Skip to content

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach

License

Notifications You must be signed in to change notification settings

zhouyunsong/MonoEF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach

This repository is the official implementation of our paper. For more details, please see our paper.

Introduction

MonoEF is a real-time monocular 3D object detector for autonomous driving.
Part of the code comes from SMOKE, CenterNet, maskrcnn-benchmark, and Detectron2.

Requirements

All codes are tested under the following environment:

  • Ubuntu 16.04
  • Python 3.7
  • Pytorch 1.3.1
  • CUDA 10.0

Dataset

We train and test our model on official KITTI 3D Object Dataset. Please first download the dataset and organize it as following structure:

kitti
│──training
│    ├──calib 
│    ├──label_2 
│    ├──image_2
│    └──ImageSets
└──testing
     ├──calib 
     ├──image_2
     └──ImageSets

Setup

  1. We use conda to manage the environment:
conda create -n SMOKE python=3.7
  1. Clone this repo:
git clone https://github.com/lzccccc/SMOKE
  1. Build codes:
python setup.py build develop
  1. Link to dataset directory:
mkdir datasets
ln -s /path_to_kitti_dataset datasets/kitti

Getting started

First check the config file under configs/.

We train the model on 4 GPUs with 32 batch size:

python tools/plain_train_net.py --num-gpus 4 --config-file "configs/smoke_gn_vector.yaml"

For single GPU training, simply run:

python tools/plain_train_net.py --config-file "configs/smoke_gn_vector.yaml"

We currently only support single GPU testing:

python tools/plain_train_net.py --eval-only --config-file "configs/smoke_gn_vector.yaml"

Acknowledgement

SMOKE

CenterNet

maskrcnn-benchmark

Detectron2

Citations

Please cite our paper if you find MonoEF is helpful for your research.

@inproceedings{zhou2021monocular,
  title={Monocular 3d object detection: An extrinsic parameter free approach},
  author={Zhou, Yunsong and He, Yuan and Zhu, Hongzi and Wang, Cheng and Li, Hongyang and Jiang, Qinhong},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={7556--7566},
  year={2021}
}

About

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published