diff --git a/source/py_tutorials/py_feature2d/py_matcher/py_matcher.rst b/source/py_tutorials/py_feature2d/py_matcher/py_matcher.rst index b81130b..5a5ed27 100644 --- a/source/py_tutorials/py_feature2d/py_matcher/py_matcher.rst +++ b/source/py_tutorials/py_feature2d/py_matcher/py_matcher.rst @@ -33,7 +33,7 @@ Brute-Force Matching with ORB Descriptors Here, we will see a simple example on how to match features between two images. In this case, I have a queryImage and a trainImage. We will try to find the queryImage in trainImage using feature matching. ( The images are ``/samples/c/box.png`` and ``/samples/c/box_in_scene.png``) -We are using SIFT descriptors to match features. So let's start with loading images, finding descriptors etc. +We are using ORB descriptors to match features. So let's start with loading images, finding descriptors etc. :: import numpy as np @@ -43,10 +43,10 @@ We are using SIFT descriptors to match features. So let's start with loading ima img1 = cv2.imread('box.png',0) # queryImage img2 = cv2.imread('box_in_scene.png',0) # trainImage - # Initiate SIFT detector + # Initiate ORB detector orb = cv2.ORB() - # find the keypoints and descriptors with SIFT + # find the keypoints and descriptors with ORB kp1, des1 = orb.detectAndCompute(img1,None) kp2, des2 = orb.detectAndCompute(img2,None)