This repository is the official implementation of our paper. For more details, please see our paper.
MonoEF is a real-time monocular 3D object detector for autonomous driving.
Part of the code comes from SMOKE,
CenterNet,
maskrcnn-benchmark,
and Detectron2.
All codes are tested under the following environment:
- Ubuntu 16.04
- Python 3.7
- Pytorch 1.3.1
- CUDA 10.0
We train and test our model on official KITTI 3D Object Dataset. Please first download the dataset and organize it as following structure:
kitti
│──training
│ ├──calib
│ ├──label_2
│ ├──image_2
│ └──ImageSets
└──testing
├──calib
├──image_2
└──ImageSets
- We use
conda
to manage the environment:
conda create -n SMOKE python=3.7
- Clone this repo:
git clone https://github.com/lzccccc/SMOKE
- Build codes:
python setup.py build develop
- Link to dataset directory:
mkdir datasets
ln -s /path_to_kitti_dataset datasets/kitti
First check the config file under configs/
.
We train the model on 4 GPUs with 32 batch size:
python tools/plain_train_net.py --num-gpus 4 --config-file "configs/smoke_gn_vector.yaml"
For single GPU training, simply run:
python tools/plain_train_net.py --config-file "configs/smoke_gn_vector.yaml"
We currently only support single GPU testing:
python tools/plain_train_net.py --eval-only --config-file "configs/smoke_gn_vector.yaml"
Please cite our paper if you find MonoEF is helpful for your research.
@inproceedings{zhou2021monocular,
title={Monocular 3d object detection: An extrinsic parameter free approach},
author={Zhou, Yunsong and He, Yuan and Zhu, Hongzi and Wang, Cheng and Li, Hongyang and Jiang, Qinhong},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={7556--7566},
year={2021}
}