forked from lanl/PISTON
-
Notifications
You must be signed in to change notification settings - Fork 0
/
scan.inl
173 lines (158 loc) · 6.03 KB
/
scan.inl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*
* Copyright 2008-2011 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <thrust/iterator/iterator_traits.h>
#include <thrust/detail/device/dereference.h>
#include <vector>
#include <numeric>
#include "omp.h"
namespace thrust
{
namespace detail
{
namespace device
{
namespace omp
{
// Scan function based on Belloch's algorithm
template <class InputIterator, class OutputIterator, class BinaryOperation>
OutputIterator scan(InputIterator first, InputIterator last, OutputIterator result, bool inclusiveScan, BinaryOperation binop)
{
// If there is only one processor or one or fewer data elements, don't do extra work
int numThreads = omp_get_max_threads();
int N = last - first;
if (N <= 0) return (result);
if (N == 1) { if (inclusiveScan) result[0] = first[0]; else result[0] = 0; return (result + N); }
if (numThreads < 2)
{
if (inclusiveScan) return std::partial_sum(first, last, result, binop);
typename std::iterator_traits<InputIterator>::value_type lastItem = first[0];
result[0] = 0;
typename std::iterator_traits<InputIterator>::value_type newLastItem;
typename std::iterator_traits<InputIterator>::value_type prevResult = 0;
for (int i=1; i<N; i++)
{
newLastItem = first[i];
prevResult = result[i] = binop(prevResult, lastItem);
lastItem = newLastItem;
}
return (result + N);
}
// Initialize variables for data size and how many elements each processor gets
if (numThreads > N) numThreads = N;
int itemsPerThread = N / numThreads;
// Each processor sums (with respect to binary scan operator) all elements assigned to it
std::vector<typename std::iterator_traits<InputIterator>::value_type> processorSums(numThreads);
std::vector<typename std::iterator_traits<InputIterator>::value_type> processorSuppl(numThreads-1);
std::fill(processorSuppl.begin(), processorSuppl.end(), 0);
int sumItemsPerThread = std::max(1, ((numThreads-1)*itemsPerThread)/numThreads);
#pragma omp parallel
{
int id = omp_get_thread_num();
if (id < numThreads - 1)
{
int startIndex = id*itemsPerThread;
int endIndex = startIndex + sumItemsPerThread;
typename std::iterator_traits<InputIterator>::value_type sum = first[startIndex];
for (int i=startIndex+1; i<endIndex; i++)
sum = binop(sum, first[i]);
processorSums[id] = sum;
}
else if (id == numThreads - 1)
{
for (int s=0; s<numThreads-1; s++)
{
int startIndex = s*itemsPerThread + sumItemsPerThread;
int endIndex = (s+1)*itemsPerThread;
typename std::iterator_traits<InputIterator>::value_type psum = first[startIndex];
for (int i=startIndex+1; i<endIndex; i++)
psum = binop(psum, first[i]);
if (endIndex > startIndex)
processorSuppl[s] = psum;
}
}
}
for (int i=0; i<numThreads-1; i++)
processorSums[i] = binop(processorSums[i], processorSuppl[i]);
// Perform a scan across the processor sums to get offsets for each processor
typename std::iterator_traits<InputIterator>::value_type lastItem = processorSums[0];
processorSums[0] = 0;
typename std::iterator_traits<InputIterator>::value_type newLastItem = processorSums[1];
processorSums[1] = lastItem;
lastItem = newLastItem;
for (int i=2; i<numThreads; i++)
{
typename std::iterator_traits<InputIterator>::value_type newLastItem = processorSums[i];
processorSums[i] = binop(processorSums[i-1], lastItem);
lastItem = newLastItem;
}
// Each processor scans the elements assigned to it, using result of processor scan above as offset
#pragma omp parallel
{
int id = omp_get_thread_num();
if (id < numThreads)
{
typename std::iterator_traits<InputIterator>::value_type lastItem = first[id*itemsPerThread];
if (inclusiveScan) result[id*itemsPerThread] = binop(processorSums[id], lastItem);
else result[id*itemsPerThread] = processorSums[id];
int firstIndex = id*itemsPerThread+1;
int lastIndex = (id+1)*itemsPerThread;
if (id == numThreads-1) lastIndex = N;
typename std::iterator_traits<InputIterator>::value_type newLastItem;
typename std::iterator_traits<InputIterator>::value_type prevResult = result[firstIndex-1];
if (inclusiveScan)
{
for (int i=firstIndex; i<lastIndex; i++)
prevResult = result[i] = binop(prevResult, first[i]);
}
else
{
for (int i=firstIndex; i<lastIndex; i++)
{
newLastItem = first[i];
prevResult = result[i] = binop(prevResult, lastItem);
lastItem = newLastItem;
}
}
}
}
return (result + N);
}
template<typename InputIterator,
typename OutputIterator,
typename AssociativeOperator>
OutputIterator inclusive_scan(InputIterator first,
InputIterator last,
OutputIterator result,
AssociativeOperator binary_op)
{
return scan(first, last, result, true, binary_op);
}
template<typename InputIterator,
typename OutputIterator,
typename T,
typename AssociativeOperator>
OutputIterator exclusive_scan(InputIterator first,
InputIterator last,
OutputIterator result,
T init,
AssociativeOperator binary_op)
{
return scan(first, last, result, false, binary_op);
}
} // end namespace omp
} // end namespace device
} // end namespace detail
} // end namespace thrust