HomeBrew

A cross platform community driven

marketplace to empower home makers and
daily wage workers by providing them with

E-commerce,Logistics and an additional source
of income created using Django Rest
Framework, React.js and Flutter.

Table Of Contents

1. Software Requirement Specification
1.1 Introduction
1.1.1 Purpose
1.1.2 Scope
1.1.3 Overview
1.2 General Description
1.2.1 Product Perspective
1.2.2 Product Features
1.2.3 User Characteristics
1.2.4 Design and Implementation Constraints
1.2.5 Operating System Environment
1.3 Specific Requirements
1.3.1 Functional Requirements
1.3.2 Non-Functional Requirements
1.3.3 External Interface Requirements
1.3.3.1 Hardware Interfaces
1.3.3.2 Software Interfaces
1.3.4 Software System Features

2. System Design
2.1 Data Flow Diagrams
211 LevelO
2.1.2 Level1
2.2 UML Diagrams
2.2.1 Activity Diagram
2.2.2 Use Case Diagram
2.3 Entity-Relationship Diagram

3. Detailed Design
3.1 Input Phase
3.1.1 User Inputs
3.1.2 Admin Inputs
3.2 Conversion Phase
3.3 Output Phase

4. Tools & Technologies
5. Screenshots

6. Conclusion

- O © © © 0 o N NNNOOOOO O OO OB OWOWOLWLW®

P G L G § - =
o N

—_
o b

N =2 =
o O O

1. Software Requirement Specification

1.1 Introduction

1.1.1 Purpose

Good food is one of the essential items for people’s healthy daily living or otherwise. It is
always hard for young professionals, office goers, boarders to have good home-cooked food
unless they start preparing for themselves. For these segments of people, good home
cooked food is most of the distant reach. Hence there is an enormous potential in this
category of business, especially since Home cooks lack a proper online platform to sell,
connect and share as a community. Earnings of Rickshaw drivers are adversely affected due
to travel restrictions and surge of fuel prices. Even if 10% of the $378 million home chef
market is tapped it can give gross revenue of $37.8 million annually for “home chef” in this
market segment.

1.1.2 Overview

Upon joining as a member on the site, the users can enter their address and create their
profile. It provides an easy-to-use interface for the registered users to browse various
kitchens of homecooks and add home made food from these kitchens to their carts.This
makes their lives easier as they can get delicious home made food delivered right to their
doorstep.The users can track the live delivery details and also provide ratings to the home
chefs food that they received.The delivery is undertaken by Auto-Rickshaw drivers through
an app that is available to them.The Homechefs have access to an admin dashboard where
they can upload details of the food that they are selling and can also see the order details
and manage inventory.

1.2 General Description
1.2.1 Product Perspective

It is a web based system implementing a client-server model. HomeBrew is a community
driven Platform to Empower Home-makers and daily wage workers by providing them with
ecommerce, logistics and an additional source of income. We enable home makers to form a
community , set them up with the ecommerce required to sell their homely foods and
bakeries. We take care of the logistics by employing auto rickshaw drivers and daily wage
workers to transport the products from the user source to the customer .All the resources
used by home makers are locally sourced from organic farmers in and around the area
providing an alternative source of livelihood for all parties.

The main interface of homebrew is a website where the user can see the various home
chef’s menus and can add the food from the home chefs to their cart. The users can then
checkout the items and pay for them online. The details of the order are sent to the home
chef. The home chef can view and manage the order using the admin dashboard. They can

also manage inventory and stock using the same admin panel. The Admin can add the
home chefs to the platform using the admin panel.

Following screens will be provided as part of the User Interface:
1. Asignup or login screen for entering the username and password.
2. User account screens for editing and viewing account details.
3. Home made food store screen showing various kitchens and food items by home
chefs.
Food details screen to show the ratings and further details about the homemade
food.
Cart screen showing food items currently in the user’s cart.
Checkout screen showing summary of order and total amount.
Payment screen showing payment details.
Order Tracking screen showing live details of the order.
9. User profiles list and screens to show further details including order history.
10. Admin Panel for HomeChefs.
11. Location screen for Auto Rickshaw drivers.

s

co] B [)] [

1.2.2 Product Features

Currently, ‘HomeBrew’ currently provides the following features:
e Offers operating support for most of the known and commercial operating systems.
e The system allows the user to create their accounts in the system using Email and
password or Social Authentication like Google and provide features of updating and
viewing profiles.
e Allows users to search and purchase home made food from the database, which is
updated regularly by the home-chefs.
Online payment and Order History.
Live Order Tracking and Delivery of food.
Allows homehefs to manage orders and inventory through the admin panel.
Only admin has access to information of product stock, storage location, storage date
and vendor details.
Customers can buy more than one product at a time.
Invoice is issued with the name and details of the customer after purchasing the
product.

1.2.3 User Characteristics

The different users that will use this product are:

Customer- View and buy homemade food.

Auto Rickshaw Drivers - Uses the delivery app and delivers food.

Home Chefs - Updates homemade food and manages orders and inventory
Admin - Add new home chefs and autorickshaw drivers and keep track of orders.

It is assumed that the users have the basic knowledge of operating the internet and have
access to it. The administrator is expected to be familiar with the interface of the basic
web based system as well as the Django Admin Page.

1.2.4 Design and Implementation Constraints

This system is provisioned to be built on the Django framework which is highly flexible. User
authentication shall be managed by the firebase authentication platform to shorten
development time and improve scalability. The following are the current constraints of the
project:

Only registered users have the ability to access the platform.

The live location tracking cannot be tested due to lack of proper technical
infrastructure.

Currently only one Home chef can be added to the platform.

App for Auto Rickshaw drivers was not developed.

Payments cannot go through due to restrictions on KYC rules.

The GUI is only available in English.

1.2.5 Operating System Environment

HomeBrew requires a Linux,Windows or Mac OS based server that supports Javascript,
Python and SQLite.

1.3 Specific Requirements

1.3.1 Functional Requirements

Admin must be able to add new products

Admin must be able to enter entire stock details
Admin must be able to edit product details

Admin must be able to delete a product

Admin must be able to view product details

Admin must be able to sort product name and it’s price
Admin must be able to view daily customer’s data
Admin must be able to view daily sale report

9. Admin must be able to insert customer data

10. Admin must be able to log out

11. Admin must be able to change software password
12. Admin must be able to view and print customer bill
13. User must be able to login

14. User must be able to register

15. User must be able to login using google account
16. User must be able to reset password

17. User must be able to add items to cart

® NGOk WDN =

18. User must be able to add their address
19. User must be able to checkout

20. User must be able to pay for the items
21. User must be able to track the order

1.3.2 Non-Functional Requirements

System availability

Allowance for maintainability and enhancements
Recovery from failure

Reliability

Response time

Throughput

Order management communication

Order verification, confirmation and fulfilment

9. Preparation, distribution and inventory control, storage and security
10. Administration

11. Intervention and monitoring

©NOOAWN =

1.3.3 External Interface Requirements

1.3.3.1 Hardware Interfaces

The hardware interface required for the user to retrieve the data from the server and for
tracking in which the web portal is hosted mainly involves a server and a personal pc
connected through a network interface. The hardware requirements include a Windows or
Unix based Operating System, and a Browser that supports Javascript.

1.3.3.2 Software Interfaces

The complete user data is stored in the database and the information is accessed by the
user through a web browser. The software techstack includes:

1. Django REST Framework

2. Firebase Auth

3. SQLite

4. React JS

1.3.4 Software System Features

1. Product Catalogue management: To digitally keep track of the different home made
food that are available for purchase from the home chefs and the stock of each item.

2. Order Management: To see the different orders that a particular home chef has
received and to fulfil these orders.

3. Inventory Management : To see and manage different inventory items by the
homechef.Only homechefs have access to information of product stock, storage
location, storage date and vendor details.

Profile Management : To view/edit user profiles and addresses.

To view/order home made food items from the home chef.

To view, manage and track user orders.

Admin can create, view, update and delete all user accounts, home chef accounts
and Auto Rickshaw driver accounts.

8. Payment Module : To manage payments and Transactions.

No o bk

2. System Design

2.1 Data Flow Diagrams

DFDs are used to represent the flow of data through different modules of the system. An
integrated Data Flow Diagram is used to represent the overall system.

211 LevelO

Login / Register Send Products

USER , | HOMEBREW) DATABASE

Add to Cart Cart items

v

Add Products
Joday Japi0

ADMIN

2.1.2 Level 1

—New User Details

New User Details

Login and Redirect to Products

Email, Password

r—Login and Redirect to Products

USERS

Request for Profile

Profile Details

Request for Product Details

—CanDetails Cart Details Cart Details

Login and Redirect to Products

Email, Hashed Password
Login and Redirect to ProductsT

[
Users

j

Request for Profile

Profile Details

L

Request for Product Details
Product List View Products

—Request Order Details

Request Order Details:]

Detail

Order Details
Order Details Order }
Ord
i rder
— Request All Orders Product List
<;A Order Request All Orders—'
Al Orders anagemnenty” L e
Response Response Products

J

Add Products

Add Product Details——

—Edit Product Details

Insert Products ———
Update Product4I

Delete Product

. Delete Product
Admin

[Request All Data

Request Product Data
Request Order Data

Request User Data

Admin Pannel

I
Data From All Tables

All Product Data
All Order Data.

2.2 UML Diagrams

All Cart Data

All User Data

The main aim of UML is to define a standard way to visualise the way a system has been
designed. We use UML diagrams to portray the behaviour and structure of a system.

2.2.1 Activity Diagram

Activity diagram is basically a flowchart to represent the flow from one activity to another
activity. The activity can be described as an operation of the system.

Activity Diagram for User Side

| Authentication |

P!

-) Invalid
< Chack >
l \ahd
e '\.I g [I-" - T
|, Search Preduct) | Edit Profile | | WiewRepors)
ol - i . i —
™ o~ 't " - e - - -~ —- H-‘—--.
| AddtoCat) i Change Password | 'r\ My Account) i Owder Repod)
e - { Payment Repont)~
! f . f -
Cancel Order) | Make Payment) J .
. b Confirm Order) /
. _ !
LY b L " F3 E F
([Logouwt)

(6 |

2.2.2 Use Case Diagram

A use case diagram at its simplest is a representation of a user’s interaction with the system
that shows the relationship between the user and the different use cases in which the user is
involved.

User Flow Diagram

For Consumers(End User)

0 Sign Up / Login 9 Terms and Conditions Agreement e

Enter delivery location

9 Browse Home Made Food

@ One time order

6 Delivery undertaken by us 6 Select Food of choice

@ Subscription Plan

User Flow Diagram
For Home Chefs

0 Sign Up/ Login 9 KYC using FSSAI Lisence 0 Terms and Conditions Agreement

0 Request order pickup % 0 Join a community

6 Accepts and prepares order @ Add Delivery details 6

2.3 Entity-Relationship Diagram

List products

ER Diagram or Entity Relationship Diagram, also known as ERD, is a diagram that displays
the relationship of entity sets stored in a database. In other words, it helps explain the logical

structure of databases. ER diagrams are created based on three basic concepts: entities,

attributes and relationships.

ER diagram for the system is given below :

10

rwCimnrn

wan
o

/ -\ . il NV /// I/ -

\\\
~ PN - - N -
_,= z/mm., m\ \ / ™~ S\ \ / / EEEEE \\\ \ _//// ‘‘‘‘‘‘

======

- ——— 01 sbuojag " e _

/

.....

b SUjRIUOD P ol an o
/ o B2 | o -
e ez LT
L iz ST o ./ _ \
SaJppe
A8

.......
waap

11

oyango_cormers_type
id

app_label
mael

[iable]
INTEGER NOT NULL
auto-increms
VARGHAR(100) NOT NULL
VARCHAR{100) NOT NULL

orders_usel

owner_vieworder

id INTEGER NOT NULL
aute-incremented
day_count INTEGER NOT NULL
date_request_was_made DATE NOT NULL
date_request_from DATE
order_list VARCHAR(200)
invoice.ist VARCHAR(200)
output VARCHAR(100)
owner_deff
id INTEGER NOT NULL
autoincremented
name TEXT NOT NULL
acress1 TEXT NOT NULL
acdress2 TEXT NOTNULL
ciy TEXT NOT NULL
state TEXT NOT NULL
pincode VARCHAR(E)NOT NULL
laituce DECIMAL NOT NULL
longiiude DECIMAL NOT NULL
an DECIMAL NOT NULL
a2 DECIMAL NOT NULL
a3 DECIMAL NOT NULL
<1 DECIMAL NOT NULL.
2 DECIMAL NOT NULL
< DECIMAL NOT NULL
max radus DECIMAL NOT NULL

[table]
INTEGER NOT NULL id

autorincremented
userapplieccouponlist id

usercoupon id
‘orders_usercoupon [table] I'/C'
id INTEGER NOT NULL

orders_userappliedcouponlist_coupons

DECIMAL NOT NULL

[table]
INTEGER NOT NULL.
autincremented
BIGINT NOT NULL
BIGINT NOT NULL

oyl conpos] [table] auto-incremented
id INTEGER NOT NULL H———————O0<coupon_id BIGINT
aute-incremented times INTEGER NOT NULL
name TEXT NOT NULL acive BOOL NOT NULL
percentage DECIMAL NOT NULL
active BOOL NOT NULL
expiry DATETIME —W_m” [1able]
created DATETIME NOT NULL| session_key VARCHAR{4D) NOT NULL.
max times INTEGER NOT NULL sesion B, TEXT NOT NULL
expire cate DATETIME NOT NULL
‘auth_group_permissions (rable]
id INTEGER NOT NULL
aute-incremented
group.id INTEGER NOT NULL
permission_id INTEGER NOT NULL
auth_group It
id INTEGER NOT NULL users_usel_groups s
suto-incremented id INTEGER NOT NULL
name VARCHAR(150) NOT NULL. ekl
BIGINT NOT NULL
INTEGER NOT NULL
[table]
INTEGER NOT NULL
autorincremented L
‘auth_permission [table] user_id BIGINT NOT NULL INTEGER NOT NULL
id INTEGER NOT NULL. permissian | INTEGER NOT NULL. autorincremented
autoncrements anp VARCHAR(255) NOT NULL
content_type_id INTEGER NOT NULL name VARGHAR(ES) NOT NULL|
ame VARCHAR(100) NOT NULL f"g"-m"’-"’g e — [rabie] applied DATETIME NOT NULL
name VARCHAR(255) NOT NULL| Ao cromented
|| [meton-tme DATETIME NOT NULL
object il TEXT
object repr VARCHAR(200) NOT NULL
change message TEXT NOT NULL
content type id INTEGER
user_id BIGINT NOT NULL
action flag SMALLINT UNSIGNED NOT NULL.
users_user [
id INTEGER NOT NULL orders_payment [table]
auro-incremented N id INTEGER NOT NULL
password VARCHAR(128) NOT NULL T T aute-incremented
lastlogin DATETIME — P i INTEGER NOT E\‘I‘J‘L’E user_id BIGINT NOT NULL
is_superuser BOOL NOT NULL \ e maremented razorpay_payment_id VARCHAR(255) NOT NULL
userame VARCHAR(150) NOT NULL sers address fiable] \uu. i BIGINT NOT NULL razomay_order Jd - VARCHARIZSS) NOT NULL
firstname VARCHAR(150) NOT NULL id INTEGER NOT NULL acdress_id BIGINT NOT NULL mzorpey_signature - VARGHARI255) NOT NULL
las_name VARCHAR(150) NOT NULL \ autoincremented = oo d g\gg{r
email VARCHAR(254) NOT NULL payment_complete
is_staff BOOL NOT NULL i ¥AE§$ mmh LT TR [iable] payment_status VARCHAR(255)
isacive BOOLNOTNULL adessi TEXTNOTNULL L INTEGER NOT NULL updated_at DATETIME NOT NULL
date_joined DATETIME NOT NULL address? autoincremented created_at DATETIME NOT NULL
one: VARCHAR(15) NOT NULL address3 TEXT order_id VARCHAR(100)
payment staus VARCHAR(20)
addessd TEXT
: TEXT NOT NULL ordered BOOL NOT NULL
completed BOOL NOT NULL
state TEXT NOT NULL e 8 BT
1"“;“* \ég%imﬁce) NOTNULL O« acdress_id BIGINT NOT NULL
DECIMAL NOT NULL - ECIMAL
celivery_fes DECIMAL
longt DECIMAL NOT NULL
Grance DECIMAL coupon VARCHAR(20)
coupon_discount DECIMAL.
can_price DECIMAL
users_cart [rabie] total_price DECIMAL
i INTEGER NOT NULL, order ftems TEXT
auto-incremented created at DATETIME NOT NULL |
user il BIGINT NOT NULL updated_at DATETIME NOT NULL|
ordered BOOL NOTNULL
total price DECIMAL users_cart_cart_liems Tiabie]
active BOOL NOTNULL i INTEGER NOT NULL
auo-incremented
users._cartitem [iable] cart id BIGINT NOT NULL
id INTEGER NOT NULL - #—————oj carttem i BIGINT NOT NULL
auto-incremented
BIGINT NOT NULL
products, [1=ble] BOOL NOT NULL
id INTEGER NOT NULL. BIGINT NOT NULL.
auto-incremented DECIMAL NOT NULL
name TEXT NOT NULL DATETIME NOT NULL |
category TEXT NOT NULL DATETIME NOT NULL
description TEXT NOT NULL DECIMAL NOT NULL
image_url 'VARCHAR(512) NOT NULL price. DECIMAL NOT NULL
regular_price DECIMAL NOT NULL active BOOL NOT NULL
discount_price DECIMAL NOT NULL
active BOOL NOT NULL
popular BOOL NOT NULL
stock DECIMAL NOT NULL
‘taxable BOOL NOT NULL
created_at DATETIME NOT NULL
updated at DATETIME NOT NULL
Home Brew

generated by SchemaCravder 16.16.10
generated on 2022-02-17 08:58:35

12

3. Detailed Design

3.1 Input Phase
3.1.1 User Inputs

Each user has a number of attributes linked to itself, including their id (auto-generated),
username, email, password, first name, last name, permissions,group that they belong to,
Last login and Date Joined. On creation (sign-up) of a new user, the input email and
password (or linked google or facebook account) is validated in terms of its data format as
well as checked for pre-existing entry and then entered into the database. Login allows
authentication either using the linked account or the manually entered email and password,
thus initiating and maintaining the session until a logout event. This authentication is
leveraged through Firebase Authentication and the relevant screens are given in Fig. 5.1 &
5.2.

Users can modify their account details in the corresponding tab such that the data formats
are preserved. The users can browse the list of home cooked food and add the ones that
they want to purchase to the cart. The users can add multiple products to the cart. On
clicking the cart icon on the top right, the user can review the items that he/she wishes to
purchase and proceed to checkout and make the payment.The user can also view and edit
his profile by clicking on the profile icon on the top right. The relevant screens listing the
browsable Home cooked food, Cart and User Profiles are given in Fig. 5.3 - 5.6.

The Homechefs can view the orders and also manage their products through the admin
panel by logging in with their credentials that are assigned to them by the admin.They can
also request for invoices from the same panel. The relevant screens are given in Fig. 5.7 -
Fig 5.8.

3.1.2 Admin Inputs

The home chef and autorickshaw driver details must be added directly by the admin, using
the Django Admin Page. The users edited by the admin are defined by the attributes
id(auto-generated), username, email, password, first name, last name, permissions,group
that they belong to, Last login and Date Joined. Of these attributes the permission and group
attribute decide whether the user is a consumer, home chef, admin or an auto rickshaw
driver. The admin can also modify the other entities and their attributes with operations such
as creating and deleting user accounts. The relevant screens contained in the Django Admin
Dashboard are given in Fig. 5.9.

3.2 Conversion Phase

Serializers allow complex data such as querysets and model instances to be converted to
native Python data types that can then be easily rendered into JSON, XML or other content
types. Serializers also provide deserialization, allowing parsed data to be converted back

13

into complex types, after first validating the incoming data. The serializers in the Django

REST framework on the backend are used during the passage of data between the frontend

and the database.
3.3 Output Phase

The data in the database can be manipulated using CRUD operations on the respective
Django REST API urls. A sample API screen is given in Fig. 5.10.

4. Tools & Technologies

The following were used in the implementation of the project:

Backend: Django REST Framework
Frontend: HTML, CSS, React.js
Authentication: Firebase Authentication
Database: SQLite

5. Screenshots

Fig. 5.1 Signup Page Fig. 5.2 Login Page
Register
Login

Already have an account? Login now.

14

Fig. 5.3 User Account Page

Logged in as

adithya.anilkumari@gmail.com
Not yet fetched

Get Id Token

Logout

Fig. 5.4 HomeBrew Home Page

B Surernes éﬁ

Q

Il
=

Delicious Homemade
food for your cravings

Get Lipsmakcing Homemade Delicacies from the comfort of your
home

View Menu -

15

Mediterranean
Salad

Rs.120 Q)

Tooty Fruity
Bowl

Rs. 140

Fig. 5.5 Homely Food Store Page

Summer Asian Burger
Slaw
rs.300 (3P Rs. 150

~—
Granola Cereal Palm Bowl
Bowl

Rs.120 QiR Rs.160 QiR

Fig. 5.6 User Cart Page

Burger

Rs. 150

White Sauce Tooty Fruity
Pasta Bowl

Rs. 180 Rs. 140

White Sauce
Pasta

Rs. 180

&

Tigela Smoothie

Rs.170 QLS

Butterfly Pasta

Rs.150 @QGiES

Breakfast Cereal

rs. 140 P

Your Total Rs. 770

16

Fig. 5.7 Django Admin Page

Django administration WELCOME, ADI. VIEW SITE / CHANGE PASSWORD / LOG OUT

Site administration

AUTHENTICATION AND AUTHORIZATION -
Recent actions

Groups # Change
My actions

ORDERS + AdithyaAnilkumar
User
Coupons # Change
kMpszEflbUYwn4glkPs2TtkhjGR2
Orders # Change User
Adithya

Payments # Change .
ser

Adithya

User

Payment object (1)
Deliverys # Change -

Vieworders # Change 1

1

PRODUCTS QD

1

Products # Change -

kMpszEflbUYwn4glkPs2TtkhjGR2
Cart
USERS
2gm of White Sauce Pasta
Addresss # Change Cartitem
Cart items # Change
Carts # Change

Users # Change

Fig. 5.8 Home Chef Order Management Page

Django administration WELCOME, ADI. VIEW SITE / CHANGE PASSWORD / LOG OUT

Home > Orders > Orders > 1

Change order

AUTHENTICATION AND AUTHORIZATION HISTORY

Groups + Add 1
Order id:
ORDERS

Coupons Payment status:

Lo ® Ordered

Payments
@ Completed

OUER Order cart KMpszEfIbUYwndglkPs2TtkhjGR2 v &

Deliverys

Vieworders Address:

PRODUCTS

Products Delivery fee:

USERS Coupon:

Addresss
Coupon discount:
Cart items

Carts Cart price:

Users
Total price:

17

Fig. 5.9 Admin Modification Capabilities

Django administration WELCOME, ADI. VIEW SITE / CHANGE PASSWORD / LOG OUT

Home » Users » Users > kMpszEflbUYwn4glkPs2TtkhjGR2

Change user
AUTHENTICATION AND AUTHORIZATION

Groups + Add kMpszEflbUYwn4glkPs2TtkhjGR2

HISTORY

Username: kMpszEflbUYwn4glkPs2TtkhjGR2
ORDERS Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.

Coupons
P P No password set.

Orders Raw passwords are not stored, so there is no way to see this user's password, but you can change the password using this form.
Payments

Personal info
OWNER -

First name: Adithya

Deliverys

Vieworders Last name:

Email address: adithyaanilkumar24@gmail.com
PRODUCTS

Products

Permissions

USERS ¥ Active

Designates whether this user should be treated as active. Unselect this instead of deleting accounts.
Addresss
Cart items B Staff status

Designates whether the user can log into this admin site.
Carts
B Superuser status

Users
Designates that this user has all permissions without explicitly assigning them.

Groups: Available groups Chosen groups @

Fig. 5.10 Sample APl JSON

Django REST framework

Product List

Product List [orros | cer -]

GET /api/products

HTTP 200 0K
Allow: GET, POST, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

"id": 10

“name": "Mediterranean Salad"

“category": "Lunch"

"description”: "spicey with garlic and then deep fried to crispy perfection”
"image_url": "https://homebreww.netlify.app/images/bigBurger.png"
“regular_price": "120.00"

"discount_price": "120.00"

"active": true

"popular: true

"stock": "50.00"

"taxable": false

"created_at": "2022-02-24T07:39:24.9111622"

"updated_at": "2022-02-24T07:39:24.9112272"

"id": 11

“name": “Summer Asian Slaw"

“category": "sides"

"description”: "spicey with garlic and then deep fried to crispy perfection”

“image_url": "https://homebreww.netlify.app/images/bowll.png"
“regular_price": "300.00"

“discount_price": "0.00"

"active": true

“popular”: true

“stock": "55.00"

“"taxable": false

18

6. Conclusion

The project has been completed successfully as specified by the requirements. The
implementation and testing has been done in a step-by-step manner. Each module has been
developed and tested individually to obtain the required output in the desired form. While
working on this interesting project, we learned various tools and technologies. We also
attained valuable experience on the different stages involved in developing any web
application that would be useful in the technology industry.

Within the duration of this project we learned the following things through the implementation
and testing of the project - Python, MySQL database management, JavaScript, HTML, CSS
and Bootstrap for UI/UX. Future improvements can be made in certain areas of the project.
There is scope for extending the project to incorporate more features by including an
advanced live tracking system with notifications, enabling food reviews, integrating payment
gateway, developing an app for auto rickshaw drivers, enabling multi home cook kitchen, etc.
The process model selected was agile, such that new features can be easily incorporated to
the same design at a later point in time.

19

