diff --git a/array_lib.v b/array_lib.v index e3614ec4..cb198972 100644 --- a/array_lib.v +++ b/array_lib.v @@ -25,40 +25,45 @@ Require Import hierarchy monad_lib fail_lib. Local Open Scope monae_scope. -Section marray. -Context {d : unit} {E : porderType d} {M : arrayMonad E nat}. -Implicit Type i j : nat. - -Import Order.POrderTheory. +Section aswap. +Context {S : Type} (I : eqType) {M : arrayMonad S I}. Definition aswap i j : M unit := aget i >>= (fun x => aget j >>= (fun y => aput i y >> aput j x)). -Lemma aswapxx i : aswap i i = skip. +Lemma aswapxx i : aswap i i = skip :> M unit. Proof. rewrite /aswap agetget. under eq_bind do rewrite aputput. by rewrite agetputskip. Qed. -Fixpoint writeList' i (s : seq E) : M unit := - if s isn't x :: xs then Ret tt else aput i x >> writeList' i.+1 xs. +End aswap. +Arguments aswap {S I M}. + +Section write_read. +Context {S : Type} {M : arrayMonad S nat}. +Implicit Type i j : nat. + +Import Order.POrderTheory. -Definition writeList := writeList'. +Fixpoint writeList i (s : seq S) : M unit := + if s is x :: xs then aput i x >> writeList i.+1 xs else Ret tt. +#[global] Arguments writeList : simpl never. Lemma writeList_nil i : writeList i [::] = Ret tt. -Proof. by rewrite /writeList; unlock. Qed. +Proof. by []. Qed. -Lemma writeList_cons i (x : E) (xs : seq E) : +Lemma writeList_cons i (x : S) (xs : seq S) : writeList i (x :: xs) = aput i x >> writeList i.+1 xs. -Proof. by rewrite /writeList; unlock. Qed. +Proof. by []. Qed. Definition writeListE := (writeList_nil, writeList_cons). -Lemma writeList1 i (x : E) : writeList i [:: x] = aput i x. -Proof. by rewrite /= bindmskip. Qed. +Lemma writeList1 i (x : S) : writeList i [:: x] = aput i x. +Proof. by rewrite writeList_cons bindmskip. Qed. -Lemma aput_writeListC i j (x : E) (xs : seq E) : i < j -> +Lemma aput_writeListC i j (x : S) (xs : seq S) : i < j -> aput i x >> writeList j xs = writeList j xs >> aput i x. Proof. elim: xs i j => [|h tl ih] i j ij /=; first by rewrite bindmskip bindretf. @@ -66,32 +71,32 @@ rewrite -bindA aputC; last by left; rewrite lt_eqF. by rewrite !bindA; bind_ext => -[]; rewrite ih// ltnW. Qed. -Lemma writeListC i j (ys zs : seq E) : i + size ys <= j -> +Lemma writeListC i j (ys zs : seq S) : i + size ys <= j -> writeList i ys >> writeList j zs = writeList j zs >> writeList i ys. Proof. elim: ys zs i j => [|h t ih] zs i j hyp /=; first by rewrite bindretf bindmskip. -rewrite aput_writeListC// bindA aput_writeListC; last first. +rewrite writeList_cons aput_writeListC// bindA aput_writeListC; last first. by rewrite (leq_trans _ hyp)//= -addSnnS ltn_addr. rewrite -!bindA ih// addSn. by rewrite /= addnS in hyp. Qed. -Lemma aput_writeListCR i j (x : E) (xs : seq E) : j + size xs <= i -> +Lemma aput_writeListCR i j (x : S) (xs : seq S) : j + size xs <= i -> aput i x >> writeList j xs = writeList j xs >> aput i x. Proof. by move=> jxsu; rewrite -writeList1 -[LHS]writeListC. Qed. -Lemma writeList_cat i (s1 s2 : seq E) : +Lemma writeList_cat i (s1 s2 : seq S) : writeList i (s1 ++ s2) = writeList i s1 >> writeList (i + size s1) s2. Proof. elim: s1 i => [|h t ih] i/=; first by rewrite addn0 bindretf. -by rewrite ih bindA addSnnS. +by rewrite writeList_cons ih bindA addSnnS. Qed. -Lemma writeList_rcons i (x : E) (xs : seq E) : +Lemma writeList_rcons i (x : S) (xs : seq S) : writeList i (rcons xs x) = writeList i xs >> aput (i + size xs) x. Proof. by rewrite -cats1 writeList_cat /= -bindA bindmskip. Qed. -Definition writeL i (s : seq E) := writeList i s >> Ret (size s). +Definition writeL i (s : seq S) := writeList i s >> Ret (size s). Definition write2L i '(s, t) := writeList i (s ++ t) >> Ret (size s, size t). @@ -115,24 +120,25 @@ Lemma write_readC i j x : i != j -> Proof. by move => ?; rewrite -aputgetC // bindmret. Qed. (* see postulate introduce-read in IQsort.agda *) -Lemma writeListRet i x (s : seq E) : +Lemma writeListRet i x (s : seq S) : writeList i (x :: s) >> Ret x = writeList i (x :: s) >> aget i. Proof. elim/last_ind: s x i => [|h t ih] /= x i. - by rewrite bindmskip write_read. -rewrite writeList_rcons 2![in RHS]bindA. + by rewrite writeList1 write_read. +rewrite writeList_cons writeList_rcons 2![in RHS]bindA. rewrite write_readC; last by rewrite gtn_eqF// ltn_addr. rewrite -2![RHS]bindA -ih [RHS]bindA. rewrite !bindA; bind_ext => _. by under [in RHS]eq_bind do rewrite bindretf. Qed. -Lemma writeList_aswap i x h (t : seq E) : +Lemma writeList_aswap i x h (t : seq S) : writeList i (rcons (h :: t) x) = writeList i (rcons (x :: t) h) >> aswap i (i + size (rcons t h)). Proof. rewrite /aswap -!bindA writeList_rcons /=. -rewrite aput_writeListC// bindA aput_writeListC// writeList_rcons !bindA. +rewrite writeList_cons aput_writeListC// bindA. +rewrite writeList_cons aput_writeListC// writeList_rcons !bindA. bind_ext => -[]. under [RHS] eq_bind do rewrite -bindA. rewrite aputget -bindA size_rcons addSnnS. @@ -142,7 +148,7 @@ rewrite -!bindA aputget aputput aputC; last by right. by rewrite bindA aputput. Qed. -Lemma aput_writeList_rcons i x h (t : seq E) : +Lemma aput_writeList_rcons i x h (t : seq S) : aput i x >> writeList i.+1 (rcons t h) = aput i h >> ((writeList i.+1 t >> aput (i + (size t).+1) x) >> @@ -158,21 +164,19 @@ rewrite aputget aputC; last by right. by rewrite -!bindA aputput bindA aputput -addSnnS. Qed. -Lemma writeList_ret_aget i x (s : seq E) (f : E -> M (nat * nat)%type): +Lemma writeList_ret_aget i x (s : seq S) (f : S -> M (nat * nat)%type): writeList i (x :: s) >> Ret x >> f x = writeList i (x :: s) >> aget i >>= f. Proof. -rewrite writeListRet 2!bindA /=. -rewrite aput_writeListC//. -rewrite 2!bindA. +rewrite writeListRet 2!bindA /= writeList_cons aput_writeListC// 2!bindA. under [LHS] eq_bind do rewrite -bindA aputget. by under [RHS] eq_bind do rewrite -bindA aputget. Qed. -Fixpoint readList i (n : nat) : M (seq E) := +Fixpoint readList i (n : nat) : M (seq S) := if n isn't k.+1 then Ret [::] else liftM2 cons (aget i) (readList i.+1 k). -End marray. +End write_read. Section refin_writeList_aswap. Variable (d : unit) (E : orderType d) (M : plusArrayMonad E nat). @@ -184,7 +188,7 @@ Lemma refin_writeList_cons_aswap (i : nat) x (s : seq E) : qperm s >>= (fun s' => writeList i (rcons s' x)). Proof. elim/last_ind: s => [|t h ih] /=. - rewrite qperm_nil bindmskip bindretf addn0 aswapxx /= bindmskip. + rewrite qperm_nil writeList1 bindretf addn0 aswapxx /= bindmskip writeList1. exact: refin_refl. rewrite bindA. apply: (refin_trans _ (refin_bindr _ (qperm_refin_cons _ _ _))). @@ -198,9 +202,9 @@ Lemma refin_writeList_rcons_aswap (i : nat) x (s : seq E) : qperm s >>= (fun s' => writeList (M := M) i (x :: s')). Proof. case: s => [|h t] /=. - rewrite qperm_nil bindmskip bindretf addn0 aswapxx bindmskip. + rewrite qperm_nil writeList1 bindretf addn0 aswapxx writeList1 bindmskip. exact: refin_refl. -rewrite bindA writeList_rcons addSnnS -aput_writeList_rcons. +rewrite writeList_cons bindA writeList_rcons addSnnS -aput_writeList_rcons. apply: (refin_trans _ (refin_bindr _ (qperm_refin_rcons _ _ _))). by rewrite bindretf; exact: refin_refl. Qed. diff --git a/fail_lib.v b/fail_lib.v index 144ae31b..eaf17353 100644 --- a/fail_lib.v +++ b/fail_lib.v @@ -915,14 +915,18 @@ Context {M : altMonad} {A : UU0}. Implicit Types s : seq A. Fixpoint splits s : M (seq A * seq A)%type := - if s isn't x :: xs then Ret ([::], [::]) else - splits xs >>= (fun yz => Ret (x :: yz.1, yz.2) [~] Ret (yz.1, x :: yz.2)). + if s is h :: t then + splits t >>= (fun xy => Ret (h :: xy.1, xy.2) [~] Ret (xy.1, h :: xy.2)) + else + Ret ([::], [::]). Fixpoint splits_bseq s : M ((size s).-bseq A * (size s).-bseq A)%type := - if s isn't x :: xs then Ret ([bseq of [::]], [bseq of [::]]) - else splits_bseq xs >>= (fun '(ys, zs) => - Ret ([bseq of x :: ys], widen_bseq (leqnSn _) zs) [~] - Ret (widen_bseq (leqnSn _) ys, [bseq of x :: zs])). + if s is h :: t then + splits_bseq t >>= (fun '(x, y) => + Ret ([bseq of h :: x], widen_bseq (leqnSn _) y) [~] + Ret (widen_bseq (leqnSn _) x, [bseq of h :: y])) + else + Ret ([bseq of [::]], [bseq of [::]]). Local Open Scope mprog. Lemma splits_bseqE s : splits s =