forked from EpistasisLab/scikit-rebate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tests.py
584 lines (401 loc) · 25.7 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
"""
scikit-rebate was primarily developed at the University of Pennsylvania by:
- Randal S. Olson (rso@randalolson.com)
- Pete Schmitt (pschmitt@upenn.edu)
- Ryan J. Urbanowicz (ryanurb@upenn.edu)
- Weixuan Fu (weixuanf@upenn.edu)
- and many more generous open source contributors
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
from skrebate import ReliefF, SURF, SURFstar, MultiSURF, MultiSURFstar
from sklearn.pipeline import make_pipeline
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.impute import SimpleImputer
from sklearn.model_selection import cross_val_score
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
np.random.seed(3249083)
genetic_data = pd.read_csv(
'data/GAMETES_Epistasis_2-Way_20atts_0.4H_EDM-1_1.tsv.gz', sep='\t', compression='gzip')
genetic_data = genetic_data.sample(frac=0.25)
genetic_data_cont_endpoint = pd.read_csv(
'data/GAMETES_Epistasis_2-Way_continuous_endpoint_a_20s_1600her_0.4__maf_0.2_EDM-2_01.tsv.gz', sep='\t', compression='gzip')
genetic_data_cont_endpoint.rename(columns={'Class': 'class'}, inplace=True)
genetic_data_cont_endpoint = genetic_data_cont_endpoint.sample(frac=0.25)
genetic_data_mixed_attributes = pd.read_csv(
'data/GAMETES_Epistasis_2-Way_mixed_attribute_a_20s_1600her_0.4__maf_0.2_EDM-2_01.tsv.gz', sep='\t', compression='gzip')
genetic_data_mixed_attributes.rename(columns={'Class': 'class'}, inplace=True)
genetic_data_mixed_attributes = genetic_data_mixed_attributes.sample(frac=0.25)
genetic_data_missing_values = pd.read_csv(
'data/GAMETES_Epistasis_2-Way_missing_values_0.1_a_20s_1600her_0.4__maf_0.2_EDM-2_01.tsv.gz', sep='\t', compression='gzip')
genetic_data_missing_values.rename(columns={'Class': 'class'}, inplace=True)
genetic_data_missing_values = genetic_data_missing_values.sample(frac=0.25)
genetic_data_multiclass = pd.read_csv('data/3Class_Datasets_Loc_2_01.txt', sep='\t')
genetic_data_multiclass.rename(columns={'Class': 'class'}, inplace=True)
genetic_data_multiclass = genetic_data_multiclass.sample(frac=0.25)
features_df, labels_s = genetic_data.drop('class', axis=1), genetic_data['class']
features, labels = features_df.values, labels_s.values
headers = list(genetic_data.drop("class", axis=1))
features_cont_endpoint, labels_cont_endpoint = genetic_data_cont_endpoint.drop(
'class', axis=1).values, genetic_data_cont_endpoint['class'].values
headers_cont_endpoint = list(genetic_data_cont_endpoint.drop("class", axis=1))
features_mixed_attributes, labels_mixed_attributes = genetic_data_mixed_attributes.drop(
'class', axis=1).values, genetic_data_mixed_attributes['class'].values
headers_mixed_attributes = list(genetic_data_mixed_attributes.drop("class", axis=1))
features_missing_values, labels_missing_values = genetic_data_missing_values.drop(
'class', axis=1).values, genetic_data_missing_values['class'].values
headers_missing_values = list(genetic_data_missing_values.drop("class", axis=1))
features_multiclass, labels_multiclass = genetic_data_multiclass.drop(
'class', axis=1).values, genetic_data_multiclass['class'].values
headers_multiclass = list(genetic_data_multiclass.drop("class", axis=1))
# Initialization tests--------------------------------------------------------------------------------
def test_relieff_init():
"""Check: ReliefF constructor stores custom values correctly"""
clf = ReliefF(n_features_to_select=7,
n_neighbors=500,
discrete_threshold=20,
verbose=True,
n_jobs=3)
assert clf.n_features_to_select == 7
assert clf.n_neighbors == 500
assert clf.discrete_threshold == 20
assert clf.verbose == True
assert clf.n_jobs == 3
def test_surf_init():
"""Check: SURF, SURF*, and MultiSURF constructors store custom values correctly"""
clf = SURF(n_features_to_select=7,
discrete_threshold=20,
verbose=True,
n_jobs=3)
assert clf.n_features_to_select == 7
assert clf.discrete_threshold == 20
assert clf.verbose == True
assert clf.n_jobs == 3
# Basic Parallelization Tests and Core binary data and discrete feature data testing (Focus on ReliefF only for efficiency)------------------------------------------------------------
def test_relieff_pipeline():
"""Check: Data (Binary Endpoint, Discrete Features): ReliefF works in a sklearn pipeline"""
np.random.seed(49082)
clf = make_pipeline(ReliefF(n_features_to_select=2, n_neighbors=10),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3, n_jobs=-1)) > 0.7
def test_relieff_pipeline_parallel():
"""Check: Data (Binary Endpoint, Discrete Features): ReliefF works in a sklearn pipeline when ReliefF is parallelized"""
# Note that the rebate algorithm cannot be parallelized with both the random forest and the cross validation all at once. If the rebate algorithm is parallelized, the cross-validation scoring cannot be.
np.random.seed(49082)
clf = make_pipeline(ReliefF(n_features_to_select=2, n_neighbors=10, n_jobs=-1),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3)) > 0.7
def test_relieffpercent_pipeline():
"""Check: Data (Binary Endpoint, Discrete Features): ReliefF with % neighbors works in a sklearn pipeline"""
np.random.seed(49082)
clf = make_pipeline(ReliefF(n_features_to_select=2, n_neighbors=0.1),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3, n_jobs=-1)) > 0.7
def test_surf_pipeline():
"""Check: Data (Binary Endpoint, Discrete Features): SURF works in a sklearn pipeline"""
np.random.seed(240932)
clf = make_pipeline(SURF(n_features_to_select=2),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3, n_jobs=-1)) > 0.7
def test_surf_pipeline_parallel():
"""Check: Data (Binary Endpoint, Discrete Features): SURF works in a sklearn pipeline when SURF is parallelized"""
np.random.seed(240932)
clf = make_pipeline(SURF(n_features_to_select=2, n_jobs=-1),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3)) > 0.7
def test_surfstar_pipeline():
"""Check: Data (Binary Endpoint, Discrete Features): SURF* works in a sklearn pipelined"""
np.random.seed(9238745)
clf = make_pipeline(SURFstar(n_features_to_select=2),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3, n_jobs=-1)) > 0.7
def test_surfstar_pipeline_parallel():
"""Check: Data (Binary Endpoint, Discrete Features): SURF* works in a sklearn pipeline when SURF* is parallelized"""
np.random.seed(9238745)
clf = make_pipeline(SURFstar(n_features_to_select=2, n_jobs=-1),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3)) > 0.7
def test_multisurfstar_pipeline():
"""Check: Data (Binary Endpoint, Discrete Features): MultiSURF* works in a sklearn pipeline"""
np.random.seed(320931)
clf = make_pipeline(MultiSURFstar(n_features_to_select=2),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3, n_jobs=-1)) > 0.7
def test_multisurfstar_pipeline_parallel():
"""Check: Data (Binary Endpoint, Discrete Features): MultiSURF* works in a sklearn pipeline when MultiSURF* is parallelized"""
np.random.seed(320931)
clf = make_pipeline(MultiSURFstar(n_features_to_select=2, n_jobs=-1),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3)) > 0.7
def test_multisurf_pipeline():
"""Check: Data (Binary Endpoint, Discrete Features): MultiSURF works in a sklearn pipeline"""
np.random.seed(320931)
clf = make_pipeline(MultiSURF(n_features_to_select=2),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3, n_jobs=-1)) > 0.7
def test_multisurf_pipeline_parallel():
"""Check: Data (Binary Endpoint, Discrete Features): MultiSURF works in a sklearn pipeline when MultiSURF is parallelized"""
np.random.seed(320931)
clf = make_pipeline(MultiSURF(n_features_to_select=2, n_jobs=-1),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3)) > 0.7
def test_turf_pipeline():
"""Check: Data (Binary Endpoint, Discrete Features): TuRF with ReliefF works in a sklearn pipeline"""
np.random.seed(49082)
# clf = make_pipeline(TuRF(core_algorithm="ReliefF", n_features_to_select=2, pct=0.5, n_neighbors=100),
# RandomForestClassifier(n_estimators=100, n_jobs=-1))
#
# assert np.mean(cross_val_score(clf, features, labels, fit_params={
# 'turf__headers': headers}, cv=3, n_jobs=-1)) > 0.7
def test_turf_pipeline_parallel():
"""Check: Data (Binary Endpoint, Discrete Features): TuRF with ReliefF works in a sklearn pipeline when TuRF is parallelized"""
np.random.seed(49082)
# clf = make_pipeline(TuRF(core_algorithm="ReliefF", n_features_to_select=2, pct=0.5, n_neighbors=100, n_jobs=-1),
# RandomForestClassifier(n_estimators=100, n_jobs=-1))
#
# assert np.mean(cross_val_score(clf, features, labels, fit_params={
# 'turf__headers': headers}, cv=3)) > 0.7
def test_vlsrelief_pipeline():
"""Check: Data (Binary Endpoint, Discrete Features): VLSRelief with ReliefF works in a sklearn pipeline"""
np.random.seed(49082)
# clf = make_pipeline(VLSRelief(core_algorithm="ReliefF", n_features_to_select=2, n_neighbors=100),
# RandomForestClassifier(n_estimators=100, n_jobs=-1))
#
# assert np.mean(cross_val_score(clf, features, labels, fit_params={
# 'vlsrelief__headers': headers}, cv=3, n_jobs=-1)) > 0.7
def test_vlsrelief_pipeline_parallel():
"""Check: Data (Binary Endpoint, Discrete Features): VLSRelief with ReliefF works in a sklearn pipeline when VLSRelief is parallelized"""
np.random.seed(49082)
# clf = make_pipeline(VLSRelief(core_algorithm="ReliefF", n_features_to_select=2, n_neighbors=100, n_jobs=-1),
# RandomForestClassifier(n_estimators=100, n_jobs=-1))
#
# assert np.mean(cross_val_score(clf, features, labels, fit_params={
# 'vlsrelief__headers': headers}, cv=3)) > 0.7
def test_iterrelief_pipeline():
"""Check: Data (Binary Endpoint, Discrete Features): IterRelief with ReliefF works in a sklearn pipeline"""
np.random.seed(49082)
# clf = make_pipeline(IterRelief(core_algorithm="ReliefF", n_features_to_select=2, n_neighbors=100),
# RandomForestClassifier(n_estimators=100, n_jobs=-1))
#
# assert np.mean(cross_val_score(clf, features, labels, cv=3, n_jobs=-1)) > 0.5
def test_iterrelief_pipeline_parallel():
"""Check: Data (Binary Endpoint, Discrete Features): IterRelief with ReliefF works in a sklearn pipeline when VLSRelief is parallelized"""
np.random.seed(49082)
# clf = make_pipeline(IterRelief(core_algorithm="ReliefF", n_features_to_select=2, n_neighbors=100, n_jobs=-1),
# RandomForestClassifier(n_estimators=100, n_jobs=-1))
#
# assert np.mean(cross_val_score(clf, features, labels, cv=3)) > 0.5
# Test Multiclass Data ------------------------------------------------------------------------------------
def test_relieff_pipeline_multiclass():
"""Check: Data (Multiclass Endpoint): ReliefF works in a sklearn pipeline """
np.random.seed(49082)
clf = make_pipeline(ReliefF(n_features_to_select=2, n_neighbors=10),
SimpleImputer(),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_multiclass,
labels_multiclass, cv=3, n_jobs=-1)) > 0.7
def test_surf_pipeline_multiclass():
"""Check: Data (Multiclass Endpoint): SURF works in a sklearn pipeline"""
np.random.seed(240932)
clf = make_pipeline(SURF(n_features_to_select=2),
SimpleImputer(),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_multiclass,
labels_multiclass, cv=3, n_jobs=-1)) > 0.7
def test_surfstar_pipeline_multiclass():
"""Check: Data (Multiclass Endpoint): SURF* works in a sklearn pipeline"""
np.random.seed(9238745)
clf = make_pipeline(SURFstar(n_features_to_select=2),
SimpleImputer(),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_multiclass,
labels_multiclass, cv=3, n_jobs=-1)) > 0.7
def test_multisurfstar_pipeline_multiclass():
"""Check: Data (Multiclass Endpoint): MultiSURF* works in a sklearn pipeline"""
np.random.seed(320931)
clf = make_pipeline(MultiSURFstar(n_features_to_select=2),
SimpleImputer(),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_multiclass,
labels_multiclass, cv=3, n_jobs=-1)) > 0.7
def test_multisurf_pipeline_multiclass():
"""Check: Data (Multiclass Endpoint): MultiSURF works in a sklearn pipeline"""
np.random.seed(320931)
clf = make_pipeline(MultiSURF(n_features_to_select=2),
SimpleImputer(),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_multiclass,
labels_multiclass, cv=3, n_jobs=-1)) > 0.7
# Test Continuous Endpoint Data ------------------------------------------------------------------------------------
def test_relieff_pipeline_cont_endpoint():
"""Check: Data (Continuous Endpoint): ReliefF works in a sklearn pipeline"""
np.random.seed(49082)
clf = make_pipeline(ReliefF(n_features_to_select=2, n_neighbors=10),
RandomForestRegressor(n_estimators=100, n_jobs=-1))
assert abs(np.mean(cross_val_score(clf, features_cont_endpoint,
labels_cont_endpoint, cv=3, n_jobs=-1))) < 0.5
def test_surf_pipeline_cont_endpoint():
"""Check: Data (Continuous Endpoint): SURF works in a sklearn pipeline"""
np.random.seed(240932)
clf = make_pipeline(SURF(n_features_to_select=2),
RandomForestRegressor(n_estimators=100, n_jobs=-1))
assert abs(np.mean(cross_val_score(clf, features_cont_endpoint,
labels_cont_endpoint, cv=3, n_jobs=-1))) < 0.5
def test_surfstar_pipeline_cont_endpoint():
"""Check: Data (Continuous Endpoint): SURF* works in a sklearn pipeline"""
np.random.seed(9238745)
clf = make_pipeline(SURFstar(n_features_to_select=2),
RandomForestRegressor(n_estimators=100, n_jobs=-1))
assert abs(np.mean(cross_val_score(clf, features_cont_endpoint,
labels_cont_endpoint, cv=3, n_jobs=-1))) < 0.5
def test_multisurfstar_pipeline_cont_endpoint():
"""Check: Data (Continuous Endpoint): MultiSURF* works in a sklearn pipeline"""
np.random.seed(320931)
clf = make_pipeline(MultiSURFstar(n_features_to_select=2),
RandomForestRegressor(n_estimators=100, n_jobs=-1))
assert abs(np.mean(cross_val_score(clf, features_cont_endpoint,
labels_cont_endpoint, cv=3, n_jobs=-1))) < 0.5
def test_multisurf_pipeline_cont_endpoint():
"""Check: Data (Continuous Endpoint): MultiSURF works in a sklearn pipeline"""
np.random.seed(320931)
clf = make_pipeline(MultiSURF(n_features_to_select=2),
RandomForestRegressor(n_estimators=100, n_jobs=-1))
assert abs(np.mean(cross_val_score(clf, features_cont_endpoint,
labels_cont_endpoint, cv=3, n_jobs=-1))) < 0.5
# Test Mixed Attribute Data ------------------------------------------------------------------------------------
def test_relieff_pipeline_mixed_attributes():
"""Check: Data (Mixed Attributes): ReliefF works in a sklearn pipeline"""
np.random.seed(49082)
clf = make_pipeline(ReliefF(n_features_to_select=2, n_neighbors=10),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_mixed_attributes,
labels_mixed_attributes, cv=3, n_jobs=-1)) > 0.7
def test_surf_pipeline_mixed_attributes():
"""Check: Data (Mixed Attributes): SURF works in a sklearn pipeline"""
np.random.seed(240932)
clf = make_pipeline(SURF(n_features_to_select=2),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_mixed_attributes,
labels_mixed_attributes, cv=3, n_jobs=-1)) > 0.7
def test_surfstar_pipeline_mixed_attributes():
"""Check: Data (Mixed Attributes): SURF* works in a sklearn pipeline"""
np.random.seed(9238745)
clf = make_pipeline(SURFstar(n_features_to_select=2),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_mixed_attributes,
labels_mixed_attributes, cv=3, n_jobs=-1)) > 0.7
def test_multisurfstar_pipeline_mixed_attributes():
"""Check: Data (Mixed Attributes): MultiSURF* works in a sklearn pipeline"""
np.random.seed(320931)
clf = make_pipeline(MultiSURFstar(n_features_to_select=2),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_mixed_attributes,
labels_mixed_attributes, cv=3, n_jobs=-1)) > 0.7
def test_multisurf_pipeline_mixed_attributes():
"""Check: Data (Mixed Attributes): MultiSURF works in a sklearn pipeline"""
np.random.seed(320931)
clf = make_pipeline(MultiSURF(n_features_to_select=2),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_mixed_attributes,
labels_mixed_attributes, cv=3, n_jobs=-1)) > 0.7
# Test Missing Value Data ------------------------------------------------------------------------------------
def test_relieff_pipeline_missing_values():
"""Check: Data (Missing Values): ReliefF works in a sklearn pipeline"""
np.random.seed(49082)
clf = make_pipeline(ReliefF(n_features_to_select=2, n_neighbors=10),
SimpleImputer(),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_missing_values,
labels_missing_values, cv=3, n_jobs=-1)) > 0.7
def test_surf_pipeline_missing_values():
"""Check: Data (Missing Values): SURF works in a sklearn pipeline"""
np.random.seed(240932)
clf = make_pipeline(SURF(n_features_to_select=2),
SimpleImputer(),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_missing_values,
labels_missing_values, cv=3, n_jobs=-1)) > 0.7
def test_surfstar_pipeline_missing_values():
"""Check: Data (Missing Values): SURF* works in a sklearn pipeline"""
np.random.seed(9238745)
clf = make_pipeline(SURFstar(n_features_to_select=2),
SimpleImputer(),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_missing_values,
labels_missing_values, cv=3, n_jobs=-1)) > 0.7
def test_multisurfstar_pipeline_missing_values():
"""Check: Data (Missing Values): MultiSURF* works in a sklearn pipeline"""
np.random.seed(320931)
clf = make_pipeline(MultiSURFstar(n_features_to_select=2),
SimpleImputer(),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_missing_values,
labels_missing_values, cv=3, n_jobs=-1)) > 0.7
def test_multisurf_pipeline_missing_values():
"""Check: Data (Missing Values): MultiSURF works in a sklearn pipeline"""
np.random.seed(320931)
clf = make_pipeline(MultiSURF(n_features_to_select=2),
SimpleImputer(),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_missing_values,
labels_missing_values, cv=3, n_jobs=-1)) > 0.7
# Test Dataframe handling:
def test_relieff_pandas_inputs():
"""Check: Data (pandas DataFrame/Series): ReliefF works with pandas DataFrame and Series inputs"""
np.random.seed(49082)
clf = make_pipeline(ReliefF(n_features_to_select=2, n_neighbors=10),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_df, labels_s, cv=3, n_jobs=-1)) > 0.7
def test_surf_pandas_inputs():
"""Check: Data (pandas DataFrame/Series): SURF works with pandas DataFrame and Series inputs"""
np.random.seed(240932)
clf = make_pipeline(SURF(n_features_to_select=2),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_df,
labels_s, cv=3, n_jobs=-1)) > 0.7
def test_surfstar_pandas_inputs():
"""Check: Data (pandas DataFrame/Series): SURF* works with pandas DataFrame and Series inputs"""
np.random.seed(9238745)
clf = make_pipeline(SURFstar(n_features_to_select=2),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_df,
labels_s, cv=3, n_jobs=-1)) > 0.7
def test_multisurfstar_pandas_inputs():
"""Check: Data (pandas DataFrame/Series): MultiSURF* works with pandas DataFrame and Series inputs"""
np.random.seed(320931)
clf = make_pipeline(MultiSURFstar(n_features_to_select=2),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_df,
labels_s, cv=3, n_jobs=-1)) > 0.7
def test_multisurf_pandas_inputs():
"""Check: Data (pandas DataFrame/Series): MultiSURF works with pandas DataFrame and Series inputs"""
np.random.seed(320931)
clf = make_pipeline(MultiSURF(n_features_to_select=2),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_df,
labels_s, cv=3, n_jobs=-1)) > 0.7
# def test_turf_pandas_inputs():
# """Check: Data (pandas DataFrame/Series): TuRF works with pandas DataFrame and Series inputs"""
# np.random.seed(320931)
# clf = make_pipeline(TuRF(core_algorithm="ReliefF", n_features_to_select=2, pct=0.5, n_neighbors=100),
# RandomForestClassifier(n_estimators=100, n_jobs=-1))
# assert np.mean(cross_val_score(clf, features, labels, fit_params={'turf__headers': headers}, cv=3, n_jobs=-1)) > 0.7
# def test_vlsrelief_pandas_inputs():
# """Check: Data (pandas DataFrame/Series): VLSRelief works with pandas DataFrame and Series inputs"""
# np.random.seed(49082)
# clf = make_pipeline(VLSRelief(core_algorithm="ReliefF", n_features_to_select=2, n_neighbors=100),
# RandomForestClassifier(n_estimators=100, n_jobs=-1))
# assert np.mean(cross_val_score(clf, features, labels, fit_params={'vlsrelief__headers': headers}, cv=3, n_jobs=-1)) > 0.7