWbbvpehSH7d4f2ZCO39V+1Wbnve3BWQCAn54xrs3OuaMWi8VQ++zzWNDa/hMwQzNdPRyzOeuUE/zHH36AyeNFTIjwgzG/jI0eloWBoSRKo8D3y7YfwifiMfz6vmcdFEBvIOWrGkNlQsbOSeRJpJXu9zXnTsCCLz/FrZdNQrGpIZaykbFtB2UkHI43PJ/9NUHJ7aZLXiSo5b9LEnjgX1+rl9thg52qRURuX/RWrnuPISFofXrh6D9dh5ICCzVPzXazE4m0Dhiptv6Y+xLRtyFiI3uGWb7kKzPmSk+AvGWyFyQOnTSVxxDW/P6IMsZQibw3RaHeyjrsO6OXGrKsa8pYPYfJ2pRXH4aOSDZr45O5i5HKKMlZuuKVvSpQlhKGCPuI+vyMF/P7eRKjp1In49HUPn/lA29fCIebDkKIbBnRWA9ns9DSaSTyJSNW0iyJrNknrBH8xOtK2XPi9weiLC/kxJPJvmJ1K/YVtWdYe5ghx2RG83wmo6TVDmFRSrV5MNlX9NTouZH37tQJkL6r9yJwh+NPBhL7kGqRvDl6RcJMykgWd0rT0KBFwIDnPFkv8GsLtaa8jCAqt7LPm+V+WId2jIRbWUULyHTL0Ayt00zw1cdVIRaPO4sitc8+r/7AiYaJOTnC+9trR5wwCYlEDIa542/sB2c8hZ55IYwdOxaP17wIQE3I7WURPYo9hinGTlTX8cGXiz1/v5+62VPGtVsburq9+977OPq4E2HYWaeAR1eyiB7FOYcORtYGIhEdUx/6bOsHBeax6tOndtoiHW1pnWKCr66uxuvvvo39dt8LSGXww+/t78bk1lAnRl7B1D4BVEB+Oyb8RCKGWx96ztFBISrg4irjdscMUC8bW9Ah2TDrJAZfnlUIrzlpIJ21YYSB00+djObWGHqX5qPIDOEn06agSSo4jfvVrM22hxV2HB36jJcXn8v9v+8fcx2+80n7D0Q4tKlnAAAhw8IxVWNRnMqi5pY7XaQ1UuicfrZDk7BqhglDZIEg/IG+mCufAyv9kE1DZCcx+xKpYZlI2whpmlO/km0lomLfU/Oe8WcyTxi7b5Jnsljiz8xgTgkapdfDGPzQHqI1Qs8g6/ZRJpOFblhY09CCIXse6GaoUiGRaHNkidqSmUHkzkayKhE/M1bfT1g49IYEnGhUJKRS464DAD3iLM7HBI2yj9jlzFilB/nCWwrJz1mTws+O38X53r8eRSYRFTu5jsHzfbpa/XZIIigqsHDx6eNhWhaef+gx7z3QKyF3n/fa6tNuoaIqNZC4X5OPN8+6xUT8Mp7GnnsO4vEYEDHx5dqUo6TJ+rhkDvUvVvfCalWDi+npq3tpFl0pQ/qmT5H3Rd6dUXuudYoJPhaLYb/d90LtfY+5SR9d1GKxGJ4QHfB1LVnE4zH87qHncI0sEu8se1jWLc469uidet2uYol4DNfd3Xb6Rh1l4YiOR84YiXA4in1v/nCHzvXYTCWhMHnC2LZo2nZZPB7Dg0++4LyU2tpOP3Vyt423b846xQQPAMhkUX3JNMRCJJ+HYVkWau6837sfV+MBhQb8SHQbLKIpjrGj1ijfE7mznuOSRvWZKo7UTXGy5qLqZZQPJWA2eXwVCkwT5UmFRsqLDfQqsjD9gokoLsjDPn0V+pkjXgmvT34y48lEo2RLcOWfsVmiFk3awlh9xhueVGbqQN8eqD7nTMTicVi6jprb7nU5z2SKMBbq1HClsqLcNNk2jMkSmRHhkVkiaDiegx4Tadu5J6LMjPQ1275CaNRc9+C9k+dMvZeecoIVjV6vq6JA/Z2sCEe9Mu1dT1mXcSeO74uHhi+Wqi0RPO+R+xLBUxvf772QA871DRrHKsco+5J9nkzDMgxcdNpJMC1Xr+driTfTaxlUKuwcei3yaGIpG7989gsUGCFcdexQFJnCKPGtazhlVOV8XPcoMlUnsdoV6bvxtI3lUH3Tj3kSZGHxHurF4yMbi6FUeifsQwI2ruHk5moASBV5KzFpUOsp1LBfI9m75TIOuE7FGrtHDBWtHPGObLlesxzHe+b2u4LcaZ1nggcQSyRQ+7ziv6PIQtX4zq9hQps9ezY0CnJxvQBAzcxZWNDMCduvjLTzLBaPo/bRmag6/ZQOa0Ngm1rNzFlYGtNwzildZ6wH1nWsU0zwlmXh1bffwT4HHIx4kYp/ms0tCkERLfEV35STaZbOej9/gx0/7mQV2wOcxVU/V5Y6JhHxIiydiEddu1QQklNOKK0+a0R4VM5jm6Se5VDR1zB6KpRDj+CDFSpOSQ44EVSvAq8ePI1xRMavtYiOgf16wzCi+O+nixwmCQBHRsEoLsIJ55yOfKkjapUUo+qK82Els6i5/o9upRpmbRJtMgNRNNAd5EW9G6JQcsBZlUqQ3caIeo6ZrKp6RURNZM44MPu+0PAifMaLqXhIrf3Fder4Hw4SPXA57xG7mJ4+43nKdGqpqPuct16DFtHx+v/7J/r2yEMoFEZLi7qHMNEns3yJPhlX/lpYNIwbkxHyvui5E8Uyl0DizEyz1z8Weiv7WuLamaIesHP6olQ8SKJWej+pnHUEwB0HLUkbsN3xwT7mGODa0cKN6vshPaQylQ9vrGNYJGLinFNULP6lBx5W3+0qmaZca2FHs2/YJ371yaGSOSzMpISszTAEs3qlKHDKmkt9PIv3lied/IeoPN+wZJxSXZT3upZMopAal7JihMqCEKond20dmbawTjHB19TU4NCjTsCt9z/ZbteIx2N44EnlHTQnNxfL6HrGikVH7Tlgi/vMekrFVfVVKlxQ8+gMAEDV8ce3c+s6r9X8Ry1ShjTgR6MCdUK/XX/nTAzrqeOM6nEd3ZQdsu9aOGZz1uET/AnjFbKOmhaythvGKC/IQyoUxnE/Ph+WZeG5a3+nDsiNuccSXv2MbzBN2xQR0ykgm4ZxP6IGt3qQ2q5rldilEJONJoX8KGGqNwta8FM6BdFViHAUY+XkJ3+6WqEYPaz2d9Ur1dZf2cll2cBp37qWjIcpwKxXhyEk7KNGFt4oylPZhNQaIfoM5bgBgBt/Fl1sNztT9huQ9X4W9kSBoWHa6adgXUMrDNN0ELsjVikqkORi5wlCo9Aa+4Z9UV7gbRfXSUb0VPuxlqufUWLLQ14opI5+xS7VZENrFho0jD/mOPVFOq20Ya78Dapv+hlilJJgLkAkrP7+3DNy74IXyRFnPJpZv+Tyr6tXn8kN91F/9bCKPe/6/9v78gA5qmr9r9eq6unZM5nsCyGELQFFRBARRFaTTkICk4SEfZNFUBERROTJqiACyg5JIIQMgoGo76HP994PxQV9PHYIhOz7OvtU7/37457vVldlQjLJZJakzj813dNdfevWrarvnPOd74hSJjnfzL1wnbKCms1TyDBqTecRCEew4JJDEA5HMeGXb6vvh9waSjoWL9/P5t37YzctPaYAHG+U3gqvNx4j14P2/NScJINhzJwxDemUSmjWS2OdViprSj5hTE0EF86chi3Nymta8/FbeOL7dUDYxM8eew4lWivGfQxkmDEvxYrmDa15XHvJjP0qkfpZ1uM3eGbNeaEX2/wXX0EkCJzTg1l933bfkkkbdz+hmCqk5PU2i5eVY9Ec8Ryb2lSzbQB2OoVFs6XNIxPMcXOn2jE9Zdcv+ADHDI1i2nEjenoo2pK2jd/+9hVMnPjZ16+dtHH/bFX3cvNlU/DsCy/j7LN2/5r3kbtjPX6DzxcKSOUKGC2xNbIeqBseD+ZRalmY8KPrAACBNiem9vayT5C49Tr88+3/QyKRUEihqPdqsRExAk5Mk1ofRAVE7kOEY0u9k+ak+oCXr07N6wi1S4huiGbIh5Y4JBF+UJAcY77jhgjqEY+B8Wb+LsfO2D21Scgk4DER4QGON8JjXSyokBgtFCvBGdPOQVkkivqn5jjd7smiEU1zHD3aPTlMXAgDA2GKk1eg2EoRRDgQ0LFVrxdSo6uD3bslaiXfmVW+9EjopRDZc728t1FBdMZuub81Hv3wYi9udL8wQsEAPokoFHqQlVWaPj/7Aax+ldvH4iNhWJaFxKRJ8loxvR5+Vq05IuFhlJEkxP50rdqOESYJOeOC5GvjIRjhAKqskByD+jc9tTaPrjstFnHPTTavfvLSo1XM/4G/qlj/xlb1fcb2W4RFo+dQ79/5ATujdPzPlAdaSP4XSKZhmSbqZz+DuksuQFtO1pX0j83LemhO5mGYFv61Jg27YGB8Qt2w6aFxfzkUYJkWDpH+APmQiSmTJ8ISj54squpWyVu0Sx7KUCwdVnVXMD/WYd30/ms9doP/+gQlCRwv2bkbVT9/vi5hDi1Zq99PXHsZFs1bgLrzZ8FuT+L1DnRFvnDKFGRSNiKG764V29PPKpf5/Mnje3gkPWuRaATHHTYEkUgU6//6Jup/+YQTEyFyL7L6XzzqhFgq40jUda3m0J5aOBLFN45SORk7H8bEX76z2/uavWChppcyjBlatxWJC2eq/SeTWPj73wNwmmKnShXoeWd9Wu/njofn4Qhp1UhKJqnGDL3Q7npEeVOdlQGfVpRQ9UMzjvXYDT6YS6L+pVcwsJSdmtT7JTpJ734Sa+Q1rD/qZp0L27bx9vvvIXHedFglJVj08ksYMLQDOdVMElfdqxo6kH+u+3kKmmjTlYLkVrsrSfnbzA+saRLOtSCiIbWKLRGhsiKN1aPCHU7G1MLLC+qMCUqmhghjoOk8NUbIV1bv0+PQqFY8ikBAId+SIvlhjp0MHaI9XmBkWOStOL4+c4a+4ALpjEJov3pC7YiVirzi2D/WY81SOchY++a2DFozebSn3dWZ3JJVwxvICplb8tq5HyKzUYLM+T321iT6JLOEGv18n7F8KihaRXO0sTWP/3xzGYaVhzBq2CDnGFmtyQpXVrZ6GCI5y4AZj+s2fI12AVHTxGx5eA4TRdSQdLvS8WxOQnsaddddgUYUYFqWzh94jV4Yz1FGhkUvjcM2wgEseH2J/tzJRwxFKBjQWjb8HKtCR1SqHZF08P4G56bMNTZKPGt6jzUDq2BVlmH8BTNhlpZqT5t89qRn3hkj99Z+kNtPL4LaQqyLoCdXLa8hujqIitZQZVDGrl77YZmOrcdDNLtjVJpLTJmMRfUvIjH9HNf/J009B0nbxpa2PKI+cv9Me+gpJZ/Ah15oUyMS58/oySH1KXt+wQL9MHljTbrTKqJ2MolnFv0HAOdm2FUWDEXw0uWHAMEITrzvrS7bb/3zC5DM945QyGXn77tKkF1hPXaDDwfV0zogTJN0ULopyf9jjao6sL1Codw2QZy5fAgBM4bTpkyBQWpMMIDElLO0cFQ+aePVlxfihY8UImEsM6urIBVcIAKvkBDrp6JV/voKhbwPHyC9VAVBmYIqmiQ2vlFYEiMLgswYt2Z1p8TaM4xTU86FQE3QcHVAdFaE482qO2+MlAidaJxc4mAgoDnTNH6HHY9YvUhETM59iyAgegdDykthB8M44aILADhMDG6DrO6UwTELwPhtUBgbrZkCLMvSTU2IyIgEV8qxWuKxHVKj/jhUmCQa6Wt0qrZxiTcT6THvQI+EcjwHCuJ3dIbIsnHmSFcAKxq5o53PvENSEG1pDB0ZvQZWmPYvCSIadmLm9CaG80Sy+ne5aNgMr4FVXY6Lpk2CZVn45dNKXoJcbyameeMnWuV6Jhurv5x7nkuuhD+8qXj3p31uKA6uiWj1SaJy3S1LryfnAcNcBqur+Zk3VqtrhNcO6xSYC+FvUCmVY+f3qyz3OuX+6b2yBqR8W6P6gKRBdD5E2FwhyWP4yP2zrVtv8CePV3F3AKit7Pii2RWjYuKAoLoAXnnlFQDA1HPqcOb4CXjn//qOxndvtKeeX6gvVD44KJlstsvDTMIX7QW3lIAhYaXFUlTTsotNVHraotEIBkz6qvq7xMKqT5Z2y+/Wz5uP9kBoj1gjO7NgOIrHZ43RD7eAvPfNZ/quCmXdFRf7yH0XrFtv8CkR3gKAoeUhbG3Po1H405vbFDLQXO5yhYbJBSfijBXFUAOS7LpkSh2Sto2yuIUXXnoFBw5TfGRDH50kdLRioXpNNMi44FhB7EQVRB9E8M7nBVELckOVxGiFiJIqV69ZZUl5nXZBNUTDzC8x/0CiCrVESB3l73IcnAumKQIBxaxhfB1QvVCLjSiTMXmiNTJ0ePETERNxMU/BuRtNBCaViTH2L5UgakG8Ev5eTILmR4hIJXtgfmGwuzLVW3PA3+e4yBxiHJkPHMZ8IUiSCJFzR+VNxux39MD5YMlK/VuHDBug9GVYrct6Bk8hRVC8kuUNzhwahoVrz58Mw7Rw7+Mq/JUUHZcm/vYgpcFfGgjgvHOnId3SirhpYkDMnSfheHj+qfrI888uR5UxVjjLOGR8TGCyII6x9rfWZXDnWaMxsJStKSWOnXHWDD/L3+S86xoRWQ/LJH9EtVDOP72JnEfikuwpAgL2zDWbFEumtVSuJf4g9YHoVYn5yH3XrE/G4L2WtG089fxCXDHT1/PwrWftp489h1gksMtr0bZt/F5UHH3zrautW27wXxs/FalkEoZpalTNODjjiYzRsucm3yd6ITIo1lthDDJimLhw2iQY4QDyUMh4eYuDConY+RtMKDYIyiXKI/OEv0l2Db9H9kG5xLGpWU6j5oiOO+pKRDfyYy7ATDNHoCaFEjeMWw+IuNX+vDorISJ4KMBT7N0Q7fM73McWQehEsswnVFhuVgqNTA2yInRfUaJbyTekQlLdK8qKpWVlrv0NLlP/3+qZc2dO1JYeBV8XM0SKj4c5A85VjcRuOeeb2tyaNySoEEECDkqlt8F9aqMO0hZ1TOhfofZZosKL7JhEXjktnSsgGLFwzXlnwTQt/ObFetcYjHAAF82ahlzKRjxmAdukWlh0XuyQQrVcf+xOxdcMm5Fd5VmG+trhOtkox8U495TDLDxoRXH7WaMRiUTxrefel88766davAKyX8hu4hg0O0vmrsRTDd4mizkq5yPkuQbohVRYvN5VIqxZtGkGCN1yxDGOQufMGT4VsrPWLTf4VDKpKxr3hj3wpHKFaz03Dd986ym785F5qLJCuOzcjpF80rbxH4tU7ghLN3TjyJS99vYybGnPY/wXdqxj1NvMD8t03rr8Bj9pitKWIbpOZQuIWRZWN7mVEongibioZU2ERcZAngyClDvbDjgolTZ65HBkM2mEwlEs2ZrR+hSM644QFLpKxrJJWChkPTAm6UWR7RKCJWInO4LxX8YjB5eRX68+z3i2V1uGjI4mQWrk3zPO3ZR0c8c5R3xNtE39FgAIFQoIFWmdE1EVV/ACDnOkPa2+S2RM1EdUG4u6u9fTe2GOhGMvF6aJwcGJQmK59OhMRxXSkrSF9gTSmtmk3ifAY7Ul8xL0+Da0MB/iPj5WfzLuPDyn2Bb5mELZ+SLUDABGUSV00lCocZl4jayKDEUjO5QksAsG7nxkHgAnrs85LtU5GvV+YzKPUNTESadNgGGa+NNvlYZNqFBQ7KBPVNFewwjFkyfDyZJ1xXg3EXh1CWsE1NHyXHAuGPfm/z+V4+L6Yc0BczfhIBCNRPHzcw5Sb4QiePA/PgbgXFvMM3Eeibx5Hvp7et8yt0Ndfp27Ec0gjoGeJK8ZsqAY8+e660jCxLddty6/wSeTqqMRXXNS+SigtDctm0nj92+u0rKrvvm2O3bUUUftECmecErnKn/veuQ5NCfzuLmT/PjuskVvfKrDJ18bN7SHR+NbV1uX3+CbkgW8sz6j49SM1RHd/K9ooI+QODjZEnzSE30QnLd5SpuTRX1HifYYOy1AIVEiKCKfkboKkmhE7YMhHf42H0L0LsjxJVuBcUWiCiL1JonBvi+85XEDhT8fdB9buUXGkOh0yzGS7eCNnRL5c0uOOL0Z8plzeWBNax6lhhOiqhIW6pqmrOzDy0oh6lOvGaP3aoqTD82YNueayLtCEDR55ymZi3IZB1UeTVlpDRLzbxDERq+Jc7F4k5pDap/T62Fegzx6nstKD3tmVbM68Gp5Xba1EQCw1ZIRUd8eQHmZmpuPbcX8afbE0rvSDNPE5PHOw8GyLN3lqFL3PFBe0WaRquE6Yzx86VY1NzUayavx0pNkpTW/10++x5wPUTfnljpBnNtgwJlPzSCTtcf1wRg7r1vmH8iW4bXmrRFo9jB1jhTpAm/egzkXVmnHFv5NvXHgQPjWedsnWDT7u0WiEXxu9BAYRgQfLFnZ08PZp21gVQl+cuXZnf6eeo6FYEWiqJ/zbJePqyssHIni3C+PQDgSxUOvLu7p4WgbduUUpJFHKBhE4pTTAQB5Qz0ggt7qwUwOVlX5DkUHO7KvnjkVbVLfEQ4Cw2vinfp+b7Yuv8HHowEc1C+MJVIVytgaUTWRO42xNiL09S3uuDWZB4xnDyt3vs9YeLYoIpMvODx2Im/GDRt1PJ88c/W+VrjTyoWs/lSfH93PzWrgfhhHJBpm3uBN4QQTcTNG6mWA8DV/l/ul7gpZEtw/X1N5j/HOdR99AgCoGTVC5xVoRGleTRg6Qrqa0RPnJ9OIHtMQ8Q6K0V7xfnkeB4mm/WaJvTM2L4QhfewM4RlhtWX8mIie2jSfbhU2hpx2zgHj3n9bqaqOiWoZ0y1Lil55i4rJV0s7xXX9++u54XzTMyvTioQ7tj298BNnOo1WNoonh5DyILY2uOsvaIyD8xg5bm+/Wc4pXxM9M7dAb5rrP5N3n/vZ/6PW0azjR+CkUSo/wfXBeTY9ImFcB2HNUAu7fqvJcyy8vg+pUd8/WHSfMlF1rQRYX0Edp+pSpAs5bFiyXL0WZU9Wh2utffkeBlchceVF6IzZto1fzPkNAJWDevj6uk59vzebj+B98w3Aozed3y0UPKs0jsS57htIIGLi8bnP77Xf7KyFI1GMHaUSvwRY+WAYv/rDx3v9t4cd9zmkM5miHy4gGu7cbcoqBJGQJi7ZsJv4QGNIcFt7HlHTfb6bslF88ST1IB7Zv2+j+b1ygw8GHCRGngfjzpzoFo9aINkSGo0IctBaFaa7Qg5wECxZJfztowYrxM1YOhE80QhjlUSDjOV7KwgZ+yQ6ZdUludxE3naGfHf1PSL9iMT0yShgfJPeSavubq++f+YYtdAia0VXPi79LstkAbJTlARRqyyZtOUNetxETjSvhnijRxuEVu3pfUquddiTR+D3WFma93gCEORcVqVQKREe53Bbu3t8Ea11I7Fc2c3RQ9T3D67Ju8bB/ENW9y11j2+FVFZG+qnvVx2gblTm6o0ybue4syKY1WYEuo2C19HN4rQzJwBw5uoQYZIwD5XyMI54bZD/zmvjC7Lu/746Le+r/3PuvfFuXqO8jr40TH3/rcXLNYuJjK+hgwcibgQ1gifziDamxp0f4npytObV506R3rnMB6xMqn/I6Ua6zcaGh150Klep0LpOlYnnDlO0Tr182d+Wip/5glJClSr3VqmI5xwwt0T2D+f2o02iax8ArrnnGc3vf/R7fRvNd9kNfsJZSsHR9AsQfOtD9r3Lz+1xTZOK0hgunaH48pmggQULeh9iDEeimHX8CESiUcz/85Iu3fexY0cin1Whvc6i9b1tSRj46qnjMaCypE8i+S6bzda2djz0zEJEgyq7T0TF+GFYNGf4JGV8m9VzGs3Kk5xx60yOSFH9n9l4wEEJzOQXCgqBkjlCZEK9DLJiiDptD1rVlbECndoEKa9pcseZGfvn5+iFME/AKk0ieo6HKIbIiQiL3ax07wNqn7SpRtlokg96enmaA0WdsIj/7kXsRL58n1W6ZOyUm26dG/EZNFKjcc74PitIy3U3IYmlhhVbpcGjaeON3R8m+QmOKxR086YZF7bCbpbNoIyKqWcGKsTmFUUjQhuUFGSXc3ecirdTnhBoDVu9onim+MbxlVPG4yNhEpElZXnORX9PZesbq1W8mhrrzFPxGuM58FZUb21jjkm021PbX1tcF5vf/xAAUDnmQNiZgu4fy998Wxp8sDaDx3DiAWrtlkTd65BW9tx/I9/Shg33q54NSKaB1iTwrpAFjj5QPqjYUVwfWqenXOhi7KImyVf2jCVC57HrKnab+TMep/oamUnDRcv/nkdVA5Jbr+idNNedWXDnH/HNN998860vWpf6Q8GAg+xoG1OsSFNPRqJgVhYyl8InO9k3NH5unCg9FvchZSUh4/T5ghNvLzY+lbcIpYpxRXKs+TRnTL3SIOtFfe5N4e7Ty3C0R6T6M+U+BqJjL1+eyJ8x0xpBE+xmY6yQknVCf2qgMA7JGPwpR8qByQ9Lx6CSUAgTjlTc6oBh4s/vLNNzoFkvrdRfUb/BylXmH3Rnraj7fJGdQiTkRfh83/GCXP/WbJzj4kKnIRk7pZCeUVHqOnQiczJB4itlbqRnbET0wAcxMC0IfWCpeDstMoAG0Xmht5PJou6ay3utpsmgqhLcefXZCBsm5ogIGbMWRPJE2rw2mOPxsrOOHabcYXpX22S98PsjKt36MpVFU7FdcylRTI1bBi45aSSXPgLZHKKRCP7y0Sr1Wn6bHhU9b7JnDv6Pv2DYt6chnXWu82gorLue6TWeknWikbm7T4DOIQU9GJX7kV4MXB6NnjoKevOcC9Z70APktZ6SBZ2CgRNPVXUMtX0oXNO7Al6+7ZGt+sNf9d81p3ypB0fSu603hGV2ZLxxnDl+Qg+PpGP7dLkKnWgxwA9XYMDXj+nUPtLZrEqkAs4dOLs9MOtN9tPHntN/33J53wnX7NEN/tTE2UhKA49w1MTWthxaU24+dbVW76NmtiBHeUKSEcDzTL6z1hCR18za88kLOCwYokPqout4rCBmokA+9b3ceqIOMgCWbHGPQTN/ZMwDy9x6KfQgcgXmHdwMAsYNGYf26tKzSYbud0pkHpHTQ4ZAq3C7P1zt/v9oqfI7fLiemwKKYvpw0J+X6++N0sUlhMkxDilntay72pZaMk7HJTe6pCfFGL/WzSHrgSbI29jSqF6XKAReaamtYcsxkxfN/MRqOUlfPkRtBfnFlqxx7Vd31xLET2TX260pWcA7oqz4lSq1bjZDnRyeA8bHuWX1OBE71S55zrneeW63tbs9ADpVgHNNEPlGPbpPulL1gAGIWiaOOUQ1Lv/7+8tcn+PYTh0zCOlcFigUFGIX7xg1nn63okaKY0Qfh+dRzi+HqKu96fLJusnJfkKyXqpM6gOpj7E+YmvEcB0HvepU3F2Ry/uUV9Opr9ge3eCTSRv3z1YFAix48c033/YvW/XBx8iVWhg8aMdyAulcFhvuW+A0cfetW2yPbvBGyOkFulHQKzVniFbJeyZ/ncwWPlGJfokenNidek3U7Y2lAQ46YHw4GFAMFq+mC+PL3BfjbA6bxp0XYPyX+iZEq0MlfkeuuEbo8v9+WgvbXb3LMZN/T3aE1m9PCjqVOKNGm0SfRPBE7OxPSRQrXZUKZNkAaGluxrGHDEE4EsXc//eJZu6wmxSrcHmMRH1RjQrd50G35NPqk+r9vAyJsfqlkkNh1SU7L+mY/JqU+5gYa+WxZt1xZD2AcuH3kFmkCfiC6FnJyJg7kbqoW2L1FtTd8u0ep0Tuqg2pLsHPrj0HVtTAV55V4YEhJW79JhrnnlXMvAY3yTqkF0WdIaeKWHJOsgZKivbL+bc8Ovy0SpMiNVLbkcuhqakJo/qX6M8EAgEECgWUx+KIRiLqnFtyvhhbry6VHcp6OEh1Y8sNUWs6xPMpZpRL1S9ZWtJ3oFyWPnu10huOpNXvhaXnM1tNVreqyEM2otYCvXRW4rZ68hxfjGf0GCyEkDj1DFiVZb0+Fu+zaPZRi8XL8NxfVyCb8RETjbH33n5RAioWv2jRIp0M7gt2yslfR2t7Eq3tSaTWbcGpJ34N5bE4Nsx7FaseW9jTw+syq3/0KSya81yfODd7hOCDAQctEN0SGTIz32qLDoyHQ04mC5EBebeUFyaydKo93brTgBO/D3seU3zN2Dt7rTo66+RMK7TJp7cT21SviWoZU0/n3ci9PeOusvXGOls8mh/8HLXVF29WqGCIwI+4oBOD7JnBivlREBQasGRBEcEPVh3msUwxTAKiTkgjyM0XgHdF6ZKcfc4rzwePaYxwoqnjwzwB56JUkiSD0oKUpKo3Loi531B1DGRNfSB8aMYwT+eY86TbyBLcLCqP8nsRInMqLbbIdvkmtSUCZMyWyM3DvkhF1Nymhg9AX7RtaeBvm9RcHquKODGoXc1Vc6VaFwdUurXWWWlNb5nXA/9PhlRE52PcFdaAg1xp9DaZ16HHrX3GdNZNvYmb6odDQWBYf8fbFH46iDu8Xqkg+tAa+bwg8fYyhfDbPFLgvB80yXIpZx5LYvaZmOR0GpUnkBNPYZtoJdXKfYfsPXrd2+S+RZ4/DMP50RWb0FfMZ9Hs48YKRN7svW3/aHzJm4HHI9fGCyCkv+HhuQbcSXYmZ/m61Ihg1Tsfdv5A9sAOHDkc6XQaBotgfOtSqztvJuxkEpZp9vRQutWsLJD42qmwaip7rVe4xzd43jACcgXXCEJMxVkdKpxwXTnmZnNQR4avnSeo2xPYJHFxVvEBTnVsQL4TgGLhVFrsMq8+xzgiM+ZEq1UevQzGlWOeeHNQxrC22Y2IIt7ApBjvdawk5O8ytk++Mt8nmq425C44ohYAsC4liIsa68IB13FLMksGVAIAckXuTQGKFUTZV3LtGWel90NkRq+C+QF6VF4tGq9CZmPSnW/g+aVuz7sbFFSjB1b3peF4J2PqdRPJqj/aSlTMlZ4bvSjGWLl/Y+xIAEWVjFmBgozRe1gyRgjIZNJYsmodZp49CX3NAnCuMd39SnrDZjzVwTRvvsWrc88aCK5DnpvGYh0j8exYgcqKT2q01DSJ51Qq1cDPiFhas3hSc/9bId1kBnj5H8BXD3cPkoMmoj9Weq96cjHc8hiYD6PXzWuXFapgqNxLuxSPjnNYI14MpPPYgdVq/fA+xrye9mqKEZF41rype8XjepPt1g1+4hRfd8a33bNgKISTxw3dzkUoaA/D/Q9vabv3kRqgB+F1UYp2EI0q5B42TCQmTIAVi/VaxNUX7NLzpiPfInTXcHC7pHXdRedj0e9+iwKA/rHS7h9gN5sVCCFx2hnq74relXjdrRt80rYxt/7lLh6Kb/uD/edbKwA492Gt+yNe0nYIXmvpC4L31EloBM8YrpfnLvrhzekC5sxbgLIwkJg8qYuOZv+0ZNLGq3Ok8IfznXJYJnbSRrlVgg3/NtfJnezDVv/Y0/rvxGXn9+BItrfdusFHQgFNrTJWKRlWJvxykjSxPS3gvGJXDUXyAoDj8tMF0+GUgJuuVCwN7I0jAyrUw31TTlW3MCtxywLXxtlk200zO6jS7c7Vxt1yCUwceptqM5zB8IQWOJLEJUM7QU+cmuGQpY3uOSkUmMT11P3T/Yy4T9/b652LrFBwwjKAM7+6DaBMI4+ByVZvcs0rE7xZEneL293uPfe3UVhtpMceJtK3mzzhqdHVEfk99XmuE8tDVS2JUMaY4QgWTslxRlXyKy1JMM4xm69k2fxFFsMqj2Rub7dl772JOy+dBMu0UD/nGfWmrR5q1Yv+qbZfORQAUDFKJdk5x7zWyiQ0rokPErskrZfU1uqi8Gd/D125LVPAdy+dgWw6CdOy0FBZAQCo3Cy0VT6xzahU2eWBTU0AxcDWN8jYJaw4SKQjJBzJArYGVjpCBNPSDBGqMVcWFToCznrl+S4nMpAHS0SSrs2yTspS8vuURJDQTUBzqqWxiQAD3mJSBecajJL0oCcnid5qfpLVN996seXyOSx69nkkZk3v6aEgmfxsz33YF49AOptFQ1Mjao149w3Mtx3abt/g+cBuHaxaoDE909rqFqdaKhIDFPwiIiRqZaPrZnkIstCGiJLt6WrilNh1nuBEe2wuHAwGMLA0pN38j6VUu02yp0yKOpRMNVYmGk88QD3l+WCmMBFpko0eoTRS/4jYaWw4Qson48v8fq2UQ7PgisUVNI6LpedE4iER5DIstf+UoNZP5DijHqCfK3JxjLCbGsokNpEyC9NIh+R54pbJV36fxV2kxbJJMhuQc31wrnRz9RwRF4u/1JYNI6JMvpvuZLCWdc3LZLSqYw4I0uJ4HGqgfF+8Nbbly/QtAK8gZDIDK2ogMeUsWKaJ+qMkqTdS0O+7KwAA5VLWX16hUPOadrc3xPUwooISv2oOmThtL2qm0yQNWLgGa+NBGOHAdgWKFVJkF1i7FZu2bsWphx8Fa5SB+h/eA9mp2hLJHyBjZpZUkHSzMHDyxfoa2L4JuG7inhcEzhAQETm9Wxb9CSIPl6jfb5XG5nHTzajKaXaYMq2FR0kGOAunNee+0OKa612G3mY+gvdtv7Nc0MTJp09ASVMLrGG1vSop5rVQNILE1RcDAcAyTdjJ3hsOKKCARdff1dPD6FGzTBOJb4yHFe8dipO7dYNvTubxlgghMbY6XinWYnNGPTl1KMwjKsYYKZE7LaVFx9SW8W4WGjCGX1zURAoXvxOEKtBhvDbkQXG6PZygSiJ0IpvjRyhETJTH30xqaQK3B0AU/MWhCg2QasgyfTZFYIwzLDU+jP0TOREAEPFTPK1R0O0WmeOBlGQQnDEgTHTqLgZTxwocPcRBKe9JoZNuwNHgpq1ubi24xk7wz+YlnDMeM/MYrZ7CE36O+/l4s/t3+b5Dk1Vj5pwabQqR5SR5F0uxMEYGxAXAQidBbCzAKpPtOpGnjRvuOR62cT1+f8/P1YvVW5F48Bb0Zjv++OO1vIK9djMsw0Biwb0AAKukBPWzrgcOOsj1nVxIzUGp4S7U2yzri2cso9GyOz9TbHamgJuvnIl8JgnTtLajGH8qa3s05ZiH16jtIFns4mFpZK1df3Vek0MVorc8v1324l/UH9K6r2yF5PraJIY+/gtq2yzJdcoGs+CNr4VSHON6IQ2zOeUaX1tefb6UHqGsN85VMujcKuNrlSxGbpgcK+Uw8gXUP78ASGeRqOsdipM+gvfNt15smmudSKjXP/k5IMnVxG9/1S1jSCVtzF7wMgBH3923vmG7dYOvCOS0+E5mkCoQkOp/jJInc0NQoWGi5Pc3qmchS9hZBORtwsz1w2INMgIoyN/RAtOtyAIqLs/4IBUuiWzZoozFOozrEenSy7js/GmwbduZHCmrzwbdzIJAALBMC/c/MV/NCyl+Mhdk23B4lNAlUqf3Q1st8e2kODeUQmDzbzIFGA//cKPaf8Qj5QqoEGdxcxR+VzcEZ7MUmQN6L8wLsBG4016QomQiDifoj7KqWhJZSyBk5fOQ99UfJ4xw5wIoLrdS2iqWi9xrLWOrlCLg6wNEcoAxV56MKndSj1IY/LduZF5czXrUKFihCBJfPgnWkP69wqXekVmWhdc+/BsSN1yFRadc5v4n2VQCwUNSEBeLUOpZ/Zse48fiPQ8Qj5DXBdcVoM7nLVfNRCal5t3baD4piDybByZ+6UCk02kEg0Fg7Ai1A50bgYxBCusoCy20SnOxahSCSnUfiSxeCwCoe+JO2KmUo5bF802v405Z89LKD5KX0jF/Sm6LuJieI9H4tqrLUT/nWe3tlDGmL/en+FphB4lHkgkWxd0ppyCtMt/aLMJn4qUOKes9uLn3jKQXmW3beOGlVxAPypUhFK5WoVoV93mcNnVij4zRt66x+qfnAu+tROLeH/T0UD7T6uvrkTj+a936m6mUjZ8//dJOP5dOp7FhwwYkzvxGl/22nUph0U8ecEJy7CPAfgBMoh6hKpupqKpVRUWfCSMVCURXOovmUeL7V3bZWHuzdeoGXzdpCiLhsNKckCc0edRE2rXSMYJl1IzZEgm+L7FgolnG6Bm/ZtyaDT6IvvMS6zuwCGWQMaGtoJAl0SS/a0XUa3J7iaDJJpgxfZpLGa40HEW8tc1xJwQNxE3ZUgBrzRaUtWVwTeJU9TpWJEgEIB+NwLIsXH7nXABAjawxPiDIFPrnaoU6vAwjMkfIUFkhKNdbY8B8x9aipgT5gnt+KnQ5unsfnAMiM3pcROimR6653KC0gSAdNkmPUrDKLQdBJjHL5smyIdoZ7EE79HYKZSoGH/A26iDnmB8U5khAEGUqoMbvbRyz3Y0BcG4aVhSWnUXipFPUy/5VvRLNW4Nr8Nprr6Fu032oP/NyWJaFxDN3A69WqP+bJuofeVLnJyISb2aaREtvyP50EwyTLBpnvYyqjiAWCTgeUMj9mdJ4CEcMK0c+n0MwGMT4CQlY8bh7foss1iwFEkTWPJ9bW1B3wzWwW+T/4oVY8Zhi3vDG7G3N1yKx9zeXqq3UBmikz1wAz3vrNrWV8Vnpgnog8eLh/sUTsMJR9fCXaz1S1NheewOilU3WHq/ftkwBgYiJ07+hunKVx3uucrpTN/j6R55AWWnvowLtqdm2jZcWvuJUVza2fvYXiqz+1p853WiIFtj9qKYCkyf5CL8vWP2dD+gHdOIHV/fwaDq2+vp6JBIJ2O+rsEb9ZTepf5x5FAAgceHMbh1PLp9DulE9JDNRubHnc5/xjY7NTiWx6PYH1QvpzLSd5EQXW/0dv1B/CKVUh+7EE0iMH79H+3987vP6EC6ePnmP9rUn1rkQTUUcENlOxq6aJWDMJz1jr0Ro3qx7o+Zbq88TuTODT171wBDlgt2SvKw2BRwWDSv2ACBbcOLA/A69B47l9mtmKsQuscqSYBjGkjWAHBNWiZvnZWys3up5LXFdPt0p8yuoI7K1BSWZAh68Uk6wnPFWBGGYFk7/3tMyF+5qXSJ8uwgRAA561ii3QCaLZPyL0hOqfaFzkZC9wjgsERlb9/F8ULSJr1kB6xVOo7FqmLF0xlrpCfD9rR4ZaeZUNHsmJ8iLCGyrB3HLhZ+pcMfam3Wlasi1n5Qsbb1fnjNWUgJOt3ROHL2FXmyWZeH11GYMWPBD580fASEEEAqFkLh4FhAOYdELLwJbVTgiXqpuYrmQmgOem7+tUqiXCLSlKL+VzRdgmBZuvUKxQV77nz+hkM/rys4AgFAopM9PRHJvlOeNCPI1iLSJxCkXnc2h7oJZsNdsgmWYznmmh8bP87yxIQgbgPCckV2jaVKC3Ck/zRwOG9fzewMrZf+S09EVtWpOrGAYialnOWi9OPeXL8AyTcx+6TcAADPivn4zugGQpzClB2y/jMHbto1FCxc6LnrDriP2zlr9fb9yFqd0bFqcN3HlrJ57qvvWd21Hrj7FrhY9+3yXIflfPT1f37TGjhqMdz9dqxP3LGTcE7NtG4tuvX+P97M3rP6Bx9QfvHaLQzTJjHqQ9gHr1A0+Z0SQk5sUUTJjtIxrE23m5cGd87AoyGu3MwqhUdOGcUBWqpGL3qibdGzfdJtVbow95wtKK4Uxa2b+RxXUYC6bPg12KgWrvFRpY1Cgik952qfr1ZZNB1iF1yAIj+4G5XsZ5yP6ZOs9fn7ccLU9UPWsPHjcCNSUl2DBj6bL1wqImCa+//NnATi8eR47UTRlkYmiyXgZ3Y/IzDmdwYBCZkTqRNBb2t0NV5xm2Y4Ozr3fPQ/t7e2ImBZ+IQwhPZYoxyBVxOIZmOEAbr16JtLCujBlv2xEHgBgmBbuekSJVB1aLTcItitkLJWNQGSuwIrDCvGKJHz2VkqFU+hxGAV1XNRC0s4Lr0si92Yn14IaCTd+IEwOy51D6WtmmRYSs6bDipfs/MM7sVatW0PvsIAt7Xk939pbbHTzznUfAImxh4TF0px3M9lGlgTUIuU5IF+eLBjG6MmeIo+eHgGRdbnnWDMej40eAXn6vNbpMfBzvIbpCdDTIPirdDzHXL8IzMpyTJ40EaZl4Ts/UxpB1XItkMW3fJu71qcnbL9C8HYqhUX3Pep0au9Bq1+wAH9aqm46m1pzuO/ac/Z4n0cfOgJpeXBGIrvf3CKdsvGt+1/Ag9/u3JhSSRv3CutCh8XkYRQKAFfM7Btei9VgI3HMCbBGDOyVydYOzYjALmTVNpNGYvqer6d//PN/kZeY+p6sp33Rnl+wAFva8zjvnEk7/Ww6YODE08ajtqL7q1s7dYNPZR2GCvnoDE1RK6ZJt75S77cIMiR91asAOaam4ya3RJqMD1Kjplghkf+jF1FAAbl8QbNLiPDrzjtXVQMGwwq186nNuBwRnCSv9FOfMXmiDFKvaIzzeVEGG3Kwwu2DlWrLpgaCdg4fodT/7KowBlaV4P5vnwPTtHCdIIL/+pRl6awhyLuOmywhVsamUmn817urAagKwy3teV2F25J2TzzjhGzX9vCN5yOTshE3gigriWFYRRjlpTHcdOkU9XkB1qGAQuL3Pv4cbrj8XCCrxhgIAP0qYlqHh+efLKpoKIDyeAy3XKb2p5F0Lg/LMFB/idAUKTvLhXLUgertglQhy/9HSYMG5lUasuo4KrPq/2xAnhekFyIiLFbgJGokOhMUV3+lqm5NPH8v6urqNMNq0aJF6K22N8Z24qnj8cBcFWemGic9Qeo3Lc2rOeSsGnK+WQWey6s/1reo+4L2rnNBpAsBFzIGAAwURC4xfX0tcoc8f8yTSZNu3UaP1x4ROStq6cFJM298pK4TfY2T9z5uhNoSuXMhR511ExIv0wxHURKzcOs3p8I0LfzowXmuQyG44fX88PXd3xhkn0LwkUgUxx02BKYRxeJPV+r3bdvGovoXgTc+6cHRfbY99NR8bLPz+PaFZ/XI72dSNq6+7wUcKvK+draAWx6cp0NiLAozwgFcf5G6SaeSNup/8wqA7fvidmSz5y1AOVl0IpAFO4XEDVd12XF0pVkbW/Da4tfxxaEH4p+rliBx1JdhHTik76B63/a6zZ63AKsas7jm/J65bndmnbrBZ/IOkuMTneiSyJuuOTVIyAhZvIlsG3dsj42wqb9CrXSyL4jY2ZHLKMrtOEqF6rOLl6qb+pjBtYi/vxwz7/wBkkkb5aGIeiITYfPpzvgdtar51OZrGp/+ROxEFUzSEsFLNR42yu94udu/+5faCtd2QK1C+O0VykOoigXRryyGH142FRHDxJnfVywb5jEYN2dcfbTUBBAp5OFUBtPTohcTF10S8t15w7792plIp5Ioi8cwqCykvQHuk8m0yqyag0LcwMCqEtxy0STUllioXSv5ClFrxBCFmDJlai4IxMslh4L/fF9tGSsNBmAFQ0g8+COF5B+fDZf9WX3ekLaEEH48ybrRmko5LnlDQrgBOTchnnMOZEuzs2/mWEjNC7sTh/Xf/CHqHv4J7GgQX639EupvvbfXF0R1pYVDAV2LwRoMXnMtTKF4dJ7IaOP6o6dI73NdM/DT78wCskkYpoXUCMViMbZJbJx5rALJ+4IIvNckeet//1gGIieeCJ7ne73w3xlTr5Z82iFD1db2fO+1D9SWeTd64dlG57f5v34qrh+LBFFixfCjKxSS//a9CrFTQyrpYZ51p+1TCN5ryaSNZ194GTVbt/X0UHbZZs9bgEUf2bj/uj2Poe6KpVNJXHf/C/qBuiu2YMECBJhc29S4x2Oo//6dgBFF4pZr93hfXW31V97ihAGyeVitaSS+dgqsmt5ZDNUXLJ2y8cCc3/T0MLrUHnxqPoIB4NJzd5xnWtUaxmFfPhOHDynttrXTqRt8mRHQ3GqRdNBslwEpdcGHhO3gfYIzVv+R6LOQddPqqWyslI5NrHQlZ7ej7k3UoNHa1MLEQTgIHD4MgITQiAqIwMmeGSGFSeQ/E5EzvkcEzlg943FE/kR+B4uUJsnjjB9SJ4Pogb9DxP+higPGpCExFRBprAHgcZJDPriM3o2TwATYxUm9R2YN0f/3rzgX6ZStkZZOF5TFMKZfWM8/t6NMmbP3V6itxDgD1PZobHcfC/MU4q1EBOXUMsZJrRgiphJhrDDmPrgKVkUpEpedD8s0UP/wkzJADyJjQYrEbk2pnC3w3LA2geMkk4neWXEzZr6X9rAdWJHM+DDzBTED9T++D6gpQ+L7vTOs1JVWKBR0jcYhErpbLXUuTaLZwv9DkPwSycHxurc9OaCG9jyasgYukuKfcjMIwzTx7wtfAADEbLl2eC1xnfH8MtZO74vrg6XLck1pxO/Nh60VsEcefKtb3VKzdHQSUc49pRAAzfAi4Yu1H/kAEDVM3H6lQvKX3KEq2JeL9zPzx3MAAH++t/sK0vZpBO+bY+mUjdsefVELl3kpmL3B6n/+MJDNI3HNJT09FN/2ok38wdO6wO3zg6O45fLeIa3bFfbAk/ORyQNX9ZI6l07d4AMNrQgIWyEkFYUDVqxR/+RTzaMeR748Y7/MwjN+/K811GGBfJ5KkB1XdxZXhzEuSBDB76bzwB9XZRExLEybMglVuTzq73nIQXVEAXzae5/6fGqzKo5Pb2pP62aqRA8yjUSxjPFLvFijEW7pEZDj/T/vqWM8UvXWrLSCKIlZWHT7DESiFi74tzmuuaCFPOXcgYCTG6E2DFUbjVAAtfGQ/j/j+YyxU+WzEnIi/vKR2norAr15ByIjUk8Xy3qg6iNjqIyp0mtiXoKaIeyGs61VoSf+TrsnRspsLuGTVGsGWLtANUN6S0TnZEkU20HieTF3wmPheuBY+T7RXYkJqxDEyaePR7/y3tHYoStt/ORzkEzasKyYzrmxVzLZbKYseSJ2dldjXcv/ynXN3Eizp4KdvuqSLRmkAwa+MUHJIXPdlgTDqH/iacfDI2+dyJvn8/+Wud/nOuG1x2v1r7KeT/2c2vIaJZOK64V5GF5b9NKLPT9h01XK/WGbaMWzWv+jTRlk8o5CKkFVsdZPd9k+jeB/9bQq0rl64uk9PJLO2/fvfxZvrk1j/i3TenoovnVg9Y88iSVmOb4rjKJ9yZJJG088txCAk2zfm3bJ7XPw1QPUjZTAb8qZZ+71390frFM3+PfSBuJpFZ884l9CORTWxJI20VkRNgXZL6SvvrFasTCIQvlgZWWroyeed/2foYTGDjqVeVUj23TVnfqbOimIhFTmm7H394VCyVg6f4xPc6JTogfGi5k951OeqJavGV8m8ieyJ9rwsjVe/ofafv1IAE6+gXHNNU05GKGA9oLGCEOpXFAS06JfHncAspk0QuGoPmb2i+X8RkIBVMeCTr/ZqMzNJ4JGDpRE4mLh+pPlQqTNY+OccI74OSJrIiPKuHKOWOpdSnZCmXtOPlE64MjmYSGIxA+uVuqIz6rKV43oCQHp/XjnnL/Hc6s7Ccn4RJgLgI7BJwcqD01r/xx8AABHIfXocpk08QYyA9WaL2zLIhs0cNJpSpiqfw8UsuwNa08XsKzBnZegrpPDghNVSa0iqj7HngZt8n/OKb+fSlE/iSFCtaZf+VCtp+FCl7MqypC45DxYwTDqn5zjeM+b5PzSq6Z3xXXojblrb7lCbcmIo8fJPAxj87xALE+OiFtAJ93bpfgrIzU7W+SaCwfVtUkPm/nEEZXq2FpyURx38nhEw9jrxU/7NILfXyybSeOlf6zU1NO+bvU/vg8YVoPEJb1f7+MXT8wHQe6Nl+x7aL6nbMGCBQCAiWd0ncZ8bzEWRPUrCeLmy/Zu/qFTN/hhFWGUUb87pWJe/yyoJ+YWicVRf4HZc8bOD6lRMTTehIjsx8j7/7lE2Bfk00bdrA6N6G3nJtZoqyfjgeIVkOETiURx0VdHIhIKIBKJ4KiDDlZPYGbKiaz51CdbgnE+xp2PGCHvC1okOiCrgiiAKNEbr+PnD1YVqzq2y3gfq+xSCoVGPlSVtKMln9E4OIIKM4iTDlBogt4M0VBzUT/UYMCJkwLAQcKi+c6l5yKVtFFeGkO+UBTHZwybSPft5WrLal2OlXkLInbd21Ig218+VNsvH6K2Y4e798MYuHTqweAq95yQ5cK5InKKhhUsXCfISmL5BYnZ6+yDeFUF+X4g6a5kDTDGL6yq1rBTcp+vld+SxcX5o44+80BvNaljra5QY881uXubHirV2FYkisQ3xjvUpWAAVmm8z6D6r5wxFemUjahhaWaaV7WXuv5UJ6XYD693etHsdUB1WLJqeB0fOUidh5KoeoOVsZ9It6mf/Vl5bFsKMXxh6nQMrCrBI7PnYwg9Oalw1ow3etlvSUyeORnmgMiMIqJnbserX0/mHD1B3huOKep7K/eHYKXyEpgwZn4xm1drg/paZaboJYXc9zRg78sY7JMI/un/VuGjo4dEMe7AwT08mp416sOwebZve8/qn5FSdYaNjAgS53Z/efruWjpl44e/elH9nesd3iDL/J/4ft+Zx87Yzx5TIci9heQ7dYMvL2RRxopEiYFZm90aE0SIROLUhaG6YNrDjx0qcWfG04lSG+RpyPg6388ULTynaxBc++B2m51XMcNsXqF3Ztq9sXNm4hmDJ3uCT32iACJ33QrHw5Pm/j0VkU45p0fjmnFEVoEyVi/x5HEDLNRWluDea8+GZVn4xZMqafy3leoGQiZMLg8sa8hqhAA4SCgUVNWFRA01rBVY2ai2zEtsEKTs7ZhExMTYOfW3icyJxHWjBkH29IJojHV6PQLdO1Pmun+F/l0rHEHiqosVL/7Xv1bDS7vZWfRmDHp4BTX3JUwhlKlYPysyUZQ0pDMTE8149t3kPumksDqYU8J1R2649tg4J8zVJDN48803dcPs3qxlA6jLpM3Tx5jXEtcWu6LxeuT7jDMvFQ+eyJ1eEDWJqEbKjm2sTF+vC47d1zTvI7mggbopkzAEedWso0U8P3rlzOEw9s5rjuuXJ4+eJD3YL45WW65fsm8OlUpXXg98H9DceXO1uhaa+qvrNZUt4IbLz0VLm42oacJrHILueVHacferrrR9EsHvSzZv/gLk8gWcfdbEnh5Kt1v9A48Bdrpv8+LzBaA9hTc/er+nR9Kn7daHlHd03/m9m12TStr4yePKCyJFuSetczf4cNCBNYK8YhH1FKLuwijp1EMkz45BfNLziczsOrPpZJDoikr5fj9BDE1Jxrly+M0dFyGbtjWh4s2YhXNuma11MBj7ssIBBBitDQadpzSf2ozHHTVKbT+WpzsZGVUSF97gqYrT1ZSCyIn4dUxdMu6MtRNNeBHeIIlHE9Ezpi+ehNGsvt9guuPnRO6cq1AQOLAq7FLaJDIKBBRS1ZXARC6cPLIK+AEibdYKcEz0eoiQSJtgOILHxFoCsmT4ec4pf4+qgAfXuMfFueOcxAxYZXGMn14H07Lw/fuVyx7WwWF1oFWWu9qXEXKi782yPsuKun8NCpFjrc7nig3q/JA9QzBJRdTFoq90+kEKzdErbc7JumPlssxhQ0kcX/zy8cikOqCA9UKLhhwuN72UYdKzl+wsNvzgdUwkTyeU7/P0ZGUS43IfIKLn9iOJAFBnnsYCPGpV8XetmiokfvxtWNmCarPI9aSrzNmCL+J+XzPaxFNlTQM1jliHsU68aF4HpZ5aFsDJycmaJcc/FAwgEHCiD81Jdy0P1+hh4vlxTvi5vWF9EsFn0zbOue15LXPw6l0zenhEPWOJYw5EJpPe57W66x99CsmaSkyd3Pe8mKefXYB4NIAZ06fhzPETUFrScw2Y9wWrn60e8IkJE3p4JF1r+ZC5VwrnOnWDX9sONLNoU9BwrWTBB5aqmwwZCLQK4WxXNgkClLj1ynbqyKi3KUtLNUpWqbZnCnjspvORSzsoqKo0hkNqIpqh88dAAEYooL87qiqi9xUMAFZlORI3XQ0LIdT/9CEn/st4L+PFjInz6U3ETrYNETirNLllDJZxOsvNztCZfn6f3YoYs6d+iu4EJb8vaCSVLCBfcLwa8mvTmTQWvrFSo6bqoh6sBC6hQABGOOB0wiLiYWyRyORdqQ2QylB9TETqjJETeXOMZMUwFipaRDqfQZYC55CInt6NfD9Tq7yfiHgt9LYawup3127Loi2T1wSVJo82fpOgbKobckv0RFQ+pKjVXDPUml0iyJ0dwIgubR1/Vp8/vFYdC9cdXfBaJrCXCnNolFoXadth5dz/xHMoM4OYefYk9FbL5R3kzu5gutbEcCN2MkbIhmOVpgi76nn35slojMnbWaJbd97D8fjVa+ZcVhVkHWZyKn/k7ejEdcl1Rv13Inhe60TsZN2wVwMRPT/Pa5hqlYCD4IVp1v+EKlw4cxpWbWlD1LA0u435hs8JY4h5SqfOxfEqH3pqPrL5QpcXzvUJBJ9J2fjuAyrJtuuah47VP6FkdxPn7DuaF7755lvvMTtp44YH1T2qtQckCXZknbrBG+GAfjK/tU490b5UKawXQVojIxLX1Drc8hNEw8JPHS7ouaK2BBfOnIa0xCmZxSdKbU8XUFEa03Hn4lAY0UV1WQwv3TZd66z0K49hwYIFyBeAaDSK/mMPRiQSwfHHHovEzd+CFYmi/um5DrImh9vLfSXS/7zE6JmRJ9Lm5z6vKh91EwsySahwR7RK1UlqoBCueOPc3Eqeo2xANUpLLJwzZSIsy8K9jyk2TaGgkE1t3M1gApwYZlncwjdnTUbMimHe/AUI8Zh5fnhMRPacYB4bj4XMIH7vyJHuuWDsnGMn0qfuNtX/JBav+exyjJGsIHwif/m9FevVfte35NCeKeBDUSMlwiPfn/Fyp/JZbRmTH93PXYcBbK+TQiNCJxqlHgtzHKzRYO8CPe1yHtl9itXEPBebW3vPhU/72vipSCXVtVddFtPzxD7H7AOc1iwXtWUXNebQ2NGNRoTfaHtYN9SWkmuXlwD/Ty+c55Px6YxUQuvzZ0TUfHs1ZMjKWinrnLmdkbVq27+844nguiY657rmfau4IGCZMMmOHo26i87Hmp+mYBim9vh4bAdJjQ91uWJyf+K6WdOk1jLndG8I//UKBG8nbSx6RVHIvOJFLJnO5Tt29QCl2wI4xVTFXZFWrFyJLe15jB01GPXz1Y2RtLW+ZM88px5Y50zpXBx67jxVEThtyqS9MCrf+rqlkknc/YRifVSXhHbyad+8Zidt3Pm40rZf0Zjbyae73zp1g39nQxolrQq5r5KD2dymFsVXBcTqLLThzjRrJgrj0O1p1P3gW7C3NKIsaiDyn28BAA45Tam98X7O7Hkh6H4NODHSEoFa1F1uSeXx0eYshgkzpzQqXBqJz1nhKBLnTIVVFlfFKYzbsVqN8bf/+D+1Lffop7AKjlWSRK2HD3e/JkvnMFVFqdEwUbN0dNLoQUvtybZZzVlscDXqpk9Dc7sNy7Q0wixAoQXGlwei2NRvDSfaTKVhrt/ixMpZIUruPWOPZA1o1kvaPVaeV7JlqB5J5DNO5oCx0SXCTGLsU94PsFKWeQjOscT6W6VKkPHKYKCoehWOvvjrKxRiI8qmOubRQ9R+yKuu3qAQ3eJgtd4H15IXwRNFehUUvz5c4tIBqUwMCGITxN5uCftJTjOZITuKQ/cGCwedLkzFCLJVAFbc6Dgo2p5xzxk9JeaDRgqbjn0fqCVFZM/6GEtXoVPrRn2O13ZL2l29/buPxKuOG0oThvcTVk4TwdM1WC/XIpM3RwuDjuuc65frnYid6573rWKAKZ9ZCRM2Qtr7YE6G+k/0Mjl2roOCrMk2ea2reUuCKIRNjKeyZsza44RrjyJ4O5nEou/e2e2/W/+IaiaRuPyCbv/t3TXbtrHgxVcAOAlD33zzbd+yR2bP1zIQXVH70qkb/MjKCEql+oq6z0TyiyU2+kVywX+q3Ja6f38MdibldC9nzCybhxWOAC/9Tb0WTnhAYrWhSV8CAIzupxBf7SaJqY2r1eNhPI6caFN0MZ6Im7jxwsnISawrHrNUtp/VmMyIBwOAGdXqgHzoBxi/49OcT3sib0HqWu+EqJhomOiWgUSNKmQOqNRHxgrRL1GsVFTioMGom3Uu7NY2WKaF8uZmDPvc4WgSvZVoNAojHNAo99OtTmHF0UPUPpsZs8zlVJydyF3zf+UYiaiHSmUqY/BNblaLZiUQOTE/wTnV2vfyEOonyP99pbODT/+utozNc9KJpIT9YJw0Tn1dtLTfWZ9BLmTi/uvOUTr/P5qtprBdHd+4Aep4DxZdmEqphcjkA67jOXjTRj1HA4crVUB2GftYqn+tiJsDrvsAi0dm0IMT78PQVZNuNlYZ0xcSe/Xq+fcGG1BZgluvUOSDTMDAfU+oMCbjxYzFE8kzgUh0quPH4ilS+7xGUC0vAbKeWEvATnCOuqzbAyDgpvfkrZDPhCyclJiM6rISzJu/AOaOurLxmvJey0T8rMQmg477iXpyh7Lfuu9eBTsk3kUWME1Lj43I3dv+kr4OHXN6iJGQez14awgsy0IikXDyE5Wdp1DudQRvZ1JYdMWtDs2OsgCk6TE80oVGTRDKeU7rZNy6N5lt21j0nJzUXA7pTBq/+KOaw+LmJ/uDXX7nXNiZAh6/Yd/UJekJK75hUPa4LxgfRDd0sx6/nUpi0e9+CwD4UMLTe6tilYqa/7dOPRRv+2bnWYCdusG3pPIoRMk/ZuWpelod1l/tqm78RNjJpOrMA8DKAliz1UG3jMW++anakkHCJyvRszBSaslkkTh2cTQznpeJ5SOST11BuDHRWSlI9LY9pP6/Sri3EdPCmRMnImJYeGzO8xiwWX6behUV8vT/l4yVDyVhjGjkzqc8485klBC5M1ZPrXSiZR47G1gzZs8K12QayOdRkH6mH23OIouAVtRMCUpmAppeFaDqB4Ai7Z5wWHkw3DeNcGHcCLWl7jbnkmwCInjGzBmbjMixb5FYZ4CaLwLReP54bDSef3bYoRcj34u0q7ktk/cnH2bh4vOmY/WWNsRLLA38+5WwZ686TnamyklrMXKSx5bL/unFweF21woDhDF5ej9kO5Btg4h8l94IzzNRIlGj1iZXOZsYGUXMzfRSK2B7MgORu9NjWb1Pr4bV1Iwv59yheS1yx3wE80fUruF+G2x3viMmHgG9c3oC7CT1j1Xq2gqioDx33j+4nrnOCSx5LXIdUmuGSF5eN2ntIrUf5nrAnFCJiWRU8kTb0nJsalArGtRvjK5Wc0ZEzkpo3jObPYwhb8iV+YfSqBvR7451OYK3k0ksemwu8LrIyH6yrqt/YrcsEoli5FDlkgfDEfzP28s0w2RKH6yQ3B8tadv43gOqOfO6Zj8P0dVWW1GCmy+binTA0CqHvvVt69QNPpkpICRP6ip5YN5w+QwkkzbiwiiwEAI2NTqc8I2CWhiKIfJjhSMRA5+sfBI/95raHjtGbSWrHShGgtwnFRGJlIi0GWeOmDj48CNQWmJh9rwFGDl0INY25xw+c1AhkdbBSlMm/pEg7KUSryU6JWInAv+K6qGqvZJNMjbGoem1EOETyTPuRz2M/13qHu/AStR98xK0Iw+rtNTRBSkPIRQIaPRKdM5s/MgqB8FTsU7LBAcDCpULH1jrp8v8Z8TLiawWFEoET8ROxUweK88TzcuuITIiaiW6JaKi/fkDtR3/BbUVT6FZUBI7AG1szcHOFHTOh8iRsWAiS7I2osLS0Noz6aJKRLGAjHWkrNXY8UcAAKpzRTkaADBlzLJvXa3LdebNPzBGb7AbVsr9fi81hmtOPG281vChsS6F8WXmv3gevKqRrCE4RHIiRO6m1Mv811I1N2TVkE3D/bFT1MESGdgqWkK8Xeh1ncmq+wDvAbyvcMtrljklGtfxiWPVS+k1ff65dUglbYevDxM/+dU83HLVTPW+aeEPS9S1QM9vTZPy2HhdMh/h9EyWORLmEfMUTSn3HNP7YaqG1+ae8OP3GMEnkzYefXYhDoqKu/rByj3dZZcbe7NePnNyD49k181OJvHyH/4DgOPG+uZbd1htRQnuu+4ctOaiWsVxf7FU0saj8xZq+Ykzxyf0+3c/+RIAR9Kiuy1imDhz/ARkMpmdf1isUzf4WDSgn07fuWwGbNtGTXmJqib8RNAu0S0RG1E2n6RkXxDx0agdQY0IMhL4+VWb3PsHHG42v8M0NePGgiKHSRw4mwMa7TzCwQAO6x/BtefXwbZtlMVLUB7KO/tmrJzHQBTbKCiBT2Z2amc8jx4E/88Yu64ClfEJukiG1fhN4f7rOZLvEA0xDhkMqDgptS3Ip6X+D9Er4Oim6G724RBaS+P6/K1vEcU7QRGM3+eqFKNIeweb2RleIa/aoQphtw9SrINYQI6JHXTIYiBiolfDGLv3/587wH3sMkfRIDVKHP2OaCiAzw9W+yErg8dDL4ecY87dl4bK7ybZxatoyTPfIFWStY3ifXAtMm7LNUxvlFpC9Fa8Gvm6iluXfbq/18utGMlTXZJolOuCjJHVgl7ZAcoUj4rnhzF8W/crVf8/c4zyABlq+3iL+6ZFRdgD5Hf6xdTvUvvmgCp2Fgspr4/r6L0Vaqs1+j09eakXxZ7Bcs5SQWrvqOvp8vOnI5VK4m//9Xt896KzkA+Zus6mo45qgIPoGVOnJhbzGm2eSldapMjJBgByJ5Y3uav6n31OhZSz//UvlP/xD9gV220Eb9s2XnjpFR3m6Itm2zYWLfi104TCN9988w1AKpXEnY+/iBsvnYLbHn1xOxHFvmKdusE32Xn85HvnIpm0UVtqKRZLs6CWYaKJvlF4zl4tE8YfGa8ku4K8avJPGZcmE4GsB36/rQjlShWj1i7nI5DIifuWGGg2X0BbpoDmhgZcdsbXYQ3sp9AV0SfjeN5qTgbXqP9Odg0/Rz14jo1MEiI24dg2C0owBFSQ3zogpsa9IahQ8oBoHlY8hkkTJ8IwTNzy4DzUfWU0spk0wpFoUU9HxkXdhw04yIiqihHDwpTJExEvsTB33gKtRb1NToOjHZLHLVfNRLst/0ABUcPC7b9SrvpmgRfsxLUho/YzgMfKOeSc8Zykl6ttuWfueN65FW/J3KzQcXN1BQDlnaSyBZA6PNDTgjAuz2iio+OGyRtL5NwW5ALlOgUcFU+iPCJwTqS3D63u2StInlpDI6Q2g+efHiTVRulZ8hj7iDHpCgChqImnn12gGSFkuXh56jzd7FNKNkqJzCE9LX6OKqf0DMhaoQYN0TB7N3NZ3XzlubBtG6WhiFpznPOvqfoJ7TVbsg7a5F7Ba5r3F3EJqkqoEwPcdOkURA0T+YK6bm65fCpCEUu3DyTb6sBqdUwEuZmwG5nr21GAr9Uf1Cii7k8o6PoaGjwpIHoz1ELqDDm60wg+mbTx0NzfYOwONHv6ghVQwKK7f+WULfdCq583H6+tzeEmucCymTRe+sfu5zcen/s8AODCaZN2+tlUysZPHlP6JPlCQRfC+LZ/WTFH/oxv9C79dR1B2NrYpfu9b7aKs7PXxI2ic/Wjy/vmNdCpG/zxIwz80rJw3QVnobqsBM8vWIAQUQvVAolqGLdktlrHo+VxxTgnucSMT3vVCxnf1B5BUUiIyoNE90SFRLiMoQs7pX9ZDDdedBay+TyMkz+HUDCE9jVOZaOO6ZMxwg49ZMNwzBlPYUOphwfNsY5WqJZP3kaJkZebjGuq9/+xVs0B+bRLWwP41sUzsLFR6UvXiq49Ez9U3GRHIfbPpDAbANTGyV7gFEn8DyZOH5/QoDJXIKIqinUblo6hlhoBRA0L375winxefS8SBKKmhfufUHQ6O6PGNpK6O/yBsGc98DV7aNK4Toh6xdMrW7kBddddgQYoVVHG1omeHMQYki1Fi+Sccb01yTplxSzgIHSanDd6WkHRqI+nBf0xN8OxkxFExO/1WnRfWzn21K4nx3qblcVjOL9uEpIwcM+jz+lYOj0mxqXZOYtGZE9PkowQsmroCRwluRV6tdR/J8rlVLKMP5dXTJ448yT0quiF8b7EvJhmOonmv/SliKXU9+k58MbO3E5x73HvaWXeYVSVGju9ELJjeIxkerXKxcjrtTKsPpeTKn/2qSXnv9pTEVv5iQJ4zdh16zSCf0AaP3/nwu6tIOsKo5rkKYnJmL1gIUb1L9nJN3rOkkX60l1pHNF0VgAANK1JREFUP5FQCy9MFlVEPcmxYrv5gWd1cZWtL+gA7rjq7C4fX0dmJ5OY87JiFP1dClx8614jmv/qqX2n2tW3Tt7gP92axYB+wrYoFGBnCogvFwRMdEKONzWTiXq8vUCJ6Bi/HioaNnw86iezp9tSMYIn0iYS41Oaj0A+vcnkkLEEAg5iRUOrE78bKNVvzMATFXDsROpEB2R+MEYrapQF0Xtf0SDVevIk3ywI3tGFVl8jylkr+QxWvLE6c0VDFrm80+WK8edNgpbWNKn9GkXaFkTz5IGz2/0SYSsQCVExkWNMCQBi5j+ZUd8nwmFvzupYBIGA83mC2HZDodrY2BHqDTKNvB11WDnLmD3XA/nzZC4lM0Aur/nX5Ar/16dq7i/5okJiZN0YWxrVB/SakPWn0XSLniN9HsNupFQmmkY6Zs4xJz0InGuUDCHdx1PWCZVVGeP31g70QSvWrqElYeCuR5Qnxx7KXPusT/DqrjR5qjsLBV4r7s8xlzSgVO2XqpWhoKB/nkOeV54jRgyEIaVfyzqM5WTh8r4l55Ad6JgrSGYd9k7I46BRE5/IfYvu/0v9HvV+f5kTMpJuv3YWbNvjPXbC9hpN0re9bzd9cybymSRMs/ffDKKGhRsvUZ6cEQ7ANC38+oUFPTwq3/amdSR2dUIPoHrTsjBtykSUZgqqDedesnu+PQvplI2o0XXXo23bWLRo0W5/v7m5GeXlu5YE7dQNPltwnl5hAPFg3ompElpRj+UAYRYQZZPXTjTs5Ygzvk3NE3ZZojhZR6JkHu60rhj1Ii16CcJzDwYAIwwR38gBEnPViI0x9OH9XceUKlfvG21yTDIZrVJ1yfAF2t0xOId5IB2nYm7ta4oVZfJAa7uN2x9XCc7lgrqrYgpBEGh6Y3VE+hWWk18n8qF3wLg9kcmnsg/qXRChbxTWAkM2GyVOyPPO0M7ybVmcc8tsrft9SE0El507WdPJRm5pcM0RDpfYPNEsvaa/L1ZbaofwPK8V1cvBVUAogD+vcIdmhgs/mpWth2+Q2LrO4bCClS6Jp4NV8W/NOgmAo1UU0f1APV2CaER9PAYalVSZhyJvnmPZBxD8zmy1eJNEuytkbbMug2v2wGp3ncYoyamwPoPrzCtJQQ9h9rMKSMyacKa6Xhkx4P3FK2Yo94Cc3F/YWGhbu7p2S8Vr57XF66aQSeK+p3/j0r8viTLfo7asP2GnvlpPd6uetE4j+MsvmI6kbaOiZN9frN1pt10zE3YyCcM0e3oou22maeHScyfDNC387p5f7PH+6m6/AXYwD8vou3NCq3vgx7BtG5a17103AytLtlM6bMxGNQNlT23ejy/YLqQRjpqYPW8BLNNE4uJZsNqzqL/+9j3+rZ9ffx7SKVvjkngs9tlf2AXzhmS6cw10rpI1HEAhk8Qffr9IoedkxkHNROJE1UTo5I6zgowIK+9B/ERJ3B+/z+8xDhopGjKf0kTchMR8zQ5MRFIS340W8kpvJABsHTpQZ86H2+78NPmoeUud5KygjVoZe5Oh3idD4MONbs+BlW5kAlCfg9oxRC+hYADpVFIjd6JoxvaYL+B2oMQjyRGmjkemKOVPbm658JBXN9GrUP/fInFC4f1o9oITM1VbxvBLZUv+PLf8zTVNWdzw82ewzc7jzqvPxoaByoMbwFg6GSfknjNGvkX48/TC2Lf2wIGwjSAe/fW/AwAGZSRWP0Td7AsSS6XnsTmuPIQa6Y6Dv4jYHbnrRHLRovVz9pfVMUTVZzYK+tR63WSGcW3TG6CXyVyNJ4bfke2pW96braOwzTFf+wYAZ20uFcRMpU5eqqnsZxdKDioLdTh3Z4xXtM36Xz0BAEhMOWu77+6OpVM2bnzo1xrBkx20J9aT536/jsEHgkEcMnIwwpEI/v7e8p1+/rLzlfdiSEIoEwrBMi08Muf53R7DD6+aqfbZB2Lu3WV1t3wHdhiwiuZk2LhDkM5knL598rCjy89HGy/HaAFYteCP3TJeWt3dP9hh8mxfRO6fZSNq4nj0e45uf1ve0Awur117yYzPTDp2NHdlJTHMOmeSfv3P1Usw4JuTtvtcZy0UCmHuTdP2eD/F1pPnvlM3+IFlIYXa1zc4LAdvN3IicaIcVjgyRs84JPXAUwKTqSdDHjSRHo3d0Is56FTp4xgGSxyXSIsIjF7F15VaYPavQbRGDRz15ZNx9xMvYuIXh2PZtixiA9RvRAtUg3MPsaWtHY8+uxCVukoviCmTJ2p0Qq0KxrnJ7SUiZxSPXOB8QdEhr7tfSeBSMY+Ze3K+BwgPfoDuOK/+Xyvlmx9Jl5xighHjyNRHZ0zdq4PR6KFFOlxf9QcZOof0d7MjtEqjHBV59rWlIYSDAc0kGCAVr02UTqdXRWT99SPVlh7bJ2thF7JY9NBc9Vr60qYzGWz46FM0xJTH5+2j6nT8Ua/HjBiET8YeopkN60rVeIr1empW0ytR64PnZWRk9/jq+zJK76x5Uf3xp+w4Ebs787anvUr3F9uvETwA3HjpVLQ2N+Lmy6aif0UMTzyzPRpn3qEjZotlWbhBmCStEpJhpITunbcJAh8cBQBGF2bne4sZpolrzj8Lpmnh1QW7riseK40jl80hEAAGHKcexkTq0Wjn9IIikSiOO2yIDgV4t4DzMPM4BYgbUaz66BPU3Xljp+hs+xtK74xVWUHcfU3HdRP+vO0969QNPpLPqbtTiYmkgOSIxNBDRNbkqzPGyupOsiSI4BkT9eq9kHVDvRd6ArwaG4rQFZkZrGRd7tGkoXb8KPEKBlfLvwMwwgE8/KzqG3vSuKG458kXcfNlU7F8W1ajX6Ld9nYbTz2/EO9vzODTbVm0rlfvH1obwa0PzdP8dKJWcszJf2VVHnU52PuTCo7UgfFW6x0xUN3UqqwgAoEAqiy3ih3R9yGi01Gsbkekmim4ETtvYkS8zPjzGNghiZx9R30y5xqjU7GoxlQhqo9mOIDbf/UcwkHgexdP0cyUchILbHccuymiYvNtbQXkcjmk3hHPztvGRnq7xgRlb24tuI7Da//+L6WxX6yx4/08PS1WDHIuvjZuKDYHoz4i70Lz57FnrNMI3rIsJKadjWg8jnnz9y3Os2FauP6iKfomSLRXUbrnmfT90QzT0p3hdZ2LhNMWvfAS6i6YhWYpFc/l4Tx9fPPNty6xzt3gW2wseEmVz58xPoGWdF4jpINjEtukRja3VNpbKeiaiJLsGerJSA9XrT1DT0BXwMr3rKKOQPwNMiO4Dxr3QWaOxPWD6QwimxtxhPQ6DQcDGDcwitt+qZJAZIaQ1765LY/Xlqc0qqWa4z9Wiea1p38kq0DJCSYYXdGgPj+ojJWq6v12IdAyrl1hki0T0t8PFO2H36NHQCuWbi4TnjE59kTcjMVTz5tjpQ4Ox0L2Q8qTDyACtoUXvK7Zrd2RLIrx33j/szpvcPoXDkAmnUEBQFNjA2oPHInGxgaUV6hcTrBQQG2/GkcBlMwV9gEIfza3+INNmY7HLeuTHopV1B1ndD9R99RdoYS1FIrg4BGDUFK81nzzrQ9ap27wdZdcgLLqKt3t2zffdtUy6QyWrlqHVK6Ai8+bjnTShmlZeEJULqszvUdjZtEbKkx0ezdp7fjm296yTt3gn3nhRVx4/iykcyp+uaYppzVCMtK3MkJtETbRILoueLJc5DuTF8+qQCJ6xub5f+rCFLNriLD4G9JtSFeysjKVn/NUEuaKOPXZfMGJbQtaJYL3iv23CSpkEpWfZ+x+m0wBUeRgQexE7kTP/F5U4tQxIcrz86Eg8PmDRyCTySASiWhGCJFmtXyO+jDZomEWCu5qWiZ2D65xV2s6PTDVlpV8/D9f05sgg+indYcil8lsp7BHC3veCEUi2gt48Mn5mp3DysUSafJrJpOu72n9dmFG0ePgXP5rjcq/NFAHJO+OzbPKl8dTUuTlcP7HSJ0CdbfJikrCwFdPHY8BlSU+a8O3PmmdusHPnDENkUhk5x/0rcssk8ngvaVKntYrxdqTlstk8Is/LtU3fiaGeUNl4pf3+S3tvWfsu2r3PKoYQL4evm991Tp1g7/x/mcQLy3DuxvSKECBcSI1ol19+yef/U/vqC256uS7s7MPOetk0RBtrxYlPiJ9zbsvulFQ29v2uPdk1ZBbzW4+9B5yeaA9hdAaN9eeVZy8kRLtiYSM/mnevMgsGSIUEeYjeLPLyu+xCpQxdvKtDdE6GRgQLfVKtW0Xdke2oGLvRNkch3ecjIdnHIq31pwmOt0ijYLJV6dXws5Mmnjk8Vaorvfd41Ue4+31yjuKhgI4eZSJxZs75ozzc5xDImrmDXSvzwA/r85ZbVyNd7NozBCph6XblS3ja01vz4rpyMjnP6DKrR+ivgvXvrLSeodz15Lqew8l33wrtk6zaG765kykJH7q2/5hP59+GB4OUBBNPSBMb9N033zzrddZp27wm9vyaG5rxy0Pv4hMrqAZGoDD1pj8eeluzq435L+zW1KrB22TD09dmQMHqW2NPEDIp6fa5NYiSQF6BYylk2nBuD29BPZIJUzN5QE77WjXQ4H7YRXq+2TrMYZO5M3X1IGmHgsRn6MZo75PlEr+OoUUt2lNdfU+vaAGqTrNF3VZKsAplPKiVcaVgwH3+IrHQPTP36gtJW+dlanqvE1MKZ2esRWEtXI+Pj8IjyCDT1ep3qZU9zMj7rGwspSe3GhRB2wVj2Gr1AjYGbfeNsfBPpeM+XPc1P+mt8TPe7vq6A5D2ouRc2e6Oe41RV1yOF8lUfd5Yg1BW9qnbfrWt63TCD5qWPjJlVMRjlq4/r5n9saYfOsBG3bG8W6tFybFQyFEo/t33sU0LUyYkAAAxGKWn3D1rc9Yp27w5UZQd2757kVnwQgH8LHEYNkvlBWu5gBB7tTUZqeerFBMdLcb+QID3LqzPXu0CpL/yweyn6IequyYbkvM3avnLpWrOr7P+L+QytdIPLdQULFpIvV+MXVzo+oj0SZZFuRNb5afI7LmzzDUTzYMe6cyFs/YPLshWXL/rJTD2Whz2G5ETyYM0TNVLIk8i41Vrowjezn0R7So/MMRsgIuz2Ww4Y13Hb10spl0T0uF6EcK24X7aSpSxAScjlF/W6XOybgBHT8cGPcmA4h5B8bkmV94c63aD70ezin57VQn3JExXzLSkvW0Yr3zT1lz64YrT86UBs7DhYU1XOon7n1crflwMIArZk7+zN/zzbfeZLutRWOYFm775lQdJSmNW7jlwY7V4nzrXXby5w5AIeWmI3ZW62W/tbCJk04bj/4VPnXSt95vu32Dv/wOpfZHnvUzN01Dv1gQLYLMTCJwxs7JWBle437NGDyrTfn+YaIzQ3TOGH22iCpCjXFqxnMfjL0zjnyKCFcRneYLQNrRnAkEFComyt1mixY0Y9ygrruarn7CxGA8mPtxkL0aI52S/nFvbF+G0069F7fi4nsb1B+jqsIoFIC4xIjjFOxkv0ihzXgraYuN3gLjzIPWr0chlcSGj5e558T7Xb4/QNhLov5YrDlffMw7soUfKHeEHXvWNavzSU0Zej9rmrKyFeVN+ZnauBr30HL1fVb5smKVc8H8yWjpGUzPIUCP8F+icdNa9GCTnM2gteJNcu1xzYoS6uBDhgJQDKNH5zyPbXYeN13a95rO+7b/2X6vJulb37dHf3A+QnmVvDfYqISNGgg0GiWeVkyz5RO3UIBlGKifdX03jNY337rPOnWD/3RrBpb0oyRLgqyFQEAhWS2NS8RNTjpREatMqRP/trBiGOttE5bN3z9W25FSyUiGTLEePJk61LUhoqeeCZE9v8vYfIkJHDgQKcZ9wxEcdoBi70QiUa1EyNj7QIn7ktnB+DZRJhkkjIV7Y/efSmUkEXtE0PIqQasHVIrXE6HCoxNTj0QjGDZ4IKLRKJYsWym/q/Y7QMbFdpERh+Kt2SJExDkUcOzYkcjbSUSLi9Woy089f+q107PyIPuY1CMkpbUgWTNkpPCYyW7hXP1tpTqvzAnQ22DtAPnx9IpYS0DjnDBPwqrjQ/tHYCCFf5NuWCcFGmXcMoeskeDxrGQPKzheSsxA4sFbnNefSpxecjwh8WKyIbWe1jRl0ZSN4oRTx2OgX+XqWy+2LkPwpmnhqlmTURaP4bE96HC0N63uiothJ5OwSktc77/2tgpXZAvACYcP6eirPWZ/fXc5BpaGMHzIwD3eVyadweY/vdEFo+pZ+/n3zkN7u0rWlxrBLumGZUUNJOberV5ksrDCUdR/7dEdfv4Hv3gWNSWh7XqR+uZbb7JO3eBLokHEJJZLpUS6wr98Wt3Urzl/MmLRgIMIiYqInongWZlKHRnCYSIsUlKoB08tmuKerGFB8+xyf+RItT10qPym3MjfXQEAsJtbseihJxVKbbGRCqsxFSNyFfOWaktBk9RfIa4mT5rInSCXXG5+jswixq0HlamxU5WS8WQid/LoWW05SDjrBSgPiZWXRtjNJY9KPLq4qpTTeebRo5DJpBHO52GFI45n9WdhJTFkQe185jh4XtZuU1ueB9nxJskz/N+6tByLGhNj4oypM0Qf8hB9Pha2DT2+dM7Nz9+RVcaCQCaJb/1cdcE6tH/EvX9T8i9E4czH8DjeKaqjYM6moRX1E74JLBaPMBxE4r+f3I6dVTJA7YveycbWPDYmIzj2ZNWtaFg/H8371rusy2PwpmVh2pSJKA1HUP/knK7evW+dtEwmjb99sAYHrRNZh5Zd71C0P5sViiBxx/Wwogbqn9kxO+zKu5/R1M0Hv3NOdw3PN992yTp1gw8GHLTar4RKigqxMSb6m3mKM5yYPAkwIkgdNgIAYGxplF8UqFVa7t45tWf4f6InegBpD7IEgFLxAsjMIcrkPohOD5Lq2BJDxf4FpVYJ7KNG+rCKECKhgFZ7zGglRjdjg4qGLBxttt3aNUSz9ARa5VBYiBrUqJaKjm7UygpZ9rfdggjyBUewi6iXDBlWi1YWod9hwpIJ53I4aOkyp2ZgRxb1LAXWFJS41T3/2axuZgME/FJsjLx0Vp7GDffcfrBRIXZ2t2KMvV/MHVMnEicLJiZz+PlBavzNyTzMCDDhEMu1f03m2distkyqkiFD3aJg0VyznwDXGj2+YBD1iSuBk8chccf1QJlC7tW5tGuKdiKD45tvPW57jUVjWRYSdVNh7IOdn/qCDUt8FelsBtHwvlOFevkF09HS1t5hb9y9ZVbUQGLmNFimifpnP7u/bAoGTjx1PIqZpIOq/LCNbz1nnbrBDywNoUQQm6Pmp/5HDe0x/RTiq39BxUgTEyfCKOQcLXayaZZKZSsRFfXjISwOL4JskQrYYlYHqy3ZNYpxfVGRzFUpmEl015YDlrQFYMhNr5Al2qR2uPqcA6jV+8tFH4UIulQ+z2p+xuprhO/O7xNpjxCONtEr+fQBIkgZz+K8Op6NortSEOJ7Jl1AAY5aJNkytoTcOdxhS5z4cjqfxYY33gO2CKIlQiejiGyZIVLt+55i6Gi2ybgRattPfa41rtDt4YLc31it0CznrAMKvstGiFLmsm0iJyyxc66bHVlJkeZN0rbx6LMLAThzEaX8kPf3ybZi7J22vug180L0btgBjMyvdBb1194GHDoUiasvRk7W4ucHqX2TLUV21aLfqDX/z9XK87KzBfzyu3WfeXy++bY3ba8h+Lrp02Dbdo90TK+75ALYySQKkpDVjaa7Efn1hA2bcALScmOL+mqPXWqWYWLSxImwLAu3/2rXK7abslEce/I3MKxf3EfyvnW7dfoGT8TG7kPpHBko7t6dja02nnnhZVRZQWQApCQunhIUW02EJQhRs2SGCqIk24OIk6jqoMHOYEYIR55sCEFidmsbFj0+Fxio9HDWZdQ+Nrfl0J4p4HXhZJNTTU30AaUh5PLAStEi1wqEsiUrplwQfCyiPkdvhnPD6kwiu9jydWpLXZ4V7lguY+0H0yUQb2dpQOUOwkEABScnQE+AKYbDX/8XACCdy2HDOx+pN+kZ0QP6cLXMWa3rN/Wgxw5XW7odDIaLVxTPqjE3h9UcUykz7alspfHYqQ7pRdhHDVb7OXKg2rbJHP5DNGzIVDpuuKptqLSCiIQCOEh03de1UafH88Pvr+pwPPh/76ktO4UBjrdCJE8GEdcet8kM6u/4BXKfOwCTJk7UGvVLduJ95AuKTgkAD1/vI3nfut86dYP/+ffOQyQSQVve0A2qd2SmZeG8cyahLB7D/Oe7JwZfd83lsFNJWIbZLb/XW2zY5ZNVvD22b3ooV1wwHflMske8Qa9ZloVzpigk/8MHfO0l33q3deoGX19fj7KyMpx65gQcUCWcbuFDOxWGClI9+OR8AMA1501GBAVkGCZhQJzVpilBs9Q8IbKnFg1f83MHFhX89JN4vsSXbeSw6JVXNAefapHLt6lg9YpG8tfJ5HC0aADFyAgEHOROr4QoleyYzRKLJ5OIW8beyWc3lwmvmt4HvREavRbCWw+TZdQKFRffcNAI4cGrzw1/UFVt4uRxanyBAja8+7GqMeBvcZ/0bthhi4ieOQ5vZy2aaOU3haKuOTDQselK1qy7JyophGTNXH2sGg/584fXqlj8GxK3vuGryqMbKDUA61vySCZt/PF5d3hjULPKXzRUKy8ttmGre0D/XKK2S9a5jztZ1IHKpIynIHhWRDcLlZRzJvmKUFsSLzw1BxsQxfl1k/Qxsv6BHhY9vkFyDiKe0+6bb91le12LxrIsJCZNRK6g/p4zr+vRfN3Vl6oK1fLSLt+3b91vV1wwHciq8EgyW+hW1oxvvu1Ltls3eJFTBwDNGWdVJVFMi/ChH5QK13IjiKmTJ+qOQLWlClEZElYwWaHKoCrj0c3CniHjZEyRlICgeztYwCv/+So2teWxsQC8t1yhQ1YcatVHUvAlhs7+pFRarI4FlbJku0JwS7PuRGWTrX6P6pG2BMHHCCsmtEHGyFguGRxE7uTnMwHKSSTqbpJjLRbEAjDgrcUIZrIY8Je3Mez8byBtS2z4IYVAo4ah0H8xOuU8Ep2yUpVVv2Q1ccvPC+JfnlH7/nh9ynXM/cVbIYf/nytSrtc8pJXSKYrxanL2qTnD2PsgQx3ryHLxKDJ5oL0ViwgEeN6pO8S5lPh45YpN6rUhaNzLFvJ6hsVz5K2i/kTQPvsAc26I9GXb0pRHNl/A2+KFUFfHUdbkunL6BKQDBs4YPwFlJTE/2epbt1m3qkmaloUrZk2GaVp4fsGeL/K6yy9SyL2irAtG1zcsnc1gw3cfUS+mHa+2vIn3cau7+lLY2QysfRCx/+yx5zCsIoxZ50zq6aH4th/Zbt3gjSAwwFQopSGrUArVC1m9SZ34Ys31555fgPc3ZvDtC8/Cu+sV+nEUFBWirxDVQKLrfD8VFx04VbE/GpMObWJbOosnF/wWr69IYf7b7UgLEnt3vUJp1GGn5guN+QI9CfLvSD6HQAH4W6P63kYpQR3dLyJjUmiTAFv3DWXHJ+6QMJb5gnWC5JeIPgrj3+w4RUlb7jjvIPi6R26HbdtoamvFgFmnK/rjrBPVP1kHwN+rKXrQBd3HqPvPEo0yzkymiDBK2ktUTL5KhsC+sfRy2LGJQ2VtgFeLhjF7L3smtkLVP8QomXD4MP0/O5nEonrJL/xIioqOO8Q9buYU+H0eB5VDmduhse5CM2IasZ1x314ZB3o9MsbmvDrGDS1pJLPOGu9Ihx9wvNkqy93Zyzffust6RA/eNC3ceOlUGKaJex797OrAjuyiWdOQtO19ntcOALZtY9GiRUiccDIW3bdjdUPffPPNN6/t1g0+HwggFVCopLJNacXkDIWs4kGF6CyhDqyXqkx2MaqygnhszvNY1pDFLZdNxfJt6v/c0hNgB6D+wr4ISFz7v5emsWZrG2586NdosPP4z0+Tun/nCon7ktWwvIHVtW5dE+qkVMtv3XL1TNi2Qm9RI4q7rzlbH2tTNoqbH1BcZsrhUJuc3soG+b0yidlmYgpZRz4UTnZSYuxkAjHmSxYNEaS8T9QO4DOpgZmaCgBO7UFp1EGI61tE6VLGTM0YUxBvUnIfadF1L5MwT8Yd/te0eCpg0qjj7jXqvVNjhjbjEMk7vLra/YVfv6627WnVt/cmaeTOOXrjE7VlX4DNUpnLsBS9FmoWEeGf/nm1ZYye+Q9+DtheMdOrhe/1BjxGT5B9ZeOpgOt9MspGVvnI3beesR7t6BQ1Tfz0W+pmesODv97p5+tmzMCyLW2IGl2L3ImSO7JjT/5Gl/7WrthnjWdftLpXHlb1CyG/+tY337rSdusGH8znYaQUeyJTqRBThKwXYS+ktPKiepvxSl3tGQrg9l89hzVNWfzs2nNQYSmUQ1VBKiRmcgo5rmvOYk1DO867Y4G8zmFVY1b2rfZJRUPqtDNGTkR/7DB1A9nS1jH63JltEhTLLZHa0UPUflOWMIOy4q6slh6fZK4QMZI1Q0YHOejUMN+BNY0d5R5PA6tE1XEW90sl99qLpGnsnUvvZ0SFGttG0fkvF+YRWTDU4+H5o6fF39ziQfQ8J5ccKXmC3/2v2pKZwph4vgA7k8aiL85Ur8maoa4Q+6Rq3SFB8oMV/13PHWPwq6SfAJlMRPTMe2xX+trBvqYcp7bsECZresMWd60AWTINntA91UaHSIV0qeQvjILbC/LNt71tvaIna9QwcesVUxE1LHzn3me2+/+3Lp6BxtZ2GGb3V6gO6xffTjBqgx3BFXfN7dZxWAP7YdY5kxCOmpi9F2oJfOseswwTEyYkAACxmOVTJn3bq9YrbvDX/vQZVMWCuPWKjtufJZM27n5CsSveXp/p8DN7yzq6AI884cxuHUPxOM4YP6Hbf9u3rrP6+fORE02iyZMm9vBofNvXbfdu8Lm8bpKg1cbFnd1qu4W3nCYV7uYZTFSWGo5euSHNNm64/Fy0tCm/N1coIGpY2NTmLloCgFWNakt5XVL0GC1iIpCu9Msfqn2eMFKN9R8PXbJbipdjBpbi5X+boV9v73Mosza3of662xzXnwm+Zht1Hy7UidTtvvcZ4ykriWkudSZo4P4n5uvwV3HjEMo4M1TSIn/k8pQgdp+Xf61R55MiYGwIzrAXQzlamVMof6RLMlTDkBxDOzrk4rVkBnW/uBX25m2qleCOjFIK6z2JUK9RyI0Lr0FCMnrum7f/DpOp/SvUlolbCQs2yOWxRUTFmMxO59UaY3MTHitlF5okRMjCJy1V0GCj7spLdimB7ptvXWG9AsF7LZW08ZPHFWJnhSy1TrrSdjeZuatudeILx+/V3/7a6eM7/f3eZHYmhUVnXateMHa+j9v+lkD3rWdt9xE8qX8i4sSkKBFdMuO+IfN9ohlSyIggI6EAoqaFb194FmIxSwt+Ld6kQjIEZkRNgFOARJRaIglaFtmwAImFT6Re7mtmyJy2ppxEJ1FloyfhvKbJnSDGDuR+vcbzxoRug8dTIw1zlQi6McGoBbzYmSObQ91dN8JuaIYVNZzE8yHSKH3FRvcPi+Szq1EHoCiVxftnUpWJ0bwnkc79tCad91JNHR+sx95ap9bPsIrPVg1j8xKKz5WZPj3St561XnXHu+fR53QHn/TuEV12yd5/7LLuaUYyqAqJ537a4b+64rdryktww8VTkA0aeEDUO/uC2akUFl35Y/WCLBnffPOty233bvCBgFMKLzHOeFztigiPUgOMtRPx0Vg0FNKSqiJ5EHeLUy2WOhXK0BZXhbMpBEPPjA9TTIzFVq1SRs+S8u5yk/f2bzBcc7KEakJFk0NpZIa2doQ+x9bIEpDz2E6V4ZibBpnMssl63vU+ZX0pC0zJAoqKaST9pYPV9h+LVQCbdMkjRqotZQFIZ2TIhpRSttM79XNq++anasuG6mxokvVQEW1pbOJtKg4AR49WW3oDX1ayCGz1uGojvUd1rG+vz+DJm89HtJBC1DS1l8pptyQvwTnSeQjffOsh61UI3rfds37lJfjuRVOQC5p48Km+g+T7oqVTNu6Z8xsATgWzb771VtvNGHzOaflW6g41xAS0ELkTeedEqIkxW8aEGS8n0uSWCJBxTMaA1zQ5ngALmoighparwymN5l2/Ha9WH6BsQmsnD7e3m4PkHQolhdHoKS2RIh0iecbMNZPk4zUAAEOQ9sdb3NLIPB/bRNGYMXwWTLF9nSOZ67ZmadpdNmYIrH4VSDx1ByzTRP2F33d/kM2+ieDDnkItInyib5pnHTrN2m33/4tj82zoIcVQ7WWKRbOthY1h8rj1mpnY1KgOOp0rIBy1dF6Iczsi6pblKKVUgQjjVafa4JtvPWG7dYO3+lUi8Z3LYeWA+i6Q/fWta6xfeQzfvvAsAIBdMHDHw72zpVz9A48B+QISV1zQ00PZqaWSSVx8t1rjW9t9xO5b37LdusETMZ7+jQnYHFS86ajUHxHAET03CI+aXO2DaxTzhUg+KZ/TbfMEjpsbVQu2Y4Yq9sNfpLFEdVHpfUvaHeMkH55on4JbhpSaHz1EMSz+p5PH21esmEJ5wiluCqVX0TZE+YRi8a0iI8KneFgq6JZDoFAb55beFHt1/22lip1XjFFIevCOCCWMqX+g2hNquYYTx6otF8oXRKaBnPWOGngADquGAm4V8prsmbEjdjAQxyiN7FU14GtSd5nzYL0F56bUI0etLZPt+H3ffNtLtoOV6JtvvvnmW1+3PUqylsdjuHj6ZACAZRionzcfK4WGEfI8OsqFXRFplnjkpkYAgMH2dRSTYuWiVCJKuwb0i6k4aa4IVpGxwSYUrGDd5mHstEmc2Mvk2ZdtYFUJbr/qbGQCBu57wkm89pMkSSaotrqGtFTNe0jYKQMOVbz0Fri9JPLb6aGNlObrjPmv9SQeybsny4bIurWmCtmYsX2MneaV/SW/fa001yaSpyfCmDtZM9wvW/bRheH/AUeuWeLzMREDS3mO+YCqkGsXXuNar5a5rbQoF6zm5B1Eced1s7qHmuubb0W2Rzf44pBAYnzfrqrc14zn5qTTet95qfvmJWgp5PrEzc4wTNxx1dmImhbO/uHs3d6PX8HqW09Yl9EkWzLA+41AbVzBnKgE44eUkQ/NoLv8ZGvK/T7ZDWTnHFArI1So6EvyudfzDrpiA28iq7xsyXcvEedgTL8I3nz4Ury9H2qA9K8owY2XTHG9Z0WiqJ+jmpigSvRXiGZFj6U1rCavKqbmvX/cDV/LNwmSDkg18UDla62VhiInHqAQN08vWTaHDqxGG/J44aVX1D+ywnNnc43PqVj74lb1e6OFGaVzBoyx010jcue6qa1QW7KDyH8n+yZStOSHiH8oqL4gn22TdbV0WxYzb5uDQWUh/PiKqfpYKBcdF2ZRhaW+V2ayvaF6n96Nb771lO03K3B/RVAd6eYkzuz+Jia++eZb91uX3eBjkQAOqHTQNVUky21hLxBJsWLR24jBy4bQlYyCzI5UFY9jBzhqgu3SXy4mrAdvT2PykveCTtm+ZyF33DkuyDouIkI5iVOHyCuXmDirPje3uGPtrG8gw2RrmxOj39yWw/8sU+f1483qvFeXqP1/QbwuVo8uk0YjFdK4OlqiEDwbWBtcX2SocD1xfbHimjH7hqIqCOZ9xEsk95+1GOS5r2nKabYXUITcBbHTg9xRDYBvvvWUddkNPl4Sw7SpkxA1TDzznN+QojebVRpH4tw6Fap57OmeHs4+Z3d/e9Z2UtD7U1jQt95jXXaDZyjgG9KQgrrgy6FQUpVQDcopKxn0wGpBUaA+PGOp1BaR2GmxmmREoFOVsBbWF1UgAg5Xm/o4vinjuUp87VRgm6eud3gNAOim6kbWo1lPD0xYKltMhaipIuklxfB0x6K7dg4+2qRQNCuhY1LUQO45q0NH0ZHjuhkhOZugO+ezIav+PyAoHiJbAXZg5PxHPUh8c1teK5Z63wfcGkDA/hsO9K33WZfH4Ink8yETD/m6KL3arJpKJK6/Qv2dBep/8Wi3/K5hWrj9KtW9qzVVQMQwce3PdtQ2pWfshsvPxXqh6mbyQCS683aRD33/PJ8K2cvtrrvuwm9+8xssXrwYlmXhuOOOwz333IMxY8YAAH784x/jtttuc31nzJgxWLx4cU8Md4+ty2/wRIdfP8PdWi4m2jMoCKRrE0RFasJgQVZE8B5UlLNUzDdU1NyZ8V0qT5IjH5dKwob2/Yf3vjvmormecjoQiwJNSndlaV7dpIaUi95/qygkEgEL86R2g5L7LNSqZtjvblCxe+r5U3OIMfN8oYAfPvCsbnz++soU/v2Oc7VWzpEDVRCeOvbk23OZsIn4qApZJ+0eD0NYQUu3sYOV5GnK1H6LHQwusbYw2S9StZstIJm08f0Hf63+L97DCmlyXrIDb8RH7r3fXnvtNVx11VU4+uijkc1mcdNNN+HUU0/Fhx9+iBLJ7xx22GH405/+pL8TDvddLspeG3l1WQzXXqB0UfIhEwtf7BnNmjd+eamPqnbBrKpyJK68CFYwjPon53Trb4ejJn5963QAwB89ictgQCH+79//bLeOaWf27qOX+XH2Pmivvvqq6/WcOXPQv39/vPnmmzjhhBMAqBv6gAEDOrXfESNG4LrrrsN1112n3zvyyCMxadIk/PjHP8aJJ56IsWPHIhQKYe7cuYhGo7j99tsxY8YMXH311XjxxRdRW1uLhx56CGecccYeHydtr93gXejwtDMQ2dyoXjAoKz1dNWJn784RCgmmDGFpCHRbtlmhp+XbHD0PKhlSl5vxeUt2GQkFfFS1i6bj8qe7G4rbmR1QkFiB7OmSReROtMvTTWYKaxeKdV5O/d5Tunbh6CFqv6OEQ761PY/br5qq8yz0CDa0qx1UiAKk6elB2yprg54jvbnidMxQqcpt8xxjvgDsjHjlr6t9w5qaVP1HVVWVfm/JkiUYNGgQTNPEsccei7vuugvDhg3b49+aO3cubrjhBvzzn/9EfX09vvnNb2LhwoWYPHkybrrpJtx///2YNWsWVq1ahVgstse/B/haNL71AYsaFr538RT88KqZPT0U3/Yhy+fzuO666/DlL38Zhx9+OADgmGOOwZw5c/Dqq6/ikUcewfLly/GVr3wFLS0di/J1xo444gj88Ic/xOjRo/GDH/wApmmiX79+uPTSSzF69Gj86Ec/wtatW/Huu+/u8W/RuiW4ZFWUIXHZ+bBSedT/9CH1JjVnpBIxOVBVMppZFZtfLgiQSJCMBR3Lh9M1iuwZojy690STvu26WeWlSFykbqSBiInH5z4PoAjJc6EPVoinvaDmfJn0vaX+CvWAyGBq9OgAZQTCl0oNw+h+7qVIBG6EgVsefBbBQAC3XD4VA0TlMreD9IohejIjKtX+uDZo4aLczmrRyWF/4IynP+2iuy/aLgxD88Mxfd+uuuoqvP/++3j99df1e8XhkXHjxuGYY47B8OHD8cILL+Diiy/eo98bN26c/jsUCqG6uhpjx47V79XWKibYpk2b9uh3iq1bbvDa/T/x693xc77tgRWH1k47c8JnfLL7zTBNzDpnEgClVGBa1h73I7jqohlobVOJZYaNCgBM0/LDMPuwXX311fjd736HP//5zxgyZMgOP1dRUYGDDjoIn376aad/I5dzg4tIJOJ6HQgEXO8FBAzlvQ3j98C6NT1s1VYjccu16u98APW/fAKttdUAgGZBeHlBhFSAzHj4x9Q0AQABf0XdhagtryaKaNK33bOK0hgunTHZheRBT3VzMwCgrbzc9R1vTQKNsXMCaHpk7NhFoxLjNomZ0wuLGwH87LHncGC1uiDKjAAmTZyITW3qd4ZZ6tyvstX+ynfOagQA/N8bf8VRRx3VwX9SPkrfB61QKOCaa67BwoUL8f/+3//DyJEjP/Pzra2tWLp0KWbNmrXTfW/cuFH/nclksHr16j0e755at97gXYnXr5/WnT/t224Yz1dvQ/I0y7Jw8fTJMC0Lv33+OdTNnIFtrUmYloV58xfgwpnT0Niq0HlIHvrFSVbqlfkoff+xq666CvPnz8crr7yC0tJSbNigGq6Xl5fDsixcf/31mDBhAoYPH45169bh1ltvRSgUwvTp03e676effhonn3wyhg8fjgceeABNTU1YunSp68bf3dZjBM/mUATvmRVAg7vLDWO17AVKTRNWp5YbzhWalK/2K2HfUHYZUq93yADxrVNmpNOo3STaQNVSQrpMXRgl/SoAAJ8fpNgvRO4nj1LIm7UKS8XzWtXIXq/u36CmOuPg7ChV6+kspT/flsQLT81BrsTEpIkT0YwQWuwknnp+IS6ePhkbW3JobG3Ho88uVMcQZm9fZ/1k8wVcfd5ZnZ0O3/qwPfLIIwCAE0880fX+7NmzccEFF2DNmjWYPn06tm7dipqaGhx//PH4xz/+gZqamp3ue8KECfjWt76FZcuW4ayzzsLtt9+OO++8E6effvreOJRdsh67wddWlODmy6YiHTDws8ee66lh+LaP2LQpE2FKSMW0LFwxazJMU72+5eqZfrLUNwAqRPNZtmDB7utoHX744XjyySdd7918880AgHPPPXe7z69YsaLT4+us9dgNnu7/sSePx8ZWB50RdW9pV0iPPVqpZdKaciaAHPlKURpkL8y2IgaGb11sosDYcPAIAEClJCg1rSWo2FHe7kf2DiQ9qcDI2L23Dyr58NxfSC6AVESNw9jUiN8+MRfNlSoXsHRrFv/2y3naE1zbnPOTpb7tt9bjt8Bh/Urw4HfOQXMuih8+MK+nh+NbB2ZVVyBx3WWwcgHUL1rY08PZzuquvWKHCB3wUbpv+6/1+A2+GMkD2/f0DAqLiADRHUNVW4eRoVBg2Y662vu2W6ZprhOcZOsHGxXvvX+JaAQF3Xx3qkp6+e9DpEPTobXq8+9vyHj+r7yxcQOiuzw+H6H71tPWUbilN1iP3+BpRPIAsK49gkvumLvb+3r0pvM1ovPRW9eZFYshMXkSAKAtb+C2X/aMx1U3Y7oLsfvn2DffOrZec4MvplB+7oQzdfzc8rRp8rIpACAu8flS2fqIbu9Y8Tk6/uuda+Y9RipVVzS4PbTEIermzA5gwyrcSzKSl89vdUrF/fPrm2+7Zn4swzfffPNtH7Veg+CLrT1b0B2CoiGF7IjSo0X8aTJuyJn2ee/dZ4OrS/DTb52tX2eCBu5/Yr7uxMTzR40Z5lDY53RYhTpnVAI9bohKtlAl8rxzp/nURt9820PrlTd433q/FYdrAOBrp3cuZLMz88Mwvvm259Yrb/BHDi3Dmw/Mwtr2CC76yRzX/1qKerKyqpXsGW8/UN+6z2rKS3DDxVNc7xXCJh6Z7W7bSOROY99cwJ089VG6b77tufXKGzzR4divnLmTT7rthsvPRSppY8kHb+2NYfn2GeZF9ABwyhmd07DxUbtvvnWt9cobPO3QQaX4w13nYm17BBf82xwATrwdAD4/SMVt4yIrmUnbePy5hThh7NBuH6tv21tVWQxXznJrvaQDBu59fD5+8q3t5QN81O5bV1ogENj5h/qI7a6EQa++we8qkr/m4hlIJm2tPeJb77COUP1Jp6lYvY/WffNt71uvvsFrKwAnH7i9wDeZNemUjWfqX+7mQfnmm2++9W7rEzf4QweX4sZLVAIvEzBw3xPzd/IN33qrlRpB3HTpFD8c45tv3WB94gbvbSNXHXPTZQJQaoNeJULfep/5YRnfusu6Wnq3L1qfuMEXW0VpDJ8fMwy5fAFHfE61WjN9NOibb775tp31uRt8fX09EokEUtkCnnnhZQBO67XUDjTHffPNN9/2R9ulGzxdnebm5r06mF21TCaDN//3TcyY/A3X+2HDws9++RTy+XyvGatvvvnmW1ca7227EoIKFHbhU2vWrMHQoT633DfffPOtt9jq1asxZMiQz/zMLt3g8/k81q1bh9LS0n2qeMA333zzra9ZoVBAS0sLBg0ahGDws/VZdukG75tvvvnmW98zX57LN998820fNf8G75tvvvm2j5p/g/fNN99820fNv8H75ptvvu2j5t/gffPNN9/2UfNv8L755ptv+6j5N3jffPPNt33U/j9OyRrQiNAJwgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.fe(adata, \"flux_Nucleus\", res=res, shapes=[\"cell\", \"fluxmap1\"])\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "f8972ae9-0493-4a68-ba26-d26b9e068dfd", + "metadata": { + "tags": [] + }, + "source": [ + "## Predict RNA Localization Patterns\n", + "\n", + "We will use the RNAforest model, to predict and annotate subcellular localization patterns. A single \"sample\" refers to the set of points corresponding to a given gene in a single cell. In the case that every cell expresses every gene, the number of samples is at most $n * m$ for $n$ cells and $m$ genes.\n", + "\n", + "\"RNA\n", + "\n", + "The five subcellular patterns we can predict are:\n", + "\n", + "- **cell edge**: near the cell membrane\n", + "- **cytoplasmic**: mostly outside the nucleus in the cytoplasm\n", + "- **nuclear**: most in the nucleus\n", + "- **nuclear edge**: near the nuclear membrane, either\n", + "- **none**: none of the above patterns, more or less randomly distributed\n", + "\n", + "```{seealso}\n", + "See [more details about the spatial statistics](../howitworks.md) used as input features for classification.\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "58cfd10c-79ab-4833-a87f-c2cfacd17037", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:37:54.813174Z", + "iopub.status.busy": "2023-03-31T20:37:54.812911Z", + "iopub.status.idle": "2023-03-31T20:38:31.066875Z", + "shell.execute_reply": "2023-03-31T20:38:31.066313Z", + "shell.execute_reply.started": "2023-03-31T20:37:54.813158Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculating cell features...\n", + "AnnData object modified:\n", + " obs:\n", + " + cell_radius, cell_maxx, cell_minx, cell_maxy, cell_miny, cell_span\n", + "Processing point features...\n", + "Saving results...\n", + "Done.\n", + "AnnData object modified:\n", + " obs:\n", + " + cell_radius, cell_maxx, cell_minx, cell_maxy, cell_miny, cell_span\n", + " uns:\n", + " + cell_gene_features\n", + "Calculating cell features...\n", + "Processing point features...\n", + "Saving results...\n", + "Done.\n", + "AnnData object modified:\n", + " obs:\n", + " + cell_radius, cell_maxx, cell_minx, cell_maxy, cell_miny, cell_span\n", + " uns:\n", + " + lp, cell_gene_features, lpp\n" + ] + } + ], + "source": [ + "bt.tl.lp(adata)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "e64867a5-e7e6-4d5e-808c-10a6464bcbf4", + "metadata": {}, + "source": [ + "We can view the observed pattern frequencies to get a rough idea of how transcripts are localizing.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "5ab1ce64-1c47-47ff-a88b-e59ba61153b1", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:38:31.068175Z", + "iopub.status.busy": "2023-03-31T20:38:31.067658Z", + "iopub.status.idle": "2023-03-31T20:38:32.342432Z", + "shell.execute_reply": "2023-03-31T20:38:32.341991Z", + "shell.execute_reply.started": "2023-03-31T20:38:31.068159Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAAI/CAYAAAB09R9kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+u0lEQVR4nOzdd1gUV9sG8Ht3WTqLoHQsqIioIEaJYi8oGrumWBKxx4KNxCQm9oY9xhJLYkFjSzQxibEhttiwxN6woNgAUYqAwJb5/vDbfVkpUraA3r/r4tKdOXPmmdmdmWfPnjkjEgRBABERERHRO05s7ACIiIiIiEoDJsZERERERGBiTEREREQEgIkxEREREREAJsZERERERACYGBMRERERAWBiTEREREQEgIkxEREREREAJsZERERERACYGBPRO04kEmHq1Kma1+vXr4dIJMK9e/cMGoex1ktERP/DxJiI9E6d9J09e9bYoRjd7NmzsXPnTmOHoaVKlSoQiUSaP0dHRzRr1gx//PFHkes6ceIEpk6diuTk5FzzSuO2ExHlxMSYiCiHzz77DC9fvkTlypX1Un9+yaG+1/smfn5+2LhxIzZu3Igvv/wSjx8/Ro8ePbBy5coi1XPixAlMmzaNiTERlUkmxg6AiKg0kUgkkEgk78x61dzc3PDpp59qXvfr1w/Vq1fH999/j2HDhhktrjfJzMyEqakpxGK28xBRyfFMQkSlxvnz59GhQwfIZDJYW1ujTZs2OHXqVK5yycnJGDduHKpUqQIzMzO4u7ujX79+SExMBABkZ2dj8uTJqF+/PmxtbWFlZYVmzZrh0KFDb4zh9b6+U6dO1epmkPOvf//+muUWLFiAxo0bo3z58rCwsED9+vWxfft2rbpFIhHS09MRHh6eq478+hj/+OOPqF27NszMzODq6oqRI0fmao1t2bIl6tSpg2vXrqFVq1awtLSEm5sb5s2b98btzY+zszO8vb0RExMDALh06RL69++PqlWrwtzcHM7Ozhg4cCCePXumWWbq1KkYP348AMDDw0Ozjffu3Stw2wHg0aNHGDhwIJycnGBmZobatWtj7dq1WjEdPnwYIpEIW7duxcSJE+Hm5gZLS0ukpqaif//+sLa2xqNHj9CtWzdYW1vDwcEBX375JZRKpVY9W7duRf369WFjYwOZTAYfHx/88MMPxd5XRPT2YIsxEZUKV69eRbNmzSCTyfDVV19BKpVi1apVaNmyJY4cOYKGDRsCANLS0tCsWTNcv34dAwcOxHvvvYfExET89ddfePjwISpUqIDU1FT8/PPP6N27N4YMGYIXL15gzZo1CAoKwunTp+Hn51fouHr06IHq1atrTTt37hwWL14MR0dHzbQffvgBXbp0Qd++fZGdnY2tW7fio48+wq5du9CxY0cAwMaNGzF48GC8//77GDp0KACgWrVq+a576tSpmDZtGgIDAzF8+HDcvHkTK1aswJkzZ3D8+HFIpVJN2aSkJLRv3x49evTAxx9/jO3bt+Prr7+Gj48POnToUOjtVZPL5Xjw4AHKly8PAIiIiMDdu3cxYMAAODs74+rVq1i9ejWuXr2KU6dOQSQSoUePHoiOjsaWLVvw/fffo0KFCgAABweHArc9Pj4ejRo1gkgkQkhICBwcHLBnzx4MGjQIqampGDt2rFZsM2bMgKmpKb788ktkZWXB1NQUAKBUKhEUFISGDRtiwYIFOHDgABYuXIhq1aph+PDhmu3o3bs32rRpg7lz5wIArl+/juPHj2PMmDFF3k9E9JYRiIj0bN26dQIA4cyZM/mW6datm2BqaircuXNHM+3x48eCjY2N0Lx5c820yZMnCwCE33//PVcdKpVKEARBUCgUQlZWlta8pKQkwcnJSRg4cKDWdADClClTcsUaExOTZ5xPnz4VKlWqJPj4+AhpaWma6RkZGVrlsrOzhTp16gitW7fWmm5lZSUEBwfnqvf19SYkJAimpqZCu3btBKVSqSm3bNkyAYCwdu1azbQWLVoIAIQNGzZopmVlZQnOzs5Cz54989yOnCpXriy0a9dOePr0qfD06VPh4sWLQq9evQQAwqhRo/LcPkEQhC1btggAhKNHj2qmzZ8/P9/9l9+2Dxo0SHBxcRESExO1pvfq1UuwtbXVrPvQoUMCAKFq1aq54gkODhYACNOnT9eaXq9ePaF+/fqa12PGjBFkMpmgUCgK3ilE9E5iVwoiMjqlUon9+/ejW7duqFq1qma6i4sL+vTpg2PHjiE1NRUAsGPHDtStWxfdu3fPVY9IJALwqr+uuhVRpVLh+fPnUCgUaNCgAf77778Sxdm7d2+8ePECf/zxB6ysrDTzLCwsNP9PSkpCSkoKmjVrVuz1HThwANnZ2Rg7dqxW/9khQ4ZAJpPhn3/+0SpvbW2t1UfY1NQU77//Pu7evVuo9e3fvx8ODg5wcHBA3bp18dtvv+Gzzz7TtKrm3L7MzEwkJiaiUaNGAFCifSoIAnbs2IHOnTtDEAQkJiZq/oKCgpCSkpKr/uDgYK14cnq9P3SzZs209kG5cuWQnp6OiIiIYsdMRG8vJsZEZHRPnz5FRkYGvLy8cs3z9vaGSqXCgwcPAAB37txBnTp13lhneHg4fH19YW5ujvLly8PBwQH//PMPUlJSih3nxIkTcfDgQWzevDlXF4hdu3ahUaNGMDc3h729PRwcHLBixYpir+/+/fsAkGufmJqaomrVqpr5au7u7povBmp2dnZISkoq1PoaNmyIiIgIHDhwACdOnEBiYiI2bNigSUCfP3+OMWPGwMnJCRYWFnBwcICHhwcAlGifPn36FMnJyVi9erUmMVf/DRgwAACQkJCgtYx6va8zNzeHg4OD1rTX98GIESNQo0YNdOjQAe7u7hg4cCD27t1b7PiJ6O3CPsZE9Nb55Zdf0L9/f3Tr1g3jx4+Ho6MjJBIJwsLCcOfOnWLVuXPnTsydOxczZsxA+/btteb9+++/6NKlC5o3b44ff/wRLi4ukEqlWLduHTZv3qyLTXqj/Ea0EAShUMtXqFABgYGB+c7/+OOPceLECYwfPx5+fn6wtraGSqVC+/btoVKpihUzAM2yn376KYKDg/Ms4+vrq/U6v9biwozq4ejoiAsXLmDfvn3Ys2cP9uzZg3Xr1qFfv34IDw8vYvRE9LZhYkxERufg4ABLS0vcvHkz17wbN25ALBajYsWKAF7dsHXlypUC69u+fTuqVq2K33//XasVdcqUKcWKLzo6GsHBwejWrRu+/fbbXPN37NgBc3Nz7Nu3D2ZmZprp69aty1X29Vbd/KjHM75586ZW95Ls7GzExMQUmMTqWlJSEiIjIzFt2jRMnjxZM/3WrVu5yha0fXnNc3BwgI2NDZRKpcG2ydTUFJ07d0bnzp2hUqkwYsQIrFq1CpMmTcp1oyURvVvYlYKIjE4ikaBdu3b4888/tYYri4+Px+bNm9G0aVPIZDIAQM+ePXHx4sU8n8qmbh1VtxzmbC2NiorCyZMnixxbWloaunfvDjc3N81QY3nFLxKJtIYFu3fvXp4Ps7Cyssrz4RevCwwMhKmpKZYsWaK1HWvWrEFKSopmpAtDyGt/AsDixYtzlVX3u85rG/PadolEgp49e2LHjh15fuF5+vRp8YLOR87h5QBALBZrWqSzsrJ0ui4iKnvYYkxEBrN27do8+3OOGTMGM2fOREREBJo2bYoRI0bAxMQEq1atQlZWltZ4vOPHj8f27dvx0UcfYeDAgahfvz6eP3+Ov/76CytXrkTdunXRqVMn/P777+jevTs6duyImJgYrFy5ErVq1UJaWlqRYp42bRquXbuGiRMn4s8//9SaV61aNQQEBKBjx45YtGgR2rdvjz59+iAhIQHLly9H9erVcenSJa1l6tevjwMHDmDRokVwdXWFh4eHZii6nBwcHDBhwgRMmzYN7du3R5cuXXDz5k38+OOP8Pf317rRTt9kMhmaN2+OefPmQS6Xw83NDfv379eMcZxT/fr1AQDfffcdevXqBalUis6dO8PKyirfbZ8zZw4OHTqEhg0bYsiQIahVqxaeP3+O//77DwcOHMDz5891ti2DBw/G8+fP0bp1a7i7u+P+/ftYunQp/Pz84O3trbP1EFEZZcQRMYjoHaEeiiy/vwcPHgiCIAj//fefEBQUJFhbWwuWlpZCq1athBMnTuSq79mzZ0JISIjg5uYmmJqaCu7u7kJwcLBmuC+VSiXMnj1bqFy5smBmZibUq1dP2LVrlxAcHCxUrlxZqy68Ybg29TBgef3lHHpszZo1gqenp2BmZibUrFlTWLdunTBlyhTh9dPsjRs3hObNmwsWFhZadeQ3TNyyZcuEmjVrClKpVHBychKGDx8uJCUlaZVp0aKFULt27Vz7Ka/tzUvlypWFjh07Fljm4cOHQvfu3YVy5coJtra2wkcffSQ8fvw41/4TBEGYMWOG4ObmJojFYq1tym/bBUEQ4uPjhZEjRwoVK1YUpFKp4OzsLLRp00ZYvXq1pox6uLbffvstz221srLKNf3192D79u1Cu3btBEdHR8HU1FSoVKmS8PnnnwtPnjx5434iorefSBAKeWcGEREREdFbjH2MiYiIiIjAxJiIiIiICAATYyIiIiIiAEyMiYiIiIgAMDEmIiIiIgLAxJiIiIiICAATYyIi0oH169dDJBJpPbmQiKisYWJMRG+dtLQ0TJkyBe3bt4e9vT1EIhHWr1+fb/lly5bB29sbZmZmcHNzQ2hoKNLT03OVe/LkCYYOHQoPDw9YWFigWrVqCA0NzfWY4f79+0MkEuX6q1mzpq43lYiIdIiPhCait05iYiKmT5+OSpUqoW7dujh8+HC+Zb/++mvMmzcPH374IcaMGYNr165h6dKluHr1Kvbt26cpl5aWhoCAAKSnp2PEiBGoWLEiLl68iGXLluHQoUM4d+4cxOL/tTWYmZnh559/1lqXra2tzreViIh0h4kxEb11XFxc8OTJEzg7O+Ps2bPw9/fPs9yTJ0+waNEifPbZZ9iwYYNmeo0aNTBq1Cj8/fff6Ny5MwDgr7/+wv3797Fr1y507NhRU9be3h7Tp0/HxYsXUa9ePc10ExMTfPrpp3raQiIi0gd2pSCit46ZmRmcnZ3fWO7kyZNQKBTo1auX1nT1661bt2qmpaamAgCcnJy0yrq4uAAALCwsctWvVCo1yxXF1q1bUb9+fdjY2EAmk8HHxwc//PCDZv7z58/x5ZdfwsfHB9bW1pDJZOjQoQMuXryoVc/hw4chEonw66+/Ytq0aXBzc4ONjQ0+/PBDpKSkICsrC2PHjoWjoyOsra0xYMAAZGVladUhEokQEhKCTZs2wcvLC+bm5qhfvz6OHj1aqG3Zs2cPmjVrBisrK9jY2KBjx464evWqVpm4uDgMGDAA7u7uMDMzg4uLC7p27cr+ykRkcGwxJqJ3ljoJfD2ptbS0BACcO3dOM6158+YQi8UYM2YMFi5cCHd3d1y6dAmzZs1Ct27dcvUfzsjIgEwmQ0ZGBuzs7NC7d2/MnTsX1tbWBcYUERGB3r17o02bNpg7dy4A4Pr16zh+/DjGjBkDALh79y527tyJjz76CB4eHoiPj8eqVavQokULXLt2Da6urlp1hoWFwcLCAt988w1u376NpUuXQiqVQiwWIykpCVOnTsWpU6ewfv16eHh4YPLkyVrLHzlyBNu2bcPo0aNhZmaGH3/8Ee3bt8fp06dRp06dfLdl48aNCA4ORlBQEObOnYuMjAysWLECTZs2xfnz51GlShUAQM+ePXH16lWMGjUKVapUQUJCAiIiIhAbG6spQ0RkEAIR0VvszJkzAgBh3bp1ueadO3dOACDMmDFDa/revXsFAIK1tbXW9J9//lkoV66cAEDzFxwcLMjlcq1y33zzjfD1118L27ZtE7Zs2SIEBwcLAIQmTZrkKvu6MWPGCDKZTFAoFPmWyczMFJRKpda0mJgYwczMTJg+fbpm2qFDhwQAQp06dYTs7GzN9N69ewsikUjo0KGDVh0BAQFC5cqVtaapt/Ps2bOaaffv3xfMzc2F7t27a6atW7dOACDExMQIgiAIL168EMqVKycMGTJEq764uDjB1tZWMz0pKUkAIMyfP7+AvUJEZBhsMSaid9Z7772Hhg0bYu7cuXBzc0OrVq1w/fp1DB8+HFKpFC9fvtQq7+bmhvfffx8ffPABKleujH///RdLlixBhQoVsGDBAk25sLAwreV69eqFGjVq4LvvvsP27dtzdd3IqVy5ckhPT0dERATat2+fZxkzMzPN/5VKJZKTk2FtbQ0vLy/8999/ucr369cPUqlU87phw4bYsmULBg4cqFWuYcOGWLJkCRQKBUxM/nd5CAgIQP369TWvK1WqhK5du+Lvv/+GUqmERCLJtc6IiAgkJyejd+/eSExM1EyXSCRo2LAhDh06BOBVa72pqSkOHz6MQYMGwc7OLt99Q0Skb+xjTETvtB07dqBu3boYOHAgPDw80LlzZ3z88ceoV6+eVreH48ePo1OnTpg1axbGjBmDbt26YeHChZg4cSIWLVqEa9euFbiecePGQSwW48CBAwWWGzFiBGrUqIEOHTrA3d0dAwcOxN69e7XKqFQqfP/99/D09ISZmRkqVKgABwcHXLp0CSkpKbnqrFSpktZr9egYFStWzDVdpVLlqsPT0zNXnTVq1EBGRgaePn2a53bcunULANC6dWs4ODho/e3fvx8JCQkAXiX5c+fOxZ49e+Dk5ITmzZtj3rx5iIuLK2g3ERHpBVuMieid5ubmhmPHjuHWrVuIi4uDp6cnnJ2d4erqiho1amjKrVq1Ck5OTmjQoIHW8l26dMHUqVNx4sQJ1KpVK9/1WFhYoHz58nj+/HmB8Tg6OuLChQvYt28f9uzZgz179mDdunXo168fwsPDAQCzZ8/GpEmTMHDgQMyYMQP29vYQi8UYO3YsVCpVrjrzatEtaLogCAXGWBjqODZu3JjnjZA5W6THjh2Lzp07Y+fOndi3bx8mTZqEsLAwHDx4UGukDyIifWNiTESEV62i6pbRa9eu4cmTJ+jfv79mfnx8PJRKZa7l5HI5AEChUBRY/4sXL5CYmAgHB4c3xmJqaorOnTujc+fOUKlUGDFiBFatWoVJkyahevXq2L59O1q1aoU1a9ZoLZecnIwKFSq8sf6iUrf+5hQdHQ1LS8t8t6datWoAXiX6gYGBb1xHtWrV8MUXX+CLL77ArVu34Ofnh4ULF+KXX34pWfBEREXArhRERDmoVCp89dVXsLS0xLBhwzTTa9Sogfj4+FwPC9myZQsAaFo2MzMz8eLFi1z1zpgxA4Ig5NtvWO31p+iJxWL4+voC+N8oGhKJJFer7m+//YZHjx4VYguL7uTJk1p9lx88eIA///wT7dq1y7fVOSgoCDKZDLNnz9Z8echJ3QUjIyMDmZmZWvOqVasGGxubXEPHERHpG1uMieittGzZMiQnJ+Px48cAgL///hsPHz4EAIwaNUrTz3bMmDHIzMyEn58f5HI5Nm/ejNOnTyM8PFyrb25ISAjWrVuHzp07Y9SoUahcuTKOHDmCLVu2oG3btmjYsCGAV2Py1qtXD71799YM4bZv3z7s3r0b7du3R9euXQuMe/DgwXj+/Dlat24Nd3d33L9/H0uXLoWfnx+8vb0BAJ06dcL06dMxYMAANG7cGJcvX8amTZtQtWpV3e7E/1enTh0EBQVpDdcGANOmTct3GZlMhhUrVuCzzz7De++9h169esHBwQGxsbH4559/0KRJEyxbtgzR0dFo06YNPv74Y9SqVQsmJib4448/EB8fX+BNikREemHkUTGIiPSicuXKWsOq5fxTDykmCK+GGatbt65gZWUl2NjYCG3atBEOHjyYZ503btwQPvzwQ6FixYqCVCoVKleuLHz55ZdCenq6pkxSUpLw6aefCtWrVxcsLS0FMzMzoXbt2sLs2bO1hkzLz/bt24V27doJjo6OgqmpqVCpUiXh888/F548eaIpk5mZKXzxxReCi4uLYGFhITRp0kQ4efKk0KJFC6FFixaacurh2n777TetdaiHVjtz5ozW9ClTpggAhKdPn2qmARBGjhwp/PLLL4Knp6dgZmYm1KtXTzh06FCedebct+oYgoKCBFtbW8Hc3FyoVq2a0L9/f83wb4mJicLIkSOFmjVrClZWVoKtra3QsGFD4ddff33jviIi0jWRIOjgLgsiInoriUQijBw5EsuWLTN2KEREesc+xkREREREYGJMRERERASAiTEREREREQCOSkFERAXgbShE9C5hizEREREREZgYExEREREBYGJMRERERASAiTEREREREQAmxkREREREAJgYExEREREBYGJMRERERASAiTEREREREQAmxkREREREAJgYExEREREBYGJMRERERASAiTEREREREQAmxkREREREAJgYExEREREBYGJMRERERASAiTEREREREQAmxkREREREAJgYExFRCYSFhcHf3x82NjZwdHREt27dcPPmTa0ymZmZGDlyJMqXLw9ra2v07NkT8fHxb6z7+vXr6NKlC2xtbWFlZQV/f3/ExsZq5oeGhsLe3h4VK1bEpk2btJb97bff0LlzZ91sJBG9M0SCIAjGDoKIiMqm9u3bo1evXvD394dCocC3336LK1eu4Nq1a7CysgIADB8+HP/88w/Wr18PW1tbhISEQCwW4/jx4/nWe+fOHbz//vsYNGgQevfuDZlMhqtXr6JRo0ZwdHTE33//jSFDhmDXrl24desWBg4ciAcPHqBChQpISUmBv78/Dhw4gEqVKhlqVxDRW4CJMRER6czTp0/h6OiII0eOoHnz5khJSYGDgwM2b96MDz/8EABw48YNeHt74+TJk2jUqFGe9fTq1QtSqRQbN27Mc/68efPw33//YevWrQAAJycn7Nq1C/7+/vj8889Rs2ZNjBs3Tj8bSURvLXalIKJiEQQBqamp4HdryiklJQUAYG9vDwA4d+4c5HI5AgMDNWVq1qyJSpUq4eTJk3nWoVKp8M8//6BGjRoICgqCo6MjGjZsiJ07d2rK1K1bF2fPnkVSUhLOnTuHly9fonr16jh27Bj+++8/jB49Wn8bSURvLSbGRFQsL168gK2tLV68eGHsUKiUUKlUGDt2LJo0aYI6deoAAOLi4mBqaopy5cpplXVyckJcXFye9SQkJCAtLQ1z5sxB+/btsX//fnTv3h09evTAkSNHAABBQUH49NNP4e/vj/79+yM8PBxWVlYYPnw4Vq5ciRUrVsDLywtNmjTB1atX9brdRPT2MDF2AERE9HYYOXIkrly5gmPHjpWoHpVKBQDo2rWrpjuEn58fTpw4gZUrV6JFixYAgKlTp2Lq1Kma5aZNm4bAwEBIpVLMnDkTly9fxq5du9CvXz+cO3euRDER0buBLcZERFRiISEh2LVrFw4dOgR3d3fNdGdnZ2RnZyM5OVmrfHx8PJydnfOsq0KFCjAxMUGtWrW0pnt7e2uNSpHTjRs38Msvv2DGjBk4fPgwmjdvDgcHB3z88cf477//+MsGERUKE2MiIio2QRAQEhKCP/74AwcPHoSHh4fW/Pr160MqlSIyMlIz7ebNm4iNjUVAQECedZqamsLf3z/XsG/R0dGoXLlynjF8/vnnWLRoEaytraFUKiGXywFA869SqdTb0HKCIGDy5MlwcXGBhYUFAgMDcevWLc38rKwsfPbZZ5DJZKhRowYOHDigtfz8+fMxatSoAtdBRAYiEBEVQ0pKigBASElJMXYoZETDhw8XbG1thcOHDwtPnjzR/GVkZGjKDBs2TKhUqZJw8OBB4ezZs0JAQIAQEBCgVY+Xl5fw+++/a17//vvvglQqFVavXi3cunVLWLp0qSCRSIR///03VwyrV68WevbsqXkdFRUlyGQy4eTJk8LkyZOFWrVqCYIgCEFBQcK6deuEK1euCBcuXBA++OADoVKlSkJaWppWrBUrVhQiIyOFs2fPCo0aNRIaN25c4D6YM2eOYGtrK+zcuVO4ePGi0KVLF8HDw0N4+fKlIAiCsGTJEsHb21u4cuWKMH/+fMHBwUFQqVSCIAjC3bt3BU9PTx5HRKUEE2MiKhYmxiQIggAgz79169Zpyrx8+VIYMWKEYGdnJ1haWgrdu3cXnjx5kquenMsIgiCsWbNGqF69umBubi7UrVtX2LlzZ671x8XFCZUrVxYePXqkNX3atGmCvb29ULNmTSEqKirP2BMSEgQAwpEjRwRBEITk5GRBKpUKv/32m6bM9evXBQDCyZMn86xDpVIJzs7Owvz58zXTkpOTBTMzM2HLli2CILz68vD1118LgiAIGRkZAgAhISFBEIRXyXrOLwREZFwcx5iIiiU1NRW2trZISUmBTCYzdjhERXb79m14enri8uXLqFOnDg4ePIg2bdogKSlJaxSNypUrY+zYsXmOi3z37l1Uq1YN58+fh5+fn2Z6ixYt4Ofnhx9++AGrVq3Cxo0bERERgX379mHEiBF49OgRNm/ejN9++01rGDoiMi6OSkFERO8cXQ0tp57u5OSU7zIDBw7EpUuXUKtWLVSoUAG//vorkpKSMHnyZBw+fBgTJ07E1q1bUa1aNaxduxZubm463loiKiwmxkRE9M7R1dByhSGVSrF8+XKtaQMGDMDo0aNx/vx57Ny5ExcvXsS8efMwevRo7NixQ+8xEVHeOCoFERG9U3Q5tJx6+usjVxS0zKFDh3D16lWEhITg8OHD+OCDD2BlZYWPP/4Yhw8fLv6GEVGJscWYiIgMIjk5GRkZGTqt09LSMlfXh/wIgoBRo0bhjz/+wOHDhwscWq5nz54A3jy0nIeHB5ydnREZGanpY5yamoqoqCgMHz48V3n1cHCbNm2CRCKBUqnUPFZdLpdDqVQWcsuJSB+YGBMRkd4lJydj2bJlUCgUOq3XxMQEISEhhUqOR44cic2bN+PPP/+EjY2Npg+wra0tLCwsYGtri0GDBiE0NBT29vaQyWQYNWoUAgIC0KhRI009NWvWRFhYGLp37w6RSISxY8di5syZ8PT0hIeHByZNmgRXV1d069YtVwwzZszABx98gHr16gEAmjRpgvHjx2PAgAFYtmwZmjRpopP9QkTFw64URGXcnDlzNBdntcI8pCA2NhYdO3aEpaUlHB0dMX78eJ0nLURqGRkZevl8KRSKQrdCr1ixAikpKWjZsiVcXFw0f9u2bdOU+f7779GpUyf07NkTzZs3h7OzM37//Xetem7evImUlBTN66+++gqjRo3C0KFD4e/vj7S0NOzduxfm5uZay125cgW//vorpk2bppn24YcfomPHjmjWrBkuXbqEH374oTi7gYh0hMO1EZVhZ86cwccffwyZTIZWrVph8eLFAIDhw4fjn3/+wfr162Fra4uQkBCIxWIcP34cwKungPn5+cHZ2Rnz58/HkydP0K9fPwwZMgSzZ88u1Lo5XBsVxePHj7F69Wq91D106FC4urrqpW4ierewxZiojEpLS0Pfvn3x008/wc7OTjM9JSUFa9aswaJFi9C6dWvUr18f69atw4kTJ3Dq1CkAwP79+3Ht2jX88ssv8PPzQ4cOHTBjxgwsX74c2dnZxtokIiIio2IfY6IyauTIkejYsSMCAwMxc+ZMzfRz585BLpcjMDBQM61mzZqoVKkSTp48iUaNGuHkyZPw8fHRGns1KCgIw4cPx9WrVzX9H3PKyspCVlaW5nVqaiqAVzcMyeVyfWwivUX02U1HoVDwM0hEbySVSt9YhokxURm0detW/Pfffzhz5kyueYV5SEFcXFyeDyRQz8tLWFiYVt9Itf3798PS0rI4m0HvEF2PRpHT8ePH+Rkkojfq2rXrG8swMSYqYx48eIAxY8YgIiIi1809+jRhwgSEhoZqXqempqJixYpo164d+xjTGz158gQ3b97US91NmjSBi4uL7ipMeQhkPNNdfWqW5QFb9zeXIyKjYWJMVMacO3cOCQkJeO+99zTTlEoljh49imXLlmHfvn2ahxTkbDXO+cABZ2dnnD59Wqte9agV+T2UwMzMDGZmZrmmS6XSQv08Re82ExP9XW5MTEx09xlMfgCsbAgost5ctqhMzICQc0C5irqvm4h0gjffEZUxbdq0weXLl3HhwgXNX4MGDdC3b1/N/9UPKVB7/SEFAQEBuHz5MhISEjRlIiIiIJPJUKtWLYNvE1GpkfFMP0kx8KpefbREE5HOsMWYqIyxsbFBnTp1tKZZWVmhfPnymulvekhBu3btUKtWLXz22WeYN28e4uLiMHHiRIwcOTLPVmEiIqJ3ARNjorfQ999/D7FYjJ49eyIrKwtBQUH48ccfNfMlEgl27dqF4cOHIyAgAFZWVggODsb06dONGDUREZFxsSsF0Vvg8OHDmod7AIC5uTmWL1+O58+fIz09Hb///nuuvsOVK1fG7t27kZGRgadPn2LBggV67QdKRXP06FF07twZrq6uEIlE2Llzp9b8tLQ0hISEwN3dHRYWFqhVqxZWrlxZYJ2///47GjRogHLlysHKygp+fn7YuHGjVpkFCxbA0dERjo6OWLhwoda8qKgo1K9fn09IJKK3Fq+CRESlUHp6OurWrYuBAweiR48eueaHhobi4MGD+OWXX1ClShXs378fI0aMgKurK7p06ZJnnfb29vjuu+9Qs2ZNmJqaYteuXRgwYAAcHR0RFBSES5cuYfLkydi1axcEQUCnTp3Qrl07+Pj4QKFQYNiwYVi9ejW/QBHRW4tnNyKiUqhDhw7o0KFDvvNPnDiB4OBgtGzZEsCrxyKvWrUKp0+fzjcxVpdVGzNmDMLDw3Hs2DEEBQXhxo0b8PX1RevWrQEAvr6+uHHjBnx8fDB//nw0b94c/v7+Otk+IqLSiF0piIjKoMaNG+Ovv/7Co0ePIAgCDh06hOjoaLRr165QywuCgMjISNy8eRPNmzcHAPj4+CA6OhqxsbG4f/8+oqOjUadOHdy5cwfr1q3TesIiEdHbiC3GRERl0NKlSzF06FC4u7vDxMQEYrEYP/30kybJzU9KSgrc3NyQlZUFiUSCH3/8EW3btgUAeHt7Y/bs2ZrXYWFh8Pb2RmBgIObNm4d9+/Zh6tSpkEql+OGHH964LiKisoaJMRFRGbR06VKcOnUKf/31FypXroyjR49i5MiRcHV1RWBgYL7L2djY4MKFC0hLS0NkZCRCQ0NRtWpVTTeLYcOGYdiwYZry4eHhsLGxQUBAALy8vHDmzBk8fPgQvXr1QkxMDIf3I6K3ChNjIqIy5uXLl/j222/xxx9/oGPHjgBe9Qe+cOECFixYUGBiLBaLUb16dQCAn58frl+/jrCwsFz9jwEgMTER06ZNw9GjRxEVFYUaNWrA09MTnp6ekMvliI6Oho+Pj162kYjIGNjHmIiojJHL5ZDL5RCLtU/hEokEKpWqSHWpVCpkZeX9pLdx48Zh3LhxcHd3h1KphFwu18xTKBRQKpVFD56IqBRjizERUSmUlpaG27dva17HxMTgwoULsLe3R6VKldCiRQuMHz8eFhYWqFy5Mo4cOYINGzZg0aJFmmX69esHNzc3hIWFAXjVZ7hBgwaoVq0asrKysHv3bmzcuBErVqzItf6IiAhER0cjPDwcAODv748bN25gz549ePDgASQSCby8vPS8F4iIDIuJMRFRKXT27Fm0atVK8zo0NBQAEBwcjPXr12Pr1q2YMGEC+vbti+fPn6Ny5cqYNWuWVv/g2NhYrVbl9PR0jBgxAg8fPoSFhQVq1qyJX375BZ988onWul++fImQkBBs27ZNs7y7uzuWLl2KAQMGwMzMDOHh4bCwsNDnLiAiMjiRIAiCsYMgorInNTUVtra2SElJgUwmM3Y4VMo9fvwYq1ev1kvdQ4cOhaurq24qe3wBWN1CN3XlZegRwNVPf/UTUYmwjzEREREREZgYExEREREBYGJMRERERASAN98REZVpj5JfIik9W6d12lmZwq0cb6wjoncPE2MiojLqUfJLtF5wGFmKoo1d/CZmJmIc/LIlk2MieuewKwURURmVlJ6t86QYALIUKp23QhMRlQVMjImIiIiIwMSYiIiIiAgAE2MiIiIiIgBMjImIiIiIADAxJiIiIiICwMSYiIiIiAgAE2MiKqHjx4+jc+fOcHV1hUgkws6dO3OVuX79Orp06QJbW1tYWVnB398fsbGx+db5+++/o0GDBihXrhysrKzg5+eHjRs3apVZsGABHB0d4ejoiIULF2rNi4qKQv369aFQKHSyjURE9G7gAz6IqEQyMjJQt25dDBw4ED169Mg1/86dO2jatCkGDRqEadOmQSaT4erVqzA3N8+3Tnt7e3z33XeoWbMmTE1NsWvXLgwYMACOjo4ICgrCpUuXMHnyZOzatQuCIKBTp05o164dfHx8oFAoMGzYMKxevRomJjzFERFR4fGqQUQl0rZtW/Ts2TPf+d999x0++OADzJs3TzOtWrVqBdbZsmVLrddjxoxBeHg4jh07hqCgINy4cQO+vr5o3bo1AMDX1xc3btyAj48P5s+fj+bNm8Pf37/4G0VERO8kdqUgIr1RqVT4559/UKNGDQQFBcHR0RENGzbMs7tFfgRBQGRkJG7evInmzZsDAHx8fBAdHY3Y2Fjcv38f0dHRqFOnDu7cuYN169Zh5syZetoiIiJ6mzExJiK9SUhIQFpaGubMmYP27dtj//796N69O3r06IEjR44UuGxKSgqsra1hamqKjh07YunSpWjbti0AwNvbG7Nnz0bbtm3Rrl07hIWFwdvbG59//jnmzZuHffv2oU6dOqhXrx6OHj1qiE0lIqK3ALtSEJHeqFQqAEDXrl0xbtw4AICfnx9OnDiBlStXokWLFvkua2NjgwsXLiAtLQ2RkZEIDQ1F1apVNd0shg0bhmHDhmnKh4eHw8bGBgEBAfDy8sKZM2fw8OFD9OrVCzExMTAzM9PfhhIR0VuBiTER6U2FChVgYmKCWrVqaU339vbGsWPHClxWLBajevXqAF4l09evX0dYWFiu/scAkJiYiGnTpuHo0aOIiopCjRo14OnpCU9PT8jlckRHR8PHx0dn20VERG8ndqUgIr0xNTWFv78/bt68qTU9OjoalStXLlJdKpUKWVlZec4bN24cxo0bB3d3dyiVSsjlcs08hUIBpVJZ9OCJiOidwxZjIiqRtLQ03L17V/M6JiYGFy5cgL29PSpVqoTx48fjk08+QfPmzdGqVSvs3bsXf//9Nw4fPqxZpl+/fnBzc0NYWBgAICwsDA0aNEC1atWQlZWF3bt3Y+PGjVixYkWu9UdERCA6Ohrh4eEAAH9/f9y4cQN79uzBgwcPIJFI4OXlpd+dQEREbwUmxkRUIufPn0enTp00r0NDQwEAwcHBWL9+Pbp3746VK1ciLCwMo0ePhpeXF3bs2IGmTZtqlomNjYVY/L8fsNLT0zFixAg8fPgQFhYWqFmzJn755Rd88sknWut++fIlQkJCsG3bNs3y7u7uWLp0KQYMGAAzMzOEh4fDwsJCn7uAiIjeEiJBEARjB0FEZU9qaipsbW2RkpICmUxm7HDeSVcepaDT0oL7ahfXrlFNUcfNVmf1PX78GKtXr9ZZfTkNHToUrq6uuqns8QVgdf43hZbY0COAq5/+6ieiEmEfYyIiIiIiMDEmIiIiIgLAxJiIiIiICABvviMiA8nOztbLsGkSiQSmpqY6r5eIiN49TIyJSO+ys7Nx69Yt6ONeX5FIBE9PTybHRERUYuxKQUR6p1Qq9ZIUA4AgCHyABxER6QQTYyIiIiIiMDEmIiIiIgLAxJiIiIiICAATYyIiIiIiAEyMiYiIiIgAMDEmIiIiIgLAxJjIoDZu3IgmTZrA1dUV9+/fBwAsXrwYf/75p5EjIyIiIibGRAayYsUKhIaG4oMPPkBycrJm7N1y5cph8eLFRa7L19cXMpkMMpkMAQEB2LNnj2Z+ZmYmRo4cifLly8Pa2ho9e/ZEfHy8Vh2xsbHo2LEjLC0t4ejoiPHjx0OhUJR4O4mIiMoqJsZEBrJ06VL89NNP+O677yCRSDTTGzRogMuXLxepLnd3d8yZMwfnzp3D2bNn0bp1a3Tt2hVXr14FAIwbNw5///03fvvtNxw5cgSPHz9Gjx49NMsrlUp07NgR2dnZOHHiBMLDw7F+/XpMnjxZNxtLRERUBvGR0EQGEhMTg3r16uWabmZmhvT09CLV1blzZ63Xs2bNwooVK3Dq1Cm4u7tjzZo12Lx5M1q3bg0AWLduHby9vXHq1Ck0atQI+/fvx7Vr13DgwAE4OTnBz88PM2bMwNdff42pU6fy8cpERPROYosxkYF4eHjgwoULuabv3bsX3t7exa5XqVRi69atSE9PR0BAAM6dOwe5XI7AwEBNmZo1a6JSpUo4efIkAODkyZPw8fGBk5OTpkxQUBBSU1M1rc5ERETvGrYYExlIaGgoRo4ciczMTAiCgNOnT2PLli0ICwvDzz//XOT6Ll++jICAAGRmZsLa2hp//PEHatWqhQsXLsDU1BTlypXTKu/k5IS4uDgAQFxcnFZSrJ6vnpeXrKwsZGVlaV6npqYCAORyOeRyeYGx6rvvskKheGMMbyN97ldd79MyE6tCAaluasqTXKEA3sHPKlFpIJW++ehmYkxkIIMHD4aFhQUmTpyIjIwM9OnTB66urvjhhx/Qq1evItfn5eWFCxcuICUlBdu3b0dwcDCOHDmih8hfCQsLw7Rp03JN379/PywtLQtc1tTUFBUrVtRXaDh27Biys7P1Vn9p9SAN0Ndp/NixY7hvrbv6MjIydFfZa44fP/7Gz2Bh2WbcQ0ud1JS348ePI8XykR7XQET56dq16xvLMDEmMqC+ffuib9++yMjIQFpaGhwdHYtdl6mpKapXrw4AqF+/Ps6cOYMffvgBn3zyCbKzs5GcnKzVahwfHw9nZ2cAgLOzM06fPq1Vn3rUCnWZ102YMAGhoaGa16mpqahYsSLatWsHmUxWYKyZmZma4en0oWnTpjA3N9db/aXV1cepWHD5lF7qbtq0KWq7Fvy+FsWTJ09w8+ZNndWXU5MmTeDi4qKbyp5cBPQTJoBXscKlrv5WQEQlwsSYyECmT5+Opk2bonXr1rC0tNS0cKWnp2PhwoUlHhFCpVIhKysL9evXh1QqRWRkJHr27AkAuHnzJmJjYxEQEAAACAgIwKxZs5CQkKBJziMiIiCTyVCrVq086zczM4OZmVmu6VKp9I0/T+m7K4WJiUmhfiJ725iY6O8Urut9WmZi1WOcACA1MQHewc8qUVnBm++IDGTq1Kno0KEDFi1apDU9LS0tzy4KBZkwYQKOHj2Ke/fu4fLly5gwYQIOHz6Mvn37wtbWFoMGDUJoaCgOHTqEc+fOYcCAAQgICECjRo0AAO3atUOtWrXw2Wef4eLFi9i3bx8mTpyIkSNH5pn8EhERvQvYYkxkQBs2bMDIkSNx+fJlrFq1qtjDoiUkJKBfv3548uQJbG1t4evri3379qFt27YAgO+//x5isRg9e/ZEVlYWgoKC8OOPP2qWl0gk2LVrF4YPH46AgABYWVkhODgY06dP18l2EhERlUVMjIkMqFWrVoiKikLnzp3RsmVL7Ny5s1j1rFmzpsD55ubmWL58OZYvX55vmcqVK2P37t3FWj8REdHbiF0piAxEJBIBAKpVq4ZTp05BJpOhfv36OHv2rJEjIyIiIoCJMZHBCIKg+b9MJsPu3bvRvXt3dOvWzXhBERERkQa7UhAZyLp162Bra6t5LRaLsWTJEtSrVw9Hjx41YmREREQEMDEmMpjg4OA8pw8YMAADBgwwcDRERET0OibGRHq0ZMkSDB06FObm5liyZEm+5UQiEUaNGmXAyIiIiOh1TIyJ9Oj7779H3759YW5uju+//z7fckyMiYiIjI+JMZEexcTE5Pl/IiIiKn04KgWRkSiVSly4cAFJSUnGDoWIiIjAxJjIYMaOHat5MIdSqUTz5s3x3nvvoWLFijh8+LBxgyMiIiImxkSGsn37dtStWxcA8Pfff+PevXu4ceMGxo0bh++++87I0RERERETYyIDSUxMhLOzMwBg9+7d+Oijj1CjRg0MHDgQly9fNnJ0RERExMSYyECcnJxw7do1KJVK7N27F23btgUAZGRkQCKRGDk6IiIi4qgURAYyYMAAfPzxx3BxcYFIJEJgYCAAICoqCjVr1jRydERERMTEmMhApk6dijp16uDBgwf46KOPYGZmBgCQSCT45ptvjBwdERERMTEmMqAPP/ww17T8HhVNREREhsU+xkREREREYGJMRERERASAiTEREREREQAmxkREREREAHjzHZFBqVQq3L59GwkJCVCpVFrzmjdvbqSoiIiICGBiTGQwp06dQp8+fXD//n0IgqA1TyQSQalUGikyIiIiApgYExnMsGHD0KBBA/zzzz+ah3wQERFR6cHEmMhAbt26he3bt6N69erGDoWIiIjywJvviAykYcOGuH37trHDICIionywxZjIQEaNGoUvvvgCcXFx8PHxgVQq1Zrv6+trpMiIiIgIYGJMZDA9e/YEAAwcOFAzTSQSQRAE3nxHRERUCjAxJjKQmJgYY4dAREREBWBiTGQglStXNnYIREREVAAmxkQGdOfOHSxevBjXr18HANSqVQtjxoxBtWrVjBwZERERcVQKIgPZt28fatWqhdOnT8PX1xe+vr6IiopC7dq1ERERYezwiIiI3nlMjIkM5JtvvsG4ceMQFRWFRYsWYdGiRYiKisLYsWPx9ddfGzs8IipFjh49is6dO8PV1RUikQg7d+7Umi8IAiZPngwXFxdYWFggMDAQt27demO9jx49wqeffory5cvDwsICPj4+OHv2rGb+ggUL4OjoCEdHRyxcuFBr2aioKNSvXx8KhUIn20hUGjExJjKQ69evY9CgQbmmDxw4ENeuXTNCRERUWqWnp6Nu3bpYvnx5nvPnzZuHJUuWYOXKlYiKioKVlRWCgoKQmZmZb51JSUlo0qQJpFIp9uzZg2vXrmHhwoWws7MDAFy6dAmTJ0/G1q1bsWXLFkycOBGXL18GACgUCgwbNgwrV66EiQl7YdLbi59uIgNxcHDAhQsX4OnpqTX9woULcHR0NFJURFQadejQAR06dMhzniAIWLx4MSZOnIiuXbsCADZs2AAnJyfs3LkTvXr1ynO5uXPnomLFili3bp1mmoeHh+b/N27cgK+vL1q3bg3g1djqN27cgI+PD+bPn4/mzZvD399fV5tIVCoxMSYykCFDhmDo0KG4e/cuGjduDAA4fvw45s6di9DQUCNHR0RlRUxMDOLi4hAYGKiZZmtri4YNG+LkyZP5JsZ//fUXgoKC8NFHH+HIkSNwc3PDiBEjMGTIEACAj48PoqOjERsbC0EQEB0djTp16uDOnTtYt24dzp07Z5DtIzImJsZEBjJp0iTY2Nhg4cKFmDBhAgDA1dUVU6dOxejRo40cHRGVFXFxcQAAJycnrelOTk6aeXm5e/cuVqxYgdDQUHz77bc4c+YMRo8eDVNTUwQHB8Pb2xuzZ89G27ZtAQBhYWHw9vZGYGAg5s2bh3379mHq1KmQSqX44Ycf0Lx5c/1tJJGRMDEmMhCRSIRx48Zh3LhxePHiBQDAxsbGyFER0btCpVKhQYMGmD17NgCgXr16uHLlClauXIng4GAAwLBhwzBs2DDNMuHh4bCxsUFAQAC8vLxw5swZPHz4EL169UJMTAzMzMyMsi1E+sKb74iMwMbGhkkxERWLs7MzACA+Pl5renx8vGZeXlxcXFCrVi2tad7e3oiNjc2zfGJiIqZNm4alS5ciKioKNWrUgKenJ1q1agW5XI7o6OgSbglR6cMWYyI9eu+99xAZGQk7OzvUq1cPIpEo37L//fefASMjorLKw8MDzs7OiIyMhJ+fHwAgNTUVUVFRGD58eL7LNWnSBDdv3tSaFh0dne9TOdW/cLm7u+PMmTOQy+WaeQqFAkqlsuQbQ1TKMDEm0qOuXbtqfmrs2rVrgYkxEZFaWloabt++rXkdExODCxcuwN7eHpUqVcLYsWMxc+ZMeHp6wsPDA5MmTYKrqyu6deumWaZNmzbo3r07QkJCALxKdBs3bozZs2fj448/xunTp7F69WqsXr061/ojIiIQHR2N8PBwAIC/vz9u3LiBPXv24MGDB5BIJPDy8tLvTiAyAibGRHo0ZcoUzf+nTp1qvECIqEw5e/YsWrVqpXmtHrkmODgY69evx1dffYX09HQMHToUycnJaNq0Kfbu3Qtzc3PNMnfu3EFiYqLmtb+/P/744w9MmDAB06dPh4eHBxYvXoy+fftqrfvly5cICQnBtm3bIBa/6nHp7u6OpUuXYsCAATAzM0N4eDgsLCz0uQuIjIKJMZGBVK1aFWfOnEH58uW1picnJ+O9997D3bt3jRQZEZU2LVu2hCAI+c4XiUSYPn06pk+fnm+Ze/fu5ZrWqVMndOrUqcB1W1hY5OpyAQCDBw/G4MGDC1yWqKzjzXdEBnLv3r08++RlZWXh4cOHRoiIAODFixcYO3YsKleuDAsLCzRu3BhnzpwpcJmsrCx89913qFy5MszMzFClShWsXbtWMz8iIgI1atSATCbDZ599huzsbM28lJQU1KhRA/fv39fbNhERUfGwxZhIz/766y/N//ft2wdbW1vNa6VSicjISK2nT5FhDR48GFeuXMHGjRvh6uqKX375BYGBgbh27Rrc3NzyXObjjz9GfHw81qxZg+rVq+PJkydQqVQAXg2J1adPH0yYMAFBQUH48MMPsXr1ak0/z2+++QbDhg3L94YnIiIyHibGRHqmvhlGJBJpxgpVk0qlqFKlChYuXGiEyOjly5fYsWMH/vzzT83DCqZOnYq///4bK1aswMyZM3Mts3fvXhw5cgR3796Fvb09AKBKlSqa+YmJiUhMTMSIESNgbm6OLl264Pr16wCAEydO4MyZM1i2bJn+N46IiIqMiTGRnqlbEj08PHDmzBlUqFDByBGRmnrIqZw3LAGv+lgeO3Ysz2X++usvNGjQAPPmzcPGjRthZWWFLl26YMaMGbCwsICDgwNcXFywf/9+BAYG4t9//0VwcDDkcjmGDx+OtWvXQiKRGGLz6B0gf/wYiqQknddrYmcHqaurzuslKu2YGBMZSExMjLFDoNeon+g1Y8YMeHt7w8nJCVu2bMHJkydRvXr1PJe5e/cujh07BnNzc/zxxx+a1uFnz55h3bp1EIlE+PXXXzFu3DiMGTMGH3zwAQYOHIg5c+agVatWMDc3R5MmTZCYmIhRo0ZpulgQFZX88WPcad8BQo4+7LoiMjVFtb17mBzTO4eJMZGBjB49GtWrV8fo0aO1pi9btgy3b9/G4sWLjRPYO27jxo0YOHAg3NzcIJFI8N5776F37944d+5cnuVVKhVEIhE2bdqk6S++aNEifPjhh/jxxx9hYWGBpk2bat3AFx0djQ0bNuD8+fNo3rw5xowZgw4dOqBOnTpo3rw5fH19DbKt9HZRJCXpJSkGACE7G4qkJCbG9M7hqBREBrJjxw40adIk1/TGjRtj+/btha4nLCwM/v7+sLGxgaOjI7p165ZraKXMzEyMHDkS5cuXh7W1NXr27Jnr8bGxsbHo2LEjLC0t4ejoiPHjx0OhUBRv48qwatWq4ciRI0hLS8ODBw9w+vRpyOVyVK1aNc/yLi4ucHNz07qJ0tvbG4Ig5Du6yOeff46FCxdCpVLh/Pnz+Oijj+Do6IgWLVrgyJEjetkuIiIqOibGRAby7NkzrWRKTSaTaQ3C/yZHjhzByJEjcerUKUREREAul6Ndu3ZIT0/XlBk3bhz+/vtv/Pbbbzhy5AgeP36MHj16aOYrlUp07NgR2dnZOHHiBMLDw7F+/XpMnjy5ZBtZhllZWcHFxQVJSUnYt28funbtmme5Jk2a4PHjx0hLS9NMi46Ohlgshru7e67ya9asgb29Pbp06aIZrk/9aF25XM7H6hIRlSJMjIkMpHr16ti7d2+u6Xv27Mm3dTIve/fuRf/+/VG7dm3UrVsX69evR2xsrOan/5SUFKxZswaLFi1C69atUb9+faxbtw4nTpzAqVOnAAD79+/HtWvX8Msvv8DPzw8dOnTAjBkzsHz5cq0xd98F+/btw969exETE4OIiAi0atUKNWvWxIABAwAAEyZMQL9+/TTl+/Tpg/Lly2PAgAG4du0ajh49ivHjx2PgwIG5ngSWkJCAmTNnYunSpQAAOzs7eHt7Y/HixTh58iQiIyPz/BWBiIiMg32MiQwkNDQUISEhePr0KVq3bg0AiIyMxMKFC0vUvzglJQUANEOHnTt3DnK5HIGBgZoyNWvWRKVKlXDy5Ek0atQIJ0+ehI+PD5ycnDRlgoKCMHz4cFy9ehX16tXLtZ6srCxkZWVpXqempgJ41eqpbgHNj767aCgUijfGkJ9nz55h0qRJePjwIezt7dG9e3fN08TkcjkePXqE+/fva+o3MzPD7t27MW7cODRo0ADly5fHhx9+iGnTpuWKYdSoURg7diwcHBw0837++WcMHDgQS5YsQWhoKPz8/Ioduz73a0n2aX716YtOY1UoINVNTXmSKxSAjmItzccVUWkklb756BYJBT1zkoh0asWKFZg1axYeP34M4NX4t1OnTtVqkSwKlUqFLl26IDk5WTO82ObNmzFgwACtJBYA3n//fbRq1Qpz587F0KFDcf/+fezbt08zPyMjA1ZWVti9ezc6dOiQa11Tp07FtGnTck3fvHkzLC0tC4zT1NQUFStWLM4mFsqDBw/euZZuAHiQBiy4rJ/2jS99FKhorbv6MjIy8nzMsC54eXm98TNYWLYZ99Dypv66FB32mo4Uyyo6qcvs0SNUXrJUJ3Xl5f7oUcjK5yE3RGVRfl3kcmKLMZEBDR8+HMOHD8fTp09hYWEBa+uSZR4jR47ElStX8h1zV5cmTJiA0NBQzevU1FRUrFgR7dq1g0wmK3DZzMxMvT4CuWnTprnGIn4XXH2cigWXT+ml7qZNm6K2a8Hva1E8efJEb4lxkyZN4OLiopvKnlwE9BMmgFexwqWuTurKvHYND/WYGDdp0gTmtWrprX6i0oiJMZEBKRQKHD58GHfu3EGfPn0AAI8fP4ZMJitykhwSEoJdu3bh6NGjWjd9OTs7Izs7G8nJyShXrpxmenx8PJydnTVlTp8+rVWfetQKdZnXmZmZwczMLNd0qVT6xp+n9P2Tr4mJSaF+InvbmJjo7xSu631aZmLVY5wAIDUxAXQUq0LPsb6rxxW923jzHZGB3L9/Hz4+PujatStGjhyJp0+fAgDmzp2LL7/8stD1CIKAkJAQ/PHHHzh48CA8PDy05tevXx9SqRSRkZGaaTdv3kRsbCwCAgIAAAEBAbh8+TISEhI0ZSIiIiCTyVCLLURERPSOYosxkYGMGTMGDRo0wMWLF1G+fHnN9O7du2PIkCGFrmfkyJHYvHkz/vzzT9jY2CAuLg4AYGtrCwsLC9ja2mLQoEEIDQ2Fvb09ZDIZRo0ahYCAADRq1AgA0K5dO9SqVQufffYZ5s2bh7i4OEycOBEjR47Ms1X4XfMwMxvP5bpt5baXmsDd3FSndRIRkW4xMSYykH///RcnTpyAqal2clSlShU8evSo0PWsWLECANCyZUut6evWrUP//v0BAN9//z3EYjF69uyJrKwsBAUF4ccff9SUlUgk2LVrF4YPH46AgABYWVkhODhYMxrDu+xhZjaaRF1Hlkq39yWbiUU43tCbyTERUSnGxJjIQFQqVZ4Pc3j48CFsbGwKXU9hBpIxNzfH8uXLsXz58nzLVK5cGbt37y70et8Vz+UKnSfFAJClEvBcrmBiTERUirGPMZGBtGvXTmu8YpFIhLS0NEyZMgUffPCB8QIjIiIiAGwxJjKYhQsXIigoCLVq1UJmZib69OmDW7duoUKFCtiyZYuxwyMiInrnMTEmMhB3d3dcvHgR27Ztw8WLF5GWloZBgwahb9++uR4lTERERIbHxJjIgExMTNC3b1/07dvX2KEQERHRa9jHmMhAwsPD8c8//2hef/XVVyhXrhwaN26s16fCERERUeEwMSYykNmzZ2u6TJw8eRLLli3DvHnzUKFCBYwbN87I0RERERG7UhAZyIMHD1C9enUAwM6dO/Hhhx9i6NChaNKkSa4xiYmIiMjw2GJMZCDW1tZ49uwZAGD//v1o27YtgFdjDr98+dKYoRERERHYYkxkMG3btsXgwYNRr149REdHa8Yuvnr1KqpUqWLc4IiIiIgtxkSGsnz5cjRu3BhPnz7Fjh07UL58eQDAuXPn0Lt3byNHR0RERGwxJjIAhUKBJUuW4Ouvv4a7u7vWvGnTphkpKiIiIsqJLcZEBmBiYoJ58+ZBoVAYOxQiIiLKBxNjIgNp06YNjhw5YuwwiIiIKB/sSkFkIB06dMA333yDy5cvo379+rCystKa36VLFyNFRkRERAATYyKDGTFiBABg0aJFueaJRCIolUpDh0REREQ5MDEmMhCVSmXsEIiIiKgA7GNMZASZmZnGDoGIiIhew8SYyECUSiVmzJgBNzc3WFtb4+7duwCASZMmYc2aNUaOjoiIiJgYExnIrFmzsH79esybNw+mpqaa6XXq1MHPP/9sxMiIiIgIYGJMZDAbNmzA6tWr0bdvX0gkEs30unXr4saNG0aMjIiIiAAmxkQG8+jRI1SvXj3XdJVKBblcboSIiIiIKCcmxkQGUqtWLfz777+5pm/fvh316tUzQkRERESUE4drIzKQyZMnIzg4GI8ePYJKpcLvv/+OmzdvYsOGDdi1a5exwyMiInrnscWYyEC6du2Kv//+GwcOHICVlRUmT56M69ev4++//0bbtm2NHR4REdE7jy3GRAbUrFkzREREGDsMIiIiygNbjIkMpGrVqnj27Fmu6cnJyahataoRIiIiIqKcmBgTGci9e/egVCpzTc/KysKjR4+MEBERERHlxK4URHr2119/af6/b98+2Nraal4rlUpERkaiSpUqRoiMiIiIcmJiTKRn3bp1AwCIRCIEBwdrzZNKpahSpQoWLlxohMiIiIgoJybGRHqmUqkAAB4eHjhz5gwqVKhg5IiIiIgoL0yMiQwkJibG2CEQERFRAZgYExlQZGQkIiMjkZCQoGlJVlu7dq2RoiIiIiKAiTGRwUybNg3Tp09HgwYN4OLiApFIZOyQiIiIKAcmxkQGsnLlSqxfvx6fffaZsUMhIiKiPHAcYyIDyc7ORuPGjY0dBhEREeWDiTGRgQwePBibN282dhhERESUD3alIDKQzMxMrF69GgcOHICvry+kUqnW/EWLFhkpMiIiIgKYGBMZzKVLl+Dn5wcAuHLlitY83ohHRERkfEyMiQzk0KFDxg6BiIiICsA+xkREREREYIsxkd716NGjUOV+//13PUdCREREBWFiTKRntra2xg6BiIiICoGJMZGerVu3ztghEBERUSGwjzEREREREZgYExEREREBYGJMRERERASAiTERERERAGDOnDkQiUQYO3ZsvmWuXr2Knj17okqVKhCJRFi8eHGuMps2bULFihVhZ2eH0NBQrXn37t1DjRo1kJqaquPoSReYGBOVQUePHkXnzp3h6uoKkUiEnTt3as0XBAGTJ0+Gi4sLLCwsEBgYiFu3bmmVef78Ofr27QuZTIZy5cph0KBBSEtLM+BWEBGVHmfOnMGqVavg6+tbYLmMjAxUrVoVc+bMgbOzc675iYmJGDx4MBYsWID9+/fjl19+wa5duzTzR4wYgTlz5kAmk+l8G6jkmBgTlUHp6emoW7culi9fnuf8efPmYcmSJVi5ciWioqJgZWWFoKAgZGZmasr07dsXV69eRUREBHbt2oWjR49i6NChhtoEIqJSIy0tDX379sVPP/0EOzu7Asv6+/tj/vz56NWrF8zMzHLNv3v3LmxtbfHJJ5/A398frVq1wvXr1wEAW7ZsgVQqLfT49mR4TIyJyqAOHTpg5syZ6N69e655giBg8eLFmDhxIrp27QpfX19s2LABjx8/1rQsX79+HXv37sXPP/+Mhg0bomnTpli6dCm2bt2Kx48fG3hriIiMa+TIkejYsSMCAwNLXJenpycyMjJw/vx5PH/+HGfOnIGvry+SkpIwadIkLFu2TAcRk75wHGOit0xMTAzi4uK0TvC2trZo2LAhTp48iV69euHkyZMoV64cGjRooCkTGBgIsViMqKioPBPurKwsZGVlaV6r+8fJ5XLI5fICY1IoFCXdrDfW/6YYilKXvugyTnV9+vLOxqpQQKqbmvIkVyiAMvBZVdevy89AabVt2zacO3cOJ0+ehFwuhyAIUKlUhd52pVKpVdba2hpr1qzBZ599hszMTPTt2xetW7fG0KFDMXz4cNy6dQudO3eGXC7HpEmT0LNnT31tGr1GKn3z0c3EmOgtExcXBwBwcnLSmu7k5KSZFxcXB0dHR635JiYmsLe315R5XVhYGKZNm5Zr+v79+2FpaVlgTKampqhYsWKht6Gojh07huzsbJ3UFSs2BaxddFLX644fO44HKt3ECQAP0gB9ncaPHTuG+9a6qy8jI0N3lb3m+PHjb/wMFpZtxj201ElNeTt+/DhSLB/ppC6zR49QWSc15e348ePIundPj2swvqdPn+LLL7/EtGnTcPDgQQDAs2fPEBMTg927d79x+YyMDFy7di1XWVNTU8yaNUvzet68eTh27Bg6dOiADz/8EF988QXs7OwwaNAgZGVloVy5cjrdLspb165d31iGiTERFcqECRO07q5OTU1FxYoV0a5duzfeRJKZmYn79+/rLbamTZvC3NxcJ3VdTnsJXLirk7pe16RpE/hYW+isvquPU7Hg8imd1ZdT06ZNUdtVdzcHPXnyBDdv3tRZfTk1adIELi46+jLz5CKgnzABvIoVLnV1UlfmtWt4uGSpTurKS5MmTWBeq5be6i8N/vzzT6SkpOCLL77QTFMqlbh27Rr27NmDtLQ0SCSSfJe3tLRErVq18MEHH+RbJisrCxMmTMCmTZsgkUhgYmKCr776CgCwdu1ayGSyApcnw2JiTPSWUd8lHR8fr5UsxMfHw8/PT1MmISFBazmFQoHnz5/neZc1AJiZmeV5o4lUKn3jz1P6/snXxMSkUD+RFa4u/f10rMs41fXpyzsbqx7jBACpiQmgo1gVeo5V15+B0igoKAiXL1/WmjZgwADUrFkTX3/9daG+cEskkgL30/Tp09GhQwe8//77OH/+PBQKhaa8QqGASCR66/dzWcLEmOgt4+HhAWdnZ0RGRmoS4dTUVERFRWH48OEAgICAACQnJ+PcuXOoX78+AODgwYNQqVRo2LChsUInIjIoGxsb1KlTR2ualZUVypcvr5ner18/uLm5ISwsDACQnZ2Na9euaf7/6NEjXLhwAdbW1qhevbpWXdeuXcO2bdtw/vx5AEDNmjUhFouxZs0aODs748aNG/D399f3ZlIRMDEmKoPS0tJw+/ZtzeuYmBhcuHAB9vb2qFSpEsaOHYuZM2fC09MTHh4emDRpElxdXdGtWzcAgLe3N9q3b48hQ4Zg5cqVkMvlCAkJQa9eveDq6mqkrSIiKn1iY2MhFv9vEK/Hjx+jXr16mtcLFizAggUL0KJFCxw+fFgzXRAEDB06FIsWLYKVlRUAwMLCAuvXr8fIkSORlZWFZcuWwc3NzWDbQm/GxJioDDp79ixatWqlea3u+xscHIz169fjq6++Qnp6OoYOHYrk5GQ0bdoUe/fu1fpZcNOmTQgJCUGbNm0gFovRs2dPLFmyxODbQkRUmuRMbvN6XaVKFQiC8MZ6RCIRjh07lmt6p06d0KlTp5KESHrExJioDGrZsmWBJ2aRSITp06dj+vTp+Zaxt7fH5s2b9REeERFRmcQHfBARERERgYkxEREREREAdqUgIiIi0pKdnQ2lUqnTOiUSCUxNTXVaJ+keE2MiIiKi/5ednY1bt24V6ga7ohCJRPD09GRyXMqxKwURERHR/1MqlTpPioFXw7fpuhWadI+JMRERERERmBgTEREREQFgYkxEREREBICJMRERERERACbGREREREQAmBgTEREREQFgYkxEREREBICJMRERERERACbGREREREQAmBgTEREREQFgYkxEREREBICJMRERERERACbGREREREQAmBgTEREREQFgYkxEREREBICJMRERERERACbGREREREQAmBgTEREREQFgYkxEREREBICJMRERERERACbGREREREQAmBgTEREREQFgYkxEREREBICJMRERERERACbGREREREQAmBgTEREREQFgYkxEREREBICJMRERERERACbGRERERKQHy5cvR5UqVWBubo6GDRvi9OnT+Zb96aef0KxZM9jZ2cHOzg6BgYG5yi9YsACOjo5wdHTEwoULteZFRUWhfv36UCgUJYqZiTERERHpXFGSoqtXr6Jnz56oUqUKRCIRFi9enKvMpk2bULFiRdjZ2SE0NFRr3r1791CjRg2kpqbqejNKnbKyX7dt24bQ0FBMmTIF//33H+rWrYugoCAkJCTkWf7w4cPo3bs3Dh06hJMnT6JixYpo164dHj16BAC4dOkSJk+ejK1bt2LLli2YOHEiLl++DABQKBQYNmwYVq5cCRMTkyLHmhMTYyIiItKpoiZFGRkZqFq1KubMmQNnZ+dc8xMTEzF48GAsWLAA+/fvxy+//IJdu3Zp5o8YMQJz5syBTCbT2zaVBmVpvy5atAhDhgzBgAEDUKtWLaxcuRKWlpZYu3ZtnuU3bdqEESNGwM/PDzVr1sTPP/8MlUqFyMhIAMCNGzfg6+uL1q1bo02bNvD19cWNGzcAAPPnz0fz5s3h7+9f5Dhfx8SYiIiIdKqoSZG/vz/mz5+PXr16wczMLNf8u3fvwtbWFp988gn8/f3RqlUrXL9+HQCwZcsWSKVS9OjRQ6/bVBqUlf2anZ2Nc+fOITAwUDNNLBYjMDAQJ0+eLFQdGRkZkMvlsLe3BwD4+PggOjoasbGxuH//PqKjo1GnTh3cuXMH69atw8yZM4scZ16YGBMREZHO6CIpep2npycyMjJw/vx5PH/+HGfOnIGvry+SkpIwadIkLFu2TFfhl1plab8mJiZCqVTCyclJa7qTkxPi4uIKVcfXX38NV1dXzfZ6e3tj9uzZaNu2Ldq1a4ewsDB4e3vj888/x7x587Bv3z7UqVMH9erVw9GjR4sVNwCUrCMGERERUQ4FJUXqn76Lys7ODuHh4ejXrx9evnyJfv36ISgoCIMGDUJISAhiYmLQpUsXyOVyTJ06FR9++KEuNqVUeZf265w5c7B161YcPnwY5ubmmunDhg3DsGHDNK/Dw8NhY2ODgIAAeHl54cyZM3j48CF69eqFmJiYPFvJ34SJMREREZV63bt3R/fu3TWvjxw5gkuXLmHp0qWoXr06tmzZAmdnZ7z//vto3rw5HB0djRht2aGP/VqhQgVIJBLEx8drTY+Pj8+zr3NOCxYswJw5c3DgwAH4+vrmWy4xMRHTpk3D0aNHERUVhRo1asDT0xOenp6Qy+WIjo6Gj4/PG2N9HbtSEBERkc6UJCkqrKysLIwYMQKrVq3C7du3oVAo0KJFC3h5eaFGjRqIiorSyXpKk7K0X01NTVG/fn3NjXMANDfSBQQE5LvcvHnzMGPGDOzduxcNGjQocB3jxo3DuHHj4O7uDqVSCblcrpmnUCigVCoLFevrmBgTERGRzhQ3KSqKmTNnon379njvvfegVCq1xq6Vy+XFTopKs7K2X0NDQ/HTTz8hPDwc169fx/Dhw5Geno4BAwYAAPr164cJEyZoys+dOxeTJk3C2rVrUaVKFcTFxSEuLg5paWm56o6IiEB0dDRGjhwJ4NVNhjdu3MCePXuwevVqSCQSeHl5FWsfsCsFERER6VRoaCiCg4PRoEEDvP/++1i8eHGupMjNzQ1hYWEAXt1Ydu3aNc3/Hz16hAsXLsDa2hrVq1fXqvvatWvYtm0bzp8/DwCoWbMmxGIx1qxZA2dnZ9y4cUMnw3aVRmVpv37yySd4+vQpJk+ejLi4OPj5+WHv3r2aPtKxsbEQi//XPrtixQpkZ2fn6sc8ZcoUTJ06VfP65cuXCAkJwbZt2zTLu7u7Y+nSpRgwYADMzMwQHh4OCwuLQseaExNjIiIi0qmiJkWPHz9GvXr1NK8XLFiABQsWoEWLFjh8+LBmuiAIGDp0KBYtWgQrKysAgIWFBdavX4+RI0ciKysLy5Ytg5ubm2E21MDK2n4NCQlBSEhInvNyrh949TCRwrCwsMDNmzdzTR88eDAGDx5cpPjywsSYiIiIdK4oSVGVKlUgCMIb6xSJRDh27Fiu6Z06dUKnTp2KFWdZw/2qX+xjTEREREQEJsZE77zly5ejSpUqMDc3R8OGDXH69Gljh0RERGQU7EpB9A7btm0bQkNDsXLlSjRs2BCLFy9GUFAQbt68yTFAiYhIZ7Kzs/UyWohEIoGpqanO6mNiTPQOW7RoEYYMGaK5o3nlypX4559/sHbtWnzzzTdGjo6I3ib6SIx0nRSVRWVhv2ZnZ+PWrVuF6u9cVCKRCJ6enjqLl4kx0TsqOzsb586d0xpHUiwWIzAwECdPnsxVPisrC1lZWZrXqampAF6NbZlzYPW85BwLUx8UCsUbYyhKXfqiyzjV9enLOxurQgGpbmrKk1yhAMrAZ1Vdv672q1wuR0xMjM4TI5FIBA8PD0ilunvXysxnFWVnv2ZlZeklKQZejaiRlZUFkUj0xrKF2R6RoK9IiahUe/z4Mdzc3HDixAmtweG/+uorHDlyJNcTjqZOnYpp06blqiclJQUymUzv8RIREekbb74jokKZMGECUlJSNH/JyclISEiAjY2NsUMjIiLSCXalIHpHVahQARKJBPHx8VrT4+Pj4ezsnKu8mZkZzMzMDBUeERGRwbHFmOgdZWpqivr16yMyMlIzTaVSITIyUqtrBRER0buCLcZE77DQ0FAEBwejQYMGeP/997F48WKkp6drRqkgIiJ6lzAxJnqHffLJJ3j69CkmT56MuLg4+Pn5Ye/evXBycjJ2aERERAbHUSmIiIiIiMA+xkREREREAJgYExEREREBYGJMRERERASAiTEREREREQAmxkREREREAJgYExEREREBYGJMRERERASAiTEREREREQAmxkREREREAJgYExEREREBYGJMRERERASAiTEREREREQAmxkREREREAJgYExEREREBYGJMRERERASAiTEREREREQAmxkYhl8vx559/Qi6XGzuUfJXm2IiIiIj0gYkxERERERGYGBMRERERAWBiTEREREQEgIkxEREREREAJsZERERERACYGBMRERERAWBiTEREREQEgIkxEREREREAwMTYAeiTUqk0dgh5UselVCohFpfO7yalOTYiIiKiopJIJG8sw8yHiIiIiAhMjImIiIiIADAxJiIiIiIC8Jb3MSYi0oeb6Zl4mJWNFwoVLMRilDeVwM/GEiYikbFDIyqzsrKyIJfLNfe4SCQSWFhYQMTjigyIiTERGZ0gCFCpVFCpVFrTJRJJqbkJ9KVShb+eJmPNo2e4mp6Za76D1AT9Xcujj4sdHE2lRogwN0EQoFQqIQiCZppIJIJEIil1yYZKpcp1w7RYLIZYLGasxVQWjiuVSoUXL14gKSkJL1++zDVfIpGgXLlysLOzg1TK46qo1O9/WYm1NBxXIiHn3nrLlNZRKeRyOfbt24egoKACD/Tr168bMCptKpUKtWvXNtr66d0gCAIUCkWuE3dO6pYjYyYdm588x7S7T5CmVEEMQJVPOTEAEYBPXewxrZorpGLjxKtUKqFUKnMlRDlJJBKjJ0jqxK2gWEUikdZnwFjUydDrCVFO6oTD2ElHWYk1NTUVT548KfBzmpNMJoOLi4vRPgfqz2pBuYVYLIaJiYnRP6tvOq6A0nMOKMxnVb1fS/pZLcyoFGwxJiKjUCqVkMvlbyynbvEQi8WQSqUGvYgLgoD59+PxQ+zT/8VTQHn1vA1PnuP2yyysr10FlhLDXXTUXzQK0yigvhhJJBKjtMQJggC5XP7GpCjnhVMqlRbqwqZrKpUKcrk83wu3Ws79L5VKjZJwFCdWU1NTgyfHz549Q0JCQpGWSU1NRXZ2NipVqmTwz4G6i8ebqFQqZGdnQyKR6CSRK6rCHlfA/84BJiYmMDExfDooCAKys7ML9Vk15DmgdPyWQkTvlMImxTmpLziG/JFr1aNEraS4sAQAJ5PT8fm1+1AYKF71BbGov5QV570oKfUFsbAthWpyuRwKhUJPUeWtsIlmTsXdvpJSKpVFPkYKm5zoUnJycpGTYrXMzEw8ePDAoPu2uMeVoT+rRUmKc1IoFEaJtTifu+K8F0XFxDgPL168QGhoKKpWrQpra2s0bdoUZ86cKXCZzZs347333oONjQ3c3d0xePBgPHv2TDM/IiIC3t7esLOzw8CBA7UuRCkpKfD29sb9+/f1tk1EpYU60SgO9YnfEBfxiy8yMONuXLGXVwE4lJSGnx8m6i6oAqi7pBSHoS/iJXkPS7KdRVXSz5uhPqtAyY8rQyXHWVlZePLkSYnqePnyJRITDXdcFTcRM/RxVZJjoyTbWVQl/bwVJ/kvCibGeRg6dCgOHDiA9evX48KFC2jbti2CgoLw6NGjPMsfP34c/fv3x4ABA3Dp0iVs3boVZ86cweeffw7g1Qnrs88+w9ChQ3Hs2DH8999/2L9/v2b5b7/9FkOHDkXlypUNsn1kHAMHDkSPHj00r1u3bo3Q0FC9rS88PBzly5fXW/3FVdILRV43E+nD2kfPICnhr6ACgJ8eJUKp54RD/VNjSRTUx0+XdPH+GSrZKOk+UXdXMISSvv/qfqn6lpycrJN6kpKS9B6vLo4rhUJhsONKF7EaQkH3lBSWPpN4JsavefnyJX7//XeEhYWhefPmqF69OqZMmYLq1atj5cqVeS5z6tQpVKlSBaNGjYKHhweaNm2KIUOGaFqZExMTkZiYiOHDh6N27dro2LEjHj58CAA4ceIEzp49i9GjRxtsG4mMRVcXX323bDyXK/Dn02QodXA9i8tW4ODzFyWvqAC62B+GSox0EauhvhzpKlZ9J0a6SOAA/R9XKpUKSUlJOqvrxQv9H1e6eO8M0RL7rp0D9PlFnonxa9Q/J5ibm2tNNzc3x/Hjx/NcplGjRnjw4AF2794NQRAQHx+PHTt2oEOHDgAABwcHuLi4ICIiAhkZGTh+/DiqVKkCuVyOkJAQ/Pjjj0a5oYTI0HR1gdB3YvRrXBIUOjrnSgCse/zsjeVKQlf7Vd8XcF0lcIBhkjhdXHgNkWyUleMqNTVVp8nM8+fPdVZXXsrKZ7WsHVe6+ozpK1Ymxq+xsbFBo0aNMGvWLDx+/BhKpRKbNm3CqVOnEBeXd3/DJk2aYOPGjejTpw8sLCzg5uYGW1tbLF26FMCroUa2bNmCWbNmwdfXF35+fmjTpg0WLFiAli1bwtzcHM2aNUOtWrWwfPlyQ24uFZFKpcL8+fPh5eUFS0tLeHh4YPbs2QCABw8eoFevXihfvjwcHBzQvXt33Lt3TyfrzcrKwvjx41GpUiXIZDIEBATg8OHDWmXCw8Ph4eEBGxsb9OzZU6uPu9qsWbPg4uKCcuXKYejQoZgwYQLq16+vVWbNmjWoU6cOrKysULt2baxYsUIn2wBApxddfV7AT6em66wuJYDTKbqr73W6bJHUd+tmWXn/Ad1edA2RbJTGul6XkZGh0/oyMzP19nkVBEFndeuyrryUlfdf1/XrK1YmxnkIDw+HIAioVKkSLC0tsXTpUvTq1SvfoXeuXbuGcePGYeLEiTh9+jT++ecf3L9/HyNGjNCUadq0KU6dOoXbt29j8eLFiI+Px6ZNmzB9+nT0798fQ4YMweHDhzFz5kxcunTJUJtKRfTtt99i3rx5+O6773D58mVs3LgRTk5OkMvl+OCDD2BjY4PDhw/j6NGjsLa2RseOHZGdnV3i9Y4ePRqnTp3Cpk2bcP78eXz44Yfo2LEjbt26BQCIiorCkCFDMGLECJw7dw4tW7bUJOxqmzdvRlhYGMLCwnD69GlUrFgRq1atylVm6tSpmDFjBq5cuYKZM2diypQp2LBhQ4m3AYBB73wviWdyJXQZ6UuVYLDRKUqzsvL+v8v0+R7p4wuCvr506Ho/lJXPvr6TeF3Wra84+YCPAqSnpyM1NRUuLi7o3bs30tLS8Pfff+cqFxwcjMzMTGzbtk0z7dixY2jZsiUePHgAFxcXrfJyuRz+/v6YMmUK2rRpA3t7e6SmpsLS0hKffPIJmjVrhpCQED7go5R58eIFnJ2dsWTJEgwaNEhr3qZNmzB79mxcuXJFM25ldnY2ypcvjx07dqBdu3YYOHAgkpOT8fvvvwN4dfOdn58fFi1aVOB6Y2Nj4enpiZiYGLi6umqmt2vXDv7+/pg1axY+/fRTpKSkaH0++/Tpg3379mlajhs3bowGDRpgyZIlmjLNmzdHeno6zp07BwDw8vLCtGnT0KtXL02ZWbNmYc+ePTh27FhxdpuWrKwsnZ3M9Dn2Zufzt/Hfi9xP4SqJmKa1YaqHcW3Vw9jpipmZmd7GXtX1sFCvd3nTJV0OCyUWi2FqaqqTuvKiy6Hh9Dmu9YMHD5CWlqbTOj09PfVyHtD1cWVqaqq3ca11PeSiPs8BujyuRCIRzMzMirRMYbqtssW4AFZWVnBxcUFSUhL279+PLl265FkuIyMj1wdevfPzSgLWr18Pa2trdOrUSfMBUX+oDTFGHxXP9evXkZWVhdatW+ead/HiRdy+fRvlypWDra0tbG1t4eDggMzMTNy9e7dE6718+TKUSiW8vb01ddva2uLo0aOaum/cuIH3339fa7lGjRppvY6Ojoa/v7/WtJyv09PTcefOHQwZMkRrPbNnzy7xNqiVtkeQ5qe8VLcXWjOxSC9JcVmjy/e/rHyWyhp97ld93Eujr/tzdL0fytLnVZ+xloVzAJ98l4d9+/ZBEAR4eXnh9u3b+Oabb+Dl5YX+/fsDePVz+uPHj7F+/XoAQKdOnfD5559j5cqVaNeuHZ48eYIvvvgC/v7+Wi18AJCQkIA5c+ZgypQpAAA7Ozt4e3vjhx9+QNu2bXHw4EFMmDDBkJtLhWRhYZHvvPT0dLz33nvYuHFjrnkODg4lWm96ejokEglOnz6d6yJgbW1dorpzUrfkrFq1KleSrauLjy5PZPp8qpivjQUin78o8Cl3hSUG4GOd/2enpEQiEUQikU5a4tV16Ysu3zN9P1VOLBbrtMVYn8Risc5ajPUZq7m5OVJSUnRWnz6f2MfjSj/KQqxMjPOQmpqK7777Dg8fPoS9vT169OiBGTNmaH5eiouLQ2xsrKZ8cHAwXrx4gR9//BHjx49HuXLl0KpVK4SFheWqe9y4cRgzZgzs7e0109asWYOBAwdi2bJlmoSaSh9PT09YWFjg4MGDubpS1KtXD7/++iscHR0hk8l0ul4/Pz8olUokJCSgWbNmeZapWbMmTp8+rTUtKipK63WNGjVw9uxZfPbZZ5ppZ8+e1fzfyckJrq6uuHv3Lvr06aPDLfgfiUSik2RDLBbr9QTe29ke398v3pO5XqcCMNBVf+NJi0QiSCQSnXRR0PfoOCKRSGdJnN4fCysW6ywx0nesunr/1e+Pvtja2iIhIUFn3alyXkf1oSwdV7o6t/K4YmKcp48++ggfffRRvvPXrl2ba1pISAhCQkLeWPemTZsgl8uxb98+zbT3338fV65cKV6wZDDm5uYYP348vvnmG5iamqJx48Z4+vQprl27hj59+mDhwoXo3r07pk6dCnd3d9y/fx87d+7El19+CXd392Kvt0aNGujTpw8GDBiA+fPnw8/PD0+fPsXBgwfh4+ODjh07IiQkBM2bN8fChQvRpUsX7N+/X+szBrz6jH7++eeoX78+AgIC8Ouvv+Ly5cuoWrWqpsyUKVMwduxY2NraIigoCFlZWTh37hySkpIwbty4Ym+DmjqhLWlipO+Tt4uZFEHlZdj/PLXEYxmXM5GgQwXdfll6nS4u4OqLq75JJJISv//6/mIE6O4Lh0Qi0fvP6LpKjAyRwMtkMp20GotEIp03QryurCTG6nWU9P035DmgpPtVnWDrAzu9ERXBxIkTMW7cOEydOhV16tRBnz59kJCQAEtLSxw6dAiVKlXCRx99hDp16mDo0KHIzMzUycl7zZo1+PTTTzF+/HjUqlULPXv2xNmzZ1GpUiUAr/oTr1q1CkuXLsV7772HiIgIfPvtt1p19OnTB19//TW++uor+Pv74969ewgODta6eWHQoEFYvXo1wsPD4efnh9atW2uGgdOVkt4oo+9WLbWBbuVLnBSLAQS72uu9f7EuLmiGSODU6ynp+2eocd91sU8MGWtJGCop0lUrb7ly5QzWElsShjqudPFlUV83M79OF/tEn7FyVAojULcYBwUFFXj3L0elIH0LCgqCs7MzwsPDDbre4o5OIBKJ9Nqv8HUz7j7ByoeJxVpWgld9lX/zrQoLif4TeUEQIJfLi9Uaq8+RCPIiCAKys7OL9XOqPkcjyUtJRieQSqUGfXhTSUYn0OeoCa9LTEzE06dPi728qakpqlSpYpB9W5LjSiwWQyqVGux8VZLjytDnAJVKBblcXqxYS3JcFWY5dqUgekdkZGRg1apVaNeuHSQSCbZu3YrIyEjs3bvX4LGoE5uiJMcikcigFxkA+M7DGc/kCvwWn1yk5SQAPC3NsKFOFYMkxcD/9k9RL+ISicSgiSbwvy84Rb2IGzopBv431FpRL+KGToqB/130i5Icqz83hkqKAaB8+fJQKBTFejy0VCpFpUqVDLZv1ftH/VTcwjJ0Ugz877gqzjnAkEkx8L/9UxqPKybGREb277//olOnTvnO19Vd3CKRCHv27EFYWBgyMzPh5eWF3377DYGBgTqpv6hMTEw0d/4XdMFR/5xpqJ8kcxKLRPi+hjsqmZti8f0ECECBI1VIRIBSAFrZ22B5zYqwNjFsYqS+iKtUKiiVygIvjmKxWLNfjUF9EVe//wVdHMVisebzYgzq5FihULzx6YDqfWqsWNXHSWGOK/V+NfRxJRKJ4OTkBFNTU8THxxd6OUtLS7i5uRnli5z6y0NZOK6kUmmhjytjxqo+rgoTqyGPK3alMAJ2paCcXr58iUePHuU7v3r16gaMxjgEQch1wVFfuPV5k0VRxGfJsTnuOcIfP8dT+auWbgleJcoCXo1V/JGTHfq52KO2HodnKwp1gpzzNK/+omGsxC0/6vc/Z6zqC3dpeP/VBEGASqXSilU9HFdpjFX9/ueMtTQdVwqFAikpKXj+/HmevyCpb7Kzs7MrcMhMQyrrx5VIJDLKF6KC5HVcAbo/BxTmSwATYyMobGJsTHK5vNTGRmRMCkHAv0lpeJQlxwuFEhYSMeylErS0s4HMwC3ERG8LQRCQkZGB7OxsJCQkQKVSQSwWo1q1agZvIaa3F/sYExHpmIlIhFb2NsYOg+itIhKJYGVlBSsrKyQmJmoSYybFZGilq82fiIiIiMhImBgTEREREYGJMRERERERgLe8j7GxhiB5E/Wd98YcJuVNVCpVqY2NiIjeDbwOkaGxxZiIiIiICEyMiYiIiIgAMDEmIiIiIgLAxJiIiIiICAATYyIiIiIiAEyMiYiIiIgAMDEmIiIiIgLAxJiIiIiICAATYyIiIiIiAEyMiYiIiIgAMDEmIiIiIgIAmBg7ACIiItIPQaWCMiUFqpQUwMQEEltbSGxsjB0WUZ6USiWUSiUEQYBEIoFEIoFIJDJoDEyMiahUUKlUUKlUmtcikQhisdjgJ8XCKCuxCoIAlUoFQRA000QiESQSiRGjyltesYrFYojFpe+HzddjFYlEms9AaSFPSEDyb78hafMWKJ8905pn5ukJu88+hW2nThBbWhopwtzUx5V6vwqCAEEQysxxVVbOAaXtuFKpVEhOTsazZ8+QlZWlNU8ikcDe3h729vaQSqUGiUck5NxbZBByuRy7d+/GBx98kOuNvnLlipGi0qZSqeDr62vsMOgtpz5pKxQK5HcqUrcaGPtELgiCVmtGXkpbrAqFIs/56uTYGK0xr1OpVJr9mpfSFqtCodD6UpSTWCzWxGos8vgExM+ejRcREa8m5BWrSAQIAkQWFrDr3RsOY8dAbGpq2ED/X17HVUxMDJRKJSQSCTw8PMrMcQUAJiYmpeazWtqPK5VKhYSEBDx//jzfYyonmUwGFxcXvSfIbDEmIqNQqVSQy+X5Jplq6pO7WCyGVCo1yklcqVRCLpcXqpxSqYSJiQlMTIxzelUoFAVeuIFXF3h1OalUapRETh1Dfhfu18spFAqYmpoaJTkSBAFyufyNF291i6c6VkN/VrNu3ULswEFQPH+ed0Kspm6RffkSz9etw8uLF1Dxxx8hsbU1UKSvqFQqZGdnv7Gc+riSSCQGazXMK4bCnAPUn1VjngPkcnmRjitjnAOUSiViY2ORnp5e6GVSU1ORkZGBKlWqwNzcXG+xlZ62dCJ6Z6gviEX5waqwibSuFfaCmJNCoSjyMrogl8vfmBTrYpmSUieab7p4vy47O7vIy5SUIAjIzs4uVItWzmWysrKKtExJZT98hPv9gl8lxUXZR4KAlxcu4sHnw6B67WdsfVIqlYVKiku6jC4U53guzBdUfSjOMVKcY7EkVCoV7t+/X6SkWE2hUCAmJkavnwMmxkRkUIVtJcpvWUMmnCVZ35t+ctW1wrS+6mPZ4q6vuEljYVpudUWdFBf3y5ihvsgJSiUefD4UytTUoiXFakolXl66hPiZs3QfXB5KclwZ+hxQkuPY0MdVSY4NQx5XcXFxyMjIKPbySqUS9+7d09ux9dYnxkePHkXnzp3h6uoKkUiEnTt3as0XBAGTJ0+Gi4sLLCwsEBgYiFu3bhVYp1KpxKRJk+Dh4QELCwtUq1YNM2bM0HqTFixYAEdHRzg6OmLhwoVay58+fRqhoaFG+TZJhde/f39069bN2GEUy/r161GuXDljh5Gnkl4oXr/xTZ9KegEuqO+0Lql/Fi0JQ52P1H0fS8KQsZbk/VP3SdW3tH//Rfadu8VLitVUKiT/8QcUr92opw8lff+USqVBzgHqXzZKwmBfjnTwWTPEcaVQKJCUlFTierKzs/HixQsdRJTbW58Yp6eno27duli+fHme8+fNm4clS5Zg5cqViIqKgpWVFYKCgpCZmZlvnXPnzsWKFSuwbNkyXL9+HXPnzsW8efOwdOlSAMClS5cwefJkbN26FVu2bMHEiRNx+fJlAK8+FCNHjsTw4cON1v+IyFh0lSgY4gRe0qRIzRCJkS7WYagkThfr0NV78ya6+JwZ4stR0qZNgC76iKpUSN6+o+T1FLgK3XyxNcRnVVfJtyGSeF18Vg3R6JCcnKyz4+GZnr7EvfWZWYcOHdChQ4c85wmCgMWLF2PixIno2rUrAGDDhg1wcnLCzp070atXrzyXO3HiBLp27YqOHTsCAKpUqYItW7bg9OnTAIAbN27A19cXrVu3BgD4+vrixo0b8PHxwfz589GsWTN4enrqelOpDMrOzoapke4GNwZdXczUiZE+b27SVfKtvhlPn3S1X9U3OOmLLpNvfe9XXSbfKpVKb/s1+8EDpB87rrmhrkRUKiRt2oTygwdBpKd4df3+6/McoKtYFQpFmTqu9HWDqyAIOk1m09PTkZWVBTMzM53VCbwDLcYFiYmJQVxcHAIDAzXTbG1t0bBhQ5w8eTLf5Ro3bozIyEhER0cDAC5evIhjx45pEnAfHx9ER0cjNjYW9+/fR3R0NOrUqYM7d+5g3bp1mDZtmn437B3RsmVLjB49Gl999RXs7e3h7OyMqVOnAgDu3bsHkUiECxcuaMonJydDJBLh8OHDmmlXr15Fp06dIJPJYGNjg2bNmuHOnTt5rk+lUiEsLEzThaZu3brYvn27Zr5SqcSgQYM08728vPDDDz9o1aHunjFr1iy4urrCy8vrjduZlZWFL7/8Em5ubrCyskLDhg21tgF41XWiUqVKsLS0RPfu3fM8+cycOROOjo6wsbHB4MGD8c0338DPz0+rzM8//wxvb2+Ym5ujZs2a+PHHH98YX1HospVH3y1Gumo5UQ9Jpy+6TuD02bqpy/2g7/e/rHxW0/79V6f1KRISkHX7tk7rzEmX+0Kfx5Uuj1v1eMz6UlaOq6ysLJ33D9dHd4q3vsW4IHFxcQAAJycnrelOTk6aeXn55ptvkJqaipo1a0IikUCpVGLWrFno27cvAMDb2xuzZ89G27ZtAQBhYWHw9vZGYGAg5s2bh/379+Prr7/GlClTsGTJEjRv3lxPW/j2Cw8PR2hoKKKionDy5En0798fTZo0KVSL/KNHj9C8eXO0bNkSBw8ehEwmw/Hjx/NtKQwLC8Mvv/yClStXwtPTE0ePHsWnn34KBwcHtGjRAiqVCu7u7vjtt99Qvnx5nDhxAkOHDoWLiws+/vhjTT2RkZGQyWSIUI8z+gYhISG4du0atm7dCldXV/zxxx9o3749Ll++DE9PT0RFRWHQoEEICwtDt27dsHfvXkyZMkWrjk2bNmHWrFn48ccf0aRJE2zduhULFy6Eh4eHVpnJkydj2bJlqFevHs6fP48hQ4bAysoKwcHBhYr1baHrixiHi39Fl/uB+/QVZXLyq24UOuxepExK1lldZZU+zgHGHtvY2PSRdOujznc6MS6uX3/9FZs2bcLmzZtRu3ZtXLhwAWPHjoWrq6smgRg2bBiGDRumWSY8PBw2NjYICAiAl5cXwsLCUL16dfTq1QsxMTE6/yngXeHr66tJAj09PbFs2TJERkYWKjFevnw5bG1tsXXrVs3YmDVq1MizbFZWFmbPno0DBw4gICAAAFC1alUcO3YMq1atQosWLSCVSrV+DfDw8MDJkyfx66+/aiXGVlZW+PnnnwvVhSI2Nhbr1q1DbGwsXF1dAQBffvkl9u7di3Xr1mH27Nn44Ycf0L59e3z11VeabThx4gT27t2rqWfp0qUYNGgQBgwYAACYPHky9u/fj7S0NE2ZKVOmYOHChejRo4cm/mvXrmHVqlU6S4yZGOkeL+D6UVY+q4Iehq0Ssg03bFtJ8BygH/o6B+jj/dJHne90Yuzs7AwAiI+Ph4uLi2Z6fHx8rp+Ycxo/fjy++eYbTR9kHx8f3L9/H2FhYXkmEImJiZg2bRqOHj2KqKgoeHp6wtXVFS1btoRcLkd0dDR8fHx0u3HviNefzufi4oKEhIRCLXvhwgU0a9asUAPG3759GxkZGZpfAdSys7NRr149zevly5dj7dq1iI2NxcuXL5GdnZ3rs+Tj41PofsWXL1+GUqnMlbBnZWWhfPnyAIDr16+je/fuWvMDAgK0EuObN29ixIgRWmXef/99HDx4EMCrvlp37tzBoEGDMGTIEE0ZhUIBWx0O+i8SiXR2ImPy9oqu9wP36yu63A/63KcSG5lu+hfnrFMm02l9+sLPqn7oa7/qo5+1Pup8pxNjDw8PODs7IzIyUpO8pKamIioqCsOHD893uYyMjFyd0yUSSb79fMaNG4dx48bB3d0dZ86c0epjY+hxDt82rye1IpEIKpVK8/7kTMJe79tkYWFR6PWoW1b/+ecfuLm5ac1Tt/Zv3boVX375JRYuXIiAgADY2Nhg/vz5iIqK0ipvZWVVpPVKJBKcO3cu1wnA2tq60PUUZj0A8NNPP6Fhw4Za83R54ikribFIJNJprPp8WltZSox1uR/0/QS8spIYm1apXLJh2l4nEkHq7q67+nJVX3bOAaW5Pn3Vrc849fHUQn3cvP7WJ8ZpaWm4neNGgpiYGFy4cAH29vaoVKkSxo4di5kzZ8LT0xMeHh6YNGkSXF1dtcavbdOmDbp3746QkBAAQOfOnTFr1ixUqlQJtWvXxvnz57Fo0SIMHDgw1/ojIiIQHR2N8PBwAIC/vz9u3ryJc+fO4fHjx5BIJIW6AYuKxsHBAQDw5MkTTYtuzhvxgFetzeHh4ZDL5W88YGvVqgUzMzPExsaiRYsWeZY5fvw4GjdurNUym9+NfIVVr149KJVKJCQkoFmzZnmW8fb2zpV8nzp1Suu1l5cXzpw5g379+mmmnTlzRvN/JycnuLq64u7du5q+8vpgYmKikycWiUQivT/CVCKR6GRkCrFYrPeLovpeh5LS9+gZ6n2hi8SorLz/6rr0xbp5c0js7aF8/rzklUkksG7ZEiYVKpS8rnyYmJjo5AYssVis9y+cujquJBKJ3r9wisVindyEp89zgImJCWQyGVJTU3VSn0QigY2NjU7qyumtT4zPnj2LVq1aaV6HhoYCAIKDg7F+/Xp89dVXSE9Px9ChQ5GcnIymTZti7969Ws/hvnPnDhITEzWvly5dikmTJmHEiBFISEiAq6srPv/8c0yePFlr3S9fvkRISAi2bdumOYDd3d2xePFifPPNN5DJZAgPDy9SyyUVjoWFBRo1aoQ5c+bAw8MDCQkJmDhxolaZkJAQLF26FL169cKECRNga2uLU6dO4f3338/1ZcXGxgZffvklxo0bB5VKhaZNmyIlJQXHjx+HTCZDcHAwPD09sWHDBuzbtw8eHh7YuHEjzpw5o3WDW1HVqFEDffv2Rb9+/bBw4ULUq1cPT58+RWRkJHx9fdGxY0eMHj0aTZo0wYIFC9C1a1fs27dPqxsFAIwaNQpDhgxBgwYN0LhxY2zbtg2XLl1C1apVNWWmTZuG0aNHw9bWFu3bt0dWVhbOnj2LpKQkzXFTUrpKjPSdFKnXoYvEyFCx6uoCrm+6SIwM8cVIV4mR3hM4qRR2vXsjccUKoKSJkVIJ+759dBNYPnS1L3hc5V6HLhJjff8SU758eZ0lxvb29nqJ961PjFu2bFngRVgkEmH69OmYPn16vmXu3bun9drGxgaLFy/G4sWLC1y3hYUFbt68mWv6wIED4ezsjA8++EAvPy3QK2vXrsWgQYNQv359eHl5Yd68eWjXrp1mfvny5XHw4EGMHz8eLVq0gEQigZ+fH5o0aZJnfTNmzICDgwPCwsJw9+5dlCtXDu+99x6+/fZbAMDnn3+O8+fP45NPPoFIJELv3r0xYsQI7Nmzp0TbsW7dOsycORNffPEFHj16hAoVKqBRo0bo1KkTAKBRo0b46aefMGXKFEyePBmBgYGYOHEiZsyYoamjb9++uHv3Lr788ktkZmbi448/Rv/+/TVjbwPA4MGDYWlpifnz52P8+PGwsrKCj48Pxo4dW6L4X6eLxMgQFxpdJEaGSOAA3bQY6btlO+d6SsoQ+1S9npImRoaItdzHH79KjEtCLIbUzQ2W/39zsb6IRCKYmJiU6EunSCTSewIH6O64MkSs6i/yJWl00HfLNgBYWlrC1NRUJ78c2tnZ6SCi3EQCb+s0OLlcjt27d+eZGF+5csVIUWlTqVS5bmyjt0vbtm3h7OyMjRs3Gnzdcrm82AmHVCo1WGIkCAKys7OLfbExNTU1yEUReBVrVlbxRhMQiUQwNTU12M1MKpWq2BdGsVhs0IfiKJXKYn+RMzExMdgTTp/9/DMSFiwsfgUSCSqtWQOrRg3fXLaE1I9azi/hjImJ0TxsJq9f3Ax9XBX3HFDWjiupVGqQWNPT0xETE1OiOhwdHeHo6KijiLS99S3GRPTqhtGVK1ciKCgIEokEW7ZswYEDBwo9lrKuqZOFoibHhkyKgf9d2IpzYTTkxRv4X6xyubxIsRr64g387yJc1IRTvZwhSSQSCIJQ5BZOQybFAGA/aBDk8fFI2vhL0Rb8//fddc4cgyTFr1Yp0rz/RW2NNdZxVdRzgLGOq+K0xhoyKQZe3YBesWJFPHjwoFjL29nZae4j0gcmxkRG9O+//+b7yHIAWuMMl4RIJMLu3bsxa9YsZGZmwsvLCzt27NB66qMhqS+MIpEISqXyjRccsVgMExMTg14Q1dQXOKVSWajkyNAXmdfXbWpqWujRbiQSid4fq1vQukUiERQKxRuTI3WXFEMmmjmp95FSqSxUrCYmJgb9Aqder9O338KkfAU8Xbz41UM/3vQZEIshkkrhvuQHWOdzU7G+qM8BRTmujH0OKAvHVc5zQGG+dKg/q4aO1dbWFmKxGLGxsUX6wuHo6AgHBwe9xsvEmMiIGjRokGu0DH2wsLDAgQMH9L6eolK3qimVylxJh7ofoUQiMcrFMKecyY5KpcozVolEYpQLzOvUCUfO/ZrzwqPeFkP1KS6I+iIuCEKesarff0MnmXlRx5Hz/VfHqh7ez1iJm5pIJEKFYZ/DJrANkrZsRfKOHRAyMwETk1c35olEr/4UCpg4OMCubx+U69kTJnpsfXtTvAUdV4DxErfXFea4Ki3ngMIeV8Y+B9jY2MDLywtJSUl49uxZvl+QRCIR7OzsYG9vrzUwgr6wj7ERFNTHuLQozBBmRERUeqnS05Hyzz/IuhkNZWoqRBIJJLYyWL7/PqxbtIDISC3wb3Ljxg0oFAqYmJigZs2axg6HDEAQBLx48QLp6el4/vy55ul7Li4usLW1NeiX49J5VBAREVGJiK2sYJfjcfREpZVIJIJMJoNMJkNKSgoUCgUkEgns7e0NHotxf58kIiIiIiolmBgTEREREYGJMRERERERACbGREREREQAmBgTEREREQFgYkxEREREBICJMRERERERACbGREREREQAmBgTEREREQFgYkxEREREBICJMRERERERAMDE2AHok1KpNHYIeVLHpVQqIRaXzu8mpTk2IiJ6N5TW6zgZhq7ff4lE8sYyzHyIiIiIiMDEmIiIiIgIABNjIiIiIiIATIyJiIiIiAC85TffEVHZIQgCBEHQmlZabwB9PVaRSASRSGTEiPLHWHVIEIBHZyA6swai+8eAzFQAKsDUBnCtB1WDQUC11oCo9Hxuy+JxpY739bhLk1L/WQWQnZ2N5ORkpKamQqlUQhAEiMViSKVS2NnZQSaTlZrPwsuXL5GUlIT09HQoFAoAgEKhQGxsLOzs7GBtbW2w/SsSSvMnr4SKezfj9evXdRyJNpVKhZiYGHh4eJSaD+XrVCoVateubeww6B2gUqmgVCqhUqlyXQhFIhEkEgkkEkmpuOioY83r3CIWiyGRSCAWi40eqyAIWvv1dep9WhrOP2UiVkGA6NIWiE4uh+jpdQhiCUQq7c+AeppgWxHC+0Mh+A8FJFIjBfxqvyoUijJ5XMXGxkKpVEIikaBKlSql5rgCoIkzr8+q+hxQmJEP9CkjIwOJiYlIT08vsJxYLEa5cuVQvnx5mJgYp500NTUVz549Q2ZmZoHlTExMYGdnB3t7+xKdCwrz3rDFmIiMQhAEyOXyPC8wOcsoFAooFAqYmJgY7eStUqk0SUZBZVQqFUQiEUxMTIx2cVSpVJDL5QW2tqkv7iKRCFKp1GhJp0Kh0LRk5Ucdq7qly+DJkTIbol3jIL60BcL/9z58PSnWmpbyAKKIyRDdioDq4w2AmcyQ0WqOmYIahkrLcVWYc0BZOq7UsSoUCqMdV0lJSYiLiytUWZVKhefPnyM1NRWVKlWCmZmZnqP7H0EQEB8fj6SkpEKVVygUePr0KV68eIGKFSvq9TNr/OYCInrnCIKA7OzsAi+Ir1MoFJDL5XqMKm/qC2JhY1Vf7NU/BxqSUqlEdnZ2oX+CLs77oCvqxKywsapUKsPHKqgg+uNziC5tBQCI8OZ1iwCIIAD3j0P8Sw9A/lLPQf6P+rNXlF9LjXlcFeX9LIvHlaHHYC5KUpyTQqHAvXv3kJ2drYeochMEAXFxcYVOinPKzMzE/fv39bpvmRgTkUGpLxrF6cWlVCoNemFUX4yLE+ubWu10TZ3AF4ehE051UlxUJXk/ikN0OOz/2rv3uCjq/X/gr9kbIOzCchNUFBRRETVNNKOvonnU8ns63rLsomZmGVSoR60sj1Yezcr6lqTneC8izWOWWUclL3QUScU8iokpYWiKN+QiIHuZ+f3BbzYWFtjLZ2Z39f18PHwUuzOfec/sfGbe85nPfAbcqa/rEl1H5xXMwKVj4LalSBBZY/a0vjbFbDbLmhzfKfXK2d/DGTdv3nQqKRbxPG/pwiK10tJSlJWVOT2/wWDAhQsXJDsOyJYYL168GImJidBqtQgPD8eoUaNw+vRpq2lu3bqFlJQUhISEICAgAGPHjsXly5ebLXfBggXo2rUr/P39odfrMXToUPz444+W72trazFp0iTo9Xp069YN33//vdX87777Ll566SV2K0qIzKZMmYIxY8a4Owy7tXTrvCUtdWlgydUkzJEWUVeIiYYr5LrgEG/ju2t+u9WUgTv4EVzpuMEJPBQ/fwVckfa5FQBN9nuVa35HuFov5Lw4crVeyXXBcfXqVZfLMBqNKC8vZxBN03iex7Vr11wup7q6GjU10tyNkS0xzs7ORkpKCnJzc5GVlQWj0Yhhw4ZZdQ6fMWMGvvnmG2zevBnZ2dm4ePFiiyf8uLg4LF++HCdOnMD+/fsRHR2NYcOGWXaSVatW4ejRo9i/fz+mTp2KJ5980lKhioqKsGbNGrz55pvSrTghxEIQBCYtEnK0aogPhbm7DHvYesDKmTLkiJXV7y91YsQd/xwwu57UCAoluLx1DCJqnjfVK2+JlUW9kuMYcOvWrRYfXrPXjRs3JK1bFRUVzLaHM10x7OG2USmuXr2K8PBwZGdnY+DAgSgvL0dYWBgyMzMxbtw4AEBBQQG6deuGgwcP4p577rGr3IqKCgQGBuL7779HcnIyUlNTodVqsXjxYtTU1ECr1eLSpUsICwvDgw8+iGnTpmHUqFFWZdCoFDQqhTeZMmUKysrK8OWXX0q2DIPBAI1G43I5rG7ZchwHjUYj6YNYjvbVbIpCoWCy7ZrDqiuEUqmEWi3dSAqudKNpSNKHxgQeiuV3A2XFTnWjaFSc2g/8jALAR8sguMZYdoXw8fGRtF7Z042m/qgU7du3tzkNx3GSPyzG6hggdb26dOmSS10TGmrfvj38/f2ZlVdfUVERsyQeADp37uzQccCehzfdlpWJzfXBwcEAgLy8PBiNRgwdOtQyTdeuXdG+fXscPHjQrjINBgP++c9/IjAwEL169QIA9OzZEwcOHEBNTQ127dqFyMhIhIaGIjMzE76+vo2SYkJYGzJkCNLS0jB37lyEhYWhbdu2WLhwIQDg3LlzUKlUOHbsmGX6srIyqFQq7Nu3z/LZyZMn8dBDD0Gv1yMoKAiDBg1CYWGhzeXxPI8lS5YgNjYWAQEB6NOnD7Zs2WL53mw245lnnrF8Hx8fjw8//NCqDLF7xt///ndERUUhPj6eybZg1cojRysMq/KlbolluS2kboll0QJXvyzJlJwAV/Ybk6QYADhjDbiz37c8oZNYbgupW2K95RjAqmUbkL5ese7+UFFRwbQ8kcFgYJoUA0BlZSXT8gA3DdfG8zzS0tKQlJSEhIQEAEBJSQk0Gg2CgoKspm3dunWLHcq3b9+ORx99FNXV1YiMjERWVhZCQ0NhNpvx1FNP4cSJE+jRowdCQ0Px+eef48aNG1iwYAF2796N119/HV988QU6duyI1atXo23btlKtNrmDffLJJ0hLS0NOTg5yc3MxZcoU3HvvvejcuXOL8/7+++8YPHgwBg0ahKysLOh0OuTk5DTZ6rJkyRJkZmYiPT0dnTt3xn/+8x9MnDgRoaGhGDRoEHieR9u2bbFx40aEhITg4MGDeO655xAZGYmHH37YUs6ePXug0+mwY8cOZtuB5clByhONrZciuFqeVLxpKHpv2aaousK0OIHjgCrX+4A2Wb63bFfG5XtTvRIEQZKWeJYXmyKpLo6kKFeK5w3ckhinpKQgPz8f+/fvZ1Le4MGDcezYMVy7dg2rVq3C+PHj8eOPPyIkJARqtRofffSR1fRPP/00UlNTcezYMWzbtg1Hjx7FO++8g7S0NGzevJlJTITU16NHD8yfPx9A3a2f9PR07Nmzx67E+OOPP0ZgYCAyMzMtt+Pi4uJsTltbW4slS5Zg586dGDBgAACgY8eOOHDgAFatWoVBgwZBrVZjwYIFlnliYmKQm5uLzZs3WyXG/v7++Oc//yl5NwDiWaQ6gbMmaQJnaP7FCA7jlIDhJtsy6/GmiyOW7tT1rk+KVnOpEmMpYpWiTNm7UqSmpmL79u3Yu3cv2rVrZ/k8IiLC8vrC+i5fvoyIiIhmy/T390dsbCzuuecerFmzBiqVCmvWrLE57d69e3Hy5EmkpKRg3759GDFiBPz9/fHwww8jOzvb5fUjxJaePXta/R0ZGWn3U8T//e9/cd9999nVR+3s2bOorq7GiBEjEBgYaPn36aefWnW9+Pjjj9GvXz9EREQgMDAQq1atQnFxsVVZCQkJlBTfgaRMilmWLWnyrglgWx5vlqx/MSDxtvBg3rKvSkmK55SkeomKFLFKUaZsLcaCIOCFF17A1q1bsW/fPsTExFh9f/fdd0OtVmP37t0YO3YsAOD06dMoLi62tHzZi+d51NbWNvr81q1bePHFF/HJJ59AqVRajU/IqpM9IbY0TGo5jgPP85ZKXb/lo+FDNH5+fnYv5+bNulapbdu2NeoWJD6osmnTJsyZMwfvvPMO7rnnHmi1Wrz33ns4dOiQ1fRSPHzBcRyzVh6pT4osY5XyIVuvSTYZly9prLo2TIvjIIDXsi3TqnyG20LqB8K95RjAmlSxKhQKKBQKpi2nUj3UKkW5UjzUKFuLcUpKCjIyMpCZmQmtVouSkhKUlJRYxqELDAzE008/jZkzZ2Lv3r3Iy8vDU089hQEDBliNSNG1a1ds3boVAFBVVYVXX30Vubm5+O2335CXl4cpU6bg999/t7olLHrrrbcwYsQI9O7dGwBw77334quvvsLx48fx8ccf495775VhSxDyh7CwMAB1TxWL6j+IB9R1w9i/f79dT53Hx8fDx8cH58+fR2xsrNW/qKgoAEBOTg4GDBiA6dOno3fv3oiNjW3yQT7WWLVEcBwn+QmcVawKhULyJN5bYmVZvqSvBg7rBiE83vIKaFcJvoFA7P1MyrKF5bbwlnol9TGAZb1SKpWS1quGz2a5KjAwkGl5IrVajVatWjErj+M4aLXs78TI1mK8YsUKAEBycrLV5+vWrcPkyZMBAO+//z4UCgXGjh2L2tpaDB8+HB9//LHV9KdPn7Y8galUKlFQUIANGzbg2rVrCAkJQWJiIv7zn/+ge/fuVi3A+fn5+Ne//oW8vDzLZ2PHjkV2djaSk5MRFxeHjIwMCdackKb5+fmhf//+WLp0KWJiYnDlyhVLX2RRSkoK0tPT8dhjj2Hu3LkIDAzEjz/+iMTERHTp0sVqWq1Wi5kzZ2LWrFngeR5JSUkoLy9HTk4OdDodJk6ciNjYWHz66afYuXMnYmJikJGRgSNHjjS6iyMFMTFytcVI6hONuAwWD3ZImsDVWwarYaWkxmK7Sn5hxHEQ+k0Dtz3N5aIETgmhz2RA5etyWU2heiUNb6lXer0epaWlTMry9fV16C6lo/R6Paqrq5mUFRgYKMm2lbUrRUt8fX2Rnp6O9PR0u8rx9fW1e+zWhIQEFBQUWH2mUCiwfPlyLF++3K4yCJHC6tWr8cwzz6Bfv37o0qULFi9ejAceeMDyfUhICLKysjB37lwMGTIESqUSvXr1avIOxxtvvIGwsDC8/fbb+PXXXxEUFITevXvj5ZdfBgBMmzYNx44dw2OPPQaO4/Doo4/iueeew86dOyVfV7EVxtUToxwnRTFWV06McrRsA2wSI/GWrNRY/P5St2wDgNB9LLhd81x/EE/g6xJjid1p9UqOWFl0U5CjXmk0GrRq1YpJwqnX6xlE1DStVsvsgkOqWN32gg85OLvh6QUf9IIPIh3x9cXOnmwkfbFDA66+kEKj0chWx3meh8FgcGpeOV6YUp8rL6RQKBRQq9WyxMod+gcUO19xen4BHITEqRBGvM0wqiaWdRvVq5Ze8KFWq2VJjAFYnkVy5hjAcRzUarUsx4CamhqcO3fOpTJ8fHwQHR0tebzl5eW4ePGiS2XodDqnhtf16Bd8EELuTK6cLOQ8eQN/xOpMEibXCVHk7Bv2XFlHZymVSqd+R7ljFRKngU+c5ty8HAd0HgZh2CLGUdnmSr1y9vdwlisXYnImxYDzF2JyJsVAXbc8V97DoFKp0L59e1niDQwMRGhoqNPz+/n5ITIykmFE1igxJoTITjxp2HuCE6eX8+QtEhNOe08Y4klfzpO3yNFYHZ2eJZVK5VDCoVQqZW3VBlDX13j4YvD/81cAgKBo+TcVuP8/0kyPR8A/vAFQyH8h52i9kvJ1xc0t25F64u565UiS6+j0rOh0OrRr187hOiK2FMt5fA0NDUV4eLjD8wUEBEiewLvlBR+EEFI/2TWbzTZfm6pQKKBUKmXpU9oc8aQsCAJMJpPNt00plUpLrO4kJrs8z1u2a31iv2dPiFXcZmKcDbsBiH1J5XgorEkcByH5VZg7JEHx40oIZ3YBnAKcYL1dBU5Z91lUf5gTpwHdHgLcELO31auWYvWWegV4RqxarRYxMTEoLS1FeXl5s11A1Go19Ho99Hq97DFzHIeQkBD4+fmhtLS0xVc7+/r6Ijg4GDqdTvphJamPsfyMRiN27tyJ4cOHu+VK3R5Go9FjYyO3r4aHI08dp1SMs/5b4ihW1zWM1SPjLDsP7ugGcL/tB2pKAZ4HWukhtOlT95BdeDd3R9iIt9WrM2fOWPoYN/WWT3fzhnplNptRXl6OyspKqwfztFotgoKC4O/v7zExG41GlJWVoaqqynKBpFQq4evri6CgIGYjZdhzx4FajAkhHsNTDtIt8dQToS0UK2NBURCGvAZvalHy6O1ZT8Pf35Pj9oYYlUolgoODERwcjDNnzsBkMkGlUlm9ddhTqNVqhIWFWcb2dyfqY0wIIYQQQggoMSaEEEIIIQQAJcaEEEIIIYQAoMSYEEIIIYQQALf5w3fuGO/QHuKQROLQLp6I53mPjY0QQsidgc5D7NE2bR61GBNCCCGEEAJKjAkhhBBCCAFAiTEhhBBCCCEAKDEmhBBCCCEEACXGhBBCCCGEAKDEmBBCCCGEEACUGBNCCCGEEAKAEmNCCCGEEEIAUGJMCCGEEEIIAEqMCSGEEEIIAUCJMSGEEEIIIQAAlbsDIISQ+gRBAABwHOfmSJonxgl4Zqw8LyD7zFV889+LuFpZi8pbJuh8VWgT5IcxfdohMVrvkXF7y+8PUKws1dTUoKysDLW1tTCZTAAAs9mMsrIy6HQ6KBSe0Y4nCAKqqqpQVlYGk8kEs9kMpVIJlUqFoKAg+Pv7e+Q2rn+88nTu3lc5wZu2FkP5+fluWzbP8ygqKkJMTIzHVPaGeJ5Hz5493R0GuQMIggCe52EymRodvBUKBVQqlcfUE0EQYDabYTabG8WqVCqhVCrdHmt5tREbDxdjw8FzuFh2C0oFBzP/R6zi353C/DE5KQZj+7RFK41720h4nrds1/o4jrNsV09JNsQ4eZ63+lyhUFh+f0+ItaV6JW5XdxIEAeXl5bh+/TpqamqanE6pVCI4OBjBwcFQq9UyRvgHMUm/fv06DAZDk9Op1WqEhIRAr9e7ffvWr1dFRUWWJL5jx44eV6/EfbVhveI4znIOkCtWSozdgBJjQupOimKLS0vEg6O7TjSCIMBoNDY6aNvizmT+l8uVeHLNj7hSWYuWjuwcAAFAbHgAPn26HyID/eQI0QrP8zAajXa1Zomtcu46kZvNZptJpi0qlQoqlfsuNkwmk6XVtTnurFdmsxnFxcWoqqqyex6FQoH27dsjICBAwsgaMxgMKCoqgtFotHsetVqN6Oho+Pj4SBiZbbbqVf3EOCYmxvI51avGPDMrI4Tc1sRE056kuP709pzsWRMEAQaDwa6kGKg7KRkMBrvXjZWfL1Zg9McHcK3S0GJSDNQlxQBQdK0KDy0/gN/Lmm6xk4LZbIbBYLD7Fq+j07NkMpnsTuDF6d0Rq7iv2ltP3FWvzGYzfv31V4eSYqCubp07dw6VlZUSRdZYbW0tCgsLHUqKAcBoNKKwsBC1tbUSRWYb1SvXUWJMCJGdva2vDdnbwsyKmGg4cyB2dh2dUVJ+C0+u/RG3DGaYHYzVzAsorTLgyTU/ovKWYyd/Z5nNZocTDeCPRE7Ok7i9ra8NibeG5eRKvZIrVkEQUFxc7FLCWFxc3GzXC1ZMJhPOnTvn9DFHTOTl2rZiS7GjXDnOOcuVeuXMOjqCWWK8ePFiJCYmQqvVIjw8HKNGjcLp06ct35eWluKFF15Aly5d4Ofnh/bt2+PFF19EeXl5i2WfOnUKDz30EAIDA+Hv74/ExEQUFxdbvp85cyaCg4MRFRWFzz77zGrezZs3489//jOr1SSEuMhWPzJHyJkYubosqQ/gopXZhSirNsLsZKhmXkDRtSp8fqi45YldJCa3zhL7TcrB1eTWVr9pqdjq9+wIV+ulvSorKx1uKW5IEARcvnyZUURNu379ust12Gg04tq1a4wiapqY3Loyv5wJvCvLkvqik1linJ2djZSUFOTm5iIrKwtGoxHDhg2zVICLFy/i4sWLePfdd5Gfn4/169djx44dePrpp5stt7CwEPfddx+6du2Kffv24fjx43j99dfh6+sLAPjmm2+QmZmJXbt2YenSpZg6daplJywvL8e8efOQnp7OajUJYYrjOHz11VdujSE6OhoffPCBbMtjkSjIkWyIDy+5WobUsVbVmrDpyHmrB+ycIQjA+pxz4F0spyUstoe9fRJd5S37KgAmiYIcsV6/fp1JOTdv3nQpEWyJIAgoLS1lUlZpaankFx0syrf1ULEUPL1eMevFvGPHDqu/169fj/DwcOTl5WHgwIFISEjAli1bLN936tQJixYtwhNPPAGTydRkh+p58+bhwQcfxNKlS63mFZ06dQrJycno27cv+vbti7S0NBQVFSE0NBRz5szB9OnT0b59e1arSe5A0dHRSEtLQ1pamrtDkcThw4fh7+8vy7JYHXhNJpPkT1SzOvCKD7xI5etjF1FjYBPrxbJb+OHMVSR3CWdSni2stivP85JuV1YXNTzPg+d5SR/G5HmeSb0ym82SPohVW1vrcmtxfaWlpYiIiGBWXn0VFRVM99WKigoEBQUxKc8WVi2o4j4gFVb1Smy4kKJeSVZTxS4SwcHBzU6j0+ma/BF4nse3336LuLg4DB8+HOHh4ejfv79VC1uvXr1w5MgR3LhxA3l5eaipqUFsbCz279+Po0eP4sUXX2S6XoTcbsLCwtCqVStZlsXyKl/qFhiWJ0UpY914qBis0hilgsMXh88zKq0xVgkcIH3rJsvyvSlWKffVGzduMC2vtLRUshZO1rGyLq8+b6pXLPcvqbpTSJIY8zyPtLQ0JCUlISEhweY0165dw5tvvolp06Y1Wc6VK1dw8+ZNLFmyBCNGjMCuXbswevRojBkzBtnZ2QCA4cOH44knnkBiYiImT56MDRs2wN/fH9OnT8fKlSuxYsUKdOnSBUlJSTh58qQUq0u8AM/zWLp0KWJjY+Hj44P27dtj0aJFGDJkCFJTU62mvXr1KjQaDXbv3o3k5GT89ttvmDFjBjiOs2pJ2bJlC7p37w4fHx9ER0fjvffesyonOjoab775JiZMmAB/f3+0bdu2xW49c+fORVxcHFq1aoWOHTvi9ddft+rj9t///heDBw+GVquFTqfD3XffjSNHjgCou0sTFBSE7du3o0uXLmjVqhXGjRuH6upqbNiwAdHR0dDr9XjxxRetDn4Nu1KUlZXh2WefRevWreHr64uEhARs377d4W1uC8uTmJS3/ARB8JpYz9+oBqvSzbyA30qrGZXWGMuTotQXRt7y+wPes11Z97lnmRA2xLqbhtTdPjyxLKnLlypWSdrLU1JSkJ+fj/3799v8vqKiAiNHjkR8fDwWLFjQZDliBf3LX/6CGTNmAADuuusu5OTkYOXKlRg0aBAAYMGCBVblLFy4EEOHDoVarcZbb72FEydOYPv27Zg4cSLy8vLYrCTxKq+88gpWrVqF999/H/fddx8uXbqEgoICTJ06FampqXjvvfcs401mZGSgbdu2GDJkCHr37o1evXph2rRpeOaZZyzl5eXlYfz48ViwYAEeeeQR5OTk4Pnnn0dISAgmT55sme6dd97Bq6++ioULF2Lnzp146aWXEBcXhz/96U8249RqtVi/fj3atGmDEydO4JlnnoFWq8WcOXMAAI8//jh69+6NFStWQKlU4tixY1YD3ldXV+PDDz/Exo0bUVlZiTFjxmD06NEICgrCd999h19//RVjx45FUlISHnnkkUbL53keDzzwACorK5GRkYFOnTrh559/ZnbL2hsOit6mqpZtC09FjTwPDHo62lfZk6I10mw2S3I7nXWscg/f6ApBECTrTuMNdYF5Ypyamort27fjhx9+QLt27Rp9X1lZiREjRkCr1WLr1q3NvsUmNDQUKpUK8fHxVp9369atyaS7oKAAGRkZ+Omnn7B27VoMHDgQYWFhGD9+PKZMmYLKykpotVrXVpJ4lcrKSvzf//0fli9fjkmTJgGo66d+33334datW0hNTcXXX3+N8ePHA6hreZ08eTI4jkNwcDCUSiW0Wq1VX7Zly5bh/vvvx+uvvw4AiIuLw88//4x33nnHKjFOSkrCyy+/bJnmwIEDeP/995tMjF977TXL/0dHR+Ovf/0rNm7caEmMi4uLMXv2bHTt2hUA0LlzZ6v5jUYjVqxYYemHP27cOHz66ae4fPkyAgICEB8fj8GDB2Pv3r02E+Pvv/8ehw4dwqlTpxAXFwcA6Nixo51bumUcxzE7MHrKG5vczUetgMHMrpXPz81vwfMULPcv2lfrSNIfVKK+2wqFgmky66kv87LlTt9fmf1SgiAgNTUVW7duxZ49e6zerCKqqKjAsGHDoNFosG3bNsvIEk3RaDRITEy0GvYNAH755Rd06NDBZgzPPvssli1bhoCAAKuxMsX/etNVG2Hj1KlTqK2txf3339/oO19fXzz55JNYu3YtAODo0aPIz8+3Sm6bKjMpKcnqs6SkJJw5c8ZqHxswYIDVNAMGDMCpU6eaLHfTpk1ISkpCREQEAgIC8NprrzUamnDq1KkYOnQolixZgsLCQqv5W7VqZfVwauvWrREdHW31pqjWrVvjypUrNpd/7NgxtGvXzpIUs+YtyQbrsqWMNdhfw6wsDkCYll15jcr3kt9fjvJZ8pbtKsVDXVIlnKxjlfKBNtpX2WK2R6WkpCAjIwOZmZnQarUoKSlBSUmJZRBuMSmuqqrCmjVrUFFRYZmmfiLRtWtXbN261fL37NmzsWnTJqxatQpnz57F8uXL8c033+D5559vFMPq1asRFhZmGbc4KSkJe/bsQW5uLt5//33Ex8dL+lQo8Ux+fs2/6nbq1KnIysrChQsXsG7dOgwZMsTmhZfUDh48iMcffxwPPvggtm/fjp9++gnz5s2z6pu2YMECnDx5EiNHjsSePXsQHx9vVV8a3oHhOM7mZ031I2xpW7mK5UlM6hYYVt1HOI6TNNY/92wDBaPzgwBgZI82bAqzgeV2kPo1xt4UK8vypYxVp9MxL0+q5CgwMNCjy6tPoVAw2w60rzJMjFesWIHy8nIkJycjMjLS8m/Tpk0A6lrifvzxR5w4cQKxsbFW05w//8dT0KdPn7Z66cfo0aOxcuVKLF26FD169MDq1auxZcsW3HfffVbLv3z5MhYtWoQPP/zQ8lm/fv0wa9YsjBw5El988QXWrVvHanWJF+ncuTP8/Pywe/dum9/36NEDffv2xapVq5CZmYkpU6ZYfa/RaBrdaejWrRsOHDhg9dmBAwcQFxdnVVlzc3OtpsnNzUW3bt1sxpGTk4MOHTpg3rx56Nu3Lzp37ozffvut0XRxcXGYMWMGdu3ahTFjxjDdr3v27IkLFy7gl19+YVZmfawOZFIP1SYuw5PKacqE/u2ZPXznp1HiL3dJlxhzHOc121WhUDBJjlmuc1NYJfEsEyxb/P39odGwuyMREhLCrKyGgoKCmG4LvV7PrCxbvKVesWwokOxuAauCWuo3mJycbFffQlvTTJkypVGy0lDr1q1x7ty5Rp/Pnz8f8+fPb3G55Pbl6+uLuXPnYs6cOdBoNEhKSsLVq1dx8uRJywtmxIfw/P39MXr0aKv5o6Oj8cMPP+DRRx+Fj48PQkNDMWvWLCQmJuLNN9/EI488goMHD2L58uX4+OOPreY9cOAAli5dilGjRiErKwubN2/Gt99+azPOzp07o7i4GBs3bkRiYiK+/fZbq9bgmpoazJ49G+PGjUNMTAwuXLiAw4cPY+zYscy21aBBgzBw4ECMHTsWy5YtQ2xsLAoKCsBxHEaMGOFy+WKS4GqXJqkP3sAfSYKrfaKljrVtkB+GdA3HvtNXXXrJh1LB4ZG+UfD3kbaPMYvfX+oETqRUKl0epUGOfZXjOKhUKpeHr5IjKQoODkZJSYnLZWk0GkmHmVSpVAgMDERZWZnLZQUGBkralQKo++1c/f1ZXQy2RKVSuTxKh5SNI97TG5wQF7z++uuYNWsW5s+fj27duuGRRx6x6mc7YcIEqFQqTJgwoVHf9zfeeAPnzp1Dp06dEBYWBgDo06cPvvjiC2zcuBEJCQmYP38+3njjjUZ9k2fNmoUjR46gd+/eeOutt7Bs2TIMHz7cZowPPfQQZsyYgdTUVMvoK+LDfUDdgeD69euYOHEi4uLiMH78eDzwwANYuHAho61UZ8uWLUhMTMSECRMQHx+POXPmMO2b7+oLBJRKpWwPsjT3cLA9pHxZQn0pg2NdSuAVHKBRKvBUUjS7oJpalkLhcpLg6u9iL1f3NTlai0WuJgoKhUKWWPV6PZMksXXr1pLXrdDQUCbLCA0NZRBN88SLI1dInbyLXE3AWaxrs+UL3jB2hgTy8/Pdtmye51FUVISYmBiPfVKV53n07NnT3WHIRkx8Dx8+jD59+jAp83Z/Y54reJ53qsVAoVAwvRVrj/oP8TpCpVLJdqIBgM1HzmP2v447PB8HgOOA9U/1w8C4MPaBNcFoNDp1waXRaGQ9bgqCAKPR6HDLMcdx0Gg0sj4YJQgCDAaDwxdJCoUCarVatlhv3bqFwsJCpy/mwsLC0Lp1a8ZR2VZRUWH1ALSjoqKiJO1f3FBT9aqoqMjyFk5bgyN4U71Sq9WSxuqZWRkhMjEajSgpKcFrr72Ge+65h1lSTJqnUCjg4+Pj0IlYqVTKnhQ7u1y5k2IAeLhvFJaO6wkFB7sfxlNyHDQqBVZP6itrUgzUtfo6so3ERFPuxgRnTsTiBZzcowU4k4wrlUpZk2Kgrntbx44dnWqhDgsLQ3i4dK8sb0in0yEqKsqpedu1aydrUgx4X71yZB+QK1YasJLc0Q4cOIDBgwcjLi4O//rXv9wdzh2F4zj4+PiA53mYTKYmWw5UKpUsD9s1R0zkeZ6H2Wy2Gat429ydsY7vG4UOwa3wwfdncPDX61AqOJv9jhVc3QgUg7uGY8afOqN7G3lP3iLxtzWbzTCbzTZbEMVb/HJ1SbBFPCGLv39TLd1inO68E2hvvXJ3rH5+fujUqRMuX75s9cB9U3x9fREWFiZ7ognU9RFWq9WWt/G2JCAgAOHh4ZL2gW6ON9UrMZE3mUxN1iux+5Vc++od25XCnYxGI7777js8+OCDsvWVc5TRaPTY2MjtSRAEq5O4+ApuTxyjs+GraKUeks0ZhVdv4rPcYmz96QLKaowQhLqEODTAB48kRmFCv/ZoEyTt8HyOarhd5XrIzlEN91XAe2L1xHplMplQVlaG69evW3VbUigU0Ol0CA4OdluS2ZDBYEBpaSlu3LjRKJELDQ2FXq+3vEXVU/A8j9OnT1u6UnTp0sXjjldA3b4q/hO5o15RYuwGlBgTQuTE8wJumczwU7u35Z2QloiJkacl77YIgoCCggKYzWaoVCrLG0k9UUFBAUwmk8fH6QmoKwUhhNzmFAoOrehVz8QLeENCLPKmWIn9PK8tnRBCCCGEEDegxJgQQgghhBBQYkwIIYQQQggASowJIYQQQggBQIkxIYQQQgghACgxJoQQQgghBAAlxoQQQgghhACgxJgQQgghhBAAlBgTQgghhBACgBJjQgghhBBCAFBiTAghhBBCCABA5e4ApGQ2m90dgk1iXGazGQqFZ16beHJshBBCiKfx1JyjIW+JUwpKpbLFaSjzIYQQQgghBJQYE0IIIYQQAoASY0IIIYQQQgDc5n2MCSGEeIcrV67gzJkzqKmpgdlsho+PD4KDg9GtWzeo1Wp3h0eIhclkQkVFBUwmk6W/Ls/zMBqNHrev1tbW4ubNm1bPNpWVlUGr1drV3/ZOxAmCILg7CKnk5+e7OwSbeJ5HUVERYmJiPPYBN57n0b17d3eHQe4QPM/DbDZDEASIhySO46BQKKBUKsFxnJsj/IMYK8/zls84joNSqYRCofCYWAVBsNquIoVCYdmu7mY2m1FQUIBDhw7hwoUL4DjOavvxPA+NRoM+ffqgT58+CAkJcWO0dQRBsPz+9fdVjuOgUqk85vcHvLNeNYzVU+qVIAioqanBjRs3UFFR0eR0Wq0WwcHB8PPzc1vMgiDg5s2bKC0tRXV1tc1pOI5DUFAQ9Ho9fHx8ZI6wsebqlbgPsGDPcY8SYzegxJiQOmazuVGSaYtSqXR70iG2DjV3yBSTDnfGKp5g7IlVqVS6LUG6fv06PvvsM5SXl4PjuBZjFQQBSUlJGDx4sFviFRO3lp7oF39/dx7bHalXLJMOZ5jNZphMJo+uVzzP48KFC6iqqrJ7Hn9/f7Rt21b2C1Cj0Yji4mIYDAa75wkKCkJERITH1ytxf3UFjUpBCPFYRqMRRqOxxZM3UHfyNBgMdk3LmiAIMBgMLZ68xWnFWN3R5iAIAoxGo92xmkwmGI1G2WO9dOkS1qxZY2l5sydWADhw4AC2bdsme7zib2rPMFc8z1v2F3cQf1NH6pU7hu8S91V79r/69UruY4DZbMa5c+ccSooBoKqqCufOnZN129bW1qKoqMihpBgAysrKcOHCBdnrldj9xN56JR7bpEaJMSFEdvYeDOsTE1Q5T4ziydvRZYqxynmicXb7iCccuWItLy9HZmam09vn+PHj2LNnjwSR2WY2m2E0Gh2ez2QyyZ4cO7tMZ/ZxV9Xvn2svsT7Kta8KgoALFy6gtrbWqfkNBgPOnz8vy7Y1mUwoLi52OhG/efMmSkpKZNu24gWko8uTo145lBgvXrwYiYmJ0Gq1CA8Px6hRo3D69Gmb0wqCgAceeAAcx+Grr75qttybN28iNTUV7dq1g5+fH+Lj47Fy5UqraWbOnIng4GBERUXhs88+s/pu8+bN+POf/+zIqhBC3MSe22bNkfPEaM/t6KaIJ3G5uLJdeJ6XLYnbuXMnampqXPoNc3JycOnSJYZR2ebqb2gymWRLOF39DeWsV84kxSLxAlAON27caLKPrr3EfslSu3Llist1uKyszOX1tQeLeiVlS7xDiXF2djZSUlKQm5uLrKwsGI1GDBs2zOYthg8++MDu/iozZ87Ejh07kJGRgVOnTiEtLQ2pqanYtm0bAOCbb75BZmYmdu3ahaVLl2Lq1Km4du0agLrWh3nz5iE9Pd2RVSGEuImrBzTxtqrUWCyH53lZEiMWy2mpTzILFRUV+OWXX1xejkKhQF5eHqOomsZiP5PrVrqrSZE31Ss5YhUEAaWlpUzKunHjhqR1y2w2N/tAoCPkSOJZHGs8JjHesWMHJk+ejO7du6NXr15Yv349iouLGx2gjh07hvfeew9r1661q9ycnBxMmjQJycnJiI6OxrRp09CrVy8cOnQIAHDq1CkkJyejb9++mDBhAnQ6HYqKigAAc+bMwfTp09G+fXtHVoUQ4gasEkU5TuD1n452hRyxslqG1LEePXqUSTk8z+P48eO4desWk/JsYZV8yXHBIY5A4io5YvWWelVdXc3sjo/RaHS4j7IjysvLmf1ulZWVkt/pYvHbSdno4FIf4/LycgBAcHCw5bPq6mo89thjSE9PR0REhF3l3Hvvvdi2bRt+//13CIKAvXv34pdffsGwYcMAAL169cKRI0dw48YN5OXloaamBrGxsdi/fz+OHj2KF1980ZXVIITIhNXJjFUi0ByWyaaUyQbLbSFlsiEIAvLy8phtC7PZjBMnTjApyxZWCRwgfRLHqhuMN9Urlr+PLaxbTqVsiWXVsi0qKytjWl59LI+HUtUrpxNjnueRlpaGpKQkJCQkWD6fMWMG7r33XvzlL3+xu6yPPvoI8fHxaNeuHTQaDUaMGIH09HQMHDgQADB8+HA88cQTSExMxOTJk7Fhwwb4+/tj+vTpWLlyJVasWIEuXbogKSkJJ0+edHaVCPFYQ4YMQVpaGubOnYuwsDC0bdsWCxcutHxfXFyM0aNHIzAwEHq9Ho8++iguX75s+X7hwoW4++67kZGRgU6dOiE4OBiPPfYYKisrLdPwPI8lS5YgNjYWAQEB6NOnD7Zs2cJ0PViedKU+gbMsX+rEmFX5LMtqqKamhmn/RYVCgatXrzIrryFv2ldZ/mZytG6zIuV2dfaBO7nKE0nxLIOUfbi9YV91OjFOSUlBfn4+Nm7caPls27Zt2LNnDz744AOHyvroo4+Qm5uLbdu2IS8vD++99x5SUlLw/fffW6ZZsGABzp49ixMnTmD06NFYvHgxhg4dCrVajbfeegv79+/H1KlTMXHiRGdXiRCP9sknn8Df3x85OTlYsmQJ3nrrLWRlZYHneYwZMwalpaXYs2cPduzYgaKiIkyYMMFq/sLCQnz99deWfz/88APefvtty/dLlixBRkYG0tPTcfz4cbz00kuYOHEisrOz5V5Vt2N9wL2Nh4u3G+tuD4IgSNqVwpt4Q7IhV/mssG6NlKp1U4qLA6nvHHliWfU59Uro1NRUbN++HT/88APatWtn+XzPnj0oLCxEUFCQ1fRjx47F//zP/2Dfvn2NyqqpqcGrr76KrVu3YuTIkQCAnj174tixY3j33XcxdOjQRvMUFBQgIyMDP/30E9auXYuBAwciLCwM48ePx5QpU1BZWQmtVuvMqhHisXr06IH58+cDADp37oz09HTLsFUnTpzA2bNnERUVBQBYt24devbsicOHDyMxMRFA3QF07dq1lrrx+OOPW+avra3FkiVLsHPnTgwYMAAA0LFjRxw4cACrVq3CoEGDZF1XcvuR4kUHnvD2Pk/Q0gtSiONYv+zC3W/uI/ZzKDEWBAEvvPACtm7din379iEmJsbq+5dffhlTp061+qxHjx54//33mxxOTRzgu+Gbd5RKpc0rIUEQ8Oyzz2LZsmUICAiwGmNS/K87BisnRGo9e/a0+jsyMhJXr15FQUEBoqKiLEkxAMTHxyMoKAgFBQWWxDg6OtrqglGcHwDOnj2L6upqjBgxwmoZBoMBd911F7N18JYTOJ0U2fP19WVaHsdxzMtsWL4nliU1qWP1lmOAUqlkOoShVBdxUry1UKVyqs3ULt5Qrxxa+5SUFGRmZuLrr7+GVqtFSUkJACAwMBB+fn6IiIiw+cBd+/btrZLorl27YvHixRg9ejR0Oh0GDRqE2bNnw8/PDx06dEB2djY++eQTLFu2rFFZq1evRlhYmCXRTkpKwoIFC5Cbm4t///vfloSAkNuNWq22+pvjOIduozU3/82bNwHUdYdq27at1XQ+Pj7OhGuTQqFgdutP6tZCpVLJ5CKb4zhJkw2FQsEs2RDLkoKPjw8iIyOZvUSA5/lGjTMssUw4pH7lMst6JUesrOqVlLEGBAQw7RccEBDArKz6OI6Dv78/01Ev/P39mZXVkDfUK4cS4xUrVgAAkpOTrT5ft24dJk+ebHc5p0+ftoxoAQAbN27EK6+8gscffxylpaXo0KEDFi1ahOeee85qvsuXL2PRokXIycmxfNavXz/MmjULI0eORHh4ODZs2ODIKhHi9bp27Yrz58/j/Pnzllbjn3/+GWVlZejWrZtdZcTHx8PHxwfnz5+XtNsEq1YYKRM4EavEWKlUyhIri+0q9cVGYmKiZXx6V2m1WsTGxjIpyxaFQsEk4ZQ6gQP+2FdZjA8tV6yukvoYoNfrcf36dablSUWv1zNLjBUKhaRdUVnVK0C645XDXSkcZWuehp9FRERg3bp1LZbVunVrnDt3rtHn8+fPt/S9JOROM3ToUPTo0QNPPvkkli1bBpPJhBdeeAEDBw5E37597SpDq9Vi5syZmDVrFnieR1JSEsrLy5GTkwOdTsfsoVaO45icGKW81Sdi1RIrRz9YFomxHAlc9+7dsXPnTpdb4jiOQ2JioixJnKsncDkujMTfztV6Jce+yioxkjpWtVrNrCW2VatW0Gg0DKKyLSAgACqVisnFsV6vv+PrlbRrTwiRHMdx+PLLL6HX6zF48GAMHz4cMTEx+Pzzzx0q54033sC8efPw9ttvIyEhASNHjsR3332H6OhopvG6ekCTo1VL5GoCLkdSBNTtA67GqlKpJI9VpVKhX79+LpXBcRzUajXTvu9NcXVfEy8E5eDq7+dt9UqOWENCQjyqnKZwHMdkGRzHydIVlUW9krQftOANveCdlJ+f7+4QbOJ5HkVFRYiJiZHtQOQonufRvXt3d4dBblM8zzs1VqZCoYBarZb1YSaTyeRUS4xSqWzUr1tqRqPRqVZDlUolSys8UPfbb9y4Eb/++qtTrfEcx+Hxxx+XtH9xfYIgwGAwOByrmMDLeYx3tl5xHAeNRiNrvar/4Lwj5D4GXLt2zaXxskNDQxEWFsYwItsEQcDvv/9uNTa9o9q2bQudTscwqqY5W68AQKPROF2v7LlQ9cysjBByW1MoFA6fiN2RFAN1SaOjCa5SqZQt0axPrVY7vFw5k2Kg7nccN26cw3cixNbXcePGyZYUi8t19ETsjqQYcL5eyZ0UA85dOIrzyBlrSEiI062xISEhCA0NZRyRbRzHoU2bNk73D46MjJQtKQacr1euJMV2L4dajOVHLcaE1BEEAWazudkHhxQKBZRKpdvHrLUnVjFOd9drnuctsdoi9kmVo/tEU8xmM/bu3YvDhw832yIv9kcNDw/HyJEjrcbOl5P4umSz2dxk/0hxX5Xj4dDmOFKvvCFWT6hXZWVluHLlil13ZJRKJcLDw90yQpYgCLh27RquX79uV2usRqNBRESEpCNRtET8/ZuqV+JFMYuuafacR27rxNhTxzM2Go3YuXMnhg8fLvutVnsZjUaPjY3cnnieb3RglKuPriPEBEl8fbI4HJu7EwxbvCHW2tpaHD9+HIcOHUJpaanVdwqFAt27d0diYiLatGnjMTHb2lfl7KPrCG+uV4BnxSoIAm7evInS0lKbrzdv1aoV9Ho9tFqt22PmeR7l5eW4ceOGzYddtVotgoOD4efn5/ZYReJFUn2s6xUlxpQYO40SY0KInARBQFlZGWpqamAymeDr6wudTifpSzwIcZb47AHP85a7L+7oPtUSQRAssQqCYOmS5u47cO5iz3p73q9ICCHkjsNxHPR6vaTjvRLCiqcmwg2J/d2poct+nnffhxBCCCGEEDegxJgQQgghhBBQYkwIIYQQQgiA27yPsad2LhefEPaEIaiawvO8x8ZGCCGEECIFajEmhBBCCCEElBgTQgghhBACgBJjQgghhBBCAFBiTAghhBBCCABKjAkhhBBCCAFAiTEhhBBCCCEAKDEmhBBCCCEEwG08jrEgCKisrHR3GDYZjUZUV1ejoqLCY99fbjQaoVarodVqwXGcu8MhhBBCCJHcbZsYV1ZWIjAw0N1heL0rV64gLCzM3WEQQgghhEjutk2MtVotysvL3R2GTRUVFYiKisL58+eh0+ncHY5NYowajcbdoRBCCCGEyOK2TYw5jvPYpFOk0+k8PkbqRkEIIYSQOwU9fEcIIYQQQggoMSaEEEIIIQQAJcZu4ePjg7/97W/w8fFxdyhN8oYYCSGEEEJY4gRBENwdBCGEEEIIIe5GLcaEEEIIIYSAEmNCCCGEEEIAUGJMCCGEEEIIAEqMCSGEEEIIAUCJMTOLFy9GYmIitFotwsPDMWrUKJw+fdpqmuTkZHAcZ/Xvueees5qmuLgYI0eORKtWrRAeHo7Zs2fDZDLJuSpIT09HdHQ0fH190b9/fxw6dEjW5RNCCCGEuAMlxoxkZ2cjJSUFubm5yMrKgtFoxLBhw1BVVWU13TPPPINLly5Z/i1dutTyndlsxsiRI2EwGJCTk4MNGzZg/fr1mD9/vmzrsWnTJsycORN/+9vfcPToUfTq1QvDhw/HlStXZIuBEEIIIcQdaLg2iVy9ehXh4eHIzs7GwIEDAdS1GN9111344IMPbM7z73//G//7v/+LixcvonXr1gCAlStXYu7cubh69So0Go3kcffv3x+JiYlYvnw5AIDneURFReGFF17Ayy+/LPnyCSGEEELchVqMJVJeXg4ACA4Otvr8s88+Q2hoKBISEvDKK6+gurra8t3BgwfRo0cPS1IMAMOHD0dFRQVOnjwpecwGgwF5eXkYOnSo5TOFQoGhQ4fi4MGDki+fEEIIIcSdVO4O4HbE8zzS0tKQlJSEhIQEy+ePPfYYOnTogDZt2uD48eOYO3cuTp8+jS+//BIAUFJSYpUUA7D8XVJSInnc165dg9lsthlDQUGB5MsnhBBCCHEnSowlkJKSgvz8fOzfv9/q82nTpln+v0ePHoiMjMT999+PwsJCdOrUSe4wCSGEEEJIPdSVgrHU1FRs374de/fuRbt27Zqdtn///gCAs2fPAgAiIiJw+fJlq2nEvyMiIiSI1lpoaCiUSqXNGORYPiGEEEKIO1FizIggCEhNTcXWrVuxZ88exMTEtDjPsWPHAACRkZEAgAEDBuDEiRNWI0BkZWVBp9MhPj5ekrjr02g0uPvuu7F7927LZzzPY/fu3RgwYIDkyyeEEEIIcScalYKR559/HpmZmfj666/RpUsXy+eBgYHw8/NDYWEhMjMz8eCDDyIkJATHjx/HjBkz0K5dO2RnZwOoG67trrvuQps2bbB06VKUlJTgySefxNSpU/H3v/9dlvXYtGkTJk2ahH/84x/o168fPvjgA3zxxRcoKCho1PeYEEIIIeR2QokxIxzH2fx83bp1mDx5Ms6fP48nnngC+fn5qKqqQlRUFEaPHo3XXnsNOp3OMv1vv/2G6dOnY9++ffD398ekSZOwZMkSqFTydQdfvnw53nnnHZSUlOCuu+7Chx9+aOn2QQghhBByu6LEmBBCCCGEEFAfY0IIIYQQQgBQYkwIIYQQQggASowJIYQQQggBQIkxIYQQQgghACgxJoQQQgghBAAlxoQQQgghhACgxJgQQgghhBAAlBgTQgghhBACgBJjQgghhBBCAFBiTAghhBBCCABKjAkhhBBCCAFAiTEhhBBCCCEAgP8HVhR6tuRhnDIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.lp_dist(adata, percentage=True)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "41173cd8-659a-4996-bdc1-01b24c2e0076", + "metadata": {}, + "source": [ + "We can also visualize the localization of each gene where the point position denotes the balance between subcellular localization pattern frequencies. The color denotes the gene's most frequent pattern. Interestingly, we see a wide range of variability in localization. A large number of genes are pulled towards none while nuclear enriched genes show strong bias and a high fraction of cells.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "d5835d60-7fdf-4c55-851b-f486378491ad", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:38:32.343202Z", + "iopub.status.busy": "2023-03-31T20:38:32.343052Z", + "iopub.status.idle": "2023-03-31T20:38:32.419161Z", + "shell.execute_reply": "2023-03-31T20:38:32.418743Z", + "shell.execute_reply.started": "2023-03-31T20:38:32.343188Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AnnData object modified:\n", + " uns:\n", + " + lp_stats\n" + ] + } + ], + "source": [ + "bt.tl.lp_stats(adata)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "70913097-2e28-41fd-a76f-958007d8b532", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:38:32.419830Z", + "iopub.status.busy": "2023-03-31T20:38:32.419692Z", + "iopub.status.idle": "2023-03-31T20:38:34.086143Z", + "shell.execute_reply": "2023-03-31T20:38:34.085704Z", + "shell.execute_reply.started": "2023-03-31T20:38:32.419817Z" + }, + "tags": [ + "nbsphinx-thumbnail" + ] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp4AAAGVCAYAAABXWfHNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1cLH8e/Mtuym90ZIQgihQyihKaD0JiLWV0VEvRfRq8j1it5rAQvYQLFXBETEAgKiiHSkSA819JBASCW9Z3fm/SOyZEnbhFQ8n+fh0cyemTmbbLK/PVVSVVVFEARBEARBEOqZ3NgVEARBEARBEP4eRPAUBEEQBEEQGoQInoIgCIIgCEKDEMFTEARBEARBaBAieAqCIAiCIAgNQgRPQRAEQRAEoUGI4CkIgiAIgiA0CBE8BUEQBEEQhAYhgqcgCIIgCILQIETwFARBEARBEBqECJ6CIAiCIAhCgxDBUxAEQRAEQWgQIngKgiAIgiAIDUIET0EQBEEQBKFBiOApCIIgCIIgNAgRPAVBEARBEIQGIYKnIAiCIAiC0CBE8BQEQRAEQRAahAiegiAIgiAIQoMQwVMQBEEQBEFoECJ4CoIgCIIgCA1CBE9BEARBEAShQYjgKQiCIAhCszdjxgy6du3aaPfv378/S5YsabT716fevXuzbNmyOrmWCJ6CIAiCIFRq4sSJSJLE5MmTyz322GOPIUkSEydObPiKNYCDBw9yzz33EBQUhNFopF27dsybN69cuVWrVpGcnMzdd99dZ/eeOHEit956a51drzJbt25lzJgxBAQEIEkSK1asKFfm+eef59lnn0VRlGu+nwiegiAIgiBUKSgoiKVLl1JQUGA9VlhYyJIlS2jZsmUj1qx+7du3Dx8fHxYvXszRo0f53//+x3PPPccHH3xgU+69997jwQcfRJYbP1YNHDiQBQsW2F0+Ly+PLl268OGHH1ZaZsSIEeTk5LBmzZprrl/jf4cEQRAEQWjSunXrRlBQEMuXL7ceW758OS1btiQyMtKmrKIozJ49m9DQUIxGI126dOHHH3+0Pm6xWHjooYesj0dERJRrRbzc2vf222/j7++Pp6cnjz32GCUlJXbXWVEUXn75ZVq0aIHBYKBr16789ttvNmV27NhB165dcXBwoEePHqxYsQJJkoiOjgZg0qRJzJs3jwEDBtCqVSvuu+8+HnzwQZvvQ2pqKhs3bmTMmDE2187MzOSf//wnvr6+ODg40LFjR1avXg3AggULcHNzY+3atbRr1w4nJyeGDx9OYmIiUDpsYOHChaxcuRJJkpAkic2bN9v93GtixIgRvPrqq4wbN67SMhqNhpEjR7J06dJrvp/2mq8gCIIgCMJ1b9KkSXz11Vfce++9AMyfP58HH3ywXCCaPXs2ixcv5pNPPiE8PJytW7dy33334e3tzYABA1AUhRYtWvDDDz/g6enJjh07+Mc//oG/vz933nmn9TqbNm3C39+fTZs2cfr0ae666y66du3KI488Yld9582bx5w5c/j000+JjIxk/vz53HLLLRw9epTw8HCys7MZM2YMI0eOZMmSJcTFxTF16tRqr5uVlYWHh4f1623btmEymWjXrp31mKIo1lbCxYsXExYWxrFjx9BoNNYy+fn5vP3223z99dfIssx9993H008/zTfffMPTTz9NTEwM2dnZfPXVVwA292wMUVFRvP7669d8HRE8BUEQBEGo1n333cdzzz1HXFwcANu3b2fp0qU2wbOoqIhZs2axfv16+vTpA0CrVq3Ytm0bn376KQMGDECn0zFz5kzrOaGhoezcuZPvv//eJni6u7vzwQcfoNFoaNu2LaNGjWLDhg12B8+3336b6dOnW8ddvvHGG2zatIl3332XDz/8kCVLliBJEp9//jkODg60b9+ehISEKq+/Y8cOvvvuO3755Rfrsbi4OHx9fW262devX8/u3buJiYmhTZs21u9DWSUlJXzyySeEhYUB8Pjjj/Pyyy8D4OTkhNFopKioCD8/P7ueb30LCAjg/PnzKIpyTUMKRPAUBEEQBKFa3t7ejBo1igULFqCqKqNGjcLLy8umzOnTp8nPz2fIkCE2x4uLi2265D/88EPmz59PfHw8BQUFFBcXl5uR3qFDB5sWQn9/fw4fPmxXXbOzs7l48SL9+vWzOd6vXz8OHjwIwIkTJ+jcuTMODg7Wx6Oioiq95pEjRxg7diwvvfQSQ4cOtR4vKCiwuQZAdHQ0LVq0sIbOiphMJmvovPz8UlJS7Hp+Zc2aNYtZs2bZ1OfPP//k8ccftx47duzYNY/FNRqNKIpCUVERRqOx1tcRwVMQBEEQBLtMmjTJGmgqmoySm5sLwC+//EJgYKDNYwaDAYClS5fy9NNPM2fOHPr06YOzszNvvfUWu3btsimv0+lsvpYkqU5mVdfGsWPHGDRoEP/4xz94/vnnbR7z8vIiIyPD5pg9wayi56eqao3rNnnyZJuW4nvvvZfx48dz2223WY8FBATU+LpXS09Px9HR8ZpCJ4jgKQiCIAiCnYYPH05xcTGSJDFs2LByj7dv3x6DwUB8fDwDBgyo8Brbt2+nb9++TJkyxXrszJkzdVpPFxcXAgIC2L59u009tm/fbm3VjIiIYPHixRQVFVlD8Z49e8pd6+jRo9x888088MADvPbaa+Uej4yMJCkpiYyMDNzd3QHo3LkzFy5c4OTJk1W2elZFr9djsViqLefh4WEz/tNoNOLj40Pr1q1rdd/KHDlypNxEstoQs9oFQRAEQbCLRqMhJiam3ESZy5ydnXn66ad56qmnWLhwIWfOnGH//v28//77LFy4EIDw8HD27t3L2rVrOXnyJC+88EKFge9a/ec//+GNN97gu+++48SJEzz77LNER0fz5JNPAvB///d/KIrCP/7xD2JiYli7di1vv/02UNr6CKVh66abbmLo0KFMmzaNpKQkkpKSSE1Ntd4nMjISLy8vtm/fbj02YMAA+vfvz/jx41m3bh2xsbGsWbOm3Kz6qoSEhHDo0CFOnDhBWlpajWb010Rubi7R0dHWmfyxsbFER0cTHx9vU+6PP/6wGWJQWyJ4CoIgCIJgNxcXF1xcXCp9/JVXXuGFF15g9uzZtGvXjuHDh/PLL78QGhoKwD//+U9uu+027rrrLnr16sWlS5dsWj/ryhNPPMG0adP497//TadOnfjtt99YtWoV4eHh1ufx888/Ex0dTdeuXfnf//7Hiy++CGAds/njjz+SmprK4sWL8ff3t/7r2bOn9T4ajYYHH3yQb775xub+y5Yto2fPntxzzz20b9+eZ555xq4WzMseeeQRIiIi6NGjB97e3jbBti7t3buXyMhIa2vmtGnTiIyMtH4vABISEtixYwcPPvjgNd9PUmszoEAQBEEQBOE688033/Dggw+SlZVVo7GMSUlJdOjQgf379xMcHFyPNWwc06dPJyMjg88+++yaryXGeAqCIAiC8Le0aNEiWrVqRWBgIAcPHmT69OnceeedNZ5A4+fnx5dffkl8fPx1GTx9fHyYNm1anVxLtHgKgiAIgvC39Oabb/LRRx+RlJSEv78/t956K6+99homk6mxq3bdEsFTEARBEARBaBBicpEgCIIgCILQIETwFARBEATBbgsWLMDNza2xqyE0U6KrXRAEQRAEuxUUFJCTk4OPj09jV0VohkTwFARBEAShySsuLkav1zd2NYRrJLraBUEQBEGw29Vd7TNmzKBr1658/fXXhISE4Orqyt13301OTk6V1/n8888JCgrCZDIxbtw45s6dW+F1v/jiC0JDQ62LusfHxzN27FicnJxwcXHhzjvvJDk52XrexIkTufXWW23uNXXqVAYOHGj9euDAgTz++OM8/vjjuLq64uXlxQsvvFCrvdKFmhHBUxAEQRCEa3LmzBlWrFjB6tWrWb16NVu2bOH111+vtPz27duZPHkyTz75JNHR0QwZMqTCfdBPnz7NsmXLWL58OdHR0SiKwtixY0lPT2fLli2sW7eOs2fPctddd9W4zgsXLkSr1bJ7927mzZvH3Llz+eKLL2p8HaFmxALygiAIgiBcE0VRWLBgAc7OzgDcf//9bNiwocIwCfD+++8zYsQInn76aQDatGnDjh07WL16tU254uJiFi1ahLe3NwDr1q3j8OHDxMbGEhQUBJQuAt+hQwf27Nljs5VldYKCgnjnnXeQJImIiAgOHz7MO++8wyOPPFLj5y/YT7R4CoIgCIJwTUJCQqyhE8Df35+UlJRKy584cYKoqCibY1d/DRAcHGwNnQAxMTEEBQVZQydA+/btcXNzIyYmpkZ17t27N5IkWb/u06cPp06dqtF+6kLNieApCIIgCMI10el0Nl9LkoSiKNd8XUdHxxqfI8tyubGaJSUl11wXoW6I4CkIgiAIQoOKiIhgz549Nseu/roi7dq14/z585w/f9567NixY2RmZtK+fXsAvL29SUxMtDkvOjq63LV27dpl8/Wff/5JeHg4Go3G3qch1IIInoIgCIIgNKh//etf/Prrr8ydO5dTp07x6aefsmbNGpuu74oMHjyYTp06ce+997J//352797NhAkTGDBgAD169ADg5ptvZu/evSxatIhTp07x0ksvceTIkXLXio+PZ9q0aZw4cYJvv/2W999/nyeffLJenq9whQiegiAIgiA0qH79+vHJJ58wd+5cunTpwm+//cZTTz1lXTKpMpIksXLlStzd3enfvz+DBw+mVatWfPfdd9Yyw4YN44UXXuCZZ56hZ8+e5OTkMGHChHLXmjBhAgUFBURFRfHYY4/x5JNP8o9//KPOn6tgSywgLwiCIAhCo3vkkUc4fvw4f/zxR73fa+DAgXTt2pV333233u8l2BLLKQmCIAiC0ODefvtthgwZgqOjI2vWrGHhwoV89NFHjV0toZ6J4CkIgiAIQoPbvXs3b775Jjk5ObRq1Yr33nuPhx9+uLGrJdQzMcZTEIRGM2PGDCRJIiYmhnHjxuHs7ExgYCBTp06lsLDQWi4lJYVJkybh6+uLwWCgbdu2vPvuuzZLpmzevBlJkvjxxx+ZNm0aPj4+uLu7c8stt3DhwoVy9164cCHdu3fHaDTi7u7OXXfdZTNTVhCE+vX999+TkpJCQUEBR48eZfLkyQ12782bN4tu9kYigqcgCI3utttuo2fPnqxYsYJ//vOfvP/++8yePRuAvLw8+vfvz08//cSLL77IqlWrGDRoEE899RTPPPNMuWs9/fTTZGdns2jRIubOncv27du57777bMq89NJLTJo0iT59+vDTTz/x0UcfER0dTf/+/cnKymqQ5ywIgvC3pAqCIDSSl156SQXUDz74wOb4qFGj1PDwcFVVVfXDDz9UAXXNmjU2ZSZOnKhqtVr14sWLqqqq6qZNm1RAvf32223KvfXWWyqgJiQkqKqqqnFxcapGo1GnT59uU+7MmTOqTqdT33jjjTp9joIgCMIVosVTEIRGN2bMGJuvO3XqRHx8PFDaJebp6cnw4cNtykyYMAGz2cz27durvRZgvd7vv/+OxWLh/vvvx2w2W/+1bNmSiIgItmzZUqfPTRAEQbhCTC4SBKHReXh42HxtMBgoKioCID09HX9//3LnXD526dKlaq8FWMeMJicnA9CxY8cK62IymWpafUEQBMFOIngKgtCkeXh4cPDgwXLHL2+J5+npWaPrXS7/888/4+fnV+7x2uwNLQiCINhHBE9BEJq0gQMH8sMPP/D7778zdOhQ6/HFixej1Wrp169fja43dOhQNBoNsbGxjB49uq6rKwiCIFRBBE9BEJq0iRMn8t5773HPPffwyiuv0Lp1a37++Wfmz5/P008/XWE3fFVatWrF888/z9NPP83p06cZPHgwTk5OJCQksGXLFvr378/9999fT89GEATh701MLhIEoUkzmUxs3bqVsWPHMmPGDEaPHs26deuYO3cub775Zq2uOWPGDL7++mv27dvHPffcw6hRo5g5cyYWi4XIyMg6fgaC0Lx9/PHHdO7cGRcXF1xcXOjTpw9r1qyp8pwffviBtm3b4uDgQKdOnfj1118bqLZCUyf2ahcEQRCEZkRVVZT8QlSzBUmrQTY5IElSvd3v559/RqPREB4ejqqqLFy4kLfeeosDBw7QoUOHcuV37NhB//79mT17NqNHj2bJkiW88cYb7N+/v9JJfcLfhwiegiAIgtBMmLPzKE5ORzVbrMckrQa9rwdal4abGOfh4cFbb73FQw89VO6xu+66i7y8PFavXm091rt3b7p27conn3zSYHUUmibR1S4IgiAIzYA5O4+ihFSb0Amgmi0UJaRizs6r9zpYLBaWLl1KXl4effr0qbDMzp07GTx4sM2xYcOGsXPnznqvn9D0iclFgiAIgtDEqapKcXJ6lWWKk9PROJvqpdv98OHD9OnTh8LCQpycnPjpp59o3759hWWTkpLw9fW1Oebr60tSUlKd10tofkSLpyAIgiA0cZfHdFZFNVtQ8gvr5f4RERFER0eza9cuHn30UR544AGOHTtWL/cSrm8ieAqCUK8URWHXrl188skniCHlglA71YXOmparKb1eT+vWrenevTuzZ8+mS5cuzJs3r8Kyfn5+1h3CLktOTq5wwwbh70cET0EQ6pzFYmHr1q08+eSTBAcH07t3bx599FEWLFjQ2FUThGZJ0mrqtNy1UhTFuq3t1fr06cOGDRtsjq1bt67SMaHC34sY4ykIQp0oKSlhy5YtLFu2jJ9++onk5GQCAgIYP348Q4cOZfny5Tz++OP07duXiIiIxq6uIDQrsskBSaupskXz8tJKde25555jxIgRtGzZkpycHJYsWcLmzZtZu3YtABMmTCAwMJDZs2cD8OSTTzJgwADmzJnDqFGjWLp0KXv37uWzzz6r87oJzY9o8RQEodaKior45ZdfmDRpEn5+fgwZMoTffvuN++67jx07dnD+/HleffVVLl68yH/+8x+CgoK4++67K20pEQShYpIkoff1qLKM3tejXiYWpaSkMGHCBCIiIhg0aBB79uxh7dq1DBkyBID4+HgSExOt5fv27cuSJUv47LPP6NKlCz/++CMrVqwQa3gKgFjHUxCEGsrPz2ft2rUsW7aMn3/+mezsbNq0acPtt9/O+PHjiYyMtHnzUxSFhIQE/Pz8OHLkCL1792bKlCm88847jfgsBKF5airreApCbYngKQhCtXJycvjll19YtmwZv/76K/n5+XTq1Inx48czfvx4OnToYHdLy7x585g6dSqrV69m1KhR9VxzQbj+NPTORYJQl0TwFAShQhkZGfz8888sW7aMtWvXUlRURPfu3bn99tu57bbbaNOmTbXXyMvLY/fu3fTs2RMnJyeg9E1zzJgx7Nq1i0OHDuHv71/fT0UQBEFoIkTwFATBKjU1lRUrVrBs2TI2bNiA2Wymb9++jB8/nttuu42QkJAaXS8lJYU//viDMWPGoNfrbe7TuXNnOnTowO+//44si+HmgiAIfwcieArC39zFixf56aefWLZsGVu2bAGgf//+jB8/nnHjxhEYGFgv992wYQNDhgxh9uzZTJ8+vV7uIQiCIDQtIngKwt9QXFwcy5cv58cff2Tnzp1oNBoGDRrE+PHjGTt2LD4+Ptd8j+LiYsxmMyaTqdIyzz33HG+//Tbbtm2jV69e13xPQRAEoWkTwVMQ/iZOnTrFsmXLWLZsGXv37sVgMDB06FDGjx/PLbfcgru7e53eLyYmhu3btzNhwgSbbvaySkpKuOGGG0hNTeXAgQO4urrWaR0EQRCEpkUET0G4TqmqyrFjx6xh89ChQ5hMJkaOHMn48eMZNWoUzs7O9Xb/oqIiUlJSCAoKqrLc2bNn6dq1K6NHj+abb74Rs3MFQRCuYyJ4Cs1GTk5OvV27PgNYQ1JVlQMHDljD5okTJ3B2dmbMmDGMHz+e4cOHV9n13Vi+/fZb/u///o8FCxbwwAMPNHZ1BEEQhHoigqfQJNVnyKyJ5hBIFUVh9+7d1rAZGxuLu7s7Y8eO5fbbb2fw4MEYDIYGrdO5c+dITk6u0bjNBx98kB9++IH9+/fbtVSTIAiC0PyI4Ck0CU0laFanqQRRi8XCtm3bWLZsGcuXLychIQEfHx/GjRvH+PHjGThwIDqdrtHqd+zYMRISEqxb6tkjNzeXbt264eTkxM6dOxs8LAuCIAj1TyyeJzSanJwc67/momydG7reJSUlrFu3jsmTJxMQEMDAgQNZvnw5t912G5s3b+bixYt88sknDBkypFFDJ0D79u1rFDoBnJycWLp0KUeOHOG///1vPdVMEIRr8frrryNJElOnTq20zIIFC5Akyeafg4NDw1VSaNK0jV0B4e+lOYVMe5R9PvXRGlpUVMT69etZtmwZK1euJD09ndDQUCZMmMD48eOJiopqcouv5+XlYTAY0Gpr/uelW7duvPHGG0ybNo3BgwczYsSIeqihIDRvqqqipGWhFpYgOeiQvVwbZFLenj17+PTTT+ncuXO1ZV1cXDhx4oT1azFpULhMBE+h3l1vYbMydRVC8/Pz+e2331i2bBmrV68mOzubiIgIJk+ezPjx44mMjGzSf8R37NhBQUEBt9xyS63Of/LJJ1m3bh0PPPAAhw4dws/Pr45rKAjNlyUhjeKDZ6Gg+MpBox59l1ZoAr3q7b65ubnce++9fP7557z66qvVlpckSfzuChVqWk0lwnWluXWj16Wadsfn5OSwdOlS7rjjDry9vRk/fjxHjhzh3//+N0eOHCEmJobXXnuNbt26NenQCdCrVy969+5d6/NlWWbBggXIssyECRNQFKUOaycIzZclIY3iP4/bhk6AgmKK/zyOJSGt3u792GOPMWrUKAYPHmxX+dzcXIKDgwkKCmLs2LEcPXq03uomNC+ixVOoc3/XsFmZylpCMzIyWLVqFcuWLeP333+nqKiIHj168MILLzB+/HjCw8Mbo7rXzMXFBRcXl2u6ho+PD19//TVDhw5lzpw5/Oc//6mj2glC86SqamlLZxWKD57FIcCzzj+cLl26lP3797Nnzx67ykdERDB//nw6d+5MVlYWb7/9Nn379uXo0aO0aNGiTusmND9iVrtQZ0TgrF5aWhqrV6/ml19+YcOGDZjNZvr27cvtt9/ObbfdRnBwcGNX8Zrs27cPV1dXWrduXSfXmz59OnPnzmXHjh307NmzTq4pCM2RJTWT4q1Hqi2n798Rjbdbnd33/Pnz9OjRg3Xr1lnHdg4cOJCuXbvy7rvv2nWNkpIS2rVrxz333MMrr7xSZ3UTmicRPIVrJgJn1RITE1m1ahWrVq1i+/btANxwww3ccsstjBkz5rpas3Lz5s24u7vTpUuXOrlecXExN9xwA+np6ezfv/+aW1IFobkyn0+lZPeJasvpoiLQBnnX2X1XrFjBuHHj0Gg01mMWiwVJkpBlmaKiIpvHKnPHHXeg1Wr59ttv66xuQvMkgqdQa9db4NTIMjKlXVSKVPrHtbbi4+NZtWoVK1euZNeuXWi1WgYMGMDYsWMZPXo0Xl7lJwE0lTVCm5ozZ84QGRnJ2LFj+frrrxu7OoLQKBqrxTMnJ4e4uDibYw8++CBt27Zl+vTpdOzYsdprWCwWOnTowMiRI5k7d26d1U1onsQYT6HGrrfAqZNkdAooZ1NQ07IA0Hi5YGjpi1kDxap9k1tOnz5tDZsHDhzAYDAwaNAgPvnkE0aMGIG7u3uV59f30kz1LTs7G2dn5zofXxYWFsbHH3/Mfffdx9ChQ7n//vvr9PqC0BzIXq5g1JefWFSWUV9arg45OzuXC5eOjo54enpaj0+YMIHAwEBmz54NwMsvv0zv3r1p3bo1mZmZvPXWW8TFxfHwww/Xad2E5kkET6FGrrfQ6SBpUI+dp+TMRdsHkjKwHIlDDvXD2DGYArV866eqqsTExLBy5UpWrVrF0aNHMZlMDB06lH/9618MGzas1gHy8ve5uQRQRVFYvnw5Xbp0ITIyss6vf++99/L7778zZcoUevfu3WwnXglCbUmShL5Lq9JZ7ZXQd2nVKKtexMfH26wnnJGRwSOPPEJSUhLu7u50796dHTt20L59+wavm9D0iK52wS7XW+AEMEgy6sFzqPEpVZaTAr2QIltRhIKqqhw8eJBVq1axYsUKTp8+jYuLC8OHD2fs2LEMGjQIk8lUL/VtyiFUVVWSk5NxcnLCycmpXu6Rk5NDt27dcHV1ZceOHej1+nq5jyA0ZY21jqcg1BURPIVqXY+hU5IkHArMmNcfsKu8ekN7Xvv0fRYvXkxcXBzu7u6MGjWKW265hZtuuqlB9xVvygG0vu3bt48+ffrw5JNP8tZbbzV2dQShUTTWzkWCUBdE8BQqdT0Gzst0koy07wzqxUt2lVe9XVhwbAd7D0YzduxYbrjhhkbfDx2aRghVFIXNmzfTuXPnCidN1bU5c+bw9NNP89tvvzFs2LB6v58gCIJQd0TwFCrUnEKnVtagQ4K/XsqqLFGiKliq2PHGiAbzr7tBsf/lrxkVRaHUNHfRacwAmpeXx/r16+nbty/e3nW3jEtlFEVh5MiRHDhwgEOHDuHr61vv9xQEQRDqhgiego3mEjh1qoTOrCApoJotmDOysaRmgaKAXos20BvZ25VCxUxFL3EjGsyrd9XontpRURQ00eBZVlNoBa1vycnJdO7cmcjISH799VebiQ2CIAhC0yWCp2DVHEKn3gLa7AKUzYfhSFxpi6VGRuraCrlPW8z5hZhTMgCQDDo0HYJJuJSK2Wy2XqOgoAA3BxM+R5OgsMS+G+u0aIZ1p5Dar+3Z0BoigKqqSk5OTqMs7L527VqGDx/O22+/zb///e8Gv78gCIJQcyJ4Cs0icAIYLCD/EYO65XClZeSRPbAEemBOLB27KTnoUdu24ETsGTZv3szatWvZunUrg26+mUXPv44xNtWue8vtWmIJ98NcRfd9U1ZfITQ5OZmVK1cybty4Bulmv9p//vMf5s2bx44dO+jRo0eD318QBEGoGRE8/+aaS+jUSjL6fWdRft5dbVn5ngGUYEHJKQAgN9CNG0YN5dSpU3Tq1Ilhw4YxbNgwbuwehfr7gdLu+SovKCEP7UaR9vqYNVqXIdRsNnPhwgWCg4MbZVZtcXExffv2JSsri/379/8thhkIgiA0ZyJ4/k01l8B5mbFYRX1nhX1d4+5OSPcOpPhcIgCyqyN7sxMxqwqBgYHWYiYHI96yAWXb0conGUkScr/2pEkl5BXk2zzk5+dX26fTZFwPQe3UqVN069aN2267jYULFzZ2dQRBEIQqiBH5f0PNLXReunQJ5UKa/eMxM3KRis2g1QCgFBTRpVNnm9AJkF9YQJpahDyoK5K/R7nLSH7uyIO6ckkuHzoBkpKSrP+aq5ycHOu/mrp06RJbt26lqKioHmpmv/DwcD766CMWLVrE4sWLG7UugiAIQtXElpkNJCQkhIEDB7JgwYJGrUdzCp2XA53JZEI6n1Czk1MykQw6VLOltAu4kob9vIICCouLcW3nj1OX0NLACqg6LXklhWTmpGOxVD+hqGz4bK4toTXdKz4/P59Lly41ifVM77//fn7//XceffRR+vTpQ1hYWGNXSRAEQaiAaPH8G2mM0CnLMg5oMCoSRouEEQ06WVPlOVe3IqqqCrUZPvhX1pRcHCkwF1dazGKxkJ6dRXxaMnHZl4jLvkT8pWQuZWfZFTqv1txbQcG+ltCgoCDGjRvXZJYy+vDDD/H19eWee+6huLjyn7cgCDWXkJDAfffdh6enJ0ajkU6dOrF3794qz9m8eTPdunXDYDDQunXrRm94EZqGpvGOIdSLy12gte1KvRaSJGGUNOgTs1C2Hsa8dh/m3/dhXrsX+Wg8JouEVir/8rs6cJ48eZLPP/+cdOcaNs77uaMWlYYPOcCDnNzca3o+tXE9dMWDbQi9/DoqLCyksLCwkWtmy8XFhW+//ZYDBw7w4osvNnZ1BKHeqIqCci4Zy5FzKOeSUet5tY2MjAz69euHTqdjzZo1HDt2jDlz5uDu7l7pObGxsYwaNYqbbrqJ6Ohopk6dysMPP8zatWvrta5C0/e3DJ4zZsxAkiRiYmIYN24czs7OBAYGMnXqVOub6ebNm5Ekic2bN9ucW9nxVatWceONN+Ls7IyzszPdunVj6dKlVdbj/PnzTJw4ET8/PwwGA+3ateOLL76wKZOamsrkyZOJiIjA0dGRwMBAbr31Vk6ePGlTbsGCBUiSxMaNG/m///s/PDw8CAsLa7SudSMylm1Hsew/hZpXJqAoKsq5ZErW7UOXmW8TPpOSklBVlSNHjjBnzhyGDx/O6NGjmTt3LtkmDRj19t3c0xlVK4NFQfJ0oUAxozTyMkjXQwC9LCcnh927d7Nw4UKys7Mbuzo2evbsyaxZs3jjjTdYt25dY1dHEOqcEnOekvdWYf56I5afdmL+eiMl761CiTlfb/d84403CAoK4quvviIqKorQ0FCGDh1a5ZCWTz75hNDQUObMmUO7du14/PHHuf3223nnnXfqrZ5C8/C3DJ6X3XbbbfTs2ZMVK1bwz3/+k/fff5/Zs2fX+Doff/wxY8eOxdnZmfnz57N8+XL+7//+j3PnzlV6zsWLF+nVqxc7duzg9ddfZ/Xq1QwfPpx//OMfzJs3z1ouPT0dvV7Pa6+9xpo1a3jvvffIycmhd+/epKSklLvuAw88gK+vL9999x1z5syp8XOpCw6ShpKdx1Gzy0/IsVLBvPMY+hKFpKQk1qxZw+zZsxk0aBC33XYb3333Hd27d+ezzz7jzz//xOTrCSO623V/eVRPzJeykDxdUFt6k5qRXkfP7NpdL62gERERDBw4EEmSyrWINvY44n//+98MGTKECRMmVPg7IgjNlRJzHvOP2+CvpeKscgow/7it3sLnqlWr6NGjB3fccQc+Pj5ERkby+eefV3nOzp07GTx4sM2xYcOGsXPnznqpo9B8/K0nFz3++OM89thjAAwaNIjdu3fz7bffMnPmTLuvkZOTw/Tp0xk6dCi//vqr9fiQIUOqPG/GjBkUFBSwf/9+62SUIUOGkJ2dzcyZM5k8eTIGg4GIiAjee+8963kWi4URI0bg4+PDkiVLmDp1qs11R48ezTvvvNOob/5SUQlk2HF/FYoPx/LT9l+Z/t/n8PLyYsiQIQwdOpSoqCibSSv5hQXkhXrhOLQr/B5dyY1BHtcHxc0RycWTIouZ1NTkCrfMbAouh8/mOBnJZDJhMpkqfbyq1199L+EkyzKLFi2ic+fOTJw4kdWrVzeZcaiCUFuqomBeu6/KMubf96OLCESq49f72bNn+fjjj5k2bRr//e9/2bNnD0888QR6vZ4HHnigwnOSkpLw9fW1Oebr60t2djYFBQUYjcY6raPQfPytg+eYMWNsvu7UqRPr16+v0TV27NhBTk4OkydPrtF5v/76K0OHDsXLy8tmO8fhw4czf/58Dh06RM+ePQH44osv+Oijjzh9+rTNG/qJEyfKXXfcuHGNGjp1sgbl1AW7y0vJGdx3x120CG5Jt27d0Ggqn3iUmpuFpUMAzu1bIu2IgehYKDaDgx6pZzhSrwiK9TI5xYVkp6U02cB5teYWQE+dOkVBQQGdO3eu1fnVvT7rIpj6+fmxcOFCRo4cyXvvvVfuA5ogNDdqfGr5ls6rZeejxqcihfhWXa6GFEWhR48ezJo1C4DIyEiOHDnCJ598UmnwFITK/K2Dp4eH7dqNBoOhxmsSpqWlAdCiRYsanZecnMz333/P999/X+V1P/roIx577DGeeOIJZs2ahYeHB7IsM3LkSAoKyv8Raow9s8uSFBU1O8/+E1TwcnO3huzqpOfnkiFJOPdrjXP/9siShKKqZFuKyMlJq2Wtm4bKAqhGoymd1C9JWCyWRg/UeXl55OXV4GdcQ/Z8cLInnI4YMYJp06bxzDPP0L9/f7p161YX1ROERqHmVhM6a1iuJvz9/Wnfvr3NsXbt2rFs2bJKz/Hz8yM5OdnmWHJyMi4uLqK182/ubx08q+Lg4ABQLoheunTJ5msvLy+gdKkJe8MTgKenJ1FRUZXOvg0PDwdgyZIl3HzzzTbjPouLi0lPr3jcYmNsW1hBJWpUvKY5SlVVsvPzyKb+wk9tybKMq9YBkwVkScKsqmTqFApqMAM8KSkJWZZp4e2L1qygHItHzcxD0uvQtfZHdTFSrJUabcJU165dG+W+ZdnblT9r1iw2b97MPffcw759+3BycmqI6glCnZOc7Atr9pariX79+pXrYTt58iTBwcGVntOnTx+b4WcA69ato0+fPnVeP6F5EcGzEpd/oQ4fPsywYcOsx3/++Webcn379sXZ2ZlPP/2UW2+91e7rjxw5kk2bNtG2bdsq3wzz8/PLPb5w4cJy60s29tI22dnZ/Pbbb6SnXeLhG0dgzLDzRK0GVdMEwnId8NGaMF3KQ/PxMuSNh0p3Wgr0xPjIECxDupAsmyksqb5FXaPREOjmibTxMOYLV1pxVYCjceBowDCoKyXuJsw0bOtnbm4uRqOxyiERje3qUPr555/Tv39/nnjiCebPn99ItRKEayO19AZnY9Xd7S6m0nJ17KmnnqJv377MmjWLO++8k927d/PZZ5/x2WefWcs899xzJCQksGjRIgAmT57MBx98wDPPPMOkSZPYuHEj33//Pb/88kud109oXkTwrIS/vz833XQTr7/+Op6engQGBrJy5Uq2bt1qU87Z2Zk33niDKVOmMHr0aCZOnIibmxtHjhyhqKiI6dOnV3j9V155hV69etGvXz+eeOIJ69JHx48fZ/PmzdZfzhEjRjB79mxeeeUV+vbty59//slHH32Em5ub9VqNNaYzPT2dNWvWsHLlSjZu3EhxcTFRUVE8fO/9cMG+meRSiC8ZhVXMfm8mAvXOOLy+HHnZVTM241PRvLAEzevL8F/yb5ICHCkorjp8Brp5Iv26DzWzkhbdvCIsP+9CN7oXqqcJSwN2vW/evBknJycGDhzYYPe8VuHh4bz99ts8+uij3HDDDdxxxx3A9bFPvfD3Icky2mHdS2e1V0I7tFudTyyC0mXKfvrpJ5577jlefvllQkNDeffdd7n33nutZRITE4mPj7d+HRoayi+//MJTTz3FvHnzaNGiBV988YVNQ47w9ySCZxUWL17MY489xrRp05Blmbvuuov333+f0aNH25R79NFH8fPz46233mLChAloNBoiIiJ45plnKr12YGAge/fuZebMmcycOZOkpCTc3Nxo27Yt48aNs5Z74YUXyM7O5sMPP+T1118nKiqKX3/9lbFjxwL2hU5ZltHmFiFZFFStBrOjvtbdtKmpqaxevZoVK1bwxx9/YLFY6N27NzNnzuSWW24hKCgIvSQjtfJHOZtY9cX0WqRWfuSkNu+lhTx0Rhw++LV86CwrrwjtXW/h+/tM4nVypd9/J5MJ6diFykPnZSpY1u1Hf8cNFDTghO2+ffs2+hjT2vi///s/Nm7cyFNPPUWPHj0IDQ2t8HdHhFGhKZPbBaG9/YbS2e1lWz5dTGiHdkNuF1Rv9x49enS5976yKtqVaODAgRw4cKDe6iQ0T5LaHN9FBKuqgqfGomDIKkLafAR50UbILgAPZ5R/DkXt0ZoiNyMWO3q5L168yKpVq1i1ahU7duwA4MYbb+SWW25hzJgxFc7GdpC0qDHxKLGVhEoHPXK/9iTmZFBcUmLXc22qQjCiu+G/dg1WVcZGkf78ODKKK+4uC3L3Rlq+s3S2vh00o3pS6O1UZ2FQlmUkSUJV1UZfdL+uZWdnc8MNN+Dl5cXatWur3WNehFChqVIVBTU+FTW3AMnJiNTSu15aOgWhPojg2YxVFTq1RRYMu04hP/he6VjDq7kYUb5/hsL2AVg05f9gxcXFsWrVKlauXMnu3bvR6XQMHDiQsWPHMmrUKDw9Pautn16SkYpKUM8moyZngKIgmRyQ2gRgcTaSnJVBSTMPnSYHI37f7kLz9gr7TtDIFG+bRZxS8fCCYEd31OX2L7Ast/LDMqADJUrN95S3XkOW0SsgFZaU/pxKFHA1IXu5UKKBkr8C6O7du/H39ycoqP5aVerbnj17GDZsGE8++SQvvfSS3eeJECoIglA3RFd7M1VV6JQlCcPBOOT/m1t5K1x2AfKYV3FY/zL54b6oqsqpU6dYuXIlq1atIjo6GoPBwODBg/n0008ZMWKEzbhSe8QnXkSSJJxbuGAM8UKWJEosFrIK8ihJa9zdbeqKgwU0O8uvp1opi4KUVQAV5BhJksBcswCplpjJzc4mIzenVuuAapHR5RZj2RlTbqcpiywjhwdg7NCSfMVMVlZWlXszNwc9e/bkhRdeYMaMGQwYMMDusaplf99ECBUEQag90eLZTFUVPI1ZhWiHzICES5WWsYpsxb7/DWXCU49x7NgxHB0dGTp0KGPHjmXo0KG1Wn6muW8HWRMeOiOeUxfCjuN2n1Oy5kXOVbLcarCzJ+qP2+2+lhQRSHpHf3Jyc63H7A2gGklCn12EeUN0lcMEJD935L7tKFRr36ralCiKwrhx44iJiWHHjh3WJdFqSgRQQRCEmhODQpqhqkKnJEnI59PsC50AB87iIzvQrVs3lixZwtmzZ1m4cCG33XabCJ12KNKC0iXE/hMkCdWl8q0mSzSULplir/ZB5OXbtlTauxe8XpEwbzlU7dhUNSkDNeHSdbPtpCzLfPrpp5SUlPDoo4/WenxsU9mbXhAEoTm5Pt5JBCtZlmHj4RqdE5hSxMcff8zo0aOvaUeJv1voBMgvLMRy9412l1dv7kRuFXNa0gtykSJb2XUtyc2RYp2m0klAVQVQWZZR03OgxL5WTPVoHObc5r/s1WV+fn588sknrF27lk8++eSarycCqCAIgn3EGM9mxp43N6mguGYXLSqxzmSurestdF7esrSsirpkVVUlz6jBZXRP5NV7ShfEHxoJHVuCRoa4VKRVuyC3EDQylmfHk6lUvo5nYVERxQGe6Fr5wdkqvqcOOhgWSWpuZrXPpezP5nI3vEaVUE9drPZc6/PMLcSkNdC42xTUrWHDhjFlyhReeOEF+vXrV+u958u6/PspuuEFQRAqJsZ4NjPVBU9ZljGu3Is8+WO7r6n8/Dz53UNqHTyvh9BZUdC0R1CLFrg7OmMssMCmw0gRgSiHz6GeSwZFRfJ1R+4eBrHJKL6upIR5kmuuegF5SZLwc/NEH5+GeuAslP0gIUlIoX4QFU5ibu2XovJyccO052xpq6eddCN7km+4vjpJioqKGDRoEAUFBWzduhVHR8c6u7YIn4IgCOWJ4NmM2NuVZ0ovQNN9mn1rQXo4Ydk6i3z32nWxN+fQWduweVlYy2BcClXUUxfRtw6ErUdRNxysuHCbQNTJw4jPzbB7fUyT0Yi7wRFtkRk1rxB0GnB1JKe4gKz8vGtaZ9Pd2QWXwwkoifbtMAUgjexBfEZqre95LWozY99ep06d4sYbb+T222/ngw8+qPPriwAqCIJwxfXVfCEAUOLigDrxZrvKFv1rFBn62t2nuYbOtLS0aw6doS2CcEkrQD18Dm2AJ+qGg5WHToCTCfDOKgJMrnbfI7+ggITMNOILs7ioN5NAIfHpKWTk5lzz4u65hQXQ2t/u8pKzkRIab0H5y+NVr/6XmppKUVYuSmYuhiIFbS3+pF3eUnPRokUsW7aszusuxn8KzV1ISAiSJJX799hjj1VYfsGCBeXKOjg4NHCthaZKjPFsJmryxlWildBOG4vmTBLShkOVllPuuZGc0V3Rm2r+B6E5hs5rDZuX6fV63DQG1Ng40MhoDHqUrUerPU86n4b2xEUMrdwoKqq6u70sVVUxm+3bycheJSUlWDzdkPRa+1rGOwSTnp9bfbkGotFo8DU4oUvPQ/5+GyRlgkZG6hqKZkAHciQL6YWl247a01p67733smHDBp588km6d+9OSEhIndc5JydHtH4KzdKePXuwWK5MRDxy5AhDhgzhjjvuqPQcFxcXTpy4ssaxJNmxTZ7wtyC62puJ2rSYGHOKkbccRX7rJzhdZt/0TsEoz92OpUcYhY6lU6zT09PZtWsX/fv3r3acW3MLnXUVOC8LCWyBe1wm6qVsNC28kPeehT+qD54A+LlTOG00ifnZdVqn2jAYDPjpTCgbDoJSxZ+BQC/MXYNJTK/b72NtabVaAnVOpa/rixUPFVBHdqdoWBcS87LKPVZZEM3KyuKGG27Ax8eH3377rdotNa+FCKDCtVAVBfX4BcjIBXcnpLYtGnTLzKlTp7J69WpOnTpVYaBcsGABU6dOJTMzs8HqJDQfosWzGahtN12Bsx75lu4Y+renKDWDlAsXCQgNRvZwptjFwaa7VlVV9Ho9BoOh0uv93QPnZa4mJ9RL8QDIjkY4Emf/yUkZ6JrIOuxFRUWkSTJeQyJR95wqP9FIq8ES5ofSyofkDDvXhW0AAQ7OyC9/D2mVh3fp130YVPAY0sHa8nnZ1a/jy0HU1dWVL7/8kmHDhjF79mxefPHFuq/8X0Trp1Bbyu6TKAs3QNnfVw9n5AcGIUe1qff7FxcXs3jxYqZNm1ZlK2Zubi7BwcEoikK3bt2YNWsWHTp0qPf6CU2fGON5nVMUhQIXA1sTT9NqzECOFWdQ6KQvN0bQ09OTQYMGodVqycvLY+fOnTb7qDeX0Hl5/GZ9hU7AdsH1WmxzWd2C7Q0pr7CAiwXZFPVqjTyiB1LPNkjdwpAGdEQdFkmck0JSZvo1LbVVl0wORuTtx6sMnZdJa/bhrGqqLVd2zGhUVBTPP/88c+bMYevWrXVR5UqJcZ9CTSm7T6K8s8I2dAKk56C8swJl98l6r8OKFSvIzMxk4sSJlZaJiIhg/vz5rFy5ksWLF6MoCn379uXChQv1Xj+h6RMtnk1cY7w5ZWZmkpSUZA2nNQ2dkiTh7OiIi4MJWVFRJYkSxUJGfm6NxjbWRL0GzSqoJWYkLxfIKbDvBJ0GVauBGi61Wp9KSkpIzkxHkiR0Jh2SpMFiKcCcnoNOX8uZZ/XEQ9Yjrdlnd3lp8xGcbmpLbqF9i98nJSVx9913s3nzZh555BF27NiBp6dnbatbLdHyKdhLVZTSls4qKIs2IPVoXa/d7l9++SUjRowgICCg0jJ9+vShT58+1q/79u1Lu3bt+PTTT3nllVfqrW5C8yBaPIVyAgMDufXWWzEYDMTHx3P69Gm7W7ycTCZaevjglpCNtOkw6qZDsPEg+r1n8DVrCfTyqbOtFxukdbMC+SXFSH9ta2lJyUQaGmn/yX3bkaXWbu3N+qaqKsXFxRQVFZGQkMD+/fttJhQ0BZpiC2TbGfIB6eA5jGrNXm8ajYZXX32VgoICHnroIetrX4eMvkRBZ1HR1OEbu5j1LthDPX6hfEvn1S7llJarJ3Fxcaxfv56HH364RufpdDoiIyM5ffp0PdVMaE5Ei2cT1phvRpIkkZSURGJiIocOHSIwMLDa7TSdTY54KFqUTQfLdSeruQWw/zSyqyMtotpwIS2l1ksC1TRoGo1GAlw8MOpKW+8KS4pJyE6noMD+AFNWQmoyEWH+EH0WNScfuoSBiwmyq2lVkyUsQ7qQc9WYw6aosLCQrKwsNJrqu6pr4lo/JLTwMtbs07LZUqvZtL6+vrzxxhvMnDmTxONnCHXxRP79IKRklq4EENUGIltR7KDFXEcZVLR+ClXKsHNVCXvL1cJXX32Fj48Po0aNqtF5FouFw4cPM3LkyHqqmdCciODZRDV2C8jl7vXg4GD8/PwwGAxYLBbS0tLw9fUtV16WZTwcHFE2H4SqGkez8mD/Gbw7tSQtOxNJkrBYLNW2qNYmsOj1etr4BKI/n45m2VZIKL2GMdALlxGRFAf5cTIlgeLimvV75+fnU+CnxcHLFdKyKDl7Ef1TY1He/gnyKtlUUpZQHhtJfH4m6Jv+r11wcDDBwcG1Pr++WqFVvQZkqepZ+GX5ulEi1W586tChQxnX72bcv9oCF65MrlIBjp2Hrzehv/8mNFHhFOnqZqkYET6FSrk71W25GlIUha+++ooHHngArdb2b9iECRMIDAxk9uzZALz88sv07t2b1q1bk5mZyVtvvUVcXFyNW0qF61PTfwcUGtzVYzovz3SPjY3lwIEDjBkzptxiwK5OzqgnzlcdOgEc9MgezjiVgEOmpXRijoczJY560s0FFF41BrS2AUav19PBNwjt+79AylVL6lxIQ/P5OozernT41yiOppyvcfg8ee4s7dq2Rn/egBqfSvGFFPT/vQNl40H449iVtTElCTWyFcrYKOKLc0jLygAq3ve9qSgoKECr1dZoOaGGGu6QVpSPf4/WSLtP2VXeMrI755ISrBPlavJ9DzA4I7/5HaRX0oJkUVAXbEADaPu0ES2fQr2S2rYAD+equ9s9nUvL1YP169cTHx/PpEmTyj0WHx9vM4QqIyODRx55hKSkJNzd3enevTs7duygffv29VI3oXkR63g2QfXR2rlt2zZGjhzJ/v37ad26daXlqppIpKoqmZmZuLu7o6oqeXl5ODmVfrpu6eWLuiG6yjrIXi5og3yw/PQnnEiwfdDDCcb0JL+VD8fiztj9vCrTsUUoxg/WlA+dV/N2pfCJERw+H1vje0iShJ+3Dz5uHkjpOci5RUguJjQmAxSWYLZYsOg1XCrKIykzvdwi8E01fO7Zs4e0tDRGjBhRaZnGmsyl1Wrp7OqP5oVvqm/19HMn99+jiUmMr7RIZT8DZ6MJz80nkFbvrb5SGhlp7kPkm+r2c7wIn8LVrLPaKyE/dWuDLKkkCNdCtHgKVtXNXpckCXd3dwBOnz7N4cOHGTVqVGmLaDVLCkluTmh9PbHMWQElFZRNz4WFmzDe3InQXqHEJl+s7dPAZDKhj79UfegESM1Cd+4SJmcT+fn2zXy+TFVVElOSSUxJxtHREYPJgFKcRUFWgV2z99PS0ppk+Gzfvj15eeXHoTZW2CzLbDZzwZxH0JQRyB+tqTx8ejpjfnosZ9ISKn78L5ef09U/BzdZX+WuXzYsCkTHorkhAss1bmValmj5FK4mR7WBp24tv46npzPyhIZZx1MQrpUInk1MY43trOmSSSEhITg4OFS54HxZ2lb+WOb9XHHoLEPaeBj3dkFcNBhqvfRSgLM7mh+22F1es2YfgQ/dxKkaBs+y8vLyKgxr1aks+DQmR0dHm92rGipwarVaJEnCbDZXOeY3JSsdyceDwFfuRV6xC2nf6SsB1MkBZXg3zP3acjzlgnUIhSzLVU5mK/scvby8kPOLoaAGwy92nUTuFY6lbudiifAplCNHtUHq0bpRdy4ShGshgmcT0lxCJ5QujxEUFASUjv10bWvERSOXtv5cRXI2le6lnW9fkJR/20/AnVG1bvU06vSQUIOddi6m41CP2yPao6m0fh4/fhytVoubm1uD3E+v1xPg6om7zgFSslBKzODpTJZawonE82RnV7xQfGpqKid0OkKHhhM4vhfav152Zp1MQl4mGefP4OriQphfIAZFKh1zq9NSopVIyEgjIyuz0jqlpaUR5NGiRrPn1RIz+Tk5XCrMs2tv+JoQ4VO4miTLSO1bNnY1BKFWRPD8G6ur3Yi8vb1JSE3BtaUPamz5a8o+bqjrDtp/wTNJuGrta0m9njSF8JmYmIhGo6n34Jmamoqflw/tnX3QfbcTTtp2iXv7ueN+Wy8ueHhz7FzFY35LSko4GX+Ok5yzOa7RaOjVORLHC5nIW/farDSgd9AT2iWUFm3CiYmPLTfu9jK1pisP+LhS8ldSTUpKEuFTEAShEqJtvolo6NbOutwC08nJCWdXF6Qwf9CVf8OWdBrU6ta4vFpNt6Eso7CkGPzd7T/Bz51Cc9NY1L0xFsQve99OnTrV28zT1NRU6z8vdw86O3qje315udAJQFIG2o9+Iyg2m4iWoXbfQ5Ik+nTphvP2U8jbY8ovb1VYDLtOoFsbTfuWrSrdzCBbKYJW9odHdWhXcguvrAvbXLaYFQRBaGgieDYBzTl0XqaqKklZ6dCnLRiu6ra2KOWPVacWi35flpCTgWV4N7vLW0Z042JORq3vVx8aInxevfNTXl5erRf1L0uSJAwGAw4ODqSnp1vDZlmdglqh/eDXCodmlKVZ/idBBme7l3Zq4R+A48lkuFDN9y8lC92e0/h7eVf4cEJWOpbb+1T4WPmbelHkZCj3vbu8/3tdaey1fQVBEOqCCJ5/M/UZaIqKi0kuyMHcJwK6t0ZycwK9FiWvsGazLb1dKZBqH4Dy8/MpaeUDnnZ0TXo6U9LKp1YTg+pbfW0JWtk1t2/fztGjR2t9XQcHB1oHBtEpMJS2GhcicOKm9pH06tTVuhoCgLu7O7qTiVfWOq2Gbu1BQv0D7Srbyi8QDp+zq6x6IgF3o1O5UAxQVFTEJRctyu19q76IpzPKU2NIKap8txgRPgVBEK4QYzwb2fX0RnI5zFykdEkjp0BHZBxxcXHBWdYj/bSz2hYuAGVYVy5kp19TXU6mJND+ydFo562GS5V8jz2cMT8xmpMpVS+50xRc6+x3e8Jrjx49arRofFn+Pr74G12QD8SinE2EoitDF9xcTfToHUGilw9HTp0g2MMH7Te7bC/gYkKKCgc3RzArqGeT4HAcqCpSdCwBt3QvN5bzag4ODuiyC6tdOcFKVdFcTMfFxcUaPr29r7SAxqUmoXYJwKvVODTLdsKZMgHSqKdkYEfi27jx249Lqt0KsC7HfYrxnoIgNGcieDaihgyd6enXFuSqUlGoyc/PJz8/v7QLPjMdZ4ORsHtuQLt4a5XXUlv7UxjmQ14tFnQvq6ioiGOpCbR5chS6sylo1uyH5MzSB33dsAyPpKR16ZaZtV22qTHUZ4u1h4dHjc/xcvcgwMkNh5Qc1KOnQZbR3dQFtcSM5VAsamoWZOUjrz1AQO82mEPDMGh1V/a1d3dCvusG0OtQ9p1CvXgJSatBCvNHGtkDdfdJ1I2HkOz4wKLX6yGnoNpyZcnZhRiMVyayXR1A49OSSTYYCJzUH1eNAYrMIIHZQcvFvCxemjmDn376ibCwMCIiIqq8lwifgiAIYueiRtVQwTMpKYndu3dz33338fvvvxMSElIn161JCDp58iTBvv70cW2BvHRb+aWVJAl6tqZoZDeOXoitk7GGlzk6OhLo7I5BowNUiixmEnIymmT3emM5cOAALVu2xNPT067ykiTRNjAY475Y5C1HSgNZWT6uaG7tg+V8KsqJC9bDltv7kFlUgM9nm0GWkB8aimXZtooX+5ck5AEdwclIVkt3fti8tso6ubm5MSqsC7rN9g8XUHq1YZ+UVekHs7ItoBUpKiri4YcfRlEUVqxYgdForPaedTnjXYRPQRCaGzHGs5E0ZOisDzVteWvTpg2yyYEzzgr500Zj/udQuLE9Up8IlNt6Y37hTpIGhnPk/Nk6DZ1QOmnmZNIFDifEcjjhHCeTLojQWUZJSQl5eXmVLi1UkWBPH0y/RiP/Hl0+dAKkZGH5fC2ynwdSSx/rYc2Bc6g6DUrP1siThmBZsrnyHaZUFWXzYcgvwqypfrJZdnY2io+r3c8BQAnyqnStUKDCiVFlGQwGXn75ZS5evMhLL71k1z3FjHehucnJyWHq1KkEBwdjNBrp27cve/bsqfKczZs3061bNwwGA61bt2bBggUNU1mhyRPBsxE059B5LZNddDodWTk5fP/7L3y2/TdO9wzg7A0hnAoyEn3hDBfSUqrcsUaoHzqdjhtuuAFfX99qy6amplJQUIBbehHSwWqGQ6gqyuKNaCPDrhw7m4iT3gGlfwfUo/GQVf0HAGXTIYx2jD1VFIX41CQItLPV1sOZLHOhXYG7qgAaGhrK1KlTWbFiBT/88INd966r383raYy40HQ9/PDDrFu3jq+//prDhw8zdOhQBg8eTEJCxePjY2NjGTVqFDfddBPR0dFMnTqVhx9+mLVrq+61EP4eRFd7I2iIN4ur39iutau9LscWKopCXl4ezs7OmM1mzGYzDg4OdXb9ygKCo6MjYSGhuPzVPZmbl8eZc7F2/zyq63ZtrvLy8my2yKzM5e9rtzbt8V22z+7doeTx/bAkXkJNKl2yKm98FHqNDsNHa+zeltI8tCubuMT5C+erLGcymbh1wGD0P+2qepKRLFFyay9+2bPNru7xsip6HaiqyvPPP8/evXtZuHAhHTt2tOtaddXtLrrc/15UiwL7z0BaNni5QLcwJE39tCMVFBTg7OzMypUrGTVqlPV49+7dGTFiBK+++mq5c6ZPn84vv/zCkSNHrMfuvvtuMjMz+e233+qlnkLzIVo8G1hjhM5rVdcTWmRZtr5RxsTEsHXr1lp3r5ddlLyyVim9Xk/fqF707tgVv2INDufTcTifjne+SlS7jtzYp2+14UOj0aCqKhqNBkVRuHTpUpVdsA1Jq9Va91fXams2XzA3N5d169aRnJxcaZmrv6+uemONtiRV955CDr7S3a4CloKiGu2FrjtxkQCP6mf05+fns3H/LkrGRoGLqeJCJgMlt0Sx7fhBMjMzSUxMJDEx0e66VPQ6kySJ6dOnYzKZmDlzJklJSXb93ohud6Gm1PUHUUfMQH34fdRnF5b+d8QM1PU12B2uBsxmMxaLpVzjgNFoZNu2bRWes3PnTgYPHmxzbNiwYezcubNe6ig0L2JW+3WmLt/Iaho4NRoNrq6uaCUZs6qQk5NDSUnVOwK1adMGPz8/ZFlGURRruKtMTcOeXq+nX1RvtIkZqIXFlI23amExUkI6DnotfXtEsXPfHvLzbXdYcnBwoG2r1ng6uSCnZCEVW1CctaitI0jLzuL42dM2s+IbslXUxdmZFl4+GIpV1Iy/1pH086VIK3EhLZmc3MrXlrzMaDTSq1evSicVVfT9lmr4IUHNL0K6vAVloAeJ6Wm0dKrZDHrVbEErV/66KCspOZlfdv1BvwHdcZV0GE4mlYZcg5aicH9ytCo7o3eRdsn29V02fPr7+1d7n9TUVJuft4uLCzNnzmTKlCksWLCAhx9+2K5tUOtitruY5f73oK4/iPr0l6Wf3spKySw9/vZDSIO71Ok9nZ2d6dOnD6+88grt2rXD19eXb7/9lp07d9K6desKz0lKSio3dMfX15fs7GwKCgpq3MsgXF9E8GxA9d3aWVehs6aBU6/XE+Lpi6NFQrPnNFJ2AapJj6V7GIWOOuLSU8gvqHiZG4PBYH3zPn78OKmpqdx44402WxleS8tijy6R1tBZGbXYjHwhjR5dI9m6Y7v1uIuzCz07dEJzOB41o3QskwpIgHQyAV93J7wie7D7yCFycnPK1bU+Q2iwfyAeRRJsjoGCIspOvXEwGQjvFkaaswvxiRervI5Go6kwZFX1PVcr2WayMpLJYF0svrhrCAf37yCoT/8aXQNPF7IL7Z8QlpmZyS+bN2A0GmnZogUOrgaKzEWc37fNrolliYmJdodPuPKz7ty5Mw899BBffvkl3bt3JzIyUoRPoU6oFgX1zWXlQydY/zCpby6DmzrVebf7119/zaRJkwgMDESj0dCtWzfuuece9u3bV6f3Ef4eRFf7daKxQqfJaKSDdwtcFm9DM3cl/HEU9eBZ2HkczQe/4Pj5eto6eeHm7FLttQIDAwkJCUGW5Sq7zu2um8mEUaOtMnRephab0RVbcHNzA0oDcc8OnZB3nrzSmnj1ORm5yH+eJKpjl9I1JK9S3RCA2grw8cUjsxh2lIbOcvKLULcdwzPbTIC3T/nHLxfLz+fAgQMUFl7Zz9yeumYV50ML+ybwAEg9w1HiUlDC/Uk2F5Cbm0tcajJq6wC7r1HYuzWnztV8bdeCggJOnDrFwWNHOH7yRI1WM6hJF3zZ79mECRPo3LkzM2fOtM6YF93uwjXbf+bKWsQVUSl9fP+ZOr91WFgYW7ZsITc3l/Pnz7N7925KSkpo1apVheX9/PzKDd9JTk7GxcVFtHYKIng2lPps7Wys0KnVaonwCkDzwWpIrGSB+vRc5PdX08rBrdoJRK6urphMJlJTU4mLi+PgwYPXNMs9LCQETXr13c2XyZdyCQ8tnYHdJqQVmmPnoaSaGc/FZjQxF2gdHFrt9esihMqyjK+TKxw4W33hfWfwcXa3aT0uq6CggIyMDLRabY3qdfLiecz2dufptEgtvbH4u3OpnS+b/ixtUT54MoaSQfZNwMHPnQy1xCYgNyR7A+jl759Go2HGjBkUFhYye/Zs62u4IcKnmOV+HUurfNmvWpWrBUdHR/z9/cnIyGDt2rWMHTu2wnJ9+vRhw4YNNsfWrVtHnz596q1uQvMhgmczV1+h02g00sI/gNAWLQkKCMRkKj9Rw9/dE82q3ZBXzc4/ZgX5my20dK+467miQGYwGDCZTEhS9es3VsbF2QXl6oXqq6AWl2B0cECSJHzcPFDT7HsTV1Oz8PP0qlFda9sa6u3hCSeq7j4vSz59ES/3isdTenp60qlTJzIyMuy+HpROSMpw16NEVtzaYSVJyA8NIc9Ryz5NNr9sWm+dRJafn8+RtATMY6Oqvoa7E5YJNyFLEqP7DuSmbr0wGgzEx8cTFxdn97+6UJPw6ePjw3PPPceWLVtYsWKF9fH63HnqMhE+r1Ne1fca1ahcDaxdu5bffvuN2NhY1q1bx0033UTbtm158MEHAXjuueeYMGGCtfzkyZM5e/YszzzzDMePH+ejjz7i+++/56mnnqrzugnNjxjj2QCa8hvB1W+ETo5OhLZogabQjJSShVpSgKTV4OntjyVIT3ziRbKySxf89nRwgmPx9t0oJRNHc2lrkMVSusxNVYHLz8/POuYtKSmJ/Px8QkNDaxFEa9ZiKlE6SURKr9nPTMooXR6qqsXIq1LR96KiMaJeLm6w85zd11XPJuMd1pmUMhNpUlNTKSkpQVEUDAZDFWdXbt/xo/Qa1BlXXzfkzYeh8KpJZL5uWO7oS3RmIvt3HqrwGtExR6FdBzr8cyj6TUeRTpZZE9BkQO3XDrlHOPKve/HbHlO6PJKricAb21F4f39+2bmF46dO2VXfq8NncHAwbm5udAprg4vJCYuqkJSexrHTJykurnxoxuXwWdX4z8uTjgYMGMC4ceOYN28enTt3JiystDW9ujGfdbm1pnAd6RYGvm6QklnxnzUJ8HErLVfHsrKyeO6557hw4QIeHh6MHz+e1157Dd1f6+smJiYSH3/lvSA0NJRffvmFp556innz5tGiRQu++OILhg0bVud1E5ofsY5nA6iv4FmT1s6K1vG8OnS6u7oR4uOHcvwCmCtYA1GWkdsEciE7nezcHNqXmNAs2mh3HdShkez1Vmvc6nP27Flyc3Pp3Llzjc7r0qEjPsUyqp2tnpJOS7ankdPnYol09kM6aX/LohoRyL7MhBq3HtZU/x69cFhbs2VTCod1YeveXTbH4uPjOXHiBDfffHOVqwhUx8nBSOdW4ThcykdOzUbVyCghPqSV5LP3xNFKt6Isy2Qy0Tm8LcHefiiFxaiomNxc0ETHIn+/Ayr6E6XTUPDIYFafOsDhmGM1qrOnpyd3jbwFl5wSjHvPoqbngCyjBntT3DOMxPxstuz5s9olvqqbfOTt7U1RURGTJk0CYP78+TZBv7oJR9caPsVEo+uPdVY72IbPvz6PS/Uwq10Q6poIng2gMYOnVqvF3cERCotJTkwkICiIEo3E2YvnbZY6MhgMtA9uhXIkruI3+jLk9i2Jy0glJLkY+bs/7K6vemN7DoQaq1wzsjrp6emYzWZ8fCqfNHOZk5MTvdp3RrJ3zUk/d/bHnsRsNtPTvxXyYfu7aJUuIew6f4pcO5YwuhY3dI/CtP4wKHb+2mpk8m7uwPb9ttvbFRcXk5WVdU0z78t2PTs5OeHo6IjFYiE7O7vKVsOKlG2RHNCrL/3T9eg2HaniDEqf27/H8OGq7+z+vvv4+DBx9G2Ylu2C7PwKyygRgWT2a83PG9fVSfg8c+YMDz30EKNGjeI///mP9bHqgieI8CmUp64/WDp7vexEI183pGfGi9ApNAuiq72eNWbo9HN2w5BZgLR2L+qFNEqnv8RgCPOj4w3tyNQqxCaVtuoF+vrBueRqQyeAejYJ3zAf1MJK9tiuhOLuSHHxtU0QSUxMJD8/367gmZubS5GkYjToUIuqXk8UrQazg87aQqe2r34nHysJFFcTuTH1GzoBLqYm0zrYB2LtDO8hviSkli+r1+trHTorGuuYm5tbq9B9dRe4JEn0iGiPbvbK6k+2KJh+2c8N3aL4bWv1Le+yLHPfmHGYvtsJeVe9Dj2c0XQKQfJxA50Wb7PEqMFDWbNxfZVbala37FJqaiphYWE8+eSTvPXWW0RFRTFgwACg+i53QaiINLgL3NSpwXYuEoS6Jl6p16kAVw8MW47B4s2oF67q2j6ThLxwE+7HkgkLCEKSJFyMjig5Fa+1eTW1sBgDGixezmCw87OLBJa2LcjMzKzZE7lKhw4diIyMBOwLO3sPHsAS6Imkr2Kvb60GtaU3ew8esB66kJqM5G/fIudSgCfnk+3f+eZaxCVcwNKm+vUlL7O09uP8Rdv9lJOTkzll59jIsmq6w09VKpv0ExoaisOxhPIfgDRy6fi1QE+bHYmkY+fpEGLfmLa2ERGYjifZhk4XE9rb+qHtGob04w74z1cw7Uukj3/DPyGPB24exc3delW4XNZl1X1fUlNTufXWWxkwYACzZs2yafGvbtiJmOUuVETSyEg9w5FGdC/9rwidQjMiXq3NUHVvRi4mR3TR56CarmJp53FcE3NKW12ubgGqTlY+GeZC1H7t7SvfviUXs9KvaXmkyy5vC3n69GmbvYArUlhYyI49uyj0c0EN8EAyXAmgkl4Lfu6YW3iw68A+mxB7Nu4cJeF+SI5VLwElOTlQHOZLbHzdzJyujsVi4UJ6KmrH4GrLql1COH8p2TqZ67LCwsJ6W8/SHlXNMvf18MLhXJkw5uaIdEc/5P/dCXfdALdEIf1jGPIz46FnOCChySu0a6vQ/pE90ZZdhsrNEe3oKHj9R3h+cenvS25haRf8rpOo//kKedYPtJadGNf3pmrXH6zqe5SWlsZzzz2H0WhkxowZNj+T+g6fgiAITYkIntchV50D7DxuV1lp8xH8HF2gpnulqwrZebkU9W4DYdWMQ/N2pXBMD05dqNtw1qlTJ7p0KR3TVFRUVOn2nIWFhfyxcwd7Tx4jw0VHcUtPilt6keXuwP7Yk2zevq1cy6nZbGZn9D5KurdCCvKCq2fTyxJysA/avu3Jyctt0EWRT5w9Q5KLjBoVDoYKWnId9Ki92pBogpOx5df7DA4OpmvXrtXepz4CZ3VLG0mSdGXSRHgA8pO3YCkuoeS3vVh2Hcey7xTmrYcp2XEUOgcjP3kLYN9KB0aNzmZ/eO3wHvDCN3ChijHAR+JRP1mD69lLjOzRt9p7VPX9Kioq4qWXXuLw4cMsXLjQ5rH6DJ+i1VMQhKZEjPG8zuh0OuSE9NKlZ+yRW4A2txjVtfw6nVVy0FOSX0JMwjna3dUP3b6zaLYds13TU69F6dWG4n5t2RlzqMqxcrWh0WisgS8mJoawsDB69YxCVRXOJySUezPPyspib/SBctfRarU4ODigqiqFhYXW1qjCwkK27vmT4BZBBN/YFk1+CTpFRdJqkPQ6LCcTMP+4DS9XR9w7hlHgqGPPkUM1nlhTG4dPxJDs5U2b/m0xFCtIGaUtmKq7I4V6mZPx50hNK79EU2FhITqdrtKZ7HUZNC+ryTqaKemXKGoZhi41C809/SlZv7/i13KxGcvhcyiBXphubG/Xa0sqE1Cllt6lLZyJdqxCcCQe7rgBp92xBPj7k5iUhKurKzqdjqKionJLaFU17rNFixZMnDiR+fPn0717d+sHJ0EQhL8LMau9ntVHa0NVrR8mkwnvQ4mw3f4lZpRRPbC0C0Q6El/xMkpXkyToHMLB46X3SE1Nxc/Hh9a+gTgUKqXd9kY9ZicDZ1MuciE5qdrZwdfCwcGBXj17orWoSMVmQEI1aClG5c/duyptCXVzcyOiVWucHByurEPpoCO7IJ8TZ07bBIqSkhKG974R7Z7TqHmFUNESTe5OFPQJZ+W63ygqKrJrr++ydWnhF4Bep6PEXEJCcpJdSxFdfv6XF/jPy8ujqKjy5aP279+Poij06NHDeqw+wuZlNV28XZIkpt3/MO65ZkqOxJZ2fVdD7deORXs2ce7cuSrL/WvCJDy//RPMltIu9jd/giQ7l7/qGQ5dQsnu3wYZCc3ZZKS8IhRXE+aWXhxPOMfRM6dsAnBlP393d3f+9a9/kZSUxMKFC3FxubLgd30usSRmuAuC0BSI4FnP6jp4VtflZjQa8TmWAlurWYqmDGVMTxK9DfjjgBKfUm152c+dRJ2ZpJTSsmUXP5dlGZ1Oh9lsLje2sL4MuPFGdPklqFfdT9JpyZMVdu7aVe6ctuFtaOHuhZSYUW7Gu+Sgx+LnytGzp4k+fAhJkrhr1FgM6w9BcTUtax7OpHTyY82mDVWX+0uLFi3o070nhmIFTXouaokZtBoUD2cUJz0xp0+RdA3LT10tNzeXhIQEm7BTH65lt6ARNw+mb3AE5rX77DvBycjJdu7MendOlcXuueNOhlo8kaNj0Y6/AR77xP5KORuRPn4Uy9I/4OBZ2zUUNTJK7zbkju7GLzu3kJ9fukxTVR88LBYLDzzwAN27d+e1116z2RihqvApgqcgCM2d6Gq/zhQXFyOF+qBurcFJ/h6kJJ7DNTQMo5cLahV7/UpujhR7u5B86gRQfscdRVGqbHGra56enmgVyoVOALXEjMnZiKOjo81kmrCQVrRwcodzKRVuAKIWFiOfS6VDy1YUFRdTVFSILi6t+tAJkJ6DuyYEo9FIQUHVqwS0ad2anu06I59NBkXF2iZcVIKUV4hGkmgfEkJxURFHY2Kqv7ed6jN01sX2lOk5WVhO2794P7kF+Lm1rrbY8lUr6fvcS7gcibN3WOgVFgX1YjpElx8zi0VB3n4cl9gURj0xnJ82r8NsNlfZ5a7RaHj22Wf53//+x8qVK7n11lvtqsa17GqUk5MjwqcgCI1OTC66zlgsFiQ3J3Cqejb2ZZKvG4peg6IonDx7mnwvR6TwQCST7fmSgx4pzJ+iFh7EnD5ZJ7PTr5XBYKBju/bIVYxn1VhKx21av9ZoCAlsAXYsKi9fuESXDh3pFN4W+ZT9QUh34iId27Stsoybmxs9O3RBPptU+WLwqoocm0LX8HbXtND7ZXFxcTXaF76m166rPdEdHUxQWLNxspJFqXYHpqKiIr766Xssd98IFsVmWaZqhfjYLthdkYvpOK05SESrKyG4qmEMHTt25NZbb+Xdd9/l7NkrgbYh9nMXhOZo8+bNSJJ0zcvy1YXt27fTqVMndDqd3R8ca2rgwIFMnTrV+nVISAjvvvtuvdyrIYng2cxU19ohyzJqYTGagXZsLylJaAZ0QqOoSJKEqqqcjD3LybSL5AW5QecQpE4h0DmEglAvTmemEHPqZL2O17SXg4MD/Xr2wlikIMmVN18pqmoTSIJatEC+ZP/wB212AU5OTva1dl6WkYu7i2uVRXp0jURz0b4xnJoLl+jZNdL++1eioKDAZuKTv58/owYO4s4hI7lryChuHzaKrh06Vrlm5dXqMnBedj4hoep1Vyuike0a2rH/YDRZSgl4OsNtfey//rg+KHYMX5G3H6dDixCbY1WFzyeeeILAwEBeeuklu3sKxAx3oaFNnDgRSZLK/Tt9+nS93fPq0AXQt29fEhMTcXWt+u9rQ5g2bRpdu3YlNjaWBQsWNHZ1mhURPK8zBoMBdp+Cs0lohnYrvwzQZRoZzdjeKNuPwalEmz2k8/PzOXUuloMnYog+GcPBEzGcOHumwsXatVotTk5OODk5XdOe3zXVpX1HNOfTsCSno3EwVFpO1WutQTk2NhYfDy/UDPt32JHSc9FXcf3a0Gq1eLt52L2HvFpUgqvRCQcH+1qxK9O2bVsCAwMxGo3cNmwUg3zC8N54AtOPuzD++CdOP+6ia5rEHTcNo13rNlVeqz4CZ2xsLLGxsUQfPkhOixq8sTjoSS+w/2dalJsHk+Yh3dgBqlmnFYAAD/B0sm8GvNmCLjETR0fbna8qC585OTm8/PLLnD9/ng8++MB6XKztKTQ1w4cPty6xdvlfaGhouXL1uaqHXq/Hz8/PZkx0Yzlz5gw333wzLVq0wM3NrbGr06yI4HmdkSQJuaAY9Ze9qEfj0N53E3K/9qUtPI4O4O2KZmBntPcMQN18GLbFIBeZkeWavRQcHR1p6+HPQI8Q+l5Q6ZugcrNXK3qFtq33T6MajQYnByNqYXHpxKAiMxpj+QAhmQwkpiRbZxoXFhYiS5Jd24JaWRRUpIrXy6yMhzNpWZWHFBcXFyQ7Q+dlcl7RNf1xKygoQFVVDAYDt9w0BNf1R9H+EQNld6tSVDh5Ed0PO+jh2YL24bbh83LYrMvAeTlsxsbGWo+lpKSQTgk42NfyWtzGjxVr11i/1mg0ODk5VdpyW2QpAY0Gdc5PSK/dV3X49HNDevU+lEWb7HtCgJRTWKNW47CwMP71r3+xbNkytm69Mji7vrrcRaunUBsGgwE/Pz+bfxqNhoEDB/L4448zdepUvLy8GDZsGABz586lU6dOODo6EhQUxJQpU8o1Xmzfvp2BAwdiMplwd3dn2LBhZGRkMHHiRLZs2cK8efOsravnzp2rsKt92bJldOjQAYPBQEhICHPm2E4yDAkJYdasWUyaNAlnZ2datmzJZ599VuVzLSoq4oknnsDHxwcHBwduuOEG9uzZA8C5c+eQJIlLly4xadIkJEmqtMWzqKiI6dOnExQUhMFgoHXr1nz55ZfWx48cOcKIESNwcnLC19eX+++/3+7fe1VVmTFjBi1btsRgMBAQEMATTzxh17mNTUwuus5YLJbSrQUBtsWgbD8OnUPQRLZCctCj5hWi7jyOevyC9RzZ0wWz2f5911u4euIXm4X25Q8hznYWvEOoL24v3kGsvwsnE8/XxVMqR6fTQcmVru+SsxfRBvui9XDFUlSCJIFscuDMuXOcOHnCWq5du3boatqFK0vk5udhbBOAXM1OUNb6tA3g2Nb1lV9SlmsUfiUHPTpHBzqFtSHA04ezCfE1GuOkKAoHDhygZcuWTLr7XoybjqKmVxE+VND8fpDIO/pw9nw8J06cqLxsLZUNmhX5etkPTL3nAUybjlY+BhZQPV1I83Qg+mA07dq1Y/ywkfg6uyPlF6HqtRTqJGLOnSE1KZmikmLOno9n3Z6dBA3vimH5LtTP1iLNmYS66wQs21m6axGArxvSmCiICkc5fbF0T2w7qU4GSjLLL+FV2WSj1NRUbrvtNnbv3s2sWbNo27YtPj4+dt9PEBrbwoULefTRR9m+fbv1mCzLvPfee4SGhnL27FmmTJnCM888w0cffQRAdHQ0gwYNYtKkScybNw+tVsumTZuwWCzMmzePkydP0rFjR15++WUAvL29yy2Ztm/fPu68805mzJjBXXfdxY4dO5gyZQqenp5MnDjRWm7OnDm88sor/Pe//+XHH3/k0UcfZcCAAURERFT4fJ555hmWLVvGwoULCQ4O5s0332TYsGGcPn2aoKAgEhMTiYiI4OWXX+auu+6qtLFlwoQJ7Ny5k/fee48uXboQGxtrDZaZmZncfPPNPPzww7zzzjsUFBQwffp07rzzTjZu3Fjt93zZsmW88847LF26lA4dOpCUlMTBgwerPa8pEMGznjk7Ozd4C4MUEYh6uWVPVeFgLOrB2ApncGPQga8bJNsXPP2d3fH7Mw7tfxdXXCA2Gf2DH9DqjfspifAnNqXu14gsLi4Gve1L1xyXDLKM7GQEnYbUvByb0HlZcmoqwW5OqJl2ds26ORFz8gQdw8JxOJVY/aQXb1cuFeXZTGi6Wn5+vl0tqLKjAzofd8jIRdlwiKD8IoIc9LTr2JUCVwd2Ho4mMbn6LldJkujQoQPOzs54OThCUma15wBo956lpW9AnQbP6gLnZSdPneTrNau4b+RYHPechayrtviUJJRQH1JC3Xlj3lyenvIvWitGHHbHQ84Z0GrQ9AhH8nPH/4IEZyXQGMnreBO5bf0xOzpiWLkHYs6jPvYx9O+ANHsCOButvzdqUQnSsfN/bc1pJ42MOcCD3OP2d/1Daevmf//7XyZMmMDMmTN577330Gg0pKWlVbq8kpjhLjSk1atXl453/8uIESP44YcfAAgPD+fNN9+0KX/1pJhXX32VyZMnW4Pnm2++SY8ePaxfA3To0MH6/3q9HpPJVOVrfO7cuQwaNIgXXngBgDZt2nDs2DHeeustm+A5cuRIpkyZAsD06dN555132LRpU4XBMy8vj48//pgFCxYwYsQIAD7//HPWrVvHl19+yX/+8x9rd7+rq2ul9Tt58iTff/8969atY/DgwQC0atXK+vgHH3xAZGQks2bNsh6bP38+QUFBnDx5kjZtqh7uFB8fj5+fH4MHD0an09GyZUuioqKqPKepEMGzGfLz86t0jJdGo0FNyYHuYbC3+oHfUv8OKJk5aLXaasfmyLKMP4bKQ2cZumcXE/b7i8TJyXU+GUlRFNJzsvFydChdzP3KAyjZedDSm1OnKl5+KDY+jqCevZDsDJ5mNyMn/jhJYnISw2/qj27zEZttF214uZDXI5SNv6+p+PG/5Ofnk69acNbIpbOrKyC7OKJzMmJZvKnc/fRnk9AbdAwa25M/jUZOn6s6zF3+A9khoi36oxeqLGtzXmwyHW/rybqt9nczV8bewFnWzj27SEhO5O5bxhHkGYohKQtZUSkx6ij0cuKPPbtY/fpHPPnIZNolFqM5FV96ol6LdmRP1G//QN1h+zpw3HkcR52Gkv+7EfOnU9D+48PSFtXNR1A3/zV5SJLgrwlr2S/ezoXEeCJa+cLZCtZT1cpIPdsgdQsDkwEMOgo1KlqttsLdlKpaYsnV1ZUZM2bw+OOPs2jRIh588MEaf88Eob7cdNNNfPzxx9avy45j7t69e7ny69evZ/bs2Rw/fpzs7GzMZjOFhYXk5+djMpmIjo7mjjvuuKY6xcTEMHbsWJtj/fr1491338VisVjnHXTufGWyrSRJ+Pn5kZJS8ZrVZ86coaSkhH79+lmP6XQ6oqKiiKnBsnbR0dFoNBoGDBhQ4eMHDx5k06ZNNmG+bB2qC5533HEH7777Lq1atWL48OGMHDmSMWPGoNU2/VjX9Gso1IiqqiipWWiGdUNJzKh62aA2gUiRYSh5BSj66sOhl7Mbmq8221sR9N9uI3BsO84n132r5+FjR+kX1Rt9em5p66UKaDXg505iTkalXdElJSUkZ6Tj6+mMVM3sdtXHlVPnYjGbzaSnp/Pr9s0MHnAjDun5aI8noGbngyQhebtS3D6QbI3Cgeh9eHh4kJOTY11IvCIHjx6mX3hHpApmtksOenSujlgWbaw0mFJUgu7HnfS+6wYuZWWSkVHxmFJFUTh16hSBgYG4OjohxWVU3PJdCU0V3dz2qE3gLCs+Pp43P5iHk5MTwcHB6PV6srKyiI2NRVVVIiIiCFNNV0InoBkcifLJGqSjlQz1KLGgW7iZkqISij5/DN28n5EPlRlGoaqoXULJvr8/32xfR8yZU8ycPBW3OatttoSVBnZCGtARdd9plB+3l+7Y5eiAd1QbJg65hbiMFNb9ua3c7avqco+MjLTZUrPsG2ZFrqXVUxBqwtHRkdatK14v9+rJdOfOnWP06NE8+uijvPbaa3h4eLBt2zYeeughiouLMZlM1u2OG4JOZ9vDJElSva/OUt3zy83NZcyYMbzxxhvlHrNn17ugoCBOnDjB+vXrWbduHVOmTOGtt95iy5Yt5Z5vUyOCZwOoj+72ylo9CwsLUSMCsHy2Fs0Dg1D3nUbdelUrnbMR6ebOSG0CsSzZhPrEaArjz1R7Tx+dEc2PO+yuo+a77bS8t1+9BE+z2cy2XTsJbRlMYKg/EhLF5hJOnTtT7VqVR2KOobSJwN/PDSklG67+A6SRUX1dic9OZ++B/dbDmZmZ/Pjrz3h7e9O1YzucHJ1QVZW84iIc9RLO6BkY0h5QUZ0cyENh/7HDnD9fPgDFnjtHeFhrfDyckNJtW1+1Xq4ov+2rPHRepqjofo8m6ubOrN22pdzDcXFxFBcXExcXh6IoZGZlQQ0nkdUmdl5r2ITSP7wDb+yPu5sbBYWF7Is+wOHDh63rx545U/p6feofj2KMvhIaJR83pIRLUFnoLEO3dDuZvcLYP7QlXf85CDkjDyQJi5uJfadi+Hnhh9ZAP/eb+Uyb9iBu3/0JJy8i3RKF5OGM8vZy229STgHqhoOw8SDBdw/glgGDWbWl8vG+FXnwwQfZu3cvL730EosWLQKq30qzNkR3u1Bf9u3bh6IozJkzxzpx9fvvv7cp07lzZzZs2MDMmTMrvIZer692ibR27drZjCuF0glLbdq0qfUqK2FhYej1erZv305wcDBQ2mCxZ8+ecss7VaVTp04oisKWLVusXe1ldevWjWXLlhESElLrVkqj0ciYMWMYM2YMjz32GG3btuXw4cN069atVtdrKCJ4XmdUVaVIJ+PgbMLyxVqkTsHI/xpTGmIKikpn8CoKyq4TKAuOQUQLLhXkVX9hQFapvJu5InmFaGsYdGrCYrFwOvYsp2Mr2E2mGhu2bKZ1WGs6t++AgyKh+WvbzEIN5FpKiIk5VOne36mpqaz7K9z26taDcHdf5GMX4aqtN131WgaEdSC+RRBbd5YP7Os2buCmG/vjF+qDLjUHJbcAZAlZo8Fiz9I9AJdycJUNJCcnVziuVK/XW8cxxV28QLfAjmgT7Vs/FL2WItX+bU/rInAGBwfzyMQHcTOYcMw3oxabQZbp0SqCvDvvZvHSJfy0ciVQOvSjpbcf5Fz5YCN3CEb9fK3d9zNujuGkGsf8H761LilW0XqasXHnePGTdxk/bBS9/zEY48UslE9+q/zCKqjfbsHnH8Np364dx67qoquqy12r1TJjxgweeOAB3njjDV555ZUqn4No9RSamtatW1NSUsL777/PmDFj2L59O598YrtF7XPPPUenTp2YMmUKkydPRq/Xs2nTJu644w68vLwICQlh165dnDt3DicnJzw8PMrd59///jc9e/bklVde4a677mLnzp188MEHNuNGa8rR0ZFHH32U//znP3h4eNCyZUvefPNN8vPzeeihh+y+TkhICA888ACTJk2yTi6Ki4sjJSWFO++8k8cee4zPP/+ce+65h2eeeQYPDw9Onz7N0qVL+eKLL6oNzgsWLMBisdCrVy9MJhOLFy/GaDRaw3JTJpZTaiD10bJQ2ZvNpeJ8uKc/aCTUg7FY5v+OZfFGLD/vwrJwPZaFG0pntRsNWMb05GKGncs3SFJpd7a9DDosTWCHo8qcPnOa5T+v5Jdtm9h84hCbjh/kpw1r+Wn1Ks6dO1fhGL2yOrfvQLiTJ/KRuHKhE4BiM3LMBVqqRqK6lR8DpaoqG7duYfXWjZzTFlHU2hdzG3/UJDtD5190CZcqnAWtqqpNiDp+8iRFrezfAcnSrgXbDuypskxFyyHVVtu2bfnP40/in6NiTMpGyc4vXTIrvxCH9Hw8U/L555338sRjjwFgMpmQrvogJJkMEGf/7kyGXafpFt4OKA2cVS3inpGRwRdLF6OqoHxfvgu9IuoPf9AztOpdrMq63Frv7+/Ps88+y8aNG/n555/FbkZCs9KlSxfmzp3LG2+8QceOHfnmm2+YPXu2TZk2bdrw+++/c/DgQaKioujTpw8rV660tv49/fTTaDQa2rdvj7e3N/Hx8eXu061bN77//nuWLl1Kx44defHFF3n55ZdtJhbVxuuvv8748eO5//776datG6dPn2bt2rW4u7vX6Doff/wxt99+O1OmTKFt27Y88sgj1u2bAwIC2L59OxaLhaFDh9KpUyemTp2Km5ubXcsburm58fnnn9OvXz86d+7M+vXr+fnnn/H09KzVc25IktoU9j78m6iP2e2VTTIyGgz4KnpYtBEqGsvo7wH338Sx1AvkV7On+GUBbp60eHcd8srddpVX7+jLxX8NZv/xo3aVb0hV7SYDpaEtOjoaV1dXm5mIl8myzF2jx6Lbdcqu+5X0aM2ydb9WOYErLi6OwMBAJrTvg2GL/YPYS3qH8+2FQzbbLkLpGKJTp04RERGByVS6PeSgGwbQW/ZAe6iapaFMBnJHdeXd+Z9V2N1VF0GzLGdnZ17+7wu4JOeWH/pwlUJvJ974/CP++OMPfvpoPu6/XllCRDsyCvXfX1Zx9lXcnTg4uS9vfflx9WUpDYRvTXoC9a2f7L6F9PQ4fjy2q9y448paPMtuj/r666+zdu1avvrqK3r06FHpPa6lxVN0twuC0JBEi2cDashWz4KiIhIopPiRIahPjEHt0xapayvUG9ujPjWWwgcGcKE4B9NVg8KrkpyTifkfQ+yv3KQheBmdGdi7H2EVhLfGVN3gbUmSCAoKsrYkXv35rHWrMLSJmXbfT5dwiXZtyi/dcfWi7Lm5uViq20PcQYcUEYjUKQSpTSBmd8cKd5UyGo2EhobaDHLfuH0r8d46zB1bVn59JyMFIyNZvGq5Teisy9bNss6cOUNUjx645JVUGzqRZRyyinjogQcwm83kqiW2rfAauWbjWL2ciUs4bx0zWp3w8HDUMzXcNehMIr6+vuUOV/bhp+wY5alTp+Lv78+LL75YZWus2MlIEITmQozxvA5UNtGopKSEiyWZyLJMQoDE/C+/YepTU3G25KHkXnmD9/Lysqsrz2KxcMlJwmfyMDSfVD2OTn18FJbiYvjzOHq9lrCurXBsZyQxLaXayT9NxeUJHaqqcvToUdzd3QkMDASgTUgo0vEKltepTFIm3W/qTFhwCEdOHmfjXwslXy0rK4t8Rx0mvbb8/vDuTmj6dwR3R5TkTFSzBUmnwRTqxyBNf37btMFmdrtGoym325Gqqixe/gNDB9xMp/FROJxMRnvhUum1XB3J7xBIlk7lh+VLSU9Ptytkuri4MHzgICJCw9BqNKSmX+KXLRuqPPfqoDds0BBIqWQVAFlG6+WKxsMZtcQCikKoQcf8Tz9n56ED+Ea0Rv/XZCIlIRWpTwRst6/FOHNwB3786XNrncLCwqosX9MdvkorVcvzAAcHB2bOnMkjjzzCzJkzbdb8EwRBaI5E8Gxg9bWgfFVreyqKwvnz51m4aCH33ndvuaUvwP7wGZeVhu7/+uDu64ZmzkrIvWpCi7MR/j0WpVcbLKcTSo8Vm2H3Sfx6hlNYZoeH5hJAoTRcXe6uBtDp9VBi/8QbVBW5oASnE0lEeQfT5dHH+OHnlRVuP7kteg+ju4Wh/fPklYMtPNEM64754FnU41eNdTqTSBtXR4Luvo/FK5dx8eJF8vPzuXTpEgEBAeUGqauqytrNG1j/x2Y6d+xI6/bB6LRa0rOz2b1uJfv27bPrKel0Oh574CFae/jiuO8c8s9HwaIQ4ulChyG3k+1l4v1FX3LhQunaoZW1Kjo6OqJTK957WTIa0If4YU68RNGRWJsdn8L0OgL69Ef2coOEdMjMQzkWj/bW3qj2BE9HB9IDnTl16hSurq6MHDKUlv6BmBwdOR57hr3795VbcuXs2bNIUYNrNts/xJuUs9EVPlTVJKPLwsPDefzxx5k7dy6DBw/m5ptvrsndqyVmtwuC0JDEGM9GUJ87GVUWPnfv3s19993H77//TkhISKXn2zuJwdPFlQC9M4bjF9HsO1u6pEy3VhDujzktCyW5ggkyGhlL//YcOmW7E05jBdDqxnlW5syZMzw66WH8zmTYbN1ZJUlC37sdxQf/Cl8ameK2AXy76ifir1puSZIkHrr7XgKiE5HPJIGLCc0dN1DyZwyYqwi7Oi0FvcL4ZPFCLly4QFJSEm3atEGSKg51ZdW0+1yn0/HStGcI2BWP5nQSOOiRe7RGbhf0184/gCyR7yDzxEv/5cjRysf5urq68vVHn+GSZtviKel16MMCKIqJq/L7bHEzoQn0RrdqD2piOnKXVsj5RahVzTp30JHx31t5+dsvuHP0WMK9A3A9koAmPQ80EkUtvciP8GPbgT38uHqVzVCL+a+/g+6tFbb73FfGyQHzs+NZ+GvlY0LtGeupqirTp0/nyJEjrFq1qsIhNmKcpyAIzYEIno2kocOnvcHzMnsDaKc2EehPJkOJGTW3wHYnoYp0a8WJ3EsVLq7e0AG0NsFTURROnDjBwAEDGBrcASnevjrLAZ5IzkYs58uU12rIbePLux9/WG4MqVar5b5xd+CfXzpW05KaWfX+6n+RvFzZp89l9doqQhfXPjlo8v0PEnXRguZEIlKHlmhu7IBl/xnUUxevtEpqNcgdWqJGtWHyc//m8OHDFV5Lo9GwfMl3uCbZPj99K39Kzqeg5lc+tvGyQn9Xjl+II9TLD9f4TAw+7kiKirpgA5y8eKWgLGPpFU7GuG68+90iptz/IH7rj6NWssRUcc8wTvhqmfPJlZ/RuFvGMt6zDeo35ddOvZp0T382y+lVLvllT/CE0nVkJ0yYQOvWrfnqq68qXG6ltuFTBE9BEBqKmFzUSOrzD31drOln74LVGgsoF1JRkjOqD52AfCEdd2eXCh+7+o22vtmzO8TVZFmmXbt2pKalYfZ3s/s8bUsfLFeHG7MFh5ziCscVms1mFvzwLd8c3o4lyNOu0AmgpmUREVLxOMW6mhxkMBho3zK0NHS2C0Lu1hrz99tQTybYdIVjtqAcjEVdtJG5z82odNcTi8XCqbNnkBz0Vw5qZNBq7AqdAMaMAlRJ4q7HHuGlzT/y1rplvLfjV7YMbUnK63eT9t+xXHpxHBdn38FXXpncO/1JJt11L75rjlQaOgH0e87QNsnM3WNvsx77adVKUlo4Iw2vepFmaWhXMlt7sWHztW85CqXLp7z00kvs2rWLzz77rE6uKQi1sWDBgnLjx/9O+vfvz5IlS67pGr1792bZsmV1VKPmRQTPRnQ9hE+phg3mqtmCpoqJFt7e3g0eQGtDURQOnTxOcevqv8/a1gEoWXkVdpNrkzO5sVefSs+1WCwUXahZS7Ccnktubi6qqtbLTPT+ffridPA8aGQ0Azpi+WVP1bPRi0owrtrLzKefrbTI5wvmk+disH6tcXPCkppVZT1kZyOyuzOymxOq2ULLgECOHj3K/PnzeWvO2yz59luenf0yYx+bxB0z/824/z7B+CkP8eWSr2nTpg1eyXmQll3t89XtPUOfzpE2u4tMe+VFzrVxh//eAd3CrHu7I0kQ2Qrpv3eQ1CWAOfM/BahwLO9lNWl57969O5MnT+a9997jwIEDdp8nCHXprrvu4uTJk9UXvA6tWrWK5ORk7r77buuxadOm4eHhQVBQEN98841N+R9++IExY8aUu87zzz/Ps88+W+9bdzZFInhex+oqfFYVQNWaztZ10FNsqX5cZHMIn0ePx3A69xJKp2Ao21p3mUGHtmMomAyY4yqZAV9sxtFU+fJJBoMBg1yzrd8kiwWDwVDhzksODg7XvI9vWFAwmoQM5E4hKDEXSkOnToPcORTN8O5oRkehGdwVqWWZn2FBMR55Cm3atKnwmidOnGDz3j8pdi/9Xkg6LWpxBYvyyzJabzccgnzRxaah23oM3d6zODg74engaLO3+ZkzZ6z/CgsLKSm5cr1Jd9yD4/5zdj9n09EE+kT1sjn2/Nuzmfbhm8T09MPy8j2or9yL8uq9nBvQirmrvuXDJQvtvn5FKht68vjjj9O5c2emTZtGdnb1wdke9Tn0R7j+GI3GCjetqG9VrYPcUN577z0efPBB60oVP//8M0uWLOH333/nzTff5OGHH7YOVcvKyuJ///sfH374YbnrjBgxgpycHNasWdOg9W8KRPBsZPU9tqquttKrLHzmFRciOVez7mQZaog3lzIqmHhUgeYQPvcePMD6I/tIa+1FfscWyO1boo1oga5HG3Rdw1AycjCfvljlNaoaZh0U2AK5olBbBYtea7NUk5+fH1MeeoT3Zr3BW8++wNznZ/LOa69zx7jbavz6O3PmzF9rhqrIXVuhHItH7tMW7ciecC4F9aNfUN9ajvrNZmRHB7S390MKKv05usQkcU+ZLuurr/vPKY/y7fpfyfQyouo0SJqr/jzpNBiCfNB8vwN18kfw8RpYsQu+3Yo67UsMLy7l2xlvM3rYiAqvX5a3ixtk27dxAoAuNpUOYeHljqempjLr/XeY+MxUXvrkXWZ89A7zf/jWZlmruqbT6ZgzZw5ZWVm8+OKLVb5+BKE+XN3VPmPGDLp27crXX39NSEgIrq6u3H333dV+oPn8888JCgrCZDIxbtw45s6dW+F1v/jiC0JDQ3FwcAAgPj6esWPH4uTkhIuLC3feeSfJyVc+3E+cOJFbb73V5l5Tp05l4MCB1q8HDhzI448/zuOPP46rqyteXl688MILVf4+paamsnHjRpsWzJiYGAYOHEiPHj245557cHFxsfYwPfPMMzz66KO0bFl+3WSNRsPIkSNZunRpld+j65EInk1AcwqfVwfQhLQU1IhA+y5gNFCklWxanqB0qaLWIaG0bR1OeGgrPMpsS9YcwmdSUhK/bvid5Zt+J96Sj6KolJxOoORwLEpG1X94JRcTicmVrwfaKTwC2cWxtAvXHrJEvoPG2n172y238uKUqUQprjjvicXp4HmcouNx23eOEb5tmPXfF+nUoWO1l73ccghwJj4Oi7draVf7TZ3gdCLKK0th29HS5bVKzJCcifrdHyivfoemfRBSKz/UzDz8fHzLXbNsKHz+pRcZdttYVvyxATxtxwIbAnzg1R9g2zFQKnhzSLiE9+s/8+Y/phLZtWuVz0HCzu/nZWYLeu21tRTXlbS0NFq0aMErr7zCr7/+ajNOTCwkLzSWM2fOsGLFClavXs3q1avZsmULr7/+eqXlt2/fzuTJk3nyySeJjo5myJAhvPbaa+XKnT59mmXLlrF8+XKio6NRFIWxY8eSnp7Oli1bWLduHWfPnuWuu+6qcZ0XLlyIVqtl9+7dzJs3j7lz5/LFF19UWn7btm2YTCbatWtnPdalSxf27t1LRkYG+/bto6CggNatW7Nt2zb279/PE088Uen1oqKi+OOPP2pc7+ZOBM8mor7Dp4eHR51dq2z4zM/PJ0cPBFfT7aLTQK82nL14wXrI3c2NLu070srdB6fMQgxJWTim59PSyYOuHTri6116zeYQPqF03OfyVSsocNSVX/y9EoU+LmzeXvEfHldXV0xFKkpcCnKgffvvyi192HsoGoAxI0YytH03jAfOoWZetbORClJyJk77Ypl8z/20Dqt44s/VwRBg1W+/ktU5AIx6OJEAGw5WeC4AxWaUd1ai6RwKLkaysjIrvGZZFy9eZMrjjxNzPrZ0khGgcXeG9dFwrppF+80WvD7awKtPTa+0yJkzZyhBuTIu0x7uTqRkXLK/fAXi4uLQ6/W4ubnh5uZmM2a0NissjBo1ittvv51XXnnF7p2XGkJaWhozZswgOjq63u81Y8YMu5YLawwTJ060awWR64WiKCxYsICOHTty4403cv/997Nhw4ZKy7///vuMGDGCp59+mjZt2jBlyhRGjCjfW1FcXMyiRYuIjIykc+fObNiwgcOHD7NkyRK6d+9Or169WLRoEVu2bGHPnj01qnNQUBDvvPMOERER3HvvvfzrX//inXfeqbR8XFwcvr6+NhtCDBs2jPvuu4+ePXsyceJEFi5ciKOjI48++iiffPIJH3/8MREREfTr14+jVy0rFxAQwPnz5/924zxF8GxCmtOSJmVbP0/HnyO3hRt0CS0NI1eR/D3gxg6cTDxPYWHpzHdvLy9CfPzhXDJqSiZqUQlYFNRiM2paFurZJPydXAkKbFFavp7CZ3DLlowdMpy7h4/hnuFjuHvkLdzU94ZazdiMi4sjKyuLpJwM1Oq2vQRwNnGpKI/09IpnVTs7OyPnFWI5cQFNWABSNdeUXB3RtmnBwH430qpVK4bdMADDiaq7+bEomA7F88j9D1gPVdQSWVZ2djYnki6ARkb9dW/V13d0QBrUBTUzF82I7mQX5KPX2zd04JXZs8jxcQJA62iC1Xa+qWTk0tWzBe3bt6+0yLcrl2Np28K+6wGZXVqQnpPNS/+axuv/fo7Xpk3n7lvG4eJypVW2qglcLYOCeHDMeO5oF8UY1YfR+HJXl34M69EXT0/7PlRU5Pnnn8fPz4+nnnqqyi01G1JaWhozZ85skODZlL3wwgv89FPl67deb0JCQmzew/z9/UlJSam0/IkTJ4iKirI5dvXXAMHBwTZ//2NiYggKCiIoKMh6rH379ri5uRETY9+OZZf17t3b5oNLnz59OHXqVIW7ygEUFBRYu/vLmjFjBqdPn+bw4cOMGzeO2bNnM3jwYHQ6Ha+++irbtm3j4YcfZsKECTbnGY1GFEVpMr+7DUXsXNTE1NfORpfZu0xSTa6XlpbGqbhYXJydCezRCgMaKCwuba0yGUjJziT57CnM5tJWQAcHB1p4+aJUNuHmL2pSBl4BnmS7upKVVfUM55oyGAz0aN8JY0Im8rZTUHSl+z/Y04WArr05X5jF1j931vjaS5f9yD8mTsJdliAzr+JCriay/F34ZsH8Sq9jsVhQZQnMFko2H0I3oDPKhVQscclgKfMJWatBE+yDHOiF5UIaxrwCnp06De3xBPsqXGLBuVhFp9Nx/Phxu0758bfV9JM8bOtRlpMD8gODwMMZy/ELcCwejp9nkE8gu37bwC+b1vPSrFcr/QMPsHnLFuZ8+iH//udjOBQUoV69S1YVdOsP88NXX9N/5FAuXSrfUvnl1wuZtPxOvGIulC4BZdAid22FHH5l2Ih6KQfLnpNgtuAaHMBdh/wxvL8J8opAgqCurbjhgSnEZCTzybeLKn0uI2+8ichiR4yv/AyJtmM/Wwb74PPkKA55eJGSW/OJQiaTiXfeeYc77riDt99+m//97381voZQP6rbfvV6c/WkRUmS6qQlr6Kd9qojy3K5sZpXD/GqDS8vr2rHbx8/fpzFixdz4MAB5s+fT//+/fH29ubOO+9k0qRJNjuFpaen4+joiNFovOa6NSeixfNvyM/Pr87GfcKV1s/snBxiYs9w8NwpjqYlcCQpnuiTMSQkJVpDJ0ALP3/UFPsmXyjJGbTwK11vs65aPXU6HX27dMNp52nkw3E2oRNAvZSNdusxgrNhQO++dl2z7HI5xcXFfPrVl5yUCyhsF4Dq7YJkMiCZDODtQmG7QM7oS/j0qy+tLcAVuXTpEsUuf326Liim5Pd9qAXF6Pp2QNe7Hdpu4ej6tEPXux1qXhElv+9H9nBGTc/BhAYpyf4JLqbELMaPucXu8i38/JGOxlf8oKsJ+ZnbsZy+iPnnXainElDTslFTsjAcuYDfr0e4L6gry75eYtPdXJEvv/qKJ55/lpKCGrYI5BfidSKFrz/4tMKHs7OzmfPVp+SN6orcvTXauwbAxQyUN5ejzPoBZdYPqOui0fZui3bSULSzl2H4ZV9p6ARQQT5wFrfXV9HjUCbPPvpEhV2+N0f1odv5EowzvisXOgGIS8Fh2ld0ydYR5F2738n27dszffp0Fi5cyKZNtV8z9PIH3sOHDzN+/Hi8vLxwcHAgPDyc//3vf7z55pvodLoKx5H27t2bG2+8kXPnzlnHvz344INIkoQkSSxYsMBa9oMPPqB9+/YYDAZ8fHx44IEHyg01CAkJ4fbbb2fRokVERERgMBjo0KEDy5cvr/Z5fPDBB/Tr1w8vLy9cXFzo3r17uSVuAJYuXUr37t1xdnbG2dmZdu3a2YwxvNyNf+TIEUaNGoWTkxP+/v689dZbAKxZs4Zu3bphMpmIjIxk27ZtNtevqKs9Pz+f//3vf4SHh2MwGPD19WXMmDFVLrd1vYqIiCjXNW5PV3m7du04f/4858vs+Hbs2DEyMzOtvRze3t7lXlMVtcDv2rXL5us///yT8PDwCjdnAIiMjCQpKanS8KmqKv/85z+ZO3cuTk5OWCwWa+C9/N+yH1CPHDlCZGRkNc/4+iOCZxPUUF3udRk+4f/bu+/oqKq1j+PfMzWTmfRCCqEEQu+9d+k9oGABBbFfu1699sJV1KteG15f7AqKRBQEKdI70qS3EEggvfdMOef9I2ZImUkmIYWyP2u5lpk5c86eJCS/7LP381yeTVUUBYvFUiZsllCpVJjcjSgFLpbFsMloZVy+PeuKdi0i0P15FiXLyWzk31QnL9FYa6pyltjRLw2LxcKPPy/jgy/+j00XT3NCV8gJbSHL/trF6++/w+Kffqz09kpMTAynTp3i7KU4JJ/i283ICnJ0Apa1+7FsP4b1YDSWrcewrDuAfC4RycOAYrEW95C32KhOQ3GlwIy/r+u3fNUqleMNPoDqwXFYtxxBScp0+nr96US6ZGl465XX6dy5M3PvmsND99/P+PHjK9zK2rBhA6kFuU7O5ISnO6Rk00zl7rSE01fff8eOhGjw90Ke/yPsKNeS9Fwi8ierURatRbpjKGgc/7jU7jpFiwMJTC63m16n09EjtAVuC9dWOVz9az/RyrdRhfDqajevO+64gyFDhvDMM8/UuBUswP79++nTpw/Hjh3j7bffZvXq1TzzzDMkJiYyd+5cNBpNhc0Xhw4dYs+ePTzwwAMEBwfbd+k+//zz7Nq1i127djFu3Dig+PbzP/7xD/r378+vv/7Ka6+9xqpVqxg4cGCF0lC7d+/m1Vdf5cUXX2TZsmWEhYUxbdo01qypvCvX+fPnufPOO/nhhx+Iiopi9OjRzJ49m//7v/+zH7Njxw5uvfVW+vfvz88//8zy5ct5+OGHHd5tmj59OsOGDeOXX37hpptu4umnn+aZZ57hqaee4umnn+ann35CURQmTZpU6d0qi8XCqFGj+M9//sPMmTNZuXIlCxcupGnTpg3WNrgh/eMf/2D16tW8++67nDlzhv/973/8/vvvVa7ZHTFiBB07duS2227jwIED7N27l1mzZjF48GB69OgBwLBhw9i3bx/ffPMNZ86c4aWXXuLo0aMVzhUbG8vjjz/OqVOnWLJkCR9++CGPPPKI02t37doVf39/duzY4fD5RYsWERAQYN/13r9/fzZu3Mju3bt577337EsCSmzbto2RI0dW9am67ohb7Vepur7lXiIoKKhWd8KW3Hp3RqfTFd+Gr44CMwaDoVZquKlUKvxNniiJZ1w6Xns0ju4dO7J2a81mkoqKitixaydQvPg+ISGhyjV9pdcKLvvtV1rf9w/ct50u2xXIbC27gUmS0PRsjeXs37fXq7nfQlKrKCysfFZRq9UyauRIJk2chI+3N9a9F1AfKLcOtGUwSk4BpFV921gfnczMOyYxps8AvPIVkGWKtCoyn3mOrbt38fwrL5GTk4OiKMRmpRLkY4IM1wKoNLwzyvE4/OKyefyeB7jvyUcrHNOsWTN6BofDJ5UHQ+VoLJgMMKUv/OT4F45uwxEGvTqdv06ftN/i69WpK+5Re10aL7KCds0hgnoHkZBcxQYqByRJ4s0332TixIncc889/PLLL05nbSrzxBNPYDQa2bNnD15eXvbH586dC8CMGTP47LPPePbZZ+3nX7hwIQEBAURGRqLT6ejcuTNQfKu5T58+9nOkp6fz9ttvc8stt5QJgW3atGHIkCF89tlnPPnkk/bHExISOHHihP0Ph7Fjx9K6dWteeuklRo8e7fQ9vPPOO/b/l2WZoUOHkpSUxMcff8y8efMA2LVrF15eXnzwwQf2Y0eMGOHwfI888gj33XcfAAMHDmTFihW8++67nD592j6jaTAYGD58OOvWrSMyMtLheb7//nu2b9/O4sWLmTlzpv3xqVMdlxi73vXv359PP/2UV155heeff55Ro0bx2GOP8dFHH1X6OkmS+PXXX/nHP/7BoEGDUKlUjB49mg8//NB+zKhRo3jhhRd4+umnKSwsZM6cOcyaNatC295Zs2ZRUFBAr169UKvVPPLII9xzzz1Or61Wq7nrrrv4/vvvGT9+fJnnkpKSmD9/Pjt37rQ/1qtXL5544gnGjRtHYGAgX399ubbvpUuX2LlzJ999951Ln6/riZjxvIpd6zOfzlS36qCkKLW2czUwIBB1jPMF7+UpWXn4mRy3+ITKO9KUp1KpCA0Nxc3Nzd5VqLgm5mXlN6jEx8fz3W+/YBncrrgygCMaNZohHbElpqNk5xePO7+oys1IpRX5m9i6Z6fT5728vPj6y6949O77aOkTiB9aNAPaVwi4qtHdsR057/J1pQPn8LZqkBPSkZMy0V5MJ+B4MlObdWHtr7/ZQ/rbX3xK9uhOVZztb0E+4G1ECfKCVqFMGDOWRx98qMKs+ePzHsBvTcVZEEeUPaeQOoc73wkvK5gOX6R58+b2hzo3a4lmw2HXxgxoVvxJU4+aV5/w9fXlrbfeYuvWrfz3v/+t9uvz8/PZtm0bM2fOLBM6S3vooYeIi4tj1apVQPHt+cWLFzN37twq70rs3r2boqIibr/99jKPDx48mCZNmrB58+Yyj3fr1q3MbLVarWb69Ons27eP/Px8p9c5dOgQU6ZMITg4GI1Gg1ar5fPPP+fUqVP2Y3r27ElmZqZ95tHZBj8oDrwl9Ho94eHhtG3btsxt9DZt2gCUuf1b3tq1a/Hy8ioTOq9Vd955J5mZmfaPHVUxePTRRx02sSht3rx5XLx4kfz8fJYvX8758+fLtNZ1Vh2hSZMm/Prrr+Tm5pKdnc3SpUtp1KhRmWNeeeUVEhMTyczM5N133+XDDz+s8D2m1WpZuHAhWVlZpKenM3/+/Cp/1zz22GOsW7euws/+Ro0acf78eUJCQso8/uKLL5KWlsaJEyfKbJ764IMPuPPOO2nc2PVNjtcLETyFOuEsfFosFiRd9SbaFb221jpWGPR6VDmub1IBUArNDrv9XMm6LJvNhs1ms/+Qq6yt5a69e1i+bQOaMT3Q9G+HKsgHyceEFOSDpm9btCO6YruYii3+8iYaa0wSqtZhDs/nSK6vO+v/+MPp86+/+irBBg/UZqt95tUmAQPL1QD1NjrfUOWAciEFlWfFhfVSeg5hiYX89G1xP+StW7dyMkiD0jW88hO665H+GYl121Hkoxew7TqBtHgLT/Uex8bffsdkMtkPHdStJ5xzcbZfAeVwTHHlBicM51MJ9LkcHNUKDtukOpWZi/YKa4X269ePxx9/nNdee429e12cbS25fGYmsixX+ouwe/fu9OnTh4ULFwLw7bffkp+fz7333lvl+UvCXXBwcIXngoODK2wCc/QHcaNGjZBl2ekau0uXLjFs2DDi4+N577332L59O3/++Sdz5swps5568ODBREVFkZiYyLRp0wgICGDAgAFlZqtKlC9Fp9Pp8ClVa7jkMaDSNdupqamEhrpY8/gG8c477/DXX39x9uxZPvzwQ77++mtmz55d9QsbUFBQEJ9//jmxsU7WuLsoMDCQ1157rZZGdW0RwfMqd63Oejpjs9koslmRtC6GT0lC1msrneGo1vUV2V4b0lWSRl3p7uua0Gg0tGzZEqPRSExMDOnp6ZXuuly/4Q/Sc3OwXkxFahKAqm0YqiYBWBPSMO89iVzu1rZSUITZQ4fsY3JyxssKm/rx2x9rHa7JheI/Ipo2DqsQoixFRUjT+kHpMFjdmWmbDE7arkq5hYSoDQwZMgRFUbj53jlk3T0UIvs5LNtFl+ZIb8zCeigapfQteVlBOhFH+KlMju36k3bt2mEymVDnuN65CID49OL3OqwTDGoP5WurlnvrskqqXq1QkwGrC+1kq/Kvf/2Lrl27cvfdd1erGoS3tzcqlYpLlyqvhvDQQw+xdu1azp07x6effsqYMWNcqldZEuAcrUF1tATF0RKgpKQkVCpVheBX4vfffycjI4Nly5YxY8YM+vXrR48ePRz+4Tp16lQ2bdpERkYGq1evxmw2M3r06DrrOuXv71/l5/ZGs3fvXm666SY6duzIp59+ygcffMDdd9/d0MOq0uTJkxk4cOAVneOJJ56oMEt7oxDB8xpwrYZPZ7OeFxMTkAIc38orT+XnQWJq7S28z8jMxBzi7foLVCqsWlWFsiC1tQs1JiYGq9VKTk5OpZuNrFYrh44fRdFpsJ6Nx3oyDuvZePut9fIswV68/+knXAjQYgvydnxSlURheCA7E6JZ9NWXTq/dvHlz9JLj2/yFBfkweziWxydCREhxkNS4vrZQ8jEi6bVomgcV7/oHe3koXc9W+Hp68/389zi4bgtvv/I6Ty94jbzuzZBeuRXp2WlI80YhPT0V6YN7UMb1wLL5MIqz3fzxabhdSGP5p1/SpXNnFCeB1ymVVNxNyWIDtQppch+k52+BbsVlc2ytQsgtujzjdfLieeT+bZ2drQLbyC5cys2s3pgc0Gq1fPHFF6Snp/Poo4+63FLT3d2dQYMGsWTJkkp7wE+fPp2AgADmzp3LkSNHuP/++8s8r9cXfx0LCsoG+z59+qDX61m8eHGZx7dt20ZsbGyZdoYABw4c4PTp0/aPbTYbP/30Ez169MDd3fEykpI/UEvfoUhLS2PFihVO34+7uzujRo3iySefJCcnp8rbwzU1evRosrKy+PHHH+vk/NeipUuXkpycTEFBAceOHbOvpa0Pmzdv5v3336+36wmXic1FQhm1vdnIkZycHDJ9C/Hy90JJdT4jI3kaKXDTkBzn+ppMV65dGK7DpFUXB4gqKM0COX7ubJnHajN0QvHsZ1hYmL0bRk5ODkajsUx3DIBlvy6n07PP451fWGlVAMXbSJyqiN9WreL3NWu4/+55DOk3AI/MItyKbCBJ5LirydZLLPl5Gb+sdP5LGYoLNhdZLOhwECgVsMhWVl04Ql5wPjdprQS0D0P567xLnwNVp+bIq/5EstjQ9m9bHOx0apQNfyEv3Q42GTUQDEQ29mPo3H9Q5OOOYdEmkCSklsEQEYzt9z+d7rIvzXb0PL6dW/DRy//GapOLZyldXHQshQchr95X3K0JULYdB3c9qlsHozQNRNOuCeNsQeRl5RATd4Gdfx2g+y0T8dh23KXzWyb34mJM2c4mNS0h1qxZM9577z3mzp3LiBEjuO2221x63TvvvMOgQYPo06cPTz/9NE2bNiU2NpZt27bZd7PrdDrmzZvH/PnzadasWYVuM40bN8bT05MlS5bQvn173N3dad68OX5+fjz99NO89tpreHh4MHXqVC5cuMBzzz1HeHh4hU0dwcHBjB07lldffRVPT08++ugjzp07x8cff+x0/CNGjECj0XD77bfz1FNPkZ6ezuuvv05AQECZMP3iiy+SkJDAsGHDCA0NJTExkddff52wsLBKGw9ciVtvvZVFixZx5513cuLECfr3709+fj4bNmxg1qxZ9h3ZgnC9EzOe14hrqatRac5mPWMuXCBdMSM1DUTlUXaNn+SuRwoLIM9dzamzru0+d1VCQgL7jh3G1tNxi8gy9FosbUM4eeZ01cdWU/n1nCUh02q1kpKSQl5exXWSOTk5/Pu9d8hoFYgc4lPxNq5GjTnMlxgveOiJx7DZbJjNZv77ycdMm307L3z/Pz7YtYb/bPmVJz5YwC13zaoydEZHR/PXX3+RZ3E+G5tlKeS9//6Xx1/8Fz1vGkJSmKfT2+dlGN2Kl1wcOY9yMg7583XIn65CysyD9JyKxekvpuEbtQ/dyXisD40FWYZAL+STcS6FzuLB5oOHAb9dMZxPjsfWoalrr9OooUWwPXTa5RchL1qHFOQN55Mx/WsJt/QZSmBAIPn5+ZzMT8M8tXeVpzffN4oL+Zm12jpv+vTp3H777Tz55JOcOePav6Pu3buza9cuIiIieOyxxxg7dizz58+vsGHi5ptvBuDee++t8AeSVqtl0aJFJCcnM3z4cHr27MnKlSsBePXVV/nwww/Ztm0bEyZM4LnnnmPMmDFs3769TBcoKJ4hfemll3jllVeIjIwkNjaWn376iVGjRjkdf7t27fjhhx9ISEhg0qRJvPjii9x///0VNjT17t2buLg4nnjiCW666SYee+wxOnTowMaNG+0ztrVNq9Wydu1aHnnkEb7++mvGjRvHvffeS2xsLIGBVbQcFoTriKS4eh9GaHBXUl5p+/btjB07lgMHDpTZNehMbc56VlZeSaPREBTYCB8vLyQFkCA7L5eEpCSHt56vtN5dyfqy7h0709YjAPWfZx1235E8DJgHtGXNrq1ldrzWxmxnZa0VoXgDVsmtwsLCwgp1LfV6PUMHD2bEoCGoCyxINhlFpyGzMJ/vfvqRDZs2XvGa1PLtMkePHs27b76FySaVKetkVkts3beHOfMur8uaNH48Cx58Cq9NJ5wHQoMezfie2L7fDMmZZZ/Ta1HfOwbb95suF2wv7/6xqLVqlPwibHtOoaS63vVHO64X8ts/c+H+IbijIuCDdVXOfksTekJGHspGJ7vUNSpUz05HeeorCPQi5tHhfPHLT0iSxMwxE2lxNBX9t1sgv9z78XTHfP9oopu4E51ace2jsxnPyipHlF4yk5uby6BBgzAajfzxxx9VhipX/8B97bXXeP3114mLi6uT0NSsWTN69OjBsmXLav3cgiA0LHGr/RpSX7U965PVauVi/CUuxtf+ontJkggODKSFfwg6q4LNZkVu25mYlAQOnzlFZnA23W7qhC49D11cGorVBgY95paBZMkWtm3bWOb2XH2ETri8Ps1isXDp0iUCAwPLBIKioiI+XriQDz/+GK1Wi5+fH/n5+RVKM9WUox7ta9aswVxUxEsvvIiPp2fxLXZFJirqZ954880yx/7622+o1RpefuxpfE4loYlOuhxA9VpU7ZqgigjB9sOWiqEToMiCvOEQqp6tkDcfqfg8wIa/kFuHgpc7GKo5QyVJYJPRW2Se+O+/+eCR5/D+34YKHazsh4/ojOTvhRxVSftUqwyn41E6NkU6coEAiwaTyURubi6LV/9K5/YdGPTxXXjGZaI9lQASWDqGkRfizf7zZ7BUsuTkSphMJr788kuGDx/Oyy+/zBtvvHFF5zt48CBnz57lnXfeYfbs2WKmThCEahPBU3CoPtZ6Vld1ZjuNRiO9W7ZDu+MU6kW/XJ5pkqBDx2a0Gj+IQ0kX+Gn1CgIDAwkLCkar0ZFbkE/0jk0VNkZUFTqbNGlCq/AW6LQ6snKy+evokSprdFZFq9USEhJin/G0Wq1oNBp7MJRlmZSUFMxmc42KhZfnKHCWtnHTJjZu2kRgYCBubm5cunTJ6czqz7/+wvqNG3hg3r3cectMjBodbhotUlY+tl0nsa36s/hWuRPK8ThUw7vAliOO12CeuYRqWCesmw6j7t0aa5xr3xtSgBdKQvEMtqTA+o0bed7Lm2cefgiv8+l47DhTXKRep4UeLVD1bIVy9ALy/yrvlgMgH4hG6hIORy5g3HScNq1bse/gAQD+OnaUzNwcvLy88GzniaIoZKWeISem+A9JRyWGakvnzp155ZVXePbZZxkyZEilt6qrMmXKFJKSkhg+fDgLFiyoxVEKgnCjEMFTqHNVdTOqbQaDgT7hbdG/9UvFmpIKSIfPoz9ynq53DUeJaM2xM6dITq7ZBqYuHTsxpP8A3HIt6DPyUWw2aBRIv45dScvPYfnq38jIyKh26Cz9XqB49jMuLo7CwkL77VKNRlOhxmBNVRU6S3Plc+Xt7c3H775Ph/AIPC5loTG5oxyLRd5zqsrXAsW38zNzi2czy9+ehuIwKiso6Tngrgc31zpiqTs0Q1lW3H2opFrBgUMHufn+uXTq1Inpo8bh7xNBYWEh7SNaY3ppadkOUZUpNCPptSiAlJ2PUVvxdnhWVla1Shw5UlWDBkceeOABNm3axP3338/OnTtrXMGirnZ8N9R1BEGofyJ4XmOuxdvt9Rk6Abo0b4X+g1WVFzJXQPflBro8G8nZ2POVljJyNts5cthwuoe1RHP4YnEf9VLPuSVl0thdz90z7+Df//1PDd/JZX5+fowZMZJBffuhUamwKQp79u/j+59+vOLPb3VCpyv8/PxYtWw5jePzkKLTUTcJQPL3QurcHGwyyqHo4lvTVVAstspLM+mLlyTYdhxHM7o71pV7HK7XLaFqFQq5BRCfjhIRzIY9O2jRooX9+cOHD3P48OU1nFEfL8LkaugEJG8TSnbx95xidCPfWjtND2qDJEksXLiQfv36ce+997J8+fIKm4Ku1Q2MgiBcW8SuduGa4Optdjc3N4zZRZDswqySAvrfD9KhRauqjy2nY/sOxaHzVLzTDTRKfhFuR+N48sGHa7xTVpIkpo6fyKuPPMWtLbsTdjSZ4MOJND6SxNTQDnzx1vu88PQzqFQq3Nzc7NdRFAWLxWLfJS3LcpkC8VarlbNnzxIdHY2iKMiybK/3WPKx/X0oCsOHDeP3JcvY/9sfHPztD/au/oMFL75KcHBwhWO///xLGicXoWvdBG2XFigZudgOnMV6IQmlVQjqx6Ygje1ZZbF5ycvoeLYTijskuevBZEBJzMD252m0Nw9ECnEwA+yuR927NWo/T5SvNgCQNrQN/130P2w2W4XPS8nygQOnjhfXJnWRNLAd/F06KW9IG/46enl9akBAgL2rjSzL5Obm2q/r5+dXZi1xXl4e+fn5BAQEoCgKmZmZ9gLoZrOZ9PR0+9cqNze3zJIOrVZrv05RURFpaWn2r4+bmxvvvfcemzdvLtOjXBCqYrPZeOGFF2jevDkGg4EWLVrw2muvVagRe+LECSZOnIiXlxdGo5GePXtW2uFnyJAhSJJU4b9x48bV9VsSGpAInsJ1pUlgELo/XO+PLR2KoUUj523snM12Du0/AM1ZF9bAmq2YUnIZPGCQy2Mq7fabZzCyaXu8DsYiJZUN01JKFt5/XWRYUAQbfvudH778hh+/+Y5vvviK3r16kZGRYQ83hYWFZXornzlzpkzgMpvN9oBSUoYJitf6blu5hv9Nu5+u684R+tUOgr/aQZMvdjDL3Ij1n37Lvx5/yv4LqE2bNjT1CkDXoRnWw+ewbD2CfCkNJTsfJTMPW3QC5q1HUDzcUM25yXn49DVBocVpy8nsbk3JyMpEO64neBlRLiRjWfUnmmGd0Ub2Rz2wA+p+7dCM6o62b1vYewb5s7WgKGRF9mThiqXo9XoKCgrK3PrOysqyr+/9fOliMkd1cHj9CryMxcsCEjLAx0SyTmbfvn1lPt8l30s2m42DBw/ar5uUlMTu3bvtx544ccJeON1ms7F582b78oakpCTWrVtn/1odOnSIAwcO2F+7YsUK+y/6hIQEVqxYYe+IdeDAASwWC8HBwfzyyy8uF5YXhAULFrBw4UI++ugjTpw4wYIFC3jrrbf48MMP7cdER0czYMAA2rRpw+bNmzl8+DAvvPBChaocpf38888kJCTY/zt69ChqtZrp06fXx9sSGoi41S5cV4wavWuznSUUBZWTcOMsdAYHB2Mokiu9rVuaKimLm4YMYd2G9bi7u3PT8OF07tCxeCNSdhZrNvzB0aNHKwSBoMBG9GvSCv2J+ErPr76QgtrThK+nG7acfLxUBl7+57/w9PRk3fr1QPFsV0k/6ejoaDQajb1PPBQXBS/5WK1Wo1Kp8PX1ZeXXiwn79bDDz6l0NhH/s4ncPaIfuqef5dW33+TZx57Er1EA1h3HUHKd9622nU+CZo2QxvVA+e3Pip+zoZ2Rd51w+FolyJtYk8LmZUuZ030opoEdwCZjOxqDZeVeNIPaF5eY2nECJSYRJa8I1Cos3cLJ6NucD3/4hj+2bUGSJAwGQ5lfjF5eXkiSRJ9evbln5h24B/49xlX7HI6l+JOrQ/XgWOT/rUXSqMl7agKrd6wrU7YsIiLCfmtbrVbTtWtX+3UbNWqEl9flTl5t27Yt87UYMmSIvVNPo0aNaNq0qf1cXbp0KTOUiRMnYjQageLv04kTJ9qrJHTr1o3HH3+czMxMVq5cWebrLwiV2blzJ5MmTbLPRDZr1owlS5awd+9e+zHPPfccY8eO5a233rI/VnopiyPl16j/8MMPuLu7i+B5nRPBU7jqVWc3u02uXsvGYtX7Bdw0LAy3zEJcLvUtK7hJGu6ZM5cOrdrgnl2ElJ0PchEhOg/CI2dScKuarxZ/x+Ejxbdno6OjefbRJ3A759p7t52IRTuiC7acfJBlDFmFPHjv/WzavBmbzYZKpUKlUtnXc5Ze31dye6v8x2+/+CqN152sMsib/jjKjNuG823zH+nYsQNyfFqlodM+5vNJ6AZ1xLZmf5k1n9KAdqDToFyouIlJDm/E+V6NufnWm0lPT8f4ojtT9P3wOp2IqnUYkqc7ZOahFBShGtUVm6eBtIwMMnKzWbZ2FV/c8igBAQFlgl1pGo2G+++ay+T2vTCuPw4FR2F0D6R7R6P8shuSMi8frJKQuoQjje+J/MUfSDaZvNdn8Ovh3SSlJNvDYtOmZYvUq1QqTCYTcHk3e8kfBVBckaGkfqckSXh7e9ufK1/IveQ8JUr3O9fr9WWWeKxdu5Yff/yRTz75hIiIiAqfW+HacvToUS5cuEDTpk3p0MHFmfka6tevH5999hmnT5+mVatW/PXXX2zfvp13330XKF4+smrVKp5++mlGjRrFwYMHad68Oc8++yyTJ092+Tqff/45M2bMsP/xJFyfRPAUriupBdkEd2yKOs6FDTcmA1K7MGwmPYGBgWV2a1dWPkmr0VVaCsjhpYxGugc3RxObXuZxxWxBl2xBp5K49/bZfLl0Cfv278fX15dGRk8ocrEwutWGklOApNWgWIpvobsrKrp3726flajOJiKTyUSPVu2Qtm+r/EA/D1RDOxHQJITNy1Zg8PbEsu5A5a8pxXYpFalbS5S9pyEsgLTezThvy8VXZ8Z3RDu8LxV3MCr0ciMjIoAt+/bw/PR/2DfYffXjYvr17YvvxL7Fm8lkBamRD7Jaxab9u3ly9rNl1phVNQMzZdx4Jkd0x/jbwctj/H0fUlgAqllDkdzdijcoGfTgY8R2MRXz8QtYZg/iYkEW67f9fsVNDmqqsp3q58+f59FHHyUyMtLl9pnC1euDDz7gm2++sX88a9YsHn744Tq73jPPPEN2djZt2rRBrVZjs9mYP3++/XspOTmZ3Nxc3nzzTV5//XUWLFjAmjVrmDp1Kps2bWLw4MFVXmPv3r0cPXqUzz//vM7eh3B1EMHzGnOt7GjX6XR4afRgteEXHEa2uZDkzPQr7qhTlYTkZNr27YZ69X7nBzUJQJrUG7yM2DJzcb+Qxk1N2mHt2Zfoixc4dOxopdfIzM7EFqqt1jypRqdFzqhkl72s4Babzp0zbmXtunUEBQWhyavermglMw/J080ePN1UGvtsWXV3ro8fMxbfoxU76ZQmje+J1CIY27ELKL/tRQswobdLZY1KyClZSKO7camtP3uOHOLdfz5oH2uPHj3o1qkzBjc3YnbFsu6J9TRr1oxJEyZgdHOnS9euTBk4DGXXSax7t5cdm7eRQT07sPDt9xh3SyRQdeiUJIk7pt6M8buKheKVuBRscSmgVoFBVxyGp/RiffIpUnNSSfxtq8PKCOVnO0tzVruzJt2KKmOxWJg7dy4+Pj68//77Dm+xix3t146jR4+WCZ0A33zzDcOGDauzmc+lS5fy/fffs3jxYtq3b8+hQ4d49NFHCQkJYfbs2fY1x5MmTeKxxx4DipeB7Ny5k08//dSl4Pn555/TsWNHevXqVSfvQbh6iOApOFSd4vEqlQqNpvhbSZIkAnVG1HGpSBv3oqRkg1aFR0QIQYM7kCXZiEmOd3ljQ3VnjxRFIS4rjeaju6Jec7DiAb1bI43qivXgWZScy0XiNYBGgvZNG9F05BgWfvV5hSLyJU6eOsXogUNwc2VWleL2m0qB83JNpQaPIT2fmTffwh+bNqJUdwmeSkJjckfWarAVFJErW4iPj0eWZcLDw0lKSnLYA96RZiGN0WXkO6zdDsWhEx8T1o1/VXOQ5cgKW/ft4ZZZt1d4at++ffYNOuNGjWbt0p8JKJDwu5gNzRshNfbHumKPwwLzSmYeyvqDdO/ViqhvvufpV16scij9+vbF43xamZagFdhk+HsZgWHTcVr0bsz+/Y7/yKksdNanN954gwMHDrB27doya0mFa5OzuzEXLlyos+D51FNP8cwzzzBjxgwAOnbsyIULF3jjjTeYPXs2/v7+aDQa2rVrV+Z1bdu2Zfv27Y5OWUZeXh4//PADr776ap2MX7i6iOAp1Jher8fX5IFOluwhTmMyQGo28o4TKLF/h8YCYH806v3R+HQNx210F05cPF9nu2pPx51H36kFwXRFs/bg5WDSKgRpZBcs2446DhcKcD4JU3Yed824jYVffe5wjBaLhfPxl2jrbULJrLpNpToiFGtihmuDz8pn+OAhfPXtN1g9nO8GdUTlZcK2/RiSIqHr1gJ9oBdvvTofc05x2JQ1Ko6dPsWC/7zNX39VHhgLzUXg6WStrL8nUngw1k0OziFRvFPd1a+th4FD+yv/xfTMo48zp99IPFcdhyILigTqsT2wLNvuuKtRKfLe0wyY3JewsDDi4uIqPXZEv4EYTrn+B5eSkE6Ib0eXjy+turOdVXF2m33Lli385z//4cUXXxQzSdcJZ3/Q1OUfOvn5+RXqvqrVavtMp06no2fPnpw6VbZBxOnTp10a108//URRURG3317xD1Dh+iOCp1Aj3h6eeKFBPhyLrVStRTOAXot2bA+ki2nIUTvKvE46eA6DWkXTQa04n1z5rdwrsW73drq17UDrl25Gt+8cmuMXUc0YhHnPyapDUXou3mkFtIqI4NTfZW3KW79lEy3vnoe7pCkOpwogy9jOJyEnZtivoTQLBK0aJb/qzTYlNEjk5uZy9lIsPT0MZWZmnTLoikNZbCqqruFg0GGOScS90Iy7/SAbg5q0psv/fck3P/3Am2+/5fR0O/f/Sea9I/A6US6shfgWl0HSqtFM6Qtma/Gt9gvJoIB8PglVWAByrGudoDKDTXz9/XdOn582aQp39bkJz9WlQm6XFsgxSU7rp5anHI7h/dffICc9E61ajU1R2LxnJz+t/LXM0pVA/wA4XXkFgfIkJ0t9S/+yNRqNdGnVllDfACSrDUWlItdm5nR8rMsz0DW5zZ6Wlsa8efMYNGgQjz76aLVfL1ydOnTowKxZs8rcbp89e3adbjCaMGEC8+fPp0mTJrRv356DBw/y7rvvMmfOHPsxTz31FLfccguDBg1i6NChrFmzhpUrV7J582b7MbNmzSI0NJQ33nijzPk///xzJk+eXGZznHD9EsFTqDYPdyNeFrAdcbJusMiC5Ww8mrAApDE9UH4vW4pG2ncWn2GduCBJlc56XukmjQMnjnLw5DGahoXRdGpHmqslKLK49FrNmUSG9O7nMHh26tSJ0cNGoMouoDC3VChUqdCE+KCLCMV65hJ53m6kFOXRNCWzWuNWqVTo9Xo+/eoL2jz3CqYDlfeJB9B0aI71UDRSuybQIgTzRcefO6XIgkeRhbsibyE7J4dPPl3o8Li9e/eS8YoHXhpV8Y5zoxuqeSNRdBrMiWkoeX8Haa0aTatQND1bYd12DHIL0fSIwByXUmXAlzwMRCddIj7eedh74r4H8Yo6VOYxde/WWHYer/Tcpcnnkwjt2Qr5vbXFdUFVEs07NWPyG++z6fA+3vtsIS1atCA7LxfJ5IaSne/yuRUHlZBLh86B3XvRRG1Ev+EonL1cq9PUJAD/mzqR2UTH/lPHkWW5Vmc7FUXh/vvvx2w289lnn1XYvV+aWN957Xn44YcZNmxYve1q//DDD3nhhRd44IEHSE5OJiQkhHvvvZcXX7y8hGXKlCl8+umnvPHGGzz88MO0bt2aqKgoBgwYYD8mNja2wszpqVOn2L59O+vWravT9yBcPUQB+WtIfW0sqmp9p4/JA9uRqsOQNS4FqWPT4tm4clS7TuLvXTt9xiujKArnY2NJzclGinb9NiqFZjz1hgoPd+zQkbFDhqNNzire3VyaLGPNyKEwIRW5VQgLl37Hr6tWYtZW85+ZVsPAgQMJCwtj7d4d5HVs7LzQugSaLi1QEtMhMQN1l3AsiWlVXsI9q4h77ppj7wXvyMdffU7OiA7grkf1yETMOXmY45Ivh04Aiw1rfCpFp+PQDGqPKjwI5dtNaLq2qLwzkbue5DaB3Puo8524PXr0wCe1oGIReTctFFRj45WsFJ+j5DyygvpQDP6fbmC8JoR3X/s3AJv27CSvU5jr520RxJmLZbuylA6dw3r3J/xUBvr/rYez5Wb3Y1PQfL4Bvz9O0Lt9p0ovU5PZzv/973+sWbOGhQsXOr2tL1zbOnTowLhx4+o8dELxHyfvv/8+Fy5coKCggOjoaF5//fUyZcAA5syZw5kzZygoKODQoUNMmjSpzPObN2/mq6++KvNY69atURSFm266qa7fhnCVEMFTqBaj0VjcncVF1uRMpP7tKjwuRSdh0lQMpLUhIaHiLXw3rRYsrvfdBpBkucxf51qtltEjRqBOraLEkc2GkpDGLZHT+OvwYQoMrt1YUPt7oe/UApNGz4v3/IMX7n6IUf0HY/M1UTSkPepOzZFMbqDVIBndULdujHZwJ+S4FOQD0UgtQ7Dluj5b52VTccvNtzh9/tsfl/DrpePIj07EkpyO4qx9JYBNpuhUXPH4thxFWnMAXb92qBr7lw2gei3qVqFoe7dh6a8/VzrbedPAwfjEpFd8wmoDbTVrtToJwYatJ+hSaKB3j55ER0eT28gEWte+XgV9Itj65+VZzNKhs3FoKI1TilBvc1wE3z6sv87j9ed5OrRu6/D5qkKno9nOI0eO8Pzzz3PfffcxZsyYSl8vCIJQ30TwFKrF082AfKnqGbUScmoWUgcHi8sVuapW3bUqv6gIRa+t1muUUovnAbp17Ya2wLVb9YrVRqh/IL169WL3vr3IPpUXRNaGh6DyMlIUE48qMQMpKx+y8nDPLsKUkofKbEUK8kHdtgnavm3R9GyFcikd67LtKCcvAqBu0xhrlmtrBgE0uWZurSR4ArzxwbvkSzbkPBfWqNpkLJm5MLgDbDyM8szXqGOS0PWIQNerNboerdBFhKJacxD+8T8mDhxe6elM7kaHfyzIMUmomjuvWVmeFOJbaYknt3WHmTS0eLbl66il5E3rXVw2qRLWfq05lnbJfhei/AaKbi3bolnn2o5/adtxgoy1s9s8Ly+Pu+66i9atW7u0Q1jcZhcEob6JNZ5CtagkdfVmDhVA5eCXeJAPBbbqzUBeiQtxsXTtNwTt+STXXmByIzU7s8xDPbp2RXKhI49dVh73Rs4kNTebNI2En6cBVXbFjUKaxgEosg1ripMOQYqCm1aH7WA0SnoOkp8nKpMBJabc0gGd1uU2niXn1esrn3Weffsd6NJdD7O2jBy0Y7qjbPgL8gohahdKVMW6mADG7CK8vb3L9JAv7VJyEnJEmwr1UpV1B1E/Ngn5eKzD15Wnbt8UZW0lRe0LivDKNhMYGMjRE8f52riKWbdNxGNzqcoMJbyMmAe15SS5/PZ78Zq08qFTr9fjUaSAK5vCACw21BdSMBgNZUp41WS285lnnuHixYts3bq10h7ZgiAIDUUET6FaZEVGrVGDuTrhs+ImE9ug9qRkOV9zWdvdX/Lz88lWrPgZ3YoDURXMrYLZsGtzmce0Gg0ors14AigWK1qbRMDGk+QPb08shfgFe+KRZ4GSAKpVo/LzxHz2UqXnUum12NL/XuNbaEYKcbD78++NM67u9i5+SeUF/du1aYOq0FJV1aLLbDKKi7fBpUIL7u7uFYJnSaH3/YcPkTllJj7Hy+2st1hR4lJRd22B7WDlhfFVzRoheRiQ956q9Dh9fKa9e9WefX9ikW0M6dWXliM7IqVkI8kKio+RVEshG/fu5PyF84DjEjbu7u5Izv6IcEKKT0ffwd8ePGuyrvPnn3/m66+/5qOPPqJVq1ZVHi9mOwVBaAgieF4jrpaNRTmFBfgG+yI76KPtiMrP034r2K5pAPl6FVZr/c14Amzfv5exAwej3XAYLM4DlxLqR5LOVqbVIlD9uqOSBDYbmK24rz9K4JhOPP/2G0waP4E2rVqhkiTcDAY8UjOrPlepSyt5hcU9yTXqMhtv5HOJqJv4Y3OhtiiAbNTz+89RFR5Xq9Xo9Xry8/ORqxFiHY21MipfD3x9fZ1ucEpNTSU2PxMfXxOkl31P8pItqB8YC33aYNt/tuIsvEqFqk1j1O2bIr8T5cKYLldYaN68ORkZGSxfuxq1Wo2HhwcqlYrc3FzM5su37J3VJ5RlGcXRLH9lNGWXdVSl/GznhQsXeOSRR5g6dSp33HFH9a4tCIJQj0TwFKolLz8Pv9BG4GLw1AR6I/+88/IDwb5Ybh9C9KXzdTPASmRmZrJx/26GjeiL9tB5SCi3cUWnQW7TmART8caaCq/PzsZD625vSVkVlZsepWQnvdWG8UQCA/r05ZtSdSv/9fQ/8VCZqjyXglImaNriUlB1aIZ86PKMn3wiFk2HJi4HzwyNjf/7fBEABoOBW26+mXl3zsFkcAdZRlGryM3PQ3HzgHgX1/Vq1EiF5qpznoeBFMxOu0OV+PeH77HwlTfwXboXym1usn2yGmlSb7RT+6EkZiAnFddPlbxNqJo1gqRM5Dd+vDy7XImixj7oLupo3rx52WvYbA6XAlRWFDsvLw8ltHoVG+SWwRQUFH+Oq3uL3Wq1MnfuXLy8vJy2xCxPzHYKgtBQRPAUqkVRFLIK8vBs3Rj51MVKj1UH+0JMYnGLwQAv5BGdMTcP4OSl83U62xkcHOxwZztAYlISv2xaR+e27WjapSuqjLzidZFGPYVaiUOnT7B5xRaHs5ubtm5h5vhJaDJdG7vW3Q1rqdvEqnNJDB3Zn1Vr19gf0+vdoKjqmS5bTj6q5o2QzxTvApfjUtD2boOSnn15HaLFhnwuEU0jb6xple+8V/l74uGuZc3KVSQkJ9IqvCWmfCvq7EIoVeze382A2suI5O6GpYrlAAAafy+nazpLyx/Zia9/XVblcRcvXuTxN1/l7Wdfwmf/BTTH4sqsY1V2nCBTsXDBzUqhugCtRkPc+XOEFzam/W8nXAqdGN3I83Zzuta0NFe6sFitVrIUM26N/eGiC21VPd0p8tJjuWSp0brON954g/3797NmzRq8vb2rvp4gCEIDEsFTqLbM3BzUXt6YOjbFdupSxfWeGjWq8CDw96TI14jyz6kUyVYuZqeTF3vOpWsEBATU6jpPSZIICQnB02RCVhTOxl5gz8EDGI1G1Go1hYWFFBYWBy5nt9RjY2PJtVnw0WlRzJWv9VSbDCgX08rWoJQVdOUKSeTm5iAZ/KqcRbVl5aFvFoQcnVC8hlNRsPx5Cm33CJTmQdgOnYOsPOTdp1AP74y2kS+WlEwof/tWJaFp5IOk06K7kEiYVkuLHr0pOh3ncPmBUmjGGpOIOsAbbcsQLGcr6eyjVUOwb5Xdf2wdmxLdwpNt/7ej0uOguBVf25YRZKano+3WFM/BHbFaLeRnZmPTqrmYkcrPa5cRExNT5nXh4eE8PeFmjF9sqvIaReO7s+nAniqPcyV0ltTMPHUpFr/IPmg+XFXlmlv55v7EZaXVaF3ntm3beOedd3j++efp3bu3S68Rs52CIDQkSamrhtlCrbqSNZ4aJPKSUjkXfY42bdqg9fXCiuNZtqrWeJZmMBjwNXqgLrJC5t87nz3ckY064pISSEt3UIOxGq4keJbMeKpUKnp07Ex4aBja86loM/JAkjAHe1MU6MGRMyc5efZMhddfuFC2QL7JZKJHl24EBQYS0SoCJTkTxUmJHrXJHY0iYVuxp8LGquxRHXn41eftH3ft2pV7p92KNrPq+ptqT3fUeh3WnSfKnFcdHoy6eVDxY1YbikaNVacmtzAfW14hbrKEWqVG62lErdVgTcvCllH8/aRrGoTlUqrT91KaLjwYy4WksgXkS2g15IR68uZ/3+PxO+YS8McJtNtPlg3eHgbyR3UiOtyTh1981h70nZk0agxzJ07Hc+MJ9BuPQGFx2Fe6hZMzuQcn8lL5ZPHX2JxskJoyZjyjA1rivmyX0zWeRWO7ccwPflm/xvEBuN4Du3yh9saNgmir90Xz+R+O1xSrJOTbBpPkr6dIVfWP4fKznWlpafTr14+WLVuyYsWKSrsTlSaCpyAIDUkEz2tETYKn1qqgzTOj/PEX7DwBBUVgMiAN7QADO2B212IttweiOsGzhEajQastrpFptVqxWCykplZ9i1GtVuPj5YVeUmNFIacgn/z8ywHsSmc8U1JSmDDsJjyPJyA5moVTq7D1bEmcu8zm3TvLPFUSPD08PJg2fhIBBhNuF9KR8gqLi6B3b4nkpsOSlolstgASar0Ojbsb8vkk5B0nHO7mzxjbicdees7+sSRJvLvgLTxT813alFMU4o01twBTXDpSSjbaHq1QsvOxHrtQvAbSoEPdrgmqxv7FdUh1alIy0vHy8EAdn45SuuOPWoWuaRDm05UvmbCP1aBHFx6M+Vw8SlYeKCAZdOR66si0mXnhtVc4d+4cBoOBSWPGEjl8DIbMguLA6OVOCma++uUntu3cUeVGmhmTpjKnXX88Pvjd6YyhZWBbose0Yf7H7zudpR45aCjjBw7FeOA8ur1niz9Hblps3VuQ3yeC/edOsXHXdqfjqGnoLBHo60+n5i1Rn05AteNkcbcrgx65VwRyxyZczE53qRh++dCpKAozZ85k165d7Nq1i5CQEJfGKUKnUBM5OTm88MILLF++nOTkZLp27cp///tfevbsCcDLL7/MDz/8QFxcHDqdju7duzN//vxKZ+EXLlzIwoULOX/+PADt27fnxRdfFE0PbgAieF4jqhs89VYF1faT8MNWxwdIEtJ9o7F0aIKl1O+9mgRPRyoLnlqtlub+jTBaJDTbjyOl5YBWg7VHS6xN/IjLSicjJ+uKg2fX1u0IOByPdLHyjTG2buEc1+Sz/+jhMo9nZWUxd8btmA7FOu7fbdCjG965eIe/LCMnZaKciXdaS1NpEsBaWwI/lNtJ3rtXL2ZPm4E+pfKvcaG3gW9/XcbqNWuYOW06N0+JRH0oBiWmuDapqmMzVOFBWFOzkEuNVxPqh1xkQS636Ujt5wlWGVsV60FL0zcLQjkeh9wujExLAYcO/8V3P/7AyZMnHR7v4eGBwWAgJyenyo1EJfr27csr0+fg8fyPVfZ7N4/vzq/++fy67nenx7Rs2ZKO7drTvXV73PQ6zGYLh6NPc+DIX1gsjpdMXGngLFHSf91kMhHg7oFWpcYmy6QW5JKVk+3S7XVH6zo/++wznnzySX744QfGjh3r0lhF6BRq6pZbbuHo0aMsXLiQkJAQvvvuO9577z2OHz9OaGgoixcvJjAwkPDwcAoKCnjvvff46aefOHv2rP3fQHkrV65ErVYTERGBoih8/fXXvP322xw8eJD27dvX8zsU6pMInteI6gRPtSSh3xeD8n9rqzxWejqSwpaB9hmoug6eer2edoGN0SxaD+WLcwO4aZFvH0qin5ZL6ak1Dp8mk4k+jZqjXnfIpeOLIvvw49rfyszETR8/EePeGMe3lv+m6dQc5VwiclWF6SWJvDGdefY/b5CdXTHoDR08hGkTJuGeU4Rcbve25Kaj0FNP1KqVfPb3LvSuXbvyxl3/wP1I8eYlVcdmSCF+WOIrft71bZpQdLbirKamkQ9ydgFyjuttNvVNArF9shoUhbybOvLGysVs3ubkjxsXlNTsLO3eGXcwcHUMlC/D5YhaRcq7t/PJz0uYPGI0Ad4+SEjIKth5+ABHjx+vVpkiVwMnuB46HXF1Paej0Hn06FGGDh3K7Nmzeeedd1w6jwid1xdFUYiOjiY1NRV/f39atGjhUjWDmigoKMDDw4Nff/2VcePG2R/v3r07Y8aM4fXXX6/wmuzsbLy8vPjjjz8YPrzyDmWl+fr68vbbbzN37txaGbtwdRKbi65DugIrypItLh2rfLMR3bPTKNQX33MPCgqqtfBZniRJtG3UGM17KyHdSZAutKBatI6gu28i39OrxsGzVVgzNHtiXC58rj2TQMvm4ZyOPgtAaGgo+uTcSkMngPXYBbQD2qNYrCjOWomqJBjVjR/XrnAYOgE2bdnM8ZMnmDJxEm1btUb195pARaMmJu4CUV//QmxsLC1atCA6Opq7b5uF+7m/PzfuelThQZjPOd7J73TWUFaKx1Ytkv18xq0nmXvLbS4HT0chs8LZJYn2TZrDyW3OD9KqIcCruLwU4O/lw1MjItHvjYaM4q8fei0TuzRn5JyBLN+whuhym4/Kq6/ACVcWOvPz87nrrrto2bKlw1/4wvVv//79vPPOO5w5c3ltekREBE899RTdunWr9etZrVZsNluFTlgGg4Ht2ysuUzGbzXz22Wd4eXnRuXNnl65hs9n46aefyMvLo2/fvrUybuHqJYLndUaSJKRL6SiutnZMzECVlQ+BVdeSrA5/f/8Ks57+3j5oNh91HjpLUX27mbDnppERULNb7p5u7ijV6B6jikmmaZ+m9uDZrW0H1AddmHGzyVh2HEc7qAPkFGDbfwYl+e/ratSo2oSh6tCUo3Hn2LrT+VpCgKSkJD79v89Qq9V4enoiSRI5OTkVbgePHz+e9uERcGo/UNwS0pqS6fS8zsK3LbcAja8nsqv93dUqKL2bv8hCgFVNs2bN7Ou0SrgSMh1xd3dHlerk+yPIB+nmAdChCfLfm9mkEF+kAjP66GTIKLWUoMiCZs8ZTAdimD59OMukjZw9V7GiQnUCJzRs6AR49tlniY2NZcuWLS63xBSzndeP/fv388ADD1SYxT979iz3338/n3zyCd27d6/Va3p4eNC3b19ee+012rZtS6NGjViyZAm7du2iZcuW9uN+++03ZsyYQX5+PsHBwaxfv77K7/cjR47Qt29fCgsLMZlMLF++nHbt2tXq+IWrjwie1wgPDw+XbrerVCrXblGWFpeKKsizWrckayLY6IW0/Q/XDi6yoDmfgruHe42uVe2bThZbcUvMvxm0OnBhpzcAVhvWfWdQt2+KqmsLJOPfgUBRsMWnkV2Qx6+/r6J58+YVyv44YrPZyMjIqPB43969iRw3CVO+BX2RjZIIqArxxeJstpPiP0aQpAozn0pBESqD3uU2mxpvE/Kusms5PS5l0r9/f5d3VFdFUZTisZbXvy3SrKFYj8WibPzr8uMHAIMedcdmSB2aYvu1XCUBixW3n3YxZdYo3r3wmX0HfH0HTrjy0PnLL7/w5Zdf8sEHH9CmTRuXziVC5/VDURTefvvt4s5Y5f8tKwqyLPPOO++wePHiWr/t/u233zJnzhxCQ0NRq9V069aNmTNnsn//fvsxQ4cO5dChQ6SmpvJ///d/3HzzzezZs4fAwECn523dujWHDh0iKyuLZcuWMXv2bLZs2SLC53Wumn3dhGtCdVft1tEy3/K/aDWFVihyvde5Zn80ngZ3l36plydLOA4wTkhGN/JLlfep9o9tm1wcQA/HYNl1ovi/3SexFRQRl5ZsLx3UvHnzCt1xXDFx7DhmjRiP377z6I/Hl71FXsWXz5qWjdrH8Yy2NTkDbZNGVV5f0mtRG9xQjpdtIypZZQxujlte1kRBQQGyX9mwpHRqinT7ECxbjqAkZzp4URG2P08jZ+WhGtuj4vMWG26HYuncoSNNmzat9m312pjldHUTkbPQGRsby8MPP8zkyZOZPXt2lecCETqvN9HR0Zw9e9ZpBQdFUThz5gzR0dEOn78SLVq0YMuWLeTm5hIXF8fevXuxWCyEh4fbjzEajbRs2ZI+ffrw+eefo9Fo+Pzzzys9r06no2XLlnTv3p033niDzp0789///rfWxy9cXUTwvM7IsgwtHP/ycirUt8xsp7NffldCrVYj6bVI7ZuAm861F5mtqP/+Fq1u+IxPT4Fw19+HuV0ox2PO2j+2SVRr/aPkYUApKLspSPH3JL2pD1Erf61wfHUCaPt27RjTrS9uf8UWz0zKMug0xbe+XWBLy0Lj7w0O+ofbsvNQzGa0zYIcPg+gctejC/LDtnhzhZlRJcgHlYvjcIWiKBw8dwqlU7PL1583CsvOE1UXYj8Tj+RtBAchW334AoO7u1ZgHVwPnHV9ax2K19jdfffdeHh48N///le0xLxBuVKirjrH1YTRaCQ4OJiMjAzWrl3LpEmTnB4ryzJFRUVOn6+t1wjXHnGr/TqjKAo0CwQ3rb3gdqX8PFB8a3d9Z2n+/v6Y3Ax4u5sgIw/b2O6ojQY4eRHlx22VzrYqfibMyuXC29XpZnT+0kWadumKOtr5LWg7rQZzoCfJ+y/3nz99/hxdG/tBrGs/xNURIViOnQetBvxMFIT5Ep+ZxtJvvnRasgewh8/KbsHfPHEybifK1iGVLySjDg/GduZS8WyrWuW0jBOygiU2GX14CEUxFcs9WZMzUXm6o2sTBmYLtrQcFFlG0qjRGA0o8enYvlhXoVc6EqjaNObS1l+cjt1VpUP4wbMn6XPnJIxPxULzRshFFqiis1MJ24k4VH1aI/++v+wTFisaF+axqwqbULu31aHqP/QWLFjA3r17WbNmDT4+PlWeT4TO65Or31M16YBVlbVr16IoCq1bt+bs2bM89dRTtGnThrvuuou8vDzmz5/PxIkTCQ4OJjU1lY8//phLly4xffp0+zmGDx/OlClTeOihh4Di9cpjxoyhSZMm5OTksHjxYjZv3szatVVXYxGubSJ4XkNcXedpNmjQTe6D8kMlO4P/Js0YRJFBW6G1Ym3tbg/09UOfkot89jwl0cFKBupgbzSzhqF8vcHpa60D2pGeWTY4uho+LRYL59OTaT6wHaptx50fqFZhGd2VbQf2lnn4+OlTtB4xGve4tCqXIkgmA3l6FanNvJBtMnEJ8exc8ht5eS5u2qFs8CodQv39/fHVukNR2fdsi01GO7gTtvg0rCdi0TRrVOkGIzm3AEtccfi0FhYhJ2eimK0gSShGPTkGNeePH6F142YY9Trk4xcgKx/baQctUUved/umFNmsTnfqu/JeHcnKymLN8f2MfX4ahsQs5DjXN5cpyZmouoQ76cvlnCuBE+pnLWdp27dv5+233+bZZ5+lT58+VR4vQuf1q0WLFkRERDi93S5JEhERETXe2FeZrKwsnn32WS5evIivry+RkZHMnz8frVaLzWbj5MmTfP3116SmpuLn50fPnj3Ztm1bmXqcJeWfSiQnJzNr1iwSEhLw8vKiU6dOrF27lptuuqnWxy9cXUQdz2uMq/U83SwK0sq9UFkdyxkDkQe0pUjjeCboSoOnWq0m1NMX25HzDp/XNQuCD1ZAloM6ko39ybprMKcTHW+UcnXms1WzcJoavFDvOVNxl3vTQCw9wtl6+ABxlypeJ9DPn5s69UTzZ7Tz8Omux9wnghUb13H8eCUBt4Z8fX15oN8YVDEV64RKJjc0vdpg3XMKTf+2mGOTq+z5bvEzsuvMcbw8PPD19cVitnD85AnWbfiDvLw83nn9DQItKqTzycjbjjk/UZMA1ON6kWjO48nnnqn0mjVZ0wrQtmUrpo8Zj2rTERRH3yNOaG7qiu3LcpvYjG6kRXZnxeayjzdE4ATXQmdaWhoDBgygWbNm/Pbbb1Vu4BKh8/p34MAB7r///gobjCRJQqVSsXDhwjopqSQItUkEz2uQq+FTb1FQp+agrNgLh84Vhye1Cnq3RhrbHYu3OxYnobPElYRPTw8PvFILkJ2UNVL7eaL+6zxsKtsxCG8j1scmcjQprtLb1OBaADWZTESENcXX3QPyCos3HRnduJSRQszFOIqKikhISEBRFE6fPo3JZCI0NBSAiPAW9GzXEe3ZJLhYavZTr0UOb0RRkCdrtm4qM+tXvs/7lejQoQORTTujOCtQ76ZF064pkrcJ3HWYYxKd9l23+Bo5HH+eT/73qdPrjb5pJNM690Pn5oZKrcK2/RiUDr1+nqj6t4UgH4rSs4j6axe/ry3uc17TgFmZiSPH0C0FlFTXZ1UdBU/rkPZsNicRdzHO5bAJDRM4oXjJzG233caOHTvYuXOn/fvRGRE6bxyO6ni2atWKJ598UoRO4Zogguc1qDpdjCRJQmOVKcrIITYmhvBWEag93LFUYz9ITcOnl6cnnkl5yE5aMqp8PdCeuISy7kDxAzoNSv+2WId15GTyJftO8KpUp86nRqNBURQkSaJJaGM8jCYURSEzJ5v9Bw9w5swZ3N3dadTo8k5vnU5H24hWRDRtjlop3kReZLNy8OQx4uLinO4yrY0A2qRJE27rPQzt8SpKZKlVqJo1Qt0yBEWjwpKQDmYrkkqiUK+m0E3Fxq1bWLlqVaWn0Wg0vPKv5wlOKQKzBU2IPyqToXhdqCShWG1YE9JQFIX0xp7876svsFpdW39ZE82aNWNm5wHoDlRdhgpA8jahjgjBtnzX5Qc9DOTN7Me2v/Y7f2E5rm5mq4vQCbBo0SIef/xxFi9ezPjx4ys9VoTOG0/5zkWl62kKwtVOBM9rVHV7t2/fvp2xY8dy4MCBGv2Qqkn41Ol0BGmN2E45Dk2aVo1RUFAy80CrxuauIzE3k5TMDKdhrjKuBFCNRkOX9h3wMhhRJWcXb5iRQDG6oQR6kpKZwfpNG2u1pumVBFBJknjs3gcwbT/lWpksg57EdgGcjInG18ubwqIiflm5gujoaNzdq66J2rx5c9zc3Lhvzlx89UYkqw1kQC0hZ+ZhTUzH5mci013FF99/6/IfB9VVuuTRzeMm4r7qoEu1RtV92qDsOI6S8HcdVC93rDMHsuv0UZfW3DZ04AQ4duwYQ4YM4Y477uDdd991epwInIIgXIvE5iKhzpjNZmzePmB0K77FXYpkdKPQTcWx06dQqVTFQc9Jx0lXlYQGZwFUq9XSv2dvNBdSISe9bI7LK0RKziTQ14PIiZPY+edeLl26dGUD+lvpEFXdEKooCoeOH6V/WDCSCzvsLRGNWL9tU4Vd8qUX+VfGaDRy5y23YkjKxXruHJQqESU18kHTsSlnE2L54YeoGv1x4ExltTX3Hz1C3/5t0Gw7Uek5pFA/JJ0GOSMXKdQPS99WFPkZ2X/qCPn5zteIVqdUV3V3DFc3dObn5zNnzhxatGjB/PnznR4nQqcgCNcqETyvUa7ucK8tNd3lnpCaQmibxpCei5KUCYDUyAt8PUhNTXbYWvNKOQugPbt0RRuTXHn/9fQc3BSZLh06lpn1TEhwoSyTC2oSQrfu3EGbWXfhn1cEac6/5rZmAUQXZFYIna62VnRzc2Pe7bPxOhSH4qCNppKUgS0pg+btGjNy6HDWbnSxC5UD1SniHn0hBpPRnY5DO6DZc6ZiWSeVBK0bY+0QRkZWNtKt/cgvKuRcYhy5cbmOT8rVFThLPPfcc8TExLBlyxYMBseF+UXoFAThWiaCp+CymoRPWZaJS0rA4OaGR4viX/Q5hQUUJF0OciW/1OsygHp4eGCwSZWHzhIZefgE+aDVau2bm0o2pNRWAIWK4ctZELVarXz+/TfMunkGfiE+6GOSUXJLdVny9aAwPIAzaYks/3VlhdfLskx0dDQBAQF4e3s7Hc/4m0bheSLBYegsTXP8Il37RrDf/5BLX7Pqtqd05K/jx0hqlEbP/p3wkNVokjJRySB7u2MN9CI2OYFzu7a7NAt7NQZOgBUrVvD555/z/vvv07Zt2wrPi8ApCML1QKzxvMa5Out5pWs8S6uN+p7O1FXXjZZNm2O6lOla8KQ4zF1QF3E6+qzTY2ozhDriKIg2btyYYf0G4u/ljaQUtwa9kHCRzTt3kJ6e7vRccXFxeHt7Ow0vWq2WR+6ah/vWkw6fL0/y9eCYPyxbUbYrU22EzMoEBwfj5uaGh4cHKpWKwsJCsrIcV00orbqdr2pShPtKQmdcXBz9+/dn0KBBfPvttxW6E4nQKQjC9ULMeF7j6vuWO9RecXlH6mr20+Dm5nLoBFCy8vALrzys1MUsaGmOZkQvXrzIN0uXVPtcYWFhlT7fpnUb3C5lunw+JT2Hll071kvQLK+wsNClTU3VDZtQ/4ETime0582bh8lk4oMPPigTOkXgFATheiOC53WgocIn1N3sZ20FUKvVWlzup7oT+4qCyknv8vJKh6O6nAWtKuRVtWY0Pz8flUrlcM2nr5c3mnxz9Tr+WKyXN4bVkurU2HSkvsImXHngLPH222+ze/duVq9eja+vr/1xEToFQbgeieApXJG6nP2EKw+ge/bsQaVS0b1jJ1QaNVhtVb8IkNx05BcWVPt65YNTSRBVqVSo1eoqC+JfiaqC6b59+/Dy8nJ4nIenB5ir7mVehiRd8c72Kw2aULOwCQ0fOAF27tzJggUL+Oc//0m/fv0AETgFQbi+VaOMuHA1a8hfVrX5i9gZf39/+39VURTFXtS8Xbt2dOrUicTUVKRGPi5fTw7y4VzslRWAV6vV9O/bl5nTbubWKdOYNnYCM6dOY+Sw4fj5+V3RuWuiffv2Tvs4J6WmYA70dP1kKgmruvrBMzg4uMx/NRUQEGD/r7pc/T4qLygoqFa/19PT07n77rvp06cPTz31FCBCp1A1WZbZvXs3H374IQsWLODDDz9k9+7dtXrnobytW7cyYcIEQkJCkCSJX375pczziqLw4osvEhwcjMFgYMSIEWU6K0Hx9/ttt92Gp6cn3t7ezJ07l9xc51UnoHhZzYMPPoifnx8mk4nIyEiSkpx0cROuGWLG8zrSELfcS9T1rffSqpoF3b9/P4qi0LNnT3x8isNmWkY6YW2DISGt6kLkWjWKyQ2dTlfjMXp6etKjc1fUabko51NAUez/2ILcdIwdMJQLqYls3bG9xteoLmfleQCSk5Ox9DSiUanAhV9gSpMATpxzvvEKamc2s7SazmxCzWc3oW7+sFIUhYcffpjc3Fz+7//+z/59KgiV+e233/jss8+Ij49HrVYj/X3X4euvvyY0NJR58+ZV2emqJvLy8ujcuTNz5sxh6tSpFZ5/6623+OCDD/j6669p3rw5L7zwAqNGjeL48eP2pT233XYbCQkJrF+/HovFwl133cU999zD4sWLnV73scceY9WqVfz00094eXnx0EMPMXXqVHbs2FHr71GoP2JX+3XIUfiszV3tVamP8Fle6RCakJCAWq0mMDCwzDFenp6EB4Ygn4h1Hj41alTtmnAq9jz5BRWLjrvSHcnd3Z2+3XsiXUip/Na+nwfJtgIOHz9mH3ddi4mJQVEUwsPDKzzXumVLevo3Rf3X+cpPotNgHtSOn35faZ9Zru2QCVcWNOHKwibU7Uz+F198waOPPkpUVJTDX+SCUN6nn37KokWLqjzu7rvv5r777quzcUiSxPLly5k8eTJQ/EdUSEgITzzxBE8++SQAWVlZNGrUiK+++ooZM2Zw4sQJ2rVrx59//kmPHj0AWLNmDWPHjuXixYuEhIRUuE5WVhYBAQEsXryYadOmAXDy5Enatm3Lrl276NOnT529R6FuiRnP61BDznxC/c5+lkhISMBisdCtWzenx2RlZxMjSTTv2BwlIR0lJevypiO1CqmRNwR6c/qC49AJZcOQsxDauX0HVHFpKFWtJ03LIbCJP0ajkby8PIfhrbbDqF6vd3p7/NTZswT4+tOsY1PURy84btFp0CMPbMuBk0evOBiWVxvnu9KwCXW/dOTEiRM888wz3HfffSJ0Ci757bffXAqdAIsWLaJx48Z1MvPpSExMDImJiYwYMcL+mJeXF71792bXrl3MmDGDXbt24e3tbQ+dACNGjEClUrFnzx6mTJlS4bz79+/HYrGUOW+bNm1o0qSJCJ7XOBE8r1MNHT6hfgOowWBAq9UCZcNH+dvxmVlZ/JWTQ4CfP4Edm6JSABRsQGJqCmknj7u8btFRCNXr9bhrdCjmqmtLAkipOUSEt+DQkcMOn69qJrG6wdTRzEJp2/fuRu7Vm+Yju6COz0B1KR1sMrjrsLUMokCr4tCxv1zqe16V2gqutRE2oX7WKhcUFDB37lxatGhRaR92QSghyzKfffZZtV7z2WefMXbsWJcrc1yJkp/vjRo1KvN4o0aN7M8lJiZWuAOl0Wjw9fV1+vshMTERnU5XoelF6fMK1yYRPK9jV0P4hLoLoOfPn6ewsJA2bdo4XT5QPpSkpqYiyzJJKckkpSTX2lhKQlRQoyDUmfkulyVS8ovwDQqs+kAnanKLu7CwkPz8/DKle0qLiYslJi6WgIAAGrXwRaNWk28uIu7scQoKqr/Tv0RtzpBeS2GztFdeeYWzZ8/y559/VrrmVhBK7N27l/j4+Gq9Jj4+nr1794pZQeGqJILnde5qCZ9Q+wE0OzvbpULipVU2G1ob9FotFLpWsqmEVM+rrGNiYkhJSWHQoEGVHpeSkuLSmlZnavtWfG2FTaj/wOnh4cEvv/zCJ598wieffEKHDh3q9frCtevPP/9ErVZjs7n+c0WtVvPnn3/WS/As+beUlJRU5g/hpKQkunTpYj8mObnsH/pWq5X09HSn/xaDgoIwm81kZmaWmfVMSkqq93+/Qu0SwfMGcLWVaLmSAJqenk5ubi5NmjShY8eOFVoLVoej2dArZZNtoKremOp7d194eHitbzCr7ZAJxV8fnU6Hp96AWlIhKwp51iLyr2DWtSECJxS3xJwzZw6TJ0+u040fwvUnPz+/2j/nJEkiP9/xOvXa1rx5c4KCgtiwYYM9aGZnZ7Nnzx7uv/9+APr27UtmZib79++ne/fuAGzcuBFZlundu7fD83bv3h2tVsuGDRuIjIwE4NSpU8TGxtK3b9+6f2NCnRHB8wbh7u7e0EOooHQIcDWERkdH24PnlYROR2pjNjQzOxt//2DIdTEcadTIFAe3K5ldrA69Xn9Fr6+LkFmi5GvgptMTYPJElZwFf55CKTAjadW4R4SgNGtERkEuOU42gJXXULMjJaHTZrNx++23YzQa+fzzz2v9+1a4vrm7u1e7Xq6iKLX6Mz83N5ezZy+XT4uJieHQoUP4+vrSpEkTHn30UV5//XUiIiLs5ZRCQkLsO9/btm3L6NGjmTdvHp9++ikWi4WHHnqIGTNm2NedX7p0ieHDh/PNN9/Qq1cvvLy8mDt3Lo8//ji+vr54enryj3/8g759+4olBNc4ETyFWqdRqdAqElhsoFYhqyTMyJX+8KxsFrSgoIC8vDz8/f3p2rWrSwvmVSoVRvfiupRFFnO1Z8lqOhuam5uL0kQHkuRSm07Jz5NLycXv2VmgKx1IJUkiqFEjmjcOQ6Mu/uebmplB9PkYioqKXBojFH+eL1y44HS2obLx1CZHt8/d3dwIkNxQft6FYrbaH1cA0k7BntP4DmqP1s+T9Nxsh+dtyFtx5e8w/Pvf/2b79u1s3LjR6bpaQXCmZ8+efP3119V6jc1mo2fPnrU2hn379jF06FD7x48//jgAs2fP5quvvuLpp58mLy+Pe+65h8zMTAYMGMCaNWvKtOf9/vvveeihhxg+fDgqlYrIyEg++OAD+/MWi4VTp06Vmal977337McWFRUxatQoPvnkk1p7X0LDEHU8bxBbtmxhyJAhnD59uk5/KetVaohLxXYm3l6IXPIxoenWksIqwmd5JSF0z549ZGRkMGrUKJdmi7xNnnjp3FBikqDADP6eEOJDYkYa5lpqWVlZEPX39SXMyx/5YuVhVdJrsYX5ceTEcZeu6ePlTdPgEKSUbJSEdHuNUMnHiC3Yl8yiAg4ePVxlB5OAgADS0tK4ePEi7du3R6Opv78/q1qnqdFoCHX3Qlm+q3g3fSWk4V1IMUplWpteTYETYMeOHQwaNIjnn3+eV155pQFGJVzrZFlm8uTJ1dpgFBoayvLly+tlV7sgVJcInjeI0sEzIiICcFxo/kqoVSq0KTlY/zpX4TnJ5Ia6dxsKFdcWyNtsNvLy8vD09KSwsBBFUcjKqrpEkYe7EZ8ikP+KKfuEToO6X1vi0lPqpLVc+SDaOCSUADcj8iXHnZIkoxtKiA/Hz5x2qX+7n48vTXz8UY7FOp1Jlfw8MIf5cfzM6TIB32Qy0cjPH51Wi02WyczJJjUtrU5b7JWo7oYgf09v3HechoT0qg/Wa5En98aqb9gbN87WUGdkZNClSxfCwsLYvHlzvQZ84fry22+/8fLLL7t8/Msvv1xvdTwFobrET8IbWG3veNcqErbTFx0+p+QWIhVZQefa+rbdu3eTlJTElClT7LdrSpefcbYm1MfogbzvSMUnzFbkExfxbuFPerZrNTaro3zAuhh/iTwfHxo3D0ZttqLKKQ7PaDUo3kZy8nM5f+qkSztVNRoNTQKDUA5FV7oTSUnLQadWExYcQmz8JUwmE+FhTVDlmyElG8VsQVKpcPcyEtK6LamZGfx5YH+tdh260p3nRpW2eDbXFUUWtDlF2Ny01V4DV1uchU5FUZg3bx7Z2dl8//33InQKV2T8+PFcvHjR5c5FInQKVzPx0/AGV5vhUwKUArPT55WCQiR95QvlzWYzOp2Ojh070qZNG6e31svfUk1MTEStVkNeodN2mEpSBu5tG5NO7QfP8koCWEJqMvn5+ZiMRlRqNeaiPDJPXajWbGNwQCDEJru0/V1JzsS3cQuy8nIJDwpFPpOAUuqWtWKTITULUrPwC/AkIrwFiSnJmEymar9HqN0SR2q1GiUzt1qvUS4kow7ysrfurC9VVYpYtGgRUVFR/PTTTzRt2rSeRiVcz+677z4aN27ssFe7zWYjNDSUe+65h3HjxjX0UAWhUiJ4CvZfolcaQGX+voWc57i2puRuqDR07tu3j/j4eMaPH4+np2e1rh0UFIQkSahyzS4Xb68v7u7uyIqCbLOiUqmqfYvb18sbJTra5eOltBxaNG6K7WQlPekBUrJp2SgAk6cHiUlJLp27NoNmeZIkIdmUapWXUqpR27A2uFKa7Pjx4zzyyCPcc8899h7TglAbxo8fz9ixY9m7dy9//vkn+fn5uLu706tXL3r16iUqJgjXBBE8Bbsrnf20SAq6NmFY95+p+KSXEVmnhkrWeDZv3hwfH58aL4hXFAXJ5FZcR9NB4FIF+5Jjrl7B+bpQ3R3zUhWbbMpT63XYEtIrD51/U5IzadS6scPgWZch0xGbzYbK24vqREmVvyeWelirCq6FzsLCQmbMmEGzZs1477336mFUwo1GpVLRp08fUVJIuGaJ4CmUcSWzn7IsI3sb0XQKx3oyFv4uhSMF+aDp0MzhxqKTJ08SFxfHiBEj8PPzw8/P74rGb0FB07UF1v1nyz6h16Jp3xQ9NoLcDVdVr19HAe9KitmrPI1YLrn4egVsGTn4+vo22A7Y0ssmFFkCk8G1OqiShNS0UZ1vkqpOA4annnqK06dPs3fv3quydq4gCEJDE8FTcKims59mxYY60BNdQIficjgqFTYVFMiO1+B5eHjg4+NTPFtZC7eJrIqM5GtCO6wztpgkyC9CFeiFFORLoSRTch/e0RrRq0npMKrSaV1fPiBR7Y022iIbBjc3iizO1+fWNmdljywaCV3v1tg2HKryHFKbxljUEnXV+6m6Hb9WrFjBRx99xEcffUSnTp3qZEyCIAjXOhE8BadqOvtpk20UAKgAbJRPTRcvXuTSpUv07t2b0NBQQkNDa2O4dhZFxqICTatgJKV4FtQmWyvNJ1dzEM0tzMfo54mS5rhYellStVt2oigYDIY6D56u1Ni0yTJyqC+qLuHIhyqW5bIL9UPVsxVF1box75qatJi9dOkSd911FxMnTuSBBx6o9TEJgiBcL0TwFKpU22WXCgsLyc7OxmazFe9EryPWK9h4UpN2nnUlMycHj2aNsKXnVNkNSWrkA+pq3jI36ElNT8NisZQpWVUbalLQvQgZXadmqJsEYvuzbE1PyduEqkdLlGBfCmo5dNYkcMLllpgGg4EvvvhCbPAQBEGohAiegkuudOd7ZmYmiYmJtGnThpYtW9KyZcvaHF6daugQKssyqbnZ+Hdsju1ojNNNQ1KAF3JjX3IL8tGbDCgu9ouXfE38+slXdOrUyd5c4ErURvcgMzKSjwHtiM6obUrxBitJQtaqKFJLtbqus6aBs8Sbb77Jli1b2Lhx4xWvURYEQbjeieApVEtNA2hcXBxnzpyhZcuW13Qx7YYKoXkF+cgoBHSPgNRs5EupxZu3JJB8PZHC/ClCJik5qbjtZGN/rCfjqjyvysdEvrmIkSNH1riWJ9RNq0pFUTBLFP+U0pTM4iou7dZ3xZUGToCdO3fy0ksv8dxzzzFkyJArH5QgCMJ1TrTMvEE4aplZGyoLoGazmeTkZBo3bmwvcnwth87K1GcIdTcY8DaaUKnUoCjkm4vIys0p0wXJy8MTL0lTvMHKCcnDAE0CuJSUWOPOPw3ZG72maiNwQvEsfpcuXQgJCWHr1q3X7fe2IAhCbRI/KYUrUvqXePkQevz4cU6cOMH06dPRaDTX9S/m+pwJzS8oIL+g8tvoWTnZKCYPfNo1QU7KRC61PlRy16MK9sWqU5NQKnRu376doKCgKpdBXIthE2ovcELxbOw999xDZmam6MMuCIJQDeKnpVBrPDw8UBSFuLg4fHx86Nix4zV/a70mSoJZQ29Kys7NIScvF08PDzwahSEpgARmq4X07CwsmZYyx3t4eKDX652eTwTOy7744gt++uknli5dSrNmzWr9/IIgCNerGysRCHXu0KFD/PXXX9x6663odLo63bV+tbsaAqiiKGTlZJOVU3Upps6dOzt8XATOsk6cOMHDDz/M3XffzfTp0+vkGoIgCNcrETyFWmE2m9HpdLRv356goCB0Oh1Q+a34G8XVEEBdlZ2djdVqpV27dg09lBqrq8AJxaXAZs6cSZMmTXj//ffr7DqCIAjXq4bpkSdcV44fP85PP/1kD5/BwcEOj/Pw8LD/dyMKCgq66mcPo6OjiY+Pb+hh1Eh9fG/985//5MSJE/zwww8YjcY6vZYgCML1SMx4CjVW0uayZI1bySynK27kmdCGrgvqSMmYBg4ciJubWwOPpnrq6w+ZlStX8sEHH/DBBx84XZYgCIIgVE4ET6FGYmJiOHToEBMmTMDd3f2Kbs2WDw43UhBt6Nvw5Wdgr6SWZ32rz5nz+Ph47rrrLsaPH89DDz1Ub9cVBEG43ojgKdSIt7c3AQEBdXLuGzGI1ncAreyW/9GjR8nIyGDgwIH1Mpbqqu+lGiUtMXU6HV9++aVoiSkIgnAFRPAUXJacnMzRo0cZMmQIPj4+DBgwoF6ueyPdlq/LAOrq+lI3N7erduazIdYHv/XWW2zevJk//vgDf3//er++IAjC9UQET8FlsiyTl5eH2WxusHWAN8psaG2tA63JZqaqCsg3hIbakLZ7925eeOEFnn32WYYNG9YgYxAEQbieiJaZN4iatszMy8vj1KlTdOvWrQ5HVzuulRCqUqlQ/X27VlYUZFmu9jkchVFXQqZarUaSJHsLU2cKCwtJS0sjNDS02mOrbQ0VOrOysujSpQtBQUFs3boVrVbbIOMQBEG4nogZT6FSKSkpnDhxgjZt2uDu7t7Qw6nU1X5LXqNWo9VokM1W5EIzAFqdFpXeDavNisVqdflc1ZnJlCQJnVVBXWhBOXYWJacAjAb07Zsgu+so0kgVerWfPn2aw4cPM3PmzAZtAtBQoVNRFO69917S09PZuHGjCJ2CIAi1RARPoQKr1UpsbCzh4eE0a9aMxo0bX3NtL0sCy9USQPU6HUqhmaL0sh2EbAWFAKhNBtwMBgrNRbV6XZUk4VZgQ16+E1tiRtlr7zqBFOCFYWo/Co06ZOXyzGvr1q2JiIhosNDZ0LVev/rqK3788Ud++OEHmjdv3qBjEQRBuJ6IAvJCBefPn2fTpk3k5uYCXHOhs7SroWi9TqtFLijEmpPn9BhbbgHW3Dz01aiFWhVJknArtGH7cj1KudBZQknJwvbletzyLWV2a+v1egwGQ62NpToaOnSeOnWKhx56iDlz5nDLLbc06FgEQRCuNyJ4CnapqalA8eaSm2+++ard2VxTDRVA1ZIKW25BlcfJBUVIslJr5Xq0NrD9vg/+vq3vlNmKvHIPunJLPhMSElixYkWla0FrW0OHzqKiImbMmEFYWBgffPBBg45FEATheiSCpwAUt0pcvnw52dnFt4IbOgDUpfoMoFqNBmtuvsvHW3Pz0dbSDLPGYoOYJJeOVS6loS6ylHnMYDDg6+uL2VxFcL2OPPPMMxw/fpwlS5aIlpiCIAh1QATPG1xhYfEaw+bNmzN27Fg8PT0beET1pz7Cp1qlxlbo+rpNuciMWnXl/yxVKhVKXGq1XqNEJ6IqdW1vb28GDBhQb7fcG/qPndWrV/P+++/z1ltv0bVr1wYdiyAIwvVKBM8bWGxsLEuWLCE7OxuVSnVVlM6pb3U++ykBDVWxrKpb7A6OL3+b32azERcXV6OST9XR0KEzISGBO++8k3HjxvHwww836FgEQRCuZyJ43oBKSueEhITQs2fP624tZ03UWfBRFKRqzmDWRkxVFAU8qjlT6eleoaxSZmYmf/zxB8nJybUwqquTLMvMmjULtVotWmIKgiDUMRE8bzApKSksXbqU/Px8NBoNHTp0KHN79UZWF+HTYrOhNroeANXublhrYTOPoihIIX7g6tdWkpCaNaows+nn58eUKVNq1AHJVQ092/nOO++wYcMGvvvuOwICAhp0LIIgCNc7kThuMIqiEBwc3KBFwa9mtX3r3WazoTa43l5UY3THWo1C8pWxaCWkjk1dOlZqHYpF6/jHgbe3d62M52q0d+9ennvuOf75z38yfPjwhh6OIAjCdU+0zLxB7N27l379+iHLMgMHDiQyMpKpU6fSuHHjhh7aVau2is+r1Wq0SJjTsyo9TuvtgU2lwmqrneAJ4G6TkJdsQUmp5Nq+HqhvH0K+k79FCgsL2bhxI926dauTmc+GmvHMzs6ma9eu+Pv7s337dtGdSBAEoR6IGc8bRK9evUhMTGTRokUYjUaefPJJwsLC6Nu3L++88w4xMTENPcSrTm0FIpvNhhUFvb8PKgfhRtJq0Pl5I6trN3QCFGhAmjkYqVcr0JZLlho1UrcWqG8fSoHG+bpGNzc3TCZTnSzJaMiWmPfffz8pKSksWbJEhE5BEIR6ImY8b1CZmZn89ttvREVFsWbNGgoLC+natSuRkZFERkbSpk2bhh7iVaO2Zj4lSUKn0aJSSSjW4nWcklqNjILFaq3TneMaSYXWLCNl5KDkFyEZ9Ci+Hlh0KqxK3e5Yr0xDBc9vvvmG2bNns3jxYmbOnNkgYxAEQbgRieApkJuby++//86yZctYtWoVeXl5tG/f3h5CO3bseMPv9K3tnu8ln8+G+OdX02unpKSg1+trtdZrQwTP06dP061bN6ZPn86XX35Z79cXBEG4kV0TwbNZs2YMGTKEr776qqGHUutefvllXnnllQYJII4UFBSwbt06oqKiWLFiBVlZWbRs2dIeQnv06HFDh9DaDqDXCkVR+OGHH2jVqhXdu3evtfPWd/A0m8307duXnJwcDhw4IEqJCYIg1DOxxlMow2AwMGnSJL755huSk5P5/fffGTx4MIsWLaJXr140b96cxx9/nB07dtR5UfGrUUOX/mkokiQxduxYunXrVmvnbIjP5b/+9S+OHDnCDz/8IEKnIAhCAxDB04miItfbHF6vdDodo0ePZtGiRSQmJrJhwwbGjRvHkiVLGDBgAI0bN+ahhx5i06ZNtVYC6FrQUOHTzc0Ng5sbBoOhVtpqVpeXl9c1Pdu9Zs0a/vOf/7BgwYJaDdCCIAiC66r92+vll19GkiROnDjBlClT8PDwIDQ0lEcffdTe93vz5s1IksTmzZvLvNbZ4ytWrGDgwIH2GordunXjhx9+qHQccXFx3HnnnQQFBaHX62nbti2LFi0qc0xKSgr33XcfrVu3xmg0EhoayuTJkzl9+nSZ47766iskSWLjxo3ceuut+Pr60qJFC5c/J66MBWDbtm306tULNzc3mjRpwr///W+Ht9jT0tK444478Pb2xtPTk+nTp7N7924kSaqw3GDnzp2MGjUKLy8vDAYDAwcOZPv27S6P3VUajYZhw4bx8ccfc+nSJbZv384tt9zCihUrGDZsGMHBwcybN481a9ZgNlezVeM1qL7Dp16vx1JURGF+PoV5eeh0ugYJgTt37uTQoUP1ft0rlZiYyOzZsxkzZgyPPPJIQw9HEAThhqWp6QunTp3KHXfcwUMPPcSOHTt45ZVX8PLy4pVXXqnWeRYuXMgDDzzAmDFj+OKLL/D29uavv/7i/PnzTl8THx9P7969MZlMvPnmm4SGhrJ69Wruuece8vLy7L9Y0tPT0el0zJ8/n8DAQFJSUvjkk0/o06cPJ0+eJDAwsMx5Z8+ezbRp0/jxxx8pKChwafyujuXw4cOMHDmSdu3a8d1336FSqViwYAHx8fEVzhkZGcn+/ft57bXXaN++PevWrXO483bdunWMHz+eYcOG8eWXX6LX6/n4448ZPnw427dvp2fPni69h+pSqVT079+f/v378+6777Jv3z6ioqJYtmwZixYtwtvbm4kTJxIZGcnIkSNxc3O9gPq1xMPDo97WfKokCblURyOb1YpKpcJWC12OqsNoNOLu7l6v17xSsiwze/Zs+x9uolOXIAhCA1Kq6aWXXlIA5aOPPirz+Lhx45SIiAhFURRl06ZNCqBs2rSpzDHlH8/OzlY8PDyUkSNHVnrNpk2bKrNnz7Z/PG/ePMXb21tJSEgoc9ycOXMUHx8fpbCw0OF5rFarkpeXpxiNRuW9996zP/7ll18qgHLfffdVOg5HXB3L9OnTFQ8PDyU9Pd1+THZ2tuLr66uU/jKsX79eAZSvv/66zPkeeOABBVC+/PJL+2MRERFK3759FZvNZn/MYrEorVu3VsaMGVPt93KlZFlWDh06pLzwwgtKu3btFEAxmUzKLbfcoixdulTJzc2t9zHVl+zs7Dr9r6ioSMnNyVFyMjOVnMxMxWw2Kzk5OXV+3br8r768/fbbCqCsW7eu3q4pCIIgOFbjP/0nTJhQ5uOOHTsSGxtbrXPs3LmTnJwc7rvvvmq9bvXq1YwcORJ/f3+sVqv9v9GjR5ORkcHhw4ftxy5atIhu3brh6emJRqPBaDSSl5fHqVOnKpx3ypQp1RpHdcayZcsWRo0ahY+Pj/21Hh4eFT6Pu3btAmDatGllHr/55pvLfHz27FnOnDnD7bffjizL9usCjBgxgi1btlT7vVwpSZLo3Lkzr776KseOHePEiRM888wznDp1iptvvhl/f3+mTp3K999/T1ZW5V18rjV1feu9qKgIvV6P3mDAzWjEarE0WCWEnJwckpOTr+gc9bVU4c8//+TZZ5/l6aef5qabbqqXawqCIAjO1Th4+vr6lvlYr9dXe0NOamoqQLXbNiYlJbF06VK0Wm2Z/0rCWcl5P/nkE+bNm8fAgQNZunQpe/bs4c8//yQgIMDhrfTg4OBqjaM6Y0lLS3PYbrD8Y/Hx8ZhMpgq3Mxs1alThugAPPvhghWt//PHH5Ofnu7xcoK60adOG5557joMHDxIdHc2rr75KfHw8t99+O4GBgYwbN44vv/yStLS0Bh1nbanrMFVQWEhhUREFBQVY6/kWe2kHDhxg9+7dDXZ9V+Xk5DBz5ky6du3Ka6+91tDDEQRBELiCNZ6VKVnTVz6Ilg8Y/v7+AFy6dKla6xH9/Pzo1asXL774osPnIyIiAFi8eDHDhg3jv//9r/05s9lMenq6w9fVZLOGq2Px8/MjMTGxwvPlHwsJCSE3N5f8/Pwy4bMkaJa+LhRv9ho3bpzDa+v1etffSB0LDw/nqaee4qmnniIuLo7ly5ezbNky5s6di0qlYujQoURGRjJlypQKIftaUhI+r+d6nz169ECn0zX0MKr04IMPkpyczNq1a6+J8QqCINwI6iR4Nm3aFIAjR44watQo++MrV64sc1y/fv3w8PDgf//7H5MnT3b5/GPHjmXTpk20adOm0lp8+fn5FZ7/+uuva3VDhqtjGTx4MGvWrCEjI8N+uz0nJ6fC56Rv374ALFu2jFmzZtkfX7p0aZnjWrduTXh4OEeOHOGll16qrbdTL8LCwnj44Yd5+OGHSUxM5JdffiEqKoqHHnqIBx54gAEDBjBt2jSmTp1a7dnwq0V9bjyqb0aj8YpeXx+32b/99lu+/fZbvvvuu2pVqBAEQRDqVp0Ez+DgYIYOHcqbb76Jn58foaGh/Prrr2zdurXMcR4eHixYsIAHHniA8ePHc+edd+Lt7c3Ro0cpKirin//8p8Pzv/baa/Tu3Zv+/fvz8MMP06JFC3Jycjh58iSbN29m1apVAIwZM4Y33niD1157jX79+rF7924++eQTvL29a+29ujqW559/npUrVzJixAj+9a9/IUkSCxYswGg0lpmBHTFiBIMHD+bBBx8kPT2d9u3bs379evt5SnbkSpLEp59+yrhx45g0aZL99nVKSgoHDhzAYrHw9ttv19r7rCtBQUHcd9993HfffaSlpbFixQqWLVvGk08+ySOPPELv3r3tXZPCw8MberjVcj3Pfp45c4YLFy4wYsSIar2uPkLn2bNneeCBB5g1axa33XZbnV9PEARBcF2d1RX57rvvGDhwII8//jgzZ85EURQ+/PDDCsfdf//9/Pzzz6SnpzNr1iymTJnCd999R/PmzZ2eOzQ0lH379tGvXz9eeeUVRo4cydy5c+3BrsQLL7zAgw8+yMcff8zEiRP5448/WL16NV5eXrX2Pl0dS6dOnVi7di0qlYpbb72VRx55hMmTJ3PXXXdVOGdUVBSTJ0/mpZdeYurUqZw9e5ZPPvkEoExovummm9i5cycqlYr777+fkSNH8thjj3Hs2DEGDx5ca++xvvj5+XHXXXexatUqUlJS+O677wgJCeHFF1+kRYsWdO3alfnz53Py5MmGHmq1lNSnvZ64ubnh4eFx1bR6LWE2m5k5cyZBQUF89NFHDT0cQRAEoZxrole7AAsWLODZZ5/lwoULhIWFNfRw6lVeXh6///47y5YtY9WqVeTm5tKuXTv7TGinTp2uqY461+MMqCvKh29FVlD+brsqqSSkWqiv+fTTT/P++++za9euWu0pLwiCINQOETyvQt988w1paWm0b98eRVHYsmUL7733nr0U0Y2ssLCQdevWERUVxYoVK8jMzKRly5b2ENqjRw8RQuuJ2WwmOTnZpXW45UOnbLVhycnDmlcAioJKr0Xn7YlKq6nx12/dunWMGjWKd955hyeeeKJG5xAEQRDqlgieTiiKUuUmJLVaXSch5+eff+b1118nOjqagoICwsLCmDFjBi+++OJVtVO9oZnNZjZu3EhUVBS//PILqampNGnShKlTpzJt2jT69u17zXSpuRYD6JkzZ9i+fTszZ8502p3K0RID2WajKDUD2Wyt8JwhyA+VVlvtsSQlJdG5c2e6dOnC6tWrr5mvuyAIwo1GBE8nNm/ezNChQys9ZtOmTQwZMqR+BiRUymq1sm3bNqKiovj5559JSEggODiYKVOmEBkZyaBBg9Bo6mQvXa27VkKoxWKhqKjIYTWHyta02orMFCY7LmmmNujR+3pV67a7LMuMGzeOAwcOcPjw4Wu6HJcgCML1TgRPJ3Jychx2NyqtdevW192mkeuBLMvs2rWLqKgooqKiiI2Nxd/fn0mTJjFt2jSGDRt2TdV1vFaCKLi2a92cnYslK9fxkyoVhkZ+qDRql6/57rvv8sQTT7BmzZoy5dsEQRCEq48InsJ1TVEU9u/fT1RUFMuWLePs2bN4eXkxceJEIiMjGTlyJAaDoaGHWW1XQxj18PAgLS2NLVu2MGbMGJc/j9a8AorSHbdMlbQa3AJ8UKldC5779++nb9++PPLII9dE+TBBEIQbnQiewg1DURSOHDlinwk9duwYRqORcePGMW3aNMaMGVNpE4BrzZWGU1dmLwsLC9mxYwc9e/bE09PTpfPKVhsFiSng4CeP3tcLjdG1AJuTk0O3bt3w8vJi586d19QstiAIwo1KBE/hhnXq1Cn7TOjBgwdxc3Nj9OjRREZGMmHChFqt9ypcpigKcpGFwtQMKPXjR2M0oPUyuTzbeeeddxIVFcWBAwfsrWkFQRCEq5sInoIAnDt3jp9//pmoqCh2796NVqtlxIgRTJs2jUmTJuHn59fQQ7xqybJMQkICAQEBLs86KoqCYpORLVZQ5OKd7CoVKrVrm4q+//57br/9dr755hvuuOOOKxm+IAiCUI9E8BSEci5evMjy5ctZtmwZ27ZtQ6VSMWTIECIjI5kyZQpBQUENPcSrSn5+Pt999x3Dhw+vl77o0dHRdO3alUmTJvHtt9/W+fUEQRCE2iOCpyBUIikpiV9++YWoqCg2btyILMsMGDCAyMhIpk6desN1kXImMzOzTDvXumI2mxkwYADp6ekcOHDA5XWlgiAIwtVBBE9BcFF6ejorVqxg2bJlrF+/HrPZTK9evexdk+pjtu9G98wzz/Cf//yHnTt30rNnz4YejiAIglBNIngKQg1kZWWxatUqoqKi+P333ykoKKBLly72ENq2bduGHmK9stlsrF27ljZt2hAeHl4n11i/fj0jR47krbfe4qmnnqqTawiCIAh1SwRPQbhCeXl5/P7770RFRfHbb7+Rm5tL27ZtiYyMZNq0aXTq1Oma6h9fU9u3b6dZs2Yu9W6vruTkZDp37kzHjh1Zs2aNaIkpCIJwjRLBUxBqUWFhIevXrycqKopff/2VzMxMWrRoYZ8J7dmz5w0RQmuTLMuMHz+effv2cfjwYbG5SxAE4Romgqcg1BGz2cymTZuIioril19+ISUlhbCwMHsI7dev33U3c5eeno4kSfj4+NTaOd9//30ee+wxVq9ezZgxY2rtvIIgCEL9E8FTEOqB1Wpl+/bt9q5JCQkJBAUFMWXKFCIjIxk8eDAajaahh3nFli1bhr+/P0OGDKmV8x04cIA+ffrwj3/8g//85z+1ck5BEASh4YjgKQj1TJZldu/ebQ+hFy5cwM/Pj8mTJxMZGcnw4cOv2faP2dnZmEymWpnJzc3NpXv37phMJnbu3Iler6+FEQqCIAgNSQRPQWhAiqJw4MABe+vOM2fO4OXlxYQJE4iMjGTUqFEYDK71Lr/ezJkzh6VLl3LgwAFatWrV0MMRBEEQaoEInoJwlVAUhaNHj9pnQo8ePYrRaGTcuHFERkYyduxYTCZTQw+zSvv27cNisdC3b98an2PJkiXceuutfPXVV8yePbsWRycIgiA0JBE8BeEqdfr0aftM6IEDB3Bzc2PUqFFERkYyYcKEeukUVBPHjx/HarXSqVOnGr3+3LlzdO3alfHjx/Pdd9+JKgCCIAjXERE8BeEaEBMTw88//0xUVBS7du1Cq9UyYsQIIiMjmTRpEv7+/g09xFphsVgYOHAgycnJHDp0SLTEFARBuM6I4CkI15iLFy+yfPlyoqKi2LZtG5IkMXjwYKZNm8aUKVOuijqX+fn5ZGVlERwcXK3X/etf/+Ltt99m+/bt9O7du45GJwiCIDQUETwF4RqWnJzML7/8QlRUFBs3bsRms9G/f38iIyOZOnUqTZo0aZBx7d69m7Nnz3L77be7/JoNGzZw00038cYbb/DPf/6zDkcnCIIgNBQRPAXhOpGens6KFSuIiopi3bp1mM1mevXqZS9Y36JFi3obS0FBASqVyuUSSCkpKXTu3Jn27duzdu3a666wviAIglBMBE9BuA5lZ2ezatUqoqKiWL16NQUFBXTu3NkeQtu1a9fQQ7RTFIUJEyawZ88eDh8+XO3b84IgCMK1Gabb1wAACjtJREFUQwRPQbjO5eXlsWbNGqKiovjtt9/Iycmhbdu29hDauXPnOtk5fv78eQ4fPsyECRMqPf8HH3zAI488wqpVqxg7dmytj0MQBEG4eojgKQg3kMLCQv744w+ioqL49ddfycjIIDw83B5Ce/XqVWshNDk5mVOnTtGnTx+0Wq3DYw4dOkTv3r154IEHeO+992rluoIgCMLVSwRPQbhBWSwWNm3aRFRUFMuXLyclJYWwsDCmTp1KZGQk/fr1Q61W19n18/Ly6N69OwaDgd27d4uWmIIgCDcAETwFQcBms7F9+3Z716T4+HiCgoKYMmUKkZGRDB48GI1GU+3zWq1WLl26RNOmTSs8d/fdd7NkyRIOHDhA69ata+NtCIIgCFc5ETwFQShDlmX27NljD6Hnz5/Hz8+PSZMmERkZyYgRI9DpdC6d6+LFi6xevZrp06fj4+Njf/zHH39kxowZfPHFF9x111119VYEQRCEq4wInoIgOKUoCgcPHmTZsmVERUVx+vRpPD09mThxIpGRkYwaNQqDweD09bIsk5OTg5eXl/2xmJgYunTpwtixY1m8eLFoiSkIgnADEcFTEASXKIrCsWPH7DOhR44cwWg0MnbsWCIjIxk3bhwmk6nSc1gsFgYNGkRiYiKHDh0qE0gFQRCE658InoIg1Mjp06ftIXT//v3o9XpGjx5NZGQkEyZMwNvbG4CcnBw2btzIoEGD+M9//sObb77J9u3b6dOnT8O+AUEQBKHeieApCMIVO3/+PD///DNRUVHs3LkTrVbL8OHD7SH0yJEj5ObmMnXqVObPn8+zzz7b0EMWBEEQGoAInoIg1KpLly6xfPlyoqKi2Lp1KwBDhgzhxIkTtG3blnXr1tVpmSZBEATh6iWCpyAIdSY5OZlff/2VqKgoDh8+zL59+wgJCWnoYQmCIAgNRARPQRDqhc1mEzOdgiAINzgRPAVBEARBEIR6oWroAQiCIAiCIAg3BhE8BUG4Ltx55500a9bM/vH58+eRJImvvvqq3sbw8ssvi4L4giAIlRDBUxAEQRAEQagXIngKgiAIgiAI9UIET0EQGtyRI0eIjIzE398fNzc3IiIieO655+zP79y5k1GjRuHl5YXBYGDgwIFs3769TsYSFxfHnXfeSVBQEHq9nrZt27Jo0aIKx23bto1evXrh5uZGkyZN+Pe//42jvZppaWnccccdeHt74+npyfTp09m9e7fDZQD1+T4FQRAagqahByAIwo1t//79DBo0iLCwMN5++22aNm1KTEwMO3fuBGDdunWMHz+eYcOG8eWXX6LX6/n4448ZPnw427dvp2fPnrU2lvj4eHr37o3JZOLNN98kNDSU1atXc88995CXl8cjjzwCwOHDhxk5ciTt2rXju+++Q6VSsWDBAuLj4yucMzIykv379/Paa6/Rvn171q1bx8yZMyscV5/vUxAEocEogiAIDWjw4MFKQECAkpmZ6fD5iIgIpW/fvorNZrM/ZrFYlNatWytjxoyxPzZ79myladOm9o9jYmIUQPnyyy9dHsu8efMUb29vJSEhoczjc+bMUXx8fJTCwkJFURRl+vTpioeHh5Kenm4/Jjs7W/H19VVK/1hdv369Aihff/11mfM98MADFcbm6vsUBEG4lolb7YIgNJj8/Hy2bdvGzJkz8fLyqvD82bNnOXPmDLfffjuyLGO1WrFarQCMGDGCLVu21Op4Vq9ezciRI/H397dfy2q1Mnr0aDIyMjh8+DAAW7ZsYdSoUfj4+Nhf6+HhwYQJE8qcb9euXQBMmzatzOM333xzg75PQRCEhiJutQuC0GAyMjKQZZnGjRs7fD4pKQmABx98kAcffNDhMQUFBRgMhloZT1JSEkuXLmXp0qUOn09NTQWK120GBQVVeL78Y/Hx8ZhMJtzd3cs83qhRowrXhfp7n4IgCA1FBE9BEBqMj48PKpWKS5cuOXzez88PKK6POW7cOIfH6PX6WhuPn58fvXr14sUXX3T4fEREhP24xMTECs+XfywkJITc3Fzy8/PLhM+SoFn6ulB/71MQBKGhiOApCEKDcXd3Z9CgQSxZsoRXX30VT0/PMs+3bt2a8PBwjhw5wksvvVTn4xk7diybNm2iTZs2mEwmp8cNHjyYNWvWkJGRYb/dnpOTw8qVK8sc17dvXwCWLVvGrFmz7I+Xn1Gt7/cpCILQUETwFAShQb3zzjsMGjSIPn368PTTT9O0aVNiY2PZtm0bixYt4tNPP2XcuHFMmjSJ22+/ncDAQFJSUjhw4AAWi4W333671sby2muv0bt3b/r378/DDz9MixYtyMnJ4eTJk2zevJlVq1YB8Pzzz7Ny5UpGjBjBv/71LyRJYsGCBRiNRtLT0+3nGzFiBIMHD+bBBx8kPT2d9u3bs379evt5VKriZfaSJNXr+xQEQWgoYnORIAgNqnv37uzatYuIiAgee+wxxo4dy/z58wkJCQHgpptuYufOnahUKu6//35GjhzJY489xrFjxxg8eHCtjiU0NJR9+/bRr18/XnnlFUaOHMncuXPtIbNEp06dWLt2LSqViltvvZVHHnmEyZMnc9ddd1U4Z1RUFJMnT+all15i6tSpnD17lk8++QQAb29v+3H1+T4FQRAaiqQoDioeC4IgCHVmwYIFPPvss1y4cIGwsLCGHo4gCEK9EbfaBUEQ6tA333xDWloa7du3R1EUtmzZwnvvvcfMmTNF6BQE4YYjgqcgCNc9RVGw2WyVHqNWq5EkqdavbTKZeP/994mOjqagoICwsDAef/xxpzvnBUEQrmfiVrsgCNe9zZs3M3To0EqP2bRpE0OGDKmfAQmCINygRPAUBOG6l5OTw6lTpyo9pnXr1nh4eNTTiARBEG5MIngKgiAIgiAI9UKUUxIEQRAEQRDqhQiegiAIgiAIQr0QwVMQBEEQBEGoFyJ4CoIgCIIgCPVCBE9BEARBEAShXojgKQiCIAiCINQLETwFQRAEQRCEeiGCpyAIgiAIglAvRPAUBEEQBEEQ6oUInoIgCIIgCEK9EMFTEARBEARBqBcieAqCIAiCIAj1QgRPQRAEQRAEoV6I4CkIgiAIgiDUCxE8BUEQBEEQhHohgqcgCIIgCIJQL0TwFARBEARBEOqFCJ6CIAiCIAhCvRDBUxAEQRAEQagXIngKgiAIgiAI9UIET0EQBEEQBKFeiOApCIIgCIIg1AsRPAVBEARBEIR6IYKnIAiCIAiCUC9E8BQEQRAEQRDqhQiegiAIgiAIQr0QwVMQBEEQBEGoFyJ4CoIgCIIgCPVCBE9BEARBEAShXojgKQiCIAiCINQLETwFQRAEQRCEeiGCpyAIgiAIglAvRPAUBEEQBEEQ6oUInoIgCIIgCEK9EMFTEARBEARBqBcieAqCIAiCIAj1QgRPQRAEQRAEoV6I4CkIgiAIgiDUCxE8BUEQBEEQhHohgqcgCIIgCIJQL0TwFARBEARBEOqFCJ6CIAiCIAhCvRDBUxAEQRAEQagX/w9m20NPI8rrEgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.lp_genes(adata, sizes=(10, 85), size_norm=(90, 100))\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "70443b14-e9af-4aef-b56e-ab9ab5082fa4", + "metadata": { + "tags": [] + }, + "source": [ + "## Colocalization analysis\n", + "\n", + "Here we use the Colocation Quotient or CLQ ([Leslie & Kronenfeld, 2011](https://onlinelibrary.wiley.com/doi/full/10.1111/j.1538-4632.2011.00821.x)) to measure pairwise colocalization between genes. Given two sets of points, A and B, the CLQ is the ratio of observed to expected proprtion of B among A's neighbors.\n", + "\n", + "At the same time, we quantify colocalization in a compartment-specific manner i.e. transcripts in the nucleus organize differently than they do in the cytoplasm.\n", + "\n", + "\"colocalization\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "c98a27de-fa0c-495c-8341-da3f4c26771b", + "metadata": {}, + "source": [ + "First lets create shapes for the cytoplasm.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "245fe3f8-5e4a-434f-b3d8-29152fb7e3f3", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:38:34.086922Z", + "iopub.status.busy": "2023-03-31T20:38:34.086776Z", + "iopub.status.idle": "2023-03-31T20:38:34.104050Z", + "shell.execute_reply": "2023-03-31T20:38:34.103604Z", + "shell.execute_reply.started": "2023-03-31T20:38:34.086908Z" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# Cytoplasm = cell - nucleus\n", + "adata.obs[\"cytoplasm_shape\"] = bt.geo.get_shape(adata, \"cell_shape\") - bt.geo.get_shape(\n", + " adata, \"nucleus_shape\"\n", + ")\n", + "\n", + "# Create point index\n", + "adata.uns[\"points\"][\"cytoplasm\"] = (\n", + " adata.uns[\"points\"][\"nucleus\"].astype(int) < 0\n", + ").astype(int)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "fbbdea3b-f259-4474-9863-cf4036f8fa33", + "metadata": {}, + "source": [ + "Now we can calculate CLQ values for every gene pair -- one for the cytoplasm and once more for the nucleus.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "de003662-52d8-49ec-97d4-b846461799de", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:38:34.104778Z", + "iopub.status.busy": "2023-03-31T20:38:34.104636Z", + "iopub.status.idle": "2023-03-31T20:38:39.644219Z", + "shell.execute_reply": "2023-03-31T20:38:39.643759Z", + "shell.execute_reply.started": "2023-03-31T20:38:34.104764Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "45c05225310d458981da30dbd0403e4b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "cytoplasm_shape: 0%| | 0/15 [00:00) to recommend the optimal number of factors.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "adf52472-f1fb-4ce6-b2bf-723e0a1e46b7", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:38:39.645130Z", + "iopub.status.busy": "2023-03-31T20:38:39.644897Z", + "iopub.status.idle": "2023-03-31T20:38:48.190293Z", + "shell.execute_reply": "2023-03-31T20:38:48.189649Z", + "shell.execute_reply.started": "2023-03-31T20:38:39.645114Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Preparing tensor...\n", + "(2, 15, 17317)\n", + ":running: Decomposing tensor...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9bc4c7dcbfe143d7a42dbead4df57813", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Device cpu: 0%| | 0/5 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.tl.colocation(adata, ranks=range(1, 6))\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "aad9bd1e-6631-4c3c-9f9d-f7c761c86a47", + "metadata": {}, + "source": [ + "Let's plot the factor loadings for the suggested $k = 3$. From left to right, the three heatmaps show the loadings of each factor for each dimension – compartments, cells, and gene pairs. We can limit the heatmap to show the top 5 associated gene pairs for each factor.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "f07cb11d-2a5b-4a61-8158-3c28b3a058b9", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-31T20:38:48.191146Z", + "iopub.status.busy": "2023-03-31T20:38:48.190994Z", + "iopub.status.idle": "2023-03-31T20:38:51.754914Z", + "shell.execute_reply": "2023-03-31T20:38:51.754389Z", + "shell.execute_reply.started": "2023-03-31T20:38:48.191132Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAJjCAYAAAA2+zGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADHxklEQVR4nOzdeVxN+f8H8NdtT6tsLRIJKbI0NGWJES32aSyRKMswzCAjsmbNvnyHsbbZ9yXLmKEpoTChwdhNZMsIdRWK7v39oe7PdW+rW93yej4e5/H43nM+53Pe53xn5vQ+n00gFovFICIiIiIiIqiUdwBERERERETKggkSERERERFRLiZIREREREREuZggERERERER5WKCRERERERElIsJEhERERERUS4mSERERERERLmYIBEREREREeVigkRERERERJSLCRKRkhEIBAgKCpL8Dg8Ph0AgwL1790pcX962ZMkSxQSphBITE6Xudc+ePeUdEhGRUujQoQM6dOhQKvXm/Te3W7duCq9fmRgaGkrudcyYMeUdDpUyJkhEX4DevXtj8+bN6Nq1q9T+efPmoUePHqhVq5ZMYvaxoKAgqeQjb9PS0irVuEUiEcLDw9GjRw+Ym5tDR0cHTZo0wdy5c/H27VupshYWFti8eTOmTJlSqjEREdH/s7a2xubNm/Hzzz9L7d+5cye8vb3RoEEDCASCAhO0rKwsTJo0CaamptDW1oaDgwOOHz9eypEDUVFR8PPzQ8OGDVGlShVYWlpi2LBhePLkiUzZ9evXY/PmzaUeEykHtfIOgIhKn52dHby9vWX2T5s2DcbGxmjRogV+//33QutZs2YNdHV1Jb9VVVUVGuenXr9+DV9fX3z99dcYOXIkatasifj4eMycORNRUVH4888/IRAIAABVq1aFt7c3YmJiMH/+/FKNi4ioIvnjjz9Kre5atWrJfb+sWbMGFy5cQKtWrfD8+fMC6xgyZAj27NmDcePGoUGDBggPD4eHhweio6PRtm3b0godkyZNwosXL9CnTx80aNAA//77L1atWoXDhw8jMTERxsbGkrJ9+/YFAAwaNKjU4iHlwQSJ6AuWlJSEunXrIjU1FTVq1Ci0/HfffYfq1auXQWQfaGho4MyZM3BycpLsGz58OOrWrStJklxcXMosHiKiikhDQ6PQMm/fvoWGhgZUVBTTuWjz5s0wMzODiooKmjRpkm+58+fPY8eOHVi8eLGkFcrHxwdNmjRBQEAA4uLiFBKPPMuWLUPbtm2l7tnNzQ3Ozs5YtWoV5s6dW2rXJuXGLnZECvDo0SMMHToUpqam0NTURL169TBq1ChkZ2dLyqSlpWHcuHEwNzeHpqYmrKyssHDhQohEomJfLz09HTdu3EB6evpnxV23bt1ilReLxRAKhRCLxUU+JywsDAKBAKGhoVL758+fD4FAgKNHj+Z7roaGhlRylKd3794AgOvXrxc5DiKiiiCvS/ONGzfQt29f6Ovro1q1ahg7dqxM1+KwsDB88803qFmzJjQ1NWFjY4M1a9bI1PnpGKSYmBgIBALs2LED06ZNg5mZGapUqQKhUIh3797hxo0bcruZFYe5uXmRkq09e/ZAVVUVI0aMkOzT0tLC0KFDER8fjwcPHuR77vXr16GtrQ0fHx+p/adPn4aqqiomTZpU4LXbt28vE2P79u1hZGTE98sXjgkS0Wd6/PgxWrdujR07dqBfv3743//+h0GDBuHkyZN4/fo1gA9dxZydnbFlyxb4+Pjgf//7H9q0aYPAwED4+/sX+5r79+9H48aNsX//fkXfToEsLS1hYGAAPT09eHt74+nTp4We4+vri27dusHf31/yorty5QpmzZqFoUOHwsPDo9hxpKSkAECZtmYREZWlvn374u3btwgODoaHhwf+97//SSURwIdubBYWFpgyZQqWLl0Kc3Nz/PDDD1i9enWRrjFnzhwcOXIEP//8M+bPnw8NDQ08evQIjRs3RmBgYGncloxLly6hYcOG0NfXl9rfunVrAB8m4MlP48aNMWfOHGzevBmRkZEAgMzMTAwZMgTW1taYPXt2sePJyMhARkYG3y9fOHaxI/pMgYGBSElJwblz5/DVV19J9s+ePVvS0rJs2TLcvXsXly5dQoMGDQAA33//PUxNTbF48WJMmDAB5ubm5RJ/UVStWhVjxoyBo6MjNDU1cerUKaxevRrnz59HQkKCzIvtUxs2bICtrS2GDh2Kw4cPY/DgwTA2NsayZctKFM+iRYugr68Pd3f3Ep1PRKTs6tWrh4MHDwIARo8eDX19ffz666/4+eefYWdnBwA4efIktLW1JeeMGTMGbm5uWLZsGUaPHl3oNd6+fYuEhASpOsrakydPYGJiIrM/b9/jx48LPN/f3x8HDx7EiBEj0KZNG8ycORP3799HfHw8NDU1ix3PihUrkJ2djX79+hX7XKo82IJE9BlEIhEOHDiA7t27SyVHefImENi9ezfatWuHqlWrIjU1VbK5uLggJycHsbGxxbrukCFDIBaLMWTIEEXcRqHGjh2LX375BQMGDICnpydWrFiBiIgI3L59G7/++muh5xsbG2P16tU4fvw42rVrh8TERISGhhaaWMkzf/58nDhxAgsWLIChoWEJ7oaISPl9muD8+OOPACDVLfnjxCY9PR2pqalwdnbGv//+W6Qu2IMHD5ZJjurWrQuxWIzw8PDPiL7o3rx5IzeRyZsl9c2bNwWer6KigvDwcGRkZMDd3R2//vorAgMD5b6TCxMbG4tZs2ahb9+++Oabb4p9PlUeTJCIPsOzZ88gFAoLHIAKALdv38axY8dQo0YNqS1vgoH//vuvLMJVqAEDBsDY2BgnTpwoUvn+/fuja9euOH/+PIYPH45OnToV+5o7d+7EtGnTMHToUIwaNarY5xMRVRR5vQ3y1K9fHyoqKlJr4p05cwYuLi7Q0dGBoaEhatSoIVnqoCgJUr169RQac0loa2sjKytLZn/eeKuitG7Vr18fQUFB+Ouvv2Bra4vp06cXO44bN26gd+/eaNKkCTZu3Fjs86lyYRc7ojIgEonQuXNnBAQEyD3esGHDMo5IMczNzfHixYsilX3+/DkSEhIAANeuXYNIJCrWbEnHjx+Hj48PunbtirVr15YoXiKiiiqvR0Keu3fvolOnTrC2tsayZctgbm4ODQ0NHD16FMuXLy/SBEDl2bUuj4mJCR49eiSzP2+SCFNT0yLVkzeV+ePHj/H8+XOpKboL8+DBA3Tp0gUGBgY4evQo9PT0inwuVU5MkIg+Q40aNaCvr4+rV68WWK5+/frIyMioVFNSi8Vi3Lt3Dy1atChS+dGjR+PVq1cIDg5GYGAgVqxYUeQJKs6dO4fevXvjq6++wq5du6Cmxv90EVHldvv2bakWnjt37kAkEklmHz106BCysrIQGRmJOnXqSMpFR0eXdaifpXnz5oiOjoZQKJTqdn3u3DnJ8cKsXbsWx48fx7x58xAcHIzvv/9eMn6rMM+fP0eXLl2QlZWFqKgoueOh6MvDLnZEn0FFRQW9evXCoUOHJK0jH8ubpKFv376Ij4+XuxhrWloa3r9/X6zrKmqa76J69uyZzL41a9bg2bNncHNzK/T8PXv2YOfOnViwYAEmT56M/v37Y9q0abh161ah516/fh1du3ZF3bp1cfjwYaX44klEVNo+nYnul19+AQDJ5DR5C3V/vOxCeno6wsLCPuu6iprmu6i+++475OTkYP369ZJ9WVlZCAsLg4ODQ6ETGCUlJWHixInw9PTElClTsGTJEkRGRmLTpk2FXjszMxMeHh549OgRjh49KtOtkb5c/AxL9Jnmz5+PP/74A87OzhgxYgQaN26MJ0+eYPfu3Th9+jQMDQ0xceJEREZGolu3bhgyZAjs7e2RmZmJK1euYM+ePbh3716xphTdv38/fH19ERYW9lkTNWzevBn379+XTEceGxsrWRhv0KBBsLCwAABYWFigX79+aNq0KbS0tHD69Gns2LEDzZs3x/fff1/gNf777z+MGjUKHTt2xJgxYwAAq1atQnR0NIYMGYLTp0/n29Xu1atXcHV1xcuXLzFx4kQcOXJE6nj9+vXh6OhY4vsnIlJWSUlJ6NGjB9zc3BAfH48tW7ZgwIABaNasGQCgS5cu0NDQQPfu3fH9998jIyMDGzZsQM2aNT8rucmb5nvw4MGfNVFDbGysZAKiZ8+eITMzU/J+ad++Pdq3bw8AcHBwQJ8+fRAYGIj//vsPVlZWiIiIwL179xASElLgNcRiMfz8/KCtrS1Z/+n777/H3r17MXbsWLi4uBTYRW/gwIE4f/48/Pz8cP36dam1j3R1ddGrV68S3z9VcGIi+mz3798X+/j4iGvUqCHW1NQUW1paikePHi3OysqSlHn16pU4MDBQbGVlJdbQ0BBXr15d7OTkJF6yZIk4OztbUg6AeObMmZLfYWFhYgDipKQkmX1hYWGFxvZpfR9zdnYWA5C7RUdHS8oNGzZMbGNjI9bT0xOrq6uLraysxJMmTRILhcJCr//tt9+K9fT0xPfu3ZPaf/DgQTEA8cKFC/M9NykpKd/4AIgHDx4sc050dLQYgHj37t2FxkZEpGxmzpwpBiC+du2a+LvvvhPr6emJq1atKh4zZoz4zZs3UmUjIyPFdnZ2Yi0tLXHdunXFCxcuFIeGhsq8M5ydncXOzs6S3wX9dzLvv7vy/vv6qU/rlXcf8rZP30lv3rwR//zzz2JjY2OxpqamuFWrVuJjx44Vev2VK1eKAYj37t0rtT85OVmsr68v9vDwKPB8CwuLfGO0sLCQew4A8ejRowuNjSo2gVj8UdssEVU6AoEAEydOREBAAHR0dCptF7WcnBy8fPkSZ86cQa9evbB7925899135R0WEVGxBAUFYdasWXj27JnSL1baoUMHvHv3DgcPHoSGhkaJlm6oKF68eAGRSIQaNWpg9OjRWLVqVXmHRKWIY5CIvgCLFy9GjRo1iry6ekV05coV1KhRg10iiIjKUFxcHGrUqIEBAwaUdyilytLSEjVq1CjvMKiMcAwSUSV3/Phxyf+uqNOJF4WVlZXUveatNE9ERKVj6dKlePnyJQBU+uTh4MGDePfuHQAUOnEEVXxMkIgquco0tXhBdHV1v5h7JSJSBvb29uUdQplxdnYu7xCoDHEMEhERERERUS6OQSIiIiIiIsrFBImIiIiIiCgXxyBRhSQSifD48WPo6elBIBCUdzhE+RKLxXj16hVMTU3zXRCXiMof3ytUkfDdUrqYIFGF9PjxY84iQxXKgwcPULt27fIOg4jywfcKVUR8t5QOJkhUIenp6QEAfDZegUYVvXKOpnI5dT+rvEOoVHLeZuDOLHvJP7NEpJzy/h19oNMd+gL1co6mcjkc9Wt5h1DpvM54heGdGvDdUkqYIFGFlNf9QaOKHjSqVN6Vu8uDqtbb8g6hUmKXHSLllvfvqL5AnQmSglXR5Xu6tPDdUjrYaZGIiIiIiCgXEyQiIiIiIqJcTJCIiIiIiIhyMUEiIiIiIiLKxQSJiIiIiIgoFxMkIiIiIiKiXEyQiIiIiIiIcjFBIiIiIiIiysUEiYiIiIiIKBcTJCIiIiIiolxMkIiIiIiIiHIxQSIiIiIiIsrFBImIiIiIiCgXEyQiIiIiIqJcTJCIiIiIiIhyMUEiIiIiIiLKxQSJiIiIiIgoFxMkIiIiIiKiXEyQiIjoi/bs2TOMGjUKderUgaamJoyNjeHq6oozZ84AAOrWrQuBQIAdO3bInGtrawuBQIDw8HCZY8HBwVBVVcXixYtljoWHh0MgEEAgEEBFRQUmJibo168fkpOTpcoJhUJMnToV1tbW0NLSgrGxMVxcXLBv3z6IxWKpstu3b4eqqipGjx4tc7179+5Jrvfxdvbs2SI9o6CgIMk5ampqqFu3LsaPH4+MjAyp+hMTE+X+BoBXr16hY8eOsLGxwcOHD/H8+XO4ubnB1NQUmpqaMDc3x5gxYyAUCqWunZ2djUWLFqFZs2aoUqUKqlevjjZt2iAsLAzv3r2TKhsfHw9VVVV07dq1SPdFRCQPEyQiIvqieXp64tKlS4iIiMCtW7cQGRmJDh064Pnz55Iy5ubmCAsLkzrv7NmzSElJgY6Ojtx6Q0NDERAQgNDQULnH9fX18eTJEzx69Ah79+7FzZs30adPH8nxtLQ0ODk5YdOmTQgMDMTFixcRGxuLfv36ISAgAOnp6VL1hYSEICAgANu3b8fbt2/lXvPEiRN48uSJZLO3ty/SMwI+JINPnjzBvXv3sHDhQqxfvx4TJkwo0rnPnj1Dx44dkZmZiVOnTqF27dpQUVFBz549ERkZiVu3biE8PBwnTpzAyJEjJedlZ2fD1dUVCxYswIgRIxAXF4fz589j9OjR+OWXX/DPP//IPIMff/wRsbGxePz4cZHvjYjoY2rlHQAREVF5SUtLw6lTpxATEwNnZ2cAgIWFBVq3bi1VbuDAgVi+fDkePHgAc3NzAB8SoIEDB2LTpk0y9Z48eRJv3rzB7NmzsWnTJsTFxcHJyUmqjEAggLGxMQDAxMQEQ4cOxU8//QShUAh9fX1MmTIF9+7dw61bt2Bqaio5r2HDhvDy8oKWlpZkX1JSEuLi4rB3715ER0dj3759GDBggExc1apVk1yzuNTU1CTn9uvXD1FRUYiMjMS6desKPO/Bgwfo3LkzzMzMcPDgQejq6gIAqlatilGjRknKWVhY4IcffpBqcVuxYgViY2ORkJCAFi1aSPZbWlqiT58+yM7OluzLyMjAzp07kZCQgJSUFISHh2PKlCklulci+rKxBYmIiL5Yurq60NXVxYEDB5CVlZVvuVq1asHV1RUREREAgNevX2Pnzp3w8/OTWz4kJAReXl5QV1eHl5cXQkJCCozjv//+w/79+6GqqgpVVVWIRCLs2LEDAwcOlEqOPo5bTe3/v3GGhYWha9euMDAwgLe3d77X69GjB2rWrIm2bdsiMjKywJgKo62tLZWgyHPz5k20adMGNjY2OHr0qCQ5kufx48fYt2+fJFEFgK1bt8LFxUUqOcqjrq4u1Xq3a9cuWFtbo1GjRvD29kZoaKhMN0QioqJggkRERF8sNTU1hIeHIyIiAoaGhmjTpg2mTJmCy5cvy5T18/NDeHg4xGIx9uzZg/r166N58+Yy5YRCIfbs2QNvb28AgLe3N3bt2iUZr5MnPT0durq60NHRQa1atRAdHY3Ro0dDR0cHqampePnyJaytrQu9B5FIhPDwcMn1+vfvj9OnTyMpKUlSRldXF0uXLsXu3btx5MgRtG3bFr169SpxknThwgVs27YN33zzTYHlfHx8YGVlhd27d0NTU1NuGS8vL1SpUgVmZmbQ19fHxo0bJcdu375dpGcAfEhK856Bm5sb0tPTcfLkyXzLZ2VlQSgUSm1ERAATJCIi+sJ5enri8ePHiIyMhJubG2JiYtCyZUuZiRe6du2KjIwMxMbGIjQ0NN/Wo+3bt6N+/fpo1qwZAKB58+awsLDAzp07pcrp6ekhMTERCQkJWLp0KVq2bIl58+YBQLFaPo4fP47MzEx4eHgAAKpXr47OnTtLjX2qXr06/P394eDggFatWmHBggXw9vaWO4FEfq5cuQJdXV1oa2ujdevWcHR0xKpVqwo8p0ePHjh16hT27duXb5nly5fj4sWLOHjwIO7evQt/f3/JsaI+h5s3b+L8+fPw8vIC8CHx7devX4Etd8HBwTAwMJBseV0niYg4BomIiL54Wlpa6Ny5Mzp37ozp06dj2LBhmDlzJoYMGSIpo6amhkGDBmHmzJk4d+4c9u/fL7eukJAQ/PPPP1Jd4EQiEUJDQzF06FDJPhUVFVhZWQEAGjdujLt372LUqFHYvHkzatSoAUNDQ9y4caPQ2ENCQvDixQtoa2tLXe/y5cuYNWsWVFTkfwt1cHDA8ePHC60/T6NGjRAZGQk1NTWYmppCQ0Oj0HOmTp0KOzs7DBgwAGKxGH379pUpY2xsDGNjY1hbW8PIyAjt2rXD9OnTYWJigoYNGxb5Gbx//16qO6JYLIampiZWrVoFAwMDmXMCAwOlkjGhUMgkiYgAsAWJiIhIho2NDTIzM2X2+/n54eTJk+jZsyeqVq0qc/zKlStISEhATEwMEhMTJVtMTAzi4+ML/GN/8uTJ2LlzJy5evAgVFRX0798fW7dulTsbW0ZGBt6/f4/nz5/j4MGD2LFjh9T1Ll26hJcvX+KPP/7I93qJiYkwMTEp4hMBNDQ0YGVlhbp16xYpOcozffp0BAUFYeDAgTKtaJ8SiUQAIBkPNmDAAJw4cQKXLl2SKfvu3TtkZmbi/fv32LRpE5YuXSr1DP7++2+Ymppi+/btcq+lqakJfX19qY2ICGALEhERfcGeP3+OPn36wM/PD3Z2dtDT00NCQgIWLVqEnj17ypRv3LgxUlNTUaVKFbn1hYSEoHXr1mjfvr3MsVatWiEkJCTfbm3m5ubo3bs3ZsyYgcOHD2PevHmIiYmBg4MD5s2bh6+++grq6uo4deoUgoOD8ddff2Hz5s2oVq0a+vbtC4FAIFWfh4cHQkJC4ObmhoiICGhoaEgmO9i3bx9CQ0OlxvuUpqlTp0JVVRUDBw6ESCSCl5cXjh49iqdPn6JVq1bQ1dXFP//8g4kTJ6JNmzaoW7cuAGDcuHE4cuQIOnXqhDlz5qBt27aS/48WLlyIkJAQ3Lt3Dy9fvsTQoUNlWoo8PT0REhIiNXU4EVFhmCAREdEXS1dXFw4ODli+fDnu3r2Ld+/ewdzcHMOHD893iuhq1arJ3Z+dnY0tW7Zg0qRJco97enpi6dKlmD9/fr7xjB8/Ho6Ojjh//jxat26Ns2fPYsGCBZg7dy7u37+PqlWromnTpli8eDEMDAwQGhqK3r17yyRHedcbNGgQUlNTAQBz5szB/fv3oaamBmtra+zcuRPfffddYY9IYSZPngwVFRUMGjQIYrEYJiYm2LBhA8aPH4+srCyYm5vj22+/xeTJkyXnaGpq4vjx41i+fDnWrVuHn3/+GVWqVEHjxo3x008/oUmTJpg+fTpcXFzkdqPz9PTEokWLcPnyZdjZ2ZXZvRJRxSYQcw5MqoCEQiEMDAwwbNs9aFRhtwhFikmSv8AklUzO21e4GdgI6enp7MJDpMTy3ivput9CX6Be3uFUKgfOhhVeiIrldYYQAx2M+W4pJRyDRERERERElIsJEhER0Rcub8FcedupU6fKOzwiojLFMUhERERfuMTExHyPmZmZlV0gRERKgAkSVWj303KgnvW+vMOoVP7pK3+1eyoZ4assGASWdxREBctbj4mIiNjFjoiIiIiISIIJEhERERERUS4mSERERERERLmYIBEREREREeVigkRERERERJSLCRIREREREVEuJkhERERERES5mCARERERERHlYoJERERERESUiwkSERERERFRLiZIREREREREuZggERERERER5WKCRERERERElIsJEhERERERUS4mSERERERERLmYIBEREREREeVSK+8AiIiIiJSGuhqgwj+PiL5kbEEiIiIiIiLKxQSJiIiIiIgoFxMkIiIiIiKiXEyQiIiIiIiIcjFBIiIiIiIiysUEiYiIiIiIKBcTJCIiIiIiolxMkIiIiIiIiHIxQSIiIiIiIsrFBImIiIiIiCgXEyQiIiIiIqJcTJCIiIiIiIhyMUEiIiIiIiLKxQSJiIiIiIgoFxMkIiIiIiKiXEyQiIiIiIiIcjFBIiIiIiIiyqVW3gEQfY7r/72Dita78g6jUrmuZljeIVQqGWri8g6BiIiIioEtSERERERERLmYIBEREREREeVigkRERKRAQ4YMQa9evaT27dmzB1paWli6dCmGDBkCgUAAgUAADQ0NWFlZYfbs2Xj//j0AICYmBgKBALa2tsjJyZGqx9DQEOHh4TLXDA4OhqqqKhYvXlxgbGfOnIGamhqaN29erPspSrxpaWlyfwPA48eP0bRpU7Rv3x7p6em4efMmOnbsiFq1akFLSwuWlpaYNm0a3r2T7jItFAoxdepUWFtbQ0tLC8bGxnBxccG+ffsgFkt3X92+fTtUVVUxevToIt8bEZE8TJCIiIhK0caNGzFw4ECsWbMGEyZMAAC4ubnhyZMnuH37NiZMmICgoCCZ5Obff//Fpk2binSN0NBQBAQEIDQ0NN8yaWlp8PHxQadOnYp9D0WJNz93795F27ZtYWFhgd9//x0GBgZQV1eHj48P/vjjD9y8eRMrVqzAhg0bMHPmTKl4nZycsGnTJgQGBuLixYuIjY1Fv379EBAQgPT0dKnrhISEICAgANu3b8fbt2+LfY9ERHmYIBEREZWSRYsW4ccff8SOHTvg6+sr2a+pqQljY2NYWFhg1KhRcHFxQWRkpNS5P/74I2bOnImsrKwCr3Hy5Em8efMGs2fPhlAoRFxcnNxyI0eOxIABA+Do6Fjs+yhKvPJcvnwZbdu2haOjIw4cOABtbW0AgKWlJXx9fdGsWTNYWFigR48eGDhwIE6dOiU5d8qUKbh37x7OnTuHwYMHw8bGBg0bNsTw4cORmJgIXV1dSdmkpCTExcVh8uTJaNiwIfbt21fseyQiysMEiYiIqBRMmjQJc+bMweHDh9G7d+8Cy2prayM7O1tq37hx4/D+/Xv88ssvBZ4bEhICLy8vqKurw8vLCyEhITJlwsLC8O+//0q10HwOefF+Ki4uDs7OzvD09MSWLVugppb/xLl37tzBsWPH4OzsDAAQiUTYsWMHBg4cCFNTU5nyurq6UvWFhYWha9euMDAwgLe3t9xnQERUVEyQiIiIFOy3337DokWLcPDgwQK7tInFYpw4cQK///47vvnmG6ljVapUwcyZMxEcHCzTnSyPUCjEnj174O3tDQDw9vbGrl27kJGRISlz+/ZtTJ48udAkpSgKivdTvXv3Rvfu3bFq1SoIBAK5ZZycnKClpYUGDRqgXbt2mD17NgAgNTUVL1++hLW1daExiUQihIeHS55B//79cfr0aSQlJRXz7oiIPmCCREREpGB2dnaoW7cuZs6cKZWs5Dl8+DB0dXWhpaUFd3d39OvXD0FBQTLlhg4dimrVqmHhwoVyr7N9+3bUr18fzZo1AwA0b94cFhYW2LlzJwAgJycHAwYMwKxZs9CwYcMS309R4/1Yz549sX//fqluc5/auXMnLl68iG3btuHIkSNYsmQJAMhMwFCQ48ePIzMzEx4eHgCA6tWro3PnzgWOxwKArKwsCIVCqY2ICGCCREREpHBmZmaIiYnBo0eP4ObmhlevXkkd79ixIxITE3H79m28efMGERER0NHRkalHTU0N8+bNw8qVK/H48WOZ4yEhIfjnn3+gpqYm2a5duyZJDl69eoWEhASMGTNGcnz27Nn4+++/oaamhj///LNI91PUeD+2bt069O/fH+7u7oiNjZVbxtzcHDY2NvDy8sKCBQsQFBSEnJwc1KhRA4aGhrhx40ahsYWEhODFixfQ1taW3OPRo0cREREBkUiU73nBwcEwMDCQbObm5oVei4i+DEyQiIiISoGFhQVOnjyJlJQUmSRJR0cHVlZWqFOnTqHd3vr06QNbW1vMmjVLav+VK1eQkJCAmJgYJCYmSraYmBjEx8fjxo0b0NfXx5UrV6SOjxw5Eo0aNUJiYiIcHByKdC/FiTePQCDA+vXrMXDgQHh4eODkyZMFlheJRHj37h1EIhFUVFTQv39/bN26VW5imJGRgffv3+P58+c4ePAgduzYIXWPly5dwsuXL/HHH3/ke73AwECkp6dLtgcPHhTpvoio8vu8zshERESUL3Nzc8TExKBjx45wdXXFsWPHSlTPggUL4OrqKrUvJCQErVu3Rvv27WXKt2rVCiEhIVi8eDGaNGkidaxmzZrQ0tKS2V8aBAIB1q5dC1VVVXh4eODIkSPo0KEDtm7dCnV1dTRt2hSamppISEhAYGAg+vXrB3V1dQDAvHnzEBMTAwcHB8ybNw9fffUV1NXVcerUKQQHB+Ovv/7C5s2bUa1aNfTt21dmnJOHhwdCQkLg5uYmNzZNTU1oamqW+jMgooqHLUhERESlqHbt2oiJiUFqaipcXV1LNNblm2++wTfffCNZnDU7OxtbtmyBp6en3PKenp7YtGmTzMKr5UEgEGD16tXw9fVF165dER0dDTU1NSxcuBCtW7eGnZ0dZs2ahTFjxmDjxo2S84yMjHD27Fl4e3tj7ty5aNGiBdq1a4ft27dj8eLFMDAwQGhoKHr37i13EghPT09ERkYiNTW1LG+XiCoBgbg4IyGJlIRQKISBgQFqB92AipZeeYdTqRzzrVHeIVQqGa+EaG1VHenp6dDX1y/vcIgoH3nvlfSqfaGvol7e4VQqB2I3lHcIlc7rDCEGOhjz3VJK2IJERERERESUiwkSERHRFyo5ORm6urr5bsnJyeUdIhFRmeMkDURERF8oU1NTJCYmFniciOhLwwSJiIjoC6WmpgYrK6vyDoOISKmwix0REREREVEuJkhERERERES5mCARERERERHlYoJERERERESUiwkSERERERFRLiZIREREREREuZggERERERER5WKCRERERERElIsJEhERERERUS4mSERERERERLmYIBEREREREeVigkRERERERJSLCRIREREREVEuJkhERERERES5mCARERERERHlYoJERERERESUiwkSERERERFRLrXyDoDoc/xzdQ/01bXKO4zKxeFGeUdQqQhF2eUdAhEVh6oKoKJa3lEQUTliCxIREREREVEuJkhERERERES5mCARERERERHlYoJERERERESUiwkSERERERFRLiZIREREREREuZggERERERER5WKCRERERERElIsJEhERERERUS4mSERERERERLmYIBEREREREeVigkRERERERJSLCRIREREREVEuJkhERERERES5mCARERERERHlYoJERERERESUiwkSERERERFRLiZIREREREREuZggERERERER5WKCRERERERElIsJEhERfbGGDBkCgUAAgUAADQ0NWFlZYfbs2Xj//j1iYmIgEAiQlpYGADK/AeDx48do2rQp2rdvj/T0dNy8eRMdO3ZErVq1oKWlBUtLS0ybNg3v3r2Tuq5QKMTUqVNhbW0NLS0tGBsbw8XFBfv27YNYLJYqu337dqiqqmL06NHFvr8NGzagWbNm0NXVhaGhIVq0aIHg4GDJ8aCgIAgEAri5ucmcu3jxYggEAnTo0EHm2MOHD6GhoYEmTZrIvW7eMxUIBNDX10erVq1w8OBBmXJ79+5Fhw4dYGBgAF1dXdjZ2WH27Nl48eKFVLk3b97AyMgI1atXR1ZWlkw9HTp0kLqmQCDAyJEjC3s8RERyMUEiIqIvmpubG548eYLbt29jwoQJCAoKwuLFiws97+7du2jbti0sLCzw+++/w8DAAOrq6vDx8cEff/yBmzdvYsWKFdiwYQNmzpwpOS8tLQ1OTk7YtGkTAgMDcfHiRcTGxqJfv34ICAhAenq61HVCQkIQEBCA7du34+3bt0W+r9DQUIwbNw4//fQTEhMTcebMGQQEBCAjI0OqnImJCaKjo/Hw4UOZ8+vUqSO37vDwcPTt2xdCoRDnzp2TWyYsLAxPnjxBQkIC2rRpg++++w5XrlyRHJ86dSr69euHVq1a4bfffsPVq1exdOlS/P3339i8ebNUXXv37oWtrS2sra1x4MABudcbPnw4njx5ItkWLVpU2CMiIpJLrbwDICIiKk+ampowNjYGAIwaNQr79+9HZGQkHB0d8z3n8uXLcHV1xTfffIOIiAioqX14nVpaWsLS0lJSzsLCAjExMTh16pRk35QpU3Dv3j3cunULpqamkv0NGzaEl5cXtLS0JPuSkpIQFxeHvXv3Ijo6Gvv27cOAAQOKdF+RkZHo27cvhg4dKtlna2srU65mzZqwt7dHREQEpk6dCgCIi4tDamoq+vTpg2vXrkmVF4vFCAsLw6+//oratWsjJCQEDg4OMvUaGhrC2NgYxsbGmDNnDlauXIno6Gg0bdoU58+fx/z587FixQqMHTtWck7dunXRuXNnqVY64EOS6O3tDbFYjJCQEPTr10/melWqVJH8/0hE9DnYgkRERPQRbW1tZGdn53s8Li4Ozs7O8PT0xJYtWyTJkTx37tzBsWPH4OzsDAAQiUTYsWMHBg4cKJUc5dHV1ZWqLywsDF27doWBgQG8vb0REhJS5PswNjbG2bNncf/+/ULL+vn5ITw8XPI7NDQUAwcOhIaGhkzZ6OhovH79Gi4uLvD29saOHTuQmZmZb93v37+XxJ1X39atW6Grq4sffvhB7jmGhoaS/3337l3Ex8ejb9++6Nu3L06dOiX3nrZu3Yrq1aujSZMmCAwMxOvXrwu9byIieZggERER4UPLyIkTJ/D777/jm2++ybdc79690b17d6xatQoCgUBuGScnJ2hpaaFBgwZo164dZs+eDQBITU3Fy5cvYW1tXWg8IpEI4eHh8Pb2BgD0798fp0+fRlJSUpHuZ+bMmTA0NETdunXRqFEjDBkyBLt27YJIJJIp261bNwiFQsTGxiIzMxO7du2Cn5+f3HpDQkLQv39/qKqqokmTJrC0tMTu3btlynl5eUFXVxeampoYP3486tati759+wIAbt++DUtLS6irqxd6H6GhoXB3d0fVqlVhZGQEV1dXhIWFSZUZMGAAtmzZgujoaAQGBmLz5s2S55afrKwsCIVCqY2ICGCCREREX7jDhw9DV1cXWlpacHd3R79+/RAUFJRv+Z49e2L//v1S3eY+tXPnTly8eBHbtm3DkSNHsGTJEgCQmYChIMePH0dmZiY8PDwAANWrV0fnzp0RGhpapPNNTEwQHx+PK1euYOzYsXj//j0GDx4MNzc3mSRJXV0d3t7eCAsLw+7du9GwYUPY2dnJ1JmWloZ9+/ZJJR/5tWwtX74ciYmJ+O2332BjY4ONGzfCyMioWM8hJycHERERMtcLDw+XuocRI0bA1dUVTZs2xcCBA7Fp0ybs378fd+/ezbfu4OBgGBgYSDZzc/MixUREJbdmzRrY2dlBX18f+vr6cHR0xG+//VbgObt375ZMaNO0aVMcPXq01OPkGCQiIvqidezYEWvWrIGGhgZMTU0L7DIHAOvWrUNAQADc3d1x9OhRtG/fXqZM3h/bNjY2yMnJwYgRIzBhwgTUqFEDhoaGuHHjRqFxhYSE4MWLF9DW1pbsE4lEuHz5MmbNmgUVlaJ942zSpAmaNGmCH374ASNHjkS7du1w8uRJdOzYUaqcn58fHBwccPXq1Xxbj7Zt24a3b99KjTkSi8UQiUS4desWGjZsKNlvbGwMKysrWFlZISwsDB4eHrh27Rpq1qyJhg0b4vTp03j37l2BrUi///47Hj16JDPmKCcnB1FRUejcubPc8/Liu3PnDurXry+3TGBgIPz9/SW/hUIhkySiUla7dm0sWLAADRo0gFgsRkREBHr27IlLly7JHSMZFxcHLy8vBAcHo1u3bti2bRt69eqFixcv5juLpiKwBYmIiL5oOjo6sLKyQp06dQpNjoAPU1ivX78eAwcOhIeHB06ePFlgeZFIhHfv3kEkEkFFRQX9+/fH1q1b8fjxY5myGRkZeP/+PZ4/f46DBw9ix44dSExMlGyXLl3Cy5cv8ccff5ToXm1sbABA7pghW1tb2Nra4urVq/lOBBESEoIJEyZIxfT333+jXbt2BbZstW7dGvb29pg3bx6AD13iMjIy8Ouvv8otnzdJQ153vo+vl5iYiP79+xc4HisxMRHAh1a0/Ghqakq+YudtRFS6unfvDg8PDzRo0AANGzbEvHnzoKuri7Nnz8otv3LlSri5uWHixIlo3Lgx5syZg5YtW2LVqlWlGidbkIiIlEG94WVznaQNZXOdSk4gEGDt2rVQVVWFh4cHjhw5gg4dOmDr1q1QV1dH06ZNoampiYSEBAQGBqJfv36SlpJ58+YhJiYGDg4OmDdvHr766iuoq6vj1KlTCA4Oxl9//YXNmzejWrVq6Nu3r8w4Jw8PD4SEhMhdu+hjo0aNgqmpKb755hvUrl0bT548wdy5c1GjRo18Z+j7888/8e7dO6lJEvIkJibi4sWL2Lp1q8wYKi8vL8yePRtz587NN8kcN24cevfujYCAADg4OCAgIAATJkzAo0eP0Lt3b5iamuLOnTtYu3Yt2rZtiwEDBuDQoUOIjIyU+VLs4+OD3r1748WLF3j58iW2bdsGDw8PVKtWDZcvX8b48ePRvn17ud0Eib4Y+v3L5DJZzyJk1ifT1NSEpqZmgefl5ORg9+7dyMzMzPe/SfHx8VItvQDg6uqa73T/isIWJCIiZaAiKJuNFEYgEGD16tXw9fVF165dER0dDTU1NSxcuBCtW7eGnZ0dZs2ahTFjxmDjxo2S84yMjHD27Fl4e3tj7ty5aNGiBdq1a4ft27dj8eLFMDAwQGhoKHr37i13EghPT09ERkYiNTW1wPhcXFxw9uxZ9OnTBw0bNoSnpye0tLQQFRWFatWqyT1HR0dHbnIEfGjNsbGxkTvBRO/evfHff/8VODbAzc0N9erVk7QiLVy4ENu2bcO5c+fg6uoKW1tb+Pv7w87ODoMHD8amTZugo6ODTp06ydTVqVMnaGtrY8uWLdDQ0MCJEyfQpUsXWFtbY8KECfD09MShQ4cKfD5EpBifjuczMDCQWpD6U1euXJFM4DJy5Ejs379f0rr9qZSUFNSqVUtqX61atZCSkqLQe/iUQFycEaNESkIoFMLAwADp382FvrpW4SdQ0cUXPjaCik4oyoZB8iakp6cX3IWnwciyCej22rK5DlEFI3mvVO8PfRXZ6c2p5A5E8787ivY6Q4iBDsYFv1sMvcoklqyn4cVqQcrOzkZycjLS09OxZ88ebNy4ESdPnpSbJGloaCAiIgJeXv9/L7/++itmzZqFp0+fKvZGPsIudkREyoCtO0REpEhFnMjlcxWlO93HNDQ0YGVlBQCwt7fHX3/9hZUrV2LdunUyZY2NjWUSoadPn5b6otDsYkdEpAzYxY6Kyd3dHbq6unK3+fPnl3d4RERFIhKJZFqg8jg6OiIqKkpq3/Hjx/Mds6QobEEiIlIGAn6vouLZuHEj3rx5I/dY3npDRPQFU8KPYoGBgXB3d0edOnXw6tUrbNu2DTExMfj9998BfJiAxczMTDKGaezYsXB2dsbSpUvRtWtX7NixAwkJCVi/fn2pxskEiSq2Hg5AFZ3yjqJSGdhzSHmHUKm8e/0K8NtUeEElfJGRcjMzMyvvEIhImSnhe+W///6Dj48Pnjx5AgMDA9jZ2eH333+XrGmWnJwstcabk5MTtm3bhmnTpmHKlClo0KABDhw4UKprIAFMkIiIlIMSvsiIiIgUqaD1ywAgJiZGZl+fPn3Qp0+fUopIPiZIRETKoIwG0xIR0ReCXbdLjAkSEZEyYAsSEREpEt8rJcYEiYhIGfBFRkREpBSYIBERKQN2sSMiIkXih7cSY4JERKQM+CIjIiJF4oe3EmOCRESkDJggERERKQUmSEREyoBf+oiISJH44a3EmCAREREREVU2TJBKjAkSEZEyEPBFRkREpAyYIBERKQN+6SMiIkXie6XEmCARESkDjkEiIiJF4nulxJggEREpA37pIyIiUgpMkIiIlAETJCIiUiS+V0qMCRIRkTJgVwgiIlIkJkglxgSJiEgZ8EVGRESkFJggEREpAyZIRMpBTYUtugpWQ4fPU9EyRUV4pgI+95JigkREpAyYIBERkSLxvVJiTC2JiJSBikrZbMUQGxuL7t27w9TUFAKBAAcOHCiwfExMDAQCgcyWkpLyGQ+GiIiobLEFiYhIGQiU70tfZmYmmjVrBj8/P3z77bdFPu/mzZvQ19eX/K5Zs2ZphEdERAVhC1KJMUEiIlIGSvgic3d3h7u7e7HPq1mzJgwNDRUfEBERFR3H0pUYEyQiImVQRi+yrKwsZGVlSe3T1NSEpqamwq7RvHlzZGVloUmTJggKCkKbNm0UVjcRERWREn54qyiYWhIRKQMVQZlswcHBMDAwkNqCg4MVcgsmJiZYu3Yt9u7di71798Lc3BwdOnTAxYsXFVI/ERFVbMHBwWjVqhX09PRQs2ZN9OrVCzdv3izwnPDwcJmxrVpaWqUaJ1uQiIiUQRl96QsMDIS/v7/UPkW1HjVq1AiNGjWS/HZycsLdu3exfPlybN68WSHXICKiIlLCFqSTJ09i9OjRaNWqFd6/f48pU6agS5cuuHbtGnR0dPI9T19fXyqREpTyuF0mSEREyqCMutgpujtdYVq3bo3Tp0+X2fWIiCiXEo5BOnbsmNTv8PBw1KxZExcuXED79u3zPU8gEMDY2Li0w5NggkREpAyU8EufIiQmJsLExKS8wyAiolLyOWNb09PTAQBGRkYFlsvIyICFhQVEIhFatmyJ+fPnw9bWtuRBF0L5Uksioi9RGY1BKo6MjAwkJiYiMTERAJCUlITExEQkJycD+NBdz8fHR1J+xYoVOHjwIO7cuYOrV69i3Lhx+PPPPzF69GiFPSYiIioiJR/bKhKJMG7cOLRp0wZNmjTJt1yjRo0QGhqKgwcPYsuWLRCJRHBycsLDhw8V+bSksAWJiEgZKGFXiISEBHTs2FHyO2/s0uDBgxEeHo4nT55IkiUAyM7OxoQJE/Do0SNUqVIFdnZ2OHHihFQdRERURpR8bOvo0aNx9erVQrthOzo6wtHRUfLbyckJjRs3xrp16zBnzpySBV0IJkhERMpACbvYdejQAWKxON/j4eHhUr8DAgIQEBBQylEREZEyKcnY1jFjxuDw4cOIjY1F7dq1i3Wuuro6WrRogTt37hTrvOJggkREpAxKeUYeIiL6wihhzwSxWIwff/wR+/fvR0xMDOrVq1fsOnJycnDlyhV4eHiUQoQfMEEiIlIGSvgiIyKiCkwJP7yNHj0a27Ztw8GDB6Gnp4eUlBQAgIGBAbS1tQEAPj4+MDMzk4xjmj17Nr7++mtYWVkhLS0Nixcvxv379zFs2LBSi5MJEhGRMlDCLnZERESKtGbNGgAfunB/LCwsDEOGDAEAJCcnQ+Wjj4YvX77E8OHDkZKSgqpVq8Le3h5xcXGwsbEptTiZIBERKQMmSEREpEhK+F4paFxrnpiYGKnfy5cvx/Lly0spIvmYIBERKQN2sSMiIkXie6XEmCBRhfa2ayto6OuXdxiVivfdrMILUZG9zsjB7qIUVMIvfURERF8iJkhERERERJUNP7yVGBMkIiJlwBcZEREpEt8rJcbOiUREykBFpWy2L8izZ88watQo1KlTB5qamjA2NoarqyvOnDkDAKhbty4EAgF27Nghc66trS0EAoHMYrgAEBwcDFVVVSxevFjmWHh4OAQCAQQCAVRUVGBiYoJ+/fohOTlZqpxQKMTUqVNhbW0NLS0tGBsbw8XFBfv27ZMZxLx9+3aoqqpi9OjRMte7d++e5Hofb2fPni3SMwoKCoJAIICbm5vMscWLF0MgEMjMNgUADx8+hIaGBpo0aSK3XoFAAC0tLdy/f19qf69evSQzVQFAbGwsunfvDlNTUwgEAhw4cCDfWAt6DjExMejZsydMTEygo6OD5s2bY+vWrfnWRURUkC/rbUlEpKxUBGWzfUE8PT1x6dIlRERE4NatW4iMjESHDh3w/PlzSRlzc3OEhYVJnXf27FmkpKRAR0dHbr2hoaEICAhAaGio3OP6+vp48uQJHj16hL179+LmzZvo06eP5HhaWhqcnJywadMmBAYG4uLFi4iNjUW/fv0QEBCA9PR0qfpCQkIQEBCA7du34+3bt3KveeLECTx58kSy2dvbF+kZAYCJiQmio6Px8OFDmfusU6eO3HPCw8PRt29fCIVCnDt3Tm4ZgUCAGTNmFHjtzMxMNGvWDKtXry40zoKeQ1xcHOzs7LB3715cvnwZvr6+8PHxweHDhwutl6jS4oe3EmMXOyIiZaCEC/pVZGlpaTh16hRiYmLg7OwMALCwsEDr1q2lyg0cOBDLly/HgwcPYG5uDuBDYjBw4EBs2rRJpt6TJ0/izZs3mD17NjZt2oS4uDg4OTlJlREIBDA2NgbwIfkYOnQofvrpJwiFQujr62PKlCm4d+8ebt26BVNTU8l5DRs2hJeXF7S0tCT7kpKSEBcXh7179yI6Ohr79u3DgAEDZOKqVq2a5JrFVbNmTdjb2yMiIgJTp04F8CHhSE1NRZ8+fXDt2jWp8mKxGGFhYfj1119Ru3ZthISEwMHBQabeMWPGYNmyZZg4cWK+LU3u7u5wd3cvNMbCnsOUKVOkyo8dOxZ//PEH9u3bh27duhVaP1Gl9IV9FFOkypn2ERFVNGxBUihdXV3o6uriwIEDyMrKf2bGWrVqwdXVFREREQCA169fY+fOnfDz85NbPiQkBF5eXlBXV4eXlxdCQkIKjOO///7D/v37oaqqClVVVYhEIuzYsQMDBw6USo4+jltN7f+/XYaFhaFr164wMDCAt7d3vtfr0aMHatasibZt2yIyMrLAmOTx8/OT6k6YlyRqaGjIlI2Ojsbr16/h4uICb29v7NixA5mZmTLl2rRpg27dumHy5MnFjudTRX0OH0tPT4eRkdFnX5uIvjxMkIiIlAG7QiiUmpoawsPDERERAUNDQ7Rp0wZTpkzB5cuXZcrmJQdisRh79uxB/fr10bx5c5lyQqEQe/bsgbe3NwDA29sbu3btQkZGhlS59PR06OrqQkdHB7Vq1UJ0dDRGjx4NHR0dpKam4uXLl7C2ti70HkQiEcLDwyXX69+/P06fPo2kpCRJGV1dXSxduhS7d+/GkSNH0LZtW/Tq1avYSVK3bt0gFAoRGxuLzMxM7Nq1q8AksX///lBVVUWTJk1gaWmJ3bvlT2YfHByMY8eO4dSpU8WK52NFeQ6f2rVrF/766y/4+vqW+LpEFR4/vJXYl/O2JCJSZnyRKZynpyceP36MyMhIuLm5ISYmBi1btpSZeKFr167IyMhAbGwsQkND800Mtm/fjvr166NZs2YAgObNm8PCwgI7d+6UKqenp4fExEQkJCRg6dKlaNmyJebNmwegaKvI5zl+/DgyMzPh4eEBAKhevTo6d+4sNfapevXq8Pf3h4ODA1q1aoUFCxbA29tb7gQSBVFXV4e3tzfCwsKwe/duNGzYEHZ2djLl0tLSsG/fPkmyAqDAFh0bGxv4+Ph8VitSUZ7Dx6Kjo+Hr64sNGzbA1tY233qzsrIgFAqlNqJKhe+VEuMYJCIiZVBJXzLlTUtLC507d0bnzp0xffp0DBs2DDNnzpSaSU1NTQ2DBg3CzJkzce7cOezfv19uXSEhIfjnn3+kusCJRCKEhoZi6NChkn0qKiqwsrICADRu3Bh3797FqFGjsHnzZtSoUQOGhoa4ceNGobGHhITgxYsX0NbWlrre5cuXMWvWLKjk0yLo4OCA48ePF1r/p/z8/ODg4ICrV6/mmyRu27YNb9++lRpzJBaLIRKJcOvWLTRs2FDmnFmzZqFhw4YFzlBXkOI8h5MnT6J79+5Yvnw5fHx8Cqw3ODgYs2bNKlFMRFS5sQWJiEgZsItdmbCxsZE7XsbPzw8nT55Ez549UbVqVZnjV65cQUJCAmJiYpCYmCjZYmJiEB8fX2DCM3nyZOzcuRMXL16EiooK+vfvj61bt+Lx48cyZTMyMvD+/Xs8f/4cBw8exI4dO6Sud+nSJbx8+RJ//PFHvtdLTEyEiYlJEZ/I/7O1tYWtrS2uXr0qdyII4EOyMmHCBKmY/v77b7Rr1y7fFh1zc3OMGTMGU6ZMQU5OTrFiKs5ziImJQdeuXbFw4UKMGDGi0LoDAwORnp4u2R48eFCs2IiUHt8rJcYWJCIiZcAWJIV6/vw5+vTpAz8/P9jZ2UFPTw8JCQlYtGgRevbsKVO+cePGSE1NRZUqVeTWFxISgtatW6N9+/Yyx1q1aoWQkJB8u7WZm5ujd+/emDFjBg4fPox58+YhJiYGDg4OmDdvHr766iuoq6vj1KlTCA4Oxl9//YXNmzejWrVq6Nu3LwSfzHDo4eGBkJAQuLm5ISIiAhoaGmjRogUAYN++fQgNDcXGjRuL+8gAAH/++SfevXsHQ0NDmWOJiYm4ePEitm7dKjOGysvLC7Nnz8bcuXOlWtjyBAYGYsOGDUhKSkK/fv0k+zMyMnDnzh3J76SkJCQmJsLIyAh16tQp8nOIjo5Gt27dMHbsWHh6eiIlJQUAoKGhke9EDZqamtDU1CzysyGqcDg7aolVzrSPiKiiYV9xhdLV1YWDgwOWL1+O9u3bo0mTJpg+fTqGDx+OVatWyT2nWrVqUt248mRnZ2PLli3w9PSUe56npyc2bdqEd+/e5RvP+PHjceTIEZw/fx5GRkY4e/YsvL29MXfuXLRo0QLt2rXD9u3bsXjxYhgYGCA0NBS9e/eWSQryrhcZGYnU1FQAwJw5c2Bvbw8HBwccPHgQO3fuLPHkBDo6OnKTI+BDkmhjYyN3gonevXvjv//+w9GjR+Wea2RkhEmTJsmsX5SQkIAWLVpIEjx/f3+0aNFCsn5SUZ9DREQEXr9+jeDgYJiYmEi2b7/9tji3T1S58L1SYgJxcUaMEikJoVAIAwMDPH2eBn19/fIOp1KJvpv/lMhUfK8zhPjuq1pIT08v+J/VubvKJqBpfcvmOkQVTN57Jd14APRVZKc3p5I7E7e2vEOodDJfCeHatGbB75Zvg8smmH2BZXOdMsQudkREyqCSfoUjIqJyUknHB5UFPjkiImUgEJTNVgyxsbHo3r07TE1NIRAIijQLWd5U2pqamrCyspKZUpvKVt6CufK2z1mbiIgqAHaxKzG2IBERKQMl/NKXmZmJZs2awc/Pr0hjOZKSktC1a1eMHDkSW7duRVRUFIYNGwYTExO4urqWQcT0qcTExHyPmZmZlV0gREQVCBMkIiJloIRf4dzd3eHu7l7k8mvXrkW9evWwdOlSAB9mhjt9+jSWL1/OBKmc5K3HRERfICV8r1QUTJCIiJRBGb3IsrKykJUlPRGHoqY7jo+Ph4uLi9Q+V1dXjBs37rPrJiKiYlLCngkVBZ8cEZEyKKMF/YKDg2FgYCC1BQcrZqajlJQU1KpVS2pfrVq1IBQK8ebNG4Vcg4iIKq7g4GC0atUKenp6qFmzJnr16oWbN28Wet7u3bthbW0NLS0tNG3aNN8lBRSFCRIRkTIoo8G0gYGBSE9Pl9oCAyvfFK1ERF88JZyk4eTJkxg9ejTOnj2L48eP4927d+jSpQsyMzPzPScuLg5eXl4YOnQoLl26hF69eqFXr164evXq5z6hfLGLHRGRMiijLnaK6k4nj7GxMZ4+fSq17+nTp9DX15e7ACsREZUiJRyDdOzYManf4eHhqFmzJi5cuID27dvLPWflypVwc3PDxIkTAXxYHPv48eNYtWoV1q4tnTW22IJERKQMyqiLXWlydHREVFSU1L7jx4/D0dGxVK9LRETlJysrC0KhUGr7dKxrftLT0wEARkZG+ZbJb3xrfHx8yYMuBBMkIiJloIRdITIyMpCYmCiZKjopKQmJiYlITk4GAAQGBsLHx0dSfuTIkfj3338REBCAGzdu4Ndff8WuXbswfvx4hT0mIiIqIiUf2yoSiTBu3Di0adMGTZo0ybdcfuNbU1JSPvsR5Ydd7IiIlIESdoVISEhAx44dJb/9/f0BAIMHD0Z4eDiePHkiSZYAoF69ejhy5AjGjx+PlStXonbt2ti4cSOn+CYiKg9l9F4JDAyUvB/yFKUr9+jRo3H16lWcPn26tEIrMSZIRETKQKB8DfodOnSAWCzO93h4eLjccy5dulSKURERkTIpydjWMWPG4PDhw4iNjUXt2rULLJvf+FZjY+Nix1pUyvdGJiL6EilhFzsiIqrABIKy2YpBLBZjzJgx2L9/P/7880/Uq1ev0HPKY3wrW5CIiIiIiCobJVwodvTo0di2bRsOHjwIPT09yTgiAwMDyWynPj4+MDMzk4xjGjt2LJydnbF06VJ07doVO3bsQEJCAtavX19qcSrfkyMi+hKxBYmIiCq5NWvWID09HR06dICJiYlk27lzp6RMcnIynjx5Ivnt5OSEbdu2Yf369WjWrBn27NmDAwcOFDixw+diCxIRkTJg8kJERIqkhO+Vgsa15omJiZHZ16dPH/Tp06cUIpKPCRIRkTJQwq4QRERUgSlhglRRMEEiIlIGfJEREREpBSZIRETKgAkSEREpEnsmlBgTJCIiZcAXGRERKRI/vJUYEyQiImXAFxkREZFSYIJEFZqayoeNFCc7p/AZZqjoivw8mSARKQcNNUCFfx4p0rNMUXmHUOm8fl2EZ8r3SonxvwBERMpAwEyfiIgUiF23S4wJEhGRMuCXPiIiIqXABImISBkwQSIiIkXie6XEmCARESkDdoUgIiJFEjBBKikmSEREyoBf+oiISJH4XikxJkhERMqALzIiIiKlwASJiEgZsIsdEREpEt8rJcYEiYhIGbAFiYiIFInvlRJjgkREpAz4IiMiIlIKbHujfA0ZMgQCgQACgQBNmjQp73CIKjcVlbLZiIjoy6AiKJutEuLbsoji4uIQFBSEtLS08g6lSObPn48DBw58dj3Vq1fH5s2bsWDBAsm+169fY/Xq1ejSpQtMTEygp6eHFi1aYM2aNcjJyfnsaxYk79q9evUq1esQlTmBoGw2IiL6MvDDW4lVzrsqBXFxcZg1a9YXlyDp6OjA29sb3bp1k+z7999/8eOPP0IsFsPf3x9LlixBvXr18MMPP8DPz++zr1mQj69NVKko6Ze+1atXo27dutDS0oKDgwPOnz+fb9nw8HBJq3PepqWl9TlPhYiIqMxxDFIhMjMzoaOjU95hKBVjY2NcuXIFtra2kn3ff/89/Pz8EBYWhunTp8PKyqpUr21ubg4DA4NSuQYRfbBz5074+/tj7dq1cHBwwIoVK+Dq6oqbN2+iZs2acs/R19fHzZs3Jb8FbLUiIqIKptgtSI8ePcLQoUNhamoKTU1N1KtXD6NGjUJ2drakzL///os+ffrAyMgIVapUwddff40jR45I1RMTEwOBQIBdu3Zh1qxZMDMzg56eHr777jukp6cjKysL48aNQ82aNaGrqwtfX19kZWVJ1SEQCDBmzBhs3boVjRo1gpaWFuzt7REbGytV7v79+/jhhx/QqFEjaGtro1q1aujTpw/u3bsnVS7v6+fJkyfxww8/oGbNmqhduzaCgoIwceJEAEC9evUkX0bzzs+LY/fu3bCxsYG2tjYcHR1x5coVAMC6detgZWUFLS0tdOjQQea6AHDu3Dm4ubnBwMAAVapUgbOzM86cOSNVJigoCAKBAHfu3MGQIUNgaGgIAwMD+Pr64vXr11LPJTMzExEREZJYhwwZIjl+48YNJCcn5/9/ciGqV68ulRzl6d27NwDg+vXrBZ4/c+ZMqKioICoqSmr/iBEjoKGhgb///rvY1yaq8JSwBWnZsmUYPnw4fH19YWNjg7Vr16JKlSoIDQ3N9xyBQABjY2PJVqtWrc99MkREVBJK+F6pKIrVgvT48WO0bt0aaWlpGDFiBKytrfHo0SPs2bMHr1+/hoaGBp4+fQonJye8fv0aP/30E6pVq4aIiAj06NEDe/bskfwRnSc4OBja2tqYPHky7ty5g19++QXq6upQUVHBy5cvERQUhLNnzyI8PBz16tXDjBkzpM4/efIkdu7ciZ9++gmampr49ddf4ebmhvPnz0smFvjrr78QFxeH/v37o3bt2rh37x7WrFmDDh064Nq1a6hSpYpUnT/88ANq1KiBGTNmIDMzE+7u7rh16xa2b9+O5cuXo3r16gCAGjVqSM45deoUIiMjMXr0aMl9devWDQEBAfj111/xww8/4OXLl1i0aBH8/Pzw559/Ss79888/4e7uDnt7e0nyEBYWhm+++QanTp1C69atpeLr27cv6tWrh+DgYFy8eBEbN25EzZo1sXDhQgDA5s2bMWzYMLRu3RojRowAANSvX19yfuPGjeHs7IyYmJji/N9fqJSUFACQPJ/8TJs2DYcOHcLQoUNx5coV6Onp4ffff8eGDRswZ84cNGvWTKFxEVUIZdSPOysrS+Zjk6amJjQ1NaX2ZWdn48KFCwgMDPwoRBW4uLggPj4+3/ozMjJgYWEBkUiEli1bYv78+fyoQURUHipp8lIWipUgBQYGIiUlBefOncNXX30l2T979mzJmJAFCxbg6dOnOHXqFNq2bQsAGD58OOzs7ODv74+ePXtC5aM/BN6/f4+TJ09CXV0dAPDs2TPs2LEDbm5uOHr0KIAPCcudO3cQGhoqkyBdvXoVCQkJsLe3BwD0798fjRo1wowZM7Bv3z4AQNeuXfHdd99Jnde9e3c4Ojpi7969GDRokNQxIyMjREVFQVVVVbKvZcuW2L59O3r16oW6devKPJubN2/ixo0bkmNVq1bF999/j7lz5+LWrVvQ09MDAOTk5CA4OBj37t1D3bp1IRaLMXLkSHTs2BG//fabpDvK999/D1tbW0ybNg1//PGH1LVatGiBkJAQye/nz58jJCREkiB5e3tj5MiRsLS0hLe3t0yspSE7OxsrVqxAvXr10KpVqwLLqqurY9OmTbC3t4e/vz8WL16MoUOH4quvvsLkyZPLJF4ipVNGL7Lg4GDMmjVLat/MmTMRFBQktS81NRU5OTkyLUC1atXCjRs35NbdqFEjhIaGws7ODunp6ViyZAmcnJzwzz//oHbt2gq9DyIiqnhiY2OxePFiXLhwAU+ePMH+/fsLnHgrJiYGHTt2lNn/5MkTGBsbl1qcRf5kKRKJcODAAXTv3l0qOcqT94f90aNH0bp1a0lyBAC6uroYMWIE7t27h2vXrkmd5+PjI0mOAMDBwQFisVhmsL+DgwMePHiA9+/fS+13dHSUJEcAUKdOHfTs2RO///67ZEY1bW1tyfF3797h+fPnsLKygqGhIS5evChzL8OHD5dKjoqiU6dOUomTg4MDAMDT01OSHH28/99//wUAJCYm4vbt2xgwYACeP3+O1NRUpKamIjMzE506dUJsbCxEIpHUtUaOHCn1u127dnj+/DmEQmGRYhWLxQpvPRozZgyuXbuGVatWQU2t8Ly7SZMmmDVrFjZu3AhXV1ekpqYiIiKiSOcSVUpl1BUiMDAQ6enpUtvHrUSfw9HRET4+PmjevDmcnZ2xb98+1KhRA+vWrVNI/UREVAxKOItdZmYmmjVrhtWrVxfrvJs3b+LJkyeSLb9xsIpS5L9Gnz17BqFQWOh6OPfv35ckAR9r3Lix5PjHddSpU0eqXN7Ae3Nzc5n9IpEI6enpqFatmmR/gwYNZK7VsGFDvH79Gs+ePYOxsTHevHmD4OBghIWF4dGjR1IzoKWnp8ucX69evQLvUZ7i3AcAvHz5EgBw+/ZtAMDgwYPzrTs9PR1Vq1bN91p5x16+fAl9ff1ix/65Fi9eLOke5+HhUeTzJk6ciB07duD8+fOYP38+bGxsSjFKIiVXRl3s5HWnk6d69epQVVXF06dPpfY/ffq0yF/t1NXV0aJFC9y5c6dEsRIR0WdQwi527u7ucHd3L/Z5NWvWhKGhoeIDyke5f67Pr6Umv/0lmd75xx9/RFhYGMaNGwdHR0cYGBhAIBCgf//+Mq0zgHSLU1GV9D7yrr948WI0b95cblldXd1i1VmWwsPDMWnSJIwcORLTpk0r1rn//vuvJEHMm9CC6IulZC8yDQ0N2NvbIyoqStL9QSQSISoqCmPGjClSHTk5Obhy5UqxPpwQEVHFUtSxrZ+jefPmyMrKQpMmTRAUFIQ2bdoorG55ipwg1ahRA/r6+rh69WqB5SwsLKSmeM2T12fdwsKimCEWLO8P7I/dunULVapUkUyisGfPHgwePBhLly6VlHn79m2x1jQqralq8yZP0NfXh4uLi8LqLYupdQ8ePIhhw4bh22+/LXZTqUgkwpAhQ6Cvr49x48Zh/vz5+O677/Dtt98W6fxPZ0UkIsXz9/fH4MGD8dVXX6F169ZYsWIFMjMz4evrC+BDF2kzMzMEBwcD+DAe9euvv4aVlRXS0tKwePFi3L9/H8OGDSvP2yAi+jKV0TILRR3bWhImJiZYu3YtvvrqK2RlZWHjxo3o0KEDzp07h5YtW352/fkpcp8OFRUV9OrVC4cOHUJCQoLM8bzWCw8PD5w/f15qlqPMzEysX78edevWVXg3qvj4eKlxRA8ePMDBgwfRpUsXSUuLqqqqTOvKL7/8IhmjVBR5ayEpeqFYe3t71K9fH0uWLEFGRobM8WfPnpWoXh0dHdlYqw6Qv5VAbGws+vfvj/bt22Pr1q1SE28UxbJlyxAXF4f169djzpw5cHJywqhRo5Camlqka+f9gUZUaSjhdKz9+vXDkiVLMGPGDDRv3hyJiYk4duyYZOKG5ORkPHnyRFL+5cuXGD58OBo3bgwPDw8IhULExcVVuu6zz549w6hRo1CnTh1oamrC2NgYrq6ukqUZ6tatixUrVkjK161bV7Lkgo6ODlq2bIndu3dL1fnmzRsYGRmhevXqMl9iAWD9+vXo0KED9PX1IRAI5L6LBAJBvguE37x5Ex07dkStWrWgpaUFS0tLTJs2De/evSvSPectMyEQCKCmpoa6deti/PjxkvfWvXv3IBAIkJiYKPc3ALx69QodO3aEjY0NHj58iOfPn8PNzU2ybIi5uTnGjBkjM542OzsbixYtQrNmzVClShVUr14dbdq0QVhYmEz88fHxUFVVRdeuXYt0X0SVWhmNQSrNsa2NGjXC999/D3t7ezg5OSE0NBROTk5Yvny5QurPT7G62M2fPx9//PEHnJ2dMWLECDRu3BhPnjzB7t27cfr0aRgaGmLy5MnYvn073N3d8dNPP8HIyAgRERFISkrC3r17i/2HdGGaNGkCV1dXqWm+AUhlst26dcPmzZthYGAAGxsbxMfH48SJE1JjmQqTNxHE1KlT0b9/f6irq6N79+6fvYisiooKNm7cCHd3d9ja2sLX1xdmZmZ49OgRoqOjoa+vj0OHDhW7Xnt7e5w4cQLLli2Dqakp6tWrBwdVxTz7+/fvo0ePHhAIBPjuu+9kXvR2dnaws7PL9/zr169j+vTpGDJkCLp37w7gQ1e95s2b44cffsCuXbuKdG2iSkVQNmOQimvMmDH5dqn7dLKX5cuXl/pLSxl4enoiOzsbERERsLS0xNOnTxEVFYXnz5/ne87s2bMxfPhwCIVCLF26FP369YOZmRmcnJwAAHv37oWtrS3EYjEOHDiAfv36SZ3/+vVruLm5wc3NrUR/eKirq8PHxwctW7aEoaEh/v77bwwfPhwikQjz588vUh22trY4ceIE3r9/jzNnzsDPzw+vX78u0iQcz549g7u7O1RUVHDq1ClUq1YNL1++RM+ePTF37lzUqFEDd+7cwejRo/HixQts27YNwIfkyNXVFX///TfmzJmDNm3aQF9fH2fPnsWSJUvQokULqe7pISEh+PHHHxESEoLHjx/D1NS02M+KiIpH0d3pCtO6dWucPn26VK9RrATJzMwM586dw/Tp07F161YIhUKYmZnB3d1dspZQrVq1EBcXh0mTJuGXX37B27dvYWdnh0OHDpXKFx1nZ2c4Ojpi1qxZSE5Oho2NDcLDw6X+QF+5ciVUVVWxdetWvH37Fm3atMGJEyfg6upa5Ou0atUKc+bMwdq1a3Hs2DGIRCIkJSV9doIEAB06dEB8fDzmzJmDVatWISMjA8bGxnBwcMD3339fojqXLVuGESNGYNq0aXjz5g0GDx6M1mryxy4VN9VISkqSTG6Rt+7Tx2bOnJlvgpSTk4PBgwejevXqUl9YGzRogODgYIwdOxa7du1C3759C702UaWiZGOQSL60tDScOnUKMTExcHZ2BvCh6/in69V9Sk9PT7J47urVq7FlyxYcOnRIkiCFhITA29sbYrEYISEhMgnSuHHjAMgmpUVlaWkJS0tLyW8LCwvExMTg1KlTRa5DTU1NMkFHv379EBUVhcjIyEITpAcPHqBz584wMzPDwYMHJeNqq1atilGjRknF9MMPP2Dx4sWSfStWrEBsbCwSEhLQokULqfvp06eP1CL1GRkZ2LlzJxISEpCSkoLw8HBMmTKlyPdHVOlU0vdKYmIiTExMSvUaxZ6koU6dOoiIiCiwjKWlpUyrwqc6dOggd1KBIUOGYMiQITL7g4KC8u3LOHDgQAwcODDfaxkaGspd+f3evXtFunaeadOmyZ2IQN595K1x9Kn87rt58+bYu3dvvtcG8n8G8uJu1KgRTp48KR2nWfG7pYlEIqSmpkJNTU0ye0h+91AUqqqqOH/+vNxjP/30E3766acCz8+7tlAolMwISFQpVNIXWWWjq6sLXV1dHDhwAF9//XWJvpqqqalBXV1d8sf93bt3ER8fj3379kEsFmP8+PG4f/++wsfsfuzOnTs4duxYkcd9yqOtrS2VoMhz8+ZNTJw4EV999RW2b99e4PN6/Pgx9u3bJ0k8AWDr1q1wcXGRSo7yqKurSy0TsmvXLlhbW6NRo0bw9vbGuHHjEBgYyB4H9OVSwvdKRkaG1MymSUlJSExMhJGREerUqYPAwEA8evQImzZtAgDJGpu2trZ4+/YtNm7ciD///FNmjVBFU84+HVQ61FTkbwV48OABatSoIbWuFRGVAiVcr4JkqampITw8HBERETA0NESbNm0wZcoUXL58uUjnZ2dnIzg4GOnp6fjmm28AAKGhoXB3d0fVqlVhZGQEV1dXhIWFlUr8Tk5O0NLSQoMGDdCuXTvMnj27RPVcuHAB27Ztk9xDfnx8fGBlZYXdu3fnmxx5eXmhSpUqMDMzg76+PjZu3Cg5dvv2bVhbWxcpprxWOABwc3NDenq6zIfCj2VlZUEoFEptRFS68lqD8z56+Pv7o0WLFpgxYwaADwvAJicnS8pnZ2djwoQJaNq0KZydnfH333/jxIkT6NSpU6nGybfll0RVVf6Wj4CAABw/fhzHjx+XvLA+Hmz88Savqx3wYWzRp2W1tLRK5faIKjQlnKSB5PP09MTjx48RGRkJNzc3xMTEoGXLlggPD8/3nEmTJkFXVxdVqlTBwoULsWDBAnTt2hU5OTmIiIiQ/GEPAN7e3ggPD5e7DMXn2rlzJy5evIht27bhyJEjWLJkSZHPvXLlCnR1daGtrY3WrVvD0dERq1atKvCcHj164NSpU9i3b1++ZZYvX46LFy/i4MGDuHv3Lvz9/SXHitpb4ebNmzh//jy8vLwAfEhk+/Xrh5CQkHzPCQ4OhoGBgWT7dN1CogpPCT+85fUE+nTL++9neHi4VFfigIAA3LlzB2/evMHz588RHR2Njh07KvAhyVfu6yBRGSqktehTNjY2MrNP/fXXX1Kz/129ehWdO3dGnz598q1HX19faup3dncgkoPJS4WipaWFzp07o3Pnzpg+fTqGDRuGmTNn5ttNe+LEiRgyZAh0dXVRq1YtyX8Hf//9dzx69EhmzFFOTg6ioqLQuXNnhcadlwTY2NggJycHI0aMwIQJE/JdX+9jjRo1QmRkJNTU1GBqagoNDY1Cz5k6dSrs7OwwYMAAiMViueNL88ZmWVtbw8jICO3atcP06dNhYmKChg0bSpYJKUhISAjev38vNSmDWCyGpqYmVq1aJbdLdmBgoFQyJhQKmSRR5cL3SolV6ASpPBZGrdDymaShOPLWlsqzYMEC1K9fX6rP+KcEAoFkYC8R5YPd3yo0GxubfKfYBoDq1avDyspKZn9ISAj69++PqVOnSu2fN28eQkJCFJ4gfUwkEuHdu3cQiURFSpA0NDTk3kNhpk+fDhUVFQwcOBBisVgmGfw0JgCSqc4HDBiAKVOm4NKlSzLjkN69e4fs7Gxoampi06ZNWLp0Kbp06SJVplevXti+fTtGjhwpc62ynnmLiCqOCp0gUfGI85nmO7uEKyBnZ2djy5Yt8Pf3L7BVKCMjAxYWFhCJRGjZsiXmz58PW1vb4t8AUWXGL30VwvPnz9GnTx/4+fnBzs4Oenp6SEhIwKJFi9CzZ89i1fXs2TMcOnQIkZGRaNKkidQxHx8f9O7dGy9evICRkRFSUlKQkpIiGdx85coV6OnpoU6dOjAyMpKclzfg+WMNGjTAgQMHoK6ujqZNm0JTUxMJCQkIDAxEv379pCY6KC1Tp06FqqoqBg4cCJFIBC8vLxw9ehRPnz5Fq1atoKuri3/++QcTJ05EmzZtULduXQAfZu87cuQIOnXqhDlz5qBt27aSZ75w4UKEhITg3r17ePnyJYYOHSrTUuTp6YmQkBC5CRJRpcf3SokxQSoBkUiEx48fQ09PT+m7i4nFYrx69epDt4N8utiVdAXkAwcOIC0trcCZ/xo1aoTQ0FDY2dkhPT0dS5YsgZOTE/755x/Url27uLdDVHnxRVYh6OrqwsHBAcuXL8fdu3fx7t07mJubY/jw4cWeUnrTpk3Q0dGRO9i4U6dO0NbWxpYtW/DTTz9h7dq1Uv+dbt++PQAgLCxM6r/BH3cZy3Pq1Cmoqalh4cKFuHXrFsRiMSwsLDBmzBiMHz++WDF/jsmTJ0NFRQWDBg2CWCyGiYkJNmzYgPHjxyMrKwvm5ub49ttvMXnyZMk5mpqaOH78OJYvX45169bh559/RpUqVdC4cWP89NNPaNKkCaZPnw4XFxe53eg8PT2xaNEiXL58ucD1+YgqJfZMKDGBuAL3U8vJycGVK1dgYWGBqlWrltl1Hz58WOH6KT948ACmvZbJPfbuTHCJWpBcXV2hoaFRrIVs3717h8aNG8PLywtz5swp8nmfypvm+/nLNOjr65e4HpJ15Mbb8g6hUnmdIcQAB2Okp6cX/M/qg9SyCci8etlch6iCyXuvpNfxgb5K4eOrqOgOHPlfeYdQ6bzOEGJgYe+WNb+VTTCj3MvmOmWoQrUgjRs3Dk2bNsXQoUORk5MDZ2dnxMXFoUqVKjh8+DA6dOhQJnHo6ekBAB7odIe+QHFdEzKurVBYXXlevXoFa1vbDzHn04JUkn7Y9+/fx4kTJwqcmUgedXV1tGjRQmoOfCICoOSt0URERF+KCpUg7dmzRzIV6qFDh5CUlIQbN25g8+bNmDp1Ks6cOVMmceR1q9MXqCs0QVIpxZYQgUBQ4JTexRUWFoaaNWuia9euxTovr9XPw8NDYbEQVQrsYkflSFdXN99jv/32G9q1a1eG0RCRQvC9UmIVKkFKTU2VzIZ29OhR9OnTBw0bNoSfnx9WrlxZztEpP3Exp/nOj0gkQlhYGAYPHgw1Nel/hHx8fGBmZobg4GAAwOzZs/H111/DysoKaWlpWLx4Me7fv49hw4YpJBaiSoN9xakcfTqxw8fMzMzKLhAiUhwB3yslVaESpFq1auHatWswMTHBsWPHsGbNGgDA69evizRF6RdPQQnSiRMnkJycDD8/P5ljycnJUPnoD72XL19i+PDhSElJQdWqVWFvb4+4uDiZ9ZVKSm3PGahV0VFIXfSBVSen8g6hUsnQKOJ/Zvmlj8pRSabvJiKqrCpUguTr64u+ffvCxMQEAoEALi4uAIBz587B2tq6nKOrABSURHbp0iXfNag+Xv0Y+LBC+vLlyxVyXaJKjQkSEREpEt8rJVah2t6CgoIQEhKCESNG4MyZM5KJBVRVVaWmBS2K1atXo27dutDS0oKDgwPOnz9fGiErFzUV+RsRlT8VQdlsRET0ZeB7pcQqTAvSu3fv4ObmhrVr18LT01Pq2ODBg4tV186dO+Hv74+1a9fCwcEBK1asgKurK27evImaNWsqMmzlwm6IRMqLY5CIiIiUQoV5I6urq+Py5csKqWvZsmUYPnw4fH19YWNjg7Vr16JKlSoIDQ1VSP3KSqymIncjIiXAL31ERKRIfK+UWIX669jb2xshISGfVUd2djYuXLggGb8EACoqKnBxcUF8fPznhqjcVFXkb0RU/vgiIyIiRVJRKZutEqowXewA4P379wgNDcWJEydgb28PHR3p2cuWLVtWaB2pqanIyclBrVq1pPbXqlULN27ckHtOVlYWsrKyJL+FQmEJolcCauxiR6S0KulLhoiIqKKpUAnS1atX0bJlSwDArVu3pI4JSnEV+uDgYMyaNavU6i8zbC0iUl6l+N8wIiL6ArHXQIlVqAQpOjr6s+uoXr06VFVV8fTpU6n9T58+lSxC+6nAwED4+/tLfguFQpibm392LGWOLUhEyktJX2SrV6/G4sWLkZKSgmbNmuGXX35B69at8y2/e/duTJ8+Hffu3UODBg2wcOFCeHh4lGHEREQEQGnfKxVBhW1SePjwIR4+fFjs8zQ0NGBvb4+oqCjJPpFIhKioKDg6Oso9R1NTE/r6+lJbRcRJGoiUmBL2Fc+b8XPmzJm4ePEimjVrBldXV/z3339yy8fFxcHLywtDhw7FpUuX0KtXL/Tq1QtXr15VxBMiIiIqExXqr2ORSITZs2fDwMAAFhYWsLCwgKGhIebMmQORSFTkevz9/bFhwwZERETg+vXrGDVqFDIzM+Hr61uK0SsBBUzSEBQUBIFAILUVtkjv7t27YW1tDS0tLTRt2hRHjx79nLsgqpyUcJKG4s74uXLlSri5uWHixIlo3Lgx5syZg5YtW2LVqlWKeEJERFQcSvjhraKoUF3spk6dipCQECxYsABt2rQBAJw+fRpBQUF4+/Yt5s2bV6R6+vXrh2fPnmHGjBlISUlB8+bNcezYMZmJGyodBXWxs7W1xYkTJ/6/WrX8/zHK+6IcHByMbt26Ydu2bejVqxcuXryIJk2aKCQeokqhjLpCfDrpDPChlTxv4e08eTN+BgYG/n+Ihcz4GR8fL9UdGQBcXV1x4MABxQRPRERFxy52JVah0r6IiAhs3LgRo0aNgp2dHezs7PDDDz9gw4YNCA8PL1ZdY8aMwf3795GVlYVz587BwcGhdIJWJgqa5ltNTQ3GxsaSrXr16vmW5RdlIuUSHBwMAwMDqS04OFimXEEzfqakpMitOyUlpVjliYjoyxIbG4vu3bvD1NQUAoGgSB/QYmJi0LJlS2hqasLKyqrYf/OXRIVKkF68eCG3O5e1tTVevHhRDhFVMGqqcresrCwIhUKp7dMvzB+7ffs2TE1NYWlpiYEDByI5OTnfsvHx8VJrTgEfvihX+jWniIpJLBCUyRYYGIj09HSp7eNWIiIiqiSUsOt2ZmYmmjVrhtWrVxepfFJSErp27YqOHTsiMTER48aNw7Bhw/D777+X5IkUWYVKkJo1aya35WHVqlVo1qxZOURUweTTglTUL8oA4ODggPDwcBw7dgxr1qxBUlIS2rVrh1evXsktzy/KREUjEpfNJm/SmU+71wElm/HT2Ni4WOWJiKgUCVTKZisGd3d3zJ07F7179y5S+bVr16JevXpYunQpGjdujDFjxuC7777D8uXLS/JEiqxCjUFatGgRunbtihMnTkhmnIuPj8eDBw848L8I8pux7tNpzAHI/YMJ+PAPdh47Ozs4ODjAwsICu3btwtChQxUXLNEXRiwWl82Firje0sczfvbq1QvA/8/4OWbMGLnnODo6IioqCuPGjZPsO378eL4zhBIRUcVX1LGtJZFfT6SP3zOloUK1IDk7O+PWrVvo3bs30tLSkJaWhm+//RY3b95Eu3btyjs85aeqKncr6hdleQwNDdGwYUPcuXNH7nF+USYqmrJqQSqOwmb89PHxkeqeN3bsWBw7dgxLly7FjRs3EBQUhISEhHwTKiIiKkVl1MWuOD2Riiu/nkhCoRBv3rxRyDXkqVAtSMnJyTA3N5c7W11ycjLq1KlTDlFVIKWw5lFGRgbu3r2LQYMGyT3OL8pERVPc5KUsFDbjZ3JyMlQ+muLVyckJ27Ztw7Rp0zBlyhQ0aNAABw4c4IyVRETloYxmsStOT6SKokIlSPXq1cOTJ09Qs2ZNqf3Pnz9HvXr1kJOTU6bxvD4yFWq6ugqrTy3yL4XVJanzTeZHPz5/mu+ff/4Z3bt3h4WFBR4/foyZM2dCVVUVXl5eAD58UTYzM5N8ORg7diycnZ2xdOlSdO3aFTt27EBCQgLWr1//2bEQVSbKmCABH2b8zK8FKCYmRmZfnz590KdPn1KOiqgUHZkB6OmVdxSVSq+enAhG0YQ5+U+mVdYU1Z1Onvx6Iunr60NbW7tUrglUsARJLBZDIKf/fEZGBrS0tMohogqmBFN6f+rhw4fw8vLC8+fPUaNGDbRt2xZnz55FjRo1APCLMlFJldUQJCIi+kJUgkVcHR0dZeYZKIueSBUiQcprthMIBJg+fTqqVKkiOZaTk4Nz586hefPm5RRdxSFWQAvSjh07CjzOL8pEJSMqswyJCwcSEX0RlHCh2IyMDKlx60lJSUhMTISRkRHq1KmDwMBAPHr0CJs2bQIAjBw5EqtWrUJAQAD8/Pzw559/YteuXThy5EipxlkhEqRLly4B+NCCdOXKFWhoaEiOaWhooFmzZvj555/LK7yKQwEtSERUOpS1ix0REZGiJCQkoGPHjpLfeY0ggwcPRnh4OJ48eSK1vma9evVw5MgRjB8/HitXrkTt2rWxceNGuLq6lmqcFSJBio6OBgD4+vpi5cqV0NfXL+eIKqhSmKSBiBSDCRIRESmUErYgdejQocBlLcLDw+Wek9dYUlYq1F/MK1aswPv372X2v3jxAkKhsMj1xMbGonv37jA1NYVAIMCBAwcUGKUSy2eabyIqf8o4zTcREVVgKipls1VCFequ+vfvL3cMzK5du9C/f/8i15OZmYlmzZph9erVigxP+ampyN+IqNyJxWWzERHRF6KM1kGqjCpEF7s8586dw7Jly2T2d+jQAVOnTi1yPe7u7nB3d1dkaBWCIiZpIKLSUXaTNBAREVFBKlSClJWVJbeL3bt370p1Nd1Kg5M0ECktdn8jIiKFqqStO2WhQv3F3Lp1a7kLjK5duxb29valdt2srCwIhUKprUJiFzsipcUxSEREpFAcg1RiFaoFae7cuXBxccHff/+NTp06AQCioqLw119/4Y8//ii16wYHB2PWrFmlVn+Z4YQMREqLuQsREZFyqFBpX5s2bRAfHw9zc3Ps2rULhw4dgpWVFS5fvox27dqV2nUDAwORnp4u2R48eFBq1ypVqiryNyIqd2xBIiIihRIIymarhCpUCxIANG/eHFu3bi3Ta2pqakJTU7NMr1kaxApIhoKDg7Fv3z7cuHED2tracHJywsKFC9GoUaN8zwkPD4evr6/UPk1NTbx9+/az4yGqLDhJAxERKRTHIJVYhUuQ8rx9+xbZ2dlS+4q6gGxGRgbu3Lkj+Z2UlITExEQYGRmhTp06Co1TqShgvNHJkycxevRotGrVCu/fv8eUKVPQpUsXXLt2DTo6Ovmep6+vj5s3b0p+CyrpFweikmLrDhERkXKoUAnS69evERAQgF27duH58+cyx3NycopUT0JCAjp27Cj57e/vDwAYPHiw3BV8Kw0FTPN97Ngxqd/h4eGoWbMmLly4gPbt2+d7nkAggLGx8Wdfn6iyYgMSEREpFFuQSqxCJUgTJ05EdHQ01qxZg0GDBmH16tV49OgR1q1bhwULFhS5ng4dOkD8Jf41kk8Xu6ysLGRlZUntK2q3wvT0dACAkZFRgeUyMjJgYWEBkUiEli1bYv78+bC1tS1i4ESVH1uQiIhIoSrpDHNloUI9uUOHDuHXX3+Fp6cn1NTU0K5dO0ybNg3z588v83FJFZKaqtwtODgYBgYGUltwcHCh1YlEIowbNw5t2rRBkyZN8i3XqFEjhIaG4uDBg9iyZQtEIhGcnJzw8OFDRd4dUYXGSRqIiIiUQ4VqQXrx4gUsLS0BfBjT8uLFCwBA27ZtMWrUqPIMrWLIpwUpMDBQ0s0wT1Faj0aPHo2rV6/i9OnTBZZzdHSEo6Oj5LeTkxMaN26MdevWYc6cOUUIvAAWNQEd3c+rg6TUNuB08IokFBTteXKSBiIiUih2sSuxCpUgWVpaIikpCXXq1IG1tTV27dqF1q1b49ChQzA0NCzv8JSeOJ9JGkoyS9+YMWNw+PBhxMbGonbt2sU6V11dHS1atJCaKIPoS8f8iIiIFIoJUolViC52//77L0QiEXx9ffH3338DACZPnozVq1dDS0sL48ePx8SJE8s5ygpAVVX+VgxisRhjxozB/v378eeff6JevXrFDiMnJwdXrlyBiYlJsc8lqqzYxY6IiEg5VIgWpAYNGuDJkycYP348AKBfv3743//+hxs3buDChQuwsrKCnZ1dmcWTN8HDq8wMhdar8iZTofUBwKs3rwHkxqyAab5Hjx6Nbdu24eDBg9DT00NKSgoAwMDAANra2gAAHx8fmJmZScYxzZ49G19//TWsrKyQlpaGxYsX4/79+xg2bNhnx0NUWTB5ISIiheIkDSVWIRKkT2ecO3r0KIKDg2FpaQkLC4syj+fVq1cAgIYezmV+7ZJ69eoVjIrZWiTPmjVrAHyYCfBjYWFhGDJkCAAgOTkZKh/9S/ny5UsMHz4cKSkpqFq1Kuzt7REXFwcbG5vPjoeISFkNGTIEaWlpOHDggMyxunXr4v79+9i+fTv69+8vdczW1hbXrl1DWFgY6tatK7UshTzR0dG4d+8exo0bh7S0NMn+69evo0uXLvj666+xdetWHD58GGvWrEFiYiKysrJga2uLoKAguLq6lvh+9uzZA29vb8ybNw8TJkyQKTNkyBBERETI1HX79m1YWVkhNjYWixcvxoULF/DkyRPs378fvXr1kiobFBSEHTt24MGDB9DQ0IC9vT3mzZsHBwcHSZmP19ZTVVWFqakpvvvuOwQHB1eKhd6JSoRd7EqsQiRIysbU1BQPHjyAnp5eoQueCoVCmJub48GDB0VeyLYwxalTLBbj1atXMDU1xdvUu5997aJMjx4TEyP1e/ny5Vi+fPlnX5uoMqvoLUgvXrzAjz/+iEOHDkFFRQWenp5YuXIldHXzn0SlQ4cOOHnypNS+77//HmvXri3tcJWCubk5wsLCpBKks2fPIiUlRbLwtpOTE548eSI5PnbsWAiFQoSFhUn2GRkZ4d69e1J1//XXX3B3d0fv3r2xbt06qKioIDY2Fp07d8b8+fNhaGiIsLAwdO/eHefOnUOLFi2KHf/GjRsxevRorF27Fr6+vvmWc3Nzk4oXAGrUqAEAyMzMRLNmzeDn54dvv/1W7vkNGzbEqlWrYGlpiTdv3mD58uXo0qUL7ty5I6kH+PChzs3NDe/evcPff/8NX19f6OjofP5kQET0xakQCZJAIJBJRApLTEqTiopKsScm0NfXV1iCVNw6DQwMAOQ/SQMRlb+KPovdwIED8eTJExw/fhzv3r2Dr68vRowYgW3bthV43vDhwzF79mzJ7ypVqpR2qEpj4MCBWL58OR48eABzc3MAQGhoKAYOHIhNmzYBADQ0NKQW2dbW1kZWVlaBC2//+eef6NmzJ3744QcsXLhQsn/FihVS5ebPn4+DBw/i0KFDxU6QFi1ahJkzZ2LHjh3o3bt3gWU1NTXzjdfd3R3u7u4Fnj9gwACp38uWLUNISAguX76MTp06SfYbGhpKrmNubo6ePXvi4sWLRbkdosqJLUglViESJLFYjCFDhkiayd++fYuRI0dKvrDl2bdvX3mEV3EooIsdEZWOipwfXb9+HceOHcNff/2Fr776CgDwyy+/wMPDA0uWLIGpqWm+51apUqXAP/Yrs1q1asHV1RURERGYNm0aXr9+jZ07d+LkyZOSBKm49u/fjwEDBiAoKAiTJk0qsKxIJPrQ/bqQhb4/NWnSJPz66684fPiwVIJSFrKzs7F+/XoYGBigWbNm+Za7desW/vzzT0nXb6IvkoAfxkuqQjy5wYMHo2bNmpJFTL29vWFqaiqzuCkVQk1F/kZE5a6sZrHLysqCUCiU2rKysj4r9vj4eBgaGkqSIwBwcXGBiooKzp07V+C5W7duRfXq1dGkSRMEBgbi9evXnxVLRePn54fw8HCIxWLs2bMH9evXR/PmzUtUV0ZGBvr06YOJEycWmhwBwJIlS5CRkYG+ffsW+Rq//fYbFi1ahIMHDxY5OTp8+DB0dXUlW58+fYp8vU/r0NLSwvLly3H8+HFUr15dqoyXl5ekTKNGjWBra4vAwMB865T37wIREVBBWpA+7btckWhqamLmzJkKHSRa4jrZgkSktERldJ3g4GDMmjVLat/MmTMRFBRU4jpTUlJQs2ZNqX1qamowMjKSzHQpz4ABA2BhYQFTU1NcvnwZkyZNws2bN7+o3gBdu3bF999/j9jYWISGhsLPz6/EdWlra6Nt27bYsGEDvLy80Lhx43zLbtu2DbNmzcLBgwdl/r8riJ2dHVJTUzFz5ky0bt26wDFmeTp27CiZ4AeATO+PoujYsSMSExORmpqKDRs2oG/fvjh37pxU7MuXL4eLiwtycnJw584d+Pv7Y9CgQdixY4fcOuX9u0BUqShxF7vVq1dj8eLFSElJQbNmzfDLL7+gdevWcsuGh4fLjHPU1NTE27dvSy0+Nh+UMk1NTQQFBSk8QSpRnWxBIlJaZdWCFBgYiPT0dKktv6/skydPlowBzW+7ceNGie95xIgRcHV1RdOmTSXjbvbv34+7dz9/QpmKQk1NDYMGDcLMmTNx7tw5DBw4sMR1qaqq4sCBA2jZsiU6duyI69evyy23Y8cODBs2DLt27YKLi0uxrmFmZoaYmBg8evQIbm5uklldC6KjowMrKyvJVpI18PLq+PrrrxESEgI1NTWEhIRIlTE2NoaVlRUaNWqErl27YtasWdi5c2e+i5J/+u/CgwcPih0XkVJTEZTNVkw7d+6Ev78/Zs6ciYsXL6JZs2ZwdXXFf//9l+85+vr6ePLkiWS7f//+5zyZQvGv4y+IWFVF7kZE5U8sFpfJpqmpKZngJW/L72PLhAkTcP369QI3S0tLGBsby7zY3r9/jxcvXhRrfFHetM35/UFbWfn5+eHkyZPo2bMnqlat+ll1aWpqYt++fWjVqhU6duyIa9euSR3fvn07fH19sX37dnTt2rVE17CwsMDJkyeRkpJS5CRJ0UQiUaFdQ1Vze028efNG7nF5/y4QUelbtmwZhg8fDl9fX9jY2GDt2rWoUqUKQkND8z1HIBDA2NhYstWqVatUY6wQXexIQdTYxY5IWSnjNN81atSQmkY5P46OjkhLS8OFCxdgb28P4MNMaiKRSGqtmsIkJiYCQIlaGJRVenq65L7yVKtWTep348aNkZqaqrAZ/DQ1NbF371706dMHHTt2xJ9//glbW1ts27YNgwcPxsqVK+Hg4CDp/qitrV3scbzm5uaIiYlBx44d4erqimPHjpUowcjIyJBKiJOSkpCYmAgjIyPUqVMHmZmZmDdvHnr06AETExOkpqZi9erVePTokcxYprS0NKSkpEAkEuH27duYPXs2GjZsWGBXQ6JKrYwWis3KypL5YKGpqSn341t2djYuXLgg1XNBRUUFLi4uiI+Pz/caGRkZsLCwgEgkQsuWLTF//nzY2toq7iY+weaDLwm72BEprbLqYlcaGjduDDc3NwwfPhznz5/HmTNnMGbMGPTv318yg92jR49gbW2N8+fPAwDu3r2LOXPm4MKFC7h37x4iIyPh4+OD9u3bw87OrnQCLQcxMTFo0aKF1CZv3Eu1atWgra2tsOtqaGhgz549cHJyQseOHXH16lWsX78e79+/x+jRo2FiYiLZxo4dW6Jr1K5dGzExMUhNTYWrq2uJJjlISEiQPBcA8Pf3R4sWLTBjxgwAH1qBbty4AU9PTzRs2BDdu3fH8+fPcerUKZk/jnx9fWFiYoLatWvDy8sLtra2+O2336Cmxm/B9IUqoy52wcHBMhOnBQcHyw0pNTUVOTk5Mi1AtWrVynfMaqNGjRAaGoqDBw9iy5YtEIlEcHJywsOHDxX+yPIIxEVZ+ZMqhYy0dLn7dQ0r3gyAQqEQBgYGSP/jL+jrFD5ImIouvWXD8g6hUhEKhahTqyrS09ML/MJ+MunzZpIrKud6ihsP+bEXL15gzJgxUgvF/u9//5MM4r937x7q1auH6OhodOjQAQ8ePIC3tzeuXr2KzMxMmJubo3fv3pg2bRq7OlG5kLxXrtyBvp5eeYdTufScX94RVDrCnCwYXF1b8Lvl9uMyiSWrTrUityA9fvwYZmZmiIuLg6Ojo2R/QEAATp48WejMpwDw7t07NG7cGF5eXqW2EDQ/q3xBKmIiRPSlqOifqoyMjApcFLZu3br4+Hucubk5Tp48WRahERFRKcovGZKnevXqUFVVxdOnT6X2P336tMhjVtXV1dGiRYtSHa/K/lWlqDSnHySiykUkFpfJRiRPcnKy1FpFn27JycnlHSIRFZeKStlsxaChoQF7e3tERUVJ9olEIkRFRUm1KBUkJycHV65cKdXxqmxBUjCRSIR58+Zh7dq1ePr0KW7dugVLS0tMnz4ddevWxdChQ8s7RCJSQso4SQN9OUxNTWUmk/j0OBFVMEq6DpK/vz8GDx6Mr776Cq1bt8aKFSuQmZkpWevIx8cHZmZmknFMs2fPxtdffw0rKyukpaVh8eLFuH//PoYNG1ZqMTJBUrC5c+ciIiICixYtwvDhwyX7mzRpghUrVnxWgpSWloY9e/bg7t27mDhxIoyMjHDx4kXUqlULZmZmigifiMoJEyQqT2pqarCysirvMIjoC9CvXz88e/YMM2bMQEpKCpo3b45jx45JJm5ITk6GykctUy9fvsTw4cORkpKCqlWrwt7eHnFxcbCxsSm1GDlJg4JZWVlh3bp16NSpE/T09PD333/D0tISN27cgKOjI16+fFmiei9fvgwXFxcYGBjg3r17uHnzJiwtLTFt2jQkJydj06ZNCr4T5cZJGkoPJ2lQrKJO0vD7rbLpkuvaUKtMrkNU0XCShlLESRoUrkiTNNzPf+FVhbKoWTbXKUMcg6Rgjx49kvsVTiQS4d27dyWu19/fH0OGDMHt27ehpfX/f+B4eHggNja2xPUSkXKoyNN8ExGRElLCMUgVBbvYKZiNjQ1OnToFCwsLqf179uyRrPNQEn/99RfWrVsns9/MzCzfeeOJqOLgBApERETKgQmSgs2YMQODBw/Go0ePIBKJsG/fPty8eRObNm3C4cOHS1yvpqam3EX4bt26VaSV7olIubF1h4iIFEqgnJM0VASVs12sHPXs2ROHDh3CiRMnoKOjgxkzZuD69es4dOgQOnfuXOJ6e/TogdmzZ0u66QkEAiQnJ2PSpEnw9PRUVPhEVE7YxY6IiBRKRVA2WyXEFqRS0K5dOxw/flyhdS5duhTfffcdatasiTdv3sDZ2RkpKSlwdHTEvHnzFHotIip7zF2IiIiUAxOkUpKQkIDr168D+DAuyd7e/rPqMzAwwPHjx3H69GlcvnwZGRkZaNmyJVxcXBQRLhGVM7buEBGRQlXSCRTKAhMkBXv48CG8vLxw5swZGBoaAviwfpGTkxN27NiB2rVrf1b9bdu2Rdu2bRUQKREpE07SQEREClVJu7+VBaaWCjZs2DC8e/cO169fx4sXL/DixQtcv34dIpHos1f8jYqKQrdu3VC/fn3Ur18f3bp1w4kTJxQUORGVJ45BIiIiUg5MkBTs5MmTWLNmDRo1aiTZ16hRI/zyyy+ftV7Rr7/+Cjc3N+jp6WHs2LEYO3Ys9PX14eHhgdWrVysidCIqR2Jx2WxERPSF4CQNJcYudgpmbm4ud0HYnJwcmJqalrje+fPnY/ny5RgzZoxk308//YQ2bdpg/vz5GD16dInrJqLyx9YdIiJSqEqavJQFtiAp2OLFi/Hjjz8iISFBsi8hIQFjx47FkiVLSlxvWloa3NzcZPZ36dIF6enpJa6XiIiIiIj+H1uQFGzIkCF4/fo1HBwcoKb24fG+f/8eampq8PPzg5+fn6Tsixcvilxvjx49sH//fkycOFFq/8GDB9GtWzfFBE9E5YaTNBARkUJxFrsSY4KkYCtWrCiVem1sbDBv3jzExMTA0dERAHD27FmcOXMGEyZMwP/+9z9J2Z9++qlUYiCi0sMudkREpFDsYldiTJAUbPDgwaVSb0hICKpWrYpr167h2rVrkv2GhoYICQmR/BYIBEyQiCogNiAREREpByZIpejt27fIzs6W2qevr1+iupKSkhQREhEpKbYgERGRQrEFqcSYIClYZmYmJk2ahF27duH58+cyx3NycsohqkpszxlAQ7u8o6hUDKpolHcIlYog41WRyjFBIlIStQyBEn7MJFIqHINUYkyQFCwgIADR0dFYs2YNBg0ahNWrV+PRo0dYt24dFixY8Fl1P3z4EJGRkUhOTpZpmVq2bNln1U1E5auiT9Iwb948HDlyBImJidDQ0EBaWlqh54jFYsycORMbNmxAWloa2rRpgzVr1qBBgwalHzAREVE+mCAp2KFDh7Bp0yZ06NABvr6+aNeuHaysrGBhYYGtW7di4MCBJao3KioKPXr0gKWlJW7cuIEmTZrg3r17EIvFaNmypYLvgojKWgXPj5CdnY0+ffrA0dFRalxkQRYtWoT//e9/iIiIQL169TB9+nS4urri2rVr0NLSKuWIiYgqOQG72JUU294U7MWLF7C0tATwYbxR3lTebdu2RWxsbInrDQwMxM8//4wrV65AS0sLe/fuxYMHD+Ds7Iw+ffooJHYiKj8icdlspWXWrFkYP348mjZtWqTyYrEYK1aswLRp09CzZ0/Y2dlh06ZNePz4MQ4cOFB6gRIRfSlUBGWzVUJMkBTM0tJSMqGCtbU1du3aBeBDy5KhoWGJ671+/Tp8fHwAAGpqanjz5g10dXUxe/ZsLFy48LPjJqLyVVYJUlZWFoRCodSWlZVV5veblJSElJQUuLi4SPYZGBjAwcEB8fHxZR4PERFRHiZICubr64u///4bADB58mSsXr0aWlpaGD9+vMwir8Who6MjGXdkYmKCu3fvSo6lpqZ+XtBEVO5EZbQFBwfDwMBAagsODi6r25RISUkBANSqVUtqf61atSTHiIjoM6iolM1WAqtXr0bdunWhpaUFBwcHnD9/vsDyu3fvhrW1NbS0tNC0aVMcPXq0RNctKo5BUrDx48dL/reLiwtu3LiBCxcuwMrKCnZ2diWu9+uvv8bp06fRuHFjeHh4YMKECbhy5Qr27duHr7/+WhGhE1E5KqtJGgIDA+Hv7y+1T1NTU27ZyZMnF9pCff36dVhbWyssPiIiUhAl7f62c+dO+Pv7Y+3atXBwcMCKFSvg6uqKmzdvombNmjLl4+Li4OXlheDgYHTr1g3btm1Dr169cPHiRTRp0qRUYmSCVMosLCxgYWHx2fUsW7YMGRkZAD709c/IyMDOnTvRoEEDzmBHVAmU1SQNmpqa+SZEn5owYQKGDBlSYJm8MZfFZWxsDAB4+vQpTExMJPufPn2K5s2bl6hOIiL6iJImSMuWLcPw4cPh6+sLAFi7di2OHDmC0NBQTJ48Wab8ypUr4ebmJumJNWfOHBw/fhyrVq3C2rVrSyVGJkilICoqClFRUfjvv/8gEomkjoWGhpaozo//CNHR0Sm1fyCIqHwo4zpINWrUQI0aNUql7nr16sHY2BhRUVGShEgoFOLcuXMYNWpUqVyTiIgULysrS2Ysa34f47Kzs3HhwgUEBgZK9qmoqMDFxSXf8afx8fEyPR9cXV1LdUIfjkFSsFmzZqFLly6IiopCamoqXr58KbV9ruzsbDx8+BDJyclSGxFVbBV9Frvk5GQkJiYiOTkZOTk5SExMRGJioqTlG/gwcc3+/fsBAAKBAOPGjcPcuXMRGRmJK1euwMfHB6ampujVq1fpBUpE9IUQCwRlshVnbGtqaipycnKKNf40JSWlzMersgVJwdauXYvw8HAMGjRIofXeunULQ4cORVxcnNR+sVgMgUCAnJwchV6PiMqWMrYgFceMGTMQEREh+d2iRQsAQHR0NDp06AAAuHnzJtLT0yVlAgICkJmZiREjRiAtLQ1t27bFsWPHuAYSEZEClNV7pThjWysKJkgKlp2dDScnJ4XX6+vrCzU1NRw+fBgmJiYQcPEvokpFXMFXig0PD0d4eHiBZT69R4FAgNmzZ2P27NmlGBkREZWm4oxtrV69OlRVVfH06VOp/U+fPpWMTf2UsbFxscorAhMkBRs2bBi2bduG6dOnK7TexMREXLhwgbNFEVVSFb0FiYiIlEuZfXgrxkd7DQ0N2NvbIyoqStKdWiQSISoqCmPGjJF7jqOjI6KiojBu3DjJvuPHj8PR0fFzoi4QEyQF+LhZUSQSYf369Thx4gTs7Oygrq4uVbakM87Z2NhwvSOiSowJEhERKZKyvlf8/f0xePBgfPXVV2jdujVWrFiBzMxMyax2Pj4+MDMzk4xjGjt2LJydnbF06VJ07doVO3bsQEJCAtavX19qMTJBUoBLly5J/c6bkenq1atS+4vbLU4oFEr+98KFCxEQEID58+ejadOmMomXvr5+seomIuWirC8yIiIiRerXrx+ePXuGGTNmICUlBc2bN8exY8ckEzEkJydD5aMFaJ2cnLBt2zZMmzYNU6ZMQYMGDXDgwIFSWwMJYIKkENHR0aVSr6GhoVRSJRb/X3v3Hp9z/f9x/Hlts9ns4GzY5jSsaUNIKOeYM6EohbR8MRI55hzmVCRCmcNXiZxLpViGJELLmSbSjy05beawsV2/P1y7vi4ztrm2a5vH/Xb73G67Pp/35/15fa6y916f9+FjVJMmTSzKsEgDkDfk8ilIAIAcJic/eAsJCUlzSF1ERESqfZ07d1bnzp2zOKr/IUHKYnFxcfrxxx/l5+eX4flDWZV4Ach5ksmQAABWlJMTpJyOBMnKXnzxRdWvX18hISG6ceOGatasqdOnT8toNGrFihXq2LFjuutq0KBBFkYKICehIQMAIGfgRbFWtn37dj333HOSpHXr1sloNOrKlSuaPXu2Jk6cmOl6N23apJ9++sn8ee7cuapWrZpefvllq7yAFoBt5fYXxQIAchajMXu2vIgEycpiY2NVuHBhSXeSmo4dO8rFxUWtWrXSH3/8kel6hwwZYl604eDBgxo0aJBatmypU6dOpXo5F4Dch4YMAGBNyUZjtmx5EUPsrMzb21u7du1S4cKFtWnTJq1YsUKSdPny5Ud6O/ypU6fk7+8vSVqzZo3atGmjyZMna//+/WrZsqVVYgdgO8m2DgAAAEiiB8nqBg4cqFdeeUVeXl4qVaqUGjZsKOnO0LuAgIBM1+vo6Kjr169LkrZs2aJmzZpJkgoXLmyxHDiA3IknfY+vHj16yGAwpNqioqIkSaGhobK3t9f06dNTnZuUlKQpU6bIz89Pzs7OKly4sGrXrq2FCxemqn/KlCkW565fvz7dr5+IiIiQwWDQlStXzPvOnTungIAA1a9fX7GxsanKpHy+dxs1apQk6ebNm+rRo4cCAgLk4OBgfmnk3X766SfVq1dPRYoUkbOzs/z8/DRz5swHfn9FihRRUFCQDhw4kK57A/Iqhm5nHj1IVta3b1/Vrl1bZ86c0fPPP29ex718+fKPNAfp2Wef1aBBg1SvXj3t2bNHK1eulCSdOHFCXl5eVokdAGAbQUFBWrx4scW+YsWKSZIWLVqkoUOHatGiRRoyZIhFmfHjx2vBggWaM2eOatasqbi4OO3duzfV3NT8+fNr6tSp6t27twoVKvTI8Z48eVLPP/+8/P39tWrVKjk7O6dZ9vjx4xbv6nN1dZV0J7lzdnbWgAEDtGbNmvueW6BAAYWEhCgwMFAFChTQTz/9pN69e6tAgQJ68803zeXu/v5iYmI0atQotW7dWmfOnHnkewVyq7yavGQHEqQsUKNGDdWoUcNiX6tWrSw+u7u7KzIyUuXLl09XnXPmzFHfvn21evVqzZs3T6VLl5YkfffddwoKCrJO4ABshobs8ebk5CRPT89U+7dt26YbN25owoQJ+u9//6uff/5ZdevWNR//6quv1LdvX4v3g1StWjVVPU2bNlVUVJRCQ0M1bdq0R4r1wIEDat68uRo3bqylS5fKweHBf0oUL15cBQsWTLW/QIECmjdvniRp586dFr1TKapXr67q1aubP5ctW1Zr167Vjh07LBKku78/T09PDR8+XM8995z+/fdfc6IJAOnFEDsbMWZwqIuPj482btyo33//Xb169TLvnzlzpmbPnm3+PGXKlPs2MgByNoZC4H7CwsLUtWtX5cuXT127dlVYWJjFcU9PT/3444/6999/H1iPvb29Jk+erI8++kj/93//l+l4fv75ZzVo0EAdO3bUZ5999tDkyNp+++03cwxpiY+P12effSZfX18VKVIkG6MDchbalcwjQcpjJk+erEuXLtk6DAAZxCp2j7eNGzfK1dXVvHXu3FlxcXFavXq1unXrJknq1q2bvvzyS8XHx5vP++CDD/Tvv//K09NTgYGB+s9//qPvvvvuvtfo0KGDqlWrprFjx2Y6zg4dOqhNmzaaM2dOuucveXl5WdzbxYsXM3xdLy8vOTk5qWbNmurXr5/eeOMNi+N3f39ubm766quvtHLlSvMwd+BxRLuSeQyxy2My2jMFIGfIq0/hkD6NGjUyDzeT7gw/++KLL1ShQgXzkLlq1aqpTJkyWrlypXkkgb+/vw4dOqR9+/Zp586d2r59u9q0aaMePXpYLNSQYurUqWrcuLHeeeedTMXZrl07rVu3Tjt27DC/8+9hduzYITc3N/PnzMyB2rFjh+Lj4/XLL79o+PDh8vX1VdeuXc3H7/7+Ll++rI8//lgtWrTQnj17VKZMmfvWmZCQoISEBPNnFjwCkIJHKwCQA7CK3eOtQIEC8vX1NW8lS5ZUWFiYDh8+LAcHB/N25MgRLVq0yOJcOzs71apVSwMHDtTatWu1ZMkShYWF6dSpU6muU79+fTVv3lwjRozIVJwLFixQly5d1KJFC23fvj1d55QrV87i3jLTq1OuXDkFBAQoODhYb7/9tsaNG2dx/O7vr1atWlq4cKGuXbumTz/9NM06Q0ND5eHhYd68vb0zHBeQk9GuZB49SDaS3qEJAB4P9CDhbgcPHtTevXsVERFhfvm4JF26dEkNGzbUsWPH5Ofnd99zU96Zd+3atfsenzJliqpVq6bKlStnOC6DwaBPPvlEdnZ2atmypb755psHzgfKCsnJyRY9P/djMBhkZ2enGzdupFlmxIgRFi9aj4uLI0lCnkK7knkkSDbCUDgAd+NXAu4WFhamp59+WvXr1091rFatWgoLC9P06dPVqVMn1atXT3Xr1pWnp6dOnTqlESNGqFKlSmkmUAEBAXrllVcsFvjJCIPBoPnz58ve3t6cJKW88y+jjhw5osTERF26dElXr15VZGSkpDvDCSVp7ty58vHxMd/L9u3bNWPGDA0YMMCinoSEBMXExEi6M8Ruzpw5io+PV5s2bdK8tpOTk5ycnDIVN4C8jQTJRr777jvzUt0AwJM+pEhMTNRnn32mYcOG3fd4x44d9f7772vy5Mlq3ry5vvjiC4WGhio2Nlaenp5q3Lixxo0b98AV5iZMmGB+n15mGAwGzZ07V3Z2dmrVqpU2btyYqZERLVu21F9//WX+nLKkd8pDxOTkZI0YMUKnTp2Sg4ODKlSoYH6f0902bdqkkiVLSpLc3Nzk5+enVatWZTpxA/IC2pXMMxjpyrAqo9Go1atXa+vWrTp//rySk5Mtjq9duzZLr9+yZUuFhYWZG4q8Ki4uTh4eHop9c5bcHdN+QSEyoVdTW0eQp8TFX5XHc9UUGxtr8bLMe/VZfznNY9Y0r/2jvyQUyIvM7cr5Cw/8t4pMqD3k4WWQIXFJCfI4NP+BbcvZuKRsiaW0u322XCc70YNkZQMHDtSCBQvUqFEjlShRwmpzjfbv3698+fIpICBAkrRhwwYtXrxY/v7+GjdunBwdHSVJ3377rVWuByB75dWJrgAA26AHKfNYxc7Kli1bprVr1+q7777TkiVLtHjxYosts3r37q0TJ05Ikv7880916dJFLi4uWrVqlYYOHWqt8AHYSG5/X8WkSZNUt25dubi4qGDBguk6p0ePHjIYDBZbUFBQ1gWJNLVo0cLiXUV3b5MnT7Z1eACQrehBsjIPDw+VL1/e6vWeOHHCPGl11apVql+/vpYvX66dO3eqS5cumjVrltWvCSD75PYnfYmJiercubPq1KmjsLCwdJ8XFBRk8fCISfO2sXDhwjRXfLt7FT0AuQcjEzKPBMnKxo0bp/Hjx2vRokVydrbe3Bij0Wiez7Rlyxa1bt1akuTt7a0LFy5Y7Tq5Tp+W0l0vIIQVOOWzdQR5i1P6OuqzK0G69+WYknVW8xo/frwkacmSJRk6z8nJSZ6eno90bTw6Fg0C8p7c/uDNlhhiZ2UvvviiLl++rOLFiysgIEBPPfWUxZZZNWvW1MSJE7Vs2TJt27ZNrVq1kiSdOnVKJUqUsFb4AGwkOZu2e1+O6eHhodDQ0Oy6zVQiIiJUvHhxVa5cWX369NHFixdtFgsAABI9SFbXvXt37du3T926dbPqIg2zZs3SK6+8ovXr1+vdd9+Vr6+vJGn16tWqW7euVa4BwHaya0HRe1+OKdluWFtQUJBeeOEFlStXTidPntTIkSPVokUL7dq1S/b2eW9VJADITrl9hN2lS5fUv39/ff3117Kzs1PHjh314YcfytXVNc1zGjZsqG3btlns6927t+bPn5+ha5MgWdk333yj77//Xs8++6xV6w0MDNTBgwdT7Z8+fTp/SAB5QHYNhcjIcLrhw4dr6tSpDyxz9OjRNF9I+jBdunQx/xwQEKDAwEBVqFBBERERatKkSabqBADckduH2L3yyiuKjo7W5s2bdevWLfXs2VNvvvmmli9f/sDzgoODNWHCBPNnFxeXDF+bBMnKvL29s/X9Cfnz58+2awHIOjmxIRs8eLB69OjxwDLWXJSmfPnyKlq0qKKiokiQAOAxdvToUW3atEm//vqratasKUn66KOP1LJlS82YMUOlSpVK81wXF5dHnttKgmRl77//voYOHar58+erbNmyVqvXzs7ugcP1kpKy52VgALJGTkyQihUrpmLFimXb9f7v//5PFy9ezPMvugaA7JCbF//ZtWuXChYsaE6OJKlp06ays7PT7t271aFDhzTP/fzzz/XZZ5/J09NTbdq00ejRozPci0SCZGXdunXT9evXVaFCBbm4uChfPssVwS5dupSpetetW2fx+datW/rtt9+0dOlS8+pRAHKvnJggZcSZM2d06dIlnTlzRklJSYqMjJQk+fr6mseL+/n5KTQ0VB06dFB8fLzGjx+vjh07ytPTUydPntTQoUPl6+ur5s2b2/BOACBvyK5lvkNDQ1P9LTp27FiNGzcu03XGxMSoePHiFvscHBxUuHBhxcTEpHneyy+/rDJlyqhUqVI6cOCAhg0bpuPHj2vt2rUZuj4JkpVl1fuI2rVrl2pfp06dVKVKFa1cuVK9evXKkusCyB7ZtUhDVhkzZoyWLl1q/ly9enVJ0tatW9WwYUNJ0vHjxxUbGytJsre314EDB7R06VJduXJFpUqVUrNmzfTee+/xLiQAyEUysvhPeue2Ztabb75p/jkgIEAlS5ZUkyZNdPLkSVWoUCHd9ZAgWVn37t2z9XrPPPOMxf8MAHKn3N6DtGTJkoe+A+nuJNDZ2Vnff/99FkcFAI+v7HrulpHhdOmd2+rp6anz589b7L99+7YuXbqUoflFtWvXliRFRUWRINnS/v37lS9fPgUEBEiSNmzYoMWLF8vf31/jxo2To6Oj1a5148YNzZ49mxf8AXlAbk+QAAA5S05sV9I7t7VOnTq6cuWK9u3bpxo1akiSfvzxRyUnJ5uTnvRIGe6d0bmtvCjWynr37q0TJ05Ikv7880+99NJLcnFx0apVqzR06NBM11uoUCEVLlzYvBUqVEhubm5atGiRpk+fbq3wAdhIsjF7NgAAcronnnhCQUFBCg4O1p49e7Rz506FhISoS5cu5hXszp49Kz8/P+3Zs0eSdPLkSb333nvat2+fTp8+ra+++kqvvfaa6tevr8DAwAxdnx4kKztx4oSqVasmSVq1apUaNGig5cuXa+fOnerSpUum5yjde56dnZ2KFSum2rVrq1ChQo8WNACby+VTkAAAOUxufyj2+eefKyQkRE2aNDG/KHb27Nnm47du3dLx48d1/fp1SZKjo6O2bNmiWbNm6dq1a/L29lbHjh01atSoDF+bBMnKjEajkpOTJUlbtmxR69atJd15P9KFCxcyXW92z20CkL2ya7UhAMDjIbcnSIULF37gS2HLli1rMbfV29tb27Zts8q1GWJnZTVr1tTEiRO1bNkybdu2Ta1atZIknTp1SiVKlHikunfs2KFu3bqpbt26Onv2rCRp2bJl+umnnx45bgC2xRA7AAByBhIkK5s1a5b279+vkJAQvfvuu/L19ZUkrV69WnXr1s10vWvWrFHz5s3l7Oys/fv3m1/IFRsbq8mTJ1sldgAAAOQNyUZjtmx5EUPsrCwwMFAHDx5MtX/69Omyt7fPdL0TJ07U/Pnz9dprr2nFihXm/fXq1dPEiRMzXS+AnIHeHQCANeXR3CVbkCBlk/z58z/S+cePH1f9+vVT7ffw8NCVK1ceqW4AtkdDBgBAzkCCZGVJSUmaOXOmvvzyS505c0aJiYkWxy9dupSpej09PRUVFaWyZcta7P/pp59Uvnz5zIYLIIdIFhkSAMB6GJmQeSRIVjZ+/HgtXLhQgwcP1qhRo/Tuu+/q9OnTWr9+vcaMGZPpeoODg/XWW29p0aJFMhgMOnfunHbt2qV33nlHo0ePtuIdALAFGjIgh4i7Lhn588iq7Ay2jiDvMT78O03OhjDyKn4DWNnnn3+uTz/9VK1atdK4cePUtWtXVahQQYGBgfrll180YMCATNU7fPhwJScnq0mTJrp+/brq168vJycnvfPOO+rfv7+V7wJAdiNBAgAgZyBBsrKYmBgFBARIklxdXRUbGytJat269SP19BgMBr377rsaMmSIoqKiFB8fL39/f7m6ulolbgC2xRwkAIA18eAt80iQrMzLy0vR0dHy8fFRhQoV9MMPP+ipp57Sr7/+Kicnp0eu39HRUf7+/laIFEBOQkMGALAmI0/eMo0Eyco6dOig8PBw1a5dW/3791e3bt0UFhamM2fO6O23385QXS+88EK6y65duzajoQLIQfLquyQAALbBg7fMI0GysilTpph/fumll+Tj46Ndu3apYsWKatOmTYbq8vDwsHZ4AHIoGjIAAHIGEqQsVqdOHdWpUydT5y5evNjK0QDIqUiQAADWRLuSeSRIVvDVV1+lu2zbtm0zdY1Tp07p9u3bqlixosX+P/74Q/ny5Uv1fiQAuQsj7AAA1kSClHkkSFbQvn37dJUzGAxKSkrK1DV69Oih119/PVWCtHv3bi1cuFARERGZqhdAzkBDBgBAzkCCZAXJyVn/Kq7ffvtN9erVS7X/mWeeUUhISJZfH0DWYpEGAIA10axkHglSLmEwGHT16tVU+2NjYzPdKwUg56AHCQBgTTx4yzw7WweQF4WHh6t169aqUKGCKlSooNatW2vLli2PVGf9+vUVGhpqkQwlJSUpNDRUzz777KOGDMDGjMbs2bLC6dOn1atXL5UrV07Ozs6qUKGCxo4dq8TExAeed/PmTfXr109FihSRq6urOnbsqH/++SdrggQAIJ3oQbKyjz/+WG+99ZY6deqkt956S5L0yy+/qGXLlpo5c6b69euXqXqnTp2q+vXrq3LlynruueckSTt27FBcXJx+/PFHq8UPwDZycw/SsWPHlJycrAULFsjX11eHDh1ScHCwrl27phkzZqR53ttvv61vvvlGq1atkoeHh0JCQvTCCy9o586d2Rg9AORNubldsTWDkdfsWpWXl5eGDx+eal7Q3LlzNXnyZJ09ezbTdZ87d05z5szR77//LmdnZwUGBiokJESFCxd+1LBznbi4OHl4eCj2txNyd3OzdTh5i1M+W0eQp8RdvSoP/3KKjY2Vu7t7muUCZsVkSzwHB3pmy3WmT5+uefPm6c8//7zv8djYWBUrVkzLly9Xp06dJN1JtJ544gnt2rVLzzzzTLbECaQwtytRZ+Tulva/VWRC0DhbR5DnxCUlyOPAvAe2LT/8cTNbYmlWMX+2XCc70YNkZVeuXFFQUFCq/c2aNdOwYcMeqe5SpUpp8uTJj1QHgJwpWdnzrCohIUEJCQkW+5ycnOTk5GTV68TGxj7w4c2+fft069YtNW3a1LzPz8/P/HJtEiQAgK0wB8nK2rZtq3Xr1qXav2HDBrVu3TrT9W7fvv2BG4DcLbvmIIWGhsrDw8NiCw0Nteq9REVF6aOPPlLv3r3TLBMTEyNHR0cVLFjQYn+JEiUUE5M9vWkAkJfl5rmtkjRp0iTVrVtXLi4uqdqKtO/ZqDFjxqhkyZJydnZW06ZN9ccff2T42vQgWZm/v78mTZqkiIgI1alTR9KdOUg7d+7U4MGDNXv2bHPZAQMGpLvehg0bptpnMBjMP7OSHZC7ZddY8REjRmjQoEEW+9LqPRo+fLimTp36wPqOHj0qPz8/8+ezZ88qKChInTt3VnBw8KMHDADIlNw+BykxMVGdO3dWnTp1FBYWlq5zpk2bptmzZ2vp0qUqV66cRo8erebNm+vIkSPKnz/9QwFJkKwsLCxMhQoV0pEjR3TkyBHz/oIFC1r8xzUYDBlKkC5fvmzx+datW/rtt980evRoTZo06dEDz6WueRWX/QPmdSDjCny/19Yh5C3X49NVLLsasowMpxs8eLB69OjxwDLly5c3/3zu3Dk1atRIdevW1SeffPLA8zw9PZWYmKgrV65YPBn8559/5OmZPfOkAAA51/jx4yVJS5YsSVd5o9GoWbNmadSoUWrXrp0k6b///a9KlCih9evXq0uXLum+NgmSlZ06dSpL6vXw8Ei17/nnn5ejo6MGDRqkffv2Zcl1AWSPnPikr1ixYipWrFi6yp49e1aNGjVSjRo1tHjxYtnZPXgEd40aNZQvXz6Fh4erY8eOkqTjx4/rzJkz5t53AEDmZdd7kLJrbuvDnDp1SjExMRZzWz08PFS7dm3t2rUrQwkSc5CykNFoVFYvEliiRAkdP348S68BIOul/L7I6i0rnD17Vg0bNpSPj49mzJihf//9VzExMRZzic6ePSs/Pz/t2bNH0p1Gq1evXho0aJC2bt2qffv2qWfPnqpTpw4LNACAFSQbs2fLjrmt6ZHS5pQoUcJif2bmttKDlAX++9//avr06eZJYZUqVdKQIUP06quvZrrOAwcOWHw2Go2Kjo7WlClTVK1atUcJF0AOkBN7kNJr8+bNioqKUlRUlLy8vCyOpSRlt27d0vHjx3X9+nXzsZkzZ8rOzk4dO3ZUQkKCmjdvro8//jhbYwcAPJqsnttqC/QgWdkHH3ygPn36qGXLlvryyy/15ZdfKigoSP/5z380c+bMTNdbrVo1Va9eXdWqVTP/3LJlSyUmJmrhwoVWvAMAtpBdT/qyQo8ePR7aY1W2bFkZjUaLBWfy58+vuXPn6tKlS7p27ZrWrl2b6+cf/fvvv+rTp498fHzk5OQkT09PNW/e3Pzy27Jly8pgMMhgMMjFxUUBAQGpfodHRESYyxgMBhUrVkwtW7bUwYMHLcr16NFDBoNB//nPf1LF0a9fPxkMBos5ZKGhoapVq5bc3NxUvHhxtW/fPkMjEMqWLatZs2aZPxuNRr3zzjtyd3dXRETEfcvcfb8p291J9CeffKKGDRvK3d1dBoNBV65cSXXdtm3bysfHR/nz51fJkiX16quv6ty5c2l+X87OzqpSpcpD58EBeV12tStOTk5yd3e32NJKkAYPHqyjR48+cLt7bmtGpLQf//zzj8X+zMxtpQfJyj766CPNmzdPr732mnlf27ZtVaVKFY0bN05vv/12puq9d26TnZ2dihUrlqEVOQAAWatjx45KTEzU0qVLVb58ef3zzz8KDw/XxYsXzWUmTJig4OBgXb9+XatWrVJwcLBKly6tFi1aWNR1/Phxubu769y5cxoyZIhatWqlqKgoOTo6mst4e3trxYoVmjlzppydnSVJN2/e1PLly+Xj42NR37Zt29SvXz/VqlVLt2/f1siRI9WsWTMdOXJEBQoUyNB9JiUlKTg4WBs3btTWrVtVo0aNNMum3G8Ke3t788/Xr19XUFCQgoKCNGLEiPue36hRI40cOVIlS5bU2bNn9c4776hTp076+eefLcqlfF83btzQ119/rT59+qhChQpq0qRJhu4NyCty4sCEjMxtzahy5crJ09NT4eHh5tFVcXFx2r17t/r06ZOhukiQrCw6Olp169ZNtb9u3bqKjo7OdL1lypRReHi4wsPDdf78eSUnJ1scX7RoUabrBmB7fw0rZesQ8IiuXLmiHTt2KCIiQg0aNJB053f3008/bVHOzc3N/DRz2LBhmjZtmjZv3pwqQSpevLgKFiwoT09PDRw4UG3bttWxY8cUGBhoLvPUU0/p5MmTWrt2rV555RVJ0tq1a+Xj46Ny5cpZ1Ldp0yaLz0uWLFHx4sW1b98+1a9fP933mZCQoK5du2rv3r3asWOHKleu/MDyd9/vvQYOHChJ5h6o+7n7wWKZMmU0fPhwtW/fXrdu3VK+fPnMx1K+L+nOazRmz56t/fv3kyDhsdXe39nWITySM2fO6NKlSzpz5oySkpIUGRkpSfL19ZWrq6ukOy8YDw0NVYcOHWQwGDRw4EBNnDhRFStWNC/zXapUKbVv3z5D12aInZX5+vrqyy+/TLV/5cqVqlixYqbrHT9+vJo1a6bw8HBduHBBly9fttgAALbl6uoqV1dXrV+/PtWKTveTnJysNWvW6PLlyxa9QveKjY3VihUrJOm+5V5//XUtXrzY/HnRokXq2bPnQ68fGxsrSSpcuPBDy6aIj49Xq1atdOTIEe3cufOhyZG1Xbp0SZ9//rnq1q1rkRzdzWg0atOmTTpz5oxq166drfEBsJ4xY8aoevXqGjt2rOLj41W9enVVr15de/f+73Ukx48fN/8uk6ShQ4eqf//+evPNN1WrVi3Fx8dr06ZNGR5xRQ+SlY0fP14vvfSStm/frnr16kmSdu7cqfDw8PsmTuk1f/58LVmy5JEWegAAZB0HBwctWbJEwcHBmj9/vp566ik1aNBAXbp0sej1GTZsmEaNGqWEhATdvn1bhQsX1htvvJGqvpS5OteuXZN0Z7j2/SYud+vWTSNGjNBff/0l6U6bs2LFigf2yiQnJ2vgwIGqV6+ennzyyXTf43vvvSc3NzcdPXo03cNkUu43xeTJkzP0HsCUOubMmaPr16/rmWee0caNG1OVSfm+EhISlJycrAkTJjywZ+zepYnj4uIyFBOArLVkyZKHvgPp3tVZDQaDJkyYoAkTJjzStelBsrKOHTtq9+7dKlq0qNavX6/169eraNGi2rNnjzp06JDpehMTE+87dA8AkHN07NhR586d01dffaWgoCBFREToqaeesmjkhwwZosjISP3444+qXbu2Zs6cKV9f31R17dixQ/v27dOSJUtUqVIlzZ8//77XLFasmFq1aqUlS5Zo8eLFatWqlYoWLfrAOPv166dDhw6Ze6bSq1mzZrp27ZomT56c7nNS7jdlu3uObkbq+O233/TDDz/I3t5er732Wqo/jHbs2GG+xsKFCzV58mTNmzcvzTrvXZrY29s7w3EByJvoQcoCNWrU0GeffWbVOt944w0tX75co0ePtmq9AADryp8/v55//nk9//zzGj16tN544w2NHTvWvKJc0aJF5evrK19fX61atUoBAQGqWbOm/P39LeopV66cChYsqMqVK+v8+fPm0Qn38/rrryskJESSNHfu3AfGFxISoo0bN2r79u2plmV/mCZNmqh///5q166dkpOT9eGHHz70nJT7fRRFixZV0aJFValSJT3xxBPy9vbWL7/8YvFS4ZTvS5KqVKmi3bt3a9KkSWlOzr53aeK4uDiSJACSSJCszt7eXtHR0SpevLjF/osXL6p48eJKSkrKVL03b97UJ598oi1btigwMDDV2OsPPvgg0zEDALKOv7+/1q9ff99j3t7eeumllzRixAht2LAhzTr69eun0NBQrVu37r6jEYKCgpSYmCiDwaDmzZvftw6j0aj+/ftr3bp1ioiISLWIQ3o1a9ZMX3/9tdq2bSuj0ajZs2dnqp7MSlmk6GHzvOzt7XXjxo00jzs5OaW5FDGAxxsJkpWl9ab6hISEB07CfZgDBw6Ylyw8dOiQxTGDwZDpegEA1nHx4kV17txZr7/+ugIDA+Xm5qa9e/dq2rRpateuXZrnvfXWW3ryySe1d+9e1axZ875lXFxcFBwcrLFjx6p9+/apfu/b29vr6NGj5p/vp1+/flq+fLk2bNggNzc385vlPTw8zEuEp1fTpk21ceNGtWnTRsnJyZozZ06Gzk8RExOjmJgYRUVFSZIOHjwoNzc3+fj4qHDhwtq9e7d+/fVXPfvssypUqJBOnjyp0aNHq0KFCha9R5J0/vx53bx5UwkJCdqzZ4+WLVumTp06ZSouAI83EiQrSXmCZjAYtHDhQvPyg9Kd90Vs3779kd4KvHXr1keOEQCQdVxdXc1zik6ePKlbt27J29tbwcHBGjlyZJrn+fv7q1mzZhozZoy+/fbbNMuFhITogw8+0KpVq/Tiiy+mOu7u7v7A+FLm49z9sl5JWrx4scULZdOrcePG+uabb9S6dWsZjcZMJUnz58/X+PHjzZ9TFlVIicnFxUVr167V2LFjde3aNZUsWVJBQUEaNWpUqt6flBX1HBwc5O3trd69e2vcuHEZjgkADMa0ujyQISlDFf766y95eXlZPMFzdHRU2bJlNWHCBJYctZK4uDh5eHjo3L9XHvpHATKmwPd7H14I6RZ3PV4eXRorNjaW/1eBHCylXYmNOiN3N/6tWlXQOFtHkOfEJSXI48A82pYsQg+SlZw6dUrSnTd+r127VoUKFbJxRAAAAAAyimW+rWzMmDEkRwCAXOXzzz83v+j23q1KlSq2Dg8AshU9SFYWFBQkLy8v9ezZU927d2fJUABAjte2bds0h4Dfu2oqAOR1JEhWdvbsWS1btkxLly7V+PHj1bhxY/Xq1Uvt27d/pFXsAADIKm5ubnJzc7N1GACQIzDEzsqKFi2qt99+W5GRkdq9e7cqVaqkvn37qlSpUhowYIB+//13W4cIAAAAIA0kSFnoqaee0ogRIxQSEqL4+HgtWrRINWrU0HPPPafDhw/bOjwAAAAA9yBBygK3bt3S6tWr1bJlS5UpU0bff/+95syZo3/++UdRUVEqU6aMOnfubOswAQAAANyDOUhW1r9/f33xxRcyGo169dVXNW3aND355JPm4wUKFNCMGTNUqlQpG0YJAAAA4H5IkKzsyJEjmjNnjjp06JDqLd8pihYtqq1bt2ZzZAAAAAAehiF2VtakSRNdv349VXK0aNEiTZ06VZLk4OCgBg0a2CI8AAAAAA9AgmRln3zyifz8/FLtr1KliubPn2+DiAAAAACkFwmSlcXExKhkyZKp9hcrVkzR0dE2iAgAAABAepEgWZm3t7d27tyZav/OnTtZmAEAAADI4VikwcqCg4M1cOBA3bp1S40bN5YkhYeHa+jQoRo8eLCNowMAAADwICRIVjZkyBBdvHhRffv2VWJioiQpf/78GjZsmEaMGGHj6AAAAAA8CAmSlRkMBk2dOlWjR4/W0aNH5ezsrIoVK6a55DcAAACAnIMEKYu4urqqVq1atg4DAAAAQAawSAMAAAAAmJAgAQAAAIAJCRIAAAAAmJAgAQAAAIAJizQgV4u9maxkx2Rbh5GnFKjnZ+sQ8pa4OFtHACAjCuSXXPPbOgoANkQPEgAAAACYkCABAAAAgAkJEgAAAACYkCABAAAAgAkJEgAAAACYkCABAAAAgAkJEgAAAACYkCABAAAAgAkJEgAAAACYkCABAAAAgAkJEgAAAACYkCABAAAAgAkJEgAAAACYkCABAAAAgAkJEgAAAACYkCABAAAAgAkJEgAAAACYkCABAAAAgAkJEgAAAACYkCABAJBBPXr0kMFgkMFgkKOjo3x9fTVhwgTdvn1bERER5mMGg0HFihVTy5YtdfDgwTTryJcvn8qVK6ehQ4fq5s2bFuWioqLUs2dPeXl5ycnJSeXKlVPXrl21d+9eSdLp06fVq1cvlStXTs7OzqpQoYLGjh2rxMREcx33xuTs7KwqVarok08+ydA9t2/f3mLf6tWrlT9/fr3//vv3LXP3Pd69RUVFSZK2b9+uNm3aqFSpUjIYDFq/fn2q644bN05+fn4qUKCAChUqpKZNm2r37t0WZe6u28HBQT4+Pho0aJASEhLSfX8AkIIECQCATAgKClJ0dLT++OMPDR48WOPGjdP06dPNx48fP67o6Gh9//33SkhIUKtWrSySlrvr+PPPPzVz5kwtWLBAY8eONR/fu3evatSooRMnTmjBggU6cuSI1q1bJz8/Pw0ePFiSdOzYMSUnJ2vBggU6fPiwZs6cqfnz52vkyJGpYk6J6ciRI+rdu7f69Omj8PDwTN3/woUL9corr2jevHnmWB70Pd29lStXTpJ07do1Va1aVXPnzk3z/EqVKmnOnDk6ePCgfvrpJ5UtW1bNmjXTv//+a1Fu8eLFio6O1qlTp/Txxx9r2bJlmjhxYqbuDcDjzcHWAQAAkBs5OTnJ09NTktSnTx+tW7dOX331lerUqSNJKl68uAoWLChPT08NHDhQbdu21bFjxxQYGHjfOry9vdW0aVNt3rxZU6dOldFoVI8ePVSxYkXt2LFDdnb/e6ZZrVo1vfXWW5LuJCBBQUHmY+XLl9fx48c1b948zZgxwyLmlJgkacCAAZo9e7b279+vJk2aZOjep02bprFjx2rFihXq0KFDur+ne7Vo0UItWrR44Pkvv/yyxecPPvhAYWFhOnDggEXcKd+1dOe7bNeunfbv35+e2wEAC/QgAQBgBc7Ozql6iCQpNjZWK1askCQ5Ojqmef6hQ4f0888/m8tERkbq8OHDGjx4sEVylCIl0bmf2NhYFS5cOM3jRqNRmzZt0pkzZ1S7du00y93PsGHD9N5772njxo0PTY6sLTExUZ988ok8PDxUtWrVNMudOHFCP/74Y4bvDQAkepAAAHgkRqNR4eHh+v7779W/f3/zfi8vL0l3hpFJUtu2beXn52dx7saNG+Xq6qrbt28rISFBdnZ2mjNnjiTpjz/+kKRU5zxMVFSUPvroo1S9R3fHlJCQoOTkZE2YMEH169dPd93fffedNmzYoPDwcDVu3Dhd56TcY4oWLVpo1apV6b5mSh1dunTR9evXVbJkSW3evFlFixa1KNO1a1fZ29ubv8vWrVtrxIgRGboOAEgkSAAAZErKH/63bt1ScnKyXn75ZY0bN06//vqrJGnHjh1ycXHRL7/8osmTJ2v+/Pmp6mjUqJHmzZuna9euaebMmXJwcFDHjh0l3Um8Murs2bMKCgpS586dFRwcnOr4jh075ObmpoSEBO3Zs0chISEqXLiw+vTpk676AwMDdeHCBY0dO1ZPP/20ReKTlpR7TFGgQIH039BddURGRurChQv69NNP9eKLL2r37t0qXry4uczMmTPVtGlTJSUlKSoqSoMGDdKrr75q7r27V0JCgsUiDnFxcRmOC0DexBA7AAAyIeWP9j/++EM3btzQ0qVLLf74L1eunCpXrqzu3bvrjTfe0EsvvZSqjgIFCsjX11dVq1bVokWLtHv3boWFhUm6sziBdGcRhvQ4d+6cGjVqpLp166a5Ol25cuXk6+urKlWqqGfPnnr11Vc1adKkdN9z6dKlFRERYU7Erl69+tBzUu4xZStZsmS6r3dvHc8884zCwsLk4OBg/p5SeHp6ytfXV5UrV1arVq00fvx4rVy50rxi3r1CQ0Pl4eFh3ry9vTMcF4C8iQQJAIBMSPmj3cfHRw4ODx6Q0a9fPx06dEjr1q1Ls4ydnZ1GjhypUaNG6caNG6pWrZr8/f31/vvvKzk5OVX5K1eumH8+e/asGjZsqBo1amjx4sX3nbN0P/b29rpx40a6yqYoU6aMtm3bppiYmHQnSdaWnJz80CW87e3tJSnN+xsxYoRiY2PN299//231OAHkTiRIAABkMRcXFwUHB2vs2LEPHDrXuXNn2dvba+7cuTIYDFq8eLFOnDih5557Tt9++63+/PNPHThwQJMmTVK7du0k/S858vHx0YwZM/Tvv/8qJiZGMTExqeo/f/68YmJi9Ndff2nVqlVatmyZuZ6M8Pb2VkREhM6fP6/mzZtnenhafHy8IiMjFRkZKUk6deqUIiMjdebMGUl35m+NHDlSv/zyi/766y/t27dPr7/+us6ePavOnTtb1HXlyhXFxMTo3Llz2rZtmyZMmKBKlSrpiSeeuO+1nZyc5O7ubrEBgESCBABAtggJCdHRo0cfuECBg4ODQkJCNG3aNF27dk1PP/209u7dK19fXwUHB+uJJ55Q27ZtdfjwYc2aNUuStHnzZkVFRSk8PFxeXl4qWbKkebtX5cqVVbJkSfn6+mrYsGHq3bu3Pvroo0zdj5eXlyIiInThwoVMJ0l79+5V9erVVb16dUnSoEGDVL16dY0ZM0bSnV6gY8eOqWPHjqpUqZLatGmjixcvaseOHapSpYpFXT179lTJkiXl5eWlrl27qkqVKvruu+8e2rsHAPcyGDMzCxSwsbi4OHl4eOjo35fkxlM/qyp9+7qtQ8hT4uLi5FHOS7GxsTyhBnKwlHYlNvo8/1at7dnhto4gz4lLSpDHgXm0LVmEHiQAAAAAMCFBAgDgMXfmzBm5urqmuaXMCQKAxwEDcwEAeMyVKlXKvFBCWscB4HFBggQAwGPOwcFBvr6+tg4DAHIEEiTkaqVOn5G7q5utw8hbIk/ZOoK85cY1W0cAAAAygDlIAAAAAGBCggQAAAAAJiRIAAAAAGBCggQAAAAAJiRIAAAAAGBCggQAAAAAJiRIAAAAAGBCggQAAAAAJiRIAAAAAGBCggQAAAAAJiRIAAAAAGBCggQAAAAAJiRIAAAAAGBCggQAAAAAJiRIAAAAAGBCggQAAAAAJiRIAAAAAGBCggQAAAAAJiRIAAAAAGBCggQAAAAAJiRIAAAAAGBCggQAAAAAJiRIAAAAAGBCggQAAAAAJiRIAAAAAGBCggQAAAAAJiRIAAAAAGBCggQAAAAAJiRIAAAAAGBCggQAAAAAJiRIAAAAAGBCggQAAAAAJiRIAAAAAGBCggQAAAAAJg62DgB4JEU8JDc3W0eRt0QcsnUEeUviTVtHAAAAMoAeJAAAAAAwIUECAAAAABMSJAAAslnDhg01cODAVPuXLFmiggULSpLGjRsng8Fg3jw8PPTcc89p27ZtFueULVvWXMbFxUUBAQFauHChRZnTp09b1JWy/fLLL+mKd9y4capWrZrFvh07dqhgwYIaOHCgjEZjqjL3xp+ybdmyRZJ0+PBhdezY0Rz/rFmzUl133rx5CgwMlLu7u9zd3VWnTh199913ad6/vb29SpUqpV69euny5cvpujcAuBcJEgAAOVSVKlUUHR2t6Oho7dq1SxUrVlTr1q0VGxtrUW7ChAmKjo7WoUOH1K1bNwUHB6dKJCRpy5Yt5vqio6NVo0aNTMX1zTffqHnz5ho0aJBmzZolg8Hw0PhTtvr160uSrl+/rvLly2vKlCny9PS87/leXl6aMmWK9u3bp71796px48Zq166dDh8+fN/7P3PmjD7//HNt375dAwYMyNS9AQAJEgAAOZSDg4M8PT3l6ekpf39/TZgwQfHx8Tpx4oRFOTc3N3l6eqp8+fIaNmyYChcurM2bN6eqr0iRIub6PD09lS9fvgzHtHz5cr3wwguaNm2axowZk+74UzZHR0dJUq1atTR9+nR16dJFTk5O9z2/TZs2atmypSpWrKhKlSpp0qRJcnV1TdXzlXL/pUuXVqNGjdS9e3ft378/w/cGABIJEgAAuUJCQoIWL16sggULqnLlyvctk5ycrDVr1ujy5cvmRORubdu2VfHixfXss8/qq6++ynAMc+fOVc+ePbVo0SKFhIRk+PxHkZSUpBUrVujatWuqU6dOmuXOnj2rr7/+WrVr187G6ADkJSzzDQBADnXw4EG5urpKujMkzc3NTStXrpS7u7tFuWHDhmnUqFFKSEjQ7du3VbhwYb3xxhvm466urnr//fdVr1492dnZac2aNWrfvr3Wr1+vtm3bpiuWo0ePKiQkRGFhYXrllVcyHL8k+fv7a8+ePek69+466tSpo5s3b8rV1VXr1q2Tv7+/RZmU+09KStLNmzdVu3ZtffDBBw+sNyEhQQkJCebPcXFxGYoLQN5FggQAQA5VuXJlc0/P1atXtXLlSnXu3Flbt25VzZo1zeWGDBmiHj16KDo6WkOGDFHfvn3l6+trPl60aFENGjTI/LlWrVo6d+6cpk+fnu4EycvLSwULFtT06dPVokULlSxZMkPxS0pzKN3D6oiMjFRsbKxWr16t7t27a9u2bRZJUsr9G41G/f333xo5cqRatWql7du3y97e/r71hoaGavz48RmOB0DexxA7AACymbu7e6qFFiTpypUr8vDwMH92dHSUr6+vfH19Vb16dU2ZMkWlS5dOteJb0aJF5evrq+eee06rVq3SgAEDdOTIkQfGULt2bUVFRaU7Zjc3N23ZskUFChRQo0aNFB0d/dBz7o7f19dX3t7e6b7evXXUqFFDoaGhqlq1qj788EOLMin3X7FiRTVu3FizZs3Szz//rK1bt6ZZ74gRIxQbG2ve/v777wzHBiBvIkECACCbVa5c+b6LCOzfv1+VKlV64Ln29va6ceNGmse9vb310ksvacSIEQ+sJzIyMl29QHcrVKiQtmzZInd3dzVs2FDnzp3L0PnWkJycbDE07n5Seo0e9D05OTmZlw9P2QBAYogdAADZrk+fPpozZ44GDBigN954Q05OTvrmm2/0xRdf6OuvvzaXu337tmJiYiT9b4jdkSNHNGzYsAfW/9Zbb+nJJ5/U3r17VbNmTS1dulSOjo6qXr26JGnt2rVatGhRqvclpUfBggW1efNmNW/eXA0bNlRERIRKlSqV4XoSExPNvVyJiYk6e/asIiMj5erqah4eOGLECLVo0UI+Pj66evWqli9froiICH3//fcWdV29elUxMTHmIXZDhw5VsWLFVLdu3QzHBQAkSAAAZLPy5ctr+/btevfdd9W0aVMlJibKz89Pq1atUlBQkLnc4cOHzb08Li4uqlChgubNm6fXXnvtgfX7+/urWbNmGjNmjL799ltJ0nvvvae//vpLDg4O8vPz08qVK9WpU6dMxe/h4aEffvhBQUFBatCggSIiIjJcx7lz58wJmyTNmDFDM2bMsKjv/Pnzeu211xQdHS0PDw8FBgbq+++/1/PPP29R15gxY8xLjhcrVky1atXSDz/8oCJFimTq/gA83gxGo9Fo6yCAjIqLi5OHh4dij5ySu5ubrcPJW0Z9ZusI8pS4xJvy+GK4YmNjGcID5GDmdiX6PP9Wre3Z4baOIM+JS0qQx4F5tC1ZhDlIAAAAAGBCggQAwGPO1dU1zW3Hjh22Dg8AshVzkAAAeMxFRkameax06dLZFwgA5AAkSAAAPObufqksADzuGGIHAAAAACYkSAAAAABgQoIEAAAAACYkSAAAAABgQoIEAAAAACYkSAAAAABgQoIEAAAAACYkSAAAAABgQoIEAAAAACYkSAAAAABgQoIEAAAAACYkSAAAAABgQoIEAAAAACYkSAAAAABgQoIEAAAAACYkSAAAAABg4mDrAIDMMBqNkqS4+Ks2jiQPSrxp6wjylLhbd77PlP9nAeRM5nblKu2K1SUl2DqCPCcuKVESbUtWIUFCrnTV1IB5Px1o40iA9Ll69ao8PDxsHQaANJjblUoVbBwJkH60LVnDYCT1RC6UnJysc+fOyc3NTQaDwdbhPFBcXJy8vb31999/y93d3dbh5Am56Ts1Go26evWqSpUqJTs7RjUDORXtCnLT90rbkrXoQUKuZGdnJy8vL1uHkSHu7u45/hdubpNbvlOe7gE5H+0KUuSW75W2JeuQcgIAAACACQkSAAAAAJiQIAFZzMnJSWPHjpWTk5OtQ8kz+E4BPM74HZg1+F6RgkUaAAAAAMCEHiQAAAAAMCFBAgAAAAATEiQAAAAAMCFBAgAAAAATEiQgC82dO1dly5ZV/vz5Vbt2be3Zs8fWIeV627dvV5s2bVSqVCkZDAatX7/e1iEBQLaibbEu2hXciwQJyCIrV67UoEGDNHbsWO3fv19Vq1ZV8+bNdf78eVuHlqtdu3ZNVatW1dy5c20dCgBkO9oW66Ndwb1Y5hvIIrVr11atWrU0Z84cSVJycrK8vb3Vv39/DR8+3MbR5Q0Gg0Hr1q1T+/btbR0KAGQL2pasRbsCiR4kIEskJiZq3759atq0qXmfnZ2dmjZtql27dtkwMgBAbkXbAmQPEiQgC1y4cEFJSUkqUaKExf4SJUooJibGRlEBAHIz2hYge5AgAQAAAIAJCRKQBYoWLSp7e3v9888/Fvv/+ecfeXp62igqAEBuRtsCZA8SJCALODo6qkaNGgoPDzfvS05OVnh4uOrUqWPDyAAAuRVtC5A9HGwdAJBXDRo0SN27d1fNmjX19NNPa9asWbp27Zp69uxp69Bytfj4eEVFRZk/nzp1SpGRkSpcuLB8fHxsGBkAZD3aFuujXcG9WOYbyEJz5szR9OnTFRMTo2rVqmn27NmqXbu2rcPK1SIiItSoUaNU+7t3764lS5Zkf0AAkM1oW6yLdgX3IkECAAAAABPmIAEAAACACQkSAAAAAJiQIAEAAACACQkSAAAAAJiQIAEAAACACQkSAAAAAJiQIAEAAACACQkSAAAAAJiQIAEAAACACQkSkMv06NFDBoMh1RYVFfVI9TZs2FADBw60TpAAgFyDdgWw5GDrAABkXFBQkBYvXmyxr1ixYjaKxlJiYqIcHR1tHQYAIANoV4D/oQcJyIWcnJzk6elpsX344YcKCAhQgQIF5O3trb59+yo+Pt7ivJ07d6phw4ZycXFRoUKF1Lx5c12+fFk9evTQtm3b9OGHH5qfHJ4+fVqStG3bNj399NNycnJSyZIlNXz4cN2+fdtcZ8OGDRUSEqKBAweqaNGiat68uYxGo8aNGycfHx85OTmpVKlSGjBgQHZ+RQCADKBdAf6HBAnII+zs7DR79mwdPnxYS5cu1Y8//qihQ4eaj0dGRqpJkyby9/fXrl279NNPP6lNmzZKSkrShx9+qDp16ig4OFjR0dGKjo6Wt7e3zp49q5YtW6pWrVr6/fffNW/ePIWFhWnixIkW1166dKkcHR21c+dOzZ8/X2vWrNHMmTO1YMEC/fHHH1q/fr0CAgKy+ysBADwC2hU8towAcpXu3bsb7e3tjQUKFDBvnTp1SlVu1apVxiJFipg/d+3a1VivXr00623QoIHxrbfestg3cuRIY+XKlY3JycnmfXPnzjW6uroak5KSzOdVr17d4rz333/fWKlSJWNiYmJmbhEAkI1oVwBL9CABuVCjRo0UGRlp3mbPnq0tW7aoSZMmKl26tNzc3PTqq6/q4sWLun79uqT/PenLiKNHj6pOnToyGAzmffXq1VN8fLz+7//+z7yvRo0aFud17txZN27cUPny5RUcHKx169ZZDJ8AAOQstCvA/5AgAblQgQIF5Ovra94SEhLUunVrBQYGas2aNdq3b5/mzp0r6c7kVklydnbO0nju5u3trePHj+vjjz+Ws7Oz+vbtq/r16+vWrVtZFgMAIPNoV4D/IUEC8oB9+/YpOTlZ77//vp555hlVqlRJ586dsygTGBio8PDwNOtwdHRUUlKSxb4nnnhCu3btktFoNO/buXOn3Nzc5OXl9cCYnJ2d1aZNG82ePVsRERHatWuXDh48mIm7AwBkN9oVPM5IkIA8wNfXV7du3dJHH32kP//8U8uWLdP8+fMtyowYMUK//vqr+vbtqwMHDujYsWOaN2+eLly4IEkqW7asdu/erdOnT+vChQtKTk5W37599ffff6t///46duyYNmzYoLFjx2rQoEGys0v718eSJUsUFhamQ4cO6c8//9Rnn30mZ2dnlSlTJku/BwCAddCu4HFGggTkAVWrVtUHH3ygqVOn6sknn9Tnn3+u0NBQizKVKlXSDz/8oN9//11PP/206tSpow0bNsjB4c7r0N555x3Z29vL399fxYoV05kzZ1S6dGl9++232rNnj6pWrar//Oc/6tWrl0aNGvXAeAoWLKhPP/1U9erVU2BgoLZs2aKvv/5aRYoUybLvAABgPbQreJwZjHf3cQIAAADAY4weJAAAAAAwIUECAAAAABMSJAAAAAAwIUECAAAAABMSJAAAAAAwIUECAAAAABMSJAAAAAAwIUECAAAAABMSJAAAAAAwIUECAAAAABMSJAAAAAAw+X8vsnOy9gpR/QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.colocation(adata, rank=2)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "py3.8", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.16" + }, + "toc-autonumbering": false + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/source/tutorial_gallery/Spatial_Features.ipynb b/docs/source/tutorial_gallery/Spatial_Features.ipynb new file mode 100644 index 0000000..9be04f6 --- /dev/null +++ b/docs/source/tutorial_gallery/Spatial_Features.ipynb @@ -0,0 +1,982 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "id": "ded53b22-45c5-458e-9ec1-c15bc49f4b0a", + "metadata": {}, + "source": [ + "# Spatial Features\n", + "\n", + "**Author**: Clarence Mah | **Last Updated**: {sub-ref}`today`\n", + "\n", + "Here we demonstrate how to compute spatial features with. We will use the included MERFISH U2-OS dataset.\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "5efe2763-a777-4e88-997b-95afa5a6f6f2", + "metadata": {}, + "source": [ + "## Load Libraries\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "8e8aee69-31aa-47ca-ad84-9a79c24d3020", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-27T18:48:19.096538Z", + "iopub.status.busy": "2023-03-27T18:48:19.096319Z", + "iopub.status.idle": "2023-03-27T18:48:20.065327Z", + "shell.execute_reply": "2023-03-27T18:48:20.064639Z", + "shell.execute_reply.started": "2023-03-27T18:48:19.096521Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n" + ] + } + ], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import bento as bt\n", + "import matplotlib as mpl\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "9a591fb8-4830-48f9-9c7d-1dfa5dc20ab4", + "metadata": { + "tags": [] + }, + "source": [ + "## Load Data\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "bcada814-0a1a-45f4-8181-d27bd7ac0250", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-27T18:34:36.390952Z", + "iopub.status.busy": "2023-03-27T18:34:36.390327Z", + "iopub.status.idle": "2023-03-27T18:34:38.922689Z", + "shell.execute_reply": "2023-03-27T18:34:38.922078Z", + "shell.execute_reply.started": "2023-03-27T18:34:36.390931Z" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "adata = bt.ds.sample_data()\n" + ] + }, + { + "cell_type": "markdown", + "id": "5271535d-28a6-47c9-ad8d-d13b63099694", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-27T18:34:43.052202Z", + "iopub.status.busy": "2023-03-27T18:34:43.051625Z", + "iopub.status.idle": "2023-03-27T18:34:47.031754Z", + "shell.execute_reply": "2023-03-27T18:34:47.031184Z", + "shell.execute_reply.started": "2023-03-27T18:34:43.052181Z" + }, + "tags": [] + }, + "source": [ + "adata = adata[adata.obs[\"nucleus_shape\"] != None]\n", + "bt.sync(adata)\n", + "adata\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "bda4d21a-41ab-4a08-ab68-078c145b8e53", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-27T18:06:57.949829Z", + "iopub.status.busy": "2023-03-27T18:06:57.949491Z", + "iopub.status.idle": "2023-03-27T18:06:59.246754Z", + "shell.execute_reply": "2023-03-27T18:06:59.246312Z", + "shell.execute_reply.started": "2023-03-27T18:06:57.949812Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAGbCAYAAAAhj+C0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChrUlEQVR4nO2dd3hUVfrHv3PbzKSR0EsSEqoUK7pYV3dddwUVFekkoSrSUVQUVFRAKdKrKBAC0m3YdnV31f1ZV10LCNJDEnqA9MnU+/tj5k7mnHMhbXrO53l4mHty7rnnlnnnve973vc1qKqqgsPhcDhRiRDqCXA4HA4ncHAhz+FwOFEMF/IcDocTxXAhz+FwOFEMF/IcDocTxXAhz+FwOFEMF/IcDocTxXAhz+FwOFEMF/IcDocTxXAhzwkZL7zwAgwGAwoLC0M9FQDA559/DoPBgF27doV6KhyO3+BCnhNVrFq1CtnZ2SE7/qFDhzBo0CAkJycjJiYGV1xxBV566SVUVFSEbE6cho0U6glwOP5k1apVaNq0KYYPHx70Y+fn5+MPf/gDGjVqhAkTJqBx48b45ptvMHPmTPz444947733gj4nDocLeQ7HT2zatAlFRUX48ssv0a1bNwDAI488ApfLhZycHFy8eBFJSUkhniWnocHNNZyQU1hYiAEDBiAhIQFNmjTB5MmTUVlZSfTZsGED/vznP6N58+YwGo3o2rUrVq9eTfRJS0vDb7/9hi+++AIGgwEGgwF33HGH9+9FRUV47LHHkJaWBqPRiOTkZGRlZTE+AZfLhTlz5iA5ORkmkwl33nknDh8+XO15lJSUAABatGhBtLdq1QqCIEBRlNpcFg7HL3BNnhNyBgwYgLS0NLzyyiv49ttvsWzZMly8eBE5OTnePqtXr0a3bt3Qp08fSJKE999/H+PGjYPL5cL48eMBAEuWLMHEiRMRFxeHGTNmAKgSuGVlZbjtttuwf/9+jBw5Etdddx0KCwuxe/duFBQUoGnTpt5jzZ07F4Ig4IknnkBxcTHmz5+PoUOH4rvvvrvsedxxxx2YN28eRo0ahRdffBFNmjTB119/jdWrV2PSpEmIjY3196XjcKpH5XBCxMyZM1UAap8+fYj2cePGqQDUX375xdtWUVHB7P+3v/1NbdeuHdHWrVs39fbbb2f6Pv/88yoA9e2332b+5nK5VFVV1c8++0wFoHbp0kW1Wq3evy9dulQFoO7Zs6fac5o1a5ZqNptVAN5/M2bMqHY/DidQcHMNJ+RomrjGxIkTAQAfffSRt81sNns/FxcXo7CwELfffjuOHj2K4uLiao/x1ltv4eqrr8aDDz7I/M1gMBDbI0aMIEwrt912GwDg6NGj1R4nLS0Nf/zjH7F27Vq89dZbGDlyJF5++WWsWLGi2n05nEDAzTWckNOxY0diu3379hAEAbm5ud62r776CjNnzsQ333zDLEcsLi5Go0aNLnuMI0eO4KGHHqrRfFJTU4ltzVl68eLFy+63bds2PPLIIzh48CCSk5MBAH379oXL5cK0adMwePBgNGnSpEZz4HD8BdfkOWEHrVkfOXIEd955JwoLC7Fo0SJ8+OGH+PTTT/HYY48BcDtK/YkoirrtajWVMletWoVrr73WK+A1+vTpg4qKCvz0009+myOHU1O4Js8JOYcOHUJ6erp3+/Dhw3C5XEhLSwMAvP/++7Bardi9ezehZX/22WfMWPQPhEb79u2xd+9e/06c4syZM7pLJO12OwDA4XAE9Pgcjh5ck+eEnJUrVxLby5cvBwD06tULQJVm7atJFxcXY8OGDcxYsbGxKCoqYtofeugh/PLLL3jnnXeYv1WnodeUTp064aeffsLBgweJ9q1bt0IQBFx11VV+OQ6HUxu4Js8JOceOHUOfPn1w991345tvvsHmzZsxZMgQXH311QCAv/71r1AUBffddx/GjBmDsrIyvP7662jevDlOnTpFjNWjRw+sXr0as2fPRocOHdC8eXP8+c9/xpNPPoldu3ahf//+GDlyJHr06IELFy5g9+7dWLNmjfdY9eHJJ5/Exx9/jNtuuw0TJkxAkyZN8MEHH+Djjz/G6NGj0bp163ofg8OpNSFe3cNpwGhLKPft26f269dPjY+PV5OSktQJEyaoFouF6Lt79271qquuUk0mk5qWlqbOmzdPXb9+vQpAPXbsmLff6dOn1XvuuUeNj49XARDLKc+fP69OmDBBbdOmjaooipqcnKwOGzZMLSwsVFW1agnlzp07iWMfO3ZMBaBu2LCh2nP67rvv1F69eqktW7ZUZVlWO3XqpM6ZM0e12+11vk4cTn0wqKqf3lU5HA6HE3ZwmzyHw+FEMVzIczgcThTDhTyHw+FEMVzIczgcThTDhTyHw+FEMTVaJ+9yuXDy5EnEx8dfMqKQw+FwOMFDVVWUlpaidevWEIRL6+s1EvInT55ESkqK3ybH4XA4HP+Qn5/P5EvypUZCPj4+3jtYQkKCf2bG4XA4nDpTUlKClJQUr3y+FDUS8pqJJiEhgQt5DofDCSOqM6FzxyuHw+FEMVzIczgcThTDhTyHw+FEMVzIczgcThTDhTyHw+FEMbxoCOeSDBw4EBaLpdp+ZrMZ27dvD8KMOBxObeFCnnNJLBYLdu/eXW2/Pn36BGE2HA6nLnAhz2HQNHiz2Vyj/mazGX369OEaPYcThnAhz2GoqQavoQl2rtFzOOFH1Av5mtiVuQbqprYaPIfDCX+iXsjXRCvlGqib2mrwHA4n/IlaIV8brVSzKVfXJ1q1fX9p8Nw2z+GEH1Er5GujldZEIEWztu8vDZ7b5jmc8IMHQ3E4HE4UE7WavL+JNpOOr0OaO1o5nOglaoX8/jNOTP+o3LttV9k++ypEpq217CK2vy447f5w2yveNoNCCsXY+CQAQIutA+o63aDzW34pjON3erd7vOm+Vh1M5Mvd3jNnmX17tm7OtN2QZPPzDDkcjj+IWiEfaPLXjoFqrwQAiJICAPjp2P8gJ7aAwSCieYdrif7xkvtX5qrU+JBq+9f+qS/s1krIRlPAjnGiTOIOWA4nTOBCvpYUrJ8I1WmHQTYhdfxGAFWavMbhZRmAwwJRMePWqZsAAF3jHACA71YMDe6EKezWSjw8ZxsAIOdkYI4xeuYGjL29EXfAcjhhABfyNaRg/US47FYIstEr3C9Fh0mb0cGo4suFmfhyYaZX0APAsWIZXW7qDQCQdNzekoG0K3Vqk+AXbXjgwIH4Lb80oBo8ja8fg2v1HE5o4EK+hrjsVqSOWVurfW6duskr6LvO3AAAGDQj2/v3RIV1FMRTPoFd87JqP1kdLBaLV4MPFr5CnWv1HE5oiFohbzCokIQqIbo7v5zpozqsTFuujUyBICY0Rd7qURDNcRBjGwEArkuMIfr8Wu5gxmlrchfXbTtjI96dm4UFz2Yidew6oo/ZFMvs18Wk4yH2A0cKHWhaLBNtSRJbAHh/CXmd5Lgkps+eCna/JjL5KK36vKQu0+RwOH6Gr5OvAS57JSOga8MDT+cAAPJWj6r1vr+cV5B8wz3Ev2tv7YWBAwfWeT6h4ESphOtvi7x5cziRTtRq8v4ib/UoCHL97dipY9chb/Uo5K0eVasfjNt87Pkadza34Z35mfWeUzAZNTMbzc1O5MwZFuqpcDgNCi7kL0NB9mMwyEq9tHhfUseuQ+4y/6yuOV0u4dpbewEAHCprPnGpwInDv6JNh6sAALISPIfr5SisEHH9bb3QvrV/HMocDufyRK2QNwpAc2OVE3NkOzaqc90BNgVxhzZtvZ/PiwKaP7oOoMzkv1WSQtV6Lo8ZpzA+jZyP0W1/l4xxKHhtDNpP2ox4HWPZD+dJW3bL+EZMn/9dlNFzymbvdoGVHahHggNzB7XH4Bd2eNt2nqwkx45hr4mz7CKxLSW1ZPu4WB/Ev4vIa9KuUmb6dI0VcNcT7jeTn1YNYf7O4XD8T9QK+a4p8fhkcQYKSiWMfD471NPx0n7SZhxa2C/U0wg5R4pldL+5N9HWLSW0gWIcTjQStUJeExZXUoKkpvywKANigEwcgmzCkWUZuO6xzdV3jlL6PbMRSQq5XPTfSzJCNBsOJ3qJWiFfX5y2SvR8eheOlbBLL+tL+0mbcWRZBvYsycCVU/wn6P/xaEe4HO4cMp8KgLU8cMsYj60YBpfPclMDDDAoJrSbmFPnMfNLJVzn8TP44mst81dwGIfTUOBCPkS0n7QZuYv8a7ZxOWzo9cZxAFU2eX/iK9gFxYz2j1fZ+w0GA44uz8KRhe4kbadEQFTMuPFxdnXQpRj2XDaamVxMu9NHyvsrOIzDaShEvZCXBRWJRhe+PKcwfzNIRqbtaFEJ8l57GDCIOFpUAlVlg5OGtiAzLr5xihVMXx85RmyrApvxstJqwalzJ6hJkU7UZo0TmP0UKvXBXU3d8/mXUPXZ6nIHQcRKVXNTqOyZbXQibhNbtyG29546RaR0SB65Ar3TWzD77asQ0XLqm97tU1Ynjq3Iwidz+kFQTEifkIM0E+mc/eE8e0/aKOy1TNYR/BwOp2ZEvZDv2CYBO+Zm4bcLCu56smamBNVeibYTaq6BhpoZA7rC6bBDlNgVLfWlYP1EAKh1SgcASJ/gvt7HVmThyKIBqIgz4b5pdTfnAMDRYhk9buuFDnwJJodTI6I+4nX79u3YvXs3nDZ2uWSoEWQTCtZPqvc4Tocdc98+hDk79vlhVlV8s8gdcJU8cnm9xkmfkOM17bxfT3PLgOkb8cT8rd6CJxwO5/JEvZAPZ5JHLoPLXll9Rx3WjuiMNZntsCazXUA0eH8JeF80Lb6+gp7D4dScqDfXaMRJKq6IJ4N48m1s8q2LTkASZcTHuW3hjXR+Bjd8+xOxLYjsZWycdiWx3dHI2pW/vVABgyhDiKkKeFKM1ZfiMxgAl8OOsZuPAgDSY510vBaMAvk/ANzflDz/rb+fYsYW4pKQt2Y0ACD10TfgspQyff5dxM6psvQcsd21WVOmz2GLAV0mvYnvF2Vg65xh6KazsqjUyUbvKgJ5dlYne3wOh6MP1+QjjPce6YTVGe0gBEB711BtlUh99I2AjX/D427h/gtfF8/hBBwu5CMMl8OGsZuPYkz2gYCMn7dmNAxByHPDBT2HExy4kI8Q3nukE94ZmQZBYpcd+pNAa/G+XD2FC3oOJ9BwIR8huBw2PLg+F/evPRjqqfiVq6dshstWN+czh8OpngbjeLW5gAs28jctv6yC6eesLIPdbkXxxbMAgPIi1jnpak5Gkt7ULI7p89WpQmK7KIYNalIvngTsle7/PdzdtR3R57DPFF0e/6OT8rLqxGtBEVUAKmQfp+V7heTtNjUhA5+OLs9CUmwcrkqsqli1x8DqAc7cn9kDNkklNg+UsEscaQd1Y6P7rcQgm/Dz4gx0m7IZbXUCn+Jl8gRj5MBUz+JwohGuyXO8qDYLUXQ8WHSbshnOOi4l5XA4l4cLeU5YIMom/MZt8xyO3+FCPsx5f0wnvDcq8A7XUFNbbV6rMMVrxnI4l4cL+TDH5bDh/nW5uO+16HK46iHKJrw3t2bRsFPmrMdTr27h6Q04nGpoMI5Xp2pAuYOMpuwYz0aXHnDYYTAI3gyVjphEps9fW8YS259dYMvhGaiskw4rK4yK334JjRKboktaR29bt0Qr0UcFUOYi502X+8utZDNc9khwwAUDzvj8rTX1MnC83E4eS3XhlwtkDnq1vIgZW067hmmzFxYQ2511Il73Hz9MbBe3IB3YyRNykL94AH4pI8/nvI26bw42KpbD4ejDNfkQ4rRZapVvvSEgKib8zG3zHI7f4EKeE1ZcM2UznHzdPIfjN7iQ53A4nCimwdjkFUFFUyoT5D9OsjVQY+OTIEoyYuPcmSEt548zfT45Qdrkzfm/Mn3sbboT22LJGaaPSzXAppL25SE3JRLbowAkipcP/omv5u8aBVT6Rqedsv+rLrRt1IhocySQ2wBg1TmcvZK8lvtOnmD6SI2Tie3KCyeZPt3btcKxGCOOrRjqTU1cSfkkWpl5GkoOp6ZwTV4HQTHh8LKGZxc2yCb8tDj0533ftBw4rNxkw+H4Ay7kdegwqWHmU0kd8zq3h3M4UQYX8pcg0Np83pbpEIOQ0jfaOVMu4bpbe6FPnz48MIrD0YEL+UsQaG3eZbfi+sfZykic2jHhpfV4bN5W7N69mwdGcTg6NBjHqyyoSFRIx+tNzVmnYqq5KrDpTdkFJ+UsBABQwt9COVkBQL6QT2zbk6rGKVg3HgZzAk7Y2IyLW74pIrZFA5BGORrjJNLz+flFtkpUY9kAVQWK7FVOy9YKGWTUJCae2e9dQcJXCwYh9dF1AACDwOoBjqLTTBsSWhCbaU2bM11OUY5fmcqCCQCNZHcfSVDRyJNtsrVE7ndWJ/iLw+HowzX5yyAbzShY+6jfx3XZrUgetdLv4/qD1EfXNUh/BIcTrXAhfxkGTN8Il59T4BasGw9BNvp1TH8jKCbkrRkV6mlwOBw/0GCEfP7hPZj2YEdMH9CtVvsJssmv2nw4a/EamqkmVIJ++5xhkBU2r1B1mM1m7oDlcCgajE0+Ke1q9Hl2J17PSseBErcN2wk20dV/S8hLkpz1Kgqyp6BgzWgkD18CALg9jbTTf5FLJucCAHtsY7JBFFHw+lgIigkQ3Tblzib2+N8WklnEHCpw1ELaoA9UkLZ8Ueen+oJdgMvzv0YbyifxzUUraBSTW7h2mLIFhxf2h6Tz1tEhOY1pO1RCVtlKUVh/A0CeR+5p9rr9YmyD8xWVuOXpXfil1N1mNJD7dY5lg6E2flWE3pNeAwC8Na9mmSw5nIZAg9HkNQRJwetZ6Xg9Kx3bR3eq0T6acC/InlKvY7vslUh+eHW9xggmgmzGkYX9cXR5ZAlNbVkl1+g5nAakyWuMWn/A+/m1rPQa75c8fAnyXq+72abg9bEQ5MhaF99uUg5UFTiysH+op1Irxr20HpIB2F7D3PQcTjTT4IS8L4KoYOuINGL7z6sPXbq/bELe64/ik0aN8dencmp8nIKNjwOiFFFavC8GxYyjy7PQbmLNzzkcOOvR6DUEA9C+dQK2b98ewllxOMGlQQv5gW+Q1ZZ8Bb4emtnGumM6PpmfVSNBX7Dxcfe+ESrgAaDdxBwcXZ4VcYJ+4qz1xLZRVJEzZ1iIZsPhhIYGI+RjRBXpcWQFp02nyNN3qEBLmXQYHo9nKxz97akc/GN+Fj6e3R+iYkbMqLXE3/NWj4LT4vYaCrIRySOXAxVsxssDlY2Zth/6xhDbrwMwUv5Z29mjxPbdndsx4+yvEOFSgTM+wVCdzOS5XRHPmo9KnOTB8i6cAwC0Hr4YeatGorL0PE6JzZj9VJABWt+XsakqHXYyIrVrazYYKtdqQIXLgFxr1TzaGcmxPitiH9u+lKM3TmYdv4KBV5TiNDwajJCvCQZRwZsj0iGICga/ceCyff/m0eI/mt0fucuGEn8TZBNSx6zV2y2iERQTCt4Yh0ZP7AzYMY4sywio7+JchYQet/VCB2624TQQuJD34arlB3BtDPDmiJo7ZHs/uxP/d54NmHLq1EaNdJJHr0LeqpEBPYbLXomOU3cFbPxJHhPO1le4U5bTMIg4IT9w4EAcoYp9+NuZJng0egBwGGRcsZAtChJIUlNTYbPZ3HORlGp6XxpBUvDPh9t6P3fK/r3ecxMUEw4uzUCnyf5PrvbtosygrUA6VyHh+tt6IffgHqR1utLb3jqpKg+Q2Wzm2j4n4ok4If9bfil6PvUW0XZu/aBq9xMMKhSBtO3ezObnglFQMXZjlTBck9kOGSlkArCcY+SPjJ4gjmvSmtguKylk+jST2DCFnK+KUFxWieXvu53C836+iO9PUgnBYhKJzc+LWVvzdbEuZK6rMjltHp4OC2Vvz7Wx+6Up5DUyiOS5pYx5A/mrhuO3eQ8iedhib7uxaQrRr7L4HDO2gRLg+86VEdtFpcW4e+ZugLLvN5XJ7RYKa+8/XUley3gne26+FaXGvrgehZUCZvbviCEvVAnykz7Jzw6+NpgZg8OJNMJeyF/7p76w+1QJko2spneuQsT1t/UKyPI4UZIxa0AHiJKM6Vv2+3XsSCV52GLkvTHOr2MWvDHOHQ0cRhwoktG+5z1o5OPE7diG2/I5kUXYC3m7tRKjZ28j2vZQC1WmzHbbWd982f/L4zTBPmtAB7+PHckIshEFGx8jtPn64LJVInXc+uo7BhGtxuzViXZv206eMoETYYStkL/xzr6wWS2QjTVPVKVp9AAPegk0ycMWo2DjY34R9OGoxV+KM+WS9xkD+HPGCX/CVsjbrBY8Pn8rCitrnl5H0+iBwGj1HBJN0Oe9MQ5SXBLSJ9Q+UKrAY/ZJHr3K39MLCBNeWg9FrPIJ8OeME+6ErZA/bxPwxVkF35wtrrZvW7OOB5VCAKBQvxeHLOwPSAvKyedSq/4/4/nBubs1ebz/lbGVis6cyiW2W7VKY/pkJLNLL/PLRbhgwMkK95ipzVoxffLOnSK2U+gTA/Dt+XJi2+ZSCbMDABQ7WYfxb8VUNslGbPWsfLXKRp0y1v3Dmr9qOA6/cg8MshGpGfOB2CRmP0NR1bzzNk+Dy+WAIJvckcQ2d6DUvvMXmf0OU/e3VxOdalUq6WiVDWwwVImN3E8wAAbP/xp01S0A2HyCfMvI1LlvHE64ElZCvt2t/eD0fNnFOuQT90XLLa5RG7OPHoIkY01mOwiSjDHZlw+UqiuTHuwOm90OUWLL+dUXQZQx7cGOEGUFL+/4ze/jp2bMBwDkbX4KxzdMhiqy52Bw2Ko+y0akPrzG7/MINlp+HIMBPMCKE5aElZB32iz463T/RFPSX7Z1/1f9G8HleGSDW7CvyWRTCPgLh92GGduPBGTsK179FWPbS5j2YMeAjK+hCXuXjiYvlJ0ntvUyzkcaEzzBVaKBB1hxwpOwEPI9PU5WUYkN9VSqRZBkrM4IrEbPiUy0lAmA2wzEnbKccCAshLzNasFj87bi/87VPbozWDyy4QAMBmB1RuA0ek5kMskn66Us8IyXnPAgLIS85vyiMyACgKqypd5gIx1fhTbWOVgT2plYg0Gxg5xDgZV18sWJKlwALnoyPN4Yz87x73YyAvRKnZJ1TtbHhx1nyONbzx9n+hioiNdci53pc2dzdknieasKg6TgyQc7QZRkjNV5EzluI9+mCh1MFwxKYx3d2wtIG7xoYK+bnNCE2LZWlDJ9ujRm72Vzyhn+31J27JZUnxIH+yy1p+5BucMAlwqU+JRILLWz+/WII/f78QLrb4gRyeN3iHfidLmEa2/thU48gIoTQsJCyHOCx5Ob3Skb5g5qH+KZRD9jX9wAAHhnfmaIZ8JpyDS4Gq8cDofTkAgLTb5jmwTsmJuFn88ruOnxTaGeTtB5rG93OOw2SHL4+yQ4tUcz26Q05hkuOcEnLIS89rC3vP5eVLhIm+g1zZow/fdQATv/OnGe6XNNDmlM/lNj9lRzdeztCmWSrdRZ5/eHRAckA9DVY4s3gDWuiwIpsH+vYLrglmbudeNOhw3rPnbbx2f+7wLRp1VLd6rgPUsy4LK7fRFWB2mDF0UZgmJCh0lV6X//9dse5nh3duvq/ayqQJLCntxDzci2PSXsdfullA3+MpniiG2rlT3hJIncL0nH/r7/fBHTltYmgdi+XscHYq/BekwzZTc/bxWgAqj08QU11rkmZ6zkvGn7OwB8QlWr+s7nuiU8ssU978SqZ/KHlUOqnzCH4wfCQshHIqIk44X+Hbyfn9+6LyDH0YS7IJtw9ZPuYhpnSskMbTGxCTi8LAMHX+3HCPtLIUgyZg+omv8zPMNmUDlaLOOKG3t7I3V7pMVxzZ4TELiQryPPba0Sipqw9zcFb4yHSTF6hfvl0AS7JuxVhxWpQ16+ZP/RGw6gpWd10WyeYTPoDJi+EQBQ6lkFdIDnrucEiLAS8re3j4Vl0wAAwA+FCno85v/qQ5FCwRvjAQBXTqndNdCE/YG59yFvy/TLCnoN0aPVi5JM/HhFMzMGdA1YCom6cLBIRoee9yBBJ3f9wIEDYbFUFUE/eZFdMutLXYKwtGMUXGDH1qt/7qIsVqJPHx4EFl6ElZD3fTBaXn9vCGcSWjQBnzx6ZZ3HSB3yMvK2TK+RoNdMNQ1Jo3c67Jj85tFQT8OLN3d9UpWQ3THXnSbBYrFg9+7d3vad37FJ3HzlcF2CsLRjvPl1ETu2jpB3UK6LGJ/EbjwILLwIKyHvS7LZiYwUC1YfZxOLiVS5PdfFU0wfQ2wisf1TOessvOijHWnEmsjj3Z3ERgPFyaxzTgX5TbDZyLHbxRmZfQ4Uuy+/UzV4P8c0ag4DVG8x61On2WCoRi3aEtu0sxgAYtOuRNPp7+O3JRk48+48dJuyGfsoX2gClXFRkGTMGlC1fl6UFMzWSWZW4WAd1ndR1+SHi2wwVgUV/UWX9QMAqWki01ZkJ/t1jGMdr7RmadJxju4vrXrcHSrQ1KjjwFXZi0k7Wj+5wHTBtXHk+Zt0FidfsLGNX5WRbVf6ZAr9v2++x7W39oJiNCPnqyJvu971P++ziOBYsYwuN/VmHM16wXcuz3OrKCas/LwE56ysSCjWCRBrQpeJ9Fl8cKnj86paoSFshXxD5ciyDL8Ws+42ZTN+W5KB35Zk4JpqzF9Tcn5H50ZVP2rj7u3kt3lwao/L6cRj87bWer9BM7IBAG2pH8MKnShgu0tHQ6gn2vFTqQhjXlUrNER9MFTuiuE4ungg9i7oh31LMkI9ncuybc5wAED7GqyOqQ3dPHb9X8L8/Dkcjv+JSk0+P+cJQHD/fgmyGe0e245Giox9SzKwd0E/CLIJXWvp0Lwc2nLK+jouHTYL2k9622/z8qXblM3Yu6BfrfapKCvVTU2swhCxTtrskZ3hdNgYk184IskKJt7XCZKsYPHbe0M9nXpD13ioSX9u3qk/YSvkWyfJGHhjEt4+wdrNjQZyRcTJxJbez3lrRgOKCSmDZnvb7OeO45xiRrOh8wAABesn4cfZ90BQzEgeuZwYq5QKNNqvsMm4Eij785wd7jXyz/Tt6LUF39WMFCL/LGRXLaTEuO30NhfwbbGMi3YB3Y1UwE7Ltsx+RuoNO7+YzZVvjIlj2sxGE35fmoHbprqjik/qlFZsJFe1GWMTsPYjNomZ3QlMuK8TmpuqXsfPUWPd2cLK7HeRCj7Tc+g105kT/dpfqBPE9tifE5g2mh3fXcQmlxXr/u4+p415rKDvqJO07gxlk+4cw4590kb2EXTO7axOsrdbqcCugz5BVGOz3XmGlg1tB4tPwFacji8jTmb9C2wlLHY/K7VbkY7foKWJHXv3efI72KcJ+3x/VUhe3wcfe43pc7qCPN5Fn+P/tIoHjPmDsBXy2q9+bVId5K0ZDQBIffQNqEWnL9kveeQyAEDBhskoWD+REfSh4MfFGQEvZn3b1E34/JXaafOXQhBFTLivymbvohzPoo5AoZ2jetAObAAQqIhivT7z9LzPFJV2FyrK2MyX4Y4kK3jygY7ez8veiXytviYcKZbR+cbeuj9qvApXzQlbIa/dwDY33FOj/r4CvqYkj1yOvDUP135yAcBlq8QN03YBOikSwpFl75KmGlqTb6OTWrkmmrxe4XZ/avKP9O5cbb9w45WdVSucNGHfEOj3jDtgrEsi+wq05WXuxK0pYSvka4tqq0TbOjgsBcUUEm1+3+PdsN/pfsUVIsA+zAkPJFnBeJ9VT5KsYGkD0ex9oe373H5/aaJCyOetGQ1DHU0dySOXo2D9xKALetVhw9/eyAPgNtVwODXhlZ2/IdYnvmF8A13mSgv02jh0GxphL+RNApBCOcN+P2cjttWyi2g7fDFQmOdt++MVVxB9vjjKBhU1a5Xu/v+pXdi3JAPnNj+J1Ik5RJ+OMazZwUatLU4yVmWj1AKlkqkYrr4tyWCsw4IBzTy2RslhwV+mu001//vtJ6KfPak1c/zuLVoQ239qyTqHPzul44yNbQTFaMbXizLxpydycEFn3fTjd1aZPeYrBth1CnPpOefKqACds6y/HCWUA/OclQ1Qs+lYq+h+FToZJ2f9o4zY1jMFpcQaIEoKHu7VGZKs4OWdbKDX3mI2zcGe8+S1VFV2ApJC3vC0ODaIT4+TlOnJrLOo2Uo9b7LPpioqGHNPZ8T7eOMVRUFeXh52UZGx+ToBgeXUfWtqZM+tUOd+t6WCoX4pZUVJZ8rM9q/T7BvraTs5do8E1jTz+Rl2v+P/JH0rZ33q62pwu72bsBfywaJrHZYYRiJ/eiIHn77cP9TTCBmLPEsRJ90XPhrwN4sy4fRESOsFrhg9jZLR5E1/oDFho3ul0Mu9q8o2tmzZEg0N3/q6Gtte4XZ7gAt5AkE24eiyLLSblFN9Zz/x2auZEJWaaX2c6OObRe7SgLc+7U5joafJN/PkuH9/XhbeeWkADABkowkPPB2855QTuUS8kD++aiQMMpsXpi50nbIZvy7OCKigX5h5BZx2O0TZbRZw2jRTTfiQmpoKm80GRYleh7C2LFGSFWL1SjA5siwDcQJqvERY0+JlA/Du3CzsfNGdsVU2mvBy77e8/RRFQcuWLVHpqaQiSQrW7GaLyEQ7mnO2oTtlw17IqwAclE3SUVllf3VWliF15HLQlsSLlL3ZEJvEjH3x6M9MW/tJm3FoYT8YPC/ONp3F3YkKaWvUMvAZDFWfS0m3Ad49555PhdWOK1e6sx/+VOpAsUPFT6VVdkg5/TpiP0cFa1s/9sMnxPbh7ncxfR7uGMu0HfCYMQW4TQAHi8uYPmu+sKGorBLz3znkPg+d5FR6RZhamak8KU52v6Y6gUY0enb6RlTwWUud5GO/l5GPcksd27LLJ/nYq2/9hjK7ATMe6gibz1xPWtl5i5QSIYjs14a205/TCXyynDzk/Zy/6UkAQJOpO3GwoqqzILDn39JBtnUyO/G3p6qUkA/nZSG95z2QFDPufioH9690B1G19gQxvTywAw6VSGisc01KqRimWJHts7+M9VMUUd+vkxWsE+aolXxDdbjYsf/YiHxuTAJ7b/USq52mltqm6CzZ/cv4tQCA919t2IXUoz53TV0QZBOOLAv8ipfcFcMhyME31UiKGZ/M5/bKUKLaK5GSucAvY90zLQf3PrsTAPDB7P74YHZ//N3n/oqSjJcHdsCTD3TEM/27+eWYkcSpMglX39ILAwcODPVUQgIX8jpoCcICLehddgvSJmQH9Bh6/PWpHDhsOstfOBHN3U+5hb0m8Ld6Et5Ne3M/pm8/jAXvHoLDbrvMCNHJIy9swIRXthGFVxoSYW+uqQ5BMaFg42NIHrbYr+NqZpvaEGuSsWnOMBRWiBgyYyPxt72TO0N12GEIk0pEHDeiJGPGQx29n/+86lA1e0QGdz+Vgy8WZiLn+YGQjWYM9qT/9U2RAAAGScHUTb+HaJbBRS9BWkOw10e8kE8evQp5KwJTiUaQTXhvbhbur+Eqhh49emD37t24nlqvCwCqo8oWzwkfXtpeVYBdE/bRgibYt84ZjpznByLWbGKczFPvD5+lpIFGT5g3hCCqsBfyMaKKtrGUF8tJbot2C0wX84m23ypLiG2pFZuzpH3Hq5m24z7ROO0mbcLJFZnImT0M1/oU3CiinJFr7nenJdTWSLROkpHEOLlUuFzkvA0GARKl2VcUnSW2Ew79h5lj05vIN4zmOpWqvr7AvjH4BtE4VKBTIzZTpdVlB2DwBuDQTm8AUHScY+WUIy5G0suUSLZV6njUBAPrQHNS1ZpOV7LOySTqGlzQcRgfp4KB2lLOOgNU/EEnT4pJIKOpC3WCyOhKUK107sn/+RSDUQURqmyCraSQ6JParBWzn0Qd7p+ny5k+GWmsb+esxzl51xNuJeXj+Vl49ckhzPJL39uQqlN1q0SnEhUd/CQr7Aq35pR0sbjYcf55mvye/qkF+0ya2NvN2Jn3FbGirCXl6NcrbdgQCHshH2qufWwzfphX9yCpSQ92h8Nug4Hnp+GEGE2wvzs3C+/OzcIDT+dAlGUsHNweoixjSk54mG0+np/lDQ4D2JR9kmJGn2kb4Q/OlEu49tZe6BTFpQm5kA8wDrsNqz44iAWH/V9mjRO5CLIRBdmTkTyq7sXa68oDT+d4Bb0m2BcObl/NXsHhY8+qIM15DLBC/u/zs/DurAGQFBPunVa/eJbxL7kjZXdFcWnCsBfy3VLi8dmSDOSXSsh6LjskcxAVE35anEGYbPTQHDuffvopvvjSbeuUZH0N/pdhif6eJqeeiLKC2QPcFb6e2RLYqlfJw5ci7/VHA3qMy6EJ+l2vDEO/ZzZ6NXrJxxQXzCCqvNcehmqvRIv4ePR66vKC++6ncqAYVHwwr0rY959eP81e0+gBIKWx29QZLU7ZsBfy2kXufnPvkM2hpiYbba4tW7bEwrcv/+p79cYi5C4d6pf5cfzDwrd+w9lKAbMHdAjK8QTZGNKiNQ88nYP35rkFvabRX5lUFR01Oki59/Nec9d0aDthk65N/lJoWvwH87KwwxP9Kylm9H2m9gJf0+gBIOuWRADR45QNeyGvoQiqN0Nei6akc+pUUhsc+8drRCoC4djPRB+nnS1HdzD3GNPmim1MbOeb3A+dVZDx1YLBSB27Dq5Ysv7bZsqhY1cljLnH/QURZRlPbPoddgvZBwBMBqAldQeUZs2I7QOVZAQsANxMRZf+Pe8c0+fG1s2ZtngfB5YiAEcqyDXT+x7rhg+ddgiSgv94yrt113HESTopHunScopOBEYxtURbx5+mWz3qPFVaT9Jx/P7rAulkuy1RL+MiOU6lToZN2aBClGSvRv/81n1wUIcrOHuS3ZGKVC1u0oLpYjCRAizl0XU4vjwDcFVN5FQl+5zai8n7O7gzm4DsvUL2q9yNcjye1XGgDpq+ETteHoa3XxmGAdM3wuoT/auqgNVpYBy/AHBbEnkzt55l31iPnsglG3TSj5zMeQKCIHnjRb4rY+dotbHXRPRZsBD36Cb8Lcl9k96dm4XtLwyEbDRh6LPZxD4XbOw1aqITBbzt2yIAwDlPZstIz2YZFcFQ7SblwGUPbKBD6th1cNkra9R36Tt7MW3bEUzbdgROO1v7MtR8ND+LSY0LuHPc3/NGLnqtORiCWYUPz2/dhxd3HoLTEfh7J8gmFGyYHPDjXI4BHlPHmzMHYPlzI4N6bH8HBD7wdA76z9wBANjmCQarK5Nnr8eTC7ZGfBBVVAj5YCHIJuStHhXqadQbh82C3tXYPTnBIXnEUgAIC0E/9EW3cNQEvSQrGHdvJyzIuOJyu9aZgvUTA5bWQ1tJtHnmwHoLe83XFqlpEbiQrwW10eY5nJqSPGJp2DxXEz152Zc/NxLL3tmLVR8cDNgbjctWGdC0HoNmZCPjRbeZZfPMgdjxct2CJrdv347du3dHrEYfMTZ5gwGQPD9JdM7tIrsKg2zCkWWZSJ/g/gV3tiSjF43HvmfGtLRgo/0EyowhUsFKBh179M8X2cCjZh5bn8EAKKIKo04WTMGgMln39p05Qx5PZ7/PqcSUsk6fQh37a5FDxXeLMgHRjHyrAZ1jSTvq7wYDercgba1ndQprl+kEA7UxV1+AnK4oZdLJJqmbvVIh7aZ0NSMAGJ5MjnXBytpaz1HH17M1x/sEbBmgIl5W0YGqDlbUnK3WdaKYvCnFthoKRk9gnyApKFg/Ee0feJLt0ziV2CywsOdfcpJNx2BoTy6LPFyQy/RRUtoS202MLmQ9l411Lw7HohkjMWpmNqACFsp/IVLfg0HN2fP93UzOu8Tn3n6zKBNJCYmwV1aQczaz2VNbmVlbft4F0k9hasp+By547vdfn3TLhH8syMKWmQMgGc1eE9WJCtZ389E58ntRbmczwUYSUaPJp0/IgcsWeG1IkM34eYl/EpeJihnfLgpuGlSnzYKeNcxf3tCRZAVTH+iI5VmBMVf4kjxsMVw6iwNCxaiZ2QCAdS8OhyDJWDqkPZYOae+3a+G0WWqcR99fDJi+EUM8Jqm6aPWnyiRcc0svXHNLL/Tp0ydiTDhRI+SDRdqEbDj99GNy4+ObiMg+Tngxb+dvWPjuIbiC4IAF3Esqj+2cFZRj1YRRM7Nht1ViYs7vmLzlCCZvORK0axFINC2+toL+0Rc3YOLcbZg4dxt2794dMSaciBHyHVonYOsrWVh2Ge+/oJhwbEX0Rq7Vl+8W8VKDdSEQmqweWibVcBL0smLCO69UCUPtWswb2iWEs6o/mqB/d2795EUkOGUjRshrzg+b9dK/nMEy2fiTYJpsuKmmbgRTk03v/1zYmW18aw9o1yIYy0sDjSbod744oM7CPhKcshHjeNUwALizMekczLdUOU/KYk0oey0LcsZSakf290yKb8K0OSylxLZoZiPw4k0mHFyWgbs8Dh06EAcAMjy+OS2wxiEouIPKVb6v4DgSBsxB3utjsa8gDwBgbpZC9LFcOMWM/cfWCcT2RTsbiLKngo30sahkls0Bzck+HwmAkXKGNpJ1sknqZJikg6EKdBxaZmrsPSWsw/qMTvbIFtQc/lfCFr74SxPyUW6isPekjYk832Nl7OPf2sxety6NqjJTigYV1+oEiFnVRsR2kZWdo6iYmDYn9Vw6rKUwmGJx9O1XkDrkZQCAMYkMfvqerdqI5m3YNMntYkhB/EPTZKbPvsLzxPaBEvZNz2wy44N5w4jgIqMsY96g9pAkBat378HvRey9LKAc3WdsVdetzAkcsrggUmk/OprZ52b/4b1MG8zk9d5+9ALbx0Heg0bN2PPP9KRK2TpnOD6Yn4XBM7KRKJLz/kQv0Otj8ib4pkXQCJekZxGjydeUe6bl+M1mfinuejKnxrb057buxws7D8PluHRFHkE2oSD7MX9NT5ejy7NCUmqQU3s04Z67cSrytkwP8WyAoc9mw069Qa/evQevf3QAjss815GEb+79ujD+pfV4bN5W4l+4aPcRJ+Tbt07A50sz8PnSDOTMGh7q6fiF5OGLA7pO+uhy96uob9oHTt2QZAXLh7bDqmGBzeuSOuRlpA1bGFamGz0kScHDvTvj1cza+SrC0X82eAb7Y1YfNHt9qFfiRJyQ12xgu3fvhv0SGruomFDw+tggzyx8UW2VaDeRC3h/sPSdvZj45tGg2aQF2YhjAap8Vhtkoxlvzh7OtGsafW3Td4Sr/0w2mvHlQv/4yHxlVSjt9hFnk/fFLKpIjXOiVQxpf/3D/HV4bGIG2jVu6m07GXcbs/8fE1j7r1Eg7W9WnYxZ/zlvxQW7C99cdGtZf0hkgzUcKmu3FejD+ax0EYyxKMh5whvm7sVVfaWkn3Vs1PYyt42yYP1EwGBAZdFZZHZqSvR56i/xxPYixYD/nifPnw5EAoAEnapHAjWnC3ZWf8inkk9dEcOem0tl9ztFJSj7YxJr//04n7Qtd23WlOlzjFKKM1uxgumgjp0+kQqsamV2QjS4/9eIpapOFanVB4cBgDGGvAc2AxmclDLxTeStHAaXs+pYgk5mtxKdILJ/UtXBbk9kr3eT5onE9s6T7DU5VCbiD1M24ZOX++NQmfvg9DMQZzTgub+R/qtXPiX9W8coP01xjBln1j6Mq6dUpfDeX8xWvXIaWb+YXHya2P7TtWwiv69LyePdpVP1a8txSvBmrIZt/Tj8+9VMXOOZV37RRWY/FxKJbb0gvgv/LmHaQkHEafLhgiCbcHyV/5I5JY92F48oWD/Rb2MC7tDx6lLZpqamomXLllAUXr2qpoiSjOce6ogXBnYN+LEMihnHlgxC7qoRAT9WXVEUBS1btkTLli2Rmppa/Q4A7nwyPLV5Tbj7K+hRI7/UndUy2GYbLuTrSNtx6/1uR08evdKvNtiC9RMh6KzooLHZbDh9+jTy8vL8duxo54Xt+zDrreBkqkwbtwHpU7YBQEgFvaiY8a9X9e3oeXl5OH36NE6fPg2bLfKdsYEQ9MOey8bU+cF3yEa0kG/fOgE5c4bpBkgJigk/LvbvL3Ew0ApJ1BdtjFAVpGgoaBr9Px9ui3+PZZcx+pO0cRsAIGQ2+jufqNmqMk2rr0nAlKCY8IufNWZ/4TXXrB3j13HPevLUB0urj2ghf7kAqR6eUn2RJug1oVwfQa9pe1zABx5No//L68cvu0zWX6SN2wBXmKfC0LT6mrzlXD1lc1iabDQCIegnzVqPqfO3Bk2rj2jHq4aW8uBshYRJnlSpp+wutJ6Qg8ML++OU3YWe8axj5N8ndQIoKknHj7kZa1/UMlMaDAaIkoyTOk7GG43kAy4bgGviSMfPyUo2c57DbkXqhI3IWzMa+W+Mg0GUGGF9jMoMmRJT5fj9cXEGYkQB9zyzgxnbSTmDd33ndihV2l3ez53jSWdVvI6T9biOc/IsFfhS6WKv91+akkJwfwk7jhaw9M4rw7yRlueo6/u1i52T2RPAIiomXP/4Zuw7wZqe7kwng2F+KWYduJKBdZjSVa6Kbez9vibOgf+TZXzxSFsIkozrVhxm+pQ52XnT/lmDjlfVcb6AbHA5ceTVh5CaMa9qnEatQHOGyhR5qoj9ETLFkc+gqrJzbKJUTVIxuLffOUMuNjB+yWZqVGQZcwe2hyQrWPrOXt2qX6VOA0xGE/YvzcAtUzfhjMQ+Ey4X6zBF26uIzS9+/I7pYmvdjdjeVVjK9BHj2O+ghZpn2/HZyF02FIJPZat9J08QfdqksZlJN+Sxju4/NyX9XoUVIq6/rRfaB7D6VFQIee3i9LitVzU9I4fUR98AAOStHF6jOqA/Ls6Ay1YJQTF53mLYL2skoAl3STF7K/z8s4h8TK12Vli1jXF/eX5YlIHv5vaDxeVC8vAlAZ+vLxM9dVKXDmlfTc/6kZoxD3mbp+H4hskwyCZC2AcayWjCe3OzkDrhzWr7Ln3HHak6/l42pbcvt0zdhP+8Un0N5VCiFQxKHbvOr+NOmeNWSjfPCZwJLiqE/OUQZDOOLsvCH6ZH5jrx5JHLUbB+IvLWPOxtO29knamCYsIN03YFc2p+5dMFWXDaLIgxmbzCvS5c/7j79frzl/si7/VHIcimoAv7YKAJ9rzN05C3eRpSxgfn+b7/6Ry85Sma7U9ExYyvFmai8Rj/ClF/kTp2HXKXDQ31NOpE1Av5dpPcJptIhtbi2zVnX80jmU8XuFds3D1jp27OmbqgCfaC7CleYY8Xg/MjKEgyvh7TFoKo4MZVbDEPf6Jp9flrH0HKI2sDeiwAeG9uFiQdJaO+3DJ1E75amInclSOQNn6D38cPdwJptoloxysnsvl0QRb+Psf9A6wle/M3ycOXIPXhNQCAD2b3x8fzAx9KPzHnd9z82nG4nMFZSujV6ldkIX/tIwE9lsNaifufDsy9umWqO0Nq7srwjQcIFFPmrMdTr24JiCM2qjT5Dq0TsO0V95e4okhG32fcqUTfjjXh3blZuPaxzeQOOlGJUgUZ3VZZkcj0Mce6M+AZDAJEUUKcwI5TTEVpirI7D7coy3hik9t2K4o6mRplMrqvTKfcYF45+SA0M+tkDtSJiqQjbh0+UaraZzqS8YKOkzE5VicKl9puzh4e/yyscjr9uDgDFpeK9ElureW/pe7j3pnEni9tg1d1ooDjqXtwW1sq4+DMXfi+zJ3HJ2dmfxgUM/7yJJt2OU/nfC9S5Q71nMp3NyPn2Mnmwg+Sgv8+6tboh6w7gGKdsokV1FgnoWOKa0na+GUd1SztwacBAMe3PYe8RW77tiGuMVLGVGn3qUlsFDDtVD4nsuX33j9c5cQ+XWHB+4dPwExltPyfTgnMZE9EsEFSMPbezpAkGS9t30f0ob87Q2dsxj/mZ6Fs7Sj8zVNs/ssTOmk3KW7v0ZNpS6Kyl35T3IjpE6P33aUeL2epO5paddi8nyGSovOfZ1inriYnfPmkgCxbGC+xjl9/E1WavG+uCN8c2H2f2ej3zJRHlmXUKNBI44lNv2PatiO1zvERrbhslUifsDHox203MQftp+6EGoRliEPWHUBG9rGgafQA0HbQLKRnzkd65nwAHu3+Nf9o9wXZU9xmr1ryzJb9eHbH4RoHjmnC/R9BeOuqDWV7/419ky/vRA5HokrIBxOXrRLtJ22uviOH4cfFtfuBDASGIBZrEUQFm4en471RaXh/TPCERMqYtUj1FLb3h6B32Svr5cQWJRkzHuqIGQ91xPPVpIMIR0Ef1/3P6Lr0YECPcaRY9nvWygYj5EXFhJ8iLDAqWnHZKr3BaqFCy8oZDEGvafT3r8sNSsAUjWay+XF+vzqH6ddVi/flpe37MOetQ5hTw3QQmqA/vvXZeh03knjomY1+z1oZVTZ5X65tG49fVw/BmXIJE15aj8HTN+KDeVk4vGwo7p3mfnhOxCQw+zmpB/maJDYDngoVpwQVnYxue97VCWywhp3KytjSY58UDKr3s8HAXn47ZSJUdfwG1yWSc/y5lBUc+SKbbKyEsglrWRRVFaj0nMLwWxOJPov+xWbSKyhnDf57qIx/zXQqSqUYXfhkfhbiTCakGF14oCVrW//sHDtve1khsW2oZG20v5wjr4EroRnTxzcrKQBc+cQmfPFqJn5YlInbn3Db5806ak9z6lxiRHYF0NdUxscDOtbBEa3t+ESR8fHDae6KYTv24Rtqv1M6FcxuiCOPd9DC9qlIZjVj36crfWIOnDYr8l57GF+9fH/VH1TAoJiQ8shrAICWCYnEGHuWZMBSUgiDbERK5gLAk68pjqqelKtzvi2M5LyNPiunJFnGjIc6wGow4poVVSuQnNTznjhuE5Q1GbC89xIkxez1s31NBdJ9dkEv5xP5vN/VROd5+/Y/TFuTK/9ENggC+5nyCxl07ltFYQHTZjCSPo/fysjvjbRzOPqscgt3s46vrS5ErZDXliFd51OS695pOfhgXhY+mJflFfSc4OKwWdD72Z2hnoaX2z2C/otXqwR9IJm9w+14fKZvYPPcXIrUMa8T26rqQt6KYcjz5MM5I5M/OoJsQurIZX6fx9ydvwEAxvep3nzlXUDxyjC8/cow73Y0YrFYsHv3br+OGbVC/lL4Cnrzw+vrNMaXCzMhKryUXm35ZH4WpDC8br6Cvm0D9LOk+jjAaU0eAE4XBNYOXVP6PrMRb78yDDteHIBiQwy6TQnevSpYP6ne5qpQ0WBs8r7cOy0Hjjqutvk/T9WYW6cGXuuLNhw2C/76VHi+QWla/L4gZUQUJRnP9O2It0am4a2RaXjnkchbtREK+j6zEQM8EdG/LuiH34J0v1z2SiQH4I0mGDQ4TV5DUkw4tngQDIq5VhF2TpsFtz8TuekDOJfm9ic24aP5mdi3JANdA6wlamYbzSb/1si0gB4v2tC0+N+WZODXBf3gEJWARMr+siQD5aUXI1aLBxqAkO/YJgE752XhwEWZsMPfOy0HnxUBx1Zk4fiqkUj3LDVr24jMrre3zO3Qy105HKqtEgbFhHiRdA79qpNN8a4WpCNo/P1XwuW0QRCN+LnI/cV+oAm7wuCdQnKsB1uzD9dFyjv7lyasI/QC7cEFUEz5h32DarTPG78qIvq0imGGwXeF7Pl2jyMdUXrl0M5X2vCFT+bPL06yY0Nn/bqUQDpMjfk/MX0q2t1IbBtKzjJ98gvJzJSn0q9h+iSP34gjiwagxF51PocN5PXtYq4+9UJbnSJbJyrY+3RtI/dN+UCR8d7oNAhQIckKFr2919uHzvpJB2cBQJGTPWA6VZUyV2bLVIJ6TEp1Tu2PHTswbSUOcsdUE7tjkZ129LNjm2UZv41zZ+6cmPM7DutcIz2MnqGve6yquMdJT24ZUTHhmimbcdZOzumTc6xz1pV+A9N2ptLdT4u8TX+MzaVEZ+t0lbMlAsX4JkzbDUnkRfhTc/ex3l86BhaLxW/OVl+iXshrDtj2Pe/R/Xv6hBwcW5GFI4sGQFBMSHmCza6Xu3K4u+9j2+o8D5fThhEbj9V5f07wEBQTjq3I8v7wB4Pntu4HADQ1OTHpvoZjuvFX5s5rfN68fl6SgR/n94PNpcKgmOtUxF4T8GnjN8Dl0El17GcC4XDViHohXxO0L/ORRQPw3Vwy5anF6YJBMSFtfHYIZsYJBekTcnBkkf8zLdYUSVZIQS8pmOpJhcGpHk3gn7W7cHR5Fo54EhS6VBcE2YS24y694CJvzWjAbq21GTec4ULeh/aP70CKiXxdPF4R+fUqObUnFNq8hq+pBgDG39s56HOIFny1eIfdiuOrRuLY0iFVHah1+QbFVK839nCkwQj569PicGjtYBRWiN5E/RcdrL07lzLb9W7K2gjfO3aG2H7i6sZMH3rZkgAwaXRPVrJjXxdLPnQHdAKPaPvnKSu7SKpdDBv40Yqyv571VJhSYfB+TqACfwTaaAsgRmTbnFSTXSeJVyOjgmubV9kpD1nZPk6dykSWs6Qt3dmMfbWnKyoZdIqsC22vJrZtlaz9v02cO1ilxeNv4sf5/dBCEZFM3bdKHbt1CeWDOKvzhm+qZO8T7Tox6FzvxvFGrBrmtosrioJXd/7C9LHq2OlpH0AXHT8J3dLYyJ6cSed+m6m2CzrPoEQNfqyMfZbbePwbsixj+dD2kGQZC9/6jejz3Xk2+RldvanUwT7vAuVLSTKbkTR1K9F2vpQN9rOXs1WuGKhgKGPjNtXvA+Bmyg8XSFu8RoMR8ppt/vooqh4VaYiKGf+3MBO38eWntSIvr+pHrmXLliGcSeCY4w0SY5280UwgbfEaDXKdPCc03DZ1E5xhXoTaF1Ex1TnXC4cTLjQYTT5UTOnbHQ67DaKss6YuhCzPugJwul8dLeXsKyvH7cD7cX541R4tLi7GI71ZG71OiiO4KGOMbx9RljE5p+7O3Mc8z7V3bMbwozMfnTnSNQ4qy0sxpU9HzxwVxnTDqT1cyAcYh92GFe8fxKHS8LrULocds95yJ4aa2S94eVS4yaZ+NGrUCMve28+018Qm7xu7sGhw/ZYsOuw2LH+/Kt1BTWzyp3V8Eq2pmAOzVPVLoAl7Tv0IL8kTBFonyRjQ012N5f/er2D+XlhBmhP2CGw00G3JLYhto8iuwLlorXJqltgFNNFxaBl1qtIUUpWJ9OxpMvXloSvgAMBZ6ku3eVRnqD7FK0RJxgmLWwioooxnH+oIQZIxYwspQFLjWIdW9yQ2iOswFRDWMZ71PKY6geteWo91zw3CdY3siCljHz+9IKqLbdKI7dwzJ5g+MpWfvlH6VUwf3wAnAHA52TmesVX1ObYiC5CM+O4C+UwYBPauXJlAHv/GRuzY/y1hHYjfU87I65keQGLzZG9qXlGS8fN59q3QouMMdlCZUFPMVecmiAIW66xN19PHdRRwyLICi8+90utTRv3wGHUeZtphX+4TQCVICib36eR1Rvtq9vHF5LOjt/ggiapydtbGnl2Jia2EpRpJJ6i9spzp84dmZNWnn8vYG/BXdj0GHHoXKsA0OCHfUHE5bZj05lGiTXvgxmQfAACszmgXlLnIigk5s4bjDyHOKR8pOB12vLDzsHf7vF5W3Vry7Da3Fi4ZSKkj6gjiMjsrHJvqRLj6m1meUoGxHiWGa/Z1gwv5KGbzqM7e0nOCTn55GkGSMWdg1eoGUZKx6r29l9mjbmQ9l411zw3y+7j+JtRBUa8N7wyXww5ZZt8AGiKirHgFvfaWIkqyV0nh6MOFfBTjctqQle2bSuHy74pjsg+gqc+acF+B729kxYR/LcjCnU+GZ1bKcMDlsGPs5qNoFQStORLwdcLu85hrVgXp7TOSaXBC/uRFO3Z8504m1NLInr4gkjZSva9XJRXoI+vY1hM89kADVCTILhToJF46bWXb2sWSttzDOnZrmlidYJUinWCk5kbSJv2pjm33T5TvwKFzAZwqO3YzE2Xv1unzY3GVRtpt0pv4cO5g7JgzBKmPrvO2t4pjbaQniqjkT3bWXmEwkMc7V3iK6fNAO7Ja1DlbPNPnf+VV4xxd5q4bIFM22pYKa9OwUEtHPrvIat+NdO7TXUmXzosiGNx25T2Uv6OtmfWTfHCG9Qvd3Jj0E+RbdJ5Byk7dUSf52mkbe75nrOS5KDrfAdrnpPfcSJTdvtTOHqu9xF6j9Fj3NRAN7s90cBYApFP+pFydYKxGEnu8c3by3nVpwj4nx6hYO5ullOlzwc5WnkvV+V4GmgYn5IPB2D5Xwu5ZXiaFYOnkqmGd4XDYa2SiuRyiJGOiJ4eKJCtY/LZ/TTepj65D3ppRyFszihD04YLLbkGHqbt0SzAGkvkZXeBy2CFI3ExTHaIk4+m+Hb3LM+u7NDQYfLH6YW/91kBGumpwIR8AHA73sslQ4XTYKTNN3Zi+Zb+3Hu3EAGVGTH10HXI9KWI5blwOO57edrj6jhxvpKy2PLO+S0ODQTCiXH3hQj6KWDWsM5wOO8QAaICSrGDifZ0gyQpe9XOAiqCYwk6bP7osE4IcfqUKOZdHlGWvoBcN7NLLhggX8lGE02HHRM8yySJ2KXu90Ew1gdDoNbNN7rKhOBsTh6uDWLvzUmimGk5k4Wuq0WzyDX3pZYMT8jaXAYUeB9RRHWeo6iKdPIqOn8REOZTOUg4tl2rABcpZ1UgnYMnqYp1ctMPyD01Yh9ohyhFX6tACr4ByT4BKmU5Q0ZYz5H4pOib7n6ixm9LnJhoxmfrSiLKCF7btI9ocOg6mrnHktY0RqjTlntO3AAB+WJqBs6uHYNhz2d6/fS8lEvs1aUUGogDACSqjZeO4FkyfSiry5tsLenV+VeStHgWIMmxWd7CcIJDXJMbEXrg0agWMXhbOIzoRn5rf75UhXeB02KGqbm3U9znIpZyjnePYZ6l5DBu0d4zyT+tVfSopIZ3aStNEpo9eAM8VlFNzx1lWlDShQl6v1wmQO0VlYk2PZfsU6gQ6WajnW+950xYNiLKCyX066jp+FVn2rsfXsFJjXdQJoqKrw3VpzD6TtJwAAMEQ/GioBifkOTXnq4WZEB1V0Z6SYsbw9QfQNYF8TZj2oP80pWHPZWPjrOF449lBkI0mQtgHg7zVowAAqWODazpyOux4dsdh2HR+nDn1Y95Ot6nmgE5qkbWZ0b8Es8EI+R5/6gu7rZIJf48Gskd2htNhgyjVfyXPVwszvZkiRcWMe5/d6f3b3+dn4YPZ/fGF5IJsNGP0THflHFFW8NxDHSFKMl6gtKK6oAn2jbOGY+Os4eg6kS3JGAhCIeA1DT4QfhRO9YiSjOkPdSS2n93K5gaKZBqMkLfbKvHonOiq+KLhdNgwKqf+q2m+X5QBwQD88RlfW3TV6+XdT7kDl7om2PHGiyPwxosjMHrmBry84zfYXAY895B/bZ+aVv/lwkzcGoSEZi57JdImBdcfoGnwnNBAm2qm+/kZDgd4PnkOALeAB4BbaihMNS1+9fRBeOPFEQGbl6bVf/FKP3y5MDNgx8lbPQqCHH1veRxOg9HkXSpbak0vK96IVNIRVGRnHUF0dj2bjkOLjsDTs7W20YlcPEs55/QcSm2o0n5OFThK7Ren4/S5PYFs++SMO0ovb83DAIDUR19n9snVcRbGi+7H5m9PuH8Q3p2bhTdeGAGDJGOGpgl5HIiP+RSglimn0wW99Lg6UZnNJ7i16yPLMvDhnP5oEWvEfdPIdAinHOQ8fz97lhlHiWfTAuatHgWXvRKCbELq2HVwOVhHd5tGZBRuK4W94bSjVS8K+mofx/OyrCu8AU+lPgnAPjrP7IZbG5HHO66zYOBMeRnTpjrJ5+T6pmwE5vmkJGI7XmTP7b8+HttjK4bBZbPgJ8oyeNZmgEExEzVVu8aQYx3UmfctVEbTeJ0FCicr2GcwQSLHjjOz+9GLH1J0SmI2ou6lLMt4qb97CaYkK1j6zl6IBvb4jan9inUidWWqac+6UcgNcKk/PRqMkOfoczkBX1MeeDoH78/LQqv2V0FWzBg4YyMcKvDqIP8GprT3mFJKVg/FOy+5E4dJRhMj8Ksjd8VwuOwWqKoKQTYhbVJwbP6+uBx2TNlyJOjHrQ2fLsiC02bBRZ/lNYJiRvvHd6BXE7Lv3y8IOLo8C0cW9ve2Fcnu6lr31PL+hJIlb++FliFj/L3+XS4c7CAojagX8jf+pS/sVguTf4TjRrVXou3E+tu7B87YCADYPmcYts8Zhoemb4Qoy15BL8oyntrsH4eWr1B/f14W3nlpAC5SbwV2nfw2WpoAQTaj3WPbvTnaOSSacBcVM+6esZPQ5C+HrxYPAH9spOLDeVnYPcv9g2yTzLjx8cgpFiPJCsbf28lb9UqUZMzcVvOFBXvWjfKmLwCCk8JAj6gX8narBVPnb8U5HbNDQydvzcMw+NkOPXDGRmyfMwxbZw5ASpee6DfdLfz9rdVraAL/61LSFFB84QzTV89cw6nix8UZ2OOoEu7+wFeL3/XKMHw1tx9EJTKE/dJ33AGAhR7Z8XwtK6iFSnOniXohr6ruf0d0sjnS5ckA4BwVeKG3apmuOBMr0fZAlbH1lenY7Kw6dvqWVBbA30vYeXeId+CZ/t28NTZlyYg0KnvkD+Xs8Vr4RHZ9PD8LgiAibUI20WfvRdK226NxHDPOR+dYP4W9orhqY9BidGraHD8uzsDaF4ejx2Ob4RQVzPcR9KKsYM4ONtRc7z7d15g8XomOLb8bFYxkSmnG9KEtwj9XsMsW/5zILkP9qpjcFnUCWn6n7M33NWdt+y4VeG5gVzg9OeJbmlz4RyF5PNr+DrC+m591nomrEtnsnT+fLSS3S9k3F0mScXRZJlx2CwTZjKThKwEA/3eiyqehpwi8e4jKuqhTLaskthWxPeFFt7N+y+zhOLg8A0OezcY6KmJrQDKr7cbJ7DWhv08mHV8CbTcv13luinQybNJ1Z7Wko6Ik4/l+7qXCdGqP79aSWjsQOs2dJuqFfLTisNuw4F13jdZfi2q3xvrj+VkAwAh4f9Pjsc34cXEGflycgb+sPoSHWlVFmE7uE5iEZ+GO02HHy57auuHA0WXuFUtaCgdLEfsG5G+GPJuNLbOHY+NzA3HCodTLHxRMtGRoT/dlNfpw0dr14DaMBojTZkGvp4LjDOvhKfH34+KMoByPU3NyVw4HALSbFHzTyZBnszFs1nYAVc5/TmCIek2+Y5sEbJ+bhf0XlaAJtnDm4/lZEJXgvkZqGv2qmSMx7sX1ANzmGjodgigrGLU+ekq5zRjQlXHuWspLQjQbklAKeF9SH30deWseRt6ahyNGoxcEAY/f735248wyevToETamGT2iXshv3+7WFtr1vCfEMwkPnDYLkaogWPR4bDPOrBniFfSL3trLJJnyZw6ccMDpsGPu21WmGZcaHhGVmoBPG58d0nlo+Ap6zA59BtLqeHnXARg9cTDvLcgMWzONRtQLeY0b0uKQ+/ogmM1mr+Df8GUx0492qp3SK5lGrdRprlODs4IKztFzslp1VqbZqUx5HXQy9120ClBhwEWPk5gO8gIAi6WcaftaNeOCA/ja4zNzOdmxTWay1BkddAIA1ySwzsnvreSjRDuvAMA16k0cXtgPK/KMAID7m5AORYOk6CaMUuHJMbLFvQQzPY6d91kqm+FJC2uJzKOc6lfFsOf2zln2Yib7+B3/ObYjPtMJmKKP9pXgnrNvVcB9pRIcqvt/jVN2cg49dRyv9LNDZ0AEgO9L2ECfmATS+Wx3WJG70h2dnDZ+A/Rq/oql55g2p8I6dY3N2pJj2yxMn28LyBKMJ5u3Yfq0iHP7k1o8sQ2/LOiHt06z5+F0sg7jDgnkgoA/yjr3hHoGk4zstS3RcbyaqOs76jYyw+TAgQODWtmpvjQYIa8J9j59+oR4Jg0bQTbj6LJMXTPBE5t+R7zOSgqby4BZAwJXVLw2uBw23Pzacaa9GbXC6vbG4bcGnxTw4Ycgm5C7agTSxoXn/DTC2cmqR4MR8hpms9kr6E+XSxj7Yng/UDTP9O8Guz1ysxa2m7QJR5dluld1vJhd4/1ESfYKegEqJFnBEj/XnNX4bUoXqD629H0+GqFQz0yfgqgge1g6BFFBVpD9D6rNgvTHwjdJ35VTNuP7uQ+GehqXRNPgI0F796XBCXlNoweAa2/tFcKZ1A2H3YYZ28M7HL462k3ahMML+9VqH81UAwCtzE5MCFDNWQBQHXZ0X1GVGTLZRP6g1jAAVBdNsGcPS6/7IJyQEGkavEZUCXkthQFQFcTUvnUCIdh96dQmAe/MzyTs9Ju+KiL6xDGBTmwwjpGy4RkAWCnTYoldL/CJtT/aqERXdKIzA9iAra9OkkEvgDvHCM2hRYMAg4jKMrcvIrMdG+i06VdyDfe/y5oyfVQ7W1GpUwsy8OVQHrsWXDVV2fuddiu+KGIfv85mVoKepisj2QSoooJH7+3sbZMFFZKkYNXuPQCAc1ZW425L+U4+OWvF71OvgsvpY89VVRgkGbbyIm9TwVEyFbBkY/0dpSL5Q1DW/XamTw8f/4okycgZlg5QGn2Bji/hGHW/9a6Rnn/F6vM2krd6FGAwwF5EJm5zxZFRwFKbLsw4zsJ8dmyqLb7gJ6ZPWZurie28c6eYPvRzY5BNyF05nMjprxfo1VwhvztHy9lnqTFl+kvWSVDWQqftLBXYFqkavEZUCXkthQFQlQVw05xhl+zf0Oz0qr0SqeM3hnoaANz21z1LMnBlHeu5TthImjquaWLDI707X6L3pXE5bei6pCpTptPKCvBAMMlTi3TRkMCke6Bx2SuRMmJZUI5VH1LHrkPusqGhngZBpGrwGjwYihMSkketgEvnjYDD4fiXqNDk65tpUnPGms1m3DvpNT/PjhMsJEnxavN2lwGiJGMcpfG/NrwzXB4zhtWlQhDrXzKxPoTSEctpGESFkPc109SFhma2CRfqa7Kh0ezxAPC/8wqWD2XX3LscdozdfBSA2yZfF468M0+nuAjpNzjZNBnX1OC8uCOWE2iiQsi7VICKKcGQm9wVb2oTtG02m7FzXhbOVkiYNMsdfn/Bylq07mhGfsHpQBwXDGhKZ0XUCWChIz4BoAm1n9PjiJ3wQHc4HTZIsoIkhRxLNLGOKcUYw7SpLhfhNM05xK7lFigHnmpg53hXagum7d+FFcR2+1Q2srOU8nHdOC0Hn77cH219glT0gqho3su/yLS1jSODuK5OssMoCViTmY6KslLExMXD4dHujR5/javoNDNO473vM21Fne/yfs5782mIjVqgI1ULtuIiOVbB2jH46sW7YZCNSM2YDwBI78Rek1jPcyFJMjYOS4cB7tz7k3N8KmpRj6CF9RVC0XmLtduqfsQMAFq1SGH6JFPP0qF/sak//tqbzTv08c+/kg061ZOubkv+cLXUqaj16TnyuWkaE4OTooimMVXPb5nOaqYrqcAmh8o+OPSiBZ2YQQzomcS0aUGSf1/+SEQ7XDWiQsj7C02j73Fb+C2tdDpsWP3BQQDAkdJqOnMAACt3u5ddjr23E1Z/cBB7dVbz1IS8N5+G6ilCYpCN3gpVl0MT7Hmbn8LxDZNhkI3AS+9csv+YbLdGbxZVLBocHGcs5/JEusNVI6KF/I139oXNatHVYupDh9YJ2PaKOx3vsWIZA6bXbEXKrMFd4HTYUVlegtEe27AkKVjjY0aoCeP6XAkHZQ6oKCvF2Hs7QZQUom4qp3pEScHYezvB4TJAkGRMzKn59fv9sy1AfAu0Hb64Tsf2FfafzM/CX2uQJE+UZSwa3J7R6BsCvy3JgBiCguq+qQo0Il2D14hoIW/z2OIdeu9h9cB3Xf0VN/au8X5Ohx0v7HSvqW7rya8yug7L+hwOG9Z+5NbsnNS6+bH1qDspKCYUrJ+I5JHL6zxGJLLiXXdk7N4iCUtrsWTx98+2AABSh86t9xxSM+bD8u4sfDS7PyTFfFlhrwl2f2r0BsXsV/9HoHDaK3HVk7uCftxo0dr1iGghrwJwqvrVm/yFYGCDnehSglqgk6pWfS71VK5RVffnszrlB/WCoU6Wi3CpBpwsd9v5nZSt0aka0IYK4Biawq4Q+baIvSqW4UuQt3YM4HLvb7CWMX1MyVQwzJ5PmD6fG+9g2iSZnMPh/KNMH3OLNGJ715whAGT893zV2vRmlG0dANKMlA9CYf0Ny34mg3z+nM4mw0oxO2EwAI1k93hKCWuTL0+5HgBwbNcsICYJ6f2eg7M5aVuO1Vl4XGkk/SKDOjRh+mzDcwCA4xsm4/8OuoPFbqPs9J+er7q3Vhew+6wL3eNIn8+VCWzgU4FOoq3G8VX3pNu0N/HhnH4oclIJ+E5TCck6/ZkZ57+lbJI+kQoIK213E9Pn54ICYrtrm2SmD20pbya7cBeV9+dwOXt82sfl1FH0pt5JPktbvinSOX70E3FCfuDAgTh4wp2T299mGj0KDv1UbXIs1fOAiTKbT0YQRUzp0xEunZ8iQccVpMJw2bw0oiRjSp+OEGUFC99iy+dVhyCbULBhMpJHLK31vv7GX0XE/c2xXbMAAOn9ngvI+AbZiLzNT3lNOZfsJ8n4bWJHHJIVPLj2YEDm0lB5b8kYWCwWaJl8osU0o0fECXmLxYLH5tV9uWRtSe54LYbPItMiSFQ64mKd+q0ai95xv3rXVJO/qLOax5fntu5HY6MLU/rULS958oilKNgwGQUbJiMlo/5miGgj0AIecJtujm+YXG2/rovd5eYOTPJPDvrLZQANB/JWj0JqTHCEbTSbZ2giTsgHA18nTF0DrAKNKCteQW+QFDzjk8CrOjRBn5/zJFKyFgRqipfl6LIs3QLRgUbLZplgltCjRw/839FSpPevEuguuw3tB88K+rwuhyApeGtkmvfzldv21Wkc3wyg4Sbo81aPAgAMnpEdsGNo2jsQ3Zo7DRfyOvj+ys//Z3iuV/Q11UyqQ1Hs5BFLkb9mtD+nVCtcdgtSx2UH/bhaNssvlw3F7t270ajzzUGfQ23xNdVowr6u1CUDaDBw2SuRNunNgB6jIWnvvkSMkPfNBFdBZYFMUPyzvGbgwIHYl18K2WjCis/cdv8WOhn/yinzzHm2KA2O6ziLaA4Us7Z3uspTro6Z5+p40swjSTLmDOjg1lK3u7W8no3YQKcjhy8Q2wZTPPLfnI7k0Su9bRWnSYepYiKr4gBAwr9Ze/75awcQ26KtguljP14VQOOqKIFawlYhYluAUifpQOvWiNXChEakUy9BYk1hFT7BZ59/9T0aXXELDIoJLk8GydztM4GEZrC16U7sl/Q1WXPgfM9MdpIqeeP+W8LeW1XwfSYMUAUREuWquSWR/UrG+1TnkmUZL/V332vfJG1/0ilS8mMxOZblzDH3PFwuHFrQF8lZCxHTgowKrtC5J2cLdPwB8WRAnFTEZph0xJOVqXJtrF/q5sZmfLogC81i43BzYzMOlLF9knQKycRQ2WGTjDoRYh4iPYtkfYkYIe/7K7zmC7Zsn7+OMWZO+BZVuBSaYK9t/dDk0Su9r8kNDZfLhQ6UT0K1W5EyKXj+nrowbuMBCACW6qRsqCnJWQuRt268/yZVDz5d4I5HuevJ6uMH6kpD1eA1eBbKBo4gm1DwRnC/8Me3PgtBNgb1mNGGKMlYOrQdVgyrfRwG4LnvOVP9PKuac2RZBg696jYbBUrADxw40Jt4sCHDhXwDRzPVBFPQu+xWtB08O2jHi0YmbDyAyW8ehdNRt1qyyVkLAQCHFvbDkWVsbppAoh2v4xO7gqLBX6poUEOBC3lOUAU91+LDh+Ssheg41R1dGixBrx2nJvl/OP4hYmzyJy/asf1bd/ZBtQa/TTu/YzMVXoqePjlwmlKO1lydaL8z1Fr2GJ0Mk3SJvo5xbJTiORd7Hukx5PG1jIm+0Nn1mnsiYBVZxrP9OkCSFCzSKXJ9Zacrie29B6ocoWn9nsXxrTNwct14pPV/vqqTTnbBotvHMW0oI6+3wcWeb+7brwDGWKSOeR0uQDfoy+FTdk/jmiZkNGmaTsk2+prQZRQBIN2n/J5RkbF3wUMQRBlXLHRfB9UcD0lhl3WW//ERYvuhZkwX7DxKOrXjBTZyF6r73uZvehIGWQFUF/ZWkNe3i46jv5RaaLDfp0SgXQW+LRXxp0T2ObkqnrwH+xLYidsdNqSOW4/clcNxcEFfGBQT0saRjmZHOftdEhq3JvuUnmf69EyuKu332auZKKiwQFBMSJ+QA6fTfQ9/pzK4DmrJpn9ONLLnZqMegV2LHo3a3DP1JWKEfCCxWYMbYBUotHzqdSmDBwBtB89B3ptPI3fnS6Sg9xOqvRJtJ4TH+uxV7+3BnP0u7JvC1jQNNKrditSR4VWKL218NgAgd+Vw5K4awQj6uvLZq5lw2iwQFTPaP77DL2Pq0dCdq5cj7IX8TX95EHZrJWRj8ANnGiJp/Z9H7s6XcHTLDAiyEWkDXvDLuMe3PguDkc1739Bwa/H+M1cJooIvx7TFj4qMJ/yQnTRt3AbkrhqBY0sGAXAnNkuu5TNQkD0FLnslSs1miIoZf5nuNgn9rJcYvp58uGxMg14eWRPCXsjbrZV4csGWUE+jQaFp8W5hPx2CZETagJl1Guv41mfhslshyEakjnndn9P0O4Js8qsWS5O/6UkAQEqm/6KMb17lTnT230fb+m1M3/PPXTUCeesnsZ0os5bqkxpbkE1IfXgNeqayRUr8DdfgqydshbymwYuKGZVUBSUXlZnxdAVrf20T6zbanasQcf1tvdC+dQLjZdeOYTKZvJkma1KZKJmym8ZKrIYikeZB3ao0jXWCuI7WIIhKMJDHq6n3fH8Fud/1Xa5k+pT4XOsO3T9CG0XFR/OzUPzhfEiKGb2fysE/T7NRwEoiGRxjt1W4hZogIlULthLImTps1EUCENe4FdMmUuf7cyn72PagMjPqVQpyUHb6Ce0lPG1SkDvVbbKRZAXOVt1wbPEAInmYUyWPv7M4kRkbAnnf8j5kA8ZcTidSx6wlnoUmVFCPXjbFplRFpQtF7IoagyRj7iB3amJBkjF6wwHEU5fpD03YN6lfLeQ9aUw9fi2mbkFTiZ3UBcpP0M7Efgfiqe9FZmvWl3KGquUu6nz/Bt2YyLQ19ACn2hC2Ql7T4GkBX1umzHaX8Xvz5WGXPAbn8vT25D7/aH4WPpqfBSVr5WX7564YDmfZeRhko1+11kAwd2dVeognHuiItjVMHlZb9n+2BUJi4DTb0Ruqol/XZtY9UCpS4Bp8zQlbIR8oyORj3M5fG3o/lYOP5mchb0UW8zeDWKUCCrI57ByLtcEgG70l+6pLB1wd+z/bApfDAUGSglasRZBkrM1sBynKKkv5fne5Bl9zGpyQ99UAtCWZnJpzKXONbCILedjPHgvWlPwOU59VUpCaMa/W4+z3VJbqdpf7R5FdZBgYNK3+9SjT6Ln2Xjd4MBSHcwlSM+ajrae4yvENU5C3eVqN99UEfJc/DQnI3DicmhJWmvy1f+oLu9XtiZGNZpysEHFep4hGY6X6pVh08Y2TZRKuvqUXjh/4Ga/9x53gTFXZsWWqya4TVFNGxfkoOt7aAip7ZJmD7XNSp2TbcSpTX49Y9lytlJ+CzsqpqsBPF3UCjWykl+vnctZc1bcZ6Rw7Uck6gtsnsZkpO1IFUGKasVrkB4XkPFvExTF9TltZp2Kli3xMb0xkA60aG8nrZNBxdStUwJSBuiWyrODYnL9ClGWiWPq/r7sdALD/8204uXwIVKlqCaQgyujcawzEsrPY/9k2uJzu+TtadELKI6/BN0TqmibsdbuSClj6qoi9bx3jyGvbpzl7T0rZSwJJlrGYqmkrSDKe2lxVe6AVdd1yLezYv1cyTfhLIjknq85Xki7RR28D7Hc50cgOxJ2s9SOshLzdWolRswOTBfLhF9zLwp58wD9VdjjRx/J39+JgiYRXB+kX0O5yh3vtuNMnze7+D1Zg/wcrYHBYIYgyuv3FnYb4wk0jAz/hanhuK1lIptIJzB10+VKW4Qg309SPsBDy2i81d4RyIo0u904AAIhlZ6vpGR4Ikoy5gzowGn04oqUq4Bp8/QgLIa/9Ui/+d0mop8LhRDWaYI8EjZ5r8P4h6EL+D3f2hd3qXgalmURloxmbviqCnh+4pU6QhUgl7aKTUwHAKcq2OH9oFzgddoiSAovHhk1Xl9Hb7+ti9hLR1XxO6yzS6WYmx26sVJ9UCwAEkMc/bGGvCW3/bEvZbA0GoK1OEi/6Tclazv6ofigmEdtddK5/ks68aZ8DfY0AYEALciyLTuRPu3h23qeoIlNNTTpVn6jjx+k82bYaxFx0iHegUYyE/62scpgm+vy9sEJEzylsBsUE6ll68W7W36AHnUgvVueZNFLXW88H1DGevU//vaCQ+/kWoBdlvDywAyRZxpObq/wP7XWem3MO9mK2oxLu0YFmAPD1BdK/0EinwlMiZZOn7yOn/gRdyNutFkya67a7Swa9ONDA4HTY8dKuQ0E7Hidy6dGjxyU1yOtv6xXk2QSGRzzLLF/Liq5llhwWvoSSw+FwopiwsMlz/IsoKXi+X0eIkoyZ2/aFejpRRfvWCTiydnC1/fqs0m83m81hValI9OS8ESXSbBMqHu/bHQ67O9mZIIi49tZe0DPgaMtfO+jkpLoU1/+5ylSscUVyzfePVLiQj0JWvLsXZywCnu/Hl4v6m/oKhD59+vhpJv5BE+xzL7FsNNg47DYse/8g0abn3xE9NogtL7MpNi6F3WrBuFfIJdofvppZ6zlGGkEX8oKhypF0qoJ0Mp6uZK1HJ3WCoVpTARMX7OxT0I5yILkAlDnIsSQD6wg6Sc3hjI2NMrk9kTxebkkF08cUS2b8O2dlg0z+dbacaftjM3K/Yzb23LoyVZCYLh6nsko4lzuYyHPbb1NA04i63D+WsOefYmb3O0s5zLrrVDgqd5LXQC/f5sES9pGsoBymdOATADgpx995K3vdaKdmEjXOziAs2TObzYSgpzX7XToVzY6XkdfkB53FALc2ZoPIrksi274sZAOtmnqugSTJmDeoPaE1i5KM57ftw+DWbDRUnExey7wy9m7+samN2C7T+Z7OzrgSNltVP1lWYKbuU6WOM7bc873QghzpIEaA/V7EmM2Ip+ZdUCrhypt7o2tKfNRq9FyT53A8BGPJHi1IwkWzn/ame2mlb1TqzCC8CdpsNpw+fdq7vaMWZTsB4BFPkCP9gw0A5ymFLUEntfeI57MBAJ8uDm4x82ASNCF/41/c9jDZyAMbOOHDTp/aoKEIutE0+3Cz1QNuTX5mv46QZBmL3mJrBteHlwZ3hdNhR1JceBR1j2aNPmhC3m61YOr8yK+jyokuQh1wowmUcNHofXne47R/oZ//A6ecDjte3HkIj9+Z4Pex60I0a/RBE/IWhwH5VNWjBCo4ol0c+8qVW8naf+mXLlnHMdOUCuKRDCo6NyJtlId17L/flpCjWy+cYvr8y96YPL7O2wldcceuExJgEFhD4lnKbvkHnQRlFynfwjeF7DX6S0srFFnBUw+6X7klScHgN0iH1t4KNhjqBLWWISUuhulzXTxrp0+gbJ3HK1gbrUjFRbSPZQNvftW5J12p413USexG01wniCvO53kLt5B5X1s9rdW7AwWruNfMXjc6IZ+7jUpcp7NOxUr5Ms7oJKSTZAVT7u9EtImSgpXvVWn3jXRMIZptfeID3eF02KD6dFFkBU1NLrz0jzJin3iZPX6Rzv2m4+jO6fjzWlJ+IYeO74quRHWiVMJ1t7pjITq2iY6VN9wmH8Ws2b3H+3l0784hnEn4EWoNnsZXmISbVu8rzDUevaeTTk99nA4bVn1wUFfIhhujZmYj3qMM7JxX85U74QwPhuJwOJwoJuCa/I139oXNaoFsZF/7ORxOZCJKCh69pxNjtvFFM9OIEmtO5ASPgAt5m8fhWqBjo+VwOJGJJtgvZ7bRzDSc0BJwIa8FPyXpVHOiBX+5TtBDFx3n3IfnSStTZivWEVhMOWtcKlBEOaf+dYENDgHI43VqncL0yLOSfQSB/QErPptHbEsJzZg+ZlMs03aCimm5qHNNjIyRje1zgAqYKS8rxfqsdIiSjAkb3cmp7kptwexXTl3urgk2po9epsAWlDOwjc59O0c5o/Wcsy111jvbKOfgYZ3Amx5U4I8ssI7A/j2TIqLKEL2skr4iejZWOoAIAEopZ+RNjdl7GU85TO3sbcMFHaemdjyDIGJM705w+TyDleUlMMUmAKKCH89Xfcc66jjs46nFFyd0KlN9Xcq20QsSDlWwz+T/qHUFLXWcw0115JJ2bqfLJVx7ay90inAHLHe8NhBMsQmYuPkolg5t2FkHw83hqkc4L6ukWfSOOy2C70qemf074sWdh3QFdiQx9kV3oNU78yM79QEX8g0MUZIvK+hpXUcvb4hegmiBaqXrpwKAS61qFCUZoz3pbgPN5AfdSa+eUAQoCrcPc2pHOAes1QQu5BsYmqkGYHPCAHrmGvYVW89cQxcukXRsCr7mmhkPBS95msNuw8oPDiLj5sSI0I454UUkvVnpETAhf/NfHoTNWgmF123l6GAQBKzKYN8oLpdWVkOnoBS2U4FWvrtIcpX2HulaWbiipSkA3G9p0UikPjsBE/JF5VYMn7UDAHC0FCjWyUDXidIS88vZ6ezXcbJdSa3GLNSJ9quknHUuGJhovmIdJ5P9NFk9Kr81G0Sk5bvW0HuoxbgmxPZfmrJmgi9KWKeP3Um2sfn/gHQTeR6tjazUo6MbVQACJQhTdUq9naWyZR4uY++JXoTxvy6S1+BqHcfrRXvVfXrw9aO6Ti+9Nlqo/7eEvd7J1H43NiHvkaoCG78qQu9JrwEA3oqgQJdhtyQS23TJQED/7YrO1qm3sCGR6lPiZL9LcTpl++z098thw6vv+n53VLShFjHomfnOUd/Jz4rYOVaWnmPa/m0hhYCzjL0mcglZXL2s43VMnws614SWS1rStIceXwMA2DxnGLNPOMODoTgcDieK4Tb5OnJ81Ui47G492+CxJwiKGekTNoZyWhxOUHmyXzc47TbCJMYJL7iQryFHl2XCZXenpHW5XBBkE9InbwFQZa45tmIYjiwaAABQXVWvuIJiAp5/M8gz5nACj9Nuw6L3DsGhZ4vhhAUBE/KiQFbiOatjN/+VsuPqLburcLGNzSgb4SmdsVOoDHQGAGaqolKvxuzKkf+IVxDbdyY6sOPlYWhjBAa86Ha2bD9eCgBw2tya/PWJ7pzY1z69ybvfzz5Fn44uz8L6WVlIm5BNjN3SyNqWXZQFTc/JeJ4yd6fpVLjaQwWQOFxAE8r+SgcZAcAvlA/EqnP8VjLbmEb5Bb4sYX0pyZSyt1+nTxcTey+viCPvU6pOwJSRCn7Sy1zoa5POLZFx1S290CWMa3xeytF3Vmf9eROdrJsS5YNx6ijbJ6jMsHoZPjvqrLDyDTaTBRUWnf3o7/NxHZ/bhyep6mhFJ9lxRHbizkoyeyVE9rvklMlFHwWFp5k+JxQ2KG5/Gbnfw6nkuZ0odQdJAYiIQCmuyVfDjpfdTpYB0+tuhmk3MQdHl2Xi6OKBEGQzI+w5wWfIjGwkKi58tDB8A10ifemev8nPmQrVYyJl0iZTvyiCbELqoFkBmcdIn0yVuyLAgc+F/GXYtyQDLZT6CXgNTbDnrhiO3BXDuaAPE06WSbjqFrdWFs5afbjx4bIxsFgsuik9/EXe5mluoW5wa9IG2YTUUSsBACr9mkBp8gUbJuN49mOe/YxIHTo3YPMMd7iQvwT7lrgrxPhDwPuSNiEbuSuG4+jigThtisE1Uzb7dXxO7Rg9c4P3czhr9eGGlh5CM1v4E024G2QT2o5YClXHXFMdySOWQrC4k9fkvfk0jmc/BoM5HsmjVvh7umEPF/I6aAK+65TNAFh7ZH3RtPjTq0fgx/n9IComLuw5DZ681x6GWlHkFe7+QtPi87Y/j7w1owG4zTkNReD7Vcjf9Bd37ngAcEkxOOOTvS5BJ0veHsrJl2djHYEddQJ9YigfzzdlrNOHPp5LBU5R2fRoZx0A7PUI+E6TN8OmAjvyK5g+KLtAbH5/IZ/pkt7hKmK7g4k91t8Hux++gg2T8fXch5A8YimMSa2IPok65dBiqdPN1ckSeG0C6Z39UABiqGtSaWWvN+2+O1fKlgh0xbN1OY3UUC5VrwxQ9WEZv1Wyc7oqgZx3hU4QG32/9ZzKZVTgS4WTvLZHimVcf1svtG8dXmYbujTgg4+9xvTJ0wkajKWuCX3+AKBQ3wG9solWn/QX2pJJp0FC+573QFRi8NNFGbEi+3y/f4bMDOqwlTF9khPdpTR/WZIBsyyj2fAl7j/41AqMK/iZ2a+8BblAIjktnelTkPc7sd1uSlWN6dwVw1Hwxjio1goYZCNSMhd4/2YXSLH4n1h27PtaWQEAZ8vd5QLDuVSgX4W8zWrBkwvcF3JfUWS+JLhslbjiyV1BPWbyiKUo2DAZBRsmo/3jO4J6bE4VDz2zEd0S7Xjz5fCKaAyn0oDaksm9xf75fv+yJAMuWyUExYSrp2zGyeP7/TJudWhv0/azx5C/6UnkrZ/ECPuaMGHWegDAjrnh64CNTEkcIN55ZZh7TXsI0AT9sRVZSJ+QE5I5cMIfs9mMLS9XCZRzFRImz14fkGM9O8Cdj8bgk5BA9HPQk8tWiWufCq5SRaMJdq+wV8xIzloY0jn5Ey7kfXDYLOg05e2QHT95xFKcfHNaWAv6vNceximVtZf4GmIExYQ248Nz/pEObRLocZv/HZ8aTocdr7x9CCYdU0x9KVj7KFz2SsTGsqa/UOEV9punIW/deLfdPgqEvV+FvKrCW5G9kAqOOK4TsNRex/5HU6pjWy2nbMkOFyt0OsaxyZHoJGlmkRpHNaA7FURljI1jxv6cWr7FLOcCcOQ4mejsiM5SM8lSzLTd8cSb+H5RBs6uGoYbHt+MxhJ7jU5S1/aYlT3/eFHEzoc7weVwJ+oSJAXfXSC1sFwdm3wpNdT59eO8QV8AEKuYcMPjrO3xWGlVUEve6lG4sKw/JMWMu5+qEvb/zjtF7qRz30yNWzFtX1FBc9fEs/vRYui3UvbRvpGqjLSnmA2gKSiXkFcio9vNvdE9JT5s7awabZJkQrP3B19+8z1cLidkWUFTk5MJWgTYYDdBJ5DRYSF9VxCr7onLXonU8dkwwIATRVXJxYxlhcw4zuv7Mm2G43uI7YIy1t7vSmhOzvHQ10wftSWbgLDH0+8AAH5bkoHCHc/jsI7C9XUh+V06VyGGpT8H4Jp8WHLD45vx7dx+9R7H5bBh4IbcWu93ZFmGNy9PjNGE66fV7nU6dew63N7UjL/Pz8IHs/sDACTFDGVQ7eydoSLzuWwAwBdLh4Z2IjUgEFWurr+tF55csMXv42oUrH0Ughz+Kci7TdmM35Zk4OjyLLSbePk30ykek1m4+XOABiTkBVHBmyPSIYgKBr/BViT6eH4WRJ0Q51AhKiZ8vygDf3squGaPI8vcq4s6TnUL9ub1SA3uq8X/fX4W8tY8DMBtzkkeubzuAwcJTaP3XYUVzqsoIgVNi48Euk3ZjJ8W10zQhysNRshrgv3NEexyKABw2iy499mdqKzeghQU/KXN14bfPMtH20/y/5r9u5/Kwb/zzgAACtZP9Aj8KuEpyCYk+3FttD/QNPqWPkXKt4fxKgpOYGg3MQdHFvYP9TTqTIMR8pGIqJjw2atZ+NMTgdUgfluSAae9EqJsCoiAp/Fq8T42+YINk5G3dgxE2QSDYopYrYlzeSLFVENjUMwRq837Vcg71aoKNXSFH1HHMZNPOWP/0MjO9Nmr40DbX0GOfRUdHQTgqwtkm5bN0qUChQ73364zV0WzKgYVzRQXdhRYiP1cpawjyEA5DONO7mH6lKbfSO5DZ80D0OjgP5m2yg7Xej9fOWUzzix7EH9qTjoMl+aSX5KOZtapW+p068m+jtRcKqVkBxPwzaJMGAXgpmd2uo8ZT0b4Hq1gx07ScQa71FhiO8/KdGHyiwimKqe29vouiBKOrxqJI0sz0Hac28554CzpsD2Y0IwZ+uok0kGeZmads+eooLGuCezzdkFngYDvVYuE4Jf6UmI3EM7WX3Wqg90QRz4D/zl8jOmjlJ8ntlVBAsovID1jPnAuFwDgNJLPja3ttaDppJP19FhyV2LbcOgrpo/DGE9sN+p2O9On8vwZpu3MGSq4UTai9bBFyFs9CpUlbnnwHcjKb53i3N+T/FIJ3W/uDQDoFiaOe14ZyoNsNHszToYTitGMFc+NDMjY3yxy52q56fFN1fQMLppwP74qMOddHybMWo/H52+FxWKpvjOHwSAZkbvtuVBPo04IsgkFb4y/bJ9hz2Vj9OxtGD17W9g8I1zIexgwfSPs1vC4Kb5MmLXemyrC3zhtlrAT8BrhLOiBKo1+4MCBoZ6KX7jxzr647tZe6HRjb0gBXICQNmgWVIfea174kzx6pXfVWSTBbfINlKPLsxAfRquJ9Gg7bj2OrxqJ/JypSAmzoJRICGevDTarBY/P34r9fkpXwAkfuCbvg2w0e5f5hRO1Ndm8P6YTPhydBkG6dAi6GsZavC+aRp+fMzXEM9FH0+j79OkTNVo9xz9oieVC/Vz49WdbMABGTwg0XbYuvgah0e+fZxdll5RcZNraN04itn8tZ9MBu5yk483lcZY6VBVHSt2ZJTvHGIk+90zLweoZ/SD6CEc1ljyWe1LniM3KpLZMFzGGDNd2VZYyfdrd/wTTttdCOrRyyyTcOy0Hm2cOQK7HAdaSukw3JZEOxI9dNnRfcxwAcMrn0nTw+Gu/WZSJBLMZHWNY5+QvVNnA34vLmT6KkX0DsNvIfk4rm73TUEFG+IpNUpg+gsg6elMyX0V+zlTkb3wcKVkLoepkuIyhnq89OqXmulDn61TZ1QCVTrbtJHUqCT7lJ4c/785HbxJVvD0/crV6bdFEuYPV+05Y2e/X0fNFxLaY2JId005eOIPTPY4KQ1WUOHUvxVNsDMvvZc2Ztvi8H8j9rOz3yyWRz6kt779Mn0SJXelT1PVussHXRKM6AXslupjJ69TYyDrxH3p8DQBg85zQ+voanCYviAr2TbkC+6ZcgVXD2JBmg2JG7qoRIZhZ8AhnW/ylSMlaCNUe3rbc0+Xu2p/XRpBmf/2f++LqW3pB1vnhDhSCbMTxCHS+FmRPqdPyz0JPyoNQPQ8NzgB3xcJfvZ+PPN6F+XvauA3IXTUCuatGIG3cBubvnNBhkI1u+/wE/1br8hfjXqzKBjn81sSQpwWuCXarBeNf2RbUY7YdNAvHNj0V1GOGkilz3M9FqDT6BqfJ14S0cRug2sJvpU1DJxK0eU7NiERtPnn4Er66xpeWVIbJ9QWsrdNgIO2osshOR7WyNuETtkbEdguF3S9RIm27FTrZLA+qwAEq2KdPC/ec3kqIQcXqwTjjEJE8ejXRR6CqN4nHTzNjO5ykHVPRya73UzFrk24ZQ742F9vd83G4DN4smh2oQJ986hycKhCjE3x21JN1stxlwFGrAUesrP3bUkQGh5gTWzB97Md/YdpcTdPIBp0fyavT2hPbP59mA1EAnepFzVK9n8W4xihYnoHUIa8QfS4mdSO272pCBpABwAUqe2dqLGtrrtCxScdQwV96GRf1bPma481sNodFUIweggGQfU65ROc8rEXsfTJR3wHplw+YPmWtyepoTb6q+h5d1bkb9n/7MU6tfQSdez1atU9LMsgJAGLOsHZ6h4mUAS4d23p5myvJOZaeY/qoAis7DJVkNTTBR7AbnA6IlmL8dIp0jP1cyB5/+pXhsXot7M01BRsmM7+ecmwS2k0KbHjxQ8+4TQJLnx2MgjfGMoKeExrSJmTj2Kt9kbflGUbQhxuaYI8Es00o6HJjL+z98YtQT6PG5G2ZDkE2Vt8xzAhbIX94mbssGACkPkLWtDz15tM4vLA/BNkccGGfPHo18iLEEbt2RGe4HHYIUj1SR0YAqUNeQe7Gx0M9jRpD12gNV60+FAiijAMfryG0+XDFZbcibVjd4zXOVkghebMLOyGvCXdBMaHTE7tQVljA9NEE+9FlWTi8sD/yDAaIignXTAlMci1BMUWENu9y2PHopqMAgF9YKxcnRIRTjdZwo3OvR7H/g/BPO+0PJs1ajyE3Bd8hHzaO12MrhuHgq+7Uup2e2IUONciG2G5SDjpM3YkenhqRP87vh5896XJrgiAp+Hh0W/zj0Y6X7acJ94I3xtZ4bE5gEWQj8rY8E+ppRCwDBw5Enz59grp08lJo2jwnMPhVk3epgNXjuNlTQg7dU6eUY6c4t+MrZ9ZwtDUB4sQdAACHq8rRZTDHsztSnLE50GpcNgD3j8W3i4bir0+SPxJ6v2aPbHA7dF7PSkdbo/uY+8tJZ6Qc4z5++qTNyF05Aic2TEJK/5lEH3vadezglLPKHsMGVck6EakK5fdyeHzTqs/nFMrx+k2R2zzjVIE8TxbF8zY2OEP1XFfV5YTdboXTyfa5pQ0ZeHK0knXEnTay98ScSwanWBPY4Jg9xWRwjKhzb2WdVAvWcjKIqluHbujy/G58ObcfunRwO1zPOMh5bjjJOpUHtiAdqOd1HM96nLeSz3InnWyp5yrJsXZ9xwbx9eupE1gXIg6dKMHU+VtRYjeg0udxSjaxAXJIbs00/fdsEbHt6HoXux8VNFjW/X6mS1zuN+h66wPY//k2HHx/CVqOZZfHWtJuYNpUqnSmwaQjJ6haxC19MrxqnNvPlgSkHiW4kpLdH2ST97N4gbQwOBPZspV6ZROHsLMMOCHX5HNmDQcAZHkKNNSXdM8aai3Doj9JG8+XVoYTomIOyH3mBJ8udwyCy8mudgoX8teOgSEC8+ADYSDk7bZKvwl4jUAK+lDw4bwsiEpkPmCB5KbHN8HJf3SjBkGUkPfm06Gehi6qvRIp1AKQuqI54oMVFR1SIZ8zazjkAAkvLWw/GgS901aJe6b5bxVRQ0jdwIk8utwxCADCTtD7W4vfvn07du/ejd27dwcl57zfE5QpnqLHralgqHNUxZ1/zM+CYBDQ+6kc5HlMtS4Xaw80GNjfodsTyCCqT8+xgS+HoKDp2GwcWzEMnyzIwB1PvMn0sfnYu7XPhyvIV0bm+AYDkETaKNvEktVtACDPSjohDCVnmT56ibbaUEb5PeUiSpwG7PHxFTSmKuV8MKYTXA4bBEnxBn3ZLDoJ0ZIaAwBSntiC7+f1g6u8iOnzFVXBSr54gp13UhumTS4j7a8VyVcxfVBJLvm5K7kp0+WUjfUBnJdIW/bec1XHKrHasPdcIQSJXL/cNzmGGcdMJTEro42vAGIkNpFeokK2HS7RCdqjgrj0KkyFEx3bJGD73CycLpeIdAx5FtZPUawTIAUquM/QNJXpYj53lNi2tGLTiNDBSFc074yDb81FzPmqfbt1Yvf7Lp98vmOPfMNOkXoGS79m0zc4W1zBtLmUqu9zfs5UQHUhNWM+4PMdFm2kf0ktI6tgAcD7h9glbqffIa/TGU++I41OAag4FrIllE6bBfc+tzPgx0mfsBHHVgzD94sycMPjga9fGgpcDhv+8vrxWu0jKCYUbJgcdsWzOcFBEyS+AiZcECQFh99bhA73hz4WQrVXou3wJQEbf9xL64ntt+b5P5NpSNSNf8zPghjEghXpEzbCabt0zglBVJA9LB05I9mslKFmz5KMgBQ+7vHY5ojMw8HxL53aJODt+VlYNTN8KnBpwv3we4tCOo/8nKkR62z1JSRC3mmz4G9PBbfquaiY8P0i/TX0WesPYPjGY3A5WbNPqHHZK3FloIK8ZLc2H6kUvDEOAndI1wvNPhxupS873P84XI7Qfh9Ve2XYVSSrC+FtOPQjmqnmUoK+IaKZaiJR0Be8MQ4AkDx6VYhnEh1oGv2FDQPxxavhsVhBM9uEglBp8WfKJb+vvPGrTd7qNOC0x3GTbyF/P2SP7+bTBVkQFDOcKpBKVepxnGG1CWNMHNOWTmUPdJ1if/FVKn9LsRPoNHkzfluSga8XZqDblM3oSQUViQagQwx5SbrGkn12xZtR8PpYtJtY9SaSd+4Uc3xTIhlUVCmwv6fJJjZYorFcdbx352bBIZlw0UE6aK2Uv9apqsgvIx1BcfGNmbFPU8uQxbjGaDtxE3KXDYUY5+7vtJAZ+FytWaeXQU/DopzI3Zs3Y7rsPUEGkPx73z6mz8BrWZPZp1RQiSAZoTpsaDuhqvBJ98ZkMMwRtjAV43gttbP3pLmJXat9pJR8JgQD65yNp5zhxhpUQgsnfJ19XW/qja7xVdfheAXrjD3aOLnaMS1NyIppptO/M31cIhkQKPpkgOz8t9E4+PEavDWrP5JHkqkP5CLyO+fQCYaSE8hnsLj9rUyfGJ05Hdz5EmAwIHn4UqgAVJ3suDaFdOwLsYlMH5OJdf5bqcfiQDH5bN85dRNe7u12/Por/UHQNXmnzYK7ngyuqcaXblM2w1kPW3S/ZzYGLSDKbq0kfkwChSCbkLd6VMCP4y/yXns4KmylnOrp5ElcVrB+YlCOd+SdeQCA5OHRsyDBL0L+qjseQtebekMKgzwYNUGUTfitFjluwpFlWVdgyZD2WDKkPQTx0gW7a0Lq2HUAEDGCXrVXInXM66GeRtRyZWo8vlw2FG/OHh7qqQAAkkcu92akDSThJuD9VQjcL0LeYbUg66XtGDIj2x/DBZz6avPB4N25WZCNl9ZWXQ47pmw5gilbjhAlDeuKJugL1k2o91iBZN+SDK7FB5hwdMYKiimg2rwm4Ns/OC1gx6gt2n2ob8CUX2zyLhWwU5WXnCq5ne6xv5tEFclmt/22gAq80POmWyvKmLY38snAl/ZJiUyfw2epajZNyApHomzCipkj0NOnoLVTUPDR6DQIkowx2e7kZWf0glokBUeWDkXbce41rh1asMmJjleQ56LoJOM6ZWeDoY4eP4+CN8YDAJJHr8RdSaxtt7XZBcHg/h8AeiaxQu/HMta2TH9pZSNpM2w3aTOOzr8f+cszIchGtB08ByIV0AIADhObba64C5mgKl0nfkZKIIOfklqwlbF+KGGaUGJ3PzvHVrjXEN/wBBss8utpsjpXz9ZsRavtVAGvQa3Y63+olP1KOKlbQAejAUBjhRxL5/QjDk2j18t/vukr8vleeFhnAJG0N9sS2HuitCIzwN6c+Aemz+fFBnScugNHl2XhxHq3EuJyOiEoJqQ+6lZOHEVsdbaejcjjHzeRfoQ9SzJQUeoOYhKMcUjOWogKsM+py8EmpIuPI78DE9uySuPgm9ggSTpx3eWS1g0cOBAWiwVmc/0sJGGXTz5YdJuyGfsXPES09VpzEOlmF1ZntLvsvm3HrcfxVSNxfNVIr6D3Jy57pVezDjZtB88BABzfOgPHcp6AKEpI7x/6WpyagE+fEDp/TkMj3Cpb+RYIslVakLdmFPLWjPIK+pqwZ0mGNz5EkE1IHbXS7/P0FxaLBbt37673OA1WyNcXX0Gf9tRWv41b8Mb4gAQ/1RZN2Oe9+TSObHnW2y7IRqRkLgjqXLiADy2+la00zpRLmPCS/xWc2pD66DrkrRmF3GVDAZ0C7yWx5JuqxWWAIJtw9ZO7vG2nTrJvqv5C08Qvx+We6Ppq8BpcyNcDTdD/sCgD19czZcLRZVlw2S0ABCSPDh/tgtbij+2c5S29J8jGgNdZ1eIauIAPHXq5VK4Lk3QImhbv0jPXtEsnto8HOZ+QvzTx+tJggqH0EBUzvqtnlkrNXPPd3H74oQ6BVloJQwDoMHVnWAl4PdL7P4e0YYuQNswdpBLI6kxcwHM49ccvmrxNNeC8jfy9iKey+cVJbseUZKj6/FsZ6XgdlJ7IjP3OOdaFdX082dZc0QlgoaoulbI+NrSasBmHFvZDnk/mw0pVhEMF9nsCQE5Z2cyYIhVolTTSLZjzX3sEn82+HwbZhL8+TWa8c/g4or9flAGnrRLlDjsMsgmpYzcAcDuZ6SAi0cAe366S/yfoZE50udgTVotJZ7SpdQemT3EjsqKTQ6d6lFDpzgCYkjEfeZunIXfjVBgUE2HG2V/BBmM1o14/T5cUM33OVZaiYMNkuOyVEGQTkkcsxdhU8v4aRXZO++LJ69Y+jnXit48hn1GTTsBSksJeN6NA9mtu1nmYKIbclOj9rL2274L/XsFDTcc2Cdjpk0yrs45z9s2v6ayfbIDcmD+Szkk9E4dcIWHSLNI0JFHBhZUOncyoIvkMSDpBbLZUtuqV770DgE1fFTF9Mm8hTaoDBw5j5h0u97rBm2sE2YQjyzLQvgY1ZasjZcxaAG5h/9XcfsTfVB8hLyom3Pj0Lhwu0llKEmGkZriXnuW9+TTy1k8CABhkI9o/8VaNx8hf+whUzzpo1eVwO8T8VKAhHAiX13Z/Qgt0fzln9a5Vj9vCwzR0OcL5HgddyMtGEzbOGo5hfq4GVVfaT3Jr874IkoJ/PuwOyVZFGd2XHqjVmClj1qJLErnEyqFGw6K6S+OrxedvehJHFg1g+uRT2pfV7tbIDYoJqR6TjFrJ5sH3ZVr/bnDaWS2dvr6iQYUkK5i387eanYAfeG/JGK825/seFy4aXSDRc86eLZcwcZa+c/bfKx+BxWLBh6+y49B0aJ2Ara/4PwXvpWCzzrPQSdLD+R4HXcgPey4bbzw7KNiHrRV/Xn3I+/mT0W0v05OjR0rmAigt2GWojWXycdMz11SHw27DivcPMu37qBwg7eMcmPpAR6ZfIAlnbS7Q1NY5W5tr5e8iGg2NBm+u4YQfB5//I1QfX8BUqUpLl+Sap3CQZIUQ9HT1Jr13KxVun8szW/bjf6+PrlW0YThrc6EgubGM7XP1NXB+rYKHX4S8UVDRwkQ6COnMdUfKqw5lFWOwcuZIxmSzPY9NHSjKRqbt+xLytd92voDpY4glHX9XmlmnS/sYt0NvW5wRla8NxaAZ2Xj7HDm2YADaGMlzsVFDnXawgudQGWlSsFtY+7tsZiNHD1LlB1sb2QVQF6wCXGpViblEnQjM9jFshsvfqVJrNh3nrBxHRuA5dELbb0hhnVw/lZLztuqUFpSTyEjCvilsRGBBZQKOwonBOXnetmLKr/5rETtvGxVx/cFZI25bSYZhXhtPDtRIZsdJiXVidO/OaB/vwFcNWDP3B/zahQch0eTvfioHH8zuH4pD6zJoRjY2zwx81XQO8Pm4jt70Ff+no0o7gXonXKsvkqRgdO/OSIgNfVAah1NfuLmGE1RcDhv+vNZdj/aGBHbpa0Elm7s82KzZvQcAkDNnWIhnwuHUn5AFQ0mKGdv5l4jD4XACil80+atS4/HN8qE4WixjwPSNAIAmVFDJQcpGf82UTfj05X54t9Cn/eIJZmw2FAgwXcwntm0p17CdqEpF3529yHRJaJXo/Wx1GXDOKqKdibQh/KoCJ6ykxplIrRJxlLFjg0plLDdh7diqjk28SyxpqrC6SHt7zsjOEFw2yLLsDdw5Ws7ext/pLJwAEEP6AO5oxNryyxzkWDc3ZX0i5VS20OkDusFuJwOUVJ3CSHkGwKTIuDXR3XdfGTvv/RXsHRcE8tlJMbJ2nl8rSH2lm07A0gmqWlm5gx2nsbFqvzPlEq69tRc6tUngKzw4EYtfhLz2Bbjixt7+GI5zGVxOG2a/daj6jkHEabfh6W1koqcyHQEaL1UfKRpOjPMk4HprXvDWaHM4/obb5Dm14rG+3WGngpHEWixr5HA4wSWkQl6QzTi6LBPtJm2qvjMnLHDYbZj3DvsmcZ7N9MrhcMKAkAr5dpM24TCVUoATejaP6gyX062tb6WSOtUmGCla8A3Z16uSxOGEM34V8jGSivaegJOvCklh0EphPXEHSirhcrlg8wTcNEntwvQ5d+4k01ZBZRwUys4zfUytO5P7FOYxffZ6MiXuWZIBCGbsrRBwuqSI6UfHRiZR2QvP2tggLtVIBvo4z+YyfVxxbKbG9ObkdWtqJB2RooEN/LlgZ+3feuXvrogjHcjt4tkcMBaHAVtdVqz+wJ06QC/nzrnK6hdl/VDKLoWUDWTbWTvrZO0aw+4XR13vb8rY418fS9r7c3VyhxeUk4Fdg9qwj/+eIjaIzFeoh0uVJA6npnCbPNzl9nyrxXA4HE60wIU8B4/2uRIOz7JIVY0+k8xPi935+62CXO+avJrphpttOJFCyIW8IJuQt3pUyApXcwCHw4Y3PnKnU7boLH2MNP4xPwullVVxCqJiwvXTduGrBYNxbOkQb/vWRjEYPCO7VmOHW3FrDqc6/C7kNetpSyNpI3XqBMfc2sQEPPsmPprdH7c2MeE7nfJNYmwjps3lJG3LhibJTB/LaTI5VWoyWwUpwWPrVQwqmniqK52ykvZ1k6Lg94ntIEoKhq93C8ICKykIpSYp7Lyp6lFWhc26JxtjmDbavt6C2k2SZMwe0AGiJGPmtn0AgMY6CcrKnKywbhNTZQOf9GB3OD3auyQp3vtWaidt2aU6Qv+cjr27NZWg7vZENmWBg5qm1cWOfVpnlc7vlA9Ab7X95wVnUbBugrei1PR5dHF1OxKf3kK0/HdxJl73pL0WFTN6PZWDH8rZc5v6QTmxfVMzGworRFx/Wy+0b80DpTjhTcg1+XBHE+zrstKr6RkcXti+D6oKPN+vfrnSHXYb3vi4dsVQwpUjyzJgLy9yV5R69I0a79frqarasR/Pz8LH87PQbHzNKoQ9Psdt9uH5bTjhTlgIeUkx45P5WWg0NvgFm79ZlAlRR8uOViY92B0Ouy1q7O5HlrmLfddGuOvR66kcfDw/C78v6AdBMaHT5JoJe02jb50kczs9JywJCyH/16dy8FGIUg87bRbc+nTDWVnjsNuw6gOtspKODS2C0AR8+0mbUXHxdL3H08w1vy+oeeyGptH365nE7fScsCQshDwn8Gwf3QlvuaxRp8H7owA7jaCYcHBpRo21eQ26zinX7DnhgF+FvMEASB6/Va6FDGpprug4VX38brLRjKLVWbjzSdJk82MZa0q5jioo9PXxfKZPXCvS0Xqygq1w9PXKEQBk7Csq87a1a9Ga6LPf44d1qsB+T6bDVCOpARfoVK+yUJkp/9yKdSBbdFJsnqMcr6fOs0L5z03cDlODp6toYDXyPzcnA53eclmx7H0twMnddqyYDfyhx2puYu9bgk5FpQIqy6hOQSsmE+lRK+t4ba7zRBbbyAyXla8PRwsZuP/pHGh5St8vIg/4n4vsucUI5Ln954Kd7WM0otPkzTi4NMMr6P9+kqxF61QTmf3y/lWCno+87t02Syo+XpjJngyHE2RClk+e5u6ncuCw1byepj9Q7ZVIffT16jtywobcFcMBaAI+cHSavBkuW2X1HTmcMCdshDzgdsD+a0Fw0roeXzUSBjm6y7tNfrA7xt/bCePv7RQVZppgCXgNzWxTV06USbjqll4YOJCXluSEjrAS8pqpJtCC/viqkQAQ9Vq8w27Dyg8OYuUHB7H0nb2hnk6dyV0xHEcXuwVl2oTsoB23vtr86JkbMPblbbBYgvuGyuH44lebfIfWCdjysltAHy+RMeTZbO/f/lfMHuoMFWhT5lSRNG4Tji7LxI6X+kOQzUjVCUP/uuAc2SCwSa0seXuIbVeTVABA/muPAABSxqxFj8ZxzH5NZNJQbvYETH1rAG701CStpIJ4/hDH2pb3i0nkfJysHfuQTlBRGyqw6Y6mbHSQLKgwQEUjj228SwK5z9P9u2GDwwZZVmD0Se51kTqeS2dxTWMqkdxHZ9g3gG5xrDOh1EGO/atOEjMt4Ezj2hj2mlyknolvFmWilRHo+8IOb9s7xwqZ/eSLBcR23+6sD2TRXtK2LlJJ5ADAqZL+FYNigm3TJGJN/Skbe79jRPIZjNep+sXhhAK/avLbt2/H7t27sXv3btitddde2k3ahA5T3csac1cO99PsSAEfzTjsNrz+0QGs3r2n+s5hzDeL3I7Lvs9sDNkcOnhW73w8n1eH4kQmYb2Est2kTTi8dCiOLR4Eg2JC2vjsOo2Tt2U6XAYBBtkUlQL+6f7d4PCp1hQN9ndNwN/0+CboV/oNHlqg1Aez+0NUzLhuSu2K3OSWyOhyU290bCbxZZWcoBPWQh6AV7DnrhzuFfZtMhdUu1/elulw2d2mDkE2InVC8KNpg4XDbsOr79LVmiLXXEAK+PBAM9d8UIegPS0J2jN3xfOAKU7QCXshr+Er7PM8ZhdBNiF55DIAQMGGyXDZfTIPCgLShi30bkeuyCP558pHYLFYYCkvxeQ+nQBEh+YOAJ8uyEKl1QJRMYeVgPdFVMz4ZlFm2M6Pw6EJmJCvdBlwyicg6pxeNsOLpAP1xpZNmD4/FJGv6m3HroPD6s4KmLdqBPJefxQGjykmbVxV5kHZRGZ4tJaw1aMsrgSmzUxVIermyaYoCar3s0gF1ZTbWddG3inSgVfoYPt0NbM/PZ2o6k1JVDZPi8WC3bt345pbemHi3G3M/holNvZ49B3wzUqpcZ5yzt7RhA0Y+r2UfWxoH+7R86xztBl1f7/d+xOxXXj+NFKmvgUA+O1iic/xqB8xFztvY7sexPYaNj4OnZo1J7bzbez111MGvvApYBsz6nUUrhmNTxZkoN3EqrfDfUVk9tLk+HhmnA7fXWTaOJxAEzGavB6p4zYAAAQxOjTZhkzutudhkNjI4XCk3cQcHF2ehaPLswhBz+GEIxEt5IPBu0vGwGKxICHWhK2vVK2wKKwQMWVO/aoM1Yadix6FxWKB2Rx9GTNztz0PAEgb9BLYLPThSbuJOTiycECop8HhVAsX8tWgmUdorr+tV1jMIxpQHVakZ8wL9TQ4nKiEC/k60r51AjZTBSNOl0sY++KGoBy/c3IC3lvgXoVyqkzCo0E6rr+JJDONP+AVpTjBJmBCXkX1q5tTGzcjtjvFsU6+EiebXybXWL3JwlWDiENZp5xpxwTSYPDrJfbV+4L26dMHI251R1oqXxcRf9Mrf1iu44weezsbqQkAtOXX9/hX3dILdup0TSJ7QLq0X5tY9g79+xzp30gzs32a6GQUtVDlBs0JjZk+ZsphbU9oASeA1Edeg3bnzTGsM7wt5XJp0bgl0+eMjcoMamev7Z1NyMycG0+zvpzbE3SuCZXR0uVyIXfFcBhkk/c5c1HJ9U7olBF0qiImzXb/GGuR4RxOoOGavA4fLRvjzTdSGxs4nU9cjzPlEsa/pG/L/3zVI/h4oX6k8OXm0SU5AR8tzMTJMgmjZ0aORl+wYTKECEwS93OW+4fompySanqyvLN4TNT6VjjhCRfyOtTV/l2T1+9rb720Lb++x73qluD6CeqLy16J1EdeC/U0as01OSXehGm1JZp9K5zwJKyyUHI4HA7HvwRMk0+UXeiRVGUDvWhnnWt7S0kb6Q/FrI00VudnqCmVdNKk0+d4JWk3Nic2Y/p0oGzS+9ePwlsBfpVOaSxj1zx9e2x9j6uZbQorREyYxZptaDv9OQubvbM9FSCVohMw9e0FtupSIpVh0mFn/Sv/OUfeb6gqE9jUXecSxFDz/iL3BNOnVYsUYttSWcH0WZtLjvNoOnssusIVALQ1kV+Tf88fBEgKHHafIKlGZKBVZxPrE5EMvAgJJ/hwc40PwXiVDuT4mtkm2Ms7GxqqrRJtA1BblsMJBNxcE4W0b52Aba9kYdlzI0M9FQ6HE2K4Jh+FaBp9D67R+53vF2XAoETeiiBOwyVgQr5TmwS8PT8Lp8sljHsxeOH/nCo6eDR6ADhbIWH4c5GzvDJccdoqkTouO9TT4HBqTMCEvKZN9unTB8NvTcRvH5YzffaWVT+OoBOw1JbKzPhVITu2y0GWzUtr3JTpEyOGthhFoPFd0tmnTx8YKZ/iyQr24tKOVpuL7dM1nr1u+ZTD0umwMX3U4rPEdrNYM+5qRzpMPz3BZq8EPZbAWhkv/vYF2ZB+PdPH5SCdwW+fYcv/xbN+V7QzVZ3vr6KKro3Y/VpRAWJdGrGOZw4nFATcXKMFCB0sknHfNJ6xL1SYzWa8Mz8zqKkXqkNSzPhofhZ6PxUZz8UH87Ig1cFU829PDQCg/iuoOJzaEnAhr2mTHXreE+hDcS6Ddh8uF4wVbHo/lYOP5mdFhKD/wLPs9d5pOShga6tfFh4AxQklfHUNJ6T0fioHDlvdi74HC4etEvfyN1FOBBK01TWJigs3NCVtq3mV5KtvqolNfPX3U6y9XTaRNlGjmbWROqnEZiYDG5zS2mN/fn9pw8kn0qlNAt6Zn0m0+ebGp6tcVei4LU5aWN3gqzKyrUUcWxnplJ1UgT89eQEAcN4pYMOLA5H88GoYdArAdG5K+lMOFpUyfRxmMrFbl4QYps8hC/l8nbOwPy6xcewzsH52FmAw4bMi9zPUhR0atzYnz82h6jiTOJwQwJdQomG9Tuvl1wl18FTyw6tR8PpYFLw+Filj3gjpXGh+WJQBAEifsDHEM+Fw6kbQhLyWfz3YFZU41eN7bx5+ITskc9AEfd6KLBgUE1IeWRuSefhSVwGvVfHSaAhviJzwJWhCnofchy/hcm+SH14NgyAjf+0jyF/7SEgFvSbgr398M/Ira1eUsCG9GXLCn6Cba3wrKv18XsFNj28K9hQ4l6B964SwWGaZ8sjakAp6XwFfG6K5Di8ncgm6kPe1CXfoeQ/hbD2skxXxpmZxTNsPpaQDzeFgvYNOG5nx765UNgtmxs2JAIAdl59yg0G7N9fd2guKp4rT/hI246ReZahbqQCpgzr30lB+kdiWm6cxfWwXTwMAkjNfRUH2ZOSvHgHDeNJc0imRdep2T+5ObP9Qyjo+rRdOEtsdWpOBWD8sykC504J4o8kT0+E+p6YS6VT+c3N2DWW/nknI4Ro8JwzhjldO2JI8fCkKsifj+PJMGGQTUh99PWDH0rT3B5/nP/mc6CKkQr5HWhwOvDY4ZNGwAwcO5K/XOnRsk4Dtc7NwtlzCNSFOqZs8fCmE2ETkrXnYK+w7Tdvql7F/WJThfeMTFZPHPFOzVBe7l44hnKvbwR2snPAkpEI+1NGw3EGmj6/ZJlzQtPi8NQ/j67n9vO2iYkbPS/h1flqcQZjtKqzkuviE+CT0fHpXnebDnx1OpBAW5hpNoz9eImPos9nE3z45z9qE2xhJG6mDjXNC9yakTbiRwhNG1ZaObRJwct0gAMC5CgmTZrmXvubks/lb6KRxLWXWbl+e3JHYLnWwfegKTwBw6lyVLT152CLICVXBUccWD8I/5zyEf4J8COIlAbJixp+m7/S23d+G9NO4rfak4O/fM8n7WXvTo+FaOyeSCAshr2mOXW/qHeKZcHzxdZKHa2769Me2eT6RQr5bHBs5W1u4ts6JBsJCyGtcmRqPL5cNBQBdrZ4TOjq0TsDWV7JwrkJC4iNbQj0dv7GLClzyNfxwbZ0TDYSVkPfVHLlWH15Ea7Uprq03XF555RW8/fbb+P3332E2m3HzzTdj3rx56Ny5MwDghRdewIsvvkjs07lzZ/z++++hmG6dCSsh74um1e85p+DKKbxoMqfuOLYPh8Vigd5TxLX1hssXX3yB8ePH44YbboDD4cD06dPx17/+Ffv27UNsrDvpYbdu3fDPf/7Tu48kha3IvCRhO2NfzXFkKukwW59HOv66xLAOvGaUI3DwTYlMH/8sxGtYqCrQRGI93f9XcIbY7tSiFdPHSMUnFTlZZ3ihTgaBuCatiW068AoArmtMjjX05irh3Seba+sclr///e/EdnZ2Npo3b44ff/wRf/zjHwG4hXrLli1rNW5aWhqmTJmCKVOmeNuuueYaPPDAA3jhhRdwxx134Morr4Qoiti4cSMURcHs2bMxZMgQTJgwAbt27UKLFi2wfPly9OpV/zdnnk+ew+FwABQXFwMAGjdu7G07dOgQWrdujXbt2mHo0KHIy8vzy7E2btyIpk2b4r///S8mTpyIsWPHon///rj55pvxv//9D3/961+RmZmJioqKeh8rbDV5Da0Y9VmfJXyc0NGxTQJKsgfil/MKbpsaXnmHfAOUfBMqc5MMpzpcLhemTJmCW265Bd27u1Nk9OzZE9nZ2ejcuTNOnTqFF198Ebfddhv27t2L+Hg2tUZtuPrqq/Hss88CAJ555hnMnTsXTZs2xcMPPwwAeP7557F69Wr8+uuvuPHGG+t1rLAX8tHq8ItUtPuRfEP4lXPkTlROXRk/fjz27t2LL7/80tvmayq56qqr0LNnT7Rt2xY7duzAqFGj6nW8q666yvtZFEU0adIEV155pbetRYsWAICzZ8/W6zhABAh5DV+NPu7hui/h8w1w4Rpe3bmlXRxKsgcCAH45ryBuyIKgHr9g00hi6eMh8PvJqRsTJkzABx98gP/85z9ITk6+ZL/ExER06tQJhw8frvUxnE7SjyTLZJCnwWAg2gwGtwPL5WL9jbUlYoS8pkH26dMHBirBYRsT64g7a9V3N3Btzz/4Lnft06cPendvTPz9s0LWOVtMlcRz2m1Mn6uT2KyjNyaR/RqbXDjE7yOnnqiqiokTJ+Kdd97B559/jvT09Mv2Lysrw5EjR5CZmXnZfgBw5kzVQgS73Y78/Px6z7euRIyQ54QvZrMZHy2sevBPlkloP/7Neo9r9yx9/OQSx+Rw6sP48eOxZcsWvPfee4iPj8fp0+40140aNYLZbMYTTzyB++67D23btsXJkycxc+ZMiKKIwYMHVzv2+vXrceedd6Jt27ZYunQpiouLceTIEUL4Bwsu5Dn1hq4be9Ut/vGf8LcuTiBZvXo1AOCOO+4g2jds2IDhw4ejoKAAgwcPxvnz59GsWTPceuut+Pbbb9GsWbNqx77vvvswadIkHD16FH379sXs2bPx8ssv4+677w7EqVyWiBPyZrMZlpwBAIAfC5VaV+/hBJ4uyQmwbBxItP18XkGHGqYt1jR4rq1zAomq6mQ29GHbtm2X/fvl6N69O954gyxKP2PGDADA0KFDmf65ubm1nl9NiTgh76s1Xn1LL/RubsVZnSpEetWLOMGB1uwB9+qoh6mgtlI7m0QsVrJiO9fgORy/wYOhOBwOJ4qJOE3elyuSE/Dhq5k4VixjwPSN1e/ACRlaFkuNcxUSRjzvLhb+r5WPEMshuZmGE8nomV5CSUQLec0scMWNPGNluEObcHyD27iDlcMJHBEt5DWubhuP71cO4Rp9BNEmScYHr7qXXXLNncMJHFEh5DUt8apbeqGZJzDK6iIDb7Z8UxTsaXEuA9fcOZzgEBVCXqNLcoI3KCe/VMLw57NDOyEOh8MJMVEl5H3tvt1v5nZ6DofDiSoh70u3lHj8a3GGd5unKuZwOA2RqBXy9GqOPn36YMhNiah7DBuHw+FEHlEr5DkcDscXLX1vJFOXVAcNKuK1T58+fLkeh8NpUDQYTZ4v2eNwOA2RBqXJczgcTkOjwWjyHA6nYeOv1L2RBtfkORwOJ4rhQp7D4XCimBqZa7TXnJKSkoBOhsPhcDg1Q5PH1ZmhaiTkS0tLAQApKSn1nBaHw+Fw/ElpaSkaNWp0yb8b1Bp4I1wuF06ePIn4+PioCCjgcDicSEdVVZSWlqJ169YQhEtb3msk5DkcDocTmXDHK4fD4UQxXMhzOBxOFMOFPIfD4UQxXMhzOBxOFMOFPIfD4UQxXMhzOBxOFMOFPIfD4UQx/w+ZBXnbTSI14gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.density(adata)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "ca760288-605f-4d3c-986e-6479da11a212", + "metadata": {}, + "source": [ + "## Shape Features\n", + "\n", + "In `bento` we refer to cell membrane and other subcellular boundaries, e.g. nuclear membrane, as shapes. We can easily inspect morphological properties of these shapes with a number of built-in shape features. Call `bt.tl.list_shape_features()` to list available features.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "194b9699-801c-4281-8669-3e8d2195aa7d", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-27T18:39:17.321698Z", + "iopub.status.busy": "2023-03-27T18:39:17.321535Z", + "iopub.status.idle": "2023-03-27T18:39:18.259639Z", + "shell.execute_reply": "2023-03-27T18:39:18.259041Z", + "shell.execute_reply.started": "2023-03-27T18:39:17.321683Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'area': 'Compute the area of each shape.',\n", + " 'aspect_ratio': 'Compute the aspect ratio of the minimum rotated rectangle that contains each shape.',\n", + " 'bounds': 'Compute the minimum and maximum coordinate values that bound each shape.',\n", + " 'density': 'Compute the RNA density of each shape.',\n", + " 'perimeter': 'Compute the perimeter of each shape.',\n", + " 'radius': 'Compute the radius of each cell.',\n", + " 'raster': 'Generate a grid of points contained within each shape. The points lie on\\n a 2D grid, with vertices spaced `step` distance apart.',\n", + " 'second_moment': 'Compute the second moment of each shape.',\n", + " 'span': 'Compute the length of the longest diagonal of each shape.'}" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bt.tl.list_shape_features()\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "7391c236-6ebc-41d2-8954-4550277eca7b", + "metadata": {}, + "source": [ + "For convenience, `bt.tl.obs_stats()` computes the area, aspect ratio, and density properties for the `cell` and `nucleus` shapes.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "a94b1b81-7a07-4422-97dd-c18e7027cad1", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-27T18:42:34.086116Z", + "iopub.status.busy": "2023-03-27T18:42:34.085743Z", + "iopub.status.idle": "2023-03-27T18:42:47.958159Z", + "shell.execute_reply": "2023-03-27T18:42:47.957580Z", + "shell.execute_reply.started": "2023-03-27T18:42:34.086089Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a9851b14a6134a92bf53d65219fbf563", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.obs_stats(adata)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "b8a46b17-f9b9-4196-b394-22f215b10a31", + "metadata": {}, + "source": [ + "You may be interested in additional features; the main function you will use is `bt.tl.analyze_shapes()`. Pass `cell_shape` and `area` to compute the area for every cell.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "53ed2450-d193-40c8-91ee-0e0525ba3765", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-27T18:43:52.989560Z", + "iopub.status.busy": "2023-03-27T18:43:52.989339Z", + "iopub.status.idle": "2023-03-27T18:44:00.592390Z", + "shell.execute_reply": "2023-03-27T18:44:00.591883Z", + "shell.execute_reply.started": "2023-03-27T18:43:52.989544Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "099f5e23e0114c6cbc93f6bfa4c90afa", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/1 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bt.pl.obs_stats(\n", + " adata,\n", + " obs_cols=[\n", + " \"cell_area\",\n", + " \"cell_aspect_ratio\",\n", + " \"cell_density\",\n", + " \"nucleus_area\",\n", + " \"nucleus_aspect_ratio\",\n", + " \"nucleus_density\",\n", + " \"nucleus_perimeter\",\n", + " \"cell_perimeter\",\n", + " ],\n", + ")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "59b2cd96-7e7f-4ab7-98fc-7ab106b730a4", + "metadata": {}, + "source": [ + "You can use standard python data manipulation/visualization tools to explore features i.e. `pandas` and `seaborn`.\n", + "\n", + "```{note}\n", + "Bento tries to simplify quantifying these spatial features, so it is conveninent for downstream exploratory tasks to utilize these feature sets e.g. for studying relationships between cell morphology and other phenotypes, building classifiers etc.\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "5a08ee1d-2b3c-4c8a-b0fb-9adb3fbf2b81", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-27T18:18:02.757824Z", + "iopub.status.busy": "2023-03-27T18:18:02.757621Z", + "iopub.status.idle": "2023-03-27T18:18:05.835472Z", + "shell.execute_reply": "2023-03-27T18:18:05.835065Z", + "shell.execute_reply.started": "2023-03-27T18:18:02.757808Z" + }, + "tags": [ + "nbsphinx-thumbnail" + ] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuUAAALlCAYAAABjOpj+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxU1fk/8M+9s2abrGSDBEKi7AKiQFBZKhKRLqi1VVxQXCoFK9C6QBHXiqVf12JB69oW6lZBf2KpkSWoRJBNVsGESMDshMxk9pl77++PkCGThWyzJp/3y7wk9565c2Yy984zZ57zHEFRFAVERERERBQ0YrA7QERERETU2zEoJyIiIiIKMgblRERERERBxqCciIiIiCjIGJQTEREREQUZg3IiIiIioiBjUE5EREREFGQMyomIiIiIgoxBeQApigKTyQSu10TkfzzfiAKD5xqRbzAoD6D6+nrExsaivr4+2F0h6vF4vhEFBs81It9gUE5EREREFGQMyomIiIiIgoxBORERERFRkDEoJyIiIiIKMgblRERERERBxqCciIiIiCjIGJQTEREREQUZg3IiIiIioiBjUE5ERNSDcGVNovDEoJyIiKiHsLsk1Fldwe4GEXUBg3IiIqIewOaUUGG0Q+ZIOVFYUge7A0RERNQ9NqeECpOdqStEYYxBORERURizOt2oNDkYkBOFOQblREREYcricKOqngE5UU/AoJyIiCgMmR1uVDMgJ+oxGJQTERGFmXq7C9X1jmB3g4h8iNVXiIiIwggDcqKeiSPlREREYcJkd6GGATlRj8SgnIiIKAwYbS6cNjMgJ+qpGJQTERGFOKPVhdMWBuREPRmDciIiohBWZ3Wi1uIMdjeIyM8YlBMREYWoMxYnzlgZkBP1BgzKiYiIQlCtxYk6BuREvQaDciIiohBz2uyA0eYKdjeIKICCWqd8+fLluPTSSxETE4Pk5GTMnDkTR48e9Wpjt9sxb948JCYmIjo6Gtdffz0qKyu92pSWlmLGjBmIjIxEcnIyHnjgAbjdbq82W7duxcUXXwydToecnBy89dZbLfrz8ssvY8CAAdDr9Rg3bhx27tzZ6b4QERF1Rw0DcqJeKahBeUFBAebNm4evv/4a+fn5cLlcmDZtGiwWi6fNwoUL8f/+3//D+++/j4KCApSVleG6667z7JckCTNmzIDT6cT27dvx9ttv46233sKyZcs8bUpKSjBjxgxMmTIF+/btw4IFC3DXXXfhf//7n6fNu+++i0WLFuHRRx/Fnj17MHLkSOTl5aGqqqrDfSEiIuqO6noHTAzIiXolQVEUJdidaFRdXY3k5GQUFBRg4sSJMBqN6NOnD9auXYtf/vKXAIDvvvsOQ4YMQWFhIcaPH4///ve/+OlPf4qysjKkpKQAAFavXo2HHnoI1dXV0Gq1eOihh7BhwwYcPHjQc1833ngj6urqsHHjRgDAuHHjcOmll2LlypUAAFmWkZGRgfvuuw8PP/xwh/rSHpPJhNjYWBiNRhgMBp8+d0TkjecbhZuqejvMdnf7DdsRG6FBYrTOBz3qGJ5rRL4R1JHy5oxGIwAgISEBALB79264XC5MnTrV02bw4MHIzMxEYWEhAKCwsBAjRozwBOQAkJeXB5PJhEOHDnnaND1GY5vGYzidTuzevdurjSiKmDp1qqdNR/rSnMPhgMlk8vohIv/g+UbhzFcBeSDwXCPyj5AJymVZxoIFC3DZZZdh+PDhAICKigpotVrExcV5tU1JSUFFRYWnTdOAvHF/477ztTGZTLDZbKipqYEkSa22aXqM9vrS3PLlyxEbG+v5ycjI6OCzQUSdxfONwpGiKKgyhU9ADvBcI/KXkAnK582bh4MHD+Kdd94Jdld8ZvHixTAajZ6fkydPBrtLRD0WzzcKN4qioKreAbMjfAJygOcakb+EREnE+fPn45NPPsG2bdvQr18/z/bU1FQ4nU7U1dV5jVBXVlYiNTXV06Z5lZTGiihN2zSvklJZWQmDwYCIiAioVCqoVKpW2zQ9Rnt9aU6n00GnC1xeH1FvxvONwomiKKg0OWB1hldADvBcI/KXoI6UK4qC+fPnY926ddi8eTOysrK89o8ZMwYajQabNm3ybDt69ChKS0uRm5sLAMjNzcWBAwe8qqTk5+fDYDBg6NChnjZNj9HYpvEYWq0WY8aM8WojyzI2bdrkadORvhAREbVHURRUmOxhGZATkf8EdaR83rx5WLt2LT766CPExMR4crNjY2MRERGB2NhY3HnnnVi0aBESEhJgMBhw3333ITc311PtZNq0aRg6dChuvfVWrFixAhUVFVi6dCnmzZvn+SR/7733YuXKlXjwwQcxZ84cbN68Ge+99x42bNjg6cuiRYswe/ZsXHLJJRg7dixeeOEFWCwW3HHHHZ4+tdcXIiKi82kMyG1OKdhdIaIQE9SgfNWqVQCAyZMne21/8803cfvttwMAnn/+eYiiiOuvvx4OhwN5eXn429/+5mmrUqnwySefYO7cucjNzUVUVBRmz56NJ554wtMmKysLGzZswMKFC/Hiiy+iX79+eO2115CXl+dp8+tf/xrV1dVYtmwZKioqMGrUKGzcuNFr8md7fSEiImqLLDcE5HYXA3Iiaimk6pT3dKzlShQ4PN8olAQyIGedcqLwFBITPYmIiHoqWVZQbrLDwRFyIjqPkCmJSERE1NMwICeijmJQTkRE5AcMyImoMxiUExER+ZiiKKisZ0BORB3HoJyIiMjHqusdLHtIRJ3CoJyIiMiHqusdMDu4MBARdQ6DciIiIh+ptThRb3cFuxtEFIYYlBMREflArcWJOqsz2N0gojDFOuVERETddNrsgNHGEXIi6jqOlBMREXUDA3Ii8gWOlBMREXVRjdkBEwNyIvIBjpQTERF1AQNyIvIljpQTERF1UnW9g1VWiMinGJQTERF1QlW9HWY765ATkW8xfYWIiKiDGJATkb9wpJyIiKgdiqJwpU4i8isG5UREROehKAqq6h2wMCAnIj9i+goREVEbGJATUaBwpJyIiKgViqKg0uSA1cmAnIj8jyPlREREzTAgJ6JA40g5ERFRE4qioMJkh80pBbsrRNSLMCgnIiI6S5YbAnK7iwE5EQUWg3IiIiI0BOTlJjscDMiJKAgYlBMRUa8nyQrKjTY43XKwu0JEvRSDciIi6tXckoxyox0uiQE5EQVPUKuvbNu2DT/72c+Qnp4OQRCwfv16r/2CILT685e//MXTZsCAAS32P/PMM17H2b9/P6644gro9XpkZGRgxYoVLfry/vvvY/DgwdDr9RgxYgQ+/fRTr/2KomDZsmVIS0tDREQEpk6diu+//953TwYREQWc0y2jrI4BOREFX1CDcovFgpEjR+Lll19udX95ebnXzxtvvAFBEHD99dd7tXviiSe82t13332efSaTCdOmTUP//v2xe/du/OUvf8Fjjz2GV1991dNm+/btuOmmm3DnnXdi7969mDlzJmbOnImDBw962qxYsQIvvfQSVq9ejR07diAqKgp5eXmw2+0+flaIiHoOWVZw4JQRBceqceCUEbKsBLtLHg63hHKjDW6ZAXlPE8qvO6K2CIqihMQrVRAErFu3DjNnzmyzzcyZM1FfX49NmzZ5tg0YMAALFizAggULWr3NqlWr8Mc//hEVFRXQarUAgIcffhjr16/Hd999BwD49a9/DYvFgk8++cRzu/Hjx2PUqFFYvXo1FEVBeno6fv/73+MPf/gDAMBoNCIlJQVvvfUWbrzxxg49RpPJhNjYWBiNRhgMhg7dhoi6hudb8G0vqsGqgmIUV5nhkhRoVAKyk6Mxd1I2JuQkBbVvdpeESpMdUg8M1mIjNEiM1gXs/kLtXAvl1x3R+YTN4kGVlZXYsGED7rzzzhb7nnnmGSQmJmL06NH4y1/+Arf73GIPhYWFmDhxoicgB4C8vDwcPXoUZ86c8bSZOnWq1zHz8vJQWFgIACgpKUFFRYVXm9jYWIwbN87TpjUOhwMmk8nrh4j8g+dbaNleVIMl6w7gSLkJUTo1kmN0iNKpcaS8HkvWHcD2opqg9c3mlFBh7JkBeSCE8rkWyq87ovaETVD+9ttvIyYmBtddd53X9t/97nd45513sGXLFvzmN7/B008/jQcffNCzv6KiAikpKV63afy9oqLivG2a7m96u9batGb58uWIjY31/GRkZHTmIRNRJ/B8Cx2yrGBVQTHMDjdSDXroNSqIogC9RoVUgw5mh4RVBcVBSSmwOt2oMNkhh8aXxD6nKAo+O1SBvaVn/HYfoXquhfLrjqgjwiYof+ONN3DzzTdDr9d7bV+0aBEmT56Miy66CPfeey+effZZ/PWvf4XD4QhST89ZvHgxjEaj5+fkyZPB7hJRj8XzLXQcKjOhuMqM+EgtBEHw2icIAuIiNSiuMuNQWWBHWM0ONypNDoRI1qbPHausx4J392HxuoNY9tEhvwWfoXquherrjqijwqIk4hdffIGjR4/i3XffbbftuHHj4Ha78cMPP2DQoEFITU1FZWWlV5vG31NTUz3/b61N0/2N29LS0rzajBo1qs2+6HQ66HSBy+sj6s14voWOWqsTLkmBVtX6uI9WJeC0S0LBsSoAwLB0A0RRaLWtr5gdblSZeubE/DNWJ17/sgT/PVCBxjD8wI9GvLjpe9x/5QU+f25D9Vxr73WnU4kwygpqrc4A98z3ZFnBoTITaq1OJERqA3IOkTd//A3CIih//fXXMWbMGIwcObLdtvv27YMoikhOTgYA5Obm4o9//CNcLhc0Gg0AID8/H4MGDUJ8fLynzaZNm7wmi+bn5yM3NxcAkJWVhdTUVGzatMkThJtMJuzYsQNz58714SMlIgp/CZFaaFQCnJIMvajy2md2uFFhtMPplvDaFyVYu6PU75PwLA43quuD/+2pr7kkGev2/oh/Fp6Axem9CqlWJeLfO05gT+mZXjPB8XyvOwBwSDI0ooCESG0rtw4fnMgafP76GwQ1fcVsNmPfvn3Yt28fgIYJlfv27UNpaamnjclkwvvvv4+77rqrxe0LCwvxwgsv4Ntvv8Xx48exZs0aLFy4ELfccosn4J41axa0Wi3uvPNOHDp0CO+++y5efPFFLFq0yHOc+++/Hxs3bsSzzz6L7777Do899hh27dqF+fPnA2j42mvBggV46qmn8PHHH+PAgQO47bbbkJ6eft5qMUREvdGwdAOyk6NxxuryShUxO9w4VWuF3SVBp1YhPVbv90l4FocbVfU9K2VFURQUFp/GnW/vwuqC414BuSgAKQYdLkiORmyktldNcGzrdQc0PGd1Vheyk6MxLD34FWK6ihNZg8+ff4OgBuW7du3C6NGjMXr0aAAN+eGjR4/GsmXLPG3eeecdKIqCm266qcXtdTod3nnnHUyaNAnDhg3Dn/70JyxcuNCrBnlsbCw+++wzlJSUYMyYMfj973+PZcuW4Z577vG0mTBhAtauXYtXX30VI0eOxAcffID169dj+PDhnjYPPvgg7rvvPtxzzz249NJLYTabsXHjxhY57kREvZ0oCpg7KRvROhUqTA7YXBIkWUaF0Q633DCqlBKrh0ol+nUSntHqQqXJ3qMC8hOnLXj4wwP44/qDOHXG5tmuEgVEaEQMTIpEQqS2V05wbO11J8sKbC4JFSYHonUqzJ2UHbZpHpzIGnz+/huETJ3y3iDUarkS9WQ834Kv6Ve8NpcEk80FnVqFlFg9onXe2ZM2lwSrw41Xbr0EI/rFdvu+T5sdMNpc3T5OqKi3u/B24Qms3/sjmr7fiwJwRU4fHCqrQ5ROA51ahEoUoG6SV+3r57a5UDvXvFILZAUasWekdxw4ZcRv/rkLUTo19JqW6Tn+/juT//8GYZFTTkRE4WdCThLGD0zEoTITCo5V4bUvSpB+doS8OV9NwlMUBdVmB8x2d/uNw4AkK9hwoBxvfFkCU7PHNDozDvMmZ+O0xYn9P9ZBo2p9BLgnTXDsiKavu540EbI3TWQNVf7+GzAoJyIivxFFwTNitHZHKVyyAlXLASafTMJTFAVV9Q5YHD0jIN9begYvby3G8WqL1/a0WD3unZSNy3MSIQgC3JIZGlGAS1KgU7cMPHvKBMfOaPq66yl6y0TWUObvvwGDciIi8rvGSXhHyuuRahC96kg3TsIbkhbT5Ul4iqKgwmSHrVkVknBUbrRhdcFxfPG994QxvUbELeP645dj+kGrPjdSl5MShYzEKByvNiMpWgvAt88thQZ/n0PUPn//DcJm8SAiIgpf/pyEJ8sKyo3hH5DbnBJe/7IEt7/5TYuAPG9YCv4xZyxmjcv0CsgBQBQEzBqbgUitCjVmJ+xuuUdNcKQGPX0iazjw99+AEz0DKNQmwxD1ZDzfQpOvJ+FJsoJyow1Ot+yH3gaGrCj4/EgV/r7tOE5bvHNRh6TFYP6UHAxJa/81vLf0DNbuPIlTtVbIQMAmOPJcC6yeOpE1nPjrb8CgPIB44SIKHJ5voctXK+G5JRnlRjtcUvgG5EfKTVi5pQhHyuu9tidGa3HPFQNx5ZBkiELHnxtZUVBhdEBSlIBNcOS5Fnhc0TP4eu2KnkTNlZaWoqYmdBZJSEpKQmZmZrC7QRQWfDEJzyU11D0P14C8xuzAa1+U4LPDlV7bNSoBv7okA7PGZiJC28qM2HaIgoAhaTFIjNb5qqsUgnriRNZw44+/AYNyCjulpaUYPHgIbDZrsLviERERie++O8LAnCgAXJKM8jo73HL4BeROt4wPdp/Cv3acgN3l3f+JFybh3onZSI3lonREvRGDcgo7NTU1sNmsGDfnURjSBgS7OzCV/4AdbzyOmpoaBuVEfuZ0N64MGl4BuaIo+KKoBqu3HkeFye61b2CfKMyfkoNRGXHB6RwRhYQuB+UffPAB3nvvPZSWlsLp9J6YsmfPnm53jKg9hrQBSMgcFOxuEFGAhGtAXlxtxstbirHvZJ3X9tgIDe64bABmjEiDivnARL1el0oivvTSS7jjjjuQkpKCvXv3YuzYsUhMTMTx48cxffp0X/eRiIh6OadbRrnRFlYBudHqwguff4/f/HO3V0CuEgVcf3Ff/HPOWPx8ZDoDciIC0MWR8r/97W949dVXcdNNN+Gtt97Cgw8+iIEDB2LZsmWora31dR+JiKgXawzIJTk8ioW5JRkff1uGt7afgLnZ6qJjB8Tjt5NzkJkYGaTeEVGo6lJQXlpaigkTJgAAIiIiUF/fUMrp1ltvxfjx47Fy5Urf9ZCIiHqtcAvIv/mhFn/bUowTtd4T0fvFR+C3k7MxfmBikHpGRKGuS0F5amoqamtr0b9/f2RmZuLrr7/GyJEjUVJSApY9JyIiXwingPxkrRWrCorx9XHvb4ujtCrcmtsf147uC42Ki2gTUdu6FJT/5Cc/wccff4zRo0fjjjvuwMKFC/HBBx9g165duO6663zdRyIi6mXCJSA3O9z419cn8OGeH+Fu0lcBwPQRqbjz8izER2qD10EiChtdCspfffVVyGcn28ybNw+JiYnYvn07fv7zn+M3v/mNTztIRES9SzgE5JKs4H+HKvD6lyU4Y3V57RvRNxbzp2TjgpSYIPWOiPzN7pJgsruQHOO7dQW6FJSLoghRPPc13I033ogbb7zRZ50iIqLeKRwC8v2n6vDylmJ8X2X22p4co8O9k7Ix6cIkCAIrqhD1JE63DJtLgsMlweaSPNeoPtGKz873Ltcp/+KLL/DKK6+guLgYH3zwAfr27Yt//vOfyMrKwuWXX+6TzhERUe8R6gF5pcmOV7cdx5aj1V7bdWoRs8Zm4leX9INOowpS74jIlxxuCVaHBKtLgtMtB2TOZJeC8v/85z+49dZbcfPNN2Pv3r1wOBwAAKPRiKeffhqffvqpTztJREQ9WygH5HaXhHe+OYl3vjkJp9u7TvqVg5Nx9xVZSDb47itsIgo8SVZgd0mwON2wO+WgrInQpaD8qaeewurVq3HbbbfhnXfe8Wy/7LLL8NRTT/msc0RE1PPZXRIqTfaQC8gVRcGWo9V4peA4qs0Or30XpkRj/pQcDO8bG6TeEVF3NAbhNpcE+9nR8GDrUlB+9OhRTJw4scX22NhY1NXVdbdPRETUS9icDQG5HGLldI9V1mPl5iIcLDN5bY+P1OCuKwYib1gKROaNE4UNlyTD7pJgdzX83yUFPwhvrst1youKijBgwACv7V9++SUGDhzoi34REVEPZ3a4UV3vgCTLKKq0wGh3IlavRU5KVNAC3lqLE298WYL/HqxA048JGpWA6y/uh5vHZSJK1+XpWOQDsqzgUJkJtVYnEiK1GJZugCjyAxJ5c7pl2N0S7M6GQDwY6Sid1aUry9133437778fb7zxBgRBQFlZGQoLC/GHP/wBjzzyiK/7SEREPYzJ7kJNvQN7S89g7c6TOHnaApesQCMKyEiMwqyxGRidGR+w/rgkGR/u+RH//PoErE7Ja99l2Ym4d1I2+sZHBKw/1LrtRTVYVVCM4iozXJICjUpAdnI05k7KxoScpGB3j4JEURQ43DIcrrOBeJPqKOGkS0H5ww8/DFmWceWVV8JqtWLixInQ6XT4wx/+gPvuu8/XfSQioh6kzupErcWJvaVn8Fz+MVidEgx6DQwqAS5JwfFqM57LP4ZFV13o98BcURQUHj+NVVuP48c6m9e+/omRmDc5G5cMSPBrH6hjthfVYMm6AzA73IiP1EKrEuGUZBwpr8eSdQfw9LUjGJj3Ao0BuEuS4XTLDcF4gKqj+Fung3JJkvDVV19h3rx5eOCBB1BUVASz2YyhQ4ciOjraH30kIqIeosbsgMnmgqwoWLvzJKxOCUnRWghoSD/QqQUkRWtRY3Zi7c6TGJkR57dUlh9OW/C3LcXYdeKM1/YYvRqzcwfgF6PSoWJahM8YbS5oVSK0arHTz6ssK1hVUAyzw41Ug95TF1ovqpBqEFFhcmBVQTHGD0xkKksPoigKXJICtyzD5VYayhQ6pZCbg+IrYvtNvKlUKkybNg1nzpyBVqvF0KFDMXbs2C4F5Nu2bcPPfvYzpKenQxAErF+/3mv/7bffDkEQvH6uvvpqrza1tbW4+eabYTAYEBcXhzvvvBNms/eCDvv378cVV1wBvV6PjIwMrFixokVf3n//fQwePBh6vR4jRoxoUdZRURQsW7YMaWlpiIiIwNSpU/H99993+jETEfVGiqKgwmiHydaw+mVRpQUnT1tg0Gs8AXkjAQJi9BqcPG1BUaXF530x2VxYubkId729yysgFwXgFyPT8Y85Y3HdxX0ZkPtYndWJcqMNJ05bcLLWikqTHXVWJ6xOd7upBofKTCiuMiM+UttioRZBEBAXqUFxlRmHmk3MpdAnn62CYna4UWd1oqrejrI6G0pPW1FSY8GpM1ZUGO04bXHA7HD32IAc6GL6yvDhw3H8+HFkZWV1684tFgtGjhyJOXPm4Lrrrmu1zdVXX40333zT87tOp/Paf/PNN6O8vBz5+flwuVy44447cM8992Dt2rUAAJPJhGnTpmHq1KlYvXo1Dhw4gDlz5iAuLg733HMPAGD79u246aabsHz5cvz0pz/F2rVrMXPmTOzZswfDhw8HAKxYsQIvvfQS3n77bWRlZeGRRx5BXl4eDh8+DL2e9WmJiNoiyQoqTHY4XOdytY12J1yyAoOq9cBXqxJQrygw2p0+7ccn+8vx5lclMNndXvsuzozDvCk5yEqK8tn9UdtcUkP6gaVJpUm1KEKvFRGj0yBC670IU63VCZekQKtqfSxRpxJhlBXUWn33eiHfcUsy3LJy9u+uwC3JcMkN/w/H3G9/6XKd8j/84Q948sknMWbMGERFeV/EDAZDh44zffp0TJ8+/bxtdDodUlNTW9135MgRbNy4Ed988w0uueQSAMBf//pXXHPNNfi///s/pKenY82aNXA6nXjjjTeg1WoxbNgw7Nu3D88995wnKH/xxRdx9dVX44EHHgAAPPnkk8jPz8fKlSuxevVqKIqCF154AUuXLsUvfvELAMA//vEPpKSkYP369bjxxhs79HiJiHobh1tClcnRovxYrF4LjdiQQ65TtwzMnZICjSAgVq/1ST/2lJ7B37YU43iN98h7Wqwecydl47KcRJ8tlU1d45ZlmO0yzHY3REGATiNCqxKh06gQrVVDLQJOSYZebLlqqkOSoREFJET65vVCXeOSzuZ4uyS4ZQVOd0Mw3hPyvQOhS0H5NddcAwD4+c9/7nURUxQFgiBAkqS2btppW7duRXJyMuLj4/GTn/wETz31FBITEwEAhYWFiIuL8wTkADB16lSIoogdO3bg2muvRWFhISZOnAit9tyJmpeXhz//+c84c+YM4uPjUVhYiEWLFnndb15eniedpqSkBBUVFZg6dapnf2xsLMaNG4fCwsI2g3KHw+FZ7RRoGLUnIv/g+RZ6zleDPCclChmJUThebfbKKQcABQrq7S4M7BONnJTujVyX1dmwuuA4viyq8doeoVHh5nGZ+OWYftCqO53J2asF4lyTFQU2pwQbJMDmQmykGunxkThebUFyjBbi2ZTWxgyjOqsLQ9JiMCy9Y4OC5BtWpxsud0POt9UZmrW/w0mXgvItW7b4uh+tuvrqq3HdddchKysLxcXFWLJkCaZPn47CwkKoVCpUVFQgOTnZ6zZqtRoJCQmoqKgAAFRUVLRIs0lJSfHsi4+PR0VFhWdb0zZNj9H0dq21ac3y5cvx+OOPd+GRE1Fn8XwLLTanhAqTvc0RMlEQMGtsBp7LP4YasxMxeg20KgFOqSEgj9SqMGtsRpcneVqdbqzdUYr3d5+CS/Luw9XDUnHn5QOQGK1r49Z0PsE415q+XqrqHc1eL25E6VS4dXx/2FwSVKIAlShA00aqC3WPJDeco/V2N4NwH+tSUD5p0iRf96NVTUegR4wYgYsuugjZ2dnYunUrrrzyyoD0oTsWL17sNQJvMpmQkZERxB4R9Vw830KHxeFGVb2j3a+sR2fGY9FVF3rqlNcrDSkrA/tEd7lOuawo+PxwJf7+RQlOW7zzi4emGTD/J9kYnMrR1O4I1rnW9uuloa59TnI0Kk12T3tBEKBTi4jUqhCpVfMbkW6QZQVWlwSLww2rU2I6ip90a1kyq9WK0tJSOJ3eF76LLrqoW51qy8CBA5GUlISioiJceeWVSE1NRVVVlVcbt9uN2tpaTx56amoqKisrvdo0/t5em6b7G7elpaV5tRk1alSb/dXpdC0mphKRf/B8Cw1Gqwunm87ea8fozHiMzIjzyYqeh8tMWLmlCN9V1HttT4rW4jcTB+Ing5OZN+4DwTzXOvN6URTl7LLqEmotTqhEAXqNClqVCL1GBb1G5OvhPCRZgcXphtUhweZiIB4IXQrKq6urcccdd+C///1vq/t9mVPe1KlTp3D69GlPYJybm4u6ujrs3r0bY8aMAQBs3rwZsixj3LhxnjZ//OMf4XK5oNFoAAD5+fkYNGgQ4uPjPW02bdqEBQsWeO4rPz8fubm5AICsrCykpqZi06ZNniDcZDJhx44dmDt3rl8eKxFROHG6ZZy2OGBzdv76LwoCLkzt+joX1fUOvPZlCfIPew+uaNUifn1JP9w4NhMRmpaTAyk8dfX1IskKLA43Gqf6ioLQMIquU0OvFqFmugscbgl2pwyry92lc5m6p0tB+YIFC1BXV4cdO3Zg8uTJWLduHSorK/HUU0/h2Wef7fBxzGYzioqKPL+XlJRg3759SEhIQEJCAh5//HFcf/31SE1NRXFxMR588EHk5OQgLy8PADBkyBBcffXVuPvuu7F69Wq4XC7Mnz8fN954I9LT0wEAs2bNwuOPP44777wTDz30EA4ePIgXX3wRzz//vOd+77//fkyaNAnPPvssZsyYgXfeeQe7du3Cq6++CqDhK7AFCxbgqaeewgUXXOApiZieno6ZM2d25SkkIuoRJFnBGasT9XZ3wEfSnG4Z7+8+iTU7SmF3eee2TrwwCfdOzEZqLEvWUutkRYHZ4YbZ0VAes3EkXa9WQaMWoFX1jkDd4ZZgcUgw291wy8wRD6YuBeWbN2/GRx99hEsuuQSiKKJ///646qqrYDAYsHz5csyYMaNDx9m1axemTJni+b0xR2327NlYtWoV9u/fj7fffht1dXVIT0/HtGnT8OSTT3p9bbZmzRrMnz8fV155JURRxPXXX4+XXnrJsz82NhafffYZ5s2bhzFjxiApKQnLli3zlEMEgAkTJmDt2rVYunQplixZggsuuADr16/31CgHgAcffBAWiwX33HMP6urqcPnll2Pjxo2sUU5EvZbF4UaN2RHwOsOKouCL72uwuuA4KprkEANAdp8ozJ+Sg5EZcQHtE4U/z0i641wNe51GhQiNClq1CPXZCaRqUQj7tBebU4LF2TAazsmaoaNLQbnFYvFUPYmPj0d1dTUuvPBCjBgxAnv27OnwcSZPnnzekZX//e9/7R4jISHBs1BQWy666CJ88cUX521zww034IYbbmhzvyAIeOKJJ/DEE0+02yciop5GlhUcKjOh1upEQqQWqQYd6h3u9m/oY8XVZry8pQj7Thq9tsdFaDDn8ixMH57aq1fiFAUBmhCb0Nj42jlSYYJBp+nynIFgcLgkr0WvgIZ4QN3kNSaeDdR1Z1NgVIIAWVHglpWzVWAEqISGgL5pMC/JCiRZgSjAMyIvywpkRYGsNOxXoECjElutJOOSZE+5UQECBKHh7y8AUNDwTUDjfciKArfUsHiPzSVxwZ4Q1aWgfNCgQTh69CgGDBiAkSNH4pVXXsGAAQOwevVqr4mQREQU/rYX1WBVQTGKq8xwSQ1BRL+EyC5XSOmKOqsTb27/ARv2l6NpPKESBVw3ui9uHd8f0fpu1S4IS4IgQK8RoVerEKFVQacOrcmLTV87dpcMtQhkJEYF9LXja4qieJfZlAAHgI7Mb9aoRIiiAJdb9qrf3/ghpa0l5FWiAJ1aBVEEoAAOt8wR7h6oS1ew+++/H+Xl5QCARx99FFdffTXWrFkDrVaLt956y5f9IyKiINpeVIMl6w7A7HAjLkIDURDgcMs4Xm3Gc/nHsOiqC/0aXLklGR99W4a3t5/w5P42GpeVgLmTs5GZEOm3+w81alGETiNCp26oIBJqQXhTTV878ZFaRGkbVuQM1GsnFLkkGWhl/mRbwXgjSVZgdQb+mykKrC4F5bfccovn32PGjMGJEyfw3XffITMzE0lJST7rHBERBY8sK1hVUIx6uwvJMXpIigIogE4tIilaixqzE2t3nsTIjDi/pCPsLKnF37YWo7TW6rU9Iz4Cv52SjXFZiT6/z1CjFsWGkXBtQ25zuCyI0/jaMTvcSDXoIQgCHG4JOiEwrx2icOST7/oiIyNx8cUXt9huMBiwb98+DBw40Bd3Q0RE3dQ8N3xYugFiGznYh8pMKKqsR4xe0yIHVYCAGL0GJ09bUFRp6VZJw+ZO1lqxqqAYXx+v9doepVPhttwBmDkqPWyC084QhIb8Y+3ZUXC9WhW2C94cKjOhuMqM+Ehti5F8f752OkpWFJ/UxifyJb8m4LHQPBFR6GieG65RCchOjsbcSdmYkNPyW84f62ywu2VE6Vp/q9CqBNQrCox2Z6v7O8vscOOfhSfw4d4fvT4ECAB+elEa7rhsAOIitT65r1AgCAIizlb3aExJCdVUlM6qtTrhkhRo2/jw5OvXTmfsLT3jWRXUJSvQiELY57lTz9D7ZsVQl5SWlqKmpibY3QAAHDlyJNhdaFWo9cvhcITUCpdJSUnIzMwMdjd6reb5vVqVCKck40h5PZasO4Cnrx3hCcxlWUGNxQEogEYU4JIU6NQtg0Wn1LDMeay+e4GyJCvYeLACr39Zgjqby2vfyH6xmDclBznJgR9N9bXGZd/1ZwPxnryiZEKkFhqVAKckQy+2XLjJV6+dztpbegbP5R+D1SnBoNfAoGp4fffmPHcKHQzKqV2lpaUYPHgIbDZr+40DyOUI/AhLa2zG0wAEr7kWIUEQgBD6tioiIhLffXeEgXkQtJbfCwB6UYVUg4gKkwOrCooxfmAibGeXJHdJMnJSopCRGIXj1WYkRWvRUGytgQIF9XYXBvaJRk5KVJf7tv9UHVZuKUZRldlre3KMDvdOysakC5PCOnBViyKidCpE6dQ9aiS8PcPSDchOjsaR8nqkGrwft69eO50lKwrW7jwJq1Pyej3r1ALz3CkkMCindtXU1MBms2LcnEdhSBsQ7O6g/EAhDn78Ktzu0JiJ7rLWA1AwatZD6JM1ONjdAXDuOQqVPpnKf8CONx5HTU0Ng/IgOG9+ryAgLlKDosp6bDtWjczEc5VMREHArLEZeC7/GGrMTsToNdCqBDilhqAqUqvCrLEZXQpgKkx2vFpwHFuPVXtt16tF3DQ2E7+6pB90mpYjrOFAqxYRqVUjUquCPkwfQ3eJooC5k7KxZN0BVJgciIvUQFAAhyR3+7XTVUWVFpw8bYFBr/H6gAmERp47kV+D8t4yItBbGNIGICFzULC7AVP5D8HuQquikzND4vkBzj1HodQnCp7z5fcqigKVANglGZX1dq+gHABGZ8Zj0VUXenJw65WGtIOBfaK7lINrc0l4d+dJvLPrJJxu7zrLVw5Oxj0TB6JPTOikXXWEKAiI0DbUCY/UqHrF0uwdMSEnCU9fO+JcnXK3DLWALr92ustod8IlKzCoWo9NgpnnTgRwoicRUY/XVn5v42p/Npd83vze0ZnxGJkR161qFYqiYPN3VXh1Wwmqzd6rrAxKicG8KdkY3je2aw8wCHSahgA8ohePhnfEhJwkjB+YGBIresbqtQGZI0HUVX4Nyv/73/+ib9++/rwLIiJqR/P8XgWAW1KgKEqH83tFQejyV/rHKuvx181FOFRm8tqeEKXFXZdnYdqwlJDP4VWJDaPhkVo1IjQqqNooI0ktiaKAEf1iYYhQB3V590DMkSDqjg4H5YsWLerwQZ977jkAwOWXX975HhERkU815vcu/nA/fqyzI0av9llu+PnUWpx4/csSbDxYgaahmEYl4PqL++GW8ZmI1Ibu1CZREBClUyNap0aElqPh4c6fcySIfKHDV8O9e/d2qB3zyImIQoskKxiUGoPfXXkh1u4s9Ulu+Pk43TI+3HMK/9pRCqvTe03xy7ITce/kbPSNi/DZ/fmaWhQRo1cjNkLT5sJKFJ58PUeCyJc6HJRv2bLFn/0gIiIfk2UFdTYXTDYXZEXB6Mw4jMyI9dtKhoqiYHvxaawuOI4f62xe+wYkRmLelByM6R96QY9eo/JUStGqRAbiPZwv5kgQ+UPofm9IREQdJssKDpWZUGt1wqBTIzMxEmaHu0UOb3dyw8/nh9MWvLylGLtPnPHabtCrcfuEAfjZyPSQycNWi+LZCZoiIlgtpVdqPA9kRUFRpQW7T5xhcE5B1+Gg/LrrruvwQT/88MMudYaIiDpve1ENVhUU4/vKejjdCtQiArZsuMnmwtuFJ/DRvh/RNP4XBeAXo/pidm5/GCI0fu1DR2hUIqJ0vbt2OHnbW3rGk8bikhVoRCFg5w1RazoclMfGhk+pKiKi3uKLY9VYsu4AzA43DHoNonWBWTZckhV8sr8Mb371A0x274W8xmTG4bdTcpCVFLwqFoIgQK8REalRI1Kngoaj4dTE3tIzeC7/GKxOCQa9BgZVYM4bovPpcFD+5ptv+rMfRETUQbKswOJ0w2Rz4YVN38PscAd02fA9J87g5a3FKKmxeG1Pj9Nj7qRsTMhODMqkf1EQENm4iI9W7ZUu0zS9JyFSi2HpBuaO91KyomDtzpOwOqWAnje9SWNaEHP2O6fLOeVutxtbt25FcXExZs2ahZiYGJSVlcFgMCA6msvTEhH5kqIoqHe4YXG4YXfJUBQFxyrMAV02/Mc6G1YXFOOrotNe2yM0Ktw6PhPXXdwPWnXgR6Q1KhGxkRrE6NStfhhoTO8prjLDJSnQqARkJ0c3fIDISQp4fym4iiotAT1vehumBXVdl4LyEydO4Oqrr0ZpaSkcDgeuuuoqxMTE4M9//jMcDgdWr17t634SEfU6sqzA4ZZhd0mot7vhlr2XpQ/UsuFWpxtrdpTig92n4JLOJY4LAK4enoo7L89CQlTgV0FUiQLiIrWIPU/O+vaiGk96T3ykFlqVCKck40h5PZasO4Cnrx3BwNzPqurtqDI5UGG0QUHD66bxw5MgnP0dDf8Qhdb/LTS5nec2TY4hNm0nnG3nOf65faIg4LTFDqckI0b0Xnm88Xi+Om96I6YFdU+XgvL7778fl1xyCb799lskJiZ6tl977bW4++67fdY5IqLexuGWYHFIsDrdcLrl87b197LhsqLgs0OVeO3LEtRavAOUYekGzJ+Sg0GpMV06dndoVCIMeg1i9OrzpqDIsoJVBcUwO9xINeg9QZdeVCHVIKLC5MCqgmKMH5jIVBY/en/XKfzlf0eD3Y0W6mzu8+5f/OEBiI0fAhqDfHh/MMDZoL/pB4XmHwzOfahoPFbr/wbOf4zzf/BoaCQ02y8KzbajYacoeP8bTfvX5HGJQpPH2Nr9Nvk3AOz64Qzq7S7oNSqcsTo9xwKAGrMTz2w8ignZiQ3Pa+PjavzghLP/bv6BrekHsWYfsLyeD6/+e/fR83ibPUeNv3uepzaeW6+/ebO/95FyE/onRmF43+7PvexSUP7FF19g+/bt0Gq9L/QDBgzAjz/+2O1OERH1Jk63DIvDDbPDDZd0/kC8KX8uG36ozIiVm4txtLLea3tStBa/mTgQPxmcHNC8cY2qoYxhtE7d4eoph8pMKK4yIz5S26KvgiAgLlKD4iozDpWZMKIfixn4S9PR6HAiKw0fTBuE52MIFqfU+gee6noHPtpXFuDe+N+t4/sHLyiXZRmSJLXYfurUKcTEBH7UhIgo3LgkGWZ75wPxpvyxbHh1vQN//+I4Pj9S5bVdqxbx60v64caxmYgIUElBlSjAoNcgSqfuUq56rdUJl6RA20blFZ1KhFFWUGtlmoI/6dQqGPRqSLICWWn4wHj2v4afs4Gv0iQIlhkDUxjx1fhEl4LyadOm4YUXXsCrr756tjMCzGYzHn30UVxzzTW+6RkRUQ8jyQrMZ0fEHa6WAxtd4atlwx0uCe/tPoV/7yiFvVnazOQL++CeSQORatD7pM/no1WL0KpF6FSqdtNT2pMQqYVGJcApydCLLT9IOCQZGlFAQmTg8+F7k7snDsTdEwfixGlLi8Ws2qMoytnA/dzvstJsX+O/zwb6OBvcN/5bwbljNL39gR/r8NG+cpSdscJ19rxJi4vAz0amYUiawXO81vrQfB/g/aGi+b8b+wDFu79ys9srUJrcj/eHFK8PM0rzfjV5jE37qHhvB5r2venz0aydorR6Pwq8n2fP70pDesrWo5VQq0Soz563Tf/ablmBW5IxITsJcZGaFn+rxuN7Pcazv3gef2uPsfm/W3meWrt9q4+xxXHPPWctnqezx9SqRKTHRbT28u20LgXlzz77LPLy8jB06FDY7XbMmjUL33//PRITE/Hvf//bJx0jIuoJGssXWhwSbC7JL1/ld2fZcEVRsO37GqwuKEalyeG1L6dPNOb9JBsj+8X5vM9NiYIAQ4QG0V0cEW/LsHQDspOjcaS8HqkG0SuFRVEU1FldGJIWg2HpBp/dJ/lW05zqs1t8duyfDE7B5EHJLN3nI7KioLLejuPVZiS2kk5XY3biwpRYLL5mcI96jrOSonyWytelq1+/fv3w7bff4o9//CMWLlyI0aNH45lnnsG+ffuQnJzc4eNs27YNP/vZz5Ceng5BELB+/XrPPpfLhYceeggjRoxAVFQU0tPTcdttt6GszDsXacCAAWcT8M/9PPPMM15t9u/fjyuuuAJ6vR4ZGRlYsWJFi768//77GDx4MPR6PUaMGIFPP/3Ua7+iKFi2bBnS0tIQERGBqVOn4vvvv+/wYyWi3kNRFFgcblSZ7DhRa0V1vQNWp9uvubWNy4ZfOiABF6ZGd+hNr6jKjIXvfYvH/99hr4A8LkKDRVddgFW3XOzXgFwtikiI0iIzIRIJUVqfl1MURQFzJ2UjWqdChckBm0uCLCuwuSRUmByI1qkwd1I2J3n2Yl05b6h1jel0kVoVasxO2N0yZEWB3S2jxuzsUjpdb9OlkfLly5cjJSUFc+bMwc033+zZ/sYbb6C6uhoPPfRQh45jsVgwcuRIzJkzB9ddd53XPqvVij179uCRRx7ByJEjcebMGdx///34+c9/jl27dnm1feKJJ7yqvjTNazeZTJg2bRqmTp2K1atX48CBA5gzZw7i4uJwzz33AAC2b9+Om266CcuXL8dPf/pTrF27FjNnzsSePXswfPhwAMCKFSvw0ksv4e2330ZWVhYeeeQR5OXl4fDhw9Dr/f+VLhGFvsbShVanu9Nf0wdSndWJN776ARv2l3t9vawWBVw7ui9uze2PaF2Xl7HokNgIDRKiWk7A9LUJOUl4+toRnjrlxrN1k4ekxbBOOZGP+Sqdrrfq0lX3lVdewdq1a1tsHzZsGG688cYOB+XTp0/H9OnTW90XGxuL/Px8r20rV67E2LFjUVpaiszMTM/2mJgYpKamtnqcNWvWwOl04o033oBWq8WwYcOwb98+PPfcc56g/MUXX8TVV1+NBx54AADw5JNPIj8/HytXrsTq1auhKApeeOEFLF26FL/4xS8AAP/4xz+QkpKC9evX48Ybb+zQ4yWinsfmbChfaHFILeqINxUKK9y5JBnr95XhH4U/wOLwzmkfl5WA307ORkZCpN/uXzi74mZshKbDFVR8YUJOEsYPTOSKnr1UKJx7vUl30ul6uy4F5RUVFUhLS2uxvU+fPigvL+92p9piNBobyljFxXltf+aZZ/Dkk08iMzMTs2bNwsKFC6FWNzy0wsJCTJw40at8Y15eHv785z/jzJkziI+PR2FhIRYtWuR1zLy8PE86TUlJCSoqKjB16lTP/tjYWIwbNw6FhYVtBuUOhwMOx7mvhE0mU3cePhGdR6DON1lWYHdLsDolWBwdGxEPhRXudpScxt+2FOPkGZvX9oz4CPx2SjbGZSW2ccvuEwQBMXo14iI0ULdRCcXfRFFg2UMfCaf3tlA493qjxrQg6pwuBeUZGRn46quvkJWV5bX9q6++Qnp6uk861pzdbsdDDz2Em266CQbDuUk5v/vd73DxxRcjISEB27dvx+LFi1FeXo7nnnsOQMMHiOb9TElJ8eyLj49HRUWFZ1vTNhUVFZ52TW/XWpvWLF++HI8//ngXHzERdYY/zzfp7GRNaxcmawZ7hbvS01b8raAYO0tqvbZH6VSYnTsAM0el+y1QDoVgnHwvXN7bgn3uEXVWl4Lyu+++GwsWLIDL5cJPfvITAMCmTZvw4IMP4ve//71POwg0TPr81a9+BUVRsGrVKq99TUe4L7roImi1WvzmN7/B8uXLodPpfN6Xzli8eLFX/0wmEzIyMoLYI6Key9fnm6IosDolmB1uWJ1dq5oiKwrW7jwJq1PyWtxHpxaQFK1FjdmJtTtPYmRGnM+/2jXb3fjH1z9g3d4yr9F8UQBmjEjDHZcNQJyfSgE21heP0asZjPdA4fDeFsxzj6iruhSUP/DAAzh9+jR++9vfwulsWHRBr9fjoYcewuLFi33awcaA/MSJE9i8ebPXKHlrxo0bB7fbjR9++AGDBg1CamoqKisrvdo0/t6Yh95Wm6b7G7c1TduprKzEqFGj2uyLTqcL+gcDot7CF+eb0y3D5pJgd0mwOaUmq/l1TVGlBSdPW2DQa7zKgwENCzrH6DU4edqCokqLz77qlWQF/z1Yjje+/AF1NpfXvlEZsZg3OQfZyf75WlkQBBj0asRHaoOary3LCvPH/Sgc3tuCce5R79F0noLZ7sbwvrE+ucZ0KSgXBAF//vOf8cgjj+DIkSOIiIjABRdc4POTtDEg//7777FlyxYkJraf87hv3z6IougpzZibm4s//vGPcLlc0Gg0AID8/HwMGjQI8fHxnjabNm3CggULPMfJz89Hbm4uACArKwupqanYtGmTJwg3mUzYsWMH5s6d68NHTESB5HTLDQv5uCU4XHK3g/DmjHYnXLICg6r1i7VWJaBeUWC0+2ZFyW9P1eHlzcUoqjZ7bU8x6DB3UjauuCDJb9VOdBoVkqK10KkDN4GzNduLajyVVlySAo1KQHZyNCut9DKBPveo92g+T0GvFpGT4ptqTt2qeRUdHY1LL720y7c3m80oKiry/F5SUoJ9+/YhISEBaWlp+OUvf4k9e/bgk08+gSRJnvzthIQEaLVaFBYWYseOHZgyZQpiYmJQWFiIhQsX4pZbbvEE3LNmzcLjjz+OO++8Ew899BAOHjyIF198Ec8//7znfu+//35MmjQJzz77LGbMmIF33nkHu3bt8lqxdMGCBXjqqadwwQUXeEoipqenY+bMmV1+/EQUXHa3hDo/LrEeq9dCIzbkserULYMDp9RQLixW3700kgqjHa9sO46CY9Ve2/VqEbPGZeKGMf2g81O1E1EQEB+lRWyExi/H74ztRTVYsu4AzA434iO10KpEOCUZR8rrsWTdATx97QgG5r1EoM496l1am6cAwGfXGP8Wom3Hrl27MGXKFM/vjTlqs2fPxmOPPYaPP/4YAFqkiGzZsgWTJ0+GTqfDO++8g8ceewwOhwNZWVlYuHChV65bbGwsPvvsM8ybNw9jxoxBUlISli1b5imHCAATJkzA2rVrsXTpUixZsgQXXHAB1q9f76lRDgAPPvggLBYL7rnnHtTV1eHyyy/Hxo0bWaOciNqUkxKFjMQoHK82e+W1Ag0r3NXbXRjYJxo5KVFdOr7NJeHfO0vx3q5TcLq9yzFeNTQFd12ehT4x/ksziNapkRitgyoEUkNkWcGqgmKYHW6kGvSebwT0ogqpBhEVJgdWFRRj/MBEprL0Av4+96j3aWueglYtIlWj8sk1JqhB+eTJk887eaq9iVUXX3wxvv7663bv56KLLsIXX3xx3jY33HADbrjhhjb3C4KAJ554Ak888US790dEBJxb4e65/GOoMTsRo9dAqxLglBqCgq6ucKcoCjZ/V4VXth1Hjdl7pH9QagzmT8nGsHT/lf9TiyKSYrSI1Ab1LcTLoTITiqvMiI9suSCRIAiIi9SguMqMQ2UmlkbsBfx17lHvdd55Cj66xoTOFZWIqAfy9Qp331WY8PKWYhwq864NnRilxV1XZOGqoSl+DTSi9WokRoXG6HhTtVYnXJICbRvVXnQqEUZZQa0f05UotHB1SfKl9uYp+OIaw6CciMjPfLHCXa3Fib9/cRz/O+RdKUqjEnDDmH6YNS7TryPXKlFAUrQOUbrQfNtIiNRCoxLglGToxZb58w5JhkYUkOCnMpAUmri6JPlKe/MUfHGNCc2rKxFRD9PVFe6cbhn/2XMK//q6FDaX5LXv8pwk3DtpINLjInzVzVbF6DVIiNKG3Oh4U8PSDchOjsaR8nqkGkSvFBZFUVBndWFIWgyGpZ+/rC71PFxdknzhvPMUfHSNYVBORBSCFEXBV0WnsaqgGOVGu9e+gUlR+O2UbFzsx6/fRUFAbET4LAAkigLmTsrGknUHUGFyIC5SA51KhEOSUWd1IVqnwtxJ2ZzkSURd0tY8BZtLgtHm9sk1hkF5CCotLUVNTU2wu+Fx5MiRYHeByOdkWcHhH004UWsJua+0S2oseHlLEfaU1nltN+jVuOOyAfjpRel+HbX29ch4oBbzmZCThKevHeGpU26UFWhEAUPSfFNDmPyn6WIsoXY+UvCE2uuitXkKepXos2sMg/IQU1paisGDh8Bmswa7Ky24HJwgRT1D4wIz31fWw+FuyAPMSIwK+uQvk82Ft7b/gI+/LYPcpPiUKAC/GNUXs3P7w+DHeuCRWjXiozQ+XQAo0Iv5TMhJwviBiVzRM4w0X4wlVM5HCq5QfV00n6cwJNUQ3BU9yX9qampgs1kxbs6jMKQNCHZ3AADlBwpx8ONX4Xa7g90Vom5rusCMQa9BtA5wSQqOV5vxXP4xLLrqwoBf8CVZwf/7tgxvbf8BJrv3eTamfzzmTcnGgET/1FOWFQWnam1wKwpSYvRI9mFd82At5iOKAssehonWFmMJ9vlI3eOL0e1Qf100naeQlRTls5WSGZSHKEPaACRkDgp2NwAApvIfgt0FIp9ovsCMrABuSYZOLSApWosasxNrd57EyIy4gH1FuvvEGby8pQg/nPb+dqxvXATmTh6I3IGJPrvgN3fglBHv7jqJH2osPh/F5mI+1J62FmMJ5vlI3eOL0e3e/LoI/dk7REQ+ct4FZiAgRq/BydMWFFVa/N6XH8/YsHT9QTzwwX6vgDxSq8I9Ewfi9dmXYEJ2kl8CckEQcKyyHs/lH8WxynpE6dRIjmkod9g4ir29qHvzWjqzmA/1TuddjCXA52OgCIIAjUqEVi1Cr1EhWqdGlE4NnUYV0tWNOqJxdPt4tRkRWjUSo7SI0Ko9o9t7S8906Di98XXRiCPlRNRrtLfAjFYloF5RYLT7b/6E1enGv74uxX/2nIJLOpc4LgC4engq7rw8CwlR/qulrdOokBCpwbKPSmFxSn4bxeZiPtSe9hZjCcT56EtqUYRKJUAjChBFASpBgFolQC2KEMWGlAdNO5WMZFmBpChQlIa1AQQAChpS3NyyDElWvOabNHJLMlySArtLgtzOauj+4MvR7Z72uugMBuVE1Gu0t8CMU2pY8S9W7/ugWFYU/O9QJV7/sgS1Fu83k+HpBsz/SQ4uTInx+f02EgQB8ZEaxEVqceCU0e9L0nMxH2pPe4ux+PN87CqNSkSEVoWIsyPbgnA2GPfRKLcoChDR8lgqUYC2A8kNiqLAeTZAl6SGAN8ty3BLChxuGYqfAvbOjG63VzM+HF8XvsKgnIh6jeYLzDSlQEG93YWBfaKRk+LbSZUHfzTi5S3FOFpZ77W9T7QOv5k0EFMG9fFb3jgAaNUi+sToPFVVAjGKzcV8qD3nXYzFj+cjcG5UWyUInlFsUWjogSgIEDzbzv4uABpRDPn5D4IgQKdWobWFdxVFgd0lwynJcEsyFDSMzDvcMtyy0q2A3Zej28F8XQQbg3Ii6jWaLzATo1dDJTSMvNTbXYjUqjBrbIbPJg9V1zvw6rbj2PRdldd2rVrEjZdm4MZLM6DX+K78YHMqUUBchBaGCLVXUByIUWwu5kPtaWsxlq6ej6IgQCU2/KjFc/9u/GkMvDUqwa8fgkOVIAgNo/xoec43HWF3uCQ43HKnRtZ9Obrt69dFOGFQTkS9StMFZr6vrG8IQAUBA/tE+6z+rcMl4b1dp/DvnaWwu2WvfVMG9cE9EwcixaDv9v20pa1gvFGgRrG5mA+1p7XFWDp6Pjamkug1KujVYlisPBuqmo6wR58dZlcUBS5JgUuSYXVKsDkluGW51dv7enS7O6+LcMagnIh6ncYFZnaW1Pp0RU9FUVBwrAarC4pRVe/w2peTHI35U7JxUb+4bt1HewwRGiREas87Ah3IUWwu5kPtab4YS1vnoyAI0GtEROnUiNSoGIT7mSAI0KoFaNUNzzkAON0ybE4JZqcbDpfkaeuP0e2Ovi56EgblRNQriaKAoX0NSDb4ZrGc7yvrsXJLMQ78aPTaHh+pwZ2XZyFvWKpfS56JgoCkGJ1nlKs9gRzF5mI+1J6mi7E0367XqBCpUyFKqw77soHhTqtuKOcYG6mBW5JhcUqQzuajj81K9Pnodluvi56KQTkRUTecsTrxxpc/4NMD5WiafakWBVx3cV/cMr5/hwPlrtJpVEiO0bVbbq05jmJTKGkYmRWhVYnQac7+Xy32yvzvcKBWiYiNOHfNSQSQGqvH1CEp+PaUEVX1DkRr1T1+dNuXGJQTEXWBS5Kxfu+P+EfhCVickte+8QMTMHdSNjISIv3ej7hILeIjNV0OXDiKTcEgnJ1wqVOroNOI0KtV0KqZjhLuNCoRsZFaTLywD4CG6i5OSUa93Q2zw+23kow9BYNyIqJO+vr4afxtazFOnbF5be+fEInfTsnGpQMS/N4HjaqhzKE/q7cQ+ZJaJSJad67ON0fAez5RFKAXGybjJkRpUW93wWRztzlhtLdjUE5E1EGltVb8bWsxdpbUem2P1qkxe0J//GJkekAmn3V3dJwoGPrGRQS7CxREKlFAXKQWsREamB1umOzek0WJQTkRUbvMdjfeLvwB6/eVQWqyxrUoADMuSsMdEwYgLgArU6pFEckGjo4TUfgShIYVPmP0GrgkGRaHGxanxAAdDMqJiNokyQo+PVCON776AUaby2vfqIw4zJuSjew+gakMEKlVo0+MjtUniKjH0KhExEVqEddk+o0sK3DLCuzuhtroVqfUa3LRGZQTEbVi38k6vLylCMXVFq/tqQY97p08EFfkJAUsfSQ+Uov4KP+PxBMRBZsoCtCKDZV4DHoNFEWBzSXB4jj/AkY9AYNyIqImyo02vFJwHNu+r/HarteImDU2E7+6JCNgVSJEQUCfGJ1n4Q4iot5GEAREatWI1DZcB21OCSa7CxaHO8g98z1e6YmI0HChX7uzFO/tOgmX5P1V6VVDU3D3FVlIivbNQkMdoVWLSI7Rs0wcEVETEVoVIrQqONwSjFYXzD0oOA/q1X7btm342c9+hvT0dAiCgPXr13vtVxQFy5YtQ1paGiIiIjB16lR8//33Xm1qa2tx8803w2AwIC4uDnfeeSfMZrNXm/379+OKK66AXq9HRkYGVqxY0aIv77//PgYPHgy9Xo8RI0bg008/7XRfiCj8yIqC/MOVuO3NnVizo9QrIB+cGoOXZ43G4umDAxqQR+vV6BsXwYCciKgNOrUKyQY9+sVHIjFaB0OEBpFaNTSq8F1wKqhXfIvFgpEjR+Lll19udf+KFSvw0ksvYfXq1dixYweioqKQl5cHu93uaXPzzTfj0KFDyM/PxyeffIJt27bhnnvu8ew3mUyYNm0a+vfvj927d+Mvf/kLHnvsMbz66queNtu3b8dNN92EO++8E3v37sXMmTMxc+ZMHDx4sFN9IaLwcuCUEb/7914s/+93OG12erYnRmnx8NWDsHLWaAxJMwSsP6IgIClGh+QYfdi+qRARBZJWLSI2QoOkaB1SY/XISIjEgMRIpMdFIDZC0+mVjoMpqOkr06dPx/Tp01vdpygKXnjhBSxduhS/+MUvAAD/+Mc/kJKSgvXr1+PGG2/EkSNHsHHjRnzzzTe45JJLAAB//etfcc011+D//u//kJ6ejjVr1sDpdOKNN96AVqvFsGHDsG/fPjz33HOe4P3FF1/E1VdfjQceeAAA8OSTTyI/Px8rV67E6tWrO9QXIgofVSY7/rzxKP6z55TXdo1KwA1j+uHmcf0RoQ1s2UGdRoU+0TqOjhMRdZMgCNBrGhYtSgRgd0mwONywOiW4pNCdKBqyV/+SkhJUVFRg6tSpnm2xsbEYN24cCgsLAQCFhYWIi4vzBOQAMHXqVIiiiB07dnjaTJw4EVrtucoFeXl5OHr0KM6cOeNp0/R+Gts03k9H+tIah8MBk8nk9UNE/tGZ8+3kGVuLgPyKC5Lw1h2X4q4rBgY8IDdEaJAey/xxCg98b6Nwo9eokBitQ0ZCwwh6jD40F18L2XeAiooKAEBKSorX9pSUFM++iooKJCcne+1Xq9VISEjwatPaMZreR1ttmu5vry+tWb58OWJjYz0/GRkZ7TxqIuqqzpxvY/rHY+aodADAwKQoPHvDRXj858OQFhvYFQdVooBkgx5J0bqQfIMgag3f2yic6TUq9InRITMhEnGR2pBKbwmdnvRAixcvhtFo9PycPHky2F0i6rE6e749NH0wls4YglduHYPRmfEB6uU5kdqGyZzRLHdIYYbvbdQTqEQBCVFaZCREom98w+i5GOTBkZB9N0hNTQUAVFZWIi0tzbO9srISo0aN8rSpqqryup3b7UZtba3n9qmpqaisrPRq0/h7e22a7m+vL63R6XTQ6QJXsYGoN+vs+ZYWG4FfXZqBmnqHH3vVkiA0vBHERmgCer9EvsL3NuppdGoV+sSokBSthd0lw+oMTv55yI6UZ2VlITU1FZs2bfJsM5lM2LFjB3JzcwEAubm5qKurw+7duz1tNm/eDFmWMW7cOE+bbdu2weU6t0R2fn4+Bg0ahPj4eE+bpvfT2KbxfjrSFyKi9ug0KvQ9WxGAiIhCiyAIiNCeyz/vFx+JxCgdIrSqgKQYBnWk3Gw2o6ioyPN7SUkJ9u3bh4SEBGRmZmLBggV46qmncMEFFyArKwuPPPII0tPTMXPmTADAkCFDcPXVV+Puu+/G6tWr4XK5MH/+fNx4441IT2/IF501axYef/xx3HnnnXjooYdw8OBBvPjii3j++ec993v//fdj0qRJePbZZzFjxgy888472LVrl6dsoiAI7faFiOh84iK1iI8MzclFRETUklYtNpRchAayrMDapIqLoijtH6CTghqU79q1C1OmTPH8vmjRIgDA7Nmz8dZbb+HBBx+ExWLBPffcg7q6Olx++eXYuHEj9Hq95zZr1qzB/PnzceWVV0IURVx//fV46aWXPPtjY2Px2WefYd68eRgzZgySkpKwbNkyr1rmEyZMwNq1a7F06VIsWbIEF1xwAdavX4/hw4d72nSkL0REzYmCgGSDzrNENBERhR9RFBCtUyNap/YE6Ga726cDLUF9l5g8efJ5P2kIgoAnnngCTzzxRJttEhISsHbt2vPez0UXXYQvvvjivG1uuOEG3HDDDd3qCxFRU6IgIDVWD70msCUWiYjIf5oG6L7EoRsiIj/QqEQkG3TQqRmQExFR+xiUExH5WIRWheQYPVQi88eJiKhjGJQTEflQfKQW8VHa9hsSERE1waCciMgHVKKA5Bg9IrRMVyEios5jUE5E1E16jQrJMTqoQ2i5ZiIiCi8MyomIukgQBCREahEbycWAiIioexiUExF1gU6jQp9oHbRqjo4TEVH3MSgnIuoEQRAQF6FBHFfnJCIiH2JQTkTUQRqViD4xOi4GREREPsegnIioA2L0GiRFazk6TkREfsGgnIioHbERGiRG64LdDSIi6sEYlBMRtUEUBMRHaREbweoqRETkXwzKiYhawdrjREQUSAzKiYiaYf44EREFGoNyIqKzREFAUowO0bqGS6MsKzhUZkKt1YmESC2GpRsgigzUiYKN5yb1RAzKiYgAaNUiUgx6aM6mq2wvqsGqgmIUV5nhkhRoVAKyk6Mxd1I2JuQkBbm3RL0Xz03qqZgsSUS9XrROjb5xEV4B+ZJ1B3Ck3IQonRrJMTpE6dQ4Ul6PJesOYHtRTZB7TNQ78dyknoxBORH1anGRWiQb9J78cVlWsKqgGGaHG6kGPfQaFURRgF6jQqpBB7NDwqqCYsiyEuSeE/UuPDepp2NQTkS9VrRWjYQorde2Q2UmFFeZER/ZcqKnIAiIi9SguMqMQ2WmQHaVqNfjuUk9HYNyIuq1WpsYVmt1wiUp0LZRClGnEuGSFdRanf7uHhE1wXOTejoG5URETSREaqFRCXBKcqv7HZIMjSggIVLb6n4i8g+em9TTMSgnImpiWLoB2cnROGN1QVG8c1MVRUGd1YXs5GgMSzcEqYdEvRPPTerpGJQTETUhigLmTspGtE6FCpMDNpcEWVZgc0moMDkQrVNh7qRs1kQmCjCem9TTMSgnImpmQk4Snr52BIakxcDqcKPK7IDV4caQtBg8NXM4YvQaFByrxoFTRlZ6IAqg852bT187gnXK2yDLCg6cMvK6FeK4eBARUSsm5CRh/MBEr1UDjTYnXtl2nIuWEAVRa+cmV/RsGxdbCh8hP1I+YMAACILQ4mfevHkAgMmTJ7fYd++993odo7S0FDNmzEBkZCSSk5PxwAMPwO12e7XZunUrLr74Yuh0OuTk5OCtt95q0ZeXX34ZAwYMgF6vx7hx47Bz506/PW4iCj5RFDCiXywmXdgH9XYXlq4/yEVLiEJA03NzRL9YBuRt4GJL4SXkg/JvvvkG5eXlnp/8/HwAwA033OBpc/fdd3u1WbFihWefJEmYMWMGnE4ntm/fjrfffhtvvfUWli1b5mlTUlKCGTNmYMqUKdi3bx8WLFiAu+66C//73/88bd59910sWrQIjz76KPbs2YORI0ciLy8PVVVVAXgWiCiYuGgJEYUbXrfCT8gH5X369EFqaqrn55NPPkF2djYmTZrkaRMZGenVxmA4N/P6s88+w+HDh/Gvf/0Lo0aNwvTp0/Hkk0/i5ZdfhtPZUMt09erVyMrKwrPPPoshQ4Zg/vz5+OUvf4nnn3/ec5znnnsOd999N+644w4MHToUq1evRmRkJN54443APRlEFBRctISIwg2vW+En5IPyppxOJ/71r39hzpw5Xi+wNWvWICkpCcOHD8fixYthtVo9+woLCzFixAikpKR4tuXl5cFkMuHQoUOeNlOnTvW6r7y8PBQWFnrud/fu3V5tRFHE1KlTPW1a43A4YDKZvH6IyD/8eb5x0RKic/jeFh543Qo/YRWUr1+/HnV1dbj99ts922bNmoV//etf2LJlCxYvXox//vOfuOWWWzz7KyoqvAJyAJ7fKyoqztvGZDLBZrOhpqYGkiS12qbxGK1Zvnw5YmNjPT8ZGRldetxE1D5/nm9ctIToHL63hQdet8JPWAXlr7/+OqZPn4709HTPtnvuuQd5eXkYMWIEbr75ZvzjH//AunXrUFxcHMSeNli8eDGMRqPn5+TJk8HuElGP5c/zjYuWEJ3D97bwwOtW+AmboPzEiRP4/PPPcdddd5233bhx4wAARUVFAIDU1FRUVlZ6tWn8PTU19bxtDAYDIiIikJSUBJVK1WqbxmO0RqfTwWAweP0QkX/483zjoiVE5/C9LTzwuhV+wiYof/PNN5GcnIwZM2act92+ffsAAGlpaQCA3NxcHDhwwKtKSn5+PgwGA4YOHepps2nTJq/j5OfnIzc3FwCg1WoxZswYrzayLGPTpk2eNkTUs3HREiIKN7xuhZewWDxIlmW8+eabmD17NtTqc10uLi7G2rVrcc011yAxMRH79+/HwoULMXHiRFx00UUAgGnTpmHo0KG49dZbsWLFClRUVGDp0qWYN28edDodAODee+/FypUr8eCDD2LOnDnYvHkz3nvvPWzYsMFzX4sWLcLs2bNxySWXYOzYsXjhhRdgsVhwxx13BPbJIKKg4aIlRBRueN0KH2ERlH/++ecoLS3FnDlzvLZrtVp8/vnnngA5IyMD119/PZYuXeppo1Kp8Mknn2Du3LnIzc1FVFQUZs+ejSeeeMLTJisrCxs2bMDChQvx4osvol+/fnjttdeQl5fnafPrX/8a1dXVWLZsGSoqKjBq1Chs3LixxeRPIurZGhctISIKF7xuhYewCMqnTZvWYpICAGRkZKCgoKDd2/fv3x+ffvrpedtMnjwZe/fuPW+b+fPnY/78+e3eHxERERFRZ4RNTjkRERERUU8VFiPlPUXjaP/5Flowm80AAOOp45DdUkD61R5z1Y8AAFPFD548/GBif9oXan2qrzgBoOH13d5CIzExMS1Wn+uKjpxvRL2dL843nmtE7evIuSYoreWFkF+cOnWKiywQtcNoNPqkxBrPN6L2+eJ847lG1L6OnGsMygNIlmWUlZX5bCQwVJhMJmRkZODkyZOsVxsgPfk599X5EWrnW0/6m/GxhKauPBZfnB9tnWs96bkNBj5/XReKz11HzjWmrwSQKIro169fsLvhN1xEIvD4nLctVM+3nvQ342MJTYF+LO2daz3puQ0GPn9dF27PHSd6EhEREREFGYNyIiIiIqIgY1BO3abT6fDoo4+GRJWP3oLPefjpSX8zPpbQFGqPJdT6E274/HVduD53nOhJRERERBRkHCknIiIiIgoyBuVEREREREHGoJyIiIiIKMgYlBMRERERBRmD8gBSFAUmkwmcW0vkfzzfiAKD5xqRbzAoD6D6+nrExsaivr4+2F0h6vF4vhEFBs81It9gUE5EREREFGQMyomIiIiIgoxBORERERFRkDEoJyIiIiIKMnWwO0BEPYMsKzhUZkKt1YmESC2GpRsgikKwu0VERORz/njPY1BORN22vagGqwqKUVxlhktSoFEJyE6OxtxJ2ZiQkxTs7hEREfmMv97zmL5CRN2yvagGS9YdwJFyE6J0aiTH6BClU+NIeT2WrDuA7UU1we4iERGRT/jzPY9BORF1mSwrWFVQDLPDjVSDHnqNCqIoQK9RIdWgg9khYVVBMWSZi4oQEVF48/d7HoNyIuqyQ2UmFFeZER+phSB459IJgoC4SA2Kq8w4VGYKUg+JiIh8w9/veQzKiajLaq1OuCQFWlXrlxKdSoRLVlBrdQa4Z0RERL7l7/c8BuVE1GUJkVpoVAKcktzqfockQyMKSIjUBrhnREREvuXv9zwG5UTUZcPSDchOjsYZqwuK4p1DpygK6qwuZCdHY1i6IUg9JCIi8g1/v+cxKCeiLhNFAXMnZSNap0KFyQGbS4IsK7C5JFSYHIjWqTB3UjbrlRMRUdjz93seg3Ii6pYJOUl4+toRGJIWA6vDjSqzA1aHG0PSYvD0tSNYp5yIiHoMf77ncfEgIuq2CTlJGD8wkSt6EhFRj+ev9zwG5UTkE6IoYES/2GB3g4iIyO/88Z7H9BUiIiIioiBjUE5EREREFGQMyomIiIiIgoxBORERERFRkDEoJyIiIiIKMgblRERERERBxqCciIiIiCjIGJQTEREREQUZg3IiIiIioiAL+6B8+fLluPTSSxETE4Pk5GTMnDkTR48ebbWtoiiYPn06BEHA+vXrvfaVlpZixowZiIyMRHJyMh544AG43W6vNlu3bsXFF18MnU6HnJwcvPXWW356VERERETUm4R9UF5QUIB58+bh66+/Rn5+PlwuF6ZNmwaLxdKi7QsvvABBEFpslyQJM2bMgNPpxPbt2/H222/jrbfewrJlyzxtSkpKMGPGDEyZMgX79u3DggULcNddd+F///ufXx8fEREREYUeu0vy6fEERVEUnx4xyKqrq5GcnIyCggJMnDjRs33fvn346U9/il27diEtLQ3r1q3DzJkzAQD//e9/8dOf/hRlZWVISUkBAKxevRoPPfQQqqurodVq8dBDD2HDhg04ePCg55g33ngj6urqsHHjxg71zWQyITY2FkajEQaDwXcPmijEOdwSNKIIUWz5odhfeL4RBQbPNeptFEXBGasLdVYnspKiWh3w7YqwHylvzmg0AgASEhI826xWK2bNmoWXX34ZqampLW5TWFiIESNGeAJyAMjLy4PJZMKhQ4c8baZOnep1u7y8PBQWFrbZF4fDAZPJ5PVD1Ns43BIqjHb4+9M/zzeiwOC5Rr2ZS5JRZrSjzur0+bF7VFAuyzIWLFiAyy67DMOHD/dsX7hwISZMmIBf/OIXrd6uoqLCKyAH4Pm9oqLivG1MJhNsNlurx12+fDliY2M9PxkZGV1+bEThqDEgl2T/fyHH840oMHiuUW9Vb3fhxzM2OHycttKoRwXl8+bNw8GDB/HOO+94tn388cfYvHkzXnjhhYD3Z/HixTAajZ6fkydPBrwPRMESyIAc4PlGFCg816i3kWQFVSY7qusdkP2Y9a3225EDbP78+fjkk0+wbds29OvXz7N98+bNKC4uRlxcnFf766+/HldccQW2bt2K1NRU7Ny502t/ZWUlAHjSXVJTUz3bmrYxGAyIiIhotU86nQ46na67D40o7Fgcbr9fvJrj+UYUGDzXqDexOt2oqXfCLct+v6+wHylXFAXz58/HunXrsHnzZmRlZXntf/jhh7F//37s27fP8wMAzz//PN58800AQG5uLg4cOICqqirP7fLz82EwGDB06FBPm02bNnkdOz8/H7m5uX58dETh54zFiUqTPaABORERkS/JsoLqegcqjPaABORADxgpnzdvHtauXYuPPvoIMTExnhzw2NhYREREIDU1tdXJnZmZmZ4Aftq0aRg6dChuvfVWrFixAhUVFVi6dCnmzZvnGQ249957sXLlSjz44IOYM2cONm/ejPfeew8bNmwI3IMlCmGyrKCq3gGr091+YyIiohBld0mornfAJQUmGG8U9iPlq1atgtFoxOTJk5GWlub5effddzt8DJVKhU8++QQqlQq5ubm45ZZbcNttt+GJJ57wtMnKysKGDRuQn5+PkSNH4tlnn8Vrr72GvLw8fzwsorDidMv4sc7GgJyIiMKWoiiotThRVmcLeEAO9MA65aGMtVypJ7I5pQ6lq/RPjIKKdcqJehyea9QTON0yqurtcLo7F4z7sk552KevEFHwWJ1uVJoc4Gd7IiIKV0arC7VWZ9DfyxiUE1GXWBxuVNUzICciovDkkmRU1ztg91Pd8c5iUE5EnWY+W/KQATkREYWjYJTubQ+DciLqFKPVhdMWR7C7QURE1GmKouC0xQmTzRXsrrTAoJyIOkRRFNSYnai3h96FjIiIqD1dncwZKAzKiahdsqygst4OmzM08u6IiIg6o97uwmmzM6TSVZpjUE5E5yXLCsqMtpAdWSAiImpLOH3Ly6CciNokywrKTaH7VR/5X2lpKWpqaoLdDS9JSUnIzMwMdjeIKMQ53A0rc4bLexiDciJqlVuSUcGAvFcrLS3F4MFDYLNZg90VLxERkfjuuyMMzImoTUabC7WW4Nce7wwG5UTUgt3VsEqnJIfPxYx8r6amBjabFePmPApD2oBgdwcAYCr/ATveeBw1NTUMyomoBZcko8bsCMs5UAzKiciLzdkQkIfyZBgKLEPaACRkDgp2N4iIzitUVubsKgblRORhdbpRaeKiQEREFD6c7obR8VBZmbOrGJQTEQCu0klEROFFlhXU2Vww2lw94r2LQTkRwWhz4bSZq3QSEVF4sDjcqDE7etTcJwblRL1crcWJOqsz2N0gIiLqkJ76vsWgnKiXkmUF1WYHLA53sLtCRETULqdbRrXZAUeY5463hUE5US/EGuRERBROwr2ySkcwKCfqZZxuGZUmO1wSA3IiIgptLklGdX34V1bpCAblRL2I0y2jwmiHW2ZATkREoc1oc+GMxdlr1s1gUE7USzjcEiqNDgbkREQU0npK3fHOYlBO1AuY7C6cNvfsXDwiIgp/dVYnzlh7Rt3xzmJQTtSDKUpDhRWznRVWiIgodPWm3PG2MCgnOg9ZVnCozIRaqxMJkVoMSzdAFIVgd6tDXFJD/jgndBIRUSB19r0zHL/NlWQFW49WY9N3lXjj9ksRqe1+SM2gnKgN24tqsKqgGMVVZrgkBRqVgOzkaMydlI0JOUnB7t552V0SKk32HrXSGRERhb7OvHfKsoIaswPmMFovw+mWkX+4Ev/+phRldXYAwL93nsSdl2d1+9hit4/QBS6XC3PmzEFJSUkw7p6oXduLarBk3QEcKTchSqdGcowOUTo1jpTXY8m6A9heVBPsLrbJZHeh3MiAnIiIAqsz7512l4RTZ2xhE5DbXBI+2H0Kt7y+A8/mH/ME5ADw2hfH4fbBt9JBCco1Gg3+85//BOOuidolywpWFRTD7HAj1aCHXqOCKArQa1RINehgdkhYVVAMOcSCXkVRUF3vQE29I6y+AiQiovDX0fdOSZJRa3GirM4WFtXAzHY3/vX1Ccz6+w78bWsxasxOzz5RAH4xKh1v3TEWalX3Q+qgpa/MnDkT69evx8KFC4PVBaJWHSozobjKjPhILQTBOwdOEATERWpQXGXGoTITRvSLDVIvvTndMqrqQ3uFzuIqMy5MjQl2N4iIyA868t5ZVFmPrUerkdUnKki97LgzVif+s/sUPtpXBovTe/KpRiUgb1gqfn1pBi7PSWrxeLsqaEH5BRdcgCeeeAJfffUVxowZg6go7z/Q7373uyD1jMJddydn1lqdcEkKtG186tWpRBhlBbVWZ6v7A83icKO63hGyiyuU1lqxamsxdp04g433X4ELUhiYExH1NOd771QUBSoAdklGjcUR0kF5pcmO93adwoYD5S0GuvRqET8bmY7rL+6LOqsbZXU2HDhlxPC+sT4pAhG0oPz1119HXFwcdu/ejd27d3vtEwShw0H58uXL8eGHH+K7775DREQEJkyYgD//+c8YNGgQAKC2thaPPvooPvvsM5SWlqJPnz6YOXMmnnzyScTGnhvlLC0txdy5c7FlyxZER0dj9uzZWL58OdTqc0/R1q1bsWjRIhw6dAgZGRlYunQpbr/99u4/GeQzvpicmRCphUYlwCnJ0IuqFvsdkgyNKCAhUuvr7ndarcWJuhD5cNBcvd2FfxSewPp9ZZ789qc2HMHbc8YGuWdERORrbb13KooCl6TA5pahEQTE6oP/3tma0lor3tl5EvlHKlvMyYrWqXHd6L64dnRfHK8x4y+fHcPJ0xa4ZAV6tYiclBifFIEIWlDuq0meBQUFmDdvHi699FK43W4sWbIE06ZNw+HDhxEVFYWysjKUlZXh//7v/zB06FCcOHEC9957L8rKyvDBBx8AACRJwowZM5Camort27ejvLwct912GzQaDZ5++mlPf2fMmIF7770Xa9aswaZNm3DXXXchLS0NeXl5Pnks1D2NE0zMDjfiI7XQqkQ4JdkzweTpa0d06IQZlm5AdnI0jpTXI9Ugen0tpSgK6qwuDEmLwbB0gz8fznlJsoKqejtsztCr5yrJCj7ZX463tv8Ao83ltc/ukmBxuBGlY+EnIqKepLX3TklW4JZlKIqCersLA/tEIycltEbJi6rMWLOjFNuOVaP5983xkRrcMKYffjYyHVE6NfaWnsFz+cdgdUow6DUwqBrig87GGW0J+juj0+lESUkJsrOzvUalO2rjxo1ev7/11ltITk7G7t27MXHiRAwfPtxrUml2djb+9Kc/4ZZbboHb7YZarcZnn32Gw4cP4/PPP0dKSgpGjRqFJ598Eg899BAee+wxaLVarF69GllZWXj22WcBAEOGDMGXX36J559/nkF5CGg+waQxkNaLKqQaRFSYHFhVUIzxAxPb/YpJFAXMnZSNJesOoMLkQFykBjqVCIcko87qQrROhbmTsoNWr9wtySgP0frje06cwctbi1FSY/HanmrQ45GfDsE1I9J8lntHRESho+l7Z7nRjhi9GmpRgFNqCMgjtSrMGpsBMUTeAw7+aMSaHaXYUVLbYl9yjA43XpqB6cNTodM0jPrLioK1O0/C6pSQFK2FgIbHoVWLSNWoOhVntCVoQbnVasV9992Ht99+GwBw7NgxDBw4EPfddx/69u2Lhx9+uEvHNRqNAICEhITztjEYDJ4PAYWFhRgxYgRSUlI8bfLy8jB37lwcOnQIo0ePRmFhIaZOnep1nLy8PCxYsKDN+3E4HHA4HJ7fTSZTVx4SdYCvJ2dOyEnC09eO8KTCGGUFGlHAkDTffEXVVU53w4JAoTZj/cczNqwuKMZXxae9tus1Im4Z1x+/HNMPF6TE+DUg5/lGFBg816gtE3KSsHTGEKzedhylNRa4FAUaQcDAPtGYNTYDozPjg9o/RVGw68QZrNlRiv2njC32Z8RHYNa4TFw5OLlFNZWiSgtOnrbAoNd4AvJGvioCEbSgfPHixfj222+xdetWXH311Z7tU6dOxWOPPdaloFyWZSxYsACXXXYZhg8f3mqbmpoaPPnkk7jnnns82yoqKrwCcgCe3ysqKs7bxmQywWazISIiosV9LV++HI8//ninHwd1nj8mZ07IScL4gYkhs6JnKC4IZHE0lIr6z54f4W7Wr7xhKbjr8iwkRusC0heeb0SBwXONWuN0y6gxOzCwTzSeuW4EiiotMNqdiNVrkZMSFdQRcllR8GVRDdbuKMWxSnOL/RckR+PmcZm4/IKkNvtptDvhkhVPykpzvigCEbSgfP369Xj33Xcxfvx4r9GzYcOGobi4uEvHnDdvHg4ePIgvv/yy1f0mkwkzZszA0KFD8dhjj3XpPjpj8eLFWLRokdf9Z2Rk+P1+eyN/Tc4URSEkyh5aHG5UhVD9cUlW8L9DFXj9yxKcsXrnjQ9LN2DelGwMTg1szj3PN6LA4LlGTSmKgjNWF4w2l+c9ShQEXJgaHeSeNaR7bj5ajX/vKMWJWmuL/SP6xuLmcZm4dEB8u9/kxuq10IgCXJICnbplW18UgQhaUF5dXY3k5OQW2y0WS5e+4p4/fz4++eQTbNu2Df369Wuxv76+HldffTViYmKwbt06aDQaz77U1FTs3LnTq31lZaVnX+P/G7c1bWMwGFodJQcAnU4HnS4wo4S9XThMzuwqo82F02ZH+w0D5NtTdXh5SzGKqrxHG5JjdLhn4kBMGdQnKHnjPN+IAoPnGjWyOSXUmB0hN8fJ6Zbx34MVePebk6gw2VvsHzsgHrPGZeKifnEdPmZOShQyEqNwvNrslVMO+C7OCFpQfskll2DDhg247777AMDzJv7aa68hNze3w8dRFAX33Xcf1q1bh61btyIrK6tFG5PJhLy8POh0Onz88cfQ6/Ve+3Nzc/GnP/0JVVVVng8K+fn5MBgMGDp0qKfNp59+6nW7/Pz8TvWV/CfUJ2d2VY3ZAVOzCibBUmG045Vtx1FwrNpru04t4qaxGfjVJRnQa1p+S0FERD1L4+h4qJXktTrd+Pjbcnyw+xRqLd59EwBccWESZo3NxIVdWC9DFATMGpuB5/KPocbsRIxeA61KgM0lwWhz+yTOCFpQ/vTTT2P69Ok4fPgw3G43XnzxRRw+fBjbt29HQUFBh48zb948rF27Fh999BFiYmI8OeCxsbGIiIiAyWTCtGnTYLVa8a9//Qsmk8kzKaVPnz5QqVSYNm0ahg4diltvvRUrVqxARUUFli5dinnz5nlGA+69916sXLkSDz74IObMmYPNmzfjvffew4YNG3z/5FCXhOrkzK6QZAXV9Q5Yne5gdwU2p4S1O0vx3q6TcEne6TM/GZyMe67IQrJB38atiYioJ3FJMqrqHXC4Qqckr9Hmwro9P2Ldvh9Rb/d+31SJAqYOScZNYzORmRDZrfsZnRmPRVddiLU7T+LkaQvqFQV6leizOCNoQfnll1+Offv24ZlnnsGIESPw2Wef4eKLL/ZUQumoVatWAQAmT57stf3NN9/E7bffjj179mDHjh0AgJycHK82JSUlGDBgAFQqFT755BPMnTsXubm5iIqKwuzZs/HEE0942mZlZWHDhg1YuHAhXnzxRfTr1w+vvfYayyGGmFCbnNkVNqeE6npH0CusyIqCzw9X4u9fluC02XvEYVBqDOZNzsbwvsHPtyciIv9zSTLq7W6YbK6QWUG6xuzA+7tO4f/tL4Pd5f2eqVWLuGZ4Kn51aQZSfThwNDozHiMz4jwTWYekGsJ/RU+goWb43//+924do72Jb5MnT+7Q5Lj+/fu3SE9p7Vh79+7tVP8o8EJlcmZnKYqCWouzxYI7wXCozIiXtxTju4p6r+2JUVrcfUUWpg5NCZlas0RE5F91VmeLdJBgKquz4d1dJ7HxYEWLb3AjtSr8fGQ6fjmmHxKi/LN6aNOJrFlJUT6bRxW0oFylUqG8vLzFZM/Tp08jOTkZkhQ6X4sQ+ZvD3TA67nQHd3S8ymTH378owabvqry2a1QCfnVJBmaNzUSElnnjRES9gcMtodbiDJnVo0tqLPj3zlJs/q4KzasDG/RqXD+mH2aOSkeMXtP6AUJc0ILytkavHQ4HtFr/fLIhCkVGmwu1FmdQyx3aXRLe/eYk3vnmJBzNPhhMvDAJ907MRmos88aJiHoDSVZw2uyA2RH8eU0A8F2FCWt2lOKrotMt9iVGa/HrSzIw46I0RIR5sYGAB+UvvfQSgIZqK6+99hqio8/VsZQkCdu2bcPgwYMD3S2igFMUBdVmB8z24F30FEXBlqPVeHXbcVTVe5ddzEmOxrwp2RjZiZJR4ai0tBQ1NTXB7oZHUlISMjMzg90NIuqlLA43TpudQZ/XpCgKvj1lxJodpdh94kyL/Wmxetw0NhPThqZAq2594cBwE/Cg/PnnnwfQ8GSvXr0aKtW5TzVarRYDBgzA6tWrA90tooByumVU1duDmq5ytKIeL28pwsEy7yWy4yM1uPPyLOQNS4UqjCbIdkVpaSkGDx4Cm63lohLBEhERie++O8LAnIgCyumWcdriCHqqiqIo+Pp4LdbsKMXhclOL/VlJUZg1NgOTByX3uPeogAflJSUlAIApU6bgww8/RHx8fKC7QBRUFocb1fWOoM1erzE78PqXJfjfIe/FsDQqAddf3A83j8tElC6oc8ADpqamBjabFePmPApD2oBgdwem8h+w443HUVNTw6CciAKiceGbuiYrcgaDJCvYdqwaa3aW4ni1pcX+IWkxmDU2E7nZiT220EDQ3nm3bNkCAHA6nSgpKUF2djbU6t4RCFDvdcbixJkgLbbgdMt4f/dJrNlR2qJ01GU5ibh3Yjb6xre+Om1PZ0gbgITMQcHuBhFRQNldDUUGgrkip0uSkX+4Ev/eeRI/1tla7B+dGYebx2VidEZcUFaLDqSgRcE2mw3z58/H22+/DQA4duwYBg4ciPvuuw99+/bFww8/HKyuEfmcLDfkj1uCMGlGURR88X0NXtl2HOVG7+WGByZF4bdTsnFxJr+xIiLqLWRZwWmLE/X24JXgtbskfHqgHO9+cwrVZkeL/bkDE3HzuEwM7cay9eEmaEH5ww8/jG+//RZbt27F1Vdf7dk+depUPPbYYwzKqcdwumVUmux+HYmQFcWzkEGsXouclCiIgoCiKjNe3lKEb08Zvdob9GrccVkWfnpRWo/LySOink2WlbBeIC6YFEWBye6G0eoK2kROs8ONj/eV4YPdp1DXbF0OUQAmD0rGrLEZGNgnuo0j9FxBC8rXr1+Pd999F+PHj/f6OmLYsGEoLi4OVreIfKre7sJps9Ov+eN7S894lvx1yQo0ooDUuAhEalTYUVKLpvesEgXMHJWO23L7h20dVyLqvbYX1WBVQTGKq8xwSQo0KgHZydE+WeK8pzM73DhjcQYtVaXO6sR/9vyI9Xt/hKXZZFK1KGDasBTcdGlmr02jBIIYlFdXV7dYOAgALBZLj88Zop5PURTUmP3/1eDe0jN4Lv8YrE4JBr0GMSJw2uLC/mYj4wAwLisBcydlIzMx0q99IiLyh+1FNViy7gDMDjfiI7XQqkQ4JRlHyuuxZN0BPH3tCAbmrbC7GhYAsruCU1WlymTHe7tOYcOB8hbrYOjVImZclIZfXZKBPjG6oPQvlAQtKL/kkkuwYcMG3HfffQDgCcRfe+015ObmBqtbRN0WqHKHsqJg7c6TsDolJEZpYHXKKDM6Wiw5nJkQgd9OzsHYrAS/9oeIyF9kWcGqgmKYHW6kGvSemEEvqpBqEFFhcmBVQTHGD0xkKgsaBobMDjfMDnfQShyerLXinW9OIv9wJdzNlt+M0qlw7ei+uH50P8RG8lvbRkELyp9++mlMnz4dhw8fhtvtxosvvojDhw9j+/btKCgoCFa3iLrF7HCjJkDlDosqLTh52gK9WoWyOgeszUZBBAGI0qjwUN4QDEmP8Xt/2sprJyLqrkNlJhRXmREfqW3xbbogCIiL1KC4yoxDZSaM6BcbpF4Gzvny6m1OCTXm4FVUKa4yY82OUhQcq0bzd8L4SA1+OaYffj4yvdeU3u2MoD0jl19+Ofbt24dnnnkGI0aMwGeffYaLL74YhYWFGDFiRLC6RdQlgUpXaarMaIXR7m7xdSAAxEZokBCpQZ3dBbPT/31qLa89I7FhgYfRrOxCRN1Ua3XCJSnQqlpfuVGnEmGUFdQGqeRsILWVV3/PFQMxKDUG5iBU+QKAgz8asXZnKb4+XttiX3KMDr++NAPXDE+FTqNq5dYEBDEoB4Ds7Gz8/e9/D2YXiLot0KtzuiUZH31bhje/+qFFQB6pUaFPjBY6tQp2twyNICBWr/Vrf5rntRtUAlySguPVZjyXfwyLrrqQgTkRdUtCpBYalQCnJEMvtgzqHJIMjSggIdK/17tgayuv/lCZCQ9/uD/g11tFUbD7xBms2VHaosoXAPSLj8CssZm4ckgyNG18oKJzgv7dQVVVFaqqqiA3K81z0UUXBalHRB1ntLpQa3UGbBW0nSW1+NvWYpTWei8Lr1EJ6BOtQ5RWBUEQoEBBvd2FgX2ikZMS5bf+NM1rT4rWQkDD16c6tYCkaC1qzE6s3XkSIzPi/NYHIur5hqUbkJ0cjSPl9Ug1iF4pLI0rUg5Ji8GwHlzTurW8eklWIAoCEqM0Xtdbf6cOyoqCr4pOY+2OUhytrG+xP6dPNG4en4nLc5JYdrcTghaU7969G7Nnz8aRI0daBDSCIECSgjMxgUJTqNWldUkyasyOgE2gKT1txaqCYuwo8f5aUK8WoVWLEAVArRKhAHC4ZdTbXYjUqjBrbIZfL86Nee0GvcYTkDcSICBGr8HJ0xYUVVqQldT7as4SkW+IooC5k7KxZN0BVJgciIvUQKcS4ZBk1FldiNapMHdSdo+e5NmYVx8XoYGkKJAlxRM/Nb/eXpjqn+utJCvY/F0V1u4sxYnT1hb7h6cbcPP4TIwdkOCTSnq9ba5S0ILyOXPm4MILL8Trr7+OlJQUlkGkNoVSXVpFUWC0uXDG6grI6Hi93YW3C0/go31lkJrMXhcAXDMiDXMuH4AfaiyefO56RYFGEDCwT3RA8rmNdidcsgKDqvXzV6sSUC8rOFhuhE4jIilaF/QPVEQUnibkJOHpa0d43g+MZ+evDEmLafF+EGoDOb5QYbLD4ZIRqVVBklq+/2hVAuoVBUa77/PqnW4ZGw9V4N1vTrZYGRoALh0Qj1njMjGyX5zP7rM3zlUKWlB+/Phx/Oc//0FOTk6wukBhIJTq0locbtQGaOEFSVbwyf5yvPlVCUx270k7ozJiMW9yDrKTG0ZC4jO1GJkRF5TRhFi9FhqxIYdcp255fya7C2a7G2u/LsU7O0qhVYtc6IOIumxCThLGD0w8b8AdSgM5vmB2uFFndUKSFKhEtHm9dUqKz+cR2ZwSPv62DO/vPoVai3ewLwC44oIkzBqXiQtTfFvhq7fOVQpaUH7llVfi22+/ZVBObQqVurQOt4TT5sAtvLDnxBm8vLUYJTUWr+1psXr8ZtJAXJGT1OKbJVEQ/PZ15fnkpEQhIzEKx6vNXjnlAGB1uVFd74RKBBKiNdCpVFzog4i6TRSFNssehtJATndZnQ0DQY1FBM53vfX1PCKTzYV1e3/Eh3t/RH2zgSFRAK4amoIbL81A/0Tfz1nqzFylnpbKErSg/LXXXsPs2bNx8OBBDB8+HBqNd/H4n//850HqGYWKYNelVRQFtRYnjLbAlDn88YwNqwuK8VXxaa/teo2IW8b1xy/H9INWHVqz10VBwKyxGXgu/xhqzE4YIjTQq0S4ZBmVJgcEAegXH4kITcOlhgt9EJG/hMpATndZnW7UWV0tBoKaX29j9BpoVQKckuKzeUSnzQ68v/sU/t+35bA1u3+NSsA1w9Pw60szkBqr7/J9tKczc5WCMRjlT0ELygsLC/HVV1/hv//9b4t9nOhJQHDr0tpdEqrrA7P4gsXhxpodpfjPnlMtVuPMG5aCuy7PQmJ0aC4/LAoCLr+gDwx6Dd7c/gN+qLHA6pSgKA0VAZJj9YjRe3/g7o0LfRCR/wV7IKe7GtNUzlded3RmPBZddaHP5xGVG21495tT+O/B8hbvQxEaFX4+Mg03XJKBhCj/l5zs0FwlP+XOB1vQgvL77rsPt9xyCx555BGkpKQEqxsUwoJRl7axtFadzf8TOSVZwf8OVeD1L0twxuo9Gj8s3YD5U3IwKNX/K3F2hUYlIjZSgxidGoIg4KphqbhySIonz/OHagtWbilCXETryyf3poU+iCgwwnGBIUluGOWut7s7PAg0OjPeZ/OIfjhtwb93nsSmI5WQm73lGfRqXHdxX1w7um+LwRV/am+ukj9y50NF0ILy06dPY+HChQzIqU2BrkvrdMuoNjvgCEDu+P5TdVi5pRhFVWav7X2idbhn4kD8ZHCfkKtIJAgConVqROvUiNC2/JDUNM+TC30QUaCF03XH7pJgtLk83yx2VnfnER2tqMfanaX44vuaFvsSo7S44ZJ++NlF6a1e6/0tkLnzoSZoQfl1112HLVu2IDs7O1hdoBAXqLq0gRwdrzDa8cq24yg4Vu21XacWcdPYDPzqkgzoQ2wJYlEQYIjQIDZC0+FFILjQBxEFWjhcd2xOCXU2Z8DWuGhKURTsP2XEmh2l2HXiTIv9abF63HhpBvKGpQZ1/lIgcudDVdCC8gsvvBCLFy/Gl19+iREjRrSY6Pm73/0uSD2jUNKZurRdYXW6UVPvhFv2b+64zSlh7c5SvLfrZIt8vSsHJ+OeiQPRJya08sZVooDYCA0Mek2nP/hwoQ8iCrRQvu6YHW4Yba6AfBPbnKIo2FFSi7U7SnGwzNRi/4DESMwal4kpg5JDZvVNf+XOh7qgVl+Jjo5GQUEBCgoKvPYJgsCgnDw6Upe2s+SzeYUmP1dWkRUFnx+uxN+/KMHpZjVeB6XGYP6UbAxLD60JRxFalSdNpTspNP7+QEVE1FwoXXdkWUG93Q2T3RWQogHNSbKCL76vxpodpSiutrTYPyg1BjePzcSEnMSQHHX2Ze58uAhaUF5SUhKsu6YwdL66tJ1lsrtwxuL0WiHTHw6VGbFySzGOVtR7bU+M0uLuiQMxdUhyyFxc9BoVovVqRGnVPh0p8ccHKiKi8wn2dcctyTDaGiZvygFY+bk5lyTj8yNV+PfOUpw6Y2uxf1RGLG4e1x8XZ8aF3Nyl5oK1BkewBC0oJwo0q9ON02b/r8hZZbLj71+UYNN3VV7bNSoBv7okA7PGZgZl8kxrovVqxEVo/Zo/6MsPVEREHRHo644sK7A43TA73EHJFwcaJo9+eqAC7+06iap6R4v94wcm4OZxmSH37SydE9CgfNGiRXjyyScRFRWFRYsWnbftc88916FjLl++HB9++CG+++47REREYMKECfjzn/+MQYMGedrY7Xb8/ve/xzvvvAOHw4G8vDz87W9/86r8Ulpairlz52LLli2Ijo7G7NmzsXz5cqjV556irVu3YtGiRTh06BAyMjKwdOlS3H777Z17EijgHG4JtRb/T6yxuyS8+81JvPPNSTia1ZmddGEf/GbiQL8uuNBRjVVU4iI10LRROoyIiNpnd0kw2VywdLGKii+YHW58vK8MH+w+hbpmKZmi0PD+M2tsJrKTe8+Ic7gKaFC+d+9euFwNL5g9e/a0+bVJZ75OKSgowLx583DppZfC7XZjyZIlmDZtGg4fPoyoqIZyOQsXLsSGDRvw/vvvIzY2FvPnz8d1112Hr776CgAgSRJmzJiB1NRUbN++HeXl5bjtttug0Wjw9NNPA2hIt5kxYwbuvfderFmzBps2bcJdd92FtLQ05OXldedpIT+R5IYVOevt/s0bVxQFm7+rxt+/ON5idCInORrzpmRjZL+4FreTFSWguXIalYgYfUOuuJrBOBEFiCwrPSaFTVEUONwyrE4JFkfHa4v7Q53Vif/s+RHr9/0Ii8N70EktCpg2NAU3js1Av/jIIPWQOiugQfmWLVs8/966datPjrlx40av39966y0kJydj9+7dmDhxIoxGI15//XWsXbsWP/nJTwAAb775JoYMGYKvv/4a48ePx2effYbDhw/j888/R0pKCkaNGoUnn3wSDz30EB577DFotVqsXr0aWVlZePbZZwEAQ4YMwZdffonnn3+eQXkIClTe+HcVJry8pRiHms1oj4/U4M7Ls5A3LLXVHO29pWc8s8pdZyciZSRG+WVWebReDYNeE3KlFomo59teVOOZdOmSFGhUArKTo8Nusne93QWLQ4LdJQUlT7yp6noH3tt1Ehv2l8Pe7FtZnVrEjIvS8OtLMkKuoldPIQoC9BoVIrQqRGpVPs3LD0pOucvlQkREBPbt24fhw4f79NhGoxEAkJCQAADYvXs3XC4Xpk6d6mkzePBgZGZmorCwEOPHj0dhYSFGjBjhlc6Sl5eHuXPn4tChQxg9ejQKCwu9jtHYZsGCBW32xeFwwOE4N3JqMrUsRUS+43BLMNncsDrdfg/GT5sdeO3LEvzvUKXXdrUo4Jdj+uHmcZmI0rV+eu0tPYPn8o/B6pRg0GtgUDWsXHa82ozn8o9h0VUX+iQwj9arER+p7TUpKjzfiAKjo+fa9qIaLFl3AGaHG/GRWmhVIpySjCPl9Viy7gCevnZEyAbmbkmG1SXBdXZUPJgj4o1+PGPDv78pxWeHKuFu9h4XpVNh5qi+uP7ivogLgcWRehqtWkSERoVIrRp6jei3CbJBCco1Gg0yMzMhSb7N8ZVlGQsWLMBll13mCfYrKiqg1WoRFxfn1TYlJQUVFRWeNs1XFm38vb02JpMJNpsNERERLfqzfPlyPP744z55bNQ2p1tGndUJs8MdkPt6f/dJrNlRCrvL+yJ9WXYi7p2Ujb7xLV8LjWRFwdqdJ2F1Sl4rlenUApKitagxO7F250mMzIjrcipLQ764fydvhiKeb0SB0ZFzTZYVrCoohtnhRqpB7wli9KIKqQYRFSYHVhUUY/zAxJBJZXG6ZdhcEmxOCVan/99POqq42oy1O0pRcKwazceb4iI0+OWYfvj5qHREtzEQRJ2nEgVEnB0Nj9CoApbyGbS/4B//+EcsWbIE//znPz2j2t01b948HDx4EF9++aVPjtddixcv9prQajKZkJGREcQe9Sx2l4R6e8Nsd39PsFEUBdu+r8ErBcdRYbJ77ctKisK8ydm4uH/7o9tFlRacPG2BQa/xWjoYAAQIiNFrcPK0BUWVlk6VgVKLIqL1asTo1b1mZLw5nm9EgdGRc+1QmQnFVWbER2pbjCoKgoC4SA2Kq8w4VGYKenUms8MNk80FexAW9jmfw2Um/GvHCXx9vLbFvuQYHX51SQauGZHK1MQOav46bBo3iIIAnUaEXt0QiAfrOQ1aUL5y5UoUFRUhPT0d/fv390zKbLRnz55OHW/+/Pn45JNPsG3bNvTr18+zPTU1FU6nE3V1dV6j5ZWVlUhNTfW02blzp9fxKisrPfsa/9+4rWkbg8HQ6ig5AOh0Ouh0zOnyNYvDjboAroxWVGXGyi1F2H/K6LXdoFfjjsuy8NOL0jpc29tod8IlKzCoWm+vVQmoVxQY7c5W9zcnnn1zi43QhHy9WX/j+UYUGB0512qtTrgkBdo2Bgl0KhHGs4u4BYMkK55gPBRSUxopioI9pXVYs6MU+07WtdjfLz4CN43NxNQhyb12AKYj1KLYMMqtVUGnFqEWhbB4jwxaUD5z5kyfHEdRFNx3331Yt24dtm7diqysLK/9Y8aMgUajwaZNm3D99dcDAI4ePYrS0lLk5uYCAHJzc/GnP/0JVVVVSE5OBgDk5+fDYDBg6NChnjaffvqp17Hz8/M9xyD/kmQF5gCvjHbG6sQbX/6ATw+Uo+k4vEoUMHNUOm7L7Y8YvaZTx4zVa6ERG3LIdeqWFwin1LCUcKz+/DmBoiDAEKFBXIQmZL76JSJqlBCphUYlwCnJ0IstRx0dkgyNKCAhgPnPjXniliDWEm+LrCjYXnQaa3aWtlhwDgCy+0Th5nH9ccUFST5d4K2nEISz6SZnU07CNX0zaEH5o48+6pPjzJs3D2vXrsVHH32EmJgYTw54bGwsIiIiEBsbizvvvBOLFi1CQkICDAYD7rvvPuTm5mL8+PEAgGnTpmHo0KG49dZbsWLFClRUVGDp0qWYN2+eZzTg3nvvxcqVK/Hggw9izpw52Lx5M9577z1s2LDBJ4+DWmdzSjDZXbAGsAasS5Lx4Z4f8a+vT8DS7MI9LisBcydlIzOxayWmclKikJEYhePVZq+ccgBQoKDe7sLAPtHISYlq9fYalQhDhAYxOjWDcSIKWcPSDchOjsaR8nqkGrwnximKgjqrC0PSYjAs3eC3PjjcEhxuGXaXBIdLDqkR8UaSrGDL0Sqs3VGKH05bW+wflm7AzeMyMS4rISxGegNJqxYRqVUjQqPy6+TLQArqrIC6ujp88MEHKC4uxgMPPICEhATs2bMHKSkp6Nu3b4eOsWrVKgDA5MmTvba/+eabnoV9nn/+eYiiiOuvv95r8aBGKpUKn3zyCebOnYvc3FxERUVh9uzZeOKJJzxtsrKysGHDBixcuBAvvvgi+vXrh9dee43lEP1AlhWYnQ1fKzrdgbuIKoqC7cWnsbrgOH6s816aODMhEr+dnI2xWd2b/yAKAmaNzcBz+cdQY3YiRq+BViXAKTUE5JFaFWaNzWgxyTNKp0ZsBMsa9hZHjhwJdhcAhE4/KPyIooC5k7KxZN0BVJgciIvUQKcS4ZBk1FldiNapMHdStk8HF1yS3DAKfjYID3bpwvNxumX871AF3vnmJMqN9hb7Lx0Qj1njMnFR39geEWz6gloUodeeC8R74jcGQQvK9+/fj6lTpyI2NhY//PAD7r77biQkJODDDz9EaWkp/vGPf3ToOB0ZPdXr9Xj55Zfx8ssvt9mmf//+LdJTmps8eTL27t3boX5R5yiKArtLRr2joRZs4981UAvslNRY8LctRdhdWue1PUavxuzc/vj5yHSfzb4enRmPRVdd6KlTXq80pKwM7BPtVadcFARE6xuCceYO9g4242kAAm655ZZgd8WLyxGcvF8KbxNykvD0tSM8dcqNZ9dkGJIW45M65YqiwOaSYHU21A8P5CBOV9mcEj7ZX4b3dp3CaUvL8+qKC5Iwa2wmBqXGBKF3vtGd921BEKASBAhCwwc7tSh4Jl+Ga0pKZwQtKF+0aBFuv/12rFixAjEx515811xzDWbNmhWsblEANK6I1ngRdUoyXJLS4gNWIBbYMdpceOurH/D/9pd5lZoSBeBnI9Nx+4QBiI3oXN54R4zOjMfIjLhWL1walQiDXoMYPVNUehuXtR6AglGzHkKfrMHB7g7KDxTi4Mevwu0OnfJwFF4m5CRh/MBEn6zo6ZIaUlBc7oZgPBQW8umoersL6/eW4T97TsFk9z6fRAGYOqRh9c0Bia2nLoaL9t63VaLgqW6iVYkQBQGi0DAIxfe7IAbl33zzDV555ZUW2/v27evJC6eeQZYVOCUZDrcMx9lRjfYupP5eYMctyfj42zK8XXgC9c0ukGP6x+O3k7ORleTfi6MoCF5lDyO0KsRGaBCpZa3Z3i46ORMJmYOC3Q2Yyn8IdheoBxBFoUtlD92SDMvZ5ewdbjlg84p8qdbixAe7T+GjfWWwNasYplEJmD48DTdemoHU/8/encc3VaX/A//cmz1N032FtiyFsgjIolJ0BFE2GffZRAccXEbEUcRBxBnHUX+KO+N3VHTGfUZ0dBR03BEFlFUQkKUCrZUW6EJb2jRts97z+6M0NLSlLSS5Sfp5v168tPfeJM9Ncm6enJzznDijShEGTsef2w342xf78eBlZ2DCoFS1wwxrqn36GwyGdlcB27dvH1JSUlSIiAJJUQTqT7HcVLAX2NlUXI2lq39ESY3/pJpe8SbcPL4fxvVPCukYPrNei3gzx4sTUc/W+lfUlkV8IlV5nQP/+bYUH+8qg9vr/2XCpNPg0hEZ+MXo3kiyREcZ1zaf25IEWZKg10qwGDSoqHfhpXXFOH9gCnvET0K1pPzSSy/FAw88gLfffhtA8ziikpISLFy40Fe6kCKP41i5qXqH55R/VgzWAjsl1Y14bk0RNhf7L8QQo9fgt/k5uGJkr5CO3bYYtIgz62DQMhknop5DCAGPIuDximPDFxW4PErE9oa3dqC6AW99W4ovCirhPWH5TatRiytG9sIVI3vBGoRhkWoqqmzAwZpGJJj10Gs0kKTWi/WE12JR4Uy1pPzJJ5/EL37xC6SmpqKpqQnjx49HeXm5r2Y4RQYhBBqP/bzYlWEpXRHoBXbqHW68tuEA3t9+2O8iKQGYPjwDvzu3DxKCXCv3+MQXNzKsRpzdNxFGPZNxIuo5Km0OOD3hUZow0EUE9lXUY9mmEny9vwonfgomxujxy9G9cemITJii4LovSRL0Whk6WYJGlmDQaXCgphGKaP4VoL2ecLUXi4oUqiXlcXFxWLlyJb755ht8//33sNvtGDVqFC666CK1QqJucHq8aHB6YXd44FECe4EN1AI7XkXgw+8P45V1P7WZWDOidxzmXpCL3NSu97Sfqm0lR/Hmt6UorW6EVxHQa2X0T7UEpPoAEVGkaHJ72/QeqyGQRQS+P1iLZZtKsPmno232pVuN+M3ZWZg6ND0iK4doZAlGnQZGrQYaTXMllOZiBG1Xx0yOMYTdYlGRSPUZZeeddx7OO+88tcOgTihK81i/pmPDU4LZ03G6C+wAwNYDR/Hc6iIUVzX4bU+3GnHz+H742YDkkIwb33WoDk+v2o8GpweJMQboNTJcXgUFZfW4Z/lOPHzFMCbmREQhEogiAkIIbP6pBss2lWDnobZz43KSzLj67GxcOCg1omppG3UamI9VRtFp5G7FHg6LRUUDVZPyVatWYcmSJb4FKgYPHox58+axtzxMtCzE0ODywukO3YSbU11gBwAOHW3C0jVFWF9U7bfdqJNx7Tk5+MXo3iHpsdBrZcSbdHhn60E0urzIiDP5LlJGWYN0q4xymxNL1xRhbL8kTnwhIgqy0y0i4FUEvt5fhWWbS1BYaW+zPy8tFteck41xuUlBWU8j0PRaGTF6LfRaGcbTXIxHjcWiopFqSflzzz2H22+/Hb/4xS9w++23AwA2btyIiy++GEuWLMHcuXPVCq1Hcxyr/dqyGINaurrATosGpwf/3ngA7353CJ4Tfh6dMjQNN5zXNySz3DWyhHiTHlaTFrsO2VBUaUeCWd+mV16SOPGFiCiUTrWIgMerYGVBJd7cXIKDR5tOvFuM6B2Ha87JxuichLBdfdOk10Ary9DKErQaCQZt4BfjCfZiUT2Bakn5ww8/jCVLluDWW2/1bbvttttw7rnn4uGHH2ZSHiItK6I1OL1odHnCYrxfi5MtsNPCqwh8uqscL68rxtFGt9/th2ZacesFuSFZGU2SJCSYdbAadb6egJpGF9xeAX0HFV048YWIKHS6W0TA6fbi413l+M+3paisd7Y5/py+ibjmnGyc0Ss8O1UMOg1i9BpYDNqArUjdmUAuFtUTqZaU19bWYurUqW22T548GQsXLlQhop7Dqwg0upqrpTQFqGJKsJy4wE5rOw7W4tkvi1B4xP9nxNRYA278WT9MHJQSkl4Ls16LJIu+TTnFRLOeE1+IiMJEV4sI6DUavLm5BP/derBNZ48EYPzAFMw4JzskhQK6y3QsCTfpNCFLxE90qotFkcp1ypcvX44FCxb4bX///ffx85//XKWoopfbq6DR6UWDy6PqsJRAKK9z4Pm1RVi7r8pvu0Er4+qzs/CrMVkhWYins0V/OPGFiCh8dFZEoK7JBZNei3vf3wW7079il1aWMGlIGn5zVhayEs2hDv2kTHoNzDotTPrAD0mh0FItKR8yZAgeeughrF69Gvn5+QCax5SvW7cOd955J/7v//7Pd+xtt92mVpgRrWVseKPLA5dH/bqwp6vJ5cWyzSV4e0tpmxXSLhqcihvO64tUa/CXKu7qCpyc+EJEFD46KiLQ6Pai2u6Cy6Ogrsk/GTdoZVw8LAO/HtM7JJ8v3RFj0CLOxNWgo4lqSflLL72EhIQE7NmzB3v27PFtj4+Px0svveT7W5IkJuVd1Hp8eJPLG/D64WpRhMDKPRV48etiVDf4j7/OS4/FrRf0x9DM4P9UppNllNscKHU3dXmcHCe+EBGFj9ZFBIqP2GF3euDyth3CGaPX4PKRvXDlqF5BX1yuu7gadPRSLSkvLi5W66GjjsPthc3hRqMzvMeHn4rdh+vwzFdF2Fte77c9KUaPG3/WFxcNSQt66SmNLGF/RT1e23AARZV2uL0COo3U5QWAOPGFiCh8xJl0iDNpcbTR3Wb1zZZhKnPG94fFqPpSLj6SJCHW2NwzfuL8JYoe4fOO64DVasX27dvRr18/tUMJO40uD2ob3RE/Rrw9lTYH/vl1MVb9UOm3XaeR8KsxWZhxdnZIliu2GLXYV1aP//dRAexODxLM+lNaAIgTX4iI1FVQZsO/N5Zgw4/VbfZp5eakVwiB7w/WYn9lfbdX9wwGjdxcqtFqDF0FFVJP2CflIsp6fk+VEAIurwKXR2leWdPlDeqqmmpxuL1469tS/OfbUjhPGAc/fmAKfn9+P6THBX9cnyxJSI41wKzT4M6vd8Du9CDdauQCQEREEUQIgW0ltXhjcwm2ldS22a/TNFfAshq1kCQJAqLTRYRCQaeRYTXpEGvQ8rOlBwn7pLynEkLA4VbQ6PLA4WlOxqP5C4oQAl/+UIl/rC3GEbt/PdjcVAvmXtAfI3rHhySWGIMWSTF6aDUydh6s4wJAREQRRhECG4qqsWxzCQrK6tvs18oS4k06JJh1ftf2ky0iFGyyJCHGoEWsUcvJmz0Uk/IwVGV3osEZXgv5BNMP5TY8+1URdh+2+W1PMOsw+9y+mHpG+mkt/9tVOo2MJIseZv3xZsEFgIiIIodXEVi9t7J5ImdVQ5v9QzKsOLtvAlZsO4T4ExLyFicuIhRsJr0GMQYtLHr2ivd0TMrDUJPL2yMS8mq7Ey9+U4zPdlf4bddpJFw5sheuHZuDGEPw36IaWUJ8q58vW+MCQERE4c/lUfD5ngq89W0JDtc62uwfnR2PGedk48yseOyvaMDH35d1uohQnDG413WLUYt4k561xckn7JPyUKzISKHldHvx3+8O4o1NJXC4/ceNn5ubhJvH90eveFPQ49DIEuJMOliNug57J7gAEBFR+Gpye/HR92V4e0spquxte7bPy03GjHOyMCj9+DW6s0WE6h1u9EuxIDctJuDxSpKEGIOGyTi1K+yT8mgeR93TCCGwdn8VXljzI8pt/j0Z/ZJjcMsF/TEqBLPdu5KMt+ACQERE4afe4caK7Yfx7taDsDn8F/yRJWDioFRcfXY2+ia3Taw7WkTI5W1OyM16DWacnRXQSZ5yq5KGrKJCHQn7pPyTTz5Br1691A6DTlNhpR3PflWIHQfr/LZbjVrMPq8vpg/LCPq4cVmSjtWn7TwZb40LABERhYeaBhf+u/UgPthxGI0u/3LAOo2EqUPT8euzspDZya+trRcRKq1uQL1oHrLSL8WCGWdnBawcolaWEWfSIdbI8eLUuZAm5fPnz+/ysU899RQA4LzzzgtWOBQCNQ0uvLyuGJ/sLPdbpEEjS7j8zEzMzM9BrFEX1BgkSYLVqEW8WX/KiT8XACIiUk+5zYH/fFuKT3aVw3VCuVyjTsYlwzPxyzG9kWwxdPk+R2YnYERWPAorGlDncCHOqEduWkxAeshlSUKiRY9YQ9u5SkQdCWlSvm3bti4dxzdw5HN5FLy37RDe2HgADSf0Zoztl4ibx/dHdqI56HHotTJSY40BGbvHBYCIiEKrpLoRb35bgi8KKtsUQIg1anHFyF64YmQvxJlOrXNHlqSAlz20GLVINOs5TIW6LaRJ+VdffRXKhyMVCCGwvqgaz6/5EYdqm/z25SSaccsF/XFWn8SQxBJn0iExpm19cSIiCm/7KuqxbHMJvt5XhRNnliWYdfjlmCxcOiLDr4StmnQaGWa9pnl8Oidw0ikKj3czRYXiqgY891Uhtp6waprFoMV143Jw6YjMkPQcaGUZKbEGmPRcfIGIKJLsPFiHNzYdwOafjrbZl2Y14DdnZWHaGRlhk/hqZRkJMbqgD8OkniGkSfmVV17Z5WPfe++9IEZCgVTX6Mar63/C/74/jNa/LsoScMnwTFw3rg/izKG5YBl1GqTGGvizIRFRhBBC4NufjuKNTSXYeaiuzf6cRDOuPjsLEwelhs21vWWuUoJZz7lFFDAhfXfHxcV1+V93rF27FpdccgkyMzMhSRJWrFjht99ut+PWW29F7969YTKZMGTIEDz//PN+xzgcDsydOxdJSUmwWCy46qqrUFHhv6hNSUkJpk+fDrPZjNTUVCxYsAAej38ppp7E41Xw7ncH8duXN+P9Hf4J+eicBPxz5hjcftGAkCXksUYdMuKMYXPRJiKijilCYO2+I7j539/h7vd2tknIB6ZZ8NdLh+Cl68Zg8tD0sLm267UyMuONSLIYmJBTQIW0p/yVV14Jyv02NDRgxIgRmD17dru98fPnz8eXX36Jf//73+jTpw8+//xz3HLLLcjMzMSll14KALjjjjvw0Ucf4Z133kFcXBxuvfVWXHnllVi3bh0AwOv1Yvr06UhPT8f69etRVlaGmTNnQqfT4eGHHw7KeYWzTcXVWLr6R5TUNPpt751gws3j+yG/X1JIx3InxugRz1U1iYjCnserYNUPlXhzc2mbzxAAGN47Dteck40xOQlhNSdIkiTEm3SIN+vCKi6KHqqOKfd4PFi9ejWKioowY8YMxMbG4vDhw7BarbBYuj4betq0aZg2bVqH+9evX49Zs2ZhwoQJAICbbroJL7zwAjZv3oxLL70UdXV1eOmll7Bs2TJMnDgRQPMXiMGDB2Pjxo0YO3YsPv/8c+zZswdffPEF0tLScOaZZ+LBBx/EwoUL8de//hV6fc9ICEuqG/HcmiJsLq7x2x6j1+C3+Tm4YmQv6ELYm6HXyki2GGDUcfw4EVE4c7q9+GhnGd76thQVNmeb/ef0TcSMs7PDssqVUadBkkUPg5afNRQ8qiXlBw4cwNSpU1FSUgKn04lJkyYhNjYWjz76KJxOZ5vhJadj3Lhx+OCDDzB79mxkZmZi9erV2LdvH5YsWQIA2Lp1K9xuNy666CLfbQYNGoTs7Gxs2LABY8eOxYYNGzBs2DCkpaX5jpkyZQrmzJmD3bt3Y+TIkW0e1+l0wuk8fuGx2WwBO6dQq3e48fqGA1ix/bBfWSpZAqadkYHZ5/VBQgh7qiVJQoK5eSEg9lgQEF3tjSicdbet1TvceGNTCf6xpgg1jW6/fRKA8wem4JpzspGbGtjShIGg18pIimHhAAoN1ZLy22+/HWPGjMGOHTuQlJTk237FFVfgxhtvDOhj/f3vf8dNN92E3r17Q6vVQpZl/POf/8T5558PACgvL4der0d8fLzf7dLS0lBeXu47pnVC3rK/ZV97Fi9ejPvvvz+g5xJqXkXgw+8P45V1P7VZyvjMrDjMnZCL/iG+kOo0MtKsgak9TtEjGtobUSToblu7+p8bseuQf+KukSVcNDgVV5+dHZI1K7qLHT+kBtWS8q+//hrr169vM+yjT58+OHToUEAf6+9//zs2btyIDz74ADk5OVi7di3mzp2LzMxMv97xQFu0aJHfKqY2mw1ZWVlBe7xA++7AUTy7ugjFVQ1+29OtRtw8vh9+NiA55Bcro06DNKvxlFfmpOgV6e2NuqegoEDtEHySk5ORnZ2tdhgh09229uuzsrHr0C4AzT3PF5+Rjl+flYU0qzHosZ4KrSwj1cphkRR6qiXliqLA6/W22X7w4EHExsYG7HGamppwzz33YPny5Zg+fToAYPjw4di+fTueeOIJXHTRRUhPT4fL5UJtba1fb3lFRQXS09MBAOnp6di8ebPffbdUZ2k55kQGgwEGQ9eX/A0Xh442YemaIqwvqvbbbtJpcM052fjF6N6q9FKb9BqkxRo5253aFantjbqnqa4agIRrr71W7VB8TCYzfvihoMck5t1ta78c3RuvrCtGfr8kXDmqV0iHOnaXSa9Baiw7fkgdqiXlkydPxt/+9jf84x//AND8U5Hdbsd9992Hiy++OGCP43a74Xa7Icv+SaRGo4GiKACA0aNHQ6fTYdWqVbjqqqsAAHv37kVJSQny8/MBAPn5+XjooYdQWVmJ1NRUAMDKlSthtVoxZMiQgMWrpganB//eeADvfncInlbjxiUAU4am4/rz+iDJok7SY9ZrkWY18GdEoh7O3VgPQODMGQuR0neQ2uHAVvYTNr18P6qqqnpMUt5dRp0GX9wxHqVHG/3mJIWbBLMeCTHh+4WBop9qSfmTTz6JKVOmYMiQIXA4HJgxYwb279+PpKQkvPnmm926L7vdjsLCQt/fxcXF2L59OxITE5GdnY3x48djwYIFMJlMyMnJwZo1a/D666/jqaeeAtBcP/3666/H/PnzkZiYCKvVij/84Q/Iz8/H2LFjATR/iRgyZAh++9vf4rHHHkN5eTn+/Oc/Y+7cuRHfO+dVBD7dVY6X1xXj6AmTcM7ItGLuBbnISw/crxfdZTFqkWI5/YRcUQR2H7ahptGFRLMeQzOt7HUnilCW1GwkZuepHQZ1kZrXWkUIFFY0oM7hQpxRj9y0GMitPk90muZVoDlchdSmWlLeu3dv7NixA//5z3+wY8cO2O12XH/99bjmmmtgMpm6dV9btmzBBRdc4Pu7ZazbrFmz8Oqrr+Ktt97CokWLcM0116CmpgY5OTl46KGHcPPNN/tus2TJEsiyjKuuugpOpxNTpkzBc88959uv0Wjw4YcfYs6cOcjPz0dMTAxmzZqFBx544DSfCXXtOFiLZ78sQuERu9/21FgDbjq/Hy7IS1Gtd1qvlZEYo4dZf/pv0/WFVVi6pghFlXa4vQI6jYT+qRbMGd8f43KTAxAtERGFm20lR7FscylKqxvgVgR0soSspBjMODsLo3ISEWfSIYF1xylMqJaUL168GGlpaZg9ezauueYa3/aXX34ZR44cwcKFC7t8XxMmTIAQHf8klp6e3unCRUajEc8++yyeffbZDo/JycnBxx9/3OW4wll5nQPPry3C2n1VftsNWhlXn52FX43JUq3XoGXWe6AWA1pfWIV7lu+E3elBglkPvUaGy6ugoKwe9yzfiYevGMbEnIgoymwrOYqnVu5Do8sLq1EHq0aC2yvw4xE7lqzch4euGIbxealqh0nko1pNuRdeeAGDBrUdDzh06NCA1ignf00uL176phizXtncJiG/cFAqXvvdWZiZ30e1hNys16JXvClgCbmiCCxdUwS704N0qxFGnQayLMGo0yDdaoDd6cXSNUVQwnicIxERdY8iBJZtLkWjy4tkix4GrQxZkmDQyUiLNaDJreDFb4p57aewolpPeXl5OTIyMtpsT0lJQVlZmQoRRTdFCHyxpwL//LoY1Q0uv32D0mNx6wW5GJJpVSm65pq1KbGGgAxVaW33YRuKKu1IMOvb/DwpSRLizToUVdqx+7AtLFeRIyKi7iusaEBpdQOsRh0kNF/7JUmCViNBliQkxOh57aewo1pSnpWVhXXr1qFv375+29etW4fMzEyVoopOuw7V4dnVRdhbXu+3PSlGjxt/1hcXDUnzm/QSaia9BikWA7SawP9wU9PogtsroO/gvg0aGXWKQE2jq939REQUeeocLrgVAaum+bNNI0vQyJKvc4bXfgpHqiXlN954I+bNmwe3242JEycCAFatWoW77roLd955p1phRZVKmwP/+LoYX/5Q6bddp5Hw67OycPVZ2aovHRxn0gW1zGKiWQ+dRoLLq8Aotz1Xp1eBTpaQGMZ1c4mIqHvijHroZAkeRSDGoGnT8cRrP4Uj1ZLyBQsWoLq6GrfccgtcruZvqkajEQsXLsSiRYvUCisqONxe/OfbUrz1bSmcHsVv3/iBKfj9+f2QHqfuSmp6rYxkS/BLUA3NtKJ/qgUFZfVIt8p+Q1iEEKhtdGNwRiyGqjh0h4iIAis3LQZ9UyworLTDYvBPdXjtp3ClWlIuSRIeffRR3HvvvSgoKIDJZMKAAQMivua3moQQ+PKHI/jn1z+ist7pty831YK5F/THiN7x6gR3jCRJiDfpQrZAgyxLmDO+P+5ZvhPlNifizToYNDKcXgW1jW5YDBrMGd+f9cqJiKKERpaQHmvE7RcO4LWfIopqSXkLi8WCs846S+0wIt4P5TY8+1URdh+2+W1PMOtw/Xl9MWVouurLBmtlGanW0C/QMC43GQ9fMcxXp7zuWK3awRmxrFNORBRFzHotUmIN0MgSr/0UcVRPyun0VNmdePHrYny+p8Jvu04j4apRvXHNOdmIMaj/Mht0GqTFBmcyZ1eMy03G2H5JXNGTiCgKyZKERIseVqPObzuv/RRJ1M/W6JQ43V7897uDeGNTCRxu/3Hj5+Um4/fj+6FXfPdWRg2WOJMOiTFtSxKGmixLLH1FRBRlDLrmCl56bfudPrz2U6RgUh5hhBBYu78Kz68pQoXNf9x4v+QY3HJBf4zKTlApOn+yJCHVGvja40RERAAQb9YjwaxTvdOHKBCYLYURRRHYfdiGvRX1sOi1yE2L8SvjVFhpx7NfFWLHwTq/28WZdPjduX0wfViG6uPGW+g0MtKsxg57LoiIiE5VqCp4RYuW/IJDeMIbk/Iwsb6wyjcZxeFWoJWBrKQYzDg7CzlJMXh5XTE+2VmO1gsCa2QJl5+ZiVn5fWAxhs9LGWPQIsViYIMnIqKA0sgS4s16xJl0nR9MAPzzC7dXQKeR0D/VwsmuYSh8MrkebH1hFe5ZvhN2pwcJZj1i9IDLq6Cosh73/28PnB6lTb3xsf0ScfP4/shONKsUdfsSzPqQlTskIqKeI9bYPD8pXH4RjgQn5hd6jQyXV0FBWT3uWb4TD18xjIl5GGFSrjJFEVi6pgh2pwfpViMkSYLT7YXbq6DB5YXbK/yOz04045YJ/XF230SVIm6fLElIiTWERaUXIiKKHjqNjJRYDlXprvbyCwAwyhqkW2WU25xYuqYIY/sl8ZftMMEMSmW7D9tQVGlHgrm5OonD7cWh2iY0urx+x5n1Gsw+tw8uHZGpWlnBjug0zfXHDVpeMImIKHDCpXpXJDoxv2hNkiTEm3UoqrRj92Ebq9OECSblKqtpdMHtFdBrZByubUJ1g6vNMQatjD9OHogJeal+2xUhUFjRgDqHC3FGfZuJoaFg0muQGmvkz4lERBQwnfWOc+Ji51rnF+0xaGTUKQI1jW3zDlIHk3KVJZr10GkkuLwKTsynzXoNrEYdFEVBZpz/2PFtJUexbHMpSqsb4D62SlnLxNCRISqJGGfSIcliCMljERFRz9BZ7zgnLnZN6/zCKLf9cuP0KtDJEhLNnAcWLsJrHEQPNDTTiv6pFhxtdCPFYoBWlqDTSMiMMyIzzgCnx4uspBjkpsX4brOt5CieWrkPPx6xw6TXIilGD5Neix+P2PHUyn3YVnI0qDFLx8aPMyEnIqJA0cgSMuNNSLIYTpqQ37N8JwrKbIgxaJF6bC5Ty8TF9YVVIY46fLXOL4Twn58mhEBtoxv9Uy0YmmlVKUI6EZNylcmyhDnj+8Ni0OCI3YWMeCNyEszQamRUN7hh1msw4+ws37AURQgs21yKRpcXyRY9DFoZsiTBoJWRbNGj0eXFss2lUE5ogIGilWVkxBkRa2Q5KiIiCgydRkZGnOmkkzlPnLho1GkgyxKMOg3SrQbYnV4sXVMERQnO51+kaZ1flNucaHJ7oSgCTW4vym1OWAwazBnfn8N+wgiT8jAwLjcZD18xDIMzYuH1CtQ0ueFwedAvxYL5kwb6DUcprGhAaXUDrEYdJJwwcQMSYo06lFY3oLCiIeBxGnUa9Eo4+UWTiIioO4w6DTLjTZ0uNtediYvUrHV+0ej0oNLuRKPTg8EZsSyHGIY4pjxMjMtNxth+SSdd0RMA6hwuuBUBq6b9b7Z6jYR6IVDnCOzEDatJhyTOgCciogDqzmcLJy6emtb5BSfGhjcm5WFEliUM6x2HeLMObq/S7jFxRj10sgS3V8CgbdugXF4BnSQhzhiYiRuSJCHJooeVw1WIiChANHLz3CSzvutpCCcunrqW/ILCG4evRJjctBhkJcXA5nBD4ISJGxCod7jbTAw9VRpZQkackQk5EREFjMWoRe8Ec7cScoATFyn6MSmPMLIkYcbZWTDrNaiyu+DwKFCEgMOjoMruajMx9FR1ZdINERFRV2k1MtLjjKe8tgUnLlK0Y1IegUZmJ2D+pIHol2KBw+VBdaOrw4mhp6I5ITd2OukmlBRFYOfBOqzZdwQ7D9Zxdj0RUYTJjDN22Dve1Ws8Jy5SNOOY8gg1MjsBI7LiA76ip17b3EMeTit0cqEIIqLIF6jFgDhxkaIVk/IIJksSBqZbAnZ/Bp0GGVZjWF3YWhaKsDs9SDDrodfIcHkV30IR7BkhIopcp3qN58RFikbhMz7hNKxduxaXXHIJMjMzIUkSVqxY0eaYgoICXHrppYiLi0NMTAzOOusslJSU+PY7HA7MnTsXSUlJsFgsuOqqq1BRUeF3HyUlJZg+fTrMZjNSU1OxYMECeDyeYJ9eSBjDMCHnQhFERNGL13gif1HRU97Q0IARI0Zg9uzZuPLKK9vsLyoqwnnnnYfrr78e999/P6xWK3bv3g2j0eg75o477sBHH32Ed955B3Fxcbj11ltx5ZVXYt26dQAAr9eL6dOnIz09HevXr0dZWRlmzpwJnU6Hhx9+OGTnGgwmvQZpseGVkAPdWyiCPSZEpKaCggK1Q/CTnJyM7OxstcM4KV7jifxFRVI+bdo0TJs2rcP9f/rTn3DxxRfjscce823r37+/7//r6urw0ksvYdmyZZg4cSIA4JVXXsHgwYOxceNGjB07Fp9//jn27NmDL774AmlpaTjzzDPx4IMPYuHChfjrX/8KvT4y66LGGLRIjTWE5aJAXCiCiMJdU101AAnXXnut2qH4MZnM+OGHgrBOzHmNJ/IXFUn5ySiKgo8++gh33XUXpkyZgm3btqFv375YtGgRLr/8cgDA1q1b4Xa7cdFFF/luN2jQIGRnZ2PDhg0YO3YsNmzYgGHDhiEtLc13zJQpUzBnzhzs3r0bI0eODPWpnTaLQYuUME3IAS4UQUThz91YD0DgzBkLkdJ3kNrhAABsZT9h08v3o6qqKqyTcl7jifxFfVJeWVkJu92ORx55BP/v//0/PProo/j0009x5ZVX4quvvsL48eNRXl4OvV6P+Ph4v9umpaWhvLwcAFBeXu6XkLfsb9nXHqfTCafT6fvbZrMF8MxOT6xRh5RYg9phnFTLQhEFZfVIt8p+Xx5aFooYnBHLhSIIQHi3N4p+ltRsJGbnqR1GSASqrfEaT+QvKiZ6noyiNC9Xf9lll+GOO+7AmWeeibvvvhs///nP8fzzzwf1sRcvXoy4uDjfv6ysrKA+XlfFmcI/IQe4UAR1T7i2N6JoE6i2xms8kb+oT8qTk5Oh1WoxZMgQv+2DBw/2VV9JT0+Hy+VCbW2t3zEVFRVIT0/3HXNiNZaWv1uOOdGiRYtQV1fn+1daWhqIUzplWllGmtWIJEv4J+QtuFAEdVW4tTeiaBXItsZrPNFxUT98Ra/X46yzzsLevXv9tu/btw85OTkAgNGjR0On02HVqlW46qqrAAB79+5FSUkJ8vPzAQD5+fl46KGHUFlZidTUVADAypUrYbVa2yT8LQwGAwyG8EiALUYtkmMMEdnjwIUiqCvCqb0RRbNAtzVe44maRUVSbrfbUVhY6Pu7uLgY27dvR2JiIrKzs7FgwQL8+te/xvnnn48LLrgAn376Kf73v/9h9erVAIC4uDhcf/31mD9/PhITE2G1WvGHP/wB+fn5GDt2LABg8uTJGDJkCH7729/iscceQ3l5Of785z9j7ty5YZ0ISJKElFgDLIbIfqm5UAQRUfTiNZ4oSpLyLVu24IILLvD9PX/+fADArFmz8Oqrr+KKK67A888/j8WLF+O2225DXl4e3n33XZx33nm+2yxZsgSyLOOqq66C0+nElClT8Nxzz/n2azQafPjhh5gzZw7y8/MRExODWbNm4YEHHgjdiXaTJElItxph0red1U5ERERE4SMqkvIJEyZAiJOv+DV79mzMnj27w/1GoxHPPvssnn322Q6PycnJwccff3zKcYaSLElIj2teIY2IiIiIwltUJOXkTyNLSLMyISciIiKKFEzKo4xGbu4hN2iZkBMRERFFCiblUUQry0iPM0KvjfpKl0RERERRhUl5lDDpNUiNNULDElJEREREEYdJeRSIM+mQGKP3W6KYiIiIiCIHk/IIJkkSUmMNiInwGuREREREPR2zuQglSRLSrAaY9XwJiYiIiCIdZwRGICbkRERERNGFSXmEaRmywoSciIiIKHows4sgsiQhlT3kRERERFGH2V2E0Moy0uIMXBSIiIiIKAoxKY8ArEFOREREFN2YlIc5q0mHZItB7TCIiIiIKIiYlIexeLMeiTF6tcMgIiIioiBjUh6mEmP0iDczISciIiLqCZiUh6GEGD0sXKWTiIiIqMdgnfIwxISciIiIqGdhUk5EREREpDIm5UREREREKmNSTkRERESkMiblREREREQqY1JORERERKQyJuVERERERCpjUk5EREREpDIm5UREREREKuMqNSEkhAAA2Gw2lSMhCl+xsbGQJOm076cr7c1utwMA6g7+CMXjPe3HPF32ykMAAFv5TzAYDCpHE37xAOEXU7jFAwD15QcANL+/O/u8CUR742cbUee60tYk0dKaKOgOHjyIrKwstcMgCmt1dXWwWq2nfT9sb0SdC0R7Y1sj6lxX2hqT8hBSFAWHDx8OWE9guLDZbMjKykJpaWlAkinqXDQ/54FqH+HW3qLpNeO5hKdTOZdAtI+O2lo0Pbdq4PN36sLxuetKW+PwlRCSZRm9e/dWO4ygsVqtYfPm7yn4nHcsXNtbNL1mPJfwFOpz6aytRdNzqwY+f6cu0p47TvQkIiIiIlIZk3IiIiIiIpUxKafTZjAYcN9994VN5YGegM955Imm14znEp7C7VzCLZ5Iw+fv1EXqc8eJnkREREREKmNPORERERGRypiUExERERGpjEk5EREREZHKmJQTEREREamMSXkICSFgs9nAubVEwcf2RhQabGtEgcGkPITq6+sRFxeH+vp6tUMhinpsb0ShwbZGFBhMyomIiIiIVMaknIiIiIhIZUzKiYiIiIhUxqSciIiIiEhlTMqJiIiIiFTGpJyIiIiISGVMyomIiIiIVMaknIiIiIhIZVq1AyAiIqLAcXkU6LXh1+dWUlKCqqoqtcPwSU5ORnZ2ttphEPkwKSciIooSVXYnJABJFoPaofgpKSnBoEGD0dTUqHYoPiaTGT/8UMDEnMIGk3IiIqIIJ4TAkXon7E4P4kw6tcNpo6qqCk1NjThn9n2wZvRROxzYyn7CppfvR1VVFZNyChtMyomIiCKYEAIVNicaXR61Q+mUNaMPErPz1A6DKCwxKSciIopQXkWg3OaA0+1VOxQiOk1MyomIiCKQx6ugrM4Bt1dROxQiCgAm5URERBHG5VFQYWNCThRNmJQTERFFEKfHi/I6B7yKUDsUIgogJuVEREQRwuFuTsgVwYScKNowKSciIooADrcXZXUOCCbkRFEp/Jb8IiIiIj9OjxcVNibkRNGMSTkREVEY83gVVNQ5OYacKMr12KR86dKlGD58OKxWK6xWK/Lz8/HJJ590ePyrr74KSZL8/hmNxhBGTEREPY1yrA65R2GVFaJo12PHlPfu3RuPPPIIBgwYACEEXnvtNVx22WXYtm0bhg4d2u5trFYr9u7d6/tbkqRQhUtERD1My8JALg8TcqKeoMcm5Zdcconf3w899BCWLl2KjRs3dpiUS5KE9PT0UIRHREQ9mNuroJwLAxH1KD02KW/N6/XinXfeQUNDA/Lz8zs8zm63IycnB4qiYNSoUXj44Yc7TOABwOl0wul0+v622WwBjZuIjmN7o2jR5PKisj5865CzrREFR48dUw4AO3fuhMVigcFgwM0334zly5djyJAh7R6bl5eHl19+Ge+//z7+/e9/Q1EUjBs3DgcPHuzw/hcvXoy4uDjfv6ysrGCdClGPx/ZG0cDmcKPcFr4JOcC2RhQskujB9ZVcLhdKSkpQV1eH//73v3jxxRexZs2aDhPz1txuNwYPHoyrr74aDz74YLvHtNebkJWVhbq6Olit1oCdBxGxvVHkq7I7YWtyn/b9xJl0SLIYAhBR+06lrX333XcYPXo0Jv3pFSRm5wUttq6qKdmLlQ/9Dlu3bsWoUaPUDocIQA8fvqLX65GbmwsAGD16NL799ls8/fTTeOGFFzq9rU6nw8iRI1FYWNjhMQaDAQZD8C6MRHQc2xtFKkURqKx3otHlUTuULmFbIwqOHj185USKovh9+z8Zr9eLnTt3IiMjI8hRERFRtHJ7FRyqbYqYhJyIgqfH9pQvWrQI06ZNQ3Z2Nurr67Fs2TKsXr0an332GQBg5syZ6NWrFxYvXgwAeOCBBzB27Fjk5uaitrYWjz/+OA4cOIAbbrhBzdMgIqII5XA3r9IZzuPHiSh0emxSXllZiZkzZ6KsrAxxcXEYPnw4PvvsM0yaNAkAUFJSAlk+/kPC0aNHceONN6K8vBwJCQkYPXo01q9f36Xx50RERK3ZnR4cqXeiB0/rIqIT9Nik/KWXXjrp/tWrV/v9vWTJEixZsiSIERERUU9Q1+RGtb1rQyWJqOfosUk5EQWWogjsPmxDTaMLiWY9hmZaIctc9ZaotaMNLhxtdAXt/hUhUFBWD6+wsR0SRRgm5RR1mByG3vrCKixdU4SiSjvcXgGdRkL/VAvmjO+PcbnJaodHPUy4XgMCVfKwI9tKjmLZ5lIcrGmEIsB2SBRhmJRTVGFyGHrrC6twz/KdsDs9SDDrodfIcHkVFJTV457lO/HwFcP43FPIhOM1QAiBI/VO2J3Bq7CyreQonlq5D40uL+LNeph1GrZDogjDkogUNVqSw4IyG2IMWqTGGhBj0Po+lNYXVqkdYtRRFIGla4pgd3qQbjXCqNNAliUYdRqkWw2wO71YuqYICqtLUAiE4zVAUQTKbY6gJuSKEFi2uRSNLi+SLXoYtTLbIVEEYlJOUYHJoTp2H7ahqNKOBLMekuQ/PECSJMSbdSiqtGP3YZtKEVJPEY7XAK8iUGZzoMnlDerjFFY0oLS6AVajDhLYDokiFZNyigpMDtVR0+iC2yug17R/KTFoZLgVgZogTmwjAsLvGuDxKjhc2wSnO7gJOQDUOVxwK81DddrDdkgUGZiUU1RgcqiORLMeOo0El1dpd7/Tq0AnS0g060McGfU04XQNcHkUHK51wN1Buwi0OKMeOlmC29v+rwBsh0SRgUk5RQUmh+oYmmlF/1QLjja62yyCIoRAbaMb/VMtGJppVSlC6inC5RrgcHtRVtcEjxKahBwActNikJUUA5vDDQG2Q6JIxaScogKTQ3XIsoQ54/vDYtCg3OZEk9sLRRFocntRbnPCYtBgzvj+YVGOjqJbOFwDmlxelNc54A3x3BVZkjDj7CyY9RpU2V1weBS2Q6IIxKScogKTQ/WMy03Gw1cMw+CMWDQ6Pai0O9Ho9GBwRizLsFHIqH0NaHB6UG5zQBHqTCYfmZ2A+ZMGol+Khe2QKEKxTjlFjZbksKVGcZ0ioJMlDM6IZZ3yIBuXm4yx/ZLCcsEW6jnUugbYHG5U1TuDct/dMTI7ASOy4lFe54RXCLZDogjDpJyiCpND9ciyhGG949QOg3q4UF8DahtdqGkInwnkstT8JSTJYlA7FCLqJiblFHWYHBL1bKG6BlTbnahrcgf9cYioZ2BSTkRE1E1H6p2odzAhJ6LAYVJORETURUIIHLE7YXd41A6FiKIMk3IiIqIuUBSBynonGl1MyIko8JiUExERdcLjVVBuc8DlCd2iQETUszApJyIiOgmXR0GFzQF3B6uFhhtFCAghIEmsOkUUSbh4EBERUQccbi/K6poiJiE/VNuEG1/fig92HFY7FCLqJvaUhyGvIqBhXW0iIlXZnR4cqXdCqLRKZ3coQuB/Ow7jhTU/wuFR8Jf3d2NsvySkWY1qh0ZEXcSe8jBUVtcEG0ttERGppq7RjUqbIyIS8gqbA3f993s8vaoQjmNj3uua3Pgfe8uJIkpE9pR7vV6sWLECBQUFAIChQ4fi0ksvhUajUTmywBACqKp3otHpRUqsgb3mREQhFCmLAgkh8Omucjy7ugiNLq9ve7xZh4cuH4bpwzNUjI6IuiviesoLCwsxZMgQzJw5E++99x7ee+89XHvttRg6dCiKioq6fD9Lly7F8OHDYbVaYbVakZ+fj08++eSkt3nnnXcwaNAgGI1GDBs2DB9//PHpns5JNbo8OHi0EQ1Olt8iIgqFynpHRCTkVXYn7lm+C49/vs8vIT83Nwlv3zSWCTlRBIq4pPy2225Dv379UFpaiu+++w7fffcdSkpK0LdvX9x2221dvp/evXvjkUcewdatW7FlyxZMnDgRl112GXbv3t3u8evXr8fVV1+N66+/Htu2bcPll1+Oyy+/HLt27QrUqbXLqwhU2Bw4Uu+EooT/z6hERJFIiOZrbbgvCiSEwKqCClz/2hZsKq7xbY8xaHD3tEF44NKhSLIYVIyQiE5VxA1fWbNmDTZu3IjExETftqSkJDzyyCM499xzu3w/l1xyid/fDz30EJYuXYqNGzdi6NChbY5/+umnMXXqVCxYsAAA8OCDD2LlypV45pln8Pzzz5/i2XRdvcMNh7t5OItRFx3DdIiIwoGiCFTUO9DUqsc5HB1tdOFvX+zH1/ur/Laf1ScBf5ych5RYJuNEkSziknKDwYD6+vo22+12O/R6/Sndp9frxTvvvIOGhgbk5+e3e8yGDRswf/58v21TpkzBihUrOrxfp9MJp9Pp+9tms51SfC3cXgWHa5sQb9YjwaxjDVqiVgLd3qhn8CoC5TYHnO7wTsjX7juCJV/s9xtaY9JpMGdCf0wflh7SzwO2NaLgiLjhKz//+c9x0003YdOmTRDHFkjYuHEjbr75Zlx66aXduq+dO3fCYrHAYDDg5ptvxvLlyzFkyJB2jy0vL0daWprftrS0NJSXl3d4/4sXL0ZcXJzvX1ZWVrfi60htowuHapu4shxRK8FqbxS9PMc6OsI5Ibc1ufHQRwX46//2+CXkZ2bF46VZY/Dz4Rkh76BhWyMKjohLyv/v//4P/fv3R35+PoxGI4xGI84991zk5ubi6aef7tZ95eXlYfv27di0aRPmzJmDWbNmYc+ePQGLddGiRairq/P9Ky0tDdh9uzwKDtU2RcSEJKJQCGZ7o+jj8ig4XBveq3Ru/LEa17+2Bat+qPRtM2hl/GFiLp745XCkx6lTg5xtjSg4Im74Snx8PN5//33s378fP/zwAwBg8ODByM3N7fZ96fV63+1Gjx6Nb7/9Fk8//TReeOGFNsemp6ejoqLCb1tFRQXS09M7vH+DwQCDIXhj/IQQqLY70ejyIMVigFYTcd+xiAIm2O2NoofD7UWFzQFvmE6eb3B68NzqInyyy/+X2KGZViycmofeCWaVImvGtkYUHBGXlLcYMGAABgwYEND7VBTFb5xca/n5+Vi1ahXmzZvn27Zy5coOx6CHUpPLi0O1TUiyGGAxROxLSkQUdE2u5oRcCdNFgbYeOIrHP9uLyvrjn0U6jYTZ5/bFL0b35roVRFEsIjK4+fPn48EHH0RMTEybyZYneuqpp7p0n4sWLcK0adOQnZ2N+vp6LFu2DKtXr8Znn30GAJg5cyZ69eqFxYsXAwBuv/12jB8/Hk8++SSmT5+Ot956C1u2bME//vGP0zu5APEqApU2BxoNWiRbDJB54SYi8nO0wYWjjS61w2hXk8uLf6z9Ee+fsApnXlosFk7LQ5+kGJUiI6JQiYikfNu2bXC73b7/D4TKykrMnDkTZWVliIuLw/Dhw/HZZ59h0qRJAICSkhLI8vHhIOPGjcOyZcvw5z//Gffccw8GDBiAFStW4IwzzghIPIFid3rgcCtItOjZa05EhOahfpX1zrBdiG3nwTo8+tkPOFzr8G3TyBJm5ufg6rOyODSRqIeIiKztq6++avf/T8dLL7100v2rV69us+2Xv/wlfvnLXwbk8YPJoyiotDlQr9cgKcYAvTbyL+iKIrD7sA01jS4kmvUYmmnlrwFEEULN9hvONcidbi9eXvcT/rv1IFoPpumXHIO7pw1CbqpFtdiIKPQiIilvbfbs2Xj66acRGxvrt72hoQF/+MMf8PLLL6sUWfhpcnlxyN2EOJMuouuary+swtI1RSiqtMPtFdBpJPRPtWDO+P4Yl5usdnhEdBJqtl8hmmuQO8Kw5GFBmQ2PfroXJTWNvm2yBFx9djZm5udAx95xoh4n4lr9a6+9hqampjbbm5qa8Prrr6sQUXgTQqC20YXDdY6IrGu+vrAK9yzfiYIyG2IMWqTGGhBj0KKgrB73LN+J9YVVnd8JEalCzfYrhECFzRl2CbnLo+Clb4rxhze3+SXk2Ylm/P3qkbj+vL5MyIl6qIjpKbfZbL7Fgurr62E0Hq/P6vV68fHHHyM1NVXFCMOb091coSUxRo84k07tcLpEUQSWrimC3elButXo6+k3yhqkW2WU25xYuqYIY/slcSgLUZhRs/229JCH25CVwko7Hvn0B/x4pMG3TQLwi9G9MfvcPjDoNOoFR0Sqi5ikPD4+HpIkQZIkDBw4sM1+SZJw//33qxBZ5Gipa97g9CDJoodBG94fALsP21BUaUeCWd9m6I0kSYg361BUacfuwzYM6x2nUpRE1B612m84jiH3eBW8ubkUr2884FcbPTPeiLum5GF473j1giOisBExSflXX30FIQQmTpyId999F4mJib59er0eOTk5yMzMVDHCyOFwe3HoaBMSzHokxOjVDqdDNY0uuL0C+g5+yjVoZNQpAjVhWuKMqCdTo/16leYecmcYDVn5qboBj36yF3sr6v22XzYiEzed3w8mfXh3jhBR6ERMUj5+/HgAQHFxMbKysvzKFdKpOdrogtOjICXWEJYLUiSa9dBpJLi8Coxy2w8up1eBTpaQaA7fLxZEPVWo26/bq6C8zgG3NzzmzngVgXe2HsQr64rh9h7vHU+NNWDBlDyMzklQMToiCkcRk5S3yMnJAQA0NjaipKQELpd/L8vw4cPVCCtiNbo8OHRUQarVAGOYjWccmmlF/1QLCsrqkW6V/X4Cb57A6sbgjFgMzbSqGCURtSeU7dfhbl6ls/XQEDUdPNqIxz7di12HbX7bLz4jHXMm9EcM15AgonZE3JXhyJEj+N3vfodPPvmk3f1eb/j8bBkpPIqCsjoHEsw6xIdRr7MsS5gzvj/uWb4T5TYn4s06GDQynF4FtY1uWAwazBnfn5M8icJQqNqvw+1FeZ0DilA/IVeEwIpth/HPr3+Es1W1q6QYPe6cPBBj+yWpGB0RhbuIGwMyb9481NbWYtOmTTCZTPj000/x2muvYcCAAfjggw/UDi9iCSFQ0+DC4dqmsCqdOC43GQ9fMQyDM2LR6PSg0u5Eo9ODwRmxePiKYaxTThTGgt1+m1zhk5CX1znwx3e+xzNfFfol5BcNTsVLs8YwISeiTkVcT/mXX36J999/H2PGjIEsy8jJycGkSZNgtVqxePFiTJ8+Xe0QI5rjWOlEq1GLBLM+LHqhx+UmY2y/JK7oSRSBgtV+bQ43qu0uCJUTciEEPt5ZjudWF6Gp1QTTeJMO8yYNwPkDUlSMjogiScQl5Q0NDb565AkJCThy5AgGDhyIYcOG4bvvvlM5uugghEBdkxsNTi8SLXpYwmD8oyxLLHtIFKEC2X6FEKiyu1DvcAfk/k7HkXonnly5D5uLa/y2/2xAMuZdNAAJYTQckIjCn/rZVjfl5eVh79696NOnD0aMGIEXXngBffr0wfPPP4+MjAy1w4sqHkVBpc0Bm04TEXXNKXwJIdrUqibqLrdXQYVN/dWJhRBYWVCJZ74shN3p8W2PNWpx28RcTByUyvc7EXVbxCXlt99+O8rKygAA9913H6ZOnYo33ngDer0er776qrrBRamWuuZWkw4xei2MOpkfONQpp8cLt1fA6fbC7vSgd4I5LEtvUmQIlworNQ0uLPliH9YVVvttH9svEfMnDUSyxaBSZEQU6SIuKb/22mt9/z969GgcOHAAP/zwA7Kzs5GczEl/wWRrcsPW5IYsSbCadIgz6ZhkURsuj4KaBhcaXZ7ODybqArvTgyP1TtXHj6/ZdwRLVu6DzXH8vW3WazB3Qn9MPSOdnRVEdFoiKil3u90YNGgQPvzwQwwePBgAYDabMWrUKJUj61kUIVDb2DymMzFGj1ijTu2QgkZRBCeYdpFXETja6EK9w6N68kTRo67RjeoG52nfjyIECisaUOdwIc6oR25aDOQuJtF1TW7836r9+GrvEb/to7Lj8ccpeUi3Gk87PiKiiErKdTodHA6H2mHQMV5F4Ei9E40uL5ItwVkVVM2keH1hFZauKUJRpR1ur4BOI6F/qgVzxvdnKcZjhBBwehTUOzywO5mMR6Jw/uIZqIR8W8lRLNtcitLqBrgVAZ0sISspBjPOzsLI7JOvrLmusApPrdyHo43HJ5YatTJ+P74fLhmR2eXEnoioMxGVlAPA3Llz8eijj+LFF1+EVhtx4UelBqcHDrcXSRZDQCu1qJkUry+swj3Ld8Lu9CDBrIdeI8PlVVBQVo97lu/s0TXSFUXA5nCjye2Fw60wEY9g4fzF0+YIXEL+1Mp9aHR5YTXqYNVIcHsFfjxix1Mr92H+pIHtJuZ2hwfPri7EZ7sr/LYP6xWHu6bmoVe86bRjIyJqLeKy2m+//RarVq3C559/jmHDhiEmJsZv/3vvvadSZD2bVxGotDnQYNAGpNdczaRYUQSWrimC3elButXoGydqlDVIt8ootzmxdE0RxvZLCpsexVBpdHlQVe+CRwmfBabo1ITrF89AljxUhMCyzaXHfs3TQ0JzezVoJSRb9Kiyu7BscylGZMX79Xh/+1MNnvhsH47Yj38p0Gkk3HBeX1w5qjfn0hBRUERcUh4fH4+rrrpK7TCoA4HoNVc7Kd592IaiSjsSzPo2E7ckSUK8WYeiSjt2H7b1iNrpLo8Cu9ODBqcHbi+T8WigdhvriMeroKLeCWerRXhOR2FFA0qrG2A16nwJeQsJEmKNOpRWN6CwogED0y1ocnnx/Noi/G9Hmd+xeemxuHtqHnKS/DuBiIgCKeKS8ldeeaVLx61btw5jxoyBwcDyVKHW0mveaNAi6RR6zdVOimsaXXB7BfQaud39Bo2MOkWgptEV8McOF0II2J0e2ByegCVIFD7UbmPtcXq8qKhzBvRXmDqHC25FwKpp/xqk10ioFwJ1Dhd2lNbisc/2oqzu+LwlrSxh1rgc/OasbPaOE1HQRVxS3lXTpk3D9u3b0a9fP7VD6bHsTg+a3M2TQGO60WuudlKcaNZDp5Hg8iowym0XTHJ6FehkCYlRulqfw+3FkXone8WjmNpt7EROjxfldYGvQR5n1EMnN48hN2jbJtUur4AWwGe7K/DlD5V++/qnxODuaYPQP8US0JiIiDrS/hU5CnDyWXjwKgIVNgfK6xxdrs7ROiluT7CT4qGZVvRPteBoo7tNvEII1Da60T/VgqGZ1qA8vloURaDK7sTh2iYm5FFO7TbWWpMrOAk5AOSmxSArKQY2hxsCJ7RlCBxtcMLm9Pol5LIEXDs2G89dM4oJORGFVNQm5SezePFinHXWWYiNjUVqaiouv/xy7N2796S3efXVVyFJkt8/o5G1abuq0eVBpc2Bg0ebOl0iW+2kWJYlzBnfHxaDBuU2J5rcXiiKQJPbi3KbExaDBnPG94+qSZ6NLg8OHm2Cren0J9dR+FO7jbWoaXChrK4paKt0ypKEGWdnwazXoMrugsOjQBHNbbmkpgn1Ti+cra5HOYlmPDtjFGaf2xe6Dn5FICIKlh551VmzZg3mzp2LjRs3YuXKlXC73Zg8eTIaGhpOejur1YqysjLfvwMHDoQo4ujh9iooq2uC3dnxao/hkBSPy03Gw1cMw+CMWDQ6Pai0O9Ho9GBwRmxUlUNUFIHK+uZfMlhRpedQu40J0TzvpDYEw2NGZidg/qSB6JdigcPlQUW9E4frHH7JuATg12N644XfjkZeemzQYyIiak/Ujik/mU8//dTv71dffRWpqanYunUrzj///A5vJ0kS0tPTgx1e1GuZCGrTaZBk0cOgbTtuuyUpbqmhXHdswY/BGbEhq6E8LjcZY/slhe3CKqdDUQQa3V7U2FnesKdSq40dX3Ss4y/mgTYyOwFDM6145ssifLyrDK075nvFm7Bwah7O6BX9lZSIKLxFbVJ+YkWBk6mrqwMAJCYmnvQ4u92OnJwcKIqCUaNG4eGHH8bQoUM7PN7pdMLpPF7n1mazdTmmnsDh9uJwrQMJZh3i2xm7Gg5JsSxLUVP2UAiBRpcXdqcHjS5v1M27YHvrvlC3sQanB1V2Z9CGq3SkuKoBj3zyA/ZX2v22X35mJm48vx9MurYdA9QxtjWi4IjapLyrCYeiKJg3bx7OPfdcnHHGGR0el5eXh5dffhnDhw9HXV0dnnjiCYwbNw67d+9G7969273N4sWLcf/9959S/D2FEAI1DS40uLxIsRig1/qPqIqmpDjUHG4vnG4FTk/zuFmPIqIuEW+N7e3UhKqN1Ta6UNMQ2jKiXkXg7S2leHX9T3B7j7/306wGLJiSh1HtrORJnWNbIwoOSUTYp/TEiRPx3nvvIT4+3m+7zWbD5Zdfji+//LJb9zdnzhx88skn+OabbzpMrtvjdrsxePBgXH311XjwwQfbPaa93oSsrCzU1dXBau14AlVpTWOPrH4hSRKsRi3izXrWBO4mIQRcXgVur0Cjy4MmlzfkvZGdyUmKCerreqrtjYLvSL0zICt0dkdJTSMe+/QH7Cmr99s+fVgGbh7fr1tlWiNNnEmHJEvw1ug4lbb23XffYfTo0Zj0p1eQmJ0XtNi6qqZkL1Y+9Dts3boVo0aNUjscIgAR2FO+evVquFxte1scDge+/vrrbt3Xrbfeig8//BBr167tVkIOADqdDiNHjkRhYWGHxxgMBi5e1A1CCNQ1uWFzeKDXyjBqZZj0Ghi1mqgYxx1oTo8XDpeCJrcXTe7oG47SXWxv4UcIgQpbaMePK0Lgve8O4cVviv0qPSVZ9Pjj5IE4p29SyGKJVmxrRMERMUn5999/7/v/PXv2oLy83Pe31+vFp59+il69enXpvoQQ+MMf/oDly5dj9erV6Nu3b7fj8Xq92LlzJy6++OJu35ZOTggBp9sLp9uLuiY3JEmCXivDpNPApNPAqJO7NWcgGihKc0+4092chDs94dcTTtSax6ug3ObotARqIB2ubcLjn+3FjoN1ftsnDUnDrRf0R6xRF7JYiIi6K2KS8jPPPNNXH3zixIlt9ptMJvz973/v0n3NnTsXy5Ytw/vvv4/Y2Fhfgh8XFweTyQQAmDlzJnr16oXFixcDAB544AGMHTsWubm5qK2txeOPP44DBw7ghhtuCNAZUkdaJ+m1ADSyBLNeC6NOhkGraTMOPZIIIeD0KHB6FHgVAUUICNG8vLdWI8HpUdDk8vbI4UwUuZpcXlTWB2dBoPYIIfDh92VYuqYIDvfxtpJg1uGOiwbivAHRUcKUiKJbxCTlxcXFEEKgX79+2Lx5M1JSUnz79Ho9UlNTodF0bQb90qVLAQATJkzw2/7KK6/guuuuAwCUlJRAlo8ne0ePHsWNN96I8vJyJCQkYPTo0Vi/fj2GDBlyeidG3eZVBOodbtQ7mv+WJQkxBi2SLfqw70F3uL1ocjUPN/EqIuonX1LPU213oi6Ei1AdqXfi8c/2YsuBo37bzx+YjDsuHIg4M3vHiSgyRExSnpOTA6C5Wsrp6koStHr1ar+/lyxZgiVLlpz2Y1PgKaI5SXd6vEgw6yFJgE4jh8WKfG6vgkaXF65jPd6sCU7RSgiBynonGk6yMFigH+/zPRV45qtCNDi9vu1Woxa3XTgAF+SlhP2XdCKi1iImKW+xePFipKWlYfbs2X7bX375ZRw5cgQLFy5UKTJSm8ujoMLm8P2t08gw6GToNTK0mub/6jRS0D+ohRBwuBXUO9wnXbmUKFp4j60M2+Tydn5wANQ0uPDk5/uw4cdqv+35/ZIwf9KAoFYeISIKlohLyl944QUsW7aszfahQ4fiN7/5DZNy8nF7lXbHYmtlGbJ8LGnXyr4yfYoCeMXxcd3NybwEgeakw+NVIADoZBkCAl5FNB/fcrtj42cVITgJk3oMh9uLSpszZL8CffVDJZ5etR82x/EvvDF6DW6dmIvJQ9LYO05EESvikvLy8nJkZGS02Z6SkoKysjIVIqJI41EUQGnuWW9wdn48EbXvaIMLtU3ukMyLqGt042+r9mPNviN+20fnJGDB5IFItRqDHgMRUTBFXFKelZWFdevWtSljuG7dOmRmZqoUFRFRzxHq4Srf7K/Cki/24Wjj8QmkRp2MOeP74+fDM9g7TkRRIeKS8htvvBHz5s2D2+32lUZctWoV7rrrLtx5550qR3d6FEVg92Eb9lbUw6LXIjctBjI/bIjCSks7rWl0IdGsx9BMa49a3Kpl7kYoynTWO9x45qsirNxT4bd9eO843DUlD5nxpqDHQEQUKhGXlC9YsADV1dW45ZZbfCt7Go1GLFy4EIsWLVI5ulO3vrAKS9cUoajSDodbgVYGspJiMOPsLIzMTlA7PCKCfzt1ewV0Ggn9Uy2YM74/xuVGfy3sRpcHlTYnlBAMV9lcXIMnPt+LKvvxFZz1Whk3nNcXV47qxQ4LIoo6EZeUS5KERx99FPfeey8KCgpgMpkwYMCAiF7yd31hFe5ZvhN2pwcJZj1i9IDLq+DHI3Y8tXIf5k8ayMScSGUntlO9RobLq6CgrB73LN+Jh68YFrWJuVcRqG10haT+eKPLg6Wrf8RHO/3nCA3JiMVdUwchO9Ec9BiIiNQQcUl5i/LyctTU1OD888+HwWCAECIixxUqisDSNUWwOz1ItxohSRJcHgUGSUayRY8quwvLNpdiRFY8e4aIVNJeOwUAo6xBulVGuc2JpWuKMLZfUtQNZbE7Pai2O0NSUWhbyVE8/tk+lPuVNpUwK78Pfn1Wlq9SEhFRNIq4pLy6uhq/+tWv8NVXX0GSJOzfvx/9+vXD9ddfj4SEBDz55JNqh9gtuw/bUFRpP7bojf8HjgQJsUYdSqsbUFjRgIHpFpWiJOrZTtpOJQnxZh2KKu3YfdiGYb3jVIoysIQQqLK7UO8Ifu+4w+3Fi18X471th/y256ZasGjaIPRNjgl6DEREalN/ycNuuuOOO6DT6VBSUgKz+fjPmL/+9a/x6aefqhjZqalpdMHtFdB3sPqkXiPBLQTqHK529xNR8HXWTg0aGW5FoKYxOtqpVxEoq3OEJCHfdagON/1rq19CrpElzMrPwXMzRjIhJ6IeI+J6yj///HN89tln6N27t9/2AQMG4MCBAypFdeoSzXroNBJcXgVGWdNmv8sroJMkxBn1KkRHREDn7dTpVaCTJSSaI7+dOj3NiwEFu7qKy6PglXXFeGfrQbQeGdMnyYy7pw3CwLTYoD4+EVG4ibikvKGhwa+HvEVNTU1ETvYcmmlF/1QLCsrqkW6V/X4aFxCod7jRL8WC3DT2FhGp5aTtVAjUNroxOCMWQzOtKkZ5+uxOD6rqg19dZV9FPRZ/8gMOVDf6tskS8KsxWbhuXB/otRH3Iy4R0WmLuCvfz372M7z++uu+vyVJgqIoeOyxx3DBBReoGNmpkWUJc8b3h8WgQbnNiSa3F4oi4PAoqLK7YNZrMOPsLE7yJFJRR+20ye1Fuc0Ji0GDOeP7R+wkT4fbi8O1Tai0OYKakLu9zb3jt7zxnV9C3jvBhKd/cyZuOr8fE3Ii6rEirqf8sccew4UXXogtW7bA5XLhrrvuwu7du1FTU4N169apHd4pGZebjIevGHa8TrlHgVYC+qVYWKecKEyc2E7rFAGdLGFwRmzE1in3KgLVDU7YHZ6gP1bRETse/WQvCo/Y/bZfOaoXbjivL4y6tsOCiIh6kohLys844wzs27cPzzzzDGJjY2G323HllVdi7ty5yMjIUDu8UzYuNxlj+yVxRU+KWIoQKKxoQJ3DhTijPirfv63baaSv6Olwe3GkPvhjx72KwH++LcWr63+Cp9Xg8WSLHleN6oWRWYnsHSciQgQm5QAQFxeHP/3pT2qHEXCyLGFY7zjEm3UhWcKaKFC2lRzFss2lKK1ugPtYD3K0rkjb0k4jmc3hRrXdBRHkseMl1Y149LMfUFBW77c92aIHhMDbWw5i+XeHova9QhTpSkpKUFVVpXYYfpKTk5Gdna12GEERkUn50aNH8dJLL6GgoAAAMGTIEPzud79DYmKiypER9TzbSo7iqZX70OjywmrUwaqR4PYKrkgbhjxeBTWNrqAPV/EqAu9tO4SXvimGy3O8gyHOpINWbt5vNeqg43uFKGyVlJRg0KDBaGpq7PzgEDKZzPjhh4KoTMwjLilfu3YtLrnkEsTFxWHMmDEAgP/7v//DAw88gP/97384//zzVY6QqOdQhMCyzaVodHmRbNFDQvMwDoNWarMiLalHCIHqBhfqHZ6g944fqm3CY5/uxc5DdX7bpwxNQ7nNgZLqxk7fK9E27IkoElVVVaGpqRHnzL4P1ow+aocDALCV/YRNL9+PqqoqJuXhYO7cufj1r3+NpUuXQqNpnhjk9Xpxyy23YO7cudi5c6fKERL1HIUVDSitboDVqPMlWS1OXJG2bzJXpFWDx6ugot4Jp9sb1McRQuCDHWV4YU0RHK16xxPMOsyfNBApFiP+8v7OLr1XuHoxUfiwZvRBYnae2mH0CBGXlBcWFuK///2vLyEHAI1Gg/nz5/uVSiSi4KtzuOBWBKya9ns29RoJ9VyRVhUOtxe2JjcaXN6g945X2Bx44rO92FpS67f9grwU3HbhAMSZdPj2pxq+V4iITiLikvJRo0ahoKAAeXn+39oKCgowYsQIlaIi6pnijHro5OZxwQZt22SLK9Kqo7bRhaON7qAn40IIfLqrHM+tLkKD63hPvNWoxbyLBmJCXopvG98rREQnF3F1qG677TbcfvvteOKJJ/DNN9/gm2++wRNPPIE77rgDd9xxB77//nvfv44sXrwYZ511FmJjY5GamorLL78ce/fu7fSx33nnHQwaNAhGoxHDhg3Dxx9/HMhTI4o4uWkxyEqKgc3hhoB/AtiyIm1WUgxXpA0Rp6d5EaCahuBXVqm2O/GnFbvw+Of7/BLyc3OT8PJ1Z/kl5ADfK0REnYm4nvKrr74aAHDXXXe1u0+SJAghIEkSvN72x1CuWbMGc+fOxVlnnQWPx4N77rkHkydPxp49exAT0/4Hwvr163H11Vdj8eLF+PnPf45ly5bh8ssvx3fffYczzjgjcCdIFEFkScKMs7Pw1Mp9qLK7EGvUQa+R4PI2J1lckTZ0Qtk7/uUPR/B/X+5HfasqLjEGDf4wcQAmDU6F1M7rzfcKEdHJRVxSXlxcfNr38emnn/r9/eqrryI1NRVbt27tsHrL008/jalTp2LBggUAgAcffBArV67EM888g+eff/60YyKKVCOzEzB/0kBfnfJ60TwMgSvShobD7cXRRheaXMGdyAkARxtdePqL/Vi7379u8Vl9EvDHyXlIiTWc9PZ8rxARdSzikvKcnJyA32ddXXPprpPVOd+wYQPmz5/vt23KlClYsWJF4OJocuNogwvldQ54hQJJkiADkCQJkgRfD5IsHduGY9uktttajj+2u92eK6JAGZmdgBFZ8VG/omc4cXsVVNmdIUnGAWDt/iP428r9qG1y+7aZdBrMmdAf04eld/kaw/dK8EiSBK0sQStH3MhUIkIEJuWvvfYakpOTMX36dADNw1j+8Y9/YMiQIXjzzTe7nbQrioJ58+bh3HPPPekwlPLycqSlpfltS0tLQ3l5eYe3cTqdcDqdvr9tNttJY1mx7RDu+2B3FyPvvpaVwH3J+glJvy+RP+GYlsT+eJLf8fG+Lwlo78vC8f+XJMn3t9zqi4Pc/D/HtrV9nBNvhxPiar5921iPx+e/Da3jOhZ3y2NKreLwi6uD82l9/34xnnA+zXFLJ9y+/S9Tx790dfw6+N0Ox2NvOZ+OvrRJaF6d0u95aP3cdPPLnixJqpay6257i1RCCNiaPDja6IIS5KEqAGBrcuOZrwrxRUGl3/Yzs+Jw15RBSI8zdvs+1X6vRBKNLB3/J0mQ5ebEWz7294n7QqGntDWiUIu4pPzhhx/G0qVLATT3Xj/zzDP429/+hg8//BB33HEH3nvvvW7d39y5c7Fr1y588803AY918eLFuP/++7t8fLDHgiqi5b8tjxP8D3SKfh192cMJXxg0koTpwzPw0BXDghJHd9tbpHF7FdQ7PKh3uOFVQtN2N/5YjSc/34fqhuNlCg1aGTf+rB8uH5nJ3u3TpNPI0Gtl6DSyX3LdOhEPR9He1ojUEnFJeWlpKXJzcwEAK1aswC9+8QvcdNNNOPfcczFhwoRu3dett96KDz/8EGvXrkXv3r1Pemx6ejoqKir8tlVUVCA9Pb3D2yxatMhvyIvNZkNWVtZJH0cjS1CUE2sTEIWv7nzZC+ZQi1Npb5HA5VFQ2+iC3enp/OAAaXB68NzqInyyy/+XwKGZVtw1JQ9ZieaQxRJNtLIMo16GSaeBSaeBVhOZw0yita0RqS3iknKLxYLq6mpkZ2fj888/910YjEYjmpqaunQfQgj84Q9/wPLly7F69Wr07du309vk5+dj1apVmDdvnm/bypUrkZ+f3+FtDAYDDIaTT3xq7bpz++K6c/uitKYRbq8CIQQUAd9/gebERwC+xN23TwAKBMSx41sfo4iW7c2lx5RWx/iOF/A79sT/CvgfAwF4jyVhbY49FgtES8LW8pjH4z8et4D3hGN88Yvj56Mce2zR+rHa/dv/dr5zhICioM1z197z03IfAHw9kl5x/Hxa3675/FudhxBQWj2vx5+bVud4krjbe1794/eP78R4fM//Cc9z69dYTcGc29Dd9hbuvIpATYML9Q535wcH0HcHjuKxz/aisv748ASdRsLsc/viF6N7h23vbTjSyBJMOg2M+uYkXBehSfiJoq2tEYWLiEvKJ02ahBtuuAEjR47Evn37cPHFFwMAdu/ejT59+nTpPubOnYtly5bh/fffR2xsrG9ceFxcHEwmEwBg5syZ6NWrFxYvXgwAuP322zF+/Hg8+eSTmD59Ot566y1s2bIF//jHPwJ/ksdIkgTNsfHHRIHS5kubcsIXGrRK4lt9kQOOf0nx+3LY+phWXw5bvmS0HJtmNSLZwg/yrmhwelBld4ZsmAoANLm9+MfaH/H+9sN+2wemWbBw6iD0TWb98M5oZAlGnQbGYz3hem10JOFEFBoRl5Q/++yz+POf/4zS0lK8++67SEpKAgBs3brVV8O8My1j0k8c7vLKK6/guuuuAwCUlJRAbjWDfdy4cVi2bBn+/Oc/45577sGAAQOwYsUK1iiniOObuNmy3LkmNI+bkxTDXtZOKIpAtQq94zsP1uHRz37A4VqHb5tGlvDbsdmYcXZ2xA6zCCaNLEGnaR4PbtDJMGhlGLQhakxEFJUiLimPj4/HM88802Z7oCdUrl69us22X/7yl/jlL3/Z5cchIuoqh9uLI/VOuL1KyB7T6fbi5XU/4b9bD/oNbeqXHIOFU/MwIC02ZLGEK1mSoNVIMGg1MOhk6DXHJ2YSEQVSxCXlLRobG1FSUgKXy+W3ffjw4SpFRETUfUIIHG10o7bR1fnBAVRQZsOjn+5FSU2jb5ssAb85Kwsz8/v0qKEXkiRBp5F8CbdOK/v+5hoPRBQqEZeUHzlyBNddd12bVTlbeL2hWUiDiOh0CCFQ7/SgrtEd0t5xl0fBvzYewJubS9B6yHpWggl3TxuEwRnWkMWiBq18fLhJSznCaJmASUSRLeKS8nnz5qGurg6bNm3ChAkTsHz5clRUVOD//b//hyeffFLt8IiIOuRVBOwODxpcHjg9StDXJjhRYaUdj3z6A3480uDbJgH4xejemH1uHxh00TEmuiXR1mok6OTm/2rZ801EYS7ikvIvv/wS77//PsaMGQNZlpGTk4NJkybBarVi8eLFvpU+iYjCRZPLi3qHGw0ub8gTcaD5y8CyzSV4fcMBv4ouGXFGLJyah+G940Me0+mSJQk6rdy8uuWxVXM1sgSzXtujht4QUfSIuKS8oaEBqampAICEhAQcOXIEAwcOxLBhw/Ddd9+pHB0RUTOvIlDvcKPe4Qnp8JQT/VTdgEc/2Yu9FfV+2y8dkYnfn98PJn3k9I7rNDIsBi3MBg0rnRBR1Im4pDwvLw979+5Fnz59MGLECLzwwgvo06cPnn/+eWRkZKgdHhH1cG6vgtpGN+xOjyq94i28isA7Ww/ilXXFcHuPx5Eaa8AfJw/EmD6JqsXWXTEGLWKNWpj1EfeRRUTUZRF3hbv99ttRVlYGALjvvvswdepUvPHGG9Dr9Xj11VfVDY6IeiSvImB3euBwe9Go0hCV1g4dbcIjn/6A3YdtftunnZGOORP6w2II/0u/Sa+BWa9FjD5yl6MnIuqO8L8yn+Daa6/1/f/o0aNx4MAB/PDDD8jOzkZycrKKkRFRT+NVBOqa3LA1uZtXMFWZIgTe334Y/1z7Ixye40NmEmP0+OPkgRjbL0nF6DqnkSXEGnWINWpZEYWIepyIS8pPZDabMWrUqDbbrVYrtm/fjn79+qkQFRFFKyEEXF4FDpeC2iaX38RJNZXXOfD453uxraTWb/uFg1Jx68RcxJl06gR2EjrN8dKEBq0GRh2roxBRzxXxSXlH1P75mIiii8Pthc3hRoNT/eEprQkh8PHOcjy3ughN7uPrNMSZdLjjogE4f2CKitG1T5IkJFn0sBrD74sCEZFaojYpJyI6HR6vgia3F00uL5rc3rDpEW/tSL0TT67ch83FNX7bfzYgGfMuGoAEs16lyNqSJAkx+uaqKSa9hmULiYhOwKSciHo0IQTcXgEBAUUBGlweNLm8qpYx7IwQAl8UVOLvXxbC7vT4tlsMWtx2YS4uHJQaFsNATMeScL1WhlmngSyrHxMRUbhiUk5EPZbd6cGRemdYDUfpzNFGF5as3I9vCqv8tp/TNxF3Th6IZItBpciaxRi0zZVTdKyaQkTUHVGblIdDLxERhTdFiIhKyNfsO4K/fbEfdU1u3zazXoNbJvTHtDPSVb3uyZKElFgDYiKg3CIRUTiK2qtnJH3QEhGdTF2TG3//shBf/lDpt31kdjwWTMlDutWoUmTNTHoNEmP0XGWTiOg0RG1S/sknn6BXr15qh0FEdFo2FFXjyZX7UNPg8m0zamXcdH4/XHpmJmSVesf1WhkmXfMCPyY9k3EiotMVEUn5/Pnzu3zsU089BQA477zzghUOEVHQ2Z0ePPtVIT7bXeG3/YxMKxZOHYReCSZV4jLpNUgw62HUMREnIgqkiEjKt23b1qXjOI6ciKLBlp9q8Phn+3DE7vRt02kkXH9eX1w1qjc0KlQx0WlkJMboOWacokpBQYHaIfhxOp0wGNSdrN0i3J6b1sIptuTkZGRnZwfkviLi6vrVV1+pHQIRUdA1ubx4fm0R/rejzG97Xnos7p6ah5ykmJDHpNPISIjRw8JknKJIU101AAnXXnut2qH4kyQgzObEuZ2uzg8KkXB83UwmM374oSAgiTmvskQANLIEjSxBliR4FQGPEllVOSjy7SitxWOf7UVZncO3TStLmJmfg6vPzg5577gkSbAYtEiK0bO+OEUdd2M9AIEzZyxESt9BaocDACjbuQG7PvhH2MTUEo/H4+n84BAJt9fNVvYTNr18P6qqqnpOUn7llVd2+dj33nsviJFQpJAkCXEmHcx6DfQaGYpoTrSb9wE6WYYsS/B4FUiSdNKERxy7bZPLiz2HbbC7PEixGDCsV5yvU8PlVeDyKnC6FTg93ubFaJjUUxc43V68tK4Y7249hNbvmP4pMbh76iD0T7V06X4UIVBY0YA6hwtxRj1y02JOaRKoLEmIN+sQa9SpMkyGKJQsqdlIzM5TOwwAzQkeED4xtcQTjsLlOQq0iEjK4+Li1A6BIoAkSTBoZRh1GsQatdC1WrhEhoT2qrV1ZXETSZLwbXE1lq4pQlGlHW6vgE4joX+qBXPG98e43GQYZU3zxLdjlemEEGh0eVHX5IbD7Q3UKVKU2XPYhkc+/QEHjzb5tskScPXZ2ZiZn+P3Hj6ZbSVHsWxzKUqrG+BWBHSyhKykGMw4OwsjsxO6HI/FoEVijJ6L/hARqSAikvJXXnkl4Pe5du1aPP7449i6dSvKysqwfPlyXH755R0ev3r1alxwwQVttpeVlSE9PT3g8dHJGXTNPeAaWYJGkqDRSEFbxnt9YRXuWb4TdqcHCWY99BoZLq+CgrJ63LN8Jx6+YhjG5Sb73UaSJMQYtIgxaOHxKmh0ebG9tBZH7E4kmfUYnGGFVwi4PAoU9qj3OC6Pgtc2/IT/fFsKpdXLn5Noxl1T8zA4w9rl+9pWchRPrdyHRpcXVqMOVo0Et1fgxyN2PLVyH+ZPGuiXmLfXo27UaZAUY2BpQyIiFUVEUn4ij8eD1atXo6ioCDNmzEBsbCwOHz4Mq9UKi6VrP/U2NDRgxIgRmD17dreGx+zduxdW6/EPzNTU1G7HT6dGK8sw6mVYjbqQlWNTFIGla4pgd3qQbjX6KvwYZQ3SrTLKbU4sXVOEsf2SOvxCsLm45qS97C5P85AXl0dBg9MLj6KE5NxIHfsq6vHop3tRXNXg2yYB+OWY3ph9bl/otV3vpVaEwLLNpWh0eZFs0UNC83vQoJWQbNGjyu7Css2lGJEVD1mS2u1R759qwR8mDkDvBHOgT5WIiLoh4pLyAwcOYOrUqSgpKYHT6cSkSZMQGxuLRx99FE6nE88//3yX7mfatGmYNm1atx8/NTUV8fHx3b4dnRqtLMOkbx6OokZd5N2HbSiqtCPBrG9TclM6Nva2qNKO3YdtGNa77TCrrvaytyRiiTEC9U4PnO7mHnSnW2GSHiU8XgVvbCrBvzeVwNuqezwz3oiFUwa1+/7pTGFFA0qrG2A16nwJeQsJEmKNOpRWN6CwogENLrdfj3q8tnmuxf7Khg5/8SEiotCJuIGDt99+O8aMGYOjR4/CZDq+eMYVV1yBVatWBf3xzzzzTGRkZGDSpElYt25d0B+vJzLpNUiyGJCdaEZ2khkpsQbVFiqpaXTB7RXQdzDG1qCR4VYEahrblow6sZfdeGx4jVGnQbrVALvTi6VriqC0StAkSYLVqENKrAFpViOyk8zISmx+DixGLbRyxDVZAlBc1YC5y7bhtQ0H/BLyy8/MxD9njjmlhBwA6hyu5h5vTfu/0ug1EtxC4GiTy9ejnmIxwGLQwqDTwKTXdvheJCKi0Iq4nvKvv/4a69evh16v99vep08fHDp0KGiPm5GRgeeffx5jxoyB0+nEiy++iAkTJmDTpk0YNWpUu7dxOp1wOo8v/mGz2YIWX6Qz6ZuX67YYtEGr+KAoArsP21DT6EKiWY+hmdZOx6AnmvXQaSS4vAqMctsvBk6vAp0sIdGsb7PvdHvZW+g0MnQaGbFGXfNjeryod3jQ4PT4JXg9XTi2N68i8M6WUryy/ie4vcdfq0SzHosuzsPonMTTuv84ox46uXkMuUHb9r3s8groJAm2JjdKqxsQb9ZBr5X93o/deS8SAeHZ1oiiQcQl5YqiwOttW83i4MGDiI2NDdrj5uXlIS/vePmdcePGoaioCEuWLMG//vWvdm+zePFi3H///UGLKdKZ9JrmyZD64CXiLdYXVp10XHdHhmZa0T/VgoKyeqRb/ZMZIQRqG90YnBGLoZltJ+Z1pZe9roNe9pMxaDUwWDRIitHD4VZQ2+RCk4sVXsKtvZXWNOLRT/diT5l/wqLXSJAlgbe+PQhZkrpVHeVEuWkxyEqKwY9H7H5jygFAQKDe4Ua/FAsSzDooAjDrtO2ufHyq70XqmcKtrRFFi4j7LXzy5Mn429/+5vtbkiTY7Xbcd999uPjii0May9lnn43CwsIO9y9atAh1dXW+f6WlpSGMLvxIkuQ3NCUjzgRrCGoht4zrLiizIcagRWqsATEGrW9c9/rCqg5vK8sS5ozvD4tBg3KbE01uLxRFoMntRbnNCYtBgznj+7fb4966l709J+tl74qW5zMjzoTMeJNqQ3w6owiBfeV2rN13BDsP1gVtiES4tDdFCLz73UHc9K+tfgm5JAGpx977MQadrzrKtpKjp/xYsiRhxtlZMOs1qLK74DhWzcfhUVBld8Gs1+D6c/sgL90KvVYO2nvxZBRFYOfBOqwJ8utPoRMubY0o2kRcT/mTTz6JKVOmYMiQIXA4HJgxYwb279+PpKQkvPnmmyGNZfv27cjIyOhwv8FggMFgCGFE4Ucry7AYtYgxaGBor1B4kAWiesq43GQ8fMUwX0973bGqFYMzYk/a0346vezdZdRpkBlvQpPLiyq7E+4Okq9Qa13tQxGAXit36ReKUxEO7a2srgmPf7YX20vr/LbrNRJ6J5h8cwI6qo5yKkZmJ2D+pIG+57leNA9Z6Zdiwe9/1g+Tz0iHooiQvRdbO9VfqCi8hUNbI4pGEZeU9+7dGzt27MB//vMf7NixA3a7Hddffz2uueYav4mfnbHb7X693MXFxdi+fTsSExORnZ2NRYsW4dChQ3j99dcBAH/729/Qt29fDB06FA6HAy+++CK+/PJLfP755wE/x0jXsoiP1aSDxaDuWyxQ47rH5SZjbL+kbo1Jb+llv2f5TpTbnIg362DQyHB6FdQ2uk/ay36qTHoNeieYYHN4YHd64FRx4aIT62fH6DVwK+Kk9d0jlRACH+0sw9LVP6Kp1XMea9BCloB4s77NJN0Tq6MMTO9aOdf2jMxOwIiseF/98XiTHvn9k2A1Nc9DUOO9eCr1/YmIerKIS8oXL16MtLQ0zJ49G9dcc41v+8svv4wjR45g4cKFXbqfLVu2+C0GNH/+fADArFmz8Oqrr6KsrAwlJSW+/S6XC3feeScOHToEs9mM4cOH44svvmh3QaGeSJYkmPUamA3aoC3icyoCOa5blqVuT4I71V720yFJEuJMOsSZdHB7Fdia3Kh3eEK6SFF79bNlWYJRI3f5F4pIcaTeiSc+34tvf/IfhnL+gGSMz0vBM18WnrQ6Sr0QqHOc/lhuWZIwMN0CnUZGqtXQ5pepUL4XA/ELFRFRTxNxSfkLL7yAZcuWtdk+dOhQ/OY3v+lyUj5hwgSIkyQpr776qt/fd911F+66665uxdoTmPVaxBq1MOs17U4gU9vpVE8JlFPpZQ8UnUZGksWAOJMONY0u2B2eoD8m0En97Cip9iGEwOd7KvDMV4VocLbqHTdqcdvEAZg4KAX7Kxq6VB0lzhiY959Jr0FqrLHDeRqhei8G6hcqIqKeJOKS8vLy8nbHcaekpKCsrEyFiHoejdz8s3usUQtdBz3Q4SKU47pP5lR62QNJq5GRGmtEgrm55zzYK4e21M+2dtBDHOnVPmoaXHjy833Y8GO13/ax/RJx56SBSLI0j7ftanWU3LSY044p3qxHYkznyX0o3ovBqjxERBTNwjujakdWVla7i/asW7cOmZmZKkTUMzQPT9Ei1WpEdqIZiTH6sE/IgdOrnhKNWnrOs5PMyIw3waQPzuTb1vWz2xOKXyiC5asfKjH71W/9EvIYvQZ3TcnDQ5ef4UvIga5VR5lxdtYpT/IEml/T9DhjlxLyUAl25SEiomgUcT3lN954I+bNmwe3242JEycCAFatWoW77roLd955p8rRhZYihG9iV5xRj9y0mNP6cD+RTtO8xH2MXgujTg7L4Sldoca47lA7lYWRjLrmcooNTg+q7M6ALkR00h7iEP5CcbpatzENZPxv52Gs2XfE75jROQn44+SBSLMa272Pk1VHmXF21inXKZePDQOJM+nCrm129xeqU3n/EhFFm4hLyhcsWIDq6mrccsstcLmaf/o0Go1YuHAhFi1apHJ0odO61Jz7WJKZlRRzWh/yQHMibjFoEWPQQq8N/57wrlJzXHewnW7ZuRiDFgatjOoGFxpd3pPOteiqlh7ip1buQ5XdhVijDlpZgksJXrWPQGvdxhpcXjS6vWj91Bh1Mm4e3x+XDM/oNCk+sTrK6X6Jthi1SDTroQ3TX6u6U+2FZROJiJpFXFIuSRIeffRR3HvvvSgoKIDJZMKAAQN6VM3UE0vNWTXNwwRaFiOZP2lgtxJzWZJgNmhgNerCdgGaQFB7XHcwBKrsnFYjI81qhMerwO70oN7hOe1a5yf2EDe6PNBr5Ij4haKljdmdHni8Ag0nrJjaLzkGD1w2FJnxXS/D2lId5XToNDJSYg0R0U678gsVyyYSER0XcUl5C4vFgrPOOkvtMEKuvVJzwKktRmLUaWAxamHRa8O6x5LaF4yyc1qNjHizHvFmPRpdHtiaPGh0nXrFltY9xAadjGSLIex/oWhpY3VNbjS5Fb9hPRKae8jjzTqkx7U/XCVYYgxapFgMYf3cnehkv1CxbCIRkb+ITcp7qpOWmuvCYiQtK2xaomx4Sk8U7LJzZr0WZr0WTo8XNQ0uNLlObSGilh7inKSYDkv1hZNdB23YfagODo//LwVGrYx0qxEKgIM1jae94E93dLWySjjq6Bcqlk0kIvLHpDzCdFZqrr3FSKRjC/s01xPnSx4tQlV2zqBtnhBa0+BCbZSXsNteWosHP9zjl5BLAJJi9EgwN0+oVIQI2II/nZGk5l/AYo26oD9WqLFsIhGRP2ZoEaZ1qbnOFiPRa2XEGnSwGLUR0UNJ3RPqhZESY/Qw6mQcbXTD6T61XvNw5XB78eLXxXhv2yG/7QatjPQTVscM9II/HdHIEtKsxogYP34qwmFhLyKicMLxCxGmpdSczeGGgH+VjObFSDzom2LB+IHJ6J1gRpxZx4Q8SrWUnTva6G5TMaWl7Fz/VEtAyw6a9Vr0ijchI84UNcni7sN1uOlfW9sk5EatjKwEo19C3rLgT1ZSTEAW/OmITiNH1XPcHjXev0RE4YxJeYTpaDESl1dBdYMbVqMGt184ACYDfwSJdmoujGTSa5AZb0JmvAkxEfpec7i9WLJyH25/azsOHm3ybe+TZMa8i3KRZNGjusEdlAV/Tsaoa35uo33OBxf2IiLyF5mfpj1cS6m5N78txcHqRjS6msdlDs20hn2puVPFxUXap/bCSEadBkad5rQng4ZaQZkNt725Dfsr7b5tsgT8akwWrhvXB3qtjKwEc8AX/OmMxaBFSqwh7BYDCha1379EROGESXkEMug0mHpGBq4Y2btHJKpcXOTkwmFhpJbJoA1OD6rtLniU06txHmy7Dtah8MjxhFwjAblpsTirT4KvhzrQC/50JpIrrJyOcHj/EhGFAyblEcSo0yDBrIdJf3ycabSXCuPiIl0TLgsjxRi0MOs1qGtyo7bRDSUAq4MG2vrCKjy7uhAmnQaNLi/iTFpYjTpU2hxtFt8KxII/nZEkCUkWPaxRWGGlq8Ll/UtEpCYm5RHArNci3hzdq222h4uLRKbmGtPNSWa90wNbk/u0VwcNlNbvqb5JZjS6FOiOlRc16uRuLb4VCLLUXGGl9RdtIiLqmaJ7JlGEa5nwlR4XvWXRTqY7i4tQ+JFlCXEmHXonmJAca0A4fG1q/Z6SZdkvGT5x8a1g02lkZMabmJATEREA9pSHJa1GQmKMMWKrWgQKFxeJDpIkhc3QjM7eU+0tvhUM+mOrg2o7iIOIiHqenp31hamMOJPaIYQFLi5CgdbZeyoUCwOZ9BqkxRo55IqIiPywm4bCFhcXoUA76XsqBAsDWQxapFuZkBMRUVtMyilsRfviIooisPNgHdbsO4KdB+ugKOFXqSTatPueCtHCQPFmPVJbTViONHy/EhEFF4evUFiL1sVFWHtdPa3fU/sr6puHQQVxYSBJkpASa4AlgueI8P1KRBR8kfspQT1GtC0uwtrr6mt5T20ursGBmoagLQwUDSUP+X4lIgqNHjt8Ze3atbjkkkuQmZkJSZKwYsWKTm+zevVqjBo1CgaDAbm5uXj11VeDHic1a1lcZPzAFAzrHRexCfmJtdeNOg1kWYJRp0G61QC704ula4o4NCAEZFnCkF5WnNUnEQPTLQFPyLWyjIz4yE7I+X4lIgqdHpuUNzQ0YMSIEXj22We7dHxxcTGmT5+OCy64ANu3b8e8efNwww034LPPPgtypBRNWHu9Z2iuQW6EQRu5CTnA9ysRUSj12OEr06ZNw7Rp07p8/PPPP4++ffviySefBAAMHjwY33zzDZYsWYIpU6YEK0yKMqy9Hv1iDFqkWAwR+2tOa3y/EhGFTo9Nyrtrw4YNuOiii/y2TZkyBfPmzevwNk6nE06n0/e3zcbepJ6OtdeDJxzaW4JZj4SY6Hnt+H6l9oRDWyOKRj12+Ep3lZeXIy0tzW9bWloabDYbmpqa2r3N4sWLERcX5/uXlZUVilApjLH2evCo2d6kYxM6oykhB/h+pfbxs40oOJiUB9GiRYtQV1fn+1daWqp2SKSyaK+9ria12ptGlpARZ0RMBJc87Ajfr9QefrYRBUf0fYoESXp6OioqKvy2VVRUwGq1wmQytXsbg8EAg8EQivAogkRr7XW1qdHeNLKE9LjIn9B5Mny/0on42UYUHEzKuyg/Px8ff/yx37aVK1ciPz9fpYgokkVb7fWeSCvLSI8zQq+N/h8c+X4lIgq+HpuU2+12FBYW+v4uLi7G9u3bkZiYiOzsbCxatAiHDh3C66+/DgC4+eab8cwzz+Cuu+7C7Nmz8eWXX+Ltt9/GRx99pNYpUIRrqb1OkacnJeQt+H4lIgqunvOJcoItW7Zg5MiRGDlyJABg/vz5GDlyJP7yl78AAMrKylBSUuI7vm/fvvjoo4+wcuVKjBgxAk8++SRefPFFlkMk6mFaFgXqSQk5EREFX4/tKZ8wYUKbagKttbda54QJE7Bt27YgRkVE4Uynae4h13VQt5uIiOhU9diknIioO3QaGRlxRmiZkBMRURDw04WIqBNMyImIKNj4CUNEdBJMyImIKBQ4fIWIqAM6jYzMeBM0LP1HRERBxqSciKgdeq2MjDgm5EREFBr8PZaI6ATNQ1aYkBMRUegwKSciaqVlDDkTciIiCiUm5UREx3BSJxERqYVjyomIwDHkRESkLiblRNTjGXQaZFiNkJmQExGRSpiUE1GPZtRpkM6EnIiIVMaknIh6LINWRmycEZLEhJyIiNTFpJyIeiyDVqN2CERERABYfYWIiIiISHVMyomIiIiIVMaknIiIiIhIZUzKiYiIiIhUxqSciIiIiEhlTMqJiIiIiFTGpJyIiIiISGVMyomIiIiIVMbFg0JICAEAsNlsKkdCFL5iY2MDssIm2xtR5wLR3rrS1ux2OwCg7uCPUDze03q8QLBXHgIA2Mp/gsFgUDmaZuEWU7jFA4RfTPXlBwA0v787+6zpSluTREtroqA7ePAgsrKy1A6DKKzV1dXBarWe9v2wvRF1LhDtjW2NqHNdaWtMykNIURQcPnw4YD2B4cJmsyErKwulpaUBSaaoc9H8nAeqfYRbe4um14znEp5O5VwC0T46amvR9Nyqgc/fqQvH564rbY3DV0JIlmX07t1b7TCCxmq1hs2bv6fgc96xcG1v0fSa8VzCU6jPpbO2Fk3PrRr4/J26SHvuONGTiIiIiEhlTMqJiIiIiFTGpJxOm8FgwH333RcWM6F7Cj7nkSeaXjOeS3gKt3MJt3giDZ+/Uxepzx0nehIRERERqYw95UREREREKmNSTkRERESkMiblREREREQqY1LeA6xduxaXXHIJMjMzIUkSVqxY4bdfCIG//OUvyMjIgMlkwkUXXYT9+/f7HVNTU4NrrrkGVqsV8fHxuP76633LJrf4/vvv8bOf/QxGoxFZWVl47LHHYlJnhgAAGKBJREFU2sTyzjvvYNCgQTAajRg2bBg+/vjjbscSCTp7zq+77jpIkuT3b+rUqX7H8DkPP529rie+pi3/Hn/8cd8xffr0abP/kUce8bufrryup2vx4sU466yzEBsbi9TUVFx++eXYu3ev3zEOhwNz585FUlISLBYLrrrqKlRUVPgdU1JSgunTp8NsNiM1NRULFiyAx+PxO2b16tUYNWoUDAYDcnNz8eqrr4b0XGpqavCHP/wBeXl5MJlMyM7Oxm233Ya6ujq/+2nvtXvrrbfC6lwAYMKECW3ivPnmm/2OUfN16aydUMe68vpTx5YuXYrhw4f76pPn5+fjk08+UTusrhMU9T7++GPxpz/9Sbz33nsCgFi+fLnf/kceeUTExcWJFStWiB07dohLL71U9O3bVzQ1NfmOmTp1qhgxYoTYuHGj+Prrr0Vubq64+uqrffvr6upEWlqauOaaa8SuXbvEm2++KUwmk3jhhRd8x6xbt05oNBrx2GOPiT179og///nPQqfTiZ07d3YrlkjQ2XM+a9YsMXXqVFFWVub7V1NT43cMn/Pw09nr2vr1LCsrEy+//LKQJEkUFRX5jsnJyREPPPCA33F2u923vyuvayBMmTJFvPLKK2LXrl1i+/bt4uKLLxbZ2dl+sdx8880iKytLrFq1SmzZskWMHTtWjBs3zrff4/GIM844Q1x00UVi27Zt4uOPPxbJycli0aJFvmN+/PFHYTabxfz588WePXvE3//+d6HRaMSnn34asnPZuXOnuPLKK8UHH3wgCgsLxapVq8SAAQPEVVdd5Xc/AMQrr7zi99q0bgfhcC5CCDF+/Hhx4403+sVZV1fn26/269JZO6GOdeX1p4598MEH4qOPPhL79u0Te/fuFffcc4/Q6XRi165daofWJUzKe5gTL5CKooj09HTx+OOP+7bV1tYKg8Eg3nzzTSGEEHv27BEAxLfffus75pNPPhGSJIlDhw4JIYR47rnnREJCgnA6nb5jFi5cKPLy8nx//+pXvxLTp0/3i+ecc84Rv//977scSyTqKCm/7LLLOrwNn/Pw15Vk47LLLhMTJ07025aTkyOWLFnS4W268roGQ2VlpQAg1qxZI4Rofh/odDrxzjvv+I4pKCgQAMSGDRuEEM3JlyzLory83HfM0qVLhdVq9cV/1113iaFDh/o91q9//WsxZcqUkJ1Le95++22h1+uF2+32bevsNQ2Xcxk/fry4/fbbO7xNOL0uTMpPT1fey3RyCQkJ4sUXX1Q7jC7h8JUerri4GOXl5bjooot82+Li4nDOOedgw4YNAIANGzYgPj4eY8aM8R1z0UUXQZZlbNq0yXfM+eefD71e7ztmypQp2Lt3L44ePeo7pvXjtBzT8jhdiSWarF69GqmpqcjLy8OcOXNQXV3t28fnPPJVVFTgo48+wvXXX99m3yOPPIKkpCSMHDkSjz/+uN+wgq68rsHQMpQjMTERALB161a43W6/98agQYOQnZ3td20YNmwY0tLS/GK12WzYvXu375iTvQdDcS4dHWO1WqHVav22z507F8nJyTj77LPx8ssvQ7SqGhxO5/LGG28gOTkZZ5xxBhYtWoTGxka/OMPxdaHu68p7mdrn9Xrx1ltvoaGhAfn5+WqH0yXazg+haFZeXg4Afhfvlr9b9pWXlyM1NdVvv1arRWJiot8xffv2bXMfLfsSEhJQXl7e6eN0Fku0mDp1Kq688kr07dsXRUVFuOeeezBt2jRs2LABGo2Gz3kUeO211xAbG4srr7zSb/ttt92GUaNGITExEevXr8eiRYtQVlaGp556CkDXXtdAUxQF8+bNw7nnnoszzjjD91h6vR7x8fFtYmn9/mnvvdOy72TH2Gw2NDU1wWQyBf1cTlRVVYUHH3wQN910k9/2Bx54ABMnToTZbMbnn3+OW265BXa7HbfddltYncuMGTOQk5ODzMxMfP/991i4cCH27t2L995776RxtuxT41yo+7ryXqa2du7cifz8fDgcDlgsFixfvhxDhgxRO6wuYVJOpILf/OY3vv8fNmwYhg8fjv79+2P16tW48MILVYyMAuXll1/GNddcA6PR6Ld9/vz5vv8fPnw49Ho9fv/732Px4sWqrT43d+5c7Nq1C998840qjx9InZ2LzWbD9OnTMWTIEPz1r3/123fvvff6/n/kyJFoaGjA448/7kvKQ62jc2n9ZWLYsGHIyMjAhRdeiKKiIvTv3z/UYVKQRFO7DKW8vDxs374ddXV1+O9//4tZs2ZhzZo1EZGYc/hKD5eeng4AbSoqVFRU+Palp6ejsrLSb7/H40FNTY3fMe3dR+vH6OiY1vs7iyVa9evXD8nJySgsLATA5zzSff3119i7dy9uuOGGTo8955xz4PF48NNPPwHo2usaSLfeeis+/PBDfPXVV+jdu7dve3p6OlwuF2pra9vEEoj3oNVqDXhvbEfn0qK+vh5Tp05FbGwsli9fDp1Od9L7O+ecc3Dw4EE4nU4A4XUuJ8YJwO/6EU6vC3Vfd15/8qfX65Gbm4vRo0dj8eLFGDFiBJ5++mm1w+oSJuU9XN++fZGeno5Vq1b5ttlsNmzatMk3Bis/Px+1tbXYunWr75gvv/wSiqL4Pgzy8/Oxdu1auN1u3zErV65EXl6e7+f2/Px8v8dpOablcboSS7Q6ePAgqqurkZGRAYDPeaR76aWXMHr0aIwYMaLTY7dv3w5Zln3DlbryugaCEAK33norli9fji+//LLNkJnRo0dDp9P5vTf27t2LkpISv2vDzp07/b5Arly5Elar1dcr1dl7MBTnAjS/rydPngy9Xo8PPvigzS8Y7dm+fTsSEhJ8v2CEy7m0FycAv+tHOLwu1H2n8vrTySmK4vtiHfZUnWZKIVFfXy+2bdsmtm3bJgCIp556Smzbtk0cOHBACNFcEi8+Pl68//774vvvvxeXXXZZuyURR44cKTZt2iS++eYbMWDAAL/yfLW1tSItLU389re/Fbt27RJvvfWWMJvNbcrzabVa8cQTT4iCggJx3333tVuer7NYIsHJnvP6+nrxxz/+UWzYsEEUFxeLL774QowaNUoMGDBAOBwO333wOQ8/nbUlIZpLGprNZrF06dI2t1+/fr1YsmSJ2L59uygqKhL//ve/RUpKipg5c6bvmK68roEwZ84cERcXJ1avXu1XWq+xsdF3zM033yyys7PFl19+KbZs2SLy8/NFfn6+b39L6b3JkyeL7du3i08//VSkpKS0W3pvwYIFoqCgQDz77LMBLyPY2bnU1dWJc845RwwbNkwUFhb6HePxeIQQzaXU/vnPf4qdO3eK/fv3i+eee06YzWbxl7/8JazOpbCwUDzwwANiy5Ytori4WLz//vuiX79+4vzzz/fdh9qvS1faCbWvK+2SOnb33XeLNWvWiOLiYvH999+Lu+++W0iSJD7//HO1Q+sSJuU9wFdffSUAtPk3a9YsIURzWbx7771XpKWlCYPBIC688EKxd+9ev/uorq4WV199tbBYLMJqtYrf/e53or6+3u+YHTt2iPPOO08YDAbRq1cv8cgjj7SJ5e233xYDBw4Uer1eDB06VHz00Ud++7sSSyQ42XPe2NgoJk+eLFJSUoROpxM5OTnixhtv9CtfJgSf83DUWVsSQogXXnhBmEwmUVtb2+b2W7duFeecc46Ii4sTRqNRDB48WDz88MN+X8aE6NrrerraOw8cq9PdoqmpSdxyyy0iISFBmM1mccUVV4iysjK/+/npp5/EtGnThMlkEsnJyeLOO+/0KzMoRPPzduaZZwq9Xi/69evn9xihOJeOXjcAori4WAjRXHL0zDPPFBaLRcTExIgRI0aI559/Xni93rA6l5KSEnH++eeLxMREYTAYRG5urliwYIFfnXIh1H1dutJOqH1daZfUsdmzZ4ucnByh1+tFSkqKuPDCCyMmIRdCCEmIVvWeiIiIiIgo5DimnIiIiIhIZUzKiYiIiIhUxqSciIiIiEhlTMqJiIiIiFTGpJyIiIiISGVMyomIiIiIVMaknIiIiIhIZUzKiYiIiIhUxqScosJ1112Hyy+/3Pf3hAkTMG/ePNXiIQo34dpGwiUOoq4K17YULXry88mknIiIVPPee+/hwQcfDPrj9OnTB3/729+C/jhEkeynn36CJEnYvn170B9r9erVkCQJtbW1fttDdU0IR1q1AyCKNEIIeL1eaLVsPkSnyuVyQa/XIzExUe1QuqUlbiJq3+m2kUi7JgQSe8opbCiKgsceewy5ubkwGAzIzs7GQw89BAAoLS3Fr371K8THxyMxMRGXXXYZfvrpp4A87r/+9S+MGTMGsbGxSE9Px4wZM1BZWenb3/Jt/pNPPsHo0aNhMBjwzTffQFEULF68GH379oXJZMKIESPw3//+13c7r9eL66+/3rc/Ly8PTz/9dEBipp5JrTbSp08fPPjgg7j66qsRExODXr164dlnn/U7pra2FjfccANSUlJgtVoxceJE7Nixw7f/r3/9K84880y8+OKL6Nu3L4xGI4C2P1X36dMH/+///T/MnDkTFosFOTk5+OCDD3DkyBFcdtllsFgsGD58OLZs2eL3+N988w1+9rOfwWQyISsrC7fddhsaGhp8j3HgwAHccccdkCQJkiR16Xatz33mzJmwWq246aabAvKckrrC9fPm6NGjuOaaa5CSkgKTyYQBAwbglVdeAXC8F/utt97CuHHjYDQaccYZZ2DNmjV+j7Fr1y5MmzYNFosFaWlp+O1vf4uqqqounXvfvn0BACNHjoQkSZgwYUKn59QynOehhx5CZmYm8vLyOj3Xn376CRdccAEAICEhAZIk4brrrgPQ9ppw9OhRzJw5EwkJCTCbzZg2bRr279/fjWc9cjApp7CxaNEiPPLII7j33nuxZ88eLFu2DGlpaXC73ZgyZQpiY2Px9ddfY926dbBYLJg6dSpcLtdpP67b7caDDz6IHTt2YMWKFfjpp598F4fW7r77bjzyyCMoKCjA8OHDsXjxYrz++ut4/vnnsXv3btxxxx249tprfRdIRVHQu3dvvPPOO9izZw/+8pe/4J577sHbb7992jFTz6RWGwGAxx9/HCNGjMC2bdtw99134/bbb8fKlSt9+3/5y1+isrISn3zyCbZu3YpRo0bhwgsvRE1Nje+YwsJCvPvuu3jvvfdO+vP4kiVLcO6552Lbtm2YPn06fvvb32LmzJm49tpr8d1336F///6YOXMmhBAAgKKiIkydOhVXXXUVvv/+e/znP//BN998g1tvvRVA88/hvXv3xgMPPICysjKUlZV16XYtnnjiCd+533vvvQF5Pkld4fp50xLPJ598goKCAixduhTJycl+97FgwQLceeed2LZtG/Lz83HJJZeguroaQPOX44kTJ2LkyJHYsmULPv30U1RUVOBXv/pVp+cOAJs3bwYAfPHFFygrK8N7773XpfNatWoV9u7di5UrV+LDDz/s9FyzsrLw7rvvAgD27t2LsrKyDjutrrvuOmzZsgUffPABNmzYACEELr74Yrjd7i7FFlEEURiw2WzCYDCIf/7zn232/etf/xJ5eXlCURTfNqfTKUwmk/jss8+EEELMmjVLXHbZZb7948ePF7fffvspxfLtt98KAKK+vl4IIcRXX30lAIgVK1b4jnE4HMJsNov169f73fb6668XV199dYf3PXfuXHHVVVedUlzUs6nZRnJycsTUqVP9tv36178W06ZNE0II8fXXXwur1SocDoffMf379xcvvPCCEEKI++67T+h0OlFZWel3zIlx5OTkiGuvvdb3d1lZmQAg7r33Xt+2DRs2CACirKxMCNHc7m666Sa/+/3666+FLMuiqanJd79LlizxO6art7v88ss7fnIo4oTz580ll1wifve737V7bHFxsQAgHnnkEd82t9stevfuLR599FEhhBAPPvigmDx5st/tSktLBQCxd+/ek55768fYtm1bl89h1qxZIi0tTTidzpMe19Fn69GjR/2Oa/187tu3TwAQ69at8+2vqqoSJpNJvP32212OMVJwUCyFhYKCAjidTlx44YVt9u3YsQOFhYWIjY312+5wOFBUVHTaj71161b89a9/xY4dO3D06FEoigIAKCkpwZAhQ3zHjRkzxvf/hYWFaGxsxKRJk/zuy+VyYeTIkb6/n332Wbz88ssoKSlBU1MTXC4XzjzzzNOOmXoeNdsIAOTn57f5u2Xi5I4dO2C325GUlOR3TFNTk9/j5+TkICUlpdPHGj58uO//W3rwhg0b1mZbZWUl0tPTsWPHDnz//fd44403fMcIIaAoCoqLizF48OB2H6ert2vd9inyhfPnzZw5c3DVVVfhu+++w+TJk3H55Zdj3LhxfvfRui1qtVqMGTMGBQUFvvi/+uorWCyWNo9dVFSE2traDs/9dAwbNqzNOPKufraeTEFBAbRaLc455xzftqSkJOTl5fnOOZowKaewYDKZOtxnt9sxevRovw/OFl35gD+ZhoYGTJkyBVOmTMEbb7yBlJQUlJSUYMqUKW1+qoyJifGLCQA++ugj9OrVy+84g8EAAHjrrbfwxz/+EU8++STy8/MRGxuLxx9/HJs2bTqtmKlnUquNdIXdbkdGRgZWr17dZl98fLzv/1u3oZPR6XS+/28Z/93etpYPebvdjt///ve47bbb2txXdnb2SePuyu26GjdFhnD+vJk2bRoOHDiAjz/+GCtXrsSFF16IuXPn4oknnujSY9jtdlxyySV49NFH2+zLyMjAjz/+eFrn0JET20h3PlvpOCblFBYGDBgAk8mEVatW4YYbbvDbN2rUKPznP/9BamoqrFZrQB/3hx9+QHV1NR555BFkZWUBQJsJZO0ZMmQIDAYDSkpKMH78+HaPWbduHcaNG4dbbrnFty1QvZbU86jVRlps3Lixzd8tPcmjRo1CeXk5tFot+vTpE5THP5lRo0Zhz549yM3N7fAYvV4Pr9fb7dtR9An3z5uUlBTMmjULs2bNws9+9jMsWLDALynfuHEjzj//fACAx+PB1q1bffMgRo0ahXfffRd9+vRpt0LYyc4dgK+3+8S2Eoxz7cpjDR48GB6PB5s2bfL9YlBdXY29e/d2ubc9knCiJ4UFo9GIhQsX4q677sLrr7+OoqIibNy4ES+99BKuueYaJCcn47LLLsPXX3+N4uJirF69GrfddhsOHjx4Wo+bnZ0NvV6Pv//97/jxxx/xwQcfdKk+amxsLP74xz/ijjvuwGuvvYaioiJ89913+Pvf/47XXnsNQPPFb8uWLfjss8+wb98+3Hvvvfj2229PK17qudRqIy3WrVuHxx57DPv+f3v3D5LcHsdx/NMTBEVDSwUKZUSBQYY0hENOUQ2B4WJBi0U0GCQ4VIRCfyCnhsChqcbAIQwTakvNpaAagigDG1yKiqZapDs898qNe4uef5yw9wvOdM6B8xt+nM/5ne/5nosLRSIRRaNRTU1NSZJ6enrkcDg0ODiovb095XI5ZTIZzc3Nfegh91dNT08rk8locnJSJycnury8VCwWe/XBpsViUTKZVD6fL3ai+Mh5KD2f+X4TCoUUi8WUzWZ1dnameDz+n/KrSCSira0tnZ+fy+fz6eHhQaOjo5Ikn8+n+/t7DQ8P6/DwUFdXV9rd3ZXX61WhUHh37JJUV1enysrK4geij4+Pf2ysjY2NKisrUzwe1+3tbfEN9L+1tLTI5XJpfHxc6XRap6enGhkZkdlslsvl+qlr+8wI5fg0gsGgAoGAQqGQrFarPB6Pbm5uVFVVpWQyqYaGBrndblmtVo2Njen5+fmXVzJqa2u1sbGhaDSqtrY2hcPhD78mXFxcVDAY1PLysqxWq/r7+7Wzs1NsKTUxMSG32y2Px6Ouri7d3d29WjUHfpQRc+QfgUBAR0dHstvtWlpa0srKivr6+iR9LydJJBJyOp3yer1qbW3V0NCQrq+vi/Xff5LNZtP+/r4uLi7U3d0tu92uUCgkk8lUPGZhYUG5XE7Nzc3FMoSPnIfS9FnvNxUVFZqdnZXNZpPT6VR5ebk2NzdfHRMOhxUOh9XR0aF0Oq3t7e1ihxaTyaSDgwMVCgX19vaqvb1dfr9fNTU1+vbt27tjl77XqK+urmptbU0mk+mng+9Hxmo2mzU/P6+ZmRnV19e/+TC8vr6uzs5ODQwMyOFw6OXlRYlE4lVJW6koe3n5u6cUAAD/w2KxyO/3f9lfXwOfQS6XU1NTk46Pj2kYUKJYKQcAAAAMRihHSUulUqqurn5zA7465gjwe5TqXHpvTKlUyujLKymUr6CkPT09KZ/Pv7mfrgv46pgjwO9RqnMpm82+uc9sNr/bYhI/hlAOAAAAGIzyFQAAAMBghHIAAADAYIRyAAAAwGCEcgAAAMBghHIAAADAYIRyAAAAwGCEcgAAAMBghHIAAADAYH8Byp0L6NBEhEQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.pairplot(\n", + " data=adata.obs[[\"cell_area\", \"cell_perimeter\", \"cell_aspect_ratio\"]],\n", + " kind=\"reg\",\n", + ")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "2a14ba45-4265-4a4c-b5f9-7ab9ab96f631", + "metadata": {}, + "source": [ + "Let's inspect some potential outliers by plotting cells with extreme `nucleus_density` values.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "7a7952fc-8d62-4c3f-aa92-dd1f23766a9a", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-27T20:11:04.742086Z", + "iopub.status.busy": "2023-03-27T20:11:04.741726Z", + "iopub.status.idle": "2023-03-27T20:11:21.144111Z", + "shell.execute_reply": "2023-03-27T20:11:21.143682Z", + "shell.execute_reply.started": "2023-03-27T20:11:04.742069Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxsAAAFeCAYAAADt1AI/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAClxklEQVR4nOydd3wUxfvHP1dzlx5CDQFCSUJHihQRRbAhX/P9WaMoKEVRpAiK1HRCtYJgBwQsCOpX7F1siB1Beq8BQnpy/fb3x+XK7Cyk3d3eXZ7363UvdmZnZ+fI3M4+8zSFIAgCCIIgCIIgCIIgvIxS7gEQBEEQBEEQBBGakLBBEARBEARBEIRPIGGDIAiCIAiCIAifQMIGQRAEQRAEQRA+gYQNgiAIgiAIgiB8AgkbBEEQBEEQBEH4BBI2CIIgCIIgCILwCSRsEARBEARBEAThE0jYIAiCIAiCIAjCJwS1sJGdnQ2FQoHCwkK5hwIA+O6776BQKLB582a5h0L4AZp/hJzQ/CPkhuYgISc0/4KHoBY2fMGqVauwdu1a2e5/4MAB3HXXXUhMTER4eDg6d+6M3NxcVFVVyTYmwn/Q/CPkhOYfITc0Bwk5ofnnG9RyDyDQWLVqFZo2bYr777/f7/c+ceIE+vfvj5iYGEyePBlNmjTBtm3bkJWVhT/++AMffPCB38dE+Beaf4Sc0Pwj5IbmICEnNP98AwkbAcT69etRUlKCH3/8Ed26dQMAPPjgg7Db7Vi3bh2Ki4sRFxcn8yiJUIXmHyEnNP8IuaE5SMhJKM+/kDCjKiwsxJ133ono6GjEx8dj2rRpMBqNTJs1a9Zg2LBhaN68OcLCwtC1a1e88MILTJukpCT8+++/2Lp1KxQKBRQKBYYOHeo6X1JSgunTpyMpKQlhYWFITEzEmDFjOHtBu92O/Px8JCYmQqfTYfjw4Th48GCN36OsrAwA0KJFC6a+VatWUCqV0Gq1dflvIfwEzT9CTmj+EXJDc5CQE5p/gU9IaDbuvPNOJCUlYdGiRfjll1+wfPlyFBcXY926da42L7zwArp164a0tDSo1Wp8+OGHmDRpEux2Ox555BEAwLPPPospU6YgMjIS8+bNA+D+o1dUVGDIkCHYs2cPxo0bhz59+qCwsBBbtmzByZMn0bRpU9e9Fi9eDKVSiccffxylpaVYunQp7rnnHmzfvv2S32Po0KFYsmQJxo8fj5ycHMTHx+Pnn3/GCy+8gKlTpyIiIsLb/3WEF6D5R8gJzT9CbmgOEnJC8y8IEIKYrKwsAYCQlpbG1E+aNEkAIOzYscNVV1VVxV1/ww03CB06dGDqunXrJlx99dVc28zMTAGA8N5773Hn7Ha7IAiC8O233woAhC5duggmk8l1/rnnnhMACDt37qzxO+Xl5Ql6vV4A4PrMmzevxusI/0Pzj5ATmn+E3NAcJOSE5l/wEBJmVE6p1MmUKVMAAJ988omrTq/Xu45LS0tRWFiIq6++GocPH0ZpaWmN93j33XfRq1cv3HLLLdw5hULBlMeOHcuou4YMGQIAOHz4cI33SUpKwlVXXYWXX34Z7777LsaNG4eFCxfi+eefr/FaQh5o/hFyQvOPkBuag4Sc0PwLfELCjCo5OZkpd+zYEUqlEkePHnXV/fTTT8jKysK2bdu4EGKlpaWIiYm55D0OHTqE2267rVbjadu2LVN2OvQUFxdf8rq3334bDz74IPbv34/ExEQAwK233gq73Y5Zs2bh7rvvRnx8fK3GQPgPmn+EnND8I+SG5iAhJzT/Ap+Q0GyIEUuZhw4dwvDhw1FYWIinn34aH3/8Mb788ktMnz4dgMOZx5uoVCrJekEQLnndqlWr0Lt3b9ckc5KWloaqqir89ddfXhsj4Tto/hFyQvOPkBuag4Sc0PwLPEJCs3HgwAG0b9/eVT548CDsdjuSkpIAAB9++CFMJhO2bNnCSJzffvst15d4kjrp2LEjdu3a5d2Bizh79qxkWDOLxQIAsFqtPr0/UT9o/hFyQvOPkBuag4Sc0PwLfEJCs7Fy5UqmvGLFCgDAiBEjALilTE+psrS0FGvWrOH6ioiIQElJCVd/2223YceOHXj//fe5czVJq7UlJSUFf/31F/bv38/Uv/XWW1AqlejZs6dX7kN4F5p/hJzQ/CPkhuYgISc0/wKfkNBsHDlyBGlpabjxxhuxbds2bNiwAaNGjUKvXr0AANdffz20Wi1uvvlmTJw4ERUVFXjllVfQvHlznDlzhumrb9++eOGFF7BgwQJ06tQJzZs3x7BhwzBz5kxs3rwZd9xxB8aNG4e+ffuiqKgIW7ZswYsvvui6V0OYOXMmPv30UwwZMgSTJ09GfHw8PvroI3z66aeYMGECEhISGnwPwvvQ/CPkhOYfITc0Bwk5ofkXBMgQActrOMOe7d69W7j99tuFqKgoIS4uTpg8ebJgMBiYtlu2bBF69uwp6HQ6ISkpSViyZImwevVqAYBw5MgRV7uCggJh5MiRQlRUlACACYF24cIFYfLkyULr1q0FrVYrJCYmCvfdd59QWFgoCII77NmmTZuYex85ckQAIKxZs6bG77R9+3ZhxIgRQsuWLQWNRiOkpKQI+fn5gsViqff/E+EbaP4RckLzj5AbmoOEnND8Cx4UguAl/Q9BEARBEARBEIQHIeGzQRAEQRAEQRBE4EHCBkEQBEEQBEEQPoGEDYIgCIIgCIIgfAIJGwRBEARBEARB+AQSNgiCIAiCIAiC8AkkbBAEQRAEQRAE4RNqldTPbrfj9OnTiIqKumgqd6LxIQgCysvLkZCQAKXSd3IrzT9CCn/NP4DmIMFD84+QG1qDCTmpy/yrlbBx+vRptGnTxiuDI0KPEydOIDEx0Wf90/wjLoWv5x9Ac5C4ODT/CLmhNZiQk9rMv1oJG1FRUa4Oo6OjGz4yIiQoKytDmzZtXPPDV9D8I6Tw1/wDaA4SPDT/CLmhNZiQk7rMv1oJG061WXR0NE00gsPXalWaf8Sl8Idan+YgcTFo/hFyQ2swISe1mX/kIE4QBEEQBEEQhE8gYYMgCIIgCIIgCJ9AwgZBEARBEARBED6hVj4bBEH4j8uH3QqLyQAAcJpCprSOxsaNG+vUz8Dht8Jc3Y/gUV+fvgiCIAiCIOoDCRsEEWBYTAZMWfw2AECjdIgJm5eMqXM/ZpMBjy19y9Gn3V3/3tK690UQBEEQBFEfSNggCD9xxbW3wGwywuzx4q8SBXEQBEATpueuPVupxmWDRzB1beM1TPl0sYUpayX6AYCCSjX6DRmBjgmk4SAIgiAIwreQsEEQfqJpuA1bvvoUz3xT5qorMbNuUxVWh/Sxu9RRbq5zSCa3znmd66+V3saUT1SqmLJWCZyuchz/Wur+qbeb9Ab+r5UJGxeThoMgCIIgCN9CwgZB+JD09HQYDA6/Cb1eWtMgF+cq1ehzpUNbkkx+HARBEARB+AASNgjChxgMBmzZskXuYUgyJW+165i0HARBEARB+AIKfUsQBEEQBEEQhE8gzQZB+IABwx3hazVheiz7qpw5F6N1B6K1CwJz7qSRlf+LK9w/0f5xZubcxtM6ptwuzM6Um2jc5WIr64m+v4z96RdUOBzQUxPJnIogCIIgCO9BwgZB+ACLyYDpSxxhZwsMMg+mFjyUswYA8L9lo2UeCUEQBEEQoQSZUREEQRAEQRAE4RNI2CAIgiAIgiAIwieQGRVBeJErrr0FlQYjNGF6GGwOPwm1kvXLOOrhhxGlYf0symysb0Wc2n3tySo2j0ZnUZ6NpiKfDZPd3VeKnj2nU7FjitY6zhdWqZCWlga9Xk++GwRBAAAGDr8VZpPDHpTCZBMEUVdI2CAIL2I2GfHIorflHka9mZG/GrcPiENaWprcQyEIIkAwmwx4bKnDB43CZBMEUVdI2CAIgiAI4qIcNaiw8rgj+l1TmcdCEETwQcIGQRAEQTRy+g1zhOsWc8KoglLrDrP983kteg0eAQDoTKGyCYKoBSRsEIQXuOLaW2A2GaEN0yFKw/pDqFg3DFRZ3f4TVjt7cmQLE1M+WO7+ibbQsX4XZtG1ZvY0YkT+IJ5oRaEhDKI8HARBNC4sJoOkCeja02FMOWXaBoxNcDynPnySQmUTBFEzISlspKenw2Dgd2jI6ZXwFWaTEU88+SYAwHbxd3yCIAiCIIhGRUgKG3tPlmFS9Q6N5y7z24vIsY3wLunp6Th0ugzaMF3NjQmCIAKInkNvg7XadCpcr6/z9Wcq1C6TqnbxGlc9bewRBOFJSAobBOEv9pwsw/gFjkX1TJWjrrnI3Om0KGStJ+IQtJVW1r7pw3NW1/GAWC1z7rCRbVtsZUPhXhXjPj5qZMeQoGXH2CbSCoIgGhdWkwFjch3PryZhdVfJPpi9xnX8gMcDh6LZEQThSUAKG5cNvRUWsxEAXLkKakOU2vGw1ITVfYeGIAiCIBoTVTYFjhscGxHlF/HbipPYKzlayVeu+LbMq2MjCCJ0CEhhw2I2YnyewwzqaJX0EKVSn3eJsfhwVARBEAQR3AwcfisKyh0O3mqtbzbmTpar0eOKmwAAXdtEkUkVQTRyAlLYIAiCIAjC+5hNBtw0/12f3mNs5lrX8ZfP3OvTexEEEfj4XdhoP/h2WM0GWAVeZVtld5hBKTV6rD/tON9WL6XDAIokTMwj1bxqt5XebYd6qlyNHoOrd1sSabeFaDhJ8RroRX4X4jCy4Wr2/GEPE4RfK9j5naJj245s5p6//1axbQtNbJjc/zRj5/+PZe6ft0Fkjl1sY/u63OIe8+btxSBCk74SuRTUNViqJreuXy6FAcNvRZXByNTRLjdBEETjw+/ChtVswPC5m1Eq4Ytx1OBbM6hxWWtdx58/TbstBEE0LiwmAx5eyOZSiBQJw2I2LalfFD+LyYAH81nBgna55WHg8FthrhYytX72aTxXqUafKx0Rq+oruBIEEdyQGRVB1ANnLhd9PcJFEgRB+JOyKiPuz3vHVd5azFsMHDJKWxGcLuMdv6NVUfw9rNLXj8tyR6z6iJIAEkSjxGfCRv/hbnV9ocn9EPKVQ1pdOVamQddBDpOqHm1JtU/UDYPBgC1btgAAXv6+VObREATLxRKb1idS39lKda1CmZ4sYjXTUvc6Wa5GvyGOXe6OCbTLTRCNlQHDb0V5FWtmabazFi9hIhNlKXFWpXC0SU30zvNk4PBbUVLJjksturHznp6II6daRN8lRsOHlvbWmIMBnwkbFpMBUxc71PVbz2traO1/7pm/1nX84/J75BsIEZQcOG9F/hflAICkSPbB81Phpef7foP7yWU0lDPn/rWy19rhLl8myoVxWSTroyF+uDXzMI85JHLauC6WHXOYR1e3D4jDJr0eaWlplJwrSDl0ugyzqzPae1Jm5pdrsf9chYUt3zt/LaZcE81d9+a2EqZslAidGqZi591j+atxqjrvDD13Gx+nq5MAeiYAdELPmsaF2WTAmNx3mLpiC/t8ahHG5o7SSkgb+up17oNl3tGamU0GjMrZxNRFiwQFvYTp6SlRPq0LomdtnzjeTcBbYw4GfCZsnDCqsP5UGADg7IUC7rz+zB6uLqyKd0w9FR4n2b+2/CxX97+2l3N1t3drJ3l9XfJ3EERjw7noU3Ku4OGKa2+B2eTYkQuGjPZO7XKnZmp60WwkOJMAPuiZcbQaetY0DgZU+w9523foTIUalw0eAYXo1U78pifelAMAjdItPPjTp+lspRq9q/2ZAKBNE03IPgsbLGz0vuZWWKoXuAIPSU6lCfzFzsn+Eg06DRiJcLWALhSliiCIIMRsMkpqMwIVp3b5iWuj6EUzxLhxXCrCrGYAgFohwKzR4uimf2UeFREImE0GTF/yFgDgdJX3+n0oxyHIegoOAKASyRbFJl49EhvGai4Ol3NNfMIjuauZ8pjBsSH7LGywsGExGfFAvsNc6oNzgWcuVRv+O3sdAKBduA2fUZQqohYo4Fbpbr/AznurSMP6VyX7cLPa3OrU3k0i2bZFFUz5n3Pup16ThCZsW1Eo3NIiVoPYs2UL17HZyPb7ZQm7s9g6nFVXEwQROpw02LH+mNsOXanmf+/9Y6TX7zMXjnF17RK6cnUDRneGzuYQMIwqLbJWHgEA9IkA/js+Fe3/mwIAMKu0WPAmb9lAhDa+0miEGvpqE2ZxXbBvggdFNKp5y8dAZxMl1hBYSdSkVGF+zg9+HBVBEIQ8SDmAB4Pp1MXwXGBDYWENBPpV51Q5UilA4UNLg6vvS4XWakGZUouMVUck23zw2j7X8X/Hp+KKuzoCAMxqDX7fsBeAIw9Wz+o8WGRhEHqcKze5kkluv+Coa6pl3+NKRf5iH59mn3G9mvC+Y+10bB/lIhP5KpFc3VTL+1ucF2k7IkQ+GWLHdbtEloY9lazPRkvRfYokNCpiLczm7cW4Y8aL7nFVR4j79Kng9+2ol7CRnp6Of084dlw1PlrgZr08BTq7DVAoYFSpkTGdNQ8Q+2w88doMLM26GgBgVGmQmflVve7r+cAD6KFHEETgsf9UmcsUwZMqjz2ZQ+X8472Vnt/RtoscxL+QCHBw4fMKrq6pyFtTreQX8QgNX9dCNIZlX5Wj3wOvuso/kOO4V7CYDHhk0dtYccDsk/6dQoZZrcGXbxzGVyW184P84LV9aFudbLffvZ1xxV0dYVZr0OSd3a42ZGFAEKFFvYQNg8GAyYs8FzrHgnKuVDrzcJMd73N1prgkrq488TIAQF7ucAhqLR7P/Brd27YHAHQUtd1fxWo6cvreBuHY3wCAzGW3Y2nmEBhVGmQs/k1yTPcn847nWy9o0GnyG0yd4fV0yesJgiAIojFy9X2pAIAv3zjcoH6cWo1+93ZGpzu74qCHwEEEP32HuVMgqLQRMo8meDlVoUbPwSMYZ/fOQRY2N2DMqOasegBh1cdGlQYZmV/Xu6/cmZsBOISOZbP6Ovpb+IsXRkkQDsLVAtpHOQRecfTszefYsI7mYzuYsjU81nX8pymWOSeIfCtSWrZ2Hf8lcqYrP84uzJFtxHbU7l3lK5qxSbgiVOzu8rYi92628Rt3Eq8T5WoKgRsgeJpOkd0zIRfZi24GNGpsfX1fzY1rye8b9qL/vZ3R9dZkmNUanOrW32VhoPbIaUAZyIMLi8mAhxc6fHp3lfLhjonaMaE6Maans3uwJcisl7Ch1+vxSbUN2ekKtes/oiHobFY8vuDnBvfjSe7MzbDEt0Pe3IHImzuwXgJHgUdoshR60BGNjDEZazF9WHTIRsgIJjwTSa77qUTewRCNFp3Ngq1vHvJ6v06tRqc7u+KpHT/BrNbg4Du7EeWR42DTkjFevy/hO8osSuwocQgZNt6iEr+LTD3PmNhNsG5xrI9GmUTKgj8qVFydJ6fK2KS77WP4sMtiLo9mLWe+K2HHaZT4LldEsWMX+58UGHmfjTiRX8eRcvaavaLv1lrHJwYMFuolbHi+cPccPOISLS/NnFUPuBy/jSrfKVkyFv6CvLkD66XleDjHLUi9vzS4JEmCIEKHoxcseHGrY+FUioPJAygRJZGS8s/4rZjfXTSJnB9ba/kFbYeE/0e4yEejT4yVa3O8kr8uQTSulhLjJBqOxa5AkUnJRbwDgEqJ/3KFRFZkAOiX2h0AcOuEFITZzDCFheOzQr4Dq7FS8vqfKvh+D8c04eqaVfv3/PDiAQDAqAdT0Ob2bvhm7V7JfgmiMXOoVIOUgTdB7fH47tE2cH2MZTWj0tmsyJrScK1IbXAKGE4tx6FN3lMBEwRB+Ip+wxpXyMizlWr0uXIEmcwEGGE2M95ac9RRKJMIx+Nl3nx5P0Y9mILrxqbiyzWO9XpvsQYdB4xEnNaOjgk0P4jGy21zXgcAhKvcwvzPKwI3uIYswsZjb+QiTBB8qs24GBkLf8GyWX39fl8itDDZFDhT5VBx/lPGzuMuenYn74+41kxZH+3e1bNY2EgxA0S+Fdt3u/09bPFtmXPKpu2YstnKvgDo9e5x7TKwu95RIo3uebN7p9IisLvfm7dLB34g/IPZZMCkarvnxsDk6kRXZDJDvPnyfoyemOwSOEbOcuTEGtTMjA3598k8OkIKp2/ZPwU2qLSNY4MkUDhapkG/Iay1UUKcez2X0/eywW/7KoXDWRYA1GHhkm0URUeZcpjVjMcX8VGiwpq15eoOShnHATAb+BSPV/fkhYitR05wdUaVGil3dcWLqw4w9SaJWz359wXX8cmTNkT1uBadYjTkv0EQBOFDnBoOgByD5cRlPqWSJ2nvl2v24bqxqYyGgwhc/j1Rjgfy30Z/i3NHy2GWWWLhTT+3F7NRT+5szc6x7aXsNYfPneH66NC8Fdum8BxTVulYM8IzFt5MdGgM+/KnVYpzZJiYskLB+1+Ei1KVR6jYPiol/E3CVexYThlYH43USNZc8ayE30dLDz+Oh7J5S6GfitzCRvla+aKr+l21MOPj1TAp+f8wf5KR/R2eyrqqztcljlsBAJh2WRO8t5R23QiCIHyFU8MBkJajtvQcehus1aFG1V4yu2PMp2RCSuAorFIxu7jOHVyKnCcPva+5FRaT0We514iGs+OC1hXwyIm/Ns79KmzM+NixeDw9cpw/b0sQBBG0mG0KnDeyO17xYfzunF60k1Zo4qO0HJLIYltUyTr22krPcm30LZK4OsOF00z57/P8S8bQVrwj8Hdn2d3LCa1NXJsoCSd1omYUlio8usTT5M4OXRWvsv/jXBFXFxbB556aPy0VFUotdlaxu7K2c3ym8KtSkiXHdExizp0y8IkGC04ek7x+T7XFw7dP/YvM6d1w3T3tYdeEodMr+5l2w5o55hFtBMqDxWTEA/mNx9wzGLnysfW4oQX7vN3sp42cBgsbKa2jXYP1NIL6/qwaSZNYlU6Y3Y5FN09o6C29gkmtxUOTkjlTqtpCIXEbN1YBKKtWC+8sYVXBQiG7aGosRqZsrHKH4uvYlk1X+dNZ0UtArIeKWGBVqk0i2CRJJQf/YMp/tHbn3bCZ2TGEx7AvFqnh7heCY2b2xcIkof4lfItzlxAANI3EMfxSFFapXOGXaefaP8yf5kjct3BF/dZIX5D7zL8AgAUzuuPOB1LwjkjgIAgiMGmwsHGxh35M7/qHxPUHL646gGkPtqu54UWYlONW8dNOCkEQ3sRiMmL8AscuYYVFXrPTQGB6/mrcMcAhIFPOF/+gs1owf+VhXDqLgTy888p+3PlACkaPTYJJrWWEDs+NQACwVyt2gi3jcrDQrzpLuEUdjhNV7tnyuyhHREcJbWy7SNbP9/3zbBvjhePsBRpeeyoOwd2iSXOm3F503yIr/zz9tsSOeVNTobdWa9xE+2u9BMCg1iJ/ucOET+zjAbg3H52cEW3ajWjBa3DF4cpbivJoNK1FXg3xfaM17NiujGe1iHbR0Asq1eg3ZITPo7v5zIxKo1Khic6RE/xC77uQtfT/YNBForT3XQAAlYmPya3cu5WrM3ccJH0DO/9HOC/hgARB+o9VanfkVy71OC1OygIAETHNubovzwXi45cgCIIgGs78aakwqgM747NTwBg9Nomp99wIBBz5RgDgwyDLuBwsWEwGPLLobeyXyMUTyIx9KBlh1cKFvVqYmL/KYR6oFPkV2+0OYWTBpPYAAEGrwdchEqxgUs5qRGoErPNxdDevzo4Wg26HrdpkRCWSQHU2K+bM+cibtwsYdlzQIvHykYjTCOjaJnCTqhDeI0wpoKXeIane3Ya1Qd9gjGfKmuimTHlEtQXTNfenAmZ210GrZAXmMqhcOWLUoqgaMSKZN6V7b6bsGe5WLNqfN7JmVSU293doH8a2PV5JwrU/cIaMPFxoJSdLQlacWg2CCCVumZAKTbWAYVJr8eKrDpPn46aaNQhOrQYA5D2aghGjO7jKZrUGX6wmk75L4VVhw2YxoufMzd7sMii48rH1AICBcRZ8+cy9Mo+GCHSuuT8VYVYLTGoNZj39L3Pu2hasWnnI6GRXXhijJgw5T+/y2zgJ/3LgVBmmL3kLKpeM6FgANRIK2yIzbwogDtd4uIoXEkvNfDI2pSjfkbLyAtfGWMBrfRUCe7+wQt5p+Cf9AK6uXTgrnJ+TCOdolQhDvvqHUr6SYKiwKrkd5jApKzybRAZwi6eZh+Aqm4v5cKOChDlLcwkzGQAotkqE/IzgtSZ7zktejtiwMK5uZ4V7HperNLjrfoc5Vf4Kfrd5VAtHZvvjZWp0u+ImAHwwBQAwVvumdaMNw5DjlgmprvDNTgGjIYi1GsPHpuI/YxxaD7Naiy9WB5/WwzO6my8iuwWX3osggpj501Khs1oArQafbajeNSyouuQ1Tq0GAOTNvwKLpqbAqNaS0EEQBAEg79k9AICFUzpdst2YjLWu48RIXtg6Xa3B/eZZ2jAMFaZNSka43SFkvL2mejPE6v37fL1mH2yCQ1i9fpxD8DCotNjwUvBoO2bku80Pb/eBf5xfhI2spf8nS7ZwOThZrkaP6t0TMqkinDgju8xfeRjD+QiTtcIpYGTN6I6sGd3x+ksHvTU8gggaCirUuGzwCKiV8LlTIxE8GFVazJuSKqndILxLeno69px0JFbWaPWw2hX4TpSAr4VIedUtin/LTxQFvygvZd8TW7ZiEz2f3vsr18duUTJptcahCct4tAtsAB7N3159sSPZn7KymOtDiE1gyzbWvFl/it3cO3nZUK6PpGqz6q2v7wUADB/VgTm/7hSvDfxPU9F9RBq3UpGTeYWEllCsUYzUsOUCUaJAlYLXQJ6sZP8Oz31bBgA4Ua5G9ytuglYpNDixqlclALPNhgsiW3AA0AkCZj+7l6mzlfOqeoPIJh0AwnXSWcmrLPx9DktkG1fHtpS8/vFJnWBQalBhcO8sH1Dz9xoUw5sdtLxIDPgKqwJ3zH3dVd624h7JdkTwY7IrUFDtEyE2V7mrI+uz0e3uFABA1rK/AVMVPjlS5joXeeJvpu1XxezuXLM2qa7jy6t347at24dr7k/FQxPawajSYvHzjtCUx6rYh7nt7CHX8bVdUphz34ssUq6I8rinlt31s9op9G0okzmjG3RWj0XPJrH1J5ExV4xRqUT+o294cWTSPJTjCKkerbX73KkxGBh07a0wmwwoMSuhbsS+Pvkr9iGv2oG3IThfsJx0aOp4TaKQy24MBgMeCuCcGhmPdgFQrfWSeNf0Bya1FuPHO8z7gknD4cn9mWsBAE3D7Ni4uGFRVxuHukECnc3MCUAE4W0uH90ZVagWNLzIt2v34fsyFWZPTsbsyckugYMIXqyCY8NCHA4xSs1vouyp4P0xdlwQSZASi2z4Ofeu75xVD0Jns8Kki8LSl90hJs+XSCzOElH9LmvOBj64bXwHzFs+BhnZ37nqFIW8ffRBDZs35PCRcq5N5w6dubqbWrC7gFaBhGAAMJsMeHzpW/ijKLCjR/kDb2g37vMwtwKAR4dFA6CQy8ECI2jIiFPAuHdiCu6dmIJnVjbuNdqrAdxHpESj3btj0O7dMTi2KnCzhGfN6AGjSltzQ4JoIFqLxeuChidOISP74XbInN61htZEY2fOqgeRs2IcclY4ns9ZU1bj2XomNhXjFDKWZQzGsozByMse6pV+CaK2OIWMeVNSa2hJhBo5j/fCkuo1UG5BwxOn0DFtUrLMI2kY5yrV6HPlCKSnp9freq9qNjxVjNEBnNSPtBqEP7h8dGeYNb7fbXQKHLMmd0Lm9K7IfWa3z+9JBB+5udcCcAgYvsJTq5GXPRS5udcjM/MLn92PcOQf0ygFHDBIh6g+fFRilz+yCVdlLz4NAMjNvQ5GhcpV1jTjk9920POvDv/77XfJ+1vi+esVVXxkMVXTNpLXn79wlqtTVhbx15c6xpv/8IvIe/ZeYPe3AIA94ddwbdce482jBUHac/jYR47A4XuLNeg4YCQAIMbDLr6htuzByrcX2LXNZGQDrPdtwpr0/VnKr4UtRCbpxSIz/FIlO6ctrXghUqgsQV7mVQCAmQt+hkIXBRjd5vG6s+xmiimxJ9eHovgUUx6UwmpWt2v7M+UDBl7Tu6+SnT+WSvccn533E/LmDsTkhzogI+9HV/2aiijmGihYbW2v2Aim3F3C78UsGoqyBoVvkYnXMYgTATbXs6bUdgAzFr4GANhQT9NVv5hRGVVaZD/WE9lP/eOP2xGEz6m0KXCoyvHzSQhjf5g6lYCeoxyq3H/e3AP77gLmvDbO7UdkKmV9igTRw+Z8oTvspCaKTTBZeeYQU87I/wV5c/sj89HOyFj4K9TNklznvjzDmqqoRU51v1e6NX2Xiax2VqWFI20lCC/izKlx9IL7pUcTpr/EFfUnN/da6GwWGFUaLJr0sk/uIUVG9nfIyxqKpVnsy55RrUVG7vdeucf5KjX6DhmBTuQo7jV0NgueyPlO7mEEHCNnrXMd92vi/t021JadaDg6mwUz87fJPYxLkpH3I5bN5UOBBwvvPv0QDAYD9Pr6rVN+ETayn/oHix/lbXBDnaNlGlfcYoqa0rjQWC344x3/R4vKWPgr8ub2R97c/sgR5fAgAgeDwYAtW7bgha2+zR3h1GY8kbMVAOuz4Q+ktBq5eTdg2bxBMKo0DRY6pi1waGneXEgvfIQbo1KNecvvR/7UtXIPhfAxeZlXwagKDn8lo0qDvIwrGe1GsOBcs+qLz4SNlEhgVmfHFmnOP45dtezHeiBzyZ8AAF18a+6aTjpe/6NXSmR3AvC3hY9cZSzh1a2q8kLXcfbim107fIKEw6NUIql3z/OT+M7mvAoWAD4VqRWbPvwG4qudOw2v18/OjSDqilPgyJrRAzlP72xQXxfeGIu0V+u/m0FIc+yCBa98X4rfinnfMXG0u13lvNr77wL+WecZMSpv7kCECzZHltxVB+A0UDmu4J+xtt0/MOXYC3zm6Mr+d/NjOM0me9PEteLaCHY+n0FGnuN+eRlD3ELHgp+YNvtK+fwz3SLZ5G5dJCIFEgQA5E9d6zClInyCXq93vdP8dUGLgTPWyzaWYNBqOAk27camam0GgAa/A/gtGlXmkj+x9LEe/rqdJDqbBbPnfSbrGIjQIEIloGO4w35SnM350yIFutuAt8866kd1Zk2lNp50R9VRtWXtR4XSc0xZXeYuf/4LGz4vwsjuilc1czugZc35GEuX3YzFT/TAL+v24oiBtZ/dZ2RfOs129wtuhc19rqG7GY2dAcMdYUkBwO6xmaH1kcmUE53NgudePeHTezQURuiY019S6CCIQMfpOJvYhN+YDNVwuZ7fqfeVI3BTCzOMdnYD+LiB3b3tEM5vPJwT+Q/0jmY3FP4sMTBlobKEKedlD3XkcPPYPBasJqaNOZKNmicY+eh3GmMZU/5n2ydMWRGbyJR1Z3kNcWnHwUxZFcEm1HKaySoUSuiqTanDVOz3Ly1lIwGaBNZn41Al75fVK4b14zgtCsWfIPp/N9n4DSeNaFPfmdRvnRfXf58JGx0TorG+2pHkxBkF2jz4MoxqDXJn9XFpN/xJ9uKbZVW1/XVBi4TLHc5lQzpEhuQDqDHRs20Utj9/D46UanD9zHXMuXlTU2FQy6/W/WXdXlx9d0e5h9GoMZsMmL7kLQDSD3lfkDd3YNCYFQBwCRh58wcjb/5gEjjqiNkOFBqViFFJWwEoJXJSqcJjuDprlecLl3uudgrnXxM66nnLgNNFfJjji9Gu8+Vc3UkT/zIKAFYJKwRlcz6fhkVUJ6g0sCQPxr9GXjPYPjqCq4uXCDENAF8cPcPVNQ9r5jr+72xHbq0510Vx7Shcrm/R2SyYueBnuYdRJwxqLeZNTUX+8saVfNKroW892bhxI7Zs2YItW7ZAMDsedk4hI3dWH1/dVpLsxTc7/p39oV/v68nAGesxePZmDJ692aWWIoIX5/y2mvm/pd5qCZgHiUmjwcAxjc9fqrGSN3cgACBj4S8yj6TuOIWMZXP6I/txPmIMQdQFo1qLrBnd5R5GyJPSOhrvLx2NP57xr9maQ6sRPJsqTvKX74Peaq65oYykp6cjLS3Nq+bTfk/q529zqkAQNAhCLki74X+ckaZOFFl8bi4lRmezYOaSP/x6T2/iEjjqaNd8vkqFfkNGICFOE7KmK570G+Y2z/P3HAsWcp7ehUVTU2Qdg16vD/kgMc7v1LLff/x6X53Ngpl5pAX1Bb4wn/aLsJEQrsJd7dxqS6VOiwUPtIBJqcJTozJd9ackEu3Zw3jVJAAomiRxdU1OsovsY2/mQlCqsfjhl6AvPs6cs7bpxl2frOPVtSereAlUrZRWCJVLaIGV4E0nzpZq0HnQTQCAXm2jQvIB1JjYK4pvf5MSuMHDXPOjT99nztvaeZgQmCqYc/G/b2DKF66a4jrWlZxkzqkrWfvOOJFj79/tHeF3+6q0GP1QMk69u8t17o9d7H014e7fWWqEe35vB1FXnA/qNT86fGps1dYZRyXsbcUx0gHgg5OsL44ugjd5gcXEVS3IvRYmjQ7hsY4QySfLedtktYS9sqUdq2k2t+nFtVGc4TV13Tuxu8a7Th7n2mjKz3N1qtZs8snL43RcG6NChewZ3ZloVqfjWaE5QuVevm6d7TBlTIqyusx3QxmzyYBJC9+WexhEDWzcuBHvbC8GUP/8BETo4TSlerIRZRX3u2YDAH7fsBefb34Zj72Zi7kbsjihwxs89mYuAGDxwy95tV9vkD7vddfxr8+PknEkhC8wqzUYcl8qfng9MEypXnvxAGY82FbuYRA+JC97KKBUY+HzobF4ZWZ+gdzc67E06xoYVRpKDEgQAc7VHSNgWH+nS7M49xM2yd9f5fzr5kkjG1HObmOdnZuEs/mgkmLd65hGqcLlbdvivJXd0D16oZApx7ftwpStW1/jxmG/ajxTVvz4OlOOOcxG7Iu6cwnXR1lxMVshivwnCG6foAXP7cWCRzrAInITurw5m2wzIYzdjSqX8Ps7LdrsjBVFM6wS/f9oJSK8nr1IQlBvIouw4cQpYDiFDkABk1KFJ0fn1bvPx97MRZjd5hMBhiBqww+v78PwezrIPQwGs0aL1rd1Z7QbROigs1mQteqI3MPwKk4BQ5wUkAC6JEbjk6dGA3BHPNr3UaVk28HdeLPlrSd5jROcQS0UgOAR4GLfAf6ZcXYfL/yV9b1L8v4qiWzfURIvPElh0hYDeyWCbXSKCOPbFRZydRAEtJJw/O4RxZsh/O+stIM6NLzFxYZ/T3F13xUnSV4+JtHxsueMWgWEZtZx5/chp/iamT8tFcYACCLjT/wibPRqG+XawT9SqmF29gG30CGotHh8fQbmvT4XAGBSqrB0wrO1ukfGU3dCb6mCSanCwntzvDd4H3PEw6QqpRn752gMtseEfzj17i60T5PXfpkgCO/guS54++XOqNIgL+tqZFQngiS8w5S81a7jUM46rtfrXXPyYIkG/zd7XQ1XND50VgvmrzwM3+sTas/vr0zwWk4NKfwibHg+GJ0v1hfDU6vx+PoMZLwy1VU2KdVYOv5ppn3GU3e6EvUFk5DhxFPwmn89G6eadggCHwWAUwbWfj5apUWVSotBYzrjzZf3oyx1GHuNx06fRrTrV9KPjeihj09wHVeGseEaFSWnmbI9ugVTrvQIJVluUcIOBcotjt1DtZ6da/ckuHcVW+pt+Gj5RBgMlMyvPhy9YMELW0txuIJ9vO6S8NmQQiP6OxuL+QR+USf+YsoKmxVVRWyITmVVCXedtUkiV3dvG3bn9p0CfkxmXTRXd/jPr9mKRD6CVGqXvlyd2Ozhl3P8zrfSw5zCqFIjN/c6LsJWs/ZNxZehxKTEmQo1eg127CB3Tgy9HWRfk5GzFXlZVwe9wJE3d0Cj2z0OBDx/b8kDRso4EqIu+Dqnlt/NqMJVAtpHWtH0+kncuaP/slkgc2a+h4iCf13lea/PRcbLTodZh2rUpFRh0d3zAADFl9/D9TktlXc+BIB95bxqtUMEr0ZtqeNfECwSTp2AdGZxrUTsc7t0OG/M/kRaDU4EH2++vB+jHkzBqAdT8M+C4Mhu6gkl8yMChax5n2JJ7rW1bv9g9hrX8YdPjvbFkAIKz53kvcUajJzV8J3kjJytWDb/igb3Iyc6qwUzl/4JCvwtH32SIrHrxbsBAHuKtLjhCXZuXtOEfRk6ZWA3Pj47wgZFKfTYiLnTbsfv50ugi2QDaMTEspsQxYf/Zsq2jkO4cQ4SBQfaqY9lytYO7DVWCYu7u5LYYEZv7WU3A8Oauf1NFApApVIhUSQLR4lM/sJFZXHyPcCxOXgpxH2oFMD/np3IpWDw9cairD4bdSX/voWuY4U19HNVHCjR4LLqHbpU2qELSHq0jYJh82h8f1aNpEfWMOfefHk/xo5LkmdgEljUGqSmd8W+jbvlHgpBEF7Cc13o6MWdZKc5VfYs2nQg6ofn3Gzfn7QcADB3cjKMEpFX/Ykcm4k+S+pHNJz/zl6HKYvfxpTFb1MiwADFmdxPkEjuBwAmtRZ5c/v7eVTS7Nu4Gxorr30jvEPfYbei5+AR0FDeAyIEyMjZCp0tOJ8XZEIV+hjVWuTO7if3MOqMzmYOmaiBdSGoNBsEEai0CFPgP82cJnduteb29XvQ597OyJs3ELnPODQKFg/BxBLBhrpTijKLqv7+2HWsiWDVwxaRj0bP5vFMuU+02+79VHVou66C47hfDPvTb6l339di58PrETVjMRnwMOU+IGSkX1IkDr3sMFsprFJhRv5qHK/gTYGjk3h/l0938FGnjEoVspfdgtxn/mXqL+h5Hx51VDxXBwAxP7/C1e02lHF1puadJK+POvILV7evoitXF1Z+znWsMxsx//FNCCvYj70GPrfM3ohYrk6lkTa5HpEYx9V9XcTnvjlnkhbMnjrMCz3aEI9MJUX/9pE48epd2C1hTlUfMhf/jtzZ/TBvSiryVwRGmPlA5MPn/G8yJQUJGwThY3Kf2Y3M6V2ROb2rS+AgQg+VAvB08TpuZBXHZ4x8glBB4B3A+sawYT1/vcD7clUksElJDRo98uYOQP6jb7jqLOH8S5IUG0+zY9Ds/4FrE3HhEFenNLPjUlqNXJsTeyUSC5azjuzqTnxoW3U71tncqNUjb/6VyHl6p6uuSiLm/ANXsS+BHz7JNQlpPF9anZmrG0LOrC3IevI2ZE7vxgkcRP1pLJGpPPEMjbsyzZE/44532ZfgHpGs/8GQtglM+YSZfaa+9tIhPDI+EYZz7oSiRpE2Lrr9ZUzZsJ8XXo+L+q2Kb8+UxZuAwmE2QAcAbFP1Zsr6pmwwjqrS88ibOwAGpQpVpY7Q0ylt2c3GQjP7TFOA9bcw2nljpIevZp95m7ez+T4Cxf/S72ZUya2jsXHxGNjW3cl92vzxDNr88QyObsr197ACnjMValw2eAQuGzwC6enpcg+HqCNOISNzOr8jRxANJTPzC+hFCbFCifzl+6Cz8cJaTej1evQbMgL9htBzs77kPvMvdNa6/98ThD8wqjTIywmOXDw6qwUZC7fLPQxZ8LtmozbqwrS0NGypTuT02g99JNuIsyICwJRreNVuXXj7lxKuzmjj5bEIjXQ4qfNGXl3dTMdHCii1SMt4Rwx8fdtwx/ccm7nWVffZ0/dy7Qh5UQBQV//5Si3s3GwX7nAGe/2lgxj/UDLysq9GxqJfAQA2jSg5VSkbd7SqqTs5oNok2kk2VTDlXQdZrcm/TZNcxze0cJsI2ATAKDKV0ldHrNj09EMU8jZIMajUmPfsPYx2I1SYNzW1Xk6VGzduxMZfHDt9byy8z9vDCmg6JkRjXb7jOx8vU2NMxtp692VUa4NGuzH/mbthVJHRRqDijJ6m1+uBO9c2uL+MrG+xLPPKhg/Mx/jbjyjQ1nL6RRKEH3ntxQOYOK6N3MO4KIGicg0WBg6/FWaTAQIgu2N4/qNvYMFTobl7r7daMPu5vQ3q43yVCv2GjEDHhMZhI+/5Hbtdcen8VjWR+8y/WDgluaFD8gs6mxXzH98k9zCIi+BpTsXnga8fTu1GRta3XurRu8ybkgoB8KtWI9DW8oAUNjzjhteFL5+pud9QWGROlqvRo3rx6NomKiS+U7BzWbso/LlyFA6XanDdzEs7vxnVGiyb2RtGtQYZ+bz9qK+45v5UmChCi1cxmwx4bOlbMJNTfcDz6AKHnXxj03AAgFIBhHko3jtG8iZ39mbtuToAiP7tHQCA2W7FoofawKRSI3P5Qa6dUCAdYUeI4B3HI//lX4KUthslr69snsLVKQTeYkBht2Lec6NhVKmhsLu/X1jpGa6tObIJV6e6yLOxwMRbHGjVvBVD4kUsHqyQejYEZ5Qvb6LX62F4Pd11vHHjRjyypYppEyP6P/1DIhWZyliO7FlbsDj/RqiM5bDFtmTOV5pYXzKrRCCC4r8+Y8o60d/MKkq0aorjNwzPmNg5qVI55sjcyQ4hfeHzByHejioVTYM40fdtJsr/Me8qNpeHmPT0dJ9mAW8IASls+OrlOVQycnuaVH35DJlUBQLOOZs6sOYdRKcJ1bKZvWto6V3CrBZ8tuGwX+/ZGLAL0ok+1aJ3DGvhca5Nx7b8wvfP798wZa1ElBy1kY/mY1dpYVSqMP+ZUcif+jpUJn5l1h/md9Y0FWyG8qrmqXzfOj76DpTs8lHRkU8CpznHzzdL1+vZCmMF18Z+itViCHYr7KL/v28VSdx1t2zmndTvCVxFYlCx7P4lAID5rz0m80gujt5mwfwZFBEuGPB8z/PGu5lRpUH24puRsfi3BvflLdyCxgFAIhiItwk0bYYnASlsEESwEqYS8E0h60ypFNkPK0urX+4EO5r8+Q5zrvjye5iyZ3ZUk4F9eYzdtpYpG4dNYcpJYe5dks/PVuEau4DPzzpexvo1CWfaVlhoZz4UyJ/6OuYtvw/zlt+H3Mc3yz0cIgQxqdTIfqwnsp/6R+6hMMx7bjQMKtLcBiNOa5aGhMXNnv0hshffjLy5AwLCCZsRNHyMU6MRaNoMTxqVsHEx8yynCu+ugbHcOXEYMQA4XC7933ZcwsE7RsPXNdFKS7hXx/Oq1bcKeKfIW5u7X2ZPlKvRvdqkSqVwv1x2pozjBNEoyZ/6OvKevafmhgRRD5bdvwSPvZETcAIHaTWCF+e7SkOzjGfP/hDZS/+LZU/0cZgpyyB0zJ+WCp3VApNa67fkfYGs0XDSqISNi718B7N5lWeEkXC1W9j4+MnRMoyGCFSyH+8J4yV2/T5dMTHgd0aI2mNUqpHx1J3Ie+ydmhsTRB3Jfuofh7ARYAIHQTgFjGVPSEcy9TU6qwXzVx52+WwQDhqVsEEQjRWdzYLZz+y56Plg2BkJRITqT6VEKO4iUd2VHTtwbX44yTuvqkXJ+AQJIdEU3ZKri//5JdfxMzeMwozP1iNr2S1YNnaZq74qnh+Dqdu17P3V/LJQVtCMqxO0rNOkWssLquIs9wAQtX8rUzbE847J1khRhmuFEvYotk4jEd50/4VCfpxt2HF6arhDJWhITXRNjMLn1SHTz1ep8XDOaq7N5U2lnU9/bT+IqwvftxWLH1yBOaseQM60FCya9ApUliqJqwG7nnfGLunxX65OXXFB+voYfg5pz7gzRmc8nQ6dzQqDSgNByc8JTepgrs5ykn8WxrTtInn/7lG8xUG/WN4Z3CiRZBIA4sN4SwalR9PzVWr0HTICCqDRREq7GGFKAS08/r+sov/mq6L5wACfN2GT5zn/a41qLfLmDkRGDvu8UZjZRIIAYOo8lClbi04zZU1VCVPWNeUdwfIeTYHWaoFZq8E1scBnp9j5PLAFn2T1ymasyfW9V8Qy5Ze/L+Wu8XQCdxIMm4QkbCA0F5/TFWr0GjwC7eI1IfOdgoEuidEwvHcffjqvRaepGwAAVjv7gOzeyZHYT61SI/y6ycy50grWL0P7q3tn2tS6F3OuqAerkbsphr1PkYcfhlKhQKtI90vX4HgT0/aDi38lIkhZNnYZ5r82Q+5hBBzedkwNBjy/c18vZBZ3smjSKw6BY8VYGJUqLH1wudf6ri06mxXzZr4LhR8ccH3B1Ops4iqlgA35jS9Smq/IXPw7cmf3w7J5DmHZqNIgI/d7r99n3tRU6K1mCFoNPl3v+wAswboxSMIGQnPxeSB7DQBg4lUxIfOdggHnXIrr+x+ZR0L4igHVuTUAQCtzbo3GQF7WVZSkLYBZNOkVAMCclROQ+eIkGJVqvwkdGU+n09wIIXq1i8LvK0cBAA6XanDrnNcb1F/m4t8hVEfly8u8CsvmDYJRqUZmxhcN6tcpYACAQa3F/FVHMDRGOvSxN/h65YMwGAz46Mng0GJIQb/SGrh9AK/6WvUdH3YSADqE8yo+KX4rks6E2zmKj33eMYyfwNaLxPQ/XMHbCL65raRWYyJCl1smpMKkrnv2ZUIas8mA6UveknsYtcKkVGHmmpmMKVWwobNZMXPBz3IPg6gBp4DxxMtT8cTLU30ucGQ87cjRkDeDtPahgufGb+dahJGvC06tRl7GECzNvgaAQ9tRk+CRlzscOitrCWDURmD+qiNeHd+lCFZthickbIgQR6wKBROkc9U2oU5axzlswEPhuwUqTdUCrqk2a1IrWIGx2OIoW9RaTJzYHhnZ37nOaUR2y+2vcmeE3lnC2kQrbKwtcaXIZriqWijVWs147KldQHm569yJmODcHSHqxrKxyzBzzcygFziI4GHpg8t9LnCQoBH6RGoEtI9kN3DfO8PnHO8WH8uUd51l8wapo1lfr4WrDrmO8ya1x7K8a7m0i3a72yTPqNYi48WTzPkrogFxViGbwPbSvSnrq9ReYjP6gkTCSE8evMoR+v6jJy/ZLCggYUOE+OU7FEyQnDahTkYNigUQGt8tmPlk9T6MvLetT+8x6sEU0mp4GbsAmESCXbGZXzQGxLCayj0SmsdmTVtxdedtIg2nhl9gFRJ/0wtXsXlW4vZ+CQB4ckw+Hn99Lmaufhzzlv7FXTcwml0GtheWc23CSk5zdX37DmHKvxTxCfWgi+CqTNHsd7Y378i10Xh+Z4UCmpjmUBz7m71OKRHtJa41V7VA5At8xwD3cSj66wUCToEj88VJMClVXhF082ZfDl216YpRoSBBI8TpmBCN95eORkGlGg/nrPHJPTKqtRPRKvb5fa6UTXnAP4H9QzDkz6gtJGwQRAgTZjVjzeqjQDGfpXnP6vGuqBah8DAjLs6T9y3EvDWz5B5Gncmc0Q1GHwrLoeivVxOt4zSSpri/FkqbB+ta8hHMrM35CGLRGlb4W9n/NgDA5EnJmPlGNpau9Mg5cPYY32c4b7IMwJVhXmc1uczpoo7/gbDyAqZZeUc+6hQAWCr57xXVho88VWaRNoP+rZR/TRrShI9QVWKR3qWukohSlSxhMm2wKlFQocZlgx1WCKmNPFeW87v3vtJ7AQ2CjVAwn3JCwkYjhnb1QpuatBqh9CAjasakVCFv3hXIyA8O/4fMGd0AALlP/yvzSIiGsHTlATzxSDIyHmoHk0rLCh21IC/rauhslkvmCQoVHvLYwf/fMsqVBQAprR0aDgD4o1CLvtM3yDwi3+IZ2jaUNgFJ2KgHGqV01IH2UfzOSJWV3+1IjuR3NQDAJtFt31h+B0Wrkr6/SWK3qkTCJtCZFf2OGS+66tZRyD2v0icpErtfvBtnK9Xo9MgbzLkdhSWu4+EaHfJyhyP3md0AgLDm7Zi2f5895y4o2L9lTCxri7q1oIgp/8dsxMzFvwEFZ3F9WzZPQttwK/6s0zcinHROjMaH1Ukzz1So8WC2b1T83ubJ+xZi7vpMuYdRa3RWM+Yu908GXoD313PW0SZMw3EKGE6hQ7DXLpgK4HDipQABjRfP31+/ISNwX1s2x8SnIj+OoYnNmfJpkYlrO4m8J1tL2Pesu5LYnDNnRBaiO6v496rB0ex73fCYmud4E4mxhOomIAkbBOEDnA/IPjWogHOf2Y3M6V2ROb2rS+DwBnmzL28UO4Fy4Ln49RrceFX8oYaUUNFYTKv8hVPoKJUwo4JwkdChyks70RIEEfiQsFEDjcXU6FiZBl0H8aHmOjVTh/T3DgQ8BY4lzx9scH95sy8HgKAxlwlmPLUcJ8rVGJOx1nXuZBVrw35eIst44alDXJ0yls2YbK/ibc71J3ZwdYamrG19ZctuXBsTBDw5szeMKhUWPfIqAODPqOFMG60ukrtOd4FPVvXn76JdOXHWbwBhBj4DrjmK3XkUqvg2OVlXwahUwVJ0ylWniIxn2ijNEhmrJXIuWEX/fwPe4k0ThkrsQi65iXduJwhCPjomRHNWGLuKtLjm8XUyjch7bHr6IawLEWdwKUjYqIHG4kB47/y1kvUzr40K6e8dKDgFjuyH28Go0mLx83U3H3FGazGqtchY/BtQHbmF8B2ez4fuV3g3LrwvcAoYOcvHyjySi5OXdRUAICPza5lHEpqcKrZImuxeTLNwZRRfd0oi+tp1zUx8QwA/XuD9xv6Q0LoOa9dS8voEHS8IvhV1A1enuUhyP0vpOa6utKKIq+vaph1XBwBREkHPCox8ZYeLmEfrJcyeRw+O5erW/1QieT3hRmrTs23/kTKMxPuEqvmUExI2CMKHCAC6iyKP/H3WbR9qs7gX6KylfyE+MgqPTkrGnMnJeHbVAXRr5fa12FnF7oyXnjsBwPFyprNZYVSHYc7y/QAcP+yuTd3RXZpo2AU7WsvbihKNB6NKhTkrJ7iEj0BCZ7NiZs5WuYdBELJytlKNPleOgFLh2NEn6wJpBrWPxPnVd7ksMF7YympKfz3N+nQcKmN9PgBAoWKFR60orLZGpJRO0vICpDgaWZSJbdNSzwvNm55+KCSdwaUgYYMgAoxnVx3Ao5OSMXtiO6gUgEmlxXuv7nednzslGTqbGUJ14iGjSo2ZC37mkhcR/qVbmyh8++y9nDlVILLokVcxZ+UEzFk5Abkr/ZcJtybysq6C8SI71HLQWMxoicBjcq4jP5ZeLVAAl0vg/E0GowVGqGszPAmcp3oQ8UB1Vkcxb/xcwtVZJTaQLxZNqlgiclS5hJ33ZRIxvgHpyAaVFv56q8DXSV0LAG9uK5GsJ2pHSutobFtxDwDgaJkGd89bW6vrnl3lMKPqECbg7rFJuHtsEu6onjZGlRaZq46hqvCEL4ZM1BPPRW/6sGg8soX1KbhO4nf7nYJPaBcuegzst/DJ8uwaHVcniBxpFXberENb6vaBeOreHDy+bj4ypqYiY+EvHhfyzwdb68v4virZbPfaNt25NobyC1yd5jwr3AimSgBA1tL/AwDkPPE/QCJhn6CLZsckYYqjlvA3sYsiHzWXWPUiJZ7Jr/9UgpumvuQqv7tkDH8hQRAEUSMkbBCED/HcCe0i4YBfG95acxQAb0ZFEA3lyTELMHdDttzDYAUNgiCIOuKphTxVocaErOAISd5YIGGDkOSL5x9sNLaE/sJoU+CkQQVtpNuXIkbL7s6eL2UdF8vC3Vo0U1khc05TxmbQtQisduq83u3wWCDSmiVJaMwI7+C56O0u0uKGJwI7UopRpcGyWX1hVGlYDYefCBZBQ2xS9corr8g8ovrzaxGvFRLs5ZJtv9nNJ1XUt+3B1b10Qvp1oovE8qFvwjuDS/hhAwC0EpFv9bpwri45TNpioE/r5lxdhUT+K6VCOi9C0zC+XmpMkRfxgysyXjzXFXt/6WdymYQzPsHjubHXk0KSBxwkbBCSNCZbQoLwJp6LXvsgiJTiFDDy5g5E3tyByFi03S/3zVx2uyMztFoT8IIG0HgiExJEsNMlMRqfPjUaZyvVGJfJajh2l/HSr10kp7YOZyM5RqrZBsVmXjA0i5Iqi8thHtL0/56dCEMIh7mVgoQNgiAIAhkLf6kWOAYgY6FvBY7MZbcDAObO/gCCkpYhgiC8h3NjoHcNSXXlojFu5tJT3otIaUGlnMnf/qVE8vpwFa+uFUvHAGC8iAlMkYS6tViirlss76j6xfMTXWZTAJlO+QKlAtApBdhtbsfdokp2B0VVdJIpm+Hxt7axf7ewjpczZUs5a4JVaHL3HadmzSZGD47FptoPnagn/dtH4sSrdwEACiWiGSVIxNZ//aTI+dvOm2dY9PxzRSGaH8rkgVyb1F583Z/l7udO3vJ9yJjWGctm9QXgMLHKfvIfaYf0bsOYcitxfEgAlbHuCGnTJiUjzGaG3WaDUaVG1vzPAQB2fTR3nUJb8/Pnuo6JXN0z/6k5EZ+UCcvtA+IkWrKkp6eTaSlBEEQ9IGGDANA4JW2C8DXBaHqT/eQ/7uPHeyL78Z7ImvNRvfpyChiAI4Tz0peO4fyJfV4Zp78RPyPLyvjM7gRBBA4prR3mVJ7sKdbiRj/60f27ejwMBgN+96hrjJsVJGwQRCND+c79SHu9cdmLBgKeDsZOzlaqMak6nn4gkv3kP8h+vCeW5F7LnVOI8mFIubEaqwUMufDURlyK2rx6hMrvpVNCNM6udmjbdhVpMfzxwA5gQBD1RSovTu8rR6BvHGtREK5hfTIsNrG/BXteo+S1uE1Fme6jq/v8nTZyAZCwQRCNDtJiycPFFr5AJ/vJfyBcOM7Vh7VOZcqtNLy4USlzonqa6zye87DfkBG4oZUJAHDEJJ0U9IyC/7tWiCLjAYA2XDr/1D4jH2eqfRjf7sdy6WhSQhl//y56vm07iQzNALCrnI+8dWW8mavbdoFvBwDhKn4SF0uYN1dexLxZo+THKmW2dzHz6miJ+xP1J6V1NN5b6siZU1CpxqQc72/2fLOSonmKIWGjDlA2WaIhWAWg3KaASq111Yn9fIxiW3yzOzGc/ixrfmKKYUM6KkVJzvrHuH/e7cPdfiLb6jRqgiAIgggNPN/bfLXZQ5scPCRs1IGa7K/PGvgdGKms4qqLhM3Wq/kdEKXEZk3pReJuqyU2VlpL7PZQhgWCCAxSWkdzmakjARRWqTAj37Hjdq5FLHfdgYp4ru6yONZB/L7BfC4CKbMiTaUaD+e4w0OqFfxO9J/FKVzdwKYmpmwT+CeLVWJT1pqQxJSlAmuMvZLfJc/8rIIp597odgZ3fq+0l9lraFeRCFbef2Yi7Y4TIQMJGwRBEDJxMe1ovyH+23ELBlOumqCdRCLUoDntezxNqpzo9XqkTXuJqTOITOQSwt2buB8+N5HbwCHhkIeEjUbMpqcfop0TgiAIgiAaHVKbPXWNGkhCYe0gYaMRQz8S/6JVAE01AlRKt5lKopZtc9DEmorYY1u5jhWCtAOlq20Fm2cDTd1mJtqLmO4RgUnHhGisy7+PqTtVrsb4rLUXveaT5ewO27sSbaQ2FVJaR+P9paMlWl+aQ3W+ova8v7TmNmmr3Me0WdJwuoRLOyKfN/D/t1ZDOVdnMVRwdQBgVfGvGXERfD6U81bph1RbLf/cuyDhjN30Itc30/Lf69VTvIf69XFWrg4AJOIeoMrG318qqzQAREiYR7+1rYSru3tQLFN+U7I3wtfo9XpsXDwG5yrVmJJ3cedxp0aDnj21g4QNgiCIAONiO26ThvIJ8FznX67f5gEFuiCIwIASR8qP83nYpwbzUtqsrRskbNSTYI1M9RWFZCMIgiCIgINeYAOHxCYa3HNF7EXPv+O/oYQEJGzUE6nIVK0k1NAlJl61avBQwf7w/ov4csOTqCy9AEGw4/q7p+O/D2a7zh+vUuGDxaOx76ctEOw2aHQRGDFpGXpfz5s9NA/j7y9ORkMPM/nokxSJXS/ejcoSDW6d8zoA4ONC9u9jj2nBlD3D2VY1T2Y7LD7DFLVNEphypcc8U3vEej9RrkbfISPQKSEaGzduxIoVK7BgwQIUFhbCbrdj9uzZWLRoEdPXnXfeiffeew82mw0RERFYsWIFxo4dW8tvTniLS9kTB+vmAc0/Qk7OfLYKp95fgl/KCyEIdgy+czquHZfLtFmdcz/++WEL7HYbtLpwjJz0JPrcUHfTQyK48NfztjE8A0nYkBlDeSmatu6Iy28chW/ffo47/9VLM7H3h/fR47rRSB70H3y3OgNbnn4ErVP7oXm7LjKMmKgvTgE1ZeBNso7j/sy1aK6z461FjigcxcXFSE5Oxv3334+lS3lj+WnTpmHTpk0YO3Ys/u///g+zZs3C+PHj0b9/f3Tr1s3fw2+0hOomAc0/+fD0DdpTrMWNTzS+bOLWyhLoWnZEjxtG4edNz3Ln331+Fv7e+j4G3Hgveg4eiS0vZ+L9px9B68790MILa/D/nnXY/r+F4N0wCEX8+bxtDM9Achv1Ak6TqjcXjmE+z80fV+O114+ZhanLP8fND+RKnv/ni3Vo1q4rbnr0BSQPGInxK3+FQqHAFy/PuWS/k4fFIu/uVGxeMsb1GXtVPLZtc6R0i42NRc+ePdG7d28olUoolUqMGTMG586dQ3JyMhQKBTQaDXJzpcdFhA6ZmZn48ccfsWTJEsnzr732Gnr06IHVq1cjLS0NO3fuhEKhwGOPPXbJftVqNW655RamTq/XY+jQoQBoDhIOaP7Jx8aNG7FlyxZs2bIFkUIlLm9i5j7WsvPcR1nOf4SqUsmPVhfOfaLVAve5q6VJ8tMh3MZ9Lo+2cp8ym0Ly0yLMxn1aqQXXp3/6HFyX/zVum5gDwBFMI1ptd31+/mQdWiR1xX9nrEL7ASPxyEvboVAq8PUrcxCntbs+VgHMJ/umWLyZczfaRVpdnzk3NcfqmTdCpRQw4fp2mD16MD777DN89NFH+OijjxAWFtao5h/hoDE8A0nY8AKeD2zPj9lkqPniS2CsqoDFWIkO/W901SnVasS2bIuzh3fWeP3AgQOZ8Wi1WkYK3rlzJ+Lj4/H5559j2LBhWL9+Pbp3745Bgwbhiy++QGpqKrKzs1FYWNig70EELxUVFaisrMTIkSNddWq1GklJSdixY0eD+6c5SFwKmn+EnDjW4Cp0HnCDq06tVqNJi7Y4ebDmNbgmjh/aDa1WS/OPuCih8gwkM6oA5tzJgwCA2BZJTL0+Kh4Vxecb3H90dDS++uorAMDVV1+NsLAwREVFYd06hyr9zTffRK9evfC///0PEyZMaPD9CAfnLAp8VuyQ8xN0rLx/SmCjDVkLj7mOO7VlfTZ6R7GhGg9Uspmf/60wu45batmf+rRrovFWLca6f/9+AED79u2Z+vj4eJw9e7YWPVwamoPEpaD5R8hJYfUaHNcyiamPjGmCM8XnGty/PiIKgwYNwnXXXUfzj5AkVJ6BJGz4kNZxGnzyVN2cyA79ugWfVTgecCUlJQCA01tfgfbYl642VecOwW4x4s+Voxo0vrZt27qOtVotVCoVOnfu7Krr3r07AODIkSMNug9BXAyag4Sc0Pwj5KRpi0TXMc0/Qg789QwkYcOH1NXBSKFQ4I477nBFIaioqEBUVBRGjhzJRCbo2LEjdDrdJftXq/k/rSBKCifVRqt1Z5lTKh277na7dLInIvRJSUkBwD9oLly4gKioqDr3R3OQqAs0/wg5aZrYCQBQXHCUqa8oLUKYPrIePbLzT6lScS1o/hGehMozkHw2ApjIyEhERETg448/dtVZrVYcPXoUvXr1qvH6goIC13FVVRVMJpNPxkmELjQHCTmh+ec/UlpHu4KJrMysObhJY0AXHgmNLhx7f/3CVWe1WlF09jgSO/Wo8fqKYreZi9FYBYvZMf/effohmI1VKD57nCJQEZckVJ6BpNmQmYKCAmzdutVV3rNnDzZu3Ii2bdti0KBBGD9+PJYvX44HHngA//3vfzFz5kwIgoAnn3yyxr63b9+OpUuXonfv3q6oBcePH8euXbt89n2ImolUAqk6Zw4MdpcBei1TLGzl9tM4UlbJnFMigikfKq9iympN2EXH8Na2EtcxzUFCTmj+BQbi3FFjBscCAP4s0nJtu8ZYuLo9ZdKvE/3j+bZHK/gd/aY66Z3Th66O4ere2V7M1XWP5e8DAF8U8M/BZI+cWBVFZ3F85w/YoXXUnT++Dzu+exdxzdsgqVt/tB9+P/Z/vAqvLZmKxP7/wV/r5kGwC7h63EKcN7n3a8NFOa0A4PS+3/H++ufQPqUn1i3PAAAUnj2Fs9EaREREoH379kGTEJjwHY3hGUjChsy8/fbbmD59uqv8wQcf4IMPPkDHjh1x8OBBPPfcczh9+jTWrFmDV199FREREXjllVdcdnSXIjk5GRkZGTCbzWjXrh2uvfZafPXVV1i1apUvvxIRZNAcJOSE5h8hJ3u+34RvXpntKu/6+RPs+vkTxCe0x/z1f+PycU/CWHQGh79dj0Nfr4U6LAI3P/o8WrTvWmPf8a074p2XF8FqMaNpyzbocfnV2PnbVug1NV5KNCIawzNQIYgNuCQoKytDTEwMSktLER0dXVNzIgBQq9W4+eab8f777/vsHv6aF6E2/xIvH4mr52yWPFdiYzPOF3oEnDIYWM1Gx+jaazauiWXv0y/egrcWjfFp4iJfz0F/zotQm4ONAZp/9Sc9PR0GQ8NCt8tFYZUKM/JXu8pSmo0mGv61p6XOJtnf7yW8ZNApgm+rU7J9zr0xDl0G3oisp9cDcJhOOf9P9Xq9VzQatAYTlyKQnoGk2SAIgiAIwkUwm/b0GzJC7iFIYjAY/JqVmiACCRI2CMLPxGoE9Ku2Ly61sDEaEvTsjtnKI+7dsn5NwplzxWyaDWi07A7e/Qnuvprp3TbK7z8zEQcMBnJMJAiCIAjC55CwEaJYrdaaGxGNEn/tsNEcJOSE5l/jJCFOg3X5912yTYFE3e463OPPWrT5z8ibAAAbqsdCmzuEvwmkZyAJGwRBEARBhARkqkQQgQcJGwThZ7q1icK3z97rKl/KWfB4ZYXr+IjIX/OkmS3f1YINHdkkzF2+a2Csy+mTdtgIgiAIgvAXJGwQhJ8RCxZpaWl+uS85KBIEQRAE4W9I2CAImdHr9YzA4a2wiARBEARBEHJDwgZByIxcmg6CIAiCIAhfQ8IGQQQYYk3Hxdr8xmk/dACkE3JtBEVDIQiCIAjC/5CwQRABRm1MqC4ljJBvBkEQBEEQgQIJGwGOQqHwy30EQai5ERFQXEzg8KUGw1vzkeYbURd8+RykuUhcClqDiUDBF3PRX/OOhA2CCEJIc0EQBEEQRDBAwkaAQ7sdRCBB85GQA5p3hFzQ3CMChWCei0q5B0AQBEEQBEEQRGhCwgZBEARBEARBED6hVmZUTtVNWVmZTwdDBBfO+eBr1R7NP0IKf80/z3vQHCSc0Pwj5IbWYEJO6jL/aiVslJeXAwDatGnTgGERoUp5eTliYmJ82j9A84+Qxtfzz3kPgOYgwUPzj5AbWoMJOanN/FMItRBJ7HY7Tp8+jaioKL+FgSMCH0EQUF5ejoSEBCiVvrPIo/lHSOGv+QfQHCR4aP4RckNrMCEndZl/tRI2CIIgCIIgCIIg6go5iBMEQRAEQRAE4RNI2CAIgiAIgiAIwieQsEEQBEEQBEEQhE8IamEjOzsbCoUChYWFcg8FAPDdd99BoVBg8+bNcg+F8AM0/wg5oflHyA3NQUJOaP4FD0EtbPiCVatWYe3atbLd/8CBA7jrrruQmJiI8PBwdO7cGbm5uaiqqpJtTIT/oPlHyAnNP0JuaA4SckLzzzfUKs9GY2LVqlVo2rQp7r//fr/f+8SJE+jfvz9iYmIwefJkNGnSBNu2bUNWVhb++OMPfPDBB34fE+FfaP4RckLzj5AbmoOEnND88w0kbAQQ69evR0lJCX788Ud069YNAPDggw/Cbrdj3bp1KC4uRlxcnMyjJEIVmn+EnND8I+SG5iAhJ6E8/0LCjKqwsBB33nknoqOjER8fj2nTpsFoNDJt1qxZg2HDhqF58+YICwtD165d8cILLzBtkpKS8O+//2Lr1q1QKBRQKBQYOnSo63xJSQmmT5+OpKQkhIWFITExEWPGjOHsBe12O/Lz85GYmAidTofhw4fj4MGDNX4PZ+r3Fi1aMPWtWrWCUqmEVquty38L4Sdo/hFyQvOPkBuag4Sc0PwLfEJCs3HnnXciKSkJixYtwi+//ILly5ejuLgY69atc7V54YUX0K1bN6SlpUGtVuPDDz/EpEmTYLfb8cgjjwAAnn32WUyZMgWRkZGYN28eAPcfvaKiAkOGDMGePXswbtw49OnTB4WFhdiyZQtOnjyJpk2buu61ePFiKJVKPP744ygtLcXSpUtxzz33YPv27Zf8HkOHDsWSJUswfvx45OTkID4+Hj///DNeeOEFTJ06FREREd7+ryO8AM0/Qk5o/hFyQ3OQkBOaf0GAEMRkZWUJAIS0tDSmftKkSQIAYceOHa66qqoq7vobbrhB6NChA1PXrVs34eqrr+baZmZmCgCE9957jztnt9sFQRCEb7/9VgAgdOnSRTCZTK7zzz33nABA2LlzZ43fKS8vT9Dr9QIA12fevHk1Xkf4H5p/hJzQ/CPkhuYgISc0/4KHkDCjckqlTqZMmQIA+OSTT1x1er3edVxaWorCwkJcffXVOHz4MEpLS2u8x7vvvotevXrhlltu4c4pFAqmPHbsWEbdNWTIEADA4cOHa7xPUlISrrrqKrz88st49913MW7cOCxcuBDPP/98jdcS8kDzj5ATmn+E3NAcJOSE5l/gExJmVMnJyUy5Y8eOUCqVOHr0qKvup59+QlZWFrZt28aFECstLUVMTMwl73Ho0CHcdttttRpP27ZtmbLToae4uPiS17399tt48MEHsX//fiQmJgIAbr31VtjtdsyaNQt333034uPjazUGwn/Q/CPkhOYfITc0Bwk5ofkX+ISEZkOMWMo8dOgQhg8fjsLCQjz99NP4+OOP8eWXX2L69OkAHM483kSlUknWC4JwyetWrVqF3r17uyaZk7S0NFRVVeGvv/7y2hgJ30Hzj5ATmn+E3NAcJOSE5l/gERKajQMHDqB9+/au8sGDB2G325GUlAQA+PDDD2EymbBlyxZG4vz222+5vsST1EnHjh2xa9cu7w5cxNmzZyXDmlksFgCA1Wr16f2J+kHzj5ATmn+E3NAcJOSE5l/gExKajZUrVzLlFStWAABGjBgBwC1lekqVpaWlWLNmDddXREQESkpKuPrbbrsNO3bswPvvv8+dq0larS0pKSn466+/sH//fqb+rbfeglKpRM+ePb1yH8K70Pwj5ITmHyE3NAcJOaH5F/iEhGbjyJEjSEtLw4033oht27Zhw4YNGDVqFHr16gUAuP7666HVanHzzTdj4sSJqKiowCuvvILmzZvjzJkzTF99+/bFCy+8gAULFqBTp05o3rw5hg0bhpkzZ2Lz5s244447MG7cOPTt2xdFRUXYsmULXnzxRde9GsLMmTPx6aefYsiQIZg8eTLi4+Px0Ucf4dNPP8WECROQkJDQ4HsQ3ofmHyEnNP8IuaE5SMgJzb8gQIYIWF7DGfZs9+7dwu233y5ERUUJcXFxwuTJkwWDwcC03bJli9CzZ09Bp9MJSUlJwpIlS4TVq1cLAIQjR4642hUUFAgjR44UoqKiBABMCLQLFy4IkydPFlq3bi1otVohMTFRuO+++4TCwkJBENxhzzZt2sTc+8iRIwIAYc2aNTV+p+3btwsjRowQWrZsKWg0GiElJUXIz88XLBZLvf+fCN9A84+QE5p/hNzQHCTkhOZf8KAQBC/pfwiCIAiCIAiCIDwICZ8NgiAIgiAIgiACDxI2CIIgCIIgCILwCSRsEARBEARBEAThE0jYIAiCIAiCIAjCJ5CwQRAEQRAEQRCETyBhgyAIgiAIgiAIn1CrpH52ux2nT59GVFTURVO5E40PQRBQXl6OhIQEKJW+k1tp/hFS+Gv+ATQHCR6af4Tc0BpMyEld5l+thI3Tp0+jTZs2XhkcEXqcOHECiYmJPuuf5h9xKXw9/wCag8TFoflHyA2twYSc1Gb+1UrYiIqKcnUYHR3d8JERIUFZWRnatGnjmh++guYfIYW/5h9Ac5DgoflHyA2twYSc1GX+1UrYcKrNoqOjaaIRHL5Wq9L8Iy6FP9T6NAeJi0Hzj5AbWoMJOanN/CMHcYIgCIIgCIIgfAIJGwRBEARBEARB+AQSNgiCIAiCIAiC8Am18tkgiMZCeno6DAZDrdvr9Xps3LjRhyMiCIIgCEIOPN8JaL2vPyRsEIQHBoMBW7ZsqXX7tLQ0H46GIAiCIAi52H2iHBPz3wYAfPHMvTKPJnghYYMgCIKoFwOG3wqzybHr16aJhnb+CIIIWU6Wq5E8YCT6JEXSc66OkLBBNHrEatK6oNfr66TdoJcxIpQwGg2YtMix6xelEfD2ojEyj4ggCMI3jMtci5MGFXa/eLfcQwk6SNggGj0HT5fh8aVvucpvbSvBiUoV185i56+9fcaLkn1WWfm402tO6oA37qz/QAkigOg/7FZowuomnBMEQQQ7B0o0SB4wEgAQqXG8GKS0jqaNxEtAwgZBEARRZ8wmAx6u1moQBEGEIjYBqLK5Nw8/PFEM5T3PQVtdvrldLADg71Wj/D+4IIKEDYLwI7+c16Jpv/+4ynaBbxOpclcOak+2oURgETfgNtgtBig14YjRuudqQRVFUicIgiB4SNggCD/S9dENTNksIWx00bnttc6vvsvXQyKIOmG3GNBhulMAtsk6FoIgiEDgUKkGKQNvQu92UbRBKAEJGwRBEESNDLz2VuwpMkKpIT8NgiAIT26b8zoAMqe6GCRsEITMPPFIMsJsZldZ7eFbbq4sxUeaMMexUomsvtcw19okNCM92tLOCuE9Ol15O2xmA1RaPe7M3Myc+6vIbTq15KYIfPOsnwdHEARRS9oNdjzLmlSbf3ZJrHmt1KkEtNK7Nbjh0U2Z8++dKGXKYeVq9Bx8U636bkyQsEE0es4Zlfi8IIyp6x1r4dpt+H0fVyc0S5LsU3H+KN9WyUe4yln0H9gBPJ7/i6suvEkryT7nTOqAnD1/IyP3e1ddt4TWXDvD6+mS1xNEfbCZDbhp/iYAgFkiIhtBEEQwYDMbMHTOZlzRxLG+f/a095P0jc9a67O+gxkSNghCBnIW3gSdzQKjOgwZC36q1TUZud8jL/MqLJs3CEaVhhE6CIIgCIJw4Jk/688zDs2ESsuagJ4qV7vyZHk7B5azb8qt5YCEDYLwMzkLbwIAzMr4EvaIuDpd6xQw8jKvQl7mVXjr1UNcmx/PaRHbdyRT10Tilx6h4m2wurYh1S/BUmgw4bsTZwEAdyc3Y85tK3VPrFe+Z80JCIIg5MJgMGDLli0AgHvfM0i2GZ+1FpOGRgNAnZLz1gZn397uN1ghYYMg/IhT0Mia+0mD+nFqOR4YnwSTWot1L+13neswdT3X/sooXrDoFGnl6r54hlS/hINeQ2+DxWSAUquTeygEQRC1YsDwW7GvxAylVofL3zICAKpKC5k2e41uvwvlVscmyekKNXoOHoEuiWxyvsQmGoweHOsqL9t3gb1fsyim/OJht2AzaWiDvkpIQcIGQfgJbwkaTjJyv0fXhNYYMzEFYyamMAIHQTQUi8mAsXkbsXZfYc2NiaDB07yETDyIUMNiMiD58ffrfN2ErDUAgE+eGu3tIREgYYMgYBQUOGlWMHU7T/M/jehjv3B1JVrpMKC6sjN8ndWMeTPfhdrgYW7SKplrV1VcINlneNNEri5CKeDdV/bj9gdScN/EFGx+ZT/s+3kfkC8TunJ130qM/ViBCjF9RnL1zTTu475JlGiwMWC2K1BoVgJWd6S0b4rZ30WJxa0dC5MwyyMCD0/zEjLxIAjCH5CwQRB+YO7z42BU+e7ntrla4Lj9gRT8M3lNvftpN2k1VGotVz/cw7Vk30t317t/giAIgvA2sf3/D3azEUqtDm1O7mFPRrO+Zobzx13HJ+LYiI56vZ4RwvV6dlOuY3QEU/6rgk1sGhnuPn/Huwb8dUGLhMsdG3hDOjTejToSNgjCx8x9fhwAIG+Gbx8ym1/Zj3vGJvn0HgRBhA56vR4pA2/i6iPUNWup7KImGiXfRtyLgm8Ciyiccrt4jWtscr6YOc3N5B4HUTvsZiOSpr4BABAuHK+h9cXx9t964Ay3D2VjDktPwgZB+BCnoLFw8mq/3M+k1mL+M6OwYPqbPrvH/hINOg0YCbPE+0ishk/EIHa4IwgiMNi4cSMyP6vg6juIgkcoJKQEk42tbBLG//bNdraNVsk/NIpMrJTy4FUxAOQ38XKam8k9DuLSpKen49N9pUERyOJ4mQbdrrgJ3Rth1EcSNgjCh+hsNmROe91v99v8yn6k3d/OpwLHzbPWAQCKLPwbyOVxfDJEcrgLTrRKAU20doQ3a+eqO1vMOot3auqO6nK80m9DIxrA7rM2zPzY/cfS87lGccHEVhps/G+9wsrWnTPygsQZIytI9JJIlvrCMbbN/uqx7SvRoOMA3n8MANQK/l7hIm3MBbOEqkWEOPy33qOsDdNjw88lOF+lQr8hIwAAHRNo4yTQMBgMLo1GoDM6Yy0AYOtz98g7EBkgYYNo9DTT2HFtE34RFPPV0Ae4Ov0/X0m2Tep7HQBApdG6jvcd2MW1sxnKubqIE39L9mks47OFI7U7V7V40svIWT4WapN7x7JnMz6fxz87pJMJmlqkcHXfKJpydRYTH7v8tDmCq9NwNQRBEJfGuakhRaSEmVd7kTbm+/O875mYDuGsvX27SBvX5tEFbq30Gwvvq7FPwv/0iQtnyv+cKGbKNouRKSs9gl4cM7S9ZN8vi/IHpYazr837z51n+45t4TreXciGye0SEXvJe4UyJGwQjZ4ebaPw8wrHTsPRMg1GzVsr74AIgiAIgiBCBBI2iEaPp1q86yDeWbK+jJmYApNEZCd/YFSpMGflBCx65FVZ7k8EP52aqTHr2ih8v8m9K2iIYzVcBR4KQSO/KUwQBOFT9Ho9itakY+cFLa5+nE9oSwQGJGx4Cc9ESZ4cLmRVux2auv/LKcpF6DJmosMUSa5Ee4seeRU5y8fKcm+CIAIXvUpAOw/zIaWE8/c5kdO2lff9xmlRm+PlfEdlFlYC/e50GdfmutbxTLlYwqL1kOheN0qYvR6pYF9nxNf8XzMzxBwQXaOT8F8hITqwcb5Dtblc2r+HCAxI2PASWw9VYsDszUjWs0+mYaKyZ3jAz5++1x9DI2QgzGrGK68dlXUM/tZudPl8kqTALY5TThAEQRDeJEwJNNM6pGJTq87MOYUo6LKtwu1Lsf+3z5lzPQ61Y8rahFSmbKwsYco3tmVzeHx9wS3UKlWsZYOtEec9JWGjDsQNuA12i/tlSq90Sw6qeoRdO1WuRo/BN6FUFNWnmUQIQXFM8zZNNKQZ8QGdmqkx+7oojHjHyJ07e2IfVxdh5HfqAMAO4LwoWouu9BTX7ubeXbi6T3dd4OoAALF8BvG/9vzNj6k6Q/mycU8h45WpUBtK8ccF3hHdHtdG8jYpzZpzde0k5mTvJuw24Lv/c2cmJoKf4xcsWP1DKY6e9shor7q4u7+2CT9vCCKUOFKqochURIM5WKJBysCb0Ltd4wmBS8JGHbBbDOgw3T0x2uobFmdnXNZaAMAfJWw/17c0cW3NIlXumMGxFP+bIAiCIPzEXfPWolO0wzSaIlMR9eWWOY5w+DtfGCXzSPwHCRsE4YFer0daWho0AH4r1OKyRzfIPaSA5pPlE12mU2QuRRBEY8GZf4M0HIFB36RI7Hvpbuwv0UB17wq5h0OIaPTCxoDht8JsMkAl8m2TMq1TasIlauXD+WLsPKYHXsPx/D9s3u8/Mo4kOHBm2SVCD6UC0KoEQBfprrSxAS/6tnKbTu3gLfWIAESjFBCjdZtFHqrgXwMOV7EmkjtKebNSwc5q4AfG85sNPZqzKvl3zjbj2nxzns0G2SWGX2c7hLEr8lunrFybu1uz3+PKaLbND0W8JcLlMXw/YiJEOT0+L3CYTHeZ7EiaWrg6vcY+CN/jXLvT0tJwOpLNK2W3s2bAQoE7cIvCxgYbUDRlfTaM5SKzZoGdD19fEM0hhftl8pZEdi5L5YdpLDR6YaO00ohROZvwcRH7XxEhkXy0k8iU6YSRf1CpwT6kPz16jj0vldRFIbaHD+OamERNwrcX444ZL7rK6/JJpUvwmJRqPPHaDGQ8M0LuoRAEQRAE0Qhp9MIGQYQyS8c/jYxXpnq1zzMbxsJgMOAwyHSKIIjGzc4iLVkYEEQNhJSw4cx1cUSU26LYwsf/jlQ51FnqsNB4WSqsUiEtLY0edl4kIcyG21u5TQWeq+SjN5VHxXN1eXP6owoKFB3dxdTbWqRybd/ZwefhiDvzj+R4lP3u4OosZee5utJIdkyCSgPFheNcO42FN40AgP1n+GDz/9fHncztMJlOhTTp6enYf6oM2jA97AIQeehn1zlt0VGm7d+Dx7mObVVlOHnKjqge1+KmrvH0HCIaBdc8vh6r/8/xHkFBW0KH7Md6QmczA4IAo1qDjIXbvX4Ppyl8Y3hvCylhw2k/vuJbNhzpL8W8rWZqRGhl6pmRvxq3D4ijh10AoLNaMHvep3IPw4VRpUH2ov8ge85Hcg+FCAIMBgOmL3mrXtcmjnM4Zho+n+bNIRFexGJXoMTsthOWSti3q5KtjNbxm3JFxayJcBMNH/799TPs2msoPsO1UYSxdu27Tp3g2jRp3pYpayRCzVdY2TX9kIHdNEkN57+o0c5uRJ418RuTngkQASBCxdvdv/ZDKVdHyMeE1mwCx1e/+pkpG1q683BYotx+RLm5w6GzODYYjSo15s3YCJXViHnLx+DJx3s66pVKLJm4ynWNNczDpw2Atvtw931sl37P9PQzCXWCVti4bOitsJiNUCvcP3xNmB4vfV+KKhvrcBEr4ZTz/jm2rq3oWSrlj2EqL2LKComY80cV0Uy5RdNWTPlswTHumiYtWIckvZJ/KP5TxZYPlQftn47wMxk5W7Fs3qAG9UFRpwiCIIhAR6/X45OnRuN0hRoTstbU6VqdzYJ5M9/l6vOnrnMdz3vuXsx6aRIjcBA1E7RvrBazEePz3kaEpvF69xOEv6CoU42Ld8+4d45tWvfOc1F3NkJbmMYjmEU4u9FCNB7y5g5EDPhd3KtFy7Ngt8Oo0iBjwU9+GhnR2HBqC3oOrltQlNzc4TBeImmpkyUTV2HWS5NI4KgjQStsEARBEARRO/oPc4R513jBT/GxR5Kh9fD5Mqo0+PKNw1y7r0pYKwNDcQHy5g/Gsjn9Q1LoOFOhxmWDR6BtvKZR2OGHArm5w6GzWWBUaZCZ+TU0ZWdrvMZT4PDUehAXJ2CFjfT0dBw6XcbVG2wOm0opm02Ccm94E7USiPaIRz+wCT/nfjpWKHGlAFtcAlerLOUfYmoDb+t7YcgjkuNRnd7H1TVr34Orq9j1rcTVCgiiXZumSd0l71NodNispn7yIJlOEUSIYDYZMHXx26i08n4JteWxR5IRZjPDpNJi5pI/mHM317IPp4CRN38w8uYPRuayv+o9nkDjoRyH2c74ITGNwg4/kFHAkSsIAIxt+zDnese7tbB6ixEZ1cl7dReOwNC0A9M24iy77la2cPh7ZGZ+g5wFN2Du8+ORNf9z13nrgd9cx6U9+zLXxmokHKQaCQErbBw6XYb0rHe4+vZRnr4UNnx+hs9JESMyrfrudBHXJrFJU6Z8qKiYKetFSWEAQKHWMuVe8TFcm52lrHOFRRXBlMX+GQBQVHCEKX8f1ZRr81BH9nuuO6Pl2nSk3BuEFyHTqcZHeno69Ho9dp13O/+qOg50HWtEAq+qeXvXsXDcvcgeK9Og66Cb0KNtFG14BAhmuwIXTErsrWAdp6vsvPCR7LG3cO/EFOhtDodbs1qDr9c5NBhDRELLJ2cNXD92C+uoOyLJnQTy5w0HMOz+VDw7s6donAKMKg2ylv3tqis5sYdpo2jKOowDwBaR7/mtrdk1U6PgTa73iBIaNpUwyxbXSDmIezrcA8Az3/AbpUTgkf5gCozK+r8GZ83/HDkLbkDOghsYgYPgCQhhwxmy9nSxO5OjNow0Fw2lMYVVIwii4TgFzG4v8KGS68K989cCAH5Yfo8XRkXIxb0TUwAAn23gTaS8wTdr97msFZx8f74SOTMvw5IZ3dyVdptDAAmgKH81caJcje5X3OQqd2iqprU4wAizmpEzdW2D+sia/zmW5AyvuWEjJyCEDecC9852VrtwrFymAfmZvJxh0NkcgpZRpUHWk9J5FupKYwqrRlycecvHwKgKiJ86QRBBglPQ2PDSfrSBf80/PLUaAICik8jJH4Eludc6Qnk/869fx1MfxmSsZcrTh0XTWuxHrIIC5RaHxkmhZDVPOw46NGVWmxX6s6zWzNxhIFOuimjClNVnDzBlW8sUGDVhyFl4E7KW/gVly06uc7sM7H3b6UMr5UJdoDcQP+O0efXEoFBiZu4PAByCB7OjA4cAcuY99gdBELVFZ7Piieyv5B4GEQT8ecaGe94zQOORBNIaHus6FrSs746l0J0TIamrO7yyHRYQwcmoB1MQZjXDpNZiw0t80lG5cGo1cvJHYPGjXRxCx1Pe2ZjzF2RtEJpkLf0LSx6T9oEkHMgqbDjNpxqL8+ljjyQDABa+yOba8PTZyMj6BkqRz0bOzMuQfGdXHHhnd73uS07j9cNoU+Bkpdu++efDR7k2mooL/IV2O2Cq4qpj93/N1RV1590qlR4vd56EH/udqytsksjVhSmUXJ1SIlv4zc3NXB0ATLvG4YuUxocbJ4g6caxMg/T0dHrmBAAGmwJHq1SoEJkt7S6pcB3nzLwMFgC/vX0IAJBaHc72lJF/psSJ/BuGNeXX8SZa1m9i82n+OSTGbjVxdap4t49G9tP/QqsLx7wpKVgyvSuMKi3yV+yH4Ry7rm4ysPfu0JzNeQUAHXWsxqZZGL/z7NwddxKv5bU8FlFVMx3v17H6h1LcMPllAMD/lo3mzhPBjVGlQc4TvbFgeeAI6IGErMKG2AH1dCXruHZa4gGnU7FtbOCd26LV7C//ipZNuDYmgX0YDGwbxZSlEoJGRccy5b/P8ZGIFEp2fJXHd2D+03dBZ7PCqFIj88l/gPISps1DvVoz5Rf3sucz8rdhacZgpNySDLNKiw9f24eqKt7GbP0J9jv8UlgJAGgzZjUA4MmREaTGJQiCIz09HT8droBK692Nn1Hz1+In8tsIGnQ2C2Y9/S9ukXsgtSB/heOlbt6UFMybkoL5GV/KPCKiMZO19C/kPNEb86elYsFzfOTIxg6ZUfmY+U/f5fh35uYG9fPha47Je/P4VNw8PhU/LfmzwWMjCDE/v/gAvn6Gwt02NgwGA2JHLQMA7Dh2BCqPMMkKqxk5C2+CzmaBQnBv5BhUGrzxmns3+fRPm1zH61KvcR139OXACa+RM/OyWiU1CzTyV+zHvCkpyMu5BhlZUmG/A4+CCjX6DnEkneuUEE2aPx/gCH3r2FS2izT7WmP1Zq0gwBTPhroV56GxHWHftcLPsYJEaWS86zgj8yssy7gSljMOQfiWnslMW7tQ/7DTwY7fhY0Bwx2JhQAgpXVoZ5zNnd0PALBgxtte6/PD1/bh5vGpWDKjGxcesDaQzShxKSjcLeFJ1pK0aq2sBrMyvoS24rzr3LznRuPBCUkAAJNai0WjF0r2UVCpRu8rRyClNb1UBSo5My8DIOGYHSTkr9iPuY90CBqB46GcNdCrHS/Cby0aI/NoCG9iVGlcgQz+3XhQ7uEEDH4XNswmA6YveQsAMGZwrL9v7xdyZ/eDzmqGUa31qqDh5MPX9uGnwkrOkbw2UISqxsW850bDEIS7lYT8ZC1xPCNmXcQ8JX/aeiT1vAoAcN9DKXji1UexdMKzXLtJOQ4zzveW0ktVoOI0nwpmMrK+xbLMK+UeBtHIcQYyWJJ7rcwjCSz8JmwMvPZWWEwGhOn0UFe7Yiz7ivU7OG1k/R1KrbzPRoyWjXLSJdLKtTkk8v1oF847dP1Wxn71LedZHw5B4J3UWutFSYIKj3Jt8p+9G1AqsWW9w7zALHIq1uojuWte3FXAVki8HP50gA23Ft46FSZ1GHKf6IPFzzvOHT7CRqw63boLU35ki9tpeXeRFu37j0SMKKNlaiLtPjox24FCk3sOtk/swLU5XMAnV4RSBV0hH5e+IrEv31YfxVXZzbxzOQBY9XwSSaWav7+5bW/XsQ7ArKd2QRfBaxGnXcPnsvn6GclbE40Mp6CRM6t2Wq7XX9yPe8cmXlTgABwajr5DRpDZiB+JG3Ab7BaHJYFSo8fPpTbEaNn1ZfHsPhC0YRja3J2A1mBj10OpxH/bz7Drd48m/DNmawnbj93Kr9eKUtH6p+f7sYvWRJOhgmujNFfCqFQjL3sosuZ+DEFg17ZIiWR8W0tYh/ArY1Vcm2IL+907hPNO5FrRq4rJxv9/Ha9i++4e63iXOVepRp8rHSZVyaT9CxmMKg0uH90Zv63fK/dQAgK/CRsWkwGPLX3LX7eThcxltwEarcu/wtcsfv4AZk9OxuzJyS6Bo7bc8MQ6AEDfOFZ4oygZBNH4OF1sASIdgTRyZ/UFFCpkLPgJABB+aqernSkmgbnu4P6/Xcfzl/yJvHmDMHPtLOQ88b6r3mDrDAAYm7kGAPDpU/SM8Rd2iwEdpl/65TXMasYH645csk2wkDX3Y+QsHImchSORmfWN3MOpFZPzVruO31lM2j9v0aGpGtOHOQTXn4tZYfXIqV0AAAUE6I5uY84JF9iNwsrWl7H9Dh3FlP++wGaLt1eVAAAycrbiqayr8HWJ+zW7zMIKqhm1+B6hAq86IOpF5rLbAMBvgoYTp5Axe3JyDS0JgiBqRme1uASNupKR71i4nZoRKU5VqNFz8Aj0G+L4pKen1+teBCFF1tyPXUlyg42z1f5Nzk9aWhr9PnyIUaXGjC0vyT2MRoFPNRt9r7kVZrMjCkBECEe2cQoauTPfxcAa2vqCxc8fQPbD7bzSl1OlS+pcgmh85M7qC6O6YT4+GfnbkDe3P7KWpEmaYU3Icmg4mlXnOFiXf1+D7kfUn0cnJcMkYYoZ7BhVGuTmDkdmJp/bKJCZlLuaKd83OJb8K+uJZ36xvy5oMXDGeq5N/tR1yFt2u8/GYFRp8eikZDy76tKWJ40hF5pPhQ2z2YiH8h0O0nFhvN9EqKCzWTB3trwRfIwqLXLyR7ick+qLU6VL6tz6Y1RpMO/Ze5H/6Aa5h0IQtcJkUyD3iT4AgIyFv0BX4LYzTul3net4R2EJe6HCbZuuqChyHWcu/RtLH+8JW3xb7Cp1Cy9JHvbuD1/t8EFa55VvQEihVSoRL/LR6OSRyC7CbsarLx8FRPk9D5tZoweToZLru1sc61tx8A/+xV4IZ3NcCXEJXBuIclP1bNWSaxIl8rfYL5GDKyLaHTDltVeOYvzEDsjNuxYZC7cDAHaX8QkFRyWyr0BhSt6nROzpEa7mfT/MIh+NcDX/vpMSxV5nlXgl0kv0TdQPzxf2hMtHyjKGZ1cdwKOTkmsUODzHGqrCpdeFjSuuvQVmk+NHHaXXoZnesbhI2WuJk/a10bP2bBXlvJPVG6dYp9ahcTWrS/dX8k5fx6pYB/Br49n/is/O8E66R8vYbNFLn70bYTYzTLoIDO7pWKh/LGaf2jFHfmbKJRLO39d3YB/AX+3lw6XZdawjcUXhSaY8P/tbLJs/GJpWFzen+rGId3qPEe1qGUJXJvQbGbnf48k5/eUeBkHUCZ3NgplL/pB7GAThFTIWbseyagE6mKFw9Q2nZZgdaS3d7z9Lo90CrRAWgeJrZ7rKMX9uYq616mOZ8uHv32HKkWo2cFB5W/ecK927DTlT1yF/2W0o3bsN1tbiCKIRTOmtbSU1fZWgxevChtlkxBNPvuntbgOKvIwrobNZIGh1eP/1wHGsM6o1WPBIR8e/z1EEBG+g8pB3j5bxWdsVZoPkdYJSBWNTNnpV3J7PuXaWyKZcXXjhIck+dSf5F0GllRcgoXAL8QqrBfpDP2PAFddL9kkQvsKo1iJ3dj98vbZuwSsIwlsY1RrkzR3g0m4EIxSuPvgxqtTIeDodWU/tqrHt+arQjNpHGcTrSF6GI473zIXbMbQtr+6VE6eAMX9aZ8yf1hmLVlBCGYIgLk6Pq2+DxWyARquHRqXEgFbNAADbPUxb/j5+1HWsjG7GXK/y8O+4vFmSu14BfLHmAG67vz1+LnVrrLcWuEOW6r4lkxHCt4SKdoPwHUaVBjlP9EbW0r98do+8GRuRX+3bWxNTq03ZQy3ZY4OEDWfuDE9jJ20YH7s/VHAKGhl5P8o8kkuz4Lm9WPBIxwb1sbdYg44DHHaO/ZIiQ0rC9gdGlQZ5mVchI/d7uYdCEBfFYjbg3px30O/ezjCpQs9RuDHSb5hjXQYApSaihtahj1O7kRPkSQsbgxOxHGQt/QtLHusu9zBCngYJG0aDAVMXvw2DyDnqvAEuXw0ne0t5X4UOEWybKFGCueMXeE+P9Fas2cjTe3kzFkFk2qLQSAhAFaz/xRe2VkxZf+Q3pjx3xVgIKjUysr8DqsPqee7YOYn+eS1TLu7Mmq+oY9idQQD45gLrdxKWwPtdWI7tZMpCy05cmwi1+89pVmsxZ0on5C93h+K1VpVx1/xS3oIpj4h3jOWBrLWuuh+W38NdR1yajNzvkZd5lawCx5yVE2BU8f5KBCFGa7XgndVH5R4G4QWqDEaMzXPYlb9+uAIFpcXM+fMG93qYZhewt5x3nFaq2FcDpZp/VdhXyfon2mJbc23CWqeybU7zJnWK+ESm/E/BWa5N+CnW/MQQz0dfLBRYTZmiOnhB5vzPsTTrGujC+IiYm87VrF27NpZ9L5HyP22uY98Fis0SCYk1Qo1tqkT+6Zu3u/92d8x4EQBw+4A4MqmqI8eNKrx20j3vVS3cm7FWk8Gl3chc8ieqmrNzNvw8ayFijGtzyXtpSt3z19NM2qgOQ+6svljokROtx2vnmWsfTQndDR/Ks1EL5q4YCwAOQSNIeGqlY0IvmNQB86am1tCa8AUZud/LGu9dZ7Nh0SOvynZ/IvA5VWHCW3vPwGi1Y/ePH7g+sf9+6vooLUbXx24oZz49o7Suz7/fbXJ9fjhThB/OFMFis8NqNro+7eLiXJ8p10RjyjV8tmiC8DZGlYZyUREXJXPJn9BZfbtWZ2Z8AZ3NXHPDEKVemo3+w26F2WSAVmKnINRwChoLp6yReSR1x6nVWDCpQw0tCSkUAJQeSruhzXmThJMx0gvYobLqUJEKBVQRcQCAsnYD+HsIfPgvm0b6d2VuIY5kASit/MPLGNcWmUtvgUGthTmyOQDgu7MVXLtN2yWcy4lGwcDhjme4UhOGvKyrYFT5xn3PqNYgZ+ZlyFr2N3cuPT0dBoMB+hDOwUQEBpmZX2BZ7rVyD4MgGi310myYTQ7zqYdygu8FvK7o7NagFDSIxo3ObkHuE+/LPQwiQDGbDJix9C0k3v8cdDYrMnJ8Y+qXsfDXi2r3DAYDtmzZQrbnMmJUaZE1o4fcwyAInzK8YwSi37gTu5+9V9ZxGFVazG2kGjaKRnUJ5q4YC6My+P+LDGoN5k1NRUbeT3IPpdFhVGmweHoXGFUaZM/6QO7hEAQA4IxRifdPe2g1BDsqWvd0nRe0bm2DwuM4/otFTD9/DH3UdfzYbf/nOv74rNv2WKFQIEzv0AoWmN227byFP+ENjHYFThkcvlqCVGhsrdt2PefpnVj8aGdotGyuAMvRHUy5b9fLuG5+PVfClAV9DD+WgsNMOeboNr5NWXumfPXlQ7g2HTpfxZQ/Ps/btheUlTJlfSQ7HsEuoLKCbSNUlTDlCT1Y303AkfDSkyYSCYrLLey+bYFE0kGdinXIqLLyecQ0Ir+OSok2RN1xbmj0GjwCo1qZ8PxB999CMDm0/kaVGrlP9Ea+aHPZpg1nyppK1t+3ouMgpqwuOuU6VsSwPrE5z/yLhVOSYbE4LBJaRLL50wwSlgqhQr3epAUAFo/fRIXEDyJKVHesiv/xDYpnnap+ucA+QC6L5B2wz4p+xKPb86YtGgU7OVb/fYxroxI5pel2f8WUZ730CASFAgumu3OGqCuLmDaKeH65bH/jRKZccpDNd9E5kn2oA8C/RewDMF7HO7SfE014oayQa1MkrqvOt5CR9S2Wzb8CmgvH+WsiY5nyuj/5HA/tuRqitmQ/+Q8AYPH0Ln67Z+bSW2BU8gEZCEKMzmbBTNqEaNQYVVrMm5KK/BX7am5MECFKRt4PWDZ3oNzDCFnIQVyC2S8+DACMoEE0Pi5rF4U/V47CnytHYfPC+xrUl1GlQfai/3hpZJeGTKiIizHw2lvRqt9IqLTkJxFqpKeno8OAkVDX8W+bv2Jfo3ZcJYhA5GS5Gt2vuAnp6elyD8Ur1Euz0TkxGh8/ORqnK9R4IDv0/Bl0Nivmzdws9zAChnMhmtGyJjy/a78hI9Bcy6vPt56XziCeGsNqot565SDGjW6B6CPsLnJx1xHctTZNOFcHAGolH7q4ogO7E5M3dwBMCiU0layWy1IZz1278igfPpJiA4U2JqMBTcauAgDsPVsAlVKFTq0d8+DofndSq5g/33Jf08ptXnXBw2wKAMLj3GYnzx9zmyY007o124LdBsP5EwCAJi34OUd4B4PBgLT5m+QeBkEQl8Co1iBzelfkPrP7ku3GZa6FDcDXz8jrZ+It6iVseNq/hRqzX3zYZ5FZ5KKh0WacGS3fDrGMlv7GpFTh8Q3ZePLebJ/dQ2e1IGvyap/1TwQn/Yc7Er1pwvSgPWxCDJlSEY2BzonR+OjJ0QivVGNK9XtNocmd+0ylC8O858cj52l3XrOYj7OZPiq6/5cpj+7A+gZt8DRhtrOuAJbKEmQs+BnLZvWFpbIERUp2E3DtGdb8+fdRenz9TO2+W6DToLdqp4YDAM5XqTFtgfslp9zM+mx0kvC/CBc5QyXo2J3jn0r54aXq2X7/qpRIjGNj7yWoeWey/rGs78S2FIcDWphCiSee2glBIgHegLasn8cfJXwypL9LWIe82Dasrf6R3z7hrunVnxXa2un4/6stMc2Z8n8SIrk235SwCdwMVQ5fEJ3d5vhOlSXcNfoDPzNllcgRDwA+eHZcow9R2TEhGr+tHAUAOFKqwZ1zX69zH0/em43HN2T7TODImzsARjX5ahAsTjX8tMUObcWyHcWXak4EKaeLLTh0nE2Ip4ttzrULFyX6LDVUIuvJv5H9WE/MnZyM7Kf+gS2mJdNm569fcv2oI9gXJbtEBvro478y5ZLka7g24vX5m8MnuDa6TuzaG6Pik/Fd047VCH8rmuZalQLXtGQdck12tlxs5rXX3ePYaGrfFPB+l52jWOfvtuH8Gm4UOZrrJPKtihMk6+3kIO5NnBvlfa6U3ijfu3E32tzWFVkzejACB9FwGiRseJqZ9B0SeloOwoEzRGVjxnOudx54U737efLebMxbl+GNITHkzXXk8MhYuB3hx/+qoTXRmDAYDOg8eSO+qU5Wqyk54zpnEwQcKnFsSqgSOrvqzUXuoBqmKPeLZ6cWbLSe47u3u46bd3bnkanyeGdTKFUu86krot0vYXvq82UIn5H91D9Y/Kj/AlkQRCCS8/ROLJpGiZC9TWjZCxFEEGBSqjBvXYbj34XeEdJ1VgtmLv3TK30RoYVer8f3T47GVY+vl3soAICjr5OmNFAxqjTIfqwnMvJ+lHsoBOEzBADmaq3RtGtYT8UNbxmhUChcSasr/ruQOW+qYKOSbi1mrQkui3f3Fy7SwG07cKB6AAKUlcUwKVnLnJsS4+r2RYIIrwkbnRKi8ebCMZw5FUGEGr3aRblMqpI86o+XaTA6Yy0A4K2z3GWwJVwGAMh54n8AgIyn7kReznBXpncnRoE3EQAASzRvEtHk97fx2Nv5MFcfA0BFm35cO22TBK7uu3Q+xHLaG5K3JoKYjRs3os3lI+UehgvSlAYuoardmDIpGSYJc2qicZLSOhrvLx2Ngko1xn79HnfemXxv4fMHZBhdaOI1YcNpZpKWloa7BsZi7Y8lzHmNgn+BOlLOGi1Gqll7ybYS0X8MIlPIzjq+zWkL2++J6KZcm5+Pn2LKCku1/4XdDpSeg76Yz0nxp8j+VSnhdK35l7VtLUq8jG3Qqht3zV4D+x3+ObSfazNlQAemvPEMb/DZN0LUzy8fAQAUVhOi//kIVf1u564xKFjJekAE7wPDZ/Ro3FwsIle3K+pmXpX32DvIeO5ezJuaygkctbo+eyj0pgqYlCo8dde8Ol9PNB7sAEzVjwdLU3dEKJVCgdRYx07csb+/cdcbS1zH6j5pruODF9iEVopIt91+wSF3Irj+XdxZqQVBQJnJ8XyNCLHgG4GE0aZAYjPWzO2ClV8fw0WP+LBwNleVRR2GZbMvh1GlQWamYz0Tul/L9WOtLGfK3ZrwsezO/LGBKfe/fhzXRrT84Z8T/Nr7zXZW09KpF+9b+K1oh/nMmaMAgLyca2ADkLFsFyCKHqjVsdq1dhZ+XbWLXl3EvqUAoFezjWwSvhY/FrHjuzrewrU5Z2L/OHwMQcIbONfw3hfx3Vj4/AHkPkyR87yJ15/8er0eaWmOxamgUo1JOaTlkJMn1syESSnhiUYEBPnL92He1FQsmNQeBrW2VkJHXvZQ6GwWGFUaLByV6YdREkT9+O+EVBhpR9ln9L7mVliqBTlNGK+prA8rVh1AwamDyM29Drm517kEjmAkL8fhkJ6R9S1oFSQI+fC6sOG563sxqZHwH2F2G/LGPy33MBoF3dtEYetz9wAADp/TosPU2tnIOwWMeVNTMW9qKjIyv5Js5ylkOLM+N9lJ5ihE/TGptbjvoRS8/iKvTfUGYTYz5j1L4VR9hcVkxPgFb7vKn3lRDZ2Z+SWWZg31XocyoLNZMDOX/E8IaVJaRzOb4w/nrIHV6tAuGVQazJncCRkL2Iid+lNslKpTpS2Y8rlKt/bXrmY3AOzNqy1UFArYI5ugZzNWd1VkYTVkm7aHTuRA0mmHMKTV8C+egnZs37rbyOcv34cFk9pjWcZgyfOeQgZBeIPXX9yPByck+aTv/05IhUkiHCoRPBhVGizNGgqTVh90OTjycq6BUUWhwImLc6nN8bxn9yB/cid/Dylk8amwkdI6Gu8tdSSCO16mxphq51nCP5BWI/iYv+oIjIV8nHmCaAjxWjuGNnWk89td4hYADpRXwSYIOFBeBUS6fdJaXzbcdXzuJ3dW6iHDb2X6/eaC295fp3Xv4v1cUIhbzEbMXPoXEvXu+lZ6Ng8REdg4Tajy8kcgb1J7GFXaoBA6pkxKdvhpZH0r91AIgoCPhQ1PqfGywSMQq2VVROdNrBPVaSO7Cz+8JZ/r9kQF28Yk4YhlqmTrjp8/xrUJq2LDl5laVseYVyggRMTBGN2Mu0Z97B+mrLDzDl7aEvZFUXdoK1O+cOUkvt8dbKK/boP+w7VZvlvkmKkycG30ylimrNLo0ObqUa7y/iorxAxp15op94jhv9PnXA1REzd0ioThbUcytWNlGtwzfy1eL+EdzvQKfv4q7HxCKABQxbXi6iwxrbk6pY3/3VwXzzv+O0lPT4fB4JhPFI40NOmSGI1PnxqNUxVq4J6XmHPOcKfZ1VHSiOBBoxQQ5xFIpYrzXeafLwVV7NohCLzDs6YZ+6xaOHElAGDu8+OQ90BrGFUq5E9jzUR3l/IR73DjfKb467kSrsmd7djEenslIufZ4tgkgxqJXHeFJocgmzm9G2wAfn3jIG72OP/ZeX79M5ScY8pt2vAR/7YUsALy7Ql8Ur9jFeyr1HEj/7ztJkpsXCDRpl2E9LOfkAejWoO8uQORsfAXuYcS9JAZlQjH5OqPzCXBnbNg4sMU6k9OPAXtroPqnwTQH1Ao0tDHOR97Dub96LKf+schbCy+GdmzP/TK/fLm9qds9iHIwsmOgC9znx+HvGfcG1lGlRqZGdK+Zv4kc7oj2mPuM//iRpnHQgQXznC41lIN7pz7OgDg3zf3ou8dHaBQuwVMYzs2tHz0zo+YsuDRtqzd5exNrGbm+J9TbFTUrgns5qFdAM5XqdBvyAh0TIi+aCTMYMBvwkZqYjT+t2w0CirUeChnjb9uW2cyFv6KZU/0lnsYDWLiw8kAgA0v1d/p8/sXHqDdboIIMVQKwOqhTYvY+SkAYNn9S5D58hRoKxw7vQcLTrsvSnaHGf36vJHpTyh0hyk1eiykOosJs+d/DlVpAbp6JKp64KoYfPikd74LIR8LJ6+G4OEPMW/5GCzJGQ6jSo2s+fLowj0FDYKoK84X+c4D2c1Bo1qD3Fl9ZNuAfrQ6b90bC++T5f7ewm/ChvMPeZnEzlqg4ZhcfZG55A+5h1IvwqxmLH/lGCIhnRyuNtBut/fo0TYKPy6/Bx0BbD1lR+L45+UeEkH4jKwlaeSY28jIn7oOppgE5Cy4AUtyHP4+RpUaWU/trOFK75D+YAosIEGD8D6ZS/7E0sd61NyQuCR+N6Nyajg8KaxSYUb+aihFwzldyds0FpvZus8lIoMZS1k7zLCEFK6N4sDPogr3bl/Got+QN6e/Q+BY6pZmLfFt2Wss7C4fAJiatmfKUUe28wMUYbuMjVy05/evuTbqCDZEWufUy7g2u4/sQ86CG1AJBY4f2wdV8yTm/E1N+T93pyjWRyNaIpEi0TA8VZ9RPfnkWAQRCBiVasxbfj/yp66tdx9ZSxxhJLPnfMSdO71+HNJeNpCm1ItY7QqUW9xr4g1NWL+E987xzg2CnX3GK5T8OhujZYXF8wnduTbaItY/UX/hKBY/7PYHmrNyPHIe74WM3O9ddWESfmebT7Pr6GWx4Vybv4urmPJfZxw+l3nzB7vCge/euB+eaWvnX88mK4z7ik1CCAAGG5vwt1MU7+8GsPPVbOfXyE5R7P97oYUXtqM07HVNw/h+Rg+Olbi/A6dv3f+WkbWBv5FbuxEK+F3YkLI56zck8LQdmUv/RO4TfZD7RB9G4AhkchbcAACyqbGJmukUrcHUnm6zkqd2l3BthIuEK7afP8rVGXvyIXZtZw/xdfVXchEhRJsmGpzRRbrKnjbFix9ahdkvPox5y+/D/Hy3Q6Sq3B1Mo1VTNqZ8p/hU1/F3R05AZ7dhZt5P6NvWvTEzqJnjZXIDaUsbFYseeQ2zX3wYy+YNAuAIRLBgxYEG95v9eE/oqk32jCoNZi76FQBwd4N7DmzI2sA/RGgEdIp2C4894qOx6dWDGDsuCT3io/HPOTaZTVXzVKZsifUQqEUaXk14DDJndINREwZNVFNM6cDe+0QVGyDAKhEAKVghB/FL4BQ4lj7WA0aVhkvuEkjcO9GhRiZBgyCI+rL4oRcw+8WHkZd5FbMjXRM3jUvFSLOBzKcIBs85lJd5FRY80gFGtQYLnqt7+Nzsx3u6k5pWCxgE4W06JUTjrUVjcL5Kjal5q131JrUWox5MwT8NfA/UWc2Yu7zhQnewERDCRseEaKzLdzi/HCvT4N75a+UdkAdOrUYg2+zdO9FhJlZfQePz5x90OYM7ITUtQTROFj/0Ama9Mq1OAkeYzYxplHCSuAQZud8jLK4V5k9LxYJHPLd0WbWrRiIc+F2CAKNKg9nP7HFUGMpqvJ9nSO/a8lmlGpM9XjD9zaXGTGuyf3Ba3/QVWdy8+fJ+jHowBXlzByBjYc3m8QRLQAgbwRAm1KjSIG/eIGTkb5N7KAxOQWPDS/uBI/WLPkXqWYJoHJwutuD/mrpNBN6uiHYdV7RxR+F75tZpeGzjIuTP6cckRjtrZHMOTJzYBTqbBWUqDcLi3WEbz1rcL4xGa+iYAhANR6zVsFrq7rNRG+qzrvW5Ul6TblqLA5s3X96POyZ0rLfAkTmjG4yNNCVBQAgbnvRoG4Uflt+Dggo1RktkHP+lnLVnTwrjjdFPxrF2xSYLn7XWEteGKUceYlVj6io2id5TozLw2Bs5yJs3EJmZDgfu5gkigzsAZ8+fZsrhl/8fUy4/y2eHVilYB73KpH5cG5SdZ4q7zp1H3tyBsACOhDPnzkPXqhPTpqWW/b9KiXY/1D9dMREGgwG7QDsm/sQZyxsACirVQPpKWcZxfN04pL1EoY2Ji/NU+hw8tnERluR6BDUQ+RMZlWrMrF50+VRnhK8x2hQ4ZXD/TYosrGCXGs4LervOHGfKmopCrk1iryuZ8nkV/6pgbs6ufxaJlyjx3U2idQwAFEbWcdsU3Ylr068JK4Bc1VTlWsOc/CpS7NfnuZbcOhrvLB5T5+uc6X71ej02btyIceC1FAW16IeexYGDXQDMdsAo8pvIyPwaeTnDkDenPzKyvkGbVPZ97Vh5petY8EjQm/NEb4QplfjgtX3oX1337L4K5trb2rDz/O/i0DFLDThhI5BD5GZmfo3c3OHIzR3uEjjkIm/uQACod2ZL2kGRB08tXlpaGpITork2nx3mo6YAYOLaO7EUn+bqbuyaytX1b8pGWdlHf3+iFjyVPgclna93lVUtRC+YZRfElxCEX/DFGtbQpGlpaWmuY1pjg5uU1tF4d8kY/FmoxeUzNjDnMrK+QV7OMCzLHAKrVo9XXri0D0ZOde62D16ru6/S8XXjYDAEfxS/gBM2Ah2nwLE06yoolSqYVFo8t8p/zj65edc7nOTU2noLGgRBNE46JkTj1+dHYccFLa58bD26xce6zu066baDLx7oTiAlVJW6Ozh7mOlP4RF5JVnv3mGPVrnDeo6pDue5uaGDJwiC8BNOwbNVv/9Ins/I+gYA8HT20Ev24xQ0spb+hUH1GEeoCK0BK2ykJkbjy2fuBQCcLFdjbOZaeQfkgacZ1bRJyZg2KdmnAkfurL7QVZuCGVUaPJH9LYTwmFpfH7n5PhgMBrznURfsUnIooNfrceBlR8DGfcUa/GfWOplHRIQ6zgU08XI+ZDJBBATv3M85SYtdpt9DYK5her3epd0IxPER3sek1mLyA+1cZZvAmvYbVRpkLf3L38MKOAJW2PBUZ/YbMgKtwh22b8Pi2OQ550x8QiKjwNrYnRUkzE90UWxZlDTPftnN3DW6Pd8y5cqCPVg44VnMfmEiZo5r6bi3So3FD73galMYwQoFSjPv6JaoYSfn3mo7v7w5/aGzmmFUa7HjvSOu8/cAaBPBxmMGgHMGtm7GcEdSo7T1oSEZhxqec7zjAHr5IwiibujVdrSLcK+JWgPrU7OjmF/iFaLktF06duba/FvJrrP6mGZcmxvj2PWmrcSaFCla205U8s7fLXSxTPm974J3vWqoGRYReFyeoMT7t+tc5V5rWzLnP1vNmkb9sM9dVjR1CCHON9KfTp5l2nZtyfaVHMX6F2tVAupueBWYBKyw4YlnaNwjpRqkz3td5hGxeGZNnf3CRGSvfACAQ/DIukQ88ZwFN0Bns0KlYhcIW3WGUqNai5nL/gYA3FvDGD58biK3G/Tdc45/aYeFIAhPWursuKW1Edk7pTImA4pS96Ko9ggzmtqVdYbcVeB2e/3XnfsPrWNiXcfLJDI3EwRBEI2HoBA2PHcLOgdoaFwnnlqN7JUPYPGjXdgGdrcts1Glxqysr5GSlMI02XuhCHUlVOz6Git6leDaGRzYNlGyzd+VfJ2pspSr06n4CG1VFH6UIEKG9PR07DlZBk1YYG8kffAsvwlWE7Q5RgQSnGnciBdlHlFwEhTCRrCS/cgrMHQZxtQJF07KNBqCIAgiFDAYDHh44dtyD6NGaBOMCHbEESSJ+hF0wkavtlH49flR+LdIi+tmrsOPBw9xbQSNjil3b83vFO8R7QjZ2vVmyqZzR8DRqitbFsWcB4CwyFimfEUU61NSHM1qMQBgZEvWTu/uNrxd66anJzA7ROLUgrQbRBBEbamwKrC3VAOF0m1nP6idO/fQtnNujZk6Idl1HC3Smuk9chqZDG7V26kT7oAZkS1YHwEi9Diwdjz+kdBg0LpEhBr9YtmMQsUiq4H+ye7Q89vPsyakCiObV2O4KCT9PVfEuo6deVpC5TcUdMKGU8pM6t+4HGpph4ggCIJwsquUD3wSpWaFweYSK/zRIla73iWRT047II7tR63kfXsevtod/CTtBVqfCMKbhNo7X9AJGwRB1I9Plrvtp0Nlt4SoG+np6dhxvBwaLf39CYIgCP9AwkaA8PHySzvS0cthaKNTCWipd5i0XJAI5wwAv5wtqV1fEpffNzgW7y4JrZ0Sou4cOl2GvjMdGXf2VACj2rhNAv5X6J44So3WdSx4xI1XKViTAZvNbYZ1VbMI1/HWMreJabzODiK4+W7Vg9z69OlT7mNan4jGQhNROOdfjpxhG3iY1yur2AAuvTqwZvR2wcKUN20v9sIIAxMSNgKEUFOZEQRBEKEBrU8EQTSEoBU2BrSPxOnX7kIHALuKtBj+uDv78h87fmHa7pJw5G7SNIEpF50XRYnSR3PXKFTsf5dg4hP0tdex9+oV67B1ldoZcrIZtDPU2OmYEI03FjpyyRwq1eC2OYGVS4YgiMCiU6SVq9tZxvpxnOObYHL/JKYcF8Y2evfph7i1itYngiAaQtAKG57hyNoFgbM47QwRl8JzPqcMDOxcMgRBhC60VhEE4W2CVtggCIIgakevobfBYjJAExaOy6LdO9lfFbl3wjuFuW2Rd3n4DRkL3Vrfqzq4Q90CwHYP34wYj0hIN6a0cx2/+/S4kArhSBBE4+R0sQU3iTWKomAbKo/UC03iWzLn9rFZDnCVkvX/uGNAXMiFvHUSEsLGwPaROLv6Ls6cSi7Um+53qaE/ra4LtYlDEETwYDEZMDZvY80NfQDtlHsfvV6Pb5+9FyfK1RiTsbbB/XmaTtFaRRDyEarPy5AQNpwmKGlpaXjl/8KxMrYfc/54Fe+z8dGxc0xZaShjynYFH9InLiaeKd/Snn8oNwkz4b0QnSyEf1AC0Cj4ekVlCVcnSPgjAbFeHhFB1I0T68bRy6sPca553a/wjsllqL7gEAQRGISEsEEQBEFcHJXCEV4ZAM4Y3AJqjwh36NoTRvcGy12t3UvD/8LcJlEbT7H99o5ymwG00rvDOO6il1e/YBcAs929M2EQRRkeEm2DmFgt2+jOAXHY4JPREQRBOAgpYUOv1yMtLY2r31+iwX9ne8+8KuH9+2AwGPDdJcZBEATR2PjxxQdC0t44VHnvmYfwBv29CKLWfHA2jK2winJjFJ92HZrbdWdOddOxPhoHykPqFfyShNQ39Yzo40mnAd6NVkUqZ4IgCB56NgYX9PciCMIfhJSwcTH6JkViz4t3M3UnTwlInLCyTv04NRq0C0QQRLCQnp4OrU4HdXXkE0/Dmp2VbpOqvpHuM2eM7nqTxR1C5bI41kfIaZr196sT8CU9G4OC954hZ3CCqC1XXHsLzCYjAEAbpquhNXExGoWwIaXx6DV4BCZ1i3GVi0xxzPmmYXbxJfjwC9oFInxPr3ZR+G3lKADAuUo1puStBgA0bd2Ja1tYVsrVvVvA22lneHmMRPBgMBgwIWu9T/r++9UJrg0Yejb6H6UC0IrCZ3rSv6mZq9tP2gyCqDVmkxGznnzTVV59TMbBBDGNQtggiGDCUzjuc+UIGUdCEJeGzHAIgghljDYFTnpogFtoWOH+mhQ2Sulvpe5cRNEqdtNaJYoyabSzFZu2i/w/QohGK2x0TozGx0+OZuqOlmlw97y1AICvVj7oUjU7IZUzQRDByHkPs6imHtGIuoa720Rp3PUxWnf9TSr3MrG3kg8JTgQHzlwatI4RBOFvGu3KsXHjRmzZsoX5WExu4cK5Y+f5uZgDekNYsWIFWrRoAZVKBYVCgTlz5nBt7rzzTqjVaigUCkRGRmLNmjVeHwfReKE5SMhJTfNv6NChUCgUzCcsLOwivREXw7mm+WIdC2bo+UfIzY4PX8Bro5OQfkVTfPjhhyE5BxutsCFFcjM1tq24B9tW3OO33Z/i4mIkJyfj8ccflzw/bdo0bNq0CWPGjMEHH3yANm3aYPz48fj333/9Mj4i9KE5SNSLd+73ynOypvkHAGFhYdixY4fr888//zT4vo2Bd59+CBvy78OG/PtIo3ER6PlHSJGeno60tDRo/OAUbqosQWxCJ6SNmix5PhTmIAkbHvhaiyFFZmYmfvzxRyxZskTy/GuvvYYePXpg9erVSEtLw86dO6FQKPDYY49dsl+1Wo1bbrmFqdPr9Rg6dCgAIDY2Fj179kTv3r2hVCqhVCoxZswYnDt3DsnJyVAoFNBoNMjNzfXK9yTqh1IBaFUCtCoBtzQ3cx9dRDT3Uak13OdS0BwMfYw2hevjSfMwu+tTblG6Pp50jbW4Plc2cX8MBoNXnpM1zT8AUCgU6Nmzp+uTmppaY7+NYf4pFQJ0KvdnaFMz8/HU0JNGQxp6/hFS7DtZhv/OXI8+0zZgV5na9fmr1Mh83i5QMp+UcJvrU2RVMh+bAObTMsyGlmE2pN33BB559nP8b/1zkmMJhTlIwkYAU1FRgcrKSowc6c4TolarkZSUhB07djS4/507dyI+Ph6ff/45hg0bhvXr16N79+4YNGgQvvjiC6SmpiI7OxuFhYUNvhchD522jEXrjXchLS2tXjubNAeJQMBoNEKlUkGj0SApKQnbtm3zSr80/4hLQc8/Qm5CZQ42WgfxYGD//v0AgPbt2zP18fHxOHv2bIP7j46OxldffQUAuPrqqxEWFoaoqCisW+fItv7mm2+iV69e+N///ocJEyY0+H6E/2lotCCag4TcDBs2DH369MEVV1yBffv2YfHixRgyZAiOHz+OhISEBvUdSvPvu1UU1MTb0POPkJtQmYMkbDRi2rZt6zrWarVQqVTo3Lmzq6579+4AgCNHjvh9bETjgOagf7gs3p1vocriNqXyNJmK1rjzsxzxCPVo8jC9yrwh0nX85TNeH6YkmZmZTPnee+9FUlIS5s6di7Vr1zao71CafxSGOPgIpfkXaqQmRuODZaOxq0iLax5fJ/dwfIa/5iAJGwFMSkoKAP6PfOHCBURFRdW5P0Fg40Or1fyfX6t1x7xUKh0vInY7n+CQaBzQHCQCjXbt2iE8PBz79u2r87WhNv+S4jV4+GpHctpPn5J5MCEIPf8aL04fp95XjsCVTS2u+uQI9m+2o5z1RugQ6d7YKTCx5/YY2fKw5mzSzfU/lXDjCJU5SD4bAUxkZCQiIiLw8ccfu+qsViuOHj2KXr161Xh9QUGB67iqqgomk8kn4yR8R0KcBncMiMMdA+JwskrFfQZFCdxnapLZ9WkoNAcJMc4oLXKZ6BQUFMBgMNTKhKoxzL+0tDRZ/x6hDD3/CLkJlTlImg2ZKSgowNatW13lPXv2YOPGjWjbti0GDRqE8ePHY/ny5XjggQfw3//+FzNnzoQgCHjyySdr7Hv79u1YunQpevfu7YpacPz4cezatctn34cIPmgOhj5Gq9sU6ozBbSJl8chge8Lg3ntqF273aMP25W1znZrmX79+/TB69Gj07dsX//77L+bOnQsAWLBgQY19h/r8I7OphkPPP+JSpLSOxvtLHQmgCyrVuHX2616/R8mFs9jz109w6hxCcQ6SsCEzb7/9NqZPn+4qf/DBB/jggw/QsWNHHDx4EM899xxOnz6NNWvW4NVXX0VERAReeeUVlx3dpUhOTkZGRgbMZjPatWuHa6+9Fl999RVWrVrly69EyMwnyye6HEVrs9tJc5CQk5rm37lz5zBjxgzY7XYolUq0bt0amzZtQpcuXWrsm+YfURP0/CMuhWfI6N5XjvDJPbb9f3t3ExJFGMdx/L+yIoPrrhZ0WJSCiAjCU0Eg3Sq6OKdg6ySVRHWMIqggLOqWh4iQXgwKD1LkqSAoCLoUHYKIzgq1ZRCyO9pavmwHmZ0ZZ9VZ3Wfe9vu56OjoPocfz7P/eV729XMZuX2pch3HDCbKyxdwVVEsFiWTyUihUJB0Ou1Hu7BByWRSent7ZWxsTNlr+JWLRs6fruuVp5cXXsy4fj+7mHD9bOL+0VA88VSdQT9zEeUM6rouRy5aGxy//1n/zMbA4ZQjk2FG/hAkxuD4yeVyUiqVRNO0ShHy8F3BcU+q2eow30y2OH63sOzd9s7UguN6a2peRm721a1/DVMfyMwGAMRc4Z9VSPz6ay8qrMHuYPucVPN7lq19AGAWGLquB9yS6GEUAQCs6e3dU2xEBtDwNE0TXdcll8sF3ZTIYGYjpubn54NuAuogPzUno++nRERkd7t7ydQP25IY04TyVnlDBuMlap/jQP4QJPIXX/YZjqZlw/JP2wEc3WlnBu6NO6/3djjH79y+DhmpYzvDlEGKDQAAAKAGmqY5Tqo6M/Ao4BaFF8UGEGLbs2kZudlXuZ6cScrZa8Ou+z496K/pBCo0lmnb0bdbWqwNjK1Ja8fit2nrKZv9aV1nq3MTIwDAn5Oq4oJiAwgxe2cmsnKHFrUlLgAAoDFQbAAAVvR08HTluEcAgJv54X/56aT0X11aTjU+43yL/fm483jY66+mHdfm/sw4otgAIqRrU7P09bRXzvs28UYQq9lh26hoP1Rgctb6/sqhVOX7Zx+sQY9ZMwBYnbkKobuH5VTVUGwAEcQbQHilaZoMXj4h52649/pUQyELAOuzqzMtL28tzXAcOP/E0998GT4ppVJJPkp8+1uKDQCIsdHRUdmz3/vTNgpZAFif9cxwNEKfS7EREYmE+zMW6qFcLq99E0LFzw9WU5W75cihWtmOZnl8o2/Ve/Q7S1/D+GRNZQ7JHrxgDEYttm1ulq9Dxxw/04eq31tLn1vPHPqZPYoNIELi/vQDapAbAPAPfa4TxUZE8PQDQSB3CANyiKCRQYRBVHPYFHQDAAAAAMQTxQYAAAAAJTwtozKnbYrFotLGIFrMPKie1iN/qMav/NlfgwzCRP4QNMZgBKmW/HkqNgzDEBGRrq6uDTQLcWUYhmQyGaX/X4T8oTrV+TNfQ4QMwo38IWiMwQiSl/wlyh5KksXFRcnn89LW1ubbUZgIv3K5LIZhSDablaYmdSvyyB+q8St/ImQQbuQPQWMMRpBqyZ+nYgMAAAAAasUGcQAAAABKUGwAAAAAUIJiAwAAAIASFBsAAAAAlKDYAAAAAKAExQYAAAAAJSg2AAAAACjxH7ZDGCAugUKvAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "top_cells = adata.obs[\"nucleus_density\"].sort_values(ascending=False).index[:5]\n", + "bottom_cells = adata.obs[\"nucleus_density\"].sort_values(ascending=True).index[:5]\n", + "cells = [*top_cells, *bottom_cells]\n", + "\n", + "fig, axes = plt.subplots(2, 5, figsize=(10, 4))\n", + "for cell, ax in zip(cells, axes.flat):\n", + " bt.pl.density(adata[cell], ax=ax, square=True, title=\"\", binwidth=20)\n", + " bt.pl.shapes(adata[cell], shapes=\"nucleus_shape\", color=\"red\", ax=ax)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "e15c482a", + "metadata": { + "tags": [] + }, + "source": [ + "## Point Features\n", + "\n", + "In addition to shape-level features, we can compute subcellular spatial features for arbitrary groups of points, e.g. for every gene.\n", + "\n", + "List available features with `bt.tl.list_point_features`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "a9a080f6-5f5a-46f8-b2e0-97ee2a8e60c9", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-27T20:19:34.342145Z", + "iopub.status.busy": "2023-03-27T20:19:34.341908Z", + "iopub.status.idle": "2023-03-27T20:19:37.477442Z", + "shell.execute_reply": "2023-03-27T20:19:37.476872Z", + "shell.execute_reply.started": "2023-03-27T20:19:34.342128Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'proximity': 'For a set of points, computes the proximity of points within `shape_name` as well as the proximity of points outside `shape_name`. Proximity is defined as the average absolute distance to the specified `shape_name` normalized by cell radius. Values closer to 0 denote farther from the `shape_name`, values closer to 1 denote closer to the `shape_name`.',\n", + " 'asymmetry': 'For a set of points, computes the asymmetry of points within `shape_name` as well as the asymmetry of points outside `shape_name`. Asymmetry is defined as the offset between the centroid of points to the centroid of the specified `shape_name`, normalized by cell radius. Values closer to 0 denote symmetry, values closer to 1 denote asymmetry.',\n", + " 'point_dispersion_norm': 'For a set of points, calculates the second moment of all points in a cell relative to the centroid of the total RNA signal. This value is normalized by the second moment of a uniform distribution within the cell boundary.',\n", + " 'shape_dispersion_norm': 'For a set of points, calculates the second moment of all points in a cell relative to the centroid of `shape_name`. This value is normalized by the second moment of a uniform distribution within the cell boundary.',\n", + " 'distance': 'For a set of points, computes the distance of points within `shape_name` as well as the distance of points outside `shape_name`.',\n", + " 'offset': 'For a set of points, computes the offset of points within `shape_name` as well as the offset of points outside `shape_name`. Offset is defined as the offset between the centroid of points to the centroid of the specified `shape_name`.',\n", + " 'point_dispersion': 'For a set of points, calculates the second moment of all points in a cell relative to the centroid of the total RNA signal.',\n", + " 'shape_dispersion': 'For a set of points, calculates the second moment of all points in a cell relative to the centroid of `shape_name`.',\n", + " 'ripley': 'For a set of points, calculates properties of the L-function. The L-function measures spatial clustering of a point pattern over the area of the cell.',\n", + " 'shape_enrichment': 'For a set of points, calculates the fraction of points within `shape_name` out of all points in the cell.'}" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bt.tl.list_point_features()\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "e4bccbf0-da0c-4191-9a63-18cacb74bf25", + "metadata": {}, + "source": [ + "Similar to shape features, all we need to provide are the names of shape(s) and feature(s), plus an optional point grouping. By default the points are grouped by gene.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "62dcc853-d732-4108-837d-bf87a11ee9ff", + "metadata": { + "execution": { + "iopub.execute_input": "2023-03-27T20:21:37.556819Z", + "iopub.status.busy": "2023-03-27T20:21:37.556561Z", + "iopub.status.idle": "2023-03-27T20:29:35.042468Z", + "shell.execute_reply": "2023-03-27T20:29:35.042007Z", + "shell.execute_reply.started": "2023-03-27T20:21:37.556802Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Crunching shape features...\n", + "Crunching point features...\n", + "Saving results...\n", + "Done.\n", + "AnnData object modified:\n", + " uns:\n", + " + cell_gene_features\n" + ] + } + ], + "source": [ + "bt.tl.analyze_points(\n", + " adata,\n", + " shape_names=[\"cell_shape\", \"nucleus_shape\"],\n", + " feature_names=[\"distance\", \"asymmetry\"],\n", + " groupby=\"gene\",\n", + ")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "d3a35325-bcc5-4a32-9675-a048899e3720", + "metadata": {}, + "source": [ + "```{note}\n", + "`Bento` demonstrates how utilize these features for downstream tasks, such as [predicting RNA localization patterns (RNAforest)](Main_Guide).\n", + "```\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "b4be5708-b45d-4c40-adfa-bec41bf8456b", + "metadata": {}, + "source": [ + "## Custom Features\n", + "\n", + "### Shape Features\n", + "\n", + "You can also register your own custom computations as features. For example, let's write a function to compute the centroid of a shape.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "61c90d1c-ed7f-4eb0-a2d4-b6cfbbe15f6c", + "metadata": { + "execution": { + "iopub.execute_input": "2022-09-15T17:59:10.780626Z", + "iopub.status.busy": "2022-09-15T17:59:10.780295Z", + "iopub.status.idle": "2022-09-15T17:59:12.383012Z", + "shell.execute_reply": "2022-09-15T17:59:12.381934Z", + "shell.execute_reply.started": "2022-09-15T17:59:10.780596Z" + } + }, + "outputs": [], + "source": [ + "def cool_function(adata, shape_name, recompute=False):\n", + " shape_prefix = shape_name.split(\"_\")[0]\n", + " feature_key = f\"{shape_prefix}_centroid\"\n", + "\n", + " if feature_key in adata.obs and not recompute:\n", + " return\n", + "\n", + " centroid = bt.geo.get_shape(adata, shape_name).centroid\n", + " adata.obs[feature_key] = centroid\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "f83e790f", + "metadata": {}, + "source": [ + "Now we can register this function as a feature. The first argument is the name of the feature, and the second argument is the function itself.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "47c4a6b7-e315-43f1-9ec0-514e2621cdcf", + "metadata": { + "execution": { + "iopub.execute_input": "2022-09-15T17:59:10.780626Z", + "iopub.status.busy": "2022-09-15T17:59:10.780295Z", + "iopub.status.idle": "2022-09-15T17:59:12.383012Z", + "shell.execute_reply": "2022-09-15T17:59:12.381934Z", + "shell.execute_reply.started": "2022-09-15T17:59:10.780596Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Registered shape feature 'centroid' to `bento.tl.shape_features`.\n" + ] + } + ], + "source": [ + "bt.tl.register_shape_feature(\"centroid\", cool_function)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "d3424665", + "metadata": {}, + "source": [ + "Let's compute the centroid for every cell.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "47d2a229-f621-4dc0-a351-6c68bb543401", + "metadata": { + "execution": { + "iopub.execute_input": "2022-09-15T17:59:12.388456Z", + "iopub.status.busy": "2022-09-15T17:59:12.387895Z", + "iopub.status.idle": "2022-09-15T17:59:14.065534Z", + "shell.execute_reply": "2022-09-15T17:59:14.064434Z", + "shell.execute_reply.started": "2022-09-15T17:59:12.388408Z" + } + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "89ef93f917f84f1bb566c83c696905f8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/1 [00:00\n", - "\n", - "Note\n", - "\n", - "There are several options available for visualization that are light wrappers building on their `seaborn` package counterparts. Using the `bento.pl.cellplot` function, you may create:\n", - "\n", - "- **2D histogram (default)**: `kind = 'hist'`\n", - " \n", - " - [https://seaborn.pydata.org/generated/seaborn.histplot.html](https://seaborn.pydata.org/generated/seaborn.histplot.html)\n", - "\n", - "- **Scatter plot**: `kind = 'scatter'`\n", - " \n", - " - [https://seaborn.pydata.org/generated/seaborn.scatterplot.html](https://seaborn.pydata.org/generated/seaborn.scatterplot.html)\n", - " \n", - "- **Hexbin plots**: `kind = 'hex'`\n", - " \n", - " - [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hexbin.html](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hexbin.html)\n", - "\n", - "" - ] - }, - { - "cell_type": "markdown", - "id": "5efe2763-a777-4e88-997b-95afa5a6f6f2", - "metadata": {}, - "source": [ - "## Load Libraries" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "c4e068a5-2c4d-4cb5-b92f-3119cd8bbbb6", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:01:09.174059Z", - "iopub.status.busy": "2022-06-06T01:01:09.173641Z", - "iopub.status.idle": "2022-06-06T01:01:51.264031Z", - "shell.execute_reply": "2022-06-06T01:01:51.262972Z", - "shell.execute_reply.started": "2022-06-06T01:01:09.173938Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "import bento" - ] - }, - { - "cell_type": "markdown", - "id": "9a591fb8-4830-48f9-9c7d-1dfa5dc20ab4", - "metadata": { - "tags": [] - }, - "source": [ - "## Load Data\n", - "\n", - "Let's use the seqFISH+ dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "5bb23bdb-0263-4bb8-89fe-a5e991f350a2", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:01:51.268747Z", - "iopub.status.busy": "2022-06-06T01:01:51.268440Z", - "iopub.status.idle": "2022-06-06T01:01:56.644697Z", - "shell.execute_reply": "2022-06-06T01:01:56.643465Z", - "shell.execute_reply.started": "2022-06-06T01:01:51.268702Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "AnnData object with n_obs × n_vars = 179 × 3726\n", - " obs: 'cell_shape', 'nucleus_shape', 'batch', 'cell_radius', 'nucleus_inner_edge_shape', 'cell_inner_edge_shape', 'nucleus_outer_edge_shape', 'n_detected', 'fraction_detected', 'cell_edge_count', 'cell_edge_fraction', 'cytoplasmic_count', 'cytoplasmic_fraction', 'nuclear_count', 'nuclear_fraction', 'nuclear_edge_count', 'nuclear_edge_fraction', 'none_count', 'none_fraction', 'td_cluster'\n", - " var: 'n_detected', 'fraction_detected', 'cell_edge_count', 'cell_edge_fraction', 'cytoplasmic_count', 'cytoplasmic_fraction', 'nuclear_count', 'nuclear_fraction', 'nuclear_edge_count', 'nuclear_edge_fraction', 'none_count', 'none_fraction', 'td_cluster'\n", - " uns: 'points', 'tensor', 'tensor_labels', 'tensor_loadings'\n", - " layers: 'cell_edge', 'cell_edge_p', 'cell_inner_asymmetry', 'cell_inner_proximity', 'cell_outer_asymmetry', 'cell_outer_proximity', 'cytoplasmic', 'cytoplasmic_p', 'l_half_radius', 'l_max', 'l_max_gradient', 'l_min_gradient', 'l_monotony', 'none', 'none_p', 'nuclear', 'nuclear_edge', 'nuclear_edge_p', 'nuclear_p', 'nucleus_dispersion', 'nucleus_inner_asymmetry', 'nucleus_inner_edge_enrichment', 'nucleus_inner_proximity', 'nucleus_outer_asymmetry', 'nucleus_outer_edge_enrichment', 'nucleus_outer_proximity', 'point_dispersion', 'spliced', 'unspliced'" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "adata = bento.datasets.load_dataset(\"seqfish\")\n", - "adata" - ] - }, - { - "cell_type": "markdown", - "id": "ed332797", - "metadata": {}, - "source": [ - "## Plot Molecule Densities" - ] - }, - { - "cell_type": "markdown", - "id": "2e7bb387-93e0-4ef6-a45c-f16215f2d824", - "metadata": {}, - "source": [ - "The default `cellplot` is a 2D histogram limited to the first field of view." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "80acf16b-27e8-42c0-8893-6fdcf100190b", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:01:56.650702Z", - "iopub.status.busy": "2022-06-06T01:01:56.650217Z", - "iopub.status.idle": "2022-06-06T01:02:02.976470Z", - "shell.execute_reply": "2022-06-06T01:02:02.975204Z", - "shell.execute_reply.started": "2022-06-06T01:01:56.650644Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAIyCAYAAAAubgW7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydZ2BUxdfGn+012fTeE0ISSAg9hA6hI1WKNBVBUBBFESvqX0XFhl1eFRsoIr0IhN5bIKSR3nvv29v7IUqYvYH0QpjfF3Luzsw9e/ey9+zMM+ewjEYjKBQKhUKhUCgAu7MdoFAoFAqFQukq0MCIQqFQKBQK5V9oYEShUCgUCoXyLzQwolAoFAqFQvkXGhhRKBQKhUKh/Au3me2NLBarXRyhUCgUCoVCuRdGo7FDAhA6Y0ShUCgUCoXyLzQwolAoFAqFQvkXGhhRKBQKhUKh/AsNjCgUCoVCoVD+hQZGFAqFQqFQKP/S3F1pFAqFQqG0iAlmTxC20dvtzt8sFgvePR3AthDeOSYWC+BhKQGHU/8b3ijmE2MkZR1r9Lx+khDyvGoNYatUOuQkFyA9NhuKGhXA4TAH0evJMUzs44ptjfoxjjuPsE/odjbah9Lx0MCIQqFQKB2OpZ05OA4yyCzFcPeyRfAgLwiFPFTI1XfaqNVa5MXmQqvW3TlmUJGBUVFRUaPnsjerJmyjSk3YZjYyjJk7BHNemITCzBKARS6mVJXVICI8Gpm3c6HV6EDp3tDAiEKhUCjtCovFApfLRf+xveEV6AaZtRSBw3qipFIFlVKDzNRinDkSg1vXM6AzIwMfXiEZ1OgtxYR94tqfjZ6/zFpC2MZaOekfv+6cnr1dIZIIGDNGTp52eOzlR6CSq3Hqr8tQKzUwGgxEG6VqeKN+BHL8CFuhHYrbt2+jpqaG0dZgMMBoNDY6JqXtYTXzwtMEjxQKhUJpFDMzM0ydOhVCoRDLly8Hh8NBRZIakafjYDAYkRyZgUKumNFPby4g7MYDo7cb9WWC9XLCvldgdIcGltLYRgNGzB4M70BXcHgcwOTZmaVNaNQPd3ZPwi7gZiAwMBACgYDRVqPR4NChQygoKEBBQQFycnIgl8uRl5fX6Hm6Kx2V4JEGRhQKhUJpFFN9DDugB6NN+VAb9O3hjOdnDYdKo8U1eR6KFbVIryzHudzMJp1HnEkuZOik5OtGky1DwmLS5tcyx9SYjKF0IG0WOfkDUQOrczoRaXNImRLYJrbDhUrGGMej3iXs8YIFhH23bsnC1hyhMwZBJBXC2tES1s6WMLMyAwBcOxqFc7uvQiVXQ1XVwBu+i+6kY+qowIgupVEoFAqlxbBYLIyb3he9gt3g2s8FVXIVjl5PwP5Lt5EToOhs9x5YKkuqcfTnM8QxNo8L9wAXjFs0HG9sWw2+kIeMmCwc+C4cOYl50Gn19xiN0hxoYEShUCiUFjF2ah+MnBiEirIaHPrrOgpjbiO9oIzRTsDhws/KBu7mlvCxtAIA2IulcDWT4e41C7lWg9T0MqQWlSGrtAJJhaUAqM7mPwwGIzLicvDDq3W6KhaLhbD5IXjslRmwdrZCRmwWjmw9jfzUQqjk6kZGo9wLGhhRKBQKpVn06OeJmW/OhpWNFL9+cxLJcXW6l2ILK6JdT0sbzOkZiL52jihTKZBQVoLEshIodFpoDQbElxZDb6xfx/KUWcJHbQVfBxvM7N8LeoMBx9NScSkjGwXVTIHyw47RaMTx387h+G/nIJIK0WdULzzxzlzIbM1RlFmCnOR8+BTUfSZFRUXYu3dvJ3v8YEA1RhQKhUJhYKp/KVvUHxwOG4+O6oOJg/zwafZZRJXmo0ZbPzPBS6sT4nhaW2LRwGD42djgwK0EnElIQ7lcCZ6JHIZfy3z+yJ3qnzH9PZwxJNAdIa6uiMzPx46YGKSxS4j2bD65fORiX8EYMzvHhjygIMXVLHMtYfu4mAiXAJjzyRmYvBoZYXPYpFCp5JqJkAmA6ykVYde6kqLrKm/y+aq2Jsd0O8pcKpM7kvMbNe4sSPh8uFrK4GdvC4GGBSGPh+kDAqDS6lAQVQiVSouaaiWuXExBRloxTl7ZwBi3K0I1RhQKhULpMthbmWHFtCHwcbHBhh+P4lavggbbTQ/yx6PBvXEgJh6fH74AlbbleX9uZubhcnUupHw+ZgUE4MPx43EkLxG/J0bCQLey3xO5RoPEohIkFpWA9+9E29/XYiDkcTG01AxOLlawtTfHiufCcCo8Dudv8qHRaO4/6EMEDYwoFAqFcl/c/Z0xZ84IRCRk48vd51FVqwJ6kW34bA6eHxUKLxsrrN9/DAXVNeBoGx6vudRqNPg9KgrHUlLw3KjBeGPAaHwTcwUVamXbnOAhQKc3oFavQUxUNmKisgEADk4WePb58djA2oANGx6MWaOOgNZKo1AoFMo9CQjpgZd+WIGr8VnYdyG2Ligygc/m4M1+YeBy2Hj90PF20wMVy+V4+9oJlKkU+Ch0IsRcXruc52GhML8S3315HCEhIRg2bFhnu9NloBojCoVCoTDyFOW+PBj25lJ8vWga9tyIw8+lkcTr5on1Cw7Lxw6ChViIL/86T+Q9tEghdTkqazKQYeuYzx9JDpl8MWuqOWGrvesCs5eDR4LDYmNLxhEY7tq5xmEzx1SqyfMqKsikRFwxudzn5UDqmADASUwmmrya607YNmak3w4SZnAYX2RP2EEODS9H/sfNC2RCSJ0dc7nLaCCfycG+2YQdlUj6aXeZmbxSH7UdP/zwA0aNGgW5XM54vavQURojOmNEoVAoFAZiPg8fzZ2Im5l52Hk95p7tZgwMgJ+zHf7v5DXTZNDtyhcxFyDl8bHAM6TxxpT7cuvWLdy4cQMvvPBCZ7vSJaCBEYVCoVAIpBYS/PzUo0gqKMGmI+fu2c7f2Q4zB/XGxr2nUK3s2Lw5WoMBX8ZexCgHf/iaMXeAUZrHa6+9hokTJ4LNpmEBvQIUCoVCuUPw6N54/Y812Bd5Gx/9c++gyEoqwivTR+Ljg+dQXts5IugSpRw7Mq7iad9RnXL+7kRlZSVu3ryJ5557rrNd6XSoxohCoVAeQkzzFJUuGYB+vs5Y++hIvPXLMdxwJnP53F2jTMTl4etek3A1LgsHL8TdOS5LI4XZOjG58bk0kNT6GBrYF8022d1vnknm8skfQz6zhHYKbAl9DN8mnEdMRR64HJPCZwAMJjocVS5ZPE3sRuqB/GyZeYxuxnkStsyJ1Bx5WJD5k2KiyPYAMDYklrCv5HkQtk5PzlWY6oecrSoZY+aVWxA2j0fmOlKryYvs/j1TY8S5GA0AcPSyx6ovnkDIlP5oZmzQIVCNEYVCoVA6jIF+rlg2JQQ/HL6KjILy+7Z9JmgQispqiKCoszACuFSUhn7Wrp3tygNPQXoRhBIBJBJJZ7vSqdDAiEKhUB5yvPu4Y9mUwdhy4DIuxKTft+1wZw/0sXXEln2XO8i7xrldWYjelo6d7Ua3oAtOFHU4NDCiUCiUh5i+Y3rh6U0L8fOR64hJv//2cS6LjWW9++ObqCtQtyKjdVuTVFUEZ7EFLPmixhtTKI1AAyMKhUJ5SLF3t8G8l6fhx1f/xLWE7Ebbj3T1RLlKiYiivA7wrunU6tSIryxAiC1T10OhNBdaEoRCoVAeQqoXD8Rbz03HtjPRuB5gjYpR5M4yLpcUMfPiJBgR4I4LkZkQZ3MbTM5YNJCcsZH3I8c0GkyKoFbyGWMIykwEyCZaYVk8eaBGVSekPsnKxWOBwThwKxMMz4TkeSUmYmuVkvQjOteJ4RdbStY30elJP2KzyT423mWMMbJqLQl7llc0YZ8u9CXsvDwrwp7Si6np2q3tR9glFWaELRSRSSH58cyg9phu552/K4wrGa8/bNAZIwqFQnnIsLa2xqfPTUd2UQUuRN9fU/QfLBbQ28kecflF7exdy7iQlQkOi4VgO6o1orQOGhhRKBTKQwSXy8WmTZtw7lYqPt9xtsn93CwtYASQW1HVbr61BiOASznZGObi3mhbCuV+0MCIQqFQHiI2b94MvV6PA+ebt9Xe3doC8fnM/D5diWu5OQiyo1mwKa2DaowoFAqlmzPR9xUAgH9fNwwIGIV3n92GsqV2AOrz5fGE5C4zdbWAsP1sbZCWWwquos7WSJm59vRC0ual3X+XmE7UQMFXZ9IPcQH5mBKVkdonpUP97/vM3ApYckWw1ohRpaovUaIz0RjJq0i/JLLGM3fb2ZC6JCsh2cfWhXz9ehFz5iol3pmwKz1JP3ytyOK1NiKyoGuqwo4xpqmmSGauIGz1eWvCNlSlMMa4O9mnNZcGlnTGiEKhUB4CLG3NsOT58dj+9ckWZTX2dbRBTlnXXEb7D53BgPzqGvS0telsVx5IBk/qi+qyGsjl8sYbd2PojBGFQqF0c1gsFmY9OQxXTsUjLT6/2f15bDbsZWbIKL5/RuyuwO2iIvS2t8f1nK6VUqCrYmYpgb27LXqF9sSY+aH48PFvumQ5kI6EBkYUCoXSzQkc5AkHF2vs+vHeRWHvh61IAqVGi7IaReONO5mU0jKEuLl1thtdDnORADwOB5b2MgydPhBO3vYw6A3w7uOO0rxylOSW4f0FX6Ikt+sHv+0NDYwoFAqlmzGh9+t3/nZwscRjHz+Cb29cw/VFEgB1dbDEruSymGmx0buxFUlRw9JCeZfExf2oitGuaCApMuKYNFGTaXmglzILvkoyST84GnL2QpJP5uWR25PnzPSowBNO/aCT1uuKZDa1RBulisxbZFo0VmdgqkxsheQYCRX2hD3JhiwQK+KQeY8A4Jjan7ClAjVhX71Evq6zIPVWCYVkEV4A4PjW+8UC4JnUE65WFpBJBLCXmcNiDA8qjQ4hvd1RUa0Ef+hwlBZUIfJiEmoq5Dh17Db+78SrjHEfZmhgRKFQKN0UiZkQq96Yhr1J8biYm9XicdzMLJBSykxY2BUplsvBYz8c8lkbiRiOFmZwlMiwtEcI7EVmEBnrgr5KhQpVCiW0Cj1sZBJcjElHcnYJ8v+8hYKs0k72vGtDAyMKhULppoyYEIikmBxsM0S1apycmkpM8vFrG6corcLR3AxvTxiDfi5OMBqNMHIM0Br0uFaShfC8BJw7mou8iqo7xWBFpUb09XVGby9HDA/2gsfgXijKrcCJ3deQnVqE4tyKzn1DXRAaGFEoFEo3xS/QBeH7bgKDWzdOsbIWHDZzez6l/eGy2OhlbYcl/n0xyskLYh4PicWl+PtWDHZExqDYsQhaY/2SJL9cyhjjVnIebiXXidFtz+RiwEg/DBjpjzkrxyIruRDpG48gOTm5w95TV4cGRhQKhdLNKBpuAyszMRyCnXD53GXAQsNoo9Pff7nJyq4+L4+FkA2pjA1+j+o7dcjYB5mPD7ubpGamypvMhWSa58gimekDv5rMOSSoILU6Bh7Zx1S3JLZWgcUzgGtTL3DSaElfNaVk/qA8MxlhO5sx0xKY1jnjsEl91OaEsYQd7MDcFaeSk9qm8jMuhO19vf6as1jA5I/DENbDGxYiEeQaDf6IjMG2m7eIHE2sJDExBouUJaG0L6nRKhlhj3hU4HdcgTCFi0X+fbH70BkkZxXjekwWzt9IZX4GxyMJ+8RdtdW6IzQwolAolG7Iy4+OxKmoVKi1+sYbN0KxqhocNhs2QilKVLWNd6C0iuABnlj45HBYeVuipFaOD0+fw+mUdGgNTLF6a1DpdfjpdgROnolFUE9nzArrg1GDeiDyWjpOnI3Hw7prnwZGFAqF0s0Q8rhws7PEl/svtsl4Bhih0Gkg5QpQAhoYtRcCARdrXpkCd09baLV6pJWW4bWjJ1Aqb980CWqNDhGxWbidkg9fDzvMHBGIoN6uKCuvRUZWKXQsAwwGAxKupkBR03iW8AcdGhhRKBRKN2OArwsKKqpRWFHTeOMmklxdjB7mdsio7dq709ylVlDomEuHXR0el4OXNkyHRCJAYUElFLVqrIk/i46ctFGotIhKzENadD769HaFgM+Fl4cthKG+EEqEmLVmMiLCo2BbzEF4eDjKyrr2vdBSaGBEoVBaDIvFgrW1deMN/0WhUECh6PpJAh90QvzdcSwiqU3HrFDL4SS2aNMx2wNbkRRJVSWNN+xirJo8BPYOMrBYLOTnluOPXy7AOKJz0g6o1Tpcv5kBALhwJeWOxsijlwv8BvdAz549sWDBAly6dAkXL15EUlISSkpKuk3GbBoYUSiUezLRZQ3jGL+/J2bNHABXNytIxALAjAu9of4LkasidRDsmnoRrEDEx+nt53Ds5zMw3NXnuPpPos847rxW+87icAjbqL+/1obF5zOOGTXkzENXFZ3efb24PA7svMxxo+gWKoLq3rOtNXPmiMMmH2JKE4FyeSlZnDRGX4lxHj5QltSJffUC5vU08MkHud7kktrdJIXUegFzp5tWQo4hKibvp1pXUtCtsSL96Cl1Qk5lDXSq+mSIPRzIQKlCzExOeTeWfGbwXqKUkG0E5JJSWS35+s1jAYwx/HaSfhiyEsBisTD2sVC4l2lxDrlwsZLhjYhLQG82DFzyM2LrmNdLbUeqrTVO5PUS5JAfgkrEDLYKh5K2KJ9MJMkKrNvWmAfgEhRwOWRERVYh7J0GYN1zM+HkYQ293oC42FwolXX/ZzjFVagsqUZRTjmMBgMqsotQdJ/8Sab/14DO+/9GAyMKhdIkega7Y8S0vnAOcsONGxn47deL0Gj1SBGTDwhpHvlFLYqqTyzo5uuAhc+NQ0BID0SER+PakVtQycmdTJTWMXx2CKrVamRUtW1+mgJ5DXpZ2zfesJPxNLPErZLm14PrDBw8bPHUu3Oh1xtwYMsJLP99BZ7+aW9nu9Uk4mNyER+TizPHYqEX8+DgIIN/L2dwuXWBF7daCUcPWwSF+gIswN5RhqQb6bh65BYybudCq2ZmBu8q0MCIQqHcl4FjAuDdyxl9Qn1x6LcL2H8xGbl3J4XzZM603Ivs5EJ8+Pi36B8WiCVvPYpJS0cj/LdzSLt4DWlpaYz2IqkQA8b3gZufM9z8ncETMEsiAICyVonM27kgttGYZj9ubEcPt4GvQx0Z5PUxuEKpVCI2NhZ5eXkN+tyZuPZ0wuwXJuOZWy2riXY/cmqqIOLxwGOz23x3VFsh5vLgJbNCbFlBZ7vSKIEDPTH/8SHY/91xXDsahcffmo29EXGoUtx/NqurUlhYhcLC+jQHvGQyXQFPq8bYx4Zi+jPjYONshdrKulm568eikJNcgJqSSuQmF8Cg7/x7iwZGFAqlQVgsFhY8PwF9hvbAke2XcPZAJAqzy6D2dWzVuAa9ARHh0Yi7lATvPu6Y+OQohK3+C1evXr3TxpXdAwBg7WiJ0vxyxF5IwIV916CsbfihYetiDTtXE61TOwRGOfocWFpaYtasWQgKCsLt27dhMBgQERGBvXv3dqp+isViYfFbc7D9vT1Im9j22hS90Yis6goE2jogsqhrzsj4WdsgX16NGm3XFV8PGtkTY6f3A5/Pxf+9ug0FGcX4NPx16PUGfBZ+srPdazfUSg2O/HwGR34+AzMrKYRiAURSAcYtGg6vQDdY2JjB0csOLBaQdCMdJ34/hzPXudCZ/B/sCFjNFEsZWSya/ZRC6a7crVUxs5Lijbj/YdWFfShU1GtUrM6TWfoqx5BLaSyTxHecJFJ74fUL+UuSxWLB20kMDrdeE8SyqcvaZzAYkXo7DxobUu+iF5D6IQAoDTJJJkiaEJoUDVeZJAZkN/AslRSR78U8TX7nbwdHC1grFeAJuOg3KgCuPRyw+9ODSLyeel/9VHswwXo5+o7wx8Qlw/Dhsh9ROJ8sRqoeW83ooywgPxcj30TPIiQfSEKJBkt7hIIFYGvKZVhvI/sDgDSFXL6r6EsGq+JCcvlEacsMRgWVpGZImC8nbJUTed7M2fV/z+0RCHtLLramXCba+NqS2h43MelnvopM8JhYYgdT3CzJPsn55LKiII5MGum+PZuwh04MgksICxKJBBs3bkRMTAyCn/4Ms4cHYkSQF1796QiKhlYSfdip5HvVWDB1XaafG0y0YywVGSRLM5n/dxROZB9+Ffmcl6WRr1uFpxC2fLAXY8y8UeR5vPaafE/oyPfCKatLA2FuKUbouN4IHdcbqvIq7N58GAlX6853XPtXhwQgdMaIQqE0iHcfD2RUlxNBUXtgNBqRHJlBHGM7ObTrOduCwoJKFKfmAgBiLiVj8IQgzFw9ESIzEf756RSuHLrZYb6wWCxMWz4af3x6uF3Pc7UkAyt7Dm/Xc7SGACs73KpN7Ww3CFy97TBl0VBIzEV44+PVuHXrFrTaugCxp6stxvTtgde3HoGyC2tuOpLqCgWO/X0dx/6+jn5+Vlj1xRP4Yf0fiDkf32E+0MCIQqE0iIWtGfLkzNIIlIa5Fh6Dq3uuoF9YIBa+NgN9R/fCdy/+3iHntnW2BF/AQ2p0duONW0FadQnMeEL0MLdDOeSNd+hAWAA8zC2wt6Dr5NYJe3Qgpi4ainOHbuHQ7xdxPfX6nddGjhyJlVOH4Oj1RFTJH0xdUXtzIzwalvYyPLJyHOIuJnTYeTsnSQKFQunyTHhiNOLKCzvbjQeOyJOxWBf2Ppx9HPDMZ0vg6enZrudjsVh45KnRuHosul3PAwBqgw4XilIxxqFnu5+rudiKpJAJhEit6Ro5jAaO8scjS4bjvRW/YN/Wc9DdVZrF2dkZa9asQZVchfAbbZtvqjthNBpx4vfzqKmoxci5oR12XjpjRKFQ7sCxqi+UKbKQIOpwEcRqE02RL6k30KtILUFYb7JKd4kTWe07nufNOK8435mwq3uYCKVNlAU+vXMZY5huJB9jRz5wblR6EPYQS3JHWZbShjFmsZrUNumM5G/Jm3E9CNv/i3odyjvrdmHe8lE4tuskLuy9hr8/q1vmamvNka+vL1w8bfDbmztg/Hc5xiqBTIGQN4YpzegfnE7YcYXk8iWbZZLnqKruPth1Oxnfj56B3YNTUGZSqoKjJrU6HJXJvSIkrx9XydS4ckzzYFWQ+qjSCRbk6/y62ZYRbq64WZoLVR6zunx0FXkP3xaT71VbTQrSxNZMEX12BVlE1vw8qSmy33G7/m9Xayz6dSV+evUPlCbUp6sImf8pnOxkeHPlBNyKz8XH109A61X/fkU3SE1RjV/jy2s8KSmOM30vbA15zbXkLQ0AMFiQ5zHV36lMYvsKP1/CVjsw/TTVEKXOJz8DI99Ei1jL/Nx8/6/O93Pn0jF+dscFRnTGiEKhMPAf4AUujwuNrvUFSB9W9DoD/vz+NF6Z+AECQnzx2KszYGbJFCy3Fmtra5QXVnZYXphiZS3O5aVjVr9eHXK+pjLK2RsXCzIab9jO+A/yxhu/PYMjv5xF7CXyR4KtlRSrHhuOy7cy8NOey1027UFXo7pCDjan4zZ+0cCIQqEw8PB3wqld16BtJFs0pXEUNUpsffMvWNqZY9UXT8DS0rLxTs1g7ty5iD7bccJUANiZEoOhPu7wsW16OZj2xM/CFhZ8ES4WZnaqH+MXDsUzHz2GmIuJOPbbeaJEhqOXHd5ZNRkFJdXYfijioa1c/yBAAyMKhdIgXTkz7YNGTlI+vn9pG1IiM7B582bY2DCX7VoCi8WCq6srMm/ntMl4TaVIUYsDUfFYMLhPh573XszyCsTpvFQYOinaEPK4WLj+EYRO7Ycf3tyJn97aTbw+6YmReP7LJ7D3RBS++fN8m5zTViRBP1sn9LV2hrdZ1whQuwtUY0ShUOphs8HmsDF4QhD2/3gG8jHMGSOuFbmDxtbs/kkNH7W/QdiXxjF3uiVVkXljnLj3T+rmZ17EOHY8y4+wD2sDCVtvIH8HxnJdCNtbzBTtRlc4ETaHRS59rBh2hrC3sEczxpCk2975+ytWCcZHZ2PTpk14/vnnUVtby2jfHMaNG4fKykrkpJcStd4EBaQuR68TM/pWa0gtir2MTMtger0gJT/ng9W3MM1jPnyHm+F2RZ1Iv9ykXpjzKTJ5FKuGzGWjdTURswDgpZOfbcUIN7LPAPKaeYmtMMDOGU+ePwcOXw+2A/N+FAlJHc4Qx0zCPhbbm7A1amaGdfu95PW6sutFAMDKlSsxZ/ocnD9/HitnL7iT5HPozE8AANPHB2FCWBDWvrsbuXZawLn+uopN8mQqHOoCOxYABzMzDLK3hoTHg7lACB9La3A0LNhJpXCWmcNgNCK+qBh6nQHeNlaQCgRIKi5BTGkRsisrkVpWjjKFApwC8p6VuzKX79h8k//nxaQeyCAk+2hsyP+fjP4AePnkGIJK8nVTvZnGnDEEUP3vPSmXANqOS/RIAyMKhUJgZiGGpZ05oi4kAWPad0fVw4bBaMSWLVvw4Ycf4q233sL69etbNd6cOXPw119/gW10brxxG6PS6/Bz0jU8FzAcL107ALmuc7JNP95jEA5mx6G2g8/v6emJLVu2wMrKCtOmTUNBAbMMibe7DUYP6Ym17+5GTa0KsGMmV/wPmViIsX5uGOLmBleZDHqjATnyKmRWVcIII05npUFdqYdOb0BcYRH+mxtj/RsvSPg8BDk5oKeLLab07AkbiRgSHh/ymjohvlytQWphGTLYVYgpKkRmVWUbX5H2w8XbHgJRw+WA2gMaGFEoFALv3i6QVykbb0hpEUqlEv/73/+we/duDBgwADdu3Gi8UwOEhYVBJBLh1KlTGCdZ0sZeNo3TBSnwMrfG2/0m4p3Io+johawxjr5wEpvjo+iOK6XhZCfD/Kn9YbWyL3bt2oW///4b5eXljHa+XnZYsXA4/jp0oy4oagAWCxjo7YrRvbzR18MJN0rycSotDXFFxSiurYVOTM7U8KrvHVjJNVpcyczBxcL6XFbWYjGk5XUzM+62lrAxkyCgpx0WBfZBqUKB36Jv4Vo+c4dnV4En4GLhS5PRd4QfLh+JxrApfTvkvDQwolAoDJKjsxpvRGkxFRUV2LFjB77//ntMnz4d+fnNrz02ceJE7Nu3D4ZO3tn0U9JVLO85BO/0m4SPrp+HUtMx2jRXiSUe7zEIH0adhMbQMZsEBgW5Y8G0gTh0KhZbP3m6wVkiAJDJZFj22DDsOHgDN+7xf8lKKsIz44fA1kyC07fT8NXRiyizattrV6ZQQFFdt5uruLouIae8LAEsACPcPbBq4GAMLnDFlozzXW6HnIelBV7dshRqhQYfrfgZBVmleOK1aR1yblorjUKh3GGi/2voF+qDoMFe+HXzcSSslzHaDPUnSy5E5pNanZd6kb/eL1SSOU94bOZDLK2aFI9aCckZq/giMksRn8fUG1RnWhD21NBIwvYRk9qV8+WkX6aaGwAoU5CaGRGPfHAFWpEBzWhZInMMPZmfZfO++i/3xf2DMV4jwzuPfn5nB1NT8hxJJBKcOXMGI0eOhFLJnN0bL1hA2PLJzF/a+Y+SS08CEfnerEw0RYVl5L3gYE1qxRa4j4QjzwVv3wyHQlc3FjuTzPUjNUnMzVMwnz8aKfmMqRxE+mnUsTDI3gWr+wzBT7cjcD4vk3h9gB9pA0BqOXl/cUzqiVXFk1qnHr+R2bM9fe3Rf5IYzs7OePHFF5GYyPyc/9MUuTpaYsMLk3E+MwvfHb9C7D6T96v7rMa7+GKZ32CcupKGnZdj6nd/msQmPBO5FFfFvF56Pnm9eHJyENPac1We9UtSYgEPq6aGwslehq+PXUZyYSkAoMaX/P9lmteJUWdPyAyqWDrSL2EBOQ/DM6k05PxDzJ2/x8wbghnPjMMbH67H3r177wT/RqOxQwIQuiuNQqFQOomdUbEwGoyY+nRYs/otWrQIx48fbzAo6iz+zDqHUpUcb/QNg5jbPnoQFoA1fYbgueAh+Cr6MiMoag8mzOyPFeun4Pr161i4cGGDQdHdLJo1CFXVSnx//CpjSz6fzcHaoBGY6RmINyOOYfuFW52aEkOh1uKTPeew53ocXp8xGnNDgtDZcx9+A70w9rFQHN9+Abt37+6UGVEaGFEoFEonodHr8dWanzF+yQjIbBpISXwPJk+ejO3bt7ejZy3j69sXUaCowcaBk+Eubdt8TRYCIT4JnQw7sRQrTu3HjaK8Nh2/IYIGeGLKvME4ezQGW7duRUVFxX3bDxvoDSd7C2z+6RQjdYCDhRneHzgRfDYH668eRnJV1yhdAgBn49Px4rbD6OfphA0zx0LA6RyVzYBxgXj2k0U48/dVHP7pTOMd2gkaGFEoFEonUl5QifLCSgyc0LycQFVVXa/Ar0KnxTe3L+Jsfio+DXkE84MDIeS2/iHbz8YJn4ZOQXRZAd65eurOUl17MmvJUCxbNwlfvbsfx/bcaHTmwsfDFo9O6Yf3vzqC/CLys3GyNMfbj45FZGkePo46gxqt+h6jdB7lciVe++sYiqtr8c6QMR0eHA2fMQCzVk3Al2t+xck/L3XouU2hgRGFQqF0Mjs/PYSwhcM7240240DWbay5vB/+drb4Yc50zA4MAJ9z7x1VDcFiAcFeTnhv8Dis6zsCvyXexLakW9AZO2ZpZdTkPtj+7SmkxjdNGP/4oyE4dvY2ikpJ8YyTpTk2zB6DPy9F46+0qA7fudccjEbg/05dQ4G8Bm+HjOmQc5qLBPjfnHEIWzAUnz3zE9Jishvv1M7QXWkUCuUOOgsx9FIhDAIedBZi8HP5jDYqX1I/8qhPFGH/kTuIsGvVpKhZKmD+WuayyYedlEu28bUllx00BuZDdmnYFcI+VkzW8uKaiL7HWicQdmSNe6N+VZsU1HUXkSLdb7NGMcYYaUeK1Y1ecsJWTAzGLTYLi2zMIFsyEvixcfG1LcsJI7jTUc6tW9o5odtJvG4q4B53iKlj0U/tR9guTuQ1rlSSwmmZOSnALa9lJo28mwJFNbZUbIeP1gnT+4TgieEzcTG9CBdyMpFYXooieS2MfGaYMKZPCYJkfhhmMwBGoxFH89LwffQhqAxaWNkArP2kkLpsACkUvpHowRjT6y/yPDVu5D1swSaFNbnGAygsm4BPflkBlarhrfYT7Vbe+XvkjAGoMjfgN0USMKju3hTnA05W5nhj5hjsPBeNS7czwLUjr6ntLfI+VziQfmnMyLkLVgMxobCc/Gw15vef77C/VMk4VjrQgrC/ibiKr8c9guke/jiYmghNGrnMyzWQ14vVQBoBnZR0Vmiycujwx20IRHys/2EZapMrMPaZSZDLyf8bnQUNjCgUCqWT0RuMiIjKxLzpA7Drx872pm1Jrc3HZ0l7YcmXwlM9AFN9/LDCzBw6gx5Kgw5VahVSq8rR09IGUh4f7lYcpNVm4UjBGcRUJSGjkpkdu71566238PXXX98zKLoboViAKU+MwPMXLhDHraQivDF3DHZeiMb5251f3LY5GAF8c/MK3h46BsczU6E13S7XBlg5yPDGLysRdT4R2z862GWCIoAGRhQKhdIl2LE/At9/tBASiaRLPSTaigpNLaKTE7A/OQEcFgv2Eim4QjacJeawEokQW1KIzOoKeHkmQWW4twaHxQKGB3lBIqybzaz1NMDVTAY78b9pEe7ail+jVeP3hFsAqhsYqWFG9PGCo6MV9uzZ06T2PkGuKC+uQo6J5uup8YMQkZL7wAVF/5FYXoqUijJM8/HDnhttW6R4wai+mPbEdNw4GYc/Pj6EZqYNandoYEShUChdAIPBiKjbOViyZAm+//77znanXdEbjcivrYFRY0RWdSXxmlMDQZGEK8BM1wFwk1jDzdMB5dUK3M4qhETIR0hvT9iJJSiorUGZSoH/Mt0IOBz0s3PCRHdffHrpMBISG07GeDdCPhePTxiI5Y9Nb9LDms1mYdH6qfjjk3+AkPrlJX87W/g62eDrQ50rIm4tf8RH473hYW0aGM0ZFoQpg/zxx7q/EHEits3GbUtoYEShUO7ATcsDx8UcvecNBDctD66n3Bht8gaSif7KVSJGm7uxkZCzHymFtow2/V3JsgTnEsnki2sHnSDsyxU+jDH+zulP2OYCchnEWUButT5X3pP0q4JZ8b6fHelXfjVZ6TJLSepdBBxm4sm/U8jkioPdyUzIl8Pqi99uUyXgi6fWofwYBxX/7mw6rtjGGBMsFlgcNlj/CZobqa/JlkoZxwSFpJ7Fyp/MiaTQkvoyD3NSJBJVyKzPxjLRZDmKSSFyroXJFn6TYqUAUPaex52/pVIBFvq5YujYAKSeK0B0bCK+dYqCnUyKmQN6wdPWEsfLTyAyLQlV2rrisrkH6/uPC/LBqvGheHxyEN7+tX77tzDWRB9lMIDNZuHx16cj5Vhck8q0qHu7g8tlg2shwY0aDSS59Vq6Wf39cCguCTUCHXCXxM7+BvlBmWqK1DJSH1TjQZjgKplJhthqUt/DMSkZJ80lAzy9OTORqTSP3OVXFlznR1JpKapUKoTCEbGZhXderwwgdU3CEqbGyPEyeS8Yyvdh0qRJ6G+hxQtPLcLJkx1XxqW50F1pFAqFIPFmBgQiPrwDXTvblYeOxLJSnN11FRMWj+hsVzoVgYCLUcN74s31U2HvZIF9f1zGrl8uoKpCgWfCQvDM2BBcS8vBmt8P4UzxzTtBkSknYlIhV2sgMRdh3ktT7nvOXoN94Oxlh98/OtgsX7lcMiiwMhOjr48TziU9mEtoplzKzUKIH3NjQlNxcrDA/JkD8cEHHyAnJwfz5s3r0kERQGeMKBSKCYpaFcL/uITB44OQcLRrTnV3ZyJPx+H5r57EmV1XUJRV2tnudDh+vg5YMDcEFZVy7Nh1HUnh8eg3xBsfbHkcCrkaf6Yk42xiOjS6ulmLxqTZZ26nwTVdjqGP9MetM/FIjiQDFjabhZCJwZj3/ETs/vY4dNqmZ6IO7M388TBzSC9cvJ2J0pruoRO7kpeD9X5Dm92Py2Vj3MgAzJzcF+cuJ+Hpp59GUlJSO3jY9tDAiEKhMDh/8CY2/LwCwjOJUKk6pigopY7M27k4teMS5rwwBb/+bxegYLbRa/Uws5CgvKCyw/1rL/o6OmJtSCik1WyEn4yDVCLA0sXDwJ43BBq1Fp9u2IuCnHLkTGreLrWM4gqYl6mx77vjePytWTi3+zqq5RoED/NFwCBv6LV65KUV48/P/sG14837IdDTzwH/HIm+Y1ubiTGitxde3nq4WeN0ZfJqqmFjLoGZSIAaZdMSU7IAPPvkKEglQnz/61ncis15YIIigAZGFArlLo4Vb6n7oxjo8Y8AC8cNw7ZP/iHa5NQ4ELa/A6kjUehI3USFktRzuNowyyrojOSqvpszOVOyPYPMjVRRc/8cOgCglJJ+bCkkEyguCbhO2FEFTowx8hSknmqgQw7ph4YspmklYNYuy2VZELYZl9Q+sazIhw3b3QXHz6ZhYS8PjH1mMvZu+D/GmH+f2Q67Keb4MarxnEcAoO/lyTzoSy4/VWtJ7clUZzJIOF1MarK4HObMitxEb3brDNnH4xT5XgVxKQgY6IWpS0dBZi3Fb0/vAO/pIIwd7wOVVosVRw+j0k4NrV4P3QwDAHNwxOQ1Lqolc+wIKklNDU9hRIo6Eh9u/RA9L/bE3LlzwbJlITq/CJ+tfhuRkZFQKBqIPhtB28cMQ8L88Nme86joKUC1jxFz+vnhdFEmUm1rIclm6oFEhaTvBhfyPjbNU8RpQhzCM1lF5NeS718nJv9vcRVMQZqgjLwnJdn119QIPYpGyGHtJ0NRUXGdn3ryvbmcrn9fPD4Hq9eMR1HJLTw2awV0ukYEcF0QGhhRKJQG2bp1K8L3PN7ZbjyU6LR6nDkUhZWvT4X3r95IS0sjXt+2bRuOHDmCjRs3dpKHLYfFAh6Z2hd9+rjB2VKMmgo5/vriKPQ6PWY/Ow55zlz8eDECKcWl0BoMULbhgzUpKQnvvfdem4xlLhGiuKoW0en1mbFHuLvjwwvn22T8rkRCUQncLGWI/zcwuh+jRgfAaASWLVvW5bbhNxUaGFEolAYpKytDRXE1xs8fguN/XWm8A6VNyU4rxvG9N7Fs2TK89tprxGu1tbVgdXYZ9BYwcKAnJk/uA7lcjUOHb6HyQgIKs8tgYWOGd7Y/i8SbGdgYEw1dG1ZUr6xRYvLAgRAKhU1K2NhUPO2tUKOon9LxsrSEwVi3k6u7USZXwsu68SXMUaP98cj0vvhxy5kHNigC6K40CoVyD/R6Pf747AiGTgnubFceWm5dScXgwYPh7ExujTcajeByuZBIJPfo2XWQ8Pl4YWQoflswG48vGYadO6/h88+PISoqGxKZGM9/vhCv/bgM4X9cwvev72zToAgAbqXkwWg0wsmJuVTaUlxdXTF/VDDi7trCHmjvgISS4i5dC62lpJWVQSZkbvO/G58e9pgzPwQ//3gOsTE5923b1aEzRhQK5Z7kZZdDpzeg35heiDxfJ57U68jtyXG55APHSkaKHvRG099fzPprhXryq6j4Jqlj0jqRyVkEWcwxNJ7kbEBVPPkLV1BJzrBsSx9N2IYG6nalm9hpBjLXkb9DEWEvcLjGGMOMR9Zs8xGTyxFXzD1IPwT12qgKuQY7duzAsmXL8L///e/O8TDxYsizDHh74Wac2nEZVVN6E2MIKkn9T8ZoUm8FAHqT2RO5Sd6i35MGkx1ukTmcTPPjAIDfvvpEgP1GB0DQpxrDQ4bj+KF9+PrAASQmJt553cbGBl8evIRj2y5i85rf7hw39CLvHxeT+4ljkispO4/8TBzlTL+uXr2KRYsW4d1332W81lQmOjx75+8Fz02GwIyHvzJuQ+tYd0zE5SKnuj77tcKF6YfamszbxFWS78U6hvxM9Hwy8BWVMYNGvYC8r9kmK49lAeT/LfdtZG4uAFAEkYG3WQ55HhnPAJHMCNvIuvtK7kB+B5w6/wbmLvw/PLfmcZw4QeYcexChM0YUCuW+/PlFOKY+3n0qvz9o7NixA6NGjYKrK7k1/MqRWxg7LxRiM2aSxM5CbCZE0NCeeGLDTIxfOBRxcXF48sknsWnTJiIoGj58OHbu3Inw7Zdw6u+r7e7XhQsXYGvLTCzaEkbNHIBeg7zw+qHj0Lbx7NaDypAhQ9CjRw+cPXu2s11pE+iMEYVCuS/pt/MgEPJg42iB0i64PZzDYkHA5YLLJWdJ2DweetrYQMKvmwnhmSS21pvEE0qWDgklJVBqtdB3IX1EbW0tIiIi8PTTT2PDhg13jp/ddRVuPR0x54XJ+OZWCgyd6LOPiw0CvR0xYdEE5KYUIjUmGzs++wcH83cz2vr6+mLdunV49dVXYZUe3CH+FRcXIyAgAK6ursjJad0yT9/hfrhwKBLZsqrGGz8EsFjA+vXrsWnTJmi13SO1Bw2MKBTKfTEajUiMzIR/fw9cOBzV2e7AnC/ACD9v9HKwg52ZFE4yM3DZbBiE5K93loaNcqUSGRV16QFMdslDb7Ia52RpDkepFHqjEZkVFbhdXIwETiYSq4qgNTQ96V978O677yI8PBwbN24kBMS7vzyK//39AkKhw8VI04W/9ofDYSNsgC+mDg3AxZgMfP/qDuSmFN6zvaenJ77//nts2bIFERERmGAd3CF+pqenIyoqCtu3b8fIkSNbNZZbT0f8+O5eYEHbaZa6OgI+s+THf8wKDURRURrCw8M70KP2hQZGFAqlUWqrleALmDqVjsJVKsMwRw8MdfSAi8QcCVkliM4rxLGEFCg0GmRXVDE0RuxCUixqqjHSmpQP+09j5CqTwd3CAr3t7LDMKxR2QjOcLUzBqfwkpFR1zo6j2tpa3L59GyEhIcRyhaJGheTIDNhamd27czvAZbOxYHwfTAjxQ3puGd7/9QSKymtgfZ+gCAAmTpyIgwcPYteuXR3kaT1ffvklNm/e3KoxHD1sodfpoahpu91tDwI+7nbILaxkHLeVSTChny9mjF7S8U61IzQwolAo98SorEvcln4rA7NXjcfJ7efBF9x/utxCRCaxSzcpGqurZQZYbCUpdzRa1M3Q9LFzwMKAPvASWeFGZi7+Ph2D2LwiVFqaVMq0BCwvkmtj5aFkG6WQ/LqTJZLn1FjUBU7F5dUoRjUikA1VgBJOYnNMdQ/Am0GTUaLLweH8y8iQ11VqN01m+W3WKMZ7C7Agg4WISjLZop2UFBernBzJAaLq/jl69CjefrsuIWF49a93Xra5pkXQihUorqoP/Lhy0i8JU28LXU8ye2D+TXIGxCaanIGzOBQDgZiP2asnoN+Y3rgafx6vPPcZDh9uWpbnYcOGYdmjz+KLVT9jvHgxAEDTx4vRzt2GFLRzTcTWpiJxmRV5/SyuMOumjRcsgKCaDyeBB14Y+Ta+OPc/RpvGqBruhaeWjsG+iBRUhHpAbUvOImrZejhIpDDw6/zlKJgS3mp38nNxOEW+V4UPuWFAaJKs0rTILACY7m0QF5sU8r1Cfs61/V0YY6gtyBmh8gDyRwTLWYC8ohpU+Na1c/shASwWC2/+sgIRWy+ioKCAMeaDDA2MKBRKo0RdSMTSt2Z1WO6cYDsHLAjoA2epOXYmxuL9S6eh1XeO0DVfUY0fEq7i9+QbeKqPG1b3mI0MeT7+zDqJck11h/mxb98+TJ06FQEBAbh6tV6wHBcXh1lWzSuT0VzEIj4efX4S+o4OgNhMhD83HcT7e15scv9hw4bhrbfewpb1f6Aou3Nm3dRKDc7svIypK8KwNfJz1NTUNN7JBAszEWKT8xt8Lb60GCFO3a/wMpvFQrCbI8LjkonjHgHO0OsMOPTz2c5xrB2hgRGFQmkaLIAnaN+vDHuJFGsGhcBFJsPupDgcTU+G1mCASH9vjUNHodLrcKzwGs4UR2KiYwjeCFiCfbnncLG04wrt7t+/H8888wwRGGm12nYLWPv6uWD+pP6ws5Li5s6r2Lrhb2TE5TYreZ+HhwfeeecdrFmzBi6Z/dvFz6Zy9u8rcPNzwm+//YbHH3+8RcHRvd57mVIBV3MZeGx2t9qtFuhgD41ej5SisjvHOFwOZj87DteOx3SiZ+0HDYwoFEqTyE4qgHegK1LQtEKSzWWSdw883W8g9icl4O3Lp7rsw0Vt0OJA3gVEV6bgcY9JkHLFOFbIzF/UHhw6dAgvvfQSrKysUF5e3i7nkAkFeDSwN/oMsYa7kxWOnL+NC5Hp0PzW/OznIpEIb7/9NrZs2YL4+Hi4iDs3MAKAI1vPwHeJDb777jssX768zbJhF8prodBq4WVhhaTy7pH9mgVgblBvHI9LIY779nWHQW/okFQLnQENjCgUyj0xKusfGjVl1WDr9RCZaIx6WJIPgWux3oTtcI4UQVR5kzaHzcLKsSHo7WCH53YeQlGNHOCywEP9LJHjJTIYK/dnZuE1FVNL4kktinmWya41k6U5IbO2LazjSE1IXm+3+r8BRPY9hfcHTkKxUIpd6TEY6JnNGKNETQqj3cRkQGNaQLdcS85IjOPOI+zqRA18fX2JWSNptg5ee+u1XcX9yOKk5tnMemOsrWTyQOn5WPQPC8Ti1yfh5qk47E36HX/88UeLA4eBAwfizTffREREBPbs2QMAYNvbEW10r5cx+qUnk1qnkcGJhH2jglyusjApKqtzsmaMyb3rPi6v1eGdd97BwYMHceDAAbz00ktwTCSTcJ7Q7WSMISzTgq0xQFCpg7BMCxjIxydLz8LV3ByMc/dBckkZ9GJmYK8xJ2c+c6bbk+8l9f67HyWFzNer3ckxjSaTqxoZ6aeez9QpcdTkPedypu5+GT3CD3ZVPNzaEgUnbd25zcyE6DndAn+f/gXhZVvv6++DCk3wSKFQmkR5QSW8At0ab9gMOGwW1oYNg5TPx9p9R+qCogeICrUSb0YcxRjnHhjv4tsh59RrdWCz2/arm81mIWzBMCx+fQb+/PgQfntvL7Zu3dqioEgikeDLL7/EG2+8gU8++QTvv/9+l6ybtXr1aqSmpmLTpk2Y/cJkOHjaNd6pEfYlxWO0hxdsxOLGG3dxHB1kmD61L3794xK0dwVF7380F15eXp2ys7CjoIERhUJpEkVZpRCI2m7LPosFrA0bBh6HjU9OXYBc82Amh6tQK7E55jwW+/aHp6T9xbfVZbXo27dvm44ZNsIfwaP88c2L23D1yK0WjyORSPD1118jLy8Ps2fPxsWLF9vQy7YlOzsbq1atwpIlS8DhcrHmm6fw7ObHsfCNWXj55Zfh5cXcMdcYxXI5zmVlYElgcNs73IHw+Vwsf2IEDh2JQlZ23ayeTCbGcy9MgFqtw1NPPYXq6o7beNDR0MCIQqF0ClMD/eBsYY5Pj1/osnqippJcVYJPos5iodssuIraN/HfiW3nMWvWLEil0sYbN4Ep4wIxOaw3dm0+guTIjBaPM27cOPz1119ISEjAxx9/DL2+c5NiNpWysjL8/elBvDdvMyJPxSE9Jgvl5eX4/vvvsWnTJowaNapZ422Nuon+js4Y4ODceOMuiIDHxeoVY5CVXYbT5xIAADa2ZnjjremwszPHB+/uR25uA/kfuhFUY0ShUJpFRTmpTXFySiVsgQ2p+ah2JzU2Shcd+tk5YeoAf6w7ewTVjhr4/kz2qXUjz1Hcn9QUKZyYSzMsExmNXkoGW1opKb4QkbVcGdoMAHC8SObE4SrIXEm5UtGdv29nV+KCz0kscJ+MXzK3Qqmve09ZtZZEn0O5ZMFXcym5XGWfQepuDBzSseLccsjlcpiZmaG2ts4/llILblF9iQphpYjoIz7B3Dl3RvsXjh07BnNzczw6YzQyMloeFM2cORNPPfUUXn/9dcTE3HunUtkIMmgsKWAK+U3z8uQrzBlt7kZvIDuU9JMw2jgWksdMdVsAoKxV4erhmwAAjrMjvr1wElMWheL/vnwMxXnleDvhBlQ2HJQNEKDAQwAzk0Tjqn9Lzmigx7fnr2L1qMF4+dIRlKjql4flXuR9axlFPoJN3ztHRbY31RMBzLxFWgm5Q7HGlTxHQzomaVLdvSOWCLDsxQkoSyjAri/DITQa0XuwN+a9OgQ7d23Bxx9/zOjbHaGBEYVC6VDEXB6e6zcEP0ZHoFjxYGmKGiOy8ibcxO6Y5DAF+/L2wIj20dbcrdnR6/WQWUrAF3ChUTNF1g3B5XGw/ZftMDc3x6hRoyCXt+xzkMlkeOqppzBmzBisXLmyW80kaNRa7Nt6Dsf+uoqgIT54//XxAICPZ0/E3B923Lfv9Zw8+OVbY2PIeGy4dgJFSmbSya6Gg7Ml1myYhuiIDOz6MhxGoxGL101GwABPLFn6KGJjOy4tRWdDl9IoFEqHsjSwP5IrSnEhL7OzXWkX/ik4BAehI/zNAzrkfMnJyagorUHvgZ6NNwbA5rCx9runoFQqMWLEiBYHRSwWC59//jkkEgmWLFnSrYKiu1HK1bh28jbe2HcccXmFcLGUYfHgxjVevyTexNHsZHwwZAJ6WbVe2N2eODhbYtXrU7Fv+2X8/fMFjJs7CJ/tewEOrtb46NlfH6qgCKAzRhQKpQPxtLXEKFcvPHmUWXW9u6A1anGiKBzTnGYgtTal8Q6txGg0oqy4utGdalYOFljwynR4BDgjISINS9cthaGF2i4Wi4WVK1dCr9d32V1nbU1BVQ0+P3EJSo0OL4QNRWRiLhLzS+7Z3mA0Yl/6bVSolXit/2j8lngTJ1I6vtBvYwQHuODJyf2x/48riI/OwZoN0yDmsbFp9W8oya98KD5bU2hgRKFQ7olRU19vzKjTgc/jABVkfqBjGf6ErVWRXytq37oxWACeGTkYx366AdszStxdQS1/BKlDMpCngNqC/HI2cplf1gMHk0HIjSwytQAnn9TdVPuSQYF5MjOwqPQn/TLLIvVADlfJpau8UFndv4oi+JuVwlsyAgI2WUtMZ6KJ8TYnNUXZ1uRuKHaRycVoAGNlFQzFJdBn1uVRsjLJ0VQZlII3P/4YN2/exIfrN+DKleYna/yPwMBAvPLKK5DL5diwYcN9H5wBr3xO2MV+ZP06gZi5EzHYO4uwc2tlhK1Wk/eXnRmZvVrZUHyoJDVs2tHkjE+1B3mNy4IbEI6z6459k34Nj/T3x7opI7Diuz347+0bTO5JVnWdn+eqs5FTUItXQocjSOiMH69HQK6te9+VAeTnVN6PHEOSTmqKtA3IrRSO5BvmV5Kvi4vJMUXFdbouFgsYNzEIo8ICsP3V7agsqsKa/81FblI25n30RIuygncX6FIahUJpEsk30zFocl9Yi0SNN26AHhY2sBSIcPZcYuONuwGXy2LQz9K/8YZtQEluGdz964uDWtmZI6C/B8bM6IdFL4zH119/jQMHDuD1119vVVA0b948bNq0Cdu2bcOKFStQVFTUeKduhkavx6LDu+Bhb4kXHhnWpD7pleVYe+II+BwOvpn2CCb39AW3jXNRNQdPbzu8+tZ09O3vgS8/OYrc5HzMf2UashJy8eeH+x/qoAigM0YUCqWJFKQXobygEjx2y+qWTfHww7HsZBgMD8fUfEJ1Jha7T4YZV4YaXVXjHVpBcXYZFrw+E56BrlApNOgxuCcyEvJRXSlHRmIBNm55AQkJCa06h6enJ5YtW4YlS5Z0u2rqzSWvthq/nryBhaP64WJCJiJSGtdXKbRafHz+Avo5OWJ+UBAeCwrCgdQEnMxIQ7lK2Wj/1sLjchDs44Q58/zh4GiBXTuu4vLFZFhYSLD+52dx9Z9IHNl6GoZOKtbclaCBEYVCaXe4LDaGOLrhpQv/oO1SRHZtNAYtitUVsBE4tHtgdPtyElIi01FeWIWY8/E4vCcK2an1szkJGa0Livr27Yv3338fX3311UMfFP3H4RsJGBvcA+8unICXth5GBAqbtAcxMr8AkfkFCHZ0xDg/b/w4dQbiiotwMScbF0sz7iyztRVcDhvjB/bElNAAVMtVOL8vFlcu1v1AGTHaD/MWhuLq35dw+IeTbXreBxkaGFEolHvClpGiBhaPC7a1Bmxxff4ZmZjU3ZRqyRkld4cy+Jq5QMWqANcqBRy1FeM8kkLykVI4gtR4sPgmv2Ib+FGbVU3mC3KwJoMR/ihSy1OlIpcEax2Y9deqSsk2/GoyrDOtMVWtJvMcxVYUQKsfiIsF9Q87CxE5O3Aph9xNZuZHJm60riDradm7WEImk0F5l27mQMWvOPDcrwz/24KFCxdi8eLFeOedd4j6bA0xIehNws4ZQn4GrBryGtuYMXfEpVTYELa1mGzD45H3hp2IfD07lDn7khxKJluUmZNLRXIVqTGScJg3mLWUPI/huD02vLsfm996FBvnjcfNqEx8+/PZOzOixf2Zj1fdXbdTdF4hbpUUwFIoxBBXN4xx88LqkIFIrCxGXHkhMqrLEaEtgVpfr2Nja1iMMblyFlgA3KwswGaxwP9XxmUhESLA1R5DXJ1RI1fjh9/OIzGtCJf3vAygriTK4OEDsfHDV7Ft27aHUmR9L2hgRKFQ2h0fqTOSa7rndu77kVyTh1G2fdp0TL8+bggPD0dlZWWbjtsQvXv3xqJFi7B48WKUlNx7B9bDSk2tCtn55RDyebCQibHu2fH47pezqJUzE1feiwqVCkdSknEkJRkyFyDQygE+MlvM8e6DFwIsodbrcCM/D0YArLtiQnupFM7m5oAOEHA5UGq1qFKpwfn3d4rBaERyXgl2Ho5EbFLenYCNx+PhzTffhI+PD+bMmdOtS3u0FBoYUSiUJiEQ8cEX8ABN421NEXJ4qNJ2r2SOTUGtb5/6bxpNCz6EZsJisfDKK6/gq6++okHRffhj33U8MTcU73/+DxbPCcEHb8xE+Jnb2KfMQKWyeUV4qzQqXCzMxMXCTACAtNYctmIJPCwsAACsu24nrcGAhOJioLYu4KlWqWEEIDT5qKT59dEUn8fB4cOHkZqaimXLlhGzjpR6aGBEoVCaxPgFQ5GbWohiWfOz+PpInRFeeKMdvOralGtq0cPcESyw2i0LdnuxcOFCKJVKHD16tLNd6dJoNHrotHoYjcDvf1/FiXMJmDOtP74O6o28imoci0/GpbSsFtUDrNGoUaNRI72yHMA9ltJUzGP3YvLo3igsLMCqVaua7cvDBA2MKBRKo3B5HAyd2hfbPz4Ew8LmP+DZLNZDOWNUqKoAl9W227LtnS2RmdK+JSZmzpyJ+fPn4+mnn27X83RHCoqq8NWPp1ExSIDBHi54YcxQrB41BKeS0vBzdCTkmvaZRWyMccP8MHJwD0wczawTRyGhgRGFQrkn+Yvr8vAsCxuIBKhwubcYo30iiDZ5CjIBn7MZKbiNynaB3FOAwnILZFdp4cFj/sJVWpPHBMXkV5PGhVw6EsmYSxQFOaSoW5RHjiEeSIqvaxWkEFhdzRRfs6XkQ0xQYZJokk36nRNLCqUBwHqYHAs9rwP/zhh9GzeSeJ3FJseUO5BjWhWQuYKGju6Jlzb+zThPW/FfQdgVK1YgPz//nu0mOjzLOJb4spg8kEOKmkcMiifs2FJHxhh8DimuNk2IqVGTAngum2zv68TMrVQqJ4vI8rlkH72BvObKKOYGgTwhuRHB90oaAEDiJQd3bC0uHFpPvD7u6DxkA3iJtQtu/s4YPX8o/p49G3/suIqLl5NhNAIZi8hzGE2So4qLyfeusmXOOukFpO8skyaSAzcwY/VE9HK2xvePfYmKigrGGBQSGhhRKJR7IuRx8eVT0yBXa7Dhz+OQq5uvbWEBsBZIoDU0kE2Y0ixcfR2hqFG128Pt7qAoLy+vXc7xsGE0GpEVn4tf39qJ62VKLHxsCAL8nfDjz+eAdl5eZbGAJ9+bD3t3W2xe+QMU1VRT1BRoYEShUO7Jq7NGQa7SYP22I9C1MPGbhMuHhMdHRk15G3v38LHglWk4v/d6u4wdEBCAlStXYunSpTQoaieiY3JQVaXEsyvHwK+nI9Jw7xm51uLvaoc5w4LgUKbGx09+S4OiZkBLglAolAYZOHAgXKxlWP97y4Oi/9C1sFhpd6Auy0zr4fG5cPa2R8zFti+pwufz8c477+DTTz+lQVEzEYgar2V3N5lZpTh+Mg6zZw6AvUjaeIcWMMjXFa/OGY3skkr879HPaFDUTOiMEYVCuUO/5XVFP4O8HPHy/NH4pnQXpJPJ/EM2fFL4G2KeRth7CvsRNk+gBYttAF9Qp9fRyEx0KAC4Jt/boiBydklTSj5AlAWkZgQAICSDL5toculONJIUf5dnW5A+WDCXCQUxZIJHuRN5DpbJ6qCVfylh+5g5oFijQmxtfYJB0wSF2lhSo+USXknY4TW/AgCuXr2Kck0RtkZ+xPCztaxbtw7Jyck4ceLEPdtMMHuCsFOf92G0mRd0ibD/ihpI9qkikzeaansAoDCX1PfYupLLhlYmuyLL1eT9VKFk3l8cEx2Xg4RM8Hj7cg/yHMnMQF6WTJ73WOF3cHBwwDNr/g/fbfuY0f6EbifjGE7UHTt7Avj666/x6fgpWP3HQWj//eGhtCfPq/Qh70m+mHmPer9V/5+HzWbBf6Ia04L749VVT+HYsWNMHyiNQmeMKBQKgbeTNVZMG4JP/jqDuKqsxjtQ7omAzUWpurTxho1gbW0NDoeDMWPGtIFXJBMnTkT//v2xcePGNh+7O7N27VocOnQIO3bswO7du5vdf9OmTeBxOJgc5Ncm/vgFueK9H55Ar169sHr1ahoUtQI6Y0ShUO7g42yDtx8fjz9PRSImvQCSgY33aQyNQQ8+mwtrgQRl6odry76rxBpqQ9OzIN+LjRs3IiUlpc0T8gUHB2Pt2rVYtWoVTfbXRMxkIoydFISBI23w1ltvtTjPU25uLt4/fAYbZ43H7bwipBaXNd7pHoyYGIjZS4fj5P5IrH7rKVreo5XQwIhCoQAAnnnmGSydPwo/HL6KK7cz22xcrUGPbHk5bATShy4wchFbI1eR1njD+43h4oL+/fvj0UcfbSOv6hAKhXjnnXfw/vvvIzU1tU3H7q54eNvhpbemAwA2/G9tq5NfppeU4+tTl7F+0ghsPn4RkQZmqoHGGD4xEBNmD8DGF/5EcX4lDYraABoYUSjdFFNNCADA04Uwsx+p03M8HtoPU/r44aT8b1QMioLfoLrXeWzmFvtTeb7kAbI+J/pYkOJdnYGNGkMRQp3MIeckocCXzAcDAOJi8su8PJ9sI3Mi6zmpNGQuGwAwmuhV8maRX2/sQlvCtnKrJGy1lvl1KHcjhbXuf5LvrXSMK2GX5JCFbL0CPPBpZA4SKwLuHOOWk+eRFpucNKE+SGGxWHj989dx/vx5ZGW17bLm6tWrER0djQsXLjT4+gSLpwg7+VsvwhaImDW2dlwfTNgcMZkHqqjCrFG/eCbXx8aPDKZTTD5HU/1QeQ1TY6SpJT/HohRS6+S3hQwMjXLFnb9ZLBbGLRwG3hI+/P174N0P1mPv3r1tMsOWsPFFJABIHz0aL7zwAjSvJ0Cnrf8/F/8KqbeSniS1dm52Fhi/oAdee2M1jp863mp/KHXQwIhCeYixNZPgtcmjoDMYsPzXPfAdF9Uu58lXlsJZbNN4w26Eu7kFzHkCpFW1fInEo5cLevTogRdffLENPQP69u2LMWPGYN68tsuCzGdzIBaRQQlHWFcZvlarhuquKvEPAlJLCUY/OhjjFg4DALzz6Rt46aWXoNW2febq8+fPY/bs2fjsr2ew+bVdyExu2szRlMH+OHjwIE6dOtXmPj3M0MCIQnmIMJOJ4Oppi3HT+sLZzRpsJzH+iU7Eb5cj2/W8yTU5GGUX3GZb1x8E+tg64kZRXotqZP3H2AXDcOjQIcTGxraZX0KhEG+//TY+/PBD1NTUNN7hPjiLLRBq54UAC0f4mNmiVqknUhayOHXvXfpvgHi1NAOXijJQrlY0PGAXIWzBUIydNwTpcTnY++1xXNgXgSMVO9rtfHq9Hs899xx+3OSJtR/Oweev7kJWyv2Do94eDgj2dsKXr+yFXk+Tp7YlNDCiULohbDYbNk6WGDFzIPqM9IelnQxGoxEasJGdXoy8rFLs3HoeCaFC1KhaLw5ujGxFEcRcIawF5u2Y0q5rEeLkinM5GS3u7+7vDJ++Hlj46vdt6BXw8ssv33cJrTFYAIY6eOIx3yA4iMxxqTgN5wtT8F3iOWTlkUHgf0tp1gIxAq0dMdzJA0t9ByO2ogB/pUUivrL5mpr2RGYtxbK3ZkLA4+CrF35DQUZJ453aCKPRiD1bL8De2RIvfjQHX23Yi3gwS9/8x9NTQ5CSX4b4+Ph7tqG0DBoYUSjdhF4vfw5LiQgvTx0Be5kUSq0OJdVyfHItBonn6oQsKtu7aryHAXobcsYgo4bUNHBMCy8BcJNVEvaFIu/7+uUjq9uunqNIwVh7N1zxYmbAtoklzyPOJDVEtdWkdscgbEBganLIyCEP6PikXVFCjunkZyr2AQRRZI6h6gGkoKpkgInf2XVfqTKREIFm9th87SLYlhyiDVdJzpo5HSZ1S//9+nfwsEXC1ZQ2Xbp5+eWX4eXl1WB19Yl2Kwk78U0yTxEvk41eDnZYEToIXBYLh/+OxZXYDNRrfVkwtzLRdenqbA2MuIl8XByRDAGbi8muAXgtOAzXSrLwY9JlolyMzuSzTUgkdXFGLvm6uyuZZ0v4Bfm5AoAw32RmLI8MyAy1cti52WDDbytg0BswKKxfq2fTWsLRpI9wdOFH+OSTT/DEG6MQdKYYR3dHQKn4N39Rbp3fQyYHw07LwhdLf6Fi63aABkYUSjfBSiLC6zPGIDanAB8fOocKFfPXZmd+hV4vj8AM52kAur9IdFa/XriUmtWi2nIAYGFrjinLx+Lg9213rV544QUEBARg9erVUCiav5Q1O6gXpvX2wy/XI3EuNQOy5JbdTWqDDvuyYnA6PxnP+A/D60Hj8EHMiU6rpcdisRAytT+mLB+L8F/P4tSOS50SFN3Nyy+/jEGDBuH157/App+X4eyRaBzbewP/fWqPPjcBR349h9qqrr0k+aBCAyMKpRvAYrHw2NBg5FdU47fz/+qFulj61gx5JjgsDvysbJBY3vqkh10VC7EQYb188PLfR1o8RsjU/kiKSEPEsag28cnZ2RmzZ8/G9OnTIZc3L2WCvUSK5waGwIIjxGuHjyO/um2ChiqtCh/HnMKaXiM7LThy8XHA+i1LkRWXjZ2fHkTshbYvt9JSrl+/ju8/PAwzmQgLV47BO18vhrqyFmw2GzwBDxf23+hsF7stNDCiULoBYWFh6OfhhJe2/9PZrtwTI4yIrozBDN8AfHT1fGe7027M7NsL19JzkF/ZsgDCPcAFU1eE4f/WbWsTf5ycnLBlyxZs3rwZ5eXNK+TrLrPAuyPH4kxmOv6+EtsqIXlDGGDEV7fPYW3v0Xi+1yh8Gtsxu6vYHDZ6h/hgwbqpuHo0Gjve2wWDoWsuSdVUKbFl0z/g8TgQ/zuTpVVroai5t/6I0jq62G9KCoXSEtzd3ZFaWIZKRdf+srxQegkDHZzhaiZrvPEDiExUN1u0K6Llu8jGPDYMN0/E4vblpDbx6cknn8TRo0exd+/eZvUL8/TGJ2ET8dOtG/g15labB0X/YYAR3ydcgIfUCpNcAhrv0Eq4XA5WvD8Xjzw1Gr+8tw9/fvZPlw2K7kar1aOqtAZVpTU0KGpn6IwRhfKAMl68+M7fAbwQJCrLoLSr/4LX2zQg2jX5KfRI7xjCtuWTsxwXSu8vrAaAMQ7JhB1f40jYIs7dOhsNrlRHYM1wX3yXevDO0awJpKjZ/hr5EDaa5DYsCmnAEZNMAEYTsbWgmPy6My1Um5tjzRhSakHatW6kkBomRT1XeQzElWvpqI2txn+pDJ0ukLv+eOmk8FdfWG97BrrBMliIRYsWoUzT8vxH/yESiTBq1CgsXbqU8ZppAtDEDfVi6zAPbyzu0Qdv/hWOnPIqiMCG6z+VRHudhZAxpnkGec1N32tliRthC5fX71H8I+cA1vacjZux5Si4S+PDlpL3MTuXLOxb/YQFYZ9LfoXh13+EhobipZdeQmz8Zby98m0Y2inYayvC4z7obBceSuiMEYVC6VAO51+Fi9gWg6zapnhmV2GksyfcHCyxM7zlOaGmr5qAr7/+GmVlrQ+KAMDf3x9FRUXIyclpcp8wD28s6B2E/x08hZzyqjbxoylkK4pxuigKqwcPbrxxMxGJRFiyZAnefvttbNq0CRs2bOjyQRGl86CBEYVC6VDUBi1+zziOuW4jIeNJOtudNkHE5WFl78H45eA1qDQty/Ds6ucEJy/7NquKHhgYiM2bN2Pfvn1N7vNfUPTm2ZMoqOqE7eoF1+FuYYEgB4c2GzM0NBR79uzBc889h9WrV+P69ettNjale0IDIwqF0uEk1uQgtioDU5zafnagM3jCvx/iyooQn17Y4jEeWTEOx34502YzGc8//zx+/PFH7Nmzp0nt7w6K8ms7Z7u6zqjH/oQETOzRo03Gmz9/Pl555RV89tlnCAsLQ0pKSpuMS+neUI0RhfKAYtTU61uMeh1YRhZYdxVSldnUMvpUmRRnzVaQyfCqdaRuxM+cmfQwsoxMuJdRSSaFHOpAZnu+VOhJ2Nbiuu3i4YVX8GbA4zheeBX6wAKiTZ6O1ClZx5E+OF5gimW1UlJkJHciv96s48iZnKoS0m/zBqqVKE0mLnqEZBJ22kUPhHq4YYiFO14+FA6tmDkI5wa5BfyYgrnbbNy4cXAJscWqD5cxnWgmfD4f69atg4WFBf7444+68bnMmmgpP9QHH6H2Hljs1Af/23kKFVVyiMCGy2mT4IhL/o428Ji/q4v7kcVaHWFP2JJ8Um+VHmNSgRhAjXMi5vabDfscPgoUNTAoyGSfvh/eJuxjlVsZYwB1QdH8+fPx9NNPo6ioa2XYpnRt6IwRhULpFErVVbhRnoSJjg/urJGrhQzLQgbgq/NXUKFoWbV1FouFN998E5988gny81tXMIXFYmHz5s2wtLTE+vXrm5QV2V1qiaf9Q/DtqSudsnxmSplagZO5KZjlFdii/o6Ojti3bx/mzJmDFStW0KCI0mzojBGF0k0Q8XiNN+piHCm4glf9F+FiSTLSagsa79CFcBRa48mJY7D12g3EFLTs4ctisbB161bodLpmaYEagsvl4scff0Tv3r0xaNCgJgVFrhILvNN/An5KvIbY3K4TQFwoyMBzvYc2u5+joyO2bNmCP/74A3///Xc7eEZ5GKAzRhRKNyA7IQ9+tjad7UazKddU4+/sU1jhPRkeEvvGO3QRPCROWOUzBz9fu4lLGdktHickJAQymQzTp09vdU20jRs3onfv3li6dGmTgiIhh4u1gSNwMCsOFwtbXuy2PYgvL4KjxNw0A8N9Wb58OX799VcaFFFaDZ0xolAeUE7odt75OzrJDk+wn8YkpTNu3q7bml0gsmD04cnJ30LR8e6E7exJluowFzATydmIyJIS+wLJel5j4x8hbNNCtE7iasLOV0fgUpkSbwRMQ3xNAk4UnoLnCFJHYj6G9ONkli/DL1YEqZ9S2pPnra4mv+7krmTwYHRgvte+HmSB0qhsF4x16oHHXQbhy+hLuBldhLvn6WTpzNpoxxvQFP3HokWLcOTIEdTWMvVgzcXHxwevvPIKYmOZySVrZw4kbAGfi3ddxyArvgrHT6VBbBRBlkmW46jxJHcM1riS9455JlMkbpZDHpM7Ccg+ieRnb55K5iQCAKNPXf0vNkcPcwslZN9LidfDG9AUrV27FsHBwVi9ejUVWFNaDZ0xolC6AcXFxTgfkYpnF40Aqzk/s7sIMVVx+Dz5S7DAwlrfNZjgMB4STtfayi/lSvBi4Egs9OmHl68dwqWizFaNN3r0aDg4OODXX39tE/+0Wm2TNEpsFgtrnxyDvPJq/HTqOrpicXYnkUWT66bRoIjS1tDAiELpJuw8chPJGcV4ZEzLRKudjcqgwr68A9iS9iPMuFKs9X0OIdaDwWFxGu/cjrDAwkjbQXil59NQ6rV48epB5CuqG+94vzFZLDz99NP4/PPPode3vnDqkCFDwOPxkJWV1WjbSaN6gcdld9mgCACsBVIkVxfCiPs7+Pzzz6Nv375YvXo1amo6XzhO6R7QpTQKpZtgNAJbd13B289NQkRMFgrQuod3Z1GqKcXu3L1wFDrgEaep6G/RF+dLDiJLkd7hvriJnTDNaSy4LC7+L30HDie1zVfmqFGjoNVqcenSpTYZLywsDEePHoVSef+dcWIRH1NH98bG747B2IW//d0lNpDr1Pdt4+joiHnz5mHixIk0KKK0KV34vwaFQmkO0n0RUAHYm1+BV1dNxA8f/YPcNDIPkdGC1GvozUiNB7eMXIcrHunBOI/5fFJ3s6WKzEVjJSQfznOcyRIZp8r8GWM6CcnSE5FlLkit0uFC0X6MtgvEQs95KNeU4VLpOWTK0yETM/VAZuMrCTu3woKwq8zIHE0iGTmGVls3M2XJF2GIvSeG2Xuip6UMRwoicKzgJowwgi8wuX4i8vrxL5HaqIawtLTEK6+8gg0bNjTatilMnz4dU0Jm4MNFX9/JV6R4ZADRJndyXQ6nOT7+iNDn43q/UtifJncxVruTM3NqMs0T+BWkXd6LueBgHUvOfpnHkpq1Wn+yHp3Klvl+rH+VwX6qFXKrayE9L8P5Iy8z2kybNg2rVq3CF198gerqB/MHAKXrQgMjCqWbEXEsCgDw8leLce3Ebez85jj0uge3LtSZ4lhU6E+ir8VATHR4BGwWG39y4nCuOB56Y9u9r77Wzhjn3BMDbFwRV1GI0/kp+DErCmpD63aLmeLk5ITi4mJERES0eixzc3OsX78eXy3aCkXN/WeLWADGu/XA1vjWn7e90esNsJSJG3zN0dERzz77LLZt20Z3n1HaBRoYUSjdkIhjUcgskOO1757A4HG98P2GPUiMzOxst1qM3qjHjYqruFFxFd4SXwyznYKZroNxpSQJiTX5yFOUwcg2Qqm///LLf0h5fNiJ+LDki+FlZouh9l6wFchwKDsOPyZeQYWmLshwsm7boAgA+vTp02Yi4ffeew/79+9HSU7jRWfn9ghCtUaFq4VNLyjbWcQk5uHpBcPx16EbxPEZM2bgmWeewU8//YRdu3Z1kneU7g4NjCiUbkp5UTVenv0V1nw0D8+8Nxu3zidBrjMgM6UIcZGZUNQ2LYjoaqTJk7EnS4EeZo7oa+mJac4DIOLwYSMUo1orR5mmGoWqclTZkktnOhUXMr4Q3jJrWAnFqNBVQ280IqmqCKcLkhGenQJ9B6iRBw8ejPDw8FaPM23aNFhZWeHFF1/EGNaj921rIxRjtk9vvHLpaKvP2xHUyNWwMBMROyzNzMzwxhtvYOnSpQ2mJKBQ2gpWUxKB3YWR9SDuBaZQHmLYbDa8vb0RFBQEc3NzhIWFwdzcHCkpKbhy5QqioqLuzGBMMHuC6Gv0dmOMl/EG+XtKJiGXcMY6JxP22QKyIKizGaknagghh5ypuZTkQzZoYAWtl6ccUq4ILmIbSLhCSLhkTqH8anMYjEYkVRWjUqNAjY70uyHdUnkNuZyjyyVTCHBU5Peh6wlmsHnm9Gt3/nZ3d8fWrVsxY8aMVuUu8vLywpYtW7By5Uqkp6dj4OOfEa8Xh5AX6K2eI1Feq8Rv527eOeZwVUG0qfIh9VKVvuR7M5j8jLZMZD47VFZkH2ke6QdXSdpqC+aOwxE5tVj05izs+vwwIo5F3cnX9dlnn8HGxgZPPfUUdDodox+l+2M0GjskAKEzRhRKN8dgMCAlJeVO8PPrr78iKCgItra2CA0NxeOPP468vDwcPnwY0gQZyosaD1y6IjU6JWp0ShSoygEAlgIy8EkstiNsdif8xlu0aBH27NnT6oSOPXv2RGxsLNLTG9+p52omQz9PZzz70/5WnbMjsDATYcHr4/Dnh/sRdaaucrBEIsFrr70GT09PzJs3jwZFlHaHBkYUykOG0WhEdHQ0AODkyZPgcDiYNWsWxo0bhwnvTEX8tVRs/3A/aisVjYxEaQ4ikQhjx47FihUrWjWOn58fXnjhBbz77rtNaj+thx9OxKSgRtX1l06nDe+N25eS7gRFADB16lQMHToUc+bMaXXZFAqlKdAEjxTKQ45er8euXbuwZs0abJi9GT2C3fHB/nVw8GhgLzWlxUybNg0pKSlITU1t1ThfffUVPvjggyblQGKzWAh1csOlpMYTP3Y2PC4HIb3dcfbvy3eOefR2xbp16/DSSy+htLT0Pr0plLaDBkYUCuUOVWU1eGnCh/jjowNY/fliODhbdrZL3QaRSIS4uLgmFXi9F46OjjA3N8e5c+ea1H6suxcqVEqkFTW+a62zGdzbHUXlNchJqi9rMvXpMPzyyy+IjIy8T08KpW2hS2kUCuUO4TW/1v27C7heMxEfvfoZPlr6PcoL63VHnJi+RB+bMPKXfF8xOTuxshc5s/Fk8gLGeRe6XCfsP3IHEbaDfSVhF+SYZB8EUFhBFpF1dSX7qCrJXWoD/DIJu1pDFjwFgFGO5Lb6fewgwpYeMyNsfvS9NT8BAQE4c+bMPV9vChs2bMC3336Lif6vEcfTTITS3Oo6UfNkl57YeysBDpfJwr8AoHQQMo7dDcukUollKhnQWcUys02r7EwSXlaRS1/VXuTr1mfrUwdMnT4Cl7dfvyO2Dg4OhtCbhd/X/35fPymUtobOGFEolAY5duwYSvLK8b9dL4LdGUrlbgSXy0VISAiuXLnS4jFsbGzQs2dP/Pnnn01qby0Ww8fGGlezu37eol4DvWBmIcaVE/XaohdeeAEnT55stVCdQmkuNDCiUCj35Kvnf0VFcRWmPzu+s115oFm4cCFu3bqFysrKFvUXiUT4/vvvoVKpmlx0to+jA6LyC6BpgyK17c3kBUNw/O/rMOjrt/P36tULhw8f7kSvKA8rNDCiUCj3RK3QIPy38xgzLxS2LtaNd6AwEIlEWLRoET799NMWj+Hv7w+FQoGpU6c2uU+ggz3iCotafM6OovcgL5hbSXD5eH3SRldXV2i1WiQmJnaiZ5SHFaoxolAo9+S4YhuO/7UNWp8SvPDHQowePRrD/o9Mcpjg4E3YW3QjCDvdIYGwpzjGwZQzFX6ErdTyCdtSRKYOMPNhJmM0LRprxiXbjOqdRNg3ClwJm8thzqxEs50Zx+7G5hZZwDS87EdGGw8PD9TW1iInp2VLWhwOB8uWLUNMTMwd4XbCGlJjxVaR+h+elo1+zk44kliXbLMhPRFbR/bRCcnlUosU8nXzVPIz0Fgyx+SoyASO+cPIBJmWyeQ1Pl3wHZ58dBs++PINHEnfd+f48uXLsX379lYJ1SmUlkJnjCgUSqNMnz4dALB06dJO9uTBgsfj4bXXXmvS1vp7MW3aNAwcOBC//950EbKdVAKD0YCUsq69G23u3Lmora3Fvn31QZGtrS1Gjx6NHTt2dKJnlIcZGhhRKJRGmTlzJgwGA8LCwuARcP9ZFEo9zz33HKqrq/HZZ5813vgeLF++HM8++yxKSkqa3MdCJIKiiydDtDAX4ZlnnsFHH31EHH/llVfAYrFQUVHRSZ5RHnZoYEShUBolNzcXISEhuHXrFp7/dCF6h/g03ukhx9/fHxMnTsS7777bqiUhsViMhISExhvehaelJRKKmx5IdQaPTR+Iw4cP3ylV8x9mZmZ49dVXO8krCoVqjCgUShMxGo14++23cezYMXzyyScISrfDkiVLMPHTl4h2JWPIGaVfJ8sIW11M6k4AAGyTwMFA6l00bmSxUb2BmT5goicZPKTX2hC2lEeWxPCxJvMv+ZsXMsY8kBZI2A5bSV3N8RuvMPoAAIvFwgcffICPPvoINTXMfD9N5dFHH4XazBE9nngPhruCqyodqeUxiEntjt5CB4NUD51DXSFdnYj5VW+WQWqw9HyTorE80q7xJHMQWd5gBl4KH1L7pCe7QJxfp1PqO9ATPewt8fSXXxKvDxkyBC4uLrh27RpjbAqlo6AzRhQKpVlcuXIFY8eOhY+PDy5cuAAOl36NmDJ+/HhUV1fj9OnTLR6Dy+Vi+fLl+OrgRSIoagqZNeXwt7RrvGEnIBTyMH3OIOz76xoUinpBt7e3N7766its2rSJ1kSjdCr0G41CoTQbtVqNkSNHQq/X47WvF2PS/ME0CeS/SKVSrFu3jqGdaS5jxoxBTU0NckurGm9sQrlKCQ6ra34e46b0QXFhJW5er88SzmazsWLFCty6datVQnUKpS2ggRGFQmkRWq0Wo0ePxp9fnUBgiDde/WoRpiwcgrH9e8Bccv9yE92Z/v37Iykpqdm6IFOGDh3arJ1od2MEIOHxwe5iwZGTiyVGhfXCnh1XieObN2+Gubk5Vq1a1eQElhRKe0E1RhQKpcUYjUZ8d+QlbDnGhr+/P8LCwjCONw1hg4Kw/7twpEZlwfYQmfdI7+nIGIelJh+G+aMtCNv+Y1IPk/4kc2fcvuwBhC3NJHVJ0rHFhF2jImujaQxkewCw3kb6Ljx1i9HmbhwdHbF8+XIcOHDgvu3ux+gxH8LSUoxHHpmOpGRbeC+IZbSJznUibH0RKeYp1VXCwDLA08ocmTXlMPB4jDH0JrojYRm5fGU0mQHUScjrY+Qzr1f+cPI8lon1S4B2VlI8+3QI9n56CCVnY8FGXRD59ddfg8fjYenSpXQJjdIloDNGFAql1RgMBty+fRtffvkl/u+1P1FZUo3lHzyG8UtGQGZj1vgA3YBBgwbh999/R3h4OPbs2dOqsXr3ckFqWhEKCpq/jAbUzRjFlRci0MqhVX60FXZWUrz6eBjCt13ElSNR4HA58AhwxubNmxEXF4eJEyciNpYZAFIonQENjCgUSpuiVmiw9c2d2LZxH3yC3PHuH6vQb5Q/BGJ+450fQFgsFsaNG4fNmzfj3XffxbZt22AwGBrveB/6D/DEpYspjTe8D1FleRjr1KNVY7QFXA4bry4Jwz8Xb+PS4UhweRzMfX4iXvzmSfz0009YsWIFyrp4IkrKwwVdSqNQKG2O0WhE3KUkJF5PxfB5wzB4fCBmLB+DH97ejaxuJCHx8/PDypUr4eDggLfffhsXLlxo9ZgsFmBlKUFVtaLxxvfhVF4KFvr0R29LBxSgstV+tQQuh43n549ESk4JIuJzMPvpsRg7fwhSo7PwwZNb8Ht0yzRUFEp7QgMjCoXSbui0epzbfwPn9t/A6NmDsGrTY4iMzcM/+26iplrZ2e61iqHTB2Dtk4uxc+dObNu2rc1Ew76+DlCrtcjKat0sihHA6fwUzPYMwjc43ya+NZdVc4ZBpdHiQlQ6XnsiDIVnkvDXZ//g8j/312pRKJ0Jq5kZWY2sLrbLgUKhdCwTzJ4gD3BIEW545dZ79rW0tMR3r/6C4NG9cCM8Grs3H4aiWgn9sD5EO358NtnRgkwSaSwmkzMCAEtKCqULpnsQdpUfuby1aORFwt5xlCx+CwDeb90g7OPqPzF//nw8/vjjUKlUWL16NfLy8hj9msM47jzCHvTVYvi62eGbXXWzT9ZLsxh9kvPtCVuvMRFC//tW+WwOvh89Az/F3MTlAvKaWsSYiK8ryWeBLLmWsHUScik0YyZT0N1ju/zO3+MmB8G3DwtKpRIikQh//PEHdu3axehDoTQVo9HYIQEInTGiUCgdRkVFBX5+YwfE5iLMefERvPHn87h8IAJHUyug1XbtNTYWi4UZM2bg8ccfxzPPPIPMzMw2PweXx8HUYb3w9a7WL8kBgMagx//FXcOqPqHIqa1CTk3LxNzNgctlY8bcQegf4oPsvGhwuVwsWLCASOZIoXRlaGBEoVBahEDEh7OPPdhc8mskJsURBQUF9+2rqFbit3f+hmtPJ0x4YhTefzIMaWlFuHkzEzdvZLSn2y3C1tUaT/xvLrJVyVizZk27BEUAMOSRAcgtrkRKdtvVObtelAsXcQJe6j8Mr14Ih0qva7OxTbG2NcOS5SMxaEgPlBRXY9u2bdi3b1+7nY9CaQ9oYEShUJoMm83G1GWj0Xd0L1jayZCXVgTdXTM9LBYL0x2HICcnB7dv38bXX39939w0OUn5+Om1P2E/dxQGDPTEU8tGYsAAT2x7aRsxbmdi62KFZRsfQ8TxaKzf+ky7nmve+mnYE5veeMNmsjflNhzEUrwXGoYNl0+2eXDEY7Mxv1cQlowLgEqlxbVLyfjq4yMIv0KDIsqDB9UYUSitxFQjAgAndDs7wZPW09B7sXKwwIzVE+Hk7QALO3Nk5lfj0F/XkZ9TBr3OgIKRZOFQz3Pl8A1yxcCRPeHt54j8xFzkpxUhJ6UQEcdjYGxApHxcsQ1AXUX6Tz/9FI5CN+Qk5eH60SjkphSgsIRchjHWyhlj1EzrR9jaJ0nxskZP6nCsN5OaJEF2OWPMaPl2fPHFFzh27Bh++eUXxuttwUSXNQDqgsovDr+IcdfJe2fWgJuMPtdL3Am7tIZ8LzoN+ZuXw9WDBWCF31AEW7ng24TzqObcvq9fKZkmOZBMkrt4/1InZBoc4o1ZswZAZiFGcXEaPv74Yxw+fLjVKQsoFFOoxohCeQAxs5Sg//g+sNQaUVxcjMuXL0Oj0XS2W82CxWIhdPoA9B7qB3NrKZx8HHHs59M4svU0asproXRmZp2+G7VKi9jr6Yi9ng5rO3P4OEng0csFi1+fgeEzBqCyuArpsTkw6OsfnBZqNWJjY5GQkIAZM2ZgvsdKuPZ0wsCJwXh07RTkZpZCr9Xj9vW0ug4qNQoyilGaX47ygsp2uQbBoT5YPedH7N+/v92CIgbNqxXb7KG3JF7CSAcfrA8KQ6m2F8ILryGpJgcGY/OCGB6bjcBAJ0ya3AeWVhKoNToU5Fdi5qxpKC9nBpgUyoMEDYwolFbCF/LQc4A3+o4NxKBJwdBp9ZDd5CAgIAACgQAKhQI//PADdu/ejWbO0HYYXl5emDJlCoIkIbB2soSzjwOObj2N4pxSZMRmE8ta7PvHRQRlxdUojU7B1aNR2P3lUXj3cYejhw1snC2Jdt4Gb6xbtw75+fkAAFs4ISMuB2lRmbh1Kg7Ovdzh1tMRQUN7AgBYOi0mPjkKPCEPSdfTUFVajRQLMaprlTAagZSsErREZuzoZgU7J0uEju+NnkGu+Hbrp/jpp59aMFLzCQzxRmVpTbuf51xhKi4XpWNJgAcecxsHAYeH21UZSK7JQVJNNio1tTCaRGhsFgsiLg9BNg4IsnZAqIM7uB46nDubAP9eLlCrNDhwIJIGRZRuAV1Ko1BaiK2tLR599FGsWvwCsuJzkBSRhhvHo1GSU3ZnKc3GxgZhYWGYP38+nJ2dcfjwYaSn12tIampqcO7cOVRUVHS4/66urhg5ciSEQiHmzp2Lffv2wanCF8oaFWIvJkAlVzfYjx1AZlM2XUpzCi8ibGOBiX2PpTQrKyuIRHU1vyZazYNHL1c4ednDwk4GCEyyZmu04HDZ8Apyh1qhRml+OaS93cDlssHlsOFkJ0MWuxg3yzMQX5mLAlUFKtU6lGvql+CsN0tgZiaETCaCh7stxgzygkgiQEFWKXIzSnB89w0civ/w/hexDfhvKW32ijEoK6rCd33I69VWS2mmuNvUBTHuYgf4mbvB18wVPlIXcNkcJNfkoLK67rMQcbnoYWEDI4DkylLElhUipqwAys0FWPHMWKiUGvzy83kYDEacPvt68948hdIMOmopjQZGlIeeCRZPkQfcyCKnerO6SvFcLhv+vZzBczXDwCB3eLra4FZ8DnYUJiKvsproY5lILk3oRCyMG+gLGwsJjEZAaVv3/8jTygIB9nbIK63C4egkFFXVIKmwLkeP2zcxxBjhNb+29q0CqBNQz5s3D8uWLUN4eDgUCgWuXbuGiIgIRtvx4sXMAQK8CTNngjlhO58l9UDcEnIWxJCV07iPDnaEXTDVjbDVY+uut7PYAu5SK3ib2UKjqM+r4yw1R08LG/hYWEPA4UJvNIDP4aBao0a5SoEarRrCFDWk5iKUFFQiP7MUfx3/ulXFX1vK0JmfgMUCXlwehojoLPzlSmp/vJ2YO9Qyiq0JWyImg1idiZ7KYGB+b7PZ5He/oqauqK6ML4SHmSXMzOsTcGbUloDzlZBoP3qgAgKBAG+++SbVE1E6BKoxolC6ABwuGz7+Tgib0BvOrlYoKapGqU6Na9GZ+Pr3s9DpDCgLZFYZb4gTEcl3/q7yqf//LeHzMNDaCYO8XOHvZIfSGjmUWi2KFVbITS5AelwOaivbLgfM2rVrMW7cOHz66ac4evRom43bGeQpKpGnqMTl4nQoKkSM13lsNsz5dQ90F5kZFvfsCwDoaWGL7NwCXEsuxKXwOFSW1eJYascHRf9hZSGBs4MFvvz5NODaaW4AAKo0KkSXFcDSSArczVB3HTlsFkYP90NIXyGmT59OgyJKt4MGRpSHHjaHjYDB3hBJ/p0ZcrJFr75u8PF3ApfLRnFZLS6dT8KhfTeRnVUGhYOgTc8v12hxMSULF1OyYCYUwNnSHHZmEgQLeRi3cBisHS1x8IdTOL33j/tufW8KEyZMwIgRI7B69Wqkpqa20TvoumgNBpSp6oLKcp0cL1+uCwT5bA6einSCk7sNXv9qEdIT83Fq2Retvr4thcflwGAwQqfr+kHGwP6eCBsdgCULJkKpfLDLulAoDUEDI8pDh6OjI7y8vBAYGAgzMzM8Om4xKoqqUFZQp/MxmkuRFJuLvdsuQ16rgoLbtBmhtqBGpUZiQQkSC0qQ+V3dUppvf09MXDICf839C0ePHkVMTAwyMzNRXFzcrLGtrKzwv//9D2vXrn0ogqL7oTHocfZQFABg1w9n8e6PT+LJJ5/EDz/80Cn+LJgxEA+CSsHHyw5zpg/Aj7+df+jvIUr3hQZGlG7NRLuVAOpKLQQO6YFez42Aj4M1csqqkJRXDI1Ojw01N5GoKgH+3Sjl6FoOeAAYV2eXR5B6F/iRNaRGeKQxzps23Jpx7G4qSsldWc52zIKhiS696v4FcFB5A5NTndFr8Hw8Mvc5eLpa4/aRKFzYfwNpsXWanfvVKAOAsWPHoiCiHNIIN4zj1ml2TPMtjRcsIGxjA6kGck00RayB5P6vNBvydbsIUpsi9CLF2gBQGELW3eIEk2NqteQ197dl6m4snMnZi2KVlLBTCm0Ju2RkfZ6eY+nZ0OnaLyP0/aicwod9oBVWnz6CkvEAxyRfULqJ3wDgZnK/FNeYEbaYT35uxXnk/QYALD45OyWRkdfPcIS8h29f24gNa//C6mfm49q1aw2/GQqlG0ADI0q3Z/xjQzDskf6oqajFgZQcbAm/iiqF6s7rVb0654HYXGIS8hCTUFewVCTkYWk/bzz/5ePY9dUxXNh/o5HegFQqRU7y/Ut1UDoeb0srZFVXokTBTFrZVWCx6rRpR48epUERpdtDAyNKtyU4OBgvvfo4rBxk+P2jg0iKzETeAt/OdqtNUKq0+G3jfkScjMPC9Y8ARiPCf7v/jBGlayLjC6Hvovmt/mPu8D6wqUrDxo0bO9sVCqXdoYERpVvB5/Mxfvx4LFiwANbW1jjz03XcOp/YZRMrtpb4a6n4+sVtePWnp3Fb8xh27NjR2S5RmoGnpyeWBw/A5ohLne3KPXGyMseoQG88OfNZKramPBTQwIjyQDPR4VkAgLOXHYJCe2BIWC8U55TixJbzSIvOQtqzfQCf+oSEwmFMLY+7gMwBk51iT9i2/Uk9i9SkvdbAFGfrjaRQJDvPhrB7uBUSdkqyE2MMro2KsO3X5RN2rjQAAFAB4M2dZ/HS4vUY3WMm9nx7AgAQXvYjY0y2WAyOVb3eZIKGzOHEkpFalfIRzL3jxv5kziYeh0weKPIkXy91Ir9mtNXMXX1CKzLXkZ0ZaWeb5O1JLDbRfQGQCEldTXm2BWFzasnPhCevD5Y5mo4LnO/WcQ3p1x9xinSk8RIhc2m4PYfN9K2witRxDXXNIOzkKlKXNC74/nXRAOBkvD9h+++qSy/xxs9PI/zDI0hKSmp0DAqlO0ADI8oDDYvFwuQlwzByen/cPJuA/3t520Opo8kpqsSmlVvxypanoFZocPiXc53t0gOFvbUZrlW1pIhI6/Do7QpFF57MdPN1AIvFwrXwmMYbUyjdBHbjTSiUrsvc58YjMMQHH6/6FTu/Cn8og6L/UMnV+Oql7Rj6SD/4D/DqbHceKGytzBAfH9/h5w19pD+SqrvmPWtmKcGil6fi7D5mRnQKpTtDAyPKA8vatWvhP8AT37+5C6XtUGH9QaSiuBqHfjqDZz6aD0tLcou2TCaDXsesmfWww+GwIZMKoWkgNUF7o1ZqcLWEme6hKzBvzQTEXknBhYORne0KhdKh0MCI8kASGBiIyZMn48t1f6KqrLbxDg8Rl49E4fyBm9i8eTP+q23I5XIxbtw4pMU1XqfsYaOvnwtKK+RIS+vYAMWztysMegN0xq6X7XqUsxdcejjg2PauKwqnUNoLqjGiPDBMMHvizt/PPLsACf/ko9zABmws7hzXBpBiYfeJmYSdXcFMdFerMBEDm4hdZ7lHEfZf6f0J21RoDQCOYlI8LHAjcyUptGS1+LB+THFsnkJG2HGFDoStGW9SOFRYL57dVl6IT0JHYN2UTYi5mITeoT3g4xiALe7ZqDKvT6aYN5GcQRJakIJvL5sshl8luaQ4XZtCCoFt+pAZuZVy8r2uDD3DGPNGpQfj2N3kmVSHF/KZpTt6WJYS9s1aMrGkQSUmbNk/cQAACy0btfy2LfNyP7RDAwEA41aF4di1DHgMI6+XQkcmu3SXlDPGOJ1Bpp1IqybF6VVK8r1fqfVgjKFSkp+L/1t1GwJsHGR44bM+mLV4IjJyMxj9/mOi+wvMg+L6enUCIQ/cEnLjglAmwfgFQ+Hm5wRrBwsY9XVBoVAigF6nx2crf8LWW5vueU4KpSOggRHlgUNsJoR3kDt++d8ewOb+GaYfVmqVGhzffhFj54Yg5mISrB0scOtsPEorum4SwYcJBwcZevdyxg8/nIF0WGd7QzL9yRE4uScCGRn3DopMCQzxhmdPJ4DPg0jCh7uPA2wczKGpMpnNZbGRfCsTh346g/TYbBjUdcuXXB4HT703D+t/WoEeJyzx6quvtuVbolCaBQ2MKA8cti7WKMkrh0quBmwab/+wkngzHeMX1T11nTzt7pQOoXQuLBawYsVoxMXlQqvtWpovJw8bePdywe4fmLN6dxMaGoqwIQPRZ0gPuHrboaSgEhGn42HQGlBdqcC1M4koyCmHMokMrlh8cpbq7pIzXz73C/hCHt4OfwbffPMNnnvuuW6bf4zStaGBEeWBwzvIDYWZzFpZFJKq0hpY2JjBt58n3P2dkJ3UNXc/PWw4O1uCw2Hj2+9OdbYrBGw2CxPnD0HEmXiGbo/D4WDBggVwdHRE//51S8nyTDHOH7qFmGtp0Ki0dUHMXUtpLUGj0mLEiBHYsmUL3nnnHbz99tutGo9CaQk0MKI8MPz365LDBspyy2DUaFA6hJwyKhtAankkJpqiYIc8xrgiDqlXSbYkk+MdLyQT3+n0ZEJHpYbUhABAAchEiXoDqUMqqSILnCq1zDFczSsJu7cDmRQyvojU+pSFkuewinNBcmYZvCf0hW0PJ2Qbo1A0i9QlmX4BaPIlhO3unsLwK41PXnOdC5kNuSSWvH4GKSku3nJ5NGNMR1dSR1MhJx+wIpPkjbW1zAdwjNaRcexuOCqyfD1LVKfDYfF5YAv4DXVpF+avGQkNn43SoDpdU56JdsxcROq8TIvfAkB/11zCVunJTzK/ktSnqWuZGirP7fV/s9ksDH/aDgWaOKx7bx20Wi0mWC+HV28XjJ0bAgc3G5TqgdiYHJw6UYaMjBIozP/9f+Bf759ZBDkrybYnE3Eaikg9lTHQh+HXyOJnceDTJLz5/ePIvSDEjydfYbShUNoTuiuN8kDBYrHQd3QvFKQXdbYrDwRnTsaj70BPyGvVqKxQdLY7XZLc1CL4BrvD3Ny88catRCwWQyLk4+sjl9v9XM3h0VkDIRaLsW5dXVAEABMXDcMLXyxBxu087Pj8CL76IhxnTscjNbUIen377qRT1Kpx4JeLWPnWdHA4zMzyFEp7QgMjygOFjYsVHD3tceMEzcTbFOKis+HgIIPETABLK0njHR5CCrJKUVlSDU9Pz3Y/1+DBg1FSLUdaIbM0TWdha2uGwYO88NZbb90JihYuXIiB4wLx3Ss7cHLnFaTGZHe4X9dOx6O8pAZjxozp8HNTHm5oYER5oJi6fCzO/t21fm13ZQwGI3776Rz0OgPGTujd2e50WfIzStCnT592P8+UKVOQ3oWCIhYLWLIwFEePxaDq35Iorq6ueOaZZ/DjW7uQeLPpO9Pag3+2X8abb77ZqT5QHj6oxojywBC8YjI8hwVg9/uHYOhXp/spH0HqMVb3P0vYu7P7EXZaJXMbm8ZEMzTUgXwYnM8ny2uYFjg11XMAAN8k746ppkhtUkjV1AaAsnzmuHcjtiaXxiYGxhF2pG9fAMAleSlmi9gYPMYPM05XIDwmud7PUeRDutbE76QqZrFWWxkpzHWQkNcjXmRShNecbJ+dw/wMikrIZaxB3mT+pGoteX3ii0kNFwDoakmdFldKasfE91l9rSiuhpkZc8y2ZNasWRg5ciRWFpyAdkS9ZmqyZwLR7mIBeb8JBKRuDgDSK60IW6EhNVJOFmTdN+12pv7q7ImXMXnyZJQU2WHD609hvHgxAGDNW0/g4s+xKDDwANf6floz8nEhLGNmCjdWkQWEWVYWhG2qOTImNTATdVch46RbmRAqR+KJwHXIT6v7AI8rtjH7UChtCJ0xojwwjJ0QiEN7b6Kq8sHXyoi5PMj4Qsj4QvDZ7auhUKi02H06GiWVtfB3ZgY6FCD6YhJmzJgBd3f3djuHk5MTfv75Z8h1HV96pCHYbDaWL1+Ob7755s62eJmtGTx7uyLqLDPhaGdgNBpx68xtPPHWo+DyqNaI0jHQGSPKA8HAgQMhkQpw60ZmZ7vSZDwkdvA3d4GQw4fMzR52wrpfwmwWC85CS8i1WrBYAJ/NQV5tNdKryhFbVoS4siKUKNs2EWNsagEWTxqA/p5ObTpudyEvvRiRkZHw9vZGVhYz23drYbFYmDFjBpYuXQrxuKVtPn5LWLRoEYqKihAZWV8Lbd5Lj+DC/giUF1YB5lb36d1x7P36GDYdeRVmVlJUFFU13oFCaSU0MKI8EDz//PM4ciASGg1zWaEr0dPcDsPtfTDKyR06owEpNXnIVZQhoboIeyuj77TLLdGgWlO3dd5BLIWNSILe1vYIc/PBmuAhiCzOx5H0ZESVFEDfBknuispr8Ovh63h+0SiM6eWN07e7ZuHSzkSlUrXbjNHUqVNRVlaG7Oxs+LXLGZqHk70Mi2YtwpIlS+4cs3WxRuDQnnh9+ied6FnDpEVnIWi4H87tvtbZrlAeAljNzCxq/K8oJYXS3kz0fAkAYGlrhte/WYxHU/dArScDown+8YSt1JNaCys+OfNSoyNrSAFARCFZX22gA5mL5VIOuVvJVDOTF12nw5gfGIipPXviTEYGriRmIaW4DP/97+KQqX7AIaVRqPGp1/ZYCkUY7e6Jab18wGaxcLogEeH5t1FQapKHh01umRabkTmKLH8jdU0cNgvbvlsKuUqDFZ/vRq1Kg/JQclnHzZmsN8ZhMbdl16pJvY+pRmu+103C/r8bIwnb1pb5q79WRY4pFaoZbe6mJIdZ887WtYKwS8tIzZCx2qQG2T/ke9NVHsBTTz2Fp5566r7nbi7jB7yDhctGICezFOdPxqP8XfK9OZmRuhxbIXl/JVcx8xgVVpCaLIOBvDcEkeQOxPhNLxL2xo0bkZSUhN9///3OscM7rqAwpxy7fzoPANA4kRo3jpLUbHEKyesNAMbySsJm2ZO+lw4nczaprJjPE5P/wnA7VAonN2usfnMaPlj3F/Zc3sDoQ3k4MBqNHRKAUI0Rpcsze9lIpMblMYKiroKAy8XTAwci1M0Nqw4fxtabN5F8V1DUXCpUSuxNiseqa3/i/5LOw0ViiR9Dl+CDkAkY5uiBln4z6A1G/PTPNZiJBBg3wLfxDg8ZkZGRcHZ2RkhISJuOay4Toc8ATyTE5jbeuAMYPHgwxo8fj127dt055u3tjR69nLFn64VO9Oze5GeXIS0hH30GeTXemEJpJTQwonR5bJ0sce7Qrc52o0H4bC42jBoFB6kUG06dQpVK1XinZhBVkYPN8Sfx5KVfcS4/A4/79cPXI6ajl5V9450b4Mj1RCg1WswaFtimfnYHVCoVjh07Bh8fZjbm1uDqYQOD3oCSourGG7czfD4f7777Ln788UcolfXTmB9//DH2/XqxS9cmy80shYMzc6aQQmlraGBE6dI4uFrBzEKE5JiuVwCVz+Zije90FMvleO/MmTYPiu5GodMgPDsZT5/Zi/3pt/FG/9GY5dn8vEQGoxF/n42Gq50FVk8f2g6ePtgYjUbweMzyLK1h7KQg5GSWNt6wAxg6dCgKCwvxww8/3DnWu3dvSKVSXD7RNXai3Yvs9BJ4+92/7AuF0hbQwIjSpXH1sUfa7XwYDF3vl+yqHo+gTF2Dr69cafGyWXMxAjiZm4r1l49gtLM3Fvbo2+wxjkUkoaSyFkN6ubd4Wa67kp6ejuDg4DYdU6PV4+zxuMYbtjN8Ph/r16/Hli1b7hwTCoV4+eWX8fvvv0Oj7ppL1f+Rn10KF09b9O3b/HueQmkOdFcapctSMNkZAxcPwZGIBBRMdobYjCnaPZFCFngNdiN1HJUasthotYaZSNFKTOZFMhVjq5XkDEJWhS0W9OwDvtYK7567BJfzTN+lyaQwVeVCCll51aQA1+Eq8zeK2oYU0Mqn1v+dq6rFWwfO4r0JY8G24+HPqBjI7cgxtP2YeV9czqgBqFFbooBcrsYArhsi8wvuvF4oJkW9LDYz5DOaCH21BWLC/r9SUmwNDelXRQ3ZHgDMpeRsm95I9qmOsyZ9sCGFwABQUkJeY76YFJZrTMTXJX1Ie/zZxTBPssawF8ZggmQJjEZjq5MJmpubw97PFsVRHFT51onhNSZaucbE1gIOM2CRSUg1f3GBBWF7fUbu3ooHsHjxYsTGxuLKlSsAgIl2KzFp8TBY6V1QftIcNaFk4k0Dl/ychWWkzREzC/myTGqoKXzJMbVicgx+A6uLGpOSdRV96z77CgDH49IxbNgw3LrVNZfWKd0DOmNE6bLwuRw4WJohMbeks10h6G/nhEc8/fDapeMwdKImo1qtxobwUxjs5oIFwUHN7n/6TDymB/g33vAhoiS3DGwOG8GjAtpkvGnTpiGvqAqpOZ27lObt7Y158+bhk0/qt+KLpUKMmDEAf31xtEtri+4mLacUdnY0SSmlfaGBEaXL0tvdAbmlVaioVTbeuIOQcPl4ZcBIfHjjHKo07acpairVajXeOl4XHC3qGdzkfiwWCzk55bCXSBtv/JDx6zu7MWHJiDYZ65FHHsGBM51f8HjEiBE4cuQISkrqf2RMfnw4Yi4moazwwUmaaIQRbDZ9bFHaF3qHUbosg3q6oqiypvGGHcgTPQcisjgfMaWFne3KHapUdTNHIQ7umO7V+EyHg4MMRqMR6eklsJFIwKMPGoKkG2mwcrCAhZ15440bgcViQaFiLvt1JGaWEkyaNAkpKSl3jvXs2RP9RgXgyLaLnehZ88ktrkRgIN1RSWlfqMaoDRnHnUfYbBn5xRpe9mNHuvPAw3HmIb60GJW965If9rFmLkfk15DXOLWc1KJotOQt7mFdzhhDzCUfXBmpZBI6vlXdzJCTWIZRzl54/dWDcJLX63ekt5nVSU21FUpb0g+DG6lvkeYxdSSiHFJ7YneZ1NDUutT/rYIan0aex0dDJ+JmcR5ya6tgO5gZvAm2sRAU5Ibbl1LAzSoHV26ETZQROn3dUkqhlNSNcK2Ys2I6Fem7WwB5HtMisWyTYq4cLjNppKt5JWFHp5M6L1iQ18fFlVmhPi+F1Oboi0mNllUA+dlX15L3yt16Is+/JBi61g9/P884TbPg8/koGaFDYW29/6algZV68npWKckkpD5WzPeanE7uzgr4tJKwj+l2AqgTV//2zW/Iv6KC7qoTJlgvBwCsXDsPR/68gqpqNcA3yaj4L1wV+TkZOaQ+SOluwegjSr2/gFtQTS7ZVfgx5f8Ck/+iSuv6NvkcJSQSCSiU9oT+VKR0WfRGA4oUtY037CDme/XDibxEVMs7fwmtITJrKrA37TbW9Am9bzuZtRTFeZUd49QDyk8//YTQ0FBwuS3/7RgWFgaFQoFCRefNek6aNAkymQxHf69P3Bg83A8OHjaIONW1t+dTKJ0FnTFqJU5OTnfqKwVwyWzCLAm5++bmDRuUlnaNfCaU5uEitsAgW3esvLQTnC68yX1fWhymevihn60zisCcHQOAASN64s9vT3WwZw8WWq0W58+fx5o1a/D555+3aAwzMzPExcVB27P1S3ItQSgUYunSpTh37tydYw7uNpj3wiR89+oOqDt5iY9C6arQwKiF8Hg8rFu3DrNmzUJZWRmSkpLgxu5BtGHdNUXNYrPxyMs7kZiYiMTERHzzzTcPzE4QCjDXqy/CcxNQqVHCGszt5l0FrcGAv1NisLBnMD7PiGW83m9YDwhFfORn1QXobDYLHA4bOj1zeasrYi0UI8zdG+N6OsJFXL8UptRrEONQJyJWarVIKCuBUWVEdGEhcqtalnF648aNOHToELZu3YqqqgdHoAwAXC4X3377LSIiIvDRRx9hvNUyAMCoWYNw4eBN5KQUgiVibrenUCg0MLrDeMECwmaZrLsblEpweRxY2MkQPLoXRj02HClRWdj+2nGkRmdBp9VD04/Mh5MzjsyZ0+MsF27OVpg4eSnGTF6KAy/+hryUAqLNiX+1ARSAq2CDV8mGoKROz2OqJwIALwtyVsSMRy5zRRa7EHapnKlPMM2Z4+BOjqmNdMGw0B54atsesFVSyOLIWT+lD6mpAYAKX1I3ojdJnyQPIHPsCA4ycw5pvckiqOIiUr+hsiTPYWVXt2RzXRmJx8z94cXtg8tFmUQbWc8yHDz+J/6+9jYAYH3UTIRWG3DrXBIAoOpRZ6K9Oov0AQCce5GaqqwMcvs0W0j6KZKQ77UhEovJMTjF5HvzlloizNcHYb7euJGdhz8PpOBmxhno/0386WZjATtD3YPexVYGdzMphP58LBzUByXKWuxJi0O0qgp6Y30AaHAhdzsOncmsKl8cWYX/LfgE//xYN8PW2P/PCWZP3Pn78fELkBGXC6OGvF9qE8myFgkmuaJ0JkV5b8Yw64P5bSWLI+tT0gn7kUceQVBQENauXQuj0QgWhwN3Pyf0GxWAj5/9GSwOB1mLPYg+IpPJ7IoA0i9eDfm4sExkBtNGE20dv4qclRLlksuKohLm/VXrTJ7HJqI+J5hYKgDGMbpQKG0KDYwagcfnwn+wD0bNHADPQDcoqpWIPhePre/sRlZCfrPGqqlV4XZSPlLSi/DysxPw2rbV+PjJ75CdkNdO3lPagqHebojLL0KV6v4V37sKOqMef2ZexjyvQYzASKVS4dq1+uR/t84lYtLi4bh1LqGDvWwcFoARnh6Y3NMXHjJLnE/LwNr9R1BQXQN+Jdk2u7QSRZV1B2PT635slKk0ELA5GOzghrk+gVhjPgj/5Ebjn7xoKPSNB2sA8OcH+/DO3nUoK6jE1cM3m+W/T7AHfn57NxDctrXXGsO5hyMmzR+CLVu2oLq6frZs4UuTsWPzkQdqez6F0hnQwMgEgVgA3/6e4EtEcPV1ROjUfshNKcSl/dfw1aqf7pSmYEtbnv9Fo9Vj45dHMNvRAut/eRafLP0eWfFdo/I2hYmPrTVuZD1Yn09EWToecxuJftbOiCy7d+B943QcQicHd5xjTcRGLMbzoUNgLRZjd9xtXEvNgUrX/JIVaoMe5/MzcD4/A8FuIjzqNgD/z95ZR0dxtWH8mbXsbmzj7kI8JCG4Q3AtFChSpKWl7uVrC4U6dUVapF6suLtDSAKBeELcPRvbrO/3R4BwZ9IkkE12A/s7h3O4mzt37s6OvHPvc5/3p74L8H3acVysa1/vJ66owzfP/Iy3f30eTt52OPFVx0Z07VytQFEUVErVffe5s0x7cRwuxp7Eli1b7n7mG+YGNoeNGxfSu70/Bgz0NAyBEQAjIyP0GROK8JFB8O3jiZykAkgaZKitqsdnizdAXFEHdZP2TQYPbzoFrhEHL3y3CL8s/wuZ8bla34eBzuNnb4MLmbm67sZ9odSosT8vCVHOvm0GRgBAsfRLTD7G0Q8L+w7C4fQMfHj6DBRqNdjKzvcxp6ECX6Ycgb+5I17xi4Kk8RKuV7Y/WpufWoQvl6zHG5uWYbXJaqxevbrdbSLHhODc7hgoFd0bGNm4WMHF1wHfv/o9oWGMmj0AR//qWZ5FBgzoikc2MOJyuQgMDMSUKVMwcOBASHM5uHY6CX99fQhNDTJQFqI7NUFZW4GuAFGXlTParApk5uG6F5Nr5KjDUeV2nPh+O6JSorD4tcXYMO+LB/9CDyEmBUpY31TAKb55CqsokM+ow7ciNQxns8lpCyMjcpRBqWI6VLhaknnNZCrysuCaUcizqoD8dn4qqp7UkvFqmL+71IamMeLRhPYN5BlVHcDUGHFpq7wtMkhNh80NUk+VN4A8PheLSzBrQjiEVaZoVNw5TqT9wb8Z3+NpznhcZ+1FRUUFfJLJFVhhI2+BzrVMN6IssifFzXViUpzOukA690j6MF8yeCkCGHHYeHvsUNiYGmPt+4eRl1cFxzt/ryQ1NVQrAYfamPwdhOVkP+qdLQEAaZDiG8creGP2COyvT8W++BQAQNUCpki7zq0fAKAUwMeXYvFCv+mI+HUEDvx6DvkZpVBVkh5D6gAPAIDGwRoSmfJu+V5M/MjzrUlGnivSInI02uY6MyhklZI6uDu+Re/MeQd/Hf4No277FQGAg5s1PEb5YVNhDkosW1bO8geTfRfXkccrjJZ3MKXMjiirs5j6IOH1PKKsUZDXp6aB/B15gl6MNqyj88lt5C3TnsYuVpDLOzYNasDAg/LI+hh9/fXXWLt2LW7duoUXXngB6/+3FTHHE9HU0P06krNnz6K2tharVq0CRenX2/ujjilHADMeH1Jlz1vaXNrQgJTyCoz0ZIp376BQKKBUKuHn59eNPWPibGGOr2ZOQLWkCa/vaA6KupJbxZVYtfckBvu4YV7/3h3aJiGvFJ8+swkZN/Lwxg9PYtozI/Tqel26dCkee+wxnDrVYsVAURQWvD0J28/dQG5ZTRtb9wy8e7sbEsga6HIeqcDI2dkZM2bMwK5du+Ds7IyJEydi69atyMrK0mm/FAoFXn31VdjZ2WHFihU67YsBEhOOAOVNDWhQ9sy31Iv5eQizd2yzTm5uLpydndus05WEWTnh/Ukjsf9mKtadjYZS3T3WAYU1tfhg3yn083TBCL//Dh7vRalQ4cT2aHy05Be4+Tpg8cdzYONixajn7mnTrT5Br776Kp555hnMmjULCQktudkGTewNhUyJ/VdTuq0vXUnIED+kpDwc38WA/vLIBEZWVlbYs2cPlixZgo0bN2LGjBkQ317Fog/IZDK8+uqrGDt2LLy8vHTdHb1ApVLDy0v3mbT57J4745xQVopQe/s266Snp8O+nTpdAQVgrnc4Xgkegk0XY3EiNRPdbe3VIJNj/ZloLB4cAWNO66kxWqOyWIwNK3eioqASK7e9hjlvT4WpRbMVhKkZH64eNrh4tntW+oUP7YV58+Zh9erVyMnJufu5i48dJi4cgkO/n++WfnQ1Tt72CBzgawiMDHQ5j0RgdGck5tChQ5g2bRqOHj2ql+aKMpkMH3/8MX766Sd4eDC1CY8asbE5GDUyAEZGugtMymViCDk8WBnpr6ljW1Q0NoLDotr06j5w4ADGjRvX7ck5F/fqi1BLB7wTcwgxObpb9ZdaUoGkojJMcQm5r+1kTQoc2HACny9aC9cAZ3x25F0MGt48JalSqqFUdv3Il4WNKSYtHIJvv/0Whw4duvu5u78jnv90Nnb+dBwZN/PbaKHn4BvhgehD13H9+nVdd8XAQ07PfRW+D9asWYPc3Fx88cUXUChaH96mHMiRCQ2XFMPSxZ6100IZbWho+lm5NSn81YhIUWVUKZl0FgCOHt0OCwsLvPjii3jjjTda7eujQur6w6gZ7Y/nJodg7Wu/gxPZh1FH4EZOcblYkzoKMx6pGZMoSaErAASJSJPN04Wkg7mkUQlWBR+UpPlBp3QmTeyk1syRBjXtylLzyUCcLSHfSaS2zIeooJysw6shv6vShPwuVDYpvlbdPv+Kmurg52aFpKpygKYvHmu1FKgGmvI4GOU0F0domua4NHdGvxycyGPsJSKXvWewyWSuJhPIv2dn2yPIyhbDbX3w0pmDqJJKYSKnCd6rSYG2ypT8bgpT5u9INwY0yyGPl8Nh0pgy9f2Wfu6uTsJrroOx5Xoy7v2lqFCyDafp5D6yo/shG8CFojj4ya3x8bOjcOuAGjJzNkoGNouTTTNo/aQl6jVKIss2heS5YnWe6ZemKi2DyNYcL65egHN/nUV5XgBGD/oYADBhShj6zwvC59eu4MpwGTDcAxAyp4LZNLF1f48cohxXRCbytTAmf5OmmUz7hCxfcvGD53ZSJM6qJk9AmTHz2uF6k/ulcppXDoocLFFTI2HUN2BA2zz0I0ZvvPEGWCwW1qxZg6YuWHLfFSQmJsLPzw9mZrrJsaRP/PTqb/Dr6w2fcN2NoKk1Goj4zBVxPYUKSSM4LOaqN13Boii8Ej4QW5KvoUqqHw+6hKpSSJQKjHB58GnstIpK/HomDm9NGYqMkq7NiWhqYYxX1z2N8/9ewemtlwAAFAXMXzQYEZEeePHEQVwpLujSPnQnXCMOwocHIOVqpq67YuAR4KEOjF5//XWEhITghRdegEzWM1yLASApKQmFhYUIDAzUdVd0TkVBFXZ8fQDPfD4P1ia6mc5Kq6iAp6WlTvbdXTTWSmDj1D3fcZCjG2QqFU7l63bRA5392amIcu2cS/XZ5GwIeFyIG6XtV+4Ew+cMQnWZmAiK5i0cDGtbM3z+0X69CTi1hX+kFyqLa5CXXtJ+ZQMGOslDGxhFRERgyJAheOGFF9DQ0ND+BnpGfHw8Zs6cqetu6AUXdseg6FYpnh4eqZP9S5VKGLH1Z8SlM1hbW0PdyqqvvPQSuPo6dEsfxrv74mReJvRN5Xe2MAcOQhMMcXR/4DY00NzO39Z1346iKEQtGIr02JbAcsKUMNjam2Pdd8chl9+/Q7i+w6IoNNb1jBF/Az2fh1JjxOFw8Prrr2P9+vX/GRSNs11GlOnmcKAJJ8uHkm/TdA0JALBo8iVOHfkwzXiKXNbr814rQ92372lHjhzB6NGjmX9/hDgu++fu/88s24nEy6lYJhHh4C8n735+nkXqjiS+pJbCx72U/LuCqWmIqSANC2sLSUPCXI0YIfb2OJDanE6hcCQ5ciUkdwEAYNGeTZwq8h2ElrcWUkvmw4wrISXTjc6kFkVQQX5XIU2KIihrPkld+puBlwFYlfIQ+lgoPvzww7t1jlVtBADE7dmN3bt3w3EbDw2SltFVpT9Tm1JeRRr7laeSmiI1jxZ4ebToTHzNHOCvtsTGTWfgpGg5COY3Sf1P6SjSTJBfQ7bZaM98p+OS3oGo9SKvaZtK8vhZxJDngnigFJvTY/BkYAQuVbY+mpVbRd4HQgeTBpgNtcHgm7ORbFaIpv63O5RLJi6m8mkaI1KGA6uz5H1BXdHi6cRiUXjm83koKa7DyVOZYLs4wzfEBRFzA/DuxRPIn8sCwAPFI8Vi/u5MnRI9oXJSBbkyUdZAHj83B7KNYZbM9CJfN5AZXjMWkwlz3Q+Q+2yyZWrFOI3kOXe8aiMUdSNh2aS8e74aMNCVPJQjRosXL0Z5eTmOHz+u6648MA0NDbC0tIS7u7uuu6IXKBQKfPTE9xjyWF88s2Zet+47sbQMEY6OYOmRmV9HoSjAxtwE6cUV8LS3RFVVFcrKyhj1qqqqIBaLYW7ctVqqmS79cPhsMuTdnCqjo1wqzYU5jw9PswebVmRRLMhUSig1XbMibeLTIxHQ3webPjsIAOAZcbDwjXH4If4K8uvFXbJPfUAoFLY60mnAQFfw0AVGLi4umD17Nj799FNdd6VTVFVV4dChQ5g/f76uu6I3VBRU4bvnNyF4iB8mPxvV/gZaoqC2FuWNjYhwatsoUV+5k/g4wNkOcXFx/1nvxo0b8He3+8+/dxZ7vggeJrY4eTmty/ahDZKry2DNN26/Yis84zcAvC4SunO4bHiFuGHblwdQXd68umvJ8olIvpaLmNKeleT4fomIiDA4XhvoNh66wOjNN9/Eb7/9hoqKCl13pdNs3rwZ48eP13U39IqS7HKsnP4lhs/qj3GLh3fbfk9mZmJ6QEC37a8rCPN0bNMDJi0tDb5uXWeoOdohGNGVt/R2tOgO9QrZA48YUQCKJXWoV2h3sQeLzcKyL+ajsU6CK4eaf0PvICfYu1hhx/rTWt2XPhIeHo5r167puhsGHhEeKo3RkCFD4ODggK1btxKfR3GYfkFqR/IBIHEidSNqDjlt0kR7XrBayRAho91LKVpGcCEt76w61Bd0xlyf27K9lEJDQwM8PT2RnZ3N3OEjxl3NUQGQuPQc1q5di6FvHUX2zZbElSUv9SO2KbYg9UIKBfNtfqQHaTQz3fkGUf4zqy/OIQaPO/qibz8BrmSRXiyUkqlb4tAWBXFp/kF0DRK/gqm1kJO2VzCrIjfiVpL6Ob6Y1ISY5klhZ28OqlYBp0Q5Ap61xJkzZxj7uUNxcTFM88WwPNgyosOWMZN8lk8lH/oaW3IFlkBAiu0qs5q1dRGBAfjk0llwG5mBkdKK/LK2seQBK+tHWlcomPlLGT5iokxaAmERqe2hX6/s27qcrIYyOJuIwOapoJKTjUqqyPvETQU5iviiJxtcjgq58luwuN3HSkeyDVY5+TspheR9QuZFjtpxS8vhGeyCXhEe+GT+D1DLFShc5YIVo6dhfWIsEt6yxvAQchQusZIU0tO1UQBgwid/Rz8r2sskrVwiIQ/6HllvZpsmpEC690BSq3VZGkSUFWbMc8E8hek1Z2RkhLo6ZpJfAwa6godmxIiiKCxbtgw//vgjVCr9fiPtKBqNBvv378fUqVN13RW9IzU1FR9++CFe//kZDJ3Zv8v3J1crsb8gHjNcmSaT+oyzsyVu3SqFhaUxZDIlJJK2l3FTrK65JXhbWEKhViG9qmv9fXSNKZePallj+xXvA4qiEDmuN+JOJKA0pwJCMwHeiBiM2LIinCnMab+BHs6YMWNQW1uLmpqenwTXQM/goQmMhg0bBrVajQsXLui6K1rlThoTExOT9is/Ypw9exafzP0BYxcOx+sbn4VbQNcmQj1ekgxXYyuE2/QcrVFomCtysivg5m6NW+mtLJ+7h+zsbAT198bgyeFa70eIrT1SKiv0bon+f8F9AJ2QBU8AKyNT5DQwxe2dIWSYP9wCnLDt830AgAUrZkDA4eCnG1e0uh99pV+/fjh58iSUyofPhsCAfvJQBEYURWHp0qX45ZdfdN0VrZObm4umpiYYGRm1X/kRpCS7DKse+xI3Tidh2VdPYtXjo+Ftz8x2rg3kaiV+zbqAF0MG9ogVahQF+PZywM0b+fAPcEJKSlGb9QsKCnB+3zVY2Yu03hc3cxFyxD3jjT+vsQb+ovsXoQ+x94IpR4AbNXntV74PLO1EyEspgqxJjsHT+yJoUC/8lXoDikdklZa9vT0SEhJ03Q0DjxAPhcbIz88P1tbW/zlapIkMYn7GIh9scjPyDVEqIv/OE5PbK1oZwDGjyYBqvcn3Y5kl2abaiPlWyrEQEeWxjYtgQTngMY9nkS8vxrH635g7foQ5odwOKIEjf/6DT/ea4u9v9mJlnwjs//kkoo/cgGwSqa2oljDds8/lk27HNfbkiiQToxZBWUJdCkbbh+DJkABsz20Wg0pb8WKxu0r+9nyaPogtI6d7xT7MZfKm+aTWgtNAlsUh5HcrHUq2OWQfF8qqepQfj4f9xGBEn01k7INOWX4lvENcW/rwbyyjTpMVqePSjCONeBolZBBPKSk4mZjh2K1MUEoKbCnzgS5xpOV5M6Jfn2R9qpXBA+MSsl2ZiLy++JU0YSCtGxp183tipaQJbLChUbPg7UwKAzOySe0OP67lXOnr4gGJXIUzKQ2Qq1v8e0QJ5G22kTawKSdlcKDULedOSKgLJqwYhXeij4HzbxT6BA/AF1nxeCrkO2KbjUVDifIge3KKLbOBzO8HALZ8UqN2o5wcCR3vmkqUOSzy/PIUMqdFM4zIgLJBSZ4LolBSt2TyLe3LA6DKacZOcDAs1TfQrfT4ESMjIyN88skn+PHHH3XdlS7jwu4YDH+8X/sVH3Hq6+ux9vU/8f3Lv2Lu8inwDnVrf6MHYG3qWUQ5+iPYQr+n1AZO6I0rR25Ao9HAztUa5YX0Bw6TuFNJcPNzxLDp2ncZV/WQhxuLonC/A4LmQj6mRgTgcnE+5GrtaRx9fe1xoSQXFIDl4cNwouAWThUa8oUZMNCV9PjAaNmyZUhOTsbBgwd13ZUuIy+9GJ5BLhCa9txEpt1JWX4Vtn99CC9/vxBCtvanIEua6rD51iW86Dcc9gL9TPTraW4BvwhPnN8XB0t7c8ia5GgQt58/q6lBhoRLGfAJdW23bkfhslhwMTNHg7yVpZx6iL/IDsWN97cCampEAMSNUqyJPa+1fgiFPAwe0gvpNRV4N2IEfk+7ht3ZyT1Gp6UtBAIBNJpH7Vsb0CU9PjAKCwvDjh07dN2NLiXjWg7Sr+Ugat5gXXelx3DpwDXImuSY7tw1x+xKRQ5OlqThJf/h4HbRSq4HhUOx8Gr4IOzffAZNDTJ4+DuhvLCq/Q1vk3ApHU5edrC0Y05zPAg8NhtcNhsVjdpdrdVVGLE5KJF0PDCiKGBimB8q6rWXk5HH4+C550ehsrIBc3xC8UHsSZwq1K+ku92Bg5s1goODcfPmTV13xcAjRI/WGIlEIri4uMCnrC/sOS3meyw/L6JeSR+miy2b9vJK1wzRfWgEleQ0QIMT82FIb8O4iOaFRNNz1rsxRzMsb5DeIpSgeZTo6ukUPLbs0c6d1hHu1WDFTtmPk9cTsfN6KQqqawEAbuNyGdtkV5JibamKvCxKKsgAgZvV7IezMzkLjsPt8OG4kfjmxgWUSVoejCXDSH2LSTbpdUTPleZ4nhk0SG3J80NqRfrwKAXk+SUoau737IgQKOpUeG/Ts1Cr1Rg/+Dv8sPVTnKg6wdgHA5UamddzkZ1YgCGTw7H3R+YKK14D+fZeVkqOmvFLyOMn5SpRXtcAL6ElblVWQWnM1NZxG8nrS1BBiog0bHK0tNaLOdclNyUPKltO9pNSklNcCtpgn6a0eR88Cz6g4UJTykdWqQtZyYRsw3lLKkIG9wK3sgkysQRcMRvcJvL7i3uT2jBKTvYzNIQUJya5e2Ld8Gnwt7RFdm01Mpo+Q5RPDu71en/90hxim+khpCu0Be0Gdl3GXLEpVZL97G1L5kLbnRFKlIMdycz20VXujDYzk8j9hPQmtU51TeTvaFlDemDRGTGjL/766y8oFExvIwMGugr9etW9Tz744APs2bMH9dXae1PTV8SV9bByEEEgELRf2QAAoLq6GjtiEvH5rHHgsrWfpkGt0eD7s5eRWFWCzwaMg4OwFdfBbsbdUoRpof746eyVu4JVLpeL2tra+2on5ngCQof4gdLS6rtGec95sPlb2yC7pn091h2C+nvj7O5Y8IVGnf6eLkIHHJmyBL1ENnj9/EHMP74dlbKH36vov/AMdMLp0w+/s7cB/aJHB0Z+fn74559/2q/4EFBTXoek6Ez873//03VXehQHb6aisKYOM/oEdkn7ao0Gf6XfwPZbN/HZwHEIt3Hqkv10BDZF4aURA/F3zA2U1rW8LLi7u7eaOLYt0q/lwNrRAuMXD9da/wTcnjFAbczjQSxteyTjXnqFe0ApV6KqVPzAAnNLnghzXCbhDd+nIVHK8eyZ3YguK3igth4mWCwWqqs7HqQaMKANenRgBOCREuXt/fkUhg8fDg8PD113pcegUmuw/WoCHosIAr8LH8zH8m9hfWI0Xu09CAv8wrpsP20xIywIUoUCB5PS737m7OwMDoeDvLz799bZ9/MpOHhqJ3daVlU1guy7LkGtNgmwsUVGZcc0WZOXDIeZhTH2bzoDE5EQ306eABMeM0XMf+FhboFve6/AR0GvYZhNPyg1Kiy/dBTJ1eXtb/yQY2FjBjNLYzQ1NbVf2YABLdLjA6NHCUmDFDt37sSSJUt03ZUexbXcIuRV1cDZQjti4v/ialkB3rx4GKHWDvhi+FiY8brPlHNEuDfGBvhg7blo4vNJkybh6NGjD9Rm/NkU9B4WAAstiLBTSssQaN91CWq1hYdIhCalAnWyjo0YeQQ64+CWcwCAdx77FjeKS/DiwLatNTgsFvo5OOOTIaOxd/o8yFRynCy7hG0FB/HWzc+QXK1d5+yeysSFQ3Bq51XDiJGBbqdnjG23A0V7Q6sJI8W0slaMkFm05NdmeeQQuIZNaitqPckYkp6AEmCaQMpFZJlN26fUgqnfSP2STNrp8yepWSjclo2p3w/HZ0/+hDPbL7ckVjXQKk7nm0WolZ5lmGnmjj/V8Yw6dub1RNnfjEydkSGwIcpKLqnzoupbLqOKein+d/QElgwJxOYpU7A+7QIulWejAaSxJM+afAvOCWeeC6qytt9bKCsp/EQ2mO8TAUsjIb7dcBr1pXW4V+lkbW2N9PT0/2yDzjHx5paCGHg+fw5MTIxQU9wiOlbyyb6yheQ5yq0nbytKYyA1vxyvDB4IgZKN+lYyt9CTxtb6kisZeHWk6NnxPNMrqNaLDETNs8jgRkNbPUhfYAFQmODhi0tZeWBJm7+j3Jb8bm57ye+eMzYRe27+jStVzek5mo6FYc2iCZho7om8shpM7uePAf3v9IOCJc8JKo0FBGweqmT1+DXnNNYl35s13h7Te5PnaJHMAnRGB5Dmi4cyyaliL1vSfLGoiHnDsncQE+ViCalGt7cgfxMbI/I6aQ2/kHyizGfTEh9Hkzq84iHMNpy3No+WWdqZIeZkUrv7NGBA2/TowIjD6dHdfyAk9U04sOEEnlg+FZcPXANk7W9jAEi4mY9nnh+Fv8tZUGu61mhQpdHg96yruFaVj5cDhmOwnRfWX45HRVP7PkIdxc/KGvP6BMHL3Bp7cxKxPy8FJqXk9SASiRAVFYXNmzf/Ryvt0yBuROjwQBRklLRfuQ3ETVKU1zfAz94Gt4rbztmmK6yNhRjh5YmX93bME03A5yI0NBQff/zx3c9qG6X4bOdpvDZ1CFxtLWBtZoxqTQo0t92HchvjcbBQiQRxPkqaxHda0vI36fmIrE3h7G2Pglv6ea4YeLjpsZFF//79UVlZCbFYrJX7CkUBfh52CPJ2hI+bDVi0lCEKIYXyugaUiOtRIq7HDUk5qtrJVN5VpMVkgsNlY+DkCBz441ed9KGnkRCfj4Z6KZwFNsiXdM9URZK4BC9f3YkFXv2wYexU3CgvwaGsDNwof/Agw8/KGnODQuFrZYXdBTfxafwpSFXNb+UmtMs5NDQUBQUFKCl58P2d+OsCJjw1Agd/OfnAbdwhq6IarhbmuAX9fNjNDAnEhZxclDV0zG9p2aJhOHhwO0pLye/jZGkGWwtTXEjKwV9nrmPU/L3E34+V9NZSjx9e7FysUJhZiqZGw5ufge6nxwZG/v7+OH/+fKfF1wIuBxNC/TB1Xi9I5QrEpxbi2KVUiCXkMLzUloVeDjYQ8DgYHeiNZ537oaapCZdy83E4PQOVjd0bJB34+SRmvjYRn+8XNQeHBtolP68SEb17dVtgBABSlRIbMy5ha1w6Rrp5YlnvSLBZLFyoSsfl8hyUNtXdDWz+CxGfjzB7B4xw84SPpRX2pKfg00vnIDNv+wE+YsQInD17tlP9T7t6C89+Pg/2HjYozalof4O22iqtQJiLA06h41N73YWVsRAjvT3x4p6OjRZ5udvAw9Uac779lvzcwQqLoyKx5XgMTt/MxCO0NkTrqJQ9I4WMgYePHhsYhYeH4/jx4wAAlglp4Cgzo2kgWlnUwGsE+vu54cmREcgtr8ZnR87hVknl3RsZRbuh8eM1KIhvnvs+AEDmwoGvvTWiAr2xYfJkJBSUYt+xROSWtggF+TTNoJSWx1HTirWOEW06JOtxUhfhYBcOADgBIKRRioCAAFy+fJnZkAEAwMlLK+7+38n7FqYGvI3sONIXximMHFE5W+JDlJXppPZC6UwGzeGezGXVKWXkCiwxX4zdZdexu+w6wq2cMMzZHSvDxsKYY4QiiRho4iKupAgaABQAb0srmEbwQFEUXEzMkVxVhjruDawtuga5UIGQ3kCJhNRrGF9qOaHMLISY+PxEjBw5srXD0mHUJqYoKaxB0OgwlP8bAwAwzybdUWsGk9ebkbj1tpJulWBx33BonDiQKslgUM0lLwbzDNKbrMGNvMbpGkAAMCki9UAsGbmP3Enk8TKPaAn0nvAchou16ah2KiFuiuwE8re/cOB1uLi44Jv3d+PD91/BCL+3AQAURSEk0h2znxuIP3KP4LpHJkxvLx7ddJQ0ZjXxrSHKQ91JR+tzxWRS49o6ZuJjT3sySJU3kDrLOvP20wfJVeQxz8gkc//RtWOM7ZXMx0dFTdteXmyaqaZVMjP4UVVWgSWxgUYqhaqDqwMNGNAmPTIw4vF46NOnD1577bUH2t7YiIdXxw2EvYUpNh+PQdytQqg6vsIWAKBQqZBcVIbkojIIeVxM7u2Pd+aNxPHYDOw6n/BA/bpfikrFmD17NmJjYw3OsB1g3759eGPNGlgJBaiS6G4J8PWqIiTUNy+ft+AJYcETwLTeCu6iFpHthfw8ZEqbH34VTY2ok8vQ3z+71fZaY8j4EPz777+or29fMNsex7dexpSnhuP07cDoQSmrbUBacQVG+XnhUJL+jBp5mtiin7UP3ojZ225dDoeD1atXo7i4GHv27MHYkGbRc68gJzz16lisyz2A6zWPXuoObTPp2Shc2BXdfkUDBrqAHrlcn8ViQaVSQalsewqiNYyNeHh/2khU1jXi3d+OIO5WYaf7I5ErsD0mAe9vOYoQTwc8ObZPp9vsCDsOXwePx8OECRO6ZX89HbFYjLSKSgTb2eu6K3epkUuQ3VCF2JIi7ExNuvvvRE4msmqrkVVbjTr5/eks+EIexszog3Pnzmmlj6lxObCwNYONE3N11P1yNjUbY/x92q/YTbApFp71GY1d+VdRLm0/iJwyZQooisKMGTPufjZsXDCe+99EbPrmqCEo0gJCMwGsnSxweX+crrti4BGlRwZGgYGByM3Nve/tKApYMXUkkgrLsOV4LKSK+w+s2qKspgFrtp5GZC8XDAh002rbraHWaJCcnIwVK1a0X9kAAOBUVhbG99KfB3NX8PjSYaipqEd0tHbeuJsaZSjOrkDIwM4ft0sZueCwWBjk6aqFnnWeRZ7DUC6tw8nSxHbrWgoFWLZsGb777ru7L2XPvDkOk2f3xZbvjyMhLreLe/to4B7ogpKc8kfKvNeAftEjp9KGDBlC5s8xI+e1zfLJgKcyqPlrTg0PACjgz+h4cGltWmSS2yj5ZMzIqyd9Uxqc6S0ACmNAAQXW7D+L/80YAbVEhWupLfoTFm0xjprTfh4qhYgsVweS/Vr34TrMmzcPLi4uKCgwpBBoj9hj2XjKLwy9G6yQc1sPVuhIjoRQxaQ+w3dgLlFuVJDzriYc5oiOXEaeH3SHAKWcvPRY1sw27CzIEYxqGbn8svwiqQlJz3gdo0aNgnvvKXjsce0kHL6j8Ug8fRNB4Z44+fNRVPQmNTAO+8kvV9aXfKBpaHeZ7QmJeDwyBBcL8nGnZml/UkNkH0MuZjCqIa9PdhPzpabRmTw+1b3I+4LcmryG+5r2ga+xO968egC1chMIrjOXt7r8nnH3/31GBqIyzArcyIUYOZyP12cPh0MvEyyN3gbxhCZgAgcBAqYgPl9IS5DLJft+IiGAKHNNSA2XiQlz2vdWCpl6hm1JbhNsSSaErW5g6pT8rchFCLlccjrezIjU0qUXkro5FoepD+IZkW1IG8lrRUBaI0FYSsvmDaDcORPnM1Q4odzO+JsBA91BjxwxEgqFqKmpab/iPQi4HEyPCMTm87FdvlIkt6IGa3adwcJJkQj1dWx/g06gVquxdetWTJs2rUv387Cg0QDFVXUYF9mr/co9DIqisHLlSnz33XcoLi5uf4P74Pjv58DjcxE2MrjTbZ3LzAGLAqJ6ebdfuYsY4OiCxz1DsCLuCGrl7btcO3nZYcYLUUjKLoGVmRA/vvYYErKKMe/8rxDLDSkrtIWxsRGWLFmCI0eO6LorBh5hemRg5OHhcd9L1MeH9EJGaQVulXXPKofcihps3heNp6b2h4mwa1ND1NTUaC0L+qPAzvMJcLdvxbq8h/PYY4/B2NgYhw8f1nrbsiY5rhy4hsnLosBhd+62oQHw4/lozIsIhYuoa9O0tIaXyBLPhfXDj8kXUdbU0P4GAAL7eqKyuAbV9RJ89cJU/H38Onad655FFo8Sjo4i5OXlIT6e6VBvwEB30eMCI39/f9ja2t6XsNTe3ARTwvyxNbp7b2Q3M4qRkFmC+RO6R4xtoGNU10k6/XDXN5xF5njrrbfw7rvvorGxYwaF98uFXdEwFhljTHDntUbpFZXYdTMZrw4bCEEXJvelY8kX4MPBo7A+/ipuVHVsVM1IyMPgSeE4tzsWT0/qjx/+PY9jMWld3NP7g8tiIUBkhxkeIXjcMxQDrYbd/edr4g8vU2t4mVrDjt/2cnpd4+JqpfXRTgMG7pcepzEaM2YMjhw5ArX6nvltmlOt3LRlLpzNorBy5FAcPZuCssQq3FEyaGjPRZmI9PQwzSOH1ykVOf/meoC5gkUcJCLbNGfh9wvXsWbJBASHOSO6pIj4O6uVFfb8UaQ/SX0BqX/hND5cD/TuxiqhEVyhArZzjeCWo0JDvRSPv0z6QB239yfKtnxyVCGlkdRaXMj0YuzH2Y6c6s1PJ7cROJDnrErF/F0tBKTOpqyBfKh5rGvWv3B5HLy1dhE2b/4ZJ06cYLRzP4yzf578QEDqbn7/8RSefGsCGnZnIzezDGqVGtURZDJCtyOkbiR/LDliKnds/vuumgT4wRoLRoXip6QrRJ16P1KbwhGTtyoNi+mvoeaT1yjbljzGojwRVg4cgdMp2biWVAxhNfndnH5p5cXJzgbPfToTOdkV6D+lD3aWpuCEeQFw+13HyYT8jW7kMxPBUUpyNLcmhkyma0TzM5PRFk3WyZmGZzwxGwIuB0M83RHiaI8wJwfUNkmRVFIOcVMT8oqbTZS4bDZ6OQzAkttad2dTczQq5EgoL0M+Owk3xdmQq5s1T3RNUZ2M1NqpG0jdnJrP1BiZmZBtyJrIbRpdyG14/7aM4HO4bIwZ7ItnX/+A0a4BA91JjwqMBAIBJk6ciKeffrpD9SkKWDStP2rrm3DgYnIX9651GqVyHIpJxcjePozAyIBukEjkqBM3wcxMgIb6jmVR12cWvjsV9WIJNm7c2OX7Sr2eh62/nMVz70xEnbgJp/bH44KyFrWN938cNQC+u3ERH/cfg0V+Efgt7Vq72zwogSJ7PB04GKllFfgz7kaHt3PxsoWHnyP2/3ERIf28sD21/dVrXY2XmRUmDw7CQHdXZFfVIDovH9uvJ6KgpvZuHS5thrDRvVl4zmWx4CWyRJCNHcb4hWOxRxRuirNxqDgWNUrdjtQIjI3A4bIN02gGdE6PCox69+6NnJwc5Ofnt18ZwOAwL/i62eK9jdrXXNwPV9PyMWd4bxgb8dAoY67CMND9FORXwdPHDsVF9yfi1zcCIj3h4m2Hb175o9v2eTMmGwmxOXji2eEYOi4Yj/vZIr9UjA27L6G4srb9Bu6hQSHHiujj+GTgWPiKrLHm+tn79m1qC1u+CRb79kOwpQN2XE7BwZT7M5Z86cPHcPVMCoZMCMW2daegGaW1rt03oVYOeMKnN1xMRLiYUoD/HTyOAvHt493B7BkKtRpp1ZVIq65EjPo0rHhmGGobhHcCZiOtPgs7Ck6iQambHJCe/o4ozq3Uyb4NGLiXHhUYsVgsSKUdezO1NBdi9rhw/PD3Oci07Fd0v9Q0NCGntBoRHk44n5bT/gYGupy6uiZGouCeBpfHwdSlI3H4z4uoreqYiLg17OzsMHToUDg4OCDEejg8A53BuqPBYreSt4ZDTvsVV9YhyMsBv6+aCwDIza7ExUsZKCqqQWpqMfKhYrZxDw0KOV67eBBP+Udiw7Dp+C3tGk5mZkPdieWj1kIhnvCPwHAHL5wqvoWnLmyDIv3+FkF4BLmAa8RBU4MMNRX1SLuRD4yybX9DLWPM4WF52Ah4mFlgZ1YCjuYfhyaXaRfyIFTJ67Cn8DKOlVzDLLd+eC9gMX7LOYj0287s3QWLRaH/6ABkJBgsRwzonh4VGAUEBHTI2JHNovDMzEG4FJ+NjLxywEj3D8Crafno6+VsCIz0BN9e9khJ7LzruS4ZMSMSjXUSxBzv+PQOi8WCvb09TE1N4e/vj8jISPTv3x9nz55Fbm4uajR1OPDrOYgrbwdafGYwoRGQ+p7aoGYdHI/LRm9fJ0zvH4hxY4OhUKpAURTmH92L6qa2l7SrNRpsTIlBbHkBFvv3wVyv3tibmYpLRXmoaOqYmJxFUQi2scMkn16IcHDE6Yp0vHh5F8qlzd+FhY4HRhwuG6/9tBh1YgnCBvlg7eo9Hd5WmxhzePggchSy6qrw8bWTkKtvT4kxnNg6h0Qlw86Ck0ity8GT7hNxsuwq9hekQIPuMVl09rSFnbMlNq851C37M2CgLXpUYBQVFYWPPvqI8bnamXyLmzYiBEYcNrYfvgZKA8jMmYERPYGrmnYkjMTkjceokhzeV5kykzQKS0k1tUlhy/h2YU0uZgwJAbcJd32UjEuZb9IV12yIMn3BjvMxMjOt/dBPEOgXBBMTAUYNtcOp8+8x2jTQQvFQY7hamUPoYYbTFmIohhrjt7T+RJ0ge9KJ80q+O1G2NCWnGjg85u8YakHqNUptyeyZCgV5AqrKmeaC9ESgwk2iu/93c7JE8FRHLFkyDwVlrb9ljzFqHsGxc7PGwCl9wOFyEDAmDBwuG5JGGQrzqnBFVIs3r6WigWcB+FqgYCApQK6WML+bXEGfDm4ZrbqJXFyp2As/U08s9ZwJS545/p4/E9P3/o2G29txWklOqqxu/q438svxSv5h9PNwRJSLDxYE9UappB6pdaXIqqtClbQRcpUSxVIx3E2aLRfMeHwEWTigj7E7FGoVjqbfwi+X4iDJbw7G+LeXXDS6kvNNLidan9bm8jh4bd0S5KcXQzDcEe/HHkf2UwBgAUtLMVFXyCXb4PCYo9NyEXn/USjJAI2ibXLH4NGYw8Oq8JEoP1GJIztj0OyI1jxax88hEx+jjlwMorEl7SioSrLfAFA1llw0kN9fjVTIcT7hDFYPGgmRuT++unARqts3LI0l2VEWizl/10QzNuXyyW14eeR5ri5rTsxtGWSL8swSyAtp38uAAR3QYwIjDw8PGBsbIykpqc16nj52GDc4AG9+safLjRzvh5JiMfhcDkwFRqiTaE9DQVHAgIG+OHr4ptbafJihKGDJ0EgcuZkOhartKR59ZtLoYPzzz/o23c65PA7mvjsdwYP9cHl/HMoLKhG/6Rwy01sCv5ypZv+5fWdIq8/GWze/xCi7AZjvMh3vDxyJt88d7fD2V8sKcLWsAEIOF74ia3hbitDH2hkcFguWRkK4m1ogqaYUcrUSao0G6bXl+DTmHDLuycbefn751pny7Gi4+DhAo9HgZFUJsuuq299Iy3iaWuHjiAk4WZyBEzuvd+u+yxob8PLJg/io32jM7R2KP+NvdPk+Q4f6I+N6x5MkGzDQlfSYwGj06NE4efJku/lzZi0chL8PxqLuAVbJdDXpRRXwcrBGfJb2VqdRLAo2tqaIuWpIXtkRhvt5wlRghF2xulmlqA1CA5wR1MsRi//55z/rBAQEYOVXr6IgrRjvTf4csqbbIxvBvt3US0ANDU6UXcaVdDbWRU2FRCHHV7EXIUXHXwwkSgVuVJYgsa4Qe9DyUkS1MlqBSmPmZ/dB0EBf9BsXCq8QVzRJpNi79gT+nNj9QmQHoRneDxuL75PP42pFHly0PG3WERRqNb6/fAVfjB+L5LIyXC/u2pEca0cLnPtXO7n9DBjoLD3GFOdOYNQWbp42EFka4+I1/QwSpPJWjIs6ia+vAyQSw0q3jiAQCLBoaAR2xSb22NEiFovC3GmR2HP0BmQyZoDB4XCwbt06fPnll9i79hg2vvNPS1CkIy4V52PFxRMY4eqFjWOmI9jCQaf9aY3gEBcs/WQ22Bw2VCo19q07icsHr0NJT3LXxQi5XLweNBxHClNxtaJ7BdB0yhsb8UtMLF4aMABcVtc9Krx7u8HSXoTK4p69QtTAw0OPGTFyc3NDampqq3+TWzQPmjsFOyExvQQamZqI+FStaC6NxGSZLSdHouiGjvUeTA0IHQ2b1BKIEsmly2oOAAEF5e18jjW+zBU/HNpAV6MnGUyVf0b2a1aiDU79fRncgu4f7u9phIaGgm/BwmXrRMC65XNZDfnbJqrJB7eXLbmEOLeK1G+o1UwN280axzbr0I3weOZMgTE98afLgTgs/mgOqKJqXHzrT4w1XUT8nfvWUDwd1RfVDRK8d+ASZCFGQAjpui6zJs8fE1/yvHE0JrN85hQyV2FFeJMP7NLGtt2UNSxgf04acuvF+HzIWKyPmIXv917AmZuZkCmaA9Q6T7JfahPyvFdKaLeqVo45ZUYGuw57yWOsNKHpX641G2R6h7ph4bQwbLqegmkjghCXU4I9IgU080OgkZAamWol+V2rWWR5chDTJPLgpXDGZ/eicWzp59LgSDTFNuHSlmQ4o1nkzs9hLmFv8rYmyhyJiCjXu5ETiaZ5zNE0loI85tZxZPBTNVyGi/JMTFH3wvh+ntidTrp9axqYI1kqmqZIUUqew6Zicp/HJX+i78gV+Pznj/BvwQ5GewYM6IIeM2IEoN1pNH8/BxTp8VtHaW09ejnYtF+xg1Cg4OHvgFJDUNQhHBwckCruueJOr97uCBkWgK+f+Zn43MbZEgtXPoZ3Hx+Jc0nZ+P7AxU4tde8qEipLMfvQNmQWV2LxmEise2kGBgd5gMdpxRKgm/AOdcOSDx7Hrx/uQoSPEygK2Hz0qk70iaOcfNBLZIu/tl1pv3I3siH5Chb4RkBk9KCqrbaxt7dHSUnPvS4NPHz0qMCoLXg8DoKDnBF7LVfXXflPGqRycLX4EJjrMQB2TpZIva7bIfeeRHGTWNddeCBYoDDrjcn495sDqK9uWQVm7WSJl75biJKcCry55SBOJWTq1aIDOnVyGd7ceADbzt6AiYCHxVF9sHLeaPhaW0HE54PXmm9SF3EnKPrto13QqDUI8XDEj/suQaXu/gNoZSTEEr+++Cnpot5NjWfXVeNiSQ5m+4ZovW0ej4egoKB2F9UYMNCd9JiptPboHeqKgoJq1NQ0Ama6ewNtC287K1y+pZ0gppeZA8Y7hmLPu6e00p4B/WaRzwA0XGzElQPNaTMoisKoJwZi0OQInNt1Fae2XkbDIu0/uLoCmUKFPZeTEJNegFXzoyA04uGtwYNhbWIMCsDmuGvIYjUv466WSlAsqWu7wQfAx9sOS2ZG4rePdqEwowTv//MyfjkcjbSCcq3vqyO8EDQIZ4oykVxTBlc9vC1vz7yJHwZNw99pN+7aLmiDKVOmIC4uDjU1+jvSb+DRQ/+uwFbg8/lQq9Vk4th7EHvz4NrPEdHlJRB78xgJYs3y2hdQKgWkZqHOjZw/F5aT+gW6JgkAjKrJG0b5ABFRVvGAWrYC8tsrpNXMPJhQ0LxC6FqKmuxmMz2pnQWumVVgxbqFzEYM3GWc88t3/z/Uqz8aazhoLDIh6rAl5Anj700ugTfhkiJnM3uynFROy/oJoKKO3IeHbRVRzq8mkwOLpcxL0X1zc78cHUUY8ao3vtq4BZS9HQRGXMx8dgT40+3xTfZ1JESVAlGesDEn/ZfkSuYLgkZKCu6muJFv6hVyst/+7sz8WXRNkVhCarSKckj9i5UzqbUz92z2F2pEIb6rLsVkxwGwVrkipqQQVgIhnu7bBxxu83lvyjUCh8UCaJIidiur0lRq8neUT1dCpdZArdGgUSJDfXnu3b9pNBr8/sM53CqTInx8JHLzqrFXcwsIItuk5GSb3r7k8XAUkkFbdJkbo1/0vguLyQ/GN/qhVy8r/Pb5BTgqeeDW0oSGKuZ35daS9xp2PWmgWTuS/E1YCqbQkp7E2iqF/J0qw1t+56K6JmRUVWGAlRtO5jYvbqHM2l9MYpJLHj/LJNJvKWpJFP7888922zFgoDvpEYHR4MGDce3atf/UGLFZFCJ8nPH1rnPd3LP7w8bEGMr/CO7uFydTUyjUPXNlla4YND4U/8vteUuCx40LQUxM9t20H4vengi1Wo0PbhyFVKXbdDedpbipChuzDkFUFQEu+56HqGnz96IAsCkKHC55rluZMcXqVXUtAmNjrhGCSps1QwEe9qipk+Dx0cPv/l2lUmFMr+UAAO9AJ2QkFwGtxDRdjYWxAHOnRuKHX89AqezeFXD3y+XCPPRxcLobGHUWFotCUFAQrl3ruuTBBgw8CD0iMPL392/z4rEwEYLFopBZXPWfdXQNRQGuFiIkl5Rppb3xXr74JT5WK209CrDYLJiKhCjIuL8kp7rGztYMwUHOeOfdnQCAyU8OhpOHDT5etgXST8113DvtoIYG10tpI1MW5IgI3UHZSSVmtFNULSLKMYebU74EeNhj+YKRePfdd/HBBx8wtuMLeKgXS3QSGD09IhKXr2XhVo5upvDuh9LGBgx18dBae/zbqWWa2kkXY8BAd9MjxNcURUHVhu+Mn4sN8sr0e47az9kWJXV1UGhhxIgCwOdwUNPBhLoGgLAhvijMLr+ba6qnsHDhYJw5mwqpVIFpTw3D6Jl98fOHe6CQ96zvoUtSckrx1o/70bdv31b/TukombCnrSWCXeyx91jPcK1PriiHr5V1+xU7yMixQTh6tONu6AYMdBc9YsSIotq+cfUW2SA3sRSmhc1vlfxy8g1EZsVcZirIJ0cOVKb0OXnywUPJyTdWqpopCFVbi4iywqTFw6OXrx3SCisInyLTDObUYIMj+ZM0+pFvzn6fFyJyRADgUA3T93uue3N3oXRptkewC3VHYlYFYMcMKDj2pLtxZRPp+VIjI88NupbF24rpM1NQJyLK/a1yiXJWMWnb0Fq+NVOKA083a/yz5QLefm0cnMIdsGTHPpSPFgJwBZtNnoM8dvvTapYm5Hc9UexHlOnaHWeT9kfYwq3IZLwH60mhzlwPcmTzQpUPow07X/IYylWkPsrOhNSm1DSR/jgAMLsXmTrjhGnLd2tg1cCY1wuhoaG4ebM5EGlyE8HcXIBe/TxxKCYTlKqV+wxt5Cqn3IooZzSQnldCC+boh7UXbST7enNwMbafF85G3wI7uRL3Krs0PPIeUBfO1LDRNY5smkeTgDYwTddQAoCwjHZPU9LOH9prs7JRDY1KA7a0+Q8qDvPxoSoltUzWCTSh9rWUu/91nB2Og9E9b2rbwMNPjxgx8vHxQVHRf6fREJkLUVqm/ZUr2sTVWoTcSu2Mak1YMBAndlyFuhVRpoHWCeujvSmA7mLkmCCkp5bgySVDIW1SYOaWf1De0LFM8wZIZGol1q1bh8WLFxOf9/K2R05eBQqKutcLzIjHwZBQT5y9ntmt++0sbIrSiqUCi0XBM+S/TXsNGNAleh8YmZubIygoCJcuXfrPOl7uNsjOq+jGXt0/btYWSCvVTh9NRcZIuZajlbYeFVQqNZJu/nfCVX3DkifAwqXD0LuPO6oq67HhhxPQY3uiHkFqaiocHUlHchsbU+Tld782cUioJ3JLqlFSpd8vdPei1migBuBo2rbTeUfoOyEc5fmVbb7wGjCgK/R+Km3EiBG4cuVKq3mh7sBiUZDoOB9UW5gL+RAJ+SgW95yb4MOGUqlu1zldX7A0EuKH/jPBM+Lgi7f2IS2FuWTewP2TmJgIDw8PUBQFjUYDoZCHvhEe2HMgvtv7EurtiAs3e1Y2edZtSUOuWNzptkbMHohd3x/qMdekgUcLvQ+MRo8ejT179vzn3318fCBVKCGBCmpe84Xb6EzqD1rzHNLQ5sdZTaQnh9yGbIOfSj6cNCLS7wUAmlzIz6jbU/ZeVpYoFzfAKFuJe2fgywa2MhXGIvvKKyTNjspsLqCsfioO537fpiDdQDMK8+bjp+axoDThYpA/c+riRqkTUaZriIRcMuiWPcBlc7qUzGrvZk/zNbqtXTHn8fFO8BiIuEKsPHcahwPEQEDzuciixf7qJDOinGtBnn9+IfmMfpQ10HJ95YqIsj1ND5NQykz4Ks8h26gLJjV8kwJIb6TEemdGG3RqGkkdl5mAXFjgZkxOdbWmMTpUEEiUq/NFRHms1VKYsa0x1mopNBoNxjzTB9UCJY6zS4AwLjz2Ml++8paS1yPdjypLSWrFpI1MczJVMvk7WYo48Pe2x6YzcVAIKahMyeNX600eC1FaA+hUhJO/gSiz7RdDhZCpMWJLyfuPwpp2T6Pdi5RmKqhZaihv56QzzWBeBy77aOImMalRO6rcDltbW6htlmLd1TVt9tmAAV2h11Npd6bRLl68+J91+Hw+KqoaoNaBjX9HsTY1RlaZdobrBwwYgG3bthmCovuAw2HB2tIEMrn+e/486dMHHqaWuFldjL0G/UWXMjrQB9FZzOCxq3GxFqGspgGVdT1LL2bM5YGiu1U+AK+88gqOHz9uGC0yoLfo9YiRu7s7srKy2pxG69WrFxqb/vvv+oCfkw1yK7RnJ6Ckrx4x0CYCPg8ajQZl5XVwar+6zrATmGCgnTs4LDZ2ZveMJdw9Cf9ITygVKmg0Gjy9egbkKhVOJHe/+LmXsw3yyvXbXqQ1/CxtkFLdOb8lgUCAIUOGYPTo0VrqlQED2kevR4wAtPtWYWlpiZwC/TV2BIBQdwckF2jH2NHAg6HPI4oAIGBz8b/eo1AsqUVidQmuVRa2v5GB+2L+21Nw+cgN9B8fCv9ILyzauBNSRfe/ZIR4OCBVRznZOoMZzwiNncyT1rt3b6SmpkIu119NqAEDej1i9DAwPNAT9U0y5JRXQ9B+dQOPKCMcvaFUq+Fjbo33Yg/f/VzA4WCwmxuC7ezga0ma61G3Yz0KFErr6lEgr0OjQo6LBXnIrRV3Y+/1HwqAWqVGZXENpi4diR/f/BvKIWbtbqdtHMxM0cvJBj/u/+9VtvqKj8gKqdWdW1k7ffp0nDlzRks9MmCga3goAiOlkIJM1DL4ZXOB9jbWitu0WkSa+LGqSAM5uoSyegSZL4BSMUcg5KbkAJxXgwCL+obhpz/OwjRPBQ3NYVfDaWUUgyZ45Ov3YJjeY3TmJowsjMEWj4TRmZvIMQ1n1FGEkL+bxdBcomzLJ8WvYjkZ4vJbMVasKibTdVA88hykalsuvUAbWzwxJAJqtQYxhUVIyKkBBR5mmffCE8PDkFVShfi0IhyrTIdE1vKm3direcEAi6IQYGkLLjjwMrPEF2PGokbahNjEQlzOzEPOPf5Z8hBS12LsRH43urGirIk0DgQAtTW5UMHfghwNLZa2napkpl0c47Mt8kFEubyeFBffqCQF3K0lkWXTEi6bZrR8l1B3ByidTDH01dH4+dQ1RIeaQUV7U2lwYQqn7a3I70ZP/kvRxtw11a2Ir/kt13Swux2SU4qhLGy6+6LEySPvV8ZC0lKgNaySSSNJ+r1FTbuzCyuYx8uohLZKljZ6xq0mhfc+CksUpdTAIrm5cfttTA2cuokUzVP3eB4JTfno168fVq5cydjOgAF94qEIjPQRa3NjvD1rNHYdjUdGD8iD9DAjlchBsSiEDgvAf8v4dYOLmTk+HRGFmNJC9HVwxrrrMehlaY2XIgaAJ6bw0d8nkF3avCJLQVs01CBpCZKKGuugUTY/HH+4eQXhNo4YKfTEyikjUVxThx2xiUgoLO2276VvjA72hr2lKdYfvILotO4XXN/By9IS6fE9b1qdAuBkZY70ogcfMfKL9MKNGzfa1IwaMKAP6HVgFBISguLitj1cGhsb4WIr6p4O3QfLJg1AdHwOzl29peuuPPIoZApsWbENL36/GKrjN3AlXj/MMfkcDt4ZNBTXS0vQ18EZO9OT8EqfAehlaY0/k2/g8t5MPOjCnesVxUjPrsCm87GICvTBK1GDUFpbj7+qr+Jm9aPli2TC52FMb19cSMzG8fgMXXcH0h6wOpKOv50NVGo1KmqZ1gEdZci0SPyw3bBE34D+o9fi61GjRmHv3r1t1klISICTtX5lGR8d7gORCR97jt/QdVcM3CY9LhtbP9+HGWN74+lZA2Fn1Xn33s4y2ccPtTIZBjg5g8tmYbirB1KqyrHw8C4czEp/4KDoXhQqNQ4npGPZH3twOTMPrwYNwyuBwyDkMKfIHkY4LBbWzBsPDouFDYcNebkelCB7O8RnFT3wORkyxA/GZgIcP35cux0zYKAL0OsRIw6HgzDFcFhxyKSTLJOWOQVOKRu2JsZwp4xRVtE8Z14xxJaoz9AcAWCJSa2FwsWS3LeYnMNnKcg7QlUwM6Y0yQdMBEZ4fGgIvtl1Hg3WZB36vL95MrMNXj25H5tzJXf/T1EUIt+NxL59+xjbGWid47J/Wv6/8x9cO34DE5eOworH+mP7F/uQcD4F5hfI3z7dxIsop4pITQ0dNp/pKUXXFLGqyUDEkxLh6ZAIcFgsaDQabF1/EWfPpECjwV1LgbJIUu9jmUYfaSD1LPxq8tyR3HMZKNRqHLqRjhNlOXi6TwTWhc/BD1eu4GoFmSZF0kSeky4BzOm32ibSkLBGTpotFtWTLyqmRqTu5IfMkYw26TTWkAIgR/f2k9kWl5HXvX2JGhGBTnAxM0NxiRg53vVEWhV+CXlBSi2YHj2VFeR3sbIgR0xUfPJ4sU4yE1ZXj2z5/hozJVQCitAjaixJEThd+yN1Zr74seTk+SW1Is8vJc3/0jyJmQtOZUb2VeJIbiS3bjnf+vo44eqHF+BwsSWFh6aVXI0sM/KF42jpOgCAn88r+PXAeqhb0XsaMKBv6O2IkYODAxwcHFDRzlJ8pUKFG0kF6Bem+yShFAUsGReJ65lFSC/Qfu42YzM+XF1dDYFRJ5A2yrDru8P4ffUOPL1mLt7YtAzWDqJu7YMxl4uPJo+GOZ8PmUKJN3cfwZnTKVoZIWqPepkM3166jJ+io/Fi//4Y7qz766arcLQ1x8Jp/VBd24idR+P1ItdclVQCbyfr9ivqEWE2DrAWGCMhOuuBtnd2dsYTTzyBq1evarlnBgx0DXobGPXu3RvR0dFoapC2W/fkhVSMHuoHvpFupweiInzhaG2O348xV91oAwtrU5iYmBgcY7VAWkwmXhu2GmkxmVi+fjEiRwa2v5EWEBnxsfeJeXCxMEd5fQPe3X8cqVpKLnw/xBYW4f2Tp7A4MALDnN27ff9dDY/FxhuLRqKwVIycomqcidG9tggAsuqq4GSjX1P/7THfvze2pidApXyw0Z5evXohISEBqQYndwM9BL0NjAB0OO1Fdl4l0rPKMHMScyl2dzHYww1TBwTipz0Xu8Q0zlQkxJtfzkFmZvc79T6sKGQKHNhwAj8t34b5b0/E/Dcndun+JvfqhVOLFkOlViOvWox156/qJCi6Q0FtLVZcPoElgX0wyNGt/Q16EFM9AmEpMoaZCR/XUwq6ZTSuI6RUl8LF1qL9inrCFE8/8NhsHM198MDS29sbN28anNwN9Bz0WmMEACeU2xmfjbN4gygrBSz8figWH740ETHpBUgsJJfD1vQhEz0CgKCCDF6UQjJGLBhNahzsYsn6/IqW+gN7uWFBWDhWHz6NAtQCt0fKTQrJu7GRmAz0igeTGhIA4GbQ/EgKmuf0bW08IK9rwNNPP83YxkDHae18GhPNxpp5P+B/v7+AhrJqHP4nE7J7kgqXjCCnPhrcyd9VY88M4I3yWvQ/vWyt8e3j42EqNEJVVSNOxaTB1sQEN/Zn4s4jstqfqU0xLqXth/YaIyOlUZCLyHPHLJsZDRjTJEOFwjp8FX0R7wwYivwqMUqrSe1dXh7z2nky8gpR3p8XRJQdzUiNTH4NGQh4W1Uy2sysIo/x5JAEst8ccon3hTJSBwYAbn83X0/GQh4Wftwbh2JSEezp0Jz2w5gCx4TUirEUNI0R86uCk0veByppXkl8Y9LBualPK/5KpS2/rYLNBkwpKPpyUCdv/k7W8W3fhtlS5vlFP18EleR+Ha7QfI44zH2wMkl39dqB/kR5QLoICweE4vN1J2FdCqiLS4i/UzymZ5OmUUKUjYyMMHLkSGzZsoVR14ABfUWvR4zuB3F9E37fdxVLHx8ED0fL9jfQAhQFPD06EktG9cEn/55GQXX7AtEHwdJehHnvTseeH4+iqamp/Q0M3DdFmaX4bMFPENmY4b2vn8Azb42HtV3npzxG+nri40mjIeTz8PGvJ7Dyl8OI9HfDlt1X2t+4m0iqKMPmm9fw8dAo2JoYt7+BnjNvdn9IpQrUN0qRU6xfDqlylQpZ4mp4iPR/1GjayBCcupqOgtIHz+s2ZcoUAMDp06e11S0DBrocvQ2M+Hz+fWeQv5ZcgOOXUvHe4jFdPo/v42CNNfPHw8nSHC9u3IfCqi4KihxEePmnJTiz/TIu7o3tkn0YaKY4uwy/vr8De/64BLlMiXe/mo2XV03DrMEhsDQRgLqPxOIUgLkRoVg+eiiMeTz8b91BXEnKxfxxfXD4SgqqayXtttGdnM7Lxpn8bLw0sL+uu9Ip+kd6ws3VGu+s3o0wH2dcSc7TdZcYZIurEWht235FHTLA1xUu9hY4dqlzuqCQkBDs3LkTCkXbKzsNGNAn9HYqbeDAgTh37tx9b3fkQgoqGiVY/uQo/HrgKuIzitrf6D4wMTbCnOmRCI50w59nr+F0YhbUXSRgsDY3xss/NgdF53YaPFi6A41Gg/joLMRHZ0FobITAcDfYjPfCd0unQCJT4Fh8Bq6rypBc3rqbOZuiMNrJF++NHw0hj4u8ajE+P3keWTml6BfoBhMBDwcvJYM5iap7/kq6gS1jH0MfZyfEFWr3uukOeFw2ZkyLwPfrTkIo4MHR2gzVdY3tb9jNJFeUY6ynD5CS0H5lHWDKN8LTo/vi5z8vQCJ98IDGydsOAwYMwC+//KLF3hkw0PXoZWBkY2OD8PBwfPjhh63+vSHEjigLS8l5/huXsqGqluGp2QOR4l2MXfuuo7aenIJqsiG/uoZNDgfwaKPHlUEcRHo445nhfXEjvxjPbdqDRpmcGHOjp2yo9aK3Se6T08qsmHV8sz7D0toEy5dGYcuf3+LHv35kVjSgNe71OgKAsawVAABJkwJlJbWw9JShml8PC3NjzBgXgKepvihraMC1wmJIlUoYiZu387C3hJ+LLQRGXCQVlmH1vydQ3dD8I9cNVmL0MH/8lnUDZYOUCPhKTOyz0Zs5tSITkeFToz15/pjQMluI/Wn52NTtD3Fx68h9bMtKwJzIIEQ3NI+09PHLZWxD1xQpafnVeCxypLePA+mV1KA0YrRpyic1RNeryNxoxWUiokxVMtt4zd8B7Hopqg7dwIxlo3BeloPEoBZxu4UZOUpXLyT1Q6YhzGk3es47E1Oyn41F5EVv6S5mtFGbQk7tF1fXw8pfCJa89QF7iuaMLbE3YdSxSCf7Qb9/sWRkG6wG5s2mYpofUVaaNMsDXps8BKdvZaHo2xMQ3fN3NX0EX07ed+kERHri0KFDKCgoaLOeAQP6hl4GRosWLcK+fftQX1/ffuX/IDG1CCvW7MWcaZH4bMV0nL9yC0dOJTECpPZgsyiEuDlgcv8AOInMsO50NK7nFYPd9j2hUxibGOF/Hz2GuOgs/PXXX123IwNtYm5pjGVvT8C/0mR8nngctYomeJhYI0zjg74uzhjo7oo6qQwcK4DH5UChVGH3xUScT8jGrUYysnYwNoWTiRkul+guT1dHOJGbiVm9gtHX3hkxpYXtb6BH9B8TgiN/NWetDx7ggw+L9HPqOU8shpVACFMeD/XtBBfdzZJBfUBRwD8xN9F+Ktu28Qx2RXz0ea30y4CB7kTvAiMul4vJkydj6tSpnW6rSarAr9su48iJJEyMCsYXq2YgI6sM8Yn5SC6rJIKkO29cLnYiWImM4eFvC0sTIfwcbVBZ34iT6Vn4OOEMFPepe3oQ3DxtwDPi4tCuONTUPLjw0UDnmLt0GC6cSMae4Bt3P4uvLkBsei1+iY6Dl5Ul2CwKxrdnnfLLxZArb58ftJf8cFtHXC8vhlSl33mylBo1NibE4sXwAXjq6C5dd6fDUADMrU1w8WA8/MLdYWFrhrw0/bx2FGo1iuvrEGBri6uF+hN8DvJ2wyAvN7y87QAUrbha3w92btbw7u2OHa/v0FLvDBjoPvQuMDIzM4NKpdJqQFBWUYct/1zCjn1xiAhxQy8fO4wfH9JqXYlMgezCKuTW1OFGTjE2HItGVYMEKuZq6i5BIORh0sxIHNl7HY0NhizUumL4+BBY2pjh56+OAq2kfwGArKrmNAumHcjJGmJlj6SqnpFV/XJxPqb5BGCCZy8U4sHcjrubZ/pEAgBYbBZmPDcav6/Zj8ZJ+jUacy9XCgowxNVNbwKj/oFumDMwHKv2n0SDrPPHbc7bU3Fo0ymD6NpAj0TvAqNZs2bh5MmTXdJ2Q6MM565k4NyVDCJXEcCco5dY38cSJC0S3s8T4upGHNsfr5P9GwB8AhwxYkIIvlu9F2qVGp1dvElRQB87J/yd3nNM7v5NT8Li4AhsKjms6660y+sDBmKYuzu2vLAdw6ZGoLq8DvHn04FJTu1vrCPO5ubgxwmTYCUQAHhwyYA26BfghnlREVh14DQKajq/utY7zB1uAc7Y/N5WLfTOgIHuR68CI2NjY8ycORPz58+/+9k43+WMeuW2NGM2S1L8yZaRq8ToQRAAcKRkHYWQDISM6mgJOWl/b20ESc0jtzHNJbdR0BI7uu8njfAAIPipYOTF3QKV0/NWBfVUxvm/c/f/xqZ8jP5kGLbkpuDKkwBgAhs++bCodCbT1NSDeTK4nGgZ7fPxsYO4WorKxEYI0Zy2pmIgaWhoUsScYmuyIs8fu1hSPFzjRxMPZ5PnOa+OOe3LltNNI8lrp3Jw8xTK9ZpCPM/tB746BEli8lxks8g2BFxyZLO4nkyKejPPnSiHBuUy+lUdSy5fvyNov4NtOblPyzPN4vCRj/XBmJGO2PjCDhz30ODrJwdh48kYFMz1wlDfJGIbqYpMGVTdn1yxll3KdHi0dSJHrquTyd+NTTsX7EyYQQ4vmPwdSgosUYRaHCvIwLMDI/FZI6nDsb5Bbm+eQSauBQB2HblfpUjY5t+LJjkw2rDIUCAy3B2zhoXj22+Pg/r7HFzv+fsx2qKEcc4vkw20oo86Wr4BTzz7Kz75cTV2lxkCIwM9E73yMbK3t0dlZSVKSkrar/yQ4hfhgVM7DEvzdYG9swWWfzUbsWWFOJavvdxavXo5ILWk9eX9+opSo8aZwiwMtPHRdVdaJbi/N77d9xomzBuEn1ftRlF2Od6eMgyl4gakFPWMY/17SjyCre3ga62bpLKR4e6YNS0S3647geJSsVbanDhxImxsbPDvv/9qpT0DBnSBXgVGAAwJUikKGvUjfgx0gL2zBZYun4ijO+PwV7p2pzH5Rtwuc0XvSi6V5CHSygMs6GZauTU8nKzw1pMj8fTKqTj4x0W8M3ctKIrC6t+egUypwjcHL+i6ix1GqlJiS/I1vD5wIIy53ZsAe0AvV60HRUZCHt5++2289957Bm2RgR6NXgVGNjY29+12/TDRb7APKgqrHziLtYEHg6IoTF84GNGnU3D5ZLKuu6M3ZNZWQapSwNNUP1yah4Z74YVZg8FiUfjwqU04u+8a+kcFYdYLo7Hpo7349tCFblk1qk2O5t7CraoqvDxgQLcFRwN6ueLJ4RFaDYooisLC/01BSkqKIWGsgR6PXmmMFixYwBiCVVkIGfVUtNyFag5N/8OjGSvWMwONWi+aHkNM/l3i0Lbho5LpuQajapqAmzatL8og+6HmkvoON197XN0fA5W4540u9BSiOLOJMkVRGLZxHKQiU2wQF0DxnBXAIvU+1sakFqXpDKlFsYsl9RwAwK1u0QOxG2WQW2rQ5NzSrstx0k9LakvqhQDAtIB8yNM1RXRdnJLWhLCUuaqxMoS8nkSZpE6kqp68JcTnV8ND6YVr+S3fkW1JbmNjQepqaurJfbj6kKvxEm54MPpll0peGxans+/+ny80wpQnByIo0APb/rcdqTFZcHhzNL6YNwIFZWJ8dSAaOaZKSPqQv0OwKbnia3tuBNnPRPJ35Hgz9UF1TaR+bMRw0q36TKYvUZ5hf53RxicxE4gy35L87b/POYNXgofgq2lj8H7cMTT5VhB/r05i5n7UsEyJsoA2e0ipyJx3FhnNIziR4e6YFRmOb788jqo/TuNem0zKnNSGjbN4nuzHCDeibHmxZTlm2GBfOPdyxEevv8XoqwEDPQ29GTGyt7eHn59fl61I03dCwtwwZLgfbpwxjFh0J2MWDoOHyAKrz52CQm0YqaOTXFmGcPvOWv09OP59PPDyl0+Ax+fiq2c3IfnKLQydHok35o3AkcupWPHzYeQUV+usf9pAoVbjq5vncDg/FT8Nno6JTqHgUNpNGmNkxMHkcaFanz4DABtHERa+NR6H/r6C+HjDaloDPR+9GTHy8fFBYmJip9yuezL9Bnoj/louKgr1Kxv4w4y9uw3GLR6B1+OvoEmp38aLuuJyYT6eD+8HLovVrYGjmaUxJiwYjKD+3jj2zxWc33YRAOAb7oHHXhyLj/84hdTcnuEL1VH256UgqaYML4b0wSSnUGzMPIfr1Z1LgmvC52F0iA+mL/ZDXkEVvl57HKVl2h2RnrxgEE7tvoarp1K02q4BA7pCbwKjsLAw5OXpXybs7oDFomAuEuLk0URdd+WRwdhciBXbXsWBDSdwK0T/Eo3qCw0KOeQqFawEQpQ2MpeNdwUWZgJ89M8LaGqQ4bNnN6O2qnm/PmHuePGbBfjz071INXs4Fyhk11VhVcJe9LXyxFPeQzFT3oQd9ZmILSi8r8A0wMUOI4I8MbCXG5Lyy/DDz6eQnVvR/ob3SUh/L7j52mPb2kdzpN/Aw4neBEZRUVF45ZVXGJ9TKuYNkO5BRNcUsZTk3xvtmDOGdE1RI5mzkjFnr6EdKdN8Zr/kJm17IamMyL+fvLISABAYGAiJPADf/7wECmXbqznG2S4jyoULmjUOJnwevOysYGbH1GSZZ6uRmFYEcV2ztsH4MDncTU+i+jAxzu1Vopz9lCucRWb4aMYk7EvJwCbXJnCdyMDIzpwctUzNJaeS6PIybiUzYMie3bIEuypUCHDqAV7Lg42uKeI0MkXDLAV53lK056LoFqn1KYsg21Rzmee9eQ55fhmVkX3n1pJ6FoVIjZSKcniaWaKsvvk48QXkflW0ZLUz/W4Q5R2nB5J9yGSucrM4n9v8NysTPP/RTKTnJ2DRokWorm6eJhs94CP0mT8EOSV1iC5uRF2oMaMNDe34/LV2HFGuCSe/u0No+8v6mxTkhR9b6kKUg5xJ2/OPLk5mtGFlT/qVuZiJifLNJHei/GzECQAXkVTzN9xNBmHBiGl4S9AHqbX5KJBUoFJWh0pZNSpkzSM/FAB+bQCsBEIEWdsh1MYenAoNzl5Ox3t/70ZNrQTG59JBV7Fp2OR0nTKQ7IeGRf5Oato98FLlL3hh7j945+MXcTrxNON7GzDQU9GLwCgiIgJyuRw5OTm67opOGDJkCDIzMx9oiauZwAgrHhsFGzNjVDdIkFZTCXrIFuxkhYUz++PMlQxs26efiTW7i8lBfpjbJxSHU9Kx+cq1btlnvUwOTzurbtlXVyDvppVeju42ePnz2RBX1WPevHmMaXW1RoMrF7TnL6XvqKFCdsN5bCuUwNZIBHdjO3ibOsDXyAkTTPrc1SFRFFBYpUZubQ0SKkrxd8pNUDtroe5i24833ngDFRUVOHPmTJfux4CB7kYvAiNfX19ER0c/sh5GAwcOxJdfftnh+hRFwTPIGXNfnwDzYAfsiU3CjisJ0GgAuTmzvk28CoMjvTBmaAA+WT4VSR622PvTsUfqePce5Ispiwaj1JaNV3cdQll990wLAUBmZRWCffVjybu+EjWrHyYtHIzj26Jx6M9LrWoNNWoNvHvZ49L5dB30ULeUy8Qol4kRU9383dm04cOcTHui7NLFcrAwXyeMH+mBmTNnPlL3EQOPBnoRGM2bNw9fffWVrruhE2bOnAlzc3Pk5uZ2qL5/H0/MfmUsLGzNEXcqCV+ePQdlB7QHF2OzcDE2Cx6u1li5YChGzhmE5eM+haS+qd1tezpjZvXDiKnh+O3LQzgaAcaIWleTX1OLICs7UOj+fWsDH0sr7M1I7ZK2XazN8cq0ITCpkOLjpVtQUfzfyaOPH76J5aumYda8AVhbn4ImhUEwrwusRcZ4ekp/rFnxGgoKCnTdHQMGtI7OA6Mpri/BxykIglR/jLP1g0ZOTic1teLvQtcUKWmyGpmI5mvEbAJsWjzAoZVlNOsQy2S6BxFTJ8GvIeuYZZHaFXYp86a/dOlSPPfcc/+5Gm/k8E8REeEOCwtjODpZwHO4C367mYDzZ3Mh1SihCqJNv7USIxVZtPzMRajC9EsH8efMmXg15j3sSUmB/K8+kCtapksu7+q5XiR0DdbYg9MwytEH7187gsS5jQh0LGVs429GfvZvWm+izMsnjbMUpIUMpM7MYTqFe4unTjmkqFTUIdxVhJTa5n3VuZKeMQ7HmMLY2jA7omweT67CavQnfXho9ktgKZgnA/0zlSnp08OhWTIpeGpYCAXIaqyE5rZGysqEPK9tBGT5VBHp7WMbS4aDV/95AwCwePFizB86H9+vehMHDhxoc+Thjh4vu/QfLFy4EF+FDcem9WdQVdly3XAqaNeQWkwU+TXk8SwdRl7k9m7MZf8CrpJWJvVVlU2k1snZhbmqtKyGPGFu5ruTFfjkVOWXsWOIMovDPC6sXPKm5v8reW5o+KRZ5DHxZkYbdE+v8nCyTYo2g2q3/mqzy/jet1B7PQ+HDh1itGnAwMOAzgOjcfMHA3g0U4GEh4eDoigUFbWeMNbCwgJPLhyM/gO8ceXyLZSUiPHN/ptoaCV54/0gVSrx+LZtGObujlnBwZj+qg+uxOeg6La3Scl1j4dC7+XaywH9bd3wxJk/IFXpdnQhuaYYkTbudwOjnkIvSxtUNDVCpkWdkZeXF1566SU4Ojpi2bJluHXrVoe3jY2NRWxsLD7/aB+Wr5wChVyJ2KtZ2L+ne/RijzrPfDEfNWW1+O65jZB38j5kwIC+otPAiMViwSfUFf98c1iX3dAZERER2L9/P2Qy0qGYxWJh7ty5WLx4MVKSpXjvnR2oqWl2Um6YaNRaUw/EudxcZFRVYajYFvY2ZhgQ5glQwNTBvyAzMxPXr19HXFwcxGJxjwuUKIrCvDcmYkPqZZ0HRQCwvyABn/eZjn35NyGW95zpS2uBEBUS7dgZsNksjBvkj8gFPyE1NRVLlixBQ8ODab1OHE3EudOpMLcQ4v2PZmD4qECsfmozGmp7zrHtaTj5OMA3whNvjf6wy4XdBgzoEp0GRjY2NrC0NUPM8UfPv4fNYWHOnDl48803ic+trKywYsUKmJiYYOHChfD1fv4/WtAOJfX1OHeVNHzLufwN3N3d0a9fP7z44otwdXXF0aNHcfr0aaSlpaGpSf8fPjOeHw2pRIbLcv0I6AolYpwpzcDTPoPwVXLP8XzxFlkhparz2ertrU2xYFJfBHjZ4703n8e+ffug7qRhpFyuREVZHV565lc8uWQoPtnyFP76/gTiLmQ8kiPQXYkJn4fFH87Ghd1XDUGRgYeebg+M7p3X9nZ1h5TLgbxXi4kQt1hM1OdImEP4lJqcP2fTdBEamn2LMI95IUstaTolmjmNkLQngaCCHHXgVUhAR+pI6g1YTaT+R13a8oCZ+eZkmJmZERb6lpaW2L7uILKSCrD389MIVIxH+mOkvkVjRDseElrqAH4rUx4i2pB3OTnqVDaLPIAm4W+hEsAhAIdKa2HXkI3Jwybjo3lPw15kihMJt5CyMw1FRS2aqdNn32XuVwfkPeULZwtzhMzsi2W/7YHMjTxXbPjMEYoLZV5E2cWapgWjlcuPk6ZXDU7My0hDe3jImrj4LfkGNg+fBV+BC9JGknm8GgpJvRDA1BQpbcwYde7F5iYZsLJrmeco1UiOTkr8ydVyjZ7kORvubIdduTfBEbVs1yAjz5/8dFK74/tHy34pCrDyuIbXF7yO9PRkTFo2A9nZ2bhf6HqYE5dWEOWTl5pXdy5fvhyDZg7H0qVLGcLgcdx3iHJlKHnMS5VMSwX/ILINb5NKojzYjLQPuFhH6qsAIF9gQZTl9uQ126ggr3EXEzFRvpTqzWjT52+yH0czPifKY0VPkWXTRYw2KDvy+1slk/cJ3qXm9ERmViZ48ZuFOBS7G1989wWjHQMGHjZ0mitt3OIROHv60bORt3W1xpDpffHhhx/e/SwwMBA7d+5EZkI+9qw/CaVCf7KElzU04o8L17F86xG88vt+cNgsvPr6OEydFo7wcHcYG2tveq+zcNksrJw6Evuu69+qpUalHBtTr+IZ/wFgSvf1DwdjUzgbmyOu8sFWHpmaCTBz3kC8/vrr+PPPPzF//vwHCoo6yuXLlzF16lRcvXoVu3btwrvvvgtuN2Wsf1gxNhdiwXuPITMhD198YQiKDDwa6Cwwcgtwhl9fb+Rka9+mXt8JGtQLt67n4MCBAwCa9TC//fYbvv76a+zZcFKvpwHEEil+O38Naz49AGNjPgYP8cVna2Zh2rRpuu4aAGBSqB84LBZ2X9PPZLxnijPBY7MxwNZT111pl8e8AnG+NBuyB9Bo2diZYcUnM8HjcTBu3Dj88MMPXdDD1lm1ahXeeustDBs2DAcPHsSLL74IR0fdJcLtycx8ZTwoisLhzQZnawOPDjrTGC1cPQuFGSWPXGAkNBNg+OMD8NvqnXc/69+/P7Kzs3H48GGMtVqqw951nKqqBvzz92UAgI2NKZ566inMmjULy5cv15m3SVBQEJ7o3xvfHr+ok/13BLVGg705SRjj5IfL5V03etJZrPlCjHLxwktXd7ZfmYajswVefHMCDu6Ow4Uzqaiq0k5i5IABvrByaJ6WMlMpERsbi/z8/Fbrnjt3DvHx8Zg3bx4WLFiAhQsXIuliFQ5tjzEItDuASCTE5DcnwSPIBV8v24QGMXNa1oCBhxWdjRgp5Ur889keXe1eZ4xbNBwp0RnITmhOmGtqaorVq1dj7dq1Ou7Zg1NRUY8pU6bg8OHD+OOPP7BmzRpERkZ2ax+MjY3x448/YsOZaFzJbP1hqS9cKMlGL3M7eJpat19ZR8zyDcbZohyUS+9v1Rifw8GiZSNxZN91XDijPVNIew9bPP3ZXDj5OMDJ2x4BAQHYuHEjRo8eDVdX11a3qaurw/r16zFs2DC89tprUKs0eGX1dPCFvFbrG2jG0tIYLywbCbVKjW+f34z66u5ziTdgQB/o9hEjtpMDvIOcYeZghVqKD46YfHujG5PVejH1Kw20+yBdfE0vy02Zig6JIzldZXOd/Ds9YSLdGI8lIUWsACC4TPoRUXyy76V+yYiY9RpmzZqFHFkOxrm9imdWTkNlmgzCvHCMcwtHzSBS2EupyL7TJ9nYEjK21ZgxvUXUYvJBwPMgjfDkWaQBnUlv5ht+VSkp/JX0JnvSa8jXiAOQcjEJ4wLD8MffC3ElLhu/br0EABBeZnrVHKvayPjsfhkb1Cz6dvOyBV9jhzjbYzC7R0/MV5FC1yIJ04zRmmZQWFAnIsrDHDOJ8hEB+RvVeTLPL56Q/B387Ukh9Z7CS3g9aBBWJmwDAFQF0VwjARjVkP1ocCbPJ/MM8oFFyckpr9YSMFeMJKeUFNNIYTm7TgB7gSlGu3nhxYu7oZLTxP0AxBmkMaL/d80jhEYCHlZvfhoXrx/D+2teYmx3P4zzbjEZ5fLYWLxpMbZeTMXZtGbRusJEhPLrYixd/gXcHSyRnF2K6K+OIz+jxSfqaOm65roKBS5evAiTjH2Y8XwU3vlsBj5ctAGCUlJ8bD2phNGP4jryvHcSkis4VydOIsoh9sw2csWk+Hq8Kxkw0g0xYwvIG5zPJuZUpjoti/EZAZuWgNiEmXRXXUDer7i5+YiICsHsZ4fjwu5ovLJ2qV5P6xsw0FXoZMRo8sLB2PnzaTS0smrmYaZ3795ISEi46wnk5msPB1cr/P39MR33THtI5Arsjk/Gu5/sQZCfI959dQLCQ1xhJOjat3TfYGfcSiluv6KecKo0ARwWGyPtgnTdFQIOxcIrwUOwLzcJZU33N1IwdfEQCE34xKICbTB8chhKK+pw9ioZXF9PK8RXf53Bh5uP4VZBBd744Un49nZrs61d605AA+CbQ29rtY89HSMBD8u+fhKTn43C2ld/w4ENJwxBkYFHFp0ERvYuVsi4maeLXesMjwAnzJ8/H9999x2AZhPHxW9PwuG/L0Ot6uKMjzqgsroB73yyB9du5mHEoF54Z+NSjJ49oMsCJA9fe6T0oHNKDQ02Z53CDNf+MGLpz8qpeT7hUGk02JZ54762ixzuj+B+Xvh42RZUVGhHN8hiszB8cm8MGReC7Qfj/rNeeXUDTsZkIPZkMha/N7Xd4OjTp5tHKj3tLNus96jg6ueENYffgVyqwIezvkFeSmH7Gxkw8BDT7YGRh78jJPVSNDU+WnbyA8aG4I8//kBiYrOZZXBwMGRSBWLPdk1yzo5CARByuXf/GXG0N7sqlytx7Ewyvl5/ArvXn8CYeYMw761JEJq2kryuE4isjOHhY4+8zM4bEXYnmfWlyGuoQJRDiK67AgAY6xCEQfbu+D7xPJSajgfr4UN6YeqSoVi7YhcqaD5kD0rkMD+s+GkBgvp44IeVu1DRAZ3LX18dwrF/LuOFNbMx66UxEIlErdaTSxW4eiwBn84dBy87pnfRo8SgqX3w1uZluH46CVve22owbzRgAAB1n8OlGorqnAPL9182p/84sLs5txE7iZwrp5wdiLLcjqm9qHcjtRa8OvImLiglRUYaLjP+UxmR2gmOhJzHb7Il98GWkfsQJjDzm6lKSR3JCeV2AIC3tzd+/vlnbFh2EHXVDTAS8PDqdwtwLqkY58+nE9tUhJL7bfCkaZvkNM0R7aup+a080IQtnkgUAH+JA4IcbOFmKUKAvS3MBXwob7sQG3HYyK0WI6uqGidvZeFWZbPeSOFIBrIUi5YwV0ROi9YWk9oMbjUHVkIhlvbvA4lcgR8uXoH3BlIkfTTvO2bf22F41BoMHuQDP18HbPr1PMpfIDVri32vEOU9hb0ZbVRdtifKMi/y/FFLyWCRW02WNSzmNaQyI32o2GakcWJ/j+bpVBeBExa4zcHi00dRJSOPIV9AHnPBAfKY2hwir52Gfu5EuWQgM8hVmpD94tk2gQUKU92CMcbJH99m/ItKWesJje+g3tqizbGzNMWquWF4/vnnERsb2+Z2dxjn/DLjs6pRzaM8TjbmWDy5H4S+avyZfQ7p9c3To/TkrbnFTOG6i0NzElgrnhnG2IfDr8IbX2w4gfqG5t/T+FjC3boUReG1v16GXKbE5m+PQ9okR+kQ5giS2xzyGEuU5OielylptBhTxhytEnDJ397djExWm1FNap3q4siy+5p40Dku+ZPx2b2MES4gP/D1IIou7tbw7teIIUOG4O+//8b69evbbM+AAX1Ao9F0iwVct4uv/QKccPARSvjo6OiIDRs24LPPPgO7uvnmNHBib1QWixlBUVfibGKOSW5+GOLoDmWjBiml5citFuNwSgZu1VTdFXWbGhnBzUKECGdHrB4zEpWNEhxJy8DxxjTI1J0znaySSPBb7HV8MWkshnt5oBDaWT1ma2OGgkJmZvSeQEFTEZLqUrHApw++Szrf7fvnUCy8ETwStnxTrLp+CEpu20ERnSfGhGPXrn87HBS1hsDYCAEe9hjd1xd+brbYdeYmrshjIVUp2t+4FarkddiafxaTMrh454WxyMqrxMFTibh3zEmj0WDL9yew6tu5CIl0R8z5jP9s72HDydUKS18bg5ibxzF//nzk5ubquksGDOgV3RoYDR48GO4e1khP6zki2c7g4eGBHTt2IDY2FidPnsRYq6UY/+QQjJk7CD+8/ifA7XrH6BAbe8wPDYG7qQXOFmXjg9hTyEuoI1a3ae45C+plMiSVliGptAz/XL+Jfm4umODni0kWvtiUEovY8s7pD0rrG/DjxWg80z8SvzoloLyopv2N2sHVxRLnL/bcB9upsrN4zO45zPQIwb85Ce1voCVsBEK81ns4ZCollsfug1KjhuV9yJ38Pezg72GHZ2b++ED7d3Czwtg5AxDY1xNiIwoHLyRj8/5oNDbJwfJ+sKDoXvafSEBWXgU8XK3x5jOj8VdSATJvtOjQaqsbseuPS5gwIxJlRWKUQr+c0ruK6fP6Iy+rAm+88QYUis4fZwMGHja6NTAaPXo0Em7mQ93KMuKHDUdve7zx3Xps2bIFv/76KwBg4ITeGDtvMH5esR05KUVAaNe5H4fa2mOufyicTc2wIycB70Ufg+L2dBkPHRNAK9RqXMzJw6WcPPTv44TXQgcjtrwQm1Ji0KCStt/AfxBbUARTIyO89Onj+PT539HUyLQ+uB9MTPgoL6/rVBu6pFElwYrYI/gkcgKCLR3wS1o0ihpr29+wE/R3dMFz4X1xsToDf2fF3ZemCACMeBz878lR+G7beTQ2Nra/wT3Yu1ph3BMD4BPigtO747D1+2MoHtQ1ztTJGSVIzihBUakY8/43DTVltdiz9hgKMpqX1cdcyEDU1DC8vHIKnvpjP6R6lkZG28xcMBACIQ/rPj9sCIoMGPgPulxjNMZo7t3/z3vvMWRXSBF9Lq2lA6XkHL3GljbPz2Lqg6rDSF8QloL8Dho22UfjIqbQW25OxoSCcvLhXDJQSJSVNBsQ8yzmcYv58w0AAIfDwaFDh3BmfxmuX212N54wPQL9F4Xi0+hzuFne7LXCq2R6xGhooSrlTROdppHZbrnB5APUpNoeC0PCEGxjh3/TknEkMwMW0WRfTQraDkQ0LOZvXDrACEIeF08PjYSrpQjLbxxDnbylHYpHPlgtrckpGbrOAgCWOs6GuREfq66cQq1Mivyl97+EOqrfB3h/zePYvPYUigqqUd6H1KTVDyY1RyO8mSNLGbWkpoNNkd8lv5wU6KpovlCsVryjrCzI3622kRSchzmRGrVqmQBsioXJjoMw3DYMN8S3sDYuE8WN9xzHBvJ8YcnJa2PiUHKKulpBnsMAEHcjEItDwjHQ2RU/xUWjxuIq8feMTDJA4YiZ52j2W2/gxx9/RHV1NVatWsVI8ErxyONTPzEUAODmaInxwwLg0c8We3OScDg/DdLb6Ub6epErCusU5GhqqIg8XlcrmVqe8nryt3e1IEcj01NdMdrNCwuCeuPTK+egmnsEAMAXGmHJp08gWcTBrguJxDYu80mNkSctiWy5jNxntYx5zOl99+aTWsTPdz9GlL1oCWKPJX3KaJORVPe2nvEOdI0R29wMS1c/htGz+iH5ahbSrufiqRXToVY/fCtiDTy8dJfGqNtWpZmIhAgc4Iuy4s5Pneg7zz77LIqKiu4GRUNGBSC8nyeWHt17NyjqCobb+eLbqAmok8nw/JED2J+RdneUSBtI5Ar8cPIy4nIL8cmgKAg5nVtm/kH0aTQpFVgYEAbWA4r6e0e4Q6lUo6xE3Km+6AMqjRp7iy7g/aTNqFdI8PWgiZjrEwoTbuctDihQ8DR2x3ejJ8DRxBTPH92PmJIHmxaNiopC//798dVXX7Vbl8vjIGqQHz57cwqenz8UuUXVeObcv9idk3Q3KOou1BoNjudm4puYS3h3wDB4hjQbKUolMhz8+QSmDgrCsskDurVP3YWLjx2GTYvA1u+O4pdVu2BpZ46PPvoInV1MY8DAw0i3TaWZW5uhrqoeObfK2q/cg4mKisKiRYvw3HPPwdn4MSxcNhKW1ibY+MMJ1I3vmqFrKyNjPO0zGO4m1vjg1GlkVGsnN9V/sS0mAXbuplgW0hffXr/EcOPuKGqNBp/Hnsef4x7H9vRE5D5AG3whD/k5FVAqH5433zpFI3YVnsNOcQXm+vbG5pEz8W9WIv69kXJfx5pNseFp7A5PYzf0MvWBgC3A2uhUHMtmupB3FD6Hg+effx4rVqxAff1/C7UHT+0DRy87eAa7otyYh43bLyG7oPm8lE7R7XRVfHkJvom5hJWfz8fPb/+FnMR85KcW4Zmvd2L9qzPA53Hw3a4LOu2jthk+vQ9kTQoc/O08FDIldm84hRfXTYGRkRHefvttw8iRAQP3oLMksg8jY8aMwcqVK/G///0PJiYmePXdyUhPLsYv3x2HSqUGwLTl7wwWAj4W+4VjgI0XDhcl4qe0s6io7p48UN9cu4RVA0bipbAB+DH+Svsb/AdimRQZNZWwNzZpv/IjRlZdNT6KOw0vcyu8ENQf4yf64VRuFs7l56KwnqlBMmLxYco1h5PABa5CT3iaBKNCVoncxnycKj+Hr/lGMQAAuStJREFUlLp0XMz2bWVPHefJsN5Ij76CY8ea3dodHBwwaswQ3DvwYO9pD1c/J1zaH4fsxHycNWJB30yU48tL8Pu3aXj2i/n4ZflfyE7Ih1ShxCtr9+Lb56YixNMBCdnM9B49leHTI7Hjh6NQyJqD0rKCKixevBjPP/88Vq1ahVWrVum4hwYM6A9dHhgdl/0DAPCR+2C0KgIoIkeMVN5k3imFWfsrtdrTFPGryDfSRidmsGB5lTQDrOlD6kxUfLI+XVMkLCVHfx6bFoFB42fjZOItrPzhF1TUNeL3ggycl+cBjzU/9CnaqIbcmrn8na5XofLJYIq6/VXcROb4IGoUbl7Nx3sXDqJS3AgWePAsZupd6HneJPbkMZabkTOq5llMYbXtNfL75tmz8dHZs3h/yAi8HDwQP167QoxmyGgaLpWaOWQvtGr27clXlCHA2RTSdnQTrXIrHx79PWCanYf6mkaY2UaQ+40jtT2pVnaMJnjstkcwlBLyu9C/iUrCnFL09CDtA8qNyN9RSTOgyiomzz8AsLFpDn7qUIvPMrIx3MECA73CMSt0KAAN6uQsJNQUQMjmwdvMDha8x1Alr0elrBbXqovwTcq/KJfeK0q3BUXzUypvIANSXiX5Xb3/aHGxDgx3w8h+dvhxZz3G2T8Pe1crLPv4caRF34KkoeWcqRaZYufWaDQ0NGvQxItJcbYZm3neZ4tJbaFETl6z9BxljsZMsX1BJak9pG9T5krqgY6/zkUZJwYrTr6KhJoinHnmNAqzi/Bb9r94a8UUfHtsB06mkFqm/oOziXK1nPxdpUrmLdXViBzBXXNjLFFm+5Ijb5pbuYw26FBsmvaLdgrf63MUGhoKLpeNtItpUNe17MuxJgSHlkfji2PvIWe7GL+lfNvufg0YeBQwjBhpgUEDvDFxfCiSqyvRx9MZa49dQWpROZps29/2QXAwNcXqqJHYFBuHtAO5XbOTDiBVKvHhhTN4f8gILAvri/XxMQ/UzrnSDLwbMg7Xse2+t715LgWBg/ww8/XJ+O39DgRSPZiMhjxkNOSBTbFgwhFCInWGs7A5oNiVHwc1uxoNypYApUGmPTsIdx87PPO/iTh78CbmvjYebA4b1g4i7Nt0BtF7yd9d1t9Pa/vtam7WFGFl/H5MdQ3Fc6umYceGM7h5JROJMdlY/PYEnMw7qusudgojIyO8+OKLUMgUyE9nmtIq5Er8+fEuvPj9YmyfsgFNTU2ttGLAwKNFt4mvx4wZg8LChysHD4fDwohhfnh6yTDIZAokF5Th3a3HkFrUdakpTHg8vDp4AI5lZOJirnYMEjuDVKnEpxfPYYSbJ7wsHiz3VEZdOVQaNSztRfe9bVODFNu/2AdLBxGWfj4PHI5O0v91KyqNGrWKBtyqL8OZslScKUtFgYQMirSJqbkAz/xvImoqGxA20Btn98Rh78Yz+GDRz7h6IqlL9tmdpNWW4fPE41i3ei9mLRuB0AHe+OPro7BxFGGAo2v7DegxY8aMga2tLa4euQGlonWD1uunklCaU47HH3+8m3tnwIB+0m1PkZCQEOzYsaO7dtflDB3SC19+NhuvvDQGSoUK6zacxt8X49Eo67occG4iEdZNn4zMqmpsv5nY/gbdRINCjv23UjE/MPSB27hWmY8BkyPar9ja/sWN+PbZX6BRa/DkrIdzVZGucPO2xaebl8DG3hyn98fjw5f+ws1LGchOLoSs6eHKd1iUU3E3OPILc8WBPy7hnX7DIOjk6ktdYWNjgxdeeAEHDx6EXNb2wo+DG09h1qxZMDMza7OeAQOPAt36en2fnkl6CYuiMGlIIObN6Q8NNFi34RSeeeE3JKUwh6m1ibOZGVaPHIlfrsZiY0zcA68E6yp2p6cgzM4RVgKmj0tHiK3KQ9/xYRCY8Nuv3ApqlRq/rdoBV2dLLJxtCI46i6OZKd4ZORRvfzkb9bVNeGnmWpw/mvifow4PC0U5FTjw52UsWzUNVWV1qJE2wd+Sqf/SdyiKwssvv4wzZ85AoVBAXN62YWh2Qh7q6uqwZcuWbuqhAQP6S7drjDRN5HA/u46W8JVm6Ei1soyU00C+/SjMSaEmr4ZsU5hJJuds3jG5H7MsUiBqnkI+AFiVYviGumLWC6PQWNeEomIxCgqqcPxkcku/WtkNsUsJuU9BKzNuMktSLGxUDVAU8MbQgThxNQPJx/Jwr8TUmCa2brJhCs01dJ2moO1EtI2OTG2KkZg8HjZxZBuN02uQ2JCHUSF2OFSYCJmMPLVkrZxqGnXLji8VFWMcxx8D3p+FIydvT88cbl8zRAi0lQA1mYs3flmKpyM98feafRAUkMkz032ZyUeNrEldhVRMC85ownEerf5Qd9IEEACuFLkT5SHOZJ0mFfk7LQqJZrRxTUxO4yTmk+aLdBNJujFldSUzATMvn9yvxSXy5HC6mYVBE3tj/PxBSL+ci6oALv76dA8kaS2iY7rwl574uXgZaSBqZ0JeW6U1zFGJhlxSxBzUnxQ5n8kkV9P5OjJtP4yMSAXyhXzSWV5e3Paq0Ly5zf3Kgxg3zp3Fm++PxcWMPIQKHJBU2XyxevIqiG1OS3oR5SUulxjtrjwxkyjTBfBOv5O/yZ0FK23RXp1FwW/isag5WPnYV1i4ci4unk0Hy4Y0KlWXkjeg559/Hlu3bkWfPn0QFxfXbh8MGHhYefgFGVrA3EKI2S9G4YVPH8eZPddQXliD7Jxy/PbnxW7Z/6Rwf3BYLOyLS26/sg65UpGNQbbeD7z95auZGB8VDNMHHDUCmsWkXz+zEe4Bzli9/VVY2jCDAwOtQ1HAgrcnInJkIH5fsx9+4R7Y9uV+pMUyA7+HnfTSSsTlFiLMyQGeVhbtb6BnRIwKQlleBRrEEth72KIou6LdbcRiMS5fvgx/f/9u6KEBA/pLtwVGrFZSe+g7HA4bsxYPxoovm5eR/7J6DygW4O7viJ27YrvFm8XCWIDH+gbh51NX9c4Lhs7l8izY883gJBQ90PaJKUUoKa2FbSeDGYVciU8XrsPp7ZfxynuTDcFRB6AoYMmCwTAVGWPTh7sxadEwXD2RiKTLPTc5b2fZeC4W9XI5Jgf6I8C250ynubi4YODkCGz9cv/dzzpq4Lhjxw4sWrQI1tbMkVUDBh4VuiVasbOzg6enJzIzM7tjd1rBxJSPybMiMXikPz5/dxe2/3QCJfmVmDh/MH75YA9ksq5372VTFJ4d3Q/nU3OQXVbd/gY6RqFRIb2uFIGiB08Iqi0HXo1Gg/O7Y3Dq0E1DcNQOQiEPTz05BKamAmz5eC+Wrp6B/IwS7Nt0Vtdd0ylqjQbvHTqB2iYpVowdwfCv0lfmz5+PS/vjkPcAusf09HScPHkSkydP7oKeGTDQM+hyjVEUZzZCAgNQk9CEfpLxoAQ0wUsNKQrkqGgPRhkz4anGlBT4sprIOXsWbQWGppxMyggAGppfx726idCh/hi0LABJSdcxdtJzyMvLg1AoxLqP1+H7zZ/hz5jfEPjWN4w2JY7kkA5HQt5KhcVk/Sam1yDBtOAAWFJGWL/jLIxvHxfTHLLfTfbktJPcjHn7VnNoeiCntvcraiVjRK0HuTJHQspKoGhs1knk1NSDpeRDJSd/ZwtLZgZ2cz75XfhxEnCqGsBPLoLwAcXs9xrbAQDrd2NQNbVYvnISvnnlDxRmM09585Ok9qTOnXxfoP+uJo7kOVkkMWe0KRKS3+3Y5d5EmedEHo9MU+YbulxJHsMBXjlE2ZJLitqiy0gzQg6fuRLJ63fSbNBKQOGNHxch4VI6Nv90HFOeHAR5XQO2f9is3WIJBIw2QNMYVQwk+y4rJ69hY2tyn5amTDGeXX9SM5RW3mICxmWxYWrconFTqdXIr2FOb/nZkJqZaxnk8eBXkb+rqD9Zv9ySGTzbWtXjeHUcZrsNROQwFj5NG0f8/Vkfcjp9S8EgRhvj+t0kykduBhNlQT55Dxxn/zxRVlUyU/ywLcnvr6puzkE55LF+mDhyFL569U9Qgtv3BhYLcncbyMzJ85xb2rqtyNGjR/Hll1/ir7/+gkLRNWmMDBjQZ7pNfN1TVqT59/XG05/MwVOvPImLF1tuevPmzUNZWRl+++23bulHPzdnjPPzwVffHYeSHiwauC8u7L+OvlHBCB8egGtoX2vxKDFuwWCc2xuLo39exKCJYfAKdccPL2zSWX/YFAsuQgcEugUiUOQAKyNjOBmbQ6lpuQYUahWy6yuQWFOEyxVZKJf+d842bXCqNAGPuw7AM95ReDl2GzR6tya0GYqiELVgKP748F9UlzYHW5b25uDxuZBIOm6tEB8fj/T0dMydOxe///57V3XXgAG9xeB8fQ9Dpkdi1uuTsPHdrXeDIoqi8NRTT2H8+PF4/fXXu6UfHpYWeHZAX/xw4Qoqahra30CPYOtptu6T26OxZOV0nDt7HhmlzBHERxEbBxEC+3njwyfXIXJ0EGa+NBafL/gBkvrudT824wrQ19Idvqbu8DfzhEQpRXRZFS6UZaG0qQ6ZdeXQsFqmrl2EFnA1tkR/G0/MdAtHgaQGVytz0EQlI19SrPXAJa+xEhn1JQgQucDV2Ap5jfp5/kx8ZjQqiqqRciUDLPPmFXYhg3oh/lzqfU/9b9q0CR9//DFOnTr10BnzGjDQHobA6DZjFgzB5GdG49gf55FwIe3u559++ikGDx6MGTNmoLy86xyt7yDkcvHu6GH4PfY6bhSV4MG8pHWHv4Uddufoj/nkHW5eTEfi5QzM7heCj/ad1nV39IKxj0fi3J7mRQRDp/bBtm8PoziztEv3KWAbwVXkBg8TO3BZbASJXOEssEKxtAAJtRk4XXYVxdJyYioNIG9UBZIaFEhqcKkiC0YsDiKs3BBu5YpBdjMgVcsQU3UT0dU3tNZnDTTYkXcJb/pPBYfSz0UkPD4XAyZF4Oe3yalknhH3gYw44+PjsXHjRmzYsAGLFy9GRYVhpNXAo0OXB0YnlNshVw2Dg9q42XOGPupNK48TvEGU6XoiANDw28kgX0nTs6iYpnT3+oA8+eSTcI+yxMAxkaiqap7PH8ubgzc2Pwc3fye8M+Ez9K4dDdxj7yMuZb6VyizbHi1RdCCB/P+8+yHzahHSt2fCHgCnkey72ojUd1QHkGWjVjTaUpp8xTSP7HtVb7IsM2Pe/C1TSV2N1Jr0OmLnN2tRjMMFKMuUAwrab9SKxkhFM1BS19ZBI5dD09AIdS0zSeiDcLR8w93/X/9gNy4ci8HQ6AbkprYIvu7oM+5gRtPVpH0VQJSll0k/GOVppr2AWQ6Zmd2Mpv0qmkAKzGoETH2L206yjSqhPVG+9AZ5QlEscsq11/PMFWVqefNDMnJsKAKCHPDxF3vw3CdzUFtRh9jD8YzEvWNUCxht1I8LIsq13uR38w8oIMqpac6gAMz0DcLjPsGoLKhHakoZmmRK7KnMQnzmefAK75xfAgBusKbp4qSW5HluWtCifbmFEtxCCdY8Dgywd8Vo1wC87DYCfUQxOFoSC5m6uW6OlBTGVSSTK81YSub1W3X7vL5uroKRvxH4chvUVrdopI5VBBL1W8tPd6XEnShzK0m9HiWn3Z/MyHOBqhEz2rz3vLaxscGn336KA5d3Y0vSt9BoNBjrtAIURWHk/CHY9M0xRqJtoH0vpL1792L48OEICgrCmTNn2qxrwMDDhH6+/nQjgwYNwvz58/Hss8/eDYp69eqF93e+gYaaRrw65H3UV3fPdJaHlQUC/RyxY3/PNFczMeLB1sQYlY3MIEgfKC8vx8ntVzByRl9dd0WnUBSFJ9+fiQM/n8TL3y1CbVUDtry/A+ou0rLx2Rx8OmQMBji5Yvn5o1ix5Sj+PhWP3RcTEZOWD4VSe27aV0rz8VHMabx98ShchbZYGTgfPibtrDboAAW1tcirEWOub+/Od1LLrFmzBhkZGfj4448JLSdFAQIhD5mpxW1s3TaxsbGYM2eONrppwECP4ZEOjPz9/fHll1/i22+/vRsURUVFYe3atdi39ijWv/57t6ZAGOPnjbOX0tHU1DNXglgKBKiXydAo19/+n9gWDZ8wd3gGOuu6KzojZJg/xBV1GL94BG7F52DLqp1Qq7tGUGzE4mLVwJEobqjHG2cOI6e2pv2NtEBOXQ1+urUPh0tisMx7MgZYBbS/UTvEFRQjzNoBPBa7/crdxPTp0+Hi4oK1a9cyFrj0HdILpUWdO967d++Gm5sbIiMjO9WOAQM9iUc2MLKwsMDq1avx+eef48iRI6AoCk888QSWL1+O559/HvGnuzdrOIfFQn93V8TdyOvW/WoTHxsrZFQwlxbrE1KJDL99shfLPpkFE9GD5XXryfCNjfD810/Cydselw/E4d8fjnbp/mY4j0S9XI6f4q90+1ouDTS4XJmML9K2Y4rTQIx09Wx/ozbYm5QCtUaD2T4hWuph57CxscG7776Lr776ChIJaYHA5bIxanJvHP43tlP7aGpqwrFjxzBu3DhQerqwwoABbdMt4msTk/8W14w1XUSUNcbkHL3SkpnfiCOmeRBJyREKVSnpiULXTQwbNgwbnt+AU6dOYd++fWCxWPjp1V/h28cTf7+yB+55fQDaS2HTmN5Eubwv8zavMSH7YVRA6mw0tKMts2kZjRrl6YVSZT1usMSAe0tFq2RazjYZrUzTVbLlzH7xK8kbWoMLWba6QdY3LmGO+CiNyQMicSVXubD4Svh6WyCnqQJKZyk0DaSOQsBltllYRnqx+ODBh/w7ytHyDTh6FLAaKMfUlWFYtmwZBgseJ+pQ1qSGyCaa/O7WR0ijUnVdK8vFHUk9EMSkV43jnzQxWGujbAJSu6S2Iq8jXiF5fnl+k0qUNXLy5ODyOFj8wRwIzQRY+8qviD54nTHKEMWZTZRrp4UyulUeScu1Z03mJsy66A4AmBcRCotGR/z19Qk43uPpZXqW7CcAULY0LyQHMp9akzX5GzQ6MG9dDqfI79Iwv/le0iCT4Mvkw1g5YDoazG6hqKn52NN9ouiaNwCoTWtZ/qDmapCeVoYonheOnm1+cap0IO9PJkZM37WcNFLb5BRD0w3mkZosDU0TSb9/3WH8+PE4f/48jh8/zvibIMgeLDMjRBdXAs6m4NUwBdj0e++x+t9a/XvNaS5mfDQVpU+XYuPGja32xYCBh4kuHzF67rnnsHr1aiiVSgQHB7e/QRezePFivPzyy9i6dSt++eUXODg44L333oNXqBt+fvtvFHXxqpzWMDfiY45/CP5KvtHt+9Ymva0dkVBd0n5FPeD9999HaWkpli9f/si8CQcO9MXYRcPxxwc7ceXAtS7zFuNzOFg5Zjj6uDhh1dHTaJAwg4XuJl9ShV0FV7DMZzx4rAd7H1SoVBAa8WBhJoSFaSvGl92Ig4MDFixYgA0bNjD+xuPxMG9WfySmaGeZfUl2OX5d/S/mzJkDMzNmAmADBh42ujwwEolEyM/PB5fLxerVq/HLL7/A39+/zVGkrsDa2hrvvPMOJk6ciGeeeQbp6en45Zdf8Pfff0MqlWLTu1tRW6GdlVD3y7OhkYgrLcL1sp4RVLSGj7k1eCw2Umu63tJAW6xcuRK2trZ47st5cPJux4a8h+MR7Io3Nz+H+FNJOP77uS7bj6uJCF9OGYdqSRPePnAM9a041+uKM2WJqFc0Icq+9wNtn11Tg+KqOtQ2NOG5x5gO192Jv78/UlJScOsW06Y+NDQUxkIetu2K0dr+Cm+Vora2Fp6enZuONGCgJ9DlU2mfffbZ3f/fMUv8448/oFAocOTIEVSc0KA4pxzyJkWXvMFyuGy8/PzLePLJJ9HY2Ai5XI4dO3ZALBZj//79ePbZZ6HRaDDGaK7W990RrPhCDHBywYKD/+pk/9piiIMHrpTmQd1DHM4BQCqV4oUXXsA3L27Gy98tROGtUuxdfwKF1ffv+6KvUBSF4bMHYNHqWSi+VYKP5nzXZfsabO+OZwP7Y/uVZBxPu6V3/tAaaLC74Ape7jUJJ0tvQo77X4XXIJHhYGoBnpzQBxy2biSaFhYW+Pzzz/HNN8y0RCwWC9OmTUNeQZXWk06vX78ea9aswYIFCwy+RgYearrV4FGj0WDTpk3YuXMnhg4dCpFIhCc/ehJGRkbIzs7GxYsXEcBuyW+Um1yAjLxWLkDaqhClveju/7k8NiJCB2LolHBYO1qgV283KOVK3DibhIt7riHpcgbUShXq65p1EVGC+c1N2pGGcjUDaJ4nYeR0i6CYOf0icSX7pWlnhkaYz0a4jz1SssugzlJBCDYs08iHMktJ3rzL+5CaBh5tkKvejblTpTF5h7RKIP8uNyG3URkxb/jcBlL3YJrRom/hsFkYM6EXVpw7CU3dbW0Rh9xnUQnTqtLSmtTmUDxe82/L5Tb/vxsGG1QqFV75fhG467iYOXMm5rw/BxYqe4gr6nHsj/O4FZ8Dy3iazs2CzI2maSWXlaaMPG/p+o2OBOJ0jRC7ivS3cV+VQu6DpkVZtGgRZs2aBUtLS5TXlWDqoinIk7Yt7g99gXzYSoYzrSoEXPJcaMoxw0gPT8z3CsVXZy+j9tdC3JtGmFdDapCkkd6MNmt8SE2a7XVSTHyvbxEA8IuZlhByG1JMz/mE/N0y5/BRDBVGmzSgD4agzvYv4u8XCr0Ybbr2JnP2cSvU0JRKoWlSwbhUiWoF2W+6bgkAKDOy72YX8ony0Xb8hOj4+flBLpdj69atdz+7oweKmjcYfnaeWF4QD0X/lr6ZZzFv9RbX234BoIzJ40mdt0HtWAVWzvkcB3852a4PkgEDPRWdOF/X1tbiwIEDAIA//2x2ap0+fTpsbW3Buv0WRlEU5q+YAa5p880tL70E8Rczmr1WWM11uDwOeHwu3Pt4wMXVCuYiIUxM+WCr1ZBLFaipqMOXL/2O2N1XmKNRbP1YcksBaJD27BGK/t6uqJBIcKtGv1ektYVCocDWrVuxbds2PBX2NuzcrDF3+RTIpHLs2Z+I9KQHS2qrC9hsNl555RVMnToV69evx5IlS/Diiy8iL0/7Kx4pUFgcFoYhru5Ycfokiuvr4db+Zjrl76SbeH/ICBwR26JCdn9TvwnJhRg7Kqj9il2Iu7s7UlOZAnZHLzuMnD0A376wBYo5nfduao0Tf57H/Pcew8FfTnZJ+wYM6AN6kxJkz549AIAojvjuZ0e3nIbA0wUUi0LoAB+MnhEJBzcrsNgssFgsCIyNoFKpUFEtQWmxGGVltWhqlKP4ehauHElAU6MMGo2mxySw7YkIuBzMHhCCLanXtdIej89tv1IXotFokJ9WjPy0YsQeS0CfMSGY/8YUqFRqnDuahDNH9S/dyb2w2Wxs2LABMpkMM2fOxAcffIDt27cjLk77pqEUKLzoNxzmcgu8feIYKmlLxvWV9KpK7EpLxvTek/FX3ub72jYtvQQzpkZ0Uc/ah6IohIaG4vz588TnYxcMwYhZA7Dj20MoL6gC0DWBkUwqh4OnLbx7u+P41S7ZhQEDOkdvAqPWUCpUMBUZI2KYH7yDnMHjc/HDOzvQ1KSERqNBaUE1lAoVMZUGAJycniNidhCZQaZF59/uZmK4P4pr6nChoPOjEb4RHhCa8lGcXdZ+5W4i7ngCUirk8A9xxqTHIxHe3wvXz6cjOT4PlaW17TfQjYhEIrz//vtQqVRYuXIlZs2ahcjISGzefH8P/47ygt9wiHhCrD5+BvJW0u7oMwcz0vFc//EwZpugUdVzEjVPmTIF/v7+hHbTxsYGI2YNwI+v/Y6izK69dspyK3BpXywmPD0S665+2qX7MmBAV+hFYMThcBASEgI2m40AgS8cPe3g4GEHG1cr2Ho54uqpZBzfcRU5qcWQSRUMjVFPxs7cBMmF+hMI3A9sFoVJYX74aM/p5hRXncTYVIC81GLIJPo1tShplOHalSzEx+QgrK8HAgKdMO7xSJw9dBPHdulH+ha/vt6Y89QYlJWVYfny5XBwcMCcOXPw3HPP4dq1a1rf30h7PwSJHPFyzHbIVT3PKFOuVkGqkoKlp0lhW2PQoEF4+eWX8cILL6C2tiUonzt3LrIT87s8KLrDnh+PYs3hd8DhcKBUKtvfwICBHoZWA6OxoqcYn1G21jA25UNw27hRUyOGibkQLr72YLFYsAr1QEiYG+rrmtDUJAckcpQV1iA7vwpX44uR3RQHmez2xefQbAjIrSaH7DkFNIG2EWl8V76kD6Nfato3V9HygNJFzWxSPwplK88CfhkZsLFonn0cml6ULQNcjc1wo7oQRuLb/eKSQmheBalAto0jxdg1AWRHrG8yV9rQTR/pPnZmOWRH6zyYSVHL+9AE70INhrq5oUzZiER2JXjV5N+5weRoihGXeQMVZ5CC7FjJYYjkaoZQubs5LiEzlONGy3+P3o4xLCwssH79eoQq1Pj++32QSmknSCuej/dCN/GjWtG8UTzyPFblkqLdE8rtMDMzw4QJEzBh4WBs3boVf/31F9RqNVavXo1Lv6bAKj0IY03v0cTwyKnKisf8iXJVH1pQWs6MeId6eeIxh97436kTqGkwwv/ZO+/wKIo/jL97/ZJccum9V0ISEkLvvXdQBAQRlCKKWLCC2AX9WUBRmgLSFJUqvddQAgmQ3nvvueT63e+PCGF2A6EkuUuyn+fxkcntzs7tzu59d+ad9+uzl/zu/GJyBEbPJ78bXWgNAHra11dLyG3o90VhbymjDn4t2c+FFbQ+6UA+NyqVYtwsdkG5qu7G1Oka97Oq9OBBZ8qBRkihwosPuZJsp1rNvI7+35DHpSctflRGjhyJtWvXIiEh4Z54v/uoMAzq1RtrfjkHvb/HvW3pCy54tUw5AceC5klEk1vRjUvvia2VwLAb4VizZg1eeeWVJ/ouLCzGTLOMGHG4HLj5O8K/syekHg4I6+2LWtl/D0+VGhqVBqkx2dBqdSgplWHDTyeRnVkn3OWVkg9VlZMFvfo2ha2FGRJzWo/3z/0M8fLCkQZ8VJ4UE5PWM/JQXl6OhQsXYsWKFVi/fj1u376N69ev48KFCy2maevQoQP+97//ISEhAW+99Rbi4upWqT3//POQSqXYd/RKkx/T3VyKV0J74LVTB5ErM4zvlyGplitRo1DBwVLSotrFhQsXIjQ0FF9//fW9v1nYmmPMvCHYvPxP1ID5MtOc/PLLL9i6dSvMzc1RVdX++gFL26ZJAyNbFysMmdoTPUaGoii7FLFXU5CfXYpLH8cgN70EAKAvJVMhaP3cmrIJrY7WKgzv7uICN6kUqy5eaLI6Q0JC7v24twbKy8vxxhtvYOTIkbC2tsacOXMwd+5cnDx5stHrGsTtQZQpDgd6vR6p0RnIjH/4CjiKovD6zy9BGijG+vXr8fvvv9/7rF+/fnj99dcxbtw4hMiHP/mXawARj4eP+gzEz9FX2mVQBABanR45JZWQmomhbabEu3QEAgHGjRuHRYsWEUHIlCWjcfXQTaTdyQKC/VqkLXeJi4tDZWUlhEJh4xuzsLQymiQwMjU1xccff4wBoSOQEJmGd8Z+A6W8bkiengOJpfUj4vEwOzQMv928iRp1Azm+nhAOh4OKioomq68l0Ov1OHz4MIA664mRI0fCz6/xHylzLun8TlEc8AQ8THx1BJRyFZRyFa4cicaJHZfu3UsSKzOYSMRY+ttCiEyFmDBzLLFs29raGq+88gq2b9+O/Px8hJC2R0/NtMAQZFSW42RmatNW3MrwcrBu0TQyixcvRnR0NNLS0u79rfOQYLj6O2LbZ4Yzhj137hzGjRvXbOJ+FhZD8VSB0d157le+ngWegIf+47szsjwPB6k7omgaB14e6X2j8iSNFhXWTD2CWkLOjefOJJORclXkQ8ukgdykMjfybU+aRDM5JOUdsI4ltTvVrkzRJkO3RJNnUDSZDe+/XLiUru4/AIxkj9W+5HelazGsb5BanqoAZi4jcTFZp1ZIVqLjkd+lIT2CqLj+/Ezu2QFFahnOlKcA/x1OZ0Xuo00l26HxYK78oR7feNjoOXLkCI4cOfLE+5uuMYWpqSnc3NywdOlSLJ/+MpKTk+Hr63tvm6tRl/Duu++ia+1IuArDYCY1wfPLJsOvf0ecPHIHsddsMKTnZ6AKKhj1Fw4jl3HX0FZ10xMf6/67/TwspRjh5ov3Dh2H43myv6jNyI7Po2l7at3JviCqaHykha6D04jJPzTUdwRV5B+VUnIfC1My+bRGy0F1jRBV/yVm7uTCfFA4icj7q9Piawh2n4jc2gi8ungPfs8mR/7kO0hjWADQpyQR5QclhW0ILpeLgQMH4tVXXyX+HhDuhVM7LkBZUydRKOtERsH085c3iHnOJelkouOhZWQCYbrGbbiAfJafOnUKb7311r20SiwsbYWnXpJh62oNz2A3rF+6nREUsbQ9nK3MMSY8ABtirhu6KW2SmpoaFBUVITIyEs899xzWr19/Lyg6e/Ysxo4di3nz5qG8vE7Ay+FQGDqzH0QmQry9aBv+3dc0flL3w6EoLO7TE3/dikVOZduZQuM+wYo0AccMXI4AZcqWGTWbPn060tLSkJ6efu9vXl5eCO4bgKQbaQ/Zs/m5fPky1Go1PD09DdoOFpam5qmn0oZM74Oo0zH3hvtZHg+9Tg+pmRhVRpCBvDF4HA7emzQQuy7eQpa2wtDNafPo9Xr89ttvSExMxIULTC2XT6gHnntnPGQVNdi8Yjc0rs1j6je3WziqlEocjEtolvoNgb3IAnwOF9XqxxvpoMCFVqeGDs2/TN3b2xsvvPACZs6cSfx95syZOLnjAgrSDb9oQ6lUQiRqWeE3C0tz81QjRhJLU4QNDsI/q5986qC9k5hTDDc7y8Y3NAKm9Q1FTmkljkcnNb4xS5Og0+mIoIjH4+H111/Hpk2b8PrauTi18yJ+eGUTKoubZyQn0N4OvT3dseZCRKtKENwYfA4XJQoZ1DrjnM8NDAzE9u3b8fXXXyM/nzSs9fDwQF6qcXifnTp1ChMmTDB0M1hYmpSnGjEykYhQUVgJRXXdFFpDiTGPVZDCPPo2epqnB8eFFGuXdGL6gtjcIj1geHJSH8SlDb6IS5kPP7UZGROqaNIcuk+RaQH5o2CWy6yzOJxsh1kGWa51IooQVAFlslq4O1jiQtx/Q+Ucch/THFIXwa0hv5zKhkyUKY1kPjB1ZqTYiV9JGirJQuyJcrUbM17uPsIdoX7OeO/iUVQGq8GpJa+LuIDcp8aLlvSTyzxfKv7T/9AOMyHfpul+QPRErHTdBMBMlqkIJldKCm+S0yZ6OTnKwPA9Qn1SzwdB2Vg/9HMA0DjVB8xh4R7wdLBAQCdXqFUanDl8C5F/70FGYgE4TnW6Fg7N6iJxMa3DAdCakSMddD1Ql971QS8FCrOEI3HgYgxqM+X3FoRbxFUQ+1QGSomyPIwM9EVl5P0qqGK6ZOt4ZL+XOZPaQmkyec55cuajS0+7d/gysn9ZmNb3+2Ard6hQA0tJ/fR/QjGpbwSAdD7ptRVglggtKNTqBKjQmiD3Fqkp8jvEtK842kD/eBgcDgdbt27F77//juPHjxOfhYWFwcLCAhsi/we5pv7ZECTtTmwn8SFX/zZEylTyOvkVk99FX1ZBlmneW0N5U0FdlWL41DG4LIiHTqd/LP0UC4ux8lSBkZOXPapKG3GyY3koKXml6B/iZehmPBQveyu8GBiOj6+cQomi+XRkAQEBOHDgwNPV0dULNk5WMJGIEdzHHy7e9UFfVkIObpyJr0tEfB8Ubcmxyp0MzvnOpJeWXkUGfRIl85yEipmmonwhD4HdfeAd4g6OoPGccHpB/e1ZUV6DS0duI/JiEpJjc5GVVgyqpnmnX7tZhYGqpXD4ZmKzHscQ+Jq5Ir7KOBMDL126FLW1tdi4cSPjM6FQiNzcXMjl8gb2bHnyUgtRUVyFgO6+iItgR5JZ2gZPFRj1GBuOGyduN1Vb2iVJucWYP7oHOBRllFMVXvZWeHfcAHwfdQlJFSXNdhx/axs4ODggKenxH672bjawdrJE95GhcPVzQtLNdKiVavy76TRSI1Og0+lBUUBI/0D4dfFhVkALUhi590AGUnpaGoRalS/oOAvtGX/TanW4dOAGNi3fDa1548alGsf6N3qdTgdORcstbhBzRRjpOBAfro9osWO2FEIOH2GW/tiTufeJ9udRQmj1TZ8bjqIozJs3D927d8fs2bNbzUqv0rxyuPo7sYERS5vhiQMjiqIQ2MMX699+vGFiFpLSqlrkl1ahV6A7LsZmGLo5BHeDog2nruKaKKdZj9XR1g6HDx9+pDdhBwcHDB06FN26dUOIY1eIJSLkpRYhKzEPO1YegFpVH7jo7/v3zZN3EHWeOfphkKk0k8a1LVqt4fQv/W17IFmWjuT80sY3bmWESv2RKy9GTm3j0010hBwzCDgmSK2+3KRtcnZ2xqeffgqKovD2228Tq9CMnVM7L2DequdxbMtZQzeFhaVJeOLA6IUXXkBKYSKOKnbe+9tQTGVsR9cU3cu3c3cfHrnPyUvLiPLwyg8YdWZOJKc66J4mItrAhkrC1Mzoad+cX0GWKdoLYWkwLQ9aA7MYItoiEbpOid4unqJuhOh8ZAoGB/ngyo10lNFyn3E05CiSzVmyoUIFOa2jN2E60ZZ3IkcnZE5SolzrQdedAD7WVlg6aAB+jLiK67JcCMvIURWVC6ndEfUip1QVtDxo2mzmCInHpfo6vAVC1NoOxOB+9ftpTOouEu8/nyV/MzP0HBCAoDA3JNzJwfVLybiTex7ZKUX1TtPmFrhfaULRAy0es8sXD3cnyhoRqVWxUXoQZZkLeY6H33Zl1EmpyA6ksSV9ZniFpD8OZLREegB4yeTfjhatI8qD+31BlHOXkH3B0YypN8svJq+DTkRe+7QKK/AoLsIDeuLj23/DPIs5ilnlLyXK/BryBhRU0XLzccnzWeHFvAZ0byPTArJdKgtyH3EBM4CWuZF6u9wR5DUoOe8BAFgwvg/2nEu658F1FzdLZg6z+DRSp/VHbj9MnsHDjwcGAgBczpHnXPcEdgb9+vXD22+/jYMHD2LTpk2P5IZP19bJR5IeTLZiZn+iM3jsRaL8g2IcUfb8h3aC4lOI4l09kW2hLSZjCKsvYmkzPHFgZGtriz//ZG+EpuBcVCoGdfFDv1AvnI0x/Juij7UVlg0agLURV3E9p/l1GBwOhYH9A/Dpsn/u/c3BwQKBXT3Qs5s3nBykUGu0qMivRMTZBBzcfQ0VZXUPfk5l4z8ALI9HsNQVefIKZNeWQgCrxndoRXhbW8HJQoKI9CwIOxm6NcCkSZOwaNEi/PDDDzh48GCj29vZ2bF+cSwszcwTB0Z8Pr/VzIEbOyqNFn+ejMKcsd0RmZoLmQE9oQa7eWNOQBf8dPlKiwRFADBuTBgqK+Xw8rHHx59PQXW1HBRF4Vp0Jm7H5mDD5nPIL6iEsIANglqCDhbOSDRSYfLTMr93V+y5FQeFRgNDZvlyd3fHzJkzMXbsWCxcuBA3bz6aMeekSZOwfv16SNCAVs6A2NnZwdLS8p7xKAtLa+aJAiNra2sMGjQI27ax+qKmIjo5F7eT87BwXC98//d5aFpYX8KjOJjVMQw9nd3w1elzSChuPqH1/Tg6WmDas92RV1CB4GAXXL6YhIP7b6K2VgmF4KmN2VmeAGcTK1wqbnsr0Xp5ukEiEmLPrViDtcHS0hLz5s3DlClTsHXrVgwePBgyGTNdTkPY2trC1dUVMTEx6GlEgVFlZSVqa2sxevRobN++3dDNYWF5ap4oMBo1ahQuXLiA7Ozspm5Pu2bzoat4/8WhmNgnCH+da7nVfgFWtngjvDeKamX44PxxlBe3jAs3h0Nh1RfPIimlAN98dxQ1xbQfCDYwMghupjbYknrO0M1oUkRcHl7s3hlbrt2EodZ+9ujRAz/++CMSExPx7rvv4vTp04+1f58+fXDx4kVUV1cDJo1v31KoVCr8888/LZpYtz0ikUjAa0AjKRQK0aFDB5iYPLhTpKWlIScnp67vsDTKYwdG1tbWmDVrFubNm8f4rEHxHc05ny62phvy0QXc+uQMRpU2t6VEWW7DNIG8nxon5g0roYlKK/xo5oxZtDpcaUlSbZkjOoIymkCbJuCmL/DVipjt+iz+PL4YOBRFtkrsTYyHqJgMDqpeJNM+0M0uK72Y50Ldg7wZeNfqhMA2ElNM6RqEXi6u2H0wCmcjU8AB4FLceLqD4k6kUaIshzQs5NB8FPkN3I9vfDEWFtYmeG31YWjc9ND5kEaUajIBPZQOtD8AME2TksdtpOkaU+bfuDQdr+0tUlCbPYRsl9KePEhhD6YORxpPXjdROdlfuHbkRI7kEjP3VnVvb6Ls3+k7olwcTq6q6mZHCnC9TYoZde6oJv2VTEXktG1ZvA1UHfgoSjBHuUIAn0zmhVPakOeD0pL3RlkAefGVNC9LcQOmzab55DlVmz48KKYLrQGg1o6+T/298YxvEIr4hYixvAGL8Lq/BVqTDUksZxo8uu4j6/QoywV/qh5+P2VCr9dDLyX75DHa4hILCwv07tIbc+fOha+vL7Zu3Yqffvrpod/tQVAUdU++wDEnxfxc2gqU9AqyT/paMkeAk+WkpUTPYTFEOTqUFJ5Lf6GJsg6T35Xl8WEYHv9noikUC+Ad6gGPjq7gCXiQWJqi59hwZJQynxOWOjtkJ+WhprJOe0bxyYUyHLEIHgGOsHG0RMSx26gwpT27a5QoiEhHYW45qv+zBNGXks+WY6VMT622zGMHRkOHDsXVq1db1XLS1kSpXI4Pz5zAFwOHAgCONMOUhq3EFFO6BaGPnwfOxqdh+S+HUdrCIuaRof7o28ETC9fvhUZrfP5NLG0HX6k1Jnp3xEdxTz/1XytTQilX46Nf5yLybAIuR6RCr6vrv7aOUpj4ToRUKkVgYCDc3d3h6emJqqoqrF27FgcPHoRarW7kCCztEYqi4N3JHQOe7YnAnn6AXo/MuByk3s6EokYBRY0CX7/4M3698x1jX/pgA0dMe3GxkgIAHFytEdzDGypHcmWqo4MU4dN6wNnDBlwuBzwBF3fOx+H6iRjEXU+FStH++uxjB0YdOnR4ZKEgy5NxNzj6ctAwuHLMsfv6HVTIn07obsoToJedF3raeiIw3BnnE9KxeNtBlMpqYVbZsoEJj8vB0nH9sOtiNG5nFbTosVnaFxYCET7rORQrI8+hiPP0+eSs7M2RcicHv315EDPeGIE+4zpDpawb7ZJVyXHycjY0Gg2OHTsGmUyGqKgoKJVNMzXt5uZmtIGVRqOBm5tb4xuyEDh42mLcgmHwDHJFZUk1Ig5GYtunf0ElV0Gna9rnckF2KQqySyHv4Mj4TJxWBg6XAy6HgkDEx9ARgeg9JgzT3hqNypJq6H7OwIkTJ5q0PcbMEwVGO3bsaI62sNxHqVyO908dx1zfzlj3/AQcuBWPv27cgRKPJ8qWiISY6BuEUS4dEVOeh8tF6Vh77Doq5S2jI6LD5VBYNmkQapVqHIlqewJfFuPBlCfAih6DcDQzCdcKc2DH/D14bPqMDsXZ/TeQnVKIlYu2MqfSYr56+oM8gClTpuCZZ55ptvqfhl27dmH79u3o2LEjYmMNJ25vDXTs2BGzZ8+Gt7c3XE29cObPy9j97UFUFFUx8tG1JDqtDjotoFZrsXfdSQCAjaMU1o6WWLp0KT788EO89dZbiIqKgs5Iky83FY8dGHG53GYVXdOHARvC7AbpwqwaSBr0lQeQ2h2tiBl5a4rIbQQV5OdlnUnNgziHPFVKK6YGgqIdhkN7uRPTDCDlpE8lAIBfXV9vdbUS6+IisNfiDuYN6451z03AiZxUnM/IQE5lFbQ6HSPJrsa0rhHmQiEGe3lhanAworMLMHfLfpT/N+rk/WcxiMHUanIaTd+A2SC45Pc1sw0gypJMckSrtCN5He0v1b2RvP7ROPhZ2iL6RAIqzxbifvkJv5o8YQU9SDGhsILZXdWk1IJpViklA0AOh9kXpHvJ44hTSD2G2Jv+i0q2wzKB+ZCoIrskZLTEvGoHUtvDmcI0iXSxJzUwunLScG+cO6kJiasm23mhhNQoAYBaQbbdQkoaTdp3yYSpuRzeoTmo0tRAs4epu9HTur7CiqxT/3DJHyNhMwCoJOROXBV5TkUl5PnK78UUmta4kvu849sXBUU12HHxDvjgo5hDTiHE0faXn7Fl1Ol8NJIop3fX4EziGZzI+e/tuXkN4e/h6OgItVqNwsK6PlHT1YP43NMsgSgX8cj7wNOUqTHKV5DnQ6EltSmv+Z0lyj95Tnpg+8rLy/H3339jxIgRbGD0AIKDgzFp0iT06tUL69atw7p16+CT24Mw9ORakYl9QUt6PVw2l1EvZUbq7TSuZD8uCSU/r23gBUEzlLzP9Q51N2ldkhc9bq6NRu+u3tj+x7+Q1Six7ZP9SLpT3/l1ecyR/4YyArQWHjsw2rx5s9EkMGwvFFbK8Nlfp9DR1R5durrhi6FDIebzodXpkJhPCmx1fMDaxATOEgluFRRg2cmTSM8zDm+RngMC4OXngOoqOfZsa9qUCixNB0VR4HEaiW6MnHlhXWAvMcMnJx9v5dfDEIoF6N69O86cOdNkdT4qY8aMwYEDB4z6TV0mk8HOjhlIt3e6du2Kjz/+GCqVCvv378eaNWvu+T15C7sbuHWPzqXrqbgenYHOIW6Yv2wcqivluH0lFdERyUhpIDBqzTx2YBQR0faSSrYWYrMLcU1XgJ+vXgMAOEokcOCRbwNaMaDV6RBfXHwvKS0Xhl9G26W3L0ZO7gKlQo2cjBIU5lUATpJG92NpefLkJfA2dUGZij6m0jqY37krfK2s8fHR06htQk2Ok7c9zM3Ncft2yyfOFgqFKCt7/NxuLUlKSgqmT58ODodj1AFcSyCVStG3b1+MHDkSzs7O2Lt3L3799ddHSvdizKjUWly5kY6Y36/BM8ARAZ3cMPfd0UgZ6Iey/Aqc3n0ZlcWt3xLgsQOjysrKxjdiaRHyq6tRLCe9f+5OpRkLgW72GN+rI0KtbZCZVgQLCxP8suqwoZvF8hDKVJWQClpn0DovrAt8razx0blTUKqbVq/hGeyGY8eO3ZvOakn4fL7R/6hGRUXB1tYWb7zxBr799ltDN6dFcXBwgJOTEzp16gQej4dRo0YhIyMDe/bswfnz56FSGS6bQXORnpCP9IR8XDh6G36uErj4OOD9za8gN6UA5/dew4mjlNH32QdBPWbD9cNFM+4V6Alhm4LGfI4AgKLpkLQdPYly+jhSf8BvwFiWS1vkpaRZ0dATvtI/pydRBQBROjkfrKXlHPD+knzTLH4uhFFHtQdZpiezpXvuyAPJLyJMFTHq9NxKpnfQ5eWTx6DNY1NiZh3asnJIrMwQ0NUHoACKQwpN9LQ3RIrPg3sHF3Qe1BFn/7qC3LwqLPhsCn77bB9uXUpi1A+AkeBV404Oy9OvK8DUhqmkZNmzG2lIlZxEerMAgCSJPK40hdRnyJxo7aKdHkUDswc6HnlfWQSSb/vWJqSOS6llvqNUyskDWZmQObKsRGRn4NG8bHh0Iy0AGVVkRy4oJXUmXJ4Wve29MMEtBEuv7wMvugHvqDzyuwmqyONqTMi+QU/Ka5HKFP7Tk8RWepD3vcyTPIZlLFPjN3NYOHycbLDyz9OoVarBVZHtLA0ly6Iisg7nc0yJAPdqvV7mrY3z8cHqN3Hjxg3Gds3JcMlsvPfbfPz1wxGk3q7rzzkLyGfH0OlXibJG1/hU6OlsX6LcxZHUjprzyGfL8UOkB5bHF6T+CgCsJurQt29fLFq0qNHjt3ZGmc2Ek7cDgvr4Y+iMvshNyUfa7Uwo5WpkxGQj9koyYx/6s/ZxoeyZOjg1LSl4WQfy97GsB/lbRcmYzxqODXlPalVk/xGYkHWIaf5nmot1zxVbiSk6uthjRIgfOIVqRN/JwsXLyZAr1BCcJFezP0nSYb1e3yLTH0+cK42lbePgbgNzS1N07O4D72BXQK2CtaMlkm6kQa3UABxa/6QvLeVyUVFUia9m/4LqMhmmL5+CfRvPPDgoYjEarhdnYnFgf7iaSpFPd2g1QkxFAiye2AciIf9eUNQccDiUQfSVbv5OMDE3Qdod4880kJ2dbbSWAk2FqakpRo4cifcXLEV1WQ0Srqdg9au/If12BrFdQy/1bZ3i6hqcjU/DpaRMDOM4IjzUHcMHB2HfoShEXbgDdTPdm00NGxix3EMoFqBT/w7w7+aLDl08UZRbjvTYHPy99jjUZRUoL6hAdXndSAf9pqcvM73/zcg3zBMB4Z6IvZbW/F+C5alR6bQ4khOHZzzDsObSdUM354FQFNA9wA0vDu+Ky3GZ2HE2CmpN8yx3lliawtJeapDAqM/4cJz7+0qrnZZoK5iZmWHo0KGYP38+oqOjsW7pdmTGtdCyxFaGWqvFtZvpuBaZDjdXKzw7sSumHHwXZ3dH4NiWs9A2033aVLCBEQsAwNnHHrM/moyywkqkJxbgrxePQ1lbP1yqLXuylW0CER/T3hmLs3sjcSeCObTMYpzszbiFdb2fg5dtKtKKjU/0625vifljekAs4OPngxG4lZrHsBFoKsykJpj+/kSkRme0uOM/n89HQDcfnN9rvAFqW8fKygorVqxAWFgYIiMj8eabbyIuLo6RzoOlYbKyy/C/NcfglpqDZbteh9TWHDu/2mvoZj2Uxw6M7tcV0TtGU2iOHsXHSE97a+OlkjmixEVk5mmllFkHRZsh0AnItzFKS9HK5PYmScy5Yrk9zXuFlucs4X+B5A4NRc00bYqghLxEckfyGN4bye35CcypqocFNTw+F6GvOmLAgAH49ucvsH///gduS9DIDMswwUx4d3LH9HfHI/V2Fs7uuMB449U3JkikaYzoeiIA0NBkR/TrWFpLrtqjTJgN1wrIc6wyJ0fDqvqR/Y0+/84tIv1fAEBrTl5buqYovYhMIBbuynzz1OrI/mMnJuvQ0CKBKjUpaqtSMrViXA7Zf4b6xhPlM5l1upMqrRzb065hwejuWHr6GOSa+iFwroL8/hStnXwZeQwtLRlwlSfz3qHnKgzvS5p/Xr3jDQpAb2d3TA0IhpO5BL8n3sC/SfHQOeoBR8BEQuokQh1IbR3dp0c2iFxIQtcuAsBx1S7s/mk3rkWew4YNGxifNzd+fn6oqaxFTjK5HFrmQ/bjPLmUKOfXkuJ5RxPmSiG6piilkjRWo/c/fQdSrMmxYBpS5ebmIjAwEE5OTsjLy2N8bqzQta0A4N/VG+MXjYCtizUu7r2KlR9uhEathQtC4SIMfTIzRvpIO+23jONFGqDpueR9kTWaaX5H11Wqac8eTgXZ712CSY0pAOTRtIaCLPJeUNHyEFq4ku3m9itl1JnlQOoZiws8MefwCax4djC6Bktx4tnH1xi1FOyIUTvGq5M7pr07AbHFUZgwYUKTTRMIBAJMem0EfELdkZOcj50r9wOcZnqdZ2k2juTEwhUOWNq9Dz691PLePffjaWGJOUHhcDCTYFf8LZwrTb5nR9GcDBkyBFwuF6tWrWr2YzUEl8uFRmX8Oq+7ZGRkIDk5GS4uLq0qMKIzaFpvDJvVHzu+2IO4K8nQarTtUjPU1JTXyPHJ3lP4fMowHA4NRXR0tKGb1CBsYNQOGfJ8Xwye3hdymQLHtpzF5wfebdL6v/nmGwzs0xPbPt+D68dvQ6/XG4GTEsvjogewIfo6Vg0YjtnBYdhyJ6rF2+AossdQ+35w8AzA3uQ4fBpxGmqdDpRJ8wdFPD4X02fPxrp165r9WA9i6NChSIsxftF1W4GiKMz+dCocvezxv5fWoSTX+KaRWzvlNXJcScnCyJEj2cCIxfBYOUgxZv5Q+Hf1xnfz16M4mzn8+bSMHDkSfn5+WD75W1QUPX3SThbDotBo8OG5E/i8/xAs5PGx+c5N1IVMzYujyB5D7PvC28wdl0sisfTsHdRqWm5Fi0DEx5LVL0BhVmbQ5JnBwcG4sq51Gm22Nvy7emPsgmEAgO/nr4dc9nSJu1kezJHbSfh6/Hjk5ORg2zbjSx3S7IERfe6W7l1A/5wxb9vAPC7HncwrpbUkhSYK2jQsXU9UVwlZFJaQYxr0fDJ6Wo4tpWsDD2lanWp5I54VDcwuCYpoehcr8vv7/EnqcvhJNI+iSmYwclr/NxYuXIiJEydi165dWPzdP/cs6ZuKobypkFiaYvnSN/Dd/A0ot7cD7Os1QpwC5vEoLalF0dG0UCUh5HWlGjDTtYon/1jSiTypZSWk1kKQw7wmXJrUiaOm6bziyPl2ei4wbijT9LSncwZRzq0l5/C7u2cSZX/Txk0D6boRIZfs2HQvJAdTpq7ESUS29UohqWkQCch+rbeTQwU5Pok7iDc6DsTnQwfga9uzKFXWeyqZW5N1upjRjhHvRZQ5AuY9bWlVp58ScHiY7tELvaw74GBWDJZl7oVMo4KNcw3uV7S4mzP7U0Ip6fGSVEaWFSfIshOXHAE7VvHrvX9PmDAB6dWxeH3O6wZfDaYXCBjeYs6epNFaTJEDUR7kSi50SKhimm1pdKT+jq4/U2nIju5gST5b9A4NJHssYv6pNRDQKwDzvpqOvWuP4erhKByq2MrciPY7MsxkJlFuVDMJgLKUkmVanjM68W/QfMZETLmDuwP5gpueQ15rngm5j1zF1ETSNY6ZFmTONgEt956rWQVRTq1g9gWJD3mPyl3qn735kGH3e0fw2rtvovgvLbQa7RP5GjUXT5REVmvADMAsj4eFrTl+/OBHqNVqPPfccyguLm58pydAIOJj7pfTcflAJArSiwCrBh6aLK2WGo0KX9w6hlk+3bC61wT8mRaNo9kJUDdh6odu1t6Y6dkbmTUlWHBpNypUhsnJ2KtXL7zyyit44403UFPTQELlFsLT0xMuLi6oKmNHjJoTKysrLPp2JjZ//DeizrAJcFuKhGspUCvVCB3YETdOtHyanYfx2IFRSEgIoqJaXmvA8njwhXwE9w3A2HlDsPXQRmzatKlZ8xdNXjIa5YWV2L/2WLMdg8Ww6AFsTbmGq4U5mOnbBVM8O+FYTiJuyq6hQv3kAYSjiQTz/fvA19wev6Wcx83yDFSpmCvqWgIul4uvvvoKr776qsGzxPv6+uLq1asob2VT0jU1NXB0bCCFuxHSs2dP/PDDDzj1x2U2KGph1CoNUm9lgi8wPkXPY7fo888/x8yZM40+oWF7xt7dBjOXT4ZKrsa/G05iw6HmXWbctWtXdBrQEZ8++53Bpx1Ymp/Y8kK8d+0QQqwcMdTZD1/7zkaRohKJVTlIrymEtYhMXWLm6gC5Vo34siLo9XVTaRSADpb26Gbnij6OnrhQegdv39gFhc6wzrizZs1CdHQ07ty5Y9B2tGb27t2L+fPnP7r1hwEQi8WYOnUqpk2bhtdffx3mt30b34ml3fDYgdHVq1cxYsQI7NzZ9HnSWJ6e0IEd8dzScTi29RzO7o5o9kClT58++Oijj7Dp/R2orTLM1AeLYbhdlo/bZfn4q6AGvhIndDB3ga/EGRYCUrTKs7aEu7kUtuJu0OsBiqMHBQpFchliygrw8tm/oDctecBRWgYOh8Knn36KoUOHYuHChQZty12cnZ2h0bSepfp3yc3NhY2NcU6lCwQCvPLKK5gwYQKioqLwwQcf4MaNGxhmwgZGLPU8dmBUfobC6x++A8VZCWppiQqHljBNsug8rmCNQxOrAUBlJ1JEKSol3zLNyLyh4DTwbFHQksLSXXPpiWd1fFKczc9kingVtqT2Sk8zaxQWkqebnhAWAGoDyPPhso88x6fOf0iU75psUhSF/s/0wNDFPTD/lTm4fr15nXLnd/sAL37yDDQqDXas2I9kgQToHnzvc14ZbWqFzxT8AbTRAT8yGbCalr9U1MAgZY0jzYSOJpKnKslzrmugx2tpl5J+reVe5DWhm3sG2DIVp8UKsvE1anIfEx753Q9mBzHqsDElzyFDNElrt6eEPEF3SpjTGekgO/67fuTU54HSUMY+dK5nuxHlzEJTZBZW4iTqRNdCMfndtFryGul0TPMGXQUzQfD9iPnkNZDwmSuGKnNIoar9ZfK4Dink+bz77OFwKIyYOwi9R4ZhyZIlRrGEmMvl4qWXXsKcOXNg0/slxudydQVRnuR1iygfzelAlKVi5sNGTuuT1QrSIJQu4KYnJY4TkMe4S3Z2NqqqqtCjRw9cuXKlwW1ammHC6eAL+Zj/9QwoapT4acG/kFXUwhbdMcKhO/S0/G4jzBYw6tCraM8rutaW5nPEsWUGh6X9yCTWdDPUwmfJfm0nqSDKXlLmQ5AuvP+sJ+kqfbPGgyhfKyYXXABMc9hP/MjRvqOVZNLiQykdiTKfz9Qd11aTdZrdNMz0+JPw2K57iTfScPtCPIbP6tcc7WF5QsYuGIoeYzrjyy+/bPagSCQSYfzCobhx8g4+nbYGqbcyG9+JhcUI4XA5mPvldAR098WsWbNw6dIlQzcJADB16lQIBAJkZWU1vrGRodfrERMTY1Q6o8Cefli+63WUF1bi1w//gKyitvGdWNotT6R6Orr1PN79dT6S4goQey21qdvE8hh0GRqCkXMHQaPS4KclW7A3v3lz0HC5XPzwww8ozi7FgXUnm/VYLCzNCV/Ix/fnPsatc/FYvXAj4uXxje/UQggEAmzZssUgSWvbGra2tpi5bBI2f7QbSTfqElmzhrMsD+OJAqPqMhn++uEwxi0Yjvgb6dBpm2+1U1uBS1EIdLBDX2932EnM4GRhzsi/BgA1YiW+vHEGeTVMD5r7cXR0xKuvvorRvcdi/TvbW2zUxtHREa6urljz1p+s0JqlVSIU8tC1hzdGLh+N6DOx2PQ+q5dsq4jFYvz22284v+fqvaCIxTigKApSe4vGNzQAj59EtrbOpfLEUQp9n+uLGUvHYNv3RwEAsoldGdvT9T9cJRkN8PJIEyilJzkvq7BuSJtCUuNMzpXTdSQyUhIBADCl5eyka4zo+hYeTQplUsQMCtz/JTUMMXkbMHLkSPTo0QPBwcGQyWTY/Ns65OXlISEhgdkoAEsnfIbvxvTEnz//i7gryQwNlkAgwNixYzF58mTExcVh5LQhyM9nJgVsaobypoLDoTDrlWdRFaOGNoQUK3IryaFpnZC8bioX5g2gMSFPukZMlulGnXIH5jmnNDTtVw1Z1tD0LPQkswAgLqEnDKYZPNJMIanupIFhrYbZR+NSnImyiSX55t/JkswjZcYjE6ACwLk4P6LMFZH3jp8TaQoZkeVBbs9lvrD42ZI+VruLyHuWR3PRzKwijd4AQFlFagf8vMj+FyQly3siw4lyl0BmhvqsSilRrlWR57ygkkxYWnrQhVGHexL5rDFJIrVfuuxc2LpYYebyydBp9Xh1xXxERkYaXYA/lDcVHbndIOKKMJQ3FUlDmNsIbpJJiK+YeBBlMyHZn+jmnwBQVk3quugGjmXqh+u+5I4P/jwxMRETJ07E3r0tn0V9hPsSAHUpXZ5ZMAjyHCGOnUwhjYGV5PmhGy3qzJgJhQv6SomyliaZ0dC8GpXWzPvPxptcZGAjIc95sJh8tqRWkw/BqFzyuQIAHRzI58DGrL5Emf6sKa6k/bgBqOCT3/cHDCXK8XGkqbKDJ2kqWZBO9kcAAO15ZZVI3p9p7pEwD1iANe9+iUoN0yTXkDyxgYBer8eWr//Fx7++jB5Dg3DlRExTtqvVYmomRFg3LwwZFQINZxAOHTqErVu34urVq1CrG1+KfHTrOeh0Orz85TREnrhNCPw4XA5eD5uJxMRE7Nq1C//++2+LPtS9Qz3g4uuIVS/8BHQKaLHjsrA8Dc4eNug3uhMEKgUCuvng8oEbOPDLcVxXNK8W70mhKAqhA4Nwad81Qzflifn333/x9ttvQyQSQaEwTGqNEc/1gK2jJTZ9aby2Ae0ZiqKQm5uLykrjCoqAp0wJUitTYs0Hu7Hw40m4erL9mmPZW0kQ5OWAYc+6w9LKDKXF1diz8wrW71qM6uqHT4k1xPFtF5AZnwtLOwvoact1//h9I5KTkx+wZ/MiEAtQWVIFdSvK9s3SPuHzuBg8oTM6hnvCu6MzDu+6gvLETOxbewzlhcb3IL4foYkAjl72uLTPOAO3R0GpVOL8+fOYPn06fvvttxY/fqeePug1PATfvLEdtTIlIBQ2vhMLy388teVkTmoRFLVKjJrRCzuT2s/qJKGAh1E9O8DP1RYudlLEpBUgISYXt29kICO1zsjuSYKiuyRG1s2H06fSkjWGCYrMrSV45o0xOLXzokGOz8LyMJwszdGpa910rbeHLbqFeyE9MgMpcbk4tOsKUuNyocvObaQW42DozH6IudjwVHtrIiEhAWIxc0qqufEKdMKUBYOw8Yv9KC9+8mcwS/MilUqN1qfrqQKjo5k/AADy3jmNX3/9FVf/V4T8/Apim1p7MlKnaAIglR/p6yCoIudllVKmowBHo6eVyc+tElS0MrPtcluyHYJq8rimUTQR0n8XkC/gwSfEFVPe746MjAz8/PlXuHjx4iNNkz0KdzVcxobdJD5O3zmGj3YvBwAMu0Uz0aElueTQHog804YS6pLXQOZElrVi2jXJZvYFdQ/ywSc8SyZa5dMOK8liTj3q+OTfau0e7mKhv0rqpeJ8mFoLngnZKW3NSWOsk5mkfijEgakT8/UoIMqltaSIge6FpCoiz/nYHszUPccz/ImyVkN+V1+HxnPp8SrI65R+jRTxKS+S93RgIqlHqNWRGgc3Hzv0HymAtXW9TsGRR3pa5WtIXZJjN9KLxcpBivibmdDp9SiNycbKVQdQnk6eP44rqc8YoX2LbLcn03dGUELzPqKlL+BU0D4vr2DUoZeTU0mN3eMmId6IzyyFrleddwxHyvR669mFXA18LpLmKUTzUKMnnQUAWwuyTxZXkdeFnqR4qlMkUf4+MJDZ+IP1/8zKysJLL72EP//8E6Wlpcxtm4j7E5E7+zpi7rtjsHfDaaRHZ9z7e00I2SdzniPvHW8nst8rtcznRIAJqeVJqyA9wei+Y4Uy8lkEMP2ksqukDy27mlcQ5Z5uGYw606vJdvSyJe+V/anBRNnZiqwTADILSI2QjyvZX0rcyWdPYTGp+bOKpmXWBmBJ0xTxbyQRZf/nQnHjxg3GfsZAkyQpuX37NtasWYNXl3yETz/aA6XSOKPAp8HawQKTFw5Bx27eyM8swfffr8Tff/9t6Ga1GM899xxmzpzZ+IYsLA0gtTYDRdUJYodODIfYtO6FSSjiw8HVCr9s/RqXL1++t30f8Xhi/4tyUifSmzeKKMsqalCpeDy9nV+IK/qMDIGljQSO7tbQi5giekpNWzrKqRfql5fVoDC1CMRRFQoUZJbg0qH6oFSvEKK6TAYNva4HYGbWNqZ9Tp8+jQULFuCNN97AsmXLmv14EktTzPn8ORz49SwiT7OJd40ZiqLQt29fbNq0ydBNaZAmy962bds2jBg2H+MmhOOvP682VbUGx9HDBkOmdENwNy+c238DW1cehFKuwtGC9hEUcTgcvPrqq1CpVMjNbR1TESzGgZ2NBL26esN3qhlcvWyh+u+F6faVFMRG1r/VpsTm4p+ozcS+7ibkCFpibSJRduOFMo7HsTBn/O1+eg7pCAdXKzi4WMHO2RJiEwFO7b2Bi0duIzOpAHI3K8Y+glJytaVeUPdmTFEUHJyksBbSRpDkcgyd1hPdhtU7BXM5gEqhRsylRChqVYj4bd8Dp9mdnZ3h6+eIP3ZEPPS7tAb0ej02bdqEvn37Nr7xU0JRFF75YTaiz8TgKrsQyOgJ6OoNsViMiAjj7OdNmtb2z51X8PqbIzBhchfs+yey8R2MGA6Xg9nvjEanPn64eT4RHz73U7sUHVtYWGDmzJl49tlnoaVb4LO0a1zMzdHJwQH4zxIh3NkJoU6OEEyoG0ORK1S4cCUFt6+lYcNX/9aPmOge3/esZ8+ecHWtXzIcwu0JvpAHtwBnCE3qRlgoAS3tigkf7gH/TZ9RQI1Ci5N7byA9IR8FOWUozCwlVnWqGxjRoWj3/P2jQ1npJchpYCrt5llytEIvV8C7kzvcOzjDzd8Jp0+fxqBBgxoMjkQiEaqr5aiuNsxKrtaIUCzAKz/MRm2VHP+uPwmONTPAZTEu+EIeMjMzm0yC0tQ0aWCkOHcLP0YlYfHq2aC6uOLAuhMwDSM1DQob2sOrkHzwVHqSw9niUuZDlG6MKKimeSPVknXyMpm5rES3yHl7XWW9n4R7B2cMWtkd2Xm3seyZRUhKSqLv3qa5f87ex8cDumIufPN6wlfY897fOTTfD7qOAnSNUSrppQEAXBspUVZ1JjUevBpS/6Js4HmnySPbwad5i1jHkjeeOIf5Y6SVkDtROrJsmUT2r+JOZB+l64kAQCR+eA5AKzNyJGKoNXNV5z8FnYlyB2tS40DPWWbqTGpG6HoigKkp0haS16nwtAdRNimq++5SCxO4O9ddAHsVhUEjgiGxMEHU1TRoy+vOadn5BCzbsw1aQf1UkF6vh9zLCnCt12VJJjpCIhLCzdIC1iZ1+qzJicOJ45Z0rj/HNmITeMICtzPqNUOStFrotDrEphejtqbOk0buRGpkOJlVyPjxLDSaumeIylaMe3EQj0LZaFJ3UtOHlt8PgJM12a+z48m8VJ57yWkvoYxZBwCkJRUiLakQwE1MKB+EQ9tOY8Oy3SjOKYP+P3drvpCPV96fhcjKYhR1rr8u7g45jPpSKsl7pX8X0rW7iJarL6OUefNYmJDfrZszmX5EpiG/26b0PkSZ16eB5IWrmH9qau5/Ptm6WmPxTy8hMz4Xvy37A+BwoHW3Z+xTEkTLmUjLhVmtJO95e1Pmc+JaJOnd5hRA/q4k5pDHpeuWGmK6J7nyMKLcmyjT/b2k1kwndLoWbE9SJ6IsFpHPInMB0zNtkB/5G3cwMpQo88toeT69yH7Or2VOYwtSSI3f0eot9/7du8enSE013sVaTRoYAUBtlRxrXt9SFxxRwN4rrSvXT7/J3TH65cH4ZPUy7Nu3z9DNMSgURWHk3ME4se28oZvC0kKYiYWQmooQ6GGPzr4u4MvrHnjODlJk5pZBp9OBV6XG39sjkJNZguoqBTgF5A+kmY0IEvO6H3ZHN2uYBjrA1cUKErO6Hx/vzk6Izs1DsawGmWV1S+cVeeSPdIFv/QtUemU5Nh6PgEJd/wPgeI75oyyrIkXxpunkj5ux+DjuW3cSFjYSLFn9Aj6e/iNU//3W+YZ5QCDi4/dzrXu0/X50Oh1sbGxAUVSTe665+jvhzY0LEBeRhM3L/zA6o06WhvH09MTw4cMxceJEQzflgTR5YASQwVGXyT0Rczsb//x5DSojnopy9XNEl+GdENwnAGte/Q37YvcZukkGxzvUHbYu1rjyr3GuHGB5egRcLrgUBTGfj7G+/pg6PghqjQ7p+aU4fC0BvJK6EbfqGgUUSg0c7SwgKlZAKOLD278uSaglxwNOHnUjGBQodB4UiNLCuhFYRa0KSSVVSE0rQsF//kHZuXeQXEyuUnI/Tb6BJruQb/AWauaql9bM71/sw+qTH6Dv+C44tfUMAEBkJoKsotZoArim4OLFi1i8eDH8/PyQmJjY+A6NIBKJ0GVQJwT1CUCXYSHYv/YYzv51BTpdGzppbZxVq1Zh8+bNyMtjziIYC80SGAF1wdE3L2+A8/ieGD+5Cz5d+QwKCipxO7MAcYn5KC6rRk3tw6cbWgIen4sprw5DeF8/XD0SjR9e2YSqUlnjO7YDxswbitM7L0ApV4Hitq0fJhZgccd+mOjSCWI+D0IeDzUqFWqqVFCqFXCzs8SCMT3BUdf/4MhqlMjMLQOvijYNXVWL9Ljcexq8yCtpSLpTP/0j9yKncfJsG0/z09bR6/XY8vlezF4+CRd3X4JSrsKwmf1wcvsFwKcha4vWiVwuR2lpKfj8p7vmnTp1wpgxYzBhwgSUxFQj6lQMrh2JQlxEEvtsakVIpVJ4enpi/37jdiNvtsAIALQaLTLSirH6myOwtZPAxlaCbsMCER7sDqnUBPFJ+YBWj5zcMlRW1Y0n1zjwoNfrkVNaibKqWojEDWuMauRPH1Q5e9tjwssD4Rfqjk3v7cCtc+wSz7sMntEX5tYSXD3M9MJhaZ14S2zQ0dwZc/x6wNVMCoVWjVOp6TiflYEjKUnQA7CMJTVIdzVG92OaTY7u0KfSYNLypn6tkZtn4jDt7TEAADOpCZx9HJCZkAv4eDayZ+siNzcXvr6+iIl5vNViYrEYoaGhmD17NoKCghAbG4sZM2bAPS2smVrK0pyYmJhg/fr12LFjR4vk93wamjQwatC47BKtvKHuf6GhoXB0dARFUQgLC4O5qG7o3LwM4HK5GBLkD6nUHVYcppCOK+AjP7MEcdfTkHonG1pN3cNbq9UhP70Yaj4pGtQW1ItWzaSmCB8aAtcRlnBxccGuXduxbeE2KJVMQVp7hRIIMGh6H/z0xu9QqHSgBAJQPqShHirJUTUyDSsACSmKrujETDJY5U7+CNMT+epoJnXCCsZR4LOZFDjqcsjhWfrbJNXAkm5KTL7NmmWTepcqL/KHnk8bUFRnMAMBmR15a6kbmQr6PbsH42+OJqRGJq+GbLuygpxu4qfQzFNddLAUidHF0QmjfPzR390DWp0eGeXleOPcEVzKzITGuW7Ki1c3KwaBHykKt5cw02fkVpNaHi6HbIeKLvDWk4kydTKaQh6A0zDSlE4jkxJluSc5ilKksmPU4TmLdIUvqCEN9oKtyOzq1RqyHWIuc4WMWkdetywBedz0iWTfkfr7MOoQlZMvd/f3L72JCJSPO8L6+kHD5aJaaoXqcLL/NZCeEx7mZDBKF2Mv8DhHlP/mdGHUkVJK7pNXS/YvJxPyutFN/extyc8BYLhkNlE+Vr0Fp06dwvjx4x85oexw65fRdUgQpr05GjwBF+fS87F041VotDpIu88Hp+jhL7CV3qaMv1kOJIXAphryuor55Iu2lxnTELMkgKxXriavvZ6WsLpCznwuONGSxm5O6kmUNVry3glyINtNv84A0NmaFOcXyUjhvZmQ/G4qHfNZRO/nvTuRYmyZmvxNzfmdFIlbnW9AS3xf1ga+gIft27fj6tWr+OGHH5jbGhnNOmL0MKKjoxEdHQ0AOHz48AO3GyaczvgbV2qBLoM7wsXbHmPn9L/3d76QD3tXK+RklCLiRCz0Oj2SY3JQmsdBp/6B6DYyDD5hnoi5mIA1a1fh+vXrrGCvAfzDvUBRFMoKKgzdFJbHRCISwt/RBgMCvGDjZIaezm7Q6nXIrqrEb9E3se7yVdz/M81OQhgHpmYiRJyJh1KhBtD0Bo8UKFjwzeBp6gIhVwAvUxfI7OsDx+yactRSOYirTIdS17RLqIuLiyGRMF2gG2wnReHlT6fA2csePyz5HVlJ+SgfxSasbu0889pw5OVlYtWqFli22AQYLDB6GvR6Pa6fjMH1k8yhWR6fi96Te8CrgxMkUjEmv9wfqqoaSKxMcfbPCGz56E8o5Spc07TezNXNCUVRGDG7P07uugSVwjg9JlhIQm0dEWbniA5BNugX4AWtTgeFWoNqvQrLzp7AifRU6P57AeAwx/ZYDASXywGfzwWPx8XQ8Z3xwyePNqLyqJjxneEo7gIJ3xVBNuHgUVzkKYpRqixHvqIEd0rqRlv5FBcBFg7oZdUFL3iMwLniaBwvuAaAOSLUnAiFQnzyyScQm4nw+YvrHtkp3FjgUBQ6WNqBS9WN+kjvG52u1aiQUdP48v22SGi/AHQd0hHdBjAHOYyVVhkYPQyNWotzB6PvlXl8LqwpBXgCHrIT8tgRokYYOXIkuDwuzu6+YuimsDwEPoeHYe4+GOfVAQFWttDotBDpeDh+OwnHYpKRmF+MMnvDL25geTADBgciJakAvYd0RFJsDnLSmdM3j4uQw0e4lTf6O46EkGuB/NrrKFMmYGduGvIVxdDfZ1F5/1TahaJkOFlUwkFkjTFOPfFF8DxEVVzB5ZII1Ggb9mZ6VGpra+Hs7AxLS0uUl5c/cLuFCxeCx+Nh/Ye7W01QRIGCg9gCna08MCS0M2o1KpQp6qajRaL6F0sXEytIeGLkKrKQKstGak02UmWty8rmcaEoClNeHYo+Yzpj9ZvbnyqpektDPWagoKco9o2zrXF3ulJiaYplu17HL+//icwEmlbHghwK15dVkJ/bkEoIhY8tUS4LYK60oWi6ehVN/mMXRTNnvEnqUACmseSx+0zEANIMDgA4ZuT8u4WNBM4ezHn7e21SqpGWUkIG1HRzSxPm1AfdNFLHp+luROQkliiP+dC4m7DU1d0aEgsT5A2oO66bpQVmhYfC3Lxu/Oef7Iu4XpaMPHkpdPf98OUWWzLbpSKP28GDvM55VTSdiTlz1CC1iDxfXV3JB3xGFbkKja6BSKhi6oNScsi/URzyuUQVkOfTqgMziBjhQpocDpSQWpSXr7xAlHkC0j6ki3M2o84gCZkGJ6aaTERL/64CLtOShMchOzrv5TptyujpPaBR61AxzhKVKgX2pDBNPgFAasfsG1YmpBaMoxdjhFNnDHUIRZGiEnv2puFKYta9pf8yN+Zz3pKWXLvCr/7Z7mphgZmDfRBm5Y6jeXewO+Ma0bcAIMiW1L8AQMY3pKno5X+WAgC+//57HD58GCdOnGjwO3bu3Blffvklpk6dih7UFOKz9Dc7EmWVJe18yuj3FvO7DutLLiKJqyCNOi2FpHFiXjVTi1hcWK+tsxGZ4FlRMLr7ukEs4CEhtxjnbqbiZkp9f+Gq6ttBUYCJUADXIfYIsrVHF0dncDkUzlafx8WSWOj0dd8pI4+8t3QKcuzCzpkZWKq05D1tZ0aKIOlaMbqWDAByyqVknUpSP8VPJPVSrido/S+SvNc4HApeL1qgd+/e+Pjjj5GcTOr/nhS9Xt8iAUibGzFieXLsPWxRXVbDCIpaO7au1uDy6h4e/r0DEdzLDxQFiM1EsHGyRFZCHvQPSFNhbi2B0EyE0oL7RMj0pcc8plJHCT2OH7kD+X+rJ/U82sNbSJaFFPNW9A52Qc/+/jA1E6GkqAoafxPYS8zgaG6O9NIy/F5wBtEVaU2uCWFpGfqPDsX5w7fR39kDP956spxRFCh0tw7AVLdBSKrOwzfxe5FRUwRZgkPjOz+E7MpKrE44AWcTS7zo3Qdru83ExpRzuFn2ZG7FcjnTsfl+unbtioMHD6KyshKQPtEhWoSOVnYY7OqDQS7euBSZgfXHryAuuwg6vR7ch6zf0euBGoUKl7KzcCk7C+txHd2cnDG3dxDGOPfEodwruFjSNnK8URSFUS8NhrQrD2+99RYKCpgBtLHDBkYs9xg1ZxAu7Gn9CYD5fD4oisLMmTMxJmwKXP2cUFNZ94ZTlF+J8/uuQ6PSQqPSICM+FxrFw6ec3MO8YXJ/xnPacnS9kOnR4hTgiOdn16dQoL/n6LnkH7hy5khDrUKN2zcyUF0lx4jxnVHOp3AjJx9nUy/hTn4hHLq2rQC2PeHuaw+hWICYyDR0fCkEN4oe/1qa80wwy3MobIQW+CnpEOKrmKlDnpbc2nJ8fucgull7Yp7vAJzMj8XfWU3vzN2pU6dHXrXW0lCg0NcuAIM7dIOFQIiT2Sl46dQ/UF19OsPia3m5KIq7jiALD4xz7oU+tsFYI7+FO2WtL5C4n5FzB6LPxK4YPWNYqwyKADYwYvkPnzAPWDlKcfVIFABOo9sbI07e9nhj4Bt45plnoNfrIRAIcHJNBH77YBcUtXWvc/SptEchK4nmufEIU2mxGSU4cfTOvfLjTKVJLMQIDHXD4LFhCOvqhfzccvy55SIO+jCXzrO0TvqN6oRz/0bDxt4CMvXja8GsBBK86f8M4qsy8UvKQcg1zXvPXitNR0JVAZYFjwOAJg2OevfuDWtra1y4cKHJ6mwqgqSumOM9EHKNClvuRCGyMAcqXZ3+yRxNY8QZU5mB2MpMDLDrhHfCBuBCfjo2xl1Fa1TD9hjdGf0md8feH48avVfRw2ADIxYoBnfCyNeG48TtLFT0CEBJMHMEhEdOKUNuRyYwdbhGvj2VBtI8daTM41omkLe+wx+k6IGuHzpK88lycHDAxOcnYsyYMeDz+dDpdDhy5AgmT5784JuyouE/P5Rm0AzSbSjkgztBLOKjS2cPTBrTGcmpRVituIXIwv80Cz0APx9yVCH9GnkNTGhfWe/OfLSaepJ6gxo1+XCvqSWDvMQqpo8Yh0dOO2poHijdbMnplj2R4UR5UhdmihmNjvxhdzIl2+kfQibQbYhj+R2I8pVSD6JM1xQ960vTnVQ7Muqs1JgQ5Wyav5K5kOyjWeVMXZeTBS2g1eoAvR7ZyQUI6e6NPbfiwa2qv1+6dic9ZJLLacmVKQ7muj+LvWnJ2Jd5B4AFJGfJYF2gIK+9bRSzL9BHLZ3PkVOy1WmkfqpoWDWW3ziMT8JGQ63lYkfibUadugG0odF/GJsQDJfOxcDA7lBniNFfNAMQAZoQL2IbLm0WTudMCrM9gsiRskF2zNQjxwvIvlFYSWomC0GWRWclGNUlAOO9OuL3f27gUnwGnI4V4n73Hp05beSYdj45cuYUt+05cr4td4zLvX//jRIccj2GJf17YXXoRHx69DRqfclEtaXlzBc7oZg8Dl1TJOaSgXd6EdMZS9dIYG13g7x3uLGk3vOYcifmzp2LsQv6Y/nH7+HQoUMPrc/YYQMjFoiEfNjbmeN2bNMPxTcltra2sLe3B4/Hw8KFC+Hl5YUTJ05g0aJFqKyshEwmg1rduvQ2FEXBo6MLhi0YDB8ve6RlFON/Px1Hbl45MiayCx3aKqYSEVTKuh8btfbRV2DxKA5e8x+Ggtoq7M+80/gOTUylWoEVUYfwSdhoKFR6/JP+dG2wsJFg6LTe+Ont7U3UwqahV4A7Rnb2x/u/H0FZdW3jOzQR5bVyfHzkFJ7rHIJPRw3B8rS/INca/zNt2bJlGD9+PBYvXoyIiCfTyxkTbGDEgndeH4GsnDIUlxjXckozqQkoDgeeHV0QPjgIb4fORG5u3QjK+fPn8corr0D7GD8qxgSHQyGwlz9mLpsEWXkNzsTnYe2mM9BoGhaBs7QtXH3sseunk+gzMoRYQt8Y0zx6Qsjl4Ysbpw021VKpVmDVnRNY2XkiEiqKEFve+Gjeg+gyOAi3LiYgL62o8Y1bCG+JDWYFhmP1wYstGhTdRQ9g183bcJFa4GXfvliTcLrF2/A4uHdwwvjx4/Dmm2+2iaAIYAOjdk94eDicnSyxfvO5xjduZiiKQmjfALj6OcDaQYrALp5QKdVQ1ChxYvtF7Nz4c5Mt+zQE1tbWePbZZ2FnZ4cxvSdBq9Hit2V/IDEyDYrBnQzdPJYWhMOhYO9iBXsXS9yKZU4tNkRXay90tfbCitt7oNEbNoDOl1fhl/jLeD2oH5ZE7EOt5slGNbyCXJF6x3j8fEx5AiwOHIC/jt5GfLZhg7XV5y7jlzkj0dvWG5eKUw3algchMhVi4cppWPzmfKPUiD0pbGDUDhk46CsAdc67r706BOuSb+JGSC3udgetCXMURmhHe3NKIOfk1abkHLXzWXL0iZtbyqhTV1zvRSOxMsOQz8IgFotx7twJqHPVmLfiAKqqWtZ9tznw9fXFRyu2wNvLDjm5ZYiLzcUXB66ioKQKcJUCrp2RP5D5QxfoR05tlstJvQuHptmt8iev25AuzOW/p64EE2W5Fakx0lXVlbkUBSuxCbg1dddVq9Oh7O6SazeyL1yJJzUhlILsCxRNvhBTwdTyFFSS3ip075/IXFeivCyYmUZIrg4hyvnFZE63YDdSoyXTknoqeg44AOgizSDKeaXkNtM6kEGNQsN8pGZdILVgozpoIOBzAZUS5fkVqLEk7xU7IVm+WuQJM74As8MG45vr55FazIH9abLtMifymOWhZF+wu8y0lNAKyKlatSm5jWUiqZ9SSsl7PrpPHAYoXDAvKAybUuperKo0ZJ3DpXMBAF6iTqg2E+IE6n2MOBwOOoR7YOvyXdDflxRcbkv2SS7ZDPh5kWI6Ex4ZlG1JYOYdDLAjg5yMWpqOsqLumIu69UJqfjViNkaBrq5TO5B9VGNCXmtBOdlQPYep26Fof7O7SfNP6l2vW9JBi9XREVgc3AdnM/KgfoClSG0p+VxINye1YZ0syX7/WshZRh3r4vsSZf558ruaXCA9to5V/AqxWIzzJ87j6Mn9bSooAtjAqN1CUcDCBYOgVGlwJC2p8R2eEg6HgldHZ4hNhfDwd4JPsAvE963UkliZ4td/1mHt2rVtwp1cLBajS5cuGDVqFLp164ZLl4tx4kQMsrPrkn/K7ZgCd0NAAeho6QAvcyvYis3gKrCGjdgUFkIhdNBDrax7GEuEAlQqlFDrtFAIFEioKIRMo0JSZTEytDUokj+dO3J7YtobI7F3w2molY++3HtRSE9cLczGzWLjsmjYnHIBa7o+jxP5McisYb78PAwulwtQFJRy43BoD3dwQlcnZ8z9dy9cGt+8RbhRnIsSRQ2GufrjUGZ84zu0EKampli3bh3Onj2LDz74wNDNaXLYwKid0q9fADw9bfHd90ehCW26YXkLiRhiIQ+mch4sLEzQe2AATEwEcLA0QW21ElXlNchKLsChbZdQnlLvNFxdJsO+4l+brB2GxNfXFz/++CPy8/Nx7tw5fPvttwgOecvQzboHn8PBAHcv9HV1R6izPfJqq5BRXYaEiiJkFFUjobQEWr0OebJqcP9zFRZwubD7z6bA1VcEW5Ep3M2sECh1QMcQJ3AoCgllRcisrkBsfjGu5+egppUJ4VsCIY8Lqa0EMVdSMGpmH+RlFAPuD9+nk40jgqwdMP/0npZp5GNQqZbjj4yrWOg3CMuija99j4qTmQSvdu2B1dciINc8nT9RU/N36h1M8w01qsBo5syZ4PF4WL16dZt4kaXDBkbtEHs7c4we3Qk/rD6G3NxyIPTp/Dj4XC76d/VC/y4+sLWWQFajBK9WA5VSg8vnE1FSVAV5agGykkmR5v1TaW0BBwcHzJkzBwMGDMDhw4exZs0a6B4w/G0IJDwJ5nfuigHunsiuqsS5zHR8m3gaVer6KYC7U2l0VFotcirrpjVzi0jTNrVMAFOeAB2sbNHByhajvP3wWpceyKiowKXcTFzIyUCxvOVFrMaIh7UlKoqrIRDxEdzTF1+/ugV498GZ5zng4tWQntgSF/nEOp7m5mjeHXS38cJE1874tbzhtCbGDJ/DwdKeffBvciKu5hnfytzI4my8EtQTHaR2iK8wvEi92/AQjJjZBbNnz0ZOjvGdr6aADYzaAfR8YQPnhON2ZSluWtUAVkJQtBck22vMuXGbK+T8eaJiC/r06YNOnTqhT59euHr1Kj555ytcv37dqIKB5mC49ctEmcvjolMff0xeNAzXT97B5jeOI7WzK7rM+ObeNmk9yHNCmZPTBwIR8y3Vx4wMHA8mhBJl02DSH2eQCynQPBYfCADws7DBDL/OCLVxwuXITHy+5SSySioAAFW+OuA+ozqns6RGRObMtAzQlpCeOXwBoIcecShCHIrwR9A1WAhECLZ0Ql8XLyzqHohceQHuVMTjTmUCjkY6M+rk0M5Hcj65jW8gmbNsYxapiQCACW6kr84FE2+inFRM5u+7P4kqAAj5zGtA9zGyp+mB/tnVjyjT8/sBgOeV+mDhk31v4eTJeLj28Ed8YiFKOcxA9HhGfb6x4U4doCzW4NrhbEjuu041tIwf9HQUJlnko708gHEYiGjvJQLaolS6CallEqlbyvarD+i+jriGtQPH41h+DKrU9boZdWjdNdDaSaHxpgmhHoDCiqaHoj2OUqNJvZl/Z9I3y82KmU+Mfq2d7Cvu/XuqW1+oUuS4ujUWTrq60Q+tmDnVLSgkT5DengxoK/1IjyFpfAOrfLnkl+H/N7V+F9tbZM7AXKkIOgDn4jMxyqojss8yNZf8QeQU5jgn8j7YGN+bKMdImeli6DqlDtvI0SmdrC7/WlDvADyzaCgWvvNyq14I0xhsYNTOsHK0RO8AD6w+dPGx9zWViOAb5Aw7RyneGjAIx48fR0REBD744AOoVMahE2hpuDwuZn84Aa6+Dtj82R6k3L67woYpMG5p+BwOXg3qjW72rtifHouvbp4G/1rL3PKVKgUuFqbhYmEazpQXINDCD8EWHTDEoR9CuaXYEXcL2dXty8nbztUKpuZiXDgZh5AuHtA9whTECJdA7Dlo/KMweTXVuJyfiYmunbE17RLz87xyBAcbi3KnHhcTa/Sx7YDPvz8Fnc54p4T2xyZg3aRx+MssGmWyh+eday4klqZ48fPnsGf1IVy6xLzGbQk2MGpHcDgUPv7nLRy5lYSIpEdbIisxEcLOUoL+M3zRc3Ag0hLyUVVRg3nz5iE9nZntvr1AURSCevpi8itDUZhVgi/mrIdaZTzaBBuBLdb2nYjM6nLMOV1vEsc3wC2v1mtwqyIOtyriYMozgbtqDL4fPAqXcjKx8VbkE6XEaI2E9uuAlFuZUCoebUrMlCeAo9gCN9JyG9/YCPgnORarBgzCjvQr0OjJ0aWrV1LxzntjDNSyBzPSMRynC2+jsMS4V7+WyeW4U1CI7j5uOBLNdPZubkwkYsz5YhpqKmpw9dDNFj9+S8MGRu2IbqM6o7ZKjj8u3XrgNlyKgsSkbsj+rekD4elUt/Tzyp5ofP3OnygvqRtSbc9BkW+oO559bQR0eh12fnsISVEZhm4SQYhFGIbYj8SP0XH414gEmwBQo6nF5js38U9iLF7u1AXfDx6F/127iGSNca22amp8QtwwZu5ArHhuDWAigVgsqEu53ggqnQYabeuYmk6rKoNMo0RHqRNulWcTn2k0OnC5D0870dJIeGKEW/lgxZ2dAIxjlejDuJyZhT5uri0eGFk5WOCjzfNRXlCBz6Z+D426dZrqPg5sYNSO8AxyxcF1x1Hr2vADqo+HGyYHd4QDTKDX62H2X3LUNbsvIHNLVIP7tCf69OmDiRMnolfgYBzYdAY3z8YZukkMBtgOQYCkI/7I+h3/Zpo3voOBqFIp8e31Sxji7o2Peg3ErylXcDbPOE3snhY3f0cs/mEWjmw9j/KiKsBDgqHjQrF93VlDN63JiShOQQ8bb0ZgVF0tR1WVHD169MCVK1cAAFqtFnq9Hrau1ijOfryl/k1BmKUXUqrzUKioAGDb2OYGp1hWA1sv08Y3bEK6DQvGjLfH4MjGkzi86VSLHtuQsIFRO+BuRnm1jkJg3454NrEYWp0O0ZdToFSoocvMxpAZfTA43A973z+Iz/e/Y+AWG5YRdguIsomzHYZN6Yrwvr448uc1fH7sOBQKNdDRAwCQPlbEqENrQ06X9A8kvaKii0ghqpM5cyj/QDTphi0oI29Xa2/SO8jXZDKsBR54N3ovZBodrM+SJoAAoCY1lnC4RIqra+3IoNmkiDlaoePTkmWqyZEPfQZ5kGhff6LM8a7XSJwuj0fOrRK8E9YffpZW2JpyFVq9Hipa7J5ZQprWdXBgpqH4M7UzUbaTkOLXbs7k9DE9uWa5ivmjo9SR5zw3n9aOf8h26IsaWGn5DAfxWbew9OeXoFar0bXTt6CsRIgxV0PWyQLWluQ+TpKq/9ongglfBX0DT2k1bSGbGRmHoMqX9lbfwLuQeRopcuYqyevINCwk+7mgiDnKcjw1B9/0HI1vKq4BABxk9ec4LjIDfn5+9wIjnU6HjJhsuPo5EoGRnNRJM9BJyXsrPo4UY3cIpJ0MAEF25ErKK/FecLT1waWMcuRkW8OzhuznCmvmdysOJYMnDm1GlEdL3FvtyUz4ylWR94ZZEikUF1SSlVrH1F/8grhCOI82R01nUmOkTyMTF2c6kCdQk0a2I01KJr8FAOfjZAc5V7MNq1atQq9ePfHZd8uxa9euNr+o5n7YwKgdceT38xg5qx/cfO1haWOGMdN7oFamBGpq4eBphwPrTuDa0WhDN9NoMDUXI7CbN0bNHYjstGJ8/8HfKCuqZjjgGgOjHbsixNID/4vfC5lG0fgORkRSZTHeurYXH3Yajs/Dx+DTqKNoK6ojM6kpXnppBpYvX34vwbFUIgafx230h8aCbwYdWtePUbasAgDgaia99++7aLU6uLqSQcz5PVcxfuEw3DoXD62m5aZoKAAdrexxMC2hxY75tGhbSBwuFvLx888/Izg4GNOmTUNKSkqLHNeYYAOjdoRcpsSen0+Asqt7o7BztgSXQ0GXlw+NWmuQ4WxjhKIo9BzZCYOmdENttQL//HoBsTcyjNbILEDigqEOnfFZzO5WFxTdpUajwgc3DmKefy980nkU/nfxCnKqjVsQ+yj4h3tArVYTyTX7hnrhakwmahsRYTuKbJEma10+MXoAiRUlsBaaMAKjc8djsPTLsVi1ahU0/5koRp+JxTNvjoG9mw3y0p48Ge3jYis2g1QoQnJF6/NSM+UJUKNpvleHkf0DoVanYdiwYSgvZ1oftAfYwKgdU5Rb1+l1mYY3DTMWTE1NMe2NkXD0sMWhLecRfSERegvjGyG6i5Rvihe9hmF75mkUKVv/8vcNiZcxxSMUX/YbhhUXTyG9snU/mN38nLB161ZUV9dP61EUhYpHWHLtYmKPSrWsOZvXLGj0WtiKmdOS1VUK6HQ6UBQ5FZt2Owu+4Z4tGhj5W9rgdkkBjPNV58EkVBTBX2qLmyXNs1KxZ5gnRg8MwviRr7TboAhgA6N2wbEKWqqNCoM0w2gZJpwOALBykGLprwuQFJuHn97/A0q5GqAoxtQZXVOkNWdOATg4VhDl80k+RFmURNYR78BMYMqrffgqnqJIZywZNQyHI3NxMLoGJnmkcZt1upKxD0Ubjq/wJduhoGlQax2YbeDTfqu1YvKHTkz7fePTjQNzmBoHrVt9oPBnyh3k1lbgs0ED8GnUUWTIyqCsIvVSt2Su9CogtiBHy7KKrIlyUTUpzLE2IzVa9GSbDeH/Pengrc+nubnLyYDH3FyIsiTSxE/PBfQc4K58Sa0ltT4ibt1oirXAFEnVaRBWMNtB0WbYyoIbmXLjMEMAFS3e59GS/8odyOskKiL7k3kaU4dTas5HXF4pvMR20FdlQGXZyEo0LhfJ0RnwCfXEuT3XAQDO58lznN+L1OWMCCaTI6dWk5qalMsejMMIOpAvDbNNHJGXVQVxdt13UEnI8ycqZY7mFYeS10lCczyR25D3AT1JLwDY3Cb7aK2nlDxuHtknywPI716rVkOvo6DX1dcdEEI2JKaCfA7wvMgb1uQy02ndbO9VAMAzswYgZt/1Nm3e+CgY1/pJFhYDYetqjbc3LcCxreew9asDdUGRkTM+qAO4FIW/bxu/AeDjElGUgQ0Jl/Fp59Ew4Rr/UuqG4PG58Av3wvXr14m/d/J2QnZRRaP7e5i6olDZ+qZ6UstLEWjz6Ku8YiOS4RfuCVsX68Y3biIsTcTIqWj9U7VNiXeoB6wcpTj862lDN8XgsIERS7vH0csOi3+cg6Obz+Ds7ojGdzACXCzMMSWkI9ZcjICmja4WuVKcgXMFKVgWOgI8qvU9qsYvGoG0O1nIyqp/oxeLxXB3sMK1+MyH7FkHh+KgQt36pkczqyrhZGYOEY85IaHT6WBvb0/8rTS/HNkJefAN82ihFgJBTnZIKWY1lfdj52qN+KspyE3ON3RTDE7re9qwsDQhFhYWmPPpVBzdfAbn/7lq6OY8MrO7dsa/cYnIqmh9P5yPw29JdYHqVL8QA7fk8eg7uTsGPtcL/64/wfhMp9M9irdjq6VUXosqlRIOpszl6uvXr8fy5csZf0+LyYbUtmW0fG6mVtDq9MhlR4wIeo7rgogDkYZuhlHAaoxY2i18Ph9r167FnYhkXD5yG5TgvySdlky9z/24HSen2Xi1zFQgJSFkMkj+IHKen64RaQi6dsn+ZN17jJOdBTpL7PHbuguwUtX/wlpFkF4tch+mIUyNI3nL03UmfFqcVR3awOqXHDLxqSlt4ZSWZp9ET1KsEzCjAovzpJ5F5lb3fz2ANUWR+O65/ijhxyOhuu5gWdnM71ZbTtbRJSCDKBfLSUFwYSWptRjowTTsfPPSc0Q5IJVc3q2n5Qg8ofkT5ubmeG/ePEx6YTxik5jTnPxqDWwv10+R1Uwj+1NMUZ1GROYtREKxPTRMmyzUuJDn0N6PnHLLzyb9ligBs8PZ3CbbLnMhpyzpfZRDczw2y2VON1cPq9MhpSgK0NHTHKmF5MjYjlM78Pzzz8PR0RH5+fmguHW6nZpqBTr1Dagr03RwkmyyIZk15HfzlpDfvSiIGZD5WNWPDvW2dkViXjGg0t8bGah2I8cIyjoyPcBUbuT5KrUhNUcmWWSZln8YAFDjRF5MSTIZnNV4kn2S7pVUo1XC08ISUWX1N12NmrwfZUqy7apa8rp6/srsk8c0f+JtpznYcO1blGvar+j6LuyIEUu75fnnn0d+fj4Obmxdc+r9u/viSnQ6FEaUm605ya+qxq7Ms5jjNQxCjvHrjb744gscP34csbFPrv3iU1yIW6m2CgBkaiUoMMXHOp0O1dXVEAjIH/NLB27AxskSHoHNn2iWx+GhoLK68Q2NkKSKYlgKmYsXnpYxY8bAysrqntdWe4cNjFjaLV27dsU///xj6GY8FiYiPgZ088WR88aXjqQ5uV6WhHxFOQbZd2p8YwMybtw4+Pr64rvvvmvwcxcXF2g1jQ8XOptKUamSo1JtmEzqLY1Oq8OdS0nwCXU3dFPaJYGBgdi2bRtkstZnD9EcsIERS7tFIBDcM5prLYQGuiIjtxQFxe1PH3Gm8BZ62wQauhkPhMPlYMGCBVi2bNkD37ynTJmCs4eiH6m+Wm1b8f9+NHJTCuDgYfw5ywyJuaCBedWnhKIoDB48GIcPH27yulsrrMaIpV3C4XAQFBSE2NhY9FF7E59RmaRohpdPDvvzLUgdgNaBzFUEABbp5A9jeRE5/E11pg3lFzAFCTbXSM2CyhzoGOKMKynZUJlTEJeQmo/qYFLXpDZjvvfU2pHTG/Q8XCLa6nBfN1K3BACpPPLHS1NCfjc+aUODshCynTwZ+b0AQCAjdSVqc3JUJTvfCjn5FRhrJ4SbvjMKs5ntQkfynJYpyHbRNUVeNuSqpOUx4xlVdlhJiq60NJ+iE5o/7/17xYoViI+PR2TkgwWsfD4flZlFQGm9jiMrkex/QodaaLUc6PSARsuBvgFNsiSNvI5lteS153qQ7RQmMKdfZDSdEk/+cEU4pSADtVp7ph+Ot12d8aCTuQY1VBVuu9MafxsoLi7GggUL8L///Q+6yvp2auQKQKMBN4n05eE6+BHlQhl53PgY0tPK2beY0a6bN+vPsYe/HSQWOtQ61fdLt6Pkd8/tx+yjtmfJqc2SzuQ+Gpq0iUvaVwGo87B6GFoheV15pK0RvMX2OJGRAl1V/TMpW0dqrkwkpN+U1XkymNLT+nDYkGAoFIp2mfrjQbAjRiztkrvuu3J565qqsJKYoLiifQ536wHsTr2FCZ4dDd0UBh06dEDv3r2xYsWKB24jFArRu3dvZMQ17lqshx7mfFEDKp3WgaepI7JrG3ay/uCDD9CnTx/4+fk1+DnLgwmysUNaRQMR11MQ2MMXO3fubNI6WztsYMTC0orwcrJGYnb7TeFyuSATbmZSeFhJDd2Ue5iYmOCDDz7A5s2bH6rRcHZ2RmVlJfIzGzdtzJSVQcDhwc/crtFtjREKFGSa2gY/Ky8vR1RUVAu3qPVjZSoGl8NBnqzphOMURaHrsE5ITExssjrbAmxgxMLSitDp9VCpWy4LubFRq1HjfH46+np7GLop91iyZAkyMzOxa9euRrd91ETEegDH8+IxxCngKVtnnCQkJGDSpEmGbkarItjNAbeLGphCfgrs3KzB4XKQkJDQ+MbtCDYwYmFpRVAUWu30SlMRVZKLQEfjGEkZNWoUQkNDsWrVqiav+1ZZLoIsHZu83paAniiWzqFDhxAYGAgOp7335kenu48bbhY2ns/vsaAoFGaWQKFQNL5tO4IVX7O0e+4X0ALAUEwlyhTNcwVKUoSqEzJvI42YfOfwOEiKicXvk8LfhFxmNnIubVFS4SA1sjhVcBhrjZvFuZDE0EThtFkcXQN3N4dWp8yFbJcikBRulsU5M+rQ0wwaTYeTU3vVCtJgjqomyw2tA+QqyB9IswxSpcrtVy+CztJmwNG2D5T2ZE1D3NKI8s0i0hOnL+3z1CoyN5c2mmnsqc+5TZTv7yuWlpb498N/sW7dOlRXP3h6Yyivrj858uxhT7kC1qRYn2dD/ijZSOoUt2W6dNiKh8GOMkGZjJyWaswg1NqS7Aw1Gqb4WiN6eNJTs0xSf6eVkHWozJhBTXyMK+xMTKHzkSDyljVsRA03NDs7GwUFBeg6IgxXD98kPtPLyfNRGkT2hUApqbHxDCXLKWXMnGv9utXbW/hbW6Dyujeso+vrFZaR59fxMtPgkScnvwsVSd5gfBk5kquwYiqtqUYGe2ttyeeGzZ26RRxcDoWg6dbYfCkKgkqyXjO3CqJcUUEu5HDdE08e5L7nGcXnA2xwyoAdMWJhaUXk1VRByG1kaUsbp1ajAoei4GTKXBXVkgwdOhQnT57Etm3bmqV+tV6LNFkBAl2NY3TsUfGUWiJPVg2V7sFRgE6nQ2xsLCwdHu4y3xyo9RrYWxq27zwuTo6W0Op0yK1sfzYdhoANjFjaJXq9Hnq9Hg4ODoZuymMhUyvhac60B2hPaPRa5FRXwZQ+kteCeHp6YsaMGThxgpkLrSmJLk9Dd1+3Zj1GUxNka487j6CFOXToEPpM6NYCLSLJqs2Cm33ruofCQt0Ql8Amd20p2MCIpV2i0+mwe/duvPTSS4ZuymNxu6QAQdatK5hri7z99tvYs2cPLl682KzHuV6WgjBPJ4j4rUf1EGxrjzvFDS/Vv5/U1FSYW0tgImn6FBcPo0RZCqmZCOYmzOkyY8XfxwF3YnMa35ClSWg9dxsLSxOzfft2bNq0CZMmTcKePXvu/Z2uOULFw+vpNvRbxt8K+5DTCD47SD0M3aRO4ExzcgNQm0luY5IkQEpuKV7z7QXLNDEUvclkj5abSW1BjQPz9jYtoE1vcMhpuWpzsuwbyPTcMReQOqQbSbQ0DrU0fVAt+f4l8mVOB2hMSCPAGjdSz8GNI03sRAE8QEPV/fcf8eX2xDajXclcZacLSN+c/GJyGsd/HdPgTqdiuk97e3sjMDAQS5YsYXzWEHc1ahSfD4rDQXkYqYHRVJDfNbei/gc7F0CcYxF6jHbHgfR6rYjNRdJskF9F6kQUJ0gTTmED2loFLQ8vl7YNt5rUGKnsyP5YGcRUi7mWmsPH1BpJ0cUw0XKhsGJscg+NRoPdR3fC4Vkh1q/fAr62GgKdkqHpo5si0o07i6rJdimVzH4fV0r2jVI7Bfg9TVBaXqctMsslz6e4iOzjAFAe8PAArtKLbKi6wdk68l7QB5D9vjKAvD81JnxYiIVwD7LH+YgLDR63rIQ8kCidPH+6h0y/6RUKQPsIGa3bGeyIEUu7pbi4GK+++ipeeeUVSKVSQzfnkSirkaOwSoZQNydDN8VgmAkEcDSTIKuqosWPTVEUPvnkE3z//fctlnDzz+TbmOITDD7H+B/XvXzdEZmeA7X20SwlUlNTGQllW4KY4iIE29o3vqER0MHZHkkFxahRtq8UMYbE+O80FpZmJDs7G3///Te+++47cFrBDw8ARGfmIdCpdQlymxIfaysU1cqgfMQf36bE2toa9vb2OHDgwGPv28gK9gcSVZyHwloZRnsYv6dRDy9XXE7NfOTt1Wo1PDw8mq9BDyCmpAC+VszVa8ZIkLM9YnMan5p8Epy8HaBWta58kS1B6/glYGFpRtatWweZTIZ33323Uf8VYyAyIxc9fVqXILcpCXKwx+2i5vmheBgcDoWVK1fi+vXrT7R/r3FdkJ30ZALadTFXMDOgMyyFLavHeRxMeHx42FgiJvfRr82+ffsQGhra4ulB0isrEGht/C8XFAWEezrjdkO5AZuAHmPDcfbPS81Sd2uG1RixsAB477338OOPP+Lll1/Ghg0bHmtf6e4bjL+ZFIQQZV4ZqSHiUqQXEIdiOiKraCuZzbLr/p9ZUgz+EA58uZ64VVL/wFRJyPcc0wLmm6DalNxGS0/WTUvwmtyAj5G4gNyGPhNCT0yrMSU1DLxTDS3Rpp0PG1LjwUmrDwg62trhYEYCKC0ZxHawJH+Qd9zpSpQdbcmEsKI4MsjQlVcwW3XfqJSLvwskEsljC/bvamY8g91wYOMZWFwh0y8UDCVzvzk4ku0ou2GH7DwZImyzMc0+DJuuRIKWMxYiWvosrop2PhsYFDApoum4aPtUdSAFQiWhZN/hkc1EV3dX5KmrkWdVA/y3qz6c7PcjDi0mykdz1mD79u14/vnnceXKlbo/upBTXE7nyb4gHEh+GY2W1qdVTDuLcLtsonxBYQKxmIKHOw/58iqUdSB1OpIsZh30pM10rzK6t5SwgvmSZZFKfpfSjqQAXOxI6oFcndwBCXDdNBd6P8DagakXqpKRN7GwlLwhKZq9x3FlfV60V12nY3fCb4w62zvsiBELC4Da2losXboUEyZMwMcffwwez7jfGQ5eisXzAaGGbkaLY2kihq+tNW4WNLED8CPQoYcv8vKe7Lh+YR4Qm4qQGd94AtkH8Vd0DIb4ecPKxPhGjUIdHfBy9y746eaVx943JycHIhE9Qm9eNHod4isKEGRp3Fq90Z7+OJKRhEdLJPN4eHp6QiqVsnnSGoANjFhY/qOsrAzPPPMMwsLC8PHHH0MiMV4TuBM3kuBgKkGobetMGfGk9PJwRXRuPmpaSPh8Fy6Pi8HT+2LlypVPtL9AzEdhdimU8icX0OZXVeNyehYmhXRsfOMWJNTRAUv69sLKM+cRX1r82Pvfvn0bYWFhsLNr2amtqyUZ6Gnr2aLHfBwsBSbo6eCG09mpzVK/h4cHoqOjm6Xu1g4bGLGw3EdNTQ1mz54NhUKBP/74A4MGDTJ0kxpEo9Vha1wUXuvUEzyq/dzGQ/19cTHt0cW9TUVQb39UFFWisLDltU3382fUbQz394GFuGVHWB6Eu9QCb/fvg5VnziOhuOSJ6igsLER2djZUKlWLCrHvlOfB38IefCO9f6Z5dsGFvAwU1Moa3/gJmD17Nk6ePNksdbd2jHu+gIXFAJSXl+Pzzz9H165dsWzZMvj4+GDr1q1QKpneJgA5Z3+X4YVe5B9oK97Uh0j9hrwLcyTBnKYbEVSTIobrhzPRj+eOpU598PPRCOQPJkdRzGNIbxYAsEoktxGVkO3S8Uk9gsqiAe2TlPybbUdylKD8Gvnmz68mj2GZzBztKe1AttXiLDldxFPo0TXQDWYKLu4cSwc6M6rApWzy7d/dgcxHl5FHGvf4ryNzSB1r4DoCgFgsxgfLFuDd995o8PPGoOxsQEmloEzEoOxsgHwyuBJmk5qQwmqynRyvej+hPMhxsjQRL0zsjJU3z977Oy+KrENtQtO3NPDbL7ejacVo8hUVabEDm05kTjytzB7vdOuNHZmRiBNmAy4ANGSdVmZkDjKVD2lOOqx4OgDAieMJp6IAuIv9EB5Qhhtn6nOb0RfzJ9wmFx44+ZPtcnBg5q1LpZ1TdZYZcqBHgbccwVo/3OhBTidxVGaMOkwaGQwTVOloZeaqSX4V+QypCKHlPePU3Vs+Ejv0sPPE10nrEOhTf/2rlMyAuFxF5lmk51hs6Pnk6OgIe3t7HDx4sIFvwmKcoTILixFw/fp1vPTSS+jUqRN+//33FtdBPArrjl1BkJs9wr2ZIum2BEUBEwcEY/+5O9A3h+DiIfTq1QtJSUm4evVqyx74AWxOvI5QG0eEGNAB3ZQnxDuhAxFRmIlDWfGN79AIlw/cwKBpfXBwwwn0HBX69A18RM5nZGCkT8uuiGsMChRmeHXDwezbkGnkje/wBHC53Ae+6LGwgRELy0MpLi7GokWLEB0djR07drS4DqIxapQq7Lp4CzP6hUHIbbsDwF0D3cDncXHxVlqLHpfD4WDOnDnYsWNHix73Yci1anwTdR4fdhkECb/lzRHtRRZYHvQMCuTV2JVys0nqzIjLhp2bDWqrFbB1toLItGXSdRxKSoS/jQ0CpcaTZqePnQ8sBSY4kH2r2Y4xc+ZM3LrVfPW3dtjAiIXlEfjqq69w+fJl7N27F76+voZuDsGFuHSUy+QY79XB0E1pFkR8HmaP7oadR2+0+GjRzJkzodFocP78+ZY9cCPcKM7FoYwEfN5jeIsFR0IOD8+69cJnIdNwuvAOvr99Hmpd06STKEgvRkZsNixtzVGQWYJRL/RrknobQ67R4NebN7CoQ1+Iucyp55bGhCfAiz69sCUlAmp98xiYSqVSjBkzBqtWrWqW+tsCbfcVk4Wlifn2228RExODdevW4ddff8XOnXVz90N5Uxnb6hPJkQ3KjNQByO1pSaQUTN8UWVdyGL02h9TdcO8bCd8WcwsfDO6PiPOZKKup26/aj/lgVVmSD3+694qe9qqk5zIjEZ4LqRuprCWnGJWupMjB6TD5mKHriQCgKojUHZkl1W/z8tCuuFGYjwuyPMCpTjtj7knmiQMAMZ/0t5GryYDBaR953IflkAIAZ2dnvPjii5g5c+ZDt2sMXU4edO4S6GUy6HLyGL4yam/yOltKyfNbUUHmwAMAnkiNnZlXwRN0xQ/9RuOo/xVcKk6A7r+F3YVJpKZGL2EaGZla0vpXFrkKUy+s6xwUgN7O7lgUMhHJlSWYd24fihU1EJsydXE1hWQ/p+ejMw0n+4pzdH2fVqq0sHCyxpW9V9D/2Z73rg9HRfYN62jSsdomlPRKqtU0HuC4BNcbbSaiAOkKHr7pOQSb046hQFGG7i8xR1P+PN+TKNtHkJ9XeZDXVVjBHHcomU6WKZA34OsdeyCuOhnZ6gRYmwEZpeRzordrOqPOvEIpUeZoyHt2mEl9/+ULeJi3dQL++OMP1NQw8zOy1MGOGLGwPAbHjh3DjBkzMHv2bAwYMMDQzblHYmEJLiZl4uX+3QzdlCZlXOcO8LCxxG8XmCaazU2/fv1w+vRpZGdnN76xgfg9+To2J1/DcKdQfBk6HXaihswzn5yO1nb4acg4vNAxDKtjLuCTm8dRrGieH9QLB25gyHO9kBKVDicv+xZzoddDjz8yzyC6PBVvBkyBi9im8Z2agam+IbAXWeLPrOYbnfQMcoVSqcSPP/7YbMdoC7CBEQvLY1JQUIDXX38d33zzDb788kvwhYYfggeA7RFRcLWywIhg4xKTPinBrg4Y3zkQPxy7hGpFywpFQ0ND8cILL+DQoUMtetwn4UpRBpbf+gOnC2Pwecg09LLxf+o6LYQivBLaHR/1GoS9ybGYd3wfrhc3b4CYHpOD3NQChA0ORkluOXqN69Ksx7sfPfQ4kn8Nf2SewWL/SbARtKw/WGdbZ4zz7ID1KYdRq22+vt57XDj++uuvZqu/rcAGRiwsT0B8fDxGjx4NU1NTfLb/HUgsTRvfqZlRabT4+vA5TO0eAj8Hw7z1NhXBrg5YPKwXvjl0HjlllY3v0IR07NgRq1atwldffYUbN1p+pOpJ0EOP4/m38EXsP5jk2gM/DBuF4d4+8Le2gRlfADO+AHfHX7gUBTO+AKY8IUx5QjiKLdDb1hv93Nwx0tsXn/YfjM3jJsKUL8C84/twMjO1WZyXGyIrMR9CsQAH1x9HrwldG9+hiblZnow/Ms9gnPNLLRYcDXX1wRthffDptVMoUlY023G8QtzgE+qBCxcuNNsx2gqsxoiF5QkpKirCkiVLsHrRRrz3+2tY9/bvyE5s+VQV95NVVonVxy/hnZH98GnUGSSUPZnpniEJs3XE4oBe+PbwBSTkP76T8tPywgsvYMuWLTh37lyLH/tpyawpxjtRvyNE2x0hdg54rmMIhFwu+HwO1Dot8mqq4GAiAY/DBcWt0x3pASRWFaBaUPeefDU3G99dvYRyfe1DjtQ8ZMTlYsqiIfhy+mq4d3AGX8BD80iQH8zN8mScKy7EOOeXcCB3E0pUT5b4tzEEHC5mdwhHZzsnfHrtFJIrSuDWjGb7nfp2wOWDN1BQ0DwJadsSbGDEwvIU6PV6LP7pJQyIGYD3v3sfb775JmJjYwGa1nWE5StE2SKVfAcv81c0eqxOfZKJcmSCB1EW5dZN6d0ozseaixH4psdQnDwXj4PHb0GjqRN51to9PLlocTj5eUPia00OOTomzCG1IPRnezHNjJHfgJEvpamrY1pACCb4BuKTy6cRJy4C/vPJpEzIhjY0eanSkuLX6tukSNfnUgpRPqr5k1HHpEmT4O/vjxUrVjRwhCdDr1IBajWg1UGvUoHjQCZJpRsvy5Xkt2tI5BxgS5oaRl3zIco1PpGIKADw329gVZkZnEzNYcoXQKHRIEtWAV4BKU7n+txnjGgNcFXkz4OXAxmkJqUxR1S8fMgfXbqppqY3TfD+K1m8czkJs5dNgFZP4c6FRIyePwz715PuzMIKUrB8K86dKI8Iv81oF50bRa4P/fzXZAVulV7HTM/F2Jp+FjfL0kBZkVNcqhlk4NjdLocoZ8osGfWW5dkCAJxMzPFGSD8IRTL8kroZkCrhKwU0OrIzjPe+Q5TTa5gjwToFeZ2sb5AjrHqVClI7C3QbFoyf39zawLdlocNOpbGwNAFnz57Fpk2bsGXLFvj7P73G42mJysnHR6v2w9vTFh+9NQaB/sadU03E5WF5z4Ho7eyOBcf3I660qPGdmhhbW1u89tprWLRoEeTy5jHWMxR6ALk1VUiqKEGWrMLQzXkofAEPvp098fcPh9B7QheYWzNdqFuCyLJU/JZ6GjM8+uKtgLFwM5M2Sb3BVg74qvso3CzJxZqkv5tVU3SX0S8NRsS/N5D1FEmM2xNsYMTC0kT89ddfWLp0KdasWYMhQ4YYujkoLavBtz8fx+FTMZg/qx9emNoTFmbG597dzdMFG4dPRJVSibfPHkG5suWDEnNzc2zbtg2//fYbcnJyGt/hCfDq5A6huOUNGVsbN0/HYMy8wagorkLMxQR0G97JYG25VZGBd6O2I6u2BN/1GofVvSfgOe9QBFk6QMR5vEUXDiIrvBrUG++EDsS6uAjsSomCvgXUWxwuB2GDgxB5vPGRNJY62Kk0FpYm5OzZszAxMcFXX30FvV6PU6dOGbQ9ej1wJTINt2NzMG1SV3z36gScuZmMA5diUVXT+PRdcxLu4YypXUMgEQnwc/RVRORlGaQdZmZm+PHHH3Hw4EFs27atWY6RnZQPE4kIHkGuSMlunqSgbYUtH+3Gir/egJ2bNa4fu4UXPnkW8ddSkZtiGG2MRq/FX1kRWB8dh652rgizccaioN6wNxWhVCUDj+IgujwTfhZa2Inqp0nv91PiUTyY8kQ4kZmDJZf2o1TZcvqtFz5+Flw+D0VZrU9vaCjYwIiFpYk5fPgw8vPz8fPPPyMqKgplZWXQq2kmdafIDPFFA5wY9djak1qBGymkloJH092gIxnolFXXq33KoMM3N64i9K+bGDUuDOsWTkTsnWwc/uMastLqtSOmeaSZoMKa+YiwiCPNFbW09A3canLEJ3F+vUmdgMtF/z6uGOkaAAu+CH+kReNUQhKU1Txi/JpXReqFuFbkd+NymG/a5amkpiNgM5msVW9HmuUNLZkKLo+LN9bOQ0ZMNtauXcuosyk4ofkTyAMGXgvFVc0JWMlDic+1KvK76hNJI09NMDMp6s2b3kTZJ5RcSp9TLiXKphbMUbhaDqnVsTElt5HQznnqf/qYu/TowEzPUqYk267XPXxSQtGDaS0hPHMLmXE56DW2C/asOYJzf0Wg65Ag5CbWTQMJy8l+zzUnv8fR2CBGnTPDrhBlLymZoTkyk0xMyxMwDTE7uOZAhhxcqAYuVAM5ef4Qc3mwEIrgbWGNnBo5EqtSoNbV7SvikXWUqmTIyr87LVh3zYOkpLDbkkcGTBdKyOscYM6cYraMJu9RKrX+BYPH58J3yFhMmDYaKTUp9F1ZHgAbGLGwNANRUVE4deoUvv/+e8ydO9fQzblHYUElNm84i12/X8KQ4cF47YMxyEguRMS5RERfZ7rqNgU8DgdBtvYIc3DEIA8v5KnL8W9mHE7nJbfYMvCGEJuJ8MGOxchJysff3//b7McrLCzEgAEDcDutotmP1do5tOk03t+6CDVVtchLKcQzb47BtaPRyEstbHznFqJUURfE5NRUIbasCBZW5Egg3YndEEx9awySk5ORksIGRY8DGxixsDQTy5cvxw8//ICVK1fi7HepUCsN/6C8i0Khxr/7b+Ls/ih07eOL0VO6YPargxGbnI+k5EKkZ5SgpkaJDLUMWt2jhy+mZkJYW5nAwdkSjq7W8O3oDMfezsipqsSdoiKsvHwe8XrDO0kLRXy88PGzyE8rxMb3WiZB7IYNG7B9+3YUnjyBwqzSFjlma6UoqwTfzd+AFz+bik+n/gB7dxuMmTcEG9/baeimtRosbCToMiQIvUe0LTf8loANjFhYmgm9Xo+3334bK1euxJLvZ+G3T/egtKDC0M0iqK1R4tyxGJw7FgOJhRjBQzrA2UmKruGeMDUVQmguhFKlRlGpDIVldVM64n4KuHnZwVRSN4Wm59ZPl5iYClGcUwaFXI20hHycORSNw8URqFbVr7zhGNh7Uiji4/kFA6EsLMW2T/+CTts0iVAbIz8/H9999x0+/OJzfDLz5xY5ZmumuqIGZlJTmFub4ezuCLz2YweMeHEADiSyWplHYcZ743HmrysoL2fmFWR5OJT+8dJV61sqfw0LS1tBIBDg/L4rsLSzQHZSHq4dica5w+QKkfzpHRj7OU3JIMrxMaT3isDu4au3VGXMFWguR8n7l5401jySXM6reMYPfB4X3k7WEPLq3qP4NXpUVcuRmV/3wNXfV6VaowE3kdTEJM+ircQSMAMRQR65jcqF9O6hT1NUV5FaFgDw/Z7UcXEKSB3J0Zw1AIDXXnsNXl5e+OCDD1p8WT5FUTizOwJRZ2NxZPNZAICqd0diG7quq6A3s56AkIcL1cvlpFasWiFkbONjTQYYIi45oplWQWqySlJpyVu9maNedO3XNPfrRHlfHrnCTLbdmVGH9fX6emcuGowrsXvx008/wc3NDb/++it+//AiivPqf+xT53sQ+/ccFsOo001M9gUbPtlH42tIO4uTqUzLDUsJqf+h+2aNcyePe6WUbBcA1NISG49xJn2KXpKSyWtfSptIlOmeTQAQ8GMFUT4W8yX8/PywY8cOdO/eHTpdywT+LYFer2+RAIQdMWJhaWZUKhU+e241XHwdIDIVYvr7E1ElUyPqfLyhm9YoFf+tXCuurE8cKionH7T04KoZzXufmr59+2LMmDGYOXOmQbyK9Ho9flyyBYtXz4ZXsBt2rNyHlndsaj0c+TsSr3w6DT///DOysrJw9epVBHXzwpl9rSNViyGgKApvvvkmdu7c2aaCopaE9TFiYWkB1Eo10mOyEX81BRvf24lnFg+HjaPU0M1qV3h5eeGdd97B+++/j6Iiw4Uj1eU1+P7V3+DTyR2f/fMW7GyNOZQ0LCWFlYiJicHw4cMBAAcOHMCElwdAZML6QT2I3r17w87ODqtXrzZ0U1otbGDEwtLCZCXkIuJwNEa90M/QTWk3uPs7Yvv27dizZw9u3rxp6OagtkqO98auwsmdF/HmkhEI8HcEq1JomKNHj+LTTz9Fz549ERUVBQAYPIUVFDeEUMTHihUrsHLlSna06ClgNUYsLAZgvPMrWLnvLXw4+XvUVMlBWTBHDfLGkd4qNX1qiDKHpuegaGXLf8icZgAgPZZIlIsnkdqmsmDyYWqezHx3kjvQ/kB7/gpo6bCqA0jtj5cHc8m1uYBMi5B82Juxzf1IU5gPfckhUp9xvLbOrNHT0xO7d+/GH3/8gW+//fah9RqCQYMGYe7cubC1tcX169dx+ZsUqFX1eh+OvR1jH62dOVFOeY5MmxHchfQY6mtN5tkDgFotqTuie+akFZC+RVwemc61gwPzOmZXScl9KPI69bAn/btulrow6jD7gNRHUYkZ6DWmMzp088avH/2FodN6Yuy8IVjS/2NoNVrUjAojtq92IbU/ACDrRU6bTu9Iap8uFnsR5e42ZDsB4EIheX4mukSTn5f6EuXCGuY9LaB5GwVKSdPKc1lkzrvaUvJc0D2LAODW2jfv/XvQoEGYOnUq5s+fz9iuLdBSGiN2xIiFxQAoapSIiUjGlMUjDN2UNk2fPn2wYcMG/Pbbb0YZFAHA6dOnMWPGDMycORMAsHTjfMxaPhm2zlaN7Nl+yEzIhXeIO6S25ji+9RwKM0sw8Llehm6WUdGjRw989NFH2L59u6Gb0uphAyMWFgPx15qj6NDVq/ENWZ6Ifv36Yfny5fjoo4/wyy+/GLo5jVJYWIjly5fjnx+PoLKkCks3zsOYlwdDKHq8nFxtkdyUQlQUV2HsvEEAgJ/f3IoRswfAM8i1kT3bB7a2tvj666/x66+/4sKFC4ZuTquHDYxYWAxEVakMVaUyTFo0zNBNaVMIxQJMfHU4PvzwQ7z++uuIiIgwdJMeGZ1Oh8TINOz/5QS+eGEtbJ0t8dGGFzFwfFjjO7dx9qw9BldfR4T064Cyggr88fUBLPn5JXTpxFzC3t547733mjXXX3uDDYxYWAyEXq/H2qU7ENLbDyOe6wFWv/f02DhZYvGa2bB1tsKcOXOQkJBg6CY9MZXF1dj88d/48cO/0bmvP5b/8gJcvZl6o/ZCSnQm0mNz4BVcp72LPH4L+9Yew4IZfeFoZ2Hg1hmOSZMmwcfHB/v37zd0U9oMrPiahcXAODg44NBf5/DPbxdw81K9SDZntD2xnUUGKX6V3CTNGKs7k2Z5kjsNLEmXkQJunQNpQ50yk/yBcTnFTGNS6UlO7ZgWkO0yjyPN9OIXk1oZszSmONbhKimO5WcWE2VdAfldOA7MACHX/BS+/fZbJCQk4N133zWIT1FzMJQ3FRwuB2EDgzDlzTHY9vnfiOWZQHdfqhZBJmm2mPAmaVho6cV0PzYTkoJ3lYYU9pbXkCaaoY55RDk6n5n42ElKJj72NifbJeaQQvzrxeQCAwAojiVF397vXrv3b6mtOaatHYm9e/feGx356vXt6DsqBKve2Am1Sgt9A1OPRb3Jfi4fTq4QcLGsIMp0I0YAKJORQmgrM9LwUUAzyHQzI+sEgPNXA4my5z7yfPBqSGNTOpyUHKIc3MsPAxcE4sMPP0R0dPRD920LsOJrFpZ2QkFBAbb+cByT5/aDu6994zuwMPAIcMS6desQGxuLN998s80ERXfRaXW4cfI2dn65B6989wIWLhoCobD9+fNWFFdh/vz5eO2119ClSxcAwLlDt1CQXY6FyyfA3NKkkRraDhY2Esx6fxy2bt3aLoKiloQNjFhYjICkOznYufYk5r0/Bh7+9PXwLA+Cx+di/Iv9sOjTKXj//ffxxhtvQKMxnmS9Tc2diwlYOesnaDVafL/6eXA47W8Ev7i4GMuXL8fatWvh5lY34vTHL6egVmswYGz70GJRFIWPty/CxYM3sXv3bkM3p83BBkYsLEZC7I1M7PjpJF5ZPh5T5w8Aj8veng+Cw6EQ1scPX25fCDtnS3y5aCvOnz9v6Ga1CDlJ+Vj3y2ncvpWF+QsGwd3duvGd2hjHjh3Dli1bsGjRIgCArFKOfVsuoM+IYPgFMb2R2hIUReGtn2ZDUavEgY1nDN2cNgmrMWJhMTIcHR3x999/Q1kkxJaVB1GUW6cP0biS2gteHi2JJ4fU7mizST1Cg4STmgdODak7oWhlAICO1BTpyyoaP87926uYOgpKTOpZjlX82uC+HA4HvXv3xldffQWhUIiXXnoJt27danDbtg6fz8fLL7+MCRMm4NCePMTeqb/emSNoJomB1fTd0cU5mygnlZH9y8aU1KMVykjDwgluZCJkAOBzyNE6uonk7UpSB1ciZ5qQqjRkPzZdIyXK546+C6Buifq2bdvw7bff4sSJEwCAF198EX38J+Ov9Q8PGMp7khqsguFku+d0vsTY57dIMpuvMJvUIdG+KngNzOZ6/BBLlCkz8vvfTXT8IJycnPDXX38hOjoaS5YsgVqtfuj2bQ1WY8TC0k7Jz8/HgAEDUJJXjg83zMGQKV0hNmVmR28vCAQCuLq6YtmyZThx4gRef/11bNu2Db179263QREAqNVq/Pzzz3jzzTcxc05fDBzaETxe+3mkFxcXY+nSpfjyyy8REhICALhw4QL6jArBuBf6GLh1TY9UKsX+/ftRUFCARYsWtbugqCVpf+o9FpZWgFqtxm9fHYR/qDtmLR2FYc/1wLffHUdudlnjO7cBunbtiv79+8PDwwNBQUGoqalBREQEZs2ahdzc3MYraEfExMTgh2+OYNIzXdGthzeOH76NTBguSW5LcufOHcTExOD999/H7NmzkZKSgp2rT2DsrN44/tc1KGofvsqrNWBlZYXXXnsN/fr1w8aNG7FhwwZDN6nNwwZGLCxGTGJ0Jj6c8Qv6j++Md5aPQ0ZaMXKySnHgn0hoG9+9VdFteAjCB3WEyEQIjWUl/vjjDyQlJeGLL75Afn6+oZtn1BTkVeCXNSfQtYcP5swfCFlMJE4mpRq6WS3C559/jiVLluDFF1/EunXrcPV0HDw7OGLktB7Y+2vr1p2NGTMGCxcuREJCAmbPno3s7OzGd2J5aliNEQtLK2Gyw8tw8XNE1+Gd4B7oiuvHopGfXgRZeQ1Sb2XiuHLnY9c5zGQmUb6bePUuQ3lTGfuc0PxJ1iGcTm7ApfkUackQ7rhyJ0xMTDBw4EAEBQWBy+UiICAAer0emzdvhlwuR3x8PKqqaNloWR6J8ePH44O3VqG8RIYzh6KRnlyIDHcRY7vCXmSC1+d6XSHKNZqHT9+myGwYf9PoyKm80lpSQ1MlI9sxxJtMagwA1Rpym+gCUpfktIp8n6eux8CtgzNe+X42fv1gJ5JvpkNqZ4HPD7yDT575DsXZpeBaWRL76FXkNFT6r6SfkkbFHDMwu0zq4By3kBorSky2Wy9XMOqAgPRY0tN8xe6/h3v16oUVK1YgJiYGS5cuhU7HTJzc3mgpjRE7YsTC0kqoLq9B/NUUxF9NgXcnd4QN7Ihuw0Nh51b3AzW5tD9SUlJQXFxnjlhcXIyUlBQ87OXHRUxaA/jJ/cjPeaRIFQD8NLRtBLRt/ltNJxDx4dHRFTxu3bNMamsORy97TNb2h7u7OxISEnDlyhUolUqcOnUK169fZx/+TcD+/fuhy+mEHgM6YPr8gUi4k4Pd8SnIKarA470Htx6y4nPx6wc7MffL6fj6xZ9Rll+OnKQCjFs4HL9+8PgvDIbEysoKM2bMwIwZM/D1119j37597H3RwrCBEQtLKyT1ViZSb2UCqFu+6x7ogpucUwgMDIREUrd6KDg4GNOnT39YNXDkeRLlwZpQouxAMfNQDdF3JevgepAb/DeqrNXqkBmXA0V13fKcsoIKRJ2JxWXFYVRWViItLe2hbWN5clRKDc4fu4ObEcmY+cpgvDFjANJyS7H7RBQqqxVQqtue11PyzXTEXkrEkBl9sft/B7Dji3/w7tZF8Ax2Q1Yuc1WeMdK5c2esX78eycnJmD59OnuPGAg2MGJhaeXo9XpkxGYjUhmJyMjIx9rXEFNpUcqox2ojy5Mjq1Lgl5WHUNPNDuMHBGPZ3GEQCfk4eTUJW9UxqFI1YMfQijm7+zLe3boI5/6KQHZiHg5vOo0XVjyDz+b9ZuimNYqDpy2+WP8Gdu7cibVr10LVgK0FS8vAaoxYWFhY2hEeHh51fj+9J2Pv39cRH1eXA03mQmqKJC+TPlhWQtKY53YBc5rVwoTU1QRZk6J5tY4MmmUN6JjcTMiVlzdKXYlybhR5XNf78vkJBDxM7uiMkD5++GTGWgDAh1sWQK/WYPUrG1FdXqfp4bqSJpDZU0gdU40bc+rKZyf5/Xnp5HfT05bP6yqZGjn6S8VdJBIJvv/+e+Tk5ODjjz9ucBsW1seIhYWFhaUZyMjIwIoVKxBxKRnTnu+Fd94fg27dvQ3drCZBpdJg//qTUMpV6Dexbsr3q7kbkB6Tha+OfAC/Ll4GbiETa2tr/Pnnn8jLy8Pnn39u6OawgA2MWFhYWNolZ07F4ctP9+PfA1F4YU4/TB8VDrGQmZm+taHT6bHls70Y/nwfWNhIoNPqsOOLPbh2JBqLf5qLCa+OgFAsAF9geCWJq6sr1q5di/Pnz+Ojjz5q03n+WhNsYMTCwsLSTlEo1IiLzcU3K/+Fo40Fvn5zPDycrQzdrKemILME147fxohZfe/97fdP/sL3Czaiy7BO+PqPhfjfX4vg3dH5IbU0L66urvjmm29w7NgxrFq1ymDtYGFi+JCZhYWFhcWgZKQX49vfT6OTvzNWLBiJ2NQCbKK2QatvvcvECzJLMHrOAPD4XNyVMadGZ+DLGWtgGewLFy87vPDWCHy+cGuLt+3VV1/FCy+8gFWrVuHvv/9u8eOzPBxWfM3CwsLCco/AwEC89dZbsBcH4p9N55CfVZesOOkzKbEdxWEGTZ52ZGJjEx4pSE44Q2qZLLsxU5dYimuJcrmcTIjrbl5OlG8f8SfKHrvqRNG2jlIsWzsLP3zwF375901im+HSuQCAFz+aBL1ej40HSbPGWgcyQSwAWMRVkH9IJ8Xpx6q3MPahw+fzMX36dMyaNQtTpkxBeXl5o/uw1MOKr1lYWFhYWpy4uDisWrUKGrUGr346EUMmhsPSVmLoZj02xfkVOLU3EguWjYOHh0eD2+z85l906OoNqdSkwc+bkrCwMPz0008IDw/H3Llz2aDIiGEDIxYWFhYWgqSkJKz77ABWf/A3nD1ssOKXF+Btbm3oZj02B7ZdRnpiPjp27Njg50q5CqX5FbCwEDf4eVMxa9YsbNiwAXK5HG+88QYyMjKa9XgsTwerMWJhYWFhaZCivAps/f4YUuPz8L+Px+JgVhx2p0ZDpmk95oPnD93C4sWLERcXh/T0dMbnBZnF6BTqjszM0gb2fjrMzMywatUq+Pj4YOHChY9twMpiGFiNEQsLCwtLo0x1XYAPd76OiAOROPzrKeSNDWZsUzSI1BR18iKzwd+OIlPQ+ASTOh0ASMmxI8oTgm4RZbrhY84d0vDRKobZ9nm2jlAp1fh30xkApB4oPDwcH67fig//OX7vb44RzASwgrxKonw06eEryczMzLBx40aYmJhg5cqViIiIeOj2LI3DaoxYWFhYWIyGsvxyfPX8GvQc1wVfH1+G7h2ZefSMlcuHotBrTDisHKSMzzIyMuBtZw0+t+l+DjkcDlavXo0bN25g/PjxbFDUymADIxYWFhaWR6IktwzLx63CsS1nMXVoGEb26gChERglNkZBRjGuHb+FAZO7MT4rLS2FWqsFp4lmQ0QiEdavXw8+n4///e9/TVInS8vCBkYsLCwsLI9MbbUcB9edwPq9lzG4qx++WjSmVThmZyXkIbCHL4J7+ze+8RNia2uL9evXo7i4GPPnz2+247A0L8Yf6rOwsLCwGBxGAtRP/8TulQJ89tln+N9LA/HCCy/AL+E5YpPsj6REWW9BprwwFygZxxGY0LyPquyJMpci/ZMkPuSy9xIrM0adPHkQTgPQpuXi+R9mQrdAgTsXE+59LipTw/VwKVTKuvZprEwZdaCC1BgN5U2992+prTmCFrigb9++2LZtGzZv3szcn6XVwI4YsbCwsLA8ESqVCh9++CF27dqFb775BjPm9IMxr885F5mCf8/F4MXPn4OJpH6Jvlarg62DxRPVaetqjSW/vIyCggJMmjSJDYraAGxgxMLCwsLyxGg0Gnz//feYPHkywrt7YdbLAyAxb15foKfh4LkYJF5PRZ9J9Xqj/TuvYMrsvg/ZiwlfyMfYhcPw1sYFOLHtPH755RdUVFQ0cWtZDAEbGLGwsLCwPDVKpRJff7IPllam+OCzSeDxjPfn5cAvxzHg2V4IHxICAIiKSIGLpw14PO4j7c/jc/HcO+Ph6ueI7+atx6X915uzuSwtDOtjxMLCwsLSZHC5XHz77bcIDw9HwokC7F9/Eur/tDslkwOJbUs6M/OtcaSkeaSugsxb5uBNGjGG2pBeSKnVNow6U6NJ7yNpAgVXOynemzoQ207ewC9LpuDvv//G8uXLER8fj+GS2Yw6jlVvgUQiwYgRI/D8888jMTERn376KWQyGWNbluaB9TFiYWFhYWl1aLVaLFmyBGPHjoXUxgyLv58FHv/RRmJakuyiCqz88wxmDgnH0KFDkZiYiD59+jxw+4EDB2L79u3o0qULVqxYgXfeeYcNitoo7IgRCwsLC0uzMCvkXXy4ZQE0ag12rDqIY5bk740hR4zu4monxSu9nXDkyBGMHz8eOTk5cOR5EdubWZggV56G1atX48KFC4z6WVqGlhoxYpfrs7CwsLA0C4VZJfho6hpMWDAYLyybiDPr90Ol0Rq6WQTZRRVYtOgLrF27FuvWrUNCQgJ6CMcQ26iUamy5/Y2BWsjS0rAjRiwsLCwszc4nn3yCzo69se7dnVAr67yKsrZ7M7aTF5IeQgIbOVGm4kmfIqU96Y0ksGLmOVPJyFGncL9Molw7mYKTpy3mLJsAjVqLYxuOI/I4maON4ePE0uKwGiMWFhYWljbDxx9/jNpqOUbNGWDopjRIXnoxPp+7ESd3X8GYeUMweckoSBowi2Rp+7CBEQsLCwtLs6PX63Hs9/PoNTYcEssGnKWNhMjTcfhh4f/bu7eYqO48DuDfQYbFAdpShKF4GS+wYi2hY6qlSmaLdADtbR+INV4IfTBBXLsmUBImu7oP3cVL0ChR6m1dUTG6GbEJNuhIfOASNehIAEeGbkbcFsmCIsNwGQrMPjCZeoqK08D8x+H7efvP+Z9zfueJb/7nx/8cRcIn76Hg+3yvrpUmB4MRERFNuvDwcKT/eTUUIdPx1f5MeHNbxpMOK/76+S4AwN/0uQiLChVcEXkSgxEREU06jUaDBfEq2PvsiJwXgTciXhNd0gsN9NqRp/0G18tvQXf6K4SEhIguiTyE/5VGRESTTq/XIyYmBmlpadBt1aHWUou07Owx8/5TFCkZR4ZaJeP/jUj7fqZZpXskDQZIG60BIKBN+ltTa4xkPC/4oWTs19sHABgYAipKa/GHL1Zg9uzZuHv37rMejXwMgxEREXnEzp07YTabsX//fhQUFKCvVnRF4+vt7seD5jbRZZAH8VUaERF5zIULF3D27Fnk5+fj/ZQ40eUQjcFgREREHrV3715kZWVhzZ9SEKj4nehyiCT4Ko2IiDzu1q1b+Ne/v8Vnf4nD1q1b0dvbCwBIy/9aMs/0dYRkPHN5u2T8uErakzToJx9zL/nibsnYv/J16QQ/6RrBSL90U0nHsHft1j2eWbNmoaSkBEqlEg6HA0eOHMGBAwcAABaLBT09PRgeHsbQ0BCWLl0quFrvwxUjIiISYs+ePWhubkZRURGCgrxzv6CQ0CC8qXwD/b8KS95saGgIOTk5WLx4MRISErBlyxYsWrTIdTwpKQlqtZqh6DkYjIiISJhdu3bBbDZj+/btokt5poVLo9F690dYLBbRpby09vZ2GI1GAIDNZoPJZMLMmTNf6lyVSoWGhgbXOCcnBzt27HAdM5lMOHHiBJqbm3H69GkkJyejuroaZrPZZ4IWgxEREQl17NgxqNVqLFy4UHQpzzTQZxddwm+mUqmgVqtx48YNAKM7kF+5cgV1dXXYtGmT29eLjo5GYWEhYmNjERsbi3Xr1iExMRG5ubnQ6XQTXb4Q7DEiIiKhOjs7YTAYoNFocPSo9Cv2H5V8Ixl3xSqlJ0dJh9Pbx+6obQuWvqYLDPvVBGuPZOgX/MteSfHad/H44ZPnF+/FgoKCoNfrsW3bNvT0jD5jYmIi2traEB4eDoPBgHv37qGqquqlr2mxWNDY2AgAaGpqQmVlJQCgoaEBc+fOnfBnEIErRkREJNy5c+ewZs0aREdHiy7FJWp+BN5etgCXz1SLLsVt/v7+0Ov1OHPmDMrKyly/t7WN7snU0dGBsrIyLFu2bMy5T3+uRS6XNrPb7b+sno2MjLjGIyMj8Pf3jbUWBiMiIhLuwYMHKCsrQ2ZmpuhSXN75IAa15UYM9L56r9KOHz8Ok8mEffv2uX5TKBQIdq6GKRQKpKSkuFZ/nqZSqTBjxgzIZDJoNBpMmzZtzBxfxmBERERe4eTJk9BqtVi9erXoUuDnJ8PHX34I+8Cg6FLctmLFCmRkZGDlypUwGo0wGo1YtWoVlEolqqurcefOHdy8eROXLl3C5cuXx5z/6NEjlJSUoK6uDo2NjcjIyMD8+fMFPIkYMofD4c58hzd/EZmIiF5tS5YsQVFREdavX4/79+8jNUzaIOyY/ZZkbI2VfoxW0T42yMgf90nGdqX0e2sBHdLjMP2AgEA5Ciu3Iy/17+i3DeCKvdTdR3klqVQqlJeXIy7O+3YldzgcHgkgXDEiIiKvcfv2bVy8eBH5+fkIDQ0VVoe/3B+D9p/RbxsQVgOJwWBERERe5fDhw4iPj8fGjRuF1aDdqEFDlUnY/UVpbW31ytUiT2IwIiIir2K1WnHw4EFs2LABc37/1vgnTLCQ0CB88OkSGE69/L+xk+9gMCIiIq9z6tQpFBcXI/fQlwh6bbpH7x05LwLWTht++qF9/Mnkc9h8TUREXmvz5s1ITExEdnY2uru7kfqOdHdl2cDP0hOGR8Zco8JS+MJ7pCikr+w+LngPNTU1OH/+/G8rmiYFm6+JiGjKKy4uRk1NDUpLS5GUlDTp9/tjdgqWL18u+V4YTS2+sU0lERH5rEOHDqGlpQW7d+9G7fc/wWJ+CFP9fyf0Hm9Gvo5VmR9iQbwKeXl5MJmmXuM1jWIwIiIir2cwGNDS0oJ/5P8T6oQFGOgfRMWFOljbu11znnTaYOvqdfva76e9i882a/Gj+SG++9aAa9euTWTp43KzpWVKEdG+wx4jIiJ6pQQGBkKr1SI9Pd31uQqZTIawsDBcv37dNa++vh5Xr16VnNvX14fh4WEAQEBAAHQ6HVJTU5GVlYX6+nrPPcRTGIye7+nM4akeIwYjIiLyCXFxcZgzZw6A0T+oa9euRVRUlOu4TCZDV1cXKioqIJfLkZ6ejuDgYOh0OhgMBlFlMxi9AIMRERHRJEpOTnZ996u2thZNTU2CK2IwehEGIyIioimGwej5RAQjNl8TEREJxAUH78J9jIiIiIicGIyIiIiInNzuMZqsQoiIiIjGMenvHd3tMeKLUCIiIvJZfJVGRERE5MRgREREROTEYERERETkxGBERERE5MRgREREROTEYERERETkxGBERERE5MRgREREROTEYERERETk9H8hRsdGZUz1GwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "bento.pl.cellplot(adata)" - ] - }, - { - "cell_type": "markdown", - "id": "7bd39662-b9a4-4ee5-933f-bca5a7c2dbde", - "metadata": {}, - "source": [ - "### Hexbin\n", - "\n", - "The RNA density can also be viewed as a `hexbin` plot. The colormap and other underlying parameters can be changed (see `matplotlib.pyplot.hexbin` for underlying parameters)." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "0507caa4-d110-4cb5-a0f8-11765eaeb375", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:02:02.981903Z", - "iopub.status.busy": "2022-06-06T01:02:02.981481Z", - "iopub.status.idle": "2022-06-06T01:02:07.284236Z", - "shell.execute_reply": "2022-06-06T01:02:07.283282Z", - "shell.execute_reply.started": "2022-06-06T01:02:02.981854Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAIyCAYAAAB/+jbYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5gkVfW/36rqHGZ6cp7NOS/sLsuSc1IRBUQMCCpizgn1p6AoCmbMIKASlCA5s7tszjlPjj3TOYdKvz96mN6anlUwwZet93l4HvbMqbqnblV3ffrec88VdF3HxMTExMTExMTkzYP4RgdgYmJiYmJiYmJixBRoJiYmJiYmJiZvMkyBZmJiYmJiYmLyJsMUaCYmJiYmJiYmbzJMgWZiYmJiYmJi8ibDFGgmJiYmJiYmJm8yLK/TXxcE4b8SiImJiYmJiYnJeOi6ftyJD3MEzcTExMTExMTkTYYp0ExMTExM/keUDoLYrdVYpXKDTRJduO0tCEgGu9VSgSg6jGcUrIii6zW2L8KYcxZiso0TmzBuvP/+a/O4Gwgy+RcRXudOAuYUp4mJiYnJ60SgIGwEQAc0LJIbt2MCVskNQF6Oksr147Y34rY1IQgiqpYjnu1AVhPYrXWIog1d11HUGLl8EFFyIwpOBEFA12UUNY6u58ZtX8CKIBTEma5r6OQBK4JgGzleHzlWASSEESGlowHqSPwiAgI6+ojt9bw/x/ZBoR9MXhvH4xSnKdBMTExMTP7LlKY7+9wzsIyIs1dRlQxOW43BVlNbQU4PjoqrV8nLERhj03UNWQmUtHW0OCv66giiFYBsNksgEARA0zKj4mzUFw1hnJEzHbnEdmzGS/l+vSLv+OV4FGivd5GAiYmJiYnJfxSr1cJJJy/kfe+/BI+nON3pcNjRdZ1YIszYqUFNy8PYAQNdRxt3BE0cR3TpCEJBdHm9HnQdVq1aw5o1q0p8o7Eoe/fsw9y72uR/iTmCZmJiYmLyX6YwFmCxWGhtbcXj8fCR6z6F2+2lvNzLxElNHDrQyd13PkBwqDgqJcsKoWCUeK6vZAQslw+BYBxj0HUVWRkqab0wgjbWV0MQbaP/bmio55pr3kdVVXlJllhDYwNOp4unnnyKP/zhrlGhZo6g/e84HkfQTIFmYmJiYvI6kBBFN6ChaSlAR0Bion0JddaZtGfXEFDaATiheiI3TD4N++mz6HTJLFi8EFSNFls5SmeAXz3xLO3xDIcOdjLbZuft1dPYHB9kbSKNJgh4RZ0LfXXYRYm/De8loORB11niaeBU3wxeCu9iU6wLQRDwSR5WlJ1ESo2zLvoiKTWJRbBwauXJzPXM4oXgGg6nOwGY4mzk0vozaEv38UxgM3ldwSbYWOFbRr2tnpfDL+DP+QFY4pvGZY0rGGzMc+IHzqV1Qiu5dI5aWxWCIBDIBcnrBaHmlcrxWsqJKxGSamKkvwREwYaOjq4bBZ2uw6FDB4lEwkdZRUAnl8vyxBNP0NXVRSYjj9hlioJOpCD61JH/Cm0JggNBENC0LG+lHDdToP1zTIFmYmJicpwiii6EkaR8KIxCuXGxwHUJLskHgCAInHBpA6fNcnPyxeegKSpKIk3n42t4ZPsrnJaqwGd1AqDpOs8Mt2HDx7yyltF2BrNRXgl3cWHNXBxSYZRL0VSeCuxkqrOVFmfdqG9XeoB14QEWeE5AHBlly2s5diTWckrVYiqtFaO+h5JtIGRY6ps7aovJSZ4a2szCspNwjeTE6brGnuQOTqwoZ6534lFxhViV7uK0+lOwjeSvKbrK2vAWqi2TqbLVjvoO5wZ5NvwMumjsr7wcQdMVBEFAkiTmzZuDw2GnIKaK79eKCh+XXfZOKiurUBSFnp5eMpkMO3bs4KWXVtHe3jHqq+sagsCoOCvYdHQ9i67nX8cdfvNiCrR/jinQTExMTI5TJKkcQbAabHXSBFa0XMr0Rc1MW9jEpDn11LVWoDz7CpmNh5EjyVHf7dFeTqhoMRwfymWQtQrGsjfez3SP0bcjNUy1rb7Ed10wRIXVuLggJHczu2xCia9dzOKQ7AbbpnAXdfZJBlteS3BSlbO0rdAAzc5Wg60zPYiNhhLf3w/eiSYYFxfk5TDaOKKpMLpW+n4VBAtlZWW0trZQUeHjpJOWcfnll7Fx42ai0Si7d+/loYceQRDEknuj68rIKOf/fY5HgWYuEjAxMTEx+ZeorKzgsosu5H3vvZzuA4Upwef/so1da9r59KQoHotRCIkWCdeUBhAELOVuHC01uJU8qlaoY6ZmZeJtfhJdpSsxj2fi8Th79+4D4JVX1vK7393JiScuxuVy8e53X8aVV17Orl272b59Ny+9tBpZfj25cSZvVkyBZmJiYmLyTxGREJHQKST7n3POGXzykx/B3znMPd99jvbdg6O+sp4lrmTxWOy4pjfhWzId97RmJtS4sIcyKKkMaDrptgHS2QyaJmKXrLhbqqhdPg1XUwXT/AHSW/rpe3k/uXBhFCiv5ZA1BatYfHXlNRlNyJbEK4h5NF1DPGoEK6NmUPXSETRBKF35mdWyZFQR51G+mq6hS+OMfpFD1VWkoxYyKLqMTYTsmEkqSbCiajlKZ6NKB4jcko20ZswjEwSBWCzKSy+tBOCpp55hxvRpnLD4RC6++AKuu+6DHDp0mN2799Hd3k5H5yFUNHK5HPF4HAkLDtFNSouVtGfy5sKc4jQxMTEx+YfUW2cw03EmNsFDt2MDn/vOdbjcTuKb97Fib5I1wQiP9opYqAGxn4vr65m8cAKT3j2PxuZ6ul7ZwY6tXSQO60RT7cwpE6i1u3nOP8yRaCuCIDO5LMjSymY608NkJS+TZs2i8axmZi6bRbwrwPZHn6e5PUR/Ls3+mEKrs4UBpZOL52WYUG7h5xsVQpEpKHqeWY3dXLfAyaruDGvaq/FZ6okqHbyjxYpDFHmyP02lZTJRJcLEshBnNHh5vCfBvnAtTtGLZGvnw7OtpPIqL/YItNgmMqD4WbY0yYlTXNy1MoW/qxURCXd5O9edYGPPsMy927x4mEBK6ODaRWkmlIlc/8puXuwvLKZolqYyy3EyPbnd7M2sRNVlqqzVXFj1biyCxNOhvzGUH8AuWvj0lGV8oHUhv+7YzO+7d6HoGk22Fi6ouoykmuDZ0CNElSgO0c6F1Rcx3TWD58LPYZ1hY/LkSZy7aDnnLDkV1aIzmAthr3Dx3EOr0Lq85CMam9tXs7LjUeT/Izlqx+MUpynQTExMTEyOyST7UmY5zwZg1tJWrv/BJWx5eRdNjz1F+ZiRqL90Bzhp0nzmfOgUfDPq6fj7dl567Hlsaj3SUWUuNF1hfWAAK42G4yVLJ8urphlsugNWnFPH1EtPQ0tn6b/nRTLdQ+zXD3LlfGPu2r5AimaHA6/dWJLjrzvinF7dZLBtDg+zvNaHRSyOsOVUjf2pECfVGs+7KjnEZWcYc98iKYVge4bWcmMfPLR/mMum1hpsq3uj/HLDDGxjtqlKcZDZnvnG86p7+PyMOqxi8Royisz39ydpdkw1+B5O72Jx+ULjOZUkza4UDY4qg71jlov66hm0zqmjZkIFFfVlDA8EuOJjb6O3t5c3O8ejQDOnOE1MTExMjolFKAiQc65azMlvm8NTd25i5f1r+M58e4nvlJktLPvy2wns6mHnJ/6MpqjoeQnJYnzViIKFnGrDOmZbTF0vfSUJWUis3cfhTW1UnjGfiV94F4MPrKJ824ES31q3iNcydq9N8NlL3+3lVtEgzgDskkiVo3THgHJ36UBGhduC7iptq9ZdWtqizuUqEWcAZRZfia3G5jOIMwCnxUr5OL6+cWxui4cqW2lce146wBEyo/8WJZHZ5zbz0EMP8ctf/pI//elPJceYvLGYAs3ExMTE5JhYrRauvekCpsxv4scf/xuhgTiWcfYLd8+dxAVXn0PHQzvpe7lUPP3b6DrhlbtI7u9h8pcvR51lgy3PF4qJmbxuNFVj01N7eKrzbm699VZefvll+vv73+iwTI5inI+ZiYmJicnxh8DYRPUqaxm//PVXmL2smVs+8BdCA3F0XaPWNcyWyPCon3NqE+6rz+aub9zL/ue2j9pTSp41oQB74sYptPbkIIgJVF0ZtWXVNF2ZFJ0p4wrOQ8leXhyOoIwky+eHIqz//E9xNrQSn3XCqJ+iauwdirHFHzQc3xaPoXtTJNXiQoKMIjOQzrInEjH4HkwP45fjZNViXBE1S86m0B6MG3zX7fezfTiEelQSf188RVrW8KeKI1WKpjGQCzOpts3YtzVDnLk8hGAp+iJkmTJxgF7db/DdFxum2eM3FLrVSTKrPIaqG/vL692H7DiEphfjSqkhltVFsIjFhQGqpnAk38b2jW38/Oc/57e//S1erxeTNw9mDpqJiYnJcY80uhm4jo5VELi0/mQ+9/HPMOOypTz1wV+xdqiHWE7izDoHE1yVAHSkBvHVupn71evY9sB+Dq9qJ6OmyetDROU8R5IOrKIHAEUfYn55GYm8To2tUN8socTwZyJElRxWoRKr6EDTVRCGmF/uRdZF6uyF+mIROcAET5QqR5ITK2rwNNRS+Ykr2PnXv6K1b6VcsjOlrAyAnaEQkgXSoszyphosokgwnWV7V5pkxE69vYJaeyGu3fF+ql0aojvLsvpqAHqTSXqiWYQKOGFWJRUuO7KqsaF7CLdgQY9ozKsq5KkdDMdIyjKpjMoJVdU4LRZSssz2YAiXXaTSbWeqrxDXK70RHt5fyRnLU1yxvAZJFBmOZ/jLS1myYZWrTtRo8jrRdJ21nSES/WWkcwJzywp90JeJs2pYwWXJc26djzKrHVlTWR0IENEcnD0lwgk1hb1M94XjbO/14BDTnFHvwy5ZSCoyj3THebrfxqCexCoV+iAt+7nn0f/Hb3//Gx588MH/4nP2r3M85qCZAs3ExMTkuKYozl5lqruB+7/xSyZesojN336UeGdhlCYq+5ngqh71EySR+q+/ncOrB9n+8C7DOV4ODiAJxjw1txRihnu6wZZQEvSkS6NqdEWY6jYWmtWFXj4wuViM1T61harr3smhn36PKWPmgzZFhjh1kjFZH2DXDg9ui81gO6If4ZyJ1QZbIJ9hwvyykuPXbB1gaY3Rd9dwmLneqhLfjmyMaRXGc2zMhDljaWkB3dihCC6rMevooXUJ5liNBXSDuRQ1DlfJ8UO2I5zUYIxhuz/K1HEK+56zZgAE42hZZbPMrb/8DGefffabso7a8SjQzClOExMTE5NRnE4nV177XhpOmcG27z8xKs7GY9r15xLzh9nxyK5j+vw3ybX1kt66j8Z3X/6GtP9WoqOth97eXs4777w3OhSTEUyBZmJiYmICgN1u54EH76N10gS2fu9xIgcHj+lbf/Y8vFPrefpHf3tD8/RjT76Cc8IExObmNy6Itwjf//73+dSnPvVGh2EyginQTExMTI5DBCSqnHNp9pyKJNixWq38+Mc/wiqKdPz6OXZ37iKpFBLYE0oaf/4Ita4UnWk/3mkNtL7rJP7ylV/hj7toS3Uia4VpsZgcZUekE11Lk1GjAGi6iiT4WVZRQVjuGk1gj8kBah1xGp1D5LUEAKqeRxAG8Flc9GV7RuMdyA7Qn7Jyf3eIaL6Q8B/OZ9ge6CC4aQeBSVNGfdcPBrElKnjhUICMUkj4742nWHUgwpA8THe6sDhA1lS2R3up0spZ3Tc8uhDhUCxGQMyw7oif/lhhF4NkTubpzcPIw5Ws7wuNtrUjGMLts7A+6ieaK+xIEMxmWR8cQkFlTzAy0gc6G4cDNLjtrNzbQyZfiKs7mGD16j52d8RpCxcWIuRVlZcOB2ixO9kV70Ud6a+ufAjHyXl6W4cJ5At7nKbVPAds3TTNc7M1WlwgsW04jJJxsm7YT0weiSuX4d62OHPtdahqoS1d14nlughl9rNv334URWHChNIpWJP/PWYOmomJiclxhl2qoMl7KlaxkMskCAJf/cG7qEFF+uNudLUgCOJyhgPJPi5sLKfSXsgnE1wOHF/9EPff9jyH1iVGz5lR4wTlQTS1CXGkKK2qq0S1Ds6qqWO6p7iZeVcqRH82ximVE5FGapGllDyPDbYx3dNCjb181HcgO0hSVqizFzdO10kxwbePC5orKLfbsc6ehuu8M3jh/30bh+5miqOYexZQEnTj5wRHMw6xkL8mqxor/UNMcpcxyVPMEevOhkiURTh7dj0WaSSuvMxLnUHqQ81UCJ5R305lAG9ziuVTim0Fk1nWHwiwormGckcxz21N3xDV1Q7mt1SO2voSaXb1x1mq1mAfqXumaCpr44M0aFU0WorFcg/HYkQaFC67cjLSSFyJRI5HH2jnzBPKaa4t5qRt2TfE0D6N2c7iiGJUzrAqGCCQnINI0XdNdBvbYhvIqsXVrPff/2e++c1v0NZmXHX6RmPmoJmYmJiYvOWxS+Wj4szltvOtH30Ij7OKzO83j4ozgDKrkya3NirOAHyXnomyv9MgzgCcUhkJ2TIqzgAkQaLB5jOIM4CJ7iqmebyj4gzAbbEx0+sxiDOARkcDFVZjsr+AG1G0UT4Sl9zWjVRfy5SKZoM4A6ixeLFnXKPiDMAqiTS57QZxBjDBUcWEOveoOANw26xYEg6DOAOYZGk0CC6Aao8Dr8diEGcAM6rKSnybvS5cEXFUnAFYRAmf7DaIM4Dp5eXMP6ViVJwBeL12Ji2wGcQZwJI5dUweszDAZ3XSlyg3iDOAyY46gzgrctxpoTclpkAzMTExOY75xJfeRSSU4Ntf+INBnI2HVFWO68TZ9P995f8outdIPo/S3Yd7/qw3OhITk/8YpkAzMTExOc4QBAld17jq2nOprvPxh58/jlXNkNYSJb45tVhywb1kDpndRxgYDKLoxtoYmq7ikpSxh+O2ZJE144bceS2HomdKfAUhbyheC5BWUuS00joc/Snjv/O79mE9YT7hkTywUbuqkpTVkuPTWo6saiwnkVbzRFOlm4fnyaHqxnPE1BSBZLbEN50v7YNgOkckZYxLVjUy4/RXRpLJaWPi0mSi0dI+SCazqKoxrkA0TVQde280XNbS/g7lg8B4aU7m7gxvBkyBZmJiYnKcYBU9NHpOod69hHPetpBLr1rBLV+5k9Pdfv681M2KJoUh7QA5LYc/5ycvtnNBYzMHEgHak2GEyc0889Iu+pOtzCkXUOhC01Vyej8tnhiXNc9gWvkwgpDAKqY4t6mNr8/1Md3nJ6K2oekqgXw7La4IZ9b6iCqHSatJQvkIQ7luzq6ZSL0jQELpR9EV+rKduK0iEz0eImonipYnkB9iIDtEMrOQr2yUWDuUJpaT+etf1+Con0iibjovDgbJqyo7IwG6UxkWl01m7WCYvlSKUD7NnlwvZ04th/IIezN9qLrKnmwPtpoY850VrNw7SCiVpTOUYOORYS6ZVota30enOkBeVzgstjFpepIKxcbKA4OkcjJ7+yPsPBzivKYmdvjDHA7HiOfyrDwyRJNeTqJD56WdfmRFY+tAkN50motPaWavK8CgnCIgp9kh+Dl7SRWWaTH26f2ousp+az9lizMstFpZtXIfoWiKju4AG5/dy7kVlRw6HGBHxzDZvMJL67vR2nNMn6SwT+0gq+VpSwXolYf55OxKTmrchSAOElNi3N33B54OPj7yZGgURNmrI6gWTHnwxmMuEjAxMTE5DhAFK1N8lyIKEqeds5B3v/9Mfnnrw5yd3sPlrU0G3x2hINNd9YhHfd+rIji/+wVe+uwjZMLFEZqDiQ5meicbjpc1hQVVg9TYjTlPLw/1c6LPWHh1MJtA1yqwisYirc8P9zPBZfRtS/Yj6Q0IQlE8aLrGvIoepnvqaL3qVAB67l/DwVQbZ9Y2GI7Pqgq++iA1TuPG5SsHBjh7gtG3O5GkqcKJTTJuPL6md4hTW+oMtq3+IIuqq4z9pWns7k0wp8KYT7Y+4+f8Jcb+zsgKiViOapcxrpe6/Zw721g+pCMUp9FqL4lr5e5BVtQa49rQG2amtcEQl6JpzHjyL2S1saOKGiCOLBL49sgiAR0oHX18IzAXCZiYmJiYvEUREAWJxctm8PEvvpOf3PwAh/f34Bxn53O7JBle6gCO5gaSwYRBnAElwupVm1Maz17alk2wjHsOiyiV2gTJIM4AREHEOrIwIbytDd+iSaO+Y3FIFpyWUrtVKo3LKUklIgjANk5/2USxpL8kUcQ+znnHO95ptZTsIgBgtY7jazlGXONcr00qjcsiiuiveQrzuNNEbypMgWZiYmJynGC1Wfj01y7ne1+/l862YxehHQ/7pCaivcF/7vgGku4KYPU6sVWbm36b/N/HFGgmJiYmb3EEBJqt8/j0197Bjs2H2bO9vWDX4+RVmXCumOyeVGSGMmn2xYxbPAV8TvqPdJI7KuE/oaToT2cZyBZ9NV2nPdXD5lAI+ahptP5MgkheYChbXIggaypd2WGOpIoFaQF6MwFsYpqUUhyty6k5ejJR/Ll+g29I7qc7kySrymh5hcxgBKXWRTin054slpDQdJ0d0QE2D0RGC9JCYSozk9PoTxZXHeRVlQPxKJuGjH1wIBwlqcuEs8WE/0ReJmhV2RUxlqvYHgwxKKRHC+UCBDJZQgGdQ0OxYlyazrruYbb6Q4a4OiMJcpo2WigXIKeo7B+IsLFn2NDWvqEIcTlPZExcmwcFtoeNcb3k76UwdXn0KFrh/10uJ9XV1aRSKYw5aSZvBGYOmomJiclbmCrLJGY6z+akU0/k4g8t46sf/QlhbYiz6+DG2Q1YRYlYPsfeaBhBF2lxVFBjdwOwIzKErksMZ+xcfMsX6XhwA0d2HuJwMkYopxPN1CIKDnRdw2btp9ltwSHaaHIWapEl1WGqHUFiMvjEKVhEK7ImE5S7KLfqNDodtLoLtch2RSMMZyRUXWF+WROSKBCVc6wPhQnmBXqSLhip46UzTK3DQa1dZ155IZ8rIcfQhQAnfPACPIKX7r9uRdNVhuQO6hwqHqvIzLJCLbK+XATZGSOrqpzgq8UuSWQUhV2JYRwOkeZ6F5NGRuF29oXJZRRki87JU2uRJJFwKseujhCCRWLOCY3UVxdqpK3b0g3BPBafhaWzCzltvcNJDu4Kk07AFGsjbsmOoqkccQ1Q1QQer4M5zYVNzg8PhAkOJ8nrOsun12OzWkjnFbZ0DWETROpEGxPKCm3tGg6joJNNqyypqEYUBCLZHHsDUYIpG9s6p6OrPgC8jsPMq45xx5FdrB5+deT0aJEmUFVVzY9+9AMOHDjAj350G282cXY85qCZAs3ExMTkLcxJng/QVD2Fb/3pfTzw41VsX3mEWdVtfGV+eYnvcEKjzGo32P7eE2GKbyan/Po6NnzmHuREluFsmucHPCXHN3j6mVPWarANZodKCtUCuGydTPUYE+jXBYeYOmZhAMB39qWRBGPx1xa3nxVVUw22pJxk8SkzmXDhArbd8vioXRb3s6zKWMD2SHqYpc2l19BfFmVmjbFv1vUNc8rkuhLfbJ0Lt91qsK3a0cXpk42FYvuH0+S3lk67DkwZZMUs43l39gRYUF9Z4nvwUIBplcbCuq+0D3FyTW2J71eemIhFMMZ1/+AfGMoXxFllZSVTpkwBdJYtW8app66gvr6eZ555lttv/wmynOXNVmrjeBRopVmJJiYmJiZvKS65bhm713WyfeWRf+l40WpBlVXkRGndrzcbuXAKV6MPBIE3dBf3NwFWhwWXzwnAtz79dWRJRtd1liw5kVgsRnd3N/F4gptu+h7Dw8MEAoF/ckaT/yWmQDMxMTF5C/OeT57PyRfP4SefenjUdizdMn7JUh3fjAbS/eF/2tb4pz2WdRz7MeN6bUJLBxLdQawuO6JFRBspUHus6xr3HOOFdYwOG9d3nPMeK/rXUyJ2XPtRRnHuQsTmCUhzFnLzN2qxWCUEQUBVVPJZhZ6hLr701a8gyzJ33PHro8poHHcDU/9nMKc4TUxMTN6CuCUPHz79w1z39Q/zzQ/9kmzCh65rLGw+wvvnQlc0xSx7LW6LnZ50jARp7JJELm1nirOanKpwUOljRq2LTt9U5l76XrZ/42/siwfpTkmkFJlE3oFN8CFrOdL6ED5rBW5rjCUVrUiiwO5YP9G8E40EJ1dWUmV3E5cTxJQglTYXVinBiZXVqJrO80MhZLWWhBLipMpqPBY7++JRnujPkFEkFF3HaalC1WVCag9WyUOdPcclNdOxSRaGc0O4LSp5Teaa+7/JuhvuJSsnsNUeYkGzhcPdMjOEZkRBZH9qgPoyiaFsmunlZVQ7nATkDAPeBPWVTuLxHIvrqlBVjfVdAVqcLrpSSZZMqcHjsNIeiRPNy1gtEo5KF7Mm1JDNyqzf0sVEq5OubJpT5jVhtUjs9oeRrBLRqIzlsIta3UtcznEoGaTZ5SFdl+KcUwpTon9+OcaunbVY3GGuv0RkQo2NI/4cf3xKQM+WsWSmn3fMd6LWtdDefDKemkm46t1U+uyITie5VIYj648wsK+PA3uGSQ2JKPksJ1/WyokXLSOipDnY28kDD/6NLU9t5ELfaYTlGE8MvUhEjlPMSxMoFq99c3A8TnGaAs3ExMTkLcZ090zeWXcZZ3/sLNLhNNsf2klPppNrlwRZdFR+1XA6w5b+CGc2NozW1tJ0nZX9fmbWukcT0rE7ED7+WT5/wQ+olKaO1iJTdIW98SOUic04JffoeePKEKIkU21tGbXltSwuSwdn1LTglIr5ZAeSPSTlMmrttUcdn2RDqIdcfiLiSH0vXdfxy20oFgd2sZjPJWtxLqjROdE3abTm12l/+DD3XP9FrlwMNe5i8dc9Q1FCg3BidXWxrXyerfIQ5y1pwHNUPtmatkF8OSszK4v95U9l2JONcu6s5tHaaaqm8WKbn2lWF61lxT7oiCboc6qcPaeYk5eVFR57ppcZ2Voqbc5R+6F0iGf6y6jkKF8tS851hLLsDGyijcb5TUw/dyb1i2uon9KIllUZ3NhGvCdEeDjE7rUvUh1rGK3/pukaO2MdnFTlpcFRyF2zeJ0kWj0oS2Yxd/48or1hDj+3n/Z1h/lj94McSLZhHFEzC9W+kZhTnCYmJiZvMRrsDdhFB00Lmlj9y1cAaHFXs6jGuMdjrcuJz5EyFD4VBYEGr6MozgDQcUgSFqHcUCjWIlhwSU6copujKbPUIYrGvSdtogOnxWYQZwB1tmpcom/M8R4SeQeOo4qvCoKATXQjicbdCaxiGbV2zVCQVRAEar0iNW5jW/PqfPjTxkGJMpuNcqfVIM4AplWXU5Ux2urdTvrEjKGwrSSK1NlttHqMfTDZ5wW3Udw4rBbKXXYqNafBPsNVxVqt2lD4yiE60LyTOPmKU5h69nR8TT4EQaB3Tw8rf/wXEt0h5KP290ykod599H0UaXQ6R8UZgJLI4NyX4ZmXeumqP0j93CbmX34Cc9+5kL47QwyvjBIKhY6K7LjTRG8qTIFmYmJi8hZkwaXz0RSNoYND//7JRmp5VTRWoP0HTmfyj7HYLUw/azrLrl+KFldBEFj905V0rGkjHAky0+v65yf5J2TCaTpfOULPpk4mnDyZk89dwduufye/+90fWLt2HYODr6+Qscl/HlOgmZiY/AsIWCUvsho3WK2iB0XLoqMYfAWkMbaC/c2U4/JWQtFEZp47nX1PHxhNZE+pKQKZrGEfyryqklLlkuMjGZlkXsZjGxlBUlVyQ34c5ZAeI9AyWhaXoCIdNdqVUZMIeg6bWGxL1zXich5N1w2jXRE5RUa14rUUR6BkTUHR8yUDOLKeRdcthpIbqp4nqYx9tiCZU5BVi2G0ayiVYTir47EWR8Y0XSeVLe2DQCaLnlGpPqq/cqpKQi6d8ovlZJK2o/oLiGXzhDUZjFt8EsgoyJqK9aitrPzZFDHFRrWtiuop1ZzysVMobypHskp0bmpn890bkTOFGFNqioQCXktRpMmagqyVrrBNKTkyqoxTKsaVVHJk1Mzov9WcQsfKwzx635Nkp0q85z1X8pnPfIof//intB0+Qqx3gO6YsTCuTSojP+azLwp2dF1Bf5NMib4VMHPQTExM/gEixbdkIWnYYami3Dkdq+QmK4eIZg6j6TI+5wzctiY0PU80c5hUvg9RcCJJZYCIpmdQ1fjIeSQEXt0TUMUUav8ZKi3NzHefS3PlFL750NX84qqf41aclNV18KmL7MiKypa9w5xQVsXeSIRaj4OJ5R629IcoFxw4RAtb+xUahamk9ASU93BKs48tgSDLbrgB+9AAd/x6Jb3+SWTUPHvSg6R1L2hp6iUntdZGhvO9VFkbEAWJiNJPnb2BuBJF1QTKLbUIgp+FlSr1di8rh4cYSLagCzLVriALy1toTw3Sl3Qh4mM434eIA1GQGNR6kC02NPJIik6Z1IBdDPK+5mbq7G4OJPppcFShWDUuu+dTxL7yUwayQaiOM6++jE3dIeY4qrEgsmU4yDxfFT2pJA6nzuzqcg6ko9hqLDT5XOwJxzl5fivpjMK2LT0sKa9gVyRK89waJjVVsGlfHzWI2CSRznCC5RPq8MfStPVFWVJbxcaeAFMsPnxWG9uFKHPm1RBMyPzpGQtDPROxW4Y5ozHAogofd3Uf4Z6+AHlN4MqTz+YbP/4y4cEgvnIHPb9bxdp12xnOW/FIXiKynwVlzeS1PP1ZP1PdzQzkBljgk5jocbM2ECSvViMiEleizCtrIirHiash5nrr2RUfpNZai0tysikyiEOqI6NmsEtZZnvr2RI9zK+7nqJxSivf++qNLK2dire5huFMjOFcnJWr1vHIfevJpgXC0QGimcMoahqnvQG7tRodlUzOT04OUPjeePX7Q+PfLXx7POagmQLNxMTkGIiM3Q3OYamg2rPAYNN1DV3XsEjGvJpgaj+KbhyZ0DQFRQ0jjBkaKYyumSLt36FcquNs30cAeMcnV1BZX8ZdNz7Np961n9OmGQvCvrSzj1MqjAVO84rKqu0V+KzGgqp+127eMbsKafmZYLOhrn6OvcNZPvKsF8ZsXF6p52h1TDHYQvkBqm1NBpuuawzkBnAKxiKtMbWbGquxUK2qKezW9yOKxnyypW6Zy+vnGGzhfJQzTm6g+vLzGP7hH0ftB5VOVjQYr3dHKMCSpiqDTdN1OptV5k8y+q7c28OZ8ycYbHlZIdYTocrlMNifWd/DaT7jsNnBWIY7NsxEwLih+crkQ0RHHvtFi+bwk599i4Ej3ayYv4D2v6xj4PndI32gsy8RodlpjMufP8TFjUZbTlU5FHPgtRjj2h1vZ1H5ZIOtPxPFY6nAMmYT+8PJA6yoKtxHwSohWiSejnTivGAFp515Ak6XnU3r9/Do315i575NiKKxuHEy001eMY6w/bsLDo5HgWZOcZqYmByD0u/DVxPEJ01pYsasSXi9LmbMmggCo6vtXiUjh9F04xdyLB7n97+7g4GBgf9a1McrR/d/WZWbnSvbEAQBj6P0Plotpdsw2yxSSfV5AMvIPdeHB5CWnooKOGxCiTgrxDCeTSqxCYKIqkmM0SvoeunxkmgBrfQaHGLpee2ShLOhBjWeNJ5jnLiOXhhRjFXAZi19LVptpb42qwWHpdRuGa8PNKlEnAGkVB1EgcoqHzd+85P89a9P8v73vJ2dNz9Coq04lyyJgmFKdDQGsbQtuyRhH8dXGuc+2EWpRJwBlFuLP7Z0WUWVVTLxNH/+1cP8/lcPY7NZ+dxX3s/nv/pBPOUf5sjhbtqOdLP2lS3EYgmS2Ryy4iYSiZDNvjr1etzpq38bU6CZmJi8Jux2O0tOXMwpJ13AuRcsZ+vm/eRyeV5ZuY18Po845uUey3aj6sbcoMUnzOfRvz/EbT/6MY8++neUcXKHTP49Kuq9TD+xhUd/vuY/el49EUMo8xUq9L+JsTbWkO/oe6PDeM2ce96pfOCDl/HUky9z2bsu4I8/uZvT2kqF8puJfF7m1pvvAsBZkWfGjGnMnTedL3/tehxOB6qaRkfF5/MRDoeRZZl4PMHvf/9bNmzY8AZH/38HU6CZmJiU4LTUYLdUEs91YXfYaGxs5DOf/CRzW+ZysK2Xz97wQ0LBKLqus9Qj4bNYWRVXUEemROtteS6pVbmvt4eO1MgvaF3g0NpBtr64h8s/ci5f+vIXeOLxJ/npz35GPB7DOMUpIIkeNF1GkhQmTpzI7Nmz8XnrkCQXWTmIPjI6Jwk2bPk6Nu9cRUIujjq02GfjEJy0Z3eijUytOMVyGmxz8ef3k9YiIy2JNNnnI+s5hvIHRo8vl+qos06jO7eDnJ56NSokoYq+/g7yytGV9SUEQULX8//ZG/E6SGhxDubW8/vv/YwNj+8jGckgSgM8udZK68Uy1WWFl/5gLEVWVdgfizC7vDD1qagaLx6KM5zLMFmcgE0s+AaVAHpeoSOcZDJ+cDjIiFaO9A+zvDrN+kAdr6a9xJV+QloEj1SGz1KYOsxrWTJakkC+jxpb82isPdlu4moam+jFJhSmx7JaAl1QiSvDlFkK03aaptIjtyOQQ7OIiCMjQ6KapzvupM0VZarHV7gGXUYtayc79d1ojx4ebatTDKBVqQTlLNXWwrRfTMkR88nsSEdY5CpO/26LBsgcgcYKN2XuQly9AwkCO9LslIdZOK92pL9U1m3pQk7kOWVG/eio29a2NJuOVFA+Mcuc6kJbkVyOL23Zjj/RxxL3WYgjI1Zd6hE+/9UbmDlnCj/76R+x2azI2Rye3XsY1KtpsBVronWke1DJk1Pd2KXCeZNKDEnIcSQZZpqnsHenrGrsiPmJ5yVaHROxioW4etJhYrLAQDZGo6NQ1y2rygzmAgi5GBNcLaOjnx0pPwlFpcGepspeWIgQymWJZhxUCSlCR42KZ+QwyaEswUCU9eu287vfPIBLsDDPXs/O+A6GlQCNjY2IosjSqWdy8423ktaibNiwgc7OTkTRzp4dXew7uBFNL5YMEUUP6CqaXlzMcDxi5qCZmJiMYhFdVLrm4LIWXkStk2r42s3vw6XbyBzMsumuLah5lYOpI/jVQa6qb2amp5BHNJiN8cBQB0uq4L2tzdhECVnTuK/nCL85HKfRcgIuqfAyTKhDVJ+Q5Ly3n8Zpp53KwMAgt9/+Y0BHFKyIohtBEGmd0MyHPvQeAoFhOg4PkU0Vvq80XSWrhLDjoczSRHVdBc0Ta8hrSRQ9RblUM7qCUNVlosowkuDAKfoQENDRyWhRZC2DR6pBGhn9U/QsSTWESyzDKRbqR+loJLUwGT2JJLrweNzouk5//wB33f0bVFVj377DRCKRkXy8PFC6KvC/hSBYEQQHgiByzTXv46ILzuOO6//E/LJKprgbAUiqKcoau5jeGueEuko8NiuarrOxJ0A6KKJEKpjkKoiqgUyc7lSGcm+K0xorsYoieVVlW2yYJf/vm4QffJqKvoIQ3h2JcNuBNDsTAaSRVYWarlKuW5lkmUCFtQ7HSN2yYH6AvKaQVHU8UuGZyWspMloEhyhSY2vCItjQdZ2g3EtWU0ij4xh5ZrJqnIQ+TI1UTot1KqIgoekqmtDLuZNTnDFDp6W2GvsNX2Tnd77OwEAe7wSNU2cUnuV4Ns+WQ0HQYOHsaqpGCthu6Rwm68/jdIssaij0wXAqw+F8lswwzNEqcFkK/bU9E8AzTaIyC9NHNi7viiXpSefZsttHlTwZSRCRNYUI7fRrh7jzSD/ayA8XEVjoW8rMs6Zz0aVnEwrG+P7Nv+bMcxfxxeuvQvrri1iP9AOwPRLAn7LjtohMH/mMhfMp9sVjOCwKyypqcEiFuPbEB5BEHa/kYoKrINb6MjE6kjnCeQuTXK2jcXVneim3qjQ7fdTYC/mGHakAgZxCXpOY6i4I6YyaxZ8bICoL6FoTDqlwHzsynWxIHiSlZ7FKhVp5qpZHURMscU9hSdkCbKIVTdfYldjFxvA+pjlOwysV7kNZq0D1iXnKaitxOio48+xlJOJJEskIe/ftQs7D3r2HWLNmI8lkDFWNoqMclzlopkAzMTEZpdwxhQrnTABEUeSR527j4ftfQHisdB9Gl+UwyyqNyd9D+SFWNJZOz7x3dQ4JYzJzW3oV/fIu6uvrufHGr5LPF0afBNGBMPJC03Wdu+95gK5Dg3gdLYbjdV2jQZhR0pZbT9JoMyaah+QhdHwlvgk1gFeqMdqUAWqtrSW+65UXEEdGlmrrqjjv/JNpnVyOZBGYM2cWjz32FL/97Z3kcjl0PVly/H8LUfQiCCJer5fHHnuAK6/8IIu1SVxYc4rBTxWTfPzS4ZLjH34pyVxns8HWnRvipGZniW/83HOoVHQyz60atX1rz2GeKD0tZ9pPNpTZADicasMjGdtStDS1duMiBoADmQO4LMZFBKoWZbJ9conv587cybyaMsQZc7AsWUH+z79jYzzI6fMaS3wTqop3TFHalbt6OW1Msv1gLINzuIyxHLAOsHyi8Zl54UAaf8fcEt9PH/gNykjuldPp5KSTTuCjH7mG4HCKVS9tZuVLm6lvqObu+26h6uVNZF/YbDj+xcEAc7wTDbZwPkGzq/Te7IkPMq/MuDhhezSEjUklvrowSIuz0mDbGO5ngrPUd3esUJD4aB4OPU98TE6ZE7im9pyS418e6sAtGu9Dr3KQIanw0JSVe3A67fh8ZdS3WKmqquLsc07DZrPy/HOrePDBBwiGuo9LgWZOcZqYmIxLQ2MV+bzMX+58ivdVL/+vteP3+/nUpz47+m+LpRJhTEKzU/LyZmJ4KMSf732CaOowipalvLyc73//2/z1r/fy7LMvcNddvzkqOfp/ww03XMfzz79EIBCEqtIX7X+C6M69NLz3coNAezMh1tShDb/5CqzOmz+bb3/7y/T29HPP3X9l89pOACwWiRu/fT1/+M1DfLSjx1Cv7HghHksSjyUZ8ofYuK0NQZC4++4HWLJkERddfA5//eu9XPXeK97oMN8QSpdvmJiYHL8cNaDe3FrHvt3txyx+oY/zl2NXOhrnLK/j9/DrGecfz/fYx5f+Zbzr+mfEYjE+/vHPceON32H69KmsWbOGt73tba/7PP8Ob3/7RfzmN3eO/Gu863rtHGtiJdnRhVhRjljp+5fO+2/HdQzvV61CbT1aX88/9h3n4sbzPVYfvJ7nq6qqkh/96DvccccP+cXPf89nP3sjL71Y2HpLFEU+eN2lZDM5Hnrw+XHbGzeuY7Q17nW9vgmy12z+9wvi/OMzaJrGpk3b+M63f8TBQ4e59dZb/+0W/y9iCjQTE5NR4rnOkcKzKqeeuYhkPMY55bWk1H5C+SAAWTVLSj3CDE85u2I9qHpBlrVle5k1LcE+tY/BTGGKbziXZl9liB9+1oHNW8it0XUNlQE+0HwKC7zFKUoJkfOqT+Py2rOwjag3XdeZYPfxhdZzqRPV0YUBNinFD862cc1J/WhCFABVz7FwQg+/eJ+M1XsEbSQuxd3Pd77l4rTzhpFJACCTYMWJndx+vYrF3Tcal6eqm999xc70Oe3IIwnKOUJcdOJBfn5eBQ4pM+o7w6nwyNJzWVxeyasvnH37DnDT13/LFz7xI776la/x9re/feTqRAoTFv/pr1wJTctx2mnL6ezsJhKJIgpWtqXDvBTeTl4r5ML5c4NUWQM8syHFkWChDyKZHKvb/Jw4XWBPungf98QHqC/T2Tg8jD+TBmAwnea5rjihoJvO9VtwLF2Eomm80B9ktm0Rk61W9JEVu5qapZVa4nKM8MiiDUWX6cl04BAqCcs9o6t7E+oQkiATzPeTUAvT6Dktw5HcPrKSRlTpRR+JK64MkCTPodx+MmrhGrJajIWte/FKAlv8QcSWSciDfTzfFiZ+ZBIPrw0TzRSmzg8NR9m6f4iu9gi7+wv7TabzCn/fECB9eCpP7gmTVQrP186hMCmrwkH7MN2pQj2vSC7LpvAA9YqbNR3DqFohricPhblvSw0vDnURlQtxBfNR7hp+gt/ceTuRaIiLL3oPK1euxY6DybaTkRSNj37i3Vz+nvO5755HeFdVDdvDMgfjhT5IqzKrhv3UWuvYFu0lrxX6qy3lx+2M0pXvoT8TBSAqZ9if6mJOlYXdiV60EVW2KzZArd2OP9dOTC58HsP5GEO5TmyCwMFkodSNoqnsS3SxvNpGf+4IGbUw8juYDRKS+6hxDo7ex7yWJyq387mWhTRY1NF7YyPDR5uasYgdROVXryFNTj/CRybbQewZFZB5+nhvYysLnW70kecTLc9FPi+3TD+dMqmY3qBpMt/5xh1UVhinuo8XzBw0ExOTEiTBwbrnV9Pxk43EewurHRVNY2+ijXNqKqh1FLeZ6U2HcdcFOH9mMV8nLSs83xPhokun4fUUi1j+4ekhdq30MtNb/MIN5iI8Mbyad9ZfMrp6EODp4ZdZ5pvKdE8xZ6krM0ysYi+3X1icwsspGjc+N8zHV1QypbrY1ssH0/R4fVx3ZbHAaCSe4+Yf7+PGt1dR6S22ddfLQeprHFy8tJgL1T2U5VcPDvDNs8txWIvC6kvPtrNcbOYEX7HI6fbIEB/fvR3nUUVaFy6ezqe+9C5UPc/NN32PjRs3Aa+Oivy75UUKRYQFBNxuN488+je+ceN3OLQvgvWoLZO8gsQH6pp4Z1MxV1DWFNpchzltgo9KR7G/9gwkGRrSWVZXzE1KKTIv9QeYJM3EPlIo1jWlgcZPX8DD1/8KW77YB0O5KA8O7mGWdTnSUXW4BvPtCPiwCcVp6owaI6/HaLYX+0vTVXrlQyRFC8JRz4GsJEHXsFsrjvJVmO+L8eMzvJTZC20JTS1k3vYuXv7kHVRqxecrJSZRGg5yXmOtoebXcwNB9IGJeFXfqC0mhHBP6ebsmcWcqbyi8eS6AZaUV1FxVH8dSUe5a4+XweDEUZtOnoywg5Xhlfz2D78jm83y2c9+Fk2xMtV1DhUjuY3v+vCpnHfFYn5744+4IOobrXGm6RpH0kdoctRTYS1+noZyUbKCn/OairlvOVXlhYEhVtRWU2EvFvHdH43hT9hGFxYAJOQ8q4N+Tq1qxS4VM5v2xnqZ4LUwxVNebCuTZXUgxjLfxNH+UjWd54Z7mO2tpd7hGfXdkxjkcLqf61rmG+J6ZqiPc2prqbAV+2tdMEx/RuLEimLfRuUUTwS38NmJi/BYitdwR9dGnggNYpUKz/Jppy/l70/+7rgTH+YImomJSQlur43GulqUTHE1okUUaXJaDeIMoMVVycIWY5V3l9VCzWSHQZwBXLaiwiDOAKrtFZzkW2wQZwAn+eYaxBnARGctV883JjfbLSLvXiAZxBnAWTNdvOP8aoOtoszO20+1GMQZwLtO9hrEGcCEOgcXL1AN4gzg6pk1BnEGsLiiDq/dmKC9c/thPnzNZ3n4oUf47vduYt68eQAluyj8awij5/H5fGSzObZv32UQZwAJXWX6mGu1ihZsOadBnAHMa/Qws8J4vNtiBcU9Ks4A0u2DpDuCzLnwbINvnd3HBOsEgzgDsAhugzgDcErllEnGBHxRkJDBIM4ArBYPFotnjK+FRQ25UXEGIM2cg37gkEGcAbg1Dx7FVlKQ1ZN1GsQZQLleRYPP2JbNIlLpsxjEGcA0l4++gDH5XcBGVyrNl776ZaZOncoPfvADZFlGRBgVZxe9ZykXvWcZ373hPuq6M4YCtKIgYsNnEGdQ6NspZcbPmF2SqHEJBnEGMNtXzgSn8fn0Wm3UOiSDOANocpYbxBlAndNBjc3YX5IoMNXjMIgzgHneBs6vNi7esUsSUzyiQZwBrKiuZGG58d74rG7OrWwyiDOAM6omj4ozgJ07D3A8Ygo0ExOTEs4991xCPcOkg/+71YhvRSKRGHfddTd3/uGP3HnX7/jMZz7Ff3oW4qyzzuTggYP/0XP+M7r/vo5plyzAXla6mvANQZKwLDqR5LYtb2gYHp+TB1b+hssuu4z3vOc99Pb2Gv7+rg+fyrs/ejo3fuhOetsDb1CUJv9XMAWaiYlJCQ6bi91bSl/6opgipxqLsca1GIOJtMGmahopTUdRjcsGBrI5lHKj6FN1maqyaElbLk8EWTD6yqQIJ0tXR8ZzedJ547ThQDxNf0/Q2JaikoilURTjFlT94ST9oYTBlsnJJPTSvQNjeo4ExhiSQo65E0oXxU91VWMRRO6//wHedsmlLFq8iI/dcINhdOBfo5iasnDhfF544cXCPqdaboybzq5YaX/lbHkyY3ZxGEilGdZSBpuiaQieNOqYfhjq2EfftoPMvmrpqC2vyZTbSttKqHFymrHgaFqNE9BKV1vm9VzJ9mCamgV17HVp5DKMPl/S7Hno4RDdB9uJjdkDMq/liWVKCwinnXmyojGulJLCH8iV+PaHBNJjnpmNwwECcvfov2tbK/j4T99BLB7hggsuYHCweH0zW6bxue+/g+XnzuE719+LvzeCrisEcqX18uJyhpRi7MeYnKYvVTotPpxmNG/uVdrjGfoyYz43qkogp6BqxpSmuBonlDf6plWZ/DgFYmU9RUY12pNKipiSKvHVxPRo/uOrdKUS+LMxg03RFVJKviSuYE7BMc7WWMcbZg6aiYnJUQjU2ubwnW/eTCah8sBv/sbZ1XVUO/NMLAuyuKIafzbFwWiWZnsjYUcbp0/y4JAkNg0HmFVXjt+i4p5VzawJNRzpDxGPZ5hcV87uvM7Jy+cgKyp/f/AQwWfKEGxtnDczT2uZmy2DUTa0NYDmZM60ds6bVkE4k+OZvTJKcBai7yAXzLZQ7bSzyR+gudZNTtNIqgqLG6voj6fojqZYUF/Blt4gJzZUY7eIbAzFmHvmLHq7g9gHosyoKuNwKE7KApPqfewZCHHylHpkVWNzd4Al0xrY3TVMs9dFS4WHHd0B7CkVtyQxoOZZPrWeUCrLpu1RJsXq6awPcdJpdVR5nTy8qYtbH4mgJAQurWpltreZ4VyUv/SvZEPkMJNbF/Cj225h0/rd/Pa3vyWe7RhNrv9X7lVNTT333fcnPnTNRxgY8KOjY7N4cdtb8WheaqVpWEUnFnGQGyZ7qfTlqJiZ4oQJlfRGk/T0J5jtLmNHIsKySTVYRZG1hwNMzFYwoCWpabUwvaaM/UNxjuy348lVkK/s4qxpFeSdHpSrP88zn3yIzr42Jrk8VNvK2J/wsyvsIJQX6FT6sFuqUbQsqGnqxIm0KZtJiHEEwYKkqsyzLkNFZ0gLYbdUkteS5NQ4dks5NkWmXpqEgMiQ2kVOkpjqTnNNSxnTPBV0pkN4qlIs/c6NbP3TE9TtGyavqWwOh2i0TiQsdXFis0Cj28XOUAhfuQWX18pwOSyf1UQgnmHl6hhlfc345S6W1Hjw2ezsSPqZM9/BcFTn4B43E+31DOdiCE4/8+utXLN6HZuDYXQdZrbO5frLvsCyt0/n9l/+kMcefxxZkQEVl+TinTPfxS33fpedT+zinrseoT9mw2tJMNfbSJmljOF8P7O9ImUWgbCcYoaniZicYiAbZFZZI/sSg0z2NVE/cyID8jDzJnqhoY6cs4L6yRPIqTJaPomzf4C127pQDsrkwhl60l2cWOHjUDJOJF9Ota2KodwwNfYsE91OkvRzUk0NWVVlRzjITHcD++PBkQK2bvbEhlFVLxICmhRlka+OUD7N7miSOmsLA7k+5pdX4Jbs7IoNUm2rIKenqPSkmOOrpDeVoD2qUS3V89xQlHLLRARBwJ/rYb63hpgSotZupclZQXc6gCSqlFk8rAokqbJOIK/JbIjvYE9mAJtbYWBo73EnPkyBZmJiMkqDbRETnady58ov8Nl3/ppENI0gZLnnJEpyePZqHZw5wVjc80A+yQnvnF1y3m1ZnRPmG2tzrXxgAycFjL+yVU0jSJZGrzHP7aX2Qc5qMeZ4hbNZKuudWCRjXKvbBjltYr3Btmc4wvxmY14OwK50ikUTjEVHXzk8wGlTjW2pmsZwOEVD2Zi4egOcc6KxcGr/cJq1f6ws2aD7xvYXSOGirr6KP953M/fe9QT33H0/oeT2krheK9dddx011Q388Ie3G+wNtvm0OpYZbDZrkue/qCGNuY+vHBrg1InG3KAdAyEWNZb21462IPNrirl60mkX0Kb66Pj+eoOfqmt87XAvljGFavuz29AsY94hmkazdTHCmP6yymlqLRMNNq+tn2/M8xltJ83BdtZ8Uj/6s6GuxM50F+dNMV6Domnoy9xUeoxxPfq3DpaKxnvel06TSjWW3Mertv2B4XxhxPj888/lW//vRp584knuv/9BOjs7Db4fnvBhPn/nZ+lY18GmPxWmXzvTHUxyGZ8ZTVeZX57A63Tjm9uCu7Ua79R6hAlllHvLEQSBRMcQcjJLOp9F6QihZWUSRwbQ8irOhgr8lSKzFs6jcnYTuqYROeSnt68fdbjQJ2pOIXhoiEw4xUT7TmaUGfvxFb+fReUTDDZZU1F0BfeYHLFXAv0s8Rl9h3JR5teJiGM0wo92K9RajZ/9qNzDObXGzx3Ak4NJqmxG+8bIRjZpmwiFQsed+DAL1ZqYmIwiCBItUwpfkIlo4SUkIWIZJxnCIpZ+X1os409LjGcf73hJFLEKpY2N25YoloizV88xFus4tmOf9xhxjdOWRSr1tYpSyUsdGN0dYcgf4sMf+DY//sUX+duDfyf0L6b5VVdXc+WVV/Kx6z99zLaORhJFxrkEpHGu1zqObTy7uv4lnOddR+tlS+l5pFgFXxLEEsEFMH4teGFcX3Gcaxj7I0F0O6i+/Cz2/PIeqscMNhzrmRnvYZbGGXiQEMe9j5qus2zZEi5528Wcd945PPbYE3z/+7eW1CGTJIlzrz2bZCAxKs6A0T0vX0UQoGFmI/MunULt4snkwkmi+/oIbDjMjj/uoTlsTLYP55NU241T5NnhGLsjflLPFXLeXPXluGrLUCa68FYURKq3sZxpF87FU+uFwClY9rWTXrsNPZcfNy4oPMvCOIM4lnH6yyKUijMY/z6O16+FGEq/J6rqqvjF138xrv9bHVOgmZiYGCivcnNkT/8bHcZbmoG+YfbsbuOvf/8Fp5950ug2V6+H8847j3Xr1tHZ2fUfX3jwmlFkNv/0N6z45JcADCLtf0HNe88juf0QsQPtVHtKt4v6TyPaLHzqi59hzgkLWLtuPaefdg7ZbHbcIrE33HA9dVPqePknq455voY59Zz+8VOxe+3EVm5n100PkxmIjP49EvfTXDbhmMcfi7Q/Rtofo229n0qbcaWpzWNnyXKFKWetwH3mMmL3P0luX9vrbuN/wfSzpnPVx67i4WcffqNDeUMwFwmYmJiMEpW7yWgRctnC1KOmK3gsAV4ZHkLWisnIB9NBNJ9Ib7KYIBzN5fBnU6zf020454bd3Qzt6CQYKSbh9/sjZLMpdoaKe3wqmsb6UIB9iTgpuZiX1RZNIJRbORQtJn+nZYUtfWFWHfQjH7UQYWd/mGRYozdWjCucyeG3wIbBkCGuTf1BhtNZgsli4nNfJEk2r7Cjp7jCTlE1Vu/tY1dbgNRRSd2Hh6OoWYVD/cXzpnMye4aD9LuLhV8B+jU/bz+1EigmoP/stnsI9IW57aZ/bXTgyiuv5Jlnnn11I+lRu65rROR2UmpxgYSqy/gzQ9y1adCwcGNbd4jQIPQd1V/BVJbB4QwbOo0bbG7oGmYwkSGcKV5DbzyFRQ3wzE2/o3LxJFrftWy08GmTPYp2VH6drMaY5WyEo5LHdV2jwepE1IOjRU8BdC3MJI9KTis+M7KeptKeZFd0EESB6ivOwlLp5eW7HqA/nSYmF+MazCUQa2FvrCh2ZE1jdd8wazcNkjlqQcn+3jBKVqUzWUxgTykyD/b180zgCKquIUgivsVTqPzMuXgrvFxzzYf56U9+URBn6Fglr2F7squueg/vueJKHvjJ3wgFis9HXIkyyZskLgyz4iPLOe8r57D1oe3cdPnNPPzHvxPtK/Z5VzpIb1qkL1O8hoyaZ1s0xIZwn+H52hMf5HAiTzhf7K+YnOJQPMWhZHElqabr7PUf4cnndtF1x73E7nuS8ssvRL3gZIbzdg7Ei7HKmsrG0ABbwn5yarG/2lMhLBaZvpFCuQBpJU9nOsK64SFDXNtDIVxShoRSjCuppAjnc+yJFxdRaLrOqlAHe1KdZNUsVpeV0z99OtMvmc5XPvsVvva1r3E8YuagmZiYUPitJgACy5efxHVXf4w/3PgI72+pY9pInaRAPohkD1I5Bc4+pZCvk8nJrNvUh57XWLSgjuryQtmF3cEYCauEI5BhvqMwHRPTVPY2ekGEpai4LIUB/A17BshE8jRO8TFzQqHG2UAowcGDAUSnxCknTMBqkVBUlbVbepBDeVrEMhqchfN2ZuNEXFn0hMhCWyEnLqMq7NUDWKotLDptBpUVhfpNu/b0EOsM4K1ys2hG4RqiqSw72vyg6SydWIvLVqjDtanTTz6nUpkSmeYuHD+YzdAlZBFsIidPrsciiaiaxvqBMDitTJnaQFOtD4Bt24KsfDjOxIUW3n1FoQZWNJHj2h9tZNueHDMtJ9Da3MwX77ySn3/jXv780s9IaMZVp8di2rRp/Pznv+CSS96BqqqAjoCIjga8KqQLCz4qrVPAYsciFu5NS2Wc61fksEWsTJcLoytZPU+XewCbU2Wm6MNnLUyr7U2FybtUXJrEvIrCCFU4k2NvJAK6wJK6Kpwj9/HZLp3ZN3ya8IYDqC/uA+BQIspvevx4JCenls9EEiVkTeHZ8BqGlAjvqDyFRkfhnrWlB9gaH2RxmZu31RUK2KZkmUcG+hBQ+eT0cmoddmxNNTiuPot8Jsven/yFSWKhxlpMztCVHcJTD+efV4fTUYhrzeZe0n15vIqPFkfh3gSEFLHJaeSgypxkFZIgomgaW0JD9GcU/tCTI6IUjp/is/PNT12FNK2aex55gLvvvnukdy1Iogu3sxlJtI98HgJcffXFfOnTX+TFm1fTu7OfjJoiLA/T7M7xvkluyprrqfzIuzlwZIA/3f4cQhSq7JUjz20UhxQklBfRtQmIgoSmK0hiN26LxlCmDkko1EjTGKbZFactIZHMF+oF6uSpdQ0iAv3JWqCQaydKfppcGormpMxaN+KbYJKvHXd1NcuuuxZXTTm7fvUybQc34LPl8Ijl1DsKcQXyMeJqELtFY1l1LZIokFdV1g2HkBWJye4Kqu2F/MyebJC8ECeZc9Nsm1i4j0qeVcEgCUWkxdGAQyrEFVN6cUgpnouE6ZcL/W3VNW797seYdfJ0zr34XPoGX93p4/jbLN0UaCYmJhyd7bB8+XKuuupK5N9sYF6ZsQhlsKqLK99WOpU0FEpS5zXWxHp5ezenjkkETsgylVN8Jcev7RzilGnGJO0D/gizW6pLfDc83s3sMmMMG4cCLKks3Q5GfUcVNT5jvs6qjQc5Y8wigFgqR9k4BWRXr+lkeY0xhoPJBPMX1pf47rOIzJ1itK/b18OKOa0lvpdcEcMqFPpr/ulTuOLzZ3DFBddyILWqxHc8fvazn7Nx42buv/+Bo6w6RXFWZLL3YlwW4zUsKQ9x48yWEl9bVRjfmMKn68ODnD5m0UUwnaXaZUy0B3i6v5YzPvcRopsOMvjIBtB1tkdCRPKl03QROUCtvWaMrZOTKptLfBvdQTwWG655U6i9+jwiz2/m+Yce40Sf8RriYpoVV5ZuOP7kgwMscBqfj4PxIPMqS5/l5Sv3owkFsSFJIvc9eitOt4Ur33MZR44cMfhWeOYbRs68XjcP/+UX9LzYz+b7t43aNaLcMDODY940yt97MYmnXiG9djs/PZCj2jrRcM6e9CBuyfh8AvizIXxW46KHjlQnHrG0v3JqHkkw9oNg6WO6x7g4IavFWTpSnLjlzJlMv3IZbY9uY/fTjzO/zBhDT7afUxqMBYcB9gSztDh9Btu6oJ8ZnkklvpvCNixj8sz+NPQKyREhabVa+MWdX6Gi0s0ll55DIFAcyT4eBZo5xWliYmLyBrJ7dTtWh4UzLlr+mo/x+Xzs2rX7vxjVv0a0s5/DN92PZ1YL075+Bfb6/1BemCTiO38ZNe89l6F7nyH28rZ/fsy/ydTprfz1idtoP9LLeae/t0SclYQoSdx621fY8vIOgzh7Fe8lp1P+nosI//ZvpNf+6yt3/1v0rjzI5lueZMK5c5h12en/8/Y9Xiff+8knCAxHuPqyrxjE2fGKKdBMTEzGRRlndF07xoj7ePZxbdrrOP5YvuPYjjUToGml3uOdVuPfu65j+qrHmqEwxvX4r9ZxxYfedgzff5fSGNRjXcM4vuP21zGO19FRkxmOfO+vxHa0M/3/vZcTP3Ih7urxCvOWnkMfx1Yxu4nJX3wfnhNm0H/bfWT2dxWuYZwH4VjPzHjP8ni2o/nwDZcRj6f45pd/iaqOX6vu6Ofuqqvfhtvt4qFfP1rit/wDp2CfNYXALb9D7iouwHk9z9dr7a9j2cfrG003dmKiJ8TGmx+n9eT51F2ydIzv+FGNF+947auaPu7nVNc15i2cyndv/wTth/r4zld/SyZTWiz4eMQUaCYmJhSmxgpfnlbBQbmlmfv7LfyprwNV01B1lSHLflZUqrz0YgdDoUJS+aFgnJ2xFJlyJ1uHCgn/qWyel3f1sLCugjWDQyTyhaTw7b1h+vqybF7Zz572Qq5VMJ5h1Y5uZkh2Vu7oIj+yOGDtzl5cQzLrVrfTORAFoCcQZ/3ObibMdbMtH0DTdWRNY7M8zKKTKtjpGCKkFBL+2+UondVhYrt72bK9YzSuVbu6WDR3Aqu6AySyhZWT29qHCIRS7PZH2O8Pj8b1yq5u5k6tZF0kQF4tTB1uigSprnOw8UA/3cHCooWeSJKNPcNUxtKs3XgIAFlWWPXibmbEs6x+ajuBEd/9+/vY9sg2vn9lN60NhZpZip7nhSeeo76ynnOnXY5E6RSdkVe/tjWKL+2jc8+M9CZXEc0X+kDXNXJyiH2Rem7YNkhPutBfvdYosWUxsvPs7FELsSZkmVcG/MxxVfLykSGSIwsktg+HSGoKu0NhDoULifUDsRz3r8/QZKliV6wHRVXwP7WZ1bfcxKyZKtfefRFnfH4prSe2ktfDVDsOc0aNTEZrH4lexuPZyUcXZpGdO8mSpPHM2Sy45VJmfXwFvRt38cI3foISihPLy9zZEeZIbAb3dIVIyoW4DqUGQE/y/AND7DlUSKw/2J/h7bcMc9vWer67Z5i8qqFqOj89EOT7u2r54CtJdkcK5WS2BlO8b3WKRm0uNkVg8tRmfnH7X4imOolmDhv6VBAsWKRKUjk/uXyE6uoKLr/8Qp7+7p95W+0sEmoHilZ4vha9bxrTTmjlji/+iZ0jiwC6Uzm+sSNFIF3Drmgniqaiaio7Ip0Mph3sjnYSlQt9m1LDqEIf07xWUmoh4V/VFfqznTQ56snShzyyU0NWC+Cyhal2ZsjphbbyWpb+fDvhvJeN4UPkRnZl2Jbcy99jO/hW5yp2JQrnTSoJhsO76b79bzjPmIFrTguqprM+NEgsV8df2jJ0jyyq6Ugkeakviaw62B4ZAiCnKqwLDTDBWcveeBeJkc/jnliQZ4cTBPMR+rOFxQFROcYvuu5k5lm1/L8ffYiXntvIb3/xMPH0AEPJ/+1q4DcrZg6aiYnJKD7rJC4946Nc8O6TuO0rfwVA14P8/rw803zF/JNEXmZrWYYLT51uqDu2clsHU3IYCs0OJTPsOBjhjLpiToum66yMDbJiWg0+RzHnqTOaJBjJcEJtMdcmp6i8HApwzsxGnNZirtz2niBlDitTa4obS8eyedYcHOLC+U2GuFYNhJi1dAoNlcVr8IeT7NvZwdkzizk8qqbx3I5OltdWUu4sxtURShBOZTmxtZgzlZVVXuwZ4tx5rTiOimtbb4ByVWDKUW3FsnnWdgU4r6HGENfvN4Z5eft0nJKX999yIb37h3j6nlU8F7mLlGbcFqeABAjcc88fufXWH7F//z6OJczG4pLqme46B4fkK16vnuPD5/u59uKJhrheWNfBpIidOmcxr9CfTtOpxTjjqHw0VdN4ZHeAhtQM3JZiva6+TITmRUFObB2Z4vT6UKYspNc9g7raBtIH+0h3+lHTOQ73ddGi9jFp+lQEjxupqRFh7hy6DvUivbSXzL5OdLlwjS8P99ObmoRbKvZtUomzqO4Ip9ceFZeucdfAACvbJyIJxfso6xEkQcVKMR9N0xWs1g5keTKiULiPF71/CTOX13PZ+y9AGbNNlSi6kUSPobTJz2+7mcmRCrof2TNqi+TjTLliEfOXLWTd955ETuZQdY0dsUMks1OwisX+Sigh4koWr1SMS9FlrJZullVNN+RtHUn2Es978VqK9zGrZQjmepnmnmqoKbcvcZiEXI5NLH4ec1qCAfajH7UBva5rLHGpfHLiLFwjRWnLTpyG77Ll3PuRX9Nkrz3qeJlh+SDLKyYZNnrfG+uj0ual3lHcfD0uZ3h2OEy9bZqhztr6yCaeCrzMVVddybXXfpCvf/1bbNmyFZvoJKcWV60ezfGYg2bWQTMxMRnFIfpGX1KvYpPKmOYzTjl4bVbK3HpJUdj6cheNY7bxq/M4qbaNeckJAuWS1SDOACb5PLhk4zntFgmvRTKIM4CptWWU2Y2jTeUOGxXltpK46jwOgzgDqK/0EBizsEESRcodNoM4A5hc5aXcYWzLYZXw2q0GcQYwpaKM8jHTb+UOG+W6UBJXg8eJc0RsPP6TNXzm7ivZ+OheHDHPOAJNGPlvrO21kdeiBnEGIAl2KmscJXHVlLuoyxr7oN7lIq0bnwNJFHHiNIgzgGZnBdNqj7rniSiWnavY8MLjzKs7AUdLDc5J9UhuB4uWnE11lQU9nUbtH0AdDqD87A62beplrqfJcF6n5MYteREEEEcKzpZbfTR4PXDUsyQBWbkMp8NFPlecnrQKFei6aug2UbAQzDqoGFmNandaOfvyxdz2hb+UiLOCv9UgzrxeDyctX8LOTz9l8Jt9ygJmnnMC6772OHIyN9LfIlnFbRBnAF5L1ego2KtYBCsui70kqb7K5kPXjM+yQ3TisThLCv46RBc50bj7hV30Iuui4eUvCCIOC6PiDCC+9Qi1Fy3lxHNXMPjKkaOOt2ITHAZxBlBnL6fKboyrzOpEwlVSBNdZ5uKTV97ABz5wNZ/4xGfZsmUrADk1ikkRU6CZmJiYvAmIBZL0HRxmxkkToPef+/9fJeePkPNHiG0pTBvG1RQnTiwVQmOxVJVR31pLfeM85l0yF6uzIJjtHhuV9S4ki5Wj87S+q+roosTu9e384JMPEvLHj3FmIx/9zkW07xmg65D/tflf/0H27tiPnC4WGxYsIguvPYWX7nicfKJ0A/n/Kww/sYlpl52Bf20b+rGS0F4nVpeVG392I0OZIO9734c4fPgfL744njFz0ExMTEbJaTE0XaWuqbj6LqUmaI8Z9yNKyQrxZKYk8Xg4kSGQMr6QQukcYaX0JRVN50nkjHtx9sZS9CXSBpusaiQyMnnFOJXXE0nSHRkTV14mlsmXxBVIpAlEUwZbMJ4mmC5NRo6lciVx9URT9MbGiSubR1aNcXVHEvSMiSuZk4mmjOcEyAppcnoxrm1PH+TcjyyhzFNb4lsQH2Nfkq/9panpOlnVOCqn6jLxRKk4CqYyhLJj7mM2SyBn7C9N18lJeTKq8dr8uRjdYWN/5xUVWcyiaMb+Gswk6U0ZfZOyzGCmIHgEqwXf2Scw4RsfYOplpyB5JF76ySqeveUF2ta0E+wOsvvO+xn42P+j94rP0nvFZ+m+/DN8ecGVrH16Dy1TavjwjRcCkFEjpNWwoS1NV0mrUXRdY/KcBqbPb+aeW18grRkLG7/K2M3tzz33DO649TckleLzMeH0GcSGo+zdYFxpq+k6KTWDohv7K6lGyIwZPdJ0FVXPGwq/AiSVGCnVKDbzWg5FL/2MKXoGeYw9r6XQNGP7uq4TyMlkx9zH/eu3IQsqFTOL6QmyppBQZJQxcQXyCQK5hMGWVHIE8iNTlgKUN/m46q73E4vFueyyKw3irJBu9Z8RgW8VzBw0ExMTAxObZvD4409wwzt+Qm/0MLrFilXQuXxSlk/OreNQMsa0qeU0VbnZF01AlYcyt53B/jDLmquJpbNs2z/ICTUVbPeHWdBaRYXLzsYDw5SlrGRVlbyiMa+ykkAuQ7eUYEFTBdv7QyypqcIuSWzoDzDV56U/kabMbmVqRRmdiSQRi8KkKi8H/VGWt9SgaDob+wIsaqpi70CEVslBg9vFvmgUySPhcdgYVhROmtVELJNnRyTJiXNa2XZkgAUTa/B5nWza1UWtKJLOyuT8KeZ6y/BnMnRl08xrrmRnMMbyeS1YLSLr9/Qy1eOiN5rC53Ewtaac9nCCiCwzobqMQ/4IJ0+pR1ZUNhwaZFFdBbu7w9TFPNRaXBzKhnHVgttuIWjTOWl+C4OhPN++K0F8qJXBfB+fvu06Du7s509/vJ/u7BqyJVOdIvfccze33vpD9u8/MGLTGX99K4CAKLoRBDsCInXWKTTY51HhCfDDi23MqXOwNx7HWufBabPgPxLmBGcZkUyOnX1RFvqq2JWNsmxFI+UeBxv29FGTE0nKCqLPyvxJNXT706xemaeZWvqVPs6Z4MUqCuxUh5k3tZyuSIIKwcqkci97+9PsP+SgUipjZzSJzzIZDQW7ez/ntTpZOZDghY5JKHoFF75vIpe8bwXZ/gD3/vAx/N1emhZUcfLVC6go83F403qWZzZSY1NYvS+MK1ZGNK9wOOzFKzUzqCS55PfX4fZ6+fg1X+bl7Y+ho9FgncVEx3Liqp9ueQc5MtSV1/PQQ3/ij7c8y6Mr72ZI3nfMz4ggWJGkMiyChfUvPcszn36eeCxCVvcz1V3Psu9cTM+LHfS90kVvpocau5eEkmVPREVRq8nrCSQxRZW1lqg6RKO9BQHoyvRgowqVCCuqPUz2VNCbCRHIK3gtXhQtwFJfI1lN4ZmhIQS9mYTqZ15ZFRU2N0eSfhKyBQGJjJahzt5EUkmxN9GLhRqiah9YPEiilYjcjSKp6JqCh0rKpHrcUoqL62QW+6rZHI7gFiaz6JoVJPU43X/ewnAuTJnFTY29glB+GLc1TY3NTU86xnRPM3lNpS3dzyxPLSvDnfxlqIuEqjGntpmf/Ojb1Eyo4Y5f/4of3/XjkZ60UJiQVoHxV8q+yvGYg2YKNBMTkxJuv/12ogGJe377nMF+5uQUd14xxWDTNB2/oNE0piDsSzu7OGuSscBpJJHD0lu6qfLG1CCnj/HdF4gwp6q0jtaedIyFTcaCnWsOD3JyjbHoqabrRBts1FeMiat3mLOXTjfYQuEE7l3Bkrg2qElOn28sNLu7c4i5ZaUFO3cHoyxoNcbw0vpeFueNRWI1XUNbYaW23BjX+2/vpaO7hdknTOAjX7+QGz/4R2LxCFsTfyhp65577uXWW29j//79R1nHL1QrSeUIY4qWvmtGDX+6bMmYuHQCwQzVDmMB2ldSYc5ZMtFg80eT1FhtSGN2X3/m6V5O8hkLwu5PB1k601cS1w8e81BrHVPYN9RBJt/Ksotnc8nHljPUHeHebz+DS85w7nWnUzelCle5k41/2wn+h7n2BGN+VWcgx+p10w05T8u/dhGb4weYu3ge5593CdFoFAABCWkkUV4QBH72s1uQJInrP/phNF7b3qjfnP9trv/zR7jnA38ilywc45qj854vXc3jn7gfTS6I5uFclJ2h0sK+ouSn2TnRYMuo/ZxXX1oIOSb7meAyPktrgr00OY2fR1XTOJxUsI3Jc1sZ3Q6i8ficmsAtln7GlpZlme0tFJqtmFzNaV+7kF+9/wfM8ZYW0M3pg7Q6jZ/Hn3SuYV0yitVq4Xvf/xKLFs1h9epNfO2rn0DVX9uilrEcjwLNzEEzMTEp4Te/+Q2/+sXd3Pu75w21i8Ym+wKIooBlnB9uYxPPASyWUnF2LN/xbAX7OMePc05RELBYxjnvONdgkaRjxPXaYgVKxAqANE4SvyiIiJJUYhdG2jq0s5fOQ0NccOUS/vr7F8dtq9Be6TleK9ZxDhUFAcs4fSON04cWSRr3ei3j9Nd4zwyAMCbDRrSIrHj3qcw9fSneShcP3voyTdNqOPnt85izpIlYf5Ktj+2lbVM3qqyxYHYeMAo0SRRK2ut8fh/p+Vk6Ozr5y1/u5pprPkIgEKCxqZ53vvPdWK1WzjhzBQ0N9bzz0vePbJf12pi2fBqJ4eSoOAM49b1nsv/RnaPiDEDQx++D8frGcqzna1zf8Z9PcZzsJQGhZALxWPeGo+yxnjA2rx2nxzWuqzROW5oAixfP5Zv/79PIssI73/FRksl0yXStyT/GFGgmJiYlHDlyhEAgzPkXL+fZJ9e/0eEcV6iqxoO/WsXnf/QuwsEIW+4t9Tly5AhLly5hz549pX/8P4YgCrScPIVJZ8+kJxpm/WN7sDmsvOOTp7BrVRvpeI6dzx3gwAvtvL4JnxFGjnnPe97P+9//Xh5/4mHy+TwOh4OhoSCP/f0Zvn/LT9m6defrPvWkJRM4sqqYR9W0oJHKpiq2vbj6Xwj0zYmmaETaA9RMqYeOf76YA2D6wllc/vWPctutv2XVqo3/5QjfupiLBExMTMblB9//Ptd+7O2j/7bpGrH+Ru55pZgAn1c0Xtg0yLZ1Q0STxWTk/T1B9IzC3oFiQnYyK7OlfYgNCT+5oxLrd2fC4BHpShTPO5zMMBDMsKZzGHUk4V/TdTYMBwimcgwliwnZ7YMphjosrD1crJ+UV1RWd/vZsbWPeKqY2L5hV5R9TwusXz80akskMmxZdYhXeofIHbUQYWtfiExXio7e4jUMR1L4eyOsPTyANlLKXtN01sWSBD0Oho9adNA5GEXJZtmVHC7GpalscwTZ2TVMPFMcddm6K8wyQaDGXkhMH+qLcNftT7HsHa04nZVjbw0PPPAAV199FVbrq1OXOoJgYexvbovkRRIdhlHQepuHluxMnt119H1UeXn/IDv6w4YFEgdSCUSHyL6j7mMskWPj6iGeW91HLl/MG3pqfZS9fWUcjhRf4oejWb63UeK7K+OG+/hQb5jobJWZHzyRs265lMnnzmbnyl2seX43Z1+zkKmLmnjsjrU8+ZtXiK+7G/Y9iE7xvE5HN1Vqnn390VFbNJ1nz5EIecse1KMS+ddGdpHXVXRd409/uo/TTzuH8869mFNPPZ1LL72Se+55gK1bd6LrOqqWRn8NdeUkJM5sPIfGExvZ9eyuUfu0s5voenYt0fTAqC2lZGhLBVGEfrSjpvdiygDhXI6oXHxuk0qC/nSaVYHiMl5V09gd7+FIKkUkX+yDg4kouyMCe2PFtvKqwr54F3G1d7RQLkAo72eqswybXvzcKFqOtBomqvSiHdVfFj1Gf0plKFvMfRxsH6B6Zh0Hk8a4NoZ7WR/KEMoV4wpVwPu+fi3fvem2UXGm6xq5fABzEcDrw8xBMzExGRdRFFm1ajVf/fytODodzHXPwjJSIy0h9HL+okEmqXYmegr5WMFclnZbAqdb56SGKiRRRNMLSfx5TWNmWRl17kLdse5okg5/krI6O0snFfK28orKho4hciGFhRVVlNkKNZkORKJEyFFT42TuyN6OiZzM1r4giT4bcy0N2EZqMu1NDmGpTjKh3MWk8kJcw+ks+3Npug6XM0lrRRQENF2n09LP5MUpZgmSIa7OcAKnZh0tlptXVTbHI4jlIosryykbqbe1fzhKwAK1c1uYO7L5ejyVY8vWNvTDIZZWVGIfmYbcOhgioQlMX1zF5NpCIc+heJo93WGGt1uZJTSOxvViYIA7Ojrxq/3cdPPXiMXi3Pajn6OoUXS9+NJdtWoVF198CalUHkGwjdbm0nUV0LDbqpFEx6hNU1O8t34RF9cuGq1h1S33MnHSMJOdDiZ4PSP9leFQKo6z1cWKmY2IooCm6axvHyTZLzMp5aXaPtJf6QT9jhw97ZW0WgoFf2VNoV/pZHs0R1ukebRQrCYGuHxJmK56Hxde/UH6+vrIZ3IE1/Wz+YVePnrTR5m1fCJ3feUpNm/ezNTKGB9brDG5rJCr509neOCAylSfzPktFYiCgKppbI0GkAWYIlRSNRJXRyLB39pT/L5rI4tOPpEPfej9XHfdx9F1GXQF/aiEdEGwIoouNDVlsB+Lyc4pXFjzNlqbWrnip5fx0yvuIK4MM79G4EN3f5NDNz1A2h9ma3SQvVErVupwSoVriMhhetMhdN2Gz1J4ZlRdIaUPYBcFfJYmrCP9lVCHmOhJU27zUj+yqXxazRDI9dORFLHqrYgjNdJiah8NTgWfrRKf1Vd4FpUEPakAgmChxVnIo9R0jUOpDvamA1ilciwjz0dOjWPVVCY7aqm3Fe6josuktH6aXToXvedifE1V7PzdK/Rl/MTlDGm1nEprIa6smkGhl4hrgGU3vJOBwQG+//3vY5G8WCQvOTlQ6Pt/g+MxB80cQTMxMRkXTdP47ndv5jNf/AALPfNGxRmAV28hPSyOijOAaruD6pyVFU3FavmiIHBySy0Vkm1UBAFM8HlwVVpGxRmAzSJx+vRGZpdVjIozgFkVPrAIo+IMwGu3sri+isW25lFxBjDXU4eoSaPiDKDW5cCdcDBFnzCaZyYKAlPUZioSaklcVkEy7GRgkyROqahmXrl3VJwBzK71IZS7RsUZQJnbzuJ5Ezi1umZUnAGc2FCFp8U2Ks4A6spclGsu5ohNhrjOq20iqvUDAr//3b2cd96ZeDxliGMKjgqCgCBgEGcFuzQ6cna0rcxWwaX1JxoKjE6wtiBkxVFxVugvJ9VlTk6d3YQ4kuMkigKnTGukPGobFWcAE1xewt22UXEGYBUtTLRNoy3SNCrOWqfVcuEVFzLrk19h2rIVfOc73+G6667jhk9+nJd7N3LdNz/MrOUT+e3nHqN9Rz9V1ibOnJQZFWcA9S4n50yUubC1crS/JFFkWWUdFbJ7VJwBTPZ68atdpDSZrVt34POVs2DBPATBWiLCdF1GVWOvSZwBLCw7gUpbJXMunM3ggSG8Fi81djunLZiPksySG4oiCSLLKppALxsVZwAV1krskmVUnAFIgoUysZUKS/OoOAPwSnUkVWFUnAG4JCcuqQ47k0bFGUC51IyGdVScAZRZvJTbnKPiDAo5Z7M8U7GIrlFxBmCXyvBa7KPiDAqFcsuliUxzN5NoD+Eb+aw2O+uJKtKoOANwSE50sZ533HQDdoedu+++GwBFTZDND/zb4ux4xRRoJiYmx+TFF1+ktraGqtbSlV4m/316ewdYv34zV155acnf/H4/K1as+N8H9RoRBIHmKTVcet3JfO62y2idVsuDdz/Bpz/9adavL+Q13n777Xz75m/RvrOfm995Nz37hv7JWV8/2WyWtrYOlixZ/B87Z+uJrSy8dB57ntw7anM0VJI6PPAPjvq/i5z55wJr6WUnEIlE+NrXvsbg4OD/IKq3PqZAMzExOSaapnHnH+7kzI+dXPq3cdIj1GNUGx/Prqrj+yqv8byKpo8fwzg27Rgr8xSt1D5eW5qujxvX2IK4/ziu0vbV15CTc9edf+GKKy+lpsZYIuHAgQNce+21o6NcRzPeXJCuv/b+Ota9Gdd3nL51NlXw/b98hBtuuoSyChc/+OSD/P7mp3n+qdWoqorb7eYLX/gCU6dO5cLzLmHTE/vJpoylLV5rrMe0H2W6556/cPbZZ/A6U3rGxea0sfSqEzi08gi9O/oN7WtjiimPvyK01KbrGvo4KxzHi3c8v2P5jteH/yiG0uO1cT87Y31Fi8jsM2Zyxx13EAqNX+DX5PVjCjQTE5N/gMiDf30UmhUijiAAGTVJbe0ezpvjYn1okIyioOk6m0JD1JRZ2XwkQFuoUOm8M5JgU3uABouDNV1DqJpGTlF5em+I3OEpPLIqRv9Ihf69/RFeWR1naNDGpsHCl3wiL/PUoQj23uk8tilMdCSxfk17hIderuDxHpW9sUIC+3A2zaM9Udo75vPQvihZRUXTdV5qD5Hy19Ge6mcgW0jIHshG2RYZYv/eqTxzIDwa1yO7I7Qdms+ftmcZTBUSn/cFo+zpixNsU9jYGQAgns2zut3P4pzIyhd2ExtZILF5Xw+JQJS2KoG9kUKS9VA6w0Ypy4JTprOqc4isrKBqGmuPDDBpqovglEH6c1EAetIxHh+McV3TZVRIheT+np5+Dh48wPnnn2K4Mz+75U7KaObTl/8/rLw6NaazyNvKz2a+jzlO3+iL1AFcWHEKa0NhOtKFRQsROUlYOsCCsvLCAglVRdU01vQO4wp5Wfn8AB1DhWs4NBjjO3eneWj/JJ7uDY3sSqDwi0OH+fr+PfyqZzVxS56J71rK7B+8C/enl/LjX3+PG674Jvfe9iJ9PYN0ZFbTn9sGwA033EB9fT3XXvtRsqrOy/H7CckFsZPTEsxu3MfJ9R7WDPpH49oQGGJCq5PduQDdyULF+o54nJ3hAHVlEptDfjRdJ6Mq3HVkmIHoadRYJoOuk8lk8Xq92O3/epkHu+BlnuttXPSx95HU07z4s5VouoY/18lEVxmHEjGSIztm9GUiHEr4Ob9eJ6Z2oesaiibTm+2k0dFEmj5yWmH3hIgySJt6iH1yG/58z0gfZBjKd5GTG9kS6SSrFhafHEn1MpiFPEPElMKzmFbj5IVequ3VtKe6UHQVVdc4lOgikSvjcKKXqFx4vgL5AM9GNpIWUiSVwRHRriDLITy00J7qIKMW4grLfkQxTFsiRW+6MLKZUjJsjXTjEZvoTHeS1wpxTbmyhUPh/ezebdw5weTfw1wkYGJiMi4C1pGVgXDb7T9g9ao1ZLZ08fuLp1LjKuaj9cZSDCWynNBQzNuSVY2XhwY4q7EB21G5WHtDEQa766nQiysTc+TwOw9zsrXVUJdpS6KPcq2RMrGYT5Ykxa5cCJ8yl7LmSrxNPtx1ZWjVeZxiBdJReXKqmKZ+WiVeb7EtXdeJyFmcosuQt6UIWTQZIgfCZENJop1BhvZ3IklruaCh3hDXpvQgCyaXU3NU7lpQznPALXLmrGIOD8BTqw5y+tmz8XiKvt39ISI9wyycUNzOKZ9X+cnvBxHjcwyb1W+O7eFvA48yZ05hdOL8888nl8sx0X4Skx2n0jKthq/+5kpu+9RDbNz9GB9qnUOzszjS1psJ8Xywk1N8J43aNF1Fteznw/NtlNuPuo+pBIGExkx3Mbcor6s8GA3T0zEf4agVorrUxouxzfRnVbxeD7d8/yvMnDGVAxu3cfMvf0B3d/foiE651ERKC6HoWSRJ4oc//CHTpk3jmms+RixW3OJJ13XOqpnFnWdPocJRfGa6EwmyTpn5TUc9M4rKMzsHObu+EetR9dg2DEb4xfZa4vlirl9OS7I3/Xd+fMfN2Gw2rr32Wl4vlZYJLHK/C4tg48u/u5Jn79nMznW7WFGjMW1kW67mM2binVLN07/4DSdXTTLUlHslOMyhWBVuSzGurJpla2IvmrXc0JZdSTDdOR3HUTmHip5EFMNU2SaO2jRNoyN9hHnlk3BIxdy1iBxmIC3jEovPl6orHMntwI9mqHGmKilahRl4jipWq+hZPLYgC8qLxZyrJlay9BOL+cunH8N2VFwpJcEu+0a+9/vvcPXVV+P3v7b9S/8VjsdFAmYdNBMTk2NQ/D48eOAQjY0NDLm3G8QZQEu5G9uY4ppWScSF1SDOAFpcXrK6sWyEHTtS3IlYbTyHR/MaxJnkstOyaDbWplqmL5uLpqgEDw6iZGT27tpDjVS6r2Z+036kAeO+hWuDg0xwTjLY0moOb20N3iYfvim1TDxnFotvOAM5di6uwX7yW7ehDRTyaipFh0GcAVRbbVQ7SickfC0+gzgDmNBUhTdt3B/RZpPQ7E7DQgyAuZ4p/A2Vffv20d3dzfz589myZQsusSCGe48EOLS9j9PfOZ+hw/sM4gygxVnFTJfxvSYKEh6HaBBnAC1uL5ac8Qe7TZDo73EZxBlANFtJ0u7i+mvewXnnn87qVRv53Ge/QzLdh6oa9yGNqf2j/79kyRJqamp417veharaEY5KdBcEgdqymEGcAUzwesn7jDlQdouE12ExiDOAaqfLIM4A7KIHl1jBz372M+69d5yicq8Bp1iOZSSB3+Nz0tceRKSMVuOtRRIk7JK9pODvZLeHvpQxLofkQBY1xtYMVgWLQZwBWAQPumCcAhZFkXKbwyDOoLAQITjGVxIshLQsSMbdDCTRgUcw5pdaBAdlVqNf1aQqcinFIM4A3BYv13/lw9x3333/VXF2vGIKNBMTk39KJpNh6bIlDL341P+87bKFU6g8fR6e2a2k2gY4tOEwa256nHhPsTZXW6qXrKu15NhGZwCf1fhSycbT5Mds3p5Xs0STAaIdAXrXFAqPihaJlsVhlp+2BPd116BFouRWvwJb1/0XrvKfs3PnTj70oQ+xc+dOg33HmjZap4+3ufp/h/I6L/NOnsrn3v8hZFnhi1+4iV079//T46xWK9dccw3PPPMMsiwjjtmK6L9NW1sbuVyOSZMm0dnZ+S+d47R3ziMVyxANpMb9uzDOrgtvBVwVTvoPlSb+L7h4NjUN7n9Z+Jr8Y96aT5OJicl/gOJoyt/+9giLFy/CIk1gKGkczeiKJumJGV9YOUUlEldJy8bSBdv683SkogZbSskRyiolCfvKjCk033glDVedQWJPFwe/9AfW33wvL97/okGcqZpOKJ8lqRirnAfzYbpSxtGcrKoQlhVyqjGunnSMvkzYYItnU7yyvovUU8+SuOWH5Neux3Hu2TR/6guEaqcZfP3xNP5u4/GqqhHpjRCNGvumvc1PR4/RN5dXqKiIl+wBuTO+n1e/pn/1q19RX1/PwoULSaqB0SnE/vYgE2fWE8wn6c8kDMdH8wnAaNN0je44BDPGPtjgz7DWbxSusXyO7bH95LUcvoYylr9nEdffeSULL5zJ9R/5Ahecd/WoONN1FV0bf7Wf1Wrl9ttvJxQK8eCDDyIJdmxSmdFJ16mz2YnnjH3QmY7TETVeQ1ZWSWkyedWYlB/MJqlwGvs2o8VJqiFkWea+++7juuuuG/nLa58xiynDZLUEc5ZN5IX7tqOpGm5LiIgcHPVJ+WOUT6tFFzLImrFv/dkEshYx2LJaGg9SSXJ/XsuTVMZcrxYnpRifZU1XkfUsOc04cjyYCZJQjH0ga3msqq0kud+tC8i6cYRZ1bLE5QzaUZ/H6knVhCJRUmrxWZZsEsvev4hv3fgtZNkso/HfwMxBMzEx+QeICFiZ4GzkuRef5tnP/J1oPIrH18675sH+wRgnVhVqfm0ODNNa6aI3kqNM8dDi8jKQSRIS4zRWeHhkh506cTI6Gr3Zbk4sL2MwH2Kiq4JKm4vudAibJUPDwllUvO08KnyVdPx9A+uffZGZznJeDsZxiK3YRTuDuQFqbFaymkJCtlBtqyWtpkmqQ0x11RDIDzHN3YJFlOhMdzPL66ArnSGjVlBhrSAiR8lrcaptZeyLx6m1taChE8j3MMdbRVsqhF2sxSW5iSlDnNw8zDSfxnAClpx1Jq7zT2ZosAfvjifZdbibRZWVeGxWdoQjVM6pIZPLIQ6mmFVZTjCd5bBFY84JE9m9+hDLysuwiCKbhkJMnl1HbzBOvc3GhAoPXaEkT66VaOt2c9/AE0SVwgtR1/Poepbrr7+euro6brrpJrxiHdOcZ9HQ0MCXf34137jqz6h6Hp8txDsamhjMDTPN3YBDsnEoOUgk5yKhylgECzW2GtJqisqyDi6YYOH27ZDLTEFARJO6+Ngsnb/27eXe3g5OPmUFCxbM54q3XU7wQJyHn3uQPz/zR/L5PBapHJu1EkVNkpdDjLc6UBAEfvzjH5NOp/nWN/8fbttEyhyTEAULGTlILNvFkioXNy+Yz/zKKgLZDB3pKLOry2jTY5w8qRZJFNjYO8xEr4eucJImp4tmr5uuWBJ/JEud1UVfKsWy2lryqsp9hyP8/VAze1MbCCldIAjouorHY+XXv76DjRs38ctf/prCjxCNY1e4lxCEkalYXef3v/gd+x4fpKxrM2fXNiIisD02iFWvQ6zMcfnPPsPQ135FXyJKb1rGKZRzJJllsrsVWVPYEesnma9jOD+Mz1KLQ3QRyPvplANkNA2n7qBMqkfRc2h6mImOFrIEaHY0YRVt+HP9OEQnqp7Da7VRbasmqSSJyEEqrVUcSQbxSS0ICAzLPXilKgL5IKruwi56SakRhvRuBElkqrWGiY4pqLpCd6YbVakAKUKLsxGH6CQsD+G1ClitVj7/0Ke586OPEhgMEpH91NtrcZ4ssODCWXzwQx/873z1jOF4zEEzBZqJick/xCpYuWXmN3jHL65g0+/W4t9TqPXUXLeZiyYa88n2h2JMPKqA5av8fp9Ig73RYAvkOzirtjg1J3mdNL73LMTJjQw8uoXhNQdgpIzFs0N9VNumGo7PqBksQukGzmmtg7neCQZbT3qYMmt9ie/e+BA1NqO9N9NNi3NCie9lk9pHi7QKdiveS85AXTwZ79P3ow8V61+FczlqKh0lx6/rHWJFS53Bti8cZf6MuhLfyq8/REo2fjdrWh6nU+CZZ57h0ksvJRIpjMhcMu0rfPXn7+dr77lz1HdmmZ8L6qYYjo/k0/RnjHlQABtDnfgk4/Rwt7IX2/wEn/jEx5g4aSIvvfQyv//dXXR0HHpdm4kDvPvd7+aiiy7iwx/+MF7bZMqdxtFHrySz+pzmkuN2S35OmWycut3VH2JuWWlNvt1dMWb6fAbbJ9dt4S/t/SW+CxbM4He/+w333vtnfvGLX45YVUpFmoAoegyWn/70h3jXdzCz39gH7Sk/J1ZV0HTT9QTuepx8V2E68Mk+lQaH8fOwcrgbQTfmQOq6zv5UcLSw76u4LQFmeoz9lVLiNDhL7+OOSDdV1haDbSDbh05ViW+FPU2l1Ziv2J/toskxcUxcGgsunsmic2Zxz+cfG7XvUtZwy/038tGPfpQjR47wv+B4FGhmDpqJiclrItQexFFezIoWx/mxJh5j2kgYx360zTmhjubrzid5oJetX70bV1Y4pu8/sr1e3/GmuY71I/To69VzMvGHX2DgoIdl134A+ZE/j4q0Y+WNjHfeY7V1rJ/N6XSa3bt3M3fuXNasWXPsa3gd13X08YIgcP5HlrHksveTUKL88he/4oEH/oY6MpWov469FAVB4PLLL+ejH/0o11133ciU2TjPzDHCGs/+Wu7NP2PHjh2cffZ5/OlPd2OxWPjJT376mo+F8fv21fazh3twzZ82KtCOec/1cWyv9T6+juf+WNO4r9XTU+HmjPcv5bFbXzbYFyybx/79+/9n4ux4xcxBMzExeU1osoqn1vvPHV8nrmlNTPj0Owi9vJPB+1ciJzL//KD/z955hsdRnW34npntq5VWvdiW5N67jY0x2BTTIbRQAwQSSkILLYGQhBQSCCWBDwIhhJbQeyf04o57r5KsXrf3nfb9WLGrseTQIeC5c+UHx+/MnDkz0jw65znv+z+Cb+MGlDdfwnrCDxDK+s/QfRX4/X48ni//OTjz7Pz6xXOYccQYLjvht+w7+wAeffSJrDj7LEydOpX777+fww47jHPPPZfGxsYvvb9fhHA4zH333c/pp5/KE088ytixY7+U80YWrcUzfxqC3frJwd8CDrt4LlsX1dO4NjdDPOXwMVz8m/N5/vnnv8Ge7R2YAs3ExOS/ouo6b3V/SNvmFgqqvAD06I04vSo7wzmDcWc8QWciwXJfe9bwr+oaH3Z0AzECci62O+VH0XVaKu1UX3gUzfe9Tvu7q3mhrZk3uzoJ9zH874h2EZVF2pK5XWRJNYlPbqM9VY/cx5jemWrGIal0pnLZzINyhIQWpTHRgNprktZ0ja2RRiJyjIiS65c/7SMmqzQnmrNtiqawOrKJf+5qJ5jOGbI3hvzs7ChgxaLlqEvfx3LkSYQQ2ZCI8GF7F4k+GyRWdPrQ8yzsDOSu1RaN47cLLGzqQv14vDSNx5d3UymNhj72E11X0XUFEFBVleLij5etBFrTqwzm76jazc6IzvZoLu1BVEnwes92loc3GsZrc3QLW2IfYa9UueyBk2nd3s11x/0fm9pWoOtK1sCu63rv9T95Bu3ggw/mpptu4sknn+THP/4xTU2Z5KuCYCetJUgpwT73JTO1KMmSnnaSfYTgip4uYn6o8+XM8q3hGIF4isWtndnxUjSNd+t6qO/R6Ijn3pktgQikRuAQ7H2upSMgIYkuQOeVV17l8MOP4sEHH+b222/n/vsf4OCDD2bkyJEMHToUEHq9f7l7tgoWOpJWmhO5e+hMRehMqCz1dZBoaCVV10regdNZ5mtD1QOE5Jy5vyPZw2CnTFhtybbJWhqfsgub5EPRc+9XRO2kK52gM5V7jgk1Tkeqm+3RBhQ9937Vx5qIqWkiSm4jQkwN4bbIJLTW7D1oukpKb0HVI8T7pEPxy93402nakrn3fuqxYxDLNf7vb//MJqStnTKIgy6ayWOPP8Lbb7+NyVeL6UEzMTHZA1JvstrMz/xJRx/HaQcdR/q9pzl+asb7Jasai7d2kQhpTPGWkWfNzBzsDIVpCKZQk2WU9nq/EorMR8FOBESm5lfhLs1nxo2n8d6f/8W2dRtZ3O0loRT0XjnBpMIewIlFyPl1utJNWEWZsXnl5Pemz+hOhdkZ81PttDLFm/FzKZrG+nAraU1nTF5VNldUU8JHQyxGSvHgljLeIFlL41da0XSBfGlwtgh1SGknRYQ6OUG6Nz+ZS0zz/Yo0bgrJE3PeINm1hfk/PYTaKWOxL30a5BTNPRG21fVQWOZm+uhMcWxFUVm0thkV2HfuSNyujIDY2tDJls0+XlpYRndP5h5SWpw18VcJqM3ouppdwpqz375cddXlnHzyaciyQmVlJf+49+/87OTb8IhlFPXxIZU6OihwxFkYTpHqdbTYdYVRdgfrw2tpTLbi8Xi44Ybf4tsZ5el/vsLW+BLUbOFwAQFLbyHx//6tsFqtfP/73+fss8/m4osv7rP8JWK1FCFJOb+gVbAzsaiYe/cfTG1+xq/XFI6xvStGgcXOhMKS3mejsl7tRHRqzCwtxmXN3MPWnhDNgST2UCmVUiY2oabYpTeyPehiV9f4bI61ddGlrIktx2IpxNKbB0zVUiSSregoCIg4HA72338uZ/zgNCwWifz8Avz+AP/4xz/56KOPEFUbBxTuz29v+xXrXtnErlW7sFnqKbIp1DqHYBcz71dnuhNPtZ15v72UlhufIdURICKnWer3YRVEZhZWYunNGfh+VxfrQipDnGUU2jI7WgPpCMsCu4hrOs5eL6eu67jEEIWSlTyxEpuYsRkktSC6GCAu27GS8eppukpEa8VtERjprsYmZX4eG2MdNCYCjM4rYbArc96kmmJ7tAW/rKJpxQi9uds0fEydVc0p1xzPr35+Dw11rUi6xvlnHMOR58zjL3feysMPP/xf34Wvgr3Rg2bOoJmYmAyIgGTw0MS1JLK9MyvOIJOQdv74CkZ7irLiDGBEQT6hpCMrzgCcFiszC0vZp3AIDreDiVcdTfMrq7HXp3mnw5IVZwAqTlYHPQZxBlBmq6bS4cqKM4BSez5DnEJWnAFYRJFp3iEMc5cZEnlWO4tJKmTFGYBVtFEgVeK11GTFGUCBpZLNSV9WnGXGwMbLHTaDOAOwxscS3/A2jmQQYcZRAAwp8eAqd2XFGYDFIjF/Ri3T5gzPijOAMUPL+c96T1acAdhFFxOdh4CuGfxFSxYvJZ2WGTEi1wcdjW55m0GcAXQnK3g9EMqKM4CUYOG9wBoak63Mm7c/b7/zOsFQiJvvu5FN8Q/7iLPMmXVkPkmceTweHnzwQfbZZ59+xnFBsBjEGYCsp7hpVlFWnAFU57tx2ISsOAOwihLTrVVMKy7KijOAMSUFRPzOrDgDcEp2POlqGrsnGRLgTs7blwJbZVacAUiiHZu1EKH3E5hMJnnrrbf54dk/4owzzuLYY4/n4Yf/xZVX/owlSxZyxbkXs0/JrOzxomBBUUdR48iJM4ByWzlt9T7Cb65j8DmHgiTisdqY5s1n3+JBWXEGML+sjEqnLSvOAAptHmrc+Vlxlhk/gYTuRSQ/K84AHKKXngRZcZbpl0SBVM2ovJw4A6hxVzAsz5EVZwAOyU6loxhdL82KM4CJM6fx/V8cyx9+/U8a6lqxWi385s8/5eAz9+fSKy/+RsTZ3oop0ExMTL52hp6yL4nOEM0vr/6mu/Kloq95CzxFMGL6V3qdZDJpEM+StHs++k9mwYKDufmWG7n7b3/n+t/8nmQy+ckHDUBZWRn33HMPy5cv52c/+9n/nN/s86DrOu+++x4nnngyd911NxNnTODIXx6KzW1n3IIxfNJCUs8bq9BSMoPPXgDSt+cze9ipM/jRdUfwh+vuZuvmXQwdPojr/3Q+NruVC374Kz744INvuot7Fd+eN8fExOQbRxsgw4KqacgD/MNA6RgUXcMztoqSmcPZ+dCHfWIHmKEZ6GLQL9kmZDxl/fqlq71Lc5/cL1AHPMdA32FZG9g0n0zrIKfQl7+EMH5/KKwc0GCvqiqy3L9dEge6L/UTd076/X40TWP23JkD/rum97/WQYfM5TfXX8f9/3yQhx9+BKBfwtRPwxFHHMHjjz/OO++8w5133jlgjLSHZAHKAMOoDtAHZQ/vlzbAc9RR0Qe4X+0z7D7t219d13n44X9x2zV/oXtnD6VDi5l2/CSGza7NJIodqF+ahq6otDz0FrYyL9XnHYEqDvyODtRXYU9pTAaIFYWBfxYGGpuBrq/oSrb9+B/vx+wFY7n1Z0/T1NTG6WcfwU23X0pDfRu/uupvtLT0ryRg8tViCjQTE5MB0UlnjeKCLlJpHYEWG8NJ92qsbMrMtqxt8rN5ewibW2NloBOAYCrFku4Ojh3lIuzYQEzLmJE3hNsIaTD0xwew8J8vkg7FaY5HeLChjQrrUDS9A02X0XWNAlsH88tLSOvthORuANJ6N4NcDUzxOmlP1qHoCrKWJqxu5bCKPHxyHQE5mOmDpZGh4zdz0OxmYu6tAESUOBvCjexfMhiLVI+sZZLAJvUmRhekGZHvQybzEYoqITpTzcxxTadMB3QVXddIp4Ok1ALuaFzPxkgmtinuY5m/k2deHM4tz4RJ93SQ2rKM9sH7MMnpYfGKXTR3ZzYHrNnZwfatnSS2dbF4RR0AvkCUd1/bwI1zBU7YZx12a2a8dqQ/Yo3yPi7HkGxZJB29V2AKZJYddVKpJB98sIjSwaUsjj5Mt9x7XrWZ9cq7pIgRTjejaSrDRlVy6AmjueTKs/nFL67h3nvvy5xXV9HpX8v0v1FRUcEVV1zBeeedx4MPPtjv3wUERjhmcnTRT5ntmI8bNwAjXU7unTADZ6iSN7cHkFWNmKzwYUsn08uLWRNpoyORGYPNqo/g8DjJQomP/Jns+D2xJO9t6eKQGg917CCiZjYHbJd3Maw2wLmz15Gflynl1JFu47ngU8gCKGocXdfQdR1NS+KwFeN2DEHoXaIsspRxZPEZnFp+CaNdUwAdpyhxybAZ/H3qdDpefpgHzruXHYvrOfmvx1HgjbMzprE62N77fsVoTNSxT1EF60JN+Du7abj1GXrUBPvcdAEBd5q6WOZnpD0ZYl2onQXlhcj6DhQtjaorJLWdnFhVyAnlcTxSZoOEU4xwQKHGPiV5qEIjmq6h6ymG5G3ll+MKmVVWh0XIvF+a0MFIbxS7FKc7nTH8x5UYLcldDHZU0xDfRUJNoGkq7waX82JoOTtZxuHnj2fi7KHccNk/6XGs4P8euBJvicCtf3qIf979HIFYHT2xtZ/p/TD54pibBExMTP4rAhIH51/I/ofvw+gZQ3jsxndQdYWjJ6/hzDHGRKKLW7sY6Sqk0J7zV4XSaR5fLzA2bxg1x82gcMIQ1t7wPG911uFLDMMi5LwycTXCYE+cIc6cb0vTNdqTWzmsvAapj1dmV7yHaheUO3LJRJOqQp1zBydNMiYHfWVzkO6mseRZch6emJJkZ7yTCZ5aQ+y73TsRtVosYq5fMTXMqkQ9TimX9FPXNSosYaZ6Jhi8a1HaufIEH0PO/TnaqvfQd24gISt82NrF4SMGGa714a5OxrnzKXTkfEz+RJrpD60lqhqXLROpDhQ1goDAQw8/wM1/vpVNmzchSW4uv/xSOjo6eeKJ59B1nTxLMTZ7SXYZVBAEfnTB9zj+pAPZunULf/rTn9iyZUvvmUUGqgDw3zjkkEO4/PLLeeSRR3j88ccHjFng/TFF1lxyYk3X8LpX8LORww3PcXu8izFDVCpcOZ9aXFH4SPNx5DRjAt13N7QyJpVPgS03XoFUii2hIHMHGd/Fyxbu4OmmsMFfpWkyIgJSHz+arutUCfnM9hyE2Cc2IDdy0Wjj+5VQZV6Ki1z3zl+of2sL7/06k7y1JbmTBeX5eCx93ns5wfZIiIkFgyk9bBplR8yg6Z9v8Nr77zHOMwybmJup60qFiasK1c7c+6VoKi93NjDRM8bQr5ZEK3NLJUpsbkO/Hm/uYVTeaMMYbI3UU2QdhF3M3W9cjfOk7x1U0YHTaecPf74Mq9XCtVf8nvEzSvnZ5Zdx11138fzzzyOJTgQEFC3ON83euEnATFRrYmLyXxERcUle4uEUo6YPxuWxE4+AS+z/66PEYTeIM4ACm408ixXBIlFz7HRWXPckAAIOgzgDcEkeCq3G84qCSL7VavioA5TZ8ijfLWG/Q7JQ4u6/MFDstJPoI84A3BYH3t3aAByiHQ1jv9xSPlbBbWgTBBEBm0GcAeRJ+VS5Y2jrFyOOnYG6cwNOq4V8a//xKrbbDOIMoMhpQ0EDjOcVev+3extIpNNpiouLevsloAgKdkHA6bRTWVXGb2+4iLLyIi648IesWLFit158enFWWlrKb3/7W4qKirjuuuv6FW7vS55krDIhCiLVzvz+z9HupsJlXIp2WSx47cZxAShy2CnQje2FdjulLnu/WETFIM4ARNHaL5myIAjkWwoNIgig2FZIucNYY9IpWVF9Ud686hkOuekEhh4yhoa3t+KxOAziDKDA6qTAljm++43VJJq6qb3oaA4YU0Li1e3I4VxakDJ7PgnFOAYWUaLQ6higXx5KbMZ7cEpWPAO8y07JaRBnAC7JhSqI7D9vOpdeeSYL31/JnX99lAMOmchPLzmDn//85yxfvhwAVfv25CT8LmIKNBMTk0/FluWNJGJpCis8xCOfbTkMoOKAMUR2dZNoD375nfsfRK/fBHOPBqcbErFPPuALsG7dJk455XjGjRtNUVERhxx0EDNnzqSgwEMwGGb7tkauvPRPbNq5uzj79AiCwA033MCGDRu4++67DcW09zaaF+1k89Mr2ffyBXSuayH0KexZ0S3NbLnmQawnTGfsrWfR+d5GWl9dbRBqXwdDZ9fy54N+QXllGbfd9CDLlqzjmOMO5NQfLODSSy9m3bp1X2t/TPaMKdBMTEz+KxoaIaWDAksFcjLzV76sJ4ipaWRNw9ondUBbPIFdszHInZtt6ojHSUtQvu9I2t/bDGQS2PqVGGktjkPMLW1FVR++dJI8S+54WZORtRRJVcbRJ3VAe9oHcYEaV26mJiwnCcZlFE0zpDQIyFECcohCay6VR1AOI0shIJfaQtU1nLYI/ngce59+RRQfIjEgNxuh6QohJYasyVj7LIeGlW62dYcYXQp0tyIUV+DbsZlgUkZRNSx9dvV1JFPk6XEGe3LXagnHyRdtJNW+iWp1BEFCRzfMoulkEsg2Njaxzz7T2GefaaxevZ6AP8Dvf3MXfl8Eny8IQEr283kRBIGLLroIi8XC3/72t0/cUFBoKSeq+igSc0u6ip4mrSdJqgoOKffpaUmEsIVURhTk0k34kkn8iSSqpiH1eY5d8QR5CYnKPsuhrfEYnUqS0eSeraxpFFnFjLG+zwynFRmbIJLsMzup6yoleXEUVTYut+t+muIq1S5vti2YTiBKkUyi4+fXMvTgMRx62/e54eRr6UwJlNtzy6HtyQjtiSjVztz7mQrH+PC2R5gxegOjT5jLjDvOIbB2F5veXU7Hmu3UkEsbklDTWIQ4sqZg7TNb7UsHaEmIDHb26ZecQNbjaLqWnXHTdI2wEsNCBK+7kIlHjWPMwaPRLCp3PvJv3nhtJaIkcvnVZ3HYkXP5/vd/wI46U5z9L2F60ExMTP4L1oww0HWqbeN58N/38uo9j3FebSu1Xht1/jD+aJo8q5VYUmVycTFJWeWjzh5GFRSwIx5k9ohi3IVeEqdcxtM/upsef4y3e1KElXw0LY1bSFJmrcAm+di3uBqLKLIz1oJD9JDUQ8wuslLtyqMzFWVXNEqJLR/d2sXBg70omsbCtgClllLa5G72q3FQ7LTREA+RsKfJc1hIaCpTK4uJJlUeWSJjiQ0hbW/m9OkWPA6Jd3cm2NRQiqrL7DM4zNQyF+0xmTvWQjxZhd3Sw7ySwVhEkde6drA2qpFSY1jFPGySG4kkQ+1WKm2FjCpp4fRRbhRNY63Syaxzz6TT56eofhlFbgc7ukKEYylcNgtpr4OpY6pIJGWWLKljtM3Fm1vTdLdOQMTOstB63g2uR9ZkBNGCJNrRtBTJVDuPPfEQv/3t79i8eSMAgmDD7S4hkYigqjFAQxRs5DlqsUh5xJK7SCmfT6AVFhZyww03YLFY+OUvf4nP59tjrEN0MzXvIEY6pyIKIu2pJmyCB4fVz0/G6oz2OmiNxagPpSi155HOCzBvZAGKqrGkuZvhrgJ2hENMLPHitdvZmYggFws4bBLpUIoJXi+xlMLyeh+jXAXsJMrcOYNx2q2s3NSBtUslnJBxyC5qnF4aolF+unoD9XGVw0u8/Hb0FKyixM07N/JsRw+Vbp37Dh7B1PIC1nWkuXuxEzntZVppB6cOyyetaizr7mGwvZjmlI99KvPw2m2s7IqzrC2fyimjOPnO89i1o5Mn7nkTbdl7HFpWyppgCDvDsYhWAnIzw/MgqqRJqx6KbCVE5Rh+pZNhReWUHDKCqfNmYisrZPtHG/GtbqFu3QbGWlJU2Z3URWJ82CVgEwqwS2Gme8tRNIUd8RZGuL1sjwYptQ7CaXFSH+uhPQkg4U/plBYMYdicIcw9eyrhpjCPP/4sj3/wNho6paX53HHXDZRXFHPeeT9m1epln+v9+LrYGz1opkAzMTHZA7Z+Hp73nn+C2ZsXo3cZ13RaOpOUO40emMXBdg4ckUlUK4wYjzRtLi3338lJjxezO5PyYszwDjO0hZQODixz94sNS/VMLDT6m1YF2tlvcEm/2FhhglK30YPz7vZ25g0y1s0MJNI4Yv09PPeuUahxDDe0rQi08l6oXyg3TethZmmhoW3XuCqmHncE+n+MuxwDBTaK843JW/94dxe2bmMC3J50gHs73zK07Td3Bmefcwxnnnkasmz0SH3ZWCwWHnvsMT744APuueeeT1zWPKDgRIY5JxraXLYmrpvW3xfY4exkbGmBoW1RUyf7lpb3i0240uTv5klbGA5w0BTjJoKO7hjimv51MD9s7WGa17hBoy7dzrzJ/d+vpeuSjPQYn+PKQBv7VZb1iz3sDYFLrv8+w8dUUVJRwKN3v039q++wX5HRrB9RItS4+l8rxTZmFmXu11pWSN600aSGllA5Zhi6opJYtx2lO0BqRxMrOlJUOrzZY62FbrqLJcrtxYiSSMGoSkRrZmawNQFOt4Piai/tW7tY+sQa7nj7HsJk3pch1VXcdMvPefH5//CP+2/+XClWvm72RoFmLnGamJh8avb099lAzX2X4oS8fPSOZgRx4BMM3Lyn2P7twh4SBg3UX3GAi+2hWwPG7qFbiAP0IeXrAan/r1lhgOAB+zpAo8Nhp76+4SsXZwCnnXYara2t/O1vf/vc55D2MLgDPbPdN0H8t/aBxmtPEwi7G+0z199D7ED9+i/SYOXCbcyaP5ZfX/AAl99wEr7JpQRfbiDSGswdv6f76tMsdwUI/GcZ26NdaN4irIPKcE4cgbW8CNe0MUyJq7ikPrVFNZ3w+i1IvZUu2hduJdmTSc2xvAckwUJnXQ9KSu3tQ4bDjjiAK6/+MX+97QFeffnNb4U421sxBZqJicmnYvr0aRSVl6Ov/Oxb7oWSCvRw8Mvv1P84uqYhON3o2bxl3x5KS0s5++yzOfvss7/prvxPs3l1I5FQnMYdnVz34/v5wakTOPKG79G1qY22VU20rWok6o9+8ol2Q27tQm7tyv73ok6ZQQ7j7PPqYAsj82r7HdvSQb8d0gDl5SX8/JoLuPqKG1m9auNn7pPJ14uZqNbExGQAPvae5Za0zjvtJCLvvMmijTtQtYzYiMsKC7s6qSdMTzq3G21DzI+r0MLq7ozvSXB76K7bxb8WioxxhxDIzf7YCRJKW6mP5j5GESWISISlvlbSvdn4FU1hfaiJ1pDArkhuV2R9PIDNpfKRrzObFT2UVrhzdYp73rHRGEhnY1c2+NFDVla05PxYPfEkq5uCLO5qJ9pnVmpZRzejisKEtdZsW2MsyAZ/GkEOZ8dG1zUEOcT/rXGzuic3BnVqCE3oJqwK4MgsZ0YTMm8tbWHFfxro6sndw9JlrYyXwqhSfbYtmI6yLuBjqFiD2EfbiWIKXftqZ888Hg9//etfeeSRR2htbf3kA4BZ3olMK8xDpjvbJgp+RuRFeae1h7SaGa+0rrBOaiVol2mJ5cT+po4Q6bCVxc092bZIWmZRZwermn34YrlSVB81+FEadFas78y2dQVjbN7awWqlmYSaeeaarrPe1k3pTGiRAtnYDi2IVB5nUWcXSu+ybUpReXNTD/5UkrZETlBtCYaIJRwsasu9M52JFKcv3kGXuoO0nruHNv8Obrjzj/z94jtoW9XE4NlDOfTOk3D9aBjPOjYSURK9/dJoTOwikrawM5JbL29NhIkqCkt72pF7xyulqrzV0U1AjtOdCmdj62M9iILEjmhLti2qpHi/u5m43kJKzfVreegD/FoDv/7dT7j3nsdYvWojmiaTSHfs6XGa/A9getBMTEz6ICIIjmyxaV3XEQWFf//wZL7/6+tJP/IAWlMjmwNBekgwflAhVb1eqnAyzfKGHvILbMyuzSWKXdHcg+vQn7LtuQbCGzMf76Ac5Z3uJjxiMRX2yt5rafiUZkZ7kkwvrMTeuzOyPRkgqPQw1J2X3VGX1lQ2R5spr0gyp6o4u9Nvky/I8iaRQHAkHktmV2BSTWLzbmVSYYpp3pyPaE2gm5iQZEpBaTbxaVciwQZfgEIxj3EFmdkKVdf4sMPPEzvyUJXB2SWlqOqnW+2gVKrI5vxSdYWS/DrOOiLF/uMrkEQR4ZhL2fTwLTRtaWWElk+FMzNeoXSatXoYa8DKlD5FrJd0+XhsuxtdHYS1N4dVXI2wPrmYluQGHnzoXp588kleffXVL/64B8Dj8WRra+6pfFNfymyF/GjI8Qx3Zwq1a7rGhnAzRbYEh1WUYxMz71JLIkAir5NpU1wMK/YAkJAVluzoROmwMN1bkV3S3RzyEbZGmVjupdyV8QYGU2lWd/twpBxM9ebGa3WkB7UozXSvN+tTa4vEWd8epXaCl4nVvc9R0/hgbQfJ7hTzxxRjt2T6tdMXZkdTjLJ0IdWuj98ZhRW+LuS0g0n5g7L92h7t4u1AB691WRCEzHJjnsfO3Q9dy9GHnkBYac72a7JnLJpgZ/C+ozjw4P2ZMWMqGzdsZsWdL3KAq4Kh7sw9qLrGtmgzLmuSqd6q7Hg1xgM0xyN4pAoq7N7efslsCrcCVkbnDcn2qz7WQWM8iVOqIs+S2UkaVxOsD+7gLf+bFJYX8vd772bd2nVc/5s/YLV6SMk+PmuC4m+SvdGDZs6gmZiY9MGSFWeQ8fQcdvACvn/pz0g//RhaU6YQ9rhCL067JSvOAPIdNqrL3AZxBjBzSAmqmodDzPlnvNY8hjrzs+Iscy2REmsN4/JLsuIMoNJRiEUUDekObKLEqLwK9h9cakjDML7YS0e4ICvOABySAzVaYhBnAFMLSymxuAxZ6cucTlyiLSvOACRB5MDKEmSlLCvOIJOI1SO4DQlZJcFCLDWE+ROrDP0aV1mILSFlxRlkEviWRIziDGBOWTGylpcVZ5BJ4FspDQIhTU1NDYsXL+ar4LOKM4DhriFZcQYZv9fkghoOLCvOig2Awc5CnF4pK84AnFYLE6uKmFlYafDbjSsoxm2zZsUZgNduo8TiNIgzgGmeEiolu2ETQZXHRUGFNSvOACRR5KBpVcwZVZgVZwAjivPR05asOINMwuNRnkKmFAw29GtUXhkLe7SsOAMQRQs6ukGcAayLbGFLvJV33l3Er667kVNO/jHFJUX8+plbmLpfrm6qJIiM89QwuaDCMF41rkJk1Z4VZ5l+Wal1lzDWU23o1zB3BYruzIozAJfkRBFiVFRXcM/f/8Zjjz7Ob37zW3RUUnI33yZxtrdiCjQTE5M9cswxR/CHG3+HvOg9tB3bPvd5KsYOIdwS+ORAk//Keeedx+bNmwkGg1/6uSVJ4s477/xM4szk0xMKhTnnh5fyzF3/ZuQlR+Ee1n+36pfN8InDeerpx3nyiad48smnvvLrmXy5mALNxMQki9gngafFYuHSS3/KlT+7msTqlf1i5QHsEWlNQ9MGsE0IAkm/MZu+itovTNM1ZK1/u6r3/2s/rarIA6R90AeIHShuT+3yHo7X9AH6O8A9KLqa9Q8Zz9t/XPbUr4GupeoKBx54IEuWLBnwmC/KOeecQygU+szibKB1J1VXSQ/wHJUB7jelagO2DziGA8Rpuj5w7ABtaUUlpXzafqkDtusDzjztwSo0wDN/98W36HhrHRULJuf6qqmkBnrvB7iWrKkD/jzIurFU1LzLD+KS2y7lisuv4vHHn+jT02/XZpW9GVOgmZiYYBWcjHUeyvz8n1JpGYXL6eTOO2+lfutm/jgzn55SldX+TILS5liMNa4E+x81noX+AOFUGlnVWNgToObAMWzJs7CpJ2N83tIdZL0vSGmRjs+xHVlTSKppFvc04ItVsDPaREjOzKz55DaKHH66U3bWhlrQdJ2QHKdF2c7xI/PYmmzAl46j6TrrQq1Iosz6nTor2jPm7cZwjDe3RDm2zEtA3k5STaHoKs2JeqrtBby0Q2dTINOvbaEg630BBlu8LGzvJKWqRGWZhe2dTCsqYV2ok6ZYJmXBsm4//7fewWCXlbDajK7rpLQYnXIjbmkQnXIjKS2WSVcg7eInI0OsfCPC8h1dYHWQEq2s7PAx77hRLJX9RGSZtKrydqMPJVTNopYEW0NBADYEgly5PElQdtKaqkfVVWQtxfroO4w6Jp9hw4bx8ssvf+nPf8KECZx88sn88Y9/3EOEgIANAQcf1wh1ijbOGXwgV484nM5UI7505h7aaWH6cR2MOF5ni9aGpuv40zE2RxuZkKjijY+66Y4m0TSdRQ2dWATwFwdZH85sDmiMRviwJURReAT/2eYjKsukVJVFHZ2MqfGwQ+xheyRzrS2hAHVpHxWSiw93dSKrGuFUmoXd3ew3toJlO9pp8mWe44r6Tpp2+UgLGktbMhtSOqIJ3l7Tw1RHFUu7O/Clkmi6zivN3fxlfSm3bE6zMpDxTTbEAly5eTmtqTCRdCuarqDrKnMOHkpzW92Ao6aoPlQ1iq7r6LqGooZ4u3sll/3leqzDS6n94YFsCLez2Jfi7XYXS3yZTQ89qRibY40cN8xNY3oHYTmOqmtsjTYy3BvHbmtiV6INgOaEjz/v+oBn/et4P/AROAVOuOv7aIPgwMMOYuGiD7KiLCMu+wtBk/9NzE0CJiZ7OQ4xn9mec7AKGc+TKImc/esDmThJZ9zmF6DPX/b/2dDC/HmjcTpyHrEuX4SOhMyk8TkfkqqqvP7ySg6rLUeSJMTTr0N77I8s3xbjtmcqEMl5ZTRdxW3fxbxSY5LWLrmOk0aCt8+1ImmZpS1RZhVXGWKXhnYxxl6LrY93rT2RYHMYhrtzniVN1+gR1nBMdYUhN1ZdJIDXaaXMkfOIpRWVO9bHkFO5mQ6AbZEGYqoXax8fkqKnOHRQM6fu5r/bPhoOvvR8xGWPZNs6OiMsezJJlTXnidN0jcdad7KhZ6QhOXBS87E2+hRJPcaKFSt47LHH+Otf/8qXicfj4dFHH+W2227jgw8+GCBCQsBqyDHmECT+MelcCm2555hWFXy1DZx70hDD0a/+p4matnw81pxHLKol6anoZL8a43g9s7iTkfIIQ2mjgBqhZJSPUaU5j5iiary2ro1Dq6sMedY2hwIMGVdImTf3HJOywgdbWllQY0xO/N7WDqpD5bj7eCNDcoqb1ilEkkMNsUlpOSsTXWh95gu9Xg+nnDGfWbOnc/7559Pd3c2ekcjMsuVmvmZMmcbTDz/J0r8uZdfShmx7WtjCGSNt5Flz77I/mWZDT5xZJcbxunHLNp7tDvKxff57xy/goovOYOmiD7nkykt268O3L9VLX/bGTQJmHjQTk70cC/acOBMFLvzjUVjtFkKv3A61+YZYb4nLIM4Ayoo96Lsta0qShDvPgSRJfRqtDKu0GcQZgChIBqP+x+RZnXgdxmUbj81Kob1/rKQ4sTmN/ap0OulOGhcJREHEKjj6JS4tdbgpdBh/HdosEsFUHrvnf3dZnKQ1u6HNItgZ65XYHbczH3G3j2JFuYc8wXgPoiDSFnP2q9wg4SKpxzj44INRFIX/+7//63eNL4LVauWmm27i/fff34M4y8yd7f6HuVW0GsQZgE2yUFPb/5NSXmrH02283zzRgebo/xydVjtW1XiOQslDZb4x955FEvG4pH5JcMucToM4A3BYLXik/s/GI9oN4gygwGqnJ+HEvpsUqIsraH3GoLCogGeev5tEMsRxxx33CeIMBpq1Wrl2Nf/+7SOcftkZdGxuJxnKpBGxik7yrMb3oMhho8zZP7VKWEuiC1Bc7OW226+jorKUa6+5lbfee6Rf7LdZnO2tmEucJiYmADjzbJx7/eF4S/N48R9L0FXlkw/6lOi+digd8smB3zHyq2sg/MVzTV1//fW89NJLqOqXuzx1wQUXkEqluP3227/U836XOf/C03jm+buRZYUFCw77FOJsz2z7aBut61o54NL52PPsn3zAAJSUFHL97y9j69Y6zj7jKlatNBPQflcwBZqJyXcQUXAYUgFAxmdWZZ2AsNuP/TRvFcNH27nlpfMZPLyEmy98Cn/LVnrCUbQ+Ruu0otLdEqa9M2w4fktTNzvqjbU5o9EEkZ4YoXhvkthEBCG/iO2tPkoKjOkIklqMhmiC1G6CMCKH2Rk0bixoiUUIqJFsQlrImKajSgpferdYuYukxZhkNa0lkUkQkdOG9oaEn+1RYzHxrkSSQa4Qup6budA0lbZ0N1HVGGsVw+wMK9kEvpAxmcv5g+lpNvZh5ZoemhM9hrZgOk1C0VB1Y79CagszZ84kmUxy44038mUybtw4jjnmGP7whz/sscamhJUy6xgE3TgDNau4iB5lt2euROjaHiGVzj1HVdXZui1JY9SYSb9dCdKy26aRZFrFH5YJpI2zZY3JLjY0Gd+5UCJNIKwRTRtnlXb6w2xqMBZzb+lKsrMO0nLuHlVVZ2mDyLZQwhD7flcrdck1hjZZSxG3dDBu4lBu+csvOfLoA/nH3x/nuGPOJh7/7BUCDPcWb2LRPz4kEUww/4qDUDWV1zs3srynyxBXH47SHDOOS0ROsTncydXXnEdXp49b//xPOjt7UNQY5mzZdwPTg2Zi8h1CwILVUoQkudB1HVWLoSghqu1TGO7YD6vgIK4G2JZ8jwJbhPOrD+GABQdRfdIslr67gofuXc5h05s5e98iHFaJLZ1BZFEnGVXIj4sMK/AQTcuslaOMnFpFU0eAOcMzCVlXNnaRX1FIR30Pw2SoyHPSFUuyPRxhzPwjSIn5lC95G03XeXlHgJfW1tIcC+ORyrEKDhJakCHuBGMKLJQ7UozKK0HWVLYnmplaIdEUDzO9uAyHJLE1GCSakIinId/ipNpVQFRJsyHUzSBnPkl7N3Mqi5BEkY86A7T7SlGEMLMqrJQ5nHQnE9RFQlS4HSSsCWZUFKPpOsvaeigT8tjuTzLGVY7HaqMxFuHNNpHNITt1iTA2qRBNV0kqPVRYKxhfEGVu8WCsooXWZBdV7ggxRSOhlHLCA1ew5Pon6ZQ3MH+ei5VvhBgrZHJ+bQh14hRdLOpJ0x4vxyHmkVCjtKU6SWlW6pLvIzt7ePfdd3nqqae45ZZbvrT3xGq18uijj3Lffffx1ltvDRhTbh1PrWM/bKKblBalMbmMfHsHv5k4nYPKB6PqGku6fKipSpJCJ3PK8smz2mhKhFFG6og2O01LLNTYSkhrCttjzUwuceB3djN3aBE2SWKjL4DkEOnuERC7C6ly5PcKjx4GOfOJSz3MLitFFATWhroZNFiiqSdJDYWU2J10JeM0y0GqCmyE0jLTSotRNY2Pgj6Gjy5kyUdpquKDcEk22lIB3EP8pEUrS9aWUmwpR9YUYnod+1XI/GL9EjaHIyAISIiMdxxATPcx7/TxnH/Befj9fh5+6HHeeXMNgdAu0krwS3kWZbZSjhl0JBfedzGvfPAWN996J3I6zdRCD7dNnsGusMqEvCqsosT2aDcui8YLHfU81FjPYUceymWXXcjVV/2Gndu6SKY7SCvfzXQ2e6MHzRRoJibfIWzWCqQ+CU4BCilhovMQQ9vYmdV8f04BgyeNwF1Twva/v0VgfRORyk2ctJ+x3l80mcZmnPABYLklyrzJ1Ya2zQ3djNL71wDcKnsZd/IPSD+Q81DdvjTKsp3j+8WeP8pPsc3oI6pXtrNgSImhLZRKo8YL+x2/Q6tjbpXRTL3FH2S4s6RfbL3eycQS4zner/Mz3lbdL/b4xXEkwWlom+QJcnS5cXNDREngsTgpHDeI0efMY9nVjwHgk7ezT1GlIXZRT5AV3bX9rvWq7z565DYWLFjAOeecw+mnn94v5otw8cUXM2TIEH7xi18M+O8eqYIpeaf1a//llCYmFRrHa1UsxKyp07AOq8FSlkva2xO3YOs1+yuRBNFtLeys/w+H1RrHsCOcIt5kNPAD7Ew3MLvMmFx4U9DPeG9Rv9gmuhlTWGBoe3VrmBpG9ot9u9OOQzLOLv+t8RGaU7lZq6KiQr7//eM455wfAHDzzbfy9NPP9P6rylcxQ1VbO4mHHrqbZDLFMceciq7rXFw7jh/VTDHEbQ73cMaaN5Ekidtuu4ElS5bz1FMvoKph9N1mYL9L7I0CzdwkYGLyHWbwkCoO2mce02r3A8BT6GTIqDJKBxWQ/GgD8TY/2/7+FnIos3wy0B9ge/qbbI+xA3y7Um0t4MkHtwd601fs6cQDtQ7Ytqd+DRA9UFvmHAPdw56+A5/u+/BxVOG4QQS2tPZpH6hfez6L1Wrl6quv3qOI+ryMHz+eY445hlNPPfW/RH3CeAkC9qnjsU+dwJyaKpyhGOmdjSTXboFen5wvaMchZcS6s7qMkgMnUfGj/bD0NKFtXoe2bUP2XP/1Wp/Yqz29M3s670CtuZd2ypRJ/OpXP2fz5i2ceOLJtLa2funev4Fobm7lhBPO5M03n+PFFx/jhBPOHPAePk6ZcdVVlzB79gxuu+2ur7xvJt8MpkAzMfmOcfAh+1NTM5gxY0YwfcYkNq3cQWBTDE3T6Wj089bjqwn1xDi+yE/Rbjvxviq0dAq9ow1x6Ai0jWs++YDvAGWzRrD93ws/9/GTJ0/G5/OxZs2XN141NTXccsst3HjjjQQCn2MpTBCwz5iEa8H+oKoklqxi+d8fYJK0+15X8Hc5cVsyM1Wh1Zk8YYGqFg49ei7SnIOQ5hyE8tYLsGXHF7mlL5Uf/vAHXHjhj7j11jt46qln0fXkJx/0JRIORzj44OP4z3+eZtGi13nn13fAAJNiTqeTww8/mJtuup3m3TyOJt8dzE0CJibfAUREZhbsy6/OuZyf/OQs7HY7r7zyFhedfzXv3vQkbz71Mu8+tZolr26mqa4da2orPekefOlI9hy75FZKigWWN+V2pXVFEqzY1s3C5k6CqcyXQtN1lnZ3Y9M11veJ3dUdxtcd4YPGDpK92drTqsrCtm5ShRJtqz9CmpypQbipJ8RQm45kachm/lf0FFGtibc7I/SkcgbyDeFOWsKFLOnMGfO7kgmWtMVY1N1ORE5l+7XC30446maDL5jrVyRKg0/k3bZukr0zISlV5d22bupabdQFc0bvTb4gNovGqmBrNlt7VEnzcH0PNj2JrOWM2rreQ5nNwY5o7gMZkKNsifTQUW0Bu0RgcyZR6+ZIEyHZzvZozsC+Kx7k9Z5udiS3oPZmgVd1hY3RxQTkTg444AA2b978KZ7+p6OmpoZ77rmHu+66i/fff3+PcaW2Er5XPg+EtmxFA01XKCkJU/ajc2H/fYi/9i6Bm//O0pfe5Jl1Gq+0dKH12mXCcpoHd/p5td1v2LixNtTBRxtsvP/Ca8gP3oH60YdoR59KZPwkNioNxJR07xhoLPV10BbysLlPSatd0TBJ0iztactWKUiqKku62+mJyDSGc89xWaefhxv9vNnd0KdfSe6o/5AXO94gouTe+42RrQRkHxdccA4XXHAOd999H08//VyvOOu7nPlxHrOvxoCvaVF0XSMWi3HssaezaNESDr/hMpQz5uEcUwNARzLCA42ruPLKC0gmk7z44mvouo6mJQybWUy+G5geNBOTbzkV9iqOKT2RaftO5cCfzuW5377Co6ufpMJh5czK+dmi3ZvC3awL+jiztoRqV2bGI66kWRPpYOx4jSNn5zw8a5q66fInmO704rFk8lX1JJKsC/iprvUycWjOz7W0pZtEUmbfQm+2CHVTIMpWX5jRI8sZVukFIK3qJA+6hI+uu4HhYVc2F9kHnRH+Xacy2DmYPEumkLauJyl01JNncVHSxw8WF+opcPioFIbjlDJeu7AcoyXdSqElnxpXzrPUoNSjCTLVwvBs4tMeOYBf7yBfr6TEmvEyKZpCu3U7RW6ZGUVl2X5t9oVZ3qKxunM4qpbpV0pLUZ/exj6FeRxSmktmWh9vI5BOUmSpwS7ZOeQPx7BzyRaWv/AqpXYPg52Zfmm6RnuqgS3xIB8EnWi91xI1mQJNZUtsERE1wJQpU/jd737HhRdeSHu7cbfk5+Xhhx/mxRdf5LnnnttjzNFlhzK3aDaS0PscEz7WBts4+6CZHP6z79G9rpmND35ASN/MtpDEdv/w7LHFzg4mlfjZ1jMCTc89x6q8XQh4cIi5NCs2zw7G17Sz38SRFJxyHtqaJbR++CFvr0kipMops5dnx6tH30FxfoQ5laXYpMx47QpH2eaPMtqbzxB3ZhY4pSosD3bwQkuSd9tzPsxqm8pkl85jLWsIqxkxbxOsHFA0k/r4LsYfMpmf/vRCurq6ueSSnxEOR9D11G4jI/L1FBcXEEUnui6j6zIVFRUcc8wxXHjmD+lYv41nVyxC1jQuvfRirrnml7z33mI07WMh+d3G9KCZmJh866hxDGNQyWAOvfIgFj+4jHBzhCOKD2HybolTx+eXUuEMZcUZgMtiY3S5gyNnG439U6tLWdnZjseTSyZa4nSQrzoM4gxg38GltLcGs+IMoLowj11KOivOAGySgB6oZ9oBRxJ59cNs+7xyDx92xnEKnmybIDjoSJQwu9h4LZc+DDUp4czLfYDzrW5IugziDGCoZRhBOY7Vmvs1V2ItpCEQZVhBzmhuES2UyMOYURwyHD+uOJ8712gIWq5fdtHOOFcFh5QaNyEMc1WxOu3DLtkpn1hF/iAvTW/Xo2PPijPIJKQd5BjOXa3rEcXcAoYmWtmZ2k5EDWS9Z2+88caXJs7OO+88HA4Hr7322n+Nm+mdlhVnANXOYg4+Zyazj9iPzQ8tpH1pHSIiSnIo2/3Gd8aXqODdFoFKu/E51kWKmFBg3ASQjoykMj+MOxlFee5BLCecwyBdx7nzPfLJFREXBZEyYTRTyuuz4gygNj+PpkgsK84A7JKFcmsh77Ybl26b0hLLe5ah9alVmdZl3vYt4tprf87xxx/HFVdcxcKFi3r/daD8f1+HOAPQ0frM0nZ0dHDffffx0ksvMXv2HGpqagH45z8f4N1330PX1a+xbyZfN6ZAMzH5DjB63gh0XWfzW9u+6a78V+QtS3EfcCbRdz9CT3y9/p6vi0mnzGDTs2vQ5M/34TzmmGMYNWoU11577ZfSn6OOOooFCxZwwQWZZbFPi9VlY58f74etXGThz58kvVvOsC+NSBDlpX9jPfkC8t/dAV9DntXp06dxxRWXEggEWLDgcIJ9llL/F+ns7OTFF1/i025UMfluYHrQTEy+5aS0NKCz7b2c2Vonjaz1dxcrev+lEFlQUXdLVKppOun+1XFIp/sfn1ZUkmp/MZIewD4R7WohsWMXeQfuY2i3Wfr7ZxRN6dcvVdOIKANcSxugX6qa9Zz1JaH071dKTZNQBlom6n8ti5Q2JMqFjP9N1RUGz6rFXeZhx5sZ71hE6T8bk1BSKAOkQ1C1NFarlVNOOYXrrruOpqamAfrz2TnooIN49NFHd9sU0P9DbxHEbJoGq8vGIb8+AkEUePxXD/YTZzE1mfXN9UUZoC2hJlF3ez6qphLoe8pAD+qHrzH53NOR7MaZOVmTScj9z+tP9X+OaVXJehoHQpIkjj32aG688Q88+OBD/Oxnl+8mzswEryb/O5geNBOTbymCYMFlr8JmKeLUkw7lgGH7sPbB9YhSA3OK3aiaxvZokkp7LQHZh8MSYmxeCevDbQx1leG0WvGP6uCggyto90dIdISZXJzPxnAMcUgxtYOK+OjD7UwOCMhplTXtAWYWl7I1EqJomJOxtUWsaPNRWurB47SxaXsHs70F9MgKDS6JfSfXsnxzM9VWkco8J0vqOhhVVYTiKsI1+yzif3mCxpYdaCURplZ6eW5TmBVbxyIrdqJqC0NdVYTVME5RZkReBetD7WwNgU0oIN/eylnVZWiCyrZoD2PyBtEY76bQLlHrKmRNsAOnmI9DtNGR7mK6t4KuVIJFPUnKbDV0ppvYt8hBhcPJrtQuJhW7SGkKfi3CvlXFrO5K8kadh0LLILZEmkikSrGKFqYM2cQZY1w0RhJsai2ggBp2xTsQkagsLmfGH09k5T+Ws/OjnbzZ3YCilaLh48hyL+PzS3mibTGv9WxE1cFlKaLEMZ6UGqQj9hGKFufMM3/AlCmTuPLKK7+Ud8Tj8fDKK6+wYMEC0ul073tjB6yA2uu10jiwZDiXD5+L22JjVULliN9cQuPmZv7xl+cpkAYT01rYr9hLid3FIx2r2JRIoOsqhXoRQyzjiKt+BEGhQCojpLZQZR+EIAisTa4lIVpASzLDXcXEvOHsjLbRnRBxiB4Gl9dz/aFWZFVhXWOQ+RdfQVNLOx/ds5QCoYwOuY6JJQIOSaQpHWBOZRFbgzI3rRCR00Ow2Zq4ZhqMKLDx77rt3LRxDSFZpMA5Cqe1lLQaIZTYQUrxY7e7+Mtf/oLFYuH22+9gy5beNB9I5AqJ/697uURy4vqr27Dwv8je6EEzBZqJybcQUbBR4B6D0OsXOuGkw6isLMX9/FLmldQYYpf5G5nuHYxVzE2JheUkFScnmTjM6KV6be0uDp833uCPamj2wSvNlDhyvi9F01iWF+KIfYcbjl9W38mEibXkOXPetXhKZvXKHcwdWZULHDGLNqGcgucexNqn4LU/keKml8sptRn7tdS3BatuvJas+/nRcCsF1lxSW1XXWBnYxTSvMXZ9qI2UNhi7mOtXWkszsngj+5UavWtPN3aTTk0yeLFiSpzDx21lbKGxePzfV0eosUwEYOJFh6DJKq/f/gxPt8lY+iS11XWNnanXCGvGcj2alkJRw2TM4SKvv/4KF198KTt2bOWLYrVaueqqq6ioqOCyyy4DQBDchoLsuq7zs2HTOLt6KgCi086gy05i3dpt3P+XzVj6FHVX9DQL4++j7ZZSwyHrjLXtYyhAn9LibNY2YZGMCYcLFY2htsmGNl3q5C8LghTa7Qh5HpwXX0bk3r/x6pKdzCsdZIh9saWLF+pGIAm5WTZVT9OiPcXWSIvx/qU8ZDWKIAgcd9xx/PKXv+SVV17h97//PZ/xu2fyP8DeKNDMJU4Tk28hgiBmxVmfVgqs/bP451msBnEGkG91UOp19ot1uR0GcQZQ6nUbxBmARRRxO/pfy+t2GMQZgMtuxeMwtlG3AotFwj51X0NzkdOOe7ePOoA+QHUCm+g2iDMASRCxS7Z+sXbJbhBnmeNt5A8wXqJuN4gzALfFRZmzfzFru5g53juynJIp1Wx7dAluyWkQZ5B5Xgmt/zJuZjku89055ZSTqa9vYMeOnf3iPg+nnXYa06dP569//auhH8Z+CZTZM4LrY3GWrGtl47/fNogzAItgQxngkyEJVoM4A7CLLkSx/9jq9G+zCy4K7Zmx1aMR5DWrce53AB5r/zX2zLMxnkMSbLTG+4+trEbxer08+OCDnHTSSdx555387ne/M8WZybcGU6CZmJh8/ega7QtfQ5pxAEgDmN2+RVjcdsaffyDbH1uKEts9PcOnIy8vjwsvPJ8nn3zqS+lTRUUFZ555JldffTW7du36xPisOKtvo/vp97+UPnxelNUrsUyYiOToL4g/C16vl3vuuYfly5dzxhln8K9//etL6qGJydeDKdBMTL6FaLqCou62q05X2RFNoPQxSac1hRRRulMRQ+iuZDfbGroNbaF4ikhbGH/YuAy3oaGTDRFjCoquRIJwPEU8lZu50DSd5s4AO5qNhTvrW/20d0ZQ+mwkSMoKzVvWE/N1I07MbRjY2B0kJRlTSyTVJBWuGLJuvN+E1sXOWJehzZeO0plMk+ozW6XqGk2xCF0p326xfurD6WxCWsjk0kqqKcJK2BDbo7azPWocg1A6TUKVGXH2voTqumh9bwsALckeUppxDFJaFE1LGWZvdF1H1xVA59e/vo5duxpZs2YtX9RXtO+++/Lkk0/y2muv0dDQkG2XRE+/c4voJLUkxacdhNwVoPup91B1jYZYiJBiHK+Q4kPQ9N3uQUVCI6lFDbERtRNRMz4vVUuT0pOkNeNOUp/sY3V3bmz17i7CO3dSumAuKTW3OUDRNOpjUWKqMY1GRO0itdv1jz76aP7xj3/w4Ycfcs899+xpqExM/qcxPWgmJt9i7NZinLZyfvj9k5lesw9v3LMci9TFrJIIDqvCuHKN4QUuYrLCO40xCoQiKOnhyGn5SKLA+mgUe42Xnq4ow3xQYrHh1xR2VFioGFpCNJFixqiMD2jha5vIb0jQQZJ9963C47bTEozRHI3jsluxxmTGFuWjqBpLIzGqR1TQsKGN6UkbNlGiLhUjVWlFVjXKVYHqPBfJkmpS+32Pngf+SntPD3OGZPxgL21IsHRzGQgRTh4qMshlozWe5rYNKUKpAsYVyOxfmvG01ceaKLM72RGLklKqkQQHaS1IicOHU7SwymdD1crQdA1damGo20tcCzI2L+PLi2ntDPX2IGsa6VQ5hZYi4kqaJYFu7JKX2uo2fjg3s5S6qsGHFJFoCqrokeFMOOsI7LXFPPGb+7CmLLQkVAosgwFYGdxBR0qgO72d1tRadFR0BCTJhYCAqkbQUZgzZw533HEHZ599Lps3b+SLCLSxY8fyr3/9i3PPPZcNGzImeFGw47BXYJEyOcOS6W5UNc7MwmL+Nm0eQ089FnlwGe/ecB/xqMLTrdCT9qLpKnbCVFjL6Ez3oFGEIIgE1TYCtGJFZIJtEsWWMtJqmg65BZuQh9uaYlx+LQBro1vZnOxG0xRKxFrsohtVS2LVE3gkD06LziBn5jmWFW7imJFp2uMxZu2zD/nHfI9tN95EQ7dMUrHwQL1Ie8qLrmvoSpgCoZjG1Aqa02sNY3bWWWfxve99j7vvvpt33nnnc4+lyf8We6MHzRRoJibfcsa59uPsoy9g1nET+OfPXgRAEFL89cCOfrFrhQ4OGGE0xW/rDDLMmt8vdtt4D1PGGk3aS5ZtY9/C/vU7O1qDlHuMvqt3Vrcwt9h4rYgsUzzE6GcT9j+WtgSUL3oJ+qTV2NgSpixkPB7guXqdwQ5j4tOl/lYs1PaL3R6KYBeNPjWnbRf7Fg81tCXVJCPy+i8o6LXrOWRMsaFt2Y4YkZ2jGfaD/ckbVsamW15GTaR5tSNEia3cEPta12usCq/qf14yM3wFBQW88sorPPDAAzz44IP94j4L06ZN495772XlypX85Cc/yba7HUORdvP1HV7q5uYJU3HP2wfnzIn4/vYIeiLF8QtlJMG4tBiTO/BahhjaNC3FSKfxGQBoYis1rmpD245YMy2p/suVNXadEpvx+VYWbeTS6Q6w2XBd8XPid/4VYjH2ey6zMaYv7YmVdCXXZf+7pKSEU045hYMOOogLL7yQ7m7jDLHJt5u9UaCZS5wmJt8BWrd3UzK4AJuzvwn7fx198asASCeeh1BZ/QnR3zyS08n4q48hb2hOnH1eDjnkEFauXPmFxRnABRdcwLp16/jpT3/6qeLtE0bhPng2wUdfRk98Pu/cV0Y6jZ5MIIif7hM1ePBgHnroIQYPHmyKM5PvDKZAMzH5DuBvC+NrCXHlo6d/01357GgqdU/ej751DdLRP0A69CTwlnzycd8EhWWM+OF5JLtCbLz5xS8kzvLz87n44ou/NPN6KpXi/vvv/1S7FMfOmkrByYfj/8dTKO1dnxj/tSMIYPt0mwQGDx7M3//+d+6//36uvfZaU5yZfGcwBZqJybechuR6diU38Nhv38ThtlM2sYBNsV2c/V6YhnBmZkRWNX69uour37Rz70f+7LEf1CW47kUvl/0nhS+RMWSHUyrXv5fmr7eovL0w9/Fes6IecYef91buQu7NkB9UNN4vLqNu3yk090ng/lG7n5IRXlYkg9m2jlSCbe4UiwNBenpnbFRNY3GXH89gN2sWvYXyyP+hx6IoJ51P+Tlnsa0mQULPLAemdIWNRV1MOzxMxN2ZPW9IauTIyV2Ula7tNd2DpseoytvAYUN2YZVypvJ8eyOzigW6UruybQktQFHeNnr0zcTUWKZfukpzegdam4Pl24JgdyLuexjpo87Bv2Y1q5+8i2Qis5kipsi80NZCMJ2mM5XbHPBRcAXro1vQEdB7PVI6OnpvMtQzzzyTt956izVr1nzaR71HCgsLGTFihCErvoiFsc4DmGqbg1PPiZ19aoZyzi+u4snf/pNEYxsALfEU16yM4NZl1D652gqkAPOKSsmz5DYMWMUYc4qTFDp3ofVu3NB0jZDaBEi0J3ObPOoSzaxM1NGmbEHtfY6aLmPFT1RO4Zdz46ULLRRqbp7fEkUrLIZUirrWLo78Tz0+pYGUltu4EUzXE0jtNIiz559//guPo4nJ/xKmB83E5DtCiWUwxx50Fj/46Un8/txHUVUNVU9RXbCLzREnguDNxjptXQxzOomHhyP25vxK6RGGlzUSDA/FJWZiNV2D4kZOn9nN7OLC7PF1wQi7RpQx44dHUVxcAEAymWbhv16nrK2NqbU5b9G6Xd20d0TYf+oQ3L1lfILxFEs3tzBsUCGjK3OFy5dvbycaTzNvxmgs4/aHweMIrHmfDx55gelTShlSnPG/qZrGa8s6sXYlmVed69c2f4TXNggcVlqE15bxuiVVhWeauim35zMhP9ev7dEu4oQ4fHAhTilTljiYTrGwI8Co/DyG52Xuyz5+BOKJBxJrraPog/eRopkdsW2xOI+sg85ILW5Lfna8WpP1vOV/g2ifXYy6/nHW/ow4Kygo4LnnnuP000+nszMnNj8vRxxxBIcffng2IW2JpZp98o7DJRVk+9WY3sisEjc/vfEygnXdbHlqBd3pHpoTHbRFhmLtzd2m6DKdSj2TvYVUO3PJhZsSbUSVIAeWDMPWm+MsqiT4oLsVu1RCoTXn1etINbMmsYu04Objb4aiJSjQrIx2jMQt5cbLpzRyYBlM9eaulah1UXLGHE75wc2IvXnPNF1BliOEk3XE1MyYPfLII7z44os8/fTTX3gMTf632Rs9aGaxdBOT7wg9SgsrF+/g0GND/PhXR/DPG14H1c76gBOr1WuITaTLCKY9OPoksLULHrZ1FTDUlYsVBREhUMnsYmMtxOFeD93Dq7PiDMDhsDFk/FDG2Yyxk2tLQRKy4gzA67JT4HUZxBnArFGVdEcSWJQkrH8LGtdTOOUw5l47kZK2NdCyGdCRRJF5k4qwbjemchhd5KGuIJIVZwAOycL0IideyWhIH5VXRsISy4ozAK/NToVLYHi+F/vY4eQdtA+W8hKCT7yO2LLckJuryu0iRTorzj4er3xLsUGcAQiCRN/vy6WXXsrbb7/9pYgzj8fDOeecw1133ZVtK7MOzYqzj/tVYx/BQdOGUTi8lBW3vwVAqa2EhZ0x3GJug4dFsFJuLaLaWWm4TkasiVlxBpBncVJkt2MTjBspKuxDSCXbEfv8QW8RnbgFS1acfdyvEmsZU73GT9HQMaN5Z+2urDjLxFrQRZ2Y2onX6+Xkk0/G6XTy4osvfpbhMjH51mAKNBOT7xj3/vZVfvqHY7jhkR9y3w2v41v/5RTd/kYIdcIH/6ZVLabkkGNhzH7QvAnqVwFfvrHdMqSSMd87iIrZM1GDYeLL1hP/+1PosgLeL+caZWVlzJ8/n2OPPfZLOd/tt9/OkiVL+PDDDz8xtnreaJo/3IGS6J95/3+NVGrP/r7LL7+cOXPmcPrpp2drjJqYfNcwPWgmJt8hFD2NIqvc/euX2bKqiWvuOpVrbj4bm934t5imK8h6f4GT1vq3JbU0sbTSvz2W7N+Wlg0JaSGzHJmU+x+fSvcvTJ1IK8RSu4sHnY5Nq+C9BzKzagVlsOACtLFzSbo9/c4h6/2vldZlQ0JayCSwTfYmQrWNG0nRlT/Ge96pJMJhem57iO4//oPYO8vQZYWkqhAb4B6gv9BRdOW/GvUHDx5MR0cHsVhsjzGflrlz5zJkyBDuuOMOQ7tlgMWgggoXQ+aNpO4/Gwzt6gDjpehyZnnbEKchD1CuaqDjZU1G1/s/X2WA42XNmFgYINkRYPKMsf1i7Q6Jiy66iAkTJnDKKaeYGwJMvtOYHjQTk+8QAhKD7NMYYt8HXVcpm5rg17ddTDyW4rZfPk0qbGNH01paYxsAhdGO6QyzTyOpRdmY+JA2uZ4aey2z8w/EY/GyPbGF7UobRS6Vq2e6+P6YSuoCEaIJmYklhSwfUsS4Mw7CnedkxUsLmRn20+YLE04pzKgtY01TN06rRE1xPsvrO5heW0Za0Vi/qYOZ9ny2JaM4B7sZN7iYpTvbGVTgJs9uYUObn31HVNIZirNzXYDJahHrRD/DJnsZVJjHmi6dsdMXYB05nlg0iifQja+7h0hbC4PSMRavaaZMK8YhWtiZ6mRWrZuWsMyuUCFjx04kWihRPqQAb2E+clUZtnCMnjc+ZMvm9zj4wEpWrfcR3yww3FnISn8nBaIXl8VKt7WZA4YU0RlP0BhIMq2ggkd3RNniG4RD9LAjXke7IhJTQjQllqDoqX7+s/POO4+8vDxDjczPQ2FhIU888QRXXXVVNiltsdXLCRWHMrVgHMt8TfiSediFPDSxmT/deT7+unZee+h1hrqqaU50szgQJCh7ELQglZbBSIIFpHbmlw7Blw4RlBUqHZV0pNqodkpU2PPYGm2n1jWIlKawM9ZDkbWa5ngnKc1GobWEzlQT1a4CQOAV/3riOFG1JBZNoshSi6gFGGKvwCnmEVRaGOauwCqmKHf6mOatYnu0g/vbV3HXy/dz2kkXo0YLEASRULKOm2+/mlA4xM0330xPT89/HyCT7xR7owfNFGgmJt9BrIILHRVFT1FTU8NZZ53FpEmTyPcU4XDaef75l1m+fAVr125AkiUSagJdyM2YCLpAuXsUimRMdXB0jcwd80dg6ZOfKizo9AyyMybfmID29U1NHDmp1tC2qzuEozlFoTWXdFTTdT6Qgxw2pcYQu2xzO9VtbpxibvYvqalst/QwuyTneRLKq1gVSTJ98mQkTz5C5WAESSKt6qRkjTybsdbnprXbqVVE5F3N6KqG3NBEc8jHiEPzKfLm7kFRVR55sJVpDmNS2+3JZmZVuHFIOX9UVFY4dWGYtG70YrXHV9GVWpvrqyDw5JNP8uc//5lVq/onsP20WCwWbr/9drZs2cLf/vY3ACrsJVw7/EKsfcYrpSr45RaOPHwetSfPZvV1T6ImZZ5t387GSJGheLqmpTmyzM1gp9EXuDW6jf2LhxvaWuJ+/Ol87FLOu6ZqGjvjDYzzGGMXB7bQnMwzFDnXdYWRTp2huyW1XRl6j6XJ7Vx08XlMnjyBc8+9GEVW0bUwB8yfw80338wJJ5xAc3Pz5xw5k28re6NAMz1oJibfQWQ9lyqhsbGRP/zhDwAIgpOJEydzxhkn86Mfnc2oUSPYvn0HzzzzAm+//R5abyZ/XdCJ6ylsGAVaShUN4gwgXxf6LR8CuKz9f70Uux3YrLvVgxQEXNb+BdPzLDaDOANwiBJu3Xh9vbONdFsXetzP7ottoWASq9MoHBu291BaMNjQVuhwGMQZgEWSsFuN2esBnDgM4gwgz2pBHuD74bB4DVa5o446ikQi8YXEGcCYMWOoqKjg0ksvzV1LtBvEGYBdslAm2ak9aR92PbUMNZlZSpQ10SDOAETRRpHNWA0CIM/SP/mx2+IgphpjJVHEJfWPLZDyaBOM7YJgwSX1f+Y9copfXnclVVUVXHzx1SiKAgJU1w7i8ssv5+c//7kpzkz2GkyBZmKyl7Fp0xZ++cvfAeByuZgxYzI/+cl5XHPNlaxdu57nn3+JhQuXfMO9/G6y//7789xzz32hcwiCwHHHHce2bduygvq/UT1nHJqi0b185xe67tfBhOnjmDFjCqecci6RSKYAellZKU899S/uvvtu3nvvvW+4hyYmXx/mJgETk70Ko4E9Fovx/vvvccopZ3L22eezadNmbr31T/z5z78nqXSgabk5KUHXaez08lGrcSPBui4/m7d1ofbZHOBLpYkV5dMVN+6wWxuKs2a33ZetyQSRtEIkmYtVFJVWf4id6YAhdmcsSEc0gdznWtGUQmePToMvbohdHwuxA6MR3xdPktDS+NPGNBh1Wg8rtrYZ2pp9EaxDkiTJ9UvWFMKCnx0RY7/ea41hVUHvM5Moawl8ya1AZmZt/PjxzJ8/n6VLl/JFuOqqq6ipqeWGG27ItokITPBU05M2muZbk90UzBpJy7sbs21hOU1bXEZWjWMjakE2hIxpP6JKjLSWJiQbY1cEeqiLGserJeFjQ8RPXM09X1lT2J7oJK76DLGaGqEtEUTt837FlAhzj5/FI488kRVnTqeTf/zjLzz22GNfSjksE5NvE6YHzcRkr0NAEBwIgoCmJYGPRYUFsLLvvjP48Y/Pwefzc+2112G3lFFlHcUwyzicYj6qrlDkbeAns5OktBSzKksB2OwPopc7iJTnM2n2WAoLXISiCdYs3UKRLKOXFDB5dKb4+kdrGnBs7aFHTTJ7XBVOm4WOcJyd3SEcukC+AiOK8zOVBnZ24w45CBJnzqASJFGkPhQhkEoRjQiUaYWUO9ykVIX18Q6G1liJF0nMHpUp5r2hqYdkU5Ke7hTjPMUU2GyE02nW9gQocjlwDVKZXJVJdrui3UdBZR5d8RSzhlXgtFloD8ZYsSSM2g41pRrD8z2omsbyrh4kJY/7t9hQ0rUIgkhE9dOpdtOa2kxArgfoFcQKRx9zBNOmTeN3v/vdF3h2Im+99SY/OONsOrs6AZXJ+cM4e/ACBjtL0XSNTZEWJDx0p2OMGTSW4+86lQcv+DtasJP6WJK6SD42MQ9VVwioLVhEGxU2O4PsGT9YUOlgiAvsUpyReeW4JAcxJUlTsgNdd7AlZKHAkikK75NbKHPYWBfpJK0XIQoWZC3GILuCXRLZkkhgEfPQdY2E0kOeUECBaKHCWosoiERVP25Lim2JNXS7O3nuhWc48shjCPiDCKKTY489hGuv/TnHHnvsl5IzzuTby97oQTNn0ExM9jp0dD2BpsXJiTMABUiydOlSLrzwIiRJ4sYb/4ii+Blvm41TzCQYlQQLodBI6vxKVpwBjCvyYlUszDtsOoUFLgAK8pzMXzANvaIoK84A9pk6lGh1HgdOqcZpyzgtKvJdzB1eyRCLjRHFvdcSRQ4YVU7IEWP/IWVIvf63YQUeRuTnM9E2mHKHG8j4rWZ6BhNwCVlxBjCxugRHmZN9iyspsGU8Zfk2GwdUlZM3OCfOAGZWFuP3xZk/ZnC2X5VeN8ceWcmUwRLD8z3Zfs2pKOPZXaDKw7J+Lo9URKVYlhVnkFmSFAQrZWUVBALGmbfPhsAJx59IIBDE7/cjICBg4bKhxzPYmXkOoiAyMb+agBKh1lXLuKMn0bS0AUfUTlorpjlWhU3Myz7HEkst5VZbVpwBeC0VBNMwuaAGl5Tx5bktDsbm1bI1ZM2KM4Bi62A2RAIolCEKmfGyim665AK2JlUsvdcSBBGXtQyHoFNlG4bYO155UhFh2cL6yDqOPuYoPvxgIQF/ANCxWJKcddYZXHbZZaY4M9krMQWaiYlJP2RZ5pprfsn48eP4459+/0135zvBvvvOZsWKFZ/7eEEQOO/8H/HrX12fMc9/CobOHc6Od7Z+7mt+XbhcLk47/VT+/e9Hs22HHnoo4XCY5cuXf4M9MzH55jAFmomJyYDIssyf/vRn5h80j8GjSz/5AJM9Ul09hJEjR7J69erPfY5DDjmEkpIStm/f/qniC2uKEESB7m3/+7NPp556Mhs3bGTjxpxX7vrrf8OWLVv+a9JfE5PvMqZAMzEx6YNOZtkz81FcvHgRzz33HOffeQiqNWOs13SVFnkH/9wEb+7KJQvd6gsRqIvw1hMrCEUysdF4iveXb0OTJDY25ITCqs1NuNIy729vJSVnErj2RBMsbOqmQdRoCESzsUt2dVLisrGkowut92PdFImxLRRiXbqFnlRmc4CsaawIt+CJa6yoy11rS7uflJpiWbyTiJxJMxGVZZb42klGFDZ1BnP9au3BmdB4b20jaSXTr+5wnPdX7KJRDdMUjfaOgc5bzX68YhFRrTkrIqKqn3WxN9H0dLZN13UuvfQn3Hvv30mlPl95qvLyCq655hp++9vfo/c+GwE4YdAwdEsT3elgtl+bI80UW51YRtro3NqBrun40kEaYn40Okhr8exzDCstpFULnanW7LWCShegsyLQSKLX8J9QU7zeWUdrMoJf7srGtqeaSWgQVtrQeisHyFqCiNyGokRJq9HsGDgEH0eVu0noudJjYaWHbeoizjr7TO79xz8zsejoqPh8Ph544IHPNV4mJt8FzE0CJiYme0AAdARB4JVXXmHxwiU8e8cisBVBnwS2U0sDnD5cY3Z+OVJv8fUeUWHbBAfTp9dSWZIp2q2pKotW7MDuC7NPSa5E0y5fmC1dYeZMrcWbl8mtlU4rvLdwK6UpkQlF3mzspq4grcE4+w8px9GbOy2USPPetgDjB7kZWZqXjV0TDRJ36Ow/uDTrXWv3x1m2uptplV4qeq+l6TpLfV047RIzy0qyxzfG42yX48xyFZBvzeTxSsoqb27poa5tCKKSS6y7M9rBYt8GtiSWoBt8fRZcLjtvvvkGBx54ILL8eWpgihx44EH8+MfncsYZZwE6E/KLuW/mAiqdmftNKCovNoXQ1GKqHBmP2MyrDmPzqs288NQHuITaTJUAIKEm2BKpI08qwSPlktLGtHaK7Bpj8mqy45VQw/SkW6iLFqLomfHK7FTtQhYEVCFXkD2phkhqQfIs5UhCxuun6jJJrZUTKyqYW1SVjV3u7+aJ1k1si6/kx+f9iMmTJ3HxxZfw8R8Ihx56KD/60Y8444wzPvVyrsl3G3OTgImJiUmW3AzQ1q1bOf7E45hyxHCDOANY013ICHthVpwBlGgWHBElK84AREli6rhqgzgDqC3OJ7/QnRVnADabhSGDSwziDGB8mZfKfGdWnAEUOG1UlAkGcQYwNc/LhKKCrNgAqCxykV8kZcUZZBLlTvQUGsQZQI3LhTuiZcUZgMMq4XEXGMQZwIi8CqL6rt3EGYDCrFn74Pf7P6c4g+rqWm6++SYefvjfvS0CPx4+ISvOAJwWiRH51qw4E60SpZOGoK71o2n5WXEG4JSceK1ugzgDcIuVDHNXGMbLKeWzLSpkxRlkDP+ynm8QZwAOqQBJsGbFGYAkWKlxFBrEGcCsolIaEqsZNHgQZ531A2677a98nI5EEATOP/98HnroIVOcmezVmALNxMTkE9m6NWM0P/m047/hnny7GD16NL/85S/5+c9//rnPcfbZZ7JmzVrefffTJ2kVLRKaopIMfPGC7F8lV199Jc899wINDQ3Ztv3224+amhpef/31b7BnJibfPKZAMzEx+UTuu+8+Tj75ZAYPqeSOh35GYXFuFkzRktRF+guBptZ0v7ZQIEo43t+H1dPVf6YkFEyTTKuGtrSiEU2q/WKTEll/2sdEFYXwALNWKaF/9v2wKhNOG/ur6TrJfjNi0BVVSWvG8yq6QkozHi+KIr/73e+49dZbswL3syIgMW3aVP7whz/2mU3SSSv9rSkpVc4mfi0eW0msM4yiKdjEZL/YhJZA2608l6KniMr9Y3W9/3irehpVl3eL09EHrGygIqvGcyRUmTlz5zJ27Bjuuutvhn+bO3cuH3zwwQDnMTHZuzA9aCYmJp8aj8fDzy69mhlT5/LK0x/x7EuPElMzObn2L8vj3tnT2BlSuX+DEwc1pJzt/OSqEmZNL2bJKyuYbLOQUlS2B6PMGV3Jko1RVi92UyGV02Zt4rhTPRQVSLz9bAujk2X0yDHkggDzx3hZVu/HmXBR6XCzNtLJzOH5pC3Q4NHYb/IQtjb7SNWHGWt385EcYdSECtwOG6u3tLKP10NbNIEvLbPP0HJW1HeSFxSosjtYlQoxfWwZSVlla72PWfletkYjSIU2xlcWsWRHOzU4QLHwmzdV/IFhpPQoJc4kU7zVbIlu55Wu/9CTNmbL/8lPfsK4ceO45JJLPsdIC9isRQyqGs3D//oLp556Jm3t9UzML+fqEXOZkF/BhkgrY7wuHJLE6p4Q4z2D6ExG2RbRmXTAweRPK6T7/ucos+fxdlcXTdGhBJUk6+I7EEQvshqmRCiiTKrCp7SSJ2YSzSJ2Mc1bjU8Osysap8BSRXe6hbgmIAkuEmoXhZYqVF3Gr3VhlYpIq0Hs2HGLxQTUFgTJgU2UGJeXYpZ3KEE5jCRGmZRfwSNtq3g/1cX9/7qd2/96F/954wU+9p5ZLBLPPvssv/71r1m/fv2X8MaafFfYGz1opkAzMTH5TEiSxJFHHsn11/+ev//93zzy72ey/+YVnRySf5LB86TpKmd+bz0HjTB6vB5f5EdqnoDY53dKUk1T5Wmj2mn0N62I7uTQQUYfU1sqxtATS8l3Gj1xb61pYMHkWuPx29uYVJCHzZLzrsmqxqrGbmYPKzfEvrOlmQNHDkIUc/2KpmRO/pMTO4WG2PrUIjbG+8/2eDweXnnlFY477rjPlZzWZa/GYvHwm+svo62tg3/e9yQz8mzcOnZ/w3jFlDQhJUmVI99w/LYqO4eefwa7rs+VR9oRDfKbnQnEPoXLdV3HrchUWUcajg+pbZTZqhCF3HipukpLsoUCS6UhtjNdj9dabWhT9BRHVUmU2IzP8e7mV9mZinHRJWdTXl7Cb351G6qWIp6sRxRF/vKXv5BIJLj22ms/44iZfNfZGwWaWSzdxMTkM6GqKi+//DKRiMatt/4Ji8XCyy+9gc8XQNctBnEGIAoS7j7C6GMsupXd/+BzSDbyJFu/WLvQ/1dVvs3WT5wBOB3Wfm1um9UgzgCskojb0f+8TpvVIM4A8uxWRN3+sY89i6wN/AfuL3/5S15++eXPXTlAECTy8lzMmz+LY476EQAei90gzgDcFhuq3n9ZMV7XgqXAbWhzSjZEwbiULAgCEv3HS8JiEGcAkiBhEQaIHeDZWAQ7bqn/M09rOiNG1nLkkQdy3o9+kb1XgPnz57Pffvtx8skn9zvOxGRvxPSgmZiYfC4WLVrKxRddy9ChQ3jhhYc49dTjKCr2ftPd+saprKxk+vTp3HHHHV/oPKeedgzvvLOYeDzxycHfIi772bk8/dSrtLXlctUNHTqUX/ziF/zsZz8zbBgwMdmbMQWaiYnJ50LTkqxZs57rf3MLP/nJLxg1ahj3PXErP3/xB+x/6lQstt6caHIrL21qISnnZm/CyTQruoK0Jo2+rc2RNhb3BA2zQj2pOEt6UrQn4rlr6zoftAV5e02H4fid7SHWbdIIxnIbEdKKyo4dUdY1+g2xG1v9tPVE+/UrFE1S3xM2xP5ncxudan1vDrAMSS2KT2nuNy6HHHIIH3300edOqyGJLkBjwsTRbNywDcgY9UvLoS0VMt5DuINt0R7DBglfOkZaiSKrCrbKYiAzXjuiQdCMM3ppNUpcjyLrufFSdYW4Gu1NWJvDr3QQ0fxoem68ZD1JUo+R0IKGWIV2WpMdhn4F5DDHnnU0+fluHn7omd770llw6Cyeeuop3nnnHRYvXvzZBsvE5DuM6UEzMTH5AohYLAUISChqEEHQGDFiBM889hxtm3z84upfs77rIwRBoMbr5KajphCXrdy5UCKYsCHoGlNcAtM85WwMKqSUjM8sz9bBgqoIW6NxXu12kdat2ASZ4wcHmV7k5P3mElLpIQAU1jZy1KEKq9YrNK0ejqBbwRFh2rwWygogscpJSTrjhWoqaGLYWJFgKM7ssiJEQaApEqNDU1BUlZFuN2VuB2lFZVmnH5fbzo1vNfJ+XUbAuDQHw6Sx+JUWdiSXoaLwscHdarVw6aWXMn/+fK6++urPvHNTECw4bVXYLF5qhw7m1r9eywnHncOwIiv//sEkxlUWkEqrvPKOD3pcpFSdsZ5MUfj6WA8qCik9wT5lBXisNpw/PJENyzfQ/OYaWuIePL3esUWBnayJBlE0lQJpMJJgQdWS2LQUVsGKBTcuqQBd14nqbThFJz2qH0XyIAgCqhrHqYkouoJssSKJdjRNRVVC5Iv5zCoSOLhsEAB1sR78aY1NsWYGHTeV+QfP5ZKLr80UexdELrrkdE455UQee+wxbr/9drOsk8ke2Rs9aKZAMzEx+dLJz8/nD3/4I3PmzOH119/gd7+9IfPx1UVqCxf0iy9VHQyyjjC0dSut+MT+s1ATbHmU24xG9W65maGu6n6xB5W3UWhzGtqaC7Zz1NRiQ1somcab19/PNvlvy2iJGD1WaTlIMt2/vuWtt96E2+3mF7/4BeFwuN+/fxIOazlOe0ZwXXTJmaRSaZ7615PU/2ZWv9jHngww1jLY0NaU7GRmec535py3D7bhNdx69fOU2owbId7q3kZb2tvvvIW6A6vgMLQ1KJuxWY0bPBQtgUU0jivAkcUp9i00JvF9o2cT6YOHc/jhB3HpJdfh9wcZMWIol195FrW1NVxzzTV89NFHA4yIiUmOvVGgmUucJiYmXzrhcJjLLruc7x17Evvvvx//eeNlLrzwvG+6W18JkyZN4tlnn6KyspKrrrrqc4mz3amoLGXb1vovdI7kig3YRg6lcEjJJwd/hQyZMIwzz/o+P7/694TDUS6+5Fxu++tvCQSCHHnkkaY4MzHZA+YuThMTk6+Mjo4ODj7ocAYNGsTdd9/B7NmzeOSepezc1vJNd+0L4/F4uOGG3zNmzGhuuulmFi364HP7zgznzc9j4qQx3Hn7w1/oPHo8QXLtJsYcPImdj236wv36PBSMreJ75+/Hj676FTNnTuHKq36CKAr85MJrWLHqHXS9fzJjExOTDOYSp4mJyadEIDPprvFxnU5JcFDimogkOuiJryOtfjx7JAFSb1YKsTedhs4JJx7Lzy69nA2rm3jt+eWsX7udYLoOVZcZIg1lrCOznNeQXM+m1FIsgp0q5wxsUh6ymsSv7EQQdSbbRzPONR6AZaEPWBdbzSB7Jd8rPQ6n5CSqRAjIPlwWiTnFGhMK8lF1lc2RNsqcDlL5IQ6fUYBFEtneHqGlXkERNMaNdzGk2EUoIfOjF7exsDFNWk0gipnlT0WN48pLsWDBfL73ve+xdOly7r77bmQ5lR2Tz4PV4s0sI+oq06fN5PwLT+PPP/sDFw4ZitcDc+Y5qS53kUjJLNvaTqnFTl2dRLWcWU7clewg35kiJKcY6ymmwGYnkEqzUXRw4O8v4/nrHkVtzaTISLCTSYUK73XHea+zHA0LViHBlHwNt2hja8iKpnnRdY2w2oZbyqNb60GV8hAEkTwpzoGFDqKKzJKQTkp3oOsKkhKnWCpibEGKBeWDsBY4Gf3bY/nnE/9m7D5TKSou47JLfkVLSyuyGkRVI597vEz2PvbGJU5ToJmYmHwKRIyOCB2PbRBl7mnZxKe6ruFLbCKQrEcQcrGZnY9q7/+hrKyMo486hjPPPJe3317EE4+/QldnDwCCpqIpcZIkDce7raVYLC5EMZeHy6KmCadaSPUpOSQAB3vnMd4zEZuYyaem6RpJfRuHVEgMz8sVCN+V8BO1d7Nv/iCsvQXC44rMY131/N/mKDq5fGyyEiWWakWUEjz44IPU1dWxcOFC3nrrbb6IMBMECy57NZKU83P96vqLGJbWqXlrC9beAvQJVaYur4F9R7oYkp/zma1o9tO6XWC/spzHzJ9KsqTTT629lgKrk7Lj5uAeUcVTv7mLQc40Uwtz/rvmeIT7dyaY6R2NvXe8VF3lg+56fIkC8i255dGQ0s0gj58FpSORep9vUk3zdNsOUukqXGIuKa3FG+bivx7F6p0bmTdvHrfccgsvvPASqmpDVaMwQAktE5P/xt4o0EwPmomJyadg918VAk5rmSErvSCI2CSvQZx93N73g9zV1cUDD97P6af/ALvNzv0P3sz5F5zOtGkTsDmdJPR4v+MVPWkQZwApQTCIM8hIJYtozYozAFEQcUpegzgDqHUWUUJeVpwBuCxWWgMYxBmA1ZLHAfNm8tRTT7FlyxZ+85vf8NZbb/FFxFnm3qwGcTZ8RA37zJyK/v76rDgDcEpW3IrNIM4AZg4pYoLXa2grsjuQcFBgzZy366WlqIkUh194skGcAQxxeah1ebLiDDIJacvs+QZxBlBgKWVMXlFWnEEmsXCJxWMQZ6NnDuH213+F4LFTW1vLpZdeylNPPUU6nURVw5jizMTk02F60ExMTD4TpaWl7LffHKaOP4BJEycj9BE4shqjtXMnr732H3bs2MmuXY17PE93dw+33Hwv//rXs5x99klce91FeL35nHX2edTX7/m4b4ITTjqUw46axh//+EdWrFjxlV3nRz8+hRUr1lMZCEO+45MP+DRoOm3/fochV52AEJ1F7N3lX855d8NT5OLwc/Zh36PHoioajz36BE88/RiRiLmUaWLyeTAFmonJ50Li4yW7bIvoQtXiA4fvhiBY0HVlt1aRzIzM/14uqNGjRzFmzBjKysr4/vdPZOXKVbTUdfPgwldIp3P3EZc78FalOemk4xk+fDjPPvs8mzZtYcuWTUSjQeLx3Pjouo6u63R29HDzn/+OKIpcfsW5PProfTzyyFOsW7eJ5ctXIssymt7ffK/rCug69LFd6LqONoDxPKmlSKoCDin3Ky+lKgTl3Z8BKJqMruvZMlQnn3oExx5/MOeddybNLV+ycNRVdF3LzjrOmTOdX177Z76n9L+HuKqgahpSH0EcTKYJyhoFNmOKkLRmHC8lHGfFjQ8x99dnIea5iLz2ISgqqq6hW/pfSxeSqLpiKOOk6jJpLdkvVrak2P+ECRx9/hw0TcffHuGp/3uHB16/vzdPnImJyefB9KCZmHwGBMGORfIAEpqWQNUiiIKVfOdwnNYKFC1GKLGDtBIg44j6eJlKAzQEwYLFUogkOtG0JLISQNdlRDEPScwDQNUiaFrsG7i7j31mGoKgM2XKFIqKSjnwwIOYPn0qS5Yswe/388F7i4g2FFFiH4VfaUSXhEySVU1lnHUSfqWdpdGXKKr0cuqp32fmjNkMHVqLKMGvrvslbe1tbNrUgCg4QNCxiC4k0YGsBEnLfiZMHMdxxx3P0KHDqa4eRF1dHQ8//AgBX4T2lhSS6EBUdSotE1H1JA2JD0lqUZyihdMqD2JW4XjWhZrRdS9WwUa+q4Efj3HSlUiywy8zKb+Khd2dfNBeSkr1MK50O6cNd5JQFW7YuJIXWhqRRAd5jsGcedZpHHv8PM46+ww6Olq/klEXBCsOWzlWSwGvvXo/b172GFWah4haxz5FBaR0mVSpjyP2LWJLe5BkXGZ8qZfFDV2MsuRjFSSWNYaY5KmgLR4jIquMzy9lZY8fXc2j1OZhl9bE4eOdpBwulAUnUVZczpaXXsMmbGHSuGL+9VIPPVvKsWBBs+7ipGFutgRS3LPJikWrQZV2cfEkmbGFNp7bGcep1hJXU2yuTnL4BSdhFSyMGjGKd/61ln/cey/rQ+8g69+tElUm3yx7owfNFGgmJp8SUXRikQoMbbquUewegyhYqB1axbkXHM+MfcajqDGSqSRPPfk0zc0tvPPOu0QiUWy2ckOBcF3XUdV4dpfgx6haHFUNfh231YtEYWERbreb0tJS7rzzdjo7u2hubmHVqtW88MLLRKNR3GIpYzxHG/uqy5SLVgotpYb2DyIvEpUyMygWi4Xjjj+UadPHUVNTSWVVBZqW8yLpusqOHTt48cWXsm2bNm1GkqxMnTqZ+fMPYOLECWiahl3MxyLYaWvy0dUW4K0XVhHu2MTR9pFocm5WM6XKTK6qZ1SBy9Cv368K0B4eb2hT6OHNwAMke/s0ZcoU/vKXW/B4PBx++GH4fMaSVF8Fh1fP48EX/sWbFz2K3FuqKqYHOPvEAHlO42LHG0ubOaC0wtC2vCVArVCJpY93TVY1mmxtzB5cmAsUBDYOqWXmKSeCKELbVujYQbijje0v+KjJM47XC01tnDgsdy0h30Nb7VC2jRiJt9DL228v5KijDubFF97g7jvuJK52f1lDYmKSZW8UaOYSp4nJp6b/74fi4hLO++HJzN5vEvn5btat3c6vf3EXHyx9milTxzF16hR+/ouruOTSi3j77Xd58IEXCAZziUwzpXP679URBrjWV4EgCNhsNq644ioWLDiEUChEPB7n5ptv5aWXXu1n+LcOkD1eEqw4Bmi3SA4gCoCiKDzz9Gs89eRLpJUQomg8r6IGOOecs6mtzaSNyMvL47TTTqGwsIhgMISu67S0ZGaw8iQNi2insCQPq03i4t8ch55cwKCCQtLRzBJcYGc3O19bT7Hef0kypVn7taVVK/sdOJ9jjz2G2toaCgoKuOuuu3n11ZdJJD7dsvUX5bDvHU7nmqasOAOwS7Z+4gzA3keEfYzTKmHRjO1WSSTfsdv7pevEd66BD0JQOhQqR8OM48gXLYyoasAaiiDXNYCSEdfjh5TimDoZwW7HMrQGweOhtH4X1/ztUaLRKNdffwXXXPMn1q7ZRApz1szE5MvCFGgmJp+DadMmc8yxh7HffrNYtWwnt974EPU7W5B7PU3xeJyFCxexcOEi/u//7mLmzBnc8X+3c8IJJ6H3mTlSFJV33/uAlSvW89prb39ttQglSeK6667jqKOOQtd1Vq1aw1FHHUsi0fcD+9Vt8u47ewYZAXffff/cLUrH7S6guNi483CY6wBcllJEQeSgY6YwbEwV4yZWYrM7sBdkhGL51Gom/GA2gvJDiMVQu33o6TTypq3MGtRNLJUpFVU6xEtxZT7lw700Bbdx991/Z/PmLfT09PSOhcrXhc1uI9oW/NquB0B3Q+b/AO5CEju8WIqLsc+cmg2pSEQhEkNt7yS9Zj1qWzsNPT78fpk//vHn/PrXt7B2zTeTCNfE5LuMucRpspcg9Rrzc7MTIlZKHOOJyM0k1NwS1hj3KAqthSwPrkDrTQmw/6z5HDjlcGYcPoW8fBf+QJBnn3kZ24adxCOwOJz7uaiwquzrUXiseR1BOXM9iyByYtVkGpJJ1kWD2dgjJg7llCMPRB42mkHVQ+jo6OTZx19ggqWQZxe/wqbuhqxoE0UnAhKqFv0C4yAyevRI/vGPf9DU1MR5551HMpmkf54z+Dgx7cc/87quYxUdDHHMpsg2LBtV4/RRYZXwxYci9JrKU1qEmNDI+mQ9sV6Dv6ZpyEoYTU9l4wA0XUbTUmh9DOgWQWRO4Uxakp00JHJVB6Z7S5lfMp4Pe6pQ9cxMmNOW5MRZPdh6BmGL5Wp0ioObmHb4OIZVjkJyOJBKixGH1RCPJ2hujNK4OUB7g5+da5t5Z+tLrGlZiKbl3o/MZo2vR6CVuUp47413WPHXt1B2ZnY9arqK4tzIuFFp5k7M5Tnb1hZkR0OIad5iCu2ZpfG4rLC4tZs81cMoVy52Y7CHMDEOGePFbc+MeU88zcL6CJPmFDNhTC71yOtvtxPYnmJ+VRFWKfMu7IokWNaRYP9BdqrzM+JX0TTua9jJmJ//gvvve5KFCzOlmlQtRSrdgT7Ahg4Tky/K3rjEaQo0k+84AoLgQBCsCIKArmvoepJC6zAqnNOxik50XSOQ3oms1nNE6UGMdI+gdFQZ7jEedqr1TJs5i0rvEDp29LD0+XUsb1hEOLyeK0dMZnx+xne1LtTFP5vb2c+bx/GVQ7GKEmE5xT92raQhGuWioQcwyOkFYLG/gWe7NnHh+HJOHDoEgNZYnDsauxkybj+Om7+A/FIv7poSWjvaeeadV7nz7/8iEc+IRU2TUZQAmt5/R92eEQGB4uISHnroft59913uvvtvpFJ9BcnHlQJEBCGzVJb5/aAjCGLvGIrouo5ddDMjfxYnVuYzuSAjipriAd7rTBNWYahrMDbRhqzJrI6u5aPIBmRdzuZN07QUqpZGRwEs2WejaQkm5A3jyLIFFFkzvqmNkS2sCC3h4pGjOapyOADtiRj3N4SpGKZx6SGFlOQ5UDWN19b4aN7hYdrkCLOGZo7f0RWidUeSRFJmn6GDcHu9qDW19IyfRcJdyNsffsArr7zN4kUfoWY3bqT5OnbTWgQLR5TuzxHV8zju7z/kmbPvY1e8hSH5CnOq44zyejJjEPIjlUIsmmZWaQkWUSSQTLGhMwiKQK3bQ6Ur4x1b3tGDEncQS8NUb8Y71pGMErD5SMtQK1ZQYLWjaBob9U5KR9jpWicx0p55lxvjfjRLhM64hVp7NXbRSlKVaZYbyXOFuKu9kd/few+LFi3i97//MzZLIYoaRVHDA96jicmXgSnQPhlToJl8qxAEG+Lu/igdJhSchNvjwO6wMXveWA4+ZjqlBTY8kgvRKpKOpmhZ3UxnTw91GyI0bWhHU3M/K/OrtjHVa0zkuTbYwaSCSnanLiJTYssztDULWzhyeKGhLZZW+WjHUEObZ1gZW2faGTV5LE888QIvPP86sVgcTUuTljs+7Sjw8W7S2267hc7OTm6++VYYMAWChCAYPVq6riNJ/XNyXTl0LkeUTTC0bQwFaEsM7hd7V+v9KLv56mR14JnAa2rPwWMxjpfduoHv7Vb0O6anGXtEf5fGoq2t7Fdbbmjb1ORnWCqvX+y45z9i7iEHc/El53DnHffz4otvoKhRZKVnwL592dQ6B3HNiPMYMncEMy86kOdOuy/Tr+o1TCwybkhZEexk7tDSfufo7k7jtRs3mfxnh5/pnmpDWzCdxGvr/xyXdPUwqaDK0LYl7KfCXtUv9icb/sXpV/8EURT51a9+9elu0sTkS2BvFGimB81kr8FqtTJ58gSOP+4Ypo+fR3FpPoqssnVDE/fe/BIeXwcTPMPQNZ1UJDOz1J7wkVCKPuHMXx2R+i5uefUpnEPKueTiH3HuuafR0d5FY2MTDz50Dxs2bPjU55o8eTIzZkznuONO/Ap7/O0iHk/wwvOvM3LkUKpr+gvLr4vaA8dQ9+b/vo/romuuQPS6uOKKK77prpiYfOcxBZrJdx63283xxx/DMcccgSAI/Oc/b7HshQCNOzvQtNys2BhHiuQAiTj/F2iob+KKK65HFEVGjBjK9BkTuP/++xEEgZNPPpmGhoZPPMeoUSN5++13CAQCX0OPv100NbVSVlbyyYFfAa4yD55BXhbf+No3cv1Pi2fMIMZOHslRJx6329K4iYnJV4FZi9PkO4GAFQEbfVNh2K3FHHnYqbz7zivMmTOLW265nTNOOYvSJSuYFFuf9cxousKwolYunpcgKOxE0zNeL5/SyuGTW6mp3ECy15if1hIUuLZQ4VbZFM4tMW5KdzDpYBtbHM3EerPAd6WjNBY1UzjJR2MqkxtK0TW2xHYx1O1gYVsnaTVjQt8ZCrMtGCRp30J3OghASpNpTG/n9uljGeQQMlnyNY1d2+tIvNHN7afcQktjC3/5y196dzpaABvGH+uPfWUaoPduCPi4WoFkGK9MnjcvgGE3qdNWik3K6y16Dug6s4q8HFrtYFusEa03tj7ewbDCEE77JuJqJtFuQo0jiNv4w+jJeKTcOQskiSurD2O8uzxTDQAQ0fjxiEFMqGjAJ3cCoOoaQbaz71CdleEWZC0zXg2xAN22LhavaaHRnzHVx1Iy76xpwRuwsnhH7tmsbvQRbRL5YFcPPYmMAPcnUzy3OcKPK/+fvfOOkqM4u/6vuyeH3dmco3KWEBISIkebaGMyOIONc8Y2tl/H98MJ7Nc5E4yxsQFjTM4gCUko55V2V5vT5Jw6fX/MMrOtWRmwwQTNPYdzUG11V/VT1TN3qm7dZzX2KRsnippAUf47BLbK1EazdBZbE+MkwnE0RSOhJEkK+yArssNfOLiyOeSluc3O2okJEpMnhYdiCTYO+xhKxzkYiQAgaxrPh70sPs7J9uxIPl6HUiHSzSF6XcOMpXNzOanI7BSGWXayxL5swYR3X2wCqwj7Y/1E5JzFSKbGhnD1cr79vRtL5KyEEv5LKGnQSniTQ8qRs6knDU0mzj/vcs6/4G3Y7TZu+f3fWLd+PWsqBH69Yg1WKafHSioq39o3wrUr3RzbWDDnfKonRZ9f4wPHFhJT++IKP3wuxZUtHpqchcTSm/0+ahZbWbOioA0a9SZ56tkJLjy9Dpc9p+dSVZ2/PTpBU9bC/MqCFmooGaU/Feak+gZMk95gKUXlr10xVtW46JiSj/EvAwPcc0jj3JpT8mVpNU38dJWL338xV1zxHvr6+ifjoJAjYYX39ZJL3kV7exs/+MHNeZ81fZKsmUweQ+JzTcsiCuCwtuQ9yzRNxSX4+M2KY1leVXjebb4YEwmV0xsLdhj+tMztvXEubKykZoo+6qeHdpCVKzmrZnG+rC85wZPRZ/nV6mX5U4mKqnFbV5zlTSZW1Bdi0BNM0B1J8Pb5VZgmTxqmVZW1IT9zhXLqzQW94f50mFBKZalU0AVG5QzrQ14c6fnYhML4Dqx0MGANc/PNP+C/gaWOC2m0zEcQBK760umIJo3nf/Zrrp3noNpWGIetkVHq2kws7Shss4+GE2w9GOCk2npsptxcVlWNp8cmmD2ngtnNnnzdff1RDh6Kcd7xtfl4JTMK/3zeywnH1tBcW5j3G3aF6N4KS8ub8mWRbJp/jHfT/vHz2LF7F7fccstrFZISSviXKGnQSijhTQZhig2E3W7nkksu4tJLL2FsNMxzz2zivr8/niNtkpNrZrTkyRmAwyRx1WyLgZwBnDbTzki10Zy0xmXitNYsTQ6LoXxxVSWdK4zXN9Y6aJ1nypMzAEkSWDLPSu2Q01C3xVFGXMvkyRmA3SQxt1oxkDOAy9va8IeMejibZOPOP/6ZsBrjJz+5mRtu+B92795DYdXMGK2cBa4wpSR3gEA87GCAKFqwmssMhrKiKLG6utlAzgCOqXEzajPmc6y2mTmmUjaQM4D3tSygP2a8vsNRx4drZ+XJGYBJEjmpVWN+jTEGMyudKPZMnmzkYiDhTIrUe4yHQebZPAzFtEK2LaDMbCUeK6fSYhyHY8vb6E/9dw4GAFSbcodB5q5ooWlmNTd/9G5W1sgGcgYw01XFjA6j+Wyjx0mPOZYnZwCSJNJc6TSQM4D57WVgkg3xclhNNM80GcgZwOrFFWhdxk2VcouNJRedgrWhnru//j//9vOWUEIJrxwlglbCmx41NTV8+YYvsGbN8TzxxJNc/4WvMDJ4dHkx/e53t3DoUB8/+tEP+MxnvsCuXbte7y69qSBaTOjJ/36SeskkERiLImfemEnFBZPEqovezknvOIdYLPZ6d6eEEo4qlDRoJbypMWfOAu78820MDg5xysln8pUbvs6BA4cKeqlJWASdDNmi6xNylqxiNCP1x2VGw8UGpVmbktdbvYiQlmIibExsrqgq8WjxYYNIMk1CMRLHlCqT0Iv7lRZksprxSzuiZDBbI0V1Wx0udF3nqaee4f/+72f84Ac3Ul5eUZSmCfSilTKAMsmDdNhHgQmROpOjqK7DBFnNGJtgOkNgGl2STCav53sRUT1OGuMXvYaKbCsmKDEhS1w1xishK4QS09RNqWRVY1vBdJqwXJx6KJItHluhw/OKTsT+ZxCIajmN3Ts/tgaTJbcSJpUVP1dISeGPG+dSVlGJZ4t/gESVDImMsTyWkgmGi8cmHs0iHzbvB/wZRlLGuuUnL2Gg9xBer/dlPBcIr+g3/1G3Y1VCCa8IJQ1aCW9KSKKDBfNX8fNffJdf/eoW/vznPyIAblszTksjmq6QVgLogsTbm8185ZgWWt1ONoz6qacCVdPwC1FWN1YzEIvj11Isb6ri3q0pnMlW7KKZIb2f85ZJBPQ02TKRY9pq2DMcJHRAp1F10+PysmZhFaqms90bZvWCJvZ0+7H6ZWZ5ytjmD1DT5sbjsrJrr5dV1VUEUxn2jcZZaq9jd9pHZ6ONRreD5wd9NAtlqGj4TElWt9XQF4ozPJJlrrmaXfI4S9vLcJpN3L8vxvDAAtJKlA5XjIVlNeyOjnFTz3r2xHx898bv0t7WyUc+9BWSmQkychCL5OY9V3+Y1tZWbr7p58TSA5gQONZ9MnMdx5DSEmyNr+dQpo8VZa1cUn88leYyng938XCoD7dF4fq5NZzb3ER/PEYglWF+WTUbxv102GtxSGZ2RsZYUlmBLxtHN8ksqqxkbyhEPGGjzlLOsHWQk2Z4yKoaj3alkcLzSXtGWX18lrkN5WzqnsAxJuHAxKA7zglz6/An0hzoDnGMuZINI0EaTOXU2Oxsi0ywsM1BWlHpG1ZYWl7HQCJKQkywtLacF/w+FlVWYDOZ2DgaYJ69lgMhmV0+N43WRoZTEzhMOhVmK9/ruY9P/uDL3HbbH9m0aQOvpUGtKDqQRBcgUCZ4ePTR+/jbd2/lgiV9rJpRxc5+P6mDGnWKnQO6l+PbqkirKrvDIdbMqmPHQBBX2kxnmZvNXj+1DitOq5k+KcGambVMxNP0heMc11bD2u1emtJOqq02tsR8LFnsIZlVGOmPc2x1Nb3RGMlynUUzarjp7wkCIx1ISGTp55KmcrKL6rG9cxVXXvN+hoeH/+VzCYIVk1SGIJjRtNTkARyVFw2Sc9AmYysCL/5QUJnej6+EEow4GjVoJYJWwpsOkuigunIuf7j1BzzwwFPccfu96LqO01SBWTJqi97RluK7q4zmr+FMFosgYjcZf+3fuiXFHOssQ5lXGuPSS8xIhyX33nhglOPaag1lz+4fZbXbaNUgqxojySQd5UaT1CcHxzij02hqG0hlcDnMBm0RwFO9Y5zaXm8o2zwQxTLWgTRllUzTdS7Y9giCrYzf3fpd7v3bI9x7z6OoagqHpY4vfuUa9u3t5Z/3PY2ua5xsW065yahpU4UDnFpjjEFciXP+PB82ydivR/v8rPQYzVAPJrwc2+gwxEvTdQ7oXo5tNObUXBvwc/pxbYayrKIyHojTUmGM1/1PDrHaavQp86aTuCUrVsk4jluTA5zSbIzXuuEY4+OLEA+L18f3/JCKhhpuu+0PXH75Vfj9fnJE4nD93n8OSSxDkgqrkiaTiSceuZMVfQ8ipgsu/Jqms2X9IEtrjGPzdP84J9YYnyujqqQaNBrKjKudD6wb5kS30Wh2NJWgscps0GECfOEJHZc221DmE0Z4x83n8K1vfYtt27b9y+cSBBvmw+aRruvIipfpVsmmpvnK1dVgmtXtEkqYiqORoJU0aCW8+SCInHveaUxM+Lnj9ntzRYKQT080FQ6peBffYZIwT1NXorjMIpmKyBmAxTxN3WnqmSUR2zR9sEjFnzUOk1REzgDMpuK6Nkkq2sIUBQEBkXQ6w/9+6+f87JffZOvWPfQdOkRTcy2nnrGSJx/fCIAgiJim2e60isVlNtFURM4ATNPE0CpKRfESBQHLNDGwThdDk4RtmnKzWFxml0xF5OxIdU2CyUDOXuyXhk5bW1s+QfprisN+3F5w4dvwjo0ipo1bvqIoYJkm3tPNL6skoU8zP8zT1LVLUhE5A0AvLrvsS5fw7MYnX5KcAYZDJ/myf/FDvqWlhXnz5tDamktzllsjkJFlmbvuumvSCqaEEkooEbQS3pS49LLzuPF/f/56d+MNi/37evjbXQ9x5VUX8L/f/jENjbVMTATYvnX/6921NyRe4U7Cq4Jrr3k3f/r5Tzj/7NqXrvxfxLzTZlFW7eaHH/3hy75GEAQ8nlxqKpvNyqJF85g1u2HSn68ASZI49dRT2b17Nzt27EJVVXRdx253cdVVV3HBBRdw00038fzzz7+qz1RCCW9GlAhaCW8yCDQ2NmAyiWzfXkiNY9bBoYlkBLWwkqZncElwKBKjszyXdFrRNF4I+RF1gZUV1fnVnu5wFIdLIZiMU2nOba9lVJmI5mdTLxw3o5DbcfugD38kRaQiS7k9Z7sRSKQJhbPsSYVZWO3J19007iOtKVTarfnVi+FYIqedCsfo8Ezp10QAs1lkdVMN4uQKxIFAhFRWZSKRos6Zs5FIyAojiRjx5ChzHYVtrK6YlyXuMjZG4wiCxD/vf5Kf/uLrOLQy5i9oY8umPaiTxriVpiQO6zCqPAtpcsspqUZod6bwZ0NUW3J5QhVdxe8Y4YVEmGMd1fl+dUcjZPUs/kySamtuey2pyIylY2iBBMdUFbZ6t/uD+DWVDo+M25JbofMn0wQmZPYMBVnYUtgeW981RjKe4aT5jVgmVxMHQ3E0h8JQJEaLIxcvWdPYGfJjFiSWV9YV+hULE1cVfKk0NXbbZLxkxuNJhlLDtNgL26QH46NUm4xbrAUT31cfmpZGFCwIgsS7Lj6fck8Z/u0HeKEDVs4ukLQthybwJZO0uhy4JuPlS6aJpxS6QhHmVuSIkKbrbA750QWRNW01+Xj1B2MousJQIk6LMzeXs6rK7mCQQxmBVQ2F+bXTFyWadSKKCRySE1ESWHTuPH79u1+jKEZtmCQ5kUQHWdkP6EiSxMknnM7qJWewaNVM6hrqUBUFWVHYt7eLAwf3s2/fOsM9BMHMb35zC/39/UCOGFskFybRwl133cUpp5zC//3f//GDH9zMPXc/gKoleC22m0so4c2AkgathDcNBMGCIFg5+eQT+eAH38P73/dxbKZyFtqWMMeWMz71yRPszu5kSZXOz1a34bGakTWNzQEvVqtEfYuD2Y25L7i9QyECI2lkVWVVYw0mSSSSUfjnLhlVMXPqYpWO6pw31/ZwCNwm1JTCyprcqoAvmaYrGkOTdWYrZXhMVjRdZ0vIh9UmYHNILGnIkY+BcIzhQJKsqrGyoRq7yURWVdk04cdqFqkutzGrJtevfRMhYkmZdFZjdW2ORMayMtv9AUyiSLvdRb0jR4rWLlw0SwABAABJREFUHori9TqQVYEFZTmy1pcM882ezSQlO4889he+8K7fcd77VnFwaC/33P03PjWzmisn807uDKT440EzHkuWa2e4cZpNZFSVR0YjZE02zjxHYPmCMgB27fXi3RkjmdQ4xlOHJEjEs1m2BkKIiMzyOKm35/q1K+JFlDQicSud1pxOLaLFSXmGENHooJYyyYam6+y1eilrkpD8KvNtuRgMZhL4nTKyrrKquRqb2UQ6q/LMZh96RKLaaqfdletXVyREQlFQdIWVNblxjMtZ9iZ8CEi40/VUmnPEbr0/yEjCyoGoTkbJaQBblruYf34VH/3kdbz2ZEDA5azmsQf/jnzrP2kaz2nPuq1ePLN0tFiW5eUeAMbjSbp9MVQZFjgrKTNb0HSdTT4vVqtIeaudJTNynnK9vggTgTjpuMJyRyVWSSKtqGwYCCCpEnV2O22uXAy6YkFSgsL6QSeDE/MRBBFZS5PQxulY3cSqq47hsisvyxM0QbBgs9RT5q6hvNzNvPmdXHbF25g3cz6hkSy7nx+gv2uMux67Bb86iNVcjtWce4aMHCaeGgBBRBLLEUURTdPQtCgCIpXO+djNufcpo4QIJvdz1tvO5Otfv4Gv/8/3eOKJZ1G1GJpmPCldwtGHo1GDViJoJbxpIEm5L+/LL7+YpqYGbrrpp6x0nswcxzGGeg7bODeeUvyBfsAZ5phWo4h/w4EJjrEXJ0OfUJI0uo3C67VjXk7uNIq007KKPl6s99mcnuDEjjpDWbc/wgxnWVHd3YkwSxuNfdjY52VFZXFuyNFwinqn0ZD13h0xZkkzDWVRWebb+yS+88f3sfnpg5z6jiX84w/PU7/3Ht7ZatxSOxiO0Ggu3maLrgqzbKbRVPapZ4aYFyiOly+dosZm7NfjQwEWutoNZUk1w4zqYkH4ruwQJzQZ2+pORlm8uKqo7tonw8x1GfuwJTjOcbXFz9A1ZqLCYuzX9/d7iaZn5P89d2Urx79jHhded1LR9a8FLrnkEn7/1W/j/eL/Gcr3m/o4c75xzIPJDM640awXYIcjzAlzjYdMdh/yM0sutkbZ0R9j7iTpexG/3J2gP7DQUNYwq5qTbpjDN771DdavX58vX37MycycsZCPfPRqMpksvb2DPPHoOuKbKsimjatse+QnwWTUMaazIbJq8ftYaevAYjK+D6FUDxk1wZKlC7jppm9xycUfJBQKk5XHeC1P15bwxsfRSNBKW5wlvOlQV1dLMlnsb1VCMR7761aWnzybcCDBgR3D1BefATjqIWcUKusLqzuvNU444QSim/e+dMX/IupnVHH5t97GJ7724Tw583g8/PSnP6WmuoFDh8b46g0/ZNeuLgBEXWSp+ezXrD87d+zlqafW8vWvf55Pf/qrr1k7JZTwRkbJqLaENx2uuOIS7rvvAeDFXJJGHGlVeLrS/7TukX7TT3fbI9ad9hmOUPkVPC/Atud6mLe8FafbiiiJr6xf01Y+Urymi80r6Ot0sX0lYzP9Xaftw+Ho3TmKIissW7bsJev+p2hvb2f+/Pn4Hl1b9LfpYzg9pp+Lr2RsjHj7x0/gyT+8wLq1OXJWX1/P73//e9xuN1dfdS1fuv67eXL2r/GfrnIVFkm+992fUt9Qy/wFc/7De5ZQwpsTJYJWwpsGqprgHe84l76+fgLjPq5uXMbHZ7TgtvSi6znxe21THx+5IswOR5ixSRf5QDbNZtVLhcXMxv6CI/pzu8eoTtt4bnCCUDrnoD6USbLDkSTVaGV3LKcPkhWN5wYm6LS7eebgGKlsbltn32iYPfvDbPcH6I3k6iZUmU2mILOW1PF8MIg6uSKzuS9Aalzkmf1+RqK5PJ/eeIZHdgRR+lw8tyeQe0ZN57GtIdT+Wv6xJUowkdsO7A8meHZviNFxjR1jYSAn/F43Ps6aRSaGHV1ktFzdMWUcW1Ufnz/uIDZ5iGfu24nNaeG4Uxt4fngmP98bQ5ns156YF3e5TLfeh1/O2T0Es0l2JQZRXlB4bm3OoFRTNdbtHWLGTCd7qiaI6bl4jaQjdGnDyK4oB5M5m4qsprIpMMqyeisHMz1ktJy7/XB2AqF8hK70GAPJ3DPE1Qw7tEFmtTjZGJjIx2tb0I/FLPDsjhHGQrntsYlYkucOjNEwG/Yo4/l4bZjwUiV4eHrIR2Qyo8FgPMa2gA/sAfpSOdf+jKpy12CAFnsTVvMQmp4bx5Aywq7+TcyebfQCey2wcsGxWMfhHzvTbA7k5kwWla66cZad2cy6ZITM5EGOvYEQE9k0ewgwkMqNTVTOsiE2TpNu5rndQ6iT2RNe6B3HLgpsSvrxTtpUTCRSrBvw4rKL7Aj5JuOl8dnNe/hBz04eCf+DhBpn8RmzyIhJvnTHR8jqMiDw5S9/mWeffY6rL/sEglwDuprPzuERnJzqWk2ZOYyq554ho8fpkp9FFXWySixPINNyEFXPIqDnr9d1FXSVcGaAWGYEAE3TCKW6SSshNC2NrmuoqsqDDz7Kl770CWzWmiL/tBJKeKujpEEr4U2DiooKbr31Vv78y9s4f6KBGqs7/7eBZJCqY7xceExBh5TMKjy+dYCTOmsptxWSnG8bCaD7dRZUVOTLgukM24hw9ppObObCF8GT2/ppTEh0egptDccS7BmLcHJ1Q/4UqKJpPBOeYNWaJurLCzqgA2Mh+jeFOa6yoEdLKgrPTYyzzNGM21zo166YFz1rZ6ajoEMKy2l6tAFOrmkweFitD44wt92ePwUKMBRJsK0nwVmttflTerKm8Yt+gXf/7LugCdz22X8w0uUlrvq4ekkvJzQWdF8JWeaJvgCrquqN/Ur4qT/OxsIpOjl/PMVzTw1zWmONoV9P9k3QKHlodU6JVyJOdyLMma11hn49MzHKcbMq8qdTAboCEYLxDKubCuMYl2XW+b2c1FGP21rYo93Y5yPV72b2FD1aMJtiX3KEUxsbsUzxQ3tg0Ee3byYe85Qxz4a5b/w5DiS3cvXVV1NTU8OPfvQjXitctvRCfnLHz3nhx08ysqkPTdcJmA9w5VV2OuoKWqwBX5SubcOc2l6fj1dWVXls/ygrmqqocRQ0afsDEeJmjVUthXGMZWSe2j7C8Z56XOZCvJ4dGed96/rI6oWyigo3t936Az780evo7u4B4IorL+cdF17IZz/2IxS58BteUdPMNTexwLEk78Gn6iqbYy8wqHkRRdOUukkySgRRtObLdF1DVmJIot3g4adpMpouG8p0XUXTZETRykMP3cV1132OwcFhNC2BqsX/jeiX8GbH0ahBK62glfCmwTXXXMPWrVvp37TLQM4A2hyVLO8wZhFwWEyUuy0GcgawoNZjIGcAlTYr5RV2AzkDaK1yG8gZQLPbSbXJbjBkNYkiVWU2AzkDmNNQQZvdeL3DZMKmWQ0kCGCWvdJAzgA8ZhtOLEUGo00Op4GcAbSUO2kqM+e/1CFnWOpKpNh6/350XeeYc+YB4JJqmOkxuvU7zWbKrFJxvxzlBnIGUO2y43GaivrV6LYbyBlAs9NFk9ta1K9Kp8VAzgDmVpUzs8IoHHeZzThNJgM5A5hXV24gZwCVFjtlFquBnAFUWZwGcpar6yGt51ZUh4eHWbFiBXa7sT+vJlYvO46kL87Y1gEgZ5Rb4S43kDOAtpoyGtx2Q7wskkSly2IgZwDzqsqZU2283m014zRbDOQMoMXtNpAzgKve/S7++fCDeXIGcNZZZ/LrX99iIGcAJslGnbneQKQkQQJBN5CzXF0HwmFGyIIgIgrFBssgFJUJk/UEQWDzlu1cfsVFk2bUFkoo4WhBiaCV8KaAy+XirLPO4q677nq9u/LKIJoQ7XakpkbMixfl/luymNlXXULZlRdQduUFuM47DeuyBZjqa2AaB/hXA3uf7UHJqnQsa3pN7v9mx7PPPksgEODMM898zdqYvXIePQ/vQVPeGL5e1TWVnP22k7j9tjvyZaeddioNDfVs2rj5deyZEb/59W2cfvpJzJzZ8dKVSyjhLYTSpn4Jbwp84AMfYP369Rw4cIBz6haQ0WRDWqKoksQXT9NcYVxFS6gqqqYZVrvG4in0pE6Do7DaJWsa8USmqN1gOos7LVJhK2zVxLMyUbnYKiIcl0llFexlHmiei9A4G7msnrqVSewIqAMDoOUkBdGeIdITvYiCiKmlEduSeZgvPB1dFdEPjRJbu4P0wUFkVSGpykVt+VNZwmkznimrg/GsTDRb3K+EKtO/Z4TuTQOsftdiajsrGeweYjyZpd5RWDHSdJ2kKqPqmiHH50Q6iTUC9eWF2GYVlXi2uF9hJYuHLGVTVuHiskxkmnjFszJpRTWkt/Im0niTacNKkabrxJPF4zgeS5HKWKixFsYxq03fr6SaIq2msUmF+6bVDDYh90y6rjM6OorT6Sy69tVAVWU1ncfOZf1tfzeUx1NJIkmBckdhfkVTWULp4njFFIWMomKdEq+JRJpIWqXCXrhe03RiGQVN1w2rcBPJFJquIAomBEHgf//fF7jrz/cTCOT0j6Io8q1vf4NvfP1bZDNZNFOubv6+ukJCS2A0QwFFz6LrmmEVTNWy6LqMIEzd4tSRyHm5TZXKSICia2DY4tRxiBbSwOjoOL09fTQ3N3Lg4L4jRLiEEt56KGnQSniDQgAkBARMZonHH3+Er33s01xuauT02k6Gkwn2R7J0OhoYsgxy0Xluyl0S63vGWVjnYTyWQrNKLO6so2vAR3wsxowKNzsCYVYvbkFVddavH2Sp1UNXOEylzUpnuZvdmSjlM1xUumwcGA2xuqOWcCzNzl3jrKysZPNYgHaHm3q7nQ2jPppsTmRNp2ccZtcvouL9p+Fe0IAjPMjmJzcSezqD6kvjE7s5vsnOSCLN2sFKUNpQGWVZrZ/ZbhebfBGaze1YmyphaS2LTj+eRCaFvGszld172HZoCKtmxW2ysMefYpa1hYSeJlo+zEkzKnhhJEC7yU2tzcGmCR/NDgcpRee2PVaGgjNJaxE81SI/fvx/2PP8HnZ85yEckgnBsY+zOs2MJ5OIos786gr2+aPEoiKtDjcHdD+nLK9GQWNrMMJxsxrY3e/HPSHQanayMxigzJ7bfuw3pTlxRQuBcJqt63wssVazI+xlXr2TOqeN50d8tNjdZFSVsJZmRUMVQ/E4Xi3FkrpKnu8LMEOrwyqY2KOMckxrGcPRFKmgiZm2avqUIJb6LB1VLjZ3h1hIHYqqs9kbYnFZPV3RIBVmO82OMvYnxqlxiThNJgaSEVbW1DKakPlzl0SZ2El/chiTXoVNdNCV3MPa0OOccf5pnHrqqXzqU596VWdyg3k213/kf6hvqOeem//MQo8Dh8lCWdkAl86xEdKzDFbLrF7cxMb9I8wULFRbLGwc8tLhcZNUFCKSzopZ9fSNRxgbCrOw0sO6njDNyRYkQaLfNczqhWX0B+IkBiy0i1X0pvzYXBmaXQ5+sPMgvz/gRdE1RFHi7LPO5l0Xn8373v9edF0BNE477XS+970beedpH6JWWEGGGD71IIJkRVET2E1VSIKVKiQW2OeQ0VJsTWzFq0XQNRlRNGOWnKSyXlLZEKBjkmyYTW4EHdpNS6kzzWRcPkC/sgMNmGVr4J21Z5JUU/xt4kFGsyHckoXL689iprOVx/zP80xoByectJprrrmKd7/n/ciyDCiA+qqOUwlvbByNGrQSQSvhDQgRYUri8vPPP4/3v/+9zPj5o0XaogP1g5y3xrhtt38syNyOWsTDEnRv2j/CcTOMRrPPbupnheAxlKmahrcVOied/V/EI8/2cnKZ0Qw1nM4y2leLo7aK5s9cQuT5PYSe2Moz44PMtxu3ZA4mfATSTYiHJRmvth7MZwF4EX1qLxe/4xhMy1cgdXSidO0js3s3Gx86RJ3JqPHq0g5yzgyjds2bzPLFxzvQD1sk//gPT+a481ax7lv/ZPDZAwAkxQHet1xGFI3v9i49zMoO432f2TvGSosxBoqmEZkj0FZj1EI9/HgPJ3uMdf2pNB6rBbPJODaPHQhwnOewcYz6mVdWbNa7LzHB4nLjOs5zoxMsK2s9rF8qsiNIo8O4Kvb/NifRs0aT1oQa587Ir3jkkUe46KKLmJiYKGr330GjZQ6ryy7lYz95B1sePcDGB/ah6yrfOa2bZpdR77YuNc6Zh5nPjsVT1LWUYTYZx/FvfxtnqaXFUHYgOcGSimIT4dVPPUBANn7O/+nOn3HTTTezcePGfNkTTzzKb775JId2hwx1R+XdWCzGd0FTU4TkMQ7Pk55Ij3J4NgaHUMFK12VF/Wp3BelwGsfsYPwAyzxGW42sJvPlAz/gd7/7FXff/XceeeQxAHRdpkTSjh4cjQStpEEr4Q2PU089mUcfKSZnADZb8RS2mKUicgZgNhVfP12ZJIqGbaR83enaN0lULJtD+9ffS/CxzQQf3IiekUEpbl/QTUXkDDBsI+WfQRRQDx4g8+c7SP30R+h+P/bTz2D5Dz9L+clLYMrzmQ7/liQnKj+cnAE8fPN9KGmZlhNnFdrHVETOAKyW4mcwTfORYRJFbJbitszm4rpWSSoiZwDSdPedJlYAJn26sZmuXxLWacZMLBKpg0kwEYvFuO+++7joooumbfffgYgJm9NCXXslmx7MJaoXBAnHNDGYTm9iM0tF5AxAmiYG05VBbpt/Kj73+Y/S3t5mIGfXXfdhUqkUvXu8h18+7ZxV0YvIWQ7F+jrpCPYYdqk4Q4LTVFxmmZQyPPbYkxx77DFFfy+hhLcqSgSthDc0LBYLxyw/hicef/L17sq0MM2eS+1VZzL4w7uIPLvzNWlDj8WQn3uG9K9+Tt+tD1B+/CJaPn85puryl774MCQjCQafO0jn2QtoPn7mS19wlMHn8yG+ygc1TnjXIix28780FP5voaLCw1lnncoZZ5yXLzObzVx44fl84QtfyvuqvRExPj7O3LlzX+9ulFDCfw0lglbCGxBa3v18wYL5DA8OcRI2tkWGULTCakBfykesP83AWDRfFstk6Y+neb533HDHzXuH8Y9FCEyaxAJ4owkSFo09mcL1qqazdsDP9o1+EqmCUPvQaJhMXKY7XKirzJhN5KQLufubvyPeN5Yvf9g7yO/HeulK+PJlwWyae8Ym2BjuNvYr2s0fR3yMpQv9GkomuKNb5M9dBb8nVdN54ECM59dupevbt5DcP0Dr9Vfgr3JwyO9i50Qh9VVaUVnfH6GzvDtv4AuQUH0MJ1We+vWjqBmFYz5yMmk1w3g8xT+6jLkStwX8THgTBKccnBgJpBkZkNg6ZozXwz1RHns0SiJVyMvYPRAm6dfoDhbqphWVZ7oTPNIVQZlCBPYFQ+BI480WnjemZAibI+xKFeIKsNEbpCeoE8wUxsabSpHWZQ7GC/FWdY2t4RG2T8RIyoV+HQwmqLcoqBTqylqWrtgQrZalJJNJOjs7eTUgIBHUw5hqszzyu025Ql1lfv1edgdDpKesbPWnY2gW6A0Z47XTH2btwRHUKXV39vuw1icIarF8WTibZjCeZaM3YOjD9/e/QEqOoGm5GLzvfZexdes2IhEfL7r+v+MdFzIwMEC0V0JRI3kDXwBFjVFLNeKU9nVNw6XaqdCrDKRTUVOYJIchmYCom6kytRFWRgz9UvAynIySVNL5soQSxSLKTGQK766qaeyK9LPcvZK9u/cza9ZMGhoaJk1v37hksoQSXg2UNGglvIEh8ItvfIczapqxPPw8AH3xCN5UGqtNZlVtDaIgkFYVdioBXHNtzO2spc6T0xzt7PeSiCYRQxlWNOSSbodSGXaHYwguM8e01lJmz5023NA1SrI7iTVtY25Zzi9rLJVgvDyJLsuscFdilSQUTWPThI+4qYnjbvgqO773CJEeLxOZABl9gjvGB/CrVgRBQNdV2i0CHZZ6uuIuTGLutGFWC9BmN9ObjiGKubZUPcNcexKz5sCXrsc0efpNNA1x5dwEJCtpteX0XL5MDL/sp3L5Yk750KXs/eEDRAd8DMqHaK2IU6ZU0WTP6cG642H+2q8TyFhosLYiCAKKLvPpOy+jtq6cpz55K6Zg7gt5ODPK7OZxKjway+sm45XOsDcaJhKw0ak04DTl4rUrNorZJpOJV9Jmz+nEvNkYWpsfczrNMbYqLGIuXpuDXlRNwpGpocGW69dAKojgDmJ1KBzXkBvHhKywaSiIrgosbnLnT3Junwji80kk4i7munIawoicYkQZw2nNsqSiBudkgu7Nfi+ZrEiF1cpMdy62o6k4E3KIYNLGHFsrJlFC0VTWBSbY4LOQlN3YxdxqpKtN5+pvncw5F/xneSbNpgrMpgoEQeTb37meTWu3YNrq5yNLVRZV5WIwHE8wmIhjqhZYM6sOsyQiqxobBryIIrTVe2ityHnVdXnDBJNpSKqsmkwqH8/KrNsfZqLfQYutjnJzTtN2MD7OmDzKjV2biCq5E606Om2tM/j9H37JO97xTuLxHCGfObOTP/zuVn7y2X8Q7M0RnpQWIaoFcQpmak1tiIKEpquMKt1E9Dh1Yjs2MfcMMdXLIXkbCT2ENLllmTOkjVItttJmXYlZzPUrrk5gAeptLmotOc1lSk0g46POrjPb1YhVzJ3y7EkMEZNFMqqDCnNufoXlIKuvX8rWrs386le/+I/Gp4Q3H0oatBJKeENB55w1J+LcP5Av6XCV47BqHF9XcMu3SSaOs9Yxo7U6T84AlrTXkoll8+QMoMJuZVVNBafMac6TM4DVcxvJKlKenAE02J1UhC2c4Cm45ZtEkTUtzSz91Gfp++tWIj05zU6dtYqt0SwBzZa3EBAEiQFZZF/ckSdnABaxin2JUJ6cAUiClQMpN6FMW56cAWhKC70Tzjw5A6ix5giFY0+K3tvXsujz51PWVkuHZSZayp0nZwCzXB5ml+k02try/TIJZkTVxuizXSy7/OR83WZrI+GslCdnABU2K0vLq1hEW56cASx2N+IL2fPkDKDW4oZBJ6sctXm9oEkUWV1dj5Ysy5MzgDZ7JdmsmdWNhXF0mk2c1lnLkma3wWZjWV0lCVnIkzOAcrOddksjx9c05skZwIrqWgRRz5MzgEa7C5tWxgJHB6Z8vyROqWkkpVjy5AwgPiBQXdZAW1sb/z5ELOYqBEGkvb2FpUvns2HLdk7pCObJGUCzy0lVmZVT5jZgntQUmiWRkzrrqfQ48uQMYG6tBz2j5ckZgMti5m1Lamiz1+fJGcBsVz13DfbmyRnkdHdf/dr1/P73f8iTM4CPfvSjPHzHxjw5A7CL5ZQJZdSbO/P6M1GQaDbPpVpoypMzALdUi0Msz5MzyBnSWswe2m2r8uQMwCXV4TCJeXIGYJecOIQaFpW1YxUtk20JzHa1ElfIkzMAj7mSifVBFi1a8LJGoYQS3uwoEbQS3rBobGzEWlGOPDT20pX/izCffxHeA4MMPr739e4KgS2H6L79ORZ9/jycrcUnHv8Vhp/vwtVcfOrvaMdT92/gi1/84qtyrw988HL++c/HCQRCL135NcQpp5yM2WzmL38pGD0vWbKEOXNm89Bfn3sde/bKkIylKO3ilHC0oETQSnjD4qSTTiKwvxsOEy4faVN+uvLpdvBf0fWHlYrtM5DaOtnwqwdf5h2O1NarV9dA0prri/5++PUmi4TNZSE6EsJW48bksBhqF11/BBnEy4nXv7rHEe/7MsfsyFGZpq1XUPfvtzzGwoULX5W0TxWV5WzatB3IGe6+3H69kud9OXNp7tw5dHV15WMuCAKf/OTH+f3vb5n0FXu59ywuF17BXJ5+bF7+9Zlkmrq6upeuWEIJbwGUCNprAKupkhr3cVQ6FyFNLvELggmHtZlyxzwspoqXuEMJZSYXV514KZGok7VeH5quo+k626IjzGkxszk6SiCTExgPJGLsF7wkegNsPZhbbcvICk+uP0TLhIMnd4/n3eX3jIfonoiwbccQ+0eCAERSGZ7e3s+iWXY2RceQtRwh3BbwoabNPNcbYiiWAEFAO/s87vn5ffT4rOyODgGg6RobQr30Jd0Iqoam5drStAytQjWNJidp1T9ZV8GEl/Or5+EUImh6rm5aCSGqCj5liLiaE3rLepoxpYeHAyIPeQ/lD0jsiIyxM2znCd8Y3kwEgJ4Nu9hy1z9Z8tGr2JnMXa/qGjvTQ1xxpkJT814yWu4ggnuGme7RA3x1w2+JpuKIJomsprAv1o8W7uS+vWESk8L6Xd4QXf0yPakx+hK5VaConGFnYoDj2wT2Jfvz/TqQHKa9OcW26Dgjydw22ngqycYJL60VsCs6UuhXfJC5VVaeG5ggmM4dROiNxtitRYlX6uwM5tpKKQr3d4XRUx2sC4ySnsyq0JP0IrjH6UpN0BsPAxDOZnhi2I9DbWC9dxxlchx3RMZpqskyTA/eTE5Y78vE2REe5fI2CZncOOq6Rn9mBzsiz7JlyzYuvfTSf2PmAmikMiNo2uQBC13jjBonxzrrWTvqzfdrs8+HS5RYt3eckUguXiPRBM8fmsCpwMa+nBebomo82zVKO3ae7R4nlMrdd583xv97AB4Z09kXzR16SKsyfxjcwL7YKDoqOjoXXHA+5553DnfeeTeCYAJ0LrnkYnRd54kHNqOYbfiUPjQ916+YOkq55CKsDJOePIiQ0qKMZvvQEAkro7mn1DWiyjBzLcdQReWkcB90TcYhVjCuHyKmTkyOuYysj9Fkq2cs048yOe9D8hiVtjQH42NMZHLvY1xJsi82QKezgvFsf75fh1J9PLGrm87WuVgP8wIsoYS3IkqHBF5leBzzcVgKqxi6rhFNH8JsKkOY4iekqEliqe7pbnHUY55rJh9ovoSTPnk2E7uGGVjbQ1Ib5OT5fhbVF/QvkXSWdSN+3r6sweBb9pwvSE3ETrNQ0H155RS95iBndDbkNU+qpvHEuI9jqsqpsRc0NN1jUbq7FJZ7CqahaVVm35w2Wk+7iD9+7L58eVwdpSsdIaIWtG+ylkLWRlhpPwHTlCTSh9IHWOCupcle0Hh5syEe83dTYSqY2uq6RkweQTS7kcSCHs1jirPIYccuFuqqWhaL6QDnNdTiNFlo+tS7yA77WH/bX+lckGFJe+GLbDQic/kdvcw8ez4NjQ388Ic/4tFHH+BH132TC51LqbEWtFhJwpjd3axxF4xEFU3jmYlRVjeVUzMlNVFXIEFAS3NapydflpIVHu/xsrqyCccUjdgWbxCPW2BhTUFfFclm2CIHePvqdixTxvGhDcMEu9twUYhXWI5gdh7iwtmFrVlF1Xiwx0c9M3CbCmM+lgngKPexuqlQNyEr/G1PnPmOTuxSYeXw4bExftr/HHE9RwwbGuq5++4/ceqpp5CecsL2laC2tpZ7/vI3HLfeTWO8cI++ZJisNcGx9YUt6aSisC7u5bQZ9TjMhTmzeSyAWzUxy10Yx2A6wx17U/iGlyFMcU9LqHu5Z+JhJjKF050ul4uHH36Ud7/7QwwNDQM5W42/3nUbv/vhE/TsmXLyVUlSSxl1UwxwZS3LcLYHq9Ro8DOLKeNUmsrxmArPEFfDbM08i9vSjjjFf84kp1nmmEeFxVOoq4RBDHCsZ0ahfV2lJ9FNi70Vh1QYx+GUj6dDY2SE3Jz50+Nf4+qzv0F/9Fli8tCRwl/CWwylQwIl/MewSEY3dUEQMUlOAzkDcsfRS5gW9dYabJLVUGYTGw3kDKDcZqGyylRkKtugmgzkDKDWbKfaZjXkJpREkQpdNJAzgFkNZTTZjG3ZzBZmnnM+G+80ep1ZhBoDOQMwi3aapBYDOQNotFQbyBlAraUCp2hcDRAEEU0UDeQMIKy4UDWjzkwSLdglc17AP3H7Y3hOWcrM1g4DOQNoLDcT0HvonNHB+HjBymAkHTSQMwAHHspUl6HMJIpUOyUDOQOYW+VkYb2xzG424bSYDeQMYF6F20DOAMotViqq7AZyBlBZ7jGQMwCPuZz2ysPfJRGH2W4gZwAN1ipmVRnLnGYTbqvJQM4Ajqlw5ckZwNjYOCMjI6xYsZJ/FwsWLCDU22MgZwAdDg8zPMaxcZhMuETJQM4AZpa7DOQMoNJmZWC00kDOACJyuYGcAXzqU5/CZrPlyZkgCHz3u99i9/YeAzkDkEwOKkzGDA1m0QKCqchs1iEayRmAS/LgMtUayBmA2WQykDMAl8lT9I5JgoRZsBvIGUCzvYYkxvklCmZskvGeJZTwVkMpWfp/gPb2dj7ykY+wcOFC4vGch5PVVFXkvK1oaQRB5EDXIZ5+agMjw+OMjLw6qWRK+O/AduxighmZnuf7Xu+u/EsooRiRjfuoPfd4GPxb0d8rq6s5//xzue66T7wOvXt1IJhMSAsWIjUVUkO1D4ex9qqgg5aRSR76zw+WfP/7P+b73/8W55zzdpLJf28VTVVev1REq1ev5pRTTuHKK9+XLzvjjFOoqqrkm1/6Jg325a9b30oooYSXRomgGSCSE7Eevu0rMtUU0W638653XcJ73/tuBgYG+PGPf0xPTw9mwU6lfQFMsSPQdZ1KIYNXS7PmpBVcctm5zJjZyvdu/DlPPHUARU1TghEDyVGymlG4nFRC9AZSzKgqCLczqkpcUw6/HL+SxaKmqZxy9D+azRJIZ8GY7pFAUCFWI+O2FVZ6xhMpQlKWegorY44z1vDcT/6BomlIUwj4RMZPRo1hlQqrHLquougFI9UXIYoJ0qoDm1S4r6IlabFnmMgY69rQ0XRlUjM0CS1NWI7hmqK/0XQNX1Yho6p5K5DgQxtp+tZ7GDlkpslUiGM0o/D2Cy/n4MEetm/fAUAqlcLTVMVwMkDzlNW9tJoilS5+hpQpQ0KVcUqFeI3GUwT0DLWOwtgoqkY4qSK7tbyFBEBfLElUFOkoL4xNWlEJ+YrbGvJmSctJ3Obcioq1ykXd2xfRetZ7MYcnUA8cgGzuurizktozWzCLItaGCsweF1lNI9y9H9PgAZRdO0FRUFQNRU+j6KohlVRCi9NgtTGWKbyPmzdvY2R4jGXLlrF+/fqi/r0UKioqkBULsayK2zJ1zsRJi0kqbIVVIUXTiCZkZNUYryF/Ao9uoclTWFUKp1QCaRmncRGQ/lRP/v87Ozv5yU9+wuc//3m6uw8iSTn7l3e96x3cc88/cOJA11XDyr5TSGOVIuhaYWx0XWVuRYLBiApT6pqlFKoeRxIKq6GyJmPRpKLsmHElSlyN4ZryjkTkEGNyPw0244rdcCpJgy1rWOEcTvlR1ASSyTOlXxpZNU4JJbyVUdKgASAgCFZe5Ku6ngWygISAGUEQOP7441h9/EpqampYufI4Nm/exi9/+Tv6+g6ArtFsWU6b7TgkLPjVQ4SlENUmiTM9M2mzN+DNBHg4uJ3uTJjFS2bwfz/9X/buOciHrv0YqewEJVfsFyGR82AXuf2Hv8XerdC/7jFWV9ahodMrD3HafCu9cpTmJhdtlW52jwYhq1FhtTKopFk9o55YJsvmPT4WZCvYEfQzx1NOtc3GtpCPpmY7iqIzNqiwuKwGbzrJiCnCcfMq2OoLsLy1BodZYm2Xj5pABYO2WhZ84SPc//4/48sEGUunMFHOpng3muABdJKKD7upCouWodXcgEvyEFImkBAos9hosIdZXN5CQknTlZigTGrGJPVxYrWLCoud9YEx7hu1EckKVJks1FmaSKgx+rNDpAU7bj1Nu7UTSTARVIZpdVST0WI4TSZqrTWE5AAtjhDLq+yEHUOc8f7LobKKtb/+P46dUc2PNwb48y4zH/rUFcSTIb5307fIqFG+8pUvUVZWzpe//D8cW97Ox9vPJq4OcWyViwqLjZ2RcRqdFnSrgliXYnlzFaPRJAcH48wxVfL8UIw59kasksTuxAgrOiwMRjJko046HRUMJMNkxSRtLicbxtLMdbSg6jqH5AFOn2FnfzBMrdlFk8PF3liQillmrFY7jzwJrWIbcTWNPs/DqvNOwTSrlr3P9PPCXbsZm9jN+xYlCWU17tzjwU4zKTVKq8vHmXUe/jEWwemaxbwTZzPntDoWza5kbMMGAk9uolUR6Y1FGIpIVJoqCWijrKquQdZVftu7l18d6kIRLNgttaxZcxxf+sqHuPLKKxkeOfSyZ3GdpZ4H//EgW363g64t+2gpH+LCdiv70hMc11SJRRTZNOFjXmU5Q/EETrOZWZ4yeiJRUlaF1koXO7qiLHfXImsaO2JeVnVW8PttMht7W7EKZUSUcaptFhQ9wYO++4ir8ckTkRrXXPMB3v72t3PppVfk0zd95CMfY+Uxx3H7l5+gTGsgqUUZU4cRTVZWl8u8rboDsyixzj9MT6SeurIJrpyXZK7Hzd5QhN/us9AfrqLNmWBhWQeqrrA3OkwyU4dfHscilGET3YSUUbyCn4yQIatFsZjK0DSZatHOcvsynos8zlB2GASRMsnMVfVnkVVN7AwnsYm1ZLQYjY4US8obeMC/n6jmQkAkqXixSh7+/Pg3WLPmBJJy4F8PQglvKRyNGrQSQQMEwVGkEdP1LLU1dVx8yUWccfqpZDIZ/vnPhwhHYmzYsJlIJJKv225eTovVmMRXIMI7mhoNmieA7/T/jaxgYsbMVn7z+xvZ/MIuPvfZrxBPvbG3zv47MC7ofvObX2fpODTtCxrK+62DvOMMo2ZK03SGU2naqox6nUfWDnC8zXgsPyErCFkLpsNyLu6wj3L6wgZD2cbuBJmW92Art7P5N+vy5b8b2Y4kGvVRohphgc1ooqnrOsurI0Uar/FsF2fWGduKZLP8vqemKJn3aOYQDdYOQ1lC87HEU2w3cPyCF1jVWAFOF9YPf5bs73/C/3uii7t6cieHr/nEBYwM+njovuc5FH6EpuYm7rzzFk4+Oeec/8HWOVw/x6i7iqlp5h6XLYrXPU9HWGZvMZT1xP3MKSv2VtvgizDbZbQA6c4c4uw2j6FM1TUePOihwuymYn4Tcz94Crqq8egDz3PgsSDJSGGFK6UmyarWonjFtQFa7e2GsubFAtdctRTr0gWkX9hB4uGn0VNpdgRCLCg3aqm+07WHeycKW5ofuu5yTjv9eD79mY+wb/+eomc7HBbByuc7vsz7brmKe6+/n7g/d0JzYftGzu00xmZPIMSimuJT3VsHoizwGOv+bE+U/RMLDWWarnG3/3uGsosueicfvOb9fPGLN7B7924gdzDg0Uce5taPrifiM27XLqrsZ01Vq6FsTB7iwrnFSdK/u8lOrcU4b5/395KRjUvTuq6xU9+IKBo1iMHkQRTduOot6SZWOS5BOGwcB9V92MzGsUnIE/z5iW+wZs0aQ/qrEt76OBoJWmmLE8itoAksWrSA008/hTVrVmG1WrDb7Tz44MN85Stfp6vrwGRVc5FRojDNWQtREIvIGZC/trdnkDNOuZqHH7+VH/3423z8kx8kk8kU1T/aMV0MJbG4TBQFTFLxOEjTjI1ZEGCahNjT3lcQKW+pZGL3yOF/Ka47TZkgCEhCcblpuucSxCKy8WIfXk5bL94DgEQcdc92pBVr0J84MG2/AKLRGNlsYXtxuhiYBLGInOX6MH28psN05dPFRRJEzGYzs99zIrWrZtLzp/WMrz/I+rEhHKIxR6bI9PFimn6N7xsm9pdBEo8+i/Oc0yj/8FVEfv2nacdBOOz63/zqL5SVu7nt9lv50IeuZfv27dM+Y+FZBWafPIt0NEMyXMiRKr3MuXykuugvPTcEQeC6j3yIG274ap6cAbz3ve9h29ZtReQMcuN7OMxHSBg/3ZgdHq9cP0SmG4fpFgQEhCJy9uJfprnxtP0qoYS3Io76U5wdHR28//3v5p///Btf/vLniMVifOlLX+f977+W88+7iB/d/JMCOXuVoes6F7/jIwQCQb7yla+8Jm2U8J+jrLEcX9f4S1d8g0HdswNpzoJ/6bwuyzIWiwW3+43hK2XqaOO0H30Aa6WTzV/5K+PrD76q99dCEWJ/+jty7wDlH74Ka9XL8yT84fd+y9///nd+85vfcOqpp75kfYfHzvCuETTlvytdOOaYZUQiUTZv3pwvEwSBd77zQh5/7Mn/al9eK7wVd3FKKGE6HLUE7dxzz+W2227jZz/7Oa2tzXziE5/niivez+9+dxs93T1EgllSqcKvX13XEQQToiAafgUKCCiCRlItHNFX9AxV1hBDqYLJIsD++AASNrQpwvZoNMJPf/oTjj/+eJYtW/YaP/UbHRqHH9DYEBzCny3kDvRn48hygs39U/ybNI21h8boGgsSnSJs7/FGwKLSFQnny1KKwuaEl03xUbJaYYtkXyyAoqn0Bws2BeFUholAGN2uoMiFMeuKD6KrCopWmB+yliCsR5iY4suk6RopvR9vxkdaLayOTmQCZDToiRe2btOqwpaQl6Teh6oX+hWSxzELGnG18AwZLcVAZox98V7D/BpJD7F92IQvmdsG1MeGSaVSzF28AkkrbMnraETSvei6TCqVYnh4hLa2FgQEusNl7I8W5nJKlelSx3huYBx5SkaH7SMhZFVlNFWIV0ROE9bC7IiMMhU7I2PIQoSwXFi98WViyGqWnUF/vsx07DJSF13Io394gM033U8mlBv3gZSfgxkvvmzh5LOsyexLd9Gd3oc2JV5eeZSRbISIUohXSk2yOxzh4RFvvizxzyfoemEHnV/6BMmGwlbiWCrObIcDh1CYR7qu02iG0T8+zec//Vk+/elP86c//YlFc1bQaj8Ju1TY6hYQsZgbGUgPGzIH+LKjjAatDMUKMQimM4yEM2wYMdpdPDsUZJ+fvBEzwGA8QW9UJygXTqdqukp3akuuj+g0NDTww5u+zz/uux9pSu7XSy+9BFVVifZ4yTJomDOyMEqVO4o/G82XRZUkWXOIzYFCvAC2hL3UNoyTVAvPEJbDNNpV0nrhB4ymq4woB8gqccPYZJUoihbLmzPnYqthE50EFWO/QsoQEXWMrFZ49xUtRW2HxsjISGl7s4SjAkelBu2CCy7gYx/7GPfeez+//e0f0HV9koCJmCUnDmtj3ssnkR5FVmJYLTV57zJFTSErITymVhpsxyKKIrqmoSgR6i1m3t9WQ7Mjd1KvKxZkXyzLtkQYr5o7maRqWULZXlKKn3TWC2gce+yx3HjjjVx//fUvuYXy1oeEIFj41re+waZNm3nm0ad5X/MCVtZVcOZcO25rbmd+RzyI7IIal5W5tR4AvPEU+4MxBEXnuJpKzJKIqums2+9FTunMnummrTp38qxnPEb3wRQOj8DJS3PJyDOKyqZhH0oGOlMeKitrcX/iOh76xDd5qs/G3qhGUs2tush6hog6giLKmExuxMkTlxYlTYupjBNqHCwsy315B7MJehIBzCIcU96ISRTRdI3+1CCSqCBq9ZSZc8/QlwizMRBDFCQ6HDltkKwp9CeHCKsZgjoIk4mlHUKS+Q4nNRYrM5w5bZBCkvKavYi6wJxT3k1ZWz1dP3+M+7wHmfnuU9ndvYk/33XbZKwF7rn7Xl54di9bbwsjiSbQVeZUDLCqKc2KJRbaanLz/lAgykgkRdpvYY7enIuXqrAt5EMUNY5tdFI1eTJxlz+CN6ZRYRdZWp2LVyiTZe1IEhE4oa487/m1MzJB07vOxzrnGJ750UYCh/yk1Ci6MEFXMsz2pAqTP4xqBROVopMeNYg8uS1m0TRaxGqiWhZlMpG3ritUSxnsgplw1o04mYC+0TnOuS0JYulKPGIrNctamX/Niaz77o/QJkZYXFaPTcr16ye9+3nA6+fDTQtZU5nT2nkzMX566DlOfv91vP28M/jl/97Prhd6CWQP4FO6KbPPwCTauPTKs6nxuNh5y/PMcJg4vqphcs5kSdi7KLNnmGWpo9yc69eBhI+ElMXrr6ZCzyVqT2sJFGsPfXGRdUMz0PTcmCfVcXSS7E2uJ6blyHR5uZu/3/c3Hn7ocW695T6i0TiapuEug3v/dgcvfPMhPKFcWz3xANvDYU5vS3Ltwty7kMgqPNCTQdEFzp0nUe3Iacd2ekNE0yrVzWaWdebm8lhY5jeP6qTiZlZ56rFOxuvh8WG2htJ4xRDa5IliRUuRVaIk5QmS2XFy25Y6omjDLlUxw3oCTql6ci6FUbUUPm2QmDhJGHUdp+ABXcGb2sNlV1zM0qVL+OIXvwRF50VLeCvjaNSgHTUraIIgcOONN7J582Yuu+wyvve9H/Kb3/zekJtOQMRlbzEYLTptjdgsdQZjWZNkp9zSQZNjJeKkVkMQRcyWCt7f7smTM4C57koGsv48OYOcuWi1bR7p7Dgvnt7csmULX/7yl7n55psxm43C2qMNgiAhThIQSTKR0hR+M7iTi5a48+QMYKmrEk3W8uQMoNZlp8lu44T66rxdgSQKnLygjupWS56cAcysd1PVWSBnAFaTxEnt9TRGyqiQbCAI6JkMJ9TZiRDKkzMAs2ClQmrFYq7IkzOArMnGHE82T84AKi1Omu1OVlY05/VcoiDS6WgnkinPkzOADqeHGe4COQMwiyZmuTrw6WqenAEkdQcxNZknZwAmHIQnluKOLyG6exTPnEYQBN5RO5tqUwZFm6pD0nnuyfXUC/Ny5AxAkDgQ7qRpNnlyBtBZVYYcM+fJGYBVMrG6uoFjGu15cgawuLocqz2TJ2cAFVYLpzU7Oau5Kk/OBJeDU77yedSW+fzzS48ROJRbUbNLZQykzGxP6TBJxARBwIfKzuxQnpwBZEWRbmU0T85ydU0ENCeBjDNPzgBGE/U8NezCI+Zi69s+yOBDe1hx3YdZWdGcJ2cAn5wxjy+2F8gZQK3VzRk1x/LP3+3lx1+9h2uvP48vfO9ylsw+kTJbByYxZ2dx0WWn89z6XcTw5skZgFmw4EkvZoa5QM4A5jhr6Bl258kZgE10ko7P5rnBeXlyBuCQ6tmeeDpPzioqKnjs8YdxOl3cdus/iEZz9hOSJPHd795IdlcwT84AZrqquKAzkydnAE6LicvmO7lwoZgnZwBLaiswVWt5cgbQ4DFz7VlwclVznpwBvL2+mZh5LE/OAEyiHVXPksxOUNCUCWhahk7r8XlyBmCVPPj0kQI5yw0kCSKMp7YjmQU+8pEPs3v3nsl7HXXf1yUcZThqCNrpp5/O8uXL+eQnP8nVV1/NU089/Xp3qQhbtmxh165dfOUrXynpLIDBwSE+/emPvr6dyGQQXC4Ep/Ol674BER/wIzksiJbiE3kvYmx0guPPW0Bl/X9Xh2ZqrKXqi9chD45x5xd+QzZR7IX230DfgzuRLBKOY+e/ousO7hnmc1f9Eu9omBtvuZabf/5l2jsaAXA67eze+d9J5Xb1u68gmUxyxunnEYnktpwlSeJr//MZzGYTz/36kf9KP15rzJ07F4vFwoMPPvR6d6WEEv4rOCoI2gc/+EG+/OUv88UvfpENGzZMe5LoX2O6+tPfQ5v2lFJxmaZNLx6+/vrrqa2t5ROfePM6vb9auPPOv+FyuTjvvLej6TrqNDHT1Oli+/LH5ghV83X1VBotFEJwOiY9pg6Hjj7NTbRpfO2mvx60acqPPEdf3vNqupbX9KgZGXud54h9ePCfDzN80Ef7PKMNxvT3/c9im69nMlF21TtIPPIs8fufyHt1TcUriQFHqDvd86rT1D1w7yZcpxWndZr+1GGhTM4q3P6Tx7jhg7/DOxHghm9ei8tdWHWcbmzhSLGdrt70nxMv9uuKKy7ltFNP4bJLryYey62cNTbW8fVvfI7a2mo++5lvoMrydHf4l/d9qX4daWwEYbp4TQ9df2UHKDo7O3jwwYcIhUIvXbmEEt4CeMsTtFmzZnH55Zfz0Y9+9DBtl4KuK/kPGpepgRnusyinDuHFzw1Nw6o7qbMvwoI1r1VrEOpYYz+dMi2LruWEvHYhyUnlMJBwsCGYE8ymFZmNwSEuqZvLmWVgISc0T8k+4uoota6VWCSjP1Ymk+GWW25h6dKlr2VY3tDQ9SyaliKVSvHTn/6Kr371C9idEo233MMf9uXc0r0Jmb9sTSEfmMWdj4ZJZnKxXbd3HGFMZ8NuH73e3FbJcCzBxgk/zdUu1g9OoGoaiqLxXO84nS4X67rHGYvmxMgHxsK8sMuLqUxmZzQnklZUnbu7MxznnMc8dwCB3EpPWg1g1hWqVAe6kjswYEbhBBfMsrezOTREVs31qz/VT4tDZTzbjzeTOxwQksP4lW5OqNXxyt1ouoaqa+yNDTDbXYFJ6iOr5VZERtNetgQHqNOq0JXYZJwUzHKSVLqF+0d6icm5uejNjOA0B5jIehlKeYkeGCPhkfhq77N4Vfukt9SLX5smknqK3tgWIkpu3tqkCOc296F01/PgC2FUTSeraDy1Z5x5TgcHtD6Cco4MDGb8jJqHUMxZdoRzYve4LLNufJzFFZU87x8lJufitd0fZDgmszccInHKsWixON2PPc83tqeIpBvZHelHnjxAsz3UTyDhpl7xIE4KwjVVxp610sQcxKySI8a6RgNmzipbSYOUBT13GMOkJ5hrNTHXbUUgt20q62n6lC08mRjl5sFn84cWfNlB1H0bSZe7GKnOrZQGMyk2+sdZWuFmf7wv368Raw+Xn57ka2cMUuPKHbyodkR4T/NWzj34ANpEH5/54rtJxJMstNo5qWwJz/hHCWRzbY2lvYSVQbr9Zl7w5ohGKCPzo90pxuIzeXRimISSe4Z/eHfzlf5n2CY/gk/J+STGFD/PR28lrce5/PKLueTSd/HhD3+c8lglV9Vfy+ULL+RHN32TQCDEL779fX62vJGrl4fJWvfl5hcKUsdeLrnYyTZHkMBkJpODqTC99iDxcpmd0ZwBbCwj83Sfj1npKh7dMEYslSN6W8cCpC0Ktav3E7Hl5kySKHrNdh55Vx2XzEggoqHrOnVIvKvibM6vfhdlptxnnSRaKHfMYlzsY1TJ+cppuoqu+VjpOJ65pjlIk5YishIjkR5GFO0sWbKEwcEhcuRS5Ugks4QS3ip4Sx8SmDVrFj/72c/4/ve/z5NPHvmIeYvzZMot7fl/67pGUO7BYak3aIsySoS5UjsVpsJKg6JnkcVeTquea0gBNJQaYLbbSbWlQMCicpKvH3oe+bDk2NF0P9F0IU2L0+nkzjvv5Bvf+MZRfmBAACTuuON2xkZHuf76LwNwSm0LX+g8hzJTIbXQRDaCp3GQlTUFTYusaTwTGeeMJU04LIVx3DsewpSBWVUFzVI8K/PMwXFOr28weH49cchP65U3ENo2yuBT+wGIygnuHBqiXCqYx+q6Tlbs4eLGGbim9MufDVNh9bKkvDBnZE1lU6ifU2obDZqnfZEAfbEq6m2FU4UpNcNfh/qQtA6DV5RX7qfCVIN9ylzKaAlW1oxzYnV7vkzTdfT3reAPD61jw9o9XPfJSxkeHOfv9zyCN74jb9D8ne/8D88/vwn9hUG+Nncl1imJ3nvSXmY1J+gsK8QrlpVZO+Lj7LZ6pCnxenZ4gnZrBXX2wiqSP51ihy/K8VU5LZfocVNzw3X89qPfYcfBBixiIbVQTAkxmozilgq6LVVXOJTdTZmp3fA+xlUvi1y1VJgL+qislmEg3ctc51yDR9ie+D72ymNIU/R7mpbl820VnF2X06N5zjkec0MV937v/1juacQ9RSM2lIxi6wiwsqUwNhlF5dZtY7x7Xj22FxO92xwoH/8a2x/sYudPCumhUmoahW5Or202eImtCwwxlOjAOSUNUlyJc1/wCaJTbCp1XUfJBIlmh0EQ6Ozs4Be/+Anvec8HWKWdTrOtg+q2Ci77zjk8e8cL7Fn3G75xXGM+/RfAZl+I5mVuZtYWxjGSyvDc1iHeNttoqv3E/jE6spXU2Ka8Y+kkI7UxTptbMKVVNY17149wWp0Ht6WgXTsQjPH9J2ppsBb0ioou84/AAyQlu9H3TMmwwroal1TQK2a1NI9H/khSSyAIAvX1ddx++2+44or34PUOUsLRh9IhgbcQysrK+OlPf/qS5AzAJhm9kARBxCw4DF8GAFZTOR7J6N5uEizUWBwGcgZQZi4zkLNcWXHGAgCL5DL8O5FI0NXVxaJFi/5lv9/6yOVF/ehHPs4pp57Ce9/7bgCyimQgZwB1lnKappACyJltuq1mAzmDHDGbSs4AXBYzLslUZMhaaXMhjyeRbIV7lJmdWAVjW4IgUGVyG8gZQLXFQ6PNOL5mUaLMYjKQM4B2Z7mBnAHYJStgKTLydIplBnIGYBWdVFuN7YuCgAoIk1/20uTBCbPkMBgs79mzj6VLF1NnEw3kDKDZ4jGQMwC3xYzHLhnIGUCdw24gZwDVNjsV5kK/7MsXktnfS8ybNpAzALepAotgbEsSTFgFV9H76BArDOQMwCJaKTM5iwxcbZLdQM4ARNFCva3QfnzTXpyLZlLX1GwgZwAtjjJmVBl1iFaTxJwqU4GcAaSTiAEfbrtxzO2SjXKzucjo1S66DeQMwGVyETtsa1MQBDIk8katX/zi54jF4ni9PqrNdVS1erjsO+fw1G83sufRbuZ5ygzkDGBWhdNAzgDK7VYqXJYiQ+gau91AzgDqbA7qy4xjK4ki9eWigZwBzKl0U3VYFgCTYMZqchXNZUm0GsgZgEW0oaPntbi1tTUMDAzh95fSO5Vw9OAtS9De+973snbt2pckZ29U3H777bzzne98vbvxhkAsFuND136ED1/3IRYuXPjSF7zKkFNZ3M3F6YveLDBN+fKcv7CTifHiL7n9+w+watUKzFZr0d9eVZhNOE89juTaLa9tO/8GlECEyBObmf+eC//9m1ismOvqSfpfu0TeM2fOYP78+XzhC1/Kl530nhVse2Av+5/rfc3aLaGEEv67eEsStHnz5nHeeefxy1/+8rC/TJfGxo48xXAUclucuq4ZTBYBVC1BUjPmhVR1haSSNZgsAsTkOMFszFCWUNK4pzlMp+pZBIx/CIfD2O12JOnIp++ODuS24Hfs2MEdf/wT3/3e/1I5s5mYkjbUmkjH6AkbyxRNI5LIkpaN49gbiHEoaBybpKwQV5QisXsom2BwVw9V8wpbbgklhcOc4HBk9DQp1diHkBxlLG2sq+ga/oxqMMqF3DaaN2MUQGc0GVXPFomyU1qMtGa8b1ZLMZYytg/QtqCTQ4cGKS930dhcy/69fShqCn3KQYadO3eTTKZIV9qRD+vXYCpGX9RIOBKyQjRTHK+JZBpf2vg+BTNpwpP6OOcJy1HG/WR7BonIGbKaMb1ZTAmT0MKGMk1XkQSl+H3Uo8QUY7xkLYuqZ4oE6BkthaoZT4lqmsxoyth++IkXKJvTTrbcuHo0lo4xEDbGW1Y1IgmV7FTTVLsDWZYZHzCmBstoWeJKpiheUSVJQjXeN6Emig496LqOrmksXLiAO++8jbvvvpf+/gFMApzz2TU4K+xs+ceeybioxDIK8mGrcEPxOIOHzftYOksoVnyIICCnDUa5AP50Gm/YmCpK03QimSzxww4iDETjpHTj2Ki6ikcyFY2NQJakGjGUyVqmaMU0F4f/bmaGEkp4PfGW06CJosgdd9zB7bffziOPTD1eLiEgTp7q0hAQqLLNp9o2H1Ewk1T8WEQXmpbBpjtwmWpIaWFC+jgmyUmbReeimsUIiKz1D5BRakhpQdocHqqsHqKyD4c5S5nJCUKA1ZUNJJUse2ITtDsaGEiOM8tVhcds5x/eg/zdN4Gsa2TUGKJkRtNkUtlxMnJO0CwIAr/+9a959NFHueeee16XWL5xkNOiAXzoQx/k2muv4Zor38NZWgun18zlsQkvB0LNaLrEgqZurlki4EslsWNhhruckWyCUHmaWXVl7OoOsUyqRtN1tmd8LO2ooMsfoa3CRVOZg31jIdJRDY/FwngmyaqWGkIpBfWar/Psl//JwOAOLuiQqLGbuaM7wgP9Vai6ziy3wKLyJhJKnIjio8NRx3B6jPnuBiyixHB6gLluB2PpJP0JDzaxlqzmp71sgtkuN9tCcWrNnaga7I+P0GyroyfhZyxZgUQZvuwEUTmLJFiJqEGs5mo0PYuuRqkxNRNWxik31WIR7bgto5xaZ0HWVPZEJD5z9w38v8t/SnJehne9+3ze/94PEcsMkvPgMyEIVkDjph/eyNNPP8fOJ9fxmRmrWFxWz4ZAAokZIGiUle/h/JlW9gUi1AsV1FiddCcDWOwybouZngmdmeZWEmqGQWWYY2sq2BX2s6jKg8diZbM3xHHf/3/s+dkfue2xCcKpFjJ6HF0IU2OtpyvVxaieREPAqYi0SjPJ6nGa7U5qbdVMZPzsT/iQcNHmTPDO+g4UXedZ/ygiDUQVLzNcFVRayhhIThDJgiRY6EqNksKNoqcJyIcQTVbK0DnLs5IykxuEQxxfqyFrCoKgceLnr2HshV1sf3Ids11VHEhOsLK6CqskskcbZVGnk4FgCmW8nAaxkjE1hFAZoqPCTmjGEha+70PE7v4rv/ntOoRMJ0F5nOOrrDTaHfQkfICATTTTn1BotLURV9JsCvnwmJrYF++jXxbQMRHM9pESImiaTDIzgapnueaa97B69Uo+8IEPcUZjHX9833upuPwyfnzt9zgwWI9MkPObVBZ7XIxmg+CK0FJmZ0CLccK8WmRNZ5MvyLLOWnb2BKnzOakW7RzMBnA26DisEiFVYcWMOsLxDBtf8LPQWsmuiJ9jGsspt1rYngzS0O4mkZFRIzILyssZjSXpC8aZV+lhx2iIY9y1SAj8ek+akWAHKS3Mco+ZTpeHrdERfje2h5QmsdBeyYVVK1F0jfWBQQStnjFlgBHdjyYKxDNjxLJDXHzxhSxcOJevfa2UEu9oxdGoQXvLEbTLLruMk08+mY9+dKp/lqkooW+NfRHVNqPvkawmqBKbOBzLy+MsKms3lO2NDOMytRbVneUeodVh1FNsD/ezzGO8XtZUrtz7eJHfWSI9lCdpxx13HN/+9rc566yzpnvUoxYXX3wxn/70p7n22msxDbTQYllu+LvHMc7PTy92Gd8W8HNMlVEXszXh5aRFtUV1+8ditJYVNEfS6RfSNRym9tENhnrRrMz9BzuQRONKp1/uYVl5m6HsUMKPrDVwOERhgFmuRkPZs95hotn2orq7kv1YRKO+SVa8NFtmGcpUPcMMd07z+Im/vY9fXX0Ha96zgn2RHdzwg+sPu6uAKNi49toPUFtXy/9+57sAXNt8GZ3ODkNNzdTFe2YWe8Id8KvUWI1aqr3pbs5sK8TWNHcOwtln8f63/71Ih7Q58yy62Xhfu65ybvmaorY81iFmu4xx3BoapNZmTKauahp3jB80pD0CqBVjHOcxbpUrWpz3zYwhiQKVV59DdthL/JktbI8OsrrG2NbecJB2a/E4+uz9rPzkJxEbG5GffQZl8yYe7g4zQ5xpqKfpOjvDAuVm4zj+cmAnPtX42ZFWI/TGnkAQBBYunM9NN/0/vvCFr/IBm8C758/D+dnPkL7nXtSeHraOR2mmmcMR6xxkabPxvk/smOAYwTjnNF1DWKxQ7TbqAh9dP8BJlUbtrTeVoqHOVqRde3qvl1XVRruWdcNxxMTcon495w/QbDfG8T7vZg7IxlVNTdP41A1vY8PG57nvvvuK7lPC0YGjkaC9pbY4KyoquOaaa/j+97//knWFaR79cBL3Isxi8Tbj4eLoF3G4yBwoEga/eM/pyW6h7IUXXqC8vBybzTZNvaMXd999N3fddRff/OY3EaXibZAjTWtpmvGVjvCDwyQay9Wt62g8/niEMiMJMQliETnL9aD4vtPNOaCIrOQKj1D3Zc9bEUGQEEQByZzr35wTO9myduu09wXYsWMXzc1TfqBM0wfhCJ+R4jSHX8TD3gXLsccQf37TtM+rTzMO08UQcoc/Dsd0YyCJIvo08Zp2vAQJaXLMM/1jWNpz5GW6d1c60vwShJyI3+FE7ckleT98HuXaEooOFQFMF1oBEUEQqKio4Pe//wW33HIHu3btwWYyYT3zTLSREdSe3Alw8xHUECZpmnk/TWxFQZy+7jTPYBKEInL24j0Oh3ma63Plxe/udK+jKIo0NDZw4MCBae9TQglvVbylCNq1117LQw89RH9//+vdlVcFuq7z9NNPc+GF/4Fo+S2Kn/3sZwwODvKjP3+Nqoayl77gP0U4gH/HduynHP/at/Uqon52DZGJGEpWwemx073vyCLyI5miviqwWpFmdJLctfe1a+NVgj6Nju/lQrDZIJNBf5XNVNvbW4nF4txzzz8AqJo9C9OC+aT/ft+r2s4bER6Pm/r6elKp1EtXLqGEtxDeMgSttraWs88+m1tvvfWwvwjk/LwLW7l2UzVWsYyMUsj5pmsy5boJRfUZhahakN6Ywni6IGL1ZyLElSxjmYIfj6arhJVD7I/GCWULHySDySAZTeBgzJsvSykyG4LDnFVez9TfkOlsAFlJMHVYnnrqad75zosxm43bNEc7dF3nS1/6Ejv2bOGjPz6XpSfPACChRVkf7eKzmw8hTxFvbzdHkOdamdAKX75D8TjRsMb6/f58maxqrEsnOVRlJqwUhM9d3gijjz+EduxiBFduKy4uy2ycCIC0B0UvCNB7E6MMJiX6EoUvaW86wVMTEV4IHkKdIsJfFzzI38cCDCYL82s4GSUsa8TU4XyZqinsS+4nqQZRpjyDoEdpttvI6IX5pepZZGGc/mQftbOqCAyGaJxfz9joOAOJgt/elGii6wqZTIbOjnZmzZoJiNzrfZKR1HihX6kADwyr/O5g4bkyqsra8QkGkj5iU7amhrJe7DaFfZHcoRqppZmMP8ifNwVwWAfRdCVfdyI7TLlWDWqhTNI06kQPfcn+fAYJXdcYywxyIJbFlykcWhhLh0mpKsOpQrxkTWFbqI9aSQO9MI6KEiOQ1jmUGC2U6WlUYZgHRwJkpsyZbkZxtmQYUQpj402lGEtm2RoazQv+NV1jW3iE/gmdrNON5s2NxV5fmn0TbjYFffnrs6rKk95x+pPjJNVCvPqSPhY7yykXCyJ8Vc8iqFnmN67iO9/+H2666SfIsszn3nUhJ37q0/T/5a/oidwBA5+SJt2u0l02kj+wpOkaB60D+FJpvPHCZ1JfJI5YK7KXwmnejKawVRthW6+XaKowl/eMBjF7JLqmzM+oKnOgLMP6VMRwQGJrIIBUB0PZwth49QzCchPh9iFDvLx0MbuunyyFz+Ce5ARDaQVtygEgTZNZcGw5u3fvfsv88C6hhJeLt4wG7frrr590nv/pZIlAjui82F8dSbDQ6DiOcktOG6TrGgnFSxl2Ws0zsIi5k1sxNUBIDVBn9lBjyW11KLpMWh+m0gb1lhbMYs66YCw9TkZL0e5w0WDLeTIllBR+eQSnJDDH1ZLfJjkYHyajyVRZaqi05FZ9/NkIt4xsZGt4f/5ZcmMiAzqCYOXBB+/hgx/8GOPjY2haipyLdgkv4swzz+LzH/8ykXCKX//6bxzYNwSASJLPLHdwyukNLJmR00Il0jLPbxwkfTDF8spabJOnZHdHAsit0LGilRlNuXEMRJNsX9cDQwmOq6lBEkXMb7+AMRU23XwrLZZqaq05sjaaivPYqMJI0k39pDmnqqsE5UFicpZYth6zkNuqTqgB7JYYAxkFi1g5WVemxhKkzVaGR2rFNLn9M5oeZSAZJaJKWCezTshairQaYIajnE57e35baSA1QDgr02SvxzHprXfpjWey9sH1hGzjlLe5+OY3v/kvIinw29/8jqHhcb57Y+490nWdDlstDaaF6Fpd/mSdLoxxZWeUWc4yWhy5fgWzKbpiAaoqZNY0VuW3wDZOeBFXnIPFM5P9t2wGcga+m/x+xjLgknKaJU1X8amHcJp15tvm5z3SwooPnQQes5Naa04LldUyxNRhXCZosbXk4zWQGsWXyaCoFbhNOd1VSk3QlTxEVjVRJbUiCAK6rpPWx1jigWMrq6iY1L/5MmEaVnlY8b4zqHj4llxbqsrag378gxbmORtwmXJ+aj3xIMFsgmqbnVmuSsyt9dR//UPsvfs+nvj909QKMzFNbqcOpEawSXHsYg011ly/InKCgaQXVTfR4WhFFITc4ZVoH08HQjjFWsyigyWrZ3DyhfP51hc+xY2nLeGcb34Vuesg4bv/wdagF0uryOpjGnHbcv3aMxikd3uSzg6RBQ0eAKKZLFuH/Eh2M8fPrMcy6d32Qq+XYF+KWe1O2ityc2YinmJ/JIrVYmJ1ay2iKKBpOs/3TpBWYNkxjdRM+qH1eSMc6pqgzGZmeWtO35lRVNYf8KKVO1h9Qidue65fO3t8bLk/wjx7lnkVuTkTzWa5vy/F7YdkknpZ3icyqXgJZHqIZQf55je/zoEDB7nzzjvJHWwpZRA4GlHSoL1JYbfbOffcc7njjjumlAoYbTUE7FJlnpxBTvvjMtdTb2rKkzMAt1RFuWTPkzPImSy6xA6arB15cgbQYKvHbSZPzgCcJjvlUhXz3W0GDctsVzOiYM+TM4BqSzkdNqOuSRAEBMEy+Z+IpmmTZRKCYDSELAEef/wxzn3XmTz6xHpu/tmXuPnnX6Cq2oOGA5/blCdnAE6bmZOOb2NNTUOenAEsKq/CVO3OkzOAqjIHrZ01HF9Xl9ccyk89SvPChTTMXZgnZwCNdhceK3lyBiAJEjWWDsKZqjw5A3BKVQykMnlylqtrJpitptrcmScbAI22RuKanCdnAGbRTpm5nJmOToPmp83eRqXFmSdnDo+N1rnN7NvRTe3sKjZu3PgSkdR57PGn0PXCPQVBYCAdQNCbDLYHgt5ASjbnyRlApcVOs8vGiU3VBn3SqrpaXB3zSQ8WLB6qLR6cZilPziCnA6szzWKOdY7BwNZjqkEUyJMzyBnSuqUmOhwdhni12RtJKlKenAHYJScN5lqqTW153acgCNjFRtqdtjw5A6ixeoiODFLdUOiXRZI4fV4dMx21eXIGMNNViSDALFduHG2zWpGcDkzbhmmU5uTJWa5fTSQUe56cAZSbnZSZXcxwtuXjJQoCy8s7cYplmEUHDreNk85ZzNihKKfVz+aMd70T1Rcgef8jWESJ1dUNrFhSnydnAAtbKylrUfLkDKDMamFJUxWnzG3KkzOAlTNqcdWKeXIGUOeyU22xsqa9DnFSPyaKAifMqqd5ZkWenAF01JZjKbfmyRnkDHxPW9DAcWs68uQMYMnMGhrrU3lyBlBmsXBcg4UUFQYTb4eplpTsy49VLv/miz+6Syjh6MBbYrZfe+217Nq16y2bRPfgwR4uvPDc17sbb2goisKD/3iGqy76Eps37eG3d3wDd9lrsC2cySA/9iCz3nsxotP+0vVfRyw4ZSYDO0YIeSO0trYyPDz8ktfs3Lmbk09aTWtr8WnA/wSiWSLpe+3MW191vLKdBQA87zwNxR8mPTj2qnVj1WlzWbiinUf/upmzr7sYy9JFpB54BBTlpS8uoYQS3tR40xO05cuXc/bZZ3PDDTe8ZF39CEvjUw0782XTGCJquob2MuuqR2hruutfat32wQcfZeHC+S9RqwR0nXA4xp9vf5ihgTG+9u3rULXicVBULa9rmorp6qrT6ObVPTsJHeil4oq3G46dHUkuMP28m2Z+oRYZHh/p+iMZdr5YVzSJHHfRYrY/0oVgEmhvb+fQoUPTXjMVPT09bNm6ky9+8ZPGu77MOa4cIQYWR3GGgunfO33a8sMNXl8sm658unGY7r3L3aO43FrpAVU9rN70bamTZbZ5HZjqq4jc/ywqR+jXtM/1r8dxxSlzuP/253nv586mfckcoj/6JerYhKFfyjTzdrr2FU1Dm26O/4vnKip/mW1pmo46zcszXV10/QjvTmkrs4SjG29ygiZwzTXX8uMf/5RYLDZZYsJiqsFqbkAQTLyYz7HWUsP7Gi+mySSjTDqwy2qUVhM0OeyElZxuSdGzZIVBTq1tIcNA3q09KI8iSSEm0iFG0jmBcVJNMpDqx2NuZle0n7SaE9fujw0xlDTzuNfPQDInQPdmIrwQGsOs17AzMoCiqyi6ylp/H+HkQtrMhbybuq4hYEIU7Oi6ypYt26mvr+Pkk1eh6zJv+mF7jeBLbCOZzX15fflzP2LBwk402wV84/ZB/NGcSHrzgVEGNowwIobZHc6JpH3pFBv948wZgCee6CKZltE0nbVbe3GORtidCNIdzomZ+6NxHtmXZOLO9fjNAq5zTiCrqWwIjHJCtRun5QDxSVG5P+slqowzr9xEXMs5yyt6Bk0c5LLGOVSYCoL/hOJFUBU2hAby8yuuxFkX2UVcFAkqA6i6jK7rZNQJOuw1DKdGCcm5Z4gqQZzmft7ZbCWu9rHynQuJ+GPc/cRf6LFtIxKJvqxTcJqW5KGH/onFap78t4yGwo70A4SV3DNktQSV1glM6mweGfOSVnMZBTYFxlEzlTx6ME1PJPc+9kXj/G2vTPPsFrbseAFNzxnCbgj2MpHyEFGGyWi5lbWE6kcjQiCTYTwzNNlWmoHUIWSljr3RXlJq7hkmMsNUWRNEFB8j6dxBhogc44XQAA6xjuF0H4ouo+kag6l+UrKFuDJOUs2tsqe0MCbRz6F4JS+EhlB1jaym0JvsZVF9B4d2HGAslhPs7xoLsWFLAlVMsyuSaysqZ/jrkI9t3vn8ZcCP5aRlyCM+Nq/byKGImZg6wdDkAYuwHGM008ex5R4Oxg+R1RQ0XaMn0c8xFZClF182d5jClw2S1g9xwxw3y1Y6aZ1Ry8KVbVRUZ6iOPcR2dxDvZKaGfZEgA2qAwO4IGw/mVu3CyQzP9k+w6qQ5POcPEUnnPpM2DfpIJGT29nrZNZybM2ORBOsOjrCkpYpnBydIKyqqpvHcoXFqsxY27h6n15+b9z3+KFuGfFTLOmv3DqFqGqmswjMHRli6qIX1/jDjk/HaORxkx/YgIw8Ps2lXbhzD8TRPr+3i+E43G+NjROVcvx4b9vO/m52YFJWMEgZA1hKMJreB6AAk5s2by9jYGLkfNSX9bQlHD97EhwREQOSee/7KV77yP3R17UcULVhMNQafJUVN8c7q05nrKhglZtQsz4f3sNS12OCJNJgcZE6ZhxprQSMWV1JsD48wx2U0mxxO99LhaMQu2afUjTGRDlFpKRjYarpKUjvILOcMg3YtJAd4IZBFnmJMKWsZNib+Qhbd4CGlqglOPOlYrrjicj784Y9MluqUPqymh8NUx3z7uZx53vFcfN1JXH/p7xCJcd3pA7y92phT8+EDYxzrqaHMUtDKjJMhWJbh2CmeZ7Kqce8WL7PkOflxNFeXU/f5ixi993Gs2/vzdeOyzG96w7Tb5xj88nZH+pjhrKZ6iqFrSE7w97FuyqV2Q79kBogJFvQpui9FTdFhLqPDXqir6SoZ/SCXNrfkk2Pbmypp/sIFnH/VVezq2cknPvFxLBYzN910My9HZG2327n99tu5//7HuesvDxj+NtPawQeaT8RlLmjEUmqIKpuX2VPMdhVdZVuihzoWYhJNnPDz97HzBw+ybc9enhgHRS+8Y6ouk1BGaLLMMsz7iDKIS6rGIjqn3DdFk8vHcRVGA931gW4Upd2QED2hRBjPRLELBQ2iqqvEtD4Wlc01aNcUfYyL21K0u5w4ls/DtmgWI3+4m93qIGscxrYeH5lgT3AmArlxNNtMfPyv70GLBRi4+XFSI4V0cBuCvayubMA5Rbs2mo6R0eMsKS/oHbOqysMTo5xV04xZknDOb6Pt+stIKArZxCEa4gWD5FgkxWO/3MDbm4wGy+szQZadMoNqTyFevkCMXet7OLnFaDT7yMAoJ8+oxzklT+tAMIZ/OMVCz5TPJFXj6dgEb1vQjFkqjM0OX4ia9hpaaqZ8ViYzPPngAU45zHx2A0GWNbuomvKOTURS3HCfTH+oEFtN1+iXN+OT+/PbCueccwYfvu7dXHDBOchycUqqEo4elA4JvKkgcP7555HJZCYNDAUEzEUmmCbJzmznbEOZVbLQYKkoMqystpYZyBmAy2Sn3FysNbKKdgM5y9V1IwlGwb8oSCia3UDOACrMVQZyBmAWrVhEZ5HBpyCYGBkZpbq6amopL705epRCk7GL5ax7aC99XeO8+3Onk07bcKWL41XpMBvIGUA9VhoPMxI1SyKmw8ZR9kcY+fHfmXXx26i+8qz8dqfLbKbcYikyM260lxnIGUCF2YlNKHbmj6i6gZxBbi7XWqoMZaIgUWMz5ckZgkDHNWfgfWgLu3p2AtDc3MS2bdt5ufMllUpx6623ctKJxS7+TlPWQM4A7FIFVZZyQ5lJkEimyvIkKNbvw+y2UWstM5AzyB2QsEn2onkv4jCQs9x97dRai7WFomAzkLNcX8uRdKNbvyRIuM12AznLlXton7RPMTfVoqfS2EULllTxu28zOfLkDGDZ+Qvp2zKCiAkO2zqvtJgN5Ayg0eam3WF8Losk0WATMVvM1Fx0IjO+8wGy3jAjP/+bgZwBuMvtVJYZ7wlQZbIZyBlATZWbGkex0XWZyWQgZwBtlW6a7cbrzZKIy2QykDOAZpfTQM4AXA4rTqW4XxVJDOQMoK7cTm/YeL0oiOiaYpima05YyV133Y8slzR3JRx9eBMTNLjuug/xne/ceETtz1sJPZNu4aeeesrr2Y03Hf74wyc47ox5LFkz4zW5f2bUz9C3fo+5rpLqq84G0xHs3P9LaDjnGNB0Bh7cnC9zOBwor1BU/sQTT7Bs2WJWrTr21e7iGx5SmYtM/+hLV5xEbWcVqVgaTdNIjYX/7Xbt1R4a3nsWNRceT2RzFz3X/4bI7iMbCx8NqKqqZO/erte7GyWU8LrgTUzQdCRJYmJiovBv0VokZq41uQjJfkNZVsuikUHVjVuEcSWKPxs2lIWzCQLpRFHrGgmSivFUWlQOo+pRQ5mqK0himqyaNZT7Mj4sUgAjsix0NSAcxjdtogeTYOc737mRG274EpIk8aK2roRiyHqatJbTgQW9Me64+Qmu+MSJdI0Zp7um60REmZBsdI4fUhIMZYx6rYyiImspMoeN4/5YlD3eAOO/uAdThZum669GrnZS5QgbzFgBBMIkJnU2LyKrR5hfGTOU6brOLIeOBeOWTpmYxiwGD6srY5MSZNQstoYKmi5cyaHfPs7G8BCSaEMURZYsWcyuXbt5JXMmk8nw3Nq1XHrpBYZ++RSZQNY47xOar+i9yagKcUUmo+WeQUlkcLVVM5YOYxEjhrqyniamxdA04/uokCCtGmOT1uL0JYztq5qOP5MmrRrHLJQNktKMbSl6rv+Hv4+KHuRANHdfc3MtWiJNJJvBn1ZQDlsV2xfOEpVz73lZrYvZazp47K9PkrFD84UFQqvqKtbyMCk9abg+KPoImgvvvuf05TR+/jLO/e1XqThtGbEdvQz+4K8ABMwBenqMp0LDkQQxi1p00MUbiTM2bnze0bEw4yFj+4qqEfDJhOPGnJe94TiDh8UwrajEFZn0YStY/aEovSPGuRiKpIgL6aJ+BYQs4wnjfQ95MzTYjGWarmIWbAhTbF7sdhuaplD6rCvhaMSbWIMGjzzyCFdd9R4i4TQOSwOSZEPTZLJKHIdk5VTPIlaU58T3fckhnGIVATlIhbkCt6mMYDZIWEliFRxoJGixt6BoCmPZIdpttWyPjKEpdVhEG1HVS41NpNws4rGqtNrrSappDiXGqTDXEVEmmOVsxiya6EkMk1ScCCSZ7bbQYKsklI3Rn4zgliqJa37muVoA2BIe5GCkHLclwurKaiosbkbSPv46/jzdyTDV1hmUmZvRdJVAeh/fuPnDPLf2Of785z+9nqF/w0NAotm6nBbLMSxqUfnaH65n640P0dW9m5WzQ7jLM0gukYX1FYRSGbb1hJgleuh1JzhhcSNWs8SG7jHqZImRsRTutJ02p5uxZJK9XhmnVsvmUJpmWxs6OqOZPk6useJ8+2Lmn3cayj8fY8/aDTw37CSVLaPWFmVRWT1pVWZLeAILTTgcPZzZ6MJttvCCP8Afe5zIishZ9RZmOmuIKinunxhgb8LMiR6dM6s7MItSzrU+XoXLEuTMeoEWRxk+LU3TZ65idEsfH/7Jzwlpue2rpcc2c/V7L+C9730P050cPVL0QGT+/AX84Q+/5Ywz3omWNVNubcFqKkfTsnRazVxQPQ+HpZ+TaquwiBJbghO4xEr64hlEPNRYPQSyUQLZMCvefiLuZW3s/uFadHS2hgfojjrxKV5MkhuzaCethnFhxi26kESZanMjip7Fmx3BLlYTV31UmRsxi1Zi6hhLPRbSqkJvXMIt1ZDRksRUL5WmWkYy45RJTYiCREAexiy4iKkhNNGKVXST1WKUmxRmOmqotgdZXNaMhsawOsSH//g1HvzEd6iVHXjMdgaSQSRzkoxq5e4+Kw6xGVnLElFH+cjX343ekOGCS97BSSedyKc/+Qm0F4ZJrdvIvJkxFtSW4U9mWHcgQ1mqCblugDPmVWKWRNaPJFj80W/iaG9E1GSkVJKJh+5nw1/XUU4Z4uwApyyqQ1Y1NowFmX/cbPbtHmC+y0a1y8b+kSCJgQS2DCQkhWPqq4hnZbanEyxd1cGO5/tYanXiMpvZ5g3gKbcQjasQNDHL7SGQSdMnRVgy30NXKsXxc5swmyTW7RmmMSwynIrT1uKmxeNiMBRnLJakqdzJYCzF8R11ZBWVjSN+Fs5vZM+eMeZZ7FQ5rOz3hon7NGxmE2o9HNNWTSwjs7XPyzxXOf/YqFCZ7sAmWdgdHWWtT2A8m0QVdGySB1lLMpbdw9ITOvjIR9/DVVddUUrzVMJRqUF70xO0d1/9PpR0XdHf3lGxmPmHCfv7EiNUW4r9nYJykEqzUTy+LdSLjVZDma7rnNYoFiVQPhDvY47LKCQOZUPMcBXniOyKjTLD2WQo646P0O4o7td3+/dgEo0amqYFOp/92lV8/OMfp7u7u+iaEox4W80qrmo6i+WfexvjLxxiZO1BZF3mqotG8iacL2KtP8jJ84zj0NUXpG6gWIf0i+0SjVZj3YRwkMtn2TF1tOK89ELkg70k//koz3abirSN/dkuzmquMZTFZZlD/kYOx67oIIvLjHNxLO1jRXVOi2Wb2UTte95OumeEFZ/6Kmm9oDl63wffSSod5qe/+M6RQnQYBKCwTbt+/XN86pOfwX+ouqjmR1t0LmpsM5TtCkVRlM6iuoOOLFfedB0PX/dHNCW3Uvaor5v+VHlR3TbJgV0yzvuRzCFqLcZ3LKulcUrFYzOQPkSlyRivoDKOMo3W77z6FLNcBVPamuUdNF40n9iNdxXV/cF+Cdthmriln6zhsece4ZFHHs31va2N2275Lcc9/RdIJcDuQKjLve97gmEWz5mBUF6FsGAlQkUNiqah/OkWtL27QZHz/ms9njSLWox6w3V945wwx/jZATC+00eV3Whj8kz/OCc31xvKfIk0jpgxrgB7GqOctMQ4l3f1jrPQWRyvPf4ICxuMn5Vr94+wpr6mqG7UpuM5rF+/vjdCU8aoCR5Nx/j9kHE1D+CiT89h66513HvvvUV/K+How9FI0EwvXeWNjunHTJimfLqyI9edpp4gvOz7vpK2xFdAendt7eKPf/wjH//4x/nUpz71sq87WvFiZMO9XhZecxIjaw8iIRSRs1zdV2fOKH2DRH9xC853nkP5Fz9J1Y8ehB6jifJ0Y36kHz/T6RBEIUfMKs9bg7W1Dv/fnia2ca/BX1UQBJYsncPf//7Pae/7crBnz16qq2vwHyr+ISdOO5env09sPIySlilrrSR8aNIh/kixnS42/+HYHPFz4rC22i9Yxt7H1lI/Xd1p7lFZXUE6XdgiHxgY4N6772bNx6+DeAxx7mL0RAw0jdmqiuR2o6cS6BNDaM/+g71r1zGL4kMPwjSBPNLnxLRzabp6R4jBdGN2xLn4SubtyxzHI41N54x27nvwz9P+rYQSjga8aQlaRUUFNpuNZDKJ5VVU0lkcZhoWNKAkzZgxrswFx6KIcjTnXvo6SiLuu+8+3v3udzNjxgx6e49uEfHLxaH7tzPjgqXYa9wkvK99xgk9Fid++1+xLF7Awo+/g3TXGL5ndhPrGvmP7+2e3UDHBWdT39lA+InNjP38HnS52HKlrr6KzhktPPH42n+7rfXrn+eKKy/j6y/85T/pMgD+/aNUzKjJE7Q3GqqWtGKrctH75FbqPZUvWX/O6jY6Z3awadMLhvK/3PEnbvrwexFaO1G3PY+2axMAB0NhFllVSBR0qroiv4k/hV871LdU0tBYx44dO17vrpRQwuuGN+1Hw9lnn81TTz1FIhlFs3ixmqsRBBFd17Ho4Eup/H/2zjpMkurq/5+qatfpcd/d2Vk3ZA1bnOCBBAIhEIE4b+yNvXG3X9xdIAmSEEJwt3X3WRv36Zl2Lf/90UP31vYQJCRAmO/z8DzsnVNVp+69Vf2te7/nnFpHjCpHIZVFTImDoDCU76PR2YIgiOimTl+uH5fXyUmXrGLBqQuoaa9m4NAAjRN1pFUBxzNbjILBjCXV+L0OxKxO7OAY4wdG2PL0JqQ0DOfDNLoKeYlSWoa+XIyYFmVZoBmbKGGYJh2pQdIahOU4tc4KoPD/MVUjo/Uzz9eCKAhoRsGvpT6dvek80mRdQs1IsDo4k/2pCENDQ/zgBz/g0ksvpbTy+3w1Rq8dbE8cYmmgncX+NmKHRgkubWD9nXvRNiR5w4kefJMJWbcOjGNqJgeGoyxoLPw4jyaydB7JcCiSYHVdDXZRxDBNNoyOE3D4iCo+KifTS0S0KK3zZLanU5zoK8yDvK6z4fFHyD69k8XnXcqsd78OPStz4LGNVOzqY298nCUVha2hpKqwfTzGeCbPTHcTLqmQlqArO0hdIMtQfoL5S5fQevkqHC0hup58gN2/+hlztBrsooRuGqydCNNur2efHEYQHRx/4kJ27dxPJvf8IxILXx4Gz6zb3XPPPdx44/sx7OOghEr1OPU0B+L1LPTHmeuvAGAsn6E/oxKT+5jra0ESRAzTYHdykKgsMNw9RNO8Znoe6WBMjlJps9FljiMKhT4wTI2o1ots2JnnWIRLLKwsRdQR4kYOUR2myl7YAlaMPDFtlIQONfZmbJM1akeVfrK6ik2I4JcKW4R5I4VAnpyexCXWTr4nDIKuQUI+gajiptIeoO0Ny9l1x1NUOJPsT+dY5GuaHEeNR8bGiSkOQo56nKIbURK54COr+cgnPkY2l7WsDP3uRz8hYfci/eY7uOKFAKX1fVHGIw6cc2HuZHqK4VSWqKCxPhJmVagamyiiGQabx8eRNIkhr5OmybQZh0fjZPtUNugjnLygkGcsq6hsPjCCHsmztDpEyFXYTtw1GkPPSOwei7GsrvD+i+Zldo3E0bNJTqiswW0rjOO2aBhJhCM1MeY0FGwHI2mO7FEZ9oY5a1E1kiii6QYbB8YxJYHhRIbG4KRf4TiGYrB5cJxVk1v2WVVjU/c42CWWL6wpbnNu741iV2z0ZceY4ambnPc59sSiGEYGhNL8yphDjI2PTOc+m8ZrGq9aDdoHPvABVFXlF7/4BQCi4MDvbGGx80RmORcAhSgqpEEqnCbtnhYck7mPBrLjjMhpPFKIs685kxPfsIz+vQNseWwzvVsPM0NqKOaw2pMYYDibZ7avjqC98GKtaPPQsizA7KWzmb1sLqM7+uh8aB+bt20hq+sEpSacUoFUpbUokhhBEPxU2gsbJ5qhEVH7MTGpts8o5mSaUEbBTDHX76PFXQFARMnx8/5OXKKXMyrmF3O3HUgf5vz/dwnf+d732bZt+2SvPPPjOh3xdCyOD8zl61/6OtV1TTz+5YcBMGwx2hccoskHJ9QUfsx1w2BLKk4mJzJzvBavUCBKA7kYY3oCr1HBDFfhhyinaTwwGifUaPCOC324HIWx2X5ggoGDWdp8Plr9hR+yaF7h0T6V9lXzOPWyM7HNmonW109fVy/DHT1UyF6kvsLK3picYbTSy6wWL4urvdhnz8Q2bw4RDQ499BRLlR0EnYUx3t+XZtN2ne5YPRKFH+68nuehxDq+edOn+O73vslTTz31InpMAOzYpCAPP/J3fvqT33DvPY8SctSzwDWHhZ5C4mfD1KnxHKbRIxMSZ+OUCj/GQ7koQ/kUabUCr1QgrFWzK7j4i2fzi2u/TYurFWky19zORB8bE6OkhAzCZD430TBpIoSBHUOsKLmlx/GJdkK2epyTBC6rJ0nrE+QNEZtYGEfTNJCNMC5BpNHZin0yR9q4GibFKB9YInJec+HjK6XobPLOYPW73ojtBz/FPvn8bBuP0zEusi/aiG4UyItsZIloQ7zuAycxa0kL11zzzoJbepa5Pi8P/fI3VNXWEPnRHwnLCcacEyiJCprMQlCQZuqMeLsJ1MucNK8ez+QHwsGBGH09CVoqPcyrK5D+rKaxNRHHTIss06qwTb6TDpgxstU6c2xOmjyFPojmZHYNRZFydo7zlDZod2ZGUSWV+c4qQpP564YyGTqTSWr8do6bJHCaYbBNSJJR7dT1NeJikvBKE9A6wYwGP/PqC7YZWWVT9yiSAqurK4t+7RyLEsvKzCRAo6sw72OaTIeYJDPuozld0itujY3RnzWJ5JqRhIKOMKpG2J89wlB+L3UzfXzta1/m6quvofRem8ZrGa9FDdqrkqAJgsAjjzzC9ddfT39/f7F9rns5K/3lRcVXVJuIxwj7x1vgqo9eTS6Z57GfrmWiJ0pGizPLV1F2/N7EEHVOqzg3pQ2xPNSAu8pHy5q5zL5wCYmeCW7/3r2IMWsurMF8L3N9M5/XveWNI6wKWQW7fZkEUbVcFWO/IcCW7du47bajBc0G0y+zqfHxFR/mf3/3cW657g9o+ULaAFvwIDeeXp67bNc2gTqXVSS9LjzKCRUtljYVjSWXlm8vPvTIAKv81kzvXckEswOFH1/B48HWPhuxoZ5+3Uf9zFbslYGiSDyZilERCYNposcTqHsPoI+OIbcmqT+mCPxX78qhRBZZ2pqOr6fp2hquuOIKdP3FVZywSVWIopP3ve/trFp9Im9/2weY6Wjm3MryZ2x5VYyQ3dpfD40NUmEr5Z8TBHjLL6+k4+bNDG3rs9j+ZOhhssIx9To1jQbbgrJrVWIWP3aewUC+B0ksD2Sos5cL+5c17eL6BRWlBknC8a7r0bfuQd64zWL74XUqkmENemg518sbP3Iul156DeFwYbvW4/HQ8Y/bCOQ1or+6HSbTUqwbm6D9qMoPz6Dt3DCVXuv9PrF7gDWN1jkTzcjYw+UatT3CKKfMtArz9wwmmCFXldkeSUeZX1FhadsaG+WU5nJh/84DPvw2a2LbgYZuLjrJ2t8TyRwV5dmHeHpfmJVV1nvYOpLCmy3PQ/iDwzn8ktX26fg9HM7u5ppr3syaNafx3ve+f/Iv04lqX+t4LRK0V+UWp81mw+12W8jZC8HscxZw5hWL2fT7HRx84l+LhMxF0hz++w667tvDvCtO5JrvvYVHv/ooE10Tz33wv4ibfnsz/++H3+LQocPs3Lnz3369VzsSY3EM3aBmXh0ju/91Ldi/AjObRd2zF/bsZe8RBdlr1TseyfdzRmt5hOPzxao3L+dnd//4RZOzo3HzzX/h2uuuxOEozxL/QmCasOeB/cw9a14ZQXs54Tj1FNB15M07ntO2qinI5e88m09/+ktFctbQUMe73/12dFkh9ps7iuRsGi8eb37zVXzkIx97ud2YxjReVrwqE9VWVFRYIqeewbGJZ59pU49KgDn7nAUsuPw4fvmhX5WRM8XQ0Y3yc2hTnFc9Jhmjrmjs/dMmHvzhA1zw+Qtwh0rh/7pZvqKlmRqaUf4iV/VyWx0dYwofejp7eOihh/nwhz9Y9rdplEMzNA4+0MHMk0srItpU/W2YqFP0tyFMNQ80FG2qeVd+3mPnTMl2imtNsQqqGwbKFP4em0h15vIW6ubUcPfdd095vReKTCZLLBrnqqsuQ5tiJcMwDdQpiOCxSaMB9j68j9rFDQRbjylzNlUk4bNs1T/f/jJNA6bwQTdK55WaGnGuOYXwbX+dspyQekyy4TOuPYFND+/k8cefBqC9vY1Pf/p/aW9vY+d3f44pWzVTz/ZOmmrOqHr5/SqaUZb4FUDVpmqbmoxrU/SNNtU7yTDQpqjvO9X1FdWY8tmZ6h6OnZ/PYKrdG9Mw8fv9VFVVFaunTEs2pvFaxauSoJ1xxhmsW7eu+G8BCZ9rJmmHmyeyDxLXCqtXGWOYoCtNdybLwdQQwZYQS966kt986tc0ZPzE1F5kPYdh6OxKdNKRVLlruJ+OZGF1ZTAb5cGRXuL5ELviXai6gmpoHEh2k5KruHtoiN5MIZv2QDbMQH6c3N5Btj64gfM+dR6Gy+RAqhef0MLOeB9xpZAVfSA3SFpLktZTDOQGAYgrKXYn+kipbdwxNExCyaObBnuSgwTsLgL2YZJaIaN4WI5yMDXEDc3vZ/DpERYuXDBZBnJ6e/Of4Zbhv/Kbm37DzFNn4wjaQOzgdG+If6zNcyRcyLa+uSvFw+sE8rKHDeExdMMkpefZL/Zw6SoffZ4jxPXC3s4Rox9fywSduyfYcnAUgKFYmnUdg6w5sYat5igZXUXTDdYOhwkKPnaNJTgQiwPQmUiydSTGCfUODuS6UQ0N2VDpFA5x+jwne3MjDGYLc+agGmG8IYFNEtnQN4ZhmAzHVT5xi0I2Mp/eXA8ZLY1kF1ly3QJ++oefEokcW6nihUHTo+h6GtM0eeyxtbQ2zUCz13Bf4gnGlEIFj7g6gihGOJx2sCFaeG6SWpbdiX5OrW4GoQvZKGToz+h9NJlROh/ewuw3zAMgrSXIGV18dfbJnB/0YcPANA0CmoPF0nI8uoquFaIeFT2JqWWQDTe9uU50Q0M1FLpzR7ALVaS1MfJGob+8tghn16msqDFBmlxpFzLMCx3iJP8s7jqUZsKUcL/pCjb9/g5271BZ1y+xaTIT//ZogvOePMwWOcqW3HpkI09VS4DW46s4cHsnF4cu4XWnns2f/vRLtESE2kf/yKpFJnvNflRDI6upbI4Msbq2giGtiwm1cN5BYwBXXTfpI3nW7S4Eb4zHZP5+T5jW0ZncvT5OOFnICbbu8DipMZO+fIK9k8EGg+kMm0YnaJfreXDHOOm8hqIZPLJnnIpUBbsmohxJFOZXtxqntzbK/BV+thlhNMMgo6tsVUc4ZVkN2+UJhnKFubwnE2WkIs/MUxP0ugurmykzw0j1Yc5uC/LErn4iqcJH8RObR4hs09i1J8e2noJusnc8w0Ob4rTRyKPdE2RUDUU3eKp/nFluP0lbJ6NKYcVxTyLOzb0Zmj1BEnofhmmQ07M8GLuTAWOCE084hV07d0/OQgOmII3TmMZrAa9KDdqnPvUpjhw5wh133IEg2Kn2nWAplGyaOitcrSzxLbQcd96XTiPdEeXgXfuKbWktwwOjw3hEq8Yib/RRY5uNeFTR7JyRwCOJ+KTS179h6jgc3SyvmGPJ+9N41QLq5s/m7i8+gpwulJVRDBmZQRb4rXqMfcku/FIzDrGkScnqGWb7xljgLyUuNUyTe0d78UvzigJrgAu+cja/vP9n/PnP09UFng9+/4vfsTpjR7u/VK9SMXS2JvtYHbCOTUd2kDXHiZZEoElZYetQlLNmWufMY2MjnDa/Aa+jpBwYS+Xo2JpnSbCkjzJMk8fHBjijtrkosAboTCWorjZo9pU0R7KuszYV5uLjrNq3+/dHeHT9wmKkI4Bs5Jl9QyNVbSGuu+66l7BGrY1zTno7X/zG//C5j/2Unq5hTFNnicPLiuBSi+WY3MvyUBU+W2kFOaPl6cyMsSxYEInbfS5O/eG13PyxHzArZsMplYp2R5QUv+3OEJQaim2madCnHiQkzUI4Skua1SNIghPnUcmcDVOj2TvCmTXzLX51Zno4u9ZPYFIoL3mcNH3kMrp3d8Dd+y22fxzew4NRAeGoZ0yUdL7yofcQ8lVy3/ee5JRrTmDJefPY8Ldfc51/uBhUBLB3NA5DfouGMa9rbMsOcHG7dc48PTROXb6J4FEF6JOqzIh9kFNqrdveD/UPs6qiCZdUml+j+QwJVWaev5QWRDcNNugDvP7kZqtfQ1FC2Gg8SsOYUzWeHgpzwWLr/Hr8wCjHVQepcJfeq7GczJbdKVYGj533A6wMNOM8xq88OeYGSu9KzTD44d4kNn2pRRPcnx3gr5EHYbK/P/XpD6BpOl/96ucwzPIEttN4beK1qEF7Va6gORyOorZGRLSQMwBBkPBIVqFr46J66mfVc+T+A5Z2n82LRHk2csO0W8gZgFsM4j06ogwQBQm74ChLyrjj5o3EepO87iNnlPwWnbiP8QvAKbos5AzAI3mpOEZ0LQoCDtFpIWcAQ1tGqa+fKrXmNKbC1l1bqVs0x9LmECUcRvnYVLncZVnaA04HlZ5yPVbQYbeQM4A6v5tap3V+iYKAR7JbyBlAk8djIWcATkki4LVzLHx2j4WcAVSEKjjjwjV89atffQnJWWGrsfPgCI8+sImr3/q6Qpsg4ZKcZbYeyWshZwBem4uKowiIms7T9betvO5Db8LlsJ6jyuHHLVirLgiCiB2XhZwBOESfhZwBiILNcq1nUO1wF8kZgkD91WdgjqfouvXJMtucbrOQM4ATli/h5EuWs/P+Ds64fiWrrljGXz//APrBQxYSBNDkc5cFmLgkGyF3eTBKUHJZyBlAwO4kZC/vW7/NbiFnAPUuL3VO67UkQcTvtZf7FfRYyBmA224j6C2fy7UBh4WcAYTcTirEKcZccFrI2TN+NbitfhXmu7MsYMtjcxfJWU1NFaeetoof/+i3ZWMwjWm81vCqI2g+n481a9awefPm532MIAqsvm4FG/66EV35zy2XP/3bTVS3hlhw5pznNp7Gfwx3/f3v2CrLy3C92nHBx89i59ZdHDx48N9y/gfu2cDy1YtYtLQ8Iu+FYuChveRiKWZdc8pL4NkLQ8PVZ+CoCTJ086PP+5iVJy9i4992cPo7VjLvlFn8/O23EOmP//ucfLEQRZCkQroScfK/VxGqqkLEogny+emVs2lM41VH0M4880y2b9/O8HBBv2GYOpqetdgYhkpSzWJMCmGPv3wpNqfEo397mqSasthGlBgG1jbD1NAMGdWwBiLEtVEi2qilTTHyjClp1GME/xNKgnByjEd+vJbT37kaX5WHjJ4mcZRfhWsV9BcZLW05PqVFiWnWjPeqoWGYeeRj/IopUQThVRmQ+/LA8JC3Cwi20o9XSpPRKjRLQAlAWEvRl7SOzUg6S0TJYxy1SqUbBpGUzHjaOjadkSSDivX4vK6RVDTSmlVQfiSZ5EA0YWmLyzKpnFImKu+PZUmo8eK/l195HL4GL5/91Gef4+afHQIiXkcjAtYfdZ9Ui6pnGBuJ8PB9G3nPB9+IKBqTOkmrXzElxbhsvYeIkmJCseZk0DSNJ356G/5lrVSvKtXMHc5HEKSoxVY3VYJ2Bd1ULO0mURTTqrPTzDyGmSvzK66lGM0nCa6YS/DEdvp+eBejiQgT8jF+mQYROYpulAjC8Svmc84FKxkNj+ENuvnlDbeTS8pohkomp5JRrM9+VyxFVzp+TL/kGU8bZYEi/UmF4dwx8yuXZjhtJSiaYTCe04nJ1vl1KJlkwB/AfdYpBN77Viq//ikqvvJxln3q23D1JxCv+RTiGz6IcO51qGddR3zNGxGWrIaqOhAEItk80YRcJvgfjuYYTFj7ZiCeYThrLVquGgYpVSauWP3qSsfoTlvnQUZT8TgyqIZ13kfUOObkeF108Tls3LgN09QxzOlo2Gm8tvGq06D9/Oc/58477+SRRx6xtHscjXidLbgNG4vtq3BJHmQzwvHHN/HWb1zNd6//DXrUhWYoGOIwM701DOTGCdlakAQbh9P9jOULhMsv+vFKIWQjS86M4BVDDOo95Cd/0P2GQZt9NlFtnDgigujAJeQ40e+kxuGnL5PHKzWhmxrjygBv/djVJDJxtvxuDw7RSVILE3AYCAIYpkiNo5a8LtOVGabCXkPI08c7F7hxSxJrhxMkM9XE1BwuIUCVM0REybAjHsMphFif3MJxrz+RxsY6vvfdH6CoEcxpUe2UkAQXFZ55eB2N/ObPn+f+b/6CC3WJCW+aM6+dQV2DjwP7J9h75wQe1YavNcVpi4PIqs6GI2PM8wc4lEqyck4tXqedvQNR9LSBqhk4NRtzAkGSmkKHEWdBcwWHIwlOnlWP3Saybs84rgkXY9k8FYSocwaIKBnG9HFafF76k3mW+pswTIMD6gALG5z0ZFMsmR2i2ueiJ5Yioih47E7u2uAnE21DMzWG8wOcsPwEzvvUGi6/+nJ6B3peVN947A1UuudjkzxoRp5Y7iCalqTVdQpVjnYMU2dc78R0wGe++E5mVM9k+4OdrL93I7VuGY/NiWJo1Dsb0Q2VnNnPfH8lnekIXqkFu+ggpo5Q6wRQmeHVmesPYrQ1UHn9hez93r2M9Ozg/BY/dknk94cTPDVYC0KaCxuCzPAG6M8muXNoAkX3saIqzdUtjaiGwR/6hjmUCOF3xHj3rBpqXW660nG6MiYO0UGFPcfSYDXe5W1Uv+kken5wJzs7DtPsasEpOhjIjeK3m0SUND/uWUtvLg5IBF0z8DkaeOiJn7HtD7tZdcUJ/PxTvyfSncZui/G2eSrzK1yMqWnG3UlaQm6GI1mWh2rQdIOne2M0iiEOJdLUSk34bR7C+ji+yggeu8TW3hBubSaaoaAInayo8tKZjrEk0IBLstGVH6WyQiWt6KQSVdTaasloWaJCP4vbmhmes4z2s89GEATGDnVQ0bmXXds72HioBtMIYXNFOX1VL8edMIfNB12QaMXfGKB+uYP5J8wiq+hIBw7gONhBZ2cH+aCByy6RHtCZ76wkp2vs1cdZ3BJkW2eWpuQMHKKd7vwINT6drK4SsNtp8weJKTL7InFmeoMMGzHWzAxhk0Q29kcICT6GsxnaAj7qPR4OxWVuO+RE1yvYlR4gbroxDJ0xeR8PPvkHLrrojUxE+piO3pzG0XgtatBeVQRtzpw5fO973+Pyyy9H08q/rmY6T+AE34XFf1fU+vjwL6/kvu8+QdfWQYttXO9llmeWpW08HyOcK9ej7dM3Y7NZt8Q0LU3INqPMdrHTR4XdWsfP1a7xri++jV+/7c+WYtaVTqNMj1ET2MGlM6zJJg/EsozGyrdJP3DwFrKmwJVXXkxDYx0/+uFv0fQMsjJSZjsNqPWtwGUviPX/348+xH3/WIcxsYM/fmZVmW3fQ/toDlr1Ok/2jHLG7AZLW07RYaD8WlvMCc5YYLXd253E3VWuFTyYHmNRwJo09JA4yHkrK8psP/z7arxSKT+a3WXj9T85jx/85nvceuuLKyxtl/w0BdaUtXs1D37JKlSXtXFmuuey/Lx5vOmjZ2AYBrue6CKy6zCjm8cstgO5bub4rM+YauR4fbN1Fca7pA3/tadhf+AJlN0dxfad42mUfDvHIq4OMM9v7a9d8WGWBJvLbCNylsbZrTS9+XRcjZV0fffvPLZ7NwuP8SssJ3n33t+UHf+Lz/6c8684l51378M0C7IFm22Ajx5fHi3dY46xuNqaPuSBQ0lajPJnd9OEgM9m1WhlzQ7Oq7f2d0zOF6sYAPjmNVNz/gnIs+oJ7xzj4AP7GTswCib0Z0cRzfL55XWM0uSqO6ZxP9dfNAdpwSKkxcswoxOoTz3O6M7DVByjC7y3M8Yyr7W/Emqa+fXlvx2780Oc3GQdm93hGPOc5Ulx1zwUAUpzOVTl57t/eDerTz2+zHYa03gtErRX1b5YdXU1PT09U5IzABHr+F3x0TPY+uBBjmzpLyNCU+Gl4J5TnaOvYwjTNGlcWM/Q/tIW6VQ+iVMcf+x9TeNfx4H9vVRVB5l4lkwU4hTTZaqxFYSpv/OfzXYqTNUsPMuYC8eoElZefQJd+3teNDkr+Sbg83uw2SQWLW0rJIM2nLiOCYrR9CTVUgOaovOX7z5JVWOQ+lkhrvjKG0iH00R6ovRu7aNrXTfSWLn+6dhgGoDM3m4GftXLSe95G/a2GWTuexQUdcoxeLZzTPXcOKoCzL1wDQ2rFzF69xa6fvAPTEV7lv4uH0VBEFhx7gls+OM2Tr5uOb9++y3F9qkwVfuzPbnHjuOzYvKc3jmN1F9+Eq6GSsIPbufmb/yFQPbYygnPds4pvDDBGOzHGOxHffxhbCeuwnHZFYRmH8K87wE4Kq/dlHNREJhq5k8575/n+2vR8bPYu/vw87KdxjReC3hVEbRgMEgul3tuQ2DVRQsJ1fq4+QsPUl4o5T8L0zTp3NDLnFNmWQjaNF4+VFUFiUUSz234Ckb1rEoWnzefT7/ncy/6HG1tbVx37Ts47+xLim0D/WOER6M4DDsOwbrKoxtZ/JJ1lSifUTi09jB1s2qZubKVOafPZs17TyERT9D3WA9b/7DpOf2IHewk8dPf47v8QkKf/iC5Jzci3vMEZJ/z0DK4WqqpPmsZoVXzGF6/lwOf/SNqNP3cBx6DT/7fx/CHfMxa2cqGP24jE30RzrwECJ4wm+brziL8wDa6J0lmJpYm4CwvbfWioOtoWzag7duNeNbFuG98L9k/3YoRjT73sS8R3B4nb3v/BXzt89//j11zGtN4peNVRdDOPPNMS4Lao+GRahHsNfQrnayct5KL33sSP/7Q7ehaLzlRwG7U4hAL25dZY5Bqp42YOkposqZfWksimwkkWxRVrUUU7JimQVQbpE6oJ6onMCfzNQm6Qp1Zg6zGwRZAEEQMU0NQ03RreWZ5JSrshaX7odwwMcXkqSc385YPXAaArOdIG2PEdZMmVz1uqeDXYH6AiFqN15bizMZC+oDeVJ71wyI5rZd2bxMO0Y5uGGyIDXGafzWb0nuKfWAYMqoWf6m7/b8CLnsNipFB1B343JWsPHkxa/9yLxeKNh687QDnXjkXSZLIZPJs+Md+iOcR2qChokDvd3RHECICm5Qwq+cX6gdGM3l290QwZFjsrSRgL6Ql2Dw2jiDCHkeEpW2F7eqBiRTj40nSZJhtzMAh2tAMnf3ZQZw2k8F8nGZXBQD9agSHN8/TB3OcMrcWSRSJ53S+fK9Kd3qCVo9AhcvPmhtO4sFbHuGxAw8dc7cidlsFpmmi6XHApKKigibPQs475RJaV/ixe2DevHmYsoq+rZO/ffQb3NWZxBBERMHgjacIrJ4b4A//cDI+4QegwTfBm+cn2DHsZv/wPARBRBRlzlh8EPwGjxyZj2CGaDt5FgvPr2X+qXOpfdvxeKu9PPmdx1D0NC7bIOsmdJYFK/FPppLo1HoJBFSOjPTTftNfsM1qxTz7ZE78/mcY3H6A9O4UqUNjZCbixI0DVPpVJhSR6kkpQV82iq+2ktyJLSw+bTXuxkrGNh3gh+/+LrGxFKdU+qh1FcZxd2KcvO7kQGqEBf7CFnR/boJvdd2LiQlmYSVszZpTue7KN5HtG2Po8Ajb7izkThRt4yxvHWJzXOf4QB0O0YZq6OzKjOJ0mvSl0szwF57dg9E4Qa9Gb6KLVmEWoiCS0RS2xyLIugTU4rUVbKNqP7VukT3xcZZWFLYDh3J5djS2ceEbT2bPt/6KNBpHNwx+MbCXdYkYpwd0lvgKEbU9uWEeiO8hIPo4xbsau2hDNVS2ZPaSI88FlQKz3IXz7kx188RQP0cUB19bWZBpxHIat2yOoTxyG2+7YTUN776e3F33sPbxLaA56UiGWRiYnPdKlp5MjN68xqmNAXx2O7phsnl8HAEX+6UUi+oKc6Y3mSalqGzKDHNiRR12USKn6nx7V54qPUCEPEgugiEvspzl8Q3/eLGP+DSm8V+HV40Gze1288ADD3DppZeSTCaL7QISLd7TCDkKLyqbXeL7f34vT9z8JMl1Y3ilwgpAVs/SmxmizuWh1VNK/tqTHSCuKDS6WnBM5lNLqgk6kqMYhhefVPhKNUyDUb0LMKmXSglsU/oEUSNMldSEWyzo1HRTJW+OIGEnKDUX/fr6g+/gy6//Mq2OWrySp+jXaH6ECoebFnfJr7DaQ5UrTa04G6dU8CuiJOjMREiplYQmtVS6qTP/7W0cTBzke9//5kvb6f8FkEQPfncbtsn+Nk2Diy45lU++5fU4fnxrMRdZZz5OfpbM3LxAo6dgm1ZVticmcOl2VlSWNDS7YhHSboUTqkOEXAWSMZ7Ns7MvSqXkZkllgTgYpsnW+DiaQ2dlZTVuW+F7qC+RZlevzAy3lzZ/gcgrhs6mcBhvQOe0lqpiDqsDsTiPDwtsPdSOazI/mGrILL6wjoXnzuCqd7zJsuUviT7stlAxh9T8+bO57trLOee0c5FTJmN9MTY/cID++EFq4nu5wttWzK3Vl01wtzbER66dwcKWwj0oqs5vH+rH3pXiytklv3ZNJHhowOQdqxw0BwofGElZ5fZdWebOFjl7fhW0H4+48gK0ilr+8cWb8Kw9XCzEHVUyjGpDLG4xWFpdUeyvjSPjpNMiy6tq8VRX4TxuEbnmBtT6BgJuG85MFgQBNRYj6nShanYqA0FsHheZI0McWreNtY/tRJPr8NsKJCGv50lpffhsTmZ5SglZe7JDPDy+lQ2Jbp7ZBjRNg4WNrTz84P3I3VHcNQE2/N9tbB/uorEqwpVz/bikQt/2JFN0xTPMqfXQFixcS9Z1No2OI5kiq2pqiv21NxJnS4+DSrGZkL1AyrK6zP7UEG0+OL6iVDR8f3KU7VFYetkVrLrseO74/IP0HulDFw/zaHIYTXBN+mriFTRcgoOYKRbzxBlGngYxSNK0YZt8/xmmToAUSTNF2nQUt2MdQobrZ1TjVeYTmCSLOT1P9fFwxo1vJv3np8jsKwSe7EuOkNFlFgfq8dkm572cZkQbod7tZe5kslzdNNiVHMHpy7OqthbnZH91J1M83K3xdO9MXEJo0lajXz3C4ovrWbCsmf/7v/9jGtOYCtMatFcwTj31VPbs2WMhZwB20V0kZwDXvOdseg+Pc+Sx/bR5SiJ+j+ShymklZwCzPC30mLEiOQMI2IM4xQkkobSFIAoijbY5mKZp0Zr4pWpkI1MkZwCSYEcyggRtpWABTdWJDWVZuKwd83DpB9UjefDYXBZyBlBrn4XNmMBpL/lV5QiyN5kokrPCtSRed9k5fObcj/+T3nvtwmELFMkZQH1DLe96z1sI3vYA6lEip3ZXBR1DPTS2lIiYz26n2e5lVtBatPy4UBUHtEiRnAHUeFz43XaW+EpjLgoCq0K1jJMpkjOAGUEfR1z5IjmDQqLcFTXV1NZbxecLQhX8aKNZJGcAbpeHS955Ae/832vL9JiS5CuSsze88SLecf3VPHzn03zpR7eSSx2dukHi2oXWrPQzPEEubcsWyRmAwy5x3ZmNIFq3u46rDqK4x2gOlO4h4LSzZr7AotmTQS6dOzG69yBddiMX/d91HJj4PZkjhfQ4lQ4vWbvE0urSfYmCwCmNtfSP6bgkG0YsQe6JDQBsiwyzZuFCNJsNwWbDNqsVobOXVNhPCpBHY6AbuIB4RqLB5S+e1yW5yOohZnmswTezPE1sT/6NZ8iZIAjMmtXGb3/5c2w5A6HKz5FbN6JnFI4LtrB8VrZIzgBmBfwMy5kiOYNCYuGl1SGCojX57JKqCrb16EVyBuCRnLS4PRxfYU22uyhQj3TZ6bQtnM3tn76PSH8cj+RjU0orkrNn/M1iJ2uYiEfNZVF0MaqlCDhKQROiIBE3nORQLDoxxfQyFAuyPFjywS25GNo+TPrWp6m77lz6v3UbWjTJ4kAD3dmJIjkDqHH6CKuuIjmDQqLcE4NN2CriRXIG0BbwczgqF8lZwdZGg62VhcfVvaDcltOYxmsBrxqCds4555Sl1jgWHp+Tsy8+gU/e8CvKY4Zefoz0RnG4nchTFJx+sbA5JERRYHx8/CU7538z3nHDG1n71Faa+4ZfbldeNC7+n1NJjKfYtm3blH8/8cSlvPmaywlVVvCRD32eWGeape5z/sNeTsLQMe/8MRMr38/Cb76NgT89wehdm+FFVDowIiWSqA8No8gqcrTunxzx/CEIAj/+8XdZseIEkoMTKEKOLV/4O3pOee6DX2IETl7EnBWzueVD96Fk1ec+4N+EzJ5uUnMOUv/Wcxn8wd/+bdex2SVmzJjBPffc82+7xjSm8WrEqyZR7erVq1m7dm1Zu2kWtiUAjlvVTtehEUaHouhmeRj8sckrobB1aUzRbk5RdFw3NYwpyNVUtgZ60a/nPu/Ufk3Vfmzh4BPfuIxD6zp59nix1zaOHoNghZ+zzz2JW26+C8Uo71vNKB8bVTcsCWmL7VPYaka5nWYYKPpUY17epugGsj7FXDxqHsxY0sDSs9v5xWduK7MDOOWklXzla5/kySc28P73fpLOzh4QppifZnnSVABNK7++rOooU/h1bHJTmOyvsn4weeIzPyG6roOWa85g8Q/fjeR2ok7RX6phID/PvlUMoyyxMIAxxTNWSPI8FSksrD59+9tfY/bsWdx005+orKtmx7fus5AzzdSnHJtnmzNT9ddUY64Z1vnlbm+i+vI13PqVv5WRs6neHaZpFLRzU9xXeYs55TtpKr+emRvjd63D0ViDZ9FMDNOc8n61qeayoSNPMT+muoeVFy5gfHycDRs2THEf05jGaxevGoJmt9vJZKyZrd2Oeip8iwhrh8hoYVpm1dJ9pI86USMoNnIk3Y1iKKiGSk+2h6Ctjs70CGF5AoDB3AgdyQkU3U1Ptncyq3+Onmwv8/yzQBwlbxS2VBP6EB6bisemkdCHAMgbKTRhhGXBOcgMoRq5glZN62RYGueQsZ+oVlipyRoRJCNFW8tMerI9qIaKaqgM53s4zl9LVBlifNKvUXmYalc/CwMGnZkedNMgrWWJOzr4+gUGzfV7yOiFCES1QuavG+8n4JmHXbJuxU0D8mqYVLYL3ZBZvnwxhqrwPk8zeycEtkbDAAznUnTIA5zSUMPa4THisoxqGKwfG6Oxzk23HmdfrLB6cziR4IAZZWFLiKeHxshpGmlF5dGD48yUG9k4EKcrUahMsSsSYdBI4XFJrB8ZQzcMJnJ51vaPsaa5hp2pYUZzhTm9LTYK/hyj2SxbxwrzoDeZ4bubNILCHGJ6L7qkcsX/ncldtz7I2uEdVPuW45gc8zULVrLuV/fyuy99jZ9+4Yfcc8/D5PN5Fnoq+MaCM2gPjJI3CpUpNGGYdyzsoyEoszs5gG4axNQsXe4ezm/zsnbTEUZiaQzDZN3OPhIbxxiVs2wbL/jVn06zPTrOyuoanuoZJSErKLrO2tFxZrZVciCWZO9oob86RmPs6AhzzsIsD3z7exz56T24m6to/8m7ab/kHdx6QKQrUYiw3DgS4w/bfTzZ18BjwxPopsF4PseD/XECyiLu70kSzuUKWrVwmFRGQhYnOJguPGPD+QTb42OcWVVHWO4ir+fRTI21se38dvQJvtV7L52Zgm1XZogvH7kFBZMvf/kzOBx2PvvZL/Hed1zP/m8+xfaew4zJhf7qyQ4hCmH6h6t4ajCCYZqEczk2Rcc4fWYdG8NhxrIFvzYlIjhWVhNd6GJHotAHPck0d3fIzHM305HqJavLqIbGvmQvNc4KdsRSHElHkHxuvG89l59+73527EvSmelCNzUUQ2ZLahPd6jBZdRxNL0SyG1qeJmMWM835mGoO0zQxDIVqw8lZ7tPx6jKakS8Ei6hx5ggzmEsbplY4XtfzNBhBUtk2NkR6yE36dSDdi1Os4cHRDIcT40TuXo/3jSczYkwwJ+BiZ2IA1dBJazLb4wMs9jexeTzCQHZy3sfCjGazRMadrB8axzBNRrM5frIjh1dfQNYcQDYymKZBT34XscpOtmzZPgWxn8Y0Xtt41QQJbNiwgdNPPx1VLXxVhjyLcdqt4f5//OPX2fWbA/TvLCVqzepJXJJJwF5RbDNMgyOZI9Q65lqOj6pDVNpDuI7SLCm6wqF0Hy0ua8LMwXwXre4WHEcVjM7qWdan9yDarZqSalPhvKqlLLloKZWtlaz/5ToSaoJap0mts6TB0QyDvvxBXt9oTbi5LzXK6UsMan2lotkpWefaTUm++ftvctUV/0M0EgdAVifIykPP2o+vXYh8/23/x+VnnE3Prx8uth5RDvL6BV7c9pJWJprPMyZkWdZgnV/3dw5x/uImbFLpu6YnkiLb5ab6qML2qqGzQ+vlovlWXeGmoQnaHUGCzpKuMKNobI9McEardavuzx0ROgZOQDBLtiveshR9lsD/ffxHFttPvudirnz9xQw91kHffbswVJ29qX4q7U5meUqb/YquszfbwXvn11qO35YY56TVPkJHza+0orG1M8LJPqtu69GBYda01OE8qkzWRC5PrNJgSas17cM9m7o4p6rekrdsz0iWfvE0Tvqfi3CFvCipHB23bWLtI3+nRlhiOT6hd7EsUIVbKumuZEMmJXSxvKLJYvvA0AgzXO3YxdI9TChZPnX4UWJHlW0yTZNmm8iRzAiSJPHlL3+WQCDAFz77ZfY8vZ6J7YNs/X5BSqEZOhPqIc6pa7Vcq1vr5qwldgJHjWNKVunwa5y+2lqn9PbbDxHqn4NNLKlJokqGqJJnhqfUX4ZpwHUrGE/5+fP/e7zYnjfCHNZ3oRy1CmqaBiGzmln25ZZrTeidzHe34z7q/ZXTc/Tn+2l2WJPldsq7aHcutvSXToYFQZk6l9WvHLt51/c+QX7HAdJPbQfgUDKGT/JR6TjqXWlo7E31cXptKRAD4ImJEfaOLUCglAQ8p+e5ffSPxLQxfvWrn/Pb3/6ezZu3TFZBKV9lm8Y0poMEXkWQRGu265mzmqisDDKw25pnzCMF8NisJFQUREwcHAuH4LWQMwCH5MAjlVcX8NjcFnJWuJYHQxTLliU9NgmbaKO6rZrMRGG1IGgPUuu0vohsoki1s3xRs97joNZn3TLxVwb57s2fprNrsEjOCvdWfl/TADBodfrLWn12h4WcAVS6XBj28i0qv89uIWcADX4PCbt1zthFCZ/TzrGodDkI2q3j43XYCLnLbVXNYyFnde3VrLj4ON72/k8V21xuJ69/w5ksP/lENn/qr6hH1QGd623Ab7Pel0OSWFBR/o6r8dks5AzA57DhV8rnYsBht5AzgGq3i6O+f4rwiLaypLItFU4Obonz9CfvYN5VK2g+dQ7HvetMAqe0IkRMTNNkz582k0/kMA2/hZwBOEUnhjDV8+iwkA2AaoeHmJ4FoeSvIAh05cIWcvaxj32a//3gjUR3jxTJGYBNlAg6yl+RHslDwGm9L7/TTmVduV92h89CzqAQIMEx9U6rl7cjzZ/Nr67/u6XdNF0Wcla4BxEvFWXXCgghCzkDcEtuAlK5baVUVdZfEl78dmubKIi4RDupB9ZTed3FpNfvAk2nxuXGLRzzrhRteGxTvH90n4WcFfxykdInaGhooG12G/v3P1NB4jX3GzyNaTwrXjUE7blW7k4+9Ti2Pb0b8xW8TO7wOunf1v+SnEuorEbOy3zwxi++JOd7LeBlLiP7oiE5JC746Jms/cMWeroHEUUHM2Y28LVvf5ChwTC3fPNmTlcan/tEryCoGZl9v1uHllOZffEy5IyMkDaoX9bCRT99M/lYBtVQ8Csa+dGYRVKlCnFCDusP/vHZHH7RuuKpxDJcv1yAYyp2qFqK008/lUgkysc+9mnq6mo565wz2Pftl0cDZfO5mP32M/nOl/5INiU/9wEvA+SDPRjpLO5Fs8m9hNn+L7vsUu695z7S6ReeSHga0/hvx6uCoLW1tRGJRIrbmwCKlrCkTzhxxSJ2P7CLnJ7BLZW2m4Zyw9glaPOWtkQyWpa0KhOSFBxS6YsvokQxUKk9qm5cTIkTV9NUSDqSWPjq1Q2dfmUEh+Sk+qiUFyP5UQRds3wci+hU2iGvZxFtwlHnHcbEpNVdqteY1rKM5g2ymorHVvqSPZTI4RvSOb6p9KN0JKrQe2iYTCZXJK+FxKRWnd40CnCJQcTFc0n1lOpFaoZGJCczkICWYGml5nAyQYwcjf7S/EqrKhm7SVxWqDhqa2vvaAxZyTDHcdSc0XKkBIW8puM6arVpKJ0Bm8Asf2lbuz+dZiydR6s0iqtzsmrQE4OMlsRrC9C+aga6qnPfXY9j00VWnLqEj3z8On72o9vZ/NQWrm2WkKUKnGLJ33xoEMO0EUyX5n1OSGEGs+QNFdfk6olhGoybabomTGYflfKiP68QaXSjZ41iLi9F10kICmO5HHXu0lw8nEmSHDepC5Sun0wrjI2YxNyqZYWwkyz5yhFc0cK8P3jrZo48toml71+NLViHms6TMU0ESUCy5xCDfkLNJXmBjoopNuAWSqvXJtAkyEiaC9Es9LdokxCDDj4hLyElqzz6yFoOH+7GNE1MU+dPf7qNxx57EkVRWL78eA7tOMxAVyftvtL2b1pLk9Q0ZF3DOZmOxDANMo4YPUkHswIlKUNvIsVgRmNhazXSM+Moa2SjCUStgoCttHp7KD1BXFE5oaLQh7OuXcPIzi42rt+HaLZgO+reouYwgmFiHlXLSjREDDQMUy/mYzRMg6gxQUB1UWMvzUXZiOGypTGN6uJ7Qjc1REFGNjI4xdK7ckDtQk7kOaeytNWsGDkMQSatKfh3HcR93Hxyuw+zL5bGa9NZGKgo+aqmyZlZFEPDMblqqBsmBxMKSS1GwFYi0L25bhAcrFq9ih98/0eT42gyXSB9GtMo4VWhQXvHO95BZWUl3/3udy3tdilAwNVGe8UM/njXD/jZdbeRSCaIqqN4xSDhfJIKW0HPldCHaHH7mVATOKnFKbrJ6klkErhEN2lNpcJWj2EaxPUBGl2V9GXHcVKPJNjJ6lEckk5OyDNkxLFLPgxTx2lkme9sozs3il2sQRBE0nqYrJCh3W3n7NBMqhxBMlqOC393PX/9xO1khvuY7yv41ZkZxCt5mVCSNLnq8NrcxNUkCGHqXXbCeRszPPXopsGQ3s2pczR+stXk4v/9AOG+OLf96l569H3EjTBZZQjDeGV+gb9ckLDT5jqZGc4V/L9/vIcvvv1nLLXFmOnVqHVJtHoqyOkqXcogy1olhuUMJzVWI4kiu8YjeD02Yg6DOe3VNFR4mUjn2N81TgMSE0mZFQ0Fgr6+dwJvMsC4kGB5a0FnNpjKMJTOEnDaMTBZXB1C1Q02Do7TbPfRHc+wvLoGlyRxOJFAFTWORF3s6m8maKtCMRQG8sN84k8f4ztfvZmO7TF8AQ/f/OM7+NLnf0xj+AAfW1RPg8fDRD7PU/0qklTLrOURTltY+JF+bHeY8O4ahMAw5y3zEHQ56I+n6eqWcRsOvI0aS+on/RoaZ1Z9kL4qLyeduhCnw0bHkREy63qRJ1LUVrtoq/STVlS29k0ww+Nj1KlyyrwGRFFge/84Poed7kN5qmMhqh0eokqOYWGc2bOdZJrdrFzYhGGYPLJlmN61ITwVg1y41EXQ5aAnluHhnQ40xcUpx0U5rjGIous82hFHG2lCqh3inIUVOG0SHWMJxnolDJdJ+zInbTUBUnmVR7bE0fprcHqGOW1mPaIo0bNgPq5zzuF/P/EFHnnkH5M6JwFBcFBpr+H7n/l/2KNOdt29h7AyQLvXj2JGWeCvwyM5CctxZDNBQ0inZVaaJXUFvzYNTjDD7aU7mmFlbTVOSeJgIoHQ7icZ1XB3CbS4/aQ1lY1jcUS1gcPpPK3uVkRBoD83xPGnLGDO9efxsSt/jyk7kI0MGT2CKdoZF0Zw2IKYpklGLQQsVVJLk20hNsFJzkigGBl0wSQjZnFKQQxTR9ATzHPOwutIMsfXik2QGMmH6U9ryKZGjdNPwBZCMWSG88OohpMD6j4MyYUgCNiMHBdXLqDVk+Gkai+VDjcROUuq2c/S697AXZ/4LW2eJgzT5Eimn/kBB0lxnBU1IXx2O33pFGNphXDWw9bxEBX2OjRTYzA3gF3w8EjsMSJaEkEQeOjh27nssjeSSEQ4NkJ9GtM4Gq9FDdqrgqB94AMfIJFIcPPNN5f9zS9V8Mmzv8klHzuTn19fSj1wJNVHyGYVEse1EeqdTceegpgWxXdMfcHBfDdBqaXMtlPoKmbsfgamkqHSNsPS5hDSvLWl1Oaq9HLuD9/ML6/+CrOc9dZzZoZocVsDAwAUM0Kds8LS9peBHlJyKx//9VX8+ZuPMtwVwTRNHkhMVxGYCjOcK5jvPpvKOj+f/PVVfPaK36PKeb51Qnm6lAHXIc5qswrdu3NpFq4u3z7csrGX42sqLW2bBsZZWVOegW8km6XRZ9XrPH5kjJMrGyxtSUXnt9vnWdrmnTUX/+m1fPnGv1JdH+S7t7yXJ+/bzQO/+DN/PMuqzwLoasxy/CyrDxs6BlkVCpXZjiZz1PusW4VP203OuvAES1s6lcP1+MGy49dHo6yZZ+2b3YfjBDqrymzja7KcMNcaCLFuUxer3d4y23AuR63X6teT3SOcMdPaXwlZobI5wLF4+OEBVgasgRDhFScysGg+5513nqX92sYbePMHriIxkmTPvfsByBk9nF1T/p44ftUhajzWPn/i8Cin1Vmf52hORkqWR1T/+oBMs7Ot+G9BFFj57cv54482s3ttt8X2kLETu816b4KSo1laUHbeEQbKNLmzHHlOqlhoaUupGZJqeX/fG38Y/Rid7WyXxs8WW4M2pAofwc/ewK7/uRlDKT0/I8ZhLplZPg7f3FaH85iEvbeO/oURtRAdu2DhXL7z7S/y+tdfSzY3WHb8NKZxNF6LBO1Vk2bjn6F1SQP9e6yJR6cayRcyusKzWj/fs1jtqhc2Ejk0iqFNFaE09Tmf7Uq1LRWEan1kk4XVspcrsvbVgULfHH9GOx2b+1AV/dn7a8pJ82xjU97+0s6YAk59z8k89cA2Fp04k+/e8l4e/OtWfv/dB591fk7l7rPaPu/jn8XfqWyfxVh8AbZT9u0Uxi9kGEcff4JgMEhFRUXZ3yqbK9DV0urNs/fX8/Ph2eeB9S+Nq2ej5pUycvbPz/L88Hz78IVAj6fRZQ3xmKCaF3bWkvWa007iH/940CJdmcY0plHCq4Kg+Xy+f/oQV88IMbB/9Fn//kpAcGYVkQMjz234PHDmm45jx+NHiI9PC2ufL1rm1hAZTb3cbrwgNCyqR82pZNN5bvz86/nzTx/j1p8//twHTqMMhqpy//3386EPfcjSXt1cRc3sag492fkf92nm2QvY+/Ce//h1/xW8lN+C8+e3c+DASxdwMI1p/LfhFU/QBEHgtNNOY+PGjVP8VSKHiGumQHSssGyumzqD+V5EIKmXyh8ltQkyusKQ3FOsHKCZCofye+jROknr8aLthDpMxtSY0EoRl4qR5ZCymZjSiWaU0hmklGEieh8Jbego2xS6LrMp2kteL2Qjr5xXx+6O/cRVk6H8RNF2OD+BJOgcyfQWKwfIukJvtpuklmBCSRRtO1IjJGUbi09v4eE/FfIRyUaGfdkHX2CvvlYgMab2MKocorYlRGIijWpmWFzfxUGlm4Q6mfDTNNmfHyBQKbHnqHJCfck04USGx3f0kVUKHwiKpvPkngEUTedItFQX9kAkjs1vY/1YuJhtPaWoPD0wSncszVAqW7TdHo4QanCwLV6an+O5HDvGooj2/eT0gu2yy5eSyib5+Bfewi++cSsP/61Q2kkzkyzyKjzeP052shanouusHR4jeljh8Ei8eN79w1Ekj411w+NFv5Kyyj3bo2zYqzKULPm1pT+CuiPP+g0lsjIWSbLl/r08dWSUWE4u9tfTnWGUPpGdfaW53DORJJFJs1PuJ69P+mXo7NIGyUykODJc6tt9PWGEhMLa3lH0Z/zKKzy2f4y9R5IMH+XXtuEJ/AEnm4dL1xpL59jRGeWxbYPEs5N+GSbrukbwN9vpSMaKtt3JNJsH/fQ/0s28uYUtZAGJVsdK/HObOLj1MJpc8DcsjxHOS2yODRQz7Gf0PGOugxyKJxhJl/zaOjSBW7AVEwsDjGZz7B5JsXFimKRaePZ102BDeIxGl8pwvvAh6ar0Epxfw1/++gRhtRvd1CZtNVL6AA1iwBLwo2hJbKaDmDZQrAagmTKGMEy1pKMZuaJtXo0QzdnpygwU25JaiuH8OGNyL/Lk+8swDXqy3fiNGjS9dF+6nkeTK7lraBR5chxlXWNLdAhDk8k3lrZTe7Nj2IzCvH+mIkJckfnx/igdySHSWukj8nDmEDE1hmHIVFaGWLR4Pp2dXei6tb7yNKYxjQJe8Rq0pUuX8ulPf5qrr77a0i6KPiTRjyAIPPjQX7juyvcxW2+nUmrCJxU0MLphMKYOkNc1fFJjUTsmG3FkJggLafTJyExMgwrdgV3wIoklbZGsxZCNKKPCMM/sgJumiQMXspHFEEpbIx7TS6M0g3muedgmo+Q0M0VVIMJHb/ks9338HlJjKQxTJ6IM4LfpLPC3FKPkhnNRhvIxlgUqqXUVIsRkXWNbfIhDSSdJuaDB+cY97+RjV36XwfghjuTXoTEdGHAsBMGNIJSClG/6zW/Zdet63l0xRr23MDaRnMITvRnmt9tZ0V6KstvUFSaVUjmluRbn5HbOcD7HQTNLu83NDG9BT6YZBhsGw9jdNk6eW1+M3js0HKezN87SUIhaT0Hbk1U1No+PU1ntYmV7SR+1/UiEge4sy7wN+CZzpI1kFXbPW8k1X38XA+u72PaLp4geDvP4RCeilOT/5jXhmSxCHVaSjDBCmzdIqydQ9GuPewJPk51T2hsQJ/062B/hwL4o/vBM/BTml2IqjAY6CRoO5okljVdXZQZlpsmJER3f5DMSkfPsiscI5YK02UvPyH5pDLNC5eSqShyTfvWOZ9l6JMeJJ/qZ01zoW003WDcew5Y1Wen0FnOkHY4l6I3nmGtWU2mb7C9dZa8wRk29m+Vtpf7a0RMmPJrleGc1vslI55gms9+RpLXOz8Kjkgs/tXWYvR02cpnFSIIdm8vGZb+8mjdceC2u/GLcUgWXv+cUwOTe3/yNgN1Jpa25+J7QzTBtNWNcvcZGU6gwNmlZZUN3mKDp4LiKktZu10SEiYzCUncjnsnI8KicY2ckSkCopNVV0gU+Hh7Hd/HZmIEafv/tQtJkRU8jGlmaXfUEJxNw64bGbnkXeR2qpVIC3Lwewy7IHB+cQWAyKXZOz7E2sQ9B91NjKyXWlcQwNS6NWkcrjkmdWlpL050ZJq45EClp5Ya1DhyiwXHOlUiTUZg2Kcqy6n4WBUI0uALM/M7/0PO1m3jswBFcksRJVaWxGZDDHMomeHKgDVkvaN0MU8ZmG+FQbh+DSimC+sb334DdIfGd73yD6cjNaTwfTGvQXoE499xzefTRR8vaJdGNIAgEgwE8HjdpNcOYMlEkZwUbkUbnDAs5A3CKFQwbkRI5AxBEokLOQs4AnLYQw2YfR08NQRDI6hELOQPIChlaHI1FcgZgE/wYwSpQRVJjhS02UZCocc5kcXBGkZwBNLorqXYIRXIG4JRsVNmDRXJmc0hINpGArYYJrWeanE0J0ULOABQzxyWz80VyBlDldtDWolvIGcDq2bXMrwkWyRlAo8uNPaYVyRkUEguvaqzhtAWNRXIGMK+xAo/DViRnAB67jdag10LOAE6cU0WF5CuSM4CZZ67mjZ+4isihMR7+378SPVwoSXVWdTv/M7u6SM4Aah0BUJ1FcvaMXwvylZw2r6lIzgDmt1aRGgsWyRmAQ3BgG6+1kDOA2VEvFYdiRXIGUOV04cg4LOQMYJFexwKPr0jOAGbWeKifYxTJGYBNEjkx6GO1y2dJYDs3FERK2YvkDMAj2akx/RZyBnDCrFoqNVeRnAGEbE48smghZwCnr2gklpqLJEx+LOU1BF2g1bcIt1TBolUzOP31S3nqrr3IWhVV9lbLe0ISapnTni+SMwCf005TwGMhZwDHVVdRYQSK5Ayg0unGLrgs5AzgrNoaGpbOp2N7aYXeIflw22xFcgYgiTbmOxZayBmASwrR7PEWyRkUEtLOczVbyBmAbtRiFwJFcgbgs/nQTMFCzgAabQtZ4jyhSM4ANL2SpOKkwVWaX5KscGJl0ELOAFqctTzcX1EkZwCi4KQ/l7aQM4DXnX8Od9xxO9PkbBrTeHa8ogmaIAicffbZUxK0Z9DU3EB3dy+5XP5ZbV5uzFjYwviR8EtyrjWXL+Xw9kFyaeW5jadRhNPpfG6jVwAci+fje+NF5GIJHvzg1AXRp/HS4NyrTuTQrkGiY/9ZbaLk99A6u5Y9m6cKDnhl46XYQDnxxGWYpklvb++/frJpTOO/GK9ogtbe3k4ul5vyQX5mazbg96OqBZ3EVDcjG3nUKVaZDLM8zYKBWtSCHA1hijPbKC/Pgwm6WR7MUNkYIhvLWtpkXSGrlZMsnfLrK6aGOalPc7jtDB4paJe0Ka41DQCTo7funU4nc+bMZqi3PJAkr5R/wSu6Tt4oz8mkCOW2WU0jq0wxZnp5tG5e0VE163l13UTWJ9skCc/5Z4DdRv/6HeTjOYutquuk1HK/NLP8WilFI50t90unfM6oplbUWz0DwzRQpuiDZ3RsR0M2NHLaVPN2qv4yyOnl51Wlqc+rH3M9wzBRxPLz5uXyc+ZkHcOw3q8oiWAazJhXy9zjm9lwfyG1hok25fOUy09xLU0v80s3TPJTjLk8RdS2WR8iMhYnl7E+/zkjW2arGcqU7ypZL/dVMbSivrZ4LdMoawPQp6h3qZtqUZ9maZ+cB/baEAgCpqKRVDVyerlf2SkSZeuGUtTNAXz4w+/n+9//WZndNKYxDSte0QTN5XIRj8en/JumR9D1NAsXzeXQ/k5WeVdxcvBMksYwGT2GYRh0yLvZou6mm0P0afsmk9COsUt9DEUySSlDaEYOw9TJqGMYgsGAsZdxrQuAlDbOuN5LnXMJLtMHpoloQgvNnO55PSfYV+M1C1tetWKQCwJnU+sOEdX70E0d2ciQMvpZeNwS1m/aw7gcQzcMDqX6Gc3LbIzorJsYRDdM4moEmcNc3FTNoNxJUk2j6DqPjQ+T1atZXJVHlArbBFkjzobUzcT0gSn7ZhomppnFnPxhC9lqcWoBbtk0jw8/kSOS04jnVe4/FKcpM4sHHs2zu7ewirItHGXUZlA7r4INqQiqbhCW82yxZXjd+fPZLuYYzOUwTJMNExMYVQ5iisqGvsIKaVc4waa9I5w+o5YN42NM5PPkVZ2n+sZoFH0c2Jlg2yTB3nYozuMP5GgR63liKAzHLUK12Yin82Tu2IVN7CGuFsb8UHqI3lyKtWP13NIXRdZ1IkqaA3IvZzbWsi0SZiibRjMM/tqV4pGuBn71cxd/vr8gzD/cG2XtfT1c3u5h1NFB2sgiGyqHcl0srnbQl0uwP1Hwq0sLk2gYYenMEOsmxsioGvG8whNdYVZUVXNEGaU7WxDh79dG0VqTBDxO1g6OoRkGI7k8m40M562Zx6ZInMFkBt0wWDsRR5pVTXJRJZuVwg95VybNbinH+ZfOZHdlhJghk9M1dthHWboyROdEkl1DBRH+3vE4hw2VEy9uY4s3SdbQiMsya4fHOMFRzbpHhzjQW7jfu56Oc9ufXbT7IKJ0oZsaJ7z/JJJqjtmedj75szfwt188xq61nbjto6yu9hJ0ZElok8+UEGZxRRdNkXnc/FCWcEIlp2g8vneEmfjpTKaKASXbhpJsOGhSRz2PD42TVTUm8gp3dKYJMZ914wm60oVgnyfHIww1zETqGqfBGQXTIKNHOCQ/QafRzQPJO5lQx9ANne5sF1HVwG4a5LTC/MrpMVL6KOOqnyej+0hpGWRdZkP0AGHZSVwfJ6EVPkREcZyFFTlmeKsYkXtQDZWMlmVHrIuQOBOHkEQ1Cn6N6Z0McoRd+mH25HegGzqCEGdpVSdn1cxi3fg4UZtJfiTCbw6N8efuGr5/wM7fBwtj8+h4N2es/yMbUk+wOX0bOT2BYuTYnrmTTmUzpqlgmirBYIDGxjoef/w+phPTTmMa/xyv6CCBJUuW8OEPf5gbbrjhWW1ufM8HWR44gw1/LoWr66bOk+n1cEyix6wyhimJFp2JYWpg6DiOsdWVLBWOWZbcQZqRY7bYjFss6WpM0yRmHGa+b7Hl+Al5hJAjRGVNJe/9/Zv5yTV/JJPKElEGaHHPstgqHOaG2UEcR+l90prCX/uhzmlNBOq4oIJ9qX38+te/ftY+mUYJTY4lrK56A1/629v59EW/AUA1E3xuWY7Ko+o56qbB4foeLl1t1fBs6wszv70Ov6ukLcqrGpt29rFmtlW39ejeAU6pqMJ+lO4rISv0DuZYEKqw2N7dGWaVu6QtstWECH74zagyZPf2M/DHJ4p+3T44yoL2ldTOrS3Ox7wZ5vxWvVSCKBYnOzrKH3cr1OrWOZNw7OPti13Yj9I7xmWFQ4Mmc/xW3dYmpZvLT7QmXu2NpbFF7VQ6S0lHdcNgfW6UCxZZr7U1HGHpihl4jyoWn1M0to/GOXWJNZnzIxsOcvqMGuxHaddimTyjI0nm11v764HeUS46aa6lrWs4hrg5S+VR29eaYfCH/Tnm2OdbbLfHh7nomx9k5z0HaF81AyWn8o/vPorCMLO9Vr/G5UNc1tSA7aj3RFLL0djaz5wK63vizv3jrPLOsfZXJkFSrsJvs86vpyYGmO2dy3nffxN7/7SJke39rI/t557YQcs7yTQNZguLqTxGTzaqHMFjr7fYakYewdBxHVMQ3Wcf4rSqRZa2sfwE/WkXDrHkl2EabM2vR7Rb9WhVYoavzVmESyqNY8XZS+iureGur2622O7OPMLuzF5rnrVnfleO+b244IIzOfvs0/nIRz7CNKbxQvBaDBJ4VdTi/GcQEbAJ1u1GSZAwhCk2JgWhrAqAKNjKiikDCKJUltjRJrpxCT6rnSDgkcqzczslNw7RxfkfPI2d93aQTytIgg276Ciz9djsFnIG4LM5cB7TVvDhNTdH/yW4BE/ZODoEL5XHDIMkiBZS8QwqfC4LOQNw2W343eXj6HPYLOQMIOh0UOEsXylwGkc9eqJA6JoL0EYi2OvqGbjlqUKz20HD607gA8vbcTv9jOwfQU5PbtcLbrx1k+cVBGxrTsLrsHOd6CV1OMrw5h6GN3ejpPK4sFnIGUCF00FF+S3gc5XPuRqPCyFzzDMmilPaBtzOsn50O2z4veVVD7wep4WcAYS8LlRfuSTB6yofm2qfG47pW5soYtOdHKtACPgCVDWFmHvyLAI1Xm7/7P3YRTs2odwvn91uIWcAAZubSle5jtEplPsVtLswdWtmfkkQkQQnlXNqkRw2RnYUAgTsoq3snSQIIpJQPjiSaC+ztYkuplqJcktTvGckjyVYAEAUxCnffx6b3ULOADyhAKM9sTLbrD5F8mdBwDTNsiS2b3nLm/nBD75Xdo5pTOM/CZ9nzksanZLOHvm3/DC/6gnaKxmnv2MlvpCHf3zjsZfbldc2TBO7w4bb7ySXeoVFvdok6v73OgSHDXtNJYN3bgbdoGLFHBrfeAr5kSh/+/adyJ2iJeDNFIdZtKRch3Rrr4/jTz2JptWzWXr9qUQODHP4CTvIh0urGq9BzFg5B1ESqZlVyU0fvJP8yxRkU7OokfH9w6/K4EXvnEaGn1z/oo+vqammtraWLVu2vIReTWMar3wIgvBlIGqa5g8m//01IGya5g//2XGvaA2az+dDtwiKy0mqKHpQnVZha1qL40a0CFNN00A1smi61VbTs2hG1iIqN0wNzchZkj8CKFqMmGatBiAbGWyijHpUkXLTNFh60WxaTqzlts/cj5ovaKGSWpyUlikmpIXCdmxSzTOYsyZrPJSKEpZjGEfdQ16XiarxKfthGlMjro+QyibYcPc+vvjXt+H2ORhVutkQser3wnKGp7qipOUS6TEMk56hBAcHoxbbrtEEg8My6lGicFnTGYuoDCStIun94ThH4tYowaSiEFcMYkoe32knYG+tQ/R66N99gF3b9jD7fy+j8YpTGb5jHVu/fSuH9xxG0UuEwjANhnNpDiYSlvN2p1KMRsfpfqyDDV+/jwfedRN96w4z5w3nYdzwHqQFpdqM+yJxutNxq1+qTCKlEclaSezu0Sh7otY+GMvliCVVsmpJKK4bBoORFIeHj+2vOKMjMbSj+iuvaETH0gxGrdUw9vRNcGDI6lc8KxMfyxFNW5/dff3j7I1brzWazWJQ0NcV/TINll27BrtX4uYP/71IzlJaBN1MWAIkVEMlpiiMy9Yx68mNcShm7e+4LKNKeRKq1a8DqTidGWvUdkRJYZJFcEkkBwurUIZpEJPzGIaVLBqGQsqIWN5fuqmCqaIY1vmV1sOkdeu1NDNPRlPJ6db311AuTEy1Bspk9SSGaQ0uME0DQ1cZyJVWywSbhNgUoquz2/JO0kyVvJGz+Fo4hw7HBCKce+6ZrFu3jhcoq5nGNP4b8DvgrQBCYRn8auBPz3XQK1qD9u1vf5tNmzbxt7/dSYFLChQ+PQ2cUpAqzxJOOeVU3nTt2Xzjxh8x2zmDrJ6kxtGCTbAxpo6yN38E2ZTJmwkQCqTNNDXsohfT1HHaQoiCiKqlMTEx0bCJHiTRiWHqiLqBSwwSMNw029sBiOvDOAUXDluaNdVN+O0uonKaPcko4KKhMchHfvM+/vrxf7B1/04cop+EmqBCakYSbGT0GJKYxSHCgoCLVk8IzVCJG120+1ysHddI5tsRBIm0PkbIYTIsj/LgxAauueFqTNPkV7/6BaY5nWrj+cCGk8XBM7np/h8yHBngY//3UTo6OjijppUPz17B2miYm4fHyJtQ5xP43PmNLKr1Yw5rzHUG0A2D7WKS1nkhDu5J0TragF2QGBViuOam0XUDx4CXeiGAbKgcFoZoq3MxGJZZ5q5DFEQOJCM4XAZjaR1vrhW/5EOv9TLzY2+AVBa9ppaJngwVTRVsveNR9LXbORyJk1VnIgku0lqSjBHDIdgxTBuVjhoMUyfkO8DpjbAtbKDkFyIKNiLKBJBHNw3ckp9KRwWta9o47s3z8IsqO399CzNGC8/9wdQEdgkSap65gSBVTjdJPU+/K0xjyEl8XGext1BAfnskTKXLyXAmy9JgDT67nVElw7g7hddtw2EKzA8F0QyDLfkUrW2V9A/EWB0KYpdEOjNZUpUe1LxGVb9Ms+Qip2vsElO0NAcZ7U6w3FnQxO3LxHHXOwhH88xMB6i0OYkbMj11CvVNPrKjKY4PFfRg6zrC+LNO+hN55tiacNscDGSy7IjqGIaTylXHc8U3ruORbz7InX95EIkAQUeUS+rrcEgSB1MxOpIgGzrVjiAhRxDNkNHopd3nxuab4Py5Bd3p7okoDlEkKsssrAxS6XYxkVXY1JnHY/o5mHQSkArasRG5lxaXk7iWZGmgFo/NgfvS5XRPpNh0x2Z2xFTyRgDD0BnQtpMREthwUuFoQxQl0GQqjCAiJiFbJT4piGrI9KndmIKLFBGkyVxohpolaFYiojDH24pX8qIaWUxxnKDdQ29aRjQLxerj2hBeyUtYHyMpCQiChKKnkY0kbtHOBaFZLPY3o5saMbWXNq+b4VlNnHj16/n2u/5C3ozilkzSRpxd2W3kzDyGoWOYWcBEECSkSZ2bbuQxTY1AwMutt/6BD33oQxw+PF3eaRovHC+lBu3l2OIUBOER4BNAHfBO0zSveM5jXskE7aabbuJb3/p/dHQcKvtbc+B0HJKf2voQP/3DJ3jL6z+PL69ynOe4Mts7EneWaSQE08RjtyZa1PQcNsmqHQFo0eupsVmFxDZplHPqW8ps9ybiXPuVq5nojbLx5q0AHEz1UiHNKLM9t6E81P3+0X4qbNYggoFcD/fF/g7Ahz98I+l0mt/85iZ0PQNTpOWYxtQQRTuXXHwJH/zQ/7Bxwya+9KWvYJoOPK7mMtuNF82jxWfVFt5/KM4S90xLm2JohDzl47grNcDJdXWWtgPRDE5lcs6IArM//WaQBOyL24gPJnnyZ+vo3NCDJmsM5QdodrWWnTelJfHZrIl1J9QeFvqPCTwxFLzHaIgQYMGFPk5+yyVk1u8ice/TYBj0ZKLMD1nF7wDdyiiLK61JabeMh1lRVVdmmw2lqPVan521Y2HOmGsNpEjlVByR8oX7DSNhTm6wPo8HJ5LMcobKbHuDUZY2Wv16dEeEObny5/G2cC3vuuV92Fx2brryN+STeRTzMKdXW8c8ococSZdfa1bzFl4309p+IBZnYVVFme33nvJRa7cGWEwo3ZxRU+qvhjeejJ6Vecu3Hi/Tv43oB7A7jjmvobNMsor9AXYom5GOEfY7DYXVnuPLbLszw/gla7LcbrUDxV6uqXtP/Qw8x7wD7x7q5LL3Xo0oidz547UApPQYm/N3lx1vGHnEY3S2hqHwuvNP4swzz+RjH/tY2THTmMbzwX8BQbsKOBmoB24yTfP+5zrmFbvFKYoi1dXV5HK5f2oXHo3R1zPKypMX/lO7/xTmntxO1cwqtt+x6yU/t8vl4vLLL+axx558yc/9WoBhGNx99z28/tI34HQ6uPe+f3DRxee/LL6E1iwhuGIu/oUz2HH/Tn771j9x8IkjxZqQ/xaY0PvoRsa+9XvsrQ3UfeoGRH95gMt/E1Zes5r0eIqDD3aQT778yaxN3cQWeHX1ud1pZ8V589n5xJEXdbwoipx//vns27fvJfZsGtN4VeHvwPnACuCh53PAK5agnXzyyYyOjtLT0/Octk89uoMLLzvlP+DVP4e3zs/rbjyHx370FEr2pU8ia7fbUVWNnp6+l/zcryVkMhk+8YlP8Yff38z73vdOvvilD+P1lq+c/rtQff4KZv3vGzFklejaffzly39Bzf3nkg7r0QQTP7mV7PYOaj7wZmz/pSTNd+ZK2k+di2iT2H/P3pfbHQAyXcN4ZtY+t+ErCKddtpLRngg9+8oTPT8fNDU1sHTpUm6//faX2LNpTOPVA7OgSXoC+ItpTpE9egq8Ygma1+tlZGSEZzRnR4c92SQfE/mDZNUIAA/ds5GW5mpOXb2agVxvMct3Xk8T1/o5yb0AF4VwftM08esBZghLsGlHndMwmSvOosEIIEwKXgXTZJHDw/GVHkxxvGhrihM0eiX2p3pRJrNpq06Dee9bxa4Ht7J/a+nHYFQeosbpIm30F8WxspEmzwCPhQeZUAoiad0w2RgdwCG6iaiDxeP7cl08Fn8QMPngB9+Lz+fDNE0MQ2Z6e/OFwsA8Srh86223csUVbySbS/CPe37DgoXtCCaEzFre9bjOhpGSIPvOQzn2hhu4fySCbhTGcVxJ0asNsDM5SEQpZIHXDIO/98fZM9rIIwMlAfyWcI7bB2vIvO1cZnzo9aQP9DOx6QCf+uivORyVGciVahUO5UZJqyIH091oRmGM01qG9ZFD7IiPEZZLwviM3k+7186Y3FsUeqe1BIo5SETtLmZ21w2dJ8Pd3N4d5G/9BfF36sH1DGzaQftH38mmbIaMWiCJWU3j7r44+4ZD7AiX+uCAEqVqro1t5ijq5DMWV2S2ZofomkgzkCjd7+axCSpcDtb3HHVfiQx7w1E258aJKPlif23KThBq87AnUxKld6aTyH6VreoIGW3SL11jK2OoEhyKlAT7mw7GUcedbI4OoU5mvZ8I+Eidt4aN6zs4vK2Tic7C8ys5D3LqjDSDelfx+P5sirtHkuyO95JSJ/vL1EhqnUTCNTzdW7qvg+MpRsdsPHQwSnqygkRW0Xiqf4xVMwfIi0NF27A8hN9mK/g1Gew03tuPOLOCG+ZE8NtLgUGj2iFypEgrpSAkTc+haGn2yjvIGgUfDNMgRz8rvTPxHqVBtekKTWIlg/lCQloAWZfZkd7LqB4hqpXGoU89wIjZR0zpxpjsL9NQqdDg4ZExRnKlvu0gxjlXnc6dv7uv2BZVB9ia+QuqFsOYnJ+ld5Joqd5gmCpLlrazd+/e59wNmcY0/lNIZ48IL+V/z+eak8EBq4HfPl8/X7EatNe97nWcdtppfPazny22iaIbu60SQSiRLYfg4ET3aZx99hlc9N6T+NG772AsPogkppjpaS3m/VEMhY3JraDX4ZdKmpC4PoQk5JjlXIQ0ed68kWFUP8AZVXOodhS0LoZpcDg9gInJPF9rIX8QEFPjpGxJbvjG+4gdibLt9xvRTJ3D6V5E3DS5morXCsthxvJx2rwzjvJLJqb2YROCVDpKX9bD+WEeiT5JWJ1AEATa29v44x9/yRe+8GXuv/8fHBshNY0XgmfmcGnuf+Yzn+OKy6/iI1f9glSk8ANjmDqzAsMsdDdSZy9plsbkMdpCfZzZVIVnsmh3SlV4fCjGRGoGtc6S3mdYHmBEzrL41Au44CNnUt0SYsNftzJ7VROff8tNZMcLvpimScoYIGB3UOMoaalSWoxxJYxh1GCfFF4bpgbiEGfX+mn3lTRPfdkw40qSE4LNuCbzYGV1mafHB+lMVuARSwW+NWGQN82KsaqykarXn4mzvYX93/oVO2MRgkIrVY6CJk03DXrkXpatTHPyUYXeuyaS7O+Is7KpspgfLK/prB8JU1fl5riGkkZsXzjGSC7LqTPr8dgLmX0SeYX1nWHmzAwxt66iaLu5O0wqkmNNWx22ydxtI6ksO/rjHD+/iuaKwmqfbhis7RwlddjFEk9J59aXTfD3/iyr3vde5h8/E4fLzvc/8Bdiw7t4/zKZE6tL19objfG3Qx7szMYmFsYxr+fIGf2cUu2jxV26h87cACFfjBMDTUW/wvkMPcYIy6oraPB4in7d3xNneKKaRf7Ssz+Sj5JlhFNqqlj4k88y/Invk8vn+VnXIHeG49hspVVMVU9jN534bA2FPI0UyiX5TIUlvlYq7aVx7Mn1MKHkmemcU3wnZfUkQ8ogadOJXfROzi+DnD5GxBwGW0l7put5aqlhjn0JDtE1OeYqqjCAUwrw/m+9g4mBOA/8bAMTygibko8S0QaLCWhN00QQ7EiSp+grgGHIGEYWw8zxzne+E7/fz/e//32mMY0Xi1dzolpBEBYC9wJ/N03zo8/3uFfsCtpUEAVnkZxBIUmshESdvZV9T3fTt3+MSz9wKkF7LV6b25KU0SE6aLS3WMgZQIXURL29pUjOAFyil5mu2iI5K1xbZL5/BvN8M4ovQoBZ7W1c9813Ee8skDMAmyBR56yykDOAWmctQYf3GL+c6KbXQs4AGl2NTGgTxeCGc845nc2bt/Hggw8zTc7+VZgcm4jqa1/7Cvf+9Ul+cMuHufQtJ1PbWIEoSIxlKi3kDKDOWUe9z1kkZwB+uwOb4LWQM4CWYBtXfO79vP3HV2LqJn/7woPUtdZy608eLpIzKMxlr9hgIWcAfluInC4WyRkUkiu7xYCFnAHM8NRS7/QWyRmAR3Ii4LKQMwCb2cwcXyU2USTxwDpMVWPeDVdiGJ4iOYNCgtUZriYLOQOYXR0g4JMsyVtdNomWgMdCzgAW14ao93mK5Awg6HIQqnRZyBnAqrZaljSEiiQIoMHvwV9pK5IzKCTKPb6x2kLOCn0QxLv4BFadu4h7f7OJ6FiKcF+SoMNtIWcASypDKEawSM4AXJKboN1hIWcA7e4W5nhqLH7Vurw4sRfJ2TN+ndzgt5AzgAZXJSGHRNDuRBuL4mhvxSXZaPc7LOQMwC75cIg+C+GRRAdOSbKQM4BZ7lk0OVot7ySPFCBnGEVyBoXktzYxYCFnAJLkIihWFMkZgCTYUXUfp51/Gr5KDw/+ovBeq3Y0ENdHLdUBBEFAAIuvAKLoxDDzNDc38573vIdHHnmEaUzjtQrTNDtM02x7IeQMXmUE7bnwt+8+SVVTgLd+9fzyzNYvNQSYcXIb53z2AvY+toutv9v4b7vUO995HWvWnMKXvvStf9s1pgG//tHtfOodv2b5mnl850/v44NffgNLV8/F4S+Pdns+cATcnPXtK2g7cSb7HjnET6++CckuosoaT9/1CkrWqelM/PIObLWVLHrDWS+3N/8SBI+Ly95/IXf8aC0zF9WzZ23Xcx/0H4Y6HMbRVPPchi8j3D4np7/lBJ68eRum8eID3l73utfx4IMPTgcITGMaLwKvWILW1tbG2NjYMa3lLwrD1NEni2KreY0/f+lhHC4bl33kgmPLwGGYWlmSxMLx5QJt1SjXd+V1GdmQCc2s4pzPXcjx16xg/U+eYtNd5dm1VUNBM63nME2jqCkq98u6KqaZGpgFcnbWWadz440fIxaLT9kH03hpoJsq4eE4n3/P77nx8h8y0BXm8hvO5sIfXc3qD53FvEuWItpEDNMgr5VrPBVDwzBNEATmXHYcl/zxBtzVfsK94/zl0/fi8jk59a0reOSn6zCnKM+jmQqqUZ7bbipb1VDRjtGZGqaBapbPr6nmt26qZPSSralqRG++l/mXnY6zxppyI6MrlgS+pfst9yuv6ZYEvlDQmU3VX7JW7mtO1cio5e2KWn58UlHJ6la/QleeR8fmg6y7ay+Ns6roP1RI4iobWlE3d7RfxhQ6zmOfW4C8rpLTyvsgr5f7ldE18nr5OCrPaGOP9ONoL6RQMUxjiiSvRmEb+xioU+iKC++Z8mvpU9yXjsbU2uRy20vedTpDR8Y5sL632GaYU6/cm1Os6JumgSAILFmyhO3bt0953DSmMY1/jlekBk0QBO68804+/elPc+DAAUBEFF0Igh0QsEkeQMIn+FnsPAsBA1HIUeNoIaaOITrsfPCb1xKolnjsu08T7p5gIDeCV2gmqo4T1fJ4pRpyxihz/ZVU2HwcSQ/hExtRzDyimGCut5moNkqlw0WVI0R3tp+Qs5YVV65k0cUL6Huoi6dvfwJZTjHD3UhndoCArRK35Cas9LOiooaokmdfMk+ds5VReRTTFKiwVzKUH6TOUdieyhkjrKxooi8fZSgH1Y56jmSPsDG9jze+7RJOO/1E3v/+jxKLRTGMLKb5CitV9F+GKsdcGl0rsQlOfFKcS2rm4p7hY8mbVjBz3iw8jX7ksQiRe7fS1bGeE6o96IbJ06MKuj6XquV1rLrqFKpn1bPr7g0kt3URWXuYh0fCXPzeq3EEbPz2q7dRZW9hMD+ArrtwiQEi2gAuoQoEA4eUosk5g6QeQRJU6hx1dKR7UfQAkuDAFMKcWDEDgzQVzjTzfY30ZkfwSDbqnUEOpodo89ajmQZboxE0vZXR/DgJxcAn1RDXBql2hgjYHCyq6uLCxmoiSo7RfIqz3v1WBjWNXT9/nCq7nz61l9fNETDtGkPuLKe013F4PEEmrrA4GGTj0DhzAkE8dhs74xFWLahjJJEjlshxYkM1O8ei+CrdzKz1s/HQCMfXhFB1nY5IkpPb6zkQTiCKAovqQ2zoHKVJd+ARJfYlE5w0o4axdJ6BiTQrq2vYFo/Q2OijKejl4d0R9N42VFVFFUdZWVlLj82k7Wsf523nf595S6t4z0ev4ps3/Bmf3sUH51WQNFKYjhTHV1exYyJKKlmJV6jg3tEIEi3opkZtoId3LXKxI5wlHKugxV3D4WwfKxogYBfZHUlwXEU94/ksfSmZhb5mutQ+5taJNHjdbI2GWdZaQSILj+22M8M2g6F8BElQaPdV0p3r48R5M5n1obfysxu+Qjg9jz55lC3ZAyB5kLUEqplDEGw4TTcV9lYMU8dl6LTbFiALE1Q5HVTZq+jN9TMuOzBMCaeUotk5g4ye5IjaQ0aU0NUMfrEGu+AhoQ+gSiYaMnktjt3mA0PmNF87y3xz2BnvR9OqEQWJmSeHeOtH3sDXrv8VcipFjaORIbmTLcmHSOjjgMQzVQIFTEBEEEREyYuADcPMoetJzjrrDN75znfyjne8A1mefm9N41/Dq1mD9mLxiiRo55xzDtdeey1vf/vbAQlR9Fq2LE3TZIn7XOrtcyzHxbQe6iez/QOcevliLrhhBfuePMLaW/aSHC9FpI1rh1kanG85fiQ3SrUzhEsqbWkZpk5Y6efU1aey8m0r0WSNp3/yNPu7drEk0ILtqILmeV1BJ8wcn1Xndt9oL1X2uZa2rJ6h3WsQcngs7d/pfZgeNcVVV1/Ce957DZ/+1P9j7dq15OTp1Br/KYjY+ODM65nra+TE96yhacVMxvYNMTrex3EL5xA6YTaCTURN5ZDTGXK6hCjZqGgOoas6I3uGuP87v2VeqqQbEySRud95M7/71COEO+PFds3QOJjuJWiz6twUc4ClgXakozRPeT1P3kjR6LbqwTL6Ac6sabO0jeWTbI96kMTS/DIMnUOZLlpc7RZbt72X/5nvwCXZkII+6j//Xvq/9isOjO3jzBarFmtdfJgz2uosfiVlhbCkMr+hwmL7wOEhLjzemkC3byJJQLJR4T3qGTNMHt7ex9l1Vk3d1vAEiytCuGylZ0zWdf6yDVqZabG9b+wgJ3/yRlraavnwVT/lg19+A50d/Sze9jTLQtaEro+N97HEa332+7Jxls/MUusuaal0w+ShvgnOa7L6tWlsgnqhGedRiYAVQyVd083JM6sttrdsTjBTm2vRrskOk9nffh+/vf4OcolSbra/R+8lccxqlmiYrHacjeuocTRNgwH1ME7ROmeS+iApm2wpfm6YOrIWxz5ZceAZBM0cb6pZg3TU+yut5ehz2/j4j9/OzV9+iM5dwwB05tbSkX+aYyHgKnsvF1Z7CyuNb37zm2lvb+crX/lK2bHTmMYLxWuRoL0ii6W/613v4gc/+MHkv4TyKgCCgE+sLDtOPOZ21v19Hx0b+7jwrcv58B+uZs9jnex9qovunUP4bOW6Iq/NVSRnwYYA/mofjYsbaFpxETW1NWy/fTsdD3SACU7JYSFnAC7JgSSWn9cllnezR/IScpRvN+SMHPMXzOZ977+WD/7PF9iz5yCiaC+zm8a/DwYa1Q4vrae1Uz2/nvve/2d0RSeiHsFTtRfRacfTWk3tOcswJIGIUhjzTT97mv4N3QBktAmoKAn+A/MaQdEt5AzAJtqQhPLxtQl2CwkCcEkuHFL5dpR9ivnht7kt5AxAFCVcx2R5BzBNFy6pcC09kSazcTe1bziH8B/2l9m6BFuZXwGnA9VVrpbwuMr9qvS58B3z3IiigBupzNYv2S3kDMApSSA74JjHLK07mDW3gS+87w/Y7BLzlrRw103rON9Xfr+i4Sprq3W5qHVbtwolUaCi3BSvzYET6705RDt+d/lzHnCJ2LLWvnEqArGRNJXNFQwlSrnFbIINjt3aFEQLOYOC4F81JJzHdLmOYCFnAKIgTSlkCdp8FnIGEPT4eN/XLuXBm7YUyRmA9ixBSVO9l4/err3yyiv5zne+M+Wx05jGNJ4brziC5nK5aG5uZuPGl0Z0Hx1Ncdf3nuKpP+9k1aWLuPRDp+EJuBgbGEQesmpK8nqeltmN+Gt9CJJIKpxi9FCY9betJ7Mng6H+Z6Inly5dwKZNO9mz5+B/5HrTKIcr6GHptatZ980H0JVjtF6ySvrICOkjI+R1jQOp8jJJxyI4r5Hhnd3/LndfUsTvepzGr30AX3s7xCMvtzvPC76Qn0DISz6ncMX1pzPYM85wfwReGQVGytC3e5C5p7YxtP/FJX99qSE5JM751Os4eGCUjXd3/Mvnu+SSS5Bl+SV7j09jGq9FvOKCBJYtW8bg4OBRLYYl8SFAja0Gm5i2fK3pZh63zUAx0xbbnDlCUh8iEU7z8G828/233sr33vUH7r7pMXr29TPcMcpwxyiDHSMc2nuQR299nNs+cie/f/ufuP0jf+euH93Nlid3kM+XNBSqoSIbWcZk64/XSH6U/mwC7SgxclLNk9RU0lrSYtuZHmB9ZNDS1psdZ+aS2Vz5pgv5yY/+ABS2DTQ99bz7bxovFOWPwKqG+Zz3xYs58tA+4j2FMVaFNPUNEVIkLLZd2RGSmnX7eSyfYFdcJaGW5oxvXgOHdh1AMa2BLyktgtcuYx61cqKbKrKRJ6JELbZd2QE6UsPF5KIAOT1DRNGYUDIW2y2xMOOKdX7F1TgpLYesl/wyTIOwnGFt+Kj5qel03/0Q/jPORDlK3J9RNCZiOt0T1mds12iUjr4o+lHBARPJPPEBmdFo1mK7fU+YzR3WPugcytLZZyeRK/WBrBrcu9/G493W8kwPdGV4ZCxO/qgAB8Vr58bffYJ0MoMv6Ob0C5fyh+8/RHvFMMPSqEXcnhTzBI83SNusfkV9g+yVJyxtfaksExmDlFJ6/yi6wUA6R0/W+uz3ZSN0DmgoWulaaVWFUJa4GLPYDhn9jO98jHmnz0a0FeafaqRZFajCc8yqVK0YJKWPWNri+gQpYmhH6VF1UyNrJlA16zxQtDSmYQ1CEk0Dv+ggpsSBEjk7MHyYz3/xS5ZAKtlIE9Ws8wjAa2/EKVk/TArXKFzn2muv5Uc/+lFZUNY0pjGN549XnAbtt7/9LbfffjsPP/wIhR9PgULkooBPqmJVcA1zPIsBiKoTjOcziIJGs7set+RFNRQG84MYuouA06TeWchHFJZHyOsgGzmq7Y3YRQeykSVnjhO0O3GKDqodhdD3wXw/TsFF1sjQ7GpFEiSSWoKsnsAlmdQ7A1Q6guimTk92gKDNg0aeud7CltZofgKTPGOKho0GPJIHxVAYzA8hmG7G8ypBWyF/U1ofYUEQHk/spUfJcdWbL6G5pY5vfv37GOjklTEM4+WvIfjfBwGQEBAwJ6tV1Dn9vGfGmVx13TV4Z9byyHf+xEgO6hsiXLzYRqXbSUpReeJQhvRYNWAy11fQg+1NjjGY9bA3nsNOIzbBjmxkqHaFWdxcwZW/+iiPvu8W5FSejtQA4ZwHxczS7CrksEqoMfpycRTdoNpehUcKoJs6cX2AgOShJ5/EIxbmTM6IMMNjx2tTaXbX4ZbcyLpMQh+kyu6kKy1RaS/YjspD6KaNcD6FV2xAmvRLNqME7E4CNjcV9ipM0yBr9nJJq4zgTHLyzFYqPvVRDn39/zE6NoiqQ5MjSL3bg6zr7EyP0dJgJ6WorKwv6K46onEMj0BkXGG+LUTQ4SClquzTYtQ2uJEHVRYHC4XHd8Yj+Jtc7Nkn0Kq24hRtxNQMGc8QiiixvauZoK0a0zRIid2cMz/Fz7cLJNItCIKIYiRYUakgut3ceMtnSYSzfPnNN3H+h5ZhyGla9t/J+W2FnGH7wnHGx5zoMyVOObORCp+LREbm8UdHMXpEZs5Lc1xzBQBbeicQxiX6xw0WextxSjYm5CxDagSHKOEw/LS4K9BNg13xUQKSi4yZZXllLZIg0p9LoAcT2Cp15jRXUB/wkFd1HtsdRR6ooKIiyurJPHGZa97Gukd7WXfb05xYUYvX5iKj5fnH+B52JFIscS2m1lF4f43Jg+R0kUFtGGx+REFCM3IImook2FBEA4fkwzQNMloYQwATFbetBkEQUPQ0ipFilqOCVf4F+G1+NEMjzAhXff5Ktg/u43Nf+gamaSKaAgtdJ6EYaQ7n1qFR2vp1SBVUehbishXGMauMEct1ohppnokGvfHGGznrrLO47rrryGatRHga03ixeC1q0F5RBK2lpYVf/vKXXHTRRZjmM+SshJOC57DMf5KlLaUl8NusImCACWWQOqdVRDucHyIgNZTZuu1JQvaQpa0/10ure2aZbb1LRzymDwZyPSz0W21H83GyujWpJMCWSD9BW6Ol7bC8iz5zAIA7//FzPveZ77F/3xHi6Q6M6ajNfwsEyvVRH559Du98x/XUnrWEQ9++i/xonJgwxiUnl6dX+MuT0OayzqV7hsfoTc0ss738onqOv2w1az//j2Lb+kgfIZtVQK/qKjGlXIt1MHsEn2SdM6KQ4Jy65nLb5AjVDqtfR9J9iGb5vK9yKXglq3h8ZvUu3jav8Dy5r7gMIx4n+uAjuI4VfQG79UFOm2ENWDgQTjBLCpXZdiSiLK60tj/SlaTenFtme9eQiEeyJm99auIAhlkS69sdEqdevIDzL1+FYZh8551/oWFWJe/9zqV0/uwzXNhgVW8cUrIsPa/8WrsfP8DimgqrX9ujzMm1lNmGcwoVDmvN1h3xfk6qto5N2pRZfHbZ4TyxYYhVlaX+Eqpr0N72btZ96E6UuJXI3N4fJWCz9u2+7H6SQvk46IZcpn1NakO47daABcnUeFPV8cV/2xwS53/mPJ7sWcdnvvR1y2qXaarounW1GKDBfwpOW4X1fuVBJrK7gUK94L/+9a987nOfY+/eV0b902n8d+C1SNBeUVucNpuNVCr1ml4WdzgddHcNvNxuvOYgCAKrrzqf0AltHPj638iPxl+yc4daq4kcfGVojV4I1H0d2BcverndsEAQBGYvbuQzv7iGS952Crue7OIH7/sbl914Cv/7yyv5y3efRE4kn/tErwCYE+NEd+5h9ptW/8ev/Qw5y0SzfOsr33vJ3rnf/OY36erqmiZn05jGS4BXFEF7raO2tgpJEtGnSH45jX8vrrzyCuaefBydP38QJfLSa/50+dVX2F47dASxIohUU/3cxv8BSDaRN7z7VD7546voOxLmC9f/jqfu2M17vn0x85a38IP338Heta+OQIxn0PfXfxCcU0/DmvnPbfwSweaQeN2nC+TsyR899ZKRs+bmZlauXMlnPvOZl+R805jGax2vKIJ26aWX0tX1TGkWg1LWfBOvGAKjmsF8f9E+oUUQhDQTai95vbBFoJkqEbWHaqeNiFoS144ro+imwKjcizaZWV02ciT1PhQjS1QpCYTDSj8LA3bGlR6MyczbKS3JmNLHkcwAcbXwha6bBkcyfWB6OZQurXqNyhGyeoYJpYfcpF+qodKf66HJYyOpl1ZTxtUBRvVhVC3FBRedzgP3PUlezpHJD76A7U1p8r8SBMGBKHp5BQbqvswQEAQ3IE5qz2DWrJl88L3vJHH/nzgwVIpgG8xNIJLksYPjxPMFHU5aUblzT4J43s6R9HjRdmdihE2pNL3yoWJlC9nIkjX7GZfzJI8Sb+9PDpBR3fTleosC9oQWZ2f6CIfzB8lOBoUYps6I3EtA8pLSSnM5Z0TxSgYHUr3k9YI+UTEU+nI9hBwQUUsi/MH8IEN6mkHliMWvjDFIQo2T0EqBCKNyP73ROh4YiKIbBpgm8UOH6Qk28+hAjLFcdvJaOuvHRhGTPrYMlcTyB6MJ8nadjYlRkspkf6kqTw+PIecF9kfjRdutYzHy+QA74gMok9U1osr/Z++8AyQpyjb+6zB5Z3Y257u9nLnjOMJxcOScoyBJUBQVFUFAyaCiCAiCSAbJIkjORz4u57QX9zbnmZ2cOn5/zLK7vbOIAQ782OcPZeuqu96uqq5+p+p5nzfJ/U3bWRypJ6hk72uaButj6+lw13H5/cczaVY1t13ydx685QX2PXQcP7jjcNqbuvn9ec/QtKUTr3c71XkiKzsH7NocDJOKpXl/4VYiyew7FUspvPxaIzs3OlnfPsiupgB5msjKSEt/poSgkmRjuomQ3EVrKtI3NiYb0q1MnC6wNtWezSABtKWj9Ph7WLizg65YKttfms77G9txGzZW9QysM5uCEbo7VV6/9WFqT92TMafsSUrP0G3fwglzOkkMCiiJ662cWe2g1BbozwagG2n2zg9zTKmCYcT7+svEQS/fKhmNk0i/86XqCVRNYXlyO4f86iCSoSTv/ul9loRXkDYNS5CKaWoIyEiil09pJhJ2xjsPoMSsRNMH5nJKDaKiUFI0hhdffJGPP/6YdHqEMzuCEXwR+Npw0ERR5MUXX+SKK65g69at/eWy4Gaa6wjK7ZP6yxSzB79DZbJnTL+WT1JLsjPVyoS8UortA5y0LbEWetIGRbYBTklCjxLXu5jqqyGvL1Gxbug0pRoZ67Ez0z8gNFsf72V9NMo492gcfUmoVUOlLd1Iga2AYsfA7kJ3pgNIMDmvFqlPjyiqJlkVbqfMWYbfNmDXhkgzK+Lb6RWyH2NJkrjn/hv4+7P/4B8vPD5sep9heg0QEfoWUbMvCbgouixJ5U1TwzASw9/iGwRBsCMIA+KahmGw+6RRvP7UIxSt/ghj63oAPtwap7ld4Kgaf7/AaEhLsTodwAxNxG36+++5M9HI4kiC7alBEW16mmIRZvrG4pZd7HnG7himydtPPEdScyMzwKWK6wF6tR4ihhehL+G0YWo4jSh+qRSPNKD316W0IooK0/LG9c/7tBEnbbYzMa8cv83bX3dtuIlNyQQpBsoMPYUXjQmesbikLJdKN3W6Mo0U2vOocA7YJcqtjPW3se8x38I7ppKWB98kZWRo0uoZn+ejxjXQB1uUDoSCFPPHlSH16al1R1Ms3hRkqruEUqe777kMloe6iMW9VIoDwrpd6QiLQx0sjHhQzSw30DR1iqUYO+LrmTRvItdffw3/+MeLPPLnZ9mr5lB+df0PGTe7hud+vYD1C7fRa27n53NN5tUMCJet7gmSRGX/UWWIYnbMuxWF5UkV344yfJqn364W906KXRoz7AO8r8Zogs3hKAfV+snv03TLaDpvN4SZMM7BHhMGxnxtfZT6jjTH7leC054dm2ha4ZP6LmozPmrsA1y/tb0B2sMytcK4/iTn8Xw75d8/nCpHFM+S1yCTRjdM/vhhEjHi4ehBCehXhXt5vrOTqybUUuLIcs+SmsZNWxsY46xg70H6e0vCzbza3YpPqsXtcnHJb04lHIzw7K2PsCGxhaiR6q+r6cmscyY4++0yTR2f4GWa6wgcYl5/fzVr6wmYbSBKCILAbXdcRSKZ4GeXXIRhjPBmR/DF45vIQfvabK/sscceRCIRi3MGkC+VWpwzALtQQrkjbRFadMtuCu02i3MGMNlbgzYk559H8mGTwv3OGYAkSlQ4C5npt5KTx+UV0pJS+50zyAqD2kSPxTkDKHVUgNnb75wB+GxufHabxTkDmJE/ircTq/v/vvTy7zJh/BheffW1f9E5AxD6nbNP/zIRLc4Z0PfhF+EzBCe/KRAEm0VcUxRFbrr6Soq2ru53zgAOnJTHZk2zqL8XyC56u/Kpsvkt96xwVrG9cwi/THKSbzNwywOEclEQ0M0CZKxE+TypmK3pbhySPKiuTMYULc4ZQJm9Gp8jZZn3TjEPw7RZnDOAid4KViatchai5CJPVPqdMwBJkMiT86lwWpN3G1o1KGmSG5qpPGEegk3CpTqQNY/FOQOYbK9Aquztd84ASn0u3A5bv3OWfS6RqZ4SWpJWUn2ZM5+lkdZ+5wxAECTi+SK/ue1Gamqq+f73f8S2bdux2Wxcdcv3sRt27jznaaI9CWyinTmlAvNqrET52SVFhIR0v3MGUGq3k1ypUC0OvOeiIFISr2Z6vpWoX+vz0Euk3zkDcMgSk6slZk2wSkzMGufDVmD2O2cAPqcdj2qzOGcAswqLUYJeRNtAf+VFFHY+9mcm/+BMxO/8AmP1J7BqIefvaaNnk3Ue7OEvxCkl+50zALcsc0ZVCejW4Ia5/lEsiWscefJ+HH/2vqz4aAsP3/YmLak2ombKUleW3Oi6gjBo/RIEiQJ5VL9z9ml/lYq1BMzsvN9n390ZM7aGS35yE5LoGnHQRjCCLwhfGwetuLh4mOTo3xzYbDK/u/ner9qMbxSuvfZKRo2fgPHW41+1KV9bKF0hDEVF8rjQwvHPv+ALwnHf2pczLpzPw489yPe+dxGGkU2+fdVVVyBJIk9d9SaZZG507f8y9HQa44OXMTYuR5p3BPKkmTg+WgB1XfAf8MScxV5GHTGDu/Y4jbaGMH/81XNs3fDFBiC5XE5+esl3uPvOx2huav/8C0YwghH8y/jacNBOPvlk3njjjZxyDRXdGKLkbqpkhvmVpg9NkwIk9SQ6qZxygdzFXTUU0pq1XDOMfs6a5b6agjbELtVQSeq5dsXVXLvCarx/0S0uLmCPPabTsLPFwgX5ZxAQyJNy5UUqHHkIQ9ZyGZF82ZNTVxwmZP//KwQE8uXsLpMgCFx00Xc55pgj+eMlP0GPWeUEEppGQlBy7qEPMw/CShrTGG7McsucchKGzDvd0FDN3PmpmapFkDZbppAeRhMvpuTaGlPTmMYw83a467U4imG9h2FqJPt2npXuCJ4J2V0vTVQswq8ASVMlOswcV2y5TkVPWiOqWt8R3TBIGQPO374HT+es7x/GU4++yl133YPRJ/x8wQXnccwxR3P/DX/Lcc7SqoFuWNsLJjXaI7m7xolhMoKkxRRxfWgfGKTN3N3sREYjo1rLFU0noeXWTSoaxhC74rpKRsod83iq7/qeDvSXH0Nf9j72vQ9g1G8voPiUA3BNqEbKc2GYBpo43JjrOKv8jDpyBnOuPp79bj8TwSnz+189zM0/f8rinGlGqr9fP4VoitiE3NRYzlzlF9JmHNPUOfOs49mxvZEP3l+SzcU5TH+NYAQj+M/wteCg+Xw+XnrpJU466SQikezHUkDCaS/HYSvCNDUqhbGMsk1Ho4MqVxEuyU1QaWOMuxLFTJMxI4xx19Ce7kQSJIrthTSnWih3lCIIAltjnUhGNaYQYpxXYbyngi3xVtJ6PnbBQ8poYbq3gqSeJqSFme6rZnOsi4zuoMheSH2ihXy5GM0Q2BjtxifWkDBCFDsVJvuqaE42U2T345ZctKVbmeypIKikWNYbJU+sJqp3UuOxU+Es4IPezQQ0JyYmvVoDU+eM4bvfP5Vzzz0HTR+6SyEy4EfrgEmlfQz75B+JXy5hS3IV+XuJzN17D46Zsx9jq2pIaQrN6QgxTcEruRhVUknju5t58LGHeGrdS2iIeJyjcNgKUbQoiXQTupH7wfj/gnHucRxRfATF9mI2anXMPn8vDj/8ALb8+XecUuZmeyhGRteZUVLAsmCQ8VX5eB02ltQFmZwupSORpilsMN1XwYZID3HFS55UxFudbaTVCgx0GpVGUqILj5hhT28Bo1yVNCSasQl+Djx7HuWlYUYv+oCuVJq/b5fojExiW6aOVj2IKDrQtDhFYi0CIqaepECqIWWEcIkixXIFEaOVAlshNsFBWGtnlLOGqBajJRXGK1WSNDqZVeBmlKuQJb3NCEY5BjpNSjMZ0UNGj2Bi4pQK0I0g011jcIh2lifXkhEcGKbCOLuPvb0zyBjNTM2XKbX72JZo4YRLziK2o5G2ja9zwOgCtoVihAIy4xwlbPF0sdtsP3lOmVXbOpmTn09XOkOvU2Cv8eWs2NaFuNOkVHfz1LY0gjoO3dRRzA72Lyrn3eAOHmrbSMaUEEyDn37/Z5zxnSP5/W/+yNMv3NvHq5QRBIkrf3YVzkQFHz67mZTRSa2rGqekU+vtZq+CKtozPYyu6mWf0W7uXZGhobMWWbDjK9jBpQfJNAYUFm90U2uvoT7RToVLosrtpqeggfkz8shoOhu2x5gpllKfDuHMN5hSnM/S1h6qZS8uSWZDby97lZXQmUoRsqeZO6mUFT0hyirzqfTnsWRrGzP9XhIJlU2bYszxlbAtGsHEYLI/nzV6kKkT/LhsEh+uiVIUqCWYjqOQYEZ+KZuTnUyYoFNb6mRZWw+zy4vQKmoJFE2lYtQUhDIfopHErWs0bdmGU/WAKREuLcFfVIqiZGjf3IhYH+WB51/io0AQQXCgaTEKpNEoepydifdQzBggIEs+JMlDmVjNWPseiIKNxswqWrV6imweDivchwmecTQkW2mJS6iGi+3aYpJiiomTavnLA7/hgnOvZOfO7SQzbf+v15ERfLX4JnLQvhYO2kknncScOXMs4dn57qk5ScInyzXM9u5pKYuoPUz2+S0Jow3ToCnVzDhPraVuc7KROf6qfgIsgGpodGSCjHKVWequCtczzjPBUpbS06wIGDhEq1ilKNcz22+t25zspjWejyQMnCIbpsH6zHrsspXvc9ktx/Hqgqd47rnnsEJCGLLJOc41jQMLTgRgyv5jGD9nFFXTS7EvXoYcTZPYMXDM8FJ7K5M8k3GV5DHn4kPwlPl47b4XufXNV+npGUg/Y5omkeTmYZzD/33M9s3mhLITsLlsjNlnDLPPmE3j2gb2iL1OXsyaguf9ni4On2oVf12xPYS9vgr7IN6XZhjctCGORxxtqRvVG5hbPMYyvxRD5YRjdSYcdxSJ+x/pL//B0npWRaw8Jt1QGG1ORh6ys2nSTq3LOr96Mh0YRj7ikPllij2U2Kw8pO3pOlKi18K/M0yVsNGBbYgg7F4elfOqdrOUVX1nHjV6HfbN6y3lHyu9HL6HtQ9WNfew2+gS7IOSnGu6wXV/TFM+pL/eCizik1gzgiDg9/u4/safM2ZMNVdf9SuWLl9otcG+O7+85HrSSYU3n1iRva8Z5WcT83BL1l2fv7e1UCBZ+ythtHJ4aRE2yzjqFMzYyH7jrILS79a1M7+01CJIHVdUOnoy1HqtXL+PjADH7D/OUtbYFUVeq+GRrevXMqmTw2dUWco+2RTE31JlsUs1dGKVDexVY+W4LtjSwYE1o0G2IRaVIPh8pHWdt+sKsSclQjt7UOIZTMPkiY7FdBnWJOsZLUJbzNqvYDLFdSijHLtb65qtHFg6FmkQn1Uzde5p/weGaMftdvK35+/m9dc+4K477yKRGdFuHMGXi2+ig/a14KDNmDGDziFEa0HINc0m5pbZRbvFOYMsiXW4ui7JZvl4fnpPp5i7rS8LuUrzLsmJXcg9HpGHs1WwW5yzT+0yhzhcPr+HmtGVrFu3LuceQzMpALhkNzMPn8Q+p8ygqMrPwmdWs/j6tZzkzM2XJ8Z1MnqKTDTF+1c8R9GkcmoPGMfTF9zBY4+8wJOPv5JtRRAQGOYc4/8BnKITm9vGQZcchGyXWfTAIppW7eSAE0K5dW25feC22xBFa7ksisNmInAMM7/sog1HIopYVAiCMMAlGuaHjoic45zB8PNLFGww7Pwapi4yQ39YiYItJ5gEwDHMe+P25eGKSjmhKy5nbl2PXbY4ZwCyJCKT+46pZnbuHXzIvvzgorPYvHkHF//oOrZsW5xTVxYctGzv4ZwrDmXtwno6Gnuxi44c5wzANGxDVWewYbM4QQCyKJE3zPmdyyblZAvJs9vw2nLffac9tw/ynTaQh3l37cO0Jcs5dtlECbd9mPXHJkEmA5kMRiLe91zQurAKt2T90agN8y0b/h0XsA0z5xyiy+KcAciChNm3Jh1/4qFs3LCV+//yNAhfG6bMCEbw/wpfCwftmGOO4dBDD/2qzfhKcOmvT2PBa4vZtm3b59atqanhhl//kgnVk9m8qIGXbnmfrp29gAnj//m1hqrTs7GNhcuWETuggh9e/G1sdhuPPvSPL+ZBvqYYM2UM591/Hh11Hbx101vo6q7nyCgdnQiiiFhSjNHd8/kXfM3gHVuO8cYXv0Pi8rj4+UXfY/bs6Tz68N95552FObyowVj5/jbGTa/g2kfP5vl7PubDfyz7wm0awefjjG8fy4XfP4PLL/vdV23KCEbw/xpf6U8fQZA5/NBTEUWJRGJAp0sSPahDjttMQyOjGaQGiSQapkFIDdCSskYP9WQCJLUUmUHEZ8VQiGoJ2tIBS93GZAfdmV60QeTWuJZENTOEVCt5fEu8mYBm/VAl9AghRSWuDYTo66ZOfaqdHrXNUjekdRJV2/rJ5g6njcpRRTz3/LM5fSMKDgRkakbVsHzFEpavWMKjf32IplXrueXs+1hw/5I+5wySZiObYtYdtO5MlDxHjMQQu0SivPmPV7jqitvZZ+4sFnz4Vw47bC+OqJqJfciOTFbQdeivbglhGCLxVw+BoTuOfpubn1/7Q5Y+t5TXr3sdXdUxTIO4vYXlPUFL3eZonERKpTc5QGBXNJ2Grihb492WujvivXjtMUvwiGpkCClJujPW+3YrrWwJR1HqG5DH1gIQSKeZ6AXTHCDsm6aJpseJaNa5nDIiRPQEmUHcHt3U6dLaCA2pm9AD6CRy7EoYcTJD8iomtQCGnraoyOtGhpgKAWUgk4LocaC7RJbvaLZc3xiJE+xQCA/pr/qGGGsbrO/YyoZeGpNh1E+DFgTwjPZyxf2X4ffn8aOLruattz7CMAw0PY45jBxMRGslbcR49q6P+PX5TzL/hBmcee1+RPYuwlU5IF3SmuqlPtVoCabQTI1NiXo2x63vSGOyh/WNOulBTns0rRBNK9SHrdkkVnYH2RwPZwV8+9CVSpFUVToig9Ykw2RtQw+re62OeGMsRm9AJZIaWJMymk5bb4LtcWt/7UgEaAkmSQ8KOoikFcJxjYaI1a4PW0I0JDv7hXIBwmqUqBZCM6zzK6l2MyD+PYBeoxN1kCi2bmrEtCjtaWtUfXOqhUlTqjjzrOP55RV/YPWqTRimhqr9b6TWGsEI/tfwlXHQXPYKPI4aLrnsfLw+D1dddS2pTBd2WxFS33a9aajIogO/UMAsx3zsohPVSKOJ3bhlBx7RQaE9y9PoVVvx220oRopx7lFIokhEjdKthACBErsfv82XVWdPt+C328kYKhM8Wc5RV6aXuJZCMVSqnOV4ZBeKrrE53ookOGlLgl3ICnn2Kp3opolqZii1VyGLNjQzhUPuxiFLrIhFSJpZwUxZT1IuFlKf3kCDshlBEJBwUO6cynGnHMTE2cX87JKfQZ/IrICALBdQUFDGd77zLQ4/Yj4ffvA+rz/4BDeOOZhKp4+4qvFMSy9hxcNBFQkOLc9ymdaHQiRUGU1McFC1F5csE0ipvLBTQ9OdzCnSmJKf1TP6084tPN/Zy0WnnshFPzoPQRCI9UZoSfewrG4tL730Nps2bSORSGCaGQwjiSg6EYQBIVHDSMG/rNn2ZWJwIIWJJMDJ5XtwzaVXUjCmktW/f54PAj0gOznisDRH7uMHYHVdB3pXkqiisE9tKQ6bRG8qw6ZQBLsg4+hwUdUXKbukK4hguOhJ60xwj0IURBoSMV5rSxFVTWTysYt5GKaBw97OaI+LCf4wR1Vlr49MHUX58Qez9Pob2a2gAJ/dTiijcsnKFtb2CuSbZRRK2bkY13sQTZEMCexyEaIgYRgZvKKCTRCp19tQ+7S9nKpIuViN16Yz1TsaUZQIKWHaUxHieoYAGog2TNMgrfViE1xIpkC+nI3KjOpdxAiQL9k4KH938iQPmpFBlpupckpMnFLEPhd/m66bH2a72oG/SCEY05hur8AuykSMNG3lUZwuCbneSQXZubjF3U3xRCfPfqyxfG0NgiAiCnEm5Kvsc87e7HbCHtz2x9t45plnsMkF2CQfGTWA/k8ElUVsjHbsRb5cRau5gsOOn8e4cWM585RTaX9tFfc/8BivdW7DEMAh2Njbuztu0c3i6Aqiffedm1/JCaUziagaVc7sOCpykLFTG7HLKhM8XkpcTlTNYElbD36HHd0Jc8ZkeaN1LSEinSoJm87cPSvwuh3EMyqr2oN4nXakToVJzixPbWVbEEGRCaVUZheUYRclQnqKFl8Eu13E2+2mQsrW/aQzgM1wY9jjzK/xI4kCrek4QXsSVTUYpRdQZMuuSatj3fhcdt7a5icSzXLtkkY3RXaV7akWPorUo2KACU7Ri010E0ptQ+2LlDVMDTCQpDxc9kpEUUQyRaqEsXgEH3miD4/kxzRNBKmdCreDxeFl1CW38cor/+Av9zzAR++vxTBVUkrHSOTmCHYJvokctK/EQRMFB8W+OXh9Hp742y1c/INf09rSRSzdgjiED1aAn33cR+Xcw+uIUmCzCjiGtUZ2y6/NqWuYRg43qD29kxk+K2k5kIlQYPfnXP9SWxv5spXcG1DaKbZX5tRdnFyfQ7xuSywlrucebd1yy/XU1W3mkUce7S+TJS977LEPN9x4OUuWrOSRh5/GHk3w99nH5lzflGlhpt8acFAX72Dv8sKcult7FCpdVoLzq629VDkmAiA5bTj8bjTT5MOJvUybNplJkyawc2cj4XCEP/7xTtrarDzBrJP2VQcWDHbOshjlKuSpoy5j2jWnsf7aZ/pza/oObmKvSdb+Wrq+hTl51n4B2LBMpdxpHcfXm0JMcFnPklOaxn3bnQzFYaPrOK56QJUeQcB96bm41q9GWbbCUveEN1QE0xqkEtJacdpyc2C2GZuQhrwjYyUPe/tmW8rSepr3YrnHkoYawy9bgwhEYhxQOC6n7pySTex73GE4p9QSeOAFANZH29inrCSnbkciQ7HDSkq/ek2AtviY/r9HTyrll/d9i+aeLfziF7/4LxJqW4NnDj74IC6//BesXLWRu+96iFAo3P9vpqnncO2OKJzKCWXzLGWqkOT8wzoYiqWhAPPGllvKNgciTBtXmlN39eI2phb4LWWfNASY5c5dJ3rTCn67lfu1PNzK/Koh8yCTwTckKAngikUmLsZayrYmN7EkuTqnbirdytDdZUly4XJU5NTdVz4C+5D2FsWeplfv4NRTT+aMM07n1FPP6Nt5HRGkHcGuwzfRQftKOWhOp4NEPEVryzdPoLa6uooDDpjPr35lTSx86qkncuH3L+DXN/2RpUtXAVBp//L1yvS0SrIzgmYY/PmdBwFwOp1MmTKROXNm8cQTD1Nf38CmTZt55pnn6Orq/pw7fnUQBIEpV5xE4xMffSmJz/8jmCZNj/+dmVf+EGX9Bkj9b+QrtFUWo7T+92P9kz+cwLQ9R7NuST1n/eyYnOwe/w3ef/8DGhtbueHGG7nv/lv5299e4s033hvJCfkF4rDDDuF73zufyy//1VdtyghG8I3BV+qgHXPcAezY3vRVmvCVwOv18vzzT9Lc3IiqZnk5kiTx05/+hGOPPZYLv3cp7e1fvdOaTqdZs2Y9a9as54knnmTmzN3YY4/defrpR1i/fhM333wLnZ1f9Q5aLs44/2wyvXECS7Z+fuVdiGRTG+qGjbiOPorUP178qs35fAgCrlmTCNz3/H98i8IyLzc+fi42u8RtP3ueLesav1Dn7FM0NDTy3Qt+xvz5c7nm2kuZPXsGd/3pQbq7v74/JP5XsPueu/Gzn13ElVdezYYNG79qc0Ywgm8MdnmQgICMKOYhOIKccdZRLHh7MYapo2sJvPZKxEG7mG4zj0JpAjvSW8jo2V/DBkkK3S2UujLE9QEnJmU0McnrpjW9E61PjT+ohNmRaKEh2UYwk5VV0E2dpmQD+bKXzbHmfvXx1lQPIS3F5ngTETXLV0lqCh/2NJFvc1jI2/WZ7WzW21ieXEFaz5K3o1qYjxMfkzADJLUsUdwwDEJKA5Ldh0PO7ydkV1aWousqZ599Lp+Sdq+//lqmTZ3J98+/ga72QH/dSW4XN07ajbp4E6E+u+KqwuJgO7G0jxXB3n671oV6EHQPC5qDxJSs49eTSvNxW4ColqY+nq1rmCarejuY7hfp0bb091dC6qFk4lqeOn4Go33ZXTsJuHBsDa/usy9lLa3cc88DnHDCGXRub2HxK2+x6q0l3HD1dRQVFSEgU+iaSpX3AFxy7jHYlwODwTlGT973AH7xox/y8d0PEesLkEhqGbYmGmh8z86HiweOmlfs7CS/JI+F0QiJPke5M5rko02dpPIiNKQH+muDvYv9jpbpLtven7FiRyLCq51RfM4uNPNTorTKtKJtjHW7WREYcA4ajACeiWlWvPs3hGlTEIuLiWYU3msMcOU0jZq8geO1bn0nESlEl7YVzcySynUjhd2IMUEYi61vzpqmiayaRDM+loe3oPdlNGhKt/Ji6EN61K2k9axduqkRVHfQK3TTpQ44ri4xwt4FLkJaA+m+ABzDTFDtX8PoOWOJp5MoTVnbNqfaqCqGFdEWUn0ZNxpiGW5Zp/LoNhcrg4m+tgyebdnKqFPHctm9x7L83S387Oh7WbdmA3XJV/+jUc5CxC4X4XRUIAw65jUxMUwNTQvz4Yef8N0LfkZxcSEvvfxXTjjxQGSb0N9fNtHB0kSYJzsXo/Zlaohq3eTJLby4KElzb1M2VooAAQAASURBVHadSWY03lobRGj08uHaARL/hngSY0oFH8eThNLZsQmnFT7u7MW+ezEb1YEfLCujQaqmuFlj6yDVNzbdUobNcwQiR3hptqf7+ktndbKN0eUOlvZ29gci7AhH2dqdYlF7gI5kdi6HMwrnLN7Ea+GNrIqv6m+rPd3I2uhCMkpPPyfMNHU0PYndXmyRLcoGpKRJptv7s1WYho6MjbX6Ynr0bHCTYRrkz0px853X8Je/3Mvatev6rjcYmhFjBCMYwRePXcpBk0QfouhBEAR+/OMLOOvsUzn68LORtAIkceAYL62FKDKqKLTV9pepRpJyR5QDS8bilrKcH8M02RxvoNzhotY9wN3ozoTZEg8yxj22Xw9NMzQakjupdRdS6hjgaLWlu4lqcSZ5avt5aik9w/pIMyJVeKSBJMHt6TZWpJqRZX9/mWakEbUoGVnOalORXQDTWgiNTH/AA4CmpwgnNnPrbTezaVNdH/fMpKiwjHcXLODMUy+ntzcbbadqcX5UU8RZ1VP6NZnimsInPV2MctZQYB/gR22Lt+F3ZJieP8CVCWQS1KfbmeOvxGvLfsx002BJsJ0im5uJ3gFxzqZElFZnLyfNKsDRp2GV1nRu/2QbR/hGM947kFJqRbCb57cL7FuwOw6vE3exl/L5Y8lMdPLE4x+y8L0BXlFC6aArseukEK7f7XAuvuEqBEmi467niGkZFge6mOqtoNA+wI/aqrYz5UiTOWMH5kxHKM7yRU3s6ysir0+DSjcMPmztpnZaAdOqB+bMts4I9z0rkGdM7NeKUg2Vtsw2zql1UuMe4LRtjQWwjwlx8OSy/qTdmT0Oo75bQ33yA4rsA/PjnY5OfrMjik0eELDVjDQ+zcYYx+R+vSrTNGhQNmHgwSMN8NQyRpio0EBCkPoTXpumjqrGkWQHkjjAldO0JEfmT2B2/gCnLqmnCBvbOXu8iyKHE//PLiC9Yh0fv/IGvjyT2SUDfdCRTPK3Oh0lMw17n7NkmDq9+mY+Dr3PvDNOYf78+Vx++eVEOhV8UiWd6oa+zAD/PkTRhdNebuGTqWoURQtbknubpokgSJhmisMOO5Sbb74ZgE8WLuWvD75JV/ugI28jw8XVlRxdPiAUm9ZVNqkNTHEXUOkaePfr4gEch/uYv/eAAG5vNMnixVuYO7mKIu/AOH60upG8WJrdBwnNtoYTrIlqHHrCTDwue98Y6Lz98nqqO1NMLBwY822hCNtaMuxTUI0sZp8tqak83tzA/Y0pGBRFLegZPHqSnam6wb2FTS7EJnst/aWoUTQ9bikzTQOPo4I8RxViX7lpGkhqGtEV5LZ7f8tTTz3Fyy+/TJbHJvL1CAwawTcNIxy0Lxmi6OgXzJx/wFweevBJUok0+S4rx8opF+A3rERmm+im0JHud84AREGgyllIjcuqyF7q8NOSSlnEamVRxid7LM4ZQJWzFLtiFRh1SQ5MHBbnDKDSWYWkWOUKZNFJlG4cwkCovyAISKIdc0hggiy52GfuXkycOIHf/ObmT2vz859fwkcfrOx3zgBsch7zi6osgpl5sh2nZLc4ZwAT8yopdVtTrBQ7PLRlHP3OGYAkiIx2+6h0WnN4jvb4cJaE+50zAKcscXBVKeOx1t2zqJTNnV5EQUCNZ4jEM0QaA2ydbHDaWUew7/67849n3qdhRztum5Vc/WXjzO9+Bzk/j/Y/ZTMyeGUHXlm2OGcA42ylzLHyq6koyCNPkvudMwBJFBlTksfUauucmViej2liEfK0iTbGeBwW5wxgkrcYV7Xe75wBOOrXUnXwBcRfXo2ZGZBd2Lu4CFuj1S5ZdOIWHRYxUUEQKZDKSGMNTnCIfmK6ijRIwV4QJEwBi3MGIMtuxrmthHS35MLnhiKHE/uUCYjePNLL1jLdX0BxgaUqFW43UQV8g3ayREFC1YvY7ZjD2W+//bj00kvp6srucicMq5TEvwtZcnHv/X9g7JhR6HrWQVi2bDVXX3Nl/9/Z5xX65EtMFixYwIIFC5gzZw5XXXUt99z/a157+SP++lDf8bLooNbjtAjFOiUbzpTL4pwBTM0rxjHJGrRR6HOT53NbnDOA3caXkR+wRqNW+z00lwj9zhmALEuMGu1nvGIVpZ1YkE+4K9nvnAG4ZRtdaSzOGYApOWhIrB3SW9ld5aHBEbLkyknFJAgisujsd84+Ldv/6L35wcUn8eyzz/Y5Z5Dd7R9xzkYwgl2Fr4SD5nI5cTocfPzxkq+i+a8MTqedq666nD/+8Q5CoeyR6/7778fMmdP58YW3fsXW/XdY/sEq3l5azxHH7s11v/seod4ot9zwBA3hXdN+QUEB5YftQ/u1D2Mkvub5AMM9hDZvofDYA4j+Y8FXbc2wcB+2P8n3PgH93/sgT9p3IjPPn84FF1zQ75x9EfjWt05GliROP+0HWedYErniyh/y/PPPsG3bdh555DG2bh1e7HnlypWcfupZjKnaj3seuBZd03nir698Ybb9f4IsS1zw/ZM4+PA5XPC9b7Njx46v2qQRjOAbi13KQctyF+B73zubtes2UV/fiInB0GNW3VDQzNyPbEbPJRcn9Awp3RrurZk6qUEitZ8iqStohvWDk9YVklpuuHhKz/TbO3B9At3MraubuXwM3VQxhugDHXjwXpSVlbJyZZY74nK5uOmmG/jDH+4kNSSqzzR1ImruMyiGahGlBAirKXoVa38Zpkl6mP6KqgpJzWqvYuhEU7kf4piiow5Rdo+rKhkjNzrOJRnEY0n+8cwHXHD6r9mwtp57HvsFJx6ZKw+SJxbllP232HP3OYQb29CHCIxqYu7YhNU0gdiQ/jJMkplhBFLTComM9R4ZVR92HiQ0DW1of2kKoWTuOG589hnc+8xELh/YlYkqaQzTWjd7ZJc7jqqZyZl3hqljDLPDIULOXDZNjfQw71ha13DsORPR6yG9bC0AISVDKGN9Xt0wUIa8YxVTyznpVyfwzDPP0NLyn2UekLDjEKy7VzU1NXzv/HO54YY/Eo3GicXihMNRrrnqZn555VU0N7dwyy2/5bHHHsbldJIv+3Lua6IRjUT5+Y9/x6lnHMFFF5+BaRqEh3nH4pqOPqS/ImqGUDS3v5Kp3HkQSqQIpXL7KxnPrRvLKKSGBE2kNI24ljtvVV3NWSsNUwMzd94Op01mmmbO9aZp9s+5KdPGcvvdv6CyqoTzzv75iHM2ghF8xdhFHDQZQXAAAqIg8eZbL/P9Cy+htzuNz1GNqsVBAFl0k9IC6JhIiOSbJZTKE1HMKKOdLsa6q4nprVS5XPhkDxujHZhGNSZpipwBdvNVsy3eSUPMhWAWoIktTPQVIwA7E0HcQg2aGabYmWC8p5KN0RY6E34EXLgdbcz2lxPVkizsDRBQ/cjEGOf0UmQvpi65hZ1qHE3Q0bUMblspGT1CMF2Paqawi07yHTVIooNwqp5ophlRkPE4q3HaSjCFONf9+gds3LiOBx54EBC5+OKLGVM7gd/d+BSGmcE0NWQpjzxB45SivSmz+xCkHRxYmk9ISRHRkswqKGVDOEw47aTSWcj6aAdVjgoEwSSsN7NPUSnNyTCSoDPJV8SGSBdFTgcFNidbEt3sXVpEWMmwtTfFrPwK1oQDZJQi/LKfiHcbB0yTMTFZuEmnID6RsB4k39vD7KIClvf0UG0rxC05eLk1jleoJaEnqCzo4KjReTzT0M1d2zJoppsqe5Lbv30yY07Zn4ZYD3/52+O88vR7THEegl+upEvdxubU+ySN3JyY/w4EBPby785vfnUTRkxh/YvPsn9xASEtiW1UlANnFbB4U5SOLXmU2/00yi0cc7AXJJP1kRj7TqmirrmX0CqD0UoBW9Q2xlaK5DvsrG0Ps7unlBAKPSVp5k0uZ/HWAPE6Pz4lnze7Aih6JYZpYBBkdn4VMb2HIleIGflFrAp1UuUowmOz01nQyPzp+XTFU/T2ZphdWEjLuD3wjJ9F9M6nWBfpYmZhIWFF58qNrbSkfQhmkoPza5jpHc2K3mZ60h4k7DRrO4hJJpgaTs1OvlRDVG8nKSVBlElqXQiiHQEoNvOZKM+ix2hju7EVQXRS405wz9xqqtxO/rpeR1LGE9eijPYGOGKP8Th/cCqN9z9GYVcvG1KdzJuaj6IbrG2IsGdBKeuCUd6tL0NVqulWWiiy+/C4Pex3/b68v+I9brv9tv9oJCvtuzHWMQ9JsNOcWUFTZjlTSir5+wN/Rd7Uxb2PPs6j7ZtRTYG9Suw8ctB0YorKWe8spi4cY/myRUS3h1ny28Ws793A2z3vENbCZF1UAVFw4HWO4qgjj+bKa77L5efdQ6hFZc/CHs6sLkExdDZGMpTaxhHRO6jJ72V6vp81iQ72nOjB7ZFZ4zbZe9+JtHVHiG5qZ5bTxdpYDG9tITUlPpZvbWPP6iLSGZWNWzuZW1XMho4Q9oTJRK+P5VKGMfuOw+W0s3FdA/sW5dHRE6dhY4A5hYUsaw9QrPsolj0sC3QzyVtIXFP5/eYtvN0dARMcNh82KY+U0kki04xpDnXgszpxgmjHYStEEGyIgNdeg2Gq9Ca3oBkKoGP2OfnnnfM9vvvd7/LXh17i+ReeJJr85kXXj+DrjW8iB+1Ld9AEwd7nnGXh8Xh4840XOPfUm1Ay1oUlmmlBkqxcmSLBzbH+wywJq3VTpyPdg0+2cmg6MzvwS1bBTd1QcNtNbEPEF5uS23LqRvUuunQTLCRak15jM6Zs/VUfTbcSU7stSahN00TXwzkLpiCInHPuGcyePZtLL70UXdfx+XwseGch53zrSsKDdn12d/o5omgvy/VJvZ2TR5nYpUF9YJi80hJnQp5VbLclvZPDyrNK5J9CMXR66WFivt9S9x/1QUbbplnKMmYSSRCxD0mg3KFt5KAyq1hvXbSXWRVOHNLARqxuGDxRl2BeQS0AosOGo7KIzLF7UDB+Avdd+SpbVmR3V3RT48PovWTM/1yq47jSwzikZD8O/+0JbPzHGtpXNZOxtfCT01TstkF26SaLGnuZP9kqMLpgTRcTeqotZYqhEbcHGJtn5d+92hJgsjjJUtaTTtOV9uKWrdygoLqJ/YutPMoWs50Dd5OxfdpfooTt+5ex+E9PMKYtbKn72M4e8s1ZlrKMrnFP+0qEIe9IWgngtFv5UZqRZqY4HceQeT9nzFJ+tJuVG7i0LUotZdi9bop/chbJZeuJfrCUFm8Lc2ut9310WYTtjXMsZYIDZlxRy/aGbdx88805uzT/CiY4D6bGsUf/36IoMPfwEn76oyOJb2qi7emPAFANnW7veo6ptT7D7cu7ccuHcOgVh5FX6uXNG14n0BLg1zt+nxOWUOqYytPPPkpLQzcP/uF1MikVl5jkuzVV/QEPn8Jevpzjpln7YG04wm5l+RaOmG4YrJcV9hwiavve4nr2c1kJfClDJzraySi/lUv60is7mGezitpui0Q5ZuFK1CEPoWhBdH04jT8ZYZAorYlJkXs6riHzI5ioI6V243a7uf/+e5k8eRLnnPMdtm7dMozDN4IRfPX4Jjpou4CDZu3TY445goULl+Q4Z1nkLuySIFqcs2yZBNhy6mqGnJM6UhLtSMMMq27mPrph2kCwHg0IgoCCkduaYDLUWRUEAcNULQskZI9XDj30UB588MF+QvPJJ5/M0kXrLM4ZgFfKVQ2XBDt2ydpfkiggi7nPYBMki3MGYBcl3EPrCgK+8nLKZkzFUz1w5KjrOontHSQae8gMEnmVhNy28m2SxTnL2iVSOkhY18iopBo6eemXj+DZ+3DOv+FIXvzzJyx9czOSIGfJyf9ZYB8ATtFB8cQybG477auz+SJl2YbdZh1HSRLw5uWe6Nu0oblGwS7KuMTc+SUoMkN4+fhsMjEtNzfpsGNj2rENbs7Q0Zd+xLgTj8b4yzMwyLEpsjnQhpy+OSQZUxj6RoEp5HagLNhynDOAcneurfkOAYfDQ+GPziRdV0/iwxVIgoTbkds3upl7/UlXH8Xy7kX/sXOWtXfgvpN2r+b0nx6AEgvT+th7JLYN5LS1iRI1ntznKnF6CQbTvHvLAmZ/aw+O+fVxbH6rDvM3uW2J2Ljvd69y473foa0xwIuPfYJiyDnOGYBzmD5wGFicM8jOe6ecO+aDf1R9CpcoYcjDzbthyiQxxzkDhj3WzO4nCzkl0nBzWRCpra3l5z//GZMnT+KCCy5ky5YtwIhzNoIRfF2wy4MEJk+exLp13xyxQ0EQuPKXV5JMJlm4cCEA06ZN44wzzuDKn9+3a23xebHvNhXbpHHYxtZySEojtTlAdEs7upJdmO2FeZQfPJ38KdVEt3fQ9eEmgst3fCHBW0vf3EwskuK0n81n58YOulvC//1NgdIp5bSvafmvHL2vCsaGlQjVu+HadzapRas+/4IvAa7Royk+6zukVtcRe+2jf+vaKQdPYNSsKk6c9587Z5B9T6rHl3DQKTOZMLOKd59dzbo3P+SySf8eXzEdTbP4wUWsfnYVR91wND/+8Y944403aWxstNjXsLWD2375LL/4/bfYtrGVLauGDzD4/whBELjge2dx3vmn8c47Czj55NP+Y87gCEYwgi8PX3qQgGlq/QRlWZY56KD5LF20gYwWttRLKj1ktAi6oQ66Vqdb6aEuUWepuzPRQlcmiDqoblyLE9PSRNRgf5lhmnRmmmhONaEPCg7oVXqJaxkS2sAOkWqoNGkNhPVWS1t2Icp0ZzHSIDFUCYO53tFU261HF7qeAASL1tMvLv8Fhx16FJdd+itM06SkpISLL76Y5S9+RGlvwvLRKBRFyuwCCS06cE9DxSa1sy5sVURfF4oQ01IkBwVIpPQUGgm2RnstddcWF5E+9dt4L/8xtgljUdZtYs11d/DDw6/hpZueou3NtXS+t5G2BRu460/P87uf38ui791HcMUOqo7and3uOAf//P3pGkQUz+gajckIK7qtbW0Kh8ARIqUPBBIkjRQTq3oo9bWxaXEjW1e2cuyF+5Dn6OSgomlI/+E0FASZhZFNZPIMlFi2Pc1QSCRDLFhllUNZWx+kfWecWHLgGULxDL09KXYmg5a6WzJt7Ez3ogwKsuhMJpHkNAF1gDOnmwYbYx20phswBu1oRLRuRDHVLywMkDFUIkKAlW3WtjaGgmz/4Hmch81DKs7KeUS1NP6iXlSbdS5G9Z0cWgDCoLacaOydV4Z78M6HaXLs1DiTxm2xXO+2daOmTHoSA32gVlVRfuG5bHnzFYtzti3RTWtnhnh64B1ri6gsbZLoymTnoiAK7HX6LO65+gHCic/nEgoIjHPOZpRj4Fi9traWW665mief+CEX/+4o4uEUv//B31j0yir2qumgzWi23KPT20lvkUli0NgEkgo2LY1mDoj9pqNp3r/9Dk7dby/u+fOfuP76axEEAY/kZYyjEowk65fv5OUnF7HvoVNpU7fxbNdKS1tJRwe6QyEwKIAnqet0+ETWxq073+u6e2lvC5FID2x7BkJJQh1JtgSsc3G5kGZdNImmD4xjfXOc1nYbTbFkf1lG1/nd5m0YQ4JBND2JbgyXB9PExLqzJgg24mqXZV098LBZnHf+6Vx88U+5+uprBzlnw+3KjWAEI/iqsMuEagXBzjVX38DJJ53IMYdcDICiRTEMnYTaiWF+qmFkIIkisuhCEh2IfdvzTtNkT9fuxFQRn5TlaaT0CIgJFF3DLZYhCw4MUyeit+GS7cjYyJeznKOo1oMoqkTVDF4xK8qomQoxvYO0mKGXNHJfkvOMFsJHHlM9ef0CtnEtzrLYVmTRZL5/Mj45D8M0WBOt49XuT4hpof7jBdM0QDC59uqbOOnk47njD4/z9hsLyStQefKxO5DbFbbf9Ql6WqUh2cmrwa1M9xRySOEUZFEipWfYHO8k32Ywt0To19baEOnGMARaE3bGuUchCgJhNUFzqhevTWFmgZdCuwvDNFkX6aBw2mSKjz2K0qoK6l7dwNr3VuLXt7CyB1ojo5EFO4apI8utTPHa2Rx14ZGyGQASeje7F6bxyCp7zd6TSeceiCHBh3c9givQRIXLQ1WfXesj3bgcGhlDZ6/iLC+wO51ibVca2aGzT62DYpcTwzR5eUeIt3dWcskfzkPqSlP36Cd0pAI80fY266L/atSYgCz5kaQ8BEHg/vtv5fVHXmZCu8wMn4cyZzaKr15pY8K0GEo4w14F2efqTqVolBKoGYExqp9Ce9aupT3d2LGTV5BhdmnWUWqIxugMK8RTJrv5S/HINjK6zuKuIMmUF5fkZLQ7u8OzIx6gJwN+Z5R5xcXYRImYprA+FMTtMpleJVKdl51fqwIBHF4BLV9k3/FZzlK4fDLGpAPZ+sRT1MZaKXQ60A2DdxoibGsqocalMCM/+wwNiTAPtXZiM7zM9U/CIdpRDY1lka0YBUGuPtjLbhV+AFY0h3nywzwm2JMcW1WMLIpE1Qw7tB6mnnkotYcfgW3JS9BRz9LtPcS2ixiGwt6l2ba60klajAgft3hpaBuDXXRjmAa9Wis/vf0cOlKtnP+j8z5396zENpo98o6gQM4+r1SZZp+zajj2wD0p2bwBIRIhuG4ND6+O0puU+cFMkZq8rH7dko5ewkkfpbN1DpiVvb4jFGfr+m7COw1GSWX4bU500+DD7gBdmof5k3rZqzLbB5ujCVoOPAGbs5L1f2ti5/I2NFOlIdVAptTkL89cw6qVm7nqijuQzDTfKh/LgTNTHDGtAFkSCacU1rYEsfldjJ1ZRXVxdn4t3diC1BFDNXT2qc2uM+3RJA3JNJlelSlmHn6HHd0wWNbTg7fCjXP3SmZNyXIet7cECOzoov4ThdGpKhySTEbX2JFuoVHt4c87OtD6yBW6nkLT06haCBON7EG3SdapGtr3AgI2bLIfScr2oWnq2AQXxWUu7n3gVq644irWr9/Qd73OiHM2gq87vokctF2aSeD3v7mfzZuaWfDmgP5ZJNWAOsyvQbe9OIfjNYpR1Np3s5Ql9SguMTesPmV2Umyzktq7lTY8Yq546kZjPTbJStitklQO8O+WU9cjmxbxWIDbdz5ER8YqxHnllVcwY9qeXH35naRSGYqK/Vx70w8piep0PbYWfdDOREOynYl5FTltlXoac4RP3+kIUOscP6SmSa1vgGhvqyim+NuH05PnYdvL29n2Th2Gml2AW5NBtkc8DIVCD0VDCMouuZXTagb6q+LQGYw+bR8Cb7yBY8l6S91VkRb2r7AGbeiGjrcod+H/yxKdUZ6p7H/bt6h/aTUt79bRlu7his335tQdDqLowm4bSCV1/wO3cvddD3MZ4yh3WOdCh1jHMeP9lrKMpmOmh5DJgFWJVvavtgYRbO+NUWEW59R9u0FhvMc6l3YkW5hXUphT1/B3UeGxiuUuVQMcvLt1fipl47DvcRxGWzPaJ+9jdncC8MLKBDPcoyx1N0Wj9KRqc9raa7817Dnabyn7YE2QCcmBtqSifArOPQGxVMex+AVIDewGvb2wlb0d1ucKZTR+s8QaUDN+zxpOuGEuBx62P7291l3U4XCI/zuU2kZROrqAg86azdjdq9jyztscFVkFipVs15PIUOy0js8yW5hD9h1jKQtHFXpfz12PdtgbmD8kuGHBzjTbXcey/7dnE+9N8fxv3kHL6LwcfY0Zs2dw6x2Xc/ON9/PxRys5erzBgydOzLlvaHQ+xT7rOH7wYR0HVFiPYUPxDM7O3F3h1eNk9p87wVK2fGE7vJM7F49Z+QrKEAZKOtOFqkdz6g7HG5MlP7ZBGU8AKiuLefzJu1m5chX33vtAv26caSqMOGgj+Lrjm+ig7TIdNEEQKCsrxtD//y8Eo0eP4thjj+x3zgoKfNx171WsWbWZ9/78ssU5+yIhOGwUnX4IVVeeQ3LDDv564R/Z8vrGfufsv0XHuxtYc82zFB2wF56D9v6v7qWnVTbc+wETT9uL4pk1n3/BZ6CsrITq6kqi0eEi2v63oDdvIfPgnZg9Xdi//V1sx58O7lxn+r+Ba8/pFF92PunNOwm9dL/FOftXYXPKnPXro/jD1Xf+S86Z3W5nz0Omc/ZNR/Dd246joz7I7ec+w+qXPspxzr40mCZbFzXy8MUvkIymOf36I5D7AgA2rNvGbb9/hO987yTm7Dntc270vwmXy8krrz5JVVUl8XiCu+76I/Pm7ftVmzWCEYzgn2CXOWhjxoyhelQ5iz5e8y9ekbuzN3wev+F3AP/TnH+fd9/PY6J7PB6efOqvPP3U30mlMkydPo7f//FS3n7jEx57+CXU9HAfpH+9reE2PA0THKPLqbz8bOQCHy3XP0jkneVo6jBilZ9p+b/W35meKPV/fATPAXvimD5hUN1/5Y7W+wY3tVH32CfscflRuAvyPqP2P8f0GZNZt3YTzc1tw3bOv2PXsLZ+RuXh+uazdqOHt+EzbE2n0Ra+R+a+2zEVBcdFlzHlzOOQhuzcfNb8NoYpF51OnLMmU/STb+M9an9Cj7xA/K1PMI3hBE6HsXVI2RHfn0sinGLV4s9+l202G8XFxRx00EG89NJL7H34TDYtbOD2c5/h42fXoqTUz3yG4fpx2Jqf2d//ZJab8OptHxAPpTj9+iNwOLJHiO++s4TXXv6QG3/7E6bsNeczr/2Xyv5J2/+OrV8kJk4cR0Ghn6OPPoFrrrmeG274DXfc8Qdmz959l7Q/ghGM4N/HLnLQROz2AnpDPUTiPUB2EU6pAUACUxtYlE2DWnkKVYzG7CO2mqaBy5AplaoIqs39QQcxvRuXpJE020gb2Z0A1UgTUJvAcNCjDJCse5RWNFOiW2lE7VPCTxsxtqvrUIwkaS3U35ZkRBjnqGRnsqE/EKFX6aUj3UZjsoOeTLCvLY0VoR1USPNxCT7y8/O55547iYYjpN/t5AcnHsY1N/6Apx9/ncceeYFZboHdfDKNyYGIqaZUC1PzNVrSO0hoWbvCaoxebRtJXWFLLHt0qpsGn/R04RKLWBdpQjGyxxrRQhH59D2Rvn8yDR8so+v+F0n0hnm+pYOtIR+boo39BPamZDtLo200aVtIG9kjUdVMowmtVLvdhLUBOYNOpYnViTjPdmwl3mdXQInxQmsr9y/LsOL+p8k//Wik0RUs6u5CzFTwXmuAdJ+MyM54hK2ZAKu6AzT07W6lNI1Pero4cm+NNrMewzToWLyD7pYuum15HF50Im7p8x01w0hluTh9z6VpCoaR4fc7P6Eu1tHfXytCrXSFRvNyfYhMn131sSj1UoTNti6akwN2LVM6GTergKW9Pf2ZGjb0hpCKTdaZHfSks+TtkJLhnZYgsulkc2yAlL412cLUKo01iSbiffoYXZk4Owo7SFTA5kg4a6thsDjYxdhCNx9tayejZe3a1h2mrj7Aqt4AjdE4pNNEX32eT265iZpaHyXXfRvfgbMQPS62xbsp9yYw5E3Etew4JvUklGyiwCOxsjUAvkKEmfMJHng2+1z7a7RDZhNauZGeWx6maUMda8LtbF+dZmNbdt5rusHrq3robR/N281BlL7+2hyOctsak+ZkMzEtTMWEYibtO4ofnXMZ22PbGRwILgoO7LZyKisn8dxzz/Pkk09yyU9+xrq7X2bnnc/xydsfoKSy75MuNXJYjclHrV3E1WxZayLBaj1Eb5HOlr7+Ug2DJfEg4yYU8+GWNpS+/trSEaIhHqehJkhbJtbXByorIy0UG3ksahkYx7XBEGNnyYyespW0kcA04fk/vIEea+bt+66hwJm95wvPL+Avf36cw797Ebev6iXel0GiJRxn8Y4umle2sLkpu36pms5H65sYO6aYj1t6UPtOBrZ0hWkKRFmdCNASzwaJJFSVxVqUqnIfi9Y39vfXqg3NuDq6aRR3EFY/nV9J7mvcgVcc07/+ZduL9B1v6gy4gJ+VG1NA0xNoWrR/Xb3m2p+yaVMdmzfXYZomy5Yt5+OPP+G+++5mv/32J1e8ZQQjGMFXjV0gVOtElvxMnDiea6+7jHPP+TGyaEcS7DBYfFZP4zXzmOk8ArkvMEA3dLaoixhtn0yxPMDRimoBDCHOWPcAF0vRFXYk6vFKFTjEgWOhmN6JZuq4pQFejWIkCegNxG0CwqCE5poWZl/veCYO4vtE1Ai9aicTPOOQ++zVTZ1t8XraknkYZpYj5it0c+71+2EjgW29yvjDpiII8M7vX+Fvm97kJ6MnM8o9wI9aEwpgk3T2LhrgLAUyaRYFAxxTWYTXNvDhW9TTjqqVUGwf4Hj1ZCIUnrA7ux99EM3Lm1j19ErivVGSZh07w+VkdH9/XUMIEhO76NEH+sU0NfL0DHv5J+C1DZTvTLSyJRXCGMTJcwgZprlUEunxCAxoRc0/yOD0X5xJ+71vk6zP8qWCaoi0u5HDx5X2C7KqusEHHR3MHFdITcHAfZdsT/L0J25O+Nn5dNcHWPt6HYqRYUHwZbYnN/H5EDnqyBM59NDDuObqW/qey+SQwkrm+2dRaB/gk6XpoXL0do6aXY5NztqVUXXeWt3FHrNKGFU+wPXbUB+guzPGQVMHzbmUyisf91KsTiBPGtjN2hJro7Y8zr5VA9d3JdIsC8c44ehqPK5PSd4G7y5uYpTPwaTKgbFpjMTZ1h3lgNKSfm0tRdN5b0cn04v8VHmz/SVUjyY0Yx62qjG4GptR65swEkmC2xp4O5zhzNMnU1BWAv5ihOJqYoZAdO16CrbvRG9phkSCzniKxc1x9iuu6NfsMkyTFXSQ6q3AqwzMr4jRw6Z4J1u6pvYLN8tOgZ89dCx/feYxHnv6SQDOP/9sLrjgXCRJRhj0e+8vf3mUulcXcOW4I/HJA7plC7ramVaR4IRxA/OgO5Vkox7i8HmjcTsH+mvBihbGTS5h4rgBvuHOzjA7OkMcMnM0Up/GWDqt8sIz9cyQvFQM0kjblgii1pgcsOeAmHNXSOH3jwY4p9JHmduO78zjEPO93HPvE/zxg4045UK+96OTmDS1llt/dRsXz1Y4cWwFzj7dMt0w+FiJM25sCePLBoSM61uDbK/r4KDqUqS+cUyrOu/t6GbOUVOpqh54z9c3dBHa2MU+g3TqepMqdy2MsaDTjzJIdTGQ2Up3eh2GMTTN1KdBAkMhMdjZEgQJjzufDRuX88tfXsPf//58n9OWdfSmTp3Gvff+maOOOpZkMsFIMvQRfF3xTeSgfek6aKJgtzhBAKqeRrJbxSYlyUmNOLXfOQOQRIlR8kSLcwbgk4uRpSGK35Idp+SwOGcAXqmctGHlfNlFNzEjhTgk559H8lqcM4B8Wz6KGet3ziArlKsYzn7nzJPv5A//+B7N23sodxfCngarH/6Eni2dYMKRRTUW5wxg94JiPDarXcUOJ7V5hsU5A6hw+kgO+ngiCOx74XHEKry8csVLxLqyOwiiINMUK7A4ZwCiWUS70mURSRUEmTy7bnHOAGpdFdQN4QVlTAfbogLVdmufL/04zAHFHzLmx8fScM9rJOs7KbIVoPo6BtTyAZskUux1WpwzgLkT3Dy5sIhgc4iJ88aw9vU67KKDCkf1v+igGbS1dXDAAXM57rjDePXVBQiCwMZYhBNLrWR/JyWUlrb2O2cADptExWiHxTkDmDGumFbZOmd9LhuizU2eYT1qHJdXyt5V1nWjzOOkqiTd75xBNrn3mHH5jLdZCeG1+Xn0BlIW4VO7LFHosfc7ZwBmaxP+1iYaI37Kp01BrijDPm0iNUccyOmkKNBDkIxi7liHue5jaGvB12BaPrfleS78zpRFUFUUBDwhH7JiDfDIF0tY02ng6pv3dpeNc649jKbmVrbu3Ma8eftw2GGHMHXqJE4++dvEYwZCnyOXzaihc3LJOItzBjC/tJD9rPEGlLrcFOZl+p2zT/tr9Hi/xTkDGFvuJ65q/c4ZgNNpo2KUk4qwta2JniLMydZxLCuwc/B4lTLTBqZJ9JlXyT/3ZC6+9WoqF27iD79+jEfue5knnv81Z1x0NsLix/qdM8gK0lYYksU5AxhXXUSsMdTvnAE4bRJFY/ItzhnAbmPK6FzdYxE9LnTbqFc1i3MG4LfV0plcSi4+64f1EJFsU2fPvWYhSRIbNmT1J7PR8tm6dXV1fPLJIm688XquvPJXGMaIgzaCEXxdsMuEagsLC/4rIcuvK5weOz+95UTsDhs140tY9+i79HzY/KWKplYdOp38SRU89NMHKDRKPv+CLxGxjU00P7qAsZecSN0vHsbI/PsBEKtf3sC8c+Zgd9n6j8D+VWzevJUfXvRLbv79VXR29rBixdp/u/3/Jag9QTJLVzM47nmt3M5hewyNTv5iJ+C8E6ZTM7EEpSXExRf/gEAgyMaNm7j11jtJJBLYZB/CMBkNvvYwTSKPv0DQ42ZHzSR+c/uPueaye7j8J3dy/+PXsKP+na/awv8KZWVl/OY3N9DW1sbmzVuGrXP99Tfy7LNPM3fuXBYt+veEikcwghF8efjyhWr7fsOfeeZJvPDC6wAYhooxZFfLNE1S5tBtfEgYMVTTuqOTNpKEtEhOXcVQ+nlJnyJmhEiYYUuZYeo54o8AmqESU5OWMkVX6FYSOXV7jSCHfGs37nv/p+w+fzybVjTy06PvZNlrS3O+jRFFRxtCyO5MJ2hPWtvSDINQJpe43ZVWiatpEARGnbAHo47bg7V/eZveWG4EXlxNow3JpacaKeRhwuhNU0cfYldIjWEMkT0xTaM/qbLlvmaasJohtqGJRH0HJYfPRtEVosNEqfZGdNKK9dd5bzKDxxnBNKFjazcT+mQUIoNEbj8PpqmzceMWbrjuVq69/lL2nbcncT1Br2KVI0jpKnXtuQ5EqFclnRliVzRFTyTXhlhaQx/yIyOmR+lOWuetZhjEM7nBIOG0SlSx9k1S0YjpuTIJCdHo54F9imAyQ0jNtSuRUdGHREd39CbpTlrrqrpBTMndIWlLasQ065jH1BS9evbYev6pu3HmlQcj20Q+fH8R5557IZdccgUPPfQYiUQiO9+H+fHlc6gWAV+AhBAlkLH2l6obBHpy7QqFksTiVrviCYVQVzKnbgoFZcjuTyCVoaMjd02JJjR0Y5C9pklHSwfPPfgiK5fW8Zvbf0w8luTj91cy8fQLYAitIyyLxBXrmMVTGaLDjHk8o6Cq1rpdHVE6o7l1U5ncExzNyF17/jms43DeeeewfPkKNm2yin0Lgq2/rqZpPPLIX/n+97/7b7Y1ghGM4MvELtFBEwQ799//IA8/9BQrVizs30mTJBcOWykOwUmhrRa75CWj9lIp1iAg0Go2IMt+dCOF17QzWp5AvbqJpASiYEPU4+zunI5iZAipSfKlCmJ6EN1QcUsF7NA2oMrZIwNRy1ArTSdkdBEWI9glLymtF9M0kUQHNt2kQBqFYSp45ST7+iewJraTtoyATcxDN7rZr6AGnQwL0qt49o1HSKczuGwuXv7LSla8/i6T8ypwik46Ms1McJeQNJKkDYVRrkq6Mz2UuxJM8fpYFAxSbs9KS/SoTRxc5mdHLEZCdVPtKmZnsp2xPo1Cu4O3O9JU2MeQ1NNMO39PJk4Zz5O/e4b6nTp5sp8upZlqVz6qabI2FMAtVpEyImhGkkK5kpjeRpG9FJvgoEWpJyyYyOiMcxRQ6agmpPYgCxpF9iI2RJuxm31CoFoDiuxEMtJUSSX45RKCajsidlyiG58zwBTfKNJ6Gp0Ojt1rBqMvPZrOm35Lud3BqlAX40tdaLrApmaD3fKqaE9HUYpC7Dctn8Xbu5js8pNnk3lpewxptzPxTS7isqvuQJJ8pLVeepJrSWvB4SfVIIiCE5tcyLTpU/nDrVdz2WXXsmnjZvb0jeWcqiNYEmylO+XFIXiRPY1ce5xBnqyxtS7D7t4yWlMxkmVp9pldzEdL25lo+PDIMqtiPcyZVsjOTo2N6z3UOipoSgYw0Klx5ROy7WB+tQ/DNFnbG2CvshK2q1EKRzuZWOZnZUsPBX43fo+TzcEI+06qojeeZsv2TvYu8LO8PUhtcR4VXjeLG7qotbtRMel2muwzsYKGnigdO8PMcPhY3BRgiqcAlyyzvCvAJFcJASOB6FWYWVZAXW8Y0ScyptTHJysDzHSUoBoGG6MB9qkoYl1XHDPpZbS7gI3RLkrdInbJyTP1Bl5xLCk9hSl0s29hBY+2fsy7vdsZN34cV/7ip5xwwrE8f/8CrvzdL0moaQxDRdeTGKaOXc7DaS9CQETRouimwfR8FzfMGM/c0lI2hcK0BL3kS0WkC7Zz6CQvqmGwqiXE7u5SVnUm0BP51LgK2JLpYMa+EkUFIpvqetinuIhAOsNOWWXe3FoWftRCecBGqcPFqlSAGQdXoQganR0R9q4tZWd3hJZNcSaofhZ39jLBVYpTkqkTuzjo8FIamuN0rDKZ4CxmWzyA06ZT7XGzqDPGBHcNqqHzt456xp97CnPnTufjuz7m/FvO4rEr7uPAwi2MqpSpH1vEvIN2oycYZceabexb4GLx2mbGOuyU5jlZ3NDNBJ+XJAbBPJm9p1RR3xWmVzfYbXwV7zyzlTHBPByiyMZUB/Mm5fFRs8ZDy/KxGeVE9C5CRDElGz2pDQQzdUOyAwiAhIDQVz7ckaQICMyatTu/+c1N3HnHnzn55OP50Y9/hiCI2CQfkuTCMBRULYxhZnA47Dz99FOsWLGS3//+94zooo3g64ZvIgdtlwnV3nfffTz04GOsXr3WUu6zVVPpsWpqGaaGhpqT5DehdOCyW7lFpp5iijgDcQjPbY2yGNlm5YlktDB5NutRkGkaODUZt2TliYTVZvKGCN2KssnYAyW+f9FZtLd3UVFRyg8uvJqxiXz2yd/DUjekBhjn8SMNsas708TEPKvuV0OyiT381rZ002BDNEaZIyu4Of7Y3aieN4E//PRPOBQrT041FHbE00iCtb+SRgvVDivhJ6YHqHGX5PTXxshO8qVqax9oLVQ5ay1lhmkwyhel1GEV5xQda/jRX64i/fZ7qJuzApgxRSUWzcMpWU/SNwvbOGyMdRzf78ng+M5lPHzPq6xZMZAXsSX6/r/kpAFIkp8DDzyAq6++jF/84lrWr99ErW0i01wHWerpZoo/7debY9fyWDMHVlrnx9qeGEp4Qs44qnkb2Kfc2gfLU90csq+1D1XdoE00GFtqnYsLlu7gkFHWPuhNZvCU5uEcwkF847V69su3csTqIr3sNspn4TwBLNwSZne/9dj74/YeprtqrXYZOg/XO/HJ1nRlz3W+QJMe4Ic/PJ8jjjiYWDzOwo+XcO+9T+QIR4sIOGx+S9lol8HbB+1uscswTbaK3exZZe2vNzaEGJOxCreqho5/Qis1Xitf8a0tXew/5B3pUVOMPjAfhyUDPTz3t1bmOK3jUBcLMN5VahGZNkyT5cEwk/KsY/6+mmDuOWfhLfHQszNIojfJ8udW8eNH86iptK4TCx59h0P9Vls74imKJ5XhGDKO/3h4O3varXzad9p7ebF+nKVvTdNkcfwJInobVggIQ1gpWZmO3B1Ym83Fa6++zF/+8gBV1dl+u/cv9+Owl+WMYyrTDhgcfvhh/Pa3v+a4406kszNbNoIRfF3wTXTQdpkO2mdBQMopEwUZUcgtH3rUACAi5zgb2bq5ZcIwjysIIuIwNgztmpKKfC7//Zkcd8JhvPzyAkpLi7numjsIBkLIw9gqC3LORx2yAQbD1c2tJ/aXe8rzmXzanqy6533UdO4vZlmw5Thn2SfIbUv6jP76rHHILROxDVNuEyXUDXXYdpveX+aSpBwnCLAQ4vuRyfDWq0v51nmHWj4gw4/NZ0Hgo48W8dvf3s5tt/2ak046Foa5XhZsw9s1TL/YPmMc7dIwZXJuWzZJxGkbrjx3LrtsUo5zBmAbpr+cspTjnAHYh7F12OcSJaRhxrFmwiiee+4RamtHsXnLNpLJFM8//3LORx3ICf4BcEhyjl2iIOCQh7NrmH4RJZzSMGM2jAyES5JynLNP75FThpSTAUQUBGzD2JAOJljwx/exuWyIskTV9AokQcLltOfUtYnD2CVLOc5Z1obhlls5p2+zf/9rP5yFz5DHmDF9OoVFRbz66uvMmrUba1avydYebhz7/v+ddxbw0ksvc9hhhzI02GAEIxjBrsdX7qB93eEvyuP8y47kxnvPw+t38Zc/P8ExxxzMLb+7j7pN23eJDTO/tz/bX1lLrPXzE1J/lVDWbsA+bTKC5z9Tv//wndX4C7xMmVH7X9nx0UeLuPHGP3DSScdw/k9O/6/u9U1CUW0h1976S+6++0FeffUtJk0czw8v+gVdXT1ftWm7HKYJ79z+AZMPGk/tnFFItv+tpfKUU07i+edfAMDjdhMO53J2h8OmTXUceeTh2Gy5P/hGMIIR7FrsklVHEATKyyuIJxKWSE7TNEnpwX6R2GyZQVztIKl1Wwj/GT1KSo+g6gMEYcPUSei9dKkNlvZCWicYBroxQMTVDYW42klStX5sYkor3cpW9EEk+IwRI6huw12k8afnfoym6tzw48e46Nwr+N4PTuH1195n9apsyLpoqhTaDGLaACldNVQyRjctqWZLWy2pTgJKmrg2QFxOaClCaoodiS5L3Q3RNlpTvZTPG4On1MuO19bRq0TpzKToVQfyfhqmQVOqkZDaYiFkJ41ebKJOalDuPs1UkaRegmqLpa2I1kGVO4k6KEhDMVJAhrBmtatXa6UlFegX8IWsVpyu6+xobETv7EKurUEzDJYHu1gdaUEfZFdjKoRm0+lIDIxjUtNoCOqkIp10tAeQ+3Zbkmo3mWFzDw4Pw0j3z69Fi5byox9dxtgZ5Rxx0cxB/aUTN9p5uz1gsWtLJMLydgftycFjo7EukGFDtN3Szs5kO4F0msggOZLeTJq4obCh3Zr66OPN3axaEyQ9iFTeHIiSCKrUBwbNGd1gaX03Cze2WgI3trSHyEgaXalBdqkqrWqcld3W/K9re4KExRRRdcCuYCZNJKOzNWY9Jn69s4H18Tq0vnEsGlPE4dceyp9uvQddV7n88p9w+eXXk8lkMIw0mj703dUQEC3BPqZpYNddLOmy9sG6cICueMpCog8k0yhGivrkwPtomCabki1s6BkQFgZoisRRdJ2m+EBQjKLrrAkE+HhDG8Ygwn9dRy9CqU5AGZhfCU1hZyzDmnC3xa5NsS6SYojEoACJkJqkOC9CROuktznEi1e/RkGNn0Ou3JPV79ehDBrHxpYeFNOkMTSQB1fRdNZ09vLJpharXc0BdE+a4KAAibiq0JlSSBoDgscAAa0JQ5LJXZ4FS+aBT/9bGCLNceihhzJt+jQefODhgbqmiUcqQjYlyzgaRqbvPtmyl156mUAgwLHHHs0IRjCCrxa7gIMmstde8/jpT3/MuedeiGnqYPYtvoKMIIiYponfXo3PVoMhgE3O7sCoegJMg7QRQUXp0+8xseHALnqQBAeylNU+kjWVEoqIEseUs7pWqpEmrneQMeLElE5MIfvhc4n55NnKCaW3k9azzqENF9WuOaT1EF3qOs749ulcdNFFvPrchzz/0Ce0p1ZxzMkHc/TRR3HhhT/GYy9jT28VP6qZh02USGkqHwe70EyJPQvcVLmyNmyMdtOdEUjpJpXOLHcsrSdJGZ3Igkm5owyPnNXWaks14ZYhoNjJl6vIr/JzxK+P4pXfPcXq1TtoShQANkzTwCYG8NucJBU7DjHLi4lqAdJmErcMkz21SKKMois0plqRBYG9i/xUuLJcqE3RDrrSJrUehcPLshycrnSKp5uChFWRUa5KXH1925ZuRjcEPDYbFc4shyalR7DJYUocaU6qzpLqNUNHOXYWsp4h8e6HjPNl29oSitIZBVtBhiNm+5ElkURGZdmOAKmEjfbOcTjM7DPUXjaPux99kXcXvUxCtTpG/+p8E0UPpqlhmim8Xi9//vOfadkY5N0H1jLZm0+VO8vrM4R2Jhd1sT5oo7F3EoIgIQhpZtdspirPoD0wFjtZuwJKK4UOhVJfnINrspp2wUya7fEQogv23K2IAq8DgMXN3YhIROtd1KhZ7lhAjmFOi6ElM8xKeXFKEqphsFoJ4PRK+FUb4/Kyc2ZrMkbSL5KJK+yT70cSReIZlaVbexERmDzOS1VBds6sbAqgpQyQYe9RWe5ZdyzN2m0x0kmJaqmKPNmJYRpsiHagGAYPNDewKZl1Snyig6sv/CF7njCHq359I43NTTz00D1c9IOfsn37TnQ9M4hZICLJHuySB5etHFEU0Q0NReulQHZxTvn+1DizNqTEeiaXhHB6dfYZneWe9SRTbA1H0TWY5irEZ7OjGybvN0bIpFxUV2SYU5Ptg6ZojI50ikzGZHZeKQ5JQtF0lnUHkAWJMqeTWl+27g49ilYNmgzzJlUhSiLRmMK7r3cQ75aQjSry5OyYtWeaKXKm8LgV5lZm+XcdiQxLW1QEweDA0S78Thu6YfLYlhQ7Ql5+cfvJjD18f5LX/oqmVJjevcrQ0inm5jtwyBKKqrFodQM21aCiNJ+xfRppm7pDxAE1lGIffz6iKBBJKHy0MkokbKcnPgabmK27JtRMfSxDi7GTuJiN3DQMlWSmvS+DgNgXGPCpMyUgCDZEMXvsapo6hpGmoMDL7bffzksvvcQrr7wCyDz95NM8fdtCIg3ZY9cudRst6joUPYJupIbc1+Too4/ktNNO47vf/S7GMOnARjCCrwLfRA7aLsgk4OCAAw7i+OOP4Re/uCp7E9MYlr9S4pqGx24l7MbVDlRypQU8Ygn2IWmBVDVKvi038fbW2Fs53AttGJkO0zQwyfDUU0+RyWS47rrraG1tBUR2220Wt9xyMz/84cU0Njayu280N046I+ceQaWXcqffUvZ+TxsFtnE5dUsduYvfqnATNa4xOPIcHHnjMexcuIM3n/mADZFcroxphCmUKy1labOTSd5ROXUrPSGK7VaielemnnlFQ4ITDJNnm61irADdahPVQwIGRKGHH0+y1ss/Zh69eoCSZast5Rsy3ey/m5UkDnDXPwrxywN27XvVMTzx2BP87s27c+r+p/B6vbz55pvUPbeJrjc7Lf+2OdqCaFTlXDOlIEaBzSouLDjXcdr4IYEnhk7ZHrl8o7+/FmaG3ToX29UAc8fnjuOmZJCZpVby+YqeHvapLc2p25VJU+61CrJ+VN/J/BprEEE8o9G+Llcj79SVC2gfpPRxwIH7cM55J3DFFVeRTqd5+OF7ePTRp3jppVcx9HTOe2qTfOR7xjMUl1XMJd9mfR8dxas5Y6a1D2MZFUcql8u1LNzFvCrr8za5C6gpqkaqrrZQolq7A5QGQ+hNzdC307ZWCnHQobU5933yTgmfbJ3PEXkDx46xBkdEFQWfPdeuleFO5u07F/dlV6K8twDlhefYpseZfeSYnLobNrcxfUgQwaJNrcwdMrYAtzxZjluy2vVI+5u0aVZZEN3IEEvW51yPYEMcEkRlmhq/+tUl5OXlcd1116H2pdB675XlPHTDu7TWD+xWbk++T5dqld4AMFERRZEXXniBW2+9lUWLFuW2PYIRfAX4Jjpou0yo9n8BeXl5PPLok6iqyoUXXojet/hXVVXxq19dwSOP/JXGxsYv3xAB9vn+PEJNvWx4af2X397/c8RiMZ588km+feCZRBaHSQ+jcfZNhCAIfOf807jnngdJp9P8+tfXsmDBB7z00qtfjT1FJYhjJyKOGY9YO5bKQBBbMILe1oY56IjXUV6Gc689kcrLUes2o27YhFi//Euzy2htwYiEse07D/WD9yAQ//yLvgKMGlXD4Ycfzvnnn9/vnO2xxx5oqk7bzsDnXD0AwzB48MEHufDCC1m8ePH/S4HxEYzgfwEjDlofSktL+ftzT2GzSey77779i9KsWbO48cab+Mc/XuS5557vr//vLFmfVdcwzZzIMhPY6/y5uP1uFtz81ufc4d+wYphF1hzm+uHKPvOWw5TJhfkYHV25dT/jtrtq8X/66ae55LxLmHLEVNb8ffDu3mcZ9q/d99+aB5/ZB/9G3eHGbNgbfL49Bxy4D4qisGTJSs6/4BQA7r33oc+5avgbDz+Xhqn3qa2iCIKANH480vgJzBo9CrvPh9HWhF63DvWNF9nR0MI4R0HOPZoCIfIKChH8+dhmTMex/zxmnXIsCGFo3wItG6BftPZftGv4h82Og6KgvPEajhNOQigsxAw0f0bd/+59+m9Xle9//wIeeughdu7c2V9WVlZGw7a2f/s9W7BgAcceeyzXXXcdN91004iTNoIRfAX48jMJmBnMQcr2n3KDDCPVHwRgmiYCIr2ZnfSmtvbXjSltqKTR9XQ/Gdk0DGw4MVFJa1kysmHqxJR2FDFDj7oVzczyayJKM1ujr6Abif6AgWyewDiGmeqzxaSsrIz77r+bF174B0cffXT/YjR//nwefPAhFix4n8cff6LfrkLbGDD35bb6rXSms7+muzNRVofbCWQENseyDoqq6yzpbaPcUUxXZidqnw1BpYew2k59oou2dPbYIaUrfBJsZNLcvSndu4J3b3sHLa1RF2mlLpxB0XpQjCxJ2jBS2IQgZQ4/cWOAp+W0t3FQWR6IDah9CuRpI4wsN5MxdZqSWTKyauhsjDZhGOW81dVBQsvatTUW4t2eGHn2TtJG9he3oitsi9eTUrxsjdWjG9mxTBltlDrh6aY4jX2E/55Mip78PBpWJXineeAIeUWwkxLBxTsruwj2KcM3BeMsXN/N/EmNpKRskEfGUNkUb2JhZCeS5OOLDPWPRuP86FcXM+7k8cgOGd3QebX7bZ7t/juvhx4l1jeXOjONvBC4m5t23M+HweyujG5ohLVtVEulvFIfIdmnDP9ua5KffeDizDtFPtic3eHpjKU48L6POH/pIq6q+7if7P5oyxbOXrOOvV9ZzcqebN80RxV+84nJyysn8NTaVF9bBlcv6uC7b8sc/UwrTeHsbt+HTUGmPrCSvR7axIOrskEeGU3n3TVdVCX9LFjfRbKPwP7mlhQ/fMbHTRuSrOrNzpmudJyzVjzP1sh2UpkOTNPkvO+cygP3P8J++8/k1FNP5I477kbXdQxDR9cTmGgYfe+uaZr4bDWMdu+HXbf1v7v5gsi3CseSMVK0prLHx4ap4Ri1nkP2dfNJuIeUlr3HJx0my0uPp+HEHyL88lo8V1+LceAhPL46yOVXLODy039F8rknMTau5aGFHVz9TjUXvK1R15udMzsjCr9caPL4hrE8vS2BGY6Q+ugTbv/RnVx/yjM8eNcSkkUT4cifEazchyUfdTNhTD0hsg6VaqjUJ3bi16t4eXuUlJYdmxWdCd7Z5uaZDSZ1wexcjmQUFjQEyUuV8t7OXpTt20GWWdWeYsuGUh64u5Om1uw71hmM8fHCrbiSOsu2Zt8xXTf4YHEzpd123l3ZTjiRfce2tCZ46c0kU/ytJPXW7DjqCk91fki3DsagbCgZNUwi3YYg2vrdMRMTk2xmD0NP93PE5szZjb333oMPPvigf87bBDcH73Uy8XiGkJbVVDMMnQZlGXE5hd1WhNn3jmXvO7BOK4rCz3/+c8aOHcsRRxzxz1+uEYxgBF8KdolQ7fz58znhhBO57LIrGCqqKAhOZMln5bqYBm5HWX8AAGQXfVPL4HXUWDTSUmoAUxCQB/E5dCNDNNlIxoj1c8+yz6ljGCkGCzBKkszf/vY3XnjhHzzzzDN9Ngkcd9wJXHLJJTz77HM80BcNZZoGU/OOwScPcJZ0M8Nu3hD7Fk7APogTsjXeiFvyWQRdw2qM7YkupuaN69ciM0yDjbGdyJSR7/JzwSPf5u0/fsj65evYFg3iEUcNakslrDcx1j0WhzjQN0GlgxkFMMYzwN9L6mnWR5qZlT8OmziwUbo13oBHyqfYPmBXVI0SUDqpdY+32LUkuJ1IpgSnOMAtSui9TCtMMcM3ur9MMVS6lG3slj+KA+6+iLrbXiHZEqQx1c60qhDTCgZ2QcJKhtWxLg4or7DoXT29tZ1LV27lj3+6mSefeI6VK9dhmhqK2m1x8P99CHyqrC4IAo888hCrV6zhgfv/imoO0pQzTXySj6jWa9HbG+Ms5pbpR1DtGuCe9WRi/L01jKFM7p9fhmkQdi7ivc6NmIN+99gEk2JnETHTMagpg0OKCphqn4tTHMiY3a0281akBd0caMswMxS6G9getuqOTSvQuWv2REZ7BhK9tycT3LleQEtMtdjVri7kvd6Flj2XJ554DJvNwcMPP8YVV/yc66//LUuXrsAw0mTV6a3v+Vjv4bjlAU6bZqSpdUQ5vnS2ZX41ats591iNccUDc6YlHGdB41gO/8EFRJqC7HxvM50bW1nbu4bVwSJkYdC7Sy/FNhNZrx1oy1QoyqvHK0zGLg70Y0RvwjSceKUB/l3aSHLwQe2ccNqJ2KfNQP34A7Sln/DK1iD2RDUVzoG+7c5E2ZnsZZJ7fP9OtmboNKib2beokEL7wDtWn+hl76f+RGxFA1tvexnI/qgKVW/l2Ol+vI6Bd39Zcw+OoMQk30BbgXSaj1tizLKN7ddpM0yTv7c28kB7N8Kg59KNNKHkDgxTt6xfppHCxLRon5mYnHjiCfz4xxdx+eWXs3btWgDybbWMcR/MA69czq8ueIhwME5c7aDd2IIwaJ0yTI1kurlvXczFpZdeiiRJ3HrrrcP++whGsKvwTeSg7UJxn+EVrwVByA0YEESkQQsWZEVTZcmVI2AriW6Lc5Ytc6CaCUtgwID444Bz5nA4ePDBB+jp6e53zjweDzfccAMnn3wSV1xxVb9zlr2HiFeykvIlwYEkOCzOGUChzZ+jtu+3efHJbotQrCiIOAQXebKPKQdPJNwRpXlNK35bESJWQrok2HBLLotzBlBkL7c4ZwBuyYnf5rB8PD+1a7BzBuCz+bCJeTl2uSS3xTkD8EiFVAwJgrCLNkRc+PJ8iHaZZEtW0qHGWWZxzgD8dgcewZYjRlrkljCGTEdBkHOU0/8zDHzkbrnlVo4+7kgYKpwqCES0YI4YsiloFucMoMThJZ7JtwrqCiLNvVicMwDVFAjrQ4VIRXqTLotzBuAVyyzOWfa+DraFtJx3JKPIFucMoNLtIZYoyLGrI61YnDOPx8OECeN58813uPTSn3D55dewbNnKQe/IEHsRLc4ZgCw6qXEW5cyvSp/H4pwB1EybxcE/Ppd1jy9h0R/epmNVM2bGIJjKszhnABKF6OqQtgQ7wZTX4pwBOIUyi3MG4BTd0NGL/tqLpB++F2nKVBznXcjYqhKLcwZQ6vDhFvItNANZlHDhtjhnAOM8hYRW78Q/sxahT6TYJdlxGZLFOQOYWOSzOGcAxU4nDtVlEdEVBYE8m2xxzgAk0YmJPsz6JeYI04qCyPe+dz7XXXddv3MG4JaK8fvzsTtsZPpy49pEr8U5y14vIwq5wRGf4rHHHuOkk06iqCg3wGcEIxjBl4v/LfXFLxjnnHMOiqJw+eWXA+B0Orn11luRJImLLvoRq1at/pw7fLGYuP846hZs/fyKX1N4x5Wh9H49CdSfYsuWLaxcuYpbb/0t0jCK9d8E3HrrLQB861uncMUV17Jhw6Yvr7GSasR5J/DOLc/Rtqzh8+t/gTADPWQeewh95w7G//gibP7/TED5UzS+tARbgYf83UZ/fuVdhCefepx0Os2SJUty/u3ob+3Nsg83k0pkhrnyX0MwGOTVV1/l9NNHBJ9HMIJdja/cQTNNI4eAapo6hqkMKTMxjdwdONNULGKZkOWkDU+mHtg9O+200zj++OO54YYbSCQS1NTU8NJLLxEMBrnuuutIp9M5dgmAasZz7qkNsRUgriWIa0lLWcZQ+gRgrdBJk1fppnxiKfVLGwFI6UlUM5lTN2NkLIK0AHE9SlCxCrrqpk5Sz7UrpiVJDGNXXMu1K2WkLAK+AIqRJKwmcuoaYgpnVSHxxoFQ/oASoy1hrasaBnEldxwTqg5DnisrezJcMuh/F9ZxvP76Gxg9uobTTz95UFvmsHMmpetEVWvUZ0JTSBm5Y6OZyjBz2cg5ojVNk4gazRnHiGoVYv70+qHzG7L9FcpYP7xxVSUxjLCvZqp82geVlZUcf/yxRKNRfv7zK6ir22Kxq++/LNcLiGjGULt0jGHkbyLpNOFUn10eH+J+J5FY+hY76nbk1E3psX6O26dQjCQpY+g7ZqIaSu6812Ik9JilTDc1uhKD7Nd1tI/fp23JUkZfeiIMSs2U1DOkxOHmfYaMbrWrO5Okvb2TVGuQmlPnAtkjylhCswgLA3TGknQlrffN6DoxNXccY1o6pw8MU8t5F7KwztFJkyZRXV3F2WefnVPTYbNz2El78MpTi/vLNDOds4Zm5+c/f8fWrl3L6aefzty5cxlJATWCEew6fOlRnC6Xi2OOOYZEIvejDhKYBqoWRpbcCIINSZRwO2oQBBFFiyJLHkxDwSUV4nQUkNHCmIKBJDjQ9TR5tkoMUyOqtSJLHtJqgFgmS9TNfhhFwMQwFMCgrKySP/3pj7hcLn7wg4vo7Oxh/PhJ3H33n3jggQd44YUXAAkBERMd0xQRBIFK+2gOKzoZEYmN8e2Ygh+BCKdX5bGHfyx10Tbimo082UNU62J+SRkJPcPS3k4qHaNoTbcxxZvHcRXVLAs1oul+BAFcUpBzR5fi/+4Mlr+5mHg0QXOyBQdljHHV0JxuwkYBGTOBbup45TE0p7pwywYFcjHdajv5UhWrAiZ5jgZm+6toSwdIqG788mTWhTsocYp4ZTdtqQCjXKNIGWl2JBqpdVWzI9lGUi3ALoxlZaiFsR4vBiarQkHiWimKEUI00xTKlYS1NopsFWwPldKWbGR2QQkpI87MMd18e6ybyBw3697bSFLP0JxqZ5/CYpK9ZbwbbGRuRT5bIxG8gov9/WNY2dKDNw8KnA5e2GISDO/Hd8p2wynI/YEcqhaB/9pBM/vukeWhgYFhmFx55S+4444/0d7ewYcffgimgShIfR+r7LF7kTyOGsf+/HqLwgEl3RxRWsWHwTZe7RZJmk660psYbavGMFVWxd+jXW3ENAUkyYEoOBAFEa9rNAIyih5CFG0YhkJGjbAhA52tPRxZNI8qRzkfBD9hSWgVBgJ+5xgKXBNIqQF6M/VopoKgRXHa/EiCjdG2cvZ1zePOFUlmVW3lmFH5/KOpldu2dBNUTMrFNma69kA3NZZH36FNyUb1FRTks2zZIjo7uzjuuBPJZDJ94rz2vn75lH/W924iUOsczxFFJ2OYJisSdShCHk4xzM/HFbBnQTmLenbQlfJjFx2YQieHF5dQ90ESYW87c084hyVvvsddv28ilRpFs62RWf5CMkaGVwIr2JHpRTa3Ui6Oxy/XENHbkGUfqiATVbdSLo0iY8bw22XGOSfTnelGFHR8Nj/t6U58YjVpUyegNFDpqCaoduIU89jetjc3R3dw8tQofrvM5q4U09vrYOw07KfNJvHMcnaKbRx2nIdDywp47s2dKPUlKIaK39fDOeN9NEXDbAmqTMorYUFniO7ERPwVRbR1B6msKqXZCFEiRznYUcOyJUHcoxVqizysbQmyd3ERSpnBJzs72aOgmNXdUWK9ldTaRrGkp5UKt4BDkrl753reDgQQALvkxmkrJKV0Ec+0Yphq39g4+tavNJ9SRMy+sTnn3G/z3HN/J50ecJQ9UhmV7n3Ye5+9iCfi7GzYhl30ghFjnDye0VIN65WPiQspND1ORukFDATsmHzqyIv96yYYvPnmm3i9+VxyyWWsXnUBipLqqzuCEYzgy8SXHiSwcOFCnE4nXV1dtLS08Pjjj/dtx8s5fAqPcxTOIfwoQ1PwO2qtZaYBpopDsvI8OhIrSWjWVE6maWIYCUCgoqKCe+/9M3//+/P87W/PsPfecznyyMM54ID53H77Hbz66qtk0w9b7Tqo8HgmunezlClmA+eMtvJfdMOkMxOk1mMVplwSbGF3v/UZMrqGS1ZxSTK+2eOpOOMAdtzwJHesa8LBBEvdQKYHxcjLEdtVzS5Khoihps1Wpvpy+0sWeykZwolbGqwnTxprKdMMhR3JGMKQRNqa3kWVwyq263J0cs8JSSRRALsDx8VXknnoT7ywoIfpeVau3pZkEwdWW/tFN3VuXePDLRb3lx1/41E88ugjPPj+vXzZ2HPPPfntb2/mhut/w9KlAzpapmkyPe9EPHKxpX5U34k4hIulGxm2RF4Gwfoeue0VeJzWPsioYZJKIDc5tp5AzQmEkBAlK0fNNE1OL/k2hTarXQujb9KgDhFeNnTi6YaBdECCwJ//fBff+tbpjKoZQ2qQrpiJwXCO8NFFZzLOPXmIWVv48QTrPFJ1g+aEQqUryz3z7j2F0tMO5LG/vMSCF607emkjyuLMmwyl+xaJNRTYrXNRMGLs452WY1drKvtDYTACahO1bqt4rGlqnDu5gXJn9mhT9LgpvvJ7rHjpMfYfbd0R7OxJIKzRsEvWQ4Wblmp4hawas80pc/qfTkG0K/g//oTU0rWWuu2Frcwut3IuX1wdoShufQbd1Dlz3d/JDOkERelBN4ceR376A8OKiRMnctddd3HiiSf2O2hOqZBJvpMoKMrj9w/9gDtveJ7N65rwaiaFsrW/1ibeonWIUG12F1lluF0ySbTz9NOPcfPNf2DDho19dUf0BEew6/BNDBL40nfQTjzxRPx+PwBjxozhqquuoqWlhZUrVvPWW+/Q2dnZf7QyXHaB4cpEQcQ0/7XTWUEQKCkp4TvfOY9TTz2FTz7JKmPfeecdTJw4kUcffYw77vgT4XA4W3+YxckhOHPKXFJu10migGMYXpNNHOaekoxLMkEUqDzrINoeexc9mUEk93pZlFCHmZvD9c1w/SIKIpKQe99h+xY5xzn79B45dkli1jkDxHETMXu6IBrBJubWHa59SZAwDDnnoN0m7ppEzStWrODKK3/Jb379G3Y2NPC3Z/7OkiXLEAQBeQhxG0AxYehMMBFynDMAURye3zbcDxzFVHPmnUnuEZcgCNiHIXQn9dz2jUHHYcXFxfzhD7/n2GOP5uyzz7U4Z313HtbWoUEMAO5h5r1NEnFIIogiJafsT97M8bT9+UWWv70OGDuktpjjnH2WDeJnMDCGKx+uTBBkbIPmnZFIEn9rIeOPPBo2P2+p63RImFJun5uD3kc1rdG8ugWHV2H06UeRXrcFMzXgpNiHGdvh3mdJkMgYZm5Ayr+hg3bKKadQV1dn2T37tK2q0SX09kTZvK6pv72hGG6dy6bSy21LIJtib+OmOs46+wyuvup6NO2/iawewQhG8K/gS3fQgsEgwWA2qq++vp7Vq1dz1llnce555/CtM06nfkc9DQ2NrFixktUrWiwfsP9UHFGSJPbYYxZOp5NTTz2RQw6ZTzQaIxAI0NPTQ1VVJa+++hqffLJ4mI/VroV7fCWmbhBbv2sJ1F80pBmz0bds+KrN+LexZs0azj77fI466nCuuOIy2trbeeP1t8hPjGHnuuD/tEBncXEx++03j/PPP49x48Zx882/56233kL4EqinotNOzS+yRPKmm5/ESP7nxPQvE8ml63AdMwfKxkHXMCmU/gV01LVg7DUKwW6zOGi7Cl6vl5NPPplzzz0359/Kqgr40VUn8Pif3/nC2/3DLbfz4IN/4fDDD+WNN976/AtGMIIR/FfY5ZkEent7ufvuu7n77r9gs9k57thjcTqdXH7FZZSUlCKJDgQhy/vaXLedN958BadcSHu9ypZNjQAk1E4MU8cnOJBFOzabRPU4P7PLj6Z8VB5HH3MoLpeLoqJCYtEYzzzzPK+99gpr165D13Vk0YXTXoKiDBwdiEiMcswhZYTpUrf2/8Ic664l326SMRI4xOxRiWbEccpp1oW7mOnPHnPqhsm6aDsZQ8cnufDYsjsdbakocQ12JgKM9WSPphRd56NgF5JgcPru40jtzAp8Lg320pXW8UlhfDY/ABk9TYPSAqaNUqm2fycrY3ZhFzWrXWYCjz1Dd6aNUkdWq800dZJGMy5BRTFc/VIFnekQSd1A1Xvw27LHdrqpEzdbyZNVYmohQt8v76QWxCBDVAvjk7N26WRQ9QSPr0lx7vwyxFFjUF98hve3x+lM2SiRU/1SBb1Kgoiisaqnlz1KssechmmwXu1kxqRudu6cjmBm68a0CBvju9LRMwiHe/nb357jhRdeZv78/Tj88IMZP2oakubjvRfXsvz9zUTVHuJmCEMTcctFfc+g05vZ2sd1lAZpVhkkMh1Iogt7X5Juw9TIqEF0I4U0SCZF1xN9wSuiRbsMdHRdQOrTAjRNE1m0szC2kIN8B+PsK29Kbac1uQXkPGx9bZmmQX6BxK23/RFdN0gmk6xbt4577vkL2b21gWN8EwGnvRhdT6LqA8ekB5eMZq+SIK2xEgT6jgilEFOqe6hXkoyzZ4/MNMPgw5TG3J+fSay5i/CzH4JpsiwUZF2yF5/h6j9e0wyVgNZJIWUEzc7+562yedk9r5idqTRK3x6lbihoWpptiXomegaO1huSTcTUNC7R198HST1GQlPoSHdQ4azou15nS2Int25KcvUMGa8tu9S1JHtxvPoGjmMPxtfdAKZBWlFZubEVPWkw21mG3LcDvDkWZO/xGpubCkDLjnk8lsA2poyOhMrgfd4tZjuGmiaUzlDgzL5jLb0p0nGdtnQ7VX3H3aqhc1/rWuySm4yeGhhzQ8HoD+b49EfqpwnMrZgzZ07Wvs2bB5WKaILB8efP5O0XV7D0w+zxZZktRpXbRiCRQhCy/RXRe4iKcUTB3h+M9alO5EB7Qt//ioiiC8NQUVWVRx99nJ/+7GJef+O1HLtGMIIRfLHYJUK1/6R5sto+Ur8zYJomNjn7QTjxpCOorqlGFEXm778/ea4CPF7P/7F33uFyVeX+/+w2fc7M6f0kJ72HJKSQ0LsIiiAqIqJXRQS9FPVaEK8NFLvXhgp2EQUs9N4SQjpJSD1JTu9let3198dMzpx9ZiId9Ee+z8OjWWftvd+92n5nre/7fZEkGUEQ8PrcyLJIMFiGqupk01nS6SzxZJy//vWv7Ny5j2ee2ZjjS1g6hpHE66rHpdTkt/NN0uoAHsPDdNcJOMWcrlRM72dQ28wpVcuZ48vxTzJGho7UAGWyxZJgLZ48P6gz1YdHzqIIblo8uWTPES3BqDqMYYnM8DShiDKmZbE/2UPagIxRQbmSc1Qqllcx54RmvvfFu5DMFgRBwLB0InofKbKkcaCInrwNIbyWQo3TQ52zCQDVzDCUHaDMITDLV48rb1dPug8Bg+k+mal5u8JagrZ4mJ6UQEBuQhJkTMtkMNuDLEC9O0C5kuPQjKlj7I6NENNNAlIjgiDkRC2NIZo9DuYHavDLOc7Roo8uprE6w6Yf3cd0V84xTOgZutKDuGWN+WU1eOWcw7o7PoC3LE1Di8CC2iAA/fE0v99o8PMdm7nhB1/kt7/9A5s3b2Kybt3rCxEBeZwoLQgCZ5x6Dld97Do0U+Nvdz7N/j1dDA+F0PQYsiUxnN4+nt0hN5blwr2E3LGQInlwyuUk1R6sfESsICiIghvTyjJRoy33roc/yhO0uaQAbkfluHCzZepMUWrpS+1jVBvK17UQBQVFDjJjVi3f//63eeKJJ+js7OSss87mqquuIp2eyLsSccjluB2140m3NSNBtRTjy7NXcXxVjtsY1bLc1xenojzDRXPc+JRc3Q39Y3T0+8lUzeNdX7uUrmcOsPY3j6JbfTwaijCiVSAIYi7KWY8QtIJIog+XmHMiE8YoI9YuTi6fwZKyuUBO8HhT9BC7Y2kCYh1K3pFNGyOUKzIZXcAv1eXrplEZxSGKlMsNyPmj35DeiyUYRDUJt5ibY5oV58T6YY5rTrG6oQpFlnFc/H66+roZ2HgPzaJCc1luzWkbjdE/mEVWLI5ryv1wSWo6f9+T4vH9FVT6m/nMHZeTimb4+dW3sCLQzqxZGsuac88aS2V5oS9EtN/BbLkBt5Rrr82hIZ4b0/jb6AhW/r10M0MyO0hGG8EwJ0ajChwOaCmFd77znSxdupT//d//BUAS/dTXTeMDl76HJUsX8InLP0szrZxZ1cwsb24+xvUUm0YHWJvYT1LIjNMbVC1KWh3CtDLYnUEJSfQhip7xsWyaaQIBBw8/cj9nnnkm4XC4pH1HcRSvB45y0N5wHOaeFTgSgiCgGylMy+TOu/4G5PTJnn32Ob7xtW/Q3TlIKpnBwqL9UB/RSJS2PX2MDBUWi1gsRefIBiaSmwRBxqFU4HbUTigT8TgbmWrOGXfOAMrkBhrcK5njK5D1XZKLuf5WWty6TdhyqqeRjlQHiwI142VBxYdmGtQ6C0EMoiAw19fCEyPD1LsKZPmgO0hEVZCtKePfZEmQqVSmMKoewjFBhNclVaAQHXfOAByii2Z3K1N89rHb7G4kZbYz1VMgqpcrPmqdOkmtQDIXBZEG1xSyVv+4cwZQ6aikwpFApHxCXRmf3MgsvzHunFXNrGHumkX85ZrvssJVyLDgk13M8TVT67FLfcz319NTdoAFtQUbGvxuFk3pI3swy4wZM4jH4xQ+UqV3EV57mFgUbLUsi0cev58nn3yaj172RT74kfNQFIlb/u8uNj23m8HYhgnOGRwmcwsTOGKCIKCbabSs/UNmWRqGZSIIiq1ubv0pFop1yG5bVg1BlDmQOURKG55QN+dAT5tRzm9/eyvf+MY3eOaZZ3jkkUf4yU9+Msk5y73vROcMQJF8nFPXOO6cAQQUJxc0C7S22rlvqxoq2WvUcf4NH2Dbbevo29BBQPbzQtzHqC6P06sEQURRKjA1AW/eOQPwSVXUKfNYUlbYHXOICseXz6E30T/unAG4pWpC6gC1SuuEum5Eq4ZKxS6KWyE3cSB9EJ9UCOZQBD8dySSfb8rXNU20B+5n+pWfJL3lMZr9hXebVVXGaGKYldWF672KzAcWl7HxYC2SXqjrk+pIug+OO2cAlR4ni+oqiY/ZA2KWV9TyzfatWGJBi00WXbiVCpLZduw48pivqKjgyiuv5Lvf/W7h/eQg37z5BhLxJFd/6kukMyqt5Yw7ZwB+2cPC8koeTqm2I26HEkA1IpiTZHYEQUSSvBP+LSBJHhLJCMlkko9+9KNHswscxVG8zvi3TJYuCAJNjU1MmdLCuee+jTVrVtPW1sYffncXj9xnP/4yjCxOuewId/r3R82cOg529r3ZZrxiHPPepex9YBfJUAyq/S9+wb/A/Pnz6OjoZN++fS9e+Q3E/f9Yy/3/WMsJpyzhkg+dw3VfuJS1zz7Bj/7vO/T1/fv03SmnnMzXv/4VrrvuOtauXcsdd9xBf38/d91114td+vLhcHLu/36Y7b9eT9+G/zz+pBUOY4VCyL4y+A+JRnS73Vx//fU8/fTTPProo+PlrdOmUFdXwzs/dtnrzpnUNI33vOc9/OMf/+CHP/whWgltt6M4iqN4bfCmO2jl5eWccfqZnHX2mUiiiKIoNLc0E4lE6O3tZcOGTXz9698knU7jdzbjczW/+E1fLl7eKS+TdzhKiuIe4aaTSxW3Qmw0WrJu6etLCfAW21QofzX419e7yz00LG7iqe8+9vLuWjJULFf2ZgdtTMZES9c++TzrntpORWUZy0+q4le/+hVXXnklnZ2db4Jlhf52uVz86Ec/YObMGVx55ZXs3LmTSy65BFVVufjii1/1OCi62uHEefGlHHx2J73PTd79eYn34PUcnyXKj1C1pF0v43klr39ZBzEvvQ3OO+88XC4X3//+98fLysvL+da3ruePf7jL1p6l7/ranBANDw8TCoVYtWoVa9eufU3ueRRHcRTFeM0dNEFwIooeLEtDkjQCAT+XffC/aKybiSgoZPUwvjIH8+bNQ5E9CKbCpi0bufVXvyGZTGKaJuEhkVQyTTTTnnNILIsaZQqLXWfSpu8kK4kIgoipp2gWZpLS4kTECLLkxjRVqnCzNHA+T8ceIZFX7q+QXXyg/gy2JbrZlQkhiAqWmWWlt5EZTg8bw4M4hbpcgmJxiCXBBrrTndQ46nBJLoazwzhEk4wBXtmi2V1D2shyKDVItVLH85FuFpQ1oIgyB5L9eEQ3exP9lCse6pxBwlqSF6JhFKpoT3Yx1ZNzNL0zAwzcniJm9uCgApfoJWGEGTCG0AQBVR/GJ9dgWgYpfRikKtpSbUx1TcEhOhlThxhRs3RmLGb53TS4askYGQ4kBhCMKtJGFyvKG1FEmRdifWwbc5AyO6l3BSiTy0kacdrSnaQFkbiRZrYnJ4vQk+mh0VVByhgioflxiB5UK8LJNUkWBlxsDiV42znv4sDTbfRE21gerGRrpJu5vlo8spPO9DB1ZQkGDINUxs10byVxPcv++AgzjQYe3TvASbPKcUgSjx4McfeGmTTNlGxpoAucrDcPuplgJLGNoHs2iuRFM9Ls79rO87f209N3iD/+8Y9861vfYt26dUQikTzPTB7nOJbKP1vgnRWCC3J1J75v4bgznR3FsiycSiWCIKDqUTJqP2DwvvddzMUXv48dO3ZyzdVfxDLdVFU1c8kll/CZz3wGcCBJnnzGjRRg4ZeqWOQ5A0uQ2Kc/jyXKWJbJdKeTFb4FPDk8xMqKCjyywr74KA4JBg9pVFTozCkPwLsvZvOOXh796Q5S5ghzfM1IgsTueBe7Yha6FsOSJBTRi2amyJoxNMmPrmepkFuwLJOsNUirs56d0U6meWvwyR6GsmMciKfxSyJj+jBeqQbD0jGsEWZ5mujN9uAW6pAFhYQ5RKPHhWmlSGoSfqmKrJkmrA1RI9cypPfhFesQBYmMNUBQqOKW54d4+0yNZp+H/mSScjWDz5R5rn+Y45pr0E2TDYOjzJ5ZybMdo8x1+6lwOTkQjpE0NN69MsNftlZgmhZOr4IreIBzl3l4pnuIZXWVeB0yW3vC9B2oIJmIUuexmOYLElYz/LT9BQ7G+nEoATxKDYIgklaHiWWKMyyUQn19Peeffz6/+tWvxqU1BEHh45dfw4YNW7jjz3ciis5cP7rKOS44l/2JTlo9jThEhe70ACIOTi+bxuPR/ViCgmnpGGYGr7OJtCCT1UbzTxOxLAFdjyFJHgRBznN4E+M/Bm+55Ra+//3vc8455zAyMnJEu4/iKI7ileM1DRKQpAAzZszirLNOZe7cWSxYMJdsRmPX891sem7XeL1kZoz9u/sQLDfJRM6BUvUE8WwXAdcMxAk6WolUJ8e6TyUoF7hjY8YgA1o/zcqC8TLD0uk3d7LUswTPBN7WofReGjwGq4KFujEtxQOhLbyj6jicYoFTsjHUTo0rwBRPQYgzrifpTvUzzzcdKW+XaRl0ptppdtfhn8CBiWhhNCvEPH8hV59mGmwKt+MRp6NM0NYaVYcZy1p84U/X8Jtr/kF8LEXWyLIrtQ9NCtiSwqe0IbxCOa4JwrymlUY04ziF5gnRgxYOuY+g2IgsTMw7GCZthUnrTROuN4hxkLjghAm6Z24yLPXWUeUocOpSRpohdR/XzGwcT3Iuepz4vnAJO376EK72SKEN1ARRoYt3TK0c10gzTIsHu4eZ5amjwlHomyEzzF39Kr1DOa7f6R9YRmWTj//+4scYM7r494KAR6klrY3Y0k/NmDGDb37zm1RVVTE6Osovf/nL/PGTSGmSd04FvoA8D3MCL8ga5yBJNq06ARlRtNCNJDU1NXzuc59j4cKFXH31Z+jqiCMIEl6vh9//8Ufce89D3PKLX9g07SzLZIoyg0We0226dp3aRi5pamKev268LKrHyAjdnFRT4DEZlkHvCQsILjiBuz99P5aZsz2mj7E7MUzSqJxQV2NIb8PpqEScYIOhJVnqaabBVZjPqpFmUO1GMqfZ7OrJHKDBVUt5PqI596wYUX2YhYECP9QwDV6IHsQl1OMUC+Mroo9S7sqwYIJws2mp1Ndt4sK5lQQ/fjXavXdijQ7z/NgY5U0eZjcUOJfhRIa1z/dx5tR65AkCtptnn8Xyd5yO/PsbwMyNhb5Ikic3ZJmSLQj7GpbBw6Pb+HXPAeJGYcwIgohlJFCNCC8VP/jBD+jr6+N73/teLqJXKuOUU97Gddddzkf+6zrC4ShuweITTWfT6in0Y1iN0ZsZZbavwPXTTINf9D1Av6Ha+kY30sRS7bYxZ1kWoiBhWqpNO83C5J57/s7VV19NR8d/3hH3Ufzn4WiQwKvA/PnzufTSj7J8+VL++c8HuPvue/mf//kKou7D72y01dXNDA7JDxSOsxyyD69VZ3POAKqdrTbnDKBSqkMz7PUkQaZOqrM5ZwDT3XNZGLB/KMsUD0u9LTbnDGCmr4KgI2gr88teyhTPuHMGIAoSTsljc84Agko55iTVb0WUMCyXzTkDqHLUkNHszrFTcqIJls05y93Di0u0Z00QBTeqmcElF8asIAgkNAdVrslJocsJqTpuceL1ElHdQFTsQyBlOW3OGYBHcrOiwjHunAFUnreG5MEem3MGEHT4CHoKAraQE/Ctdis25wygVizn0ICFM2+Xv9xN3/4x6hwzGUv/uzloFiltsKj04MGDXHTRRQAsW7aMz372s3zlK1/5F/f512tMe3sHTz7xJOFIhGef3WjbnbDQ0Y0MZ5xxBjfddBMbN27kve99L4m4hSOfXeADl15AdXUlf/rjP4oEhwVBJCjXFYkOz3RNZ57froAfkMvwynahWtfUZlpPO407rnlk3DkDKJMriWhxlAm3lQQFSXDYHAAAWXbZnDMAh+QmrjmokO12VcjlNucs96wyXLKdMyaJEh7ZhWLZx1dQrqLVY9djEwUHguDG47DbNb3MT3WDncta7nMR9DpszhnAtEoLBxqmWZjrjUEvQswLE6a5JEgcSmRtzhnkHGXVeOm0hvnz57Nw4UK+/vWvjx9j+nzlXHXVh/jmN39MOJy7V7USsDlnAOWOMmK6vQ0UUaLOWcFgetRWLkvuIgHbXPS2WlQOAj09PcyaNeuog3YUR/E64TVx0M477zy++MUv8pOf/Iaf//zX9PUNjP/NO8mJOYr/fLim1uFfMYcXbvgFti/Sa4D/YF1Ytm7dysUXX4yi/KtMCKWmnIVAjn95+eUfpaGhgWOXH8unP30dDzzwIE888TSVlRV85Stf4vCOm2EYfPKTnwRyUXyzZ0/n7eeexvEnrOCSiz9JNquWeM6rgChQdv5prPvnM8SHEy9e//9jlC1cBsYbp6R/ySWXcNtttxEKhcbL3n3ROzlwoIPNm7a/YXZMxt/+9jcuuugiHn744TfNhqM4iv+f8aolxSVJ4oorruDTn/40f/7zHTbnzLIsDDNVRAbOaGGyuj1Hn2npeU6OHU5EdNP+izlrJrGwk8kty6JMUTEn3SNthhlRI7Yy3TTImmpeELSAsJogosZtZSk9Q0gtjvIKqWmSur08qSeIafaPl2FapA0V3bTbFdNDqFbIVqaZGlkzXWSXaOkYpv19DUvDsoo/wgkzRtaw143rMVKG/b1MyyRjxYvaSyZLSLPLQuiWzkjWwMinp6m+6BQij26lu2eAsJq0P1/P0B0r9rJG0wYJzW5vSEtQ44vYyizLImm+XvpKL3WHXIQSKXpeyvWWZaGq6r/4L1tUpmkmqqqSTCb5wQ9+xI03fpOrrrqWT3/6c6xatZIf//j7eedMQFN1rrzySlatWjX+zPnz5vHTn99EOBzlU1d9iZ6efkRExEnOoIxItbO4bwzShFX7mEmbKeITxpH3hGMRnAoP/PVpMoZ9RyakRvM6WhPbwUSxRCzTPpYFQyU8aT6qhkrEsK8HAFkrSdqwj6+0kS4ac5Abd9qk+ZAx4oyqk8e9jmlm0A27Xb3RFN3Dk+Z+RiOWnBSlKAjg8ZI6aI8mH4lkSRrFdvVmxmw7bUDJde5IqKmpYeXKlTz0UEG5XxAEli1dyK5d9mhnCRdRzS6nkjUTKHKk6L4tTpHJPyM0PVEUhGRZVo6DVoILumnTZhoaGli8ePFLfp+jOIqjeOl41Ttop556KpFIlPXrc8mmLTODIHoBA9NMkDDGyOohgu5ZCCiEM20Ypg7ZHpySjwrPXHQjiUPy4XXUk9UjWIBHcDFbaabJM5W0kWQ424NHrCNh9lPtqKfcMZUBtRvN9OKTMxxb4WCqZw4j2Qh7YglMsxpTHGS2vxkEgV3xTlrdtYyoY/hlLwvLZjGQGUGzTDyil+50mAZnMxlD44VYJzM8DexPDCBRiU+azoaxPpo9LkQBBrMZahwzaE8mUK0uFvjrCOs9LCyrwSXWsSfeRYVSwZCaJqwqzPTNIaRGGMkkqFAqSZoDzPE1M8MLopjBIMve9H6GjAyKUk3KGEG0JFyijzJLoE6Zi26pDOjdWGIAw4hQLdXjdM4ipPdjWDIaGjEhgttRyX6jD5emMVVppVPtQhLLkaVy+rVDlEs1xKxRRoUhZIeXhDGEYIqUSVXUySIz3fPAsmhLtNPsqifLCC0eL1WO+TwwMMQp7z+WrCxw5x8eZLqrlYypsj3azWxvHXuTw9Q6qilXFvH7vT0sr8sgYtIZkZnnncVYNsmu2CCLAhW0a70srynnO6tl7u/ZycOHppAyI+xNP0lnduurHZaTIJITohUmJQYX8/8VAhIEwY2Y5zFZVhbTPPzRlfLXT1Zcf3k2FJ4lIIouJNGbC3gxs+hGEkEQkeUyJNHF9ucP8fGPX8M999zB735zJ3f/5WlU1SCrjSIIuZypZ599AZ/4xIf5xS2/444//w1JdOGW/HiddYBFLNtLXB3k2LIW3lt/PDXOIO3JIXZEQDOc1HuSzPFPoyuVYUesj5XBaqJSO8c1uKlwVrN1tJeaptk4T13FJz/xewZHW8maUXxKnNm+Rl6I9aJQS7M8hWG9G11woZtpvIKXVmUxSSPEiDGIJTkIGhINynwiWYO+9CGm+xrZn+pk2LBQpHJ2ZHZRJ5XjF33oJGh0taKaGXozndQojfRkenAKVTjEJraEOpjqDaCaOgPpDH6plYwZJ2wOUi7XkTQHqHM2o+tlbA13MtNXRYV/iDNmxJhTXsuhcJKpDjfJRIqdh4ZZXlmD1mXyyP4ejltWy/YDozQaLk6vaeD5zhAuj4i/ws3wlCCrystIVUg8k0qzTFR4dEOUumQdJ1S62B7pwCmUszM6yI86niZpGliWiWlJSKIHw0xgmi99B/L666/n9ttvt4nCnn766Xi8Dv7859sQKMMnBTjWu5RW92x2RdOYdLGivB4cBzi5yU3Q4WHd8Hb6os1ohkqTJ8nV0+fynkwTt/Ts45lIlESmB8PI5riQVj7bhCAhyx5EQca0tHzWCz039pBJJEw6Orrw+Y6ekhzFUbweeFVBAoIgcN9993Pzt77D2rXrCpVsH8ECRNFnE6UF8MiVVHrm2h9imZzqWoo8KWl2d7qdOmerrUy1wpxVZ+fPAGwK99LkbrGV9Wd6me1rLKq7Nx6mQqm0le1PHKLGYU/0bFgGbtlCnsSrUaQ2Tqi0P6s7FSGm2/kgAKNqNzO8BbL+CV99J3+/8yH+8OCeorrNVhl+yW7XQLadSmWqrcy0DLoZKkp+nlVHKZen2MoSxghxpXi3YqFcTYvL3rZJs4c1lYX2Ck6v5oQbzuPRa39GIGVvg23RTub57e2lmhpTfVnkSXZ1Gvs4tdHOc9sTCXP/4pl0dnZy5513Ftn3ypHLVDERBRK+fUdMFF2IkxKEm6aKZRZLf1jovHQnbXJgAIiiE1my68ZZlokoOosSqsuiA5cyQdy4vIzKKjef/p/LcTod/OD7v2Lz5u0A+OVqXLJdJHWqYvCxxhX297IsDiVTBBU770pyPc97Z0yYT7KM88qP8n+/bGPdPbttdeNGL9WKfXxF9CFcYhWToZojlCv1trIutQ1dntwGFnOUcjyT2qY9dbBoLKtmGkVwFo37lNlL46Sx7HZ1c/Ophd0wwe/HdfmVrP+fz7Gowj7HNowNckKzfXwapknybS3UVQXg2Muhbwv0b+GOH+1gYdQ+z3tSUd6+4e6ifjTNNKWjeoshyzLXXnstCxcu5MMf/jDGBB7bV77yFbZv384//vEPAD5Y/1k8kt1Jai1/ng9Mt/fDcDqNkalEmtReb9/wBwazk4WMQZYDRWWaHrOt4Z/73HWEw6PccstPX9J7HcVRvFK8FYMEXtUR55QpU1BV1eacvXwUt7kgiEVE5lx5cV3pCK9Q6nrxCBGoYol7lEooLQkSUomjL6nEfUs9v9SzEv0R/BWlhXZL2TD5Y3S4rGR5ybY5QhuUaq8JdR1+F8uuPIUX/vAcarj4KKdUG8qCWOScQen2ksU3eu692XO91POFkmNcyJe73U5mz2nl17//Jtff8CkEAT5++efGnbMj3XfyBxlyc6FUuTSpH5yrV2Cm00XO2WG7istKHQ2XHrel575QetwfYZ0odd9SY1meFHyE0wWGXnp8lmpDUSwKFsjVLd22rzYl3qc+9SlWr17N1VdfbXPO/H4/y5cvp7u7e8LzSs2x0m1Qqrw0jmS/vfwf/7iXM8888yXe8yiO4iheDl7VEafb7Sabzb54xaM4IsIHh2me0wxseLNNOTIEgWWfPJXhnb10Pr731RMXj4BAIPCajSdJklixYgXz5i0Y/7jv39/GunXPvib3fyUQBIEFCxawbNlSFMWFKNgDLCwsW+qlw5AEmRNPPJ4pUxpwuhzcfefD/PhHv0IvwUF8Te0t8+M+/WR6fvRLSnPy/nMhTW3F7P/3yQIxETU1Nbz//e/ny1/+clG+y4aGBiKRCNu2bXuTrLPj4MF2ZFliwYIF7Nq168UvOIqjOIqXjFfloJ188ils3boVK8dYAA4fH+WSoNt1oIS8iKcw/qvXsgzS2jAZrWb8CMeyDGLZbrbrGRb5ViHn8xWGtGEEK0euL8sf4ahmBlEcY38izExvy/gvyYPJPlRLI6bHKcsfocT1BBE1yyF6mZ4/YjQtk4PJHiK6iUt04crnOwxrIVySSUgbpELJHV/olk5Y60ERocbZPH7MOaoO4TMF+tJhGt25o6GknuFgMkJMSzPV0zxuV2+6F4eYIarFCSg5u3rbe1ly7ukYRhhJKs+3gYllRsmK4DTdKPljt7gxxqg1hqArlMu54yLD0unR9xCxEgSUlnFZg6Q+Qtzoxyn4cOfvq1tZRCuLpSVB9oz/ypfMJE5RJWXEx4+WUkYcWcjSmerjXde+H0mW2PXnDXSnOyhTsnhlFx4p52AMZseor4jSnxikwXk4mbXGgNpB3NKY7W3GIebsakuMkMJBZzzOVH/uWWE1y+29Ed557GpuvfXW8RHjkCtwyEFS2R7MCYnG3Y5aND2GNoFYLok+ZsyYyf987lNMmdKCw+Hg4MFDbN++F01NIggCV3zi43zt61+x7UgURqeIW/KSnnSc6RCc6GYWY8LRlICIJDoxzEz+OP9wuZz/d6FMFB1gWZiWjqIoDA4Osn79Bgxdys+b/FwAhMNHpoJUmE+WgSSK3HvPIzx0/3oATFMnq4cxLQtZ8o73o2IJBE0fSVNFykvIWFaGY2eK9EV7aJSb82PGpDfbgSkaZM1pOPMSMGPaCDN9KvtjYWaXleM572ySW57nvo0HyFg+HNSPS8DE9SHAJGVE8EjBfJ+nEcUECSOFV2wYtyus9QIGbtGHM5+LMm3GCMoSA0YIRTo8900kwqQtDdlsHJemieqjOEWBuDGKX8od2+mWyqDWmZPXkaeO2xXVB5FFg4QRwZe3K2umqLDirOuLsbqhMrd7OHMWbdu3EVEyjGUyVLpyc6wvmUR3mjw/OsaSqtzRp2aabBweQXxOY9Upc/Hl+2b3wREGRyUc2TAzfLk5ltJV7uo/AFhYVmHXPxcYUDzuJiMYDPLrX/+af/7znzz44IMl6xRoKQJVzrkcSncwyz0TJd/nCXOYoD/LwUSEGb5cGyR1jQPaMMlsnDlKM7KYa6/9iUEuaGniFwfbMMZP7C08ci06WcwJx/imqeY03Cxr/L10XWP9+vXMnTvvqIN2FEfxGuNVcNBEHnvsUT760Y/T2XlYByfnmE10wHKcC5HC1riVTxJt2qIQPUo9HqWGaKYLw8rtonhFP8f6T8AnBahx5ARZDdNgUO3BJVmcWFVFlTO34PdnRglrKXTTQW0+abdqqnSm+tBMqFAacOQX/LDWjyKqCJaX8rzmV9JIMpQdQhEEZngLC9ieeDdJ3WSqJ0i1MwjAaDZCXyaCSxSZ7c9xzwxLJ2F04RQNsBpw5Tkhw9lh0maKSkVmjj/nVKUNlbbkAAkd3EoLn7zjY9xx3d95Zt8WDqVHmeZopCmfED2lJ+nPDBKyYsQla7xtnbqOx3IxKAxxWBLOMgxceEgZYTJCKt8HEKSScrGWerkJd96uIb2bQauLZf5GVgXm5O3KsjvWjyLAyop63LKTYy4/EbNC4t5v/IE5ToN5ZYF8G6TYFolT4c/yrrluHJKIYVr8sy3NQMTJ6hqRaWU5h7czkWDPmI5hKcz15ZwEzdQZtA4xbCT4dafA6rNO4Iy3reTqK79GOLUft7MWh5xrb9MySGV7sCwDl6MGQZBwuZy0tFYSCAqceuqZNLc0U1tbxS9+/jsee/wBTFNGzSo5HSfTRNND6EaCYKB8nENjWgYSArO9x7C87JS8XRrrYo8Q02Os8J6NL29Dd2YXO5Nr8TgbKXO15NtWI5I+REoPIYqe8b4xzQxg4ne3IOcTTmt6kkjyIKlkFo+jCVEUMU2TrB7CMLMoUhlS3uE1jAy6mUYUZRx5HpBlmViWhmXqpNXQeGosARGXHGC2YwnTnIsAyJgp9urPs2iKzi8unEKFN/cj556NcfbscXJMhcWC8tw46E1muK/XoK48w2VLHeP9uEPwM+O/ruAXH/oTejrnSA9kxtgbG0VCodaR60fd0hnVepBEmOZpxCPnAiz60gMMZOKAjFeqyc+RLKo5ik+RmeVtQZFydu1OHGRAi7LU18hUT26ORLU4BxPDWJZIraMZKd9e3Zku4oZKShQQ8wnVTSOFzxLxSQ4aXIX5OKL2Uu0y+OAUP9WuXNv2aIN4p4ms+PKXcP3jx5BJEUmqbNw1hijCmnnVuJXc+NjYPkIqodMQcDMjT0MYwqLhpl/wxA9/xsidMURETMtgVG8nYYT5RU8bo5qe78cshhHHtFReCvdsyZIlfOUrX2HDhg1885vfLFln9uzZ3HDDDXz8Q5+hybMGV94JxcrSIMPqpgxXLXWgSCK6YbKuO4xmwOKZHhqDufba259k536BoMtkTWPu+qiq8rH161g/mqbOuxwlP26j2W4i2UOYVmF31zSNfHS+Dui87W1v46Mf/S8uvPDdlBZnPoqjePV4K3LQXqGDJjBnznx+/etfsXr1CRP+LBVxLw7vmk26DaV+TQo4ioII6h3NvK3y/UV1Z5eNUeeyBwdsi3bTMIkcDDCSMYt4Gn2ZTlo99roxPUK9q5gY25Puo9ltDy7oTffT5G4oqhtSw1Q47HYNqx0sDbQU1d0eyb3rSZevBsvi6V89x/54BzWOqbZ6Q9ogu/VikdSo2oUi28nBaW3M9qv3MFYqp+CV7HY5lF5WVNiJ/aZlUukABIFjLj8Rb00ZG779IInMLo6vtJO8h/UxjptV9CiePRRnQaDaVrZuKEydNL2o7gd3b0IQXbzzwpOpa6jiFz++i4Q6gCzbxXZN08AkS11dFR+47F2sOu4YhofGGB0bYt3azezff4jBwWEikRimqSHL7qJnpTPFR1rNzmmcWXFRUflQJop7ElF9R2YjGdm+6WyaGoOp4p0Dl+zH5bCTtDWjdPReVo8hTQpO0I00ijxZcBjiqa6iOTbTeQwLPSfbykRJ5fbPFKfguffhEZZMGrfdaohlM+3Hrcp7LuOv9/ez7267YPCeWCeiWRxo43dmiojqO2L7cWCva1oqx5TbgxgAQlo3Uz32IID+9DBYxQEHzyZ24pg0lhUzznz33KK6H5w2SIXDPhbEi2ezYH4j5pN3j5dFMyplJY6X17UNclz9hIAB2YH8tZ/w1zXfKqr7iT2/QZ201hlGEk0fK6o7EYIg8L73vY/LLruMm2++mSeffPKIdQ87aF+8/FeUO2fY/tZaNsYfziyOqDygR5hXHbSVPbN/hKXu+qK6Kx8OIwp2Ae/+xGa0STIqpqmj5zMhiKLIc8+tY+XK1byyCOejOIoXx1vRQXvFR5znnfd2nnzyqdfQlLcudj+6jwtvPJcd9++G/W+2NRQ5Z0b29RflXHX8Qh5/eFNR+azZUzn51OWYpsn0mY3MnNXKww8+w6evuYmuzj5S2eH8juxRvGbw+hCnTmPrP/+Jl5oXr/+fBFGg9tjlmFv/+WZbAuScs+985zvMnz+fT3ziEy+qyj8508pRHMVR/P+LV8VB27Fj54R/vT6/mkyz9Ja5YRWXGyXqGqZZUmSxVJl5hN1Es8S2famyw3cuvm9pu0wrl3JptCPE7kf3s+aylWz84vaiusIRmrZUZNuRUcKuEu8gOiSO+fjxeKvtzlnpti39JMMs8SzTOiLPfEprPQsWzeDL//NzTj79WGRXhgUL53P8iUtRHAr793Ww9qnNPHj/03z+s9+xcciOEAtZ8jkFHbMJOELbWiX7t3TliZycf4WSzwco+cOw9LNKvm+pASIYmKaFOCkqs9QYn9y34pTpmF0dZLMq3kl9ZlpWySAR0zSL+teyrCKDLUxM0yxyNEqNRcuySr5v6fl8hHVi0rsFjl+IlkrCUPekelbJmPZSY/m1Qk1NDXfccQd9fX2cd9556PqL/xA69dRTeeGFF0quKUcaM0aJPj/S6iWWGEtiiV44UnsfxVEcxWuHV3TEKQgCt956G3fc8VceffQxCkeWAiAjCBKWNVEL7XDggMBhkc6CYGfeEBRyK7xJYaXMCSb6JD8nB99JnbOZiDZGUs/gFr1Uu2McX9VExtB4dqwfh1BPVB9itr8Gv+KhOzWIZuY0qFRTo8ZZT9pI0Z8ZpspRS0gbotXdiENyENK6meL2EjfSqIaDckc1cT1G1gzR4KqkIzVKnbMFgdxxzCxfBb3pEKZVgU8OENdGqHQmKXe42Z/IEJSnoJsaMaOb+f4a2lNDNDjr8Mpu9sSHGMkqmFaOi1XjrEd063zoJxfQe9cW7r3/GRJqC6KgkLZ6aPWWMabFWB8fIm7JSJbOVDFIjVLH7sxuBqycArpLd1AlTSNuDDBsdmGIBk0OJx9pmEu9K8CjgynCmWYMS8OhDDHd28CoOsgUTw1e2UPMGeG9N15CYjTOI9+5mwaxkoiaYv3YME6hFp+jjw9OKcenyGwKDeGVgiTMBIua0yyocdMRybC+XaZariJi9nNaQxDLgvt64jisZoazo8zy+ah1+WiLh2lLCCiim9O/+y5wuzANg6mN1XQ8coA9PQe55e/3EktlaRZFLqyejW6Z3Dm8i24tg8MSWe6dynzvTJ6LbmVL/CCmYNEk17PMu5KoEWJb+nkSVhqH5WCGPJ8KuYF96XV0Z3cjILA8sJiTK09gKDuGYZTjEv1E9VEsQccpughl4/ilRixUgs5+Fgfq2Bhr57l4Ek0QaZIN3lk9Fc3U+EPfBg5lwrgEheMDS5jvm8uW+C72qCEsASpMN3MdC4gaIfZpe0gLGoIJAbEOt1TBqHaQVL4fDTOFKDqxTBVRdCKKCl7LxVzHIpyChx2ppxnUunCJIp+YPpsPt87h4f4YG/tnYFpuGqd08ZFzdSwMrLTGguogI7E0u9rGmOsPsLU3zhyxEacks1vtZXazk4FkmnLFQWuZn7GVZ7Jlv86uO/fSmxqj2tGCbplsjBwgqftRzQgNSj1eqYwhvZc+axBBkGmWfcz3zEEzswyr/dQ46ulO95HRyxEFB7o1Qo3Tj4WOQxKoddaSMhKEtTEqlRoi+hCtnmYkRA6mehCtAEkjjlN0UyZXENbCDGTCKEIZY+YAohzAwkTWE9TJzSTNMWocVXhlP4IwzOJylTLZgSXEWFZeTdYh0PqtjxK55Q5eOLSNk5eXEfA62No3SsDlIK0ZCIbF/Opy+sNZntxi0EANI0of5y72IIsC/7t5lK8+8g+WNL+N91XPZo6vjj2JPn4/tI2EaZHVwuM/Hg0jjm5Emew4KYrCF77wBU466ST+/Oc/2wJjXgy333473/72d9m+fSdlShMtnhMRBYkTWwa4+lgvffEkVbKTKT4/XYk4Y3qWJr+HzmSC45qr0THZ7LRYvHoWO5/voXGPSqWpcNCRwnlcFYrLwTd+3cnW3QqyYHBaAE6vbOGeoRe4c3AvWcvMBcdYBmDmAwdg06b13HjjTfzjH39/ye9yFKVwOMDO/n0s8LhN/vVmiDCh7uHjZgFJ9COKHkwziWEmAAuHXIHPNRXTypJId6Cbqfwdct9iC42XEtjyRuGteMT5ihy05cuXc+2113LJJZfkcydOvsfhATKxPQ+Lg4qTynIDYuIOhGXldr1sGkeWxWLv8czzHGdLJh7Ve6hyBfFJBe5YxkyTMPqY7p1ps+pA8iBBuR73hITqCT1GpTPEXH+BI2ZYJs9HDzLXP9WWUH0wM4ZHNmhyF3gxWVNjV6ydEypbbRpDO6O9lDvKqXQUNM4SeponRoaod9rtGsi2cUp1HY2zp7Do0+ew47sP0LHvIDujSaZ7J9pl8MTobmqlOTYR35A2zKF0DI9UMaGuxjR/Ox9tWWSz69mxPkYydQQmCJSmjBTTTqzkXVe/h4P37WDfXTkl/42hgyTVRhxigcOTNqIcVzPKfH/ThGeZvJBsY753Os4JdvWkRwmrDmqdE9rLUNkW7aTJPRtJEFn18RNYeukK7vnJP+l45BBuw006nFsoknqSMb2dkyvt3KKHhndT55iFWyrYFdbC7I+HaHIWOHWmZbA9sY16eT7ShGPQsN7PonIPtc7C8Z1qqmyPdNDkmmnjKw5lO1ldWU6Fo8BHi+lJDqS6OaFits2uewd3UOeYX2TX3liIugniwqZlsC29EUVusCUTT2ojDOi7c5GfeViWSbPYwAL3GptdMXM3X13qpN5d4KmNZTPsrY3xnuMLvC/TtHh4cwdLhTICzsJ9u2JJRrMZljcURFpVw+CXG+Occ/032PO37fRtzvHPulODPDWWwikW5phhqYwZh5Ac5bZ5KukxVvnm4Z3A30sZSXoyA7S4ChxEy7IY1A7S4m7BOYF/F9MjRNQklUqBJ2dYBm3JNtxCs629ovogXsmDbwIfTbdUmn1dvL1uuk33cH+ynQuvOo9AbQ3h23LcszE1zWj9AKfNKnCxTNPib5uHqB6biVcu8PIGshE+f7AN0VnFlrY/saDlIizLRDaHiViCrQ00PUEs3VaU0kkQBL70pS/xjne8g0wmwzve8Y4iGY1/hfnz53PjjTdxwQUXTThZEHjkwtM5vrHQj1nD4PHOfk6b2oBTKqyV28fC1L5jHq0T6kYTGdau2885p8y17Wr+7q69eDdUUOEojK9RNcFHdvyRzIRvhmVZWFaWa665Esuy+OEPf/iS3+coJmOyoPVEQe2J5fZI8QJKiXKDIlfYuN2WZeBWArgc1RPKLGKpNlQ9UeJb/O8hpfVWdNBe0RHnhz70Ie6+++6iHJsFTHbE4EiHUVAsQJsL5Z40AAUBSZBtzhmAQyyzOWcALtGNZhWTxN2i2+acAfjkMiod9nx7kiDilZw25wygzlWJT7b/onCKCkHFUSQAWev045+k0u6T3chCsV0BxYNfdhM7NMyhv2xkwVVnoN6UojdlDwyQBImg5C/KsFAuV+OR5El1Faa6gkV21bn8qEbBLl+Vl7MvP4Ngi5vnvvUAY/sKz5QFt805A3BLASoVu/6WJIhIpsfmnAHUOytwCHbyu1NyIAhuJEGkcVkzyz9yHPdedzfPP76ZoFJBmoKiuVf24s5HUU5EraPc5gQBlCvllMv2dxUFiTKxwuacAQSlWmqd9usdogOn5CoKJgkqfptzBlAme2l0FgeTNDircYrFdgUmHTOKgoRL8GNNykjhlAKIpn3MCYKIXywvsqvBVUm92z7/Kp0uZjbYydyiKBBQFAKS/b5Tyrx4VPs9HZKEoXtwuB3E+iKF+zrKi/pWEhwYolAk9CqJLptzBuCRvPgke8CDIAg4BJfNOQMok4Oo+uSxLCEg25wzAK9Ujm/SfJYFB1VOZ5EodUtrCzUnrWTkpl9OeC83gs/+fFEUcOG2OWcA9c4gGdPFxKcJgkhIV5EmBaRIkqvIOVuyZAmXXXYZa9as4brrrmPt2rW8XNTU1LJ/f9sk2ofFvEp7YIBTkvA5FZtzBjCl3E/9BOcMIOBzUVHnLzpynl4VQHXY+6zK4Sv6KS4IApYlMjIyQmVlJUfxWkJAkkQkSUGSJD760Y/g9x/u68IYkGWZOXPmUFZWvCaBgCg46O8foLOrl7/+5R/09w/hcQaR81HUhmFiGEY+fVypb/Hr9HpH8aJ42Q7a8uXLqa2t5e9/P7qV/Xpg4Om9SC6FJV94B7s//2cozsr0msBf42PJhccw65SZ7H10Hw9+7w+0SNUvfuFrBMkh8babzmdw1wCd6w69Yc89ircmFn30PBKPb8AIv7oJleMbwtnnrWbdU88TLbG5IMsyM2fOpKmpiTPOOIOpU6cSCAT4+9//zs0338zAwMCrsuEo/v/FlClTOOmkE/H7/RxzzGLmzZsDCCiKwq5du7n33vuYfPxpmiZ33303o6Ph4iwcgoRDKWf27BmsXLWM3/7uJwBIojJe1zQtDh7ooqNrPx0dBwDYt28/GzYUB20dxRuLl+2gHXfccTzyyCNHJO/nUCrX4ZHKiknWud0ze13LsojqY5iWXTIjoceI6yL+CXnjsmYa1SrOn6iTImOkxwVpAZJ6nLCWoMZZOCYxLZOslUE1NRwTdg6GsyEShkGDa8KxkKmRNrIYlmnbrRrOJlAthcoJuy8JPU22RF7HlJ4moafx5X+J9z68k4SW5m1fexcbvvkUiaE8N8kyEcQsuqWNC/gCJIwQqhnFIQYnvIOOak2ySxCQppaz6sQVzD95HgeeOsgdV/6V4aERRrVhWirsDtqYNopkVth2hZJGlN5MjDpXYRfOsEwG0lnm+DXbTktfJkJYdVDvKhy9Zk2NMTXJNT+6CD2rc+dH/gBARIsjolCmTDwaS5M00syYpDahmmlE7P0Y06NkzRheqWCXaZn4lQyGoSNN2H3JEiKiuQgqE/tRJa1nMBX7+AppMcKaTLkysR9TJIzi3IVJM41lZXBJE4/soqhEcVO43rQM3JJBwjLsO8JWEtHSMSfYalkmZa500bhXxQQjWYFqZ2FPJ6RmGEsWewzhdJaYQ6XMUdhF64knGVUz1HoLbagZJpIjVURAH1UjZMwkLtsRp4ZoWkVz17QypIyETXIjbSQxKG4v3cqgmtlxfUKAqBYhbiRxT9hxMy0D1VJxWbptFy1jRhFRx4Vyc/dUyZiZXDBD3q7WS45Hw6Tz3sepUgrPCqlpRrP23XPTtAinNfy6ilcutFdvOoxuJDBND92dgyxaMpNPXHMRz65/lkQ8JyVUV19FU3M9TodE/2AniUSC7du3s3XrVh544AHS6eK5/3JQKg5FRORAKMXKhsJ7qYZBQjRRDQPHhF207lgCdSDMlPrCWhdLZojGUkWBG7FMgqwuE5AL4yuiJSlXnAyqhV3a3CmKkbfvLXcC9ZqgtbWVpUuXcdJJJzFnzhweeeRRIpEot956Gzt37iadTlD83ZzMRRPy3DH7dpdT8GFKWQYHh3n66fV8++Yfg2VS6arDyM+xQMBPy9R65k4L4vF5cDgcfOvmGwmNhXji8ScZbO/j0ecetR3Hi6Irr/c4EYe55UfxWuFlc9BuvfVWbrvtNjZseCmpiQ5z0SZ6/IdJjLm/5wIKrLyKupiPDjo8GA8HDFj5fIQiZWIFy/ynUiZV0q8OI4pVmJaGX4oxzdNCwhhkSbCKoMNDW2KQhOZAEARqnCmOCdYSUtM8MzqGW2wgbgywwN+IS3LQl+mmzuknaaTwyyItnipGsnG6UzFqnFX0ZUaY7s2Jc/aku2n1VDGsjtHi9lLn8tOdCpE0NMpkDwcSKaocU9FMlZDewzx/LfviQ0jU4ZK89KQH0E0ZQYCAojLbV09STxHSh5jhreVgYpBmVyOzzllKy3uWcOCpNp6940n8yRRTPRX0pGI8O5rAKVYiiSMcV9GMhcX9Q4cYyvrwyGGuneVhfsDH/liMiDPI/HeegnfpDBySl/Zn27jvL48ghz3sSu5ja7oTDYspiod3VC7CxOSuwWc5lBlFQWGhewmtrrl0ZjuICBKCIDHbneCC2gaGsimeGVZI6xU4xRjHVSeY7S9naySMwlRAIKZ3Mcdfzf7EMBsj0LpoNj+840r+/r930PF4G/tjUUSzEdNScTgGmeVroCs9iMOqwSF5UK0+5vhlEExMy2Cat5aQmmJbJERQries97OkrBGnpLB+rIeEFsQizrlNKssq/OyOJPhNu4lhVDCvuodrF/oxLfh9W4pUppXe9AixTBmy4CdljuJVLJySi0PpITSCCOjM9SZYVd5CX2aAeb4q/IqbtsQAiuhCs0wG0hBU6knoSYayo9Q46kiafRxfWYtbUnhksJehdAWalWBB0Emrt5L21CgPjPZhWB7meTNc1jQd3TL5Qec6tiTCNLrgZ8vnsbgiyOO9SW7fHwDLzSnz+rhilYdYRuPZ3TFmO2pok8Icf04jFeVutrT1E5AkVFUn059mvqeM4VSatrEYCyrL2TEaYkVtNQ5JZNPQCK3lPvqTKco9DqaXl5G66JPc+oW7yPYKPB8eIqHWYWIyrHfjFINkzQjVci1esYxho5dhhhEEmekOH8v8c8kYWXrSfVQqDSTNflZW1OKXXWyL9DOUdmFgUOW0aPXWEdUStCdHCcq1tKf6yOqVgIQlDNPkqiGuRwlrArIQIGNEMcngEYNYRGlxTcHCojfbhVuoRpZGuGSKlyleL22JMRKaROuqhSz82Jl0fPHPJBIxhvQullVUcNAd4eT3TSdY7mbz5kMEImkSKYPtO8vxZZqJ63Ey5hCzfBX8vnczf+nbjm6ZfPiDn+CM087mmiv/l8YZIg1N1YiigkupJpU02bb9GZLpIWKx137r++c//znr16/nD3/4EyAy1TWDsyovQBFkGur28L7FFr2ZNA2La5g2pZKDnWMMvTBMo8tNl6xy/Iop6KbFhtE4ixe38kJbH7O8Dmr9bl4YCCP4PbgdCqHOYY6tLiMUU/n7fQnqMg10pvo5tqIcv+Lgp+1b+E33bjRLz3+kDZYtW8aNN97IJZdcwtjYv9Z9O4qcUzZjxgzWrFnD6tVreHbdc6x/biNr1z5NJpNGQMLtbECWvWh6jHR2kNz3UIJxzraKZalIog9Fzglwa3ocw8gJKM91H88cz2qSRpRNqYeImTGmuir5cMM5+BUvD41tY1NyAEUwuaRmNmvKWzmQGOC77feSkAxOmHkcn770avzVZQi18Ou//oY//uVONM2JKCiYpoquRzCtTN4maYLD/tpLM70VOWgv20F74oknuPTSS+nv7391D57ETYLcbsHk5MeWZRbxzgAWei/AI9k5D3WuYc6ptRO3DdOkwqHZfkkCPDXcw1SvXTg1qoVYELDzZwC2Rvpp9TTbygYy3ayurC2q+8xIigqH3a698XameOyCsIZpUu00i5I4H0y2M99fENB1V/upO3cOM4+bR9e92xh4Zh96fpdka3iAad4m2/VjWjsXtOTeQXAqlJ25Gt9JS1n/yH6G1vcxsrfAMbt98HEOanHb9ZZpkswOFv1cr1RaKXfa28syUjSJ9oAHgGZviCkeu11bowfoU73MXtTMV3/+IbIZjSvf9UO8MRPvhB0QgITVyXSvXYTTsDROqSlury3hbmb77ILDIXWIc5qKN4cPad0cW2UXPr1tX5RtA/OK6rZpnThEO7dnvm+UC+vtyrwZXWNvwlU0RrPmQY4tt4sTtyfH8MvFYyZpdDHPX2cr69IO8K6ZxWMxFIjRErDzrp5JRTl9jb0f4okM0s5oERdrbfcgxzfan7UvEmV+fWF3TP7gf6Pfezvnfi+EZNpFbaN6LzWKXVAWoMmXIaDYOTAx7SDLK+x9k9AyxHQX0qR+vKd/H4pgF7VN6KP45GKhWq8Yp9ppF1n1KIe4dKpds807q5Gaj72Nrh/eT6q7INo7Or+HCy+wj6/hkRRP/MBZxPW7dvfPGcxGx//9uc99loOHDnHXXX8psuv13kF4+OGHufTSSxkeHua08ncyz7fU9ndvbS83fbas6LqdbQMsarG34zMHBzhxgX18mqZFqC9M5SRe3h1397PItPf5UCbO6c/+xlZ27bXXous6P/7xj1/2u71VUFVVxac+9SmWL1/O3r172bRxK4899pRtd0pAxuspFjaPJzsQRPs6IwoSyiSermmanO1773iKwMNwOzpYUWEf92E1wqJgsSD2A4N9NLsLc3fammkET6oi6kizbt1G/vTHv43nTc6qQ0zmmB/OMvFa4q3ooL3sI84HHnjgVTtnrw2K+0osIWQkiSKSWKJuibIjbdGXvK9QXHa4dvF9S9sll7jFZA5BeiTO5l88QmZjF60XLGfau1cQ3tNHomcMITSK0GE/0nKZFp6Z1ThntOBeNAO1d5jh7/+RdetiBJWgrW6pT4mVM/gI7za57hHaoOT1ArWN5Vz/ww+QiKa5/eePk4xl8OIsUbNEGyIUOWdAkQMClKwHoJToc+mI71pifJTsW6HkD4iSdh3hWaXKHVLpd3BIJcZyibqSJJa0YbIDAv+qDUr1Q2m7pFJtcIT+muyc5W78MubjS+hHpaqMpo+czb4/PUm2255RoVR7iaJYsm2Mkv7WvwqOen2wYsUKotEoIyO5d5GE4qV7chaWw5BKjZlSY0MUSq6VpdY6RSx+/o4dOzjrrLNK2vBWx8KFC7nssstYvnw599xzDxdccAGZTKZk9pxS34tc+Utbl3NjuXgslJqjyhHXSnv/tj/bztYn/knLO2azfPkSTjhhFffd+whr126kp3foJdl1FC8fL9tBe+yxx14PO47iRRBtG2T7t+7FEfBQtawVxeugorma2mX23RDNiuN1S2Tbexm97Z+o7b35vxQ7Qm8kZEXi7Zeuoad9mKraMjY+tfdNteco/gU0DaG8Coi82Za8IihVZUz7zLsZeWAzwxv2ElA8L37RS0BlZSUXvvsCbrjhf1+T+70czJw5k+eee+5fRM6/+VBVlfLy8hev+BbC3LlzueKKK1i9ejXf+973+NKXvkQmM5m79Z+BbFrll7/8A5Ikcf75Z7NixVI+dvmldHd3cPPN32VgYPBlycYcxYvjZR9xejwe0mmVFxfMezHITMzdmRM+NMgJ3R5Otp4nIFuWrUwUnXjkSqY7TsCdl9jIGlEcgsbCgIcVFbmjkoyhcSDZjyKYHBusxZ0n/R5MDBHVVbD8VOaTpaf0JFFjEKcI83yNKPkj0R3RPuK6Sa2znEpH7lkJPYIsDiAJErN8ua1/3TTZHOknrokE5To8+TyKI+oIKSOBZTmpceaOi5J6irtGHkcRLD7SeCr+PBG3IzVAUlepcXpozmutxbQU+5MjuCRYFmgc3x3qzXQgCSq60TCe0DuqRVCtEWrcBifWVObbwOC7+4doi0ucUTWNCkfu2G5bZBd3DT2CJflxO3PBAaapk9WjGGYWyyr8YjOMJFgm9e5llDlb8u2dYDi7izKxktnKCUj5rfd9qSeIm11cWPcOWty5Y2G12eDML52F0+Eh6K/klzffx5P3baE7uxHLzLLcezb+vJZVr3aQA9p2FrjnscCbS/6tmVlGtX7KHRanVNXhlnOBCHvjg0Q0nQrFNx64kdITZOnF7zBYWV6Dkt8taaMLxZ+lQQ9Sl2+DA9E0T/QIHIg4SWu5I1nD1BnUuslYGkg+pDyBXSHBdI/EHJ/CokBNvh9Vng0NkTJEmlxNKPkAiZDai0fOUu/y0uTOBUikiSFXHiSUcEN0HqIg5cj4Vfuoq05i9LbgM3P9GDHHUPw9eCSBZRW5I1HVNHhBHEHwWCzylxF05uzaF4sRdlgEq30snpE79ounVbYc6MeKaiwRvLjzEizPh8ZICwY1oovpvtxR2EgyzQsDMRSnwPHTq5AlEeGkc2g72MXmvz3DvfunkFJzdmlWFK+SJqsLuITcWDYtg5TVj0cWmOZtwJsPdBnKDpEyUkz1OJnjz71DXMvy0GAvliCwqqIFZ176Y3esl55klqzpxJEPRBBIU++JE9NN4tmafLi/RYVrmDqnSEytQhH8ebvCVLgiTPGanDx7BtM+82767t/IL/70BAld4B31lZQ7cu3VmRohI6dZeKaP1Sfk2ms4lOXrPxgg3g+nVjfiyrfXP4a38eDoHuLZISxLY+7cuXzjxq9ywQUX8EaToS+55BKqq6v54Q9/SFCeSrNrMXM9zdTm567ki7P67UPUVpisaa1FFAVM0+LZjiF0C+aWuakry60zB7tDdO4ZwdfoZ9Xy3PqVUXU27O/DUg2WNJQTyCeXf2E4ypgO6naJpmRujg5lstzc1s/OWBfD2V3jWQUUReGhhx7iG9/4xr/MJ/r/DwqC6gXkONbnnHM2l1/+MQDuvvtu7rjjLjRNxS78KiIgA8KE75sJgoQi+3DIlYiiiGma6EYMw1TRjfT4uiwIEi6lHNMyxm0RLIE5rhlUS/W4hTpkIdePbqWf+cE0mhkgqOTmY8ZIodONIgpMdbcg53fNxoQDuF0JDgxPQzRz48sQQrRUtPHQYB/39Efyz7K4sLGBd1xwDsqqhQSrKlm7dh3PPLgeZ7uHF6Jb6c60F95W9CIgYJhJXsn8eSsecb4CoVplPJVObmK+GqVhgRzpcXKCXSmfX1G2OXACArLsHxfytCyTgFBFszyXCrl5/IgiYw0wP2BR66weF2SNaXFS5iBeWWFmnrdlWiZ74r2kTYvZ3toJH5cQY2oU8NLoyu1QqaZGV7qXRk+GVeU144t4W2KE7pSBTAW1zpyTkNQztCUHAYkZ3oJdh5K9bIx28HyqGw4fUVg6J/inMs87ZZy3ZVomXeluTMuk1tkwrvk1qo4hi2PM9gvM8eccuIyhsyE0QkKTWRioH4+i7EwN0pMJ88iwD1kIArmouTI5xK74ekbU8PixkoCIU6kEURqPkjNNHU2PYRgFjpqFhVP043bUo5IubM2bBhXUMKDuxhjnHVgsrJ/PdTd8mjlL5rBu3SaWLl3IurUb+MlNtxMxemHColQnN5EWVLKCOd7nDstipWcJDc56vHLuY5zQY7iVYXySc7y9DMukI9VNpSPDseVV+PIaVj3pEFlljNkzTBbV5togpemsbw+xv7OcWnkaDvFwPw7y5FAK1fDhyTuLqpkmbPYx3etltrd1vB+H1W68chaHUIcvn6w+qkWJaGM0umVm+RrH7TqY7GFaQ4iz57gpywvF7h2Ns75LYuVCgyWNObuSqs4jO6JYUYtTWgLjGlY7RkPERI1Zc8qYVpUby2PJDNs7R3H5HKyeWT9+5Pdc1zAZRWR+QwW1eZ5az2icfS8M4BNFljfnxoxmmDzXOUxq1GRxoGo8uvNALMqolWTmyWfTPG8+2TtuJ6np/GZPnHXdlbS6W8aP1gaz/Yxmk1QolfjlXHtlzBRpcxC3JFPvbB7/6Iyo3WhmlnCmCqeY++GSNqP4HFEyhpMyqeDsDardVDpNlgSn4JJy/TiQGaEtEeKYYJAWd845zhoq26O9yILIwrJmZFHCW+NnxZdOZ8tdT/LY3zvxHbbLSOJ39DLTDwvLGsaP99qEfvrLRPZtq8Ml5OxKGhEEqZcnY3vJ5A8YLMsiq41x7Wc+xNDQILfddhtvND772c8SGonx7J0DBJXcjyTTMjCtUT70DheXvqsBvyfXXnu6hhkaiVJXE2RuS+4DG09n2bSzC+tghJWBivEfLttCIbKNLqbVBZiSH1/D0RS7uodxBf2szvPUTNPimU09/OkvMbaOBpHyeo4ZI0p3ei1xvQ+AG264gWXLlnH++ee/YW3zxiP33Tr8HZQVmf/+76uYMWMGS5YsQZIkurq6uPHGb7J9+3Ysa+JGhAnoCPmMO7myfBCdkPvujR9lWiay5ANBRMxH7VuWiW7Ecch+nErFeF1NT1AlBFjpOx5//gd7ykgQ0YY4oQZWVuTmWE6EfYCkbrIsWEFAyfVjXzrCoBZlUWOapdWH543BfR0xVE3kvKl+PHJuPmwaHeEX+3r4aMtc5vhz37yYluWnPbtZcuGHOX7NahSnwrrfb+apZ5/in913oQuOCe9roBsxLOvlCeAeddBeHJYo2AUvLXRej1+TguArOnMXBQVZthO3Hbg4zn1B0fUzysaY6bMT1YeyvSwO1BXVHchEbDIbADui3Uz1TC2qe2xFpIi/8cDACK2TggCGsxG8cgWTccOhP5OZxOOZ7gzykYZi7sZINkqFI2grS5v7OLvOTjS3LBjKFAvgfvtAG2nTTqaOaD3sTz1cVNehVCBPEv1UtTA+n8jChQsAWLZsKSeedCKK7B53rg7DNLNF4sJ+v5/77n2CW275Pe9+97mcdPJqvnT9NxkZ6UecJHwKFi5HMSH8dN8KWlxTbWVxo4fl5U1Fdevd/dQ47cT6Xvd+zlsUtJVlNINH1tnJsgC/am9HtOzBICYRVlY2FNUd0/ppcNnbNqT1cGywuO7KJbtp8Nn7Z11omFNm269PZXXoLeaEbBVHOXGOvW7baJTZTcXCoDsicY6ZYpdLWb+jmxX+YvJ4x+40NW67Xc8OD3DirJl4rv0MyZu+AbpGOGPwvWdnF11/KNVZFDCQMEZo8RQnWH8+3INfso/bqNFHnbOYDD0rkMEn24nLvZkO5vun2srSRhZnfoezYmYNK68+jf3/3M5v/vwwVZMDGYRBLm6xrx0APz4Qxy/Z14QtifV0mcW8mq/e+BH+fMefee6554r+9npCFEXuv/9+Pv/Jm3GPLSj6+32/dFPht/fjUzs6OXnxVFvZ2FgC76bhouu3utOsWWCfTy/0h1k4t3iOLf+vg6Db18oxtY3OVG7HbM6cOVx//fVceumlL+nd/jMhIQoS73rX+axZcxzHLDmGAwcO8Lvf/oFdu3YTj0/8USsUccosyygSXQZAUEp882TkScLPWCZuZ/HcP1aZxxSXPVhIEvt4b0vxd6g/M0az296PPVYb50wvFrtNZawi0ePHOsdYFrCvlQfjaR7tmwpA04J6TvrYKspq/fz6b7/nF7f+nkQiOV7XNLPoxss7Dn0rOmivKln6Ufz/icbGOi7/+Acor/AyfXoLO3fsRNd1env7+Myn/wesAMIkByurjmKadk2paDSKrnkRBIGFC+fy2KPPEA5HOYp/b1jxOEZnB8qqVWjrXr7i/RuNmecsYO4FS9nxhw10Pd32uj1Hlt+c5fKss86iu7ub3u5+ZnqLHbSjeOMgCAIXXnhhLpp2aIg777ybG2/8FmOh0SMG0LwV0btrgD9d/XcCdX5cZzj5y19u44EHHuVPf7qLSOToN+Cl4j/eQctx14phlshVZh5hp88ssYtolbjesEyMErIfVon7lronlE54VZTW6vA9Sr5DMXTLKBLKPZJd/wpnnX0yH/noxXg9bm6//R/s2LmFPbufJ5FI2Oq5nPW2fJEAmewwpmVPAWVZFk6Hh8/+z1XMnDmNX/7yD+OWTcaRbC3VNkfa9TVKlJfqB920ioRfj2xX6b4pVT5Z4HXcrhKizqXsMiwLTLMoyrHke5lHGMsv8VmmZR2hvXL/qz71JK73XYy2aSNmOlm6vUpd/zIiHEu1oWVZJcd9qZFfd0wzS9+/BkEQePpr9xHtDuVv8tLa4PDziu0qLlu4aDbTpk+nre31cwCPhNWrV/PII49Qqg0sy0I3SrxviXGgm6ZNwPcwjBJj6UhjuWQ//hsHLrxWmDlzJmeeeSannnoqo6NjfOHz17N372sX6HQ4Q0UxigstigWiD5dPRum5VLp/S65JplkykrnUPC91z+hgnF9/+1b+du8DnPO203ngwb9w883/x9//djQT0UvBy3b5Dy+q1vhwcAClw7tfuUkOLEsbz2eXS8hrYFoauh4f/2gbRpK42svG+O1E9Vz6lIwZwyEP4Raq2ZvozDsvBh2pDpqc5eyL9zGcjQDQlxmlPTmEU5RpS3RjWhYZQ2VXrJMp7kbak13E9dy2bE+6n6w5xrawyq5Y7pggrKbZEOpncVkNh1LtZIzcmfr+RA8g05cZYCCTC4sPqRESRjs/n3ciUx1S/p0sprkkvjVvHoZwgLCWs2s4O4xTbmdFZYqBbGcus4GRZSB7iAX+Op4LDRBWc6rkW8LDfH9flt91RNkVy2mchbUk/9fxGOsiT9CT2YJhqViWxYi6n/bUk1iWPt6GlmXS0lLP179xLZd+8J189X+/xwXv+ii//e2v2bjxKeKJyHhPW5hY6GTUfnQ9Pn69qo1hmLF8n1nj5Q6HwmmnH8uJJ67kuuu+THd3D7qRQhDk8SNRy7IwzSymqZHODmMYuQgn01TBMtiYOciu5AsY+X4MaR0sL6+gJ91NWM39EhvIDBNSBxjJuHg+mhsHST3L/swhVgYCPNU2zFg61zebesc4cMCgzNNOdzonFxPRkqwf62FRYCoavRj599Do5eQaL1mrj5A6CkBUDxF0tnFRs0BIO4RhmeimTkg7yLn1LkbUQ4QO25UdIli5GyMlsKEvNw7iqsYzvYMs9Vfw1L4BxlI5u7b0jzEqGvRVZ9kZzTkaw+k0mxLDLK0q56m2flKqjmlarOsYJOhzsq1zmLbh3JhpH42x6dAATUg8vasH3TDJagZP7elh/pQqNoTC9MVyav67BsPs2BfGFAw2j+TGckxVeS42yPFLqnguNsTYgTaM7m6GV61mOGJwYnMbMSPHM0oZCUa1LuaXNRLSO9EtDdMyGda6KJO99GX6CWtj+bYNMaT2MausgriZ41Ualk7K6mZ5RRO60EvazIm6pq1B3j6tjdNa+hnROnPz2cigybu5eolBUtxNykhTt7SF+f+9klM/dTzDTz/F7Z/+OdHuEDE9ji7t4folFoK8b9wu3d/BNVcLpBcO0Kfm2rY7FeHX7aNkNC99mdwc0y2dHYn17E1uI5kZyI1B4IyzV/K1G6/it7/9zRsuwlpWVsaaNWt48skNxKwY7el1ZM38DyZxhGtP6CX6XBcbduYS24fjaZ58ag9L4wZPPrWXSCK3Tmzc1U26e5RDcppdodzR0kAixYaBYeamFJ7Y0kFG0zFMk2f29lKvKGx+vp1D/bn2OtA7xoaH93Lr2yzKPX1Ylolp6YxqB0gpWfzumYiCA8MwCAaDOJ1vbtT4q4eAICisWrWGa665lp/+9KcYhsFXvvJ1Pv7xK9mzd3f+G2hN+CYaE9bKw/9PGF/nDq+NouDNlx92ciwUuQxZ9E5Yly1EQcEhV2Ca2ni5R5B4d9XbON47F+HwiYWlcUpZNZc215Oy2jEsHdMy0YSDXDIN+rKdDGQiAPSmx4iJB5lfl2Ff8vA3T2N/5iDHN/hZPzjEcD7jxbaRMPfvd/BUu5tNw7lxEM5m2Bjr5/RjvGzPdpHQc3Nke6yfxqoUxzbvImbkvkMJPYrXcYhbF78draOf7373p/zfj37Bxz/2Ic5c+CGme8/CKRZTL46igFcQJHA4E4BsO1vPDSD1SNe9RMgIk87mLctEFJ2TnmVhWbkP+HgZFgs8qziz+iQcExJDx/UQjW57eibN1NmXPMgxZTNtuwIHEr345SABW7qhDN3pXo4N2jlm7ak25vrq8coFMcDRbIJd8ZRN1NawLA4l9/O2urrxaDqAjeE+nLLO8RP4TWld56GhQc6pbbRpea0dHaFCqaTWWeDlJPUMf+/rJ5yxcw6ywjbWRjeRmZCsWcaJjEjSGJ3YsoDFmWeezmc+8xn++Mc/8re//Y1kXgTXsuzHlaVEOEXBmXP2igJFZHy+AO95z4V84hOX8+EPX86e3W1IkmdSPxoYpoY4QXPHsiwUyY3P2YQ4QZTRi8jldUto8QQL72ro7Ip3sCww3abf1Jtp56yZOg3eQt9E9SzbxsKs9No5T78/GCKWnm0TdRxTowhChKXBAgfHME32JfdxyZQaGx9jRySKZCnM9BfGTFrX2Zbp4NL5QZtdG8eGmF3jp3pCeqVwNssuK8Hpi+x23fdsB8c3VuJ3T0idlUgxYmksbSlwzHTD5OF9vZwxvR6HXLBrz2gUX7mHKZUT7MpqPPJkO6f46227KOtHhlg4K0BNWcGuUDLLloMWp11/PclHniG7eQcAP9gVQTJm45QKH+CwGqU/k6DOWRjLpmXQnz3IdM+M8QhfgN70IAHFZeN8Zg0VTd7FZxfaeTX3dodYUeemyZebz1JjA8J55xAW3bg27yO+djtmMvcxuXegl3NbgpQ5CmNpbzRDaqHEuWsK3EZNM7nh+90c6pxlW2ui+gAbUw+SNAu7xZYFXo+LBx+6m0svvZSOjg7eaDQ1NfHTn/yCiy76SKHQEvivebP44Zl2DtDaeIQF5T4qlcL6N6pq7DOznNRs53fe9+wh1lRV41UKbdCbTZOsUVjYWOAsaYbBQ9t7Oc0ZsK1Jf9wV5vqNIZhQZloGsdQefvzT73D33Xfnd/3+EyHhdnn4whc+x8xZM3niiSd56KEH6enpGw8MgMM7VqXTF+YC3exrnSh6bNxb0zQQMHEodi6YbiRwKuW2UwrD1FjunsFxwVW267cmn+W/mhbjm/Adak9GqXJHWVlVmPtZw+CZUC/vnFpt68cNQyGmBJw0lxWuT2ga9x5K0iLZj9MHhF2cd4yDck9h7g/EsuzqSLGmvjC+DNPixztinBBsxTPhm7c50sNPO2KcecaZfOCTp/O1T/2Bof4xOlKPEcn/IPtXOMpBe8koJj6+NlnvSwucFj9LwDR122QREFBk1eacAfjlCuqcdkVjRZRxia6iI5ug4scn2wmZHslFUCnOeqAIXptzBlDl9FGWtt9TEgQqHJLNOQNYWd6Iz2F3gtyyTKO7WJB1qseFW7STpr2yi4G0F9ekJutMZW3OGYBOlqxRyOdWUVHBySefxKmnnkx9fR1f/OIX2bJlS9E72lFqS7t0FM5pp53Gt751I/39A1x22UfZu3cfubRek/tRQhD0SWUCoiDbnDOAlGXYnDMApyTjk5Uicc2A00uD125bQHbi1YsDKfyKTDpr78dKR4CAw75dL4kizV6xiCw7x+8Dyz7m3LLM1KBRZFeV02VzzgDKnU4qncXH9FWVTptzBtDo86BI9vaSJRGfItmcM4CpZV68lXZSvNup4LWUoiOuGp/L5pwBVHiduOJxYr+9k8AnPoDeN4jRP0STVyKUtO+OlDsCJHR734qChEN02JwzgBpnOYFJ88kpOZhXzGNmboVAk8+BWFON69STkGfPJPPI4+y6cx0z3fYLpvqwOWcAcwMu5IX2NlQUkaTkLPohqAhem3MGuSDnSz94EU8//fSb4pwB1Nc3kExN0s0SLFY1F8/HSg2bcwZQ5VCo0ib/2IKAz2lzzgCanG5S5fa+VSQJT8pAdtv7d0WDw+acQa7PBcHB4OAgkvRanqq8sWhubuG73/02hw4e4sMf+gjZbBYLs4hjJiCUOFY8LIEx+XBKKgqMEkWJyUF3uXJXEYVEEhWme1on1ZNY5Gu0OWcA07wBWgP2zRKnJFHjKRbxnlrmpKnMfr1PUTC0sqKDMZfko9xjXzvqy5yEfPY1SRIFZpVhc84Algeb8cthNj61l+lzGzjtHUu54xdP4Di6i3ZEHGU1vsXQ1NTELbf8lGXLlnLvvfdx8cUXvwTn7KXD4/HwiU98nH/+817OP/+ivHN2FP+p0PsGif/lPgIfuxipoThN1esJV30tnvdfhO+qyzEjUeLf/RHqc5uwSnCuXg8ce+wSPvzhD/Hb3/72DXleKZx//vn8858PvGnPfytBEASWLl3Kb397Gw8+8CDXX3/DeDqjo3htsfXZNk582yJaJ0WyH4Udr9BBs5h8NJoj65feAXtZdy7ahrOwzMk7DAKSWLwbohku0ob912ZMH6E3M2oryxgqWSODPum+g9kYI3l+2mEk9CQJPVVEoNStODEtaSsbyUZRzfCkejopQyWp23/R9GVH6EzZ7UpqKhFVRzXsdnWlkgxm7MmXu9MR+vVuW5lpmkSMkZJ9EwwG+fSnr+XXv/4Vjz32BNdf/yUefvghVPXVHkvb8e1vf4etW3dw003fnvB8C4fkK96Es8yiNCeWZaGbqaKI0BpJpjc9qb30LH1pDW1yP6aSHIzYx8FQKkNo0mJrmBZhVSdr2vtxOBOiLR6xlemmwVjGJKnb7TqYiHIoaa+bJkPGb6BPImoPmRn6UpPGjKYyqtl/gZqmRSirEsrY+6YjEqdzxD4OsrpBAovUpHu0DUbY3xOylUVTGVKKXmTXsJWhN56ylQ1E0oT0XJn6wj4Sf3+Y4CcuZcYp8zCZtNOkDFJZNoC9UGN2axhLsLe5QxrAYNBWZpJCE1Pj81HwefF94EJaP30VkaFh4jd/n8xDj2IlUwyrSVJuexSYYRlo/hTRSXO/14jS0WUfM/GUzlBYw5h0hB8zhm0BR/X1ddx001f52c9+zoEDB3iz4PG4GRy0p9bziDIDw46i4IChdIb+Sf3Yn0wzmOehHYZhmkQtnahmH1+HojEO9djXr1RGIxbPktHsc2wgkqbZZS8zTQ3D/E9Sybd/m77whS9w/fXX86Mf/YTf/e4P4+WHjzIn75blGWWT7pmvO4kwL4pyUfCKZYGIVLReuwV/UTxInVOgwmNPWWZZOlXBEFnL3r9RBujT7FzJtKGStrKok9dKMUGPas/HHMpmcHjCRaR/3R0b56cdRm8iybBlX9N00wB3ksyksTDCEK0VuTVp/84ennlwJ1fecB4J3f5eR1HAK+SgHYZMboBO7MjD2ewPc9UOc5cOZx4Q8/9ZE8olBHIaMJZlTqBXCuMK4gggoKAofhxyAEEQ0fQ4WXWECqmB2e5T8ElVZM0kLiXGTG81CGPM9jUDAh2pbprc5YTUEA2uIOUOP0PZMDEtjUfy0p9J0exuRjd1ujM9tHqqGFWHmeGtxSu76E4NYwEuyaDalWaOv4qEniN0Vyt1DGQHWRSoxynK7IwOktDLSekpGtwOGlzlhNQEY9oYM3x+ItYQK6tyPKItY8PUSJUcTCaoUiqpdPjoz0TImknKFBcHEybTPE2ops6hZA8zfeX8vHc7L6RyQrGWkWWaNAfdzLI3swlTyPH2TDOTI61aWZYsWcDNN9/MY489zi23/JJoNEKpiLBXi9NPP5dPXnUV77/4SnQjjabHkUQHflcziuzHtHTS2WFUI4UoSiiSH0EQ0Y0kmp7K8zQkBEHOBRlIHqpcDZwWaOHYstmARUeqmxZ3BXviISyzGo/kI6qPUeVM0eB2kdDTTPc2oJoaI2Y757SK7B6LMcdXi092sDc2ikMUCGdl2iMB6p21JPUMe+JDCNSxO9qPS2hAEmRSZh/HVZVhkqTS4aXGGSSsxTCFIeb6vOyLp5jta8bCYl+ih9k+P6m6EY471kdNmZsDQ1FG25P4LZlkmc7yKVWkNZ2N7cPMcZex32Vw7LIWyjxOdrQPoaRU1IyKIorMqysnnMqyo2OEOV4ve8eirGquxiFJbOwboaGmjCFNpa42wNTqMvpCCTp6xpjidNLRH2NlfRWmZbFheIy5c2rZ3zfGnGAZ1T4XbcNRQj0ZfKJCpsrk2NYaUqrOpo4h5pX5eX5fhAWuKnyKws5QCElXyOgWZS1NLP7UR4m+sJfbf34voXAds1r2c94sPw5J4tGOME/ub6WiOsTFJ+lMq/TRE07yl3UCo711zKvo4aSanF2PD43SHZtKZaCL86ZJVLtdHIjHcSxeTuu7z2d4wwYqN20hGY2ybXSUucFyDlohVk6rwOdQ2NYXJtnnQ5d06mfqzKsLMJbKsm1flGatgj7/GCfOrkaRRDb0j9I8u46/rc3y+FPlOAmQMqJkzDhu0c+u1BP0qLtza47gQJY93HjjDcTjUb7+9a+95vPkpUIQJH7961/zq1/dyvr1G3FIZZxVNYtLGpcTUDz0ZUdonjJGQ7VByjJY0lBJQtXY2j/G/Noge9NJls+qx+tU2NY1gk8SSao6HqfC7Nogo4k0LxwYYabkoS0e47jmXOaNDYOjTJ1RRWdnhJqkTJPXS08iyZCaosHn5VBflmXBWjTT5I+d3fyyI8lweoRkthvL0vnqV7/Khg0bePDBB9+0tntxSEz8Nt1ww5dYsmQZ11zzeXp7+/KBVDoUibHnrssJyh4Wj9XynN0cH61w9CkgCDIOJYgsefMRtwkMU0eRnDmemSDn1kojjSK4qHRMwyNXY1gaEbUTU4pzeWs5l8+YhluWeW44xMa+RlyuOG+fG2N2uZ/hVIa17QZKphFneTunTgkiCgLr+8YIZqsZ1CLMrHRR7/HQlUgwnMxQ6/eQqE5z3IxqsrrBs/uGac0EaEuEWVQboNzpZNdolP09QQRZZtbcMZY2BYlnNbZ2jzLPH2B3NMrKpirciszm3lE8SRdRLUtVhcyM8jKGkhk2HtTwq7WYVT2cMr0cQRC4a+8Yv95awcF0G39//Jdcc83/8NxzGzDNDP8qwfpbkYP2sh20qqqqSZFMUtHZfC6qpaSgRMnywyrJ47XyNk0OI1aUQE7xfmKZKXOs821F95wVGGGu306i7cv0srCseEt1dyxGpcPOaenPHuLYoF3s0rQsZvijRef468f6WRKwk7x701F8kl0wFCAl7mdZpb18w/AYDUprUd1dsRS1kwR0f9z9DLsm5XKzLItYureovXQjwvvffwGXXHIJX/7yl9m8eXPRM14rrFhxIjfddCP/85mvsXfvgXG7/K7GIrsS2X4k0c570I10yV/fVzSeyTy/PUBjZ7QXl9BcVHeab4wqp11occzczdub7O2d1nW2DDYWXf+n7g6c2PtRFEK8u6W4HyN6N7N9doHTobIO3vf2YqHH7t4wTQE7h/DpcJRTV9kDPJLpLJ6w/RcqwJPbuzix2X68uD8WZ/4xxW2weW07x1Tbx8yG4VHWlDhKGEhmqA/YxYkfeqaX4zz2ZyVUDVnP1RPLfPguPAeltZm2J+5neucemLATsz8eZdGC4vZ65P4Yc712ovqORC8nTcnNO6GyEveFF4Ii0/eXuwkM2QVVN6T7OX2Ovb0jGZWKimJ+6NrOQU6Yaq97/64kv39sTlHdJ6O/IZxXwT+Mr371q/j9fj73uc+hleBvvTGQWLJkKV/60he45JIPkslkOKlyNp+f8Y6imscc306lx84de3pslFMX2dev0XiaKndxdOXTm7tY02Dvsx19IeZOWnsAtnUlmFNmXyvv6DzA1VsKenlf/epX2bx5M/fdd9+Lv+abgsPOWe4bc8UVH+d973sv7373BxgbK+w656Ivk0VXC4K7iCOWizovdi6czrrxdHHj9zVVnEpx29bKc4q+he+fMsLls+zi14OZJNPqi7lrGwZGWFlr78dtg2Ms8BcLRw/WxZlda1+rntjex+qy4rpGpYl7El/xyYMDnNxin2O9kSQNzuK8t5uGRljZaLfrB5v386V1bXzqU1eQTqe59dbf5Z5lxDnS5sFb0UF72UECH/rQh/je9773etgyjtxOWinH8aX3z2QiNOQynx3hiSVKSjmSQsn7lqp7JNHCyc7KkcrgSPaWrjv5HieeeBwfv+ISBMHkgx/8ICMjr982sizLXHfdf3Pzt34y7pwdyS54eYfeL6e9SpWX7K8jXf+ySl/as45sw0urd6TyI9Z9iWVQxPE+YtnER5mxBLHf/BV5ajOBM5fifNe7MHdtx+hsx+zuQEzEim8AiEd4XyEYxHHCCShLjkF96mnUtWvREhlwuYrqvpR7Hqluqf4qVT5t2jROPvlkzj333DfROctBlmUGB4fGk2sfaf06Utu+lLKXXfcljPudO3dy2mmn/Rs7aDlIksRNN32D1tapXHrph23O2b/CkdaPl46X/h0q2bdHuPqljoOXX/fVratHui9AOl38g/QoCnjZDtrKlSs54YQTWLv2319h/K0Ip9PJf1/9MY5fs4Iv/+9X2LLl2ddVSFKWZW666Sb6+/tZt3bj6/aco/j3gt7Zw96fr6dq3nTkY45FPuZYhLPeQWsihugr/nW/7GQLaX8PjHNgBJY2leNtrkPbsZPkj/4PK/rmKozX19dzxRVXcOedd9rS9bxZePWOwJuDxx9/nCuvvPLNNuOICAaDvOtd7+Kiiy6kq6ubSy75ILpuIpSIqDyKo3gz8bKDBB5++GHOOOMMACTJhyJNPtKxkEV/nvxdEOIrPM6y1QXTRs49LEqbKy/UFZEpl1qwJpDHLcugQgwS1XswJ4japsw+krrOqFogvI6pETKmxp549zjhXzcNdsa6iGgR4nqB+DyQGSauiexPFMi5aSPL9mgXjw8P2Qj/O6PDpHSZQ8kCGTmkpjiQiLMt0oNm5uwyLYvN4V6eG3LQlSws/l3JOFtHFNaP9Y/bpZkGa8f6OJCMEZkQiNCW6KMz0YWqFT5kpmWQyvaiGzEkSeTHP/km9XU1vO99H2bz5udec+cst73vRVEcnHPOOdxyyy04FC/f/sof7bp0lokogKpFMCeUq3oMEQnDLJDHTUtHEuQcI2Rc6NaiUnbnyPlqZLzuSDYM6Axlu8aJuLqlM6h2cCgZITqhvfoyQ7gEgZ3hwu5hTFN5ciDMvkQHGaPQjweSfdS5JZJmoR+zZgJBTLA92oWefwfTMulMdyBLCYazhX4YUEN4yjKsP1QgwGc0nSd29rKvO8JosnB8+8JQGMUhsXVC3Wgyw/rNnTz5Qg+JbGGMbzw0hJCx2Dcy4VnxFIPJNE/v7kHTc3YZpsnT27uJxFV6ooU2OBSOowuwvrOQWzKjGTzVMci+kajNrp0DIdyNLl6IF3YSoqrKLleSrcooqQkBEltDw6TjMvu7e9HXPYF6+210fft/2fyd77Lu/24m+8BtmA//Bu3B23j2xzez82c/ZfjAIbSeQbSeQfoPHaL3yXt55vrPk73nHqxolLSu80T3CM8PJWwBHbtCIfSYzLb+gl3hTJZtA2M8dXCApFo4Wnq8LcSWvUH2DBV28nqjKZ7abzKido0Tn03LpCPzPLF8PsBgMMg999zD9OnT39SozQJMLrzwXeNR0BISWA08HymsSVlDo0M9wJaDYULpQnvtGAohI7C9Z8KalMyws2eUp9r6SE1or2f3DpIahQNjE9orliQq6KwfGx4PKNFNk/WJEMkWGMwUAhH2RKM83O8hMCH3aTKZxDRNpkyZlA/1DUfhKPMwjlm8kjvu+DONjQ187nNf5L//+xo0TUMQnDZiv2VZiKKCLAUm3UOe8I06XNcc505PFKoFCdPUxr9NAJJlsKZsNi7s189xOZnhSmBMyMbikMdoaRTYGyuM+7Fshm45xrqxITJ64R4bRkcwywTaJ/yw6EkmyTYobEqNjmcz0UyTDbEh+uMpBmOFftw7HEEOKGwNFehLSU3jWT3GhmSS6ISApW39Y8gOgV0jhe/raCrDoUiUZ/oLdpmWxbquUUIjEu3hwvf1UCTB1n4vslA4+j0sWP56cKP/k/GyOWgej4c//vF2fvazP7JhfU680jRNVG0EsHAoNYj5cxJNj6NqIUAeFyPNpSA53BEChcFv5Y8FpfFfjofTWVQ751PnXjx+/Yi2B8FSWeE+GU8+kWxMDxPSR5nhCzDDl+Pb6JbOmNqDU7KY6W1CydswlBkmYcTxSBWUKzk+RcbI0pHqw0Sm1tE8rpEW0XpxSWnKldpxjbS0EUeSupAEDw35ZM+mZdKT6cYwNcrlKTil3BFNSA0R1kIMpgNIQl3+vTQayvYDFoOxOQWyKQPUeSJkjRrcUo5rpxoZ4mYnWyJ7eSa0b7xtZMmDInlJqf1Yls60adP46U9/htPh5m3nnEs2+9ruAAiCgij6xqMuL774Qi5+37v4/a0PsHVtL0Y+oiya7SSlj+Jx1CLl28AwVXQjCVjjZaZpohk5Gz1KDVJeIyirRTGNMS6sWcOK4DwgJyzcnurBtAQa3c3IeQ2rzuQQQ5kkU70VVDmDueuNDHGjhxavzsnVleNaZLvjg4Q1DdmYhkfK6YOF1QTtqRGw3NS6mvK2GmwIdRHXDI6taMGdF2SNa2PI0hjLKgQWled0ezK6ztMjYcpqDN59ShkOJTdmXhgMM5zI0JJ10+zKcTKimspONYK33svxSwt8w42HBolHM8xX5XENq8F0hv1akjJd4piyYN4uk42jo+gugVVz6vG5cnUPhuJ0RZPUxEVmOn15uww2h0eQPRJrZtWh5DXSXhgIMZLMMKuhnOaK3FiOpLJs7RrG7XOxZkGB07buuR7CQ1lWnTuD6urcfXt7omz8RxeerIP5ZTlOiWEZ7Fb7EB0ax5RV45Vz/dihxhl2pahWXcxw5torpems7YrgCoicvqISRc611/PtY/R0ZKk06qhWcj/44nqabrMXjySxJFDgz+3SBjB8WRZXB6n05MbSQCLFC5EkbYfqsGI5vqJpGfgb9pAVszyzYzamkevHhD5GzBxif3oTcTP3MZo1aybf+tbXCYdDXHnlleNHim8mZsyYwZ///Gfe996LEQc9nFr+DuT8HDHpo7UswmlTRKbkNawieoY2cQx/pYPjZhbaa0PPCEnDYFlDBeX59uqNJNg3EMU15GAWufVPNw1eMAeRgiarZ9XiduSetbc3QndvgmkrG5k9O8dNTKZUHrv7AE/sMnhmqBbya2VC66c7tRbNTHDttdcSiUT4zW9+88Y0mA15In/+22JhIooKbz/nfK6++gq+9rXvsn79BnQjhig6kKWCDldunTJRpLJx3TLT0tC0sXzi89zak/tu5gLfLMuc8M0yEABFLkeSPPkyE9BZ4pvOhTWnIOe1AZ8Ob2dP6hDXTVnOLF+On9mXSfDznoOcs0Dks8cXeFvP7BkhkTJZc2wl5b7cWO4aSbDvUJi6Og+LW3PXq7rB2h0DWE6ZE06bgduVe4dde4bo2DLCrBk+Zjbk3jeR1djUPYLDpbB6Zt24dt3mPYOMhVSOedts6htyXLmRkRjPP7kXP7BiAif32fYh0hmdZXWVBPJrUnckwf6BOO5kGdOUHKdNNXXahD42RzX+tq8a08o969xLFhHTernlFz/hxZyztyIH7RVFcZ588tn896f+m09c8QVbhvpS+cHS2WEm6yuYpkGprAMCYpHsgleqYZr/9KK6Tbgpk+1kVVXoZlGgmGxf59KLRGl3x7qY7p1qKxtVo4gEi66PG71M89hJ5YOZXhYH64rqdiVjVDvt93hypBu3WGxXqe3LuNnJLJ/drgPJdn7X99eiuqaVRZZFTjnlFK644gruuOMO7rnnntdFu0cUvYh5aZM1a1bypS99hk9f92USvZVFdSNaJ7JkJ8VntQiSVHyEICEXBQwsc5dxXvVyW5luGqhW8Yn8gWQn0zxT7c8yh3l3S/Fcvq8vTYvbTrjdGeunQmkpqjuQiVEm2wUUncpu3tVkJ7prls6s04vJwU9s7GV1lZ1w264lWXBG8TjY/EgbiyuDtrKNvSOsqCsm24cqoW4Ssf/xjV2sCdrrpnSd8unFhN11vcOcMMPeBvtHo8yZXqxxtiOcYPE0+xh//IF2ZvYWB0JkXSFq3Hbpm2eHBjlhknZawtComVNM7L/7oSgLnU22sq70KIurvUV1+wKDLKoN2sp+vzlNdHBRUd0nBiI4RHs7PBv/C2N6LwDvfe9FfPjDH+T73/8RDz/878OZeuc738kHP/hBPvDeD/Jf9f9T9PfVU7ZwVpN97h3QIyxfXVVUd89IhPn19rXy8fUDLFSLCeHK4gzBSYEEz0RinLxihv1ZfUne8yW7pAdAV+JJIlo7V1xxBZqmcdtttx35JV8nCChFZdd/6cvMmjWLH/7wFna9kMuhaZoaolgcNCFAURCAqkdK5n02TbXomyeJHpRJa4dPdHB96yUljD3I4oB9Po4oPZx/YvFadzCdYFa1fe6t7RjkhGnFAUDZej/uScLNT67bz0mTAqb64yka64JF129SNVYutO+AbtvazuIStMwDfVGml9sF3h9+foyFYvG6es76qO0bf9FlpxBVu/jhz148Wvqt6KC9okwC69au55STz+TjV3yA7333F6+1Tf/fQhDAE3QTqPVT2RwsSRWNpjzo21OlhPuL0NjYyA9+8D1CoRA//elPeeKJJ15zmyfD7/fx1a9+gauv/jz79x2i0VfsoB3FUfy7Q5IkzjnnbD796au56qpr2LTp9YtwfqV4/vnnSyY9P4qXh3PPfTurVi3nA5d8glTqKCn9KP5z8ApTPVn8/vd3ceut3+GRR57hhZ17j5jmSULCmKRtIiJhlpDcEJGLxABLRQ1ZloUlFP+amSzACbljTs00cEr2/SrDKq5r5Llvk3fbJgv2AWSLxHNzx1Bpw74zKIgCU46ZwuzFx9Iwp4aaaZUkQikGDgwjWFZRSpBjZk8numCMLX/cNMFJs4p2Jy+66AKuve5T/PWvf+X73/9+kS2vF2bNmk4sFmf37n1IyJimOX6kPW5ticFQUnTFskpG1xklrtctA91i/HizcN8S48AyKDW09ZJ9XqLMNIrEb3PlpceBqpnjx5vjzzKL30HTS39sdaPUO5QYy4aJqpVomxJ2qaaJqhtFKaA0tYRdWvHzAfQS5aXewbCM0vaWsksz0XRz/Hhz/L4lsgOoRulFJVPiHSbycQrPN9AsFQf2HbTlq47hY9d+j0gkwtVXf4bNm1+7TBqvNSzLwjB1JNE+no1S4+sIGRY0tbi8VF3dNLBK9W+JfjR1Pcc5nXTicZhvpes6TU1NRde9EbAorCutra187vOf5aqrPlvknImTcxnlIQty0WGbU5TJTJqnIrnUSdpkoVlRLFLzUuTcsbs4WZhbfGlzH3L8saK6Wom+1Q1UTS/aQSs1ZlTNQDcM5EmpuUqtCbmy4jZTS9iQ1YFJBya59jPH7yHLEqefeyw/+9m/34+jfxe8YqFaSfLxtrPP5wtfvJr3X3A1rnQ9AiIjWhsZksiWzHRpLvXKLDqz22nLbka3VJods5nrXkPGTPBC6nFCeh8eMcgs98mUy010ZjbRnd2BhcUM1zHMdq8maowSIYMgeXGQZI67HL/sozc1gpsmNFNlROsnIDeQtoaYX1ZJpTNAb7oXr+zNT9U488qaiGgJutJhGpyN9GZ6meKuwSm42J/spkyuImmkMC2TWmcdES2EIKSod1bRk+lnuqcZw7J4fLiLjF6NQYjTaz3MLavksbHd/HlwO5oFK8ua+fy7P0LZzGrKjm9i694dHNzSRXWmhf2PdnEovodnIw8DcHzwLKa555DQYzwXfYxEYIzbf/UnPCk36/7vGV6I7eLp0DqSRgpRcHDccav42OUfIZvN8MlPXkV3d/cRO+u1Rk1NC3/842/55jd/wLPrNuOQA4CJV6rCq9SSNWKoZhxJcpPVo8h5DobbcFEpTyNpjBCyejFFi4DlZrF7IR7Rx67MLoasJBIwVaxlunMuCbOPZeWVVDl9HEr24pN8mJjE9DTN7ibSRhS/MsDiQA3PhYYxzSlIgoOw1sVcfzkxPUGtO8OiYJA9sTgvhGXKlSoGMgPM9zdiYbE5MkC50shIdoSg4qHKWcHeWD89CRFZcOGQIywKNGOSwav0sLKihrbEAAuCXqpdbrZHBqlxejEEExoTnHhMJT3DSfa+kGC+p5LtsWGWN5fhUWQ2Do8wpzLAYCaDa0YZC+fWsf/QCOH9Iab5vOwYDXFcYzW6ZbFlYIyldRXsHY1S7XQyJeDn+f4wUkamzKHQ705zwtJ6IqksO/YOsbyqki39ORHkarebjQMjNPg8qKZJwm2wYmYN3cNJ9u5IMtddyS5jhBOOr8HtlHh2Vz9z3D76U2mcjT4WzKxhf9co0e4orX4fu7QMa06ajaqbPPjnLqbGqjiUHKXJ56DF6+OAPkRNk0mZS+FgX4Kl3hrCmSy7x+IcE6xmR2SEedU+qj0uHm2PomRq0TAomxrmlMUB2gYyPPKsTK3QSG+mmxOry3CJMs+MjFGpNBDWIkwrT7G40sfW0SSbhnz4pQocwXb+6ziFhGbyqYfH2DNSiWjFOa28lRZ3Nc+ENvLI6Hp0y2SKYx7Ht7wDy6FxzLurWbh6Bl/96jd47rnNEwjfk89uhPxRmQjoWOOf3IlC28UCprkP0Kvf9brsssuYOmUOP//hvYjAXKWZeZ55iOIox9b2sbwiyK74ECvqgjgliY0jw8wNVNCXTVAxXWHBtHJ2d4SIdqk0uby0CTFOWtlAJmvyyBMhZuj1tCVHmB5UaPZ52ZMdprZRxK1I9KlpVs+sZySjsk8wWbV4Khv29rCgoYJKv5u1T7fRlICxlM73N1nsHa0hrg3QnXwG3UoDFsFgGffffz+nnXbaG8jpEyg4EBatU6fxk5/8H3/6wz958P71ZLUImpFFQKBWmkaLcykJY5gO9XkyJKmUAhwfWE25Usmm+Eb2p7twiCLnV8/k3OrFbIwc5Hd96xnTkpxYXc1XFh6DS5L5+gtbeWCgj3LFyXUzl3J+/Uzu7DvIz7s6iekG75kX4CsnzSKS1nnq+SBishVdHmbhzE6WNfp4Yn+SQGwmIiJj7jZOnOGmIx4nEHAwqzrAnnAMyyfTEPSwp3eM4xqqSGV1Nmwf5RhPJbsSIWbOKaO52sfmzmGCkoIiiQw6LFYva2U4nGB/2yDHNlaysWOYhVVllDkU1h8YovX/sXfWYZZcdfr/lFz3dpfpcdfMZCZOhAgEC8GDBIew2ALL4llYWJaFRQNZLIQYBIgRl5mMZDTj3q63b1/X0t8ft+ferr4dSH5IAjPv8+R5MqdP3Tp1zqmqt855v+/X5SGuKGg+mRVddfSEE4TDKebXBNiTzrLuokUIgsDT9+5nkeqgO5Wiqt7B3IYAu08kmOi2Uy17GLWHuXhZkETe4CcbwZnvIqoNclkTdHqd3N4bZ/NINZopMqQPosse7G6D79/+L2w496znNbqn4xbnX5hJQOAr//Zd5s5ayFc/eWupNKsMMce22BKlUTCyJPUx6uxWDU53fg91toWWL4ucHsclifik8vaZYepk6GaZf75l1WkgN0g878ExJZm4Zir4naPM91p1E/25k3R6WnBM0R1ktCwj+SgtLuvXXnfmGMsCs5CmtCumJHhsLI9TLOsADFPnhPYIYSPNrFltrF23kmuvfSUTkQn27n6Gm376Y6LRYhSOLNiottUzpgxazlVvb2FCHUObTD8TDAb59n9/m8b6RgqGVU92/PgJbr75Jxw5cuRvap8xE5YvX86HPvRhbvjQVywaM9M0EU0Tt73eMjaanqNe6MIhlvUJhqljY4ylnhWW3x7K9+KX63BO0QupRgG/c6jCqLY/f5QrGmpxSWWtSVTJcihZYLanrMcoRs6eoMM9D2lKu8KFKAnVRsBWHkfN1NkSOY5XsM4ZTRjgfbPdBGxlfVVGUxhS+1lfbdUlPpPu5ZzaGlxy+cs1ks+RcCVYVlfWABmmySOjI1zS0mAxPT4eS+JxyjT7yn1Q0HQeOTTGy+qt83NHPMzidh9VzvJcThVUdg5McF6zVTf2UM8oy+VmS7vGCzly1QmW1ZUNMw3T5KHBES7taLS069hEkvDhaurs5eTriqFz0nWMq5dZz7XpZJjWfA1B+5R2qQqP9+dYMk1buSXZS5M0G/uUJNJxNU1WS9M+xSxXNw22xk7Q7FhgWd0eVcb47fgYolDuL8PUCec2k9CKUa+1tTV85CPv5+x1Z5FKJdn09EZuu+02BgYGJo845SY/FSICdsuKtWmamKgWf0OzlAlFtKwEmxXu8y8cTz25jc9/6iaOH+0rlS33qPzP0rk4piShDucz5KU08wPlcdRNg6dig1xc34g0ZRwPxeNoiRpq7OV7N69r9HhP8IrF1nF8OjLByssWE/CU9YLxdJ49f9jP+hqrrOF9D+/hF4eOYF0nN/ntb+/kpptu4uGHH/7/7YYXAKthuiAIfPvb3+bwwWHuuO3+UrluKMwRVltMxE3TQBVOsCawwvL8Gi8Mckm9m6op876gqwyYO3ljp/U9dt9gH6u87fhs5XkfU/KM1g3w8rlWjdhv9w1zRWctjimr24PJLOmsztyq8rNSMwweT45z5epOxCnGZXt6wvj6Zeqc5WdSTtPYTZhLp5naPjkUZs3cBvzO8nJWNJPn0KEx1jZa9WgPDQxz8dwmy6r7YDJLakhllq/cB5ph8IcjEda5uiweZ88mIhyOteOVpj4nFDaPd+Ng2ru4cJDDPM499/6OCy+8kOeD05Gg/X9ucZ6CyS0/up87H3w5tQ0BxkeLD0Wn6LeQMwCH6MYzgwDfLYYqln1dUhDPtG0zUZDwiq6KLUG36CU3TQQsC3acYqUQ2S46LeQMwCO78ciVonqnZLeQM4CQPYBjileO2+egob2KS694LyvWLCZUFWDfvsP859e+xzPP7CSd7bYcr5lqBTkDKsri8Thvf9fbK+q92Fi1ahXpdKrC7frUi2z62EiiE4dgFY+KgoR3WhmAR/JbyBmATXTgkirH0S87LOQMoMruJjTN7bpoLOy0kDOAkByAaUJiWZAwTXvFXqxbdFnIGYBHtuM3K8XFHuwWEgRQ43ThcFvnlygIeBArMlK0+Ny4ndbjHbJUioycimq7w0LOAHwOG0FHZSCGV6hsV63DheKZoV2iVNGuRrcbprykAOyihN9d+fiodjoJGtPaZbPjnsEZU9Zd2G3WawvavNinVZUEEUxXhfTAJfgRBWu0sihIOAIu3nTZZbzrXW/D4/EwPj7Oa177JqLRyntvZrGnUCH8LppnC9NrTW6mTb+2v+w9Mm/ePGyyjd5ua4aDoF20kDOAOqcHRbau2EmCiNuULeQMoN7hpmC3Bl04JZmAq3IcQ163hZwBBL1OQjPMRUlUqbxmgVtuuYW1a9f+nQha+fySJPHd734bm93N735rPbck2nEKVqG9IIgEJtMHTkXIFqDKPu09JtnocFQ+v9rcfgs5AwjZnbhClUEudV7RQs4AWvxu0pJ1Y1QWRbwum4WcAdR7PXid0+4FWcYvVo5NyGG3kDOAKo+Tamfl88trkyskES1+N8mYVbYjiyJO015hQBuUPBZyBmAX7Si6C8e0nVGn6LbYMp3BzPgLCRooBZVND+3jW7d8kHe/8pvkc3/d5NsvVVz65lVc/MaVRMdS3H7Prdz0f79iZLjsNWXMoGH6R8aaNWu4+uqruf7664HKKL4zOIO/BL6OWhxVxZdZXs/hnUbMO5Nu6hzW1YGAVmB1vPiyXLJqFqvWzQNAdOXYuOlpPvaxz7B3736AGSPwXqq46KKL+N1vHkZVnzsv4T8CFEXB56skM39rvPvd70IQBD70gU/gdlSmdDuDlwYWLVr0d5Xo/CPiLyZoWX2cn/z3vXTMaeCVb1zPHf/3BBkjTs5I4hLLocZZI45qJoGpS/EamqmgmnlsgnPKb0YwEfFL5W0O1SiQN/JohoY8RTCb1OJk9AIeqfy7eSNNVMnQ5ioL/g3TYFiZoNruJ2ArPzTChQlGChOEpuRG0wyNvvwwHe563FNeFNkmnYsvXcDy1YvxV3v45VcfYc/mI+zK/h5VEi1fYMYMeSX/kfHe976X2267jXB4HJfDbglDN00DTU9jmDWIU0T8qp4iwzgeubyUrpkFYkYcfdKc9hRSWgLDFPDJ5XHIGSkUI41hmqWvNcM0SCh5JpRiAvNTGMjFGC+oVNvLc04xVBSzQE4vlPzMAHrzo6Q1G83O8rZOTs8BhQohb0pPM5RTaXaVSel4IU1/XmGhv9wu3TSIFhQi+Rw1U7YeutMJ0lqGRm95dTCnaaTyGmlFxWsvf/UeSaVx5UUWBMvXEMsXSIsKiq5jnyLkHc5m8SYE2gPlL9ahVJbhhMri6nK7NMMgKSpMFHJUO6ztUmxp6j3lsqyqEU/ppBQV35R2HRxPMZGWmOMtb9PG1TzHxmDDLGu79kTSKIaDDm+5XQOZNIdSUTpdtYiCgC3kxXTbSdgStAS8LH7NBgJd9SS7wyS1LJJRsOSg1Q2DtmwNdfYa5CljE1ETnJevRxYdpBJZ/uNTv6Sg5DgZ3sxYYsCyCiYJNgTRacn3Kotu5s9ehjuoM2/ePAShuBrW6KxjtFA24YTi6qKEiDLFKHtiIsLQiTBp3ZoBIRqNEo1FJxNon0JxNdcw/3wUoSjYyOWtFhamaSC7NWJKnpC9/EzqzsZQbVlW2Mv3WEZTyRgqWU3DPWXltDuVRM1KdLinjmOORFZBMwzLyuloMsPgeIKWKbYO/WNxRnM5y/xUdYMq2TXDRrHJpk2b+MIXvsD111/PzTff/Gev+y9DMejsda97Leedfx6f/OSn0HUNw9QszyTJVDCEKFC+93VTIeRNoxoqtimrUAVblFHVTsOU/M8JNUPBVC39ZZgmMTKMFdLUO6bcj7kk+XiWebVTnkm6TkowiOUVQlNWtg5HE+TyOstrymOTVlRSGYWcYhX898QSuFMSXb7y747nc0TNArphlFZODdNkNJ5lOJ6hKVh+VvZGUgwmsswOWduVyCjEcgVCU2xWDo7GycRUlk1pV0pRKZgF8rqGc8qK7kAuSUSZoMZe7q+kliJuRPCKjaX3o2maTKjDnLVgAfv27eMMnht/oQatCKdUxYrOy/mP736EG7/0PQ4d7gHTpMYI0iR1IUoxlgfakUUbx9ODTORFCkYeGRcuKUjByJLQx3FJAVxSlvnedkRR4kS6F033ktETuMUqHKIH1Uzgc+Tw2TzElTwhuQnd0OjL9WMTQqS0CF6pHllwYBCl1StgoLMl3U0CExGD5c4Qy71d7Eid4FhBwRQEqgWDs31dTKgTPBzZRFxP4RYdXFGzjnOWrsV+QYiOlV08+OCD9B+IkT0com/iECfym1DMLIIgY7fVIAo2FDWCbvzzhHO73W4efPBBrrryVaRSWQRBQBQdOOzVGIZCXpkADARkfM5WHLYgeS0OgohpmrjxUSfPIatHyEsFBFHCbpjMtTXjFf0k1BxusaGoMzSHqbXV4bKNcW1rFT6bnYPJKP0ZGzomQVmi1V1DQc8T1/uZ6wvSm4mx0NuMLErsS44h4yGuZqm2+6l1+IkqGY6n4wRsAR6N9tKn2TFNk2ZZY61vFhElhkesxSl5GC9EGcqmkHBQ5TSY7W1GN1Vk8SSrq/w8G0+g6Z3IogPVHGJldRIEHTsO2j0hMnqBXmWI+UEf3Zk462rrkCWRvakwtUEb47k8zU43zR4P4VyOnlyK1pCHsUYP51y+FF3Xefr+vbTHFU6m0izrqqHK6+TESJLhE1m8og3No7GqvYqCqrNtcJx5IT87e3LUZLpwCHZGjGEam9IYok6gxc38tiriKYXNW8ZpM/3052Osb67GJonsSYxTV+1gJFEgkA5Sb/MxoWUY907QVuXh6YMynsw8DNMgrHazOOBiVyzFgYl2TNODxzPGq88aJOQR+drmAgfH/UjovKIxxVs6qrlloJtHdY1XvOaV1Dm8rK/ppHbFPA4NjZAzijkB4zuPYW4e5NeHHuGxyEFMAVb7O3h76/n05mP8IRomZQi4gHO89bQ5a7g/8gyHcqOYpolHDFHt6ELR07ikamTRQVIdYiS3GwMNn70Fr6MJUTRRhXGq6mDJvA1cddXVdHQ1MTQwxM5nNxEUHSzzLyAge8noebbGniWupWly1LPUtxhJFDmSPsbJTC82wcHqrvNpbW2mYOaYUIfQTAVJsjNrVhd/fOAxND2PYeQRBBvdJ4d46KEnyeczpDNhTLNSViEgEfDM4he33MSdv36Yhx58DEEQCbngv1/dxBWLaokmC2zcGKXFDDDuiXPx2hpkSeTpvWG8CSejhQzzm100+d0MJ7OcGMvS4HQTKeRYU1eDphs80ZugmlpG9AnOne0i5LJxMp0kI2u4HDJm0May2fXkVI3tkRTzZzdy+OAAZ9kcOGWJvQMTSHmBZE6HaIAmOUR/NsGHnn2Ew6nis+AUXXvVq17FK17xCt71rnf9jZ5OIqcMzy+++GV84hMf473v+SCjI1lk2V00kQXsspsNvlqubz4Lmyhxz8gA++NOgt44N14EC2odHAwX+PFWN4YWZP2GCd5+eRWqanD7HyIwUMe4EmZ9bYCAzc5AbgJsWZx2AU+zwfJZQTJ5jUefSdCs1TBkjnPhfD9OWWJfLIrXbyNp6NTPrWFWazUT8Sx7t/XSaXfRr+fYsKgZSRLZvH+IOs3OYDrD3CY/DX43g+ksw6ZCXcDNRDzLmqZqVE1n47NjtJk+ujMJVreH8DvtHEskycs6siiiJ00WeINkNI19JFjUVc3+I1GWalU4RImDmQiBapFkQSVkOmn3eIkpeY4ZKbrqfZzsT7Fq8qNqeyRMi99NfyrDLLePOpeb/kSOo6MaAcnDobhEldyBaugcSA3il2vZnTrGtnQ/KiYuw8EceSECsDfzOLonx5133sq///vn2Lnz+aUIPB01aH8VgnYKr3vlR3jfB9/Apz72TYYGwwAst9ex2r/MUi9SiNGfrtQWuWzjtLpbLWW9mQEMvdJE02FLEZhmVHsicxK3UBnavcfcWqEv0LQ0bptVJJlTo0Ryh0r/bmtr5aMf/RBLlsznV7+6hXvuuedvmnT8pQi73c7mzZu5794H+MpX/tPyN9M0Zsz67bLXI8tWLQKGjt9ROTbzzXl4pKClrM3bzbVt1rqKrjOSn/abwGjhOGtC0wxOs3F8cqUJ56eO78AQrduzQRQuCKysqKsYKQI2q9lkf66bLo9VHKwbCtd0VCYIP6qe5LxGaxtOZuIsbKi8hqOrg6xcYjV13PLEftbZKjUlgwMJy2ocwJ1bkswxrSLcAgrnvK6SBDzyeB9nB63tOhxN0kxlf91xwqDFOU10PD5IulBpQLlF2c3c+V2sWju/VOaqTnP+hWdTKBS49dbbismoTYHBHoPBgTHL8dHUPktKHABJdFHrW15xronskZKje1t7Cx63C6fgpc650FLP7XFSP8eObTJDw6VXrMfncxMZjzLUm+D44UE2PbaXeDSFZGp8qHlxxbn2Jvpon2aE3JMZI1moNIS9N/EzDEFgxYrFNDUVV2gMQ0G2OTjv3HUsWboQt9vFXXfew39980tMX3PyOjpobVjKT375RV5/9ScA8Nl1Dv37vIpzPX1kiA0d1ufi/r4J5kmVW4r7+hMsCAYtZdvGx9jQUjnm+fl2QtO0Z4/v6uGCaXXH4nlyByo9EP9l78PcP3qi9O/Vq1fzrne9i/e///0Vdf9ynIqohcWLF/Od73yLj33sXzlxLF5R80NNyziv2tqPE2I/16yr/NXuWpMF00yA771vkNmxyu3SpnUTeB3W+/SxfcOcW2cdmzG1QMfLZrhvtp/k7HZr3+7uDrPM56+oezybZl6d9fn15IFhNlRXGlonE9bVU4AnesNsqLUGLIzk0rTXWDW2AM8MR1hTa/3dvZEJltVUjvnN233U2a33w/8NPcXeXLyibixdzIYzd+4cvvzlL/CGN7xlcqX5z0sQTkeC9hdvcU7Fpid34vG4+fq3PlEmaTN26cz9PDP3eyFj8lx1n+9vlOtddNF5fOlLn+WZZ3byjndcT2/viT9x3D8vbDYb2WyWL3/5xtJL8c/ihYz5DOXTtM1/4uiZ58xzj/bzn0vPdy7O1P7nOtNz1p3pGmYQ1T/Xb8x8rpnxfI9/rr8IgCiJLNzQQceyJpZc0AVAwngNkiTz0H3PoE7meuw+2ct//fc3SCanEFhToHaSENtsMm538eVgSMEZCJqTgNdLMOTjAx95A52zii9IVc+CIGCzycTjSeLxBDK2Unq0U1BVjWcP7EWb9I6769cP88A9mzC0PD778/Pomi6EnrlXrNiz5wB79hwAQNdzCIKNP/z+jwDU1lZz129+SmSin5///GcVkdhz5rWRm5JX87m+h2f6UH6uj+cZ58dz1X2e1/tC5v3fGmeffTZf+coX+Y//+Bp79+7F46rMATo9wAReYN8+1/34fPvrOc/1N6r7vMv+CnPm/2PUQ6EQudw/zy7T3wp/VYIG8NADT2OaZomk8Q+24OTz+fjMZz7GwoULuOGGf2XPnr3oeubPH/hPimuvvZa9e/e+2M04g78zBLuduvl1BB3FL+Oqhc3UruygM59FcoXIpQoMHg3z/ff9BiWnsV19Fl2TUaYkeh9KbSanFclZc3MztbU1YAp8+lP/jsNhJzRFA6NqqQqTakGQsEteDMPkN3c8wlc+X8xaEs0eQxCKJsmZTFGr5Rb8NLlWVVzHhN6DJFZGtr5YGB+f4JrXvZPb7/gBPp+X//3f/y39ra6+hk/+2zv4yud//CK28B8L73739bznPdfzpS99hccff4IXhyKewQvF29/+Fu6774EXuxkvefxVtzjd9ka8jnZE0call2/gTdddyv/9+CcY+wwWsAiAkcIY90QeRjRdLHG8DLvoxDB1+vUjKGKBJa522p3FL+WB/BC7cydwGi5myUuQBAnNUBnWekAQ6HI1lsT93fluerQRvIaPVrm4lJ3TUxzWt5A1M7jk2lIuyGSuh5wSJuDsxO8sfm1pRg7RNcb/fP9Gjh49yVe+8nUKhQKmqWI+D2HvPyP8fj+33347n//cf3DwwACqGscoCZ9FnKc0aGocQSiKPyXRgSS5kCUPslRcHTFNHYfgRkDALgeLX2KmSYvgJSSGwAxgF4pbf7oQpslt0u5ROX8yl2VSzdGdDaMYIn6xFZdc/N29iUEKhkCXx2R5sLh6ciQd4/sDvVTb7FzfvBi3ZEM1NL7b9xg7EoNUOefhnkzgW9DiqGaGNlsVG3wrkUSJgq5wKNmPYQosDNRRNRl00J0eJlJQqHKILPAXt+HzRgaTEYJ2nQ01PoL24vw6nBvA41Tx2CQWBovb8EPZNCNqCl0wWNtQg0OS0AyDXSRxNLhoXNjKrM7ittiRA/1Enu1F13Q2dNYjSiIZRWVnOIaAQJfopMFV3IbaPTBBNmUwMeGhTewAIK5kGciHcYcMLrs4QMhXbNcDT0WI9cm01iisbChuhfUnchweUdFMg7OamgldsA6xrZG4P0guq2IWBJySAzWdZ/fdj4Oe5GRK4NhhN6ZRFFh7HCN4a53syeYoYOOyV6xlXnsVjXYHSq2It774tTzSP8DSUAjJ5eWTX/0F/SNRxsNRzvHLXBgK8OPe3RxMFROYtwddfOWSpRwIm9y6V0A3RQTT4GUhO/NcLv5v8DDDSlHwHxL9rPIsZ0LLk8Q9KfbXWOjScUgmW1IR8pMv7nlOk8ura3k8muFkoSic9koFrpuVwYOLdHo+NsGFYRpItUfoasux60A9ZqY45gVjgnrnGL0Zgd7kLARBRjd1UvogGgWeze4hQ/F5IWMjYGshrYXJavFJqw4Th+yhti7Enb/9Iddd9zYOHTqEJHlYvnQ9n/jEh/n4B78NQNCu8eHFErPq7Kxd3oDP7UDXDTYfGEbI6oRqXSxqKc6v3miSoXgWJauzxleFXZJQDJ2dehqbx0bNqECLXNwaP5qJk3Wo6AWTNaEaREEgrakcsGeRvDILGoLU+or32I7Dw6ixAja7yKrWIlkPp3IcGUuQS4q0pptxi3Z0w+RHJyJsHocjuY2k9OIWdktLCz/72c945zvfOcV77oVAxGGrQRAkCkoYc3IrzO8P8eUvf5k1a1bx0Y9+gu3btxdri05E0Y5NCiCKEqZpcm6ggYtCswjYXLS6itcQ0yI4XaPYPQrnz63CLosUdJ2dWhp7yEFbtZe2muK9v/fQGBNHEyRjdubZiu+LjKgQmZ/AGTBYYErUTNrbPLInyUifk+b6LOd2Fu+xsVyObiUFXhtr187C47aj6wZPP9ONmFCoqfMwf3IcT44nGY2nUfM662qLOtGCprM9k8TmttEq22id9Ek8MBwlnVXR8jprJ7c5EwWFZ0djmIbJwkCQKsfkcyIaAbuJkJVZ5Cn2wbhZYLhFQ89rLM06cYsyumGwS0pjr3HiGdTomvQXPTKR5eCQhN1R4OWzvdgkkYxq8LP9KqNJDx2uAHWOYn89FT3Eb8efRTEM7JMBebqhkMkPoBt5rr76Vdxwwwd505uuY2xsBNB4PrkNT8ctzr8qQQMQkHHbG8mrE7zs4gt55dVXsXbtWfzk+zczejzGxv27KEx+ZZumTqPYieDwYZvUTpimgWSkMNBQhLLvmaZnCOgebGKoZHyqmyq6OU5cSCLK5b15VUtiahkSYqIUwWOYGpqWI1cYmTSSLEIUZELeZj7xb+9g9ZrV/OIXv+CXv7wFQXBgmgp/DVfwf1S84x3v4qyzzuNTn/hGqUzVkhiGisteWxob3VDIFkZKD0eYNPY0Vbz2elxydamuqmcI4mSlazneyTFTDYWhQj/NbgddnrJOI1wYos0TZam/Hr+t+KCJqzm2RaMklSANzrKeYqTQx77sIH2KtxSFaRhZ2u0ptsWOok2+oE3TRBbs+B0t2GV/qV2GnqVLqsNpNuKcnF+aqaAyjISDoFzeEkvow8zy5VgTasA7SRaTapaU2cOSBoMlVcWPBsM02TkRRhFUzm6sLXmR9afTdOsZ5q2sY85komJF09k8OIGYyHN2daAUiXU4HGdIKbC4s64UiZXKK2zbP4QzBqtry9qPHaMxjvTZWOxtKHkyxdQsQ54xbHEfXc66UrsOZwdx+gzOfc01OBtrsTVWI7bUo8si0cNDCONZ8qNxdNNgKB/HLkJnUxPu5uKLIKUVCBdM/LITT8CLKIuoeYUJNQ3JPPGHjoMJekFj487NhNVn+deFCwlM+kqF8zm+dXiACwMtLA/Ul9p1/+gxtKYIHz1nIU5bcRyPR1J8/cFxLvfMpsNd7FvF0Lhz6ABHEkHmuReXtrDCyihRfYwLqzsJTr4ccnqBp+L7ObfKw9mh8vzaHh9i0Ajzwfl1BCbJdTiX45HRPGcvF1jREpicRyZ/PBTj6H4XF9TUYxeL7erPJri1Nw/U4Z+MPtZNjf3ZXQxpCXz21tK2UE6bIFo4icNeXVrR++Rn3sGatfN5/TXvIZ8TePs7XsecuZ18+l+/wtvn1/HZ1a0EJl/8Y9kchwtJ6mUHi6qCpf7aFo6ge2FDR33JW6t7IsXxsSTzFjUyq754DQVVZ+OOfuREgfUddaWt2wPhGKOKysoVzdQHii/+RK7A9mMj+NIGq+rL28Y7RyIkNJW1TbX4JnVXo6kcv3smy+8O1WMTaifvMYNh5QCHcw9iYvKtb32L3/3ud2zatIkXAlny4bQ3Ik5GVtpsIq9/w8s4/4INNDY24nQ6efnLX0U8XiT14hSfTNM0aHEG+WjHBczxNEyOjcGR1BB1vgTnN1aXxrE3k2CiKsni1Q10TGq88qrG5iPDCH0F1gSqSv21bzzOkMPGeVe2UTd5P8bTeTZv6mZip4fZU6xgjuUGqe2MsH5WTam/RtI5DuUyNJoyC6qK59INg22jExgekfUd9SUvshPjCXoiKebPa6B9MhI0p2hsOTCAPauxrqW25JG2byTK8HCGJVVV1E5+vMULCrtGI9QEHKxsLI/jM4MR0j4b557TgXcyknRoIsW+3UO0z6lmYVtNqV2bdg/Q85TBXEc78mR/DeajDOpRJlKzCMhBAFRDpS/Xw33R3SSnvDJ1I4+mJlD1JKdWNx986H5uvvmn3HXXnbyQ9+vpSND+6lucJhoZZQhRcPDoo4/z6KOPs3DhAq55/WtZf/55fLTjwxw8cJRDh47xyCMbceCAVLCU+0sQRAwpgGJkLcJ+WfJQ0DW8U1zpJcFGwXQhytZxs8l+wlo/0hTrDlGQ0Y2chZwBrFq9nO99/1scOXKEN7zhDaUgANP857LJeKGorq7mmmuu4Utf+KGl3Cb7wTQsYyOJ9mJmgSkWCMUXk60iEMMmeWgQqkrkDMAm2qmzV9HlsWqI6hzNBGy5EjkDCNpcuCU7bqdV7NroaOeeWBhJLLdBFN3sSJTJ2al2aaaKwxa0HC9KbjIapZc6FA2PFT1AcJoANiA10eQcLpEzAL/NjWbaWVJVLhMFgbNq6pkgZTGKbfN6GRHVEjkDsMsS6xpD2O3WebegLkh0ImYJk/c57bTWBmifZhq6piFEZFS3GGaGbG76wi7m++tOdQA1l67isjmvIrBhAfZQAC0SI3fgJPnjO3n2WB+NDqtoudqQ8cmQPTzAxB93Yk7m9Ns0HqXJ0YppmqSG42BCuDBeMY4L7W1c0JgokTOAOqeLK+trmOsoi6lFQeAVjfOoXhMqkTOAOTU+Lm7Q6dDL1ht2Ueaq+oUImnVs6uwN1IkFyzi6JAdn+1s4O2QV0J8VbGalJ1siZwB1LhcLm5OsmCKKF0WBKxdXERh0ll7qAG3uAEGHgjGlXZIgM8e5iJRqNcV1ydU49Ihlu/Xb37yFu+/9NsFAHaO5cVavWcZPbvo1kuTk9bNDJXIGUO8upv9ZVBe09Nf6+lrSAcNifDqr2segppbIGYDDJrFqUT2+EWvgyOK6EFk1XSJnAAGXg3qPmwUeq5np6sYaDscSJbIB0OBzETG0EjmD4jO82bGUY7nH0FBQFAWvtzI45s/BJgcQRRtz5nZy/bvfwNq1y9m37wA/+tH/sWnTlpJ+TxBkBEGyPJMEQWSuu7pEzqBo4LvI38rsOtEyjh2eAOmAWiJnAE6bzKKGKnwJq6/n0togZotZImdQNPD1eaoIOazzfq6rBX9NztJfjV4XJyMJSxCCJIpsaKqlEJAsRrGzawMMq2qJnAG47DIL22uoy1jfY0sbq0hF1BI5Awg67NR4naxstAbTrW2poa/JViJnAM3VPrqbPSVydqpdF6xuR9qml8gZQIuziu1DGnWOYKnMJtqwiz4LOSv+hpOcPswpcnbJJRcTCoV47LHHOJ0XP54v/uoEbSYcOnSYL33xRmxyiK7Zs2lqauB1r7uKyy+/CEm0EfLXkk6VfX9ME/p6hpgYt/oLibqBWyxOtr3bujm4o4//H0iSxLp1Z/Hq11zNihXL+a//+iZ33XXn3z110ksZX//61/n97+7l8KHTMzjinw2O1lqarr8C95yW4na0qhPdvIfCb59AT6SLNx1wbCSC4LGm1srpCjWOyo/X6EgEr+uFv3jPoAhV1ZiYiAOwaNFcFi+eS75QGXn7j45nnnmGc889lz/+8Y/P+xhJkrju7ddyxZWX09LcwK9uuZubfvgrjhw9gKIl/vwPnMFLDhdddCGf+vQnue5t7yylPzyDP42/C0EDJsmPSU93Pz3d/Wx+uqgZcAoe5rdtwD7FiE8QobWrikDQGmosqCp+CWSbxFv/5WJCtT6OHOimYCggCOiaQffxIQ7v7+XBjZUGeLPndHLJZW/m5ZddwuDQMI89+jj//tkvks3FeT574KcLXC4XHR0dfOHzXwWsIdimaSLM+OUzU/8VE1EL01JmTV/FBNDRMUyjItpKnSEjg2rqTDeg0E39OdziZ2qXMWO7dLPSuV031RnbpcxwroJReS7NMCgYlddbUCvLcqqGqekVaWBmqqvoOoYpV0QZqoYOooC9vgpkiZpXnUvLghZ8VSHAJPLHHWSPDxJ75hBZJUyzy7qqZMwQ7q6aGoohYBetjwtzhrrFcTRnbtf0umbldamGTl6bqW5l3yqGjm7qFSnZTLHyeA2jol2Gac48v2YYL0XXZxxzYYY+MCbn4vT5JQnPdY+Y1NVVs2/vYY4e6cY0TRR9hr6ZoUzRdfLa86ubV3UcpwyPfQGQiysoYsFV/H+tvFqkaDqGVNlfygznEmfob8PUS3fezp07efvb315R57nQ2dnJ5z//eVRV4vd3P8TWLbsZGhotnmuGIABzhvkGzzW/NAq6jnfa6rM6w5zLaxpOw8A2Laz81G7PVGiGXvEyfa7+UvXKeVDQdPKqidtu/RV1huMLmoGqG9ik6c/Kme+n6dANg8IM1zvTufKKVtSSTbv3tRn6VjeN4vthhrFob2/n81/4dz74gRs4cuRIxd/PYGb81TVoZYgI2BAEEdPUMSnma7NJQSTJBxioWhzdSOG1tVDrXo5d8pJSBhjPPothGlS7F+G1t6DqWaK5g2TUYerti2h1nI0sOEjbT+LvSiOIMiHnXHzuetpnV3H+pYswUAGZA3tPsnfvET7+yXcQT0xw112/5YH7H2ZwcGhKu053cnbqRVI0mHzrW9/KqpWr+ehHP4UkOnA4apBEJ5qeRdVzYIJNcmCXA5jo5AphFC1ZFOfKvqIdh6njdTQjImOaCg45iGEUWOCsZr1vKUfSA7iEOmyCnZTRz/qqeuJahoiiU+9oZFwZxyFqNDtCFOjhrFAdBiZ3jZzkobhOlShynr+LBkctxzPd3D/+FONqkirnLPz2dnRTYSJ3iGShF1GwI0leBEHCMFRE0Yks2nHbqnHbatH0LGl1FN3UaRJbmG1fiSzYGVCPMCKEcSIzR5pNra2FhDZOXlfxySFavCOcU9OMbppsi46QzLdR4+vndXOyzA342DIW47HeRjTDw1kdR3llZ4BoQeGBEwZKegHO9h5e+TI7jUE3D+wOs3NTK4KpsG5FHxfPq6InmuH+HXaU6CxCc47xmvO9eOwyj+4M4+luIqEnqKtLsKwuyKFklpGwj0Wvfy3SnHpq25oRnXay6STs3MeRXQdJHYlQmxU5mh6hrUqnyimzfzzDcn8TcTXPsDHOua1BHu7JYMs3E7R56aafS17uIF/Q2fmExlxbE6OFBLgirGvycOthBVGZhV20k/T28M5rvRztzbL9CSdNUgOjyhiL50dY2Wpj65EYyz31qIbOwew458yuZkdfGj0aotUV5HB2hPkLDaoCIscSKdZ31DGRLfDMvhwtqXb2JcdodFYRsrk5mhtgbYfAWA5+uc+Dlw4yZoz1l+d4w6sauflHfegn6rEJMulAL+98g4/u3jTdm0U67HX0FcZpX55j4SwXW7aOsdxRg2roHNKinL+6jv0jUaocdmZV+dg5OkFNZw0OycHGP0SZbzYSV3MkPaNcvMTH97cUONjbgUPwossn+dAqlZFcns/typIzqjHNNNe2GLyto5aP7z3C1jiAiKZnuf2uH/DxG27kuve8kvHxOD/74c/41OxZXNZQT68wyob2Kgqazu6RGCu89RzOTtBY7aAz6GVnJErDnBAej51jPWHWt9QSzuQ5MZZgbXMN22MJ5sxuoLaujsMpHzXOWdjbWxB8MsGAj/REhFRKwCV6oMGBV8rB2Am23H0vnQM6Q4U0rmqTRfVB9o/GyIzaqBN99DjHOHduDXlNZ288wfolLfz40QS/3xjCRpBx9STdym5yZgpdT9HQWMUPf/hDrr766j/7JGpubuYXv7iFX93yO/7wuyfIF1KTwUYCbXYX72+5kD2J49w6/BSKaWATJC4MvowWZzv3T9xLWI0iAGsCzXy88zL6c2GCNg/1jiA96gDnrMrjd5kcOJRjhbeB8UKOUWKs7wixy0iyaHED1T4nmw8NMdfmIJYoMDGSZ0V1NScTKSZSGvP8VRyszbHu3A5kUeC+R0fI7Wommp2gxmEwy1PNiUwYj2TQ5HURDQ1y4YIQWVVn54kYS4R6jigTtLfaaQ962doXwZv0YZNEonVpNsyrZzSV5cTJOCtdIXaRZPHSBqq8TjbtHWRW0kZSUci4NVa31nBiIkk8o7CwKsDW7nFWBKuQRIGd0QnWzq3lRCSJTRGYXx1gXziKTRRpCLg5ZFc5Z3lzkRGUAADKyElEQVQ76bzKs3sGWS242admaFlYR3utn60HB6mJ6OhpgW1HBBa42ggX0jwTzSGanYwW+ml21eKSnOxMHODJxEEyeh4BAUlyoRsFFC2FJIncdttN/PGPD/KTn9w8+Z554dubp6MG7W9I0EqnYDoBEgS5aHI6ZZAEROySn4Iet9S1SwFUPWVZdZGwYxc95AxrOhaHVEVBT+BwOAkEAlRVVXHWWWexatVy1q8/m9e//vX09PQ8Z7tOPwiUnbiLqK2t4fbbb+OGD3+Mw4eLXzqmaSJJHsRpieZNQ0XT0zBlZcA0TXzOdnxOq8+UxyzwuurzcU5JuZTWskhCjPk+q55sW+w4i7yzLcmek2qUWyJHSBlTViVMA0ntpz8/bDlewo5mJDEsKx4mNjmEPC2Zr4AJgmxNC2RKeOQQumRdAanT/cyyLbeaHgtxAjYnIuWVKNPUsTkPI+tLLMfLtpN0uBqRKet9dLFA2DaAIzXHUjfvPEi1PgdxylqhIaeZVTVKq1nWRzkaq3C+ZS1tSxYj+1xITgfpQ330bdyNJzmC+1g3Zq6oa1N0g43hYS5vt/b39vFxltR7CTrL50oVdHY78ly5vsFS97d/7ONcZxDnlFW+4bRKdJbEhqVWrcvPf3uSNywIIU3xkDoeTuLBRoOvrJVRNIOHeyJcvdJ6rk3dEzgHW3Fb0sAphG29vKzDqve5dSzN2z64DNeUxN8Dg2mGDoywbnHQUvf2+07yunWNSFK5XUf6YgRsIg2h8tiomsETYxO8fIPV4PSxp/pZKkmWJOPRrMZDe9O8pitkqfu/+4Z4U0urxTT0WDLNG7YPMmvWXP7nhx/ni5+5ic/deD3/ff1H+PqsOZZ531eI0uAXqJmSpkvRdXa5I1xxjtWc+OkD/Sz2eIuap7Z5iF1LMFrnkkiq2LtHUE/0oY2Oo42O8+TwCbqU9lLaPMnrQmvz0HhBF3XLV6Hs2kPhqafR43EeDQ9xrs+67d2tRZl3npfaYLm/sgWd1V9+mp6kdfuqviHIj37031x55ZX8KbS3t/Ozn/6Cn/7f7/jD78tJzg1T44bmDSz2lQM8dMPgZwObWeG7wPIbvbljXFbvo8VVnouqoZGoOsQbz7bOz8cPhlkRCuKdsmqV0lWOi2nWNVq1jffuGORsZxO2KVqsCAU29lfjyVWBINC4bhZN58+jIKZodlmTpKfUNI7hPpwj42h9g5i5PAVd45nkKOcErObsuwrDrGkI4JkyZ5KayvFsilV+6zU8NjHMJfOapqXpypIzDWbVlp9Juq7zx/1DXN5pNdvdn0jSZHdSZSvr0fK6zpZolAunGeDetidJ99ASpCnvgYKe447x+xjXrU4HipbAMAzcbjff+taNAHzgAx9FVf//tzZPR4L2d9jirCRB5gxbSSZGBTkDUPRKvYGOQs6oTMpe0GOARKFQIBwOEw6HOXLkCL/85U+fV7tOT1gF9J/61L/yhz/cWyJnp8pn2j40MSzk7FRdm+SuqOuXvBZyBuCV3XjlSs2NR7ZZXlIATslnJWcAgshQIVJxvGpkZmivULHlBKAbKvK07Q5d0FEEDQlrfQMqMlLohhdx2jawIEiMZXw0T0uWkSoEkV3WvpEMB/GIl3pr1xBP+Kn1Wtslal5ceU9xBWTdAhquOQ9Xex2ZWILE9qPkukeIPLIbU9Up6Ao1tTnLLLdLIkFXpWFnjctmIWcAPodEc1Nlf9VViTgVa3mT10ZVe6XXWFu9aSFnAA1+Fx7T+tixyyLVVZXPXp/gsOToBXBLduq8le2a3yFbyBlAa4sXV8pRUbehSbSQM4DGOg/+adtnNlnEG6h0Wa9vsBNIW+tWuWXmV5qss6raUeHoPtfvRRZdrFg1j42P72bu/DYee2g7s4TKeR8S3dRMuwS7JOGboV2hgA//8vMQ5iwH2Y55dBfsfIx99w4wx2N9sZOSkKf0l57OIRzKURg7SPrJbTguPA/fxz6MuvtZfLfeXXGuKsltIWcAboeEKlZm1YiMx0gkElx66aU8/PDDFX+Houbsi1/8Ijfd9FMeuG+H5W+iINPltjrzS6JIh6vSmb/F2USLyzqXbaLMNL4FQLVftpAzAJ9kIyRWZvDw2mwWcgZQY/PStnQFTStmUbusFTVToPueZxke3oszaD1hPuSgc2E9tksXI9XXoo+Nozx7AM99D1acy6PZLOQMwC/b8BuVr2u3KFvIGUCD301esD7/JEnC46g8vkaULeQMwClJeNTK+9HttFvIGYBDchHR0pYAMQBME4/Hw113/ZxkMsW7330DpjmDA/kZ/En83TRoZ/DSR319PUuXLuGz//bFF7spfzPIssy8eV0IgoDH62b9+pUsXLigQjchiXYEQUIpKDz84GYG+kcJ6h7abNYXhWHqBO2VJMCVVzD/f2yfprbVIVO3oIE5F8/HXV38Ig86Cvhb67BV+SiMxhj48QM8etcfWOZq+DO/dgYvNYSqfBQKCvUN1WTSf6HX4qxVdFywGiE+jrnnSczew6XAjxcKIxYnd/c9FJ7YiOOi81n3H59FfOwZsk/vBK3y4/rPQVVVdu3aRVVV1XPWufTSSzFNk7vvvgenvfE5670UIHg8OM7fgH3tGrqOpRjf0Uv/owdJnBwH02RC6yVXY/3wjKopGrohBwhOJ/KcTpzrVrNmw+exbdlJ7untoL7wvn2pIhgM8JOb/5dHHnmCb3/7h3/+gDOYEf9kBM2c/E+YVnYGz41yf11++csZODmKz6ghykiphoyDOnk248YI5pQVsw5HB1F1lJg2USqTBCcSxS3sU6tNgmkw3y1QMOI4xGCpbrgwznghTbW9HN6eVHNsSfQSlGuotpeX6J+c2EEqP4TPWf5qVrQMup7FQESc8hVZXD0zcbnctLe386Y3vQFZlhFFG0uWLCOVSlPIF1A1jW3btvLItzcxdfVcNxRk0YHTVk0w5OPKV5yPz+dBNDSqpKaSzxpA3khhFyVcYnnrVDM1bNUr0MZE8slTK70mUXWMRqcPr1ze/oipCby5MWa755QCEQzTIKrGmDO3A0GBk48fxdvgp2auB3tzDepEisGbHyS1t5tMIYdSSJKSg/im2JHsiccZNVTOqS+3K6rmyMt58rqKU7KVzjWUTWNPGHQFykE5vck0/ak8i1urkCe3eguKzvCgSq07R5O3vIJzXEmQGxAtVg2pbIG0qpAoKBa7iMOJBC5TYlFgyjzI50lRDA44tXWqGwajqRQ2bYIGubw0FZHj5NwKumGUVpsUXSceiTMyFKOxubzFePDwILGhKOfML2/rJFJ5xnvyxGoKhHxlYn04m8djwmJP+brG8gpJBAqqhsNWfFTqusFgbwxZtDGrqjw/uyNpRjN55vvNkjdVQddJm3nGCxlqHeUxf2gwjdeQed0bL+G2Xz7INW++hPe/+fNcgJ24opQMjwH6hQjprMQ8d/m6IkaehKFRUHUc1Y2w8gpME+791i/oKgywsr08D544keb3fXn+dX55NTOr6jwzLuKpydHiLl/vo+Fx9HiG9y4ont+IxRm+9Tc8bfi5+oNvpGrNEhK3/B59dJzedBTtWI6lc8vbYEPhNC+vreNn8eFS6ETRD7Fyt2M6Ghoa2Lt3L7pRQDcKlpWaRtnDifQ4SwJl2URez9HiSZHK5xGnrLKGAv1EcVJFecwzchLZpqOcCpAANN1gJJbFrUh0BKaMYyrJkJ5jTrUPcVKEn8rrPHTMSevlnbSftxbbvDkoBw5x26e+zhO7MlxSU5YnTChp/jgRY5GvimpH+RruGB5kpWbjVS31mPk86v7DHHp6D3u9Dbz1fa8gdMF6svc/RmbbLo5GIODNM7emfF0n40kG0xm6/L7S/MqpGvGESjiVo85XHsd94zEUDNY0l1fxYgWFrE8mrWl4p6zOHRpOE3FrLG4s3/vD6SyxfMESiKDqBruHDHJKnCp7sFT3cPooqp5GnmKb5Pd7+OFNN/LUU0/z3e/+pFRumuUsI2fw/PB30KC9GDilqyqK3s/gz0GkKdTOXbf9hjtu3EzfoTGGlSMczj5Nta2DTsc6bKKTnJGku7AdQ8ix3r+eRkcrhqlzKLOH7YnNeBythJxzEQWJgp4kr8dZ6HXy9sZOOtxV5HWVrdEwCaWOCSVJs7MNURAJKyM02GF7upc92SiCaMcwNebY3Sx1N/Lr4QdITWocREEm5JpPujBAXotQVJGZCEgIoozHY+NNb7oWu93O2972NhRF5eabb2ZwsLicNTQ0xonjY2CaqHps8qEhYJODyJIfVYui6SkAbFIAr6sDTc+SyfdhmAo2wcUC13lUy+0cyj3BmHocgA7nIlZ4L2SgcJS96Y3Y3TIvO+cSFnpW4ZQ8HMzsJK6OIyKy0DeXBd45bIxuJ6wUdZQSIst8S6my1QAOPKKPUEeAuvk+WltqcJoTVO1+BnNslF2HjxOPhYjlcsz1+alxuIkpOQ4nE9iEIEdTJi3Ooq5luNDDBS0qGccEa9oC+B12BpIZesN5XLodUTJZEAyhGgY7ImE6/G5ORPOsCNTjkCROZOLIXZDLmch9TlqdfrKaysHsCPManERrFM6Z34goCuwejODxuxifSDHb66be6yKSyXNwIEqD00VK1FjdVnyhb+keo1a3M2jkWTW7Dr/TTn80zVA4hUsVMFKwIBRENQw29kXxqA0onXEuXFWHwyZxeChKsjuHkldoqHbSEfSSVlT2qHlmndXB0LEhzm4tGnnu6h/H63EwcChJa9JNjcNFpJCn35GkfUmIVI2P1UvaMQyDrbtO0hDLMiDCytWz8Xsc9I3GGBmM4EwUMPszLAgGUHSdZ8YidIbcHB/KsTpYi12SOJqIo5k6BVOn3uuk3eclrarsHI7hVKr5yWEZUe9gzRULuOyDa3jjqz7Ob+79T/a+94dU2T3E1QwxfYS5tQJSXYY1rdUYpsnWvnGqFC9jNTrr1rbgc9kJ+2bhWngBJx56nN995xhVYi2aqZN1nODyNSo3PppnKNqIKEgYZpTrZmkUNJn9kUY8UgjFKOCQ+zkrZOMX/Vk0vbGYhUEc4YbFGomciUtvIWDzENey1F/SxsrXXcjRH36f+apSNGJORZi1JMSR/QkWmNV4ZBsnUwn+49BBHhkdQ9eTmGh8/OMfZ2hoiNtvv73i6RMIBLjlll9x443/xc6deyYzktiocTRxUWgpy3zzi3M5P0Sj04ZTnmBVlZcqu4tIIcsjozkUwcPF80ZY3xTEME2e7I+RibYgdU1w2dlVeJ02esYThIeTSBkDOSsyNxCgoOvsGI/QEXIzqOQ4u60WmyRycDwONnjqqIN01YVc+tbzkRwCJzZuIrh/C1/cNk5aK2pBBTPKVdUN7E6PcrwgIIkODCPPhoDBcp+L7w4OUsCNaZo02LN8eVELm4ftmGoXNtFOUoty7gYHG977GnIZk9GfP02yb5R+vZf1s3UG02nW1tdiE0UORuMIgkkyr9No99Ds8ZBQFA7lonS1eQlrec7uLK7yb+8fJ2i3MSaYLF7YRLXPxUgszfEDI/iiEA0LLPbXoJsGuxNjzGmx05dOs6q+Bo9NpjuRIpYv0Bvx8PiRRrxiLZqpEVEGCNic3Bt5gHH1VIYMA1n2IpgGX77x4yxYMJ9XvvJqRNGNINgwjOzzIup/CqejBu2flKCdwQvFl9/zA1asWs7Nn7m/VBZRB3FLlVtnDS4F/6SD9ClsTe0iI07TnpkGP1lYmbj4toEw1bYuS1l3rp/HM0cr6o4nd1XkaJyqYfR6vVx44QXY7XZWrFzKhRdeyCOPPMLJkydRVZU777wTXZ/JfuPFhoQgTNOYmSIfnvUZ1r9xJXM3dKIWNLbd8SyN+uNc4rFew6FIilChMuH3bb0Kjc4mS5nmPsw711bqanoHCtRP08Q9NTTG2dVWIXFGVZH0Sl3hiaYhLlpq3Y46PBxl/jRDWIC9wxMsa7KKtLb0h1nfVbmd1b87bjHcBNhqRHnZGutcSmTyuMcqv8q3KUnOXWjtm31HIjQPeirqDl3iZdkC6/Vu3tvDhoWtFXUHf/0sNdPa9fjxMTbUWK8hXihQE6js73ffbyKoxXl/xfvOJjmRweNXOH9+AydvsmqzAvMPsbQhYCnbmkpw3obJwIDmxTBrLTz7B7768QTuabrPu0f2kzetIm/TKLDGX3k/7owfxiVZryFgm+D9syrnV/ulNua+/rXkfvFLjHAYgKeHxlkdbKqoO+eeX5LWiuPzpwjaypWr+NCHPsL113/QUv6GhstZ5l9kKcsZA1zTVqm/y4Z6S878p7BNiXLh2R0Vdcc2T+CzW8dnc3yMC2dbn3XHkwIDS95HfUcVT926i72PHcc0TLZldmGTrXM5o40j2yrnV0IdQJ42Nm2ik4tD6yrqrqtN0nH5GpquXMXAb7Yy/tRBJpz7uGK2dWt4JJ2lVq70H9zvmmB9l9Vkes9EglWrOivqbv1ZH7Pc1v7alRviojmVYr2P392JLFg32+4K/4LxKTsnAHV1Ndx++08xDINXv/rVxOPxit/6S3A6ErR/si3OM/j/xbpLlnH//+6aVjrz/fBCSmdGZV3hBSY5XrZsGVdddQUXXHg+u3buJh6Pc+jQIb761a+SyfzjJbefP38el15yCddd9lomBuLc/80nGD1eDIAIdkZgljU68Dn7a6bi56o6w8fWTL/7XCMz46leyLmeo/JMxTOWPedMnOlcL6BdM1d93nWfeyZPCcgRBQzdxO1zkjo2/CdqznB+Xx3MOxd2/AZSEQSeXzL45/64fv73XuLZZyn4PLiuexu5X96CMTb2gubHTLjqqqs4cODQ86r7wsb8L5hfNjtNb3orR5/O88P3/wYlN/VD4IWN+vM5PwCGyeiDe0gdGWLWuy/BUesnen+ln+dzXtcLONdfep+b00pra2v4zne+gSRJvOpVr/qrk7PTFWcI2hlwwQUXEKjyMT4Yf7GbMiNEUaS1tYUrr7qCefPmIIkCHZ0d3PbrO3jLm69jbKyYmLnoafePA1EUedWrXsm5525g3ry53POH+3nk+08zsH/kzx98Bv/QaJpdw7EdA9S3zRD6+afgrYZVr4IDD0Nq/G/Stj8H7cABkCVcb3kzme9+7y/6reXLl7Nq1Ure9KZ3/5Va99eBeM7L0TMZ7vmf7X/3c2d6wxz66m9Y9LlraIyeBeGXfjaXH/3oOzQ3N3LJJS87Q87+ijgT93raQWLqsDtsDn70Pz/g4AO7GI8Olcrz5jivaMvisfeU/MR0U6E1dIxlTf1kpliiRNUh1vpDyEa5TDcKCGqeW/sHiatF/ZhhmjwaOcm2dD99uf7y8coE2+KbSeUHMEwdm02msamG6z94BZ/69Ef58U9+wPe+923a21u57dd3cMuvbuFtb7uOW371K8bGxjAxZ3S1fylAQEbAxqnvUFmWmd20kve94XP8+KYfcuWVl/Pww4/yhmvfwtG7nubk/s3kjWJ/maZBQT5BXZXJvimpUXpTacIplR3xAXJ6kZQqhs7j4TEMQ2OsUN56CGujtDUVeHp0DG3SaTxZUHiqd4zeTILhbHm1cVckgku0sXMiXD4+n+PJ4QyPjowTV4p+aoZpsjs1hD1j8Gx/2ebkZDjJyX06D+4Kk1WK29AFTeeBXeN0H5I5Ola2YDgwEkVSDDYeH0abdL1P5BSeOjpEt5ZkOFNO/bZrPIIrC1uPlonraDLL3pzCZi1PLF/UtuiGwdP9YaS4xt6+Mnk5GU6QymXZlh4mrxfbldd1nsmNkukNc7y/XHff0SGk7ggbtx5DP9WudJ6nth7hhJRnZEq7do5PEOr0sCtR7oPRXJYT7ixb81HihXK7HuqJ0eK0k9KLjvieoItwZITOlR1s7+mmYBTHsWCodBvHSWUVTkZT5XaNxiAiEW46F6NnJ4RPEsvk+d5vRjmeDpNQy3X7sgPM9wbQjfJ1qUaGZmeWtN5DwTh1PxoMF3qpdbjI6eVryOlxogWDh8d6UQyt1K5tsQE29Xk4kUihPbsXvbuHzJVX4PMLbI+PlJz740qB3/fGubbxCoIzbMVNxbx583n22QNks+lSqj3TNAlIAbKKk+H8WKluRJkgr+s8Hh6lUBpHjQPeMJnZPnrS6XJ/TURx6iabDg1iTGb4iGXyPLxxgJ1DCcay5ajZZ0bHceRsbB8o9oG4dB25qka+8flf0Z07gWKcmvcGffkTCKZEXouXjlf0JD7Tja4kSvY+hqmhKFFchhddL+fXVbUUg0qMA5kjk16gkNOz7Euc5PfDY0SV4v2oZwo8+p1fMfc117DPKG/HDqWz7OlXebh3gpRanDOaYbB5dAw1bHJguOwNeiycIB/P88SubpTJzAHZgsoTfRPk1lUxkC/31/74BELezqa+cYzJcZjIFfjxjixRbYisXq57PHuApBYpif7f/e63o6oKF154hpz9tXFGg3baQKSY3aE4fiYmLc46/ueGr9O1eA4b//MhdENnS7SPTl+O988LlqK+to2nubM/y6fOsjE/VIxMSqsG/7VDQSsEWB4oa3i2JXp4KjpKszgfh1DUXkjkmR3sY0c2Tp9Snj8Nog2bnmFHYhemYLJy5Qo+/rF/YXbXHFQtz+133MbQ0BC5XI6HHnoUwzCggoiJvDST7ooI2EvbEU1NTZx33jl8+hOfJZ/SOfRsP/u39/C7++5E1E/yr12vKkWtxpQcm2MjvHqpwiVzypqnrX3jxOKwxNVSSr0yksuwZyKJrrXhk4qrMZphcDTTz7zONG9e7y6N47FwgpNDKRa7q6hxFnU8WVVjy8g4Htws8Zf1KwcSEYbSGjXCbJxisQ0ZLUuUbha1SSxpLOvMdqajxDISs+LN2Ce1KhGSjAXDeCONVBvBYrtMnaFADzX1GmubakrpeY7FkvRlsqyoDVHrmTxXQWXj/jFCsp2VDeVVpn3ZBIk6G+tftgzvZCTpxHiSZ363kyZdZn4oWKq7IxtHsZtsqKsqRaP1jWfYcyzBiuU1dDYVr0HTDZ5OZpCzOuumRA8eU/IM+mVW1vrK7copbHy6h5qgk9Xzy5ql7QfGCIdzXHBBG77JJOPjsSxPPTnI2FAbLr18j2yO9PP+n93Azh/v5Pz3nMNtH7gLxYhR7R3giqUCs2uLx6u6wZaxMLIqscpbj+OKKxBDQQ786ifsF2HftlmYhSIBUo0CGWOQkN1Fq6usB9sR72Ewn+SVdfPwyMXfjasZtsdGcAhBQrayTu1I+iQJJU+draOUPksWE8wLRvFIjXgmdaeGqeH27WdRJ5z7759D2/Q4xqG9HBxLsrdfx8jNxzEZ1ZzXFX4z+hjLrju3QoMmCHZ+/vOfccstt/PEExsxTQM7MusDlzLLtQAokrWsOUCtQ2epv63k+ZXSojiqhnjZ2zvpnNRoFQoqT/32WRzxHOtnlefy4WSKgazC7FgVwcnxzWgF9uVGqHE4WRIqz68TITe1172Xz7/3PvqPFz04dSOLKUbJmhLC5HUZpkFKH8GGRLM0t9RfST3CkHkSn9iAUyxGRuqmRlg7gkIep60sVfADXbY6TK0RaTISVaDAnOAAS4M2FvtrqLpiLZ7FnWz86n9RkDJ0ml04Jn3a4nqaMbGPWX4PXb7AZLtMntXHEXwGG5pqS5HOvZkcJ5yw+MIVNLcW+6aQU3jo2xuRTmZYESzP5ZOFCCcKeXqGliAYp8Yxz5HUCXandjCslP2DLrvsMr785S/w8pdfRixmNY7/a+OMBu0M/okhWnQHAgIXr7qQs65ez6b/KgqUJVFiQ3U7r+kasxy5rtaLxzfB/FD5a9hrE3ndHDgyYBVYrwt0cjwmlsgZgI6TRyM6cbl4fqfTzvyFnfgDXqKZQ1zMRcyfP4+rrrqCr33tGzzxxOPA8/UEeimSM4pRpYJAe3sbb33bmzlnw9kcP9rLl973a/qOl/u3SpzHqxo7LZYiIbuLc9s0CzkDOLu9lgNpa07MRpeHTapG3RTRsiyKzPM38rZzrNqmuXUBhgbzJXIG4LbJtHo9NMt1CHY7Uk0VUnWI1R431d760gqIaZqkj4/g02tY1ipgDPaBroGmsdpbxbO9dks+3Rr8HDmeoX2KnYYsSNQlWlm7svw1DjA35Gc8ky+RIACPw0ZHk5cu0RpwsNQd4Pi86hI5A6iu9eNrrmZ+yvr8XuMOknCrlpyF7bUe+tRsiZwByJLICocdT946l+bancQyGWo7yiTG47LTNq+ahdMCIc5aXM/BiWSJnAHUhtzkbDUWcgbw3o9di12VyMcKpSBzuxgiWH2S2bVluwObJLIkFMKddSG1tyMvXUr2e9+jS/Dw46fATfl+tIkOJMNHq8sqEl8T7KRLGSuRM4CgzUOV3Y4daxDBfG8XJ1NxS25TzQgwkE2zagrxFQWZTKaLtbVjaA/+Adsrr6Vw/DCL6v08clikecqqmVOysza4mDyVEAQ7bW2t7Ny5Z/LfIq2O2SVyViwT8AhtLPDlLYasPrkK18pMiZwBOBw2lr9sLqE9VonAAr+PoSMxgoFyH3hkByG8LAlNEcpLEkvf/E6+8p0tJXIGIIluxrUxnLZyXVEQCcjNhEyvpb/8Ug0JNVIiZwCSIBOS2kiI1i3pJDCeh/op9jgmDsI5F4vbggBEH9pB6KKVLFpyDod3PYvDXV5NC0pewoqrRM6K7RJYKdch16sW0+MOj4uBkLtEzgAcLjsrXrME6Se9lnZ1OWq464hByDKOTvIkLeSsq6uLG2/8El/+8pf+5uTsdMUZgnaaoqWlhU9977Mc+OVuIsfCf/6A/0/UNAfw+Bx0NLk45xUrcXucNLfU031ikEgkRqZQfEmMj0d461vfSTj8t2vL3xPnn38e73znO2hta+WRRx7j1a++FiNvZ5H/1S9200oQG5uQ5syhvbGZQEMb2G2YioLWM4CpG8R39CEZxcg0W9BNYEkbNtGLPL8BIVgFkowZHsGMx6hrj2EbmkAdiaDHUn/mzKc3Zl22mLtufAB30IkxQ1LzCkgSzte9jsIDD2Cm03++/t8RRl83xkAP8oWXoT1874vdnL8I9osuwkyneeqeXUg8t6nu3xW6wcT926i6Yi3sevbFbk0Jzc3N3H77rfz0pz/n3nv/scf9pYwzBO00hCAI/Mu/fJiN9zxJ4XFrqLRiKCQVDf+0FCjjucqt8HAuQ8FQcYg2BFGgZlEzDavbeae2HJsQwBdy0dhRTSycYiQ2yO9/8zgTE3H6eoYpFFRM02A0uZUXFgH60kYoFOIjH/kIV135Cj796X9ny5Zt5PPF9YMamxtMA4SpproGCJX+QLqgwbTovLyqk9crx0GUZjieAllVw22zjqNi9yKvOxvbWWsRnE60I4cZ2bIdNbwRYaz8ha8bJntPqCzxW+0TuvXjdJ41uXrl9SMEgugNLejuELVXbsDeVIuezJDZc5TanbsQ+jVMrbwtrZgKOUXDNW1+ZXOVRCVb0NHsBvKUFTDdMMinKtdjVF0DrNYJeU0no2jUTHM/KKiVesV0VkNQDNzT2lWYwd09n1PR/HrJwBeK26TRZOXvRvMKlrU2QcAUTI7sPsrbbnwz++87WL4GrfL4bEHDc/bZGIk42r5yRJ9m6BUKYs1U0U0Dacr8MkwdbYbUeoKhVRyvGiqGqVXcjqd0e1OR0zTSioHXLqI+ch+Od3wQ4+ghRPFIRd2spj2H2LlyLp/SsVnLVAqGgmtaqrhMojIoKJvN49Z0HFNyxQJo9spz5TUd3Sga+MrLl2FbtIjEzf+HZqhI0x9JM7ZLQTHzuKbZ5QgzqIZ0U7WYd59Cwaycy1nNKLULIPnMIWpecy5ibRCmBajntRnuG0ND1nRc0+79QqoyW0Uuk8duaJZV+WIbVELT2EFBLwAmsmzjy1/+Ivfccy8//OGZLAF/S5zRoJ1WKOrQLj73Qm785BfY84XH6U704xK9BG0B+nMDNDiqQDBx2gd5RUuA3dEMPz4qIhiNuF29fH6dQJ0b3vnUZh4eGmXe7Dl87HXv47LLLmMiNsGvH7iDgwMnqLfNpZo5HNjWzbHUJvoKO7FJPvyuOdhlP3k1QiJ3At3IUvxOOPVAVXmpbltOhyDYEEou5gWuv/7tvP26d7Lpkf385qfbGIwcZDx3CBGNNzQv5W2tqxkrZLlrOM1gvppWd4R3zIK5Pj+bwjE8ZhdIGs7Ok7x8WZBDY3HkDMzz+dnSM0FA9eKV7RyIxlnmbyCu54k5J1jfVs3Gvjh9Ax049BBGzWEuWyGhGTp98Qzr2+o4VgiQaT6HOeetpX//AaqO7UDuPsnvDueoMjuJa2mq3VE2NPh5cDDNE0NVOIUqdKGfVzbWoJkGexITtDrbiWijrJ8bY12ri7sPZhkZa8EhOMmbA1zRVoPaFsK+opNZSxeR8bpJ7OlB2dPD4aOPcVaXjYKuM5TLcXZnHQf6Mxw5aGOWs55j+gAXrbPjc0k8tTvKQrmW0XwGw5VnVUuI/dEYTpdIa8DDbjXPuleuRNE09m05zNnNVezvn8A+rjLH7WNHNEJLvQeP3cbBcIz1rXWMpXP0RtKsa6ll+0iEtuYgDUE3Tz0zQqfmI6/rhKU0586t5UQyRcYpsLSlmq19YRZ31eO0SWze2Mdyu5+hbA69TmTV/HrueSbJxi1VuAliq+/hI2/wEc1ofOBnwwyGazDNBJdVNbDI10jm4iB1qzr53vd+zlc++zGe+OST6EqU+TV9nF9XzbOpURa022nwO9l4YoJ5tR00fPqj7Prqf7JMMNg6kufe40F8YiMDuX4Cch2yIJM2hpjjbSauJtBNjRZXI+HCMFU2iWq7n2OZYRodraiGyoQ6xjxvCz2ZMIM5J3ahhqFcHw7RjyTIjBXGcNJE3kyRM5IEpGbyDHNWVTG7x7H0AAG5Ho0CC1v6uW65i5GWLkIvuwJ+9D0e6o6Rjs5H02w8ODaIpjdw5QdWs6dvIzff+n3LPfT440/y6le/mWw6T51jAdX2OahGnC57PQ32BlT6mecLYBNlwoVx5ntaSWlJFOIs8DbRZxvm5dfX0drmZfMj+1koyqQLKiOxLGc11HA0l0Vt8bGos56NW3pp77EjawJ7YuOsDNUxkEvhbKlmxcc/wt1f+z9+dH8KwfSR0EbwSPXopkrOiBKQmknpYyiigV3yEdV60SUQEHHqIm3SQhQjg06GKrmZsNZHXih6HUb1XpAcGKaKYqSwyV4ULYOJhix5kHWNBfJKbIKDuDZCSG5CNWNc0ljgZfVV7I2Ps+w91yKlVZ785Z2sCdWS0xVOZGIsDTRxMjtGZ63GvJCHPbYY81YWzXYPHxtlXSDAYCLLSCzL6oZqnkmlmfPatVQ3hHj6FxtZmNJJ5BX6RzUWORp5ZDjJL447EMxqdGGM1cE2TAx+O/YbBgtDOBwOvvGNr9La2sJrX/s6DOPvl57qdNSgnSFopxkCso+Dz+xnfP8wW79Z1J6phkZPdpC53g5L3R2x4wymramNNLPATvVnvPdD7+OVr3wFmUyGe+65j73bdvL0ri2W4+2CBzBRzKylXBY9aMZ0rzKBf6SsD4LgQhSLK1zLli3h4x//MPmsys1f20giVr5e3VD4VKedBT5rDs8t8aO8tt2qTRrKpejaYFIzRYulGwb3PD7CeVPS3AA8mwizYrYHr6389Z7XdHYmY1ww1awyWMPJjnOo71xB+MmDjG88SG44RlrLM1LI0uy06pDuGz2JbC6wlGW0GCurbHjlsq7QMA1O5E4wzz3XUjes9nDtHHBPJqCX6moQlsxDX95FbVMjxolDGLs3Y46P8If9Edpz85CnrCqktDyyJ8xsb9Dyu5tzPVy1xLqa15NMUz2viupp/fXotpNc0mWt+0x/mEVVITxTVshyqsbWvTHWhKy6radzI7z8vDbLyl0sW2BgT4zZfr+l7jd3phHTKyxlEXWcx+IRRKG84mOaBjFjL/c+cSuf+uTXMA2D1197Fd//7H/ym7PX4JKmtEvXOJ4Ps6a6DteVlyK43WTv+j2/OBYlklhuuR9zeg6HlKXGYd2S688eZV3VbEvZSH4Cj+TGK5f1e7pp8NuhXqpkq3H0UL4PzGqkKatDuqnS4E7S6rKa+Dq9u7lhpQfPez+Atnsn2q6dRPMF3n1/DS6xKIq/6j3r0DWDr333C/Qrz5aOffzxx3n11dfQIl6OLFr7a6W3wLqQdX71ZftYE6opCeWhGIhQu/IoZ7dZ++Dh0QkuvXgx0pRxnEjm6PnVEK3u8rqm/91v5o4nD3HbTdbkuSk9gk1wY5uSSsowdU7ou7Dbp/kSqhkW2FYiTTF01UyFfdpObLLVEDalDCLLPoufmWGoLBGW4ZasdTv9x7iqsQtPRx3zP/1q9nzkp/TEh+nyOPBO0RVqhs7EkgEuP9uaQP6p3b2sENylFGoAaUXlyHialdXWa/jSkxNs711oWeVTjSyb0/9XejK/8Y3XcvXVr+Ctb30LijKTsvBvh9ORoJ3Z4jzN8N73vxclnmP7/z5WKrOJMg6p0uzSMB2ll4Hb5+DCa5azdMMstMBVbN++g6uuuppEIjEZHl+56qWYMxvGVpIz+EciZ1AUNAuCwOWXX8KHPvRefvnL2/jj7zbT4FhtqSeJdqrslQ7jNY7KW6/G6aTGY+0HSRQtL+9TCNjtFnIG4JQlQu5yXaFrMeL6y8k/vIU93/05eracwNkrO/FoM20x2SseCk7RY8nfB0WRtGBUJon3yg7ccnku6OEIPBZhYOtvCS6Yi7hgGfLr3okx2EN17F7kE9YtH5/sxGFzTv/Ziu0agBqXgyqPta4kirgdlS7+fofdQs5O/aZXrKzrcdgs5Awg5HaQtlder6HaK7bvbLgt5AyK8yVQFwRgx/a9rF69pNgGuXJ8XZKMb5Lg2pctJv2rO4u/MeV+LNd14ZQrx/FUrtWp8MouPJLVhV8SRGShsq4s2DGnbRlLgg27WNkHTsmOJIqoTz2B/bIr0HbtpMrpwDYlUGj7g0f50LdfhfP7lbYboiBayBkU+8s1wzW4JbuFnJ06v98uVdT1uu0WcgZQ7XcRt5fnjH35IsRggCfv2gJYiaddcCIL1vklChKCUHkuSbBbyBkU+1AQKuetIEgVZrOiaMMuVGbrsE1ea6Y3TLY/QtWa2Uw8EcUrW5/Xsijh9VQ+w30OG07D2l6v3YZfqrwGzbRXbMHaxGKKKgSBNWtW89GPfpgPfvBfUJR/LM/Jf1ScIWinEaqrq3njdW9m/4+2oyt/3jfMG/Lyqe9cS3NXDdlUgX2burn1G49xT89/MxYe+7PH/zPjvPPO4W1vewuiKPLZz36ZPXv24pFqofL99feHKCKuvwKhbQ7GY3fRc/9+vNl5L3arIDaOseVRjF1PI67cwLIPv5/0Q4eYeOCZF7tlf3PYHTa+9t0vc+ft907axTw/CB43+sDQn6/4EoB+/Bi88tWIjU0YI9YI4nB/DE+gkni/2HCsXkZ+606U/F+WJ/LvgeiOE1St7oIn/v7muW95yxt573vfzXe/+wN27Nj5dz//6YozRrWnEd761rdy92/vZcsT1q3IscIEx9IDaIZO0+p2lr9jPUvevo4P/+oDNE6mGPrGe+7g1998nH0Hn52MtJz61W7yj7YC9nxxKtnvKcyaNYsfff9mPv4vH+WOO37L9dd/kD179oJpUm9zok9bHRSJMaJGLGVprYAi5IlN2yI4nJ5g96C17kgyy0RGJ6OVv1h10+BELM/hSNJStzuRIiY7EF79XvAF0X//E3L9J+mJa4wVrHWPpsMcS0ctZWktT1ZTyevWLemYNkpv1mpdEFNTjOTyFIzyi80wDfoyGY4kEpa6J1NJDo3qJaNcCnkymx5i89f/E/vyDlr/5bWIzuLX/7H0OEfi1uMTSoFIomicORUHogn2DFitC4ZjGRLJYoBEqb8Mg8FcnmNRax+ciCYJkyu3i+L2YlIyGIxbx3Hv8ATHctbo1FheIV7QyOpW8XVvroeMav2Aufb6c7HZJX7w/V8CsOHcNYTHozgQ6E5br7cnk2A0n7G2S9PIqAopzXoNY4URRvPWyOesniOnK2Q0a7siSpihvHUcJ5QkqlFAM8vzq+jxlSCjT5sf+gSjhQmMKYJ51VAJZ/SisbBpoh8+iLRoMXvGYyBa+yCTzuFutD4nBEHA7rSTVkct5ZqRIafnUQzrvI+rKYby1nYN5SP0jOTQp/RXRtFIRDOMTFjHbPexYY5mi4FRYlUQW2cbI5ufQRB01GmC/YweJa1b+7ZgpAhJcsmQForbsbKgktGtVhNpfQKHaTBVRmSYGnbTjm5YCaGiJYlo1i1WxcgyktNIa8V2JQ8N4qj105eNcSxtfU6MFpKMj6TJK+V5r2o6IxMZuqdFVR8eT3JyPG/pr7SiksrrKIY1Sjiq9vK2697Mm9/8Rr773R9wyy2/nryef87n/UsNZzRopwkk0cWnP/15Roaj3HXn/Sxz13JhcDHbEod4OnESt9fNzT/6JrOrm9n2u01sm9hDUksz0D/I6LM6zfaldOe3MqIenPqrFG/UfwxR/wuBIDiwySFE0Y5pmrjcAv/19S+woGsZT91xlCfv3sdY7iRHC0/ikUTe2XIF873t5HWVu8YOMKYJXNWW5/Ori/qm7UMpwhEfObKc2ylT77UTKyjsHEwTkj3IdTnOnlskwztGI4T8To73K9SNt+LEQVRNkhTDeGwy48kgtXIDuqkTdR5nSbvJqJrjnJWzcbziXYzu3kL/kw8ykRR4+tkO9EIthqFgk/uY4/WwI5onr04mUBZHWBI0GS/kGMs2IAkeCkaOuDaGW/LikVU6PUU9V1gZoM7u5GQ6wVi2rpgDUkjT5U8RsNlJqg78ci2GqeP3HObcBtg1rmMqCxAFGdU2wvK5Q4BKVcFPk8NL1jSZuPBiGubPZ+t3fkXXJFfpyY8Q9KhEcgr1YhN+2U3ayBEL9tFaa0OrtrNqUVHDt+3YMCGnncGBBEsNHx5JZiSXZUjK4nbb8Db4mN9Ri6bpbN7VRwMyw7kcG+Y1IssSR/rjhI/nUWWY+7Jm2ttCZPMK23f10OS0E9E11i8pJhnf9ewQRk+WQ2Mmu3rnYxo+FD1LnjAuyc4jE5sYUIovdY9YTa1zPgvPquJzX/sAN9xwA9u27cBhq+OuO39K+Ed/YFXBjmboHM0N0O5zEjGSnNNSNNY9Fksy5z+/waPv+xTjsVZcQhU5XWVXfBgJP6qZpdNT3JYbLYzgFCXyRoYudy0+m5uMliWsjBGyuWjyJFlbEwTg0dEY6UI13Zk0qtaCJNpJaXFiSgITkaimIQp+TNMgr4/jFYMkjSg2uQpBEJFJM9vtwibozPUGqHX40Mjj8B9i3YZ5BF7xesY+dxuYJg+MTPDkqJMRpY+L370ERVP4wQ9+wKlnxve//0P+8Id7eeSRx/DLLTS4ltJgN7m6bgFuyU5USRBTk9hEiaBsp9lVhWZq9Gf7aXB6UYlyYX0VsigyaE7gas+SN1Ta3R6avG4yms4eUaG5vZqJ3ghnBYras2eOTFA151yUWXO57fNbEPCQVDPsSwyhmw4M08AvF3WjMXUQm+DCZcuyLtSJQ7IzWBjjicRRdBNWurpodTajGRrH0n0YhgdByNLhbkcSJfoKfRwq9GEaJo1CFx4xiGLm6dWfRRFVNCOPLBdlEG7dRoc4G4MCzY5mHJIT08zQ4R+ho8bPZT/4KLs/ehtapkBfroc2t50UMS7q8OGSJYaMLMl2E5tdxDOi0unwoOoG2yfGaQq4Odpn0K4UjYiHjDGCDUn6EyYPH+iioIRQjAIDhX7AQcxzgH/7zw+yePFirr/+Pezde3By3P5+gQFTcTpq0M4QtNMEXtccNpyzjs994QYy6SyGYXLnnb9leKS4AvHFL3yC4eFR3vSm91NQBv7Mr/3zw2FvKulHrr765XzwQ+/g6T/u4bEf9lq+iDE13tThrzjeX7OTl3dYRcsn4gm6/IGKukelGMubrHUf2RunKTmrsm5So8pu1fHEag/xmpd1IL78OsyjOzEPbCWR1fn6r2dXHH842UuNrd1SltQiVNlrKura5DGanA2Wsj3xXvJKQ0XduQEd77S0PhGlm0X+DkuZZuZ48+JpXneCwMHW+ay69pWE73yC1I6jAPRkonR6Kv2ozPPDLJ9lbe+mrb2sMivHIbvUTY3fqrt6Ymc357dbgzYSBZXQgsaK4zfv7WXDXGvAwR+3xnngd+0Vdf9v5Hto01YWDCPPJz7xATRN41vf+lapPPzkbsZ/dC/qWHk16IRxnEs6rbk57f/+Re685hZMw/q722KDNDutgvCoMsZCvzXoA6DRe5T5fqsg/JfdMcLZBRV1dyWHkafp52JaH16btQ8kCry7zarZAtDFY7zpFzfS95VfokaKbPs3Q/v5j+NP8cY3voHGxga+9a1vT9YWueGGD9HU1MhnPvM5ANYGFvL21ldW/K4s5CpsNpLGQS5usI5j3MiwdHXlB+MzkQnO7rAGg5xccDV7njLYe+8BS/nTkQFc4rRxkEY4q8oaSAEQzivYRKv2qyfbQ6Oj09pWNclovnLDar/2BIJsvS6faeNc9wUVdVfVjHHNjz7Cnq/cTSFaXOGdEA7zqtm+irqmr4Brmm707t0pFk9r18l0lt/2Vd7Pg3XP8K2f38j+/fv56Ec/SmLaqviLgdORoJ3RoJ1G2LplN2+45kPYHXbq6qp59WsuYvHihQDs2LGH//7vH73ILXxp4aqrLuEtb3kdmqbxr5/8CqN708xyrH2xm1UBQRQRL7wGs3s/5oGtL3ZzXjhMk4EnnqExKdLwjssRnXYSm/a/2K36q6CtrZVrrrmGG264oVS2evVqRLuMnvjTprNiSyt6MlFBzl7SME1yJwZxdjWVCNopHD16jOuueys//OFN5HLF7debbrqZ3//+Ltrb2+jr65/pF/9mCM3uYuh7T/1dz/lXwd94kaSqyc9HvvsV7rjjDr75zW/+Tc91Bn8aZwjaaYZksvhSiIxH2fPs9hmjjE53tLe38/3v/wRd0/n+D37Opo3bME2TBqHjxW7ajJhz1VWgKZh7N73YTfmLkDs2yOC37qL146/H1dVMzw9ve7Gb9BdjzZqVbN68ma1by8S5ra2N5P6TGH9GmC74fGjjkT9Z56UIPZ1DkCpXi3bv3o2qqgQCgRJBUxSF48dPsGrVyr8vQQvUIEoS0YF/rBRFSiKLb1YdhYm/TUYJSRa59t9exqbHnjpDzl4COBMkcJogr4ygG2WRtaolUdQJND1d2rIzTQ1Vm3iun/gnhEBRR1e+Dd761uu4+Sc/56c3/5rXX3M9G5/aWiRnYgPzXfMoGKOl/pLFNGtrI4wUekhrxQemYeoY/v201MKeWPnlenQixfCEwKPdEZKTIeoZReOOAxn27K7imZNlUfr24wn0qJ19qT7USSPImFLgvuEIR9MZhnLllYnYsnqcXWu47eu3oU8K4/cN5nnvL0x2x06SnGyXbmhsjx9hQMnRl+8tHV8wJmjwKKhCL9rk/DAMFVnqocauEZ8idk9pQ5xTI9Di7YdJkbRJnnrPMKYwQUorv+xOpPuI5J3sivWjT64ATRSS7EtE+I+dGgPpIjnRDINt4yO0VKt0F4ZQx+P0fvHn5D0CS2+4kmPaSXKT7crpKttjgxx5CHbtL28Nbts5Sv6YxKPHIyiTzurRQp6tqTBH9gzSNxIv1d20rRdP2GDT/nJk5EAszcGBCE89dpDxaLG/NN3gqUODeKq87OovByLc/0yUb9xeYE/iCAW9KN7OaRl+H74FRUthTA2aMBR8PhfHjh0rlUmCnYCji/vCMfYmy/3V4+qjY6mNnbnyuZI1dQwcPo7k3kPeLAq9VUNnS7SPnG6jP1eOlMwbYywIJIlpR1En+0sxCmTNQ2Q0gxOpch9sDCcwTT8KPRiT46gYGVR6WexXkITyXFT1cRrlWowpAQMFPUVci3LzwH4iymR/mTrHM72Ec36O9w3jmvSh2xqJszvSxgLXBsSSGbUJ6ICGaRrs2rWbVatWIIlODhdS/HLkcVSj2K6okuGh0V7uHwkzlC0GSBimQaG9h7Ne7+FYsLxdPpxL0pNMcs+WGJHJ+VXQdB4/OAajIrtOlJ9th7N+Rg6NU9BPlAT7eb3AwWQPfhkUozw2NinMHJ+boXwv+mR/ZbU0UbUXSRohpxfvR9M0CCv91DvdxNSyTCSlxsgaCWzSGLqRn7wGnajWTwtzsWlTXsO6hm462ZXdjXLqeW3mmRU4jM8WZ6y7H9tkvtcxtZcmF2wcGkebTBkWUXM8K4c5oCYYzhWDfXTD5KmTEzS6RI7lyu3aHY/zjRPjHMjtJzsZGHTZe9ZSPdvNZ2/8NGfw4uOMBu00g02uwjAKlmhDQbAhik50Pc3pE50jIUwhZiYm73vv+7nkkpfzHzd+n+PHeoppmIwC61wX0GAva45i6hg1rhiXN7ThnPSPy+oFThR6uWq5yvzqsiZk12iEkRFYE2guJXuOFLLsisdwqx3U2Iu6KcM06dZ7aHApLPWUtVAD2STbxvMEpVklg1HV0Die6cFX18pb/+d9bPrPB5k4HmZcG2VEDBMem1MyGFWNAkmzn6RhwyEGS7+b08Ms9TlZ5O8spQZKaml608OsCNZRNaVdh9N9VNlhqb9srDuUi/HEeJxlgTY8k+3SDI39yV4SipcqW1nXEtfGcMppmhwdJV+ngpEn5D3Iy9pES7LnHeMTJPM657Y2EHjbGyGfp/tnv2LzYJY2RwN1jqLOTTcNjjBEtUNl2ZQE4X3ZJGH3OBvm1hJyFV9keU1n00iEasXGkilJvw9EY0y4Vc7trC/5rCXyCtsSaWYvaGZOc1n/9szhQb5xU5boaEvJK0ox0sT0/RzL7S7dNUXPKAAD01T4zne+wx//+EcefPBBfPY26t2rufZtl+EPuLn5e/ewJBDnM1d5WNFa1ojtHYrSfSDLpR/5GOaJHgpbd5JQCvz6eI6hVAtBW1kfNVoYZHEgxTk1jaVxHC+k2ZeIsL42QJ3DU+qvnbFhelMhmqZo10bzExzPxJjnbcUlOSfnjMqWiRNkVB8huazximmjDGkjeOQGxMmVd90s0OlMsS7URP2kWW7Dmk4arpzDl9/zAwS9o9RfWT3BR371Sq67/i2MjpajNhcsWML/fOt/ec87P0sqVXwuCabK2a75+MU52MViuzRTxenr5f3vsLFydlmDuPvYGAfvi7Pa34hj0lMuoRY4zgDz/F46vOX7cWdsnP0jAc5/3RsRBYHu32wnoiR5PDwBeiMuqTi/DNNgqNDDXL+DOd6y1i5ciDBRiDLfV+4vxVDZm+jDLgaod5T7azg/wmg+Q6OjveSRljdyHEl1Y+LHNeV+nNB6iAkT+OTmkkeaZmRZ5TF4Z3sdNY6iR1rtWy5m7/6DKDu3sbq63Afd6TgTvhgXLK3H55z0TlM0njowSiDpY56vPJf3xib47iGN4XxDyVdPM/JIUoxv3PEv/ObuO/nRj156cpfTUYN2ZgXtNIOqRSusIExTRddTnD7kDAs5EwSBd1//Li688CI+86lvcPxYz2S5iEcKWcgZQMhWzwK/t0TOANySg9agaCFnAKsaapjlqiqRM4Aahxu14C6RMwBREGgTWyzkDKDV7ccwXRb3d5so45eruOqG19H9+BEmjhdXEWrlBvpGrO7vNtFBXpct5AzAJdXR4a635G30y15qnXKJnJ1q1xx3k4WcATS7QrS4HSVyBiCLMkFbwELOAIJyPQ7RVyJnAA7RiWm6LeQMYE1tNUuqA8iGSeaWO5Bam2m98DycslQiZ1A0WO0wai3kDKDd7cfvsZfIGRQNfJttDgs5A1hcFaLR67KY4AacdvwOm4WcAaxd0ML4aK3FyNMuehlVRix3jSAIYIJpKnR2drJo0SJ27doFgMfWhCTaueSqNTzx0G5EQUJx2izkDGBZcxX1di/2mmq03uKKR8DuwG2TLeQMoMHRwopgtWUcax1e6l2UyNmp/upy11rIGUCDs5qQzVEiG1A0R21yhizkDCAkN2ATPSVyVvxdBwZyiZwBRI+M0NjRgmG0WPrLLQWwi9aADYAjRw4zOBBm7dnljAymYCOjO0rkDEAWbASCHgs5A1g5t55Gl7dEzgACNgcO1WEhZwCrQ7XUGa34O2opxIrPwRq7HxG5RM6gaJ7b4Ki3kDOAOkcNfpvT0l920Ua13WchZwBNzkZ8UsBiYOsUXTgkh4WcAVTLnXjlBouBrSy6afOYJXIGICLQ4vZayBnALG+Q6mpHiZwBeOwytR63hZwBLAtVM5z3WEyPZdFJ7ZxqAiEf9913H2fw0sAZgnYGpz3e+MY3cMGFF/Bvn7mRkZHwn63/UsCcly3FFXJz4M5dL3ZT/nbQddI//RWuSy6kal5lROtLGdXV1Xzzm9/k9ttvZ3zc6tXmD3gY7Hue8+wFmNq+VKCkCxSSeZpmV0YGD/YM89rXvraifN/ewyxeMrei/G8BQRYJzK4ndugfwwD474WuuW089thjDA4OvthNOYNJnCFoZ3Bawpxc93j5yy/jLW99E5/618/M+GDSDa2kOzkFwzTI6ZWpTtKKjjFNMpDTNDJapW+QalZmcsjqChmtUjiuTktILEgiS685mz23PoOhln9HNw10s7JdBjrTpQy6qVIwZzpXZbvyRoGcXllXNyuvSze1kq6pdH7TsBihln5Xn6EPNI30FFNeYyJG7oFHWPqua0pmtlPrTjXwLf2uUklqcqqOqlvLNcMgp1ReQ36GNDaZvIJOZR/MLBEx+cAHPsDg4CC33npr+Vpm6O98wahol6ob5PXKdhkz9KFqKGRnmIvKDOOYMxSLsXC57kzzU7UY0hbPr2PMMOaF6ecyTeIDEVrmVVqk/M9XfshrXvMaamun2IGYBtFoHK/XmhJNnaG/cgWtpLcq1dN08jNcQ2GGsoyqYm/yY2gG2SnaRH2mPjAUi1EuFOfyzPNeqZj3uqnPOO9n6kPNVGYc34q+BTRZqJgfhmlSUGe4d3UNfdo4KoaOQWXd8y5Zzd13311RfgYvHs4QtDM4TaHR0dnOxz7+L3zgAx9maGgIRU2QL4xhGGpRf2Zq2OzVbCtsZVgpbnuG1UF2FvZw63icO0YOkNHyJNUcvx3q5s6jLbz7Hp0dkw/+x3pi/GxjLTtGOrl/MEJB1xjOpnlqJMZZgVn0ZgcZycfQDJ19yX5ERI7FnWyJjGGYJsdTcR4cyjHHPZvjmT4SapqCrjDULhFJC/zqgd0cSxdJ5cnMEHeNniSKTL9yHNUoUDCyjCi9BMU20DPk9KJIWjPG2BBy4RHdnMj0oBkaMTVBf66fLs8cDqWGCRdiaKZOX/4ky6tSVLliHMv0YZgmA7kIfdkRLq1rIqJ2k9TSFAyFo+le6pw1+B1JompxdSKmDVPvjrImWMeY0k3BKJDVM6T1kyxzd3HPcZODsaLI+qHBKF99ppqf7J3Fnd1RCrrOYCbNlocepiYSxvOWsxjOJ9AMnb2pfhp8KklVY/vE6GR/xdgbiTM71cmDu6KE03nSisqT3SPMD/kY0jLsChcDN3aHJ+iNpZmr+nl8/zDJvMJ4Os/T43EuWDObfUeHONgXxjBMfvfUAO/9eJ6g4CelDWKYOjk9xoHMfSSNUUxTx5x0jDdNjdVrlnLppZfyuc99rhStCBDO7mY0sx0TA8PU8JoZlhir+OptHjaeKIrwd/RGOPxsksXVPiaUHBlNI5LPc29vgnmOefhtQ8TUMKZpEFH6mOdPk1W9PBMdQjV0RvIJunP9XNLQxIHkMMO5JKqhsys+SINbYFn1EEOFnslxDPP42CixXCs7oj2ktQx5vcD26ElG0iHiWpSYWgxEiKiDnNR6kGUfCXUI3VRRjRyyEadWWMBjY2MM5MYxTJMh9SRVmcO8fb2Gy3Ucw9RJ6RNsTt7B7tHHOXHiBK2tp7YORUxEHn/qD6xavYDa2ip0o4ANJ4Nk2ZfbTd7IFLMdCD2sFhr55Y/ybD1UDF7ZcXyEvu4wF7zCz15hkKymEilkOaj1ccWyKg7lJjiWSGCYJs9Ex9DrVM6/XGbg6CE0U2ckH+OeoWEks4uRQj9pPYFuamSMHs6tdSELGfqyxejSscIYCMNcWNPIcL6HtJYlp+eJG0d4z3yB5XUnmVCL9+NIfhCDOKtC1cS0nkkinaY700ONNAvdjJLVo5imybh2kl4OkDYnSKqDmKaBZqRZ7DLocq7mjyMTjORTFAyNQ4cP0rigk+GUzo6JYh8cSU0w4gizLlDFk4eHmcjmSeQVnjg0zHJfgFHbBAcSxXn/+Og479+iYzdrSKsj6KaKYmSI2XfRtbCBVMqadeAMXlycCRI4g9MWX/rSlzh+/CS3/uoOi1bGNKHGswiHLWipL6l5pGmGrk5BpdZoxzCtZpNLawaZ41hsKUsZfZxX7bEkpld1nZ2xcRb5rVqXZxM9tDi7LDqRnF7gNwNJPvLtd3FwSy9P3vksAGP6YVTBalCqGxmqqUGeouExTAO3fYD11fMtdQdzQ7S56iwaMc3U8NmPck6tVVfz2NgIc92zLJq6tFZg64RGjcPaN0dSR1lXNcdSNl6I0+KS8dus7fpjuBtTsxqnel0n+dhycEoygsuJ/yPvJ37XH9j45C7WVFvb9XR4iNXBZqQp/ZU1Csgd43SFrAa2fzw8yCVNLZay/nyGxgtaCfimtMswef9/DRA+2TWt7gH2Zh8BofzsNE0TEwWHw8bdd9/NV7/6VTZv3sxM2LJlK//3ptuoE6391dS0jbd0TpY5HHj/9ZMc+OJ/cPxINc4pSc51w+SZeC/rqqymo/25fi5qcOOYkghb0XWOpMOsrLL21w+PReiNL7BonnQzT0JNYxOsusA+9SCy3Tq/VD3FUscsnJJ1HM/u3M2bF4awXXAR6Drqpqe463iY6zc9gjmZPeCmm27ipptuYvfuvRYt6L/926cZHU7wyO+OI06ZX4Jh8P7GOTS7gpY2GPP38qYNVr3j4b4YNQkB/xQtlqYbPD0+zsXzivpOYc5ShNbZ/OJrv+Dh3Qst95huarT7wiyaprk8lD7OOaF2JLHcX0k1R2MgQofXmuT8fw/HaXMstPZhZpyTKZfFBNgwdHYrT2PYrM8OPzrvatiAfYqmTjMUmrwnOfuCDXhWL2D85j8AsDt/gletsM6jeKFARtVpclnbdcNDExwat96PGT3CgfSdXHb5JXzmM5/hiiuuIJ3+21h4/KU4EyRwBmdwGsHr9dLX12chZ1D0gZSkysTOeaFyayKnixXkDCCTd1eUCYbLQs4AbJKEU7JV1sVpeXEAuCQHVU31tM6r4+nfl41cszPkvRcEu4WcQVH4HLBVttUpOizkDEAWZIL2So88jyRZyBmAV3ZYXtTl8srr8ssuCzk71a5kobK/DN2Jc/IlZeby5DduxnfBeny2ynY5JdlCzgDcooOAw15R1zVDu4I2u4WcAYiiQGyisi6CaSFnQInofP7zn+fo0aPPSc6uvPJKBgb68eOp+JuolM8l2O2Y2SyegmIhZwCSKBCYoQ9cks1CzgDskoTXVnkNkiAx/WNbEpxA5fwwZvgotwmVYy4KIlWVw0ibnxI5s8L6u3v2PMvCRfMt5AzAFEWq7JXBBXZTqiir9tst5AxAlkQ8rsq6TodUcY9JgjzjPeKRZAs5A/DbXNQ5K/vWK1WeyyM7KjI0iKKELlTevG7JZiFnALJon/F+cjkqzxV0OAjZKud9TKk8XhYcGGisW7eOW2+99SVLzk5XnCFoZ3Daor29nXg8/mI34wVhxfnzOLi1F02ZgZX9k0PZewC5ow1nfaX4/KWA2bNns379er7yla88Z53Ozk4eeOCB59CunT4IBoMVZf+PvfMOs6Mq//hnZm6/d3tv2fReSEIIgdB7L0qTJkVEKdJUij9BBQQRQRELiiIWOtKRllAS0ntPNtt7ub1O/f1xl3t39i4CCgTMfJ6Hhydn35l558y5e78753ve4/f78flGUHgWGRyjq9DCsY8O/ATY7XYOPfRQXnjhhU/1vBb/PZZAs9hrqampYdu2rWm/2RAMQyWU2I0+ZAWdosUJJRtJqUFTrD+1k5bkSlObrEdojCWIKFn/kaprtCXCrA36TbFdci+Ssx9liBk5qcnEtAR9KXPslkg31aPd7FiVrbgu6wnyRBv6YAHMD7AZURJ6t6lNJ4JiyCS1bKxmqOgEGJDNsf2pPnaEVZORP6GmEOxh/Kq5uv3OaDey0WUyScfVGJqhEFLMf5HLYhM9SrOprTMRwiHJmUK5kH4GAlFW92aPN2JxWhctofDYw0gNySuqKPQlVFpjZv/MbqGLbcGwaeFGXzxJ0qbSl0qYYjf7/axYZc5r1dYwoaiCamTz0g2NkNqTM2bA4K677uS+++4jEPjw6vSVlZXE4yne9r+NPsQArukREgmD7tiQPgC2hwfop9F8X7EQG4MKEWVI4WldJaKG2BE2X7sp1UdQCJoWAvhlhdYYJPSgKTamd4IwYBKPcT1M0oih6Nn+MgyDmOanKWXOC8FPS7+NcEpFLK/ASCVJKBov7XJROqT0ylNPPcXdd9/N4Ycfmlms88H9qrpMQjHfg1PTWdLfZWpLSiEwYvSHs3lpmsHKdSGWN5nvq3EgSk+XSiSZ/YypmoG/V8EhmVfTBtVeNgaDpkUWSS2FrKfoTYVNsUsHunm2xSyWOuNJEppGXM22a7rG1nAfAdV8D1HNT5FRlPZUZDrBICXb2BUx59UQ7eX1bgWpsoRUa/qzGlFSBMI6LQHzWF7d2c+6HvPvjm0DKXqihuk56rpGa3I5X/3qGWzatImuLnN+Fnsey4NmsdeybNkyDjroIFRVJV24VsJAR8hMvQjkOUej6BGSagABAcMwcNmK8DqqCKZ2Z75eJGyMdSzAI/oottUgCXZkPU6+M0i9x4VddFHiKEE3dPrkVuYVGzg9/RxYUYokiLTGomzuA3/MQZmziBJHHoqusSXSgWh4aUtqVLnq+Oqvz+TFB17k7aU7SOkK5Y4qnKIbRU/RnGomYRhU2fMptaf9Nr1yBwkVSt0yU/PqsYs2omoUvzJAoV1klMdBtasY3TDYGulA0T1oRpzJvlpEQaRfDuK09VPqjTG52E2F24Osa7zXFSCRKCWuqkzJS1eNb4z10xIXiKkKY70VeCQXCS1FS6KLSrfE5KII0wvTK/vW+vvpjhSwM6pR7hiFXbQRUaPsjvbjFkXmFjupcRWhGwbNyWamV8j0RDRmj55C/Q8vYfm1dxOI9JPSDCrsJZQ6vci6xuZwJ7VFNtyjY+w/6Ofa0hMgFVcJywr71JRQ4HIQSSmsbu4nX7NjcwhML0vXIlszEMA2upg/PG/gb69DEmwk9SghbQBZT7Il/iZR3Z956gI2DFROP/0UTjrpJC6++OIPfTvm9ebxyiuvcPLJZxONRrEjcnjxwexX5OHQsiJ8NidRNUWb1sHoKomZd9yO8dvfYQSDrOgJ0Nhdyru9GjYjm1eho59pBRpjfHZq3QXohsGmcAeVXgnNHeKA6lJEQaApHKFtQGdFl4e2SB1uyYdqqHQm2xANF167Ro0r7cvrTfXQlUzSofZh2DxIgh1Nl0lpQeyCG0GQcEvp/pK1AcY7ypheEOfAkiocog2/EmXe7V9hxSPP8fp74JWK0Q2dHbH1LAu9SUKPceutt7JmzZrBmlsSILH//gdw/vlf48orr8MheahyT2eUUEe5PV27Lab3MLPYYMakXo6b7SXfZSeUlNnQH8RpeIjusDHenR5fmyLdVFVp9ARl5uRX4BAlepJxumwhCmcvIK9mDv5H3kEzdN7r72JNfz4RNUmpvQ5BEIhpfmq9ScpdCqO9RRTavci6yq5oOzY8bAoLFNnSPrWw1sUhVSH6EgYF4mhckpO4lmR3rJuw4qQ1KuCV0h4+v9KBJNhJ6nGKbbWIgkRCD9Oi7kQ1dKqlcXjEQgxDRxE6mVWQR0dSptiWrin3rb+ewfLbf4cv3Mr4vEJKHG6Smsq2VCf1VQIpRWN2WbpW3qaBALIBD6+30dBXiyQ4UPQkUb2XqNZHa3IFOhq33vp/tLW18ac//fE//l36eWB50Cws9lo0DNQh4gzAIJxKvzX7oF0QBFJaEH9yh6lAqYZKQGumzD46UyjWIXpIKtW4pTxKHOlfmqIgUuEcjZ8wB1eWZwqMjvL6OKTWxeS8UZQ40sU17aLEPgWjaE/JVLnSiwgcHgdCt0G910OdayzOwcKfdtHJBPckauwFGXEGUO6oocxtMKtgHHYx7Wvx2XyMctczKc9Htat4MC+B6fm1CESYmjcKcTCvUkchbuo4pKaEikHTsUOUOKKmlJQRz4gzgLHeUuo8AtPz6/EM+pPckpPJvtFMGiLOAOYUlyILcWpcYzN55dl87FM4mkPK8qhxFWXyGusew84+gX3yazH8EZK72ph46AHUucqY5htF6WBBVocoMaewDqqy4gxgWkURbo+dQ8ZVUTBYqiPPaeewSVXYXFlxBjC3pIhFr8UIdYzJFBh1iT4q7PWsi700RJx9MGZSTJw4jssvv5x77rnn305dulz5pFJyxuejoNOa2sCJVZX4bM7BZ+NkinMsoqzh2L0b+777AjC/ogi/EMaJOa+kOpqZhT5q3QWZ/ppVUEtUirCwpgxx8A/qMfl5jCv10h+fkinIahNsjHKPwWNXMuIMoNxZgccBor0gM5Yl0YHHXm4SZwAOqQS3w89hZXU4Bp9jsd2Hy8hne89ovNIH40tkim8O03zp+9E0jZqaD4z4OqLozHhBBUFA0RNUGEUZcQbgFSuIOmTOWlCY8ZkVuBwcXFtOfLs9I84AZuRV0t5lsH9hNQ4x7dOqcHnYx1aFPVSOT0r3tySIHFpWg9sepcwxKuPL80rFBJJ57FNYS6H9g/FlY1r+aDaF9Yw4A8iXqni/u4AK+yRcg+f1SC5m5I+mLSplxFm6b2qQ9SSl9vqM/80t5jPZsS9jbDPxDBawFQQRB7Vsi8QosY9CEEQKK/NwuTxsbnIwv6SKkkFfnkuyMdszinA8K84AZpQUsbXHRlP/WCQhPe7toosi2yhaksvR0ZAkiRNPPIHVq9diyYEvHtYTsbCw+FIRXbsDz7QxHx34OVBcXMzdd9/NL3/5S7Zu3fqpnltZvx7bhPGf6jm/KPzjH//gzDPP3NNpfKkYO7eWzu09aCPUO/tPcTjSwm3Tpk0fEWmxJ7AEmoXFlwhd0/GW+D468H+YxPYW3JPqPzrwc+Db3/42ra2tvPzyy5/6ubXGJsTKSnDkrsj7QiMIOIp8aOqHC4m2tjYMw2D27NkfGmNhZvx+o9i+tOlTP28ikdjrF618UbEEmoVFBt1UDsDAGPQY6ZlfYOl6VzoYBsYQU7xTsLNP3lQSRnummr+sx0kZHbREw/TJ6SKxuqHj13YzuQSW93dlqny3xaJsCQTo0Xfil9Nmd0XXWOZvQ9HctCbSezL2bO3GXiMwt7SfAvd25EHTr6Kn6FOacUnpzdw/wK904hVdNMSaMwsRYmqMpngLW8JROpP+wbwMdsdamF4IzYmmTBX5ATmA4NrNyv5uehLxwfvSWNbfyeSKFA2DeQG0JXupr+sl6txCYnAhQlJL0S3vIqWIbAsNZGLXB/qodEj0yQ2ZnRIiapS1gWYW90boSAYyee2KtVDhcrAm0JneLSEQQUFnp5JiVaCL/lQs01+b1RZKPBKr2rPbK23tDZJyi7zb1Ucoma5OH0kpvNvRC0V2tviDmdjFLQE2dxbQIzdlKsYn9Airo6+gGCpDS0NMmjSJhQsX8sc/fpR3R8BpL8PjNO8bakOk2j6LFzq7iappw39UTbE51kwsCVv7+tE7OrGNHcvKHj81kheVxmxeWpQUrbzdm6AtEcr019KBLrb21PKvFn9mgURjOMr7rQai2ERCS0+xaoaKX2mi1uWkV85ue9Qv9+AVbLiNSGYsa4ZMUGkmrHdlCh4DCMYA030FrA+1ZnahiLp1EjaDeMdWIuoHz1FnW2wjO5KNiIILRVF4+umnmTdvHmCg68nMwot0wV+dbcnVdMu7M9dK0c0B5WEWbekinErnlS7I2oUjP0ZDLDv9vCncTVWhwPKBzozhvzcZZ12qk5S3l7jwwX3pvNvfgar56FdaM5/zsDrA+tR2/tK5nqCSHl+yrvJOfytxxU53amh/dSPrsDrYTFJLP8eYmmRFoAWvQyOiZcdiWOtgfJ6PmNGaWVST0CP0ya1E1V4SemiwD3RStDPOm84LDEbNrGbLmi3E9RhPtgQYGFzoktRU1kZa8QgS63qzz2ZVd4gNHUWk9C60wV0ZFD3J7sS7g4szhooyffA/iy8S1iIBi72WZcuWcfDBB6Mow7dYERCwA3aEwZpM6WrxKqLgQBCztYd0XWG//AUsKDw40+aXAzREuxjrGZPZVFk3dGShkVMnpDi0JltKYGcoRHMwwfzi6kwNq6ii8lRjmN54LU4x6ynplzv5+s1HMjEYILl0LQDtsRS/3BbHJ9WRZ8tuDN2caMYj2RjrzRbAjaghAko3o9yjMjWsNEMlrjcyt1hk5pDSB1tCYZqTEc6a4MNtS+cVUxSW9/UwqdjHmILstd5rjxLSVE6dmZepFdUeUvjHKpUDCoupcmdrWG0ItyLhYIIn6+FpisV4sTOKrtZjE52D/a2S79rNwnIb0wuyee2O+mlPxDjtju/T/9IqoltaiGsyO1ItHDzHwcTqbN+u6RogboODp9UiSunn2BeKs2JrB/PGV1JRkI7VNJ13NnbwwrJCWnuze37GtSAd8lZ2JVajDdbASwt0FVC58sorsdvt3HfffXwYoujC5xqNJDopKi7gj3+6ixOOP5PxjlqOKDoacXAsaUSo8e3iqNo8yt3ZMeM/Yh6Go4jAo+sy59wVCfNqT5BZ+WNwD3rXNENBNnaCUYRbyvoCdVsbxd4eStSp2AY9YlElxcs9nYxxl1M1pPjr9kgHvSmVaueojB8soAZ5N7SOmCBncjUMA4ducFLpaI4tG505vjcVoD3Zz8LDj2bssfuw+ifPk9JUXuzezbvBjfi1YDYvXeaQQ+fyta+dzSWXXALA/PnzOf/8r3P11Tchitk6YGViNd+cPI7r9s2+Oe6TE2xM+pmTV0yJY3As6wZvNfjJs9vYrzp7X02hCDvDUQ6bUkKey45QVoVw0nn8/uv/x/r2alQ9W8TXL/fQprQTkLRMHzgEjf09LlDrEcieN6h04LTp1Huyb3NTWoSE0YmdWhyid/BeNXbGmilxuJiYlx33nckBNgZ6yJNqsQ16xDRDJai1MqeohLG+bF7JapGT/+9Unr30KWwfjBkjQZF3M4ePcTGqIPsZWzvQz5tNPtr7s8VyI2qYjdF1NKfWZrYsMwwdt9vJa6+9zMEHZ39/fVGxFglYWOxF7Ny5k1NPPXWEnxggZMUZgCBICILNJM4gXehxqDgDKHYUUer0ZMQZpE3SRU6vSZwBTCwooMThNhUY9dlteBx2kzgDKHVUUzXQg3ti9guh1utklE80iTOAGme1SZwB5NkKsIvmAqOSYMMl5pvEGcC0gnzmVmoZcQbgtdspdNlM4gzgoFofB020mwp51hbYmVwim8QZwHhPpUmcAYzxepE1e0acAQiCDVkrMIkzgHG+YvKlfEhl3156JAdlxTaTOAOYW1XC9DFlGXEGUFbgwVfgyogzAEkSmTKm0iTO0uctpCW1JSPO0nkJCEicfPLJHH300Tz55JP8OyTRhSSaC5S6HCUsLDwkI3gAJPKw2aSMOIP0mHFtbmbU3LkIQ+5hQl4+9R53RpwBSIKdkFxmEmcAolpHIlqVEWcAPruTcV6HSZwBTM6rodRRYSrcXGQrxCFpplwFQcBuE03iDKDcWYRN8FA+vZ7AtvQWUU7JRqEzZRJnAKLoYPGit5kwYQI+X1Z4CQImcQbQp3dy6UzzNG+Zw40zKWbEGaQL+M6u9ZjEGcCYgjzKSyXyBhcWGMEBJI+bqtHFJnEGUOyoYECImfpANiQ2RjSTOAMotNdQ7aoytTmlPIKyIyPO0vcqMcpTbhJnANWuEhyiKyPOIP15LHXmmcQZwILD96Vl2e6MOEvHutElp0mcAcwpKaV52I4BebZ8glqjaT/Z9D3mFrq1+OJgCTSLvZaHHnqIc88917xx8xec2M5mHBO+GP6rvZmLLrqIH/7wh3R0dHx08H9BqrUTLSmTN6X2o4O/IBRPqyGw7aNrahmGQVtbG0ccccTnkNUQFBljoBd3UeHne93/gqoZ1bRvbt/TaVh8zlgCzWKvZenSpTz77LP8/Oc/H+GnI03957YZ6CS1RE67zvBpU+hNRQmmzO2KrpE0cmNBNhV+BZD1FG0t3WAY2OuyhT8dkjz8YBJagphqzkvXdVJa7rVSukxCNW9jpegqcSV3a6ukrqLpZq9KOKXij+UawkNybn8FZJmwYi6qq+kfTBuakYRkTr6yphFTFVx1pWjR7HlkXUbThuWVlAmGUwwnkcy9VqdfQR1W7FfXdfQRns3pp59CKBRiw4YNOT8bTnpq3BjeSETLrQavaLl9GFFkOt5YQ9WJ8zJtmm6gjpBXUkuhaMOeo6YSknNj45qKppvziihJ4moyJ1bQR9haS4C4Zu5b3dAprC/C7nUS2N45JFbI+aLRdR0Dg8cff3zYQgEhp79EQ6IlnNs3KSHXMxVKqkSG3a+m68RT5n4xgn6KxtXCsHGn6griCDNpuq6ZCldD2s+V1HP7SxthLKt6ipRu7i9N10Z8jj5bEt3InsNT7CG/poCmNdtyYlMjLMTwJ2QkIfd3kmrk5mX5zr7YWALNYq/mr3/9K3a7nTPOOMPUbhhxDCOVMSzrehzDSKBp0cyXrq6nUPUQj3T+kg2RleiGhl/uIaj0MCVvAhG9jbgWJq7FWRRdxDuxDg56s5k7NjUDsD7YR68RYeG4AtYlWwkpSXoSCRa1+zm8pIYDK5pAaMUwdDqSLWiGwttt9by7eBPGpDG0RCMs7/Nz7qga5pVvRxC6UXWVXdFGYoqd9pjClnAjmq7SleyhKdFLgW08G0Ot+OUQspYkqu1mZn45K/rtvNub3iFgW7STuDTAjPwK3uvqwZ9K0peKsybSyWH1FTQlwmwODKDpBm80BtnV7iXRXs0/14SJyyqbupL8/m2JUm0fXu+KsjMSIqVpLOrpISYX0pt08P5AF4quszIQ4NEWmUl5k9DEdpJ6GEFIMKNsE1dPtRMnwuZw+st+lb+PLUGdMUVjSHns9DQ0EzZCBEu3cto+BezoCLGhYwBV03l3ezfhLoWCDp03320ikVRo6AywfGULR5WUsXJ9O7u6AkQSKt97NMz9j9XiswtEtHYMQ6cpuZZXg/eTMCLohpJ55gYqV139bX70ox99rJVvqhYhktiFqsUwDAMBgTLbBFYn+ng7tAZZlzHoZVbJNk6sHMXSrjC7wxGSqsqSnm4K7R60VYuhyo1nUhVbwv28748wI38MfXIzUTVMTE2wOdyMz1ZNRzLK7lj6TcuOSBsN0Sg9iTr+2dFOSE7SnYzyclcXbmE826MDNMd70HSNd/qaeK83SV/SxuZQA4ou053s431/A5XiXCrUaiQNJAwOy8vn5tH7E9M0NoVbUQ2d9mQXcaOL4487iKaVawglg8TVBG2JBk6pGsvDM05kfn75YJ9EUQcXGuh6dtrYYStGEr3YbR7AwDCgQhrDvp6vcOPbVVzzdoRISqMxGWabO8RJB41mkxSiJR4lrqi8uasfX6oAf1Dk3bY+NN1g44CfhnCEBQVVvLO9l65IgkAixZZ1G5iz71SuO2oLlSU7AWhPttCZDDJZnEu+bAdDQ9BUypV8Rttm057spi/Vg27oRPQWSt3glhy0J5pRDZWg0k9I7WRW/gSiWjsR1Y+qywTVJsbm5WMTFTqSLemivZEO3u3rJl+sw6+2kdRj2MU4x47Zwj0L7Cys24EmNQCQN0VCaW3nmCIHgrADRU+gGH4qvVs4qayOxTsUNvREUDSdl3aG2dFSwnljFCo8OzEMlebENh7vvZ+wFgBDx8j8pyIIxuD09V5n7/pSYC0SsNjrqa6u5s9//jPXX389mzdvHvZTgZHfpuW2T/JM56Tyr5j8K6qu8Jj/LcRhG16fWZ/kJ/uZPU/dsQQDHWV4bWa/za92DlBin5i9zqHjmXrcaOy/+Qf2IZ4UVdf5v40x8kSz98yvNjPaMyYnr2mFAapcxabYPn0Dp482rzbsTcapKNNzNt1+emOI2T7zPWwM9+Ki3uSV0QydjmQ7k31mD847/a3YmWDKS9EVjq7bzWhvvin2hbYepvkmAVA0dyyVx85m6W1/4vAD/Pgc5rze3NHFodVmb9A6/wCzxxRjl4b2gc5Ff3Xg1keZYleF3mBbYpWpLb3qTWXu3Lncd999/5Gp+tB5X+NHd3yPb52VfWNbZg/yy+mjTM9R0TVaUl3MKso+B8/B++KfPpkltyzCGPKmMKXLbA0nybcVmq61M7qLGqfZhxRRA5S7fDhE8/ha2r+TfMk8bd6vtGMTSkzPRjc0jqgMMD3fPN26M9bAYWXpZzvulnPofXEFPeu2408plDvNfsUrNj7Opkh2+nPChAn89re/5uKvf5+xY0dzztdO4bpr0+K3TphIlWOa6fjKslYeucSDbchzlFWNJYuCzMg379H6vr+VI0dXmtqiikLCKVMzYSL2E85A/mN6gcdlL0TxB6eYYmOaH5+ULdYLgwskHB1MGDbuu5JtjPbUZAo8A2iGRkjtpdZtHotL+3ciK+YxpxoyPzugi4phns0nGwY4+cpvooYTdP1zGQDtCT+TChy4hmyorhsGS/u7mZVvfo6Pt6/nV01LGfq9nf5DQwEELrro68yfvx+XX/5tvugrOa1FAhYWeyGdnZ3cfvvt3HvvvUyYMGHYTz/sD5jcdh3V9IUGYBPtIOQacYcuCviAfLs9R5xBuuL7UBpXtFA5vgpXceGwa4lI5E5HSYJ9xLzcUu61nFLu8T6bLUecAdiF3Fin4DCJs/T1RRxC7vHiCHnZRTt5thGuNcQ4nje5lsj2Tjw2R444S99Dbt96bJJJnEG6v9Bz+0And9pIQMDn8/Gzn/2MG2+8MefnH4fTvno0rzyzzNTmEiWTOIP0DhKuYc8h/u5qMKD+0EmmdqfowCGYFyEAiCOMA7vgzBFnAMIIRnFRsOU8G1GQ8Ei513IO5i867bhGlRPb1Y5HcuAdYXwNZ9euXaxYsYqzzj7VnJMgYBvhvpw2u0mcAThsEu4Rxq3TNsJYttvJd9gxujsQ8grAl5+5t+HYBKdJnH2Ql10cqW9tJnEGIAkSDjF3fDLCs7EJDvJH+Iy5JBtF+00isGpXps0r2XPGhygI2Ef4jBnoDH+pMvTfo0fX8+qr/xohR4svApZAs7AA3nvvPe69917uvvtuRo8evafT+bcoCYVdS7dTdPS8jw7+H6RwZj2RHZ+tOX8kKisrCQaDvP/++5/42Ly8PKbOGM/u/yLvLU+/yaSvmFd0fmEQBKrOPZzolmb0RK4n8t/xzDPPMmXKuM8osQ/BMNDbmxDrx3507B6kdsEslECUZHv/p35uQRDYf//5bN685VM/t8Wnwxfwk25hsWd4/fXXeeqpp3jiiSeYNWvWJz6+T+6lT+42tbUkWtC0RKYIJ6RrQEViTtqj8WybYbCqO8DGkHn1W1s8jGzIJIYsRFANlZceeQ1p/hSkguxy/h0RP04pZjIeK3qKpJ4gqAyYztuVbGdTqC9TKBcgpETpjQt0JbIGdt0wWNEX5L0Ov+n4pnCUQEozGf5lXaM3FaYlbu6DtkQvYTVMSs/mFVNTdMST9Mu5ea32h0159SbjtMcN+lNRPPVlSB4nwa1t7Aj38V5zwJxXMEIMhWAqKxKSqkZ7JM7GbvM9rOkMEdfCpv6S9SRRLTA4pZnFQOeqq67itdde4z9h9Oix9A/0smndjkybbmi0J0KsC/aaYndF++lNRUkNMfyHlRSda9cS9gdMb9E6kq2kaM8UFgaIqhEUQyGmRYZcS8ev9tCezBYWBvDLA9glBWWI2V0zFCQhRkI3iwLF6COsBpH1bF4xNUlSl8k/72DshV5af5feUWFHvJ1WpcP0HPtSUWpdtcPcTgaxWJTqmnJ8vmzpE12X8WttqEbWWK8ZKv6IzJrWoOkMGzoG6NUjpIYssgjKKZJ2hZZoxBS7eqCP9f3pAr56ayPiuMl0ROKUO1VkPWrqL4UBIlqn6fio5icsJ0gN6S9FV2hN+elMmsd9R7KLrmQQdWh/aXH61SAxzTxudaGdNQMDmcLCAF2JGPWHzKblrdVD+kCnR+xlW2LY75l4AEWMElOz/ZXUFFqTuYsY0gW2derr09OsjY2NkFO41uKLgOVBs7AYxhlnnMHll1/OX//6V/7+97+PUMj2wxEQmJk3l2m+2WxNdeAf/HzJWhRNT1LndPON6nkU2T0ohozh20p9kYYc8TDGmS73sTk0gKxKNEQMZG08kmAnpsZpT/YiIOGVfBTaizjq2kPRlT4GHnuWthgUSOMQBZGuRIgVAyGSuk6xvRS35Bv8gm7HJTkJpmScQrrOkl3yM6tYQTcURrmrcUtOFENGte2gygMd4WIKB2trhcVmJlYG6QgKFMkTsYk2okqCXqULlyRQYPNR6SoEYJW/G83wgBBnXmEFkijQnYzQFIvTn4KtgRJ0I52XaOui0u3GLWmM96avldC7GV3QT0fcoDsyCVFwoeopDr54EuXFPtb+7l/UuNP9FbA3M2FMkKgmc0BdOXabyEAsyabWIDZEqtxuRuWna22t9Pfh8dp5eZObprZ0Ic+YFiJhhAiqvayLLCZlfCCcRdJeQx273ca7777LoYceSiqVuzL0344JwcXMmbO55poruOzS71DqnIBDykMTDGyDU4bz82S+UlmCICU5oCLtpWqPRWmPJ1A1g7GeYoocbqSpY9FPOYK/X/57RnnCHFKR3iR9eX+ExV1ugopKsVSDXXQg6yl65U4cogOfzUn54PjqTnYiiQJJLUW1qw5JkAgrUbaFuzEQGOMtpsSZfo4bQ7sJKQJzihTOrkv7zDoSEVriCQw0ZhUUMOObJyMV+Xjxjt/gNQTKyiIcWJ/2nq3tjLGr3UtnXMfGaGyik4ga4dH2p2lOtA1+YgQeeOB+tm3bxZw58/jW5ddiIKSnOQ07dfbpFNqKmZFfTpmzCMPQKK3bwSGzkiTiKeaXp/urqS/K7iYFVdSYNyOP0jwXKVVj6dZefLoDyQdzRqU9l1t7gmjeEuouvobtV/8Jp2AnIMv8sbGfvqSTeq+XGnfaA7gr2oY/CRoylfY6JFFCNmJIkh8NnaaUiia4MAyDEinKBE8xgZSCd9ALKusB8lwxAmqMLQkFVbBh6BoOVaFMKuTYaoXjq9M1D5sTvdgcCaKKyuxpc6i54jwabrmfpW192G0OZu0jM2t0+o+ydzYGibS7kYUYB9cUYZdEumIpVnYodCZUHu3uJKClV8zGU+2k1CCGIfOBz+zkk0/m+ONP4PLLv8UX2Xv2AXujB80SaBYWI1BTU8Ott95Kfn4+V199Nb29vR990BCKPdPwOc1G4BJJ5/uj9suJdTh2MLPQXJT2xfYgUXlyTmxPMoJvsCitK8/JBQ+dzbN3/43CBrOIjGsKawZyPSkNsUYKJLPJ2yb5OaOuIie2I9nNaI+5vTneypzCqpxYxQhS7PCa2tYG25hTaF6wEEjJ/G6XeQEAQKWvkxnDDM5tiX4kskZ5h8fORY+cy9s/fIjiPvPvrYB3J2cvcDGcrs4EpS5z+42LZIIhsyFc1pM82X93zvEfcNttt1FcXMzVV1/9oTEjIQh2RNHDjBnT+M53vs2ll14BQLVvP6RhfrBzqlNcOWG0qS2QSuIyzEb78u99na2L36NiTYOp/Z2eCGt6JzKchNFHmcO88KM90UKtO7eeXlSN4xq2oMVt28GR5eYFHiElTqnTRfEhMyk9Zg67bvsbhqwSzNvKQXXmsfxmU5JdbTNyrnXL9p+iDJaS+dnPfsqiRW9zw3dv4JuX3UBrq7nm15U1F+MUzc9x/PjVnDe3wNTWF09QXmguWAywrKmX/WvM9Q7fb4iyz3V30Pbwv4jvzE49P9KUotBujt0WacaDeSwDbFaaEYd5v/KNOONcZq9gSA2yVTe/9QK4olbJLLD4gF3RXmaXFlH63YtIrN5CbNEKAOLjephYbv7sLFrXw1yHeSEEwKSXN+d4CGPJVhKDb/gFQeDVV1/l2muvZdu23PIdX0T2RoFmTXFaWIxAR0cHl112GS+88AJ//etfP2THgT1LMpLilZ++wUk3nI6rKPdL6X+N2afNpG1DB4Hmno8O/hQpLi7mkEMO4YYbbvhcr/thBB7/F+O+cjyib88+8/zZ4yg/YT9afvU8hjxSja2PT3d3DwsW7M+fHn6EK6+89FPK8CMwDEJrGiicN+mjYz9n3HOmINhtxBav/EzOLwgCRUVFXxpxtrdiCTQLi3/DP/7xD66//nq+9a1v5dRK+yLQvrGT7Uu2MvWc+Xs6lc8Up8/BzBOnseqxtZ/7tU855RTeffddZPmTmd8/K5TWbnpWrKPw3BP3WA5l+0+h5sKjaH/0DVLdgY8+4CN47LEnmLffvixZ8j7jxo/+7xP8mPjf3kDRgdOQ8twfHfw5Ibmd5J96BOHnF8Mnm+H62FRXVxOPxz860GKPYgk0C4uPYPPmzVx22WVceOGF3HzzzdhGWL5vRiKQ2I0/vj3TElf62RXbzQ8anqMrmf5Ci6tJdkab6IwWsrw/mIld3u+n2O5FY2fGvB3XIsS0ZkqdIWJqH5A2Mg/IzWx5chWeqSUUTU1PdQSVfmxiGzOKGhAIDMaq2G3NHFNVgMeRNT4bYj91Poll/laCSnwwrwSN8SY8NmiJZxct9MpNzChSaU7uIjVYRT5CELVqIwVj2+gl/WZLM3TWB9spc/pYF2xDHTSKbwyGeLgpQYouUno4fX1DocDVRrXLS3O8NXOtjkQ3dlEjrDWS1GLMO2sOrRvb6GpciWZI7Ipmp4v6aGCiV+WNDT3EBt/kdEbjLO/tp8eVoCGWvpaq6TywKomarCRqtGSM9W3J7Tw38CAj/TosLy/nvPPO4+GHH/6IZz4yhqGg68lMUVsBiTxnNXGtn5SWzkswdI4pTXJMRTHL+rpRByvWN4RDNIQSrA10051MG9gTqsKSvi5a//oa4Tw3viP3B2BHrJdx5RFm1qxGEKKDzyFGuWcHC0piyEZ2ytDt3M6l00JU5K9HN9KiU9UD1Hi3Mau4DY3ewdxV8l1bOKTKYHeiEc3QkHwuis6Zy4Svz2fzX35B+6aNAKQ0mZ3x3ThiBSwZsnBjQ6+fSm+KirJVaKTzCskxFvc2cnDB1yixpT2HfX19+P1+pk2fhM0mcMIJRw/moKHrCn/ofJRd8fSUrm5otCaaWb19NL98O4k6WBduZyBERyrJso5eOiPpsRyTFd7t6qO0yseq/uwikXVdAxTkqbSm3qd3+Saqzz6UmJjAP6mJSy7w4yrPLqaIaS0cXOqmwNWEMViNP6mHUIUOJjnt2D7wLBo6JWKUKb5ywlprZnyF1D4MEtRhQxhckOIQFM6u9TOnMr2g4gNa7F3MvfpgevsaGNiUrskYVONsdzaRiMpsGrJYZ8mOHirdDpaHO0kOLijZEUzy4HqD80qnUjRY/kTXNcLxRpJygA/23rz99tv5wx/+kDNeLb5YWB40C4uPyahRo7j11lvp7e3l/vvvp6dn+FSbAJhrewkIeJzViEM2KDcMjWMKazi5fCb59uw0VUOslQK7wHhv1uPVL0dZ2j/AtLzRuAbrSumGztpQM16pgCpX2isz8fjplO1Xw0s/uI+FxbWZWmSyrvJiZydV7ipKHVm/TlOsm9ZEkil52TIDCS1BWG1mbmGVKa9tkTbG5cvMLMgWAu1JxtgtdnHKPoV47WnBquk6L24JQH8l9Z5sAdy2RIAXOhII+rhMvSnVUPArTSwsq6RkSF5tiW7iWpIJ3tGZNs+4Ag68+ViWf+8x7JHs76tdsVb2rw8wp7Qo09aViLPLNsBhk6vwOtJ5qZrOCxt7eXvNBAqkrLdoQB7gue7n6FM7yFZSN0gbpg0EQeD3v/89W7du5f777+e/YcaMmXz3+pv57tW/QhjsA8MwKBRj/Hqf8UzOL8zENkaDNEfizC+qTddqAxKayrL+DsZ7K6hwpRc8SIU+8q44jf61y6hdvwEGVzH6Uyn+uiXJfvl15Nuz425FoJ2pZSnmlGT7qz0e49VmmcNLq3FJaS+Vaugs7m1n3zIH4/OyzyY0axzlpx9KSbAT/b03IBwkpqi8uDHAZHs5la6sB3FrpA9bfpQFFVnv20AyxU+XqfSFx+EQs2+sdifWsjqa9kP19PQQCoU4/vhjufqqmxBFT6Zul2EY1DsrOKL4EIrtWZ9bSOvlmAN2cszkCqTB/orJKu80dzN7bDnVQ1Y6r23rJ9YbZ0HNkLxUMM65ioK+dXi7soWqn1naTcPSYsZ4sz7MvlSIRb391LnHZeoTaobGttgO6t0VlDqyn5E+uY+OeJAq55hMjTRFl4lJG/jBrDyqPNnP2PqBARxjdQ46YBbi0eejv/Bb+np6eXdtD4eOLaHAlfUrvtvWQwEOphdnn2NrOMZzGwwK9GmZOm2qofF093ss6l/BUA466EBuvfVmjjnmGFT1v5ua/jyxPGgWFhYfSmtrK1dddRWdnZ38+te/xu0ePi0i5BhzDYycQrWCICEIokkEAdS5q0ziDKDU4aPQ7siIMwBREKl0ZsUZQMPrW/H58jjgxINNhWIdoo1aj9MkzgDGeCupdZuN427JjVty5OQ1zlNuEmcAFS4v1cVkxBmAJIrUF7hM4ix9X0Uk1HxTMVCbYKfE6TaJs3RsJZXO7H25Ct0cfPWxvP/wv0ziDKDeU2YSZwBVbg8FbkdGnAHYJJECV4FJnAGUOEoIaX2Yt7kRMv+ePHkyFRUV/PKXv+S/x0AUbRlxBmkfUIXbYxJnAGN9hZQ7fRlxBuCWbPhszow4A9CCUSIP/pMxc/fBd/13sO87F4Bip5M6r2gSZwDT8otN4gyg1uNllEfKiDMAmyAyId+ZEWfOKWMpvfYCJpx0JOGXn0R/+SkIB4H08y/zSCZxBjA1r4xpwzYjL3E5AZtJnAGU2usAgba2No455mhWrlzF3LlzQRBNRVUFQUAxNJM4AyiQyqkr8mbEGYDXYaPA6zSJM4A5daXMKDP3QYkNmv75G7zTF8Lck2DwM7zv2AKTOAMocxaQZ3ebikdLgkSlo9gkzgDKHGX4bAWmArZ20cG0fI9JnAHsU1LC3Cm1iAtPRV/9BsTClPlcFBdKJnEGMKEw3yTOAEble1HUAlMRXZsgUWwz97Uoitx7791cd931XypxtrdiCTQLi09APB7ngQceYO3atTz00EOMG/c5F9j8EHRVZ+Vv3mb6eUdjL8n76AO+DAiw35WH07mqme1vrfvcL3/qqafyxhtvfKw9N/cUWjBK3wO/JfnCSzgWzMd99hngzl3N+p8get0UXXI6hV87gcSarfTe9Udiu7Z/9IH/IU8//QyVlRWMHz+enp4eJk4c/5ldazhy2A+LHgbJBvtmRdrnhiDgPOR0jM7dsOuz81kee+zRrFmzlg0bNnxm17D49LAEmoXFf8Bdd93Fzp07efTRRzn//PMHW42cL/P0Zuu5f6mG1dxaWhE1TkgxG3c1Q0cXcmNlPYmsm03rvQ3dbHxqEeOuOslUbT6myqiGefuiuJYkOaT47QcktNyabyE1QVA2F7zUDJ1oKndLpJCskBx2jpSuopN7D4qhmAqZpvNKkNASCKLAflcehmEYbH5iNbKRm1dEiRMYVpNM03XiI6wojMkyim4+x/B/f4AgCFx//fVMmTKFJ554YsSY/4SRhF5UVUkMe5OR1FRiWm5/JQ0l40/7gLCSJCDLqNt3EnvoYVBUfN+8lMr9p8EwO0pYSRKUzedVdZ3ksH5w1pZRe/phlP7wW+jRBL23/47Yu6tJpFKEU7l9ltBzn2NQTuJP5S6qsEm5bbKR4oMiqY8++jcOPHAB//jHY1x33RU5sSkjNeJzDMVHeuYq2rD+GoglGUjk9m08pYCmwKrn0+Js35MIpWTiWu64F8Xc4w0xiTrsc67oMga5hWKTmmruL0FAPO14UpqBsfYtc15Gbn2yYEomNGzBiqLpKHpu32qGnhl3oihyyikn8vrrb+XEWXwxsTxoFhb/BbNnz+auu+7i+edf4He/ewhd10kbcdMFTtNfPAIOeyFOewmGoeGRSihw1FFlS3FKaQV17iK61CZOGO1K+3/aUoxzjqY91cf42ghzqj08vz1OX38NLsFFUmzhtDFeOuIKLzeLlNvH0J5sZ5zHTYUnj9pvLaTI7mTDA8+yuCtKRB6DagxQ500xxlvJ9mgbTqEMm+CkM9VOnbuaiBolqaWodVcTUjqpdkOlq4CWeBvzi4vRDJ3WZA9ziyrYFQ2gak7q3KW0S03MHG+Q57Tx7EaVgZ7pKHqUUmcP84oqWR/qJq6W4RELeN/fiqqVohsaxa4gB5fW0ZHwE1RlalyV9MiNHFvtwOewETztWPILqnjp9ifwEmKfwnK2hntJ6U5KHIX42c3pk+xohsYWf5B5peVsDwcoKBWYUlnAyp5+aku9eOx2/r5cpmn3NOJajKQRos5Vy/bYNt72v0lIDWWeURqd0047lbPOOotvf/vb+P3+kR/8J0Jkxox9uPba7/Cty75HnnsUIhJe3cM421zyHBFOrO/myKpS1oe7mTzKQWW+i0Xbg9Qa5SR1Db8e5MDqErb5I/SGJMZ5S9kS72DBKBcum8jq3gFmF5fRHovhnDGHyaecRBgItQUwOkP0ymGKkjbCLR1opQozJo2lO5EAzU5xfjHx6iKcoh27y4nugbzWnXS88x6bVzUzMy/9HEfnuyl3udgod7FPXT4xRaU9GGdeSRlb+yL0D9iY4C1mQ6SLfeu8OCWRdQP9zC0vpS0SIxKFKXllPNMU4fXWUmxCPo2pLfQIARQtQSCxg1NOPZZDDjmY22+/k+eee5ajjzoJWZYAEYfkocBZj0cQmeWuYYJ7LH61lcNKXVR5nPQV7ubgmR6iskK3LLP/pGq2dflJJlWmVhSyvLGH6cX52AWRVc197FteQks4hmaHWXUlrO0LUlDqpaokn+CEoykXJDqfepx/LtepEsbRKXeyYHyEfSpd/GFdku2d9YiCRH1dE1cd7mRLl8Kj73jwafVEaeK8KTJ1eTZ+tSFJV3AsqpFkTkUX547PY1c4gIrGxOoa9HNPo9hpEH/2UTaE+9h/QgVNgShasYdZU2tZtaYZb0+CSo+LdWqSA0+YRSSUYOMr25jvzWdNd5BIbxnFlLDU34tIOQICrwysY12sH0WLEU91csihB3P++efwjW9cgqbl/nH1RWdv9KBZAs3C4r+krKySn/zkx/T19XHrrT8aFGkGwrAX1DbRy6j8wxGHeMQMw+BH01IcVW32ryzt7+aoCWavTULR2N6qMz7fZ2r/+84gE93ZoraCJDLm8sPo0lw8/4slRAaGbN0kNDHeZ56W7Ul2U+UuQxrij9INjTLXLuYWmYtgrg62MWtYQVnFUPhXr4Eb8z30pHYyPd+8+XxAjlDmdOCWzMU9g/omjqmqRPR5KDr7WASHndfv+iNFepXJi6XqOinfDg6sKjT3l7+LI6eZ/UJJVeOmZ8uwaeZ+fKX/SXYndmDGADQ8Hg+PPPII9913H8uWLeO/R0QQHMyYMZ1rrrmKSy75JoYBB+ZfgE80e/UOm7SBq+ebc20PxnHHvbhtZh/jkv5ODqs13++a7gHG2ivTz1EQkMqKEUdVsy1ho8pTjLumBFuBB0PV2Ll5AxPcg0VPDYNUSxfxSAxP6QAVSjyz4ADglZ29HFxiLtLamYwwqkLCNSyvxS29HFJtzmt1zwCTXOWm8SVrOgcv3kpKMPurknorTz7zRy688GJ+9av7+M1vfsfixYupyNsf+7ACuscWOPl63VRTm18IcMRpOi6HeXy9vaGZg0eZx/LK1l7m1pUhDXnbrGo6m5oHmFlWinT8WaDraK8+yStbujm61uzZDCU1kgU6dUXmTd2fXNLDcRXma23zx6iy+/DYh/gwx9Shn3UMhS070JYugsG3fWviIRYcNwVxSF6KqrG1N8KsKeYi00/+cRP1rea2uKrwtU3vMPx92neuP4tAsOdT8lR+/uyNAu2j6gVYWFh8BH19/Vx99TU88MAvefDBB7jiiqvQ9dy/UAVBNImzdJuAL7fgP15H7u8it10i35Eb6xq2ebah6Wz59esYJx3GFQ+dwWsPLWP96zvTUx1C7kfeJtpMX54AoiDhlkaIHeF4u2BHV8URfpvk3phHyhVnAF6biL26jOKLTkVubCfwlxdwG7pJnKVzFXGO1Ad2KbfNJqEqLmzDjBxD91Eczk9+8hPWrl37KYmzkREEcJBbd0saYRN0j1PCJefem3v4TQFOyZ59joaB1juA1jtAe5uC5DEvkNgda6Gi1CykJMBpH2B4BzvE3Gu5JRuuEXJw2XLHrVOUcsaXQxLRhNzPSCopk0gksNls/Oxn93Lbbf/H22+/gyTmjhmXlHsth2DH5cidFnSII4wPhy2nz22SiBMRNA3tlSeQjj8L23lXUvP3RyEYNMUWuCQ83twcCl25Lz2KXSKeITm4DlmA58iD2Pr0X8gbaDXFOu02kzgDsNsk3L5cb+Hw3SgAPDY7KUM3LVjab/4s5s+fxxlnnpYTb/HFxfKgWVh8CsiyzA9+8ENEUeRHP7oVcYQvtc8TQ9V59bfv89htr3HgmfvwjQdOo2xU0UcfuIeoO2QeZVd9jdiSdQQeexWUz3+F2bnnnsv06dP5xS9+8blf2yJLYWEh3//+d1m1ahUdHZ2cdNIeKsiraWgvPYa+8h0mXHAZjjPPR5oyHewj/IXwMRG8Hnznno5r3iyC9z1EYMPnU3j5sMMX8NRTzxGNRj862OILgyXQLCz+a9JTmn19fVx11Xeorq5i8eI3cXuyb0kMDDRDI5BsNB+pxPnTduhPZI3PQSVFTEyyLRA0xS5rG2BnJIA85O1cVzyG1xkjpA5k2jRDo1tppsjVQPPGDn59yRNsfbeRi+4/gYO/cSSqL/sXflJLsTTSwIqwecpvR6STlzplQkp2oqQrkeC5dpml/QOm2L+1tbIs2ISiZ0VVd8rPylCA5rg5L1XYzYC6K9NWMq2G2T84mjEnHMLuB/5G9J3VQHqapimaZGc0WygXoFNppyuaJCpn+yuQShGOy2zrCZli734vxNZYC+qQvHrkbpKSE9E0tWawcOGBnH/++VxwwQWf8o4BBoahk0qlmDFjGvvsMwsQ2ZZcjDrE7O6UQhC10diffbsnqzqvbVF4vSVsOuOuaICYIeNPZmNjiko/UbYnzXvGbk/0IBX2kNKzxvaoHsWTF6JD7jfFbom1saY9hKJl30C1RaLodpmuZCTTpug6TQ4/q2Pm47cPhAklNFNeUVmhM5Jkc9Acu65/gLOq8nAI2WupWgpRdHDmmeczYcJ4xo0bx+LFb/OVr5xG0mgxv5XWNNYMCOyMZPtG1VX8QitL13UMvRRbW/sJhlL4Y+a8ehSFDb3mXRBW7+6j1R/LLjQxDHrWrmDpD79H17Yt2PZfiOuaG7Gfdwlt++zHLlctWu0EcDjBV0BvxVhKDtyHyOSx2KZNxTZtKkyZTGjqWKKnHErRTVdhyDKhBx9hZ9tugjEF/5BFCxFNpd8nsr7Z/BxXrmqi8f3dJOLZ2J7OEHq/nx4l27earvPz3UtJKgODVguYMmUcRx+7kBUr3sfiy4XlQbOw+NQQAQO73cbDDz+MzWbj3HPPB5zYJB/C4PSggEGZYyKFlFFkS3t7VCPG/MoejhqfZFZNPsVuJ7phsLyzD5tqQ4vbmV6Q9ie1RCP0JuMkVYNZhWXpKQ1N470eP5F4HjUekTHe9NuyreEBXu+005bQmVA/nSPP35dpB41h1ZureedfS1i8qQHpg7pUWpi5nir6EuAT0xs4p/Qo4/J7CasaTdEybIIbw9Cx2zqZXwyv9qkIQjovRQ8z2iXRJydIGoWIgg3dUPGIAY6r8LFvico4XyEAnTVFlJx4NIXVRRhvrSa+dCPheIzt0T5U3UaBVEqpI10uZGukC7tkUJoXYf/ytM+tNxmnJRFCsGlMLy6k0OlE03VW+fvoVh38bqUPtPLBewhRbNNo1poJoSEIIoahE091Ekt1cOCB87n11lu59tpr2bJly2c0NiQefPBBXnzxX7z55pL0ODAMJjj34dTqEo6vrMAl2UhpKru1VvLyINxXQZUz7VNrTnRTWRTA7kmwoKoUSRQJpmQ29QeQJBhfnkeVN11ba0X7AHLYjj1PZv6gt7EzGmdlo45gaBxY56HQ6UDTdZZ0+lFjHvLdOtMK09dqioaI2WIogsK88jJcNomEqrKi04/Daad+oovxZWn/2ob2AaJdCpGgwbzi8nRecoptYT8CAqOchVS403mtGehF0CVSqsisgvT0amciyn27m3m9rw9RtCMIEoZhcNfPr+Pll5/j1X+9yo9uu43Ozk5+85vfk+8aQ4U0jjJpHKJgQzMUSpw9fHWcwaxRKuMK0v7MjYEAYrmNRDTJ/PISJFHEn0ixNRBCyrMzsa6Yyvx0Xst3dyPFNeSAytyydH91ROO0xaMousGs4iLyHQ5UXWd5Vx/evAJKJkxhzPTpCG4PEacLx6g6NF3BG+5GUmUUTadzIA4pAZ9DosDpwAgMsOmddwnu7kURFRZUliEKAv5Uiu2RAM6xPibvV09lcfoelm1tw5bUUHcHmDtYv649Gqe90E68S2Fy1EW+PZ3Xkq4BVnar/LZlIynjg8K+KnbJzaN//xUbNqzhrrt+iqKMvHL5y8De6EGzBJqFxWfEP//5T5544gmeeXqxqUApQIU0htHO/UxtkqjwyvnBnPO8tWWA/YrMBWwbwiFGe3KnLJd2xJjoM5uZn2ztZ3c4uzCgpKaA/U6YwpTjR7F9cytP/20RO7a2YhgGHkVltN1svFb0FPERfk10qw147WYfU0IN4Lbl5vW9iQHmVlTh2W86+Ufuh2C3s/H51yha3Qyq2Yu0M2RQOKxYbqu6g6PqzIsQoopMaVHu76OvvBIlljKb2gNaO34pd5P1GfsWcNNN13H11VezdevW3Jv8FLnzzntYu3Yzzz33cqZtireAP+9zck7sukCY+mG+sR5pJ6dOzd0gPSykKHKZjervtnZzUI3ZqO5PpMjXc31M7zb72bfYHLszNsCcUb6c2CZvlKlV5ue7eE03s8WKnNhgQiVv2HTg2x297FdkNrXvioY5a61ZGO9/wGyu/94FXHjBRcycOYNTTz2ZK6/8Dm6jhFm+3D1x7zp8NzNL801ty/29HDSuPCc2WW4nb1jx1zeXNrOw2NzfvfEE5Z5cr+Dy9j72KzfHbokF2HdW7rU2rRtgQoE5ryXtvSwoy+0v6ZRqPE6z1+6tf67joAJzf3eGEuRHcmsd7vPSG/SmzB/Uqqpinn7mz5x11lk0NjbmHPNlYm8UaNYUp4XFZ8Rtt93GRRddxJy5s/Z0KiYGOkK8+tByLjnzR+zc2spNt1/AA49cx9lfP4pxU0Z9ateRJJFJM+s47cKFzL3pG1TfdTXe+dMJPP0WnT/8DS2vvZcjzj5Pxk8Yxd13/YS77rrrMxdnAC+//C8uvvg8rD9yP5oVy9bz7DP/5I8P/56lS99H13W++c1v7Om0vnT86Ec38cgjj3zpxdneirWK08LiM2LDhg3cdttt3H77T7nj9vt4//1V2R+O8ObaYOS32SO1fth7749/BojFkjz517d46m+LWHDwdGbOGc93f3oRhb4iWrf1EA0laNvRRzgQYeeO9L8/oG5COVPzi3FJhaZzFlU6qKuvpbK2mNrRZfR2Bdm+oZWOd1YhPvkWmj/rGfqwl/cjvdX/JH3wISc1/XP8hFHc9fPruPW2O3jzzTc/yZn+Y5YvX0l7ewc333wdd9xxbzqtD4kdaSx82GzHx+2bT3b8ZzMWR2obSa4ahsFf/vI3zvnaWUQiEe666x7++PDvWbtsG+z+ePl+snv4BMeP0PyJnuOHxX7scf/x7mvevNmMGTuab19hCdsvK9YUp4XFZ8z8+Qfw4K8f5M233uP5519l86aNJGJxap0zqXHMRBRsJDQ/LlFkXk2Ci/ZNMr7IR0xRWdM9QJ3HS2N3in0LKxEFgU3BftwOkYG4zChXIWUuDwE5yfZwgBK7l66IwNS89JTV2mAXolHIWz1xYkoNdsFJXAuRMsLIgk6L1oNNyksb2dUA+VI5lQVe5s+ajzfPTdXkfLweG+Nmj0JWQcSGgUEkHKR/lx+/FkES0tNuqp7ArtjYtGEH0aRBw6YeorEwk7xRTqkoxOEIs09hempodaCbPCGPPiXCjIJSfDYHnYkI28MKhu7Ga9MZ6y1F1TV2Ky3sN1qn2Z9gTmEFDlFiZzhIOAG6qFJfKlGf5yOqKPxmWzt/adDwaqUUSaMRBIGg2k67vBFNVHE7ypg4cRx3/fw6fnbPz3n5lSc/x5Eg4vEU8/rrL3LxxVexe3cDomDj5PKxXFY/mxKHB78c542eKAPJAqYXxpmeX4luGGwKdyJQQHFJK8eNc+Nz2GmNROmOJXHbJVxukcklBciaxsqBAcbU5dPUEma/4lLsksh2fwjNphNLqpQZHup86f7alPBTX5fH7m0p5vrS024bI31UTbDRHYgxwZZHqctFfyLJtr4IJV4PRqXKvvWl6LrB+w09FEWctPjjzCosw2uz0xaPEq7WcbpsqDs0JngLkHWN9fFeJk7wsnlLkhmOKuyixPZwgMawhzf7O3k71AaCHcPQULQYBjoP/eGnPP30Mzz//Asce9wxfOMbl3LtBXdQJczBLnpQ9DgeW4y5pW6OntTF/lWF6IbByv4+RlV5aQlFmVtRgtduozkcY6Dah6vQhas/wuTyAlKqxvL2furrStm9qoP9fEXYJZGtA0FU2SCmqtQVeqjN8xKRFdZ2+amyeRnQEsyvTI/ltQMDlFS76EklmF5dRInHRXckwe54gmKPm/DOCLOKitANgxW9fdQVu2nsjTO7sBSPzUZLPEZ4dhmuUXl443Em1RSTUlSW7exidHUpjW/vYP+8fGyiyObeIJFeO5GEQn2BmxqPl7As86sdTfylaYCoHEQQbAiCwKv/eoxbb/0h77339uc4xj879sYpTkugWVh8Dhx22GGcf/7XEUUbY8bU85WvnIvf78eJl0nu/RntmJKpkSagMn/iek6f6KHKl/UcbekJ0eNXOaAy63WJygpvd/Qxr6iSAkfWh7S8d4BALJ9R7qx3rTMR47HWPkrsY7EP1pXSdZ0NyfUkseOWsl4XXYtTIsJk7wSkwbxUXWFTZCe1rloKbFlfTXuqg345Qr0jW5Q2pSUJi9u5YswYypxZH09jvIUCu8g4b/Ye/HKMDaFe6l2TsnkZOg2JBg6eqDG1PNsHjYEoG9uSzMsflamtJesqrwZ28cfmJANDaoZJKshKmIiRXUkqSRIPPHAnr7/+Ek8+9elt4/RJOO64E7n66u9w880/Zcvm9N6WblHkq+VTEbTZMKRGmig2McbrpMyZfY4yQQpKN3N0XQVOKX2/mq7znr+bSRMKGVeR3YC+oSvErpYgh4+tRBLTv7uTisZbDT3Mn1ZGZVG2b9ftChCOKRyyT/bZBGMpFq3sYp63yuQnWyv3UOiwM8mVvVZ3LMEmNcLxJ4zDNeilUjWNV19tZGKZm/FVWd/UjvYIb74P5eLkzGbicS3Fz5pfo02OIw4uqDn4kPl881tnc/rpp6FpBr/4xc9YsuR9nnvmZaZ69+fAorl4hhSwLSjcwklzE0yvyY7lznCMjbLM0V/dD8dgXpqq8eYb65lUWcjoIZ66nbv72PVeGweVpf8YAkioKu/2dDOroNQ0lrcE/ejFGgsmZv1kwUSK97v7OXTuWPI82c/j4vebKEwYTCsvzOYVirMBOPbbh+N0O7J5vb6KSTUljK7JFi3eubWdbc82MMdek+mvpKbwVOdu/tgUIqBmv5dTaoj5Cybys5/dwYEHHvgpr0rec+yNAs3yoFlYfA4sXryYiy++iIsvvpzHH3+KH//4BwiCQIoYeVKeeXcBbPSG8k3iDGBaRUFmldoH+Bx28uw2kzgDmFFUYBJnANVuLwV2Z0YEQXp/vipblUmcAYiShxJHfkacAdhEO+XOPJM4A6h11lBhqza1OSUXc/PzTF9oAFXOSpM4Ayh2eNGNPHNegki5x2cSZwBji3wUS3mmwqcO0cbOgGASZwCaDcJ6n6ntO9/5BtFoiGf/+Qx7ildffYnfPPhn/vCHX3DzLdcAkNB11geBYQVsZa3SJM4AHBTiEV0ZcQYgiSJVPq9JnAGMryqgpsidEWeQLupbUuowiTOA2ROKmDXJfHyh14nH7sgx+482CkziDKDS66Z8vC8jzgBskkT95DyTOAOYVJsHemlGbAB4JCejXEUZcQbw7jsrwJCYMiW9cGXVqjWccMKx6IJCvt0wiTOASKzWJM4AqvO9lEyqyIgzAMkmUVlfZhJnABPHlVHl9mbEGYDbZsMnOHLG8rTCYmaONu/8UOh24sv3mMQZwJSJpSZxBlBd4KF8QX1GnH2QV0VduUmcAUycWkuJXmDqL5dkZ1NQNokzAJ+7hJtv/i7f/va3/2fE2d6KJdAsLD5n/vCHR3A47Jx11lf2dCp7Fd/61tc5+pjDueuue1HVz78Q7lD+9a9F/N8PfsqJJx7NTTdfYy0c+De8+MIb3H77bfh8Ph5//ElmzJjO8ccfu6fT+sJy/oWns3PnLlatWvXRwRZfaCyBZmHxuWFgGAa6rvPAA7/j/PPPwel04le7cyKbwzJR2bzCsTcq0xPLrWMUSuloutmq0BlP4ZdjpjZZV+lScq+lGSkMY9h5DRVI5cTaRBndMOdlGDFcttwK5SFFy8krqkcIquZYxVBxFCYYTl9SIZAwC6mBhEpDJHcrn76kjGGY23VdAdK5/t8Pr+f8C87knLMvo7cvt9zG542Bxltvvcfhh51OXW0Vv3/oXg4+dR4V48xvTnrlLjqT5sLAKU1l/UDuOGjqNwjEzP0VSSmER9iVIWropoK0AL3RBL1R8zZYmmYQSeT294CRwK+YY2VNIxrO3UYrFE0STZnzjagaUlnu251imwNhmOtm0eL3aGjYzf/9300YhsHzz7/IDTdcQ6+cO5aDyQTNfvO1UopGb2M8N69gjFjCPMbDsSQRMbdvk3YNVTf3Q5+apCduvl9dN4hFcz83vf4YA8NiU5pGdCCUE9u9M0w0Yj5HYCBBbyL3OQZk3bS4IC/Py2mnH8Utt9ycE2vx5cPyoFlYfK4ICIIDsPP880/w5z89xksvvYFbcDHXfRSi6KBb7cFtK0czwpw+OcQV++Tx2tYo1UYNbtHOtkQbB9a5aY+m6As6meAtpzE2gMuZZEyelzfaE9Q66tEMncZYF9Pyq/ln9yae6NmKhoTdEJjnPYgSWzkhrZ9yex0pPU6T3EpK8FFhj7FfQR35Nh+7Y21oWjECKvnOKBN9tfSlAjREY9iMSordTRxeXoxTtLGot5vtgVpkolR5oNpVSb/cwxivzJR8LwFxNwfXFKHoOiu6Q4yW6unJ72fSPBsTqgpYuq2PttXFKGE326JB6t2jiGlxvAVNnD3NyYNrU2xoq8cp+FDFZi4ZL9GnxPjJrlaihg9ViyPrCSTJRULuIpZsQxANLrnkcs4991y+fuG3aGndlitG9xCi6EMSfUgS7Dd/CoccspDDDzqSpY9upHtLkKe2/pV+dQABmOar4dLa41kWbGFNNIEk+nBJ/fx4nos6j5MntzgoEcYS02OUjWrlwsM8rGjtZXxZPmVeF+839jDW6SVh6AR9IvtNqGR3b4iBvggzSvJZ3tLH7NoSHJLE8pZe5tQU09AaJ7jbxgRPCdsj/XjcGqPy3ex0DHDgpHKSqsaaXQPMsZewJR6gsszJmKI8VvUMUDWxFLfLxs4dPSyoLqUnlqBxIML8ujJWqAqT5o2ntNDLa281MvB6HuFQEsWIMclXTWuin790rWdTNEhK6UPTFaZPn8ptt93M2WefR2VlOc8++ySXf/PbbFq3mcOKj2WseyLtyW5K7bVohkJNVSM3HuNg2bYoWm8x1c4Cthu97HNOFfllNhrXN7FgVBnd4ThNoRjzp9SybGMrE/I9lHqdLNnaxei4m6imEi8zmDe2nF09IXp3x5kg5bPRGWS/WVXYJZEVO7uYXZRPsz+CJAhMrShiQ08AV4mHqmIfa5a3MS+viJiisiUYYEFdGRuSUWrGFzO6rIDlrf1UzZ0Eqp13frmNiXIZA2oMbWaK484az7N/3o19u488yU1DvIX9K5xsjkS5c2cvCSMPRYuSUANINhvfuvKrlFcWcPXVV+3p4f2pszd60CyBZmGxBxBFDwcsOJTv33g1Xzn96+lGA6Z7TzJ5cABOruzmpMp6U1tDrJ+x3iIkwfwS/J3eIOO9Naa2R9uX88KAuQ6SYRgcn38KecOKyiZpZN+i8aa2mBqnxGHHLprzCqnbObDEXBB2fXCAvmSdySsDsG/dGuaXF5vaVml9HH2U+b4UTeP+X3kotJn9TYt6G3AY40xtMS3ESnWjaVNoAH9sM3GlG5vNxp133kldXR233fYjduzYzhcPgaEFEsaPH89NN91Eff1YVq/ewIMP/oGurvQbvzyphCrPPNPRhqFxTnkN+Tazxyt/3BouOMhc2LczHKe8rgiHzezVW7y6kUPGmAvVrtg+QGVXpcmLpRsGA/VdzK4zP8fFOzo5pMZceDWlakRsGuU+s29rkZziqGNmm9oamwJsuU/HNmxD869v+CMDSvrNqiiK/PnPv+Ovj/6NN954naOOOpJvfftyvnbOeSSSCU4uvZByh3ks5jl3cEG9OS9Z1xh9epyyPHNeb2xo5siJ5s9N60CEqnwP9mEbl7/b3MPBk82xq3Z1MbfQPGY1XWfjVj/TigtN7UsSfo46xPwZSyoqS/4kkG8zFxJeGmhnlm+MqW1XrJ87W9tyxv1XL5zNIYfN56KLLsLv9/O/xt4o0KwpTguLPYLAqlXrKCwsZMKEsZm24eIMMBniP8AuiDniDMA2Qqw+Qt0kQRCQRriWfaRribYccQbgEHNjbYKYI87SsbltdvsIbZKEbYS8DCP3WgL2nC+pD37idrv56U9/iiRJnH/++V9QcQbDq1c1NDRwySWXcM45F9HW1s4jj/yGSy45D6/XizFCxTBBGLm/hosdSC8OGC7OgBwBAulxIA77Y1wUBBy2EZ7tCMc7bRKuEa5lc+Tm6rTbRsx3KLqus27dBu6480dMmDCBN954k5bmZu655y4kUUIcoaSnbcRxKOGyjzTGR7gHuzhi34zUByPFSaI48rgf4XiX3YZjhM+eqOc+c1GQcsb9xCn1HHPMEfzgBz/4nxRneyuWQLOw2EMYhsGvf/0HfvWrn1JWVvLRB1h8LGbPmclLL71ELBbj+9///h5fEPCf4PcH+P3vH+HSS6+murqKp576M8edcBjSCEJgb+H++x/kicefZv/95wPwve/dRGFREctXLB1R+O0teLwubvnRJbz11jts2rRpT6dj8Smy937aLSz2IIaewjBU/vnsy/z1b0/xl0d/Q21dOQPybpPZXdaDdMRFelNZw39ck3mlr413BlpN51wZ6GZlKEBUzZqRg0qM9lQYXc8astMLFWQa5e1oRla8xLQQoDEgZ/8CVw2NTeFW1gab0Ifk1ZboZUNAoT+VNfzHVZmlwXZ2xZtMebUnOlneDaEhS/77kkkWbRNY1Zi9lq4b/H1FA0sDG1D0bF69qQF2xjcRUvszbZqh0ZTaRFzuMZmkFx42lV/++k7uvPNObrvtti+lOAPQ9RSGodPW1sFPfnIPP/7x3Rxz0kKu/MFJGZFmGAYRpYMV4W2oQxZu9MsB1jXZaOjPPpuUqrFmVz/vbmxHH7JwY3NbP7GkQm80u0gjnJTpCkbYFDYvptgU6aG9P0Y4lX2O3ZEEkZDK1t5gNnfDYGlHL2s6+pGHbOXVGIggywrNXdlnnpJVtmxspFFpQh/yHFvivSworEUY8obRMAxWrV7FWWefQV1dHYqi8PULL2b37t0ccMkUZD1rrI9pEVaGe9gayZZZ0QydN3u7eHLJgCmv3T1BkvEULQORTFtSUdncNsDShi5Tf23qGCAcStAXyfZXKJ6iNxBnTUd2fAKs7OinU0gRG7JBeVcswfYGG5tasn2g6Tp/encnz/fsQNWzeTXF/bwb6KQrme1bWVd5p38rMbkr03bu149j44Yt3Hf/vVj8b2F50Cws9iCi6EES3Xz/+9+loqKC/7vlXgRVpFwaTa3Tw/4Fk5BECc1I4rM3ogpRHunqJKClP7czPQ7OqKjl7QGdnfG0N8ghpFhYqBLRwjzf30xy8DOuqBEMQ8du8+AY9Cw5DYnJ9gkU2x3MLRyFXbKhGRrN8TZUQ6AxIqEbaW+NQwowJd+gPa4SSlUiCAICMjOLu3DZUjzVHyCip8VDuSixj3sUqi5S6khvji0IYWZU7SSUgsUt41A1N4ahM2tGMwfsE+fOV7ewuiW9FVSJzcdJZfvRkmhn0cAKNENDQGSiex7ljno2J9YQM9KiVcSG11HKNd87l2OPP5Rvf/vb/yMlBgRE0Qvo6HoCu93GXXfdRX3tBP7861dZsW4VDE6hFQg2Dskfi6rZsBl16WlxQWHq1G3Mqk9REnJRa0/X0Nulh9FGiWhJmfllxYiiQDgps64nAAqMTuRRYk97oVZ2BUgkJfKKVBaMKQSgN5lktxxBU2CaUITPZkc3DFZH+nD6BArynZkN1Rv9EbqjCTSfgwMOmozDYSOlqCxv7ENCoLIlwihbuj7Z+40xNu3yga6zT0EVkijQm4rwg+2vsi3aM7i4Q+Ckk07k8ssv44wzziIej5GXV8AjjzzMX/74NwLvayiCQIs+gCGkRd2hBXYOLipnWW8+cSXtSSso7uerx/TjIsn+hYXYJZGUqrFyIIDdaaPa4aA+3wvA5r4gCQnUlMqCqrSvL5SS2RCOIogCk70eyjzp/lrV1ochgD3fyb4T07UBO/sibF3XTVevg3j/VGyCC93QkMY2UjEmzu0v7WJzR1pc1jicXFQzgc3REP/yBzEEkIBjCksZ5XLz59Zl9Mhp4W0Xvdz6wx9z+NHzOO30k+nqyoq2/0X2Rg+aJdAsLPYwbuco3K5CfnLH9ciywo9uvZ86sZDTyo7OiX2g6ymEYX4wl+6lzDHJ1KbqKVqVNTnHG4aMY1ih2RLRyWXVx+XEPtPeiEssM7WF1U5K7HU5sZv0pYiiuZjpWDGPffPmmNqSWpLW3IocvBf9GwnMpTYMQ0XTgjmxNqnYdC2Px833b7yCUaOq+MEPfkBTU1POMf8r2GxpkXbYYUfz9OOv88eHnsq8QczDwZG+I3OO+drM9cwsNhvY18q9HDq7Iie2Y2OSAof5OS4LdXHoaHNsfzxJgWo22gOsE/s5cJw5dnMkxqyDJ+XEbnx2I5MLzWPxhfURqpMTc2IXLrnP9O9f/ep+CgsLuOqqawiFQixceCD33HM39/zsF7y/KFeojDFqqbKbF5lUlrdy/5k5oewMhJlUZu6vJc09LByd218xVcM7bHr13T4/h80YZWpr7Eyy+CnzwgKAHzT8g+iw72BDV3E5inJig9FtDN259PTTT+Gbl1/KOeecTX9/f078/xp7o0CzpjgtLL4AKIrC/91yL06ng7t/diP143JFkIUZURT5yldP4rnn/4aqalx++eX/0+IMQFVVbrjhBi6+8BrOPOd49l8wa0+ntEe45prrSKVSnHnmGQAsWbKU733vRi699CKKivI/4ugvP9OnT+P7N36XO++4a68QZ3srlkCzsPiCoCgKP7j55zQ0tHDXH3/IuIVjP/ogYPhKwJFb/t3RHxb98c8yUuRI5/3vr5TmpJOO4Te/vYdjjjmcG274IbfddieRSOSjD/wfYXdDM1d/+ydc//1LuOOu6/B4XB/aiSNNknzYMx/xmY1wgg+deBnpWh8SPGLzxxwIuq7z05/exZlnfpWiovTbpiVLlrJi5SrO/FruLgMj5vCh/fVJxu3H65tPOFP1bznwwAX8/Oc/5dFH/8bbb7/zqZ3X4ouHNcVpYbGHEQQ7Tns5dls+hmGg6WFOOHEhP77lNnpX97Hs9yvY0rWdlwfeJm6ksIsuHPZ8dF0jofSh6xoesYBa93xsohO/vJvu5GZ0NOy2POySF8PQkJUBFC2E21GF016CIAgoWgxRsJEn2jm99ADqXJV0Jrv5W8c/8Sthqh0zGOc6CF3XaUi9TY/agFcsZIb7ODxSIf1KM1sTb6KQIs9Zh9dZha6rBOM7kLUQdc56jis9DZfkZnNkLe8G3gBEZriPpcIxgYQeZl38ZUJa3+B2Rw5EUUTTEhhGkvRXY3pxQmlpKQsXLuS4445nzuy5PPf8v7jvF78lJYfRtGgmbm9AEOx4nbWUFNdz6WVnUD+mghuu+xFGXOcg3yGU2MvRCFPrHaDO7SEvr5ej6n1ous7Kvj7qvXm0aBHmzyym0OegoT9MIJzEJUmkBmCyp4ikrrFR8DN1fBHbW/zMdRfhsklsSUVxjcsnFlPwNMnUix5CusLOapg4tYLGrR0s8HoRRYEV7X1UFHjoTKSYMLueyvIC2tuD7HyrkXLsBI0U+40qRdV03twcolQuYVckQrWjFq/NRWfCj0Ic1dC4p2EJm8O9pMeEAEhcdtnFnHTSCZxxxtkkkwnmzZvDAw/8hu9efQ+7dnShaTIJtR9BsFEpVjHNcQCiKNIob8UvRKnJT/GbE0uZVuGl3R9nx64YpTY3ifwUC6aUoqo67zf3MCYvj92hCHPqSsh3O3hpez83vNaNqsOPjijj3H0qCSc07nhRprenlrqxXfzgvALcTonfv93Gz14JIGpweslkJnqr6EsF+X37y3SmQumSN6IPURRJKQOoagRRsONz12OT3Gi6TCLViawGuewbl/ONyy7l5pv+jzfffAODL0bR5c+DvXGK0xJoFhZfECTRg4GOrqdXYY4dO5abb7yFqZOm8/BfnuAff382E6vpSQxDQxhSO8kwdCREFEPJ7O1oGAYCGpoWwUAbci0XHmcddpvPdLxXj9KZ6GCo10XEjiCK5npqhoFb8BLTI6Z9JAWEnEr9AuAVPYS1EMLgeQ0MvGIxCSMOQ443DB3DSBum3W43tbW1zJ07m4kTJ3DYYYeycuVKlixZwvLly+nvD4GhY/DlXKn5aSCJHlyOCq6+5nKOPPJAfvvgX3n99Xc52FvL+bX74JayfrLmRCv7joowMb8w0zaQSrLV1svRE6oztbx0w+Ct3d1MHV9CXVF2fLT6ozQkUhy5X/bNrqxqvLaiiQUHTKC0ILv5+tbmXiJbO5hXl/UwRlIKi7f3coC9CK8969ta0d2HHixmjCfruxqQE6zqH2BBcT02MZvXrxuX8afWDZk6YKIosnz5uzz66KM88MCvEEWRJ554ApfLxZlfuQzJlm+uLairFNhqsA/xYeqGyoUTIlxSX4fHlo1dHeyhpt7BxOJsbG8syeWvNbK6y236jI3NUxmnLcAtZr1rcSPANmkN/bFsEWHD0HFoPbQlOmFILTPDUFHUEOZ3dQY20YOqRykoyOeEE07g2muv5Re/uJ/HHvsHH/t14/8Ie6NA23uLx1hYfMHQdPN+gY2NjVx62SWccvI53PDda5g5cwpPPP48ra0d9PZ1m8QZgCCIKHoSYcgXkiAI6LpmEmfpayWRRGfO8T0pPwwriKoZMiLmWASBmB40XQtAN5SccqoGmMQZpIVcTA8iDslBEAQmTpyIyyXy9a9fyLx5+5JIJFi1ajVr167lscf+wa5du4Z3216NpscRBDu//tUj/OuVxdz24+s474LTeemm35vEGUCFs5iJ+eYxU+J0UWhzmAqtioJAVbHHJM4ARhX7iOvmceCwSRRV+kziDGDq6HKCfebVIHlOO56UgddjHjNj8vLRZbMpvsThpsDhzIizTF6ufFORVl3X+fGP7+SHP7yJLVs2s2jRIs4//3z+8pe/cPiRB/DeO8MKFIs2JMmcqyjYsKl2kzgDGO3NY0yx+X7LvS6ag4b5jxJBYCDiZrrPvLDAIxTRE5aQhnS5IIj0KlGTOEu320i/AR766RHQjBjHHHM0t99+O0uWLOHss89m9+7dWOwdWALNwuILziuvvM7bi9fwzcvP54qrLqa6uoLf//4RXnrxNWQ5d8PpLxN5eXlIksT48WO55porcLmcRCIhli9fyQ03fG9IHTOdvWkK8z+hoaGF8772HR548Md85/e3EPrrGvwbWvZ0Wp85L730CvF4mEsvvZT333+fZDLJHXfcwR2338V773x3T6f3X3HjjTdy+umncfXVV7Ns2bI9nY7F54wl0CwsvuAYhoosyzzwq4cBqB9dy7XXXsLll19IR0c3kXCE559/lb6+PhqbGgiHE8POoOWeFND0FKJoH3KdtN/LMMxvCMDAMHTTmwvDMAbjcrLFMDAdnz6vgc+Xx7hx6VIHEyaM56tnnE5lZTWyLNPX188//vEkL7/86qD3zHz9vW0655Og6zKSlC15ce13fsw1px/PpRecz7jzF9Lx+iY6X99IdypCVzxOlSf7BimpafQncoVvIJYklJApcGffwgUTKQZSqZzYcDhJSlFxDpm27OyPEAjGya/MHq/pOjFNQTcM0zZSvXIS5DiljqF5qSSl3GvZpA/Ggnl8LH17LQceeAD3338/11xzDRs3bqSkpJhrrruY+3/xpyF9paBoMZxD9no1DIPehJ6TV088iSeqUzFkP9GEoiLquWvrEloEWU/hGPJGOKkn0m+qh72x0w0l5zNmGObPaF5eHj/4wc3Mnz/vf6iun8UnxfKgWVh8CRAFJ3ZbMYIgoagBND1GUVExNdVjqasby4knHYnLZWPcuLGIooQgSAQCQbZv35rzy38okuTGLnrRDQ1Vi6AbKukJSBEQMIa8uUpPqaanYgxDJf1FKWamWtPXGYxFwuFwMn3GVByOrAhsaGhE13Wi0QiPPvoX1q1bDzgGzytjGB+8ERTILjL/8Pwt0thtRTjtZWh6kpTcg26kmFoyhjsuuJ75Zx7F8jXr+PXjL7Fz83YuGu3mG+PrWdcfIhiuxSeWEHI1sd/0OF6nSGs0zgFjK+iLJdkejDB/dDkr2vqYNrqMYq+L5W19jKktIZqQCTX6meXJo1VO0VfpYeakKt5b3MzoBh+SAbs8Xew/s5BmfxSnJjCpJJ8tnQGSfp1qr4edbpmDjptCIqHy1mNNTIqXsEvtZ8bBXsbW5vH2sj4SOzzYkUh6+zhqSgFbBoKc98oydgaiuKQCxnoOwykWEFAbuPm+c3nl1Zd57p8vccwxx3DTzd/nuGPORRI9pBQ/shICoMBZR6FrAugpxtvqqbLXke9u55QJA4zJc7GpP8I0dw0yKq3uThZOKOKt3WGeWFlLNFZMq7qFHroxBINosh1Zi+ISXMz1HcgEz3S2x9ezNroC2UjhthVT4B6DrssEEjuQ1RAGAjbJgyA40PQ4uv7BH1UGp512Gpdf/k0aGnbx3e9+l3g8/uEPfi9ib/SgWQLNwuJLhUDu26RsmyRJOAYLjdbX11NdXf0xzinyWUwfGobB5s2biUbTXiRFUb60Wy99ORhpbMDCuSczbvJkLv7GV1mzajPdXf00vvwO5+TNNsVphsYBRzVSkWcuQPtWRy9H7TPa1Nbhj1Dcr5k8YgAvrQox120uyLpL7+bQ+bm1ybYU2pg1yTw+F723g8PGmIsjy4pG79oByrwuU/tZz3XTGTYXnx23TyHnXXcQp56Sro/29jtvsHr1Gq677rs5G4wXS5UcV3xhTl5njNvGtALz3ri/behlW7+5gK5mqLwR/t1wyyYSIsP3ODd0A92Im3yYwOAfQNm273//u3z1q6fz4IMP8sgjj+TktjezNwo0a4rTwuJLxb8vHqVpGolE+q/x7du3s3379hHiLf43GfmP7U3bG9i+q5t33l7F4UfMZ/yE0fzobz8j/uI2Wl9Zn4mTBAmnTco53j5Cm1OSsIm515O03Ok/idzjARzO3K8fuzM31mGXcNlHaB+2CAKgcXsnVVVV/N8Pb+YnP76To486gVdefZ7TTjuF55570RQrCiOXAbWJuddSR7ovwUbudCuohoIo2E1tBnqOOBvOIYcczFe/+hW+8pUzaG393y64bPHxsArVWlhYWOwFRCMxXnhuEb+450/86KIfUn3oFObe9hVK9qlHkP43vgri0SSHHHwkhx9+KBMnTkCWZe64/S6uvPJb3HLL98nLy/vok+wBjjvuWH7ykx9x3XU30NrauqfTsfiC8L/xqbSwsLCwGJGk3DvoLUyj6SmWNq7k0Wt+QdfbWxl9yhwO+NX5PKlv5OzHlxNIZM35yxrivPl2Hsu3ZktmxGWFjQNh3k+G0fTs1PjGUAjnRI1+Ypm2MEmS9Sqr/EFTTku29dK4uJ2APxvb3htCTsls6BjItCmqxturmlk7MEBiyPT4pq4YC/PtFNvDmTbDUPAJApXGOO79+f384Ac3ArBo0SK+/vWLmTFjOs888zhVVVUYBoSNCBvi75vyUoR2FncL9Keyq6M3BWOsDxgE1J4hfaiwMfkmougw7RJg6CqGIaPr2VqAhmGAIWOgm3Ye+MDfeeCBB3Dttd/hqquu4b333sNarWzxAZYHzcLCwuJ/HEGw4XHWoOsKCbmLD6ZDDyiawih3NdMvP4bDjzyEv//9KR7506N8Y3YdedEp5CvjkAQRzdCJeBo5+PA4E8eUUFuSfhO1vX2Anp392L02FkysAiCWUnhvTS+6JnLAgeUUDXrH1jb2EG4OY/dLTC8sBsCfStGQn8Je7WB+fRnuwY3H39/RiRpKUpoUGV+UvlZbOEZjX4yBTg9T3bVIgoiia7zU3clLHTYqbDV4pLTXLaj2cMF9R/DG2//ikUfSqzinT5/OrbfexujRY1m/fgv9/QHuvOOXGLLCfM98phWWUueuBCCuxRHEZjYENXrjtYPTmRBWO4npfbRq22FwcYxuKChKBN1IAEa6WPPg/0HCIIV5+lkiLcIMjjrqKK655hruvfc+Fi1ahCXOPpy90YNmCTQLCwuLvRhR9CGKLqZNm8wll5yPzWbjuYef5djEfjmxh53fxKyxZgP9ko0tHFhXlhMbRqfAbS70+q+XGljgKjW1+fUUY46tzDn+vbd2Mr/cfK1VjREKA/U5sbesV3CL5hx8M5Psc2odV111lan99NMv4uabrwFg6ZKVfP/7P+HwgukcVjLfFNefirBigBxWJ55BE8zfm4oaQdPCObEfthVTZWUl559/PkcccQTXX389W7ZsGTHOIsveKNCsKU4LCwsLC7Zs2c73vncroijw84fuonp23Z5O6b8ilUyx//77M2XKFFP7yy+9wcIDT+Lww77C+AljOOaYwz7XvGw2G7fccgvl5eWcd955ljiz+FAsgWZhYWFhAYCqqlx55fe4744HOPTGYzjo+iNxeLOrJfURZlx0feRZGGOE2TpjhJWm2odM4ox4rQ9ZqTrSeXdsaGT16tWcddZZOJ3OnJ/LssxNN97BjTdehcOTuyJ0pHMO/uA/Zty4cTzzzDPous7NN99Mf3//f34yi/95LIFmYWFhsRej6zF0PZExu+t6ir889ye+dfHl9Hb1ctIvz2TmZfN4JvQe5/1mLU8vT+8Fqagazy7uZO2/6vnTywMMRJMAbO8MsGxRFw3v9LNudy8A0aTCG0uaGacW8m5nd8bwv35ggHA0yfuvNbOzww9AXzjBcy91oDfV8caOftTBhQjL+/2MPqKG1tH99MrpRQtdyTA74m1cPjWKIqS3tdINjc5UE15xNP+4ZzFTp0zn2GOPzdyvrPSg6+lcd+zYxbbNuymdMJ/lgZ3Ig+b+plgH6wNRYlovcS2QPk6P0ayswe7IwxjcDcAwDFQtiqoFMVAzos7AwCC7qEGSJH7961/z+OOP8+CDD/Kd73wHRRl5+tPC4gMsD5qFhYWFBWnzugBDhIVNsHHU1KM587oLURSVn/70N/T3+TlgvJdjPftji2T9ZKoUp2LMJo5wliENKWC7VOthnFFAuZgtgNuViNGcCHBwVVX2eF3nraSfan89Hj1blLbH6KPscIN952S9Z9GYzJO/38bBnnLcQzY5f6wpyIstJbjE7FZOR1+wD77xUa6+/tsmUeSUSpjkPpYbf3oJ65Y2sOTVzUhCDI+YwNCz07uaodEub8ZvG2Do3mayGiGSaMQwhm9JZS4Y7PF4eOihh6ivr+fyyy+3pjT/QywPmoWFhYXFXorGUHEGoBoqb+1cyW233kdrWydPP/s79ttvFut2J03iDMCmebAHbCZxBlAYcZjEGUCV20uF27xHpU0UEbvtJnEGUCGUMXGyeRGBz+ugtMhuEmcA88tcJnEG8ObfN2ITnJx77rmmdgdOvFIJ772yiSNPn5PuAcNLRDHnJQkSipBi+MazDlv6TVouWXE2b9483nnnHex2OwcffLAlziw+EZZAs7CwsLD4t/j9IX5535+4/xcPc/c9N3HFNRfhLvZ89IFfAHRN56VnX+eII45gpBmgll29lNcUYHeMvOPBf8rcuXO58847ufnmmzn77LP5hLNVFhaWQLOwsLCw+HB0XcmIi+f++Rq/vP/PHHPioUy7aB72IQsIolqSd3sTOceHhARBNWlqG0gm6YsPnxqEhJ4gpcnmWClEa2fA1KYoKrKQRNU1U7s/GcdtM5e7MJBpWb2TeDzOxRdfnGlP6RGSWohAX4R4JEVxeT6ankDVczcnTxlxjGGrHhQ1Qs5GnINMmTKFu+++mxtvvJE33njDEmcW/xGWB83CwsLC4t8iCk6cjnJE0YUs9+HyaNx9193sN3VfOl/czW/+/hQ7UwqS6MJGkBunuZlVZifiizO/vgx/IsW63UEmC2Ws6x9gWkEp+XYHa/w9jCp0ElEUZFlkakExnfEY2wdkal2VBEZ1ccR+ZdhEkWWtfUydVkdjQw8FgRTjCvPY2Remu9WgWM1jZyjKPgWVyLrOM239LO+tw2kLMKugnHx7HrZ93OQdWMQ3rroMwxARBt9PFNvG8PSzT/Dz7/0RvcuFXXQxoLYj4SFkDNBJE5LkQtNTKHoMQbATTbSi6h8IScXkQ5szZw733HMPTz/9NL/97W/3wNP632Rv9KBZAs3CwsLC4mNiNsAfdthh3HvP/Tz+5/f452PvZNoNw+DdiyVKPebyFi+v6GF/X62prScRo8LjRhz23bKlYoBDZlSb2tbu7mGWy5eT1ZuLU0zwmovaPtXqx062Bpoz38XRPzqRLbGdnHnG2ehDtql67fm3ePyW5fR3hDJtEb2frcaWnGnRvsjGwW2ashiGSnGxh1NOOYVzzjmHW265hZUrV+bkafGfszcKNGuK08LCwsLiY2L+g37x4sWcc8ZlnHfpsfzw7osZN7EGAEEQsIu536fDRRiATRBHbh/heOlDXhCM1D68LRVO8uK1TxMKBnn6mSdNPxMQEHOuJ43oWRuJY489mieffJLa2louvPBCS5xZfCpYAs3CwsLC4j+ms6ObC079Me+/s4mf/OIyps4cs6dT+rdceeV3cDjsHHnkEZm23dtbOPDU6Z/4XHa7nUsvvZCrrvo2l156KT/+8Y/p7Oz8NNO12IuxBJqFhYWFxX9MQu2jz9/Mm6+s4tUXlvPDuy/mK1+fw8/f30JUzpahWNcZ4vUWJ1uD2WnEqKqwyR/ive4elCFTjusG+hloUmkdiGTaesMJ2hpSvLe7L9OmGwbv9wwQq5UJKNmFCO2JMDWVYfrV9kybamj0pHYzxVHM73/3EJdcejGFhYUA/OznD7DfSZMyb8wUI0VLaj1xudtk8E8p/sEitTp1dbW89NJTTJ06mQsuuJCmpqZPoTctLLJYHjQLCwsLi/8ar70Kn6OOyjECf/zzgzz88J9Z8dZrfHNiBY09ZazYORZBEMHQmF3RzPwymTp7OSUOLwDtyQBhAthxMD0vXfdMNlQaSnoRbDCqpxSvkF41ulvrhcoEZZPLmDEl7VMb8CdY/GQroixz5Ix8XPZ02YzH1yXY0ORjdoGLsd58ALZGuth9cAVzFy7khmvvIRKO8fBf7uahO5+gc1svO1OrUEgb/0XBjsdeSkLpQ1HTK0QPOfRgrr/+Ov7yl0d5+uknPr9O3ovZGz1olkCzsLCwsPiUEAGRKVOmcNxxx3D88cfx658/THBZdU7kdyZ3MSW/yNS2PtTB/NKKnNioKuOzmffL3D7WzzFHjjW19fZHKNweYjj/eFthomuUqe35nh3oJ8zngAPncP21d3DD977BmlWbefTvvwPBPLmka0lA58gjj+Dyb32TZDLJr375ACtWvv/vOsPiU2RvFGi2jw6xsLCwsLD4+Gzbto1t27axbNkKHvzVr3n1D1t478VNJONfrP0n//TH9GKBX9z/A956cyknn3okuxrXomrmVZoet4MzzzydispKbv/JHaxdu25PpGuxl2EJNAsLCwuLz4Tly5fz5GPP8vXLL+Hwr+zDTWf+KfMzZViRWQB9WPkKAN3Q0UaY6VHV3FhVzT1n+ry5x4tCuu0DkXbEkQeyatVGvnbu2bnnVVIsWvQ2zz//ArKcrn9mjHBOC4tPE2uK08LCwsLiU0QkW2HfAHQmVc3jny89ySN3vslbry1hQOjGLrk4tEjlmrH1aOjsFlrYb3QeG7pCVCrlFNm87Ir24XDouCSJ/rjKtLxKgrLM211xqpy1+Iu6OPuCcgoLnLz9ZguO7QJRNUVxpcLM2nw6ggk2NSQZ5yphTX+YescYREGgU9jNfvV2VvYFuHN9P+1xuPCSU1i4cC5/+9uTvPDii5m7MYzUYCFaAZAQEAbroOkMLzti8dmxN05xWgLNwsLCwuIzZ+yYcfzxd3/lkd+8wYr3tmXaPWKAvx/noT7fm2kLp2QW7whwWHmtqUba6+09kJxAgT0bG1SjOAuame/LbqiuGwbvBVqYX1iF12bPtLfEwgh5MWaWFWbaUprG8S8vZ91AnMMPP4hLv3E+breLK6+4nuaWLeSKMGGENovPmr1RoFllNiwsLCwsPnMam3bzq/se5qwLj8Juz25MbpPM4gwg3+mg0OHIKWBbYPeaxBlAoc1HseEytYmCgBenSZwB1HvzGVtoPt4pSdjEdHHdxYuXcO7XvskjjzzO08/8lZtuunGEO7HEmcXng+VBs7CwsLD4XFi3ZjOaqjH/oOksWbRhT6fzobzw/KvEolF+/JPvoSgKP//5z/d0ShZ7IdYbNAsLCwuLz5wFCxbw7KsPMWZ8FdfcciY1o8oACMkhGoJhU2w4JRNSZPRhFpyQEiOkxExtASVKZzxpatMMnbAiE1PNq0aboxEagubjk6qGzfAw3O7zxhtvcccdd3LiiSdy3XXXffIbtrD4L7E8aBYWFhYWnznFxcW89tprJOIpHrr/OdYtb6HNv46I3I1dFPj2zNFcP2cym3tD1AsllDjcbA/5AQGHKNEf05jiqyQky7zTE6PKUUNDrId6Tw0uyUGf2sj0Yj0tynQ7Yz0lDMgxOuV+JhUU8n5PnHxhIiIiMec2DhkrsL43wT+3jCKaLKFHaWJj8h0UQ0bTUwiCgGEYjB1by2OP/YUrrrjC2mNzD7I3etAsgWZhYWFh8blQUFDAvffeS01NDeeccwnhcMT086/W1fDAvANMbbph0BUUyLc7Te3PtPoZ455oaosqIQ6oyC2/8VxbiLHe0aa2VYEOdgarcmJfCT2YU5bjZz/7ES+88E/eeeedj7xHi8+GvVGgWVOcFhYWFhafC6FQiGuvvZbCwkLeeONF8vLyTD8XyP0OFgUhZ7FAOjb360sQR/5KE4QR2g0pt83C4guEJdAsLCwsLD43IpEIxx9/PLt27ebPf/4tkmQJJQuLkbAEmoWFhYXF50ogEOBrX/saiqJy2mknAWAYGu/1tvNGV2smLqpo/HZLnMeaEwRScqZ9R6SPUfkx/Gp7NlZN0BAd4IWOAZJadkeBrfF2xpQOENH7Mm09qQhBVQGpPbM4QNc11sffQhAcpgUDhqFhGLnTpl9kamtrWbRoEVu2bGHz5s1cffXVmZ81NTWxceNG1q1bx6pVq/ZglhYfhVVmw8LCwsJiD6By3XVX87vfPYSqpnj22SfpTMB5S9/k0Ioajq+cSyg2jnxbIW4bvNgWw+1oZHKRzL4l6Q3VdcPg/b5NbO33Uu2qYrJvDACLu4M47e1MKNNYWFMMgKzFWdy5geWdhRTb6xjlLmKUG7qTvSwPNLI1tQUEEUnyIIouVC2KpkcxDJkPmTn9wqKqKtdffz3r1q3D5/OxZs0a3njjDbZtSxcIPuywwxgYGNjDWVp8FF+yYWdhYWFh8b9CR0cHl19+GRdddD6nnXZapv3tng7W9znJtxVm2rw2L7pRkBFnkPanLSwvI9+ej8/mybSXOgoRJIlZxcWZNockcUxdCUX2WhyiI9Ne6SonYLTDEJ+aIIjYJA+GITNmzBimT5/Ojh07Pu3b/8zo7u5m3br0hu7RaJRt27ZRU1PzsY6tr69n06ZNmX9ff/313HrrrZmfbdu2jT//+c/s2LGDv/3tbxxxxBEsWbKEnTt3Mm/evE//ZvZiLIFmYWFhYbHH6Ojo4LrrruOKK67A6/V+9AGfM0VFRTQ1NdHd3b2nU/mPqK+vZ/bs2axYsQIAwzB4/fXXWb16Nd/4xjc+8fnGjx/Pvffey+TJk5k8eTJf+9rXWLhwITfccAM333zzp53+Xo0l0CwsLCws9ii7du1i/fr1nHzyyZk2zdBy4tQP8YLpI7SrI5SQ0nR9xNiRdm/6oOmLKBo/Ll6vl2eeeYZrrrmGSCRd0mThwoXMnTuX4447jiuuuIKDDjroE52zqamJzZs3YxgGW7Zs4a233gJg06ZNjB49+tO+hb0aS6BZWFhYWOxxnn/+eU488URsNhsg8s/uV1jU/x6KrqAZOutDDbzUbfC9df00RNI7D+yKhPhrg0JSy2NLpBXd0EnpCquCLTT6J/DQ1jhd8TgAG/x+lrXpTC3w05v6//buLTaK647j+HcuvmJ7Y+LaaUE2GNQmbhBuk1ISc1HAdUIeyAutoWkdIqBSVSFeqOhDuSh96AsUKZUqoLEaubhJKiGrCEclwkpTKJHAimkxAQwICi6uvQvG68uyu56ZPoAXj+wSOSbeifz7PK3/OrM7Z/wwP50zc84NAIacIVp7rzDP+h6FzEy9DOA4MVw3iW0VsXHjT2hubk7LNZkM27Y5dOgQjY2NNDU1peo3b94EIBwO09TUxKJFi8YcO3q904wM/36m8Xg89dl13dTfruve/9/Jo6KAJiIiaXf8+HHC4Qivv74BMEl4wxyN/I09V3/H4e4OOmK5uGTR0V/Mzz/J59dnuznd9SQZ3lxy7Xwez5zLv/rD/LMvTpZRjm1m0zdYQcO5ct65eJu8+Hy+mlnMvBn5/LA0RHT4Am2RBMnkLDLMLCpzXmRR1ss4wzEwLAzDYunSJRQUzOTYsZPpvjwTVl9fz/nz59m7d2+qlpubS15eXupzTU0N7e3tY44tKyujqKgIwzBYtmyZlkJJEwU0EREJhPr6etaurSUUCqVqvckod71sXzvPsOiO5WEa/uCQa4bINkO+mkk2OGOnKUN2Jqbh/948q9C3qG1l5dOcO3eReHz4c/cpHaqqqqirq2PFihW0tbXR1tbGqlWrKCkp4cSJE5w5c4ZTp07R3NzM0aNHxxx/69YtGhoaaG1tpb29nbq6OsrLy9PQk+lNWz2JiEhAGLzxxq945plvs379BsLhe2uXVYZ+jGVk+lrOye5nceE3fLVocpC744Sx2TMusqjQv61TS3eEkz1fG9O2ZeBtvPv3uZMfv8+bb/6exsZGHOfOZDr2pVFWVsaRI0dYsGBBuk/FR1s9iYiIpI3Hjh07uXr1GlVVz6dqkfglXyvHi9Nxt5OYE/fVLw328J+7Pb7a7USE97s/Jen6Xzr4uK+DPsff9o7zX8xRI2iDg0Mc/stf8bzkJPslMnEaQRMRkUBZuPBbvPXWAbZu/QUffXQCwzDIMHKYk7ucmNdLzBzCNDPx3ASVuU9QkTOXf9zuJsMowfUcXMIszJ/F33uPcTl2CTDIMkx+OncxITuP31w7Tcy9t+TEY+bjPJm5hMtOKzEzjmGYJJ0BSueUsP/AbqpXVhNPDKX7kkx703EETQFNREQCZ/v2Xbz00ossWfJCqmaZOczMqxjT9gmnlBnWV3y1K7EPiSQvj2lrWaExm6dbpk12RqGv9sudP+PSlU/Yt2/fZLohj8h0DGia4hQRkcDZs2cv/f397Nv329RSDwb/7x49Tn1CYw9+M2bk8HzVsxw8ePDzf4nIJCmgiYhI4AwNDVFb+yPKy8tZt+4HU/rby19YzI0bNxkYGJjS3xUZTQFNREQCaJi+vju8+up6XnllNZs2bcCyDWKJMCOP5nieSywRoSt5nrjbnzpywOlhwIngjdqNwPM8XC+J40ZTC9ICuG6ceDJC0rkXxrKyMtmw6fu8+86fpqifIuPTM2giIhJgFiXFs9m1ayfffPop1q3dSCTcS6adx7ATh5F7kgdF5mziTh89yY7Uavie52Lg4TH6TUwDy8zH9eJ43oM3QQtDs/jD2weYNbuY1atX09XVNYX9lIeZjs+gKaCJiEigZdjFZGZmsX3HVr7zbCX/vt7JHxve5fSpT3GcB6NkrpskMXxrzPGelwDG38dzRG1tLZs3b+bs2bNs2bKFRCLxqLshk6CA9tkU0EREZEpl2MWpNy9LS2dTUfF1XnttLbG7SbpudqfaXb9+g/f+fDA1BRqNRkkkEg8NaAUFBezfvx/Xddm9ezfXrl2jt7f3C+/TaBO8D08bo/OGAtpnU0ATEZEpNTqgjbAsWLp0uW8z75Urq3iq4sGWRI7j8MEHx/C8YUZe6+zs7ExtHr5mzRq2bdtGNBqluro6bUFJAW18CmgKaCIiEmgmlpWPZebgeQ6OM4DrxbDMfDLsxwATxx0kOdzLvZEyG8OweO657zJv3hxGj57V1NQwf/58AC5cuEBLSwuHDx8mGo1OfbfuU0AbnwKaApqIiHwJGNh4OPgXOTMxDPv+NKa/9XiLoRmGgW3bACSTwdjCSQFtfApoCmgiIiJpo4A2vuke0Ox0n4CIiMh0poEPGY8WqhUREREJGAU0ERERkYCZ8DNoX9SJiIiIiDzEtJoLnugzaNPq4oiIiIikg6Y4RURERAJGAU1EREQkYBTQRERERAJGAU1EREQkYBTQRERERAJGAU1EREQkYBTQRERERAJGAU1EREQkYBTQRERERALmf8CZlPiJLgAqAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "bento.pl.cellplot(adata, kind=\"hex\", cmap=\"magma\")" - ] - }, - { - "cell_type": "markdown", - "id": "dfe00f89-f541-446c-8271-a8234cf97939", - "metadata": {}, - "source": [ - "## Multiple Subplots\n", - "\n", - "Multiple fields of view can be plotted at once by specifying `col=\"fov\"`, as separate subplots. Field of view is annotated as a column (by default `\"batch\"`) in `adata.obs`." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "2692ff44-d8cb-49a8-9506-5aaab0d326ad", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:02:07.289075Z", - "iopub.status.busy": "2022-06-06T01:02:07.288742Z", - "iopub.status.idle": "2022-06-06T01:03:48.622356Z", - "shell.execute_reply": "2022-06-06T01:03:48.620965Z", - "shell.execute_reply.started": "2022-06-06T01:02:07.289033Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0ade19d8761747f68a7d3f1840ada9e2", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/17 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "bento.pl.cellplot(adata, fovs=\"all\", col=\"fov\", col_wrap=4, height=4)" - ] - }, - { - "cell_type": "markdown", - "id": "5bb42885", - "metadata": {}, - "source": [ - "## Individual Molecules and Cells" - ] - }, - { - "cell_type": "markdown", - "id": "4606d56e-c633-4078-aee3-f45caccf440c", - "metadata": {}, - "source": [ - "Finally, we can plot specific cells and genes by subsetting and slicing the `adata` object. Here we set `kind=\"scatter\"` for a scatterplot (see `sns.scatterplot` for additional parameters) and `hue=\"gene\"` to color each gene uniquely." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "84a0e754-f106-492c-92f5-ad452cf076a1", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:03:48.625834Z", - "iopub.status.busy": "2022-06-06T01:03:48.625109Z", - "iopub.status.idle": "2022-06-06T01:03:48.687513Z", - "shell.execute_reply": "2022-06-06T01:03:48.686239Z", - "shell.execute_reply.started": "2022-06-06T01:03:48.625774Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "# Randomly choose 10 genes from the top 50 most highly expressed genes\n", - "some_genes = adata.to_df().mean().sort_values().tail(50).sample(10).index.tolist()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "a83ce3bf-0761-4007-b6e5-3476caf03b24", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:03:48.690335Z", - "iopub.status.busy": "2022-06-06T01:03:48.689585Z", - "iopub.status.idle": "2022-06-06T01:04:27.446060Z", - "shell.execute_reply": "2022-06-06T01:04:27.444753Z", - "shell.execute_reply.started": "2022-06-06T01:03:48.690259Z" - }, - "tags": [ - "nbsphinx-thumbnail" - ] - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "5200e435fb7647d18408fb176c60e069", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/8 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "bento.pl.cellplot(\n", - " adata[:8, some_genes],\n", - " kind=\"scatter\",\n", - " hue=\"gene\",\n", - " col=\"cell\",\n", - " col_wrap=4,\n", - " height=3,\n", - " s=10,\n", - ")" - ] - } - ], - "metadata": { - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.11" - }, - "toc-autonumbering": false - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/docs/source/tutorial_gallery/Subcellular_Features.ipynb b/docs/source/tutorial_gallery/Subcellular_Features.ipynb deleted file mode 100644 index a22b096..0000000 --- a/docs/source/tutorial_gallery/Subcellular_Features.ipynb +++ /dev/null @@ -1,454 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "ded53b22-45c5-458e-9ec1-c15bc49f4b0a", - "metadata": {}, - "source": [ - "# Compute Subcellular Spatial Features\n", - "\n", - "**Author**: Clarence Mah | **Last Updated**: 6/15/2022\n", - "\n", - "Here we will demonstrate how to compute various subcellular spatial features with `bento`. We will use the included seqFISH+ dataset." - ] - }, - { - "cell_type": "markdown", - "id": "5efe2763-a777-4e88-997b-95afa5a6f6f2", - "metadata": {}, - "source": [ - "## Load Libraries" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "8e8aee69-31aa-47ca-ad84-9a79c24d3020", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-05T22:03:04.801816Z", - "iopub.status.busy": "2022-06-05T22:03:04.801478Z", - "iopub.status.idle": "2022-06-05T22:03:04.846375Z", - "shell.execute_reply": "2022-06-05T22:03:04.845735Z", - "shell.execute_reply.started": "2022-06-05T22:03:04.801789Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "import bento\n", - "import seaborn as sns" - ] - }, - { - "cell_type": "markdown", - "id": "9a591fb8-4830-48f9-9c7d-1dfa5dc20ab4", - "metadata": { - "tags": [] - }, - "source": [ - "## Load Data\n", - "\n", - "Let's start with the preprocessed seqFISH+ data." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "bcada814-0a1a-45f4-8181-d27bd7ac0250", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-05T21:58:53.066115Z", - "iopub.status.busy": "2022-06-05T21:58:53.065754Z", - "iopub.status.idle": "2022-06-05T21:58:55.095782Z", - "shell.execute_reply": "2022-06-05T21:58:55.095072Z", - "shell.execute_reply.started": "2022-06-05T21:58:53.066071Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "adata = bento.datasets.load_dataset('seqfish')" - ] - }, - { - "cell_type": "markdown", - "id": "dbb72e85", - "metadata": {}, - "source": [ - "## Cell Features" - ] - }, - { - "cell_type": "markdown", - "id": "c45b0b5c-f182-4eb9-8e70-07838ef9d7a8", - "metadata": {}, - "source": [ - "There are a number of tools to compute cell-level features. List available features like so." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "194b9699-801c-4281-8669-3e8d2195aa7d", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-05T21:58:55.097073Z", - "iopub.status.busy": "2022-06-05T21:58:55.096789Z", - "iopub.status.idle": "2022-06-05T21:58:55.104609Z", - "shell.execute_reply": "2022-06-05T21:58:55.103790Z", - "shell.execute_reply.started": "2022-06-05T21:58:55.097046Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "dict_keys(['cell_span', 'cell_bounds', 'cell_moments', 'raster_cell', 'cell_aspect_ratio', 'cell_density', 'cell_area', 'cell_perimeter', 'cell_radius'])" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "bento.tl.cell_features.keys()" - ] - }, - { - "cell_type": "markdown", - "id": "b8a46b17-f9b9-4196-b394-22f215b10a31", - "metadata": {}, - "source": [ - "We can compute a single feature..." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "53ed2450-d193-40c8-91ee-0e0525ba3765", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-05T21:58:55.107041Z", - "iopub.status.busy": "2022-06-05T21:58:55.106688Z", - "iopub.status.idle": "2022-06-05T21:58:55.184972Z", - "shell.execute_reply": "2022-06-05T21:58:55.184043Z", - "shell.execute_reply.started": "2022-06-05T21:58:55.107013Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "AnnData object modified:\n", - " obs:\n", - " + cell_area\n" - ] - } - ], - "source": [ - "bento.tl.cell_area(adata)" - ] - }, - { - "cell_type": "markdown", - "id": "07ff77fd-be16-4490-b117-1e691978c74b", - "metadata": {}, - "source": [ - "Or conveniently, a whole set of features simultaneously." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "6aef0a5d-314a-4dfa-ab77-128af892c609", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-05T22:03:17.391006Z", - "iopub.status.busy": "2022-06-05T22:03:17.390734Z", - "iopub.status.idle": "2022-06-05T22:03:18.087429Z", - "shell.execute_reply": "2022-06-05T22:03:18.086627Z", - "shell.execute_reply.started": "2022-06-05T22:03:17.390980Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "afbcad48a7f043f3913d909e83c5cb9d", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/3 [00:00" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAIVCAYAAABm5A1+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9e5wkd13vjz8/VdX37rnP7H2TbLJhSUJuhJhIjGtADSAJ+ouS+EXjEUxUMFH0fOF4AD2JfgX1qIkHORsuCgQTMAclegIIhHVBsuSyIZCQJbuZ3ezO7GXu0/fuunx+f3yqerp7umemZ3puu5/nI52era6qrlvX513vy+stpJRoNBqNRqPRLBVjtTdAo9FoNBrNmYE2KjQajUaj0bQFbVRoNBqNRqNpC9qo0Gg0Go1G0xa0UaHRaDQajaYtaKNCo9FoNBpNW1hWo0IIsU0I8U0hxA+FEC8IIe72p/+xEGJYCPE9//XmqmX+mxDisBDiR0KIn62afqM/7bAQ4v1V088TQnzXn/55IUTYnx7x/33Y//zc+bb3xhtvlIB+6Vc7XvOirzf9auNrXvT1pl9tfDVluT0VDvD7UsqLgGuAdwshLvI/+2sp5eX+6zEA/7NbgYuBG4G/E0KYQggT+CjwJuAi4Laq9XzEX9cFwCTwTn/6O4FJf/pf+/PNydjY2NL3WKNZIPp606wk+nrTrATLalRIKU9KKQ/4f2eAF4EtcyxyM/CwlLIkpTwCHAau9l+HpZSDUsoy8DBwsxBCADcAj/jLfxp4W9W6Pu3//QjwBn9+jUaj0Wg0y8CK5VT44YcrgO/6k94jhPi+EOJTQohuf9oW4HjVYkP+tGbTe4EpKaVTN71mXf7n0/78Go1Go9FolgFrJb5ECJEE/g/wu1LKtBDiY8C9qNjMvcD/BH59JbalwbbdAdwBsH379tXYBM1ZxNl8ve09OMKefYMcn8yzrTvOndfvYPeugdXerDOa5bze9PnUNGLZPRVCiBDKoPiclPKLAFLK01JKV0rpAR9HhTcAhoFtVYtv9ac1mz4OdAkhrLrpNevyP+/0569BSvmAlPIqKeVV/f39S91djWZOzqTrbe/BEW57YD/XfeRxbntgP3sPjsw574cefYGRTJGuWIiRTJEPPfrCnMtols5yXW/LfT5bubY0a4vlrv4QwCeBF6WUf1U1fVPVbD8PPO///Shwq1+5cR6wE3gSeArY6Vd6hFHJnI9K1Q3tm8At/vK3A1+qWtft/t+3AI9L3T1No2kLrQ4qe/YNEjIF8bCFEOo9ZAr27Btc4S3XtIPlPJ/aAF3fLLen4vXArwA31JWP/rkQ4gdCiO8DPwX8HoCU8gXgC8APga8A7/Y9Gg7wHuCrqGTPL/jzArwPeK8Q4jAqZ+KT/vRPAr3+9PcClTJUjUazNFodVI5P5omFzJppsZDJ0GR+JTZX02aW83xqA3R9s6w5FVLKbwONKi4em2OZPwX+tMH0xxotJ6UcZCZ8Uj29CPxiK9ur0WgWxvHJPF2xUM20uQaVbd1xRjJF4uGZW07BdtnaHV/W7dQsD8t5Plu9tjRrC62oqdFoWmZbd5yC7dZMm2tQufP6HdiuJF92kFK9267kzut3rMTmatrMcp7PVq8tzdpCGxUajaZlWh1Udu8a4J6bLmYgFWW6YDOQinLPTRfraoF1ynKeT22Arm9WpKRUo9GcWezeNcA9qPj30GSerQsoKdy9a0AbEWcQy3U+F3NtadYO2qjQaDSLQhsJmuVCX1vrFx3+0Gg0Go1G0xa0UaHRaDQajaYtaKNCo9FoNBpNW9A5FRqNZha6r8PZhz7nmnagPRUajaYGLZN89qHPuaZdaKNCo9HUoGWSzz70Ode0Cx3+0Gg0NaxVmWTtnl8+FnvO9TnR1KM9FRqNpoaVlEleaItr7Z5fXhqd8/FciemC3fTc6HOiaYQ2KjQaTQ0rJZPcyqCk3fPLS/05H8sWGcmUiYfNpudGnxNNI7RRodFoalipPh2tDEq6dfryUn/OcyWX/mSY/lS06bnR50TTCJ1TodFoZrESMsmtxPF16/Tlp/qcX/eRx+c9N/qcaBqhPRUajWZVaCV3o5WQzELzNDS1VB+3dMFmPFeq+bz+3OhuoppGaKNCo9GsCq0MSgsNyejkwcVRf9ziYZORTJmxbLHpudHt7DWN0OGPNcyWbds5MXR8Uctu3rqN4ePH2rxFGk37aLXF9UJCMtV5GgDxsEW+7LBn36Ae7Oag/rj1p6IA5EoulmE3PTe6m6imHm1UrGFODB3n7Xu+s6hlP3/nj7d5azSa9hMMSIHWQZAIuNiBaq1qbKx1Gh23vmSE6YLNt953w7zLa70KTYAOf2g0mlWj3eGKldTYOJNYynHTISdNNdqo0Gg0q0a7tQ508uDiWMpx03oVmmq0UaHRaFaNdmsd6OTBxbGU46b1KjTV6JwKjUazaiyH1oFOHlwciz1uWq9CU432VGg0mlVDhyvWP/ocaqrRRoVGo1k1dLhi/aPPoaYaHf7QaNYYhbKLYUDEMuefeZlZaqngQpbX4YozB7naG9AiuhS2/WijQqNZY5Rdj/HpEp2xEN3xMIYhVmU7glLBkClqSgXvYWE6EktdfqnbrgeL9tLsmK7meV4K63W71zraqNBo1ihBt8i+VLgmCW6lWKo65Z59g5Qdl/GsQ9n1CJsGqai1JHXLhRgLerBoH8HxPjSSYbpgg5QgBGPZEn/wyHP85S2XrVsV0/W63WudZc2pEEJsE0J8UwjxQyHEC0KIu/3pPUKIrwkhDvnv3f50IYS4XwhxWAjxfSHElVXrut2f/5AQ4vaq6a8VQvzAX+Z+IYSY6zs0mvWE43mcmi4yki7ieivrXF5qqeBLp9OM58o4rsQUAseVjOfKHDqdXtT2LFRkSesmtIfq450p2NiuxPYAKZEeTOVtPvzlF9dtSel63e61znInajrA70spLwKuAd4thLgIeD/wDSnlTuAb/r8B3gTs9F93AB8DZSAAfwT8GHA18EdVRsLHgN+oWu5Gf3qz79Bo1h3ZksPQZJ500V6x71yqOqXtKiPIMARCiEoYp+wuzjhaqLGw2MFCdzetpfp4l11JEISzPbA9D8eT/GgkSzJsrksVU62+ujwsq1EhpTwppTzg/50BXgS2ADcDn/Zn+zTwNv/vm4HPSMV+oEsIsQn4WeBrUsoJKeUk8DXgRv+zDinlfimlBD5Tt65G36HRrEtcTzKWKXFyuoDtesv+fUstFQxbBkjwpEQi8aQE6U9fBAs1FhYzWGip6dk0Ot4BgdNMShjPlZku2OuupFSXwi4PK1ZSKoQ4F7gC+C6wQUp50v/oFLDB/3sLUN2Wc8ifNtf0oQbTmeM7NJp1TaHsMjxZUDHuZWSppYI7B1L0pcJYhsD1JJYh6EuF2TmQWtT2zGcsBJ6Gl06nGZoszNm2ux4dMplN9fGOWEZNZUfgtYhaBpYpyJdchiYLHBrJEjaNdVFSqkthl4cVyf4SQiSB/wP8rpQy7ac9ACCllEKIZQ0Wz/UdQog7UKEWtm/fvpybsbIY6ua4GHTb9OWjXdebJyXj2RK5kkNfMrLop//5WEq5553X7+BDj77Axk6LWEi5yBsN7gut1AjWly87s9ZXnZy5qTPGWLbERE7lAewcSM1b/XGmdjddyvVWfbw3dEQYmixQHbmyDEFnLMRYpowEdm1MUbBdcmW36ToXw3JW8uhy5vaz7EaFECKEMig+J6X8oj/5tBBik5TypB/CCHyMw8C2qsW3+tOGgd110/f607c2mH+u76hBSvkA8ADAVVddtd7KrJvjObpt+hqk3ddb0XYZnirQFQvRFQ8t2pBcDnbvGuAelBdgaDLP1gYDQiuVGnOt77YH9tdk8venoiQiFgOpKA/dcc2823qmSk0v5XqrP94XbkjxyniekusStUz6UxFGMyUQEDGNioennRUUupJn/bGsRoVfifFJ4EUp5V9VffQocDvwYf/9S1XT3yOEeBiVlDntGwVfBf6/quTMnwH+m5RyQgiRFkJcgwqr/Crwt/N8h0ZzRiGlZDJfJlty6E9FiDaJg68G8z0JtlrW12x9jTwNjutx4Ngk133k8XmfcOfygpyN1HsH7r35klmaFLGQyfHJPIYQ9CUjlWXb6eHRZZ/rj+XOqXg98CvADUKI7/mvN6MG+p8WQhwC3uj/G+AxYBA4DHwc+G0AKeUEcC/wlP+6x5+GP88n/GVeBr7sT2/2HRrNGYntepyYKjCaKeGtcPnpYmmlUmOu6oz6fIt0wWZ4qoiABSVe6vj6DNVJq6aAZ49P8s7PPM2b/mYfQM1xSoQtehNhOqoMunZ6eHTZ5/pjWT0VUspvM5PTU88bGswvgXc3WdengE81mP40cEmD6eONvkOjOdPJFG0KZZeeZJhkZG3r2y007BAMdLbrMp23OTld4MCxSd69+3zueuOFszwNpzNFADZ2RhfsltfxdUXgHXBcyYnpIgYCU8CRsZwKPdx0cSWkFJyXVjw8reRInKlhqTMZ3VBMozkDcTyPkXSR0+kizgqUny6WRmV96YLNZK5U45HYs28Q23UZz9q4EkKmgSclH937MnsPjszyNEgJW7qipKIzT9D6CXdhBN6BsWwJA6UvYhgCV8pZFTGtenhaKd3de3CEyVyJo+M5Dp3OkC6UddnnOmBtP8ZoNJolkSs5FG2XnkS4ZoBdK9QnAyYjFhKwPVkz6ORKyvsiBBh+MqopwPFkZZCrfvpNRiymCmUGR7MVifCOmMW5vcnV29l1QuAdKDqeCqP5UaWIZTQ0zFrx8Cw0R6I6d2NrV4zTmRJDU0UuHEjywbfsquR36P4uaw/tqVhmtmzbjhBiUa9Vwy9HXcxry7YzqCz3DMH1JKMrKJrVKrt3DfDQHdfwrffdQFc8TGcsNEsvwnYlJdej+mchpRroDo1kZj39Dk/mOZ0uUXY9DKGatI1kyly7o2f1dnSdcOf1O0gXbDxPVrQpJMqAG8+VlhR6WGiORLXx0RFT2ibn9sbpiodrEka1WNnaQ3sqlpkTQ8fXX2mnLkc9IwlEs7rjYTrja89rAc31IgA8D4qehwBMQyAEpKIh8mWXzljt02/ZlZgCwqZB0fGQvprnJ759hEu3dukn2jnYvWuA3kSYqXxZ9foAQoYAARM5mz/7+cWHHhaaIxFcB5mizWhGGYchQ1QE3+bzeGgvxuqhPRUazVmEJ9XT5vBUgZLTXpGidtBINXM8V6LkeHTGLATqqdn1JMmISdgyK+WN1TieB36poyEgZBiELEGu7Ogn2gWQLbu8amMH5/TEiYdN8A20VMRc0uC8UGnsbd1xxnMlTkwVcTyJaQhsT5IpOuw9ODKnx0N7MVYXbVRoNGchJdvlxFSRiVxZPcWvERoNOhM5m+54iG09Cbb3xEmETUxD4HqqvPHCDR2zDBHLMDANUZNsCIKob4SczfLbCyEw7jpiIXb0J9m1sYONnVF2buhY0noXmth55/U7mMjZSFQjM+l7TLrjIfbsG5xTsl1Lrq8uOvyh0ZylSCmZypfJrSHRrEaqmVP5ckVcqSMWoiMWQkrJdMGuDEb1ZY2pqEr4nMrbmIZqgCUlJMImp6aLHB3Pc9sD+7VbvAmtiIG1GmpYSGLn7l0DJCMmRdurJNr2JaOkohZDk3nuvfmSptv3gS89f0ZKrq8XtFGh0ZzlBKJZqWiI3kS40qJ8tagfdG57YP+ccfhGhsgH33IRAHc9/Cy5skPUMkiETSb9mHzEFLMkn3UcfoaFSKzD8spoX7ihY9Z5z5cdtnbHZ21fImwSNg0+8KXnSRdsHNejPxWtLKe1LVYObVRoNBpg7YpmLeSpudnT7/23XlEZ9E5NK0EsgWCgI4rrSUbSRe588BnO640znivTEQvpHhM+C/EozOiHODWlu+2Q0Z7vvAfbV2/YuJ6q9AHoS0bOesn1lUbnVGg0a4ijYzn+1+OHGUkXV+X716Jo1lIktKuXLTqqgmBzl3qCPTFVxJMST0qOTuSZzNu4ntRx+BY4NJJhLFOuJFM6nmQsU+bQSGbJ617oea/PoehLRhlIhcmX3bNecn01WDuPIxqNhs999xU+/q0jfPLbg1yzo5ebLtvMVed2VwSfVopcyaFQdulOKN2I1WYpEtrBstVhlMHRrNK8kIKQKSp6FqOZUkUkTMfh56fseFAlSCYEeEKq6W1gIee9URlybyKCZdh86303tGU7NAtHGxUazRqiPxWhNxFmPFfmOy+P852Xx9nUGeWtl27iTZdsWlF9CU9KxrMlciWHvmSEsLU2HJuLzX2odqeXHBdDCCTQl4wyli1huyopMEDH4WtpdNxDpqBgg+dJhFDJsABhc+WMYN0fZG2xNu4SGo0GgDuuP5+v/t71fOjnXs3l27oAODld5IFvHeGXHniC/++xF3l+eHpFy0CLtsvwVGFNlJ8uRYNg964BbrlyC6OZEo6nFCK7/GqSvmQET4IpxJz6CWcrzY57f1IZwZapeoOo+k9JpuTO6iS7XCxU+0KzMizYUyGE6AfeB1wEVNJqpZTav6TRtJGQabD7VQPsftUAr4zn+NfnTvLVH54iV3L5+osjfP3FEXb0JXjrZZv56YsGap7Qlovq8tPeZHhFvrMRC+0d0Yi9B0d45MAw/akI3fEQw1NFJvM28bCJZRp0xUP0JyNMF+ym1Q5nK82OuxCCsGWysdPCcT2Gp4qAYGNHZMWSXRdaqaJZGVq5M3wO+DzwFuA3gduB0eXYKI1GozinN8F7briAd/7EeXzz4AiPPneCl05nGRzLcd83DvHxbw3yxldv4KbLNrGjf/mbZdmux6npIsmIRU8ijGWurLOzmYx3de5Ds/BI/cAohKoIOZUuceX2bj74lotqSks/8KXn2bZPD1CgEjLzJQfbk4RNg/5UhGTEYrpgc+/Nl7Bn3yAHjk1iGYKNnTPdYRdq8DWilTCXblu/dmjFqOiVUn5SCHG3lPI/gP8QQjy1XBum0WhmiIVM3vyaTbz5NZs4eCrNo987yeM/GiFfdnn0uRM8+twJXrOlg5su28xP7Oxf9vyHbMkhv8yJnI0Glfni53PpJtQbJKloqDIwPnTHNfMuf7YOWnsPjpApOnhypsLjxFSR3mSopuur40milkF1hGyxya76PKxfWjEqbP/9pBDiLcAJQLf802hWmF0bO9h1Ywe/tXsHX33hNI8+d4KhyQI/GE7zg+E0nbGXedMlG/m5SzexuSu2bNsRJHJmijZ9yfYqcjYbVG65cguPHBhuql0wV3hkLoMkMGAOHJtEABs7o5XS0qU8bZ8J7Nk3SHc8xHiujPT8Cg8kEzmb217XUzlPEb+K5sR0AVDqp80SJufzQiwlzKVZXVp5nPkTIUQn8PvAHwCfAH5vWbZKo9HMSyoa4pbXbuXT/+V1/OUvXsr1F/ZhCJgu2Dz81HF+5ZNP8v7/833+8/AYrrd8CZZlx+NfDgxzy8e+w+s//I22JOg169/wxOBEQ+0CUMqbTx6d4ORUgUzRrqwreFpultB37Y6eShJioFtxYqpYWcfZXlp6fDJPXzLC5s4Ylqkae7meKhv9xLePYLsu8bDFQEcUgar6GMuWGM0UGZoscGgkU3NNLCTZdqEt0jVrjwV7KqSU/+b/OQ381PJsjkajaRUhBFdu7+bK7d2MZUt8+Qen+Lfvn2Q0W+LJo5M8eXSS/mSEn7t0E29+zUZ6/T4a7eLJwQnue/wQliFIhC1OpQtLdlXPlTtRHz+v9mpELUM9LU8V2dylDK/gaTlI6PvAP3+fwbEcUkI8bPKFp44RCVvEwxZh08BxVRVDoFkxniuRK7lc95HHzzr57r0HR0gXbE5NF4n4Uue2K5F+19J82aVQdolYJqloiM1dMJIuki+7OJ6kJxGiNxHh6HiWOx98hmRELZ+ImHTGVL5/Iy/EQsJcWlJ9bdJK9ceFwMeADVLKS4QQlwI3SSn/ZNm2TqPRtERfMsKvXHsOv/xj23ni5XEefe4ET78yyWi2xN9/5yif2f8Kr79AiWpdsa0L0QZRrYefOo5lzLQfDxkGnufyv//j5UXf6BcSqggGlMlcqeLV6EtGODFdQCI5MZnHMA1sVyUX7j04wveHpjiZKWMZAkOoxNOh6RL9SY942CIRNhnNlpFACTgyliVbcjFQ7dYd1ztrYvuBsZaImBTKLmXXI591Eb7YleN6uJ5EAqemi6SiIVLREKYhGM2U6E9FiIctRtJFRjIlJFB2PaSEdNFhMmezoSNKRyw0ywsxl0T3UvMttEGyvLSSU/Fx4L8CewCklN8XQvwjoI0KjWaNYRqC63b2cd3OPoYnC/zr90/wledPkS467HtpjH0vjbG9J85bL9vEz160kWS09RLRJwcnePip43x/eIqwKehNRkj4RkDYMjg6nmM6b9MRsxZsvAQ3/EMjGTJFh+54qKZ/QxCqqB5Qjo7n2FqVO2IIQclXdAwLydauKGXfGBjLlDCEao2u5kX1rsjZJCI2UwUH0wDXAwlkSy7C3x/HlYznyvQmwmdFbD8IQXXGokQsk9FMCdt1kVLl0zhV8xYdj5dOZ+iOhwhbJmHLIBYyyRRtRjKlynzVSZwlZyb/wjLFLIMxFbEq3Wiry0Rve2D/ksqKdQLo8tJKTkVcSvlk3TSn4ZwajWbNsKU7xm/+5Pl84c5ref+bdnHRpg4Ajk3k+eg3X+YX9zzBX371R7x0euH9GoKQx3iuRMQycDzJSLpErqxuCUXbY2NHjPFcieGpAkXbnXed1bH2jR1RehIhJvM2p6YLldyJJwYnZudaGAanMyXSBVsNUr4Gk0LU5GTkbZf6JqwhvzW6ajgmMYWBECohEZRx4XoSwxAYCDJF56yI7VfnNaSiIXb0JwnPMWKUHI/JvM0tV25h50CKgu0y6nsoaGBTSn/y6UxxVm5LVyykPCO2x703X8JDd1xTGfSXkm/RLFdH93hpH60YFWNCiPPBv0aEuAU4uSxbpdFo2k7YMviZizbwv375Ch74ldfy1ks3EQ0ZlByPx54/xW8+eIDf+twBvvz8qXmNgOqQR3c8DIBEVYMUbBVPv/V12wCVyHliqsBIpjhnwmijxlBbu2Ps3NBRGVQaDSgbOiLYruR0pqjGLqFuUiFDIPzcCFADjxDKgKhBCOJhE4l/c0M1Fat+qrb90IcQavCsju3f9sB+rvvI4yumILlSbOuOU6i/DubwOFmGYGt3jCcGJypJsUXHDUQ2Z2EI5fGQkuYGY4MBv9F2LVSWWyeALj+tGBXvRoU+dgkhhoHfRYlgaTSadcYFA0l+76cv5J/uvJa733AB5/aqG/KPTmX4i6/+iF/as5+PfvMwxyYa32xPpgtEQ+r2kYxYDKSihEyDsivpTUS4+4adXL1DVZw/OTjBez//HG/9229zy8e+w2PfP9FwnQu54TcaUCzT4MKBZMUtbxkqYdMQyqgI+nkUbJctnVE8qbqxetLz3+E3r9/Bldu72d4TxzINLCFmeTRcKXF9rYbq2P5iJMPXA42qZdw5iog8KWuSae+56WISYQtDzDgqqt+398Q5pzfBldu7mxqM1ec/MOBeOp1maLLAWLbYsiz3UgwSzcJYkFEhhDCB35ZSvhHoB3ZJKa+TUr6yrFun0WiWlUTE4ubLt/DJ26/ib95+GTfsGsAyBNmSw/85MMyv/f1T/ME/Pcd/vDRa0wp9U0eMoj3z72REJUleuqWLv3r7ZTUGRRAm6YhajGVL3Pt/X+SLzwzNaq2+kBt+s7LQ9924iyu3d3NOb4Id/Uk2dETxUKWPIUNU5vuTt72Gu2+4gFjIxPHUoHX3DRdw1xsvrKy75HggZKXzpmmoQklPqnyNd+8+f5ZC55noSm/UevzCgeaqrVLWnq/duwa4/9Yr2NIdZ2NnhIgpCGySvqRK6Kw2BuY6/9UG3KbOGN3xEBM5m1PpYkutzXWfkOVnQdlZUkpXCHGd/3dueTdJo9GsNEIILt3axaVbu5j8qfMrZamn0kUOHJviwLEpehNh3vyajfzcpZu59XXbuO/xQxRsl2jIoGh7NSGPgPrKkCCT/zNPvMKV53TTmwxXJJ3nyvgPmK/PQ7B8KmrR64RVbw/fkxLMt3vXAHe98cJKUuAXnhmquOzvueli7nr4WXJlh6hl0huxyJYcio5LImxx/61X1MT255MMX+/Ul+/e//WXePFU49wbCXOeL8vIk/STL3Nlt+acwNznv14Mqz8VJeGf10ANdaH7o/uELC+tpHw/K4R4FPgnoGJYSCm/2Pat0mg0q0Z3PMwv/9h23v66bTx1dIJHnzvBdwcnGM+V+ez+Y3zuu8e49vxe3nTxRp55ZZLTmSIbO2Lc+rptFQ9FwMl0gY66ypJoyOBUuoAnJaMZpQHRlwwv+IZfPdDtPTjCh7/8Inc++AwAA6kIIcNgumBzXl+SDzcZMJpWAdx0MfffekXlM8f1mC6qlMItdeqk1WWv6YLNWLZEyfGIh032HhxZlwPVXOWWQUM2U9AwDCKARNhc8Prqmev8f+BLz7fNgFvNPiFrvZxVSontSr9UWC6qcWArS0SBcaC6K6kEtFGh0ZyBmIbgmh29XLOjl1PpIv/3+yd57Acnmczb/Ofhcf7z8DhbumLcfPkWbrxkY8MeIJv8CpDAU5EtOYzlSkgJ7/38cxVDZGhS9RFp5Ya/9+AIv/PQAbIlt+JWPz5ZIGQKfuenVEijGXPJQD90xzXcA3z4yy9ydLxAyDBqylKD8sPgyXo0U2Q8Vwb8gTVirssyxfnKLYNjtq0nztBkAddPsgQwBWztjjFVKFdErgZSUUazJTpjoVnrAxoOro2EzW57YD+jmRJj2RIbUkrXAtZfLsRaKGcNjAbb9XBcie0prRHb1xypTqSO+4JwrbLgRE0p5X9p8Pr1lr9Rc2ZjqPjyYl5btm1f7a1fE7RBj6rtbOyI8s7rzuPhO67hg295NZdu7QRgeKrAnn2D/NKeJ/izLx/khyfSyKpU/1tftw3HkxRsl2zJ5nS6iOtK+pNhxnMl7nv8EE8OTlT6iAxPFSg585efghr0M1UGRYDtSj669+U5EybnSwrcvWuA7kSEc3sT7NyQoiMWnpUzEeQc5MsunlQCW1u6Y/Qlo+syt2K+HJHgmKWiIbZ2x4hXHb9tPXGEEIxnbTwpKdoeR8ZyTOVtHFfWrO/DX35xQQmutSXGERxXMjxVIF0or8tciJXKwXE9SdF2yZYcpvJlxrIlTk0XGZrMc3Q8z9BkntPpIuM5VYadKzmUHa9tUv6tKGpGgXcCF6O8FgDMZVgIIT4F/BwwIqW8xJ/2x8BvMNM2/Q+llI/5n/03/ztc4C4p5Vf96TcC9wEm8Akp5Yf96ecBDwO9wDPAr0gpy0KICPAZ4LUo78rbpZRHF7qvmiXgObx9z3cWtejn7/zxNm/M+qQjGiIRtijaLkXbpeR4lByvZrBeLUKmwU/tGuCndg1wZCzHv33/JP/+wilyZZev/fA0X/vhaS7oT/LWyzbxxldv4OodPdzNTh5+6jgvnJzGNAT9qRmRrILt8vBTxythk5LtcmKqSGcsRHc8NKdo1pHx5q5v15NziiFt645zdDxLuuBQdj3CpkFHzKrpurmQnInduwboiIXY7g+qzeZbD8y3v9XhnkA984cnp4n6Et2Do1mltomoVNwYQvUBCbwLsZDJoZGsMkqqvERj2SJ3PfwsHbFQxXMxX6v6tRY6mI/lyMFxXK9yfyg5bluNg8XSSknpZ4GNwM8C/wFsBeZTy/kH4MYG0/9aSnm5/woMiouAW1FGy43A3wkhTL/y5KPAm4CLgNv8eQE+4q/rAmASZZDgv0/60//an0+jWTeYhiARsehNRtjcFePc3jibu2L0JiIkIhZmfb3jKnBeX4LfueECvvCb1/Len76QC/rVgHx4NMtff/0Qv7jnCe77xiH6OyL81dsvoycR5pzeeMWggJn8imqklEzlywxNFsiVFqevF7EMDp1ON9WQuHZHDyOZMmXXw/DLTkcyZa6tyglZaPnhmVKmON9+NKqcsAyDVHTGQLRdj6I/sAWDS7mqyidYf7WXKFO0GcuUyZfdGs/FoZFMzXypaIgLBpIMpCI1Ylj1rFXtkMVeJ1Kq5m25ksN0XuXunJwu8Mp4jmMTyuswlS9TKLurblBAa0bFBVLKDwI5KeWngbcAPzbXAlLKfcDEAtd/M/CwlLIkpTwCHAau9l+HpZSDUsoyyjNxs1CPBTcAj/jLfxp4W9W6Pu3//QjwBtGOJgcazSohhCAaMumMh9jQEeWc3gTbeuIMdETpioeJhsy29PFYDLGQyc9duok9v3IlH/3lK/jZizcQtlSzqS997wTv/PTT3P3ws0Qt1UOimslcmUzR4baP7+e9n3+OJwdnbhe263E6XeTkdAG7rvwUYEdfopFQI6BuxJmS29TF/sTgBP3JMGHTwJNgCoGBCpsEA9FCyw/PlDLF+fajUYnpu3efT9gyGc0UfZ0QtS5DCFwJjqt0ParXt6MvUTO4jmZKIJQhWB0WKDverEH4xFSBE9NFzv/Dx7j0j7/K/V9/qebztawdMtfxrTccRjPKcDg2nufIWG5WyGKtGBCNaCULI+glPCWEuAQ4BSzW9/QeIcSvAk8Dvy+lnAS2APur5hnypwEcr5v+Y6iQx5SU0mkw/5ZgGSmlI4SY9ucfq98QIcQdwB0A27frmL5meWnn9RYyDUKmAX7TUenHsou2av5UspW403IT9AA5mS6wya8C+a2fPJ+vvnCKf3p6iLFcmR8MpwGVyJiMWvQmQmSLDhN5m95EiI6oVcmxuPHUBp49Pl2zvmvO71UJf1UhkffduIvf+OzT2A1KEQqOx8aOSNP+EEE77/5UlEzR5sRUESEEnpQcGVMdNVNRi75EGCHErP4T1SykamW1sv7nu97qt+uWK7fwxODErP2on+8XX7uVJwYn+MIzQ0pqO12q5LaYhurl4XoS0xSc2xOvOX5ATelo0XExhKCvqntuLGQSNkVlEI6FTE5MFZjI2xgCQqagYLvc9/hhgEpS7lwJuCsZKml2vv+HlPxv/zrZ1Bnjl6/ezvkDSY6MnTlKDa0YFQ8IIbqBDwCPAkngg4v4zo8B96IqR+4F/iewagmfUsoHgAcArrrqqrVp+mnOGJbzehNCEAubxKrK+mzX83MzZmKu7aS67Xm1YXD3DTs5pyeBZQr6k2HytkvOT6rMFB0yRQdTQDJi0hULI1AD+mi6yN8/8QphU9BXlcwJcPWOHrIlh96kSprcvWuAjqilDKmqnJOoZVB0PHoTtS3em+UHjGZKKjlWCgSyUsmRLznYsRC2q/pPzOVun8tgWM2s/7mut0bb9ciB4VlCUvXzHRnL8t0j4wihGq8FGIBhKGPCQRI2BfGIxVd+7ydnbVe1EZYIW8TDZiXvAlRYYOeGjkpuxdBknumigyEgYqnr2xBKGfUT3z5SMSrWgnZIcLwsAzqiFqemC/z3f3me975xJ1ee28Of/cJrauZv5IVbzyzYqJBSfsL/cx8wy68nhLjdD4vMt57TVct8HPg3/5/DQLVyzlZ/Gk2mjwNdQgjL91ZUzx+sa0gIYQGd/vwazVlF4M1I+anVQWZ4wU8CXaqR0Uzc6uGnjle+vyNq0o26eY7nVOzX9iSuhHTRJV/OEw+b5EsOjj/sSWA0U2agI4JlCB741mCNN+RXrz2Ht1y2iQs3dHB0PAt1CZdWSe1jo9bpUCu0VPKflCXKbW9IEEbQ70Mykily54PPNEwOXIjBsFaenuvZs29QdWjN1h67+u2q3/7JvK3CHHUmsYcfTxfqOvMMQX+y1rALqNcaaSZ6VT3f+X/4GCGzNuBlCMhVhdSqjcWAlchvkVIpsZZsj799/DAgsQwTx5WETAPHc/ns/mNccU73sm7HWqCVnIr5uHshMwkhNlX98+eB5/2/HwVuFUJE/KqOncCTwFPATiHEeUKIMCqZ81GpHku+CdziL3878KWqdd3u/30L8LhcC6nzGs0qEySA9iUjbO2Oc25vgk2dMXoSYRIRS4VTWqC6B0hAkHxZ/1nINNjQEaEnEeJ/3HQxqYi68TueJF2cMSiASmOwiVwZ1/M4Op6rSH2P50r8xb//iH9+ZphLt3RwOl2alXD5hl39C84PMA0DwxBs7ozhSYkQSnLaAE5MF/A8iet5DePzCykTXKtNrA6NZBjLlHE8lffgeJKxTJlDI7X59/XbP5ch6nhKu0L6f49mS/PmMzTK1Wgku50Im7OawXmyVnBrOfNbHN/rlys5TBdsxrMlRtIzpZonpgqM50oMTeWJWI1/E2cDrStbNGdWzpQQ4iFgN9AnhBgC/gjYLYS4HHXdHQXuBJBSviCE+ALwQ1RL9XdLKV1/Pe8BvooqKf2UlPIF/yveBzwshPgT4Fngk/70TwKfFUIcRiWK3trG/dRozhgMY3bIxPUkJcelZHsUHRU6aWaT14tbwUzbc6DhZ5s64/zEzj4ipsH//NqPKNoemboqD9uVGAaUHclYtlyJ0Q9NqqRNwxA8sO9lOmJheuIh8mWVR2L6TcQee/405/WqMs9T6SJlx5ulMRG8Ku5qUxA2Dcquh0BUvBauVE3Hjk3kMQ2ls9CKVPdqPT3PR9nxQFDpcSIEeELOMhoabf9C8KQkW3T4yFcOzjIQGoWMGsltV8/XEVWS6eD5HU7V613XnVeZf6ky3FJKHF8MynbVsSi7Hrbj4S3wuXS+38SZTjuNillHXEp5W4P5PtlgWjD/nwJ/2mD6Y8BjDaYPoqpD6qcXgV+cZ3s1Gk0DTEP4anrq3xXXruNRdtTTWhAHnq8HyFyfXb2jh9//6Vfx8FPHef7ElH8DEb5E8Ey83nUlqajJSKZYGeylJzk6kacjWqY/FaEnoZqgjWSKqvLA87A9Sbqg8iP6UxFiIXNWeCIYtPJlJQBk+I3EehIhxrJl5aWQqq23KQSeJzk0mq3IcC/EYFhIT5PVQCU7gudJPH8wlYCUTo3MeP32WwbY80TNLENgmep4vTSSrVnfQnNM6ucr2C7JsGoEV3I9EmGTd1133izl1PlUWT1vRknS8UNcZcdTKpOeXLIezEL74pypLKunQqPRrH+CctZo1ZOX43rkbZefevUAhoB/fPI4p9KFWT1AAuGrRp+BMiyu3tFTk/BZsB0mcnaNqztTdBGoygIVGhFYQnk0irZHLGQymS8j/NuQ6Qsl5couhoBE2EKERU0+A1AZtDZ2RCuDfVABMZGbxEW1Ug/CQgIICVHJO2hHE7TV4sINHRwZyzKRK2P7B9tAHbsPful57uWSygBdvf3n9yc5eDrbdL2zjpdJTZ7GQnNMquer763yd//PVbOOnzIApV/aOiNF7UqJ50nK/r8X6nFYLNWCb82u+zOZdhoV/9nGdWk0miqWsyRxMeu2TIMO06AjGuKXrt7O267cSsF2KZRVAmhw4w6MhrkISlKDxNGwX4boSRjPl33PiKzE6UENfn3JELZHRQbcdj0EysMhJZRclcDnSRiaKrAV6IiFKuGJZoPbE4MTPHTHNew9OMI7P/M0hgCJnysgYWNnpEbOu9UmaGuFwCASAkIGKv4hoS+lkiv/5uuH2NGfxDQFr97cwf23XcH+l8f4zP5XZq0reKKU/v+Ltqr0EUBfLFQTDmoUMnJcjwPHJrnuI4+zrTvOtTt6OHBsEk8qz5HteoQMA9OAXNnhg196ng+5F3H1eb0U/VBdO8unG5VJt2IULOS6P1OZ16gQQrx3rs+llH/lv7+nXRul0WhmWM6SxHatO2wZhC2j0lSs7MsGF2x1w29WNlftoehLhinaHtmSw2TBJhmx2NgRoVB2OTldxJMzMVYPGMnapCIWb7hkgB8MT3MqXUQAAjmri6brSU6li3T4bvSt3fEF5UNETIO87SJcScQy2NQVxTQEA6lKp4JFGwyr3bEyMIju+OzTyhBDJalO5Mp0x0OcShdwPE+FG6g9V7GQQcn28FDNxMKWUtacypUpV51qCYxnbS4YCFMou1imYGtXrCZklC7YnJguYgpVgnlkLMN3j4wT2Dkl/2S6nsqlCftekI9+82XOH0jSbpqWSbPzrDUUWmEhqd6peV4ajWYZWc5GRMux7r0HR7j9U0/ypvu+xd0PfY+XR7Js99U/O2KhmgqT6pJUgXrPlRxyfjhBoLapOx7CMgWbO6P0JkIVmfJMyeHBJ48xNF3g+p39dMXDNCtOKDkeuZJdCU9UyyanCzaDo1kOnsowXbC5/+sv8aFHX6Ajpo5HkChactqTD7FWlB937xrg3N4EQijBKstUVSCn06VZiZnV5yoaMgkOsyuV3ohpGCQis59TPSBddDg5XeD4RJ63Xb6Fgu0xXbApOS6nMkWklPSlVNOw6YLSozAMZSIGOL6nKBYyGcuW+P7w1CwV1nbQ6Jq0DFEpk9bMzbyeCinl/1iJDdFoNI1pVdCnlSfgdosFNfV8+CWCSX/QCfQyTmeKqrRUUHFDuJ6c1am1OxHG9SQDqSin0gUu2dTBFdu7ePFUhiePTDCeLfONgyPUt0SxhMoJCXIGOmJhfv315/ITF/YDNG1d/tG9L9MdD9GfihKx1CBWtF1GMmW6fC0HWLynaC1pV2SLZVypEmIFM1oT1OUenEwXKhUYmaKNier8CDBVcHjH1Zt58MljGKhTGYQ/BFSOL8zOOZASNnTMNJmzXU9VokjJho4oJ6aKFQ+VlJLpgo0QEDbFsngRgv2s5mwqCV0qCwl/3D/X51LKu9q3ORqNpp5WShJbDWe0u9xxoYNloJdxbm+CkUyRmGX6lQcq0a8yGvmjSdH2OKc3yV+9/bJZ33lyusC/ff8kX/7BKaYKds1nErVSU8A5PXFuvWobn/r2Uf70sRfZ2hXn5y/fzN9/5yielEQtk/5UhFQ0xEimRKbo0J9SeRhCwPBkAQls6owtOQRVb8wFiYhHx/Pc9sD+FQuF/M3XXuJEulw51BJlKAgJp9JF9r00WgltdURCpAs2U4UySDBNgZDSD11FePb49IK/tzrn4L2ff47xXKnyWcg0VA6F79EyBJVwVqBlYgK9yUiN2Fq7jIqzvSR0qSwkUfOZZd8KjUbTlFZKElt9Am53uWOrno/g+8Gt9IHoiIVUUqbrEbFM8rZqnnTb1Y1L8jZ1xviNn9jB7deey7cOjfG5777CUb8tejAYhU3BRZs6+JtvvOSrfFqMZIp84ZkhTEOFVSZyNsNTBcJmCUsISlVxlErTK3Om6dVSPAvVxpzKKVBPwRFTrKiM9xeeVi79+noICeRtjz/+1x82X9g/uI4nGZoqMjRVnDVLYKhYwB/+8w+UgWIqIyViqf4ePYkwL49myRgOIUtgGYKiDbGQYCSt1ilQuRuBUWEIlCEqZdu9CGd7SehSWUj4o0Z6WwgRl1KurhScRnMW0UpJYquDervLHVv1fDT6/g++5SJosk0lJ6gwUR0sqzUFwpbBG149wBtePcCj3zvBg/tfYTxXRgJlV/Jvz58iZAq642EillExogq2S7pgYxoCQyj3e9AB8tBIBteTSoxLQF9nbdOrxYaJqo25sax6ShcIBjqiKxoKKdguIb9xVz3KYSQw/Y6hS6HsSva3mPuQKdV2KK1WXLU9OFzVhMsQ8PN/9x0ivlclbBqELEP9u2LEGBWvS800M5huVqb9zKs38O3DY4xny/QlI7zlNZvY2hNjLFuqLBOyjIpwmGaGBZeUCiGuRQlXJYHtQojLgDullL+9XBun0WgUC60wWEw4o53ljovxfDT7/kbTIpbJE4fH2bNvkGMTObZ0xbn1ddu4fHtXzXw3Xb6Zmy7fTL7s8I0XR3j0uRO8PJrDdiUjmRJj2RId0RAdMQvbHzAD+yQoHZWA9MWQalMGFcFxXUwVR7UxdXQ8T8RUBkUqqgzClZLx3tgR5aXTmVnTLQPO60uQKTr8429cg5SyojD53cFxHvj2IKYQTORK2G4D5UMfpRGi5LXf/JpNFQG1squqg+zK355fMaQqhYK/C2W36bqr8SRM14W+2sVE3ualbxxq+FnIFLO9L40MGXPGoKmeNvtzk7AlfC9OlRFUN79liEq33rVGKzoVfwP8LKqvBlLK54QQ1y/HRmk0msWx2uqNyy30VJ0z0h1XXUz/5huH+OOfu4jX7eihUFaeh8DTEA9bvPWyzfzcpZv4zc8eYHi6QKHs4kmYKthMFWwE0BWzKNgujif9WL4qSz2nN4EQgkLZ4fhkgeOTecxpgWkIkhGLmy/bvOiS3MCYuu2B/asm491MPVJ6tXkEQgjClhpA33DRBlLREA8/dbzS8txElX9WexNChkCiSnG3dif4rd3nt7x9Tw5O8DffeAnTEEQsg4LtkSs5dERDFGyH7niEn7ywj3P7EjXGSNlVzb3K/rTAkClXKcOqf7t1/66dv77XSD22K7Fdlxzu3DO2GUNQMToaemTMGc/LLI9MMF+odplQneHTGQvjeF7L12FL4ldSyuN11tHKHkmNRjMna0G9cTmFnqpzRjJFm9FMiaLj8rtf+B7333pF5XuLtku+rJo/qWoCwTuvO4/7Hj9EVyxE2fWYytsVaerJgoMpBJ2xEJ2xEMcm8oT9jphBPwjw+0246qk9bLo89oOTDXNYPvKVgwv2XqymIZgtu3TFLcZztb1XXODEVIFM0ea9n3+uqRLqW//225QcF9MwZoVIhAGuC2M5G8fLNlzPfFy9o4ff5cJadcobVkadUkrplxHPeFBKdUZHyXEpO5Ky41J21fuh01kOHJsiU7SJhy0uGEjQFQ9Xlq+sq87oKTlu5d+NwlHVeBKKjkdxiWGp+dg5kORr753dun4uWjEqjgshfhyQQogQqivpiy19m0ajWXbWonpjuwhyRjJFmxNTRaWvYAjyZbfGQxDIivckwuTLDtmSwzXn9wJUBqiLN3Xw2nO62X9kgh+eTONKyUTeZiKvvBdhy1ChDyEYy5YqbviwJZASciWXw6NZLhhI4vllsEIIHNfj6Hiec3vjC/JerKYhuK07zoFjE4T8WtzAyAL1NNyfisxZthm2DEq+gmr9MOi6Ek+qsNFAKspEvsT9jx/ibrGT15239tUphRC+dodBonEH91k8OTjBF54eImQKNndFKdrqWrj7si0t7YMn5ZyhoRqPTMXQcauMndnel2Ca3eDzUpVhU+2didR1IF4IrRgVvwncB2wBhoF/B3Q+hUZzlrIaipBBzshopoTwO2x6HkQsURHtqt8G1RzNwktIuhNhXr+zr0bh8x3XnsPXXjjNp/7zCKPZUkW5M110yZXzdMUsyv6TY8gQCFQnVITE9pRxEeTGCr/niGWovIiFVoqsliF45/U7+PVPj2MKEIbAEippM9CaMIRBPGxQtB0eOTDEja/ZiGkILMPAMOBVG1IcHc+SLjg4/jEKur2CakUfNg0iIZNIyCRfdviX753g7Vdvr2lk5vqNvVwpcTwPz5tJmF3uXh3tpFo4C5hV8rpQ+W9DiMoxW2mFSddTuTOmISqS7a3QilHxP4H3SCknAYQQ3f60X2/5WzUazbpmOaXD67+n2nC5dkcPjxwYpui4WIYyKDwkfcnovMmNhjET3ijaLpmiQ67k4EnJT1+8gZ++eAOO6/GfL4/z6HMnePbYFK4nGc/NJADafr/tIHHTEjO9R6Ihg0LZxfYkGzsiVS3UVSnq8Ylc021bLXbvGmBTZ5ThqWLNfpkGhC2Tou0yli1Rdj1OpUt879hUTXfXQyMZsiWXnkSIftNgeKqIlNCXDDM0VcAQSsMioPocGYbAQGCZjbctwPO7iXp+OCIwQlxvpmlYO/t+LIW5hLPWi/y3aQhiYZN42Ko5dwulFaPi0sCgAJBSTgohrmj5GzUazbpnJRQh6w2XI2NZDhybJGIZgMB2JLGwQV9SyX/ny86Ck8r2vzxTQbKpM8YvvXYrV53Xg2Ua/OSF/fzkhf0cm8jz8X2DfOfl8YY6DhLoT4S4+4bajpQhw1fwlKqfhitV4mVfMsrQZJ5oyKxIXQdy46vF3oMjlBwPyy+nBVX+6UmlC3FsIl9RxrQMyYcefYFbhqZ45MAwIVOwqVOVWU7kbFJRiwv6VWJrtuSQCFvEwyYdsdCsLqPVrdDnwzAE4XmOk5Syoat/pb0ccwlnzefFOFNoxagwhBDdVZ6KnhaX12g0ZwjtlvduRH3r60Dq2XE9BlJhRjJlUlGLVFQZNAtNbgyMFdt1mc7bnEoX+d7xSQaSYTxhsDEVrbilcyWXzV1RTk0XZzUpA8g7kt5kuEbpM3giDbwXU/kyUwWH8WyRn/3rfYQtg3N6Etz6um38xKv6iVWMDGPFywT37BukMxYiEbYqHomwKXBcSbpKJ0IZUYKy4/K//2MQD+UpCJsG8bCJEJApOuwcSFXCYMFxbiSDPp9Xq9XQmhCqDDPiuz2C5YOy43e+/lyuOb8Px/P8io3mTe6WwlzCWX/9jZfOCvnvVsMfTwgh/sn/9y8Cf9r+TdJoNGuddst7N6LacBnLljAQCEOFIPqSqktoruQyXbDZ6odG9uwb5ANfen7OgWjPvkFs12U8q3pImEJQdiUn02W298RIF8v87TcP8zvigoo7Wwh1s3TqDItM0eE3PvsMF23q4KbLNrH7VQM1vS1emciRLTlELcNvXuZSsl2Gp3Lc97jSPrh6Rw9TBAOjUfFirISRERxjERZ0+MdaSsmPTmfwfCvKEGAZBp6UlRJS5bmAku2SK7tYfj5ffRjsHuCuh5+dJYMeeLWC81FtPABLCq01Kjv+0y8frPSfCfA837tRl6zYrMx2IdT3NdlYlTex6amzQ/57wUaFlPIzQoingRv8Sb8gpZxDw1Wj0ZyptLMMstlTabXhUnY9TKGqLoIkwN5EBMuw+db7bmgpx+PQSIbxbNlPRKwSvQLGsmV29CcRwuFfnh1mW3ec0+liTVOyAENQyZT/4ck0PzyZ5u/2vsyNl2zkrZdt5q/eflmlr8VYtqTyKwyBJyXZkktf0qpxfUupmqwV/c6pQgiioRkjI2K138hoZByO50qVpEtQ+2i7Xk0ISKJULQNcCfGQOSsMtnvXAB2xENt74jXbHguZHDqdbnjO4iFjSaG1hYbmDEMQNdSxreyrX0Ja9JVWS4swMppVq5wt8t8t1YtIKX8opfxf/ksbFBrNWcruXQPcc9PFhE2DQyNZhiYLxBdRfjZXC/A7r9+B7UryZYewaeBKiZSqzBFqPSMLbeG+9+AImaJTedoOlDNBGQll3yUeC5kMTxV4z09dQL7s1AyyAQLoS1ic35dg94X9mIYgXXT4wtND/Monn+T/feT7HBnPErFEpfOm6ycWFmyPsWyJV8azTY+NlJJC2WUiV+bEVIGRTKnpvIul+hhLKRnLFiveiJptmWc9UirlTJgdBqtuMR9QsJWuQ6NzdmQ8X/M032idc3F8cvHLG36SYncizOauGOf1JdjWE2djZ5TeZISOWIhIaJ7M0iZcvaOHu2/YSW8iQqbo0JuIcPcNaytJsx3onAiNRrNocmWXrd2xirei1QqQuZ4qH7rjmop+w3S+jONJehIhkpHZORT1OR6Zos1Iujir6+eefYN0x0MNB06DGS9IYLDs3jXAQCpKruTOEhoyDUG3P0B86K0XMZEr89gPTvJv3z/JSKbE06+ovPZs0fX1KyTVa7Bd9aT65ODEqg0sQYjiI185yKGRrHL/L3JdkwWbWNjCMkVNGKyZVyvsh3qqCf5dsN1Fh9baHZoLmUalY2pAtUej6KheNAvxaKyW5sZK0vqjhUaj0bBw78BczPdUuXvXAA/dcQ1Pf/Bn2POO13Jub5Lpgs1AKloTI69+Gg6EsWxPErWMGu/H8ck8fckI/clwpZdHxSkvBH3J8CyDJVNyuGAgSSJsEjENopZBxFJhjOqYeE8izDuuOYfPvevHuPfmi7n6vB4E+NoLtQaF6Tfr6oqpEMhqExiHc2HOE3kRwOlMcVYYLPBqDaSiNedu50CqoQdjR1+ixnvSShIuzPa+tLr8Qqj2aGzqjHFub5zNXTF6ExESEWuWEXI2oT0VGo1mUbSjAmQhT5X1ORf33nzJLE9I9dPwSLpIoO/Yl4zUeD+C79vQGSMesSoy3xHLZHt3jFzZZSAVrUnyDJbpS0Y4MV3AkEL1uxACTzIrJm4agtdf0MfrL+jjxFSBj+8b5Nsvj1f6kYDKU0hGTFLR0Kpn/9d7i6oRVTknQggMVLfWwGkjUAOslEpHQkgxKyESmot7/cEjzzE8VcD1ZKWfyl/ecllluxajMLoaCqUq/0XlZ3SifhPtyM9Yj2ijQqPRLIp2uJnnS/hcaAJmfdfPqGXQ58fAYSYxsC8Z4eh4jpBhsKEjwsbOKLYrGw6E9dsYMgWbO6OczpRwXLhwIMn7btzF1Tt6GM+WG5Yobu6K8Uc3XUzZ8bjjs89warpI2U96nC46pIsO3fEwB0+l2bWxY8HHrZ1UG4cRy6gN8/hjYNhUlSlKGlpNNAVYpoGUsLk7hmkIBlLRlgZv4X+HlBKkqHiNlqowuhak6gNvRixs0k2QiKuMjJIvie16Z56RoY0KjUazKNpRATLfU2WjnIuxbJG7Hn6WjliIZFhJYWdKTk1JYr2xM5YtkSm5dMYlW7tinM6UGJoqcuFAkg++ZRcAtz2wv6EuQv02XrGte9aTb6zbJF10mMqXGw4UYcvgt3/yfO57/BCeJ8mUbPJlZVxM5Mv89uee5cINSW66bDM3+L1LVopq43BDR5ThqUKlgVqwJ6mIhWGo9uyO63FiqqCqP1wPyzQYmixgGoKbL9vcUAX1icGJWcd2z75BOmIhNnbOhF3aLaC2lhBixsgIcNyZjqpBSetaUQddLNqo0KwdDGvRJXObt25j+PixNm/Q+mE1+nC0y80811NlowTMsYwqB+2Ohzg8qqSvt3RFK16MW67cwiMHhmuMncm8TU8iVBHSMoXAQTI8VeD7VQqRzbwh8z35Cr/DaSpiMVWwmS7Ys1zdgYbBA98aZDRbImRCPGSR942xl05n+ct/f4mP/cfL/OxFG3nrZZs4pzfR0rFcDNXGoRITM5nMOxhCeXhSUavm+AF0xMIcn8gxXXBwPI+IadAZD/HZ/a9QtAexfRntkXSR/YPjbOyM0JuI1Bzb45N5TAGDo9lKj5C+ZLitAmprHcs0sEyDeHhmWqCfUbI9Pwl0fXk0tFGhWTt4Dm/f851FLfr5O3+8zRuzflipPhyNWG43c/AU7XqS0UyJfNlFAlHLYCxbxhQCxIy+RL7s8MTgBPfcdHGNsTNdsOlNREgXbJUXgcA0IFd2+Ojel+lJhOiMKUGtpUiOG4agJxEmFbUYz5bJl2tbil+9o4eHnzrOlq5YJUFVSsl00cZ2JdmSQ67k8sVnh/nis8Ncvq2Tmy7bwnUX9LbleDai3jh0PeiKWdiuGtwyRdU+fjpvV0THANV4zICLNnVWph08OY3tqV4nphAqjwCYyJbpS0Zrjm0qYnFoJItpCExD4HiS4akiOweSy7av64Fq/YwgP6PsKAOj5IdPlkMNtF1oo0KjWeesRB+O5WAh3pU7r9/Bf33kOSbzthKq8qfbroftCdWyu05fYmgyP8vYue2B/YxkihVlTiVCpYyTkjN7wFys5Hj9Pv3qtedw8eZOHM/js985yheeGSJXdhEoT0tfMlLxcmSKDp+6/Vq+/PxJ/vX7Jzk5XeR7x6f53vFpehJhbr58M7/xEzvY3NV+Bcbq4/Xae/+ddNHBQGVpBoZc3vZIF+xKnkrJUR6KaoJ0DEmtYFa5SufDcT0OHJvE9bzK/FbVyV1qMuNqeO2Wm7BlELYM8C9R129iF4illZ21Y2ScvXUvGs0ZwlLEflaLuUSvqtm9a4DeRBjLFBUFTKuSIKjEsKpVNpsligZlhiXHw5X+U5+jWmsjJXnb4+CpNIOjWb/PSInpgs11H3mc2x7YP2u7FrpPf/blgxw+neHzTx7j0/tfoeSoEkqVS6GabMGMXHNnPMStV2/ns++8mg//wmv48fN7MQRM5Mr8/X8e5Wf/el9FcXO5sH0DwJOqtXv1ED88VSBdUB4Y0xBEQgaDo9nKsZsxIjyqPfYSFbrKFG2Gp4oIoUJGplADpFIrVRUgh0ZzCz7m9Sz0ulrvBJUyfckIW7vjnNubYGNnlK54mEjIXPEeMtUsq1EhhPiUEGJECPF81bQeIcTXhBCH/Pduf7oQQtwvhDgshPi+EOLKqmVu9+c/JIS4vWr6a4UQP/CXuV/4R7LZd2g0ZyLNFAvb2Yej3bSicZEtu1zQn2TXxg62dccRfgkjUmlAuJ5sqC9RTaCVEDKFejqWEPJd7kE/D4F6uh6azHNqukQ8bLY0MDXbp49/+wgPPXUcQ4BpGMq74jOZtynY7iy5ZkMIrj6vhz952yV87l0/xjuu2U5vIszPXbZ52ZM4w5YBEhzfYxC0Q1c9QASn0iUGUlHefMkG0kWXsuvVqJE2YyRd5NR0EYANqShh08Ay1BO4JcBDGTIRUyzaGGiHdsp6xDDUvvYkwmzpqtXNSEYsLGPl/AfL/U3/ANxYN+39wDeklDuBb/j/BngTsNN/3QF8DCrdUP8I+DHgauCPqoyEjwG/UbXcjfN8h0ZzxrESYj/tphXvSrXR1BELsbkzhmEIQpbBBf0Jdg4k8SSzBLHq2b1rgHN7ExgEvStkpcohZApCpoFEaUiETEF/KtrSwBTsU7pgV57eT00XOXQ6Ta7sYhqqZNI0RMWwkDCvXPOGjii//vrzePQ9r+f9N+6acxvawc6BFH2pcE1PFFDeoAsGkgykIjx0xzWcSpfpjFq4nqTkKONurufjvO1Rcj264xYdMRX68ZB+2/LAgFEVJos1Btaj1245CHQzOuMhBjqibO+Ns70nzkBHlI5YSBmOy8Sy5lRIKfcJIc6tm3wzsNv/+9PAXuB9/vTPSBVQ2y+E6BJCbPLn/ZqUcgJACPE14EYhxF6gQ0q535/+GeBtwJfn+A6N5oxjNcR+lkoroleHRjJkik4lB8EyxSwDIpj3A196nm37mu//8FSBRs/TrifZsVElCL54chpXzlQlqEZmkiNjOS79468StoyaFt/V+3RkLMt4rqwSQYWg7EtxR0wD2/NU7gBgGiCRRCyzpm36XFh+hcVyE+SxCJjpkQI4nmQ8V+LcXnWcgvMSMo2KSFbJj+1Xi2YFmCjJ68m8QzyscjPyZYfxnKrmcVzJQCpMKjqjLRIYAwvNk1iJ7rkB6y13wzINkqZBMqKOzVxS408OTvCFZ44zkim1vG+rkai5QUp50v/7FLDB/3sLUK1XO+RPm2v6UIPpc33HLIQQd6A8I2zfvr3VfdFoWmK5rre1IPbTjEY331ZErzZ2RAmZJSZyNo7rsXNDR81NrpXql2zJqd88gJr4vyEEtqu8GAJqxKCyJQevCGPZcfYPjvO2yzfx17eqSO2d1+/gzgefAUAYalAVCHoSIUwhOJku4XhepbupRPCu684jFjYplJcnT2Ix11uQxzKVL1c6kYb87qqnpkuUHY/bHthPvuyCUMdLfZf/ncwYItW4QNJUIafTmSIg/QRcQchU65/M28TCSmk0MAbu//pLfHTvy7ieJGIZOK7X9PzWX1fjOXXdTOXLNT1glspqVly1i2pxLlAJsiXH4xs/PM393zxEyDQWtW+rmqjpeyWWtQB3vu+QUj4gpbxKSnlVf3//cm6KRnPWXW/NEueAhv0gGoleCSHoS0bZ2h1j54YOHrrjmpqbWytx9LnK/V88Oc2h0xlcKStKj3Zdd9L65MN//t5JXnvPv/Omv9nHB770vC9VrUIBliHojoeYztucTJfYlAoTMg0cTz2F333DBfzez7yKTZ0x+lIRTGOu4MHiWOz1li27vGpjB+f0xImHTT/fQX22qTPGSKZIoeziSYnnSRzXqySQSpof5+mSqwYv2+PEVLGSp2H73Vtd6TGSLlZCeNfu6OGje1/Gk+p4Oq5kPFem7LgNz291n5FT6SITOZvueKiyze1K2jwTczeCkMmD3z1GLGTSEQ0tat9Ww1NxWgixSUp50g9vBGd4GKgW0d/qTxtmJpQRTN/rT9/aYP65vkOjWdOsN5dqQLPtnq8L6UJFr6B5bHy+eau3bS6Er3nhedCXDJEve5RcKp6FZoznbaaLDlu6okpUS8KWzhhCwIkp1YckahlEwhZ9ptkw76MjGiIRthjPlpp6U5ab6uOULiivUH9KxeCDUJABHBnLUbBVmanrgSc83ysz03SsQaf4CkFOSdnxEBKEKQj7HgjXg6L0Kv1X9uwbxPE8FWJBKG+IB5mi0zRPIvDaBWXEzUqtl/Jba0ffm7XKUvdtNTwVjwJBBcftwJeqpv+qXwVyDTDthzC+CvyMEKLbT9D8GeCr/mdpIcQ1ftXHr9atq9F3aDRrlpUoh9t7cITbHtjfUqnkQtbZbLsXmzjXSkXLXPPWb5tV5Q2o9guETMGujR3sHEgRCRlkii47+lVn0oV0nDQNwVi2zMZOJSRwOlNs2Nhsric+05fB3tQZI7KCMt0w+xwmIiaj2TKjmWLFLe66EldCyXZrPTZV1TOmUdsmvJHvRaJkvz2pjA/bVesOmSaWqUolA4Pz+GSeiN9fpLJOoXI35suTmOvaW+pvbT1WXC2Upe7bcpeUPgQ8AbxKCDEkhHgn8GHgp4UQh4A3+v8GeAwYBA4DHwd+G8BP0LwXeMp/3RMkbfrzfMJf5mVUkiZzfMei2bJtO0KIll8azUJZbpfqchktc233Ym9QrVS0zDVv/bZt6YoR2BXBOGUI2FzVf2JDKoLteeTLDn3J8IIkklUFg0cqGmJLV1QlLbqSsGmwuTNW09hsPoMqFjbZ0hWjvyok8uTgBL/94IG2GoPVNAo3DaTCpIsOh0ayuFJWjlezwlEPpcTpSlkZWOqPnCWgKxZiqmDPLCdVJY7ta3iEq3qsb+uO0xkPIaUqN5VIXKn0LOarbprr2lvqb209VlwtlKXu23JXf9zW5KM3NJhXAu9usp5PAZ9qMP1p4JIG08cbfcdSODF0fFES0mezfLSmNZbbpbpcyptzbfe9N1+yqKZjrVS0zDXvB770fM22dcRCbCPmay1EmC7YxMMmHbEQ6YISo1JKkabvooedA0kOjWSYS7TQ9iRx/6nYMg2u3K6q3pdSiZCKhoiFTP71eye47/FDhJcxKbDROQybSm303N44juvxysRMo7Fm5MouYdOgjIfhyZpcDAN49eZOBkezqGCGX0bqh5c8YCAR5ry+GZnuIPGyNwnTeZuS62EZBu/eff68+z5XMnD9dQGt/dbWY8XVQlnqvmmZbo1mjbDc5XDLZbTMtd1LuUG1UtHSbN5G2xYM+g/dcU3FezOaKTKeKwPKZd8Zt8jbHvfefElNfP7IWK5hfoWUNBTgWmoXV8s0+MIzQ0Qsg6ivlLgcMuyNjtPpdKnGCI1YpUrJaDPKrkdfMsxIpkx/KkJfMkLBdkkXbCX1XXYou15Fr4PKu8T1IGyZNcen5voxWr9+ml172/Yt/be2liuulspS9k0bFRrNGqEdrcTnYrmMlvm2ezVvvgvZtnuA3/7cgUqlhwAmczbdCSoDd7CesGmoigeptC2EUMmJIcusCHBVD3rteJpdiaTAhsfJ89ha1WdkY0eUE9OFWRUx1RhCcG5vkttep9qdB/v9wbdcBATHooAANnep/JPRTImi45EIWw2TWKsrgo5P5tmzb5DvD001bKdeT7Nrb7l/a2cz2qjQaNYIy+1SXa4b6VpxBTfL5l/IthX9eH6gr1B0PE5OlxjLlNl7cKSyno985SAvjWQJmYItXVEs08B2ZVMlz3YYVCsh6NToOIUMge3JSlio7Hrgl9tWmxXK66Cm7XnHayv7e1eT7wm8Q0XbJVN0KDkqpPGu685reKzqNSGOjGV58ugEA6nwrHbqrXi21sI1eyaijQqNZg2xnE/1y3kjXW1X8HxiRHNt21zJea6Us9az9+AIH/nKQQbHcgCc17u8Gf8r9VRdf5z2HhzhDx55jim/Q6yq5hRYpgr1hE2zYmyYhuDcnvi810Bg+E3kiuRKSggsYiml0EcODHPp1q5Z66jPBcoUHQwB6YIzq516K9fgal+zZyraqNBoziLO1BvpUpJQj0/mZ/W5qKbsuNz18LMqybM7zrU7esiVXbZ2xyqD/HKqKa7WU/XuXQP0JyNkiw6uVJUs/akIRdtlImeztdvivL5Exch5/5te3XA9jeTWpRRYpqj0+khFQ03PV334p1EDs1bCQetVC2a9oI0KjUaz7llK3kEqYjWV3A0ZgvFcGU9KtveoMMRH975MdzxEZ0zlBDQTVTo0kiFfdik7LqZhcF5vnPe/6dWLGsBWyxgczZYwRK2YVV8yguMqgar5jJzA25EtORR9ze9TadXuPWQIhKFyKoJKl2YN5arDP2HToOx6lXb3sPBw0Jkgr73WWVWZbo1Go2kHSxHskVJiNpGUCbRmotZM5YXjeWSKtaqX9aJKR8ezTObK5MsujgeO63F4NMcfPPJc2zUmlou9B0fIFB1sT+lCOJ7kxFSR8VypIpf+rffdMKcy6oe//CJTeRunQXKn7cmKvgc0P1/1ugmpqBLO6ohZLesonIny2msN7anQaDTrnqXkHWT9UMapdG3JpCmoNBXrT0Uq0yO+fkM19aJK41kHT84kfroShJSMZcv89ucOsL0nRrbsrmn3+559g3THQ6qLqOfrSSCZyNn82c/vWFAY4ch4HsM/jo0ou5J4yGAsW2za+Ks+/HNeX5Jfvrq2umShx/BMltdeK2ijQqNZJ+hYcHOWkncQuNcv3JACIF2wOZ0pIqVKIkxEzEo7boDOeIiJnD2nqFLZ9VTb8KpSiWBYzdsuh0dzbOmKrmn3+/HJPH3JCBFrJiEzbBrEQsrBPVcYIbhWS443q4V6gOmHVSzTqDT+6ks2ruZoFP5pVF0yHyvZGv1sRRsVGs06QMeC52exeQf1Xg7LFJWuqTBbwCpkmrx79/aGT8qBqFLYNHBct2l/ZNeTnE6X2Lkh1XYhq3YRDMAdsVBFZjxfdhhIRedMjIUZgyNiCkp+6KP+UIQsg509cboTEY6OZ0kXHMZzZcKmQUfMWpZjovUplh+dU6HRrAN0LHj5qG6XXd+Gvdlnd73xwoY5BUH8vyNmYYjGNkW1FkamaK9Z9/tcPSDmatZVfa1u6orVNHEDpWmxsSPCQCrK+9/0ag6NZBjLlHGqcjfGMmUOjWTavk9znWtNe9CeCo1mHaBjwcvLXF6OVuXCgzCMGpBdCmW34v6vRghV+WAaYk263xcrc119raaiIbZ2w0i6SNHxSEYswqbgvL5kZV1lxwOh1DjBz90QUk1fpv3SRsTyoY0KjWYdoGPBc7OW8k3qB637v/4Sf/X1Q7O8FqZQSp5r1f0+1zGdK4ywZ99gzbWaioZUW/dUlIfuuKZm/bc9sJ9syUFKkJ6LVdXmPNysJEezptHhD41mHXAmt1peKsvR0j0Y8JbaanzvwREeOTBMyKj1VFgCQDTtd7HazHdMq8MIp9JFRjMlciWbPfsGuXZHz7zXavX6o5ZR0cIoux6WKehNhNm5oWO1dl+zBLRRodGsA3QsuDnz5Zu0aiC000gJtm1Ld5yQaRCxDMKmwLIMNnfFuP/WK9bkOVxIDk/QaC0etuhPRUhGLJ49Nsl9jx/Cc1UL9GbXavX6BzqimIaBZQpiIZONndFZ3Uo16wcd/tBo1gk6FtyYufJNFlM1sxTJ72bbJoRgc5fKoSg5HkKKNW0ULjSHJzhWric5OV3yu7YKxvI2hmlWWsfPtf5UNMTmrpm8i/pOr5r1hTYqNBrNumaufJP5DIRGeQPtTIqt3rZUNFTpcTGQiq7JQTM4HqOZEmOZEhs7oxWNjkY5PMGxOjKWQ/jJlhJVMht4NhrtZ/05a5Z3oVl/6PCH5szAUG7axbyscHTRy27Ztn219/ysZ7Glj43CHH/wyHNM5MocPJVhcDRLumADi0+KXU+5MNXHoyNqUnQ8jo7neelUmrFsseF2B/LoZdfDL95ASnyRrOaG2Ho6LprW0J4KzZmB5/D2Pd9Z1KKfv/PHl7SsZnVZbOljvRfDcWVNm++y63FiukDJcRcd41+tDqOLITgejiuZKjhYfvJkyVXS3O/evX3WdgdVIKYQeL6kuYekLxmd0xBbT8dF0xraqNBoNOueZvkmc5U+BpLaAWN+R04JbOmOMZopUXRc8mWXD//CpYse8NZLLkwllDGdw0BgWAYWEteTbO2O8cTgxCxp7MA4+MhXDvLSSJaQCZtTUSxTzOt5WC/HRdMa2qjQaDRnLK14Mcqu6lMRNo1K/oOUkumCfVYMfkGeQ9n1MP1YxkJCGYFxEORjDE3mdbLlWYw2KjQazRlDM8GmhXgxTEO5/qs7kp7pAmPVxysVsZgu2JjGTChDStWhdSHHQXseNKATNTUazRlCq/oS9dof5/bE6Y6rKoSzIXmw/ngFnpq+eAhXKqNiU2cE05g/lKHRBGhPhUajOSNYjL5E/dN1tQu/1eTBtSQVvhAaHS+AgVSUP/n5S1c9lLHejqdGoY0KjUZzRtAOfYnFuvDXY2v6uY7Xaocy1uPx1Ci0UaHRaM4IVrPpWvVTf6ZoVypH7nr42YZS3GvhKbzV41W/zdfu6OGJwYll2Yd2qppqVhadU6HRaM4IVlNQKRDZyhRtTkwVcTyJZQjyZXdWXsdyNEBbDK0cr/ptPjqe5b7HD3NkLLss+zCXaJlmbaONCo1Gc0awmk3XAmXJ0UypIleNFEQsY1YjroU061oJWjle9ducLjgYAjJFZ1n2ITie1ZzplThnCqsW/hBCHAUygAs4UsqrhBA9wOeBc4GjwC9JKSeFEAK4D3gzkAd+TUp5wF/P7cAH/NX+iZTy0/701wL/AMSAx4C7pZRyRXZOo9GsCquVCxCUpxYdF8sQeN6MsmT9E3Y7e4sslYUer/ptLrsehlDvAe3ch7lEyzRrm9X2VPyUlPJyKeVV/r/fD3xDSrkT+Ib/b4A3ATv91x3AxwB8I+SPgB8Drgb+SAjR7S/zMeA3qpa7cfl3R6PRnI0ET/2JsIXrgWUKNnfG6IiFZj1hr8en8PptDpsGni+MFdDOfVhNr5Nmaay2UVHPzcCn/b8/DbytavpnpGI/0CWE2AT8LPA1KeWElHIS+Bpwo/9Zh5Ryv++d+EzVujQajabt7N41wP23XsHmrpjf3dNqmKewHptp1W9zR8zCk5CKWsu2D7t3DfDQHdfwrffdwEN3XKMNinXCahoVEvh3IcQzQog7/GkbpJQn/b9PARv8v7cAx6uWHfKnzTV9qMF0jUajWTYW8oS9Hp/CZwmF9Sa5+4YLOK8vuW72QbMyrGZJ6XVSymEhxADwNSHEweoPpZRSCLHsORC+QXMHwPbtuo21ZnnR19uZz0LyFFYq96Od11ujba5vMKbRrJqnQko57L+PAP+Myok47Ycu8N+D+qRhYFvV4lv9aXNN39pgeqPteEBKeZWU8qr+/v6l7pZGMyf6etOsJPp606w0q2JUCCESQohU8DfwM8DzwKPA7f5stwNf8v9+FPhVobgGmPbDJF8FfkYI0e0naP4M8FX/s7QQ4hq/cuRXq9al0Wg0Go1mGRCrUWUphNiB8k6ACsH8o5TyT4UQvcAXgO3AK6iS0gnfMPhfqAqOPPBfpJRP++v6deAP/XX9qZTy7/3pVzFTUvpl4HfmKykVQoz637vW6APGVnsj1ihr9diMSSnnrDhahettrR6rVjlT9gPaty9r8Xqr50w6b3B270/T621VjApNawghnq4qu9VUoY/NwjlTjtWZsh9wZu3LfJxp+6r3pzFrraRUo9FoNBrNOkUbFRqNRqPRaNqCNirWBw+s9gasYfSxWThnyrE6U/YDzqx9mY8zbV/1/jRA51RoNBqNRqNpC9pTodFoNBqNpi1oo0Kj0Wg0Gk1b0EaFRqPRaDSatqCNiipuvPFGiWp0pl/6tdTXvOjrTb/a+JoXfb3pVxtfTdFGRRVjY2eSOJpmraOvN81Koq83zUqgjQqNRqPRaDRtQRsVGo1Go9Fo2oK12hugUew9OMKefYMcn8yzrTvOndfvYPeugdXeLI1Gcxaj70uaVtGeijXA3oMjfOjRFxjJFOmKhRjJFPnQoy+w9+DIam+aRqM5S9H3Jc1i0EbFGmDPvkFCpiAethBCvYdMwZ59g6u9aRqN5ixF35c0i0EbFWuA45N5YiGzZlosZDI0mV+lLdJoNGc7+r6kWQzaqFgDbOuOU7DdmmkF22Vrd3yVtkij0Zzt6PuSZjFoo2INcOf1O7BdSb7sIKV6t13JndfvWO1N02g0Zyn6vqRZDNqoWAPs3jXAPTddzEAqynTBZiAV5Z6bLtZZ1hqNZtXQ9yXNYtAlpWuE3bsG9I9Vo9GsKfR9SdMq2lOh0Wg0Go2mLWhPxVmIFrTRaDTLhb6/nN1oT8VZhha00Wg0y4W+v2i0p+Iso1rQBsD1JCPpInc++AxXbu/WTxUazVlIu7wL9feXeNgiX3bYs29Q31fOEta0USGEuBG4DzCBT0gpP1z3+W8C7wZcIAvcIaX8of/ZfwPe6X92l5Tyqyu57cvFUn/8xyfzdMVCAGSKNiemioBEQuWp4h7QNwCN5iwh8C6ETFHxLvzBI8/Rn4yQKTkt3Weq7y8BWjDr7GLNGhVCCBP4KPDTwBDwlBDi0cBo8PlHKeX/9ue/Cfgr4EYhxEXArcDFwGbg60KIC6WUtUouC2AtxQcb/fhbNQK2dccZyRSJhy1GMyWEAKSoPF3opwqN5uyi3rvguJKpvE226HDBQLLpfabRvbH6/hKgBbPOLtZyTsXVwGEp5aCUsgw8DNxcPYOUMl31zwQg/b9vBh6WUpaklEeAw/76WqId8cG9B0e47YH9XPeRx7ntgf1Lii020+L/8JdfXPB3VAvalBwXKSUekr5kBNBPFRrN2Ua9HPep6QKuJyk6HkfGcjiunNXzo9m98dodPYsSzGrnfVKzuqxlo2ILcLzq30P+tBqEEO8WQrwM/DlwVyvLzsdSG+q0O2mpkRa/43ocGs0u+DuqBW1Mw8AwBJs7Y3T4Lkv9VKHRnF1Uy3GnCzYlV4VDBcprcWK6gON6NQ8bze6NTwxOtCyYpZM7zyzWslGxIKSUH5VSng+8D/hAq8sLIe4QQjwthHh6dHS05rOlNtT5yFcOMpIucmwiz5GxHK432+JfKPd//SVOThd5/kSaF05Mc3q6AMDpTImQYVR+3NWJl80s/t27BnjojmvY847XMpCKYpmi4VOFfnpoP3NdbxpNu1nI9VbtvRzLlirTQ6aBRBkWxyYKTBfsyj2g+t6YLtgMjmY5NpHnwLHJyjq3dsc5Pplnz77BOe8de/YNYrsup6aL/Oh0hlPTRWzXXVI3VH3vWj3WslExDGyr+vdWf1ozHgbe1uqyUsoHpJRXSSmv6u/vr/lsKQ119h4c4aWRLJ6UICV52+XoeJ6hyQKHTqfnXb6a+7/+Evc9fhikiu54EkayZYYmc9iuZEOHCl0EiZeelHhStuS1qH+q0E8Py8Nc15tG024Wcr1V3weKjkfEFFiGwJMS2/WQqLhyImJW7gHbuuOMZUu8dCrNKxN58mUXz5MI4L8+8hx/8MhzC753HBrJMJYp43gS0xA4nmQsU+bQSGZR+6zvXavLWjYqngJ2CiHOE0KEUYmXj1bPIITYWfXPtwCH/L8fBW4VQkSEEOcBO4EnW92AxTTUCSzkOx98BikljiuxvYo9QMnxyJTcli7wT3z7CIaAsGUSNg0Moaaniy4XDiSxTHUaRzMlJBLbVd+7EIs/8Fp863038NAd11TclEsN/Wg0mvVDcB+4+twetvbE2dodw5MzYZCoZdCXjFbuAdfu6GE0W6bsyso6XAmdsRCZokO25Mx77wjuleNZZVAoo0RgCIErJZN5e1GeBn3vWl3WbPWHlNIRQrwH+CqqpPRTUsoXhBD3AE9LKR8F3iOEeCNgA5PA7f6yLwghvgD8EHCAdy+m8mP3rgHuQV2kQ5N5ts5T/VFdneF6HoYAx//NCWaySEuOxzs/8zR333ABd73xwlnrqM+ozpVdLN/8Mw2BaZh40sPx4H037uJDj75AvuxQtF2C33jIoGLx227rFr8uDdNozj7uvH5H5R5mCDAEuB6UXY/B0Sx9yTBDk3meGISBVJhT0ypcIgRYhiBbcnA8DyFEzXpjIZNDp9Pc9sB+jk/mSYZNxnNlFXr157E9ieu5GEJ5Y03koqrc9L1rdVmzRgWAlPIx4LG6aR+q+vvuOZb9U+BPl7oNrTTUqbaQI5aJ40kcz1PbUzev60kV0oCKYdGsZDRiGdiuV/FQgPrRJcJmjeEzOJpDoH7cgffCE5Ky47W837o0TKM5+6i+nxwbz/shCbBMA8eTDE8V2TmQ5Phknt5EhHTBwXElhiGQSMquh2UY6imqirFsiUzJrYQkDo9msR1lfAgx48kN7lSmgGjIrHgaWil11/eu1WUthz/WHdXJS/2pCFLO+m1V/h08BXzi20cqnzVz2/XELDwJjuf5HgoPT8K7rjsPmHFd9iRCWKZyH0qp3IkAUnotJy0tJvSj0WjWP7t3DXDn9TsqXgTXA9eVlScjKWUl36wvGcFD3Ws8T2IKQSpqkYxYNfeOybxNTyJUk1DuSnClJGQYNfdJT4IhBP2pSGVaK54Gfe9aXbRRMQ+tZBFXJ3amoiE2d0UrYYuAwGPhSfXjzJVnojL11Sbpgs2p6SInM2U2dUQIGQaOp35gjUInF27ooDcRxjJVTNIyBYmwSdml5aSluZI4NRrNmUvgMVVeBzXN9pSejSng0GiOyVxJlZ86LgYqPFJ2Jf2pCH9xy2X85S2XVe4dIT/pcyxbZnA0S7pgE/Y9qUgV0g2ZyrAQqFBKXypMKjoTwmjF06DvXauLNirmoNUs4noL2TQEm7rivPeNO2tCFwGOB2Fz5oP6evET0wXKrsrGdqXElZKumMXFmzu5dGtXw+8PWyYbO6O8akOKjZ1RCrZX84TQStJSsyROjUZz5hJ4TKOWiWkYREMmliFwXIkHREyB7UmKtst4rowjJbGQwabOSCWXIrh33HvzJeRtD1OIGt2LeFg9PEnUw5UALFOwoSPCqwaShExz0Z6G6ry0+fLgNO1HGxVzUB2OyBQdTk0XOTFV4K6Hn22q/9DIQr7rjReypSsGMGON+8sESpbQuF5cIEhFQ4xnbTwpKdpeU+Om0fenoha9iUjNfDppSaPRNCPwmAYhXE9KXC+oBBEMdESJhy1sP9xx0aZOzh9I1VSHBAT30I2dUUAE/5EpOXRETEKmKiG1TEFvIkzYMnn/m17NPTddTNg0ODSSZWiyQDy0sKFKl5OuPms6UXO1CbKIA6+BgcA0IFd2mmYjN0vslMBAMsxYruzHDKE/EZ61bJAkdXQ8T8RUP+CgR4eBoOx6cyYu1X//bQ/sX5akpbXUE0Wj0bSHvQdHKmHXiGXQFbPIlV1KqHvW5q5oJSzhehIpa1PQ6x9YgnuoEILNXarsveR4CCm4/7YrgcbVdXsPjpAru2ztjhELmRRsd0EVILpL6uqjjYo5CLKIx7IlDASGIfCkqtkOLPJWG3lt6IxVpuXLDgOpaMP5LUPgobKiy66HaQikRyUWuVBvQ1Aili87lR/nUpOW2tHYTKNZS5y74wJODA8taN7NW7ZydPDwMm/RyhP8rhMRk0LZVXkSBY/eRBjHk3THQzV5DqYhQCqfa7pgM5ZVBkM8bLL34Ai7dw3UVGKkomr54L4X3Csa3TMWaxzoctLVRxsVcxAMyCXHwzSC5EpV2dHqhbqQwb16sN7YEWF4qsjwVAEDievXWvUllRGyUG9Dtffj0Ok0ZVcStoyKi3I+Tf5G3gj9NKA50zgxPMQv/O03FzTvF3/np5Z5a1aH4HfdGYsSsUxGMyWKjku+7PLu3efzyIHhmvtXyBAUHY/nT0xXSkIFYBpUHjIW+1CzWONAl5OuPjqnYg6CHIV4WGlOWIaouP9avVAXkpFcPVh3xMJs7Y5hGQIpVJlobyJMKmq1nLgUlIjFIyH6UxE2dkTnjTXOFZusr1LJFG1OThV48uiE1tnXaNYp1b/rVDTEjv4kr97YQWcsxF1vvLDm/lWyXYqOh+NKqiMgAsiWXMqOW3nIWEwlxmJbJOhy0tVHeyrmYfeuAe6/9YqKByEWMhd9oc4npHV8Mo8pYHA0S9n1CJsGGzoieBLuvfmSBSt7NqJV78Jc81c/DQT9RiSSqGXoUIhGs06Z7yk/uH/tPTjCnQ8+A1AjXKUmqNyvTNGpeBWql9uzb5APfOl5tu2b+x62WA9HqyrImvajjYoF0O4LtVFYAWAiVyZfdhECQn5jnUDBrhVlz0a06k6ca/57b76k8oMfSSuDAlQliw6FaDTrk4UO5Hv2DeL6nlunLlFTSmVolByvxqtQ0b5wXDJFhxOTBfYfGScVUSXy9ffTpdxzl3qv1CwNbVQsgEzR5jVbO/n0r19NuF7NqkUaJTn+wSPPIQDbUe4+lZwZ9AZU379UWo01zjV/fZWKajYUocM3QnRilEaz/ljoQH58Mk/EMnBcOctTIYRSyTQNUWOM7Nk3SNlRuhbSU3oXSEgXHY6OZxt6N9thHOgqtZVHGxULwPNgumAzXbCJhsyKDG1905yF0CisMDxVUPaDEJhC4tYa/wxNFbn/6y/NUtBsRLMfUavuxPnmD37wy1WyqtFoVp65BvLg3jKaKeF5Hp7fUdSrsiqkL7H97t3n16zn+GSeTNHBQGD7D0uBQXI6XcIQgrsefpb7b72i4fcvxjjQVWqrgzYqWqRou0pJLlsmGbVIRVXzsIXSKKwQ1HtHLJOc27iZ6t9+8zCXbu2at1oj+BGZAp49Nsk7P/MUmzqiICWnMmXltjQFG1IRkhGraXxzoU8ty1GyqtFoVpZmg3Yw/dBIhkzRoTseqlSmSU9iWUalRXoybHLJlq6G94lt3XFOTRdV4nmlh4h69ySEzOb6P/d//SU+uvdlHM8jYhq4ntcWzYrl8mKc7d4RbVQsEk9K0gWbdMEmEngvwhZGIz3uKhqFFYJ670TYrOkFUo3tyjnzFPYeHOGuh58lV3b8HiHKBSlQng5Qnf9UW3bJiekiA6kIfclIjQUPtPSD0IlRGs36ptkT/Wu/N8Rjz59WDQw9MAwYz5XZ3Blja3eMU9NFJPBj5/XO+5u/8/odHDg2iStnh0zULVM01P+5/+sv8dffOOR7QFRYeDxr05tkSZoVy+XF0N4RbVS0hZLtUrJdJoTyXnREQ01zL67d0cNH976M60kiljETSgHSJWfO72mWpxBcyPmyi2UISq6HlFSkdQMkYBoGtusigUzRoT8VrVjwH/7yi+Rtr+UfRL3LNGjCdrZa6hrNeqLRE/1Ytsi/PHcSy2/2VfQNC2GoNub9qQiGgFJ9rLaK6if2VMQiGTYZz8/ODzN970W9/s/egyN8dO/LNZ4NV0owYDpvM2QsTrMiETa56+FnyZddIlX5YO1IMNcaPlqnoq0E3ouhyTwnpgpkS06NjO3egyM8cmCYnkSIsCkoOi6TeZtfveYc/uKWy5DNf58AJCONbcDgQo5YBsgq9+Ks7audXg4UtVAW/JHxfOUHkS2pXifDU/mGvU6adW+9/+svceeDz/DU0Qkmc2WOjGW19r5Gs4ap150BNWhLid8ITFQaIrqepOh4nJgqUnI8pJQ8dXSCOx98hvu//lJl+eBB5+h4ltF0kRdPZRjP23REDKIh1ZHUEMp7GjaNhvo/e/YN4njeTDNG/92TkpLrLUqzYrpgczJdJF10cDxJvuwyPFUgXbDbkmDe6FiebYnr2lMxDwdPpXn8xREu39blN8VZGEHuhSEE8YhJRzRUo1gXKGPmyw5PDE5w1xsv5Mrt3Rwdz3JyujRrfaZgls5+QODm60tGODFdmHO7Ss5MeMUQokZe1/UkjutVtCeEUHLh+XKt7n4zF98tQ1N8dO/LeFJWuhqO58r0JsJnlaWu0awnUhGLwyNZXCkJmwb9qQglVw3mQYmoZRjYrlfpKqq6JoPl3yNcKfno3pcr3ZPvevhZ/6FKfYdAPcxkSh7be+JYpiBkiIpntJH+z/HJPBHToOx6FTVjUO8R01iUZkXZ8ZjK24hggwDHk5xOF7HM2JITzLWipzYq5uWfnx1mz38oSesL+pO8/oJerrugjx39iYbVH08OTvDwU8c5mS6wqSPGra/bxtU7esgWHY6MZemOh1WrX3/Zais2SHo0BbMqQAxDcGg0x20P7J8VTggu5KCk85WJGavYALyq9XhV6y07nhLc8nMvQqZgeEolUwmhjA7Pg4glamKdzdyl9z1+GNeT6slCgGUa4FEjhKPRaNYOew+OMJot4fi/W9v1GJosYAhBIuLneHnKq2CImVYFMvBcSHAddYeRSH77Hw9gCqWqWaeJ5c+jwifn9SWYLthzivpt647jeh7jWRvLUIaF5xs59dUlzagPzb7qA1/290UZSQFFx2s5wbxRQqZOXF/j4Q8hxI1CiB8JIQ4LId7f4PP3CiF+KIT4vhDiG0KIc6o+c4UQ3/Nfjy52G6KWSXdcDdaHR7N8+olX+I3PPsM7Pvkkf7f3MM8NTeH6I/WTgxPc9/ghxnMlOqIW47kS9z1+iCcHJwDY2BEjW3Ioux6T+TIvj2R48VSa6YJdacBzz00XV/IxBDMnyHYllqChvHa1my8VtYhaBgYQsQzMICwSHBdUQ7SBpOqQ6knlftzSHWOT3+ys6HiAxPPUE4njerwynuPAscmmMt1jfmWJ8Ndp+14PIaBQdpku2LNCJRqNZnXZs2+QzliILV0xQqaBhEp1WEcsTG8iDELdE1ypjALlrZhZx4yiDuTLLpk6g4Kqz1WypVejefPQHdfwrffdwEN3XFNjANx5/Q5CpklvMkTYNBBC3dN+7w07F1RePxemnysSPBcKwYLkwwOatTEAFiVLfiaxZj0VQggT+Cjw08AQ8JQQ4lEp5Q+rZnsWuEpKmRdC/Bbw58Db/c8KUsrLl7odv/fTF3L7teey79AI/3l4nG8fHuPkdJGT00UeeWaYR54Z9i9QlcuQDBuk/NBGYKk+/NRxrt7Rw62v28Z9jx9iMldiMmeD8Af5kMEHv/Q893IJu3cNcG5vgkMjWUxDKGs6cCEK0TDxp97Nd15fgtFsic5YqLINR8fzbO2K0hGbabc+kS8jhGBHf7JqjyXHJgu4HlgGSE+CoYwUIVSjoFTEomC7FU/FaKak5HmF2sbAyLI9ieMniyYi5lmbDa3RrFUqrcnDouLplFJyarpAfyrEyakCtldvIszQ7BPR5DPVcEy0LrlttKey7LzeOIdHcwjfMxMyDFwpuaA/0ba2B/XG0VrG8yS2p7w0juu/e6qnS9gy2NCx8JB/wJo1KoCrgcNSykEAIcTDwM1AxaiQUla3FdwPvGM5NsQ0BJdu7eLSrV385k/u4MhYjm8fHuPfXzjNiekiricrA2nJ8ciV83TFQyTCFtGQwam0ynO4ekcPd7OTe//vD1UlhhBIKRnNlAF416ef4spzehjJFNnSFWUsW6bkUAlNuP7jQaPEn0YVGNVuxbAfm6zGMowZv2QwzTR41UCSvO0xki765a7qBrEhFcUy1TYHnpFYyKToqNyRVMRiulhbwSKBZMSs5JC0o1b8bK8D12jaRaMcgLFsiUzJpTOu8h2qjYpZvT7mwPJbDQSEVDSUc3vivP9Nr24pfDFf35CF3hPe/6ZX8wePPEe25OD6ZfddkRDvf9OrF7ZTPuutxbqUUrWy98M86t2rCQHVEzIXF8hYy0bFFuB41b+HgB+bY/53Al+u+ndUCPE04AAfllL+Szs2Kniy39Gf5HvHppFSPY1nSw4FW52gouNxKl0CSpWSpdGMKsMC5f5zJbh1iROOhCNjSmTGNATn9SU4MpbDcSX4/UBA/ejzZZfrPvJ4wx9Qs94iH3r0BcayRabztp+IJTCBQyOZyg8sGbH4y1suA+DOB59B4sdTJZyYLhAyBHF/nsBoSYQt4mGTTNHBMpTCXhD7lFLFVwdHs/SnIqSioSXVius6cI2mfTTKAZjM2/QkQsTD1iwvxXwGRZB3oXKq1P3KqXguIR4yefNrNgEsuOy8kajff/mHp4iFTOIRk75EmPFcmY5YaN57wu5dAzX3rsV6P9ZqQqbjeji+h9h2vCpDornx0G7WslGxYIQQ7wCuAn6yavI5UsphIcQO4HEhxA+klC83WPYO4A6A7du3t/S9J9MFOqIWAkF3PEy6aDOSLuEx4/4rOR7DUwXe/sB+tnbFmCrYeHPUdk8XVPnTSKbMVN4mGTEp2i5CCDZ2RBjNFBnNlhlIhRv+gJoOujddzC1XbqloZEQtk5ApSBcdFebws68Cx8XuXQOVapTxrI0Q6gdte5KM74146I5rgJkffdEpYRkCUxo4UlaqVSTqxnJiqsjmLuX52dodX1RN93qvA1/K9abRtMp811ujConpgk1vQj0AhU2la9Py9wJFe2YgM4CQJbA9j7/5xiESYZOBjuiCHgyC37zrSU5Ol/CkqkLJ2y6265Eu2HgSEn7rhPnuCe3oKbIaCZmBwaCq9FSYwvUNiOC9WYXgSrKWjYphYFvVv7f602oQQrwR+O/AT0opK7WYUsph/31QCLEXuAKYZVRIKR8AHgC46qqrWjojmzpiDE/lyJbUxR0ylZiV40mSEZNY2KInEebwSJZ00WFoau5yT1CKcSGDSgXFVMGhI2JRdD2OT6rlO2NW03DCXIMuwNbuWOWzwdFsJWFpR3+STNHm1HSROx98hiu3d3Ptjh4OHJtEIjEQSP8e0R0PNczpmBGU8ctXhIErPVyV9wlITk0XGeiIcuf1O/jAl55v2YW43tyO9SzletO0zrk7LuDE8NC889nO0pv2rUUWcr0Fv+NAjnsybzOeLRMPmyQjFkXbnVWN1oxYyERKScHxasIfKrlTYBkC23XJld1Z96gPf/nFhiGM4Dd/ZCyHEKoXE/iJ7Iag7KgwzWimRCq6Mk0Nl0NJOAgrB2GJsp/j4PoGxHphLRsVTwE7hRDnoYyJW4Ffrp5BCHEFsAe4UUo5UjW9G8hLKUtCiD7g9agkzrZyxbZOvj885ScoqnKskuNx+zXn8Cs/fm5lPteT/GB4mv/+L89jO15NnLExgogl2NYdZyJXYrrosLEjSjRk8PJojkzRYSpfpjMWQghR8wN66XSaoq0uyLCpQi+pqMXQZB4JNQNy2a9FL1dpU+A3Mh/JFHnkwDAhE6Q0/HkFhlRSvZP5yUrFCqgf2f23XlHxkhybyCOQGMKgJ2mRK7uUXbXuIBs69ZXZ9fGBF6MZa9XtqFmbnBge4hf+9pvzzvf537xuBbZmbRJ4Gm3XZTpvg9/Lo2C7lB2PzliI6aLNQjzoBdutlJ++elMHPxiernzmeB6moarG6m+B6UKZ0ayNaWRn9fcIfvNl16uob4K651ZX9VfnjK3EPWExHo/AcHCqkiMdT+U4rBVPw1JZsyWlUkoHeA/wVeBF4AtSyheEEPcIIW7yZ/sLIAn8U13p6KuBp4UQzwHfROVU/JA28+zxaXriIVWKJVViS088xLPHp2vmMw3B5du6eNVAio0dESKWqM+PrMHxVHMx15Pkyi6uJ4mFTAQz5aFj2VLlosyXHbZ2x9l7cIRsyaVgu5Vlj03kK5b0tu44BXvGlRk2jUpJ6WimpH6kCMKmQTxsETIFhjDY2Bllc2fM70aott3zPO588Bmu+pOvVcpEg5LYgVRUGSBCsLkryobOGDv6k2zviXPl9u5KmCaojxfM1MenC/acLsRGKnlnWx24RtNOAu9muuBgGIKwZfq5UepeNJm3uXAgxT/82uvY2hmZc11qGRD+2FjdCml2vw9FpmgzllWeopBp4EoYz9rYrsuefYOV37wpBF6VNWIZ6r4bNtW2Bonvq31PkFJSclyyJfXwN5YtcTpdZGgyz9FxdT8+NV1kPFtiumCTKzlKWOwMMChghTwVQogvAp8EviylXLAfR0r5GPBY3bQPVf39xibLfQd4zeK2djbxiAkiQrkq8UVKycl0ge5EmJ7EzC9EIivVHvUEJaWpiMWUZ+N5tcJUM+uAqYLNVGHGJfvSSBYjUK/zQEoPT3rky8rC/aWrtvJ3e18mFhJUtxBR63K4dkcPl27tqokDpqIWo9kyHTGL0YxqPyyhElqJhUzCloHtSkYyRfy+P7iuEu/ypCRfchrGRD/ylYO8NJLlVLqIlBLLNGp+6EF9fCJsMZYtUXY9LFPQmwjrBmYazQoShBcCTwCAYCZsAfDiqQzv/MxThOdpmBgQhEv6EmFGsmX83M2K7HYibFbuQ0FjspChJMGFAA9Z6e8R/OaDe4rlV5FIJNKDvlQY25X0JyNMF+wVuSdUhyocV/qhCq+S63A2s1Lhj78D/gtwvxDin4C/l1L+aIW+e8mETIPO2IxTJyjP2d4TZzRTIhpS7X+RKjlpY0es4XqCktKHnzqO62Up+7XA5/QkuPV128iWHP72m4coOV5NklOAJ5UIlkT9aI+Oq9jju3fvoGR7PHt8Ersq+CnwXYRQkQKv1bNI8stX9/DE4AQTOSVduyEVrdSrF2yXnQMppRT34DN4UhIxDQTqCUEYKnGzPm/jvz7ynErmlJKSLTk+WeDCgSQffMtFlR96s/r46cL8se12JFpp1jdne65EO9ncGWMkUyTk50CYhsCpu/0IwPWg4Ek6o7NLx+vnlagWBAMdUXJlh1xZJVd6Em6+bBM3X75V5XCcTlPywxaOJxHC764sqOnvUV9a+vzwJHlbhQtyJZd3XXfekgWxqqkPUwQGg+16eHJGQuBM5cnBCb7wzHFGMqWWy/ZXxKiQUn4d+LoQohO4zf/7OPBx4EEp5br65QshiFgm7959gR+L9IiFTHJlpXX/az9+LiGzVgY24OodPVy9o6fpupMRiwf2vczgeOMko+pLORoymS7YHDw5zVdfHJkVUgnktk0x0+G0/sf5hWeGfMPkfB45MFzRoajOZg4qQYJchoOn0r6rUYVOYCYx6iNfOchk3lYJoJZR6ZYayJIHZWTpgo3jevSnojX9R+JhsyZXQ6NphM6VaB+3X3sOf/LYi4RMg7ztQKNqjyo1q3TRIWIZ/gA7e9bAKzGaKSGlh+PBps4IvYkIBdvlmWPT3Hz51koFRZDo7kqVFxGS6knIMmb39wjuCx969AUG/J4hBdvlkQPDXLq1a0H3DVUpoTo5BwZC2VmblRSrQaAMHV5k2f6K5VQIIXqBXwPehVLCvA+4EvjaSm1Du6nOIZgu2GzsiPEnb7uEt125hW09cc7tTbCxM0p3PEwiYimxqXm4ekdPjerlXGSKDuO5Mv+w/xiTuTKpaK2NaHtSqXxGLfpTEdJFG9eTDSVmHzkwzC1XbmkqL1udyxA2lQpd0K4YZhKjBsdyfqJW0N1QdTg8PJKt+c5ExGQ0W+b4RI4T0wXKrodAKW/qrqYazcpx3YX93HjRBvK2q5RzG8xTL8tddhobFAGpiEq8LruqWqwvGa2UewZ9hIJcjo2dUUzDwPK1+GxPYgjRtL9HdYVb/TrVtiojoVB2SRdtJnJlRoKchrEcr4znGJ4scGKqwKnpIqMZlduQLTkU/TLVs9WgAHj4qeNYhiDW5PjOx0rlVPwz8Crgs8BbpZQn/Y8+7wtUrVvmcsUbhjoh8SobwfVUEk/J9vwwh+snQM5wsklORmW9zM7FKDoeRcebJY/bFbewTJNfeu02xjIlxihx/+OHMIXyLlTXdT8xOFHRnmi0n0HoZDpfxvEkPYkQyYhVkxh154PPNFzekbKm1DXI2xjJlAGlmxGIY60n3QmN5kzg2ePTbOyIVnr6HBnL0iACW2G+IdfxlCc10JHoT83IPcdCJscncpVqNCEEmzqVQGBJqryOj952BT/xqv7K/VFK1IOMB0fHc3RGrYonOGjRfnQsyyvjuTM+NLHcBPpL1bRSortSORUf95MuKwghIlLKkpTyqhXahmVnIVKxZgNDo+yoBjuPv3iazzzxChO58pzf46FCGpZp4LoeTt1TRDUlR/ITO3u5YMNMf4/hKXXRVMpEhSBqGRWVy2b7UG1A1cuAB/NVa+sHipoqM5uaJmQAvYkII5kyr97YgRCCTNFmcDRLyXEZmizoMIhGs0KcTBcwBRyfLGH794X5TYfm5G2PF0+m8fw8s5IzE1IplN3KQ8V4rkQsZBKxTLb61Wm9iQg7BpIMTxYadn3ekIpWlqus03bZ0BHTBkUb2NQRYzxXIhGZ8ay3UqK7UkbFn1BXxQE8gQp/nBEsRT46bBl85/AYf/31Q4RMwaaOCEOTxYaVIZahngIMQzWDQUB3LETGryPvS4XJFBy/06iKf37x2WH++dlhLtnSwesv6KMnHiZbUpnXnpR4SIqOS8Qy+MCXnl9QLK2Zh6aZtn5fIlzThAzUhZoIm5US2BNTxUrL9aB52T3+vLrXh0bTfo6M5Tg0ksEETk2XKpo7TgO1q5CpZPwzRVsVlgtJUKHeyATxb094wGSuRFc8TNFW1Wq3vk7pGt73+CEKtks0ZMz6LIjtW4ao6fp840Ub+MoPTzddTrM0girFQtnBioZaVgtdVqNCCLER1cMj5gtVBeG6DuCMUitaqnx0zfJhCyEMTk4XsF0VNjinJ87v3LCTkuPxx//6AkXbJWwJuuMRkhELU0DB9jCFYNfGDt52+WYcKfnPw2N898gE+bLLD4bT/GA4DagkznjYpDNm+a5FsITSjLBMo6KVIeVMVcdCBvbduwb41WvO4RPfPkLOdYmZBr96zTmzylmDC/Vd153HIweGGUkr4S2kqjkXnmR4Ks9vfe4ZkhFrQbr+Go2mNf7p6eP83d4ZoWFPMss6CAwG11OVFkEnYs+jUubu+Plb9ahSURjLKi2KiGXw5ks2smMgQdQyVYL4M8OcShfY6HsigkT2Smzf90gE941nj09z9w07eeBbgxz1E9q3dTWuuNO0TlCl+IVnjjOaKbVcorvcnoqfRSVnbgX+qmp6BvjDZf7uFWWp8tH1y3fEQqSiFtMFm2+974aaeXsSYf7oX19QkreOy9HxHI4nObcnzh3Xn19TXXLDrgHKjsf3jk/x7cNjfOflcSZyKiciXXRIFx1CpuCC/iQ/OpWpeEdCpqA/GSERMTl4cpoP/MvzhK35PRh7D47wyIFh+lMRttdlZt9z08UNQyaXbu2qaV4WtFu3hHKd2q49p66/7lqq0SyOQHxurqBB8JknmdXpWE2bO+RQnZtRdDy++L0TfPF7JyrTTEOFX8tunvseP0T0WyYRy+Dl0Swh08AQAs/zKLkenqfCt6ahBACTEYuIZZAuOvz5vx/k7a/dxhXndBMNGUQss/IeMkWlAk0zP1fv6GH3rgE2dq6x1udSyk8DnxZC/P+klP9nOb9rtVmqfHQry7/hog2YhuAjXznI8ckClgFbuqJ4wP3fPMTvip1cdd6MYRG2DK4+r4erz+vhd98oefFkmm8fGuM/Xx5naFJ5Q148lan5DtuVnJwu0psIUXYlSb/Ey3alr8Tp8r//4+VZg3cjj81YtshdDz9LRyzEtu449958Sc1y1SWrSggnuJEASAxBU13/VsJO2vjQaGr5wze/mks3d/C7X/ieEtWr+kygHi56kxEKZYepgoPpdyEVQun3XL61i454iMdfPI0nF5eFEaj/5sqzS1kbNTOTEp45NtVwXR9rUqFgCCpGRjSkjJZoSP07HEy3TCL+e71RMns59Xf1v7Xholju8Mc7pJQPAucKId5b/7mU8q8aLLamaTYwLbVrXavLB83Dzu2N1xgi+bLDP3/vBG+7citFx6VYnpHtBpWvcPHmTi7e3Mkd1+/g2ESeP/zi80r5su47JDCWs4mH1Q8GVLmWK5XL8+h4jhNTBeJhk1jY5InD4xw4NonreUT8ag6AsYxS1NveE2866Af7X3RcJRHsKVW9sGVUxMYCqo2thYaddMt0jWY2ew+O8N/++QezxK5A/f5TUYtUxGI8WyJsCc7tSVQ+L9guo5kiJb+8dC6DImTAOb0JP9TqMZEts7Ezxmi2RE88zI+f38v23jgF26PsuBw6neU/Xhql5Hiz1hs2BWVXeVhMQ/iiWo3DLwGeVNur2hQsjyySACIho5J4Gg0ZREImUavu3TdcwpY/r2+4xPz3mXXMXj5sGWvecFnu8EdwBSbnnGudMN/AtBT56MUsXx8yCUSkjo7nuf1TT9YsX3ZUBnbBdimWPRzPQwjBOb0JPCSmAdKDRk2O82WXwbE8sZBJMqI6FzqeZGNHjKLtUrRdnvzBBPc/fgiY6eVxYqpY6bYaMY052xI36nQaZIgPTxWwjNmiXI2OATQOO633lukaTbsJ7meNPAQBuZJDPKx+750xi+OT+UpH5mjIYLrgsKVLEg0ZFeOiHlPghzaVqNV0zqHgV7z1JVXy5tcPjnD3DTt5w6uVh/W9n3+O/lREJXBPFyvrChlwbm+CYxM5bFeyo2/GyMmXHXoSEe65+eJKuX7wPvN37fSg8q5YV+Zfcly/aqV+ebepPocEf/0ey224VHtVIr4XZcZoCf6u97bUe2CC5WbWEXhflmK4LHf4Y4///j+W83tWivkGpuoWwscn85UEx4W64RuVbH7gS883ddVXh0zSBZsT00rfImKKWQZP2LdygxCC7fo/prLL5s4Yk/ky5Qa/luDSCroWFmyX0awqeR3NlPitzx7g1378HD7/9BCmIfwy0SKeJ3GrHh26ojPlSc1yTeo7nQYem654qKLrn4xYhAypjsu+OKmI1bCqpD5stN5bpms07Sa4n0Utg3xV4oNAaeG4QNGRnEoXMQVM5R0sQ1kIBduj4C+TLzs4deqaIUMgkaSiIdIF2+8rJCnaHtNFh3jI5HS6WJOP8cf/+gJ//NaLuXpHT0UrQSCIhQwcVyKCijeUB2Wq4NRUgLgSfvnq7RXZ/+VASqW2WWuw1BkofgltxUCxvYrRUnRmPq82cCpGjO1S9NU9G34/VYbL3HJGSyLqGxy7NqV4+I5rW1p2pcSv/hxVVloAvgJcCvyeHxpZN8w3MC3Exd6ueaA2ZDKWLQGqh+hAR3TeJ/GQaRAyDTqiIe5+w05+/5++x3iTPgmmARdv6uCFk5matu1Fx+NHIxn++5eeJ2Qa9CfDJMImHdEQE/mZdQlUU7NwSOVFlByXLU2ytXfvGuCWoSlVPVJWJaeBrn+j4zJdsCuGz1xhI90yXaOp5fhkHlMwawCTqDLQIIFTPSCozxxPzgpHjOca3TckmzujWKaBIaA/GSFbUt2Up/JlMkWnoYDfn3/1IB94y0Vs6YwxlisRC1l0x8OMZIpIT4VdC7aLZZq84+rNPHt8elblSCNti7laI7SCEIKQKQiZBqm2rLExjut7VZw6o6TKq1L0DZBS3Xu9gVN2ZqZXGzZzaXoEYorpQvMeL81YKZ2Kn5FS/r9CiJ8HjgK/AOwD1pVRMd/AtBAXe7vmgdqQydHxPBFTGRSNEhrnYveuAf7nL17Ob3/uAPmq1uimmGlR/IMTaXoTISazNvWXmSeh5HgMTaknGlCGiJAg/LCFRDKeVZ1QHU/ytsu3cGw8r+KLYZNYyCRkGnNWjzQ6LqCeiroTkTnDRkvNedFozjRSEYtDfvdjU8x0FlX9gtTvNGQKTEPg+l6JYBgyfGG7ZsOSZRpIBBs6Ynzo5y6u+T1e+sdfbajBA5C3Xf7pmSHuesNOPvToC0wXyqQLdiWJNGoJBlJRbrt6G1ee082v1C3fTNvibna2zbBYCgs1eCzTIGkaJJdxiHZcb7ZRUuVFkcDmrjVW/dHge94C/JOUcnqtJ5s0Yr6BaSEu9nbM0yh8AizpSXz3rgH+7v+5UvXnSBfxpEQgcKWHgbqJZEvuLIOinoo303+PCkE0bFG0HcqupDcRqfyQHM8jW/LI+r3aQ6bB3z5+GEMoid/6HIxmx2W6YPOV32ssL169f7plukYzQ9DfQqCevoXfSCvwXlgGlX5Fhl/1ARANGQhUObvTwKqwDDVvfSl8QJD03QjXkwxN5isey4/ufRnH84iFDDrjIUKmye/ccAG7dw3gVoUhbNej7HhNtS0efur4qhsVa83gqRgukcZmQDxsrb2S0ir+TQhxEBX++C0hRD9QnGeZNcd8A9NCXOxLnadZaOSWK7fwyIHhhgbPQkspg/0LNCNCpmBjMs6JaSXh68zhLgPY1hXFk4IT04XKE0zgRgPVgfUnLuzj3L7Gho7tegxN5emIWtiOSiQVQnVCPT6RY2t3nNFsaUmGkzYiNBpFtuyypSvKWLZM2fWIWAZbkmE8CSOZUk1TLcswKhVYnq9t0czbUF2F0ejec+GGDp4+Oj6rt0hQzRH8np8YnGBrd2xWdVvgsTUNQSJikYjMrGM0W6QzFgICD6l6QDk1Tz+llWAtGzztZEW6lEop3w/8OHCV3+Y8B9y8Et/dbnbvGuChO67hW++7gYfuuGZWjkPQyVNKWdNoq13z7Nk3iO26nJou8qPTGU5NF7FdlycGJ2o6pgZdRoFZHUnn6gIaaEZs74mzoz9JRyzk61LMtDlvhu1JPvuuq/mzn38NG1IReuIhEmGzkvOQLTn87eOHufXj3+W3HjzAg///9t48To6zPPD/PlV9zX1IM5JlSViyZQRmbWyEscE4CpBgAjEJ6yQ4C0sCxGYDmCzL/iAbAllDNnaSTYKzzsZeh5tgggPBIZjTEcaA8YnBh7BsSVj3HJq776rn98db1dM909PTM9PTx8z79aetnuqq6req3/et533O+37OoZGZksnrjO62wHvarKR8X5nO5NnYmeDXLjyzUHkw7/lMZ3Jk8741YVgsy2BbXzsR12HnQCe7N3ezc6CTiOuwta+dHRva8dUIEKpB+KaYcE5PQRyjWQwRjNkEjLbSdYQ9H/0W1372IQ6NTJfMPZfu7KenPcZchYUjZuFRrPmdWy9oMZPu9v4OMnlTlCwS+I15vs/2/g76O2L0tJkiiNVUjK41JyZTJKKl35uIOk0h8NSSet7Z3cBvich/Bq4CfrmO310X5pZCn1s+vBb7HBiaYmTKZMR0g/S4I1NZDgxNlRV4iv0QptJ5Tk6kOT6e4rrbH1lQsJgr1HQlIvgK3W0me105og5s62/n0WfHuf3BI2Q9E44Vc4X/sKWHN79kO68+bxPtwSTxs1NTfPz7h3nbpx7kLZ94gFu++wyPHZvgN/dsJe+b0FHF/Bvm9b94Rz/XvWIXfW0xxpJZehIxXvW8QW66+wCX/tl3+M2//yF3P3mqhr+oxbJ2qbR4+cBrnkdvexRxTHVQI0SYB7WqkvNMefG4KwXhoFhDkcp6jE5nyXs+ozPGMbM9FiGb97jt3kOomhw0riMmyZYj7Brs5C+vuqBE85vKlYa7LqaZLHdNeR9+f+/Z9LbH2NAZZ7A7wfYN7Wzta2dDZ5yOeCQooLa6FC+YQtI5n83dayvFeL2iPz4DnA38mNlUCAp8epHjrgA+BrjAbap6w5zP3wu8HcgDw8BbVfXnwWdvAT4Y7PrRILvnqlONin0l+2TzPgRFt8CsDnwxA7wcoR9CGHLqILgOzGTzFYuFFZt5dmzs5Lcv7ueHB0+Ty0+S933CXFSCWWH0tMd4+Tkb+evvHCDiwObuBMms8aP47ZdsL3hlP3pknI64KYk8lfECG2qKLzx4lC88eJS+9ii7BjsZmcoyPJkm55uMoLc/cAQw6WNDVWGxjbIz7nJiIsUf/ctjvHc6yy88d6CQSGalcdcWy1pkMXPuX151QeEz9X2OT2Zw1Sfqmvo8HtAR1OUZnsqQyfsFE2k8CPP01Thsh9FpozNZ8p7SHnPJeUrEEd75inO47lXnzmvfcpyrl+I7FYbZ9wR+WqF/RjZv8vjkPS2UV68FhUJda7wQWr18KvYAz1etlPOsFBFxgZuBXwKOAg+IyJ2q+kTRbo9gTCpJEfkvwJ9jtCH9wIeD71XgoeDYsRpdT8OIukIqF9g1ZXZ1ECvSJRbbMSdTxlQwlc7jIDiOmRASEYeoK2UzTxbbQItTal9XtM+NX9/PwZEZAHZsaOcDr3nevOiM7rYYM5kcdzx8lJft2sjtDxwJwliNtmKg09QfATM5HRyZYSyZ4/7Dsz+TI2Z18viJcW78xgzvf/XuRQsOfe5Hz/Kis/oKDqAiQixI6mJeJpudTdttWe9UWuAUR6Pdd2gUVYggOCI4YlJon07mOJ3MldQPiTrG+TOMEPECzeORsWTB2TOT94k4gqfKzfue4fytvYsubqp1rl6u71SYbruYMC9FPtDMZDwTlrkcYSMs1HX7A0fKFlBbK9RLqHgM2AycWMIxFwNPq+pBABG5HeOHURAqVPXfi/a/D3hT8P7VwLdU9XRw7LeAK4DPL/cCmoF9+4fIeaaDiygiJnFNVyLKjo2dhX2KHTk932doKov6SjRiBApVGOiKz7NPFh/rCjzy7Bhv+/QD7Bro5AOveV5hoC40aD/4lcfmRWe0xyKcmkyzrb+d4ek0XfEIQUkPRITuNmOWue0tezg2nuLzP3qW7z41XMjyF05CvgdjyRx/+c39/N2bXsTGznghQU4x5WyUqkom55EpUqXef+g0N33nALGIQ3c8wqnJlE3bbbEE7Ns/xA13PcmB4WmijlNYvJiHqcPc9WHxX3kf8r5Xun1O+KnnK46YcNWc5y+YT2e5AkKtFgyzeSmgLeYCZn7zfVM6IJML80F4+FWsmYs1rWuVevlUbASeEJFviMid4WuRY84EjhT9fTTYthBvA+5a5rFNT/jAb4+5RILYcfWNem54Ost4MlsYSKG2QMSkuh7siiGB/0XEEbb0mlwWc+2T4bGer5yYyKCYePXDp5MVnTtDFrOBbu/vIBeUVI8G9tRMftameOx0ikeOjNPfEVvwO0ZmcvzmLffxrn98GAdhKl0a5FqtjfL2+4/gOkIsKPNuHLeUv737acZmssxk8jVVfVosrUI41xw+ncQVmZeLIu/7Jdly26JuiUOlFr1CnKKcN8XnyXs+qnD/4dNcfet9i84xS2l/tc7py8FxhETUpac9yuaeBGdt7GBLbxv9HTHaYm5dfDSalXppKv5kNU8uIm/CmDp+YRnHXgNcA7B9+/Yat6x2hA/8nrYE8YjLyYkUOUw10e39bWQ93+Txz+Q4o6eNqXSO4akMWc8n6ggdMZfe9lgh/XW5qJPQ/+LQyAwS+G0oZlVRzlQyl8VsoHM/NyFqwu/vPZvORITbHyw1ZxQTcYywE05UT5yYrao6Mp2lKxEJyiRTlY2ynJYjHnE4Np5kLJktbHODySNRI/+MVulvlrVBNf1t7qp+bCZTWFy4YipvOpgQUqXUITMyV1IIKM5r4TrC8zZ3MZ3J8/PRZEkpdV9NorxypQWWS6Pq/ITmk14oFEEMfTTCf5fgAdCy1EWoUNXvishzgF2q+m0Racc4X1biGFD8dNgabCtBRF4F/BHwC6qaKTp275xj9y3QtluBWwH27NnTNL/43IH+1KlJzugxK/Dutigj0xkUk/Wsu82s7ENBYXQmw+h0zmTGc4Scr3jqc9VFZ/LDg6cXtE+G+TGyngnJAjOBxFynquyc5Wygl+7sL6lhUqkNw1NpuhNRfDW+I7miugASrHS297fzX/aezfefHuXeZ0aMh7mvjAVpwbsTEX54cBTHgQu29ZaEvRVzRncbozOZEgGmnJbD85WZTJ6ZIv+M0DejIx6ZZ4NdjGbtb5a1yWL9rVzem8OjM2ztbTNaPM/4bsWiDtmccRL3g5BRMBFonq/k/VmtnhPMO1EAMdrIp4em2dyTYKAzxvB0tiBYuA644lRVWqBamqHOj5knTLXSYsLCjsWCRjVmk1aiXtEfv4eRlvsxUSBnAn8PvLLCYQ8Au0RkB0ZIeCPw23POeyFwC3CFqhbrtr4B/C8R6Qv+/mXgD2twKXWh3ECfzniMTGcY6DIZzrKej1CaO6ItahwQT8/kUBQHQYOx3tce5YcHT/P5a8pnnty3f4ixmQyHR2fwfSNpu+Lgo2zsTFSdZGpuUbS513HHw8fmhdCGbO/vKCT92tyd4Nh4qrDaEYwwde3lZ7PnrH72nNXPu195Dk+dmuLeAyN8/+lRfn46yWQ6z1cePc5XHj1OR9zl0p0beOnZG7l4R19JEp3lemKraqFqoefrkoUKi6WZKLeqjzoOp6YybOpKmCKFPigaFCSMsKEjxvB0hsl03qy+55zTEaGvLcpYKgeqxByTOO/oWIozexNs6o4zlsyR83zirrOs0gKVaOY6P2HESYiqksn7pLJeoSZHq2sz6mX+eCfG8fJHAKp6QEQqiqKqmheRd2EEBBf4uKo+LiLXAw+q6p3AX2DKqn8xUEk/q6pXquppEfkIRjABuD502mwFyg30/o4op2dydMQjtEVdk6PCUwa6ZtPJpXIeuwa7eOrUpCkk4/nEXIeNnQm6EpEFB2vxw39rbxsnJkz1QMdVetsinJpKk/OUWFCbo9pVxFLVkMXmEUeMajXrmXTB2/ra+L2Xn13i5OSIsHtzN7s3d/P2l+/kyOkk3396hHufHuGJE1PMZDy+/eQQ335yiKgrvOg5fbzs7I289JwN68YT22KpRLlV/abuOEfH00RcYUtPglNTGfKe2Z7KeeR85YyeNqJuhlOTYSFDkxyLIAvuyEw2yEEhbOlrQxVOTaU5OZnhou193BAk8qv08F+us2Uz1Pmptu0iMi/qJJs3c3cu+DcbhOq2irBRL6Eio6pZKeRWkAgL16IpoKpfA742Z9uHit6/qsKxHwc+vtwGN5JyA31DR5ycpwx2JTg6luSs/nZGg4GrqiUDp9xgTWbzC0rq5UJBh4MKoKeTOaKOw9beRMFvYyGbZyWTTUillUhoPrnhric5PJoi6jg8p99UOsx5ysbOGL3tMabT+RJ1a8i2/nbeePF23njxdkanM/zgmVG+//QIDz87Ts5T7jt4mvsOnuavvgUvOLObl52zkf/26nMXrJhqsax1yq3qI67DuYOd9LbHODqW5MJtfSXzSt5TDk3MFNJ2xxx47hk9AEymcoxMZ5jxPBJOaYHDrkSEiVSuRFu60MO/2krN5Wh0nZ+VtB2KtBlF6cdDH41s3i8kHst5ywttXW3qJVR8V0T+B9AmIr8E/D7wr3X67pZjIfXdrsGukgEZPsTLDZylSOrlhJiNnXFGZ7JEHQdPlZHpLANd8QUdNqsx2YTXUUkNGWYBPcvXeULRP3z/MK86bzP9HTFSWY+pdI6ZrFdWgt/QGedXL9jCr16whelMngcOnebep0f40aHTJLMePz02yU+PTfL33z3Ijo0dXHbOBl52zkZ2DXbaRFmWdcNCq/o/fu3ueWP8g195DFfg+ES6kH9CgawPpyZSbOppo7stSsQVhqcyDHTFK5ogKj38r771vhU5Wzayzs9qOIou5KNRXFQt/LfRGo16CRUfwIR8/hS4FqN9uK1O391yVKu+W2jgLFVSLyfEjM5kyHmKuBTSgR8fT3NGT7yspqEak021ashqHK3aYi5tMRfPV6bTeSbTuQWl9s54hF/cPcgv7h4km/f58ZFx7n16hO8/PcJYMsehkRkOjczwmfueZbArzsvO2cjLztnA+Wf2EFmk3onF0sosZa7Y1tfOI0fGCgJFMcPTWdpibkGr+PbLdixY4HDu95f7rmZwtlwu9Wz73KJqoY9GJihlHlZwrSf1iv7wgf8XvCyLsBz1XTkb3kJOmXMpJ8ScnskRc41NVDB2Uh/l1GSGC7f3zTtHNSabatWQS3G0ch2hpz1KT3u0rPbi/oOnuf2BI5yYTHFGkd/ExTv6+YNX7eLJE5MmkuTpEY6OpRiayvDlR47x5UeO0ZWIcOlOo8F48Vl91inTsiaZ+2Dft3+Iq2+9b54/wLWX7+Rtn34QL6hSCrNp+j2FZ8dSxFyHnRs7OH9rL+dv7V22CaKZnS0Xo5FtL/HRCObjfBDaWpyGfDUjTlZVqBCRn1LBd0JVz1/N729llqK+W6kNb+/uQa46Os5t9x5iJuvREXOJurChI8HxiTSepyU5Ii4t48xYrcmmGhbS1Fy6s7/sZBcyV3vxzcdPFmqDdCcijM5k+NjdB3gPu7h4Zz+OCOdt6eG8LT383st3cHjUOHp+/5lRfnZyiql0nm8+cYpvPnGKeMRhz3P6eNk5G7l05wZ62qMVrsBigbN2nsPxY0cX3W/LmVs5fPDpOrRocRabS84d7OTJkyZHjIgpie6rIqo4ArsGO0nlPHPMlecteeyHFM8Bec/n1FSm4EtwxV9/l+mst6qp9VeSkbMZHEWLibgOEdeEwIfkAv+M0DejlhqN1dZUvC74953Bv58J/n0TVThqWmap1MlXasPbt3+IOx4+xkBXnO3BIDg6liKT9+ltizISxJULEHHgjoePzcvVX8uBtFC+izsePlaV4BRqL770yDESUVPrw1cttOv2B44UCpzN1WK86ZLn8KZLnsPQZLrg6PnjoxNk8j7ff2aU7z8ziiNw/tYeXvHcQX79oq1s62/+1ZOl/hw/dpQ3/O2/L7rfl979i3VoTXUUzyWh02Um73Pd7Y9w0xsv5P1X7Obazz6EryYxVmgKEYFExEVEFp1/qnlgl3Pa3tAe5cREGoAzexM1S5ZVrn0rXaQ10lG0GqJBWfiOImfQMPV46BDqLtO3bFWFiqKKob+kqhcWffR+EXkY42thWYTFOvlKbXiV/CFETCIqCSaQLb0JXGe+s2atB9JcTc1yHLfC+2LarvgKbcDJyVRJhdNyWozB7gS/duGZ/NqFZzKVzvGjQ6e598AI9x86TTrv8+MjE/z4yASf+MFhHvzgLxWShVksrcyiVY2vPI937j2bm/c9Q95X4hGHnGfS+ReHty80/yzlgT3Xafvg8LQZZ2qy6O4c6FyVTJm1cLRspKPocnEcIeHML6q2VOrlqCki8jJV/X7wx0upX92RlmexTr5SG14lf4ipdB5flbjrMNAVpysRRVXLThirOZCWIzgV3xcRUyQtk1e293fwxYeOEnWFRKS0wmmoxSimKxHlVc/bxKuet4lMzuOhZ8f4wdOj/PDgKK983iYrUFjWDOGYGZnOLFjV+PPXXFLiLzHh5OiIu4XQUVh4/lnqA7t43Bdn+g3DWVfDAbKVnUSbgXoJFW8DPi4iPcHf48Bb6/TdLc9inXylpodK/hBA2ciQmYzHZTfeXbeS4csRnBa6L7+/92w++JXH6ElEUIKaIqplK5zOJR51eenZG3np2Rtpi7ol7bGsD/KeTyyeWHS/XD5Xh9bUlnDMZPI+rsOCVY3LZc4t+D9MZsj5pubQ3GR5S31gF4/7sPgfOptJeDUcIFvZSbQZqFf0x0PABaFQoaoTxZ+LyFtU9VP1aEsrslgnX6npYTGhpPiz0ZkMQ1NZBjpjy7I3LpflCE6V7su2e2bvqesIvirTmTybe6pLhHX/wdN88aGjnJpK102wsjQH6nu84e++u+h+X3jHZXVoTW0Jx8x1tz/CTDZPIjKroZybQK/YN6Iz5jKT9Tg+kS5k5s35Om9uWOoDu3jcb+yMcWzc+FRs7oyXLYpYC5rN0bLVqOsya64wUcR7ACtULEA1nXwlpofFhJLiz2YyHgOdsUJCq3pVAFyu4LTQfZl7T9M5D1W47hfPYUNHnKlMjmy+vDd06I8RW6Yjl8XSzOzdPchNb7yw4PtQrqrxXN+IVM5jaCpTMjcA8+aGpT6w5477XYOdqCozWY/BrsSqCPOt4GjZzDSL7tYapStQj05eSSgp/uyyG++ep77Mez4PPzu26uaQWvpsLHZPe9qjpHMek+kcM5nSrJ23PxCUaA98NeolWFks9WKx8VHONyLv+0yl8wx0zZ5nrmljOXNZOO5XEua5VFrR0bJZaBahwoaXFrHQ4GlEJ5/bls6YWV2Ek8lUOsexoPhQvVftK51kFrunYRIZr8OYRiZTJmvnickU3YnSoWMduSxrjWIB4shYklvuOVjYPr9oYZy465CZo90rZ9pY6ly2b/8QN359P08NTRN1hU1dcasdbGKaRaiwmoqAlcZIr3ZbJlO5ggTYFnU5GcSNb+pK1HXVXtw2V+CRZ8d426cfYNdAJx94zfNq+t2uI/S0RelpM9qLrb3GLtwRnw1gso5clrXGQnPRVUfHmc54hVwVeU85PpGiM+7iqV9TX4SwDUOTaVwB9U3tkS09bQvWIVrq+eul/VgvNEtY5/cb3YBmoVitGD6kw8HTDG3pbosy0BlnsCvBRCBgnNmboLvIJFKPVXvYNs9XTkxkUEys/OHTST505+Ps2z+0Kt+biLq8+xXnAJDJG7PIajmMWSyNZKG56LZ7D9HfEUUQkxQveIoksz7v3Ht2YW4Y7Epw/ZXnreghXRjnqjiOCXF1EEamMyueZwoCy1S6RGharbljvbDaabrfW+lzVf2r4N93rWY7WolmipFeqC0TqRx3/cHlgElKNTSVLtmnHqv2sG2HRmYQAUfMBOf5WpMVTCX27h7kI7zAOnJZ1jQLjf+ZrMf2/nbiEZfhqQxZz4SPtscjXPeqc7luFdoQhpOKmPTgWc9f8TyzGtVELatv/uhafBdLMfWOka6k/qumLY0KvwrbVpwQR4P49XoIYdaRy7LWWWj8dwR+VV2JaCHhVTKbZ7Br8dwdy23DQFec4+NpfBTP9/EVDo8mibnOvFwY1dJMC7i1xKqaP1T1f1Z6reZ3tyrXXr6TnGdU6qutWl9M/VdNW/buHuT6K8+rqcqzGsK2uSL4vpoXysbOuPVvsFhqwELj/+2X7ajbHFUY545wRk8cVSXvgyuwtTdB1vOXbbLY1tdOKueVbLNzx8pZbfPHTZU+V9VaasrWBPWMkV5M/VdtWxqxag/bNusVDlu6EkRcsf4NFksNqDT+V1LWfCVtSERd+jvcirkwqsUmuVodVtv88dBKDhaRK4CPAS5wm6reMOfzy4G/Ac4H3qiqdxR95gE/Df58VlWvXElb6sFcU8RHXv+CVX1YV6P+W67AUA+v6rnx60fHkquWEMey+lRbKhxaMwV2KzJ3/O/bP8TVt95X1RxVqzlgsTw5yzVZ2CRXq8NqVyktyZIpIu2qWtWvLyIucDPwS8BR4AERuVNVnyja7Vngd4D3lTlFSlVfuJx2N4JGhJJW4zOxnImh3tdi/RvWBtWWCofWTIHdjCxlfC9lXK/WHFBrnzM7d9SeuoSUisilIvIEsD/4+wIR+btFDrsYeFpVD6pqFrgdeH3xDqp6WFV/ApTPp9xCrDSUNFxBXHbj3Vx9631V2RgX85lYbshVM4XFWiyW8ix1fM8d13lPGZpKc+1nH5o356zWHFBPnzPL8qhX8qu/AV4N3Amgqo8GpotKnAkcKfr7KPCSJXxnQkQeBPLADar6L+V2EpFrgGsAtm/fvoTT15aVeCJXSlLzw4OnF1yFLCcVbyX7Zbjquf/waeKuMNidKHiHW69qQ7P0N8v6oFJ/W0kZ8slUjuMTKQTwVedpIpY7ny2mOWl1k8V6SLZVt4yaqnpEpCRxprfQvjXiOap6TER2AneLyE9V9Zky7boVuBVgz549DUsXvhK1XrnJYXgqzc37nmFrX1tF9WMl9d9SJoZiwSYRcch6PsfH02zpha5EdM14Va90UmiW/mZZH1TqbyspQz4yncFBQCDuOvMEkuXMZ/Oy5B4Z422ffpBzBzt5/xW7C+OsVU0WzZQteTWpV0bNIyLyUkBFJCoi7wOeXOSYY8C2or+3BtuqQlWPBf8eBPYBFy6pxXVmJWq9I2NJ2qJuybapdJ68769I/biUkKtiwWZjZxwARRmaTK8ZFaXNwGdZSyw1pLJ4jsp6PoqiCgNdZrwXCyTLmc/COcSk/U6jQejooZGZNTHO1otZuF5CxTuAd2JMGseAFwK/v8gxDwC7RGSHiMSANxKYTxZDRPpEJB683wi8DHii8lGNZSX5HspNDpm8T9wt/XmXaoJYysRQLNh0t0XZ0tNGzHXIeFq33BWrzXqZFCzrg6U++IvnKEcER4QtvbMmzmKBZDnzWTiHhFqQMC23p7omxlm5xd9aNAvXy/zxv4F3qeoYmId+sO2tCx2gqnkReRfwDUxI6cdV9XERuR54UFXvFJEXA18G+oBfFZH/qarnAc8DbhERHyM43TAnaqQpWa5ar1y8tesIPe2lqs2lmiCWYr+cq+7sbosScYXBrgSfv+aSJV9TM2Iz8C2PakNFbZhofVlpGfIP3fk4riOoatkcD0udz0qy5Er9s+SuNvXOltwo6iVUnB8KFACqOiYii5ojVPVrwNfmbPtQ0fsHMGaRucf9APgPK2pxC1Fucnj9BVu44+FjK07sUu3EsB4SyayXSaHWVBsqasNE689yFzKr4TAZziGuY7LkChTMK2thnK2HORLqJ1Q4ItJXpKnor+N3rwvKTQ71ynoXfn8re2VXw3qZFCyWaqi1w2Q4h9xw15McGJ4mKsLmnjiuszay5K6HORLqa/74oYh8Mfj7N4A/rdN3r1vq7SXdql7Z1bJeJgWLpVGs9Sy5a32OhDoJFar66SBnxCuCTW9oBR8HS2tQz9jv9TApWCxLpdZj0I6z1qWeeSqeoMkjMCytx3qJ/bZYmhU7Bi3FWL8GS0uz1KyAC7EeMt1ZLJVY7hio1Ri0rA3qlafCYlkVahH7bZNaWdY7KxkD6yX/gqU6rFBhaWmWmhWwHDaplWW9s5IxUIsxaFk7WKHC0tLUomqhXWlZ1jsrGQO2cqilGCtUWFqalaQ3D7ErLct6ZyVjoBZj0LJ2sI6aFqC1HRVXGn5mk1pZ1jsrHQO1DgFt5flovWM1FZZ176hoV1qW9U4zjYH1Ph+1OlZTYbEhYdhkOxZLs4wBOx+1NlZTYbGOihaLpWmw81FrY4UKi3VUtFgsTYOdj1obK1RYbEiYxWJpGux81NpYn4omoZHezrb6psViWSqrNWfZ+ai1sUJFE9AMBXmaxUnLYrE0P6s9Z9n5qHWx5o8mwKaJtlgsrYSdsywL0dRChYhcISI/E5GnReQDZT6/XEQeFpG8iFw157O3iMiB4PWW+rV66VhvZ4vF0krYOcuyEE0rVIiIC9wMvAZ4PnC1iDx/zm7PAr8D/OOcY/uBDwMvAS4GPiwifavd5uVivZ0tFksrYecsy0I0rVCBEQaeVtWDqpoFbgdeX7yDqh5W1Z8A/pxjXw18S1VPq+oY8C3gino0ejlYb2eLxdJK2DnLshDNLFScCRwp+vtosK2mx4rINSLyoIg8ODw8vKyGrpRmSpFrWV2aob/VirN2nkMsnlj0lcvnGt3Udctq9Tc7Z1kWYt1Hf6jqrcCtAHv27NFGtaMR3s62aE/9aZb+VguOHzvKG/723xfd7wvvuKwOrbGUo5r+ttx5wEZoWMrRzJqKY8C2or+3BttW+9h1gS3aY7FY7DxgqTXNLFQ8AOwSkR0iEgPeCNxZ5bHfAH5ZRPoCB81fDrZZAmxImMVisfOApdY0rflDVfMi8i6MMOACH1fVx0XkeuBBVb1TRF4MfBnoA35VRP6nqp6nqqdF5CMYwQTgelU93ZALqTG1MlkcGUvS2xYt2WZDwiyW9cVqzAPWrLq+aVqhAkBVvwZ8bc62DxW9fwBj2ih37MeBj69qA+tMLbPYbetrZ2gqXSgvDDYkzGJZb9R6HmiG7MCWxtLM5g/LHGqpqrQhYRaLpdbzgDWnWKxQ0ULUMoudDQmzWCy1ngdspk1LU5s/LKXUWlVpQ8IsFkst5wFrVrVYTUULYU0WFoulmbFzlMUKFS2ENVlYLJZmxs5RFmv+WGVqHV5lTRYWi6WZCeencN4LnTTtvLU+sJqKVcRmq7NYLOsNO++tb6ymYhUpDq8CaI9FSGbz3HLPwaaS2m2yGovFUiuWM+/ZOWjtYDUVq0grhFfZVYXFYqklS5337By0trBCxSqyra+dVM4r2dZs4VU2WY3FYqklS5337By0trBCxSrSCuFVraBNsVgsrcNS5z07B60trFCxirRCeFUraFMsFkvrsNR5z85BawvrqLnKNHsI6LWX7+RDdz5OMpunLeqSynlNp01Zj5y18xyOHzu66H5bztzK4YNP16FFFkv1LGXes3PQ2sIKFeucvbsHuR5j1zw6lmSr9bxuCo4fO8ob/vbfF93vS+/+xTq0xmJZPewctLawQkUT0aiwqmbXplgslubCJvWzLIT1qWgSbFiVxWJpBexcZamE1VQ0Ca2SKMvSXOQ9n1g8seh+Kg6iflXnrHbfXD5X1fkslan2N4Tm8KGxc5WlEk0tVIjIFcDHABe4TVVvmPN5HPg08CJgFPgtVT0sImcBTwI/C3a9T1XfUbeGL4MjY0l626Il22xYlWUx1Pd4w999d9H9vvCOy/itv7+3qnNWu+8X3nFZVeezVKba3xCaw4fGzlWWSjSt+UNEXOBm4DXA84GrReT5c3Z7GzCmqucAfw3cWPTZM6r6wuDV1AIF2LAqi8XSGti5ylKJphUqgIuBp1X1oKpmgduB18/Z5/XAp4L3dwCvFBGpYxtrRiskyrJYLBY7V1kq0cxCxZnAkaK/jwbbyu6jqnlgAtgQfLZDRB4Rke+KyMtXu7ErpRUSZVksFoudqyyVaGqfihVwAtiuqqMi8iLgX0TkPFWdnLujiFwDXAOwffv2OjezFBtWtfZppv5mWfusVn+zc5VlIZpZU3EM2Fb099ZgW9l9RCQC9ACjqppR1VEAVX0IeAY4t9yXqOqtqrpHVfcMDAzU+BIsllJsf7PUE9vfLPWmmYWKB4BdIrJDRGLAG4E75+xzJ/CW4P1VwN2qqiIyEDh6IiI7gV2ALXlnsVgsFssqIqra6DYsiIj8CvA3mJDSj6vqn4rI9cCDqnqniCSAzwAXAqeBN6rqQRH5j8D1QA7wgQ+r6r9W8X3DwM9X52pWxEZgpNGNaFKa9d6MqOoVlXZoQH9r1nu1VNbKdUDtrqUZ+9tc1tLvBuv7ehbsb00tVFgMIvKgqu5pdDuaEXtvqmet3Ku1ch2wtq5lMdbatdrrKU8zmz8sFovFYrG0EFaosFgsFovFUhOsUNEa3NroBjQx9t5Uz1q5V2vlOmBtXctirLVrtddTButTYbFYLBaLpSZYTYXFYrFYLJaaYIUKi8VisVgsNcEKFUVcccUVCtiXfdXitSi2v9lXDV+LYvubfdXwtSBWqChiZGQt5TGxNDu2v1nqie1vlnpghQqLxWKxWCw1wQoVFovFYrFYasJaLX3e8uzbP8Qt9xzkyFiSbX3tXHv5Tltq2GKpAXZsWSyrh9VUNCH79g/xoTsfZ2gqTW9blKGpNB+683H27R9qdNMslpbGji2LZXWxQkUTcss9B4m6Qnssgoj5N+oKt9xjq7dbLCvBji2LZXWxQkUTcmQsSVvULdnWFnU5OpZsUIsslrWBHVsWy+pifSqakG197QxNpWmPzf48qZzH1r72BrbKYml97NiqLa97w29yYnh0wc/PGNjAV7/0T3VskaXRrGmhQkR6gduAF2ASdrxVVX/Y0EZVwbWX7+RDdz5OMpunLeqSynnkPOXay3c2umkWS0tjx1ZtOTE8yq43f3TBzw985oN1bI2lGVjr5o+PAV9X1d3ABcCTDW5PVezdPcj1V57HYFeCiVSOwa4E1195nvVQt1hWiB1bFsvqsmY1FSLSA1wO/A6AqmaBbCPbtBT27h60E53FsgrYsWWxrB5rWVOxAxgGPiEij4jIbSLS0ehGWSwWi8WyVlnLQkUEuAj4v6p6ITADfGDuTiJyjYg8KCIPDg8P17uNlnWG7W+WemL7m6XerGWh4ihwVFV/FPx9B0bIKEFVb1XVPaq6Z2BgoK4NtKw/bH+z1BPb3yz1Zs36VKjqSRE5IiLPVdWfAa8Enmh0uywWi6WVqBQ2eujwz9lV5/ZYmps1K1QEvBv4nIjEgIPA7za4PRaLxdJSVAobferDV9e5NZZmZ00LFar6Y2BPo9thsVgsFst6YC37VFgsFovFYqkjVqiwWCwWi8VSE6xQYbFYLBaLpSZYocJisVgsFktNsEKFxWKxWCyWmmCFCovFYrFYLDXBChUWi8VisVhqghUqLBaLxWKx1AQrVFgsFovFYqkJVqiwWCwWi8VSE6xQYbFYLBaLpSZYocJisVgsFktNsEKFxWKxWCyWmmCFCovFYrFYLDXBChUWi8VisVhqghUqLBaLxWKx1AQrVFgsFovFYqkJVqiwWCwWi8VSEyKNbsBqIiKHgSnAA/KquqexLbJYLBaLZe2ypoWKgF9U1ZFGN8JisVgslrWONX9YLBaLxWKpCWtdqFDgmyLykIhc0+jGWCwWi8WylmkJoUJEtorIl0VkWESGROSfRWRrFYdepqoXAa8B3ikil5c59zUi8qCIPDg8PFzztlssxdj+Zqkntr9Z6k1LCBXAJ4A7gTOALcC/BtsqoqrHgn+HgC8DF5fZ51ZV3aOqewYGBmraaItlLra/WeqJ7W+WetMqQsWAqn5CVfPB65NAxREiIh0i0hW+B34ZeGz1m2qxWCwWy/qkVYSKURF5k4i4wetNwOgix2wC7hWRR4H7gX9T1a+vekstFovFYlmntEpI6VuBvwX+GuN8+QPgdysdoKoHgQtWv2kWi8VisVigRYQKVf05cGWj22GxWCwWi2VhmlqoEJH/T1X/XET+FqOhKEFVr2tAsywWi8VisZShqYUK4Mng3wcb2gqLxWKxWCyL0tRChar+a/A2qapfLP5MRH6jAU2yBOzbP8Qt9xzkyFiSbX3tXHv5TvbuHmx0syzrDNsPLZbmoqmFiiL+EPhiFdssRazWhLtv/xAfuvNxoq7Q2xZlaCrNh+58nOvBTujriEY/0G0/tFiaj6YOKRWR1wT+FGeKyE1Fr08C+QY3r6kJJ9yhqXTJhLtv/9CKz33LPQeJukJ7LIKI+TfqCrfcc7AGLbe0AqvZv6rF9kOLpfloaqECOI7xp0gDDxW97gRe3cB2NT2rOeEeGUvSFnVLtrVFXY6OJVd8bktr0AwPdNsPLZbmo6nNH6r6KPCoiPyjquYa3Z5W4shYkt62aMm2Wk242/raGZpK0x6b7T6pnMfWvvYVn9vSGqxm/6oW2w8tluaj2TUVIWeJyB0i8oSIHAxfjW5UM7Otr51UzivZVqsJ99rLd5LzlGQ2j6r5N+cp116+c8XntrQGq9m/qsX2Q4ul+WgVoeITwP/F+FH8IvBp4LMNbVGTs5oT7t7dg1x/5XkMdiWYSOUY7Epw/ZXnWee4dUQzPNBtP7RYmo+mNn8U0aaq3xERCbJr/omIPAR8qNENa1b27h7keozt++hYkq3L9M5fyMM/fFnWJ7XqX+VYSlSJ7YcWS3PRKkJFRkQc4ICIvAs4BnQ2uE1NTzjhhpP0B7/yGNvuqX7ytyF7lkqsxgO9mftco0NoLZZWoFXMH+8B2oHrgBcBbwLe0tAWtQgrCf1rBg9/y/qiWftcM4TQWiytQNMLFSLiAr+lqtOqelRVf1dV/6Oq3tfotrUCK5mkbciepd40a59rVmHHYmk2ml6oUFUPuKzR7WhVVjJJN4OHv2V90ax9rlmFHYul2Wh6oSLgERG5U0TeLCJvCF+NblQrsJJJuhk8/C3ri2btc80q7FgszUarCBUJYBR4BfCrwet1DW1Ri7CSSdqG7FnqTbP2uWYVdiyWZqMloj9U9XcrfS4if6iqf1av9tSDWnmarzT0z4bsWepNM/S5cuPv+ivPW5UQWotlLdESQkUV/AawZoSKWofVNcMkbbG0CguOvyvP4/PXXNLo5lksTc1aESpkwQ9M9MiDwDFVbQmTSbGnOUB7LEIym+eWew5a4cBiWWXW4/h73Rt+kxPDo2U/O3T45+yqc3ssrctaESq0wmfvAZ4EuuvUlhXTDMWaLJb1ynocfyeGR9n15o+W/eypD19d59ZYWplWcdRcjLKaChHZCrwWuK2+zVkZ1tPcYmkcdvxZLMunJYQKEXnZItu+uMChfwP8f4Bf4dzXiMiDIvLg8PDwitpZK6yn+dqlGfubpZS1NP5sf7PUm5YQKoC/rbRNVf/X3A9F5HXAkKo+VOnEqnqrqu5R1T0DAwMrb2kNaNawOsvKacb+ZillLY0/298s9aapfSpE5FLgpcCAiLy36KNuwC1/VIGXAVeKyK9g8lx0i8hnVfVNq9Pa2mIjNiyWxmHHn8WyPJpdUxHDVCONAF1Fr0ngqkoHquofqupWVT0LeCNwd6sIFBaLxWKxtCJNralQ1e8C3xWRT6rqzxvdHovFYrFYLAvT1EJFEbeJyG+o6jiAiPQBt6vqq6s5WFX3AftWrXVrgFpl8LRYlortexbL2qHZzR8hG0OBAkBVxwA769SIMIPg0FS6JIPgvv1DjW6aZY1j+57FsrZoFaHCF5Ht4R8i8hwqJ7yyLIHiDIIi5t+oK9xyz8FGN82yxrF9z2JZW7SK+eOPgHtF5LuYRFcvB65pbJPWDusxg6ClObB9z2JZW7SEUKGqXxeRi4Cwms8fqOpII9u0ltjW187QVLpQ6wBsBkFLfbB9z2JZW7SE+UNEBLgCuEhVvwq0i8jFDW7WmmEtZRC0tBa271ksa4uW0FQAf4dJtf0K4HpgCvhn4MWNbNRaYe/uQa7H2LePjiXZ2mIe+DZ6oHlZ7Ldp9b5nsVhKaRWh4iWqepGIPAIm+kNEYo1u1GrQqAdkq2YQDKMHoq6URA9cDy15PWuJan+bVul7Vni1WBanJcwfQE5EXIKIDxEZoEKRsFbFhtctHRs90Lyspd/Gjk2LpTpaRai4CfgysElE/hS4F5hXRKzVWUuTcL04MpakLVpaBsZGDzQHa+m3sWPTYqmOljB/qOrnROQh4JXBpl9T1Scb2ablUkmFuhbC6+qtIrbRA83LWvht9u0f4oa7nmT/qWkEiEccNnUn6G6LttzYbAQHn3maF738lWU/O2NgA1/90j/VuUWW1aYlhIqAdkxlUgXaGtyWZbGYjbnVJ+FG+Ddce/lOPnTn4ySzedqiLqmcZ6MHmoRW/2327R/ifXc8yngyh2AmnnTe59h4CoCIKy0zNhtFXoVdb/5o2c8OfOaDdW6NpR60hPlDRD4EfAroBzYCnxCRluuRi6lQWz28rhEq4r27B7n+yvMY7Eowkcox2JXg+ivPsw50TUCr/za33HOQ6UweV4So6yCYzHuer5yaSrfU2LRY6kWraCr+E3CBqqYBROQG4MdAeRG4SVnMvNHq4XWNMt+0SvTAeqSVf5sjY0k8X3FFcEQAh7zv4yuo0lICksVSL1pFqDgOJIB08HccONa45iyPaswbrTwJt7r5xmIpZltfOyPTGdQHEXAdQcRoLC7c3tey49RiWU1awvwBTACPi8gnReQTwGPAuIjcJCI3NbhtVVOteWPf/iGuvvU+Lrvxbq6+9b6WCVtrdfONxVLMtZfvpDMewVPF83083yfv+XiqPHVqsqXGpsVSL1pFU/Hl4BWyr0HtWBHVmDdW6uzYyAQ9tTDf2ARDlnI0ol/s3T3IX151ATfc9SSHRpP4vuI4woaOGBs74y01Ni2WetESQoWqfip8LyJ9wDZV/UkDm7RsFjNvFDs7ArTHIiSzeW655+CiE1AzZJdcifmmGdpvaT4a2S+K+/PVt95XYt5rtbFpsdSDlhAqRGQfcCWmvQ8BQyLyfVV9b0Mbtgos5Ox4IFC3VlrlrEQgWYx6rLJWs/2W1mWxflEvDUA1jsgLtcX27aXzujf8JieGR8t+ZnNcNC8tIVQAPao6KSJvBz6tqh8WkYqaChFJAPdgnDojwB2q+uE6tHVFlHN2HJnOMJXx5qUInrvKWa3oi3qtstZC8i9L7anUL+qpAVjMEblSW2zfXjonhkdtjosWpFUcNSMicgbwm8BXqzwmA7xCVS8AXghcISKXrFL7akY5Z8exZI7+juii+R+29bWTynkl22oRfVGv/BOr1X5La1OpX9QzN8pijsiV2mL7tmW90CqaiuuBbwD3quoDIrITOFDpAFVVYDr4Mxq8dFVbWQPKOTtOpHJs6IiX7FdulbNaGQxXc5VVrC7uikeYSOUK52+1DIyW1aFSv/7gVx6rWd9caZn2SuPkI69/QUtnF10NKqXwBjh0+OfsqmN7LLWhJYQKVf0i8MWivw8C/3Gx44LKpg8B5wA3q+qPVq2RNWSus+NcBzEov8pZreRZq5V/Yq66OJXzECDqCBOpXMsl/7KsDpX69bZ7atM3a1GmvdI4afXEdqtBpRTeAE99+Oo6tsZSK1pCqAj8I94GnIdJggWAqr610nGq6gEvFJFe4Msi8gJVfWzOua8BrgHYvn17jVteG5aigViN5FmrpQEp57wG0NcR5+v/tektVcuiFfpbM7JQv65V36yFI+VibWlEYjvb3yz1plV8Kj4DbAZeDXwX2ApMVXuwqo4D/w5cUeazW1V1j6ruGRgYqE1ra0yjayis1vevpdLY1dIK/a2VqFXfrEVfbPQ4LYftb5Z60xKaCuAcVf0NEXm9qn5KRP4R+F6lA0RkAMip6riItAG/BNxYj8auBo1O370a37+QurgzHlk0fNZiCVmoby4l1LRWJr5Gj1OLpdG0ilCRC/4dF5EXACeBxUbuGcCnAr8KB/gnVa02cmTVaZbseqvRjmrPWU5dPJnKoUDW822SoBalGfp2JR8JYF77Lt3Zz837niHv+8Rdh572KFHXXdeOlBbLcmgVoeLWIJPmB4E7gU7gjysdEGTcvLAObVsyzZJdr9p2LOUhsZRrK+e8FnWEnK82SVCL0ix9eyEfiRvuepJkzi9p33+/41EyOQ/f9/F9SPo+ueks7/7Fc2yfs1iWSEv4VKjqbao6pqr3qOpOVR1U1VvCz0XkLY1s31KpZ2z9Stuxb/8Q77vjUR45MsapyTSPHBnjfXc8umAhpaVe297dg3z+mkv43vtfweevuYTprLfu/CzWEkv9/VereN5CPhKHRpPz2jeRyjGV8XAch3jUIR5xUIW7HjtZk7ZYLOuJlhAqquA9jW7AUmgWB8Vq2nHDXU8ynsyhPrgiqA/jyRw33PVkYZ/iB8PDz46R9/yK56yETRLU2pTrU3nP5+Fnx+YJDqFWY26m2FoIFgv1I2Be+7KeooAjgiA4IjgCB0dmVtwOi2W90Srmj8WQRjdgKYROYZ6vDE9lyHo+rgg7NnYU9lltu/S+/UNMpnKcmEiRiLgMdJnkWicn0igmN8a1l+/k0GgSR8BxzC0WAfWVQ6PJwnmK1d0j0xmOjacREboSJhHQUoSC1QpftdSHuQ6PU+kcx8bTRMqYQ1azHkboI+H5Sjzi0JWIEIu47NzYQSrnlThkgplAPF/J+z4apMiLzFly3fTtp7jt3kPMZD06Yi5vv2wH173q3BW102JZa6wVoaLpM2UWc+3lO/nvdzzKWDKHI2ZCy/vK8HSGffuH+MnR8ZIJMe/5NbVLh4JAe8w8tLOez5HTRkgQEc7sTRQmf99XZI7I5vmKj3LZjXczmcrRHnPpaTPpQzZ1JTg2nuLkRJrOeGTJQkGlJEHN4ABoqcxcofDkRBrfV9QRfnZqiphrHvDh79jbFmUylWNk2gjXMddhIpmt+vvK9QmAOx4+Rn9HlIlkjnTeI59U3rl3O+dv7Z0ntEZdIe8p2TkaNkXZt3+IvbsHuenbT/Gxu5/GESNspHIeH7v7aQArWFgsRawVoaKlNBV7dw+yoSPGVCaP5ysx12FjZ5yIK9xw15McGk3iqxJxzGQ3OpNlQ0esZs6K4Qqxpy1BPOIyMp1hxvNwBDa0RxmZzha0J44jeL4iaoSLvOfjKcSCleeJiRSpnEc84tLdFqW7zWRDPzmZKWTFvHRnP7fcc5APfuWxisLA3AfER17/gsJ+zeIAaKnMXKEw7/uIA6gxn4X9Oe9NsmtTN4dGphmdyeIguCJkPZ+8P/swr8RCfcL3fUams3hqxtaG9hiTmTw373uGi7b3cdVFZ/LDg6cLQuvrL9jCTXcfwPPN6kTE2IUHuuIFX5CP3f00nq+ogDiOGZu+z233HrJChcVSxFoRKr6/2l9Q61XydNbjnIFOpEgNoKocGJom7/tEXQdBjJbAh6l0vmY+F8U1CkJBYP/JSXxfGU/lEQHXEXxfyXlKd1uETM4n7/n4Cq7Alt42RIRExCXr+YxMZwKBAiKuw0Xb+/j8NZcsKcKkeL9DI9Nc+9mH6EpE2DXYxXgya0tHtwjFuRrO/5NvkMp5JeYz31eygfbq2s8+ZLY7oAqC0BFzue72R+hui1Yca+XMJyPTaU5MZIi5gusImbzHTNYrmDKGptLc8fCxeUmpPn3fz0lm8uQCIX+gK05nPMKBU5N86M7H8XyjDFWFnOcDDo7ATHbWb8Nq0iyWJhcqROS9lT5X1b8K/n3XarZjNVbJCyXbAYi7Dp5SMDuIQCbvV+WXUM3EVu67UcVT8DwfR8yq0hEhHhXO6E7Q1xHn6FiSoakMm7vjBX+Jga44x8ZSZPI+qjrP3FGt3bx4v8lUjtEZowJPZvIMTaU5PJpka2+CYhrh3LoWHxzLvaZqjotFHFJZDz/QdKkCarbv3T1IVyJS8jDvjEc4PZNFge397RXHWrkCXhNJk9JGgv8CWQDPh/aYu2D/2zXYNW9MJLN5sp7S4xrHTV8xOlGFvO/jOkYACu/FUvJitHqfsVgWotmjP7oWedWF1QgBXaiM8s6NHfS0R1EFXxVF8VRxHVnUL6Fab/q53z08lcYr8krxFXK+kvN9NnXFmcl6hbDPi7b3EXFnu01XIsrGrhjtMbdsauJqI12K9xuZzhh1eFHOiqgrnJrMlBxT76iQ1YxWaBTLvaZqj9s12MXGrhiRwIwWcYSNXTF2DXYVPj+jt43dm7vZOdDJdCYPAvGIs+hYKxfhkfF84hEHH8X3tSBUKBSckReq8FtuPMYiDm1Rl40dMXMeNefy1bzeftkOYOE54oa7nlxzfcZiqURTCxWq+j8rverVjtUIAV2oTsD7r9hN1HXZ0BnFFaNqdUR4596zF13dVCv8zP3uZNZjU3ecRMRBAsdRAaKuQ8R1Sh7c5SbfqOty0xsv5COvfwEAH/zKY4XQwWpDRIv3y3p+YVUbCwSYTV1xcr4/b9KvZ1RIs+QXqSXLvaZb7jlIzvM4OZHmZ6emODmRJud584679vKdRF2XzT0Jnrupi809iZJMlXP7Uzpv+sDGznjhHAuNtXJ9MeI49LVH2dLTRsSVgrNVIuJUjEZaaDzuGuwilfPY1NPGYGeMwIqD6wjvecU5BX+KpeTFaPU+Y7FUotnNHzdV+lxVr6tHO1ar9PdCdQIKjm5OsuDo+MODp/mnG++uqD4tpw5eaEIu/u7Lbryb3rYo8YjL8fF0YHZRvMCnovjBvVB0BlBW/XvVRWdyx8PHFg0RLY4aiLmOESyQwuoy4jrsGugsmGEaUTp6Kfe3VVjuNR0YmmIimcNxjEYp7ysjU1lyXmmdv8VKfs/9vCMWoT3mFvxzYOGxVu7cr79gC3c8fIyIa0K0R6YzDE9n6euIljXPQWUHYaDQLwe7E3S1Rcl5Os8no5I5sxly0lgs9aKphQrgoUY3AJafO2Hf/qFCNAfAzo0dvP+K3Ys+CIsf+Evx51iu8BMe15WIsqUXhqcypPM+HbFIyeRZafK9+tb7yvpO/PDgaa6/8rwFHyrF1xw+ICaSWfK+0t8RpTMeKWgl/vi1z2+oLXq1hMu5TKRyTKZyRFwh4jjEXIdoxLyPulLi3LtSlntN2bwPYhJGQeCAKWq2z2GxIlvl+nu1Y63cuc/f2lvobzs2dvLbF/eXRHsUhyjfcNeTHBieJuo4bOqOzxtfiwlFIQvNEcV5MabSOYanMqRyHiLCno9+i12DXdbHwrKmaGqhQlU/Vfy3iLSrat1F/GonlmLC9NbjQS4KgAND0/z3Ox7lL666oOpJZCkJgpYr/JRLFLQhEp8nUFQSbiqteKut3Dj34bKU+10P6pmYK+f5mIWuWe3ef/A0tz9whBOTKbb0tPHmS57Dy88dWLHAsdxrirpCKkchj0mYMCrmrkzgWc5YK3eOufvPVWkW+4S4IihwYiLDlt5EwTxRrE2pZiFQSYM3Mp1mZCqLr8bPw0GZSOY4PDptQ6Mta4qmFipCRORS4B8whcS2i8gFwLWq+vv1asNSSxrfcs9BpjP5Qq4HAFFlKl1dGGT4UL3/8GnirhjVa2ATDh/W5bzvr7rozHlZ/xYTfhZKFLRQdAbMF25qvYpvxhLStXjgLYf7D57mY3cfIOII3YkII9MZ/uKbPyOb97l4Z3/JvhFnVsiIuQ4RV4i6Cwscy72mc4McE1PpfCFpVVciyo6NnSu+3rm/fZgGvlL0xFIjWML+7PmKK+be+JgMtzs2dixonqj0PZXMmdfd/ghB4AsRgWjExVdlMpVnc0/EhkZb1gwtIVQAfwO8GlOhFFV9VEQub2iLFuHIWLIwYYWEyaMOnJpccJKcq5KNBBEQx8fTbOk15zk5kSbvK9d+9iH6O6Js6IgXqi2GXu7bg1XnHQ8f4/ytvQtOWMWJsDZ2mpDN0GxRvLpbzPa+XtJrN0LYuf2BI0QcKdjmw/t7+wNH5gkVed8nn4VQw1FMscARDYSNiCv8wnMHlnxN4e+9uSeyqr93Nea/cJ9s3mMqnefkRJqHnx3jnXvPLpuYat/+IR5+dgxftZDQyghdxkl4IWF4OaHloRAyk/WIu0LGg0hRzo6s51sfC8uaolWEClT1yJyV1vxZswkIJ5HhqYyZsFCiEfMwMMl9YCrjzQsxC+PZ56pk855vVpiinBhPFUI/XTEhp6PTOeIRl65ElGNjKRA4o6cNqC5BVLWOesWaiDCtcibv0x5zC9kPG7GKXw+cmEzRnSgdqomow8nJ1JLOs5jAUazViAT/Rh2noGkrpl6/dzXmv1vuOchkKstEKk8hlYQqN+97Zp5AHQoGYYSTg0mRD7P5WRYSjpZaq6RY2FFVkrkggZavxKNuIbrJFsyzrCVaRag4IiIvBVREopiqpE8uckzNyAepgyWYdIrzNBRTvJLZ3B3n6FiKvILmPZOhUk1tjf6O6LyJ6cav7+fYeIpk1gvi+cF1TEgnqkRch5msRyLqsKkrwfGJVEHwGJ7K0JWImpTIc1Tci62CyhWAmltUbO/uwcLKdHgqXUhMJUBH3J3n2FZ8PxZTW1diLSaaWg5ndLcxOpMpiSJI53w2d7fV7Dvyvk/eh3RuvsDhOrNajYjjBCY9uHhnP5ecvQHXkRIzXy2ZK/ROpXMMTZpkaGH/fOrUZEGgAGNi8BS8vM8Ndz1Z1oy3uSfB8fE0riuo55tiYkDUhfZo+fEdtiV0uMx6PlFHmEjlyu5/yz0HyeY9k4ZcBD9wPPGBTN7DFaG7I7omNXqW9UurCBXvAD4GnAkcA74J1M2fYibjMTozm3hJRIgEoXThRBtxhb/b9wwRxzzIJRZhmwjHx1PkfCUiwq6BDoanM2zoiJecP+/5HB5NAhokCYKcD+DjuoKn0N0WIZn1yAcpsV0Ro/lwKBRCijjOvCooi62Cis0Wec/n2HgaoKSoWCgwhLZhX7VQ2bQrES1ZrYWCwIGhKabSefrao2zsnO9Vvxi21scsb3zxNj529wFSOSNUpnNGyH3ji7fV5fs9X/F8D8o/OwuEwkfUdYhFHOIR895dQNhYavbXqXSO4+NpPDWVRO8/PMrDz46hvi5YUfDA8HRJHZFQMBCRQqRT3jOCyBk9cTZ0xEnlvLJ9bVtfO4dHpxmdzhVS2ed84ydVrlbJkbEkU+k8DoLjCo6YKqjh4qKnPcpZGzrXrbBsWZu0ilDxv4F3qeoYgIj0Bdve2ojGqJr8DTmPkon256dn6E5ECuF28YjLjo0dTKXz/Nt1L8dxhN/71IM8e3qayZRxcItHXHKeT9QVXHHI+0rUnS2sFCajGpoytS/AqGtDs4j4EHWEZDZPVyKCwpL8GorV2A8/O0bEFTZ1JQp5AooFhr27B+lui7K9v71EI1LsOBoKAslM3phnZrKFYmNLqdWxWmWxPV8DD3w12RELmUvNv2EWRg22afDeD/Yz+5j37TGXwe7EYl+5Yi7e2c972MXtDxzh5GSKzd1tvPHF2+b5UzSaUPiYq+1wQwHccQLBQ/jh06P86V1PEnOFnkRkQaGxWOgdmjQCheebSqER1zG5VPyFRAqIOk5JnykWUroSUboSUQ6cmiIqFHyKFuprYa0SRVHfjEMFoo5y49f3lxWITk6kCz4UriOIOLgCGzrjfO/9r1jJ7bZYmpJWESrODwUKAFUdE5ELG9mgcpSoqdWUTk7lPAa7Eowls9x/8DQ/H5ni1LSRRCJi1KB5H/rjpi7BiYnZlNkK5DwlEXXoS0RIRCMcn0ghaiYoVcURh/Z4hMGuBH/82ucDS7dzhwJDmASrnMAQUinKo9ijPpXzC/btU5NputuiS3JIm6v2VlUSEYcjp2fI5L2yAoH6sw9+L3DCy3uB8MCssNCKXLyzv+mEiGoxwoaSZTaHxS33HEQw2rWcZ9LQ5zyfv737aV6wtYeIY8wpF+/s50Ovex63fe8Qh0eTqBqBIuoaU5ArkENxhZJU82D63qbueEmfK+tQ7Pts7S01JRX31WKNiheYGIsFmZwPPzs1NU9bcenOfu47NEo+rzhBTg9HhJ6O6KI+FBr0Xy8QYj015yip12OxNCGt0kMdEekr0lT0s0jbRWQb8GlgE+b5fKuqfmw1G1lJTR2GBY7OzKo28moEi4jAdMajrcyE4TrGfg55XMdhoDPOWDJLzlMcEf7iqvN5+a4BHMd4rzsiZHIe//D9wzx7eob/+12Tf+IXnjuAiCmMVC60UFULAkNb1C3sk8p5nNnbZlbuCr932Q4+/K+Po5or0Yb83st38MdfeQxX4OhYusS+nc77TKSyuI5wRk9bocBUQSDwSydQRRnsijMynSERCGhhWzZ2JoxD6holm/fJBsXZapnkqtmY53yqpt7HsfEkk3N8FHYOdPK/3vAf+L1PPcgzIzP4Cp7vEXFMGu6YazJ6Rp3QbGgEip62KKcmM/P8g646Ol4Sdn1GV5xM3ufg8HRReGyEHRs755nhRqYzwXgMLI1CQcC98ev7ufzcATw1pdu/+NBRehIu4ymvoOnqa3NxHYc3X7KdiWSuIPz6quR9LYwFv4zw2xGPWKHC0vS0Sg/938APReSLwd+/AfzpIsfkgf+mqg+LSBfwkIh8S1WfWK1GVlJTv/cLjzKdzpGfM1fkfehrjzCRyjM8lSmsaLzgIQ6hxsJnaCrNYFeCvvYYIzMZVOHj9x4mmfEKq9jinAbtMZfj4yk++JXHeM8rdpWsdEUkLLhYWL2//oItfOzuA2TzfolQ9GsvPJNDIzMAnDXQwTv3njPvGs/a2MFAZ4LHjo0zP6ciHB9LMdCd4A0XnsmJicWFgt98kRHQVBvjR9Ao/vc3f1aoCxF1S8M/w8iM4vcR1yFWCA8122JF74uPmbtvrOhckcJxC39X+H4hH4mlsFTn0/sPnuZ0Mlv4WzFF7xyB/rYo3UEOl8Onk0QcoTMeKThQbuqOc2w8yf/4l5/yuv9wBl/96Qn62qOc0ZMgnfc4PZNlKj1rssl5plz66y/Ywt/e/TQiStR1yfvKho5Ywe9IC/8zAsbTw9McHp3h/oOn+ci/PUE65xGLmFok6ZxnBEZPef/ec9h9RneJn5bFslZoCaFCVT8tIg8CoRHyDYsJB6p6AjgRvJ8SkScxjp5LEio+96Of828/OYEfVAoNPd3LvY+45u/nbeniP2ztxnWEA8NTHByZZv+pycIKZy5T6TwDnTFGZrIF9a6Epc8lqPoWVEccmkwXKi8OdMUYmkrz1995it/Pnc1Lzt7A5+9/FlcoyWkwlszwkX97gs5EhDOKBJ25a6Fqbffh32GGx9sfOAIYTc0Hjo6Xvca8Mk+wqUSr+BHUmtDpFgj8djwWCC5oGI4wT9ioRhgpft+ViHBgeApXJDCZmZX8i8/q55tPnCIaOn1GTFjrbfceIuo6dCciTKbzhbb4CqMzObriEa65/GxEhNsfOMLjJyZwXWFjR5zOuJnmUjmPz/3oWfo7YsQjJqQz7rqkMvMjXhzgW0+c4nQySybvk/NSRF2HvvZYyX6CMcGESqVQqE/lPFwH8p4y5ZkCZR1xl6l0fs33Ycv6piWECoBAiFiWlkFEzgIuBH5U5rNrgGsAtm/fPu/YA6em+cEzo8v52qrJ+3BqanYVli02DgfzXTlftOJjPvzV+bcmXE+Gh6bzPiNTWX56bILedlNXww1s13MFpDP72nEd4SuPHuerPz1BJBSaHGF0OssTJyZxxCTyeWZ4mo987QleclY/DpTVVAgwOpPhm4+fxHGkYDMvEdDmtKO3I8q7XnF2wcHPdYThqczsPm7oAGj+FcqbdpqJxfrb2y7bwd7nDjIyZRKcZfM+Oc9EDeSClW74PueZ8vS5vG9K1Xs+uXzwr1/03gv2LfM+72vheK+Cw2MxvkIm75MpU+djpXzpkWNLPkaBQ6dT/OG/PIYrQixiHJ4dEYamMgxPZxCMeTCT9/E1U9DUiUhBe+hI0ZhRTESWzI69vO+TmkgXvjcUJlTB92FLT5xP/fAwoAWTjCOgPowls7hOvKZhwNWwWH+zWGpNywgVy0VEOoF/Bv5AVSfnfq6qtwK3AuzZs2ferHrZORsRYDqTN/ZPz9j+84V//YIvQN73i/wDwPN9xpM5Rqaz88p/F+MIJKJuYcKvFXPPVPzQGJ3JFvJN1Iq7fzZcsS1/8c2navp9cxGKIw3Mv06QPyEyV3Ap3iZzjikj4ISCjeOEuUqERNRl12AXb3npWVW3cbH+trWvna5ElNHp+arx4vofZ6yC5sYLoopmBZTS93lfTVRSIJRkAyHmqZNTfPPJkwjmvuTyZkzseU4/A11xs1/Qt/PhccF7c57w/aywk8p6JLPegqGiC15DUIk0fD/L7PvUAhrDsjJVhQZ4Wvr50Yk0FAkdxSfI53yOjKU4Np7iVX/1XVxH6E5E6UpEFjVhhe/bYy5nD3Ty1st2LNyoud++SH+zWGrNmhYqgkRZ/wx8TlW/tJxzvOr5m3jxWf3Lsn+GqtCNnTGGp9Jk8rPx9GaVZB6CH7nyBVy8s5/7D57mxm/sZyxZvb47ItCViDDQleC6V+7iJ0cnuOPhIwW18omJDCLGaS0eMUl90jmTzrg9HiHmOibbX9abnYQVHAd6EjHO3dTJhq54IaWx5yvffWq4ECZX7PeR93zO7G3n0OjMvHa6YpJ59bZHC+fxg9DcvO8Hfy/5FpegBOG2vlIva/UFW3uWJFQsl7n1P0ZnMnzs7gO8h12FvrNSgcMIUi7xxXct4d9+coLuRLTEPyKV8xhP5vjQrz5/iWczvPcLjxZ8LlSV6UyeU5MZXAf6O2IFLV1EoLc9RlvM1NJIZj3e+0vn8p0nT/G9AyNBTghzTlVojzl4PoFviPHjSC9D4xL6Iy2VsI/7ni5LsH/+Gd1LEioslnqzZoUKMXrwfwCeVNW/akQbims2bOiMMzSZKThghgLFmy7eXuKj0BmPLEmoyCuMpfL82gs38Pwt3Tx/Szc7N3YUfBHaYy5tUYf+jjjTmTzD0xlyngbhfDCezAYhl2ai9DGak3wexpIZfnAww1kbOrjm5TsL7TxwcoqjEyl8Xwt2ZtcRNnTE+avfuoD/+H9/QCqbD3JuOPR3xGiPuYxMZ9nS08aJyRTb+trnPfiK80HkA2EjDKfzfPN3qCEKNUJ539xPkxFyVvAJo0lCzVKxIGPOXXm//Lz9/ZIIlbzvIwjP3dxVuw5TgUr1P4CKAsdqs5Q04tUKP8XnFAlNZSa6o9jsl1c4ncyyOZLAdYTn9HcQdRx+dmqavvYoE+l8QfvX1x7BFWE8lTN5XhwTDdUVdwOhevFrjTjG5NfbHuMff++SQv8ItTEPHhrjtnsP4jpCzBXSedOPoo6QVyXqOCbPhRr/mfZYhBdu7eGeAyOzCbU80+/OO6Ob3o5YYOoyIdq7BldesM1iWU3WrFABvAx4M/BTEflxsO1/qOrX6tWA4omxIxZhsBtGpzNkPeX8M3vnTajh/ktdBUUdeOz4JANdZo352gvO4HUv3IKqcu9TI/zpXU8ynspyeiZLuChzBMaSeVNDZM75wtVUzjfnPjaW5M+/uZ8NHTFGp7NMpnOFBER5zy/koXjn3nMAeE5/xzzP/rFkhulMntGZzIIPPhHz4HARzKEuzUxnPFKX5FdQ+cG9lIJjq0G1kRyl2pYop5MZbrr7AP/NPZeX7tpY8HsQYGtvOyMzGdqjDtOZPEOTGXSBgeErDE+l2dTTxrW/sJOPf/8Q8YhDRKQkhHsymUeCDNxRV9jU08azp5Ns7IzS3Rbl9EyWnGeSaymUzX0RRmuF1+aIEIsYPw6AXzpvEz1t0YJQv6XHCE5//Z2n6GuLIkUpbxWTjfPYeJre9vmanpyn/OFrdhe2dcQjbKpTf7NYlsuaFSpU9V7mJa1eHULb/Y8OjvKP9z/LiYk0W3ra6I5HyHlKW9Skz+5pixFzHQa6EnzyrS+enUSDMNIdGzoYmkobc8n04mpRR0xBIk+Vk5PpQmn0Yl5z/hm0xdxC6WXBTKiuYwoZzZ2ji+dtAVzXIZv3mUzlSWa8Qp4L1zHf72Myem7uTvBbF29DFd79inP4k399nLzvk4i4pPIeE6k8fW1ROuJhhkyHVC7P7Q+u/MFXafW72n4I9aLSg7tWBcfKUe7+veTsDbPJnBzhLZc+h7/81lNkPJ+2iEM6b9Jo/97Ld7CpO1EYH//jxz+lLerQEY8GbXRJZvP8v+8d5I6Hj5Wk6373K84xxbg83/iXCIRB0GEfDU2IvpqH/Udf/wL27h7kT7/2JK7Ayal0Sf/2APwgr4VCVyJKzHUYncmya7CL/iB9/pMnJo2WLeIggVYrxAHi0QjXXr6TDR3xkjwToZbrkrM3zOtjZzzQmN/PYqk3a1aoqCVtMZdNbgJHSoUAJ3DiA5N176a7nybqChs6YoynskykcgXnwXD16Cn8/t6zyyaxeccvnM377niU6Ux+3meOhDklZrdFHAcNsmuGGfoWqqcQptd+emiajOeT84wzm6+zklfoyV5MJnhAhLkswpVk3lc8oD3msrEzxnQmbzzqBV75/E24jpRk9pxM5RjsTpREZ0Rd45D485GZQpvP7G3nd196Fi89Z6MxORSbLgJTSHFWzEq+BtBYs0AtqZRY7fYHjiyr4FjYhx2n6L1QcGz9wdMj/J99s316Mp3l5n1Ps7knUZI58tdftJW+jtiimVyPjqfmVcQ1dW9SnOVraY2XK8/j+ivP45Z7DnJ4NEki4rCxM86zp0szssYjLtm8hw988CuPse2edjpjLodPJ3EQhPl1QcLoqqdOTeEFhdR+dnIS1PRpX03SOVXje+GIcSAF6ExECsJLSLkxd/m5A+RCk5mvvPTsfm679xCer8QiDh3xCFHXWdHvZ7E0I1aoqIJYxCmoNxciTFGd95RDEzNkPR/XETa2RxnsSlSdNlsANLTdGq9wMOGg2Tm62DCnQVfE5drLd1YswrWtr52fnZw0QkK575VZn4qQ4uQ+iokOiLhS0o68pxwbT3POQEfZyTW8N9MZj6eHp0vqiozOZBhP5nj7Zx4k6jhs6o4zOpPhz76+n+uvPG/BctJ//91nCgLIeDJLPOIYhz6gI+6QzOb5woNHUKhoFmglLUbFvB0CN33nAOm8RyLiksmbDI5vfdlZ9LbHClVF50a0LBZ++5n7niUecQoCcHhvy9VfmVuhthzlUryfmsoQdZyyNV7C/mOK7KmpKTJH8M3kvEKfHZ7KcGI8VZVvBFASEhv26bgrtMVdJlJ5Mv5s5kxHoK8jxl9edcE8gSJcCHi+MjKd4X13PFqy3779Q3z1pyfZ0BljIpkj4/n46Ty//ws7+Y97ttLXEeUj//YkWc8nETEaRM9X/tNLtiMiLZta3rI+sULFIlRbfvvIWBJX4PhEGgczcfu+cmIqw0d//fxFJ9x9+4e47vZHSGY94hGHTd3tiBh/hpw/m2QHZu28obNlInhoVirCdenOfn54cH6+DcE8bNtjDtkgpM/E8s9voyOlYalOkJwLhZmsN0+g+e93PIpiIk82d8c5Np7m2HgKMI5tQ1NZ40MRlHA/MZFhS2+CqCtlH1zFQlNfe4zRmQyHR5Ns7U2UlKPvTph0ygr0JCKBCsYIRh0ODE2leeTZMW66+wARt/m0GPGIcX6VQOUvQfHZ171wC6+/8MyCpswNHA13DnSyuTtRVc2XpZSTn1t/BebXglkKZetueMrW3lI/gbaoy4GhqcJvvbk7ztGxFKemSmN6iiM6XaFi3oxq/ZREhJ62GJOpfMl3eEqJJiHkhrue5PR0trBf3lMyuSz/5XMPsaEzzrY+I/hGXaGnLVEoWjYyneYfvn+YLz58jG197fzmi7byw4On5/1+qmasZPM+TpPnYLFYwAoVFVlK+e1tfe08cmTMlDkOTCICREW44a4nK07kN337KW7e9wyZvI9gJsdj46lCNAQYbYmqeZA7qsRch50DxhM8mc1z49f3c3BkBj/4rCPmMpP1yOQ9jo6lGE9mCzboMPrE2Idd+jtifO/9ryhcb87zODExPygzFGYiDoSJHyOOmfSPj6dxHZPwxw/qVvhBxdUzeowaV0Q4OZHm5GSGeMRhoDPG6EwWV8yq2UcZnsqwY2NH2QdXOaEp6gqnJjN0t81mOiwu915YGQfzcSarPGdDB3c8dIy2mCnipqrEIy4z2TxfeuQYv3LBGWhgagkjUHKeX7CbgzG7fPGho5yaSi/6cF4qiahbEBSrpRpNwVLLyVcqHld8zmqFFICOmMvBIOX7jg3tnDvYWZJFNPyObN6np232t5YK9V7CRFOViLkOGW/x0NF03ufnp8sLTUfGUlz72Yd4596zue5V5wImNfc87R4mF0Z4jw+PJtnQHuXkRNpoMMUUTxMRtvebe3zHw8fKaudEhHjEJR5pbqdliyWksk5/nVP8EBORwkMsrM1QzLWX7yTnKeF/YWntroTLgeFphqbSJRP5vv1DgJmUb973jHkQU5prwS8K9Qz9OTJ5H0dK0znnPZ+nhqYJFQeZvM/QdJZM3isc99TQdCHBTiJqJqmI65DKekykclx2491cd/sj5DyvsEpbiIjrsL2/nfO29LBzoJOpdJ6cr6SDBEm+miJhilErT6WNB35XIso5g50MdsXpbouysTMe5Mkw55XguuY+uEKOjCVpi7pMpnIcHJ5m/8lJNMjumMzmg3wb+UK59/A3KfdZeC7zvUao6YhFODGRojsRpac9Sn9HjMGuBJt7Emzrb+c5GzrYOdDJ4eEZbt73NGPJTNnfdCXs2z/E1bfex2U33s3Vt95Xk3OGLKU/AxXvX9jWD935+IJ9u/h69nz0W1z72YcYS2bZNdjJ1r42kjmf17xgc+E7JlNZDpya4vDoDMlsnnxRHy/WzrVF3RKtgTERlLbdERO5VNjHMaaNleKrcvO+ZwrXWElOCe+xKzA0nSXvm1T/mbyPpxRMUIv9DhZLK2GFigoUP3hCFlL/7t09yLmDnaYYmK9EHGFLb4KpjFewGZebQG6556BZ/ep89WxBtRtqPoI50Vez8go5NZkpmEayRd7qed/Uj+iKm+8MHT1NdVCjVvWBjriLKzCZznNiIsNMduHsn2BCKTN5j4PD0zxxfILTZfJqFF/Ls6eTBcEiFBi29bUHVUfj+Ji8E76vwSpu9sFVzLa+dkamMxyfSJH3zL6+Gj+PqCNMpEyNhXDFt3f3INdfeR6DXYl5n4XfX8xCwsxc/t+9hwJnu2hNHwrVPKRXwlL6M1Dx/sHiQkrx9SQzeXw1CZ+m0vnCvj88eJrrrzyPmOtwdDyN5/tEHIe8Dz8/neLxYxMcHJ6ejUgqIxeUczkQwHEcEhGH523u4sJtfXQlIoHpaLl30JjqPF+55Z6D7Ns/VF3od3GGuOJxXtTwlZiVLJZmwpo/KlCN+reY91+xu6BeXsxmHE4gR8aSxCMOyQUe5OH8Z1b+xpzgqcmiqUFK4mwQWO+W0ZC6AuOpHL1tEU4ncwx2zTqLKdDfHiUecTk+ni4b/VGuPW1Rl6GpjDENVDGr+grHxlJs7PKIum5BYAjv1ZaeBKemMuQ9OHugg/dfsbusCv3ay3dy7WcfMu0IvPMFYUNnlL6OOF//r5fMO2Yhs8BC9v1ywsxcau1rEFLJJ6YWppWl9meobFYpvg9T6RzDU5mCuS00i4TXkwtW6erDyHSG7rZo4Z7t3T3ILfccLJjDiv12fEwG2BBHpJA8yg0iVTrjLqeTpSoDT8HP+2zsjJX0p/96+8N8+ccnlnzvQvKBIH7/4dM8fnyCiFPe9BIvcuz2MFoS4+TsF2qMFLe4WoHWYml2rFBRgWsv38n77niUY+MpvGBS7IxH+OPXlk89vHf3INdDicNczHXK2ozDCWRbXzt5z19QO6AYgcJxzUR57mAnr3nBZu567CQHhqbNPoGPRL6M27uI4CBMZTx2DXTS1xHnqGPadmBois3dCQ6NzCACERFyVXiaD01l2NrXRnsswv6TkxVTbBf8OICZjMfbL9tesMF3xY1glM3Dhdv6FrXH7909SFciQjJjzC0x16EzHuH0dJYTE6M894N3sWNDOx94zfMWfQiX+62q9YtYzsO5GlZLWAlZiSBVjvA+eL4WhNLQ3BZ+z+YgWVPMNUW+pMh0V3zPjowlmUrncRBy6pcUw/PVmDL8wKeouNpvbzxCKmce1HP7oAKpXL5Eg/Sd/cPLTrENJoOnK0ZImMnmC35OqqXn9H2fJ09MEHEcHBH6OmIMdJl7MZXOcXQsZYSsYGGwkt/BYmkmrFCxCGGIp6qCFufDK8/clV2oAp47kV+6s5+rb72Pp05NMl2m9HIxjmOKV930xgvZu3uQffuHuOPhY2zta6Mt6vLE8ckFH+qeaiBwMO9he/Wt9zE0lS6Ev0ZcB1UTorfQ+cwkrwU1esx1yKhxYlxo/4GOGDNZU2/k5n3P0N8RZUNHvHAvPjIn7r8Suwa7Cg/0cHLO+4E/iipPD8/MC+lbiGqcG8tR64dzyGoJKyErEaTKEd6Hock0ZpAYE9umroRZleeNf0x7LMJAl3Hm9THC4Fz/jG197ZycSBNxSv0jBIi4wnM3dfHz0WnSQUnRMMxzIm3MKtEgFMkJwk/DtNaqUhKJlMx6xCJCJjhPOaF/IULnZtdxGOxOMDyVMZoHjJ9R1jPCUN5TXNcxGheBRPA+7C+uI/S1R9nQEWMilVvx72CxNBNWqKjALfccpLstyuae2SQ0S1VHl5vIL93Zzx0PHytERoxMZzg5Wb4EliOwe3MXE6lcWVs2mORcC2k6TLZBZcuchEUw+1AIw18FEEfY1tNGdoEIEFdMxMfch0W5tV/4QBhLGX8Kk/1QGZ3OEY+4dCWiFe9nuciC4gf60GS6oHo2FUYdxDfFp2plMihHrR/OIaslrBSzXEFqoXNdD1z72YdQTKbWjZ0mD4mqKf8dOmF2xiNs6IxyeiZHW9RhsCtRcs+uvXwnDz87VhCCQ8HC1NAwuRvy/mxIs6mT4SACXl7Jeko8YkT+fFF+ibC+xrGxFIgxS+Q9xRENxkZ1AoVDoI0QI6gPT2XoiLlkkz4esGtjB6mcMf1s6okVQkfBzBlRR4yWMOgvf/za51shwrImsUJFBWqljg4n8vAhefO+ZxBgc4/JMDnQleD0TLYkqVQYyQHw5MlJYq7Da/7mHqYyeYanMmzunq0lubEzzswCYXBgVNKZvM++/UMlE1n4ULjx6/t5amiaqAtbglWm4tIZd8gFEzaYsNbN3XFmMvl5D4vhqUzBgTQecZhI51GMo6gjJpGXFOWkGJ7K0JWILng/Fwx/LMq0eGhkthqqpwqBxsXztarfaKnhkMXU8uFcfM7VEFZWk727B7loe19ZDcuuTd1cutNkkpzJenTE3JJwTCj9DQY6Y5yayhT8DVzHCA9diQgTqVxJ/hRVE+YbdU2uDk9NH3BlNktsKJBAUABOhE09CY6cThb8GcLzLWQSCQUcP9jHVxBVMnlTwr0z4eL5FDQOE6kcGzpmx+ZUOsfQZJqMp+zCODkfGUsWTDLV/rYr6atrkYPPPM2LXv7KBT8/duRZzty2vexnZwxs4Ktf+qfVatq6xwoVFViOOnqhwV/8kAzDR4+Pp9nSa44L/SEijonaCJPphCukbN7nwNA0Z/YmEODYeBoQutuiZT3iQxwxzphdbdGKmRDDdh8dSxZWkbfcc3De9SezeXZt6i58fnQsyVkbOvmzXz8fmBVQYq6ZjbO+aX9vW4SZrEfeU8Qpb1cvvofX3f4IM9k8iYhLZzzCdCZPOu9x3e2PcNMbLyysbMOER2F1U1UlEnEWNRksNWdDvVgNYWW1WUjDEmrkBrribA+23/HwMc7f2jtvTPS2RUnlPHraogx0xhmezpDN+8RcYcfGTsaTWabTeeNgHMZZK+R8Je46tLvGbyisSBqa6fK+sv+kMQ+6KKlsfl4BPYDOuMOZve3sP2X8lKTwv1mK/TY8X3EcSGZ9bnnTiwq/WWhSDM1zx8fTKEpE4OlhIwSf2ZtYUn9r1r7aSPIq7HrzRxf8/KkPX73g5wc+88HVapYFK1RUpBp1dLEQ0RlzGZ3J0t0WnTf4i00WMdeoYBGzYgdwXSGKsc1q3i+oeduirlHxByuxI2OpwsT27Okk2/vbODWZIRLYaSdTOTJFGo+o43A6mWM8meXwaJKrb72v7CpnoYfZQte/0P633HOQsza0FwSRg8PTZANH1I2dcY5PpMA3Rcjm2tXD+2m+0yMSxPTPZDNEXVOPIhlk7uyIufR3RBmeys76VGBWrL3xyKImg9WOtFhPLKRhWewel/scoLc9xl1/cHnJd+z56LfQIPcLFEUpBY6SM1mvoKUIP/IDX6hQ6+cpCxbqm874fOA1z+OazzxI1tOSFPUhUdcpmExMLhboao+U9JdwzhieSjMUaO9CM6Ab5MIfmc4y0BVnaDLNtZ99iIu2V3ZStn3V0kpYoaICi6mj564gnh6eJu8pHfHZuP1w8BebUsKHqwSJmxRjotjc01aoi2ESOyk7BzrZf3ISAt8ImFXVKibLHxhV70iQLjikOJmWYCqDLmWVsxx1/FyT0UBXnGNjKTJ5n65EhA35GGPJHO3xyDy7OsxOoKHt2w8iAczK0CEeEaKucHBkhl2DncQjLicn0gWNRcSRqpw0VzvSYr1RTsj84Fceq3iPw98gDEfNen4h30gx+/YPMZU2GobYnNoz7THXhFM7QsSZDeMMc5AoxiS3pTdOJl/qJ1TQRgSCyI1f309bzCVbJvlb1JVC8T7XcVGMM+iuwa559+Gqo+NBQrtZM0zOU5OMS5VkHg6PJguRUYuNSdtXLa2EFSoWoZI6+pZ7DpLzPEan82Q933h9O7P+AjA7+ItNKaHgcGoqjagERZvcwnYIEl6p0b8ab/kiR8xgIhSM42SY5KocoSOaYoSZpa5yFrr+hcw8c01GXYkoG7s8ZjImc+eOjZ3cUEW9iVDwKrah+ygbOxOFyJNUzqMrES3c62Q2z2DXfIfUcqx2pIVl8Xu8ra+dw6PTjE7nAsdLIecrU+l8if/PLfccpK89yuhMFkFIRARPFUeEv/vti3jbpx9koXp/uzd3F953aoSTk5lZLUeRQAGw/+QUm3viJCIuw9OzWoaYa0JCR2ey4BtBwFMl4jgl2UXD8TCZytHXHmUqnSfva5AQzyM3J6Qq1IbkPV2w3k0199GyNBbzx7A+FyvDChUr4MDQFBPJHE5Q/dGk18Y85QPCwT/XlBJxpZChEOabGTrjEQTzoNzYGePnp2drH4STYrH/Bcx3NpMip7VYxCkILW1RlwOnJrn61vuW5fhVycZbzmQUdV1ueuPiRdVgdgIN23pkLFnIT7Al0OQks3l2bGgnmfOXFCkx11Q1GayI26IuI9MZxpI5JlK5BU1E64laOAYuZj4Mk5kpioNJjAXQ117q/3NkLMnGzjjxiPmdsp5PzHVoizrs3T1IR8ycO8yUWZw86+DwNANdcboSxmdjQ3uUkRnzuxeHroamk5GpLGf2tXHelp5gH+XkZJpYxGVDR4ypdJ5M3jgEv3Pv2WV9Q05MpEjlPPraooyn8viYxUZxvbPQXcNoGBeud1PNfbQsjcX8MazPxcqwabpXQDZvyoc6IghCJPCY9HydVyuhUsrj8LOoIxwYmuboWIqBzjhvvuQ5DHYl8BXaok5hIjJ1DQRHnBIhYq6uwhFIRBxcx1TiDOtlPHVqivFUbl466Ju+/VRVdScqpWdeLLXzYhTXm+hKRBjsiuM6wqbuuEl8FdzTD7zmeUv6nrkpsHNBbZKY63ByIsVYMkd/R5TN3bNOdLWsu9FK1Cpd+GJ9Ye/uQTrjLjHXMSt/V9jS08bGznjJAzZMqd7dFmXnQCe7N3ezuSfBrk1GC/H2y3YUfB3ynleSd2Im63F4NMkTJyY4NDLDeCpHvEzmWU9Dnxwt+DlBEMUy2MX1V55Hb1u0UL9j58YOzt/aC8wfD4mg+NdM1mNLb8Lk3sAIEnFXCmaXqOsQcaRivZtq7qPF0kxYTcUKiLpCKmcyXobZBB0xNSnKJbVZzLM/mfMLCa1CT/lw8ti3f4j/fsejjCVzhRVZrmjyLHZULzgt+iBiamqcnsmaJFhFq6XhyTRZTwt+HX/17QOc0RNnQ0e8op13MRvvSiIY5vpx7NjYyW9f3F+2LHS4fzVUcgrsbY+VqJdb3RFupVqGWjoGLtYXzt3UXTbCKHzA7ts/VHAyjrrCpq44EdcpWamHIaq33XuIyXS+0P8jUiQs+OZvUw0XBjqjJU6bUQcUo21MZj1UldGZDKdnjJPzDXc9yehMtmR8huOjkh9RZzxS8KnoiLlkPb+QgVRRMnkj3B4dS/H6C7Ys+z5aLM3CmhYqROTjwOuAIVV9QS3OWTxhhxNFztOCSravI86OjZ18/pr5dSgqsdhEvnf3IH9x1QWFEucAiahDPCpMpb2S+gPG8RM2dRsB4alTU8a5TUtNJJNlMnkOTWZKElOVK9tej8yPcyfQ61Z4zkqCkMKacYSrRfjhUh0DVyLEVFLtF1/L1t4EpyYzHB1PsWugc17yqOtedS7XvepcXvSRbzKWzBVySxTjKcSD+iPJrFcIETXRGUa7oOqBCCcn00yl8/S1G/+eSk7Yi/kRhYIwUPTbRBgKhJq4ayK3isNtLZZWZU0LFcAngf8DfLoWJ5s7YXu+z9BUloHOGBs74yuydVYzkc992F52492B93yeU5OzERBgBIowq1/B50IgEXHJ5L2SNNzFGQx9ZsNcj48lyfqQiCTZ1D2rvbjqojO54+FjLWXjXUwQWiuOcLXQMixFaFypEFMpwujqW+8ruZbuthjJbJ6+jvi8VPi33HOQp05NcnomVxJSGlKoz6EU6o9I2PGFQpEyR4Se9mhJOngIoo+kvBP2R17/gqr9iGavNUUi6rCpK1HwH2pl7ZjFErKmfSpU9R7gdK3ON9d2urEzwWBXjGTWW7GtczmluIttzbs2dfGCM3vYOdBBLOKUZPUrlEkvOHjO+dmLJl8NwlyPj6fJ+bOajRMTGTxfS8pVt5KNt9hXY66/S6XPWo2lljcvx1Lux2Llz6th7+5BPn/NJXzv/a/g89dcUuKgudi1FPt/pIPCYiHFSeFcx0RZaZDvJeY6RF0JioOZ2hwRR9jYFWPXYNe87w7HULG/Rjg+l+LzEF7rQFeccwY6SyK+WlU7ZrEUs9Y1FTWlnDZhQ0eciJPje+9/xYrOvRwP74WO2RnUIQhXWWEab6U0GVCxBsMVKeSz8HxFTPh/4BAq+BgHttBLvdVsvIvl3Gi19NgLUQvT1FLyk6xmDoVqrqVYqMl6PlHXAc83vhRzhOVNPXGynl+oP7KxM15IVjd3zM3NJruxM86x8VRQ8Gx+ZdGljgcbJro2ed0bfpMTw6NlP1svqcPXvVAhItcA1wBs317+Bw9ZzYlgOYmmFjoGmBe+2h13SeV98r4Sjzi0xSIFpzY3WN65MhuGGnMdHJkN4g9Vxq088VWa+OslJC2lvy2HWoUfVns/VnNMVHMtxUJNmKk2GnEQz/TzdN4j5jqctaGD6Uw+SClfmsBuoTE3dwz1tpsU4rWoLFqvMNHV7m+WUk4Mjy4YrrpeUoeve6FCVW8FbgXYs2dP+QxSAas9ESznwbbQMXOFjT9+7fOB+dVS73rsZMHxc9dgBx94zfMKq7S8p4W02oqJamlVs0CzsJT+thyWI5yuhNUcE9VcS7FQU5wGPuYKm3sS5DytaJpbaPyU++5aVhat1++02v3NYpnLuhcqlkK9J+yVUGmyLKa4YmQxofPdlp4Ep6Yy5D04e6CD91+xuymv1zJLPU1Tqz0mFruWYqGmmjTwtfzuldJqJkSLpRrWtFAhIp8H9gIbReQo8GFV/YeVnHM9TARzHxQXbqtc8MiyvmnkmCiX16RSGniLZTEqpfGu5BcBcOjwz9m1Wg1bBSr5gMDyfD3WtFChqlc3ug2tynoQnixrA9tXLbWkUhrvSn4R4eetRCUfEFier8eaDim1WCwWi8VSP6xQYbFYLBaLpSaIqnUIDhGRYeDnjW5HGTYCI41uRJPSrPdmRFWvqLRDA/pbs96rpbJWrgNqdy3N2N/mspZ+N1jf17Ngf7NCRQsgIg+q6p5Gt6MZsfemetbKvVor1wFr61oWY61dq72e8ljzh8VisVgslppghQqLxWKxWCw1wQoVrcGtjW5AE2PvTfWslXu1Vq4D1ta1LMZau1Z7PWWwPhUWi8VisVhqgtVUWCwWi8ViqQlWqFhlROTjIjIkIo8VbesXkW+JyIHg375gu4jITSLytIj8REQuKjrmLcH+B0TkLUXbXyQiPw2OuUlEpNJ3NAsisk1E/l1EnhCRx0XkPcH2dX9vVoKIXCEiPwuu+QNlPr9cRB4WkbyIXNWINlZLFdfy3qD//EREviMiz2lEOxejiut4R9BPfywi94rI8xvRztViobHeyoiIKyKPiMhXG92WlSIivSJyh4jsF5EnReTSFZ1QVe1rFV/A5cBFwGNF2/4c+EDw/gPAjcH7XwHuAgS4BPhRsL0fOBj82xe87ws+uz/YV4JjX1PpO5rlBZwBXBS87wKeAp5v782K7qkLPAPsBGLAo8Dz5+xzFnA+8Gngqka3eYXX8otAe/D+vwBfaHS7l3kd3UXvrwS+3uh21/gelB3rjW7XCq/pvcA/Al9tdFtqcC2fAt4evI8BvSs5n9VUrDKqeg9wes7m12N+SIJ/f61o+6fVcB/QKyJnAK8GvqWqp1V1DPgWcEXwWbeq3qemR3x6zrnKfUdToKonVPXh4P0U8CRwJvberISLgadV9aCqZoHbMddaQFUPq+pPAL8RDVwC1VzLv6tqMvjzPmBrndtYDdVcx2TRnx3AmnJ0qzDWWxIR2Qq8Frit0W1ZKSLSg1n4/gOAqmZVdXwl57RCRWPYpKongvcngU3B+zOBI0X7HQ22Vdp+tMz2St/RdIjIWcCFwI+w92YlLHQvWpGlXsvbMNqoZqOq6xCRd4rIMxgt2nV1alvdmTPWW5W/Af4/ml8wr4YdwDDwicCcc5uIdKzkhFaoaDDBKnpVVyb1+I7lIiKdwD8DfzBnxbbu742lOkTkTcAe4C8a3Zbloqo3q+rZwPuBpZeGbAEqjfVWQUReBwyp6kONbkuNiGDM8/9XVS8EZjAm4WVjhYrGcCpQzxP8OxRsPwZsK9pva7Ct0vatZbZX+o6mQUSimEnmc6r6pWCzvTfLZ6F70YpUdS0i7ruHRwAAB8VJREFU8irgj4ArVTVTp7YthaX+JrezdsxxBRYY663Iy4ArReQw5rd6hYh8trFNWhFHgaOqGmqO7sAIGcvGChWN4U4gjFJ4C/CVou3/OYh0uASYCNT03wB+WUT6gkiFXwa+EXw2KSKXBJEN/3nOucp9R1MQtPcfgCdV9a+KPlr392YFPADsEpEdIhID3oi51lZk0WsRkQuBWzACRbMKhtVcx66iP18LHKhj+1adCmO95VDVP1TVrap6Fua3vFtV39TgZi0bVT0JHBGR5wabXgk8sdKT2tfqetZ+HjgB5DBS4duADcB3MJPHt4H+YF8BbsZ4i/8U2FN0nrcCTwev3y3avgd4LDjm/zCb0KzsdzTLC7gMY3b4CfDj4PUr9t6s+L7+Csa7/hngj4Jt12MevAAvDvrhDDAKPN7oNq/gWr4NnCrqP3c2us3LvI6PAY8H1/DvwHmNbnONr7/sWG90u2pwXXtZG9EfLwQeDH6ffyGInlvuy2bUtFgsFovFUhOs+cNisVgsFktNsEKFxWKxWCyWmmCFCovFYrFYLDXBChUWi8VisVhqghUqLBaLxWKx1AQrVFgsFovFYqkJVqiwACAivyMi/yd4/yci8r5Gt8nS2iy3T4nIWSLyWI3b8g4R+c9F7dpSy/Nbakuzz0cisldEXlqjc71QRH6l6O8rRWRFqbIbSaTRDbCsTUQkoqr5RrfDYgFQ1b8v+vN3MEnRjjemNZY1wF5gGvhBNTsvMh++EJOo72sAqnonrZsJ12oq1joi8p9F5Cci8qiIfEZEBkTkn0XkgeD1smWc8/eCYx8NztUebP+kiPy9iPwI+HMROVtEvi4iD4nI90Rkd7Dfr4rIj4KqeN8WkbVSJXRdsEp96kXB+R4F3lm03RWRvwjO+xMRuTbYvldE9onIHSKyX0Q+F6SDRkRuEJEngv3/Mtj2JyLyPhG5CjOBf05EfiwirxWRfyn6vl8SkS+v7A5ZFqLO89FviMhjwfZ7gm2/IyJfCfrOARH5cNF53iQi9wf94hYRcYPtV4jIw8F5viOm0uo7gP8a7PvyBdo1dz68WER+GMx7PxCR54pJ3X498FvBuX5LSrU0Z4nI3cE9+46IbF/q/ak7jU4Ral+r9wLOw6QH3hj83Q/8I3BZ8Pd2TD5+MKu3/xO8/xPgfRXOu6Ho/UeBdwfvPwl8FXCDv78D7ArevwSTJx+gj9mU2W8H/nej75V9NbxP/QS4PHj/F8BjwftrgA8G7+OYdMI7MCvFCUyBLgf4ISYd9AbgZ0X9q3fu9wP7CNK8Y9K/7wcGgr//EfjVRt/ntfhqwHz0U+DMOf3gdzBlEzYAbRiN1R7gecC/AtFgv7/D1AsawJSu3xG2uZo2BfvMnQ+7gUjw/lXAP8+91jLX/q/AW4L3bwX+pdG/42Iva/5Y27wC+KKqjgCo6mkxVR2fHyzqALrFlCReCi8QkY8CvUAnpqhXyBdV1QvO+VLgi0XfFQ/+3Qp8QUyF0BhwaInfb2kcNe9TItKLmfTvCTZ9BnhN8P6XgfMDDQNAD7ALyAL3q+rR4Bw/Bs4C7gPSwD+IyFcxk/qCqKqKyGeAN4nIJ4BLMQ8TS+2p93z0feCTIvJPQHFl1G+p6iiAiHwJI4zmgRcBDwRtacNUL74EuEdVD4VtXmLbvqiqXvC+B/iUmAJyCkSrOP5S4A3B+88Af77E7687VqhYfzjAJaqaLt5YNKir4ZPAr6nqoyLyO5hVY8hM0feMq+oLyxz/t8BfqeqdIrIXI/VbWpda9KmFEMzK8xslG02/KS517mFWgXkRuRhTbfEq4F2Yh1klPoFZEaYxDwHrC1Q/Vm0+UtV3iMhLMJVfHxKRFwX7zy14pZh+9ilV/cM57fjVpTSkDDNF7z8C/Luq/npgQtm3wnM3JdanYm1zN/AbIrIBQET6gW8C7w53EJEXLuO8XcAJEYkC/6ncDqo6CRwSkd8IvkdE5ILg4x7gWPD+LeWOtzQtNe9TqjoOjIvIZcGm4j71DeC/BH0NETlXRDoWOlewyu1R1a8B/xW4oMxuU5g+HH7/cYzT5gcxAoZldajrfCQiZ6vqj1T1Q8AwsC346JdEpF9E2oBfw2g0vgNcJSKDYdtE5DkYzdflIrKjqM0wpw9VSfG89ztF2yud6weYEusE1/a9JX5n3bFCxRpGVR8H/hT4rhgHuL8CrgP2BI4/T2AcjpbKHwM/wgzG/RX2+0/A24Lvfhx4fbD9TzBmkYeAkWV8v6VBrGKf+l3g5sCMUbxMvQ14AnhYTJjpLVTWsHYBXxWRnwD3Au8ts88ngb8PHOPagm2fA46o6pPLaLulChowH/2FiPw06Dc/AB4Ntt8P/DPGj+efVfVBVX0CI1R+M+g73wLOUNVhjF/Pl4I2fyE4x78Cv17JUbMMfw78mYg8Qmkf/neMCejHIvJbc455N/C7QZveDLynyu9qGLb0ucViWfcE3vaPqOo/NLotltUjMI/sUdV3NbotaxXrU2GxWNY1gcZsBvhvjW6LxdLqWE2FZUFE5GZgbtz4x1TV2p0ty8L2Kctyada+IyJ/BPzGnM1fVNU/bUR7Go0VKiwWi8VisdQE66hpsVgsFoulJlihwmKxWCwWS02wQoXFYrFYLJaaYIUKi8VisVgsNcEKFRaLxWKxWGrC/w9xUUQVOPMbUwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sns.pairplot(\n", - " data=adata.obs[[\"cell_area\", \"cell_density\", \"cell_aspect_ratio\"]],\n", - " kind=\"reg\",\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "ba1c0a1a-b41c-423a-88ee-63623eae81c2", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-05T22:05:57.786739Z", - "iopub.status.busy": "2022-06-05T22:05:57.786393Z", - "iopub.status.idle": "2022-06-05T22:05:59.664809Z", - "shell.execute_reply": "2022-06-05T22:05:59.663918Z", - "shell.execute_reply.started": "2022-06-05T22:05:57.786711Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAADbCAYAAABgOuvzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAvbklEQVR4nO3debhkVX3u8e97Ts/zQDOLGIegKKIeEBG1NWiIxohGrkYT0uoNkihoEp5c7tXoiRElJtFrwOFpI0PQqEGI4ggSRAI3AkegGxAUIzPI1AJNz336d/9Yq7rrVO8adp06VXWK9/M8+6mqVWuvtfbeq3b9au2hFBGYmZmZDZKhXjfAzMzMrNMc4JiZmdnAcYBjZmZmA8cBjpmZmQ0cBzhmZmY2cBzgmJmZ2cCZlgGOpLMkPSjppl63xczMzPrPtAxwgHOAY3rdCDMzM+tP0zLAiYgrgHW9boeZmZn1p2kZ4JiZmZk1MqNZhpOHFnf9vxzOiMffDZxQlbQ6IlZ3ux1mZmY2PTUNcBbO6P4gT2yN1YADGjMzM2tL0wBnwbC60Q4zMzOzjmka4Cwa7r/TdCR9BVgJ7CHpHuDDEfHF3rbKzMzM+kXzQ1R9GOBExB/0ug1mZmbWv5oGOHOHfIjKzMzMppemAc6cof4bwTEzMzNrpGmAM9sjOGZmZjbNtHCIyiM4/WJkZORUYE6v2/EktnlsbOz0XjfCzMya8yGq6WXO2NjYaK8b8WQ1MjIy2us2mJlZa5ofoprlAGfQeCSobQc6yGmbR7/MrKuaj+DMbprFph+PBFlXOTA0s25rPoIze7gb7TAzMzPrmOYjOHMc4JiZmdn00nwExwGOmZmZTTNNA5yhObO60Q6ro+aE4OqTXH3SZp/wSdst8QnazfkzbdZBTQOc4fmzu9EOq6/whGB/WfQVn7Rtk+bPtFlnNR/BmTuzG+0wM5s2pmjUbipGuTwqZE9azUdw5nkEx8ysxrQYtfOokD2ZtTCC43NwzMzMbHppfhe/OT53sp9UDY1XhrM9BG1mZlajeYAzd24XmmElTBgabzYEXXCuwFHAHiMjIytrst6Rp2p9ETxNg6uU+v0Kob7YjtaYz+sx66ymAY48gjPd7RYQNTp3oGYne1CfXJY+Lc536Fd9HnzZLtOin7s/2XThERyr1bHL0jv4i7RTv0L74pdnD0akuj3C1BfruZMKtlntOi21zHX6wKTKbLPOdnSiPw1cH7H+0zzAme2rqPpV3mH187k4ffWLtI9+efbNepmiYOugKVrXfTuK2MbyNu0DU7AOO9LvOtRnOtVH+nG/Z32ihRGc+V1ohrVpztjY2CpobWc4DQKihjqwY53sL89pt85a0DfBVjN9FKBOqWlwIUHf9JknS5+w9rQQ4MzrQjNsKlQFNKfmHWSpgKgP9WTHWvWFc1DVurQ2TDJInUyAOtWHezp5eKnUhQQttK2iaP31PHgalD5h/aeFy8R9Dk6/azAyM2dsbGxVN4KZFs8pqKi7Y2mys2u0M5vKndXOL5wSI2WNdtjNdsqDvOPtVZDa6TrrLkfe/gf1cPSllcNf1UF7JW+v+t2g9AnrMx7BGQyTHplpNCxeMBJUrw0N6y7YqRbtUNva2fV6Z1X7p6jsuuR+t2VsIQBqdH7CpL6EOjXyMIlf3e3+4m55uUsE26XXZYuHj+p+Hqfi8FOb23S3z1mvP0Od5h8a1sJJxh7B6Qc1O8apOEzSaFi8cCSojX86r1tHKzv+Jjus1xfc2weK7+9T0ckdWNEXRuWXfO32avsXawe+hNo6WbboS5SJ67Vj67LOdi4K+lrqZw3qaZqnWdmNyqjzw6Ds/K0EQ50+AbpRW6rvo3UHDQL5PtBqP6i3X6n3Q6Mfl9UKtHAfHJ9k3CeaHiZpcaRlt3zNXrfSppryC9vXRCs7/kaHBShxf5+K2h1Yp3dcEwLDVr+wun2Yrk6gWlvWlH+JtlrXZOpsEJTDFG//Om1pNhI0WpW/sJzJKjEqNTpS5z5arbatwejapez+fXQHJYPoNn50QfO+Xdvmqd5vWId4BGewtHrOTW2+Zq9bVm+nPYkgqlPqBWPVO6/S5yOUPOTQ6hdWu788q9t/FHAPcGvV+p5DGuk6sJJer75m275Th7raKavFw6lF6XNII0+31imv1PavqutSqtZ1C/lLnfRfb/S2yTZtawSoatSxUf7a8mFikHJHnlo+BF0vcKrN0+j9ZuU3aftonfY2KrOtfmPdM9Q0x5z53Z+sr42MjJyaP9AH5g95tTljY2Or8g5hTm16VVrt67bbUdWW0YL2TPjSq9Pe0TxV2r2ZfGipTjmnVr0+iLRTW1VvvrLL02hZavIdVJW8udL+vAxXFqzvUeBbzdZ7neWs3dbV620UuLWmmINGRkYuHRkZuXxkZOScJutkQlk126FSVlHdjfpZ7baYU9XOhuUVlNmo3avYfV03yz8hX531WzvfaMG8zbZp9Xwt9Wnqf34btWuUtF7vAb5fr74mn8NCdT7ju83f6LPTQv+tbm+9eS8t6Me165faZbbeahrgaO78rk/W92q/LFreYTVTL3hqtpNi1xds0Q6m8EuvwQ63XvDVLEhrOWgrESw1Csoq+eotd7saLleDtpPbX2nblWNjYyupCSryNj4nf2mMkkYgigKh3b7YWwy+ipahML2ovAbB+1Rpqd+0EAg1yttqn26prhbKLyq31OewoF81+gHSKJhruM2r8zQImK9sUka9INR6qPkIzszZ3Z9suqj7a6/MzrigzFF2/6XdbCfV6Bc6RWVQZ4fbJa0GS/W+DMosd11tbqey67Fe/iurRiBWtrgMnR4JLCpvtMW2dFuZZe30eulk+a32n2bpjfYFbbW9xOeh3dE46yJFRMMM8av/bpxhCmjvp6vh+9IxwKeBYeCfI+L0rjSsy+459KAAuPP+DTvTFsweBuC5p50AQPz0RgC23HInALOfugKA4T//CAA7fviNNOMjD6XHpcvS44yZAOjQI9Pj8n3T49yF6f38OH79f6Tynn0EANccnB637NiR0rVrU+3IfWmPhSlIrbx167rU/ke2jQMwZyi98ZTZswD48oOPA/CCBen11lQ084dTvrk5/7bcE2fn1zNzBRtzW7buiNy2XV32efPT/ueBbdtTmUNDE8qo5BxCOd82ADaMpzJXzEynqd2xOaXvOzu9Xj+elmXvmWk95uJ2tuFnm7YCsDm/fv9rfhOAx+59dGfbNm1Kbdq4MT1u2ZLKVF6u+fMmniK3IefbnNs2M1daWe/jeWHu35rqXjCc+sphz0zb/JFH0mDPxlzvwoWp7Zs3j++s4ylPX5qWZ+YwRR69L22rzbmt27eltqzfkNbPzBlp/S5fNifnS3XNm5uW5Ykncr5ZqfwZeRvPzv16Wy5v4ZJdP3SGZqd23vGzRybUMX9+Sp+X19PC56Q+PLQiLW/8+rFUQF4/2nOPvBCPproeWQ/Ajs2pjTMWp/MNx59I62loVip35ut+O8135+2puI0bd7Zt/K77ARjeb89Ux8rXpDd25HV6y9r0uGLv9LhlU3rcnB83pcfIbdLy5ancG29JxeR+O2NZ/lzOTyPcm2+6fUJbZyzedTuPG/7r7pSW++SShelzNSuv40o/eNazU12Pr0tteHx96jf77pvqqGzbWfPS/Pfdlbb9/r+Z1uO2R9N6mFlZbxu3ADB7/7T+lT9rN/7gtp1tyx9tFi9I225BftxaqWtmmmfdr1NZlX3IeO7cSxanfjGU+/5eIwcAEPkzMbx8cZphS55/r70mrLcdt/0ipc/Z1b+2P/Dr9PhY3hbbxwuXZ/zxPFia697+aNqvDc3J+6316f2Zc1K/WXz5mobfYzb1ml9FNWNWN9rRMknDwGeAV5OO+V4r6aKI+GlvW2ZmZmb9ovlVVDP7K8ABDgd+ERG/BJD0VeANgAMcMzMzA1oJcGb03Tkx+wF3V72+B3hxj9piZmZmfah5gDN/SdePI0o6ATihKml1RKzudjvMzMxsemoe4PRADmbqBTT3Ak+per1/TjMzMzMDWrlMvP9cCzxT0tMkzQLeClzU4zaZmZlZH+nLEZxGImK7pPcCF5MuEz8rIm7ucbPMzMysj0y7AAcgIr4LfLfX7TAzM7P+NB0PUZmZmZk15ADHzMzMBo4DHDMzMxs4DnDMzMxs4DjAMTMzs4HjAMfMzMwGjgMcMzMzGzgOcMzMzGzgOMAxMzPrY5JWSTozPx+VdEqL8x0o6aYOt+VEScdXtWvfTpbfSdPyTsZmZmbWfRHx+aqXq4CbgPt605rGPIJjZmbWA5KOl7RW0hpJ50laIekCSdfm6aVtlPmiXN4a4D1V6cOS/j6Xu1bSu3P6SkmXS/q6pFslfVmS8nunS/ppzv8POW1U0imS3gyMAF+WdIOk10n6RlV9r5b075NbQ5NTegRnZGTkVGDOFLTlSW9sbGy0120wM7PJk3QCcEJV0uqIWF31/sHAB4EjI+JhScuAM4FPRcSVkg4g/an0s0tWfTbw3oi4QtLfV6W/C3gsIg6TNBu4StIl+b0XAAeTRmKuAl4q6RbgjcBBERGSllRXEhFfz398fUpEjOWg6B8lrYiIh4B3AGeVbHtHtXOIao6/iM3MzOrLwczqBlleBZwfEQ/n/OskHQ08Jw+gACyStKDVOnMQsiQirshJ5wG/k5+/Bjgkj7wALAaeCWwFromIe3IZNwAHAj8GNgNflPRt4NuN6s5B0HnAH0o6G3gJcHyrbZ8KPgfHzMysPwwBR0TE5urEqoBnMgScFBEX15S9EthSlTQOzIiI7ZIOB34LeDPwXlJQ1sjZwLdIgdH5EbG9Ew1vl8/BMTMz677LgOMkLQfIh6guAU6qZJB0aJkCI+JR4FFJR+Wkt1e9fTHwp5Jm5rKfJWl+vbLyyNHiiPgu8OfA8wuyrQcWVtV/H+kw1wdJwU5PeQTHzMysyyLiZkmnAT+SNA5cD5wMfEbSWtL38xXAiSWLfgdwlqQgBUwV/0w69HRdPl/mIeDYBuUsBL4paQ5p9OcvCvKcA3xe0ibgJRGxCfgysCIibinZ7o5zgGNmZtYDEXEucG5N8lsK8p1DCiaIiNEmZf6EiaMtf5XTdwD/J0/VLs9TZf73Vr13eEH5o1XPLwAuqMlyFPCFRm3sFgc4ZmZmNmmSfgJsAP6y120BBzhmZmbTjqTPALX3yfl0RPTs3JeIeFGv6i7iAMfMzGyaiYj3NM/15OarqMzMzGzgOMAxMzOzgeMAx8zMzAaOAxwzMzMbOA5wzMzMbOA4wDEzM7OB4wDHzMzMBo4DHDMzMxs4DnDMzMxs4DjAMTMzs4GjiCg1w8jIyOjY2Njo1DTHqo1f+fW0cdZeuyvxeSPp8ZYb0uN996a8d6bHoaULAdCKFQDEgw+m9OOOT/mH0r9zxO3pn+z1zOel1w/cnd5+3pHp9X23p8eLL5zQpqE/+NOU/vC9E8oDiG2bU5lL90oJUkq///bc1rsKl1MHH5by3XZjSliQloFZs1MVTzs4vZ45Kz1u354r3JEe5y9Oj+M5fcf4rjbd+4v0uHVLqmv23PTG4j3S4+Pr0uOMvBzbtqb8638NwPBLXp+Xc3jCMm3/63dOWIZt9z2c8s9JbRz+jQPSG3PmpPIeeCDNvueeu9q2fn16smFDXr6ZKc+iRen13NzWTZvS47x5E9s6N7+etyDny+Vszvnzehp660np9WOpjSxalh6HZ+VF0q4Fyes4NjwGwI5frk15lu2T0u9M/aaybdi0MT0uzmVu3ZwXLnVdLViaXm7N+W7/ORPsyNtw6fL0uHHiukjLk/vVi16RXm9JyxfrH0npc+an1+vSOmZdXs7K+liWPgsszP2k0gceWzexLQ/eP3G+bdsAeN9fpL/22Z6X6fCFs3fOUtl7rpiZtsntm1P/OWR+2u6zlH5DvuCo1B92bE7bZO6Rh6Qqbr4NgBl7pG1+5VevA+CAFWnbbt2S+nJlE23anF4/99j0uWVpWr877ntgZ5uGn/G01LZK/6o85nW95Z603OOPp/U4vCC19bF7HwVgw4a03MPDqe1j96W+8NTZqW8sX5ryb9qUlmVLbuPGXH7lV/PS+Sn/M1/5jJ1t2/rg46lt29I8Ozamz+XmXNa2bamMRcvSNhpenNbD0MxU6nBer9seeQKA2Qc9JRU8K+8b8mel8hnacW/aplqQytl4450AzFg0Z2ebtvwqtWnm4lTn0NzU92I8b9288metSPul2JHSh+bkPrpkSXqs9PncluEPn131wbJe8AiOmZmZDRwHOGZmZjZwHOCYmZnZwHGAY2ZmZgPHAY6ZmZkNHAc4ZmZmNnAc4JiZmdnAcYBjZmZmA8cBjpmZmQ0cBzhmZmY2cBzgmJmZ2cBxgGNmZmYDxwGOmZmZDRwHOGZmZjZwHOCYmZnZwHGAY2Zm1sckrZJ0Zn4+KumUXrdpOnCAY2Zm9iQiaUav29ANDnDMzMx6QNLxktZKWiPpPEkrJF0g6do8vbSNMv8kz7smlzUvp58j6fOSrgY+Ienpkr4v6SeS/lPSQTnf6yVdLel6SZdK2qvDi901PY/iRkZGTgXm9Lod/WBsbGy0120wM7PJk3QCcEJV0uqIWF31/sHAB4EjI+JhScuAM4FPRcSVkg4ALgaeXbLqCyPiC7mOjwLvAs7I7+2f6xuX9B/AiRFxm6QXA58FXgVcCRwRESHpfwJ/BfxlyTb0hZ4HOMAcf7GbmdkgycHM6gZZXgWcHxEP5/zrJB0NPEdSJc8iSQtKVv3cHNgsARaQgqSK83NwswA4Eji/qq7Z+XF/4GuS9gFmAbeXrL9v9EOAY2ZmZum0kSMiYnN1YlUQ0opzgGMjYo2kVcDKqvc2VNXzaEQcWjD/GcAnI+IiSSuB0TKV9xOfg2NmZtZ9lwHHSVoOkA9RXQKcVMkg6dA2yl0I3C9pJvD2ogwR8Thwu6Tjcj2S9Pz89mLg3vz8j9uov284wDEzM+uyiLgZOA34kaQ1wCeBk4GRfOLxT4ET2yj6r4GrgauAWxvkezvwrlz3zcAbcvoo6dDVT4CH26i/b/gQlZmZWQ9ExLnAuTXJbynIdw7p0BMRMdqkzM8BnytIX1Xz+nbgmIJ83wS+2aiO6cIjOGZmZjZwPIJjZmY2zUj6DFB7n5xPR8TZvWhPP3KAY2ZmNs1ExHt63YZ+50NUZmZmNnAc4JiZmdnAcYBjZmZmA8cBjpmZmQ0cBzhmZmY2cBzgmJmZ2cBxgGNmZmYDxwGOmZmZDRwHOGZmZjZwHOCYmZnZwFFElJphZGTkVGBOB9tw4NjY2KoOljcwTtSiAPjoi5+yM2324rkAPHTP4wDsf8SBANz9X7cDsHDBTAD2/OFVaQalGHb8oi8AMPSKN6T08e3pcccOAOKJR/Pr8TTb0r3Sy2t/kNIXLEr5Lv1uen/hwvR63bqdbdOLDp+4AJs3pcdHHsp1prJ59iHpceFiAIYPeXl6PZzaTuQ25TZKSq83P5Ee70/LyoxZ6fX6RybWV2XokKPSk61bchu2pXkeuDvXOZxeb9mYXm/Pde6xb0r/+fWpnMNend6flbv+pvUT25zXsxYunZC+465b0vwHPndC/XmmVMfGx3IbN+fl+XV6d96CvJyz0+u8TXZus8fSetWc+el1/ixreEYuJ6+XbVtz/ocnLJuW7DmhvLR8qX+xeUNq7prL0+uhYSbI72vP3DdnzsqPua1zU9t39qvNaf1qnwMnLKsWLk/5tuXtU+l/C5ftrCo25DKG8j/LbN2Ulzuvn9m5zdsr61Z5WVJbxq/OfXbOvJS+YEl6zP1HC1I/jAfvnrAsmpv6+I6br07VH3b0xHqp2naVvrp8v5T+yL25rrQcO8YuSe/v/4z0/rWX57bPzvOn5Y4brkv59szb5mWvSY8P5vLytuSu/BnY74C8LFX/ujOet+dw/v26MW0r9knbKi77fqpj5IiU/lj+DD+R+/TcvJ6Wpm0z/Nt/lOZbv2635QeIJ/L8s+dNSK98BuK+23alVfpi7j9De+b2V7Zh/uwzL22TyrbeuU2H8ucs99NYd39Kz58Bct+v5OPx/BmYvyQ9Vj5/lf4Ku/rVjrxPzP0oHsrrvPK53J7aPvSUZ+V8Kf+OX6VtoT32m7D4Qwe9RFhPlf4vqrGxsdM72YCRkZHRTpZnZmZm5kNUZmZmNnAc4JiZmdnAcYBjZmZmA8cBjpmZmQ0cBzhmZmY2cBzgmJmZ2cBxgGNmZmYDxwGOmZmZDRwHOGZmZjZwHOCYmZnZwHGAY2ZmZgPHAY6ZmZkNHAc4ZmZmNnAc4JiZmdnAcYBjZmZmA8cBjpmZWR+TtErSmfn5qKRTet2mapJWSjqyQ2UdKum1Va9/T9Kp7ZTlAMfMzMwmYyXQcoAjaUaDtw8FdgY4EXFRRJzeTqMaVdItm0dGRkZ73Yh+MDY2NtrrNpiZ2eRJOgE4oSppdUSsrslzPHAKEMBa4C+AzwMH5Czvj4irStb7J7neWcAvgD+KiI2SjgM+DIwDj0XEyyWtAt4ILAb2A74UEX+Ty/lD4ORcztXAn0XEuKRjgI8Bw8DDwLuAE4HxPM9JEfGfBe06B9gMvAC4StJXgU8Dc4BNwDuA24GPAHMlHQV8HJgLjETEeyUdCJwF7AE8BLwjIu6qty56HuCMjY21FZmZmZn1qxzMrK73vqSDgQ8CR0bEw5KWAWcCn4qIKyUdAFwMPLtk1RdGxBdyHR8lBSBnAB8Cfjsi7pW0pCr/4cBzgY3AtZK+A2wA3gK8NCK2Sfos8HZJ3wO+ALw8Im6XtCwi1kn6PPBERPxDk7btn5d3XNIi4GURsV3S0cDHIuL3JX2IHNDkZVhVNf8ZwLkRca6kdwL/BBxbr7KeBzhmZmZPQq8Czo+IhwFyoHA08BxJlTyLJC0oWe5zc2CzBFhACpIArgLOkfRvwIVV+X8QEY8ASLoQOArYDryIFPBAGkV5EDgCuCIibq+0uWTbzo+I8fx8MXCupGeSRrBmtjD/S4A35efnAZ9olNkBjpmZWX8YAo6IiM3ViVUBTyvOAY6NiDV59GMlQEScKOnFwOuAn0h6Uc4fNfMHINJIyf+uacfryzSkwIaq538L/DAi3pgPPV0+ybJ345OMzczMuu8y4DhJywHyIapLgJMqGSQd2ka5C4H7Jc0E3l5V1tMj4uqI+BDp/JWn5LdeLWmZpLmkwz1XAf8BvFnSnpW2SXoq8GPg5ZKeVtVmgPW53jIWA/fm56uq0huV9f+At+bnbwd2O9enmgMcMzOzLouIm4HTgB9JWgN8knRS74iktZJ+Sjp5t6y/Jp0UfBVwa1X630u6UdJNpEBhTU6/BriAdJLzBRExFhE/JZ0fdImktcAPgH0i4iHSCcwX5jZ/LZfxLeCNkm6Q9LIW2/kJ4OOSrmfi0aQfkg7T3SDpLTXznAS8I7fpj4D3NarAh6jMzMx6ICLOBc6tSa79UiciziEdeiIiRpuU+TngcwXpb6pNy4e+7omIYwvyf41dAUx1+veA79Wk/Rw4pEm7VtW8/i/gWVVJH8zp64DDamY/J793J+ncpZZ4BMfMzMwGjkdwzMzMphlJnwFeWpP86Yg4u9UyqkeGOkXSB4DjapLPj4jTOllPKxzgmJmZTTMR8Z5et6FIDmS6HswU8SEqMzMzGzgOcMzMzGzgOMAxMzOzgeMAx8zMzAaOAxwzMzMbOA5wzMzMbOA4wDEzM7OB4wDHzMzMBo4DHDMzMxs4DnDMzMxs8ESEpz6egBOmep6pzu829U8dbpPb5Db1pg5P3Z88gtP/TujCPFOdvxt1uE1Tk78bdbhNU5O/G3W4Tda3HOCYmZnZwHGAY2ZmZgPHAU7/W92FeaY6fzfqcJumJn836nCbpiZ/N+pwm6xvKZ8wZWZmZjYwPIJjZmZmA8cBjpmZmQ0cBzhmZmY2cGb0ugG2i6QZwLuANwL75uR7gW8CX4yIbb1qW7+RdDgQEXGtpOcAxwC3RsR3O1jH4lzufjnpXuDiiHi0U3XU1PexiPg/HS5zEbAiIv67Jv2QiFjbybr6haR5wHuBAM4A3gq8CbgV+EhEPFEwT1e39VST9DTgBcBPI+LWEvPtGREPTl3Ldtbz6oj4QYfK2hsgIn4laQXwMuBnEXFzJ8q36csjOP3lPOBQYBR4bZ7+Bng+8KXazJKGJb1b0t9KemnNex8sqkDSeyXtkZ8/Q9IVkh6VdLWk5xXkXyTp45LOk/S2mvc+29ZSTpKkDwP/BHxO0seBM4H5wKmSPtChOo4HrgNWAvPy9ErgJ/m92vwz8rb4vqS1efqepBMlzSzI/0810xnAn1VeN2jXQZJ+S9KCmvRjCvL+D9KX+gWSbpZ0WNXb57SyHpop2wer2ylpsaQv5nX1r5L26kSbSMu2F/A04DvACPD3gIDPFbSp1Laumbdo2+7RrIGSFkh6oaQlzfJWzfN7Dd77RtXzNwCXAa8HvilpVZ15ltVMy4FrJC2VtKxBXXvltr9wEtvsi23OV9uWdwP/BfxY0p8C3wZeB1wo6V0F+feW9DlJn5G0XNKopBsl/ZukfTrRJusjvb6VsqddE/DzMu8B/wz8K/B+4CfAJ6veu65OOTdXPf8O8Mb8fCVwVUH+C4DTgWOBi/Lr2U3q2Jv0RfIZYDkpYLsR+Ddgn5Lr5HsFaTcCw6QvoseBRTl9LrC2TjmLgI+Tgsi31bz32YL8PwOWFKQvrbMtvpKX+Qhg/zwdkdO+VpD/blLQejzwx3l6qPK8zjKcnNv1DeAO4A2NtjdwQ2V9A4eTgp3K9r6+Q+upVB+sTsvzfhR4KvDnwDfqtOl5wI/zOlsNLK1675qi5c6PAn7FrqtFVdQ/ym7r/N4rgXuAh4FLgAObLPdnq54fBdwF/DAv02sL8r+pZvr9vCxvAt5UkP/6quf/D3hafr4HsKbOMuwAbq+ZtuXHXxbkPzRvh1uAS/N0a057YUH+i+pM3wI2FLWp0QSsLki7kbQfWA48Aexdte1uKMj/feAk4FRgLfC/gKfktG92ov956p+p5w3wVLUx0ofoOGCoKm0IeAtwdUH+tVXPZ+QP34XAbOp/gf2s6vm19cqrSruh5vUHgKvyDqVegFNqJwK8sM70IuD+gvzXFz0vam9VeqlADfg5sLggfTFwW1H+Btu1KCBaCPxfUnCwb07b7UulZp4bgQX5+YHAGPC+ovVQyV/zeh9SEHJyg21Xdj2V6oNMDHBq+1a9bXcl6fDREuAU4Gbg6Q2W+4aq52fVvLfbl33ZbZ3fuxY4OD9/M3AbcESDNlUv9w/JAQHwG8BYQf5tpNGIs4Cz87Q+P57VpPxrat7brT05/S9Jn9XnVaXd3qD/3QC8uCD9iDrr9dek0ZRX1EwrgQfq1LGszrQcuKfJcq+pea9oO1xf9fyuqeh/nvpn8jk4/eWtwN8Bn5X065y2hLRDfGtB/lmVJxGxHThB0odIw9MLCvIDfF3SOcBHgH+X9H7g34FXkX5V1potaSgiduR6TpN0L3BFgzr2iogzACT9WUT8XU4/o2jYmPRl8SPSL+xaSwrStkqaFxEbSUEQua7FpF+lRZ4eEb+fn38jH8q6rMGw/2nAdZIuIf1yAzgAeDXwtwX510k6Drigsq4kDZEC1l/XZo6I9cD7Jb0I+LKk79D8kPFQ5PNHIuIOSStJ2/OpFK+79ZKeHvn8m4i4X9IrSdv74Dp1lF1PZfvgnpL+Ird3kSRF/qag/vIvjIjv5+f/IOknwPcl/RHpPJtaY5IWRMQTEfHOSqKkp5OChFpltzXArMjneETE1yXdQjos8r/qtKnaooi4Ls/7y9xPah1JCjSvjYjP5favjIh31Cnz+ZIeJ63X2ZL2ydt7Fmm0czcR8Y+SvgZ8StLdwIebtH1+RFxdUM6PJc0vyP9jYGNE/Kj2DUk/q1PHQ8CdTOzPkV/vWbQYkmZGOj/xdVXlz6G4P1Wn/UuD96qV7X/WL3odYXkqnki/WJY3yfMl4JiC9P8JbGsw3yrgatLw+nrgp8DHKP4V+wng6IL0Y6j/63ZN1fOP1rxXNEp0E/DMOmXdXZA2u07ePaj6NVrz3i1UjYxVrYebgTvrzLOUFFj+ZZ7eStXwdE3eA4GvkXbQP8/TQzntaU22o4D3AF9qku8y4NCatBmkHfV4Qf7nA88oSJ8JvL0T66lsHyR9iVZPK3L63sC/1OtPtX0TOIQ0avJIo3VWtK4nu61z/jHy4ZCqtP1JoxzrC/JvJI1m3pg/c0tz+hBwU506hoD3kX7gHE6TEb46ZSwBXtJCvt8jBSS/apDnn0iHtd9CCsCOzM+/A5xZtm116rgNOKDOe0X7ggOAGQXp+1G83/oIeRS0Jv0ZwNenuv956u7U8wZ4anFDwat73YYSbS21EyEN8f9mnbKObbHOE5q8XzpQK8j7uy3maxqctlN+/gLdu857L+1QHZNeT1PQn95GPvxTk34A8IWSZbX0OWphPR0NPL8gfTHwgYL0p9ZMM3P6HhScU1Mz776k89dKBTit9teq/HOB5zbJ8zvA50nn0XwrP9/tHKJJrNf3FK3X/N5JU7Hc3ex/nro7+a8apglJd0XEASXyl74Ms+w8kt4REWeXqWOqSLouIl7YT3VIWh0RJ0xV+XmeEyKi5f/F6cZ6qqqr7/pTq5+jbq6nqTKZZZiqbdGPn9Oq+fpmf2ad4cvE+4iki+pM3yKNCpTRzmWYZef5m1YzSvp2mYLL5qf4HJRe1zEyxeUDnDjVdbSxniqmrD9VSNotuOvQ56idbVGp/3tTnL/VgLbtZaDktpjKNpUou+06so70P+sfPsm4v7wM+EPS5Y7VRDoGPzFRuqhOOaLOjrzsPJLq3QxOpHuNtGq/5llayy/pxcAtEfG4pLnA/wYekfR3wMci4rEO1DGLdB7GfRFxqaS3A/dLeg/pctVWbrpY9oZp95XMDw125h1aBmi8nqa8PzW4J4tI94qqVepzlOuovXHkVyS9NurcOFJSvRECkS6nnmz+sstcpGF/KrstutGmOhr+UCiz7brU/6xPOMDpL2WvOii9I29jnr2A32b3K4FEut9Gq64vkbdZ/rNIJ9ACfJp0Auco8Fuky2jf1IE6ziZ9PuZJ+mPSFUFfyXUcTrpfTUMRsdvN9yoKAgMBr6ikR0Tdm7rVeH0ur2h4fdLLkDVaT93oT2WvrCn1OVK6ceTvADMk/QB4MenE3lMlvSAiTiuoo+yVf2Xzl1rmNvtT2W3RjTYVqftDoY1t143+Z/2i1ycBeWp/Ar4HvLLOe1d0Yh7SYYaj6uT/1x4t9y1Vz6+ree+GDtWxNj/OAB4AhvPrejeLK7q54Vrq3NyQdOfcL5HuCfKK/Hh/fv6KNtp712SXoRt9sJ3+RMkra9pYhnZuHFn2yr+y+cteTVS6P5XdFt1o01Rvu37sf56mbup5Azw12UAdviKg1xMFdyYumx84H3hHfn42MJKfP4uamxdOoo6bSPd4WUq6rHdZTp9DVYBVlb/szQ2HSHfv/QH50m+a3+hvbZ3pRmDLZJchv1fqTsZd6jNTemUN7d04stSVf23kL7XM7fSnqd4Obfbxsj8USm+7XvQ/T72ZfBVVn2vjyp3fjYiyJ/SWmqfZlTtNzjf4dkTsM8n8i0mHpl5GupfPC0k3aLsbODki1nSgTX9OCk6GgX8E3gD8knTX1q9HxN/U5L8+Il6Qn0+4UkfSDRFxaGHl0v7Ap0gjLL8XDa7wkfQADYbXI2LfmvylliHPcwHpF+uPgXeS7qj7tojY0mpf7HR/6oRGbZd0NWkUaqOqbmqZ+9kPy3z+eq1Mf6ozf8e3Rck+/n3SfXXmky7P/jLpbt/Hkm5f8Iaa/JPedt3of9YbDnD6XPUXZ4v527nUuGwQ1TC/pHHqn29wRETMnUz+qvkWkf5QcQbpNu4PdKpNeZ59ASLiPqU/RTyadCjomoK8ayLi+fn5RyPig1Xv3RgRu/2Rac38ryPdy6buv4lL+iJwdkRcWfDev0bE2wrSW16GnH9CMKZ0J+PXkm4E94MWvzA62p/qzFP2Evy6nyNJsyNiS0H6HqRRgxtbrOPbEfG7JdpUNn/Ly9xKf6oz35TdCqHFPl7qh0Intl03+p/1hk8y7jOSDiL90q5cuXKhpGdHxC2tFtFOtR3Ofwvw7oi4bbcZ0y3hJ5sfgIh4nHSX0VaUriMi7qt6/ijw9Qblf1O7/h6gOrh5BunPHBuKiO+Qfrk2ylP0NxeV93YLbnJ6mWWA9v6ao1an+1ORulfWlL16rOgLMqc/TBohbFXHrhSso+XbDrTSn+qYslshtNimRn+lsNtfTnRo23W0/1n/8H1w+ojS/9h8lfSBuyZP20iXPZ5akH+WpOMlHZ1f79yRS5rZoJ7DJR2Wn++8rLJO3pMlPaUm+fVNFmWU+n3rpA7kb8eU1hERH4r8P1E16b+gvS+aXvkW6X/JdoqIc0h/X7C1aIYy/alg3qOACyS9pmQ7G12Cfzbpf4neJ+k80vkvXwEOI/2D+VRpdLVZJ/KXve1AU5J+Q9Ipkj4t6ZOkH1SLetimb0paANDOD4VmJL24snyS5kr6CPkWE/mwVqs6vi2s83yIqo9I+jnpH4q31aTPAm6OiGfWpH+ZfBkw8CjpF/aFpMuAFRG7XQZcfVkl6eS/ymWVrwYujprLKiU9BmwA/pv0JXF+RDw0iWUsdbfQsvm70aY2yi91F+p+VbSe2uhP10TE4fn5n5BO4Px34DXAtyLi9A60c21EHCJpBnAv6d/axyWJ9D9ph0y2jkEg6WTgd0mjc68lBVyPAm8E/iwiLu9Z4wp04nMq6WbSCcPblW7St5E0qvlbOb3VW0zYdBB9cKazpzQBtwJPLUh/KvCzgvTSlwFT/rLK60kjH68hXWL5EOmKoT8m/ctu2WXc7XLmTuZvc71Pug5KXuE0Haei9dROf6p6fi27/mxzPnBjnXrLXllT+uqxNtZFx642o/gqvsWkfxO/FVgHPEI6zHo6sKRDy3Bj1T5jHnB5fn4ANVckdatNZftfG2WUvsVEr5fbU/uTz8HpL+8H/kPSbaQrgiDtbJ4BvLcg/1Ae3ZlP2kEtJn0AZ5P+MbrI9ogYBzZK+u9I57EQEZsk7SjIH5HOx7gEuCQf+vod4A+AfwBW1M6g8ndI7dTdkuvqQh2duiFiT7Wxnsr2pyFJS0lBsyKPBkbEBknb69R9DruurPkh6cqa15GurPk86Zy1al8kfRkNAx8AzpdUuXrsq3XqKOts0tVmFwDvlPT75KvNcj0TqOSdjEnB22XAyoj4VS5jb9IPi38j/eDohBnAOGmfUTk0dFedQ9xT3qYufE5vqhoJWiNpJCLGJD2LdDpAkW5tC+swH6LqM5KGSHeArZyAeC/p3i7jBXnbuQy41GWVTa4+mRcRGwvSy17OXCp/O6a6DrVxhVM/amPble1PdwA7cnlBuqrm/nzexZVRcDl92Strcnqpq8fKqq1XTa42U/krC38WEb9Zp+6675Uh6X3Au4CrSbdc+LuIOFvSCuCCiHh5D9o01Z/Tdm4xMeXLbVPDIzh9Jn9B/LjFvJ+S9LX8/D5J/0LakX+hwY785flXZqWuipkU37r/LQ3q3y24yb4NLIiIG2rfkHR5B/K3Y0rriDaucOpTZddTqf4UEQfWqXcH6dyPIqWurMn1lL16rKyyV5uVvYrvTkl/BZwb+fYHkvYCVrFrdHdSIuLTki4Fng38Y0TcmtMfAl5eMMuUt4mp/5w+BqxSiVtM0J3ltingERwz62v5SpdPRM1VavnKmtMj4s09aNMngEsi4tKa9GOAM2L3CwLeTDrHqOi/sI6NiG/UpC0l3RX7Dez6v6MHgItIy1w7wjHl+rFN3fBkXe5B4ADHzKatblxlV9ZUXyk4CMs8KJ6syz1dOMAxs2mrHy/BL9umqc7fDf3Ypm54si73dOFzcMysr3XjKruypvpKwUFY5kHxZF3uQeAAx8z6XT9egl+2TVOdvxv6sU3d8GRd7mnPAY6Z9btuXGVX1lRfKTgIyzwonqzLPe35HBwzMzMbOP6zTTMzMxs4DnDMzMxs4DjAMbOek7RK0pn5+aikU3rdJjOb3hzgmJmZ2cBxgGNmU0bS8ZLWSloj6TxJKyRdIOnaPL201200s8Hky8TNbEpIOhj4IHBkRDwsaRlwJvCpiLhS0gHAxaQ/ezQz6ygHOGY2VV4FnB8RDwNExDpJRwPPkVTJs0hS0b9vm5lNigMcM+umIeCIiNhcnVgV8JiZdYTPwTGzqXIZcJyk5QD5ENUlwEmVDJIO7U3TzGzQeQTHzKZERNws6TTgR5LGgeuBk4HP5D8wnAFcAZzYw2aa2YDyXzWYmZnZwPEhKjMzMxs4DnDMzMxs4DjAMTMzs4HjAMfMzMwGjgMcMzMzGzgOcMzMzGzgOMAxMzOzgeMAx8zMzAbO/wd9AoHZKpPeCQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sns.clustermap(\n", - " adata.obs[[\"cell_area\", \"cell_density\", \"cell_aspect_ratio\"]].T,\n", - " standard_scale=0,\n", - " figsize=(8, 3),\n", - " cmap=\"Reds\",\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "id": "7a7952fc-8d62-4c3f-aa92-dd1f23766a9a", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-05T21:43:05.380986Z", - "iopub.status.busy": "2022-06-05T21:43:05.380632Z", - "iopub.status.idle": "2022-06-05T21:43:19.299449Z", - "shell.execute_reply": "2022-06-05T21:43:19.298571Z", - "shell.execute_reply.started": "2022-06-05T21:43:05.380954Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "c56b1f900c034c95ab375c04d0155f47", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/10 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "dense_cells = adata.obs[\"cell_density\"].sort_values(ascending=False).index[:10]\n", - "bento.pl.cellplot(adata[dense_cells], col=\"cell\", col_wrap=5, height=3)" - ] - }, - { - "cell_type": "markdown", - "id": "e15c482a", - "metadata": {}, - "source": [ - "## Sample Features\n", - "Similarly, we can compute subcellular spatial features for samples (sample corresponds to molecules for a given cell-gene pair), to produce high-dimensional feature spaces. " - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "a9a080f6-5f5a-46f8-b2e0-97ee2a8e60c9", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-05T22:08:02.118483Z", - "iopub.status.busy": "2022-06-05T22:08:02.118206Z", - "iopub.status.idle": "2022-06-05T22:08:02.124415Z", - "shell.execute_reply": "2022-06-05T22:08:02.123623Z", - "shell.execute_reply.started": "2022-06-05T22:08:02.118456Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "dict_keys(['cell_proximity', 'nucleus_proximity', 'cell_asymmetry', 'nucleus_asymmetry', 'point_dispersion', 'nucleus_dispersion', 'ripley_stats', 'nucleus_enrichment'])" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "bento.tl.sample_features.keys()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "62dcc853-d732-4108-837d-bf87a11ee9ff", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "bento.tl.analyze_samples(\n", - " adata, ['cell_proximity', 'nucleus_proximity', 'point_dispersion'], chunksize=100\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "4ff404e5-e852-4cf5-831a-7d179b9fb40f", - "metadata": {}, - "source": [ - "
\n", - "\n", - "Note \n", - "\n", - "`Bento` is able to utilize these feature spaces for [predicting RNA localization patterns](Subcellular_Localization.ipynb). For unsupervised analysis, `Bento` implements tensor decomposition to generate interpretable [low dimensional signatures](Tensor_Decomposition.ipynb).\n", - "\n", - "
" - ] - } - ], - "metadata": { - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.11" - }, - "toc-autonumbering": false - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/docs/source/tutorial_gallery/Subcellular_Localization.ipynb b/docs/source/tutorial_gallery/Subcellular_Localization.ipynb deleted file mode 100644 index 6539a94..0000000 --- a/docs/source/tutorial_gallery/Subcellular_Localization.ipynb +++ /dev/null @@ -1,904 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "ded53b22-45c5-458e-9ec1-c15bc49f4b0a", - "metadata": {}, - "source": [ - "# Subcellular Localization Analysis\n", - "\n", - "**Author**: Clarence Mah | **Last Updated**: 6/15/2022\n", - "\n", - "Here we will analyze cultured 3T3 mouse embryonic stem cells in which 10k genes are spatially profiled with seqFISH+ in [Eng. et al 2019](https://doi.org/10.1038/s41586-019-1049-y). The dataset here consists of 211 cells, each with cell/nuclear segmentation masks and 2D transcript coordinates. Here we showcase how Bento enables subcellular analysis of spatial transcriptomics data.\n", - "\n", - "\"Bento" - ] - }, - { - "cell_type": "markdown", - "id": "13e3f4a0-42ef-4654-b23f-57d3aca2440b", - "metadata": {}, - "source": [ - "## Load Libraries\n", - "\n", - "We will be using `bento` for subcellular spatial analysis and visualization, along with `scanpy` for handling single-cell gene expression data." - ] - }, - { - "cell_type": "markdown", - "id": "b79dfbf5-9d59-4501-89fc-f3612d7b168d", - "metadata": {}, - "source": [ - "
\n", - "\n", - "Note\n", - "\n", - "Similar to other tools in the python single-cell omics ecosystem, `bento` adopts an API organized under a set of modules including:\n", - "\n", - "- `bento.io`: reading and writing data stored in the `AnnData` format, customized to hold molecular coordinates and segmentation masks\n", - "\n", - "- `bento.pp`: preprocessing data\n", - "\n", - "- `bento.tl`: subcellular spatial analyses\n", - "\n", - "- `bento.pl`: visualizing subcellular-resolution spatial data, localization pattern statistics, and more\n", - "\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "c4e068a5-2c4d-4cb5-b92f-3119cd8bbbb6", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:00:25.592940Z", - "iopub.status.busy": "2022-06-06T01:00:25.592310Z", - "iopub.status.idle": "2022-06-06T01:01:04.842251Z", - "shell.execute_reply": "2022-06-06T01:01:04.839628Z", - "shell.execute_reply.started": "2022-06-06T01:00:25.592835Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "import bento\n", - "import scanpy as sc" - ] - }, - { - "cell_type": "markdown", - "id": "9a591fb8-4830-48f9-9c7d-1dfa5dc20ab4", - "metadata": { - "tags": [] - }, - "source": [ - "## Load Data\n", - "\n", - "Let's grab the `seqFISH+` dataset. This will download the dataset into `data_home`, which by default is set to `~/bento-data`.\n", - "\n", - "The loaded object is an `AnnData` object, structured similarly to single-cell omics anlayses, where observations are cells, features are genes, and the main matrix is an expression count matrix. To store subcellular information, `bento` stores:\n", - "- Molecular coordinates: formatted as `DataFrames` in `uns['points']`\n", - "- Segmentation masks: formatted as `geopandas.GeoSeries` in `obs` denoted as `{}_shape`. In this case, we have cell and nuclear segmentations stored in `cell_shape` and `nucleus_shape` respectively." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "5bb23bdb-0263-4bb8-89fe-a5e991f350a2", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:01:04.847884Z", - "iopub.status.busy": "2022-06-06T01:01:04.847377Z", - "iopub.status.idle": "2022-06-06T01:01:08.510518Z", - "shell.execute_reply": "2022-06-06T01:01:08.508931Z", - "shell.execute_reply.started": "2022-06-06T01:01:04.847843Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "AnnData object with n_obs × n_vars = 211 × 9506\n", - " obs: 'cell_shape', 'nucleus_shape', 'batch'\n", - " uns: 'points'\n", - " layers: 'spliced', 'unspliced'" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "adata = bento.datasets.load_dataset(\"seqfish_raw\")\n", - "adata" - ] - }, - { - "cell_type": "markdown", - "id": "41b1b9f6-99cc-4a7c-951c-1b24fe259e1f", - "metadata": {}, - "source": [ - "What does our data look like? For starters, we can visualize molecules as their spatial density in a single field of view. You may notice not all some cells are missing nuclear masks for one reason or another. We can handle this with [Quality Control](#Quality-Control) metrics in the next section." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "80acf16b-27e8-42c0-8893-6fdcf100190b", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:01:08.514667Z", - "iopub.status.busy": "2022-06-06T01:01:08.513593Z", - "iopub.status.idle": "2022-06-06T01:01:23.776626Z", - "shell.execute_reply": "2022-06-06T01:01:23.760654Z", - "shell.execute_reply.started": "2022-06-06T01:01:08.514573Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAIyCAYAAAAubgW7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gUVRfG39m+2Ww2vfcEUiChht4JHelKFZUioqggCBYUGyo2bJ+iggVQBKQjvfcaQnrvvbfN9t3vj2DC3QmkF8L9PQ8PObN37pydnd05c+97z2EMBgMoFAqFQqFQKACnrR2gUCgUCoVCaS/QwIhCoVAoFArlHjQwolAoFAqFQrkHDYwoFAqFQqFQ7kEDIwqFQqFQKJR78BrY3sAwTIs4QqFQKBQKhfIgDAZDqwQgdMSIQqFQKBQK5R40MKJQKBQKhUK5Bw2MKBQKhUKhUO5BAyMKhUKhUCiUe9DAiEKhUCgUCuUeDV2VRqFQKBRKoxgtmU/YBn+v6r8ZBvDqbA+eiF+9zUQihJuVBFxuzTO8QSwg+ohNP17ncX1N+pHHVakJW6HUID0uG0lhqagsV4Lhcll9GHQ6coNOT5gnlNvr9COY8xRhn9LvqnMfSutDAyMKhUKhtDoWtjJw7cxgbiGBq4c1egR5QCjio7RUUd1GpdIgIzwDGrW2epveKDDKzc2t81h2kjLCNqhUhC21NsOImf3x1PLxyE7JA8OQkymlheW4cSwUKZGkL5SOCQ2MKBQKhdKiMAwDHo+HXiO7wivQFWZWUgQO8kV+uQoKhRopifk4cywCd24mQc8lgxJePhnU6GUmhH3i9l91Hr/QgtxHXyEn/RNUjVJ5dnWByFQEhkP64OhpizmrJ0EhV+H0jstQKTWsESOFenCdfgRw/Mh9tAMRGRmJ8vJyVlu9Xg+DwVBnn5Tmh2ngiacJHikUCoVSJ1KpFBMnToRIJMLixYvB5XJRHKPE7TMRMOgNiL2dhByJjLWfgdfQwOj9On0ZY7GI7OMBgVG1XctUGmPQY+j0vvAMdAWPzwOM7p2p2ug6/XBlOhN2Dj8FAQEBEAqFrLZqtRqHDh1CdnY2srOzkZ6eDrlcjszMzDqP01FprQSPNDCiUCgUSp0Y62O4/t6sNsUDbNCjkxNemTEYSrUW18uzkCevQFJxMS6kpYDRG90/GPb9R5JGBkZqo9iJMZL6CEqN7HJ2n2opeVyVpVEDo11MapmdU0tJm0vOxoGnIG2b6yWsPk6EfkDYo/izSTfu0zGZ25hhwJQ+MJGKYelgDmsnS0gtTQEA14+G4vzua1DKVVCUVrCdvY+OpGNqrcCITqVRKBQKpdEwDINRk3uiSw9XuPR0RplciWPXY3DgYgTSfFR1d0CplZL8Mhz99Syxjcvnwc3fGaOeHoy3/3wZAhEfSXdTcOB/x5EekwmtRveA3igNgQZGFAqFQmkUIyd2x9DxgSguqMChv68hLzQSSVmFrHZCLg++1tZwN7OAl0XVcI2dqSmczcxw/3BNhVqDpKQCJOQUIjW/GHHZBWAN5zzG6PUGJEek4+c1VboqhmEQPLs/Zr85FdaOFkgOT8ORzaeRmZADpZwGpY2FBkYUCoVCaRCdenpg2jszYGkjxe/fnkRcRAYAoEBqRbTzsbLGDL8u6GHviEJFJWLyCxBTkA+FVguNToeogjxo9TUiZg8LC3TSmKOzgzWmBHWBTq/HicQEXE5KQ3YZW6D8uGMwGHD893M4/vs5iE1F6D68C575YCbMrc2Qk5qPjNgsdMqp+kxyc3Oxd+/eNvb40YBqjCgUCoXCwlj/UjqrN7hcDqaP6IYx/X3xWfJFhOZnoUxTMzIhTK1aSu9hZYF5Qd3ha22NQyHROBuZiCK5AnxS81yrHkhuX3OP6eXhhP6B7ujj5ow7GVn4OyQc8VxyRIojJXMSmcmMxD4ASjJIoRJHSeqYdKbkEnw393xWH1yGXIVWKJew2tyP5qYFa5vTedK3ChcRYZc7k/dXpQ15fpzPsafKFFakULzCkYFEKICLpQw+9jYQ6BiIBHxMCvKHSqNF1t0cKJUalJcpcPVSPJIT83Dq6jsPfS/tBaoxolAoFEq7wc5KisVT+8PbxRrv/ngUN7vk1dpucqAfZvToigN3o/D1gYtQahqf9+d2ciauFmXCVCjA1AB/fDxxFP5Nj8XWyFDo6VL2ByJXqRGTnY+Y7PxqUfjuK2EQ8XnoXyqFo7MlbOzMsOTlYJw+HoELtwVQq9UP7/QxggZGFAqFQnkobv5OmDlrCG5FpeG7vy+gtEIJdCHbCDhcLB8+AJ7Wlli97xiyy8rB1zTP8StUamy7FYrjMfF4cVRfvN1vKL6/cx3FSvboEKV2tDo9KnRqhIWmISw0DQBg72iOF18djXeYd/DOO4/GqFFrQGulUSgUCuWB+PfrhJW/vIDrEanYfy68KigyQsDh4p2gEeBxOHjr4IkW0wPlVcix7vJpFCoV+HTIaJjw+HXvRHkgOVkl+OGbE+jXrx8GDRrU1u60G6jGiEKhUCisPEU5K/rBTmaKb56dhD03IvBbVijxujSp5rl6cXAfyCQifL/tPJH3UJZIBlEqS7KcB0fLvv8IC8h9MoeaErbcq2pqbnXQYHAYDr6MOU1Mq3F5bB2OVk3qcPTlpB8Qk9N99nZGyZEAWIgrCTupgBSa87ikBsnVopjVR0yaPWG7OBQRtk5PjlXk3yDbqy1rWY5vNLzh5EnqozLjbAnb/ir7Hq6O2o6ff/4Zw4YNg1wuZ73eXmgtjREdMaJQKBQKCxMhHx/PHouQ5Ezsvhr2wHaT+/jD19kWP5+8bpwMukXZePsypAIBnunUu/UO2kG5c+cObt26heXLl7e1K+0CGhhRKBQKhcDUXILNS2YgNisfnx08/8B2fs62mNq3K9b/cxplla2bN0ej1+Pr21cQ7NwZvua2de9AeShvvvkmxo4dCw6HhgX0DFAoFAqlmh4juuLtHa9i/83IhwZFlqZirJ4yFJ/vP4+iirYRQecr5Pgj7haWdaH6mKZSUlKC27dv4+WXX25rV9ocqjGiUCiUx5DRonmEXTyzB3r4OGP5rCF475djuOFA5gsy8GruFWIeH98FjsX1sFQcOh9RvV2aROpwtKakOLogkNT26GtZF21cc8wsjdTVZA4jn+cNFmpsGTED34ZdRmhBNgQm7KVwOi2pMTJkk/mDGAdS1+Rpz85jFB/tRNhCO/K9WkhIx/MjbFh9+PdJJuzobDtWm/vRKskTZGZRyWpTVkTmU+IKyfPFcEjtk/v/2OMhzKW7AAAHTzss+/Y59JvQCw2MDVoFqjGiUCgUSqsR5OeChZP64pcD15CcVfTQti/06IPcgnIiKGorDAAuZqWgl41zW7vyyJOdlAuRiRASycOTV3Z0aGBEoVAojzle3dywYHI//LTvCi6FJj207WBnN3S3tcfP/1xpJe/qJqIoB4HW9nU3pNRJexwpam1ogkcKhUJ5jOkxvAtmrZ6EzYeuIzwh+6FteRwOFnbrje9DrkHVhIzWzU1McT6cJTJYCMWQo5mySlIeW+iIEYVCoTym2LlaY+brT+CXN//Cjci0OtsPdXFHkaISN7MzW8G7+lOuUSGiKBcD7N3a2hVKB4COGFEoFMpjSMWsXli3fDK2n76LW50skTf84SMtppECDOnihss3U2CazEWVuockvxepTSnubtwnaXMr2LcgcTapr9XzSFsWR9rl7lWC7vPhqZjVPRDHQpNYnukFpABZ6FZB2MpiUoydkFHL8n8R2YdBT/qRk0sWqhV6kMcAgPxKMlnlCM94wr6c6UHY2lIhYQ93JtsDwAmtL2Erysj3whOTfvNjM1h9HNPvqv67GEtZrz9u0BEjCoVCecywsrLC58snIy2nuE5N0X8wDNDF2Q6RGbkt7F3juJiSAi7DoJu9Q1u7QnnEoYERhUKhPEbweDxs2LABF0ISsPHPc/Xez8XKHAYAGUXschntAQOAy6lpGOTq2tauUB5xaGBEoVAojxEbN26ETqfDgXMNW2rvZm2O6My8FvKqebiRno5AO7o6jdI0qMaIQqFQOjhjvV8HAPj1cENvv+H4YOkfKHraHkCNTobDJxMD6hTk7cHHxhpJGQXg3qv8oSWlLFXbxKQtSeY/9PXaEjzKXYz0QCXk87tJHvm6wqbm9RRFMSz4IlhpRShV1pQoUduSqiNVvgnZpy1ZOFWjIRNCAoC1TRlhC3jkqjyJrZqwUwotWX3kJFgTdqWaPD+OMnI0rlxEllnJUpiz+qwsIk+qUEbuI7pM6pp0RSWsPkbxZ1f/bcV9eNLJxwE6YkShUCiPARY2UsxfPhrbvz3ZqFw1nRytkV7QPqfR/kOr1yOrtBydba3rbkxh0Xd8D5QVVUAul9fduANDR4woFAqlg8MwDKYtGIKrp6OQGNXwpfZ8Dgd25lIk5z48I3Z7IDInF13t7XAzrX2lFGivSC0ksHOzQdeBPhgxeyA+fvr7xz7JIw2MKBQKpYMT0McT9i6W2P3z2UbtbyOWQKHWoLCcXaurvRGfX4h+7lSAbYxULASfy4WFnQyDpgTB0cseep0eXt3ckJ9ZhPyMQnw462vkZ7T/4LeloYERhUKhdDDG+r1Z/be9swVmfz4JP1y/jlszzQCYAQB4HuXEPoZKUu/CqGuUFrbmUpRDA8V96X1sjxpVewWQG0RqdxhSDsTSFGmlRg0AmKaSCg9+JTl6ISogtTyiQlLslKIuxbOO1tCa1uwntCJ91WnJY1ia1h3wWYrINull5oQdbBdL2OYC9vkJhRNr2/0k33QhbK0peX6K89n5lfi+NdNeDIBuie5wsTaHmYkQ9uZmMB/Nh1KtRd8ANxSXKcAfPhgF2SUIuRiL8mI5Th+NwE+n32T1+zhDAyMKhULpoEikIrz4ziTsi4rC5dS6M1s/CFczGRIKCpvRs5Yjv1IOHoctnu6IWEtMYGthBkcTGRb49IW9WAqxvirhZWmlEqVyBTQKHazNJbh0JwnxqfnI+Ps2slMK2tjz9g0NjCgUCqWDMmRsAGLDMrBdebdJ/aSXlWKcn08zeUVpCg5mUrw7fgR6ujjCYDDAwNVDrdPhRn4qjmfE4NLBdGQVleI/mZC40IDuPk7o6u2AQT094TawC3LTi3By13WkJeQij06dsaCBEYVCoXRQfAJdcGLvLaBn0/rJq5SDx2HqbkhpdngcDrpY22J+l+4Y6uwBEwEfMbkF2HU7DH/fDkO2Ux40+popN0mhhNVHaGwmQmOrxOiWF9LQe5gfeg/3w5MvjkRqXA6SPj6GuLi4VntP7R0aGFEoFEoHI2+QDSylJrDv7oirZ9TQmbK1PHojTZHBKHeP0K5GUyMQ8yCWcaHzUNTUIdOzVy5Zh5E5dIp9yVpfxhojm1vsYEtUTOYHEhSTmiI9n9QHqckSZeBItQDPAL1ZTT8aJXlgfamAsMvF5DHspKT+CgAqNALWtvv5M643YXtas6cejXMOWYaQn4HnzZrjMgww4dNgBPt4wdxEDLlajb9uh2H7jTtEjiamWEzcyDnk6UNBgFFNt8HOiEI5tmpuQhTFwzz/7vjnwBkkpOTjxt0UXLyRAH45mdOKdzqEsE/dV1utI0IDIwqFQumArJw5FGdDEqDS6OpuXAe5inJwGQ5sxKbIU7CLo1Kal+5BHpi7YDAsPS1QUCHHp8fP42xcEtRgB7hNQanVYnPYLZw9F4oAXydMHdMNQ/t1Qsi1ZJw6E4nHddU+DYwoFAqlgyES8OBqa4Hv9l5qlv70MKBSq4YpX0gDoxZEKOThlTcnwM3DBhq1Don5hVh78CQKKu6N3rWQplyl1uJWWCoi47LQ2dMOU4YFIDDAGYWFciSn5EPN18OgNyDqahwqy9mr7ToaNDCiUCiUDkavzs7IKSpDThF7SqixxJbkw0dmg6Sy9r06zc3MAnKNuu6G7Qw+j4uV706GRCJETlYJKuUqrLhzrlVHbRRKDe5GZSAxNBOBAS4QCnnwdLeBgOMDkUSIqa+Ow82jobAt4OH48eMoLGzf10JjoYERhUJpNAzDwMrKqt7tKysrUVnZ/pMEPur083fD8ZuxdTdsAEWqSjhKzJq1z5bAVixBbHF+W7vRYJZO6A87exkYDoOsjCL8+etFGPq1TdUulUqLm7eSAQCXLsdXa4zcu7jAr18n+Pj4YM6cObh8+TIuXbqE2NhY5Ofnd5iM2TQwolAoD2Ss4zLWNmEvT0yd1huurlYwMRECZjzo7hPi8pSkDoJTVjP0LhQLcGbbeRz99Sz09+1zUrOD2CeY81STfWe45LyDQad76OvGNgDo1eTIQ3sVnd5/vnh8Lmw9ZbiVGYriLlXnWGxbd+0rnY68CavKSeF0VEYRRnl4VwuX9UJNnX1yjJrY3STF2ToT9jnXikg/hDqjorFOZEJHlQV5M/Y3s0NmSTmgrOnH2bWYaJMvJgurGiPialnb0uXmZBujIrIVcvJ8pR5zZ/XhvyeXsPVpmWAYBiNnD4BbkQYXDRlwspLh3cuXAR8ODEanh6lFLqa2JM+P0oZ8XZxLnk+dCVvwnj2A3GaSafTd6NIPAJAL4Doq4bBPh+KkbNg59sSql6bAycMaOq0eEWHpUCiqvjOcglKUFJQjN60QBoMBxSm5yE19cMBq/F0D2u77RgMjCoVSL3x6uGHIpJ5wCnTDrVvJ+P33i9CodYgzVRLtTDPIu6E4NLX6b9fO9pjzymj49++Mm8fv4tq/IVDKyZslpWkMntEPpUolkktKmrXfbHk5ulizMy+3NzxkFriTm93WbtQLe3cbLPxoJnRaHQ5sOonFf7yApT/ubWu36kXU3XRE3U3H2aPh0Iv5sHcwh19XJ3C5VYEYr1wBBzdrBA7oBICBnYMMsbcSce3IHSRHZECjqjuwbitoYEShUB5K0Mgu8OrihG4DO+PQbxdw4GI8Mu5PCmcqfPDORqTF5eCTp79Hr1GBeGbdDIxbMBzH/ziPpMs3kJiYyGovNhWh95hucPV1gpu/M/hCfi29ApXlCqRGZhBD+QyHfFI26Mkna+PXUUueHoOWfETvbnCFQqFAeHg4MjMza/W5LXHxccSM5RPw0q2Lzd53elkpxDw++BwOkTenPWHC58PT3BLh+Tlt7UqdBPTxxKxnB2D/Dydw/cgdPLNuBvZfj0BppbLundshOdklyMkuqbZ5SVnE63y1CiPnDMTkpaNh7WSJitKqUcwbR+8iPS4LZXklyIjLhl7X9tcWDYwoFEqtMAyDOcvHotvAzjiy7RLO7b+NnLRCqDs7NqlfvU6Pm8dCEXEpBl7d3DBuwXAEv/w3rl27Vt3GhfEGAFg5WqIgswjhF6Nxce91KCpqv2nYOFvB1tWa9L/BgRFbz2HQktMl6fp0WFhYYNq0aQgMDERkZCT0ej1u3ryJvXv3tql+imEYzH/vSWz78B8kjqg9gGwKOoMBqaUlCLCxR0huVt07tAE+1tbIqihDeS3TMu2FPsN8MXJKTwiEPPy0ehuyk/Pxxcm3odPq8fXhU23tXouhUqhxZMtZHNlyFlJLU4gkQoglQox6egg8A11hbm0KBw87MAwQeysRJ/44j3O3eNBq2dOaLQ3TQLGUgWFo9lMKpaNyv1ZFammKtZEfYOnpA8iprFmibXOVfJ4qGPLwm5A4gRxRct9K1uxiGAZeTqbg8mp0DYyVJYCqICohMhMaaymxj07EfqYr7EpqT3RGA1nCEvK3TmVW92+ZWToZTJkm16zysnM0h5VKAb6Ah57Du8Clkz12f34AMTcSHqqfagnGWCxCj6F+GDt/MD5Z+DPyZ/gTrxcNYQeUTL5R8kWR0ZO6kS2QqrCwc38wADbHXYXDH+T5BgCTRFLLUxpACvNFBeT0icqSHcAJSo0SPOaTwabahixUm/xkTUD7ZOeusDIT4ufoa0QbZzvSLy8zslZYXAk5RZhTaJQ1EoCVOZmmIL+AvCZNQ8nz4bwzhbAHjusG5wEcSCQSrF+/HmFhYej17BeYOjQAQ7p74a1N/yKtD7kUXpxMnh+VVS33a4bcpheSNreCDPhN09jXfaU9aQtKSVuWTF4LsjPxhK3o5cHqM2swmRDT/TB5/hij/FqcoqrXzSxMMGB0AAaM6QplURl2f3kI0deqjndSt7NVAhA6YkShUGrFu7s7kkqLiaCoJTAYDIi7nUxs4zjYtegxm4PcrBLkJVWVWQi7HIe+YwIx9ZVxMDEV4d/NZ3Dl4K1W84VhGExaPAJ/fn6oRY9zLS8ZS/0Gt+gxmoK/lS1uFKW0tRsELt52mPD0QEjMxHj785dx584daDRVAWJnVxuM6NUJa386AkU71ty0JmXFlTi28zqO7byOnv5WWPbNc/hp9XaEnY9qNR9oYEShUGpFZmOGzIqytnbjkeH68TBc3XMVvYIDMOetqeg+vAt+WPFHqxzbxskCAhEfCXfT6m7cBBLKCiDlC9HZzBblaF/XBgPA3cwCf6febmtXqgl+sg8mzh+E8wdDcOj3i7iRfKP6taFDh2LJ5AE4di0GpfJHU1fU0tw8dhcWduaYtHQ0Ii5Gt9px2yZJAoVCafeMfW4Ywgvav4i1vXH7VDhWjfwQTt72ePGr+fDwYE8zNCcMw+CJRcNx7Whoix4HAFR6LS7kJGKEY+cWP1ZDsTGRQCYUIb60oO7GrUDQcH888exgfLh4C/b9cg7a+6aOnJyc8Morr6BUrsCJG82bb6ojYTAYcOKP8ygvqsDQmQNa7bh0xIhCoVTDs6nRhIjNpQg/mA2pitQ5lHQy2klF5jwZHEj+0Gc4k3qNZI4r67iiQnJbmbeRlsJIR+HWlS3+tTCy+1qnEvbtIhfC7mWZTtiplZasPguUZKVygVF+m/AwX8L2+7YmT8v7r+3EzCXDcWz3KVzYcx27vqia5mpuzVHnzp3h7GmD39/eAf296RjzeHIEomIse5rGsRsZQKTlPTxRpzq/qgDqHnk8fhwzCXsHxaFQTup/7DTkZ83Rkp+b1pT70NcBgKsy0p4UkyNTBSPNCdtwL1nSQGc33MrLAHLZ2qe0YlJEk2lFXi26YlIPc38B3f8oLCFzH1leII9jszO8+m87VyvM++NF/LLmT+RH11yHA6d9Dkc7Gd58aSxCozLwxcXT0LjpUTXeBZiFkd+1Mu96rNAyMcrPVWGUg0hLynI0pDSqapsZeRyNOfm5yN3I9kV+PoStsmL7yRgVGU6aRn6XWFooOVvX5f1r1djN+fMJGD2j9QIjOmJEoVBY+PX2BE/AhVrb9AKkjys6rR5//e80Vo9eD//+nTDnzSmQWkjq3rGBWFlZoSi7pNXywuRVynE+LQXTenZplePVl+EunriYmdLWbsCvjxfe3voSjvx6FuGXyIcEG0tTLJ03BNdCkvHrzsvtNu1Be6OsWA5OLek0WgoaGFEoFBbuvg44ves6NDoaGDWVynIFtrz9N8xtZXjpm2dhYWE8ttU0nnrqKYSei2zWPutiZ0w4Bnq7wdum/uVgWhJfCxuYC0W4lJVad+MWZPS8QVj62VyEXYzG0d/PE3m1HD1t8e6rE5CdX4Y/9994bCvXPwrQwIhCobBhGGjUrZ8/pKOSHpOFH1/biviQZGzcuBHW1tZ171QPGIaBi4sLUiLT627cjOTKK3AgNApz+nZr1eM+iOmduuB0WiL0bRRtiAQ8zF0zCQMm9sTPb/2Nze/sJl4f99wwvPrdc9h3PBQ/bD3fLMe0MTFBTzsH9LRxhJeMPQ1MaTxUY0ShUGrg88HhctB3TDfs33IOlf3YNxqDFVnCQyIlba2BfN6a7niHsC+PZVd8L1GLCduFIacYStWknsNdWgRj7uQ5E/aVfFL0rNaSP3eJFWRRKUdxCavP5FJyRERlVB/r6SGXCHsbZyCrD2l8TeqBH3QFGHk3DRs2bMCrr76KioqmpUIYNWoUSkpKkJ6YD0ZQo08RZJGJaFTl7FEquQmZx0giqWNllNHr+yrC8ISrL7z7mSOiqEqkX1xKfk4OZ0gdE1NOane0zuwAkZdMCv5LhroTdmVvMtePt5kMQQ6O+OHCOfClaujF7IBeKCK39XTMIOyr5aRwTlVBao4AwPkAef1c3vsaAOCFF17Ak9OexIULF/DCjLnVST6HTPwMAPDE2G4YOzoQq97djTR7LeBaowES55HHUNxLp8QAsDeToo+LFUz4ApgJhfC2tAJHBdhKTeFsbga9wYCo7DzotHp42VjCVCREXE4+wnNzkVZcisSCIhTIK8EUkKO+CodagkcB+X3jFZHvVS8g9zGuz2YQsPsUp5O/A3yjr72eT06NqWurT1x+7/shNwU0rfegRgMjCoVCIDU3gYWtFKGX4oB+bnXvQKk3eoMBmzZtwieffIJ3330Xq1evblJ/Tz75JP7++28wBodm8rD+KHVabIm+gVcCBmLF5UOQa9sm2/QznfrgYFoEKlr5+B4eHti0aRMsLS0xadIkZGez67N5uttg2EAfrHp3N8orlHjYLVdmIsIIfzf0d3eBi7kMOoMBafJSpJaUwAADziQnQV2sgVavR0RWLv4LRbj33raJgI9AZ3t0drHB+C6dYSUxgUQgQEV51YNLpUqN+JxCpBrKEJadg9RmrqXXkjh72UEoZgerLQUNjCgUCoFXFyfISxV1N6Q0CoVCgffffx///PMPevfujVu3GpcIMjg4GGKxGKdPn0aweF4ze1k/TmcmwEtmhfeDRuPdm8db/fgjHTvB0cQMn95tvVIajnYyzHyiNyyEPbF7927s2rULRUXsEcxOXrZ4fv4Q7Np/815QxIZhgCBvFwwL8EJ3D0fczs3CmfgkRObkIq9cDo0pORLDL32wALlSrcG1pHRczqyZVrWSmEBcXrWPm40FrKUS+PnYYE73QBTKK7E1JBQ3MjIe1GWbwxfyMHflBPQY6osr/4Zi0MQerXJcGhhRKBQWcS2cKPBxp7i4GDt27MCPP/6IyZMnIyur4bXHxo4di3379kHfxiubfo66jiX+ffFB0Bh8fvs8FOrWWR3namqOZ32C8Ondk1DrW2eRQFA3N8yZHIRDp8Kx+csltY4SAYBMJsPCuYOwc99N3AqtXRBuaSrG0jH9YWMmwZmwRHx3+BKKzJt3uqhQXlld3iPvXtFWRU4MGACDPdzxYv8+6JvpjO9jrra7FXLuluZ4Y9NCqCpV+PT5LchOLcCzb01ulWPTWmkUCqWasX5voucAbwT29cTvG08g+mW2qNOvCyn0jc8htToLu14h7AsFpH5DxGX/+GdXkAIDGxNSexOdTZYIMZWQuiYAKEkxJ+zBvclMuU5GGiLjvEVptehwlEa6JDMh+eRvbmT3sSBLmwCACYec4vlh94Tqv+cFdcconQzrpn1ZvYKpPnmOJBIJzp49i6FDh0KhYI/ujeLPJmzFhJ6sNmkTyRshR0gGFyIJ6beijNQPSczJ4y7wHgh3kT3evXkcldqq4EiQTO5jaqQRF1Swb8YqM1KbUtTL6HrRM+jj4IxlPfpic9htXMgiz7mHFzspaU4peX3pdEYFhuPJHEVef5HaKI/Odug1zgROTk547bXXEBMTwzrG4ElVmiJnRwu8s2ICLiSmYtPRq8Tqs+LuVedljFsnLO4ahHOXE7DrUhg099JiGMnzICgn7888Jft+rTEh78nCUrKNce25MveaKSkTIR9LJw+Ao50M3x+5gvisqvdd7mWkIbIkrwVOrlGdvVo0Roye9EuUS9oCI82R3W+h1X+PmDkAU18ajbc/WY29e/dWB/8Gg6FVAhC6Ko1CoVDaiJ0h4dDr9Zi4JLhB+82bNw8nTpyoNShqK35NuIwCpRxre42ECY9dHLY5YAC83LMflvXoh29DruFCRkqLHOd+xkzthSWrJ+DGjRuYO3durUHR/cyd3helZQr8dPQaa0m+kMvFyp6DMM27C966cgJ/nrtTHRS1BZUqDb7cdR57r0XgzenD8eTAQLT12IdvkBeC5wzE8W0X8M8//7TJiCgNjCgUCqWN0Oh0+HbZrxjzzFDIrGtJSfwAxo8fj+3bt7egZ43j2/BLyK4sx8d9x8HNtHnzNZkLRfh86DjYmpjihRMHcCsns1n7r43A3h6YMLMvzh0Nw5YtW1BcXPzQ9oP6eMPRToavfznNSh1gbyHFRwNGg8/l4vWLRxFX3D5KlwDA+YgkrPrtMHp4OmLtkyMh5LaNyqb3qEC89OXTOLPzCg7/cqZNfABoYEShUChtSlF2CYpyShA0tnuD9istLa27UStTqdXgu/DLOJeViC8HTsTMngEQ8Zp+k+1p64gvho7D3fwcvH/lTPVUXUsybf5ALFo1Dt9+sB/H9tyqc+TCy90G0yf2xPqvjyArp4R4zdHSDGtnjURIXhY23DyPMjV7KritKapQ4O3tx5BXWoF3hw5v9eBo8NQgTH95DL5e9itO/XW5VY9tDA2MKBQKpY35+7ODCJ47uK3daDb2J0filYsH4Gdng59mTca0bv4QcLl173gfDAN093LEhwODsSpoEP6IvINtUXegbaWplWHju2H7/04jIap+wvj5T/XHsbORyCsgxTOOlmZ4a+YI7LxwFzti76I9J7w2GICfT1xHTkU53hkyrFWOaWYixLo5ozBqziB8sWQzEsPafuEHXZVGoVCq0ZqbQGcqgl7Ih9bcBMIC9s2sTEUKakd4xhP2P6nkktpKJZl/RGbCXrrM5ZA3O3MBqZ3xsC0kbJWO/dM1bSiZUfhsHin65nFILUegGblMWatnv9dcBSnKVWjI9+JnnkvYJ3L8WH0EWpA3Vo0X+d5UY3ogjMPAYC2FxfxhwJa6xdc2jCOGcCahkFM1tXNKv4t43VjAHXyQrWNhgvsQtp0zOU1UWkl+zgIjMbZGwz5f+vsKCmeo5Ngg/Ac+CnvM6BaEeUOm41pyNi6mpSK2oAC58grUJqX1DyhHkFUnBNt3g95gwLH0RHwRfxRKnRZCK8D0GDnlWNyVvHaSE8mCsQDgsZtsU2lPaqD0PDJcyTAcQE7hGHz+2xIolbUvtR9rt7T676GTe6FMqsfWsligV9W1KckCHKzM8NaTI7Dr7F1cDk+GxJo8rnUYeS0obElRs1pKniCmFjmSuJB8byoZOd4hMBpYtL5ZwuqjuBtZwPX7q9fx7YQJmOTth4OxMSwRvTFMOfuD1ErIcyo2mjm02RkOoViA1b88j4qEYoxcOg5yufyhx2ktaGBEoVAobYxOb8Ct0BTMnNIbu7a0tTfNS2xZDtZHHIKlQIJu+kBM7OSD53sGQavXQ6nTokSpRFJxETpbWcFUIISDJR/RZenYnXYZt4oSUFDe/IV36+Ldd9/Fd99998Cg6H5EJkJMeHYIlp+7SGy3kIrx1uwR2HX+Li6Gs1crtmcMAP53/TreGTYcJxIToEPzC8Qt7c3x9u9LEXohGts/OdBugiKABkYUCoXSLvh770388PlcSCSSdnWTaC6K1HIcSIzGgdhocBkGdhJT8HhcOEqlsBSbICyvKhuziVs6KnUPzmLNMMDgQE9IRFWjd3JnA1zMZLCVVAVQhvvuauVqFbZF3QFQfz3WkO6ecHCwwp49e+rV3jvQBUV5ZcgoIY+xcGwf3IrLeOSCov+IKShAQmEhJvn4Yt/15i1SPHtED0x8fjJunQzHnxsOooFpg1ocGhhRKBRKO0CvNyA0PB3z58/Hjz/+2NbutCg6gwFZFeUwMEBqaQnxmmMtQZGEJ8BT7j3hbmoJTz9bFJVVIjI1BxKRAP27ecBGIkF2eTkKFZXAvdk8AZeLnraOGOveCV9cO4zomNqTMd6PUMDD/HFBWDRnSr1u1hwOg3mvT8SfX/wL3DeD7Gtng05O1vh+f9uKiJvKX2Fh+GDkiGYNjGYMDcT4fn74c9VfuHkyvNn6bU5oYEShUKrhxWeA6yRF15lB4MVnwIXvympT0YfUMMSU2hK2yKjQKt+E1EAUlLKnRvwcSK3OxajOhD2j523CTqxgFx89kB5A2BIBeYO1EpAFTK8UehF2agl7ebmPVT5hp5ebE3a5htReGL93APg3vgthezmSfSaMril+u1UVja8XrkLREQ6Kc6tGIE4oa1mWzzAAlwPmP0FzHXpkrin7nAsLyc+R25nshM8jp0+8rUmRSGwu+bkD7CSRxp9BiYw8P9wCdr4j4ac1n4OpqRDTAlwwcGQXJFzORmR4JH6xC4GtmSmm9OkCd1sL7M69iGsFCShWV42y6Y7UXBvB3b2xdPwAPDMuEO/+erp6u0hmVLFUrQGHw+CZtycj7lhkvcq0aHycweNxwJOZIKRIAdOMmkLI0/r64vDdWJTztcB9b9EmhFxNZ6wpUslIrU65K2nzKtlaHo7RJcc1WvAm1ZCfq17MPueSLNKvwoCqNnH5BShVqtCPZ4+I+4r7lviQQaOwkO2X0w3SMV3ZQYwbNw49rDR4dfE8nDrVemVcGgpdlUahUAhibiVDKBbAK9ClrV157IgpLMC5XVcxZv6QtnalTREKeRg61BdvvzUJdo4W2Lf9Cnb/egGlRXK8MLoflozuhxsJ6Vj+2yEczbpbHRQZcyo0AZUqNSQyMWatmvjQY3bp5w0nTzts/eRAg3zl8UgRuqXUBD28HXEh6tGcQjPmSmoa+vk3vpi0o705Zk3vg48//hjp6emYOXNmuw6KADpiRKFQjKisUOL49kvoOzoQMUfa51B3RybkdARe/X4Bzu66htzU/Lp36GD4+jhg9ux+KC6WY8ff1xBzKgo9+3vj45+eRWWlGjti43A+Kgnqexmj66q5fi48EY7JFRg4qTdCzkQiLoQMWDgcBv0mdMfM5ePwz/cnoNXUX2jcNYD98DB5UBdcjkhBQXnH0IldTU/H6wH9G7wfj8fBqOH+mDKxJ85fisXzzz+P2NjYFvCw+aGBEYVCYXHhwG288/sLEJ2NgVLROkVBKVWkRGbg9F+X8eSK8fj9vd0Au/QXtBodpBYSFGWXtLp/LUUPBwcsHzgA0hIGx09EwNRUiAXPDQEzbwDUSi2+WLsH2elFyBzFnkZ9GMm5xTAtUmLv98fx7LoZOPfPNZQrdOg+qDP8g7yg0+qQmZCDvz4/jOsnGvYg4OPrgCOHQ6ttKzMTDA70xJqfDjeon/ZMVlkZrGQSSE2EKK+sX2JKhgFeXDgcpqZCbNpyDnfC0h6ZoAiggRGFQrmPYwU/Vf1RAHT6V4Q5owdh22fkj3xuPvmU7O2cR9gqo58V40Ks1jL2k7TSKC+RuS2ZJO9oCpkfSCFnjxPoVWQfFTJyqfU/GWQh1dFdogg7Lp8shguw8xj5WZJRSo6C1KqY8tjCYS6P1HhYi8j3H29KjlBwXJ1w4kw85vq7YeTS8di77mdWn7vPbofdRDNsvlt3ziMA0Pt7sLapPcnzY/w59XMgq8JHFrPzAxljUJB9FF4m9/E+S+bt4Uclw7+PFyYuGAqZlRR/LPoLwoXdMGKMN5QaDZbuP4wiOzU0ej20EwDAEjAlz7HYKE+WmVERVX6lAfHqO/jkt0/w+xUfPPXUU2AYBnczc/DlH+8iJCQElZWk/qw+aALN0H+0HzbuOo+STiKUegEzgnxxNisFCVZySGvJUyjKI4+jcCK1X4xRLi1j/VBt8Ml6yxBUkO9fKyb7FCrZnQqKyM/FJLPmnOqhQZ5KDisfGXKz84x3BQA4nau5pvkCLl5aMQa5haGYNWMJtNp6vIl2Bg2MKBRKrWzZsgXH9zzT1m48lmg1Opw9eAcvrH0CXlu9kJiYSLy+bds2HDlyBOvXr28jDxsPwwATJ/VEt+6ucLSUoLy4An9vPAqdRofpy0Yjy46HzeduIiG3ABqdHgpt82W6jo2NxYcfftgsfckkIuSVVOBuQk0Cz8Ee7vj07IVm6b89EZOTDxdLGaIeEBjdz7CRXWAwAIsWLWp3y/DrCw2MKBRKrRQWFqI4rwyjZ/fHiR1X29qdx460xDyc2HMLixYtwptvvkm8VlFRAaaty6A3gqA+nhg3oTvkciUOHbyD4svRyEkthLmNFO/9+RJibifjk+t3m7XsR0m5AmODgiASieqVsLG+uNtbolxeM7XkaWkBvcGA2Pz2Uxy2uSisUMDT2rLOdkNH+mPi1J7Y/MOZRzYoAuiqNAqF8gB0Oh3+/OJfDJzQo+7GlBbhzpUE9O3bF05OTsR2g8EAHo8HiaT1s0I3FIlQgFdHDMBv86dj/rODsevva9j45VHcvZMKiZkJXt04D29uXozj2y/hxzf+bvZaaKGxmTAYDHB0dGy2Pl1cXDBzZA9EJtfkRgqwt0N0Xn67roXWWJIKCmEmFj60jXdnezw1px9+++kcwkPbvt5ZU6AjRhQK5YFkphZCq9Wj5/AuCLkQAwBgOORPf0IGmc9GZmGko1CReVM4DPvWYaxvUdwmn06VTqQAXJLIzsVS6UZqdXTxZE0tU7LcGs5ldCdsrQnbrzQrUr+SmU/mOnI1quE2xS6U1YeIS/ouNrKFRloog6jmvZVUqrFjxw4sWrQI77//fvX2kaK5kKfqsG72Vzi14zLKJwSSfRaTuo7k4WxNlkFOni+NjNSinIrzIWyTUDFhm+exz5flvojqv3uO6AJh9zIM7jsYJ47sw7cHDiAmJqb6dWtra2w8cBnHtl3Cxpd/r94u9yM1RBJzI12SUX6lkjSyzpeVnB1YXbt2DfPmzcMHH3zAeq2+3F8bbc7L4yGU8vF3chQ0jlUjd2IeHxnFpWDuHV5eSxymtiTPIVdB+moRTV4LOgGpcRMVs9+bnk+OHHI05OdS5Et+V5x3prP6UHZxJmxpJnkcmVAHsZUBNnerriu5Hfl9PXX1HTz57E9Y9uqzOHnyJKv/Rw06YkShUB7KXxuPYuKzHafy+6PGjh07MGzYMLi4kKL3q4dDMHL2AJhIH17gszUxkYoQOMgHz747DaPnDkJERASee+45bNiwgQiKBg8ejJ07d+L49ks4vbPlp2kvXrwIGxu2uL4xDJvaG12CvPD2/hPQ6Jp3dOtRpX///ujUqRPOnTvX1q40C3TEiEKhPJSkyEwIRXxYO5qjIKukrd1hweUwEPJ4AI98zuPxufCxsYZEUPXELDCSSGiMZqEqeVpE5+dDodFA1470ERUVFbh58yaef/55vPPOO9Xbz+6+BhdfRzz12gT873YC9G3os7ezNbp6OWDM/NHIiMtBQlgadnxxGAdz/mG17dy5M1atWoU33ngDlgndWsW/vLw8+Pv7w8XFBenp7BGThtBjiC8uHgpBmqT+9dc6MgwDrF69Ghs2bIBG0zFSe9DAiEKhPBSDwYCYkBT49fLAxaw7be0OzARCDO/iCX9HW9iZmcLBXAoehwOdkAwMGB2DokoFUoqKAQA8ckYGOiPJhIOVGRykptDqDUgpKUZUXh7ClJmILs6DWt/81cUbwgcffIDjx49j/fr1hID4n6+P4IN/XkN/vQ6XQ5Ja3S8ul4PgoM6YMMgfl0KT8ePqv5ARX0vipXt4eHjgxx9/xKZNm3Dz5k2MsWidwCgpKQmhoaHYvn07hg4d2qS+XH0c8Mv7e4GnnOpu3EEQCB4cKkwdHIDc3EQcP368FT1qWWhgRKFQ6qSiTAGBkK3raS1cpDIMcnTHIEc3OJmaITY5H2HpOTgREY9KlRppRaUsjRGvhNTMiIw0RmpSmlKtMXKRyeAmM0eAnS2WePeFndgUpzMScTI9HkmKupcrtwQVFRWIjIxEv379iOmKynIl4m4nwdZK+uCdWwAeh4M5Y7phTD9fJGYWYv2vJ5FbVA7LhwRFADB27FgcPHgQu3fvbiVPa/jmm2+wcePGJvXh4G4DnVaPyvLmW932KODlYYPM7GLWdmuZBKN7d8bkEfPbwKuWgwZGFArlgRgUVTeApDvJmL5sNE5tuwCOUcJCg56cwjIupFqSR960mQoyYAEAldZo6bmsKkgJtLPH3IBAeJpY4FZyBnafDENERi6Kbe4T6AoA2APWN0k/8vuTw/p6o0R35tFke7W0yofC7DIUogwhSENFFzUcJVI84e6HD/qMQpYmG/vSryOhoioA0BnIPn5MYNc487MiC+SmV5oTtp2MTGapcDLSwoRV/Xf06FGsW7cOISEhOFG2tfplmxs6dFv4AvLza3zhGyXArC3ZYJmXUYLHMFJY7hBKfs7SE+EQmggw/aUx6DmiC65FXcDqV77E4cP1y/I8aNAgLJr+Ir5+cQtGi+YBALQB7MSTtnbkFJWxWN9YqM+zIt+H9Aa7jMoo/mwISwRwFLrj1cHv4puLDRdhV/T3xITFI3HgWhzK+rhDZUX6peHoYG9qCr2ganttBV/LXcmHC5vzZCCp9LAibGOx9X/X6P3oeeQ2SS65j/0NcjFEZTd2GRO1OfndKPIlr2vGQYTMnAoUe1Wde6ffo8AwDNb+/gJubLmI7OxsdCRoYEShUOok9EIMFrw7vdVy53Szs8ecgEA4mZlhV2QE1l883WZC1yx5OX6KvIE/YkLwdHd3rPSbhISKHPyeeBblevZTdEuxb98+TJw4Ef7+/rh27Vr19oiICEyrR46ZpmAiFmDGq2PRY5g/TKRi/LXhID7a81q99x80aBDeffddbHp9O3LT2ibPj0qhxpm/L+OJF0bh19CNKC8vr3snI8ylYkTEZtX6WnRePvo6O9f62qMMh2HQ3d0BJ8PiiO3u/k7Q6fQ4tOVc2zjWgtDAiEKh1A8G4Atb9ifDTmKKl/v1g4vMDHuio3A0Pg4avR5iXdsnM1TqtDiUeQsnsu9iknNvfNRtNvZkXMCF/Ii6d24m9u/fj6VLlxKBkUajQUudne7+zpg5oRdsrUxxa9d1bHl3N5IjMhqUvM/d3R3vvfceXnnlFTgn9ax7hxbk3M6rcPV1wh9//IFnnnmmUcHRg957YWUlXGQy8DkcaJo5F1Nb0tXRDmqtDvHZNXPRXB4X018ajevHw9rQs5aDBkYUCqVepMVmwyvQFVFomdpH4zp1wuJevbE/Jhrvnz/Tbm8uKr0Gu9Ou4nZREl7oNBJSnhj/Zt9slWMfOnQIK1euhKWlJYqKilrkGDKRENO7dUW3QVZwc7LEkbORuHw7CYod1+re2QixWIx169Zh06ZNiIqKgrOobQMjADiy+Qx8nrXBDz/8gMWLFzdbNuycigpUajTwsLREXEHHyH7NAHiyR1ecDIsntnfu6Q69Xt8qqRbaAhoYUSiUB/KfxggAygvLwKmlIOQQL/JH8+ytLoTteI4czyjpROoXuBwGS0f0QxdHW7y6/RDyyuUAH+DfNw5id1Nl1Ac7C6/KnLTNIkk9h2kOGWjxFKRYW1TEHnexMtIh5QfUJLMMhQErep3CR0HjUCQxwe6kMPRyZy8Fr9CQvnaWkgLuLAXpeJGCnBYL5jxF2GXRKnTu3JkYNTLN0MLjYE010YLuZGJAaSp7GbXZr+T5EV+5i17BAZi/dhxunw7Hntit+PPPPxsdOAQFBWHt2rW4efMm9uzZAwDgONgRbQreYBcULoondTbeARmEXWqk0eLzjRJ7OpD7AwBXWXP9FFdo8d577+HgwYM4cOAAVq5cCfsof6L9Kf0uVh/CIjU4aj0EJRoIi9RgtGT+KEbL4FpKBoI9vBCfUwiNKXtkyVgjlPGEA2FbxpPfL4ORHE9cyH5YkNuTjYxkb1AZJSk1cNjXOVdF+up0vup8DRvmC9syHkI2hcBeU3WepVIRfKaaY9eZ33C8eAurr44ATfBIoVDqRVF2MTwDXZu1Ty6HwfJRg2AqFOC1XUeqgqJHiGKVAmtvHsUIp04Y7dy5VY6p1ejA4TTvTzeHwyB47iDMXzsNf204gN/f34MtW7Y0KiiSSCT45ptv8Pbbb+Pzzz/HRx991C7rZi1btgwJCQnYsGEDpi+fAHsP27p3qoMDUdEY7uUBa4lJM3jYtjg4yDB5Uk/8sfUSNPcFRR9+MROenp5tsrKwtaCBEYVCqRe5qQUQitmlJRoLwwDLRw0Cn8vBFycuolL9aCaHK1YpsDHsAp7u3AseEvaKn+amrLACPXo0b/26kcP90WOYP75b/geu/tv4XFUSiQTfffcdMjMzMX36dFy6dKkZvWxe0tLS8NJLL2H+/Png8bl49YdFePHrZzFv7XS8/vrr8PT0bHCfeRVynE9KwbyerZOfqaUQCHhYuHAoDh0ORWpqlbZIZm6CZSvHQq3SYuHChSgrK2tjL1sOGhhRKJQ2YWKgL5wtzPDl8YuPfGmFuNJ8fB56DvPcpsHFpPmKldbGya3nMW3aNJiamtbduB6MHxOIcaMCsOurI4gLSW50P6NGjcLff/+N6OhofPbZZ9Dp2jYpZn0pLCzEzs8P4oMnv8Kd0+FIDEtFUVERfvzxR2zYsAHDhg1rUH+/3QxBLydH9G7GorWtiUDAw0svjURaaiHOno0CAFjbSPHW+1NhayfDx+v2ISMjo45eHm2oxohCoTQIrYLUpvAZMqhhpOTIT7kTqcWodNCjp50DJvTxw6rTx1Bqq0WnP8m01Eo7cp/cIFKno7RhT80wRrmQ9GLSL60p+RwoNFppz9QSm0mvkE/FDhWkX2nSmqKgkakluOB9CnPdxmNL8hYodFXvqUBJaoZOpPiyD3Qf7qlkJkq9gByly88uhVwuh1QqRUVFla6IUajBza3J/yMqIqdyRGfDWcc5q9uJY8eOwczMDDOmDUdycuODoqlTp2LhwoV46623EBb24JVKRYPIYKEwjX3SjRUw+XIyANRoSE2NscaosDs72aVtAdlHcNFTrDaKCiWuHroNAOC5OOJ/F09hwrwB+Omb2cjLLMIHobegtOKiqIcYOc5KSFOM9r+Xfkql0uB/567hxeF98fq5o8hX1OQRqnAnr0HzaPLdGuuDOEaDqMZ6IgAQF5DnUCMhO1FYkcewSGDrBMUpJQAAE4kQi1aORWFMNnZ9fQwCgwFd+3ph5lsDsXP3Jnz22WesfTsiNDCiUCitigmfj5eD+uGX0FvIq3y0NEV1cbv4NtxM3DDBYQL2ZOyBAS2jrblfs6PT6SCzlEAg5EGtqt+KQR6fi+1/bIeZmRmGDRsGubxxn4NMJsPChQsxYsQIvPDCCx1qJEGt0mDflvM49vc1BPb3xgdrRgMM8MmssZj9/Y6H7nszNRM+GTZYP3gU3rl0GrmVFQ9t3x6wd7bAK+9Owd0bSdj99TEYDAY8/foE+Ad5Yv6CGQgPZwfXHRU6lUahUFqVBYE9EVdUiIvpqW3tSotwKOsQ7EX28Dfzr7txMxAXF4fi/HJ0DaqfJobD5WDFj4ugUCgwZMiQRgdFDMPgq6++gkQiwfz58ztUUHQ/CrkK109FYu3uE4hIz4GLlQxzB9St8fotIgRHk+Px8ZBR6GLVdGF3S2LvbIGX3p6EfdsuY9eWCxj1VF98eWAF7F2s8OkLvz1WQRFAR4woFEor4mFrgWFuHnju8N62dqXF0Bg0OJFzApOdJiO+Ir7uHZqIwWBAYW4ZONyHP+daOphjzprJcO/ijOgbiVjw+gLoG5krimEYvPDCC9DpdO121Vlzk1NSjq+PXoZSrcWr4wbiTkwGYjPY5Uf+Q28wYF98FIqVCrzZbyj+iAjB6djGT1e2FN26OuOZib2x/88riApNwyvvToYJn4MNL/6O/KySx+KzNYYGRhQK5YHo1TU1yfRaLfh8Lpgy8mfjXIo3YRt05A263K9qeocB8PyIfjj+y03YnS7H/RltcvtKyOMa1atVOBrdwGvJhN25fwphx2WROXOYPDFhV7iSP/jSFHafZX5mhG2aQmqh7G6R+pbEPtZV/5cVwce0GG6i4TAYjhJt1Dry/NmakNMscmtjvx988/0PfWkZ9Pn50KZW5VGS6Um/SronYO1nn+H27dv4ZPW7uHq18Yn5AgICsGbNGsjlcrzzzjsPvXF2XfkVYed2Iv1iJOyViO6dyOSIeeWkZsi4Np+JiPxMjK8dAEAlWS9MN4wc8alwIXVcBbUtKuNWXYPfJ9zAhD5+WDl5CJZ+swfVb9/o8uFWVPl5MToVmbllWD14MLqbOGDL1VuQ31uBWdqJPHcl/uR7k6SQtoa8HAEAckeyjYAsNQdxAXkMYUFVCgaGAYLHBWLYqC7YtmY7SvJK8fIHTyEjNh0zNzzbqKzgHQU6lUahUOpF3K0k9B3fA1Zicd2Na6GThTUsRGKcPxvdzJ61Ty7khyPIyqdVjpWfUQhXv5o6XZa2ZvDv5YERU3tj3oqx+O6773DgwAG89dZbTQqKZs6ciQ0bNmDbtm1YsmQJcnNz696pg6HW6TB//z9ws7PAK1MH1WufpKJivHbkKAQ8Lr6ZPhHj/DuD18y5qBqCh5ct1rw3FT16e+DbDUeQEZeNWWsmIzUqA399vO+xDooAOmJEoVDqSXZSLopyisHnsFfG1IcJnj44lhIPvf7xGJqPKE3FAs8xMOPJUKYtrXuHJpCXVoC5b02DR4ArVJUqdOrng+SoLJSVyJEck4X1P61AdHTTAlIPDw8sWrQI8+fP73DV1BtKZnkZ/jhxC3NH9sTliBTciqtbX1Wp0eCL05fQw9kBT/UMwMyeATgQF4PTiYkoUijq3L+p8HlcdO/kiOlz/GDvYI5//rqKKxdjYW4uwZrfluLavyH4d/MZ6B/x1BnNAQ2MKBRKi8NjOOjv6IqV546AXcyjY6LWa5GrLIGtyBZlFS0bGEVejkVcSBKKc0pw93wUDv8TgrSEmtGc6NSmBUU9evTARx99hG+//faxD4r+48j1aIzs0QnvPTMGr/90GLd1ufVag3gnIxt3MrLRzckeI7t646cpkxGRm4craam4nJUKuaZ5E53yuByM6uuDCQP9USZX4uLeu7h6MQ56vQGDR/hh5rwBuLrrMg79dKpZj/soQwMjCoXyQLgyUtTA8PgwSHQwMDVaEROxmmij05IjSua2ZfA1c0QFSlEpS4VIxy6XIMkln1Kzhxs9tQqNkgWq2KNWhZWkTsnKnNTuqPuTT+XGObzlHuys3iXZpK+uJWQbfjnpV7GSzHN0tygHHHTH7fyaY4t45JL6u6lOhG3nTYaO5qVkPS07ZwvIZDIo7htlOFj6Bw6+8gfL/+Zg7ty5ePrpp/Hee+8R9dlqY0zXtwg7rqfRSIiKvOWYSMkaeACQWWRO2OamRjmuFORn4GhK5poK78MW4hT3didsgdFxtWqjXFy1zHJJpUZaptN6vPv+Pnz1/pP4cN5ohNxOwQ+/nKkeEc3vzr6etPddTnczcnAnNwcWYhH6ubliuIcnlg7og5iifITn5yK5tBihuhyo7qtPyFGzdXA8eZVeyNXSHAzDQHivuUwigp+rHfq7OaFcrsIvv55HbEIuLh5cDaCqJErfoX2x/tM3sW3btsdSZP0gaGBEoVBaHF8zR0SXZbW1G61OTGkWxjh2bdY+fbu54vjx4ygpKWnWfmuja9eumDdvHp5++mnk59ctAn/cKK9QIi2zCEIBD+bmJlj5yhj8uPksKirYAd+DKFYocTQmDkdj4mDixEOAtR06mVvhKZ+uWNl9EFRaLW5lZgEwgLlv0YGdVAJHMzNABwh5XCjUGpQqVeDeO7Reb0B8Zj52H7yN8JjM6oCNz+dj7dq18Pb2xpNPPtmhS3s0FhoYUSiUeiEUCyAQ8YFG6DJFXD6K1R0rmWN9UOrrl3CxoajV6robNRGGYbBmzRp8++23NCh6CH/uuYFnZ/XH+s8OYd6s/vjo3Wk4cToSB8pTUFLZsCK8pSolLmWm4lJmKhAJWChMYCMxgZu5OQAyu7tGp0N0bj6YiqrRrjKlCgYDICoi+zTNrrkGBXwuDh8+jISEBCxatIgYdaTUQAMjCoVSL0bPHYiM+BzkCRse4HQ2c8C/mY0vTvqoUqSqQCczezBgWiwLdksxd+5cKBQKHD16tO7GjzFqjRYajQ4GA7Btx1WcOhuFGVN745vAAGQWleF4eByuxKc2qh5guUqFcpUKSUVV9WtqnUprQGwzbmQAcnKy8dJLLzXYl8cJGhhRKJQ64fG5GDixJ7ZvOAj9jIbvzwWDksdwxChLUQIe07hVfA/CzskCKfEtW2Ji6tSpmDVrFp5//vkWPU5HJDunFN/9eBolvcTo6+WMl0cPxIvB/XE2KhG/hYRU5zBqbYKH+GFIv04YM3Jmmxz/UYIGRhQK5YHkzq4qa7FgTBBiDEpc95VgsD858lOhJcXCFRJSdBqfag+Vko+SIlMUlihhzmc/OatkRgVes0lb6USOtsjs2fN5ednmZB/pZKY/YQ+yamylkYhXW0gKpwEApqS4WlD28JtaRYQla5vlCDmmu90B7o0Y/R7T7+F92JPv3SyTXAU2cLgPVq7f9dA+msJ/BWGXLFmCrKwH68LG2i1lbYtaLiNsbi55iwnoTWZ+TiiwZvXB5ZLXh4hPnnOdkfC+QkN+jvb2Jaw+i+Vk7i2xkOyzQk9ew9wYUsgPAJVcsg+H61VZzU085eCNkuP88TeI14NPPoUkAK8xu+Dq54QRswdix/Tp+Ouvq7h0OQ4GA5A0w+gWrCY/e1E+OUKktGK5BZ1RWjHjYsjCw7cwZdlYdHW1wv9mf43iYqPqyRQWNDCiUCgPRMTnYeOSSZCr1Fi37QTkyoZrWxgAViIJtI0sP0GpwcXHAZXliha7ud0fFGVmZrbIMR43DAYDUqMy8Ns7O3GzQIm5c/rDz98Rmzefb/FjMwyw4KNZsHO3wVfP/4TKMqopqg80MKJQKA9k9ZPDIFeq8cZvR6BtZOI3CV8ACV+ApLKiuhtTHsrcNZNxfs/1Funb398fL7zwAhYsWECDohbi7t00lJZU4sUXR8LX1wEJyGuxY/m62mLG0EDYFSux4Zn/0aCoAdCSIBQKpVaCgoLgZC3DG782Pij6D61R7a7HCaaZfmb5Ah6cvO0Rfim2Wfq7H4FAgPfeew9ffPEFDYoaiFDMzlf0MFJSC3DiZASmTesNO4lpi/gU5OuC1bOHIz2vBO9N+5IGRQ2EjhhRKJRqej/3JQAg0MsBK+cOx4asg9CMJYt6WgpIEbW/lNShXCn0ImyuQAeGA3DvJWlUWrNzXzNGcRMngMytwhSQiRYrkszZzpuTuhGbu2Sn2r7k62U5ZHFSgQ375iG4Qd645E6kvoWl5/AlM1x3NrNDjlKJsDIyieP98BNIkYjTaXJk7bh8KwDg2ulrKFLnYsudDQ/sq7GsWrUKcXFxOHny5APbjJbMJ+zkFzqx2owIDCPss6H+hG2sKdIb2KusNBmkvifHqEiq2IxcAq8zkK8b64kAgGekW5IIyClh1XVSG2YRy34QkMaR1+Sx3B9hb2+Ppa/+hB+2fcZqf0pfiw7sTNW2s2eA7777Dl8ET8DLfxysfvAw1hBVeBh9MUzYDxidPq6ZVuVwGPhN0GBS7154Y9lCHDt2jO0DpU7oiBGFQiHwcrLC81MG4Ms/z+JucXpbu/NII+TyUKAqbHI/VlZW4HK5GDFiRDN4RTJ27Fj06tUL69evb/a+OzIrVqzAoUOHsGPHDvzzzz8N3n/Dhg3gc7kY3923Wfzx7eaCDzcvQJcuXbBs2TIaFDUBOmJEoVCq8Xa2xjsLRuPvE3cQlpgNdG96n2q9DgIuF1ZCCQpVj9eSfVeJJZT6+mdBfhDr169HfHx8syfk6969O1asWIGXXnqJJvurJ1KZGCPHd0PQCBu8++67jc7zlJGRgY8PnMWHT45GVEYuEnIbH0APGReI6YuG4NTe21j23kJa3qOJ0MCIQqEAAJYuXYoFs4dj84FruBqR0mz9qvU6pJYXw0b8GAZGJpZIq0xqUh/Ozs7o1asXZsxoRAKphyASifDee+/ho48+QkJCQrP23VFx97bFyvenAADeef+1Jie/TMorwv9OXMHrE4dg49FLCFU1PMP44HEBGDOjN9a/vB15WSU0KGoGaGBEoXRQjDUhAMB4uRJ2xpgqbcX8wT0xoYcvTlTuRn6/UHjfS7VTombrNa7nuRN2Txtyus3HjFxpkyuXokiXjz6OMuQjCWUu7D4leeSPuSKL1PYIHciASitl/3QZp1HMftIoB1ElmafIyrmEsEvL2X5VOpNaE5cdaYRdONKNsOV5pD7Gp7sLvryWipiiztXbeBVGeYqMitXroxOr/2YYBm99/RYuXLiA1NRUln9NYdmyZbh79y4uXrxY6+tjzJ4j7JivySkfjpA9wnTumlFdOBmp61KU1ZIryghhKXl+rP3IZJbZ+WSupBIe+bmpytkaNlUleXWoKshCs51+jidsfUXN9cYwDEbNGwTBAgH8/HzwwcdrsHfv3mYZYYv8/DVEAkgYPhzLly+H6o1IaDU11230cjuivc15MjeXq505Rs/zwZtvv4wT50402R9KFTQwolAeY2zMJFjzxDDo9Hos/mUPvMaHtshxMioL4SJhJ/PryLiZmcNMIERiSePTFLh3dUanTp3w2muvNaNnQI8ePTBixAjMnNl8WZAFHC6kYlIkbxBVBUYVGjWUupapG9dSSC0kGPZkP4yeNxgA8N4Xb2PlypXQaJo/c/WFCxcwffp0fLnzJWx8YxdS4nLqtd/4Af44ePAgTp8+3ew+Pc7QwIhCeYyQysRw8bDBqEk94ORqBa6DCf69E4OtF0Na9LjRZZkIdggEA/YqpI5KNxsH3MrJhKYJiS2D5wzGoUOHEB4e3mx+iUQirFu3Dp988gnKyxtREfg+nCUyDLT3QIClPTrJbCBXaMmpHF7V31KBEAmlhbiSnYpLWSkoUrVvPVPwnIEInj0QSeFp2PvdMVzYdxNHS3e02PF0Oh1efvll/PKpO1Z8+hS+WrMTqfG5D92ni6c9Ar0dsfHNvdDpHt90GC0BDYwolA4Ih8OBtaMFhkzrg+5D/WFhJ4NBb4Ca4SAtKQ+ZqQXYueUCYnuLUK5suji4LpIr8iHhCWEjlKJ5J4TaL/0cXHA+I7nuhg/Azd8J3j3cMffNH5vRK+D1119/6BRaXTAABjm6Y5ZvAOxNpLiUk4yzWYn4NuIScjPI0RTDvak0K5EJAqzsMdjBA4v8gxBemIO/4kIRWdRyCQ4bg8zaFIvenQYBn4NvXvkd2cmt55/BYMCezRdg52SB1zbMxLdr9yAaDx5lWzypPxIzChAVFdVqPj4u0MCIQukgBCz/ChYSMVZNHgI7c1NUGrTIK5djw60wRN+o+oHXilBT430oA50TmXcnttiWsI3rVAGAi7SEsCOKHQhbrSV/VtzMqvKspFXGY5yLI77wYAtMLWPIJ16JUZ0zTQmZc0hnXo9RGKOcL4piMhGfgkdO+5jVUn9NEEa2Ke/jQtiFAWR7cXrVezcXixBgZoevblwCx4TUzAiKyVEzu6Okbkl77+nfwd0G0dfimnXq5vXXX4enp2et1dWNa5/Fr/QmbHEyA38HWzw/pA+4HAb/7grHtbBk3D9AZGZFvleuukrvY4AOYcjE+YGJEHJ5mOjmh7d6D8f1vDT8FHkN6vsSgGpMSb1ZdjR5Ter55OvmdmR5FOuvyc8MAAR5RiVUMsmAR1chh62rNd794wXodXr0Ce7Z5NG0xnA0/jMcnfcZPv/8czz7zjAEns7Fsd03oaisyrtkyKn67vQf3x02OgYbn/+Diq1bABoYUSgdBEtTMd6cPgLhqdn4/MB55PGUrDZt+RN6tTAET7pMAHC8Db1oHab27ILLCamQq9QA+z5dJ+Y2ZpjwfDAO/tB852r58uXw9/fHsmXLUFlZ2eD9p/XogondfLH1SgjOxyfDLLFxV5NKp8WepHCcyojHsq4DsLbXSHx0+zQRHLUmDMOg/xO9MHHxSBz77RxO/3WpTYKi+3n99dfRp08fvP3K1/j090U4fyQMx/65if8k4TOWjcaRPy6gorThnyOlbmhgRKF0ABiGwaxB3ZFVVIat5+7phWQP36e1SapIBZfhwNfKGjGFBXXv8IhibiLCKD9vrNp9pNF99HuiF2JuJOLG0dBm8cnJyQnTp0/H5MmTIZc3LGWCnakpXurfF+ZcEdbuO4Gs0uYJGkrVSnxy5yxWBA5us+DIuZM9Vm9aiNSINPz9+UGEX4xp1eM/jBs3buDH9YcglYkx58WReO9/86EsrQCHywFfyMfF/bfa2sUOCw2MKJQOQHBwMHp6OmLVH/+2tSsPRA8DQoojMcXHH59eudDW7rQYU3t0wfXk9EYHEG7+znhiyShsWrWtWfxxdHTEpk2bsHHjRhQVNWyFnJu5Od4LHoGzScn451IYNE2smWeM3mDAxrCLWNltCFZ0G4wNd841a/8PgsPloGs/b8x5/QlcOxqKvz7YDb2+fU5JlZcq8NMnh8HncyFWVAW1GpUGleXsEWFK80BLglAoHQA3NzfEZxeiRN6+fyzP5V1Bb0cnuJi1s+GsZsJcXDVatOtW41eRjZwzCLdPhiHycvOMXjz33HM4evQo9u7d2zA/vDyxYdwYbLl1G1tD7jR7UPQfeoMB/4u4AnepJSa4Nk95jIfB43GxZP1MPLF4BH77cC/++uLfdhsU3Y9Go0NpQTlKC8ppUNTC0BEjCuURZbRoXvXf/ry+iKssguI+narGuu68MUGepPDXy5QURkeWksJqAKjQkiLmobZk1uSIMkfCthHdP3JSjnMlIXhhqC++jqmZasqstCH2sQ0hb8J6PilYzu/BXvZvVEsUeg65gV9CJvnj+JAjOmVZZNI/AJCakceRO5J9aI0K1y6z643rVxOhuF0K83vbTLLJgqWCBDJHjTarxvYIcIVFDzHmzZuHQm3Ta6yJxWIMGzYMCxYsYL1mnMAx7vUasfVIL0/M8+mGd7YdR0ZhKcRg4HSSHG3SWLLFU9IkciqMl0ouOTfJIxNilj37X2FWBX5MPI61AU/gbkQhsu/T+Bhfx6IsUpgv+Yr8jI4lvMny6z8GDBiAlStXIjzqCtYtXQd9E1IptAbHoj9paxceS+iIEYVCaVX2p9+Eq4k1+lt3rrvxI8RQJw+4Olhi57HG54SasmwsvvvuOxQWNj0oAgA/Pz/k5uYiPb3+xYBHenliTmA3fLDnNDIKS+veoZlIrijAsaxwvDSgb7P3LRaLMX/+fKxbtw4bNmzAO++80+6DIkrbQQMjCoXSqqj0GmxOPIO57oNgzpfUvcMjgJjHx9LAvvh9/zUoVY3L8Ozq6wQHT7tmq4oeEBCAjRs3Yt++ffXe57+gaO2pU8gpaf2VWfvS7sDNQoZAB7u6G9eTAQMGYM+ePXj55ZexbNky3Lhxo9n6pnRMaGBEoVBanajSDNwtScVkl95t7Uqz8Kx/T0QU5iIqsX6lHGpj4gujcOy3s802kvHqq6/il19+wZ49e+rV/v6gKLuNlqtrDTociIzBmM6dmqW/WbNmYc2aNfjyyy8RHByM+Pj4uneiPPZQjRGF8oiiV9doVww6HRgdwLlP8iK0YpddUGeSIzTGeiFjTZGIyx79SC83J+xD5WTh0CdcIwj7QAqZBdFEUOXkwYwbWN9tDv7NvAWlP5mAL19vQdjW4WSwYHub5RZ0AiM9kD2pB7KOJN9LaRaZNNKklnhETsqlYNmbTAyov26L/h6uGGDhitX7j0Ntxn7WNNtHZiY+ptzOajNq1Ci49LfBsk8XsZ1oIAKBAKtWrYK5uTn+/PNPAEAw5ylWu5jvaqYyBzq4YZ5LN3zw92mUlFRADAYOF8jgyGCk2TJw2Dqv3L7k9WUHcuRHnE2KhnOiyM8ZAE7aJ+DnnpNhk2CCbHk5GCX5OXp8QQrbj5X9xuoDqAqKZs2aheeffx65uQ8vr0Gh3A8dMaJQKG1CvqoM1wvjMdGpV1u70mhcLGRYNKA3vj13FcWVjav/xTAM1q5di88//xxZWVlN8odhGGzcuBEWFhZYvXp1vbIiu0nNsaRLP/xw8mqbTJ8ZU6isxKnUREzr7N+o/R0cHLBv3z48+eSTWLJkCQ2KKA2GBkYUSgdBLODX3aidsT/9BvpYdUJns+bTlLQWTmJLrBs/Ar9evYXwrMbdfBmGwZYtW6DVahukBaoNHo+HX3/9FX369MHq1auRlJRU5z4upjJ82Hc0fom8joj09hNAXMhIQaCNfYP3c3BwwKZNm7Bjxw5Mnz6dBkWURkEDIwqlA5AalQEfW+u2dqPBFKrLsS35PJb7jYaXqU3dO7QTvE3t8br/ZPx29TYuJ6XVvcMD6NevH2QyGSZPntzkmmjr169H165dsWDBgnqNFIm4PKzsPgT7k6JwMTulScdubqIK8uBgKgV7su7BLF68GL///jv+/PNP7Nq1q8V8o3R8qMaIQnlEOaWv+fEPi7fFc4IlGA0n3I6sWpqdJzZl7SOUk7ea6EiyKKqVO6n1cTQtQ12c7kFqPMaFzX9oewsxWd8prvIuTuWp8GHPcQgricOhrPMoGZhCtLEPJv24kMgW5wrDxISttiCDg3Jn8ueu3J183eDATprXxSWbsMOTnBHs4o2Fnr3xfcg13A3Nwv0qLfN4FauPE7Voiv5j3rx5OHLkCCoqKh7Ypr54e3tjzZo1CA9nJ5dUTgoibKGAh4+9RiI9ugSnT8fDzCCEeRKpwZK7kXqhcmfyOVqawRZlGW9TOIgI2zSBXP5vlsxelSgffe/64OogtKmEwyYh8frxWjRFK1asQPfu3bFs2TIqsKY0GTpiRKF0APLy8nDhZgJenDsETEMes9sJt4uj8EHkT+AwDN7tsgRTnYbBlNeI6qstiJRngpU9BmNe5x5YdfkILjVxlGX48OGwt7fH77//3iz+aTSaemmUOBwGyxeNQGZhGTafvoH2WJzdyUQGTT3rptGgiNLc0MCIQukg7DxyG3HJeXhieEDdjdshCp0Sf6YewZcxW2HGN8V7XRZjmE0vcJm2/ZliwGC4bRDe8l8MhVaD5ZcOIVNe90jaQ/tkGDz//PP46quvoNM1vXBq//79wefzkZqaWmfbscO7gMfjttugCACshKaILctFXe69+uqr6NGjB5YtW4byNkoxQOl40Kk0CqWDYDAAW/65inXLxuFmeCry8GjeKHJVhfgj5TCcxbaY5Toa/a0DcC7/EJLlya3ui5uJA6Y6jwSP4eKHhJ04EtE8P5nDhg2DRqPB5cuXm6W/4OBgHD16FArFw1fGmYgFmDCyKz757hgMwoc2bVM8pFao0Kgf2sbBwQEzZ87E2LFjaVBEaVZoYEShdBAk/9yAAsDejCKsWTYWv3z8LzISjVblyMjcPTpTUgPCLSVHL3IGerCOI5hN9vlzSSDph4DU2QxxSCTsyFL2aiPjfEkRufZIgRaXMo5gjKM/FvnOQKGqCOfzLyJJngKRmH3TlA4lb47FclJzVGhJvleRBakpUldWreqzEIoxwN4dgx3c4W1hjoMZITiYEQoDDBBIyLxPOgFp869EsvwyxsLCAmvWrME777xTZ9v6MHnyZEzoNwUfz/m2Ol+RaiKZODNtdNX/T/p0xg11Dq4GlMDxHDnnWuFI3g6UVuRxhKT8DMU+7JE863Dyc5TEkKVN5L5kpypzVhew3WYClydkyCsrhe15E5w7+TqrzaRJk/DSSy/h66+/RllZ00bvKBRjaGBEoXQwbhwNBQC8/t18XD8ZgZ3fHYdO++jWhTqeFYUS5hSCLHvhCcfx4DAc/M5E43R2DHSG5ntfPaydMMalM3rbOiOiMAenMxKwMT4KSn3TVosZ4+joiLy8PNy8ebPJfZmZmWH16tX4Zs5mVJY/fLSIATDa0xtb7taSHbOdodPpYS6rXWPm4OCAF198Edu2baOrzygtAg2MKJQOyI2joUjJqsCbPy5A31Fd8eM7uxFzO6Wt3Wo0OoMO1wpv4FrhDXQ29cYw+3F4yr03LubGI7o0G+nyYug5JajUPXz65T9M+QLYiAWwEJrAS2qNgbZesBGY4WBKFH6KuoZiVVWQIbNo3qAIALp169ZsIuEPP/wQ+/fvR3563UVnn/ILQJlKhWtZ9S8o21aEx2Ri8dzB2HnwFrF9ypQpWLp0KTZv3ozdu3e3kXeUjg4NjCiUDkpRbhlen/Y1XtkwC0s/fBJ3LsRArtEjNT4XEbdTUFnBXlr+KBBXkYC/E/bB18weva3dMM21J0x4AtiIxCjVyFGgKkeWohgKNZnwUqvgQSYUwVtmBUuRGEW6cugMesSW5uJMdiyOJiZB1wpq5L59++L48eNN7mfSpEmwtLTEa6+9huGY/tC21mITTPfpgjVnm37c1qC8QgWZVEyssJRKpXj77bexYMGCWlMSUCjNBVOfRGD3YWAexbXAFMpjDIfDgZeXFwIDA2FmZobg4GCYmZkhPj4eV69eRWhoaPUIxmgJmYOI8XJl9Re3htTuWFjICdvfktQgJZWRuhIzITtfUF0Y51syCNhTaG4uWkh5IrhKLGHKE4HHIdtUKITQGwyIKc1FiVqBUjXph6mEHSiWFpPTOdxMUqfEM5q9cj7Lns46feHtGh/d3LBlyxZMmTKlSbmLPD09sWnTJrzwwgtISkpCv9lfEK/n9iV/p9/xH4ziCgW2nqmZRrO5TX5uFe7k51rk+/DVgBZx7HuHwoo8rmkW+Rnw5KSGTWHLfjYfnFaOeWun45+vDuHG0dDqfF1ffvklrK2tsXDhQmi17Bp+lI6PwWBolQCEjhhRKB0cvV6P+Pj46uDn999/R2BgIGxsbDBgwAA888wzyMzMxOHDhyGJlKEot7SOHtsnZRoFyjQKZCqqVMICLnkTLipr+7xI8+bNw549e5qc0NHHxwfh4eH1K/thJkNPLycs27S/ScdsDcylYsx9axR2fLIPd85UFSOWSCR488034eHhgZkzZ9KgiNLi0MCIQnnMMBgMuHv3LgDg1KlT4HK5mDZtGkaNGoUx701E5LV4bP94HypKKuvoidIQxGIxRo4ciSVLljSpH19fXyxfvhwffPBBvdo/4eODk6HxKFe0/6nTSYO7IuJyTHVQBAATJ07EwIED8eSTTza5bAqFUh9ogkcK5TFHp9Nh9+7deOWVV7B22pfo1N0dnxxcDXv3R6d22aPApEmTEB8fj4SEhCb18+233+Ljjz+uVw4kDsNggIsrrkbXnfixreHzuOjX1Q3ndl6p3ube1QWrVq3CypUrUVBQ0IbeUR4naGBEoVCqKS0ox8rR67H9k/14eeN82DtZtLVLHQaxWIyIiIh6FXh9EA4ODjAzM8P58+fr1X6EhyeKFAok5tS9aq2t6dvVDblF5UiPrSlr8sSSUfjtt98QEhLShp5RHjfoVBqFQqnmhHxr1f//bMXNirH49I0v8emzP6Aop0Z3JIzpSexjNoy86Q63iCHsqdakyHdHbj/WcYOtogh7S/JAwjZ3JXVPJXlkokoAKC8nxcMDPEj9zcV0H8IO6kK+niU3Y/U5wJ/Mtn1C4EvYklNkEVR+VBqrj//w9/fH2bNnH/h6fXjnnXfwv//9D2P93iS2J3cmn3F59yRM4906YX9IFGyvszNDq+zI86XnkbpWrlHmA9MMMqCTxbATK4otyT755WQnFa6kzsvqdM1I1sRJQ3Bl6/VqsXX37t0h8mawdc1W1nEolJaEjhhRKJRaOXbsGPIzivD+P6+Bw6GrUZsCj8dDv379cPXq1Ub3YW1tDR8fH/z111/1am8lMYGXjRWupbT/vEVd+nhCam6CqydqluEvX74cp06darJQnUJpKDQwolAoD+TbV35HcV4ZJr80pq1deaSZO3cu7ty5g5KSkkbtLxaL8eOPP0KpVNa76Gygoz3uZmZD3QxFalua8XMH4sTOa9Drapb3d+nSBYcPH25DryiPKzQwolAoD0RVqcLxP85jxMz+sHGxqnsHCguxWIx58+bhiy++qLvxA/Dz80NlZSUmTpxY730CHOwQkZ1bd8M2pmtfL5hZSnDleM1okYuLCzQaDWJiYh6yJ4XSMlCNEYVCeSAnlNtxYud2aDoVYPlf8zB8+HAM+pHU1cRadSbsbxXDCfsJ1wjC7mvBzr3zTzapW1JqyJ8mOympkRE4sEdBCktMCVtrIJ/7BgfGEvbVVHfC5vPZfUZwHAjboCf7tL5ZQtjHCn5i9eHu7o6KigqkpzduSovL5WLRokUICwurFm7HLCWDVK6S1P/wNRz0dHbEkag4AIDSgdT+AABHRSZf1PO4hG0eT75umkxqxTQyMtklAHA05D7Z/cnPxDyZPMdn8jbhuae24eNv38aR1H3V2xcvXozt27c3SahOoTQWOmJEoVDqZPLkyQCABQsWtLEnjxZ8Ph9vvvlmvZbWP4hJkyYhKCgIW7fWX4RsYyqBTq9HQkH7Xo321FNPoaKiAvv21QRFNjY2GD58OHbs2NGGnlEeZ2hgRKFQ6mTq1KnQ6/UIDg6Gu79TW7vzyPDyyy+jrKwMX375ZaP7WLx4MV588UXk5+fXex8LEzEU7TwZormZGEuXLsWnn35KbF+zZg0YhkFxcXEbeUZ53KGBEYVCqZOMjAz069cPd+7cwatfzkXX/t5t7VK7x8/PD2PHjsUHH3zQpCkhExMTREdHN2gfd0sLROfWP5BqC2ZPCcLhw4erS9X8h1QqxRtvvNFGXlEoVGNEoVDqicFgwLp163Ds2DF8/vnnCEyyw/z58zF243KiXX4wWfB1+7A+ZEfFgjqPxejJ9AAaV1L/oq+lluRIb1JDFF9mTdjWIrLESSd7MnAwF7ALwN5MI4vouvxO+nEitPayHAzD4OOPP8ann36K8nJ2DqH6MmPGDKglDvCd8yH09wVXJWoy0NILSVtroYVOqofasWrUSCsi/QYA0zyyiK5ObHSOjfIaVXiQ2jJZCFvYrfAitU86o/J0JulVS+979PGEt60FFn/zDfF6//794ezsjOvXr7P6plBaCzpiRKFQGsTVq1cxcuRIeHt74+LFi+Dy6M+IMaNHj0ZZWRnOnDnT6D54PB4WL16M7/ddIoKi+pBSVgw/y/ZZ0kUo4mPyzD7Y99c1VFbWBKteXl749ttvsWHDBloTjdKm0F80CoXSYFQqFYYOHQqdToc3v38G42b3p0kg72FqaopVq1axtDMNZcSIESgvL0dGfmndjY0oUinAZdrnz/uoid2Rm12KkOuJ1ds4HA6WLFmCO3fuNEmoTqE0B+3zm0OhUNo9Go0Gw4cPx1/fHkdAPy+88d18TJg3ACN7dYKZhL2U+3GhV69eiI2NbbAuyJiBAwc2aCXa/RgMBkj4AnCY9hWsOjpbYtjortj7J5kBfOPGjTAzM8NLL71U7wSWFEpLQTVGFAql0RgMBvxwdDU2HefAz88PwcHBGMV7AsFBAdj/v+NICE2FzWGyrpne2ZbVD6Mhb4Y5QywJ22FjCWGnzCe1PwBwKr0bYUuTyKAgbwQ58qJUkFonV1v20nanbULCFpy5w2pD+OnggMWLF+PAgQMPbfcwRg5ZD3MLCZ6YOBnxUdYQPZnKaqPLJov7cgrJ95JbWQGdQQ83qTmSy4qhE7IDJJ2I/PkX5asIW88nn5u1Rhok8Nm3j6zBpB9WkTV5jWwtpVi6tC/2fnEQeRfCwKAqiPzuu+/A5/OxYMECOoVGaRfQESMKhdJk9Ho9IiMj8c033+CnN3agJL8Miz+Zg9Hzh0BmbVp3Bx2APn36YOvWrTh+/Dj27NnTpL66dnVGYkIusrNLGrW/AUBEYS4CrO2b5EdzYWspxeqFwTi+7SKu/nsHXB4X7v5O2LhxIyIiIjB27FiEh4fX3RGF0grQwIhCoTQrqkoVtry9E9s+2gvv7m744M+X0HOYH4Qmda9GexRhGAajRo3Cxo0b8cEHH2Dbtm3Q6/V17/gQegV54PLFuCb1cSc/C8EubZ9WgcflYPWCkThyIRKXD4WAx+fiqeXj8NoPC7F582YsWbIEhYXtOxEl5fGCTqVRKJRmx2AwIOJyLGJuJGDw7MHoOyoAUxYPx8/r9iBN2XHKPPj6+uKFF16Avb091q1bh4sXLza5T4YBLCwlKC1lpw9oCKfSEvC0bw90tbJDPtom8OBxOXh57lAkpBfgVkQapiwJxsjZA5AQmoKPn/0RW8Map6GiUFoSGhhRKJQWQ6vR4fyB2zh/4DaGT++Dlz6dhTt3M/Dv3lsob+KNv60ZOCUIfRfMx86dO7Ft27ZmEw139nGAWqVFWmpBk/oxADiVnoAZ3l3xI843i28NZemswVCqtbh4OxFrFgUj+1ws/v7iMK4cDmkTfyiU+sA0MCOrgWlnqxwoFErrMloyn7AZLinKPV722wP3tbCwwA9rfkX34V1x63godn91GJVlCuiHdCfaCSKMBMfmZoRpKGSXi2DE5Eq43Cc8CbsogJzeGt6HLG575Vggq0+3D28S9knNDsyaNQvPPPMMlEolli1bhszMTNZ+DSGY8xRh9/96Pjq52eCHv6tGn9RPF7H2KcwjzwfURqqIewkyBRwufhw9Cb/evo2rGWQRW/Noch9RkVHR2DQyIaaxWDt1PClMBwCvnWXVfwdP6IbOPTlQKBQQi8X4888/sXv3btY+FEp9MRhqyezaAtARIwqF0moUFxdjy1s7YGImxpMrn8Dav5fj8v6bOJZYDI2mfS/TZhgGU6ZMwTPPPIOlS5ciJSWl2Y/B43MxfmgX/LDjQrP0p9br8NPdm1jWqx8yysqQXtbwnEgNhcfjYvLMPug9wBupWWHg8XiYM2cOkcyRQmnP0MCIQqE0CqFYACdve3D55IhRWIIDsrOzH7pvZZkCf6zbBRcfR4x5bjg+WhCMxMRc3L6dgtu3klvS7UZh42KF5z54CmmqeLzyyistEhQBQP9JvZGZW4L41Oarc3YjOwMHRdFY0W8A3jpzEkqtttn6NsbKRor5S4YjaGAn5OeVYtu2bdi3b1+LHY9CaQloYEShUOoNh8PBxMUj0HNEV1jYmCEzMRdabc1ID8MwmOwwEOnp6YiMjMR333330Nw06bFZ2PzGn7CfNRy9gzywcNFQ9O7tgW0rtkLbTkaQbJwtsfiTObh5PBSrf32xRY81a/Vk7AtNavZ+98VEwd7UFO8PHYl15083e3DE53Aws1sA5j3hD6VSg+sX4/Ddp4dx7CYNiiiPHlRjRKE0EWONCACc0u9qA0+aTm3vxdLeHFNeHgcnb3uY25ghJasMh3ZcQ1Z6IXRaPfIGksVaXS8XoHOgC4KG+cLLzxFZMRnITMhBelw2bp4IA3TspewnlNsBVFWk/+KLL+AgdEF6bBauH72DzLhs5BaRyQd1pWWsPiqf6EnY+XPJqRsOQ/7WOX3NJ2x+OlvLc1f5F77++mscO3YMv/32YO1UUxjruAxAVVD59b+rMPoSqcMJ6pHA2ie+mDzn5eViwtYpyGdejlALBsBS/wHoYeOE78IvId1A9ss1Oj95iWRBWJiSwVSnX6rsPv29MfXJIMjMTZCXn4jPPvsMhw8fbnLKAgrFGKoxolAeQaQWEvQe0w2WWiAvLw9XrlyBWq1ua7caBMMwGDglCF0G+sDMSgonb3sc/fUMjmw+jfKiCiidHB+6v0qpQfiNJITfSIKVnRm8HE3h0cUZ89dOw5CpfVCSV4qk8DTo7wuQzNVqhIeHIzo6GlOmTMFM1yVw9XVE0NgemLFiIrJSC6HV6hB1o6q+lr5SgeykPBRkFaGokUkQ6zoH3Qd6Y9nMX7B///4WC4pYNLBYbIO6BvBD1BUMc/TCGz1GIEvVFQczbyOqNBM6Q8OCGD6Hg66BLhg3sRssLE2hVmmRnVmMqTMmoaiIHWBSKI8SNDCiUJqIQMSHT5A3eo7sij7jekCr0UEWwoO/vz+EQiEqKyvx888/459//kEDR2hbDU9PT0yYMAGBJn1h5WgBp04OOLL5NPLSCpAcnkZMa3Gd6t9vYW4Z8kPjce3IHez++gi8urnB0cMW1k5kyQ8vgxdWrVqFrKwsAIA1HJEcnoaE0GSEnA6HS4A7XDo7IHBAZwCAQaPBuOeGgy/iI+ZGAkoLypEkE6O0QgmDwYCElHwADRf7OrhawdbJAgPGBMCnmwv+t+ULbN68ucH9NIaA/t4oKaxo8eOcy0rE5ZxkPOXnhQVewyDk8HC3OA0xZRmILs1AkVoOA8jrlMMwEPMECLS2R6CVPQY4uIHnpsGFs9Hw6+IMlUqNg3tv06CI0iGgU2kUSiOxsbHBjBkz8NK8V5EalYGYmwm4dfwu8tMLq6fSrK2tERwcjFmzZsHJyQmHDx9GUlKNhqS8vBznz59HcTF7+XlL4+LigqFDh0IkEuGpp57Cvn374FDUCYpyJcIvRkMpV9W6H9efzKZsPJVmd5oUXuuzc8kOHjCVZmlpCbG4akpojPlTcO/qAkdPe5jbmoEjIpfiG1QqcHhceAW6QalQoTCzCNIAV/C4HHB5HDjaypBoKMD1glREFGchs7IElVolitQ1wZLT13xIpSKYyUzg7mGN4X29IJYIkZ1agIykfJzYfROHYjc8/CQ2A/9NpU1/YSQKc0rwoz+ZjLG5ptKMsbCQAwA8TW3RReaMLjIn+MocwWM4iC7LQmVpVaZyMY+PTpZWMHAMiCspQHhhDsIKsqH6PBPPvxQMpVKN3385D73egFOX1zbw3VMo9ae1ptJoYER57BljsYjc4EQWOdWbVt2UeTwO/Lo6Q+AsRe9u7vBwtUJoRAb+To9BZjGpeTFLI2/+OgGD4D6dYW0ugcEAKC2rvkfuVubo4mCLjIJSHLkTi9zScsRmVyX2c/ohlOjjhLx5sgRzOBzMnDkTixYtwvHjx1FZWYnr16/j5s2brLajRfPYHfiS+YEyxpgTtuMFOWHz8slzo0vNqNNHrp0NYeeNcyfsoiFKAICzRAYPM0t4mVkByprVcU5SM3S2soK3uRWEPB50ej0EXC7K1CoUKStRrlZBlKCCqZkI+dmlyErJx98nv29S8dfGMmTiZ2AYYMULo3AzNAXb7MhSINaO7CX2xnmMeGJS4M7hkL/rWrVRAVgAjFHqI628KpiSCURwNzOHwLSmz8TyAsg2ke2H9VNAKBRi7dq1VE9EaRWoxohCaQdweRx08nfEyLEBcHKxRH5uGQrVaty4k4z//XYWWq0ehX71+xqdulFzwytzr/l+SwR89LZ1RB8vF/g52aKgXA6FWoNclQXS47KRFJ6GipLmywGzYsUKjBo1Cl988QWOHj3abP22BRnyUmTIS3ExOxmGUqNabBwD+BwOzIRVga2TTIqn/bsDAHwsbZCWkY3rsdm4fDwcJQUVOJbc+kHRf1haSODoYI6rvyQCE9vMDQBAqVqJuwU5EGrIEUMZqs4vl8Ng2BBf9OslxuTJk2lQROlw0MCI8tjD4XLg36dqGgUAeA5W6NLDDd5+juDxuMgrrMDl8zE4tOc20lMLoLQV1dFjw5CrNbgcl4rLcamQioRwtDCDrUyCbkI+Rs0dBGtHCxz86RTO7tvx0KXv9WHMmDEYMmQIli1bhoQE9hRNR0Oj16NQURVUFmrkeP3CMQBVGaEXhtvB0d0ab333NJKis3D6+W+bfH4bC5/HhV6vh1bb/oOMoN4eCB7RBfPnjoVC8WiXdaFQaoMGRpTHDgcHB3h6eiIgIABSqRQzRj2N4rxSFN5b3WQwNUFseAb2br0MeYUSCi57GqKlKFeqEJudj9jsfCTdm0rz6eWJsc8Oxd8z/8bRo0cRFhaGlJQU5OXlNahvS0tLvP/++1ixYsVjERQ9DLVeh3MH7wAAdm86iw9+XYjnnnsOP//8c5v4M2taHwDtX6bg7WmLGVOC8Mvv5x/7a4jScaGBEaVDM9ZuKYCqUgsB/Tsh4MXB8HSwQkZ+KWIz8qDR6rAuPwQxRQXAvdJPMpcSwAXAiCpbfVVG9KnqSj4l+zulsY6bVWHG2nY/SiONiL19CatNvFO3qv8BHC4LwYQYewQEzcLkGcvg7mqNiCN3cHH/LSSGVR3/YTXKAGDkyJHIulEEyXUXBHNcALDzLY3izyZsfS2pBrJHmRO2IpA8H0k2JuR7u0YKg/leRvlxAOT1JKfBVEZ96tTktI69DTuPkYUrOd1YrCD9yCuUEnbhkJq0A8cT0qBtwYzQD6N4vBh2gVZ45dhR5AdzwfDJc86qiwbAypZ8/yWlErIBh0yOqS83mmasBZ6MPK70hClhR9xaj7Wr/sayF2fh+vXrdfZHoTyq0MCI0uEZPbs/Bj3RE+VFchyKTcdPR66hVK6sfr3Et/1PXwBAWFQmwqKqCpaKRXw808cLr377LHZ/cxQX97GF08aYmpoiIzarpd2kNBBPC0uklpQgv1Jed+M2gmGqtGlHjx6lQRGlw0MDI0qHpXv37lj55nxY2smw9dNDiL2TgpzpndrarWZBodTgj4/24ebJcMx9YxJgMOD41lZKQkhpVmRCYYMTLLY2M4Z2g5U8EevXr29rVyiUFocGRpQOhUAgwOjRozFnzhxYWVnh7JabuHMhpt0mVmwqUdcT8N2KbXhjyxJEamZjx44dbe0SpQF4eHhgca/e2Hj1Slu78kAcrMwwrLsXnp32IhVbUx4LaGBEeaT5T0Pk5GmLwAGd0D+4C/LSC3HihwtIvJuC1Oe7A3NrEhLqB7Nzwsh4pB6jLMGCsE37kskXTfmkFqVCU7d+ozCF7NPWg8wQnBdLJuwDAL05uULKsLyA9NOkS9X/AN7ddhYr5q3GcO+p2PP9CQDA8WJ2xmaOxAQ8yxpfxqifI15nzEgdTukAV1Yf8kAlYXOM8uHAiXw9a7KRqLiYfb4MMlJDZC4lb8DFOaRfBcaaGgClleRqQVUauQ+vgvRDUF7zufOUrRc436/j6t+jF0LKU3GXSQTHoWqb8enk89nFdIsKSf2Pr2sOYWeWkro4Nx92RmoRl7yOw6PcCNt2XywA4M3fluDYx/8iNjaW/WYolA4IDYwojzQMw2D8M4MxdHIv3D4bhU2vb0f6Y6ijycgpwYYlm7Hmp0VQVapx+Ndzbe3SI4WttRRXS9lBc0vj0dUFpe14NNO1swMYhsH142Ft7QqF0moYP5xQKI8UT708GgH9vPHZi79h57fHH8ug6D+UchW+fW0bBj7RE35BnnXvQKnGxsoUUVFRrX7cAZN6I7okt+6GbYDUQoJ5aybiXD2E/RRKR4IGRpRHlhUrVsAvyBM/rt2FghaosP4oUpxXhkObz2Lpp7NhYUFO38lkMug07GmZxx0ulwOZVAx1LakJWhpVpQqXcpPqbtgGzHx1LMKvxOPigdtt7QqF0qrQwIjySBIQEIDx48fjm5V/orSg5SuSP0pc+fcOLuy/hY0bN+K/2oY8Hg+jRo1CYkTddcoeN7r7O6OgqAKJiYmtelyPABfodPp2uSJtmIsHnDvZ4di2S23tCoXS6lCNEeWRYbRkfvXfS5fORfThTBRrOYClefV2nZ8LsY84OJ+wC4pI0SoAGK+z0fNIzccgJ/KJ/nRKZ8LW1VLXsLMFedxkzsNvfj7d2Uki5Uai7qxCUlCrHU+KZ7Viv+q//8zLwYaBQ7Bq/KcIuxiDrgM6w9vBHz87p6JCUiNGzxhB+m6QkYJvKxu2aNeQQ/rBS+aTDbqUE6ZSToqix/Rn61ViSsnCvTo9+cxWwifPn3GRVACwMSMD5Awb0i9DJZloUnI8HAAgNTAoEwtZ/bUU+v5dAQBjXh6FE1eTYN+3kHhdriZ9cZKytU+hyc6EnScnr2uVhvxpTy2wZPWhLieP4/dROgDA2l6G5RsDMG3+WCRnJT/wfYx1foW9UVojiheK+ODlktnZRTITjJ47CK6+jrCyN4dBX/U5ikwE0On0+PL5X7Dl7mcPPCaF0hrQwIjyyGEiFcG7mxt+e+8fwIq9mosCyBVqnNh+ESNn9kfYxRhYOZjjztlIFBa33ySCjxP29jJ06eqMXzadAfq2tTckkxcOxal/biA5+cFBkTEB/bzh4esAiIQQSwRw87aHtb0Z1CVGo7kcBnEhKTj0yxkkhadDr6qavuTxuVj40Sys3rIEnU5Z4o033mjOt0ShNAgaGFEeOWxcrJCfUQSlXAUOu7oE5R4xt5Iwet5gAICjhy0Sw9mjUpTWh2GA55eORER4OjTtTPPl6G4Dry7O+GfTmYe2GzBgAIL79kG3AZ3g4m2H/KwS3DwTCb0OKCupxPWzMchOL4IimhxtZQRGo3jqmhHKb5b9CoGIj3UnX8T333+Pl19+ucPmH6O0b2hgRHnk8ApwQ05qft0NH3NKC8phbmOGzj094ObnhLTHeMVee8LRyRJcLoMfvz/V1q4QcDgMxs7pj5tno1BaSI70cLlczJkzBw4ODujVqxcAQJ4kxoWDdxB2LQFqpaYqiJGy80s1BLVSgyFDhmDTpk147733sG7duib1R6E0BhoYPeIEc54ibI5YxGpzQr61tdxpUf57uuRxgIL0QhjUGhT0I6fSCruR+3DKyCdyZzsyWSMASIyKdhZbkcVHb+WRSQ51WlL/UqlkJyxMLCH9kqvINvISUu9SLCVtAHC1JH21syC1OwU88iaU15dL2OaxLohLKYTXuJ6w6eyIdPCRNpEstGoML5/009GDXay1kEMWNVU6krokQSyZWJFrQj71n7oSyOpT7Ea+N3kpeR0LTcnPSFXKvs4zteQqPL3R58QzknlxxFXnnCMUgiusO0lnczFrxTCoBVwUBFYdvyyHHPYUisnzGV7mwOrD25nU7lQa6dEqQOqH1Pns68trV81xOBwGg5faI1sTiVUfrYJGo8EYi0Xw7OqCkTP7wd7VGoVaAyLupuHM0UKkJOWj0vze7cOvRh8muUWOSnKcSd/1GdmEbQhgl+gZmrcEBz6LwtpNC5Bxno9fzrzFakOhtCR0VRrlkYJhGPQY0RXZSe0z90t749zJSPTs7Ql5hRIlRVRfVBsZCTno3N0dZmbsKvbNjYmJCUyEAnx/qH2VAJk+IwgmJiZYtaoqKAKAsU8PwvJv5iM5MgM7vvwX3315DGdPRSExPhc6XcuupKusUOHAbxfwwrpp4HK5de9AoTQjNDDqYNg4WWLp53Mx/Ml+EElab6VNa2HtbAkHT1vcOkEz8daHiLtpsHOQQSIVwcKyadMcHZXslAKU5JfBw8OjxY/Vt29fFJTJkZhTWHfjVsLGRoq+fb3w7rvvVgdFc+fORdCoQPywZgdO/X0VCWGtr0+7fjoSRfllGDFiRKsfm/J4QwOjDoSNixVe/uYZJIalYdxzw/DJgdcx943J6NKlS9WTai3/OKxCV+2bic8H4+zOq23txiODXm/AH7+ch06rx8ixAW3tTrslKzkf3bp1q7thE5kwYQKS2lFQxDDAvPkDcfRoGErvlURxcXHB0qVL8cs7uxBzq22TT/67/TLWrl3bpj5QHj+oxugRRz+kOwDA3NwEr66ZiN80d3ByaB625x9FkI0LZMEi/D7hMPj8muHo0qKaZbhyuRz//vsvVCqyiGdmZiaOHj3aKu+hvvRYOgGeg/3x+UeHYOjtDwDI709qiCb3DiHssxmkhiG/jJ3HKNcoD1GgPamDuJPhRNimEvJclRaTmiSAnWen0ihnjEFLHlNVyNaAJGaQIzx6oxkFrhXpR49Acnl1jkdVWZBrJfmYIeKg7wgfPHW8GCdC46rbKIeS2h61kFw1lFpC6nYAQGxGFomVmZB2voTUGJlKyNfLMthTVvIi8hx6uJFTpToDGcCn5bPPub7CaITUjMzzZPqQ3JbFeaWQSqUPbtAMTJs2DUOHDsXClHOoGFijmerlmk60i8q3q7Mv47xEOi15cViZk+Jp8RH29XXm3FsYP3488vPtsfadhRgtmgcAeOWdZ3Fpcxhy9DzAxb66vdqC1DEJC9mZwvWlpCbN+MGLY0dq7wyxKaw+YFGTJys2NA2iyuF4tstKZCVWXRMnlNvZ+1AozQgNjDoInp62SE8vxEld1U2vTKPE6ax4AMCNrdFE2wtH11T/7evriyFDhrDm8Z955hm8/vrrxHLZiooK7N27F/n5+TAYDDh//jwqKx8u5m1ORo4JwKG9t1Fa0nrHbClMeHzwOVXnXKHVQKNvOc1GpVKDPSfvYsqIAPi52BKBEaWKuxdjMWv9FBw+fBipqaktcgxHR0f8+uuvqBjiXHfjVoDD4WDx4sX48MMPq7/nMhszeAS4YvvH+wAzdlDc2hgMBtw5G4Fn35uBzxZsgradpTegdExoYNRBGD7CD6GhaYBXw/aLiYlBTEwMa/svv/wCiYQcsXB2dsaUKVPg6ekJa2trLFu2DEVFRdBoNDh8+DD27dvXYnlHgoKCIDEV4s6tlBbpvyXwktqgq7kjxFwBbHlWsDOpGq1iwMBFYg65RgMGgIDLRWZ5OZJKixBekIPIgjzkK5pXKB0Rn4W5E3qjh6djs/bbUchMykNISAi8vLxaJDBiGAZTpkzBggULwBuypNn7bwzz5s1Dbm4uQkJqRllnrpqIi/tuoCinFEw7CIwAYO+3x7Dh6JuQWpqiOJedBZxCaW5oYNQB8PF1gLWNGS5eiG1wYPQg9Ho9ysvJaZbo6GhER9eMPnl7e4PH40Emk+H555/HE088gZiYGPz8888oLmYvi28Kr776Ko4cCIFara27cRvia26DoY6eGOLsBp1Bj+jSHKTJixBVnIt/ksLwX9yYW6pAmbpqKszexBTWQgkCrO0xys0br/QYgJC8LByLjsfd3GzomiHYzC0sx9ZD1/HK/OEYHuCFs+GtWxfsUUCpVMLNza1F+p44cSIKCwuRlpYGzxY5QsNwsJNh3sx5mD+/psyOjYsVAgb64K1Jn7ehZ7WTeDcFgUP8cH73tbZ2hfIYQAOjDoCrqxVu3kiqChoy2fldinxJPcvoPDJpmv4OOdV2Sr+rXsdNSEio/vvOnTvo168fhgwZghMnTuDWrljcPBaKjPgcAI3TBYx1Ww4AsLAxQ7dO/fG+Zj9U/qTOoY8fKQ5NqyS1F91syaSGJWq21iI2l6zTpTU8XJCuMdJz8FOrzvnMHgEY798Z5xOSseHyZSTkFVYHQhwjOQZXBZijSs+jhArRnkpEpxdiFyJhIRJhmLsHXhzYGxyGwcmMePybGo2SInK6TVdKnoswkFooRwUZUF29mICls4dgyai+uHM3DXKFGqUVZB9mFuQ0ZW01yfRGmqxiOXlOh3jFE/bZW10IW2zPHg1Tq0htU04pqUPi88gpFI6S/RnxXUhdjbFuq6Qz+V5kPchVaMePH8TChQvx22+/sfpuCqO7v4sZ44Yi/lYBRnd/F9lGmqv0cnPCdpSRoyL5crYurqTAaBtDvjflcRvCvnn4NcJev349tm+/jJycnOpts9+fhYunoyE3kYJjIoVWSv6WiLLJz41TwB69YU0I88nPtWgQOWKptCBzhAGAzkgq5nJYjCPHovHSO5NwJ74IoLERpYV5tJYkUR5C26bOV6vVuHDhAj766COsW7cOaoUaS798GjNWjIelg3mT+p6+eBgSIjOg0rXP0SIhj4vF/Xujv7srXtlzGL9eD0F8bk1Q1FCKlUrsi4nGovO78X3EZbhIZNg2YjY+HjwKg5zcwC5ZWz90egO2HL4GqViIUb07173DY0ZISAicnJzQr1+/Zu3XzNwE3YI8EB2WXnfjVqBv374YPXo0du/eXb3Ny8sLnbo4Yc/mC23o2YPJSi1EYnQ2uvVpD+NtlI4ODYwozc6RI0fw7+Yz+GzBJvD5PLy/ewWeeuqpund8ADaOFjh/MKTuhm2AkMPD26OGwU5qinVHT6FUqap7pwYQUpCJz+6ew5zTf+J8Rgqe6doD3wU/gS7WtnXvXAtHr8VAqdZg2lB29unHHaVSiWPHjsHb27tZ+3Vxt4Zep0d+LjuLeGsjEAjwwQcf4JdffoFCoaje/tlnn2Hf7xfbdW2yjOR82Du3D90TpWNDAyNKi1FaUI4dnx3E7+/9g2XLluHll19ucB/2LlaQmpsg7m77K4Aq5PDwRsBY5FfIsf7EuWYPiu5HrlXjeHI8nj++H/vjo/B2v2GY1sm/wf3oDQbsOnMXzjbmeHHqwBbw9NHGYDCAbzT901RGTghEenJBs/bZWAYOHIicnBz8/PPP1du6du0KU1NTXDkR0Yae1U16Uj48fdnlUSiU5oYGRpQW5/apcCxfvhwzZszAm2++CYap/2SQi7cdEiMzoNe3vyfZ1V3HoEBZge8vXmu1iUwDgFOpiVh97hhGuHlinn/DkxIevxGDgpIKDOjq3uhpuY5KUlISunfv3qx9qtU6nDve9kGHQCDA6tWrsWnTpuptIpEIr7/+OrZu3Qq1qn1OVf9HVmohnD1s0KNHj7Z2hdLBoeLrRxzu5XBwPMzBmEvAvRwOD31XVpuEBaRYONaHFG667+tJ2GNvs4ertUXkKjOePTmVo+5stAy8hBSY2ipc8NXy01jy5lQM3zMd//x6EUlHyAzWxqLv3LGuCHpmII7eiEbuWFdwxQoYczPenbA9XMjimhVGxTVLlWzxtbkp2W9ktj1ha+VkH9pCEeb4B0KqN8Nb5y7A+QY7B5EkhsxurHI2J2xeOanGtqslmbfaklShpo2vCWOyVOV4f+8ZvD9+JHguHOy4HQYVSD8LAtg1phwuqwCoUV5QCblchb46d9y5r7Cn8WQPU4v42qAzStpXQo6wnM0lxdaMUTJLRQn7MxDKyOvFWOCtDCOvSYMZ+5yrjJM+ikjBNmOUIbOgK3m+Rl+cB7MYKwx6dQTGiJ+GwWBocjJBMzMz2PvaouB2LCq8qwTlOj252tNCTAres8tJ4bmZiDw3AFApIX03LhJr9y2pUA4H8PTTTyM8PBxXr1ZdbGOtl2Dc04NgqXVB0QkpKvuSgm2dgPwMRAWkzSlnlxziyIwKDHuTfWpMyD4E5ezrS20Urpd0ryqyWwLgZHgSBg0ahDt37rD2o1CaCzpi1EHo1LPl6zw1FZVSg+/e249LJyLwyntTIBQ/vKK5gMeFvaUUMen5reRh/ehp54iJ3r546/xJ6NtQk1GmVGHdkdPo4+aM2b0arhk6czYKkwL8WsCzR5f89EJwuBx0H9bwacramDRpEjJzS5GY1rZTaV5eXpg5cyY+/7xmKb6JqQhDpvbG3xuPtmtt0f0kphfA1rZx+joKpb7QwKgDkHg3BW5+TpBZt2xJg+bAYDDgxvlY3L2ehPf3v44py8Y+sG1Xd3tkFpSipII9UtRWSHgCrOk3GJ9evYBSFftJvrUpU6rw3r3gqCHTagzDID29CLZSWljWmN/f240xzwxplr6eeOIJHDzV9gWPhwwZgiNHjiA/v+YhY/yzQxB2KQ6FOSVt51gDMRgMj1x9R8qjB73COgDJ4emoLFOAL2xe0WhLsu37U/j6hV8wYHIQpr4yvtY2Qb4uyC0ur/W1tuK5Lr1wJzcbYfk5dTduJUrvjRz1c3TFZO+6R4Ds7WUwGAxISsqHtUQCPr3REMTeTISlgwXMbdk13RoKwzBQKDXN4FXjkVpIMG7cOMTH1+SX8vHxQc9hfjiy9WIbetZwMnNLERBAiyFTWhaqMWpGgjnkknSu0Xz78eLNzX7Mk5odAIAC3QL0ftkTK1euZLXx7/8VYVd2JUc6UiaTAZVwgA+rD55ReTKtkZxDIyOH4t0PkjqBSgcZjKkstcCGv67gtRdHIdXcFKfeIzVGXAc+ovLzUeJT1beXI3tKLaPYnLAzi0jbuLimkw07I7dOTwYGmmzyzTEWVXogJ4kZhjl74J3X98P5vlyCknCy4CkAKDqT2gqVJflV07mQ04iSLPbNU5RNJiy0vUHqbMruy40nV6jwxY2L+HToGNzOzUJGeSmEfYtYfQp3qBAY4ILIS3HgJReAqzDAIkYPra5Ks5NrSvqlt6zlpq4nP1szb/KclqSYk81NjJIz8tn1riwk5KhgTpIVuY8peX2ZuLIDZkUK+X3jFZCfPdefVFCpK8n29+uJPP42xcCVvtj1KuswDUIgECBnsB6Z5TWaKKHu4YGowijZZW0aI2NNkd/X5FTdsXt6PZFIhD9++ANZVxTQXnHAGItFAIAXVszEkb+uoLRMCQiqjqfnkZ8rV0HquPQ80m9j3RwACJNJAbdxrlRBBfk5Fvuw5f9Co8tWJavpJMegYJUqolCaG/qo2EH45JNPoNW271UltZGdW4offzuPUcP88OWXXxJLpXUGA/IqKh6yd+syu1MPHE+PRXlF20+h1UZKWQn2xkXilZ4PT1AoszJFXmZJ6zj1iLJ582YMGDAAPF7jnx2Dg4NRWVmJHHnbjXqOGzcOMpkMR/+oGRnqPsQX9m42uHkqss38olDaMzQwaiKOjo7o378/+vfvD//+nYl/fn28iH/W1tZt7W67JCklHx9/dQRarRYbNmxo9jwyzYGzRIZ+dq74JzG8rV15KPvio2AvkaKn3YOLxfYe4oPU+PYzFdge0Wg0uHDhAl555ZVG9yGVShEREQGNnr2CrjUQiURYsGABzp8/X73N3s0aM5ePw5b3/oGqjaf4KJT2Cp1KayR8Ph+rVq3CtGnTUFhYiNjYWLgwnYg2HEHNtATDYfDE6p3V1ey///77Zl8JYmNjU3ejdopOb8Bbb72Fjz/+GJ999hlWr17d1i4RzOrUHUfTYlCiVkCC9he4/YdGr8eu2HDM9e+GD+OjWa/3HNQZIhMBslKrpl64HAZcLqd6Kq29YyUWY6SnF4b4OsLVtKYunkKrRrR7SdXfGg1iCvJhqDQgLCsHGaWNyzi9fv16HDp0CFu2bEFp6aNV1Z3H4+F///sfbt68iU8//RSjzRcCAIZN74OLB24jPS4HjJhdV5FCodDAqJpR/NmEzQjIm59eoQSPz4W5rQzdR3TF8NmDEB+aiu1rjiHhbiq0Gh203clpn4zhpA7A+yQXrs6WGDN2AUaOXYB9r/2OzPhsok19C7gak5OTg4CAAPj7+yMqKop4zfVvMmt09OvOhM0vM9IO2LA1ICqJ0TSdnLx0eGWkniNtNJnjxDSD7XOZK9lHV/fPsTOTwctPDMKmfy//n72zjo7iet/4M6vZ3cjG3d0hIbi7QwulLVKkpe6uX6h7S0sLbSmUtvwKRYq7QyCBAAlxd9dNNpv13d8fAcKdCQmBTbKB/ZzDOczmzp07/s69z31eaDUUWCoKbEWrDqGo1oZRh70Vecx9LEn/oJRa0im3qpE5c09P08zQ9SvCJHuMGu2L5X/sgEBuBvNsUs+h9Gb2BDb60ryPaNY9Un/yGLsdYXoOaUSkLktYQXofqSzIY6zq1zrEd1ySgodCgxHCDsX5CvLcWwXXY8+Rzdia8CEA4M3EORjSpEXiqUwAQNV00vaBU8L0HLKKIPe/Lp92XnhkkMUWdD7EW1VD6n149eTx8LEUY1yQH8YH+SKhqAw7d2Xicl4ptNeMPz3sxXDQt77oXR3E8LQUghckwKNDIlDTIsOO7HTEt6RDe9PHiNKF7DEZMfMrZrsuN2Llo19j/2/HAHR+f04UtWWrf2zCAhSklgIqmq4tjbwG80nbJ8b1WJpG+moBQOAfZLCnyS0glmfMmoGIiAi88sor0Ov1oNhseAa5IGpMKL56egMoNhulj5J5xwS15IdafSj5XOA1ku2yymcG03o2+XHGbSKPsVkZ2W5hBfN+lLmS9451Yts9LTTnAzMYq5gwYVBMgVEncHkchAz2w6gHYuAT7okWaQuunkrH+hXbUZRR1qW6pM0KpGWWIyevCq+/OAnvbnoBXy75GcVdrKc90tPTcfXqVaMchuoKWp0evxyMw8/PPICCFklvNwcAMNTPA2llVWiUd1/KD0Oi1umwMfsiHg3ozwiMFAoFLly4cGM58XQGpjw2EomnmL1LvQ0FYISvF6YEB8BTLMbZ3AK8uv0AKhql4NNijeIaCaoaW1/sKXmtHxvVTTrw2WwMcnbHvKAwPG81ALuLU7C3OBUyjQq3wz+f/ocPd76B+ooGxO293KX2+/fzxob/bQNWBnVpvbvF1d8ZUx8Zil9++QVNTW2ByII3pmHzt/v71PR8EyZ6A1NgRMNMyId/tDd4IgHcA50xbEY0SnMqcH7nBfz47O83UlOwze98ZoRKrcVn3x7AbA8x3tr4HL5augZF6e10qXQRpVKJwMBAXL169a7r6k0UKg1+3BOLzx6fiv3p2b3dHPg52uJS4d2fn54krroQy/yGIsrBBVeqy29Z7tLxVAyd2q/nGnab2ImEeGHkENgKBdiRnI4LOcVQqLs+uUCp1eJMaSHOlBYi2EuEh32i8NuwR/BN6gnEN3ZuHCqpacK3y3/BWxufg4uvE459d3s9uo4edqAoQKth9r52Nw+8MBmxCcexYcOGG78F9PcCm81G0tmsHm+PCRN9DVNgBIDP5yNmQiT6jw1D4AAfFKSWoKVZCUmtFJ8tWQNJdRN0csPPRDqw7ji4PC6e+2EpfntzE3ITCzpfqQO++eYb/Pzzz5BKpTh48KCBWtk7XC2oQKNCganBAYgtKOrVtgQ52yM2u7BX29BVNHodduenY6KHf4eBEQBQRuZjNNk9EE+MGoQD6dn45Eoy1DodWAbQCedJa/HZ1SMIFTvh9fBxUDefx+VOjg0AFGeU4aula/D6+mew0nIlVq5c2ek6MZMicPq/C9CoezYwsne3hVugC3545QdCwzjhkSE4tCm2R9tiwkRf5b4NjLhcLkJDQzFz5kwMHToUigI2Lh9Pxf99sx/yZgUo6+v6Dg5YdjaM6Xu6KqbFf30wU49xM8KrJcTyId1WHFu9FRMyJ2Dpa0vx6wKmxqErFBQU4JVXXsHPP/9MBEaHilYR5UJKSF8jhT2pLdDzmNoBbgWpZ9HxyHUEnXx8a5lplcCjzWJmTyWPabBFLIJt+mGOezKgOge/E0sYdVjyyYA1NseXrJNHvpi0KqaWx8aW1Cmpad5HbEsW8sQNkPFb386UhCzPETB3TmFL/kbff3YzeUVJfJl+LlwZuWwlJ/fFNoU0l6ofQt7O5zNL8ci0SFjIBJCp248stuf+iCe4U3GFsxs1NTUIyCWvDY+RxYx1cnLIGW88R7IdykaaviyBvC+aIphtEWVxweew8ca0kbCzEOHn9/ajuKgW1xViHAnpc0S1E3DohKQ2RVBH9upKXVtzBBahGT/GncObD4/CXlkG9lxq1eSVPsx0WLdya7U+qAXw2ekEPDP4AURvHIu9f5xBcU4lNJVkbj4EtWq0KCc7tCg1QJA3WLSmavxp+6IhrwV9Cemj5dBOWjBWNWn2c+Sa9umd+e/g/w5sxDibJ278zdnTDj7jgrChqABVVm0eZcrB5HUspeU+8/cm9Y+5pWQqDstC5nVvlkx+xOhV5LnWNZMXNZcfwKjDOjGPrOOmj1KRhy1UqtsbBjVh4k4xrk/FHuTbb7/Fzz//jJycHDz33HNY+9Y/uHgkGfJe8Kg5deoUGhsbsWLFii5lnm+PrKwsVFVVYcSIEQZqXS+iq4O+5W9QoiUAxUxs2xNYcgWw4plBrul7U5srm5uRXl2DsT4+tyyjVquh0WgQFNSzOhg6bjZW+OrRqaiXyfH6PwdQXNS9ucVyymrx4fZjGBboifnD+t3WOimFlfjsqQ3ITirCaz8swuzlY+76fjUky5cvx4MPPojjx4/f+I2iKCx6awb+PZWEwiqmuWlfw6+flymBrIlu574KjNzc3DBnzhzs2LEDbm5umDZtGjZv3oy8vLzOV+5G1Go1Xn75ZTg6OuL999+/6/piY2MRGMh0r+6TaPMBdTZgNrFXNm/BNUNVSzOa1X3zKzW2qAj9nW/taQQAhYWFcHNz67BMdxJl74IPZo3F3isZWHs8Hpoe8v0prW/ExzuOY6CfO0aH3Dp4vBmNWoujWy/g4yfWwTPACcs+fQT27raMcp4+Dj3qE/Tyyy/jySefxLx585Cc3Jabbdj0flAr1dgbl97B2n2HiBFBjFm3JkwYmvsmMLK1tcXOnTuxbNkyrFu3DnPmzIFEIuntZt1AqVTi5ZdfxqRJk+Dr69v5Ch2QmJiIhx566K5ce40DLcAJgl6+BZTZVFhw2xmP6wHM+vBxTK6qRKQTc7r3zWRlZcGpkzLdAQVgYWA/vNx/GNafTsCxtFz0dJL3ZoUKvxyNx5LR0TDn8Dpf4Rq15RL88sF2VBfX4YN/X8Ejb82GhXXr0J2FpQAePvY4d6JnZvpFjQzCggULsHLlShQUtOkU3f2dMG3xSOz/s2/lQ7sVrn5OCB0SYAqMTHQ790VgdL0nZv/+/Zg9ezYOHTpkcHNFQ6BUKvHJJ5/gp59+gre3d+cr3IL4+HiYmZn1+ZxCeuVZUILpgLYGUCdjumdIj7ehSt4IIYcHWzNh54WNkBqZDBwWhY4GfPbu3YvJkyf3eHLOZaEDEGnvjLfOHcLF/N6b9ZdZXoO0kirM9g7r0npKhRp7fzmCLxf/DM8QV3xx6D0MG9OaxFer0ULTAzPSrO0tMH3JCHz//ffYv3//jd+9gl3x7OcPY9vqI8hO6t3JC4YiYIAP4vcn4sqVK73dFBP3OH33U7gLfPHFFygsLMRXX30F9S1EqJQTKSzU80gBLqUiH3LSmf3aqYRcVNnQhgSsSDOz8ZVk0lkAOHRoK6ytrfH888+3mxD2domNjcWMGTOwadMmxt9cYkmxbMEM8qVvnsP0QpI70pJ4VpA7q6IlIqeLsc3LmS+JJg/yGGtOkkaJj9uV4yV/Leqo73Eo7xAe9R8BSpCFtKa2LOEaWgJYupBaxCOHwBRq5r6F2pIi07MFZI+dQqYGv44Lnqx1XY0nea2orJk9DTraZuhidZaKnmSXGajb0FJZ8RrJfdGakbcvt4zsUdOY66AHUNYsRbCzPdJqaEJhoDWpaC0gL+RgnMt8HKaNGOakMYfYLD1IF2hHC1JFX8oWkyuMJc8Jq8AKofYOGOfsi5cO7UedXA4RTYBMF1vThdUaIfM80o0BLYpIvaBjGpnsN+Mdxxv/316fjle8huHvi2m4+Uw0hJD3MHcGeQ9LLvugCMD5ossIkhfh42fGIW+XHiorDqqGtE7gEBWS7ZRakOfNPIPcF/Ny8lqwjiUnbQCAprIaYgcrPP/RYzi16TRq8oMwYfBHAICps/pj0MIIfJUQj7jhKmC4L/RmTKsDSkG2w9uTPD70BM1W1jSx/2xmnQ0BpPu/9zZSK8auJw0elVZM922ujyvZzvxWnzexszUaGmSM8iZMGJp7vsfotddeA4vFwhdffAG5nDnrxBhJSUlBUFAQLC0tOy98C44dO4bp06f3ecPHv4v+ho+5D8w55jhYcRpLvB9AlHVo5ysaEJ0eEJv13fQJNTIZuEY0JZ9FUXhx0BD8kZSIOiO5J5NrK9GiVmOM5+1pjdojs7oWG49fwmsPjER2efeKxy2sRXj5l+U4vS0eJ/5pnYZPUcCCZSMQPdAXLxzah7hSZkDVV+HyOYgaE4r0C72rBzVxf2A8T8tu4NVXX0VERASee+45KJV9w7UYAFJTU1FaWorQ0DsPAE6ePAkejwcPDw8DtqznqVfV40DFATzs/jBym4vxTeZ6THMejX7i4B5rQ2Z1DXxsmelI7iVkTS2wd+2ZmX9D3T2g1GhxosC4XnJ7cjIx3vvu9H2nU/Ih4HPRKOve2a1jHhmGhkoJERTNXzoC9vaW+PKjXUYTcBqK4Bhf1JbVoyizc98pEybulns2MIqOjsaIESPw3HPPobm5ufMVjIzExETMnTv3ruq4V/w+LjVcQpWyCg+6TUCVsg7/FO/FAs8ZiBT3zBRzhUYDHofpf9QXsbOzg66dWV9FmeXwCHBuZw3DM9nXH8cLcmFsKr/TxYVwNjfHCHfPO65DDz20On23ahgpisKEx0YhMyH3xm9TZ0XB0ckKa1YdhkrZdYdwY4fFoiBrureCPRPGyz2pMeJwOHj11Vexdu3aWwZFkx2fIZZ1QlKfQdFeHrXDyCm5Ok47clbas5AtI+PO3EVkgkWfj9rp6r72oXnw4EGMHz+e+XcDQF0kxSvsSTHEsrwdvQuvgdxfHU1WY1lIrtPiQJbnyJgao2ZvsgylJpevboi48f832Ek4/u0YBPPtUCH9Hc1NF/Giz0uot7+EJsXJG+XmnCHPq5mjhFhWqJmX/MVy8kWorSINCQv5EoQ7OWJvZms6hYqhpCZLWM08XnSnZrac3Dc9rRlqy3aOOc0AU+5EtsushuwFFdE+pqlr+iuPURbg5elhV85B5COR+Oijj26UOdzwOwDg0q6d+O+//+CyiYfmlrZ6W/yZL9mmSlJn05IpJpbp1wbfr80/J9DSGcGUDdavPwFXdds+m6eSOq+aUeQsOW4LeXzktsxvOo6cLNPoSw5/2taT97jNZfIk1MUosS49AYsjo3CmJh8AQHHIOusk5sSy62DyoPNk/uBbcpBsUYHGQa03M6+AbAe/hBze5pGyG1ifJsXSugbJjf+zWBSe/HI+KsobcfxYNjjuLgiIcEfU/DC8d+ooih/iAeAxEvm6ejGH9qQK8nhUS8nzKq8lr3N7H1Kj9qAnM/XQhpahxHLuY+Rz0+MQuQ2VmHk/clrIj5AjDb9DLR0LG4X2xvVqwkR3ck/2GC1duhTV1dU4cuRIbzfljmluboaNjQ28vLx6uylGgUarQ0b1c7ATToa39duQqq4ir24F7C2WwtJsTLduO6WiCtFuLmAZkZnf7UJRgL2VObJLa+DjbIO6ujpUVVUxytXV1UEikcDKvHu1VPM8Y3DwRCpUPZwq43Y5V14EK54ZfKzubOiUTVFQajVQd5MX07QnxiJkkD9+/2wPAIDH52Lx69OwOiEOxU2NnazddxEKhe32dJow0R3cc4GRu7s7Hn74YXz22We93ZS7oq6uDvv378fChQt7uylGg1JbgZy692BlNhDOFguh0JSgpP592Fssgaft92BR5p1XcgeUNDaiulmGaNeOjRKNFd21YZ1gD0dcunTpluWSkpIQ5O14y7/fLc4CK/iYO+B4bGa3bcMQpNVVwU5wZ/YMT4UOBpfVPcOuHC4bvuEe2PLNXtRXt3YzLXt7OtIuF+BiRVm3bNNYiI6ONjlem+gx7rnA6PXXX8fGjRtRU9N55mxjZ/369ZgyZcodr6/T6cDj3b5pXV9AoSlGWtUTsBdNg6P5PKi0xcirWQa9XgM/+z8hYHfPLLxjOXmYHdZzgu/uoJ+vS4ceMJmZmQigWREYkonOYThfk2u0vUXXkaqUd9xjRIFCeUsTpGrDTvZgsVl4+qsFkDXJEbe/NUDwC3ODk7sttq45ZtBtGSNRUVG4fPlybzfDxH3CPaUxGjFiBJydnbF582bi9/Espl+Q3pEc+1Y4k2aIOj4ZM8rtyGGU9rJ9K2mTeuhl6N4++nDS8wMAJiQ9euP/VAuF5uZm+Pj4ID8/n7nBTkhMTMTgwYORkUE68B5Vk8dnZFw/YrlsFDO40NNCaC5N/yLxp+mFaL3eTd7MAE1MMwY2Lyf1LGUjyS/vhcefvPF/f3EyPh7yNMp0VahT5iKtcgsmu32O9ROm48OULZBqWoWalXVWRB1aJfNrvr8fmSjVwyOLWN6fE4oDikQ86BSIsChLJOWSOacoDbNOFk33TtcLMa8N5jeKkmw6LAvJStmNpK+MsJocBhOVyOHoZAU0quGcqkCw2AYnT57ErSgvL4d5iQTiA20nhiNnppYpnUWeJ7UNqcPhWpDtbE5vvTFiQoPx+anTYGmYeiqtHak9sb1MDgvVDBYTy5p28jXrWeQ1aFlMSyBsRfYCqWkdjNS1U5DTWAt3CytQLECvIevUKsjruFhO6gYtQ1jgsLXIVefC4tr5a3IiH7OcenKZnmBYEUz2THJP1cC7nxcCo7zxyfwfoZUrUfGlD96fNhO/JF5G6ovOCI8oJNYpaRITy1UN5PEFAHMRGbzZisiL1M6eHHLNaSB9xnaXMA1BeULywnaNJh96pSrSF0sjZF4LARuZk0b4fD6ampoYv5sw0R3cMz1GFEXh6aefxurVq6HVGvcX6e2i1+uxZ88ezJo1647Wj4uLQ3R0tIFbZRzkSOrwQ9J5jHJ6Az4WY9CirceB0reQ1VSGFeGPgEMZdjhDpdPiv8JkPOLT36D1djduHrbIya6Ata05lEoNWlpaOixPsbpHR+VnawONTofsmu719+ltLLgC1KsMa0JIURQGTumHS0euorKgGkJLAV4dPAyXKspxqqig8wr6OBMnTkRjYyMaGvp+ElwTfYN7JjAaNWoUdDodzp69N/ICXed6GhNz867rZ5RKJVhGZOxnaOIqinGs/EMEWk7BKKe3IGCLsaPkPKy4IsTY+hl8ewdK0uFpboMox56Z1m4IIvt7oiCvBp5edsjJrOiwbH5+PsIG+2P4zCiDtyPMyREZ1dVGN0X/VtyJTsiaL4Ad3xy5UqbD+N0QOSoYniFu2PzFbgDAYx/MgYDLwc8J8QbdjrEyaNAgHDt2DBrNvWdDYMI4uSfemhRFYfny5fjtt996uykGp7CwEHK5HHx+7yRQNXaa1OU4XPYuymSXMcTheTzhOxG7SuIwxTkaPJZhR4pVOi1+yzyP56OH9IkZahQFBAQ7IzmxCMGhrkhP7TgfWUlJCc7sugRbJ7HB2+IptkZBfd/44i+SShBi03Wt1UhXL1hyzZBUX9x54S5g7SRGUXoplHIVRjw4EGHDg7Ap5Wq3zXwzNpycnJCcnNzbzTBxH3FPaIyCgoJgZ2d3y94iKprpIK1jky82tQX5haiwJmNGuteIup1JK3Qvn0Zfcht0DZJOwDz8XBsxsTyx+TFYwwkPeC1HsaIcR2R/MTfcRSaakTPdWDm04Y0xzEzrPAm5LzLaBC0BbQa4/VVSv6DlM2NwlZg85mw5+aD3OEwu03VOALAmefaN/4v4F/HcU4Mwyn4AGpQteMR1Kv7Q7CPKN7Ywp6OnlJE9QHW2NJ8iQZvm4XJTJqaoQ/Fo/1D8k9MqgpU7MnsXHK6QbRdUk7oJlpIc7m3yY15QojKapkhOfjE3hpMC4Yph5PpzD/CgrmtC1bEkOM6KRNwZWvK1dqgqqYNfRJtbumBXAqOMjcNgYrl5HOkVppKROhw2C3C1ssDh3BzoWQC7hTnUTfdo0gho9+dt5EMWVZLHXGlFXjCCyk4CCVbr/VurlIHDYgEsPeycyBu/Lp885paZbXq8of4eaFFqEZckhUrbJhCzSSfbISNTgUFF05JxWtrOc0Q/D0xbMQHvnD0M7pZJGNB/CL7KTsLkfn9g8k3r7K8m9T7+1uQ9XcIRM3bX3UJCLKfXkDMS/S3JOuxF5Hn2Nq9n1JnJo+UR1NLy+YWR2jH3VcwPPqpWQvvF2TRV30SP0ud7jPh8Pj799FOsXr26t5vSbZz57yJGPzS484L3OTKlCh8mHsT7l/fB19IOQxy84GfODPLulh+SYzHZPRCRtsY9pDZ0Wn/EHbwKvV4PR3dbVJfWdbrOpWMp8AxywagHYzot21W0feTlxqYoRkLozrASmmHmwBDElRZDZUCNo3+gE86WFoKiKLw1cBSOFuXieLFxpVIxYeJeo88HRk8//TTS0tKwb9++zgv3UYozy+ET5gGhRd9NZNqTlLU04uf0s7AzM8cHYXeXVqU9ylua8Gt6PF6KGAFnIXO2jzHgI7ZG0ABvnNmVABsnKygVajRLOhZeA4C8WYnkc1nwj7zztBh0uCwW3KysIO0jKWqCbRxQLuvaDKiZMSGQyBT46lyswdohFPIwfFQQshpq8O6gUfgz7Qr+y0nrMzotQyEQCLo1xYoJE3T6fGDUv39/bN26tbeb0a1kXc5H1uV8TFg4oreb0mc4Up6J8pZGWPPNMdrhzpPx3opzlYU4WpKNVyJHGlXmegDgsFh4OWYo9qw7CXmzEt4hbqgu6by36DrJsVlw9XWEjaNV54VvAx6bDS6LjVqZYWdrdRd8FgcVMmnnBa9BUcDU6CDUNBkuJyOPx8HTL4xHbU0THgmKwIfnT9yXPUXOnnYIDw/H1avM9CMmTHQXfVpjJBaL4e7uDr+KGDiy2sz3OIFkhuyqKOZXPVtFfoGoRbTcXrS8S4I6chig2YWpK6HXYU7TurbQTIVlrszxdaskMis3S9Cqvbh4Ih0PPnNnudPoPk46+pd7KTlbidIwh4i4tPyNCtqoiMtJCbGstST3TeLP3Fe6n43GjfRPaggkj6fTReYQhdMZcruFtuIb/3+uYD+2L58PB6kPapNa/VQcoyoZdVTUkAGASkPeFk31pMBFkNeqodmdkwXPcbZYOX0svks4hypZ24uxcjAZLFkUkr19Otrl4xzHfKkqrcljprQhdThaHnl8RCWty/MGRUDdqMF7G56GTqfDlBGr8OOWz3C04ShjGwy0WuReKUB+SjFGzIzCrh+Z6UN4Utp5Kyf1UYJact9VLA1qJM3w59sgp7quXb0Zt4nUT5lV0Wcgkfve6MOsg37/sWhVUDRjSbqPEaey9bwKbPlggQ1OJQ+N1aTfGcxpOcg2ZSFiWAC4dQooJTJwGylw5WTb6sPJdVi0y9g3gnxQFHu5Y824WQi2tUd+YwPipD8h3L8YN6uIvombTKwzJow0BROwST8hugcRAJTLLIllBwsyGDyeS3pY+TiRnkRJtTSxFIDaLHI7nuGkI7ecrj+TtWMId9NQ5JgHorFp0yao1e2UM2GimzCuT90u8uGHH2Lnzp2Q1hvuS81YkdRKYeskhkDQjrOdiXaRyBU4mJWNZTFRMOMY/htAp9fjx+PnkVJTic9HTYSzqPeH1TztxJgZFYw1x+JuCFa5XC4aG7uWR+vi4WREjggCZaDZdy2qvvNiC3awR34XZtCFDfbD6f8SYCbkQ3aX++klcsLBB5cg0MYOr57cj4UHtqJCYdhZbn0JnxA3nDhxorebYeI+o08HRkFBQfjnn396uxk9QkNVE1Ljc/H222/3dlP6FN+ePgeNTov5/SK6pX6dXo9NaVfxb0YyPh89EVGOvZdPjc2i8PyEodh8PgmVjW0fC15eXu0mju2IrMv5sHO1wZRlow3WPjNu3+igFvF4aJQrOi94jYAoL6jVGtRXNd6xwNyOb4XFXpPxfvBitGjUeOroLsRXdmyvcD/AYlOor2fOfjNhojvp04ERgPtKlLfrl+MYPXo0vL29e7spfQatXo8qqQyzwoK7pdfoOocLcrH2ygW8HDMUi0L7ddt2OuLBAWFQqNXYf7UtpYmbmxs4HA6Kioq6XN/uX47B2ccwSWXzausR6tx9CWoNSbCDPbJrb8+he/qyUbC0Nsfe30/B3EqIbx+cClEX8hN6i62xLuYtfNfvBYx3HACNXou3zhxCWp1hTSL7Itb2lrC0FkEul3de2IQJA9LnA6P7iZZmBbZt24Zly5b1dlP6FFKlEsUNEriLDSMmvhUXKkrx+omDiHRwwpcTJsKiB005R0f7YUKYP9YcI92Qp0+fjkOHDt1RnYkn09BvVDCsDSDCTq+oQqhL9yWoNRRe1mIoNGo0KW4vCax3iCv2/XEaAPDOnFVIKqvAc6MGdbgOh8XCIFc3fDJmHP6bNx8KrQr7y+PwZ+EhPHP5W1NQdI1pS0bg+LYLph4jEz1O3+jb7gQW7QutMZwUTCrF7ayjIrUTFmUdd4E3epFqWbpZIwDwJORyC81Ch0OblEM3kQSAyk/IGVR+m8mvpZJ/CjDrx1H4bNFqnNxynpEQlqirshK+vr6I5b0KhaKDoQHan4Yk9WMU4baQx4dNS8aqdCQFuHIHUkjdXtJPlqZjEz8O7UOx0ZspeFdZkC9tz32kgFTpKID4QS6UdS2YJ/DFTxoyQSwAWFqRG/IXkyLT6jpSO6Sj5djlNLedx/pmOd7bdxQLx4Rh3dwZ+Cn1HGIrCyBlk0GS3oYUwGeHM4MoTjW5IT2H7B3VWmoRZGOPRSH9YGMmxA+/nIC0ogk3a4rt7OyQlcXc51txuOmPtoUm4NmSRyGyMEN9edvLSS0kz5vOitTV8PLI+1EtAjKKqvHiqKEw07HRTOYRbW1ngoRYlgaQwmCelLz+nOKYWp5md3K7lvnkedXTZg+yade9jgtM9ffHubwiUJpWKyOVDbldz73kcsG0FOxM+j/E1cYBABSHI/HZ41Mxxc4HxVUNmD44GBGDWtehKAoOfCdQsISQzUOtshnr809h9ZXEm2q0x4gI8nw1qZk2HeF+JcTyqawAYtnFUUIsS+qYDpk6a9ozkLYZWzGp3XQTkXUqtczXh1sYOZGDbvAoukQ+CKrbiSGdi1snSNg4WOHisVRmARMmupk+3WPE6cahEWOlRSrHnrVHMebhoTATdtwjUVJSgri4OHzwwQc91Drj5MjJNMiVagyJ8QGb6v5LXqvX44+sBHx65RiWBcXg3f7jYCdsxyr9Lgi0s8PHw8ZjxZCxSKquwMsn96OoghQMi8ViTJgwAbGxd+6t09wgQ7/RIXfbXEhaFKiWNiPIyb7zwr2EnUiI0f4+2JmSflvlBWZcREZGoqCgLZFro0yBL7ecwKyhofjmqRmYMzISIo45hGwRBCwhMptS8XPmcSw89yvmnf0ZfxWc667d6dOI7Szg5ueIkmzmLFITJrqbPhtZDB48GLW1tZBIJIABRiwoCgjycUSovwv8Pe3BomUZVwso1DQ1o7xBiqoGKZKaq1En69wwrzvIvJgLNoeNITOjsffvjR2W/fTTT7F9+3ZERETct/mGyislsBGLYGttDg+RLQqaazpfyQCk1Ffi2bP/YUlgDNZOm4WrlRU4kJONpKoK3Kk3cqCdHeZHRsDf1g7b81PwafwpKLTX56WTPWqRkZEoKSlBRUXHyWM74ujfZzH1ibHY++uxO67jOnnV9XC3tUIOjPNlNzcyFGfzClElvT2/paeXjca+ff+ispLcHxdbSzhaW+BsagH+79gV+D1yhvj7+QqTRrAzHN1tUZpbBbns9oY0TZgwJH02MAoODsaZM2fuWnwt4HEwpX8QZoYGQqFUIzGjFEdiMyCRkt3wCgc2Al3tIeBxMDbCD0+4DYKkRY7zBcU4mJaN2h4Okvb+ehQPvTINX+0VtwaHt0CtVuPYsWOYM2fOfRsY5eRVY9G8IWCzKAzm+/VYYAQACq0Gv6THYVtCBsZ4+eDJ6BhwWBRO1uTiXEUhKlqabgps2kdsZoZ+Ls4Y7e8FP1tb7ErPwOenz0Am7PilMWbMGJw6dequ2p9xIQdPfb0QTt4OqCy4O+1LZkUN+nk44wRuf2ivp7A1F2KMvw9e2HF7Dvq+3vbw8rTDw3O+J393scXSSTHYcOgiTiblQq8H/LqjwfcBWm3fSCFj4t6jzwZGUVFROHLkCACAZU6On9OTR7LayUTAkwODgz2xcHw0iqrq8dWe08gpr8X1OIui3ZO8Cj1Krra+GPYCUDlz4O9sh/ERflgzZwaSiyux92AyCivatBhmErIOhQ1Nm9HO0RdUkW0veIAcgnFyjgIAnADQr1mBkJAQnD9/nlnRTfzxxx/4+eef8dBDD2Hbtm2Mv9MNIDlJzMChagw5o8i8gnyZN9PMGTk0/QbdFBAAlGLa8aBN5hHSZpjzG5kPSroRZ9UQUg/Ek+pRDDm+3n4KLz00En4aH0iv5JDb6UeKO69UkiIYbi6pi1A6kv09Tl5MV2m6LqmGJ8XW8qvYWn4VUfauGOXqhRUDJsCcy0OprBEsNRuXytvM8PxtbGFuxgOLouBuaYXUmmpUcVOxvSgJSoEaHv2BskZSX2UT13bQLa2FmPbidIwdO5bRtq6gt7BARWkDwif0Q832iwAAcQ55cuuiyXPPbyTPif5a72tadgWWDImC1pMDhZq8fmy5ZG+XRR6pFZO7kvc4pWNeT8JKUndEqcjzVDqRPCdUTJu304P+EThVn4ty+1rgptE+UTJ57s8cfAPu7u749qP/8NGKlzAm6M3WuigKETFemPvcMKzPO4oEj3zAo1WndOxgNFGHzp/skernTU7Lv1BCpmPRqNpJUmxLHh+9lDwHMmvazUT7O8BMnF2WSxvmpGnaFGrygaXWMNslb+o4bZEZKR2DZRrzntbU1IFqsYdOroCm5vYd202YMBR9MjDi8XgYMGAAXnnllTtaX8Tn4aXpQ+FoY4E/Dl3EpexS6Jn3eIeotVqkl1YhvbQKQj4X06KC8eZj43DsYhb+O9kzPTNlVRI8/PDDSEhI6NAZtrm5GYcPH0ZYWFi7gdH9QFW9FHroEersCBuhAPUtvTcF+EpNGa7Utr4MbfgCWPMFsNNYwkvcpug/W1yEXGnrS6GmRYYmlRLBoSXt1tceI6ZEYvv27ZBKbz+1xa048s95zHxiNE5cC4zulKrGZmSV1WBcoC/2pxpPr5GvhT2G2vvgpdi9nZblcDhYuXIlysvLsXPnTkyKaJ0sERjmisdfnoTvcg8hoT6/u5t8zzPj6Qk4sz2+84ImTHQDfVJ8zWKxoNVqodF0PATRHiI+Dx/MHYvaRhneX38Ql7Lv3kStRanGtrhkrFx3EOG+zlg0ZcBd13k7bNt/BTweD1OnTu20bEVFBaZOnQpr63am090H1EpkiEstgq1IiHAj8tOpV8qR11SPhPIybEtPvfHvaH4u8iT1yJPUo0nVNZ2FmZCHiXNjcPr0aYO0MeNSPqwdLGHvevfXzum0fEwM8TdAqwwDm2LhhaAx2FJ4CVXyzh30Z86cCYqiMGfOnBu/jZocjmfenobfvzMFRYZAaCmAnYsNzu++1NtNMXGf0icDo9DQUBQWFnZ5PYoC3pszFqklVfjjcAKjO/9uqa5vxld/n8CAEA8MDvcyaN3todPpkZaWhvfff7/TsidPnkR+fj5iYmK6vV3GyvYTVyFVKPHyqKG93ZRu5aEnR6OhVor4eMN8cctlSpTnVyNiaEDnhTvhXFYhOCwWhvl6GKBld89y/+GoUkhxuDyt07I2IgGefvpprFq16sZH2ZOvT8aMhwdiww9HkHypsJtbe3/gFeqOioLq+8q814Rx0SeH0kaMGEHmz7Egs0FaFJOiorqQ1vH2mQNapx3/39lEcGlD2xbF5FCUVkDGjDwJGUTJnJhT4TQCClJo8NWOU3hz3hjo5BpcTm8b/hDStKvtaYwoHam7UdG89Rr8yTG/NV+vwYIFC+Du7o6Sko6HWj788EOsXr0aJSUlyMhoSzpJsWmeRG5ixrrWWaSupDaC1BLYZJDHnH78OHJmzi0dh9yuliZPUNA6KOg+NACgor1fzWhecDfruhRQYfr6v3D+hacw1McD5wpbc1A1VNJ0STT/INtB5IlT0JLMWguYwvtKmtGVnna9UbRzrxUx56mZ25H1NshJvZkmjtzGodxXMW7cOHj1n40HH7qzhMN0rms8ko8lIzTaG0d/OYiafmSPj9sRsu1VA8hzrTUjX3DbrqRgXnQEzucX39D01cSQ58D+Ctl7Q08y217yUZWYPD70OhX2ZDsmWUUixMIDr8bug0xlBlE68572WN825DdgXCjqB9rCLHIxxg8zwyvzR8MxyAJLYrdCMkEOTODDnc/MsdZgQZ58O0vyvCame5Er8MnjyRMy97U6naYHsiHLuFtKiGW5M1Nj5GTVRLaTRx5jHpt2XsvExDJFf4gCYNParpGRFzr98Aiqmb2hNR55OJOjwzHdVsbfTJjoCfpkj5FQKERDw+0neQRaZ5/NHhiKP04moLs/RIqqGvDV1pNYNHMgIgKZGagNiU6nw+bNmzF79uxblhEIBPD19YVUKsXx48fx448/gteFtAX3EgqNFjm1dVg+uGeGO3sSiqLwwQcfYNWqVSgvLzdo3Uf+PAWeGQ/9x4V3XrgTTucUgKKA8UG9N19riJs75vlF4N24Q2hUdZ4XzdXXEXOem4DUvArYWAnx4xsPIjmnHA+f+BMSlSllhaEQifhYtmwZDh482NtNMXEf0ycDI29v7w6nqLfH5P6ByC6vQU5Fz8xyKKpqwIad8Vj2wGCYd2LEeLc0NDR0mAX96aefxpYtW7B+/XrY2tpCLBZj9OjR3domY+Zkbj5sRYY1XDQGHnzwQYhEIhw4cMDgdSvlKsTtvYQZz0wEh313jw29HvjpVDwWDIyEu3X3pmlpDx9razw9IAY/Jp+7LV0RAIQO8kVtuQT1TS34+qVZ+OfQFezsoUkW9xPOLmIUFRUhMTGx88ImTHQTfW4oLTg4GA4ODl0SljqKzTEjOhgfbz/ReWEDkpxVhpScciyYPgC/bu09h9vrvWuff/45LCwscObMGVy4cKHX2tPbSJVKsDsIJPsibtZWeOONN/Duu+9CJrs9g8KucnZ7PGY8NQETI/1x4MrdzSrLrqrFjsQ0vDR2KD7YcxSAYfV+t8JGIMBHY8bhp4sXkCi7vV41vpCH4TOisOf3k1i2YjZW/3sGSVllna/Yg3BZLASI7RBi4wgKFNzs2ywnKhV10CpaH/XNGiWq5Hc/U7G78PC0RXl5Sm83w8R9Tp8LjCZOnIiDBw9Cp7tpfLuFHLNXW7TtFptF4e1JI3H4RDqqU+tw3Q1FT/voVdiRh8Iyl6yToo2/uR5mPlykQTbEstKKwt8nr+Czp6YhvJ87LpSRD1N2O/5KLaPIL1hdOdmz0Z5WpzM2btwIuVyOr776Ct999x0kEgnRw0TxSP2BVsj0Lqj3J48PhyYNYKlJvQH9+PIkTA2NWkSKipS03GmiSpqPijVz3+keVXR/pSYu2W6Xs2rw+UpY9OMiIJGF5mYlQj8hv/xjy3yIZXsheU5ya+2I5Yw85nCppR25TnMBrWfEjjyAejZz3yzMyDKNLeTx8trQ6sfE5XHwxs9LsH79Lzh69Cijnq4w2fEZ8gczsrfzzx+P4bG3pqNpdz4Kc6ug0+rQGE5e956HaPn9xpFeQArn1mthe00aAv3ssWBCf/x0mRSKNwaS1z23kbygtGbMXlj6Nae1Iy8OmzIR3h81CidT83AlpRQWTWQdLr8lMeqEsyOe+WwuCvJrMHjmAGyvyMARy1Lg2hwGCwG5jYISZqJcegwuPU/qg/g0+Y/ShtwRlZ55bZg1UhBwORju54UIVyf0d3OGRK5Aenk1JC1ySCtaEzVy2WwMdOmHAR6tdbhZWEKmViG5ugo5yMSV+kIoda33jIhH7otMRQ63s2U0TSAz/Rp4FuQ1q6X7K7mR97TL7jbPNA6XjQnDA/DUax8xKzZhogfpU4GRQCDAtGnT8MQTT9xWeYoCHntwMBqlcuw70/msk+5AplDhQFwGxkT5MQKjnuTff/9FdnY2Zs+eDUtLS7z00kt48cUXkZ2d3Wtt6i2UKg0USjWsLARobu77KQcWvzsT0gYZ1q1b1+3byrhSiM2/ncIz70xDk0SO43sScU4uQVNz5zodOnoAqy6dxycjxmNJeH9sTOm+4ZNQG0c8EzUYGZU1+PtC0m2v5+7rAO8gF+z5KxYRg3zxb1rv92b4Wtli1qgQDPHxQEFtA+ILirEtIQUlDW2GlVzad1uTX+uHC5fFgq+1DcLsHTElqB+W+41FYn0hdpdeRrWK5qjawwhEfHC4HNMwmolep08FRv369UNBQQGKi4tvq/ywaF8EeDvgg7WG11x0hYsZRZg3th9EfB5kyna6iXqIxMREJCYmgsPhYO3atVi1ahWys7OR+nclijMNK9Y1ZsyFfEgkLfD1cUBZhaS3m3NXhMT4wN3PCd+99FePbfPqxXwkJxTg0adGY+TkcDwU6ICSigb8tu0cymsaO6/gJprVKrx/9hg+HTEBATZ2+CLuTJd9mzrCQWCOx0MGIMLWCTvOp2FfSteGAF/46EFcOJmOEVMjsWXNcehHGqxpXSbSzhmP+kfCw0KMc6nFeGfXEZReC4boTv23Qq3TIbOuFpl1tTipOgs7vgXGOIZgRcQcpDUW4O+CU5BqekdM7hPsgvLCnkvXY8LErehTgRGLxYJCcXtfpjZiIeZNi8LqP09DaWC/oq7SIJWjqLIeUb6uOJte0PkK3YxGo8Hy5cthaWmJ2bNn473fVmLtG5uQfiG3t5vWI0waH4rUjHKwWX1bZ8TlcTBr+Rgc+OssGutuT0TcHo6Ojhg5ciScnZ0RYTcaPiGuYF23UmhPaE2zWaioaUKYvws2fLIAAFCUX4PYs9koK61HZno5StDxNNBmtQqvHD+AxyOi8cvkWdiYfAUncvOhu4vpo3ZCIR6KCMEYV18cK8nBkuPbQeV2TTTuE+YOLp8DebMSDTVSZCYVAyN73hxUxOHh7ehR8LK0wbbcZPzvwlGw8rpo1X8LapVSbCu+gAPlSXjUKwafRi7ELzmHkN50+y7rhoDFojB4Qhiyr97eR68JE91JnwqMQkJCbsvYkc2i8MTDw3Ducj5yCqsBfu+/AC+kFyHG361bAiNbW1ssX74cixYtglwux48//ggASEtLI/yK6DQ1NeGvv/7CzAGPYvmnj+CV8Z8YvG3GxpQJYeByOXB2tMT5Ph4IjpkTA1mjHBePpt72OiwWC05OTrCwsEBwcDBiYmIwePBgnDp1CoWFhWjQNWHvhTxIaq+NxfCZtg56mjasOVAMAOBx2YgMcsOsoSGYNCUCGrUWFEVh0Z5daOgkBYtOr8e6q5eQUFGKpRHRmB8cid1ZGThXUoTalttL0MyiKIQ5OmJaYACiXVxxrDIHz5zaheprM8/McPsWFRwuG6+seRxNkhb0H+aPn1fuvO11DYmIy8VHg8Ygr7EeHyecgErXqs8yg2ECo+vINEpsKjyFFEkRnvSbhAPll7CrOAP6ToJaQ+Hm4wBHdxus/7zztCwmTHQ3fSowmjBhAj7++GPG7zpnUsw4a1wE+Bw2tu29BEoPqCyYX4p0c0X6soBm8serJ7v3debMZIl0szJhWVv/dkljIR4cHQmuAjd8lERVzJ4sRRJpVsmitcv5RC2xrPrgO0x9ZDoqKArvHT2Fx80DMHnU06BYFN590xsUBRw/mIKzJ9LRImsdxmMXVxJ1zH99FjZt2gTP+XysW7cOg6y+ZbRLWEs+IDVmZLCpp/W+cJvJfdPymQ9ytpKsky8h6xDUkYJtVjtJK4UV5NAkr5oUVzR6kUJplr8I+3KyMTrYB2e5tVBHcHEwPZQo4+5MukSmlzkTyxyaER7YzHEMXxvSFiJFTr6U9TraNVnDFBNLLcjfHDa0CZI93WwQPscZy5bNR0ll+1/3E7iPAgAcPe0wbFYM2Fw2QidHgcNho0WmRElRHS6aN+KtuAw0wxrwskbyIDJYbJG3k+STMdTVpk2JQzl2lxxFuJUnXg6aCTu+Jf5eOhcPbtuMZvW168+KOZysu7b/V8ur8HL5AcT4uGCipx8W9otEZYsUafXVyGusQ628BSqtFmXNjfC2ahV9W/L4CLd1wkArd2h0WhzOyMH605cgK20NxiyvBUR04a/7MTJYu250yuVx8MrPS1GcVQGzES74X+xx5D/CBeAAkRN5fXE55DVKNzgEAI2QbtpKLrNUtA83YWsdIg4PHw0Zi9rj1Ti09SJuTm3ML6DpFWnBo97Rllh23cy0KZGM9SWWKwZRqEALEq+exIrRY+Bq7Y/vTsRCe+2BpbMhrwVK047hqpJ8brJEpPGkKJV8oOmqWp9nNmFOqM6tgKq0d3VOJkwAfSgw8vb2hkgkQmpqx1/HPgGOmDgyGG9+vrPbjRy7QkVZA/hcDiwEfDS1GE5D8WhMBMJcnfDVodNolCuxbef5G3/buz0B46dGIDTSHcPHBKPqmp6mPqcc//1yHGpV6wtepVLhqaeewpEjR/DXXz2nVekNbM2FCHN3xMGrWVBrmS+xvsLUiRH455+1Hbqdc3kcLHjvAYQPD8L5PZdRU1KHTb+fQW5WW2BcMtniluvfDSmNRVh+4SdMc43B0z5T8b+RY/Dm8cO3vf6FyhJcqCyBkMNFgLUdfMU2iHFwA5vFgq2ZEF6W1kitq4RSq4Ver0dGQw2+TDiN7Oq2AOBO3cNmPjUO7v7O0AM4VlOF/MaumckaAl8rG3w2dBKOFOfg5Na7S97bVapkzXjp4H58NGwcHomOwP9dutrt24wcFYLsS6Y8cyaMgz4TGI0fPx7Hjh3rNH/OvKUjsHnPJUjvYJZMd5NdUgMfFzsk5RpmdpqNvQUejAqDTKnCobQcxt9lzUrs3poAAPDydYCZoPVrbnCYM97f8CRS4nJw4UgKqGoKDQ0NqKmpwRdffIEtl25TydnHEIvMMD7MH5WNUuxI6J1ZioYgItQNYUEuWPLoP7csExISgv99/QqKM8vw7vQvoZRf66XpF9RDrQR00GNv2UWkZumwZuoMtKhV+CbuHFpw+x8GLRo1kmoqcLWuAv/ldXzO+NXMtBddIWxoAAZNjoRvuAfkLUrsWnMUf43u+ckSLiILrBg0Dt8nxiK+sgQ+na9icNQ6HX46HYfPZ05CemU1EksrunV7di7WOL3NMLn9TJi4W/qM8/X1wKgjPH3sIbYW4VyCcWpHFCpmzqO7ITTKE/WyFlRLOxfeFuZVIzO1DJmpZfj7q31Y/9F/aKpvxms/PoY1a9YAAGbNmgUfHx8MjvAyaDuNBSGfByshH7+futhne4tYLAqPzhmIXQeSoFQyAwwOh4M1a9bg66+/xq6fDmHd2/+0BUW9xLnSYrx/8hhGe/ngt+mzEG7j3PlKPUx4pDuWfzIPbA4LWq0Ou9cexfl9V6DR9exHgpDLxWtRI3CwMBvxtxgi7Smqm2VYdz4Bz40YDG47eQoNhV8/T9g4iVFbXt95YRMmeoA+02Pk6el5SyGxRtyq93GLcEVqVjn0Kh0R8WmYciDwpGTPE4fWwUSf/irzbMfNjAbdYM4yU0Is6zgABBQ01/zuGnyZh59Na0eLP/kCL/iwdYDAx9wWIyMHIiOjBrlVdaCuyV6qhjCHRuiJaPmD1KiAGheQjf+qi/Fl6EM4fiQF+3ZdwanDEix/axJy5RKU1rZNvablRIUZTbLQ7E5qaMTpZLDGr2JO42YryYapRaQRoNKK1BTx65maLI6UfOm3+IiJ5SaftvMc7W0DNpdCrE0qMKitjL6WNBMsqSANC10cJcRyZV3naSzKpGQZjYw8PgIxTYzswQyaW6TkYBDvwCUs++QR6MvrcfrNvzBR9Bjxd7NXR+PxyQNRL23B/3afgzLIDAiKIcooaLlHeSHkefEWky+nxHIvRrv8/Ulrh0YFed7YLJoWRQ/sy85CsUSCz8ZNxC8D5mL1f2dxMjEXSnXr9S0JJO9HPY92M9HMP9ubnq42J+vwPEA6gKstyHPASmr18PKL9MSiudFYn5CO2aPCcDm/ArtFaugfDgc05IZk1eRzQEZL+hwTnsdo1+ULZNJdirYvaqe2c7+s30CoLjcjfn0SvK/9xi8gdYUAIA8gTyS3ibx+mr3Ic2JuwXwIanlkO2xpI2Y1o1Q4rcvDdARi/Egf7EolrQ5YSuakFq2KPG+sBvKYmzWQ5+iIYhMGjn8fX/72MbaXmZLGmjAO+kyPEYBOh9GCg11QVtbzeoDbpUoiRYCrfecFb4N53tE4UZ4JF2vLG14md4JUo8DHH+zAqeMZmD03BkEhrS7OYZ5OBmmnMWErFEKqNr4h1tvFt58XIkaF4NsnfiF+t3ezwZIVc/DOo2NxJiUfq3fH3tVU9+4iuboK8//biryyWiyeFIOfX56D4eHe4HEMO8OqK/hFeuLxj+fhj5XbERXgCooCNhy40Cv6xPHufgiyscemzXE9v/EOWJsSj8cCoyDmt/OFaQCcnJxQUdG9Q3UmTHSFPhUYdQSPx0F4uDsuJfS+T9CtkMpV4LEN8xJwFljCQWAJV7Elkorv7qGi0egQF5uNbz/fBytxa++Jk7h7RLm9jVLbu55WdwqLovDwGzOx/bt9kNa39cbZu9rgxR+WoDy/Gm/+tg8nknKNatIBnSalEm/8shf/nkyCuYCHxZMH4L1F4xFgawuxmZnB7o/b4XpQtPHDHdDpdIjwccFPO89Bq+v5A2hrJsTjoQPw49U4tLT07tAnnfymepytKMTDweEGr5vH4yEsLKzTSTUmTPQkfWYorTP69fNAcUkdGhpkgKVx7pafsy3isooMUpcF1wxjnQPwy/4Eg9QHAC0tKvy+9gRq4u9NEaSvtQ0UWsPqvHqKJ4IHQnpBhvN7LgEAKIrC+EeHYdjMaJzefgHHNp9D86J+vdvI20Sp1mJXbCoSMkvwv8UTIDLj4Y0Rw2EnEoECsP7yZeQqWof06hUtKG82fNJTfz9HPD53ADZ+uAMl2eVYseUlrNsfj8ziaoNv63Z4PnIITpTmIa2u6sYQmjHxb85VrB4+C/+XdvWG7YIhmDlzJi5dunQj0bUJE8aAcUYQNMzMzKDT6cjEsTfR6MuHx2A3XKyoRKMvn+GpY1ncudBWIyA7z6Qe5AwXYQ3NU0fJbAuvkXxg1MaQwhwdD2hiqaG+1hmjbcdvTi2m6TNoHicaFQe2fBEsuQKk1FVib0kOcJOchXMbbv6N+WJiWTaN3HeNeTv7JiHL0DVaLQ5kO4U2pD5G3Y5GyzKJ9Cyxo+mQ1C5kOzkS5s7JPSyJ5dLRt+5xCLK3x9XiGqjyyd4wLu0Yuw0ifZ7o+DiRaQvyK5nDo/VNpG7J1oncN0kjeTy0cuat6LextXfLxdUaE4O88fWvv4Pl6AAzMy7mPjUWvNmu+ConEVdH1QGjgmBhRb5clErmLC09TRMT5VRKLDdryPPm5MEUxNbISK8tpYpse3Ue6aEj9pUQy9pr9jnFqMeH5dsxx2MA3OCCi6WlsBMKsXxADFjXmm7B5YPbjvs2i8Xs1dHR9k01XwOtTg+dTg9ZixLSmsIbf9Pr9fjz+1PIqZQjaspAFBbWY7cmDyAtrcBW0HQ4vuQxtjIjr8msOua1wKJ1UgpoVj1TFb4IDrfGps9OwVNDgSvtfNYeXVPElpLtaPQiry9KyxwG40nJ+9w8l7xG68Lbnl+V9Qrk1NRjiL0Hjue3TqvXWjJ7X+mqI8tc8herHFJ7OGHpBPz999+MekyY6E36RGA0fPhwXL58+ZYaIzaLQlSgG77793QPt6xr2JmLDDLLJdreDeWyRkjVfT8Bak/BYbEQZGeHXWnpvd2ULjNpSgQuXsi7kfZjyVvTodPp8X7CESj66NDgdUpa6vFj5lH4NgWDy2oLarXmrR8iFAA2iwWwyXvfzpbZi1Rb1xbwmnN56F/nCApAiK8TGppaMHfC6Lb6tVpM9HsDAOAX6ors1FIQDoo9hLVIgEcejMHPv5+ERmPcNhnni4sxwNX1RmB0t7BYFMLCwnD58mWD1GfChKHoE4FRcHBwhzeP2EIIFkUhr4w5e8NYoCjAw1aM9HLDOLt6WdhgbYZxiTSNmUA7O/DYbBzJNU4rh1vh4GiJsHB3vPfWvwCAGYtHwNXbHp88uR6KDw0j5O9tdNDjSjmpk9OIyYCP4pCBkSvF7Mkqo80mTDpeCAAI8XHCm4vH4t1338WHH37IWM9MyINU0tIrgdET42IQl5CPnPzeGcLrClWyZowUeBqsPjNBa5e5XN47SWtNmLgVfUJ8TVEUtB34zgR5OKCoyrjHqAM9HFAhaYJae/dfhRRae0AkStMD5XaJdnFBo0IBhaZv9bA8tnQETp9Mh0KhxuwnRmP8vIH4deVOqFV904epN0jPr8Sbq/Zg4MCB7f6dononl6K3gw3CPJyw51BSr2y/q6RVVyPA1q7zgrfJ2IlhOHTokMHqM2HCUPSJHqPOHlyRdvYoTK2EqOpagsUK0r9EZSNgrGNWSo6na63IMpSC9sVKe6FS9U2MOnUO5BeryqKt3QGBTsgqqSF8isQ5zCBJ6krTOvmSZfw/l2PE87aAnRrCFVUwHyYm/q4g5R0AcMM36Tp0vZCKpmviuZLHDwD0TaQu5+Z9AwBhNflFXx9MCqgU7TxPWxxIoz967jSlJbkNhT3zPKrF9ACB3Bebq63DMwvnRaCxXg6tkHnM9c6kNqxORuoz2tOz3IytmGmwSdcYRdiR3j8nK4PJbfCZAZs5iwUfL3tsXncGr782BW7RLnjin92oGSMCIAKbR54nejstRExrAjZFlrlSSXaT0D2IxMLOg+/+DqRO6UQ9uW8zPMgZR7E1TC9nXih5HhtbSE2MtYhsh1TBTPgxJiSTWL4obuvdULNaIBIFIjIyElevthr2KN3EsLISIHCwDw7G5YDVjqZYQ7u+qqtIf6rqFvKeZ1szK+H5kcN+grTWe2nyUF+cjs8BMmpw85Wt55PasOZIpnUGXePIoeUiFNA6z3Vc5jOU30B7pqk7DrY1zVrodfo23VU7MwhZcrLtVnmkFkp/se1acHmoP/bdoxM9TPRt+kSPkb+/P8rKbp1GQ2wpREU1M1AxJjzsxCisMUyvVvQQP+RklENngN6n+wVzAQ/n0wp7uxldYsykcGSnl2PRE6OgUKgx77d/UCNlBq0mOkep02DNmjVYunQp8XtAgBMKC2pRUtqzrst8HgfDI31w6krfGtplUSyDWCqwWBR8Im5t2mvCRG9i9IGRlZUVwsLCcO7cuVuW8fG2R35hzS3/bgx42lsjq9wwbTQT8uEb6ARRO262JpjwuWywWSykFXU828yYsOELsPip0eg3wAv1dc349fsjRu1P1BfIyMiAi4sL8ZuDvSWKintemzgi0geFFfWoqDXuD7qb0en10On1cLG6e4+zQdOiUFVc0+EHrwkTvYXRB0ZjxoxBXFxcu3mhrsNiUZD3cj6ojrASmsFKZIbyBsM8BJulclSU1GPUZMMbrt2LvPjACEia5aio6xsvIVu+ED+PmAMen4OvVu7C76uPQWvqHbxrUlJS4O3tfWNoXijkISbGB8XFdZ2saXgi/F0Qm9S3ssmzrh23wnrJXdc15pFh2Pdr50nBTZjoDYxeYzR+/Hjs3Lnzln/39/eHUqmBQqO5katM7krTiLTjOaTnkt3BLJrbrNqG1IjwskmNCNr5alI6kuuwr1Xp526DmoZm8AvUuFkZUTm0Pe0U+aAQVpCxazV7PyrrxuCFV1/Ad999B6dT5qiWtGlcuO28+7k0CQxdh2R/mWxHrW07l4WQbBelpXnG0DRHdE2Rjsd8ADbS8mPp+OQyPReTtT9zuMPHivwtbV8AsSzOUSLIxgZlubUwL1TBfzTzCzWvnJzdpdaQ14aVkNTq0PUtPDZTm0HX+1wsJ2fzOLmQw6qV17QrVjwzvNd/Aqx5Aqw4dhIHA6RAQOu1RvfD4SWT13mTPXn92QUye0JkSlL7JS8kfaCsA8ggobKB/DsA6PJIH6PEMPJ6GRtBDo9kSkmNjJaeVBBAbT1Zp0BE3o/+YrK3Nb3ekVHH+RLSGlFZQR6fSdZPwJJlh0nWT0Cv12PC0wPRYKbBUX0VEMmH5wGmJqtgOXkera3Jocy6UjGxrJW24x2VSWrjOJYchPg5YcOxS9CYUdBakedNSstzZpHfwqizPozcN3EOeQ3SDzH9/gQAURn5XNTYkHXqaTMB1SIt9Gw91Dat27LMZA6pue6jufBLyAfSId1WODg4QGf/JNYmfMFY34QJY8Coe4yuD6PFxsbesoyZmRlq6qXQ9YKN/+1iZylCfoVhvkqHDBmCLVu2ID09Hb/++ivemz8OtpbCzle8j6EowMbGHCql8c9IWxIUDW9LGyTVVmBXmkl/0Z2Mj/BHfE5xj2/X3V6MyoZm1Db1Lb2YiMtjOjjeAS+99BKOHDli6i0yYbQYdWDk5eWFvLy8DofRAgMDjS63EJ1AN3uUG3AYR3NthtzOnTuRUlCJKTFBBqv7XkMsFsKMz4FOr0eVkQv0HQXmGOrsCQ7Fwtbc5N5uzj1H8EBfaDQa6PV6PPHhXKg0WhxL7nnxc4CbPYqN3F6kPYJs7ZFed3d+SwKBACNGjMCqVasM0ygTJroBow6MAHT6VWFjY4OCXhBPdoUIb2ekFxvG2JHOjthk9PN1wYpFE2ApZE5hvt8ZOtQPCQmF0GiM2/dHwOHi3QFjUNbchJT6SlyqLu18JRNdYuFbM3B+fxIGT4lE8EBfLPt5GxTqnu9FjPBx7rWcbHeDJY8Pmerucg3269cPGRkZUKmM+2PWxP2N0WuM+jqjwn0glStRUFWP7phD1iCVY+XfR/HLS3PwxJRB+PLAmW7YSt+FzWJBKmVqR4yNsa6+0Oh08LeywzvxbaZ3Ai4Hw7w8Ee7siAA7UhxGXYv1KIpCZaMUxZomtKjViC0uQqFE0oOtN34oADqtDrUVDZj15DisfnUTNIOsOl3P0DhbWSDAzR4/7b71LFtjxd/aFpn1dzez9oEHHsDJkycN1CITJrqHeyIwUgtZUFi3CQFtz9GmZbczo0dnRRNo02aM0SWUjcO9Om+HiByA95Gb4bGh/bDmj1MwL9FAx6EN0LczXq+n/WZWR/uB1sfneKK1J+q3ku2Y9+RomHE5jK9gp3hSvKkRkqedpSaPT1M200iRLuZsCCXXMauhJaIVdq4foIutOdZkAKOpI0PJ5ktMl8hEHvnbzX6EFAUM8LTG/nUnMDjQEZyzyWhZHcWogxtJikgtBpJqdQt+x4GVgMv8+q2uoZl9mpHHS1nd9lIOdXTAgnFR0On1uFRSjoz8erDBxRy7ADwytj/yy+uQmF2GQ2cz0XLTl7bMp7VOFkUhxNYePC4bPlY2+HLSREgUclxMLkVcThEKbvLPagkj94VLM/NslJLnXqtiCmz1lmTvm7ulhFjOayLPCZsi932eKzO9z2ZdDLEsaSHbkSPpWCAPABw2uR1BZts1GentDI2zJUa9NAHrjlxGQqgV6HlVW5yZWZ3NLUgjWPrxAY/cJquR+UjV3tSRG+blhPTUMmiLWnBdGcgpIJ9XIi5pKUC102tuk0qeNz2XvP90tAeYWQOzDl4VLd8c7bnBk5DaRX+lNcpT62Gb0nrs7bcz8w7q5LR75aYEwEILMwwaNAgffPABYz0TJoyJeyIwMkbsxCK8Pn88/tufiOweyIOUlVwChVxlUL+kvo4ZlwuxvSVSYjPxyJszETkqBMaWXc7dygqfTBqPixUlGOjqhrWXLiDQ1g7PDxwMbhOFjzcdRUFF68w7NU1jL5W1BShlzU3AtZlwqxPjEOXggrFCb3wweyzKGpqw7UIKkkv6jo+ToRkb6QdnWwv8sjsOFzJ6XnB9HV9bG2Rf7p5h9e6EAuBqb4Xskjt/tgTF+CEpKalDzagJE8aAUQdGERERKC8v77CMTCaDu6O4ZxrUBZ6cNQQXLhfgTHxOj21TrTL+WVc9yZgwX/CFfKiVaqx/bwteWL0U+kOJiL9S0NtNAwCYcTh4a8wIJJaXY6CbG7alp+LFQUMRaGuHv5OTcH5Pzh2bOl6pLkdWXjV+P5WACWH+eHHiMFQ2SvFXzSUk1XV8T91rmJvxMLF/AM5ezcfRy9m93Rwo+uB9GuRkD61Wh5pGZvqb22XkAzH4ceuXBmyVCRPdg1GLr8eNG4ddu3Z1WCY5ORku9j2vFeiIcQP8ITYXYFcfSQ55r+LlYI1jm84CALIu5WHzF7swZ0p/PP7IMDja3b17790yPTgQTQoFBnu4g8NiY7SXN9JrqrFk9w7sz8kyiNO1WqvDgatZeGbjTsTlFOGVyBF4JWIEhBym3869CIfFwmeLp4DNYuG3faa8XHdKmLMjknLL7viajBwZBJGVEEeOHDFsw0yY6AaMuseIw+Ggn3IUbFh+xO9s8zZ9EKecDUeRCF4Q3piOXT+ENJSziWMOIbAayTF6jQspbGVLyaSVNJkE6kKZMaV5qR7mAj7mjInEqq2nIbUndRB0nY5VFqMKcGXkk8f2TJshIUVRiPkgBrt372aueA1xvhq2+aTmhaJlYld4kOIKs1ryC1bQTm+500nyx4wXSA2N0q5jZ2a9TTuzULQ0XVIjbVadjtRXKZ06/9IWn2/7v7BJj+15O3BUvRcAcHT7Zlw6nIRpy8fj3bmDseXL3Ug+nQ6Lc+S+5PD9ieVqm062y2fOeNPTtCfcWvJW82FZYVlUFDgsFvR6Pbb9EotTJ9Kh1wPXFSZV0aSexSaTnBFE6cngRlBHXjstDm3/12p0OHg5C0erCvH4wCj8OvghrI6Nx4UqcvbbjQSh17AKYk4rV4rIfalXkGN89c3kstCMPPc/Z4xi1MnlkMdQJqGZHDqRwy9CHnN2VGUxeR5dK3WICnOFu5UlKiokyPOREfapdPNUpRXznm6qpRlPisnnApdLtlt0lhlw1w5ra6vWXAu1OQsK67ZtmduQJpp07Y/CjfnhR9cFqsTktaCjPdnFV5k+ajohqalqcafp4m5KLh3j74YLH5+CQ2zbMKRe246xKc349lDVWgBAcMBL+GPvWuh0Jgd3E8aP0fYYOTs7w9nZGTUlHRsjatRaJKUUY2C0d4flegKKApZOHYjEnDJk3cVY/K0QWZrBw8Oj3cDIL9QV3kHOUPbBbvruwNZGhLBAF1y+TAp9FTIldqzaj43/24rlXyzAa+ufgZ2zuEfbJuJy8eED42ElMINSo8Gb/x7EyePpPZILTapUYtXZOPx87gKeHzYIoz28un+jvYSLgxUWPzgIdRIZth1IhDHYCdYpWuDnypxEYMz0c3SGnVCI5Pg783xyc3PDo48+igsXLhi4ZSZMdA9GGxj169cP8fHxkDd3PtX6+OkMjBsVDDN+7w4PTBgQCBc7S/x5KKFb6re2s4C5uXm73k4zFgzB3k1xPZ4l3FgRmPFQL2m5pUYt82IuXh65ApkXcvHW2mWIGRfaI+0Sm5nhv0UL4G5jhWppM97fcQQZFT0vlk8oLcP/Dp/A0ogojLoHgyMei41XHx+L0goJCkvrcepC72uLACBPUg9XIxv674yF4ZHYkpYCrebOensCAwORnJyMjAyTk7uJvoHRBkYAoG2nq7Y98gtrkZ1bhTmzmFOxe4rhvp6YMSwUP/0X2y29NhZiIV7/7lHk5jK/2oIi3WFtb4EzB64afLv3MmqlGnt/OYKf3t6MhW9Ox8I3pnXr9qYHBeLoE0uh1elQXCfBLycu9EpQdJ2Sxka8f+Y4lkVEYZibR6+1ozuY5RcMG7EIlhZmSEwr6ZHeuNshrb4KHkY4WeRWzPAPAo/NxuG8O59E4ufnh6tXTc8mE30Ho9YYAcAx3VbGb5OtXyaWtQIW/t57EStfmY6EjBKklpDTYZv6MRNO8utJjYKWT8aINaNJnyOHK6ROQljVNj4/JNgTC6Oj8NGeEyjRNgE2rToN83LyacxvJAO9yoHMw2+VRy7rKlr3xcHZG6qmFvzfxlKMG/npjb/7jfDFlAnhOHApB/W+YnBknQeTTH0UqTWwT2J+GR7K+JxYDsv5jliW+tO2S9MHtZdiie75ouPSEtXSmkGJmLoSirYrokutSSyFPnJw6pnJN9u7nqjzbHw+/we889fzaK5swIEduVDK27ZVPYwc+mh2J9dXuTDfuqKCtt7LAEc7fPvIFFiK+KivleFEfCbsLcyRtDcX1tfKNAQyvaNE1R2/zVW0jge5A3mUxTnM9YU054gyXhO+jT2Ht0eMRHFtI6rrSX2LpJTZuzEmKo1YPlfkQ27XnNThSOWkdszJipmapbKR1NnE+BcSy2Zs8txfqXRj1OGzpfUaFIn4WPJFBA7EZyDM1xlHU3MBEQW9Ge2DRUdePHLSKgkAICgge6HlvjTvLQHZrtr+zGPOuUlfpmNTgDkb6ig+pNemrdteJu8DPe2xwGlhfmjVhdF0XDXk/eeYQLv2WcxvYCqfTKjcNCyEWB5cIMbiMeH4as0x2FXooC0nn6sUr52Euc2kdpPP52Ps2LHYsGEDo6wJE8aKUfcYdQVJkxx/7YjHE48Og5erTecrGACKApZNjsGSSQPw+eYTKKlv7HylO8DGyQoL3pmNnT8dgvJaIlQLCzO897/ZmP9ADE6cy8Lx2Mxu2XZfhaJHTJ1QllOJzxauhpWDJd779lE8+cYU2Dne/ZDHmCAffPTAeIgEPHz6+1GsWHMAMaGe2LjDeByVUqurseHKZXw8dhwczEWdr2DkzH90MBRyNZpkChSUGyZ5s6FQabXIq6+Ht9i688K9zOzxETgel4WSijvP6zZz5kwAwIkTJwzVLBMmuh2jDYzMzMxueyjtOldSS3D0TAbeXT4Jrg7dO47v72qHT5dOgYutFV76eTdKa7spKHIW48XVy3Byaxxid11CSKgrZs6OxsqP5yApsRBvfvIfziXkGc1QgbEwbm4MshILu7ROeV4V/nj/X+z86xxUSg3e/eZhvLhiNh4aFQFrCwGoLmQWpyjgkYGReGPySIh4PLz74z7EJxdi/tQBOBibjnoJszerNzlRUIBThQV4buTg3m7KXTFokC88Pe3w3vvb0T/QDfGpRb3dJAb5DfUIdWine8qIGBzoAXcnaxyJvTtdUEREBLZt2wa1+u5yrJkw0ZMY7VDa0KFDcfr06S6vd+h0OmpkLXh92Xj8uSseSZllna/UBcxFfDw8dyDCB3ph0/HLOJWUB103RSW2ViK8+ONSnNwahzPbLyBooC+efXEiLl7Iw5ef7UV1dRNgw0xjYAKwsjHHuTvQXOn1eiTG5yExPg9CER+hUZ5wnOiL75+ZCZlCjaOXs3FFVY30yvbdzNkUhQke/nh/1hgI+VwU10nw1cEzyM+vxMAwT5gLedh/Ns0ov0j+7+pVrJ8+G9HurrhcYtj7pifgctmY8+AA/Lj6CIRCHlzsLFFPs+UwBtKqqzHJzx+bU1J6uyntYiHg44kJA/Hbn2fRorjzgMbVzxFDhgzBb7/9ZsDWmTDR/RhlYGRvb4+oqCh89NFH7f69JcSZWDarJfU/SecLoJWosOyRoUgPKMd//11CYxOpe1Da0Hw/aMPlfFoHUF0IDwN83bB8/EAkFZbj2V93QqZUEUnVNLSUDU1eZBcDv4E83GyySQAAUXnrg8jWxhzvvjwZsQm5yLc1x1PbX4GTgyW+j4vH2axCwBeArwAWpWRQJqhkVqqx6FhD1OJAvqYt05jDDxO4j5Jt/4cUY2a/QXpN8XxoXiwyZgDHlZDbVfvR2l5FS2ZVw0zDq6X5BWlrWtvOZwO6htvrxTuq3kwsT8K7AIAWmRJVZQ2w8tKghi+DjaUQs6eG4nH2QFQ1NeNySTkUGs2Na8XL2QZBHg4Q8LlILa3Ch/8eRX1z6z5JB+kxdmIINmYno3KgHkFryWPM8RIz2qW2IH2wZC7k9SOk2XM10RwrWO3MAaB7aXGbyWv03+wUPDw4HPFNJQAADz9m+orzJR1bY3DZZE+vm7Wkw/IAYCEgfYryG8nh8LpKsgeYU8t8dE3v5wKWTIGaY6mY89RYnGouRpK/BLhmSyW0Ia8vbRl502uDmEGUpobUfrFpnlW6SvLvPBdmT6A+h/RCqmhogq2ZoN3zAwCUhvxDs4clo4xNBm1f+OS1wqIFNJSU+Vyonx5MLGsErT2dLz8wAiey8lC86jBudiXS0Xvw27Emu5nQGF/s378fJSUlHRc0YcLIMMrAaMmSJdi9ezekUmnnhW9BSnoZPvh8Fx6eHYNPV87B2XPZOHQ0hREgdQabRSHc2xnThobA1doSa4/EI7GgHKyujfJ1CZGIj/feno7iknpER3piyABf7D+egjV/5KLct/u2e68QNNAPXDMuijJKOy/cAVY2Ijz99nRsUWTi0yvH0KhSwMfCFoNY3hjo5YYh3h6QKpVgKwA+lw2VRoudZ1Jw5moecmQSoi5ncwu4WlgirtS4XxJH8/PwUEgYYlxckVDet3qNBk8Ix8F/Wh0+w4f44aPixF5uUfsUNUhgKxTCnMdDs6qT6KKHWTpiAEABm+OugjllpWv4RHgi8cJZg7TLhImexOgCIy6XixkzZmDWrFl3XZdcrsbGzedx6FAypk6KwBcfz0VObhUSrxYjo7IOkpu+oq7PBHFzEsPO2hzegQ6wsRAi0M0etU0yHE/Pw2eJJ6Huou7pTggMcIKDgyX0ANb9E4u0rJu9eIzulBkdfAEPVYU1UN3FMAAAzH9yNM4eScV2/7Ys4peVpUjOrcO685fgY2cDDouCsHUiHEqqGqDSXLs+LMiemCgnZyRWtvYwGTManQ6/X7mM5wcOxhN7dvZ2c24bCoCVnQVi9yUhKMoL1vaWKCy5c9Fwd6LW6VDe1IRQRwdcKLm74N2QDPP3xFB/T7y8aS/U2rtzqHb0tINfP09sfY05C9SECWPH6N6ylpaW0Gq1aGgw3EOtqroJf/wdi23/JSCqnycCA5wwZVokUUZ/7T0mV6iRX1qL4gYpruaX49cD8aiXtkDDb6fibkAsFuDN16aitKweq348gqJumul2LzN63hCkxd2dod/oqRGwsbfEr18fBN5kTqUHgPzaVjNNi7LONWbhDk5IrW5fl2RsnC8txqzAYEz1D8Bl9I2Es8sHxgAAWGwW5jw9Fn9+uQ+y0cYr+I0rLsFwL0+jCYwGhXvi4RFR+HDnMTQr774X69G3ZmP/7ydMomsTfRKjC4zmzZuHY8eOdUvdzTIlzpzLxplz2VBb0D10yLI35zLqKUR8Hla+PwMKhQr/+3AnWlpUgMAYZbrGja2LNa4cv3Nhq3+IK8ZMjcSqFTuhu8svZ6BVtxHt7IJ/UvuOyd32jFQs7ReFy0WnerspnfLK8KEY6e2FDS9uw6iZUaivliLxbBYw2nhNK0/nF+DHmdNhIxQA6N2Pn0Fhnpg/ORordxnGcsS/vzc8Q1zx+7ubOy9swoQRYlSBkUgkwty5c7Fw4cIbv032e4NRrs6BbLaCljGRIye/4FW0ZK4AwFGQZdRCcuiDnsxVIyD/rmsnXtHSepUsimnbEJF1uB+UEMuzHx0MHouF//6Og7pcCi4AqQcp3BTnkS9qy7OkI6QiwpPRrrJRpPDZLpmsw2lXPrF8qPwnRh2T7Z4ilrX1ZNv9/yJ7+PIeIcWzeldSXAsASntyWJJ+SPUc8vhZeDEf2k2lTGFqV5kc8NaN/4sszDD+kzHYUJCFuEe5AKwhEJCiXLk7/bZhGt25H28bpvXzd0RjvRx1aVKIru1l3UDSNPK66J7Yjh15ROwSyXY0BpBqf4ti8vriSZlBHUtD790i743qIa1/v9xQjmd4g+DACkRKA9lrpKeZd9ITqUpayB62iiIHYtk5mNlzJj1PTl/n0zqMnRrIdlufLAAAjJ0TgwlCF6x7dguOeAPfLh6KdccuomSeN4KDCxnbuZm6geQ1WV3NvJZEbqTOUZNMisCVHmTvipM107xSEkae26ZiK5TqpDhUlIOnhg3E5y3k7Fs7Wvxsmd3MqJPdSIq8KVvyOcFqIdtVMc2VUYd1lgox0d54aGwUVn1zGLrNp3FzqSO0SQmTXZ4nK1Axr9lDtb9i/jN/4NOfPsTOGlNgZKJvYlTdEU5OTqitrUVFRUVvN6XHEQh5GD4+GFwOG8cOJvd2c/o0rHZcfm8HJzcbvPXdo0ioLMPhgjtPgUAnMMgFGeV9YxjtOhqdDieL8zHC0TjV/uFD/PD93lcxdeEw/Pq/7SjLr8abs0ehUtKM9NK+caz/SklCmIMjAux6J6lsTLQ3HpoTg1Wrj6C8QmKQOqdNmwZ7e3ts377dIPWZMNEbGFVgBKDdBKn3A1weB0qFBmq1Fnrd/XkMDEH/sWFQtCjRVNu1GY1ObjZY/s40HNp6EZvSkwzaJjMzDkrr+p5W7FxZMQbZeYHVbkKX3sHb1RavLx6LJz54APv+jMU7j/wEiqKw8s+noVRr8d3evjMLSqHRYMPVy3h1+FCIuD2bAHtIkIfBgyK+kIc333wT7733nklbZKJPY1RDafb29l12u76XcHK1RkFuFbQG0LUYAnd3d/B4rcNwzjZtQx31lRK0GOl7XuxgiYwLOdCob/86oigKDywdjvjj6Th/NA0I750veGMjV1IHuVYNP0t7ZDf1fi/MiChfzBodhuqGZny07DdIaqUYOiUS4x8ahN8/2omDnsZx33SFw/m56GfthBeHDcGP5+Ig64GAYkiQBxaNjcaqLw4bLCiiKAqL35mF9PR0U8JYE30eowqMFi1axOiC1VkJGeW0PFqCUloPi45D11owe2AavcnOMh5NGtBCyiIYho/qdlJKmdF8EWUu9KSe5INbz23Tdyg0Wmh1Otia88DKLb3Rc2andCLW0VqQJofNQ8gEnjJHpp6KosUIgmpSf3CzpojL5WLgwIF48skn4eLigqYm8sD4+vpCJpNh6tSpaGlp0zlMyCANIMU5ZC6oOjOmwaPOjDwefFpCzhYheXk21TMPOktBnscUzXk4a50Zpo3XGc+aRyxTFIXR66dCKbbErw0XoX7WAeCRU+rpBoXVp0gtin0S0xuLI2n7jSVXQ2EHNN/04nY5ReqFlHZM80rzcvLE0TVFdM0a/Zpsz+yzth9Ns5ZN6mzqQ8nzlFJSh0C9F1LL2tqrtySPD1dMbkchJ+sQeJK9d5XJTIcch1zyWhCfaNPOmQn5mPnYUISFeWPL21uQfiEXbq9OxHuLxqCkSoLvdsajUKBFUyjZrlAr0gFzb14osazPsCCW4c7UwbVISeFg0KhCYjmjkDSbnePK9E76/uwkYpltS27nu6yzeLnfMHz9wGS8H3cU0gAyCK1PZaY3onRk23k0TRabdjFYZ7Xe8zHR3nhoUBRWfXEY1ZtOEC8AlhV5XU/mPUMsNw73IpatLrTNqOs/IhBugc74+DWmJtSEib6G0QRGTk5OCAoKwttvv93bTekVAkNdoVSoYSbiY87zE7F99eEe23ZMTAwiIiJgZ2eHqVOnorKyEn/88QcOHz7MGNq0tbXFoUOHsHHjRsyfPx8aI/fl6YyJS0bBU2yNladOQK3rez0O3U1qTTXGeHpjR2Zar2w/eIAPZiwbhfLsMnz91G9orJFi9EODMXvRGBw8l4Gth43TxLErqHU6fH3lLGb6BGPNmJnYVnoRh8vSoNYbrvecz+dgwrhQjBweeGP4zFAPf3sXMRa/MQ3//HgYiYl9/3yYMGE0gZG/vz9SUlLuyu26LzNomD8SEwpw4Lt9ePH7hchIyEdavOEEwHTYbBY++3weeDw2VOoJuHjxIi5duoS5c+eipqbmluvV1dVh/Pjx+O677/D999/jhRde6LY2djdOXvaYsnQsXkuMh7yPB3jdRVxJMZ4bMBBcFqtHA0dLGxGmLhqBsMF+OLz5PE7/06odCojyxpwXJuOzP44js4CZrqQvsyc/A2l1VXguOhoz3SPwa/ZZXK67uyS45mY8jOvnjweeCEJRcS2++/EwKisNOw4+47HhOP5fAi4c653g2YQJQ2M0gVH//v1RVGR8mbB7AhaLgqVYiOMHk1FVXIutqw7hqU/n4csnf0eZgTMGuImtsHBRNKKivVBUWIsN60/jxKkVXQpIGxsb8eKLL2Lr1q2IiYlBQkKCYRvZA4ishPjg31ew55cjyAnvWpqY+4lmtQoqrRa2AiEqZcxp492BtaUAH29+HvJmJT5/6nc01rZu17+/F15YtRh/ffIfMoXGIwg3JHmN9fggaTcG2Xljuf9wPOQZjR3NOUgoLu1SYBri7ojRET4YEuSJtOIqrF5zDPkFt/7guVMihvjBM8AZW346avC6TZjoLYwmMJowYQJeeukl5h+0TH0Q3YNIY0Y+JNkq8u8yJ+bkO7qmSOZCLgtozxAtTSJjUcp8SKnMye3wS8gyOi7ZzqMJKwAAoaGhaNGEYdXvT0CtVuPoPhaEUc149PPROPjZeaTEZra184Fooo7KYdfaw+PB38YOdi5MjZHNWR4oisLE0a12AIrcSmz9YAsSDiUBAKTqrvfSyWQybNmyBU888QQSEhJAscntmpeSeqHmGQpGHXIJ6XcjryR1EVxbch16Qk8A0Nl0LFad7PYisVy41AuuYkt88vB07EnLxnoXBfT25HYsLcjl7DxSRyKmbeNmPdF1ima1+Tg1hAkBkL4zdE0RR84cNtExPIdIrHJJrUpVDKlB0rOZ1z1dU8SrJs89R0YKz3UcIK2qBj6WNqi6lqmeRUukqtGS25kUkE4sHz4ZRbYhixnUiM+2fhRZ2Zrj2Y/nIqs4GUuWLEF9fau7+ISYDxGzcCQKyhpxsVSGxskWjDoo2u6e/HkwsazsT7ZbFEb2nJixmPd0C00vVdxAauecHMk6vj8+hVGHwIUMKO0tyeXiXFJztdD/IoCLOF+3Hf4Wg/Hw6Bl4RTAQKZJSFDXXolophUxfjWqFBECrTk7UEAxbgQBh9k6ItHcCp0aH0+ey8MH//YcGSQsEZzJAN+/X0e5ZbYgXo+03Q/dyO1e/Hs8t+AfvfPoCTqSd6HBdEyb6EkYRGEVHR0OlUqGgoKC3m9IrjBgxArm5uTemuOp0OqxcuRLh4eHY8M0mDEopQl15A6QNMhzRqtFyUw4wK74ZPhozDg4iEepaWpCtrIQeergKreBgZgEWBQQEOsBcyMehk6n46Y9T4O29bJB2b968GYsXL0Z0dDTQR3rRp0cEYf7ASBxMzcKGc4Y5Dp0hVajg42bdeUEjRdVDM0VdvOzx4pcPQ1InxYIFCxi9mHq9HvFns3qkLcaADlpkSc9hc54STgIr+JrbI8DSCcFmFgi1jgCXuh7YUCir06KwsQHJ1ZX4v7QksLc2QtfNth+vvfYaampqcPLkyW7djgkTPY1RBEYBAQGIj4+/bz2Mhg4diq+//prxe0pKCj586DsMmBgBM3MzuPg6YtW8IaAoCmZ8DuxtLMDhs1DXIkedvAUuFpZwsTEHBaCouQEHStOh0+vRsDUOjnbmGD8yBJ+8NQup3g7YufrQXR9vjUaDf//9F4MHD0ZOmpHO379Gv+EBmLl0JKrs2Xhl635UNfXMsBAA5NXUITTAqfOC9zET5g3C9MXDcWRLPPb/fa7doV2dTg+/QGecO3X/BEfXqZQ3olLeiHM1uQAAsZDspSzOJnudPLs5KOof4Iop470xd+7c+/a5beLexSgCowULFuCbb77p7Wb0CnPnzoWVlRUKCwvb/btSrsK53ZduLJ9TqbBo1kDYWovw3+EkfFkZD81N2gOWU+sDU3vTw8o53wzZ+VU4ezEP3h52eP+xkRj76DC8OfFTtEjvTl9z6dIlfP311/h+0/9BrTROU7eJDw/GmNnR2PjlPhyJotDTz/Hi+kaE2TuAAtAXXyEBtrbYnZnRLXW72VvhxTkjIKpT4JPlG1BTfuvk0Uf2JeHtjx7AQ4uGYq0kA3K1STDfG9iJRXh81mB88cErKCkp6e3mmDBhcHo9MJrp9jz8XcMgSAvCZLtA6FWk2lhp356PEW2ZNniuMifHwrVMixiwaaJmDikBgZI28mGTQdcLMevkN5JlLPLIr15WFfOhv3z5cjzzzDO3FD/rB4YiaoA3rG1EcHGzhs9oT2y+kowzxwqh0GigstGS/uXVzJ0tG3PT/1GHOSf2489H5+CVi+9jV2oGdH8PgOomQ8Sze95sty3tkZiYiKysLDzw8Xxs/TP2xu+8ejLgcl3F9DHKW04boqHl3NKV0TQzlswXIa+crDfSYhxsRFY3crtN2P0Qxnn44f24I0h+UINg3zJGHXZ80lPoXB7pDWVWTp5sul+Q0pH0BgIAuXdbkCiHGtWqJoT5iJHW0DqTSupB6qUcT9Yz6mgOIfU+5ldJXx55AJlfjKJLZNrpNWDLyWOopfmEsWj3hd5MB7HQDLkttTd8p5ysyWuVxyHrjC0jj59TPNmO89tfAwAsXboUC8ctxA8fvo69e/d22PNwXY+XX7sFixcvxlcDR+P3n0+g7iaHc04drReQFjjxG0mtWMVwUqdk5SNhbNeRtq8KDafDZVsf5nmso+VgKy2m6aOE5HX/67kx5N95TO2TIpl8QAVvJNMo6YXkQ/Fw0x+MOuieXjX9mc/am7FfEw+KorBiz5tovFKE/fv3d1jehIm+Sq8HRpMXDQdwf6YCiYqKAkVRKCtjvqwBwNraGouWjcDgof6Ii81GRbkE3+9IgUx1d1PVFBoNHv77X4z08cK8yDA88Jof4i8XoLxSAgAoTfHukt7rl19+wfYth6BUqLH73wt31ba7hXWT4Ngj0BlDnD0w78A/UGh7t3chpb4Sgx09bwRGfYVAGzvUyGVQGlBn5OvrixdeeAEuLi54+umnkZNz+7YUCQkJSEhIwJcf7cZbK2ZBrdQg4UIe9vx3qfOVTdw1T369EPWVEqx6eh1UagNPmTVhwkjo1cCIxWLBP9IT/3xzf355REdHY8+ePVAqyZlCLBYL8+fPx9KlS5GRLMd7b/wLSUNrr4ZsSsdfdV3hTH4hcmrrMLLJDk4OVhgU7Q0KFKaP/g25ubm4cuUKLl26BIlE0mGglJKSgi1/nMUDjw7GmWNpaKB/ufcgUaODceSf86AoCgvemI41yfG9HhQBwK6CVHw7dAZ25KdAouo79gB2QhFqZLLOC94GbDYLk0YEI/rxn5CRkYFly5ahufnOrpWjB5Nx+ng6rKyF+N+nczB6fAhWPr4BzY1959j2NVz9nREQ7Ys3xn3Y7cJuEyZ6k14NjOzt7WHjYImLR1J6sxm9ApvDwiOPPILXX3+d+N3W1hbvv/8+zM3NsXjxYgR5Pt2t7ahokuJMPDnEl5vwPby8vDBo0CA8//zz8PDwwKFDh3DixAlkZmZCLme+fM6dzIC1rTlmzI3BX7/23iwV9wBnpJzPwZznJkAhU+Bcg3F4Y5XIJDhRlounQgbjy6S+M4vHz9oG6XV373/jaGeBhbMHIsTPCe++8Sx2794N3V0aRqpUGtRUNeGFJ/7AY4+PxKcbHsemH47i0tns+7IHujsxN+Nh2SeP4OyOeFNQZOKep8cDo5vHtf3cvKHkcKD2c21r0LXhnBvLLcyvfYom8GHRiuhoe2VezryRFdakDklH64gRknIOmNWS3cbcepooCYDCmdSaUDQxsraq7QUz940ZsLS0JCz0bWxs8O/Pe5GXWoJdn59AqHoycmeQDdOYky8Tloo0b9FxmPuq45O/cWhypuIHyTqtIt9AA4BDAA4VNsKhLh/TR8zAJ/OfgKPYAkev5iDz33SUlbYFVLq4ZBzJzsdbfz2PSdHOiD2QjJamtgCKK2Bqn3RKL2KZW0ueV70nGYBx2/GZ4RS1rSPi86C2NYP+xRhEPjoQz67bCZ07eXw4DCEOcLWaNLEyp/kYsaLIdmhP2hDLMpd2BGcKmiaNxcafaUnYMH4uQi1dkTKU1IRYFJN1AoB5ei25XTtSq6LnkvvmcJm8JjkS5jVK190ovG2J5RZPcsisv6sTtuWmAKK29eqltGuyjBRd+f/dZhJGURRs/C/j1cdfRVZWGqY9Owf5+fnMdnUCXQ9zLO4D2nLr7M633noLw+aOxvLlyxnC4Mnct4jlujByJldTLtNSwTKMPE8B1mSQGG1FBt5Xm9wZdWRRtHuSlipOpiR1ci5W5AzPnAxX0PHZQl4bh3LJWa2TrJ8glieKHmPUwXIgNWrX86ldh3c2FQBgaWuO51ctxv6Enfjqx68Y9Zgwca/BdIDrQaYsG4OT96GNvIOHHUY8OAgfffTRjd9CQ0Oxbds25CYXY+eaY13KDt/dVEtl+Ov0Fby16SBe/mMPOGwWXnp9CmY+GI3+A7wgFLUKPRUyJX54eh3GzBuKj7e9DL6QKbjuTuZGhUKj0eK9uWOx51I65KreH0K7GZlGhXVpF/FU2CD0Bd9mZ5EF3ERWSKgu7bxwO1hYCTB30VC8+uqr+Pvvv7Fw4cI7Copul/Pnz2PWrFm4cOECduzYgXfffRdcbjtBq4nbRmQlxKL35yD3ahG++soUFJm4P+i1wMgzxA1BA/1QmG94m3pjJ3x4ILIv52Pv3r0AWr+qN27ciG+//RY71x4z6mEAiUyBP09dxpcf74G5uRmGjwzEZ988gmGzY1r/XtOElXO/hUqpxsgHBvZo2yiKQnZFLTgsFnZeMM6A+0RpHvgsNoY5e/V2UzrlgYAQnC4vgPIONFr2jlZ47/OHwONxMHnyZPz444/d0ML2WbFiBd544w2MGjUK+/btw/PPPw8XF5fOVzTBYO7LU0FRwIHfTc7WJu4fek1jtOSjh1GSXYGCvOreakKvILQUYNRDQ7Bx5bYbvw0ePBj5+fk4cOAAowvcWKmra8Y/f50DANg7WODFx8dg1ENDsO7t/0NNSR2+WPYrXly1GGqlGqe2d/9MNYoCotxdEOhgj092h0LK2QAAynVJREFUHO/27d0pOr0e/+WnYbJHAGIrCnu7ObfETiDEOA8fPHN2Z5fXdXGzwXNvTcW+HZcQezwddXV1BmlTyJAA2Lq0DndZ6bRISEhAcXFxu2VPnz6NxMRELFiwAIsWLcLixYuReqYW+7dcMAm0bwOxWIgZr8+Ad5g7vn1qHZrbG5Y1YeIepdd6jNQqDf757L/e2nyvMWXpGKTH5yD/aqs2wcLCAitXrsTPP//cyy27c2qqpfjfrK9x8WAi3tr4HJ74fD4cPeywYcU2TFw4HCIrZo4zQ+NubYWBPu74du8ZxGW3/7I0Fs6WFyDI2gG+VradF+4l5gWG4XRJIarlXZs1ZsbhYMmzY3Fw1xXEHk/vfIXbxMnbAcu/WAA3f2e4+jkjJCQE69atw/jx4+Hh4dHuOk1NTVi7di1GjRqFV155BTqdHi999CDMeniIt69hYyPCc0+PhU6nw/fP/A5pfe/NMjVhojfo8R4jjosT/MLdYOVsgyaKDzbdedmMfGg1+jFfqs1utKSxtPykbHL2OyP5IQDIHchl+yRSLKvlk+uw1OTfqRbaRgCYxZF+RBRNcFwdko7oh1/FvHnzUKAuwGS3F/HkigdQm6GEML8fJrv1Q9Ng8iGvp4mpWRravrfQROR2TG0SS07Gvxpvmqi5iDzG2gjmg1BeR5ZpCiW1G+bDB+EvqLH9xElMigjAs78tR/ylfJzOLMezm57HW3EnIaXZElAcUuw5dlwSsXwkJZRY1rcziUnj3jrMExnggmaNCiftL4G6yR9PpCP3vUrGTD5KT69Q2UCKnEOdSSV+Fo8USjf6MK8vyoIU3rs7k8Z/20ri8PqAwXjrSmvPYW0EU/jrIiHF/FIfUvRslUlmQqaL/aFlHrC6YWRqkvqptJ4AhR5OQguM8/bBs6d3AXrmvmmLSLF14KrWIJ8v4GHlH8sRm3gE//vqBcZ6XWGy3xs3/s/lsfH4uiX490wmTqe26p2UVmLUmEmw/M2v4OVig/S8SsR9cxjF2W3n6lDVWgCAWq1GbGwszDN3Y85zE/DOVw/ho8fWQlBNqqD5/SSMdtCvBVsz8nitvTqKWHayZabGkcpJs8UBLqQo/EqlG7GcW0o+nAL+YvZwadNzGb91BMuOKe7XlpYTy5yiEgyYGIl5T47G2R3xeHntcqMe1jdhorvolR6jGUtGYtva4/dd92y/fv2QnJx8wxPIM9AZzp62+L/vD/VyywxHi0qNnZfS8N4nOxEa5IKQQBc0SFrwyYzx4LK673Kb4h2Ai5V9Jz3B4fJUcFksTHAO7bxwD8KhWHg5cjh2FqShqou9RbOWjYTQwoyYVGAIRs/oj6rqJpyOyyZ+v5JZim//PomP1x1GTkkNXlu9GAH9PTusa8fPR6HX6/Hdwbc6LHe/wRfw8Mx3izH96Qn4+aU/sPeXI6agyMR9S68ERk7uNshOMg5/mZ7CO8QVCxcuxKpVqwC0mjgufWs6Dvx9Hrp2vuz7OrX1zXj3k524nFQELpeNoT6e+PGh6TDjdE8npZuFFRKrKzovaCTooMcv2afwsNdAmLGNZ+bUwsD+0Ol12JJ9tUvrxYwJQfhgv9Z8ZzWGmVDBYrMwekY/jJgcga17bu1sXV3fjGMXspFwLBVL35vdaXD02ePrAAA+TsxelPsRj2BXfHHoXagUKnw091sUpd/ZLEQTJu4Vejww8g52QUuzAnLZ/WUnP2RyBP766y+kpLSaWYaHh0OpUCPhpOF0GHcCBUDI5d74x+ewDVa3SqXB4ZNp+G7NUaw+dR6DvNzxwZQxMOcbVuMxwMEFNmYCHC7M7rywEZHdVIXC5hpMdgnr7aYAAKa6h2CYsxe+vxoLTXvjlrcgamQgZj0+Ej+/t63DJLBdIWZUEN7/aRHCBnjjxw92oOY23NQ3fb0fh//vHJ774hHMe2ESxGJxu+VUCjUuHLqKjxdNhq+T8eq8eoJhs2Pw5oZncOV4Cta/u9lk3mjCBHpBYxQ8LhwJV0qgufa1RqXnEX+nXMlEj1a5zPF1torU7vCk5EOcX0Wuo+cw4z/rTDIAYClJbY7KltQFaITkoeK0tDPu30ymTjh2LXGjn58fXAfMheI3W0yyfgJ8AQ8vv/8YTiYUQO1D6hxkTmRbKdqDilJ07IBD1xMBpMEjBSCk0Q2hzg7wshEj2MkBVgIzaK65EPM5bBTVSZBXU48TWXnIqb42o8iRPD6UjmyHegD54ipxJnUov+dcgdJMi8URUVgyNhrfxZ8Di5Y09mIVTURLM6+kBMxp45aJfDwzaBCyimsgv6SEcgR5nh7wSyaWDxSFMOpojiWN7lQBpBbq6mUyKSqXJnvTmjFfJnop2QtUrCUTwnq7t87GPFx1Bs8FzML+yDLUKcih5fx+5P7bHCG3wSolZ3RKh5HtrIlkBrlqC1pbNSywKAoPeIVhknsgPk/fBaWZFJbXbjGtjnk9WR5uO8aOthZ44JUoPPPsYiQkJDDKtsdkl+cZv9WP8wYAuDpYYcmMQeD5Ufg2JxYZogrgdcCMRx6b2nIrRh36+WLsQC5O11dhytx+2DkqHt/8fATS5lYRou5Y27Xwfx9th0OgK5b4BmL97kNQyFWoUdox6hQ/TOpwqltI3VeUBzl8m1pFargAgMshr/NKOVPndjOCdPL5RiVdYZQ5qtvaYR16OU146U62y83LDn5PO2LEiIFYtf4brF27tsP6TJi4n+jxwCgozBV7d9w/CR9dXFzwyy+/4PPPPwe73gsAMHRaf9SWN+Ds6cwea4ebhRWm+wRihLsnNC06pFdWo6heggNp2citrcP116UFnw8vsRj93V3wv6ljUStrwaG0bByS5Nx1ItGDeTl4NDQCE7x9kVhZjlNSw+y/s7UFjiT1rd6i6+TLKnClPgePBUfh+8TYHt8+h2LhjX6j4SiwwPsJh9BCt0XvhIenRGHHjh23HRS1h0DER4iPE8YPDECglwN2HL+Ko9JkyLXqzlduh1qlFH8XnMW8XBbeemky8gtrsP9ICm6WRev1emxYdRgrfliAiBhvXDyTdcft72u4etpi+WuTcfHqESxcuBCFhYW93SQTJoyKHg2Mhg8fDk8fe2RnlHde+B7A29sbW7duRUJCAo4dO4ZJ1k9gyuIRmLhgOH58+S+A3f3ThiMcHDG/XyS8rKxxqjgfH547ieLMBhD9Bjd1/kiVSqSWVyG1vApbLl3FIC93TA4NwFRxIH5PvoSEijL6Jm6b2pYWvHH8MD4bMwHPRg9C9sVylLc0db5iJ1gI+KiVGibRaW+wp+w8nvFYhIf8w7Etp+fyBtoJhXhpwGgotGq8HrcXGr0O5h13ZhAE+zgiyNsJy+etvqPtO3vaYdKjQxA60BeNfAr7zqZh/e54yOQqyD3uLCi6mb2Hk5FXWANvTzu8+uwE/J1RgtybtI2N9TLs2BiLqXNjUFXWgBrce1q/9pi9YAiK8qrx2muvQa2+++NswsS9Ro8GRuPHj0dKYjF02nt/HNvVzwmv/7gWGzZswB9/tA6pDZ3WH5MWDsev721FQXoZEO7dbduPcHTC/LAIuFla4t/sVLx39ijU14fLcHs6IrVWh9i8IpzLL0JMtDteiRmGhIoy/H41AVId067gdkirqcb7p47h63GT8NmgqXju7H+Qae5cbzbA1w0cNgtpxX3XKFSqkePd80fw+bBJiLB1wq+pF1DafPcBY0cMcnPD0zEDcaYuB39nX+6SpggA+DwO3lg2Hqs3nYZM1rWg1MnDFpPnD4V/hDtO/HcJm1cdQsUwt85XvAPSsyqQnlWB8goJFrz7ABoqJdj502GUZLcK9S+ezcaE2dF48X+z8OSGvVAYWRoZQzPnsWEQCPlY+8V+U1BkwsQtoLo4JVNPUV3L8jSB++iN/y98/0Hk18gRf6ptCIWqpLni2pMzRfRs5vYaw8kyLNr9rafJIoSVzJe42pLUgPBryTH5ysGklkBLSo5gVcB8kcRtfR0AwOFwsH//fpzcWYkr8a0aqqlzBmDI0v747OwZJFe1eq3wGjo/lgpvMmgQ5pC9TKoI8qVk12SPxZH9EebggB0Z6TiYkw3bWHIIjH48KFqg2t4xr4oRQMDj4omxMXC3FeOdi0fRdJMvkY5L1mHpRr7Y1RoyGHs3YjImuQYgo6kIP2Rvg1TTgqJa8rxqaevoK5iJaB9SeOOZhSPxzpe7UFLRALktuU7dMPL4hfswZ9wUSUgPIbompK6G7EZhNZDnQCdmvmAEluT1JJeSF1B/X1KbUtwkBodiYa7HIExwDselunxsuJiFclnb0Ba7idw3iuZpFTyUzEOmod8IAApTfLCkX38MdffATxfjUWRBzj6ryiZ1NtwmZh0577+K1atXo76+HitWrGAkeGXxyOPTMjkSAODhaoMpY0LhMdgBu/LScaAwC4pr6Ub8vckZhVIlea79xeRMN3riXwCQych1xFbkvdGYa4tx3r5YFNEPn8WehnrRfgCAmZCPxz+fjzQxB/+dIXvsuHPIgDvCluztLmgmr1mllvmt6Sgg9Xe+5uS+bD84jFj2/5P8+6GMzxl1MpLq0jRHE80WEstssSWWfzgH4+cNQtqFPGReLsDjHzwIne7+6CUzcW+g17djrNYN9NisNHOxCKFDAlBloFkrxsxTTz2FsrKyG0HRiPEhiBrsgyf37r4RFHUHY5398d2kKWhSKvHcgX3Yk5V5o5fIEMhVaqw+dB6XC0rx8ZjxEN5Fgs4vUw7jckMW7PhWmOU6HKw7TKsaHuQCnV6PihqmsV5fQ6PXYUtRHF67vAlNajm+HT0V84MiYc69+yFXChQCLDzw/aQpcLGwxHMH9iKh/M6GRSdMmIDBgwfjm2++6bQsl8fB+BFB+PStWXjmsZEoLK3Dk8d34r+8tBtBUU+h0+txND8X38Wfw7vDR8EnonVav6JFib2/HMGsYWF4euaQHm1TT+Hu74hRs6Kx+fuD+O1/22HjZIWPP/4YXf3QNWHifqDHhtKs7C3QWCdFQXZVT22yV5gwYQKWLFmCZ555Bm6iB7D4ubGwsbPAuu+PoGli9wwh2vJFeDp4KLwtbPHR8ZPINlBuqlvx7/lkOHha4smoGPxw4TzuZK+0ej0OVsRjpstwDLELw8GKCyi4g3oG9fdGYloJNJp758tXom7B/xWew35pBeYHR2L9pAexPTsVOy9ldOlYsykWAiw84G/ugTArHwjZZvg9LgOH87rmmnwzZhwOnn32Wbz//vuQSm8t1B4+ewBcfB3hE+6BGiEfv28+h4LiWgCAYmbvnqukygp8F38O7329EL++/jcKUopRnFGGp77dhjWvzIEZj4NV28/2ahsNzegHYqBUqLFv4xmolRr898txPL9mFvh8Pt58801Tz5EJEzfRa0lk70UmTpyIDz74AG+//TbMzc3x8tszkZVWht++OwytRgeAOcX4bhALzTA/bACGO3pjb3Eafkg9jaa6njmlqy6cxwcjx+D5gYPx08X4O6qjUFYJEccMdcom2PGtAHQ9JxObRaFZdmd6J2Mnr7EeH8efhK/YBs/1G4ypDwTieF4+zhYWorSJqUESsPkQcy3gJXKFn7kHIsQBqFLUI7e5BAcqzuOqJAeZee531aaFA/oh69J5HD58GADg7OyM8RNGtGbxvYazjxM8gl1xbncC8pOLcZbDgrGZKCdVVuDPH9Lx1DeL8Nsbm5CfXASFSoOXV+/Cd8/NQoSPM5Lz+45haGeMfjAGW388BLWytZeuqrgOS5cuxbPPPosVK1ZgxYoVvdxCEyaMh25/ix5VbwYA+Kv9MUE3ACgjx+y1fuSDWivqfHimM00Rv4Hsom9xogmEAFhdIXuumvqRfkI6WjPomiJBNaldeeDBARg29REcv5qD/636DTWNMvxdlI2zsiJg5vV8S+TbQWXFfFtoLcm280vJYRTNNQ8dD2srrJw8DinxxfjfmX2obZBBCDbsy5j+ShTNWVvhQGoxVBakdsUin5mqxT6RDD6KnHn45PgpfDBmNJ6PHoKfLsUTe0fXe3B4zGGTnFoBSqRK9Ld1hzm8oVZkEH/Xy8nL06EdM2ZqggJ+HBYcTqdD2iADe+oA4u/aS+TxyxczDf1EfPJcqrQ0cTqtHYzJSxTzPNpbkkGeSkhqjhQ0LUpdNZmTCwBEDq0amUrI8EF6CYY62WGMfwRmR42GHnq0qIGk+lII2TwEWDnAms9DrVKKWqUUmY1l+CltJ6rkN/fq2EAnIBtf20j6TXGayZvJ96+2+yQ02hNjRjhg9XYZJrs8DycPWzz98VxknM+CvLntumuwNMeOv+LQfM0/qOwp8twL+ExNVo2M1PTJleQN2GxO3sOeYuaQfEo9KeB2MSeDR4UnWef+F4Qo01/ByuOvIKmuHGeePoLSvGJsLNiK1z+Yje/f3IwTWaTmymZ0DrFcwSbPW72czGcHAOGO5JDlhitDyQLO5L2lzS1k1EGHYtOuUdo1eUSx6cb/IyMjweWykXk2A7rGtuvBuT4c+96Iw1dH30f+Fgn+zPi+0+2aMHE/YOoxMgBDh/lj6rRIZNTVIdrPDWv2xyGztJqRqNZQOFtaYMWksVgffwlZuwu7ZyO3gUKjwccnW4OjpwbE4JdLXfey+T79OH4ZPB+LfAbi34yMzle4iSHhXijPrUBZTiUeem0G/vjg3y5vvy+R3lSC9KYSsCkWLDgCsDUOcBO1Cse3Fl6Blt2AZk1bANYoZ4rV7xSvAEc8+e4MnNqThPmvTAabw4adsxi7159C3PbzRFlNTJDBttvdJNWV452L+/GAVzieWfEgtq49hqtxuUi5kIulb07Hieyjvd3Eu4LP5+P555+HWqFGcSZTU6ZWafD3R9vxwg9LsHXWL5DLmR9WJkzcb/SY+HrixIkoLb23cvBwOCyMHhOMx58YBaVSg7SiKrz/92Fklnbf1HERj4eXRg7BkaxcnCso7rbt3C4KjQafnz6DMV7e8LXueu4piUqOfwoSYGtmDnuBqPMVbsLZzhIXDiZi8xe7YONsjSe/WghOOy7n9xpavQ4StQxZTdU4XpGF4xVZKJaRQZEhsRAL8eQ709FQI0X/YX44tesydv1+Eh8u/Q0XjqZ2yzZ7kgxJNT5LOo41K3dg3jPjETnED399cxD2LtYY4nZ3Q4+9zcSJE+Hg4IALB5OgUbdv0HrleCoqCqrx0EMP9XDrTJgwTnrsLRIREYGtWzu2se9LjBwZiK++fgQvvjQRGo0Wa9ccwz+nEyFTdF8OOA9rK6yZOwO5tfXYmthzRoCd0axSYU9WJuaHR9zR+vtKUqDWabE4YEDnhdvbvkSG7578FTqdDo89fG/OKuotPP0c8NmGx2HvLMaJ3Yn46Lm/cfVcNvLTyqCU31v5Dsvya24ER0H9PbH3r7N4e9hICLop8XF3Y29vj+eeew779u2DStmxZ9G+dccxb948WFoyh3RNmLjf6NHP6y56JhklLIrCtNGheHTBUOj1eqxdcxxPP/kH0lLv3BH6dnCzssSKSWPxW1wCfo+/dEczwbqTnZkZiHJ2ga1A0HlhGjrosbc4GYsCo2BnxtRo3AovZxuorr2cdVodNv5vKzzcbLD4EVNwdLe4WFrgnXEj8ea3j0DaKMcLD6zGmYPJt+x1uFcoy6/B3r9j8fTKB1FX1Yh6hRxBdvadr2hkUBSFF198ESdPnoRarYakumM7i/yrRWhqasKGDRt6qIUmTBgvPf4pRE9uyG6kC33JFyPVzjRSkYz8+tFYkAJbbiO5DbMCppgYLDImNC8gpx5bZNOSptZKEBDpgXnPT4SsSY7ysgaUlNTh6JG2oQSOnBau0LyouE3ksqCdETe5PSkQFdS0Tvh5ZcIQHIvPRvrhItxsRygqo4l67ZlCc7o4XSMgf9DRrgKZOzO4oQvaHS6T+1o1XYorkmIMD3PB7sI0aGmCZa2q4xj8q4Q4POQVhUcDI7EmozVnmL6K3BdBdVsbhAIeQlzs8diW16DWXbse5ABrGhevrXsSj8f44P8+3wVBgBdRR7YfaeYIAApH8hhq62jHkEMzwLQnxbLBHkxvqrxqUrQ72oucIp/TRP59VkQSo45Empi4uJRcR2xHE3jTROPKOuZ5FJSQ58VxB3l/Ca/mYtj0fpiyYBiyzhWiLpSDTZ/uREvWTWYKbPJcsmiJnwuWk8fLXEQe3xY505dJl0r2VNgNJo9pcokrsexky3zR80RkD1ZqEWkCyapi3hs3U/xIaxLjYjTh6slTeO2DqTiXVYRIkRPS6ltF6HZc8jlRr/Allud6JjLqXXdsHPmDFXkveW4nj+f1CSsd0VmZJaGv4cEJD+OD2d9g8Yr5iD2eCZYdzUC1ijSSfPbZZ7F582YMGDAAly7dP/ksTZigc+8LMgyAlbUQD78wEc99/jBO7kxAdWk98vOr8efGnvE6mRYTDA6LhT0X0npke3fKucpCjHD26bzgLchsrMZ83yhY8W5PNKzR6hhpDdQqDb5d/hu8Qt2wcuvLsLHvQvKv+xyKAha9OR0xY0Px5xe7ERTtjS1f7UHmxbzeblqPk1VRi8uFpejv7gwfO2YwbexEjw9DVWENmiUtcPJyQFlB57pHiUSC8+fPIzg4uAdaaMKE8dJjgRGL1fdiMA6HjXnLRuC9bx4BAPy2YgcoCvAKdsH2bRd7xJvF2lyA2YPDsO7wBaPzgqFztjIfTgILuInuzK9pXWY8uCw2fC3sOi0bGe4OSWP7M2jUKg0+W/QzTvx7Hi9+MNMUHN0GFAUse2wELKxF+P3D/zB96ShcOJKC1HPZvd20XmPdyQRIlSrMiAhGsHPfGU5zd3fH0BnR2PzV3hu/3W5+yq1bt2LJkiWws+v8HjRh4l6lR6IVR0dH+Pj4IDf3zh13expzCzNMf3ggho0LwVfvbMe/q4+gorgW0x4bgd9W/gelsvvTGbApCssnDUJsWgHyK+u7fXt3i1qnQ6akGuE2zp0XboeUhnJQAJwFHQtAuRw2HpwRhaMn029ZRq/X48yOizi+76opOOoEoZCHxxePhIW5GTZ8vBPLP5yD4uxK7P79ZG83rVfR6fV4f/dRSOQKvDd5DPpK9oyFCxfi3J7LKErv+izgrKwsHDt2DDNmzOiGlpkw0Tfodo3ReNY8RISEoP5qCwY2TwZo+hY0kiZsbLqmSNGOq7EFOa2bRZtxQSnIZX11LaMKHU3rdLNhWuTIYAx7NhSpqYmYNP1ZFBUVQSgUYs1na/DD+i/w96WNiHjxO0adLU7kMofWoUHXFCna+Sijbtr92f1DYMPi49d/T0F0LeWFqIhMjCnzJI+FWsR8etM1RjInWhna3y3acQFo8iJ1IXJa23WyVm1Ucb0UfK0Z6MnazayYM5joRn823whR7t+A6c3+SF2bhYIHyK9cs4rWfXf3soNYwEPxeWYSkZuN7QCAtVEEqqEJb/5vJr578U+UFTGPj9UZct8avckDIqd1FrDtSc1aQzumfkIBub/HT0cSyzpH8rqukzGtClgscv893Mjr2NOcNDm8VE6bWs5nCqW9NpHGprYiFl5bvQTJ57KxfvVhzFw8HMpGGbas3NLaBgFzWJNuLlgzgmbYRcv6w7Umr1n6sQEA8VBSM1RS0aaH4bHY4PPa9kWj16GyjtkrGeBCbjgjjTwefFrSZm0UqRdqFjP3VWgjx96qRCzyHYyA4WZYl0EmfJ3nT2qKdpeQ5xkAhg0i/bliL5JDVYJC8qNnsuMzxLKmhpnih2NDDu9p6luvhRFzBmHa2PH49sW/QF0/d2wW1J72UFuS1ymLpjG6zqFDh/D1119j06ZNjKFqEybuB3pOfG3kw0DXCR7khyc+ewSPv7wYsbGxN35fsGABqqqqsHHjxh5pxyAvN0wK8cd33xy5p/KAdUZ9fTPs7S3B5bI7LFdaWIfaamZajPY4u/syBk4IR9SYECSCGSTfz0xeNAKnd13Cob/OYtj0/vDt54kfnvm919rDpljwEjlisG8gwm2cYGsmhKu5GFp9Ww+tWqdDbmMdrtaXIbayAFXyrqeS6QoHy9KxwGcQXgoZg2fjthrto4yiKEx4bBT+WrkN9ZWtgaaNkxV4fC7kLbefNicxMRFZWVmYP38+/vzzz+5qrgkTRkvfNOjoJkY8OBDzXp2Gde9svhEUURSFxx9/HFOmTMGrr77aI+3wtrXGkyMGYvXJONTWd+9D39Cw73K8oUWmBIuiEBHhjmyUG6hVwLEtcVi24kGcPXoG2RWm4AgA7F3ECB3kh48W/YyY8WGY++JkfLngB7RIe9b92JIrwHA7HwRbuSPcygsyjQIXy+txujwfFS1S5DTWQMdp67nwEFnDQ2SDoY5eeNinH4plEsRVFUHKSUORrAJ6A4cuBdJaZDZWItzaFV7mtiho7t4kzXfKtKfGo7a0Dulx2WBbtQ5HRwwLROLpjC4P/f/+++/45JNPcPz48XvOmNeEic4wBUbXmLhoBGY8NR6H/zqD5LOZN37/7LPPMHz4cMyZMwfV1d3naH0dIY+LtyePwp/xV5BUWgFmZi/jJsTWAdtz7nz2nB6ApLEFbE7HPUZd5WpsFlLOZeOhoRH4dMcJg9bdV5k0byBO70z4f/bOOzyKqm3j92zfbDbZTe+9h5DQCU1AujQVEVEQG4oi2FEU22vDz14BQaSJlSq91xAIBEjvvddNdrN99/sjQDgzgRBIshsyv/d6LznZmXPOzk555pz73A/MZmDE9AH448tdKMlmWg90JDZcAQLsPBEodQGf4iJa7g1viQMKmkpwoS4be0oTUKyuJqbSAOD6s6FQVYeCRgVOlOdByOVhgLM3+jt5Y5jndGiMOpyuuYzT1a0k1rtNzADW58RjWfREcCnrXEQiEPERO6UfVr62gfF3rbr9SZYTExPxyy+/YMWKFXjiiSdQVdX6tBsLy91IpwdGB01/QW+6Bx5mWxw0/QWoaBvQyhNEL5F/kDK1FybhzRPNUkqyUrORqbW43gdk7ty58BvviCHjB6KmpvltcLxwNl5d/Rx8wz3x1n2fIbruXuC6ZhtqmG+lWjk5WkLX9ujpUpRWZsjeCB2InDMlyNicBVcAPDXZd5OY/MkafMlGBK3MLtH1QLalZN9rI+n9ZI76OKSRowhaGemRIyxv7pfEKERNfhN4GrKfQhfmG6veQAY/glIFuE16lBdUo0+AC/6tIk0zKcOVOowGwGxqKd+EvdUrr/37wodbcWLfWQxLaER+Wsto1FV9xlUkNF1N5qeko7foDCnktjvKbFdeSAYY7lLy4VQ6iRSom/hMfYv7FvL7m6XkMT/xHJmTzCwgT6jwV9JBx3hFWzdgQgwienngf8u34rlPZkFRpcDZ3Rear9HrGGd8jFFH40TyeCi9yPPFvRf53UvTXUABeDA8EjMjeqG6qBGp6RVQaw3YWZ2FxKwSCIuuHh8OKLjAm3btqB1JDyLb4qsjSGYUXvnflw9xEOvujTG+oVgSeA+Oyc/jv5Lz0F7xuSqnvWbwcsjEtSIN87w3lTRf9JlFaoijhbDXOUBb0zKKe1gaQh4bDdMrKa7AjygL6skvR9dEQkr2i6qtZ9R5/Xnt7OyMT779BP+d3oq1qd/AbDZjvOdSUBSF0Y8Nx+qv9sLMYX63tryQtm3bhpEjR6JXr144cqRnC/FZehbW+frThQwdOhSPPfYYnn322WtBUWhoKN79+2Uo61R4acR7aOyi6Sw/Jzkiwz3w17buaa5mKxTAxVaCaiU9+m0faRcKENzLs+0N20llZSUO/hGH0TMGdXjd3QmKovD4ezOwY+VBLP5uHhpqlFiz7E+YjJ2jZRPxePhk9FgM8fLBkkP78c6avfj9YCK2nkjC2bRC6A0d56YdV1aE/505giXH98JX4oz/Rc9CqNSj7R3boLhegcLaeswOZ4qrLc1nn32GzMxMfPTRR0R2AYoCxDZCZKfe/pT0uXPnMGvWrI7oJgtLt6FHB0bh4eH4v//7P3z99dfXgqKxY8fixx9/xPYf9+PnV9d3aQqEcZFBOHoiA+pumoPKwUYMpVYLle7OVrKYTJ0nbz3wRxyC+/gioJdX2xvfpUTfE466SgUmPTESmRfysObdvzrtmAs5fLw3YhRKGxvx6oE9yKuva3unDiBPUYev0//DzuIELAydiGHOYW3v1AYJhaXo4+IBAadjp3nvhPvvvx/e3t748ccfGSmXBo4IRXnJndl8bNmyBb6+vhgwYMAd1cPC0p3osYGRXC7H+++/j+XLl2PPnj2gKAqPPPIIlixZgueffx6Jh7s2aziPw8GgQB+cv1jQpe12JMHOjsistE5h6lU0Ki1++2gbnvvkYdjKbj0v292CSCLE818/Dq9gd5zekYB/vt3Tqe3N9huBRq0OP5w70+Wrucww40RVGj5O/hcPeA/GaN/bd2UHgO2XU2EymfBw2O0lS+5onJ2dsXTpUnzxxRdoaiItJPh8Lu6d0ge7/z53R22o1Wrs27cPEyZMANVdjJxYWO6QLhFf29ra3vCzcZK55B9sSB2FoZWHF5e2aoY+R28oJ0XSdN3EPffcgxXPr8ChQ4ewfft2cDgcfL94LUL7B2Djoi3wzevHaFM3mhxCr25lRN1gQ05FiCtocSet2OTZsv2kwCCUGZW4bFYAPi1iJnkGOWLF0dHKtMEZqpU3f1EteUNTepBlhxRyH3FNK3ogCXmqqLzJ72qyMSIwyBHZ6hpoPPTgNJFv1VIRUwBaUkoKbM1VJTBrNDDXK0AZjHBIo+Uoy75isMTRA41NLeV2sLd6JfbuBxyH6THtvb547rnnMFT8ILENPaeUyzna8dqfRZRNCtIPBwDg7kqW60nxl/sGcuTErGtllJCWkNfoJiM/LiOPse8PGWS/aF5dfAEPT370CGzsxPhh0Vqc2XmeMcowhjOTKCsnxzC6VTaEPB4mGXkSVsc1G3rN7h8NN7UHfvpiP7xULeeL5DR5/AAADjKiqHcjTT7VjuR3bXJj6gw9DpLfpW5Ws25L0aTB/y7uxyeDJ6NOkosSdfMoikpL+leZTMwHvz6zpR9GAZCRUYGxNv7YG3e5+XNvsl8SIfN3VOeS38X9AnkNGwvIVV90TST9/nWViRMn4vjx49i/fz/jM5te7uDYCRFfUg142kFQy7z+6Pfe/ar1rX5ed5CLBz+ehvKny/HLL7+02hcWlruJTh8xWrBgAd5//30YDAZERUV1dnNt8sQTT2DRokXYvHkzVq1aBXd3d7z99tsIjPbFytc3oiSrc1fltIa9UIRZEVHYmHSxy9vuSPq4uCOp+s6Pn0alRW2FAsP73tkb/s149913UV5ejiVLlvSYN+HIoaEY/8RIrH//b8TtSGAERR2FiMfDOxNGor+PJ97fdRhKVftXRXU0+cpa/F14BgtDx0PAub33Qb3RCBuhAHI7G8ilzAS9XYm7uzvmzJmDFStWMD4TCAR49OHBSE4paWXP9lOaW4m17/2NWbNmwc7u5q70LCx3A50eGMlkMhQWFoLP5+P999/HqlWrEB4eftNRpM7AyckJb731Fu677z7Mnz8fGRkZWLVqFTZt2gSNRoPVb/2O+qpbMwzsaJ7t0x8JZSW4UFFmkfY7gmCZIwQcLlJr79zSwGQyIzU+GzJp5051LVu2DC4uLnj+i8fgGeTa9g7dGP8oH7y+ZgEuHEzGvt+Odlo7PlIZPr9/Auqa1FiyfR8atZYPiq5yqDwZDXo1xrvfnoA6t7YOpTUNUCjVWPDA0LZ36ETCw8ORmpqKrCzm6Ft0dDRsbIT445/4DmuvKLMMCoUCAQGd97LCwmItdPpU2qeffnrt31fNEtevXw+9Xo89e/agcp8JpXkV0Kn1nfIGy+NzsejZRZg7dy5UKhV0Oh3++usv1NfXY8eOHXj22WdhNpsxlv9Ih7d9KziKxYj19MacHf9apP2OYoSnP06XFcJk7Zlur0Oj0eCFF17AVy+sxuLvnkBxVhm2/rQfJTXW8zC/UyiKwqhZQzDvg4dQkl2G/z38dae1NczDF8/2GoS/Tydjf1qW1TlEm2HGP4Vn8HLYfdhfdpnhHHIrKJu0+C+tCHMn9QePy0HXLc1oQS6XY/ny5fjqK2ZaIg6Hg+nTp6OgqKbDk07//PPP+OyzzzBnzhzW14jlrqZLDR7NZjNWr16Nv//+GyNGjIBMJsPcj+dCKBQiNzcXJ0+eRDjH99r2+clFyCps5QLkkgNdRpeWvEF8ARf9Y4ZgxNR+cPKUITTGDwadAYlHknFy63mknMqA0WCEsqFZfzFW+CgAgONKmv00DCBXLVX2JdsU0/JBAYCKlqqKoq1+pvsaSXM46B/qhrSsClDpBkjBgTyD1IVw9GQllf3JkTZ6PjaVB3NayEizVqFrd1rzLaJD91OS5rZoPHhcDibcH4J3Dx4Cr775lDLS9FYl+czEcDz7mwcgHL0JPHVLPZTgSpt8HsChmsuaG+x8ixiNRiz+7gnwf+ZjxowZmPXeLMiNbqivbMC+9ceRdSEPsiTa9IE9WTa1kssKleR5S9dv3EogbqSt7uPVkLYRXh8nEeV9NC3KvHnzMHPmTDg4OKCyoRzT501Fge7m4v7oheTDtiGW6YItFJP90mdLMTowALODo/HV4VNQ/FaE6xfI82vJOjR9/Bl1KgJIvY/jZTJsafEtakZQRYqNAcBAy3Vm+zl5wWXPdEI1DJho24ghGIJUh/+Iz1NLmMmPpb3IVV18pRHmMjXMaiMkZXoUKskptdbywJlsyWvHNo7M8be3DT8hOmFhYdDpdNi8uWW/q3qgcY8NR5hrAN7KS4R+YMsxtc9larLsLt589SjHlvSQMx51gmK8Dsse/gw7Vx5s0weJhaW7YhHna4VCgZ07dwIANmxodmq9//774eLiAi7nys2MojDn3Rng2zZPpxRklCHxRAZMRjNwxayML+BBIObBv18gvHwdYS+zga1UDK7ZBJ1Gj7qqBvzfwnU4++9pxmgUPRGmpaAoQKnpnsvzrzI42AdVKhWyaqx7RdrN0Ov12Lx5M/744w88Ff06XH2dMfvNadCqddi6MwkZyR2j1+gKuFwuFi9ejGnTpuHnn3/Gk08+iYULF6KgoONXPFIA5vXrg2F+fnj3wEGUNjTCp8Nb6Vg2XbqMZSNHoq7iDMo07UsPczm5GOPH9Oqknt0afn5+SEtLY/zdI9AVo2fF4qsFa6B/yLuVPe+c/euP47F3HsDOlQc7pX4WFmvAalKCbN26FQC5KmbvmsOw8fcCxeEgekgwxswYCHc/J3C4HHA4FMQSEYwGI6prVSgvrUdluQJNKh1KE3MRt+cS1CotzGZzp4lMWQCxgIeZQ3tjbQcJxwVtuJp3NmazGYXppShML8W5fZfQf1xvPPb6NBiNJhzbm4wje5ParsSCcLlcrFixAlqtFjNmzMAHH3yAP//8EwkJHW8aSgF4MXwU5FoZ3ty7D9Uq5iiONZJRU40taamYET0W32e1b9QjPaMMD07v30k9axuKohAdHY3jx48Tfx8/dwRGPxyLP7/chcqiGgCdExjp1Dp4BLgiKMYPB+7MCYCFxWqxmsCoNQx6I6RyCfrdE46gKC8IRHx8t+RPqNU6mAGUF9bAoDcSU2kAwC3s+pVlt4u7zA66DnT+7Wom9QtHaV0DTnbAaERIXz/YSMUozatE5KCgDujdnZOw/zJSa/QI7+2FyQ8NQN/BgbhwNA0pFwpQfSWDubUgk8nw7rvvwmg0YtmyZZg5cyYGDBiANWvWdEp7C8NHQiYQ48PdR6BrJe2ONfNfRgaeHDwZUp4NGg3dI6ADgKlTpyI8PJzQbjo7O2P0w7H4bvFvKMluZY6/AynPr8LJbedw3zP34udzn7a9AwtLN8QqAiMej4fevXuDy+UiUhgK90BXuPu7wMXHCS6BHog/mIz9f5xBXloptBo9Q2PUnXGV2SKlqHNvZp0Fl0Nhcr8wfPTP4Q45kyRSMQrSS6Ftsq6pxSaVFufjcpB4Ng99BvojItwDE2YOxNH/LmHfP9bx2hw2MAiPPDMeFRUVWLJkCdzd3TFr1iwsWLAA58+f7/D27nUPRS+ZB16M/xM6Y/czytQZjVAbteBYaVLY1hg6dCgWLVqEF154AQpFS1A+e/Zs5Fwu7PSg6Cpbv9uDz/YuBY/Hg+EW8hWysHQ3OjQwGm/3BONvlIsTJFIRxJJmBbC5XgFbOxt4h7qDw6Hg1NsfUX190dighqZJB7NGj4riOuQV1uDsxSTkN5yFVnvl4nNtHhniKsg3PG4ZTdsiItXGtXOZQ99GISk4NtAEyqJ6cvqNLnLW2TOqhKiCrJNLe77T6+BqzfC2tcPFuiIIG5rbM/HJGzW/lvyuLgmkqFkRTAoknZKY+a44WtrfuGQ/pflkRxv9mB4tlX3IU0UvAUb4+6BC34Qk1EBYR9ap86aZC/KZIwrXm+cBwLnGXZBp9NhXtxoBTXx4CKZDL2k5HlcNC81aHWA0MQwMO4r9mo3kHy62/HPvlRhDLpfj559/RrQR+PbbHdBoaH1pY8kT3cSvNc3bNbH5FQzZpGj3oOkv2NnZYdKkSbjv8eHYvHkzNm7cCJPJhPfffx+nfk2BQ1oExkkirquTFDnXTg0nypW9yQcdp4qZ3HZYQARmuPXG0j0H0dgoRuB28sTm1dKSONPOt7pQsg8Ac6GCwZb87kYxeV1UDZIx6uA3kdesqI52e3MlfyOVToCcGkfUapvPd/MtpIpr9OHDZMOBUUihwU8AikN+9/oaZtLrsO/qibKhNbH+LTBx4kT8+OOPSE9PvybeH3xfX4weMhTf/XQMCGsRtRtol/D1ixiuwqUtIgBNbmWi5Ty8JrbWA+PP98d3332H559//ra+CwuLNdMpI0YcLgc+oe4I7RcAmZ8b+gwNRpPyyk1Jp4dBb0ROUhGMBiNqqpX45dsDKCpovlnQgx6Ds5Re/V2Fk0yCzKLuufT13qBA7M1oxcX4NrGx6T4jD3V1dViwYAHee+89rFy5EpcvX8a5c+dw4sSJLtO0hYeH44svvkB6ejpeffVVpKamAgAee+wxyGQybN1zusPb9LWXYUH/gVi09z+UNrbi+H2X06jWokmjg7uDtEu1iwsWLEBMTAw+//zza3+TOdth8vwx+HXZH1CBGcB2Jj///DPWrVsHOzs7NDRYxv+NhaWz6NDAyNnLAWNmDcHgSTGoLKpByplslBXW4NT+ZJTkNT/8zTVkKgRTUOeIBFk6l0HeXvCR2+PzYyc6rM7evXtfe7h3B+rq6vDyyy9j4sSJcHR0xJNPPomnnnoKBw8ebPOh2YsziPwDhwOYzci+mI+C1JuvgKMoCot/fhrySBusXLkS69e3WAGMGDECixcvxtSpUxGlHnvb3601RDwelt0zEj8nnO2RQREAGE1mFFcrILMVw9iJyY6vRyAQYOrUqXjhhReIIGTGK/fhzK4LyL1cCKp3SJf05SqpqalQKBQQCoVtb8zC0s3okMBIIpHg/fffx8iY8Ug/l4s37vsc2isZ4ikXpn8NS/dGxOdhbr8YrD13ASrdzb1Q2gOHw0F9fX2H1dcVmM1m7N69G0Cz9cTEiRMREtL2Q0pKkSOhFIcCT8DD6y9OhLZJC61aj7g9iTiw8eS1a0nqYAsbqRhvrH0eIokQ0+dOIZZtOzo64vnnn8fGjRtRVlaGKOaszh0xq1cU8uvrcCgvp2Mr7mYEuDt2aRqZRYsW4eLFi8jNzb32t35jouAd6oH1H/zTZf2gc+zYMUydOrXTxP0sLJbijgKjq/Pczy9/HHwBD/dMG8zI8jye+zRRpmsp6Pogg68LUdY4M99IuLZkt0tnkcEXl+YbaNPKIrUmN7Jsn0O+/RnEtMShaeQcfaMXU7Rpoq00N9KkFBRNZsNTAzA36yuuaiz49WTnVQGkmIluEim/RI7ANYbIGP0SVZAaIpOQ/A3oGhC+iqlHENa17PPAkHBU6lU4XJMLXJEpGGhyBV4e+VTWeDL1QHyabjOIFw2OQA6NyA7h/IFQ6kxEX67qcsxGY7MNgxWuhNqzZw/27Ln9jPWS7yWQSCTw8fHB66+/jncffRZZWVkIDg6+tk184iksWbIE/ZUT4MWPga1MgjnLHkTIyEgc3HMZqfGOGDv4Q3DKahn1V40hR2gbfcnf3iaPvLaMV2Zo/BxkGO8bhKU79sOdNkiop12P3Eby/NK4k6akojrmSAs9+TH9PDfxyH7SNUkAIGgk/6iRk/3gi0g9kMnAgU4phFbTfB4F+zJvFE4iUmfT+8XzCAt8EPnK83joxQPYnEPqF2UHmamO6MmOb5QUtjW4XC5GjRqFhQsXEn8P7R+AgxuPQ6tqvq7qepMXIP34ld7DDOSCc8k0OGNqyQTC9Hs1XUN66NAhvPrqq9fSKrGw3C3c8ZIMZ29HBET5YMVrGxhBEcvdh4ejHSYNCMMvl6xjNdbdhkqlQmVlJRISEjBr1iysXLnyWlB09OhRTJkyBfPnz0ddXXNAzOFQGDd3BIQ2Arz+/Hrs2nqhw/vEoSgsvCcW/yamoLj+7tGTcDjtH/URcWzBowSo1Oa1vXEHMHv2bOTm5iIvr6W9gIAARI0IR2ZC7k327HxOnz4NvV4Pf3+mkzkLS3fmjqfSxjw6DImHk68N97O0D5PZDJmtCA0q63/j4nE4eHPGKPx5/BIKtdbl4XM3Yjab8euvvyIjIwMnTjC1XEExfnjkzWlorFPht3f/gsHHs1P68WRsPzRqtNiZnN4p9VsCN7EdBBwuGnTtu+4oigODWQ+TufOXqQcGBuLxxx/HnDlziL/PmTMHBzeeQHnenSdsvlO0Wi1Eoq4VfrOwdDZ3NGIklUvQ994o/PvN7o7qT48js7AK3q7ytje0AmbdE4PiagX2J2Zauis9BpPJRARFPB4PixcvxurVq/HSz0/j4KaT+GbBatRXdc5IToSbC4YG+OK7Y3HdKkFwWwg4XFSrVdCbbmGNvgWIiIjAxo0b8fnnn6OsrIz4zM/PD6XZ1mFie+jQIUyfPt3S3WBh6VDuaMTIRipCfaUC6sbmKbTWEmPuq1tNlOnbmGtpfi5epF6oJpLp7+KUdHOPIS7tJVBc04qHjoSsVyelaJ+T20vKyTalxcwbasVAuj8QWabrmvgqCrWqJvh4OOBEaj4AwMyjJastIacnOWpSg2RwIDtqd568iQKAyZ7chldK6rqaIsjkmQ0+zGM+cLw/osO98NaR/agPM4GjIfspKSG/a2Mgecy5POZD1SSg6UqURpgMBph0OpgNRkJ7BbRoHvhiASiKAsXlYpzgMbJSmvmnmSYOp3sDAcxkmbpwUofDv0ROWZhp/kkM3yO0JPW8ERwnh5t+DgBG95ZtYvr7wd9dhrDePtDrDTj63yUk/PUP8jPKwPW4ohWpJleKZS1gZi2jJ/flN5C/m3xUywOXAwrPOE7E9tPJUJWqcVUyJ00ntUuNYeR30TiRgb6wlhxdETQyr0czbVpL5UH+TrJM8iKnTEztIcdAnk90rZxc0lJHlJMP1FQTJLKWv+WWOzPqLOCR383fpghGMwf1BhuUa+3RlC4jPvfcw3xp2NvK+XEzOBwO1q1bh/Xr12P//v3EZ3369IG9vT1+ufAl1KaWvvdyGExsZ/Ylj5e4leS2eTPIvgdWkzcoU109uYORPJ5jODOBOHuMf3gyTvFSYTKZ26WfYmGxVu4oMPIIdIWiumcu2+0ockpqMCI6wNLduCkBrg6Y17sPPjhxBNXqztOReYd5IG5n2zm9xj8+EomHk1v9LGxAIJw85bCRitF7WBi8gloEpgVpJbhwJAVG2g2eQ5sKMHg6EmWur4wo04MtqY6ZgT5axDQV5Qv4iBgchKDevuDcQk44M7/l8qyva8Lp3Zdw/mQmslJKUJhTCTQx2+1IRrj0AmWisPtCRqe2YwnC7D2RUl9q6W60yuuvv46mpib88ssvjM+EQiFKSkqgVnfub3+rlOZUoL6yAWGDgpEax44ks9wd3FFgFDulP84fuNRRfemRZBZX4Zkpg8GhKKucqghwdcAbD4zE12fjkFl7e469t0KIkxPkrjIUZzJHvK7Hr5c3vEPcsenjLdf+5urjBEdPOQZN7AOvUHdkns+DXqvHzl8OISchByaTGRQFRN8TgeABzBxsdDdoowu5EpBuSm3WkyMgTYZg0PEUuDH+ZjKacGrHeax+50+Y7OwYn9MxurWMVphMJnDqu+5hKOGJMNNnKD5Y3XE+VdaCkMPHQMcgvJW/87b251OCTtEYURSF+fPnY9CgQZg3b163WelVU1oL7zAPNjBiuWu47cCIoihEDA7GilfXt70xyw2paWhCWU0DYiN9cSo539LdIbgaFK3aH4+z3JubDt4pEa7OOLsnsU0R/6QnR+Hi0RQMuq8vQvsHQu5qD7GtCKW5FShML8XGT7dBr2t5aJmv+/f5g0m4cJwpILbIVJpN29oW+shWVzLRvS9SFIXIoqfbuQsY6BiEQlU1ClVMO4O2EHNtIOKKkaTo2Pxznp6e+PDDD0FRFF577TViFZq1c2jTScz/v8ewb+1RS3eFhaVDuO3A6PHHH0d2ZQb26TZf+9sYzGRsR9cUXcu3c3UfDrnPgTPvEuUJircYdRZNJrUAdM8OUS058qK1Z2rMzbRRAL6CPlpDah5qQ8kdOK28MIppgx10HyMxbREJT9Pc5olz2RjdOwjxCXmoDyPTYtDzrclPkr5FfA05rWOWMLUX9VHkCIjKTUaUm7xouhMFEOjkgFfHjcQPJ+ORoCiBWE8eQ7UruY9uiJKsI4M0MBQUMPOvuZ5r0UsF2AqgdJADsb2v/METZk7zb8u7orsav2QGBk0fhKryeqReLMTxk1lQltSgKLuixWnazo5cUaChmVrxmVNYtaN8ibJBRPOw0pKfN3mS32VcNnMqlKMkR3eMTrTUNhW0VX2tWF1ws8lgdG/1SqI8JvZ/RDnvJXJ/eykt+RWAmmIZUdbRdF61ShvwKQ5GOvfFW+e3QZ7DPNHpmiKeitQM8TQ3XwZfF8i87dBzE0pKyfNa60heTDZF5PkGAI2B5DEuHUF+Loxv9kgbNn0Adp/MBFdCnsM+LswgMC+HHPk7eTQaC/252LEjGgDgdYrmEaZsI0leK4wYMQKvvfYadu7cidWrV99SqpFxIlJbV30v+Vs7Cdsebeo3OY0o71aTOiXvXfVE2ZxCpv+5qidyrnLGgxjD6otY7hpuOzBydnbGn3/+2ZF96bEcv5CD0QNCMLxPAI4lWdabBGgOipaOG4mfT8YjobBzR4qAZj+Z0aPC8eHSFhdfe3sxpk+MwrSx0ZDb2cBkNkPC52Hrpjjs23oe9VcSlVIK5gOS5c6IdvBCSVM9ClS1cEb3yV93KwQ4OcDDXoq43EIgytK9AR544AG88MIL+Oabb7BzZ9tTey4uLqxfHAtLJ3PbgRGfz+82c+DWjk5vxF/7E/HEtEFIyC6GyoKeUKP9A/BkZD/8eOJMlwRFADB1Sh/U1zchIMgV73/yEBob1KA4QEFpLQx6I84k5kHRoEbKzmQU5zNHQVg6lki5B1Lrb6716q48O3QAtl5KhcZggCWzfPn6+mLOnDmYMmUKFixYgAsXbs2Y84EHHsDKlSshRWAn97B9uLi4QC6XXzMeZWHpztxWYOTo6IjRo0djw4YNHd2fHsvFzBJczizFc/cPxbd/HoOhi/UlPA4Hc3rHINbLB58dPIaMiq4JQNzd7TFr1mCUldWjV29vnDqRgZ1bL0DdpEWjIzntZZvPmkp2Bd42chyvyGp7w25GrL8P7ERCbLmYYrE+yOVyzJ8/HzNmzMC6detw7733Qqm8tVFPZ2dneHt7Izk5GbFWFBgpFAo0NTXhvvvuw8aN7bMmYGGxRm4rMJo0aRJOnDiBoqKiju5Pj+a3nfF486mxmD4iCv8c6brVfmGOTlg8eAiqVCosPbwfioquGQnkcCgs/+xhZGaW44sv90BVxU6LWQN+to5YlXnS0t3oUEQ8Hp4Y3Bfr4i/AUms/Bw8ejO+//x4ZGRlYsmQJDh8+3K79hw0bhpMnT6KxsRGwIrNpnU6Hf//9t0sT6/ZEpFIpeDzmI1soFCI8PBw2Njee9s7NzUVxcXHzucPSJu0OjBwdHTF37lzMnz+f8Vmr4jvawAddbE1PVEgXcBuz85l9SJYRZbXLzb+G0oN5wdING5Ve5DaSUvJzFa0Oo4h5exXWtZ3o8nroppIA8NHFk/ho/BhUyfXYlpIGAW2QRDGXNO1zvkSKY+sDmMeioQ8pQJZebJ5EcJJK8ODgXoj18cI/2xJx7Gw2eAA86piCW8pIft+qPuREhLGMJi6mzVPwW9GkvvLJVNg52OClL3bD4GWGyY+8sHWkZhwlI2WMOmwLaEaJtGNO0X4mYyvzJxzazKVTMvmHkpG0hLhuZCPUYFpHAcjTyL8JaeJ+nhP5ZLO5QCYaBQBlLCnqDo/8iigXxJCBZLgrqe73ljCnNXZXkb+T0Jb8rvpsKUwxXDTliKBXA+JC5iid3oEUn9MTwNaFkt9NKyP3F9YzqoRtMSm2NoppRp10A0hfZrJWjZy2yELQch7PCI9ACbcacZJkcK5oizztye+WX8M03fTdQZa9FSXgzzEj8JeCZpG0lDw36GaO9vb2GNpvKJ566ikEBwdj3bp1+OGHHxjt3AoURV2TL3DspTfdtlxB2kF4yesZ29ToyOstcDypb8zsSy5ycV8VTVawj1xIw9J+GIbHVxJjC8UCBMb4wa+XN/h8HqQOtoid0g/5tTmMOmQmZxRnlEGlaNaeUXzyGcARi+AX5gEnDxni9l6GQkQuZFCptCiNz0VFSR0a65vrMNeQ9w6jgnTWv9uF9u0OjMaOHYv4+PhutZy0O1HbpMY7+w7io/FjAAC7T6e1sUf7cbZrDoiGhfnhaEou3v9uN2rq27+a5k6Y0C8UwyL98cLPW2EwWp9/E8vdQ5DMEfcHR+DVC3e+WKRJqYVWrce7a55CwtF0xJ3MvraKzNldBnHY/ZDJZIiIiICvry/8/f3R0NCAH3/8ETt37oRer2+jBZaeCEVRCIz2xaiHYxERGwKYgfzUIuReKoCmSQtNkxbL5/2IX1O+ZuxLH2zgiMkXE45cBgBw83FE1OAgGFzJlzY3dxn6zI6Fp78TuFwOeHweko6n4tyBJKSezYFO0/PO2XYHRuHh4bcsFGS5Pa4GRx+PHwMvvi3+PJsEhfrOprds+QIMdffDUDdf9B7ujuNpeVj8607UKJsgre9iPROXg1fvH4HNxy4iKd86cj6x3J3YC0X439AxWH72OCoMdz6N4OBqh+ykYvz6yU48+vIEDJvSFzpt84ND2aDGwbhiGAwG7Nu3D0qlEomJidBqtW3Uemv4+PhYbWBlMBjg48NMQcNyc9z8XTBtwTj49/JGfXUDzuxMwPoP/oZOrYPJ1LEvjOWFNSgvrIE2xJ3xmbCwFhwuB1wuBYGQj7ETIzF0cl888up9UNQosXvFPpw/cLlD+2PN3FZgtGnTps7oC8t11Dap8fbeg5jXKwYrHp+OnRfT8Pe5JOjoc0VtIBUJMSsyGpN9w5FUU46TZflYeTAeDU0dc7NuL1wOhaUzR6NJq8e+uzDVBIv1IOHz8W7saOzLz8LZ8mKIndrepy2G3ReDo9vPoyi7Ap+9sI45lZb26Z03cgNmzJiBhx56qNPqvxM2b96MjRs3IjIyEikplhO3dwciIyMxb948BAYGwssmAEf+PI0/v9iB+sqGa1NplsBkNMFkBPQ6I7b+fBAA4OQhh6O7DHOXTMHst+7Hytc3IDsxjyFZuNtod2DE5XI7VXRNHwZsDZtLZPv6YX5EuS6U1Bq0piuhQ9fy1NI8TkQV9D2Y+iCGpohWtqmkGU/KmHVcnxC3Qa3GL//GYbssCc9MHIQVs6fjYEEuTubko7i+AUaTCdVR5E+os29uw04oxOigADzcOwqX88vx7OptqG9qHnXy+7sChAKBZkpnbs2kjqYFs3UNI8v5pKFhbS/ygeEcVw0Ol4PF701HiJMzLh5IQ+2Jcsiu20agIPUuFQNJHYmohmnUSU/2q/YgD7rJntRLUVzmFe2+k5xzF2VXEWWxnye5A4fshyyLWWeDL7kNXcOmcaW9DU5lvm3LPMiTUqMgtT1DvQuIcm4DmeOtQtWKDsVIS1IsJEcgRL2rwJfq4BBRA66+CeYtTEGn0YY8F/Q2ND0QPYUK7WczML0+YZDQDVTJ4yOqJM+v8sFMjZHSj9znjeChqKhQ4vdjlyEAD2oDebLUiMmXA94pZpoW4b5zRDlviAFHMo7gQPEB5pfoRNzd3aHX61FR0XwjaurrR3zuYUveE6s45PEJtiPPaQDIaiA1RDwOeR4/H3GcKP8WeN8N+1dXV4d//vkHEyZMYAOjGxAVFYXXHlyGyCEh+G/lQWxbdQTlBf8Qhp48BzIBM2hJr8crn2DUS9Gc+40+LkS5Ipo8F1QezL4ZxaSRqcGJfIu4+O0+DBkYiBc3LYZSpUXY+7HIvNxyzpnKGA/IVjMCdBfaHRitXbvWahIY9hQq65X4ePMhRPi4ov9AX3x43xiI+XwYTCZklpI3PKMQcLSxgaedFJfLyrFs/0EU5FuHt0jsyDAEhLihsUGNLetPtRZbslgBFCjwOdy2N7RinunbH65SW3y4r30rv26GUCzAoEGDcOTIkQ6r81aZPHkyduzYAZPJel/VlUolXFxc2t6whzFgwAC8//770Ol0yN5Zhm3f70Fj3RWDWnoiRivm9NkcJCTmo09vHzy7bBoaFU24HJeDi6ezkN1KYNSdaXdgFBcX1xn9YLkFUgsrkKCrwIqTZwEA7nZSuArIN3q9LWA0mZBWVXUtKS3fCiKQ/sNCMHHGAGg1ehTnV6OitB7wbDuRKkvXU9xUg2CpB6q13XOqc36//gh2cMQH/x1GUwdqcjyCXGFnZ4fLl7teayEUClFb2/7cbl1JdnY2Zs+eDQ6HY9UBXFcgk8kwfPhwTJw4EZ6enti6dSvWrFmDeynrnAq9VXR6I+LP5yFp/Rn4h7kjLMYHT701Gdn3hqK2rA6H/4yDoqqh7YqsnHYHRgoFa7JnLZQ1NKJSSwpKr06lWQvhvq6YNjQS0c5OKMiuhL3cjJ8//c/S3WK5CdXaRjgImFNV3YFn+jYHRe8dPQydvpWEhndAQJQP9u3bd206qyvh8/m3lEPNkiQmJsLZ2Rkvv/wyvvzyS0t3p0txc3ODh4cHoqOjwePxMGnSJOTn52PLli04fvw4dLorMgHLv6N2GHnpZchLL8OJPZcR4mMHr2A3vPXbApRkV+D4lrM4sJ+y+nP2RlDt7Lh5nGD2tQI9IWxH0JbPEcDUIZki/Ily/mTypk7XDwEAh/YiqaEJM0U042c9Ta6h9mbedG3yyDjTREsi6/vFRaJcM4vmCwKmXxJFa4aeVLYxlNyA3gcA8P2DTO1hLC4l26DNY3PETBGIobYOUgdbhA0MAkUBoE+1mEjRIMXjwzfCE31H98LRv+JQUtaA5z56CL9+uBWXTmUy6gfA0DEZ/Ml578JxTL2LgPZyQvc+chpMrnorySZ1FQBgn062a59PHtMmZ1q/xORvpGZWybgBivuSb/siHtmG3sTUTzVpyBPIwZbMkcWlaUK4NJEbvQ0AKGskR+nqK2knNteE4e5+eCCwF14++R9sMpkCPbt8mieTmqbr4pFfnn687PKYKyy1DuR3bfAhj3kjTT8kT2M+YeaM64cgDycs33wYTVr9tSTNV6nqQ24vriDr8DjO1NZxEltGzV5dNR9Lv30Z58+fZ2zXmYyTzMWbaxfg7693Iedys99V6XMxxDYxD5G6Ho2R5hrPZx7zUwWkT9YgmmZNzCVvkie3kW16f8lcneww3YDhw4fjhRdeYH6Ru4yJNo/BI8gNUUNDMWbOCJRklSH3UgG0Gh3yk4uQEsd0j6ffa9uC/vyjHJleWwYPUpdUH0Lev6uGk/cBXjXzGWFwJR8sZlrScI6QvL+LJOT23Ljm+4qznQQRnq6YGB0CqkKHS5eLcOJUJjQaPXiHyPPldryQzGZzl4SWt50rjeXuxs3XCXZyCSIHByEwyhtmvR6O7nJkns+FXqsHRRMgm2lD5xSXi/pKBT59/Cc01iox+92HsG3VkRsHRSxWw9mKIrwcMxzetvaogfXnQ5SIBFj0wDCIBPxrQVFnwOFQFtFX+oR5QGInRm6S9WcaKCoqslpLgY5CIpFg4sSJeOvZN9BQp0TG2Rx8+8Ia5F3KJ7brTvqhjqKqQYVjDbk4nVmAcRx39I3xxbixvbB95wWcP5kEfSddmx0NGxixXEMoFiDmnnCEDgpBeP8AVJbUIi+lGP/8sB+62nrUldffUDRIX2bKEbSMAAT39UdYf3+knGO6trJYH1qTEbvy0zErOBo/Xoi3dHduCEUBg8J9MG/CAJxOKcDmQ4nQGzpnubNULoHc1d4igdGwaf1x9O8z3XZa4m7B1tYWY8eOxbPPPouLFy9ixesbkJ9SbOluWSV6oxFnz+fi7Llc+Hg74qEHB+CB/97E0b9OY9/aozB20nXaUbCBEQsAwDPIFU+8/xBqy+uRl1GOv+etgLapZbjUUHt7K9sEIj4eWTIVR7ecQ9Lpuy8x6d3KPzlJWDN6BvY4ZyG3yvpEv76ucsyfMhhiIR8/b4/DpZzStne6TWxlNpj91nTkXCrocsd/Pp+P8IFBOLH1XNsbs3QKDg4OeO+999CnTx8kJCTglVdeQWpqKiOdB0vrFBbV4Mtv9sIrtxjL/ngJMmd7/P7JFkt366a0OzC6XldEPzFuR3PUlp15a5hoLtDcvDKibFMeTJS1NGsIgKndMdGOBF3LY6AtspDkMA+dxpl8o6NrGDI/7X3TPgCAmUfTjTTRtCccso3gdWRHeRnMUZmbBTU8Phd9Fnli5MiR+PKnj7F9+/YbbkvQxqKTcXgMgdG+mP3WNORcKsSRjccZb7xmXRvDqr6uRJHbyqyOjrawjZ7DrrqRZnTElPLARJv219qTo2HVQ2k/lIasRFDLHDLX25EHyJamByqvIMVQ/l5MnxkjTXdkJyQPQIOWvFaEfLKfdD0RAJhM5DkZHkjqz3Iqm8V2auixKfcsnpswGEv274Pa0FI3t4msw7acLPNV5Hc1Cml6IV/mNV4fRNbhM4LMHdeQ5AUKwFBvX8yM6AUPOynWpSTiv4sZMMnMQD9A7EJqhMJcyNxxdnpSx0SNI0XUrd179ms34a/v/8LZhKNYtWoV4/POJiQkBKoGNYpzKolR2kZ/8hhXa8nzvERBnl++MuY9INKd1N8lVTMdka9HE0GOlnFo/jkAUFJSgoiICHh4eKC0tPOC1Y6G/hwCgNABgZi+cAKcvRxxYstZfPrWKhj0RngiGp786NsyY6SPtDOeZUF+N92/aDJT0GigSS81rmS/eJXkDc6+N01AC6CmkrxX2BSQ+6hdyX4L5TS94yhmnUXOpK9aZU0AntxzAO89fC8G9pbh4EzrzbfGjhj1YAKjffHIW/cjpSoR06dP77BpAoFAgAcWTUBQjB+KM8vx+6fbGElAWayf3cUp8DG54bWhw/C/Y0ct2hd/mRxPRPeFu60Um1Mu40hZ7jU7is5kzJgx4HK5WL58eae31RpcLhcGXceurutM8vPzkZWVBS8vr24VGNEZPXsYxj1+DzZ9tAWpcZkwGow9UjPU0dSp1Phg6yF8NGMcdsfE4OLFi5buUquwgVEPZMycERjz6DColVrsXXsEH+98s0Pr/7//+z+MGhqLDR9twbl9l6+MFLGBUXfDDOCX8wn4bOw4PB7TB+suJnZ5H7zEzpjsMRR+ocHYmp6K/504Ar3JBLOg84MiHp+L2fPmYcWKFZ3e1o0YO3YscpOtX3R9t0BRFJ7438NwD3TFF0/+jOoS65tG7u7UqdQ4k12IiRMnsoERi+VxcJNhynNjETowCF8+sxJVRTUd3sbEiRMREhKCZQ98ifrK7m/01dPRGAx459BB/G/0vRAPGIDfEhMBdL5w0kvsjPs8hiBE6o2jlYl49/ClDjVrbAuBiI+XvpsHjbQOBw50bfqP64mKisKZlWkWa78nETogEFMXjAMAfPXMSqiV1r8is7uy53ImPp82DcXFxdiwYYOlu8Og0wMj+txtm94FRnLuvLV5XK6vF1E22ZOTrBpyahOcVrU8ZFlM82xrLZ/M9egcWnk48Mi3WJ2GbISi6Tta07uIqsg/0g0bA/4l53Z5ueRwtVHBDEaOUP9iwYIFuP/++7F582Ys+no+6uo6Nk3IGM5MSOUSLHvtFXw1fyXqnZ0B55b5cE5FK+3RlvibauuJcnVvUsPAa2WmT07LU1YxkDzG2iry3BBWtOKLRXve8tTkMbdNI+fb6bm/tH2Z/jcxnqTuraSR1HwE+5AnXIQ9qfcAgEwemV6Brhmi+xQpNKR/iURAE8oBcLFREuXUClLHRdcgcTyb0IQmvJe2Ey9HjcQHk0fgszMnUaNpOQ8l48nf1tGWPAcTU/2IspnDHO2xcWj+cQUcLuYGDcYI51Bsz0vF+7nbodTr4OjbiOsVQC4SJaOOrHJSf5FSRvpg2Rwj/c1cuaQuYl/D2mv/nj56OvKUqVj81GKLrwYzc3mgBKQ+SuZXT5Rzq8mbXoQreX5VNjENO/VG8lqgn0+NGtLDysmBPOZmN9qNFgCYUpNuQfjQcMz/7BFs/WEf4nclYlfDeuZGNF3lONFj5Mc65vVGh5KT9wFuKzqt60lbTPoWmXnMlwMnek7FKtKbzGTfdr/C/cnnSJkTea9xFpFBoqOIfA7l1TP9leBLbtPk3nK+FUKDP5fswcI3X0blnwYYDcbb8jXqLG4riazRghmAWdqHzNkO37/zPfR6PWbNmoWqKqbItyMQiPh46tPZOL39HMrzKsHp08pNk6XbojTo8FHifjwePBDfj5yCPzIvY09+BvQdmPoh1tkf84Jika+swTNH/kW91jJv7EOGDMHzzz+Pl19+GSpVKwmVuwh/f394eXmhoY5NytqZODg44IWv5mDtu38j8Qh7rLuK9Pgs6LUG9BndCwn7L1m6OwTtDox69+6NxMSu1xqwtA++kI/ew8Mw5bmxWLfrF6xevbpT8xfNeHky6ioU2P7jvk5rg8WymAH8lnUWcUVleDysDx4KisK+gkwkaM6iXn/7AYS7RIpnIocixN4VqzJOIKGmEGot03G7K+Byufj000+xcOFCi2eJDw4ORnx8POoquteUtEqlgrv7zVe4WQuxsbH45ptvcGjzaTYo6mL0OgNyLuaDJ7A+UXu7A6OPPvoIc+bMsfqEhj0ZV18nzH13BrRqHXauPIhVuzt3mfGAAQMQPTISHzz0pcWnHVg6n5SaCrxxai+indww1icYX0Y8jgpNPdIbSpCnrIRcTA6hO/q4QG0wIK22EmZz81QaRQHhDi4Y5OaN4Z6+OFyZikXxf0JjtOwKrLlz5+LixYtISkqyaD+6M1u3bsWzzz5769YfFkAsFuPhhx/GI488gsWLF8PuYpClu8RiRbQ7MIqPj8eECRPw+++/d0Z/WO6QmFGRmPXGNOxbdxRH/4zr9EBl2LBhePfdd/HLm5vQ1ND1rsAsluNSdTkuVZfjr8pGhEg9EG7viRA7D9gKtMR2YicZfOxkcBYPBGCGGc2u1ZVNKiRVl+OpA1ugsbHsixaHQ+HDDz/E2LFjsWDBAov25Sqenp4wGLrPUv2rlJSUwMnJqe0NLYBAIMDzzz+P6dOnIzExEUuXLsX58+cxTsQGRiwttDswqjsMLH77DWgO26LJTA6BjalimmTRaa9gjesgY/xN2YsUpQpryTpsi8lgoDXxtUZOikzpqen4ZNJ6hlibV8Ic/tM4ku3STSNFNMNHuokkADQGk/otn91knQfjlhHlqyabFEXhnpmDMW5xLJ57/kmcO9e5TrnP9n8LT3w4Ewa9AZuWbUO2SArEthhYcqpoB5DfSvJE2iojKsSPKBtouWyFCmaQp3IjldB000xePe13asU1gG7wSBdXK/3J30SaQ9bp4cjMUkwXWxtpJ1gTzWxwf34Yow43e3IKRW+4+ZCzM02QXEoz+QOAKgUpwn0sjDxPTlQHEmUehzn9ml5IS+5bJkFhmQIH0XwcuAKawaOulVUGNCgVeTzoSSzpZpc8itkvUzl5wricIj+3zSPPyav3Hg6Hwvin78WwiX3w0ksvWcUSYi6Xi6effhpPPvkkXAc/xfhcqyNH5YZ4k47c58u9ibJURAarAKCjia+1OvKGNdgrnygr9aQBZgNtccBVioqK0NDQgMGDB+PMmTOtbtPVjOU/Ar6Qj+f+7zFoVFr88OxOKOub4IyBmOA6kGE2O8H2WUYdZtqzir4wiO5zxHVm6izrhpG/C1dL3tPKH6S9VAjJKWpnO+aig/I6Uij98sCDRPlMPZksOK2GXHABMM1inwiMI8opSk+ifCCdvF9xeMx7s8lASx59jmyD4nJBcTigONzmY9d5So920/Ydi0ZGQi4un0jD+Mfv6Yz+sNwmUxeMRezkfvjkk086PSgSiUSY9vw4nD+YhA8f/hY5lwra3omFxQrhcDl46tPZCB8UjLlz5+LUqVNt79QFPPzwwxAIBCgsLGx7YyvDbDYjOTnZqnRGEbEhWPbHYtRW1GP10s1Q1je1vRNLj+W2luvv/e0Ylvz6HDJTy5Bylk0Makn6j+uNSU+PhkFnxPeL1mJrxdZObY/L5eKbb75BVVENdvxsOX8XFpY7hS/k45vjH+DSsVR889wqpGmtxy9IIBDgt99+s0jS2rsNZ2dnzF32IH5d9icyz+daujss3YDbCowaa5X4++vdmPr8OKSdz4PJaEVjYFYKl6IQ7uGM4cG+cLazhYfMDlQr8h+lUIdPzhxDqbKR+eF1uLu7Y+HChZg0ZApWvrERORe7ZtTG3d0d3t7e+O7lP1ihNUu3RCjkoX9sECZ+MAWJR1Kw+s1Nlu4SSychFovx66+/4vi/8WxQZGVQFAWZC3O63xpod2C0X7MRAHBgP4XhjwzDo69PxoYv9wAANFMHMLYX1NN0JBpSBMIrI0WX2kBy/lNvx+yiiUfTa7gJb/p5ow+jCtgWk2W6roRuo0XRpujFNcygwHsXqTVJrlyNiRMnYvDgwYiKioJSqcTatStQWlqK9PR0ZqcAvD7tQ3w1eSD+XLMTqXFZDA2WQCDAlClT8OCDDyI1NRWTZo9FWVlZq3V1JGM4M8HhUHh8wUw0JOlg6kWKFbkKcmjaLCKFO3oP5gVA/23pvxs9+a/GiSkQoktNBDS5j47WLF33BQDialpyW5qUR1hF02IMJuf56foXAKgokRFlnoQ87wf65RNlBxFzaD8pj5zXpwvhXFzJL5tLMzjk8ph+Y872ZN8PVoQSZQmfPN/ya5jGbWY1eRBdvEmDx0AZ6fIXd55swzOETO4KMJP9GmiahQYFqR8q2svsl28G2XdRAdkvY14hnL0cMOfdGTAZTVj43rNISEiwugB/DGcmIjkDIaKEGMOZiZwxTG2ZMJHUlaTZkLovDs1EU2NgnviNjeQxlUrJ0Sm6pqheR5b1rrTspdeRkZGB+++/H1u3du4IdmtM8FoEoDmly0PP3wt1oRD7DmaSxsAa8oZO2ZDfxejETMBc3Zc0TtTTPDPp9xa1O/O8EvqQL7z2NqRXV19pPVEuaCBvgoUlTN1Sn0AyZcym/IFEOVROXm+KOubv1sgjz4XNJvJZXp5LtuviTz63q7KY/aKn7XFII6/PXJ+zsAubj++WfASFnqnTtCS37XxtNpvx22c78f5v8zF4XC+c2Z/ckf3qtkhsRegzOABj7ouGgTsGu3btwrp16xAfHw/9LaQ02PvbMZiMJjzz6SNI2J9ECPy4XAov9Z2LjIwMbN68Gf/991+X3tQDY/zgFeKBz+Z8D0SFtr0DC4sV4OnnhBGTeoOvUSN8YBBO70jA9p/245yuc7V4twtFUYgZFYlT26yzf7fCf//9h9deew0ikQgajWWMOifMjoWzuxyrP9pmkfZZbg5FUSgpKYFCYV1BEXCHKUGalFp8t+RPLPhwBuIP9FxzLFdHKSID3DB2li/kjhLUVDViy8Y4rPxrMRobbz4l1hr7N5xAQXop5C52MNOW6/6xYTWysrI6quvtQiAWoL6qAXqdgU0Jy2LV8Plc3DutLyL7+SIw0hO7N8ejNi0P237Yi7oK67sRX4/QRgD3AFec3HrW0l25bbRaLY4fP47Zs2fj119/7fL2o4cEY8j43vi/xRvQpNQCIssYhrJ0T+44V1pxTiU0TVpMmjMUf6b2nNVJQgEPE4eEI9jXGd4uMiTnlCM9uRiXE/KRn10Js9l8W0HRVTLONYva6VNpWSbLBEV2jlI89OoUHNp0wiLts7DcDA8HO0QPbJ7+CAhwwcD+/si9UIjs1FLs+iMeOamlMOZ1jxVeY+fcg+STrU+1dyfS09MhFovb3rCDCYjwxIwF9+KX/21DHd02hMVqkMlkVuvTdUeB0d7i7wAApUuOYs2aNYjPqEB5aT2xjcaV5l1Am4jVBpO+DoJGUjSikTP1G3T/H46enE6SZ2hoZWbfNU6kbwq/kfyBxEk0EdKVKS2+gIeg3j6YsXQQ8vPz8dPHn+LkyZO3NE12K1zVcFkbrjMEOJK0D+/93eyjNC6J9KOi6MkQBaTGiCNhvrHxlOS4kyKQ3MYgoSVzLWSOUzUOInURNqfIGzGflqlCWszU3RgFZL0aB/Kco59v3DOkuKAkmHnzp0Q07yOafuNsvh9RDvGgZTEG4OlOamTqm+hJYkmdRHUFaaoX2Z+5YpSeNFZPS3Ts5Uq2aSNimm3pa0n9hYKmbSo7RQq7wvNo+fn0NK+uIFdEThbC0bFFp+DO9SfrNJM+PW6xvkTZwU2G9AsFMJlNqEkuwqfLt6M2j0zMS08+PUH/ElHW+TN9efjVtMSpPPJ4cRTkCWauZ45GmdXk/aita9w2KgDpBdXAoCgAgMmO+fAI60++hF4+Q/pPGW3J+6iLL9NAk6EpUpHXX6mA/J3Hu5Or9v7u1Yp487qMQIWFhXj66afx559/oqamhrltB3F9onLPYHc89dYUbF11CHmXW45RUxSp1yt4mLy3eHqQx0elY97P3aX5RJmuv6P7jpUrmDolug9RhYLULSmayOell7yeKLv6MwM9egLXPi7ks+tUAelj5OFK1gkA5TXkNetvT/5eda7kvYeuoXRMZT6nHVLJ84t7nnwQB8+Owfnz5xn7WQN3PGIEAJcvX8Z3332HF195Fx++/Q+0WuuMAu8ERzd7PLhgDCIHBaGsoBpff/0Z/vnnH0t3q8uYNWsW5syZY+lusHRTZI62oKhmQezYaX0hvhIoC8V8uHk74uf1n+P06dPXth8mnErsf1K7gygP4Uwkysp6FRo07dPbhfT2xrBJMZA7S+Hu68RYMAAAFC2IA9USRNfVKFGR25zm5BpaLcoLqnHqvwvX/mTWCNFYq4SBXtcNkNjeHdM+hw8fxnPPPYeXX34Z77zzTqe3J5VL8NQnj2DHmqNIOJza6e2x3D4URWH48OFYvXq1pbvSKh0SGAHAhg0bMPHeZzHlgf74Z7N1uJ12BO5+Thjz0CBEDQrEse3nsW75TmibdNhb0TOCIg6Hg4ULF0Kn06GkpMTS3WHpRrg4SxE7KAhBcim8A5yhu/LCdPl0FlISWkaAspOL8e/ltcS+viJypWWGhnzb9OZEM9rj2jPf0K8ndkwk3Lwd4OblABdPOcQ2fBzakoCTuy+iILMcGh9mGgt+DW1E6MqIEUUBbp5yOIpoI0gaNcY+MgQDx/fG1YiJy6Gg0+iRfCoDmiYt4tZuv+E0u6enJ0LC3PHnhtOtft6dMJvNWL16NYYPH97pbVEUhee/fQKJh5IRf4DNc2fthA8MhFgsRlxcXNsbW4AOC4wA4I+Np7H49YmY/tAAbPu7+66oAJodcectmYzoYaG4cDwdbz/8PfS6u28krC3s7e0xZ84czJw5E0bjrb3xsvQMvOzt0Nvd7VrKnb7eHojxdAd/ZvM0jlqtx8m4LFw+m4tVn/7XMmKib/91FBsbC2/vlmn3KE4s+EI+fMI8IbJpnhanhOT0uI2YD5/w5ukzigJUGiMObj2PvPQylBfXoiKvkljVqW9tRId2zZuvm6EqzK1CcStTaReOkKMVZrUGgdG+8A33hE+YBw4fPozRo0e3GhyJRCI0NqjR2GiZlVzdEaFYgBe+fQJNDWr8t/IAuE5MKwcW64Iv5KGgoKDDJCgdTYcGRpqTl/H95Sws+m4eMNgHO34+AHFMCLGNVk4OE4sryQPT6EPe3ER1TPNIjoEcMuc3kDcvLs0riVvI9E0RJJPtGhUt88O+EZ649/NYFJUm4Z2ZC5GZmcnY/27m+jn7oAB/mKq4CCoejCD+4Gt/59A0RfQ8QhRtFQgvt5TRDo+WB08zgNSq8FQ39zUCAFSQc/IG2iyEYyrN26aE1AEAgMmWrINDS9Jmn0M+MKt7k+coBMxzlCu8eRApEpP9inXIY2xD9xhykZIPUrqGgeNOeiEl5pD6PQCgaP42nArygKmOehBlSUXztSSzt4GvZ/MDx1lHYfSk3pDai5F4JhdGRbNuoiYuHW9v2QAjr2VKymw2Q+PvCHi09FV6vwfsREL4yO3hIGn2VHkwYwLRbnXflmPsZGMDf9gj6TrNkG2eCiajCal5Vc2rjgBo3UntF1WoQP53R2AwNP8+OieblmkvCqgfTx6f2limnkrmRGonGrJJLUbAFvL48ZtaTzWRm1mB3MwKYPsFTK8bjV0bDmPV0j9QVVwL0xUNEl/IxwtvPo6E+mpU92m5vtw8mPcvei6+iIHk+VOrIb1qKupILQsAONiRfR3uT2rSilUyorw5qx9ZwVDmtYQvmX/qaK6/Pzl7O2LRj0+jML0Ea5b+AXA4MHkxtWLVvWnTpE3k9dmoIX/H1nLLZZwndW12IaQer6Cc9PIJ9KBp68DMkXh/0GWiHF9NtlFYS970PGRMDZuIRz7vjmaQz1yBDfmss+Ezz/MIT3KE9sw58t4jrKHlpPSn+es1Mqex+bmkbnKvav21fw+L/RA5OUX0XayGDg2MAKCpQY3vFv2GRd/NA0VR2HY6v6Ob6FRGzBiEyc+MwQffvYNt27ZZujsWhaIoTHp6NPavP2bprrB0EbZiIWS2IkT4uaJvsBd4Tc1BhZe7HAUlNTCZzOA26PDP+lMozq9BY4ManOp6sg4HKaT2zcGlu48jbMPd4e3lAKm0OQAN7OeJi0WlqFKqUFDbfKPXlJJCzbLglgdVnqIOa/bFQXPdSJPrcdJEEgDUdTKiLC4kH9zW4uO47ecDsHeS4qXv5+H9Wd9Be+WrB/fxA1/Ex8bDCZbtYAdiMpng5OQEiqI63HPNO9QDr65+DqlxWfj1bdaJv7vg7++P8ePH4/7777d0V25IhwdGABkc9X9wMJIvF2HLH/HXNAbWiHeoBwaMj0bU8DB8u3ANtqVus3SXLE5gjB+cvR1xZqd1rhxguXMEXC64FAUxn4/JoaGYOSMSeqMJeaU12BOfDl5185uhUqmBWmuAu6s9hJVqCEV8BIY1uy3L+RQ8/Jr1ORQo9B0VgZorXkGaJh2yqhuQk1uF8it/Ky5KRlYluerF5yA5GpbpSY5IyvXtzndt1az/aCu+PfwOhk/rj4PrjgIAxLYiqOpVVhPAdQQnT57EokWLEBISgoyMVpYHtxORSIT+o6IRNSwM/cdFY9uPe3H0rzMwme6ig3aXs3z5cqxduxalpcxZBGuhUwIjoDk4+r+nV8FrWiymzeiPD5bPREWZAkl5FUhJL0V1TSNUTcwhva6Gx+dixovj0Hd4KM7uScTXz61GQw3rfQEAk58dg0ObTkKr1oHiMtMSsHRvXuo9HA/6RkHE40HI40Gl06GpUQetXgMfVzmenRoLjq7lgaNUaVBYUguugrxuTUo18lJLrmnwEuJykHm5ZZhc409OMZQ50qYieyBmsxm//W8L5r37IE78dRpatQ5j547AwY0nAN+7Y1UaAKjVatTU1IDPZ674aw/R0dGYPHkypk+fjuqkRlw4lIT43YlIjctk703dCJlMBn9/f2zfvt3SXbkpnRYYAYDRYER+TiW+Xb4bzi52cHSWYtC4CPSJ9oFcZoO0zDLABBSV1EKhaB5PVrvwYDabUVKlQG1jE4Ta1jVGHRFUeQa6Yvr80Qjp44tf3tiIS8fYJZ5XGfPYcNg72SF+14W2N2bpFgTZOyLayQ1PRwyEt60MGoMBh7NzcTw/H3szs2AGIMsgdV1XNUbXIy4kvVjoU2msy/CtceFwCh55bTIAwFYmgVewOwrSSgDfgDb27F6UlJQgODgYycntSxslFosRExODefPmoVevXkhJScGjjz4Kn+yYzukoS6diY2ODlStXYtOmTV2S3/NO6NDAqFXjMtrK/e/XNP83JiYG7u7uoCgKffr0gZ2oWX9g1wBwuVyM7hsKmcwXDpQr6HCFfJTlVyH1XC5yLhddWy1lNJhQllcFvZAmyC1vES/ayiToN643fCY6wMvLC5s3b8SG5zdAq2WK7XoqHIEAo2cPxw8vrYNWZwJHIAAV4kduVEvqNygubapDSk6FNIYzV4oofMk3PXpCWHreEW4rC3VCN5EmfqZi2gVH6xfVypJuSki+zdrQ9C6N/qSQlW4aKSxmvg1raaLdet3Np4K2F0Ux/mYnJL9wg5Y8r9Xl5DGW5pDHs8ndDLlYhH4enpgUGoJ7/PxgMJlRUFuHVw/uxam8AjR5XQly3Jv/ow8h2xRKmaOnhTQtD59HCoHpSXVNJrJOTStCTdfvSVdqjZIUndZ4kd+1Ss9cWi95mByaL1KS+/R2JbOrS/RkABcpIH93AKjWknUoODKinDud/E3kacGMOugLSETVLS91ZlsxOCF+6Ds8BAYuF0oHR9QNJF/6yPSwzbhKyN8lt5YclXssmEwnst3EtDeorCEF2ZlcUrRMP/+aaslFCSI584IcJ5lLlPer1uPQoUOYNm3aLSeUHS9/GgPG9MIjr90HHp+HE9mlePOHeBiMJjjGzAe3/Obppxr9mUJz/nDSwFFiIK8VEZ98AfCRksJqAGgMIs8XuiGmSU/WWUy7TgCmweM/6TFE2Uy7dtwcSbF1jYpmpAvAV0b2tVFK65eJllSddh8BAJ6YFOL3isknygpaAmHl3+QiDfkxcnsARKJevoCHjRs3Ij4+Ht988w1zWyujU0eMbsbFixdx8eJFAMDu3btvuN1Y/iOMv/Fk9ug/JhJega6Y8tQ91/7OF/Lh6u2I4oIaxB1IgdlkRlZyMaqLOYgeGYmBE2MQ3McfSSfT8f2Pn+PcuXOsYK8VQvsHgKIo1JbXW7orLO1EKhIi1MMJ90QEwNHNFkN8fGAwmVCsUODXCxew8vhZMMdgWSyNxFaEuCNp0Gr0ADo+jQYFCnKBBCF2HhBx+Ai2c4fBuyXgL1TWQ8ktRlJ9AbSmjl1CXVVVBamUGay02k+KwjP/ewieAS74ZvF6FGaUoWFsWIf2h6XreWjReJSWFmL58uWW7sotYbHA6E4wm804dyAZ5w4wh2Z5fC6GPhSLgHAPSGViPPjMPdA1KCGV2+LIn6fx27I/oVXrcNbUfRM0diYURWHCvJE4uPkUdBrr9JhgIYlxcUMfVw+ERTvinogAGE0maHQGNJp1eOfAQRzMyYHpygsAh03/azVwuRzw+FzweM1u4N98cGsjKreKjO8GP0kM5AIPjHaJBo/DQZGqBpVaBUqaapFV2bycms/lIkLmimEuffFU4FgcqUjC7tIEAF3rpSQUCvHBBx9AbCvCR/NW3LJTuLXAoSiEy13AveKOLpS0jPw1GXXIbWSupOwJxIwIw4AxvTBw1KOW7sot0y0Do5th0BtxbOfFa2UenwsHsxo8AQ9F6aXsCFEbTJw4EVweB0f/tE5HUpZmBBwexvkFYUpQGMKcnGEwGSEy8rDvUiYOXM5CRmkVap3YwNaaGTUqHNlZFRg6JhKZKcUozrvzB6eIy8cgJ3884DUWYq498lWJKNdkY1NeAYqbamBGy/3v+qm0o6U5cK9SwEPsgGmeg/BFnydxqvo8DlWeg9LQujfTrdLU1ARPT0/I5XLU1TGnqK6yYMEC8Hg8rFz6Z7cJiigAHjb2GODsgyleUWgy6FGraT5eXEHLd/CRyCHli1CoLkFGQzEyG0uQ0Vh8g1rvDiiKwowXx2HYlL749uUNd5RUvaux+sDogH4z849t3T96ZmB+21ydrpTKJVj22kv4+c3NAJ9HjC1QNE2Rqa6eKHNobrM6V3LoXOXGXDnCp91v9aSUBx4naOaMiUwTRLqxJF3ndr0ZHADGChZ7Jyk8ZORlQHFa5vl1Wj1yj+SSAbUN2VFzKwlyjfY2jL9dj8GGbFPYihbRLGw+ht6+TpDKxCgf1mxg6O1gj7kDYiCRcgEK+D03DnHV2ajWVcEEMxAMUMGAudaWUadeS7br5kjerOhJLFvTI+hpWoowF9KAUGMk23ASkqKscjVzWuVEOlObcz3calLHxZ3CfMB6Skg9xqNe5Kjw54njiTLFIScVg92YhnzeNvVE2RBFakDohn2aMOYt1UhrR7Cw+YEp1RmQG5+LxokOOKltRPpzV64hUoaC2kbmuaSnaVGkQg4me8ZgokdvVGgU+HpjNs5knr2y9F8IlZcZAKnLciRzwqLaX4xqAJeRCC9ZLmaND8GboQuwuzgZf+QmwN6F7JhrK/oz9b29yD/sAHJycpCamor+/fvjwIEDjH0AoG/fvpgwYQIefvhhDDY/QHxWH0x+18r+ZBtcDTkKamxl0eMAR9JsMKWKVG6J+ORLxIVSMuEwAGirWn4HJ7ENHhdHYGCYD0QCHjKKqrBhcwIuZLekTeJet6KTogAboQDeo9zQy9UVMzyjwXPkYI/8NI5XpsF4xVKdnpy1pIbUfcn86hn9ouvLZDakVk7AJfVTdENIAMgsJbW8Ri15jUvSyIPqeYk8F0zVpIaLw6HgP08KUaAak2eORVZWFqNNa8bqAyOWrsPNzwWNdUoUpFuvv8Tt4OztCC6v+UIPGxaBqCEhoCgKYlsRnDzlKEwrgcnU8vCiqJYbsZ2jLYQS0TVfHgAALcM6+MygTwtg/54kqNWtr540ish9BK0sOQ7s7YPYe0IhsRWhurIBhmAbuEpt4W5vh7yaWvxdeBrna/OhMTbf1EV8djS0O3HPfTE4vvsyRvj44fuE+NuqgwKFoc4hmOs/AhkNZfg4eQdylVUwZ9xZWoziegW+SjkELxsZngoZipVDZmNN9jGcry1oe+dWUKuZwvbrGTBgAHbu3AmFQgHcPOWdRYl0dMG9voEY7ROAuLN5WLXrDNIKK5unqm9y+ZnNgEqjw+nCQpwuLATOAQM8PTF3eATu9x6I7UXncLTy7lgVfdUYWNafi1dffRXl5eVt72RlsIERyzUmPjUKx/+9vRu0NcHn80FRFObMmYPJMTPgHeoO1RU7iMqyehzfeg4GnQEGvQH5qSXQa2jpTGhBim+MP2yuHxUSkaMoZjHzFdUj3AOPzRt2wz6auORbLrcVPVeTxoDLCflobFRjwrS+qBNQuFBchqNHTiG5tAKCmBtPS7BYN77BrhCKBUhOyEXkE9G4UN7+lxF7vhjPBI2Gs8gOX6ftRbKi45M8FzfV44OLuzDIyQ/zw+6Bf1kq/inoeGfu6OjoW1611tVQAEa7h2ByTF/YC4U4mJ+Dp/dthSnuzlYynyspQW7SJfSW+eBBn0G4xzUCP2guI6m6+wUS1zPxyZEYNn0A7nt0bLcMigA2MGK5QnAffzh6yBG/OxGMdfLdBI8AF7w86mU89NBDMJvNEAgEOPBtHNa89Ts0Tc03Ma4tc7lrWxRm0Oa5bmEqLaWgBgf23jjLN3MqrWWqUmovRkSML+6d1hd9BgagrKQOf649iV1+zDxJLN2TEZOicey/i3BytYdS335PNiehFEsjpyFZUYxv0vdA28mSnPjqfGSfL8Wy3lMAoEODo6FDh8LR0REnTpzosDo7imi5JxaEDUeTQYeNly4ioawEOlPzwXZAxxhLXq4vRFJ9Eca4ReHN/iNwvCQfq5LO3mwAymoZfF8fjHhwELb+sM/qvYpuBhsYsUA/MhoTX5qAgxcL0DggDNW9mCMgPNrLkZrM9wq3M+TNvSaCrEPfyvC4fS556bv8RYoezGpyVcxemn7Izc0N9z90PyZPngw+nw+TyYQ9e/bgwQcfvPFF2Ureyza5nX3agG5DoR0ZDZGIjwH9/DF9Wl9kZ1fgO8VlnC+7MpIQA3hHkG9fFadJLxEu7eWM48e8tfL8Sb2PmJZQslpPBo7lFaRHEcBMRFtDS1hK1/qcig8nyo+OOsmos1ZN1kH30OndmxxRseMxV0ztKyHbKVGRfZdIyH1GeZG6h1QF0zFIbSS1TVUqUrclEZDHT6lmBsm2YtrFo9cAJhOKMkrRe3Agtiamgqdsmb71HkCKcunJgnkUBy8GTMf2zGxsyU0BYAvHU+T1xm8ifyObKua5QNGCKY8T5KhlQxHZbskIDZacPICPB02AxoWP39PJBKgAwBlNCxZ2MDYhGG/3BEaFDYY+T4R7BI8AAsAYFUj2kyaJMdiQ38U1htQPhciYSXdTatyJskZL/q6lavL42Z6QYFL/MEyNjMSGbedxKjUf7nvLcH3PTLY0WwXaKDDVioDc6QR5LpRNaOnXLpThqPteLBozBD/0n4qP/zuM+ghS91Zfw3yx49KSWDs4kOl2nESkHuhYFlPPZ1TfPBRwSiF/BE4qqffcp9mIp556ClOeG4Fl7y/Brl27blqftcMGRiwQifhwdbVDUop1r5JwdnaGq6sreDweFixYgICAABw4cAAvvPACFAoFlEol9PrutRKLoij49fLC+OfHIDjIFbl5lfjqm30oKa1D/hT28rxbkUhF0Gmbz1W98dadpXgUB69EjkG5qhFbc29udNgZKHQavB2/Fx8PmgCd3oR/ctrnZk3H3kmKsY8OxQ+vbOigHnYMsWG+mNAvFEvX7UFt452tymsPdU1qfLjzEGYO6I33p43BW7n/QG20/nvaO++8g2nTpmHRokWIi+v+K5rZOy8LXnt5AoqKalBVZV3LKW1lNqA4HPhHeqHfmCi81mcuSkqadRTHjx/H888/f831vLvB4VCIHBKKOcseRGO9CsfSSvDzqsMwGFj7xZ6Ad5ArNn+/H8MmRRNL6NtiTuAgCLk8vHv+qMWmWhQ6DT45fxhfxE5GWl0VUmor2t7pBvQfE4VLJ9JRmssc5bEUQXZOeLx3P3y742SXBkVXMZuBP89ehpfcHvNDhuHbtCNd3of24BvuiWnTpuGVV165K4IigA2Mejz9+vWDl6ccv6w5ZumugKIoxIwIg3eIOxzd7BExIAA6jR6aJi0ObDiB31f/3O2WfV6Po6MjZs6cCRcXF0we8gCMBiPWvP0HMhJyoB/JTNnAcvfC4VBw9XKAq5cDLl/JANAWg5z8MNjZH2+d3waD2bIBdGlTA35KPoOXY4Zh0fEdaDLc3qhGQC9v5Fy+vZVunYEtT4CXIu/B3/suI63IssHa94dO47vnJmKoSyBOVeZYtC83QiQRYsHns7HolWetUiN2u7CBUQ/k3hEfA2h23l24eBx+zkrEuT5qAM3z7mZOK3oEd1KfwU8n59f1UvJU8jhO6kw4ZeS8NwAYq1r+JnWwxdiP+0IsFuPYsQPQl+ox//0daGjoBIFPFxMcHIz3lq1FQKALSoprkZpSgk+3xaO8qgHwlAGe/VA6grmfczB5zKoaSH0LXSNS14v8w7gBTPH3wRNkAJbXRMvzdkVrwKUoOIhtIKxp1owYTCbUNTWv7NN6kQ/BgnxScFbURGp16FJ+uhYIAOrqSO0E14E8B3emkbnknu/DDOSNZrKlojJyyXqYDynCUtMMb+g6JwAItiM1Hg0K8rzvE0xOP2sMpO4LAJriSP+gsCgTBEIeYDKhrkKBejtyVMLNhhy5zctxgy1fgGcHjcL/xZ9ASSXgcZC83pS0ZmujaDqceOaCCq0d+TcOLX+YQyrZL72EPD7xQzMxoskbT0f3wYr0Zt2YjpYTcILTswCAAJs+UNrb4ABafIw4HA7C+vvjt3c2w3SdrYXWkaaXouUmdAsijeroerTWNDQuNL8uXSOpBePUNx/PJ2OHILesAckrzoOepVPvISPKJh75XXmNNBE9M4Ui4ZEGAE6XSRuD8kEt55dBZ8S3585iUZ+hOJpZDr2p9WCY7jlUoSJ9wng0H61Ho84x6vg9ZQBRlsST57n4OHkv2dewFmKxGMd3HMfeg9vvqqAIYAOjHgtFAc+9cC+0Wj325GZ2enscDoWASC+IJUL4hXkgKMoLYkHLTUIqt8WaLSvw448/3hXu5GKxGP3798ekSZMwcOBAnD5RhYP7k1FU2BzsqF2sIwM9BSDSwRUB9o5wFknga+MAJ7EE9kIhTGYzDE3NN1WpSIgGjQY6owkqvhZptVVQ6XXIqK9CkUKBSrXq5g2xXOORlyZg6y9HoNcyjfZuxAsxgxFfVoQLldblMfZLxmmsGPow9hanIl9Z2/YO18HlckFRFLQ38Prqavp5eGCApyee3rYVTHtHy5BQWYJqtQrjfUPwX166pbtzDYlEghUrVuDo0aNYunSppbvT4bCBUQ9lxMhw+Pk745sv9sDQr+OG5e2lYoiEPEjUHNjJbDBsdDjENkK4OdigqVGDhjoVCrPKsWv9SdRlt7xtN9Qqsb3m1w7rhyUJDg7G999/j7KyMhw7dgxffvkloiNetnS3rsHncDDS3x/DfHwR7eWKUlUD8hvrkF5XhcKaBqTXVsNoNqFU2QhhZfPbqIDLhYu0eVTHJVgCZ7EEflI5Ih1d0MvRDRxQSK+rREFDPVJKq5BQWgJVNxPCdwVCHhcyJymSz+Rg0mNDUZpfDTjffJ9oZzf0cnLFswe2dUkf20O9To2N2QlYFHEPlpzbDusIcdqPh1SKFwYOwrdxcVAbbj1g7Qr+yUrGI2HRVhUYzZkzBzweD99+++1d8SJLhw2MeiAurnaYNDkG3329DyUldUA/ZtqH9sDncnHPwAAMHxgEF0cplCotuCoD9DoDTh9NR3VlA5pyy1GYRU5lXD+Vdjfg5uaGJ598EiNHjsTu3bvx3XffEY7alkbKk+LZ/gNwj58fihsUOJqfj/9LP4IG3XVLiG+wbFdnNKK4vnlaM4c2LWo2ARK+AOFyZ4Q7OmNSUCheHBCL/Po6nC4uxImCfFQ3db2I1Rrxc5SjvroRAhEfUbFB+PzF9cBCpiXCVbgUFwv7xOK3lAu3rePpbHYVJSPWxQ8P+sdgfW33c2/mczh4bfAw7MrMwNkS61uZe66iGC9ED0a4gzPSaplpa7qageOjMWHOAMybNw/FxdZ3vDoCNjDqAdDzhY1+cgCS6mpw0a4J6CUGj/bMkmUx3wAcVpBanwz9agwbNgzR0dEYNmwI4uPj8cGST3Hu3DmrCgY6g/Hyp4kyl8dF9PBQPLhwHM4dSMLaxfuQF+OFgQ9/fm2bvH60fE4O5FspT8J813aVkLqIyjxSMyPsTX4e5UzeNPefb9blhMid8GhENPq4uiMuIR+frD2Iwqp6AIAywAwOWjQdHifJ366xlTkFgYIUT5h4AGBGOiqRjkpsjLgAe4EIvR3dMMIjAE8P6oUCVSXO12YhoTYLFy86Muo025HHozqT3MYphAzG/insy6gjwoFcHVVvS56zaWWkaiSXR7Yh5DNHCgwmUr8hl5NThmf/7U2UXS4wf0fn+BZ9xns7XsPB/Wnw6R+ItLRy1Jo4oEzkuXE23+/avyd4hUFXoceFHQWQX3e7pmuKKNolJy4jtSy1TFkXbNowJTYKaXkF80kNW0NIiw7l65Nn8eO4KdhbkgKFvkXzYwj1BgCYHKQwerUxNHYFjZxs10R7SlUlk/WYIknNEf03AoCqOlJ3I3Fouek9HhgLfW4T4n9LgYep+d5nlDC93PhVpB+QwYHUxSn9ybI0sxV9JJf8XfgF5DXrLCT1eXppcz+Op+RjqlM4So/XM6rUDCX7Nd6T9IPblETqhwrlMkYdxjpaLrSNGUTZoGw+pr2GhWHGwnF4/o1nuvVCmLZgA6MehqO7HEPC/fDdDqbJXltIpCIE9/KCi6cMr44ag/379yMuLg5Lly6FTtddB9HvDC6Pi3nvTId3sBvWfrAF2ZcLr3ziftP9ugI+h4OFfWMxyN0L27JS8Wn8MYguds2wt0KnwYmyfJwoy0dQpQIxskD0dwjGNM/BOGlTid+TL6OooWc5ebt4O0JiZ4OTB1PQu7/fLU1BTPIJw45tXe9X1F5KlY04VVyIGX59sCaLuWS7tLgOvXp7W6BnN8dH4oCRbqFY/sN+mEzWOyW0IykdP82cir9sL6JWefO8c52FVC7Bkx/NwpZvd+PUqVMW6UNXwQZGPQgOh8L7W17DvsRMxKcXtr0DAKmNEC4OUgwPDkLs2EjkppWioU6F+fPnIy+Pme2+p0BRFHrFBuPBF8aiorAGHz+xEnqd9WgTXEWOWDR2KvIV9Xhizxaor0zDiDoojUF70JkMOFubgbO1GZDyxBhIjcRXYyfiVHEhVl9IuK2UGN2RmHvCkX2pANpW8uK1hoQngLuNHZGx3ZrZkpmCT+4djfXZ8dDT7ATOnsnB60snW6hnN2aadzT2laSgosq6V7/WNamRXFaBQcE+2JOY0fYOHYyNVIwnP5kNpaIJZ/473+XtdzVsYNSDGHRfXzQ1qPHX8Us33IZLUZDaNA+rvvLYKPh7Nk/fxP2biM9f3Yy66uZh254cFAXH+GLm4gkwmcz4/ctdyLyQb+kuEQx06IXpnqOxKiENO3O6/iZ6MxoNavyWmoh/01Ixv29/fD1uEr44cxLp+u6ZbPJWCYr2weSnR+O9md8ANlKIbIRtjhhRaNZ2GdrhjG1JcuvroDRo0UvugcRaUntiMBjBpU0jWRo7vgiDnAPwesI/lu7KLRGXV4ihvt5dHhg5uNpj2a+voa6iHv976CsYWkl1crfBBkY9CP9ePti5Yj+aXFu/QQ0N8MED0ZFw49jAZDZDatO8pPz7P04g77e7/y2hLYYNG4b7778fQ8JHY8fqI7hwxPqEpve5j0C0LAQrcv7GrhymTsJaaNRp8eWZUxjjH4hlw0fil4yzOFqSa+ludQo+oR5Y9O087PntGOoqGwA/KcZO7YONKw5bumsdzqnKXAxxCWAERo0NajQ0qDF48GCcOXMGAGA0GmE2meDs7Yiqoq5fiDHAyQ8ZinKUqRWQw7btHSxMlVIFJ7v2J8G+EwaOjcLs1+7D7lX7sfuXQ13atiVhA6MewNWM8noTEDE8ApyMShiNZlw8nQWtRg9jQTHGPDYcY2JDsOXtHfh4xxIL99iyXDWlu4qNlzPGzRiIfsNDsOfPeHz83z5oNHogzBcAkDeNebMy0MTVwcGk/0xhrZwoO0mZgtGkZF+iLKogp8Hs/EljuyHycfAV++KN8zvRaNDAJY652pCWIxZuZ8hRiyZnsg1xTdu6C46e3MY+jxRnVweSSmFzcMtU0oGqTBQk1GLJwOEIdpDjt4xzMJrNMFPkramqmhTPBnkxXYnjCvyIsgPNOLGPFzklJReQn+cpSXE7wEwiW11KriCL+JdMVmyuJIXAAICHeUgrvITXf34Ger0eg6K+BOUgQqrECGWUHGInUkTvZt88rWPDFUIo0MPYSnyrJw8HbIvJ36AxgPy8NdNWfg4p+ubqyG3ohoUmPrm9sIrZsYOZxfhixER8WXcWAMBRtZzXKQn5CAkJuRYYmUwm5CUXwTvEnQiMVG5MM8rrMdqSI2h0ob5XJHP0UeJMfpfCTFcEefrifF4NVKW2cK0nr9fWfMZqepGmhxzajCj9+CmDmJmzuTqy75J0ssynHXN5Rsv5V5ZVAY9pdmiIIbfhFJEXdboHzWC1jLwP1CiYv5vnYfKYH1Wuw/LlyzFkyCD876t3sHnz5rt+Uc31sIFRD2LPuuOY+PgI+AS7Qu4kxeRHY9Gk1MDcpIa7vwu2/7QfZ/dctHQ3rQaJnRgRgwIx6anRKMqtxNdv/Y3aygYYnJk3PEsz1bMfYuS++CS5OSjqTmTWV+PlU9uxrN9YfDpwEt5L2I+7ZXG/rVyCp5+eg2XLll1LcCyTiiHgcdt80MgEtjBZOPVHeylqrAcAeEvtUdRIiuuNBhO8vUkB9vF/4zH9hfG4dCwNRkPXTdFQACKdXPCflU013wxjF4nDxSI+fvrpJ0RFReGRRx5BdnZ2l7RrTbCBUQ9CrdRgy4/7Qbk0pyhw8ZSDy6VgLCmHQW+0yHC2NUJRFGInRWP0jEFoUmrw75pjSEnIt1ojs3A7T0zwiMHbF7d0u6DoKkqDDkvid+G5iFj8b+AEfHXsDEoarVsQeyuE9vWHXq8nkmsO6xOA+KQCNLUhwvYUOyGrsXsIr69iBpBZVw1HkQ0jMDq2Lxmvfz4Fy5cvh+GKieLFIymY+eoUuPo6oTTn9pPRthdnGwlkIhGyalsZ4bNyJDwBVIbOW7AwYUQE9PpcjBs3DnV1dZ3WjjXDBkY9mMqS5pPeWGA9ma0tjUQiwSOvTIS7vzN2/XYcF4+nw2wvbXtHCyEXSPBM0L34LfcYKjTdP5BYkRqHmQHR+HT0WLx37DDy6rv3jdkn1B3r1q1DY2PLdBlFUVDcwpJrHxsXKPTdL9WK3mSEiw1zermxQQ2TyQSKIqdtcpMKENIvoEsDo1AHJ1yurIB1vurcmPS6KoTKnXGhqnMC5tg+/pg8uhemTny+xwZFABsY9Qj2Nawl/9D9n58dylj+IwAABzcZ3vh1ATJTSvDDm39Aq9YDHIoxdVZwH3nTN4mZ0x2OXvVEOSuP9DWSZJDalTIP5oNEqCBF8maaZl6Z4IK3pozD/nPFOHBBAUkpqZGxy2v74dvgT+oPNGS+U6hdmHoPHuknB6MNuY2ojZdwYTEzu6bmOhnS5pQUFDY04P17R+G9+P3Ia6wDaLqILDUzWStHQo7AVFaSv5tKS9YhEZJv3b52zAeBhqYxCv+O1AOZysiHuUlNjtjZ2YlQm0XLIcYFTBymceFVrib9dBRKkNKQD6GC+fg204KLulD670TuQ7USAegl5D5NdCsHI3luCKvJ7yYtZP6Oense0ktrECR2xiFlPgyym7vqU1wushLzERTjh2P/NuuSPI6TwWDFIPLaGBBFZprPVZDnfemFVjzEfMnJ2akyN5QWKSAua/7OOhm5ubhSCzp1oaTGiH6e07VRolrmteOQTF6TGl9SayisIC+u+iBSFN6kMwB6CrguWa9TONmRrDryIjbTEoDbnSO/BwDYbGnWfT34+Ehc3nr2rjZvvBWsa/0kC4uFcPZ2xOtrnsPedUex7tMdzUGRlTM1KhxcDoV/L1q/AWB7OV1egJ+Tz+CT2Amw4bWSprwbwONzEdI/AOfOkdnMo4I8UFxR3+b+gbaeKFN3v+ntnNpaRDjfmss1AKTEZSGkXwCcvZmO6J2F3EaMknr2DfF6AmP84Ogmw+7Vd99qyfbCBkYsPR73ABcs/uEp7Fl7BEf/ZLr2WiNeMjs8GBOJ747FwXCXrhaJKy/AkZIcvD9wLHic7nermr5wInIvF6KwsMVMVSwWw8/dAWdTC9rcn0txUadrbHM7a6NQUQ93qRQiHnNIzGQywdWVTM1SU1qHooxSBPfx66IeApEeLsiu7H5BZ2fi4uOEtPgslGSVtb3xXU73u9uwsHQg9vb2ePKjWdiz9giO/xNv6e7cMo8P6otdKRkoqru702r8ktI8vfJweC8L96R9jJgxGKNmDcHOFQcYn5lMJlipjr9DqFGr0ajVws2W6Q20cuVKLFu2jPH33KQiyLpotaevrRxGk5kdMaIxZGp/nN6RYOluWAWsxoilx8Ln8/Hjjz8i6XQmTu++CEpwZcrGnnaD5pBaAe+D5Jw9R88csakLI6cFuGPIfcwc2vSQkalH0NuT9bpdSU/k4WKPPjJX/PbjcThqW7axv0DqXTT+zKmJJjeyXa092a6AFmfVRzCXUAurSC2KhLRogpFmAcOjSZ10cmZU4JhA9kt1nYTop7qz+HT2aGRTeUiub25MVcwUxJt0ZMP+4WTH6tQ2RLmmnnxwz/U7w6jziyOTiHJoThJRNuvIKdeDpr9gZ2eHt559Fg/Mm4aUbOY0J69RD8e4lgUPmgdJ7VNBdbNmRq3noahGBqOQeW6o3cljyA2kJTitoelIBK3o4JJpCYN9yeNHtbE8XFrInG6uGdlcZ0ZTBYL97JHfSKYe2rRpEx577DG4u7ujrKzs2jWnUmkRPTwMlOAkKAPZL7tC8hwsapQRZRcJ+d2VgUwPout9woa6BiCzuAoclfnayECDD3lO14YydTgqf/L7alxonl+l5DgD3TMMANTupOZKkkuOCKp9yHsPPTmwUq+Fn0yG89Ut4mujmaYVU5Pnk0lLPuY9fiXPYQDYZ/oLr3s+hV/OfYU6U88VXV+FHTFi6bE89thjKCsrw85V3cvR9Z6BwThzKQ8arfXkZutMyhoa8WvWKbwQNgoirvXrjT7++GPs378fKSm3r/3iUxyIu8F3vRFKvQ6t2TSaTCY0NjZCICAf3qd2nIeTuwx+EZ6d3jc+h4vy+u43RQk0WyE4iGza3rCdTJ48GQ4ODte8tno6bGDE0mMZMGAA/v33X0t3o13YiPgYOTAYe45bXzqSzuR0VQ5Km+oxwTPS0l25KVOnTkVwcDC++uqrVj/38vKC8RZyn3lJ5KjXaaDQd09fqvZiMpqQdDoTQdG+bW/M0uFERERgw4YNUCqVbW/cA2ADI5Yei0AguGY0112IifBGfkkNyq08G3hnsLckBSNdQy3djRvC4XLw3HPP4Z133rnhm/eMGTNwdOfFW6qvqRNN/KyRkuwKuPnd+mq2noidUAhzB7svURSFe++9F7t37+7QerszrMaIpUfC4XDQq1cvpKSkYKiWlliqkDRP45aTUxo8O1LfYnIlvUgAwC6PplmoJHUP6ghyJICqaUUXcYGcjDAKgagIT5zNKIJRSEFUTQZ1TWHkQ0UnZb730L1WTLS0SWKa16ejH1NvUGND6iBENWQlXNrzvD6EpofRMCdZBI3kNvX2ZFlbKcGxyio86sVDDC8CiSVMgzv6MVXRNEeNjaRuxMeFXJX0zeXRjDrDvyE9Ygw0n6KDpr+u/fu9pe8hLS0NCQk3FrDy+XwoCqoBRUtgq8wLJDdy0sKg58BsomDQcaFhnl6Q5pPHsJGeBNWV/BFsMpnnl8qTPMZ8FVk288nzh6Mlgz2lF1Nc7epc1fwV7EyoNquhdWJqdaqqqvDcc8/hiy++gLGuRfujVzUBej042UVku+4hRLm2kZxKqswgfXts/ZkLEkoyXa79u46yg8wOaLpOp+V9gPxupcOZ+cTcjpGPy5oo8nOa7RO4TCskmDk3zwNnEJHHnK75C5E442BuDriqlvtLXd3NE8s6nyD7Tffa6jcmChqNpkem/rgR7IgRS4/kqvuuWt22CaI1IbezQVVtzxzuNgP4MyMJ9wdHWLorDMLDwzF06FC89957N9xGKBRi6NChyE+7NddiO4GwVZ1OdyDI1g35qtYd9ZcuXYphw4YhJCSk1c9Zbkykiyty62rb3rAdRMSG4Pfff+/QOrs7bGDEwtKNCPB0RGZhz03hcrq0EN5Se/g6yizdlWvY2Nhg6dKlWLt27U01Gp6enlAoFCgraDs/V35jLQQcHkJl3XNqiaIoNOhbf+moq6tDYmJiF/eo++NgKwaPolCq7DjhOEVRGDA+GhkZ3SeZblfABkYsLN0Ik9kMnb7rspBbG00GPY4X52N4iJ+lu3KNl156CQUFBdi8eXOb295qImIzgL1F6RjrZb2aqjshPT0dDzzwgKW70a3o5euGy5Udm0/OxccRHC4H6enpHVpvd4cNjFhYuhEU1fz/nkxiZSnCPVza3rALmDRpEmJiYrB8+fIOr/tidSmiHNw6vN6ugNPGJOCuXbsQEREBThuaG5YWBob44EJZadsbtgOKolBRUAWNpmesfrxVWPE1S4/negEtAIzRzSTKXAHNT4a24sgkYvrNGGxJ8bXfdppw9XVyOLy2jCmO5dAWzJXHmlGARjhPcsGF8lLI0mmicDU5GmEQMx86fFqydoUXuXRc5U+ORnHTW8lfJSL30Y0kV8jxeWQdpmpSpGvSMd/HuFqyr5J8chv14JZpmQx9EdxcY6F2J/sR419MlPPqyeSiAW5VRLlJTwpshReYIlZTCZlM8/pzRS6X47+3/8OKFSvQ2Hjj6Y0xnObzyZ3jClfKm2kg6kSqdMWSZuF0oaEEjjZiuJtsUNtIJkHl0Ba9cdXk8eNLyTopA/P8MtDEwkYB7TcoIKfCTDbk8aJvDwDVmU5wkUjA7SVBTqoELuLWV30WFRWhvLwcAyb2QfyuC8RnZh0pHK8JJx9Toa7kVLLGify8sJapVg+PajGa9HBxBRI84XidzyG/gTygzheZj0aBgv5d6NcfeT7SzVMBZiJoOg3e5AZOyc3HgsOhEClzxNpjieDTk0t7kNebTkX+To7b0sjtr7+f8XlAN0y309mwR4SFpRtR2tgIIZfb9oZ3MU0GHbgUBx62TPfrrmTs2LE4ePAgNmzY0Cn1601GZDdUIsLHOkbHbhV/ezlKGxugM914ytdkMiElJQUObrKu69gV9GYDXB0te+60F08POYxGE0oUPc+mwxKwgRFLj8RsNsNsNsPNrXtNVSh1WvjLWlm/3YPQm0woblRAImAuqe4q/P398eijj+LAAWYutI7kXE0+Bob6dGobHU0vF9db0sLs2rULw+4f2AU9IslRlsDHVdbl7d4JfWJ8kJbWsdNoLDeGDYxYeiQmkwl//fUXnn76aUt3pV1crqpAL2fXtjdk6VRee+01bNmyBSdPnuzUds5U5SI6wAMifvdRPfRycUVyVduBUU5ODqQOtrCRMr2OOpNKTQ3sbcWwk4ja3thKCAl2Q1JKcdsbsnQI3edqY2HpYDZu3IjVq1fjgQcewJYtW679na45An30mlYePPoLRt0Vg8ly4B+k5qNRTWo+6ElAAaCplBzutymhkF1fiRd7DYK8gg9FLLmPz3pyik3lwdQ+iepIHYSJR+6jiCGnP7x6lzHq4NIyW+YVkVM92lqyXQ6XZiToRRM6ATAKSR2Sype2Tzqp/xH14YMyUaBMLToOuqZoiHseUY6vINNN1FSSWp/wDbnMfumYDtaBgYGIiIjASy+9xPisNThXRrY4fD4oDgcNvWlL8KtILYq6uuXcKAaQGlCJAQ/4Ykdei1bE+RhN39JE1sE9Tn43eiJfAFA70fahGRJy1OQfdC7k+VjbhzlV5l0jRZDEARkXKyE2ctB0E7cBg8GAv/dthvssEVauXAeBSQmhWQeKNlVM1+UUNciIslJFXkscDnPlX241qZWr9dKCFytBdU2z6NiGZuJqU8I8YIoQ0ljSRHt6NrmQHTW0ktKMosU2yiDyd6Kf9+AIYCcWwq+XG07cIAjXNZF9F+fQtGA3mX4za7QwG3vuKtcbwY4YsfRYqqqqsHDhQjz//POQyWSW7s4tUatSo6JBiRgfj7Y3vkuRCARws7VFgaK+y9umKAoffPABvv766y5LuPln1mXMCIoCvxuIZIcE+SIhrxj6W3zY5uTkMBLKdgXJlZXo5dI9Rl4jvFyRWVYFlbZnpYixJNZ/pbGwdCJFRUX4559/8NVXX4HTDR48AHCxoBQRVrJc3RIEOTugSqWCzgJvuo6OjnB1dcWOHTvave/t2iwkVpeiokmJ+/zCbq+CLmRwoDdOZxfc8vZ6vR5+fn6d16EbkFxZgWCHVlZcWiGRXq5IKe5Y/6KreAS5waDrXvkiu4Lu8SRgYelEVqxYAaVSiSVLllxLFWLNJOSXIDaoewlyO5JId1ckdbDR3a3A4VD47LPPcO7cudvaf8i0/ijKuD0B7YqkM5gT2hdyYdfqcdqDDY8PPyc5kktu/bfZtm0bYmJiujw9SH59HSKcrd9VnKKAfgGeSCoo75T6Y6f0x5E/TnVK3d0ZVmPEwgLgzTffxPfff49nnnkGq1atate+0n/OM/5mU0ZmmOTVkz40JjMp/DSbmAGZnraiWFrYrD8oLq2EYDSFKBtvXKpquWHq7Mn3HJty5pugUUxuY6TZ23DqaZ4wTcxVe5Iisg5RGxpWHW0Rnc0h5lJpM00XYrIj+07VtegoIt1csDM3AxTt6/nLyBxSe1IjibKDI6nJsk2haTGqyKSyAAj9hVeoF6RSabsF+9QV3xj/KF/sWHUItmcyic9NY6KJstiF1GCZL9mhBEqccSjCbMc+WHMqAU20AUNxNXn8eLfg1yepILViXDU5AtcYRmq2qqNoCU5pmU0G+nuhVN+IUnkTcOU3V0eQ0z8T9iwiynuLv8PGjRvx2GOP4cyZMwAAypM85zxOkXqfuuFkvw0a8pw165nv+33DyFGslEIBhGIOPHwFKG1qQG04GXDaljIfjeJK8oSjX0scA+3aasXnyT6H/GHo7VKu5Hf1cveE2ZbCWVEZzIGA0JW8jwAARdcY0TIG0TVbB/QtDu0v+jyKvzPWMurs6bAjRiwsAJqamvD6669j+vTpeP/998HjWfc7w86TKXg0PMbS3ehy5DZiBLk4IrG065cuR8SGoPQ22w3p6wexrRAFt5hAtjX+uZCMMWGBcJBY36hRtIcbnhncHz8kxLd73+LiYojaiq47GIPZhNS6CkQ5uHdpu+3lvqBQ7M3NxK0lkmkf/v7+kMlkbJ60VmADIxaWK9TW1uKhhx5Cnz598P7770MqtV4TuENnM+EmkSLG2bpv7B1NbIA3LhWXQdVFwuercHlc3Dt7GD777LPb2l8gEqCisAZa9e0LaMsUjTidU4j7YyLb3rgLifZww0v3DMHyQ8eRVlPV9g40Ll++jD59+sDFpWt1c2cqCjDEza9L22wPDkIbDPbwxuEC5mrJjsDPzw8XL17slLq7O2xgxMJyHSqVCvPmzYNGo8Eff/yB0aNHW7pLrWIwmrA+5QIW9hkMHtVzLuOx4cE42Q5xb0fRa1gY6qsaUFHR9dqm6/nz/GWMCw+CvY11ePD4yO3x6qhhWH7oONIrq9veoRUqKipQVFQEnU7XpULsyzVlCJO5WO1qv9lBfXGyuADlKqaVR0cwb948HDx4sFPq7u5Y93wBC4sFqKurw0cffYQBAwbgnXfeQVBQENatWwetVtvq9tfP2V9lfLU/UTZzaXmoDtA8YXqRugkAkNWRZXoutPM7CnAPzxdveAzFz7viUDqCrMM+k+ljJM8gRyxEteRDwcQj+0nXBwFAkyfZjsCT1MRwLpLfjUvz2JGnM49jTS9S7OQYR/ZdoDRhQC8f2Gq4SNmTC/Rl6jeSSsjRM3s5qceoKSS/TNjqVKK8r5XfEQDEYjHeXrYAS958udXP24JycQIltwdlIwbl4gRzGRlc2RSRGhCNhjx+poCW41UILfZXZWLu9L749Nyxa3/nqcnjpaelfWstR5eyH02TVkb2Q0v77QURCqIsVDrhtaHDsCE3EZc4ZYAbQPHJc0NqT2pmtCHkbzS24hEAgDvlD/fyUPiIg9E3ohbnD6dc24Z+Ftfkk9onmQ/ZL7mYqcOhe1yhWohy6FBR34S+fH+cHZRDfMw5xZyutDWQ159eQtPa1ZEaLZ6SuWqSqyKvv/oI8rznC5p1TMF2zhjq5ov/pf0C/9CWY6jSMXPeVdSRQTKH1s/W7k/u7u5wdXXFzp07GZ+xsCNGLCw35Ny5c3j66acRHR2N9evXd7kO4lZYufsMIn1d0S/I09Jd6VQoCpg2ujd2HEmCuTMEFzdhyJAhyMzMRHx8+/UzncGvaQmIdnZHbyfLpbOx5Qnx5oARiCsrxH956Xdc3+kdCRg9exh2rjiA2Ekxd97BW+R4QR4mBnXtiri2oAA8FjgQ24suQ2loxZmzA+ByuTd80WNhAyMWlptSVVWFF154ARcvXsSmTZu6XAfRFiqNDn8cu4RHRvWBkHv3DgD3j/QFn8fFqcSctjfuQDgcDp588kls2rSpS9u9GWqDHl8knMA7g0ZByu96c0R3sT0+7jsd5SolNqVf7JA681OK4erjBHWjBs6eDhBJmCMjncGurAyEOjkhUm49Zo/DXYMgF9hge8GlTmtjzpw5uHSp8+rv7rCBEQvLLfDpp5/i9OnT2Lp1K4KDgy3dHYKTKXmoU6oxNcT6DQBvB5GAh7nTBmLz7oQuHy2aM2cODAYDjh8/3rUNt0FCZQl25abj46Hjuiw4EnJ4eDRgEP6v/wzsL0nFlxdOQm9iTgHfDuV5lchPKYbMxQ7lBdWYNG9Eh9TbFmqDAWsSz2Nh5DCIucyp565GwhPgqeBYrM2Kg97cMceWjkwmw+TJk7F8+fJOqf9u4O59xWRh6WC+/PJLJCcnY8WKFVizZg1+//13AMAYzkzGtubsQqJMiclpOI3ciShzWjFxru9N+qaoy8jLlXudXGHTxUtYMuEenDmVh1pV8/B7YwAzitBLyYcoXXtCz/9ELwMA5KROwqAjNzJ60vKt7Sd3p+uJAEARRu5jl9mid3lmwgBcKC/DCWUZ4NXcYa4vU5DK55N16A2kZsZnN3k8bpZDCgA8PT3xxBNPYM6cOTfdri1MxWUw+drBrFTBVFwGcMmD3hRIrrAT2pNeN9pG5vHiig3YmH8OXIEZ34yehC3B53GsPAumKwu7dbmkTsloy3zIStzIY9gEMm+XSdBcFwVgqJcvnu8/AFmKasw/tA1VahX4UqZPlqmc1OY0mEmxEyeCPP/cElquC63OCJm7A85sPYN7ZsZe+304OvJ8c4mnXTsBNH+hVgRVdiLymIpCW4TiSahBlEqM5UPGYEXWIZSq6xDxGHMl2KkzEWTfT5PnU30AeR0IGsnzDwCq+9EuKJp/1wsRQ3CxPg/pqjyIhUBJrYz4PNCFKXCvNJFiMC5t4eM40WPX/s0X8DB/3f34448/oFIxcxayNMOOGLGwtIN9+/bh0Ucfxbx58zBy5EhLd+caGeXVOJVZgGdGDbR0VzqUKf3D4ecix9pjTBPNzmbEiBE4fPgwioqKurztW2VdZgLWZpzDFO/e+GbQQ3AT27W9UzuIdHLBD+Mn4/HeMfjm0km8d/YAqtSd80A9sT0BY2YPRdaFXHgEuHaZC70ZZqzLPYGE2jy83WsafGwskyrk4bAoeIhl2JB3utPa8I/yhlarxffff99pbdwNsIERC0s7KS8vx+LFi/F///d/+OSTT8AXWn4IHgA2nk6El4M9xkdZl5j0donyccPUARH4dtcpNGq6VigaExODxx9/HLt27erSdm+HuIoCvHruH+wrScVXA2bgHtc7n+q1F4rwfN+BeHf4KGzNSMP83dtxtrJzA8S85CKUZFeg75goVJfWYsi0/p3a3vWYYcaO4vP4Lfc4lkROgZuoazVHfV09MDUoDN+m74fK0Hnn+tCp/fH33393Wv13C2xgxMJyG6SlpeG+++6DRCLBRzuWQCqXtL1TJ6MzGPF/u45h1uDeCHFzansHKybKxw0LJw3BF9uPo6RG0fYOHUhkZCSWL1+OTz/9FOfPd/1I1e1gBrCrOBlvX9iOWQH98fWkSRgXFIQQJyfYCgSw5QtwdfyFS1Gw5Qsg4Qkh4QnhLrbHUOdADPf1xcTgYHwwajR+vf9+SAQCzN+9HQfzczrFebk1CtNLIRALsOPn/Rg6vetHP8/V5OK33OOY6ze7y4Kjsb6BeLn/EHx4+gjKNZ13rgf09kFQjB9OnDjRaW3cLbAaIxaW26SyshIvvfQSvlnwC97c+CJWvLL+tpOEdhSFNQp8u+8UXr9vBD46ewzp1bdnumdJ+ri6Y2HkEHy14wQyStvvpHynPP744/jtt99w7Nixtje2MvKUNXgh7g+M4MSgt5sbZvWOgpDLA0/Agd5oRKmyEW62tuBxOKB4zdocM4CMhnIoec3vyfElxfg67jRqTZ2zVPxm5KcVY8bCcfh41jfwDfcEX8BDK/K7TuVcTS7+K63DXL/ZWJ//O8o1nWPqKeBwMS+6L/q6uuPD00eQVVcDmU2nNAUAiB4RjtM7z6O8vHMS0t5NsIERC8sdYDabsfinpzEydSTe+uYtvPLKK0hJSQFoSTwnOCwkynaF5Dt4UyhTyEpHPojMDlmeTY4KiSuaH2wXysvw/dE4LB86GgePpuG/vZdgMDSLb9Uu5CXPoTVb1YfWKJc5VsAtI8XAkmJSC2KiaU6rYsgyrxWJCkfX3PdZvaIwPSwcHxw9gjRBFeB3pU5aUtnW1mHp9WTDVJot2c/4LKK81/QXo44HHngAoaGheO+991pp4fYw6XQwGwwwG40w6XTgud3c8kFPS4rKEzPTn3g7ke6fhYmkj9Uh30s4VHQJuDL7pa8Rw8PWDhK+ABqjHoUNCggryeNlCL4uEJIDHJpeWy4nf7iaYhmjX57h5DlaUkoaKzYOJYMtt/Xk/kmnMjHvnfthNFO4fCIdk58bh+0rSHdmoYLsWEkGeR1E9sln9EsmINu9UO5FlE20JM5/5iqQpziLJwKfwJqc40ioyQPlSl7UysfIcj83cqoxrbYVn6nSZqG0h0SKV/sOB0eowucZv6PJXgs3e4BLO+hTfJKJ8smqAGadOnLiR5ZEjjqZdDrIXOwxYHxv/PTSb8z9WRiwU2ksLB3A0aNHsXr1avz2228IDQ21dHdwsagM732yA0H+Llj2xhREhFp3TjURj4d3RtyDId4+WPDfDqRVd/1IkbOzM1588UW88MILUKu7frSkMzEDKFE2ILOuGoUNXTs12V74Qj6C+/rjn693Yej0AbBztG17p07gbE0uVmUdxeMBQ7Ek8j742Mo6pN4oRzd8NnQCzleW4PPU7Wgydr5+7r5n7kXcjvMovIMkxj0JNjBiYekg/v77b7z++uv47rvvMGbMGEt3BzW1Snz5wz7sOZCE+U/cg8cfGQJ7W+tz7x4Y4IVVU6ahQavFGwf2oU6jaXunDsbOzg4bNmzAr7/+iuLi4k5pIzDaD0Jx1xsydjcuHErClGfHoL6qAUkn0zFwfLTF+pJYV4CXEzajQFWNLwdPxbex0zErMAa95G4QtdP3yF0sx4vRsVjSfwR+TorH7xmXYO4C9RaHy0Hfe6OQsJ81dLxV2Kk0FpYO5OjRo7CxscGnn34Ks9mMQ4cOWbQ/ZjNw5lwuLicXY9aMgfhy8XQcOZ+FnSdS0KDq+gDkevr5e+LhQb1hKxLg53NnEVdsmWXxtra2+P7777Fz505s2LChU9ooyiiFjVQEv17eyClq7JQ27hbWLvsL7//7Clx8nHBu7yXM+3Am0s7moCTbMtoYg9mIP/LjsTY5GQOcvdHHyRMvRA6Fs40YNdpG8CguEmsLESLXw1XYIthu9Gl5CeFTXEh4IhzKL8biY/+hRsPM59ZZzPtgJrh8LioLu5/e0FKwgRELSweze/dulJWV4aeffkJiYiJqa2thVpNBiPwYmSG+fLg3ox6hM3nzLC+lZfWUktoTrZzUJ9QqW8z2amHGF+fiEf33eUya1gc/LZyOlKRi7P7zLApzW6atbMpIgz61K/Ot2D6phiibaKNQXAU5DZW+oMUXRsDlYthQX0zyDYW9UITNmZdwsDAbRi0FXFcNr57Uv/A8255uMBaQKwND1pcRZbMzefzGVM0El8fFKz/MR15SEX788cc227gdDpr+AsqB0ef64KzpIBzUtBEQmkZEmEf+BsbeTDPLgiRSU+TemxQI1ypJFa+dB9PMskFEHi8X2c2zuFeWyYiyfyAzUGnQ0kYkad+NKyHdB7WDmNPO/KOXkJ9SjKFT++Pfb3fj2F9x6D82CsUZzdNAgnryvDfJSH1QUroPo85RMWTC4BAncqr2UgF5POl6NQBwdahDnrEOeRWXsaUC0NR6QczlwV4oQqC9IwqVWqQrzkBnatbDyWzIa75W14i8XNmVUnOfwx3IY2jHI/c5XE5ab4TISA0XACiSSb0UsvKv/ZPH5yJ47BRMf2QystXZjH1ZWocNjFhYOoHExEQcOnQIX3/9NZ566ilLd+caFeUKrF15FJvXncKYCVF4celk5GdVIO5YBi6ey+uUNnkcDno5u6KPmztG+wegRK3Azrx0HCrKvm4ioWvM/K5HbCvC25sXoyijFP989V+nt1dRUYGRI0ficnZd2xv3cHb9cghvbVgIlaIJJdnlmPnqZJzdexGlFho1ao2roz7Fqgak1FZCbEcGNRpO140K3YiHX5uCrKwsZGezQVF7YAMjFpZOYtmyZfjmm2/w2Wef4egX2dBr21551lVoNHr8t+0Cju64iAHDgnHfjP6Yt/BepGSUISu7Anl5VVCptMgzqWA03boOQmIrhKPMBq5eDnD3dkBIL0+4DfVCcYMCSVWV+OzUcSSry9quqJMRiviY+8FMlOZU4JclXZMgdtWqVdi4cSMq9h9ABTutcVMqC6vx1fxVePKjh/HBQ1/D1dcZU+aPwaou+q3uBuydpeg/JgrDJt5dbvhdARsYsbB0EmazGa+99ho+++wzvPTNXPz64RbUlNVbulsETSotju1LxrF9yZDaixE1OgyennL07+cHiUQIob0IWp0elbVKVNQ0a2PEw9TwCXSB5MoUmvm63F82EiGqimuhVeuQk16GI/9dwq6qM2jUXTcVZplFRtcQivh4bMFo6CpqsP6Dv2Eydk6yTjplZWX46quv8PYnH+GDxzpn2u5uorFOCYm9DewcpTj612n0HvEkJjwxEv9lsEHlrfDYm9Nx5O841NWxI5TthTK3L121uavy17Cw3C0IBAIc33oGcld7FGWUIn5PIo7vukxsU/FIBGM/6QOkWWRRKumLwnG+ue7GWMdcAeVLS6RKz7cpuUCuyNLODAOPx0WQhyME/Ob3KL7GDEWjBgVltQAA6roq9XoDuGnkcvCMp0nfI8rEvIeISsh3NI0rLamsF6mRaahlOo2HfkNOXXAqa4ny3tIfAAAvvvgiAgICsHTp0i5flk9RFI78dRqJR1Kx59cjAADDYPK31ziRv1v5YObxkkWQOi8XCakPqmkij09tA9M50MOR/J2EXHJEs0pFRrAN2aRGS+zH1C2JBKT+Z5QHOYVztprU/zRtZtpIOJ9uCXzmLByDuLSt+OGHH+Dj44M1a9Zg/VvHUVXa8rDPf4r09vEbk8+o09+WPF6OfNKTKVvlTJTjMpl+QS4u5PfV6MlzdpgnmXg2vsKXUQedYW7kPtPkF4jy9yXk6tbEi8x+hf9Ifre9aZ8iJCQEmzZtwqBBg2AydU3g3xWYzeYuCUDYESMWlk5Gp9Phw4e/gVeIG0Q2Ijy69H40KvVIPJZm6a61Sf2VlWvVipYHiUBJBlcUbaqNzOtuXQwfPhyTJ0/GnDlzLOJVZDab8f2i37Do+ycQEOWDTZ9uBTv+cWP2/HMOCz56BD/99BMKCwsRHx+PXoMCcWRrgqW7ZrVQFIVXXnkFv//++10VFHUlrI8RC0sXoNfqkZdUhLT4LKx6cxMeWjwBTh7ytndk6TACAgLwxhtv4K233kJlJXN1T1fRWKfC18+vQVCML/635VW4uNhZrC/WTnW5AsnJyRg/fjwAYMeOHZj+zCiIbFg/qBsxdOhQuLi44Ntvv7V0V7otbGDEwtLFFKaVIG5XIibNG2HprvQYfEPdsXHjRmzZsgUXLlxoe4dOpqlBjTfvW46Dv5/Cy69MQGiYO1iVQuvs3bsXH374IWJjY5GYmAgAuPehQRbulXUiFPHx3nvv4bPPPmNHi+4AVmPEwmIBprk/h892vI63H/gSKoUalB1zAqpish9RrhtKLgfm8GhTWrQ8Sy7/kn44AGB3IJ0o104NJ8uR5Pa2hczrXeNIlina/ZdHW6XcSMsD5+hVz6hTIiD9bWr3edy0Dfs8ZmpRyW7S2Xe/ZiMAwN/fH3/99Rf++OMPfPnll4z9LM3o0aPx1FNPwdnZGefOncPp5VnQ61qOGcfVibGPycmeKOc8RJaDY/OJ8ggnMk8cAGSqyOzxmfVkDreSMnJEU2hL/kYeMmZqkRoVqW3S0nQ4Ic6kf1Cpkjla5rSUpvDIyseQKf0QPjAQa5b9hXGPDMGU58Zi8fD3YDQYoZlIJvhTejAVIrWDyb5PikoiygmVpPbJ144pWC5qlBHlke7kMc1opB3PalK3BABSEakL9Lcn9UHni0k/M62C1Oc5nmP6iiWufOXav0ePHo2HH34Yzz77LGO7u4Gu0hixI0YsLBZAo9IiOS4TMxZNtHRX7mqGDRuGVatW4ddff7XKoAgADh8+jEcffRRz5swBALy+5lnMffdBOHs5tLFnz6EgrRhB0b6Qudhh37pjqCiowuhHhli6W1bF4MGD8e6772Ljxo2W7kq3hw2MWFgsxN/f7EH4wEBLd+OuZcSIEVi2bBneffdd/Pzzz5buTptUVFRg2bJl+Pe7vVBUN+L11c9i8vx7IRS1LyfX3UhJdgXqKhswdf69AIAfX1qHCfNGwj+K6RjfE3F2dsbnn3+ONWvW4MSJE5buTreHDYxYWCxEQ40SDTVKPLBwvKW7clchFAtw/4sT8Pbbb2Px4sWIi4uzdJduGZPJhIxzOdj+0358POdHOHs64N1fnsKoaX0t3TWLs+WHffAO8UDvEeGoLa/HH5/vwMs/P4P+0W0vi7/befPNNzs1119Pgw2MWFgshNlsxo+vbkTvoSGY8EgsWP3enePkKcei75+As6ccTz75JNLT09veyUpRVDVg7Xt/4/ulf6PviDAsW/kEvANd2t7xLiX7Yj5yk4sQ0Ls5EPr/9u48oKb0/wP4u+VWWpQlEqmhsYcka6KxhbFOPzNjCYMv2SYMvlkmM9YYjDGRbeyMpQnDkCzfsS9RjXRbmIokEtHere7vj0w83dSYUedW79dfnnue55znltv53HM+5/Pc8A+B348n8R9XR9SpZVzC6IpryJAhsLa2xpEjR6SeSoXB5GsiiZmZmeH4wd/hu/V33Lr4OqHzkbNY/M44Rkxi1g8WizGmtBNvKxgFFbGuVLqYGZ1XR0wQvTtCPMHU9xcL9gHAi4bio9IGCWIitGGYWJknYpJ4MjeIVf0bYnZdnJd2rPg4fe5jMWlXq7ZqYuvDauewatUqhIeHY86cOZLUKSoNPTSHQlNLE7YftcD/zfwYu771hVxDD3lv1I/SjhN/5pFTxf8LOg1SVParrycmJOfmid+TU9PExN+mdcSFaiMeqwZppsZioUlzA7EoYjUd8fd8M7HQAqgAUm6JyeaWX18t+LeJaVUM29AXfn5+BVdHlk3dhS79WsHry91QZOcCeqqP8id2Evf57CPxQYZ6tcVk66RU1QKiGWnifg2NxH3oycTPZ0MT1QpVNy40EdqWv4nJ2Fppqp+3N2nefSC0bTo1gtOk5pg3bx6Cg4OLHVsRMPmaqJJISEjAjjX++GRcV1h+WLvkAaTCqok5fHx8cOfOHcyYMaPCBEV/ycvNw82AP7BniR8mrRmFiVN7Qle38tXnTU58iQkTJmDq1Klo27YtAOD3Y8FIePAMbp6DUbWaaoXvisq4phFc5w7Ejh07KkVQVJYYGBGpgcg/HmDvutP4z7z+sGpsVvIAAgBoy7Qw8IuumLzEBR4eHpg+fTpyctRnsd737fYFOZaNXIfc3Fys9naFplblu4KfmJiIBQsWwNvbG/Xr5z9m/7P3aSgUueg2oHLkYmloaGDh3im4+OstHDhwQOrpVDgMjIjUxJ2bMdjzQwAmeQ7CpxOdoK3Fj+fbaGpqwLZLYyzdNwm16lXDUrftOH/+vNTTKhNxkY+w8ccz+CM4FuPduqO+lWqdo4rO398f27dvx+TJkwEAqS8ycPin83Do0xKNbFRvz1UkGhoamOk9BplpWTi66azU06mQmGNEpGbq1KmDQ4cOIeuJLrYv/xVPHubnP+TWESsraj0pftXsnAfxxW4HAE1bscCjZrqYd4L0Im5JFVqNPu95conHeZMyWzWPQrOKntD2f7mtyLGampro3Lkzli1bBl1dXYwbNw4hISFF9q3oZDIZxo8fj0GDBuH4oTiE/fE65yy2j7gAbE4j1d9jAzMxb+txilhktHAxwmep4m2qDvViVPZZRav4HJmQpLpCW1+WrdIn7rmJ0K7zo5jrdO6sB4D8R9R37dqFVatWISAgAAAwZswYODQajIM+xQcML9qLwVN8D/H/dJeWESpjLgSKnxW9RPGLS46BeC7VTVI9V1psEAtLahiKuUx/LXT8Nubm5jh48CCCg4Ph7u4OhaL4n3dFwxwjokrq0aNH6NatG57GP8e8TV+gh4s9qhjoljywgtLR0YGFhQXmz5+PgIAAfPnll9i1axc6d+5caYMiAFAoFFi/fj1mzJgB17Fd4dSrBbS1K8+f9MTERMyaNQtLly5Fy5YtAQAXLlyAQ9/WGDC6i8Sze/9MTExw5MgRJCQkYPLkyZUuKCpLlS97j6gcUCgU+GnZr2jc2hKus/qi12cdsHrlSTy8/0zqqZUJe3t7dO3aFVZWVmjRogXS0tJw5coVuLq64uHDh1JPT62Ehobie6/jGDy0Hdp1tIb/8WDEQvWJqIro9u3bCA0NhYeHB0aPHo27d+9i71p/9B/lgFMHriGz8BXQcqh69eqYOnUqHB0dsXnzZmzatEnqKVV4DIyI1FhEcCzmDd+ArgPbYJbnIMTce4KH95Nw9OANVLQU43a9W8Gue3Po6esip/pL/Pzzz4iMjMSSJUvw6NEjqaen1hLik+Gz9hTsO1rjC7ePkHr7Js5E3JN6WmVi8eLFcHd3x5gxY+Dj44NrZ+7gg6bm6PN5R/ht/V3q6f0rH3/8Mdzc3BAeHo7Ro0fjwYMHJQ+if405RkTlxJBa41CvkTnsnVvBqnk9XD8RjIToJ0hJTsO94FgEKPa98z57GbgK7VNpO4V2D82hKmNO54lPwfSUfS60NbS0hLYyV6xzFKDYB319fTg5OaFFixbQ0tJCkyZNoFQqsW3bNmRkZEAul+PlS7EGDv09AwcOxLwZXnj+NAXnjoUgOjIBsfX1VPo9bi/+Le/aScx/yckTf49GMrFujzxZtbREdq74XftpiphDo8gUt7eyVL36l5Qp5jLFJ4m1tRp8J+YDKW/eQf2mdTH5+zHY4rEHUbeiYVLLGEt+nYOFLquQ+CAJ2tXFBXGV2eKVpOhtVkI787nqz6vwAq6mu4OFtmahfCFlhvjzAgANHbEWUu4L8f/4m5/hTp06wdPTE6GhoZg1axby8gqtpFwJlVWOEa8YEZUTKc/TIL8WBfm1KDRsbQlbpxawd26N2pb5xQ5dkrrh7t27SEzMT6pNTEzE3bt3UdyXn3r6YmmARumNxO2aYpFJAGiUV6iPTOyjoZmf56KjpwOr5vWg9erpOpNaVWHeoDZc8rrB0tIS4eHhuHr1KrKysnDmzBncuHGDf/zfgyNHjkAZ2xIdnJri84lOiPjjAQ6E3cXDx8l4t+/B5cd9+UNs8diDccuGY8VobyQ9eo64qEcYOKk3tnjslXp676R69eoYPnw4hg8fjhUrVuDw4cP8XJQxBkZE5dC94FjcC44FkP/4rmXzegjSOotmzZrByCj/6SIbGxsMGzas2P3U0f5AaHfPaSW0zTTqq4zpqWwn9tEU16r666pybm4eYsPikJGS/835WUIygs6G4kr2Cbx48QJ//vlnSW+T/qHsrBycP3kbty5HYcSUHnAf6YTouCQc9A/Ci5QMZCkq2o1YIOpWNEIvhaPHiC7Yv/Iodi/yxX93TsEHNvXx4KFq5W911KZNG2zcuBFRUVEYNmwYPyMSYWBEVM4plUrEhD5AoCIQgYGB7zRWiltpQYqgd5oj/XOpLzPhs/QY0u1rYYBTS8z9Ty/o6cpw5moEdqTLkZKdVfJOypH/7b+M/+6cgv8duIIHEfE4vuUMRn0zFIvHbZV6aiUy+6AWlm6cgb1798Lb2xvZ2eU/cby8Yo4REVElYmVllV/vp/Mn8Dt0A/Kw/HpXqRaF8mpGinWOjHTFnJnYp9VV9q2nKz5C3qFOrNB+kG4itNMUquuaNawqPlF3M0Fc9y09XNxH/ZOvAwgdHW0Mbl0XLR2a4Jth6wAA83ZOglKRg+8nbkLK8zQAgLaFubCPOBfxymh6HdXzYsNDaUJbK1p8IKBwfa7C+UOA6peKvxgZGWHNmjWIi4vDwoULi+xDrGNERESlICYmBp6enrhyKQqfj+iE2R4fo137hlJP673Izs7BEZ/TyMrIhuMQewDAsjE+iL59H8tPzkOjtur3PmvUqIH9+/cjPj4eixcvlno6BAZGRESV0rkzYVj67REcOxqEUV84YlgfO1TRlZU8UM3l5SmxfdEv6D2yC4xrGiEvNw+7F/vi+okgfOk9FoOmOEO3ig5karAIr4WFBby9vXH+/Hl8/fXXFXqdv/KEgRERUSWVmalA2J2HWLn8GOqYVsWK6QNgZa56i6y8SYhJxHX/P+A8yrHgtR0LD2L1hE2wd26NFfun4LuD09CwuXTrqllYWGDlypXw9/eHl5eXZPMgVdKHzEREJKmY6ESs2nkOrRrXhedEZ9y5l4A1yoPIVZbfx8QTYhLRb6wTtGVa+Cv9/15wDJZ8vhbVbaxRr6EpRn3VB4snbi/zuU2ZMgWjRo2Cl5cXDh06VObHp+Ix+ZqIiAo0a9YMM2fORO0qzeC75Xc8up8EAJDPFxcxRp7quaCG2Quhract3hp6dkGsm6VpJ/YHVBevzcwRv7/XMRKTmu//ZiW06x/ILxppam6C+RtG4fs5B7DhxFdCn95VxwAAxnh+AqVSia1+4pp76XVUCzwaRSaLL8SIxSnftvDxm2QyGYYNGwZXV1e4uLjg+fPiF4ImEZOviYiozIWFhcHLyws5ihxM+XYwegy2QzVTI6mn9c4S45NxxjcQE78eBCsrqyL77F3xK5raN4SJiX6R298nW1tb/Pjjj7Czs8PYsWMZFKkxBkZERCSIjIyEz6KjWDv3EOpa1YTnhlFoaFyj5IFq5ujOS4gOj0fz5s2L3J6VkY2kR8moWsqBkaurKzZt2oSMjAxMnz4dMTExpXo8+neYY0REREV6Ep+MHWv8cU8ej9We/XA0Wo79USFIVZSf4oPnj4dg2rRpCAsLQ3R0tMr2hNinaGVrifsxT4sY/e8YGhrCy8sL1tbWcHNze+cCrCQN5hgREVGJPq07AfP2fYnLRwPx25YzeNyvpUqfhK5ilfP6DZ4I7fhb4rp6hs1UbyclJ4mLsTo1jRDaKgUfw8QFYqvLVc9pY83MkJ2lwLHNZwGIFd7t7Owwz2cH5h86VfCa+cV0lX1oPxbzoU7eXanS502GhobYvHkz9PX1sXz5cly5cqXY/lQy5hgREZHaSHr0HEuH/4BOA9piZcACtGthWfIgNXH52C107m+H6mYmKttiYmJgXbsGZFrv73SoqamJtWvX4ubNmxg4cCCDonKGgREREf0tTx8+w/z+Xji57X8Y2tsWzp2bQldH/TMyEmIScf1kCLq5tFfZlpSUBEVuLjTf090QPT09bNy4ETKZDN9999172SeVLQZGRET0t6WnZOBXn1PY7HsZ3ds3wtJpH5eLitmx4fFo3vFD2Dg0LrVjmJqaYuPGjUhMTMSECRNK7ThUuphjRERE/4iOjg4WLVoEJycnjBo1Chb6Q4Xt9+eJ54uMJ2L+UN0G4kK1AJCQZCy0TaulCO28QmkmyalVhHZ2otgGgLpn88c4trPGZ/3bYuekrbh9Mbxg+5pry+AxYTuys/LrLuUa6KrsQzsqTmjnPHudH2ViWhU2kyzQpUsX7Nq1C9u2lVzTiN4dc4yIiEitZWdnY968edi3bx9WrlyJ4eO6Qp2/PJ+/fhe/nQvFmEWfQt/odQCVm5MHUzPjYka+nalFDbhv/A8SEhIwZMgQBkUVAAMjIiL6x3JycrBmzRp88sknaNOhIUZO6AYjY9WrNuri2NlQRNy4B4fB7QpeO7LvKlxGObzTfmS6Mgxw64WvtrghYOfv2LBhA5KTk9/zbEkKDIyIiOhfy8rKwkpPP1SrbgiPJS7Q1taSekpvddTnFLoN7Qi7HjYAgKCr91DPqubfnrO2TAufzRmIeo3NsWq8Dy4dvlGa06UyxhwjIiJ6b7S0tLBq1SrY2dkh/FQ8jvichuJV7s6zwS2Evk/sVc8/Sj2xFpLWS/Gpt5pNxUKMllXFWkixL8W6RgDwLMRUaBvfAyxqmWDO507YHXAT66e74NChQ1iwYAHkcjl6Gbiq7ONU2k4YGRnB2dkZI0aMQEREBL799lukpqaq9KXSwRwjIiIqd3Jzc+Hu7o7+/fvDpKYRpn0/Ctoy9bt69OBJMrz2ncOInnbo2bMnIiIi4ODw9ttpTk5O2L17N9q2bQtPT0/Mnj2bQVEFxStGRERUKlxtZmHejknIyc7BHq8jCKgqnj+kvGL0F4taJnDrYo4TJ05g4MCBiIuLQx2tBkJ/A2N9xGf+ibVr1+LChQsq+6eyUVZXjBgYERFRqehddQxMTKtikFsPtPmoBb5YfwTZiteBjzoERgDw4qw3vL298dNPPyE8PBztdfoJ27MzFdgRymKNUmNgREREFcY333yDNmad4TN7DxRZCgBA1Namqh0f6wlNpWmW0Na9K27PNM0TxxvmqO4zW8waKbyGm8HwNJh/YIov5g9GTk4uTm70R6B/iNDndN4B1f1SmWKOERERVRgLFy5EekoG+o51knoqRYqPTsTisZtwev8VfDyhJz5x7wej6oZST4skwMCIiIhKnVKphP+O39Gpvx2MqhmUPEAigWfD8P2ETejY3w7LT8xV67lS6WBgREREpc7U1BQu7n2hb6SHaevGqHWF7OTEl5g/wAsAsPCXWahhrpq3RBUXAyMiIip1jo6OaNjKElkZ2TCzMoVJrapST6lYmWlZmNVjEa4eu4m5e76EkZGR1FOiMqJdchciIqJ/x9fXFx9++CGcnZ0xd9pcXI69DOcZbir95F6WQtvM9KXQfhkmJl/rPhO/32dpqtZM0n0qvvY02lxoG+g/FNqaVdIAAJk5SpzccwldP+0ECwsLhIWFFfXWqIJhYERERGVi+fLliIyMxNq1a7Fs2TKkX5J6RiVLe5GOBxGPpJ4GlSHeSiMiojLzyy+/YN++ffDw8ED7XjZST4dIBQMjIiIqU6tXr8bEiRMxdGpv6OnrSj0dIgFvpRERUZm7efMmth/0wYAFLTF16lSkpeXn9Th/M1PoJ59jJrSrdhQrXWteEJ8YUxaRY5TzYYbQ1r9QReygJV4jyMvIFPeZK1bjVnf16tXDzp07Ubt2bSiVSmzatAk//PADACA6OhopKSnIzc1FTk4O7O3tJZ6t+uEVIyIiksTKlSsRERGBdevWwcBAPesFGVUzQHUzY2RkZJTcWU3k5ORg5syZaN68OTp06IDJkyejadPXVcadnJxga2vLoOgtGBgREZFkvLy8EBkZia+//lrqqRSpcTtrxNyJQ3R0tNRT+dsSEhIQFBQEAEhNTYVcLkfdunX/1lhLS0vcvn27oD1z5kx4enoWbJPL5di2bRsiIiKwe/dudO/eHRcvXkRkZGSFCbQYGBERkaS2bNkCW1tbNG7cWOqpFCkrPavkTmrK0tIStra2uHbtGoD8CuSnTp1CYGAgxo8f/877s7a2xqpVq9CkSRM0adIEw4YNg4ODA7766ivMnTv3fU9fEswxIiIiST19+hQBAQFwdHTE5s2rhG09diwS2i+tTYR2qliSCLpiChIAICVJTPDOMi7cIVVoahm/Lj7ZupctniUkv3Xu6szAwAC+vr5wd3dHSkoKAMDBwQHx8fEwNTVFQEAAwsPDceHChb+9z+joaISGhgIA7ty5gzNnzgAAbt++DSsrq/f+HqTAK0ZERCS5/fv3Y+jQobC2tpZ6KgXMG9RCs3YN4b+nHBRcKkRbWxu+vr7Ys2cP/Pz8Cl6Pj48HACQmJsLPzw/t2rVTGfvmci0ymUzYlpX1+upZXl5eQTsvLw/a2hXjWgsDIyIiktz9+/fh5+eH0aNHSz2VAi06fojLx4OQmVb+bqVt3boVcrkca9asKXhNX18fhoaGBf/u1atXwdWfN1laWqJmzZrQ0NCAo6MjtLRUn/SryBgYERGRWtixYwd69uyJvn37Sj0VaGpqoN/orsjKUEg9lXfWuXNnuLq64qOPPkJQUBCCgoLQp08f1K5dGxcvXkRwcDCuX7+O48ePw9/fX2V8UlISdu7cicDAQISGhsLV1RUNGjSQ4J1IQ0OpVL5Lf6U6r4hMRETlW5s2bbBu3ToMHz4cMTEx6F1tnNjBQqxrlGotJgzpPc1W2af2szShrahpKLRlz9KFdp78HnT0ZFh9zhOzei5GRmomAhT73vWtlEuWlpY4duwYbGzUryq5UqkskwCEV4yIiEht3Lp1C4cPH4aHhweqVatW8oBSoi3TRnamAhmpmSV3pgqFgREREamVjRs3olWrVhg5cqRkc+jl6og/LsglO75UYmNj1fJqUVliYERERGrl5cuX8Pb2xogRI1C/cZ0yP75RNQN07G+HgF3ny/zYJD0GRkREpHZ27dqFDRs24Kv1X8CgapWSB7xHZh/UwoukFDyMSijT45J6YPI1ERGpLTc3Nzg4OGDSpEl48eIFnJt6iB0yCyVb56ku+Hoy9vtij9FLb4TQ7udlj0uXLuHAgQP/ZMpUSph8TUREld6GDRtw6dIl7N27F05OTqV+vEGTe6FTp07CemFUuVSMMpVERFRhrV+/HlFRUVixYgWuHI/Dn+GPEB7y4L0eo7qZMfqMcULD1paYPXs25PLKl3hN+RgYERGR2gsICEBUVBSWzvkJth2skZmRjZO+gXjx6PXiaMlPU5GanFrMXorWvk9rDHDribioBBxZH4Bz5869z6mX6B1TWioVKdJ3mGNERETlip6eHnr27AkXF5eC5So0NDRQo0YNXL16taBfSEgITp8+LYxNT09Hbm5+HpKOjg7mzp2L3r17Y+LEiQgJCSm7N/EGBkZv92bMUVY5RgyMiIioQrCxsUH9+vUB5J9QP/vsM5ibmxds19DQwPPnz3Hy5EnIZDK4uLjA0NAQc+fORUBAgFTTZmBUDAZGREREpah79+4F635dvnwZd+7ckXhGDIyKw8CIiIiokmFg9HZSBEZMviYiIpIQLzioF9YxIiIiInqFgRERERHRK++cY1RaEyEiIiIqQanfd3zXHCPeCCUiIqIKi7fSiIiIiF5hYERERET0CgMjIiIiolcYGBERERG9wsCIiIiI6BUGRkRERESvMDAiIiIieoWBEREREdErDIyIiIiIXvl/2ENafB7ogNQAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "bento.pl.cellplot(adata)" - ] - }, - { - "cell_type": "markdown", - "id": "b180c98e-fc97-4a1b-83c8-3263034ea228", - "metadata": {}, - "source": [ - "## Quality Control\n", - "\n", - "Calculate and plot QC metrics including those used for single-cell RNA-seq analysis. We can use cell area and perimeter to identify outlier cells that are extremely large or small. Then we can filter those out from our data. For the purpose of this analysis, these outlier have already been filtered. We will instead identify cells without annotated nuclei and remove those." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "0da1bb09-cc89-45eb-abea-c4bab0acc699", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:01:23.780983Z", - "iopub.status.busy": "2022-06-06T01:01:23.780064Z", - "iopub.status.idle": "2022-06-06T01:01:23.946641Z", - "shell.execute_reply": "2022-06-06T01:01:23.945058Z", - "shell.execute_reply.started": "2022-06-06T01:01:23.780911Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "AnnData object modified:\n", - " obs:\n", - " + cell_area\n", - "AnnData object modified:\n", - " obs:\n", - " + cell_density\n" - ] - } - ], - "source": [ - "sc.pp.calculate_qc_metrics(adata, inplace=True, percent_top=None)\n", - "bento.tl.cell_area(adata)\n", - "bento.tl.cell_density(adata)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "c9f22856-727e-445f-8e25-2396673c9fb6", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:01:23.950543Z", - "iopub.status.busy": "2022-06-06T01:01:23.949233Z", - "iopub.status.idle": "2022-06-06T01:01:30.131440Z", - "shell.execute_reply": "2022-06-06T01:01:30.130441Z", - "shell.execute_reply.started": "2022-06-06T01:01:23.950296Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAFgCAYAAABUnBiIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACPq0lEQVR4nOydd5hkRbXAf6e7J/Xk2Z1Nszn1JmBhlwxKUEBQQAURUQEBE2DCgBFEec+ACQMSRAw8URAJEpccd2FZNu/25jAbJufcM+f9UbehaXpmemY6Ttfv++43fevWrTp3uu7tc6tOEFXFYrFYLBaLJVNwJVsAi8VisVgslkRilR+LxWKxWCwZhVV+LBaLxWKxZBRW+bFYLBaLxZJRWOXHYrFYLBZLRmGVH4vFYrFYLBmFVX6SiIioiJyXbDnSBRG5S0T+29++JfHYMWyxjE5E5DkR+V1/++lOWik/zoN2oO2uZMs4RCYCD0dbWUROcq5zbBxliguO7P8VkVoR6RCRzSLyWxGZnmzZEokdw2k9ht8rIg+JSI2IdInIDhG5T0ROTbZsoxkRGS8ivxKRrSLSKSLVIvKKiFwtIgXJli8VEZGPiMgzItIoIm0isk5EbhSRccmWLVVIK+UH86ANbldEKPtyaGURyUqodFEiItkAqnpQVbuSLU8sEBGXiLj7OfY54GmgDjgfmA9chhl/30uYkKmBHcMpShRj+BmgEbgA8AFnA88CNydKxkzDeTlaBZwBfB84Ajga+B/gVMx3kHGIiEdEpJ9jNwL3AquBDwILMM+VGcAXEiVjyqOqabkB5xnx39qfDihwIeYh1QFcBYwB/gFUOmUbgEvD2noO+APmhqoFqoGbAFdInY8Aa5026oHngfEhx88EVjjH6zBvw7nOsV3A9cCdmIfnvU65AueFyf8J4CWgE9gMnBZ2PHS7yzn2HmA50Ao0Aa8Biwb43wXl+btzzkHg62F1ioHbnP9Fi3O9S0OOX+KceyawHghE6hOYDHQBN/cjS0nI5+OcftqBfcAtQFHI8buA//a3n26bHcNpM4anOGP4l/3IImH7g43jaL6rbOCnznfeDrwOnJ7sMZuEe+QxYC+QP9j/fgjf96nO992GUV5nhLX5IeANZ/zuBG4EsqO9jyLIqJj7+BHnu9wNfDKsTgVwD9DgbI8Ac0KOX+/IfAmwHegFCiL0dZTT39f6kaVkCNf5HPC7/vbTfUu6AMMWvP8fjl3OsRmYH94K4BvAYmAm8FmgGzg17EttAm4A5gIfwzwIL3SOT3DOucbpZxFweXDAY95KAsCPMVr2ocDXAa9zfBfQDHwTmB0c1ET+4ah0+p8H/Na5wSoAt3PTqdPHBMzN7nFulpuAWc55nwDmD/C/C8rzXed6P+dc30ec44L58XrEuZlmAz9yzpno1LnEueZXgeOddgoj9PVVR+ZJg3yfh2AeTNcAczBvd68C94XUuYvMUH7sGE7NMTwhiu80mnE84Hfl1Lkbowy+x/nOr3Ku77Bkj9sE3h9jgD7g2ijqRvt99wBPOXUOBd4Enghp53TnnEudsXgy4AduiuY+6kc2xbxMfM75vr/rXNdS57gX2IJ5nh3qjP87MEpS8P67HqOsPYmZ/VoEeCL09Rtn/GUN8v8a8DpDxqlVflJto/8fjmuiOPce4I6wL/XVsDrLgnWcwabAtH7aexm4Z4D+dgEPRyiP9MPx3ZDjLuem+LGzf5JTZ2xInTKn7L1D+N/tApaFld0BvOR8PsW5gfLC6qwGvul8vsTpd8kgff0BaIpCpr8CfworW+z0Mc7Zv4vMUH7sGE6tMXxL+BjGLCe0hmwnDmEcD/ZdzcL8OE4Nq/MA8Idkj9tEbRjFUYEPh5VXhvzf/ziM79sXcvwizKyeOPsvAN8Pa+Ncp20Z7D7q5zoUuD2s7Cng787nzwBbeecslhujMH3M2b8eo7j1q2Q59R4F1kQh04DXGTJOR63y42H0sTJ0x1nDvxazTl8B5GCmlJ8LO29t2P5+IGgctgYzWNeLyJPO5/tUtcY5fjjmhzhquQbg1eAHVe0TkRWYt+SIqGq9YyT7hIg8jbGtuU9V90TbT8j+R5zPSzBvIzVhy8q5mAdzkADm4TIQEdelI7AEmC0iF0Q4dxZmKjtTsGM4tcZwJJ7FKDWlmCW6oK1QtON4oO/qCOecjWGy52CWQzOdEzH/79sw3ydE/313qao/ZH8/5l4qxSxhLQGOEpFvhdRxAXmYWZ/B7qP+iDRWzwqRfQbQEia7N0z2SlWtGqSfoTxvB7rOA1G2k7aMRuWnLWz/65gpyi8D6zCa7f/w9oMmSE/YvuIYhKtqr4icBhwDnIYx1v1fEXmvqq4ZplwxQ1UvFZFfY5YuzgZuFJFzVfWJYTbpAqowD5lwmkM+d6lq7yBtbQGKRGSSqu4fpM87gF9FOLZvkD5GG3YMp+YYnqiqBxx524BtEbzWoh3H/X5Xzl8FjoxQr2MQWUcT2zD/h3mhhaq6E0BE2kOKo/2+A2HHNOT84N8fYgyGw6mJ0X0UjgujgH88wrH6kM/R3H9bgBNFJFtVuwfps9/rjKKftCfdvL2GwwmY6fq/qepqjLHY3KE2ooZXVfWHmIfSfsybOJh141i5ux4T/OBY8x8FbHKKgoP5XR4pqrpGVX+qqidhZgQujrafkP1gP6uA8UCfqm4L24Y6A3OfI/e1kQ6KSElInwsj9LdNVTPpgR8JO4YH6SdkP15juAf4dhR1YzGO38S8wU+I0EbGvAioah3GxuWqKFzaY/V9rwLm9fP9BRy5BrqP+mOwsTobqI3QZz1D4/+AfIyN2LsIe94OeJ2jndE48xPOFuACETkB41lxNWaK8c1oGxCRY4D3AU9g3i4Ox3iAbHSq3Ag8LCLbMINPMG8Ft6pq+7tbHJAviMgWzBv+F4FpGJsDMAZwCpwlIg9j3gLLMYZ0D2HeLGdijOZuYWCOEZFvYx7sJwGfxqx/g5nKfRl4UES+ifHYmYB5K39KVV+M9mJUda+IfBX4nYgUA3/GeBZMwhi15mJcvn8KLBeRPwK3Yrw15gEfUtXPRdvfKMWO4cgkcgx/BTOGyzAebzswSyXnO9WCs0cjHsequkVE7gbuEpFrMD9UZc417lDV+6OVfRTwRcz3+IaIXI9Zdgpglm0OwyhHELvv+wbgvyKyG/iX09ci4ChV/WYU91F/fEREXsco9edhXjSOdo7djZndfVBEfgDscdo8B2PTtDVK2VHVFSLyM+DnIjIZ+DfGRmoGZpZqG2bGZ8DrjLa/tCbcCChdNvo3Fl0aVq8UuB/zEKoGfoYxwn0upM5zhBlyEWJMi4lL8xhmsHdhBtA3w+qfjXEb7ML8QD3EO92Evx7hGiIZi14EvIJxP/QDHwg75/uY9dg+R8bxzvXtc/re41xjv9b+vO0m/A/MEkoV8K2wOoUYz4FKzNv6XoyR7Szn+CVA6xC+r1Mxxnh1Idf2W0IMB4GlwOOYaeo2zI/nDZG+k0j76bbZMZx2Y/hk4L/O/6bH6fNBjGITWm+wcTzgd+XsZznXt8OR/aDzfQxonD0aN4wS8xtnzHY53/frmJm4wpB6Q/6+iWyAfxrwIsYtvRlj63ZVtPdRP/fIVc6Y6HDG98VhdcZjXgyrnXZ3YpTssc7x64H1Q/ifnc/bXoVtGDf5G4HyaK4z0jiNNG7TeQtadVuSjBPMaydwpKpGa1g63L52YQbxTfHsx5JZ2DFssbwbEVHgfFW9L9myWN4mE2x+LBaLxWKxWN7CKj8Wi8VisVgyCrvsZbFYLBaLJaOwMz8Wi8VisVgyioxUfs444wzl3QkW7ZaczRIj7LhOqc0SI+y4Tqlt1JCRyk9tbW2yRbBYYo4d15bRiB3XlniQkcqPxWKxWCyWzMUqPxaLxWKxWDIKq/xYLBaLxWLJKKzykwaoKttamukIZES+OYvFYslIdrS2UN/VlWwxMoJMSGya9tywYTUPVO4h3+Ph3yecwvjcvGSLZEkTmrpNEvXi7OwkS2KxWAbipxvXcs+enSjK7UeewJFjxiZbpFGNnflJcVY31PPI/kp+sfhIjhlTzjdWv55skSxpREugh5ZAT7LFsFgsA/ByTRX/qdzNzw9byudn+bh61XLa7Ux/XLHKT4rzpx1bOGNiBV6Ph3MrprKtpZnltdXJFstisVgsMeJnm9ZxwdQZFGRlsbh0DDPyC7h79/ZkizWqscpPCtMRCPBc9QFOGDsOAI/LxYcmTeH3WzcnWTKLxWKxxII1jfVUdXVw9Jjyt8o+OGkyd+3YSq9NPxU3rPKTwrxSV82M/EKKst621zihfDzrmxrY3tKcRMksFovFEgv+tXsn7ymfgEvkrbJZBUXkeTx2lj+OWOUnhXm++iCLikvfUZblcnHy+An8Zde2JEllsVgsllgQ6Ovj0QOVb83uh3LcmHH8e++uxAuVIVjlJ4V5tbaaBUXF7yo/ZdxEHqjcQ5s1iLNYLJa05bX6Wsbm5DAuggfvMWPKebr6AN19fUmQbPRjlZ8Upbmnm30d7UzPL3jXsbE5uSwoLuE/lbuTIJnFYrFYYsGTB/ZxeOmYiMfKcnKYlOtlRV1NgqXKDKzyk6KsaWxgZn4hHlfkr+i08ZO4Y7ufPmsQZ7FYLGnJM9UHOKIf5QdgcWkZyw7sS6BEmYNVflKUNQ11zCh496xPkPlFxeS43Tx6oDKBUlksFoslFuxqa6U9EGCaN7/fOkeUjuGpqv2ofcmNOVb5SVHWNDYwI7+w3+MiwkcmT+Pnm9bR1dubQMksFovFMlJerDnIIcWlSIiXVziT87z0qbK11Xr3xpqEKj8ikisir4nIGhHZICI/HOL5Z4iIX0S2ici1IeV3ichOEVntbItjLnyC2dDUwIwI9j6hHFZSxvjcPH7l35AgqSwWi8USC56vPsiC4pIB64gIh5WW8WzVgcQIlUEkeuanCzhFVQ8DFgNniMgx0ZwoIm7g98AHgAXAhSKyIKTKN1R1sbOtjq3YiaW5p5vGnu6ocnh9ZsYc/lO5m7/utK7vFovFkg70qvJaXS2LBlF+AA4tLuVpq/zEnIQqP2podXaznE1FZImIPC8ib4jIEyIyMcLpRwHbVHWHqnYD9wDnJEj0hLK5uYlp3oJ3BL3qj5LsbL6z4FD+tGMLl614ie2tLQmQ0GKxWCzDZUNTA6XZ2ZRm5wxad2FxKeubGmi1OfpiSsJtfkTELSKrgWpgGbAK+C1wnqouAe4EboxwagWwN2S/0ikLcqOIrBWRX4nIu0aUiHxWRFaKyMqamtR2Hdzc3MRkrzfq+uNz8/jxIUcwPjePj770NLdu22wN5CwWiyVFeaWmmvlFJVHVzXW7mVtYzCs1NtpzLEm48qOqvaq6GJiMmc3xAYuAZY5S9D3n2FD4NjAPOBIoA74Vod/bVHWpqi4tLy8PP5xSbG5upCKvfw+ASGS5XJxdMYUbDzmCf+zeye3bt8RJOovFYrGMhFfqqpkfIYBtfxxSXMIz1XbpK5YkzdtLVRuBZ4EPAxtC7HUOUdXTRGRKiAHz54F9wJSQJiY7ZajqAWdJrQv4M0apSls2tzQxZQgzP6GMycnlG/MWcsu2zWxuboqxZBaLxWIZCYG+PlbV10U98wPGueWF6oN2Rj+GJNrbq1xESpzPecD7gTVAuYgc65RnichCVd0bohD9EXgdmCMiM0QkG/g48JBzzkTnrwDnAusTeV2xRFXZ1tLC5AFiPwzGmJxczq2Yyv9uXBNDySwAInKniFSLSEzGmIhcLCJbne3ikPLnHM/G4AvAu5P/WCyWtGNDcyPlubkUZWVFfU5FnpdeVWvTGUMSPfMzEXhWRNZilJllqvoQcB7wUxFZA6wGjgs/UVUDwFXAE8Am4F+qGvTxvltE1gHrgLHAj+N9IfGipqsTl0BxSCb34XDK+IlsaGpkU3NjbASzBLkLOGOoJznKzPSwsjLgOuBozGzldSISmsn2opAXALvgb0k4jo3mmyLy3yGeFzEsScjxm0WkNdK5o50VtdX4CqNf8gLj8n5oSRnPVx+Mk1SZhyeRnanqWuDwCOWrgfdEcf6jwKMRyk+JhXypwNaWZiYP0d4nEib7+0T+vnM7Nx62JAaSWQBU9YUISswsTBiGcqAduEJVN0fR3OmYF4B6p51lGMXqHzEV2mIZPl/GvGwWRXtCSFiS92McU14XkYdUdaNzfClQOkATo5pXamtYXFo25POMy/t+Lps1Nw5SZR42wnOKsa21hUl5w7P3Cec95eN55MBemxU4/twGXO14K34d+EOU5w3mwfhnZ8nr+zJQGFiLJQ6IyGTgLOCOkLIRhSVxFKOfA9+M/xWkHr2qrGqoY94QZ34AFhaXsLqxno5AIA6SZR5W+UkxtjQ3MSlv8OCG0VCek0tFXj4v1VTFpD3LuxGRAswy7b2Ot+KtmOVdROTSoM0OsBR41Nn/TxRNX6SqhwAnOtun+uk/bUI4WNKOX2OUlD4w9piMPCzJVcBDqjqg69JoHdf+5iaKs7IoyR66WYPX42FmfqHN8h4jrPKTYmxpbY7ZzA/AkrIxPLJ/7+AVLcPFBTSG2OYsVtX5AKr652AZsBI409n/sHPuQB6Mwb8twP/RjwdjOoVwsKQPIvJBoFpV3wgpHlFYEhGZBJyPUaAGZLSO69fqa/ANwcU9nIXFpTxfY+1+YoFVflKMHa0tQ47xMxBLSsfwbPUB+qyLZFxQ1WZgp4icD8bjUEQOi/L0J4DTRKTUMXQ+DXhCRDwiMtZpLwv4IGnswWhJS44HzhaRXZhlq1OAHzKysCSHA7OBbU67XhHJqLw8r9ZWM7cwavOpd3FIcQkvVNuZ/FhglZ8Uoqm7m87eAGXDmBLtj/G5eRR6sljf1BCzNjMZEfkH8CrgE5FKEbkMuAi4zPFW3ECUaVccQ+cfYTwfXwducMpyMErQWoz34z7g9lhfi8XSH6r6bVWdrKrTMWFFngEuZARhSVT1EVWdoKrTnXbbVXV2Ui4wCagqK+vrmF9YMuw2ZhYUUtPVSVVnR+wEy1AS6u1lGZhtrc1M9uYTa9vWRcWlPF99kENLhu5hYHknqnphP4cGdH9X1ZP6Kb8TYzsRWtYGWBc9S0qhqt0ich5ws4gUY34/fo1R+EPrBUQkGJbEDdwZEpYkY9nV1opbhLE5g+fz6g+XCAuKS3iltpoPT54WQ+kyD6v8pBCx9PQK5ZDiEp6qOsDVcxfEvG2LxTK6UdXngOecz6sZQViSsDoFI5cufVhZX8u8ouIRv9zOLyy2yk8MsMteKcTWliYm5MbG0yuUeUUlbGxupN26SGYkgb4+KtvbaOruTrYoFkvGsryuhtkFhSNuZ0FxCa/W2pinI8UqPymEv6WZijjM/OS63czML+T1+tqYt21JfTp6e3mhpoqWQE+yRbFYMpaV9bVDjuwciYo8Ly09PdbuZ4RY5SeF2B4n5QdgXlExr9RaLwGLxWJJNLVdndR1dzFlBDkbg7hE8BUV83qdfZkdCVb5SRHaAwHqursYF4dlL4AFRSW8XGOnSi0WiyXRrKqvw1dYjCtGziyzC4pYaWfyR4RVflKE7a0tVOR5cccpi8GcwiJ2tLXQ3GOXPiwWiyWRvF5fy6wY2PsEmVNYyBsNVvkZCVb5SRG2tDQxOQZTov2R5XIxp6CI1+ttaHSLxWJJJK/V1+AbQXDDcGbkF7K1pZmu3t6YtZlpWOUnRdgSJ0+vUHxFxdZLwGKxWBJIV28vW5qbmVUQO+Un1+1mUp6XzS1NMWsz07DKT4qwqbmJqXGc+QFj9/OKVX4sFoslYaxvamCy10uu2x3TdmfkF7K+0UbuHy5RKT8icr+InCUiVlmKE1tbmmPiCTAQswsK2d3WauO9WCyjGPu8Ti3eaKhjdgxnfYJMy89nTWN9zNvNFKK9Of4AfALYKiI/ERFfHGXKOJp7emjs6aY8Jzeu/XhcLnxFJbxaZ2d/LJZRjH1epxCv19UwO4b2PkGm5xfYnI0jICrlR1WfUtWLgCOAXcBTIvKKiFzqZJ22jAB/cxPTvAUxc4MciPmFxbxYY+P9WCyjFfu8Th1UlVUN9cyNw8zPVG8BO1pbCPT1xbztTCDqaVERGQNcAlwOvAn8BnNzLYuLZBnE5pZGJnvjE9wwnENKSnnJKj8ZiU1zkTnY53VqUNnRjsCIkpn2R67bzZicXHa2tca87UwgWpuf/wAvAl7gQ6p6tqr+U1WvBjIqOV082NDUGHdj5yBTvfk09/Swt70tIf1ZUgeb5iIzsM/r1OHNhjrmFBaNOJlpf0z15uNvth5fwyHamZ/bVXWBqv6vqh4AEJEcAFVdGjfpMoT1jQ1M8ybmmeQS4dCSUl6oPpiQ/iwWS8Kxz+sUYWWMgxuGMynPy6bmxri1P5qJVvn5cYSyV2MpSKbS09fH9tYWpuYnZuYH4NCSMpYd3J+w/iwWS0Kxz+sUYWV9bVw8vYJM8ebjt7F+hsWAyo+ITBCRJUCeiBwuIkc420mYKdWoEZEpIvKsiGwUkQ0i8uUhnr9ERNaJyDYRuVmceUQRuV5E9onIamc7cyjtJpvtrS2Mzckhz+1JWJ+HFZfyen0tnTY6qMUyaojl89oycjoCAXa0tjAzP36z+hV5Xra2NMet/dHMYL+4p2OM5iYDvwwpbwG+M8S+AsA1qrpKRAqBN0RkmapujPL8W4ArgBXAo8AZwGPOsV+p6k1DlCclWNdYz4w4TotGoiAri1kFhbxUU8X7JkxKaN8WiyVuxPJ5bRkha5samJZfQHaMgxuGMjE3j4OdHXT19pITx35GIwMqP6r6F+AvIvJRVf33SDpy1p4POJ9bRGQTUCEiXcDvgXKgHbhCVTeHnisiE4EiVV3u7P8VOJe3lZ+0ZXVDPdPj+GbQH0eUlvHI/r1W+clAgl5fhZ4sirOzky2OJUbE8nltGTmr4rzkBSZ22/jcPHa2tTKvqDiufY02BlR+ROSTqvp3YLqIfC38uKr+MsJpgyIi04HDMbM4/wE+r6pbReRoTICuU8JOqQAqQ/YrnbIgV4nIp4GVmNmld0V+EpHPAp8FmDp16nDEjgtvNtZxwZQZCe/3yLJyvrPuDbr7+sh22UCwmURHby9v1tXwnvLxVvkZRcTreW0ZHivr61hUXBL3firyvGxvbbbKzxAZ7FcvaIVbABRG2IaMiBQA/wa+AvQBxwH3ishq4FZg4hCbvAWYBSzGzCz9IlIlVb1NVZeq6tLy8vLhiB5zgmvCM5Iw8zMmJ4fJeV5erLFeXxbLKCHmz2vL8FBV3myoY24cIjuHMz43j23W7mfIDLbsdavz94ex6MyJLvpv4G5VvV9EioBGVV0cVs8NvOHsPoRRcCaHVJkM7HNkqwo573bgv7GQNRGsb2pkapzXhAfi6DHl/Gfvbk4db5e+LJZ0J9bPa8vw2dPehluEMXFOWQTG7mdba0vc+xltRBvk8GciUiQiWSLytIjUiMgnh9KR4531J2BTcPpVVZuBnSJyfrCOiBymqr2qutjZfuDYCzWLyDFOO58GHnTOCZ0p+jCwfihyJZOV9TVxXxMeiGPGlPNc9UFabdA7i2XUEIvntWVkrKyvZW6ClqEm5XnZYZWfIROtscdpjqLyQUyumNnAN4bY1/HAp4BTwtzSLwIuE5E1wAbgnH7O/yJwB7AN2M7bxs4/c1zg1wInA18dolxJY0VdLXMS7OkVSlFWNguLS3h0f+XglS2jDpvuYtQSi+e1ZQS8HufghqFMzM1jV1srqpqQ/kYL0QaXCdY7C7hXVZuGGq5bVV8C+jvpjCjOXwksilD+qSEJkiL0qbKqoY4Lpk5PqhwnlI/nn3t28rGpiTe6TkdE5E7Mj0q1qr5rPA6jvYuB7zm7P3Y8dhCRxzH2bx5MqoIrVTWmgZms4fOoZcTPa8vIWFlXy6Uz5ySkr4KsLDwuoba7i/IELLONFqKd+fmviGwGlgBPi0g50Bk/sUY//pYmCrOyKM2OfcK7oXB4SRk7WlvYZZPjRctdRKGshyMizzlejqFlZcB1wNHAUcB1IlLqHP6Yqh6GUfjLgfNHILMls7DP6yTS1N3N/s52piUoXyOYpa+ddulrSESl/KjqtRivrKWq2gO00f/ylCUKltfWMD8FXBM9LhfHjx3HvXt2JluUtEBVXwDqQ8tEZJaIPC4ib4jIiyIyL8rmTgeWqWq9E55hGY5i5SxbgHmLzwbsnLYlKuzzOrm80VDH3MJiPAkMITLRifVjiZ6h5FSYh4kfEXrOX2MsT8bwSm0V8wqTr/wAnFg+nl9t2cA18xbhstPjw+E2Bo9VFYkKYG/I/jviV4nIE5gZoceA+yI1EIv4VYG+Ppq6u+3S1+jCPq+TxGt1NcxOsC1neU6enfkZIlEpPyLyN0wsndVA0O5AsTfTsOhVZUVdLR+ZPC3ZogAwLb+AfE8Wy+tqOG7suGSLk1Y4cauCsaqCxTnOsUuBYA672cCjItIN7FTVDw/WtqqeLiK5wN0YZWpZhDq3YZQvli5dOqzZoY7eXjyBHqv8jBLs8zq5vFpXzdmTpiS0zwm5uWxstglOh0K0Mz9LgQVqzcljwoamBkqzs5Nu7xPKcWPG8e+9u6zyM3RcRIhVBaCqfwb+DMbmB7hEVXeFVNkHnBSyPxl4LqyNThF5ELNs8S7lx2KJgH1eJ4n2QICtLc0JD2EyITePRw9Yr92hEO2i5HpgQjwFySRerqliQVFJssV4B8eOKWfZwf102UzvQ6K/WFVRnv4EcJqIlDqGzqcBT4hIQTB+lbNscRaweYB2LJZQ7PM6SaxqqGNmfmHCk4yOz82jsr3dursPgWhnfsYCG0XkNaArWKiqZ8dFqlHOizVVKTfDUpaTw1RvPi/UVPF+m+y0X0TkH5jZmrEiUonx1roIuEVEvgdkAfcAawZrS1XrReRHwOtO0Q1O2XjgIRHJwbygPAv8MeYXE4JNdjqqsM/rJPFKbTVzixIfuNbr8ZDrdlPV2cmEvLyE95+ORKv8XB9PITKJrt5eVjfWc/nMuckW5V0cWTaWR/bvtcrPAKjqhf0cGtD9XVVP6qf8TuDOsLIq4MjhyDdcbMyfUcX1yRYgU3m5pooPVSTW3ifIxLw8drW1WOUnSqJ1dX8eEyk0y/n8OrAqjnKNWt5oqGOatwCvZyiOdonhyLKxPFN1gJ6+vmSLYrFYhol9XieH5p4etrY2MzdJKYsm5Oaxu70tKX2nI9Hm9roC42p7q1NUATwQJ5lGNS/VHGR+cWq4uIdTlpPDxLw8XqurSbYoliRhU16kP/Z5nRxW1NUwt7A4aYmqx+bkssu6u0dNtAbPV2JyczUDqOpWILWMVtKEF6qrWJhixs6hHFZSxlNV+5MthiVJdPT28kJNFS022W06M+LntYhMEZFnRWSjiGwQkS8PftY7zl/i5FzcJiI3S1h+DRG5RkRURMYOpd1U5sXqg0l1ZJmYm8eONqv8REu0yk+Xqr71Kuh4oFiz8iHS3NPNjrYW5qZIcMNIHF5SxjNVB5IthsViGT6xeF4HgGtUdQFwDHCliCwYwvm3AFcAc5ztLZs4EZmC8WzcM0SZUprnaw5yaEnp4BXjxHgnwaklOqJVfp4Xke8AeSLyfuBe4OH4iTU6WVFXi6+wmKwEhj0fKtPyC2gJ9LDH3kQZjV3+SmtG/LxW1QOqusr53AJsAiqiSeXihGkoUtXlTqyhvwLnhlT5FfBNRtEL9O62VloDgYTm8wpnQm4ee9vbrLt7lET7K3wtUAOsAz4HPMrbmagtUfJyTRXzUiCf10C4RDisuIwXa6qSLYolidjlr7Qmps9rJyHv4cAKTDTxq1V1CfB1TCqXcCowqVqCvJW2RUTOAfap6oChIETksyKyUkRW1tSkvg3ic9UHOaykFElieiCvx0OOy01Nl81hGw1RuRypap+IPAA8oKqpPxJTlJdrq7h4+uxkizEoC4tLeLb6ABdNn5VsUSwWyxCJ5fPaSd/yb+ArQB/9pHKJsi0v8B3MkteAxCJtSyJ56uB+lpaNSbYYTMwzCU7H5Vp398EYcObHiVZ7vYjUAn7ALyI1IvKDxIg3eqjv6uJARwczEpzwbjgsKi7ltbpaeu30qcWSNsT6eS0iWRjF525VvZ+QVC4h23wRcYvIame7AZO2ZXJIU5OdslnADGCNiOxyyleJSFpHo24LBFjVUMchxcmz9wli7X6iZ7Blr69ivAaOVNUyVS0DjgaOF5Gvxl26UcSKuhrmFRXjToOs6SXZ2YzJyWFdY0OyRbEkGWv7k1bE7HnteGf9Cdikqr+E/lO5qGpviDL0A1U9ADSLyDFOO58GHlTVdao6TlWnq+p0zHLYEap6MEbXnxReqD7I3MKilIjdVp6Ta7O7R8lgys+ngAtVdWewQFV3AJ/EDGhLlLxaV53SXl7hzC8q4dVaa/eT6Vjbn7Qils/r4532TgmZ1TkTk8rlMhFZA2zAJNyNxBeBO4BtwHbgsSH2nzY8fqCSw0vLki0GYNzdt7c2J1uMtGAwVTVLVWvDC1W1xpkStUTJq7XVaWHvE2R+UTEv1VbzhTnzky2KxWKJjpg9r1X1JaC/aeoBU7k4568EFg1SZ/pQZEpFuvv6eLb6ID89bEmyRQFgYp6XR2x296gYbOZnoLluOw8eJY3d3ezvaGd6fkGyRYma+UXFrG6op9umurBglr/s0lfKY5/XCeblmiqmeL2UZkdt9x1Xgu7ufdZec1AGm/k5TEQizaEJkBsHeUYlr9eb+D6eFI7vE06BJ4sJeXmsb2zgiBTwYrAkl47eXjyBHpv0NLWxz+sE8+C+PRxZljpBqnPdboo8WezvaGdyEmMOpQMD/hqrqltViyJshapql72iZEVdNbMLk5PsbiTMKyzm1brqZIthSRGs8XNqY5/XiaUjEOCZqv0cPaY82aK8g0leL9ut0fOgJHQqQkTuFJFqEVk/jHMj5opxXDv3hRnlpRTLa2uYn+LBDSMxr6iYV2ut8mMxWONni+Vtnqraz8yCopRZ8goyMdfLDqv8DEqi12HuIgpjuX7oN1cM8KsQV8tHRyZibGkLBNjR1sKsgvSc+VndUE/A2v1YQrAzQBYL/GvPLk4Ym3r5vSfk5rK1pSnZYqQ8CVV+VPUFoD60LEa5YlKWVQ11zMwvJDuN7H2CFGZlUZ6by/qmxmSLYkkh7AyQJdPZ39HO2sb6lLL3CTIpz8tWO/MzKKnwizyiXDEOV4nIWmdZLWKYzWTlilleW82cNLT3CTKvsJgV1u7HEgE7A2TJVP6xewfHjh1HjtudbFHeRUVevl32ioKkKj9O3phgrpjVwK3AxCE2cwsmbPpi4ADwi0iVVPU2VV2qqkvLyxNnoLa8Lj3tfYLMKyrmFWv3Y4lA+AxQU3e3VYQso56u3l7+sXsH7xs/1J+qxFCWnU1Xby+N9l4ckGTP/Iw0VwyqWuWEV+8DbgeOSvhV9ENnby+bmhvTe+anqJhVDXU2z5elX4IzQLVdnXYpzDLqeXj/XqZ481PWlVxEmOLNZ4u1+xmQpCo/I80V45wTqn5/GBiyJ1m8WN1Qx1RvAXnu5Od8GS7FWdmUZeew0dr9WPohOAPU3ddnl8Iso5peVX6/dRNnTpw8eOUkUuH1sqXFprkYiES7uv8DeBXwiUiliFzGyHPF/MxxgV8LnIxJ7pcSvFpbjS+NZ32CzC8qYbm1+7FEgTWGtoxmHt63h1yXm0XFJckWZUAm53nZZF9YByShUxKqemE/h4adK0ZVPzVSueLFK7XVnJqi68JDYV5RMS/VVHHFLF+yRbGkCcEZoEJPlo0KbRkVdPX2ctPm9XxmxhycMHMpy1RvAQ/v35tsMVKaZNv8jFo6AgE2NDcyr6gk2aKMmAWO3Y+N92OJFjsDZBlt/GnHFibleVmQ4rM+AFO9+WxtabY5vgbAKj9x4o2GOqbnF5Cbgq6QQ6UoK5vynFzWNTUkW5SkM5Io5f20d7GIbHW2i0PKbxSRvSLSGot+LBbL8Klsb+O27X4umjYz2aJERUFWFvkeD3va25ItSspilZ848WJNFQtGwaxPkAVFJbxcU5VsMVKBuxhGlHIReU5EpoeVlQHXAUdjvBSvC4lT9TAp5LlosWQqqsq317zBGRMnMz43L9niRM30ggLW2xfWfrHKT5x4ofogi4ojxltMSxYUl/CCVX6GHaW8H04Hlqlqvao2AMtwFCsnmvmBmApvsViGzP2Vu9nX0cYHU9zDK5xp3gLWNdYPXjFDscpPHKjp7KSyoy2t4/uEs6CohPVNDbQHAskWJRWJJkp5JCqAUKvE8Mjlg5KsyOUWSyZQ09XJjRvXcPnMuXjSLEXRzPxC3mywyk9/pNe3mSY8V32AQ4pLcae4R8BQyHW7mV1QxPI6+wMbykBRykXk0mCwTmAp8Kiz/59Y9Z+syOXREvT6OtjebuP/WNKOG9av5oSx45lZUJhsUYbM7IJCNjQ12gC1/WCVnziw7OB+DispS7YYMWdRcSnPVO1PthipRsQo5QCq+udgGbASONPZ/7Bz7j5gSkhbb0UuHy0Evb4aerqt95clrXiltprX62r4yORpyRZlWBRkZVGWnY2/2UZ6joRVfmJMZ28vr9RWc3jpmGSLEnMWl5TybNUB1L5JvEV/UcqjPP0J4DQRKXUMnU9zyiwWSxIJ9PXx/bWruGjarLT22J1bWMwbDbXJFiMlscpPjHm++iCzCgopyspKtigxZ4o3n4AqW1szN2z6CKOUvwNVrQd+BLzubDc4ZYjIz0SkEvA6/Vwf+6uxWCyR+L/dO8j3eFhalt4vsXMLi2xi6n5I36RTKcpD+/awtGxsssWICyLCEaVjePLAPuYWpm+m+pEw3CjlqnpSP+V3AndGKP8m8M2hypfqBPr6aOrupjg7m6bubloCPTYKtCWlaOnp4TdbNvKNeYtSPpLzYCwsLuGfe3bSp4orza8l1tiZnxjS0tPDCzUHOXpM6hmexoolZWN47EBlssWwpCkdvb1v2f20BHqMPVB3V79G0U3d3dZQ2pJQbt2+mUOKS5meX5BsUUbM2JxcvB4Pm63dz7uwyk8MeXj/XhYWl47KJa8g84tK2N/RQaWNHGqJEQMZRQcVJGsobUkE1Z0d/G3ndj46JT2NnCNxSHEpz1bbkGHhWOUnRqgqf925jZPKJyRblLjiFuHIsrE8tG9PskWxjFKCS2MWS6L5lX8D7xk3gfKc3GSLEjMOLy1j2cFR5UQaE6zyEyNW1NXQGujh0JLRE9W5P44bW879lbut15clLoQujVksiWJLSxOPHajknElTBq+cRiwoKmFHaysHOzqSLUpKYZWfGHHzlo2cOXFyRhiVzS0spj0QYK3NG2OxWEYBqsoN61dzdsVUCkaZ2YLH5WJp2Rj+u9/O1odilZ8Y8GptNTvbWnlP+fhki5IQXCK8d9wE/r5re7JFsaQhwajPXb29yRbFYgHg0QOVVLa3cdr4SckWJS4cN3Yc9+7dZWfrQ7DKzwgJ9PVx/fo3+diU6WmX+2UkvLd8Ao8fqKShuyvZoljSjKCBc3dfX7JFsVio7+ri+nVvcumMOaP2Gb6gqITmnh5W20SnbzE6v+kEcsu2zXjdHo4Zxe7tkSjJzubIsrH8dee2ZItisVgsw6JPla+9+RrHjR2Hr2j0xi5ziXDq+EncsX1LskVJGazyMwJW1dfx5x1buXzmnLQPhjUcPjRpCnft3EZzj/XMsVgs6YWqcuOGNdR0dXL+lOnJFifunDJuAi/XVrG9tSXZoqQEVvkZJvs72vnCyle4fNZcxowit8ihMDHPy5LSMfxuy6Zki2KxWCxREzRXeLb6AF+du2DULneF4vV4OHPiZH66cW2yRUkJRv83Hgdquzr51KvPc9qECo4YhQlMh8J5U6Zz795dbGxqTLYollFEuFF0cD/Voj+nggyWobGlpYnzX36WtY0NfGfBoaPOu2sgzphQwfqmBp6pskEPrfIzRPa1t3PBy89yeOkYzpo0OdniJJ2S7GwunDaTq994lVYbm8USI8KNooP7qRb9ORVksETH5uYmvrJqBRe8/ByHl47hG/MWUeDJHMUHINvt5vKZc7l2zUqqOjM77k9clR8ROUNE/CKyTUSujUF733ba8ovI6fHqpz+W11bz4Zee5vjy8ZyXAWvE0XLi2HHMKijis6+9TEcgkGxxLBbLEBltz+ogvao8eXAfH3/lOT756vPkut38YvGRnDZhUkbEZIvEguISTh0/kYuXv5jR3rpxU35ExA38HvgAsAC4UEQWRHnurghlC4CPAwsxGbT/ICLukfQTLTVdnXx3zRtc9cZyLps5hzMn2hmfUESEi2fMJtvl5ryXn2VbS3OyRbJYLFEymp7VQQ52dPC7LRs58alH+OXm9SwtHcOvDz+Kcyum4vV44tFlWnH2pCnMKyri3BefZl1jZgarjecoOArYpqo7AETkHuAcEckDfgkUALXAJaoazQLkOcA9qtoF7BSRbU4fROoH2DhcwQN9fVR2tLOmoZ4nD+7jhZqDvKd8Aj85dElGrQ8PBbcIn5s1l2VVB/joy89w4tjxfLBiCoeVlDEhNy8jveEsljQhbZ/VYNzV67q62NrazKr6Wp6tPsjWlmaOHjOWq+bMZ2ZB4UiaH5WICB+fOpPJefl8evkLHD2mnHMnT+WI0jGU5+RmxPM6nspPBbA3ZL8SOAb4LXCOqtaIyAXAjcBnomxveVh7Fc7n8H6ODj9ZRD4LfNbZbRURf+jx7NkzlwQ/9zY14y4ueuuY9vb2+Pv6em+PQsh0pq+l1e0qLBh52F1xuTd73FmR/l/a2dXSU7kvNNjE46p6xoj7tPDGG2/UisjusOKxmB+udCYdryGdxnVKPath4Oe1u3zsZHdx0YDh9LUn0LUZ1b9EIWwkYvYsjBMxlU9cro0ed/afIxzq3rV7DYHeUFuGdBrXA5Lo+T8fsAhY5miWbuAAgIh8FzjfqTdJRFY7n19W1StH2rGq3gbcFk1dEVkZqK5ZOtI+0w0RWRmoq8+46x4tqOq7Im2KyEpVTevvdDRcQxqStGc1DO15HQ9S/VmY6vKlA/FUfvYBoelxJwPPA/mqemx4ZVW9EfNmgYjsUtXFUbS3z/ncX7nFYrFYBsY+qy0ZRzy9vV4H5ojIDBHJxhjAPQSUi8ixACKSJSILo2zvIeDjIpIjIjOAOcBrA/RjsVgslsGxz2pLxhG3mR9VDYjIVcATmCnTO1V1jYicB9wsIsVO/78GNkTR3gYR+RfGOC4AXKmqvQAR+hm0vUFI2nRrksnU6x7NjIbvdDRcQ8qS5s/qeJHqYy7V5Ut5xKa4t1gsFovFkknYCM8Wi8VisVgyCqv8WCwWi8ViySis8hNCokOvxxMR2SUi60RktYisdMrKRGSZiGx1/pY65SIiNzvXvVZEjghp52Kn/lYRuTikfInT/jbn3NEfFSuNSKexHKuxarEMRryfiyOQy+fIFNyaReQrInK9iOwLKT8z5JyUSCGStqiq3YzdkxvYDswEsoE1wIJkyzWC69kFjA0r+xlwrfP5WuCnzuczgccAwQQ3W+GUlwE7nL+lzudS59hrTl1xzv1Asq/Zbm99z2k1lmMxVu1mt2i2eD8XYySjGzgITAOuB74eoc4C577OAWY497s73e79ZG525udt3grxrqrdQDD0+mjiHCAY9PQvwLkh5X9Vw3KgREQmAqcDy1S1XlUbgGXAGc6xIlVdruZO/GtIW5bkMxrG8lDHqsUyXGLyXIyhPKcC21U1PFp7uMz3qGqXqu4EgilERsO9nxCs8vM2kUK8V/RTNx1Q4EkReUNMqHiA8fp2bp6DQDBEfH/XPlB5ZYRyS2qQbmM5FmPVYomGeD4XY8XHgX+E7F/lLLvdGVySS6Jsowab3nb0coKq7hORcZgQ9ZtDD6qqioiNc2BJBexYtSSKlB5rTvDHs4FvO0W3AD/CKG0/An5BdPnVLINgZ37eZqCQ7GmHqu5z/lYD/8FMh1YFlwicv9VO9f6ufaDyyRHKLalBWo3lGI1Vi2VQ4vxcjAUfAFapapUjZ5Wq9qpqH3C7I2+yZBtVWOXnbUZN6HURyReRwuBn4DRgPeZ6gp4JFwMPOp8fAj7teDccAzQ508BPAKeJSKkz3Xoa8IRzrFlEjnG8vD4d0pYl+aTNWI7hWLVYBiTez8UYiXkhIUteYfZsH3bkDcpmU4iMALvs5aCRQ7ynauj1wRgP/MfoJXiA/1PVx0XkdeBfInIZsBv4mFP/UYxnwzagHbgUQFXrReRHmBsK4AZVrXc+fxG4C8jDeEQ8Fu+LskRHmo3lmIxViyUKEvFcHDaOQvZ+4HMhxT8TkcWYZa9dwWM6OlKIJBWb3sJisVgsFktGYZe9LBaLxWKxZBRW+bFYLBaLxZJRWOXHYrFYLBZLRmGVH4vFYrFYLBmFVX4sFovFYrFkFFb5sVgsFovFklFY5SdOiMh0EVERaXW2XSJybVidXSJS7cR3CJZdLiLPhdUTEdkhIhsTJP6QcK7jfcmWwzJyROTjIrJCRNqcsblCRL7oBLMc1YjIJSLyUrLlsMQeO67tuA7HKj/xp0RVC4DzgO+LyPvDjruBLw/SxnuAccBMETkyDjJaLIjINcBvgJ8DEzBB4T4PHA9kJ1E0i2XY2HFtiYiq2i3KDRNh8xvAWqAN+BPmRnoMaAGeAkqdutMxUTk9Iee/BnwjrL1rgXqMkgRwOfBcWL93AncD9wO/G0TGKU69GqAuWB+j6H4PE8G0GvgrUOwcOwmojHCt73M+Xw/8yzmnBdgALHWO/Q3oAzqAVuCbyf6e7DassV3sjOmPDlIvB7gJ2ANUAX8E8kLHEXCNM8YOAJdGc24/fV0BbHLG3EbgCKd8PvAc0OiMxbNDznkOuDxk/xLgpZB9xfzwbXXO/z0gTpudQK8zjhuT/Z3YzY7rkHPsuI7xZmd+hs5HMSHI5wIfwig+3wHKMQrGlyKd5OSGWYQJlR7KSszA/no/53kxs0Z3O9vHnZwtkeq6gf9iFJzpQAVwj3P4Emc7GZgJFAC/G+hCwzjbaasEkyvmdwCq+inMTf8hVS1Q1Z8NoU1L6nAs5iE+WI62n2DG/mJgNmaM/SDk+ATMD04FcBnweyf/UTTnvoWInI9Ruj8NFGHGX52IZAEPA09iZkOvBu4WEV+0Fwp8EDgSOBSTyuB0Vd2E+fF41RnHJUNoz5K62HFtx3Vkkq19pdOGmQ25KGT/38AtIftXAw84n6djtPFGzKyIYt4OJKy992GUoiaMAvWOmR/gk5hZHA+Q69T7cD/yHRusG+HY08AXQ/Z9QI/T7kkMPvPzVMixBUBHpLp2S8/NGWcHw8peCRm/78G8SbYBs0LqHAvsdD6f5NQNne2sBo4Z7NwI8jwBfDlC+YnAQcAVUvYP4Hrn83MM/oZ8Qsj+v4BrI9W1W/pvdlzbcd3fZhObDp2qkM8dEfYLwuqPxQzMLwOfALKA7tAKqrpeRP6LWQLbFHb+xcC/VDUABETk307ZfyLINgXY7dQNZxJmRijIboziMz5C3UgcDPncDuSKiKefvizpRx0wNvQ7VdXjAESkEjOrWQ54gTdC7EQFY7f2VjthY6Idc09Ec24oU4DtEconAXtVtS+kbDfmbTtawsdy+D1rGT3YcW2JiF32SgCq2quqv8SsvX6xn2rXYdaC3xrsIjIZOAX4pIgcFJGDmCWwM0VkbIQ29gJTRSSSUrsfmBayPxWTDbgK8+biDenXjbmpo8Vmx01/XgW6gHMGqFOLUfAXqmqJsxWrMegfjKGeuxeYFaF8PzBFREKfXVOBfc7nd4xlzHJFtNhxPPqw49qO64hY5Sex/AT4pojkhh9Q1W3AP3mnzdCngC2YJarFzjYXY3x3YYT2X8MY4/1ERPJFJFdEjneO/QP4qojMEJEC4H+AfzpvM1swMzlnOWvP38Osk0dLFcaOyJKmqGoj8EPgDyJynogUiohLRBYD+U6dPuB24FciMg5ARCpE5PQo2h/quXcAXxeRJU6oh9kiMg1YgXmr/aaIZInISRjbu6Bt22rgIyLiFZHZGPuMaKkCJvdnU2dJP+y4Buy4johVfhLLI0ADZoYnEjfg3JAOFwN/UNWDoRvGm+Di8JNVtRdzw8zGGCFXAhc4h+/EeGa9AOzEzEJd7ZzXhJmRugPzptHmnBst/wt8T0QaRSSi4bYl9VFjrP414JuYB2YVcCvwLYydBM7nbcByEWnGeDhGa5QZ9bmqei9wI/B/GK+YB4AyVe3GjPEPYN66/wB8WlU3O6f+CrOsXAX8BeMkEC3PYLxsDopI7RDOs6QwdlzbcR0JcQyiLBaLxWKxWDICO/NjsVgsFoslo7DKj8VisVgslozCKj8Wi8VisVgyCqv8WCwWi8ViySis8mOxWCwWiyWjsMqPxWKxWCyWjMIqPxaLxWKxWDIKq/xYLBaLxWLJKKzyY7FYLBaLJaOwyo/FYrFYLJaMwio/FovFYrFYMgqr/FgsFovFYskorPJjsVgsFoslo7DKT4ogIieJiIrI2Ej7Fku64ozj85ItR7wRkUtEpDXZclgslsGxyk8MEJHxIvIbEdkuIl0isk9EHhORMxPU/0dEpFdE7k5Ef5b44igLA213JVvGITIReDjaytEq/iIyPez/0ioifhG5Q0QOHbHUQ+efwMwQ+a4XkfVJkMNisQyCJ9kCpDsiMh14GWgBvg2swSiVpwJ/BKYmQIzLgZ8BXxKRUlVtGKiyiGSpak8C5LIMj4khnz8I3B5W1hFaOVW/TxHJVtVuVT0Y567OwNx3ecB84PPAGyLyKVW9J859v4WqdhD23VgsltTEzvyMnD84f5eq6r9U1a+qm1T1d8Bbb58iUiwit4lItYi0iMjzIrJ0pJ2LyGTgZOAmYDlwUdjx4Fv0mSLymoh0A6eL4ZvObFWHiKwTkU+GnfsT5026Q0R2icjPRCR3pDJbBkZVDwY3oDG0DMgFGkXkQhF5RkQ6gM+JyBgR+YeIVDrf1wYRuTS0XRF5TkT+ICL/IyK1zli8SURcIXU+IiJrnTbqnXE6PuT4mSKywjleJyIPB8eEM0auF5E7RaQRuNspf2vZK2S25hMi8pKIdIrIZhE5LXgceNbpribKma465/+zU1UfVdWzgXuBP4pISYjsxznX0+7Mzt4iIkWx+v9IyLKXiFwCXAcsDJmZusT53/w37HtxicgeEfnaINdpsVhihFV+RoCIlGHeOn+vqu9a61fVRqeeAI8AFZg3+cOBF4BnRGRi+HlD5FLgSVWtA/4GXNZPvZ8C3wPmASuAHzt1rwQWAP8L3CoiZ4Wc0wZ8BvM2/UXg48B3RyivJTb8L0bxXgA8gFGKVmHG10LgN5jv89Sw8y4CAsBxwFXAV4ALAERkAnAP8BfMd/4ezJjCOX4G8BCwDFiCUbqf553Pka8Bm4GlwHcGkP9nwM3AYqe9B0WkAtgLfNSpsxAz4/XlQf4XkbgJKAbe58h+CPCkI/9hwEecvu8MO2/Y/58w/gn8AvA71zDRKbsdOCPsvn8/MGGAtiwWS6xRVbsNcwOOAhT48CD1TgFagbyw8tXAN53PJzltjY2030+7AuwAznP2CzAKy9KQOsF2PhpSlo+Znj8xrL1fA48O0N/ngW3J/r9n0gacZ27Tt/anO9/nNVGcew9wR8j+c8CrYXWWBesARzhtT+unvZeBewbobxfwcIRyDRmjQfm/G3LcBWwBfuzsDzr2w9paGuFYrnMseH/9FfhTWJ3FTp1xMfr/XAK0huxfD6yPUG89cG3I/j+B+5I91uxmt0zarM3PyJAo6y0BvJhp/NDyXGDWCPo/FSjFMSZV1VYReQAzo7MyrG7o/gKn78dFREPKszA/YAA4SxVfAWZjFCu3s1mSzzu+XxFxA9diZikqgBwgG/ODHsrasP39wDjn8xrgKWC9iDzpfL5PVWuc44cDdw1FrgF4NfhBVftEZAVmXMaK4I0WHN9LgNkickGEOrOAaufzSP4/0XI7Zib1J87s8TnAh4fYhsViGQF22WtkbMU8XOcPUs8FVGHeNEO3ecD3R9D/5UAJ0CYiAREJYJamLhQRb1jdtjB5AD4UJs9CIGh7cQxm5uAJp97hmGWzrBHIa4kdbWH7XweuAX6OUYoXY5bDssPqhRtGK854UNVezPd/GkYJuAzYKiKHjUCuZBFUpHY4f13AHbxzvB8GzMHMwAaJ9/8HzPLWNBE5AbPMVoO5zywjQIYRLsSxU/t64qRMLNH8DzIVq/yMAFWtxzy0rhKRgvDjIcaWq4DxQJ+qbgvbqsPPiwbnjfFc4GLe/UDvwiyX9MdGp860CPLsduocD+xT1R+p6uuquhWYNhxZLQnhBMyS099UdTWwHZg71EbU8Kqq/hA4EjPzEZwteROjWMWCY4IfHJu4o4BNTlG383cks4xfB5owszNg7sGFEcb7NjVeWlExyP8nnO5I1+A8N+7H2NN9BviLqvZFfWWjEElyuJBE4hi+q4g8FeFYRsTESgXsstfIuRJjC7FSRL6PeSMUjDHotzGu7k85dR4UkW9iDEInYIyln1LVF4fR76eAZuBu5430LUTkfsys0F8jnaiqLSJyE3CT88PzAmZZ6xiMgnYbxgajQkQuwixRnA5cOAw5LYlhC3CBM5tQC1wNzMAoLFHhzPa9D6PQV2Fm+6ZglGWAG4GHRWQb8H+YcX4acKuqtg9R3i+IyBZgHWYJaBpwi3NsN2bG5SwReRjo0AgOBSGMcYyR8zCzqV8APgB8SlWbnDo/BZaLyB+BWzGhKeYBH1LVz0UjcBT/n3B2YWZ4jgD2AC2q2uUcux14HDOT+tHIp2cGkhrhQhJNL/BeETldVe2sXxKwMz8jRFV3YAwhl2EesGuBZ4Czgc86dRQ40ym/HeMB8i/Ah3lzHA6XAQ+EKz4O9wInishAb/7fxxhkfh3Y4Mj/UWCnI/PDmCWUXzvX9H7gB8OU1RJ/fgy8BjyGUWbbcFzNh0ATZsbvv5gl3V8AP1LVvwOo6qMY25QPYJSq5zFK/nBmLa7FeIatwbwEfFhVK51+9mHcxG/EKBm/G6Stx4EDmHH8G8wy0lINifGjqmsx3lnTHbnXYDzmqoYg84D/nwj8G3gUeNqRKfTl4TmgEnjOeYZkMkkNFwLkisitItIsJlTEN0IPisjXnPAGbc6M1B1hIRSKReRvjlydIrJDRL4ySJ+dwG3AT0NDKYQTaSYofKnO6f8WETng9L8pzLYtvM1oQj78Luycu0JDNIjIe0RkuZjAok1iwqgsGuSaU4tkW1zbzW52y5yNATy0MmnDzFLVAxclW5Yk/x/KMMrzdwapJ8BLmJAhR2GcMH6Emf2e6NQ5iaF7zO4C6jBhDWZjZkwVODakzlcwHrvTgfdiXgb/FnL8txi7saMwM5gnAecP0OclGO/f8ZjZrk+FHHvLMzLSfojMXw/5v7yMmX08AxNh/AM4HsgR/ieHOH1fg7F3Oxozs39fSPvPAb8L6/Mu4L/OZw/QgAknMQszg/oJYH6yx9NQNrvsZbFYLAnCecsfi4ld1IGZAc5kZmN+wDcNUu9kjE1jub5to/V9EfkQxgTgZyOQ4Uk1s0wAvxWRL2GW3F4FUNVfh9Td5ZguPCgiF6ux1ZoGrFLV15w6u4kCVa1yzA9+JCL/0reXRIfC+4BjMfZswf/hQDOJ3wD+qaq/CBaIyBeAN0VknEZng1qEcbR5WFW3O2Wbhyx5krHLXhaLxZI4pmKW2j4NXKopmJYkwQwnXEhrcAMWMbJwITBweANE5BQRWeYsibVgjNWzMXabYGzVLhCRNWIigr93CH3/AhN25Mphyn44cCBE8RmMJcAnw/6HLzvHovo/qjHYvwt4QkQecZYF084uyyo/FoslYajqLlUVVY02HtCoIuT6p6jqk8mWJwVIdrgQGCC8gYhMwyy1bQLOxygPn3HqZQOo6mOY2Z+bMLN6j4jIn6PpWI0h/w3Ad0PtiMJkCVcQRxJuJJqQD32D9amql2KWzF7A2Lf6ReT0EciVcKzyY7FYLJakoEkMFxIlSzFKzlfVhDjYAkwKr6SqtWrCTFyCcUa5WERyouzjNozd0bURjtUQktRYTB650NQobwITRWQw5TFINCEf3tGnw7tiWanqGlX9qaqehLETujhKGVKCjFR+zjjjDMVo1HZL/maJEXZcp9RmiZ4rMTMNK0XkfBHxicg8xxYluCQVGi7kAyIyQ0SOFZEfisiJcZRtK+Z38itOnxdiDKDfQkRuEJFzRWSOo4R8BNgRrQ2PqgYwefC+HOHwM8CVIrJURIIR1jtDjj+NydX4bxE53ZHx/SJybj/d/RQ4SkT+KCKHi8hsEfmgiNwa1ucHRORs57v4JSakQ/B6Z4hJen2ciEwTkZMxXnn9hXxISTJS+amtrU22CBZLzLHj2pKOaPLChUQj21qMUvI1zI/75ZjwIKF0YcIyrMEoaIWYqPhD6ec+5/xwrsEYMD8H3IdZsqoOOa8P4931MvB3zPLcb3h3ZPfQ6xks5MOdIVsw/tJ/Qo63YwKo3ouJL/YXTFiNn0Z7vamAOK5rGcXSpUt15cqMNDlIRaI1eLQMgh3XKYUd1xZLCpORMz8Wi8VisVgyF6v8WCwWi8ViyShskMMk09Xby63b/fT29fG52fPweuxXYrFEQ2dvL3ds99MSCPD52T5Ks6N1rrFYLJmOnflJMt9bt4rnqw/yen0tl654kUBfRid3tliioruvj4uXv8CLNVVsbWnmkuX23rFYLNFjlZ8ksqWliaer9nPVnHlcNWc+Hb29/GnHlmSLZbGkPL/YvJ5eVb48dwFXzJxDH8q/K6PKKmCxWCxW+Ukmd+/azinjJpLn9uAS4dIZs7ll22ZquzoHP9liyVDWNtZz796dXDFrLi4RRIRzKqZyx3Y/mei9arFYho5VfpJEnyqP7q/kuLFvpZBhYp6XY8eM4/dbo03TYkk0IlIiIveJyGYR2SQix46wvYtFZKuzXRxSvkRE1onINhG5WUSs6zTQq8q317zBBVNmUJz1diiTBUUltAYCbGhqTJ5wFoslbbDKT5LY0NRIrtvNpDzvO8rPqZjKv/fupqqzo58zLUnmN8DjqjoPE/I9Kk1VRJ4TkelhZWXAdZgcOUcB14lIqXP4FuAKTM6dOcAZMZE+zfnLjq24BN5TPv4d5S4Rjiwby+MHK5MkmcViSSes8pMkXqo5yKLi0neVl2Rnc9K4CdzsT6tI4RmBiBRjoqP+CUBVu1W1UURmicjjIvKGiLwoIvOibPJ0YJmq1qtqAybC7RkiMhEoUtXlTmTbvwLnxv6K0ovdba3cvHUTl86YQ6SJsCNKx/DUwQNJkMxisaQbVvlJEsvraphXVBzx2AcnTeG/B/ayo7UlwVJZBmEGJunfn0XkTRG5Q0TyMYkJr1bVJZjQ93+Isr0KYG/IfqVTVuF8Di9/FyLyWRFZKSIra2pqhnY1aURPXx9fWrWcsyumvGu2NMjsgkIqO9qszZzFYhmUhCo/IvJVEdkgIutF5B8ikjuEc88QEb9jA3FtSLmIyI0issWxwfhSfKSPHX2qrG6sZ25hUcTjRVlZfGjSFK5b96Y14EwtPJgcRLeo6uFAG/Bj4DjgXhFZDdyKkxFZRC4VkdVO+VLgUWf/P5EaHw6qepuqLlXVpeXl5bFqNuX46aa1eMTFGRMi6oAAeFwu5hcV81qdzXFmsVgGJmHKj4hUAF8ClqrqIsANfDzKc93A7zEJ3BYAF4rIAufwJZiMs/NUdT5wT4xFjzm721rJdbkHDMp2xoQK9nW08Y/dOxIomWUQKoFKVV3h7N8HLAYaVXVxyDYfQFX/HCwDVgJnOvsfds7fR0i2ZGCyU7bP+RxenpEsO7ifh/ft5fOzfLgGsfueW1DM8rrqAetYLBZLope9PECeiHgAL7Df8Wp53rGXeMKxdwjnKGCbqu5Q1W6MgnOOc+wLwA1OdltUNeWffOubGphZUDhgHY/LxVVz5nPT5vU8eSBjf/dSClU9COwVEZ9TdCpGqdkpIufDWzORh0XZ5BPAaSJS6hg6nwY8oaoHgGYROcbx8vo08GBMLyZNqO3q5No1K7lyzjwKs7IGrT+3sIiV9Xbmx2KxDEzCcimo6j4RuQnYA3QATwLPAs8D56hqjYhcANwIfCbs9Ei2EUc7n2cBF4jIhzH2GF9S1a3h/YvIZ4HPAkydOjVm1zUc1jU2MNVbMGi9SXlerpm3iO+uW8UjByq5aNpMlpSNxW29npPJ1cDdIpIN7AAuBUqAW0Tke0AWRjlfM1hDqlovIj8CXneKblDVeufzF4G7gDzgMWfLOP5n41qOGzuOuYWR7ePCmVFQyM7WVjoCAfJsqhhL4nAB04Obqk5p7+2d2NPXN07RMUCHW6TK6/Yc8LhctUAdUA8cANZhfhMtCSRhTwfnzfYcjNFoI3Av8C1gEbDM8d5wYwbDUMgBOlV1qYh8BLgTODG8kqrehjFMZenSpUk1pFnf1MAJYa66/TGroJCfHrqEZVX7uXbNSlp6evjMzLlcPmsuWS5rr55oVHU1xn4nlAYGcUVX1ZP6Kb8TM2bDy1di7o2Mxd/cxHPVB7jpsCOjPifb5WJKfj4bmhtZWjY2jtJZLEwD3t/U3X1ujtv93vbegOxrbw/sbmv17Gpryavv7nY19XTT0tNDtstFcXY2pdnZlGXn9IzNye0ek53TW+H1UpGXn9ceCOzyuFwv5Hs8jwLPYH4jLXEkka9G7wN2qmoNgIjcj3lr3qCq7wgUJyJTgIed3T9i3qIj2UaAmQW63/n8H+DPcZE+hmxuaeKiaTOjru/1eDinYirnVExlb3sbd+/ewfK6am4/6gSyrQJkGaXcsm0zp0+oGHKy3xn5BaxpqLfKjyXWuIDTWgM956OcqVDycm1V79NVB/Jfqa1if0fUkzdZzgZAjsvFwuLSOUeUjpn9/gmTzj+spCy3s7d3W2FW1u9dIn8FWuNwLRlPIpWfPcAxIuLFTPGdCjwAXC0ix6rqqyKSBcxV1Q0YQ1IAHBuhOSIyA6P0fBz4hHP4AeBkYCfwXiClk2PVdXXR3ddH2TAzUE/x5vONeYv4lX8DP9+0ju8ujNa8xGJJH+q7uni6aj+/WnzUkM+dnl/Amsb6wStaLNFRGujr+0xXX+83DnZ05P9z7878l2qqZHNzE7FYQujq62NVQx2rGurkjh1birJdLo4ZU77gkhlzfnbs2HE/71P9s9fj+RWwPQbdWRwSafOzQkTuA1YBAeBNzKzO88DNTgA5D/BrYEPYuQERuQpjIOoG7nQUJICfYGwwvorRkC9PwOUMm60tzUz15kcM0hYtbhE+O2su31rzBh+bOoM5/bjMWyzpykP793B4yRgKojByDmdmfiHLDu6Pg1SWDKO8ozfwLUG+8EzVAW7f7veuToBS3d3Xxws1VbxQU5Vfkefl4hmzr/jEtJmXBVSXF2dl/w/wFMRE78poEmoRqKrXYcL5h7IaEzV3sHMfBR6NUN4InBUD8RLC1tYmKvoJ0jYUirKy+cDEyfzGv4HfLR1ReimLJeV4sHIP758waVjnVuR52d/RTnsgMOQlM4sFyGkPBH7oEvnSg5V75HdbN+Xu62hPiiD7Otr5n41rs3/p38A5FVPfe+WceUtLsnL8hVlZlwDrkyLUKMEajCSYrS3NTMwdufID8L7xE3mhpopqmwfMMoqo6exkW2szh0ZI/xINHpeLKd58/C1NMZbMkgEsaQ30bF5eV3P1yc88lvfttW8kTfEJpbO3l3/u2SknPf1Ywc82rTu8NdDzWnsg8FsgP9mypStW+UkwW1uamZSXF5O2vB4PR40Zy7/37opJexZLKvBc9QEOLSnDMwJj/qneApvh3TIUsjt6Aze2Bnpe/N7aVdMue+0l78EUfKnsA/6+e7vrpKcfy3um6sBlbYHAFkyEecsQscpPgtnR2tJvbqLhcNyYcTy4b+/gFS2WNOGZ6gMcMsxZnyBTvF42NjXESCLLKOeQ1kDP+lX1dV859ZnH8x7ctyflA6nVdXdx9arleV97c8Wk5p7up9oCgZ9jf8+HhP1nJZD2QIDGnm7G5kSd0mxQ5hUVU9XZwd72tpi1abEkiz5VXq2t5pDikhG1M9VbwIbmxpjIZBm9BPr6LmoLBFbcsH717E8uf8FbnWZJcZ88uJ9Tnnk8b1tL8xdbAz33A9nJlildsMpPAtnV1sqkPO+g+YmGgkuEw0vLeMp6t1hGAf6WJvI9WYwZ4QvC1Px8trY002cTA6cNPp9PfD7fSz6f7wMhZef7fL7H49FfV2/vN5p7em77yEtP5927d1fKz/b0R113Fxe88qz39bra97f09DwDDJw7yQJY5Seh7GhrYUJubOx9Qjm0pIxnq4caGNtiST1eq6tlflF0qSwGosCTRYEni0o7I5o2+P1+BT4P/NLn8+X6fL4C4H+AK2PclbQHAr+o7uq8/kMvLvNuaWmOcfOJp6uvjytef9n7xMF9S1oDPcuB8mTLlOpYP9AEsqu1lXG5sVvyCrKoqITbt2+hu6/PRny2pDXLa6uZG6O4VdO8+WxubmJq/uB59Cypgd/vX+/z+R7GpD7KB/4OfNfn8y3CREW+3u/3P+jz+RZiovlnY17iP+r3+9+V0zEC0hEI3HSws+NzH33pGW9jT3ecriTx9KryjdWv51Z3dsy5eMacVfkez4nArmTLlarYX8oEsq21mQk5sZ/5KcjKYmJeHmsabFRbS3qzqqEOX5RJTAdjktdr3d3Tkx9iIvh/AMgFnvH7/UdhIvn/3Ofz5WNmiH7j9/sXY3LtVUbTcHsg8L8HOzs+d97Lz+SPJsUnlJ9vXp/1i83rJ7YHAnYGaACs8pNAdrW1MiFGbu7h+AqLWVFXHZe2LZZEsL+jne6+PsbFyCFgSl4+G627e9rh9/vbgH8CfwPeD1zr8/lWA89hlKGpwKvAd3w+37eAaX6/f1C/9D7Vj7UEeq7+6MvP5Dd0j07FJ8ifd251/2XXttLWnp7HMcm/LWFY5SeB7GlvjYvND4CvsIjldTVxadtiSQRvNtQxt7BoRKlfQrGBDtOaPmcTzJLWYmeb6vf7N/n9/v8DzsbkiXzU5/OdMkh7s7t6e++8/LWXvKNd8Qny803rsl+rr53XGui5M9mypCLW5idBtPT00NHbS0lWfDwR5xYWc8eOrfSpxtSbzGJJFG821DE9P3aOKpPyvOzraKert5cctztm7VoSyhPA1T6f72q/368+n+9wv9//ps/nmwns8Pv9N/t8vqnAocAz/bSR2xroeeTnm9blrY/zTOD43FwOKS7lsJIyjhpTzticXHJcLlwidPf10dEbYENTIyvra1nX1MCW5iZ64uSRqMDVb7zqffyk08/Jc7kvcbtcd8WlozTFKj8JIjjrE6u32nBKsrPJ93jY0drCbJvo1JKGrG6o5/QJFTFrL8vlYkJuHttbW1gwwrhBlqTxI0yy67U+n88F7AQ+CHwM+JTP5+sBDmK8wiLSFuj57au1NVP+umt7XFY6ZuYXcOnMuZxdMYVsl5vuvl68bk+/EcrnFZXwgYmT6VUl1+1mU3Mjt23z88TBfQRirAi19/Zy+Wsv5f/nhFN/73W5VgCbYtpBGmOVnwSxqy1+S15B5hQWsaax3io/lrSjV5WNzY18Yfa8mLY7xZvPlpYmq/ykGX6///qQ3c9FOP4T4CeDtdOnen5rIPCJa95cEdOHr1uE942fxOdn+5hXVIxbXGQ5yk5uFLOMoQl3Dy0p4yeLl3KjLuHvO7fx9907iGVqjS0tzfxow+rc7y447IGCrKz5mOXEjMfa/CSIPW1tlMcwsnMkpucXsKq+Lq59WCzxYHtrM2XZOeTHOAv7pDwv/mZr95OhlHX19d55xWsve1sCgZg1Or+omKdOOp2bFh/J4tIx5Lo9byk+w6XAk0VxVjaXzfLxzClncOXsebhjuEpwz56drj3tbZP6VC+KWaNpjlV+EsTOtpa4Kz+z8gtZ02jd3S3px7rGBmYWxD4w7RRvPhttmouMpC0Q+OFD+/Z61sUox1uWCNfMW8S/TziFqfkFFGRlxaTdUHLdbvLcHr44Zz6Pvuf9zIrhPXHd+lUFnb29v8R4zGU8CVV+RKRERO4Tkc0isklEjh3CuUtEZJ2IbBORmyXEeEZErnba3CAiP4uP9CMjEcte0/IL2NbaTHefndW0pBdrGuqZ6s2PebuT87xsHQURfC1DZobA5TdtXheTH/qZBYU8edLpfGbGHPLcnrg7lXg9HmYVFPLwie/jillzY9Lmyvo6Xquvyevq7f1KTBpMcxI98/Mb4HFVnQccxtCMr24BrgDmONsZACJyMnAOcJiqLgRuiqnEMWJPeyvj4xDdOZRct5sJuXlssdP8ljRjTVM9M2Po6RVkfG4e9d1dtAZ6Yt62JXVp6en5nz/t2OKp7eoacVsLi0v4jzPb443xsuxAuF0u8jwevjJ3IT9cdHhM2vzRhjX5fej3gLKYNJjGJOybFJFi4D3AJQCq2g10i8gs4PeYSJTtwBWqujns3IlAkaoud/b/CpwLPAZ8AfiJqnY57aZcpL+u3l4aurtHnKwxGqbnF7KhuZFFJaVx78tiiQWBvj62tjQzPQ5pKFwiTPGaJKeHl46JefupjM/nuxPjGVXt9/sXhZT/E/A5uyVAo9/vX+zz+bKBWzERk/uAL/v9/uf6afs+4Jt+v3+Hz+e7EPgOxrt6P/BJv99fG1L3GsxLaXloecjxnwFnYV7GlwFfxqSteBCYDPzB7/f/wal7G/BHv9+/ytm/Cmj3+/2hsWymuUXOvWPHlhH/vh1SXMo/jnsv+Z7YL3FFi9fj4bwp08lzu/nmmpUjamtHawsPVe5xf7Bi6vX5Hs+XYiRiWhLVzI+I3C8iZ4nISGaKZgA1wJ9F5E0RuUNE8oHbgKtVdQnwdeAPEc6t4J3hyyudMoC5wIkiskJEnheRI/u5hs+KyEoRWVlTk9hggJXtbYzNyY2pAVt/TPXms9ba/URFjMa1ZYRsb22hLDsnbm/Vk735jIbklcPgLpwZ8lD8fv8FwaCBwL+B+51DVzjHD8FEVv6F417+Dpy8Wm5H8fFgZvRP9vv9hwJrgatC6k4BTgP2RBLQ5/MdBxyPidOzCDgSeC9wOvCSU/4pp+5hTr+rQpq4E7g6tM3WQM/3/75ru6u5Z2SzfbMLCrn72OQqPkG8Hg9nTZrCdxccNuK2bvKvz3WLXEGGz/5E+9D/AybXylYR+YmI+AY7IQIe4AjgFlU9HGgDfgwcB9wrIqsxbx0Th9FuGXAM8A3gX6H2QEFU9TZVXaqqS8vLE5vuZHd7W9ztfYJMzy9gfYwM/DKAWIxrywhZ39QQl1mfIJNyvWzKwDQXfr//BaDfNyGfzyeYeDn/cIoW4AQK9Pv91UAjZhYonIswszJgIjALkO+0V4SZ/QnyK+CbmFmhSCjGADcbk4YhC6gCegCvsx98nv8I+H7YNbYDu3w+31FOUV6WuC66fYd/RNFkc91u/nbse2PufTgSvB4Pn5g2k7MmTR5RO7VdXbxQfbC3T/XCGImWlkSl/KjqU2pc5I7AZIl9SkReEZFLRSRatbgSqFTVFc7+fcBioFFVF4ds80XELSKrne0GYB9m+jPIZKcs2O79angNM107NkqZEsLutta4e3oFmZZfwNaWZnrjFDV0NDHcce2MzzdF5L8jlUFEvu0Y8ftF5PSQ8jOcsm0icu1I+0ll1jbWM80bP+XHprnolxOBqpBs6GuAs30+n8fn880AlgBTIpx3PPAGgN/v78GYHqzDKD0LgD8B+Hy+c4B9fr9/TX8C+P3+V4FngQPO9oTf79+EWf6aDiwHbvb5fGcDq/x+//4Izax0rgXgtE3Njd0jtfX5zvxDKfZkpVy0fK/Hw/8eupQx2SNL13X37u35LYGeqwevOXqJerpfRMZg7HUuB97ETHUegRmkg6KqB4G9IW/Xp2IG7U4ROd/pQ0TkMFXtDVGGfqCqB4BmETnGmdX5NG+/eTyAyfaLiMzFvEG8a105mexqa2FsTmJyy+V7PBRnZbO7rTUh/aU7wxzXX2aIkVJFZFeEsgXAx4GFmOWJPziKlRtjB/cBzI/JhU7dUcnaxgZmFMRX+bEeXxG5kLdnfcAsIVVinsu/Bl4BeiOcNxFjwoDP58vCKD+HA5Mwy17f9vl8Xowd0A8GEsDn880G5mNeaCuAU3w+34l+vz/g9/s/4ff7DwfuBb6CWYb7pc/nu89RhoJUO33T3NP9yf9U7hmR5fyRZWM5b+p08lJo1ieUbJeLny+OaN0RNS/VVKHKFCC2UUXTiGhtfv4DvIiZhvyQqp6tqv9U1auBoTy1rgbuFpG1mFmf/8FMoV4mImuADRjPrUh8EbgD2AZsxxg7g7lhZ4rIeuAe4GLV1Jr2SISbeyjT8wtsbJMoGM64FpHJGOPMO0LKljj2Zm+IyBOOgX40nAPco6pdqroTM7aPcrZtqrrDcQy4h/7vi7SmVxV/SxMz4uDpFaQsO5vOvl7qY+D5M1pwbHU+gsmeDoCjcHzVsQc6B2MMvSXC6R28HStmsXPudr/fr8C/MKYMszB2nmt8Pt8ujHKzyufzTQhr68PAcr/f3+r3+1sxz/XwEChfBP6KMW1oAi4Argk5nuvIlJXtcp/55MF9w56uyXW7+e2SY8hzp6biA5DjdnP0mPIRLX/1AY/s3+sO9PV9NHaSpRfRfsO3q+qjoQUikuM8tCOtCUdEVVfz7jXkBiIY5UU4dyXGIC68vBv4ZLQyJIM97W18cFKk2eP4UJGXz8amhoT2maYMZ1z/GmPDUOjUzwJ+C5yjqjUicgFwI/CZKPqvwEzrBwk15N8bVn50pAZE5LPAZwGmTp0aRZepxY7WFkqzsuNqWyEiTPMWsKWliWNyxsWtnzTjfcBmv9//liOJM1sjfr+/zefzvR8I+P3+jRHO3QTMxiwV7wMW+Hy+cr/fX4MxlN7k9/vXAW/9sx0FaGkEb689wBU+n+9/MbY978XcY8HzSjEea6cDH8L8bisQ+jY5F3gZOGl3W2tgJKkhPjZlOoUpYOA8GF6Ph+sWLubR/ZX9GlMNxqMHKnM+OGnKp4qzs2+MqXBpQrTLXj+OUPZqLAUZrfSpsr+jnXEJsvkBmJafT7yzF48ShjSuReSDQLWqvhFS7MMo5csco/3v4dinich3g7ZrwKQQO7bfx+oCkmnIHwvWNtYzPQ6RncOZlOdlc4bZ/fh8vn9gxrPP5/NV+ny+y0IOf5x3LnmBUVZW+Xy+TcC3cLysIvAIcBKAY4PzQ+AFn88XOqM/kFxLfT5fcOb0PsxM/jqMzdEav9//cEj1HwA3+v3+PkyG9xOdun8LqXM8sKw10POJ/1TuHtH66edmz0toLJ+RkOf2cGL5+GGf/1pdDdlu13Rg+I2kMQN+yyIyAfMmmicih/O21X0RZqnAMggHOjoo9GSRE0Wyu1gx3VvA33ZtS1h/6cYIxvXxwNkiciZmqr0I8+DfoKrvilauqjdiZoEQkV2qujisyj7eaVAaasjfX/moYm1jPTPi6OkVpCLPy+YMC/7p9/v79ebx+/2XRCjbxdvxfwbiPuBZn893nd/v7/X7/X8E/jiILNNDPq/E2Njh9/t7iZC4NKTuV0M+d2Lc5t/C5/MdDmzw+/11bYHAh5Yd3DfssBVHjymnOA4pK+JFQVYWn5s9jxdqqoZ1fkCVrS3NnYeWlB1KlLa7o4nBBsrpmOBUk4FfAr9wtq9hjNksg7CnPbH2PgBjc3Jo7+2lzto49MewxrWqfltVJ6vqdMyb8zMYo9HyYKoWEckSkYVRyvEQ8HERyRGRGZjI5a8BrwNzRGSGiGQ7fT009MtMfdY0NiRE+ZnqzbcJTmOE3+/vAK7j7SXaZDIW4/5e5hEp3DECR4/PzvKltK1PJI4oHUNF3vDnIdY1NuRiHC4yjgG/aVX9C/AXEfmoqv47QTKNKna3tTI+wcqPiDAjv4BNzY2cMIJp0dFKLMe1qnaLyHnAzU4Ucw/GZmFDFOduEJF/ARuBAHClqvYCiMhVmGl+N3Cnqg7aXroR6OtjS0sTM/Lnx72vyd58trU2o6pECANmGSJ+v/+JZMsA4Pf7gzMWJ+5qa+3AePsOmQKPhxPGjks51/bBcAEfnjyV323dPGjdSGxqbsxp7uleWpQ1orBIaclgy16fVNW/A9NF5Gvhx1X1l3GTbJSwq62VsQm09wkyxWs8vqzy825iMa5V9TngOefzakzqloHqT++n/K2lsbDyR4FH333G6GFLSzNjc3ITYmNRlJVFlsvFwc4OJo7gTdmSsiza0NQw7DWrhcUldPb1kp1A84RYkO12c9zY8cNWfpyYcLFJHJZmDPbUCaZZjv+89ChlR2sL84uKE97vVG8+GxptpOd+sOM6BVjTWM+sOLq4h2M8vpqt8jMK6ertnbO1tXnYX+yi4lJyXOml+ASZX1Qy7HO3tDST7/bMxNg9plSImHgz2LLXrc7fHyZGnNHH7vZWThoXHtoi/kzLz+epg5GCoVrsuE4NVjXUxTWtRTiTHKPn9ybhfrTEl/bewNwDHcN3cT96zLiEOqXEkjy3m7HZOdR2D93Gs7Gnm86+Ps12uyfzzvAao55ogxz+TESKHGPOp0WkRkRSOrZOKqCq7E1gXq9QJuflU9nRRmdvpACtFrDjOtm82VDH7MKihPU3Oc/LJhv8c7QyfX9H+7BPPrSkNIaiJJauvl4WjUD+qs6OblLDeD2hROsWeJqqNmOCTe3CBLj6RryEGi1Ud3WS43InJW5ElstFRV5+xrn3DhE7rpNEa6CHfe3tTPPmD145RkyxHl+jFheS3xoYfhb3shHmykomWeJi0giWcrv7esEklc0oov1VDtY7C7hXVZusx8Tg7GxtZWJe4md9gkzPL2BjUwOLS8uSJkOKY8d1kljTUM/MgkI8rmGHZRkyk7357GprpVcVt/2eRxWK9mTJ8MeSJ43Hg9slTPPms2CYtqUuxIVVfvrlvyKyGZM/5QsiUg50xk+s0cGutpaEu7mHMtWbz9qmBj6RNAlSHjuuk8Qb9bXMSkBk51By3W5Ksk3S35kJ7tsSXxS6s4apSLtFUN6OdJpuZImLy2f5uHxWNPEp342YVD0Z94YclfKjqteKyM+AJlXtFZE2RmmixViys62F8Ulwcw8yo6CAf+zZmbT+Ux07rpPHa/W1HF2W+HQcwaUvq/yMLkai/PSmVh7sYdHW3UVHz/CW/UrzvI1Zbnd9jEVKeYZijDIPExcl9Jy/xlieUcWO1hYWFifPkG6at4CdrS109famrSdDArDjOsH0qbK2sZ5PTpuV8L4n5XnZ0tLEBxh+RmxLCqJ0Z49gCbWnry9tn5EKjFB/E2D4BlNpSlTKj4j8DZgFrAaC7kOK/ZEYkB2trZw6flLS+s9xu5mU52VTc5O1+4mAHdfJwd/SRFFWNiXZiY8qO8W5HyyjjmHP/AAc7OxgWgLDLsSaXu0b9rkuERcwvARhaUy0Mz9LgQWqo2B+MEH0qlLZkRw391BmFhSyprHeKj+RseM6CbxeV4uvMPGBP8EYPT96YFTmiM1oRGjPHcHMzZsNdWmr/AgQGEFIE5dIHrAnZgKlCdGqyuuBmEQGExG3iLwpIv8d4nlniIhfRLaJyLUh5SIiN4rIFhHZJCJfioWcI2VfexvFWdmM5IaMBTPzC1lVX5tUGVKYmI1rS/S8WlfN3ATG9wllUp6Xyo42umz8q1GF1+3ZMD2/cNgvMa/X19IeCMRSpITRpzrs0MyOd2s3MPyMsGlKtDM/Y4GNIvIa8FYYSVU9exh9fhnYBET99BMRN/B74P1AJfC6iDykqhuBS4ApwDxV7RORccOQKebsaG0ZUbbdWDGnsIjHDlQmW4xUJZbj2hIFqsprdbWcOSE5NjdZLhcTcvPY0dYyorQAltQix+1eu7CopI1hpqxZ39iQtobPgb7hK/KOp9vBdPV0GwnRKj/Xx6IzEZmMialyI/A1p2wJ8EvMoK0FLlHVA2GnHgVsU9Udzjn3YLxyNgJfAD6hahY9VbU6FrKOlB1tLUxIYoyfIBV5Xhp7uqnp7KQ8N3meZynK9ckWINPY3tpClkhSx2JFXj5bW5qt8jO62Di/uHjYhi+bW5rwuNJPBehTpXsEs5huYye1PWYCpRFRLXup6vOYCLhZzufXgVXD6O/XwDeBPgARyQJ+C5ynqkuAO4mQ4RoTejs070glb4fjngVcICIrReQxEZkTqWMR+axTZ2VNTc0wRB8aW1qamZhkex8Alwjziop53S59vYsYjmtLlLxaV82C4pKkyhDM8WUZVayvyMvPyxmm0XN3Xx8PVe4l0Dd8w+FkIEDnMF3cAbLd7k6Bx2MnUfoQbW6vK4D7gFudogrggaF0JCIfBKpV9Y2QYh+wCFgmIquB78GQfVBzgE5VXQrcjlGg3oWq3qaqS1V1aXl5/OOLbG9pZmJu8pe9AOYUFLO8LiUmxFKKWIxry9B4qboq6TMuU7w2x9copKMtENh5yAhyXN25cws9aaT8qCqdgcCIUrFnuz09IvJCzIRKI6JVk68EjgeaAVR1KzBU25rjgbNFZBdwD3AK8ENgg6oudrZDVPU0EZkiIqud7fPAPoxdT5DJThmYWaD7nc//AQ4dolxxYXtbatj8ACwsLuaVWqv8RCAW49oSJb2qLK+vYWGSZ36meM2yl2V0keVyPXtE6dhh6wJbWprZ0dYSS5HiTkdP97DPFQSXSDaw2ufzqc/n+0XwmM/n+7rP57s+BiKmLNEqP12q+tZ/2QkIN6RBpqrfVtXJqjod+DjwDHAhUC4ixzrtZonIQlXdG6IQ/RGzHDFHRGaI+bI+DjzkNP0AcLLz+b3AlqHIFQ8au7vp7u2jNAlxTCIxI7+Q6s5Oqjs7ki1KqjHicW2JnvVNDZRkZSc9ieT43DxquzrT1rvHEpl8j+fRD06aMiLt5Zatm2lLk3HR29c3omW6LLcbNcv8AYzDx0d8Pt/YWMmX6kSr/DwvIt8B8kTk/cC9wMMj7dz54TkP+KmIrMEEmzsuQr0AcBXwBMZT7F+qusE5/BPgoyKyDvhf4PKRyjVStrY0U+H1Bt0Ik45LhEXFJbxYk3FxrAYjLuPaEpkXqw+yKIkRz4O4RajIy2dbq539GWU8PruwUKZ684fdwKMHKtne2pzytj+qSnPXyNIQ5no87QL/dHYDwG3AV8Pr+Xy+6T6f7xmfz7fW5/M97fP5po6o4xQhWuXnWqAGWAd8DngUY58zLFT1OVX9oPN5taq+R1UPU9WFqnp7P+c8qqpzVXWWqt4YUt6oqmc5S2bHquqa4coVK7a2NjM5b/g3YDw4pLiUp6vCnegynpiOa8vAPFd9kEOSvOQVZLLXyxa79DXa6O5T7j5vyvRhT90ocPUby1Pa9kdV6ejpHpGCJkCOx+MWkf8LKf49cJHP5wuPQPpb4C9+v/9Q4G7g5mF3nEJE6+3Vh1le+qKqnqeqt9uouP3jb25kYgq4uYdyeOkYXqo5SHcK39SJxo7rxNHc08PG5sakGzsHMWlfGpMthiXG5Hs8t104bWbXSObc97S38bPN61J2+atPldbu4dv6AOR4slB4EfPyB4Df72/GpPYJDxR8LBBUkv4GnDCizlOEAZUfJ3ry9SJSC/gBv4jUiMgPEiNeeuJvSb2Zn5LsbCq8+bxqDZ/tuE4CL9dUMa+wOGWSR07x5lt399HJ6myXu+aoMSPz6P3Lzm1sa2lOuUjgqkpTDGw387Kyml0iv49w6NfAZUBq/YDFgcFmfr6K8YY5UlXLVLUMOBo4XkTetTZoMWxtaWbKCNad48WRZWN5aF/GpXCJhB3XCebpqgOMxA051kzJsx5foxT1ut2/v3DqjBFpCApcsuJFqrs6UmYJLGjnM1J7JLfLhcfEQ3o0/Jjf768H/oVRgIK8gnEyArgIM2OU9gym/HwKuFBVdwYLnCjLnwQ+HU/B0pX6ri66+nopSxFPr1COGVPOsoP76UjR6dwEYsd1AulT5dnqAxxROibZorzFmJwcWgM9NI1w+cCSenhcrr+dNrFixEmlG3u6+ehLz1Lb1Zl0BUhVaenqoisGz+6C7Ox2jHNQf4P/F5jUP0GuBi71+XxrMc/OL49YiBRgsPQWWar6rtDAqlrjRGe2hOFvaWK6tyBlPL1CKcvOYXZhIY8f3MeHJ09LtjjJxI7rBLK2sYF8j4fxKRDxPIhLhKneAra0NHPkmIzx7s0UqlD+8PV5i678+urXR5RHpaark7NfeIp/HX8yk/K8SVm2NYpPJ50xUHzcLhfZbk+vhC15+f3+gpDPVYA3ZH83Ji7fqGKwmZ+BXovsK1MENjc3MTkFl7yCvLd8An/flZGpXEKx4zqBPHlwH0eUliVbjHcxOc+Lv8Xa/YxG8jyeH585aXJgdkHhiNuq7e7inBef4qmq/QmNDaWq9KnS2NkRE8UHoDA7pw24AUivaI5xYDDl5zARaY6wtQCHJELAdGN9UwOTvakR2TkSS0rHsKetlY1NjckWJZkMa1w7kcefFZGNIrJBREY8/SsiF4vIVme7OKR8iYisE5FtInKzpOJUYpQ8eXAfS0pTb3Zlkk1zMZppdItc97+HLW2LRWMtgQBXvbGcL61aTmN3d9wNoTsCAV5y4rL19cXGATXL7SbL7W4Xkd/GpME0Z0DlR1XdqloUYStUVbs8EIGNzY1M8xYMXjFJeFwuTp0wiT/tSHog7KQxgnEdAK5R1QXAMcCVIrIgmj5F5DkRmR5WVgZchzG2Pgq4TkSCVsG3AFcAc5ztjKFcY6qwvbWFxu5uZsXgDTzWTPXm47ceX6OWbJf75nmFxQc+NGnK4JWj5OmqA5z0zKMsO7iPzt7emCtBrT09VHd2cMXrL/PpFS/yYOVuLc7NHbH2I0BxTm67iHwaE8054xnM5scyBHr6+tjV2pqSnl6hnDpuItesfp3qzg7GpZAdRqqjqgeAA87nFhHZBFSISBcmQFg50A5coaqbo2jydGCZqtYDiMgy4AwReQ4oUtXlTvlfgXOBx2J7RfHn8QOVLCkbgysFJ66mePPZ0tKMqqakjZ5lxAQKsrI+fcMhRzz1Qs1Bb9MIsp+H0tTTw9WrVjA5z8unZ8zmwmkzQaEga3jzAd29vfQB6xrruXW7n2erDhA0r/7a6tflPeMm9BZk59Da3TVsg6OCnNxORO4jQgZ3n8+XC7yASRLuAe7z+/3XOcfuBpYCPcBrwOf8fv+7/pE+n+9w4Cq/33+Zz+ebB/wZOAL4rt/vvymk3i7MklsvEPD7/UsjtHUR8C2MztYCfMHv96/x+XzlmPydJcD3/H7/A079B506+539m4BH/X7/MwP9T6KN8GyJgu2tLYzNySE3RWKZ9EdhVhbHjx2X0bM/I8WZxTkcWIEJC3+1qi4Bvg78IcpmKoC9IfuVTlmF8zm8PJIcnxWRlSKysqamJlKVpPLI/r0cWZZ6S14AxVnZuEWo6hxZmgBLSvNqlsv1p9uPPL7NHWMFt7Kjnf/ZuJYlTzzE99etYkVtDc093XT29tLS09OvS3p7oIeWnh56+vrY0drC33dt54znnuBjrzzH0yGKT5DzX37WnZPlcWcN83cl2+0m1+Npdolc1U+VLuAUv99/GLAYOMPn8x3jHLsbmIcxB8ij//RR3+HtyM/1mECJN/VT92S/3784kuLjsBN4r9/vPwT4Eeb5CiYX6B8xs+RfAfD5fB8C3gwqPg6/xUTvHxA78xNDNjQ1MD0/dZe8Qjlz4mS+t34VV86ZT1FW6rnlpzIiUgD8G3MD9mHy0d0bMnuQ49S7lLfdQmcDj4pIN7BTVT8cC1lU9Tach8PSpUtTKjr1rrZWDnZ2sCBFojpHYlp+AZubG5mQYhHZLbEj3+P52vyiksXXLVx81A/WvxnzrLrdfX08sG8PDzgx1Mbl5HJISSmHlpQxMTcPr8eDR1y09wZocSKdr2tsYGtLEz1RBJTf2dbKTZvW8415i6hrbxtS5mWXCEW5eR0i8nH6MXL2+/0KtDq7Wc6mzrG3YgH5fL7XgMnh5/t8vkLgUL/fv8Y5pxqo9vl8Zw1B1FB5XgnZXR7SZw/GCy0H6PX5fB7MM/hDYefv9vl8Y3w+3wS/33+wv36s8hND1jU2MDWF7X1CKc/N5fCSMfx15zaumhuV2YoFcFzh/w3crar3i0gR0Kiqi8PrquqfMdO/OEtZl6jqrpAq+4CTQvYnA8855ZPDyvfF6hoSxUP79nBUWXlKLnkFmZznZXNLEyeNn5hsUSzxI1CQlXX2R6ZMW7uxubHinj0747riUd3VydNVB2KaS/GP2/18qGJq76z8fJo6O6OaAhKgNM/bLvB94NmB6vp8PjfwBuYl7fd+v39F2PEs+o/xsxRYH41MGKXqSZ/Pp8Ctfr//tkHqX8bby/3/52yfxSyLfRH4m9/vb49w3ipMINt/99ewXfaKIWub6plRkB7KD8BZkybz553b6EyxEO6piuNx9Sdgk6r+EkBVm4GdInJ+sI6IHBZlk08Ap4lIqWPofBrwhGNb1Cwixzh9fhp4MNbXE09Ulf9U7ua4sSNLMxBvpnjzM93zMVNozPdknfr9hYvbjkrRZdjB+Ngrz7pFXK5cT1ZUkz/Fed52EfmbiPxysLp+v7/X7/cvxrxoHeXz+RaFVfkD8ILf748U3XkiITnCBuEEv99/BPAB4Eqfz/ee/ir6fL6TMcrPtxwZm/x+/1nOctkqzIzPfT6f73afz3efz+c7NuT0amDSQIJY5SdG9KqyubkpbZa9wDz4Z+YXct/enYNXtoB5k/gUcIqIrHa2MzEh3y8TkTXABuCcaBpzDJ1/BLzubDcEjZ8xbzV3ANuA7aSZsfP6pka6enuZU1CUbFEGZKo3n43W3T1T2Or1eD56+1HHd0xNcaeUSLQFAly58lUpyMmRweyXinJyOz0u1ysukSuH0off72/EzBK95V3q8/muwzhzfK2f0zqAqIJJ+v3+fc7faozx8lGR6vl8vkMxz79z/H5/XYQq3wduxNgBvQRcDFwfcjzXkatfrPITI7a1NFOWnUOBJ70iAJw1aTK3bvPTa5OZD4qqvqSqoqqHqupiZ3tUVXeq6hmqepiqLlDVGyKce1LYklew/E5Vne1sfw4pX6mqi1R1lqpelW7Z5u/du5Pjy8envBdVhTefve1tKZfA0hI3luW43F994MRTO3yFqa2YR+Kp6gM8tr9Si3Lz+s23UZSb25Ht8WxwiZyL8aoaEJ/PV+7z+Uqcz3nA+4HNzv7lGK/UC/1+f399bsIslw3WT75jH4TP58vHzHS/a7nM5/NNBe4HPuX3+9/llePz+eYAk/1+/3MYG6A+zHJaqOHe3Ehth5Iw5WekAeIGCvomIleLyGan3Z/FXvrBWdNYz8wUjGUyGL7CIvI9WTx5IO1MSiwpSldvLw/t28OJY8clW5RByXa5mJibx7ZWm+Q0U8hxu28tzsq+9L7jT+lYWpY6+eai5apVy6WtN0B+dvY7lBEBSvLy2rPdnhdcIicC0QZ4nAg86+Tueh1Y5vf7/+sc+yMwHnjV5/Ot9vl8Pwg/2e/3bwaKQxSbCT6frxIzU/Q9n89X6fP5ipx2XvL5fGswbvOP+P3+x51zPu/z+T7vNPkDYAzwB6fPlWFd3gh81/n8D+ALjty/cdrKwihj4ee9A0nUC6WITAQmquoqESnEGFedq6obozz/NYz73ApMNtqbVfUxETkZ8484S1W7RGScqlYP1NbSpUt15coB/y9D5to1K8l1uThj4ruM4VOe1+pqeKrqAA+eeGoy3tRTe2ogjYjHuB4OD1bu4c87t3Lt/PQIAn/Lts18cNIUzp86I5bN2nGd+pzWHgjc//11q7z3V+5Oq+9rbkERj510Gk0dHfT09SIilObmtblcrn+7RC7DBGRNGD6f76tAi9/vvyOR/fYjy4eBI/x+//cHqpewmR9VPaCqq5zPLZipsgoRmSUij4vIGyLyoojMCz/XUZyKVHW5M/0fDPoGRuv7iap2OW0PqPjEizcb6pid4vYN/bG0bCx13V28Xv+uXJ8Wy5D5y65tnDxuQrLFiJop3nzWNTUkWwxL4nnS6/EcfcMhRxz83oLDutPJBmRLazO/8W+gKDeXbLebMd78drfLdbNL5BISrPg43ELqRI72YDLTD0hSvu9hBIgbKOjbXOBEEVkhIs+LyJFxE7wfWnp62NPWllbGzqG4RDhjQgV/3BZNUGKLpX82NjVS2d7G0jTyqJmeX8B6q/xkKhvyPZ5DPjZ1xuuPnXRa2yHFpYOfkSLcsm0zzYGevuLcvG6XyEdF5DswpDBAMcPv93f6/f6/JaPvcPx+/72O4faAJFz5GSBA3GrgVsz641DwAGWYXEvfAP4VKQlkPCPhBu19PK50end4J+8pH8+bDfVsb7G2D5bhc/t2P6eOn0iso+nGk+n5BWxubrJG/5lLXWFW1omzC4qu/OdxJzXfeOiSrsIUd1xZWFzCkyef0eYR1zMiMpMIaSssA5PQX+vwAHFO/40hnjOLVXW+iLhDXIlvYOCgb5XA/Wp4DaNQveu1U1VvU9Wlqrq0vDy2sUder6thThp6DoSS43bzvgmTuGWbP9miWNKUAx3tPF11gFPHpVfAwAJPFiVZ2exsjRgA15IZqEvkL3kez4yzK6bc89L7zuw4t2JqymnDM/ML+PURR3fce/zJrVO9+Z8vzMo6jTQMgJoKJNLbK+oAcaraG6IM/WCQoG8PACc7588FsoGEGq8sr6thbporPwCnjZ/Ekwf3caAjUsBMi2Vg/rhtM+8tnzDsBI/JZEZBIWsb7dKXhfoCT9YlRVnZJ//okCO2PnDCqa3vKR+fdOv1eYXF/HHpce3/fe/7W8+YUPHTPLdnikvk7yRpmWs0kMiZn5EGiOsv6NudwEwRWQ/cA1ycyJgo3X19rGtqwFdYnKgu40ZhVhbvLZ9gbX8sQ+ZgRwf/qdzDmZMi5l9NeWbkF7C6MVIsNUuGsqIgK2vhYaVlV/12ybHbXnrfWa2fmj5LixKs2B9WUspdR5/Ydv8JpzSdPH7iD/Pcnok5bvcPgcaECjIKSVhuL1V9if7dP8/opzz0/JVAeMhtVLUb+OTIpBs+axrqmZTnJd8zOtKknTmpgm+teYMr58xnXK5N9miJjt9s2cBJ4yZQmh3zvJEJYVZBIf+p3JNsMSypRQD4S1FW1l+LsrJOvGbeom99d8Fhp75YUxX4554d+cvramgNxNaxSoBFxaWcOWlyzzkVU7uKsrI7clyuH3tcrtsZJGKxZWiMjl/sJPJKbVVKZ60eKqXZOZxYPp7fbd3EDYcckWxxLGnA1pZmHjtQyc8PS7ijZcyYkV/I1pZmunp7yXFHlTfSkjko8EJxVvYLQOn7Jkz62NKysZ/P93gWHuzs6HitribrtbqavDcb6tnW2jykdaix2TlUeL3MLyrh5PETW48bM86jUJ/lcv0j1+3+JyZQn13aigNW+RkhL9RU8f5RlhH6Q5Om8K01K/nsLB+T0zAHjiVxqCrXr3uTsyumUpiGtj5Bct1uJnu9rGtqSCs3fUvCaQBuLcnOvhXImuLNP3SKN/+Y942fdKpL5Ngsl6tsX3tbR113F3VdXe6Gni5PZ2+vu6evzxVQlYo8b8e0/ILApDyva0x2jjegfR2dvX0HRVhfnJX9EPA0YKcgE4BVfkZAa6CHTc2NfGnO/GSLElNKsrN5/4RJ/HTTOn675Jhki2NJYR7ZX8m+jna+MNuXbFFGzOyCIlbW1VrlxxItPZhMBW8UZ2f/3ikbO6uwaNYsk55hLFACZGEccdzAQYxysxvY68HVnmsnGpOCVX5GwCs11fgKi0flNPkHJ03h66tf582GOg4vTb/8N5b4U9vVyfXr3+TLcxekdYyrIL6iYpbX1fD5Oe8KMm+xREstCfY2tgyP9H9iJZGnqvZzSEn6RAQdCrluNxdMncF3175hg79Z3oWq8o3Vr3NC+bi0j3EVZF5hMasaau14t1gyAKv8DJM+VZ6pOsCSUTwrcsLYcbhEuGvH1mSLYkkx/rhtM/s72jlv8vRkixIzSrKzKcvOsakuLJYMwCo/w2RVQx2FWVmMH8Xu4CLCZTPm8NutG9nd1ppscSwpwuMHKvnTjq18ac78UbHcFcrC4lJerD6YbDEsFkucGV1PrgTy3317M8IwcmKel7MrpvLVN1cQ6OtLtjiWJPNs1QG+veYNrvEtZExObrLFiTmHlpTydNWBZIthsVjijFV+hkGgr4//7t/LsWNimyMsVTljQgWBPuXmLRuTLYolidy3ZyfXvPkaX/MtZEZBYbLFiQvzi0rY2tpMXVdXskWxWCxxxCo/w+DFmirG5uQyKc+bbFESgkuEL8z28X+7d/CCXRLIOLr7+rhu3Sp+4d/AdxYcOmoMnCOR7XJxWEkZTx60uSItltGMVX6Gwd93befE8vHJFiOhlGbncOWceXzlzRU2+3UGsbO1hQ+/+DSbm5v40SGHZ0TQy6PLxvJA5e5ki2GxWOKIVX6GyJ62VlY21HL82HHJFiXhzC8q4aOTp3PJihept8sCo56H9u3hIy89w1FlY/nK3AUUeNI3gvNQOLx0DP6WJva2tyVbFIvFEies8jNE/rhtM6eMm0juKAxsGA2njp/I4aVjuGTFi7QGepItjiUO9PT18b21b/DTTev41vxDOH1iBSL95SQefWS5XJwwdjx/27kt2aJYLJY4YZWfIbC7rZVHDlTygYmTky1KUrlgynQm5OZxyXKrAI026ru6uOjV59nc3MQNiw5nen5BskVKCqdPqOCfe3fS1N2dbFEsFkscsMpPlKgqP1i3irMmTqYojRM4xgIR4ZIZsynNzuETrzxvl8BGCZubmzj7xaeYlOfla76F5HsyN/tNeW4uR5aNtR6OFssoxSo/UfK3XdupbG/jzAyf9QniEuEzM2Yzq6CQc158Cn9zU7JFsoyAh/ft4eOvPMe5FdP4+NQZuDJomas/zp8ynfsrd7Oqvi7ZolgslhgTV+VHRM4QEb+IbBORa2PQ3redtvwicnq8+gnnsf2V/HrLBq6eMzoSOMYKEeGCqTM4u2IqF7zyHH/ZsXXU50UaLWM6SGN3N9e8+Ro/2bSOb81fxAnlmWfI3x/FWdlcNnMOX1j5ivVwtFhGGXH7JRcRN/B74APAAuBCEVkQ5bm7IpQtAD4OLATOAP4gIu6R9DMYzT3d3LhhDd9ft4pv+BYxIW/0prIYCSeWj+cHCw/jX3t3ceZzT/Lwvj109fYmW6yYMxrGdJD6ri7+sHUTpzzzGG2BADcecgQz8kdn4MKRsLRsLOdWTOOjLz/Dg5V7Rr1yb7FkCvFc1D8K2KaqOwBE5B7gHBHJA34JFAC1wCWqGk08+XOAe1S1C9gpItucPojUDzCkxfpnqw6wsbmRhu5u9nW0sbqhnoOdHUzPL+DymXNQYId9+xuQT0ybyaqGOr695g2+tGoF43JyWVBcwuS8fMpycvC6PRwztpzDSsqSLepwSasx3dnbywOVu2ns6aY1EKC2q5Ndba2saayns7eXKd58Pj5tBpPz8tnf0T6UpjOKafn5nDNpKtesfo2vvLmChUUlzCsqZnxuHoVZWeS5PZxbMZXi7Oxki2qxWKIknspPBbA3ZL8SOAb4LXCOqtaIyAXAjcBnomxveVh7Fc7n8H6ODj9ZRD4LfNbZbRURf8jhsdkzZ0zBJe+YCdNAb8++vr7Ay1EIl670tbZ6XAUFgZg37HZ59rvdWavD++vobArs2x/qQ/y4qp4R8/7jQ0qNaRh4XIs3ryBr0kRfpPO0J9C1T7VveaSDcSRu4y3G9CenZHly94vIsrDyz1TX7OhrbglNB59O49piyTgS7c7hAxYBy5y4IW7gAICIfBc436k3SURWO59fVtUrR9qxqt4G3BbpmIis7Nq+Y/pI+0hHRGRloK5+abLlSGOSNqZh4HGdiqTLeEsXOS0Wy/CIp/KzD5gSsj8ZeB7IV9Vjwyur6o2YN2ZEZJeqLo6ivWACnv7KLZZYYse0xWKxjALi6br0OjBHRGaISDbGsPMhoFxEjgUQkSwRWRhlew8BHxeRHBGZAcwBXhugH4sl1tgxbbFYLKOAuM38qGpARK4CnsAsBdypqmtE5DzgZhEpdvr/NbAhivY2iMi/MEafAeBKVe0FiNDPoO2FkTbLBnEgk699SKTZmE5V0mW8pYucFotlGIha102LxWKxWCwZhI3YZ7FYLBaLJaOwyo/FYrFYLJaMIqOVn0SlEIgHIjJFRJ4VkY0iskFEvuyUl4nIMhHZ6vwtdcpFRG52rnWtiBwR0tbFTv2tInJxSPkSEVnnnHOzOL7c/fVhscDg95WIfM0Zt2tF5GkRmZYMOR1ZonoGiMhHRURFxLq/WyyjgIxVfhKRQiDOBIBrVHUBJtDelY781wJPq+oc4GlnH8x1znG2zwK3gFFkgOswQfSOAq4LUWZuAa4IOS8YtK2/PiwZTpT31ZvAUlU9FLgP+FlipTRE+wwQkULgy8CKxEposVjiRcYqP4SkKlDVbiCYQiAtUNUDqrrK+dwCbMJEBz4H+ItT7S/Auc7nc4C/qmE5UCIiE4HTgWWqWq+qDcAy4AznWJGqLldjFf/XsLYi9WGxDHpfqeqzqhrMp7EcE8coGUT7DPgR8FOgM5HCWSyW+JHJyk+kVAUV/dRNaURkOnA45s10fEheqYPAeOdzf9c7UHllhHIG6MNiGep9dRnwWFwl6p9BZXWWh6eo6iOJFMxiscSXRKe3sMQYESkA/g18RVWbHbMcAFRVRSSusQwS0YdldCIinwSWAu9NtiyREBEXJmHtJUkWxWKxxJhMnvkZKLVAWiAiWRjF525Vvd8prnKWrHD+Vjvl/V3vQOWTI5QP1IfFEtV9JSLvA74LnO1ktU8Gg8n6/+3de4ycVR3G8e8jllAotPZiSqGXYJEoNakakHhB0UihVjQmXiq0yCVIIBISTRAEkULBK1BCQCKmkFbkGmtpSGk0aUUJ0XoLaKtgaamWQqFd2tIKSB//OGd1uuxst2G3O8s8n2SSmfd9z5nfmz3vzm/OOe+cgynrti2XtJYyt25xJj1HDH7tnPwM6iUE6p1XPwZW2b62YddioPOOrdOBnzdsn13v+joOeKEOXT0InCjpLXWi84nAg3XfVknH1fea3aWu7t4jYo/XlaR3A7dQEp+BTJx7jNX2C7ZH255kexJlftIptlcOTLgR0VfadtiryVIFg2kJgQ8As4BH9f/Vwi8Bvg3cLeksYB3wubrvAWA68ASwAzgDwPZmSVdSPggA5tjeXJ+fB9wGDKXMy+icm9HsPaLNNbuuJM0BVtpeDHwPGAbcU4dpn7J9SovGGhFvQFneIiIiItpKOw97RURERBtK8hMRERFtJclPREREtJUkPxEREdFWkvxEREREW0ny04IkbZd0xOus41uSFvZVTBF9TdKHJP2tBeK4RNKtfVCPJU3ui5gion8l+RlAktZK2lmTnWck3SZpmO1httcMdHwxuNR21PnY1dC2tks6daDj68r2Q7aP6s2xkj4i6Z97PnK3MjMl3dGLOK62ffbe1B0Rg1uSn4H3SdvDgPdQ1jm6dIDjiUGqJs3Dant6itq26uMnncdJGvAfN91HMXyC8uOeERG7SfLTImz/i/ILylM6u88l7S/pT5K+AiBpP0m/kfTN+nqcpPskbZL0pKQLuqtb0gGSFkp6XlKHpN9JykrsbaKz10TSRZI2AvPrciZLatvZUp8f3lBmuaQra3vbJmmZpNF1X9P2JGmkpPmSNtR6F/UQw269ObUn9GJJf61l59f3OohybYxr6MkaJ+lYSSslba09p9c21PUm4OPAUkmT6jV1To3raUlfazj2f0PEkj5fr6VD6uuTJW2UNKa+PlPSqhrfg5Im9tOfLSL6UZKfFiFpPGX5iT92brP9MnAaMEfSO4CvU36Gf279534/8GfgMOBjwIWSpnVT/enAcMoijqOAc4Gd/Xc20YLGAiOBicA5lGt/fn09gdIebuxS5ouUZVDeCuwPdCYMPbWnBcCBwNG13HU9xNCdU4FpwNuAtwOX2n4ROBnY0NCTtQGYB8yzfUg9/u6Geo4F1th+rmHbCcCRlPXrLlJZXHU3tu8CHgZukDSKsn7e2bY3SfoUZQmZzwBjgIeAnzY5j4hoYUl+Bt4iSR3Ar4EVwNWNO20/BlwFLKJ8+Myy/SpwDDDG9hzbL9c5Qj+iLM7Y1SuUD6nJtl+1/XvbW/vrhKIl7QIut/2S7Z22n7d9n+0dtrcBc4EPdykz3/bfbe+kJBZT6/Zu25OkQylJyrm2t9h+xfaKZjE0ifNG2+vr+nJzgZk9nNMrwGRJo21vt/1Iw77uhryusP2i7UcpiV+zus8HPgosB+63vaRuPxe4xvYq2/+hXKtT0/sTMfgk+Rl4n7Y9wvZE2+c1+VC4nfJt+QHbj9dtEynDAB2dD8q30u6GsxZQFm+8s3b7f1fSkH44l2hdm2z/u/OFpAMl3SJpnaStwK+AEZL2ayizseH5DspipNC8PY0HNtve0psYmljf8HwdMK6HY8+i9A6trkNvMxr2Tee1yU+v6rbdAdwDTAF+0LBrIjCv4XrbDIjS8xoRg0iSn8HhJmAJME3SB+u29cCTNXHqfBxse3rXwvUb+BW23wm8H5gBzN5n0Ucr6LqC8VeBo4D31WGj4+t27bGi5u1pPTBS0ohextCd8Q3PJwAbmpW1/bjtmZThte8A90o6SNJY4FDgD72sezeSpgJnUoa0bmjYtR74cpdrbqjth3txXhHRQpL8tDhJs4D3Al8CLgBulzQM+C2wrU4gHVonQ0+RdEw3dZwg6V31W/1WynDBrn13FtGCDqbM0+mQNBK4vLcFm7Un209TJibfVCdUD5F0fI+Vvdb5kg6vMX0DuKtufwYYJWl4QxynSRpjexfQUTfvogy9LbXdNWG6rPZ4HU2Zy3RXl/1IOgBYSOlFPQM4TNJ5dfcPgYtreSQNl/TZvTy/iGgBSX5amKQJwPXA7Dqn4Q5gJXBdnfczgzIP40ngOeBWykTUrsYC91I+qFZR5hYt6O/4o6VdDwyltJtHgKV7Uban9jSLkgytBp4FLtzLuO4AlgFrgH9Q5rthezWlJ2ZNHXYaB5wE/EXSdsrk5y/UYeNmt7ivAJ4Afgl83/aybo65Blhv+2bbL1FuOLhK0pG2f0bpYbqzDhU+Rkm0ImKQ0Wu/HEVE7HuS1lLurPrF66jjzZS5Skd0TuqXNInyBWFInagcEW0uPT8R8UYyErgsdzNGRE8G/JdeIyL6iu1ngZsHOo6IaG0Z9oqIiIi2kmGviIiIaCtJfiIiIqKtJPmJiIiItpLkJyIiItpKkp+IiIhoK/8FwAMRpUopk1IAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "bento.pl.qc_metrics(adata)" - ] - }, - { - "cell_type": "markdown", - "id": "f76404e6-b5ca-4db8-bcd4-e70fe95dbf72", - "metadata": {}, - "source": [ - "Filter out cells without a nucleus." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "ad9d33a7-bb47-4876-ba9b-f87fd9580c62", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:01:30.137994Z", - "iopub.status.busy": "2022-06-06T01:01:30.137308Z", - "iopub.status.idle": "2022-06-06T01:01:33.980625Z", - "shell.execute_reply": "2022-06-06T01:01:33.978693Z", - "shell.execute_reply.started": "2022-06-06T01:01:30.137947Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Trying to set attribute `.uns` of view, copying.\n" - ] - } - ], - "source": [ - "adata = adata[adata.obs[\"nucleus_shape\"] != None]\n", - "bento.pp.set_points(adata)" - ] - }, - { - "cell_type": "markdown", - "id": "5d4a6f1d-268a-4989-994e-59f2f96e9ac9", - "metadata": {}, - "source": [ - "We will also filter genes and only include genes for which at least 10 molecules are detected in at least one cell. This helps reduce data sparsity for our downstream analysis, resulting in 3726 genes." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "6f84716f-2882-48dc-8a1a-a5171f001e21", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:01:33.993513Z", - "iopub.status.busy": "2022-06-06T01:01:33.990148Z", - "iopub.status.idle": "2022-06-06T01:01:37.566376Z", - "shell.execute_reply": "2022-06-06T01:01:37.564653Z", - "shell.execute_reply.started": "2022-06-06T01:01:33.993450Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Trying to set attribute `.uns` of view, copying.\n" - ] - } - ], - "source": [ - "valid_genes = adata.var_names[(adata.to_df() >= 10).sum() >= 1]\n", - "\n", - "adata = adata[:,valid_genes]\n", - "bento.pp.set_points(adata)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "37bddf56-1316-4f37-9327-c1dc673ef15c", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:01:37.570837Z", - "iopub.status.busy": "2022-06-06T01:01:37.569611Z", - "iopub.status.idle": "2022-06-06T01:01:37.587053Z", - "shell.execute_reply": "2022-06-06T01:01:37.583488Z", - "shell.execute_reply.started": "2022-06-06T01:01:37.570744Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "AnnData object with n_obs × n_vars = 179 × 3726\n", - " obs: 'cell_shape', 'nucleus_shape', 'batch', 'n_genes_by_counts', 'log1p_n_genes_by_counts', 'total_counts', 'log1p_total_counts', 'cell_area', 'cell_density'\n", - " var: 'n_cells_by_counts', 'mean_counts', 'log1p_mean_counts', 'pct_dropout_by_counts', 'total_counts', 'log1p_total_counts'\n", - " uns: 'points'\n", - " layers: 'spliced', 'unspliced'" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "adata" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "a095ba78-6e2e-4b78-b61f-479166486cfe", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:01:37.591776Z", - "iopub.status.busy": "2022-06-06T01:01:37.590793Z", - "iopub.status.idle": "2022-06-06T01:01:41.390259Z", - "shell.execute_reply": "2022-06-06T01:01:41.388768Z", - "shell.execute_reply.started": "2022-06-06T01:01:37.591683Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(4531290, 6)" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "bento.pp.get_points(adata).shape" - ] - }, - { - "cell_type": "markdown", - "id": "eb74caf0-e8e1-46c9-8eef-6f8ee54d5822", - "metadata": {}, - "source": [ - "## Subcellular Localization Patterns\n", - "\n", - "Now that we have a sense of our data, we will apply a pattern classifier to predict and annotate subcellular localization patterns for our dataset. A single \"sample\" refers to the set of points corresponding for a given gene in a single cell.\n", - "\n", - "\"Bento" - ] - }, - { - "cell_type": "markdown", - "id": "253130de-3dfd-41dd-8d34-d259c87dfeb1", - "metadata": { - "jp-MarkdownHeadingCollapsed": true, - "tags": [] - }, - "source": [ - "### Calculate spatial features\n", - "\n", - "These features are used by the classifier to predict patterns for each sample. The entire dataset takes ~8 hours to process, therefore we have provided precomputed features to proceed with the analysis.\n", - "\n", - "
\n", - "\n", - "Note\n", - "\n", - "Why does it take so long? Unlike single-cell analysis which uses expression counts, we are computing spatial relationships considering every molecule! In this dataset there are >4 million molecules and multiple high-resolution polygons for every cell.\n", - "\n", - "
\n", - "\n", - "For the curious, check out the [\"How it Works\"](../howitworks.md#spatial-features) page.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "bcada814-0a1a-45f4-8181-d27bd7ac0250", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:01:41.394472Z", - "iopub.status.busy": "2022-06-06T01:01:41.393417Z", - "iopub.status.idle": "2022-06-06T01:01:47.241203Z", - "shell.execute_reply": "2022-06-06T01:01:47.236349Z", - "shell.execute_reply.started": "2022-06-06T01:01:41.394418Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "# Load dataset with precomputed features\n", - "adata = bento.datasets.load_dataset('seqfish')" - ] - }, - { - "cell_type": "markdown", - "id": "ea9bb270-e8dd-49ca-bd13-586b69dc4a0a", - "metadata": {}, - "source": [ - "### Predict Subcellular Patterns\n", - "\n", - "Predict the subcellular pattern for every sample (by default, only samples with count >= 5). The five subcellular patterns we can predict are:\n", - "\n", - "- **cell edge**: near the cell membrane\n", - "- **cytoplasmic**: mostly outside the nucleus in the cytoplasm\n", - "- **nuclear**: most in the nucleus\n", - "- **nuclear edge**: near the nuclear membrane, either\n", - "- **none**: none of the above patterns, more or less randomly distributed\n", - "\n", - "\"Subcellular" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "58cfd10c-79ab-4833-a87f-c2cfacd17037", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:01:47.247716Z", - "iopub.status.busy": "2022-06-06T01:01:47.246627Z", - "iopub.status.idle": "2022-06-06T01:02:40.560059Z", - "shell.execute_reply": "2022-06-06T01:02:40.559284Z", - "shell.execute_reply.started": "2022-06-06T01:01:47.247648Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "a1264b86e60843e780fce6cdd0360286", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/5 [00:00" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "bento.pl.lp_dist(adata, percentage=True)" - ] - }, - { - "cell_type": "markdown", - "id": "41173cd8-659a-4996-bdc1-01b24c2e0076", - "metadata": {}, - "source": [ - "We can also visualize the localization of each gene where the point position denotes the balance between subcellular localization pattern frequencies. The color denotes the gene's most frequent pattern. Interestingly, we see a wide range of variability in localization. A large number of genes are pulled towards none while nuclear enriched genes show strong bias and a high fraction of cells." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "70913097-2e28-41fd-a76f-958007d8b532", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:02:44.095899Z", - "iopub.status.busy": "2022-06-06T01:02:44.095615Z", - "iopub.status.idle": "2022-06-06T01:02:46.705628Z", - "shell.execute_reply": "2022-06-06T01:02:46.704678Z", - "shell.execute_reply.started": "2022-06-06T01:02:44.095872Z" - }, - "tags": [ - "nbsphinx-thumbnail" - ] - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "No handles with labels found to put in legend.\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeUAAAFUCAYAAAAapiSyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADfuUlEQVR4nOy9d3gc53Xv/zmzHW0BEATBJpJqJFWh3mxLdHfkFttxiWPHKY7t1OskN1HuLwlfJTeJkpvESZzYju0kLnGViyRbdlwkSJZkdQuqIEWJBDtIgAAWdeuc3x9nhruE2Ek0cj7Pgwdbprw7OzvfOec9RVSViIiIiIiIiNnHm+0BRERERERERBiRKEdERERERMwRIlGOiIiIiIiYI0SiHBERERERMUeIRDkiIiIiImKOEIlyRERERETEHCES5YiIiIiIiDlCJMoRERERERFzhEiUIyIiIiIi5giRKEdERERERMwRIlGOiIiIiIiYI0SiHBERERERMUeIRDkiIiIiImKOEIlyRERERETEHCES5YiIOYyIvFVE2o9jvcdO8jj+/WRuLyIi4uBEohwRMbd5K3DMonyyUdUPzfYYIiJOByJRjoiYJcT4NxG5T0S6ROTZmve+JCKrgdcD/yUifyciTSJyh4jcKyJfFZGkiNwgIj8Uke+IyKMicuGUfbwmWP5REbkpeO0tIvJIsM+PBK/1iMjnReRpEXm/iHwzeHxd8P5jwf+FIvLdYJtfmqljFRFxuhCf7QFERBwKEREghp2ncSAR/K8A5do/VfVna5wnwJsAX1VfDiAi/yIiVwLPAR2qulFE/gf4e1V9RkT+EPieqn5KRP4MeDewDagDXgesAf4WeHPNPh5Q1etFxAMeFpF/Bt4BfEBVnwteB+gAfgtYAtwDnAmsBv4AeKBme38C/JeqfrNm3YiIiJNEJMoRM4aIxICF2IV/cc3/xVNeW4AJcIyXCnAFEKpCHQcSIqJACRgHdtf87TrYf1WdmPYPfGTWAvfWPP888MvAo8C3D7L82cBngsePAtdhovyEqirQIyKLp6xzmYisx47nSswV/pfAH4pIBvg34CFgs6qOicguYJOq5kVkJ9BykDH/NcA8vRGKiJjTRKIccdIILNslwGXAxcAyDhTedmCQA0VyN/A08MOa1wYwgS0HYnM0+/Ww87mBlwr+mZiA7Rd+ESnwUsF+HngMeFZViyd0MI6OHuDVwDeC508A/w84B3hf8FoJuzkBeAG4EngcuALYFLzeGRyDc7HPUcsfAR8GNgM/w25otqvqb4jIEuC/gVcCtce59rEcZMyvAL4lIl4kzBERJ5dIlCOOiykCfBlwefA/honGE0A38D2qwrdHVUsneyyBcFeCvwKwD3jmCGNv5kDxXgq8DPg9YJWIPBd8jvDvmWkQ6u8ArxeR+zHxfSfwfeAVqjoQLPN94J9E5MfAvwJfEpF3A3swV/W1QC7Y1iLg16bs45uY1f00MBq8tl5ErgGSwMePccx/A3xORH4P2AG89xjXj4iIOAxyFIZIxGnOFAEOxbdWgB+jKl7bj8a6ncuISD3QSfVzXoZZ288yzUItIn8AbFXVbxxxYVv+BuCNqvqHJ3McERERs0MkyhEvIRDh1VjA0PWcwgJ8tBxGqJ8DHgbuBO5W1XztejfffHMTsB6zKBuBHwNu/fr1TxxkH3+OWb5vVNXyUY7rBiJRjog4ZYhEOQIAEYlj865vwsS4DrgDE5HHOI0E+GipEerrgDdi8+h3Ya7kO51zg8D9wFVTVh0Hrlm/fv3TMzfaiIiI+UAkyqcxItKEpdK8Gfg5oBcTlDuoRvRGHCUi0oYdxzcBr6mvr999zTXXrFm9ejVtbW2YA2I/X12/fv17ZmWgERERc5Yo0Os0Q0RWYKLxJuAaLAf1DuD/qOr22RzbfCcIzvoC8AURSa1bt+6re/bsWfPFL36RWCzG6tWrWb16NWeccQaxWOyGWR5uRETEHCSylE8DROR84F2YRbwUm/+8A/iRqo4ebt2I4+fmm292wHpVpa+vj40bN7Jx40aGh4dZsWJFbsOGDR8Ebp+h9KuIiIh5QCTKpygiksTqJv8mlr/6JeB24EFVrczi0E4bbr755rOw3OcDKl+NjIzwk5/85FuPPfZYC3Ae8B/Av6vqtlkYZkRExBwiKpN3iiEiy0TkL4CtwEewik0rVPV/q+r9kSDPHOvXr38RK9xxwDFvamq6441vfOO7VfWVwA1YwZMnROR2EXldVL4yIuL0JbKUTwGCi/grMav4Bswq/qSqPjeb44owbr755mVYnepG4Efr16+/f+oyQST3L2LfYQPwSeBzqjo4k2ONiIiYXSJRnseISAtWK/kjWCWrfwO+pKpjszqwiOMmyBG/GhPnN2LVuD6hqie1P3JERMTcJBLleYiIXIpdtN+OlbH8BPDTKIXp1EJEFgK/irnA+7Hv+WuqOjmrA4uIiJg2IlGeJwQW1GsBh5W8/BTwn6q6ZzbHFTH9BN21Xo/diF2Jubb/QVVzszqwiIiIk04kyvMAEbkKuAUT4z8FvhUFbJ2eiMhZwJ8Bb8AaUnxiamnPiIiI+UsU5TmHEZE1IvJNrNPPl4HzVfXWSJBPX1T1RVX9APAqrC75RhH5QGBNR0REzHMiUZ6DBGlNnwXuw5odnKOqnznaJgURpz6q+oyqvgWL2P414CkReYtMqeUZERExv4hEeQ4hIq0i8nfAk1hgz7mq+ndRYE/EoVDVB4BXAH8E/CXwgIi8YnZHFRERcbxEojwHEJE6EfkTrPpTFrhQVf9EVYdmeWgR8wA17gQuwYLAPi8id4rIRbM8tIiIiGMkEuVZREQSIvJhYBN2Qb1WVT+kqrtmeWgR8xBVrajqF4E1wA+AH4rIf4vIqlkeWkRExFESifIsISLXA88A7wDeoqrvVNXnZ3lYEacAqlpQ1X8BzsFu+B4Tkb8RkfQsDy0iIuIIRClRM0xQTvFvsMIfv6mqt8/ykCJOcURkEVZ4ZA3wK6r6yCwPKSIi4hBElvIMEgTgPAW0YPPGkSBHTDtBgZl3YIFg3wms5tQsDysiIuIgRJbyDBBYx3+NXRg/oqp3zPKQIk5TAqv5k8Bq4AOq+ugsDykiIqKGSJSnmcA6/k/gQeD3oq4/L2XlTXcK8HJgU+8tN+6e7fGc6gS5zO8C/hk7N52qFmZ3VBERERC5r6cNEakXkX8GvgL8vqq+LxLkQ+IB7VjLwohpJkih+ipwEWYx/0xErpjlYUVERBBZytNCZB1HzBciqzkiYm4RifJJJJo7jpivRHPNERFzg8h9fZIQkcuw8pitWGR1JMgR84YgQvvtWIT2d0XkZhGJrg8RETNMZCmfBETkPcC/YHnHt872eCIiToTAav46kAN+SVVHZnlIERGnDdGd8AkgIp6I/DXmsn51JMgRpwKB1fwaYCfwYNDDOSIiYgaIRPk4EZEm4HbgOuBKVX1ylocUEXHSUNWiqn4E+FfgpyLyqtkeU0TE6UAkyseBiJwNPATsAF6jqv2zPKSIiGlBVT8JvBv4koj8TtSvOSJieonmlI+RwGL4MpY68snZHs90sPKmOz3gUuCF3ltuHJ7l4UTMAYJOU3dgN6O/parFWR5SRMQpSWQpHyVi/C7wJeBdp6ogBySBC7GCHhERqOoW4FqgDbhLRKJzIyJiGogs5aMgKN7/b8BVwJuDC9Qpzcqb7pTeW26MTo6IAwjSpBzwy1jL0e5ZHVBExClGJMpHIEgP+SbQD7xfVUdneUgREbOOiPwC1g4ySgOMiDiJRO7rwyAilwCPAHcBb48EOSLCCIT4tcDfi8hfRoVGIiJODpGlfAhE5GXAt4DfVtWvz/Z4IiLmIoEn6TbgGeDDqlqZ3RFFRMxvIlE+CCLySuBrwHtV9YezPZ6IiLmMiDQA3wG2A7+qquVZHlJExLwlcjlNQUReD3wVeEckyBERR0ZVx4AbgUXAl0UkMctDioiYt0SiXIOIvBn4AvBWVb13tscTETFfUNUJ4C1AGrg1yFiIiIg4RiJRDgiiST8N/Jyq/nS2xzMV59x5zrmm2R5HRMShUNU81ra0DNwmIplZHlJExLwjEmX2C/K/AK9T1cdmezxTcc4lgKuBlbM8lIiIwxJU+no3MAjcLiLpWR5SRMS84rQP9Apc1p/GBHnONpVwzqWcc4XZHkdExNEgInGs+l0dlk4YleWMiDgKTmtRFpHXAV/EXNZzzkKOiJjPBAFftwIVrDRtFJUdEXEETlv3tYiswwT5rTMpyM652EztKyJiNlHVEvAuzFr+gohE535ExBE4LUVZRK7D8pB/YSaDupxzSeB9zrlrZmqfERGziaoWgLdh6VKfiSp/RUQcntPuByIinVilrvfOQtpTGdgG7J3h/UZEzBqqOgm8GTgH+OdZHk5ExJzmtJpTDkoCPgL8YVREPyJiZhGRJqwf88dP8danERHHzWkjyiKSBO4G7lbVP5/t8UREnI6IyNnAA1jg1z2zPJyIiDnHjIqyiNwA3ARMAmcC7wUuAD4KKLBeVX8gIvcAPwMuB55S1d8O8h0/CywBxoBfUtWRo9yvAJ8BFmDpGf5J/FgRERHHgIi8Gvhv4JrToTd5RMSxMBtzyglV/XlMnH8N+BPgeqwN3F/VLHebqr4CuExEssCvY1buK7H8x984hn3+NnAl8L5IkCMiZhdV/THw11hxkYbZHk9ExFwiPgv77A7+bweagW1Beb68iJSCogMATwT/dwbLnQdcISLvBxLAfUezs+Cu/P/D7srHTsYHiJgdVt50pwcsBzLA7t5bbszN8pAijp+PAxdhqVLviG6WIyKM2RDlWn95HFgRuKaTQFJVy+ZtPmA5ATYAD6rqF2F/YYLDEsxffQmbv4rcZHME51wc8Jxzh63ytPKmO5dhF+4mYBzowM6F8P1nem+5cc7VKY84MqqqIvJbwF3A+uAvIuK0ZzZEuZYKcAvwE8AH/vQwy34a+LSI/Erw/B+AOw+1cBDpeTvgooCS6SWoze0dqQyocy4NXIvFE3jOuT3AA865ganLrrzpzjOBV9e8dD1mIT+BxSQAXLDypjv7em+5cfMJf4iIGUdVCyLyduAREXkmyoiIiDhFo6+DykG3ATtU9SOzPJx5R1DkZBkWc7DTOTd5iOWaMJFdjlmwfcBDzrmD5mE7596MWbu1FICvT93Hypvu/AWgJXiawYL+CPaxqWbRXuBxoAEY6r3lxqMK/ouYO4jIpcAPgNeoavcsDyciYlY5JUT55ptvzgCvxy7edzvnfhcTi9dGhfCPDefcGuzYhV4UH3jCOff4lOUSwDuB+imbKAHfdM6NTFl+IfDz4fNRP5kd0fQiH4mPa+onD5VX3N57y40V2D93/CFgMRZP4GFiPolF3ofxBung9a1Upzt6ga7eW24sHdcBiJgVROSdwN8BV6pqVFwn4rRl3lf0uvnmm9+CBYN9C/jSU089tSOdTn8EK6EZCfIx4JzrAF7BgdMaHnCZc+7sKYufQ1WQ27DUtk7g7OD/VBrDBwN+3eI+v/GiCU0symt8QU5TVwM/F4gxQAw4F1iFWctLgdXAWZgQn4dViPrNYLzXUrXAV2Ku7oh5hKp+HatF/82gpkBExGnJbM8pnxA333zzSuDrWJAYu3bt4n/+539iH/jAB5o7OjpeidW3jjh6zjvMe+c757Zj4tiCiW8Sq2m8MlgmiVm2b3DO/dQ5V9sVqB9QXyU5pqnOOH5KRQoVX8b2+XUxzD09ADwIrAWGMLFvC/ZXBBZigj2JBX8pdg6vwm4eSsA+YNXKm+5s6L3lxijafn6xHru5/lcR+ZCeCm68iIhjZF6LMvArBIJcLBa59dZbufHGG+no6AD4CJEoHytNh3mvA3NXL8as3hYgC6Qw6/UMbPpAsSIt5wFPOecEs6gLwO4Csfd66GIEyipenzYlB7ThOSzo7+dX3nTnAsxl3oelvq0Ino9gQu0H2x/E5pHBzoEGrLDMvmB/r1p5053jWJ3xjb233Bj1op7jqKovIu/DSuH+AnbDHRFxWjHfRXlZ+OCuu+5i+fLlnH/++eFLy2dnSNOHc64RmJxigR7Nemkg4Zwbdc69Ghhxzj1ykEWHgfZDbGY5ZgVng+cxzEKtx8Q8zDMNRfkjzrnPYhfXDkyUy8CWIrHFHio7/Gx6WDOFDKUF46T2Ytbwkpp9jmPzxSHtwRgbMWu5tvBEChPnhZg1r1Qrx12w8qY7b++95cbxQ3y2iDmCqo6KyC8Dd4jIPdH8csTpxnyfU+4G6O3t5bnnnuP1r3997Xs/m5URTROBmL4HeI9zrvkY1lsM/GKw3qWYkNUdYvFnOTA/PCRF1TIOqQC7Mfd1KI4KjGLiuxr4Y2w+OIYJ+mUZKa+Y0MQzOT89NK7JuIImKDc3kl++UEbXLpXhG1Z5A1ed7fW/eaW379UdXu68RvJhFPYQJtz5YD+1wVxFzJo+G8hRTZsiGN/lRMwLVPUR4HPAJ4ISuRFzCBGpiEi3iDwjIreKyKGuJ4jIDSJybc3zt4rI4abJTnvmu6X8+UKh8Me333770je+8Y3U1e0/N0rA/5vFcYVimHfODZ2EbTViFh+Yi/hczMV3NIRzwJPAGufcl4NtSvBezjm3O3it3zl3N3Ad5pIGO5bPABcfZNvjmOWqmKtZMCs2hp1bxeCvGbsRaAQuOj/W9+yAX1c/pslmhVhFvDTInjqKywWNeaLpegq5Qa1PFDWWr5fCeRWVfROkRjCLfR9mpZeDPw1eG8EEeONBxroSmOlWnRHHj8NurCM39txjUlU7AUTkS8CHgX88xLI3YBkTYZGftwLfBZ472p2JSFxVj8k7OJ+Z16K8fv36kcbGxh93dHS8ZvXq1YsxUXgK+KP169cfrWiddJxza4GXA75z7lvOucET3ORk8JcJnh+wvaBC1tWY6HXXiGwKq4jViYnXN2tWOxeLXPadc1/AxHdZsI0HMXczmDXciLmOw/nekZox7MaCscIKa6Vg3Saq7vAGTKgzQCIm7FgUm+gb0dHUmCbPE/AqyIKKevhIpoFCOiZ+uY3Roq+NjGkq0SoTy0W1UMErFogvUrxysJ9+LCf9gWBsVxziGEZlHOcRqpoXkQ8QubHnOvcBF4nIm7DiT0nsBvm92O/9w0BFRH4J+D0sa+J6EflT4O3BNv4Nm3aaAD6oqhtE5HOYR+wS4AERacWuO5dj02F/pKrfmJmPOLPMa1EWkVcAr3nhhRcuDF5Kr1+/ftdsjikgTBXyqArpceOcKzvnHsJO6HHs5K3lEqqR04ucc19wzvlY8FUec/MnMAELyWFClcPOgzdholvLAOae7sTc1bHgb0GwvT3Ao1gKUip4zwv+D2E/njbM6k4Grys2bzy0IjaceKHcGh/XZGVMU00VPC+Gn2hm3G+WySbxpDBCJpv3E15cfD+OX4ihmbj6iTFS/SAvYsI/idVSHwDO50D3fF3wGXasvOnOs4HNvbfcGAn0PEBVHwkuzp8QkV+IorHnFkGfgjcA/wPcD1wdlE/9dUw0/0BEPgWMqerfB+vcAXw3FFQRuQv4sKpuEpGrgE8Arwx2sQy4VlUrwXmwGHgZsAa4A4hEeS4hIvXAf2Jf6IlaoiebJzFxmnDO7TzRjQWVs3492OZm4HXOua845/LBIqmaxRPBcj4278pB/uOc63POfR4T21dhJzyYuzmNCX0Js4jrMOHLYxZ3KLCbMFfxtcF+k8EyJcz1+MZgW6ErHMybsQwYT0qlYYXsK27QRZk6KcaTVEhIJVYkERtRylmZxFcvUy+lxCSxkqh6PlIRlBiVlgrxduwGRbA86X1UI7Z3Ytb6ecEy27Ef+1lY9aiI+YHDzqV3EmVTzBUyItIdPL4P+A9sKuxrIrIYuw4csddA0CHsWuDWmtCB2mvZrapaqXl+W9C45DkRWXRiH2HuMm9FGWv99qCqfme6d+ScawXqnHM7jnL5Ekc/53s0XEc1KrkAbMOEMhTlbsxN3Ag8GkZnB8J7LzafOsCB5SlxzpUCF/cFmAhrsK0O7NyIY1YmmHjvxFKMwnHcD/wc1UCvChYMlsHmsRsxQZZg2xXshqEeuBSYzEsyXiflDJRDK0gEpUAsIaqlMl7cR/AUxH6w8UkSqkga/LNi+K11FIfGSXX6xBYGY1FMjPdgNzG7qQawrVh5053Le2+5cftRHfmIWWWKG7srcmPPCfbPKYeIyMeBf1TVO0TkBuxm6kh4wPDUbdUwNVuiNq3xlA0AnJeiHLit3wFceKRlT5RgvvatQNw5913n3Iy5x4MAryx2co5iIlfEXMO5muXGsKILB+NFTLAvxipz7cbmX8Hmm5cH/zOYyNdRrZyVw6zNhdgPqIhZyC8Cu7DI6muCZVJUC3okMWs5DPgKBVGD7XjB4zpPZL9iY9a9AHhoXEQbmmXCG9YMPrFYQipaUfFsQREPXz3UKxB/c4JKuQjDSqwhGEsBs8h7gnHUivDiKc8j5jCRG3tekMVu2gF+ueb1UQ6sfxBex1DVERHZEnyntwaR9hep6pMzMuI5yrwT5VlwW4eBTQ28dC532nDOLQdeiwlKEfgKFsW8HehxzlWCCO9U8JoG88hTeQWWJhSyGEutEmAdZgm3YT+Wx7HPG6Y/tWN62YGJtWIiV8JE2w9eF8wKBjunJNhuOMccEupvaDXTIAX6pU7i9rKUiJVR8bIy6cVQbZUJ9VAmJBkraFzHSUpeYxVBfCCpSLKCl41RGYpBYxCiGcN++HXYDcTK4PMNYzcMiZU33RkLa21HzAsckRt7LuMwN/QQcDeWHQHwHeAbIvIW4HeArwKfEZHfxQyr9wKfDAK/EsH7p7Uoz7uGFCLyz0Crqr5vpvYZpA/JIURvuvb5Vg4s5PG8c+6emvevxAKwMtgc6nPAjzFXbSvmZk4Cv8RLXT0XYqUs2zBXchoTsj7gvzFX9sWY+IaBWY3B40Hsh7YRE/czgv3UUXVVHy7/XTExLwX/E3k/lshrHEW0jPhlPF3kTfg5P+GDl1RBixonX4n5FYklBqjzRzQte/16VaRcRuKC+B5aqOw3xIkF29/pp71t2pjcIyV/UnLFmCiPYt6He3tvuXHrIcYZMccQkSuxAJ+LVXXPbI8nImI6mFeW8ky6rWtxzoXW3Uwy9QZg//OgeMg7qebpLsRcRBdggRMNWKR1AnhX8HwM2IBVyFqBiWkdJuplzHXdhAVsbMRuCC4M3k9TtW7rMMv9lZjVHQZypTA1PNRcjwbvhe+HKVSS9ioktYKPqKASExQY9xHxRJOCSEpKeDE/NuAn/Ti+Vy9FlnoV2eo3x2L4FZ+4V7Gbgwp2XvtA0a/z4n5TajV18XY/LgO0p7fFt4yJlPw0VorzS1EJzvnBFDf2OyI3dsSpyLwRZRFJAJ8BPjIXoq2dc+2Yi7c3COw61HItmGt5OHA3TzjncodavoZHsHaUSUxQu2veuw4T2npsHqeMWZ7DmOA2Y/PgbcHzJCaGF2HzxGlMhOupiml98N4EJmihGCcwq5PgfxK7IQjTm2rTnQ4XfDH1Aqo16/ieoB4aru8D+YT4DWX11LfnsZyfxkMlTdk6UUiZJgpegjKjpCiQjIMXjlUU4prwEjJZFhViNMYHScbilUXpZfEdE73BZ7985U13Ph31YZ43OMyN/SbMao6IOKWYN+5rEfkw8HZVfc1sj8U5dwYmmAD9zrlvH2bZX8GstzswMRtxzn31KPeTwsQ3h90AnI+5p8PgrLOBp7FqOSuxud8Lg/c8LBCrmarruYxFYScwEVZMfEN3c5i3vCt4vT1YrtbCLVONoi5glvORBBmqlnJtjezYIZZToFDyiVcQUcRTRUfIeHmNS1rKGkPFR9hVadR+v74yQL0USQSfwwNQXyiT9IokvHFNecPAmF+f2EsytiXxwkhfcPw2YC755zF39mF/ECtvurMOixxfhnkMNvbecuOzR/jsEScREbkR67180ZSUmYiIec+8EOWgtuom4C2q+thsj8c5dxUHlp38z4M1iQgit1+HWbF3Yy7ffc65x49jn+/BxDiFBbotwIKX9gGvwaziMCjrquD9VZg3pJ4gbxqbax7FynamqRb7gMBCDV4bw24EQsGuFe4Y1cCuqcFch0Kn/K/d5sEo+j4x33KlREHyJGKiSFk8VcSrqEcZ0SIx3VBepMOakcn9adqoDxCnrHXxrfioqKYQKWtcXogNlyrB8bgXu9FoxCywh3pvuXHyYANaedOdSawKUeOUt57pveXGnx5klYhpIIjSvRf4T1X93CwPJyLipDJf3Ne/BzwwFwQ5YDOWB5sANh9CkGOYi21h8NLLnHM/PIF9LqY6l/5LWLCVYM0mrsVc189w4Fx0iaolCybo7ZhqjVK1lkPCUphgLmmf6jyx1jwPrdmjFWRq1jlgeV9BFTyB2tYDvtqcswcJBV9A6impL3hlPErE/CQlLym+VPDYIQXxEY2pzxhphSDVSilR8uMS8wYRyeNrozdaWQx46rFBm5Kv11QsKcVKUXLF5eJz1sqb7nyy95YbHz3IZ1jDSwUZ4LyVN93Z3XvLjTMWnX86E1SNugn4ioh8VVXzR1wpImKeMOe7RAU1T38fq6s6J3DO9WOh+990zv34EIu1UxVkgHOdc4lDLItzboVz7m3OufqDvJfGooXHMNfyBVg60/VUXcsLsIjqZZigtlLNGQ5dx3FMdJcH4xOqwupNeR4WD5Ga92M1yx0pyrqWWuE/wM1dUsGfsoBvLwhmIQN4eMTEw4uBH8ev1FEiLWas5zUmoCjiJagQNyPeFyhLhX1eyd9HyS9TrIzKZGW7VPRF9chXltUv9VuS52pd7MzKglR7ZWXjSo1LArhk5U13nslLaTvE5/Ow4x0xQ6jqT7E4i9+c5aFERJxU5oOlfBPwLVV9frYHUotzLmwScSimvlei6vI9GAkOtGrD/VyAuaPDalUNmLt1EqtYtQwrJhLWvvap5hhXgmVTVMVwf84QNcU6plC7bGjh1s4rT/1/NITr+zWPSYhCYCmDWc5TVgrHYE89NOajlcAOzmtcd/gtXkJ9ElR0koT4iPgCGpc+8SlIWVu9sr+v5jgMa2MyTsJLUNEkAIpoOpb3F6YXx3ZP7sCi0DdP+QyHCwaLAsVmnv8PuFtE/kNVjyZ4MiJizjOn55RFZBmWSH6hqs6FRhPHRCCol2HCeO/RlukM1m3H0r+uCV5KYIFFm7F84q9gc6JvxdyqFwX7WQacQyA+mIg3YTdg+9OQqLqjjyZI62QQnmihYXzQG0L/IJngwR2B4uGjFH0lGer4kGYY1DrG/BQlYuz16xkm43tpKeebMzlK7PXGKw2Sr2wQu0lZA8QrC9MVbYj7KB5CQTOxHjyZlPFyf3zL2AZgb+8tN95WO46VN91Zj7USTE4ZYm/vLTeeyNRExHESpEhtV9U/m+2xRBwbInIP8IezPS0pIr3A5ao6MJvjCJnrlvJ64NNzWZCDwiLXYcfyPudcpea9Z7B53uPhCixQawU2nzyBWccpLLjrTCwa+1XBc8Xc0suDsYTCIVh0cRMmylNLXs5UDdljtq5rBuoLiAd+RaGApzFUQcTHkzopkfB8tpP14+JXlsTHYtlUwZtM1tVvTSxoL3jxXZ5qVgp+EjsuaSn5gz404lGv6Vg/iVgLvpal6IcejpfcQPXecuP4ypvuvBO7UerAboKeBx463oMSccKsB34mIv+mqn2zPZi5Rs+atb+I9Qk4A6uZ/3/Wbuj58uyO6uRyqvVbnrOiLCJrMCvw3FkeypEIOxGBlaA8WZWGiphV1x7sI4aVv0xi88JnB38LMHFYHrwP1aIiYVWr0I09gX3ntXPDM81h56FFLPALQD20hJD0FcSqiymkQCoVPI15Kmm/SEEzVMRTH9EmKXlx8WlJFMjmSwn1tXFTpqNJC36Mgh/DjsGITpTKtKZa8ChQ0bgmqRch5g3kH8A8DE8fbHy9t9zYD9yx8qY744AftYGcXVR1q4h8AYs5+e3ZHs9cIhDkz1BtZboC+EzPmrWciDCLyErg+1hDmmuxWglvCV77Q1V9TETagMdUdaWIxIC/xdJIfeAzqvrxKdt8LXAzZnS8CPyKqo6JyJ9jAbMZLPXzQ0Gg3z1YTMHLMK/hPxxknAuBT2E3JAD/S1UfEJEFwTpLsd7xUrPOn2GBtP1Y+eLHVfXvReQsDtL3+fiO4OGZy4Fe/xf4f6o6NNsDORxBIZDHMDf7cXWwcc55QTBXLWUseMgLHofu5yxmQb8Nm/fMYqJdT7WaVQazqsN1WqjOp9aK8ZzrtCLVmWsFJGYFRUSVmK9QUSoJKqLg+4jEUTIU8X2kVSe9lJS9luRkhbj4HiotlfFYzK+0SNlvolrTu1/i3qjsmdwro6UJKfrjUqzsJl95xl+Y3gLcdqQqX7233FiOBHnO8FfAu4MLZ0SVv+bA3uIEz//6JGz7HODfVPV87Cb27YdZ9jewOgqdqnoR8KXaNwMB/1Pg1ap6KXY9/f3g7X9V1StU9QLsuvbGmlWTqnq5qr5EkAP+GfiYql4RjO+zwevrgfuDsX+bQLRFJFzuYqxP9OU12/o08Duqehnwh1jf52lhTlrKQY3bq4EZq299IjjnfnYC6yYxj0Czc+5R59wTwVuXAb2Y0NZjP6Y2bI64hIlLDBPfQewONKzOpVjqjkc1+hqqfZZrg7bmHjbjLZ6/PwDMosIVLyGgoHVe2fMVfIQG8REPEvgyEUv6k5qKaRGPuKepREX8mCcyWakQpHRpnLgmvSVS9GMyXBTGyp7fEE9VVjRsL69q7N3x2+uKs/jpI44RVR0IauL/JZYiGGGccYyvHwtbVLU7ePw4JrqH4tXAp0IX80EqMl6NeRsfCPoqJzELFmCdiPwRdv1rBZ7F0kHhyI1JXg2cV9OruSno4fwKzKhBVe8MmmiATUPeHqTY5UXkO3BUfZ9PKnNOlIPCALcAN6vq4aKbTxXasKpbYO7oJ5xzHdid6GLMHd6ICXEjJlCNmCDnqYpsGDxVay0LLxXg2ojqOcd+0zO8fThwlAKohO0dBTxR1BdEUEWo1yIVjVOsiI+HDnsN5eS+ybGKMgmM+dlkm9+cXKmeHSMZLxe9yXJefG2N7Zx4lQ4Vv8S6mfu8ESeNjwGbRKSzRixOd7ZhLuuDvX6i1HqSKlRr6Ife16mev8MhwI9U9T0HvCiSxizSy1V1u4i4Kdud2m95Kh5w9dQ8dpFjtkeO1Pf5pDIX3devwboS/ddsD2SG2Bv8KdbpKeSp4LUF2BzGJuzHVMB+BLX1tmNYMZBx7IdR27f4cA0i5meJQkFrS6RYRRNffE8oSFwS5RJS8XWPNhaeL7SpjldaQBdpTOr8bMJHKAOj6lHy21JUWpMlFfCGi/nEppFVh9ptxNxFVccwN/bfzPZY5hD/h5e2m50IXp8OejEPH1jmSMiPgA+JSBz2156o5SHgOhE5O3i/XkTOpSrAA4G1+g6OjR9i7SIJttsZPPwJgUdFRN5ANRbnAeBNIpIO9vdGsL7PwBYR+YVgHRGR2oqOJ5W5KMo3A392KkXTHQ7nXNk5dxs23/Gic24R9r08CdyKled8AatJ/W0sHUqxQLA4JtKTwf/HqNalPhQznQp1TOxPoj7UbK3UVAXzw3WUBD4F4pojU97pNftb/dbJXr91pJxOSLk1RbktnahkE/UKFT8de55M/HltSua0Lp7XpmRcG5OCJ6PYtEDE/OTTwBoRuXq2BzIXCIK5Poh1htPg/wenMfr674GPiMgTHFho57OYQfGUiDzJlCkGVe0HPoBVaHsKc12vUdVhLFDtGeAHwMGq7B2O3wUuF5GnROQ54MPB6zcDrxCRZzE39rZgHI9iPQqewoLWnsauu2B9n38tGP+zWGDbtDCn8pRF5DLgW8CZ86nQfOBuvgHoq+15fIzbOAP7oi/BrN6x4H84/7IGeC3m0gYT4QImrhux4hUXYNHaDVSFuVZ4Q+s4dHXPKVH2j8apLlhucQ0KTBJnNJbxx7y0v5vGQl6Shb2trbHJTLpBFRCpiK8TWvDz/uLMIMmYh6+tlP2yN1zcIxUt4cmu+ObRv976f39urpRzjThGROQPsH7L75/tsUTMP0SkIYj6rsMs6t9Q1eOOGToe5pql/BEsIGDeCHLAWVgE9LlB4NbxcBkWLJHAAhrKVOeDPExwY5gQxzHB3oqJ97lY8EYD5p7qp9qCsdbmrI2+nlOCDLxUkOXAx56H+goVazahFfDLiF9CyFD266RUKGXiQy31pQE/7g3nM+mYelLGkwJCSWMSJ+15UtE60l6FuDcunggJD+LeHq2L7ypetfCQua4dXd3NHV3dizu6uo9lvixiZvkc5oI8VEnUiIjD8WkR6caa03xzpgUZ5lCgl4i0YOHoq2d7LMfBs5jbs885d7yRu1PXy2H5f1sw6/YJLEcuhX1vg1h5TcWqeGWwqMUEVWFeEDzf3zqJw1TTmmn2W8ZSLbNZizfl1sEHKp5ImZj6eHj4iI8W8SoiJT+fSBaKDRkqSCyXbEz74uVRreCJRUqq+oLE1JPNeF6cNBs1LhWEVkbLQ3hSim8efUlUZUdXdzPmCWkPXqp0dHVvAB7sW9cZpUXNIVR1n4jcBvwq1t4x4hRHRP4/rNJeLbeq6l8d67ZUddaj9+eM+1pE/hdw5Vw4KDOBc87DUgEqwCOYpf0WLPS+H4usTmBCMIyV17wBi9AOOziF9bJL2LzyUiw4IuzmFKYBNQTrzCnruLakpudNcV8fRKiLoIV4UqWs6nsevud5vohfkZjveVrZ2rooP5qpHyjFYrt2DWZS+Ya61cQloZ4kwqBtKVT6/eUN9xCTQXxdyHj5DPHV98ZKvUGJzR7gh7233LgVoKOrOwG8i5fmewI807euM2rZOMcI8k2/BpwzD71uEac5c8JiEhEP6/byq7M9luMlCNA6A3jcOXc01tMSzCUN0Ouc2wN8wTl3KxZ8cA1WAWcc6wxVAu7Bgh3eDYQBYX1YilQ7Jhx1mBhPYi7wsLzmnBJkoJrIFYxsqmVcSwkYrmtkPJ0pNY5PEKtU4mWJVQrxeEniEtvQcYY3UtcY8z2vuRSLx/J1qacZKJyJ5yXxREFUSn5RW1M+MSkAPTJaiuNruxT8IW9fYYvXN7kzGMGV2NQAWGrawQQZYG1HV/fjfes6D1toJGJmUdVHRWQf1sv8e7M9noiIY2GuzCm/ErMMH5jtgZwAZwGdVPsRH4m9mNhux2pXA/u7T63EhCGLzS+HOcceNn8sHFg2M4PlOofiIdhcc4bZK6d5RDybJ95vEavah6ogB0yE+wqFWNKfSGW0IjE07lVKqXg+X5cqS8KrDNU1TfY1L6wU44lyxfMq+UQy7zclG/yO9B5VdpKv7NaSv8tvSmzRxsSzBFMCMlnxY3vzTySeHvxRbPfkDtH9dnpLUEYTDmy/2Y5Nr6zEPA9h6dOIuccniNo6RsxD5oSljAV4fULnii/9+HgYeMY5d6SEdgCCuefvHuT1BZgQNAcvxTGt2k21F/I+TLAleB6W4wzxqNbJnjFR3u+OPsQc8ZEoicdgfRMx9cmUC9QVCkyq+GN+Bs9XPzVe0GRSfPH9RG/7kspgXVMpWS6XEpVySYV8PpGsiFIWZQQRpT45pPHYPsp+nLhXIBXLY7b5d4Berz8/6U2WlxxkKBO9t9wYpuSFBWzOphr5DuapeILDt++MmD2+Bvw/EVmlqltmezAREUfLrIty0J5xHZanNm8JukMdV09d51wME9ewscTlWJ5fGZtfbgfeg5XbTGD5c/1Yu8apPZjDPOSDpUTNaUqJBH4shk+MUjxBrFhhzE+hglbwND5Z9ONFZTRbz1gyg6fq+yLJyWRKGyfGJn0vVhERL59IlSZT6X3AHlKxDKlYrfdiB3aMfr58duMCb7BwviyuK3t7Jl+I7SuErdtqm1E8j3Xs6pgy3CSQ6FvXGfXxnYOo6oSIfB74ENaTPSJiXjDrgV4icjOwQFVPqMOLc+6VmMV4xwlEQM84QcDXmzDLC6yi2dVYcFZYNhPMHZ3DrOUJ7LM2U+36JJgYl7EpWOVAt/e04wen0uGs5Fq39NRBVYCJZJqKeCBKeQK/qDE/JRWteJ5fIF70fD8jzXG2tnZIIZ70S/F4aTKejA3WNxViaDlZLg00To4/N9SQfXQ0Uw82J5zEotV3Yp1m1ob7lPFSq4yWV0jZr49tHXug0pHZXTmrKYnNxY9Sjayf6gotALf2rev8Qe2LHV3dLdh319+3rjNPxKwhIudgU2JnTC21GBExV5lVS1lEEljFmdechM21YRfSJC9NL5rLtFMV5CwWQT1MNVo6hQltkmpd6wVU+yWHVnEovgVMlMMo7MQMfAbg+FzWtcSA+qJdOwUY05jEiHnqxQQPTVGJj8cS2lAq+elyKZ6qlL1hMrF92YXqi5QrnmgxFm8txhJrY355D+ZermCu/CLWnWZN7T61PjGo9YlBVKWyrF450CJuwVrDPYdVVgsj30exmID9ZVE7urrjWAH8sNh/paOr+9G+dZ1PndhRiTheVHVTUF3qHcB/z/Z4ZgPn3Ev6KTvnTqii12FaN67GWiXWYe0Xf1VVh4I2iw9jHtFm4NdU9b6gpeMtWFZJCus69e8nMrZTgdkO9Hor8LyqPnsStnU78FXn3NjRLOycm1W3rnOuxTl3NtXC7u1Yp5QM5j7dglnG/ZgI9GNzyWEusmDzmbXfYW0Ocp5qHew5w5EOem3B7jqvInFRz8MX9fHKKl4mVvZAyu0j+wr1E+PFQeopFYlVytJYKdOgPolSLJYdS9ddiEW4D2PHsoClNr0Gy+ueMjBJAucfYljnAV1Y6dNNmAv8kb51ndtrlrmMA7vvxICrO7q6F3Z0dSc6urprpxgiZo7TNuArEOTPYEWIJPj/meD1E+VgrRu/APxx0J7xaaxFYkhcVa8E/lfN678G5ILWilcAHxSR0772/GzPKf8mJ6kvpXMuLDt5NMu+FljpnHvcOff4ydj/cfBazDL+ESYab8XuIhNYOlQCE+ARTAR6gvUymAW3EBPcAmYVh1m+5WCZAibkSzlwznlWOZZSYjGBOkqMeik8UdIURUX8usmCP0q9N1JI+cWMVGiStMZEgbjvk/Lj3qgfizdic+67MM/CWixYzsP6USew4x7SykuL99fS2Leu8+sdXd0NQKFvXWdpyvsH6+W7AEvzGwK0o6t7G/Bo37rOqa3rIqaPO4GPi8glqvrEEZc+tThcP+UTrX89tXXjWUCzqt4bvPZ5rHZ/yLdqll0ZPH4tcJGIhI0mspjYn9aBebNmKYvIeZgr8baZ3K9zLkP1pFhzmEVP5j69YO64li3AAFVreDc2bxzmHY9id6CjwFeAj2O5s9sx4R3G3NRhak5IXfBaPSbes+0NOW4U2NXSxs5Fi9nT3s5QU5ZEueyVvViyPj85PqLpyQW5kUpisjimKmVVKfk+Bb9MEbspCdOVwgjrcF5ZOTCSGqoR7oelb13n2EEEGV7aQqMDs7DDBhehpfKWjq7uqV1yIqaJoLHNv3N6WsvT2U95auvG5qNcPpyCA/tN/I6qdgZ/q1T1hydhbPOa2bxgvwv4kqrO6PxvkAf8InYRPRlu8yPt71zMWvoV59zZzrmkc24JNh95B3a3eA1mEW/GRLk/GONzwI+BXc65bizN40XMjTpONZArLMERen8rmMjMzaIhR8lIuo6RTANgH2I0XUeurkHzqbTkU+lMyi8V08XiSGp4clCK/gQVreBrjJJfweZ8BbgQm6/ajonyOHZcC1SPzRB243O49Kath3kPLEo7RLAbPw3GUUsCi66PmDk+B7wtiGE5nThU3+ST0U95KjlgSEReHjx/H3DvYZYH6/z0kfB7EZFzRaR+GsY2r5hN9/WbsdZaJ4UgrSgeuLGPtOxdJ2u/R8G1VG9+rsdEoQkTzQcxURasAPpGzLIKxfpMbJ6z3zn3HuBVmMCcH2wzgVnJoSiH7usSZkm3c0DNrAOoTZuaU/jYgAuxRI35KVREmIynSPi+FsWLJWOampTkmKrEZbDQr3XxeolLRuvieUxgH8WO9yQH9p8exEqbdgN+37rOYYCOru42rADMVJ7pW9d5pHS3bizq+lzMbQ0m1Adzia/o6OqO9a3rjEpAzgCqulNEtgDXYVXxThf+DzanXOvCns5+yr8MfCrosLQZ+JUjLP9Z7Ob1ZyIimDHy1mka27xhVkRZRM7A8nEfPImbfRnmkvzqSdzmyaCMuYuaMPf0ruD1BViPzmXY97AdixD2MUt4C+bGBhPXNuyi30LVRe1RDeSqBH9hWc6wuEhNNekDmJMWdN6Lk0+mKKOVTGFClGYBTyqefdSmwgQqXixVLlVoiKlWYpWJTDpGMtbilfwJyjyuralJLCju7OD/N7DAt/OxG5kXgQf61nUe4KXpW9f5SEdX93CwXBbzXjzXt65zw8HG2tHVLYDXt66zEjSm+ElHV/ejWBTqMIcOsgu9GpEozxx3YIbAPbM8jhnDOfdl5xyc5OhrVe2lWiIYVf37mrdf0staVW+oeTxAMH2oqj52gzBdNwnzktmylN8E3BnM95wsngV6T+L2ThY9wMuxC/QIdrHvwNyqm4FvYwK9EAvoagZ+K1i2h2pv5GFMmJsxq68Bu6gnqOYnh+lQMapVvkLxDQ3Q8P+cFGUPn1IspmVhIlvMp5YP9XuD9dmYClKfn/B98YqTiZQviWR+vK5urG/J4q9USLwFX5PEJU4iBjaHXMKO7ySwr29dZw9wxD7Jfes6n+dAV/QBBEIc1i1fBsQ6urp3YdHYe/vWdU52dHVvxFzUh/JEDBxiXjpi+rgD+IaI/ME8rxx4TAQCfKJBXREzyGyJ8puBT5/MDTrnBrDAqbnGGBZxCNWuT/WYoNZjF/hRqlZxPXYxfxH4Hyz46GbMrdrOgUVEQpH1Mbf2BGZtL6RqidVmGYV/h3JpzzpJ39fsxNhkXP2hiXiymCkVO5YN7RUgUfZiXq6uIa+et3OwvnG8GI9vR2SYhLcbkQXY8WmnehyymMeh+WSMraOreyE2rfAK7PjvAV7AvsM3dnR1f7tvXedQIMwbsECvg3G6RQHPBZ7EvEtrqGYyRETMOWZclEWkCQtseseRlp2rOOc6sPndBHC/c+6Fwyz+IjY3vCz4Hwrr7mD9DsxCDoMv+jDRvdc5t8E597pg+SVAPkkhu5DBQob8ZJqC7GJRYpCWUIDD3skpqlW+pjRE3C/Gc02U1Vd8VRB8RRjJlItS8bySKrG4aiHhVyZjEyOPjifTT7eN54o9i5ZfvHxo7xWTidTorua2evW8InYD0oFZypuCbcc6urrfjHlTtgLpvnWdR5XPHhJYyK/GXG/hHF0H1e8yjqVghcEtYUvHNVQt5jxmUZ/WKR+zgaqqiHwHMwgiUY6Ys8yGpfw64AFVHZ2FfZ8srsEsWjCr6ZCi7JwrA993zr0cu4i3Y67nEaoRwFsxF1MHZvVuqWn/2IKl8QynyS9YzJ6GVnK765gYK5Beehbb4imKE7tZNI5Z2zFsHrUh+AvFOeRgYjwXLGcf3V8ULF5B0gm0Leb7cWxsOeCBdLl8Z7o8lu9ralkxXN+k48nMwlLMy6SL+cnJdF0JuyEJb2J2Yd6TsBLXRcBOin5Dxw9/NkTC+3Hfus6+oxxfM3Z8G6e83ko1lWp/R6lgjvn+jq7ux7GKbRVgVxTcNavcAfw58LezPZCIiEMxG6L8JqxLz3ymNid1mXPuN7EL8xDw4CEiwFOYQKwIHpew1Jx7nXMbg2UOdqOyDbsJGDuH3gUt5IZjVOoLJNsESydbwh5vD20TPrFYsO14MJYmDj6vGbq9w8dTRXm6RXpq8Fmp9rkHIqgQWKTBJLgKjO1pbG4brM9mNrQvuzDen89KfjxVaci0+O3pNHZ8FwTbC70GN2LlAJvJl5d7w8XlUtE6BSXuXbj8H+5y2//gVUfT6WkyGMrU77Y2WOwlHcL61nVOMjdjHU5H7gG+JiLtqjo1VS0iYk4woykxIhIHfo75L8r3YeH7w8BDWLTtGVg6zFWHWOc57AL+BHaR/gnwvRpBPhSDmIjtW8i+wQpeXYVYnSIJBS9Jqa+eiR11TCaxyl6p4C+JuUtDy6zWjQ0HRmYrL3VznywqmJjV7ovgtRImcj7gex5lEcqeMOYJjUAll65jd1Ort3HRGe37Mg0vH6prujxdKl6e3jdxxXg5cVbFl0Q+kagv+LGVlP1FmDAWsBuT1Zj3Icdk+TlvXzElFTXXc9LLajr2svKK+n/q6Oq+6EgfImgusQHLOw6PaRq78bkUq0S088QOVcR0oqoFrILejbM9loiIQzHTlvK1wDZV3X7EJecwzrlBLGo6fN7Mgf2PD7bOLufcNzEX5wQmSAPBe0mg7JzznXMNWL71sHOuFbuALAByMSo7gbMLJDpA4gnKg3FKwwVSS0skylTnksPOUWGObNicIgz4qo3ELgX/w8AxOFCcFROh8H+YG320eME+4hwo/Pm9fn0uQ2lho1cMt1cUYQizSutK4hXGU5nMZDJVqXiebG9tT3SMDC1LlwoL2iaS9fn0gvJoU0O6lE6V4/niGJ6fKNcly3he+FmbgjE/F9ubv4K4xADUk4SmYu2ASMlv0aJ/fUdX9+6+dZ39R/gsD2Df2RCWc57ErHkfu0m7tKOre0dURnNO8x3g54H/mu2BREQcjJkW5Tdj8zrzikAoJ4OeyQfjPqwwQRErWHGo7QwHZT7fgB37HUGQ2PXAhHPuZ8F22pxzmzErOfyOOjexqm8pfV6MSjFBKZektNMnJjkaCwVSQ5iwpjALeYxqRa9Y8OcTzG1iQj2BCUsrZl2G6VW1HpTQ6gxfq+3XfDRu7nD/YZR4+Lgsqk0iWpu2FcNuWvYARYGWsWRaiolkRUUmk+XSYGN+4gxAUvWayqaKsbJfSErJE4FKrFgeVSnKSF3DDsTbhuWtPwEMK5xPTJZR0T48sXnqik5IRQtU/CR4jZiwHpK+dZ0KbOjo6n4xOH7tVNPVwk5el2JV2CLmJt/DamGno3aO04uIfAC4XFV/W0QcMDYlp/l4tjmmqg0nY3xzlRkT5aBiy1uw8przhsBafTuWu3rQsnHOud1YgYqj4Ryqx30ZVQu1HsttvQCzjFdh4rUSs8b6ell+1yL2dixk33IPTbUy3LSDJcMvsuKnWEH4AlXLtJGqEIaWLsG+s5i1tx0LBltQMyYPE8cSJtqhhRvmP9dWDqtQtcyPhnBbHlC3MDYxNU0rvCloBQbi6o8uGh2SgYZmLcQTty0bGliF5WqTb8wUwYstHM35OzNpISaFWILJVKkwqvnY8Gimvoy5sh8ELqIuPioD+b2kYmWK/jBCgpI/qiJlUrF9WNT70bIw+CwHs4iXHsN2ImYYVR0QkSeBV2ICfUrT0dX9ktaNfes6o7zlOcxMWsqrMQGabzmaE5hluf+i7ZxrwgR1n3NuzzFurzaXegJ4CovgHsfmK18bvDeIRV6XCZpS/D7//mSOxrY9tK0aI7Oil6UNw2RbS0guGE/Y1rF2TjkUwQJ2/EO3bhqzDEMXdooDBbLMgSU8K1SriPnBmHxM1OHw51KYslWbojW15WT4P7yRaCgjY2UvNpkuFUZaxkdoKE7eOZlIvXa4rqE1oeVki1+abJnMDRQqdcXx+vqWRLlSbBkb2ZEqlXaMZuqHg+20AXF/QWogPlzc6+0c3+5NVIY1HXuu0p5e5reknsKTO/vWdR6uQ9RUDlfK9ag6lUXMKmF1r1NalANBri2zuQL4TEdXNycizCLyfuAPsd/rU8DvY32Uw0YX/0tVHzjGbZ4F/BvV6b0PquqGoJXjl7HrzO01y3vAv2I3V9uxa9h/quo3ROQy4B+DdQaAD6jqEZvNzBVkporbiMgfAStVdV53awlc2W/HREyBHzjnjqnAe9CkIgs875zLOecWYOk6HZi4ZrEUoGWYBXwn8AXHx64E3rKTRec9wsXLd9GemCTdOE5alEQ+GBOYmIapOyWqfZUzVMXTx24E7sdumBZTdXOHIhoGaYXbrJ1PLmIn/MKadUKmCm8otArgKzEFP2ZO69rc6XB6YAioG0ukvEI8UZhIZcYG65qeO3fv9v6xdGbbiwuXXi2qqVymPtnf2LKnI7dvWEA6cvu2rd6z/fkvXPP6+kIiWQ6OwSosRex2GSv1ph7Y246VeC0AG3tvufFYb6oA6OjqfhuB1T6FR/rWdXYfzzYjZgYRORfrj708KPV4StLR1d2LCfFUtvat61x5PNsUkfOxeJprA69DKyaOn1DV+4MSyj9Q1bXH4r4WkbuAD6vqJhG5CvgbVX2liNwBfENVvyAivwX8rao2BO0efxV4IzaN1AN8EBPue4G3qGq/iLwLeJ2q/urxfN7ZYCYt5euB/5jB/U0Xi6iKn2AX+IOKctAk4+JgmQngSefcXkzM1gINzrn7sYj0DHZndz0mSi3B8y3Y3PM47mPFArGlKQoLWhhu2UlH2tRPJoPlY5iFXaBanjPJgdW8Qgs4dEdfhoktHCiQoat6nAPFOBRcwW4eyrxUVMP51andq/ySQl4THihpLZPwqFCNEg9bUvb5cE4xnqgrxJPxsWS6NNjQODAyUrdnX2Pz0slkandZvPjextbWsUxdrhSLvdg6Plr3wqJlvu953ykkkq8NjscF2Dk+ClyqDYktvbfcuAGLoj5Rfgy8ngOrhb2AWQ4RcxhVfV5EytgN76YjLT+PmY7Wja8Ebg1qWKOqgyLyauA8m6EEoElEjnreN1j2WuDWmm2E19jrMCMI4ItUc8xfFozDB/pEpCt4fTX2u/9RsK0YR9GSdS4xI6IczCdfBnxkJvY3zQxg4hEeu5d+4S7bBnjw0YuwKl4hZzjnbsOEelHwtwcTZDAhmQy234pZelsIXMTf5ZV7ruKJM1MUWhayz29i1I+R1klSvl8tsBHWwC4Hf2lMgMOAqtAK9jGxzXCg0Po1ny3MFQ7njqeW6QzngEO38yTV8qEhtcFgXlHjWtAYTZL3BFSVmAjpipIf0sxkkxRzSak8U/E8b29Ty7JSLFY3WJdNVrxYsqGY37qhsbl7d3bB0nwilSzGE6sB8sn08K5kejeQ2dW88New8qSXUG2d2Bt87lbshueQdHR1LwDWBcd8B3BP37rOckdXdxgQN9K3rnOib13nSEdX961YkZJ6YG/YbSpiXvA4dk06lUV5Gwe3lE9260YPuHpq4FyNwB7N+sOq2nmI94/FnSvAs6p6zTGsM6eYKUt5CXZRn9epUACBu/kO7GQfcM5tPXCBbAp4a46GdIoCBVK1xSXOBP4IE+J6TDR3Y0J2PuaGeRETBMG+n7OAvc655U2s+mCJWEqReIqi38rwnjEWx1IUs5Mkc9iPbQITk1dgJ3MWi8Sux6qI1QXbDZtjhPPOKaqCHKZMhUFcoaULVZEVTOzDNKm9mCivpBqZXWZK3e2klIPNowIqYvW5K0ol7yfGRyX9tVWxoa37GrL7PN+/vpJINk0mEqMdo0Pbh+oa921YdMawet7CYPxn1ewXzFU9jlnpXwl2FM6nVaiZz+/o6o5j9cTbsJiBp4Po6tdTvak4E5jo6Op+GgtSrAPKHV3d/9O3rnNXsHyUmzw/CUV5rnWVO5lMR+vGu4Fvi8g/quq+wH39Q+B3gP8HICKdqtp9tBtU1RER2SIiv6CqtwZG3EWq+iSWhvhu4L+xrnohDwC/LCKfx6bQbsDmnjcCC0XkGlV9MOjVfK6qPnsCn3lGmSlRvhx4/FTpznKE5hclYO8EmWyJeK3FmMTcRgPB4zbsBHoL9j30Y+KyEBOL0DW8D7Os31Ig8fotLF+WIT8Zp0KaycEiyfo0pcIkOgbiBdtYTXUuOUxpggMLeezABDQM3pqk2joynCcO3drB+j7st3q90FIuYD/0+7DiKWEgWBgFXqZ6UfASAjF8VCG4kfaAfNLj6TZvfN8Dqy/u2aorcpds35R4ZulZLQP1TTtHMg1Do3WNP3rorOzLMSEuY8VX7gmOTRbzCOQxb0Glb11nqaOr+07s3IsBT/Wt68zVfB83UPVinAGkO7q6n+RAKx/MOj6v5jOEYr6LiPnMY8BNsz2I6aRvXeeXO7q64SRGX6vqsyLyV8C9IlLBAnd/F/g3EXkK+338BPjwMW76vcAnReRPsevKV7EmIr8HfFlE/piaQC/gm1j/gecwY+9nQE5Vi8F887+ISDYYzz9hde/nBTMS6CUifwF4qvqn076zOYRz7l2YYICdHFdhqVVhKcxeLJhrR81qr8KEpxETyjg2V9kG/tkZJps91BfUS1PYkyediVOqlEmMTpIZqxDbYMvSRLW38hAmmEsxQbsPc52H3Y5imMVZh/0gKpgFvyIYR2Dp7q/9oYEohyJfwX5Aa6i64ivAWM5P+0OaaU5TjDdLvpT2KmFQWJhmJVhk+0+3LOjIb2lbvBdkybl7tm+sL05O7m1syfYu6PjKloVLX2gbHf7rBWPDr6x4Xn443fCbz7z1lc8AdHR1X4G5q1OYl+HbwWcT4HPB/m4IPssz2Jzyr3FgjvVo37rOr3R0db87OHYh3cFnvLTmtd6+dZ0/JGLeIiJtmFeq5VQO9jqVEZEGVR0T6xD3CHCdqh5LauOcZKYs5cuAz87QvuYSP8QCIxZgVtzXMSEoYAFCDVixkcU16wxjkYRZbI65HrvDbQavUiY+nKKQjuOTIV/08Buz5OIZSqQoporEWhqZHBylvn0ni7MDtJYwd3k/FvC0CBPpdwT7qASvt2DnQxET80ywTlhDOmaWuIQiHM4xe8E652DWapiLPDqmydguvynpofGY+DKiqYT4eT/l+RPBupOYG7ov+JwLJxPpnXWlfKwQTySXDfdPtEyM9a/es30SHj2vv67xumIisSxZLpfrCvn1rvsn3yyLp+0Xv2z53mzrRHBcC8BvAlcGx/NczKIOj/HLMJfzBAdaxWHXqO9jgh7OKT8efNblmAdhDLsATCsdXd2twFDgIo84yQSRw8Oc+sFepzLfFZFmzNv3l6eCIMMMiPIpFuR1TDjnhoBvOufqgGLQMQrnnGBu1wVYINcI1fnQb2Fh/mCi1YpZyhmgVCJVXyG+KEUhliC9ZQFDvaPUry5RrltKX/ESnm/ZzhIPSK1lk9/D2cUBFlwV7CcPbMYs6TCi2sOs50lMpAQ7yfswAQ/d3bU1tIscGMHtc2DzCwEaRvx0BSgpFPMak4RUkuMkYynydaqUFDIKFQ/iIuysz08UFo0OZpomxisrBnbXYd2dCsBtwBULJkbLJS82AUrC91eUxTtna1vHsoWjwytymfqhQjL1WDC2uuB/Pnh8IQdONySwVLBXBo8nsRrmBC7uqbXZK8C3O7q6U0BxuoWyo6t7CXYO3I+552aVjq7uDDYl0oadK1uAbafADcPpEOw1pxCRf8Miqmv5Z1U95rKnqnrDSRnUHGMmLOVTJsjrWAjSoc4C9jjnclPevlDwr8oy2lQged4kma855+51zrVj7uwHMMEuYik2gllwvwF0+MQSk9RJipIkKA03M/JwnvRFWUbrSiQaE5TKCco5gCXszQywYARzTwsWTHYRdiMQUsbmZNZgF94wtaoleD90VZdqlt+JifBiqkVJqFk+XieFUgnPn9BExSeWGdUUWRRfqVQUTyHm49V7+KvisL19fETax0eexlzu12KW6h4sxSHlQTrlVxSzyHMj6bqWkhevWzCWG9jX0FTuS6bSmBtdME+EhwnIQDD2DLCxb13nADDQ0dX9JcxbMHg0LRX71nXOVGGQAex7n/XfTEdX99lYml5tvfNzgX0dXd3fP8aiK3ON0yHYa06hqr8122OY68yEKF/GKRTkdQxcgs1DjmFRgftZRP+KdvZdGaOSBFjMngHnuA+riR3Ocz6BWYoXAxudc5ucc38WPD8XOD9GWc5g17ICyWSOplwD4ygSS1PcNhoEMSmiWLDY17FgijVUA7zKmOjdi7lkS9i8cyPVCPCQeLCdUaqdnVqoRleHaWJhHnS+QYpjeU00VBAtEi8pkmj0CmVV4j5UfGIax0+DxMuqLy9pfLBIvEPg0WYv/zwwqnDWUKbhrFS5tCpTKvR7djOQAlSD4iUeqnHf3xh8jocxEQkjstPYPPKjQKJvXef+aPjg8ZGaUMw4wbgemu1xdHR1t2PpYQfLbVmAVZ+7bSbHdJJ5DPjj2R5EREQtM9G68XLs5D9tcM51UA0WGpn6/qt4oDVOOQEQp1w8jxcWLGP31Rx48bsSExQwEcU5l3fOPeyc+yLwF/tY8OVRGvrrmcwvYe+mLKP3CrqlQLKSIb8bqOxk0SBmZV8JvAbzXNTVbHsI+Hfn3H8Bn8aEN4WJWjPVJP4S1SjHFzExh2qOchj5PBxssxAXzbd54/0tXn68xZscXhEbymekHDdfuFf28OOyf5LaSwNpH5Kg6yY11gI8lcvU7/A976JSLN5eisXrsCCtx4AftEyODTTlx7ePZOo372xpexx4LLB47w0+xwR2c/NY37pOrRXkiKPiQg7fcKS9o6u7Y6YGMw08DlwWlGyMiJgTzJSlfNoEeQUlM38eyzt+goPU1z2XLbSQ+9kwTfWL2ZtrYKK4gKH0DhbXYek3HmbZpTH38ONT9tGKWTCN93Flz0p2tK5gR183a/NFkuuWs7v+DHZ89xKevbOLa/dgVvu1VIuIhLnIFczieXtQz3szZp23B/sNq2yFFvDmYEzLsAjuxdicd+gF8TDPwBCWgpGMi062yOQObH56EtuxCuIJ6lUQv4BX8JDxQixeSmhlQcovN2Au64eSlfLIZCI1qlBMlaUbE+S9mCWZfujM88/a29Q60beu88WaQ3Q3dgOR71vXeUAeeTA/Wuhb1xlF3B6Z5UexzBkcWzOPOUMU7BUxF5lWUT6Ng7wy2FzlIkCdc8lf5ytLl9HXiQlYfiGDEwsZ3D8fdx6b7n6S8z4YrFvExG4Qm1dtdc5d7pwLPQ7vAd4JaDPDd7+cR77y37ztIh9vAfD0bhbVPULno5g4rsRc2Uuxer+hRZ6i2tpxALgCc20voVqe06NqAYdW8Bsw93UWC0LKBNsJi5LEgvfCALKJYL/XYoFkdXGhKa9euaJk40Ishj9Sjicy5XhcfWKeV/DHM5STwOq6YmF5qlTcVvG8TclK5cufuv6to0C6b12n39HVvRK4BqCjq9vrW9e5CSAQ3I1Tv5SOru5lwfh7sWb3EYfnaCzI+W5lRsFes4SI3AP8oaqeVp7UIzHdlvJpF+TlnNvnnPsKNkf7PLA4ReHGvbRdm6T0Qjv7+jFh3odZqSXg8dXuiV049wPMClyA5QiPUe06tDrot5zALNlMEyOLzmT7Ly5n1/Ll7CpvZRnBtp/HrNiV2PRBWHnqfkysbgy2n8DmiFdjoh26fFuoWr/JYAxjmEt+EhPoRZjl/BRmXceDz7IVE+jQpZ0KxvIoJuqv8oStTVK6wlfGgZwnlCbEz6Dl+oIXH42L7ojZOFqBWEw1HqtUBj51/VtTWMUtOrq6N3JgycyjOZdrq4tFHJk9HLkV5by0kmuIgr3mOSISV9XybI/jZDHdonxaBnkF/ZV3B49fliGfEfz4ME0LA1E+F7PWnge6cLnwhHoUeB02/6uYaD5KtfzlL2KCtxnoilFZ5yP1JRKZMTJnYDdAYYvFhzARHaYapLURE8gdmDWbwm6YLsSE9uLgtfFgO2Gv5zgmkm1YzvReLKo5gQlxIVjHx6zhDCbaw5gVvijY/nJMqM8D4p7sT6fy0pXSSFz9TF2lkEvgP9knjWdvz7R2ZrJSWLWvb099MT8AnNk0MZYZS9flfc87G/gvqhXEjthkom9d57Yg4nrySMtGABYgdzhRHsNuwuYzp3awl8u+pJ8yLndC/ZRFZCUWp3I/5gHbiVUm/D6B5RsUZ3lMVVeKSAxrJPF67Lf6GVX9+JRtvha4Gbv+vAj8SlAY5M+BN2HXlJ8CH1JVDazsbqzuwFeAfziRzzSXmG5Rvpj51z/5pbisYPOyCeAxXO6I6TM1bM3RuGaM+txi9oa5sklMzFbgcmXn3MImRs97N3c33MV1S/ppG8TmbtPYSTqCidsrsfaOGeArOZr2jtGw/DEu7BuhwcPmeuOYcAtVYdyHndBXYIL6Y0ywGzBrOo0FdS2iGkmdj1Ha51FpWsDwviTlx7axLBMsezcWdfsurGiIYtZ9EhNzLzhWE9gPLCy+AWbdlqiWB2sE8h4MJv1KGrO8H9zeuDA/2NR0HY1xUc97+MKdm793eW/P6xryk5cP1TXuffKMc34cuKm7ATq6umOBe7r/cGk6fes6x4/mS4uAvnWdWzu6uruxsqJTyQM/PAVylZ/g4J9v/mOC/JJ+yrgsJyrM2O/+Par6QRH5OtVOTgfjN7DrTKeqloN62fsJBPxPgVer6nhQUvP3gb8A/lVV/yJY7otY/n5YRyCpqpef4OeYc0y3KC8juGjOc5ZjbmAwd+9RF3Rwzm13zn15E6u+8XIebceE6BmsdWO4nesXMHTlXhYkLuGZuru5ziuTGMIqgv0EE+U3YxWlmjHx831iL27izB37aH1sKXvq97JwdIJMEbvQnAW8GrNiJ4Gz6xmv5EklKsTHgs/RzoFNMcJOSKONjP5sCXtjl/LUWDOjZ+VJvuwerhnewop7MCH9feBpTPQXY2JepBpElsesZh+zkgcxq0uC9VZi4rwr2EY4zfEC8ODGtWd/v210+PXFeGL8gbMv+p9vfvD9Jefcs8OZhmcTlXJvcGxqeTnmgRghckWeNPrWdT7S0dW9HQtcXEC1eEhP37rOU8Hj0A/UiUidqs7nnOuD8dcc2IyC4PlfMyVN8zjYUtN04nGCDJFD8GrgU6GLWVUHp7x/NeY9eyDoLJUEHgzeWycifxSMuxWrYR2K8tdO7CPMTWZiTvkl0cfzkGGqgjP1hDoizrkJYAI+Mxy8tAmXfQE4G5eNw0e3FUmsXcQ+XcW2nz3AFY+WSUxifZQrwTbKwM9iVDIr2Z69kA3ZQbIP/IRrtv0u//WqFzgjM0Rz4i6ueyJP+p5grO/CKoWNZcl1rGJHcRftywdoedonXsLEe3Pw+S6gKrBPn8U2fxXbCufQe8ko9QsnSGuW0XSK/GiB9GrM/b0Xs4QHsZuNZqrpVungmHmYKD+HXQBD9/mPtleyWwvEL1sg4ytbvPxjWLrVTudc78Cf/92CQb9u77nxgaedcyWAz+WvGGkvjG5uGsmfd33fTz/6x/d89/N/e/OfhnnGySn/I04Sfes690/HnGoErtDd2Hn54pGWn2dMRz/lkNpCOuFUV9gVDqopl0eDAD9S1fcc8KJIGvgEcLmqbhcRN2W7p6TXa7pFeTEz8WO2dolha73v4XJ7T+72cyO47FcAD5c7WdbBCsz6eMY594hzrns1m+uBM/83n24Gtkxxk7/YzsDKK3jy7CXsOTdG+RULGHrfJs789j6aK2ez7fkJ9qbqmPzWrbxxAovODot8aDv7BhYymN9N25kx/A7f6mv7mDv5h9h8UBb7vlYtpe/30xSWjlN3RoVYsomRcoriZJl4WJ6zDmueUcBqS/diLq0OzEovYC73DZi7+yGsvN4YoJsrrUM/KZ3V4eH3neENL14V29e8IjZ8AXCec+7BSc2+a0xTr5rQxD3Ouf/6XP6K3SlK72zy8tfUUVqV10R8l5+92jn3y865ccyjsJuolWLEsXOqivJM9VMO6cXiiB7BauuH/Aj4kIh0he7rKdbyQ1iXqbNV9QURqce8auF1fEBEGoJtfmOaxj5nODVE2dxqzcHj5VS/zJOHyx17iUWXPRtrblAGfoTL1R6Lx4EeXG4sKDbyxq/yptF3852wq1TSObcDc9n0AM+8kR9fF6Oys4788jzJpjjlzMU8e0U3a0fX8dBAHfn7z3eP7b3VuXBu+WeYeJZaGf7363jszDzJZ++jPRvs/8HQCg0Yds6lzmbLW8apy6cpFAZoLnvQoki+SPxLFeId2DHOYne4+7AAjn7MK9KCuad/FfOUTAL3O+d8oMs59zCgPymddV2a0rIisXyv3/r4kGbyK2LDK33lzAlNXpmgNLLUG36xTkoDWFnQhjoptcbxGyQ4b0f81NK8Fz8H6O5b15kP9hsRcazs4sCmMKcK09FP+XD8PfB1EfkN4M6a1z+LTS09JSKlYEz/Gr6pqv0i8gHgKyISFiv6U1V9XkQ+g0339WFBr6c80ybKQcRdOzOTMtGHWWRhxae5wrXYMY5jEdXVfqAu51PtTOQDqsj+sP4ezmrC2gsuBx5KUOzYS9vqlWx/okS818dbmyfll0hc0cvyHT8mLtfz0KqUy7bCR/dhc7oD2PzL1je4O54CnnoVZt4655LA9c65a8oiZ3mquzy4fy3PLzyXLReC0sfCXXFaWirEdu9k0d1bWNGP5UiH8zthFHcYtPVeLJr15zB3eCI4Blc7555wzk065yaccy1Xx3vfVCB+w5imnt1UWXhPTjN9QNNOP7ssTmWl4pXHNbHPr3hLF8dGhxKUY0WN5St4k0ql7NuPd2JS46ekWzViRtmN3UCeWrjcl3FZOMnR16rai/2+w+d/X/P2RTWP/zR4v4zFoPz+lO3cUPP4biwQdeq+/jTczqHWPdWYTkt5ITCkqqUjLnmimMD9ZNr3c+wUqc6BVC1tl01jYqvADudye51z//Ue90Uflz0XyDzGRZux6PUxYGWJxOJR6ltHaGxZxu7uF1hZydF4+SSpZAPjwxNkGnpZtnA1WxY553qcc3dgRVviwK21g3LOecAHsKjTsybjqfMypULKQ9+wheW7YlRSS9hbeoo1sTLx/qXs6Qftxeanw6Ig/VTTpxTLafWozi29SLU14ruBtc7ysHcCv3d2bOCC7X7zQl/lLKxh+U8H/cyKvMYzMbxBTxCBWEFjl01qfPxNyef0W8WLBof9zAujDXUtpVQyNdmQfv6x1VeM//PJ+KYiTmdOVUs5jLI+0aCuiBlkOkV5CXayn878CLgKizL+KQAuezEWyR123angso86l3vK3s89D/Cicykst28ZUAR5zwCt6avoHk1SLq9i+3PPcs45k2Q8kGZgso7JAhZVDZbTfFXw/Nedc/9INS2pBWuW0QwsqC/lUzEqGUGb8mTo4WzZxKpJYPhlPNa0iIF9Hv4ZeTLx3SwKc1fzVC3kpVh61QRmnT+JzVU3Be8Vgs+7CnNjXR4X7VsVGxpRb2jvJYldPwRetrncGh/w63dPkBzZ6Wf7F8rYogXeRNMCnVjd5BVWXBbf/g+Pl5fvLDfX12tTIl9ZXLcN88aMdXR1x7BqXe1AV9+6zi0n+uVFnDbsxrIhIiJmnekU5ZmaT567uNw+aqPPXfYMTChriQFX47JDuNx2AOfcmZiXeRz4lnMuT5gc77JLgLMV4WEuqdQxcUUbQw0r2fnicvq6cLkdzrkLsICLsDFGX5zSJZfyzNva2dcuaL6b89ZsZ6kP9CUoLozhewJ1BeKNFRK9FRLSzPBSYHKCdGsZr6GB8bBP8RjVHsuhez6Lie4QZpknMEHeQzV/uRVLfUjg+4vF9yeJx5uAtwGpxbGRWK/fmsxrPN3hjZ4zoYmhGJqvl2IB2HlhvC/+zf/74R90dHXvxNziw1Rv/LJUXZDnYGk7ERFHw6lrKUfMO6bbUj71Rdll45irvr+mMtehuOAw751PtRzpMiyIqgGzaqvH0eV2Oef6MIF7DrjtSp7qO59NoRsfTKC2Bsu0Ak1X8OQr2tm3xN4cHT2XLZInle+nbVTxNiQpnFEkPoIJ6BAQL5LomCQ5qTTUeWhR8Icwa7uARVpuDvbnB/uMYe76snPursBN7mFz0AXg55pyuVi8VEp7vr+o4sUmPHRsOJtdXUkkejNSXnRpfMfqnX62Na+JyTbR3sXeyOc9oRmzzJ8H6FvX+UxHV3fPlB7Iw8F42jmGPPKICE7VOeWIecl0W8qntvvaZVcCv4sV0/gBRw7XbzzK957CLNywW9N+UXbOxbB0p7Owed27buWNmVsh6aq1oJ/ESmLmgm3sWMX25mZGNwC0s69/EQM7l7Or/wVW5LZwxit3smgbeCmseUWmgfHNS9g9UiTZlqa4Y4LM5FaW+cH2hrGI8Isxsd2CuaU3YyKcdc4txPoar8XKe97XmBtpaxgdvbppZCSVmZzsi5fLxaHW1kLH7t1bnr3wwiJwabOXP7PZyxcqKn5M1MNc7INYtbGzCIrRTBHksAnFj49w/CMiDkaYEhURMetMtyg/M43bnwtcjAU2pbGmDAfisguxZg9gwjSMWZQHY3j/as4NO+e6sGjmy51zm5xzo865szFBfhlWucrHgq3GgLhz7m7n3AvOuTGCSG/n3Aqg8Uy2r4pT2X/hqWfSr2fn2SvZ2beP5/Z8h1fd0MuyxeAJ8OIlPPXIq3iofC9XnfcUa/cMsGAMs/S3Y0J5VfBZnsfE/xHsO9+OWbVXYefXGZjL+rKYX2lBdVnz4JAu6u/fmy4UcmzpfR7Y9+yFF6awOekEkIiJTmCegqXBMQabi+8G6OjqXoQFqhWBR/vWdYaR7BERx8o+oF5E0qqaP5YVg1SeBlX9VxF57HjKPgY5uN89lSOKI46e6XZfn+rt8cJUrIXAdw94x2VXAK+l2pFoLSYoB0vmhyk3MM65cefco4A458LgrbdhBTjOxQKqylgQ2cPB4wNqygbb2Qpwv7vPW8mOSxbR35+gUsEs6X6ACl6pQHJhgnJdieQkUP8onZe+iod+fBE99z3AZTlsTngfJoSCCfHWYDtXB+9/DzunbqTayCCHWdDLS4lEQpB8ulhkMp1euLe9PT2wsC129qYX7gvGP4ndYKSxOetJ4N7g2MUJ8s+DGtcOkEs2PL1j3eMPv/72v35x92h9w/bLNjxz59oNPcd0YY04vQmqevVhN5VRLMJJIrhh+aGqHpfHNKjgNTYl5eqkISJ/AfxEVeeUhy1yXx8Ol63H5ncngB243IHF913uYVx2B5APgrpquZQDWwQKNh97LyZiYZJ8HniotrCIcy7unCs756Y28yhgrtw9mGjtwsQ8FPSnDvoxnGuCl/9aPeOZi+kZfC333Qcs2c3CC59mzfmNjI2CjoKmU+Qn2hmozzJ2HvC9eibvK5JagFmrI1j/4iaqgVtLMOs4F4wvgwlyO9CcyOc3JMrldDGVunW8ru6ilsHBC0YbG9rT8XjdaH399rH6+s1PX3ThY5gAt2G5zx2YMD+FifQ3sAIx4Zz7mUCqfXCg4aJNG1p9T/zNS89YAly2ZfGyprXWPSoi4lgIg732i3LQD/5fsdzbMnAT1iQhBTyhqh89mg0H5SI/i/1WxoBfUtUREfl4sO2napZ9LZZ18QI2ZfN+7Ob/JeufyIedIT6AXZvmpA6o6p/P9hgORhTodShc9kysK1NYy3UvLnsnLndg3rXLHaqsY8NBX3O5jUHd69CVvLu2nKZzbjFwo3OuHxPyQeA+55wC/w5sWsLugbPpzTzDmrZBWjY45549wqdpTJNf2EKu/jnOGXmt++4zPe7SiSc470M5mha3ktvZxOiGMRqamxhtyZAfXkrfs0DbY1z0Ox7+Th9PsaYPZzUyungR/X2TpId20ZFQvDrsYuYlCoW3xiqVM8rxeMKrVGgeHl5Tl88/u3jnrr0/u/yyxI4zzhjbvXix+rFYk3reKCbk7c65LcDtQX71FUCn2gG4BugN3g/5GbBlde+LFy0cHhyry+fHC8lkHUB9frK1Z83aRWs39Ow5wjGJiKjlYMFebwJ8VX05QNAN6TdV9UUR+aSIHK2r+teBu1X1P0XkXcBvBK0HF6jq9SLyeqx9Kpjoh5kXGw61PlY964isvOnOl7Ru7L3lxhNt3fh+4A8xw2Az5j07V1VLItKExbT8ETbd9CURmcR+x9cG445j1bk+oqoFEekFvo6lNE4Cv6iqL0zZ5wexz53Ebljep6oTIvILwHrMSMip6isCC/2tWJ2Ec4J9JoH3EQScquqgiHwOmzb4hohcAfxzsE4BeJWqjjILTKcot2Iu1vmHy3qYm9irebUdc6O+1Bq1COwzsBNjexAFvR1zM9dilp6J8I6a9c/DjtfzjXww08LwmWmKl0+QeXEHi3PY3eagcy6Py+4BLq3gxc5j00oPbcN9bDsud8g7Z+fczufcZRsVWXwm2zz4GF/jzauSFPwkRYlT2vsG7nnyZ1zQUMfkitVsHljOnq0AwzQtyTIyNkRzA3B2llxlAUOSoLy4gcFUgVR2gAUAe5L5/Ps8378gVqmQKJVKqcnJdKJSGUK10jg2Jmdu3lzpOe+8TZVEYhUW2HZW+Oec+wPn3D7nnP7aP3+iSXx/1Vi6blnbeG7Tit076VmzdglQWruhp79vXedYR1f3zb9w9/c/mi4V2s7Z1rt5x8JFzfFKxW8f2jdK1QsREXG0DGCemlrWYp6tkDXAfwSdjMLgzqPhPOCKQMwSwH1YDMrjwfu15SNjYV1oEXnmMOsfkUCQX9K6ceVNd3K8wiwi52MVtq5V1YGgDeM/YFNWt2GFgr6lqreKyG9R7a+cBj6Hid3zIvIFrLjRPwWbzqnqhcFn/CesRWMt31LVzwRj+L9YtcOPA38OvE5Vd4pIc83yF2DtdtOYiP+xql4iIh/DvA/hfhGRJNZx6l2q+mhwYzFrHdCmU5QTWBDOzOCyV2Ju1XtfYs0eO/VUg4tqmfqjBZdtpNoMA2AQl70DK7LehLliwVzODx1k/fOxE3o5kPoDPtOXo6FYJLFlF4tW+8iPdtGRC3o6X42VsNy1g0WrEpRfBnp9nmQs7bKfDN3r5q6mEdgd1JzmPF7YglkDgsuK8LvSwEQsQ36ijeGmFkbe8TIea0tSzIC0j1L38n207Aa/rkRCg8/uZRlpVLziEE2ZFKVEGS8Zp5gvk2yJl0ptXqWSi/l+MlUojrcMD2nz0PDzi/bufSSTzxf729oSK7dsqfd8v3WopeXiodbWEWATkD9r0wv5njVrY+s++ZUzYudfdc7yoT1Llg4PTO5qaNn+W3d++g0Etc3/6Zd/o/R37//QC3ixn5abMun4cGHpUHPz+LL+PaFlXGIaPTQ9a9Y2Y+75CWDr2g09/uHXiJgnlHjp9bAHazsYZlVsxERma+DajgG/dBTb3gA8qKpfBBCRBBYkGgpPrcVdEZEWzFI+/zDrHw3T0brxlcCtqjoA1oZRRD6LWca3Ab8CfPAg663G2j0+Hzz/PPBbVMXxKzX/P3aQ9S8IxLgZ80KGN0QPAJ8LvBjfqlm+K7B0R0UkR7Xd49McWAo0HNtuVX00+EyzOjUwLaIcnLBxzHKcKS7CLNuwePmJMI7dKU0V5oNZ/p0ceOK3AmuwCl134LLNALjc8CH2dR52VxfOP5+TZawMPL+QoUcuZsOTuFwF97ELgNdMkjw/T2p5nPJuQT1BK3EqbcH6GqQivRm7YGymmib0P5grZzMupx9wa/U5zh0okBw7gx0DZeIXxKk0eGgiT6IySuOyMvFiilLvGPWKncxrSySWjJNIF0n4PoVyHflcmcSmMZIbU4WCJErlTDke70DwmnIj29v7+5/O5PMlYNWZmzf7Q8PDy0ebGsfjpXJRfL9SjsUGr37o4f6WXO73gR3/5z//dedf/+pvl3rblnypt23Jltv/4IOt2AUMgF0LF12ydO+eRds7ljy5ZdWqJ1dv3Lhw4d7+MLCrAHSt3dAzLaVde9asvZQDL6C5njVrv7t2Q88p2ULuNONgovwd4PUicn/w/k3ApwKrr4I1XTkaPg18WkR+JXj+D6p6p4iMiMhPONBS/nPgLmw6qC/Y70vW58CGD4diOls37kdVHxCRlSJyA2bpH0/WjR7iccjngLeq6pOBe/qGYN8fFpGrMMPmcRG5LFi+toGQX/PcZ/obMZ0Q0zW4GDYXM5NWxA+xOdsTb4Dhcj4uez82txO6sPdw8KIUB587rm5r+Ah7a8ZOlBgWxFHCCoaswCy+8EYgDUxMksmOU9e4jN0/HaU+maZQH6fyvZrCIYvjlBIVYr7iLbMxZD3Mc7E5DChbwa6lK9j1mI/gofIsZ788Tjmu6It5Mr6PF9/Ksu5nWL0D+5H0AJfnaDyjngltYmxnmbiUSEyM0fAoMLFob//fqvCB8br6sZhfqSzdtetfUsXiGBb0Nhj3/RULBwZk4cDAY8VE4sFKLLYgVSjUe6org7E3vubRBxJXP/PE/1z5xOPbAHomxl5Rc6xWvucHtzde+ELP4++77RsjrOv8jnPu++c/+1wjdgO1d+2GnpcUcOno6m4CKn3rOo9bPAMLeeocYhab/77neLcbMWcoT7VAVVWB35yy3BumPP9czfIHnWMO0qzef5DXp24bzMK7NOiW9CjQp6qVg61/FExH68a7gW+LyD+q6r6aNoxfwKzvv6xZdpRq/YWNwMqwPSM2v1s7NfAu4Jbg/4MH2W8jsDv4jt5L0KJVRM5S1YeBh0XkDVRLCR8LG4HFInJF4L5uBCaDRhozznSJchyLVpw5XO7k9gh1uS247JepRl/vfEn0tdHLS0+E3qPbRzaJWbiPY6I7Gjxfgc2L/hSXGwD4ez6YWseDxYvouaeOyYIATYxvxG4W9gd6/TpfSQ3SfHmRhDdM4/eDCPIbgKVj1NU1uOyTuFwXdhPgVfCah6gvPcfZ/TF82caS/mFaJrAAszDauRlzW7VOUL81QbnQyMTGCrH6QZrL2M3Dve/++tdG/vZ//1Fbsli8vJyI9932tp9/xDmnPWvWtmKiOYYJWTJZKuUpleJUW26Cufo3N05OLKV64XgRm8sDqEuXSnL5hmf3B4E458o4N0RQOKVnzdo4Nm0wsnZDT7mjq7sBy+0ud3R1f3Fq0ZFj4FAVn5Yd5/amhY6u7jTQ2Leus3+2xzIfuPnmm88Ebrnuuuvenk6nufnmm68F/mT9+vXH1W0uCMT6SM1L/ar6C8ewibcGc7FNwD8Fgny8nPTWjar6rIj8FXCviFSAJ7Ao6y8B/5eqGxrshuVTNYFevwLcKiJhoNenapZtEZGnMIv2PQfZ9Z9hqZ/9wf9Q7P+fiJyDXTfvwoLMOo/xMxWD7+3jIpLBvKSvptrFb0YRuxk8yRu1ZPg+VT2YFXnq4bKXYsJRAZ7E5Y7uB20W7C9jVuxUfOALuFzROdeMCQvA7Y6PJbA53mWYWBSB23C5YVz27RVksSJXxPE3ERQZ6aOteTftqxcx8MIS9v7TThZdO0jTb+9m0ZIY/niOhp1l4t4Gzt7tE9uGXRSewYqa5LD5n9DF52E/7rB85rOYy/8/MKt6ERaYVgDoWbN2ATZ/lgZaFJ4Xyzlei7nuw/xqH7tLvnfthp6e8ED0rFm7Mli2Ajy/dkNP78EOZ8+atWdi/auTwbjuXffJr/RhzdELwDeDyl/HTDCG1x7krf61G3q+fTzbnA46urovANb0reuc1mbwHV3dq7Fz756+dZ0n/yIyA9x8880LsdoBS+666y7i8TjXX389mHfqkvXr1+843PrzgemIvj4YIvIO4C2q+r7jWLcXuDycpz7dOXUs5dnE5X6Gpekc5L2sh7lvz8TEoh3LTX4GC3IKS1RO5UVcrgj7K3w9BcT/t91cnh1sbwWWAxhudxjYEkPPAq3soS1dwWvpYG9/PZPjGfLD9UyMAZUv8Db/an7WNk5dtoGJcorS+Bu498+fY/W5wfa3At/GXEVvx1zyD2AW9jlY3vAgdkNwaTDmPPBl59wBgVZrN/Ts61mz9qtA/Tfe8faOSjx+bXZ4eOG19z+Qbhob6yjF42eN19VVyon4rsbRsYFUsbhpyvq9HMH70LNmbRLzCITndApY1/WR9/z3uk9+5UsnQTi2YTcnUyuyPX2C2z2phHXBZ2BX7ZiHKMb8/a1/iMAD4nkevr//fq0N+G1sDnleEwjwtLZuDPKt34AFoUacINMpyjMZ5DWXuQ6z8how0WjH3L3XY2lRT2HzI0tr1tkGxHDZd2CBWjln1bTOD7YRFjVpDNb7PqG71+V+hsv2jlH3jl20vyJHY3YDZ46s46HBNWx+GvgZLjdWcG7XKPUvKjSOUv/8M6z570fp3BuM5SlMgBLB2Oswy7gDu5G4m2rLxk6qdbqLmNUcpnrsZ+2GnkLPmrUXLt69+5daJwYbO/J7z8q0lypxLfv7ki3j+xYs2Lht5YpN+9raXnDOHc9Fvo1qUZMwqCMBLOhb13nCcQZrN/T4PWvWfgebQw6nNJ5eu6HnhcOvOfOcgIv+WPZxX0dX9wPH63mYI1wXPvA8j3L5gNPu2pkfzvxEVX/nBNdfeZKGckowXaLsc2A1q9MTy18OreA2qnM7zdixH8Ysuiex3MMWTAzHsfkXMLdTlsDVWyLWNkFmoaCjTYyPAiO43DcP3G9ucLO76r8f4+LF/bSuLJIc7KftgXfx3a243BiA42P79tH88FYWv9jL8kU+XmghdzvnHgmqik06534MvA4T/Scw0b4CE+SmYI/huJOYYL1ElB+97PLVDXBpdizXtDK/7TWVZLxSicVGkgsqgxkpFp68pPNxPxZTwhrgLrsAKB0u/7qjqzsONHV95D0KrKNaRW0QSyMpUlNT/ERZu6FnggODU05r5rkgQ1C2FUBVCfKPQ6I5+YhZYbpEuTyN255PCNXo7RLm3m0IXu/HhGw30Be0fawKkEV/t2Fu23faBmKZrSxbDpqpEGucZGTPIvY9DeCcWwLUOedeALjIPTzxLec+ic3lVno4Z1soyAHjCxgef5wL10yQSWDzroNAxTlXB5zrnNuF1bPuBjzn3N7gvWbsxuHRJIWrYlTyk2TSIAVMuMP53bGvvftdI8DPLbn0kvNWbN16xnm5nlGNe6UJSaQULzbS2JRuLIyPX/3QQ7FUvjDe3t/vw8diwM8DRVz2PmDoEFHsFwOXTCZTI5lioR6bCliFzVGvBL4Y1cGOOAz/SRDV7Ps+nudNfS8iYsbxjrzIcVHm4MFLpxdWxGRr8GwXVllmH2Z1fh74P7jcdw7ah9nlnsPlfgKUK3hxH5FR6otlYoky8XIvy7Z1c/5uzMoGC3B6pXMuuX8Tzu0F/hv4Uk1Ti3D7OeB2H/neZlZMAssaGb3qfDac18pQmBe8BGhzzg0E28I5N4FZ9aP1jC15J99Nv5IHBy6newPw9865bT1r1p6BRS++KVEsXgG09XV09A9nm8cn6hrq6r38C+lKYWfCL42qTyJfl164fPuOcnt/fwp4fc9XlyzBgm1WAK8B3ln46IIbetasPaNnzdo1PWvWvrFnzdqf+8z//ePRlz/xyAOZYqE5GO9OLKrzOWDT2g09p3qXsogTYP369fdikciVGlH2gb9av3790eQBR0ScdKbLmj1YIv7pyr3YD30lZnF+FXj4EOlVL8Hx0fYb+OmaVnKNi9mz2cc7t0Q8MUmm0EJuDNiEy17wIRZeNELDyGq2+NZAKVjfOauq5rIydZ+Oj4KVuVyVZWRzOwOLmhmtW82WVbfx2h6f2CgwHFQtuxh4Hpfbi1mkL88y1jRE9rwz6X20grcAeIVzrvwucwu2AMmVm7cUXzj3HPFjMe05/7yeLZzZ9/7CN84Z2eu9hoImNSF1w5XGTe1UDVrx9HzMZb8HoJz3EoPP17/fS/i7/ZLXSmCNn71z27K/+PTHuqYcskLwF7VyjDgi69ev/5ubb775S7t27frPTCYzDnx0/fr1m2d7XBGnL9MlnBUgLiKi05FzNRu4bB1m/dUBP8Hljq7zicsVgB8HUdh6tGIc7DN9A1ffuI2lfWPUT9YxOSzop+/niti5bDnjCp4cw+Z7r19Mf2mxTYO9ESt3h3Muk6T4+kt4ZvVr8Ya2u/O8u7luzzaWft85N4k1mLgUaI5RSQHJOiYWXcDG54ZoeqiL6zY6PpYFfhe7qRjAZT8BH90ClHezMBZjdXYHSy4Q/B9iKU9j2Pzu+YCc/+yzrTHfL2w4b+1mwM+T7l6S6v9x7/LlA5Okz53cFU8u7t55QI55PFNJUlO/ujQeq1NfEuJpWInIw250CMYVuq1rOVihl4iIl7B+/fptzrmnge3PPPNMJMhHIMhPrs06eKuq9p7A9jqBJar6veD5m4HzVPWWExnnEfb5u1g++c9U9b0nsJ3PUW1qcQ9Bre8TGdu0iLKq+iISVqmar+kSU7mQah3ra4BvHmbZl1KtuHUsXHEBGxqbGF39HV7948e4+A7n3OhaAJf9ABZY1RCMaycmVAnnXBoLxEouYc9VBVJLh2l6bCtLV2UZuTxB+3NYINREsM5wgUR2Kbtb1/Big4d61/PIVdfzSANw5Wghc8Zoqf6iiXJ6qDWVexMZ/gUoK7GmXaWO3OhI3bK6yfw7zyy8ePf7v/jFvp6vfu01BIF+qVKpbe1zzz3av7DtgbNfeFFWbt1aYkNuomXN2m+3mJCWsEjXcCpFy/nYo6qsm9iTXBGvq0ymW0ojibrKoF+SFFYkZOqx7MLmuFdh59tz6z75lQpd3a8GHupb1xlZzRFH4vRK4zwxJlW182BvBCWW5RirOXZi1fK+B6CqdwB3nOAYj8RvAq9W1TmXiz6dLuYw2GtmTnSXXQ0swOV+Ok17GD3E4yNjlbviuNxE8PwCzMJ7KKzYdQj62xgebCF3+6Xup7dNeW83VgY07AG7AIt6/i4WvHId8LUV7BzJMlpZwPDkxfTsHaJ5yZv58atx/7pkJe/o6mV5Aug8i+3rfGLD49Q9uoDc1gnSDbtpv3mQptIE6eVFTfglTaSlojfEKN9aIV4HLKofG1+tkCwmE3vb+/euCro5pYFkLFXRdEspk8347W94+IdXlsbiCYCeNWs3YTcNLZir+YfY/LEAPWue3bBny7Vn5r24Xu4lVBddMnLXwgtHPzXwbGOp4nmvUZF4vFIJz6vngtKaPw3+jK7uX8eEPseBtYWnlaCk5+h8LahxGhPHbhAjjhERWYk1iHgYuAz4ORG5CcvSyADfUNX1wbJTWyS+BmtXmRGRlwF/E6xzuar+drDt/8SCXvuBX1HVbYGFOoKJeQfwR6r6koI5IvL7VGuUf1ZV/0lEPoXVefi+iPynqn6sZvkY1s/69djN/2dU9eNBTe1/xIygAeADqnrQxjfBNv4jGJsCB+zjSEynKI9jH2Cmol/T2Bc9Pbjcc7hsBTthjt416rIrMfGM4bI9uNx9WLcnD5unvesw+9yAy/bG0AO7bVmqlYelS+WD8eQw13F+Cbu3DpFdNUnd1nU82I+1MKOZ0TObGc1hqUJnf4BvDONy33HOdZ3J1nZFmkdpaAW2jtLQXiLesJc2PxUrlJNSTjfGx/GTMf8Knjz/Ib203Dw0tLxlaKi+eXi43NHX92TD6Jg/1Nz8DxXPa2kr7lvQsnJ8Mp7293oJ7ci0FZcNv1j3TH4wOYJ1ZVmEnbQZ7CbnrrUbevb2rFkbs1KZqctBJ8TTxJY9CzeufmZjz9dw6cU7d6UXDO5buXjX7odah4buW7uh51D9rJ/C0rNePOrv6gTp6Oquw2r3/pSa0qcR84IGzHMUcWQyItIdPN4CfBQrKPTLqvoQgIj8f0EHqRhwl4hchHnnprZInMCacFyuqr8drPuBmn19HPi8qn5eRH4V+BesVzKYQfIyrJriHVS7eRFs5zIstfQq7Ib/YRG5N2hi8Xpg3UGqiP0GZjB1qmpZRFqDetsfxyqW9QclOf+KQzck6QSWquoFwTiaD30oX8p0ivJu7KDNTOk0l3vyyAud8D42HsdaV2NufIC1uOwz2AV7FVaIo2b72QsxAX0Rl3sg2OfBbmpeDVyJ3dnHMNd6N8AWlr73jdx9Vgf9vR66CAs0S2J3hpMcKFJZXDbp4KJR6vv2sKDYijX0WMDgtgreniyje8fiDQsXZfa14pOflHRqGX1ve8fO2594fmBVb6pQmFy6Y8eyVKn0ykIikS/HYm2e7495Z8ZGUo3l59Itpa3qc3ZpPLagYXH+rPxgcivVxhvZ4HEb8PaeNWvHsZurvYONTSO7F7S3xPzK4Dnbe0PXdnr30iXju5cuefaZCy/sds4d0vXUt67zEeCRw3wvJ52+dZ0THV3dXdT2yo6YLyxmGlt+nmIc4L4OrNmtoSAHvFNEfgPTmMVYNzzlIC0Sp+SHT+Ua4G3B4y8Cf1fz3m2Bm/w5EVl0kHVfBnxbVceD/XwLi6N54jD7ezXwqbAZRXBjcQFWDvhHwVhjHP5c2QycGVQ6uxPzBB41MyHKc6oM4Sww1X1fweUe5OCdUDoxsT4Pl92By219yRIu24RZyLmaV+uAK/Mk+0doWOATqyQoty5k8HwsunpPsHwFO8mHMHHeiQV6XdDIeLmB8X3bWZwdoHVpisL4Aob+60Ke3/QIF7+jUvCu1CLtnl9u9KSMZFi4dsOG7wMrxurrSyPZ7ArxfUTVS5aKS+qKkxJP+4PJhkq7X6FeK9IWS/sdmEXSj/0wurAbhQJ2pz2KtatbtGvhopYd7YuHAPGU/gvYX270bswjcjw3SNNO37rOOVfhK+KoWIKlLUYcH/s7sInIKuAPgStUdShwNaenYZ+17Rmns1iVAM+q6jVHs3DwmS/GgnA/jNWZONo2n9MuyofqrDP3cdnlmNtjL3DfMUVN2/p1VAUwiZ2Ujx20QpXLXoFZu01YVa0h4LW47O1BClIt4Xc2QbVu9lJgSNDtbQwtzZOcqGeiERO5c7CSniUsorkZE/HtwfvXBs+HHufC3UNkbyiSWLGXNtnO4hd9Yi/+Kf9y596h7HkV9SqTpFWE5lJLcrN4vuefk1r2dMcFl5Y1Hmsezo0v7926J14sbY+Xy93lgtcMxL0YsVjKHy56yfie9oXlhrGxXfUTk00E7dcClOqcnvrKlxKl4ntSpeK+c7dv2Z9vHBZHAehZs/Zs7AZlAptbntXm5BHzmshSPnk0YSKdCyzYN2DtTQ/aIpEDWzxO5afAuzEr+b1YjYSj5T7gcyJyCyasP4+1jDwcPwI+JCJdofs6GPdCEblGVR8M3NnnqupBp6hEpA0oquo3RWQjViviqJlOUd6FnejzlauwylCtmJv5WH+wazErFaydWYID7+xqSWPfRQ47CSvYSbSEmlKAALjcIC47jInrjmA9AbpTlIbb2dfhI40pypOYm+UyzLIsBn/h5/Cxm4YkZrne9V1e3RanvKyC16x4SWy+tz5O5cX68sRQaTy+OCaVeCmVqDSnx7+eyySaJxfFLs9kio3jGstV/Fi8rTK4t1xMTOZ60/HWc8Z8oEV9FvsVSfT1N6v4ev5ofcPS+onJv8BuKMJz8JFgTM3ACxdt2dTHlk1bgvdqWzkC0LNm7bWYSylkTc+atd9eu6Gn1oMQEXFEgnZ9GayiXcQJoqpPisgT2BzydqyRzeFaJHYBNwXz1H8zZXO/A/yXiPxvgkCvYxjHzwIrPZzG+qyqHs51DfBZ7Lr0lIiUsECvfw26YP2LiGSxa9Y/cei4kaXBmMNptz852jHD9FvKZx1xqblLPybIBQ50FYPLxnC5gxf9d9kzg/WKmAU3iFlz1wFlXPZbBykZeT/wGOa+vrDm9alWcsgPsMYUi7DazhuxSmEkqGwM9n8pdqFZhkUp5jjw+57AorUvDv7vuYl/W/swl5y7hwV1Y9T3b2fJ4+v554mb+b3zL0s+seeS3NPLkl5pzBvyn889m+opTcZe6efYnCxOJhJajC0b2DEcS2g7mfJPEg0VSWUrL6ry/Niu1KWVohdvaZs4a2ysriFWlj7Mpf4EFnU9CWxdu6FnfxpFz5q1MazEqMeUG6KeNWvT2BxVLcng2N1/iGMWEXEoFmOtZqOI+aNgakveIEf5gimvfeAQ6z6KxdlM5Yopzz8XLL8V6+U+dTsfmPL8oG2CVfUfsajpqa+vPMTyZeD3g7/a17uxqomHHIeq3lDz1qVTlz1apttSftk0bn+6+QnwPJCrSWVajAUKNOOyA5hLxgfqcbmdgRv6kppt3IvLbcRlbwiexzHBHD5gT+Yan8RlH8ZcuM3A5kMWKAlKZAapVmBzFq1Y0NSjwC8rpAvE2uP4jYrkE5ba24cJuNj6ua3AVufcivPZ+K5X8PCS63l4A+Z66sCixi+6iJ7L9mQX5Z7ZXHj0jO3bdycbS8ml1w21DW2qa/cmxibiuwtj8Tp21VcmxitJ74JEXenauoWFhyf3JbLxdMWvFL04QNYbfbEc07HiQGII2BKkMh0qkr0eu+PMB+OlZ81aDwtwa8NEuIwFi7VwoBcgIuJYWEw0nxwxR5iJQK/5iQll9SJvaUivoRqw0Ia5XtJAGpe9nZdab2sxEXwCm7cd53B9ga3AyNFXg3G5Ii57TbDtvbjcV3HZ64CJCdL5PKlCkuJADD8dp1AQ6MGs7124XC+Ac64ZeO0EmXMeoXPhjdy9zUMvxOa21wBPXc0TzcN12faWpQNfizVVvOYzxxcn6v0LUpeONBUnvMvYjJbH4vVeUocSdcW9sbS/sTCSbC+MJDvq2vPbAPyS1wJoQio9RRLbAkE+HCuwuahxoL5nzdpw7BcF74ddt2pbXuZ71qy9N5pbjjhGlhDd0EXMEabbUp6/gV4vpY2XRhA2Y8FK9ViwQhhMFWLCY5bt9456Ty67EBN0BXqOUGAkDCQ7C5d9N5DeyaIxRTJDNKYVKbQx2Jum8F0xq3QXUIfL/gKgb2Xtptt4vUyQGWlmZFE/zR0F0pdkGZWslY++dDH9g4vp38dKrsGCy0ZHd6QXFUZiF8bTlXLj8kkd2tiQVEVL4/Efju2JfdfzeHsqWz5LfQ8vroXKhLRpRcoTe1MeNTcePWvWpoDi2g09WvNaGisosBTzVsSxsp3x4JhIsI231xyH/uBYXNazZm0v5rYfBzYELRcjIg5FZClHzBmm21LuOIXqX49grurazlpF4H/2zy+77E8JC4XYXPTDR711i/ZuJYy8ru7nXFz2Nlxu3yHW3Iglu4d9l5dWkAsELeyjtTxAi+yj9RNL3IvfCPazzofVAucLNHfSU87R+O17uGbH1TzRM0792xRPRmgoZxnLAZ7v0+IXZTSe1sZKSZbkhxKVkW3p87yEjpQnY6MS121eXP99cjA5WswlLsSC5B7OLChuaTpjMu4XZbA4Uh8b2Z7Zq758fe2GnucDV/TrMfEc7lmz9rv8/+29eXycZ3nv/b1m1T6yJO927Dhe5slGFpEEUkIIBELYUvbCgdLlFFrodt72LfS05DE9bWlPT9PlsJYXKFAIe0gCIRBCQjZIlMSOEz/j3fEu2bI02jXb/f5x3Y9nJEuWZVvWdn8/n/lImnmWe57RPL/7uu5rgUX2b1Dx7bbXYS0anbkKLRKwH02tetL+zFEOorsBjTgPuTRIe3c569lxCpyl7JgxTJkoG2MGRCSHWpNdU3We84afHcBPPU05IMEAT4wI+PKze/FTd6IpAV0nCn/4qTQaCJHBz57cTtBPLUNdtaDBW+0Vr0ZRq/nRUfuE66seGuAURksvrWOgbkC7SA0cYvGOh3nZT1+l+8SBi3ZzwQ1NZBc1kT0MxF7Jkxe90v/pHfAJ+v0lw900DC4g2wA0loqkBjsTzQMdiUiyobBVImZVMRfJScTUF4cjw7Hq4qa6pbkfpL7Y8ZMg7YXpBhGgdsk9+/8TPxXZc//C1fm+2GZgi5cJwve2krIAL0et3svQoK921FXdj7qow8IAtWicwgOoZWMYWfL0RnRy8pWK56rQALpfnHTdHQ5lKTM0790x/5jq9oqhC3v2izKAn30WP7UbrTPdjp/tH2ObfioS6S1hDdhrgLF6/DajwlGDWnzto143AL7vr4uTW/ER/nM/1F10mMXXLKGju5HefWjq0xrgYAN93UNUDdYxcPwmHv/2e/yvjogeTzLcVcXQSsoV107U/K1lMFPL4FOo2JdKeVlQHI6USoVIb/+R5LFIohRNNhQWVi/MHTJFGU6tHnw6GjdP2917JFqqj1WVaou5yEGA4M5lETR6MoK6nX9qtx2k7JZusNegDv2fKQA/Rj0AV1cMfchep0YvE/y1dVOvrnh9EHWvj2bBGM85HCGucIhjxjDVohwGe82dOsC6PjzZXNjdqPiM1xaugOYml4AXGekmL6IBWgAvuYBDL+unpn0/S284zOKuXVww/AZ+/iSaCzgMdMUotSyjYwu6zlq+9n42j5/auZL2NcBC1LoG+D5+KolapIeBZ1Ch7okmTHd+IFqT74u29x1Jft4UZVHdsqGbqhoLC6qbc09EE+bB0LW+6tVHdw52Jq7DUB1JFtccfN2qhVDzNXu9FlAxObN1rnuwpffs01HUhb8XuAe1fDfYsRy076+Rcj31B9CcwpXoROg+yh6HSo5qPW2KlWvXDofFFQ6ZBLZu9L+i39cvjG6xKCI3oHm8lwPvrmwUMart4z5jzJvPy6BnEefLUp7f+NnH8FO/ws+OF3F8CM0VTqD/sDvQyOcU6vI+DnAh+x6/lmdXLqNj8XFSqUayhT5qiiWECKaERnm3oyU8DdBp+zlX8ggaRZ5Cv1S7UQv2vZQDqR5Bc6HfLBEONG/ohw39AC342ceCtPdC30FyXiYYCNJeA3d6r4jESqV1txXSNQvze/qPJNbmB6LNNQtzN/QeqO42RVkAbPYywejI8gLaOAJUaIto/vR3vExQDNLeg2hqVmWjkWew9bttXnPGPgAI0t5mNPc6pBe94X4ATQm7d5zPwDF/cYFep4ltMPEp9B5yAHhKRO42xlSmNu5Dv29/NsYhxm376FDOh6XsRBkYU5D9lKDu2Rbgl8CxE5HWfmofGgi1DD81CGR/E96IWo9169nds4jOeB0DiQimjnKThyfxs+N1TgI/W8RP3QW8CnUZ70SPux51n4fu7INo8RcZ6or25fvjzcZw8aGL00dA9nuZoGCDtd4I1EXiJtnfnlhfv3x4S7y2eCw/GF0UTZQKsapiKt8fAyusQdpbjgZt7UIFs8GO7IB9DHiZYBDAywTGCnNlKlonY9cNx+7zqyDtvYiuU/fb86xCPQ+pca+LY14iIlXossl4gZSzntbW1jrUm7S/ra3tbHuLXwPsNMbsBhCRO4G3UFFvwBYTQUTOpIf8vGeqRXk7s7uAyFSzgXLllxXA1yteC2vBCnrTWI6K9GKABMX8Io732/0a0KjkA0DaFis5iE6KVqDu8D3AHvxsCT/7FH7qt+y5s6jQL7Tnq0Wt1TiwuJiXqvxgNJkfjBSKw5ElxvAR4LEg7d2N/v/UARQGo8P5gWgMiCbqi93xusHHReg++HjTz9AmG0GQ9i6w7wF0/ftZ1EqpjGhvAwjS3lLUSu4E/stul7fjuiVIeyn7Hh/3MsGIG42XCY6gVnHIziDtDTO6aIvDobETO+dIhshJtLa2vh74NnZJrLW19R1tbW33ncUhl6PZDyEH0GyL06VKRNpQL9knjTF3ncVY5iSRiTc5K9oYGajjGEllTnMEiOOnqvFT6rZW0XoatWYjlK1KUCuwz/5MoO43QTuTLEf7+v46Ggi1Bk3VuhU/pW0k/ew2/Ow3gIeGiC8/yKKLe6mquodXvfw+brgcTecqmiIxU5BhU5CG4Wy8FyPVqGXf7GWCIeAgYqR2ydCGSNQMoWvna0RoR4O6omgJzX50vTikycsEh4DvocFvGeBeLxNkgrTXCrwJLcf3O8BvoiI7gIp6CyrOq9H0sQnxMsF+LxP0TrylY55xNZMp2DOLsBbyt9GJdr39+W37/HSxyhjTCrwH+BcRmc2lmKeEqbaUXwAuFJHasKelYwQBmsLTgl6rEiqmCeDn+NmnTmzpp3ahM9TFlN3La1CxPoCK8m1orq+HCtjRUedbRkXvZctFnTT2A405khdfyvb+LlJPomvb/4iY1mI+et1Qd7y/92BVDF2zLlBORfrxwkt7b65uyS0ATGdQ21K9cLhz8FjyUMemVC/wfqAUpL2voKJ8md33KwBeJjiONuHQC5L2EpTXhD00QGwNmie+nZMnki1B2mv0MkH3uFfZ4Rifq9GJ71xkJXpPqaRknw9O3vy0OGj3D1nByG5vp8QYc9D+3C0iDxH2j3ecYEpF2XYF2YqmsTw2leea0ah1ugEV317KaTw/w8/eU7HdCsoR0S1owJd9LXsMP/UAWhhjEP1idKFrrZvRqO19qBv6UjRwqhkNnjpQMZoNjBTlA4voPDpI9c4qhp9rJnvgQg4OAh5+dmsMth59yfrvFoejF9hz5qiokuVlgiJ+Kte1oyaVfbG6tTAUWdq9p3owmjQL7Pt82u7zeuAdqOVcj65XZziZKrsNaKR1yArGj+LPj/O8wzERrUyytd4sYj8nT2IjjHQ/T5angHW2Z/JBtK3ie05nRxFZAAwYY4Zte8PrgX88i7HMSabaUga9KV/NfBNlPxWxtaxBXcer7e9r7c+daMpAuSiInz2An3oWXafdNMZRC6iYldDiGg2ohbwJP9tpA7i22O2WU27UUEkNfmo5EPlHPhQb4E9Tt3PH3gb6a1BBDHucvtE22Cit/3Vqcr3RYvfumh2dQf2jNjL6leikYEvLJfVVg8fjnimxsFSQhZGo9BeHTA+wIJIoydo3tF+856ctH8r3xSIgQ3a/XwN+OPoNepmgJ0h7LehEbgW65n3Evs92dLKxBvUEdAO7rGvc4ZgUIpJAl1s2TfNQpoS2tra+1tbWd1Cxpgy842yCvWyP4Y+g2RlR4IvGmBdE5BNAmzHmbhF5KfB99P7zJhHZaIy5BPV8fc4GgEXQNeXxGtLMW86XKM+fYC+ttPUGYAl+6jHUSl1tX42ignchGnh1zEZgX4OKtUGjnzcBxVHCDromtBV1eYOu2Ubsud6AXuuw8Ec7KlqVorwEtZQvBI5cwrar8sSTgyQX1zDciIplo9220W5bVSpCsSCraxYPZ/uOJGPAz9DAqxhw5bEX6tZG4qXV0URpAVAqFegtDsdXAM2xquKmo1vrX4O61Yfse6gGjgRpbxlweFTd6/egLu6VqNW/BBXlBcDb7c8q+/NXTK7pucNRySXAnrm8tNbW1nZfa2vrEs5d9DXGmB8xqpa/MebjFb8/RblaX+U2jzOyNa1jDM6XKP/xeTjPTKGGcnesNaigLEfXguspW7n3oe7mP6YcDPeife1NqIupAz+1GT8bNuY+jH5mnWjbyNX2kUTTfZags+LNRSLJLaRXVDM0vIHdHagr+2Z0nflCYPGVvBAbItlSzXB9qUSzKRGLxhiyY9yOupyLQEEgGqsqLWz2+q5DRfmbNmXpepCGUj66s5SPpIAESJcdj+R64jFTkF3FfCQGsggV5ZT9+Ua0sMe9XibIB2mvJV5buLl+5dCK/ECE3v3VxzHSiAp6yHJ04rIbtZLHTbuwPZlrXd1rxzjM5fXkE1ghPtM1ZMd55nyI8vPAmnkT7OVn+/BTL6DisQ34U3TtZAVqCe9DLb019rlrUOEDzaddhFqSUXT9+Tb81Hq0dvNPULduEhXXG0edPYquOT/zBFdtOErz9YKRZrr6Wui6ELWEh9EJQtUyOqKlIj2FHAv6D1c1IdTWLs4NxWtKj6CW9huA+kiUnnhdAVOURKK+sB4/daH3bjrwU03NF9dv69xa/1ods7Sj68S70Cjwo0A2PxADXfddYMfeRbm62UK0UMoWoKVqQb45EivFkw0lhmoL2Xxf3KATnYi9TjvQdfdfepmgcq18LF4JrA3S3g+9THDawSiOecOcjbx2zF6mXJRtsNcLzJVgL01XugUVzl/gZ08unelnH7PbvgO1ZA+jVnIY/PQL1Aq9GBXhfsp5tYKKdwoVlRWoqL8OFfmwSMiVqBv7EOoSD1kJtD/AKx5KkGtsoaumSPQ+4DhqKa9G04kApFRknSlG8oXh6FApL6aqsfB8vKZ0GXCjASkhqShmUTROjrjpRcX6Vmwuc92yocWDx+Im1xf7ZWEgakDCkpqbUBHtQAuTLKMcxNbOyFKlYarX8eFsfG+ivtBUKkQKhcFY1l63TsoTl2HgWS8TPMfEZO04Byfa0DEvmctBXo5ZyvmwlGFuBXtdRrky1LWMVc/aT9Xb125B3bQxVEwSqDVbRF3Noau4yv79OCqqYbGQBXb7Y3ab69G16N3oeu9K1Op92h6/BbUq1/jc8SWfP/3SIRYXF/u7CvipYXQiEApyDugUYXkkZhL1KwaHTEGKVQuKR9D17XXtNB1JkL8oRW8+UiJfGJKuXG+8KlFXuDxeW3oaiEWi5sr6FUM1Q12Jo6W89PYeqjpGSTrsWA7Y8W2hLIz9nNzS8kU4UQ/73s6gvoS620EF/JcV2xaA54O014hOTJpRy3uTlwlGVGXyMsHTzAP3pGPyzPUgL8fs5XyK8lwJ9qpcnzy5MYUGbr0Btf4KqMDlUFENa0u/Ao2+7kYt36h9Pm+PudbuGz4flogsomLdglqee1ArfAB1ix9E044M8DafO54FWvDvWIqK2/3AW+3xsoCRCNtMkeUgffHa0gHUeo8Ay1roXjFI1aBAz1A2Usr3xRtFuKq/I9GdTBXbq5vy0XhtoSbaF62N9JWyEKmvacklBjqSP7DvdwAV5WE0nekFdG2rx16DWrQiV6Ub+qf22lxk99+MWtrLUXf+c+hE5q2ULe8mYFWQ9r7vZYJz0pEsSHsC1LmCI3OWOR/k5ZidnE9RnivBXltQ8axm7LzZasru2OeBl9nnqlHLOGt/X42KaA8qXEI5B/mQ3TZpn4+gn1UEdXcfRd3du9A13BdRC/RlaBWwKGrRv4Zyi8SCHe9mVNwE6ItEuT4SNZ2xqmK45rvCjq8+RknqGThoDDWDR6u6i7lIX6kg+VIukivm86/BmHqJEE/W5/dUpQqLSkXpSdYXopEYybCtZZD2jL1mdfa9P4NGhzfb63RzkPaOeJlgB2i9a9QTUOmBeAZ4xtbaTqHFRWrQiUmNfY+H0RSzh8f/6CbFZcB1Qdr7npcJjp2jYzpmDvMiyMsx+zhfojx3gr38rOHUkYxDqPVbh7qKN6MW7gWoxZhHxWgh6nYtoBZhARXjOGoNDtrn16BCVINGZPfa/e5ERfsCVOCq0aIhA6jlGO53nHIHnMWoxXwUnQDUoy7zauDldptBbCMK+z5yQIsBirnIsVI+0lsqyMqB9uSCWHUxF42SMCa6tHbxcC4Sw6CBa0sLf7HgRzvuXrwAJKypPYBOGIpowYEwrQvg/UHa+xsvE+TghJXKqFSpxeiaeA1q5YSVzUKWcm6bChxA089c5PbcxInyGXIarRs/BHwY/a73Ab8X5iOLyMfQ0rlF4I+MMfefz7HPBs6LKM+5YK9T4WdL+KkfoVZrPSoiJcpdmEBFsgMV1ygqJvsoJ/iHrQpfsMdIoaLWiU4ICug/+7qKMw8OkVjcQ11qIccPSHntOoFalC+iLuUeVHAuQV3CCXvcIftoRIU8hlq2BRFyNS25/sGIWZXLxoq5vvj6Up74QHuylKgtFmI1xWQxJ6VIzAzasSWHe2K31C0d7us7VNVhx1cD3AA8ychWjKATkQ3AliDtNaOpUthUqVBob6i4fo3oevoe1FUfHiNchx4X26XqalTUB1Hh3TQ6tcqW/3z05CM45gjzJsirtbVV0O9Hvq2t7awab5xm68avG2M+a7d/M/DPwC0icjE6Ib8EvSc9ICLrjTFFHCeY6oYUlTyJBirNffxsN372Pvzst1BLtAa1Tiv/+e5Eg0yeBvZSrlFbQhPz9xI2qVDh2EI5SGsfat1WIi+wvn4/S5d3kVprtw3XvBN2+y50HTtBOZjsasou7hLqBt5l992JTiCGq5sKFzVeOFjVsGroIolQVSpE6/s7Egz3xMxwNn4Q4V5UzAvAvuJwZEG8rlDZQANsIwt7/D5UXGvsOcNtV6EegKT9Heu2XlBxnJy9lpWTymEmiLIO0t4SNNhtCeoJqEFvznMl3sFxGohIHZqGt2mahzLltLa2/h661DUEHLF/nw0nWjcaY3LofewtlRsYYyq9S7WUJ85vAe40xgwbY/ag95drznI8c47zKco/xFpAsw4/VYOfWnSiw9LkeAR1YWfRddLtaDOGe9Evymi60XXih9H14wFUQJrRlKhtaMDWAGr5bkD/sS9bzNFkE9nhJMP70H940C+EQUXwKOraTqPW9zA6WdJuTyqSA5TdTkvQNeZdQD4S5Xg0YQaTDYV8NFnsMUUp9e6vPty5tf5/x6vNp9E+x78EeiMxM5jvi412/Q6iwl2FTiy67flWocKMvUa99rEbwFqxR1CvwVI77l32Wh5FvQDP2GOfiisZ+39+Q5D2RlvvjrnLa4EnZv1S2gRYAb4DvY+I/fnPZynMY7VuXD56IxH5sIjsQmtb/9Fk9p3vnK81ZYAHgW+ISIsxZvYEzvipJWhebgw4ip+6Bz9bGGO7xeg67mH87N7y89k8fupe1BW9Bu1p/ILd50eoW7bFbn0IdSW/D7Vsr0OFq5dyoFcEP2vwUzuB/w7UvMiyZQ309q6gvREVq1DsX7Q/N6EVxFpRQexHBe8I6gIGdYvXou7tLuClqLXag65DPwcMJuoKR2oW5jZUNeVriZTyidrCIzUtxdBN/6gpcfXx7bXr+48k+/uPVNVSzrsGtf5fi4r/Mnu+JairPWxw0Q18Y4xP4hnUZdaIiu/z6JpyLTrRELTS2KloGef5cNIzp2/SjhO8Ge0/PmexLuu/obzkE1IL/E1ra+t/nK0r+1QYYz4FfEpE3gP8Fdp+1XEanDdRNsYMicjPUIH7yvk67zngJtTCCstbPkNZ7BQ/VYOmQcWAy/FTm1EB7UDdrleilucPwqhk3S97DPgefqrObteIrkWDClkWFa0CZasytChbUEtxdYremiTDPajoheIN6o7O2X0uBa5CLegcKmyV5SsN8IB9vzV2vIJapz2oS71aIry0fuVQtSkRE6FLIixDrdXXAPdmvrXsKTBxkBo0grkaTXN6Gk31itrr127PvwudIFxGuYDKWORQFz72um4F/tBes2H7egvqSRiPXk52+1e+5pjj2DXRNwC3T/dYppg4Gkw6Fgvt66Ob1ZwOk23deCfwmTPcd15yPi1l0Nnpm5gtouynLkHzdhvtM7Wo9fqifT2JBi1sQNN8DqP/aC2UexmvRsWyDliBn+pBLdADQMk2nLgUTee5iJG9RX+OrnfmURf4TsqR30lUpLc20rsVdetmsTm76JduLyqGi+wY16Pi/xgqZPvR9KI4ak3nKPdpPoIK1ZDd9mvoZ5cTYaFEqbPXpd6+14P2WvWolrMaXbseQCcJOTuOFtQS70Kt3bBr1gjXc5D2rkCt1195maDPFhZ5wh7jWdTi30I5oA008O1UgYTPo5OO0Rw6V/nNjhnPdcAhY8yLE245u8mj38tFY7x2lDNvdzph60YRWWeMCdvOvoFyC9q7ga+LyD+jnrJ16PKZo4LzLco/Av5FRJLGmOHzfO7JoUVArqTck7QGte5S1qXdiQYuNNo9Iuja7iBqwYKK2wb0C7Ab/Ud8pd12JbAfP3Uc67qlHOwUMoBameHa8lLgevzUFvQf+jrKhUVaUOH7IuoSX45OEg4Dt6GzY7HPN1Kunx1GRyfRFpPPUV57BhXP5cBH7P7H7Xmi6ERjMRoslkXFfRu6Zp2z77sdtdjfYsdwOWr5H7evD6CW+DPhmw7SXopyAMhQkPYe9zKB8TLBloptwvFVBs+NtUZ/Ai8T7AzSXg3qMQgLj+xDm3s45gdz3nUN0NbWZlpbW/8ajXyujJfoB/76TF3Xp9O6EfiIiLwG/X53YV3XdrtvoV6uAvBhF3l9MmLMlC0rjH1CkceAT8zY/DQ/tRAVoX7UqhrrAj2ECtDoaPIUaqU+h4raJfb5AA24eC9lQV6NrjMfR2ecL6KW7Oh1z7ClY6UFvQF1Lzejlu8aVLj3ouLZCfwGOkG4ArXeG1FxPIKKbphaFdKCrjk/ZcfUhApXHK2+1WvHsR+42pRYmB+IVBVzkTyGjmRjoS0S5SdAb6432rf/kaaOXE98qT3HMXQt+VrUfWwtatrteDYBP/YywT6AIO3F7PgXouvsdfY4z3uZ4EQDgSDtvRr1LmDH9nMvE4QBbuNij98IDLpezPMLEQmA99v2gnMeG9T1N+h36SgqyJ+f3lE5TsX5tpRBZ6lvRmdaMws/dTlqfYasphwIVUkHavGNpody2lIoeIOoqzp0A1dTvu7hNoKffR4/dQgtk7kBtUrbUSu0nXLTig1ooY+D9tg19rid9uf/QGeiQ/Y8LaighulRcdS6zVFef61Frdsl6Jp2Z8UYV6MCfdSOtxk4ONQdqyvlIg2lokRzPdGmfH/sxoYLhrYACxP1RS669Wi2MBT5QayqNBzcuawKqIrES4mahbmFw90xbOcog7q/C0CPtX6Xo0sBNfb3dajbOQJcFaS9fi8ThC78B1GvRCNw4HRd0F4mCCcKjnmEiKxDJ87zpmhIW1vb51tbW/+Dc5Sn7Jh6pkuUfyIiHzHn20w/FX4qRrmvcUg3+iWurHG9VfOQUyfXvVaReQy94begonEQeMZGTD8IvMo+N4SKeAm1rMHPHsdP9aOfSx3qHjpit2lBRXgVKtgx9Iu2hLJ7vREV/aXoWs1mNCVrHWpRL0bXYrOoeziHTjoW2GNm0Rl1jnLOr9ixFuxY9pbyrBzuiaULA5GBwlBUYlWlSK4vJoVhWRZLmn1Aaqg79tq+Q1XvKQxG9q65tf2ru3+0+Lt1S4c21CzKxZOp6FBnUN+NmGJNS+5byVThka6dtWtQSz2FTngG7HsR1LMQlt1cg11XtxW/9jMyzcLhGI83AfcYY8btwT0XsUJ8JkFdjmlgOkQ5g97kr0ADdmYKVZSt3JAuVNhAXbkv4mf32b+3oQFao/NbH8HPjmVdg589SFhFyE9Vo2u/q4C1+Kn9toTnJZQLZdShruR6dG14KWWBHEBFOIZasrXoGk6zfW4RKlbDqKW5DhW5dlToGlC3do99GFR0U+jad2hNHrbjaLbHTyDSN3g0mSwMRWpFiBtTHI5Xl3olggGSpsRl+f7oComarlI+0pR9sep9VQtyvUPd8d3JVCGS64s9X7NoOLFgXX88Xlu8yhTkpcYQ695Vu7fietZQTlOqvMYzOxbBMZN5M/BP0z0Ih+NUnHdRNsYYEQld2DNHlP1snw26aqp4Vutc+9mT6x/72SH81A/QYLCl6BrvFuAgfiqKnx0/gMFPrUDzgG9CI6rXAhn8VCiYIZ1ocNwa1Gpebse0CRXVmP0p9rGE8mdaB7wf+C46S66mbP0adLJRQtdki5RrYFdTrpZVRC3UaygHZ+UiMbNEIiZjivISIqZYykWG4i25w9G4aQeWSASRqMnlstH4UHdsTbEj/kpTjESLw9EHj26JP5OoL2xeeUPnVfmB6MLBY/Eri7nIklhVKVHdnHtksDOx145xmX0PYQ7yHjQY7b5xr6vDMQ4i0owG+E2Uy+5wTCvTYSmDurD/D7Bxms4/Hj9D3cstqEXWAdyAn4qgFuZIgfazfah7GLvNy9CAJsFPHUUtUAF24Gf32+0SdpsYan1fZ4/dibqxt6MWqtj9Q6t5Eepe3o9OACLohCCs4Rz2bQ4poKK2Ck1JqFwqCHOXL7D7ZdGAqvAcNZRrbl9IuYViaK1HF17WO9C1s2ZffiCajNfls8Dxoe7YjclUISsC0arSjvxgZGmyIV+TH4zmijlTk2zML49Xl/ZUNeUWGCOx4WzcK+ZkMUaipkR1vLboDXYyhHooVqOTgBdR78ClaGDcZTh3tWPyvB540BhzylKsDsd0c96jrwFEJIYK0UuMMQcm2v6846eaUeGsH/VKEfjZiIpd5X2uoJzGU4/m/x6kHCj2EH52O36qAc3tAxXMDaiwhzeLA5Qt3jpUgEMWo3nLHWg0dg4txrIAFdIkalGX0Os7hC4XfBwt7nEt6qbP23MPo6UxBRXlnD3HK+wYoCzuPZSLpoSu7J6h7tiyXE+ss1SQYYmWErWLc92xKtN/fHttPj8QvVrENMaqi0slQm9hKNIdqyrtj9cU+4t5qcr1xlaboiyIxEwnQmGwM97fd7C6Aw0qa0Y9AuF1WY9OWA6j1nI9GsBWDLtJBWlvAWBsVTCH4wQi8k3gfmPMF6d7LA7HqTifta9PYIwpoG7ZmVoL+xWcLMiggneTXQ8ezeqK35dTLt0Y8hIAa2mH4rYUFc3K2XsL8J9oJZzRbvNGVIjydt9+VPQPo4Ia9mvuQj9bLayh6+D3Uq6Y1YCKuEGt5QLqIm+3x++25z6EWqeDqFWftPt3oVasKQ5HDpeKYtd5pYSQKAxJAmNiGIqRuDGx6mKxmJM+gGii1FXMk48mTJ0IBYmarmiydDCWLO0d7o4/S7lq2rOjrsv9aNemfWgZ0r8EPgf8RZD2bgrS3tvRyPV3BmnvbVagHQ5EJPRO/XC6xzIXEJFbRGSbiOwUkY+eYru3iYgRkVb792oRGRSRTfbx2fM36tnDdLmvAe5Cc2pn1gfjp1oYuwpOSAy1bjeNen6g4vewcUVlxGOy4vefUF4zrbSEQS3Z0H0xetKURYXqBdRq/BUqyldh+xhTXmsOxxqm/rwCtdzDYK4CavnX2deO2zH122MMoQLdQrmrVGhR/wS9waWObmnIplYP/GU0UVpQ1ZRrEMEr5KTXGDb1dyR21bTk9sdrJBVNmFI0UczWrxxq6z+c9HK90cO5vlhPNFlanh+Qo/2Hk7vy/bFedILxQzQIbp095xHUm1AFvBOdSISW/CVoClWGcj/lZuB1Qdr7ZmVPZse85XXAVmNM+3QP5HzT2tp6CdrbeAP6Hfl0W1vbC2d6vNNs3YiI1AN/jN6jKtlljLniTM8/H5gWS9lyD+CJiDeNYxiL8ZoWTLTNZsrVpY6iwlrpmi8X//CzxkZij1Wn+aD2ZM6GUdGVHEGLe9wF3Iuf7UC7SR1CxSxKOVCsYJ/rwE8to2y1L0ZzkhegqUaLUCs5gQacrSUsCaq/X2O3NWhQWp/dbxA/u2XwWOJAz/6qR4b7IquHe2KXFYbBFGWodnFubf2KwVh/e/K7kRhHkqn8jvrlQ8+IQM2i4e0Iz2T31Pzn8Uzdpzu31m8a6koM2rEUgISXCR4C/gu408sEd3uZYAgVYyhXUQO1+BcwsrUj6MRi6RjXlyDt1QRp761B2jvV5Msxd/h9YN4VzGhtbf0j9H7x39Gg0t8DnrLPnykTtm60/A3wD0xQZc9xMtMmyvYD/QLwoekawzicTk3Yk7fxs+3A99AI7AeBL6GWaR4t5jFWjddHGJkDnSUMHFN+MepcRbSphQq8n2pFS2hG0YlANxoEtcvu+yBq/b4XFagqNNo6ilqVVagFvxO1vFei1mkLmq+8wf6ewop2YVguGOyMreveXf3bQdpLAmuLOVkfS5qFpijVhYFYvc0CldpFuYUX3Xr00foVQ1+tWZjfJ1FKpoSU8pFC3dLh//Iywf1eJvgmmiYWoGvlK1HLHy8TDHiZoHJiMjjqJ+j/cIGxeyknxngOdM19kJEVzRxzEBG5CM10+NZ0j+V8Yi3kTzKyWFHM/v3J1tbWi8/w0BO2XxSRq4CVxpixlgsuFJFnReRhEXnFGY5hTjOd7mvQ2euzIvKXM6i36T5UCEfnLFeya8xn/WwXGjh1evjZHvzUt1DrFaDd5iqHrx/CT30dXa8WYC9+Npx5XodGIidRy7YLLbM5SLmOdNh+sQMV48oqVmHubw79Yu1Hg6k2oEIeQUWtiIpYc6lIpJiL9EmEZLy22GDPsz8SNdUIApQkQkGgJBEznGgo7ioOS13077ufxE/t79lXdV3vwap036GqbCkfuY17vUe9TLDbywQDQdqrrMZ10uw6SHsJ1EofQj+jBfa9HUMD1kZ3mMozTgcaa3W71Kr5wQeBL8/DqOsPM/49LG5f//C5PqmIRNB62x8Y4+XDwAXGmE4RuRq4S0QuMcacnHI6j5lWUTbG7BORR9AuI/8xnWM5gfY/fpZyJPVoDuFnTz9ivNxJ6gLUBbwHrQpWsOcLi3aMN55hRru5/VSVPeZ6yg3MQV22ScopXUl0XbgLDeIKc5CjlD/7/sHj8d6+Q8nWpg19DdE4C1ALOmK3KdnjCFArEZMwIhKJl4qReKmllI88WCpE9w0cSRypbsk3JxvzRxJ1pRdFyPYdSeQOPtp0W+n73nZYtg11oR+341sE1Adp7/+zIrkZnSAI5U5YAARprxENCqyx49qH5k8Lur4eRxt9hNehBDziZYIz7YRz3gjS3gr0s/y5lwlc1aVziIhUA7/FyNK584UNjH9/j6FLWGfCRO0X69H0xYdEBDT2424RebMxpg1b/McY87SI7ELvYW04TjDdljLAp4F/EJEvnFXZTc0TjpwQu7PBz27CTxXRqmNhpHURdfOWWwNqetMF6D/anpPOrVHab2Fk96fFwEX4qXvOYqyL0PXexaOe76EcWX0UFfswJWuXfS8p1MJOoCK4tTgUiQCXmaKUiJ8oQWgqfqqQC8OUJIeY6lIxko3EzM5Sng3D3bFcvKbYNnhcGvOD0eHUqsE9VY2Foz17axaXCpEi8DbKJUVbKF/TsGTmg6gLbCFq4Sax7ugg7dWjgTrrUfE9BqS8TPAV+3rUPv8NNKfaAHvCRhNB2pMZHuwV1vtO4kohnmvegXYuGtuzNbfZhgZLjnWPL6BBX2fCKVs3GmOyVMTciMhDwJ8ZY9pEZCFw3BhTFJE16FLZbhwjmAmi/ADqfr2Oybh+K9G61W8DavFTP8DPdk60y8THzG7BT71Aubb0sQrXMfipi9EuUaF1dit+KoO6mEPL9gpObscIKj4XE9a8njwlytHHo+kBNuFnv42fuha9Ma1GJw73o6L1nP2ZAFbXLRuO1i0bPoQGUHVRDhiLo1ZzDChEIuRitcWcKYhEoqXMume3PxWkvfeD0HcouTtaVbo+EjXLBo8lcqV8pH24O/4o8FZUeBahLucOKhtxgBekvSJwI+Xeyu1B2vtf6Jf7ZnTdPGwDtwJdow+5GXW3f2NUa8dQzJuCtNcO3G8t8hmFlwmeC9Le814mmFf1mM8TfwD87XQPYpr4FOpCHusen7evT5rTbN04HjcAnxCRPHoP+5Ax5vgptp+XTLsoG2NKIvIZ9At0ZqKs4hKWm0xRTo05O/xsCY1sHvV8qgqt3hUKcjMqsmuAF/BTSfzsc6jlNh5r8FOgrp4S8Msxi5KMTR/6xYpWPBdHJzcGGMBP1doxgVq6EXR97X50bSdkJSp0R9C0rgY0LaoHdUVV2fO0A4sjEZIkzPZogkjxY41LYakNppKLikPRwSIM5vtje+z51qOBb4Ja7zeiE5LDFeO9xj63pmJMi9EZeC3limVNqCjDyP/bdnuu0a7q6ymXTF1sz/OL0RdyJuAE+dxj1yyXovUQ5h1tbW0vtLa2fhQN9opjJ9bo9+Qv2tratp5q/1NhjPkRo66rMebj42x7Y8Xv30XL/jpOwbSLsuXLwF+LyEJjzNFJ7+1nB/BTP0Zv4mM3gzi3LGakIIbpOCn7cyVqjYbR7VHUUkyiwpK1x6hMyXkdfurb+NnTmTn2o27fy+2xUxXHOo5OGC6xr1+Eipqx265CBbgedb1fgApvCY3exo47zH+usb+L3QZs3nI0aTzU/bS24r0PU07lWku5xGc/uv67HnV7LbPXIolOXsIJTtK+5gG/RD0CvXbMx+172RteCC8TPMvYNdRrRv09unGIY27z+8BnjTHj16Cf47S1tf1ba2vrA2hAVxp1WX/qbATZMfXMCFE2xhwXke8Dv43mtk2esLb0+WF0wY/w77CDUWip70Mt4Ssor6OuRKOdn0eFogF1L6eABfipzcCvbBvHFvvaQlQoe9AgsU781JPozHcFKmI9FY+wF/FKe/xGu20ctYbX2NdXoeJsKItiNyqgP0LFcKV9PRS5lN03Bbx+3W1Hvte1o7a290BVXTEnPYWh6PMYidtxNdlzHECt9TBAbi9qJdejqVgvt9esYI/dYsexCvg+OoGp9H6czhrhLkbmk+88jX0ccwARWYAuZ22Y7rFMN1aAz3mUtWPqmJba12NhS7F9G1g7K2a3fupWVHhCwijE51BRW41afb/GyM5ToNbe/0XrUb8EFVyDCtSAfT1LOWo7ggr/C2hK0KN22xvRtKfQTT2MrrcusfvGUfGMom6rRfb1WtTqrXQZb7LjDvOq/wX4b+iEYC0qyivtY8juH5bbfLy/I9GS3VO9rDAc6e4/VJUASdgxrrXv6Tl77B/Z67IUDfRYbN9jI+qK9tB150F7PT+JWtKvsz/bgR96mWDCQJUg7a1BhfmIlwn2TbS9Y24gIn8CtBpj/tt0j8XhmCwzwlIGsNF5R4FbmB01an+CWsBhY4cH8LO78VO3oNHNIRFUHPtR4T2GWozHULEqoWvSKVScBlB38jbUmlyAinoEdUU/Q1gtzM8+gJ/ah4pujrL7eR8qykcpp0MNAa2oyDahAhmW5Myigv0c6hbfh58t4Kd+gVYCehoV8q2URbTJ/lwNLKtdlNuWqCsUu3bUxnLZYjE/EH22akG+qTAQDQpD0WrghUVXZjPNG/pXoxbyMeBbwZ3Louj6ccKex6Ncl3urlwlMkPaqKEe/A9wQpL0aLxOE+dhj4mWC3ZxBdKc930sot+R8zssEHZM9juP8Y/Nk/4Cx82QdjhnPjLGUAUTkA8A7jDFvmO6xnBFazvJNqMg2oMISQy3XpynXxy6gVax+GxXK9ZSrT1WhAtiJBpktG3WWvagFejd+ts2e99dRsa0kStlCDt3TF6OWaxMqri2o2IetGw+iYvll4Dlb3CQFvAH1BITtHa9ERavBnmPQvr/CwNHE0PHttaYwED2SaChcaIoy1LOv+qnmdO8vF13RezUVBQ2MoW/HXYsvKQ5Hm9CJxIX2HP3oWvROdDJxHSevEeeAr5zrIKkg7UUoR4yHlIB7vEww72onzzZE5GbgfwNXnlWKpcMxTcwYS9nyTeB/i8hFsyq30E+tRC3TdwFXo1Zd2M0piwpRI2XL+DH8bA4/tQG1tENBHUI/kzAwbPTaNeja9ErKgVWg1amuQ0WtiFrZGTRHuspuY4DH0ejri1DrNLRI+1HRDnspvxm4GD+1JdcXXV4YjF4cTZb6kw2FGlQMBykHc9VRTnFaVtWUyyXqk5FIrFQrQiQ/FO0Eehde3ruBsiAngYuKOWlsXDsgnS/U70UtZEHFfxCdrDyLusevRa303or3nLDX6lzn9q7i5OWGCDoJ+ck5Ppfj3PNh4NNOkB2zlRklysaYQZse9dfMBveTnxLgVaj1uQEV5KWo0HWiIleLWp/taJGMQzZa/Bq7TwMqMIIKaFi1Ko8Kb7i+LqgAxlDRuB4/NYgGhQ0BD9lH5fi+j7rSG9F12udRQWxE3br19jydqKUrlIt47CwVeflQV/yKUl6gNwqwNdlQ6LT7voiuiRdQC7sJqIpEOZpaPbgzu7c6VRyKVA91xR9r9nqflQi3VozsIqBZoLZ+2VBL5wv1Byve/7qK7arQSUQvGj36VMVrHVNUAWuslp2net4xQ7A1l69Fa707LK2trWtRj9uhtra2sw54FJFbgH9FjYcvGGM+OcY27wR89F642RjzHvv8bwJ/ZTf7X8aY/zzb8cw1ZpQoW/4J2CEilxpjnp+2UfipRlRsq9B12R342dEisI5ywYuFqBVbQkW1ARXUAnpDF7QAyYC1rH/NHrcGXZOusvtH7f4d9u+cfYQBW7320YlGdtcCPx37PWR7Ueu4kiFbb7sBzQuvtufPUQ4YEwBTlHow1SCDAMXhSOhWPw58HW2yEQZTXW2fP5RsKOxbdLkatUuvyWYY2XQD7P9dJG4GJGLCHGrQCY1QriZWhwr4LvteG1ALvQ/tjjUVjFfy9PA4zztmDn+H3uhnSh39aaW1tfVatOf4OnTynWhtbd0OfLCtrW10S8XT4nRaN4rIOuBjwPXGmC4RWWSfbwJuR71gBnja7ts1+jzzmRknysaYHhH5JFqJZ6yWYFOPn3oZI4O1AK7BT/0MP1sZxVvZdrIBFRFQYUmiYjxgH03obLUbzR8eQgX7ACo0y1GLeRAVyQFswQ7Kyf/d9vnHKRfLuBA/tQBdl77ZPvcj/Gw5CEqLnVxpx7vKHie0ko9TFsEOdD28CyASN3vjNcUNUFxdHI4eSdQXwhzyTvxsH/BT/FTY+rHKvo/RAmzws734qaOU3fR7AE8iRGPVpa+gQv8We00i6OTDoOLbgrrjn0YnAR1oNPWUFNzwMkFHkPa2Up6gYN/Tpqk4n+PcICKvQsVnZtTQn2asID/IybEYLwEebG1tvekMhflE60YAEQlbN1bmPv934FOh2BpjwiDJ1wE/Dat4ichP0cDeb5zBOOYsM06ULZ8B/kRErjfGPDbh1ucSLZ85WpBBhfE1+Kln0KjjGvQf/DgayFWPimlo9SXRm/mA3dcAcevyXoYKcofdN4tav2FDBlD38C40groZXWvtQoOfRlevuh1NjQoLmtyKn7oP+Dv8bBH9x1+E5gOvQD/3I3ZMg6jodaFu9udR93S7CJuqmgoXmBIJkUK3RBgE8tkXq549lPZagONeJtuB9myOoNZsGCWesu/r60Haiy9Y17Bt8ZU99RKhyr7XJ4HjsarSvah34QrKkdd19v2H9bJBzHDNwtyWVb/YPeXpcl4meDRIezvQz6kXraU989P05iminQ8+CfyVbQnrUAt5tCCH1ACfRSfqk2Ws1o3XjtpmPYCIPIbek3xjzI/H2Xc5jhHMSFE2xgyJyO3AJ0XkhvMctHHpKV5Lo+7qvfbv0L2aQG/ew6gAh+IYBjYV0SCsV9rjL0YFeTf6BWlAxacHFbMh+9oOtEfzasr/+HXol2k3KqIr7XHDwiWgwvgqtOTnw3bcjWgwWp0dXxztzJRHxXCHPfcBtLlGG35qiQh5idJrx1Tac3/L80NdiVcDUrNwOFn8n42d0bjpQktYJoHXohONQaC9MBS5AVjZtaNuRfeemmfSbz/yFDqB6UfTuoa403sJcATMC0ATSGWg1WEwqaYNfRdIhOVB2vva+cg5tpHWLtp6dvBW9Dv4zekeyEzAriGvm2CzDa2trWvPxRrzGMTs+W9EjYBfiMhYho5jDCITbzJtfBV1+d460YbnDHXzNo7zah265tmECmkUTd+pRd2yfagw19rXi6jItlOOVh6yry+hHMS1GS0Kctj+/oT9+STwA/xsFrWYQws6ht6AQsH37HHqKAsudptr0bXrS1BhXopa3WH6VVgv/Am7X5iCdBV+6gLg9ahr+XFgiykRjSZL7wQkEi8l47XFl/YdqtqATgyuDO5c9nDPgarO3oPJgYGOxLFcXyTX8Vz9G6LJ4nWReGm9KUReGdy5DNQqfznwLvzUFZF4qalm8fC6+gsGa6pbco2J+rxItNQNPIJGkQ/nemMydDzeDNwSpL0pa8UXpL21Qdobz8JwzDBEJIYudX3MGDMlSxqzkGWc7E0bTY6T0y1Ph4laN4JO7O82xuSNMXvQFM51p7nvvGdGWsoAtr3XXwJ/LyI/Pk9Vvk51jlWoq8WgwlpEXcvtqNDVoK7sFGoxDtnX9lKu1hVyELWWw/XX4/YR0omf/T4AfmoJ2l0lLD+5DW0fGXoPetACI6FoV9vj9qMW6UV2m3XoF7GIutT32GMsQCcVjYwMclrLqCbpxkCsqrQ4mcpnYzXFFomaasyIycKV/e2JJbWLcmuLOfEGj1eZaNwM1C4d7jJFkqYk1YPHEq8s5qU9Gjfhfhcvac0m+48klwCleF2xPV5TTKZWD+6WiLm3Y3PqDSBDfQerKztqXRakva1eJjinzdGDtNeEFkt5Dq277Zj5fACd0N4/zeOYSRyiPPEejwRjNduZmFO2brTcBfwG8CURaUHd2btR4+LvbBlUUK/ax85gDHOamWwpA9yNWp+jP/Spwc/mGbnmEZJCRa2Gcu5wFLV4DVr44jC6DroVbdq9DfgKmtu6lXIzB9BAqz50bbqFsqCCvl+NplbL/UNoYNhBVOAbUdf3TuAHlNetQ4RyGtYQKsQH0ZlzDBXlsEFFyGI7prXo7LWPkZMEAIlEWVC7dChX1ZT3YlWl5miyFM33S8PBJxov33H3ohbELC8NS2O+PzpUzEssPxhdDiBCMRKjN5owNTWLclcOZ2OV4x1OrRqMVzfn9mOIFobkosJQZPVwT/TK/qOJ30MnGWG62aqK9zhe68pTEqS9uiDtXRSkvZNuWl4mOI5e+81ncmzH+UVEqtG0m4+6vOQy1iW9fYLNtp2J69oYUwDC1o0B8K2wdaOIvNludj/QKSJbgZ8Df26M6bQBXn+DCvtTwCdc68aTmbGWMoAxxojIR4GviMi3jDHDE+509jyNunUqu0CtQYWvlpMLWFSjFvMWVHjXoy7l7aj7NcHIYIZmVGS222MtRS3Vp1Ax2IG2dbwaDThbZ49bQGe23cC9dgIBfuqIfb4FnTzE7PYd6OSgkXId7H7Uig9d6Efs9uvRWeyg/Tu0tsNKYAK8AliaWjVUqGrKdxT6o1slahKHn2ocMEWhlIssidcWiCZoLuakIRKVpcm6Ym2pIOuLuchxOyaiiVI8XlvcCuzv3FZ7wUB7smHhZT31C9YO7EVKNfl91etNiWhhKJIqFSKX2uvXh04mLrC/d9r3MimsEL8VjRRvRyc1I/AywfnoMuY4N3wEeNIYc0bpPXOcDzJ29DXovexDZ3rgiVo32gnS/7CP0ft+EfjimZ57PjCjRRnAGPOInXF9EPi3KT+hn+2wkcsvQwW01j72o0JXjwrbIsrVsiKUreU4KpJ9wDr87KM2YvsKe5wNqBges/uGIh9FretXoi5nUMtwBbpGU3ZXh4KsBKjwXmXHk0Pd1V2o6HwYFdWwy1QjKmiN9n1E0clApfUaRS3Tx9C131bUis4BR5P1xcXJ+uK2viMJqW7KX4YgGEysppCpWzbcKNAcTZZqYtXFyMDRRKowHGkuDkePAqZu2dDueHUpGdy5bB9wfSRRquraWXvpktbsEwMdyeWFwVjoijdEzGZ7nRdUXK8EGtR2UZD2Lke9E73oBKYf+KWXCcabvCUpf2apcbZxzAJEpBH4c/T74hhFW1vbr1pbW29Co6w3oN/dBHqP+dCZ5ik7pp4ZL8qWjwE/EZEvGWN6J9z6bPGzh4Dv4qeaUCs5j/5TR1Bxugb9Bw+bQPSg4mlQd82vETaNUJ6zf78RFY5hyk3HQS3TcA23mnKQRhcqOMvRNeBhNMq5kidQ0UpSXhPfBGzGz/bjp6rRyUAEFaT9qBW8knKq1l5UCBtQl/cwGtB2EHW/r6Zckxp0UhGvbs619x+uWlLMRWolZvIL1g6sjteUjL0mMSBVuzjXE68rxoeOx3dVN+ePJ+qKg1RENZdykeHCYPQIQH4wWi/Qa3RcQ/neWJgCdq0d5xAaFNeEBq6BTmCWouIMOqF4kDHwMkFvkPaeQCc7z421jWPW8BdoMFEw3QOZqVjhvfJcV/RyTC0zqiHFqRCRrwE7jDEbz+uJ/dSFwPtQ92s3+s+9ctRWA6jbGzSFqQQU8bNZW1zjFlQYL6FsoRVRgelFLdEkKu6CWq6XoGLbbJ/bgUZBPwIcHVFdzE+tQhthXGvHmEPd49uB36K8Zh12ozpKuZJYDyriaXSiEUU9ArvQNfElqDVyASpmBg3aWAY8Z0rUFfOyMhozSJR1WOEvDEkqPxhZH68uDcWqzHE0XUXfs599DCBIe6uBldFEafv6tx5Zvu/hpv8nPxBdbQoyUBiMdJpSZCu6tj1sx7PZjuOl6OQlzA9fik4eDFp+8y5OgyDtxSjnbR/yMsHABLs4ZgAisgxdLrrCGHM++6g7HFPObBLlC9E10kuMMeOVQjx3+KkGNM9uCerKvQAVgBpUhEMXcQkVqTC0/wn87BZ7jATwJ6g1V0M5OKkTtYaLaLGOl9jn99ttDlEOaopRzmnegArUs+i68nH8lIeu94IKTOjGPoZavjlGroMLanFuQYUuhoruQtRVHNZ43gp8147vFvtc2PfZoLnSnRXjBM3FbgY25QciyaGu+PJkKl9M1JWOAP8FPI+f3VZ5mW1XprB7VTj+YXvsAmqlP4cuB4RVvlbZfcLJxnL7fp4HHvYywURBLgRp7yLUo5G0T5XQVpGjy5I6Zhgi8nkga4z58+kei8Nxrpkt7muMMXtE5HPAp0XkbWcVbanVp5aglmE3frZ71Os1qOVZh960wwIfUdRCq0avXR26pltZF7lQ8ftbGFkdrBe1MGsoR3kvQAOsqlG3cIZyoZACKpyH0DXgenvOemA9fqqNkdV0UuhEYQ0jXdoRytHfBp0QHEUjjeNoytUSe+wa+9xhVCRrUPf2akZGkLdh1/PCT0KEDvSaNsVrSh3RxPCuSIwsauH+7KTrrLwaFXPQCcRu+16PoUL9AuWId0EjxV9q318EdalvttfoidMU5Ga0uEpl9kEEuDRIe31eJnCu7RmKiLwSbSV6qiI/DsesZdaIsmUj8AzaIvHOMzqCtktsRd3J4XOHgV/YQh2gX/hLUbfocvSGfYhyDnLKPteHikIoViXCal+azvTyijOH68UJe4xh1LpegFqCXagAvYBaulWUXbNhTnMYDZ1ALfWFjMxHDMdRQMU0bN6wGXW5N9ptNqH9mIeBYfzU3agAFik3vQiLxDehrvmDqIWaQycOLcZwbWEgsqqYi9QjmGi8dCheW3rUjndXJMagvX5VwNvwU/fgZzsAgrR3Ixr8thqd2FTW3+6w5x+d6rUY9RassK+FzTtq7JjrOD0uYfx0wEtx680zEhGpRSN3P+SaGDjmKrNKlI0xwyLyAeBeEfm5MWZyZRD9VBq1ChegN/Ai6iZdCrwJP/V9/Gw/ar2tQG/6dZTdpIdQwVhJ2cXabLcrAk/jZwfttqso3/hrKXdACutbL0WtwV3AXfjZMCgM/FQ3KlZpytSh66s5NNgr4OS+vwfsc4dRQX/aHj9p91uABkR9dVQEdwm11htQMdzNyF7OLfjZp9AJA/ipJPDywmBkYbEgLUAuPxA5NjQcH6puznUkG4rbgV+hQvsyymK/FOg4+rYVlyTqq16W64vWYiLNdsydo97LYkb2SvbQScgaez27KQfS1djXTndNuPEUr9UFaS/uZYKJKiI5zj+fBB4zxtwz3QOZDbS2tkbRpacPYgO90JrYP25razvjYkwTtW4UkTtQTxTod3ORMabRvlZEl5oA9hlj3oxjBLNKlAGMMU+JyBeBz0zKja0u61eha6HVFa+sQd3GO1FX8y9RQQa1bkNBDiOYS6jrOYquzcZRK+1x/OzuiuPGUOu2CRWYygIhw3bfQdSte4CRvICudzba8+RQkawBvoufDYPKOvFT4cQAO46nUfHbgYp3Hv1CvhYVrRjqLt5ur8syVDhzlF3qYepWxv49dGJkfiqGuvabS0WppyR5QGLJUlNxONJbGIw2JhuKP8fPPmubb1yAusbzQBd+6u2Na6JL8wNRL15XrBvqiieKQ9Gxmgjst9cN1NIOy4MKOjlpQCc1pYptdoxxnLHoZfziI2H3LscMwrqt38rYzWIco2htbV2EZoJcQNmDdDV6D9zX2tr6qra2to7x9h+P02ndaIz504rt/5CRjS8GjTFXTPa884mZXtFrPHxUNN41iX3WUo7arSS0Wi+kXMQ9TP2pXEMtMXJddj9a8ONxtEZ1pSCDWqtHKPdIHs0g5aCr0SRQy28hKupL7PhyaApUJT9D3dQhYcnMa9HuUR9Ea1gvtOeE8hou6Bemm5FWaXicsD90ZRrFRXZMxVJedmHdzhIhFqsqNaJu7mcB8LMG+CFwD/Ate66meG1xuHHNwPM1C4d3VzfnhiKJ4gbgOjR4K/Q6/JxyGcDw/7Rgz3ccnfCEn0cW+KmXCcL3NxGnSqPZ6mWC2RH9OE8Y5bZ2FaAmwFrIP0fvZ6OXdOrs8z+3202WE60bbUeusHXjePwGrjXjpJiVomwre30A+FcRWTzB5iEXM6qW8yiWUl5n/hUqPI2oQMYYKXxQzrXtwM+enDvtZ4+jbuDdjBT3kPD1Rfiplfgp/YL4qXXo5OFpdH260257CBX5qhFH0eCpbwL3ocFX/aiYhpV8Vtrzp9BynTHK68WglcAMahWPdmnVomvtlWK3NPwlUV/cku+PZgrDkePFXCRrirKrZ1/1Z0ama2WL+NnDqNie+KxqFua6Wy7u355sLByMxktL0M+mGZ2A/NTWtb4PnYTsRpcNqlCPwUrUJf8sWuDkSSZRq9rLBEfsfqM/l91ozIJjZuHc1pPjFtRCHu9+F0e/Q687g2OfdvtFEVmFGgCVdQOqRKRNRH4pIredwfnnPLPOfR1yBm7sxglejwIx/NQ1qJWYRQUoRzkiOXRfd6AuUIMK4Xg8iArJSlQUw+5Ru+xx16AisxwYwk89STmqtAcV5uV2bO32vBejk4YyapHuty76cI27kgLq2m2276vNupavtWM7ap/fiqYkNdvxDaJCWhnRfKJaVjRucnXLh5/I90dTEjHFeE3pufovdIzn+h3zfy0SMSZRX9yZ74/vR6/v82FrRtvDeAuwJUh7RdQFfhG6Xh/WxP4BWsVrLI/DuHiZ4IUg7e1Gbxox4ICtfe2YQVS4rV209enzQSYOeqy32/1ogu3OhncD3xnVTGiVMeagiKwBHhSRLcaYXVM4hlnHrBVliw88c+mll/7txo0bl6Ki92PgG7fffvvom3QYKV3L+Bg0IriEWlIXoZZkPSrULagIv2iP9fhJ68F+Ko66yuuAF/Gzd+GniqiVWkSt1MtQke6mbIFXoR2KFqAiCSqUWUaylPE5xsnBX6ATiEHU0u7Fz5bwUwvtmCL2nH1oMFXebteHrq0vw089hp8NrcrtVKzriUCirpglzMP2UyvGWCOHcnWy+sonq5ryHT37qoXyksF4FYcaUEs2jn4WOSDwMsEZ31Ssu3vrhBs6pgUXbX3GnG5LxjEt3AmYTPvFd6Nlfk9gjDlof+4WkYfQJS0nyhXMSvd1iDFm+N3vfvfWPXv2fKyvr+8DwDvRL/HDGzduHD1TbEcFZTxLLjvqtTzq0g1do/cAD9uf9wFfx8+ObF6gQVBvQYt5XAncZot7/Ai1mttRcalHhW8rKs5NhPWe1e10KsbvGauR47sZ2QFqH+W1ZCh/5sdR9/jT9n0tpDxJ67Vj245+4d6Mn/oAfurd6KTg0VHjCEtr1qCW/FhjM2jg2YjrX7d0uC3XG/sSuj5/r5cJxvuChhOVvaiLuY1Trw07Zj/ObX1mnG5LxjPpZXyidaOIJFDhvXv0RiKSRif7T1Q8t0BEkvb3FuB63KT4JGa1pbxx48ZXptPptx84cIB7772Xd73rXYgIaDDCn6JtwkJeQFOMNqGzu4WUI6gPo+7d0UFgoBZZZRBUCT87Xmm/CznZUr0aPxsAT+CnnkILboRdjy6p2H4IzSfOo1bzeO7YfWM+qzWu86hruwe11PvHOI5asX62iJamDPdvsNvnKKcWRVC3YTW6tp1Ac69/CXwdTduKoJ6Dot12h61kZkalXYGfPYifuhPtSlUFHMTP7k/7wDg3kiDt1aCR6Evsox2dLA0w2o3vmDNYt/Wv46Ktz4TPoVHWp3Jh99rtJoUxpiAiYevGKPDFsHUj0GaMCQX63cCdo5YVPeBzIlJC7xufrIzadiizWpSBdwDceOONfO5zn+P555/nsstOfIffSaUoa0nKh9E85R32EVqnx9DuKdefxjmTp3htrDZp1fgpwc8a/GwBP9WPClgjIwW8CrVCxxZdpZ9ymlIZP3UFOhEZRK3Y1VSs/VaQY3zrsh21ditpQd/v6DaJl+Fnn6NylqtV0JrRILUcYPBTO4BH7QTAbpcdQCdGBGlPuNOrAnJeJhjPA/AayulL7ejs/nl0DdilLs1BKtzWv+/c1mfEj9H7yDrGDvbK29fvP5ODT9S60f7tj7Hf47hJ1oTMdlGOA8RiMW677Ta+/vWvs3r1aurr60+8NgI/u91W7/JQwcmj7t49aN3n0+FUXar2oqIUGfGcum5DDlKOgh7r/exDLcCXM3L9uwP4OX52LAt6g/0ZdoR6AJ18VEZq96I50eP1Ic6glm7lxCJhzzv6nGOty3vomvgS1OU/bMfVzxjBcEHa24DmTdYBQ0HaewF4Zox0pMrPxQAFLxPsHec9nHOCtNeIeliqUY/KTjcZmHKc2/osaGtrK7a2tr4KTYtaycg4jl70HnPT2RQQcUwds12U7wV+D2D58uVcffXVfOc73+F973sfsVhs7C+0pi89OcYrR2wlrcZTnK/EyEjk0cfO4qceQIVZA700YKxym/34qaOUi4KEZTINagluws/uwU+9iAZsVKH1uY8xPnvRphY51CXchZ/aj65Ph+U2D4yaHIwe+5Att9lKufnGAXTyEnoUQsZyNb9o33MXKqTN6OSkCT+1lXJAWXtw57IVjOyDW4UKNJS7bYUcY6Qwn+o6nFOCtHcBWnQlnGStA9JB2rvXCfPUICLvQovTXDnRto7xaWtr62htbb0cTXv6IBrUdRB1Wd/vBHnmMmu6RI3Fxo0bI2hKzBsBSqUSd955JzU1NT233Xbb+ttvv32yZTjD3L3xAuCerqimdebo+u9NaErUMmxKDvAQfnbzGR5TG1uMbUlP5jj1aMH/BvvMWnSi8jzlXsv34mdHl8UEP/Uu1EJvqHi22+4r6KQmu+07S4qlQmSsKPFh4KuVruwg7dWigXMN6DX65Viu7iDtVaMWbTO63rzNywQnj/E0CdKeoMVpGsZ4+QkvE2wZ43nHWSAiV6Eu1ZuNMZumeTgOx7Qwq0UZYOPGjXHgd9DKMTU9PT0/u+OOO24zxvyrMeYzkz6gCvN1qFUXMgg8i599/lyMueJcTagVmAf2jyi6cWbHq0HzjEvoBGKsdeWJjvFmTi5BmbLHvB/YOa7w+6lbgPdWPGNQQW5APQI7AXb9cFFVrjc23uThq5OozAVAkPYWAbcysjkHnIV4BmkvxfgV4/Z5meDHZ3Jcx9jYIkBPAv/DGPPd6R6PwzFdTKv7WkTajDGtZ3OM22+/PQ981j4A+Od//uf/AB4XkYwx5ueTOqBGVu/HTy1GXbjazamcp3vu0Kpf57JgxU2UcxRr0LXlSYwnlWLsmtBhrvSBCSxxQUV4ESrIRyjnYadRUc4Vc3IMdYuP5qRo8SDtxdBo+X2nCAZ7FScLMsDLgrS3z8sEo3O9T4dhyl25xnrNcY6waTLfA77sBNkx35m1a8oiEjHGjHmTNsbsEpH3AN8QkZcZY/aMtd0p8bPtlEtpzhYqUyBGBmNpta/16NrSIBqFnUQt6xS6TvziBMevmuB10DXl0RGz3WjE9a+AF4vD0RrUsh29TPDsGIFeL0HXmx9GI+RHEKS9xej4x2Mdp666NiZeJhgK0t6LaCT7aE4ah+PMEM1h/DT6Xds4zcNxOKadsxZlEbkR+Ch6o1+Dui+/HFrAoTUsIguBL2EDiIwx7604RgvwBdTNeRh4P2pJ3WnH2I66ElcCX7HbbAL+frxxGWN+JiJ/C9wtIi83xpwqanqu8CRqNar7eiSvY2QlnqtR6zK8Lhsod3MaL41iojXaF0edo5JN4Xq559MdpL0foROCFtSafs7LBGNV89qFWv1jVQkDnSg0odHRo3swh6+fKQ+jAXnhe8oBT3qZ4HSLMzgm5g/RwMiXjzfJdjjmE+fKUo4bY24RkdcDvz3ONh8DvmSM+a6IjLaQPgr8mzHmQRH5C7RowN1owEdBRP4Vdc3uQC2919gOJRPxf9H0o6/Y+thz+0vvZ3fjp/aihTvKFqefWsHJYrkUDeDaVPFcCk0Pu5CT2XxSMZCT2Y5a46PTywYY1ejBCtuE4uZlgm7gkbFes8FYV6FVxEI38w7UbR5ydPR+p4uXCYaB+4K014AtoOKirs8dInIzel94mTGmb6LtHY75wLkS5U32535GBkhB+WbpAX8HMIY4XgxcKyIfR29+X0WjaD8jIgvQddJn0Bvu5tMUZIwxRkQ+jLY39IGPn3qPOcDYa98Lx3guwqg61JataOpEWJ87C2zBz05ceUeLo/wQrVS2Bv3/2mf3Hy8/+my4AH1v7ZTXwi+0fxvUCzBhXV27bl0ab83adqwa3SXMcRaIyFrga8A7jTF7p3k4DseM4VyJcuU6oABFEQlv+GvszwBNl/neGOvBGeD7xphHAEQkDvwRcK8x5gsi8u+UxX1S1q4xJicibwOetB1Jvj2pdzY36EbdsEl0mcGgFuToCVQ/cBg/e5AzrUmr1vQmRlrgU0WYrrQTfU+L0f/pOOpKf2giyzZIe6vQhu1DQdq7y8sEzmKbYkSkAfWE3W6MeXi6x+NwzCSmKtDrU6jL8UnKLsq/B74sIn+Mrg9Wps78LfAfIhIGevy/qHX7VRF5EyMbKkwaY0yH7d35UxHZaYx59myONyF+qg6tjpWx/Y6nm0Z0PA3o2vAuVJS/hQpZHeryfXRKoswnSZD2EkDiNAQyXGc2qDDvRdd9v2Wt29NhNeo1qEFd+jsmO17H6SMiUbRu+kPGmM9OtL3DMd+Y9XnKk0FE3gH8E3CNMWbqIqv91PWoC3cnfvbBiTafUvzUcrQYSJhatABN6fksfjZjt4nMBDEOCdLe29Bx3lkpzNaqbQY2217LBGnPQ+t+J9H0sp95meC06yXbHOdXo+veP7bryI4pQkT+Hq0D8FpjzEQxCg7HvGPWpkSdCcaYb4vIZcBdInLzFAaXbENTkmZCB5QwaKuAWpJ77d/lz34GCbKlC3W3j75p34xatX3YcqdeJgiCtLcNqPIywejI6wnxMkEH8I2zG67jdBCR30G7B73UCbLDMTbzSpQtPuqmvEdE3mCMmfSNfOIzZI9R2RZxehkvKO7sqodNIV4mGM+7EKCR3YdHbV/i5FQoxwxCRN4LfAJ4lTHmvNUvdzhmG/NOlI0xJRH5EJoz/X0ReYsx5uzqRc9stqHryZWf9QCa+jSr8DLBYxNv5ZhpiMjb0WWj1xhjxm/o4nA45teaciUiEkMDTqqAt59umtWsREuGXo3t0gQ8hZ89k9KTDseksIGaX0DXkM+s2YrDMY+Yt6IMJ1Kvvo2uXf6GMcYVhnA4zhEi8lq05sAbjTFPTfd4HI7ZwHgtCucFNtjkXWhK0H9a69nhcJwlIvIqtDjIrztBdjhOn3ktygDGmGHgrWhlqK9Z69nhcJwhIvI64JvAO4wxj0/3eByO2cS8F2UAY8wg8GY0jelbtpWcw+GYJHYN+avAba5al8MxeZwoW2wE9tvQMp7fF5HqaR6SwzGrsFHW/wHc6ixkh+PMcKJcgY3AfhdaK/oeEak99R4OhwNO5CH/O/A6Y8yk+1c7HA7FifIobAT2+9DuRvfZ4vkOh2McbKWufwBe7dKeHI6zw4nyGBhjisDvop2OfmnbzDkcjgpEJGprWf9P4CZjzEwoK+twzGqcKI+DMaZkjPkj4N+AR0XkNdM9JodjpmA9SD9Am0tc4yp1ORznBifKE2Dby70LbSP5RyIiE+3jcMxlrOfol2jP6te6WtYOx7ljXlf0mgwiciFqGTwJfNjmNzsc8wrrMfov4HbXD9nhOPc4UZ4EIlIHfAXtVPS2Ke3J7DglQdqLAx5w3MsEB6Z7PHMd6yH6Q+BjwLtdDrLDMTU49/UksP2X3w48ADwpIldN85DmM9ej65m3BmmvaboHM5exxXT+A/gd4GVOkB2OqcOJ8iSxAWA+8P8A94vIO6d5SPOVyv9dt84/RYjIYuBBoAm43hizd3pH5HDMbVwDhjPEGPMdEdkJ3CUilwMfN8aUpntc84jH0CIvXV4m6JzmscxJrCfo+2jv8U+4/2+HY+pxa8pniYgsAr4LdALvM8b0TvOQHI6zxnqAPgX8vjHmO9M9HodjvuDc12eJMaYDeDXQga4zXzPNQ3I4zhgRqRWRfwP+EbjZCbLDcX5xonwOsDWzPwj4wN0i8kkRqZreUc0g/FQCP/Vb+KmF0z0Ux/iIyCuB54AUcKUxZtP0jsjhmH84UT5HGOWbwOXAWuAZZzVb/GwO+DlwfLqH4jiZCuv4v4A/Mcb8pjGma7rH5XDMR9ya8hRgczrfCfwr8GXAt60hHY4ZhbWOvwg8igqyE2OHYxpxlvIU4Kxmx0zHWccOx8zEifIUYoPA3gFsxK01O2YIo9aOLzPG3DPNQ3I4HBYnylOMs5odkyVIe4kg7Z3z76azjh2OmY8T5fOEs5odp0OQ9lqA9wG3nsvjOuvY4ZgdOFE+j4xhNT8rIm907SAdFUTsI34uDiYiy0Tkczjr2OGYFThRngYqrOa/AP4B+IWIvHx6R+WYCXiZoAP4BnDv2RxHRBpF5O+BLUAPzjp2OGYFLiVqmhGRKOqu3AhsAv6nMeb5aR2UY9YiItVoi8U/R/t/bzTG7J/eUTkcjtPFWcrTjDGmaIz5MrABeAj4mYh8WURWTevAHLMKEYmJyO8C29GWljcYY37XCbLDMbtwojxDMMYMGWPuANYD+9Ao7TtExJWmdIyLKG8DngfeC7zdGPNWY0wwzUNzOBxngBPlGYYxJmuM+ThwMRrskxGRj4tI/TQPzTHDEJGbgF8BfwX8MXCTMeZX0zsqh8NxNjhRnqEYY9qNMR8BrkFd2ztE5A9FJDHNQ3NMMyJylYjcD3we+GfgamPM/cYFiDgcsx4nyjMcY8wuY8x7gVuA1wPbReTPRKR5mofmOI+ISEREXisiP0Ajs+8CLjbG3GmMKU3v6BwOx7nCRV/PMkTkOuAPgDejN+ZPA085K2luIiJNwAeA3wcGgE8B/2WM6Z/OcTkcjqnBifIsxQaA/RbwIbQl4qeBO40xA9M6MMc5QUSuBj4MvBW1jD8NPOEmXw7H3MaJ8izH5jm/DrWerwO+AnzWGLN9WgfmGMHGjRurgeTtt9/ePd42Nsf4nehnuRj4LPBFW2zG4XDMA5wozyFE5ELgg8Bvo4VIPg3ca4wpTOe45jMbN25cCtyBWrxx4GngL2+//fafhNuIyEWox+MDwFPo53afMaZ43gfscDimFSfKcxDb6OLtqMW1Evgc8GVjzIFpHdg8Y+PGjUlgMxo9X0khm82+5o477kiha8WtwJeAzxljdp3nYTocjhlEbLoH4Dj3GGOGgK8BXxORK1Bx3iwie4G77WOTW5+cct5JhSAPDAywY8cOtm3bFtuxY8cDaI7x54G3GmMGp2uQDodj5uBEeY5jjNkE/J6I/AFwPRq1/W0gKSKhQD9kjBmevlHOWV7a2dnJtm3b2LZtG4cPH2bNmjVs2LCB17/+9cf/6Z/+6deme4AOh2Nm4UR5nmDXlR8GHhaRPwPSqED/NfBNEfkpcA/wI2PMsekb6ezGBt69DHhTTU3NuyORCBs2bOD666/nwgsvJB4/0ZHx4PSN0uFwzFScKM9DrNs6sI9/EJFFwK3AbcC/i8hmrJvbRXFPjIjUAa9FJzlvQAX37mXLln3gPe95z/cikUhyjN0+fz7H6HA4ZgdOlB1hf+cvA1+2QWI3oQLzkIjk0Yjhp4E24On5bEnbMqeXAFdXPDzgCXQic7sx5sVw+40bN74LTVNrsE8ZNNXpc+dx2A6HY5bgoq8d4yIiEeAiyuLTClwFdDMPhHocAb4U2EP5/T+NBs31jXecjRs31gFvAuqBB26//fbdUzx0h8MxS3Gi7JgUYwj11ahQZxkpVM8CHbMlwtt6CDxOLcBtqADPiBKXItJmjGk9j+erQ/Pebzxf53Q45htOlB1njRXqNaglHQraS4Ba4HDF49Con+HvnVMl3iJSAyyteCwb5/d6YAcV1j8zSIDH4mxEWUQik21k4UTZ4Zh63Jqy46yxN/ed9nFn+PwpBDE96u9aEWmnLNbHgBxQqHjkK36PoP+7cfuz8ve6UeerZuwJwbZRzx2fjm5LInIj8FFgEJ3YvBct9NJqX28zxrTaWudfQicPB2znsPAYLcAX0HXrw8D7gRb0s4gB7cC70EIyX7HbbAL+ftRYquxxlgF9wH8zxvSIyL8DlwPPVWz7WuAf0M98sT3nkbH2P/ur5HDMH5woO6YM2xxjl32Mi635vISykDZzstiGj2qgiIrzECPFuoB2Uqq0xI/PAhd63Bhzi4i8Hi2ROhYfA75kjPmu9UxU8lHg34wxD4rIXwC/jgad3WyMKYjIv6LBezuA5cBrjDG5Mc7xu8CDxpgvisi70Pz2h4BmY8wrReQW4DK77SeAVwP9QGa8/YF/muzFcDjmM06UHdOOrWa1xz7mI5vsz/3AglGvif3pAX8HJzwTlVwMXCsiH0cnLV9FJzafEZEF6ETnGVSUN48jyOFxXioi70cnQ48Aa1FXPmhd7pCoMeY4gIg8f4r9HQ7HJHCi7HBMP5WWvABFEam3f6+xPwPgBuB7Y6wHZ4DvG2MeARCROPBH6PrvF6z7ORT3U7noM2h7yK9WHOclwBvt65Xr10Ur+P1ohPp4+zscjkkw2g3mcDimn0+hVub/QV3xoOu/vyMiD6OWcCV/C/ypiDwoIg+iQvoz4I9F5AfAwtM87+eBmyuO81pjTBvQIyK/QAukhHzcnuMb6Fpyfqz9J/WuHQ6Hi752OByTR0Tixpi8iCRRt/aVrtWkw3H2OPe1wzEPsYFYv1/x1FFjzDsmcYjbROTDaMT3vzhBdjjODc5SdjgcDodjhuDWlB0Oh8PhmCE4UXY4HA6HY4bgRNnhcDgcjhmCE2WHw+FwOGYITpQdDofD4ZghOFF2OBwOh2OG4ETZ4XA4HI4ZghNlh8PhcDhmCE6UHQ6Hw+GYIThRdjgcDodjhuBE2eFwOByOGYITZYfD4XA4ZghOlB0Oh8PhmCH8/7wNsijGrDCoAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "bento.pl.lp_genes(adata, alpha=0.4)" - ] - }, - { - "cell_type": "markdown", - "id": "70443b14-e9af-4aef-b56e-ab9ab5082fa4", - "metadata": {}, - "source": [ - "## Localization signatures: quantifying cell to cell variability\n", - "\n", - "Just as gene expression varies from cell to cell, gene localization is dynamic even with a single cell type. Here we will use a method called tensor decomposition to explore this variation. Tensor decomposition breaks down a tensor, or multi-dimensional matrix, into a set of factors. This is similar to how performing PCA on gene expression produces a set of principal components. In this case, we will apply tensor decomposition to a 3-dimensional tensor; the dimensions correspond to patterns, cells, and genes. \n", - "\n", - "\"Tensor\n", - "\n", - "Here is the shape of our dataset tensor." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "adf52472-f1fb-4ce6-b2bf-723e0a1e46b7", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:02:46.707484Z", - "iopub.status.busy": "2022-06-06T01:02:46.707084Z", - "iopub.status.idle": "2022-06-06T01:02:46.714061Z", - "shell.execute_reply": "2022-06-06T01:02:46.713082Z", - "shell.execute_reply.started": "2022-06-06T01:02:46.707446Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(5, 179, 3726)" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "adata.uns['tensor'].shape" - ] - }, - { - "cell_type": "markdown", - "id": "26cfe6d7-cc0d-4ea3-b43b-5dd0e84657d9", - "metadata": {}, - "source": [ - "First we will determine the number of factors used to represent our dataset. To do so, we will perform tensor decomposition for a range of values (default [1-5], three times each) and calculate the reconstruction loss with the original tensor at each value. Reconstruction accuracy across range of decomposition ranks (1 is perfect, 0 is noise). The best rank is highlighted in red as determined by the elbow method.\n", - "\n", - "
\n", - "\n", - "Note\n", - "\n", - "Estimating rank can be difficult; here we are using a heuristic and therefore may not generalize perfectly to a different dataset. Try increasing the `upper_rank` if the error does not flatten, or increasing `runs` if the confidence interval is too wide.\n", - "\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "fc04e1f9-f6a8-411c-ae30-18858df056fe", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:02:46.715957Z", - "iopub.status.busy": "2022-06-06T01:02:46.715631Z", - "iopub.status.idle": "2022-06-06T01:04:25.797891Z", - "shell.execute_reply": "2022-06-06T01:04:25.796703Z", - "shell.execute_reply.started": "2022-06-06T01:02:46.715919Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Device: cpu\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "592143a668df45d9b471805fbc8c1565", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/5 [00:00" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "bento.tl.select_tensor_rank(adata, bento.PATTERN_NAMES)" - ] - }, - { - "cell_type": "markdown", - "id": "41a73c70-1094-461d-8e9d-328717ec65dd", - "metadata": {}, - "source": [ - "Perform tensor decomposition at a chosen rank (e.g. best rank above)." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "8378adaf-4bfc-47cf-a32d-9530dd79fb19", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:04:25.800534Z", - "iopub.status.busy": "2022-06-06T01:04:25.800073Z", - "iopub.status.idle": "2022-06-06T01:04:35.121650Z", - "shell.execute_reply": "2022-06-06T01:04:35.120942Z", - "shell.execute_reply.started": "2022-06-06T01:04:25.800474Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Device: cpu\n" - ] - } - ], - "source": [ - "bento.tl.lp_signatures(adata, 3)" - ] - }, - { - "cell_type": "markdown", - "id": "428da2c8-f282-4980-a81b-91852a223222", - "metadata": {}, - "source": [ - "Each factor is described by 3 vectors, the pattern vector (it's mislabeled as layers TODO fix), cell vector, and gene vector. Genes and cells are ordered by clustering (hierarchical clustering) for visual clarity. Higher loading values, which indicate stronger association with the factor, are denoted by darker colors.\n", - "\n", - "**Pattern color key:**\n", - "\n", - "\"Subcellular" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "f07cb11d-2a5b-4a61-8158-3c28b3a058b9", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:04:35.122915Z", - "iopub.status.busy": "2022-06-06T01:04:35.122712Z", - "iopub.status.idle": "2022-06-06T01:04:38.108225Z", - "shell.execute_reply": "2022-06-06T01:04:38.107425Z", - "shell.execute_reply.started": "2022-06-06T01:04:35.122890Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAADVCAYAAAArSOYdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA1oklEQVR4nO3debwlVX3v/c+3ag9n6EN3093MTTcoiqgoimCcUKMRNRFiJILKxVwNmCdq7qO5Xo2JEp7HqNFcjcRXFL0EjSIOiQaN80iMAQFxQmZokIam5+7Tp/ucvXfV7/6x6nRvjmfo7nN62v19v171ql211qq1ati1f3tV1d6KCMzMzMyst2T7ugFmZmZmNvcc5JmZmZn1IAd5ZmZmZj3IQZ6ZmZlZD3KQZ2ZmZtaDHOSZmZmZ9SAHeWY2K5KiGpZX0yuq6Wfv5vIOlbRB0g/nsJk7U++nJLUlnbA36zUbJ+mS6r3zvH3dlnGSatV7+g5J9X3dHts1DvIOIl0fvmfv67bY/kPS0yV9WdI6SaOS7pJ0qaTGPmrS/wQWAP+7q43/Q9LPJRXVMXxxd4GuY3vi8P2uPC+WdJ2kLZIekvQhSX1di/kAUAMetmw78Eg6XdK/Vvu5JelBSd+S9NJ93bapSDoUeBPwi4j4djXvDEk/lbRZ0rYq0HqnJFXpF09x3Hd/6XqXpJ9J2lQN10h6xoS6F0m6TNIqSWOS7pX0pwAR0QEuBR4JvHqvbRCbE7V93QA7OEmqVScP24cknQt8CsiBnwHXA8uB1wF/BbT2cnvqwGuAYeDfu5KeDKwHfg0sm6To5cChXdMvBZYCd1bL/S3g34AOcBXwGOANQB34E4CIuFHSHcDLJL0xItbN3ZrZ3iLpHOAzpGP6VuArwBBwOvAK4F/3Xeum9d+AQVLbxx1FOu6vAxaSjuuLgfuAfwKuBf6+K/+JwAuAzcCaat4rgU3AF4DTgGcCX5V0YkQ8IKkJfAd4AvAL0vvkcFJQN+4q4H3ARcDH5mRtbe+ICA8HyQCsAAI4e8L8k0kniw1AG3gQ+AegATytKnNbV/7Tq3m3V9MDwHtIH6gjwE+66wCuqPJ/FPgWKXB4NvB84MaqzKaq3Ev39XY6WIZqv62r9s0/A1lX2iOARvX6caSAazXpg+NfgGO78kY1LJ9wnD27mn4F8CtgG+kD67+AZ0zRpmdUZb85RfqXqvSLp1mvJVVdAZxczXtfNf1P1fSCaroFHNFV9mPV/HP39f7xMOtj+jNArSstB07qmt7Z4/r1wO2kLx6fGn9fVHleAvyYFFTdC/wdMFClLQQ+D6wFRoF7gI9O0/ZvV/U9bZo8V1d5Lpki/V+q9P/dNe/JXa/nAVuqPC+t5r2mmv5u9zlgkmXfUeU7Yqo8Hva/wZdrDdKHYot0grgcKIA/Bd4UET8CbgEeJem0Kv9Z1fjKavx/gP9FCtSuBI4G/nWSe7IuJPWcfIp0Uvwn0rfHf6mGknTitb3j6ezo/fr/I6IcT4iIuyKiJekI4BpSQP5D4Puk3oRvVD0A05LUTwrylwGfJn2oHkIKIidzcjW+ZVdXpsvrgD7guxHx82reaDV+tKRDgKdU03XgpK6y4/WeMov6bd/pPqb/OrquFkREERG/AtjF4/qvgR+RgsRXAudXy3gBqdfrOOCLwP2ky60frsq9GXgZKTj6J9Kx9bRp2j7psS/pkZI+KOnzwIuAlcAnJxauLs+eRTp/f6hrvW/szkY65qnaC/Db1bgG3FNd0v3y+OXeLn5vHIAc5BkR8R3gL4G7SL1qt1VJz63G/6cav6oav6QaXylpCXAuKUD7UVX+FtLJ5HUTqromIp4dEf89In5COtmMkr6dvpd0KeFdc7hqNr3Dul7fO0We80k9EneSLhGtJPV6nAg8ZyfqyKthA6kX7p0R8VhSoD+ZhdV4eCeW/Ruq+wj/pJr8YFfSx0g9Kr9F+jLyza60I7peb57QDjuwdB/TKwAkvaf7XrUqbVeO69dFxKtJvXKwI8h5YzW+iXR8/6yavkDSADuCqetIQd4fAk+cpu1THfvHAH9GChhz4HvsuBTb7Q1V+r9FxIqJiZJqpC9cDeBzEfHjKmlxNX46KeC9HfhdUuDaze+NA5DvyTMkvQ34m0mSllTjTwLvBl4u6R+AxwI3RMTtksZ7RDLSZY1uj5ww/aMJ0xeRLqONnzzXVcu4apdXwnbH6q7Xy9gR3HdbXo0fUw3dJu7f3xARWyT9CfBO4MsAku4nfch+f5IiG6vx0EzLnsLLgSNJH95f6WrHfZJOBM6r0m8gHXuP4OEfmIdMaIcdWLqP6aWkXrQfVq9f0ZW2vBrvzHF9UzXeWI3nTVjG86thnIDjSV8yngD8P6QgrQA+K+n87l7zLhtJAdcQKWgEICK+LykjXSG5jPRlexT44+0VSvNIl13h4V9uxtMHSOfZF5F60/9bV/L48f/1iHhl9cV9NfBEScdGxH1Vut8bByD35BmkD0ZIvXk10qVXSCcrImINqbftMNK9erDjUu2KatwClkSEIkKkb4u/P6GesQnTX4uIE0gntpcBi3BP3t70I3Z8mPxl9UECgKRl1UMQK6pZXxzft9X+PZIdPbwz+UREHE26ifzPSD0TfzVF3vHLqxM/eHfWn1Xjv4+I8V4bqqcRN0XEP0TE20kfVI8g9Txf21V+vN6bsAPRf5Lu+wR4myRFxFdIAX23FdV4Z47r8Uu+MWH++DL+bMIyHhERvwTWR8SZpKDtCcDNpEDz6VO0/TeOfUlDAJHcD/xHlfSoCWX/CJgP3BgR/9GdUD21+21SgPdJ0v3S3efinzO1LV2v/d44ALkn7+D0Xklv7Zoe/6B/Jelb7NmTlPk48Aekb6wlVW9bRKyR9DnSpYjrJH2LFKw9E/gI0/8cxU2SVpAulyyt5m3c5bWx3RIRI5LeQDrxvwp4vKQfk4Kx55OesPs08BfA70v6BumD7RHAGcAJ7Pigm85D1U+ZPAA8vpq3cYq815Euqz5VUnP8w0jSa0kPZTypynd2dc/QlyLiS1WeZ5Kewt1IuizVbRC4VdJ3See98S8gF0dE9+WxM0hfWL61E+tl+5mI2Fr99MenSYHPkyRdBxw7IetcHNcfJgVO762e3t5Guq9uEek+vbdKegnpidUWO3r+Nk2xvK+QbpE5gx1XPb5UXWa9lXSZdPxWmW+MF6q+wIxfOv7gJMv9Muk2hQ2k98b7q19g+XpEfJ3UO/hW4ExJn2ZHAPmViFhf1XE0afvcFBEPTrNNbH+zr5/88LD3BnY89Thx+AvS5atR0s3If1XN/2lX2Yx031YA35mw3Hmky7l3VMtYSbqf46lV+hVM8kQk6ebgu0gnx02ke01O2dfb6WAbgGeRLuGsJ/W23kX1dHWVfjLpg+Ihdtxz+UFgXpU+09O1nycF8mNVHV8ZzztFe95N19N/E46hicPFXXm+UM17/yTLbFbH9saqHb8AXjMhz5Or8p/e1/vEw6yP6WdUx+y6an//Gvh69z7fjeP6g9X0FV3LOJvUE7ypOrZ+DPyPKu33SF9aNlbnxduBN0zT5kWknrOfd817R3VeHT9H/oz0cIe68vxu1a4HgPokyx1/P0733nkKqZdwG+n8/RFgQVf6m6syf7yv962HXRtU7UCzGUn6R9LDFK+JiMv3dXusN1WXl+4Cbo6IZ8yUfw7r/RTp1oWTIuKOvVWv2ThJl5C+ZD8/qh9E3teqnsQ7ST+vdVJEtPdxk2wXOMizGUk6ifRo/ptJ9+kdGxEj+7ZVZmZmNh0/eGE74zTS07cjwCsd4JmZmc0tSZdLWi3pl1OkS+nvGO9U+pvHJ02W72Fl3JNnZmZmtm9JehbpvsxPRsRv/DGApBeRfg/xRaR/nvr7iDh9umW6J8/MzMxsH4uIa9jxE0CTOYsUAEZEXAsskHTkdMv0T6jsv9zFOrc01wtcvGhRLFu2bMeMKFHRJpSBBK1taVzvT2MCyjLNjxKimpYgy4miTbTaZM0GKCOKDspyIsrtR0O022R9/ZDXgEB5jc6mDWT1OmWrhbKMzugYWZ4TgCRqiw9PdecN1BlL9Y63BYjmQNpAnTEoilRRllNuG0b1JhSd1Ja8lsbNfqI1hgbnoyjYcvevKVod+hb20xntMLD8WNRpU7a2IWWUY2OoXifrH4QIotMGwX233s/8WkZez4iA0VZBMxdZPadsF2S1jFarJBPkuYiAKIMAigiKgDLSpskFNYmhw+YhibyvAREUrTZZnpM1GnRGtpI360QZFGPtVE+nAIlaf5PoFLS3jqJqXynLKVptyk5J3shRnqftJkEZRFGiWvqenDfqFGNtlGeUnYKslhNl0BoeJYpAuZBEWZRECXkjp9bMKYuSzrYOeV+NrMoTpJXqjHYoiyDKQJkgoFWW1CQE9C/sQ3lOMdYmioBM5PUcMqEs4xcPrl0bEeM/aD53x/3ixbH8qMOgLIhaE0ZHoNkPeR21R4mshjqttB7NQSjaqOgQtQYqC0IClLajqrfl+E80pp0MWb7jvdGdDlB2Up7uMuloT/mj2kdRok57Rz3V/MhyVHTSe0xCVZ1RlmkReT0tHxFZ9vC6t24GCdUaRNFOdWZZamtZpGVQNSXLiaJAzb70vioL6B9CURCtsXRGKgPV6tUTrIGUEY3+tI5Kx5uqejqb1pP39RFFQXQ66enJskRZRlavpeN1dDS1T0L1Wjpc8xxqDaI9SmdkG8pEFCW1wQGi00ZZRhQlndEWeaNGZ7RF2Urvv9pAk6LVQXkGESjP0rmlWs/O6BhZrUaUQWe0jQR5o0bZKSha6RxXH6wzummMvJ6nZWWiLIJ6f40IqDVyVMuo9TcZ2zhC2U77IatlZLWM0U1jZLUsve2KYGu75JB5dbJaxrbhFvX6jv0TAXeMbt0jx/3rtHzWn8kf5d6LSH/vOe6yiLhsFxZxNOlJ8XH3V/Om/FkbB3lmu2nZsUv5z//8z+3TWWuEfPODlI156UT765uhVqdc+jii1oeKFhobgV/fTIxuJdotYnQENfpQ/yDFhjWMPbCSvmOXo0Yf5eZ1aOAQojWaPiCAsVWr6H/UY8nnL4KyIJu/iPVf/TwDRx/Jlnt+TX2wn/W3rqDv0PlEWZLVayz547egziidQ5dTX307lAUqO8S29PNwnWVPToHO2ntgy7q0MoMLaf3sB9SOfgTlpnUUG9aQL1xCsWENjeMfS3vlXdSf8kI0NsK1r3oDG+7eyGPOeSzrblvNky7/R7T+florbkWNPrbddQd9Rx9F86TTiE6bYt2DkOW88Wlv5kWL5zFvyQBFu+C2B7awfLDBvKPmseWBLQws7mflA8P05xlD85uUrYLR0Q5FwKZ2waZ2yZZOSQkcUstY0sx5zh8/g6xeY8Gjj6NsjTKycg2NoUH6ly1j3fU/5ZDjjqQzMsqmFQ8ysGQBYxu3oDzj0JOOZ2z9JlbfdDt5o0YUJfVDBtl0z2pGN4xyyDFDNBfMq7ZpnWJ0jNbmbTQXDgIwtPRwNq94kOaCIbau3sDAYQtpj2xjxXfupDXSpjFYp9ZfY9uGUTrbOixYNp+Fxy9g24ZR1vxqLYeesJDmIU3qfbUqEAzW3LyWsc1jjI526OurURbByi0t5tczGpl43O8/huaCITateIixTWPU+mvMO3I+eV+T+mAfSy/5+FR/VTfL4/5YrvvXy2HrRsrFy4k7fkx23BMohg6nvvp2inlLyNbcTRQFxSNOJ9+8Cm1eTbloGdnoJiKrEbW+9MWm1gBI04DKDhrbQjmwELVGIG8Qyoh6//b68+GHUHsbZXMIlZ0UfHRGiVofkdfJ2tuIvI46Y2j9/ajRB3kdinb68jKwkGzLWqg1KRv9qD0GYyPEthHIMnTokWhshMgbRKM/1RMloYzyJ99AtTq1w46m2LAGsoysb5BydIRyZJgYrW5XznKygSHKLRupLzuRcstGypFh8pOfTTY6TLHy9rT+Y6PUFh9BtNvpfdnso3PsKeRb1lD2DaFOi3x4NShjw1c/y7wTT6LYtI7WuvV0Rsdoj4zSGBqg//AlZINDbP7VreR9DbI8p+/Iw4miIBtaSG3J0bRX3sW6639K3tegMzLK4tOeQGvN6u3T629ZwdCxh7P+lnsZvn8TA4sHWHLKIxm+7yEahwxStjo0F86jMTRIZ3SMKErW33ovA0sW0hkdY+0tq8jrOfOXLWRk9TBbHthC0S448klHcefX7uCQYw5hw90bqc+rs3XzGEectJgoggXL5tNcOMjikx/JnV+6jpHVIygTA4sHGFjczx1fv5v+BU3yes7Y5jGuf2iE5596NPMOH+QX317BkcekP8eJIijaBb9z60/2yHHfn8++nyA6cRnpdwn3Ggd5ZmZmZtPoz/eLu9tWsuOPAyD9e9DK6Qo4yLMZXXzxxXuljJmZ2f6okc35HT+742rg9ZKuIj14sSlm+AcSB3lmZmZm0+jbC0GepM8AzwYWS7ofeCdQB4iIjwBfJT1ZeyewlfTXfdNykGdmZmY2jb1xuTYizpshPYA/3ZVlOsgzMzMzm8Z+crl2lznIMzMzM5vGXDxduy84yDMzMzObhoM8MzMzsx7ky7VmZmZmPahRz/d1E3aLgzwzMzOzadT6D8xw6cBstZmZmdlekrsnz8zMzKz3uCfPzMzMrAfV+w7McGnGn3CWdI6k2ySNSVot6buSsipthaQte6pxko6SdLGks/dUHRPq+5CkhySFpK/sjTrNzMxs/5Y1slkP+8K0oamkxcCngNuB1wGHAi8Gxp8lfgPQ2IPtO4r0322fAL60q4Ul1SKis4vFrgLeuKt1mZmZWW/q1Z6840lB3H3AFyPi7yLiuRFRVOmXkgIwJDUlfVLSsKSvSfpB1SO2vBpC0o+qtM2SrpSkquy11bytkm6U9Mxq+ddX4wuq8q+WdEX1+tSq7BZJK6rXr67SPivpZuBzkhqS3i9ppaSNkj4vaclkKxsRbwQ+sFtb0szMzHpSrb8262FfmCnIuwVYC7wIWCfpBkmvnSLvRcD5wHeA7wPPmCTP6cA1wG3AeV15vgW8CbgYOAK4vJr/9mp8TZX/BzO0d9wLgI8CnwTeBrwZ+DLwQeCFwEd2cjlmZmZ2kMsb+ayHfWHa0DIihiU9nRQknQk8GfiYpJUR8bUJ2Z9Tjf88Iu6U9BLgaRPyXBcR75YUwKnAckk3AU8iBWPbt4KkfuCbwLuAeyLiqmr+zqzX5RHxoSr/eKB4UVf683dmIWZmZma1A/Ry7Uz35NWBOyLiomr6r4F3AI8DJgZ542KaRa6vxuP3yeXAq0g9hVeSLv3+DSmYbE6xrPFLxTVJTaB/kjwPTJjuAL/bVXbf3AFpZmZmB5xa3558/GDPmSnYeSxws6R3SLoAeFY1/xeT5P1eNX6fpP8FPHUX23IIcDLw+K55G6rxKZLOqx4EWVHNOx94DzOvw1dIwewFwLGkHsmLJsso6cXAy6vJpZJeK+mE6RYu6czq6eM7Jb11kvQ3SfqVpJ9L+o6kZTO018zMzPYjWaM262EmOxFPvFrSGkk/rYapbp/bbqZaVwG3kp6sXQSsBi6OiK9PkvejpEuwZ5F64W4EngJsBBZMU8engT8AnldNXzP+OiLulnQl8FJST98zgY8Bvwe8knTP3bYZ1uHdwCDpnr6zgXuqtk7mfwJnVK9Prur6I+COyTJLyoEPky7/3g9cL+nqiPhVV7abgFMjYqukPwH+lh2BpJmZme3n8r7mHl3+TsYTAJ+NiNfv7HJnuidvFSnAmip9eddkHfgJ6ZLrI4EPATdGxEZSoKeucu8H3t9Vdsp75CLilZPMPq3r9Ru78l4BXDGhfAt4SzVMKyKePVOeSdpxZ0TcDSDpKlKQu32nRMT3uvJfS7o8bWZmZgeIvXC5dsZ4YnfM5b1pIvV6/TvpYYmvAX84h8vfHx0N/Lpr+v5q3lRew9T3MiLpwuoJ5hsuu+yyOWqimZmZzUZWr8166P6Mr4YLu6rY2XjiD6rbv74gaelM7Z6zx0UiYhh4wlwtr9dIehXpcvYZU+WJiMuA8ehuugdYdsnyt/77LpdZ8Z4Xz1X1ZmZmB7S56Mmb8Bm/O74MfCYixiRdRLpy+tzpChyYzwTvP1YC3ZH0MdW8h5H0PNJv/p0REWN7qW1mZmY2B/I9f7l2xngiItZ1TX6cdI//tBzkzc71wAmSjiPtjHOBV3RnkHQK6UGPMyNi9d5vopmZmc1G3qjv6Sp2Jp44MiIerCZfQvrDimk5yJuFiOhIej3wDdJv/l0eETdLugS4ISKuBt4HzAM+X/2Q830R8ZJ91mgzMzPbJXu6J28n44k3Vn800SH97vCrZ1qug7xZioivAl+dMO8dXa+f9xuFzMzM7ICRN/fsT6jATsUTbyP9O9hOc5BnZmZmNp3aHr9cu0c4yDMzMzObhpqT/YPq/s9BnpmZmdk01Ojb103YLQ7yzMzMzKYhX641MzMz6z1quifPzMzMrOf4cq2ZmZlZD1Jtj//jxR7hIM/MzMxsGr5ca2ZmZtaDfLnWzMzMrBdlB2a4dGC22szMzGwvidw/oWJmZmbWc8IPXpjtGbec+JhdLvOYW2/ZAy0xM7ODki/XmpmZmfUeX641MzMz60EH6uXabF83oBdIOlPSbZLulPTWSdKbkj5bpV8nafk+aKaZmZntjqw2+2EGeyKWcJA3S5Jy4MPAC4GTgPMknTQh22uADRHxSOADwHv3bivNzMxsd0XemPUwnT0VSzjIm73TgDsj4u6IaAFXAWdNyHMW8Inq9ReA35akvdhGMzMz202R12c9zGCPxBKKiN1YXRsn6WXAmRHx2mr6fOD0iHh9V55fVnnur6bvqvKsnbCsC4ELAS699NK+ww8/fHSm+jdu3Lh4wYIFa2fK14vld7Hs2nPOOefM3alnKpLWAPfO5TLN5tCyiFgy1wv1cW/7uT1y3M+F7s/4ymURcVmVNmexRDc/eLEfqXb2ZbtSRtINEXHq7tZ5IJefbd2ztb+eSMz2JB/3Zrtndz7jZ8uXa2dvJbC0a/qYat6keSTVgPnAur3SOjMzM9vf7ZFYwkHe7F0PnCDpOEkN4Fzg6gl5rgYuqF6/DPhuzN118tl+KziQy+/Vb0RmZmZ7yB6JJXxP3hyQ9CLgg0AOXB4R75J0CXBDRFwtqQ/4Z+AUYD1wbkTcvc8abGZmZvuVPRFLOMgzMzMz60G+XGtmZmbWgxzkmZmZmfUgB3lmZmZmPchBnpmZmVkP8o8h77/8RMzcmvO/kVu86NBYtvQYyHJAqLUVspzIclCGOi0Aot6ETgvyGpRlSis7hIQiIEooS6LspGV12kRRoGYflEVqetFJ5SOIdgsEymuQ1+ls3EDerKe6Ox2yvj6IgHoD2mNEGSjLUHMgbYWI1EZAZZn+bidK2qsfpH74UajToty2BWU5UbUtGxgi2mOsuuNBBpupbBTBaFFy2KOXolqDkEAZ7VUPEGVBVquhWsqb1VPbi1abKIMsz+iMjgEiy3PKoiDKkiiCvJFDlkFZojzfnp8s7cK0PiKKEklEGWn9gdbwVrJaTtkpUCaKdokykeVK76gMlOUoE8rSd9yslqYjAkmURfmw/dwZGYVMXcvNgCCr17a3pTY4CMpAItpjSFm1jTqpnbUaECAhZbSHR7avT62/SXSKtD8yoXqDKAq2PrQR5Wn9irEORUCtlpYrwWirIAIGB+t0RjtIIqtn288ct20dWbsnfrh4nvI4ZrAf5RlRlAwceWhatUxEp5OOvSxti7LVBqAYa9E44ugdC1FWbY+qn2H8fTCuOj63p3eLMm2AiW/pKCfPv/1UOvEUEGneeL3j5TU+T6ldkNZnYhsBlQVRa6Q0Vfm3r1OZhvF12d6GeHi+iW0Z2wpRonpjR75qWVEUKK8R9b6uRerhy+5ep/G08fYVnTRWBuPnm6IDWQ2iQBHpfDCeDilP97pnta590L1O1TYb37cRaVx00rws79rGGeqMVefK8TLjy4sd7X341t6xfkUb8vqEvCn/T266aY8c9wcqB3lmu2nZMUfzX9/+KtE3ROQN6vfeAIMLKPoXQr2P2roVhDI6i48n37SScnARam0j6k3ykXVEVkOdVjrZbRumGN5INjBEsW4V5ZaN1JedSLl1GGU55fAGsqGFRKdFZ9V9KM/JDllEvvAwHrr6ixxy3JHkg/NorVtP/yNPhLIgX3I0nQdXEK1RsoEh6sc/PtVZtCj756cPktY2ivlHkI2N8MCH/oYj/993km9cyehN15ANLSBaoxQjw/Q/+Tl0HriH9774Ep52/EKiLGltaXPbxlHe+M8fQIcdS2Q1ojHIyvf/Fe3NIwwcsYi+RYcA0L/kUKIs2LziQYrRFs0F81h38z0oy2guHGJswzDtkTHaI23mHXkItcF+OiPbaC4YojM6RnPBELX+9Aff7ZFR8r4GnZFRsnqN9tZR5i8/EoD7r/k5/YvmsW3dFmp9NYYf3EJjsE7zkCZRBFkjpzE0QK2vSW0wfVD2L5pPbbCPst0hq9cY2ziMsowoS5RlPPTjW8n76gwctpCtqzdQH+wjypKBIxZRjLaoD/ax4NSnoGYfavTRWXkXaqRldzasoTMySmPRoSlorddRo49VP7iWWl9an0NPOp7WpmGiKKkN9lE/Yinl8AZu+sC/UZ9Xp7Otw/o7NrC5XbBkcT8AeT3nzl9vZlsRPPX0o1hz81pq/TUGDxsgyhSYnPHj/9ojfz12aFbnY49/As35TcY2jXHq218BZYEafRQbVlO2O+TNJmr2MXLf/QBsumslx/7Fu7cHCtHoT194ao3qfTBKNjayvY5icBHVihJVUJAKlqgzlgIGZals2SHGg4ZaE43XUaWlAKkreBlfTlkFH0UKRNXaSjQGqgBk9GGBTtQHUNlBY1uILH1sKkqyrRvoLFqevoyNB2PVf5SqvQ06LaI5L9UpEXkjtb/KF1XApLJTbYcx8rt+nN6zhy9HRSutU2eMGNtKObKZfP4i2kc8BkWZtk0VhI3nS4Fbu6qz+lJQdoi8TjayPn0ZrPeRjayjHFi4Yzw6jNqjFPOPpGwMkm3dgKKk7J+Pivb2dS8HF6V1G/9Sk9VSemcUshpRa1ZfXAtUtMhG1hH1AaI5mL7s1vsoG4PUV9+e9nNeI2p9RF5P+64stre3O3iOvI6KNpHXyYdXU85bnLZd0U7nnqp837xD/Jd7XRzk2Z538fzdKLNp7tthZmZ2EPE9eWZmZmY9yEGemZmZWQ9ykGdmZmbWgxzkmZmZmfUgB3lmZmZmPchBnpmZmVkPcpBnZmZm1oMc5JmZmZn1IAd5ZmZmZj3IQZ6ZmZlZD3KQN0uSzpR0m6Q7Jb11kvQ3SfqVpJ9L+o6kZfuinWZmZnZwcZA3C5Jy4MPAC4GTgPMknTQh203AqRFxMvAF4G/3bivNzMzsYDRjkCfpnKqnakzSaknflZRVaSskbdlTjZN0lKSLJZ29p+roqusESd+TtE7SsKRvSXrEDMVOA+6MiLsjogVcBZzVnSEivhcRW6vJa4Fj5r71ZmZmZg83bZAnaTHwKaAFvA5473hSNX4DcMEeax0cBbwTOHt3Ckuq7UL2o0nb453APwHPAz6+E2V+3TV9fzVvKq8BvjZVoqQLJd0g6YbLLrtspxptZmZmNpmZevKOBxrAfcAXI+LvIuK5EVFU6ZcCnwCQ1JT0yaoX7GuSfiApJC2vhpD0oypts6QrJakqe201b6ukGyU9s1r+9dX4gqr8qyVdUb0+tSq7RdKK6vWrq7TPSroZ+JykhqT3S1opaaOkz0taMsm6/igizoiIf4iINwLrgcfu1ladhKRXAacC75sqT0RcFhGnRsSpF1544VxVbWZmZgehmYK8W4C1wIuAdVUv02unyHsRcD7wHeD7wDMmyXM6cA1wG3BeV55vAW8CLgaOAC6v5r+9Gl9T5f/BDO0d9wLgo8AngbcBbwa+DHyQdP/cRyYWqC63AlAFkIdW9U5nJbC0a/qYat7DSHoeaV1eEhFjO7kOZmZmZrtt2suZETEs6emkIOlM4MnAxyStjIiJlx2fU43/PCLulPQS4GkT8lwXEe+WFKRereWSbgKeRArG8vGMkvqBbwLvAu6JiKuq+TuzXpdHxIeq/OOB4kVd6c+fqqCkE4GrgRWky9HTuR44QdJxpODuXOAVE5Z3CingPDMiVu9M483MzMxma6Z78urAHRFxUUQsAy6pkh43TbGYJm19Ne5U4xx4Famn8LOkHrgbq7TmFMsav1Rck9QE+ifJ88CE6Q4pSH1+NbxsssZVT8Z+n3QP4nMj4sFp1oWI6ACvB75B6vX8XETcLOmSKsiFdHl2HvB5ST+VdPV0yzQzMzObCzM9mPBY4EpJVwH3As+q5v9ikrzfIz0g8T5J1wFP3cW2HAKcDDy+a96GanyKpPNIl3VXVPPOB17OzJecv0LqNbwA+Dbpp06OI/USbidpabUOi4C/BE6XdPp4D+JUIuKrwFcnzHtH1+vnzdA+MzMzszk3U5C3CriV9GTtImA1cHFEfH2SvB8lBVNnkXrhbgSeAmwEFkxTx6eBPyA9zQrpPrjnAUTE3ZKuBF4KXAk8E/gY8HvAK0n33G2bYR3eDQyS7uk7G7inautEjwAO6yozbtogz8zMzGx/NNM9eatIAdZU6cu7JuvAT0hP2z4S+BBwY0RsJAV66ir3fuD9XWWnvEcuIl45yezTul6/sSvvFcAVE8q3gLdUw5Qi4vvdbTQzMzM7kO3K78jNRMAfAY8GtpB+D+5Nc7h8MzMzM9tJcxbkRcQw8IS5Wp6ZmZmZ7T7/d62ZmZlZD3KQZ2ZmZtaD5vKePLM94pYTH7PLZR5z6y17oCVmZmYHDvfkmZmZmfUgB3lmZmZmPchBnpmZmVkPcpBnZmZm1oMc5JmZmZn1IAd5ZmZmZj3IQZ6ZmZlZD3KQZ2ZmZtaDHOSZmZmZ9SAHeWZmZmY9yEGemZmZWQ9ykGdmZmbWgxzkmZmZmfUgB3lmZmZmPchBnpmZmVkPcpBnZmZm1oMc5M0BSWdKuk3SnZLeOkl6U9Jnq/TrJC3fB800MzOzg4iDvFmSlAMfBl4InAScJ+mkCdleA2yIiEcCHwDeu3dbaWZmZgeb2r5uQA84DbgzIu4GkHQVcBbwq648ZwEXV6+/APyDJEVE7I0GLn/rv+9ymRXvefEeaImZmZntLdpLcUbPkvQy4MyIeG01fT5wekS8vivPL6s891fTd1V51k5Y1oXAhQCXXnpp3+GHHz46U/0bN25cvGDBgrUz5evF8rtYdu0555xz5u7UMxVJa4B753KZZnNoWUQsmeuF+ri3/dweOe4PVO7J249ExGXAZbtSRtINEXHq7tZ5IJefbd2z5ROJHYx83JsdOHxP3uytBJZ2TR9TzZs0j6QaMB9Yt1daZ2ZmZgclB3mzdz1wgqTjJDWAc4GrJ+S5Grigev0y4LtzeD/eLvX89Vj52dZtZmbWs3xP3hyQ9CLgg0AOXB4R75J0CXBDRFwtqQ/4Z+AUYD1w7viDGmZmZmZ7goM8MzMzsx7ky7VmZmZmPchBnpmZmVkPcpBnZmZm1oP8O3n7L98sObc01wscVB5DqlEE1CUywUAjp+yUFAGHnvyYlLFoQ15Pr6NEnTGIIMoiNaxWJ5SharrcsomyKJFE0WoDUJs3gCRQ9b1MGdFpoyyjbLVQJpBQllfLFWo0IcsotwxTFgXFWJvmoQuIoiA6baIoAcjnDRFj22gNb4UyKIuSrJ5BgLKMKEsigmKsZPBRJ0CUXVs1Q2MjkNfSOtX7Urqyh48BygI6YyirEVkOWY6KFqHu75ppPcjyHWUQZBmM3z8spddStWxtb8vDxY60sgNl0XUQVGlFJ9Wl9Dqag6nOqOolqn2nNL+atb0dGl+i0n6W0uvxda62i4o2EIRSXeq0QErboT2G8loqExARKM+Jev/D2zq+PbfPq2rutIi8ntLKThor4yc33bR2T/ym3eJFh8aypcdU+0hQtHZso/G2dsbSunfvk4hqOpiwIaeoKX4zbfs2iN88HiKq7NW22p5Xv3nMdN+LLkFW27HPoqz2bZ7qKcsd5ZRt338Bab1Ht0Cjv9oeKb+i2L7OURTV+7OrLeOrM/46AlXHctT7Jl1ndcaIrIbKDjF+zEhEWaCsBgQxti21oyxSfXn1GojWGNng/O3bNarziarjNrJaej922mmdaw0gkDIiSui00nmn6EBRpPNEo5Hanuep3HiTixLV60S7TdZsEGWgep1y21aU14iiQ9bsg7xOa91a8maDst2pzmEiipKslu/Yb0DZLiATWZ7RGR2js61D3shRnqFMlO2CrJbxyzUb98hxf6BykGe2mxaozqtqR7GpXXJEs8ZgnvHEpUNs2TDKlk7JH/7HDwDIhldTzD8qvR4bprZuBdEeI0Y2A6BFRxONfrJtmyBKRn70dVqbR8gbdYbvewiAxU99EqrVUSN9AKjZR7FuFeobpLXyXrJGjazRRzY4RDm8EWp16sc+CjX62HLd99m2bhOb73mQ5eeeTbllI601q2ltHiGKkoVn/DZjt/+UlT/4KcVom20bRhk8fJAoSuqDfbRHRilaBZvu3cyTv/VN1N6W2hAlZb2f+t3XwtBiKAvahz86fRjVmmStEcrmENnYcMo/NoJW3UE2dCjFwEKib4h84wNEvbl9m0beIGpNom8olRkdhiwj6gOoqD5kxj/o8npqS5ZOY1Fr7ggYlaUPrLyByg7ZyDrUGkFFJwWMRZE+QIbXooH5KUgaXkv7+KeSjW5K+yKrQdmhmH8UkdXIRjc9PGjNG6lcVV82vBqynKg1UHsMoqSctxh1xsiHH0ofjH1DRK1JvvYeVG9S9g3BqrvJ5i8iWqNQFumDcWgBraOfgKrglCxHnTHKxuCOedUHYG3jr+nMPzotd2QdUe+jbA7RPzCwR/6VYtnSpVz7zX+jHFhI5A1qG+6jGDqcqDW3b/PaurspBxd1Baqgok1Z76/2XSN92an2244DYEcgO76s7vlZayRtg6K1PXgZ3yfqjG4PcOm0yMaGKZtD6fip9aX0rIbaozvKRgl5nWLeErLWSFpOa2vahn3zUdFCrRHIG9AehVojrd/GXxPKKIcOR7f+EJY/IX1BiBK1tqXjp1qHcvN61OxDzYF0/NabKYjK0rE83o5sbASU0TrysWkbVWlZa4SoNamtvZtiaAn58BrKVfeQzV+EanXKkc1kQ4dClLTu+gXZ4BCxbQRqDfKhBZRb0/uvdd/t9D/td9Pxo4yy0U/UB8g3PQB5nXJgIdqwkmLdKsptI9SWHJ2+GDX7iLFROmtWokYf5eZ1dDZvorV5hIFjlxLtFtnQQjprVla7I6M9vJXmEUcwuvIB+o87nmiNki85mm2/uon6ggW0N26k77hHkS88jHuvuIIFJyxl66r1KM+oD/bR2ryV5oJ5ZI3a9i+jI6vWU+tr0BgaYP2t97Lm5jUsWD6fxlAftf4GWx7cxMCiQR71kX/xv7F08eVaMzMzsx7knrxZknQm8Pek38j7eES8Z0L6m4DXAh1gDfDfI2KXvmkc8b2f7nK7Vj3nibtcxszMzHqHe/JmQVIOfBh4IXAScJ6kkyZkuwk4NSJOBr4A/O3ebaWZmZkdjBzkzc5pwJ0RcXdEtICrgLO6M0TE9yJiazV5Lem/bc3MzMz2KAd5s3M08Ouu6fureVN5DfC1qRIlXSjpBkk3XHaZ/5bVzMzMdp/vydtLJL0KOBU4Y6o8EXEZMB7d+SdUzMzMbLc5yJudlcDSruljqnkPI+l5wNuBMyJibC+1zczMzA5ivlw7O9cDJ0g6TlIDOBe4ujuDpFOAjwIviYjV+6CNZmZmdhBykDcLEdEBXg98A7gF+FxE3CzpEkkvqbK9D5gHfF7STyVdPcXizMzMzOaML9fOUkR8FfjqhHnv6Hr9vL3eKDMzMzvouSfPzMzMrAc5yDMzMzPrQQ7yzMzMzHrQjEGepHMk3SZpTNJqSd+VlFVpKyRt2VONk3SUpIslnb2n6phQ33WShiVtrX6U+Fl7o14zMzOzuTZtkCdpMfApoAW8DnjveFI1fgNwwR5rHRwFvBM4e3cKS9rVB0t+BLwR+P+AJwIf3516zczMzPa1mXryjgcawH3AFyPi7yLiuRFRVOmXAp8AkNSU9MmqJ+xrkn4gKSQtr4aQ9KMqbbOkKyWpKnttNW+rpBslPbNa/vXV+IKq/KslXVG9PrUqu0XSiur1q6u0z0q6GficpIak90taKWmjpM9LWjLF+r4J+DLwHWAMKHdxe5qZmZntF2YK8m4B1gIvAtZVlzBfO0Xei4DzSQHS94FnTJLndOAa4DbgvK483yIFWBcDRwCXV/PfXo2vqfL/YIb2jnsB6QeIPwm8DXgzKXj7IPBC4CNTlJsPrAGuI/VeTrWuZmZmZvu1aS9nRsSwpKeTgqQzgScDH5O0MiK+NiH7c6rxn0fEndWPAT9tQp7rIuLdkoL0P67LJd0EPIkUjOXjGSX1A98E3gXcExFXVfN3Zr0uj4gPVfnHA8WLutKfP0W5LcDvACcCfwtcAjx3Zyo0MzMz25/MdE9eHbgjIi6KiGWkoAfgcdMUi2nS1lfjTjXOgVeRego/S+qBu7FKa06xrPFLxTVJTaB/kjwPTJjukILU51fDyyZteEQnIr4VEZcCPwaeU92XaGZmZnZAmenBhMcCV0q6CrgXGH/a9BeT5P0e6QGJ90m6DnjqLrblEOBk4PFd8zZU41MknUe6rLuimnc+8HJmvuT8FVKv4QXAt4GTgONIvYTbSXoB8Iekhy+WknohHwLW7eJ6mJmZme1zMwV5q4BbSU/WLgJWAxdHxNcnyftRUjB1FqkX7kbgKcBGYME0dXwa+ANg/O+/rhl/HRF3S7oSeClwJfBM4GPA7wGvJN1zt22GdXg3MEi6p+9s4J6qrROtJ90z+ArSQxc/BN4SEdP1TJqZmZntl2a6J28VKcCaKn1512Qd+AnpadtHAh8CboyIjaRAT13l3g+8v6vsVPfIERGvnGT2aV2v39iV9wrgignlW8BbqmFKEXE901+GNjMzMztg7OrvyE1HwB8BjyY9wPA10hOzZmZmZraXzVmQFxHDwBPmanlmZmZmtvv837VmZmZmPchBnpmZmVkPcpBnZmZm1oMc5JmZmZn1IAd5ZmZmZj3IQZ6ZmZlZD3KQZ2ZmZtaDHOSZmZmZ9SAHeWZmZmY9yEGemZmZWQ9ykGdmZmbWgxzkmZmZmfUgB3lmZmZmPchBnpmZmVkPcpBnZmZm1oMc5JmZmZn1IAd5ZmZmZj3IQZ6ZmZlZD3KQZ2ZmZtaDHOTNAUlnSrpN0p2S3jpJelPSZ6v06yQt3wfNNDMzs4OIg7xZkpQDHwZeCJwEnCfppAnZXgNsiIhHAh8A3rt3W2lmZmYHGwd5s3cacGdE3B0RLeAq4KwJec4CPlG9/gLw25K0F9toZmZmBxlFxL5uwwFN0suAMyPitdX0+cDpEfH6rjy/rPLcX03fVeVZO2FZFwIXAlx66aV9hx9++OhM9W/cuHHxggUL1s6UrxfL72LZteecc86Zu1PPVCStAe6dy2WazaFlEbFkrhfq4972c3vkuD9Q1fZ1A2yHiLgMuGxXyki6ISJO3d06D+Tys617tnwisYORj3uzA4cv187eSmBp1/Qx1bxJ80iqAfOBdXuldWZmZnZQcpA3e9cDJ0g6TlIDOBe4ekKeq4ELqtcvA74bc3edfJd6/nqs/GzrNjMz61m+J28OSHoR8EEgBy6PiHdJugS4ISKultQH/DNwCrAeODci7t5nDTYzM7Oe5yDPzMzMrAf5cq2ZmZlZD3KQZ2ZmZtaDHOSZmZmZ9SAHeWZmZmY9yEGemZmZWQ9ykGdmZmbWgxzkHaQkbZmj5Vws6c+r15dIet5cLNfMzMxmx/9da3MmIt6xr9tgZmZmiXvyDnJK3ifpl5J+Ienl1fx5kr4j6SfV/LO6yrxd0u2Sfgg8umv+FZJeVr1eIemvu8qfWM1fIulbkm6W9HFJ90pavJdX28zMrOc5yLOXAk8EngA8D3ifpCOBUeD3I+JJwHOAv6sCwieT/p/3icCLgKdMs+y1Vfl/BP68mvdO0n/3Phb4AnDsnK+RmZmZOcgzngF8JiKKiHgI+AEpcBPwN5J+DnwbOBo4HHgm8MWI2BoRm4Grp1n2v1bjG4HlXfVdBRARXwc2zO3qmJmZGfiePJvaK4ElwJMjoi1pBdC3i8sYq8YFPtbMzMz2Kvfk2X8AL5eUS1oCPAv4MTAfWF0FeM8BllX5rwHOltQvaQj4vV2s7z+BPwSQ9DvAwrlYCTMzM3s4967YF4HfAn4GBPCWiFgl6dPAlyX9ArgBuBUgIn4i6bNV/tXA9btY318Dn5F0PvBfwCpgeE7WxMzMzLZTROzrNthBRFITKCKiI+m3gH+MiCfu42aZmZn1HPfk2d52LPA5SRnQAv54H7fHzMysJ7knz8zMzKwH+cELMzMzsx7kIM/MzMysBznIMzMzM+tBDvLMzMzMepCDPDMzM7Me9H8B0KVO1cdV2uUAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "bento.pl.lp_signatures(adata)" - ] - }, - { - "cell_type": "markdown", - "id": "4819ff77-ce1c-409b-9f17-972d649cda01", - "metadata": {}, - "source": [ - "Let's plot the top 5 cells and top 5 genes associated with each signature. As expected, the signatures generally agree with the pattern loadings above. The first signature’s pattern loading is dominated by “none” and “cytoplasmic”, while signature 2 is a combination of “nuclear” and “nuclear edge” and signature 3 is primarily “cell edge”. " - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "474fe6be-39b0-456a-a911-84dce1631368", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:04:38.109592Z", - "iopub.status.busy": "2022-06-06T01:04:38.109301Z", - "iopub.status.idle": "2022-06-06T01:04:54.460528Z", - "shell.execute_reply": "2022-06-06T01:04:54.459868Z", - "shell.execute_reply.started": "2022-06-06T01:04:38.109564Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "06914b91821d4a29b1b844e0fda2e4fe", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/5 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAACICAYAAABz0d1zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACcTUlEQVR4nOydd1gUVxeH34HdZWFpS6+CClas2HsBjUaxxCSaWBJjEmM0xjQTTWL8kphiTGJJNGpMLLF30ahgb6BiQ1RAKUqHZelld2G/PxACVkCwzvs8PgIzc+fO7Oyde+4553cEvV6PiIiIiIiIiIiIiIhIVTB41B0QEREREREREREREXnyEA0JEREREREREREREZEqIxoSIiIiIiIiIiIiIiJVRjQkRERERERERERERESqjGhIiIiIiIiIiIiIiIhUGUkV99cLglArHRF5tOj1+pr6YMVn5ClFfEZE7of4jIjcD/EZEbkfNfiMiDwERI+EiIiIiIiIiIiIiEiVEQ0JEREREREREREREZEqIxoSIiIiIiIiIiIiIiJVRjQkRERERERERERERESqjGhIiIiIiIiIiIiIiIhUGdGQEBERERERERERERGpMqIhISIiIiIiIiIiIiJSZURDQkRERERERERERESkyoiGhIiIiIiIiIiIiIhIlalqZWsREREREREREZHHnJdffpkGDRqU/b5//36OHz+OXq9/hL0SedoQPRIiIiIiIiIiIk8JMpmM5cuX07dvX86fP8+5c+eIiYnh119/pXv37o+6eyJPGaJHQkRERERERETkKcDW1paFCxcSFRXFJ598UmFbREQECxYsYPTo0Vy+fPkR9VDkaUOoootLLwhCbfVF5BGi1+tr6oMVn5GnFPEZEbkf4jMicj/EZ6T2sLW15Y8//mDnzp0sX74cnU532z5z587F1NSU8ePHo9VqH0Ev708NPiMiDwHRkBABxMFd5P6Iz8jDQSqVIpH85ywuKCh4YmKaxWdE5H6Iz0jtUGpEbNmyhZUrV951PwMDA7777jtsbGx4++2372hsPGpEQ+LJQjQkRABxcBe5P+IzUnsYGxvTvn17fH196datW5nhIAgCeXl5/Pvvvyxfvhy1Wv2Ie3pvxGdE5H6Iz0jN06ZNG6ZPn87mzZvvaUSUYmlpSUBAALNmzWLLli0PoYdVQzQknixEQ0IEEAd3kfsjPiO1x8yZM+nZsyfz588nMDCwgsHg5OTEN998g6mpKSNGjKCoqOgR9vTeiM+IyP0Qn5GaxdbWlq1bt/L333+zZMmSSh/Xv39/Pv30U3r37v3YhTiJhsSThWhIiADi4C5yf8RnpHYwNjbm4MGD9O/fH5VKdcd9pFIpP/30EwC//PILMTExD7GHlUd8RkTuh/iM1BxSqZT169dX2hNRHgsLCwIDAxk8eDDx8fG11MPqIRoSTxai/KuIiIjII6R3794cPnz4rkYEgFar5aOPPuLatWusW7eOxYsX4+HhUSGXQkRE5Nli/PjxpKenV9mIAMjMzHzsDAiRJxPRkBARERF5REilUvr161cpKUatVsu8efPo1KkT+fn5rFmzhv379/PJJ5/Qtm1b2rRpQ506dR5Cr0VERB41b731Fh07duSDDz6odhuCIGBkZFSDvRJ5FhFDm0QA0d0scn/EZ6Tmad++PZMmTWL06NEUFxdX6VilUkmzZs3o3LkzderUwcDAgJYtWzJhwgRCQkJqqcf3RnxGRO6H+Iw8OD179mTatGm8+OKLZGRkVLudGTNmoFarmTdvXs11rgYQQ5ueLJ4ov7iHhweOjo533KZSqYiOjiY/P/8h90pERESkehgYGKBSqapsRACo1WoOHz7M4cOHy/42ePBgfvrpJ/z8/MjOzq7JroqIiDwGTJgwgd69e/PZZ589kBEBsHr1aubPn8/q1atJS0urmQ6KPHM81oaEIAi0b9+eIUOG0KhRIyQSCREREbdpqguCgK2tLe7u7qhUKo4cOcKNGzfu2m5UVBSnTp2q7e6L1DBSqZR69ephaGhYrePz8/OJjY2t1qRNRORJYOvWrXh6ejJlyhT+97//PeruiIiI1CDDhg2jS5cujB07lszMzAduLzIyko0bN/LDDz/wxhtv1EAPRe6HIAhfACOBVOAGEAJsAX4DbIE84E29Xn9FEIS/gSygDeAAfKLX6zfebOdj4CXACNii1+tnPORLKeOxNSQaNGjAd999R35+Pps2bWLBggUkJSXdU6ZMEATc3d3p0aMHrq6ud91v9OjRHD9+nLy8PIqKili3bh3Jycm1cRkiD0CdOnUYOXJkWVKpu7s78fHxaDSaarVnZmaGjY0NsbGxxMXFMXfuXJKSkmq41yIilcfOzq7G5VwXLFjAypUr6dOnD3v37q3RtkUeLxwdHalfvz6NGjXCzMzsjvvk5uYSGBhIRkYG6enpD7mHIjWFhYUFb775JhMnTqwRI6KUjRs38vbbb9OlSxeOHj1aY+2K3I4gCG2BF4AWgBQ4Q4khsRgYr9frIwVBaA/8DvS6eZgj0AVoBGwHNgqC0AfwBNoBArBdEIRuer3+MI+Ax9KQqFu3LkuWLGHVqlVV0kXW6/VER0cTHR19z/1Wr15N9+7dAXBwcGD9+vWEhYVx5MgR1q5d+8RUkX3asLKyonfv3piamtKhQwfc3d3ZtGkTO3bsoLi4mOjoaPLy8h7oHAqFAjc3N9q3b8+6deu4cOECS5Ys4cKFCzV0FSIiladXr17s3LmzRtvMz89n+fLldO3a9ZkwJExNTWnYsGGNt1tcXMzFixcfK419QRBo2LAhrq6ujBo1Cnt7eyIjI7l8+fJdF0WcnJz45ZdfsLCw4NSpU+zYsYPc3Fxyc3O5cuXKQ74CkepQv359Zs2axb///ktkZGSNtp2RkcGKFSuYM2cOvr6+ZGVl1Wj7IhXoDGzT6/UFQIEgCDsAOdAJ2FAu56d8BvxWvV5fDFwSBMH+5t/63Px39ubvppQYFo/EkHjskq2VSiWL58/BLieMN6b9wtX02g9DMTExwdvbmxkzZlBcXMyUKVMICwur9fM+TjzKBDgnJyfee+892rVrx6FDh0hLS+Py5cscPnwYnU5XQ926HYVCgY+PD2PHjiUvL4+LFy9SXFzMiRMnOHToUK0blEqlknr16tG6dWtsbW2rfHxkZCQHDhx4aLGtYpJkzfPbb7+xatUqTpw4UaPt1q9fnx9//JEXXnihRtu9H4/iGVm2bBkSieSBFxluxcrKitzcXLZv305oaChXr16t0fYriyAINGvWDB8fH3r37k1eXh4JCQls3bqVgwcPVnqcUiqV+Pj40KNHDwwNDalTpw45OTksXbr0oRqc4jhSNXr06MGnn37K8uXL2bhxY60Ztnv27GHnzp2PReL105psLQjC+4CyNAxJEISfgQzgHb1ef1sC8M3QJv9y4Uw5er3eVBCEOUCEXq//42H1/V48VoZE+/btmTVrFoZXdtA99S8WBBcy6d+CWjvfrSiVStq1a8fHH3/M7t27Wb16NQkJCQ/t/I+SRzG4e3h48Prrr9O+fXtWrlzJhg0banwyUBkEQaBFixbUrVsXiUSCn58fcrmc+Ph4YmNjiY6OJi0trcILOyIigtTU1Pu2XbduXdzd3WnXrl0FaU5TU1NcXV2Jjo7m7Nmz1dLz7tixI97e3hw/fpyVK1cSERFR5TaqgjgBqFnMzc3ZunUrL7zwQoVK1jWBIAj8+++/vPnmm/fMF6tpHsUzsmfPHkaMGFHjYTuCIPD888/j7e1Nx44d2bx5M6tWrXooY1TdunV5+eWX8fX1RS6Xc+PGDQIDA9m3b999Pe6VxdjYmBYtWjBjxgyCg4OJiooiICCAxMTEGmn/bojjSOV59dVXeeedd/jss884cuRIrZ5r+PDhDBw4kJEjRz7yqIyn2JBoC/xBiQdCQklo02JgKPCLXq/fIJQ81M31ev35exgSfYCvgd56vT5HEARnQKvX61MewWU9PoZEo0aNmD9/Ph9++CF5cReZ3F7G3GDNQ/FI3IqTkxOvvPIKPXr0YNasWRw/fvyh9+Fh8zAHd1tbWz799FPatGnDokWLOHjwYK2/vKpKs2bNsLS0xN3dnXr16qFUKsu2CYKAl5fXfV3ABgYGyGQyLl++zLlz5wgPDy8boLVabY2ETRgbG/Pyyy8zZMgQsrOzmTJlSqUMnOogTgBqljp16vDLL7/Umtfgu+++4+DBg+zZs6dW2r8TT5MhUR6lUskvv/xCgwYN2LVrF3PmzKlRhUBHR0dcXFzw9fXFzc0NNzc3Nm3axPbt28nKyqpVNUJzc3Oef/55XFxc6NOnD1euXGHdunVcv36d69ev1/j5xHHk/igUirI6Ed9++y3nz5+v9XMKgsDevXv58ssva9xDWlWeVkMCQBCEr4BXgGQgBdgNBAILKcmHkAJr9Xr9/+5mSNz8eTIw7mazOcBIvV5/7SFeShmPjSHxyy+/cOnSpSrlRNQ2Xbt2ZeLEiRgYGLBo0SL27dv3qLtUazyswV2pVLJ06VLCw8P58ccfK8jXyexlWPtaowpQoUmuXkL1w0KhUJQZFzJbGcquStRH1GhSK/Y7OTm50saCROlEi849GCvZw9pjOXQTLFmlTie2ksePHj2aiRMn8t1337Fly5aqXVAlECcANUttGxLffPMNR44cEQ2JGsTe3p733nsPR0dHPv/882p7rN3d3fHw8MDV1RUfHx9sbGyIj4/n4MGDREdHc+LEiVoN67wbUqmUvn37MmjQIBwdHdFqtSQmJrJlyxYCAwNrZKVaHEfujbOzM/PnzychIYHp06ffMbFaonTCzNuP7JDt6NQ1FzXx4osvlhW4fJQ85YaE6U0vggklOQ1v6fX6M4+6Xw/CY5FsPXDgQBo2bMiXX375yPpwpy/mkSNHOHr0KB06dGDGjBm0a9eOK1eusHXr1kfu+nsSMTMzY8GCBcTGxjJ9+vTb7qG1rzXWPtYAJK56vDwUt1KarAjg2MMRk9Ym5KfnP1C/LXv40rj7NVrmG2Cudcb7qgxLucDH1yunLLVixQoOHDjAggUL6NKlC1988cUjCRUTqRy1PQnKy8ur4EkTeXCSk5P5/PPPGTFiBKtXryYsLIy5c+feM9xIEATq16+Pt7c3jRs3xtvbGyMjI4KDg0lLS+Onn37i3LlzD/WdIlE6YdnDFyOrY6T6Xy9buNFqtfj7++Pv7w+U5NrUqVOH0aNH8+abb7JkyRIOHTpUbeU8kbtjYmLC+++/T69evfjjjz/YsGHDXfc18/bD3HsAAOrARUDNGBebN29m+PDhvPLKK6xevbpabYjcl8WCIDShJMl6+ZNuRMBj4JHo2LEjP/30EyNGjKgVN2plUfqMx9x7AFkh/mVfzArblUoGDx5Mly5dkEgkLFq06JG7/2qSh7FK9OWXX9KkSRPGjBlDYWHhbdufJI9EeWqq385veKDsKkemKcIqx4CXg3Xk5CczZXtGldqRSqV89NFHeHh4MGnSpBozJsSVxJrltddeo1mzZnz44Ye10n6PHj0YNmwYEydOrJX278SjeEa2b9/Oe++9R0xMTA2dunIoFAqee+45Jk+efN/aNklJSZw4cYK4uDj2799PTk5OrRn5lZlQKn3GY9u/CJnVCXLCHYlbFHbfyWfHjh0ZN24cTZs2Zdu2bXz//ffVMn7EceR26tatyxdffEF0dDRz5869b9jsnT5jmyFjsOoqI/2IhrQty6vdFwcHB1avXk3fvn0fmWLZ0+yReBp5pIZEnTp1+Ouvv/juu+8IDAyssXarQ2WteUEQ6NmzJxMnTiQhIYEZM2agUqkeYk9rh9oe3L28vFi4cCG+vr4UFFQvgf5JNTTuh0TphEXnEcjrxGHR6iIG0pL7Z5Fvi1dUV3ZsWkFCVEyV2hQEgalTp+Ll5cW3337L5cuXH7if4gSgZvnhhx84evQoO3bsqJX2mzZtyscff8xrr71WK+3fiUfxjHz22Wfk5+fz66+/1tCp705thZQ8aF8ALDqPgJuvc1OvnmhSYkjdOgtDczuseo0j8+QWjBw9y/a37OGLWdMU9LxMZlDQHRfQ7oSxsTHz5s0jJiaGWbNmVdmYEMeRiowZM4ZXXnnlgRWTShei1EcKiP/zwRTGVq5cyQ8//MDFixcfqJ3qIhoSTxYGj/Lk48aNY9WqVY/ciADQqRNQBy6678tBr9ezf/9+Ro8eTXh4OMuWLWPkyJE0adLkIfX0ycPQ0JAxY8awefPmahsR8F/ok7WvdQ327tFj5u2HadOemDdPw0AqUJRbRP4NK5rG96FZVnf6Dx2NzF5WpTb1ej0//PAD8fHxzJgxg/r169dS70WqQ+vWrWnZsiUHDhyotXMUFBRgbm5ea+0/LixZsoSuXbvy5ptvIpHUbrRuaUiJmbdfrZ6nsn1p1LA9XzVqRZuXJ2DdKwuzVs1AAE1KDDI7d8y8/bDqNQ6ZnTteHYcyVaKhaVs/dOoE0rYsJ2FlIoXxORQmRqL0GY9E6XTf8+bn5/Pee+/h7u7Om2+++RCu9Omlc+fOvPrqq4wbN+6BZVdT/a+jClSR6n/3yA6ZvQzHkY73fZ9cvHiRN954o9bDL0WeDh6ZIeHq6krHjh1Zt27do+rCA5GTk8P8+fP55ptvcHR0ZO7cuXz00UfVqgfwtNOtWzfc3d1Zu3btA7WjClChClShCniyPEASpdNdX9LGni5YdY9BZvM32WFOFCZB+onmxC3N4rhKygWb01yufwSnsd0r9ZIvj16v59NPP2Xfvn2sXbuWTz/9VHwxPCY0b96c3bt3k5OTU2vnuHbtGkZGRhVkh59G0tLSGD9+PC1btmTu3Lm1eq7skO1khfiXreo/TGzNnRnuO5kmo1ois5eRFxnEwIu7GJp+jS/Pb6YOxzGy/YPC+EA0qdHkXDxAdsh20vcvRZMSw6ArgfhFH+fF7Btl7b3Y8R3srOti0XkE5t4DsOwxtux89xq38vPzmT59Om+++Sa+vr4P7R48LUgkEj788ENmzJjBlClTKiXRfK/PA0CTrCFxVeI9vfWVXYz76aef6NKlC5MnT75vv0REHpkh0bJlSy5cuPDEJ4OeOnWK2bNn89JLL6HValm7di0ff/yxaFCUo1GjRly8ePGBJV4rM1A+au402JeuYtq+8CX2I9+n7uf9MG3VAqXPeBxeboaxaxz1pMW8oeuP+bGhyJ1HYeLZgStrf2bzpUskxMvB8FVsB0+rljGxZMkSxowZQ6dOnejVq1dNX7JIFbG2tuaFF14gNDT0rvvc6TnysDJgfj85HlaVH7aTk5OxsLB4oP4+CaSmpjJp0iRMTEzYvHkzo0aNwtjYuMbPU1nPdU1j7OmC32uT6VLPj251B2Hta42JZwd2ePUn2swe9/Q8+gXJkVpk4/mSO3NaxOAuJKJTJ+CQEMbYnV9zWGLGDs++xLv5YWvuTI9mQ+lg4UGLtDjMGgVi5LgWeV0bXCavxfblb7DsObbMuLjTBDYlJYU//viDfv36PdR78aQjkUiYNWsWzs7OvPzyy5UuflsT3rDKLsYVFRUxfPhwBg0ahKmpabXPJ/Js8EhyJKRSKVu3bmXmzJmcPHnygdurSR40Dl+pVDJ69Gj8/Pz4888/WbNmzROh8FSbcasbNmzgxx9/5NSpUzV0irvzKGOYJUonbF/4Epm1C7rci5C/lMygJFoO6kAb15cZ4WrIORsFlpZgbeCOUOSOKjWaEPUxXC80QoiXE6++zkJVMAWx/li2L0IVoKJYY4Pt4GnI7NzJCTtAcUFuta6vXbt2TJ8+nREjRlTLgBdjm2uGKVOmYGNjw/Tp0++6z53EH+b3kzOxnYwFJzWVLtS5bNkyfvnll3saLTXJ4/CMNG7cmJEjR9KmTRsmTpxIZGRkDXXp4VI62T8YuhnFu01wrqOj8dW+nLc7RPimMPIidTiM/AnX4kL8IvazXiFQ0CqLr929eMEqh0PxEtadz2WQoxPe9vacy8jiurItVjlmHAraQ3pqiazohbZR6JpcAqAwtQ2atGEAaDOSkFo6oFEnIVM63FGIxNDQkM2bN/Ppp59WOg/rcXhGHhWlRoShoSFTp06tksTvo3i3zZ49m0uXLvHXX389lPOV8izmSAiC4AD8CrSlpNp1MvC+Xq+/rdKsIAjulNSX8BIEwRrYePO4v/V6/X3VNQRBmAi8D9QHbPV6fdqD9P2RyL/WqVOH/Pz8x8aIKP8FtfbVV1qC9E5Gh1qtZu7cuaxfv56vv/6aoUOHsnTpUvbs2fNEGBQ1TYMGDTA1NeXChQsP5Xx3ksWrTWT2MuyHuSGxdiEvugV2lq60LZBi2cuSTl4/4mnRmEytiuwbkbRLD+NwMhxLTyEuLJ0crQKbcIEuLZrTcoAVbqb1OXAiBb/UfI5ck2HSzgSAxFUJpG6dhZm3HwZGCiw6dMCi7TUSlqVRrLGp9Mvl5MmTnD59mm+++YbPPvvsjspZIrVLw4YNeeWVVxg3btw99ysNnSkfQjM3WFPhf5E7c/nyZaZPn87AgQOZOXMms2bNemRJo9VFonSib98v6WDhgZGrF/5BvyGzk5NktQdj+1Ssejck62QAqdt/RPB9i2AXS8a1aUTb9h1JzcrlaMxeTmo9aVHPhOOxQSSFhRFnY0IP+2Jo0Z/xPiMwNjDl6JHjXNt7gSQLGyRmeZhcTGaa058sSmhIVL4pUksHijKTyIo6fcdwrqKiImJiYkSZ4UpQVSPi1vlFqTfsYfLzzz/z559/EhQUVCOCHSJ35mY16y2UyMEOv/m3FoA9cJshcQsFwBeA181/leEY4A8crE5/b+WRGBKOjo53LLLyqCg/+VQFLLv5/91df6WGh4lbIMqucuB2oyMxMZFx48bRtm1bxo8fz7hx455Jg0IqlZKcnFyjk1YPK4O7Vj6/0wTsTtSUApS1rzUWbY2AVAzlyQw2NOb155uTWOjMquu/803kVrLSCxGWb+O9+rD4GuS0UyK1kmLe2pzz0WrOnjnEaqvVGJ4ypH3D9gwdNJTxReNZuW8ly/aVPI8GsjTkDtvICDbErPkFTBsmYu1rTUFS1QynuXPnsmvXLkaPHv1YFX98FnB3d2fBggUcO3bsvhPbO00arqYXV9oTIQI7duxAqVQyY8YM5HI5q1evZs2aNbV6zppaNTbz9uOiuwK5NowwO0Ps2suRKfMoyFOgzTAlfV84APVMCpn1vCOGOktk0QF8Ouc8J07vwuHlZvTK9qZVgRkRUVqW2B/i3ZQcXG5I+TxjO6eOtWKQ0hllDyO+/vIHMkhhffwSDDVRvJZ9hVSLGBa6OqDHhaIc9UOfwD5tVMcTUZrPYGCkIC/Wp8rP1K3vuOo8m4mJiYSGhtK5c2fRkKhdegJavV5f9kXT6/XnhRJmA/0o0WT7Rq/XV0gs1uv1ucBRQRA8bm1UEISFlHgqjIGNer1+xs1jzt7cXiOdfySGxEsvvcTu3btr/TyV/eKUn3zq1Jr7eiJKDY/ciHxUgXtRBajueq5Tp05x6tQp2rZty/vvv0///v3ZsmULBw8efKYMippkcnsZE9uVqE7cOrHSqRPIDtl+38+9usXvSgfnjGBD5G4DsLi0Hc9GGqKNPHHLb0+/0bZsO76LVclBpOXeQJPanrSdGymMLWBS6bpCRCIub7kAJV/kjGBDjFwdSd57mYi9u9ibGI1tqJ5JL43G5zcfZsyYQVqLNKx9rDFtWkhhYjjqY0VkncnCsmMguRH5ZIcEVKr/WVlZDB8+nBUrVrB3715iY2Mrfe0i1adu3bosWrSITZs2sWiROCl7WKxYsYIVK1ZQv359vv32W8zNzfnjjz9q7Xw15RHNiwwip6eaIOcwdDlWyEzz0KhNcNZaMyg4jJ1NZcx8/3uM6nfn2+9+oHfhbia2k5FUz5frXp1xN75I4/AVhEn6EusYxiD3twiNDmJ3eDuyvY6gbRbJBs1VFJobrDwUTkehPZOen8rW06tZkljE35IMFB5azEP+pveF66yQSol9RDUFngamT59e5XCm0sVMbW6f+z5T5cPgUrPigdvfcdV9NpcvX87y5csJCQnh7NmzlT7uacf9052ewGRgbsz3zz9o/KQXEHKHvw8FWgItABvglCAIh6vQ7nS9Xp8uCIIhsE8QhOZ6vb7Gw0MeuiEhl8tp06YNn376aa2fq7JfnNLVv9IEx/sZHnmRQchdvTC6Ek8nq2EczN9McbfhmDbtiYFcgcp/zm3HnDp1ijfeeIO+ffsycuRIJk+ezN69ewkMDCQi4n6eK5Hy3C/EozKfe+kgXVUFqNLB2byNKZrMhjQ1scPDOIMBWgc8Rr7CTzsDCEnfQG6EM9khZ7FsfxpXTSYv29mzSp1e9jJO2ZYClCRDK7x80Be/iNytpJqsvngAVwv8GT16NEOGDGH+/Pks37ico8knMHI0wsjRCFWgCvPW5ii7ylEF7gWESj27AHFxcezevZvnn3+e33//vUrXL1J1mjZtyrx581i8ePETq1L3pHPt2jXeeecd/vnnn0p5hKpLZT2i98PEswO6/A4UxEORrgOFSXvJverGmBsR+FnU4+U3J+BkoWLtjrn4HzrJRUGDgZGCf2ybobN3p29wPP3DL7Em7xxujQbiZdwNnd4DncKJXuEmXG4RhjbTG13uFgozG3L6aDAN/5rHi3PmEPFbDG/dSGB1RjI+x8MZbmJBsdKKb1OSa+IWPXN07dqVjh07Mnjw4CrlRJSKi0iUARRlG1d4pgRBoFGjRjg4OODo6EiHRs/RyMWb7intOCbdR+o1Y4YaBxEUk8GJk2qg+s/mpUuX+O233xg/fjwTJkygqKioSsc/xUwG3r35c21V/ewCrNHr9UVAsiAIhyjxMFTWGHhJEIS3KJnrOwJNqnBspXnohoSJiQk6ne6hqDVV9YtTmQmoROlUpsvdtcWLdLAo8SYdUuRiZL+N/BjDsv1uXRUvKChg27ZtbNu2jcaNG+Pj48Ps2bOJi4vjm2++eWBVo2eF+4V4VOZzLx2kq4oqQIWioQK5KxjI/UnSK3FNf4nGw31YHHCYU4kWwNto00qSpa19rHklVs7gFCMMFQ5cdupWsmqUHE9RXsl29ZFjZIVUfFGU/rxlyxZOX4nhtz/+xFbdlF3qv9FmyjE9qWZoR2N2JBSQdSYLM+9RVVpt2rBhAwsWLGDhwoWiZ6wWadSoEQsXLuTEiRNs2LDhUXfnmUatVjN79mxmz57N//73P06cOFFjbZcf72siDKj0+58XGY6JpxIDeRNMm/YkqW4kBgPas3TNClyNolkuHYaZtyVXAxfx7lYVRm5bsfX7hM2ub1AQv5LtaddooTPmZEQASiMFngonYgz1FOXGIVNGIFHkURC3C78r1xhgIiN1wQIGf/QR8R99RHZ4HZbGH6FIWcwqdfoDX9OzyNtvv82YMWMYN25ctWsolQ9zbNasGaOHDOHlfv3Q5OZy+PJlriUlkZx7FbMsBfluqQxu1Y9myia4Jvfknav7WHrZnzcj4h8ox+Kff/6hU6dO+Pn5sWXLlmq18RQy95b/H4QwYFgNtFOGIAh1gY+Atnq9Xi0Iwt+AvCbPUcpDNSTq16/P77//zvr16x/K+ar6xbnXBLT0RWEgVyCzc0eTEkPgsT8prNOFg6GbMWpuhcxKj0UryDgow6zNCEy9eiJ3b0nqpv/dtkp8+fJlLl++zG+//caoUaNYtWoVW7du5Y8//kCjeXqSKQsKCnB2dsbExOShSf3WZlKaJlnD9QXXsR1QB12hDR0tG/D6kJFER0VwKO5PciO80WvyyQ7ZTq6sxNux7GomBUYWqLqPobu8RHN9w7H5FbwimuSS/no2kNO6vT9nrqcTqS7JB3nLF34NW8S0ThNITk9n/YIVTG8pJaSzLQYyGZYdHUneXDWjOTo6mqtXr/Lll18yc+bMmr5NzzzGxsaMGzeO4cOHM23aNA4dOvSouyQCHDhwgMLCQubMmcOMGTMICKgYEugmlTJSaVXBe1gZakvkoSgrhYJYfxxeacWLDX3o79KaPb99ydY8J6RGnrxp9Sdzrsagvrm/iWcHDE3MiUmJ4a/YCMa3GYOJey+ORAawLmwzfWytuOTxLx4KWzpFjeWwzR6ubTzEiqRkDOq6cl6ZwkchpzAaORrnnV8iNSsSPRHVQCKR8Nlnn9GpUycGDRpEampq5Y67wwKk1MqZYe9OZ3ArZ6zNFRQeOoRm5kw00TFcU6tZp0tlcnsZ3y7RcF0qoc7kepi7mDDKpB3DbJvh8+sk1oyN44uvfkWlcK9W/o5Wq+XEiRM0adJENCRucjOcqaY8EfuBWYIgvKXX6xcDCILQnBL1ppcFQVgOWAHdgI+pnEFgDuQCmYIg2FOSZ3GwhvpbgYdaR8LDw4OQkBAWLFjwME9baXTqBCQndzC8/VhG/u833lkzi/f//ptvdi3ms1/nMmXyJF7w6YynpQG5ERsw7JPNIVctBn4vYuzuSVGhDUYOMGScHfVNS5KLZdYu99R9Li4uZvny5bz44os4ODiwdu3ap6rAz7Vr17h69SpTpkzB0dGxysffrwjPo6K4MBd1wBYKnZIxdC3gx/Pz0fMyRdlpqHbOQadOKPN6XE3MY4+PA4YulqgUp0irr8P5jRJPlipAhbWvdVml0dYv2hDmaYnjBFdk9jImt5eh8Ugnxfg432+ezth6fbE2tGF9w9ZEymQYFFhTmN65Wvr2n3zyCS1btqRt27a1co+eRYyNjZkwYQKBgYF4eXkxcOBA0Yh4zDh+/Diff/45s2bNws3NrcK2kUorXlUqGam0qlKbNV2ornzNAPthjenZ0ZZBnV0IXTqN7iFxjJSFMaJxLOPsLvFu44zb+mG843sWWMrolXwYMi+Q4mDDpw42tE9fi6VZOh2jhmKd70yXhJEovHqjedmGlSOdudotg6nFhzEf0IZenUvy0USqRmlitaWlJUOGDKm0EQFg2cMX2/5FWPYomQO0atWK1Ru28OqwwWw8dZ0+ffoweekcdmZGsFOTzSp1OpPby3irsTG/1Xegnd6e17bbYxxiBRfjWX5+NsP3v0GCcQir1/zOc+9KsX6+6737f5d37pYtW+jWrRtNmzat+k0RuSf6krCAIYCPIAjXBEEIA74DVlMSinSeEmPjE71en3Tr8YIgxAA/A68JghAnCEITvV5/HjgLXLnZzrFy+78nCEIc4AJcEARh6YP0/6F6JKytrcnPz3+Yp7wnt1r/lpaWzP9+Id18unEjK4lTBFJQqEGljSY/R01ReD4NGzTh9YZuKAb9zbbEtWy+nECuJheZVQQFyZ60yI3le3kep11DyZEksjitJSmx/jiOdLynQlB6ejrTp0+nbdu2TJ48mWHDhvHDDz8QFRX1kO9KzTNt2jTeeecdtm7dygcffMCxY8fuf9BNHrac6/2Q2cuoM7EOclc5Zt6udGo8lM2RIXheGkhy4sW7TiRe0vbEKK0tbordRLYOJdVSTnFhSSKctY81hiaGmOfbYH65F3Usgrlul4lHnyZcSe1H/TOGKCQ7ObwjgF36Dnzy01J+DrqIcHUd2WF2ZBysXKL1rRQWFvLLL78wbdo0hg8fLsrBPiDW1tbMnTuX69evM3jw4CpNIEQeLvv372fjxo188sknvPvuu2V/Lw3hqWooT017Qf8LbQrC1aMv79YfQejP33O8rhpNoYR/2xeg0hiSFypnpbMpMvu0ChKhE+zscTc0hfxUTFJX81GmgrrZSZAFOXoz/klbiV/T8ezJvIyR1TGUXa3RpKUBhqTLw0kUcthl6c3m4D01dk3PAo0bN+b333/n9OnTVa4TASB3OIPMSo+Ju8CIH0bwdpe3+e2PxexPkpJ5ahvFxcXk9rZgiY8JqsB8EldpmRtcRIM0K1yzzJlqZ0J9dTL6E26ssjPjNcciFN75/BW1hiOpF/myzXs8d/BHvrxH8vzd3rkZGRmcOHGCXr16VbqInkjl0ev1CcBLd9j08c1/5feNoZzUq16vd79Lm6/d5e/zgHnV6+ntPDRDwsrKijFjxvDBBx88rFPel9IvjKGBAUPctLw+7i1MsuO5vG4hy6VHOaaB/OvO2Ftl0yjUncAj87CtY4mix+vYuHanY+fnGdRPSeLuAH6Izefs0UwijToS4BqFhYUTdfOceCVtLRkdbOhWdxCH+2zj0spz9+zTqVOnGDVqFEOHDmXRokWcOnWKf//9l2PHjj2xsexqtZpZs2Zx5swZvvrqK5YvX862bdvIzs6+77E1lbz4IJQPd9D4WiN3lVOsMUKmzKNFQwd2rk+jrbQueVnnuVbOI1DeUF1zYANv9TQkS3KeyyFuqGVJFRK9DYwN6FZ3EF7J3cg9Amct1tA9+SUa1/MBoM7FTIKTz7Lugpr1r9fF+ehlgv84/8CFiQ4fPswbb7xBkyZNREWOB6Bv37588803LF68WJTVfULYvHkzq1atwtbWtszoi9VqH4tQnlKDwMr3Hb56axIJ6zbQbncIqQ1tWOD9Aob5QSRtvMKS51pg2jARW71JBYnQVep0lEoZxu7GFMar6aDNJqYYwk3tWHopgzSPuny/9V106gRk9jKKC62RWkmR2ZhjKIfwtHhUec9zNf3fR30rnhiGDBnCtGnTWLZsGQsXLqxWGwVJrdGky+jgZcLE515i1uJZ7Fyxs8I+twqFXE0v5h0DA153cyIgPRVfKyf+igoj6mQcIYDxQXB4uRkhuflEXviNF17+mLyT8bxz4s51vG5955Z/jy1atIjVq1ezaNEitKKKl8hNHpoh4ezsTEJCwmNjyUqUThjIFZgnneHbt/qBwopvf9/G8ylXudwuijPOeRSFO5KweDGdO0+is5cPumY5dDNfwssWS9gYI3D14DWs9Gp8Jk1hXuNmDNckkaYT+C00gHFmdUixbMmFPAltTOrgldyIPOyIUH5738mfXq9n06ZN7N69m/79+/POO+8wdOhQZsyYUanJ9+PK7t27uXTpEu+++y5vvPEGu3bt4u+//77nyu2jKMJzK6XhDgCzA1TI6zVCamODJEvAQjCiICeBFPl10my0SJROZZ9v+ZWd04GLOL189h3bT1yViLGnCyHjToI9RDoHYxhnyOFr25DpjAE4GLoZgLhDa9m0sz19bLO5VENVTi9evEiXLl1EQ6IaNG3alJEjR9K6dWvm/vQbhXFm2Jo7l0kwijy+REZGsnHjRsaOHcsPP/zwqLtzR/q4FKPPSOSLwxEMr9uJba5dKbhRSMahY9gPa4yBaWc06l3oCptWWEWO1WqZ01aHtY8Mub8a1WEda4qlqN16UMcWvpEmc2m8NQeOKFE3moRWFUdG8N8UF2QgSI25nFuApVr0qFUWQRB45513WLhwIcuWLavy8f/Jiu+jueO7fDiqF5dnnyDZ/0qFhax4U1sUzfxI3VkiVV+KuuUAlnoPICvEn8O3vC/zI+OI/iYOx5GOLHG1wvP0Jp6f/z1Gnfvd0Qt96zu3/HssKXARqamp1K1bV1SbFCnjoeVIeHh4PPKwpvKxf2befrTsOZB5773IqdgMPj+kpvP1q/SIOofNVi054Y4kbywpwHIwdDOHLm7lYOhm5gZrWBifT27CBvyi9pMnuLFrRzaXkuH74V7Y2G3mxcxQWsQcpqgghUhvDRecLThdnMF5e3csOo+odH9zc3PZsGEDY8aMITY2ll27drF8+XIaNWpUW7eo1rl+/TpTp05l6NChFBYWsnbtWj7++GNsbW0fddfuyip1Ov+o1awzzMajTxN6pHbBVpqGiVEcBoVy6qd409ZQzRivVNw6vMKLnSdha+5cpbhpudsApAm+eIRtxsI0A8tOlug7FbLiwPesOPB92cRUp05g75/f06h567IY6gdl+fLlDB48GGNj4wdu61nCz8+PX375hUuXLjFs2DAK48zo7jWYHs2GPuquiVSShQsX0rVrV/r27fuou1KGzF6G40hHzJuZM+HDV5n9/SQuh59gQcM+JCoFTD334vKmGaYNE5GY7EKmzENqdglNSgx5kUFIlE7U7/cRPdSvYbtLRv/TJapL6pYDMPcewGuqCHpevUyzK1psX5Vi5CBH0aADcrcBpGxLQZeZQ07ECYryHp+isY87kydPRqlU8u+/1fPglMqKtxzoyqfDOnJteyQ5+c140X1Y2ULWuOZdseg0AosOHXAZ37Qsrw5KvAe5ERswcQus8PfyqAJUJFwtIPDqfvafi2TChAmV6tut77GcnBzq169fresUeTp5KIaEsbEx48eP55dffnkYp7sr5RPYbNLO8VlXG5b+Po/fvplKYXIMO5r0ZXvdTmy0bEbMdwEUa2xwfH0BWUpbNhybT2pWPFfTi5mv0+LfPZutdoVsM9vLRbvDzL7xF+E3NrCm80vEdLEj2LkLhnI7GhqYk2O2A/+0s2QY6pE5eFY5cVin0zF37lyee+451qxZw9y5c3nnnXeQSqW1dKdqH7Vazbx580omYI+5QVEa7pDb24JudQfhXdyDxpGdKbYoQLAsIMY6lOsJ+5l/3og2hZKyyaROnYD5oT+ZKi3C7eZn5dlAzsvTXfBsUFF0ITtkO/2O+tP/opb+p4opTink3cIcPKxu/4rm5uZimJdGzsUDGMgVD5yInpKSQk5OzmN57x9HXF1d2bBhA1988QWTJ09m5cqVZGdnV1hwEHkyyMnJ4b333mPGjBnY2dnV2nmqIhpROqns/2F/Ck0LSfI2w9SrN4ZyU6TmBzCyj8DIzpCCGwXELwlDFahCm90Es2bnMWvdAjNvP7p7+NLZxYeB+n4MN7JgpNIK+6tbma6egZEmj3DPl5Bih8pYh8RkD7kRQWSHbC87t2e/jqTnVS2+/1mlc+fO9O/fn9GjR1dawv3W50EVoCLzQCYf+UzjQGg6qrNHKUo+yeqza1mlTmeTqRO7OowCAQTWlYSzDahT1p5OnYBUsRdlVznWvtZ3PKcmWcOl36/xybyzfDHzG1588UWUNz3t9+JWIY+NGzcyaNCgSl2nyLPBQzEk/Pz8CAkJITLyQYv/VR+ZvQwTt0ByIzYgjz3Gsp//R96O6QRv+QOdOoHUrbO4pgrmjzaJXE3YD4BVr3EYOZvSZLwbU8coaTTOCZm9DOG4Ea6Xh7DS3YcolxwO2u4mS56KsPIvTP2P8dGg91lrrOV48lFOS1IoSGlDXsQJNKo4ZNYu2L7wZbUmf7m5uezevZsRI0bg7u7O1q1bGTJkSE3fqofKk2BQlA76GcGGHI7extGo7ezauooGqTq0WdfoUu8qn6e1JcR/NftPr6wwmSyvAuMmlTLdwwmVtQWtX7TBw8qA+f3keFgZoFMnsDHmGv71BrGjyJhXTiUxvYlQQTWltB+qQgMc7e2Q2dXFtGnPGvFKnD17lg4dOjxwO087r7/+Ohs3bmTdunX07duXy5cvl21LzYovW3C4E+U/b5HHh6ioKDZs2MAbb7xRa+cov4h1L2T2MiRKCYWJhXjkeHA0NBIMX0ViVYRgMBfVgWsUJnmQdV4gcU0i5q3NUQWokBiFILM6gZ3jUb4x3UD09S2EFB/gkPcxdjWzI2f4x7zW05U3HSMxbNufeOfuhLoPpSDZk/i/jpC25Rt06gQygg0piG+KlWl7Cm2fXM/3w8LExISvvvqKzz//vMJYcD+s+vhh278I+1ffQ6J0QpOsYYjFELKLLbD415/e0QdJv7SElH4aEq0EZkZd4Up4MJnH1pAdZocmoyUyZ9cK3gdVgAq5v5o3j1K2cHU3EnOKOBOfy7CRr5e8l+zs73tMKQEBAXh5eWFiYlLp6xV5unkob7R69eo98twIa19rlF3l2FgHsOeXiciv72egwQGmdCuxyHXqBAwl21B43MB5tByZvQzlqYV0tvwdreM1IjrbIulihd3QhnR2HIi3QU+6OLXGrLkMiVkuBkYp7GhqxtprGwnIusrk0b3YX5hKau7zGMobY9FuCFpVHFAiCWv9/Eu4f+aLsadLlSVO09PTmTp1Kh999BHTpk1j7ty59OzZs9bu3cPgcTUoZPYyXN9tgUWHDpg0fJlLK8+xNmAuabkJyLKzcb0Wike6GZ52JS7lWyeTa4qlbDJ1Yk1xSZxru2syRgbmc2ZDGpO7tcO63m9M7tYOgAaN/DCp0web+M78vS+XBSc1Fap3l05GHDsNoVhmQT9TTxQp8TWSiB4YGIiPj88Dt/M0M3bsWPr378+AAQPYuHEj6elVU/aZ3F7GxHay+0pq2po7l4XHiTwc1q5dS+/evWvNK1HZMEdrX2ssvC0wcjTCq2VLYsLr0ivTESdXFaYNEzFvaYxGPY68mNY4jnDE2sea5l1tefNYPsqwAgbmpjOhhZYR9qdYe/BvwrRxXG3SE8/CVly3HcnSlCZst3blrPwspxpsQ2qRhcKrd9n55W4D0GaNwtnYmIiDYr2A+/Hdd98RGBjIyZN3Tly+GwrPWGRWJ1DUu0a7l95h9cQOjBw+jM+mvMs/+TrW5Gk43VDDx0WWNO9qW+YVcM5J5Z3TR7C5FoeiXmoF74MmWUPfw7oyD1QppaFy5Y0Or45dsQndxZChQ6sseazT6cjNzaVBgwZVumaRp5daNyQsLCzw8fEhMDCwtk91T1QBKlSBKj6xaUCzxg24fvkUy3W+/G0wpMI+BQk65K5y7IY2ZEpXMz7LymH46UG8stONOtEN0Bu+ysHQzRyJDODQtTAyTxVSmFKEoZGK2CILFrXtwvc7Yki6EsIHA1qhUSehzUgiff9S9Jr/ckTMmiRj2jAR+2GNK71adSuXL1+mX79+7NmzhxkzZjBsWI0WRnwk3Mmg+OijjxAEoUbPcy/jrfwKTb2BNig8bmBtvRf0/x3rNLY7Z9wVhJ5Pwt6yHsP10ju6lNUtB7DU5wOyuvbmeA9ndjUYwUn9a5g3/IQC5aek69wpsPwEB9dWnDE34khkAAdDN5dV776aXlzWVkGsP4LBXDrZ3MAyXUVrjYT2khsYyNIe+H4EBwfj5uZGvXr1HritpxFfX18GDhzI+PHjqy3rOjdYc5txWJ7SF37v9sNqLNdCJpNRXFx8/x2fcRITEzl06BCTJk2q8bEGShaqskO2Y+btd88FI1WACvUxNVknsqhv3xzrvCRaayQ0S+iCKlBF8sbLZIX4Y2R1DLmrnIIbBfQ/XcxLejOGxEnZJjVmSaIn/1iNR+42gOsLrnMi8zDnLcOIMgS9YId7Qg57D6whWZ2IoTwZI6v/5LgLYv2xNV+BrSSL0GCx/sm9aNiwIQ0bNmT27DuLaNyLpHWhFCQ0Q5PembdszjFizJtknVqHLOYKfpf3sCLpBt6hRTx3Rk//0/99f0cqrRhhIqP/KT3qIwUVlP9szZ1JbDictRqjCvLFpeFq5d9PL+edpcW2A7R0tCjLAayK5PGsWbP4+uuvq3zdIndHEIScW35/TRCEGi26JgjCbEEQrgiCcEEQhC2CIFjWRLu1rto0dOhQgoKCSE5+tJJ6pcXBzFZ9y/79AWwy6E0fQkAoJ++Znk7GqfZYdZWhN6zPKlNrijNzsdQ2Q1JkSLfgOM7WsSHXtRE36st5P3MV83bqSGvVF2PXSzgZtOHt7HP8dOg4Xy6LYtvBk/SS5bJr3d8Uxp6jKCsFAEFmjMSiJL4xbfclCmJKvDXVWVlOS0tj165dJCYm8vnnn2NmZsZff/1VczfuEVFqUKxcuZLvvvuOKVOm8PPPP9dY+/eqT1G6QmNoYkCoi4QGOTlIEy7xl8NJZPYyFM38wLADBlf/IiI+gHrvvsKFE2a8eSCD5Tfdw6MdXNlarwsRkUEAmLgdo6Hzq8iTu9AEsDEoxrjYAK1eg7GRBYM7jsM9K4R/inSoDfUofcZjf3Ur7zYz4XzeALad2oSkfRGmDRMZ1ng0da9vYa2ZGRH1j2Gdb03iqsrF5t4NrVbLwYMHadOmzVNRu6Sm+fbbb1m2bBkqler+O9+FUuPwbpS+8C/sO0TRxeK75lpIlE606NyDsZI9/HJYXcHYLI9SqcTZ2fmRhpQ+ScyZM4cdO3bw0UcfVWtyeDdKxT0MjBSYepV4ju+mRFessSEveiA2aecoEHIJtl1BTmFfDu0LIDGo5DueH7mI3JuSrRnBhmxx80VIPMrhIktaxvZhZlwYxR0Kybs59qSornA65zQ/a66ir9sJjWkTtPV8UUl2cvl8Pqn+18vOb9m+iJHdu5GcXEjd5z8j+vCfD6wK9zRiYGDAd999x/Lly6tlqGvTilEfc8JNHkmRgSUq2y7MDAqpoBC4PD6NImVJoryHlQGT28tYfzoDuWlTjrYdynNCHv8qfifNPgFrX2u6Jw+jdT0/DhUXExt9vuxct8rFAvwZHofe04H+eQWky+VVljw+c+YMCoWiytct8sgJAD7T6/U6QRB+AD4Dpj5oo7VqSDRv3pzhw4dXKPjzKGnbti1KhzoMeGUm819yZYz1BfIMzYm/+eXt5mbIl+HnaGDyHiEKQ2L0Niwozqe7NoU8Qx1xDv3wMFXg0e19ulpsoVedPI62diMmsQUjLhTSwnA/7ZtHUNS1Ie/EK5m/5TDvv9ibjZ+V6EDr1Amods7B7uXxmDcvQpPeF4uOTbFo/Tep/ssAG5Q+48kO2Y6BLA1rX+t7FrErz9mzZ3nrrbf4448/AJ4KYwJKDIpp06axYcMGli1bRkZGRpXbuLXwINy7PkXpysyebhIK3M2RRWZwXp2CsqsVxYXWpO4sOWaqfTzjPFLYFbGbqWNmwtlpFOWVvFRGmMhQGEv4wbMD6sCSF3949x145BsQpRMIluho62CEwsqYnNRsHM//ix8Z5OZpSOzhi1XXIsbGOOIu8UHIfY48EwmHTdbjcsMFZdtWbAnbxSHjVsRfl1R4QdzteitDWFgYvXv3Zv369VW+x08zrq6uCILAunXr7rpPde95ecq/8C8ln7vrfmbefkxqkcoYiZbiQtldjRNXV1diY2PRaO4/fohAXl4eM2fOZObMmRgbG/PHH3+gRl2lcfhOlC5a5IQduG94U+m+dunOxMXlky4YcNxzFUKxIwT9t1/pwpjSZzxZ3gNYnNKObrFxdPH0Re7WhQPWxph4dsDePQVJFytGbT2J/TWIyjnEOamG4u4XCbfT07LIhEvJmrLn1z47nn6OgzmxJIaudbqQ5p36yOW3H0eMjIywtbVlzZo11TrezNsPr2aNmHFuKfWdmnLjUiJXipyQe3anbeJZDkvz0bxsw+wAFRqtlvnt5UxsJwM0TAm6wpjOebQq9IYBE9iduxhlVzlhx48i18o5lrijwnikSU6osNDkJpXycpEZf5y4QcfMHCzqWGDayhRVgIpijc1dx7HyMrRVC+oUeVAEQXgRmAEUAZl6vb6bIAivUVIN2wJwBlbp9fqZN/f/AhgJpAI3gBC9Xv+TXq/fW67ZIKBGwlhq1ZCYMGEC8+bN4+rVq7V5mkozYsQIVqxYQX5KLAtjOiOxsOfPPCPS1Bvo5maIZw8tvTX9cSpwx1LIptHZv7FqVMAiu0HkGHrTxsAS2/QMrI0sCU/pzN46R7joqmXMyR30Tij5oh4w6cx5Kz8aDNZzQe9MQnIarwz0wX/TXnq1GcVpIx3FDcORWUWjL9Iis5IisyqpclyQVPISMZArMGt2AdOGJW1WdrVZpVLx9ttvs2LFCq5cucKJEydq7V4+TNLT01Gr1axYsYIdO3YQFBREaGhopY+/k/fhXvUpSlWaZEdkWMuL2XJzgmddoMciJI9JXlYsC1vByrqfYKwLZX5yOJPcrGgz50t2T5xI2tUUDIwUbM3XkX1hN1Dy4u90MJ7+yjWEFxSwMyGejB4T8DLwQ6I5yNH65qwJTWFF0g3qGR9j+Ckp/kYawhz2Y2xqQmS9yzi7ODOl0RS+n/sTZ+wyyI2MIn1vWAU98btdb2U4e/Ysr7/+eqX3f1bw8vIiPj4etVp9131qogJ76eTwbpRODvIig5gvb0KuRMrc4Jy77t+zZ0/OnDlTrb48qxw+fJjnn3+eKVOmsH37dtaeX8t+oxLxjep6/covWtzPyCzdNyHpNC5v+qJJkSHIG5If54plz2Ts/OSk7UrBpK4OvV5P+kF/5K5eyOzcOZ0Ug1J9hcZ5EVzMsSU+ZDsf2es4rdGwq5sUbaExf5xKJCptHo2KXbAfZsm5I0UofcZjIFdg3aI3M4c04a8TqaTk5hKUH/dIC4E+7jxIyGB2yHZerXeKzk2iiG0wnIO5xkjMbfDJkdAgzZDn6zmwyqckpyFxVSLLw2xB+QLLwzahU9/gX//fYcAEQkycKLzRGVXgXgyMDTjdbSf1rSV8ctAZQ30mf3bsSppLSTHb1O2paJI1jHZwZYSJDPMmHTGzUFLUqghrn5Kwp9I5CNzdUw8wLz8PQ0PDal//U8FXFp7AZGAuX2XWhNvXWBCEc+V+twJKv4BfAn31en38LeFI7SipcJ0HnBIEYScgAC8ALQApcAYIucP5xgJ3Xx2rArVmSLRu3Rp7e/tq6ypXh/IWc/ny725SKWMc6+DT148ffvsTgPPHDjKl4KblrdUyJV9Jewc5ESZBNI+wxDXkAj2TL6KU5VLgZcgP+b0wUJrS4FogznJbUsK2ccFZRusXzDlRpxPyjGsgCITb+NFIakeeTMfePBU///IXc7+YTGGcI53q9UYh0+EfnoNeW0D64WjMWviSpw+6uRqwHQMjBTJHTzBsRk74P6gCqlb0RaVSMW/ePD7//HPGjx/PjRs3avQePyqmTJmCi4sLAwYM4LnnniMpKYmffvqJ6Ojo+x5b3erYmmQNqgBV2Ypk6k6B9zt4MjAqB6GRA79JNvF7wkCGHj7NspTfueH3Cj+vX83EVybyQ0o41q4BGFxRlU0A15zzp01BAQ3lckYqrVgcvJGetqZ4XzqMSf1spjQfgurGHMYcz+U5IwsyCvP4Pv8GLhOUmJhZ8JnXWIIOBnE8bw/WHtYUxJxDp759clPd631SK6fXNj4+PmzZUjHx1MitJVa+49Gmx5FxYFnZvc6LDCrzKlbGM1EasjA3WFMWolRanKr8KrhE6YTt4GnI7NwByDy+mOL7JW3b2nLkyJGqXu4zT15eHt9++y1//vkn6zevZ5DpIF769qVqt1eVopql+6qBPMNMurS148RlGXInH5TtzyAxTcdpmDkYlTwrxfkqUrfOKltFtjWVM9BERk6ehtPqBDZnvsLIhGxWKuRsa9CR11P8WWFqhc6nMSpFGHktnDAvHoAu4ggfdnMkLkvLquA9SC0OkbQ7VAxrqiV06gR+3JgEw1ph26IPwceukh6wCP/h7kgtBHY42KMKvEpGsCFKn/HUL7ZEMPPFt11TYjO+IiEqhlXbVmPVaxzKs2d5Ka+YdYaZFNQxZkiclD5ZKshSkeNswL5GFvQ/VcyW0cYEr7jO1npdMFXoON/XES9NUQVPaLHm/p76Vep0cnQ6VCoVLVq04Pz587ft+4wwGSgNt5lYA+3l6/X6lqW/3PQ4tLn56zHgb0EQ1gPlY14D9Hq96ub+m4EuN/++Ta/XFwAFgiDsuPVEgiBMB3TAPzXQ79oxJOzt7fnqq6+YO3fuQ030K28xl4/5G6m04lVne0yEPPRtumLd+DnQQ+bxNWUDpbrDJJpn76S+9AIKi6OsbTwQZ0UObT0iCRDak2PjwGVtAi0KEkiM2YNnN2v+52THCxnBrClScl1mz7b6XUmLu0Rq9nlC63liaG3PdZk7+VkqhnbL5GhqJkF5aopyFCSuTsWq1zgkZu7kXFSjaNaZwsRIjOt5Y2hiTmF8DKlbb19trgx79uzBzc2NWbNmMWrUqJq5uY+YGzducOPGDU6cOIGBgQE///wzixYtYvbs2ezbt++ek+AHqY5tO6AOyq5yuteTE3mmI9vqt8FAupmdnoZYNlMxZPlafLOdkYUOYnnKv5x1kTHvt0Vsu7yBfUb7gP9WeRTaPMLDAwgvLGSVOp1UrZa1N1ZQ1MCcPXV8EK6VFIQrHxtbbGqLlXldvugzgJS8FP7J/oesM1kAt4U01cT1ilREEAQaNGjAb7/9BpRM8m0H1MFQOQ7B0AWZtQtSCwdSt85CHbgIpc/4KnkmSpWcgLIQJVs/W5SdlcjrNeLG/HB06gTMvP2Q2bmjSYkhO2Q7/+tw+3EiNUtSUhIDnhvAO++8w7z/zWPZsmXs378fne7h1FdY+9daug3uxb8nT1CUfYDMkxnY+ZnQJT6R5AYmkKYjKbcPEFD2rK2Rm2BsZ8+aqyXvv/PHDpJgW2KAvn1uOYNzEpDUb8BfCimFyQ3Ii7KjOO8g3w5pTk5EEHP2xWDkdQGFxw0s2xeRL6bX1Bo3zJozo/hNfsrNJ2bXIgpjz3F6cxo3hjUmeeNl8iMTy8aTsKwrNCyKw9m6Hh+1G8nvh34my7MDMjt3Rlvb8IKRBoM8BX9c9GGTw1WQxiBRFrOztT2Djws8F5oOSLnqa83lnYH88X5TBnjZkFwQdosn9P6e+lIOHDhAz549n2VDYu4t/9caer1+vCAI7YHngRBBELxLN926KyUeibty00AZAPTW19DqYa2oNr399tucOHGCffv21Ubzd6W81GZ5VqnTOVDflChJIgrPWBq4efFxkZrGzf+Tu9Sq4tha4IdzYku2FviRZOlEcQtobBFHH4MQNKmxDLy4C9/UcLrXFxjpHo5gYMjfBd1JOhiHX/RxBkUcx7tQwqHIPai56RERwCY/ihc80mkuWURKejSmXj2x9fsEmZ07RQU5GLk0xtx7AFa93sDQxJyivCxSt856oNWg/fv306hRo6eyWnFxcTHvv/8+X331Fa+//jpffPFFjSmtlCrnGHu6oPQZjzbHh5YZlnwvzcTX8QDqBptY4uNIvPlgcsId2eKs5Virnhg7+9Kq4A1CCpoyZfG/tLPvyg/Nf+ejJj/QsW06uREbGBx1FD8LC3KlxmR1fwOJ0onrferye3+BRPtc+pnUxdbcuWzAjje1ZcAn8/l5wFecjUpm9r+/IHORYd7avGzgv1XWT6RmadSoEfn5+WUJ6KUy0nKn8xQV5KDNSkVm545Fp5KK9XmRQWUVho3cWuI84Rtc3mmGoomiwmdVqhr222XL25ScSp9lqZVzmZJbqXxo6bhwqwJUVSWkRSpHVlYWP/zwA9u2bePbb79l7ty5GBjUzGvzfp/ZphWb8JTVxT7sGJnH12Co8EV/sC/SnDFkFDlxI88FRYMXK6j95fa2YPUbCnSvdcbBtRVDmryAJOQvBIO5rMy4wiZTJ7a6x1On+CzjDsfT0rUrP73thy4/m4/em0B+TiZ6XiYn3PGuCxUiNYNVr3EYOcjJMU3C47kBSJRO5EfGEfNdAPmRJVLx2SHb0aTEoPEMZ1+rv9Fk7Kd32nHGONuUjQl/xUbwj1rN1npdMHYfQJz8fTb2dEHnYoTcKYsAR2d2NniZPXYNkFiaYiBLQ6cKp6NTR87eOFvtcePAgQO0adPm/js+rXyVGclXmRNrKKzpngiCUF+v1wfr9fovKcl7cL25yVcQBCtBEIyBwZR4Lo4BAwVBkAuCYEqJ0VDaznPAJ4CfXq/Pq6n+1bhHQiKR0L17d8aOHVvTTd8XdcsBLPUeQFaIP5SzqmO1WtZn6xhzPYmkdaGMVRbjlxlLbp6G0kj7jIPL0Nq8hWAnQZuehkZbxMIcV4T6vvxV9BxFmVf44/hWvFva0qNpPmEpVsSfK+S3zHzMmr9IXswJkus/Txe9GZ3NTDC9voKcKBsWJGVyKPsdcoyKWC5TotdcKStMh0EiJm4n0aR3pjA+hsyTW7BoN4T0/UvRqRPuGOJQWa5evUpeXo09J48lJ06c4OzZs/z666/8+uuvfP/995WuLHo3SpVzjFwd0ReXJEheDqzDDsdoAtorMZRkYkgmOnUGmpRows6k89eAK3gXtiYoKYbciMPorI4xeUUcXz3/Pr3b9eD5el2Iy4rizKY6nLh0iSADV9p0HIzGwxVL1xByTKQ0zW1AI4u6KHqPJSztIK1ataLroJE4uNZlzsbD+P/4VYUE/BIJ2qZVzqMRqRoWFhZkZWWV/a4KUGFoZoNecCNt5/f09OnNFx08SPUZROHodsjs6yNROlIwsh3XMoq4KpwkNN8EuZMjcteSauaJqxLLciqSgU+u+mP/dmOMN15Gm1aMJnMAebHJmKR401eSxT5zZ9S3LDzdqgBVEzkaIndnzZo1HDlyhJkzZ7Jw4UK+/fZbrl+/fv8D78G9PjOJ0glDbz9+/eMv/ve///HeqpMYNm5ID20+zTIaUHhKy7oj/6Dw2oDC8wyGZmPIOBiAYl8Go1TObGvQj3qdFXSw8EChNeF0w53kSm1ZaVmfzDNZvL/9LC85e/LiiHosDdzH9599iV6vLxcWWT1v+LOCTqfD0NAQS0vLagmAAGSe3ILz625kGjTCvZUDFp1HoPKfU7a9NCQ2ff9StBktyHNIY5PTYTBIY5fWAPaVjAnXi4qZbajGrslZLHNa0TXDjN4XtTQp0FOksSLUpAfGTo2oI3cgvvE1dBnWuFs3pIGyAd/FrcHc+y2g6uOGtlz4uEitM1sQBE9KvA37gPNAS+AksAlwoSTZ+jSAIAjbgQtAMhAKZN5sZwFgBATcXLAK0uv14x+0czVuSHTv3p2kpKQHHmSrw71iw7XpWtLOp5EfGcdSaTIFN3MpStGpE3g1dT5jnLTkqYKZnj6Ai4mRTLMYgV4POaH7UGm1fBOjAqy5mqLBR55IjkMz/nBryW+mNpjEHsXdxJHu17Zjkp8OpJPt1JJsGy+25DUkIi0Y9KBNLzEkjGxPIrM6gTY9jtSt59GpE8gL+8+LUzqpBXGieDcKCgqYNGkS48ePZ+bMmXz88cdkZmbe/8C7kHUmC0VDBen7wjE090d5zp/+xjLCWzlQKCkEQJOioTDuEsquSooLzSkIPEr+i1cwPJKGtIkeZVdr1EeO8vNGG44aSLlgvRuF2oauPq9jPagRH7q6UWTmQKJ9Q+QKN+o1qY99C2coFmicYEBUjDuXLl1i8eI/CDfzJjlgcZl3qvQ5UPqUSNBWJ49GpPK89NJL7N27t4IKSm5kZ5r16cTMv3zp5inDLvYQx0M2MHV5CHq9HoVXb2Rxp/Fu34leg/oywbU7uwoD2J5wmmvBJZr95XMqXN/qjNw5DIY1JvNUfYzdB1CUB+0MpLR2k6DX5HPYzaUsP+JOL/zq5sWIVJ64uDjGjRvH6NGj+fPPP0lOTubrr78mPDy8Wu3d6zMrNTIOhPjT9MwZvho3iF8ilnNJdgUh1oeg2CIALFuX1JPQpMsoyvbjlavbGBiVgy7Ln+WOvRFyJBwMDUSnUSGxKERRL5V2jRtRb9hCcDdnfvh81oYGUFxcfHPhSo8qYJloRNwHrVaLv78/o0aNYv78+dVqw7huS7QZzUhMLsBN0Qz0/4UIlc+JqifP4rWCdaxIHkl8ky7Mr7+Ool2RjBn1FiEmTsQCcodtWLbX0/GynKa6uhi69iYifAO7jAbhps4hRB3CKQMDMoIFMoINeeX1b9gRdoXksHpokvyrnNsFJTl1RkZG1bp2kdvR6/Wmt/z+N/D3zZ9vKyp00xCI0+v1g+/Q3E96vf4rQRBMgMPcTLbW6/UeNdrpm9S4IdGvXz/WrVv3SBI3y8eG32s1P1arZZ0ulY98ZPx22Zpkj8Fkh2xn/rlicuvU4Z/GVlgaNMRaX0QLtQ2npVI0Xr3xataEL9KO4aI25mxhJv/kq9lomEJRXhY5FwIoMLdlZcF1jGxsMUFDnoEtu9vp6W2Yiy4nB01iJKZePcm5eACNKg5B2hltehzxS/bdceDOCDbEyNWRjOCMh3H7nli0Wi0LFy7kgw8+YMWKFYwYMaLa3hjz1ubIXeV4u5vzXLoFWNgwUFLA3iuOmGjbcSR/NyFrTwNQnF9MXnQeTm87ccGomBb9DNiytKRWiCpAhWP6XOoprTiuTieh+xskJ5iTe3ADZk1T0PMy2WdDyTy+huF9Z9DRMo+zxftYse2nsudV6TMec/c6WPUad1uom7hyWPs0atSIhg0bMnXqVMy6v1GS59K4G93M03hvaDN2RO1i6eGFOMfnESP1QuXmSdqW5XC2RC0t+MButsQtpIlfE55zfpXfey1kt8MR5nz4GuqbY5XSZzy6/A4UxEPa7isYOTUnNzII9HBcXoDeVM5Zq5wK+RF3QsyLeTjo9XqWL1/Ovn37mDRpEgsXLiQmJoYlS5ZUWSXvXp9ZeSPjm32J/Li6K190nsLcCx9xvNEaiu06Yu/eGLlrIgUJOjJOaSiI3ceBFxVYxgnstCnG2Kgl0kIJMueeFJ8KYPgHH9DX2x2aWbLmn418tCaJYtPjZSFMpflgBkYK4v98PJQWH2e2bdvGF198UW1DAj3otTacOxBLv5clZB5fg625Mz2aDeWMuRG6m9/5sZI9TPCWIU+5yDfawRSqBuHXLo5mhd7IhJNcjgzC0KwPGcFnOJQahj7jOinXdrGlTlvaWjejtZmE4JwYss3tyQ/rQzNfF1rX8+D1v9ToMgyrldsFcO3aNUxMTKhfvz7Xrl2r3j0QqS0WC4LQBJADy/V6fa3K99W4IWFmZvZYKAXdupqv0Wiwc6qDzZAxyB3O8JZUwkTlNYxcnflWWfIFSgaWuhchszqBUe4W2iT3xKvADG16HCmOnkyyj8FDk0fwWUMMNQasiksjp10bTE3MadaqJW/ZnGNxWkuW3oDXUrORWquQWUUjM4pElyGQc3EfxYW5ZIdsx8bUni6dxxN4LOmuYUtytwHoiwcgd/MnP1KcJNwLnU7Hjz/+yPTp05k2bRpffPFFtYzZ0pfq6OzRmNTvg0aAbdotpNbzpp66My4XUzmRfByA1J0C9b/ypNCoAJmmiDMb0iokro20sy8rbPenWyBWsam0bnWWyDomaLJ2Yt4qB0HmS6iLC0aaEK40PoF1XklxOZm9DBO3QHTZLsjsWmLm7Yf1mcXlFH7EiWNt8/bbb/P333+j1WrJDtmOonE3BndoyKAWPfh0y0WikrMpUqcRLxewaHsBI6vbk55VASoucYnjwV/i2uIyo9o5smvXLtasWcOCBQvKTRiPYObth6lXTzQpMaRunYX0eT2nOluTe6SAvBBdSdXh5/WoAmRoymn/P0jtCpHqERcXx9SpUzEyMuL555/niy++4NSpUyxYsKDalc/Lc6uRMe3d1/nwuwXM7TmXQ9ePsv9aIoc276Gojx65k5z88I1Y9bBE3VTOajNz2oT7UrehAa1dXHi5z1DsW47jUGQB8/Ymcz7lBlkXUskO2YmZt99NpZ4ECtM7o0mXUZiuAURD4n5otdoHys3LPL6G4sJcjp7ZgdCvAV6NG9G8/hjambhgrEkhQBVH+v6l/JKtprhQxm+XY9D0jEFm545nzn6KDD1wS/HHxLMDigYDyAoxJi5wAaX+aUlGKgWWbmhN3QkuTALskRgp+Gj0IDaFxJGVk4dWfZpOk3rQZ/9hNgXlEX8hsNL9LyoqIj4+Hjs7O9GQeASU91jcYdsrD7MvtV7Z+lFxazXH2NhY6jdrhm3mIgzletapG2N52YCf98aT43UAAyMF+THnyL3aE61tEhj0IsTkOnmFVzmWFomseQ8Wp7Vkb90o2tgW8PwNGa27WvOZopBkYJzZcUbkB+F2I5ELWbb4Zt2ALMgJMMXU0458KwtMbhYnA+ja5AU6WHhQWKcLG26cveM1iOEKVWfOnDn8+uuvzJkzh9mzZ1c5Z6LUEPjHei2vaGH12bVcliTSwHMHbQUNxxL/U1Jr0bkHLobXuAbkZBQRm/mfQplE6cT2xj4o44+Q6idB2VpOg8hg3JVSIgFBH43CowBNYiTXzxkTEeuPZfp/UnylSb3qI3+TFeFDQaw/3u84MVBe4mkRlXpqlzfeeAMHBwe2bt0KlEzsnK5tY/iEOUxYsJXUQgPSA5ZSGHsVmb0MXeZ/uSvlJ/eaZA2pOwXMvAcQte8fZu6D1SGj+LB/Oz7//HP+97//lY0J2SHby2oCmHn7kRHsj5GrI+mHL5MfuQjHkY4VFkdKw1/krl4PLM4gUj0KCwvZvHkz//77LxMnTmTTpk0sXLiQffv2kZKSUmPn0abHs2T7UQ6pzOhpbcbYFsZMf24NUbIoDBQG6PsIKI2csLcxRZlnh1xnRlRUFPE3YgiKPkBQ1lHS4hwxkNqgy3bDKDyY5/vOINTFheuUrEJnHAygKNuP7JCAGuv300xmZiaOjo64ubkRGxtbrTYMjBSYdxrOnoPHGPH+FDZG7UeaaMF5M3NkhmaYeHbgauC5m+N9EpKts7DoPIIYq540Mnblaoo32Wc2AiXjRwUJfHUC6UV5HHaxpyA+FCujP/j6nY/JKc5nX+z3fGCew4qB1gw7f5nndHq0l/cQqq5aheugoCCef/75p6ZmlUj1qHFDIi0tjaZNm3L27J0nxw+LW4s7JScnYyDNwkFZTFw0JAVLmXAwEZ06CaVHLubeA5DZ1UVi5k72hQLqWct4IamYGDMoiDlHsbMHMYaOJORM5obbNppkJ9CzQQR/y/cyTmXPLmlPmh2PxT43nWJzBftcWqPLSOL3wCPMfquAuJCQCgbBwdDNFf6/Ew8ariCRPLV24l0pKCjg/fff56+//mL79u306dPnnoXE7sZ5VSznA38o+12Vn8gpnx3o8wqhRMCHsZI9PK/W86relkw7GbZ+tsQvicfY0wWXN9pQKC+mOMqSqbaxpEfqObMhjeZtzbHwcOS5lCgibCUEHUkjPqLkM86P/E81qqLE6zLqTKxDmKucqZEQIoa61SoDBgzgrbfe4oUXXihLKDS2c+Pzz6byx6YAMk3rUBDuT2HsOaDiWKP0+W9yn75/KSaeHTAwUmDq1bOs/Tz3rsw6Hsd3fb2ZPHky8+fPp7i4GJ06oUJNADNvvwoeyVsXR7JDttO4rgNvOYUyv3MPQvxXP8S7JFKe/Px8Zs+ezaZNmxg3bhzjx4/n2rVr/PXXXzVXy0OAhMwC/jh+BJX/HFxcXKjXuR7eL3sTe0VJhomc7LyFJP11mo72z3PgwiZSs+LLwnwlFios2hqhtYqjnWdfOlh4QNxVwm6+l8TwuKqRmprK33//zejRo/n666+rfHypBxJgnz6axZ3rcMgwnMOGajJOeVCcp75tEVGnTqC4IJdoezlNMo8RmniowsJFqRccYHGBhEGWzZHmSjlXN4OPR75OxMVTLN6/F5MG8eRKsxmZ5Mm2Bt4UxKvY02okRic2lo1rlSE6OpqGDRtW+dpFni5qfKa5dOlSFi1ahIODA8uXL68RN++DIrOX0byrLQSH0ibZg2O/HKNYk45lD1+MrI6RftgfF20eQ+JC2OLiTY6ZLUPjQmggcUFh7kFuu9c5ZG0BQGF8DOF53nzn1R836a80NrjBWOkeEk8qUOQWc01mxu+pyaRZ1Cc76iByIyPqujhydOmL6AoLy/qUmhXPhmPVjK2sBN26dSMuLo6Cgmdv5bqgoIARI0awcOFC5s6dy5gxYx44Z6f8JM5NKmWMsw2blBICigTSY/IxbCalnbMhl90d0L3WGSOHMAD+1uVjfDyPkOAMrkslLK3flDbWBYySaHDT5fFPKxNGRvz3Gd1eQ0CD48gSxZ+CGwVsWZqCJr34gRS9RO6OIAi8+OKLfPbZZyTlFpclII7++Ftyjaz5N+QaRdnBd/QSSpROGMgVJapsdu5Y9RqHzM6dnLADZIX4lx1T6nWYsS+Rz7r35K8+w/h40nhSosLQqRPIDV2G7fPWZAT7AxWL3CWu+s/rUF4gIlcivWPpUpGHS1RUFNOmTcPOzo527drx888/M3v2bNavX//AbWceW0NxQUlorMxehr6fnighipDPQ7Ds6EhhemcyDh5Bp07gRuS8suNKDV2ZvQxD8+5g+DKnjS5SfHErB0M3o8t6ME+WpaUlGs2zOQZFR0fTrFmzah2bHVJSgFZe15YCrwC2R6cwtvEE3j98Gb02k5zQfWVGgrJIoEezoRwM3Yw6ZDuD6p3iTcdIcvo0YmmdIqQ2fqSsXVShaFyPduNpqXDBSCrh5e6TCboWwnc/zMO0uQ5rnTHtJTBn/3UumHoQ0aALMmsXrIwtSfyrJmqriTxL1HgdiejoaEaMGIFOp2P9+vX89ttv9O/fH7lcXtOnqjS2A+rwitQc55BQhtl2BsBlfFOsuheh7CrHsn0Rfpf3MFxS8n9O6D42WtYjXJtCuJDNWYsS7XdtRhKalGiKNQXE6B15M+dtthR1RmOUw5GOOeyo35pZ3SaQ5tEJdeAidOoEmjdvTkREBIXljIiHgZubGxcvXnymqxW///77GBoa4uPjc/+d70Ppy1iTrGGk0orhRhYMKDDlqrs52dnFNI3MYE5uPgvq2mCX0p7CJA8yTxdyddMNJv1bwNX0Yqx9rVHUS+WyeTbv2dkRK5Egs6tfQcfb0NgQAJmNTZk+vCpAhSpQxfUF18uMhtIcIGtf6we+NpH/GD16NPn5+Rw9erQsdMjM2w8vDzcOXCkJVSn9bpfHTSplRr1GNHDzoijnHILBXLLPLUFy4SA+eVJM4q9i/+p7uL7nTfa5JWhSYihQSvn26lquC0YsXb4S5c2VxNLP1rJ9EerARZh4dijrx638cljNgpMafjlcda+bSO2RkpKCv78/Q4cO5dVXX+Xrr7/GzMzsgdos9Rjo1AkloY+dlVh2ssRxhCPKrnKkir33DG/TJGuIWxRGZlAQsUGr2XBsPqlZ8SiaKPD42gNFE0WV++Tg4ICTkxNnztRqLudji0wmq7YRpVMnoNo5B2X+drondCEw6DyGeXUZ0aUPigYdsB38GebeA7AdPI1ebUbR3WswPZoNxUCWxs/FiXx7Sc8/FmbIrE6g8CgJrSqtQRSr1XIwdDOJulDajXAiODWfRYccUPZqgLKzEhcTDcEO8JxHIv+T/o3yynyk5ivJPrekytchlUrvv5PIU02tFKRLT0/n119/pV+/fmzZsgVfX1927drFF198QevWrWuseFhlKUzvzLYG3qy+cAWjpk1pNKwRpg0T0WUmkXvVlYxgQ1ap0/lHrWaVOh0Tzw6kurVknnsbtltISFHFoEmJQZeRVOaKzAk7QHh8Fhn5etLd1CS0ymRRazURsRcxCg/mxc6TsDV3xsfHh6CgoId6vVKplPHjx3PgwIGHet7HjcLCQr7//numTp3K+++/XzZRe1BWqdNZW5jJWsMc1MfUpGxL4dpKgWNX38BSraTfiT2kH61P4j+5FbwFqgAV6mNqLLK1RBlJWIgDCdcNady0QdkkUV9UIqeny0lH2fUaru96ApQZMeXbUgWqxKJRNYiRkRE9e/Zkx44daDSasoJP2SHbaeluipUwj/p1NHcs3jRSacULOQn0D1qJvWU4z0k74d5aQeusQrp6+vJCt9fo6eGPom40ts87oUmNRmAdtspkYnYfJOLcBT6btxKJ0um2z7a0H1rVCdw/88XY06XsvKX1JK6mF9/WJ5FHz40bNxg7diwajYa1a9fi6+tbI+2WjiWZpwvJDvdGfaSgUmNBeWOkFMcRJR5PxxGOVe6HVColOzub4uJn8/lTKBTk5ORU+bjyxQi9rrfFK7kb9Y578d3+H/BtasGLbVwwlCsoystCZufOGTMpQZlXOXL9aEmYWhcrfjMyJWJ1ODnhjiStC63QZrdu3Zj+v4/pO6Y1X+86ysKwCCSWa0jfF44qUMXltGLWmptxxsOGie1kNO+Vh9w5DLOmKbf1715cuHCBVq1aPbCRLAKCIOgFQZhT7vePBEH46ubP4wVBGH2HY9wFQbh482drQRAOCIKQIwjCgofWcWrJkCiloKCAwMBApkyZwosvvkh0dDQffPABBw4cYO3atbz++uvY29vX2vk9rAyY30+Ozdk9XDhmypdRSfiHJjDMcxSqQBVZ55wp1r6LZZdPiTe1LbPkS1/cqt0LyArxR5eRhMzOHUMLBwCktu7Ut9Az2/MsOxUtOVtgge2hTEatOofpnnl0rdOF7l6Dea7dCPr27cu2bdtq7RrvRLNmzZDJZM9y6foyQkNDGTFiBA4ODixduhRbW9sHbjNWq+V/MYmcXHUD402JzGltQOvWr5Jp58sB526sN7bHtGnP21aQNckakjfqyTvmhVdMIQ7BMvpcyWBQxOqysJf8hE5o0jsiGJpj4paIRVujO3odyntIRGoGPz8/srKy2LVrF/DfpMvC3BwHO0N2FZ/Hs+5xbAdPK3vBlua0rDPM5h+1mqUXjtAqdxheyd3omj+cxgmHOR8XSK77Gt7JD6el2py8mIaYNu1Jdpgdnqfa0arQm4izerp26kCPD7/CdkAdVAEqijU2WA/4EItOI0qU3p6zw7RhIvbDGt/zOkr7ZKgwrPV7JnJ/VCoVX3/9Nd9++y3vv/8+n3/++X0X0+43kdMka4hfEk/Old7InUeRF+tTpuRV1UrFiWsSKbhRQOKaqtcqksvlFBUVVfm4pwWFQkFubm6Vj7PoPAJz7wFY9hjLKYmUI5EBhHlcJc/uDF/snEGXujJmv2SEffx6skL8SdflccTNmcKG7csWGrLOZGHZvoiEZYfQphVT56UvGTpyLJu3+fPhhx9y/vx5+vfvz7G4QmRWx5A7nEfRQEviqkSiNqSgClQReqU1y3W+hEe0rrB4Ud4bey9UKhUnT57ko48+qtb9E6lAITBUEASbWzfo9fpFer1+xX2OLwC+AB76h/HQsnFVKhWrVq1i1apVWFhY4OnpiY+PD6tXryY4OJjs7GzOnTvHv//+W2PnnNxexsR2MiCDSf+WaCVvjjNmrp8fW1es4UJ0AFLLtsjs3GnRuQevFW2+TVqzKCsFi04jyAk7gCA1RqZ0QKZ0YILNLsZIAtlpFc9li2JG7jXGz8iAImUxi28mUDftaceRI0cQEhP5wrUeW+t14fKFwLu6nysoLjxA1UgLCwsuXLhAdnZ2tdt4mkhNTWX69Ol88803fPXVV7z77rs11vaX3WWMai5jvCSYi1ojgpVRJMdYoJD+RkFs6G37m3n7ke42gMDzG4iy3EehqwlrhfpAyTNRqpyiVUVhO9AWnSpO9Do8JLp27cqxY8duCwf07D2c6+lSvBINiYxvX6aqpA5cVBaGpDZS8HusD9kh29l7cCnFncfjcXY1L8kK2VEcwErHAgrVDShOeZ5vzLazKCyF+GMH2VkkkNssj6Ds41iG5fPmoEZ8HSKnuNCagiQ/TJuWeECLC3NJ3ugPwxqTvPHyPa+jtE/Glsa1dq9Eqs7x48cZN24c33//PcuXL+enn37iwoULd9y3dCJnYKQokwy/03vjVmW/W6tlV0YiOPdSLle/qJ7cq6+vLydPnqzWsU8Dpqam1TIkSgvVS61d0Fm7sDfEH21AOA4WTYnZeI6JoX14/a3X+W3Wp1y/cJ3TF6+QaZKCvomCK5oOWOda4zzJGdOmppgOUtLQaRAN6thzOSaRP//8nSPxRWSd3oMuJwdtwCIMZMPI0wehClDRyN2BD/u5szjZi7DwaD4zHkL6iaUUZQmYeY+lWLO9SoqRM2bMYN++ffj7+3Pq1Kmq3wuRUnTAYmAKML38hpueiRy9Xv+TIAjewLKbm/aW7qPX63OBo4Ig1ErRuXvxSGR9MjMzOX36NKdPn2bhwoV0794dqVTKmDFjGD9+PNevX+fChQts3br1gZK15wZrKvyfHbKdaGB2WB5ffvklL7zwAhlHv8dxZCPcu6cxsMAEKJHWNHJriVWvcWgzk1B4diArxJ+80H3I3ZohMc1nvSHYn25ElpcMLGBHM3uyL0SwSp1OqlbLwYi1fPDTdiYPH86vTs40lMtQGEv44eYE5E6MVFqVKS58m1I1GbZSbG1tef/994mKiqrW8U8rRUVFzJw5k+XLl9O9e3cOHTpUMw3ffCE0vXaRnx0l5MXUx7JdETKrG1i2LyI/suLupQOzidsx8rpasvqqNR/odcw3KFHdKa+ckvOQhc8KCwuxtLTEycmJhIRnS0q0bdu2ODo6snHjxgp/l9nLkDsFocroyaHIbLKvnMa8tTeFiSUfrCpAhYGRAoxew9y7JQBJgYtYtfZtPBxNkHnY809KPpqkVpw0kdLTaDPd41LIMbhCwvPGqALS2HBsPo4jHdmbsZhehvPplNeDvwMWI8iDkLu3RJseR3bIdpxzUnn1T23JQsM9rqXU8Mz3zq+NWyXyACQmJjJ27FiWLVvGn3/+ycCBA0lKSrptv9JxwkCuuGehsFuVlu5nWNQkgiAwatQohg69rejuM4NCoaiyxDj8V0MiLzIIs9YtMHE7RqFZZ7RZLyK19idlzzKWFi/lp/0/4V3PmyZNmmBsrELhbMvol94nN9WYG2FBSGOLSc+xY70qnfObLxC7cVZZTpVeryc3dBlWXZNJ3fQ/oCRf9E3bOowzOo3Uypkv6w1B7nQebUYLirKNKzwrlX1eCgoKmDhxIj/88APTp09/ZoyJZsubeQKTgbmhY0Ij77d/JfkNuCAIwo/32OcvYKJerz8sCMLsGjrvA/HI9UEzMzPZvr1k0Nu0aRP169fH0dGRjh07sn79etLT01m0aBEBAVXTtpYonVC19mNK0H8rMaWD7nbAz7cbb731Fluzt2LilkQ4MC3RhZPBFwGw6jUOdxMFwyMvUhR9mAU3oqDlAAyNFMisAvE5dRm3q3o6RKax3KA+1/wvc6zc5H/q1Kls272PgTb1aZiTQIS2iH/ydWRf2H1XxZ3yigv3omnTpnz++ed3LE+vVCo5fPgws2bNqtL9ehYoKCjgu+++48cffyQvL69GBrz/HdaQWQjzgnOQsI8Z3c6w9GQPUhQFZAQblqnt3PoM5trLsNA04XVJewY5bSNXkvbIVXdSU1NZvnw5H374IR9++OEj7s3DpU2bNhw+fPi2MA1rX2sUrQ2xdShG2VWOcT0HnLNz+V9fQ2YlGnA1WUNerA/m3i0pyssiLzKobBU43y2Q1V3lWITYMHBvBPsGCDQML0YXYQKNGjOoXgeODgjg4p//VRf+aNE7LPxpKcF+UrLsr6BHTkFM2m3SjvdaaCgNeytq9OyGnDzOFBUV8dprrzF//ny2bdvGrFmzbgt/LR0njD1dMGt2gYLYe3uhbj2ulNqsReTl5UVKSkq1JtJPC9UNbTI0t0Pu6kVeZBBSxV6UXa1RHzlGVojxzfdFaf2ZMQSFbOfo0aMAuH/mi+nVtWjSO5J60JDskO1YdB6BzKEQmbULpl69QYCciwfIDtmO7fMl3klDE0PkrnLkrnJWqx1QxnViaU5L5A3PI7M6gdxBIOngfzlZVeXs2bNMnTr1WTMmJgOl4Q01InWl1+uzBEFYAbwH3LYSJAiCJWCp1+sP3/zTSqBfTZz7QXjkhsStXLt2jWvXrnH06FH+/vtvXFxcWLx4MY0bN2bevHn3b+Am93PxfvHFFyxZsgRdoI69pw9jYOWE/+5rKPrbIwtQYXpgMdOVptTLK5nUq41l/G6kIDcyiIJ4BZvsnMmSJLDZpgtxi/4LVxIEgYkTJ+Li4sLPK4/h1mEUBK1k6YUjxEaVGK23FpYqpVRx4V40bdqUX375hR9//JHw8PDbtufn55OWllbp+/Ssce7cOaZPn85XX31FZmYmf/75JwcOHKh2suB1qYTvnVwo7N6Z/0n38U7jLDh/kHfXqlD6jL/raqAmWUPTqK4YefVlVbSGuYcr/2zXJpcuXaJt27aPuhsPlSZNmjBkyBDGjx9f4e8eVga8ri9iw9k8jOqbY6VqS+RVO8ZYbeJ1syBy28uY9G9BhUJyJp4dADD3HoAyVM2IDTEoiuvibNINg4CDbGllRn6clmTnsXgl25CvdyXepzl5kUFoc1ugbnyMbReuMPVdP2adCyA3ahMG8gZIlE6sUqdiYKRge+O+SLR3D5EUefzR6/VMmjSJTz/9FDc3t7vuZ9m+CNOGiRSW824+LtLPI0aMKMsnelapbmhTqTS0Va9xqHZ9APxXM8j2eWtUATIUzW73JiVvvIzwcjNyIw3Las2YNu1JTtgBCmLOYSBXYNq0J5qUGGxM7eme3I0L+w6hl+uRu8rR5RaTGlLEWzsvABewf/U9ADRqQ3Tqynsh7kSpMbF48WJGjhx5x/nJU8bcW/6vKX4FzlDieXgieOwMifKkpqaSmprKCy+8wIYNG5g/f36l5Uzv5+JNTExk/PjxzJo1iy76Lnw1ez7Wg5ui8LiBgZGC4XtzqJen4brUhAvZGWyt1wVTr55khfiTtnkRycClmxNFM6kJ6sBF1K1bl2nTppWpJuUIJuQXajkVdQXdzZwHmb0MQxND1MfUVY59LzUiZs6cybFjx6p0rMh/nDp1igEDBtCnTx9GjhzJxIkTmTt3LgcPHqxyW3aD7LDsJEeTUcSqsHGY6EIJMNQyv99efru8lWTuvMIjs5cRVu8IhlEG7AveSGrWs6l68qiRSqVlMeu3hgNObi9jokcBzjorgmKK6Ow+hdiU6/wWdoPcIk1ZyCSAJjUaTUo02SHby1Yb/cIvMlBSxP5WzYm3aE5snj3Xi9z4xSYIR4kBOYY6TuklZQXszJqdR2YlZ/OJHxnQbQcNjYYSahGOWctmFBfkEh+ynaU+H5TkaNwcc0SeXPR6PXFxcVhaWt51n1uLEMJ/OTBQcSHqTtRWaJNMJqN9+/ZVWtx7GqlXrx4qVdVz2NL3L8Wq1zjS9y+tUNCy/CJj6s7bvUn5kXFEfxNX9nvptrzIIEy9eiPIjMvq2HTtPJ4OFh4UXSzGP2ULiiYmyJR5mDUMQR2QhiZZQ0F0KhLFIIqya0bh8ezZs1y6dIkZM2bwyiuv1Eibjys3w5lqvOiGXq9PFwRhPfAG/+VClG7LEAQhQxCELnq9/ijwak2fvzo81oZEKdevXwdKFCLy8ysX91vq4i1VsciLLJFgLf+ljIuLY8yYMYwbN441a9eyKzqNPTfWkZKTzx4fK8wzT7DFdSDh1+JLDrjpLoSSiaCJWyC5EfkUXDjIO++8w/Dhw1m1ahUrt+7BuM1wCNl+2+Bt7WuNZSdLVIFVW01ycHAQjYgaRK/Xs2fPHvbs2YO3tzczZ85k1KhRLFy4kNOnT1eqDTeplPGRMvY10nMtI56QvReZ4tmBb0w3MKFckv+dsPa1xqC3jkOB60nNenZDAx413333HQkJCXeUSp4brMHASMEynRGml35j2qef8OcGf5LsT/KhfzHFegesB4xA5uCJzNqFnLADmHn7YSBXILNzZ4uLN8SFcNr9EnVkGQRrIpBdTqKnXSvOyuTsM9SSG3+VoqigEo9ERguMrArIOJFIQI81dHJpTHjhZooLIC8yHNvB05DZuaNJiamVUBWRh49MJkOn0911e/lJJpSE7GpzfVEfOVaphahbF9RKvRkZwYbI3QbcMwn7XnTs2JGYmJg75nc8K7zyyitoNBouXrxY5WMLY8/dsfBbecNRp9bc1/grnecofcZXkKYviDlHYHgwhXW6cDB0M/J2A9GoOgC/I3ctef8krkosy9WoyfHkiy++YNOmTbRv357g4OAaa/cZYw53N1JeB5YJgqCnXLI1gCAIMYA5IBMEYTDQR6/XX6rFfgJPiCEBsHv3btatW8eECROIi4u7/wE3Kb8i81/FWJcKg+iSJUs4nhDHe9PH83vjyZxziyfSMIKgwnDyr4ZhnGaMiXch6Uc06NQJmJiY0Py1dnj18sBRVYd2Y4eRkJDAyJEjuXHjxj1DWkoHijvFz98NY2NjNmzYwIoVK0QjohYICQlh8ODBdO3alW+//Za9e/fyxx9/3FcffKTSikEJMvRb8jgccQxNsobC2HP8YmVAcaGswoo1VAxJuNNK4+OAXq9HInlihoUHomPHjri6uvLKK6/clhshs5eR62vNR8GGmDRwRNAJaNUJPOedxhlbOWaCDckx/6kqaVRxyBw8MXKQIzHZQ9YFfwzD9lNkoCX63yAiXmpC0o4rDG7YgzYGlpCZwY7E42QeW1P2/S+MPYebVMr0Di5kZ55lkGdPtl7xJDxaialX7zIjInXrLDGs6SnBxsaGmJiYSu9v5u2HosEAskKM0STf38Nwa85EvYE2SLpYYetuTaa2+p4KU1PTZ9qI6NChA6NGjeK11167pyFYVW41HCtLaZVsBCqMKRtulCh2SG4aCgWxCVi2Lyp779z6fNQE169f5++//2bSpEmiIVEF9Hq9abmfkwGTcr9/Ve7nEKBFuUM/KbfNvVY7eReemBnDjBkzGDx4MIsWLWL06NGkp987IbmU8isypYlHRq6O6Iv/My6sfa3Jq1fA/IjpSAIbUPeKOZ2HDqNH4ykY2xtgMdSUfKNcdP0E+OpzjI1kZBXkkEgK4YlJzJo1i6CgIAwtHe/q/SildKAoNTbuJ+8H8OmnnxIWFsaSJVWvOilSOXQ6HQcOHODMmTO8++67bNiwgR9//PGeRf3KkuOj0tGUk+stLRLmJpUy3c62TM731pAEVYDqsYh1Lk9iYiKOjlUvTPWkUbduXebMmcPnn39+Rx380s/KzNsEu3R7xhUHczD8ImP7jcbxwGQc87ORmm7g76s6ogosQADTpj2RWmzEyDaUojxXJpyW0t/QFHtTe+ZkjcLMO44DxzYgtB5BUE4MFkHrGC8tYpVUWib3PFJpxeAUI6KWXMKxvQl+IVJ+a98BwWAT2aFpZBwMqLQR4eTkhFotVrx+nKlTpw6HDx++/443qU7ytETpROPmPgyOOopVSjq5WVKE6BR+Svav1kq0IAj06dOH/fv3V/nYpwFXV1dmzpzJJ598QnJy9dQVa5rSKtn32l5qMNyqJFgbHDlyhK5duyIIQqXD0UWeXJ4YQwJg69at1KtXj7/++ovff/+dvXv33vchLf8FUgXIAMgIzkDu5l/BuMg8HUeO1p203deIte7IjjffAkpWgFyyd9NmgAlXo73JcH2VPE0RGRf2V3AJWvZ+GwMjRZl7sbyVX5ronRcZhIlnB7JDtpMXGYTc1QvByBjzOxxTiqWlJf3792fEiBEPePdEKkNmZiazZs2iWbNmfPXVV/Tr14+ff/75jqtv90uOH+3gyggTGQZGCr6+EVXBC+FhZYD3ODvCPC2B+8c6PyyeleJSw4YNY8uWLXecDNmaO9M9eRhXY8+Amxo3zVp6aGJYJYthuM0fYNwaq7ydjGohUHxyFVOCrKjb7Q06Jqg4k9sa4yIlreMaYd1xI0r1FZystLxzfjPb6nclon4LAo21yFzaMy7xJC9kxqJoaMJXESXhkwG+UkzjNeyKSMM9Pp4Tbk2RWR1DZhWNNjXmvjUBSlEoFNSvX5+QkEetBSZyL1xcXLhx40al96/OCrKZtx+vSjT4mcjYeU6OhTaZucEa1OnVW4lu0KABDRo0YOrUqdU6/knG1NSUX375hd9//10s+HoPrly5gkKhwNPTk4iIiEfdHZFa5okyJADmzZvHmTNnGDVqFCNHjmTatGmVHojLuw3zIysaF6oAFY7pMXzq3YedDdtzzdoFQxNLZHbuvJd1jnG6SyzMyeKrKwoUnrHkRYSSHxmHROlUFrucE3aArBD/2+JRtbm+KBoMQO7eEpm1CwZyBcUFuSWhCqnRFY65lRYtWnD8+HGuXq1ewSCR6hEaGsrw4cMZPXo0//zzD+vXr2f9+vVVWuHdWq8LCmMJW/N1cCOqwvM3uZ+cgfI8pkbClscsvOlpx8/Pjy5duvDGG2/ccXuPZkPpUs8P2dUGBJmd49LZdD5toCbJuJClwWsZ3PB9fgi04sbVbWx3rs8rA8ahsPCgqVaCRHBAH1sXbyMTTlxvjbF7Es6R6TS5kUxxQS5zFC7IrF0A2ObZA0n8X+z3M8H6TImnKs/Hkn8AVaCCY/Hx3Ig8Rq6sG3iAgaIF5t7uwP3DUWQyGYWFhc+MYfgkIpVKsbW1rXX51OyQ7fzT3IfcPA0rklTEZ9ti5u2HpJr5EZ06dWL//v0UFBTUQm8fXwRB4NtvvyU4OPg2uV6Rimg0Go4fP86gQYOYPfuxKHUgUos8cYaETqfj4MGDHDx4kBEjRvDXX39x7do1Nm/eXCkPxa1okkv1mscyOnwvQ9XXsIrag3HzPP6UdSHZbAOb1DZoL9dhu6EzhobbUHhYYz+sMXGLijHz9isxCFQleRvlVwvLqt7e1Ic2NLMpmUToK6otlEpG3g3tA1S5Fqk+Wq2WP//8k127dvHGG2+wefNmLl68yJYtWzh8+PB9Y2MvXwjkB28/si/svm1baf5ESHAGmnRRselh4ezszHvvvcfYsWPvKpN8MHQzBkYKzphJSd9vTtSxndwo9MXKUsbGbalY90nizSmf8/PWHAbm98Pa0Jlz6bEcTb/BBUcHpNYuaOOusj98HZmtdXzXqpCoInuWhh4js6gYF00uL2vV7Gj6HHPyOiI9s7fMW2VgbIAgCCXJsK82x7a9hgvr/qT4plykmGj99ODk5ERSUlKtG3s6dQKhh1YQevN35QMqOdWrV++ZjH2fOHEiMpmMn3/++VF35ZFSWfnh1atXs2DBAtGQeAZ44gyJ8qxZs4aNGzfSqVMn3njjDV599VU2btxIVFRUlZQUShOyt2rzMEwOo0E9NSPkJwg0TybDOhffEIEe53XkNUvijH4QuVHxYPgCFp1CyTy+BqAsrKm4ILdcKNV/oSya5BIFqaLstDJjo1RtobYqj4rUDImJiXzzzTf8+OOP9OzZk5dffpmPP/6YFStWsGnTJjSaOw+m9wpDKM2jEHl4CILAl19+ybJly8qU4O5EalY8ew0yMG80AMIOYNFpBGCMal8+mcfX8NOR/cxbspxPmowl5agBCZnR7Dr5DfpOhWQcvamGc86fiY2l7Le24DNVJgkXIxlhYMmqzHQGnN/CYKUSeWYi6rQ4ViSlleXYxC8pCXFS+oxHLbXGuWkHzLyTy+RlM4+vEROtnxJcXFyqJBxSUzxIkToTExM6dOjA4sWLa7pbjzX9+vWjd+/ejB49+pn38lVWfjg2NhZzc3PMzMzIzs5+WN0TeQQ80YYElKwaHzp0iBMnTtC1a1f69OnDmDFjylz7+/fv5/fff79nG6UDavyFQOZ6+9HczJucxDQuJbpS1FrNlnqeoD/FFteBGEvaUJAQh7uRnjdSL7I0J5X4kO1YdBpBTtiBCoPzrQoM5SeW5fMmyvdB5PFFo9GUScZ6enry5ptvMnr0aFasWMHGjRtFz9FjzosvvohEImHNmjX33bf0+1g+70mTEgNAYdoNPhg5kLXL19Kss4Ite5Yh9NZi1dkaA6MCCpIVvF6vKYNTYmFLHt+q1Exv5MTglJJK9KVJ+maZmYywsEDWvCszo65UMBCyQ7ZTmD0WEJC7emEoNyUrxF80Ip4i5HI5eXl5D/28D6LUM3DgQE6ePFmlvI4nnSZNmvDBBx/w9ttvk5WV9ai788ipiuKgTqdDEITa7pLII8bgUXegptBoNOzbt4+pU6cybNgwJkyYwKeffkq7du04fvw4f/zxB++99x7dunW77cEuHVh16gSyQ7Zz4XQIEzYkklJ0DkN5MgnyZH6yfIdrqnwMpL+RHbKQ/kEreSEzlnHNu2LRaUTJZENf4t2QKJ1u619pPYvSbRadR2DuPQDTZr3Lzi3y5BAZGcknn3zCe++9R5s2bVizZg0tWrS4/4EijwQ7OzveeustZs6cWanwR506gbzIIGSOnuTFnCsr8mTm7QdAbm4uYb8upLlpBjP6D8E534BX/t/encdVWW0NHP9txsMkk2imvDigqaSRpmmJpoZXTU2TNDMNB8Rbll61t7K3a6mp6b2VFywVp0xLuipoOIMTTmkmCqhoKuaUCI4IiMDz/nGQwCHOkQOHYX0/n/MBznmGDawzrGfvvfaCW3hcbImjT0fWtXqNCHcffqMXXi0bsqWPPZE1bhdU8Pos5RLfpKWy0vFx1rUZVHDcIuc/uo2c6ylYOWVhXe07ss5ElcrfRghDdenS5ZEW7qyoqlevzsyZM5k8efJ9C1ZWZPd+HjHG3Quk5aXSYGWhlPpIKZWolDqslIpTSj2rlNqmlHrmL/Z5udD2vyil2hV6bEb+8Y4qpf6jisnolFLLlFJJSqkEpdRCpZS1oW2v8D0SD6JpWsEVk8DAQHQ6Ha1ataJBgwYMHz6c999/n4SEBH777TciIyO5fPlywb6Fr9bcjP8fHJ50I/NMNWw8HkNZhOPgfZEsnzQWbUjD0qct657sDmcSuHEgCgudQ8EqtffWer9vhdG7n2UMmNJRu3Zt0/xhhMmdOHGCcePG0blzZ6ZMmcLp06f54Ycf2L9/v0nri4uSGTp0KBEREX85pOlebp2G6+c05eZweeWkgopJd807dhgVMo+mnwQx2WcEnvuXkXUhgWjPgwy1iSbO+zVa2DUi4xRs//VHdhxPK1ImOMOuBgnOrUk5lfjAHslGXrXZFb4YfK6hq32xYF6WIRcdvLy8pIdMmFTHjh1xcXEhOjra3E0pEzY2NvzrX/9i5cqVRpXorQhKa8Vz8WiUUm2BHkALTdNuK6WqAzYG7BoDrNE0TVNKNQd+BBorpZ4Dngea52+3E+gAbPuLYy0D3sj//ntgOPCNIe2vlInEvbKysoiNjSU2NpbFixdTt25dvL29adGiBcuXL+fChQucPHmSI0eOsGfPnoIkxK3zE9i4XkT3eAo34rZi6dCAnGt/cOdWF7Kfrc7cJzsWTLK+ffEEzm1fJfvqHwVXLu+urH3vECYr18dBQXrC1oI5Fg9z7tw5vL298fLy4syZM6X7hxKPLCYmhu3bt9OjRw9GjBjBsGHDCAoKkhra5YCrqyv+/v688sorBm1/9zmbnrgVZ8e+XN8XgWuuolOeCwc7v0KGx3bu3GzKbdsDfBy1BevusXw3bx5JPV4i4pfLjKsex5tWB1mg8yX5cg0OJsZycfP9Y4lfaPYKfg39yUuI5OQ9yUFAQAA6nY7dP+/H3rIDytIKLPvj1HKvQW/8bdu2JSpKejDKu4oy7MPR0ZEJEyYwduzYKvOaNnHiRM6fP8/ChQvN3RSTK8k8GVEqagGpmqbdBtA0LRWKvj4opboCUwHL/G07a5pWeNVcB4peotahT0YUYA1cyj/ON0ArwA5YoWnaxPxzrit0rn1AHUMbXyUSiXslJyeTnJxMdHQ0//nPf2jYsCENGjTAx8eHoUOHkpaWRnR0NDt3JZJOLS6tiEfn5YWjTw+yU57EodGfpV4tnarj6NMRuwatsNQ5kpuVXmSuxIMyf9cXR+Lo09GgMc8nT55k+fLldO3alblz55buH0aUSE5ODpGRkaxevZqQkBC2bNnCzz//zKxZs0q9xKN4uF69erF161auX79e7LaFyzlnpyRjaV8N21oNecGlKX4N/anmcpw9TbaRm5WKpU5HnTwveifnsnzvd0wcFkKbjDBCDp0jw74aR3SNaWzngm/jLiRd+PW+c22LX1Xk610eHh6MHj2aYcOGYdusq34l47it5GXtNeqNv6qV56xofvvtNz744AM8PT3L9ZwDpRSTJk1i/fr1xMfHF79DJRAUFESdOnUICgoyd1NKRWmsaF3VHG3cpCEwGpjV5NjRki7ztwn4p1LqOBANhGuatv3ug0opDyAMaK9p2mmllFuhx/oA04AawEsAmqbtUUptBS6iTyRCNU07mr/LR5qmXVFKWQIxSqnmmqYdLnQ8a2BQ/u9mkCqZSBSWlZVFfHw88fHxREZGopTC19eXF198kdDXJnPkyBEW2F7k2D3lWu++oft2f4eAQ6tYrqvOFe//wd7rEFm/Z5Nz9QJWro9joXMgPaHoJGxjrwYcPXqUN954g++++84sk/OEcTRNY9SoUbi6utKzZ0+WLVtGXFwcixYtqjJvxOWFra0tffv2NXjxrLvlnHMzbnB9XwT2jepg77WLvfud0aX7sv/GSdJvKJT9s9jVvszgywfpcSEd+7qt2b/8EiMGvsmS8Dn8Y95l6nQ6SYZ3fX51sqbGayNx8D7DH+H69WdAXx3qv7tC7mvDJ598wqpVqzh+/DhWl/UXnAwpEy0qljNnzvDTTz8xYMAAZsyYYe7mPNT06dPx9vauMgvQDRo0iG7duhEUFPTQinxCoP+g/Xb+96NKciBN09KVUi0BP6AjEK6U+qDQJm2AHZqmnc7f/kqhfSOACKVUe2Ay8KJSyhtowp+9CpuVUn6apsUC/ZRSI9B//q8FNAUO/3kqvs4/V6yh7a80k61NRdM0Dh48yMyZM+nRowe7du1iypQphM8P4XndOfIuJBZMjnZq2YuAtBP0Or2bngdWkHv1K2zc9mDrtgvQT6h29OkIiiI9D4Undxti/fr1JCUl8c4775TK7yxKx9WrV1myZAl9+/YlNjaWqVOnsnbtWgICAirMkIaKLjg4mMOHD3P06NGHblN44uHNA2uK9ERYO2zC1U+H5Utu7KhTk8s3NW6deJ7M0xbcvvQyP1g1ZY3nHTbX2Uvs7fP848df8PF9hvWbYni23VNssjiM1vYULm3ScfA+S82AJgA85vk0b7w2l8c8ny7SlmHDhuHi4kJoaCjw52uFfcM2VGvZ475J2Q/TtGlTMjMzH/GvJspKREQEffv2xd3d3dxNeSA/Pz/q1atH3759q8Scm/79+9OnTx+Cg4NJS5OFQsVfmgXMzv9aYpqm5Wqati1/qNEooK+R++8A6ufPr+gD7NU0LT1/+NN6oK1Sqh4wHuisaVpzYC36IVAAKKUmAh7AWGPOLYnEX7hz5w4rVqygd+/efPHFF/Ts2ZPIyEh69dK/md88sIZlmTn8kJHNkj/Ocjnqd9Ki07gclT+h04gJ1X9F0zRmzZpFly5dqFGjRskOJsrc1atXiYiIoFevXowdO5Zu3boxb948mjZtau6mVXo9evRg9uzZf7nN3eGHTi17kXP1ApcjpxasNp+2OY206DQurTjKjQNRoIFzmza4tDpNzq0Ejhw8zKzHMkhucIHtHpGctXPno4jDfPZjLIG9X+Rfw1rTvEkmoJH1hy+pG1Kwcn2crl3/jzbO3vi311/Isra25p133qF3796MHz/+vg9tNw+sKWiTIVq0aMHatWsf6W8mys7Zs2eZM2cOc+bMKXfJhLu7O2PGjGHp0qVVIol47rnnCAwM5K233ipSgEU8GqUU1tYGF/6pcJocO3qiybGjo0wwrAml1BNKqYaF7vIFCk+K3Qu0z08EuDu0SSnlfbcak1KqBWALpAG/Ax2UUlb5Q5U6AEeBasAt4LpSqibQrVAbhgN/AwZommbUKrlVfmiToXbt2sWuXbto0qQJn376KU8//TTz5s0rsmIol4ou0HJ99w/k3b5lkglN165dIzIykiFDhvD555+X+Hii7GmaRlJSEsOHD6d37958+eWXTJ8+na1bt5q7aZWSp6cnWVlZxc5PuXeo4b3jh+8+pzNP6IsnuD53Dl2tRCzsFDaDapGySv8+knvHGbu6gAY7o8I5SU1eef5x3nt+CqdqWbAx/jrbG6wm2/dxDjrrsLidw+nHHHh7whQC+vYlKW4fweM+IsvnZayy1jywF9NQeXl5VeLDX2WwaNEilFLMmTOHkSNHlosr4Tqdjnnz5hEVFcWaNZV/Qm69evX45JNPGDduHH/88Ye5m1Oh6XQ62rdvz5gxY0hKSpLF6AzjCIQopVyAHOA3YASwAkDTtMv5w5FWKaUsgBTAH32vxWCl1B0gE+ifX8FpBdAJiEd/KXuDpmk/ASilDgLHgLPArkJtmIM+edmTn5us0jRtkiGNV0ZWYNBkSAbY2dkxatQounbtSnx8PF9//TXHjx8v9fO6uLiwcuVK+vbty7Vr10x6bE3TTPWPlRgxUKNGjQgJCeHLL79kw4YN5m4OALVq1WLu3LkFvW6FVbQYady4MR999BGDBg0y6XHtGtah9hA/LOwtsXGJIy06jYtLLxZUe7p5YE2RIgvWuVn8zacGXRs582xta85kV+PUlWzs7Wyp42rP7sRk1h6/ycHE45CXg417HW4ciCrRZMjY2Fj8/f3LfMJ1RYuR8mTo0KF069aNgQMHmnVsvoWFBUuXLiU1NZV3333X5McvbzFibW3NsmXLWLJkiVQ6KwFra2v69+/PkCFDSEhIKFHZXBPGiCgD0iPxCDIzM5k5cyZfffUVvXv3JjQ0lBkzZhATE1OqpfGuXbtGamoqbm5uJk8kRNk7fvw4o0aNYvr06bRv354ZM2bI/7UCyDxxjuSZ23F5wR9bt6yCFV6LrEFzYA0WOgfs6rcCO0dW/3qOVr/NwkMXy3bbPsy++CS5t7M4cymNrDwrHBq1wbaGFTZuP3Prt9QS92JWtQ/hlcHChQtp2rQpkydPZtKkSdy6davM2+Du7k5ISAi3bt1i9GiDi7ZUaCNHjuTUqVNmSyJcXV3p0KFDkedsUlISR44cMUt7HoWnpyfvv/8+NWvWJDQ0lIiICHM3SZQhSSRK4M6dO/z3v/8lKSmJcePGMXr0aJYuXUp4eLi5myYqiBMnTjBgwAD+/ve/s3z5cubPn8/q1atlWEo5l3P1AqkR3xa5z8r18fzkYpd+vlTUv2n6pA/ju9TmP/EWzPfVD0edd64O+36cVjB0ya5hHZyaH8LKwRYbt2Pcur31vkIMNjVtcPd3J21zWrEryvr6+pKVlSUxVAH985//JCQkhJEjR/Lvf/+7zM6rlMLHx4dPPvmEtWvXsmjRojI7tzk1adKEHj168Nprr5nl/Pb29oSFhZGcnMyVK/pCPEopRowYwbZt21i9ejUpKSlcv36d3Nxcs7TxYaytralWrRojR47Ez8+Pn376iXfffZe8PKOG14tKQBIJEzh8+DBvvvkmTzzxBBMmTKBLly4sWbKEvXv3cvv2bXM3T5Rz2dnZzJo1i40bNxIcHMyQIUP47rvv2LRpU8Gbiyj/nFr2ws0vFxs3HXm33bm49CJ/9zzJEKez5DRqyGe2DZiY04D081uxsEml1hu1SNuchsuzuTjUO032NV/Sk2pxOWr7fcd293fH/UX9ZNzC87AexN/fn82bN5e7Dx6ieBkZGYwfP545c+YwYsQIwsLCSrWXu2bNmtSoUYM333yTDh06MHny5CoxJwLAysqKcePGMXv2bK5evWqWNgwePBgLCwvGjx9f5P5q1aoxePBgpkyZgpOTE1ZWVsTExLB+/XquXbvG6dOnzdJe0Cc6AQEBBQuuHjlyhN69e8u6NVWYJBImlJSURGBgIP7+/gwfPpzAwEDGjRsnHwaFQY4dO8Y//vEPmjRpwuuvv05wcDBRUVGEh4dz/vz5KrOibEV188AaLJ2KDnea9bO+9yDq3Fn+r90U5qU8yR/xv/D40A44PqFPCNI2p2Fh68DtK5Zc25ZIztX7exzuHu/u14dp2bIl/v7+DBgwwJS/mihDV69eZeTIkXzxxRd06tSJdevWsWbNGpMOe/Tx8WHAgAG0adOG33//nd9//51u3bqRmppqsnOUZ0opPv/8c65cuWK2IU3Ozs7069ePDz/88L7Hbty4QWhoaEEZaA8PD3r37s2oUaOoW7cuhw4dYuPGjQXbHz9+vNSSC3d3dwYPHoyvry8ATk5OXLlyheDgYLMmNKL8kMnWpSg4OJh+/frxzTffsGHDBtLT04vfqRjh4eF8+OGHnDp1ygQt/FN5mwAnoE6dOgQHB9OiRQtu377Njh07+P7770lJSSm1c1a2ydYff/wxAwcOLPVzFSekm45RrW0I3ZfNP+8E4tymDeQu48LC7cUOVTLUkCFDeOutt9i9e7fZxrdXtBgp75555hm6du2Kv78/2dnZpKSkMH/+fH799VeDVmovTCnFiy++yMCBA3F1dSU8PJzVq1eX+VyM8hAj9erVIzQ0lJdffpmcnBwTNcdwSikmT55Meno606dPN2pfJycn+vXrR7169QD95PinnnoKnU5HXl4e6enp7Nixg8TERE6dOsWFCxce6SKUp6cnPXv2pHv37kRFRREdHU1ubi55eXkkJSWV6oUtmWxdsUgiUcoaNWpEUFAQLVu2ZPny5SXuqpZEompq1qwZnTt3pmfPnhw6dIhdu3aRm5vLrVu32LNnj0mSVKhciYSbmxsREREMHDiQc+fOlfr5/oq3mwWjn7Vh1s/ZJGuPFVR3MnRRyuL4+fnxxRdfsGDBAhYuXGi2qj8VLUYqCjs7O2xtbWnbti1du3alWbNmbN++nTt37rBlyxb27t370H2rV69Op06dCAgIID09nUWLFrFz506z9XCWhxj5+OOPyc3NZerUqSZqinEGDRqEn58f7777rkmGBCmlcHZ2BvT/7/bt29OoUSPq16/PY4899kjHTEtLIzo6muXLl5d5SWJJJCoWSSTKiIeHB5MmTcLNzY2oqCiSk5NJTEw0atiTtbU1O3bsYODAgZJIVFE6nQ5/f3+aN28O6LudW7RowcGDBzlx4gRnzpwhLi6OjIwMo49tYWFBv379eOGFF+jfv/99j1fEGJk/fz6hoaHExcWVyflKk4uLS0FlFwsLC/72t7/h4uJCnz59cHFxYerUqWavllIRY6Qi8vLywtfXF3t7e/r06UNeXt4Dx/nb29vj6elJbGwsUVFR7N+/3wytLcrcMWJpacnOnTt5+eWXS7V392Hs7OyIjIxk5MiRMjToIapaIqGU2gpM1zRtY6H7xgBPaJr2d7M1zECSSJSxu2OYa9WqRfPmzbl58yaaprF7927OnDlDZmYmu3fvvm9lzXr16vHjjz8C0KlTJ5Mv8mLuF3fx6Ozt7fHz86N27dp4e3vTvHlzbGxsHulYhw4d4quvvuL8+fP3PVYRYyQsLIzZs2dX2ERCp9PRp08funfvjqenZ0FPg1KKpKQkDhw4AMDq1avLxVysihgjFZ1SimbNmj3wOX/nzh2OHDlSrip4mTtG+vXrR/fu3QkMDDRRM4wzfPhw6tevz4QJE8xy/oqgCiYSI4C2mqYNKXTfXuB/NU17tMU4ypAkEmZkbW1N9erVsbGxwd/fH2dnZ1xcXGjXrh2Ojo5Fts3OziY8PJywsDAyMzNN3hZzv7iL8q8ixkhYWBhff/01Bw8eLJPzmdrKlSupXbs27733nlmHoxiqIsaIKFvmjpGIiAgmTJjA0aNHTdQMw1hbWzNmzBief/553n777QderBF6VTCRcEO/2nQdTdOylVJ1gR3AWqAVYAes0DRtYv7204Fe6FfB3qRp2nil1GLgBvAM8Bj6JGRFWbRfqjaZ0Z07d7h4UV+5Zf78+WZujRCVz/nz5/H19S23iYRSChsbG5o0acLTTz9d5LEGDRrg4uLCSy+9VOZjlIWorGxtbcu8OlWjRo0YP348N27c4I033jDZnDZhPrNHbmkIjAZmvT2n04mSHEvTtCtKqX1AN2A18BrwIzA1/zFLIEYp1Rw4D/QBGmuapimlXAodqhbQDmgMrAEkkagKFixYQI8ePUhJSaFZs2YF958+fZqbN2+Sm5tLTk4OrVq1MmMrhTlJjDy6xYsXM2/ePJYtW2a2CcjOzs64u+vXgHB0dKR79+5YWlqilKJt27a4uLiQkZHBunXriqw7k5iYyLRp0wyqqiMxIoojMWIeQUFBvPLKK3z77beEh4eX615FiRGjjAbezv9+lAmO9wP6BOJuIjEM6Jc/7MkKfZLQFDgCZAELlFJRQOH6xZGapuUBR5RSNU3QJoNIImFmixcvJjQ0lCVLltz3WMeOHeVKpJAYKYHk5GRSU1Px9fVl3759j3QMpRQ6nQ57e3vs7e2xs7PDwcEBOzu7gp/vPnbvNg4ODjRt2rRgzpOmacTGxhYMa4iJiWHPnj0l/j0lRkRxJEb0RU88PDzK5FxWVlYMGDCA/v378+qrr5pt0TtjSIwYZdY9X0tqNfClUqoFYA9cAcYDrTRNu5o/dEmnaVqOUqo10BkIQJ/EdMo/RuEVkMtseJgkEmYWGxuLl5eX0ft5eXkRFRVVcNVg3LhxODo68umnn+Ll5cWGDRvYu3cvzz33HPv372fRokV8+umn1KhRg4EDB5aL6h3CMBIjJTN37lwmTpxIQEBAsfOLGjduTKtWrXjhhReoU6cOdnZ26HQ6srKyyMzMJCMjo8jtQfelpqYWeezo0aOl/iFCYkQUR2JEX0b7+vXrpT60qV69esyYMYPz588TGBhYIZIIkBgxRv5wJlP0RACgaVp6fvWmheh7J6oBt4Dr+b0L3YBtSilHwF7TtHVKqV2AaUt4PgJJJMopTdPYtGkTmqYxd+5cwsLCjNrf29ubV199laFDh7J//35ef/112rVrR69evZgwYQJ9+vQppZaLsiIxYpjt27fTuXNn3nvvPSZPnlwwtMDJyalIUQNfX1/Gjh1LTEwMS5YsISEhgYyMDLKyssr1cIS/IjEiilPVYuTAgQOl9nxWShEQEEBwcDBfffWV2VbNNrWqFiNm9AMQAbymadoxpdRB9JOwzwK78rdxAlYrpXToex3GmqWlhUgiUU61a9eOCxcu4OHhwebNmzl27BixsbEG73/69GkSEhIA/VjrmJgYAOLj46lbt25pNFmUMYkRw02bNo2lS5cyceJEHB0dcXV1pUGDBty4caNgm4sXLzJmzBgSExPN2FLTkhgRxZEYMQ13d3c+++wzbGxsGDZsGGfOnDF3k0xGYqRsaJoWSaEhSZqmBT5k09YP2Dfwnp8d792mtEgiUU5duKBf8fby5ctERETQunXr+564hUvfWVtbF3ms8KTNvLy8gp/z8vKwspJ/e2UgMWK4zMxMpk2bxqBBg9i8eTOXLl0iLi6uXNXXLw0SI6I4EiMl5+3tzfTp04mOjmbu3LkVtgfzYSRGxF+xMHcDxP3s7e0LhlzY29vTpUuXgmy+MC8vL6pXr45Sivbt22NpaVnWTRVmIjFivF9++YXRo0cXrPBb2ZMIiRFRHImRkqlduzZjx45l9uzZfPvtt8yZM6fSJRESI6I4kkiY2ffff8+ePXt44oknOHv2LEOHDqVmzZrs3LmTuLg49u3bx9q1a9m4ceN9+6alpbFkyRJ++eUXEhISGDx4MPXr1zfDbyFKk8SIKI7EiCiOxIhpuLu7ExQURFRUFGFhYVhaWtKvXz9++uknczetxCRGxCPRNM2YmwbIrRzcvLy8tPj4eJMdz8g4kBipADeJEblJjMhNYuTPW6dOnbSQkJBHavdTTz2lTZo0SduyZYv2wQcfaN7e3mb/35SXWzmOEbmVwU0GpwkhhBCi0ouLi+Ott95iwYIFXLlyxeD9vLy8sLCwYNWqVcycOZObN2+WYiuFqFiUPqk3mFZ4Qo2oPDRNM9U/VmKkkpIYEcWRGBHFMXeMWFpa0rp1a2xtbQ3eJy0tjfj4eKPPJR6NCWNElAFJJARg/hd3Uf5JjIjiSIyI4kiMiOJIIlGxyGRrIYQQQgghhNEkkRBCCCGEEEIYTRIJIYQQQgghhNEkkRBCCCGEEEIYTcq/liNGTnw3mExIqzwkRoQhSiNOJEYqF4kRURx5vxGGkESiHJEnlyiOxIgwhMSJKI7EiCiOxIgwhAxtEkIIIYQQQhhNEgkhhBBCCCGE0YxekK60GiLKBVP0Y0qMVG4SI6I4EiOiOBIjojgyrqqCMDaREEIIIYQQQggZ2iSEEEIIIYQwniQSQgghhBBCCKNJIiGEEEIIIYQwmiQSQgghhBBCCKNJIiGEEEIIIYQwmiQSQgghhBBCCKNJIiGEEEIIIYQwmiQSQgghhBBCCKNJIiGEEEIIIYQw2v8DjQry0wz1ptoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx4AAACICAYAAABp7T39AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABj/klEQVR4nO3ddViV5xvA8e8Lh0O3tAgqiChgoGJ3dwzb2TFz6uY2p9NNnQvdZmw6Z0ync7ZiC3YHBoioWKh0Nxzi/f0BItaGP4VjPJ/rOtfhvHXuBx7g3O9TkizLCIIgCIIgCIIglCQNdQcgCIIgCIIgCMK7TyQegiAIgiAIgiCUOJF4CIIgCIIgCIJQ4kTiIQiCIAiCIAhCiROJhyAIgiAIgiAIJU7xksfLkiSVSCCCesmy/Dp/sKKevKNEPRGKQ9QToThEPRGK4zXXE0HNRIuHIAiCIAiCIAglTiQegiAIgiAIgiCUOJF4CIIgCIIgCIJQ4kTiIQiCIAiCIAhCiROJhyAIgiAIgiAIJU4kHoIgCIIgCIIglDiReAiCIAiCIAiCUOJE4iEIgiAIgiAIQokTiYcgCIIgCIIgCCXuZVcuFwRBEARBEN4DWlpadOzYEYVCwaZNm9QdjvAOEImHIAiCIAiC8ARNTU0WLlyIsbExzs7OXL9+ncDAQHWHJbzlRFcrQRAEQRAEoZCpqSmbt+/EvX5zBo//jIsXL1KrVi11hyW8A0TiIQiCIAiCIABgZ2fHgQMHSJIMGL75Dm51G2H9cDcTx49Wd2jCO0AkHoIgCIIgCALt27dn+/btzJ07l2EDehN5egdDFPvprDyNiZxMjRo11B2i8JaTZFl+meNlSZJKKhZBjWRZfp0/WFFP3lGingjFIeqJUByinrw5DA0NmTt3LpUqVeK7777j0KFDKExtMW7QhwrKJAblbeN+2S44Vq3NRx99VKqxveZ6IqiZaPEQBEEQBEF4T7m4uHDo0CE0dDWYtH0SJ4JOAFCz3ReMsW+LjmN3pqV6M2/Jajw8PChfvryaIxbeZiLxEARBEARBeA916tSJv/76i/m/LWft5Y0MScileotymLYcRVujSljmadAsQ0GKvw+5ubmcPXsWFxcXdYctvMVE4iEIgiAIgvAecbewwO+H+cz9cQHTf/uHEwZN6HLblrYXZbqG2WHRPhffnKtES7n43NxNTkI4AMHBwbi7u6s5euFtJtbxEARBEARBeE+Ympqya+8eTGLj2PTzEoIMa6GpZ8RW+6bIeTrsdrmP0uw0kdYPWZ3tQrKUVXhuTk4OLzk2WBCeIBIPQRAEQRCE90CNGjX4+uuvORUVQMS6+Zw0K89Hl26xzaEOgZf9uGnjTOae65jE5ZJ4NhEdh12k+PsAIEkSzZo1Y9WqVWouhfA2E4mHIAiCILwDRo0aRZ8+fchJT6a8qcTdBJnY5HT27t3LyZMnCQkJUXeIghq1bduWWbNm8fM3U6iic4GNLjXpd9GYTjEXyctI4kLQIdKDDqIwtSUzsgvZsT5khCwtPN/d3R1jY2NOnjypxlIIbzuReAiCIAjCW87e3p6ePXvy/SefMKVMDnZemRwN1eBP7b40rODC2o8+4t69e/zxxx8cPHhQdJd5zxgaGvLJ1BlsvpZKQ90QPnKVML1ylWXZrqiMHVh1J6jwWFePlvRTqFjn0ZLAo2sKtxsYGBAZGYlKpVJHEd5pkiRNB/oDMcADwB/YBvwKWADpwHBZlq9LkvQnkAzUAqyBKbIsby64zqdAT0Ab2CbL8oxSLsp/EomHIAiCILzlZs6cyZIlS6gReh/LZFOOxCaz2KopsVWrEXBsF/PmNKZhw4aMGDGCMWPGsH//flatWkVWVtZ/X1x4q2lqajJ9+nQCk5XsC4ynqeUvrIldydaHtwjw/50rBUmok5kGE7yUZIUcp72mNtnGDgSb2hYOLO/fvz+XL19WY0neTZIk1QZ6ANUALeAi+YnHMmCULMshkiR5Ab8BzQtOswEaApUBH2CzJEmtAWegDiABPpIkNZZl+Vhplue/iMRDEARBEN5iLi4umJmZsXnzZsop8v+tr70TT5jBEQwzjUjx9yEnK4vjV49zbec1KidX5ofpPxATE8OWLVvUHL1Q0gYOHEg5O0f8fEL4pLEbjapbk6nVGNv7V/hKqWTdunWsWrWKCV6ajK2jZEV2DNuyOhJdtTflbfwJ2TGLtm3b4urqyvjx49VdnHdRA2CHLMuZQKYkSTsBHaA+sKnIwpjaRc7ZLstyHnBNkiSrgm2tCx6XCl4bkJ+IiMRDEARBEITXo1bD5gQnaaJpYkNoQjhzoqNQmNpi6Nk5P+lICEdhaovtkKoYuERw7+g9zp07R05OjrpDF0pYzZo1GTRoEBd3h/HZiGakZ+awccd1gk+fIjBgER+3NadZ/dE0bNiQ7z4bCahYcFFFvXat8JINSTRwJARo3rw527ZtE3Wm9GgAibIsV3/B/qJNlVKR57myLP9ekoG9KrGOhyAIgiC8pTQ1Nek3dBSXMstg6Nm5cLuhZ2eM69al7KiqKK2U+fs0+2GXWI9NEzYBcPjwYXWFLfyfXFxcaNeuHRYWFv95bOXKlfn999/x8fGh+6CW3L4Uw/G/bpAYEIKnnScDG/agn80dYjdOICYmhl6jPmfc3kxuxefhe2wxZ5Ju4XtsMZIkUbt2bfbu3VsKJXwvnQQ6SZKkI0mSAdCR/DEddyVJ8gaQ8lX7j+vsB4YUXANJkuwkSbIsycD/H6LFQxAEQRDeUm5ubkgJobS69A2Btx6SULA9xd8H49q3MXCJoNzYcoSt2UXLOlX5uO5wfpz7Ixs2bFBr3MLLa9CgAV9//TXp6emYmJjQpUsXEhISnnvsgAED+PDDD1m9ejWdO3dm9idTqWrZiQcxN9h5cT0e5Rtw98F2SFCx4KyKiKNfsW3bNjw8PAgICCDywSXW/jMSgL59+6JSqbh161Yplvb9IcvyeUmSfIAAIAoIBJKAfsASSZKmkT/24x/gyr9c54AkSa7A6YLuWankD1iPLtkSvCRZll/mIQPi8RofGhoacqtWrWRvb29ZkiS1xfGS9UDUk/f0IeqJeIh68mY95syZI/v9NEKWZxjJv3Y1l01bjpIVprYyICutlLLTLCfZ7U83ufrY6vL58+flL774Qu0xi3ry8g8vLy/5wIEDctWqVWVAnjRpkrxy5UpZX1//ieMqV64s//777/LRo0fl5s2bywcPHpRr1Kghf2lpJV9zqSx/aWn1wveYPn26PGDAgCe2SZIk//LLL3LPnj3flXryRj4Ag4JnPeACUFPdMZXUQ3S1UiNTU1MWL17M4MGDmTxuHIE7d1JRV1fdYQmCIAhvARsbG7y8vJj8yz8sPqdiZU4bjDw7Fna5UkWpuL/4PnF+cYyvN55Dhw4xd+5cNUct/D86derEkiVLCAoKopq5AzZB2igyc5k9ezYmJiYA1KpVi4ULFxIaGkq7du0YNmwYq1at4tKlS6xNiGddQgJrE+ILr+lkpsGidjo4meV/FIyKikJHR+eJ9/X29kZfX5/t27eXVlHfV8skSbpM/oxWW2RZvqjmeEqMSDzUxNTUlGXLlhEbG8uAAQPYP2wixkYOLP3me3WHJgiCILwFLCwsCA8P58r9ZMbtzeTKySMk+z9eaRryk4/ELYlUqViFr7/+Wo3RCq+ifPnyxMbGAtC3Rm90HVsS5XMXIyMj9u3bx5AhQ1i4cCEzZszg22+/pXPnzqhUKtatWwdAaHY2c6KjCM3OLrzmBC8lY+someClBPI/l2QX2a+rq8vAgQNZuXKlWLujhMmy3FeW5eqyLFeWZfmdvjsgEg81+eSTTzh79ixfffUVubm5pFRsy96t8VTt3ofWTTuoOzxBEAThDde1a9cnVpHOSQjH6OgKPtPKxUFLq3B7uXLliIyMJD09XR1hCq+BtbU1AQEBAPx96R/S75/gTjZ8PvErvvnmGzp06MBff/3F6dOnAejduzd//vknFU2lJ1o1ilpwVsXic/ljPCRJomnTpgQFPV5I8PvvvycyMrLwmoLwOojB5WpQuXJlPD09+eCDDwoX7FFY6qHKyCHgYCQzvprDgSO71R2mIAiC8IaSJInmzZvTrVs3AJRWSsxbmTPwBPTWNkbHvipf37lOTkI4rq6u3LhxQ80RC6+qYAwAV+JCqZQcSxO3rsRmprBpzyL27NlTeFyDBg3Q1NTkyJEjLGqnw9g6+S0a35w0p6l7d44EbiUmOYxb8XmM25uJhZEdU0dMRs6B8+fPA1C3bl3c3NwYMmRI6RdUeKeJFo9SJkkSX3zxBevXryc1NZUJXko61dcj0jgXgIuXH2JY1gyFQuSEgiAIwvM5OzsTHx9fOKuReStzzFuas7+ZAbtdzNnb8PFYj5YtW3LmzBl1hiu8BkUWkuNI4FaOXt3OkcCtzxzXokULdu7cCTzZqtHUvTtN3LrS1L37E8c3de9Oty7dCLuRDICHhweLFi1i4cKF3Lt3r+QKJLyXROJRihQKBb/++itJSUmc2rWWRe102H49m8+zjfFzPcxFzWNsNFjF9ZuXqF27trrDFQRBEN5QXbp04eK5K/Rq/jkV231C4llN4vziiLYvy+ruSURbniXF3wddXV2qV68u1ux4y927d++JzwUxyWFsOrmImOSwZ46tX78+x48fB+BWfB4Tz5ghe01Cz8CCczd9n0lWrkWfwNhB4qff5mBubs6cOXP4+eefxYByoUSIxKOU6OrqsnDhQgC++/onxrcZR/+aDvRqVZ3LIT2ocq8ntw3vU1fHFTTv06B6JTVHLAiCILyJLCwsaNOmDZFXs2nk3IomTq3QcehIxNoIIteHoHnXihExd3EyzqNJkyaEhoaSmJio7rCFV/DPP/8wdOjQJ1o9HrEwssO7wTgsjOwwsquIZfnK3IpKRmFqi2nLURjX70MTp1bUdmxAhirtmWRlyKj+LF25iPTcJFasWMHp06f5+++/S6toQhGSJFlLkvSPJEm3JUnylyRpjyRJz/1AKEnSIEmSFr9g3z1JkgIlSbosSdKFf3m/UUWOOyFJUpXXVZYXEf15SsmUKVMwMDBg4MCBfFB/LJJhJ9bHmLHBzIbaaRpUS3TEMlUXGwN7cu7k4d3DhHlLVqs7bEEQBOENoqWlxdSpU9m0aRM7ju0ipVYeFw210CoDdkOdiD+WyYQUTQYbX6dM97qEWbdm//796g5beEW+vr6MGTOGChUqcPv27Sf2PepCBZBUsyzhKhm7kVVIvW6LQdW6SGzgxPUs0uINnmnt6NKlCxUqVMDf35/Nmzfz+++/s2LFitIqllCElJ9VbgNWy7Lcu2BbNcAKuPl/XLKZLMux//J+CuBvWZaXFrzuDPwEtP0/3qvYROJRCoyMjGjTpg1TpkxB08SGi0baaIT4cjRkP1kuXty4cZbMcg0JuHuSwd0/pkyCC5KBCZUdrbl+L1Ld4QuCIAhvAA0NDaZPn44kSaxatYpyBjk01N9IGYOJnHNPJcNaBy3L8qyWvZEytVmt7Mzctk35a/lSdYcuvAY3b96kZs2azyQej5KJI4Fb6VKjJ9fCDmHgEkF29F3IDUffJYK4e5fZcCjiifN0dXWZNGkSR44cYeLEiSxevJjVq8UNTzVqBmQ/SgQAZFm+IknSGkmSzGVZ3g4gSdI6YGPBIfaSJB0B7IC1siz/65zZBcdeBhoC62VZnl9ktz75izaWKNHVqoQ5Oztz8OBBdu7cyenTpzH07EyOR1Nu6d1nuud9KugkE5saxaaTi7gRfhHtqHWYxwVhkKHJxNbV1B2+IAiC8AYwNDRk0aJFmJiY8Nlnn6FSqZjgpcTDqRuuBlVwDXIi4XgmUZuDuRp4nU9vVuNq4HWUOWncvPn/3CwV3jQ7duygVatWz2wvOt5DV8rh5t7TxPnFEbPrPnn771I3oCta1/QLFwysVc4e7wbjGDl0DKmpqbRv354pU6aIpOMlOX6+29nx892LHT/f7fyaLukG+D9n+wpgEIAkScZAfeDR1Kd1gB6AB+AtSVKtgu0ycKCgu9aIp66nlGW51qOkQ5KkMZIk3QZ+AMa/prK8kGjxKCGGhoZMmjSJjh07Mnv2bHbs2AFQuLDTFIP9jK6WjX5OFhMzO5Pgl5/gLn+QyjQXGRtNS/wfVAdEE7kgCML7rEyZMixbtoxr167x9ddfFy7ytuCsigmKbVxJz2bv+S2Fffd1HNIwcmuGQYwv6VrJKK2UqKLEAnBvu0uXLjF//nw0NDTIy8t77jEZGRmYmpoSsTa/daNdhwG4pzWkirMORmbfMbSOBpj2wNSpF7W9rUjJimf69Oli8oH/zwRgTMHXY0vqTWRZPipJ0m+SJFmQn2RskWU5p2C8j68sy3EAkiRtJb8l4wLQUJblMEmSLAFfSZKuy7J8rOCSG566/q/Ar5Ik9QWmAQNLqiwgWjxeO3Nzc4YOHcrWrVvJycmhdevWhUmHk5kGP9eNx/ziMn4+lsBvV7RYdEX7iVVmww3c8TN1IT1XxdErvuoqhiAIgvAGcHR0ZM2aNfj4+DBt2rTCpENhaktczRFMPJHJ8oMLnxgwnOLvQ7L/LpydI4nTicO8lbm6whdeo/T0dFQqFR4eHi885tq1a9SvX7/wdVZEFgD2mZok3DRg8TkVq09soVwDBQodmb///pu9e/eWeOzvqAXArwXPr0MQ4PmCfWuA/sBgYGWR7U93jZIBZFkOK3iOJn/cSJ0ix6S94D3+Abq+VMT/D1mWX+Yhk18o8XjqoaWlJU+fPl0+f/68PHv2bNnDw0MGZCczDXlROx25ck1bue9cD/neLDN5UTudF17H2r6G/OuMg/LVYw9l7wbjSi3+l6wHop68pw9RT8RD1JPSe2hoaMi///673Ldv32f2mbYcJTt8tks2bTnqheeP+2yc/OXqL2WllVLtZRH15PU8Zs6cKU+ZMuWF+yVJkjds2CAPGDBABmQLIzt5SKMJ8lflq8kOWlqyJEnyuHHj5AcPHsgnTpyQFQqF2stUyvXkjX0AEnAWGFFkmwfQiPwB5qHA2SL7BgHhgBmgCwQAtcgfq2FYcIw+cApoW/D6CFCryDWci3zdCbhQ0uUUXa1eA11dXTZs2EBUVBQ9evTg/v37hfsmeCkZW0fJaZ0yBNjkMTWiLOfOXn3ifIWpLYaenUnx96FRuYaYaxmQlpXy3IWBBEEQhPdDr169yMvLY9OmTc/sS/H3QUNHHw1tfRSmtuQkhAOPVzBPOZpCuybt+OKLL0Q3q3dIUFAQjo6OL9wvyzITJ05k2bJlmJubs3z5clYez78hX6dOHb6dMAFLS0suX75M9+7dycnJKaXIhf8iy7IsSVI34BdJkj4DMoF7wMeyLEdJkhQMbH/qtHPAFqAs+YPLL0iSVAHYVtAV69HMVfte8LZjJUlqCWQDCZRwN6tHAQmvaMyYMURFRfHD56OYUlebdfq2RKUY4enQitVB24EYLkbFktmmKts2B5MR/2TfTEPPzhh5dsRMywDdTAXX7p8ly87suQsDCYIgCO+Hjh07snDhwsLuVUXlJISTl5mGkWdH8rLSMDq6gv6mZvi2MCS9pQ7j2n9KdoKS8LsvnE1TeAc5mWkwoVo8syYPo+eITzl48CAxMTFoa2uTm5vLzp076dKlC998881z65WgXrIshwM9n94uSZIe4AysL3Lsn8Cfz7nGHaDaC67f9KnXE14l3v+HSDxegampKb/88gv29vZs3LiRbX/9TlWPGnSNSyVNsxyGOiacPtmBgWM+IDU1HC7m35Eq2sKRkxBeOMajdZ4JdSq1IrPMPSKjRdIhCILwvmrQoAEA586de+Exj/53pPj7ML68Pb0kJfphVpxXtKSzhzdn/7xLU/fubDq5qFRiFtTvUS8LSGTc5Mno6OhgbW1Nbm4uDx8+5IcffmDz5s2cP39e3aEKxVTQIrEC+FmW5SR1x/OqROLxf5Akic8++4x27dpx7do1dHV1qVixIgvX7qSZ9CXZaUksumRJ9WoDcPIyZcWKFYwaNYqEhATgcQsHQILfUnISwknwW8ohIzvystLw6lSBy5cvq7GEgrqYmJhgZWX1zPb79++TmZn5qB+mIAjvuL59+7J27dpi/877tauAcXQYV9wrML5yDyZ/9jlGiWaiy+57ZsHZ/G51C2+DTX8b4nzjuHfvHgB9+vTBw8ODmTNnqi9A4aXJsuwHOKg7jtdFJB4vSZIkpkyZQt26dbl8+jBdWzXgo/Ej2XMyAAD3djoFdxuiScqaz4L5Ktr0+YhFixYxe9IQxnhq8GvwdqLgidms4PFc3D3G/cPaf4JLv3CCWujr69O2bVtatWqFp6cnt++HoWFsQ078Q/JUGSgUCsqXL4+2ngmJ8QouXT3Fnu1rSErKv/ERGxvLnTt31FwKQRBel379+mFubs7ls9fwbjCOI4Fbn9v1tuhNrJBIWN+4Kt/WG8a3n03A11fMivg+uhWfx7i9mdj0t8G8pTn6LvrcX3yfDvU7MGTIEGbOnEla2osmNRKEkicSj5c0Z84cqlSpQlxcHK1rOVHu4EjaGYXjVzCgb+G5BECFsQ4FCQiM/+03atasycJP+9EqdQuQyLi9z64ka21fg86txlPZ1Z3r16+XbsGEUqenp0f37t2ZMGEC586dY/fu3UycOBGdBgMx8uxIsr9v4fouClNbRg1dRRsHK/T1KtOtZ1+M7KpQ3rgMRla6HLoSwvy/9xF+aHXhIFNBeBWmpqa0bNkSTU3N5+6XJInr169z6dKlUo7s3aalpcXgwYMZOHAgDV2708StKxbWZmjYxFGhQgV0dHRQKBScD7zOrgcKUq8eLryJNa37n+xY97dIOt4jT3fdfiTONw59F3107HXoPKEzY+uPZerUqZw6dUqN0QqCSDxeyvfff0/FihWRZZng4GB++HwBXzbUxFgbKnQqg6KhGXHAuLUROJlpkJSZ3+wpyzJr1qzh0wmjWfzH+sKm0Kd1bj2eWdO7c+X6AzIzM0u3cEKp8vb2ZsqUKQQEBDBixAgC70Vh6NmZbB1Tyt46xeDsOFaF3iCh4HiHun3JzYRjN+7hlrGCrPvZXKnSncTMimCjg3HTsuz8ZQpTljiz/9shai2b8Pbr1q0b48aN48SJE6Rky+jYVSUzLAi9PImKNu7cjQqifec2HDp0SCQer1nFihVJTU0lLCyMIylbadO9EYMGd2Tbjq0cOHCADLQxr9acTu0+oJm5HZNm/khOQjjW1ta4WSiY/dcKdRdBKEWPWr107N2I2f5tYfKhilJxf/F9Rn09ii4NujB82HBCQkLUHK0giMSj2D766CPadmhLMsmsXLqSVYtXAZCUqcnYOkruX0vhVz+ZON844HFz5yPngu9hW9WLXpdsSIu/W7hdS0uLNm3aYGNjw4CBVXkQHc/AER+WbuGEUmNlZcWUKVNwq1SeiF3f8Zu/NoH3ojCu3wcDt2ZoaOvzYeQlukYGoulqwPSM/BWHa2UpqJqtQKEVQuuoyyTc18e3bBwoK0JEJoYbNpBYWZcFH3bkkMsvjB74sbqLKrxlNDU1adu9NyM/noJ2XiZJG0bg+PAGC3K6E6vyJNk/gpYZWlRqZU3zRmUJDg5m3rx56g77ndOiRYvCFos+g3qgVSaDDp3aExMTA4Bpy1EYUZFjv21l5pAOjO/bga/ObMXTswbnz58nOjpaneELJUxXV/eJ1yn+PujYu6G0dMS4QR/yMtMKWz9mTZpFvSr1mDBhgkg6hDeGSDyKoX///vTp04dUjVS2Rm1lX+Lj6ZAftV78eVZFRHxK4XYnMw0mNjZlZU4brpw8go5HOxLydHHp0p2ItL+J842jrH5ZNmzYwO3btwkLC2PZ74teajDh+6hZs2Z41m+CdtmqZD0MIjf93yd4ePjwIenp6YWv4+PjiY2NfeaYjIyMEom3KFdXV9asWcNuvyOE7Z/PYPNAsqvVJ87Whj/ikogGJKUuW+3LoqsZi2+DDCxsy5EZ2YVLeobokkyMbhkMrMqhka2ByuoE+olVyJMNSE6V0fBNIDwpjhb9OgMfl3h5hLeTlpkdLm0+xDHnAdbGOpiamlKjdl1cPGoSGpPC6isp9I+cS1PjTAK0xjAy+w5fFHTnyWnQgKrtTPhx/nes27ha3UV552hra9OuXTsmT55MtWrV6NGjB127di2cmASenMnqZ6XM1gXTWNxqOHV7tOZhwBE1RS6UlmZ16qA4dw4HLS1Cs7PJSQgn/tByzJoPQ9LSxahqMwA8uUWNGjXo3bs34eGi++3bQJKkXCAQ0AJyyF+t/GdZlvOec+wR4BNZli88Z9868hcSzCZ/nY+Rsiy/MXMni8TjX0iSxLhx4+jTpw/x8fFs2bSFvQl7C1s14NmWjUcmeCkZXS0b/ZwsJmbm979UZHwM+qcxr2eOtpY237b5Fl9fX6ZOnVqKpXo7GRgYMG3aNJo2bcra0/fIMq5IrpY5OfHhpN88RW5awjPnaGpqUrly5cI+6pIk4ejoiELxuNorlUocHR25c+cON27c4OTJk5w+ffqJ62RlZZGVlfV/x25jY0OfPn3o06cP+/fvZ8GRh3jUGkRu9AqMCKO1fRiHbJMJj3YEIK2xNn+a5aFK0Cc7rREGbs3IAg4DjlIO2RbmNLe9yr3UOgTKBuTlhkHyPuwfQkgVCyJjqvzfsQrvBkmSqFWrFs7OzoWv7e3tcXZ2plq9lmjl6XI6OJjwsxuo4ZDC7sTLHFqqyanUONLMregpGbA3ZQrxOY4Em1xDaXWBYbM6M6T+EHr16cqNGzfUXMJ304cffsiVK1e4f/8+Gzdu5Icffngi6chfHFBGEXCeDm1mcDp+AzFZAdSoZ0mbOpX5/Or9f7m68C5oVrs2mWv+or+pGXOiowAwcG+B0tKR7MRIkv13obh9jM+WLWD69Oki6Xi7ZMiyXB1AkiRL4G/ACJhR3AtIkqQJrAP6F2z6GxgGLHmtkb4CkXi8gLa2Nj/++CMWFhZcvXqV8PBwVi5a+Z/nVTN3oG+N3uwJ3oiGdjIrc7RJ8ffBkAz0clO4tv4iptGmjHQfiUKh4MsvvyyF0rz9GjduTIsWLWjXrh2y10AM3AwK9piQfC+PBL/8NXUsjOxo6t79hbPAPI+lcVk+7DoGhYWKMWPGMGXKlCf26+vrk5iYiL6+PmvWrOHatWuFq9OHhYWRl/f4ZoSFhQU6OjpYWFjQpk0bmjRpgrm5OefOnWPOnDls374dhaktAcDYkEzc3N1xtkjlagVt9I1CybxvROJZTYxrVsI2Q4OBD26yKcWXKDt3cpMiGVj2BIMMTnE/2wQPvV2ERRtRKciPs2VziezRESvPiixdsPyVv9/C28PExARDQ0NsbW1p3rw5DWpXp1bVivhfu8OhE2fR0NdAr5Iet4/f5uDSg3ic0KSG0p6zqfeoE7+SoHJW6IV+RKUMQ/Li7nFAX5/Tck+ccoyJV8Zx28WXiR1b0bhibT755RORdJQQSZLo0qULEyZMYNy4cdy4cYPdu3cDj/+uBVU4jkaLHLzMelEjywldh+bkambStr4OF2484OSa79VcCqGkxcsy2x4+ZG1C/OONBZ0kZFUGCX5LmTx5MqmpqZw5c0Y9QQqvTJblaEmSRgDnJUmaCegAq8hfGPA6UNjnTpKkVOB3oCUwRpblPUX2nSN/VfM3hkg8nqNGjRp8/vnnBAcHs2PHDiZ++jlfbQtAYWpLTkJ4/sqgXkoWnFVx66lVyPvW6I1+xdY0BX4+9iMTvLayQFJRv2N/Tp48SWZEJnqn9Wg2vBm9e/cW3aqKSalUsn//fhJzlRgDaTfPgATIoKGjX/izaeqePwsMUOxFs5q4dcNRpw5HT2/nu3mdn9lvaGiIrq4u9erVw9XVlREjRmBcxhijskYY5BqgSs/vbidJEllZWSRnJGNopkX67uOs/OEH9p4/T0pKfjc8XeeyWH3gStTmXeg5dyS2akdCA7XQibmILDmQGrgZN/cq1JBycA+tToO0wyiMTrLEsgYpYQksuVuWXKsq7A9MoE8TFyLqV6RcE3u83CoTHhvLDwsXsm/fvmfKILy5NDQ0cHR0RE9P77n7LSws8PT0xMrKCjMzs8Ikw8DAgLy8PBQKBdHR0cTExLBr1y5qZJzEKvAqd86kM//RtJoVzMlLV1BV2YhTp9aRVeMD/E4u5XSaihEuVmgoTPNj0TVCU8eAAwmxJMoyudrX+K7VD/js2smA1QMI3Rlamt+a90rdunWJi4vD0NCQdu3a4e3tDeQnHcM7fIetkS1aUWU47LeUAwEbULmbc1UZxmS9npQz82D88jVkhV5WbyGEEmVoaEiWLDMnMuKJG15Jp9ZjrptFc1sTTnm407JlS77++ms1RvqemGnsDEwAFjAz6bUPopFl+U5BC4Yl0A9Il2XZVZIkD+BikUP1gbOyLE8uer4kSVrAgIIY3xgi8XhK7dq1mTdvHrNnz+au/0F2rF/JivMBKN3bYKjKxvziMrb01MXDKr/7ztPdrP6+9A99C54nNHDEw6kbExTbKNejR+FAzIkTJ7J+/XoiIiJKu3hvLXt7e+7fv4+hZ2cM3JqRdnMTWnoHyE5rjUFVb/Iy00jwW1q4WNaLFs0yMzPD2dkZTU1NtLW10dfXJyn1DjeTTnHqxq7nnpOSkkJKSgo7duxgx44dWBjZ0eGD/oTUPkfYubtE/P3456hSqbDuZ82nuSa0vSjjkq7C16sfBnGnsehgi8JUE23ze0h9nHmwyAcNbX0kbXtys+tRqYwmsz6wxkAVgm5kU0KVTTjupoVvzX+Q4jdgU6Ye7boPRk87iU8HKbh+/TrJd0JYfOMGJ775iocPH77+b7xQIpydnfH29qZmzZpYWlqSkJBAfHz8M8dpampSrlw5tLW1MTU1JSEhgeSEWIxVD/E9cJvk9GxMTEwoV64cFStWpEGDBvhfu0Da7QgWnE0EKOwa2iSqJw3dOsPV7az9Z2The0xd/RCHuiHUyrrL0ZD96Lu1wD1LwbX44/y44FuGdu2Hv79/qXxf3mdNmzbF19eXjz76iD/++KNwLFrXuiOxNbIlhWzqq+7TTrMsc/PS8VNm0KpxReRUTXIjcjG7/Wx3U+Hd0rt3bw4cOPBE0gGQkxBOAzNDPKVmtJlej8uXL4vWjtIxARhT8PXYEn6vxsBCAFmWAyRJCiiyLxfY8pxzfgOOybJ8vIRjeyki8SjCyMiI2bNnM2PGDE4Fn6L7aDsqVqmK6+qeJEe3IcXfh2/qKvGw0iQgKve50+JeiQvlil9+c/eV9PFI6e3R8qiIm4VE5LVTdO3aFS8vLyZOnFjaxXvrZWdnY3rZl8HJd9lXL5ekGuYkHD9Jsr9u4YDLR4swPq127doMHz6catWqERQUREpKCrIso1KpsLCwwMjIiN7j17Fnzx7WrVvH3bt3n7nGI03du1NLqzWch/N7TqLKerIexPnG8XcjDRKz8theoRVGnh3RMkpAxy6I3CxzAHKTY8hJCCcvKw3jGu6Ymx/gq6SLNNcOZ1tuA+JyYkizlHlo4kGbKq7Y51rjZGxAQFgcyxb8zLkj+0tlQHxpcnFxYdKkSci6JmjbuZIVFkxuSiwa2vpoWTiSkxSFloUDGtoGbF29hL3rficnJ0fdYRebkZERVatWZcCAAXh6erJ8+XK++OIL4rI0kCs1e2Ye/kaNGjFt2jSuXbvGtm3bOHfuHElJSSwb4UlrmxBORzgzadnjhMDU1JSGDRtSp04dKvUZSifzzfzyyy+oolTE+cYR0Poo3HmclCsL1h6K843l9t553C64jne5hjSv1RGXtt1Yu3a5SDpKgaOjI82aNWP27NlUrlyZjz/+uHCftXkFAPRUGTS/fRJTjTSyW7vytZYjzS2tyNVQsXOfL4cu/KWm6IXS4u7uzvHjz/8MeV7eT3mPstR2r8PE8QtLObL31oKnnl8rSZIqkJ9U/NdUdZmyLOc+de4MwAIY+fxT1EckHkV89tlnXL9+nSNHjlB5mC0PqpbjgSzx/b5QEuKX4mSmgbG2kr8CVMwKgrT2Vih941BFPX9djh3nt6DS0GbGR504eftXhrY1p8XHX7JmzRqys9+YCQbeCjExMdSsWRPb3XvokRSKMqQmS/QkdPecZFDuNtamxvOoE8jjD1RxaCZrMmPGDGrVqsXy5cuZMGHCEx/YH3Wbm3NWRbahPT169GDNmjXM/205R2N0n/kwCDzRqqJKfvZnr4pScWFzGBcARZIfhlp65GZEYtnBHVWiExY2txmql0HkxAHsu3wGTb39ZJkGEmCgj7N2PyxqTqG8thYx8QmUjw7j1IUUdvnO4/Kpw4Wrlb+LHBwccHJyYv7ZVLSSk8lO1iF2+2rM2vXGQC8cVXJlbFMi6apzibGjRzG8Rxu++uorLl++rO7Qn8vY2Jg2bdpgb29PhQoV8GrghYaBBju37qR3796Fya1py1GFq08/WjCyX79+DBw4kFmzZj3zQeOnA2HQ2jn/uYiEhAR27tzJzp07+fnnn/n+++/58ccfmfb9QqyHuKDhEsGFB7tJCoiBZDBvZY55y/xEOGLt41a7I4Fb6TW8A7HJ8axYIdaEKA29e/dm48aNeHt7s3r16sK/URZGdsRp5KHQyOOiMhUNq/KYmMfy09VknLv5UdN6FA+u32Xq3I9Et913XO3atSlfvjyTJ09+7v6QnUE0He/O11/NEL0pSkt+96oSaemQJMkCWAoslmVZliTpGNAXOCRJkhvg8S/nDgPaAC2eNyOWuonEo0D58uWpV68eM0eP5ktLK8rEGSNda4F+HX3q1pmKLGUyVVpDqxxtdmcmkFrH8Ln/tIuuIhqTEIZTI0MOPLzIrylB9Os8mvPnz7NoUfHGHgiPHTp0iMmTJ/PJqlVopGaxPU3Bw6VBfKZlSD/T/P7pj2b4ePSBykDHgG9afENISAidOnV6bgvBBC9l4Qrz4/aG8tNPP7F582aWb9qNeXAGW3n8YfCR57WqvGj12JyEcBL8lmLachTZSR1JCzrMT7kPCFU2omp6LSyrlueanh6dnTNoYVWBwJsR+Ow9xsbfvifm7rXX+S184x0/fpzJ4ycyhVCy/pzP4sq1CHOPJ9H0OEpVCKqc6nSPycCLq6y+pM29SvEs/3M5EQ8iWLNmzTPTJL8umoZl0KtUP3/2tJR/f4/y5cvj6emJsbExzs7OnD59mqCgIHbt2sUP53/AsKkhcQFxRNx9/Dej6PSoAB4eHgwbNoy+ffs+9wPE9XuRjFgWWfj6eWPO4uPj+eijj/jhhx+YOe9XlobEoUr4DR37/N+PiLUR6B9Mon9EOW5ptmKX/RGyXLxI8ffBrXolHKqa0779gGe6dAivn0KhoFGjRsydO5fBgwfz+eefF+5r6t6dKgZ2+EsZXDYx5bxrD8J/H0aF6e0Z36o5CVImG332iaTjPdC7d298fHxeeNOyZvmaxIbEsmfjnufuF94KupIkXebxdLp/AT8V7FsCrJIkKRgIBv6tKXopEAqcliQJYKssy9+UVNAvSyQegI6ODnN+mM/fp+/SJE1FH1NTDmR0RhHdhMRYHTo27IQyKhH5wnES4pPIyc0mLjC/33TRqXXh8SqiAL2c8ruPjJ4wmoqdK+LVvTH9J/Z/5v2F/xYdHc2xY8f4YPRoxo0bBw/uALBWSwtNfWsiXHpjkbmZmOSwwp/JZw0+4+rVq8yZM+eF133UXa5ot7n79+8zffJUVv+xjMtLQvHnv2fLMm7QB4OqzdDQ0Sdu1/xn9qeHnEHH3o3UqwfJNLhPG5c4Al2b0qxWA7QsNNl5YBv153/KvXv3XuG79HbLyMjg5rK1fDiyH9ScSpkjBxhYWQdT1T0SAJv4FNLOK9lccQSKvOpkxh6j16YvsQ4sQ/feQ5Bj81sQlFZOqKJuAaBt6woSZIUFk5eZWvhemkaW6JbzICsyBE19U1RRtwr3lzVT4m6iR2BiOg/jVeg4VEdpVQFVVFUy/2PwbkREBJs3byYyMpLQ0NAn1pBRWilR5aie+ZvxKDl9ZNy4cSxbtuyFdy2fTjSKjiUbt/PO4+vm5DBjxgwOHDzMet8z3NwQjolXbuH798o1xEW3DQZ2Tcg0q8xxBzsA+vepzZw5cwoXrBNK1rhx4wgKCqJ69ers37+ftLS0wn1nUk5hpG3PeckAk1wHalCG3UZ2dCvXF2ON8pgordkXKpLDd529vT1eXl7MnDnzufs1NTUZP348f/75Z6nGJbxesixr/su+DKD3C/YZPPX6jf5s/0YHV1qmTJmCYVl7Tjzch457bfIuHGFX7D9USkkn/UBFHMpW4ehJXxqa3sXUXBtFZioqP9UTLR2PpPj7oNRSMKVdFSo52jFq1CjiYuKYWnYqm9dvFnNqv4JvvvkGHx8fbFxtwDM/6QuNUhFs25gmVTqTkpfHppOLUEWpKHujLFUHVqXzpMezVD3vzvCjdViczDRY1E6ncF852ZGE62n8NHo4Q0P2U8P1xbNlKUxtUVrnr5fAUzceKztaM6m1HX/E1iDa0hEDtxYszophQeUqeFS14tieo3y/aCb3wm+W2PftbfLzqaPoRkVRtbwNKb27sbJyBywjTvLDzXPYHc6gWfQNdiptuVHegQCtaHLz+nDHPBWfgIf0i1/B7+EuWLvq0iEplk1R4dypXA5HKYJ+8Sv4YfOlwp97/eEzGfFgJ3+nNuSBjj7J/gH50157duZn7YNo3tJEVVHFlD130HaojlnzYcQfWv5Kswapop7/N6MoCwsL3Nzc8pPrAi3Ka/Jze0O+imzMrkMXmOAVX6SVLpMr6R2R0ttzJT2bgrGHhVJSUti8YT2dy+sxa+1DMorMu7I2IR7NoB08TErC794xsmLzWzxMPmrFpUuX/u9yCsVXt25dWrRoQZ8+ffj+++/ZsmXLE62nZt1MuG69l8Z3uiBnKKiKDsYdRtHdvRI5ydr86LOTmNPPG1MqvEuGDh3K7t27C2dHfFrXrl3Jyspi586dpRyZILy89z7xqFKlCp27dmec3zwUlpeJq5DF6rJayHIOwT6/c3iBEes2bMKrVgXmbbMgp74OPx3IBlKfez1bQwU/DGtJdI4eQ6d+hVStB7Wz71CpUiWmTZtWuoV7xyQlJXHq1CnmL5nPt/e+BfK7uR2/fwJtezeO3z9ReGzPnj3ZuW0vHWsOK2ylKNqtasFZ1ZN3jQv2NXbQpMfGDI4EbqX/9Sq0aWrIBC8l35x88WxZhp6dUZqXRRV9j6RT65/YN6m1HcNtQpA0tZgZpMekXm1p0bAOUWH3GdK3L0FBQSX17Xor3Yl9yLDYh3AW+Ocv2jZvwDcfD2JEq2Wc0btIcOBRgsrKHItORU7tQHZiJBpnttOrUWO8LVLJjt6PlFSZPKkBPW3O8k1CJAOUqxlqE0KWl7JwFroB6WsZqIgmK+k6nwc1Kkw6jDw7cvR+Og7GZ9h1K3+WKT3numjbGWDT14LwlcoXjul6VRXKlOUb7z7cu3mbzMzHs+X91EYH9zJ5zDW7zdGkziw4uwx43Eq34/wWkjLlF87ktmfPHn788cdntodmZ/PN3Stw90r+hgci2ShNenp6TJ8+nRkzZpCSkoKxsTFRUVFPtJr3S7qIpqol2snuXEkL404ZHTr1bErEw/vcuXOEtV9N+Y93Ed52bm5uNGvWjP6jPsZzQD9cql7j4sYorl/Mv4mpq6tL3759Wb58uehyJ7wV3uvEw8LCgj/++IOfd/kToWqJlBxHXlYApg3yxwzkZeQRs1viG9+HzB7Ug0u1avHr5QSinLbBvcddI5RWSjx6e9DBtD7Du3/AMr8gVkfZo1u/P0pLR8Y2Nubvtb+9c7MQqcO8efPw2eOD3QkF3U/Aai0tkl28yCyTxN+uCn7y6Me+U4epVq0auXd0qeTmSkVbG77bNPWJblVPju3IZMFZFY0dNPGw0mSCl5Jxe8NYtPUX3Jv/wp+a3UnQPPLCdUGK9tF/NL7DQUuLj8zLkHsogb8bVyWqXHO2D+lKSnoWk779jXNblj4zaF141r5DJ/G7dBfbRkE0tlTh2q0awzxcGZhlyKEATfafScTJ0o08qQHrY2DR5d9wttpBx0p5HDNVoNS1ZkmEA4fskrkYFQvkf8+XJ9VBNyeLZbHaJPjlTxwx0WAT6+KtcUlQYJWkgUuiNpD/czWufRsDl4jC8RGPvGhsz4sUnfjg6QRmsEMlmkgZhOZIT1x/RkwtvtE6yVfhFUnx9yEhIY95frn0N7VgrVY8oS+Yye2RBw8eYGZmhiRJxfpg8vDhQ7p27cqCBSUyUYtQ4OOPP+b06dNcuHABgMTEROrVqESFB4fYEJhAmP9xVt7KY2Jrf/wf5JJQuSyDxrTjbshNXBwcGDJkiJpLIJQ0SZL4+OOP8dt3mCbVRqHjvpszltnU9C5TmHh8+umnaGtrs3fvXjVHKwjF894mHqampmzfvh3fY6c4dN8QpbkVqTc9AUuSr1xE07AMiWcTMfTsSBoSW9fuwMnJiOXedbjj3IAqE2uyz/8uCkNLPFt5ol9Gn9Dgk9gd+RirY6Ekp3qTFRHCkAmfYaaVy+bNm9Vd5HdCXFwc+3bt46vaH2F6/GdyTfP43t+H0Rq2WIemMrniXaIbNcfDwYwkLRVRWVDRrAIWRnbcig8rvOP99NiOW/F59NiYUdgK4qClRbNUTeKUjsRW7YthptEzg8wfyUkIL7xj/ugDaH9TMzobGyNpaUHvr8m4f5/u3bvz4MGD0vlGvUNyEsK57/MLawHdo2Wx9q6CYYgZg/pPYkbLsmg3tyYxUsnDXSloObSmjdZVGp37h5wKpuzTSECjRjzR2rkMtrLlN60YQrOzuXbjGDPdXYm6EQzAxMamjK6WjRS8nCUZzUlLVxWuDJyTEE74ytjChKGoonenX1Q/inrRTFIAfyWHUFHPCUkvPzlQmNpi0XUqlywdaeJv+8T1+5uaPTOpwovk5uaiUBT/T/23337L4sWLcXR0ZOrUqeKGSQlo0qQJXl5e9OnTp3Dbvn37+GHyaOQxnyKbnSMhNYYeWmb8uPY4LT8sz+d9umGRcYM8vWyGDx9DcnKyGksglIa1a9dibW3N6e33qGvnxK1b7fDIW8bFTfm/8/b29nTq1OmJCQkE4U2noe4A1KF69er4HjxMQHQOy+4YFnaTkbMz0K/kTXbiSPKyJqPj0JEUfx9q5cbgElORgMv3aN/EC8WlP3GL3EJVjXv4+fkxYsgIOn3aic9GTmHx3mv8fCyBBL+lOLjVYni72vx9/JqYPvc1+vPPPzHw9ORQ2bKsTYgnJyGcWSHhRNgpmS+VZ5DiAFYGGqRn539gysKCpu7dn7jGo7EdRVeevxWfxzcnzanhOoaBZavQw8AAa0U6aTc3kR5yBtOWo1CY2j5xHYWpLaYtR2HcoA8etTz5zdsGJzMNDqWkcCcri9QRwzl94wYjRowQScdrkBHykLvfHiBg0z9M6lKHTq2bMmHiOGyzrjNicndmVC9DxoP8KYfTb0cRt3s+kRsCaeWnR6c7qQyu4Emv5p/j0q0+Bi4RmHjlT33+p2Y3Vue0YlVuWwKPrmF92j0+aamJk1n+n8hH4zMetVIorZTY9LchM3QXyf67Clu9/kucbxxxfnHPJDAAKV45/FErBCdPFyRJwqFuX9oZOKMfF4WTUQ6/djUvjGdtQjzrEhI4JieyqJ1O4fZHY5UevQaoUKECkZGR/9raYWFkx7AW41nUqQKG2TH07duX6OhoNm7cyAcffPBSiYvw77S1tZkyZQrTp09/YvKBnTt3cu72XfK++4ryNjWY3qAhowcPYvfOnTRs2BAbvRzKJV8kYF6XN3YKaeH16devH5UqVaJ3794oLLUAyMiJZuP3UUSZdUZhasv48eMJCAjg4MGDao5WEIrvvftv8sEHH/DZZ5+xxT+QLSnHUFo1ICcpmZTLf2BcM420m7GkXLyCnnNd0kPOYOjZmfNZPiisEjkf60dMTAyfrThM+FODlDmX/zSuYIywubk5s/s14vf1O9i0eLZ6CvuOevDgAeMmTWLGjBlkXg2EqCgO3w3nZHos5q1iuHEumRY3QzidEEB6VP5gvBf1f3/k0cDzK6oeVHfqwkUNDU673qO8Mhot/QPoOXd57p3tR3e8U68epn/SCobZhBDTrgzasVbUbjOE7EaNad28mZiWtAQFBwfTb+xoxlR1o+zYMZSvVYPT27axouCfcUbIQ9baNkcuryDK1ItGRk4YZKVw8MavSKdS8W4wjss5JszI6Upq5mEgf5rl/jUdwLQd3+za9MxMZo9bLuKIWPvfLR1Fu1g9aulwrqRDTe8yXNwUS8jNTOJ847jOdcINw2nQoAF2WQpqqhRkZ0AL1wQGKrLJy8ofp6JlmIu1ZxIjjfTpVzmHJhV06L4++ZkuhACtW7fm7Nmz/xpfi/ojqO7QkFx9A36OW8PY81HMnTuXXi1a8NW4cTSuWZNZP/8sZrp6DQYNGsSlS5cICAh4Zt/QkePZMHoMrTv3IMWhHHcCAlkwaxbtBgzA7+RFkrdPee7CtcK75cMPP6R///50796dmJgYdh5ZRVbTdA4c2VD4P8fEUI+mTZvSqVMndYcrCC/lvUk8JEniyy+/xLtrV05O/ZKDZW5TrpY2bQKvs7XsELQ62KLv9IA4vwNkhUaQFXoZ8w6TMXBrRsQ92Jm2jqz4BihM73IrPvyZwclFOTo6Mn/+fHZt28KqVavUU+B33LFjx9izZw8ff/wxX3zxBfD4w2Ac8MvGIxg7OLL0n++eObdov3wNZX4XmkFZqYytIrH44i6OXs0fqFux62hunz2J/sEkhikOsD07nbAAvyeuleLvg4aGhEmkPzus6lLGtA5afZ1pWrUm98/f5Mshg0lISCiNb8l7LTQ7mymXLyENH07r1q3p2LEjS8eP5+zZs5w6dQr/GwF8X7YuZdIfklXGkTPJUURsj8G73hfUNXZCI8SXA0VaLhacVYFpOyTDTjR1z31mDMWjFovntVw8z/O6WNX0LkOQswk1vSFkzsPCVpV/cv9h5MiRfDr+S/Ky0jh+/wTXklxJU2ix4Gz+pBaPEowN0XZcz8vDvcyDwr9HhfGTP46tR48eDBw48F/jC7CxxtzkGhUfnqBinAH9TbNZmxBP71u30fr6G5y7dmX79u2sWbOGlStXihbc/5OJiQne3t4v/HlomGswN3wzV6ZtZHVYLKHZ2QwdOhSFQsGgYRPE4OH3QMeOHenduzeff/55YSt5+J177I5dS8fGE1DaOHP4zhVGtajEmjVriIyM/I8rCm8LSZJygUAer+OxBvj5/10EUJKkVFmWDSRJcgR2ybLsJklSK+A7QAmogE9lWT70WgpQ3Lhe8g+ZXLAYyVtnxIgRDB8+nAtffUWTO3f5JysJHXsdukZrs7NiTX73ikYVdp3oHdGF3SnMO07GoGoz0m6eQcvEGqWlI8n+u0jwW8qidjqMraNk8TlV4Z1FGxsbevXqRadOnfjjjz/4559/1FnklyLL8uv8wZZKPTExMWHXli0EzpvHd35+RJhJhXeVq9hU4ccff6Rjx45kZWU9cd6jlaKT/XehY70D85bm5JyIZ0xYfGEiWb16dX755Rd69OjBKE0F/UxNWZeQwJzoKExNTfH09MTT05OyZctSuXJlVCoVmbkyWia2XL1ylN2hmzn/1/kSmwFJXd6memJoaEjTpk3x8vKiTp066OnpceXaTTINbAi9dBwN2yqY2Xtgl5DItau7iI6P4OHDh1y/fp2IiIj/XLvlZTxq8Ug8q1nYhbO8RfwTLR6PSJLE4sWLiYiIYPbs57eWPmqh+zXYBH235gxR7OfnYwlP3ATR0tJi6dKlXL58+bmLlhZNwDWNLCnT4QPs0v6h7dE4VofFMrBsFWpU7YJu0mG+T7nL9ahcJk2ahLW1NZ999tm/Tg3+NtWT0jRt2jSys7P5/vvvn7vfpr9N/s0Tvzgi10UyePBgevXqxbhx47h5892bclvUkyd5eXmxcM63JHz1FV9fusTpjMdd8bwbjCuc0j3JIoPujZV06d6dm6nPn2HzXfKa68kb61GiUPC1JfA3cFKW5Rmvcr2nEo8aQJQsy+EFK6Dvl2XZ7nWVoVhxvQ+JR9u2bZk1axbe3t7IYWH0NzUrHDj6obU9B7uWI9kzlji/uOfOWKOhrY+BWzNU0feI2f4tOQnhT6wJYVrRk969e1O3bl127NjB33//zcOHD9VV3P/L2/oPYHWfvvQYP44lY8fxqf+Fwu1OZhps+2spG/wuMvvnJ7vCPK/Fo+gsQ4aGhqxbt45ly5axa9cuHLS0+NDanmut+jC0dzMsTI2JjY3l77//JiYmhlu3bnHr1q1SKa+6va31RJIkypQpg6urK/r6+lhbW6NtXAadctXIvH+F3LREjIyMsLW1pXr16mRlZZGZmUlCQgIPHz7k8uXLJCcnc/jw4VfqNlc06U3wW4qDllbh36PQIq0IhoaGLFmyhPj4eJYsWUJwcPDLvY+pKbNnzyY5OZmpU6cW3ikv2uVL333IE7E8bUijCdSs0pk7JseINNnG31/kdw0aPHgw3t7ejB49+oULXr6t9aQkubm5MWfOHPr27fvEIoFFOVfSoXZvG/QjqtGyZR/y8vL44osv3tmFRUU9eaxjx4788PXXKH/7DdWJk9zMzaLrrbuF+y2M7PJbPKwr0tM9Hte4h/y6dOl/Ti7xLngfE4+C1xWA80AZ4CgwXpblywX7TgBjgG5AOaBCwfMvsiwvLHq9oonHU+8nAXGAjSzLT96hLUHvfFcrU1NTPv30U6bO/hHzRg2oVimaGH9P0g/9RUxyGHNTMzF56IB2+sNnuk3YpcbQP2Ab6/O0SMhKK5yxyM7ODvc6dcisX5/ln9UmKiqKzZs388UXX6BSvVt3uN90X23ehKZSScP582jw5ZecPHkSyO+K4nb9Z4z6LyQuU2LlypWFLR9PrxRdNNk0MTFh0aJFnD59ml27dgGQbGBAxqdz+KpbW3YcOMpPPT8gMTGx9AopvDJZlomJiSn2GAUbGxsUCgV2dnZUr16dqlWrUqFCBWbMmEF0dDQxMTFER0dz7949rl+/Tk5ODjdu3PjPmYaKTr0ML56dKiUlhaFDhzJs2DCWLFlCWFgYmzdv5sKFC/86SYGFhQUDBw6kW7du+Pj4MG/evCe65xTt8hWz2wczLQNa55lwyMiOmOSwJ5LynVc2ozDXJcfuHBc3xRZeY9WqVcTHx/Pjjz/Sv3//Z1oUhef76KOP2Lhx4wuTDk1NTX4Z0IX2fUZy434UY+Ys49ChQ6J71Xug25DxTJ80CsXno1GFRKLShBXuOdjUtSHONw6beJn+OjnsOv0rtat3ofyg9vjN3Vx4A1VQD/fV7s7ABGBB4MDAkP86/mXJsnxHkiRNwBJYAQwCPpYkqRKgI8vyFUmSugGVgWaAIXBDkqQlsiwXpz9sD+BiaSYd8I63eGhpaXH48GEObP+bsslnOVNFgTK+LW5RjTl6dTubTi4qvAOpinuIKjKEpJP5C8AZenZm7I0D9NFTsi4hgXlJibi6ujJgwACqV6/OiRMnuHDhAidPniQhIeGt/+fwtt95aty4MfPnz+fAgQMsWrQIA1U0E7yUrA81p9+YqVSqVInly5ez6+g5lG5tnll3wbS8Kd4TvfF298Znqw+LFi1CV1eXbt26MXHiRPwDrrHY7zrX961+r9ffeNvryasyMDDA2toaU1NT7OzscHZ2ply5ciiVSpydnTl//jyhoaEEBweTkpJCdnY2V65ceeH1XtTiAY9bJ5IOJ9HEowkdO3akcuXKGBkZcevWLc6fP09SUlLhzY7y5cvTunVrDhw4wF9//cXdu3efeb+n1xF51H3j6b+Hj1pBXrTuiCRJHDhwgHXr1vHnn38+8z7vez152gcffIC3tzcDBgx47s0pXV1d5syZg0v5sqQc+plp684+M3bwXSTqSX5Lx8dzFuPgOwzrkMvcvmjGl9bpXLEBk/omJJ5KZHSwFq1TynLCfTR6ZjZ4jyvLhk+9GLWteGPM3nZvaouH+2r3xeS3OvwaODBw7Kte7+kWj4JtiYALkAIEAK7ALOChLMuLJUmaCWTLsjyn4PhgoJUsyw//rcVDkqSqgA/QWpbl268a+8t4Z1s8tLS0+Omnn0hLS8MyeDXDa2mSG+bMBbPzBMY9nuUoM3QX5s0S0NCri23VCHo7VuVeQmdO2FRge3Y6mqHHSWnbhgNDhxIZGYmfnx9Tp04Vd/neMMeOHaN169YMGzaM7du3c+XKFf7880/O3TjHhW8m0mpUK7p36s4nM+YSnqXkxtWOaEbfwMTEBAMDA1xquxApRXLy1ElMTEz49ddfcXNz4+rVq4wcOZKLFy+qu4jCGyA1NbWwW9358+ef2GdiYkK9evUoW7YsnTp1QldXl1q1agEQEBCAv78/d+/efeaD5xnAqeDxSEREBHqt9DBpaEKieSJXt17l6tWrACiVSry8vHB2dsbGxoYWLVogSRIJCQn4+voSExND27Ztn3iPyMhIEhISCAoKeqKF79HfwUfPT7fIPD0ovnbt2vTv35+6desSEhLCpUtitfP/UqFCBUaOHMnIkSPBFGxa2ZB8MRmTejZkxTfAMCSIpfPncOXKFbr16i9azd8j/fr1Y+Cogcw6OZxyd834PNSUHzOS2b0zEqWVktz0XDR0NTjUTQ/dC63R0rMkXTOV+Jg7zDsqJi15Ayx46vm1KuhqlQtEy7IsS5LkC3QBegKeRQ4t+oE0l//4bC9JUllgG/BhaScd8I62eJiYmODr60teXh4tW7bEzlyfSa3t+CO2BtHOXUm7uQkt/QPE+cYV/mPNTjRAyySVwTc6ox3fgvOpt1FpX2TUwD5cvHiRxYsXc/t2qf98Ss27dOfJ0NCQ9u3b069fP2RZ5njscULMQzi3+Rwa5y1xbt4Ls+QQMuIjMTIywsXFha4fdEVDX4O7wXfx2+vH5cuXuX37tpgx5CnvUj0pDZIkYWJigqurK25ubjg4OKCpqfmf59jZ2WFgaoDSUokqWkVe1vPvfmtoaHD79m1WrFiBqakplSpV4unvqSRJlCtXDnNzc6pUqUJqamqxW2g1tDVQWihRxajQ0dQhJSWFXbt2sX79+n9dWFDUk3ySJLFmzRq2bt3Ktm3bCgePZz7IRMdeBzmpEXM9R2Gcm0jLli3fu9nC3ud6YmJiwr59+1h6eykPo84z6Z8cHJMk1iUk8KOU8MSCpeatzFEE2NKkyghCo/YzZmRPevfureYSlJ43tcXjdXtqcLkFsA44/WhwuSRJnsBO4Lgsy70Kts0EUmVZnlfw+irQUZbley8YXG5C/niRr2VZ/vd1BkrIO5d4VK9ene+//54LFy4w969llOlWifS7FdF16Ehq0GHyMtPQc/DDtJEOeQcVVE9szs0aZwg5GISNqz4fphiAxSiqNHciIiqMX375hRs3bqi7WCXuXfwHIEkS9erVY8ioIdRqUIszx86wfcN2YmJiWLo0f4zH7du3uXDhAidOnODs2bNvfZe5kvYu1pP3iba2Nubm5v/3+TExMcX6cCzqSb569erxySef0KtXL3Jycgq7riVfTMbyg+b0rzWVxrZmtPWqQm5urrrDLXXvcz1ZsGBB/k0DvxXMrGhHh5sa3MjMZHJaDnnDXTFwiXhmwhuA3r17U6FCBb799ls1RV763qPE4+npdP8Cfio6na4kSdeBj2VZ3lfweiYvl3hMA74Aio5JaS3LcnTJlzDfO9XVqk6dOsybN4+1a9dyaPNyOn/qRoBNBJKmgsQzuwr79auq6KPraEOdxM7Ut+2AEYaElb9Lpp8Ss88nYW9vz59//smmTZvUXSThFciyzKlTpzh16hQWFhaMGTOGwYMH4+joCMCmTZv44Ycf1BukIJSirKysf50GV3i9Ro8ezaZNm9Aw18CuoxNZ8Q2I2e2LlKpihPMYqpd3ZMy3S97LpON9VrduXTw8PJg6dSppaWnszNDG1cSQn1UpJDfqgoGmE2l3thDn++wUyjVq1ODw4cNqiFooabIs/2tzuCRJtoAGcKDIOTOfuoZbka8NCp7vAW4FX88G1Lqq9TuTeEyfPp3OnTsza9YsfHx8WNROh045D/ky1okdu8OxDt3PN3WVLDirQVpNI3Tsdbh88xB5d3IJSD9KA0UDRi0fxapVq/Dx8SElJUXdRRJeo5iYGGbOnKnuMARBeE/Ur1+fChUqsGXLFsr0KoNpIx1U8UpyUzoztp4FXuUMGPrVjzw48vas9yS8Ok1NTSZOnMi6Vcv4uV9lfjmVSTvr6lR4cJ62DtW452yL0uwk6aGNUUXtfOZ8R0fH92b6duExSZI+BOYAk/7fBQXfFO9E4vHRRx/RuXNnJk+eTPDl2/Rq/jlblYnohF/mofFQrKxvMMG1Gf3L70VDO5YZaa1JOH6SmAP3uR4TwJgxY2jcuDHDhw9/7kwwgiAIglBcmpqajBw5krlz55KdnU2cbxwa2vpkp2rSsakXNTws8e7ehbi492NWIuGxnj17Eh8fj6vlA6LLxTK0jDObk5oDsFHbDB3rSyjNTpOdGPnMrHIGBgbY2Ni8deuECa9OluU15K9k/tZ76xOPfv360bt3byaOmYKNVjUcPetTx7kVF5U5fPGwDLkh/rRR2CAZNmTdfS1W5YShX9WbZH9ddDPX8+V3X2JlZcXw4cPF2gyCIAjCKxs4cCCpqans2rWr8MNjzK772NTVZUzfTkz7ablIOt5D+vr6jB41lh0rj3HeqSJxRolYKmPIvLibZXXTiNkdgN65eug72RO54dIzs8q5uLhw48YNMjMz1VwSQfj/vbWJh5aWFjNnzqRF67Z8sWo/de0b4limKQ/jz3IhL5FL2jrIqgxS/H242nsShkY3ORqXwZ2TRzDKMqalbQ5jfXw4fPgwo0ePfuGiToIgCIJQXLNmzaJt27b07dsXeHJK4q62ehw9cYYj6xaqM0RBTQaNHEdGhjGOOnUI91dBmStE6+ZgXu062fpAB3sSz8CD/VfISQgnN1kJUDi7VYUKFYiKevdXKhfebW9l4uHi4sKSJUuIjIyk3/xt5DjU5UfDuaSp0qlreo4esgeq6LsknVqPoWdnVM43uMspBp+XuVjdBe/hzcjMzGTkyJFcv35d3cURBEEQ3nL29vYsXLiQsmXLMm3aNEJC8ieNefShMfdcLh0WN2Hy5Mnv9SKk76uaNWvSb9BQZuy4j6scTn3NjWxafhvPVlXRvtuacw63SbtvhpFnRwAS/JaiilKhvyeKqV7541OdnJy4efPZAeeC8DZ5qxIPpVJJ3759GTNmDH+u38LfAYloGpVBH5iX04IZBluYldMPVdQ9ks5tw6LHV+RlJJMZYUA/VQ49pvYjTk+PYdOnc+jQITF1qiAIgvDK3N3d+emnnwi+fY+x63dD2ds4V9JhfEVYcFbFrbURrFu3joiICAIDA9UdrlDKNDQ0GD15KodCEgiOjaWfxXYG2jxAToeAwEZ4lG2JHJTBqlMbMWmagZ7DSdKslKiiVEzwUjK2jhJDy3JUbN+e/v37q7s4gvBK3prEw8nJiZUrVxIYGMioaT8QVbkHRp4GpN+7TG5mKqd16tAiuhyqmHvIWXEY1/NGaV4WgDZVrahasx17Fs/j85V/cE+sDCsIgiC8Bra2tixbtgyfM75s0/JDv6EV5XK06R9hS5/K+atLnzTuir29PZ07d1ZztII69OzZEz17V1bsuYumjj5Lkh3ZZ2qO/+0I6nc/zlWlMUY6J9gdDd/pHSSmkQl5WeYoN8SSGWTCiuxU5M7DWbNmDaGhoeoujlBCiqzjoQCCgYGyLKe/4NhBQC1Zlsc+vZZHkWMcKVi/oyTjflka6g6gOBo3bsz69evZd/gE07dfJdy+BZo6BgBoWzuhqWOAhl4IRh5r0DJ+gIFbM7LjH2KhncvophUZ1bAcAwcNoPfSX0XSIQiCILw2bdq04fjx42xhFwqDeDQ1w2mxS6bObSVHTxmx8Fw2o0eP5q+//hITmLyHLC0tGTlyJPN/mYam0TqyE3yIt9vP1Qr6pDcqy6mtQSTkrqCVfyT2yUZ8Fy2Rdy6D7LTWDK7oQQddEySLHlSv15StW9Wy0LRQejJkWa5ekCiogFHqDqgkvPEtHj2bN+enXxay+NANll9Jx7BmB7JT47FOjKDLrSPsrNyS0MRUjMtvQ1MnHpN6yaQcNWRE25Z0rOnApbsPadWsG3GhYiyHIAiC8Ppoamry4Ycf8vnnnxMpR2Ldx5rI9Q/YUKYeiqrRrMu0xLLyQyRJYs2ad2ImTOEljRgxgl27dhGudwZzW3PIzUTbWocyWUq0VdW4U64lW37zIVwRx2/uMtXd0/k4tQJzKnmzx7QWpqkh1P5sPJ9+PEzMhPZ+OQ54SJLUCZgGKIE4oJ8syy+cYUCSJE9gZcHLAy86Tp3e+MRjxiefIC9fRrmQaH6omsTyeAVhZrXodmUrLePuox2VwJ+29mSprNDUicfe1JKhH3cgJ7cKg75bzM3NP6q7CIIgCMI7qFmzZsTFxeF/8wGGnp25840PAPr14tCMjsTQKIafvl7FN998Q1ZWlpqjFUpb+fLlad++PZ07dyZZMxkAw5BUWnU3Z4IqGV8DJbM9pwFw3G8p3S5HMEFbya/BYSQ77SIu6jZGv8xn+84dHDlyRI0lEZ4nuLKrMzABWOB6PTjkdV1XkiQF0A7YB5wA6sqyLEuSNAyYAkz+l9NXAWNlWT4mSdIb+QH4jU48mjVrRkwexBw/SU3NNMqkJVAr5xxHTtbCr3xzlKa10DZyobacw9HYjnR0akKnip5s/Hsn68/uIv7sNnUXQRAEQXhHNWrUiAMHDmDo2Rkjz45U0EnmU/tALG4nYBMiU23Eh2RlZbFr1y51hyqowbRp01i6dCmxsbFA/loc07qaMzo9nsBYDebvvUey0y5S/PMT1nuyNV9ldyYlyYfcg7+zatUq0m+c4JdZX6izGMKLTQDGFHw99jVcT1eSpMsFXx8HVgAuwAZJkmzIb/V44SrXkiSZACayLB8r2PQX+QnMG+WNTjz6jRhC3GVfXNPz19iIvmxMefMMWsaE4m60g+8r9sOWHG6awPRW9dHX1Wb8t3/gv/pb9QYuCIIgvNOcylWhX89BdOrQifRcDXTs3ZhkfJhelmmodDU5GmuEoWcdfl64UMyg+B6aOXMmSqWSv/7664kVyFfmtEE/J4tFodpcv/c33FtaeI6hZ2dMGrlg37U8H7vNxs3EjbYt26ISY1PfVAueen5VGbIsVy+6QZKkRcBPsiz7SJLUFJj5mt5Lbd7YxENLS4vaDeswI/43vCtaoNRqhrOpDw9kY0I12lA1cz+DcrZy1n0c33hVxnf/LpYfDSHh3HZ1hy4IgiC843795XdSwyQat/gaLw24ZKhEkWkD3OJuTh5jb4WxTl+fY8eO/ee1hHdL/fr1aVCvEX/N20cdVw8qDpAJsMkD4MruI0zM7EyKvw8uLi5YW1vj6uoKgKaeCbZN82hS8XuC4oLovah3YWuJ8OYp6F71Olo6/o0xEFbw9cB/O1CW5URJkhIlSWooy/IJoF8Jx/Z/eWMTj7GDemKQEE5MjDlx1n3Q0LImNa0MKbIJWuXsSSnrTrPutSA0hqEftOPu3Re2PgmCIAjCa9OgQQN0zSWWb7uEhq4mtbL0KZeazm6pPR552/girCJt+zpy7do1IiMj1R2uUIpq1arFzJkz2bf2HHUqtKVueUPa5/zC1IiybPaNIydBRZnQg3z++QSqV6/O7du3uXLlCjk5OWQnxZAUlsevKb/if82f+zvvq7s4gvrNBDZJkpQAHALK/8fxg4GVkiTJvKGDy6WXbAKWJUkqqVgKKZVKbp7chUPgTyw935jcPC8AksmkiqsNtduVJe1+MNM2+LF1ywqxCuxrIMvy6/zBlko9EUqfqCdCcbzL9URbW5sTJ07wxawfCDCojVvlJNpH1kEn1wA9nYsMNpnFppxmlO86jcGDB3P16lV1h/zGetfqiYWFBXv27GHq1KlcPnuN5rUGEGOeSZ8yZ5i/9x7X70XSvn17vv76a1auXMnatWtJSUl54hpFu2WpokQXK3jt9URQszeyxaN58+YEp+lz6KYtdzSroDTSoEZNS2o5KrGx02fh+d0s+/UsCX5L//tigiAIgvCadO/eHVnSJMi8CbqWjpSPy0En14BcrYfY3PPjH4fGGPadw6FDu0XS8R4xNTVl+fLlrFr2FybpldE0juVYBUcqldGEpDPoksW6deuwtLRk0KBBBAUFPfc6qigVEWsjSjl6QSg9b2TiERkZiYWRPmW6T6eJlj6ZWtmEBN0l8Yoxy/9cz/bI26T4+6o7TEEQBOE94+3tzV/nAjB0v4IqTpcLWtZoawfhFLYZh+vRhOi0ppKBgnFLxY2x94UkSXz33XfcvXuXmGsyTdy6ouvsxpkqF+iaHMkwnWDq/76AP/0us2rVKjFuQ3ivvZGJx+XLl+nQrg22ZRyo69KWXSfWkZmZSVP37hwJ3Epscth/X0QQBEEQXqPevXuTLuVyRFqL0ix/7EZiVBe2hN/BQQ4n3dSOe5rJuEY8EOMO3yMTJ07Ezs6Obt26YaJriaGGBu5mtwnnLoEmBgSUn0VQWCbz5s0TM5wJ7703MvEAiIqKIioqiktB5wq3bTq5SI0RCYIgCO+rSpUqMXToUOZcWYtcJpLcrDKgkYFJTgSuMaYcPJXBtOSjDKpcnkOHDqk7XKGU2Nvb06tXL/r06UN2djYJBjLl0wPpEB2OlUKHDiNbkmLuysj+3UXSIQi8wYmHIAiCILwJtLS0mPvzr2y6LXPjhj1ls4ypnlKJaw5bqKLIoZpDQ3JTYtl2bQsdBozmp29nqjtkoRQolUpmz57NokWLuHPnDg5aWgxzdudC1dZohvqTV78licbWdOva/ZlB5ILwvhKJhyAIgiC8gCRJbN26lVT9suQE3cfJsD7NHmphmaeBXdoYorXD0NOIpJ2HE3muQ6hUyZksO09gj7pDF0pYkyZNyMjIYO3atShMbRnm7E6PpFC0IoLY324405tY0qpnJ+48EEmHIDwiEg9BEARBeIFBgwahoaHB0W23qanSpWyOBpZ5GqiU2VQ0scVdU4FOhfJoKjSYX0+HXzbv5uruVeoOWygF3bp14+DBgwAYN+jDJScdKjyIwKZcCENd8/hz2RLu3Lmj5iiFt4kkSV8CfYFcIA8YCWwAasmyHPvUsV2AWQXH5QAfFywc+KoxzARSZVmeJ0nSj0AnQAXcBgbLspz4KtcXiYcgCIIgPIeLiwtjxk1gxcmLZFSPR1vRFA8HMyyUGRja5iAn6pOXZURZXR0iQ6P48aeF/LrqD3WHLZQCPT09ateuzdSpU/M3yCA57Wdu9TwmWFWleZlcPlq/Wr1BCm8VSZLqAR2BmrIsZ0mSVAZQ/sspBwEfWZZlSZI8gI1A5dccli/whSzLOZIkfQ98AXz2KhcUiYcgCIIgPMfatWvR0DehSZOKSEp9ImPv47/vMHFacD9tF5dWnxaLvL2nPvjgAy5evEhSUhIASafWE9fJDICKTh349OMfxbgO4WXZALGyLGcBPGrhKFgYc5wkSZ0ALcBbluXrsiynFjlXH5ALjm8KfAOkAE7AYWA0YA/4AfWAeOAoMEuW5QMFLS0DgWjgAeBfEEPR1c/PAB8UvIcj8FfB+wKMlWX5VHEKKRIPQRAEQXiO9evXs2nvYbI8vNB3DiVyQyAZIQ/VHZbwBmjTpg1LliwpnKlKq4wG5VMsaJ/ZlQq55mzb46fmCIWS9uuoQ87ABGDBmKXNQ17DJQ8AX0mSdJP8BGGDLMtHC/bFyrJcU5Kk0cAnwDAASZK6AXMBS6BDkWvVAaoAocA+oLssy5sLWi2WAOeAawVJhyfQG6hOfl5wkYLE4ylDyO/2BfkJSitZljMlSXIG1gO1ilNIkXioUdmyZVmzZg1WVlbIssyyZctYuHAhAHfv3iUlJYXc3FxycnKoXbu2mqMV1EXUE6E4RD15/X766af8L4IvqTeQ10jUk1enp6eHU2Un7pS/g5GqHGYtXCibk0eN641oOdSb6ON+b/3UuaKeFMsEYEzB12Nf9WKyLKcWJAGNgGbABkmSPi/YvbXg2R/oXuScbcA2SZIakz/eo2XBrnOyLN8BkCRpPdAQ2CzL8nJJkryBUeQnGhS83zZZltMLjvd5OraCFpEcYF3BJi1gsSRJ1ckfj1KpuOUUiYca5eTkMHnyZC5duoSBgQH+/v74+voSHBwMQLNmzYiLi1NzlIK6iXoiFIeoJ0JxiHry6lq0aEFIWghmLcwo625HzdS6VA45R4fyecip95n9y5fqDvGViXpSLAueen5lsiznAkeAI5IkBZLf/Qkgq+A5l+d8dpdl+ZgkSRUKxoVAQberoocASJKkB5Qt2GZAfnesfyVJ0iDyx560kB9n1BOBKKAaoAFk/td1HtEo7oHC6xcZGcmlS/l30lJTUwkODsbOzq5Y5zo4OBAYGFj4evLkycyYMaNwX3BwMKtWreLGjRusXbuWFi1acOLECW7evPk+3514K4l6IhSHqCdCcYh68upq1arF8WvHAXALrYNbVGMMLfphNmokV/cvxCfogZojfHWinvy3MUubh4xZ2nzsa+pmhSRJLgXdlh6pTn5XqRcd7yQVDACRJKkmoA08ygbrSJJUXpIkDaAX8Gi2q+/Jb7X4Cng0E8YxoKskSbqSJBmSP4vVo/doC0wBOj9qESlgDETIspwHDAA0i1tOkXi8IRwcHKhRowZnz54FQJZlDhw4wIULFxg+fPhLX8/JyYn58+dTuXJlKleuTN++fWnYsCGffPLJ41k4hLeOqCdCcYh6IhSHqCcvT6FQUL9+ffyW+RHnF4fv8T3oaTzApEJlElOVHL1W5r8v8pYR9aTUGACrJUm6JklSAPljNGb+y/E9gKuSJF0GfgV6FWmROA8sBoKBu+R3x2oC1Aa+l2V5HaCSJGmwLMsXyR+7cQXYW3DuI4sBQ8BXkqTLkiQtLdj+GzBQkqQr5M+klVbcQoquVm8AfX19tmzZwscff1w4C0bDhg0JDw/HwsICX19frl+/zvHjx4t9zbt373L16lUAgoKCCucaDwwMxNHR8bWXQSh5op4IxSHqiVAcop78f2xtbUlPT+f2xdtwEUxbduGEYRxfekncPx9EBe1z6g7xtRL1pPTIsuwP1H/OLscix1wAmhZ8/T35LRjPkyzLcsenth0F6ha5VtGxInOAOc+JyekFsYYAHkU2FXuKXdHioWYKhYItW7awbt06tm3bVrg9PDwcgJiYGLZt20adOnWeObeghQ0ALS2tJ/ZlZWUVfp2Xl1f4Oi8vD4VC5JtvG1FPhOIQ9UQoDlFPXk1OTg4AClNbGuikMC71HAp9HYIu5nEl5dnv2dtK1BOhJIjEQ81WrFhBcHAwP//8c+E2PT09DAwMCr9u3bp14d2BohwcHChTpgySJNG4cWM0NYvdxU54y4h6IhSHqCdCcYh68nqYNG1FD90o9JqNRTrnBzkn2HF+i7rDem1EPXk7ybJ85DmtHW8MkXioUYMGDfjwww9p3rw5ly5d4tKlS7Rr1w4rKytOnDjB5cuXOXfuHLt372b//v3PnB8XF8eaNWu4cOECV69e5cMPP6RChQpqKIlQkkQ9EYpD1BOhOEQ9eX20zU6S1qIvBtXdOB4is/DAb8Qkh6k7rNdC1BOhxMiy/DIPmfwpucRDzQ8HBwc5MDDwtV3vJeuBqCdvyUPUE/EQ9UQ8RD15fY9y5crJW7ZskQG5fc/2cuC96/L8xcfkcp4fqP3n86Y83vB6Ih5qfojOdIIgCIIgCMWQm5tLuXLl+Oeff3BwcKBvJ+8npo4VBOHfSfk3CYpNLjpgSHh3yLL8On+wop68o0Q9EYpD1BOhON7WelKxYkUUCgV37twhOzu7VN7zffaa64mgZiLxEIC39x+AULpEPRGKQ9QToThEPRGKQyQe7xYxuFwQBEEQBEEQhBInEg9BEARBEARBEEqcSDwEQRAEQRAEQShxIvEQBEEQBEEQBKHEiel03xAvOcj/pYlBd+8GUU+E4hD1RCiukqwrop68O0Q9EV4XkXi8IcQvnlAcop4IxSHqiVBcoq4IxSHqifC6iK5WgiAIgiAIgiCUOJF4CIIgCIIgCIJQ4l56AcGSCkR4I7yutlRRT95top4IxSHqiVAcop4IxSH6er0jXjbxEARBEARBEARBeGmiq5UgCIIgCIIgCCVOJB6CIAiCIAiCIJQ4kXgIgiAIgiAIglDiROIhCIIgCIIgCEKJE4mHIAiCIAiCIAglTiQegiAIgiAIgiCUOJF4CIIgCIIgCIJQ4kTiIQiCIAiCIAhCiROJhyAIgiAIgiAIJe5/ZnXZVa1GDTYAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "bento.pl.sig_samples(adata)" - ] - }, - { - "cell_type": "markdown", - "id": "7efa5124-5ec5-4fa0-81f6-db8d5c051cfd", - "metadata": {}, - "source": [ - "We find these signatures recapitulate patterns found in the original seqFISH+ study, in which three major clusters of spatially co-occurring genes were observed and manually annotated as protrusion, nuclear/perinuclear, and cytoplasmic. This demonstrates the ability of tensor decomposition to extract meaningful biological structure from localization patterns in a data-driven manner." - ] - }, - { - "cell_type": "markdown", - "id": "e817bfc6-119f-4f17-a2d3-d083ad79b676", - "metadata": {}, - "source": [ - "
\n", - "\n", - "Note \n", - "\n", - "We recommend characterizing the gene and cell loadings of each signature to aid in interpretation. Refer to our paper for more details regarding these localization signatures! If you are analyzing your own dataset, we encourage reaching out the authors directly if you have any questions about your analysis or feature requests for `bento`!\n", - "\n", - "
" - ] - } - ], - "metadata": { - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.11" - }, - "toc-autonumbering": false - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/docs/source/tutorial_gallery/Tensor_Decomposition.ipynb b/docs/source/tutorial_gallery/Tensor_Decomposition.ipynb deleted file mode 100644 index a742530..0000000 --- a/docs/source/tutorial_gallery/Tensor_Decomposition.ipynb +++ /dev/null @@ -1,457 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "ded53b22-45c5-458e-9ec1-c15bc49f4b0a", - "metadata": {}, - "source": [ - "# Tensor Decomposition of Spatial Features\n", - "\n", - "**Author**: Clarence Mah | **Last Updated**: 6/15/2022\n", - "\n", - "Here we will demonstrate how to use tensor decomposition to generate low dimensional signatures with `bento`. We will use the included seqFISH+ dataset." - ] - }, - { - "cell_type": "markdown", - "id": "5efe2763-a777-4e88-997b-95afa5a6f6f2", - "metadata": {}, - "source": [ - "## Load Libraries" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "8e8aee69-31aa-47ca-ad84-9a79c24d3020", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:06:06.511918Z", - "iopub.status.busy": "2022-06-06T01:06:06.511472Z", - "iopub.status.idle": "2022-06-06T01:06:37.429030Z", - "shell.execute_reply": "2022-06-06T01:06:37.428235Z", - "shell.execute_reply.started": "2022-06-06T01:06:06.511847Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "import bento" - ] - }, - { - "cell_type": "markdown", - "id": "9a591fb8-4830-48f9-9c7d-1dfa5dc20ab4", - "metadata": { - "tags": [] - }, - "source": [ - "## Load Data\n", - "\n", - "Let's start with the preprocessed seqFISH+ data." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "bcada814-0a1a-45f4-8181-d27bd7ac0250", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:06:37.430779Z", - "iopub.status.busy": "2022-06-06T01:06:37.430413Z", - "iopub.status.idle": "2022-06-06T01:06:39.622651Z", - "shell.execute_reply": "2022-06-06T01:06:39.621955Z", - "shell.execute_reply.started": "2022-06-06T01:06:37.430737Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "# Load precomputed features\n", - "adata = bento.datasets.load_dataset('seqfish')" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "f1c26d01-93be-4239-95a1-b050c0d08cdd", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:06:39.626565Z", - "iopub.status.busy": "2022-06-06T01:06:39.626335Z", - "iopub.status.idle": "2022-06-06T01:06:39.633774Z", - "shell.execute_reply": "2022-06-06T01:06:39.633106Z", - "shell.execute_reply.started": "2022-06-06T01:06:39.626538Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "Layers with keys: cell_edge, cell_edge_p, cell_inner_asymmetry, cell_inner_proximity, cell_outer_asymmetry, cell_outer_proximity, cytoplasmic, cytoplasmic_p, l_half_radius, l_max, l_max_gradient, l_min_gradient, l_monotony, none, none_p, nuclear, nuclear_edge, nuclear_edge_p, nuclear_p, nucleus_dispersion, nucleus_inner_asymmetry, nucleus_inner_edge_enrichment, nucleus_inner_proximity, nucleus_outer_asymmetry, nucleus_outer_edge_enrichment, nucleus_outer_proximity, point_dispersion, spliced, unspliced" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "adata.layers" - ] - }, - { - "cell_type": "markdown", - "id": "0d5a255d-6547-4413-8c4f-2892356ed6c4", - "metadata": {}, - "source": [ - "## Tensor Rank Estimation\n", - "First we will determine the number of factors used to represent our dataset. To do so, we will perform tensor decomposition for a range of values and calculate the reconstruction loss with the original tensor at each value. Reconstruction accuracy across range of decomposition ranks (1 is perfect, 0 is noise). The best rank is highlighted in red as determined by the elbow method.\n", - "\n", - "
\n", - "\n", - "Note\n", - "\n", - "Estimating rank can be difficult; here we are using a heuristic and therefore may not generalize perfectly to a different dataset. Try increasing the `upper_rank` if the error does not flatten, or increasing `runs` if the confidence interval is too wide.\n", - "\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "17c7a264-68b4-4f38-8203-581a99153cb1", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:06:39.634993Z", - "iopub.status.busy": "2022-06-06T01:06:39.634722Z", - "iopub.status.idle": "2022-06-06T01:06:39.645676Z", - "shell.execute_reply": "2022-06-06T01:06:39.645078Z", - "shell.execute_reply.started": "2022-06-06T01:06:39.634966Z" - }, - "tags": [] - }, - "outputs": [], - "source": [ - "layers = [\n", - " \"cell_inner_proximity\",\n", - " \"nucleus_inner_proximity\",\n", - " \"nucleus_outer_proximity\",\n", - " \"l_half_radius\",\n", - " \"l_max\",\n", - " \"l_max_gradient\",\n", - " \"l_min_gradient\",\n", - " \"l_monotony\",\n", - " \"cell_inner_asymmetry\",\n", - " \"nucleus_inner_asymmetry\",\n", - " \"nucleus_outer_asymmetry\",\n", - " \"point_dispersion\",\n", - " \"nucleus_dispersion\",\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "31dffb1e-3256-4064-86a6-67d4fcb6cda5", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:10:16.703161Z", - "iopub.status.busy": "2022-06-06T01:10:16.702821Z", - "iopub.status.idle": "2022-06-06T01:16:06.456320Z", - "shell.execute_reply": "2022-06-06T01:16:06.455546Z", - "shell.execute_reply.started": "2022-06-06T01:10:16.703133Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Device: cpu\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "1f1c1d6ca0954358bac0742f1a85e38d", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/10 [00:00" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "bento.tl.select_tensor_rank(\n", - " adata,\n", - " layers=layers,\n", - " upper_rank=10,\n", - " runs=1\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "fc11671c-975d-4d1a-b989-0cf60785e7ed", - "metadata": {}, - "source": [ - "
\n", - "\n", - "Note\n", - "\n", - "GPU Support: Tensor decomposition runs much faster on the GPU. See `bento` installation instructions to see how you can take advantage of this and compute signatures much more efficiently.\n", - "\n", - "
" - ] - }, - { - "cell_type": "markdown", - "id": "4ff404e5-e852-4cf5-831a-7d179b9fb40f", - "metadata": {}, - "source": [ - "## Generate signatures with tensor decomposition\n", - "\n", - "`Bento` is able to utilize these feature spaces for predicting RNA localization patterns (see the \"Subcellular Localization\" tutorial). For unsupervised analysis, `Bento` implements tensor decomposition to generate interpretable low dimensional signatures." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "1b9411d6-6005-4a07-bbd9-4de209dd2965", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:16:06.458244Z", - "iopub.status.busy": "2022-06-06T01:16:06.457975Z", - "iopub.status.idle": "2022-06-06T01:16:36.179394Z", - "shell.execute_reply": "2022-06-06T01:16:36.178705Z", - "shell.execute_reply.started": "2022-06-06T01:16:06.458212Z" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Device: cpu\n" - ] - } - ], - "source": [ - "bento.tl.decompose_tensor(\n", - " adata,\n", - " layers,\n", - " 9,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "c2fb8cba-99c5-4a72-bfe4-e86c5f8b9c9c", - "metadata": {}, - "source": [ - "Visualize the signature loadings." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "e952e7c0-84a5-4a9e-b5ca-ac7193f91281", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:16:36.181030Z", - "iopub.status.busy": "2022-06-06T01:16:36.180633Z", - "iopub.status.idle": "2022-06-06T01:16:40.264796Z", - "shell.execute_reply": "2022-06-06T01:16:40.264107Z", - "shell.execute_reply.started": "2022-06-06T01:16:36.180988Z" - }, - "tags": [ - "nbsphinx-thumbnail" - ] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAEMCAYAAABJBfvDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABAeElEQVR4nO3df5wcVZ3v/9enqrrnVyaZ/A4JhCAgPwUEBBVQceWKugqroLDIxV1dcL8qe6+6Ll73atb7ddUre9cV/a5GF5GrCLq7uOqKioiwyooQQBEDEiCEBPKTTDKZzEx3V32+f5zTM53JTCY/ZjJJ5/18PPpRXafOOXWqurr606d+mbsjIiIiIge+ZLIbICIiIiLjQ4GdiIiISJNQYCciIiLSJBTYiYiIiDQJBXYiIiIiTUKBnYiIiEiTUGAnIrvNzDy+FsXxFXH8VXtY3wwz22RmPx/HZu7KfL9uZlUzO3pfzlekzsw+Hr87r5nsttSZWRa/04+bWWmy2yO7R4FdE2v4sb1wstsi+xczO8vMvmdmG82s38yeMLPrzKw8SU36S6AL+D8NbfxvZvYbM8vjdry4sUDD9j389bOGPG8ws3vNbKuZrTWzz5lZa0M1fw9kwHZ1y4HHzM40s3+Nn3PFzJ4zs9vN7M2T3bbRmNkM4P3Aw+7+k5j2SjN7yMy2mFlfDK4+ZmYWpy8eZbtv/KP1CTP7tZltjq+7zezsYfOeaWZLzGyNmQ2Y2dNm9h4Ad68B1wFHAe/YZytExkU22Q2Qg4OZZXFnIZPMzC4Bvg6kwK+B+4BFwLuB/wlU9nF7SsA7gR7g3xsmnQY8DzwDHD5C0euBGQ3jbwYOA5bHel8G/BtQA24GjgPeB5SAPwdw96Vm9jhwkZld7e4bx2/JZF8xs4uBbxK26UeB7wOdwJnAHwP/Onmt26n/CnQQ2l43n7Dd3wtMJ2zXi4GVwFeBXwL/0JD/WOC1wBZgfUy7DNgM/DNwBnAO8AMzO9bdnzWzFuAO4GTgYcL3ZC4hkKu7GfgMcBXw5XFZWtk33F2vJn0BKwAHLhyWfhJh57AJqALPAZ8HysDLY5nHGvKfGdN+H8fbgU8RfkB7gQca5wHcEPN/CbidECi8CjgPWBrLbI7l3jzZ6+lgesXPbmP8fP4vkDRMOxIox/cnEoKsdYQfi38BFjbk9fhaNGxbe1Uc/2Pgd0Af4UfqP4GzR2nT2bHsj0eZ/p04ffFOlmt2nJcDJ8W0z8Txr8bxrjheAeY1lP1yTL9ksj8fvfZ6m/4mkDVMS4HjG8Z3dbt+L/B7wp+Nr9e/FzHPm4BfEQKpp4G/A9rjtOnAt4ENQD/wFPClnbT9J3F+L99Jnu/GPB8fZfq/xOn/pyHttIb3U4CtMc+bY9o74/hPG/cBI9T9eMw3b7Q8eu1/Lx2KPTjNJvy4/Quh1yMH3gO8393vAZYBLzSzM2L+C+Lwpjj8J+CvCMHZTcAC4F9HOL/qSkLvyNcJO8GvEv4h/kt8FYQdrew7ZzHUy/X/untRn+DuT7h7xczmAXcTAvGfAz8j9Br8KP7T3ykzayME94cD3yD8kE4lBI4jOSkOl+3uwjR4N9AK/NTdfxPT+uPwGDObCrwkjpeA4xvK1uf74r2Yv0yexm36b7zhyIC75+7+O4Dd3K7/BriHEBheBlwe63gtoXfrCOBWYBXhUOoXYrkPABcRAqKvEratl++k7SNu+2Z2lJl91sy+DbweWA3cOLxwPPR6AWEf/rmG5V7amI2wzRPbC/AHcZgBT8XDtd+rH8ptoO/GAUiB3UHI3e8A/hp4gtB79lic9Oo4/Kc4fHscvikObzKz2cAlhKDsnlh+GWHn8e5hs7rb3V/l7n/q7g8Qdi79hH+gnyYcIvjEOC6ajG1Ow/unR8lzOaHnYTnh8M9qQu/GscC5uzCPNL42EXrbPubuJxAC/JFMj8OeXah7B/G8wD+Po59tmPRlQs/Jywh/Qn7cMG1ew/stw9ohB5bGbXoFgJl9qvHcszhtd7brd7v7Owi9bzAU2Fwdhw8Stu9fx/ErzKydoQDqXkJg91bglJ20fbRt/1DgLwhBYgrcydBh1kbvi9P/zd1XDJ9oZhnhT1YZ+Ja7/ypOmhWHZxGC3N8Df0gIVhvpu3EA0jl2ByEz+zDwtyNMmh2HNwKfBN5mZp8HTgDud/ffm1m91yMhHK5odNSw8XuGjV9FODxW31lujHXcvNsLIXtqXcP7wxkK6hstisPj4qvR8M94B+6+1cz+HPgY8D0AM1tF+GH92QhFuuOwc6y6R/E24BDCD/b3G9qx0syOBS6N0+8nbH9Hsv2P5NRh7ZADS+M2fRiht+zn8f0fN0xbFIe7sl0/GIfdcThlWB3nxVedAS8g/LE4Gfh/CIFZDtxiZpc39o436CYEWZ2EQBEAd/+ZmSWEoyFLCH+y+4E/G5yh2RTCIVXY/g9NfXo7YV/7ekKv+X9tmFzf/n/o7pfFP+zrgFPMbKG7r4zT9d04AKnH7uD0tjj8a0Jw/1dx3ADcfT2hV20O4dw7GDoMuyIOK8Bsdzd3N8I/wj8aNp+BYeO3ufvRhB3ZRcBM1GO3r93D0A/IX8cfDwDM7PB4IcOKmHRr/fONn/EhDPXmjuVr7r6AcCL4XxB6IP7nKHnrh06H/9juqr+Iw39w93rvDPEqws3u/nl3/wjhx+lIQi/zLxvK1+f7IHIg+gXhPE6AD5uZufv3CUF8oxVxuCvbdf1wrg9Lr9fxF8PqONLdfws87+7nEwK1k4FHCMHlWaO0fYdt38w6ATxYBfxHnPTCYWX/BJgGLHX3/2icEK+2/QkhqLuRcA504/74N4xua8N7fTcOQOqxOzh82syuaRiv/7BfRvineuEIZb4CvIXwr7Qg9qq5+3oz+xbhEMO9ZnY7IUA7B/giO79txINmtoJwGOSwmNa920sje8zde83sfYSd/duBF5nZrwgB2HmEK+O+AfwP4I/M7EeEH7MjgVcCRzP047Yza+NtR54FXhTTukfJey/hkOlLzayl/gNkZu8iXFhxasx3YTwH6Dvu/p2Y5xzC1bPdhENOjTqAR83sp4R9Xf2Px2J3bzz09UrCH5Xbd2G5ZD/j7tvibTq+QQh2TjWze4GFw7KOx3b9BUKw9Ol41XUf4Ty5mYTz7q4xszcRrjStMNTDt3mU+r5POAXmlQwd4fhOPIT6KOEQaP1UmB/VC8U/LfXDwp8dod7vEU5B2ET4blwb75byQ3f/IaEX8BrgfDP7BkNB4/fd/fk4jwWE9fOguz+3k3Ui+5vJvnpDr4l7MXSl4vDX/yAcluonnEz8P2P6Qw1lE8I5WA7cMazeKYRDtY/HOlYTzs14aZx+AyNcxUg4ufcJws5wM+G8kRdP9no6GF/AKwiHZ54n9Kw+QbwyOk4/ifDjsJah8yg/C0yJ08e6KvbbhAB+IM7j+/W8o7TnkzRctTdsOxr+WtyQ559j2rUj1NkSt+/u2I6HgXcOy3NaLP+Nyf5M9NrrbfrsuM1ujJ/3M8APGz/zPdiuPxvHb2io40JCj+/muG39CvhvcdobCX9UuuO+8ffA+3bS5pmEHrLfNKR9NO5b6/vJXxMu0LCGPH8Y2/UsUBqh3vr3cWffnZcQegP7CPvwLwJdDdM/EMv82WR/tnrt3sviByiyAzP7R8IFEe909+snuz3SvOKhoyeAR9z97LHyj+N8v044NeF4d398X81XpM7MPk74c32ex5sUT7bYY7iccDus4929OslNkt2gwE52YGbHEy6h/wDhvLuF7t47ua0SERGRsejiCRnJGYSrZnuByxTUiYiIjD8zu97M1pnZb0eZbhYehbjcwiMWTx0p33Zl1GMnIiIisu+Z2SsI51ne6O473LDfzF5PuF/h6wlPgfoHdz9zZ3Wqx05ERERkErj73QzdrmckFxCCPnf3XwJdZnbIzupUYCciIiKyf1pAuMK7blVMG5XuY7f/0DHx8WUTUemsWTP98AXzIc3AHcsr4I4nGfRtgawFSxLAybf2kE7twqsV8AJap0DS+JWrf+SxqXkVwr2msCLHLRnMY0UxOC3cjCbdsXHuIb3IY7WxXkvC/M1CHmyw3fV6PM3iDREa8iVpKEsoMzStGGpzkQ/NZ3Bevn1aUQv5G5aH7U4BifXjQ+Ub5+3O9l+PYR+tJVAbCGXq867fd9mL7d83Lkd9HXl9HedD69cSrN5uPHwWeZVwLzDDk7RhGQ3zfLBdxbYerFTGqwNgRtLSjhcFlFoAx7zAazXwAsvKeFHD4nbhWTms07QU11tDu+ufrSVDn4MlrHxoGQsOm87A5m08uqVng7vXnyAzbqa3lv2wGdModU0Py5FmUKtgeQ2SBK9VsFIrHteP5dXwvaj2Q6llaL3l1bBuk4SirxcrlcMiVisUlSpp51SoVbHWdrwygGXxCV2D20KBF3FbKLXAti1htWdlLM3wvBbKt7Th1QG8VgvfxySF1o6wzt3Z8vgKWrvawCHraMPSlNq2bWTt7VhrR1iOtLzjihjcnurb7Ai8iJ9ZlGThs0yyoXJ5JabnYV3mNSyW87Q0tJ/w+nd5pO97yG95FS+1hbTB+YygqIVtPS1htQE8C4/HtVo/npSwvDJUz0iLtWVD+BqXWsPnWjjW0hbWe1aGgW1YYuHzKbWEfYwl4ZXX8KwU9plFLX6UedhHzpw3+J212gBuSVymlrCuGvZTQFh3AGmZLb99lCnzu3jo6ecmZLt/T7Jor3+X/z9/+irCc9Prlrj7kr2td2cU2InshsMXLuSXP/hnio6Z4AXZ8yuxvELeMZP8oTvI5i4k6ejEa1V67/0pHee+mWL9Srx/G3bsy8mnxH1P3CFjhqdl8IK0Zx0kKW4Jad8milJ73AkWWKUP4o+cW0LROm2HtllepWibRtq7MQSa9UCw3A61yuAPCElC9vxKKHK8bSoUBfnUuYPz8awl7GDbpoWdvxd4WsaqfXHn2z8YLNlAb1iGJAsBS7k97HgbfhSTreshyShaOqAowg9YkcfAiaH6a/3hh8Udb+kI74s8rqvKYH0e67aiBpbgWQvpppV4uSPkT1K83I4nGUn/lu3fZ2WSgd7w4wl4qXXwRzXZtinWn+FZK2lsN16Etm9cHQKRJMWnzBhcB56WSfp7Btd35dd3kc1dSO25pyArUz7qJLyvF+YdCUUNqw7gm9bgtQrpzPkUPc9jU2dhXlCbuQjr7yGfOo9063rcEpJKL1hC3jGTtHdjaEtaxirb8FIrV08/g0986GKe+P5SzvzRnaM9/3evLJjSzg/+7ELmXfgWfP4xFB0zSLtXYd1rsLZOauueIT30hWG7SzJs8xqoVaiueoLskEWD6y3ftI6k3Iq1dTDwyK/I5oV7CNfWrKR31XNMf8VrqG1cQ+mFp5Gv/j3Z7AXxc2oLgUelHx/oD2nzjyFf+kNIUrLZC0i6ZlN0r6e2cQ3lF5xA7bkVYX7tnVhbBxzzcpJKL5ZXuPP8P+WYPzqJvFpjzhkvIp02k+fvu5/pp51K6bgz8LRMbfrw+xuDVfuG2lLfxhv/PADJQA9W7Q/bdZJRdMwk6d2It00L37mshWzTSvIps0n6NlO0Tyfduh6r9WMDveRT55F3zg119Yf7GhctneH7FQMlK2pYbQCrbCPd/CyVBSeH/L0bB/dNjW2qT7PaAPm0+ZTW/Z7qnHBP4tLax8inziHbtIrKISfsUK7Ob/8yJCmlBUdSXf0EPtBH+QUnYl1zyKcfSvLUA1hLKz7Qjx9yNMnzz2At7Xi5DTavw6fPD9/lLeuhyCn6etl01x10/elfQVoO6+X5FXjWim1eQz736NCWokbRNvSo2uz5FWGbmbGIO154Jud87EKm/en/mpDtvi3d+4OaXvUlhBtC76nVDN3QH8JTfFbvrIACu4PUsmN3fHrTcY8um4SWiIiI7H/a0gk58LO7vgu818xuJlw8sdnHeBKIAjsRERGRYUo28YGdmX0TeBUwy8xWAR8DSgDu/kXgB4QrYpcD2wiPzdspBXYiIiIiw4zHodixuPulY0x34D27U6cCOxEREZFh9pNDsbtNgZ2IiIjIMOVEgZ2IiIhIU1CPnYiIiEiT2Bfn2E0EBXYiIiIiw7QqsBMRERFpDmlZgZ2IiIhIU8jaDswQ6cBs9X7EzK4H/hBY5+4nxrQZwC3AImAF8FZ33zRZbRQREZHdk7UemCHSgdnPuH+5ATh/WNo1wB3ufjRwRxwXERGRA0RaTvf6NRnGDOzM7GIze8zMBsxsnZn91Cw8JdjMVpjZ1olqnJnNN7PFZnbhRM1j2Pw+Z2ZrzczN7Pu7Usbd7waeH5Z8AfC1+P5rwIXj10oRERGZaFlrttevSWn3ziaa2Szg68DvgXcDM4A3APWbu7wPKE9g++YTnpv2NeA7u1vYzDJ3r+1msZuBq3d3XsPMbXhI7xpg7l7WJyIiIvvQgXqO3Vg9di8gBG4rgVvd/e/c/dXunsfp1xF7psysxcxuNLMeM7vNzO6KPV+L4svN7J44bYuZ3WQWnrBrZr+MadvMbKmZnRPrvy8Or4jl32FmN8T3p8eyW81sRXz/jjjtFjN7BPiWmZXN7FozW21m3Wb2bTObPdLCuvvVwN/v0ZocRXzOm480zcyuNLP7zez+JUuWjOdsRUREZC+UWrO9fk2GsQK7ZcAG4PXAxhiEvGuUvFcBlxPOKfsZcPYIec4E7gYeAy5tyHM78H5gMTAPuD6mfyQO74757xqjvXWvBb4E3Ah8GPgA8D3gs8DrgC/uYj17aq2ZHQIQh+tGyuTuS9z9dHc//corr5zgJomIiMiuSsrpXr8mw07DSXfvMbOzCIHR+cBpwJfNbLW73zYs+7lx+EF3X25mbwJePizPve7+STNz4HRgkZk9CJxKCMAG14KZtQE/Bj4BPOXuN8f0XVmu6939czF/PTi8qmH6ebtSyV74LnAF8Kk4/LcJnp+IiIiMo8nqcdtbY51jVwIed/er4vjfAB8FTgSGB3Z1Ix52jOoXGdTPe0uBtxN6BG8iHNb9W0IA2TJKXfXDwJmZtQBtI+R5dth4jXBLknrZcbsa2My+CbwKmGVmqwjnBH6KcBj4ncDTwFvHa34iIiIy8dLW0mQ3YY+MFY6eANxkZjcTApRXxPSHR8h7J+Hqz8+Y2b3AS3ezLVOBk4AXNaTV7/32YjO7lHDIdkVMuxx4G2MHad8n9A5eAfwEOB44gtAbuB0zewMhaAU4LB52vsvdHx+tcne/dJRJfzBGu0RERGQ/lZYnvsfOzM4H/oHQ0fUVd//UsOnvAD4DrI5Jn3f3r+yszrFavQZ4lHBF7EzCuWKL3f2HI+T9EiGAuoDQ27YUeAnQDXTtZB7fAN4CvCaO311/7+5PmtlNwJsJPXrnAF8G3ghcRjiHrm+MZfgk0EE4R+9C4KnY1pH8JfDK+P6kOK8/AUYN7ERERKT5pK0tE1q/maXAFwinh60C7jOz77r774ZlvcXd37ur9Y51jt0aQlA12vRFDaMl4AHC4dSjgM8BS929mxDcWUO5a4FrG8qOes6bu182QvIZDe+vbsh7A+GGwY3lK8CH4mun3P1VY+URERGR5pe1TuTd3IAQyyx39ycB4tHRC4Dhgd1uGc9+RiP0bh0DbCWcg/f+caxfREREZJ9IxyGwM7MrgcbbXixx9/r9zRYAzzRMW0W4e8hwbzGzVxDuKfzf3f2ZEfIMGrfAzt17gJPHqz4RERGRyTIe59jFIG5vblT7PeCb7j5gZlcRjoq+emcFDsxreUVEREQm0Hj02I1hNXBYw/ihDF0kAYC7b2wY/Qrwv8eqVIGdiIiIyDDZBF88QXi61tFmdgQhoLsE+OPGDGZ2SMMjSt9EeHDETimwExERERkmKU1siOTuNTN7L/Ajwu1Ornf3R8zs48D97v5d4Or4wIca4V7A7xirXgV2IiIiIsPsg0OxuPsPgB8MS/tow/sPE57MtcsU2ImIiIgMY+XWyW7CHlFgJyIiIjKMlSa+x24iKLATERERGUY9diIiIiJNQoGdiIiISJOwFgV2IiIiIk3BMp1jJyIiItIUdChWREREpEnoUKyIiIhIk7CsNNlN2CMK7ERERESGyyb8WbETQoGdbGfenQ/tkLbm3FP2eTtEREQmk6fqsRMRERFpCq6rYkVERESaRHJghkgHZqtFREREJtCBeig2mewGNDMzO9/MHjOz5WZ2zWS3R0RERHaNZ+W9fo1lrDjBzFrM7JY4/V4zWzRWnQrsJoiZpcAXgNcBxwOXmtnxk9sqERER2SVJtvevndjFOOGdwCZ3Pwr4e+DTYzVbh2InzhnAcnd/EsDMbgYuAH43qa0SERGRMXk64RdP7EqccAGwOL7/Z+DzZmbu7qNVqsBu4iwAnmkYXwWcuauFR7vtyKJr/n2H9BWfegOLFy/eIX2ktH1m8bQR0jaPmv2AX14REWkq++Acu12JEwbzuHvNzDYDM4ENo1VqOwn6ZC+Y2UXA+e7+rjh+OXCmu7+3Ic+VwJUA1113XevcuXP7R6qru7t7VldX1w4f4u6kj0cdB1I6sOHiiy8+f4T0vWJm64Gnx7tekXFyuLvPHu9Ktd3Lfm5Ctvvx0Pg7Hy1x9yVx2q7ECb+NeVbF8SdinlEDO/XYTZzVwGEN44fGtEHxw10yVkVmdr+7n7436eNRx4GUPlH2152HyETSdi+yZ8b4nR8zTmjIs8rMMmAasHFn89TFExPnPuBoMzvCzMrAJcB3J7lNIiIisn/YlTjhu8AV8f1FwE93dn4dqMduwsRj4e8FfgSkwPXu/sgeVjdatL876eNRx4GULiIist8aLU4ws48D97v7d4F/Av6vmS0HnicEfzulc+xEREREmoQOxYqIiIg0CQV2IiIiIk1CgZ2IiIhIk1BgJyIiItIkFNiJiIiINAnd7mT/ocuTx5dNRKWtlvpxC+dgWUpRrZHOmAOWgBeDD3y2ah+eZDD4OBoHDO9ei5XKkCRQq7F19QZKHWWy1jJ5pUpSysDB0oR0+izMi6HFKHJwhzQDHK8MQJpCUWBJiuMYBgZeq4GFcpaVBt9TFHHNGJ5kmOehXZaE9x7bmcbdwsA2cMey0C4vanFRGlZtfbmLHHCs3NqwJXuo05KwGA3zD5Mdz2shKUkhSUM+B08SzH2wKov5aUjxJA11JSm+eX1Iy2sk5RY8zyEZWm5LM6zcEvLUKrEN1lCnQZHjeS2ss3q7PY8P806gGsuZhfrj5xPWTwGWhrqSJJQttYSWFvl26xvCcluSxvVvWJEP+2yKuCLAqwMUfdvCfHCs1BLXp4f2tA89vu+BBx/cMBE3E56WZn7UySdRW7eKbM4C6OvB+7fhDp7npB0d8fPMqfVuo9TZQVGpYllGpXsLWVsLlibkA9X4eSdkHe1hG3bwagUrlfGBvjDDLMPMIGvB+7Zire34QB+eF1gpw5IUa2mjtnkTRaWGpQlFtUrW1kqtbwBLE9ydtJSBGUmWUunZRqm9lbxSpdo7QF4taJveTlHLKXW2U1Rr4E46e8EOy2+1ATwrM7Rb8aH3eRXSElbtD3ksGZxu1f7wmaYZ3r0ea58CcZuvf4et1Bq2n7wGU2aEekqtw1rg8fsTt/8kwyrbQt2ltpBW1LCiRvgOl2I76m1vGZqe5+E7E9tB65TB8uG7mgwu04i8iHXlQ/P2YnC5rVYJ+4MkwSv9WFbGK/2QZliagiVxPaXQtwVaOsL3LC1jA714dSC0zRJs6izwHKsOxO9dDVo7G9oavsMPPPTrCdnuD1QK7ER2QycZd37kTyhP76Jv7Xo6L/kLyMpYZRt551wAyqt/TdExk1rXoQBYXsHTMrV//QylQxZhbR0Um9ZxzzVfZcFLD2X6Cw+j55m1tM+biecF5antdF10JVbpi4FLgvVtCTvHzlngTr769yRTuvD+bSQdnXieh51mkpJvWhcCrKIgnTkPz8KPhFV6w0IkKUXHTGygN+wsy+3YQC+WV8ASalPnhcBixUN4pZ90+hwocvKebijywboBvNJPMqWLYtuWML/DjgUvQvmihteqWLktBLr9PViShB8ML/BalaJnExQFSUcndEwPO/OiRtHaGdZb/ccpr4V5F7XBYDLvmBmWpW0a+W1fgiSh2t1Ny2FHUPRswlrCj473biGZPofSoUeG9bN+NWQlLCuFdVoUkCQUvT0UmzeSzpwXfpiyMt7fS9LZRdLaQW3tyrDsSUqxtRvv64WsRDp9TvgBa+0IbWzrICm3wiFHgRck/T3kHTNJ+nsGf4h88zqSKV1gCUW5jWRbN14UWFYi75xLUtkKeVje2nNP0vubB2iZMwuKgmz+ovDDPNCPlUoUL37D4I94W3v7hDz2a26pzC9+8Qs2ffaDzHjvJ0h+9zP6H3sIzwsGunuYdvqZeLVCsbWb9f/5IHNe+TIqz62iNHMWK279CbNOOpLy1A42Lw831c86Wpn50jOwjqlQ5NTWrCSbt5CBJ8Kzz7MZs7GsRDZ3IX0P/5LWY05hYPlvqPX20zJnNtY+lfKRL2LTbd+m55l1lDvb6V29nlknHcXGR56kpauTWn+FKQtmkZQyWqZ3svquh5jz4hfSs3Itq+99kt612zjurafSt34T8895MX3rnyfvrzD1PZ8KCz0YrEBpw3JqXYeFAKnhOw2Qbn6WfNp8ys89Qm3mIopyx2AwVVqzLGxzU+cy8L0v0nbyyym2PA9AddVyks7plBYcidcqFJs34mddQmnNMqpzjxmcN4TgzKrbQtBkCfmU2ZSfeQDSEpX5Lwrt6FlLsq0b0pS8cy5FS+dg26uzjhqavnUjdEzHu9cBUDv2lQAkvRuh1EpR7iDrXjW4/xoU10cy0EOybRNJ3+Ywby/C8pbasLxCtnFFCNhaO8mfeZRs7mFUVjxKOn02ScdUrKWd2oyFFK3TSH/zI/zoM8J3ZNp8sqd+RW3NSvJN67GWVuw17yQZ6CFb/0T43m3eSO34Vw+21dMSlldp6Zqtx901UGB3kFp27HE7pB336LJJaImIiIiMF51jJyIiItIkFNiJiIiINAkFdnvJzK43s3Vm9tuGtBlmdruZPR6H0yezjSIiInJwUGC3924Azh+Wdg1wh7sfDdwRx0VEREQmlAK7veTudwPPD0u+APhafP814MJ92SYRERE5OCmwmxhz3f25+H4NMHcyGyMiIiIHBwV2E8x9u7uqbsfMrjSz+83s/iVLluzjlomIiEiz0X3sJsZaMzvE3Z8zs0OAdSNlcvclQD2i05MnREREZK+ox25ifBe4Ir6/Avi3SWyLiIiIHCQU2O0lM/sm8J/AMWa2yszeCXwKOM/MHgdeE8dFREREJpQOxe4ld790lEl/sE8bIiIiIge9MXvszOxiM3vMzAbijXh/ahaeTmxmK8xs60Q1zszmm9liM7twoubRMK+jzexOM9toZj3xxsJHTvR8RURERMbLTgM7M5sFfB2oAO8GPl2fFIfvY+hcsokwH/gYe3gfODPbnR7JBYT18THgq4RDqF/Zk/mKiIiITIaxeuxeAJSBlcCt7v537v5qd8/j9OuIN+I1sxYzuzH2dt1mZneZmZvZovhyM7snTttiZjeZmcWyv4xp28xsqZmdE+u/Lw6viOXfYWY3xPenx7JbzWxFfP+OOO0WM3sE+JaZlc3sWjNbbWbdZvZtM5s9wrLe4+6vdPfPu/vVhJsOn7BHa1VERERkEowV2C0DNgCvBzbGe669a5S8VwGXEx6h9TPg7BHynAncDTwGXNqQ53bg/cBiYB5wfUz/SBzeHfPfNUZ7614LfAm4Efgw8AHge8BngdcBXxxewN0r9fcxaJwR5ysiIiJyQNjpoUp37zGzswiB0fnAacCXzWy1u982LPu5cfhBd19uZm8CXj4sz73u/kkzc+B0YJGZPQicSgjA0npGM2sDfgx8AnjK3W+O6buyXNe7++di/npweFXD9PNGK2hmxxJuV7KCcKhZRERE5IAw1jl2JeBxd7/K3Q8HPh4nnbiTYju70W79maq1OEyBtxN6BG8h9LQtjdNaRqmrfhg4M7MWoG2EPM8OG68RAtPz4uuikRpnZscTehsrwKsbHgsmIiIist8b61DsCcAjZvZRM7sCeEVMf3iEvHfG4WfM7K+Al+5mW6YCJwEvakjbFIcvNrNL48UcK2La5YT7w421DN8n9ExeASwkBHhXDc9kZofFZZhFOFR7ppldspvLICIiIjJpxrpqdA3wKOGK2JmER2MtdvcfjpD3S4TDqxcQetuWAi8BuoGunczjG8BbCFehQjiv7TUA7v6kmd0EvBm4CTgH+DLwRuAywjl0fWMswyeBDsI5ehcCT8W2DnckMKehTN3NY9QvIiIisl8Y6xy7NYSgarTpixpGS8ADhKtkjwI+Byx1925CcGcN5a4Frm0oO+o5b+5+2QjJZzS8v7oh7w3ADcPKV4APxdeo3P1njW0UEREROdCM55MnDPgT4BhgK3Ab4UpXEREREdkHxi2wc/ce4OTxqk9EREREds+YjxQTERERkQODAjsRERGRJqHATkRERKRJKLATERERaRIK7ERERESahAI7ERERkSahwE5ERESkSSiwExEREWkSCuxEREREmsR4PlJMmsC8Ox/aIW3Nuafs83aIiIjI7lOPnYiIiEiTUGAnIiIi0iQU2ImIiIg0CQV2IiIiIk1CgZ2IiIhIk1BgJyIiItIkFNiJiIiINAkFdiIiIiJNQoHdBDKz883sMTNbbmbXTHZ7REREpLkpsJsgZpYCXwBeBxwPXGpmx09uq0RERKSZ6ZFiE+cMYLm7PwlgZjcDFwC/25XCoz3aa9E1/75D+opPvYHFixfvkD5S2j6zeNoIaZtHzX7AL6+IiMh+QIHdxFkAPNMwvgo4c5Last9YduxxO6Qd9+iySWiJiIhI8zF3n+w2NCUzuwg4393fFccvB8509/c25LkSuBLguuuua507d27/SHV1d3fP6urq2rA36eNRx4GUDmy4+OKLzx8hfa+Y2Xrg6fGuV2ScHO7us8e7Um33sp+bkO3+QKUeu4mzGjisYfzQmDbI3ZcAS8aqyMzud/fT9yZ9POo4kNIninYecjDSdi9y4NDFExPnPuBoMzvCzMrAJcB3J7lNIiIi0sTUYzdB3L1mZu8FfgSkwPXu/sgeVjdar97upI9HHQdSuoiIyEFH59iJiIiINAkdihURERFpEgrsRERERJqEAjsRERGRJqHATkRERKRJ6KrY/YeuYhlfNhGVzpo1yw9fuBB6N2GlFp5+5Cm6yilZS0p5ahtZWxuVLVvJWsvkA1WSUkpeqVFUa2zdMkBLmlDqKOEObYuOwLdsxLISVirj5XbIq5Bm+Ob1WFYGLyBNybduJclCXWk5o9ZfAaDWVyHJEixLMTOq2yq0zeykqNZIShmYUdvWjyUJSZZS5DmWJFR7+yiqBQB5tcAMippTnlIiyVIwozS1A0vDLsJrVZLWjsH14EWBpWkc8fBKUuqbsScp5gVu4b+jFUVYFktCnqKAJMGzlqE09/h+99lAL+5heSi1YEWB1ypQq5IPDITl75pF2CzifMzCPIcWCrzAalW8yKFWxVraQl7P8XIHFLUdyw5vc17BihzPytC7GabMCNkq24bWV5LiWQmKHPp7w3i1wsCmzZQ62khKGZakYT1PnTlUd/9WvFoBL0japoAZXmqD/h4sSVj6yO83TMQ952ZN7/LDZ3dRVAbIB6pYmlCaPiuszqIYXB+e17CsFD/fuH2Y4UnasK4dMKzIAQ/biCWQJKFcmkFeg7TUkJ/43YhpRT60zVkSty0DLOQzi21i+2lJGj7DpOGnr6iFzz2v4XkN2jpjmTQMiXUUeay3/nlbSE9iviQbWrZa/+C2P7hdV/vDtDQdbJsXYTnrOytvWD4rctziejLbfjpg9eUEfKAvtCNJIM8H6/BqBdIMSwwsDZ9PmlEM9JFOmRamt7ZDtRLy1NfRdus4iasgh1IbeA4DffHzrmKlFga/UwClFqhVsPi5Ftu2YKVyWDVxf0JLO1iC1QZCO+vLlZYgrwytS4vbBMR2DN+tOxQ5D/z64QnZ7g9UCuxEdsPhCxfyi1/8AvvPb5PNP4L3HHc5FxwyjRlHz2DReScy7cTjefb2/2D6CxeyecVztM/uYuvq9fSs3sS9tz/FwhltLDjjEPJKzvH/9H+p3XEj6cxDyOYtpHr46aRb1lC0Tyf/wT+Szl0YdpAdU+n+xd20zZlOz8q1dC6cy6Zl4SEAG5etpnV6K60zp5G1lnnu/qc44YpXs23NRtrmTCfJSmx8eDlpa5m2mdOo9PSStpZZc++j9K7bRpEX9K7dRpIafZv6OfRlC+iY00lSyjjkD84inRaCinzjc7QcfwYed7Le10vS2RV2vHkVr/RDx3QsDwFn0T4dq/ThpRC4Jf09eKUPK7eBF3hfD9bWSW3mIoqWTqw2gOUVipbOsKLrP6gw9IMxGBgOew+UnrgHH4gPbpn3ApKBXvL1q8g3PsfW5cspd3bQ9oY/DcFWUUBWxtMyllfwJMOKGlbZhlX7sE3PUvT1kq9fTfmokyBrwfu3Uj3iTNKt6ylapoQfpRgQDLY5tivbtJKkbzO1mYvwpbfhL38rWEL5mQfC+qtVoGM6edd8km2byB+7j6Szi9pzK3jilh9xyMuOp23ubJKOToq+XtLz/hQraniSkSy7m9ralfhAP60nnwVJSmXByWS/+ynW1kF2wrkT8nSIRQvm8fP/85cMPPMUW556jqyjlTmXvDOsh0pvDJhy8k3rSWfNx/t6wvbgBZ6WwvZQG8DjevMkI+nbjBU1ipYOSMsUrZ0k/T3knXNIep8n75wT6s8r4E7as5a8c27YJAa2klT7KNqmhe2n2geW4GmJtGddCBTSLATAA7141oKnGUXb9PAZtk/HY3CXbl0fPvct6yg2b6Q44Vys2je4XUIIypP+zWEepbY4ryxs462dWLWffMrssD2lZUprHwvbftwmPGvFVj8KSUoydQaehj9tvmUDzFyA5TUA8q4FIcjs7yHp24yXWki2dYeAxwvyafMH6wzLWQag9uRvSDq7sHIrxdbukKWvl8qzT5N1zcDKrVhrB8WWjSRTZ9L/xDKmnPVaamtWkh59Kqx7GmtpxbIS3jIlzKNvS9j/xEC36N1CcdiJJP09FE/9Gq9WKbrXkS04MvzxK7cOfv/Y8AzW0oaV2+i/73ay+UfgeT64PylecDpFuYPShuXQ241PmxeWY9p8su5VFB0zoaiF9VYNf4i83DG4vHVWG8AGttIy+zA9FaWBDsWKiIiINAn12B2klh173A5pxz26bBJaIiIiIuNFPXYiIiIiTUKBnYiIiEiTUGAnIiIi0iQU2ImIiIg0CQV2IiIiIk1CgZ2IiIhIk1BgJyIiItIkFNiJiIiINAndoHgCmdkKoAfIgZq7nz65LRIREZFmpsBu4p3r7hsmuxEiIiLS/PbqUKyZXWxmj5nZgJmtM7OfmoUnc5vZCjPbOj7NHHHe881ssZldOFHzGDa/e82sx8y2mdn9ZvaKfTFfERERkV21x4Gdmc0Cvg5UgHcDn65PisP3AVfsVet2bj7wMeDCPSlsZrvbW3kPcDXwv4BTgK/sQhkHfmxmS83syt2cn4iIiMhu2ZseuxcAZWAlcKu7/527v9rd8zj9OuBrAGbWYmY3xh6v28zsLjNzM1sUX25m98RpW8zsJjOzWPaXMW1bDJDOifXfF4dXxPLvMLMb4vvTY9mt8Tw34nQ3s1vM7BHgW2ZWNrNrzWy1mXWb2bfNbPYoy/t+4HvAHcAAUOzCOjrb3U8FXge8Z3gvn5ldGXv/7l+yZMkuVCciIiIyur0J7JYBG4DXAxtjgPKuUfJeBVxOCIp+Bpw9Qp4zgbuBx4BLG/LcTgiqFgPzgOtj+kfi8O6Y/65dbPdrgS8BNwIfBj5ACNg+SwjAvjhKuWnAeuBeQi/laMs6yN1Xx+E64FbgjGHTl7j76e5++pVXqkNPRERE9s4eB3bu3gOcBSwBVgGnAV82s9eNkP3cOPygu38a+OUIee51908C/xLHF5nZFOBUQrD1acLh16PMrA34ccz3lLvf7O5P7WLTr3f3z7n7d4A/jGlXEQ7rdgDnjVJuK/BfCIdjW4GP72wmZtZhZp3197Hsb3exjSIiIiK7bW/OsSsBj7v7Ve5+OEOBzok7KeY7mfZ8HNbiMAXeTugRvIXQ07Y0TmsZpa76YeDMzFqAthHyPDtsvAacTwjozgMuGrHh7jV3v93drwN+BZwbzzMczVzg52b265j/3939hzvJLyIiIrJX9uZ2JycAN5nZzcDTQP38sYdHyHsn4SKHz5jZvcBLd3NeU4GTgBc1pG2Kwxeb2aWEQ7YrYtrlwNsYO3D9PnA64SKPnwDHA0cw1BsIgJm9Fngr4QKKw4CXA2uBjaNV7O5PAiePMX8RERGRcbM3gd0a4FHCFbEzgXXA4lF6pb5ECKAuIPS2LQVeAnQDXTuZxzeAtwCvieN319+7+5NmdhPwZuAm4Bzgy8AbgcsI59D1jbEMnyQcfr2UEHg+Fds63POEcwD/mHDhxM+BD7n7znogRURERPapPQ7s3H0NIagabfqihtES8ADhKtmjgM8BS929mxDcWUO5a4FrG8qOds4b7n7ZCMmNFyhc3ZD3BuCGYeUrwIfia1Tufh87P8QsIiIiMun21ZMnDPgT4BjCRQi3Ea50FREREZFxsk8Cu3gFrc43ExEREZlAe/VIMRERERHZfyiwExEREWkSCuxEREREmoQCOxEREZEmocBOREREpEkosBMRERFpEvvqPnZygJh350M7pK0595R93g4RERHZfeqxExEREWkSCuxEREREmoQCOxEREZEmocBOREREpEkosBMRERFpEgrsRERERJqEAjsRERGRJqHATkRERKRJKLATERERaRIK7ERERESahAI7ERERkSahwE5ERESkSSiwm0Bmdr6ZPWZmy83smsluj4iIiDQ3BXYTxMxS4AvA64DjgUvN7PjJbZWIiIg0s2yyG9DEzgCWu/uTAGZ2M3AB8LtdKTzvzod2SFtz7imj5l+8ePEupe0zi6eNkLZ51OyjLe+ia/59h/QVn3rD/re8IiIi+wEFdhNnAfBMw/gq4My9rXS0QOdAsezY43ZIO+7RZZPQEhERkeZj7j7ZbWhKZnYRcL67vyuOXw6c6e7vbchzJXAlwHXXXdc6d+7c/pHq6u7untXV1bVhb9LHo44DKR3YcPHFF58/QvpeMbP1wNPjXa/IODnc3WePd6Xa7mU/NyHb/YFKPXYTZzVwWMP4oTFtkLsvAZaMVZGZ3e/up+9N+njUcSClTxTtPORgpO1e5MChiycmzn3A0WZ2hJmVgUuA705ym0RERKSJqcdugrh7zczeC/wISIHr3f2RPaxutF693UkfjzoOpHQREZGDjs6xExEREWkSOhQrIiIi0iQU2ImIiIg0CQV2IiIiIk1CgZ2IiIhIk9BVsfsPXcUyvmwiKp3eUvasYrQlRltrxpQFs+jfsIny1HYGunux1Ci1t1Lt7adl+lSsXMaSDK/0U+3pJZvSjqUZeAEdXWAJbN0ISQptnVi1H5IMT0thGh4XJQ7zSmhIWg7DogbuYA2Lm6SQVxvKAUk2lN+SkN/B8koonyRQ5IDheQ3KbZBmoQ7PoShCmXo9Hse9AEt3Yw3Wl2c3eRHXxyj1jTR9cFkTKGpYkUNRw7MWrFYZXA+epOAFVhShHsDTDNJSWCfJCLvJvBrXD8OWx8P6LHLyTetJspRkShcUOZ5XsbQESYL3b8Nr1TD/vMDznLS1lb71m0jLKUm5BIWTlDKKPMeShLS1hVpvH2lrGa/lJK1t4DnW0kHPE0/TccgMHnxy1YaJuOfcrM4OP3zhgrBOshbAseoAniTssJ0VtZCvMT2vhe3SizCsb8sWyycJbH0ea2kHS/DqAFYqQ1HgWXn7z6Bh27NaZfDz9PrnkWRhm61vl/VtozYAfVvD51bUwvQ0xZKUgXVrKU+bCmZYa0colrVsX77IY9vjNlfkWF4Fz/E8x7ISnmRhO8PxtBSmw9B32QnbQlaGvp7QlrwGpTK445UBkrYpoU53LElDeq0S213g1crQd94dSxKspQ3Pq5DnMGXG9h+eF6HtXoS2JenQsm2XLyyPJ1nD+h7+/fKwj8LwUmuYntewoha+R5X+sB6qFUhTqFawcsvgd9OzMliKVftCG4oaxeaNg7OxLHznrNRC0d9Hra+frL0VS5KwjeR5+IxKLZAk9K5cQ8v0dn6zev2EbPcHKgV2Irthfkcb51Smc+KUFk48egYv/dt38fhX/4WFrzmV5d+5l5apZea8+CjWLn2cIy96Ndn8I0g7u6iu/D1r7volc886jWTqTLzST3LmBXjWgv/HN0k6psKJryJ97lHonEk+9RCKcgeWV+KPRQ1PMrJNK8ES8mnz8SQj3boeqw2EnWQMSor26aRb1uBpOQRuQNExE7eEtGctXmoLO2UvyDatwqsD0NoJ27qxrES+eSMcdkIok5ZIBnqwSh8kKUX7dDzJSCq9oV21forWEZ4LXNcYcHkRfjgaf1S8wLwIPyY7kQz0ULR07pBueSUsZ7UPL7VtX6Z3I15uh7REsm0TSf9m6NlIMfsFJBufxspteFqiaJuG1QZI+nvCjz9QTJlFPnUe1t9D0TFz+3kWNdIta8g754RFSLLBZbS8AkVO0reZzbd8nrbZ02k9+wLo7SbftI5s5jy83EFt+YPU1q/GkpTatj4GunvoPOaFLFtyK1MOmcrUIw6h1lehfc50Kj29pK1lprzwGJ6//0G6jjmCgQ3P037ci/D+XkrHnM7db/5zzvzri+m46C8n5OkQC2d3ce9Nn4eZC6jNfAFWG6C0fjlFSweetcY/CAVFx0ySbZvIO+fGgGsAzEh71lG0T8cq2yhap+JZC9mmlRTljhDoltrxX3yL8tGn4FkLxbqnSWYvxCq91GYcvt1nkFR6Q9BU7SN7fiXV2UeRbVxBMWUWbkloQ/9mitZpWFHDagMU5Q6yjU9S+83dJNNmUvR0Y60dpJ1dJJ1dPPH3f89hb/wDyMqUjjsDgOqso0L5ah9FuSPU2TY9fN/SEkn/ZtLNa6BvC0VPN+ms+eQdM0n6NmN5hXzqPNIta0KgWm4LQYkX0LuJYtYiit/eTdI5nXzzRrK5h0GtSnX1E7Sc+HK8fyterZB0TMVrVfL1q0mmzsAr/dSeW4FXK1ipHPK0dVB6wYnkm9bhvVvwsy4Z3F9A+O4kfZshr2Bbn4e2qVRnHxW+d/U/PjC4PEV7F3nn3KHt2ZKwDlo6sbxCac0yPC1Tm3N02Na3bSLdup6ibRq++jHSGfOorVlBMqWL2tpnKB16JFZuBUuozVhI0TqN8rMPU519FGnPWnp/+A2KSo2knFGePYe8p5vSgiPZtuxhNvxmOXNOP5asvZWkrYPals1YmlBacCRJWwf/efX/5pi3nMa8v/q8norSQIHdQUrPbBUREWk+OsdOREREpEkosBMRERFpEgrsRERERJqEAjsRERGRJqHATkRERKRJKLATERERaRIK7ERERESahAI7ERERkSahwE5ERESkSSiwExEREWkSCuxEREREmsQeB3ZmdrGZPWZmA2a2zsx+ahaeJmxmK8xs6/g1c4d5zzezxWZ24UTNY4R5tsbldTP7/L6ar4iIiMiu2qPAzsxmAV8HKsC7gU/XJ8Xh+4Ar9rp1o5sPfAy4cE8Km1m2B8U+Chy6J/MTERER2Rf2tMfuBUAZWAnc6u5/5+6vdvc8Tr8O+BqAmbWY2Y1m1mNmt5nZXbHXa1F8uZndE6dtMbObzMxi2V/GtG1mttTMzon13xeHV8Ty7zCzG+L702PZrWa2Ir5/R5x2i5k9AnzLzMpmdq2ZrTazbjP7tpnNHmlhzewk4L8TgkkRERGR/dKeBnbLgA3A64GNZna/mb1rlLxXAZcDdwA/A84eIc+ZwN3AY8ClDXluB94PLAbmAdfH9I/E4d0x/1272O7XAl8CbgQ+DHwA+B7wWeB1wBeHF4iHl78CfAG4fxfnUy+7wsweNrOHzGy3yoqIiIjsrj05JIm795jZWYTA6HzgNODLZrba3W8blv3cOPyguy83szcBLx+W5153/6SZOXA6sMjMHgROJQRgaT2jmbUBPwY+ATzl7jfH9F1p+vXu/rmYvx4cXtUw/bwRyvwJsAh4F/CimDbNzGa7+/pdmOe57r5hVxonIiIisjf2KLAzsxLwuLtfFcf/hnAO2onA8MCuzndS5fNxWIvDFHg7oUfwJsJh3b8lBJAto9RVPwycmVkL0DZCnmeHjdeAP2woO1IP5mHAbODXDWlvBwYIwZ6IiIjIfmFPD8WeADxiZh81syuAV8T0h0fIe2ccfsbM/gp46W7OaypwEkO9ZQCb4vDFZnZpvJhjRUy7HPgUYy/b9wmB7RXAQkLP41Uj5PsWcHF8LY5pPwT+cRfa7sCP4/mBVw6faGZXxsPY9y9ZsmQXqhMREREZ3R712AFrgEcJV8TOBNYBi939hyPk/RLh8OoFhN62pcBLgG6gayfz+AbwFuA1cfzu+nt3f9LMbgLeTOjROwf4MvBG4DLCOXR9YyzDJ4EOwjl6FwJPxbZux91/B/wOwMzqh1SfcPelY9QPcLa7rzazOcDtZvaou9/dUPcSoB7R7axHU0RERGRMe3qO3RpCUDXa9EUNoyXgAcLh1KOAzwFL3b2bENxZQ7lrgWsbyo50zls972UjJJ/R8P7qhrw3ADcMK18BPhRfu8Tdf9bY3l3IvzoO15nZrbF9d++8lIiIiMie2dMeu91hhAsQjgG2Es7Be/8+mO+kMrMOIIkXmnQA/wX4+CQ3S0RERJrYhAd27t4DnDzR89kPzQVujVfrZsBNoxyqFhERERkX+6LH7qDk7k9ycAa0IiIiMkn2+FmxIiIiIrJ/UWAnIiIi0iQU2ImIiIg0CQV2IiIiIk1CgZ2IiIhIk1BgJyIiItIkFNiJiIiINAkFdiIiIiJNQoGdiIiISJPQkydkO/PufGiHtDXnnrLP2yEiIiK7Tz12IiIiIk1CgZ2IiIhIk1BgJyIiItIkFNiJiIiINAkFdiIiIiJNQoGdiIiISJNQYCciIiLSJBTYiYiIiDQJBXYTyMzON7PHzGy5mV0z2e0RERGR5qbAboKYWQp8AXgdcDxwqZkdP7mtEhERkWamwG7inAEsd/cn3b0C3AxcMMltEhERkSZm7j7ZbWhKZnYRcL67vyuOXw6c6e7vbchzJXAlwHXXXdc6d+7c/pHq6u7untXV1bVhb9LHo44DKR3YcPHFF58/QvpeMbP1wNPjXa/IODnc3WePd6Xa7mU/NyHb/YEqm+wGHMzcfQmwZKx8Zna/u5++N+njUceBlD5RtPOQg5G2e5EDhw7FTpzVwGEN44fGNBEREZEJocBu4twHHG1mR5hZGbgE+O4e1jVar97upI9HHQdSuoiIyEFH59hNIDN7PfBZIAWud/dPTG6LREREpJkpsBMRERFpEjoUKyIiItIkFNiJiIiINAkFdiIiIiJNQoGdiIiISJNQYCciIiLSJBTYHUTMbOs41bPYzD4Y33/czF4zHvWKiIjI3tEjxWSvuPtHJ7sNIiIiEqjH7iBkwWfM7Ldm9rCZvS2mTzGzO8zsgZh+QUOZj5jZ783s58AxDek3mNlF8f0KM/ubhvLHxvTZZna7mT1iZl8xs6fNbNY+XmwREZGmp8Du4PRm4BTgZOA1wGfM7BCgH/gjdz8VOBf4uxgEnkZ4JNopwOuBl+yk7g2x/D8CH4xpHwN+6u4nAP8MLBz3JRIREREFdgeps4Fvunvu7muBuwjBmgF/a2a/AX4CLADmAucAt7r7Nnffws6fefuvcbgUWNQwv5sB3P2HwKbxXRwREREBnWMn27sMmA2c5u5VM1sBtO5mHQNxmKPtS0REZJ9Sj93B6T+At5lZamazgVcAvwKmAetiUHcucHjMfzdwoZm1mVkn8MbdnN8vgLcCmNl/AaaPx0KIiIjI9tSjcnC6FXgZ8GvAgQ+5+xoz+wbwPTN7GLgfeBTA3R8ws1ti/nXAfbs5v78BvmlmlwP/CawBesZlSURERGSQuftkt0GanJm1ALm718zsZcA/uvspk9wsERGRpqMeO9kXFgLfMrMEqAB/NsntERERaUrqsRMRERFpErp4QkRERKRJKLATERERaRIK7ERERESahAI7ERERkSahwE5ERESkSSiwExEREWkS/z83BXBzQrYzuwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "bento.pl.lp_signatures(adata)" - ] - }, - { - "cell_type": "markdown", - "id": "859cea47-9f4e-45f3-bb12-d706749ecfd3", - "metadata": {}, - "source": [ - "Plot the top genes and cells for each signature." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "6b8c594b-afaa-416e-a280-c378a7a38f0e", - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-06T01:16:40.266810Z", - "iopub.status.busy": "2022-06-06T01:16:40.266385Z", - "iopub.status.idle": "2022-06-06T01:17:01.946033Z", - "shell.execute_reply": "2022-06-06T01:17:01.945277Z", - "shell.execute_reply.started": "2022-06-06T01:16:40.266766Z" - }, - "tags": [] - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "706448cc7c3748ceb12a717bb782e585", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/5 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwsAAACICAYAAACoandRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABhY0lEQVR4nO3ddVhW5xvA8e+hu0NKBLFbbHQW6uyYXcPNbTp76qaz3XRz0zlnzK4fdmNNsVsRdDaKLUqItNLP7w9ioCghqc/nus4FvKeeF27Oe+7zlCKEQJIkSZIkSZIk6XUqhV0ASZIkSZIkSZKKJpksSJIkSZIkSZKUKZksSJIkSZIkSZKUKZksSJIkSZIkSZKUKZksSJIkSZIkSZKUKbUcbi8URcmXgkiFSwiRV39YGSMfKBkjUlZkjEhZkTEiZSUPY0TKI7JmQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTMlkQZIkSZIkSZKkTKkVdgEkSZIkSZKk9+Pg4EDz5s0BiIyMZM+ePURHRxdyqaQPgaxZkCRJkiRJKsY6dOjA8uXLMTIyQlVVlZ49e/LHH3+goiJv8wqToiiTFEXxVRTllKIoGxRFGaMoSmlFUf5RFMVbUZSTiqKUT9l2taIofymKckZRlHuKonRNd5yxiqJ4KYpyRVGUaQX+RoQQOVkEIJcPcMlhHMgY+QgXGSNykTEiFxkjRW/p1auXOHr0qKhUqVLaaxoaGmLv3r1i0qRJhV6+QoyRQl2A2sBlQAvQB+4AY4DDQJmUbeoCR1K+Xw1sIflBfkXAL+X1lsBSQElZtwf4pCDfi0w5JUmSJEmSiqFevXrRo0cPevbsyfXr19Nej4uL4/vvv6dRo0a0bt26EEv4UXMBdgkhYoQQkcBukhOHBsAWRVEuA0sAq3T77BRCJAkhbgCWKa+1TFkuAT5AeaBMwbyFZLLPgiRJkiRJUjGiKAojR46kcePGfPPNNwQGBr6xzfXr15k6dSrz5s3j3LlzhIaGFkJJpdeoAGFCiOpvWR+b7nsl3ddfhBBL8rNg7yJrFiRJkiRJkoqR/v3707Vr17cmCqnOnDnDlStXGDZsWAGWTkpxGmivKIqWoih6QDvgJXBfUZRuAEqyalkc5wDwRcoxUBTFRlEUi/ws+OtksiBJkiRJklRMVKlShS+++IIuXbq8M1FI5enpia6ubgGUTEpPCOEFeABXgP3AVSAc6AN8qSjKv8B1oGMWxzkIrAfOKopyFdhKch+IAiObIUmSJEmSJBUDDg4OzJ49m+nTp2crUQAICQlBUZSsN5Tyw2whxFRFUXSAE4C3EOI+8OnrGwoh3F77WS/d9/OAeflc1reSNQuSJEmSJElFnIODAzNnzmT58uUcPnw4y+3VjK0xdh2E37NQGjZsiLq6egGUUnrN0pSOzD7ANiGETyGXJ1dksiDlq9q1a+Pl5UWvXr3keM+SJEmSlAuOjo4sXryYnTt3snXr1ndua6+uzgQLSypUdcXAuR1hJWpx4sQJvv/++wIqrZRKCNFbCFFdCFFeCPFLYZcnt+Tdm5SvdHR0AGjWrBl//vkntra2hVwiSZIkSSo+FEVh/PjxLF26lE2bNqWO4Z8pNWNrBlZtRB9jYzrdO0WE9x4ivT2YOnUqnTp1onz58gVYculDIZMFKV+dPHmSmzdvcvDgQe7fv8+qVauoWrVqYRdLkiRJkoo8TU1NfvvtN9TU1Ni+fXuW2+s7d2BfvX5s07NmbcBjQg8tJiH0KTExMRw/fpxly5YVQKmlD41MFqR8lZSUxJ9//snXX3/NsWPHmDRpEnPmzJEJgyRJkiS9g5WVFatWrSI+Pp7hw4e/s0YhVaS3B7d8zzPt3i0exsdnWDdmzBi0tLRo2rRpfhVZ+kDJZEHKdz4+Pqxfv56lS5fy8OFDJk6cyOzZs2V1qCRJkiRloly5cmzatAkfHx8mTJhAZGRktvZLCH2aVpuQmUWLFtGmTZu8LKr0MRBC5GQRgFw+wCWHcZCrGOnXr5/YsmWLUFVVFU2bNhUHDhwQFStWLPT3LpeiEyNyKd6LjBG5yBh5v0VRFNG/f39x+vRp4erqmufHNzAwEF5eXqJJkyaF/l4LIEaKzQKUADYCdwFvYB9QNgf7lwQOAjeBG0CplNeHAn4pv1uzXJdP/nPKhbz953znedasWSOmTp0qAOHq6ir++ecf8eWXXwp7e/tC/x3IpWjEiFyK7yJjRC4yRnK/lClTRmzbtk0sW7ZMWFpa5tt5unbtKrZs2SLU1NQK/T3nc4wUiwVQgLPAoHSvVQMaZWNftZSvx4AWKd/rATop39cASgEPkMmCXN53KagLuKGhoTh27FhajULNmjXFqFGjxIEDB8Ts2bOFjY1Nof8u5FK4MSKX4rvIGJGLjJHcLamfg61atcrxvvbq6mKChaWwV1fP9j4rV64UdevWLfT3nc8xUiwWoBlwIpPX1wKd0v28juTZnt1Inhn6CHAcqAicyuIcD3iPZOGDn8HZyMiIOnXqYGJigoGBAaamplSpUoUSJUqgpvb2tx8YGMiWLVvw9vbm7t27BVjiD1t4eDhr1qxhxIgRDBo0CB8fH3x8fFi6dClff/01a9asYe7cuRw+fJiYmJjCLq4kSVK2qaqqUrFiRSwtLTO8npiYyJkzZ4iNjS2kkklFWb9+/ahduzbDhg3j9u3bOd6/r7EJfYyNAZgRlL1ZnW/evEnr1q05f/58js/3sSs1bm8ZYAQw78Gvbe/kwSErk9z06HUrgFHATkVRDIEGwOdAX6AmUFUI8UJRlE5AmKIo2wEH4BAwTgiRmAdlA0BJyTiySxSlKcMVRcHW1hZzc3M0NDRwcnLCzs4Oa2trrK2tsbCwICEhgUuXLvHs2TPCwsIIDw/n6tWrPHv27J0X7ho1atCsWTPq169PWFgYJ0+eZNeuXTx79qwA32HBEULk1R82yxjR0NBgw4YNrF69mt27d2dYV6tWLfr160elSpVwd3dn8+bNvHz5Mo+KJr2PgowRqXj6WGPEzs6OqVOnUrVqVW7fvs3jx49J/9lqYWFB1apV8fPz48GDBwA8fPiQNWvW8OrVq0IqdeH4WGMkM1paWkyaNIkKFSowaNAggoKCcnUce3V1+hqb4B764o0RkN5GV1eXY8eOMXPmTHbs2JGr8+aXPIyRfFFq3N4FwBBg4YNf2w593+MpijIccBBCjMpk3XWgCfAZ4CSEGKMoihvQWAgxIGWbriQnFjWAR8AmYJ8QYkW64zwAagkhnuemjMW2ZqF27doMHToUc3Nznj17xqtXr3j69Cl3797l2LFjhIWF8eDBg1xfiM+cOcOZM2dQFIUaNWrQvHlzNm7cyK1bt9iyZQtHjx4lMTHPkraPSlxcHPv37+f777/n0KFDGf5GFy9e5OLFi9jZ2TF48GAOHjzIo0eP2LFjB7t27SIuLq4QSy5JBUdRFBo0aECFChUwNzfPsO7Fixf4+/sTGBjI48ePCQgIKKRSftzq169P9+7dqVSpEj4+PjRv3pyIiIhMt1UUhYYNG6KpqYmiKHzyySecOHGCoKAgzp8/z9mzZ0lISMiwT0JCAjdu3CAkJKQg3o5UgLS0tJg7dy5BQUH07NnzvT7bHsbHZ7tGIVV0dDRDhgzhhx9+KHLJQjEw77Wv7+s60PUt69aSXJPQExiQ7vXodN8/AS4LIe4BKIqyE6hHcgKRJ4plzcK3335Lx44dmTdvHgcPHnzjAptf1NTUaNmyJZ07d8ba2po9e/bwv//9j6ioqAI5f34q6Kc9iqIwf/58zp07h7u7+1u3U1FRoXr16vTp0wcnJydmzpwpq00LiXwiWHBq1qzJ999/T3x8PGfOnCEoKIikpKS09ba2tpiYmGBvb4+NjQ1hYWFcvnwZb29vjh07hhCC+Gw+YcxLH0uMVKxYke7du1OrVi2WLFnC4cOHc1UDqigKpUqVwsXFJdO5Z7S0tKhcuTJqamrs37+fc+fOcefOHZ48eZIXb6NQfCwx8i6piUJAQADTp08nh/dheWrFihWcO3euSE3WVtRrFvKakhzI54AVQoilKa9VBQyB28AFIEAIUTdlnRvJtQRDU35WBXwAVyFEsKIoq4CLQoiF6c7xgPeoWSh2HYo+/fRTceDAAWFhYVGo5XBwcBDTpk0TR48eFUuXLhWDBw8W5cqVK/TfT26XPOysk+1z2tnZiQMHDogKFSpka/s6deqIf/75R7Ro0aLQf18f41IYMfKhLKqqqlku6urqon79+mLlypXiwIEDonPnztk6tqIoolq1aqJHjx5izZo14uzZs+LcuXNiypQpon79+gU64smHHiN2dnZi2rRpwsvLS0yYMEHo6OgUyHnNzMzEgAEDxJw5c8SBAwfErl27RI8ePYSBgUGh/05kjORs0dLSEn///beYOnWqUBTlvY5lbmAjurkME+YGbx8YRM3YWhi7DhJqxtaZrq9Zs6bYtWuX0NXVLfTfTT7ESLFZAGtgM8lDp14H9gJlUtb9Q8aRktyABa/t3wK4AlwFVgMaKa8PJ7nmIQF4CizPTfmKVc2CpqYm69evZ8GCBRw9erTQypGekZERFSpUoFatWrRv357ff/8dT0/Pwi5WjolCetrTvn17Jk+ejKurK+Hh4VluX6ZMGRYuXMiiRYvYuXPnexRTyqnCipHiKLWjq4uLC61atcLa2prsXGt9fX3Zv38/u3bteq+27Nra2vTv3586depQokQJtm7dyo4dOwgLC8v1MbPjQ40RdXV1Zs+eTYMGDfj3339ZunQpFy5cKJSyKIpC5cqVcXNzo0yZMuzYsYPVq1dnK76Kgg81RrIrtSZh6tSp2f6bqRlbo+/cgUhvjwyTrXVzGUbjyp04fm0nl24uZERdDeadj8PvxX+1kMaugzBwbkeE9x5CDy1+49iKorB9+3ZOnjzJH3/88f5vMA/kYYwUe4qi6JCcANQUQmR9k5Rf5ShOyULfvn2pUaMGo0ePzrNj5qZj0NuULVuWhQsX4unpyaJFi4pV86TCuoArisKGDRs4ffo08+fPz9Y+dnZ2LF68mD/++IPDhw/ntpxSDn3sH/JZUVNTo169erRq1YqGDRvy9OlTzp8/j6enJzdv3kzbrnLlyjRp0gRTQwuqlq3Do+DbvIyN5MaNG5y/5keIeY03bgreR9myZenRowcuLi6MHDmSW7du5clxM/MhxkhqolC6dGkmTZrEpUuXCrtIaerXr8/AgQMpW7YsmzZtYsGCBYVdpCx9iDGSHYqi8MMPP1C3bl169+6do4cBxq6DMKvTgercpbbRKxwdHSlhY4e+nimmKuo8DbyHfawXFkGnWLT1KEN2/zfb89sSjfRKlizJqlWrGDJkSL5eH7JLJgvJFEVxJbnfwVwhxJ+FWpbilCx4eHgwf/58PD09s/UPkBlzAxuaVOnCsavbCY7wZ5KdI710NNivomDQxJClQZW5dGRfrj+ozczMGDRoEA0bNmTatGmcPXs2V8cpaIV5ATc3N2fPnj0sW7aM5cuXZ2ufChUqMGfOHH7++WfOnDmTm3JKOfSxfsi/jaIoODo6UqtWLZydnXF2dub+/fscOHCAQ4cOERoammH7KlWq8O2331K9QgVCjxzlsVppyjjUxvu2F9e1BVVL29CgsiM3QuGXP//mztbf87S8zZo1Y/z48SxcuDDfauU+xBgZOHAgVatWZeTIkRn6jRQViqJgZmbGzp07efjwIdOnTy8SN3xv8yHGSFZSRz0qV64c33zzTY46rJubm/PF4OF06d6LO9cus89jO4HXrtHNwpbKGlGY+kcQUtYAlz6VibRpjKqxLeu37eG7nxcQGRmZ9QlS/PDDDwQHB7Ny5crcvMU8JZOFIqg4tRH08vIS1tbJ7e6MXQcJ+x/2CGPXQTk6xheNRogF3xwWXzQaIcwNbMSg7gvFrHYjxPohrUTsd8biRtsKok3LLu9d1k6dOgkvLy/x1VdfFXr7v+wsedj2Llfnt7a2FidOnBCTJk0S6tmcWKZ+/frin3/+KbITy3xoS2HHSFFYqlSpInr37i1mzJghDh48KLZv3y5+/PFH8emnnwpzc/O37te9e3dx9tgxsXXYcPG7fSlxo1x5MdmhmujmMkyUbj1G2P+wR9j/sEfYfjZOTFy5Xpy9dV60+ix5ciYNSw1h1ddKaFhqvHf57e3txbZt20TPnj1ljGRjUVFREcePHxclS5Ys8HNn1db89UVfX1/MmzdPnDlzRqxZs0Z07txZODg4FPrv8EOPkayWEiVKiCVLlohp06YJbW3tHO07YMAAcfLkSTFp0qQMf8sJFpbiRrny4knLkuJgPXvRyFxTzG+tJW4O0RXiz2oiYN9vwsPDQ5QoUSLb5ypdurQ4efKk0NLSKvTfWR7GiFzyaCk2/5y1atUSGzduTPs5pxfS1GWyQzWxo91k8WsLF9G/30Kx4JvDwm3gFtF43DJxo3U5caNceeHZwDFPymxnZyc2bdokPDw8xNChQ4WjY94ct4j/c+a6DCYmJuJ///ufmDdvXrY77tWqVUvs3btXDB06VKiqqhb67/FDXopCjBT0oqGhIWrUqCF69Ogh1q1bJ7Zt2ybGjBkj2rdvLywtLbN1jPr164vDhw+LX6tWEzfKlRe/lrDKMNuqmrG1MG07Wpi2Gy3UjK1FxX7VxYy/F4sL18+JXZM6iPIDrUXl1ZWFVV+rPHlPVlZWYt++faJKlSoyRrJYGjVqJNasWVMo587tAzF1dXXRsGFDMW/ePHHkyBExa9asbMdqQSwfWoy8a6ldu7bw8vISo0aNynFn5pnjxgnfQ4dFw7Jl31hnr64ufi9ZQix31RNOJipprzd3UBX/DtIVzR1URb9+/cT+XVvF4i5mGbZ517JixQrRqVOnQv+9FdYNsVzevhSbf85+/fqJ8ePH52rf9E/m6mvriD3Vy4heUyqK2r+OEn17LhEl7GoIY9dBol3bPuJomwbiy3afirWdtMTazlpp/2ROJipifntHMbD58LSRB7KbsNSoUUOMHTtWHD58WKxZs0a0b99eqKhk75+3GP5zvlc5dHV1xZQpU8TevXtF1apVs7WPkZGRmDdvnvj777+LxFORD3UpKjGS34ujo6Po16+fWLRokTh+/LhYvXq1+PHHH8Unn3yS4w98U1NTcfjwYVGvXj1hr64uJtk5iiqN+79xzUg/qknPFsm1nyt/+EWIB6fE8rHthdsXPwhrx1J59h7btm0r1q1b996jsXzoMfLjjz+KXr16Feg5U2Mh9XOphF2NLEe8eduir68vvvrqK3Hq1Ckxbdo0YWxsXOi/0w8tRt62qKurCy8vL9GjR48c7/vtt9+Kf3fuFbu7zRCTHaq9ca9hr64ufrN3FHNrfCIczWzfepyza6cKcWG5mN8mezUazZo1E3/++Weh/+4K64ZYLm9fis2kbF27dmXixIm52te0hSmmrqZo2lXG1f0ujq9U6eORyJxykQjdy4wa2hMDAwP0DS3Rc6rOuHhfnGIbQtBNcAjgi1U3GVH3BVWdOqO8bANANY2lrFZtwvNK7QAyHWUg1aVLl7h06RKzZ8+mV69eTJ48mbZt2zJ48GCSr3dSqujoaKZNm0bDhg2ZPXs2EyZMwMvL6537hIWFMXLkSCZOnMi8efMYM2ZMjtpqSlL58uXp2LEjzs7OaGtrc/LkSTZs2IC3t/d7zSA+fPhwDh06xLlz5wBYUK4lBs7tMHesQ/DOmWl9o5pU6ULjyp2oZ1Wau9ERXLjtyY276zDiKPV7/EXi/wKItnrJlnvZGwQgK3v37uWrr76iVKlS3L9/P0+O+SGqX78+W7duLdBzpsaCk1VVPC9M5/NGn6Hotwdgy+ns//1T++ft3LSdnTt3MmPGDHbt2sX06dM5dOhQfhVfSjFnzhwANm3alKP9unTpQqtWrVix2puyFi48LR2FPqEYOP93r9HX2IR2WhrwMogo+7JMev4k036cn3/3M7u3uHPXujOwPstzBwUFUaZMGVRUVIpk/xyp8KgUdgGyw8rKCi0tLa5du5ar/UM8Q4jytQLVPux0bMgDA0PqfDmMtd8PoWZFJ/x9L2Fy5wAvb6hxa3cAmzbe4ez1x9yxaE2tketZtW4zV41bce3BHi777aKazh6G1tFggOa/NHroj6Zv9iYJE0Kwfv16WrRogba2NkOHvvcs4R+sU6dO8dNPPzF9+nSaN2+e5fZCCH7++Wdu3ryJu7s79evXL4BSSsWZvr4+LVq0YOXKlfz666+EhITw888/0759e3777TdOnjz5XomCjY0NLVq0YN/KlUywsMReXZ1Ibw/igh6gYVEKfecOadseu7qdmKCLlIx/RcWSLryKi+bio8d0mXWQg8cOol8xkmNXt+fF204THh6OtrZ2nh7zQ1KiRAl0dHTyLJkyN7Chm8swStjVwNh1EGrG1pmufx5yFhF3HxtTR7749Cv6OuxHRO7O8d8/NeloUqULwcHBfP311wwePJgxY8YwfPhwikvn4OKoc+fO2Nvb07Zt2xzt5+DgwIgRIxg1ahTekYHERfhykwgivT2I8N5DpLcHAO6hL9gTE8cBHQtWPbwNgL5zBwyc22W4rtx+nkCv0b/RvteXqKhkfbt37do1Xr16Rc2aNXNUbun9KIoS9drPboqi5OnQZoqi/K4oyi1FUa4oirJDURSjnOxfLGoWXFxcuHjxYq6fwscFxvFk8XX0nc/RwEkHq5H/46aPL/tW3WXNTncmVL5JCcMhBAfr8kQlmnUPHjFx/hLUjHdj6dIVF7toun/bD4M4A5aP/oFjlx5Aggb/xjWnnpMTsSUbsuXxpWyXJywsjOHDh+Ph4cH69etzNDLCx+TkyZOMHj2aVatWMW7cuCzn1hBC8Oeff3L+/HnGjh3L9evXmT59eqHMZCsVTYqi0LRpU3r06EH58uXx9vZm06ZNHDx4EFUjK/SdO6Bm/Py9hy21V1dnbvfuXPe+Qb8G39Hk/h7gNktjFD55+ISLAQ+I9PZIexoY6u3B+kub6VOrH3cfnc5wY/jLbz/j4eFBLHlbW2ZoaChrNt+hcuXKXLt2LUfXj3eN0pd6865pV5mT9jaYqOtRMyI2bWS+1PU66tY011uNZ9gQQhVnNgXfYN4/fxEc8d+TXicTFUa4lOLfl+3Y5bWN4Aj/N8qSGkPpY+n69ev06tWLJUuWoKGhwezZs3P6a5GyYG9vz5AhQxg1ahRBQUHZ2sfJRIUR9TQp9cVMli9fzr179+gTv59PHx8m9GUcp0OfZmi98DA+nu8f3oOH99JeS00kjC/v4VsLy7Th4H18fAgJCaFhw4acOHEiy7J4eXlRqVIlLl68mMN3LhVxnsB4IUSCoiizgPHAD9nduVgkCy1btmT16tXvdYyE0Kd0soulXZt29Pzcjfo1R1FL1QRXl0EsPDeFMeWe4KcZzsHIYB6eW5+2j/+ev7jX1YZHC8/wsGE7lq5Zz7Mdk/lu3jZeWd4gwaERZ17czOLsbwoPD+fIkSP06NGDRYsWvdd7+5DduHGDESNGMH/+fFq0aJGtSaXOnj1Ljx49mDFjBnPmzGHs2LHExsbmf2GlIq1JkyYMHTqUqKgo1qxZw+nTp4mLi0tbn/pkDt7drDA7+hqb0KR2HY74qRJr4cAxwP36RJrUGUSjMi1IuraTu6FPMW07mspVytO3zGXO366DpmkVgp/tzHDzFxQUhLe3Ny07duPwM/VsDxdtZmaGjo4Ojo6OdOrUKcOTZG1tbRRFwdfX973e54esdu3aac3HssuwQS/0KjdFRVOXkL1z0l43N7BBR8+ceypB6FoFMrCcJY2a9cdC15TnLwfi+/AC924/IlAvkaqx13jwqi4xwgJt4El8Dx6IE5gbKDSp0oVrz28xrHEjnLTjUWKaEB4j2HJ6fvINZ7pJuYIj/DNtthQaGsrIkSNxd3fn8uXLsklSHhs8eDDu7u5cvXo12/uMqKvB0H6duGOuhru7OwBrAx6TlDIH1OvSJ6XGiQrNavXjomYCD8+t51v1RPoYGwMwIygQSH7wVr1uQ65qVMzy+nHw4EHmzp3L5s2b32tiSClvKIrSDZgCJALhQohPFEVxAzoDhoAN4C6EmJay/SSgLxAMPAa8hRCzhRAH0x32HNA1J+Uo8smCqqoqTk5O3LlzJ1f7a1hq4NSyIl+WHkbFeg4MXbqXh/cfEPVqCbh8w9F/txBTqQ8/aTZFNySQBo8f0NXIHHdVFUKrtyPS24M2F5P4VFOwO/Iem3SnM7331yyyKMXn3qU5aqpNUr1OcDPnF9x169bx999/s3jxYtk+8B3OnTvH/v37GTt2LBMmTMjWPvHx8YwbN44pU6awbNkyfvrpp1zHkFS8OTk5MWrUKMzMzPj99985fz7zZoOpT+ZSv2Yl9QP75Z1z6JSpR8zDPRjVTSTEMwT3Fy/orqXJ+uPr0DFvydFbnmi5jkAnyYALtz259vwWg7ovpGTAGRxe+tLT4gYxT4L4974Z5W1rUs66Jr5PfYDka9gd7TvU/bw+F48lX7Kzk8zs37+fp0+f8urVKzZu3EhgYGDaOiEEV65ckdedd1BRUcn5zZLy2leSa7MmD59Cy/bt0bZQJ/iiGSEv9Lh96QXP4l5xR0RxLiwcZ1M96tTRwNFpFnE+u1A7epngJFtOmCXR6JMOdDGphaLhQLnYMJIUI/xe+XD57q60moMRdTUYWkcDgOmnTTPMJ/S6p0+f8tVXX7F06VJu3LjB06d5MwHgx65WrVpUqVKFWbNmZXsfJxMVDLXgjklz5v5vN0bNvyHS24OHoU+ZERSIk4kK8+tqMe98HOEJVjSp0gUfA00SqjZBRUuXVnplqWfohIUSiUWQD/tuJCe46ZOMgIAAarVvhUFKS6TU60dmk9JeunSJ2NhYtLW1ZbLwNlMNywAjgHlMDc+LGwttRVEup/vZBEj9IJoMtBJC+L/WdKgOUBl4CXgpirKX5CvPZ0A1QB3wAbwzOd8XQI460xT5ZEFTUxNVVVWCg4Nztb9pC1OaOnWhZ68uzF/mSUKZpuhHRPMSOGqqzUsbJ1RSLuzOr6B6aVdstNSp/WAPM8vV5Raw5vgKRAltjpQOJ5wAYg/+gVur5VS4u4ubQQ94cSR7E4m9zs/PDyMjI5o2bSpnIs7C77//zurVq+nWrRtbtmzJ1j5JSUlMnTqVDh06sGDBAk6ePMmSJUtyHUtS8aKurs7IkSNxdXVl+fLlbNu27Z03xwmvVfVnRd+5A+XL1aV9fAi7y9XlWe276JV7hrFiSaV7jbgeHYd/1BPOH/4GY9dBtHJqQc04NU7e8cS5RlcqGzqhq65P0KVtLDJVZ97pB3RrZoWlUUm6NBjML1u/ApKvYeoGkTSNVcUzchlHvLPXhj4+Pp6uXbvKZni5VK1aNW7cuJGjfcJPbyApJjot4axdrQFzZv2JlX4kr3w8eOC5n6faXYjWsyEpIQZvJYSjYbeILV2Ns8f2EDlnHmVa9qO3syUu3zhz5MEiHl+IZLRBZdBwQMTdZ9vZTTjX6Mqh0+sJSNf8dd75uLSvqU2a9FVUsPLdmOFmMNXdu3fZvn077u7uNG/eXDZJywNmZmb4+Pi8MSHju4yoq0G/qhoE2lfj0MuHGDjXRUVLl5A9yTVTI1xKUalkF/5K9GZ7Uj2ql3bF6u4hWuybxuKyrly1tUXluR+VQ7bTLuop1UuXZ0RAUIa/t6amJtGPbxB1LRAVLV3UjK1JCH1KX2OTN2ohpGwZAQxJ+T4vOp++EkJUT/0hpeagVsqPp4HViqJsBtJ3XPIUQoSkbL8daJjy+i4hRAwQoyjK7tdPpCjKBCABWJeTAhb5ZAHIVsectwk7r4poosq9p4/YdvsqUQkvMzw5jPT2wEzPkkZ6Zbl4aSvqFhWxDTlH6cSXzLwym8GPQ7hvXYn99bvS7tB69viHs/zfMJ4H7GJM83KsnrGLo6HB5Pb2c+nSpdStW1cmC1mIjIxk1qxZLFy4kGvXrnHzZvaafgkh2LVrF4cOHeKLL75g48aN7N+/nzVr1sik4QNmaGjI3LlzCQoKomvXrvkyOlaktwdtQm/TKeopiVEhzIy4jVk1QffovuhUbomBuoKhoWHatufsaoBeKa7aOxB+bgtl6gwCPRuualZkW5QVkcKDsze20snZjfOPtmLV14oQzxBCPENoavuSUuVg6NUYDCt+9tYnxlLecXBw4MqVKznaJzXhtFdXZ0TderRd8j8e+cSw6Oglyib9jqdJX5oGXAEtE1TUtIkOf8JDry3ohD0m0tuDGs3aMMTJj0Xe0dzQsuS7TtNZGXiNnfv+pmO1cmw/u5ibvhe56ev5xrn9XiQxbH8MAOEptQ0Vnp6g5ztuBv/++29at25NuXLlivSszx+yeefjMChRitLPwgh9JdAFFPX/Bh7492U7lITW6JpXpZL/MeLuHeSzwFOYx0Uy/P5J3AxsCI34kxrBagToqFL65UsGpIyQlMrKyopHd26QFKuFgXM7kmKiCT20OK324fWmTqGhoTg4OPDixZtNoCQA5r32Nd8IIQYpilIXaAt4K4rinLrq9U3JUKf5ppQkpB3QXOTw6UCRHw3p5cuXREREYG9vn6v9tezbUdGxO1vuBGFm68joqEeUVFVJu6gnhD6lUcmG1DN04lvnSpy4Pp9bLx4BYPsqhq2fatCxbTN+j9hH94QkWp1I4NWdJ2z46VvMdM3p0aE/Tap0yXBONWPrTEe7yMyhQ4do1qyZHJkiGy5cuMCKFStYu3YtmpqaOdo3Ojqa+fPnpz1p3bhxI/369cPAwCCfSisVFhUVFWbOnMnVq1cZP358vg2jmxD6lOVXTrL3VRhWxhewCXlKqxMJNHt2hui7B/n34QUqfFYBDUsNEkKfcnvnNPZH3SHawoakep34+8gMjl/byVH1eKrWcmZRNyu6GMbR8sI0Wpm9wNTVFNMWpsQFxqGj9hItwziCSjROG+EmK5GRkZiZmeXLe/8YREdHExAQkKt9P7ew5Mspk7nneRnf8wGoGVryY6ArHtuWMjkmihkHJ3E+6gFXbW3Rq9Kc0EOLMdOz5EurcnTkGoNs/Tjjb8jw5bf4skljunedjqLhgK3zYEzbjs7ysyW1v4J7ZAjb9KzZkKSeti7951NSUhL+/v7o6Ojk6n1K78/vRRKzL6rz8GkQIv6/Zj+pf6P9T28QKmKI1rNB1awynz7ahXlc8qAojzQNiA8LYOA1BZtQiImOY5ueddoISal/64rVauLv7//GqEoP4+OZERT4Rq3T4cOHcXV1LaDfQDE0NfwOU8OH5lETpHdSFKW0EOK8EGIyyf0Q7FJWtVAUxURRFG2gE8k1EKeB9oqiaCmKokdyYpB6nE+B74EOQogcD/NX5JMFAG9vbxo0aJCrfSO9PSil9YrLN27R/vo/dAq4ygD7sgBo2lfHasACzry4iYjcTV+H/Yyoq8Gu8HCikhIJT7DmYXhfxmqfpkH5m/ibxmXIwLfu3MArff83hrTLbAizt7l//z4hISHUqFEjV+/vY7NkyRIguVkS5Cwxg+QnJvPmzaN///5UrFiRw4cPZ2toVqn4+Pbbb0lMTGTevHn53rTiYXw8WpXC+NIluXOpe+gLdjy9zaLjfxBiEoRlNUtMW5hir67OjybGlI+Po2loPBamDsSWq8ulmwv5TnMVg8P/4iurOxiXjcLDoQEbNSoQcii5VgHgglp5vAN9WXxqC8ev7czWMJqenp506tQpX9+/lLmEjh3wDQ7m8ZFxVNHZR+n4LbSzrI2ZniWR3h7ElqvL/lf3CVMVmKjq0M1lGO0aDSMhviabwgeyLKwOSfFxPHr4kH82X6Nt14rolFKnqd1pKlcpn63PFoDQ6u1Y7vododXT7hly9Pkk5VxuWkKEhIRgbm5O1NXDxAU9AIW0v1GSS1e2GoC3eix7LMzxNCvL2RIVOVSiCitrdkO3bD2WVuzMg4RE7ka9ZOuDuziX64y5gQ36zh0o27QrVZzrcebMmQwPSd/l4sWLlClTJpe/ASmP/a4oylVFUa4BZ4B/U16/AGwDrgDbhBAXhRBeJPd1uALsB64C4SnbLwD0AU9FUS4ripKjUTyKRTOkDRs2MGfOHDw8PIiOjs7RvgmhT9HVUCPcqCybDR+jqGng/jS55sCk2UA0LEqR2HIg/ws4hUaIE1fpRIsS/6CnEouvbVP8DRpz5E4C5+L/ZeFTTSIaf4laymgCXpfOUdLR5o3mAOk7SmqXscWyawUCt97k1Z0nb5QPkocqa9SoET4+Prn47XxchBC0adOGDRs2UK9ePXz1qudqBBt/f3/Gjx/Pzp07GTduHP3798fd3Z1Dhw7JtrvFWKlSpejYsSN9+vQpsM67qW3Fd96KZ4yrOmuua1CnziDCvaMpbVWaEM8Qxhqb0EHfBFP1kqgqBiQ88eO6twfT62nwbbV4/nflDgsewMKbjwl0ciby+D8khD5LO0fVek0ZMW4clx895uKj7E3M5evrS61atbLeUHqDkZERWlpaOYqh1EnQLtzdT5vevekzYAAi5C7j4pcQZzCBuualEC6D2B95G73KTYm+fY6oa0dpY1SRuiVK4fXgNOeS4jn/KgKdMvVoEauGj5Upx2L2UHKvDi06GmPrcZjEhzeY5BtLN5dhWTZHy6zTfk478kvZ5+vry6hRo9DS0iImJibb+z179gwTMwssW3yNYlqSuKD7aTUAZUzV+NbSk0XP7LkbrvDQ7hMamJTHR0chJP4GVgY+lLBvzqWQR7SK9Ceh/BeoG5ZE064yW87+Ted+bdm2aX2O7p2SkpJka4cCJITQe+3n1cDqlO/fqEZO+ds8EUJ0yuRws4UQUxVF0QFOkNLBWQjh9D5lLBY1Czdv3uTs2bP0798/V/vHRwSRcPMogeaOLHbuQXTzb1AztubFkeUkvoygYnw8PVUq4iu+pmrJlgTV/poTxuUJ1zTkcdht1l3yZHK8G8GV+2R4IvPy5UtUVVXfOF/67N2yawX0yj3DsmuFt5Zv3759silSDgQHBzN58mTmz5+PzuOzGapVU9mrq6dNhPUu58+fp0uXLixbtoyePXuyceNGOaFbMebm5sb27duzPb55XkhtK96pvDpD62jwecPPksfTDy5BNaNqGAkjzuiq4lu+BaoaxjyLDuLAvukkhD5l3vk4FlyIY/rxOEadMyHQqdMbQxuWL18edXV1Ll++nKNyXblyhbp166KlpZXH7/jDN3fuXI4dO5aj0WBSOxV/3ec7fH19uXPnDn4vkrh/RZcG9/YRE3SRQ6cXp7UqVje1BQWuWJXg1qvbNLA/jf/5afT0WYdLYBA149SoFRtMlSRzom9FcfXfF5wy6cmsTRdoVLLhG83RMqtlzexJcnafLks5d//+fe7evUvt2rVztJ8QgqfRSdSsXhXdIH9cX6mjdmE3CaFP+Tx2A5+refJ59BqSYqJpbeGIc6I2jSNeoK5/BOdYE2rE6PPEpimHzRqgbliSoKQYrtraUrHLCBpXsGL5wj9zVJ5Hjx5RunRp2TyteFqaMrKSD8k1DnnyFLpY1CxAckfgtWvX4uXllePJQp4+eoDBw+P4Pf0H8w7fo6pjkDZGccyTG3yqYYGGUSVsXlznvIYuD2wdqKDdmwQtU0pE+lPt0x70svBi4c0E/NLdmJqbmxMeHv7OcwduvQkpNQtvc+vWLYyMjLCyspJD2GXTmTNnOHbsGL9N/p6RI0eSEJqxs3L6UR7cQ1+8MTxcekIITp06xalTp2jUqBFjxozhyZMnzJw5M8Nwk1LRVr9+fSpXrsycOXOy3jgPpD5JTn26m1rDsOb6NhzsEjl2dTuq1i/4+eefUXyW08Z0HZsizAiM/O/m/YEoweT4DkQKDwxdeqFXqSmq+mYkRj5PSxr69u3LgQMHcly+hw8fEh0dTZkyZXI05vvHbtq0aVSuXJnJkyfnaL/UpmHlPzHFy+u/vg7JTVdv4359IgHx8ahFBaJh7oCGRSlsX1zk6+ifMLbU4jMdH0qWrUWMekOuXt3KufIdOPnvHtrWSn44de7ov1RrVQe/F0lpHZiPXd2OhqUGpi1MiY9ugV6lehjWvsvTlc+JC4x7o4yQ+XCZUt6Jjo7O1k326xP4HdmznToV6qD58H7yXCyx0Ww5PZ+5J0JJitVg3vkoNHXPU7Z0GZy0wuDJdgKOhnP+MyNihBX/ljrOnhu3aWzmyFVbW6KTovipVzN2+fiQUO2ztBYR2REaGkpUVBSOjo5cu3btPX8jUl5LX/OQybre+XHOYlGzABAYGMiUKVOyPc5+er6+vtSpU4fYh5fR2PA9Aw/9gfHlPTh88iUdbBtx0sSMmKCLrD0yh82n5lMjNgpVLVNEUjzq+jZ00dHiczVP3JJ2oHZhN72r96d/03HUrdUgy5v7V3ee8OAXz7c2QYLkKr/79+9jbm6e4/f2MRs/fjznz59n3759tG3bNsM699AXrAsNTUsU+hgb09fYJMtjnjx5kh49enDp0iVWr15NixYt3ms0LqngNG/enK1bt+Zbh+bXpT5JTn266/ciidmHEmkVE4e37w4S6rRn6YadJCUlEVO9O8MNDbganUh1ffu0fTK0H09p/aZuapv22ldffUWNSmVx9FuFk0nO43Dnzp2MGTMmxwMCfKymT59OmzZt6NKlC48fP87RvqmdiuNFTIaR1lI7kb7UtqCbyzCMExWCd84kwnsPbkk7GGhxAxVNbdYktOCIWWf8bRrztGwbTtrbkFj7S05rOXEu3I/Vh90pX6U6f3e1wtQkkUPa8YSqCkxbmGLqaoqmyWlIXIdeuWeYtjB9azlzcj2Uci51UtCsvN53ZPuGtTQuY8rle3sy9EtKrbn0e5FEu7KNSKI6j2JUWeAdwqs7T7j06waOmW5Dxz6Alk16cOj0Yp7fOsCkepo89bvB8eNHmVs3mBrN2uT4fVSpUiXnvwDpg1RsahYgeTSc1LHDt27d+s5t0z89Wb9+PatWreLYsWO0exbAZ1FPiVGJ55FeKWrGqXExSZNxx5JHwDJvNpDq+v+gFenCi4RSPA17xNmYWyQo6sw9EUqTKkOoU7YF+iZa1O5kSeuOedM5NrWDk5R9CQkJ/PXXX5iZmTF16lQePXqU9gQ19QMaeOvwcO867urVq7l16xZff/01Q4cOZcOGDezatUtOUlOE1ahRg/Xr1xfY+Y6le7qbKvVGTEvPmuUpfWlGjRrFir1/42oxlOWhu3h+/r9BEV5vP54UG42Ovx+NqnVDu4wBn7rWxX/9UL6pEkv8K420oTGzy93dHScnJ+bOncuoUaPkTObvsGrVKipXrswXX3yR40QhvcTExDdGWTM3sGFgy6nYmDoCsOX0fEIPLWauiQpgzGoVG+6LEhgnBeEc8gJvzQTiwzRRNypBSEwkW87+jU6ZepiovWJQDVAxc+a8emeOq+vx2PMvgJTO8I8wbWGa1jE+Mzm9Hko5s2vXLsaNG5fldq//7z969Ig9e/YwYPjXzNp3g0hVgZqxNfb1elMrVo0jF/9HNZ09VNFR565mKOFNJ6K2cyYAL++VpvxLJ2rE1qBkU0uqtdJG2/cqk6dP57dvKtNd7S7aVqXJOoX5j/ysk9IrVslCUlISY8aMYeXKlRw5cuSdYwBnmGzk4UN++uknfvvtN8YPGAApT5xNTy+iWo3uXPc9gL5zB1T1zdCwKMXK2CT6i11ceVSBHafdCY7w52jKccOvbsfa2orP+3fkr/l/8vDhwxy/j9Rq4xDPkLSq4pcvX6KmVqz+HEXG5MmTiY6OZunSpQwfPhwvL68M61MTBzVja4ydO6Dpe56h3b6iRDltrGwtUBSFoKAgbt26xc6dO9PGGz937hznzp2jUqVK9O3bl4EDB7Js2TL27t1LVFRUYbxV6S309fUxMzPj/v3sTViWF1KfJKeXegO2ISQqrS9NwqtXPFg6ik8nLGDhZ1/z5bOzBB9J7pT6+kRwoYcW4+oyjK51auPUpClubp9T3bwbsT57mHf+QY7LKIRg6tSpTJ06lblz5zJy5Eji4jJvnvIxc3NzS0sUctNkK32TtAcPHlCnTp0M65tU6YKNqSPRMZEY6ZpjbmADQI0KXZh6ZDvBEcsxdh1EnHM7jgc9QMOiFEr0NTQtzxP3wgXbiq58giHxSglWR/UhKL4+NYUa0bFq3A2M45n7f53hn7k/S+m/0OGN/i+Q8UGKlPfU1NSyNRHi6//75gY2+F9MoOUMV7qY1GOnpi4aFg401itDzTg1kmKjmXd6IaNUV7POciQaFqUwbNCLpNhotEu149iVYzjXiOLzXm24e+ocVu7rGGxqhuWlEOLqqlJNuYeTiQp+L7LXaV8Igba2dtYbSh+FYte+4tGjR+zatYvBgwe/c7vUZih7ErXo5jKMa9632b59O6N//52lIomH8fG0fvmENjdW0UE7eZgydVNbAB5rOPLDbWuW7p9FcIR/ho5jDuVtaPtVLeYsmsny7dtzNGxnqtRq43dVFUs5M2vWLC5cuMAPP/yQ1lHcyUSF+a210ppv6Dt3wLxuB/63Yh09+37GqyA9jmzy4+i+SI55HKehmhprli1jxYoVdOrUCV1dXQCuX7/O+PHj+eKLL3BxcWHv3r0sW7aMbt264ejoKDumFwH16tXj8uXL+TaSVXaH6E29Ebv3/EmGTqQrD4Zzftpo9pzz589BbVmyZAnt2rXD2NgYLS0tDA0NqVatGm5ubgwY3xa7ehqMGTMaB/1aVHfqyIkXbbP9If+61IQhLi6OYcOG5eoYHzJLS0uGDBnCwIEDc5womBvY0M1lGK2d+6U1STt9+jQNGzbMcKN17Op2/EPuoaulTzUHF75q/XOGfYC0MfBfHFlOhPcelMR1aJicRU3nALWFPs1qNScpGu4+q4+xmhH+Ifc4cvF/mZYrO8OjalhqYNXXClXtNwfpkHJPV1c3Vw+TmlTpQh3HT9k+bze9K+nyRdsG6Nrpc8V0K6efHOLY1e34vUhixHFN7iemtEJQIPrSHhpqPubXbxpT0dUI95Wb+W7iUNalzCJt8VyH25d1KGciGFFXI9vlOXfuHG3btkVDI/v7SB+uYvkoe9euXcyf/+7hA1M/tLu5DKNx5U4ALF26AA0NDfb8s4dTD0+x/adF4B+a9hQw9tkdDOt3Iz7kSYbRdfSdO1C68Wd0/7wdztbaTJ06lZMnT2LsOihXw3amVhG/q6pYyrmZM2eydOlS+vXrx9q1axlRV4OhdTTQtKvEr9sD6eN7kBK9W/Lo5Qs2rXmCEhZKNe3KEA9WatVx3PI3nofOYV69In2/HMG0qZOJvryT735dxrlbz3j06BHDhw9HTU2NBg0a0KRJE3r37o2Kigp//fUXFy5cKLD28lJGXbt2ZefOnfl2/NSbL8jZ/3oqvxdJDN4aAFu/RFtbm3bt2tG2bVt+/PFHEhMTAQgICODRfX/O7ffl7/99SXCEf9oT6OzMq/A2qR0pZ/61jE0rFnDixIk3at8+Zhs3bmT79u38+++/WW/8mtR+Kxdue6a1Mw+OeIq3tzfdu3dnzZo1QHIt1PKDU+nY7iccDaywNipJePjtDG3T0z9pjn14meirGqgZNQbVVgSaPMfKOoIbl6+w5eAM6pZrmVaG1zvaQ/aGR03r62Ar+7PkpdwkCxqWGlx3PInqPRUOn9/K1iN/Mv2X31jZtxLnwgLx0fahelxFnj41olSrL9AvVw3DxHAcLO2pP3YdT548YenCvzhy5Eja9eRfoJG5JjUMFFbdf4GL5n/DPGfHuXPnePbsGYMGDeKvv/7K0fuRckZRFAGsE0L0TflZDXgGnBdCtHvnzpkfrxGwGIgH6gM7gHrAqdwcD4ppshASEpI2DnZWYxmnb1cshGD+/Pn4qB3nsz5uzN3wP/6etQxx7Bg6N3ejVbsPGqa2xAXcISH0Kfr6+ri4uNCqfQ1cmjjisX0LXYb+kjYCUm7Hq457rdoYwM7OjpAQmTy8j8DAQL755hs2bdqEEIJ5e9ehaVeJdSaDGGC/gV6W2qiWL0Ht3l+S6NQYG/sraJt1QCPCCPuImxwqUQUVNTWqHz3I7icKURXs6d7ShG1bt/Lbss2sWbOGsLAwEhISOHHiBCdOnADA2dmZYcOGMXnyZI4ePcratWsJDg6WiUMBadGiBVWqVGH06NH5do68HJv+1atXbNmyhS1btgAZmyV2dPom7WnzltPzM23qlFOpiU4EsGjRIr788kuZLKRQFAU9PT1++eWXXO2f/vMl/XwH69ev58cff+T8ha1U62LMv/uTCLbqyc6Ye8ww2EZ5nfII9R0sPH0vrdbq9SZDcYFx6Ox+yti220iIMaN+7SYsHTYc36c+VHVwoXHlTryKSx47P/WBWGqsvN7EJTOpD6tiW8p+LHlJT08vx/NBmbYwRaV5AscPbSZcOwTT5qYM+eFLqlepTmu31tTRr4NKWxVMTEyIjksiwSCSiIe3+NfnPMsX/YWfn1+mx+1eS6FlnShuX4Bh+2NSapMyNoF+GyEEP//8M0uWLOHZs2dp1yspX0QDlRVF0RZCvAJaAG+fQCVrfYBfhBDuAIqi/A7oAN/k9oDFMlmIjo7Gz88PFxcXDh8+/M5tM/uwbf3kPi/PzMP73jqqVu1Lx44d0dDQwMqpMokaekSEOMF3bTE2MiH06Su27trAzKkTM4xwAdm7IGeHoihYWVnx5MnbR0ySsicgIIBZs2Yxbdo0Ll68yLdbnqHv7M3jh7dpPGA8/7i78/zBTXhwk2hLDaK+0GXwXXOa3/fhsG1NkmKi2JOgwgP9iuhGOLFyw0M8fb+nXrt27N27l+XLl7N69eoMzV28vb1xc3NDW1sbNzc3/vjjD0xNTTly5Ai3bt3iwoUL3Lt3T072lk9atmzJvHnz8rUfSV79r2fGoqMFRg2MUNVR5djGNztNv6/0ic4hXvH999/TuHFjjh8/nmfnKK66d+/OpUuX3njdySR5Ru555+Pe2fzrbcncmTNnePbsGd/PGskfL3ZRU0+F02FNAVh6/R5uiQvZfFEwwcISjwquRLyl1mpUI33ctI7j0+MXLl28xJ8Xk5O8zDrXp37/+pCcbxMXGIfqMVWqjagmP3vykK6ubo6ThfStDVJrfAAue17m8T+PifCJwKCmQbZu8tNLrUlI/Zr+2K8/sMxMQEAAgwYNYsmSJaioqLBp06YcvS8pR/YBbYGtQC9gA9AIQFGUOsA8QAt4BQwQQvgqiqIKzAI+BZKAZSnruwOtFEVpLYToI4Q4rChKk/cpXLFMFiC56rh79+5ZJguZWX04mhFR8cw5/xi/F95pr6ub2ODYeiCa6mo8O76BpraufFKxIxGRlQhNePfkXu/Dzs4OVVVVAgICst5YytK+ffswMDBg0aJFdOvWDd3jK+hvY4t+ndosnjwpbbu4wDi0NlzFqqEVx+9BhWfXsU6MZXd8HMe1wFwlCQt1ezSoyfjx4yldujRTpkyhVq1aTJgwgbCwsAznffXqFX///Td///03xsbGtG/fntKlS9O1a1dMTEzw8vLi3r17HDt2LK0TtfR+evbsScmSJZk4cWJhFyXXUpNIIUSOahLS95V5VyKaPtEJBQYPHsycOXP4/PPPefDgQa7L/SGoWbNmhiemqUmCoSb0q5bcVjunI1ClmjhxIps2rebb+FfMn7+JqBJHQQH/08cYFhrDBAtL+hgbo/rEm2UhDVDVN0PN2DrDDf7SoMoY2lehQtXWLJuwGiMDa/qqxnBCPOcTg2VcUktOZtLHzOtN5t6VPHTs2BE/P78CncTwQ2dubp6jZCG1ZjHCJyLtK2RMHHTL6aJllzw/y9tu8jNrjpY67GqqCJ8IdMvppp0jO549e8aYMWNYt24dN27ckHO2AFXWVCkDjADmXf386p08OuxGYLKiKHuAqsBKUpIF4BbQSAiRoCiKKzAT+Az4GigFVE9ZZyKEeKEoSkNgjxDi3cOG5kCxTRZOnTrFd999R5kyZbhzJ2d/q9f/gVLFv/AnKDAQA+d2JJT25+iFbWjYVOKqrS36zh3y7cmipaUljx49kk+e89DGjRtxdHTkzz//xG/CRPpVrUr002dvjKA1pEIY/Uq/ZO+jckQatOblk6No6KsTbWHD1qB7VHl4n2NXt2Ovrk7PyCimfv013UeOZP3mrfy49hjX9q7M9OldaGgoa9euTfvZ2NiYli1bYmJiwoIFCwgPD2fTpk14enoSmtIRraBoa2tTrVo1KlSoQJ8+fVBPmeV6zZo1rFy5skDL8j6qVKnCgAEDGDRoUJEfEvRdT6qDPYJJepWUZR+mEiVK0Lx5cypWrEj16tWxsLBIu2bEx8dz/vx5bt68SXR0NGFhYZw6dYqIiDdvCi5evIiHhwfr16+nffv2H33zx9Q23kBaP6f/XUmeWTsnbbxfFxgYSJ8+A/ntt98YMsCR77//npcvX6atTx05y6NCKzRMbdEwtSUx8nna54y9ujpd71/BaNgCzu67RGXzxjjUiKX94118YqBKyzrJNWmvf5a93mTubf1tzM3N6d27N59//nmu36OUkYaGBv369cPd3T3b+7wrIUi9JqSvWXib1P4zwFsfOBjUNEDLTguDmgZE38h+QnP79m0uXLjAN998w/Dhw0lKyt1gCx+QEcCQlO+H5sUBhRBXFEUpRXKtwr7XVhsCaxRFKUPyjDypT69dgcVCiISUY+TbeMjFNll49eoVZ86coXfv3kybNi3DOjU1NaytrenUqRPHjx8nISGBkJCQbD25T3+hTYh4ysYD09KeyuSX3r174+npmW/H/1jNnDmTWbNmodGrJ/u9LmL7KvmDOv2TtoU3k9Azq0J0qQGgbckTXTNWv7hBhPce/L09uJGSCKQ9BdQtwc2T0YTrPmHuxGF8qWuL/z+L0SlT753V/qGhoWlVuMuWLaNixYr06tWLwYMH8+LFCy5fvkxQUBCPHj3i3r173L17l4SEhPd6//r6+lhaWmJhYYGdnR2VKlWiSpUqmJub4+vry507dxg2bBgPHjzA2NiYv/76i+DgYHbv3v1e5y0IGhoa/PLLL8yePbtAh0vNifRxNqLuC4bWyfxJ9et9mAwNDWnfvj0VK1ZEW1ubsmXLAqClpcXhw4c5ffo07u7u3Lx5M8M+tWvXpkKFCujp6VGtWjXGjh3Ly5cvuXbtGocPH+b69ev4+yc/cfzjjz+oWrUqa9asoX379vJBRYr0zTZyO/pUev7+/ri5ufHDDz+wY8cO9uzZw/79+/Hz8/tvSOf4QxjqmYOS/LmjZmyNU5OvmFW/Jk2bleTIxvVMXLaBxpU7c/uWBxGqMZx4EcbtC0qmyczrTeYy62+jp6fHpEmTuHLlylvbu0s5N3HiRO7fv8++fa/f673duxKC9NeGrG7uM2ua9rZz5WZwlQkTJuDp6YmNjc17zUPygZj32te84gHMBpoA6YfL/Ak4KoTonJJQHMvj82ZJyeGHhChKw0Q6OzuzaNEiDh06lPaapqYm1apVw9DQ8I0hLXfs2MH8+fNz1PE0u+0/c6t8+fLMnTuXrl275ridY14SQuTVH7ZIxYihoSGHDh1ixYoV9O/fHxcXFxw/HU1jpxYc9/PkRXwUP1lUBP1KiJgg/gq7wf0TK974W6dO8hdYvTfVHdpx+skhmo/syf0oFVZ6HEfDohQR3ntQu7D7jargd1EUhfLly1OuXDmsrKywsbGhTJkymJmZcebMmQxPIrNDRUUFa2trnJyc0NLSIiAggMDAQJ4+fcr169e5du0aDx48yPTmsHr16vz8889vvXksSjHSr18/nJ2dGTlyZN6UKB+kjpYW4b0HU5+l72wDr66uTrdu3WjZsiWVKlUiMDCQRYsWERsbi6+vL3FxcYSFheVojgQdHR0MDQ1xcXGhbt26VK1alStXrnD8+HH279+PkZER7u7ubN68mVWrVuXJey5KMZIds2bN4sCBAxw5ciTLbdXV1d86THJ8fHyWCVetWrVo3bo1zZs3JyEhAR8fH65fv46fnx/+/v6omqhSsWNFWpbtSZdanxD1Qo1zG/czecE3PMzGuP3Z5ezszF9//cWpU6eYOHFituYEyEvFLUayq1+/frRs2ZKBAwcWek1nft23rFmzhnXr1nHw4ME8O2Zm8jBGigVFUaKEEHqKotgCXYQQf6X0MRgjhGinKMoOwF0IsU1RlKmAmxCilKIog0iuXej5WjOk1bzWDCn98XJVxuKcLEBym1MzM7O0nxMSErh+/TqBgYFoamry448/0qZNxmnOPTw8+Omnn7J1/PQf+PnRDOnHH38kMDCQFStW5Pmxc+JDvYADfPrppwwbNgw1NTWGDh1KTbvPaFSmBSfveLLt0lrc29dGJ6oKkWpn6bM5uQ9M+hnAH8bHp7UrNdW2oqFVe3xv7abLCwtqzPiNll+MwrBOZ14cWU6n0p+mHfvcyTkZjpETFhYW1K1bN1cT9QUEBODn5/dGh/zsWLduHXPmzMHHx+eNdUUpRlasWMGSJUu4cOFCHhUp71hZWdGoUSOsSpVB064KsY+vkvgy/K3bK4pCgwYNCAwMZNu2bfj4+OTLgwMdHR06depEnz59CAgIYPTo0Whra7N+/Xq6dOmSJ83hilKMZMe7kgVFUahUqRJt27albNmyVKxYMdPmFyoqKgQHBzNgwIBsNelSFAVHR0dq1KhBpUqVsLGxwcLCAnVrdTCF577edLp9jnU3XZi+bysBj9/sgJ1bXbp0Yfz48axatYolS5ZkaIJVUIpbjGRHgwYNmDhxIm5ubm/t/5HfDx7Ty6/7ln79+lG9evV8HXkOPt5k4bXXmvBfslAfWEPyqEl7gb4pyYIa8BvJHZzjgWVCiAWvJwuKopwEygN6QAjwpRDiQI7KWNyTheyoX78+s2bNIjIyEgsLC8LDw3F1dc3Wvvn5D25gYMDWrVsZMWJEhiYFheFDvICn5+XlxZMnT1i7di2nDl9Ie/ofqir4o3w5XF8846RKDHGlAph3Po4eaub0MTZmXWgoM4ICseprhamrKWFnwkh8mchXp6CntjEG69dTd9JK1Cq1JMJ7DxVR5TPzSmwLvk6TK1szHKM4GDhwIJaWlsyYMeONdUUlRrS1tdm3bx+dO3d+o5N5YdHS0qJq1aq0bt2adu3asWfPnhx1Hr579y6nTp3KvwKmo6WlxZAhQ+jZsyfffvstAwYMQFdXFzc3t/dujlRUYiS7fv31V/z9/Vm4cGHaaw4ODtSpU4eePXsCsH37dnx9fbl48eJbmwYOGDCA5s2b89VXX/Hq1asM6zQsNajayJw2F5NY4//8rQ8OUh9I6F0IZXjpvGsKlcrOzo6NGzeyYMECNmzYkGfHzaniFiNZsbe3Z9myZYwePfqdnX/z+8Fjevl136Ktrc2BAwdo0aJFvtaefGzJQnHwUSQLkNw8qWrVqjRv3pwWLVrg5+fH//73P86dO/febcNzo0SJEvz+++/4+Pgwd+7cAj//6z60C/jrxo8fj6GhIXZ2dri5uaVVvRu7DuITuzIM9FpHuOk9+jRJYsGFOGYfSsy0ZiF16LrUmocO27bSZeBQXtrVJ9Lbg/F6WvTS0WDDyzjWBjzOdc1CYalVqxZffvllpjOkF5UYcXNzw8nJqdBGQLK1tUVTUxMTExPKlStHnTp1qFatGnfu3OH8+fMcPHiQhw8fFkrZcqJVq1aMHj2as2fP0qZNG9zc3Lh+/fp7HbOoxEh2Va5cmVWrVmWoMYiNjeXo0aNs27aNK1euZPtYkyZNQldXl3HjxmV43aqvFWMTjfjURxTagwN9fX02bNjAsmXL2LVrV4GfP73iFiPvoq+vz+rVq1m9enWWfb0Ksmbhfb3+eZfetm3b+O677/L1GieThaKn2HZwzqnY2Fi8vLzw8vJi9uzZNG3alIEDBzJ+/Hh27tzJtm3b3hgpJz9UrVqVTz75hC5durBr1y7mzcvr/jHS61RVValXrx5r164lMTGROXPm8N1335GQkECktwe1QstTOv4le+9rsUAnjHnn43gYn5ThQ/31TqjPTBTWtdGms742QfduEO+bPPvr2ih1ktIlCMWlRqE4KVWqVJ4NPasoCtra2mk/q6urY2xsjLGxMVpaWmmv6+np0bBhQ+rXr09sbCzR0dHExMRw/fp1du7cyfjx4wu1z1FuHDhwgEuXLvH5558TGxubNtnkx+TatWvUrl07T441d+5cNm3aROfOndmxY0fa6yGeIaxvpEJYbFLaCEjw7huyvNapUyeuXr1a6InCh0RRFGbMmMHp06ezNShEfs7V8i6vN6nNjnfNxyAHQ/g4fTTJQnoJCQl4enri6elJ2bJl6dOnD1u3buXChQvs2bMnX5oD1KhRg8GDB2NlZYWnpydffPHFRz/GeW7Z2dlhYGDw1vUWFhZUq1YNTU1NypQpg6OjI3fu3OHEiRPs2LGDP//8k1mzZjFu3DjiQ5+y/EowMSkXU/WoREbU1WDzRcEnitEbF9jUp0O6ZU7T9rNPePDycVothZqxNRHOHZjl7UFCNi7KubmIS8l9Avbu3Zvt7RVFQUtLC11dXcqUKUO5cuVwdHTEwcEBe3v7DB9+CQkJhIaGEhoamqE5SVxcHOfPn2fRokUEBn44CWBQUBC///47v//+e2EXpdiLiorim2++Yfv27dy/f5/Lly8DyQ8aLm715+Jr26fekOlV0uPV/VcE7QrKl6Shbt26DBo0iN69e+f5sT9mI0aMQFVVlT///LOwi/JOfY1N6GNsDJDth1fvM2qS9GH6KJOF9G7fvs2UKVMwNjamSZMmjB07lm7durFgwYIcz9+QmbJly9KxY0c6dOjA0qVL2bRpU45GNPkYKYpC5cqVadCgAc7OzlhbW2Nubp62XkVFhVu3br21c54QAh8fH548ecLp06cJDAzM8LccO3YsP/30E7Nnz2bMmDEZagDWNtaiX1UNqj83wDRCD30VFcYF/PdkJXXMcvVYB3qUbsPsFXveWAdvzsQKb1ZD5+YiLiXLrOmgoijY29tTp04dDA0N00aFKlWqFEIIYmJiuHPnTtqY4Zs2beLBgwfFrkZAKrqePHnC8ePH+eWXX/j666/fOcRkiGdI2tj6mlaaJL5MzNasujlhbGzMlClTmD59erFoGldcdOjQgUaNGuHm5lbk5xxIrc1KX6uVlddr0iXpo08WUoWGhqaNg921a1cWLFiAt7c3f//9d67GFFYUhTFjxtCxY0d27NhBly5dcjU6zcdo3LhxNGvWjH379rF8+XKCg4PfqIV5n6rQ2NhYJkyYwG+//cbOnTtxd3dnx44dxMTEJE93kolaJe34vOFnuF8+il45e0Z2rM+hg7fZt/C/yW8yG888vdeTidxcxCUICwvj119/TWtfr6qqirm5Oba2toSGhuLl5cXz58+5fPky27dvx8/P741Op5KUX8aOHcuwYcOYOnUqU6ZM4cmTJ5luFxcYx6MFjzDvYI6iKHn+FFdVVZXx48dz9OhRDhzI0cAn0js0bNiQIUOG8NVXX+VoGPbCIpvDSnnho+ngnFPq6uqMHDkSV1dXLl++zK5du7h06VK2bjqMjIyYPXs2dnZ2jB07Nked5ApLUel0ZmBgwIEDB+jQoUOBJFcuLi7079+fqlWrcujQIW57H8dFucS6U1EZmiEt+XIcJar2wKlqLM+VeM7uu8GcxdOzNZdCquLQwa04dHA2NTWlYsWK/x1MCIKDg3ny5ImsJShkRSVGCpuamhrDhw+nbdu2hIWF4e7uzu7duwtsMI3q1aszdOhQoqKiGDt2bIHPpfAuxTlG6tevz9SpUxk5cmShj2BYWLZu3cro0aNlB+ePjEwWsqCrq0u7du1wdXWlbNmyXLt2jRMnTmQ6JrmZmRn16tWjTp06nD59mokTJxabJ5pF5QKuKArz5s1LmyMjO+OW5wVbW1tat25Nw4YNqVixIhEREYSFhaEoChYWFhjp6qIaEc+ajat4cEOThuXbc/zaTracnp/1wYuR4pAsSEWXjJGMUptUDhs2jMqVKxdIkxVFUYiJiWHNmjVs2LChSCUKUHxjxMHBgSVLlmQ5RGphKKj+byYmJmzevJkvv/xSJgt5TFGUCUBvIBFIAr4BZpE818LrXZ5S9+lI8uzOSUACMFII8dZOt4qi2AFrAUuS21EsFUJka5QdmSzkgK6uLrVq1cLFxQVdXd031kdFRXHlyhW8vLzeOjFLUVWULuAqKioMGTKEJk2asG3bNvbu3fvWkVry4yKZ2qxFXV0dSP67RqvoolujHZHeHpjpWeLqMohDpxfn6YRJhUVPT48SJUpQtmxZ+vfvT2RkJF999dUb2xWlGJGKJhkjb6euro6KikqBnCs+Pr7ItqUvjjGir6+Pu7s7ixcvZv/+/QVyzpyYYGGZr3P6mJiYMHDgQFq1asWxY8eYMWNGvsbXx5YspEy69gfQRAgRqyiKGaABrOfdyYIeEC2EEIqiVAU2CyHKv+M8VoCVEMJHURR9wBvoJIS4kVUZZZ+FHIiOjub48eMcP368sIvyQUtKSmL+/PlcuHCB1q1bM3DgQA4cOMBff/31Rk1NXncSdjJRYURddeadD8Iv4L+LobFrj7T+BrHASXsbYp/XhSKeLCiKQsmSJXF0dERPL8MEkTg5OVG1alUcHR0JCAjg3r17bNiwAW9v70IqrSR9uIraE34p+7777jtOnz6dr4lCmTJlME75LEtISODy5cvZviHPr/5vKioqdOzYkR9//JEjR47Qt29fnj2THZ/zgRXwXAgRCyCEeA7Jn9+pFEX5FJgJqKZs21wIEZXuGLqk9LpMSSJ2AcaAOjBRCLFLCPEMeJZyjkhFUW4CNkCWyYKsWZCAov20x8DAgO+++w4HBweGDRtGRERE2rq8rlmY31qLoXU0WHAhjmH7Y9JeT9/fACjyfQ+srKxo2bIlnTt3Rltbmxs3brwxj0hERAQnT57k6tWr2bqRKcoxIhUNMkakrBS3GKlfvz7jxo2jZ8+e+dasuGnTpkycODFt/hhjY2Pi4+PZsGEDwcHB3Lhxo0CbNFtaWlKhQgVGjRpFWFgYP/30E35+fgV2/qJes3CzfIUywAhgXoVbN9972MyUm/tTgA5wCNgkhDiuKMoxYAzwEPABPhFC3FcUxUQI8SJl387AL4AF0FYIcVZRFDVARwgRkVJLcQ4oI9Ld8CuKUgo4AVQWQvx3U/W2MspkQYLicQEfOnQonTp14vjx4/z1119oCD2aVOnCsavbc9TR+F2SaxY0mHc+jkfqagU2aVJesbOz49NPP6Vnz56cOHGCw4cPc/r06TyZSKc4xIhUuGSMSFkpTjFiYmLC8uXLmTt3LidPnsyXc6irq3Pq1Clmz57Nli1bgOQnyi1btsTV1RUTExNKly7NyZMnefToEZs3b87zCRS1tLSoWLEiiqJQr149unTpwu3bt9m9ezf79u3L03NlRzFIFhYAQ4CFFW7dHJoXx1QURRVoBDQlub/COMCN5GTBCugphOjzjv0/ASYLIVwVRVEH5gKfkNyfoRzgIIQISNlWDzgOzBBCbM9O+WQzJKnYWLBgAVu2bKF3797s2LGDx9fDiLufPMtkXnU09nuRlFajYNX37bNYFiWqqqppfWnatGnDmTNn6NmzpxyqV5Ik6T1MnTqVw4cP51uiANCzZ08uXLiQlihA8ghvBw4cSBvyNnUeqHr16rF//36io6NJSkri2rVrBAYG8urVK86dO4evr2+Gmves6Onp0bFjR/r374+/vz9xcXE8ffqUrl27ZjqIi5Rm3mtf35sQIhE4BhxTFOUq8HkO9z+hKIpjSk1CO8AccBZCxCuK8gDQAkhJJLYB67KbKICsWZBSFKenPQClSpVi8FdD6dTxM27evsqdu77ExMRw9+5dEhMTiYyM5OjRo+/1BEbDUqNI1Szo6elRoUIFKleujKWlJSYmJlhaWuLo6Jg20diOHTvyrXN9cYsRqeDJGJGyUlxixNrams2bN9OxY8d8G5WvRo0azJgxg6+//vqt83G8Tk9PDzU1NdTV1alZsyYGBgYYGRlRr149SpcuTWJiYraH6NXS0uLUqVOsXLmSu3fvvs9byVNFvWYhrymKUg5IEkLcSfn5Z8AIqMw7miEpiuIE3E3p4FwT2A3YAsMBJyHEMEVRmgJHAIeU46wBXgghRuaojDJZkKD4XMAzk3rB1NfXp1SpUkBym/0GDRrw77//cu/ePZ4+fcrz588JCwsjPDyc6OjoTJvmREVF8fLlywIru6IoabNTOzo60rFjxzdGTNHX16dcuXKoqanh5+fHv//+y7NnzwgJCSE4OJi7d+8WSJmLc4xIBUPGiJSV4hIjgwYNokSJEkydOjXfzrFs2TK2bdvGP//8k2fHNDIyyvaoW9HR0cTGxubZufPKR5gsOAPzSU4QEgA/4GtgKymjISmK0prkDs4qQJAQooWiKD8A/YF44BUwVghxKqV2YTegB1wE6gGtSU4kTgJXSW6eBPCjECLLtmYyWZCA4nMBzwkdHR3q1auHjY0N1tbWmJmZYWRkhIGBwRsjA6XS09N7ayIByaNUnDlzhri4/2oaEhMT8fX1fWsnYUVRMDY2xsrKCjU1NSpUqICNjQ0A2traxMXFkZiYSHR0NOvXr3+jNiQmJoZbt24VerXwhxgjUt6SMSJlpTjEiLa2Nh4eHgwfPjxfJl9TFIXPP/+cdu3a0a1btzzpU/Yh+diSheJA9lmQPlgvX77kyJEjOdpHXV0dIyOjt643MTGhZs2aGYY009bWpmnTprzrgys8PBx/f3/i4+Px9vZO+wBKSEgo9CRAkiRJ+o+ZmRmRkZH5kiiYm5vz/fffY2pqytChQ2WiIBULMlmQpHTi4+Pf2TE4ODgYX1/fAiyRJEmSVNDy4ybe2dmZ3377jZ07d/Ljjz/KuTekYkMmC5IkSZIkSSkaNGiQ1pcsL6iqqtKrVy/c3NyYMmUKp06dyrNjS1JBkMmCJEmSJElSCl1dXXbv3p0nxzI3N2fq1KmoqKjg5uaW7VGPJKkoyV6XeUmSJEmSpI9EVFTUex+jRYsWrF+/Hh8fH4YOHSoTBanYkjULkiRJkiRJeURTU5MvvviCdu3a8e2333Lnzp3CLpIkvReZLEiSJEmSJL2n2rVr4+rqSsOGDbl06RKff/45z58/L+xiSUWYoihHgV+FEAfSvTYSKCeEGFxoBXuNTBYkSZIkSZLS0dLSytZ2Ojo6tG7dmu7duwPg4eHBsGHDuHfvXn4WT/pwbAB6AgfSvdYT+L5wipM5OSmbBBSPiXKkwiVjRMqKjBEpK8UhRipVqsSff/5JcHBwlkOoWllZ4eXlxZYtW7h48WK+lOdj8zFNyqYoiglwC7AVQsQpilIKOAHsBWoD2sBWIcSUlO1/BTqQPNPzQSHEGEVRVgMRQC2gBPC9EGJrnpZTJgsSFI8LuFS4ZIxIWZExImWluMSIjo4Otra2WW4XHBwsJ9bMY0U9WVg46EgZYAQwb8jiZu/dIUVRlD3AMiHELkVRxgFmwEwhxAtFUVSBw8BwwB84A5QXQghFUYyEEGEpyYIu0AMoD3gIIZzet1zpydGQCpGtrS1Hjhzh+vXrXLt2jeHDh6eta9WqFbdu3eLOnTv88MMPhVhKqTDJGJGyImNEyoqMkZx7+fIlt2/fznL5UBIFGSM5MgIYkvI1L6Q2RSLl6wagu6IoPsAloBJQEQgHYoAViqJ0AV6mO8ZOIUSSEOIGYJlH5fqPECIniwDkkkdLiRIlRI0aNQQg9PT0hK+vr6hQoYJQUVERfn5+wsHBQairq4vLly+LChUq5GtZchgHMkZkjMgYKSKLjBG5yBiRi4yRglsWfHO4zIJvDi9Y8M3hMnlxPEAPCAJqArcBB8APME5ZvxpwS/leE2gDrASOpFvfNd3xovL6PcuahUIUEBDApUuXgOQxnW/evImNjQ116tTBz8+P+/fvEx8fz8aNG+nYsWOGfe3t7bl69Wraz6NHj2bKlClp627evMmqVavw9fXF3d2d5s2bc+rUKW7fvk3t2rUL7k1K70XGiJQVGSNSVmSMSFmRMZJ9QxY3uzNkcbOhedEECUAIEQUcJTkB2AAYANFAuKIolkBrAEVR9ABDIcQ+YBRQLS/Onx0yWSgi7O3tqVGjBufPn8fGxobHjx+nrXvy5Ak2NjY5Op6TkxNz5syhfPnylC9fnt69e9OwYUPGjBnDjz/+mNfFlwqAjBEpKzJGpKzIGJGyImOkUGwg+eZ/gxDiX5KbH90C1gOnU7bRB/YoinIFOAV8V1CFk0OnFgG6urps27aNkSNHEhkZmSfHvH//PteuXQPg+vXrHD58GICrV69SqlSpPDmHVHBkjEhZkTEiZUXGiJQVGSOFQwixE1DS/ez2lk3rZLKv22s/6+Vh0QBZs1Do1NTU2LZtG+vWrWPHjh0A+Pv7Y2dnl7aNra0t/v7+b+ybfiQIdXX1DOtiY2PTvk9KSkr7OSkpCTU1mSMWJzJGpKzIGJGyImNEyoqMEeltZLJQyFasWMHNmzeZO3du2mteXl6UKVOGUqVKoa6uTs+ePfHw8HhjX3t7e8zMzFAUhU8++QRVVdWCLLpUQGSMSFmRMSJlRcaIlBUZI9LbyGShELm4uNC/f3+aNWvGpUuXuHTpEq1btyYxMZGhQ4dy4MABbt68yebNm7lx48Yb+4eEhLB27VouXrzItWvX6N+/P46OjoXwTqT8ImNEyoqMESkrMkakrMgYkd5JDlVWPBd7e3tx9erVPDueHM7uw1tkjMhFxohcZIzI5SOOEbnk0SJrFiRJkiRJkiRJypSSnJxnW75Ory4VHpF306vLGPlAyRiRsiJjRMqKjBEpK3kYI1IekTULkiRJkiRJkiRlSiYLkiRJkiRJkiRlSiYLkiRJkiRJkiRlSiYLkiRJkiRJkiRlSiYLkiRJkiRJkiRlSs6zXYTkcGSqbJMjRnw4ZIxIWZExImVFxoiUFRkjUnoyWShC5D+RlBUZI1JWZIxIWZExImVFxoiUnmyGJEmSJEmSJElSpmSyIEmSJEmSJElSpnI8g3N+FUQqEvKi3lHGyIdNxoiUFRkjUlZkjEhZke2gipCcJguSJEmSJEmSJH0kZDMkSZIkSZIkSZIyJZMFSZIkSZIkSZIyJZMFSZIkSZIkSZIyJZMFSZIkSZIkSZIyJZMFSZIkSZIkSZIyJZMFSZIkSZIkSZIyJZMFSZIkSZIkSZIyJZMFSZIkSZIkSZIyJZMFSZIkSZIkSZIy9X8Tvr3YekBP8AAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxQAAACICAYAAAB+z600AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABibElEQVR4nO2dZ1hURxeA36GjAgIiElRQQcWIDXtvaKyxV1Q01kTFGGM0ahJbjCkmxK6xBqOJGnsMCiiWWNBoYo0ae40UK6Ai8/2gfPSl7LKUeZ9nnt29987cc3fPzr1n5sw5QkqJQqFQKBQKhUKhUGQHA30LoFAoFAqFQqFQKPIvyqBQKBQKhUKhUCgU2UYZFAqFQqFQKBQKhSLbKINCoVAoFAqFQqFQZBtlUCgUCoVCoVAoFIpsY5TF46UQQieCKPSLlFJbP6zSkQKK0hGFJpSOKDShdEShCS3qiCIXUTMUCoVCoVAoFAqFItsog0KhUCgUCoVCoVBkG2VQKBQKhUKhUCgUimyjDAqFQqFQKBQKhUKRbbK6KFuhUCgUCoUWEULQsGFDqlWrRunSpTEzM0t1TGhoKNeuXePGjRscOXJED1IqFApF+ggpZVaOV1EVCigq8oZCE0pHFJpQOpI1qlevTvv27alTpw7Pnj3jwIED3Llzh2fPnqU61tnZmVKlStGgQQNiYmJ48uQJ9+/fZ//+/Rw5coTnz5/r4QqyjtIRhSZUlKf8iTIoFIDq5BWaUTqi0ITSkcxRqVIlBg4cSPXq1fnpp584deoUFy5cyFTdokWL4uLigoGBAc7OzgwcOBAbGxtCQkL46aefOHPmDK9evdLxFWQfpSMKTSiDIn+iDAoFoDp5hWaUjig0oXQkfczNzWnevDndunWjVKlSbNq0iZ9//pno6GittN2xY0d69eqFpaUlAwcO5MGDB1qQWvsoHVFoQhkU+RNlUCgA1ckrNKN0RKEJpSPJsbW1ZcCAAdStW5fSpUtz8uRJdu3aRVBQELGxsTo556hRo+jduzf37t1j2rRpXLlyRSfnyS5KRxSaUAZF/kQZFApAdfIKzSgdUWhC6UgcdnZ2jBgxgpYtW7Jz5052797NtWvXtDIbkRkMDQ2ZMGECLVq0oH379jozXrKD0hGFJpRBkT9RBoUCUJ28QjNKRxSaKMw6YmhoSLNmzejQoQO1atVi06ZN+Pn58fjxY73JtHz5cn755Rf27t2rNxlSUph1RJE5lEGRP1EGhQJQnbxCM0pHFJoorDpSpUoVpk6dSmRkJFu2bCEoKIioqCh9i4WHhwezZ8+mR48eaUaO0geFVUcUmUcZFPkTZVAoANXJKzSjdEShicKkI0IIqlatSqdOnWjWrBnffvstv//+u77FSsXEiROxsrJiypQp+hYFKFw6osgeyqDInyiDQgGoTl6hGaUjCk0UBh1xdHSkW7duvPXWWzx/+Zo/rj1h7XczCb/5j75FSxMTExNWrlzJ5s2b2bJli77FKRQ6osgZyqDInyiDQg8IIahRowbGxsY5auf+/fvcvHlTKzKpTl6hCaUjCk0UVB0xMDDA29ubxo0bU6ZMGXbs2MGOHTt4VKEtlh4deXJyJxEBS/QtZrqUL1+e5cuXM2rUKC5duqRXWQqqjii0hzIo8ifKoMhFbGxs6NGjB+3bt+f58+c8evQoR+25uLhw5MgR/vnnH3bu3MnTp0+z3Zbq5BWaUDqi0ERB0xEhBI0aNWLw4MFER0ezevVq/vrrL16+fAmAkfUbWHh05unJ7cRE3NWztBkzdOhQqlevzpgxY/QqR0HTEYX2UQZF/kQZFDrGyMiITp060aVLF8qVK8fhw4dZu3ZtprOiZoSFhQV9+vTBzc2N2rVrs379etatW8eTJ0+y3Jbq5BWaUDqi0ERB0REhBJ06dWLo0KFERETwyy+/8Ntvv5HF+2WewtzcnO3bt/Pee+/pdZaioOiIQncogyJ/ogwKHWJra8vUqVMpWbIkK1asYP/+/TqLB16xYkVGjBiBs7MzI0aMIDQ0NEv1VSev0ITSEYUmCoKOFC1alBkzZlCiRAm+/vprzpw5oxc5dEG7du0YPHgwAwcOzLWcGCkpCDqi0C3KoMifKINCy5iZmdGjRw/atWtH6dKl2bJlCwsWLCAmJiZXzu/j44OXlxeenp5ZcqlSnbxCE0pHFJrI7zpSunRpZs+ezcWLF/nqq69yrd/OTaZPn05UVBRffPGFXs6f33VEoXuUQZFPkVJmpUhAlTSKmZmZ9PLykv7+/nLOnDmyevXq0sjIKNflMDc3lyEhIXLAgAFZqpdFPVA6UgiL0hFVCrKOuLu7S39/f9mvXz+9f4+6LEWLFpXbt2+XderUUTqiSp4sWtQRVXKxGKHIEeXKlcPb25umTZty7NgxRo0axdWrV/UmT1RUFD/99BNxfa1CoVAoNDF8+HC6du3K559/TnBwsL7F0SnPnz/nm2++YerUqQwaNCjHwUEUCoUCwEDfAuRXrKys2LZtG+vWrePq1at069aNSZMmpTIm7Cwd6dloDHaWjonbXGwMmN/ODBcb3Xz9zZs35/r16zppW6FQKAoS9vb29OrVi759++ZLYyKte4wmgoODOXXqFJMnT9ahZAqFIiVCiGlCiH+EEIeEEOuFEBOEEBWEEL8LIU4KIQ4KISrHH7taCPG9EOIPIcRVIUSPJO18KIQIEUL8LYSYrr8r+j/KoMgGVlZWLF68mHPnztG+fXvWrFlDREREmsc2d+9Gs6pdaO7eLXGbTz0TRtc1waeeiU7kK168OH/++adO2lYoFIqChI2NDXfu3Mm3I/Vp3WMyw/r163F0zLwRolAocoYQog7QHagOtANqx+9aBoyRUnoAE4BFSao5AI2BjsAX8e20AVyBukANwEMI0TQXLiFDlMtTFkkwJg4dOsSiRYs0Hr//zK/JXgF8j71M9qpQKBQKRXZI6x6TWdSiZoUiV2kEbJNSRgPRQogdgBnQENiY5P9omqTOVillLHBeCGEfv61NfDkV/7kYcQbGAR3LnyHKoMgCzs7OfPHFFxw4cCBTxgTAwyd32Hh4frJtV8JjGbNbPyH7FMkpWbIkbm5uqba/fPmSo0ePqrUoiiwhhKBFixZ06tQJKyurxO2vXr1i48aNHDlyhOfPn+tRQkVBI617TGb477//KFOmDKamprx48UIHkhUcbG1tMTQ0zHK9R48eJSZBVCjSwQB4JKWskc7+pH9OkeR1jpRyqS4FyyrKoMgkPXv2ZPjw4SxevJhff814JMjE3gRbT1vC9obx8oHqTPIa1tbWzJkzh/Lly2NkZMTp06dT5QcpU6YMpUqVYu3atWzcuDFbyQIVhQs3NzemTZuGlJJ169Zx69atxH2lS5dm0qRJWFlZsWnTJo4ePZov/fUVBYeIiAhevXqFiYmJMiiSYGZmRseOHWnSpAkGBga4urpiaGiYLcPAysqKmzdv8t9//7Flyxb1n1ccBpYKIeYQ9/zdkTh3p2tCiJ5Syo0ibpqimpTyrwza8QdmCiHWSSmfCSEcgVdSyv90fgUZoAwKDdjZ2TFx4kQcHBwYPHgwt2/f1ljH1tMW29a2ANzzu5dx+5aONHfvxv4zv/LwyZ0cy1uxYkUgbkRUkZxOnTrRuXNnXFxcOHr0KL179yYyMjLNm6kQgnr16jF37lwGDBjAP//8k3hcVFQUR48eJTw8nOPHjxMVFZXbl6LIYxQrVoyvv/6avXv3snjxYl68eJHsv33mzBl2796Ng4MDEyZM4IsvvuD58+ecOnUqyw8q9+/fJyAggAsXLujoagoXpqameWYm0sj6DSw8OvP05HZiIu7qW5xCgRCC2rVrU7t2bWxtbWnRogWnTp1iy5YtvHjxguvXr3PvXsb38fQwNjbGxcWF0qVL4+Pjw9ixY/Hz82Pnzp3qHl0IkVKGCCG2A38DD4AzwGOgP7BYCDEVMAY2AOkaFFLKPUIIN+BIvJvUM8AL0KtBoRLbZUCvXr0YPnw4GzduZOXKlZnuALIyQ9Gz0RiaVe1C8Nmt2Zq2TomnpyctW7bMcvQOWQCTDZmYmFC6dGnat29P/fr1EUKwdOlSjhw5kqXOvEiRIlSrVi3R37h48eLUr18fBwcH7O3t2bVrFzt27Mj2TSe/UBB1RFtMmTKFYsWKJfvfZfTfNjQ0pGTJklStWjVLfuwGBgZUrVqV1q1bs2HDBlavXq2tS9AK+VFHBgwYQKlSpfjqq69y5XwZYd16JJYeHXlycicRAUt0fr7AwEC6dOnC06dPdX6uBPKSjrRs2ZIxY8YQFRXF/v37efr0KQEBATx8+FBLIv4fQ0ND3N3dGTx4MFWrVuXixYvExMSwb98+du7cqZMkihYWFtSqVQs3NzferPUmRZ2LEn0rmteRrzXWffLkCQEBARw6dCjXjR8t6kieQwhRLH5WoQhxax6GSykLRBQdNUORBsbGxowePZoGDRrg7e2dqVmJpLx88FLjzEQCOVlQlx4p3XcKGz179qR169aULl2amJgYgoKC+Prrrzl79my2Ou3IyEiOHj2abNvu3buBODeXLl264Ofnx+3btwkNDcXf3z/N81y8eJG7d9WoY0HD1NSUtm3b0qFDh2TbM/pvv379mnv37mXLCP3999/x9/dnwYIFGBkZ8cMPP2RPcAUQ96AXGRmpbzEAeHpye7JXhfYxMjLirbfeYujQocTExDBz5sxciYr4+vVrTp8+jY+PD3Z2dlSoUAEzMzO6d+/O+PHjiYiI4OrVq9y8eTPZrOX169c5depUhrNolSpVwt3dnZo1a+Lk5JS43cjIiL/++osLFy4Q9F8QRRyL8PjWY0J/D9Uob5kyZejTpw8TJkxg/fr1+Pv768TQKoQsE0JUIW4x9pqCYkyAmqFIRokSJahbty5Dhw7l8uXLzJkzR+uhBLXt4pQST09PmjdvzpQpU7JULy+NGuWEVq1aMWPGDBYvXsypU6c4d+5crpzX0NCQGjVq4OLiQq1atVLtT5hWv3z5Mr6+vpw/fz5X5NImBUVHtM3kyZMpVqxYlv9zOaVmzZosW7aMPXv25Pq50yM/6oi3tzcWFhbMn5/zGeKcoK17g4uNAT71TPA99pIr4RkPLhW2GQonJyeWLFlCeHg4X375JWfOnMkTA3DFihXD2tqa8uXLU7Zs2cQF4EIIatWqRdmyZTOsHxoayqFDh7h48SLnz59PND6ioqISZxeyu7bTzc2NHj160LRpU+bNm5c4mKZLCvIMRYEmi6m19Z6SXVelZ8+eMjg4WC5cuFB6eHjo7DxDW42VC0YEyqGtxma7DRcbAzm/nZl0sTFItc/T01POnj1bn6nu9fYbWltbS39/f1m/fv1cO6eJvYl08HKQJvYmGo81NTWVXl5eMiAgQE6cOFHa2Njo7bvKTikIOqLt0qlTJ+nn5yeLFSuml/O7urrKkJAQWbNmTb1/F/lVR1q0aCGXLl2q9++uZ6MxcsGIQNmz0ZgctTO/nZmUn1rK+e3MNB4bGBgoLSwsCoWO2NnZycOHD8vhw4dLyPg+qkrq4uHhITdv3iynTZumc53Roo6okotFJbYDBg8ezKBBg3j//fd57733OHnypM7OVb3ITtyL/Eb1Ijuz3UZGifFcXV2Jji6cIWmHDx/O9evXU7kn6ZKEBfi2nrYaj33x4gV+fn5069YNS0tLduzYgZeXFxYWFrkgqULbCCHo3LkzP/74I8+ePdOLDJcvX2b+/PkMGDBAL+cvCBw6dAgLCwu6du2qVzn2n/mV4LNbc+z+6nvsJQuOv1R5jpJgamrKzz//zP79+1m2bBmg+wSzBY2TJ08ycOBApJT8+OOP2Nvba66kKFzockQgP5Q6derIbdu2SVtb21w5nzZGRTJqY/HixbJhw4b6HBHQy+/Ytm1beeDAAVm8ePFcPW9WZihSliZNmsiAgAAZEBAgq1WrppfvrTDpiLbLu+++KxctWiQNDPQ7wunu7i5Xrlyp9+8jP+tIuXLl5NGjR6W1tbVOz+NkbCynlLSXTsbGev+toPDMUEyePFnOnTtXCiESt6kZiuyXvn37yq1bt8oKFSrkdR1RJRdLoV6UXbp0aWbOnMmsWbMICwvTSpsZ+a8aWb9BWK3OvH80ZyEBNSXGK2yJdBwcHJg4cSKDBg3S+poXTWRlAT4k14+DBw/SunVr6tWrx4oVKwgMDGTSpEk6lFahLRo0aED79u3x8vLKEz7YBgZqsjknXLt2jaCgIIYOHaqVaE9lypShdu3auLm5Ubp0aQwMDHj27Bnlb9/mzeMhcOUKs/97oAXJFZowMzOjW7dudOzYkTgbJI7rshSfvOrMU7kdUMEyssL69euJiYlhw4YN9OrVi2vXrulbJEUeoFDfhXx8fPj55585dOiQ9trMYBrVwqMzlh4dsfDorLXzKaBHjx6cOXMmX3RqaenHsWPH+OCDD2jVqhWff/45JUqU0KOECk0IIRg/fjyzZ8/OdQM2LW7evMmbb76JsbGxvkXJ13z++ee89dZbOfr/NWrUiDVr1rBhwwYaN27MvXv32LBhAz/88AMHDhzgbqlSmPl+h9WI4Tg4OGhRekV6fPXVVwQFBfHgQXIDTt2Pc8bGjRv5/PPP+eWXX5gyZQqmpqb6FinfIoR4LYQ4naRka2RRCNFUCPGnECJGCNFD23JqRFdTjHm9tG3bVm7atEmamGTdVSWjknIa1c7SUfZsNEbaWTpKI+s3pHXrkdLI+g2tnS/lFPrKlStl7dq19TnFmKu/oxBChoSE6NxVQVf6kbSYm5vLMWPGyJCQEFmpUiW9y1pQdETbZcCAAXLFihV6lyNpCQkJkT179tS7HPldR3x9fWWbNm2yXM/BwUEuW7ZM7t69W/bo0UMaZ+DS5ODgICdPniz/+OMPOWzYML26zBV0lydjY2P5+++/y/Lly6fap4v7cV4queXSVb9+fblq1So5YsSIvKgj+aIAz7TUjjNQDVgL9Mj169D2HzivF0NDQzlp0iS5d+9e6erqqvVOJeWfOCFyx/x+42SrcoZyVk8LWeXdCrJE10FaOeeUkvbyfKXKckpJe2lvby+Dg4Nl0aJF9fkHztXfs3PnzvLHH3/Uu15ps4wdO1Z+9913epejoOiINkuRIkVkcHCwLFWqlN5lSVpmzZolP/roI73Lkd91pEuXLnL16tUZGgQpS+XKleW+ffvkqFGjpKGhYabrlSlTRq5cuVL+9NNPsnTp0rl+rcbGxvLgwYPS3Ny8wOpInTp15ObNm5OtnSiIRQghnZycpKenp3z33Xfl1KlT5V/bFkl5ZrP8Z/8v8tNPP5XNmjWTVlZWWWo36YBoRseVKVNGBgYGSgcHh7ymI/mikI5BAXgAwcBJwB9wiN8+DAghLpv2ZqBIinqr0YNBUajWUAghmDx5Mk5OTnh5efHgwYPEzKSAVjKTercqyuMmNoywiyHwP3dqNixN27a2ONsPoP+D+pyOucHVp/9w7KIJr592TjxnVmKHJ8UvIjzx1djenvDwcJ4/f57j68gPWFhY4OPjw7Bhw/QtSiqKFi1KtWrVcHFxwcrKKjEh0NOnTzl27FiGa3ZWrFjBypUradOmDXv27MktkRWZoE2bNvz555/cv39f36Ik4+jRo7Rr107fYuR7tm/fTr9+/ahRowYhISEaj7exseHbb7/lyy+/zHJ8/lu3bvHOO+8wYMAAli5dire3Nw8fPsTJ2Bgvaxv8IsK5ocMMxVWrVuXWrVtERUXp7Bz6pnXr1gQFBSU8ZBU46tevT+/evalfvz6xUVEYXr/BnnNnOX/lCl+dOcJb9mGsPy8p696QIUOG4ObmxpUrV9i/fz/btm1L5QaWkubu3WhWtQsAGw+nn6fl1q1brFq1im+//ZaRI0fmCVdQXeI8aZcr4AP4Xv+iw2UtNGkuhDid5PMc4FdgPvC2lPKhEKI3MBsYAvwqpVwOIISYBbwTf6xeKVQGxWeffUbz5s3p379/4h9J25lJ/cu68I7HENq0boLjHyfYd+wYEz/eTKdSD/kz0oEO7evRtXpnRrWryuaIDaz4twoxFZryfrGNvFs97uaR0YLrlNx49SpxcV9prVxB/qFly5aEhIRw9epVfYsCxCW3a9asGX379qVGjRr8+++/nP33LIZOhhT7txivn73G2dmZTz/9lN9++w1fX980O97nz5/j5+dH+/btlUGRhzAxMWHUqFGMGzdO36Kk4ty5c3h7e+tbjHxPbGwsv/32G2+99VamDIopU6YQFBSU7WRfUkrWrl1LyZIlmTJlCuPGjcPL2ob+1tYAOl243apVK/bt26ez9vMCRkZG3Lp1S99iaB1zc3Pmzp1LxYoV+emnn/j8888ZLgzob23Ni4gINsTrjV9ChUN/sXjxYkxNTalXrx5t27Zly5YtbN++nSVLlqRrACSEMM5MKOOffvqJrl278sEHHzBt2jQtXGWexgd4L/79aC20FyWlrJF0gxCiKlAV2BufwNEQSIgAUzXekCgOFCNu9kL/aHuKMS8WQ0ND+e6778qgoKAchefMKOSfsbGxHDFihDx58og8ufor+U/DRnJKSfvE/Sldq8qUKSOnT58uQ/6+IHcsnCi79emdY3/HUaNGySNHjuh7ijHXftcFCxbIVq1a6V2/KjuXknsWfSCD9wXKX375Rfbu3VuamcUllXLwcpBVV1eVDl7/nwq2traWn332mQwODpZt27ZNu83KlfOcK1d+1BFtlp49e0pfX99cO19W3DGtra3lH3/8kS13R6Ujqb/LoKAgjd+lm5ubDA4O1orLkImJidy+fbts165droWWnTx5suzWrVuB1pFp06bJzp07602XdFEMDQ3l8uXL5SeffJLMNS+l3mjqP+zs7OTs2bNlYGCg9PT01IpsRYsWlbt27ZLu7u55RUd0Upw+2unq9NHOBU4f7XTVRnuk4fIEuANH0jn+GlA9/r03sDrF/tWoNRTaL1WqVJEbNmyQixYtkuXKlctRW0nXKyTdXrZsWblhwwa5dOlSuWqgq3wx3lr613kj2Q3BuvVI6fTRTmndemSyutu/HiHlv/vk1rnv5PhaAwMDpbe3t77/wLnyuzo6OsqAgIDEB3d9lVKlSskLB3fL/06dltu++iDV/qR5KlLmrKhevbrctWuX7NKlS6p6yqDIW6Vo0aJy//79Oou7nlZJr89Ir/z222/Szs5O6YgWyrp162SdOnUyPGbWrFly9OjRWjtn48aN5e7du6WRkZHOr8/Y2FiuWLFCdurUqUDrSEEzKIQQ8svvFsglvwZKY5uM1zVktv+oU6eO3LVrl9Z0efDgwXLatGl5RUfyRSFtg8IEuAI0iP9sDLwZ/z4UKBm/bS/KoNBtKVOmjPzyyy/l7t27ZZcuXbTSSac1clSrVi25Z88eOWDAAAnpR1ZIb7SgsnMpuf2rofLQgf1ZWgiYsnTv3l0eO3ZMFitWTN9/4Fz5fadNmyaHDx+eo8RyOdWFhZ5t5KHAQPnTwi1y4aggObzdR4nymLuWTvV7pzVbUa5cObl//35ZsWLF5HqhDIo8Vfr27ZursxOQ9Sg0yqDQXmnfvr1ctWpVuvstLCzk0aNHZcmSJVPty8kMw7p165JFmdJVpJ5u3brJpUuXSlNT0wKtI9OmTdPLLIyuyvDhw+X6PUeky8e7NBoKWek/LC0t5bp16+TIkZkbvMio2NnZycDAwBwFrsjtB2F9F+A1cDpJ+SJ+ew3gAHGLr88Bw+K3jyJuluI4cWsnVsdvrwPcBp4DYcC5XL2O/NTJZ6aULFlSzpkzRx44cEC+++67Wg8LC/+/YUwe0F3eOr1f9m7XJMdtrlu3Tr711lvZrr9q1SrZv3//vPAH1vlvbGNjkxjuMK2H9Nwoa/r1l8+OHZPLOnVOFgkjQR7nyZ6pRofSM34GDBiQKtOxMijyTnFzc5N79uyRjo4ZjwjquyiDQnvF2NhYBgcHS0tLyzT3t2vXTi5btizNfenNZCeUjAyOUaNGyYkTJyZ+nt/OTMpPLeX8dtqdiZ02bZrs3r17gdeRXr16yVWrVhWIKE8JLnalK9fQSbjbEiVKSH9/f9mkSc6fZ/r06SN//vnnbH/vufkQrIr2SoFKbFejRg2WL1/Oq1ev6NatG4sWLdJq1mgnY2OmlLRnlG0JhnfswPiR71I66D0ao3nxnia2b99Ohw4dkm0zsTfBwcsBE/vUSfISMDAwYOHChTg7OxeaBbxWVlaEhYXx9OlTwvaGERYQRthe7WQ6zwzt27en7AAvFr/7HrN/383DJ3fYeHg+D5/cSZTnwaYLPDm5M9li/4Ss2i8fJNfJ9evX4+joSP369XPtGhSZw9jYmFmzZjF37lzu3LmT6XouNgbMb2eGi02B6mILDa9evSI6OhorK6s093t4eKS7aNsvIpx1ERGJEfhSkrDo2svaJtW+s2fPUqlSpcTPvsdesuD4S3yPae8+Vq5cOVq2bMmpU6e01mZeZdu2bbx48YKtW7dSp04dfYuTI/r378+GDRu4ffE0EQFLiInQbnbv0NBQZs2axbRp0zAzM8tRWxs2bODRo0f06JH7udUUekTbIwL6Kt7e3jIgIEC+/fbbOhuNSBh5+rFjJ3ltf7D8qVUz+UPrYlqZji5evLgMCQlJthBQ0+h72bJl5a5du2RISEiOFwZq0UrV+W/dqlUruXTpUr3oWePGjaW/v790re2aONuQnltC0pFITa5ZAwcOlF999VXiZzVDkTfKRx99JGfPnp3leroaWU6vlC5dWh4+fFgWKVJE6YiWyrRp0+ScOXPS3LdmzRrZoEGDbLWb0QxF44oV5b97A+Tmdz6Qnd8so5Prmjx5shw8eHCh0pFOnTrJkJAQ2bVrV73qVHZd2IQQ8sCBA7JMmezrRGZd8RYtWqQV/XBycpLBwcH61hFVcrEUiOEzb29vOnXqRJ8+fdi2bRtx/UzWsLN0pGejMdhZOqZ7jF9EOPvKlMF5nA87PvuUGrcfcO3volnKG5EeJQyeUCT8HH06NE/cltHoe506ddi8eTMXL16kf//+BTqWeEqGDBmCn5+f5gO1QNJZovKlK7Nw3nLmz1vCs8rPsG1ti62nLT6NnKlW+T18Gjknq5t0JNLW0zbx+LQICAigYcOGxIeHU+QBbG1tadOmDfPmzctyXV2MLGdEp06d2LNnD5GRkblyvsLAtm3bKFmyZJr7HB0duXHjRrbaTQj1nVaOiQ4mpljal+eeUXsGNe4JZO7elFnKly9PixYt2LlzZ47byk/s2LGD7t2706dPH7Zv307fvn0xMUl/5l9X+NQzYXRdE3zqZe3cxYoVw8TEJFMhcNPzbMhoZiwpCxcuZNCgQRgaGmZJxpTcuHGDly9fUq5cuRy1o8g/5HuDwsvLi06dOjFixAhCQ0Oz3U5CApfm7t3SPeZJsWJUmvQRH0+fzjeHD6c7rZ0ZV6WU+NQzocqrvxnQzCVxW3ouMsOHD2fWrFl89913fPDBB1y6dCnT58nv2NjY4OLiwtGjR3PlfEkNgYXfLeX5bWPMn5UmbG8YsYFGNHvQi4uvenMmsj2hRSYnu+kndX3Q5Jp19+5dYmJiKFGiRK5cl0Izn332GevXr88wCWF6XAmPxffYS3zqmeSK21Pr1q3Zu3evzs9TmHj48CEuLi4YGCT//czNzbGysuLevXup6hhZv4F165EYWb+RbrsJrrNOxsap9i2/cplYnuMQ8xtrDm0EMndvyiwTJkxg+fLliYk2CxM3b96kd+/eTJw4kZo1a7Jt27ZcNyyyO9BgY2PD3buZc3FKb/BKkyteAufOnePZs2eUL18+SzKmhZ+fn8qPU4jI1waFsbExgwcPZsKECTkyJiAucUvw2a0ZJnAZO3YswcHBHDx4MMNRJk2j0ZD6xuN77CWH75uy93LGSe3ef/99hg0bxsCBA1m3bl0mr67g4O3tzZ49e3ilxQyyGfm7JxgCtY1bYlTajmVbD/LPq0v06/A+dUPb07h8Z17GmvMs+jF2xcsnu+kn1ZH0jMOk3L17N90RUUXu0rJlS5ydnVm7dm2228juaGR2KFWqVKHwic9N7t27x507d6hXr16y7c7Ozty+fTvNmXALj85YenTEwqNzuu1mNFJ849UrrkU+p/uKbzh/7w7z25lx7dbWNO9NWZ25ePfddzE3N2fz5s2ZOr6gcvHiRSZOnMjYsWNz3bC4Eh7LmN3RWfZqiIyMxN7ePlPHpjd4ldEzS0oiIiJyvI4C4Pjx47i6uua4HUX+IF8bFF26dOH06dNcu3Ytx20lXVibFmXLlqVNmzYsXLhQY1uZWSic8sZzJTyWc6+d+eOv9GcbatasSb9+/ejXr19ipu/ChpubG9u3ayereQIZPfglGAIjB4xEXNrKtTdiqFO/FbWN22DuYs/By3t58SqSYmZWyJfXiJS7GDTJg2EdxmXZReHFixfauiRFDhBC0KtXL3x9fXMU1CGt0cjMjGBnh9jY2Gy5eioy5uTJkzg5OSXbVrp0aW7evJnm8U9Pbk8VjCElGY0UGxsbJ86IJPRLY2s9pKnlcqrZ3k828JGVmYv69evTpk0bxo0bR2xszl10CwKXL1/OVcMiJ4EaHj58SFRUVCr3obS8ITIzeKWJ0NBQrQxuXblyhVKlSmFrm/7gqqLgYKRvAXJCkyZN2LJlS5r7jKzfwMKjM09PbtdKNIRu3bqxa9cuwsMzni6E//+hMyLhhpP0xuPi4sKVK1fSPH7UqFEMGTKEDz/8kMuXL2dB8oJD0aJFKV++PNevX9dam0bWb7DasDkGf/nje+xZsu0WHp2JvHyUsnU88ShTDPvD33LtcQVmHH6FaVNTEOU4ZXMZI/NDVI9+yZDSu7haKYaoyI5ULd2UR+6v2Xh4fqZlsbe312pUMkX26N27N+bm5hw8eDBH7SSMRiYlYSDBrExVHm79XOuRWhS6p2LFiun2QTERd4kIWJJh/YSR4rRwr9eU+y+MMLJ+A99j9wGwMoPRdU1o6mRINfs4v/Yxu6MTZywymlVPoE+fPvzwww88fvxY47GFjQTDwtXVNXH2f+3atWzevFmr/XGCgQik6hcyw9mzZ6lSpUqyAdQEbwhA4zNHVrC1teX58+c5bufVq1ccPHiQli1bsnHjRi1IVnARQtgD3wL1gQjgJfCllDLth1zdyTEeGArEAA+BIVLKTC0Yy7cGhZWVFdWqVWPy5Mlp7k+4cQMaO/jM0KxZM2bPnp3jdhJIeeMpWbIkxYoVS1x0ZWBggBACa2vrxAXnn3zyCfv379eaDPmNN998kxs3bmjV/9fCozOhb3Zk6klLIsKXJNue8OBXr1FtDl8J4+4fT/E9dpxb4bGElfCkiWtVKPEGsuTbbJGnMDsTyt9hJjh5HuTvBy+S3ehN7E2w9bQlbG9YqpEjE3sTKnSpgE1Jm3QNSkXuULt2bYYMGcKwYcNyNGNUsmRJWrVqRdmyZSlSpAglS5YkNjaWO6GPuWctOG7qQrRHZ630TYBazK8jHj16RIUKFZJtK1eunM764ZY93+HCM3MsPDpzJWAJY3ZH42JjwONo2HrxFV0qGyfOeCXMqmtCCEHNmjWZNm2aTmQuKKQ0LLy9vXn//fc5f/68VtpP+N2yG6jh0qVL1KhRg127diVuS/CCSOkN4WRsjJe1DX4R4ZlycUqKmZkZlSpV4p9//smWnCnZuXMnH374oTIoMkDEdeBbgTVSyn7x25yA9H0nk9c3klLGaEmcU0BtKWWkEGIU8CXQOzMV861B0aZNG4KDg9O1otOaAdBEen9CKysrHB0dOX36dLZktbN0pLl7N/af+TVdl6oWLVpw6dIlhg0bRrly5fD09OT169cIIQgICGDYsGGFavF1WtStW5cjR45otc309CTy8lHMylTl8fEtlKhWnGMnHrD8lTdP5XbgLkEnfiT2xXNs37Sj6oOmvLa2Y+qzN8AUrjzvyLNX+4it2wmjk9uxfi3o0MGLy3WO4xh9ibYHYpLpmK2nLdU7Vefey3vKbUWPODg4sHjxYubNm5ftCD5lypRhxIgRtGrVikPH/+T6y2L882cQYQEBGBsb4+TkRL3SjrzXugm/FXXFL6wBD22r53gmNTQ0lGrVqnH8+PFst6FIzS+//MLOnTtZtmxZ4kBGiRIluH37tlbP42JjgE89E96sXJzPt25L1h8lnekKvPY6y21XqlSJ0NBQnj59qjV5CzIJhkXbtm2ZM2cO3bp14/XrrH/vKUlrxjIr7Nixg80b/Kj8YBvTfz3PlfDYdL0hEtbpAGnOhmVkcHTv3p3Tp08TERGRbVmTcuLECZycnDAzMyM6OvvXX8BpCbyUUiaOMMXPCswXQpgBi4HaxM0ajJdS7hNCeAPdgGKAoRCiA7ANsAaMgalSym1CiKLAL0BpwBCYKaX8WQhxPX57OyAK6CelvCKl3JdErqOAV2YvIt8aFC4uLhmuI8jM1HNK0vsTli9fnqtXrxITkz0DMMHXFUh3RGnAgAFUrFiR8+fPc+TIEbZv355rkYzyC8bGxplyOcsK6elJEdf6mJR0xtTBFXk9hMcO1alW24P+5UP4ctN9roTfYcv5zdR0HEBJ67ucvnor8SGgvNkTvqpwGUMLWxZa96KefBNH4/IQAmVPXKRPEh1zsTGgu2E0FsZunDqafFGtPsIaFlbKlSvH8uXLWblyJevXr89yfSEEgwYNYsiQIWzbto0OHToga/XC0qMjTx6aE5HEfWrVqlU4ODjQu3dvVq9Zy9IT4WwnZzOp69atY+rUqXTv3l2rAQsKO0+fPiUgIIBu3bqxdOnSxO3a/o596pkwukM1bpcwIXDhZK0OLLRo0YKgoCCttVdY8Pf3p1+/fgwbNgw/Pz+ePXumuZIOuXXrFg/2+OI18RteRY1kyLr0144mrM/RlFwRkj/rWFtbM3ToUN5//32tyS2l5MiRIzRr1gx/f3+ttatXPrNyBXwAXz57rA0f9DeBP9PZ9x5xuTnchRCVgT1CiIrx+2oB1aSU4UIII6CrlPKJEKIEcFQIsR14C7grpewAIISwStL24/h2BwLfAR1TnPsdYHdmLyLfLsquU6eO1jvJ9BbLlSpVKt1FeJlBUwSpypUr88YbbxAYGMicOXPYsWOHMibSwMLCItcWLicsroy8fJQiFRthGBnBoJcbGeZwmYk9aiausXC3b0lJ3sD5TiQxEXeJibiL9+tf6Wn9D92M/qCHjR2OtuW5E3aVXZv8WHMnNJmOfdLMBJt69rRyb8MfoX8knv/27dvY2dlRtmzZXLnewkyDBg1YuXIl33//PYsXL85yfQsLC3x9fWnToTNjl+3Bd+V6wsPDUy3QTbog+969e3z33XcMGjgArzeL0rXE83RDiWaGjRs3Ymtry6pVq1ItIlbkjICAADw8PBI/R0dHU6pUKa2ew/fYS4JiarFpVxAmZavjMHgBpk41gJxnXbe0tMxxFMTCyt69e2nRogU7duzA19eXypUr61We9+dv5fBvP9N2wjI6Na2ZuD2ljtwpZseial25U8wuzf1pPesYGhryxRdfsGPHjmx7Y6RHWFhYQRsg8yHuQd9HF40LIRYKIf4SQoQAjQE/ACnlReAGkGBQ7JVSJvyIAvhcCPE3EAA4AvbAGcBTCDFXCNFESpl0IdX6JK8NUsjgRdysyFeZlTvfGhSGhoZaWTSUlPTCqgkhcpQ4Lr0IUgl/8kE9O3Lo0CEVfUMDDRo04NixY7lyroSZiyKu9blfxJkGLduyxqQnq57WZ53NSIo396SIUwBnHgQRGnkT64aX6NCwPPP7jePwf1VZfmMEPz3wYM3BXwg+u5Uf9nzGwyd3UuuYhOFvehP27ymCfwhOPP+zZ8+4ceMGlSpVypXrLaz07duXadOmMWvWrGxFD7OwsGDRokU8fPgQnx8CiHCsnxi5LUGHElyZ0gopevn0UYb36cS0saMYUq+uxqRTGdGuXTtu3brFpk2bUoU6VWSfEydOUKlSJSwsLIA4X/aMQmFmlGciPa6Ex/LnqwocOHEWm5ZDMSnpjE3LoUDOwg+bm5vTrFkz/vwzvcFPRUb4+fnRu3dvvLy82L9/Pz/++CODBw/W25qlK+GxnPL/iTdOf8viBb707dsXIQQ+9Uzo1LAIHqPewMTeJFVfk1KHUt6HihQpwrx583j27Bm+vr56ubZ8hi+wMP5VG5wjbrYBACnle0ArwE5DvaQPwf3jj/eQUtYAHgBmUspL8W2fAWYJIT5JUkem9V4I0RqYAnSWUmZ6FDdfGhQNGjTAxMQk10KnxsTEUMpOe9lKE5hUqwg9LSswsGtH/vjjD80VCjHFixenWLFiuR4u9+nJ7ezbtgE3a8HlM38zavN//H3iJKY2h3GuXYZ2lpUpUaQsBub1qdu4D8KiE42qjeGl6Vv4/1OPY+f/SmVMmtibUGVADfp4+nDeYTARplWZ0n9SqsXae/bsoXbt2rl6vYUFIQRjxoxh4MCBjBgxgsDAwCy3YWlpyZolS7C5dIm1X3xBxPGtGYYMTS+k6LVr15j99ddEjxrFXksnvPospVSZmmm2kRFPnjxh8uTJ7Nq1iwULFjBkyBCV10QLvHr1imPHjtG5c9zD2d9//02TJk3SPT6zGYlTUrt2bf7++2/Cg37g5X/XCQ/6AUgdfjgr+ScaNmzIjRs3Cm1kQG1x584dtmzZwsCBA2ncuDF+fn65Fgo15eyC77GXLPgliP4DBtGlSxd++OEH/J9V5uOXlpxzLY6tp22yvsbE3oSFjjbMPi/TXBDu6urKmjVriIiIYNKkSVpZL1Lg+ezxZT57PFpL7k4AQYBZ/CLoBIrEvx4kzlgg3tWpLJDWinkr4D8p5SshRAvAKb7OG0CklNKPuNmGWknq9E7yeiT++JrAUuKMif+ychH50qBo164dP/74Y66F2Lx9+zY136yjtWylCURcKoZxh4/4d+8fXL16VWvtFkTef/99Nm3alOv+4TERd7m+dR6njv9BfdM7vLhxmqcnt/MivBEV/2xEScOyhInbnHE4QPDrfcinO/j3YdyCXhOHimnmG7D1tKVpubfp1rI//Yd9QLOeo/jr5pNUx6kFbLrBwsKC7777jho1atC7d+/EyGqZxc7SkX4txvPz+o1Y3LxJuV824mVtk2pGIiUZ7f/h1185dv8+g8d9QX0rF1o3Gpmta4O4DN/Dhg3D2dmZNWvW0KBBA82VFBkSFBRE06ZNAThw4ABly5ZNN5NwZjMSJ6VixYrExsby77//8uLGae6tGs2LG6eB1MnQspJ/olevXmzdujXTcigy5sKFC7zzzjsEBASwbNkyqlWrpvNzercqyuN29ni3KoqpUw2ev/09E85XJviva/Tr149//z7G/G/m8FGPjYx/Yzyti7WmTHFTHgUupbjhSyp2r4hVizIsNC2WqEOlS5emQ4cOzJo1ixUrVrBx40Y+++wztf5KT8i4RVNdgGZCiGtCiOPAGuAjYBFgIIQ4A/wMeKcza7AOqB1/3EDgYvx2d+C4EOI08CkwK0kd63gXKR8gYeHMV8Qt9N4ohDgdvw4jU+S7RdlCCKpVq8Zvv/2Wa+e8cuUKhkVjOX03MFMxvzPL3VbtuG1hwZCRs7CpWlVr7RZESpUqxbZt23LtfCnzmKxdu5YpU6bw22+/Ye7RmaIVO3Lg7/08e7KVvxwkRLkQfvUlQVu+w87Ske5v2eIaeQm3aq05E5w823LY3jCeTnnJm22c+HTpL+k+0D558oTq1avnxuUWGszMzFi4cCF//fUX33//fbZuoM3du/GO91Bevwpn6CefJEZLyS4JEX62rl3Ih7MWs/LY3wQczlk42dOnT3P69Gnq1KnDokWLGDVqFCdOnMhRm4WZgIAAfHx8qFGjBqdPnyYwMJA2bdqwZEnq3ymjPBPp0a9fP/bu3ZtsW3rRATObf6JixYo4OjoSEBCQJVkUmlm1ahV3797l22+/ZcSIEVoN953yd/ezssDI0oIYq1fJ3OHurRrN69evcbi0FuddG/jhQjF+e1WPRo0aMbD7QIoXL87z58+JiomipHNJIstHIkYKTE1Nefr0KRcuXODEiRMsWLCA+/fva01+RfaQUt4D+qSze3Aax68GVif5HEqKdRDxXAfSWw3/lZTyoxTtttYsbTpIKbNSJHF+VnorlpaW8tChQ7l+3lmzZsmxY8dqrb3GjRtLf39/WbZsWQnIunXryoULF+rte82iHuS6jixdulTWqlUr174P69YjpdNHO6V165GJ2+bOnStnzJghjazfkNatR0oj6zckkOozIKeVKS/PV6osp5Upn6xdIYQcMmSIDAo+JD3HzE1WJ2URQsiQkBBpYGCgN73ITzqiqVhYWMjvvvtOzp49O0ftlHOsJC/+fVXWq9k43WOcjI3llJL20snYWGN789uZSfmppZzfzkwuXbpU9unTR6vX3apVK3n48GFZsWJFpSM5KKNHj5bDhw+XgGzYsKHctm2bVtp1cHCQR44ckdbW1hKQLjYGcn47Mzm01Vi5YESg7NloTLbanTJlinznnXf0/r0VZB3p2LGjDAgIkO7u7lprs2ejMXLBiEA5ucdyaWfpKE3sTaSDl4M0sTeRpk41pMPgBbJK1Tfl2q5mcm0XM9mqnKGc385Mutgkv08YGRklvhdCSCMjI1mmTBlpbm6e69/TtGnTZKdOnfShI6qkU4gzNEpos8185/I0cOBADh8+nOvnXbFiBT179kw36k7SCC6aqFatGp988gmTJk3KUfQohe5Iy999xowZVKpUiYmjvHkUuDTRdSUtV5a192+xLiKCtff/P/tQrlw51qxZQ7NmzfjYewB1f56H47P0k/RJKTl37hw9e/bUwRUWLszNzVm4cCF3795lxowZOWqrSat6+O/bwbFTh9I9Jit+9El95Ldu3UqrVq1yJF9KAgMD2bNnj9KjHHLu3LnE3yYhH46np2eO223dujUHDx5MjPufsIC2epGdGUYHzAgPDw+aNm2qkonpmJ07dzJ79mxmzpyptTUV+8/8yp2wqzjalqe5ezdePnhJ0d8e8E0tA8o8/Zt7q0YzyfVfBlQzYUB1E7pUNk50iUv2HGJRMvG9lJKYmBhu3bqVowAzioKDlNJZxs1qaI18Z1A0a9aMlStX5vp5r127xvz58/n+++9xdnZOtT+tCC5pUaJECRbMX8SBLee4/e//17uYmppqW2RFJkjPEEzLSHj+/DlDhw6lbNmyrFixgipVqqTbbtIoGra2tkyYMIHVq1ezb98+vL29afU8MlMPnCtWrOCtt97K2UUWcoQQTJgwgVu3bvHll1/mOPRwjx49+OWXXzI8Jit+9Ak+8q+eGtL4+g1qV6+OkVFqb9TsRA9KYNu2bbi5uWW5nuL/nDx5klKlSmFmZoaUknnz5jFhwoTE6E/ZoXLlygwbNixZ7pNEA/Pw9TSjA2aGCRMmMGfOHJ48Sb02S6Fd9u3bx7Zt2/jxxx9p3759jtt7+OQOP+z5LJkxmSrSl4x7+Tf8NVamJC7YTvocktlnEoVCW+SrNRSmpqZYW1trPblZZvnll1+IjY1l2bJlzJw5k4NJklVpysydsAiqZ8+enPvjJqViq9HcvVtiorvWrVtz5swZ3V9EISfBX9332EuuhMdSvLknNk1eY2zbmVdhaMxY/PTpU0aNGoW3tzeLFy/m/PnzBAUFcfXqVS5fvsyTJ08QQuDs7EyVKlVo0qQJTZs2JSAgAC8vr8T1EpoSDyUQGhqKpaUlQoiEaUpFFmnTpg01atRgwIABOW7L09MTKaXGqGzZ8aP3sraha2wssQ8eULt27VS5aDRlv80INSqZc548ecK///5LgwYN2LdvH8HBwTRu3JjPP/+c8ePHZ2o9TtL+p0TFusycOZPZs2dz6tSpxGNymlG5T58+2NnZcehQ+jNoCu2yatUqTE1NmT59OmFhYTkOb54Qaj6BhOhMCa8zDrzk8QuwMoMB1U14/ALG7I5O8znk6cntqdYEKhS6IF8ZFCNGjODYsWM8fJi+m4iu2bRpE3fu3OGzzz7j7NmzLFmyhMuXL6ebcdnIyIgePXowatQoDhw4wIcffsjtf/9LXHQF8PHHH9O+fXv69++f25eTrzGxN8HW05awvWGpQq6mR8JID8R1wKY2hzGxMaOoaxlind8DNGcsllKyatUqfv75Zzp06ECtWrXo0qULLi4uGBjEjRSFh4dz+fJljh8/jq+vL/fu3UvWRmYfOC9fvoyxsTEuLi4q9GM2qVKlCrt27SIyMjLHbXl5ebF8+XKdGHcJxqXcvZuuXbsSeul4MuM3s0aoQnds27aNt956i3379gHwxRdfMGvWLL7++ms++ugjjZHZEvoflybdMak3hEmTJhESEqI1+Ro3bsywYcMYM2YMMTExWmtXoZklS5YQGxvLZ599Rrdu3bRqxD+OceDAk248jvkVuJNodLrYGPA4GvbetOObQT35xXgfp3asJCYi7n6YcC+zbj0SS4+OybYpFNom3xgUJiYmtGvXjjFjxuhbFI4cOULXrl0ZNmwYy5cvJyoqihMnTnDt2jWioqIIDQ2ldu3aVKlSBVdXVy5fvszQoUOTPRBuPDyfYsWK8eGHH9K1a1emTJnCpUuX9HhVeRchBBYWFqke4mw9bbFtHee3es/vXqp6aY3KpBzpebjzJrEvbHl07BFmTunnEEiLyMhINm7cqFM/5ZiYGJ4+faq3REr5HSEEjRs3Zvr06Tluy8TEhCpVqhAUFKQFyVJz49UrlkUbMde1Baa2MamM3+zMeiTg6OiIubm5NsUtlJw/f56pU6diaGjI69evef36NVOnTmX69Ols3rwZPz8/tm7dmu7D5O4nFWledwzGwh5vb+8shyzOiHfeeYeuXbsyfvx4zp8/r7V2FZln2bJlODs78/777/Ptt99qzahICBUMJJu5SDAs5vfrjjDrQE17C+68/ZDXka+TDbRp8qBQKLRBvjEo2rRpw8WLF7Uani0nREZG4uvry/fff4+bmxvVqlWjTJkymJmZUb9+fS5evMiCBQu4fPlyKhctCwsL2rRpw6RJkwgNDaVVq1bK1zUD+vbty/Pnzzl79myy7WF7w5K9piTBhxT+PyqT0p3g5YOXicZI1GU1clPQcHR0pESJEvz99985bksIQWxsbLojv07GxokhZG9kwv0lLYO3R+t3aNuxNZ+O/4r9KYzf7GJubs7cuXNzNdR2QeXatWsAdOvWLXEgIcGoaNSoEf3792f06NFs3bqVo0ePcvHiRYyMjGjVqhXNmjWjYsWKfLNqFRs2bNBqnpkPP/yQN998k0GDBhEWlnZ/qMgd5syZw6RJk9i+fTsff/yxVmagNIUKXnNoM31bGHDq7j6kkKkG2tLzoFDkDYQQz6SUxZJ89gZqSylHZ6Ot1cBOKeWmFNtXALUBAVwiLp/Fs5zInZJ8Y1C0aNFCKw8F2kZKyfnz5zM9IjRw4EDGjBnDn3/+yZAhQ7h48aJKJqOB6tWr89tvv6X6npIaA2mhaVRG+ZUWfHr37s3OnTu10taLFy+IjIzExMQkzaSaSdc4zH1lmK5uJRge291a8yTe4LX9cxk+9UwIefUnVy9fpDob2A9MumHIGx9WoMzdaB788iDTrn1JmTlzJgCzZ8/Ocl1FcmJiYvjxxx8pXrx4qn2HDx/m8OHDVKhQgbfffpshQ4bg6uqKlJJjx46xbds2AgMDtb6epW/fvnh4eDBkyBCtuPUpcsbTp0+ZMmUKHTt2ZMGCBXh5eeXYXbVI1H9UvPwLx6P+PziZNF/FiZu3OLFmHhDnChwbFZvuQJui0PK+lPIJgBBiHjAa+EKbJ8gXBkWLFi2oUKECH330keaDc0BWRxgzixCCsmXLMmPGDMzMzBg0aJCaks4C9erV44svsq73mkZl0prBUBQsLC0ttToQYWBgkK77WdI1DhbN3klTt5yMjfnuDUcqmZlhcPUQC4yL8PTkdmbUN8GrlhNvlhuA6ZMTjK4VCjEm+DZ0wNTBFFMHU2IiYjI0oNPC29ubqlWr4unpmaYRpMg6Fy5cyDDyWszNm5j7reOziHAizUummZxOW9SvX5+BAwcyePBgZUzkMXbu3Im1tTUTJkxgxIgROWorrYAM6blBpTXQlhcGz9IywhWaEUI4AyuBEsBDYLCU8mZ621PUnQmUAd5JYkwIwJzEWGHaI1+EjfX09GTVqlU6X2SWXuz47IZrtLCw4IMPPmDbtm2sXLmSQ4cO4eXlpYyJLJAwwvfsmVZn5oC0c03kRaSU2NhozmegSE3VqlW1ujbJyMgIOzs7jccl1S0TexMcvBwwsTfBy9qGSmZm/BMdzdr7txJDE2+9+IqDz7tTsYkn+4Ofs++p4GyDEnT57xGx/73g8cnHWRpxNDc354MPPmD48OGMGzeOR48e5eCqFUm5cuUKtWvXTnd/0vtIwkNfc/duWpfDwMCA6dOn8/HHH6tMx3mUdevWYWZmxtixY3PUTlphqPef+ZWDl/fyp6WpxvxX+g4hu3HjRry9vTPVd+YH3Ne4u7qvcV/gvsbdVUtNmgshTicUIGmypPnAGillNWAd8L2G7QAIIb4C7IgzNF7Hb1sF3Acqx9fXKnl+hqJIkSLUq1ePb7/9VufnSi+KSlbDNXbo0IHWrVtTq1Ytrl+/zqpVq9iyZYv2BS4EODs7c+zYMZ24henbr9TJ2JhRtiUAWBwWmu6s2MGDB2natGmqMKIKzQghtPowfePGDUqWLMnVq1dT7UveT/xftxy8HBJ9mv1+jssjlHIWtEtlY1q3L8G5Cycwv72MPzyLc9jSgj7FnzJq961MhxGtVKkS/fv3p02bNhw5coS3335br1HxCiLXrl3D3NwcY2PjNPulpPeRSA2+7zmhdOnSREVFJQs5q8hbxMbGMnr0aHx9fdm2bRvr169n27ZtWXZ7Sysgw8Mnd9hj8AjLah2xePUsw3uZvhdlX7x4kf/++w8rK6uC0h/5AO/Fv8/yOoc0iJJS1kj4kLCGIv5jAyBhROJH4EsN2wGmAceklMOTnkRKOVgIYUicMdEbWKUF2RPJ8wZFixYt+Ouvv7SmhBm5NaUXRUVTuMYqVapgY2ND+fLladKkCTVq1ODHH39k5syZesuZUZB4/fq1vkXQCV7WNnS2sgLgaWxsusZqaGiomqHIBkIIihYtqtWZzYMHD9KtWzeOHj2ayo0gvX4iafCAlyn6mAQ/6H9swwm1q8uP03fyx1+v8LJ6RD2X1xS78jhTi7Lr1KnD0KFDqVy5MqtXr6Zt27Y8fvxYa9etSM6JEyfw9PRMc6F7svvIq+T5BLRJtWrVuHjxok7aVmiPp0+fMmTIENzd3RkxYgRDhgxh1apVyZIZZrvtJIZCyhxLSdH34FkBxDfFa14jBPAQQthIKZPdkKSUr4UQG4CJFCaDwtbWluHDhzNnzhyttZmZ2QZTU1OqV69OvXr1aN68OUWKFAGgcRrHGhoaEhkZybVr1wgPD+enn35i/PjxPH36VGsyKwomfhHhWMTnrcgot8DVq1cZOXKkVv8HhYFSpUohpUyVAyQn+Pn58fvvv1OhQgXCy3kmWyeR3oBERsEDmrt3w6vXEMrWM+XLzzdS2d6Te2WeM85vPqC5DylZsiTvvfce7du3Z9WqVYwfP57nz5/n6BoVmrl165bew/B6enri7++vVxkUmefMmTOMHj0aZ2dnPv30U/r06cOCBQvYu3dvtttMaij4tDNLFmZaoTvODDpzGe3MTGSGP4A+xM1C9AcOatgO8DvgD+wSQrQBngEVpJRX4tdQdAa0PhqRZw0KIyMjFi9ezLZt27Ll6pHeTERGsw3Ozs5Uq1aNkSNHEh0djb+/P59++qlG/9SwsDCVxViRZW68esWk+5ofdk+fPo2pqSkzZ87kk08+UbqWSdq2bcv169e12ubTp09ZvXo1EydO5L1JcbktsuJGYGfpSDuPuIzdj/5bx+xBgte1zRi37kPOnDxLI4dQ9p/5NVkEl7QW8woh6Nq1K5MnT+bSpUt06tRJ+dHnIrdv36ZixYp6O7+pqSkeHh5MmDBBbzIossf169cZPHgw7u7uzJgxA09PT+bNm0exl/+lO8OQGVLmWMprvH79GjMzM32LkR8ZA6wSQnxI/OJrDdsBkFJuFEJYANuBjsAaIYQlcWFj/wJGaV1SKWVWiiRuZbjOS7NmzeSKFSuyXX9KSXt5vlJlOaWkvcZjhRBy1KhRMiQkRK5bt07WqVMn164zr5Qs6kGu6Yinp6ecPXu23r8ffZeqVavKkJAQ2aVLF6UjmSgNGjSQR48elWXLltV62y5FisizO3fK0f37Z7luz0Zj5IIRgXL1pEPy3/2HpDy/Xc5c3EhWXV1VOng5SECa2JtI7yEfyQUjAuX8fuOki41BYn0hhGzQoIFcuXKlDAgIkH379tW7buZXHclJadmypZw7d67ezt+wYUO5cuVKvX8PSkdyVoyNjeU777wjAwIC5O7P+0v5mZWc385M73LponzzzTeyWbNmua0jquRiyZMzFG5ubnz88cd88skn2W5D07qHBIQQzJgxAxsbG7p166bVzKWKnBMWFoa7u3u6sf8LC2fPnmXy5MnMmTOHf//9lzNnzuhbpDyLq6sr33//PbNmzeLmzZuaK2SR3sUsMPn6G0ZPmcJzExPWrl2bqXU+RtZvEO7mSPnmRtT0KMO+bSt4fmM+AUeiCHOzTlxrYetpy+U6x3njogEfltgN9UwYszuasmXLMnbsWNzc3Fi9ejU7duzQanI0ReZ58uQJjo6Oejt/x44d2bFjh97Or9AOr169YsWKFQQEBPDVrE+46NCOXf5zgHP6Fk3rxNl/igJNXhwRWLp0qezYsaPOzyOEkDNnzpQLFy6UJiYmerfg9Vm0aKVqXbZFixbJFi1aZKuuib2JdPBykCb2BeP39fLykvPmzVM6kkGZNm2aHD9+vM7adzI2llNK2st6zs5yzZo1csOGDbJ+/foZ1qlb0V6e2L5Enr5+S64NmidvflMx3ZHIBJ11rWgm57czkxVLGMnvvvtOhoSEyJEjR+bpviq/6EhOixBCBgcHSwsLC72cf/PmzdLZ2Vnv34PSEe2W9u3by927d8t58+ZJT09PaWxsnO6xLjYGcn47s2QzmHm5fP3112qGooCXPDdD0a5dO0qXLq3zxWZJZybef//9Qj36ndfZunUrffr0Yd++fVmua+tpmxiyM6tJwfIigYGBDBs2jLfeeovff/9d3+LkOezs7GjVqhVdu3bV2TmSLr4+7u1N9+7dmT59OpGRkfj7+3Po0CGeP39Oc4/KDGzmwhWc6NCyEQ739vDZ733YbPaYFWYm3P037faTLuKe+sCKr7+eT40aNdQ6iTyElJLQ0FBKlSqV6wE4zM3NKV68uFp8XwD57bffCAwMpE2bNrz99ttMnDiRXbt2sW7dulSRLn3qmahF2Io8RZ5KbOfu7o6Pjw+jR4/WSd6BBMqUKcOCBQuUMZFPCAwMpEKFCjg4OGS5btjeMMICwrKUFCwvc+/ePSZPnszMmTNxcXHRtzh5Djc3N86ePUtERESunE9KyaZNmxjRqRMPV6yksqMj06dPx9fXl3GDOtPcpShvPArh/aG9CfX/isEPL2D7HMKKwrO61hm2bW9vz5o1a7h58yYNGjRQxkQe4/z581SuXDlXz1mzZk02btzI77//XlDi+StS8OLFC3bs2MHo0aMZNGgQABs2bODDDz9MlhjO99hLFhx/mWcXYSsKIXllitHAwECuWbNG565OLi4u8vDhw3LFihV52nUgt4sWp710It+4cePkmDFj9P495ZXy888/y3379kkjIyOlI0lK06ZN5TfffJPrv0daQSCSuiTMb2cm5aeW8q+RRaVrRTONbniOjo5y//79eW7RdUHQEW2Vvn37yokTJ+bKuVxdXeWMGTOkv7+/bNCggd6vXelI7hZra2s5duxYGRgYKAcPHiwNDQ31LlNWi3J5Kvglz8xQ+Pj48OzZM3bu3KmT9suVK8fMmTNZtGgRM2fO5J133lEzE/mIU6dOUb9+feJCKCv69evHn3/+ycKFC7M1c6PQLn4R4ayLiEgMAmFn6UhNt/eYcdiWK+GxiaOJ3X+J4vKlaO753ePlg7T7nxIlSvDFF18QFBSkleRXCt0QHR2NkZFuvYaFEHh5ebFo0SIuXLhAnz59OHLkiE7Pqch7RERE8P3339OvXz9q1KjBpk2b6Ny5s95zoSgUSckTBkXlypXx9PRk0qRJWm+7RYsWrF27liVLlvDvv//y9ttvK9/zfMiBAwcQQlCzZk19i5IneP36NR999BHGxsZMmjRJ5w82ioxJWFdx49UrTOxN6Np7AM2qduHtOt0BuBIey5jd0RnGlxdCUK9ePTZv3kyRIkX4/PPPc0t8RR5ECMGsWbNo3rw5AwcOZP369bnmyqfImzx48AAfHx9mzJhB8+bN2bVrl17zoSi0gxBCCiG+SfJ5ghDiMw11ugghqmg4prkQIs1ReiHEOiHEP0KIs0KIlUII42wJnwS9GxTGxsYsW7aMX3/9VauL2wwMDJg5cyY+Pj4sWbKEdu3asXr1aqKiorR2DkXuIaXk5MmTVKmS4f+nUBETE8Pw4cOJiYlhzpw5yqjQA07GxkwpaY+T8f/7YltPW87VOsYLm0CqF8ncjGubNm04fvw4Pj4+rFu3jl69ehETE6MrsRX5gPfee4+SJUsyatQorWZ7V+R/Tp06xfjx4/n2229Zvnw5a9asoX79+voWS5F9XgDdhBAlslCnC5CTB6J1QGXAHTAHhuagLSAPGBSffPIJBw8e5IcfftBam3Xr1mXHjh1UqFCBvn378scffxAbm/XMk4q8xdmzZ2nYsKG+xchTxMTE8NFHH2FgYMCcOXMKvUvYixcvKF26tMbjXGwMmN/ODBebnHWBXtY29Le2xsvaJnFb2N4wwk7+Q9SV+fgevp5hfVNTU2bPns3s2bMZM2YM/fr1Y9myZZnKa6HQL9HR0VhYWOik7QYNGuDp6cmECRN0GqBEkb/ZsWMHrVu35ocffmDKlCls2rSJTp066UwvFTojBlgGvJ9yhxDCWQgRJIT4WwgRKIQoK4RoCHQGvhJCnBZCVBBCuAghAoQQfwkh/hRCVIhvopgQYpMQ4mL8rIQAkFL+JuMBjgOab5yayOKiC60u0nF1dZX+/v7S2tpaa23Wq1dP7tmzp1Bmu85J0eLCHJ3JaG9vL0NCQmStWrX0/n3ltWJkZCRDQkLk6tWrC7WOGBkZyaCgII15IRIWSa/tYpajWO4JOSmcksSLt7N0lD0bjZF2lo4Z1vX09JS///67XLRokWzVqpXedaiw6Ii2SokSJWRgYKAUQmi97bVr12Y7905eL4VJR3KzGBgYSA8PDzl//nwZFBQkR48enWEei9wuBWlR9vlKlV3PV6q84Hylyq7aaA94BlgC1wErYALwWfy+HcCg+PdDgK3x71cDPZK0cQzoGv/eDCgCNAceE2csGABHgMYpzm0M/Ak0yel16HWGol+/fmzdulVrfqEdO3Zk5syZfPjhh4SEhGilTUXe4cGDB3z99dcMHZrjmbkCR0xMDAMHDuTNN9/Utyh6JSYmhpkzZzJ58uQMFywmLJJGwOi6JvjUM0ncl5XZi6RrJxJo7t6NZlW70Ny9W5p1WrRogZ+fH2PHjmX69Om8++67BAYGZuEqFXmB0NBQHj16RIUKFTQfnAXc3NywsrJi//79Wm1XUbCJjY3l5MmTjBkzhh49elC6dGk2btxIgwYN9C1aQcQHeC/+VStIKZ8Aa4GxKXY1AH6Kf/8j0DhlXSGEBeAopdwS31a0lDIyfvdxKeVtKWUscBpwTlF9EXBASnkwp9egN6frOnXq4OHhQf/+/XPcloGBAVOnTqVSpUq89957XL58WQsSKvIi27dvZ8CAAbi6uqrfOQVXrlwhOjq60H83+/bto3fv3gwaNIglS5akeUzCImkXGwMeR5MslntOE0btP/NrslcAW1tb2rVrR9euXTE0NMTX15fDhw+rSHP5nAsXLlCxYkWuXLmitTZbtWrFiRMnEkYPFYosEx4ezqRJk6hTpw6zZs1i9uzZHDhwQN9iFSR8U7xqi++Imy1YpcU2XyR5/5okz/1CiE8BO2CEVs6kjynG4sWLy99//12jW0JmSoMGDWRQUJD09fWVZmZmep/Wy68lP01DT548Wfbu3Vvv35mui5H1G9K69UhpZP1Gpuv06tVLfv/994VeRzw8PGRISIgsW7ZslusmzR+RUznKli0rJ06cKAMDA+WsWbNkjRo19K5Xuiz5SUe0UQYNGqTVXBTm5uby+PHj0s7OTu/XpnSkYBQ3Nzfp7+8vvb29pYFBzvu07JaC5PKk7QI8S/L+S+Am/3d52g4MiH/vDWyJfz8fGJyk3lGgS/x7U/7v8rQzyTELAO/490OBPwBzbV2HXlyexowZQ2BgIEePHs12GzVq1GD69OlMnTqV7du34+PjQ3S0Sj9fGDh79iydO3cu8AuQLTw6Y+nREQuPzpmuc/XqVYyNcxz9Ld9z8uRJ9uzZw7vvvpvlulfCY/k64DW9jeySRW/KCnZ2dkycOJFVq1YhhGDQoEFMnTqV06dPZ6s9Rd7E39+ftm3baq0vat68OceOHVNZsBVa48KFCwwaNIjatWuzatUqFWY27/MNkDTa0xhgsBDib2AA/3ez2gB8KIQ4Fb8AewAwNv64P4BSGs6zBLAHjsQv7P4kx5LrY0QgJCQkW9k+bWxs5Lhx4+SKFSvk3r175YABAwr0SE5ulvw0apSwADkkJEQ2bNhQ79+dzq4zGzMUtWvXlosXLy70OgJx/cW+ffuyFaAhrczXmSlCCNmnTx8ZGBgox4wZI4sXL653PcrNkt90RBtl+/btWZ4JS2sxvxBCLl68WHbt2lXv16R0pGCWLl26yN9//11++eWXslKlSrl6bjVDUfBLrs9QVK1alZcvX2ZpdkIIwahRo9i4cSNGRkbMnz8fLy8vfvzxRzWSUwiJiYlJzKju6+vLuHHjCmQOhpiIu0QELCEm4q6+RcmXhIeHs3PnThYtWpTlEeSUma8zg5WVFXPnzqVTp054eXkxf/58Hj16lEWpFfmNc+fOUbVq1SzVSSvccJ06dbCysmLbtm3aFlGhAGDr1q28/fbbnDp1innz5rF+/XqaNWumb7EUBYRcfwobN24cs2bNIm5wQTONGzemb9++GBkZ0bt3b0JDQ3UsoSI/MGPGDE6cOMHFixd59913WbFiBVOmTOH27ds6Pa+VlRU1atTA0tJSZ+c4evSoMpS1xMKFC+nTpw/Nmzdn3759ma6XEL0pMxgbG9O0aVM++OADgoODmTJlisodUIi4ffs2b7zxRpbqJBiqSQ3WOnXqEBwcrHImKXTKixcvWL9+PRs2bKB169aMHz+emTNnsn//fnbv3s2RI0f0LaIinyIy+2Afj8yJr6inpyfjxo2jf//+mRq569mzJwMGDGDp0qXs3btXRUTRIVJKbS1IyJGOZJeePXsyfPhwvvrqK/bs2aO1dg0NDXFzc6N27do0adKEChUq8NdffxEWFqa1cySlSJEitGrVivv373PwYFwUNyEEUkq2bNnCnTt3iIyMTLNu0aJF8ff35+bNm/Tr10/rsuVXHZk+fTqVKlWiT58+WmvT2tqa+vXrU7t2bRo1akR4eDjffvttoQ9XnV91JCc0bNiQd955h3feeSdH7WzZsoUpU6Zw/vx5LUmWNymMOpKXEUJgY2NDmzZtePvttzE2NmbHjh2EhYURExPDiRMntDLA9fXXX7Njxw6Cg4M1HqtFHVHkIrlmUJQoUQI/Pz/ef/99Lly4kLFQQtC/f3969erFiBEjuHfvXrbOqcg8BaGTd3V1Zc6cObx48YLbt29z8eLFxAf/yMhITp8+ne4MlxCCUqVK4ezsjJOTE87Ozjg7O+Pm5sbt27c5ceIER48eJSQkhJiYGJ1eh52dHc2bN0+2bfjw4Tx69AgbGxuuXbtGYGAgz58/T9xvb29Ply5d+PPPP5k3b57WcrskJb/qSIkSJdi9ezdffPEFmzdvTvc4ExMTLCwsqFKlCsbGxlStWjVZLgshBOXLl8fW1hY7OzuOHDnC2bNnCQ4O5ubNm7lxKXme/KojOcHQ0JAdO3YwevRorl69mq02qlWrxrRp0+jZs6eWpct7FEYdyU+4u7vz1ltvYWZmRpEiRahbty7Xrl3j0qVLXL16lfPnz2d5BtbOzo5PP/2Ujz/+mJMnT2o8XhkU+ZNcMyjmzJnD3bt3mT9/fobHmZub4+vri4GBAdOmTVPGRC5RUDp5U1NTXF1dcXBwSEwQBVC8eHFq1KhBsWLF0qwnhODhw4dcv36dGzduJL6eP3+ep0+f5uYlZEi5cuWoWLEidevWTbY9MjKSvXv38vfff+vs3PlZR5o3b87EiRN59OgRhw4dQghBhQoVsLW1BeL6HUdHR6Kjozl37hzR0dFcvXo1lQF69+5dbt26xbNnz3RitOV38rOO5ISxY8cSFRXF8uXLs1V/1KhRACxevFibYuVJCquO5FeMjY2pU6cOZcqUoWLFilSqVCnLa9Kio6PZsGEDe/fuzdTxyqDIn+SKQTFo0CBGjx5N06ZNiYqKSvc4c3Nz5s+fz7///ssXX3yR6XUWipxTWDr5jGRT+pYx+V1HzM3NqVu3LuXLlwfifN/v3LkDwKtXr7h69SqvX7/OdbkKEvldR7LL4MGDMTc3Z9GiRdmqP2vWLE6ePMmWLVu0LFneo7DqiCLzKIMif6LzRdlGRkbUq1ePZcuWZWhMlChRgh07drB161a+/PJL9XCn0AlKrwovUVFRBAcHZ8qHV6HIChEREZQtWzZbdU1MTGjSpAlfffWVlqVSKBT5BSHEFKAfcdmsY4ERUspjWmzfBxgGCGC5lPI7bbWdgM7Dxnbq1ImaNWuyfv36dI8xNzdn7ty5rFmzhrlz56qHPoVCoVDkG65evYqzs3O26pqZmREbG8vjx4+1K5RCocgXCCEaAB2BWlLKakBr4JYW269KnDFRF6gOdBRCuGir/QR0alCYm5szePBgxo8fz7Nnz9I8xtjYmO+++44rV66wdOlSXYqjUCgUCoXWefjwIY6OjhgaGma5btu2bbl1S2vPDgqFIv/hAIRKKV8ASClDpZR3hRDXhRBfCiHOCCGOJxgBQohOQohj8VmyA4QQ9vHb7YQQe4UQ54QQPwghbgghSgBuwDEpZaSUMgYIBrpp+yJ0alDUrl2byMjIdOMaGxgY8PnnnxMaGqrWTCgUCoUiX3Lv3j2ioqJwcHDIct2qVauyceNGHUilUCh0wcKRQa4LRwYtWDgyyFVLTe4BygghLgkhFgkhkmYbfCyldAcWAN/FbzsE1JdS1gQ2ABPjt38KBEkp3wQ2AQl+mGeBJkIIWyFEEaA9UEZLsieiM4PC1NSUmTNn4uvrm+4xa9asoXnz5ixYsKDQGhMrVqzgwYMHnDlzJtn2a9eu8ffff3Pq1KlCH9u+sKN0RKEJpSP65+7du9kyKKpUqcI///yjA4mSo3REoQmlI5nGB3gv/jXHSCmfAR7AcOAh8LMQwjt+9/okrw3i35cG/IUQZ4APgTfjtzcmzsBASvk7EBH//gIwlzjD5XfgNHFrNbSKzgyKL7/8kps3b6Y7O+Hn50flypUBCnVo2NWrV/PWW2+lua9FixbUrFmTOnXq5LJUiryE0hGFJpSO6J+7d+/i6OiYpTp2dnbY2tpy+fJlHUn1f5SOKDShdCTT+AIL41+1gpTytZRyv5TyU2A00D1hV9LD4l/nAwviZy5GAGaZaH+FlNJDStmUOEPjkrZkT0AnBoW5uTk1a9bk22+/TXP/gAEDqFSpEgDz5s3ThQj5hoMHDxIeHp7lek5OTslGET744AM+/fTTxH0XLlxg1apV/PPPP/j5+dGqVSsOHTrEpUuXVIeQz1A6otCE0hH9c//+fUqVKpWlOt26dWP37t25MkOvdEShCaUjmeO9JS0vv7ek5ej3lrTUykiAEKKSECKp+1QN4Eb8+95JXhNG6K2AO/HvByWpdxjoFd9mG8A6yTlKxr+WJW79xE/akD0pOjEoSpYsyePHjzl79izGxsYYGxtjYmJCu3bt+Prrrxk7diwAp06dYsOGDboQId8jpWTPnj2cOHGCYcOGZbm+i4sL33zzDZUrV6Zy5cr069ePxo0bM2HCBD7++GMdSKzIbZSOKDShdCT3uH//fpZdnpydnTl9+rRuBMokSkcUmlA6onOKAWuEEOeFEH8DVYDP4vdZx2/zAd6P3/YZsFEIcRJImn11OtBGCHEW6AncBxIy824WQpwHdgDvSSkfafsidJKHIjIyklKlSiWL925oaMjZs2cJDg5myZIlXL9+nZiYGF2cvkDQuHFj7t69i52dHXv37uXixYscPHgw0/WvXbvG2bNnATh37hyBgYEAnDlzJtvhDRV5C6UjCk0oHck9bt26Rffu3TUfmAQ7Ozuio6N1JFHmUDqi0ITSEd0ipTwJNEy5PT5x41dSyo9SHL8N2JZGU4+BtlLKmPhQtHWSRI5qonXBU6ATg+Lhw4f5chorL3H37l0g7rvcsmULdevWTfUHTpol1NjYONm+Fy9eJL6PjY1N/BwbG4uRkc7zGSpyAaUjCk0oHck9/vnnH1xdMx/0xd3dHVtb23TXGeYWSkcUmlA6km8oC/wihDAAXhKXeyLX0HliO0XWKVKkCMWKFUt836ZNm0TrPilOTk6UKFECIQRNmzbNVgx0Rf5E6YhCE0pHcpfo6GhevnxJmTKZi8ZoZ2fHpUuX9DpTr3REoQmlI/pDSukspQzVfGTi8ZellDWllNWllHWklLkakksZFHrmp59+4siRI1SqVIlbt24xZMgQ7O3tOXToEKdPn+b48ePs2rULf3//VHXDwsJYu3YtJ06c4OzZswwcOJDy5cvr4SoUukTpiEITSkf0j5SSVatW4eOTuUiS9vb22VoAm12Ujig0oXREkSOklFkpkriwVarouTg5OckzZ85orb0s6oHSkXxQlI6oonQkd4uxsbHcs2ePdHBw0HjspEmTZM+ePfUus9IRVQqwjqiSi0XNUCgUCoVCoQVevXpFSEhIptYQCiF4/VrruaUUCoVCLyiDIp9y48YN3N3d9S2GIg+jdEShCaUj2ufs2bOJeZYKAkpHFJpQOqIAZVAoFAqFQqE1Xr58mbiINT2KFi1KgwYNuHbtWi5JpVAoFLpFGRQKhUKhUGiJffv20bBhQ3x8fHBzc0vzmOrVq/PgwQNOnTqVy9IpFAqFblAGhUKhUCgUWiI8PJzhw4cTFRXF2rVrkyXuEkJQr149PvroI44dO6Y/IRUKhULLiLhACZlGJk1eoig4SCm19cMqHSmgKB1RaELpSHIGDBiAl5cXf/zxBzExMZQqVYoKFSpw7Ngx5s6dq/cs2fpA6YhCE1rUEUUuogwKBaA6eYVmlI4oNKF0JDVOTk7UrFkTgNevXxMQEEBUVJSepdIfSkcUmlAGRf5EGRR5jCz+HhrJ7O+lOvn8g9IRhSaUjig0oXREoYkCoCOKXMRI3wIokqM6SIUmlI4oNKF0RKEJpSMKTSgdUWQFtShboVAoFAqFQqFQZBtlUCgUCoVCoVAoFIpsk+U1FLoSRJEn0Mb8ptKRgo3SEYUmlI4oNKF0RKEJ5W+Vz8iqQaFQKBQKhUKhUCgUiSiXJ4VCoVAoFAqFQpFtlEGhUCgUCoVCoVAoso0yKBQKhUKhUCgUCkW2UQaFQqFQKBQKhUKhyDbKoFAoFAqFQqFQKBTZRhkUCoVCoVAoFAqFItsog0KhUCgUCoVCoVBkG2VQKBQKhUKhUCgUimyjDAqFQqFQKBQKhUKRbf4H988+Jp80e/MAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwkAAACICAYAAACsn6dsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABauUlEQVR4nO2dd1hUVxOHfwfYld6LiEgRIhqxRtDYe48VC1FiiR3EGs1njYloUFQEVIwd7AUbIiqKBRWxo4JoErCjImJDafP9QQlIW2B3L+W8zzMPy91z58zdO7fMKXMYEYHD4XA4HA6Hw+FwslEQ2gAOh8PhcDgcDodTvuBBAofD4XA4HA6Hw8kDDxI4HA6Hw+FwOBxOHniQwOFwOBwOh8PhcPLAgwQOh8PhcDgcDoeTB6USlifGmEwM4QgLEUnzxHI/qaRwP+EUh5R9BOB+Uinh9xKOJMjgfsIpAbwngcPhcDgcDofD4eSBBwkcDofD4XA4HA4nDzxI4HA4HA6Hw+FwOHngQQKHw+FwOBwOh8PJAw8SOBwOpwwwxjB27FisWrUKxsbGQpvD4XA4HI5U4EECh8PhlIG1a9eiRYsWqFWrFnr16iW0ORwOh8PhSIWSpkDlcDgcThYWFhZo2rQp2rZtCyMjI3h5eeGvv/4S2iwOh8PhcMoM70ngcDicUlK7dm3cv38fnz59QlJSEkQikdAmcTgcDocjFXiQwOFwOKXEzs4O586dE9oMDofD4XCkDg8SOBwOp5SYmJjg+fPnAICPHz9CW1sbtra2AlvF4XA4HE7Z4UECh8PhlBI7Ozu8ePECAPDlyxfcuHED3bp1E9gqDofD4XDKDg8SOBwOpxSIxWKkpaXh7t27OdvOnz8PZWVlAa3icDgcDkc68CCBw+FwSkGDBg3w77//4tOnTznbrl+/jrZt20JRUVFAyzgcDofDKTs8SOBwOJxSwBjD27dv82yLjo6GoqIiHB0dhTGKw+FwOBwpwYMEgahVqxYGDRrEhyZwOBUUW1tbPH78OM82IsKqVaswefJkzJ07F7Vq1YKmpqZAFnI4HA6HU3r4YmoCYGtri02bNgEAIiMjERUVJbBFHA6npJiYmCA6Ojrf9kOHDuHWrVsYOHAg1qxZAyMjI7x+/Rq7du3CP//8gytXruDLly8CWMzhcDgcjuTwngQ5Ym5ujq1bt2L9+vWYNWsWDw44nAqMvb19gUECAMTGxmL58uXo1asX+vfvj6CgIOjo6GDy5Mk4ffo0zMzM5Gwth8PhcDglgwcJckBZWRljxozBxo0bceTIEbRu3RqnT58W2iwOh1MGRCIRnj17Vmy5x48fY/Xq1Vi1ahUcHBywa9curFq1CjY2NnKwksPhlJVq1arB1tYWNWvWFNoUDkeu8OFGMkRRURH9+/fH6NGjce3aNTg6OiI+Pl5oszgcThkxNzeHsrIyPnz4UOJ9vby8YGtri6VLl6Jv377SN47D4UgNxhjWrVsHQ0NDGBoaokuXLkhMTBTaLA5HLvCeBBnRsGFDbN++HW3btsXkyZMxZ84cHiBwOJWEzp074/Dhw6WeW/Drr79CR0cHrVu3lrJlHA5HmjRr1gxmZmbo2bMn9u7diy1btsDQ0FBoszgcucCDBCnDGMOvv/4KNzc3/PXXX3B2dkZMTIzQZnE4HCliamqKR48elXr/hIQELFy4ECtWrIBIJJKiZRwOR5rMnz8fc+bMAQC4u7vj/PnzWLhwIbS1tYU1jMORAzxIkCKMMYwfPx61a9eGg4MDQkJChDaJw+FIGSUlJbRs2RKXL18uk54LFy4gISEBXbt2lZJlHA5HmjDGYGhoiEuXLuVs8/T0hLa2NubNmyegZZyKAmNsHmPsPmPsAmNsJ2NsBmOsNmPsOGPsGmPsPGPMJqvsFsbYasbYRcbYP4yxgbn0zGSMRTDGbjPGfpOX/TxIkBK6urrYtm0bGjVqhDlz5uRZhZXD4VQeGjZsiISEhHxrJJSU1NRUzJ07F5MnT4aBgYGUrONwONKEiPL8n5qaip9++gl169bFihUroKDAX6M4BcMYawZgAICGALoD+C7rq/UAXIioKYAZANbk2s0YQCsAvQAszdLTBYA1ADsAjQA0ZYy1kcMh8CBBGlhbW2Pjxo04e/Ysxo0bx+cecDiVmC5duuDMmTNS0XX16lWcO3cOzs7OUtHH4XBkT2pqKn7++Wfo6enhjz/+gL6+vtAmcconLQEcIqLPRPQewBEAygC+B7CXMXYTgC8yA4NsDhJRBhHdA2CUta1LltwAcB2ADTKDBpnDg4QyoKOjA1dXV6xduxa+vr7YsGFDifbPyMiAkhJPMMXhVCQaN26M8+fPS03fvn370KNHDxgZGRVfmMPhlAuePXuGMWPG4OPHjwgKCkKPHj3AGBPaLE75RwHAWyJqlEvq5vo+dzYMluvvklzlrYhoo7yM5ZSC1q1bY+/evRCLxRgyZAiOHz9eYh2PHz9GrVq1ZGAdh8ORBTo6OtDX18fff/8tNZ3R0dEICAiAk5OT1HRyOBzpoKCggGbNmhX4XUpKChYvXoxx48Zh3Lhx2L59O4YOHcqTEXCyCQPQmzGmzBhTR+YQok8A/mWMOQAAy6RhMXqCAYzK0gHGmAljTC4ptniQUAoGDRqE2bNnw9XVFcuWLcPr169Lpef9+/dQV1eXsnUcDkdWmJiY4NWrV0hOTpaqXj8/P3Tt2hUWFhZS1cvhcEoPEWH+/Plwc3MrMu3p9evX0b9/f/j5+aFp06bYv38/JkyYwBsBqzhEFAHgMIDbAIIARAJIAvAjgNGMsVsA7gLoU4yeEwB2ALjEGIsEsA+AhgxNz1N5SYQAVGlp1qwZBQYGkrGxcZl19e7dm5YvXy74MWW6QYn8gPtJFZWq7ic//fQTzZgxQya6hw8fThEREWRubi74cZYjH6mQfsJF7n4iU1vHjh1Lx44do2rVqklUvm7duuTi4kLnz5+nrVu3UsOGDQX/vSuqyOB+IlcBoJ71VxXAVQBNhLapJMKyjJcUqspj7rS0tLBt2zb8+eefuHjxYpn1aWtr4+DBg2jXrl3ZjSsjRCTNE1sp/cTExKTAbuTExEQkJSUJYJH8qcp+IhKJsG/fPqxdu7ZUwwslYfz48WjSpAkmTpyItLQ0mdQha6TsI0AF8xOOZFS0e4mbmxs+fPiAJUuWQNL3JmVlZbRu3RpTpkwBYwze3t44efIkUlNTZWprZUIG9xO5whjbAaAeMicsbyWiJQKbVCJ4kFACVq1ahYcPH8Lb21sq+lRUVHD8+HG0bdtWKvrKQkW7YcubRYsWwd7eHu/evcv3nY6ODsLCwnDs2DGEh4cLYJ38qMp+YmBgAH9/f5mua6CmpoZjx45h27Zt2LhRLvPSpA4PEjiSUNHuJZqamlizZg3u3bsHNze3Eu3LGEPbtm0xatQovHv3DtOmTUNKSoqMLK1cVPQgoaLDU+tISLdu3VCzZk3MmDFDajp5dqOKQfv27WFtbY1evXoV2AJkamqKFi1aYNasWUhKSsKKFSsQGRkpgKUcWWJjY4O3b9/KtI6PHz9i0KBB8PX1haamJry9vXmrYzlFS0sL9vb2UFVVzbM9KSkJ//77L+Li4iRuceaUf969e4cxY8Zg9+7daN++fYnSIBMRQkNDce7cOfz2229YsWIFDxQ4FQLekyAB6urq2L9/PyZPnoz79+9LVXdwcDCGDx+Oly9fSlVvSalorTryZMuWLfD398epU6eKLKeoqIh+/fphzJgxiIqKwtKlSxEfH1+pXhSqsp8MGTIEpqamWLZsmczr0tPTw+zZs1GrVi24u7vj7t27+Pz5s8zrlQaVuSdBSUkJvXv3xsCBA1GzZk3cvn0bL168yFNGR0cHtWvXhqqqaoGBwuvXr7F+/XokJyfj1atXler+UBIq6r2kZcuWcHd3x4wZM/KsxCwpCgoKWLRoEbS1tTF16lTeCFAMvCdBWHiQIAG///473r9/D3d392LLWukqwNVeDM/wFDx8k1FseR8fH/j7+5fqZiNNKuoNW9a0bt0a48aNw/DhwyV+mCsqKmLcuHFwdHTEo0eP4OPjg7CwMBlbKh+qsp/8/vvviI2NldswIAUFBfTq1QvDhw+Huro6VqxYgejoaLx69apcBwyVNUhgjGHlypUwNDTEqlWrEBERUeQ9oUaNGgWufdGpUye0a9cOysrKeP78OYKDg3H06FEkJibK0vxyR0W+l4wcORITJ05E37598fTp0xLvr6CggGXLluHZs2fw8PCQgYWVBx4kCEwJZzoLPtNd3jJgwADat2+fxFkNvLorEy3QJK/uyhKVnzp1Kv3000+CH6eUZ8QLfjzSkl9//ZWGDh1aqn0ZY9S/f386cOAABQYG0pQpU0hbW1vwY+J+Ujrx9fWlJk2aCFJ3+/btyc/Pjw4dOkQRERE0ceJEYowJ/pvIwUfKhZ+IxWKaMmUK7d+/n9TV1aWikzFGbdu2JU9PT4qIiKBevXoJfpwV2E/kajtjjGbPnk3r1q0rtQ4NDQ06cOAAjRkzhhQVFQU/H+VVZHA/4VICKdcXotBSr149Cg4OJhMTEwJAVroK5NVdmax0FQrdR5IyuaVLly7k7u4u+LFK2bEEPx5piJaWFoWEhJCRkVGZddWqVYvmzZtHERER1K9fP8GPjftJycXX15caN24suB29evWiXbt20aRJkwS3RQ4+IrifKCsrk6+vL61atYr09PSkrp8xRk2aNKGAgADy9/enmjVrCn4OK6CfyN1+BQUFCggIIAcHh1LrMDQ0pN27d5OHhweJxWLBz0l5FHm8CJcXAZAO4CaAWwCuA/g+a3sNAPtKoKcdgKNZn39E5joNkQAuAmhYIpvK+4UolOjq6lJQUBB16tQpZ1tJewkkEQsLCzpw4IDgx1vRb9iyEEdHR5o3b55UdZqamtKxY8eoRYsWgh8f95OSSXkJEgBQnz59KDw8vFz2Jsjg4Sno8YwZM4Z8fHxk/lsrKirSkCFDKCQkhBYsWECGhoaCn8sK5CeCHEPNmjUpJCQkpyFREhEbicl4mDGJjTKDAg0NDVq8eDF5e3vzQEH2flKuBcCHXJ+7AjhbSj3t8F+Q8D0AnazP3QGEl0QXX3G5AFRUVODr64s9e/bkmazqGZ4C7yspOBidCq/uyrDSLfvPFxsbC01NzSJXc+QIg52dHa5cuSJVnY8fP4aPjw9Wr15d4JoLnPKJkpISzM3NS726urQ5evQo3r59CzMzM6FNqdTUq1cPQ4YMgZeXV/bDV2akp6dj165dGDhwIN69e4ctW7bg119/RfXq1WVaL6f0PHnyBMeOHcPEiRMl3kevsx70OulBr7MeAOD9+/eYN28eEhMT5ZIUgVNh0ASQCACMMXPG2J2sz4qMseWMsTuMsduMMZes7d0YY9GMsesA+mcrIaKLRJSY9e9lADVLYgQPEgpgzpw5uHXrFjZv3pxn+8M3GXAJ+oy+NiI424nhai8uc11EhLi4OBgbG5dZF0d69O3bF7Vq1cLZs2elrjswMBB37txB586dpa6bIxvq16+PtLQ0PH78WGhTAGS+UL59+xYKCvwWLivMzMzg5eWFVatWITo6Wm71JiYmYuXKlZg2bRo+fvyI7du3Y+rUqdDQ0JCbDRzJ2bhxIxo1aoQ2bdoUWc5KVwFe3ZWhfiURCacSkHAyIee7jIwMLFiwAPr6+pgwYQIUFRVlbTZHCpjPDrQ2nx3obT470FpKKlUYYzcZY9EANgD4vYAyYwGYA2hERA0AbGeMKQP4C0BvAE0BFNayMBpAUEkM4k+Yr+jbty8sLCyKjOil3aMg6xYqTskwNzeHs7Mzpk2bJrMsMmvXrsX48eP5w6CCYG5ujsuXLwttBkeOTJo0Cf7+/jhy5Igg9Sc8e4/n1wgTRk1G9erVsWHDBvTu3Rvq6uqC2MMpmLdv32Lp0qX47bffoKKiUmg5V3sxnO3EmFwbeO7/HCnxeddIyMjIwLRp09CpUyeMGjVK1mZzpIMrgElZf6VBMhE1IiIbAN0AbGP503Z1AuBLRGkAQERvANgA+JeIHmQNvfP/WjFjrD0yg4RZJTGIBwm5+O677zBx4kTMmTMHX758yfe9qqoqmjRpgnqteuGsWi/88mNHOLfWw/w2Ze9R4JQP9PT0sHbtWqxduxaxsbEyq+fKlSuIjY3F8OHDZVYHR3ro6ekhLS1NaDNyEIlE0NXVRXJystCmVEpq1aqFhg0bYseOHYLZ0M62P9rW74uGNTtg1qxZ2Lx5M7p06YLdu3dj4MCBfLhiOeL8+fNISkrC2rVrCy2T3bjoGV74Amrx8fGYMGECBgwYgObNm8vCVI508QTgk/VXqhDRJQD6AAzKqosx1gCZPRN9iCihuPJfG1LuJwfJQ6ysrOjEiRMFTky0t7fPSVO3a9cu8vX8ky5v+41iT28lenqdooPWUb9+/UhJSalUdW/YsIEaNmxYmSYHCX4+SyNaWlq0efNmGjdunFzqq1mzJoWFhZGNjY3gx879pGjx9PSkzp07C25HttSuXZsOHTokuB1y8BFB/GTcuHHk5uYmcXkzkYjmGBqRmUgkNRsMNE3IoaULGWjmnRRbt25dWrVqFQUGBlbotKkV3Ue+lgYNGlBERARpaWnlbGOM0dChQ8nT05N+//13ql27tkS67OzsKDg4mL777jvBj0tokcH9pNwK8k5ctgHwGoAiMocX3cnaPh7APgBKWf/rAlAG8AhA7axtO/HfxOVaAB4iK1NSiW2qaBeiLERBQYG2bt1KvXv3zrPd2tqafH19KTg4mIYPH56T4z47y9G2vsrkO9CIJv00kLZu3Urbt2+nGjVqlLh+HiQIL+rq6rRjxw5ycXGRa8aYRYsW0YwZMwQ/fu4nRYuXl1e5yki1ZMkSmjlzpuB2yMFHBPGTw4cPS/xCB4DmGBrRvTo2NMew7OmSgcIDhNxSr169zEYrX19q2rSp4OddYD8R/HgAkIuLCwUFBeVkKRo7dizt3LmT+vbtS+PGjaOQsyHUdHLTnMxGRUnLli0pODi43GRUqyR+Uq4F/6VAvYnMNKg9s7ab478gQQnACgD3sso4Z23vBiAamalTPfFfkLABmROgs/VeLZFNFfFClLYsWLCAvLy88rwcdunShUJDQ2nUqFEk+qp1KPdaCNmfrfUUaeTIkRQaGponbaoksmHDBsFvBJXxhl0SmT9/Pv3xxx9yr1dHR4eCg4PJ1tZW8N+A+0nBoqCgQKGhoVJZL0MaoqenRxcuXKDq1asLboscfETufqKpqUlnzpwhNTU1ifeRdk+CQ0sX8h4XQg4tXYosp6CgQD169KADBw6Qr68vWVlZCX7+BfITwY8HAIlEIrpy5UpOr+PWrVupffv2Od+773OnRZcWkfEwY4n0tWvXjkJDQ2nWrFmCH1sl8RMuJZQKeSFKUwYOHEh+fn6krPzf2gddu3aloKAgsra2LnCf3EHC12sn2NraUnBwMP34448S2zB37twyLchSDi9Ewc9rScTY2JjOnz9PKioqgtTv6OhI27dvF/x34H5SsAwfPpx2794tuB0A6Pvvv6eIiAhycSn65bES+Yjc/WT48OG0bNkymdejpFODdDqNJyWd/L3PkvQk5BYFBQUaOHAgnTx5ktatW0ddunQR7H4mkJ8IfjzZ0qpVKwoODiaxWEweHh55Rij0H96fPA95StSTkC3a2tp06NAhWrlyJVlYWAh+fBXcT7iUUCrshSgNcXBwoMDAQDI1Nc3Z1rZtWwoODi7yYswdGBS0wrKRkRGFhYWRmZmZRHb06dOHFi5cWJkuRMHPraTCGKNVq1bJbR5CQaKoqEgRERGkq6sr+O/B/SSvTJo0iYKDg8nAwEBwW9TU1OjEiRPk6+sruC1y9BG5+8n8+fPJyclJ5vXodBpPZrOOkk6n8VLTqaioSF27diVPT08KDQ2lkSNH5usJLy9SkX2kONmwYQP9+OOPNHLkSFq6dCkBmc+apUuX0rRp0/KULSpYzBYVFRUaOXIk7d69u1RDmiuyyONFmEvhUqEvxNIKY4xGjhxJR48eJWPj/7r9WrRoQWfPni126EdHC0W6NV6NOlooFlpm6tSp9Pvvv0tkT/v27cnDw6MyXYiCn2NJZezYseTr60uKioWfS3nI3Llz6X//+5/gvwf3k/+kTZs2dOjQIfr2228FtwUAjR8/nlauXCm4HXL2Ebn6Sb9+/ejgwYN5Go5kJYW9HCopKZGBgQEZGBiUaQVeIyMj8vDwoEOHDlHz5s0F9wsZ+4ngx5Nb2rRpQxEREVS7dm0KDAzMke3bt+fMbcyWkgSLo0aNopMnT1boCesC+wmXEkqFvhBLK5MmTaLt27fnCRAYY3T88H46ttgxT69AQZIzcbmfcr5ehGwxNDSkS5cukZ6eXrH2GBkZUXBwcGW6EAU/x5KIpaUlBQcHk46OjuC2ZM9NyD1+tTxKVfGTfv36UUREBDVp0qTUOqQ9Tt3d3b3E850qgY/I1U8mTpxIY8aMkZn+woYRNWvWjLy8vCg8PJwiIiIoODiYgoODKSIigvbt20cjRowgTU3NUtX5/fff04EDB2j16tVyCX4E8hPBjye3ZM9NmDVrFqmqqlKDBg2oYcOGBSbFkKQnIbdYWlrSkSNHqH///oIfZwX0Ey4llAp9IZZUFBUVafHixbR9+/Z8k/46duxIf188TLRQK2d+AYAChxNlb9vWN+98hK9lq+9qCvx9cLFBh4KCAoWHh1emC1Hwcy2JuLm50bBhwwS3I1usra0pODiYBgwYILgtVd1Pjh8/Ts2aNSuTjqIy3oiNxGQ8zLhEY5MPHDhQ7oNIGfiI3PxEVVWVTpw4QfXr15dZHV9PSDY1NSVfX186efIkDRs2LF+DhYKCArVp04ZWrlxJYWFhNGHChFL1eioqKtKwYcMoJCSEfvvtN6pXr15l8xPBj+drGT16NG3btq1E+0gaMJiYmNCZM2dk6qvlReTxIsylcKnwF6KkoqamRhs3bqTly5cXOEbT19eXnEcMyhcQZAcC2/pmBgIFZTYqLAg4uXw00anfCg0isoUHCfIXQ0NDOn36dLmb3Gdubp6TTrdDhw6CD4Oqin5St25dOnToUJlT4RbVk2A8zJjqb6kvcZYTABQREZGn97O8igweVHKx29zcXOZrT2T3JHxXy5QO/q8HXQk7S2PGjJFo3oCZmRn5+vqSj49PqYchaWlp0dChQyk4OJhcXV0FDRYqoo+URPT19enSpUt5kqJkS2HvESUZetSlSxcKCgqqEHPZypGfcCmhVIkVly0sLODr64vo6GjMnDkTqampeb7X0NBA48aNsWXfMbgEfcbDNxn/fcny/s1eWt3VXoyHbzJyylvpKsCruzKsdP/7SXddeYEbbzWLXGGRI38YY1iwYAG2b99e7lasjY2NxU8//YQNGzZgyJAh2LdvH+rVqye0WVWKcePG4dSpU8h87yg9campWPwyHiKN9Hz3hoSTCUg8/xmpH7tASadGsboUFDL3ff78eZls4hSOg4MDrl69KtM6Xr17ir1hXvifYz30mfQHtE7PxI3g4+hrNx4GmiYAAANNE/zccTK8elvm8Zm4uDiMHz8eCQkJWL16NTQ0NGCgaQKHli45+xZHUlISdu7cieHDh4MxhhUrVsDV1RXVqlWTyfFWZV6/fo1Pnz7B2Ng433e53yOyP4/oqAZVs1P4GLMX768dLlb/iRMnEBQUhN9//x1isVgWh8ARAMZYdcbYLsbY34yxa4yxY4yxb0qwfy3G2AnGWBRj7B5jzDxruzNj7CFjjBhj+pLqq/RBgrW1NdatW4eAgAAsW7Ysz4M/+8V+TC87qL+Nhr1Bcr6H+aKzKfC7lZJTvrCl1XNf9Nnce/wGF54p5g06OILTu3dvKCsrY/PmzRLvU9KHcVk5c+YMxo4diwMHDmDp0qXw8/ODra2tXOqu6piamuLw4eIf0pJS0L0hJT4Fn+I6Qe0bB2g0/aFYHR06dEBMTIzUbOLkRVVVFT179oS3t7fM6/ruu+9g2G0G/tkwCt+kRWNM2wFoW78vujcdDoeWLujedDgaWfVBA6t+WNa5Grb1Vca2fpnPJSLCggULEB8fDw8PD3Rs7IC29fuinW3/Etnw8uVLrFq1CoMHD4aBgQECAgLQs2dPGR1x1eXWrVtwdnYGkPcZkvs9widKG389t8aOmkbQaa0MZYMQpCU+k0i/t7c33rx5g5UrV0JHR0eWh8KRA4wxBiAAQCgR1SaipgB+BWAkwb5KWR+3AVhGRHUB2AF4mbU9DEAnAHElsanSBgmMMXTo0AHe3t5YunQp9u/fn69M9sN7ag8b1MUDrOiqnO9h/vBNBpK+AMMb5O89yE1BwYO6ujoyMniAUJ4QiUQYN24cVq5cWaJz0862f6kexmXFz88Pffv2xa5du7B48WJs3rwZPXr0gKKiolztqCqIRCIYGBjg1atXUtNZWMPC+2uH8e7aUYlaDb///nucOnVKajZx8vLtt9/i2bNnSExMlIn+7BdEe0sL7Fu7GOs93RF2MxoAIE4+jLN3DgIA2tbvCwAQfTqCBqpHYaOvgOENxRjeQIz9g1RyAoWFCxfi48ePsOtlgbN3DiI08kCp7EpKSsLcuXOxePFiTJ8+HQcOHICpqak0DpmDzNb+7F6a3M+Q3O8R8VZ9sVjnN6Qa1QeAEvVgZmRkYMGCBSAinDhxosBeC06Foj2AVCJal72BiG4BGMMY65u9jTG2nTHWhzE2gjF2mDF2GkAIY6weACUiOpm17wci+pT1+QYRxZbUoEobJMyePRtjx47FL7/8gjNnzhRYJvvhfSAGCLkTj2nBn/M8zK10FbCtrzJqagJ+tzO3FzSsCMgMJjzDU+BqL875zsTEBC9evJDtgXJKRM+ePRETE4M7d+6UaL/QyAMSPYwL84+ykJGRgcDAQPTp0webNm3C4MGDsXPnTtSvX19qdXAyad26NaKiovDp0yep6SysYSEt8RkST62TqNVQS0uL30tkyKhRo7B7926Z6c9+QVzougBmogQ0+3wei85mPn8Wn47F3jAvBF3zw9k7BxF0zQ/LAlfD/3ocnI99ht+tFES/TkcDI0XsH6SCjhaKWN2tGjYsm4NaFiZIM3yCV++elsm+sLAwdOjQAUFBQdiwYQMsLS2ldORVm7i4OJiamsJA0wQqYjVciTmZ7xny/tphpLyMReqHvvhw3xgUIipRr3VGRgZcXFxw4MABrFixAvb29rI4FE5BLNSyxkItbyzUspaSxvoArhWwfSOAEQDAGNMC8D2AwKzvmgAYSERtAXwD4C1j7ABj7AZjbBljrGwtihV9clBBMmDAAAoMDJQ4Zdz48eNp0ezJ+SYhZ6c6zU53aqWrQLfGqxWY0aig7zw8PCRaSZlPXJaf7Nixg+zs7GSm/+sVuGUlQ4cOpcDAQHJ2dpbr5ObK7iejR4+mCRMmSFVndsaSamaNSpTqMLeEhYVViEnLMvARmftJv379aMeOHaSqqiqzOgw0TWhQ68l0MTSU9k5vny/ZRfaE5jo1muRLkWqgaUI/d5xM1yZaES3QpKhJmc+ZW+PV6Id2TenMmTOkqqpaqoxZBSXf6Ny5Mx0/flzmq/tWJB8pi5w9e5acHX7Lk9Xqa8m+R6hY16QRo2YVWbYwYYxRx44d6ejRo+Tq6lruknKUEz+RrizQ9M56R/SWhj4AkwGsLOS7uwAMAIwHsDxr2wgAm3OVGQggCYAlACUA+wGM/kpPLAB9SW2qdD0JnTt3hpOTE8aOHYt3795JtM+LFy/Qv7kFnO3EmN/2v6FGB6NTkZic1fpHmcOTGhgp4nZ8eoFzEnJ/p6WlhVatWiE0NFRah8YpI507dwZjDBERETKro7ChJdJm586dGDp0KOrVq4fNmzfD0NBQpvVVFWrXri21XgSxkRjGw4yh3a4zGnzXFGsHGKLBd00lmoOQmwYNGuDdu3e8J0EGiEQi/Pzzz/j999+l2nv0Na/ePcXTjGt49vo1HDzO5OlVMtA0wc9dFqJt/b4Y0GYi2tbvi472A2GgaYIhnV0xbOA4NLLqg/vp/RCnpITlhjo4kcTQwEgRnVXu4saNGxgxYgT0OutBr5Me9DrrSWxXQfNlTp48iV27dmHhwoV8QrMUuHz5MuJTo3Hz4SG00Q0ssJc5u1fRrCvwoNkV3FY4VeIhZESEkJAQDBs2DLq6ujh69Chmz54NDQ0NaR0KJz+eAHyy/kqDuwCaFvLdNgDDAIwEsCnX9o+5Pj8BcJOI/iGiNAAHkdnTUGoqVZDQrVs3zJo1CzNnzsTTp5J3v167dg0GdZoDItXM2DWLvjYi6Kgo4HZ8OhadS8l5ARywJznnJp89vORgdGqe7wYNGoSwsDCpjm3mlB6RSIQpU6bAzc0tO5qWCYUNLZEF7969w8SJExEXF4effvpJ5vVVBb799lucP38eQOmHjmloaMCpZ08ETJ2KRWNnYGQfE0zXC8dI7ev48c06ieYg5KZjx44ICQmRqd9WVSZPnozo6GhERUXJvK7atWvj2rXMkQTZcxS+q2WK+b0cYKJniacJ/+CMeBfuGJ3D7epn0eG74Whl+QPMSQSTp2ehlBSFva/G49sYSyx9pQG/2ynQqgaEHt6Orl27IuFkAhJOJSDhZILENhXWqLF161a8efMG8+fPl+pvUBVJS0vD24+v0VC8Hs5NXucEZAXdX+rqZ37WUWYF6pKEt2/fYsGCBRgyZAhSU1Oxb98+DBgwAJlzYjlSZWHSAyxMcsbCpAdS0ngaQDXG2NjsDYyxBoyx1gC2AJgCAER0r5D9IwBoM8YMsv7vAKCwshJRaYKE9u3bw8XFBS4uLiXOAvL48WMcPxeB0+p9sejcf/MRtKplzkXIfvH/+gXQSlcB+wepwNlOjL42opzvNDU1MWzYMGzYsEHqx8kpHT169MDDhw8RGRkptClS559//hHahEqBgYEBVFRUcn7PglpZi0JbWxvTp0/H8ePH4Tx4MJqSNizCX+JnvWqo3mIo4gcfxxerPjBSzf+wVtKpAZ1O4wtMh6qjo4O///67bAfHyYelpSX69++PhQsXyrwuK10F/NzSCPj4GsB/cxR+ajUAwyyCQO+PYMOJhbgWfA6H/lmPhyfu4Wq1NCSrX0d0rUt4qs8Qp90KKl86wiKpHXpEZKChkSKGNxRjkMEDNK9rgtpgeO7/HCnxBfdiFvRSWlijBhHhyJEjaN68ucx+k6rG1wFZQfeXOzteom10c5h+6oiO9gNhPMwYYqPSpTd99eoVPDw8MGHCBPTs2RNr1qxB9erVpXIsHNmQNWyuH4BOWSlQ7wJYAuAFEcUDiAKwuYj90wHMQOYk5khkJu//CwAYY5MZY08A1ARwmzEm0QtqhQ8SRCIRBg0ahP/973+YO3duTouQJK2AucusWrcZVH8g4t5nzvFwtRdjeEMxkj6j0Fbhr4cYWekqwKuHCnxWLMHx48dx716ZAjiOFOnfvz927doltBlSx9zcHD179sT169eFNqXCo6SklGfdDM/wFGwMy8Dnu9owE4mK3LdZs2bYv38/tLW1MWzYMDiMHg2vlatgELkO31z1gEbwZHSYvxf/vniLvXv3YsKECXla9jSa/gDNpr1yhiLlDhq6d++O9+/fy+agqzBdu3bFiRMn5PLbutqL0dpaC630kwD8lwhh64X98L8eB8/jq5GoSFCzHQWtC4SVLTSgq/oW/urHofK5MVCtDVQ+EJ6rnsNT1dPQsv2EBkaKeP0pA2osBYbiz5jcQrVYG0oS9MbExEg8ZJdTPF8HZAX14jyI+Yy/Nm/D2TsHcbv62RIPHyuIf/75B6NHj8bly5exdetWtG3btkz6OLKFiJ4R0SDKTIH6LRH1JKIHjDFVANYAduYqu4WInL/a/yQRNSAiWyIaQUQpWdtXE1FNIlIiohpE9LMk9igVX6T8oa+vj++++w6tW7dG8+bNER0djVGjRuHx48c5ZbJviADgEvS5QD25y3iG34Jx+hNMHj0UHuu25Vy4RY0tz13m4ZsMeHVXhvPPw3FfWxcjxk2WyrFyyk7t2rWhr6+P8PBwoU2RKi1atMDixYuxdetWnD59WmhzKh0P32Tg39tq+FFHG291CItfxhdYztraGsuXL8fs2bNx6dIlAJkNENWbJsH/QTpmVVfBnwkGSFLfD+/tj7Bz5064ublBW1sbS5YsAYCcIUjZf7ODBiAzTaUs59FUVbp164bZs2fLpS7P8BQ0e5KOw/cznxnZi6oBwNVHmWV0Ov0ArebN0aTjRfRMewLdVy+QdEIZmtWrQZRxBRZxx3DuW4Y7Nh2hLf6C6Of3YKOviPepwNP3BJ+IoudBSfJM48gGZWXlfNuyg4avefXuKW5E+WBEDTX4X9Ao0fCxwiAibN26FdevX8eiRYtgb2+fb90oTvmFMdYJmRmOVhJRkjzrrhBBgoqKCrp06YLGjRujUaNG0NDQwPXr1xEWFoaVK1fi9evX+fYp6Uu+q70Y9WK8MXWCB06E3UBkZGShwUU2X1/kJ5O/xUDrHxG1ZiIstAgP35TmaDnSxtHREQEBAZVqzYpmzZph0aJFWLJkCU6ePCm0OZUW/8Q3ef5+jUgkwpIlS+Dt7Z0TIAD/NUDcjk+HngoA69fQqa6MGtX04fLsDZROzEQnp824c6c3jhw5kjNxMZu8QcNAmR1fVUZbWxuxsbFyqevhmwzsj/yANOXCW4XfXzsMsyZvoKnQDwvTjqPx5STUMmyPp4b2MHxxFrfME0DV+6F+fBuYfkzF3x+iceqfFHhFpKHOJzEeJqQXa0NxzzSO9ImOjoadnR2OHDkCILOXUKPpD3h/7XCh6Y9d7cVwrsegdeUNXOIzRym42otzGiRLS2RkJBwdHeHh4YHNmzdj6dKliI6OLrU+jnwgolMAzISou0IECePHj4ejoyN27NiBqVOnIjY2ttgIWJIbYnaZnPkHp+/gxKlFWL16NXZvXI1vE4LyjB8s6gLt1q0bpvzyC85vnAsHw8d4Yi/mN+RygKmpKdq2bYt+/frJRL+Bpgna2fZHaOQBaCk9l8qNvDgaN26MJUuWYN68eXleTDnSJy41tcAehOyH9pPajnj/ORWnEvWgpFMj56HvGZ45qVSjGkMUs0TL6kawevcAzcQf0aWhGEAK/Pf/ClfXVXjy5Alu3LiRR//XQQNH+qSlpUFLSyvPEDNZEhcXh0aNGhVuT+Iz2NwwRn3LNrjwz1usuLEGM+qqQKxVGyfNY3BHrz8c3r2AQupT6D64i48iLbhceAIDAwN8/vwZnz9L93nDGOOTXaXA48eP88ztyN1LmHhqXZ4AAMh81zgYnQoA+eYvAIWPjJCU5ORkTJo0CT179oSnpyeOHj2Kv/76S+r+w6kcVIgg4a+//kJaWhp69OiBNm3a4Ny5c7hy5QpSUlJw586dMt/ks+cfeF9JgX9QCCKinyBoy3JYKPaAzgYfJD6OLvQC1dPTw5gxY9C2bVuMHz8eGa8fIj7XBc8RljFjxmD79u0yG3ecPQHRyrgBanxZAucmmb1asgwQp06diuXLl/MAQUBc7cVwtlfG034/YbD3OWg27QVL5XcYkX4g59pvWF0RDYwUsebWM5x8aYFF1ZPgd/0TajURI/p1Bn47eQ+tEpfjgK8bevTui6j4LwIfVdVi37598PLywvr16xEaGorU1FSp6s/dgPDq3VNERkZi9OjRRbYKh4TvQ/qnjMx9UlMRZlQXrdRrIi22Hup8rIu/tc1RV2SC6/Ua4mDKNeAC0KhRIzx4IK3kKv/RpEkTPH/+XOp6qxrh4eFYsmQJjI2N8fz583xDC3MHAADgbCdGGzPFPFkUsxsdtJQzGyjK2ghFRDh69CjCwsIwbdo07Nu3D/PmzcvXWMHhVIgg4cOHD/Dy8oK3tzcsLS3RpUsXDB48GCoqKqhTpw6ePHmC2NhYREVFYffu3UhJKdkL+tdDk+7fv4+JIwbhr3k/w3b0arx4+RqXXt9AbHwchg3LQHp6OgwNDdGoUSPUq1cPISEhcHR0RGJiIoDiXxC/fkhUq1YNaWlppfhlOEWho6OD1q1bY9myZVLT+fW5C408ACvjBjDRs8TNh73gfWW9TAPEevXqQV1dHcHBwTKrg1M8nuEp0LdsCMNn7xC+by00mv6AX9SDMbHpfw/77KQGK899gKv9CdjqizGsoRg2+oo49U86Hr7JgOunUJgrOsJzxo/oMnNTETVypM3atWtx69YtODk5Yfbs2Th16hSOHj0qtQxo2Q0IALA3zAtRUVEgIqwa1Rw91e5ASxlwCsj7rMg9VwEAblc/C20jbahlKMJGQRcPE17hmnIoIpQCEXPsJYDMl/mbN29KxebcNGrUiCdEkALJycm4cuUKmjZtiqNHj0InnaFdsgih6QyvkP/9o41ZZuNC9nMm+2/Sl8wAIumz9BqhEhMTMW/ePDRv3hzu7u5wd3fnw1c5eagQQUI2RIS///4ba9euzdmmrKwMCwsL1KpVC+3bt8fOnTuxd+9eXL16FQ8fPpRIb0FDk3paEmo+2IpDOzfB73V91KtXD/r6RtAVf0H16tXx7NkzbNu2DVeuXMHHjx8L0VwwX3cd1qlTRyYtQVWdMWPGlCp7ydctgLmZ3UQVPRV1oNIkET+f+oBX755iw4mFOeU3vJNtl62TkxOOHTvGJ5zJiBo1akBJSanYoP3hmwyc+FQPNS9eQVriM+hdXw+NtmL43frvYa9QTQ0nFdthapswHLj1FlrKgIYIuBWfjoPRqTnrq+htWA1Lx2VgbDMUtY2LHa/MkR4XL17ExYsXYWBggJ49e2LhwoVQVFTEvXv3EBYWhpCQkFIPw8heDCv3olgBAQGY3GMwcP1OnjV5svl6+KLj57/h/+wvOL1Xh22NJNCzALgc+S/lsUgkQvfu3TFhwoRS2VgYGhoa6NWrF4YMGSJVvVWVa3cfoJXDOBwPu4529fIGj1+/fwzYk5wnQPgvuUoKtJQBrWr5exPKOmfh8uXLmDhxIpYvXw4bGxt4e3vzZwwHQAULEgri8+fPiIqKQlRUFIKDg9GuXTu0aNECQ4cOhZaWFl6/fo0rV65gw4YNePNG8pnEeTMXhUs1M87XLQe2tra4c+eO1PRzMhfFatWqFYYPH17ifb9uAcz94E6MSUeiihq+fE7HHEM1+Ce+QdxXrX+yQkVFBR07dpRLXveqSPb9wdnZGatWrSq2fO3atXHr1i0AWUMWG2QOWcx+SM/94ICV9q/wk1IqMr6IkPQZOWX62ohyHv6Oa6/iSI8PaNSoEWL17POMV+bIh1evXmHLli3YsmULvvnmG9jY2KBLly45i61FR0cjICAAr169Qnp60ROEc3QWcF/Yvn07hg8JwIFPzbDo3Jmc7dkvebdSBqCRVR8AQBvNv9C7gQiRnxWw+dwjaHwKwK1PvWCguT+n8WLYsGG4f/++1BeDq1mzJtLT0/n6HFLijboF2rVuAcPvByD0fP7gMTe5g4bsd4SD0amZqWsJmanZv+TtTZDGnIUHDx7AyckJbm5u8PLywuzZs/Hhw4dS6eKUDsYYAVhBRNOz/p8BQJ2IFjLGxgP4RETb5GlThQ8SviY0NBShoaEAMltDDAwMMGjQIOzbtw/R0dFYsmRJnlSphSHLTBC5dSsoKKBv375wc3OTSV1VlS5duuDSpUtISip5trDsm/e/jw/Cq7clktT+B20tC2goKCDk0wUY2dSFZlISOn/8CNy9W2hqTGkzePDgMrVscormy5cvWL16NcaNGydRkKCiooKXL1/CSlcBdfSAxOQMRDxNy3nhO/rkAFTeGOHwO0XU1GRQEClj98ua8Il6hbR3mUNFsnsUYm5dhp2dHSL35B2vzJE/MTExiImJweHDh2FmZoZatWqhU6dO2Lp1K5SUlBAUFITw8PCclblLwocPHzBvkRtmzpyJp94XAWTOp5vfJnNe3JY7R3HsDiE08gBuKKXgQhN93LXWxge7dJz7tyfa1u+DpM+EvWFe0NLSwogRIzBx4sQyHW/Hjh1hYGCQ87+SkhL69+/Px6dLkeAtK7Dw536wTn+EsyVoVMp+V/DqrgxnOzH8bhe8Qra00tsmJSXBxcUF06dPh4+PDyZNmsQDBfnyBUB/xtgSIsqTtpOIBGk1YiXsUqKKmu1AQUEB48ePx6BBg+Dh4ZGTjgwoe1ddWWjfvj2cnJwwcuRIudb7NUQkzRMrqJ9Uq1YNJ06cQL9+/UrUe/Q1Xt2V0cBmEp5qO6B2bUXoGX9COtJw7vZtaGhpobm1NSg9A7sDdkArbg88ziXJzH+UlJRw5MgRTJo0SdAVliuTnxSEiooKjh49imnTpuX0EhSGh4cHjh49iv7Kl3Ja8aJfpyMlHTkLXemrKuB2fDoaGGUu0rg1rTN+fdYeWmf+wKS6b6FVLbNl8HBaG7y27IfRo0fnq+fUqVMYMGBAqQJeIZCyjwDlyE9q1KiBgQMHomfPnggNDc1Z56KkLF68GGpqapg/fz7evXuHbf2UMbxB5ktg7nkKYiMx9DrrIeFkArSSDXJ6ND+kvsGyZcvw7NmzMjUwTZgwAZ06dcLFixfzbH/48CGOHj0qca9Jaajs95KvcXFxgYmJSanW5hDiHcXV1RUdO3bEihUrchpehUAG95NyC2PsA4DFyOw9mPNVT8JCAB+IaDljLBRAOID2ALQBjCaikrdaSAIRlUQImSMpK6xYWlrSpUuX8mzz6q5MtECTvLory92eNWvWUMeOHQX/XUroB+XaTzp37kyrV68ukw4tLS1aPGcaPb1zhaKvRlPwkpW0r19vulfHhkKb1yArXQWaY2hE//TrT4/2biF6cIr8xzaS2TH169eP1qxZw/1EDjJy5EiJfusFCxbQoEGDyEpXgQIGK9NDFzX6e7Ia0QJNejVTnWiBJt0ar0YdLRRpWz9lOvSjDu2b0Zrazv6L1o9tSrRAkx66qFHUJDX62V6T4mOuUsNamvnqOXXqFGlpaQn+uwjkI+XST4yNjSkiIoLU1NRKtb+SkhLNnz+fgoODqXXr1mSlq0Be3ZXJSleh2H0durakf8MDyct9ESkqKpb6GCZMmEA7d+4kbW3tyuAngvtEcaKtrU0XLlwgExMTwW2RVJo2bUp79uwhT09PMjc3rwx+IlWpv6W+df0t9b3rb6lvLQ19AD4A0AQQC0ALwAwAC7O+WwhgRtbnUAAeWZ97ADglq2NUQBXj33//hYJC3sMuaHl0ecAYg4WFBR/3KWWMjIzw9OnT4gtmYaWrAK/uyqhrVA2dOnWCu7s7goODoaRphNY/DIHNdzbo+utUvH1/BjrWH9Hi+8yJZefoLR49v4zb211wyn8l6gxzxy6XFrDSle5lJRaLMWnSJImGwHDKzq5du1CjRg00a9asyHJPnjyBjY0NHr7JQL/dnxH5MgOWOor4JzEdQ/Ylw/tKCgbsSUbIv+lYdDYF5hopGKB2Cz5pi7D/0mPcjk9HbV1F2OgrwqVxOgwz4jGji5mcjpJTFp4/f45nz57hhx9+KNX+aWlpWLRoEdzc3DB37lzM8diI08rd8Um5es79KPd9RFlZGU2aNIGbmxs8lv6J9zefAue3lLqlf8iQIejSpQsmTJiAt2/flkoHp2S8ffsWFy5cKLXPCMG1a9fg6OiIiIgI+Pr6Yu3atahVq5bQZpUnXAFMyvorFYjoHYBtACYXUzR7Uss1AObSqv9rqlyQUBDZ4/7kPdTohx9+wPPnz/Ho0SO51lvZMTc3R0xMTKHfG2iawKGlCww0TQBkTfoa2g3hoUGYPG4U7t27h969e2PWrFl5hvYsvf4JJ0WvsPufZHiGp2DQdwxtu35Az4YM0VdC8OiIOwZPXYp5fb6R6vEMHToUf//9d5HHxJEeycnJ2LdvHwYNGlRkufPnz6Njx44QiUQAABv9zNupjjJDXBLhYHQq9g9SQUeLzHSG2UOQvlVLQq+a7zBgTzL8bqXA73YKpgV/xqNP1eBzNwnGw4whNhIXVTWnHDB58mT0798fP/74Y6l1nD17Fr1798ahQ4fQrl077N27F6Fnz8LZKxBH9u3D+RMRCD19FufPn8ecOXPw6tUruM8/hHPXa+PWp155dJmJRJhjaASzLH8sDEtLS0yfPh3z58/nAYKc2bp1KwYPHgx1dXWhTZGYtLQ0+Pv7o3v37jh79iw2bdqE//3vfzn3vSqOJwCfrL/SZBWA0QDUiiiTvbBOOmQ4v7jSTVyuKGhpaWHixImYPHkyMjLkG5xUZhQUFNC+ffsi83vnzl4UEL4Wqa1m4F3jVtAMc0Pc/gvYUsiE9YdvMvKMF85e4AYsa8JY+Glom1hBsdVkYHPZJhNmY2BgAGdnZzg4OEhFH0cy7t69i3bt2hVZJiYmBv/88w8GDBiAXbt2wfnYZ+waqIKPmmIMmaOLLs+T0ECNsKKrMgbsSc5MgSoG3n9BztjirbdSsaKrMpREwMt0LcTbKEKvrSYA4Lk/X8iqPBMXFwdnZ2cEBASgQYMGWLNmDeLi4kqsJyUlBQcPHsTBgwcBAE0t9TDpe238KxoFGzNjnLt5ChuPLslJy5uZbe1zvuw4w3R08aOODgAUmUzBwcEBJ06ckNp6EBzJiYqKwt27dzFx4kS4u7sLbU6JyMjIwK5duxAYGIi5c+fizz//xPTp07OHyVRJIn+KfADAWdp6iegNY2wPMgMFYRfQqWzj/ooTRUVFCg8PF9yO1atXk7Ozs+B2ZEtlGR9qampKwcHBlJVKrEAx0DQhh5YuZKRtSqtWrSJvb29qWEtT4jHBRY0fVlFRofDwcNLX15fK8bi7u9PEiRMF94/K5ifFiaGhIYWFhZGGhkaR5Ro3bkynT5/OGdftWl+FjgyoTZ1WfEu/uNeiW+PVyKmBEm3rmzlngRZo0ra+mb6zra8yvfklc+5C7IrOFHNuH1l/o0zGw4xJbCTOqYPPSSi/fgKAVFVVafjw4RQSEkJTp04lS0tLiffNvhcZaOYfp17UdwWJmUhEcwyNyEwkKrKcl5cXtWjRQvDfrSr5SG6xsrKiK1euVKhr+mtRVFSkjRs30ujRo4t81pZDPynXgsyJydmfjQB8QuFzEr7L+qwPIFZWNlW54UY2Njb4999/Zaa/oPGkX9OgQQPUqFEDa9askZkdVZV69eohLi4u+yIrkOz85QN//AFqampwdXXFrUfvihxylvu8Zueknt9GnO9cJycnIzIyEnXr1i3zsTRu3Bh16tTBX3/9VWZdnJLx8uVLXLp0Cb179y6y3I0bNxAcHIw//vgDjDGMM9JF7TsiTA77jIYPEnErPh09ayqjc5oBTEVZQ4hY1roKDcXQUVFAYnIGtBr9AOvEs5hcO7MHISVevvOjOKXn06dP8PPzw7Bhw5CcnIy1a9di8eLF6N69O3R0dCAWFz50LLtXs51t/3zfZd+nvl7QsTDiUlOx+GU84lJTiy1b1P2RI1sePnyI48ePY+rUqUKbUmrS09MxZ84cdOnSBSNGjBDanEoDEann+hxPRKpEtDDr/4VEtDzrczsiupr1+TURmcvKpioXJDRt2hQREREy05/9AulqX/iDITvfPR9mJH2GDh2KQ4cOFVvOwsICjo6OmD9/frGT/ww0TeDabTKGNTGDq70Ye64SThxTR7UUpQLP9YsXL8o85lRfXx/Lly+Ht7c3UiV46HOkT0BAAJycnGBoaFhkOQ8PDxjrquO0lwviDT5Dx/oj6ukmwrEGw/AGYth+0ULiAzVcDVeB3+0ULDqbmSQhez7ChRQbaNduijtn9uZJnqCkUwM6ncaDKVWT9aFypMDz58+xbt06DB06FNHR0ejUqRMCAgIQGhqKMWPGoH79+lBTyzvEODTyAM7eOVjowlqcysmKFSvQuXPnPOtTVDRevHiBxYsXY+zYsVJpFOOUT6pckKCtrY2XL1/KTH9xmZJ0dHTQokULbNy4UWY2VFW+/fZbmJiYICQkpNiygwcPxv79+/H8eea4768n/eXuOWhn2x9Mozf8/+0Oz/AUtGHaMH2niZR/1fH6038LaGWXNzQ0xMePH0t9HF27dsX27duxc+dOnDx5stR6OGUjLCwMX758KbbHLy0tDW+PLkC7rj9Apds4XGpUH9HVDHEwOgXRr9NRu+EnPNZ8B8crr+AUkNlb9fBNBpwOfoZrqArUuy3E0U3L0G/byzw9WRpNf4Bm015Q1NSX9aFypMibN2/g5+eH6dOno127dvjpp5+gr6+PuXPn4tixY3Bzc4OjoyPMzc1L3FsgDUQiEapV44GnkLx9+xanTp3C+PHjhTalTNy+fRtr1qzB0KFDhTaFIyOq3MTlr9OfSpviVmq2s7PDjRs3kJLChxNIm6VLl2Lnzp0SrUhsa2sLT8//EhLknvS3O+0V9g9SyVkAa1FYZitfaOQBvHqXAX9R5gJtg7p9hr6qAqZ/Xw3N4tLhbCeGgpII9evXx4MHD0psf61atfDLL79AU1MTf/zxR6lWdOVIl4EDB+LixYuoWbMmnjx5Umi5HZeeoMWmiVDo6I52dRtAJ/xPeP8NzDyZDFf7dHj+nYS41Lw9hzVq1ICnpyd27DuIDRsC8unMXnU5vXvps+dwhOfBgwc5i65paGigU6dO+Oabb7Bu3TokJSXh/v37uHXrFs6cOVOmxR8lJTU1Fb1798bZs2dlXhencDZt2oR9+/Zh27ZtpZrwXl64evUqOnfuLLQZHBlR5YIEa2vrIjPfyJo+ffogICD/CwGnbEyYMAHVq1eXqBcBAExNTfOsT+Gf+Cbn74xOmekqb8enwzM8Jae1L5vssb+XzytihaoypgV/RlxS5hjf62rtYfo0Fv9rlAjPLwoSpdWtUaMGXFxc0KxZM2zevBm7du2S6UqnHMlJTU3Fpk2bMHr0aPz222+Frnza10aEuuIXuH3gJ+h0+REfe6yBquIl2CiexpLr1/HszTMAgLq6Ouzt7dG1a1e0atUKa9euhZ+fX5E2lPeVZDmS8/79+5z7//Lly/HNN9/AysoKzZo1w6RJk/DgwQMcOXIEQUFBMrsHLF26FP7+/mCM8bkJAhIXF4dz585h3rx5cHFxQXJystAmcTj5qawZBAoSBQUFOnPmDOno6AhmQ0hICOnp6Qn+W3wtUp4RL1fbe/XqRZcvXyYjIyOJ9wkMDCQLC4sCvyvJ6qe5RSwWU0BAAB2e31eiFbwZY9SpUycKDAykkSNHlnr1Vu4nshVbW1sKDg4mAwODQldnz/aZjhaK5NVdmZpY6NLw4cNpzZo1FBwcTBEREXTlyhWKiIigLVu20MiRI8nQ0LDIenU6jSezWUdp3+kr1K5dO8F/B4F8pML4SVlFJBJRmzZtaO3atXTkyBEaO3asTDLgMMbIx8eHXFxcKpOfCH7+SnsuZs+eTREREWRjYyO4PaWRunXr0rZt2yqKn3ApoVSJCzFbGjZsSP7+/oLV//3339P+/fsF/x3kcCHKzW5LS0sKCwujhg0blmi/NWvWUK9evaRmh1gsJg8PD/Lw8Cg2yFBUVKTu3btTYGAgbdmyhezs7AQ//5XdT8oqK1eupKFDh5Y6gGSM5YikOpR0apBOp/E0a/7vNHLkSMF/A4F8pEL5ibTE2tqa3NzcKCQkRCZpJvX09ARvsOI+8p84OjpScHAwbdy4kfr161chGoyypV69ejxIqMRSpS5EBwcHmjt3rmD1L168mPr06SP47yCHC1Fudnt7e5OTk1OJ9xs4cCBt3rxZKjbo6urShg0b6M8//6Rq1aoVWbZmzZq0Y8cOWr9+PTVu3Fjw815V/KSs0qdPH4qIiCiyjKQv/4X1RhQmbdu2lZqvVkAfqVB+Im0xNDQkX19f2rZtG/Xu3ZsUFRWlpnvq1Kk0bdq0yuIngp+rsoqioiK1atWK/vzzTzpz5gz98ccfZGZmJrhdxYmTkxMtWbKkovhJuRZkrp58E8AdAHsBqJZChzkAR6nZVJUuxI0bNwrabX/w4EGysrIS/HeQw4UoF5tbtGhBgYGBpWp1EYlEdOLECWrZsmWp62eMUe/evenkyZM0ZcoUUlAo/OWQMUYuLi504cIFcnBwEPx8VyU/kYZoaGhQREQEGRgYFFpG0pf/kvZGqKio0JUrV0gsFktsbyXykQrlJ7IQxhi1b9+e1q1bR5s3b6bq1atLRa+1tTXt3bu3sviJ4OdJmqKpqUkuLi506NAhwW0pTqZPn07Dhg2rKH5SrgV5F1PbDmBaKXS0A3BUajZVlQuxSZMmFBAQUOSLnCylW7dugg51kvOFKHN7GWN0/PhxGjVqVKl1tGnThoKDg8nERLIVTbNFJBJR165d6dChQ7R7925q3rx5kXYOHDiQdu3aRT4+PoLOh6mKfiJNCQwMpG7duhX6fWmHIkkiu3btKher5ArgIxXOT2QpY8aMoVOnTtGff/5Z5qFC5ubmPEgox6KoqEgXLlwgZWXJehyFki1btsi0V1wG95NyK8gbJIwHsCbrsxOA2wBuAfDL2rYFwGoAFwH8A2Bg1vbLAJKQ2SMxtcw2VZUL0d3dnSZMmCBY/QEBAeV6eElFu2G3atWKjh49Wuagb+jQoRQUFEQNGjQoshxjjGxtbemXX36hixcv0s6dO6lLly75ymlpaVHv3r1p6tSptGLFCjpw4ABt2rSpwrzgVTY/kaa0b9+ejhw5Ikjd/fr1o8WLFwv+GwjgIxXOT2Qt1apVo0mTJlFISAgtXLiw2CGOhQkPEsq/+Pn5Uf369QW3oyg5dOgQmZqaVhQ/karcq2Njfa+Ojfe9OjbW0tCHrCABmZlHDwGYAOBbADEA9LO+0836uwWZQ5IUANQD8DBreztIsSehSqRAtbCwQMOGDTFv3jxB6m/UqBEUFBRw48YNQeqvbDDGMGbMGGzatKlMq1Zb6Srg+7cB2P3XG3h5eeHq1as4cOAAHj16BJXk53BtoYIzX2xR174jOnToAAC4fv06Vq9ejfT0dGhpaWHo0KGoX78+GjduDHV1dSgqKuLq1au4efMmrl69infv3iEyMpKvrl0JOH/+PCZOnIh27dohNDRUrnU/fPiwwi+8xJEOX758gY+PD3bu3AlXV1fs2bMHK1euxIULF5CWlia0eRwpEhMTg2+++QZ37tyRms5BgwZBVVUV7969w/Hjx/Hp06dS6zI1NYWKigqePpXfYoDlDFcAk7I+O0tBnwpj7GbW5/MANgIYB2AvEb0GACLKvZjKQSLKAHCPMWYkhfrzUSWChMGDB+PQoUP48uWL3OtWUVHBvHnz4OvrK/e6KystWrSAtrZ2mdebcLUXw9lODO8rZ9GzZxgcHR0xduxYmJiYoGldM2iriODw5i1iXnxAtWrV8PjxYxgYGMDOzg7x8fE5kXZ4eDh8fHyQmJiItLQ0pKamSulIOeWJtLQ0bN68GZMmTUJ4eLhc85pHRkZCV1dXbvVxyj9v3rzBggUL0Lp1azg5OWHKlClYtGiRoOsAcaTL/fv3UadOHanpU1VVxcyZM7FlyxbY2Nhg8uTJCA0NxY4dOxATE1NifSNGjMDevXurciOY51d/y0oyETXKvaGYdXJyv9TKZEGdSh8kiMVidO7cGT/+KP9VSxljWLx4MW7evIljx47Jvf7KSo0aNXD16tXs7rlS4xmeAjCGQ6/NMGhQS9jb28PCwgLv37/Hrj37UE8lASfvf0DI5Vu4ffs2Pn78KKUj4FRUjh07hubNm8Pf3x/Lly/HpUuXcr4rbKE1aZGYmAhbW1tERkZKXTen4nL+/HmcP38e7du3x6+//gpNTU3ExsYiKioKiYmJuHHjBt6+fYtHjx7l7CMWi7F06VLo6+sLaDmnOB48eIAff/wRKioqUmuU+PTpE3x8fAAAenp6cHBwgI+PD06cOIGQkJASBZnff/89pkyZIhW7KiJ1o6MeQDo9CEVxGkAAY2wFESUwxnS/6k34mvcANKRVeaUPElq3bo2HDx/ixYsXcq+7Xbt2MDQ0xMyZM+Ved2UmLi4Oo0aNgq6uLt68KepaKRg9PT3UqlUL9vb20GnVCi4aGrhw4QLWrVuHqKgofPjwQQZWcyoLCxcuxKxZs7B69WrMnDkzZ+hRds8UALgEfZZ6vTdv3uQvdZxCOXPmDM6cOQNDQ0PUqVMHZmZmMDMzQ5s2bVC9enVUq1YtZxVnVVVVxMfHw8XFRWCrOUVx8+ZNXL58GX/88QemT58udf0JCQlYt24djh8/ju7du8Pd3R2PHz/G7t27cfz48UL3s7W1xaBBg6Cjo4PXr19L3S7OfxDRXcbYYgBnGWPpAG4AGFHELrcBpDPGbgHYQkQry1I/K2FrLBXT9VHu2L59O3x8fHDx4kW51lu3bl2sWLECCxYswJUrV+Rad2kgImmeWJn7iYuLC5ycnBAaGor169cjOTkZ3377Le7du5enh0EsFqNdu3aoU6cOtLS0YGlpCZFIhNevXyM0NBTXr1/H5cuXy9wrUVWoaH4iS2bMmIFevXqhT58+SEpKknlPgru7O4KCgnDmzBmp65YmUvYRoIL7SXmAMQYdHZ2c/4kIiYmJAlrE7yWSIhKJ4O/vj/3792PPnj1l0qWqqoqgoCC0bdu20LpatWqFcePGwdjYGBcvXszXg2FkZARzc3O8evUKq1evlvnwNhncTzgloFL3JFhaWkJPTy/PkAB5YGFhAW9vb/zxxx8VIkCoiHh5eeHcuXMYMGAA3N3doa6uDm1tbTx58iRf2ejoaJw5cwafPn3CgwcPEB8fX5XHUHKkxPLly/Hx40ds3LgRQ4cOxcM3qTLpQeBwygoRlarXlSM8qamp8PDwwKJFi3D+/Hk8f/5cpnVl90iZm5vD1tY2X5nk5GScPXuWz72rIlTqIGHs2LHYsWOHXFuJ9fX14ePjA3d393Lf4lfRuXXrFm7duiW0GZwqzNq1a1G3bl2sWbMGY8aMKbM+M5EIw3R04Z/4BnH8IczhcABcuXIFN27cQO/evbF+/Xq51BkbG4vY2Fi51MUpvygIbYCsaNiwIRo0aIDDhw/LrU6xWIwlS5Zg//79CA4Ollu9HA5HOJYvX45GjRpJJfvQMB1d/Kijg2E6PJMRh8P5j02bNmHw4MGwsLAQ2hROFaLSBglDhw5FQEAA3r59K5f6jI2NsW7dOrx48QKbNm2SS50cDkd4Hj16hNu3b2PWrFkAALGRGMbDjCE2EpdYl3/iG2xPTIR/Yv6hIXXr1i2zrRwOp2Ly4MED+Pn5YfHixVBRURHaHE4VoVIGCXZ2drC2toafn5/M6xKJRBgxYgT8/Pxw5swZzJ8/n0+C5XCqGMuXL4etrS00NTWh11kPep30oNdZr8R6nusybOqigOe6+efqVa9eXaqLKnE4nIrFli1b8P79e0yaNKn4whyOFKh0QYKmpiamT5+OdevW4fNn2U0iVFJSQs+ePbFnzx7Y2trCyckJfn5+PEDgcKogUVFRiIyMxODBg5FwMgEJpxKQcDKhxHqKCzBevXpVVlM5HE4Fxs3NDfb29nB0dBTaFE4VoNJNXF67di3Onj2LkydPykQ/Ywxt27aFs7MzXr58icWLF+Pq1asyqYvD4VQcIiIiYGVlhZT4FDz3L10GkuzA4usAw9bWlmen4XA4iIuLw5w5c+Dt7Q0dHR1s2rRJrqu/c2QLY2wOAEcA6QAyAIwjonAJ9/1AROqMMXMAR4moPmNMD8A+AM2QuW5CiRZ/q1RBgo2NDbS1tbFmzRqp6mWMoX379ujQoQOaNWuG58+fw9PTE+fPn5dqPRwOp+Ly/PlzDB48uEw6Cgsw9PX1eSYvDocDAIiJicHw4cOxaNEibNq0CYcPH8aBAwfw5csXoU3jlAHGWAsAvQA0IaIvjDF9ACWf3JaXzwDmAaifJSWi0gQJWlpa+OOPP6QaIKipqaFNmzZwcHCASCTC/v374ePjI9M8xRwOp2ISFRUFTU1Noc3gcDhVgPj4eDg7O6N9+/bo2bMnxowZg2PHjmH58uVCm8YpPcYAXhPRFwAgotcAwBiLBbAHQHcAyQAcieghY8wCwA4A6gAOFaSQiD4CuMAYsyqNQZUmSPjtt99w69YtBAYGllmXSCTCxIkT0bdvXzx48ACbN2/GxYsXc5a053A4nK8hIujq6kJPTw8JCSWfj1AcioqKUtfJ4XAqLqmpqThx4gROnDiBOnXqYM2aNejQoQMGDx6M9+/fC21epcdn/GlrAK4APCet6/BACipPAJjPGIsBcArAbiI6m/VdEhHZMsacAKxCZo+DJ4C1RLSNMSaT2eyVYuJyixYtYGlpCV9f31LtLxKJoK2tjWbNmmHy5MkIDAyEqakpHBwcMHbsWJw/f14mAULNmjVx+vRp3L17F3fu3MHkyZNzvuvatSuio6Px4MGDnNSKnKoH95GKQ2JiIt68eVPgKqVl5eHDh2jUqBG++eabAr/nfsKRBO4nlZf79++jY8eOOH78OPbv34+pU6fim2++gaamZo7o6upCQaH41z7uJxLjCmBS1t8yQ0QfADQFMBbAKwC7GWMjsr7emetvi6zPLXNtl006TyIqiRCAcie//fYbOTg4lGgfCwsLGjhwIK1bt46Cg4MpJCSENm7cSBMmTCBTU1O52F29enVq3LgxASB1dXW6f/8+1a1blxQUFOjhw4dkYWFBIpGIbt68SXXr1pWpLSX0gwrpJxVRypOPcD8pXgYNGkQ7duwgIyMjqeueMGECLV68uNz7iZR9pFL6iVBSif1E8N+2PEnNmjVp2rRpOe822XL69Glyc3Oryn4iVfEeF2LtPS7E23tciLUs9AMYCOAIgFgAFlnbRMgckgQACQCUsj5rAviQ9dkcwJ2vdI0A4F1iGyr6haioqEghISFkYGBQ4PeMMTI1NaXvvvuOmjdvTlOmTKEjR45QcHAwLV++nFq2bElmZmaCHwcAOnjwIHXq1ImaN29Ox48fz9k+e/Zsmj17dp6yZmZmFBkZmfP/9OnTacGCBTnfRUVF0ebNm+n+/fvk7+9PHTt2pAsXLlBMTAw1a9ZM1hei4L9lZRUhfYT7iWQyevRoOnHiBFlbW0tVr52dHUVERJR7P5HBw1Lwc1pZpRL5ieC/ZWWWSuQn5VoA1AFgnev/PwB4IzNImJ21bRiAI1mfDwMYlvV5AmQQJFT44UZNmjTBkydP8uQPt7S0xMyZM7Fx40aEhobCx8cHY8aMgZOTE758+QJXV1d07doVM2bMQFhYGOLi4gQ8gkzMzMzQuHFjhIeHw8TEBI8fP8757smTJzAxMSmRPisrK3h4eMDGxgY2NjZwdHREq1atMGPGDPzvf/+TtvkcOcB9pGKwceNGHDlyBDt27EDdunVhbW0NHR2dMuu9evUqMjIyMHTo0CLLcT/hSAL3E44kcD+RK+oAtjLG7jHGbgOoB2Bh1nc6WdtcAUzN2uYKYBJjLBJAoScia+LzCgAjGGNPGGP1JDWowk9crlOnDurVq4e//voLAGBoaAgNDQ34+/vDx8cHMTEx+PDhg8BWFo2amhr279+PKVOmSG2y0b///puzOuvdu3cREhICAIiMjIS5ublU6uDID+4jFYsNGzagVatW+P3335GSkoLq1asjKSkJ165dQ3h4eKnWccnIyICPjw+srApPUsH9hCMJ3E84ksD9RL4Q0TUA33+9nTEGAMuIaNZX5f/Ff/MTAGBu1vZY5Ep3SkTmpbWpwgcJu3fvznE4AHj79i3i4uKyu1fKPUpKSti/fz+2b9+OgIAAAMDTp09hamqaU6ZmzZp4+vRpvn2zHAdA5uTr3OTOl5yRkZHzf0ZGBpSUKvxpr1JwH6l4JCcn51kzQVVVFZaWlhg0aBB+++036OvrY9euXSW+T8XExGDs2LFwc3PLl0yB+wlHErifcCSB+wkHqATZjVJTU3Hz5s0ciY2NrTABApA5NCEqKgorV67M2RYREQFra2uYm5tDJBJhyJAhOHz4cL59zczMoK+vD8YY2rRpw1MkVlK4j1R8Pn36hDt37mD+/PlwdHREr169EBQUhOrVq5dIz7Vr11CtWjV8/32+xibuJxyJ4H7CkQTuJ+UHIjKnrDUT5E2FDxIqMi1btoSTkxM6dOiAGzdu4MaNG+jevTvS09Ph7OyM4OBgREVFYc+ePbh3716+/RMSErBt2zZcvXoVd+7cgZOTEywtLQU4Eo6s4D5S+YiNjcWMGTMQGxuLI0eOoFevXhLvm5qaik2bNsHOzi7Pdu4nHEngfsKRBO4nnBx4BoGKKV9nECir8EwTlU+k7SPcT6Qvw4YNo7Nnzxaana0g6d+/v8RZjoTwExlk/RD8PHEp934i+O/DpUL4CZcSCu9J4HA4HIHw9/fHrl274Obmlmccb1EcOXIE7969g4WFhYyt43A4HE5VhmUG4BJDkj7IOBULIpLmieV+UknhfiJ9xGIxNm/ejKNHj2LnzszFM8VGYuh11kPCyQSkxKfk22fr1q1YunQpoqKi5G1usUjZRwDuJ5USfi/hSIIM7iecEsB7EjgcDkdAUlJSsHDhQkybNg2NGzcGYwx6nfWg10kPep31CtxHW1tbvkZyOBwOp8rBgwQOh8MRmAcPHuDSpUtYv349evTogYSTCUg4lYCEkwn5yv7yyy+oUaMG3rx5I4ClHA6Hw6kq8OFGHAC865cjGdxPZMvAgQPh4OCAIUOG4Ot7c/v27TFjxgwYGhpi+PDhiI6OFsjKouHDjTiSwO8lHEngw42EhQcJHAD8hs2RDO4nskVNTQ2hoaH4559/cPv2baiqqsLOzg5KSkpQUFDAtWvXsGzZMjx//lxoUwuFBwkcSeD3Eo4k8CBBWHiQwAHAb9gcyeB+IntUVVXRvn37nJVKb9++jdevX+PTp09IS0sT2Lri4UECRxL4vYQjCTxIEBYeJJQjSnguJEaSc8Zv2BUH7iccSRDKT3iQULGoJH7CfUTGyMJPBHjmcEqIktAGcP6D3+Q4ksD9hCMJ3E84ksD9hCMJ3E+qJjy7EYfD4XA4HA6Hw8kDDxI4HA6Hw+FwOBxOHko8J0FWhnDKBdLqT+R+UrnhfsIpDqmON5eiLk75gt9LOJLAxzoJREmDBA6Hw+FwOBwOh1PJ4cONOBwOh8PhcDgcTh54kMDhcDgcDofD4XDywIMEDofD4XA4HA6HkwceJHA4HA6Hw+FwOJw88CCBw+FwOBwOh8Ph5IEHCRwOh8PhcDgcDicPPEjgcDgcDofD4XA4eeBBAofD4XA4HA6Hw8kDDxI4HA6Hw+FwOBxOHv4PBy89j4zuK80AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "bento.pl.sig_samples(adata)" - ] - } - ], - "metadata": { - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.11" - }, - "toc-autonumbering": false - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/docs/source/tutorials.md b/docs/source/tutorials.md index d38e69c..533861d 100644 --- a/docs/source/tutorials.md +++ b/docs/source/tutorials.md @@ -1,12 +1,30 @@ -# Tutorials - -```{eval-rst} -.. nbgallery:: - :caption: This is a thumbnail gallery: - :glob: - - tutorial_gallery/Subcellular_Localization - tutorial_gallery/Spatial_Plotting - tutorial_gallery/Subcellular_Features - tutorial_gallery/Tensor_Decomposition -``` \ No newline at end of file +# {octicon}`workflow` Tutorials + +:::{toctree} +:maxdepth: 2 +:hidden: true + +tutorial_gallery/Main_Guide +tutorial_gallery/Data_Visualization +tutorial_gallery/Spatial_Features +::: + +::::{grid} 3 +:::{grid-item-card} Main Guide +:link: tutorial_gallery/Main_Guide.html + +This tutorial will walk you through how to load, visualize data, and perform subcellular analysis. +::: + +:::{grid-item-card} Data Visualization +:link: tutorial_gallery/Data_Visualization.html + +This tutorial will cover how to visualize spatial data using Bento. +::: + +:::{grid-item-card} Subcellular Spatial Features +:link: tutorial_gallery/Spatial_Features.html + +Learn how to compute spatial features across cells, domains, and molecular distributions. +::: +:::: \ No newline at end of file diff --git a/poetry.lock b/poetry.lock deleted file mode 100644 index c108138..0000000 --- a/poetry.lock +++ /dev/null @@ -1,3062 +0,0 @@ -[[package]] -name = "alabaster" -version = "0.7.12" -description = "A configurable sidebar-enabled Sphinx theme" -category = "main" -optional = true -python-versions = "*" - -[[package]] -name = "anndata" -version = "0.7.8" -description = "Annotated data." -category = "main" -optional = false -python-versions = ">=3.6" - -[package.dependencies] -h5py = "*" -natsort = "*" -numpy = ">=1.16.5" -packaging = ">=20" -pandas = ">=1.1.1" -scipy = ">1.4" -xlrd = "<2.0" - -[package.extras] -dev = ["setuptools-scm", "black (>=20.8b1)", "docutils"] -doc = ["sphinx (>=4.1,<4.2)", "sphinx-rtd-theme", "sphinx-autodoc-typehints (>=1.11.0)", "sphinx-issues", "scanpydoc (>=0.7.3)", "typing-extensions"] -test = ["loompy (>=3.0.5)", "pytest (>=6.0)", "pytest-cov (>=2.10)", "zarr", "matplotlib", "sklearn", "openpyxl", "joblib", "boltons", "scanpy"] - -[[package]] -name = "astropy" -version = "5.1" -description = "Astronomy and astrophysics core library" -category = "main" -optional = false -python-versions = ">=3.8" - -[package.dependencies] -numpy = ">=1.18" -packaging = ">=19.0" -pyerfa = ">=2.0" -PyYAML = ">=3.13" - -[package.extras] -all = ["scipy (>=1.3)", "matplotlib (>=3.1,!=3.4.0,!=3.5.2)", "certifi", "dask", "h5py", "pyarrow (>=5.0.0)", "beautifulsoup4", "html5lib", "bleach", "pandas", "sortedcontainers", "pytz", "jplephem", "mpmath", "asdf (>=2.10.0)", "bottleneck", "ipython (>=4.2)", "pytest (>=7.0)", "typing-extensions (>=3.10.0.1)"] -docs = ["sphinx (<4)", "sphinx-astropy (>=1.6)", "pytest (>=7.0)", "scipy (>=1.3)", "matplotlib (>=3.1,!=3.4.0,!=3.5.2)", "sphinx-changelog (>=1.1.0)", "Jinja2 (<3.1)"] -recommended = ["scipy (>=1.3)", "matplotlib (>=3.1,!=3.4.0,!=3.5.2)"] -test = ["pytest (>=7.0)", "pytest-doctestplus (>=0.12)", "pytest-astropy-header (>=0.2.1)", "pytest-astropy (>=0.10)", "pytest-xdist"] -test_all = ["pytest (>=7.0)", "pytest-doctestplus (>=0.12)", "pytest-astropy-header (>=0.2.1)", "pytest-astropy (>=0.9)", "pytest-xdist", "objgraph", "ipython (>=4.2)", "coverage", "skyfield (>=1.20)", "sgp4 (>=2.3)"] - -[[package]] -name = "attrs" -version = "21.4.0" -description = "Classes Without Boilerplate" -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" - -[package.extras] -dev = ["coverage[toml] (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "mypy", "pytest-mypy-plugins", "zope.interface", "furo", "sphinx", "sphinx-notfound-page", "pre-commit", "cloudpickle"] -docs = ["furo", "sphinx", "zope.interface", "sphinx-notfound-page"] -tests = ["coverage[toml] (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "mypy", "pytest-mypy-plugins", "zope.interface", "cloudpickle"] -tests_no_zope = ["coverage[toml] (>=5.0.2)", "hypothesis", "pympler", "pytest (>=4.3.0)", "six", "mypy", "pytest-mypy-plugins", "cloudpickle"] - -[[package]] -name = "babel" -version = "2.10.3" -description = "Internationalization utilities" -category = "main" -optional = true -python-versions = ">=3.6" - -[package.dependencies] -pytz = ">=2015.7" - -[[package]] -name = "beautifulsoup4" -version = "4.11.1" -description = "Screen-scraping library" -category = "main" -optional = true -python-versions = ">=3.6.0" - -[package.dependencies] -soupsieve = ">1.2" - -[package.extras] -html5lib = ["html5lib"] -lxml = ["lxml"] - -[[package]] -name = "bleach" -version = "5.0.1" -description = "An easy safelist-based HTML-sanitizing tool." -category = "main" -optional = true -python-versions = ">=3.7" - -[package.dependencies] -six = ">=1.9.0" -webencodings = "*" - -[package.extras] -css = ["tinycss2 (>=1.1.0,<1.2)"] -dev = ["build (==0.8.0)", "flake8 (==4.0.1)", "hashin (==0.17.0)", "pip-tools (==6.6.2)", "pytest (==7.1.2)", "Sphinx (==4.3.2)", "tox (==3.25.0)", "twine (==4.0.1)", "wheel (==0.37.1)", "black (==22.3.0)", "mypy (==0.961)"] - -[[package]] -name = "cell2cell" -version = "0.5.10" -description = "TBD" -category = "main" -optional = false -python-versions = "*" - -[package.dependencies] -kneed = "*" -matplotlib = ">=3.2.0" -networkx = ">=2.3" -numpy = ">=1.16" -openpyxl = ">=2.6.2" -pandas = ">=1.0.0" -scanpy = "*" -scikit-learn = "*" -seaborn = ">=0.11.0" -statannotations = "*" -statsmodels = "*" -tensorly = "0.5.1" -tqdm = "*" -umap-learn = "*" -xlrd = ">=1.1" - -[[package]] -name = "certifi" -version = "2022.6.15" -description = "Python package for providing Mozilla's CA Bundle." -category = "main" -optional = false -python-versions = ">=3.6" - -[[package]] -name = "cffi" -version = "1.15.0" -description = "Foreign Function Interface for Python calling C code." -category = "main" -optional = true -python-versions = "*" - -[package.dependencies] -pycparser = "*" - -[[package]] -name = "charset-normalizer" -version = "2.1.0" -description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." -category = "main" -optional = true -python-versions = ">=3.6.0" - -[package.extras] -unicode_backport = ["unicodedata2"] - -[[package]] -name = "click" -version = "8.1.3" -description = "Composable command line interface toolkit" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -colorama = {version = "*", markers = "platform_system == \"Windows\""} - -[[package]] -name = "click-plugins" -version = "1.1.1" -description = "An extension module for click to enable registering CLI commands via setuptools entry-points." -category = "main" -optional = false -python-versions = "*" - -[package.dependencies] -click = ">=4.0" - -[package.extras] -dev = ["pytest (>=3.6)", "pytest-cov", "wheel", "coveralls"] - -[[package]] -name = "cligj" -version = "0.7.2" -description = "Click params for commmand line interfaces to GeoJSON" -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, <4" - -[package.dependencies] -click = ">=4.0" - -[package.extras] -test = ["pytest-cov"] - -[[package]] -name = "cloudpickle" -version = "2.1.0" -description = "Extended pickling support for Python objects" -category = "main" -optional = false -python-versions = ">=3.6" - -[[package]] -name = "colorama" -version = "0.4.5" -description = "Cross-platform colored terminal text." -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" - -[[package]] -name = "cycler" -version = "0.11.0" -description = "Composable style cycles" -category = "main" -optional = false -python-versions = ">=3.6" - -[[package]] -name = "dask" -version = "2022.6.1" -description = "Parallel PyData with Task Scheduling" -category = "main" -optional = false -python-versions = ">=3.8" - -[package.dependencies] -cloudpickle = ">=1.1.1" -fsspec = ">=0.6.0" -packaging = ">=20.0" -partd = ">=0.3.10" -pyyaml = ">=5.3.1" -toolz = ">=0.8.2" - -[package.extras] -array = ["numpy (>=1.18)"] -complete = ["bokeh (>=2.4.2)", "distributed (==2022.6.1)", "jinja2", "numpy (>=1.18)", "pandas (>=1.0)"] -dataframe = ["numpy (>=1.18)", "pandas (>=1.0)"] -diagnostics = ["bokeh (>=2.4.2)", "jinja2"] -distributed = ["distributed (==2022.6.1)"] -test = ["pytest", "pytest-rerunfailures", "pytest-xdist", "pre-commit"] - -[[package]] -name = "dask-geopandas" -version = "0.1.3" -description = "Parallel GeoPandas with Dask" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -dask = ">=2021.06.0" -distributed = ">=2021.06.0" -geopandas = ">=0.10" -packaging = "*" -pygeos = "*" - -[[package]] -name = "defusedxml" -version = "0.7.1" -description = "XML bomb protection for Python stdlib modules" -category = "main" -optional = true -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" - -[[package]] -name = "distributed" -version = "2022.6.1" -description = "Distributed scheduler for Dask" -category = "main" -optional = false -python-versions = ">=3.8" - -[package.dependencies] -click = ">=6.6" -cloudpickle = ">=1.5.0" -dask = "2022.6.1" -jinja2 = "*" -locket = ">=1.0.0" -msgpack = ">=0.6.0" -packaging = ">=20.0" -psutil = ">=5.0" -pyyaml = "*" -sortedcontainers = "<2.0.0 || >2.0.0,<2.0.1 || >2.0.1" -tblib = ">=1.6.0" -toolz = ">=0.8.2" -tornado = ">=6.0.3" -urllib3 = "*" -zict = ">=0.1.3" - -[[package]] -name = "docutils" -version = "0.17.1" -description = "Docutils -- Python Documentation Utilities" -category = "main" -optional = true -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" - -[[package]] -name = "emoji" -version = "1.7.0" -description = "Emoji for Python" -category = "main" -optional = false -python-versions = "*" - -[package.extras] -dev = ["pytest", "coverage", "coveralls"] - -[[package]] -name = "entrypoints" -version = "0.4" -description = "Discover and load entry points from installed packages." -category = "main" -optional = true -python-versions = ">=3.6" - -[[package]] -name = "et-xmlfile" -version = "1.1.0" -description = "An implementation of lxml.xmlfile for the standard library" -category = "main" -optional = false -python-versions = ">=3.6" - -[[package]] -name = "fastjsonschema" -version = "2.15.3" -description = "Fastest Python implementation of JSON schema" -category = "main" -optional = true -python-versions = "*" - -[package.extras] -devel = ["colorama", "jsonschema", "json-spec", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"] - -[[package]] -name = "fiona" -version = "1.8.21" -description = "Fiona reads and writes spatial data files" -category = "main" -optional = false -python-versions = "*" - -[package.dependencies] -attrs = ">=17" -certifi = "*" -click = ">=4.0" -click-plugins = ">=1.0" -cligj = ">=0.5" -munch = "*" -six = ">=1.7" - -[package.extras] -all = ["boto3 (>=1.2.4)", "pytest-cov", "shapely", "pytest (>=3)", "mock"] -calc = ["shapely"] -s3 = ["boto3 (>=1.2.4)"] -test = ["pytest (>=3)", "pytest-cov", "boto3 (>=1.2.4)", "mock"] - -[[package]] -name = "fonttools" -version = "4.33.3" -description = "Tools to manipulate font files" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.extras] -all = ["fs (>=2.2.0,<3)", "lxml (>=4.0,<5)", "zopfli (>=0.1.4)", "lz4 (>=1.7.4.2)", "matplotlib", "sympy", "skia-pathops (>=0.5.0)", "uharfbuzz (>=0.23.0)", "brotlicffi (>=0.8.0)", "scipy", "brotli (>=1.0.1)", "munkres", "unicodedata2 (>=14.0.0)", "xattr"] -graphite = ["lz4 (>=1.7.4.2)"] -interpolatable = ["scipy", "munkres"] -lxml = ["lxml (>=4.0,<5)"] -pathops = ["skia-pathops (>=0.5.0)"] -plot = ["matplotlib"] -repacker = ["uharfbuzz (>=0.23.0)"] -symfont = ["sympy"] -type1 = ["xattr"] -ufo = ["fs (>=2.2.0,<3)"] -unicode = ["unicodedata2 (>=14.0.0)"] -woff = ["zopfli (>=0.1.4)", "brotlicffi (>=0.8.0)", "brotli (>=1.0.1)"] - -[[package]] -name = "fsspec" -version = "2022.5.0" -description = "File-system specification" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.extras] -abfs = ["adlfs"] -adl = ["adlfs"] -arrow = ["pyarrow (>=1)"] -dask = ["dask", "distributed"] -dropbox = ["dropboxdrivefs", "requests", "dropbox"] -entrypoints = ["importlib-metadata"] -fuse = ["fusepy"] -gcs = ["gcsfs"] -git = ["pygit2"] -github = ["requests"] -gs = ["gcsfs"] -gui = ["panel"] -hdfs = ["pyarrow (>=1)"] -http = ["requests", "aiohttp"] -libarchive = ["libarchive-c"] -oci = ["ocifs"] -s3 = ["s3fs"] -sftp = ["paramiko"] -smb = ["smbprotocol"] -ssh = ["paramiko"] -tqdm = ["tqdm"] - -[[package]] -name = "geopandas" -version = "0.10.2" -description = "Geographic pandas extensions" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -fiona = ">=1.8" -pandas = ">=0.25.0" -pyproj = ">=2.2.0" -shapely = ">=1.6" - -[[package]] -name = "h5py" -version = "3.7.0" -description = "Read and write HDF5 files from Python" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -numpy = ">=1.14.5" - -[[package]] -name = "heapdict" -version = "1.0.1" -description = "a heap with decrease-key and increase-key operations" -category = "main" -optional = false -python-versions = "*" - -[[package]] -name = "idna" -version = "3.3" -description = "Internationalized Domain Names in Applications (IDNA)" -category = "main" -optional = true -python-versions = ">=3.5" - -[[package]] -name = "imagesize" -version = "1.3.0" -description = "Getting image size from png/jpeg/jpeg2000/gif file" -category = "main" -optional = true -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" - -[[package]] -name = "importlib-metadata" -version = "4.12.0" -description = "Read metadata from Python packages" -category = "main" -optional = true -python-versions = ">=3.7" - -[package.dependencies] -zipp = ">=0.5" - -[package.extras] -docs = ["sphinx", "jaraco.packaging (>=9)", "rst.linker (>=1.9)"] -perf = ["ipython"] -testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-flake8", "pytest-cov", "pytest-enabler (>=1.3)", "packaging", "pyfakefs", "flufl.flake8", "pytest-perf (>=0.9.2)", "pytest-black (>=0.3.7)", "pytest-mypy (>=0.9.1)", "importlib-resources (>=1.3)"] - -[[package]] -name = "importlib-resources" -version = "5.8.0" -description = "Read resources from Python packages" -category = "main" -optional = true -python-versions = ">=3.7" - -[package.dependencies] -zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} - -[package.extras] -docs = ["sphinx", "jaraco.packaging (>=9)", "rst.linker (>=1.9)"] -testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-flake8", "pytest-cov", "pytest-enabler (>=1.0.1)", "pytest-black (>=0.3.7)", "pytest-mypy (>=0.9.1)"] - -[[package]] -name = "jinja2" -version = "3.1.2" -description = "A very fast and expressive template engine." -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -MarkupSafe = ">=2.0" - -[package.extras] -i18n = ["Babel (>=2.7)"] - -[[package]] -name = "joblib" -version = "1.1.0" -description = "Lightweight pipelining with Python functions" -category = "main" -optional = false -python-versions = ">=3.6" - -[[package]] -name = "jsonschema" -version = "4.6.1" -description = "An implementation of JSON Schema validation for Python" -category = "main" -optional = true -python-versions = ">=3.7" - -[package.dependencies] -attrs = ">=17.4.0" -importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} -pyrsistent = ">=0.14.0,<0.17.0 || >0.17.0,<0.17.1 || >0.17.1,<0.17.2 || >0.17.2" - -[package.extras] -format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] -format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=1.11)"] - -[[package]] -name = "jupyter-client" -version = "7.3.4" -description = "Jupyter protocol implementation and client libraries" -category = "main" -optional = true -python-versions = ">=3.7" - -[package.dependencies] -entrypoints = "*" -jupyter-core = ">=4.9.2" -nest-asyncio = ">=1.5.4" -python-dateutil = ">=2.8.2" -pyzmq = ">=23.0" -tornado = ">=6.0" -traitlets = "*" - -[package.extras] -doc = ["ipykernel", "myst-parser", "sphinx-rtd-theme", "sphinx (>=1.3.6)", "sphinxcontrib-github-alt"] -test = ["codecov", "coverage", "ipykernel (>=6.5)", "ipython", "mypy", "pre-commit", "pytest", "pytest-asyncio (>=0.18)", "pytest-cov", "pytest-timeout"] - -[[package]] -name = "jupyter-core" -version = "4.10.0" -description = "Jupyter core package. A base package on which Jupyter projects rely." -category = "main" -optional = true -python-versions = ">=3.7" - -[package.dependencies] -pywin32 = {version = ">=1.0", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} -traitlets = "*" - -[package.extras] -test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] - -[[package]] -name = "jupyterlab-pygments" -version = "0.2.2" -description = "Pygments theme using JupyterLab CSS variables" -category = "main" -optional = true -python-versions = ">=3.7" - -[[package]] -name = "kiwisolver" -version = "1.4.3" -description = "A fast implementation of the Cassowary constraint solver" -category = "main" -optional = false -python-versions = ">=3.7" - -[[package]] -name = "kneed" -version = "0.7.0" -description = "Knee-point detection in Python" -category = "main" -optional = false -python-versions = "*" - -[package.dependencies] -matplotlib = "*" -numpy = ">=1.14.2" -scipy = "*" - -[[package]] -name = "livereload" -version = "2.6.3" -description = "Python LiveReload is an awesome tool for web developers" -category = "main" -optional = true -python-versions = "*" - -[package.dependencies] -six = "*" -tornado = {version = "*", markers = "python_version > \"2.7\""} - -[[package]] -name = "llvmlite" -version = "0.38.1" -description = "lightweight wrapper around basic LLVM functionality" -category = "main" -optional = false -python-versions = ">=3.7,<3.11" - -[[package]] -name = "locket" -version = "1.0.0" -description = "File-based locks for Python on Linux and Windows" -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" - -[[package]] -name = "markdown-it-py" -version = "2.1.0" -description = "Python port of markdown-it. Markdown parsing, done right!" -category = "main" -optional = true -python-versions = ">=3.7" - -[package.dependencies] -mdurl = ">=0.1,<1.0" - -[package.extras] -benchmarking = ["psutil", "pytest", "pytest-benchmark (>=3.2,<4.0)"] -code_style = ["pre-commit (==2.6)"] -compare = ["commonmark (>=0.9.1,<0.10.0)", "markdown (>=3.3.6,<3.4.0)", "mistletoe (>=0.8.1,<0.9.0)", "mistune (>=2.0.2,<2.1.0)", "panflute (>=2.1.3,<2.2.0)"] -linkify = ["linkify-it-py (>=1.0,<2.0)"] -plugins = ["mdit-py-plugins"] -profiling = ["gprof2dot"] -rtd = ["attrs", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx-book-theme"] -testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] - -[[package]] -name = "markupsafe" -version = "2.1.1" -description = "Safely add untrusted strings to HTML/XML markup." -category = "main" -optional = false -python-versions = ">=3.7" - -[[package]] -name = "matplotlib" -version = "3.5.2" -description = "Python plotting package" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -cycler = ">=0.10" -fonttools = ">=4.22.0" -kiwisolver = ">=1.0.1" -numpy = ">=1.17" -packaging = ">=20.0" -pillow = ">=6.2.0" -pyparsing = ">=2.2.1" -python-dateutil = ">=2.7" -setuptools_scm = ">=4" - -[[package]] -name = "matplotlib-scalebar" -version = "0.8.1" -description = "Artist for matplotlib to display a scale bar" -category = "main" -optional = false -python-versions = "~=3.7" - -[package.dependencies] -matplotlib = "*" - -[[package]] -name = "mdit-py-plugins" -version = "0.3.0" -description = "Collection of plugins for markdown-it-py" -category = "main" -optional = true -python-versions = "~=3.6" - -[package.dependencies] -markdown-it-py = ">=1.0.0,<3.0.0" - -[package.extras] -code_style = ["pre-commit (==2.6)"] -rtd = ["myst-parser (>=0.14.0,<0.15.0)", "sphinx-book-theme (>=0.1.0,<0.2.0)"] -testing = ["coverage", "pytest (>=3.6,<4)", "pytest-cov", "pytest-regressions"] - -[[package]] -name = "mdurl" -version = "0.1.1" -description = "Markdown URL utilities" -category = "main" -optional = true -python-versions = ">=3.7" - -[[package]] -name = "mistune" -version = "0.8.4" -description = "The fastest markdown parser in pure Python" -category = "main" -optional = true -python-versions = "*" - -[[package]] -name = "msgpack" -version = "1.0.4" -description = "MessagePack serializer" -category = "main" -optional = false -python-versions = "*" - -[[package]] -name = "munch" -version = "2.5.0" -description = "A dot-accessible dictionary (a la JavaScript objects)" -category = "main" -optional = false -python-versions = "*" - -[package.dependencies] -six = "*" - -[package.extras] -testing = ["pytest", "coverage", "astroid (>=1.5.3,<1.6.0)", "pylint (>=1.7.2,<1.8.0)", "astroid (>=2.0)", "pylint (>=2.3.1,<2.4.0)"] -yaml = ["PyYAML (>=5.1.0)"] - -[[package]] -name = "myst-parser" -version = "0.18.0" -description = "An extended commonmark compliant parser, with bridges to docutils & sphinx." -category = "main" -optional = true -python-versions = ">=3.7" - -[package.dependencies] -docutils = ">=0.15,<0.19" -jinja2 = "*" -markdown-it-py = ">=1.0.0,<3.0.0" -mdit-py-plugins = ">=0.3.0,<0.4.0" -pyyaml = "*" -sphinx = ">=4,<6" -typing-extensions = "*" - -[package.extras] -code_style = ["pre-commit (>=2.12,<3.0)"] -linkify = ["linkify-it-py (>=1.0,<2.0)"] -rtd = ["ipython", "sphinx-book-theme", "sphinx-design", "sphinxext-rediraffe (>=0.2.7,<0.3.0)", "sphinxcontrib.mermaid (>=0.7.1,<0.8.0)", "sphinxext-opengraph (>=0.6.3,<0.7.0)"] -testing = ["beautifulsoup4", "coverage", "pytest (>=6,<7)", "pytest-cov", "pytest-regressions", "pytest-param-files (>=0.3.4,<0.4.0)", "sphinx-pytest"] - -[[package]] -name = "natsort" -version = "8.1.0" -description = "Simple yet flexible natural sorting in Python." -category = "main" -optional = false -python-versions = ">=3.6" - -[package.extras] -fast = ["fastnumbers (>=2.0.0)"] -icu = ["PyICU (>=1.0.0)"] - -[[package]] -name = "nbclient" -version = "0.6.4" -description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." -category = "main" -optional = true -python-versions = ">=3.7.0" - -[package.dependencies] -jupyter-client = ">=6.1.5" -nbformat = ">=5.0" -nest-asyncio = "*" -traitlets = ">=5.2.2" - -[package.extras] -sphinx = ["autodoc-traits", "mock", "moto", "myst-parser", "Sphinx (>=1.7)", "sphinx-book-theme"] -test = ["black", "check-manifest", "flake8", "ipykernel", "ipython (<8.0.0)", "ipywidgets (<8.0.0)", "mypy", "pip (>=18.1)", "pre-commit", "pytest (>=4.1)", "pytest-asyncio", "pytest-cov (>=2.6.1)", "setuptools (>=60.0)", "testpath", "twine (>=1.11.0)", "xmltodict"] - -[[package]] -name = "nbconvert" -version = "6.5.0" -description = "Converting Jupyter Notebooks" -category = "main" -optional = true -python-versions = ">=3.7" - -[package.dependencies] -beautifulsoup4 = "*" -bleach = "*" -defusedxml = "*" -entrypoints = ">=0.2.2" -jinja2 = ">=3.0" -jupyter-core = ">=4.7" -jupyterlab-pygments = "*" -MarkupSafe = ">=2.0" -mistune = ">=0.8.1,<2" -nbclient = ">=0.5.0" -nbformat = ">=5.1" -packaging = "*" -pandocfilters = ">=1.4.1" -pygments = ">=2.4.1" -tinycss2 = "*" -traitlets = ">=5.0" - -[package.extras] -all = ["pytest", "pytest-cov", "pytest-dependency", "ipykernel", "ipywidgets (>=7)", "pre-commit", "pyppeteer (>=1,<1.1)", "tornado (>=6.1)", "sphinx (>=1.5.1)", "sphinx-rtd-theme", "nbsphinx (>=0.2.12)", "ipython"] -docs = ["sphinx (>=1.5.1)", "sphinx-rtd-theme", "nbsphinx (>=0.2.12)", "ipython"] -serve = ["tornado (>=6.1)"] -test = ["pytest", "pytest-cov", "pytest-dependency", "ipykernel", "ipywidgets (>=7)", "pre-commit", "pyppeteer (>=1,<1.1)"] -webpdf = ["pyppeteer (>=1,<1.1)"] - -[[package]] -name = "nbformat" -version = "5.4.0" -description = "The Jupyter Notebook format" -category = "main" -optional = true -python-versions = ">=3.7" - -[package.dependencies] -fastjsonschema = "*" -jsonschema = ">=2.6" -jupyter-core = "*" -traitlets = ">=5.1" - -[package.extras] -test = ["check-manifest", "testpath", "pytest", "pre-commit"] - -[[package]] -name = "nbsphinx" -version = "0.8.9" -description = "Jupyter Notebook Tools for Sphinx" -category = "main" -optional = true -python-versions = ">=3.6" - -[package.dependencies] -docutils = "*" -jinja2 = "*" -nbconvert = "!=5.4" -nbformat = "*" -sphinx = ">=1.8" -traitlets = ">=5" - -[[package]] -name = "nest-asyncio" -version = "1.5.5" -description = "Patch asyncio to allow nested event loops" -category = "main" -optional = true -python-versions = ">=3.5" - -[[package]] -name = "networkx" -version = "2.8.4" -description = "Python package for creating and manipulating graphs and networks" -category = "main" -optional = false -python-versions = ">=3.8" - -[package.extras] -default = ["numpy (>=1.19)", "scipy (>=1.8)", "matplotlib (>=3.4)", "pandas (>=1.3)"] -developer = ["pre-commit (>=2.19)", "mypy (>=0.960)"] -doc = ["sphinx (>=5)", "pydata-sphinx-theme (>=0.9)", "sphinx-gallery (>=0.10)", "numpydoc (>=1.4)", "pillow (>=9.1)", "nb2plots (>=0.6)", "texext (>=0.6.6)"] -extra = ["lxml (>=4.6)", "pygraphviz (>=1.9)", "pydot (>=1.4.2)", "sympy (>=1.10)"] -test = ["pytest (>=7.1)", "pytest-cov (>=3.0)", "codecov (>=2.1)"] - -[[package]] -name = "nose" -version = "1.3.7" -description = "nose extends unittest to make testing easier" -category = "main" -optional = false -python-versions = "*" - -[[package]] -name = "numba" -version = "0.55.2" -description = "compiling Python code using LLVM" -category = "main" -optional = false -python-versions = ">=3.7,<3.11" - -[package.dependencies] -llvmlite = ">=0.38.0rc1,<0.39" -numpy = ">=1.18,<1.23" - -[[package]] -name = "numpy" -version = "1.22.4" -description = "NumPy is the fundamental package for array computing with Python." -category = "main" -optional = false -python-versions = ">=3.8" - -[[package]] -name = "openpyxl" -version = "3.0.10" -description = "A Python library to read/write Excel 2010 xlsx/xlsm files" -category = "main" -optional = false -python-versions = ">=3.6" - -[package.dependencies] -et-xmlfile = "*" - -[[package]] -name = "packaging" -version = "21.3" -description = "Core utilities for Python packages" -category = "main" -optional = false -python-versions = ">=3.6" - -[package.dependencies] -pyparsing = ">=2.0.2,<3.0.5 || >3.0.5" - -[[package]] -name = "pandas" -version = "1.2.5" -description = "Powerful data structures for data analysis, time series, and statistics" -category = "main" -optional = false -python-versions = ">=3.7.1" - -[package.dependencies] -numpy = ">=1.16.5" -python-dateutil = ">=2.7.3" -pytz = ">=2017.3" - -[package.extras] -test = ["pytest (>=5.0.1)", "pytest-xdist", "hypothesis (>=3.58)"] - -[[package]] -name = "pandocfilters" -version = "1.5.0" -description = "Utilities for writing pandoc filters in python" -category = "main" -optional = true -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" - -[[package]] -name = "partd" -version = "1.2.0" -description = "Appendable key-value storage" -category = "main" -optional = false -python-versions = ">=3.5" - -[package.dependencies] -locket = "*" -toolz = "*" - -[package.extras] -complete = ["numpy (>=1.9.0)", "pandas (>=0.19.0)", "pyzmq", "blosc"] - -[[package]] -name = "patsy" -version = "0.5.2" -description = "A Python package for describing statistical models and for building design matrices." -category = "main" -optional = false -python-versions = "*" - -[package.dependencies] -numpy = ">=1.4" -six = "*" - -[package.extras] -test = ["pytest", "pytest-cov", "scipy"] - -[[package]] -name = "pillow" -version = "9.1.1" -description = "Python Imaging Library (Fork)" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.extras] -docs = ["olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-issues (>=3.0.1)", "sphinx-removed-in", "sphinx-rtd-theme (>=1.0)", "sphinxext-opengraph"] -tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] - -[[package]] -name = "psutil" -version = "5.9.1" -description = "Cross-platform lib for process and system monitoring in Python." -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" - -[package.extras] -test = ["ipaddress", "mock", "enum34", "pywin32", "wmi"] - -[[package]] -name = "py" -version = "1.11.0" -description = "library with cross-python path, ini-parsing, io, code, log facilities" -category = "main" -optional = true -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" - -[[package]] -name = "pycparser" -version = "2.21" -description = "C parser in Python" -category = "main" -optional = true -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" - -[[package]] -name = "pydata-sphinx-theme" -version = "0.8.1" -description = "Bootstrap-based Sphinx theme from the PyData community" -category = "main" -optional = true -python-versions = ">=3.7" - -[package.dependencies] -beautifulsoup4 = "*" -docutils = "!=0.17.0" -packaging = "*" -sphinx = ">=3.5.4,<5" - -[package.extras] -doc = ["numpydoc", "myst-parser", "pandas", "pytest", "pytest-regressions", "sphinxext-rediraffe", "sphinx-sitemap", "jupyter-sphinx", "plotly", "numpy", "xarray"] -test = ["pytest", "pydata-sphinx-theme"] -coverage = ["pytest-cov", "codecov", "pydata-sphinx-theme"] -dev = ["pyyaml", "pre-commit", "nox", "pydata-sphinx-theme"] - -[[package]] -name = "pyerfa" -version = "2.0.0.1" -description = "Python bindings for ERFA" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -numpy = ">=1.17" - -[package.extras] -docs = ["sphinx-astropy (>=1.3)"] -test = ["pytest", "pytest-doctestplus (>=0.7)"] - -[[package]] -name = "pygeos" -version = "0.12.0" -description = "GEOS wrapped in numpy ufuncs" -category = "main" -optional = false -python-versions = ">=3.6" - -[package.dependencies] -numpy = ">=1.13" - -[package.extras] -docs = ["sphinx", "numpydoc"] -test = ["pytest"] - -[[package]] -name = "pygments" -version = "2.12.0" -description = "Pygments is a syntax highlighting package written in Python." -category = "main" -optional = true -python-versions = ">=3.6" - -[[package]] -name = "pynndescent" -version = "0.5.7" -description = "Nearest Neighbor Descent" -category = "main" -optional = false -python-versions = "*" - -[package.dependencies] -joblib = ">=0.11" -llvmlite = ">=0.30" -numba = ">=0.51.2" -scikit-learn = ">=0.18" -scipy = ">=1.0" - -[[package]] -name = "pyparsing" -version = "3.0.9" -description = "pyparsing module - Classes and methods to define and execute parsing grammars" -category = "main" -optional = false -python-versions = ">=3.6.8" - -[package.extras] -diagrams = ["railroad-diagrams", "jinja2"] - -[[package]] -name = "pyproj" -version = "3.3.1" -description = "Python interface to PROJ (cartographic projections and coordinate transformations library)" -category = "main" -optional = false -python-versions = ">=3.8" - -[package.dependencies] -certifi = "*" - -[[package]] -name = "pyrsistent" -version = "0.18.1" -description = "Persistent/Functional/Immutable data structures" -category = "main" -optional = true -python-versions = ">=3.7" - -[[package]] -name = "python-dateutil" -version = "2.8.2" -description = "Extensions to the standard Python datetime module" -category = "main" -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" - -[package.dependencies] -six = ">=1.5" - -[[package]] -name = "pytz" -version = "2022.1" -description = "World timezone definitions, modern and historical" -category = "main" -optional = false -python-versions = "*" - -[[package]] -name = "pywin32" -version = "304" -description = "Python for Window Extensions" -category = "main" -optional = true -python-versions = "*" - -[[package]] -name = "pyyaml" -version = "6.0" -description = "YAML parser and emitter for Python" -category = "main" -optional = false -python-versions = ">=3.6" - -[[package]] -name = "pyzmq" -version = "23.2.0" -description = "Python bindings for 0MQ" -category = "main" -optional = true -python-versions = ">=3.6" - -[package.dependencies] -cffi = {version = "*", markers = "implementation_name == \"pypy\""} -py = {version = "*", markers = "implementation_name == \"pypy\""} - -[[package]] -name = "requests" -version = "2.28.1" -description = "Python HTTP for Humans." -category = "main" -optional = true -python-versions = ">=3.7, <4" - -[package.dependencies] -certifi = ">=2017.4.17" -charset-normalizer = ">=2,<3" -idna = ">=2.5,<4" -urllib3 = ">=1.21.1,<1.27" - -[package.extras] -socks = ["PySocks (>=1.5.6,!=1.5.7)"] -use_chardet_on_py3 = ["chardet (>=3.0.2,<6)"] - -[[package]] -name = "scanpy" -version = "1.9.1" -description = "Single-Cell Analysis in Python." -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -anndata = ">=0.7.4" -h5py = ">=3" -joblib = "*" -matplotlib = ">=3.4" -natsort = "*" -networkx = ">=2.3" -numba = ">=0.41.0" -numpy = ">=1.17.0" -packaging = "*" -pandas = ">=1.0" -patsy = "*" -scikit-learn = ">=0.22" -scipy = ">=1.4" -seaborn = "*" -session-info = "*" -statsmodels = ">=0.10.0rc2" -tqdm = "*" -umap-learn = ">=0.3.10" - -[package.extras] -bbknn = ["bbknn"] -dev = ["setuptools-scm", "black (>=20.8b1)", "docutils"] -doc = ["sphinx (>=4.4)", "sphinx-rtd-theme (>=1.0)", "scanpydoc[typehints] (>=0.7.7)", "typing-extensions", "python-igraph", "myst-parser"] -harmony = ["harmonypy"] -leiden = ["python-igraph", "leidenalg"] -louvain = ["python-igraph", "louvain (>=0.6,!=0.6.2)"] -magic = ["magic-impute (>=2.0)"] -rapids = ["cudf (>=0.9)", "cuml (>=0.9)", "cugraph (>=0.9)"] -scanorama = ["scanorama"] -scrublet = ["scrublet"] -skmisc = ["scikit-misc (>=0.1.3)"] -test = ["pytest (>=4.4)", "pytest-nunit", "dask[array] (!=2.17.0)", "fsspec", "zappy", "zarr", "profimp", "flit-core"] - -[[package]] -name = "scikit-learn" -version = "1.1.1" -description = "A set of python modules for machine learning and data mining" -category = "main" -optional = false -python-versions = ">=3.8" - -[package.dependencies] -joblib = ">=1.0.0" -numpy = ">=1.17.3" -scipy = ">=1.3.2" -threadpoolctl = ">=2.0.0" - -[package.extras] -benchmark = ["matplotlib (>=3.1.2)", "pandas (>=1.0.5)", "memory-profiler (>=0.57.0)"] -docs = ["matplotlib (>=3.1.2)", "scikit-image (>=0.14.5)", "pandas (>=1.0.5)", "seaborn (>=0.9.0)", "memory-profiler (>=0.57.0)", "sphinx (>=4.0.1)", "sphinx-gallery (>=0.7.0)", "numpydoc (>=1.2.0)", "Pillow (>=7.1.2)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] -examples = ["matplotlib (>=3.1.2)", "scikit-image (>=0.14.5)", "pandas (>=1.0.5)", "seaborn (>=0.9.0)"] -tests = ["matplotlib (>=3.1.2)", "scikit-image (>=0.14.5)", "pandas (>=1.0.5)", "pytest (>=5.0.1)", "pytest-cov (>=2.9.0)", "flake8 (>=3.8.2)", "black (>=22.3.0)", "mypy (>=0.770)", "pyamg (>=4.0.0)", "numpydoc (>=1.2.0)"] - -[[package]] -name = "scipy" -version = "1.8.1" -description = "SciPy: Scientific Library for Python" -category = "main" -optional = false -python-versions = ">=3.8,<3.11" - -[package.dependencies] -numpy = ">=1.17.3,<1.25.0" - -[[package]] -name = "seaborn" -version = "0.11.2" -description = "seaborn: statistical data visualization" -category = "main" -optional = false -python-versions = ">=3.6" - -[package.dependencies] -matplotlib = ">=2.2" -numpy = ">=1.15" -pandas = ">=0.23" -scipy = ">=1.0" - -[[package]] -name = "session-info" -version = "1.0.0" -description = "session_info outputs version information for modules loaded in the current session, Python, and the OS." -category = "main" -optional = false -python-versions = ">=3.6" - -[package.dependencies] -stdlib_list = "*" - -[[package]] -name = "setuptools-scm" -version = "7.0.3" -description = "the blessed package to manage your versions by scm tags" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -packaging = ">=20.0" -tomli = ">=1.0.0" -typing-extensions = "*" - -[package.extras] -test = ["pytest (>=6.2)", "virtualenv (>20)"] -toml = ["setuptools (>=42)"] - -[[package]] -name = "shapely" -version = "1.8.2" -description = "Geometric objects, predicates, and operations" -category = "main" -optional = false -python-versions = ">=3.6" - -[package.extras] -all = ["pytest", "pytest-cov", "numpy"] -test = ["pytest", "pytest-cov"] -vectorized = ["numpy"] - -[[package]] -name = "six" -version = "1.16.0" -description = "Python 2 and 3 compatibility utilities" -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" - -[[package]] -name = "snowballstemmer" -version = "2.2.0" -description = "This package provides 29 stemmers for 28 languages generated from Snowball algorithms." -category = "main" -optional = true -python-versions = "*" - -[[package]] -name = "sortedcontainers" -version = "2.4.0" -description = "Sorted Containers -- Sorted List, Sorted Dict, Sorted Set" -category = "main" -optional = false -python-versions = "*" - -[[package]] -name = "soupsieve" -version = "2.3.2.post1" -description = "A modern CSS selector implementation for Beautiful Soup." -category = "main" -optional = true -python-versions = ">=3.6" - -[[package]] -name = "sphinx" -version = "4.5.0" -description = "Python documentation generator" -category = "main" -optional = true -python-versions = ">=3.6" - -[package.dependencies] -alabaster = ">=0.7,<0.8" -babel = ">=1.3" -colorama = {version = ">=0.3.5", markers = "sys_platform == \"win32\""} -docutils = ">=0.14,<0.18" -imagesize = "*" -importlib-metadata = {version = ">=4.4", markers = "python_version < \"3.10\""} -Jinja2 = ">=2.3" -packaging = "*" -Pygments = ">=2.0" -requests = ">=2.5.0" -snowballstemmer = ">=1.1" -sphinxcontrib-applehelp = "*" -sphinxcontrib-devhelp = "*" -sphinxcontrib-htmlhelp = ">=2.0.0" -sphinxcontrib-jsmath = "*" -sphinxcontrib-qthelp = "*" -sphinxcontrib-serializinghtml = ">=1.1.5" - -[package.extras] -docs = ["sphinxcontrib-websupport"] -lint = ["flake8 (>=3.5.0)", "isort", "mypy (>=0.931)", "docutils-stubs", "types-typed-ast", "types-requests"] -test = ["pytest", "pytest-cov", "html5lib", "cython", "typed-ast"] - -[[package]] -name = "sphinx-autobuild" -version = "2021.3.14" -description = "Rebuild Sphinx documentation on changes, with live-reload in the browser." -category = "main" -optional = true -python-versions = ">=3.6" - -[package.dependencies] -colorama = "*" -livereload = "*" -sphinx = "*" - -[package.extras] -test = ["pytest", "pytest-cov"] - -[[package]] -name = "sphinx-book-theme" -version = "0.3.2" -description = "A clean book theme for scientific explanations and documentation with Sphinx" -category = "main" -optional = true -python-versions = ">=3.7" - -[package.dependencies] -pydata-sphinx-theme = ">=0.8.0,<0.9.0" -pyyaml = "*" -sphinx = ">=3,<5" - -[package.extras] -code_style = ["pre-commit (>=2.7.0,<2.8.0)"] -doc = ["ablog (>=0.10.13,<0.11.0)", "ipywidgets", "folium", "numpy", "matplotlib", "numpydoc", "myst-nb (>=0.13,<1.0)", "nbclient", "pandas", "plotly", "sphinx (>=4.0,<5.0)", "sphinx-design", "sphinx-copybutton", "sphinx-tabs", "sphinx-togglebutton (>=0.2.1)", "sphinx-thebe (>=0.1.1)", "sphinxcontrib-bibtex (>=2.2,<3.0)", "sphinxcontrib-youtube", "sphinxext-opengraph"] -test = ["beautifulsoup4 (>=4.6.1,<5)", "coverage", "myst_nb (>=0.13,<1.0)", "pytest (>=6.0.1,<6.1.0)", "pytest-cov", "pytest-regressions (>=2.0.1,<2.1.0)", "sphinx-thebe"] - -[[package]] -name = "sphinx-gallery" -version = "0.10.1" -description = "A Sphinx extension that builds an HTML version of any Python script and puts it into an examples gallery." -category = "main" -optional = true -python-versions = ">=3.7" - -[package.dependencies] -sphinx = ">=1.8.3" - -[[package]] -name = "sphinxcontrib-applehelp" -version = "1.0.2" -description = "sphinxcontrib-applehelp is a sphinx extension which outputs Apple help books" -category = "main" -optional = true -python-versions = ">=3.5" - -[package.extras] -lint = ["flake8", "mypy", "docutils-stubs"] -test = ["pytest"] - -[[package]] -name = "sphinxcontrib-devhelp" -version = "1.0.2" -description = "sphinxcontrib-devhelp is a sphinx extension which outputs Devhelp document." -category = "main" -optional = true -python-versions = ">=3.5" - -[package.extras] -lint = ["flake8", "mypy", "docutils-stubs"] -test = ["pytest"] - -[[package]] -name = "sphinxcontrib-htmlhelp" -version = "2.0.0" -description = "sphinxcontrib-htmlhelp is a sphinx extension which renders HTML help files" -category = "main" -optional = true -python-versions = ">=3.6" - -[package.extras] -lint = ["flake8", "mypy", "docutils-stubs"] -test = ["pytest", "html5lib"] - -[[package]] -name = "sphinxcontrib-jsmath" -version = "1.0.1" -description = "A sphinx extension which renders display math in HTML via JavaScript" -category = "main" -optional = true -python-versions = ">=3.5" - -[package.extras] -test = ["pytest", "flake8", "mypy"] - -[[package]] -name = "sphinxcontrib-qthelp" -version = "1.0.3" -description = "sphinxcontrib-qthelp is a sphinx extension which outputs QtHelp document." -category = "main" -optional = true -python-versions = ">=3.5" - -[package.extras] -lint = ["flake8", "mypy", "docutils-stubs"] -test = ["pytest"] - -[[package]] -name = "sphinxcontrib-serializinghtml" -version = "1.1.5" -description = "sphinxcontrib-serializinghtml is a sphinx extension which outputs \"serialized\" HTML files (json and pickle)." -category = "main" -optional = true -python-versions = ">=3.5" - -[package.extras] -lint = ["flake8", "mypy", "docutils-stubs"] -test = ["pytest"] - -[[package]] -name = "statannotations" -version = "0.4.4" -description = "add statistical significance or custom annotations on seaborn plots. Based on statannot 0.2.3" -category = "main" -optional = false -python-versions = ">=3.6" - -[package.dependencies] -matplotlib = ">=2.2.2" -numpy = ">=1.12.1" -pandas = ">=0.23.0" -scipy = ">=1.1.0" -seaborn = ">=0.9.0" - -[[package]] -name = "statsmodels" -version = "0.13.2" -description = "Statistical computations and models for Python" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -numpy = ">=1.17" -packaging = ">=21.3" -pandas = ">=0.25" -patsy = ">=0.5.2" -scipy = ">=1.3" - -[package.extras] -build = ["cython (>=0.29.26)"] -develop = ["cython (>=0.29.26)"] -docs = ["sphinx", "nbconvert", "jupyter-client", "ipykernel", "matplotlib", "nbformat", "numpydoc", "pandas-datareader"] - -[[package]] -name = "stdlib-list" -version = "0.8.0" -description = "A list of Python Standard Libraries (2.6-7, 3.2-9)." -category = "main" -optional = false -python-versions = "*" - -[package.extras] -develop = ["sphinx"] - -[[package]] -name = "tblib" -version = "1.7.0" -description = "Traceback serialization library." -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" - -[[package]] -name = "tensorly" -version = "0.5.1" -description = "Tensor learning in Python." -category = "main" -optional = false -python-versions = "*" - -[package.dependencies] -nose = "*" -numpy = "*" -scipy = "*" - -[[package]] -name = "threadpoolctl" -version = "3.1.0" -description = "threadpoolctl" -category = "main" -optional = false -python-versions = ">=3.6" - -[[package]] -name = "tinycss2" -version = "1.1.1" -description = "A tiny CSS parser" -category = "main" -optional = true -python-versions = ">=3.6" - -[package.dependencies] -webencodings = ">=0.4" - -[package.extras] -doc = ["sphinx", "sphinx-rtd-theme"] -test = ["pytest", "pytest-cov", "pytest-flake8", "pytest-isort", "coverage"] - -[[package]] -name = "tomli" -version = "2.0.1" -description = "A lil' TOML parser" -category = "main" -optional = false -python-versions = ">=3.7" - -[[package]] -name = "toolz" -version = "0.11.2" -description = "List processing tools and functional utilities" -category = "main" -optional = false -python-versions = ">=3.5" - -[[package]] -name = "torch" -version = "1.12.0" -description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" -category = "main" -optional = true -python-versions = ">=3.7.0" - -[package.dependencies] -typing-extensions = "*" - -[[package]] -name = "tornado" -version = "6.1" -description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." -category = "main" -optional = false -python-versions = ">= 3.5" - -[[package]] -name = "tqdm" -version = "4.64.0" -description = "Fast, Extensible Progress Meter" -category = "main" -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,>=2.7" - -[package.dependencies] -colorama = {version = "*", markers = "platform_system == \"Windows\""} - -[package.extras] -dev = ["py-make (>=0.1.0)", "twine", "wheel"] -notebook = ["ipywidgets (>=6)"] -slack = ["slack-sdk"] -telegram = ["requests"] - -[[package]] -name = "traitlets" -version = "5.3.0" -description = "" -category = "main" -optional = true -python-versions = ">=3.7" - -[package.extras] -test = ["pre-commit", "pytest"] - -[[package]] -name = "typing-extensions" -version = "4.2.0" -description = "Backported and Experimental Type Hints for Python 3.7+" -category = "main" -optional = false -python-versions = ">=3.7" - -[[package]] -name = "umap-learn" -version = "0.5.3" -description = "Uniform Manifold Approximation and Projection" -category = "main" -optional = false -python-versions = "*" - -[package.dependencies] -numba = ">=0.49" -numpy = ">=1.17" -pynndescent = ">=0.5" -scikit-learn = ">=0.22" -scipy = ">=1.0" -tqdm = "*" - -[package.extras] -parametric_umap = ["tensorflow (>=2.1)", "tensorflow-probability (>=0.10)"] -plot = ["pandas", "matplotlib", "datashader", "bokeh", "holoviews", "colorcet", "seaborn", "scikit-image"] - -[[package]] -name = "upsetplot" -version = "0.6.1" -description = "Draw Lex et al.'s UpSet plots with Pandas and Matplotlib" -category = "main" -optional = false -python-versions = "*" - -[package.dependencies] -matplotlib = ">=2.0" -pandas = ">=0.23" - -[[package]] -name = "urllib3" -version = "1.26.9" -description = "HTTP library with thread-safe connection pooling, file post, and more." -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, <4" - -[package.extras] -brotli = ["brotlicffi (>=0.8.0)", "brotli (>=1.0.9)", "brotlipy (>=0.6.0)"] -secure = ["pyOpenSSL (>=0.14)", "cryptography (>=1.3.4)", "idna (>=2.0.0)", "certifi", "ipaddress"] -socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"] - -[[package]] -name = "webencodings" -version = "0.5.1" -description = "Character encoding aliases for legacy web content" -category = "main" -optional = true -python-versions = "*" - -[[package]] -name = "xgboost" -version = "1.4.0" -description = "XGBoost Python Package" -category = "main" -optional = false -python-versions = ">=3.6" - -[package.dependencies] -numpy = "*" -scipy = "*" - -[package.extras] -dask = ["dask", "pandas", "distributed"] -datatable = ["datatable"] -pandas = ["pandas"] -plotting = ["graphviz", "matplotlib"] -scikit-learn = ["scikit-learn"] - -[[package]] -name = "xlrd" -version = "1.2.0" -description = "Library for developers to extract data from Microsoft Excel (tm) spreadsheet files" -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" - -[[package]] -name = "zict" -version = "2.2.0" -description = "Mutable mapping tools" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -heapdict = "*" - -[[package]] -name = "zipp" -version = "3.8.0" -description = "Backport of pathlib-compatible object wrapper for zip files" -category = "main" -optional = true -python-versions = ">=3.7" - -[package.extras] -docs = ["sphinx", "jaraco.packaging (>=9)", "rst.linker (>=1.9)"] -testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-flake8", "pytest-cov", "pytest-enabler (>=1.0.1)", "jaraco.itertools", "func-timeout", "pytest-black (>=0.3.7)", "pytest-mypy (>=0.9.1)"] - -[extras] -docs = ["Sphinx", "sphinx-autobuild", "sphinx-book-theme", "nbsphinx", "sphinx-gallery", "myst-parser"] -torch = ["torch"] - -[metadata] -lock-version = "1.1" -python-versions = ">=3.8, <3.11" -content-hash = "81ce173cd4c3c863a6f2daa8aa99155970d6e22bee838eb1235fcbdb918f8d1e" - -[metadata.files] -alabaster = [ - {file = "alabaster-0.7.12-py2.py3-none-any.whl", hash = "sha256:446438bdcca0e05bd45ea2de1668c1d9b032e1a9154c2c259092d77031ddd359"}, - {file = "alabaster-0.7.12.tar.gz", hash = "sha256:a661d72d58e6ea8a57f7a86e37d86716863ee5e92788398526d58b26a4e4dc02"}, -] -anndata = [ - {file = "anndata-0.7.8-py3-none-any.whl", hash = "sha256:cc098d46662230f91e421c707590337c3e16459c494f28d80b8ff5baae54e539"}, - {file = "anndata-0.7.8.tar.gz", hash = "sha256:1efd7eb40839e0325bb066238280228a980d7dde6410793dbff2835f44a2d3ef"}, -] -astropy = [ - {file = "astropy-5.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5d0e5f8ff0ae1317a095ac48a38e3708de470534f2930c4833d166ef3c44d99d"}, - {file = "astropy-5.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:25b8b512901dd1a443341e8941cab882d7275d42ed7aa2f3908adb3158d5c377"}, - {file = "astropy-5.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:41bfe328b5657404dd0501f7abde89651f8a0bd28358fe7b6144d6b49ae1adee"}, - {file = "astropy-5.1-cp310-cp310-win32.whl", hash = "sha256:09030535263893e4e81a9f60936d3a83ad48696937323c5b22a7cda91e5c039b"}, - {file = "astropy-5.1-cp310-cp310-win_amd64.whl", hash = "sha256:857972d9c76d2adb90b80948b0f4e01f3483abfbbf80eeb07803188c178dd8cc"}, - {file = "astropy-5.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a17f0b0d8bf1e25ff6e3d85571fd032fec1a522ffd6b2b1551429a22b7264a9e"}, - {file = "astropy-5.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:1795e6985eb477084a7af719fe5d36a1832612594065b51175d4a02fc263ee6d"}, - {file = "astropy-5.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8a8aa983bc8e20f0335ba66ff399b413653569388a7325de84b13de85d9e2839"}, - {file = "astropy-5.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c36f9f3a4ea8eb914528fc7f7a881837c817839b07994960189fd51170327ac3"}, - {file = "astropy-5.1-cp38-cp38-win32.whl", hash = "sha256:0ea4ef58a5a70fd68c71731baa87352fb40e1bbf763456fb10148af4ef3f0ff1"}, - {file = "astropy-5.1-cp38-cp38-win_amd64.whl", hash = "sha256:0423e527f5033a2b42fc154dd82904ca98acb9b0a62e51bb7428410d05b41b74"}, - {file = "astropy-5.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e6e1ed8c63598a0d9804187ebac880a66fe49d21195b086c877f2bc7de486c68"}, - {file = "astropy-5.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:af1f5fa5807371fc1f9a81287e160fa3de00c4947742cf4aa9a81eb6d9671867"}, - {file = "astropy-5.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:a4ce6ddb7cfa54412e8700b34190db47142dc64f5e84aecb67a9751327218974"}, - {file = "astropy-5.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:928507a389a708cc9f3b9eaeedc7ce3b0f3e43d2493cff92073fdb7be3cb3a3a"}, - {file = "astropy-5.1-cp39-cp39-win32.whl", hash = "sha256:4c4c9e57710cc2fdf8da2f470afe204183256f2eb8712e8777491db4348818ca"}, - {file = "astropy-5.1-cp39-cp39-win_amd64.whl", hash = "sha256:f54d3537e987c33244435fb155f9087e130abae4126d06b003171c15dbff6ed6"}, - {file = "astropy-5.1.tar.gz", hash = "sha256:1db1b2c7eddfc773ca66fa33bd07b25d5b9c3b5eee2b934e0ca277fa5b1b7b7e"}, -] -attrs = [ - {file = "attrs-21.4.0-py2.py3-none-any.whl", hash = "sha256:2d27e3784d7a565d36ab851fe94887c5eccd6a463168875832a1be79c82828b4"}, - {file = "attrs-21.4.0.tar.gz", hash = "sha256:626ba8234211db98e869df76230a137c4c40a12d72445c45d5f5b716f076e2fd"}, -] -babel = [ - {file = "Babel-2.10.3-py3-none-any.whl", hash = "sha256:ff56f4892c1c4bf0d814575ea23471c230d544203c7748e8c68f0089478d48eb"}, - {file = "Babel-2.10.3.tar.gz", hash = "sha256:7614553711ee97490f732126dc077f8d0ae084ebc6a96e23db1482afabdb2c51"}, -] -beautifulsoup4 = [ - {file = "beautifulsoup4-4.11.1-py3-none-any.whl", hash = "sha256:58d5c3d29f5a36ffeb94f02f0d786cd53014cf9b3b3951d42e0080d8a9498d30"}, - {file = "beautifulsoup4-4.11.1.tar.gz", hash = "sha256:ad9aa55b65ef2808eb405f46cf74df7fcb7044d5cbc26487f96eb2ef2e436693"}, -] -bleach = [ - {file = "bleach-5.0.1-py3-none-any.whl", hash = "sha256:085f7f33c15bd408dd9b17a4ad77c577db66d76203e5984b1bd59baeee948b2a"}, - {file = "bleach-5.0.1.tar.gz", hash = "sha256:0d03255c47eb9bd2f26aa9bb7f2107732e7e8fe195ca2f64709fcf3b0a4a085c"}, -] -cell2cell = [ - {file = "cell2cell-0.5.10-2-py3-none-any.whl", hash = "sha256:468f0ef1333033ef835ddb9a329cdd5f9d7992be65b6ea48fedaeaac796cf443"}, -] -certifi = [ - {file = "certifi-2022.6.15-py3-none-any.whl", hash = "sha256:fe86415d55e84719d75f8b69414f6438ac3547d2078ab91b67e779ef69378412"}, - {file = "certifi-2022.6.15.tar.gz", hash = "sha256:84c85a9078b11105f04f3036a9482ae10e4621616db313fe045dd24743a0820d"}, -] -cffi = [ - {file = "cffi-1.15.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:c2502a1a03b6312837279c8c1bd3ebedf6c12c4228ddbad40912d671ccc8a962"}, - {file = "cffi-1.15.0-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:23cfe892bd5dd8941608f93348c0737e369e51c100d03718f108bf1add7bd6d0"}, - {file = "cffi-1.15.0-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:41d45de54cd277a7878919867c0f08b0cf817605e4eb94093e7516505d3c8d14"}, - {file = "cffi-1.15.0-cp27-cp27m-win32.whl", hash = "sha256:4a306fa632e8f0928956a41fa8e1d6243c71e7eb59ffbd165fc0b41e316b2474"}, - {file = "cffi-1.15.0-cp27-cp27m-win_amd64.whl", hash = "sha256:e7022a66d9b55e93e1a845d8c9eba2a1bebd4966cd8bfc25d9cd07d515b33fa6"}, - {file = "cffi-1.15.0-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:14cd121ea63ecdae71efa69c15c5543a4b5fbcd0bbe2aad864baca0063cecf27"}, - {file = "cffi-1.15.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:d4d692a89c5cf08a8557fdeb329b82e7bf609aadfaed6c0d79f5a449a3c7c023"}, - {file = "cffi-1.15.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0104fb5ae2391d46a4cb082abdd5c69ea4eab79d8d44eaaf79f1b1fd806ee4c2"}, - {file = "cffi-1.15.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:91ec59c33514b7c7559a6acda53bbfe1b283949c34fe7440bcf917f96ac0723e"}, - {file = "cffi-1.15.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:f5c7150ad32ba43a07c4479f40241756145a1f03b43480e058cfd862bf5041c7"}, - {file = "cffi-1.15.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:00c878c90cb53ccfaae6b8bc18ad05d2036553e6d9d1d9dbcf323bbe83854ca3"}, - {file = "cffi-1.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:abb9a20a72ac4e0fdb50dae135ba5e77880518e742077ced47eb1499e29a443c"}, - {file = "cffi-1.15.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a5263e363c27b653a90078143adb3d076c1a748ec9ecc78ea2fb916f9b861962"}, - {file = "cffi-1.15.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f54a64f8b0c8ff0b64d18aa76675262e1700f3995182267998c31ae974fbc382"}, - {file = "cffi-1.15.0-cp310-cp310-win32.whl", hash = "sha256:c21c9e3896c23007803a875460fb786118f0cdd4434359577ea25eb556e34c55"}, - {file = "cffi-1.15.0-cp310-cp310-win_amd64.whl", hash = "sha256:5e069f72d497312b24fcc02073d70cb989045d1c91cbd53979366077959933e0"}, - {file = "cffi-1.15.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:64d4ec9f448dfe041705426000cc13e34e6e5bb13736e9fd62e34a0b0c41566e"}, - {file = "cffi-1.15.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2756c88cbb94231c7a147402476be2c4df2f6078099a6f4a480d239a8817ae39"}, - {file = "cffi-1.15.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3b96a311ac60a3f6be21d2572e46ce67f09abcf4d09344c49274eb9e0bf345fc"}, - {file = "cffi-1.15.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:75e4024375654472cc27e91cbe9eaa08567f7fbdf822638be2814ce059f58032"}, - {file = "cffi-1.15.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:59888172256cac5629e60e72e86598027aca6bf01fa2465bdb676d37636573e8"}, - {file = "cffi-1.15.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:27c219baf94952ae9d50ec19651a687b826792055353d07648a5695413e0c605"}, - {file = "cffi-1.15.0-cp36-cp36m-win32.whl", hash = "sha256:4958391dbd6249d7ad855b9ca88fae690783a6be9e86df65865058ed81fc860e"}, - {file = "cffi-1.15.0-cp36-cp36m-win_amd64.whl", hash = "sha256:f6f824dc3bce0edab5f427efcfb1d63ee75b6fcb7282900ccaf925be84efb0fc"}, - {file = "cffi-1.15.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:06c48159c1abed75c2e721b1715c379fa3200c7784271b3c46df01383b593636"}, - {file = "cffi-1.15.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:c2051981a968d7de9dd2d7b87bcb9c939c74a34626a6e2f8181455dd49ed69e4"}, - {file = "cffi-1.15.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:fd8a250edc26254fe5b33be00402e6d287f562b6a5b2152dec302fa15bb3e997"}, - {file = "cffi-1.15.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:91d77d2a782be4274da750752bb1650a97bfd8f291022b379bb8e01c66b4e96b"}, - {file = "cffi-1.15.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:45db3a33139e9c8f7c09234b5784a5e33d31fd6907800b316decad50af323ff2"}, - {file = "cffi-1.15.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:263cc3d821c4ab2213cbe8cd8b355a7f72a8324577dc865ef98487c1aeee2bc7"}, - {file = "cffi-1.15.0-cp37-cp37m-win32.whl", hash = "sha256:17771976e82e9f94976180f76468546834d22a7cc404b17c22df2a2c81db0c66"}, - {file = "cffi-1.15.0-cp37-cp37m-win_amd64.whl", hash = "sha256:3415c89f9204ee60cd09b235810be700e993e343a408693e80ce7f6a40108029"}, - {file = "cffi-1.15.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:4238e6dab5d6a8ba812de994bbb0a79bddbdf80994e4ce802b6f6f3142fcc880"}, - {file = "cffi-1.15.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:0808014eb713677ec1292301ea4c81ad277b6cdf2fdd90fd540af98c0b101d20"}, - {file = "cffi-1.15.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:57e9ac9ccc3101fac9d6014fba037473e4358ef4e89f8e181f8951a2c0162024"}, - {file = "cffi-1.15.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b6c2ea03845c9f501ed1313e78de148cd3f6cad741a75d43a29b43da27f2e1e"}, - {file = "cffi-1.15.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:10dffb601ccfb65262a27233ac273d552ddc4d8ae1bf93b21c94b8511bffe728"}, - {file = "cffi-1.15.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:786902fb9ba7433aae840e0ed609f45c7bcd4e225ebb9c753aa39725bb3e6ad6"}, - {file = "cffi-1.15.0-cp38-cp38-win32.whl", hash = "sha256:da5db4e883f1ce37f55c667e5c0de439df76ac4cb55964655906306918e7363c"}, - {file = "cffi-1.15.0-cp38-cp38-win_amd64.whl", hash = "sha256:181dee03b1170ff1969489acf1c26533710231c58f95534e3edac87fff06c443"}, - {file = "cffi-1.15.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:45e8636704eacc432a206ac7345a5d3d2c62d95a507ec70d62f23cd91770482a"}, - {file = "cffi-1.15.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:31fb708d9d7c3f49a60f04cf5b119aeefe5644daba1cd2a0fe389b674fd1de37"}, - {file = "cffi-1.15.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6dc2737a3674b3e344847c8686cf29e500584ccad76204efea14f451d4cc669a"}, - {file = "cffi-1.15.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:74fdfdbfdc48d3f47148976f49fab3251e550a8720bebc99bf1483f5bfb5db3e"}, - {file = "cffi-1.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffaa5c925128e29efbde7301d8ecaf35c8c60ffbcd6a1ffd3a552177c8e5e796"}, - {file = "cffi-1.15.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3f7d084648d77af029acb79a0ff49a0ad7e9d09057a9bf46596dac9514dc07df"}, - {file = "cffi-1.15.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ef1f279350da2c586a69d32fc8733092fd32cc8ac95139a00377841f59a3f8d8"}, - {file = "cffi-1.15.0-cp39-cp39-win32.whl", hash = "sha256:2a23af14f408d53d5e6cd4e3d9a24ff9e05906ad574822a10563efcef137979a"}, - {file = "cffi-1.15.0-cp39-cp39-win_amd64.whl", hash = "sha256:3773c4d81e6e818df2efbc7dd77325ca0dcb688116050fb2b3011218eda36139"}, - {file = "cffi-1.15.0.tar.gz", hash = "sha256:920f0d66a896c2d99f0adbb391f990a84091179542c205fa53ce5787aff87954"}, -] -charset-normalizer = [ - {file = "charset-normalizer-2.1.0.tar.gz", hash = "sha256:575e708016ff3a5e3681541cb9d79312c416835686d054a23accb873b254f413"}, - {file = "charset_normalizer-2.1.0-py3-none-any.whl", hash = "sha256:5189b6f22b01957427f35b6a08d9a0bc45b46d3788ef5a92e978433c7a35f8a5"}, -] -click = [ - {file = "click-8.1.3-py3-none-any.whl", hash = "sha256:bb4d8133cb15a609f44e8213d9b391b0809795062913b383c62be0ee95b1db48"}, - {file = "click-8.1.3.tar.gz", hash = "sha256:7682dc8afb30297001674575ea00d1814d808d6a36af415a82bd481d37ba7b8e"}, -] -click-plugins = [ - {file = "click-plugins-1.1.1.tar.gz", hash = "sha256:46ab999744a9d831159c3411bb0c79346d94a444df9a3a3742e9ed63645f264b"}, - {file = "click_plugins-1.1.1-py2.py3-none-any.whl", hash = "sha256:5d262006d3222f5057fd81e1623d4443e41dcda5dc815c06b442aa3c02889fc8"}, -] -cligj = [ - {file = "cligj-0.7.2-py3-none-any.whl", hash = "sha256:c1ca117dbce1fe20a5809dc96f01e1c2840f6dcc939b3ddbb1111bf330ba82df"}, - {file = "cligj-0.7.2.tar.gz", hash = "sha256:a4bc13d623356b373c2c27c53dbd9c68cae5d526270bfa71f6c6fa69669c6b27"}, -] -cloudpickle = [ - {file = "cloudpickle-2.1.0-py3-none-any.whl", hash = "sha256:b5c434f75c34624eedad3a14f2be5ac3b5384774d5b0e3caf905c21479e6c4b1"}, - {file = "cloudpickle-2.1.0.tar.gz", hash = "sha256:bb233e876a58491d9590a676f93c7a5473a08f747d5ab9df7f9ce564b3e7938e"}, -] -colorama = [ - {file = "colorama-0.4.5-py2.py3-none-any.whl", hash = "sha256:854bf444933e37f5824ae7bfc1e98d5bce2ebe4160d46b5edf346a89358e99da"}, - {file = "colorama-0.4.5.tar.gz", hash = "sha256:e6c6b4334fc50988a639d9b98aa429a0b57da6e17b9a44f0451f930b6967b7a4"}, -] -cycler = [ - {file = "cycler-0.11.0-py3-none-any.whl", hash = "sha256:3a27e95f763a428a739d2add979fa7494c912a32c17c4c38c4d5f082cad165a3"}, - {file = "cycler-0.11.0.tar.gz", hash = "sha256:9c87405839a19696e837b3b818fed3f5f69f16f1eec1a1ad77e043dcea9c772f"}, -] -dask = [ - {file = "dask-2022.6.1-py3-none-any.whl", hash = "sha256:fbd2707070ee8cba080a297301c3984de3d0dee211f30c81387d5fa8adc7de74"}, - {file = "dask-2022.6.1.tar.gz", hash = "sha256:6ecc4571da3e5575dd1fa1537237434908f81b929f7f2a3493a7f6eb8507903e"}, -] -dask-geopandas = [ - {file = "dask-geopandas-0.1.3.tar.gz", hash = "sha256:b853aabd865ead6666f58560496f819ef57f5b12d941b9c65a84ddff59c73fb4"}, - {file = "dask_geopandas-0.1.3-py3-none-any.whl", hash = "sha256:ff6accccc3814a0ee42f34c1d19d1c6b3aacc22a35d87d8db24eca9f5892f31f"}, -] -defusedxml = [ - {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"}, - {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, -] -distributed = [ - {file = "distributed-2022.6.1-py3-none-any.whl", hash = "sha256:4c614050e86ac8a0230418625f313a71dffdcd9cfb3b7128a33b7faa611a686c"}, - {file = "distributed-2022.6.1.tar.gz", hash = "sha256:c4efd70aeb072725e683bca1c2de8173cd577018a7a5c3795886a5691e70bc37"}, -] -docutils = [ - {file = "docutils-0.17.1-py2.py3-none-any.whl", hash = "sha256:cf316c8370a737a022b72b56874f6602acf974a37a9fba42ec2876387549fc61"}, - {file = "docutils-0.17.1.tar.gz", hash = "sha256:686577d2e4c32380bb50cbb22f575ed742d58168cee37e99117a854bcd88f125"}, -] -emoji = [ - {file = "emoji-1.7.0.tar.gz", hash = "sha256:65c54533ea3c78f30d0729288998715f418d7467de89ec258a31c0ce8660a1d1"}, -] -entrypoints = [ - {file = "entrypoints-0.4-py3-none-any.whl", hash = "sha256:f174b5ff827504fd3cd97cc3f8649f3693f51538c7e4bdf3ef002c8429d42f9f"}, - {file = "entrypoints-0.4.tar.gz", hash = "sha256:b706eddaa9218a19ebcd67b56818f05bb27589b1ca9e8d797b74affad4ccacd4"}, -] -et-xmlfile = [ - {file = "et_xmlfile-1.1.0-py3-none-any.whl", hash = "sha256:a2ba85d1d6a74ef63837eed693bcb89c3f752169b0e3e7ae5b16ca5e1b3deada"}, - {file = "et_xmlfile-1.1.0.tar.gz", hash = "sha256:8eb9e2bc2f8c97e37a2dc85a09ecdcdec9d8a396530a6d5a33b30b9a92da0c5c"}, -] -fastjsonschema = [ - {file = "fastjsonschema-2.15.3-py3-none-any.whl", hash = "sha256:ddb0b1d8243e6e3abb822bd14e447a89f4ab7439342912d590444831fa00b6a0"}, - {file = "fastjsonschema-2.15.3.tar.gz", hash = "sha256:0a572f0836962d844c1fc435e200b2e4f4677e4e6611a2e3bdd01ba697c275ec"}, -] -fiona = [ - {file = "Fiona-1.8.21-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:39c656421e25b4d0d73d0b6acdcbf9848e71f3d9b74f44c27d2d516d463409ae"}, - {file = "Fiona-1.8.21-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:43b1d2e45506e56cf3a9f59ba5d6f7981f3f75f4725d1e6cb9a33ba856371ebd"}, - {file = "Fiona-1.8.21-cp36-cp36m-macosx_10_10_x86_64.whl", hash = "sha256:315e186cb880a8128e110312eb92f5956bbc54d7152af999d3483b463758d6f9"}, - {file = "Fiona-1.8.21-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fb2407623c4f44732a33b3f056f8c58c54152b51f0324bf8f10945e711eb549"}, - {file = "Fiona-1.8.21-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:b69054ed810eb7339d7effa88589afca48003206d7627d0b0b149715fc3fde41"}, - {file = "Fiona-1.8.21-cp37-cp37m-manylinux2014_x86_64.whl", hash = "sha256:11532ccfda1073d3f5f558e4bb78d45b268e8680fd6e14993a394c564ddbd069"}, - {file = "Fiona-1.8.21-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:3789523c811809a6e2e170cf9c437631f959f4c7a868f024081612d30afab468"}, - {file = "Fiona-1.8.21-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:085f18d943097ac3396f3f9664ac1ae04ad0ff272f54829f03442187f01b6116"}, - {file = "Fiona-1.8.21-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:388acc9fa07ba7858d508dfe826d4b04d813818bced16c4049de19cc7ca322ef"}, - {file = "Fiona-1.8.21-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40b4eaf5b88407421d6c9e707520abd2ff16d7cd43efb59cd398aa41d2de332c"}, - {file = "Fiona-1.8.21.tar.gz", hash = "sha256:3a0edca2a7a070db405d71187214a43d2333a57b4097544a3fcc282066a58bfc"}, -] -fonttools = [ - {file = "fonttools-4.33.3-py3-none-any.whl", hash = "sha256:f829c579a8678fa939a1d9e9894d01941db869de44390adb49ce67055a06cc2a"}, - {file = "fonttools-4.33.3.zip", hash = "sha256:c0fdcfa8ceebd7c1b2021240bd46ef77aa8e7408cf10434be55df52384865f8e"}, -] -fsspec = [ - {file = "fsspec-2022.5.0-py3-none-any.whl", hash = "sha256:2c198c50eb541a80bbd03540b07602c4a957366f3fb416a1f270d34bd4ff0926"}, - {file = "fsspec-2022.5.0.tar.gz", hash = "sha256:7a5459c75c44e760fbe6a3ccb1f37e81e023cde7da8ba20401258d877ec483b4"}, -] -geopandas = [ - {file = "geopandas-0.10.2-py2.py3-none-any.whl", hash = "sha256:1722853464441b603d9be3d35baf8bde43831424a891e82a8545eb8997b65d6c"}, - {file = "geopandas-0.10.2.tar.gz", hash = "sha256:efbf47e70732e25c3727222019c92b39b2e0a66ebe4fe379fbe1aa43a2a871db"}, -] -h5py = [ - {file = "h5py-3.7.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d77af42cb751ad6cc44f11bae73075a07429a5cf2094dfde2b1e716e059b3911"}, - {file = "h5py-3.7.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:63beb8b7b47d0896c50de6efb9a1eaa81dbe211f3767e7dd7db159cea51ba37a"}, - {file = "h5py-3.7.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:04e2e1e2fc51b8873e972a08d2f89625ef999b1f2d276199011af57bb9fc7851"}, - {file = "h5py-3.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f73307c876af49aa869ec5df1818e9bb0bdcfcf8a5ba773cc45a4fba5a286a5c"}, - {file = "h5py-3.7.0-cp310-cp310-win_amd64.whl", hash = "sha256:f514b24cacdd983e61f8d371edac8c1b780c279d0acb8485639e97339c866073"}, - {file = "h5py-3.7.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:43fed4d13743cf02798a9a03a360a88e589d81285e72b83f47d37bb64ed44881"}, - {file = "h5py-3.7.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c038399ce09a58ff8d89ec3e62f00aa7cb82d14f34e24735b920e2a811a3a426"}, - {file = "h5py-3.7.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:03d64fb86bb86b978928bad923b64419a23e836499ec6363e305ad28afd9d287"}, - {file = "h5py-3.7.0-cp37-cp37m-win_amd64.whl", hash = "sha256:e5b7820b75f9519499d76cc708e27242ccfdd9dfb511d6deb98701961d0445aa"}, - {file = "h5py-3.7.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a9351d729ea754db36d175098361b920573fdad334125f86ac1dd3a083355e20"}, - {file = "h5py-3.7.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:6776d896fb90c5938de8acb925e057e2f9f28755f67ec3edcbc8344832616c38"}, - {file = "h5py-3.7.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:0a047fddbe6951bce40e9cde63373c838a978c5e05a011a682db9ba6334b8e85"}, - {file = "h5py-3.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0798a9c0ff45f17d0192e4d7114d734cac9f8b2b2c76dd1d923c4d0923f27bb6"}, - {file = "h5py-3.7.0-cp38-cp38-win_amd64.whl", hash = "sha256:0d8de8cb619fc597da7cf8cdcbf3b7ff8c5f6db836568afc7dc16d21f59b2b49"}, - {file = "h5py-3.7.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f084bbe816907dfe59006756f8f2d16d352faff2d107f4ffeb1d8de126fc5dc7"}, - {file = "h5py-3.7.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1fcb11a2dc8eb7ddcae08afd8fae02ba10467753a857fa07a404d700a93f3d53"}, - {file = "h5py-3.7.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ed43e2cc4f511756fd664fb45d6b66c3cbed4e3bd0f70e29c37809b2ae013c44"}, - {file = "h5py-3.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9e7535df5ee3dc3e5d1f408fdfc0b33b46bc9b34db82743c82cd674d8239b9ad"}, - {file = "h5py-3.7.0-cp39-cp39-win_amd64.whl", hash = "sha256:9e2ad2aa000f5b1e73b5dfe22f358ca46bf1a2b6ca394d9659874d7fc251731a"}, - {file = "h5py-3.7.0.tar.gz", hash = "sha256:3fcf37884383c5da64846ab510190720027dca0768def34dd8dcb659dbe5cbf3"}, -] -heapdict = [ - {file = "HeapDict-1.0.1-py3-none-any.whl", hash = "sha256:6065f90933ab1bb7e50db403b90cab653c853690c5992e69294c2de2b253fc92"}, - {file = "HeapDict-1.0.1.tar.gz", hash = "sha256:8495f57b3e03d8e46d5f1b2cc62ca881aca392fd5cc048dc0aa2e1a6d23ecdb6"}, -] -idna = [ - {file = "idna-3.3-py3-none-any.whl", hash = "sha256:84d9dd047ffa80596e0f246e2eab0b391788b0503584e8945f2368256d2735ff"}, - {file = "idna-3.3.tar.gz", hash = "sha256:9d643ff0a55b762d5cdb124b8eaa99c66322e2157b69160bc32796e824360e6d"}, -] -imagesize = [ - {file = "imagesize-1.3.0-py2.py3-none-any.whl", hash = "sha256:1db2f82529e53c3e929e8926a1fa9235aa82d0bd0c580359c67ec31b2fddaa8c"}, - {file = "imagesize-1.3.0.tar.gz", hash = "sha256:cd1750d452385ca327479d45b64d9c7729ecf0b3969a58148298c77092261f9d"}, -] -importlib-metadata = [ - {file = "importlib_metadata-4.12.0-py3-none-any.whl", hash = "sha256:7401a975809ea1fdc658c3aa4f78cc2195a0e019c5cbc4c06122884e9ae80c23"}, - {file = "importlib_metadata-4.12.0.tar.gz", hash = "sha256:637245b8bab2b6502fcbc752cc4b7a6f6243bb02b31c5c26156ad103d3d45670"}, -] -importlib-resources = [ - {file = "importlib_resources-5.8.0-py3-none-any.whl", hash = "sha256:7952325ffd516c05a8ad0858c74dff2c3343f136fe66a6002b2623dd1d43f223"}, - {file = "importlib_resources-5.8.0.tar.gz", hash = "sha256:568c9f16cb204f9decc8d6d24a572eeea27dacbb4cee9e6b03a8025736769751"}, -] -jinja2 = [ - {file = "Jinja2-3.1.2-py3-none-any.whl", hash = "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"}, - {file = "Jinja2-3.1.2.tar.gz", hash = "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852"}, -] -joblib = [ - {file = "joblib-1.1.0-py2.py3-none-any.whl", hash = "sha256:f21f109b3c7ff9d95f8387f752d0d9c34a02aa2f7060c2135f465da0e5160ff6"}, - {file = "joblib-1.1.0.tar.gz", hash = "sha256:4158fcecd13733f8be669be0683b96ebdbbd38d23559f54dca7205aea1bf1e35"}, -] -jsonschema = [ - {file = "jsonschema-4.6.1-py3-none-any.whl", hash = "sha256:5eb781753403847fb320f05e9ab2191725b58c5e7f97f1bed63285ca423159bc"}, - {file = "jsonschema-4.6.1.tar.gz", hash = "sha256:ec2802e6a37517f09d47d9ba107947589ae1d25ff557b925d83a321fc2aa5d3b"}, -] -jupyter-client = [ - {file = "jupyter_client-7.3.4-py3-none-any.whl", hash = "sha256:17d74b0d0a7b24f1c8c527b24fcf4607c56bee542ffe8e3418e50b21e514b621"}, - {file = "jupyter_client-7.3.4.tar.gz", hash = "sha256:aa9a6c32054b290374f95f73bb0cae91455c58dfb84f65c8591912b8f65e6d56"}, -] -jupyter-core = [ - {file = "jupyter_core-4.10.0-py3-none-any.whl", hash = "sha256:e7f5212177af7ab34179690140f188aa9bf3d322d8155ed972cbded19f55b6f3"}, - {file = "jupyter_core-4.10.0.tar.gz", hash = "sha256:a6de44b16b7b31d7271130c71a6792c4040f077011961138afed5e5e73181aec"}, -] -jupyterlab-pygments = [ - {file = "jupyterlab_pygments-0.2.2-py2.py3-none-any.whl", hash = "sha256:2405800db07c9f770863bcf8049a529c3dd4d3e28536638bd7c1c01d2748309f"}, - {file = "jupyterlab_pygments-0.2.2.tar.gz", hash = "sha256:7405d7fde60819d905a9fa8ce89e4cd830e318cdad22a0030f7a901da705585d"}, -] -kiwisolver = [ - {file = "kiwisolver-1.4.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:fd2842a0faed9ab9aba0922c951906132d9384be89690570f0ed18cd4f20e658"}, - {file = "kiwisolver-1.4.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:caa59e2cae0e23b1e225447d7a9ddb0f982f42a6a22d497a484dfe62a06f7c0e"}, - {file = "kiwisolver-1.4.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1d2c744aeedce22c122bb42d176b4aa6d063202a05a4abdacb3e413c214b3694"}, - {file = "kiwisolver-1.4.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:afe173ac2646c2636305ab820cc0380b22a00a7bca4290452e7166b4f4fa49d0"}, - {file = "kiwisolver-1.4.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:40240da438c0ebfe2aa76dd04b844effac6679423df61adbe3437d32f23468d9"}, - {file = "kiwisolver-1.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:21a3a98f0a21fc602663ca9bce2b12a4114891bdeba2dea1e9ad84db59892fca"}, - {file = "kiwisolver-1.4.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:51078855a16b7a4984ed2067b54e35803d18bca9861cb60c60f6234b50869a56"}, - {file = "kiwisolver-1.4.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c16635f8dddbeb1b827977d0b00d07b644b040aeb9ff8607a9fc0997afa3e567"}, - {file = "kiwisolver-1.4.3-cp310-cp310-win32.whl", hash = "sha256:2d76780d9c65c7529cedd49fa4802d713e60798d8dc3b0d5b12a0a8f38cca51c"}, - {file = "kiwisolver-1.4.3-cp310-cp310-win_amd64.whl", hash = "sha256:3a297d77b3d6979693f5948df02b89431ae3645ec95865e351fb45578031bdae"}, - {file = "kiwisolver-1.4.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:ca3eefb02ef17257fae8b8555c85e7c1efdfd777f671384b0e4ef27409b02720"}, - {file = "kiwisolver-1.4.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d248c46c0aa406695bda2abf99632db991f8b3a6d46018721a2892312a99f069"}, - {file = "kiwisolver-1.4.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cb55258931448d61e2d50187de4ee66fc9d9f34908b524949b8b2b93d0c57136"}, - {file = "kiwisolver-1.4.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:86bcf0009f2012847a688f2f4f9b16203ca4c835979a02549aa0595d9f457cc8"}, - {file = "kiwisolver-1.4.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e7cf940af5fee00a92e281eb157abe8770227a5255207818ea9a34e54a29f5b2"}, - {file = "kiwisolver-1.4.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:dd22085446f3eca990d12a0878eeb5199dc9553b2e71716bfe7bed9915a472ab"}, - {file = "kiwisolver-1.4.3-cp37-cp37m-win32.whl", hash = "sha256:d2578e5149ff49878934debfacf5c743fab49eca5ecdb983d0b218e1e554c498"}, - {file = "kiwisolver-1.4.3-cp37-cp37m-win_amd64.whl", hash = "sha256:5fb73cc8a34baba1dfa546ae83b9c248ef6150c238b06fc53d2773685b67ec67"}, - {file = "kiwisolver-1.4.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:f70f3d028794e31cf9d1a822914efc935aadb2438ec4e8d4871d95eb1ce032d6"}, - {file = "kiwisolver-1.4.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:71af5b43e4fa286a35110fc5bb740fdeae2b36ca79fbcf0a54237485baeee8be"}, - {file = "kiwisolver-1.4.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:26b5a70bdab09e6a2f40babc4f8f992e3771751e144bda1938084c70d3001c09"}, - {file = "kiwisolver-1.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1858ad3cb686eccc7c6b7c5eac846a1cfd45aacb5811b2cf575e80b208f5622a"}, - {file = "kiwisolver-1.4.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4dc350cb65fe4e3f737d50f0465fa6ea0dcae0e5722b7edf5d5b0a0e3cd2c3c7"}, - {file = "kiwisolver-1.4.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:007799c7fa934646318fc128b033bb6e6baabe7fbad521bfb2279aac26225cd7"}, - {file = "kiwisolver-1.4.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:46fb56fde006b7ef5f8eaa3698299b0ea47444238b869ff3ced1426aa9fedcb5"}, - {file = "kiwisolver-1.4.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:b9eb88593159a53a5ee0b0159daee531ff7dd9c87fa78f5d807ca059c7eb1b2b"}, - {file = "kiwisolver-1.4.3-cp38-cp38-win32.whl", hash = "sha256:3b1dcbc49923ac3c973184a82832e1f018dec643b1e054867d04a3a22255ec6a"}, - {file = "kiwisolver-1.4.3-cp38-cp38-win_amd64.whl", hash = "sha256:7118ca592d25b2957ff7b662bc0fe4f4c2b5d5b27814b9b1bc9f2fb249a970e7"}, - {file = "kiwisolver-1.4.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:747190fcdadc377263223f8f72b038381b3b549a8a3df5baf4d067da4749b046"}, - {file = "kiwisolver-1.4.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fd628e63ffdba0112e3ddf1b1e9f3db29dd8262345138e08f4938acbc6d0805a"}, - {file = "kiwisolver-1.4.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:22ccba48abae827a0f952a78a7b1a7ff01866131e5bbe1f826ce9bda406bf051"}, - {file = "kiwisolver-1.4.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:af24b21c2283ca69c416a8a42cde9764dc36c63d3389645d28c69b0e93db3cd7"}, - {file = "kiwisolver-1.4.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:547111ef7cf13d73546c2de97ce434935626c897bdec96a578ca100b5fcd694b"}, - {file = "kiwisolver-1.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:84f85adfebd7d3c3db649efdf73659e1677a2cf3fa6e2556a3f373578af14bf7"}, - {file = "kiwisolver-1.4.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ffd7cf165ff71afb202b3f36daafbf298932bee325aac9f58e1c9cd55838bef0"}, - {file = "kiwisolver-1.4.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6b3136eecf7e1b4a4d23e4b19d6c4e7a8e0b42d55f30444e3c529700cdacaa0d"}, - {file = "kiwisolver-1.4.3-cp39-cp39-win32.whl", hash = "sha256:46c6e5018ba31d5ee7582f323d8661498a154dea1117486a571db4c244531f24"}, - {file = "kiwisolver-1.4.3-cp39-cp39-win_amd64.whl", hash = "sha256:8395064d63b26947fa2c9faeea9c3eee35e52148c5339c37987e1d96fbf009b3"}, - {file = "kiwisolver-1.4.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:325fa1b15098e44fe4590a6c5c09a212ca10c6ebb5d96f7447d675f6c8340e4e"}, - {file = "kiwisolver-1.4.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:654280c5f41831ddcc5a331c0e3ce2e480bbc3d7c93c18ecf6236313aae2d61a"}, - {file = "kiwisolver-1.4.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1ae7aa0784aeadfbd693c27993727792fbe1455b84d49970bad5886b42976b18"}, - {file = "kiwisolver-1.4.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:130c6c35eded399d3967cf8a542c20b671f5ba85bd6f210f8b939f868360e9eb"}, - {file = "kiwisolver-1.4.3.tar.gz", hash = "sha256:ab8a15c2750ae8d53e31f77a94f846d0a00772240f1c12817411fa2344351f86"}, -] -kneed = [ - {file = "kneed-0.7.0-py2.py3-none-any.whl", hash = "sha256:5a41c652a4f0c3d77c130c7fd7b1cd4f46d84752a70a461b5817c8eca938ee08"}, - {file = "kneed-0.7.0.tar.gz", hash = "sha256:340d67fa183a72b0afae19846dd246a6fb7204e8d54243d8b8d3d9932f887c6e"}, -] -livereload = [ - {file = "livereload-2.6.3.tar.gz", hash = "sha256:776f2f865e59fde56490a56bcc6773b6917366bce0c267c60ee8aaf1a0959869"}, -] -llvmlite = [ - {file = "llvmlite-0.38.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a7dd2bd1d6406e7789273e3f8a304ed5d9adcfaa5768052fca7dc233a857be98"}, - {file = "llvmlite-0.38.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7a5e0ed215a576f0f872f47a70b8cb49864e0aefc8586aff5ce83e3bff47bc23"}, - {file = "llvmlite-0.38.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:633c9026eb43b9903cc4ffbc1c7d5293b2e3ad95d06fa9eab0f6ce6ff6ea15b3"}, - {file = "llvmlite-0.38.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b98da8436dbc29013ea301f1fdb0d596ab53bf0ab65c976d96d00bb6faa0b479"}, - {file = "llvmlite-0.38.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c0adce1793d66d009c554809f27baeb6258bf13f6fbaa12eff7443500caec25"}, - {file = "llvmlite-0.38.1-cp310-cp310-win32.whl", hash = "sha256:8c64c90a8b0b7b7e1ed1912ba82c1a3f43cf25affbe06aa3c56c84050edee8ac"}, - {file = "llvmlite-0.38.1-cp310-cp310-win_amd64.whl", hash = "sha256:ab070266f0f51304789a6c20d4be91a9e69683ad9bd4861eb89980e8eb613b3a"}, - {file = "llvmlite-0.38.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:ed7528b8b85de930b76407e44b080e4f376b7a007c2879749599ff8e2fe32753"}, - {file = "llvmlite-0.38.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7db018da2863034ad9c73c946625637f3a89635bc70576068bab4bd085eea90d"}, - {file = "llvmlite-0.38.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c1e5805c92e049b4956ed01204c6647de6160ab9aefb0d67ea83ca02a1d889a"}, - {file = "llvmlite-0.38.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5559e46c79b4017c3c25edc3b9512d11adc3689b9046120c685b0905c08d48a5"}, - {file = "llvmlite-0.38.1-cp37-cp37m-win32.whl", hash = "sha256:ef9aa574eff2e15f8c47b255da0db5dab326dc7f76384c307ae35490e2d2489a"}, - {file = "llvmlite-0.38.1-cp37-cp37m-win_amd64.whl", hash = "sha256:84d5a0163c172db2b2ae561d2fc0866fbd9f716cf13f92c0d41ca4338e682672"}, - {file = "llvmlite-0.38.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a263252a68d85450110ec1f2b406c0414e49b04a4d216d31c0515ea1d59c3882"}, - {file = "llvmlite-0.38.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:de8bd61480173930f2a029673e7cd0738fbbb5171dfe490340839ad7301d4cf0"}, - {file = "llvmlite-0.38.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fbfbe546394c39db39a6898a51972aa131c8d6b0628517728b350552f58bdc19"}, - {file = "llvmlite-0.38.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c4f26c6c370e134a909ac555a671fa1376e74c69af0208f25c0979472577a9d"}, - {file = "llvmlite-0.38.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f95f455697c44d7c04ef95fdfce04629f48df08a832d0a0d9eb2363186dbb969"}, - {file = "llvmlite-0.38.1-cp38-cp38-win32.whl", hash = "sha256:41e638a71c85a9a4a33f279c4cd812bc2f84122505b1f6ab8984ec7debb8548b"}, - {file = "llvmlite-0.38.1-cp38-cp38-win_amd64.whl", hash = "sha256:5c07d63df4578f31b39b764d3b4291f70157af7f42e171a8884ae7aaf989d1f7"}, - {file = "llvmlite-0.38.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4e11bd9929dcbd55d5eb5cd7b08bf71b0097ea48cc192b69d102a90dd6e9816f"}, - {file = "llvmlite-0.38.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:edfa2c761cfa56cf76e783290d82e117f829bb691d8d90aa375505204888abac"}, - {file = "llvmlite-0.38.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e609f7312a439b53b6f622d99180c3ff6a3e1e4ceca4d18aca1c5b46f4e3664"}, - {file = "llvmlite-0.38.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9f53c3448410cc84d0e1af84dbc0d60ad32779853d40bcc8b1ee3c67ebbe94b1"}, - {file = "llvmlite-0.38.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c8fac4edbadefa4dddf5dc6cca76bc2ae81df211dcd16a6638d60cc41249e56"}, - {file = "llvmlite-0.38.1-cp39-cp39-win32.whl", hash = "sha256:3d76c0fa42390bef56979ed213fbf0150c3fef36f5ea68d3d780d5d725da8c01"}, - {file = "llvmlite-0.38.1-cp39-cp39-win_amd64.whl", hash = "sha256:66462d768c30d5f648ca3361d657b434efa8b09f6cf04d6b6eae66e62e993644"}, - {file = "llvmlite-0.38.1.tar.gz", hash = "sha256:0622a86301fcf81cc50d7ed5b4bebe992c030580d413a8443b328ed4f4d82561"}, -] -locket = [ - {file = "locket-1.0.0-py2.py3-none-any.whl", hash = "sha256:b6c819a722f7b6bd955b80781788e4a66a55628b858d347536b7e81325a3a5e3"}, - {file = "locket-1.0.0.tar.gz", hash = "sha256:5c0d4c052a8bbbf750e056a8e65ccd309086f4f0f18a2eac306a8dfa4112a632"}, -] -markdown-it-py = [ - {file = "markdown-it-py-2.1.0.tar.gz", hash = "sha256:cf7e59fed14b5ae17c0006eff14a2d9a00ed5f3a846148153899a0224e2c07da"}, - {file = "markdown_it_py-2.1.0-py3-none-any.whl", hash = "sha256:93de681e5c021a432c63147656fe21790bc01231e0cd2da73626f1aa3ac0fe27"}, -] -markupsafe = [ - {file = "MarkupSafe-2.1.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:86b1f75c4e7c2ac2ccdaec2b9022845dbb81880ca318bb7a0a01fbf7813e3812"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f121a1420d4e173a5d96e47e9a0c0dcff965afdf1626d28de1460815f7c4ee7a"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a49907dd8420c5685cfa064a1335b6754b74541bbb3706c259c02ed65b644b3e"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10c1bfff05d95783da83491be968e8fe789263689c02724e0c691933c52994f5"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7bd98b796e2b6553da7225aeb61f447f80a1ca64f41d83612e6139ca5213aa4"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:b09bf97215625a311f669476f44b8b318b075847b49316d3e28c08e41a7a573f"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:694deca8d702d5db21ec83983ce0bb4b26a578e71fbdbd4fdcd387daa90e4d5e"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:efc1913fd2ca4f334418481c7e595c00aad186563bbc1ec76067848c7ca0a933"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-win32.whl", hash = "sha256:4a33dea2b688b3190ee12bd7cfa29d39c9ed176bda40bfa11099a3ce5d3a7ac6"}, - {file = "MarkupSafe-2.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:dda30ba7e87fbbb7eab1ec9f58678558fd9a6b8b853530e176eabd064da81417"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:671cd1187ed5e62818414afe79ed29da836dde67166a9fac6d435873c44fdd02"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3799351e2336dc91ea70b034983ee71cf2f9533cdff7c14c90ea126bfd95d65a"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e72591e9ecd94d7feb70c1cbd7be7b3ebea3f548870aa91e2732960fa4d57a37"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6fbf47b5d3728c6aea2abb0589b5d30459e369baa772e0f37a0320185e87c980"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d5ee4f386140395a2c818d149221149c54849dfcfcb9f1debfe07a8b8bd63f9a"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:bcb3ed405ed3222f9904899563d6fc492ff75cce56cba05e32eff40e6acbeaa3"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:e1c0b87e09fa55a220f058d1d49d3fb8df88fbfab58558f1198e08c1e1de842a"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-win32.whl", hash = "sha256:8dc1c72a69aa7e082593c4a203dcf94ddb74bb5c8a731e4e1eb68d031e8498ff"}, - {file = "MarkupSafe-2.1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:97a68e6ada378df82bc9f16b800ab77cbf4b2fada0081794318520138c088e4a"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e8c843bbcda3a2f1e3c2ab25913c80a3c5376cd00c6e8c4a86a89a28c8dc5452"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0212a68688482dc52b2d45013df70d169f542b7394fc744c02a57374a4207003"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e576a51ad59e4bfaac456023a78f6b5e6e7651dcd383bcc3e18d06f9b55d6d1"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b9fe39a2ccc108a4accc2676e77da025ce383c108593d65cc909add5c3bd601"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:96e37a3dc86e80bf81758c152fe66dbf60ed5eca3d26305edf01892257049925"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:6d0072fea50feec76a4c418096652f2c3238eaa014b2f94aeb1d56a66b41403f"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:089cf3dbf0cd6c100f02945abeb18484bd1ee57a079aefd52cffd17fba910b88"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:6a074d34ee7a5ce3effbc526b7083ec9731bb3cbf921bbe1d3005d4d2bdb3a63"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-win32.whl", hash = "sha256:421be9fbf0ffe9ffd7a378aafebbf6f4602d564d34be190fc19a193232fd12b1"}, - {file = "MarkupSafe-2.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:fc7b548b17d238737688817ab67deebb30e8073c95749d55538ed473130ec0c7"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:e04e26803c9c3851c931eac40c695602c6295b8d432cbe78609649ad9bd2da8a"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b87db4360013327109564f0e591bd2a3b318547bcef31b468a92ee504d07ae4f"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:99a2a507ed3ac881b975a2976d59f38c19386d128e7a9a18b7df6fff1fd4c1d6"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:56442863ed2b06d19c37f94d999035e15ee982988920e12a5b4ba29b62ad1f77"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3ce11ee3f23f79dbd06fb3d63e2f6af7b12db1d46932fe7bd8afa259a5996603"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:33b74d289bd2f5e527beadcaa3f401e0df0a89927c1559c8566c066fa4248ab7"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:43093fb83d8343aac0b1baa75516da6092f58f41200907ef92448ecab8825135"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8e3dcf21f367459434c18e71b2a9532d96547aef8a871872a5bd69a715c15f96"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-win32.whl", hash = "sha256:d4306c36ca495956b6d568d276ac11fdd9c30a36f1b6eb928070dc5360b22e1c"}, - {file = "MarkupSafe-2.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:46d00d6cfecdde84d40e572d63735ef81423ad31184100411e6e3388d405e247"}, - {file = "MarkupSafe-2.1.1.tar.gz", hash = "sha256:7f91197cc9e48f989d12e4e6fbc46495c446636dfc81b9ccf50bb0ec74b91d4b"}, -] -matplotlib = [ - {file = "matplotlib-3.5.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:03bbb3f5f78836855e127b5dab228d99551ad0642918ccbf3067fcd52ac7ac5e"}, - {file = "matplotlib-3.5.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:49a5938ed6ef9dda560f26ea930a2baae11ea99e1c2080c8714341ecfda72a89"}, - {file = "matplotlib-3.5.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:77157be0fc4469cbfb901270c205e7d8adb3607af23cef8bd11419600647ceed"}, - {file = "matplotlib-3.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5844cea45d804174bf0fac219b4ab50774e504bef477fc10f8f730ce2d623441"}, - {file = "matplotlib-3.5.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c87973ddec10812bddc6c286b88fdd654a666080fbe846a1f7a3b4ba7b11ab78"}, - {file = "matplotlib-3.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a05f2b37222319753a5d43c0a4fd97ed4ff15ab502113e3f2625c26728040cf"}, - {file = "matplotlib-3.5.2-cp310-cp310-win32.whl", hash = "sha256:9776e1a10636ee5f06ca8efe0122c6de57ffe7e8c843e0fb6e001e9d9256ec95"}, - {file = "matplotlib-3.5.2-cp310-cp310-win_amd64.whl", hash = "sha256:b4fedaa5a9aa9ce14001541812849ed1713112651295fdddd640ea6620e6cf98"}, - {file = "matplotlib-3.5.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:ee175a571e692fc8ae8e41ac353c0e07259113f4cb063b0ec769eff9717e84bb"}, - {file = "matplotlib-3.5.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e8bda1088b941ead50caabd682601bece983cadb2283cafff56e8fcddbf7d7f"}, - {file = "matplotlib-3.5.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9480842d5aadb6e754f0b8f4ebeb73065ac8be1855baa93cd082e46e770591e9"}, - {file = "matplotlib-3.5.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:6c623b355d605a81c661546af7f24414165a8a2022cddbe7380a31a4170fa2e9"}, - {file = "matplotlib-3.5.2-cp37-cp37m-win32.whl", hash = "sha256:a91426ae910819383d337ba0dc7971c7cefdaa38599868476d94389a329e599b"}, - {file = "matplotlib-3.5.2-cp37-cp37m-win_amd64.whl", hash = "sha256:c4b82c2ae6d305fcbeb0eb9c93df2602ebd2f174f6e8c8a5d92f9445baa0c1d3"}, - {file = "matplotlib-3.5.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:ebc27ad11df3c1661f4677a7762e57a8a91dd41b466c3605e90717c9a5f90c82"}, - {file = "matplotlib-3.5.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5a32ea6e12e80dedaca2d4795d9ed40f97bfa56e6011e14f31502fdd528b9c89"}, - {file = "matplotlib-3.5.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2a0967d4156adbd0d46db06bc1a877f0370bce28d10206a5071f9ecd6dc60b79"}, - {file = "matplotlib-3.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2b696699386766ef171a259d72b203a3c75d99d03ec383b97fc2054f52e15cf"}, - {file = "matplotlib-3.5.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7f409716119fa39b03da3d9602bd9b41142fab7a0568758cd136cd80b1bf36c8"}, - {file = "matplotlib-3.5.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:b8d3f4e71e26307e8c120b72c16671d70c5cd08ae412355c11254aa8254fb87f"}, - {file = "matplotlib-3.5.2-cp38-cp38-win32.whl", hash = "sha256:b6c63cd01cad0ea8704f1fd586e9dc5777ccedcd42f63cbbaa3eae8dd41172a1"}, - {file = "matplotlib-3.5.2-cp38-cp38-win_amd64.whl", hash = "sha256:75c406c527a3aa07638689586343f4b344fcc7ab1f79c396699eb550cd2b91f7"}, - {file = "matplotlib-3.5.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:4a44cdfdb9d1b2f18b1e7d315eb3843abb097869cd1ef89cfce6a488cd1b5182"}, - {file = "matplotlib-3.5.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3d8e129af95b156b41cb3be0d9a7512cc6d73e2b2109f82108f566dbabdbf377"}, - {file = "matplotlib-3.5.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:364e6bca34edc10a96aa3b1d7cd76eb2eea19a4097198c1b19e89bee47ed5781"}, - {file = "matplotlib-3.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea75df8e567743207e2b479ba3d8843537be1c146d4b1e3e395319a4e1a77fe9"}, - {file = "matplotlib-3.5.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:44c6436868186564450df8fd2fc20ed9daaef5caad699aa04069e87099f9b5a8"}, - {file = "matplotlib-3.5.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:7d7705022df2c42bb02937a2a824f4ec3cca915700dd80dc23916af47ff05f1a"}, - {file = "matplotlib-3.5.2-cp39-cp39-win32.whl", hash = "sha256:ee0b8e586ac07f83bb2950717e66cb305e2859baf6f00a9c39cc576e0ce9629c"}, - {file = "matplotlib-3.5.2-cp39-cp39-win_amd64.whl", hash = "sha256:c772264631e5ae61f0bd41313bbe48e1b9bcc95b974033e1118c9caa1a84d5c6"}, - {file = "matplotlib-3.5.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:751d3815b555dcd6187ad35b21736dc12ce6925fc3fa363bbc6dc0f86f16484f"}, - {file = "matplotlib-3.5.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:31fbc2af27ebb820763f077ec7adc79b5a031c2f3f7af446bd7909674cd59460"}, - {file = "matplotlib-3.5.2-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4fa28ca76ac5c2b2d54bc058b3dad8e22ee85d26d1ee1b116a6fd4d2277b6a04"}, - {file = "matplotlib-3.5.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:24173c23d1bcbaed5bf47b8785d27933a1ac26a5d772200a0f3e0e38f471b001"}, - {file = "matplotlib-3.5.2.tar.gz", hash = "sha256:48cf850ce14fa18067f2d9e0d646763681948487a8080ec0af2686468b4607a2"}, -] -matplotlib-scalebar = [ - {file = "matplotlib-scalebar-0.8.1.tar.gz", hash = "sha256:14887af1093579c5e6afae51a0a1ecc3f715cdbc5c4d7ef59cdeec76ee6bb15d"}, - {file = "matplotlib_scalebar-0.8.1-py2.py3-none-any.whl", hash = "sha256:a8a2f361d4c2d576d087df3092ed95cac2f708f8b40d5d2bb992bd190e740b3a"}, -] -mdit-py-plugins = [ - {file = "mdit-py-plugins-0.3.0.tar.gz", hash = "sha256:ecc24f51eeec6ab7eecc2f9724e8272c2fb191c2e93cf98109120c2cace69750"}, - {file = "mdit_py_plugins-0.3.0-py3-none-any.whl", hash = "sha256:b1279701cee2dbf50e188d3da5f51fee8d78d038cdf99be57c6b9d1aa93b4073"}, -] -mdurl = [ - {file = "mdurl-0.1.1-py3-none-any.whl", hash = "sha256:6a8f6804087b7128040b2fb2ebe242bdc2affaeaa034d5fc9feeed30b443651b"}, - {file = "mdurl-0.1.1.tar.gz", hash = "sha256:f79c9709944df218a4cdb0fcc0b0c7ead2f44594e3e84dc566606f04ad749c20"}, -] -mistune = [ - {file = "mistune-0.8.4-py2.py3-none-any.whl", hash = "sha256:88a1051873018da288eee8538d476dffe1262495144b33ecb586c4ab266bb8d4"}, - {file = "mistune-0.8.4.tar.gz", hash = "sha256:59a3429db53c50b5c6bcc8a07f8848cb00d7dc8bdb431a4ab41920d201d4756e"}, -] -msgpack = [ - {file = "msgpack-1.0.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:4ab251d229d10498e9a2f3b1e68ef64cb393394ec477e3370c457f9430ce9250"}, - {file = "msgpack-1.0.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:112b0f93202d7c0fef0b7810d465fde23c746a2d482e1e2de2aafd2ce1492c88"}, - {file = "msgpack-1.0.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:002b5c72b6cd9b4bafd790f364b8480e859b4712e91f43014fe01e4f957b8467"}, - {file = "msgpack-1.0.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35bc0faa494b0f1d851fd29129b2575b2e26d41d177caacd4206d81502d4c6a6"}, - {file = "msgpack-1.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4733359808c56d5d7756628736061c432ded018e7a1dff2d35a02439043321aa"}, - {file = "msgpack-1.0.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb514ad14edf07a1dbe63761fd30f89ae79b42625731e1ccf5e1f1092950eaa6"}, - {file = "msgpack-1.0.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:c23080fdeec4716aede32b4e0ef7e213c7b1093eede9ee010949f2a418ced6ba"}, - {file = "msgpack-1.0.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:49565b0e3d7896d9ea71d9095df15b7f75a035c49be733051c34762ca95bbf7e"}, - {file = "msgpack-1.0.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:aca0f1644d6b5a73eb3e74d4d64d5d8c6c3d577e753a04c9e9c87d07692c58db"}, - {file = "msgpack-1.0.4-cp310-cp310-win32.whl", hash = "sha256:0dfe3947db5fb9ce52aaea6ca28112a170db9eae75adf9339a1aec434dc954ef"}, - {file = "msgpack-1.0.4-cp310-cp310-win_amd64.whl", hash = "sha256:4dea20515f660aa6b7e964433b1808d098dcfcabbebeaaad240d11f909298075"}, - {file = "msgpack-1.0.4-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:e83f80a7fec1a62cf4e6c9a660e39c7f878f603737a0cdac8c13131d11d97f52"}, - {file = "msgpack-1.0.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c11a48cf5e59026ad7cb0dc29e29a01b5a66a3e333dc11c04f7e991fc5510a9"}, - {file = "msgpack-1.0.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1276e8f34e139aeff1c77a3cefb295598b504ac5314d32c8c3d54d24fadb94c9"}, - {file = "msgpack-1.0.4-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6c9566f2c39ccced0a38d37c26cc3570983b97833c365a6044edef3574a00c08"}, - {file = "msgpack-1.0.4-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:fcb8a47f43acc113e24e910399376f7277cf8508b27e5b88499f053de6b115a8"}, - {file = "msgpack-1.0.4-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:76ee788122de3a68a02ed6f3a16bbcd97bc7c2e39bd4d94be2f1821e7c4a64e6"}, - {file = "msgpack-1.0.4-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:0a68d3ac0104e2d3510de90a1091720157c319ceeb90d74f7b5295a6bee51bae"}, - {file = "msgpack-1.0.4-cp36-cp36m-win32.whl", hash = "sha256:85f279d88d8e833ec015650fd15ae5eddce0791e1e8a59165318f371158efec6"}, - {file = "msgpack-1.0.4-cp36-cp36m-win_amd64.whl", hash = "sha256:c1683841cd4fa45ac427c18854c3ec3cd9b681694caf5bff04edb9387602d661"}, - {file = "msgpack-1.0.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a75dfb03f8b06f4ab093dafe3ddcc2d633259e6c3f74bb1b01996f5d8aa5868c"}, - {file = "msgpack-1.0.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9667bdfdf523c40d2511f0e98a6c9d3603be6b371ae9a238b7ef2dc4e7a427b0"}, - {file = "msgpack-1.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11184bc7e56fd74c00ead4f9cc9a3091d62ecb96e97653add7a879a14b003227"}, - {file = "msgpack-1.0.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ac5bd7901487c4a1dd51a8c58f2632b15d838d07ceedaa5e4c080f7190925bff"}, - {file = "msgpack-1.0.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1e91d641d2bfe91ba4c52039adc5bccf27c335356055825c7f88742c8bb900dd"}, - {file = "msgpack-1.0.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2a2df1b55a78eb5f5b7d2a4bb221cd8363913830145fad05374a80bf0877cb1e"}, - {file = "msgpack-1.0.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:545e3cf0cf74f3e48b470f68ed19551ae6f9722814ea969305794645da091236"}, - {file = "msgpack-1.0.4-cp37-cp37m-win32.whl", hash = "sha256:2cc5ca2712ac0003bcb625c96368fd08a0f86bbc1a5578802512d87bc592fe44"}, - {file = "msgpack-1.0.4-cp37-cp37m-win_amd64.whl", hash = "sha256:eba96145051ccec0ec86611fe9cf693ce55f2a3ce89c06ed307de0e085730ec1"}, - {file = "msgpack-1.0.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:7760f85956c415578c17edb39eed99f9181a48375b0d4a94076d84148cf67b2d"}, - {file = "msgpack-1.0.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:449e57cc1ff18d3b444eb554e44613cffcccb32805d16726a5494038c3b93dab"}, - {file = "msgpack-1.0.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:d603de2b8d2ea3f3bcb2efe286849aa7a81531abc52d8454da12f46235092bcb"}, - {file = "msgpack-1.0.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48f5d88c99f64c456413d74a975bd605a9b0526293218a3b77220a2c15458ba9"}, - {file = "msgpack-1.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6916c78f33602ecf0509cc40379271ba0f9ab572b066bd4bdafd7434dee4bc6e"}, - {file = "msgpack-1.0.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:81fc7ba725464651190b196f3cd848e8553d4d510114a954681fd0b9c479d7e1"}, - {file = "msgpack-1.0.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:d5b5b962221fa2c5d3a7f8133f9abffc114fe218eb4365e40f17732ade576c8e"}, - {file = "msgpack-1.0.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:77ccd2af37f3db0ea59fb280fa2165bf1b096510ba9fe0cc2bf8fa92a22fdb43"}, - {file = "msgpack-1.0.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b17be2478b622939e39b816e0aa8242611cc8d3583d1cd8ec31b249f04623243"}, - {file = "msgpack-1.0.4-cp38-cp38-win32.whl", hash = "sha256:2bb8cdf50dd623392fa75525cce44a65a12a00c98e1e37bf0fb08ddce2ff60d2"}, - {file = "msgpack-1.0.4-cp38-cp38-win_amd64.whl", hash = "sha256:26b8feaca40a90cbe031b03d82b2898bf560027160d3eae1423f4a67654ec5d6"}, - {file = "msgpack-1.0.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:462497af5fd4e0edbb1559c352ad84f6c577ffbbb708566a0abaaa84acd9f3ae"}, - {file = "msgpack-1.0.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2999623886c5c02deefe156e8f869c3b0aaeba14bfc50aa2486a0415178fce55"}, - {file = "msgpack-1.0.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f0029245c51fd9473dc1aede1160b0a29f4a912e6b1dd353fa6d317085b219da"}, - {file = "msgpack-1.0.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed6f7b854a823ea44cf94919ba3f727e230da29feb4a99711433f25800cf747f"}, - {file = "msgpack-1.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0df96d6eaf45ceca04b3f3b4b111b86b33785683d682c655063ef8057d61fd92"}, - {file = "msgpack-1.0.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6a4192b1ab40f8dca3f2877b70e63799d95c62c068c84dc028b40a6cb03ccd0f"}, - {file = "msgpack-1.0.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0e3590f9fb9f7fbc36df366267870e77269c03172d086fa76bb4eba8b2b46624"}, - {file = "msgpack-1.0.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1576bd97527a93c44fa856770197dec00d223b0b9f36ef03f65bac60197cedf8"}, - {file = "msgpack-1.0.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:63e29d6e8c9ca22b21846234913c3466b7e4ee6e422f205a2988083de3b08cae"}, - {file = "msgpack-1.0.4-cp39-cp39-win32.whl", hash = "sha256:fb62ea4b62bfcb0b380d5680f9a4b3f9a2d166d9394e9bbd9666c0ee09a3645c"}, - {file = "msgpack-1.0.4-cp39-cp39-win_amd64.whl", hash = "sha256:4d5834a2a48965a349da1c5a79760d94a1a0172fbb5ab6b5b33cbf8447e109ce"}, - {file = "msgpack-1.0.4.tar.gz", hash = "sha256:f5d869c18f030202eb412f08b28d2afeea553d6613aee89e200d7aca7ef01f5f"}, -] -munch = [ - {file = "munch-2.5.0-py2.py3-none-any.whl", hash = "sha256:6f44af89a2ce4ed04ff8de41f70b226b984db10a91dcc7b9ac2efc1c77022fdd"}, - {file = "munch-2.5.0.tar.gz", hash = "sha256:2d735f6f24d4dba3417fa448cae40c6e896ec1fdab6cdb5e6510999758a4dbd2"}, -] -myst-parser = [ - {file = "myst-parser-0.18.0.tar.gz", hash = "sha256:739a4d96773a8e55a2cacd3941ce46a446ee23dcd6b37e06f73f551ad7821d86"}, - {file = "myst_parser-0.18.0-py3-none-any.whl", hash = "sha256:4965e51918837c13bf1c6f6fe2c6bddddf193148360fbdaefe743a4981358f6a"}, -] -natsort = [ - {file = "natsort-8.1.0-py3-none-any.whl", hash = "sha256:f59988d2f24e77b6b56f8a8f882d5df6b3b637e09e075abc67b486d59fba1a4b"}, - {file = "natsort-8.1.0.tar.gz", hash = "sha256:c7c1f3f27c375719a4dfcab353909fe39f26c2032a062a8c80cc844eaaca0445"}, -] -nbclient = [ - {file = "nbclient-0.6.4-py3-none-any.whl", hash = "sha256:f251bba200a2b401a061dfd700a7a70b5772f664fb49d4a2d3e5536ec0e98c76"}, - {file = "nbclient-0.6.4.tar.gz", hash = "sha256:cdef7757cead1735d2c70cc66095b072dced8a1e6d1c7639ef90cd3e04a11f2e"}, -] -nbconvert = [ - {file = "nbconvert-6.5.0-py3-none-any.whl", hash = "sha256:c56dd0b8978a1811a5654f74c727ff16ca87dd5a43abd435a1c49b840fcd8360"}, - {file = "nbconvert-6.5.0.tar.gz", hash = "sha256:223e46e27abe8596b8aed54301fadbba433b7ffea8196a68fd7b1ff509eee99d"}, -] -nbformat = [ - {file = "nbformat-5.4.0-py3-none-any.whl", hash = "sha256:0d6072aaec95dddc39735c144ee8bbc6589c383fb462e4058abc855348152dad"}, - {file = "nbformat-5.4.0.tar.gz", hash = "sha256:44ba5ca6acb80c5d5a500f1e5b83ede8cbe364d5a495c4c8cf60aaf1ba656501"}, -] -nbsphinx = [ - {file = "nbsphinx-0.8.9-py3-none-any.whl", hash = "sha256:a7d743762249ee6bac3350a91eb3717a6e1c75f239f2c2a85491f9aca5a63be1"}, - {file = "nbsphinx-0.8.9.tar.gz", hash = "sha256:4ade86b2a41f8f41efd3ea99dae84c3368fe8ba3f837d50c8815ce9424c5994f"}, -] -nest-asyncio = [ - {file = "nest_asyncio-1.5.5-py3-none-any.whl", hash = "sha256:b98e3ec1b246135e4642eceffa5a6c23a3ab12c82ff816a92c612d68205813b2"}, - {file = "nest_asyncio-1.5.5.tar.gz", hash = "sha256:e442291cd942698be619823a17a86a5759eabe1f8613084790de189fe9e16d65"}, -] -networkx = [ - {file = "networkx-2.8.4-py3-none-any.whl", hash = "sha256:6933b9b3174a0bdf03c911bb4a1ee43a86ce3edeb813e37e1d4c553b3f4a2c4f"}, - {file = "networkx-2.8.4.tar.gz", hash = "sha256:5e53f027c0d567cf1f884dbb283224df525644e43afd1145d64c9d88a3584762"}, -] -nose = [ - {file = "nose-1.3.7-py2-none-any.whl", hash = "sha256:dadcddc0aefbf99eea214e0f1232b94f2fa9bd98fa8353711dacb112bfcbbb2a"}, - {file = "nose-1.3.7-py3-none-any.whl", hash = "sha256:9ff7c6cc443f8c51994b34a667bbcf45afd6d945be7477b52e97516fd17c53ac"}, - {file = "nose-1.3.7.tar.gz", hash = "sha256:f1bffef9cbc82628f6e7d7b40d7e255aefaa1adb6a1b1d26c69a8b79e6208a98"}, -] -numba = [ - {file = "numba-0.55.2-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:dd05f7c0ce64b6977596aa4e5a44747c6ef414d7989da1c7672337c54381a5ef"}, - {file = "numba-0.55.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e36232eccd172c583b1f021c5c48744c087ae6fc9dc5c5f0dd2cb2286e517bf8"}, - {file = "numba-0.55.2-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:25410557d0deb1d97397b71e142a36772133986a7dd4fe2935786e2dd149245f"}, - {file = "numba-0.55.2-cp310-cp310-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:676c081162cc9403706071c1d1d42e479c0741551ab28096ba13859a2e3e9b80"}, - {file = "numba-0.55.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:2665ef28e900b3a55bf370daa81c12ebc64cd434116accd60c38a95a159a3182"}, - {file = "numba-0.55.2-cp310-cp310-win32.whl", hash = "sha256:d7ac9ea5feef9536ab8bfbbb3ded1a0617ea8794d7547800d535b7857800f996"}, - {file = "numba-0.55.2-cp310-cp310-win_amd64.whl", hash = "sha256:29b89a68af162acf87adeb8fbf01f6bb1effae4711b28146f95108d82e905624"}, - {file = "numba-0.55.2-cp37-cp37m-macosx_10_14_x86_64.whl", hash = "sha256:6e0f9b5d1c8ea1bdef39b0ad921a9bbf0cc4a88e76d722d756c68f1653787c35"}, - {file = "numba-0.55.2-cp37-cp37m-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:135fb7694928f9f57b4ff5b1be58f20f4771fedd1680636a9affdead96051959"}, - {file = "numba-0.55.2-cp37-cp37m-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:de1f93bd7e2d431451aec20a52ac651a020e98a4ba46797fad860bba338a7e64"}, - {file = "numba-0.55.2-cp37-cp37m-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:3eaf53e73e700370163e58257257299ac0d46fea4f244bf5476e4635bc31d808"}, - {file = "numba-0.55.2-cp37-cp37m-win32.whl", hash = "sha256:da4485e0f0b9562f39c78887149b33d13d787aa696553c9257b95575122905ed"}, - {file = "numba-0.55.2-cp37-cp37m-win_amd64.whl", hash = "sha256:5559c6684bf6cce7a22c656d8fef3e7c38ff5fec5153abef5955f6f7cae9f102"}, - {file = "numba-0.55.2-cp38-cp38-macosx_10_14_x86_64.whl", hash = "sha256:a85779adc5234f7857615d1bd2c7b514314521f9f0163c33017707ed9816e6e6"}, - {file = "numba-0.55.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:16a52a0641c342b09b39f6762dcbe3846e44aa9baaaf4703b2ca42a3aee7346f"}, - {file = "numba-0.55.2-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:46715180f87d5a1f3e4077d207ade66c96fc01159f5b7d49cee2d6ffb9e6539f"}, - {file = "numba-0.55.2-cp38-cp38-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:d1c3cef3289fefb5673ceae32024ab5a8a08d4f4380bcb8348d01f1ba570ccff"}, - {file = "numba-0.55.2-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:68bb33eaef1d6155fc1ae4fa6c915b8a42e5052c89a58742254eaad072eab118"}, - {file = "numba-0.55.2-cp38-cp38-win32.whl", hash = "sha256:dfddd633141608a09cbce275fb9fe7aa514918625ace20b0e587898a2d93c030"}, - {file = "numba-0.55.2-cp38-cp38-win_amd64.whl", hash = "sha256:a669212aa66ffee4ad778016ac3819add33f9bcb96b4c384d3099531dd175085"}, - {file = "numba-0.55.2-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:dcde1a1a3a430fb5f83c7e095b0b6ac7adb5595f50a3ee05babb2964f31613c4"}, - {file = "numba-0.55.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:69b2e823efa40d32b259f5c094476dde2226b92032f17015d8cd7c10472654ce"}, - {file = "numba-0.55.2-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:20de0139d2267c8f0e2470d4f88540446cd1bf40de0f29f31b7ab9bf25d49b45"}, - {file = "numba-0.55.2-cp39-cp39-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:09ff4d690abb05ffbb8a29a96d1cf35b46887a26796d3670de104beeec73d639"}, - {file = "numba-0.55.2-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:1105449247f338e49d63eb04a4aaa5c440bb5435df00f718c8e6e7afad841bb0"}, - {file = "numba-0.55.2-cp39-cp39-win32.whl", hash = "sha256:32649584144c35ced239937ab2c416ab22bbc1490ef8d90609c30fff9f6aa1b8"}, - {file = "numba-0.55.2-cp39-cp39-win_amd64.whl", hash = "sha256:8d5760a1e6a48d98d6b9cf774e4d2a64813d981cca60d7b7356af61195a6ca17"}, - {file = "numba-0.55.2.tar.gz", hash = "sha256:e428d9e11d9ba592849ccc9f7a009003eb7d30612007e365afe743ce7118c6f4"}, -] -numpy = [ - {file = "numpy-1.22.4-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:ba9ead61dfb5d971d77b6c131a9dbee62294a932bf6a356e48c75ae684e635b3"}, - {file = "numpy-1.22.4-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:1ce7ab2053e36c0a71e7a13a7475bd3b1f54750b4b433adc96313e127b870887"}, - {file = "numpy-1.22.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7228ad13744f63575b3a972d7ee4fd61815b2879998e70930d4ccf9ec721dce0"}, - {file = "numpy-1.22.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:43a8ca7391b626b4c4fe20aefe79fec683279e31e7c79716863b4b25021e0e74"}, - {file = "numpy-1.22.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a911e317e8c826ea632205e63ed8507e0dc877dcdc49744584dfc363df9ca08c"}, - {file = "numpy-1.22.4-cp310-cp310-win32.whl", hash = "sha256:9ce7df0abeabe7fbd8ccbf343dc0db72f68549856b863ae3dd580255d009648e"}, - {file = "numpy-1.22.4-cp310-cp310-win_amd64.whl", hash = "sha256:3e1ffa4748168e1cc8d3cde93f006fe92b5421396221a02f2274aab6ac83b077"}, - {file = "numpy-1.22.4-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:59d55e634968b8f77d3fd674a3cf0b96e85147cd6556ec64ade018f27e9479e1"}, - {file = "numpy-1.22.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c1d937820db6e43bec43e8d016b9b3165dcb42892ea9f106c70fb13d430ffe72"}, - {file = "numpy-1.22.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4c5d5eb2ec8da0b4f50c9a843393971f31f1d60be87e0fb0917a49133d257d6"}, - {file = "numpy-1.22.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:64f56fc53a2d18b1924abd15745e30d82a5782b2cab3429aceecc6875bd5add0"}, - {file = "numpy-1.22.4-cp38-cp38-win32.whl", hash = "sha256:fb7a980c81dd932381f8228a426df8aeb70d59bbcda2af075b627bbc50207cba"}, - {file = "numpy-1.22.4-cp38-cp38-win_amd64.whl", hash = "sha256:e96d7f3096a36c8754207ab89d4b3282ba7b49ea140e4973591852c77d09eb76"}, - {file = "numpy-1.22.4-cp39-cp39-macosx_10_14_x86_64.whl", hash = "sha256:4c6036521f11a731ce0648f10c18ae66d7143865f19f7299943c985cdc95afb5"}, - {file = "numpy-1.22.4-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:b89bf9b94b3d624e7bb480344e91f68c1c6c75f026ed6755955117de00917a7c"}, - {file = "numpy-1.22.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2d487e06ecbf1dc2f18e7efce82ded4f705f4bd0cd02677ffccfb39e5c284c7e"}, - {file = "numpy-1.22.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3eb268dbd5cfaffd9448113539e44e2dd1c5ca9ce25576f7c04a5453edc26fa"}, - {file = "numpy-1.22.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:37431a77ceb9307c28382c9773da9f306435135fae6b80b62a11c53cfedd8802"}, - {file = "numpy-1.22.4-cp39-cp39-win32.whl", hash = "sha256:cc7f00008eb7d3f2489fca6f334ec19ca63e31371be28fd5dad955b16ec285bd"}, - {file = "numpy-1.22.4-cp39-cp39-win_amd64.whl", hash = "sha256:f0725df166cf4785c0bc4cbfb320203182b1ecd30fee6e541c8752a92df6aa32"}, - {file = "numpy-1.22.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0791fbd1e43bf74b3502133207e378901272f3c156c4df4954cad833b1380207"}, - {file = "numpy-1.22.4.zip", hash = "sha256:425b390e4619f58d8526b3dcf656dde069133ae5c240229821f01b5f44ea07af"}, -] -openpyxl = [ - {file = "openpyxl-3.0.10-py2.py3-none-any.whl", hash = "sha256:0ab6d25d01799f97a9464630abacbb34aafecdcaa0ef3cba6d6b3499867d0355"}, - {file = "openpyxl-3.0.10.tar.gz", hash = "sha256:e47805627aebcf860edb4edf7987b1309c1b3632f3750538ed962bbcc3bd7449"}, -] -packaging = [ - {file = "packaging-21.3-py3-none-any.whl", hash = "sha256:ef103e05f519cdc783ae24ea4e2e0f508a9c99b2d4969652eed6a2e1ea5bd522"}, - {file = "packaging-21.3.tar.gz", hash = "sha256:dd47c42927d89ab911e606518907cc2d3a1f38bbd026385970643f9c5b8ecfeb"}, -] -pandas = [ - {file = "pandas-1.2.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1102d719038e134e648e7920672188a00375f3908f0383fd3b202fbb9d2c3a95"}, - {file = "pandas-1.2.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:38e7486410de23069392bdf1dc7297ae75d2d67531750753f3149c871cd1c6e3"}, - {file = "pandas-1.2.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:94ca6ea3f46f44a979a38a4d5a70a88cee734f7248d7aeeed202e6b3ba485af1"}, - {file = "pandas-1.2.5-cp37-cp37m-win32.whl", hash = "sha256:821d92466fcd2826656374a9b6fe4f2ec2ba5e370cce71d5a990577929d948df"}, - {file = "pandas-1.2.5-cp37-cp37m-win_amd64.whl", hash = "sha256:0dbd125b0e44e5068163cbc9080a00db1756a5e36309329ae14fd259747f2300"}, - {file = "pandas-1.2.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7b09293c7119ab22ab3f7f086f813ac2acbfa3bcaaaeb650f4cddfb5b9fa9be4"}, - {file = "pandas-1.2.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc9215dd1dd836ff26b896654e66b2dfcf4bbb18aa4c1089a79bab527b665a90"}, - {file = "pandas-1.2.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e36515163829e0e95a6af10820f178dd8768102482c01872bff8ae592e508e58"}, - {file = "pandas-1.2.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:0c34b89215f984a9e4956446e0a29330d720085efa08ea72022387ee37d8b373"}, - {file = "pandas-1.2.5-cp38-cp38-win32.whl", hash = "sha256:f20e4b8a7909f5a0c0a9e745091e3ea18b45af9f73496a4d498688badbdac7ea"}, - {file = "pandas-1.2.5-cp38-cp38-win_amd64.whl", hash = "sha256:9244fb0904512b074d8c6362fb13aac1da6c4db94372760ddb2565c620240264"}, - {file = "pandas-1.2.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c862cd72353921c102166784fc4db749f1c3b691dd017fc36d9df2c67a9afe4e"}, - {file = "pandas-1.2.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9e6edddeac9a8e473391d2d2067bb3c9dc7ad79fd137af26a39ee425c2b4c78"}, - {file = "pandas-1.2.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a67227e17236442c6bc31c02cb713b5277b26eee204eac14b5aecba52492e3a3"}, - {file = "pandas-1.2.5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:4bfbf62b00460f78a8bc4407112965c5ab44324f34551e8e1f4cac271a07706c"}, - {file = "pandas-1.2.5-cp39-cp39-win32.whl", hash = "sha256:25fc8ef6c6beb51c9224284a1ad89dfb591832f23ceff78845f182de35c52356"}, - {file = "pandas-1.2.5-cp39-cp39-win_amd64.whl", hash = "sha256:78de96c1174bcfdbe8dece9c38c2d7994e407fd8bb62146bb46c61294bcc06ef"}, - {file = "pandas-1.2.5.tar.gz", hash = "sha256:14abb8ea73fce8aebbb1fb44bec809163f1c55241bcc1db91c2c780e97265033"}, -] -pandocfilters = [ - {file = "pandocfilters-1.5.0-py2.py3-none-any.whl", hash = "sha256:33aae3f25fd1a026079f5d27bdd52496f0e0803b3469282162bafdcbdf6ef14f"}, - {file = "pandocfilters-1.5.0.tar.gz", hash = "sha256:0b679503337d233b4339a817bfc8c50064e2eff681314376a47cb582305a7a38"}, -] -partd = [ - {file = "partd-1.2.0-py3-none-any.whl", hash = "sha256:5c3a5d70da89485c27916328dc1e26232d0e270771bd4caef4a5124b6a457288"}, - {file = "partd-1.2.0.tar.gz", hash = "sha256:aa67897b84d522dcbc86a98b942afab8c6aa2f7f677d904a616b74ef5ddbc3eb"}, -] -patsy = [ - {file = "patsy-0.5.2-py2.py3-none-any.whl", hash = "sha256:cc80955ae8c13a7e7c4051eda7b277c8f909f50bc7d73e124bc38e2ee3d95041"}, - {file = "patsy-0.5.2.tar.gz", hash = "sha256:5053de7804676aba62783dbb0f23a2b3d74e35e5bfa238b88b7cbf148a38b69d"}, -] -pillow = [ - {file = "Pillow-9.1.1-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:42dfefbef90eb67c10c45a73a9bc1599d4dac920f7dfcbf4ec6b80cb620757fe"}, - {file = "Pillow-9.1.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ffde4c6fabb52891d81606411cbfaf77756e3b561b566efd270b3ed3791fde4e"}, - {file = "Pillow-9.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c857532c719fb30fafabd2371ce9b7031812ff3889d75273827633bca0c4602"}, - {file = "Pillow-9.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:59789a7d06c742e9d13b883d5e3569188c16acb02eeed2510fd3bfdbc1bd1530"}, - {file = "Pillow-9.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4d45dbe4b21a9679c3e8b3f7f4f42a45a7d3ddff8a4a16109dff0e1da30a35b2"}, - {file = "Pillow-9.1.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e9ed59d1b6ee837f4515b9584f3d26cf0388b742a11ecdae0d9237a94505d03a"}, - {file = "Pillow-9.1.1-cp310-cp310-win32.whl", hash = "sha256:b3fe2ff1e1715d4475d7e2c3e8dabd7c025f4410f79513b4ff2de3d51ce0fa9c"}, - {file = "Pillow-9.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:5b650dbbc0969a4e226d98a0b440c2f07a850896aed9266b6fedc0f7e7834108"}, - {file = "Pillow-9.1.1-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:0b4d5ad2cd3a1f0d1df882d926b37dbb2ab6c823ae21d041b46910c8f8cd844b"}, - {file = "Pillow-9.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9370d6744d379f2de5d7fa95cdbd3a4d92f0b0ef29609b4b1687f16bc197063d"}, - {file = "Pillow-9.1.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b761727ed7d593e49671d1827044b942dd2f4caae6e51bab144d4accf8244a84"}, - {file = "Pillow-9.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8a66fe50386162df2da701b3722781cbe90ce043e7d53c1fd6bd801bca6b48d4"}, - {file = "Pillow-9.1.1-cp37-cp37m-win32.whl", hash = "sha256:2b291cab8a888658d72b575a03e340509b6b050b62db1f5539dd5cd18fd50578"}, - {file = "Pillow-9.1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:1d4331aeb12f6b3791911a6da82de72257a99ad99726ed6b63f481c0184b6fb9"}, - {file = "Pillow-9.1.1-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8844217cdf66eabe39567118f229e275f0727e9195635a15e0e4b9227458daaf"}, - {file = "Pillow-9.1.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b6617221ff08fbd3b7a811950b5c3f9367f6e941b86259843eab77c8e3d2b56b"}, - {file = "Pillow-9.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20d514c989fa28e73a5adbddd7a171afa5824710d0ab06d4e1234195d2a2e546"}, - {file = "Pillow-9.1.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:088df396b047477dd1bbc7de6e22f58400dae2f21310d9e2ec2933b2ef7dfa4f"}, - {file = "Pillow-9.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53c27bd452e0f1bc4bfed07ceb235663a1df7c74df08e37fd6b03eb89454946a"}, - {file = "Pillow-9.1.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:3f6c1716c473ebd1649663bf3b42702d0d53e27af8b64642be0dd3598c761fb1"}, - {file = "Pillow-9.1.1-cp38-cp38-win32.whl", hash = "sha256:c67db410508b9de9c4694c57ed754b65a460e4812126e87f5052ecf23a011a54"}, - {file = "Pillow-9.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:f054b020c4d7e9786ae0404278ea318768eb123403b18453e28e47cdb7a0a4bf"}, - {file = "Pillow-9.1.1-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:c17770a62a71718a74b7548098a74cd6880be16bcfff5f937f900ead90ca8e92"}, - {file = "Pillow-9.1.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f3f6a6034140e9e17e9abc175fc7a266a6e63652028e157750bd98e804a8ed9a"}, - {file = "Pillow-9.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f372d0f08eff1475ef426344efe42493f71f377ec52237bf153c5713de987251"}, - {file = "Pillow-9.1.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:09e67ef6e430f90caa093528bd758b0616f8165e57ed8d8ce014ae32df6a831d"}, - {file = "Pillow-9.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66daa16952d5bf0c9d5389c5e9df562922a59bd16d77e2a276e575d32e38afd1"}, - {file = "Pillow-9.1.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d78ca526a559fb84faaaf84da2dd4addef5edb109db8b81677c0bb1aad342601"}, - {file = "Pillow-9.1.1-cp39-cp39-win32.whl", hash = "sha256:55e74faf8359ddda43fee01bffbc5bd99d96ea508d8a08c527099e84eb708f45"}, - {file = "Pillow-9.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:7c150dbbb4a94ea4825d1e5f2c5501af7141ea95825fadd7829f9b11c97aaf6c"}, - {file = "Pillow-9.1.1-pp37-pypy37_pp73-macosx_10_10_x86_64.whl", hash = "sha256:769a7f131a2f43752455cc72f9f7a093c3ff3856bf976c5fb53a59d0ccc704f6"}, - {file = "Pillow-9.1.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:488f3383cf5159907d48d32957ac6f9ea85ccdcc296c14eca1a4e396ecc32098"}, - {file = "Pillow-9.1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b525a356680022b0af53385944026d3486fc8c013638cf9900eb87c866afb4c"}, - {file = "Pillow-9.1.1-pp38-pypy38_pp73-macosx_10_10_x86_64.whl", hash = "sha256:6e760cf01259a1c0a50f3c845f9cad1af30577fd8b670339b1659c6d0e7a41dd"}, - {file = "Pillow-9.1.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a4165205a13b16a29e1ac57efeee6be2dfd5b5408122d59ef2145bc3239fa340"}, - {file = "Pillow-9.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:937a54e5694684f74dcbf6e24cc453bfc5b33940216ddd8f4cd8f0f79167f765"}, - {file = "Pillow-9.1.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:baf3be0b9446a4083cc0c5bb9f9c964034be5374b5bc09757be89f5d2fa247b8"}, - {file = "Pillow-9.1.1.tar.gz", hash = "sha256:7502539939b53d7565f3d11d87c78e7ec900d3c72945d4ee0e2f250d598309a0"}, -] -psutil = [ - {file = "psutil-5.9.1-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:799759d809c31aab5fe4579e50addf84565e71c1dc9f1c31258f159ff70d3f87"}, - {file = "psutil-5.9.1-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:9272167b5f5fbfe16945be3db475b3ce8d792386907e673a209da686176552af"}, - {file = "psutil-5.9.1-cp27-cp27m-win32.whl", hash = "sha256:0904727e0b0a038830b019551cf3204dd48ef5c6868adc776e06e93d615fc5fc"}, - {file = "psutil-5.9.1-cp27-cp27m-win_amd64.whl", hash = "sha256:e7e10454cb1ab62cc6ce776e1c135a64045a11ec4c6d254d3f7689c16eb3efd2"}, - {file = "psutil-5.9.1-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:56960b9e8edcca1456f8c86a196f0c3d8e3e361320071c93378d41445ffd28b0"}, - {file = "psutil-5.9.1-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:44d1826150d49ffd62035785a9e2c56afcea66e55b43b8b630d7706276e87f22"}, - {file = "psutil-5.9.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c7be9d7f5b0d206f0bbc3794b8e16fb7dbc53ec9e40bbe8787c6f2d38efcf6c9"}, - {file = "psutil-5.9.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd9246e4cdd5b554a2ddd97c157e292ac11ef3e7af25ac56b08b455c829dca8"}, - {file = "psutil-5.9.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:29a442e25fab1f4d05e2655bb1b8ab6887981838d22effa2396d584b740194de"}, - {file = "psutil-5.9.1-cp310-cp310-win32.whl", hash = "sha256:20b27771b077dcaa0de1de3ad52d22538fe101f9946d6dc7869e6f694f079329"}, - {file = "psutil-5.9.1-cp310-cp310-win_amd64.whl", hash = "sha256:58678bbadae12e0db55186dc58f2888839228ac9f41cc7848853539b70490021"}, - {file = "psutil-5.9.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:3a76ad658641172d9c6e593de6fe248ddde825b5866464c3b2ee26c35da9d237"}, - {file = "psutil-5.9.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a6a11e48cb93a5fa606306493f439b4aa7c56cb03fc9ace7f6bfa21aaf07c453"}, - {file = "psutil-5.9.1-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:068935df39055bf27a29824b95c801c7a5130f118b806eee663cad28dca97685"}, - {file = "psutil-5.9.1-cp36-cp36m-win32.whl", hash = "sha256:0f15a19a05f39a09327345bc279c1ba4a8cfb0172cc0d3c7f7d16c813b2e7d36"}, - {file = "psutil-5.9.1-cp36-cp36m-win_amd64.whl", hash = "sha256:db417f0865f90bdc07fa30e1aadc69b6f4cad7f86324b02aa842034efe8d8c4d"}, - {file = "psutil-5.9.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:91c7ff2a40c373d0cc9121d54bc5f31c4fa09c346528e6a08d1845bce5771ffc"}, - {file = "psutil-5.9.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fea896b54f3a4ae6f790ac1d017101252c93f6fe075d0e7571543510f11d2676"}, - {file = "psutil-5.9.1-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3054e923204b8e9c23a55b23b6df73a8089ae1d075cb0bf711d3e9da1724ded4"}, - {file = "psutil-5.9.1-cp37-cp37m-win32.whl", hash = "sha256:d2d006286fbcb60f0b391741f520862e9b69f4019b4d738a2a45728c7e952f1b"}, - {file = "psutil-5.9.1-cp37-cp37m-win_amd64.whl", hash = "sha256:b14ee12da9338f5e5b3a3ef7ca58b3cba30f5b66f7662159762932e6d0b8f680"}, - {file = "psutil-5.9.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:19f36c16012ba9cfc742604df189f2f28d2720e23ff7d1e81602dbe066be9fd1"}, - {file = "psutil-5.9.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:944c4b4b82dc4a1b805329c980f270f170fdc9945464223f2ec8e57563139cf4"}, - {file = "psutil-5.9.1-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b6750a73a9c4a4e689490ccb862d53c7b976a2a35c4e1846d049dcc3f17d83b"}, - {file = "psutil-5.9.1-cp38-cp38-win32.whl", hash = "sha256:a8746bfe4e8f659528c5c7e9af5090c5a7d252f32b2e859c584ef7d8efb1e689"}, - {file = "psutil-5.9.1-cp38-cp38-win_amd64.whl", hash = "sha256:79c9108d9aa7fa6fba6e668b61b82facc067a6b81517cab34d07a84aa89f3df0"}, - {file = "psutil-5.9.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:28976df6c64ddd6320d281128817f32c29b539a52bdae5e192537bc338a9ec81"}, - {file = "psutil-5.9.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b88f75005586131276634027f4219d06e0561292be8bd6bc7f2f00bdabd63c4e"}, - {file = "psutil-5.9.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:645bd4f7bb5b8633803e0b6746ff1628724668681a434482546887d22c7a9537"}, - {file = "psutil-5.9.1-cp39-cp39-win32.whl", hash = "sha256:32c52611756096ae91f5d1499fe6c53b86f4a9ada147ee42db4991ba1520e574"}, - {file = "psutil-5.9.1-cp39-cp39-win_amd64.whl", hash = "sha256:f65f9a46d984b8cd9b3750c2bdb419b2996895b005aefa6cbaba9a143b1ce2c5"}, - {file = "psutil-5.9.1.tar.gz", hash = "sha256:57f1819b5d9e95cdfb0c881a8a5b7d542ed0b7c522d575706a80bedc848c8954"}, -] -py = [ - {file = "py-1.11.0-py2.py3-none-any.whl", hash = "sha256:607c53218732647dff4acdfcd50cb62615cedf612e72d1724fb1a0cc6405b378"}, - {file = "py-1.11.0.tar.gz", hash = "sha256:51c75c4126074b472f746a24399ad32f6053d1b34b68d2fa41e558e6f4a98719"}, -] -pycparser = [ - {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, - {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, -] -pydata-sphinx-theme = [ - {file = "pydata_sphinx_theme-0.8.1-py3-none-any.whl", hash = "sha256:af2c99cb0b43d95247b1563860942ba75d7f1596360594fce510caaf8c4fcc16"}, - {file = "pydata_sphinx_theme-0.8.1.tar.gz", hash = "sha256:96165702253917ece13dd895e23b96ee6dce422dcc144d560806067852fe1fed"}, -] -pyerfa = [ - {file = "pyerfa-2.0.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:278832de7803f2fb0ef4b14263200f98dfdb3eaa78dc63835d93796fd8fc42c6"}, - {file = "pyerfa-2.0.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:629248cebc8626a52e80f69d4e2f30cc6e751f57803f5ba7ec99edd09785d181"}, - {file = "pyerfa-2.0.0.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:3285d95dfe398a931a633da961f6f1c0b8690f2a3b1c510a4efe639f784cd9c7"}, - {file = "pyerfa-2.0.0.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:177f50f0e8354f1a7115c2d4784668b365f1cc2f2c7d1e2f4ddf354160559b32"}, - {file = "pyerfa-2.0.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:041939a7554a98b72885904ffddd8882567191bee62358727679448480174c31"}, - {file = "pyerfa-2.0.0.1-cp310-cp310-win32.whl", hash = "sha256:f9e149bc3d423ae891f6587c1383fd471ae07744b88152e66b5e9f64a8bc9006"}, - {file = "pyerfa-2.0.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:f00dc4fc48a16eb39fd0121f2f06c03ee762b79a207cc5b0bc17d94191b51302"}, - {file = "pyerfa-2.0.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:1ba3668e1e181a678ce788d23a4f8666aabd8518f77fdde5157ba4744bc73d4a"}, - {file = "pyerfa-2.0.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b8f08f6e6d75a261bb92b707bea19eba2e46a8fcbfb499b789f3eb0d0352ea00"}, - {file = "pyerfa-2.0.0.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:da89304d6b25ac056e470f44f85770b04c9674eced07a7f93b5eb0ce1edaabd9"}, - {file = "pyerfa-2.0.0.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:36738ba75e7a69e0ea6a7e96a5d33a852816427e7e94e7089c188ef920b02669"}, - {file = "pyerfa-2.0.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:5c077aed4ccd585c1fe2f96ada8edb66e9d27b4ae8ff13ea2783283b298ba0c6"}, - {file = "pyerfa-2.0.0.1-cp37-cp37m-win32.whl", hash = "sha256:0833f8ebba9f84a19a04ee5ca5aa90be75729abfbb8328e7a6d89ed1b04e058c"}, - {file = "pyerfa-2.0.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:e86c08c9c0b75e448818473c6d709e3887a439c05a1aa34042d26774251422b7"}, - {file = "pyerfa-2.0.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b935fa9d10dfd7206760859236640c835aa652609c0ae8a6584593324eb6f318"}, - {file = "pyerfa-2.0.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:67711a748821c5d91f7a8907b9125094dfc3e5ab6a6b7ad8e207fd6afbe6b37f"}, - {file = "pyerfa-2.0.0.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d2c10838241aaf17279468dcc731cb2c09bfb7dd7b340c0f527fd70c7c9e53d1"}, - {file = "pyerfa-2.0.0.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:37249e1e2b378d1f56e9379e4bb8f2cf87645c160a8a3e92166a1b7bb7ad7ea6"}, - {file = "pyerfa-2.0.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:f76fb4b64a87da2af9d0b6b79cc25e1ecc5b4143b2b3c8c9f10b221748c5db4d"}, - {file = "pyerfa-2.0.0.1-cp38-cp38-win32.whl", hash = "sha256:486e672c52bf58eab61140968660ac7fb3b756116b53c26c334ae95dadd943ee"}, - {file = "pyerfa-2.0.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:d603f1e8123f98a0593433aa6dad4ba03f0b0ceef4cb3e96f9a69aa7ab8d5c61"}, - {file = "pyerfa-2.0.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ef5590b2075c50395b958f102988e519e339d96509dfdca0360f26dde94c47e7"}, - {file = "pyerfa-2.0.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c7ca8c98842f1ae10c1fbcea0e03a41ddc13456da88da2dc9b8335a8c414d7a3"}, - {file = "pyerfa-2.0.0.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d3e7dedce1d7e4e044f6f81d192b1f6b373c8ad6716aa8721ec6d3cf4d36f5f3"}, - {file = "pyerfa-2.0.0.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:690116a6026ee84ce5fec794c9e21bdc8c0ac8345d6722323810181486745068"}, - {file = "pyerfa-2.0.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:da5ee24eaf5e5f841f36885ea16461800b7bea11df5b657bcff85d7a7f51d2d8"}, - {file = "pyerfa-2.0.0.1-cp39-cp39-win32.whl", hash = "sha256:7895b7e6f3bc36442d1969bf3bda5a4c3b661be7a5a468798369cbd5d81023d8"}, - {file = "pyerfa-2.0.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:63a83c35cea8c5d50d53c18089f1e625c0ffc59a7a5b8d44e0f1b3ec5288f183"}, - {file = "pyerfa-2.0.0.1.tar.gz", hash = "sha256:2fd4637ffe2c1e6ede7482c13f583ba7c73119d78bef90175448ce506a0ede30"}, -] -pygeos = [ - {file = "pygeos-0.12.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e3593360f1a93d2a6fe1ea75fa84882186bd3851d187e4c4bbb586495c748e3d"}, - {file = "pygeos-0.12.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ec4112b69823866fa966ec4869e1b51b6560d892c65c20b3fb065266519046e2"}, - {file = "pygeos-0.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:75b5b0aefffb6b7747df299414df4f2e160e3a8993d2b6a86b805fb5b0196f13"}, - {file = "pygeos-0.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26fae3eabb83a15348c2c3f78892114aca9bc4efaa342ab2fa3fa39a85e05dc5"}, - {file = "pygeos-0.12.0-cp310-cp310-win_amd64.whl", hash = "sha256:b4ec8fe577ca7ba6dd046481cdb736f99961216fcb54c84211287a10d1158459"}, - {file = "pygeos-0.12.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:6db68dc4583c88222d32cc624622234a97080b3c4650f0c0e12987664d49f374"}, - {file = "pygeos-0.12.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da856315a4047d581300d860dd2aa01438e64121570bed46c81ad0a90f477db0"}, - {file = "pygeos-0.12.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3cf6d734aea07f04c7644ae24e303a447e96ea123ea524ab309e492ca683240e"}, - {file = "pygeos-0.12.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:12e06ec4417453f1a95d36b8ba8822569c30f6938dd4a7bac97433cab641b61f"}, - {file = "pygeos-0.12.0-cp36-cp36m-win32.whl", hash = "sha256:ea7f3ea9c76f8c94ed9b360b4d6249c44d5bc48c8db5cb3a5d4b017e51d1bd8a"}, - {file = "pygeos-0.12.0-cp36-cp36m-win_amd64.whl", hash = "sha256:a6cf496887f25b99427624399bcd07107660e6f9135466c33dc60ad9bd4c9ebe"}, - {file = "pygeos-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:f155f268676ff7b20a553a542a436be0f8df14233c873facc80214d836d6463b"}, - {file = "pygeos-0.12.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f74abd81487839532c7110721f3b1450d0c6bcfb5e18c45d604ddeb75ec99f86"}, - {file = "pygeos-0.12.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac4ddfbe548d8a3e93732577b8a6d4df071f038338f6c400466b3c2bfe3dc78"}, - {file = "pygeos-0.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:504a03330147d2bb3309f291f4333db892cdba40a66ac4f3db8a2672dff7cf4f"}, - {file = "pygeos-0.12.0-cp37-cp37m-win32.whl", hash = "sha256:e3bcfb55e966aea26ff8e9b8fd314cee618c363f639e83b1eaaefb66bc97e7b0"}, - {file = "pygeos-0.12.0-cp37-cp37m-win_amd64.whl", hash = "sha256:835b7b1b2ef44453ff9d759dd67ee17fb89a52d8cdbd4d1655bf0be6ccfd90c3"}, - {file = "pygeos-0.12.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:60d103b4c099940ad73f0b193f65dfc77f957646451b8a399e4f1f5835c57ab6"}, - {file = "pygeos-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5bc1b9a548848f9c69c913eca8ab0bb9164b35a28da51f86fcc0887c553bd863"}, - {file = "pygeos-0.12.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:11cb186f6cb9a2453a990a3e9894f861d308c574170d1c6f55a598cb11b87579"}, - {file = "pygeos-0.12.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b8fcb175645f57d7a6fa153a1582f9dbf625bb69c55267207b1bc8d2b983013b"}, - {file = "pygeos-0.12.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2453c07c9b8a24054f897ed56e8046c7dd743939f7f5d6637fdeafdccc411f29"}, - {file = "pygeos-0.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:962df97f937d6656ce9293e7072318e99860b0d41f61df9017551855a8bc188e"}, - {file = "pygeos-0.12.0-cp38-cp38-win32.whl", hash = "sha256:d72e3691e47f44b49d3a23f05bb55eca34ed28b0e7b1b4aeb50207a95ae83f8f"}, - {file = "pygeos-0.12.0-cp38-cp38-win_amd64.whl", hash = "sha256:41119e394ea90bf8f697613f530cf92c77ab98346c19cb19beba33a82fd5b91d"}, - {file = "pygeos-0.12.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:dfad4c0a4b60861f8e571ca409ce128859d26e1ac26a15ee071cf1f222431fdd"}, - {file = "pygeos-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:aeaf1f9ae45cf35a25ccdeb2b083e057b31d98cf9351bfc42a59352130ff5c31"}, - {file = "pygeos-0.12.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:59971b44e3b8f61e96b159acdc5f9347b94766a4efb94af7b926b1c4958b60d4"}, - {file = "pygeos-0.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:efcbd52e5602d758b1ff42e67b91b33b1599667b478d0be9c13e17b286cbfcf0"}, - {file = "pygeos-0.12.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:47e7b2614d8982f841e33cc1f18d39b7a654d4d7958d456e4765ff4a9c76589b"}, - {file = "pygeos-0.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f045632a940905c2f380544450bbcd48556b529bdfb9320aac777d90990fc25"}, - {file = "pygeos-0.12.0-cp39-cp39-win32.whl", hash = "sha256:d2fefb3a9cf96d1ee4841772464e82b2ae3a8ddf3caf14ecb04c5fcdae6a7248"}, - {file = "pygeos-0.12.0-cp39-cp39-win_amd64.whl", hash = "sha256:25b94e8bc755a8d3e50661995556b2c27d253bfdd55aa719ea3c202de44a9569"}, - {file = "pygeos-0.12.0.tar.gz", hash = "sha256:3c41542ef67c66015f443ae3e6e683503a8a221f9c24fb2380f6ae42aed1600a"}, -] -pygments = [ - {file = "Pygments-2.12.0-py3-none-any.whl", hash = "sha256:dc9c10fb40944260f6ed4c688ece0cd2048414940f1cea51b8b226318411c519"}, - {file = "Pygments-2.12.0.tar.gz", hash = "sha256:5eb116118f9612ff1ee89ac96437bb6b49e8f04d8a13b514ba26f620208e26eb"}, -] -pynndescent = [ - {file = "pynndescent-0.5.7.tar.gz", hash = "sha256:ecb395255fa36a748b5870b4ba0300ea0f7da8b1964864b8edd62577a84dfd7d"}, -] -pyparsing = [ - {file = "pyparsing-3.0.9-py3-none-any.whl", hash = "sha256:5026bae9a10eeaefb61dab2f09052b9f4307d44aee4eda64b309723d8d206bbc"}, - {file = "pyparsing-3.0.9.tar.gz", hash = "sha256:2b020ecf7d21b687f219b71ecad3631f644a47f01403fa1d1036b0c6416d70fb"}, -] -pyproj = [ - {file = "pyproj-3.3.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:473961faef7a9fd723c5d432f65220ea6ab3854e606bf84b4d409a75a4261c78"}, - {file = "pyproj-3.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2fef9c1e339f25c57f6ae0558b5ab1bbdf7994529a30d8d7504fc6302ea51c03"}, - {file = "pyproj-3.3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:140fa649fedd04f680a39f8ad339799a55cb1c49f6a84e1b32b97e49646647aa"}, - {file = "pyproj-3.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b59c08aea13ee428cf8a919212d55c036cc94784805ed77c8f31a4d1f541058c"}, - {file = "pyproj-3.3.1-cp310-cp310-win32.whl", hash = "sha256:1adc9ccd1bf04998493b6a2e87e60656c75ab790653b36cfe351e9ef214828ed"}, - {file = "pyproj-3.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:42eea10afc750fccd1c5c4ba56de29ab791ab4d83c1f7db72705566282ac5396"}, - {file = "pyproj-3.3.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:531ea36519fa7b581466d4b6ab32f66ae4dadd9499d726352f71ee5e19c3d1c5"}, - {file = "pyproj-3.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:67025e37598a6bbed2c9c6c9e4c911f6dd39315d3e1148ead935a5c4d64309d5"}, - {file = "pyproj-3.3.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aed1a3c0cd4182425f91b48d5db39f459bc2fe0d88017ead6425a1bc85faee33"}, - {file = "pyproj-3.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3cc4771403db54494e1e55bca8e6d33cde322f8cf0ed39f1557ff109c66d2cd1"}, - {file = "pyproj-3.3.1-cp38-cp38-win32.whl", hash = "sha256:c99f7b5757a28040a2dd4a28c9805fdf13eef79a796f4a566ab5cb362d10630d"}, - {file = "pyproj-3.3.1-cp38-cp38-win_amd64.whl", hash = "sha256:5dac03d4338a4c8bd0f69144c527474f517b4cbd7d2d8c532cd8937799723248"}, - {file = "pyproj-3.3.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:56b0f9ee2c5b2520b18db30a393a7b86130cf527ddbb8c96e7f3c837474a9d79"}, - {file = "pyproj-3.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f92d8f6514516124abb714dce912b20867831162cfff9fae2678ef07b6fcf0f"}, - {file = "pyproj-3.3.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1ef1bfbe2dcc558c7a98e2f1836abdcd630390f3160724a6f4f5c818b2be0ad5"}, - {file = "pyproj-3.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ca5f32b56210429b367ca4f9a57ffe67975c487af82e179a24370879a3daf68"}, - {file = "pyproj-3.3.1-cp39-cp39-win32.whl", hash = "sha256:aba199704c824fb84ab64927e7bc9ef71e603e483130ec0f7e09e97259b8f61f"}, - {file = "pyproj-3.3.1-cp39-cp39-win_amd64.whl", hash = "sha256:120d45ed73144c65e9677dc73ba8a531c495d179dd9f9f0471ac5acc02d7ac4b"}, - {file = "pyproj-3.3.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:52efb681647dfac185cc655a709bc0caaf910031a0390f816f5fc8ce150cbedc"}, - {file = "pyproj-3.3.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5ab0d6e38fda7c13726afacaf62e9f9dd858089d67910471758afd9cb24e0ecd"}, - {file = "pyproj-3.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45487942c19c5a8b09c91964ea3201f4e094518e34743cae373889a36e3d9260"}, - {file = "pyproj-3.3.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:797ad5655d484feac14b0fbb4a4efeaac0cf780a223046e2465494c767fd1c3b"}, - {file = "pyproj-3.3.1.tar.gz", hash = "sha256:b3d8e14d91cc95fb3dbc03a9d0588ac58326803eefa5bbb0978d109de3304fbe"}, -] -pyrsistent = [ - {file = "pyrsistent-0.18.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:df46c854f490f81210870e509818b729db4488e1f30f2a1ce1698b2295a878d1"}, - {file = "pyrsistent-0.18.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d45866ececf4a5fff8742c25722da6d4c9e180daa7b405dc0a2a2790d668c26"}, - {file = "pyrsistent-0.18.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4ed6784ceac462a7d6fcb7e9b663e93b9a6fb373b7f43594f9ff68875788e01e"}, - {file = "pyrsistent-0.18.1-cp310-cp310-win32.whl", hash = "sha256:e4f3149fd5eb9b285d6bfb54d2e5173f6a116fe19172686797c056672689daf6"}, - {file = "pyrsistent-0.18.1-cp310-cp310-win_amd64.whl", hash = "sha256:636ce2dc235046ccd3d8c56a7ad54e99d5c1cd0ef07d9ae847306c91d11b5fec"}, - {file = "pyrsistent-0.18.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e92a52c166426efbe0d1ec1332ee9119b6d32fc1f0bbfd55d5c1088070e7fc1b"}, - {file = "pyrsistent-0.18.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7a096646eab884bf8bed965bad63ea327e0d0c38989fc83c5ea7b8a87037bfc"}, - {file = "pyrsistent-0.18.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cdfd2c361b8a8e5d9499b9082b501c452ade8bbf42aef97ea04854f4a3f43b22"}, - {file = "pyrsistent-0.18.1-cp37-cp37m-win32.whl", hash = "sha256:7ec335fc998faa4febe75cc5268a9eac0478b3f681602c1f27befaf2a1abe1d8"}, - {file = "pyrsistent-0.18.1-cp37-cp37m-win_amd64.whl", hash = "sha256:6455fc599df93d1f60e1c5c4fe471499f08d190d57eca040c0ea182301321286"}, - {file = "pyrsistent-0.18.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:fd8da6d0124efa2f67d86fa70c851022f87c98e205f0594e1fae044e7119a5a6"}, - {file = "pyrsistent-0.18.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7bfe2388663fd18bd8ce7db2c91c7400bf3e1a9e8bd7d63bf7e77d39051b85ec"}, - {file = "pyrsistent-0.18.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0e3e1fcc45199df76053026a51cc59ab2ea3fc7c094c6627e93b7b44cdae2c8c"}, - {file = "pyrsistent-0.18.1-cp38-cp38-win32.whl", hash = "sha256:b568f35ad53a7b07ed9b1b2bae09eb15cdd671a5ba5d2c66caee40dbf91c68ca"}, - {file = "pyrsistent-0.18.1-cp38-cp38-win_amd64.whl", hash = "sha256:d1b96547410f76078eaf66d282ddca2e4baae8964364abb4f4dcdde855cd123a"}, - {file = "pyrsistent-0.18.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:f87cc2863ef33c709e237d4b5f4502a62a00fab450c9e020892e8e2ede5847f5"}, - {file = "pyrsistent-0.18.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6bc66318fb7ee012071b2792024564973ecc80e9522842eb4e17743604b5e045"}, - {file = "pyrsistent-0.18.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:914474c9f1d93080338ace89cb2acee74f4f666fb0424896fcfb8d86058bf17c"}, - {file = "pyrsistent-0.18.1-cp39-cp39-win32.whl", hash = "sha256:1b34eedd6812bf4d33814fca1b66005805d3640ce53140ab8bbb1e2651b0d9bc"}, - {file = "pyrsistent-0.18.1-cp39-cp39-win_amd64.whl", hash = "sha256:e24a828f57e0c337c8d8bb9f6b12f09dfdf0273da25fda9e314f0b684b415a07"}, - {file = "pyrsistent-0.18.1.tar.gz", hash = "sha256:d4d61f8b993a7255ba714df3aca52700f8125289f84f704cf80916517c46eb96"}, -] -python-dateutil = [ - {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, - {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, -] -pytz = [ - {file = "pytz-2022.1-py2.py3-none-any.whl", hash = "sha256:e68985985296d9a66a881eb3193b0906246245294a881e7c8afe623866ac6a5c"}, - {file = "pytz-2022.1.tar.gz", hash = "sha256:1e760e2fe6a8163bc0b3d9a19c4f84342afa0a2affebfaa84b01b978a02ecaa7"}, -] -pywin32 = [ - {file = "pywin32-304-cp310-cp310-win32.whl", hash = "sha256:3c7bacf5e24298c86314f03fa20e16558a4e4138fc34615d7de4070c23e65af3"}, - {file = "pywin32-304-cp310-cp310-win_amd64.whl", hash = "sha256:4f32145913a2447736dad62495199a8e280a77a0ca662daa2332acf849f0be48"}, - {file = "pywin32-304-cp310-cp310-win_arm64.whl", hash = "sha256:d3ee45adff48e0551d1aa60d2ec066fec006083b791f5c3527c40cd8aefac71f"}, - {file = "pywin32-304-cp311-cp311-win32.whl", hash = "sha256:30c53d6ce44c12a316a06c153ea74152d3b1342610f1b99d40ba2795e5af0269"}, - {file = "pywin32-304-cp311-cp311-win_amd64.whl", hash = "sha256:7ffa0c0fa4ae4077e8b8aa73800540ef8c24530057768c3ac57c609f99a14fd4"}, - {file = "pywin32-304-cp311-cp311-win_arm64.whl", hash = "sha256:cbbe34dad39bdbaa2889a424d28752f1b4971939b14b1bb48cbf0182a3bcfc43"}, - {file = "pywin32-304-cp36-cp36m-win32.whl", hash = "sha256:be253e7b14bc601718f014d2832e4c18a5b023cbe72db826da63df76b77507a1"}, - {file = "pywin32-304-cp36-cp36m-win_amd64.whl", hash = "sha256:de9827c23321dcf43d2f288f09f3b6d772fee11e809015bdae9e69fe13213988"}, - {file = "pywin32-304-cp37-cp37m-win32.whl", hash = "sha256:f64c0377cf01b61bd5e76c25e1480ca8ab3b73f0c4add50538d332afdf8f69c5"}, - {file = "pywin32-304-cp37-cp37m-win_amd64.whl", hash = "sha256:bb2ea2aa81e96eee6a6b79d87e1d1648d3f8b87f9a64499e0b92b30d141e76df"}, - {file = "pywin32-304-cp38-cp38-win32.whl", hash = "sha256:94037b5259701988954931333aafd39cf897e990852115656b014ce72e052e96"}, - {file = "pywin32-304-cp38-cp38-win_amd64.whl", hash = "sha256:ead865a2e179b30fb717831f73cf4373401fc62fbc3455a0889a7ddac848f83e"}, - {file = "pywin32-304-cp39-cp39-win32.whl", hash = "sha256:25746d841201fd9f96b648a248f731c1dec851c9a08b8e33da8b56148e4c65cc"}, - {file = "pywin32-304-cp39-cp39-win_amd64.whl", hash = "sha256:d24a3382f013b21aa24a5cfbfad5a2cd9926610c0affde3e8ab5b3d7dbcf4ac9"}, -] -pyyaml = [ - {file = "PyYAML-6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d4db7c7aef085872ef65a8fd7d6d09a14ae91f691dec3e87ee5ee0539d516f53"}, - {file = "PyYAML-6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9df7ed3b3d2e0ecfe09e14741b857df43adb5a3ddadc919a2d94fbdf78fea53c"}, - {file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77f396e6ef4c73fdc33a9157446466f1cff553d979bd00ecb64385760c6babdc"}, - {file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a80a78046a72361de73f8f395f1f1e49f956c6be882eed58505a15f3e430962b"}, - {file = "PyYAML-6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f84fbc98b019fef2ee9a1cb3ce93e3187a6df0b2538a651bfb890254ba9f90b5"}, - {file = "PyYAML-6.0-cp310-cp310-win32.whl", hash = "sha256:2cd5df3de48857ed0544b34e2d40e9fac445930039f3cfe4bcc592a1f836d513"}, - {file = "PyYAML-6.0-cp310-cp310-win_amd64.whl", hash = "sha256:daf496c58a8c52083df09b80c860005194014c3698698d1a57cbcfa182142a3a"}, - {file = "PyYAML-6.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:897b80890765f037df3403d22bab41627ca8811ae55e9a722fd0392850ec4d86"}, - {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50602afada6d6cbfad699b0c7bb50d5ccffa7e46a3d738092afddc1f9758427f"}, - {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:48c346915c114f5fdb3ead70312bd042a953a8ce5c7106d5bfb1a5254e47da92"}, - {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:98c4d36e99714e55cfbaaee6dd5badbc9a1ec339ebfc3b1f52e293aee6bb71a4"}, - {file = "PyYAML-6.0-cp36-cp36m-win32.whl", hash = "sha256:0283c35a6a9fbf047493e3a0ce8d79ef5030852c51e9d911a27badfde0605293"}, - {file = "PyYAML-6.0-cp36-cp36m-win_amd64.whl", hash = "sha256:07751360502caac1c067a8132d150cf3d61339af5691fe9e87803040dbc5db57"}, - {file = "PyYAML-6.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:819b3830a1543db06c4d4b865e70ded25be52a2e0631ccd2f6a47a2822f2fd7c"}, - {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:473f9edb243cb1935ab5a084eb238d842fb8f404ed2193a915d1784b5a6b5fc0"}, - {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0ce82d761c532fe4ec3f87fc45688bdd3a4c1dc5e0b4a19814b9009a29baefd4"}, - {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:231710d57adfd809ef5d34183b8ed1eeae3f76459c18fb4a0b373ad56bedcdd9"}, - {file = "PyYAML-6.0-cp37-cp37m-win32.whl", hash = "sha256:c5687b8d43cf58545ade1fe3e055f70eac7a5a1a0bf42824308d868289a95737"}, - {file = "PyYAML-6.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d15a181d1ecd0d4270dc32edb46f7cb7733c7c508857278d3d378d14d606db2d"}, - {file = "PyYAML-6.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0b4624f379dab24d3725ffde76559cff63d9ec94e1736b556dacdfebe5ab6d4b"}, - {file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:213c60cd50106436cc818accf5baa1aba61c0189ff610f64f4a3e8c6726218ba"}, - {file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9fa600030013c4de8165339db93d182b9431076eb98eb40ee068700c9c813e34"}, - {file = "PyYAML-6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:277a0ef2981ca40581a47093e9e2d13b3f1fbbeffae064c1d21bfceba2030287"}, - {file = "PyYAML-6.0-cp38-cp38-win32.whl", hash = "sha256:d4eccecf9adf6fbcc6861a38015c2a64f38b9d94838ac1810a9023a0609e1b78"}, - {file = "PyYAML-6.0-cp38-cp38-win_amd64.whl", hash = "sha256:1e4747bc279b4f613a09eb64bba2ba602d8a6664c6ce6396a4d0cd413a50ce07"}, - {file = "PyYAML-6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:055d937d65826939cb044fc8c9b08889e8c743fdc6a32b33e2390f66013e449b"}, - {file = "PyYAML-6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e61ceaab6f49fb8bdfaa0f92c4b57bcfbea54c09277b1b4f7ac376bfb7a7c174"}, - {file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d67d839ede4ed1b28a4e8909735fc992a923cdb84e618544973d7dfc71540803"}, - {file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cba8c411ef271aa037d7357a2bc8f9ee8b58b9965831d9e51baf703280dc73d3"}, - {file = "PyYAML-6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:40527857252b61eacd1d9af500c3337ba8deb8fc298940291486c465c8b46ec0"}, - {file = "PyYAML-6.0-cp39-cp39-win32.whl", hash = "sha256:b5b9eccad747aabaaffbc6064800670f0c297e52c12754eb1d976c57e4f74dcb"}, - {file = "PyYAML-6.0-cp39-cp39-win_amd64.whl", hash = "sha256:b3d267842bf12586ba6c734f89d1f5b871df0273157918b0ccefa29deb05c21c"}, - {file = "PyYAML-6.0.tar.gz", hash = "sha256:68fb519c14306fec9720a2a5b45bc9f0c8d1b9c72adf45c37baedfcd949c35a2"}, -] -pyzmq = [ - {file = "pyzmq-23.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:22ac0243a41798e3eb5d5714b28c2f28e3d10792dffbc8a5fca092f975fdeceb"}, - {file = "pyzmq-23.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f685003d836ad0e5d4f08d1e024ee3ac7816eb2f873b2266306eef858f058133"}, - {file = "pyzmq-23.2.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:d4651de7316ec8560afe430fb042c0782ed8ac54c0be43a515944d7c78fddac8"}, - {file = "pyzmq-23.2.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:bcc6953e47bcfc9028ddf9ab2a321a3c51d7cc969db65edec092019bb837959f"}, - {file = "pyzmq-23.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0e08671dc202a1880fa522f921f35ca5925ba30da8bc96228d74a8f0643ead9c"}, - {file = "pyzmq-23.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:de727ea906033b30527b4a99498f19aca3f4d1073230a958679a5b726e2784e0"}, - {file = "pyzmq-23.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5aa9da520e4bb8cee8189f2f541701405e7690745094ded7a37b425d60527ea"}, - {file = "pyzmq-23.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:f3ff6abde52e702397949054cb5b06c1c75b5d6542f6a2ce029e46f71ffbbbf2"}, - {file = "pyzmq-23.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e2e2db5c6ef376e97c912733dfc24406f5949474d03e800d5f07b6aca4d870af"}, - {file = "pyzmq-23.2.0-cp310-cp310-win32.whl", hash = "sha256:e669913cb2179507628419ec4f0e453e48ce6f924de5884d396f18c31836089c"}, - {file = "pyzmq-23.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:a3dc339f7bc185d5fd0fd976242a5baf35de404d467e056484def8a4dd95868b"}, - {file = "pyzmq-23.2.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:30c365e60c39c53f8eea042b37ea28304ffa6558fb7241cf278745095a5757da"}, - {file = "pyzmq-23.2.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8c2d8b69a2bf239ae3d987537bf3fbc2b044a405394cf4c258fc684971dd48b2"}, - {file = "pyzmq-23.2.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:602835e5672ca9ca1d78e6c148fb28c4f91b748ebc41fbd2f479d8763d58bc9b"}, - {file = "pyzmq-23.2.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:831da96ba3f36cc892f0afbb4fb89b28b61b387261676e55d55a682addbd29f7"}, - {file = "pyzmq-23.2.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:c8dec8a2f3f0bb462e6439df436cd8c7ec37968e90b4209ac621e7fbc0ed3b00"}, - {file = "pyzmq-23.2.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:814e5aaf0c3be9991a59066eafb2d6e117aed6b413e3e7e9be45d4e55f5e2748"}, - {file = "pyzmq-23.2.0-cp36-cp36m-win32.whl", hash = "sha256:8496a2a5efd055c61ac2c6a18116c768a25c644b6747dcfde43e91620ab3453c"}, - {file = "pyzmq-23.2.0-cp36-cp36m-win_amd64.whl", hash = "sha256:60746a7e8558655420a69441c0a1d47ed225ed3ac355920b96a96d0554ef7e6b"}, - {file = "pyzmq-23.2.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5cb642e94337b0c76c9c8cb9bfb0f8a78654575847d080d3e1504f312d691fc3"}, - {file = "pyzmq-23.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:444f7d615d5f686d0ef508b9edfa8a286e6d89f449a1ba37b60ef69d869220a3"}, - {file = "pyzmq-23.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:c9638e0057e3f1a8b7c5ce33c7575349d9183a033a19b5676ad55096ae36820b"}, - {file = "pyzmq-23.2.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:004a431dfa0459123e6f4660d7e3c4ac19217d134ca38bacfffb2e78716fe944"}, - {file = "pyzmq-23.2.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:5592fb4316f895922b1cacb91b04a0fa09d6f6f19bbab4442b4d0a0825177b93"}, - {file = "pyzmq-23.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c0a5f987d73fd9b46c3d180891f829afda714ab6bab30a1218724d4a0a63afd8"}, - {file = "pyzmq-23.2.0-cp37-cp37m-win32.whl", hash = "sha256:d11628212fd731b8986f1561d9bb3f8c38d9c15b330c3d8a88963519fbcd553b"}, - {file = "pyzmq-23.2.0-cp37-cp37m-win_amd64.whl", hash = "sha256:558f5f636e3e65f261b64925e8b190e8689e334911595394572cc7523879006d"}, - {file = "pyzmq-23.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:61b97f624da42813f74977425a3a6144d604ea21cf065616d36ea3a866d92c1c"}, - {file = "pyzmq-23.2.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:693c96ae4d975eb8efa1639670e9b1fac0c3f98b7845b65c0f369141fb4bb21f"}, - {file = "pyzmq-23.2.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:2b054525c9f7e240562185bf21671ca16d56bde92e9bd0f822c07dec7626b704"}, - {file = "pyzmq-23.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:859059caf564f0c9398c9005278055ed3d37af4d73de6b1597821193b04ca09b"}, - {file = "pyzmq-23.2.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:8355744fdbdeac5cfadfa4f38b82029b5f2b8cab7472a33453a217a7f3a9dce2"}, - {file = "pyzmq-23.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:420b9abd1a7330687a095373b8280a20cdee04342fbc8ccb3b56d9ec8efd4e62"}, - {file = "pyzmq-23.2.0-cp38-cp38-win32.whl", hash = "sha256:59928dfebe93cf1e203e3cb0fd5d5dd384da56b99c8305f2e1b0a933751710f6"}, - {file = "pyzmq-23.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:c882f1d4f96fbd807e92c334251d8ebd159a1ef89059ccd386ddea83fdb91bd8"}, - {file = "pyzmq-23.2.0-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:ced12075cdf3c7332ecc1960f77f7439d5ebb8ea20bbd3c34c8299e694f1b0a1"}, - {file = "pyzmq-23.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3a4d87342c2737fbb9eee5c33c792db27b36b04957b4e6b7edd73a5b239a2a13"}, - {file = "pyzmq-23.2.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:99cedf38eaddf263cf7e2a50e405f12c02cedf6d9df00a0d9c5d7b9417b57f76"}, - {file = "pyzmq-23.2.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d1610260cc672975723fcf7705c69a95f3b88802a594c9867781bedd9b13422c"}, - {file = "pyzmq-23.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c223a13555444707a0a7ebc6f9ee63053147c8c082bd1a31fd1207a03e8b0500"}, - {file = "pyzmq-23.2.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f5fdb00d65ec44b10cc6b9b6318ef1363b81647a4aa3270ca39565eadb2d1201"}, - {file = "pyzmq-23.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:984b232802eddf9f0be264a4d57a10b3a1fd7319df14ee6fc7b41c6d155a3e6c"}, - {file = "pyzmq-23.2.0-cp39-cp39-win32.whl", hash = "sha256:f146648941cadaaaf01254a75651a23c08159d009d36c5af42a7cc200a5e53ec"}, - {file = "pyzmq-23.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:83005d8928f8a5cebcfb33af3bfb84b1ad65d882b899141a331cc5d07d89f093"}, - {file = "pyzmq-23.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fee86542dc4ee8229e023003e3939b4d58cc2453922cf127778b69505fc9064b"}, - {file = "pyzmq-23.2.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5d57542429df6acff02ff022067aa75b677603cee70e3abb9742787545eec966"}, - {file = "pyzmq-23.2.0-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:057b154471e096e2dda147f7b057041acc303bb7ca4aa24c3b88c6cecdd78717"}, - {file = "pyzmq-23.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:5d92e7cbeab7f70b08cc0f27255b0bb2500afc30f31075bca0b1cb87735d186c"}, - {file = "pyzmq-23.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:eb4a573a8499685d62545e806d8fd143c84ac8b3439f925cd92c8763f0ed9bd7"}, - {file = "pyzmq-23.2.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:da338e2728410d74ddeb1479ec67cfba73311607037455a40f92b6f5c62bf11d"}, - {file = "pyzmq-23.2.0-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:1b2a21f595f8cc549abd6c8de1fcd34c83441e35fb24b8a59bf161889c62a486"}, - {file = "pyzmq-23.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:8c0f4d6f8c985bab83792be26ff3233940ba42e22237610ac50cbcfc10a5c235"}, - {file = "pyzmq-23.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bbabd1df23bf63ae829e81200034c0e433499275a6ed29ca1a912ea7629426d9"}, - {file = "pyzmq-23.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:21552624ce69e69f7924f413b802b1fb554f4c0497f837810e429faa1cd4f163"}, - {file = "pyzmq-23.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c616893a577e9d6773a3836732fd7e2a729157a108b8fccd31c87512fa01671a"}, - {file = "pyzmq-23.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:ce4f71e17fa849de41a06109030d3f6815fcc33338bf98dd0dde6d456d33c929"}, - {file = "pyzmq-23.2.0.tar.gz", hash = "sha256:a51f12a8719aad9dcfb55d456022f16b90abc8dde7d3ca93ce3120b40e3fa169"}, -] -requests = [ - {file = "requests-2.28.1-py3-none-any.whl", hash = "sha256:8fefa2a1a1365bf5520aac41836fbee479da67864514bdb821f31ce07ce65349"}, - {file = "requests-2.28.1.tar.gz", hash = "sha256:7c5599b102feddaa661c826c56ab4fee28bfd17f5abca1ebbe3e7f19d7c97983"}, -] -scanpy = [ - {file = "scanpy-1.9.1-py3-none-any.whl", hash = "sha256:9fca3597aef176034ebc3438be3bf859db5c47441e36481d7f9272bd4cd51d2a"}, - {file = "scanpy-1.9.1.tar.gz", hash = "sha256:00c9a83b649da7e0171c91e9a08cff632102faa760614fd05cd4d1dbba4eb541"}, -] -scikit-learn = [ - {file = "scikit-learn-1.1.1.tar.gz", hash = "sha256:3e77b71e8e644f86c8b5be7f1c285ef597de4c384961389ee3e9ca36c445b256"}, - {file = "scikit_learn-1.1.1-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:102f51797cd8944bf44a038d106848ddf2804f2c1edf7aea45fba81a4fdc4d80"}, - {file = "scikit_learn-1.1.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:723cdb278b1fa57a55f68945bc4e501a2f12abe82f76e8d21e1806cbdbef6fc5"}, - {file = "scikit_learn-1.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:33cf061ed0b79d647a3e4c3f6c52c412172836718a7cd4d11c1318d083300133"}, - {file = "scikit_learn-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47464c110eaa9ed9d1fe108cb403510878c3d3a40f110618d2a19b2190a3e35c"}, - {file = "scikit_learn-1.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:542ccd2592fe7ad31f5c85fed3a3deb3e252383960a85e4b49a629353fffaba4"}, - {file = "scikit_learn-1.1.1-cp38-cp38-macosx_10_13_x86_64.whl", hash = "sha256:3be10d8d325821ca366d4fe7083d87c40768f842f54371a9c908d97c45da16fc"}, - {file = "scikit_learn-1.1.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:b2db720e13e697d912a87c1a51194e6fb085dc6d8323caa5ca51369ca6948f78"}, - {file = "scikit_learn-1.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e851f8874398dcd50d1e174e810e9331563d189356e945b3271c0e19ee6f4d6f"}, - {file = "scikit_learn-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b928869072366dc138762fe0929e7dc88413f8a469aebc6a64adc10a9226180c"}, - {file = "scikit_learn-1.1.1-cp38-cp38-win32.whl", hash = "sha256:e9d228ced1214d67904f26fb820c8abbea12b2889cd4aa8cda20a4ca0ed781c1"}, - {file = "scikit_learn-1.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:f2d5b5d6e87d482e17696a7bfa03fe9515fdfe27e462a4ad37f3d7774a5e2fd6"}, - {file = "scikit_learn-1.1.1-cp39-cp39-macosx_10_13_x86_64.whl", hash = "sha256:0403ad13f283e27d43b0ad875f187ec7f5d964903d92d1ed06c51439560ecea0"}, - {file = "scikit_learn-1.1.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:8fe80df08f5b9cee5dd008eccc672e543976198d790c07e5337f7dfb67eaac05"}, - {file = "scikit_learn-1.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8ff56d07b9507fbe07ca0f4e5c8f3e171f74a429f998da03e308166251316b34"}, - {file = "scikit_learn-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c2dad2bfc502344b869d4a3f4aa7271b2a5f4fe41f7328f404844c51612e2c58"}, - {file = "scikit_learn-1.1.1-cp39-cp39-win32.whl", hash = "sha256:22145b60fef02e597a8e7f061ebc7c51739215f11ce7fcd2ca9af22c31aa9f86"}, - {file = "scikit_learn-1.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:45c0f6ae523353f1d99b85469d746f9c497410adff5ba8b24423705b6956a86e"}, -] -scipy = [ - {file = "scipy-1.8.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:65b77f20202599c51eb2771d11a6b899b97989159b7975e9b5259594f1d35ef4"}, - {file = "scipy-1.8.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:e013aed00ed776d790be4cb32826adb72799c61e318676172495383ba4570aa4"}, - {file = "scipy-1.8.1-cp310-cp310-macosx_12_0_universal2.macosx_10_9_x86_64.whl", hash = "sha256:02b567e722d62bddd4ac253dafb01ce7ed8742cf8031aea030a41414b86c1125"}, - {file = "scipy-1.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1da52b45ce1a24a4a22db6c157c38b39885a990a566748fc904ec9f03ed8c6ba"}, - {file = "scipy-1.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0aa8220b89b2e3748a2836fbfa116194378910f1a6e78e4675a095bcd2c762d"}, - {file = "scipy-1.8.1-cp310-cp310-win_amd64.whl", hash = "sha256:4e53a55f6a4f22de01ffe1d2f016e30adedb67a699a310cdcac312806807ca81"}, - {file = "scipy-1.8.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:28d2cab0c6ac5aa131cc5071a3a1d8e1366dad82288d9ec2ca44df78fb50e649"}, - {file = "scipy-1.8.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:6311e3ae9cc75f77c33076cb2794fb0606f14c8f1b1c9ff8ce6005ba2c283621"}, - {file = "scipy-1.8.1-cp38-cp38-macosx_12_0_universal2.macosx_10_9_x86_64.whl", hash = "sha256:3b69b90c9419884efeffaac2c38376d6ef566e6e730a231e15722b0ab58f0328"}, - {file = "scipy-1.8.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6cc6b33139eb63f30725d5f7fa175763dc2df6a8f38ddf8df971f7c345b652dc"}, - {file = "scipy-1.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c4e3ae8a716c8b3151e16c05edb1daf4cb4d866caa385e861556aff41300c14"}, - {file = "scipy-1.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:23b22fbeef3807966ea42d8163322366dd89da9bebdc075da7034cee3a1441ca"}, - {file = "scipy-1.8.1-cp38-cp38-win32.whl", hash = "sha256:4b93ec6f4c3c4d041b26b5f179a6aab8f5045423117ae7a45ba9710301d7e462"}, - {file = "scipy-1.8.1-cp38-cp38-win_amd64.whl", hash = "sha256:70ebc84134cf0c504ce6a5f12d6db92cb2a8a53a49437a6bb4edca0bc101f11c"}, - {file = "scipy-1.8.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f3e7a8867f307e3359cc0ed2c63b61a1e33a19080f92fe377bc7d49f646f2ec1"}, - {file = "scipy-1.8.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:2ef0fbc8bcf102c1998c1f16f15befe7cffba90895d6e84861cd6c6a33fb54f6"}, - {file = "scipy-1.8.1-cp39-cp39-macosx_12_0_universal2.macosx_10_9_x86_64.whl", hash = "sha256:83606129247e7610b58d0e1e93d2c5133959e9cf93555d3c27e536892f1ba1f2"}, - {file = "scipy-1.8.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:93d07494a8900d55492401917a119948ed330b8c3f1d700e0b904a578f10ead4"}, - {file = "scipy-1.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3b3c8924252caaffc54d4a99f1360aeec001e61267595561089f8b5900821bb"}, - {file = "scipy-1.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70de2f11bf64ca9921fda018864c78af7147025e467ce9f4a11bc877266900a6"}, - {file = "scipy-1.8.1-cp39-cp39-win32.whl", hash = "sha256:1166514aa3bbf04cb5941027c6e294a000bba0cf00f5cdac6c77f2dad479b434"}, - {file = "scipy-1.8.1-cp39-cp39-win_amd64.whl", hash = "sha256:9dd4012ac599a1e7eb63c114d1eee1bcfc6dc75a29b589ff0ad0bb3d9412034f"}, - {file = "scipy-1.8.1.tar.gz", hash = "sha256:9e3fb1b0e896f14a85aa9a28d5f755daaeeb54c897b746df7a55ccb02b340f33"}, -] -seaborn = [ - {file = "seaborn-0.11.2-py3-none-any.whl", hash = "sha256:85a6baa9b55f81a0623abddc4a26b334653ff4c6b18c418361de19dbba0ef283"}, - {file = "seaborn-0.11.2.tar.gz", hash = "sha256:cf45e9286d40826864be0e3c066f98536982baf701a7caa386511792d61ff4f6"}, -] -session-info = [ - {file = "session_info-1.0.0.tar.gz", hash = "sha256:3cda5e03cca703f32ae2eadbd6bd80b6c21442cfb60e412c21cb8ad6d5cbb6b7"}, -] -setuptools-scm = [ - {file = "setuptools_scm-7.0.3-py3-none-any.whl", hash = "sha256:7934c856b042199eb44e1523b46abb881726b7d61b3c9b41a756e4ffb4adf73b"}, - {file = "setuptools_scm-7.0.3.tar.gz", hash = "sha256:cf8ab8e235bed840cd4559b658af0d8e8a70896a191bbc510ee914ec5325332d"}, -] -shapely = [ - {file = "Shapely-1.8.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7c9e3400b716c51ba43eea1678c28272580114e009b6c78cdd00c44df3e325fa"}, - {file = "Shapely-1.8.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ce0b5c5f7acbccf98b3460eecaa40e9b18272b2a734f74fcddf1d7696e047e95"}, - {file = "Shapely-1.8.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3a40bf497b57a6625b83996aed10ce2233bca0e5471b8af771b186d681433ac5"}, - {file = "Shapely-1.8.2-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6bdc7728f1e5df430d8c588661f79f1eed4a2728c8b689e12707cfec217f68f8"}, - {file = "Shapely-1.8.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a60861b5ca2c488ebcdc706eca94d325c26d1567921c74acc83df5e6913590c7"}, - {file = "Shapely-1.8.2-cp310-cp310-win32.whl", hash = "sha256:840be3f27a1152851c54b968f2e12d718c9f13b7acd51c482e58a70f60f29e31"}, - {file = "Shapely-1.8.2-cp310-cp310-win_amd64.whl", hash = "sha256:c60f3758212ec480675b820b13035dda8af8f7cc560d2cc67999b2717fb8faef"}, - {file = "Shapely-1.8.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:56413f7d32c70b63f239eb0865b24c0c61029e38757de456cc4ab3c416559a0b"}, - {file = "Shapely-1.8.2-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:256bdf8080bb7bb504d47b2c76919ecebab9708cc1b26266b3ec32b42448f642"}, - {file = "Shapely-1.8.2-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c0a0d7752b145343838bd36ed09382d85f5befe426832d7384c5b051c147acbd"}, - {file = "Shapely-1.8.2-cp36-cp36m-win32.whl", hash = "sha256:62056e64b12b6d483d79f8e34bf058d2fe734d51c9227c1713705399434eff3b"}, - {file = "Shapely-1.8.2-cp36-cp36m-win_amd64.whl", hash = "sha256:8e3ed52a081da58eb4a885c157c594876633dbd4eb283f13ba5bf39c82322d76"}, - {file = "Shapely-1.8.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:7c8eda45085ccdd7f9805ea4a93fdd5eb0b6039a61d5f0cefb960487e6dc17a1"}, - {file = "Shapely-1.8.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:beee3949ddf381735049cfa6532fb234d5d20a5be910c4f2fb7c7295fd7960e3"}, - {file = "Shapely-1.8.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:e07b0bd2a0e61a8afd4d1c1bd23f3550b711f01274ffb53de99358fd781eefd8"}, - {file = "Shapely-1.8.2-cp37-cp37m-win32.whl", hash = "sha256:78966332a89813b237de357a03f612fd451a871fe6e26c12b6b71645fe8eee39"}, - {file = "Shapely-1.8.2-cp37-cp37m-win_amd64.whl", hash = "sha256:8fe641f1f61b3d43dd61b5a85d2ef023e6e19bf8f204a5160a1cb1ec645cbc09"}, - {file = "Shapely-1.8.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:cec89a5617c0137f4678282e983c3d63bf838fb00cdf318cc555b4d8409f7130"}, - {file = "Shapely-1.8.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:68c8e18dc9dc8a198c3addc8c9596f64137101f566f04b96ecfca0b214cb8b12"}, - {file = "Shapely-1.8.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f12695662c3ad1e6031b3de98f191963d0f09de6d1a4988acd907405644032ba"}, - {file = "Shapely-1.8.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:15a856fbb588ad5d042784e00918c662902776452008c771ecba2ff615cd197a"}, - {file = "Shapely-1.8.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:d74de394684d66e25e780b0359fda85be7766af85940fa2dfad728b1a815c71f"}, - {file = "Shapely-1.8.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3f3fac625690f01f35af665649e993f15f924e740b5c0ac0376900655815521"}, - {file = "Shapely-1.8.2-cp38-cp38-win32.whl", hash = "sha256:1d95842cc6bbbeab673061b63e70b07be9a375c15a60f4098f8fbd29f43af1b4"}, - {file = "Shapely-1.8.2-cp38-cp38-win_amd64.whl", hash = "sha256:a58e1f362f2091743e5e13212f5d5d16251a4bb63dd0ed587c652d3be9620d3a"}, - {file = "Shapely-1.8.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5254240eefc44139ab0d128faf671635d8bdd9c23955ee063d4d6b8f20073ae0"}, - {file = "Shapely-1.8.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:75042e8039c79dd01f102bb288beace9dc2f49fc44a2dea875f9b697aa8cd30d"}, - {file = "Shapely-1.8.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0c0fd457ce477b1dced507a72f1e2084c9191bfcb8a1e09886990ebd02acf024"}, - {file = "Shapely-1.8.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:6fcb28836ae93809de1dde73c03c9c24bab0ba2b2bf419ddb2aeb72c96d110e9"}, - {file = "Shapely-1.8.2-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:44d2832c1b706bf43101fda92831a083467cc4b4923a7ed17319ab599c1025d8"}, - {file = "Shapely-1.8.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:137f1369630408024a62ff79a437a5657e6c5b76b9cd352dde704b425acdb298"}, - {file = "Shapely-1.8.2-cp39-cp39-win32.whl", hash = "sha256:2e02da2e988e74d61f15c720f9f613fab51942aae2dfeacdcb78eadece00e1f3"}, - {file = "Shapely-1.8.2-cp39-cp39-win_amd64.whl", hash = "sha256:3423299254deec075e79fb7dc7909d702104e4167149de7f45510c3a6342eeea"}, - {file = "Shapely-1.8.2.tar.gz", hash = "sha256:572af9d5006fd5e3213e37ee548912b0341fb26724d6dc8a4e3950c10197ebb6"}, -] -six = [ - {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, - {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, -] -snowballstemmer = [ - {file = "snowballstemmer-2.2.0-py2.py3-none-any.whl", hash = "sha256:c8e1716e83cc398ae16824e5572ae04e0d9fc2c6b985fb0f900f5f0c96ecba1a"}, - {file = "snowballstemmer-2.2.0.tar.gz", hash = "sha256:09b16deb8547d3412ad7b590689584cd0fe25ec8db3be37788be3810cbf19cb1"}, -] -sortedcontainers = [ - {file = "sortedcontainers-2.4.0-py2.py3-none-any.whl", hash = "sha256:a163dcaede0f1c021485e957a39245190e74249897e2ae4b2aa38595db237ee0"}, - {file = "sortedcontainers-2.4.0.tar.gz", hash = "sha256:25caa5a06cc30b6b83d11423433f65d1f9d76c4c6a0c90e3379eaa43b9bfdb88"}, -] -soupsieve = [ - {file = "soupsieve-2.3.2.post1-py3-none-any.whl", hash = "sha256:3b2503d3c7084a42b1ebd08116e5f81aadfaea95863628c80a3b774a11b7c759"}, - {file = "soupsieve-2.3.2.post1.tar.gz", hash = "sha256:fc53893b3da2c33de295667a0e19f078c14bf86544af307354de5fcf12a3f30d"}, -] -sphinx = [ - {file = "Sphinx-4.5.0-py3-none-any.whl", hash = "sha256:ebf612653238bcc8f4359627a9b7ce44ede6fdd75d9d30f68255c7383d3a6226"}, - {file = "Sphinx-4.5.0.tar.gz", hash = "sha256:7bf8ca9637a4ee15af412d1a1d9689fec70523a68ca9bb9127c2f3eeb344e2e6"}, -] -sphinx-autobuild = [ - {file = "sphinx-autobuild-2021.3.14.tar.gz", hash = "sha256:de1ca3b66e271d2b5b5140c35034c89e47f263f2cd5db302c9217065f7443f05"}, - {file = "sphinx_autobuild-2021.3.14-py3-none-any.whl", hash = "sha256:8fe8cbfdb75db04475232f05187c776f46f6e9e04cacf1e49ce81bdac649ccac"}, -] -sphinx-book-theme = [ - {file = "sphinx_book_theme-0.3.2-py3-none-any.whl", hash = "sha256:4aed92f2ed9d27e002eac5dce1daa8eca42dd9e6464811533c569ee156a6f67d"}, - {file = "sphinx_book_theme-0.3.2.tar.gz", hash = "sha256:182b5657a345f3bbb2c5b86da65db9b47e27de0ab406cda168142768645121f5"}, -] -sphinx-gallery = [ - {file = "sphinx-gallery-0.10.1.tar.gz", hash = "sha256:953f32b0833b0a689ff33516d0866865fb8601c0626811b95d2e844286d207e4"}, -] -sphinxcontrib-applehelp = [ - {file = "sphinxcontrib-applehelp-1.0.2.tar.gz", hash = "sha256:a072735ec80e7675e3f432fcae8610ecf509c5f1869d17e2eecff44389cdbc58"}, - {file = "sphinxcontrib_applehelp-1.0.2-py2.py3-none-any.whl", hash = "sha256:806111e5e962be97c29ec4c1e7fe277bfd19e9652fb1a4392105b43e01af885a"}, -] -sphinxcontrib-devhelp = [ - {file = "sphinxcontrib-devhelp-1.0.2.tar.gz", hash = "sha256:ff7f1afa7b9642e7060379360a67e9c41e8f3121f2ce9164266f61b9f4b338e4"}, - {file = "sphinxcontrib_devhelp-1.0.2-py2.py3-none-any.whl", hash = "sha256:8165223f9a335cc1af7ffe1ed31d2871f325254c0423bc0c4c7cd1c1e4734a2e"}, -] -sphinxcontrib-htmlhelp = [ - {file = "sphinxcontrib-htmlhelp-2.0.0.tar.gz", hash = "sha256:f5f8bb2d0d629f398bf47d0d69c07bc13b65f75a81ad9e2f71a63d4b7a2f6db2"}, - {file = "sphinxcontrib_htmlhelp-2.0.0-py2.py3-none-any.whl", hash = "sha256:d412243dfb797ae3ec2b59eca0e52dac12e75a241bf0e4eb861e450d06c6ed07"}, -] -sphinxcontrib-jsmath = [ - {file = "sphinxcontrib-jsmath-1.0.1.tar.gz", hash = "sha256:a9925e4a4587247ed2191a22df5f6970656cb8ca2bd6284309578f2153e0c4b8"}, - {file = "sphinxcontrib_jsmath-1.0.1-py2.py3-none-any.whl", hash = "sha256:2ec2eaebfb78f3f2078e73666b1415417a116cc848b72e5172e596c871103178"}, -] -sphinxcontrib-qthelp = [ - {file = "sphinxcontrib-qthelp-1.0.3.tar.gz", hash = "sha256:4c33767ee058b70dba89a6fc5c1892c0d57a54be67ddd3e7875a18d14cba5a72"}, - {file = "sphinxcontrib_qthelp-1.0.3-py2.py3-none-any.whl", hash = "sha256:bd9fc24bcb748a8d51fd4ecaade681350aa63009a347a8c14e637895444dfab6"}, -] -sphinxcontrib-serializinghtml = [ - {file = "sphinxcontrib-serializinghtml-1.1.5.tar.gz", hash = "sha256:aa5f6de5dfdf809ef505c4895e51ef5c9eac17d0f287933eb49ec495280b6952"}, - {file = "sphinxcontrib_serializinghtml-1.1.5-py2.py3-none-any.whl", hash = "sha256:352a9a00ae864471d3a7ead8d7d79f5fc0b57e8b3f95e9867eb9eb28999b92fd"}, -] -statannotations = [ - {file = "statannotations-0.4.4-py3-none-any.whl", hash = "sha256:afbe20e6bd8361eae3d447693b8eba0b69c7a1788b1991db884e2505b6cd0013"}, - {file = "statannotations-0.4.4.tar.gz", hash = "sha256:38722684e08a8ffb38da196b70c5795c0cc7000aefbd3fb289b9f72f5391a0c7"}, -] -statsmodels = [ - {file = "statsmodels-0.13.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3e7ca5b7e678c0bb7a24f5c735d58ac104a50eb61b17c484cce0e221a095560f"}, - {file = "statsmodels-0.13.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:066a75d5585378b2df972f81a90b9a3da5e567b7d4833300c1597438c1a35e29"}, - {file = "statsmodels-0.13.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f15f38dfc9c5c091662cb619e12322047368c67aef449c7554d9b324a15f7a94"}, - {file = "statsmodels-0.13.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c4ccc6b4744613367e8a233bd952c8a838db8f528f9fe033bda25aa13fc7d08"}, - {file = "statsmodels-0.13.2-cp310-cp310-win_amd64.whl", hash = "sha256:855b1cc2a91ab140b9bcf304b1731705805ce73223bf500b988804968554c0ed"}, - {file = "statsmodels-0.13.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b69c9af7606325095f7c40c581957bad9f28775653d41537c1ec4cd1b185ff5b"}, - {file = "statsmodels-0.13.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ab31bac0f72b83bca1f217a12ec6f309a56485a50c4a705fbdd63112213d4da4"}, - {file = "statsmodels-0.13.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d680b910b57fc0aa87472662cdfe09aae0e21db4bdf19ccd6420fd4dffda892"}, - {file = "statsmodels-0.13.2-cp37-cp37m-win32.whl", hash = "sha256:9e9a3f661d372431850d55157d049e079493c97fc06f550d23d8c8c70805cc48"}, - {file = "statsmodels-0.13.2-cp37-cp37m-win_amd64.whl", hash = "sha256:c9f6326870c095ef688f072cd476b932aff0906d60193eaa08e93ec23b29ca83"}, - {file = "statsmodels-0.13.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5bc050f25f1ba1221efef9ea01b751c60935ad787fcd4259f4ece986f2da9141"}, - {file = "statsmodels-0.13.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:426b1c8ea3918d3d27dbfa38f2bee36cabf41d32163e2cbb3adfb0178b24626a"}, - {file = "statsmodels-0.13.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45b80fac4a63308b1e93fa9dc27a8598930fd5dfd77c850ca077bb850254c6d7"}, - {file = "statsmodels-0.13.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78ee69ec0e0f79f627245c65f8a495b8581c2ea19084aac63941815feb15dcf3"}, - {file = "statsmodels-0.13.2-cp38-cp38-win32.whl", hash = "sha256:20483cc30e11aa072b30d307bb80470f86a23ae8fffa51439ca54509d7aa9b05"}, - {file = "statsmodels-0.13.2-cp38-cp38-win_amd64.whl", hash = "sha256:bf43051a92231ccb9de95e4b6d22d3b15e499ee5ee9bff0a20e6b6ad293e34cb"}, - {file = "statsmodels-0.13.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6bf0dfed5f5edb59b5922b295392cd276463b10a5e730f7e57ee4ff2d8e9a87e"}, - {file = "statsmodels-0.13.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a403b559c5586dab7ac0fc9e754c737b017c96cce0ddd66ff9094764cdaf293d"}, - {file = "statsmodels-0.13.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f23554dd025ea354ce072ba32bfaa840d2b856372e5734290e181d27a1f9e0c"}, - {file = "statsmodels-0.13.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:815f4df713e3eb6f40ae175c71f2a70d32f9219b5b4d23d4e0faab1171ba93ba"}, - {file = "statsmodels-0.13.2-cp39-cp39-win32.whl", hash = "sha256:461c82ab2265fa8457b96afc23ef3ca19f42eb070436e0241b57e58a38863901"}, - {file = "statsmodels-0.13.2-cp39-cp39-win_amd64.whl", hash = "sha256:39daab5a8a9332c8ea83d6464d065080c9ba65f236daf6a64aa18f64ef776fad"}, - {file = "statsmodels-0.13.2.tar.gz", hash = "sha256:77dc292c9939c036a476f1770f9d08976b05437daa229928da73231147cde7d4"}, -] -stdlib-list = [ - {file = "stdlib-list-0.8.0.tar.gz", hash = "sha256:a1e503719720d71e2ed70ed809b385c60cd3fb555ba7ec046b96360d30b16d9f"}, - {file = "stdlib_list-0.8.0-py3-none-any.whl", hash = "sha256:2ae0712a55b68f3fbbc9e58d6fa1b646a062188f49745b495f94d3310a9fdd3e"}, -] -tblib = [ - {file = "tblib-1.7.0-py2.py3-none-any.whl", hash = "sha256:289fa7359e580950e7d9743eab36b0691f0310fce64dee7d9c31065b8f723e23"}, - {file = "tblib-1.7.0.tar.gz", hash = "sha256:059bd77306ea7b419d4f76016aef6d7027cc8a0785579b5aad198803435f882c"}, -] -tensorly = [ - {file = "tensorly-0.5.1.tar.gz", hash = "sha256:cfb49376cc2ca46843eb7b9e72789898706aec5d1605ae9088ad37639c2b9e93"}, -] -threadpoolctl = [ - {file = "threadpoolctl-3.1.0-py3-none-any.whl", hash = "sha256:8b99adda265feb6773280df41eece7b2e6561b772d21ffd52e372f999024907b"}, - {file = "threadpoolctl-3.1.0.tar.gz", hash = "sha256:a335baacfaa4400ae1f0d8e3a58d6674d2f8828e3716bb2802c44955ad391380"}, -] -tinycss2 = [ - {file = "tinycss2-1.1.1-py3-none-any.whl", hash = "sha256:fe794ceaadfe3cf3e686b22155d0da5780dd0e273471a51846d0a02bc204fec8"}, - {file = "tinycss2-1.1.1.tar.gz", hash = "sha256:b2e44dd8883c360c35dd0d1b5aad0b610e5156c2cb3b33434634e539ead9d8bf"}, -] -tomli = [ - {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, - {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, -] -toolz = [ - {file = "toolz-0.11.2-py3-none-any.whl", hash = "sha256:a5700ce83414c64514d82d60bcda8aabfde092d1c1a8663f9200c07fdcc6da8f"}, - {file = "toolz-0.11.2.tar.gz", hash = "sha256:6b312d5e15138552f1bda8a4e66c30e236c831b612b2bf0005f8a1df10a4bc33"}, -] -torch = [ - {file = "torch-1.12.0-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:3322d33a06e440d715bb214334bd41314c94632d9a2f07d22006bf21da3a2be4"}, - {file = "torch-1.12.0-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:2568f011dddeb5990d8698cc375d237f14568ffa8489854e3b94113b4b6b7c8b"}, - {file = "torch-1.12.0-cp310-cp310-win_amd64.whl", hash = "sha256:e3e8348edca3e3cee5a67a2b452b85c57712efe1cc3ffdb87c128b3dde54534e"}, - {file = "torch-1.12.0-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:349ea3ba0c0e789e0507876c023181f13b35307aebc2e771efd0e045b8e03e84"}, - {file = "torch-1.12.0-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:13c7cca6b2ea3704d775444f02af53c5f072d145247e17b8cd7813ac57869f03"}, - {file = "torch-1.12.0-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:60d06ee2abfa85f10582d205404d52889d69bcbb71f7e211cfc37e3957ac19ca"}, - {file = "torch-1.12.0-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:a1325c9c28823af497cbf443369bddac9ac59f67f1e600f8ab9b754958e55b76"}, - {file = "torch-1.12.0-cp37-cp37m-win_amd64.whl", hash = "sha256:fb47291596677570246d723ee6abbcbac07eeba89d8f83de31e3954f21f44879"}, - {file = "torch-1.12.0-cp37-none-macosx_10_9_x86_64.whl", hash = "sha256:abbdc5483359b9495dc76e3bd7911ccd2ddc57706c117f8316832e31590af871"}, - {file = "torch-1.12.0-cp37-none-macosx_11_0_arm64.whl", hash = "sha256:72207b8733523388c49d43ffcc4416d1d8cd64c40f7826332e714605ace9b1d2"}, - {file = "torch-1.12.0-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:0986685f2ec8b7c4d3593e8cfe96be85d462943f1a8f54112fc48d4d9fbbe903"}, - {file = "torch-1.12.0-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:0399746f83b4541bcb5b219a18dbe8cade760aba1c660d2748a38c6dc338ebc7"}, - {file = "torch-1.12.0-cp38-cp38-win_amd64.whl", hash = "sha256:7ddb167827170c4e3ff6a27157414a00b9fef93dea175da04caf92a0619b7aee"}, - {file = "torch-1.12.0-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:2143d5fe192fd908b70b494349de5b1ac02854a8a902bd5f47d13d85b410e430"}, - {file = "torch-1.12.0-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:44a3804e9bb189574f5d02ccc2dc6e32e26a81b3e095463b7067b786048c6072"}, - {file = "torch-1.12.0-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:844f1db41173b53fe40c44b3e04fcca23a6ce00ac328b7099f2800e611766845"}, - {file = "torch-1.12.0-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:63341f96840a223f277e498d2737b39da30d9f57c7a1ef88857b920096317739"}, - {file = "torch-1.12.0-cp39-cp39-win_amd64.whl", hash = "sha256:201abf43a99bb4980cc827dd4b38ac28f35e4dddac7832718be3d5479cafd2c1"}, - {file = "torch-1.12.0-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:c0313438bc36448ffd209f5fb4e5f325b3af158cdf61c8829b8ddaf128c57816"}, - {file = "torch-1.12.0-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:5ed69d5af232c5c3287d44cef998880dadcc9721cd020e9ae02f42e56b79c2e4"}, -] -tornado = [ - {file = "tornado-6.1-cp35-cp35m-macosx_10_9_x86_64.whl", hash = "sha256:d371e811d6b156d82aa5f9a4e08b58debf97c302a35714f6f45e35139c332e32"}, - {file = "tornado-6.1-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:0d321a39c36e5f2c4ff12b4ed58d41390460f798422c4504e09eb5678e09998c"}, - {file = "tornado-6.1-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:9de9e5188a782be6b1ce866e8a51bc76a0fbaa0e16613823fc38e4fc2556ad05"}, - {file = "tornado-6.1-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:61b32d06ae8a036a6607805e6720ef00a3c98207038444ba7fd3d169cd998910"}, - {file = "tornado-6.1-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:3e63498f680547ed24d2c71e6497f24bca791aca2fe116dbc2bd0ac7f191691b"}, - {file = "tornado-6.1-cp35-cp35m-manylinux2014_aarch64.whl", hash = "sha256:6c77c9937962577a6a76917845d06af6ab9197702a42e1346d8ae2e76b5e3675"}, - {file = "tornado-6.1-cp35-cp35m-win32.whl", hash = "sha256:6286efab1ed6e74b7028327365cf7346b1d777d63ab30e21a0f4d5b275fc17d5"}, - {file = "tornado-6.1-cp35-cp35m-win_amd64.whl", hash = "sha256:fa2ba70284fa42c2a5ecb35e322e68823288a4251f9ba9cc77be04ae15eada68"}, - {file = "tornado-6.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:0a00ff4561e2929a2c37ce706cb8233b7907e0cdc22eab98888aca5dd3775feb"}, - {file = "tornado-6.1-cp36-cp36m-manylinux1_i686.whl", hash = "sha256:748290bf9112b581c525e6e6d3820621ff020ed95af6f17fedef416b27ed564c"}, - {file = "tornado-6.1-cp36-cp36m-manylinux1_x86_64.whl", hash = "sha256:e385b637ac3acaae8022e7e47dfa7b83d3620e432e3ecb9a3f7f58f150e50921"}, - {file = "tornado-6.1-cp36-cp36m-manylinux2010_i686.whl", hash = "sha256:25ad220258349a12ae87ede08a7b04aca51237721f63b1808d39bdb4b2164558"}, - {file = "tornado-6.1-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:65d98939f1a2e74b58839f8c4dab3b6b3c1ce84972ae712be02845e65391ac7c"}, - {file = "tornado-6.1-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:e519d64089b0876c7b467274468709dadf11e41d65f63bba207e04217f47c085"}, - {file = "tornado-6.1-cp36-cp36m-win32.whl", hash = "sha256:b87936fd2c317b6ee08a5741ea06b9d11a6074ef4cc42e031bc6403f82a32575"}, - {file = "tornado-6.1-cp36-cp36m-win_amd64.whl", hash = "sha256:cc0ee35043162abbf717b7df924597ade8e5395e7b66d18270116f8745ceb795"}, - {file = "tornado-6.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:7250a3fa399f08ec9cb3f7b1b987955d17e044f1ade821b32e5f435130250d7f"}, - {file = "tornado-6.1-cp37-cp37m-manylinux1_i686.whl", hash = "sha256:ed3ad863b1b40cd1d4bd21e7498329ccaece75db5a5bf58cd3c9f130843e7102"}, - {file = "tornado-6.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:dcef026f608f678c118779cd6591c8af6e9b4155c44e0d1bc0c87c036fb8c8c4"}, - {file = "tornado-6.1-cp37-cp37m-manylinux2010_i686.whl", hash = "sha256:70dec29e8ac485dbf57481baee40781c63e381bebea080991893cd297742b8fd"}, - {file = "tornado-6.1-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:d3f7594930c423fd9f5d1a76bee85a2c36fd8b4b16921cae7e965f22575e9c01"}, - {file = "tornado-6.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:3447475585bae2e77ecb832fc0300c3695516a47d46cefa0528181a34c5b9d3d"}, - {file = "tornado-6.1-cp37-cp37m-win32.whl", hash = "sha256:e7229e60ac41a1202444497ddde70a48d33909e484f96eb0da9baf8dc68541df"}, - {file = "tornado-6.1-cp37-cp37m-win_amd64.whl", hash = "sha256:cb5ec8eead331e3bb4ce8066cf06d2dfef1bfb1b2a73082dfe8a161301b76e37"}, - {file = "tornado-6.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:20241b3cb4f425e971cb0a8e4ffc9b0a861530ae3c52f2b0434e6c1b57e9fd95"}, - {file = "tornado-6.1-cp38-cp38-manylinux1_i686.whl", hash = "sha256:c77da1263aa361938476f04c4b6c8916001b90b2c2fdd92d8d535e1af48fba5a"}, - {file = "tornado-6.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:fba85b6cd9c39be262fcd23865652920832b61583de2a2ca907dbd8e8a8c81e5"}, - {file = "tornado-6.1-cp38-cp38-manylinux2010_i686.whl", hash = "sha256:1e8225a1070cd8eec59a996c43229fe8f95689cb16e552d130b9793cb570a288"}, - {file = "tornado-6.1-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:d14d30e7f46a0476efb0deb5b61343b1526f73ebb5ed84f23dc794bdb88f9d9f"}, - {file = "tornado-6.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:8f959b26f2634a091bb42241c3ed8d3cedb506e7c27b8dd5c7b9f745318ddbb6"}, - {file = "tornado-6.1-cp38-cp38-win32.whl", hash = "sha256:34ca2dac9e4d7afb0bed4677512e36a52f09caa6fded70b4e3e1c89dbd92c326"}, - {file = "tornado-6.1-cp38-cp38-win_amd64.whl", hash = "sha256:6196a5c39286cc37c024cd78834fb9345e464525d8991c21e908cc046d1cc02c"}, - {file = "tornado-6.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f0ba29bafd8e7e22920567ce0d232c26d4d47c8b5cf4ed7b562b5db39fa199c5"}, - {file = "tornado-6.1-cp39-cp39-manylinux1_i686.whl", hash = "sha256:33892118b165401f291070100d6d09359ca74addda679b60390b09f8ef325ffe"}, - {file = "tornado-6.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:7da13da6f985aab7f6f28debab00c67ff9cbacd588e8477034c0652ac141feea"}, - {file = "tornado-6.1-cp39-cp39-manylinux2010_i686.whl", hash = "sha256:e0791ac58d91ac58f694d8d2957884df8e4e2f6687cdf367ef7eb7497f79eaa2"}, - {file = "tornado-6.1-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:66324e4e1beede9ac79e60f88de548da58b1f8ab4b2f1354d8375774f997e6c0"}, - {file = "tornado-6.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:a48900ecea1cbb71b8c71c620dee15b62f85f7c14189bdeee54966fbd9a0c5bd"}, - {file = "tornado-6.1-cp39-cp39-win32.whl", hash = "sha256:d3d20ea5782ba63ed13bc2b8c291a053c8d807a8fa927d941bd718468f7b950c"}, - {file = "tornado-6.1-cp39-cp39-win_amd64.whl", hash = "sha256:548430be2740e327b3fe0201abe471f314741efcb0067ec4f2d7dcfb4825f3e4"}, - {file = "tornado-6.1.tar.gz", hash = "sha256:33c6e81d7bd55b468d2e793517c909b139960b6c790a60b7991b9b6b76fb9791"}, -] -tqdm = [ - {file = "tqdm-4.64.0-py2.py3-none-any.whl", hash = "sha256:74a2cdefe14d11442cedf3ba4e21a3b84ff9a2dbdc6cfae2c34addb2a14a5ea6"}, - {file = "tqdm-4.64.0.tar.gz", hash = "sha256:40be55d30e200777a307a7585aee69e4eabb46b4ec6a4b4a5f2d9f11e7d5408d"}, -] -traitlets = [ - {file = "traitlets-5.3.0-py3-none-any.whl", hash = "sha256:65fa18961659635933100db8ca120ef6220555286949774b9cfc106f941d1c7a"}, - {file = "traitlets-5.3.0.tar.gz", hash = "sha256:0bb9f1f9f017aa8ec187d8b1b2a7a6626a2a1d877116baba52a129bfa124f8e2"}, -] -typing-extensions = [ - {file = "typing_extensions-4.2.0-py3-none-any.whl", hash = "sha256:6657594ee297170d19f67d55c05852a874e7eb634f4f753dbd667855e07c1708"}, - {file = "typing_extensions-4.2.0.tar.gz", hash = "sha256:f1c24655a0da0d1b67f07e17a5e6b2a105894e6824b92096378bb3668ef02376"}, -] -umap-learn = [ - {file = "umap-learn-0.5.3.tar.gz", hash = "sha256:dbd57cb181c2b66d238acb5635697526bf24c798082daed0cf9b87f6a3a6c0c7"}, -] -upsetplot = [ - {file = "UpSetPlot-0.6.1.tar.gz", hash = "sha256:b198f91a0454ff292788050347bd8da00bdc8fe17e2e9cfdd51ea6e59970adfb"}, -] -urllib3 = [ - {file = "urllib3-1.26.9-py2.py3-none-any.whl", hash = "sha256:44ece4d53fb1706f667c9bd1c648f5469a2ec925fcf3a776667042d645472c14"}, - {file = "urllib3-1.26.9.tar.gz", hash = "sha256:aabaf16477806a5e1dd19aa41f8c2b7950dd3c746362d7e3223dbe6de6ac448e"}, -] -webencodings = [ - {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, - {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, -] -xgboost = [ - {file = "xgboost-1.4.0-py3-none-macosx_10_14_x86_64.macosx_10_15_x86_64.macosx_11_0_x86_64.whl", hash = "sha256:e6636a1e381d01d53a7410d599924dddfdc77c64adab346e64cfcf873f4c9fff"}, - {file = "xgboost-1.4.0-py3-none-manylinux2010_x86_64.whl", hash = "sha256:5f3fec990ec37c85203885f3782d9946ddb986c759febb36aa64844fb555db81"}, - {file = "xgboost-1.4.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0dcf0c95cec3e994f0c38c267e0fd0d45a9c7ef0a8c067a80fc61e3f3a719038"}, - {file = "xgboost-1.4.0-py3-none-win_amd64.whl", hash = "sha256:0fa40abf2cbb8678bc59e4737d2ea916dd02bbdedb7a8243fce6031e80493e20"}, - {file = "xgboost-1.4.0.tar.gz", hash = "sha256:0ebd4fab2acdd73db72eabe2565217905c4d0de4f659981b8db567a1453c5878"}, -] -xlrd = [ - {file = "xlrd-1.2.0-py2.py3-none-any.whl", hash = "sha256:e551fb498759fa3a5384a94ccd4c3c02eb7c00ea424426e212ac0c57be9dfbde"}, - {file = "xlrd-1.2.0.tar.gz", hash = "sha256:546eb36cee8db40c3eaa46c351e67ffee6eeb5fa2650b71bc4c758a29a1b29b2"}, -] -zict = [ - {file = "zict-2.2.0-py2.py3-none-any.whl", hash = "sha256:dabcc8c8b6833aa3b6602daad50f03da068322c1a90999ff78aed9eecc8fa92c"}, - {file = "zict-2.2.0.tar.gz", hash = "sha256:d7366c2e2293314112dcf2432108428a67b927b00005619feefc310d12d833f3"}, -] -zipp = [ - {file = "zipp-3.8.0-py3-none-any.whl", hash = "sha256:c4f6e5bbf48e74f7a38e7cc5b0480ff42b0ae5178957d564d18932525d5cf099"}, - {file = "zipp-3.8.0.tar.gz", hash = "sha256:56bf8aadb83c24db6c4b577e13de374ccfb67da2078beba1d037c17980bf43ad"}, -] diff --git a/pyproject.toml b/pyproject.toml index b87a1ec..0cc2917 100755 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,48 +1,62 @@ [tool.poetry] name = "bento-tools" packages = [{ include = "bento" }] -include = ["bento/datasets/datasets.csv", "bento/models/**/*"] -version = "1.0.1" +include = [ + "bento/datasets/datasets.csv", + "bento/models/**/*", + "bento/tools/gene_sets/*", +] +version = "2.0.0a0" description = "A toolkit for subcellular analysis of spatial transcriptomics data" authors = ["Clarence Mah "] -license = "MIT" +license = "BSD-2-Clause" readme = "README.md" [tool.poetry.dependencies] -python = ">=3.8, <3.11" -anndata = "^0.7.6" +python = ">=3.8, <3.10" +anndata = "^0.8" astropy = "^5.0" -cell2cell = "^0.5.10" -dask-geopandas = "^0.1.3" geopandas = "^0.10.0" matplotlib = "^3.2" matplotlib-scalebar = "^0.8.1" -myst-parser = { version = "^0.18.0", optional = true } -nbsphinx = {version = "^0.8.9", optional = true } -pandas = "<=1.2.5" pygeos = "^0.12.0" scanpy = "^1.9.1" scipy = "^1.7.0" -seaborn = "^0.11.0" +seaborn = "^0.12.1" Shapely = "^1.8.2" -Sphinx = { version = "^4.1.2", optional = true } -sphinx-autobuild = { version = "^2021.3.14", optional = true } -sphinx-book-theme = { version = "^0.3.2", optional = true } -sphinx-gallery = { version = "^0.10.1", optional = true } +Sphinx = { version = "^4.1.2", extras = ["docs"] } +sphinx-autobuild = { version = "^2021.3.14", extras = ["docs"] } +sphinx-book-theme = {version = "^1.0.0", extras = ["docs"] } +sphinx-gallery = { version = "^0.10.1", extras = ["docs"] } statsmodels = "^0.13.2" -torch = { version = "^1.9.0", optional = true } tqdm = "^4.64.0" UpSetPlot = "^0.6.1" -numba = "^0.55.2" -xgboost = "1.4.0" emoji = "^1.7.0" +tensorly = "^0.7.0" +rasterio = "^1.3.0" +ipywidgets = "^8.0" +decoupler = "^1.2.0" +MiniSom = "^2.3.0" +kneed = "^0.8.1" +adjustText = "^0.7.3" +sparse = "^0.13.0" +pandas = "^1.5.3" +xgboost = "1.4.0" +myst-nb = {version = "^0.17.1", extras = ["docs"]} +sphinx_design = {version = "^0.3.0", extras = ["docs"]} [tool.poetry.extras] -torch = ["torch"] -docs = ["Sphinx", "sphinx-autobuild", "sphinx-book-theme", "nbsphinx", "sphinx-gallery", "myst-parser"] +docs = [ + "Sphinx", + "sphinx-autobuild", + "sphinx-book-theme", + "sphinx-gallery", + "myst-nb", + "sphinx_design", +] [tool.setuptools] -py_modules=[] +py_modules = [] [build-system] requires = ["poetry-core>=1.0.0", 'setuptools'] diff --git a/tests/test_colocation.py b/tests/test_colocation.py index 4bb2266..5244e85 100644 --- a/tests/test_colocation.py +++ b/tests/test_colocation.py @@ -1,10 +1,21 @@ import unittest -import bento +import bento as bt -data = bento.datasets.sample_data() +data = bt.ds.sample_data() + +rank = 3 class TestColocation(unittest.TestCase): def test_coloc_quotient(self): - bento.tl.coloc_quotient(data) - self.assertTrue("coloc_quotient" in data.uns) + bt.tl.coloc_quotient(data) + self.assertTrue("clq" in data.uns) + + def test_colocation(self): + bt.tl.coloc_quotient(data, radius=20, min_points=10, min_cells=0) + bt.tl.colocation(data, ranks=[rank], iterations=3) + self.assertTrue("clq" in data.uns) + + def test_plot(self): + bt.pl.colocation(data, rank=rank) + self.assertTrue(True) diff --git a/tests/test_flux.py b/tests/test_flux.py new file mode 100644 index 0000000..75b50f1 --- /dev/null +++ b/tests/test_flux.py @@ -0,0 +1,51 @@ +import unittest +import bento as bt + +data = bt.ds.sample_data() +radius = 50 +n_neighbors = 20 +res = 0.02 + + +class TestFlux(unittest.TestCase): + def test_flux_radius(self): + bt.tl.flux(data, method="radius", radius=radius, res=res) + + self.assertTrue( + key in data.uns.keys() for key in ["flux", "flux_embed", "color"] + ) + self.assertTrue(data.uns["flux"].shape[0] == data.uns["cell_raster"].shape[0]) + self.assertTrue( + data.uns["flux_embed"].shape[0] == data.uns["cell_raster"].shape[0] + ) + self.assertTrue(data.uns["flux_color"].flatten()[0][0] == "#") + + def test_flux_knn(self): + bt.tl.flux(data, method="knn", n_neighbors=n_neighbors, res=res) + + self.assertTrue( + key in data.uns.keys() for key in ["flux", "flux_embed", "flux_color"] + ) + self.assertTrue(data.uns["flux"].shape[0] == data.uns["cell_raster"].shape[0]) + self.assertTrue( + data.uns["flux_embed"].shape[0] == data.uns["cell_raster"].shape[0] + ) + self.assertTrue(data.uns["flux_color"].flatten()[0][0] == "#") + + def test_fluxmap(self): + bt.tl.flux(data, method="radius", radius=radius, res=res) + bt.tl.fluxmap(data, n_clusters=range(2, 4), train_size=0.2, res=res) + bt.tl.fluxmap(data, n_clusters=3, train_size=1, res=res) + self.assertTrue("fluxmap" in data.uns["cell_raster"]) + self.assertTrue( + [ + f in data.uns["points"].columns + for f in ["fluxmap0", "fluxmap1", "fluxmap2"] + ] + ) + self.assertTrue( + [ + f in data.obs.columns + for f in ["fluxmap0_shape", "fluxmap1_shape", "fluxmap2_shape"] + ] + ) diff --git a/tests/test_geometry.py b/tests/test_geometry.py new file mode 100644 index 0000000..ebbd13d --- /dev/null +++ b/tests/test_geometry.py @@ -0,0 +1,40 @@ +import unittest +import bento as bt + +data = bt.ds.sample_data() + + +class TestGeometry(unittest.TestCase): + def test_crop(self): + + # Get bounds of first cell + cell_shape = bt.geo.get_shape(data, "cell_shape") + xmin, ymin, xmax, ymax = cell_shape.bounds.iloc[0] + + adata_crop = bt.geo.crop(data, (xmin, xmax), (ymin, ymax), copy=True) + + # Check that cropped data only contains first cell + self.assertTrue(adata_crop.obs.shape[0] == 1) + self.assertTrue(adata_crop.obs.index[0] == data.obs.index[0]) + + # Check that points are cropped + self.assertTrue( + adata_crop.uns["points"].shape[0] + == data.uns["points"].query("cell == @data.obs.index[0]").shape[0] + ) + + def test_rename_cells(self): + res=0.02 + bt.tl.flux(data, method="radius", radius=200, res=res) + bt.tl.fluxmap(data, 2, train_size=1, res=res) + bt.geo.rename_shapes( + data, + {"fluxmap1_shape": "fluxmap3_shape", "fluxmap2_shape": "fluxmap4_shape"}, + points_key=["points", "cell_raster"], + points_encoding=["onhot", "label"], + ) + + new_names = ["fluxmap3_shape", "fluxmap4_shape"] + self.assertTrue([f in data.obs.columns for f in new_names]) + self.assertTrue([f in data.uns["points"].columns for f in new_names]) + self.assertTrue([f in data.uns["cell_raster"]["fluxmap"] for f in ["3", "4"]]) diff --git a/tests/test_lp.py b/tests/test_lp.py new file mode 100644 index 0000000..59e26b1 --- /dev/null +++ b/tests/test_lp.py @@ -0,0 +1,18 @@ +import unittest +import bento as bt + +data = bt.ds.sample_data() + + +class TestPatterns(unittest.TestCase): + def test_lp(self): + bt.tl.lp(data) + + # Check if "lp" and "lpp" are in data.obsm + self.assertTrue("lp" in data.uns.keys() and "lpp" in data.uns.keys()) + + def test_lp_plots(self): + bt.pl.lp_dist(data, percentage=True) + bt.pl.lp_dist(data, percentage=False) + bt.tl.lp_stats(data) + bt.pl.lp_genes(data) diff --git a/tests/test_pattern_tools.py b/tests/test_pattern_tools.py deleted file mode 100644 index 7280614..0000000 --- a/tests/test_pattern_tools.py +++ /dev/null @@ -1,12 +0,0 @@ -import unittest -import bento - -data = bento.datasets.sample_data() - - -class TestPatterns(unittest.TestCase): - def test_lp(self): - bento.tl.lp(data) - self.assertTrue( - all(name in data.layers.keys() for name in bento._utils.PATTERN_NAMES) - ) diff --git a/tests/test_plotting.py b/tests/test_plotting.py index 50dcad6..b3009cc 100644 --- a/tests/test_plotting.py +++ b/tests/test_plotting.py @@ -1,2 +1,105 @@ import unittest -import bento +import bento as bt +import matplotlib as mpl +import matplotlib.pyplot as plt + +adata = bt.ds.sample_data() + + +# Test if plotting functions run without error +class TestPlotting(unittest.TestCase): + def test_analyze(self): + bt.pl.points(adata) + + bt.pl.points(adata, hue="gene", legend=False) + + genes = ["MALAT1", "TLN1", "SPTBN1"] + bt.pl.points(adata[:, genes], hue="gene") + + bt.pl.density(adata) + + bt.pl.density(adata, kind="kde") + + bt.pl.shapes(adata) + + bt.pl.shapes(adata, color_style="fill") + + bt.pl.shapes(adata, hue="cell", color_style="fill") + + fig, ax = plt.subplots() + bt.pl.shapes(adata, shapes="cell", linestyle="--", ax=ax) + bt.pl.shapes( + adata, + shapes="nucleus", + edgecolor="black", + facecolor="lightseagreen", + ax=ax, + ) + fig, axes = plt.subplots(1, 2, figsize=(8, 4)) + + bt.pl.density(adata, ax=axes[0], title="default styling") + + bt.pl.density( + adata, + ax=axes[1], + axis_visible=True, + frame_visible=True, + square=True, + title="square plot + axis", + ) + plt.tight_layout() + with mpl.style.context("dark_background"): + fig, ax = plt.subplots() + bt.pl.shapes(adata, shapes="cell", linestyle="--", ax=ax) + bt.pl.shapes( + adata, + shapes="nucleus", + edgecolor="black", + facecolor="lightseagreen", + ax=ax, + ) + cells = adata.obs_names[:8] # get some cells + ncells = len(cells) + + ncols = 4 + nrows = 2 + ax_height = 1.5 + fig, axes = plt.subplots( + nrows, ncols, figsize=(ncols * ax_height, nrows * ax_height) + ) # instantiate + + for c, ax in zip(cells, axes.flat): + bt.pl.density( + adata[c], + ax=ax, + square=True, + title="", + ) + + plt.subplots_adjust(wspace=0, hspace=0, bottom=0, top=1, left=0, right=1) + batches = adata.obs["batch"].unique()[:6] # get 6 batches + nbatches = len(batches) + + ncols = 3 + nrows = 2 + ax_height = 3 + fig, axes = plt.subplots( + nrows, ncols, figsize=(ncols * ax_height, nrows * ax_height) + ) # instantiate + + for b, ax in zip(batches, axes.flat): + bt.pl.density( + adata, + batch=b, + ax=ax, + square=True, + title="", + ) + + # remove empty axes + for ax in axes.flat[nbatches:]: + ax.remove() + + plt.subplots_adjust(wspace=0, hspace=0, bottom=0, top=1, left=0, right=1) + + self.assertTrue(True) diff --git a/tests/test_point_features.py b/tests/test_point_features.py new file mode 100644 index 0000000..ae39625 --- /dev/null +++ b/tests/test_point_features.py @@ -0,0 +1,39 @@ +import unittest +import bento as bt + +data = bt.ds.sample_data()[:5, :5] +bt.sync(data) + +# Ad a missing shape for testing +nucleus_shapes = data.obs["nucleus_shape"] +nucleus_shapes[1] = None + +features = list(bt.tl.list_point_features().keys()) + + +class TestPointFeatures(unittest.TestCase): + def test_single_feature(self): + # Simplest case, single parameters + bt.tl.analyze_points(data, "cell_shape", features[0], groupby=None) + + self.assertTrue("cell_features" in data.uns) + self.assertTrue(data.uns["cell_features"].shape[0] == data.n_obs) + + def test_multiple_shapes(self): + # Multiple shapes, and features + bt.tl.analyze_points( + data, ["cell_shape", "nucleus_shape"], features, groupby=None + ) + + self.assertTrue("cell_features" in data.uns) + self.assertTrue(data.uns["cell_features"].shape[0] == data.n_obs) + + def test_multiple_shapes_features_groupby(self): + # Multiple shapes, features, and gene groupby + bt.tl.analyze_points( + data, ["cell_shape", "nucleus_shape"], features, groupby="gene" + ) + + output_key = "cell_gene_features" + n_groups = data.uns["points"].groupby(["cell", "gene"], observed=True).ngroups + self.assertTrue(data.uns[output_key].shape[0] == n_groups) diff --git a/tests/test_sample_features.py b/tests/test_sample_features.py deleted file mode 100644 index ba6e9ae..0000000 --- a/tests/test_sample_features.py +++ /dev/null @@ -1,10 +0,0 @@ -import unittest -import bento - -data = bento.datasets.sample_data() - - -class TestSampleFeatures(unittest.TestCase): - def test_analyze(self): - features = list(bento.tl.sample_features.keys()) - bento.tl.analyze_samples(data, features) \ No newline at end of file diff --git a/tests/test_shape_features.py b/tests/test_shape_features.py new file mode 100644 index 0000000..a9a4a13 --- /dev/null +++ b/tests/test_shape_features.py @@ -0,0 +1,33 @@ +import unittest +import bento as bt + +data = bt.ds.sample_data()[:5, :5] +bt.sync(data) + +# Ad a missing shape for testing +nucleus_shapes = data.obs["nucleus_shape"] +nucleus_shapes[1] = None + +features = list(bt.tl.list_shape_features().keys()) + + +class TestShapeFeatures(unittest.TestCase): + # Simplest case, single shape and feature + def test_single_shape_single_feature(self): + # Test shape name with/without suffix + bt.tl.analyze_shapes(data, "cell", "area") + bt.tl.analyze_shapes(data, "cell_shape", "area") + self.assertTrue("cell_area" in data.obs) + + def test_single_shape_multi_feature(self): + # Test all features + bt.tl.analyze_shapes(data, "cell", features) + feature_keys = [f"cell_{f}" for f in features] + self.assertTrue(f in data.obs for f in feature_keys) + + def test_missing_shape(self): + # Test missing nucleus shapes + bt.tl.analyze_shapes(data, "nucleus", features) + feature_keys = [f"nucleus_{f}" for f in features] + self.assertTrue(f in data.obs for f in feature_keys) + self.assertTrue(data.obs[f].isna()[1] for f in feature_keys) diff --git a/tests/test_signatures.py b/tests/test_signatures.py new file mode 100644 index 0000000..e8d929e --- /dev/null +++ b/tests/test_signatures.py @@ -0,0 +1,11 @@ +import unittest +import bento + +data = bento.datasets.sample_data() + + +class TestSignatures(unittest.TestCase): + def test_to_tensor(self): + bento.tl.to_tensor(data, [None]) + tensor = data.uns["tensor"] + self.assertTrue(tensor.shape == (1, data.n_obs, data.n_vars)) diff --git a/tests/test_tensor_tools.py b/tests/test_tensor_tools.py deleted file mode 100644 index 9f7c5ac..0000000 --- a/tests/test_tensor_tools.py +++ /dev/null @@ -1,30 +0,0 @@ -import unittest -import bento - -data = bento.datasets.sample_data() - - -class TestTensorTools(unittest.TestCase): - def test_decompose_tensor(self): - bento.tl.lp(data) - N_FACTORS = 1 - bento.tl.decompose_tensor(data, bento.PATTERN_NAMES, N_FACTORS) - - dim_names = list(data.uns['tensor_labels'].keys()) - self.assertTrue(set(dim_names) == set(bento.tl.TENSOR_DIM_NAMES)) - - n_features = len(bento.PATTERN_NAMES) - n_cells = data.n_obs - n_genes = data.n_vars - tensor_shape = (n_features, n_cells, n_genes) - self.assertTrue(data.uns["tensor"].shape == tensor_shape) - - for i, name in enumerate(bento.tl.TENSOR_DIM_NAMES): - dim_len = data.uns['tensor_loadings'][name].values.shape[0] - self.assertTrue(dim_len == tensor_shape[i]) - - n_factors = len(data.uns['tensor_loadings'][name].keys()) - self.assertTrue(n_factors == N_FACTORS) - - # Make sure plotting tensor decomposition factors runs with no errors - bento.pl.lp_signatures(data, scale=True)