diff --git a/src/Algebra/Consequences/Setoid.agda b/src/Algebra/Consequences/Setoid.agda index 77badd1b90..07b75806c2 100644 --- a/src/Algebra/Consequences/Setoid.agda +++ b/src/Algebra/Consequences/Setoid.agda @@ -15,7 +15,7 @@ open Setoid S renaming (Carrier to A) open import Algebra.Core open import Algebra.Definitions _≈_ open import Data.Sum.Base using (inj₁; inj₂) -open import Data.Product using (_,_) +open import Data.Product.Base using (_,_) open import Function.Base using (_$_) import Function.Definitions as FunDefs import Relation.Binary.Consequences as Bin diff --git a/src/Algebra/Construct/LexProduct/Base.agda b/src/Algebra/Construct/LexProduct/Base.agda index 6076d1afc3..85686fd20c 100644 --- a/src/Algebra/Construct/LexProduct/Base.agda +++ b/src/Algebra/Construct/LexProduct/Base.agda @@ -8,10 +8,10 @@ open import Algebra.Core using (Op₂) open import Data.Bool.Base using (true; false) -open import Data.Product using (_×_; _,_) +open import Data.Product.Base using (_×_; _,_) open import Relation.Binary.Core using (Rel) open import Relation.Binary.Definitions using (Decidable) -open import Relation.Nullary.Decidable using (does; yes; no) +open import Relation.Nullary.Decidable.Core using (does; yes; no) module Algebra.Construct.LexProduct.Base {a b ℓ} {A : Set a} {B : Set b} diff --git a/src/Algebra/Construct/NaturalChoice/MinMaxOp.agda b/src/Algebra/Construct/NaturalChoice/MinMaxOp.agda index 4b7d0e20e8..a0b7a945f2 100644 --- a/src/Algebra/Construct/NaturalChoice/MinMaxOp.agda +++ b/src/Algebra/Construct/NaturalChoice/MinMaxOp.agda @@ -11,7 +11,7 @@ open import Algebra.Core open import Algebra.Bundles open import Algebra.Construct.NaturalChoice.Base open import Data.Sum.Base as Sum using (inj₁; inj₂; [_,_]) -open import Data.Product using (_,_) +open import Data.Product.Base using (_,_) open import Function.Base using (id; _∘_; flip) open import Relation.Binary open import Relation.Binary.Consequences diff --git a/src/Algebra/Construct/NaturalChoice/MinOp.agda b/src/Algebra/Construct/NaturalChoice/MinOp.agda index 37ed331c7e..563e1662f1 100644 --- a/src/Algebra/Construct/NaturalChoice/MinOp.agda +++ b/src/Algebra/Construct/NaturalChoice/MinOp.agda @@ -11,7 +11,7 @@ open import Algebra.Core open import Algebra.Bundles open import Algebra.Construct.NaturalChoice.Base open import Data.Sum.Base as Sum using (inj₁; inj₂; [_,_]) -open import Data.Product using (_,_) +open import Data.Product.Base using (_,_) open import Function.Base using (id; _∘_) open import Relation.Binary open import Relation.Binary.Consequences diff --git a/src/Algebra/Definitions.agda b/src/Algebra/Definitions.agda index e64fc4f30b..ae0566a4bf 100644 --- a/src/Algebra/Definitions.agda +++ b/src/Algebra/Definitions.agda @@ -15,17 +15,17 @@ {-# OPTIONS --cubical-compatible --safe #-} -open import Relation.Binary.Core -open import Relation.Nullary.Negation using (¬_) +open import Relation.Binary.Core using (Rel; _Preserves_⟶_; _Preserves₂_⟶_⟶_) +open import Relation.Nullary.Negation.Core using (¬_) module Algebra.Definitions {a ℓ} {A : Set a} -- The underlying set (_≈_ : Rel A ℓ) -- The underlying equality where -open import Algebra.Core -open import Data.Product -open import Data.Sum.Base +open import Algebra.Core using (Op₁; Op₂) +open import Data.Product.Base using (_×_; ∃-syntax) +open import Data.Sum.Base using (_⊎_) ------------------------------------------------------------------------ -- Properties of operations diff --git a/src/Algebra/Definitions/RawMagma.agda b/src/Algebra/Definitions/RawMagma.agda index 5189e02fb8..dc96fedc76 100644 --- a/src/Algebra/Definitions/RawMagma.agda +++ b/src/Algebra/Definitions/RawMagma.agda @@ -11,7 +11,7 @@ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Bundles using (RawMagma) -open import Data.Product using (_×_; ∃) +open import Data.Product.Base using (_×_; ∃) open import Level using (_⊔_) open import Relation.Binary.Core open import Relation.Nullary.Negation using (¬_) diff --git a/src/Algebra/Lattice/Properties/BooleanAlgebra.agda b/src/Algebra/Lattice/Properties/BooleanAlgebra.agda index 85295c9366..cf90b022b9 100644 --- a/src/Algebra/Lattice/Properties/BooleanAlgebra.agda +++ b/src/Algebra/Lattice/Properties/BooleanAlgebra.agda @@ -23,9 +23,9 @@ open import Algebra.Bundles open import Algebra.Lattice.Structures _≈_ open import Relation.Binary.Reasoning.Setoid setoid open import Relation.Binary -open import Function.Base +open import Function.Base using (id; _$_; _⟨_⟩_) open import Function.Bundles using (_⇔_; module Equivalence) -open import Data.Product using (_,_) +open import Data.Product.Base using (_,_) ------------------------------------------------------------------------ -- Export properties from distributive lattices diff --git a/src/Algebra/Lattice/Properties/Lattice.agda b/src/Algebra/Lattice/Properties/Lattice.agda index 747541e49c..b5908f57b1 100644 --- a/src/Algebra/Lattice/Properties/Lattice.agda +++ b/src/Algebra/Lattice/Properties/Lattice.agda @@ -11,7 +11,7 @@ import Algebra.Lattice.Properties.Semilattice as SemilatticeProperties open import Relation.Binary import Relation.Binary.Lattice as R open import Function.Base -open import Data.Product using (_,_; swap) +open import Data.Product.Base using (_,_; swap) module Algebra.Lattice.Properties.Lattice {l₁ l₂} (L : Lattice l₁ l₂) where diff --git a/src/Algebra/Lattice/Properties/Semilattice.agda b/src/Algebra/Lattice/Properties/Semilattice.agda index 4b8fc114fc..38554aedfa 100644 --- a/src/Algebra/Lattice/Properties/Semilattice.agda +++ b/src/Algebra/Lattice/Properties/Semilattice.agda @@ -6,11 +6,8 @@ {-# OPTIONS --cubical-compatible --safe #-} -open import Algebra.Lattice -open import Algebra.Structures -open import Function -open import Data.Product -open import Relation.Binary +open import Algebra.Lattice.Bundles using (Semilattice) +open import Relation.Binary.Bundles using (Poset) import Relation.Binary.Lattice as B import Relation.Binary.Properties.Poset as PosetProperties diff --git a/src/Algebra/Lattice/Structures.agda b/src/Algebra/Lattice/Structures.agda index 8e80c4a87b..b02787eee0 100644 --- a/src/Algebra/Lattice/Structures.agda +++ b/src/Algebra/Lattice/Structures.agda @@ -14,7 +14,7 @@ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Core -open import Data.Product using (proj₁; proj₂) +open import Data.Product.Base using (proj₁; proj₂) open import Level using (_⊔_) open import Relation.Binary using (Rel; Setoid; IsEquivalence) diff --git a/src/Algebra/Properties/CommutativeSemigroup.agda b/src/Algebra/Properties/CommutativeSemigroup.agda index 25d1ac0152..e09253ece7 100644 --- a/src/Algebra/Properties/CommutativeSemigroup.agda +++ b/src/Algebra/Properties/CommutativeSemigroup.agda @@ -16,7 +16,7 @@ open CommutativeSemigroup CS open import Algebra.Definitions _≈_ open import Relation.Binary.Reasoning.Setoid setoid -open import Data.Product +open import Data.Product.Base using (_,_) ------------------------------------------------------------------------------ -- Re-export the contents of semigroup diff --git a/src/Algebra/Properties/Group.agda b/src/Algebra/Properties/Group.agda index 469245b11c..7cdf88c9fe 100644 --- a/src/Algebra/Properties/Group.agda +++ b/src/Algebra/Properties/Group.agda @@ -13,8 +13,8 @@ module Algebra.Properties.Group {g₁ g₂} (G : Group g₁ g₂) where open Group G open import Algebra.Definitions _≈_ open import Relation.Binary.Reasoning.Setoid setoid -open import Function -open import Data.Product +open import Function.Base using (_$_; _⟨_⟩_) +open import Data.Product.Base using (_,_; proj₂) ε⁻¹≈ε : ε ⁻¹ ≈ ε ε⁻¹≈ε = begin diff --git a/src/Algebra/Properties/Ring.agda b/src/Algebra/Properties/Ring.agda index e310202a37..22dabbac29 100644 --- a/src/Algebra/Properties/Ring.agda +++ b/src/Algebra/Properties/Ring.agda @@ -16,7 +16,6 @@ import Algebra.Properties.AbelianGroup as AbelianGroupProperties open import Function.Base using (_$_) open import Relation.Binary.Reasoning.Setoid setoid open import Algebra.Definitions _≈_ -open import Data.Product ------------------------------------------------------------------------ -- Export properties of abelian groups diff --git a/src/Algebra/Properties/Semigroup.agda b/src/Algebra/Properties/Semigroup.agda index 4147b612e2..22aab4e66e 100644 --- a/src/Algebra/Properties/Semigroup.agda +++ b/src/Algebra/Properties/Semigroup.agda @@ -12,7 +12,7 @@ module Algebra.Properties.Semigroup {a ℓ} (S : Semigroup a ℓ) where open Semigroup S open import Algebra.Definitions _≈_ -open import Data.Product +open import Data.Product.Base using (_,_) x∙yz≈xy∙z : ∀ x y z → x ∙ (y ∙ z) ≈ (x ∙ y) ∙ z x∙yz≈xy∙z x y z = sym (assoc x y z) diff --git a/src/Algebra/Structures.agda b/src/Algebra/Structures.agda index 0a904276db..eb9d49b2c9 100644 --- a/src/Algebra/Structures.agda +++ b/src/Algebra/Structures.agda @@ -22,7 +22,7 @@ module Algebra.Structures open import Algebra.Core open import Algebra.Definitions _≈_ import Algebra.Consequences.Setoid as Consequences -open import Data.Product using (_,_; proj₁; proj₂) +open import Data.Product.Base using (_,_; proj₁; proj₂) open import Level using (_⊔_) ------------------------------------------------------------------------ diff --git a/src/Algebra/Structures/Biased.agda b/src/Algebra/Structures/Biased.agda index c03e1236eb..0aa549c66c 100644 --- a/src/Algebra/Structures/Biased.agda +++ b/src/Algebra/Structures/Biased.agda @@ -9,7 +9,7 @@ open import Algebra.Core open import Algebra.Consequences.Setoid -open import Data.Product using (_,_; proj₁; proj₂) +open import Data.Product.Base using (_,_; proj₁; proj₂) open import Level using (_⊔_) open import Relation.Binary using (Rel; Setoid; IsEquivalence) diff --git a/src/Codata/Sized/Cowriter.agda b/src/Codata/Sized/Cowriter.agda index 2a6ef961ec..7206c83c86 100644 --- a/src/Codata/Sized/Cowriter.agda +++ b/src/Codata/Sized/Cowriter.agda @@ -16,9 +16,9 @@ open import Codata.Sized.Delay using (Delay; later; now) open import Codata.Sized.Stream as Stream using (Stream; _∷_) open import Data.Unit.Base open import Data.List.Base using (List; []; _∷_) -open import Data.List.NonEmpty using (List⁺; _∷_) +open import Data.List.NonEmpty.Base using (List⁺; _∷_) open import Data.Nat.Base as Nat using (ℕ; zero; suc) -open import Data.Product as Prod using (_×_; _,_) +open import Data.Product.Base as Prod using (_×_; _,_) open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂) open import Data.Vec.Base using (Vec; []; _∷_) open import Data.Vec.Bounded.Base as Vec≤ using (Vec≤; _,_) diff --git a/src/Codata/Sized/Stream.agda b/src/Codata/Sized/Stream.agda index 85cd886b5f..4b7d6bd37d 100644 --- a/src/Codata/Sized/Stream.agda +++ b/src/Codata/Sized/Stream.agda @@ -15,10 +15,10 @@ open import Data.Nat.Base open import Data.List.Base using (List; []; _∷_) open import Data.List.NonEmpty as List⁺ using (List⁺; _∷_; _∷⁺_) open import Data.Vec.Base using (Vec; []; _∷_) -open import Data.Product as P hiding (map) -open import Function.Base +open import Data.Product.Base as P using (Σ; _×_; _,_; <_,_>; proj₁; proj₂) +open import Function.Base using (id; _∘_) open import Level using (Level) -open import Relation.Binary.PropositionalEquality using (_≡_; refl) +open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl) private variable diff --git a/src/Data/Bool/Properties.agda b/src/Data/Bool/Properties.agda index fe232885eb..ef963f6511 100644 --- a/src/Data/Bool/Properties.agda +++ b/src/Data/Bool/Properties.agda @@ -13,9 +13,9 @@ open import Algebra.Lattice.Bundles import Algebra.Lattice.Properties.BooleanAlgebra as BooleanAlgebraProperties open import Data.Bool.Base open import Data.Empty -open import Data.Product -open import Data.Sum.Base -open import Function.Base +open import Data.Product.Base using (_×_; _,_; proj₁; proj₂) +open import Data.Sum.Base using (_⊎_; inj₁; inj₂; [_,_]) +open import Function.Base using (_⟨_⟩_; const; id) open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (_⇔_; equivalence; module Equivalence) @@ -23,8 +23,8 @@ open import Induction.WellFounded using (WellFounded; Acc; acc) open import Level using (Level; 0ℓ) open import Relation.Binary hiding (_⇔_) open import Relation.Binary.PropositionalEquality hiding ([_]) -open import Relation.Nullary using (ofʸ; ofⁿ; does; proof; yes; no) -open import Relation.Nullary.Decidable using (True) +open import Relation.Nullary.Reflects using (ofʸ; ofⁿ) +open import Relation.Nullary.Decidable.Core using (True; does; proof; yes; no) import Relation.Unary as U open import Algebra.Definitions {A = Bool} _≡_ diff --git a/src/Data/Digit.agda b/src/Data/Digit.agda index 9c47fd544b..7e7c1c7555 100644 --- a/src/Data/Digit.agda +++ b/src/Data/Digit.agda @@ -9,21 +9,20 @@ module Data.Digit where open import Data.Nat.Base -open import Data.Nat.Properties -open import Data.Nat.Solver +open import Data.Nat.Properties using (_≤?_; _) +open import Data.Product.Base as Prod + using (∃; ∃₂; _×_; _,_; map; proj₁; proj₂; uncurry; <_,_>) open import Data.Product.Properties using (,-injective) open import Data.Product.Algebra using (×-cong) open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]; [_,_]′) @@ -619,7 +621,7 @@ splitAt-≥ (suc m) (suc i) (s≤s i≥m) = cong (Sum.map suc id) (splitAt-≥ m remQuot-combine : ∀ {n k} (i : Fin n) j → remQuot k (combine i j) ≡ (i , j) remQuot-combine {suc n} {k} zero j rewrite splitAt-↑ˡ k j (n ℕ.* k) = refl remQuot-combine {suc n} {k} (suc i) j rewrite splitAt-↑ʳ k (n ℕ.* k) (combine i j) = - cong (Data.Product.map₁ suc) (remQuot-combine i j) + cong (Prod.map₁ suc) (remQuot-combine i j) combine-remQuot : ∀ {n} k (i : Fin (n ℕ.* k)) → uncurry combine (remQuot {n} k i) ≡ i combine-remQuot {suc n} k i with splitAt k i in eq @@ -1158,4 +1160,3 @@ Please use <⇒<′ instead." "Warning: <′⇒≺ was deprecated in v2.0. Please use <′⇒< instead." #-} - diff --git a/src/Data/List/Base.agda b/src/Data/List/Base.agda index 48a5840bf4..2b25ece003 100644 --- a/src/Data/List/Base.agda +++ b/src/Data/List/Base.agda @@ -17,7 +17,7 @@ open import Data.Bool.Base as Bool open import Data.Fin.Base using (Fin; zero; suc) open import Data.Maybe.Base as Maybe using (Maybe; nothing; just; maybe′) open import Data.Nat.Base as ℕ using (ℕ; zero; suc; _+_; _*_ ; _≤_ ; s≤s) -open import Data.Product as Prod using (_×_; _,_; map₁; map₂′) +open import Data.Product.Base as Prod using (_×_; _,_; map₁; map₂′) open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂) open import Data.These.Base as These using (These; this; that; these) open import Function.Base using (id; _∘_ ; _∘′_; _∘₂_; const; flip) diff --git a/src/Data/List/Fresh.agda b/src/Data/List/Fresh.agda index 8665267dd5..72c372003a 100644 --- a/src/Data/List/Fresh.agda +++ b/src/Data/List/Fresh.agda @@ -16,7 +16,7 @@ module Data.List.Fresh where open import Level using (Level; _⊔_) open import Data.Bool.Base using (true; false) open import Data.Unit.Polymorphic.Base using (⊤) -open import Data.Product using (∃; _×_; _,_; -,_; proj₁; proj₂) +open import Data.Product.Base using (∃; _×_; _,_; -,_; proj₁; proj₂) open import Data.List.Relation.Unary.All using (All; []; _∷_) open import Data.List.Relation.Unary.AllPairs using (AllPairs; []; _∷_) open import Data.Maybe.Base as Maybe using (Maybe; just; nothing) diff --git a/src/Data/List/Fresh/NonEmpty.agda b/src/Data/List/Fresh/NonEmpty.agda index 1ed72bd9d4..e4b55cb11b 100644 --- a/src/Data/List/Fresh/NonEmpty.agda +++ b/src/Data/List/Fresh/NonEmpty.agda @@ -11,9 +11,9 @@ module Data.List.Fresh.NonEmpty where open import Level using (Level; _⊔_) open import Data.List.Fresh as List# using (List#; []; cons; fresh) open import Data.Maybe.Base using (Maybe; nothing; just) -open import Data.Nat using (ℕ; suc) -open import Data.Product using (_×_; _,_) -open import Relation.Binary as B using (Rel) +open import Data.Nat.Base using (ℕ; suc) +open import Data.Product.Base using (_×_; _,_) +open import Relation.Binary.Core using (Rel) private variable diff --git a/src/Data/List/Kleene/Base.agda b/src/Data/List/Kleene/Base.agda index c8476318b7..8eb83ba864 100644 --- a/src/Data/List/Kleene/Base.agda +++ b/src/Data/List/Kleene/Base.agda @@ -8,11 +8,12 @@ module Data.List.Kleene.Base where -open import Data.Product as Product using (_×_; _,_; map₂; map₁; proj₁; proj₂) -open import Data.Nat as ℕ using (ℕ; suc; zero) -open import Data.Maybe as Maybe using (Maybe; just; nothing) -open import Data.Sum as Sum using (_⊎_; inj₁; inj₂) -open import Level as Level using (Level) +open import Data.Product.Base as Product + using (_×_; _,_; map₂; map₁; proj₁; proj₂) +open import Data.Nat.Base as ℕ using (ℕ; suc; zero) +open import Data.Maybe.Base as Maybe using (Maybe; just; nothing) +open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂) +open import Level using (Level) open import Algebra.Core using (Op₂) open import Function.Base diff --git a/src/Data/List/Membership/Setoid.agda b/src/Data/List/Membership/Setoid.agda index ca48b933d1..047620041d 100644 --- a/src/Data/List/Membership/Setoid.agda +++ b/src/Data/List/Membership/Setoid.agda @@ -14,7 +14,7 @@ open import Function.Base using (_∘_; id; flip) open import Data.List.Base as List using (List; []; _∷_; length; lookup) open import Data.List.Relation.Unary.Any using (Any; index; map; here; there) -open import Data.Product as Prod using (∃; _×_; _,_) +open import Data.Product.Base as Prod using (∃; _×_; _,_) open import Relation.Unary using (Pred) open import Relation.Nullary.Negation using (¬_) diff --git a/src/Data/List/NonEmpty/Base.agda b/src/Data/List/NonEmpty/Base.agda index 3cc83a3447..320cacd4b6 100644 --- a/src/Data/List/NonEmpty/Base.agda +++ b/src/Data/List/NonEmpty/Base.agda @@ -14,7 +14,7 @@ open import Data.Bool.Properties using (T?) open import Data.List.Base as List using (List; []; _∷_) open import Data.Maybe.Base using (Maybe ; nothing; just) open import Data.Nat.Base as ℕ -open import Data.Product as Prod using (∃; _×_; proj₁; proj₂; _,_; -,_) +open import Data.Product.Base as Prod using (∃; _×_; proj₁; proj₂; _,_; -,_) open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂) open import Data.These.Base as These using (These; this; that; these) open import Data.Vec.Base as Vec using (Vec; []; _∷_) diff --git a/src/Data/List/Properties.agda b/src/Data/List/Properties.agda index 58d5b39680..9df56d4781 100644 --- a/src/Data/List/Properties.agda +++ b/src/Data/List/Properties.agda @@ -25,7 +25,8 @@ open import Data.Maybe.Base using (Maybe; just; nothing) open import Data.Nat.Base open import Data.Nat.Divisibility open import Data.Nat.Properties -open import Data.Product as Prod hiding (map; zip) +open import Data.Product.Base as Prod + using (_×_; _,_; uncurry; uncurry′; proj₁; proj₂; <_,_>) import Data.Product.Relation.Unary.All as Prod using (All) open import Data.Sum.Base using (_⊎_; inj₁; inj₂) open import Data.These.Base as These using (These; this; that; these) diff --git a/src/Data/List/Relation/Binary/Lex/Core.agda b/src/Data/List/Relation/Binary/Lex/Core.agda index 3c90bf3c9f..96549e013b 100644 --- a/src/Data/List/Relation/Binary/Lex/Core.agda +++ b/src/Data/List/Relation/Binary/Lex/Core.agda @@ -10,7 +10,7 @@ module Data.List.Relation.Binary.Lex.Core where open import Data.Empty using (⊥; ⊥-elim) open import Data.Unit.Base using (⊤; tt) -open import Data.Product using (_×_; _,_; proj₁; proj₂; uncurry) +open import Data.Product.Base using (_×_; _,_; proj₁; proj₂; uncurry) open import Data.List.Base using (List; []; _∷_) open import Function.Base using (_∘_; flip; id) open import Level using (Level; _⊔_) diff --git a/src/Data/List/Relation/Binary/Pointwise/Base.agda b/src/Data/List/Relation/Binary/Pointwise/Base.agda index 8e24dcd2dc..e547aea169 100644 --- a/src/Data/List/Relation/Binary/Pointwise/Base.agda +++ b/src/Data/List/Relation/Binary/Pointwise/Base.agda @@ -8,9 +8,9 @@ module Data.List.Relation.Binary.Pointwise.Base where -open import Data.Product using (_×_; <_,_>) +open import Data.Product.Base using (_×_; <_,_>) open import Data.List.Base using (List; []; _∷_) -open import Level +open import Level using (Level; _⊔_) open import Relation.Binary.Core using (REL; _⇒_) private diff --git a/src/Data/List/Relation/Unary/All.agda b/src/Data/List/Relation/Unary/All.agda index 674a8e33d5..090af7e6b6 100644 --- a/src/Data/List/Relation/Unary/All.agda +++ b/src/Data/List/Relation/Unary/All.agda @@ -15,11 +15,11 @@ open import Data.List.Base as List using (List; []; _∷_) open import Data.List.Relation.Unary.Any as Any using (Any; here; there) open import Data.List.Membership.Propositional renaming (_∈_ to _∈ₚ_) import Data.List.Membership.Setoid as SetoidMembership -open import Data.Product as Prod +open import Data.Product.Base as Prod using (∃; -,_; _×_; _,_; proj₁; proj₂; uncurry) open import Data.Sum.Base as Sum using (inj₁; inj₂) -open import Function -open import Level +open import Function.Base using (_∘_; _∘′_; id; const) +open import Level using (Level; _⊔_) open import Relation.Nullary hiding (Irrelevant) import Relation.Nullary.Decidable as Dec open import Relation.Unary hiding (_∈_) diff --git a/src/Data/List/Relation/Unary/Any.agda b/src/Data/List/Relation/Unary/Any.agda index 19af845152..eb010e2a39 100644 --- a/src/Data/List/Relation/Unary/Any.agda +++ b/src/Data/List/Relation/Unary/Any.agda @@ -11,7 +11,7 @@ module Data.List.Relation.Unary.Any where open import Data.Empty open import Data.Fin.Base using (Fin; zero; suc) open import Data.List.Base as List using (List; []; [_]; _∷_) -open import Data.Product as Prod using (∃; _,_) +open import Data.Product.Base as Prod using (∃; _,_) open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂) open import Level using (Level; _⊔_) open import Relation.Nullary using (¬_; yes; no; _⊎-dec_) diff --git a/src/Data/Maybe/Base.agda b/src/Data/Maybe/Base.agda index 0cb8c473bf..b0ae001f46 100644 --- a/src/Data/Maybe/Base.agda +++ b/src/Data/Maybe/Base.agda @@ -14,7 +14,7 @@ open import Level open import Data.Bool.Base using (Bool; true; false; not) open import Data.Unit.Base using (⊤) open import Data.These.Base using (These; this; that; these) -open import Data.Product as Prod using (_×_; _,_) +open import Data.Product.Base as Prod using (_×_; _,_) open import Function.Base open import Relation.Nullary.Reflects open import Relation.Nullary.Decidable.Core diff --git a/src/Data/Nat/DivMod/Core.agda b/src/Data/Nat/DivMod/Core.agda index 02b1c917c6..fed1a1ae0d 100644 --- a/src/Data/Nat/DivMod/Core.agda +++ b/src/Data/Nat/DivMod/Core.agda @@ -14,7 +14,7 @@ open import Agda.Builtin.Nat using () open import Data.Nat.Base open import Data.Nat.Properties open import Data.Sum.Base using (_⊎_; inj₁; inj₂) -open import Data.Product using (_×_; _,_) +open import Data.Product.Base using (_×_; _,_) open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable using (yes; no) open import Relation.Nullary.Negation using (contradiction) diff --git a/src/Data/Nat/Divisibility.agda b/src/Data/Nat/Divisibility.agda index 07a80bcdd9..c202d740ba 100644 --- a/src/Data/Nat/Divisibility.agda +++ b/src/Data/Nat/Divisibility.agda @@ -12,14 +12,12 @@ open import Algebra open import Data.Nat.Base open import Data.Nat.DivMod open import Data.Nat.Properties -open import Data.Product -open import Data.Unit using (tt) -open import Function.Base +open import Data.Unit.Base using (tt) +open import Function.Base using (_∘′_; _$_) open import Function.Bundles using (_⇔_; mk⇔) open import Level using (0ℓ) -open import Relation.Nullary.Decidable using (yes; no) -open import Relation.Nullary.Decidable as Dec using (False) -open import Relation.Nullary.Negation using (contradiction) +open import Relation.Nullary.Decidable as Dec using (False; yes; no) +open import Relation.Nullary.Negation.Core using (contradiction) open import Relation.Binary import Relation.Binary.Reasoning.Preorder as PreorderReasoning open import Relation.Binary.PropositionalEquality as PropEq diff --git a/src/Data/Nat/Induction.agda b/src/Data/Nat/Induction.agda index ea68692a51..209f9f60bb 100644 --- a/src/Data/Nat/Induction.agda +++ b/src/Data/Nat/Induction.agda @@ -10,9 +10,8 @@ module Data.Nat.Induction where open import Data.Nat.Base open import Data.Nat.Properties using (<⇒<′) -open import Data.Product +open import Data.Product.Base using (_×_; _,_) open import Data.Unit.Polymorphic.Base -open import Function.Base open import Induction open import Induction.WellFounded as WF open import Level using (Level) diff --git a/src/Data/Nat/Properties.agda b/src/Data/Nat/Properties.agda index 27725b98ad..ac8a4dcaa5 100644 --- a/src/Data/Nat/Properties.agda +++ b/src/Data/Nat/Properties.agda @@ -23,7 +23,7 @@ open import Data.Bool.Base using (Bool; false; true; T) open import Data.Bool.Properties using (T?) open import Data.Empty using (⊥) open import Data.Nat.Base -open import Data.Product using (∄; ∃; _×_; _,_) +open import Data.Product.Base using (∃; _×_; _,_) open import Data.Sum.Base as Sum open import Data.Unit using (tt) open import Function.Base @@ -2172,7 +2172,7 @@ module _ {p} {P : Pred ℕ p} (P? : U.Decidable P) where ... | _ | yes (n , n_; when) import Data.Maybe.Effectful as Maybe open import Data.Nat -open import Data.Product using (proj₁) -open import Data.String.Base using (toList; fromList; String) -open import Function.Base +open import Data.Product.Base using (proj₁) +open import Data.String.Base as String using (String; fromList; toList) +open import Function.Base using (_∘′_; _∘_) open import Relation.Nullary.Decidable using (True) ------------------------------------------------------------------------ @@ -62,7 +62,7 @@ toDecimalChars : ℕ → List Char toDecimalChars = List.map toDigitChar ∘′ toNatDigits 10 show : ℕ → String -show = fromList ∘ toDecimalChars +show = fromList ∘′ toDecimalChars -- Arbitrary base betwen 2 & 16. -- Warning: when compiled the time complexity of `showInBase b n` is diff --git a/src/Data/Product.agda b/src/Data/Product.agda index 08c0aa0c7f..02bf53a97b 100644 --- a/src/Data/Product.agda +++ b/src/Data/Product.agda @@ -23,18 +23,11 @@ private open import Data.Product.Base public ------------------------------------------------------------------------ --- Existential quantifiers - -∃ : ∀ {A : Set a} → (A → Set b) → Set (a ⊔ b) -∃ = Σ _ +-- Negation of existential quantifier ∄ : ∀ {A : Set a} → (A → Set b) → Set (a ⊔ b) ∄ P = ¬ ∃ P -∃₂ : ∀ {A : Set a} {B : A → Set b} - (C : (x : A) → B x → Set c) → Set (a ⊔ b ⊔ c) -∃₂ C = ∃ λ a → ∃ λ b → C a b - -- Unique existence (parametrised by an underlying equality). ∃! : {A : Set a} → (A → A → Set ℓ) → (A → Set b) → Set (a ⊔ b ⊔ ℓ) @@ -42,13 +35,6 @@ open import Data.Product.Base public -- Syntax -infix 2 ∃-syntax - -∃-syntax : ∀ {A : Set a} → (A → Set b) → Set (a ⊔ b) -∃-syntax = ∃ - -syntax ∃-syntax (λ x → B) = ∃[ x ] B - infix 2 ∄-syntax ∄-syntax : ∀ {A : Set a} → (A → Set b) → Set (a ⊔ b) diff --git a/src/Data/Product/Algebra.agda b/src/Data/Product/Algebra.agda index f11045d778..c64057dcc0 100644 --- a/src/Data/Product/Algebra.agda +++ b/src/Data/Product/Algebra.agda @@ -11,9 +11,9 @@ module Data.Product.Algebra where open import Algebra open import Data.Bool.Base using (true; false) open import Data.Empty.Polymorphic using (⊥; ⊥-elim) -open import Data.Product +open import Data.Product.Base open import Data.Product.Properties -open import Data.Sum as Sum using (_⊎_; inj₁; inj₂; [_,_]′) +open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]′) open import Data.Sum.Algebra open import Data.Unit.Polymorphic using (⊤; tt) open import Function.Base using (_∘′_) diff --git a/src/Data/Product/Base.agda b/src/Data/Product/Base.agda index 7ee638392c..02f7e52697 100644 --- a/src/Data/Product/Base.agda +++ b/src/Data/Product/Base.agda @@ -9,7 +9,7 @@ module Data.Product.Base where open import Function.Base -open import Level +open import Level using (Level; _⊔_) private variable @@ -31,6 +31,19 @@ open import Agda.Builtin.Sigma public module Σ = Agda.Builtin.Sigma.Σ renaming (fst to proj₁; snd to proj₂) +------------------------------------------------------------------------ +-- Existential quantifiers + +∃ : ∀ {A : Set a} → (A → Set b) → Set (a ⊔ b) +∃ = Σ _ + +∃₂ : ∀ {A : Set a} {B : A → Set b} + (C : (x : A) → B x → Set c) → Set (a ⊔ b ⊔ c) +∃₂ C = ∃ λ a → ∃ λ b → C a b + +------------------------------------------------------------------------ +-- Syntaxes + -- The syntax declaration below is attached to Σ-syntax, to make it -- easy to import Σ without the special syntax. @@ -41,6 +54,13 @@ infix 2 Σ-syntax syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B +infix 2 ∃-syntax + +∃-syntax : ∀ {A : Set a} → (A → Set b) → Set (a ⊔ b) +∃-syntax = ∃ + +syntax ∃-syntax (λ x → B) = ∃[ x ] B + ------------------------------------------------------------------------ -- Definition of non-dependent products diff --git a/src/Data/Product/Effectful/Left.agda b/src/Data/Product/Effectful/Left.agda index 66362621ee..279555b9c9 100644 --- a/src/Data/Product/Effectful/Left.agda +++ b/src/Data/Product/Effectful/Left.agda @@ -18,7 +18,7 @@ open import Level module Data.Product.Effectful.Left {a e} (A : RawMonoid a e) (b : Level) where -open import Data.Product +open import Data.Product.Base import Data.Product.Effectful.Left.Base as Base open import Effect.Applicative using (RawApplicative) open import Effect.Monad using (RawMonad; RawMonadT; mkRawMonad) diff --git a/src/Data/Product/Effectful/Left/Base.agda b/src/Data/Product/Effectful/Left/Base.agda index d5b0b42c92..e3f7edef69 100644 --- a/src/Data/Product/Effectful/Left/Base.agda +++ b/src/Data/Product/Effectful/Left/Base.agda @@ -17,7 +17,7 @@ open import Level module Data.Product.Effectful.Left.Base {a} (A : Set a) (b : Level) where -open import Data.Product using (_×_; map₂; proj₁; proj₂; <_,_>) +open import Data.Product.Base using (_×_; map₂; proj₁; proj₂; <_,_>) open import Effect.Functor using (RawFunctor) open import Effect.Comonad using (RawComonad) diff --git a/src/Data/Product/Effectful/Right.agda b/src/Data/Product/Effectful/Right.agda index 640b4e908d..fd5cb9b423 100644 --- a/src/Data/Product/Effectful/Right.agda +++ b/src/Data/Product/Effectful/Right.agda @@ -18,7 +18,7 @@ open import Level module Data.Product.Effectful.Right (a : Level) {b e} (B : RawMonoid b e) where -open import Data.Product +open import Data.Product.Base import Data.Product.Effectful.Right.Base as Base open import Effect.Applicative using (RawApplicative) open import Effect.Monad using (RawMonad; RawMonadT; mkRawMonad) diff --git a/src/Data/Product/Effectful/Right/Base.agda b/src/Data/Product/Effectful/Right/Base.agda index 273185bf8e..556483f66f 100644 --- a/src/Data/Product/Effectful/Right/Base.agda +++ b/src/Data/Product/Effectful/Right/Base.agda @@ -17,7 +17,7 @@ open import Level module Data.Product.Effectful.Right.Base {b} (B : Set b) (a : Level) where -open import Data.Product using (_×_; map₁; proj₁; proj₂; <_,_>) +open import Data.Product.Base using (_×_; map₁; proj₁; proj₂; <_,_>) open import Effect.Functor using (RawFunctor) open import Effect.Comonad using (RawComonad) diff --git a/src/Data/Product/Nary/NonDependent.agda b/src/Data/Product/Nary/NonDependent.agda index 1d5678e00c..cb421f16b6 100644 --- a/src/Data/Product/Nary/NonDependent.agda +++ b/src/Data/Product/Nary/NonDependent.agda @@ -16,15 +16,15 @@ module Data.Product.Nary.NonDependent where open import Level as L using (Level; _⊔_; Lift; 0ℓ) open import Agda.Builtin.Unit -open import Data.Product as Prod +open import Data.Product.Base as Prod import Data.Product.Properties as Prodₚ open import Data.Sum.Base using (_⊎_) open import Data.Nat.Base using (ℕ; zero; suc; pred) open import Data.Fin.Base using (Fin; zero; suc) open import Function.Base using (const; _∘′_; _∘_) -open import Relation.Nullary.Decidable using (Dec; yes; no; _×-dec_) -open import Relation.Binary using (Rel) -open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong₂) +open import Relation.Nullary.Decidable.Core using (Dec; yes; no; _×-dec_) +open import Relation.Binary.Core using (Rel) +open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong₂) open import Function.Nary.NonDependent.Base diff --git a/src/Data/Product/Properties.agda b/src/Data/Product/Properties.agda index fa4909e955..1cc3c2383e 100644 --- a/src/Data/Product/Properties.agda +++ b/src/Data/Product/Properties.agda @@ -9,8 +9,9 @@ module Data.Product.Properties where open import Axiom.UniquenessOfIdentityProofs -open import Data.Product -open import Function +open import Data.Product.Base +open import Function.Base using (_∋_; _∘_; id) +open import Function.Bundles using (_↔_; mk↔′) open import Level using (Level) open import Relation.Binary using (DecidableEquality) open import Relation.Binary.PropositionalEquality diff --git a/src/Data/Product/Relation/Unary/All.agda b/src/Data/Product/Relation/Unary/All.agda index 8c1b67dc50..1257de57c2 100644 --- a/src/Data/Product/Relation/Unary/All.agda +++ b/src/Data/Product/Relation/Unary/All.agda @@ -8,10 +8,8 @@ module Data.Product.Relation.Unary.All where -open import Level -open import Data.Product -open import Function.Base -open import Relation.Unary +open import Level using (Level; _⊔_) +open import Data.Product.Base using (_×_; _,_) private variable diff --git a/src/Data/String/Base.agda b/src/Data/String/Base.agda index b3556026db..1a56376f59 100644 --- a/src/Data/String/Base.agda +++ b/src/Data/String/Base.agda @@ -8,7 +8,6 @@ module Data.String.Base where -open import Level using (zero) open import Data.Bool.Base using (Bool; true; false) open import Data.Char.Base as Char using (Char) open import Data.List.Base as List using (List; [_]; _∷_; []) @@ -17,13 +16,13 @@ open import Data.List.Relation.Binary.Pointwise.Base using (Pointwise) open import Data.List.Relation.Binary.Lex.Core using (Lex-<; Lex-≤) open import Data.Maybe.Base as Maybe using (Maybe) open import Data.Nat.Base using (ℕ; _∸_; ⌊_/2⌋; ⌈_/2⌉) -open import Data.Product using (proj₁; proj₂) +open import Data.Product.Base using (proj₁; proj₂) open import Function.Base using (_on_; _∘′_; _∘_) -open import Level using (Level) +open import Level using (Level; 0ℓ) open import Relation.Binary.Core using (Rel) open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl) open import Relation.Unary using (Pred; Decidable) -open import Relation.Nullary.Decidable using (does) +open import Relation.Nullary.Decidable.Core using (does) ------------------------------------------------------------------------ -- From Agda.Builtin: type and renamed primitives @@ -47,17 +46,17 @@ open String public using ( String ) -- Pointwise equality on Strings infix 4 _≈_ -_≈_ : Rel String zero +_≈_ : Rel String 0ℓ _≈_ = Pointwise _≡_ on toList -- Lexicographic ordering on Strings infix 4 _<_ -_<_ : Rel String zero +_<_ : Rel String 0ℓ _<_ = Lex-< _≡_ Char._<_ on toList infix 4 _≤_ -_≤_ : Rel String zero +_≤_ : Rel String 0ℓ _≤_ = Lex-≤ _≡_ Char._<_ on toList ------------------------------------------------------------------------ diff --git a/src/Data/String/Unsafe.agda b/src/Data/String/Unsafe.agda index 91a62a61d1..9c001365a3 100644 --- a/src/Data/String/Unsafe.agda +++ b/src/Data/String/Unsafe.agda @@ -12,7 +12,7 @@ import Data.List.Base as List import Data.List.Properties as Listₚ open import Data.Maybe.Base using (maybe′) open import Data.Nat.Base using (zero; suc; _+_) -open import Data.Product using (proj₂) +open import Data.Product.Base using (proj₂) open import Data.String.Base open import Function.Base using (_∘′_) diff --git a/src/Data/Sum/Algebra.agda b/src/Data/Sum/Algebra.agda index 717bc347c1..f69988942b 100644 --- a/src/Data/Sum/Algebra.agda +++ b/src/Data/Sum/Algebra.agda @@ -10,7 +10,7 @@ module Data.Sum.Algebra where open import Algebra open import Data.Empty.Polymorphic using (⊥) -open import Data.Product using (_,_) +open import Data.Product.Base using (_,_) open import Data.Sum.Base open import Data.Sum.Properties open import Data.Unit.Polymorphic using (⊤; tt) diff --git a/src/Data/Unit/Polymorphic/Properties.agda b/src/Data/Unit/Polymorphic/Properties.agda index 8513229ba1..dce385f19e 100644 --- a/src/Data/Unit/Polymorphic/Properties.agda +++ b/src/Data/Unit/Polymorphic/Properties.agda @@ -11,7 +11,7 @@ module Data.Unit.Polymorphic.Properties where open import Level open import Function.Bundles using (_↔_; mk↔) -open import Data.Product using (_,_) +open import Data.Product.Base using (_,_) open import Data.Sum.Base using (inj₁) open import Data.Unit.Base renaming (⊤ to ⊤*) open import Data.Unit.Polymorphic.Base using (⊤; tt) diff --git a/src/Data/Vec/Base.agda b/src/Data/Vec/Base.agda index 911766496a..9f6d86b792 100644 --- a/src/Data/Vec/Base.agda +++ b/src/Data/Vec/Base.agda @@ -12,12 +12,12 @@ open import Data.Bool.Base using (Bool; true; false; if_then_else_) open import Data.Nat.Base open import Data.Fin.Base using (Fin; zero; suc) open import Data.List.Base as List using (List) -open import Data.Product as Prod using (∃; ∃₂; _×_; _,_) +open import Data.Product.Base as Prod using (∃; ∃₂; _×_; _,_) open import Data.These.Base as These using (These; this; that; these) open import Function.Base using (const; _∘′_; id; _∘_) open import Level using (Level) open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong) -open import Relation.Nullary.Decidable using (does) +open import Relation.Nullary.Decidable.Core using (does) open import Relation.Unary using (Pred; Decidable) private diff --git a/src/Data/Vec/Bounded/Base.agda b/src/Data/Vec/Bounded/Base.agda index 9c874ec89e..17b33ef7be 100644 --- a/src/Data/Vec/Bounded/Base.agda +++ b/src/Data/Vec/Bounded/Base.agda @@ -8,7 +8,6 @@ module Data.Vec.Bounded.Base where -open import Level using (Level) open import Data.Nat.Base import Data.Nat.Properties as ℕₚ open import Data.List.Base as List using (List) @@ -16,13 +15,13 @@ open import Data.List.Extrema ℕₚ.≤-totalOrder open import Data.List.Relation.Unary.All as All using (All) import Data.List.Relation.Unary.All.Properties as Allₚ open import Data.List.Membership.Propositional using (mapWith∈) -open import Data.Product using (∃; _×_; _,_; proj₁; proj₂) +open import Data.Product.Base using (∃; _×_; _,_; proj₁; proj₂) open import Data.Vec.Base as Vec using (Vec) open import Data.These.Base as These using (These) -open import Function -open import Relation.Nullary -open import Relation.Unary -open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) +open import Function.Base using (_∘_; id; _$_) +open import Level using (Level) +open import Relation.Nullary.Decidable.Core using (recompute) +open import Relation.Binary.PropositionalEquality.Core as P using (_≡_; refl) private variable diff --git a/src/Data/Vec/Functional.agda b/src/Data/Vec/Functional.agda index 26e8f32160..091886bef5 100644 --- a/src/Data/Vec/Functional.agda +++ b/src/Data/Vec/Functional.agda @@ -18,10 +18,10 @@ module Data.Vec.Functional where open import Data.Fin.Base open import Data.List.Base as L using (List) open import Data.Nat.Base as ℕ using (ℕ; zero; suc; NonZero; pred) -open import Data.Product using (Σ; ∃; _×_; _,_; proj₁; proj₂; uncurry) +open import Data.Product.Base using (Σ; ∃; _×_; _,_; proj₁; proj₂; uncurry) open import Data.Sum.Base using (_⊎_; inj₁; inj₂; [_,_]) open import Data.Vec.Base as V using (Vec) -open import Function.Base +open import Function.Base using (_∘_; const; flip; _ˢ_; id) open import Level using (Level) infixr 5 _∷_ _++_ diff --git a/src/Data/Vec/N-ary.agda b/src/Data/Vec/N-ary.agda index 7e10c5567c..197552d753 100644 --- a/src/Data/Vec/N-ary.agda +++ b/src/Data/Vec/N-ary.agda @@ -11,14 +11,13 @@ module Data.Vec.N-ary where open import Axiom.Extensionality.Propositional using (Extensionality) open import Function.Bundles using (_↔_; Inverse; mk↔′) open import Data.Nat.Base hiding (_⊔_) -open import Data.Product as Prod -open import Data.Vec.Base -open import Function.Base +open import Data.Product.Base as Prod using (∃; _,_) +open import Data.Vec.Base using (Vec; []; _∷_; head; tail) +open import Function.Base using (_∘_; id; flip; constᵣ) open import Function.Bundles using (_⇔_; mk⇔) open import Level using (Level; _⊔_) -open import Relation.Binary hiding (_⇔_) -open import Relation.Binary.PropositionalEquality -open import Relation.Nullary.Decidable +open import Relation.Binary.Core using (REL) +open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong) private variable diff --git a/src/Data/Vec/Recursive.agda b/src/Data/Vec/Recursive.agda index 765db00991..0ecc16f687 100644 --- a/src/Data/Vec/Recursive.agda +++ b/src/Data/Vec/Recursive.agda @@ -16,15 +16,12 @@ module Data.Vec.Recursive where -open import Level using (Level; lift) -open import Function.Bundles using (mk↔′) -open import Function.Properties.Inverse using (↔-isEquivalence; ↔-refl; ↔-sym; ↔-trans) open import Data.Nat.Base as Nat using (ℕ; zero; suc; NonZero; pred) open import Data.Nat.Properties using (+-comm; *-comm) open import Data.Empty.Polymorphic open import Data.Fin.Base as Fin using (Fin; zero; suc) open import Data.Fin.Properties using (1↔⊤; *↔×) -open import Data.Product as Prod using (_×_; _,_; proj₁; proj₂) +open import Data.Product.Base as Prod using (_×_; _,_; proj₁; proj₂) open import Data.Product.Algebra using (×-cong) open import Data.Sum.Base as Sum using (_⊎_) open import Data.Unit.Base using (tt) @@ -32,8 +29,11 @@ open import Data.Unit.Polymorphic.Base using (⊤) open import Data.Unit.Polymorphic.Properties using (⊤↔⊤*) open import Data.Vec.Base as Vec using (Vec; _∷_) open import Data.Vec.N-ary using (N-ary) -open import Function -open import Relation.Unary +open import Function.Base using (_∘′_; _∘_; id) +open import Function.Bundles using (_↔_; mk↔′; mk↔) +open import Function.Properties.Inverse using (↔-isEquivalence; ↔-refl; ↔-sym; ↔-trans) +open import Level using (Level; lift) +open import Relation.Unary using (IUniversal; Universal; _⇒_) open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; sym; trans; cong; subst) open import Relation.Binary.Structures using (IsEquivalence) diff --git a/src/Data/W.agda b/src/Data/W.agda index 3f2b35909f..159c0883a5 100644 --- a/src/Data/W.agda +++ b/src/Data/W.agda @@ -8,9 +8,9 @@ module Data.W where -open import Level +open import Level using (Level; _⊔_) open import Function.Base using (_$_; _∘_; const) -open import Data.Product using (_,_; -,_; proj₂) +open import Data.Product.Base using (_,_; -,_; proj₂) open import Data.Container.Core using (Container; ⟦_⟧; Shape; Position; _⇒_; ⟪_⟫) open import Data.Container.Relation.Unary.All using (□; all) open import Relation.Nullary.Negation using (¬_) diff --git a/src/Effect/Applicative.agda b/src/Effect/Applicative.agda index 51f7d21368..729966752c 100644 --- a/src/Effect/Applicative.agda +++ b/src/Effect/Applicative.agda @@ -12,7 +12,7 @@ module Effect.Applicative where open import Data.Bool.Base using (Bool; true; false) -open import Data.Product using (_×_; _,_) +open import Data.Product.Base using (_×_; _,_) open import Data.Unit.Polymorphic.Base using (⊤) open import Effect.Choice using (RawChoice) diff --git a/src/Effect/Monad/State/Transformer/Base.agda b/src/Effect/Monad/State/Transformer/Base.agda index 0680a2207b..3b5d60fd6e 100644 --- a/src/Effect/Monad/State/Transformer/Base.agda +++ b/src/Effect/Monad/State/Transformer/Base.agda @@ -9,7 +9,7 @@ module Effect.Monad.State.Transformer.Base where -open import Data.Product using (_×_; proj₁; proj₂) +open import Data.Product.Base using (_×_; proj₁; proj₂) open import Data.Unit.Polymorphic.Base using (⊤) open import Function.Base using (_∘′_; const; id) open import Level using (Level; suc; _⊔_) diff --git a/src/Effect/Monad/Writer/Transformer/Base.agda b/src/Effect/Monad/Writer/Transformer/Base.agda index bf3c254fc3..4f910b101d 100644 --- a/src/Effect/Monad/Writer/Transformer/Base.agda +++ b/src/Effect/Monad/Writer/Transformer/Base.agda @@ -9,7 +9,7 @@ module Effect.Monad.Writer.Transformer.Base where open import Algebra using (RawMonoid) -open import Data.Product using (_×_; _,_; proj₁; proj₂) +open import Data.Product.Base using (_×_; _,_; proj₁; proj₂) open import Data.Unit.Polymorphic using (⊤; tt) open import Function.Base using (id; _∘′_) open import Level using (Level; suc; _⊔_) diff --git a/src/Function/Bundles.agda b/src/Function/Bundles.agda index 6284182845..d113f14858 100644 --- a/src/Function/Bundles.agda +++ b/src/Function/Bundles.agda @@ -23,7 +23,7 @@ open import Function.Base using (_∘_) import Function.Definitions as FunctionDefinitions import Function.Structures as FunctionStructures open import Level using (Level; _⊔_; suc) -open import Data.Product using (_,_; proj₁; proj₂) +open import Data.Product.Base using (_,_; proj₁; proj₂) open import Relation.Binary hiding (_⇔_) open import Relation.Binary.PropositionalEquality.Core as ≡ using (_≡_) diff --git a/src/Function/Consequences.agda b/src/Function/Consequences.agda index 2b7603deea..e8c6a0f498 100644 --- a/src/Function/Consequences.agda +++ b/src/Function/Consequences.agda @@ -8,13 +8,12 @@ module Function.Consequences where -open import Data.Product +open import Data.Product.Base using (_,_) open import Function.Definitions -open import Level +open import Level using (Level) open import Relation.Binary import Relation.Binary.Reasoning.Setoid as SetoidReasoning -open import Relation.Nullary.Negation using (¬_) -open import Relation.Nullary.Negation.Core using (contraposition) +open import Relation.Nullary.Negation.Core using (¬_; contraposition) private variable diff --git a/src/Function/Construct/Composition.agda b/src/Function/Construct/Composition.agda index 242456d212..a18b4b87b1 100644 --- a/src/Function/Construct/Composition.agda +++ b/src/Function/Construct/Composition.agda @@ -8,10 +8,10 @@ module Function.Construct.Composition where -open import Data.Product using (_,_) +open import Data.Product.Base using (_,_) open import Function open import Level using (Level) -open import Relation.Binary as B hiding (_⇔_; IsEquivalence) +open import Relation.Binary hiding (_⇔_; IsEquivalence) private variable diff --git a/src/Function/Construct/Identity.agda b/src/Function/Construct/Identity.agda index 1b69165dda..32660bee09 100644 --- a/src/Function/Construct/Identity.agda +++ b/src/Function/Construct/Identity.agda @@ -8,12 +8,12 @@ module Function.Construct.Identity where -open import Data.Product using (_,_) +open import Data.Product.Base using (_,_) open import Function.Base using (id) open import Function.Bundles import Function.Definitions as Definitions import Function.Structures as Structures -open import Level +open import Level using (Level) open import Relation.Binary as B hiding (_⇔_; IsEquivalence) open import Relation.Binary.PropositionalEquality using (_≡_; setoid) diff --git a/src/Function/Construct/Symmetry.agda b/src/Function/Construct/Symmetry.agda index ea86704a57..86fa273c57 100644 --- a/src/Function/Construct/Symmetry.agda +++ b/src/Function/Construct/Symmetry.agda @@ -8,7 +8,7 @@ module Function.Construct.Symmetry where -open import Data.Product using (_,_; swap; proj₁; proj₂) +open import Data.Product.Base using (_,_; swap; proj₁; proj₂) open import Function open import Level using (Level) open import Relation.Binary hiding (_⇔_) diff --git a/src/Function/Definitions.agda b/src/Function/Definitions.agda index ac805d9472..bfeff3c05c 100644 --- a/src/Function/Definitions.agda +++ b/src/Function/Definitions.agda @@ -8,7 +8,7 @@ {-# OPTIONS --cubical-compatible --safe #-} -open import Relation.Binary +open import Relation.Binary.Core using (Rel) module Function.Definitions {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b} @@ -16,10 +16,9 @@ module Function.Definitions (_≈₂_ : Rel B ℓ₂) -- Equality over the codomain where -open import Data.Product using (∃; _×_) +open import Data.Product.Base using (_×_) import Function.Definitions.Core1 as Core₁ import Function.Definitions.Core2 as Core₂ -open import Function.Base open import Level using (_⊔_) ------------------------------------------------------------------------ diff --git a/src/Function/Definitions/Core1.agda b/src/Function/Definitions/Core1.agda index c81e841af9..b11ca26fea 100644 --- a/src/Function/Definitions/Core1.agda +++ b/src/Function/Definitions/Core1.agda @@ -9,7 +9,7 @@ {-# OPTIONS --cubical-compatible --safe #-} -open import Relation.Binary +open import Relation.Binary.Core using (Rel) module Function.Definitions.Core1 {a b ℓ₁} {A : Set a} {B : Set b} (_≈₁_ : Rel A ℓ₁) diff --git a/src/Function/Definitions/Core2.agda b/src/Function/Definitions/Core2.agda index 313f331063..74973d8433 100644 --- a/src/Function/Definitions/Core2.agda +++ b/src/Function/Definitions/Core2.agda @@ -9,13 +9,13 @@ {-# OPTIONS --cubical-compatible --safe #-} -open import Relation.Binary +open import Relation.Binary.Core using (Rel) module Function.Definitions.Core2 {a b ℓ₂} {A : Set a} {B : Set b} (_≈₂_ : Rel B ℓ₂) where -open import Data.Product using (∃) +open import Data.Product.Base using (∃) open import Level using (Level; _⊔_) ------------------------------------------------------------------------ diff --git a/src/Function/Equality.agda b/src/Function/Equality.agda index 97bb752ceb..bb32bca8cd 100644 --- a/src/Function/Equality.agda +++ b/src/Function/Equality.agda @@ -14,7 +14,7 @@ module Function.Equality where import Function.Base as Fun -open import Level +open import Level using (Level; _⊔_) open import Relation.Binary using (Setoid) open import Relation.Binary.Indexed.Heterogeneous using (IndexedSetoid; _=[_]⇒_) diff --git a/src/Function/Metric/Definitions.agda b/src/Function/Metric/Definitions.agda index 6c6d471aef..f0be9cb724 100644 --- a/src/Function/Metric/Definitions.agda +++ b/src/Function/Metric/Definitions.agda @@ -11,7 +11,7 @@ module Function.Metric.Definitions where open import Algebra.Core using (Op₂) -open import Data.Product using (∃) +open import Data.Product.Base using (∃) open import Function.Metric.Core using (DistanceFunction) open import Level using (Level) open import Relation.Binary.Core using (Rel; _Preserves₂_⟶_⟶_) diff --git a/src/Function/Nary/NonDependent/Base.agda b/src/Function/Nary/NonDependent/Base.agda index 72e093b3a7..efb24aec57 100644 --- a/src/Function/Nary/NonDependent/Base.agda +++ b/src/Function/Nary/NonDependent/Base.agda @@ -16,7 +16,7 @@ module Function.Nary.NonDependent.Base where open import Level using (Level; 0ℓ; _⊔_) open import Data.Nat.Base using (ℕ; zero; suc) -open import Data.Product using (_×_; _,_) +open import Data.Product.Base using (_×_; _,_) open import Data.Unit.Polymorphic.Base open import Function.Base using (_∘′_; _$′_; const; flip) diff --git a/src/Function/Properties/Inverse.agda b/src/Function/Properties/Inverse.agda index 6310a8479f..508a8664be 100644 --- a/src/Function/Properties/Inverse.agda +++ b/src/Function/Properties/Inverse.agda @@ -10,7 +10,7 @@ module Function.Properties.Inverse where open import Axiom.Extensionality.Propositional using (Extensionality) -open import Data.Product using (_,_; proj₁; proj₂) +open import Data.Product.Base using (_,_; proj₁; proj₂) open import Function.Bundles open import Level using (Level) open import Relation.Binary using (Setoid; IsEquivalence) diff --git a/src/Function/Structures.agda b/src/Function/Structures.agda index 31004c2db4..770dab600e 100644 --- a/src/Function/Structures.agda +++ b/src/Function/Structures.agda @@ -15,8 +15,7 @@ module Function.Structures {a b ℓ₁ ℓ₂} {B : Set b} (_≈₂_ : Rel B ℓ₂) -- Equality over the codomain where -open import Data.Product using (∃; _×_; _,_) -open import Function.Base +open import Data.Product.Base using (_,_) open import Function.Definitions open import Level using (_⊔_) diff --git a/src/Induction/WellFounded.agda b/src/Induction/WellFounded.agda index d580452f0f..c1e206a0af 100644 --- a/src/Induction/WellFounded.agda +++ b/src/Induction/WellFounded.agda @@ -6,15 +6,14 @@ {-# OPTIONS --cubical-compatible --safe #-} -open import Relation.Binary - module Induction.WellFounded where -open import Data.Product -open import Function +open import Data.Product.Base using (Σ; _,_; proj₁) +open import Function.Base using (_on_) open import Induction -open import Level -open import Relation.Binary.PropositionalEquality hiding (trans) +open import Level using (Level; _⊔_) +open import Relation.Binary +open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl) open import Relation.Unary private diff --git a/src/Relation/Binary/Consequences.agda b/src/Relation/Binary/Consequences.agda index ff82600c03..cd560ec995 100644 --- a/src/Relation/Binary/Consequences.agda +++ b/src/Relation/Binary/Consequences.agda @@ -10,7 +10,7 @@ module Relation.Binary.Consequences where open import Data.Maybe.Base using (just; nothing; decToMaybe) open import Data.Sum.Base as Sum using (inj₁; inj₂; [_,_]′) -open import Data.Product using (_,_) +open import Data.Product.Base using (_,_) open import Data.Empty.Irrelevant using (⊥-elim) open import Function.Base using (_∘_; _∘₂_; _$_; flip) open import Level using (Level) diff --git a/src/Relation/Binary/Construct/Flip/EqAndOrd.agda b/src/Relation/Binary/Construct/Flip/EqAndOrd.agda index 1d3e9430d9..c3c4dc2a18 100644 --- a/src/Relation/Binary/Construct/Flip/EqAndOrd.agda +++ b/src/Relation/Binary/Construct/Flip/EqAndOrd.agda @@ -12,7 +12,7 @@ open import Relation.Binary module Relation.Binary.Construct.Flip.EqAndOrd where -open import Data.Product +open import Data.Product.Base using (_,_) open import Function.Base using (flip; _∘_) open import Level using (Level) diff --git a/src/Relation/Binary/Construct/NaturalOrder/Left.agda b/src/Relation/Binary/Construct/NaturalOrder/Left.agda index db1d0f5aff..e0ab59e9ca 100644 --- a/src/Relation/Binary/Construct/NaturalOrder/Left.agda +++ b/src/Relation/Binary/Construct/NaturalOrder/Left.agda @@ -8,7 +8,7 @@ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Core -open import Data.Product using (_,_; _×_) +open import Data.Product.Base using (_,_; _×_) open import Data.Sum.Base using (inj₁; inj₂) open import Relation.Binary open import Relation.Nullary.Negation using (¬_) diff --git a/src/Relation/Binary/Construct/NaturalOrder/Right.agda b/src/Relation/Binary/Construct/NaturalOrder/Right.agda index 7c4a6ab119..5278f0b116 100644 --- a/src/Relation/Binary/Construct/NaturalOrder/Right.agda +++ b/src/Relation/Binary/Construct/NaturalOrder/Right.agda @@ -8,7 +8,7 @@ {-# OPTIONS --cubical-compatible --safe #-} open import Algebra.Core using (Op₂) -open import Data.Product using (_,_; _×_) +open import Data.Product.Base using (_,_; _×_) open import Data.Sum.Base using (inj₁; inj₂) open import Relation.Binary open import Relation.Nullary.Negation using (¬_) diff --git a/src/Relation/Binary/Core.agda b/src/Relation/Binary/Core.agda index d9c19173a1..079bf296cc 100644 --- a/src/Relation/Binary/Core.agda +++ b/src/Relation/Binary/Core.agda @@ -10,7 +10,7 @@ module Relation.Binary.Core where -open import Data.Product using (_×_) +open import Data.Product.Base using (_×_) open import Function.Base using (_on_) open import Level using (Level; _⊔_; suc) diff --git a/src/Relation/Binary/Definitions.agda b/src/Relation/Binary/Definitions.agda index a44f2d058e..2ed315191b 100644 --- a/src/Relation/Binary/Definitions.agda +++ b/src/Relation/Binary/Definitions.agda @@ -13,7 +13,7 @@ module Relation.Binary.Definitions where open import Agda.Builtin.Equality using (_≡_) open import Data.Maybe.Base using (Maybe) -open import Data.Product using (_×_) +open import Data.Product.Base using (_×_) open import Data.Sum.Base using (_⊎_) open import Function.Base using (_on_; flip) open import Level diff --git a/src/Relation/Binary/Lattice/Definitions.agda b/src/Relation/Binary/Lattice/Definitions.agda index 61102f19f9..2cdc32a1c3 100644 --- a/src/Relation/Binary/Lattice/Definitions.agda +++ b/src/Relation/Binary/Lattice/Definitions.agda @@ -12,10 +12,10 @@ module Relation.Binary.Lattice.Definitions where open import Algebra.Core -open import Data.Product using (_×_; _,_) +open import Data.Product.Base using (_×_; _,_) open import Function.Base using (flip) -open import Relation.Binary -open import Level +open import Relation.Binary.Core using (Rel) +open import Level using (Level) private variable diff --git a/src/Relation/Binary/Lattice/Structures.agda b/src/Relation/Binary/Lattice/Structures.agda index 10178af05d..07dbfad6a5 100644 --- a/src/Relation/Binary/Lattice/Structures.agda +++ b/src/Relation/Binary/Lattice/Structures.agda @@ -19,7 +19,7 @@ module Relation.Binary.Lattice.Structures open import Algebra.Core open import Algebra.Definitions -open import Data.Product using (_×_; _,_) +open import Data.Product.Base using (_×_; _,_) open import Level using (suc; _⊔_) open import Relation.Binary.Lattice.Definitions diff --git a/src/Relation/Binary/Morphism/Structures.agda b/src/Relation/Binary/Morphism/Structures.agda index 39a333e1b7..86eceac6e4 100644 --- a/src/Relation/Binary/Morphism/Structures.agda +++ b/src/Relation/Binary/Morphism/Structures.agda @@ -6,15 +6,15 @@ {-# OPTIONS --cubical-compatible --safe #-} -open import Relation.Binary.Core +open import Relation.Binary.Core using (Rel) module Relation.Binary.Morphism.Structures {a b} {A : Set a} {B : Set b} where -open import Data.Product using (_,_) +open import Data.Product.Base using (_,_) open import Function.Definitions -open import Level +open import Level using (Level; _⊔_) open import Relation.Binary.Morphism.Definitions A B private diff --git a/src/Relation/Binary/Properties/Preorder.agda b/src/Relation/Binary/Properties/Preorder.agda index 1a215b639c..e09bd0f3f1 100644 --- a/src/Relation/Binary/Properties/Preorder.agda +++ b/src/Relation/Binary/Properties/Preorder.agda @@ -11,8 +11,8 @@ open import Relation.Binary module Relation.Binary.Properties.Preorder {p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where -open import Function.Base -open import Data.Product as Prod +open import Function.Base using (flip) +open import Data.Product.Base as Prod using (_×_; _,_; swap) import Relation.Binary.Construct.Flip.EqAndOrd as EqAndOrd open Preorder P diff --git a/src/Relation/Binary/Properties/Setoid.agda b/src/Relation/Binary/Properties/Setoid.agda index 137641d49b..cca28fb5ad 100644 --- a/src/Relation/Binary/Properties/Setoid.agda +++ b/src/Relation/Binary/Properties/Setoid.agda @@ -6,9 +6,9 @@ {-# OPTIONS --cubical-compatible --safe #-} -open import Data.Product using (_,_) +open import Data.Product.Base using (_,_) open import Function.Base using (_∘_; id; _$_; flip) -open import Relation.Nullary.Negation using (¬_) +open import Relation.Nullary.Negation.Core using (¬_) open import Relation.Binary.PropositionalEquality.Core as P using (_≡_) open import Relation.Binary @@ -16,7 +16,6 @@ module Relation.Binary.Properties.Setoid {a ℓ} (S : Setoid a ℓ) where open Setoid S - ------------------------------------------------------------------------------ -- Every setoid is a preorder and partial order with respect to propositional -- equality diff --git a/src/Relation/Binary/Properties/TotalOrder.agda b/src/Relation/Binary/Properties/TotalOrder.agda index da4f316892..18e7095985 100644 --- a/src/Relation/Binary/Properties/TotalOrder.agda +++ b/src/Relation/Binary/Properties/TotalOrder.agda @@ -13,14 +13,12 @@ module Relation.Binary.Properties.TotalOrder open TotalOrder T -open import Data.Product using (proj₁) +open import Data.Product.Base using (proj₁) open import Data.Sum.Base using (inj₁; inj₂) import Relation.Binary.Construct.Flip.EqAndOrd as EqAndOrd import Relation.Binary.Construct.NonStrictToStrict _≈_ _≤_ as ToStrict import Relation.Binary.Properties.Poset poset as PosetProperties open import Relation.Binary.Consequences -open import Relation.Nullary.Negation using (¬_) -open import Relation.Nullary.Negation using (contradiction) ------------------------------------------------------------------------ -- Total orders are almost decidable total orders diff --git a/src/Relation/Binary/PropositionalEquality.agda b/src/Relation/Binary/PropositionalEquality.agda index 4764635449..37c891312b 100644 --- a/src/Relation/Binary/PropositionalEquality.agda +++ b/src/Relation/Binary/PropositionalEquality.agda @@ -13,10 +13,9 @@ open import Axiom.UniquenessOfIdentityProofs open import Function.Base using (id; _∘_) open import Function.Equality using (Π; _⟶_; ≡-setoid) open import Level using (Level; _⊔_) -open import Data.Product using (∃) +open import Data.Product.Base using (∃) -open import Relation.Nullary.Decidable using (yes; no) -open import Relation.Nullary.Decidable +open import Relation.Nullary.Decidable using (yes; no; dec-yes-irr; dec-no) open import Relation.Binary open import Relation.Binary.Indexed.Heterogeneous using (IndexedSetoid) @@ -132,4 +131,3 @@ Please use new `with ... in` syntax described at https://agda.readthedocs.io/en/ "Warning: inspect was deprecated in v2.0. Please use new `with ... in` syntax described at https://agda.readthedocs.io/en/v2.6.3/language/with-abstraction.html#with-abstraction-equality instead." #-} - diff --git a/src/Relation/Binary/PropositionalEquality/Core.agda b/src/Relation/Binary/PropositionalEquality/Core.agda index 83c406b8aa..c0c4030b83 100644 --- a/src/Relation/Binary/PropositionalEquality/Core.agda +++ b/src/Relation/Binary/PropositionalEquality/Core.agda @@ -11,7 +11,7 @@ module Relation.Binary.PropositionalEquality.Core where -open import Data.Product using (_,_) +open import Data.Product.Base using (_,_) open import Function.Base using (_∘_) open import Level open import Relation.Binary.Core diff --git a/src/Relation/Binary/PropositionalEquality/Properties.agda b/src/Relation/Binary/PropositionalEquality/Properties.agda index 0953c68cbd..ad936254ff 100644 --- a/src/Relation/Binary/PropositionalEquality/Properties.agda +++ b/src/Relation/Binary/PropositionalEquality/Properties.agda @@ -13,7 +13,7 @@ module Relation.Binary.PropositionalEquality.Properties where open import Function.Base using (id; _∘_) -open import Level +open import Level using (Level) open import Relation.Binary import Relation.Binary.Properties.Setoid as Setoid open import Relation.Binary.PropositionalEquality.Core diff --git a/src/Relation/Binary/Reasoning/Base/Double.agda b/src/Relation/Binary/Reasoning/Base/Double.agda index f40a32bc9b..07761c5144 100644 --- a/src/Relation/Binary/Reasoning/Base/Double.agda +++ b/src/Relation/Binary/Reasoning/Base/Double.agda @@ -16,13 +16,13 @@ module Relation.Binary.Reasoning.Base.Double {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_∼_ : Rel A ℓ₂} (isPreorder : IsPreorder _≈_ _∼_) where -open import Data.Product using (proj₁; proj₂) +open import Data.Product.Base using (proj₁; proj₂) open import Level using (Level; _⊔_; Lift; lift) open import Function.Base using (case_of_; id) open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; sym) -open import Relation.Nullary.Decidable using (Dec; yes; no) -open import Relation.Nullary.Decidable using (True; toWitness) +open import Relation.Nullary.Decidable.Core + using (Dec; yes; no; True; toWitness) open IsPreorder isPreorder diff --git a/src/Relation/Binary/Reasoning/Base/Triple.agda b/src/Relation/Binary/Reasoning/Base/Triple.agda index 8e5ba6e159..c18aa9bf94 100644 --- a/src/Relation/Binary/Reasoning/Base/Triple.agda +++ b/src/Relation/Binary/Reasoning/Base/Triple.agda @@ -19,13 +19,13 @@ module Relation.Binary.Reasoning.Base.Triple {a ℓ₁ ℓ₂ ℓ₃} {A : Set a (<-≤-trans : Trans _<_ _≤_ _<_) (≤-<-trans : Trans _≤_ _<_ _<_) where -open import Data.Product using (proj₁; proj₂) +open import Data.Product.Base using (proj₁; proj₂) open import Function.Base using (case_of_; id) open import Level using (Level; _⊔_; Lift; lift) open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; sym) -open import Relation.Nullary.Decidable using (Dec; yes; no) -open import Relation.Nullary.Decidable using (True; toWitness) +open import Relation.Nullary.Decidable.Core + using (Dec; yes; no; True; toWitness) open IsPreorder isPreorder renaming diff --git a/src/Relation/Binary/Reflection.agda b/src/Relation/Binary/Reflection.agda index 8b682a0407..5a9ec838fb 100644 --- a/src/Relation/Binary/Reflection.agda +++ b/src/Relation/Binary/Reflection.agda @@ -7,12 +7,12 @@ {-# OPTIONS --cubical-compatible --safe #-} -open import Data.Fin.Base -open import Data.Nat.Base -open import Data.Vec.Base as Vec -open import Function.Base +open import Data.Fin.Base using (Fin) +open import Data.Nat.Base using (ℕ) +open import Data.Vec.Base as Vec using (Vec; allFin) +open import Function.Base using (id; _⟨_⟩_) open import Function.Bundles using (module Equivalence) -open import Level +open import Level using (Level) open import Relation.Binary import Relation.Binary.PropositionalEquality as P @@ -41,7 +41,7 @@ module Relation.Binary.Reflection where open import Data.Vec.N-ary -open import Data.Product +open import Data.Product.Base using (_×_; _,_; proj₁; proj₂) import Relation.Binary.Reasoning.Setoid as Eq open Setoid Sem diff --git a/src/Relation/Binary/Structures.agda b/src/Relation/Binary/Structures.agda index 058ca5135c..965e41691b 100644 --- a/src/Relation/Binary/Structures.agda +++ b/src/Relation/Binary/Structures.agda @@ -15,7 +15,7 @@ module Relation.Binary.Structures (_≈_ : Rel A ℓ) -- The underlying equality relation where -open import Data.Product using (proj₁; proj₂; _,_) +open import Data.Product.Base using (proj₁; proj₂; _,_) open import Level using (Level; _⊔_) open import Relation.Nullary.Negation.Core using (¬_) open import Relation.Binary.PropositionalEquality.Core as P using (_≡_) diff --git a/src/Relation/Nullary/Decidable.agda b/src/Relation/Nullary/Decidable.agda index a8970d9df5..b41a410391 100644 --- a/src/Relation/Nullary/Decidable.agda +++ b/src/Relation/Nullary/Decidable.agda @@ -11,7 +11,7 @@ module Relation.Nullary.Decidable where open import Level using (Level) open import Data.Bool.Base using (true; false; if_then_else_) open import Data.Empty using (⊥-elim) -open import Data.Product as Prod hiding (map) +open import Data.Product.Base as Prod hiding (map) open import Data.Sum.Base as Sum hiding (map) open import Function.Base open import Function.Bundles using diff --git a/src/Relation/Nullary/Decidable/Core.agda b/src/Relation/Nullary/Decidable/Core.agda index c8d92f9375..e06dc32239 100644 --- a/src/Relation/Nullary/Decidable/Core.agda +++ b/src/Relation/Nullary/Decidable/Core.agda @@ -16,7 +16,7 @@ open import Data.Bool.Base using (Bool; false; true; not; T; _∧_; _∨_) open import Data.Unit.Base using (⊤) open import Data.Empty using (⊥) open import Data.Empty.Irrelevant using (⊥-elim) -open import Data.Product using (_×_) +open import Data.Product.Base using (_×_) open import Data.Sum.Base using (_⊎_) open import Function.Base using (_∘_; const; _$_; flip) open import Relation.Nullary.Reflects diff --git a/src/Relation/Nullary/Negation.agda b/src/Relation/Nullary/Negation.agda index 6f663e73ac..5111db897f 100644 --- a/src/Relation/Nullary/Negation.agda +++ b/src/Relation/Nullary/Negation.agda @@ -8,16 +8,15 @@ module Relation.Nullary.Negation where -open import Effect.Monad +open import Effect.Monad using (RawMonad; mkRawMonad) open import Data.Bool.Base using (Bool; false; true; if_then_else_; not) -open import Data.Empty -open import Data.Product as Prod +open import Data.Empty using (⊥-elim) +open import Data.Product.Base as Prod using (_,_; Σ; Σ-syntax; ∃; curry; uncurry) open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]) -open import Function.Base -open import Level -open import Relation.Nullary.Negation.Core -open import Relation.Nullary.Decidable.Core -open import Relation.Unary +open import Function.Base using (flip; _∘_; const; _∘′_) +open import Level using (Level) +open import Relation.Nullary.Decidable.Core using (Dec; yes; no; excluded-middle) +open import Relation.Unary using (Universal) private variable @@ -89,7 +88,7 @@ independence-of-premise : {R : Q → Set r} → independence-of-premise {P = P} q f = ¬¬-map helper excluded-middle where helper : Dec P → _ - helper (yes p) = Prod.map id const (f p) + helper (yes p) = Prod.map₂ const (f p) helper (no ¬p) = (q , ⊥-elim ∘′ ¬p) -- The independence of premise rule for binary sums. diff --git a/src/Relation/Unary.agda b/src/Relation/Unary.agda index 76c064836b..f6d7cb13b0 100644 --- a/src/Relation/Unary.agda +++ b/src/Relation/Unary.agda @@ -8,12 +8,12 @@ module Relation.Unary where -open import Data.Empty +open import Data.Empty using (⊥) open import Data.Unit.Base using (⊤) -open import Data.Product +open import Data.Product.Base using (_×_; _,_; Σ-syntax; ∃; uncurry; swap) open import Data.Sum.Base using (_⊎_; [_,_]) -open import Function.Base -open import Level +open import Function.Base using (_∘_; _|>_) +open import Level using (Level; _⊔_; 0ℓ; suc; Lift) open import Relation.Nullary.Decidable.Core using (Dec; True) open import Relation.Nullary.Negation.Core using (¬_) open import Relation.Binary.PropositionalEquality.Core using (_≡_) @@ -285,7 +285,7 @@ _⟨→⟩_ : Pred A ℓ₁ → Pred B ℓ₂ → Pred (A → B) _ -- Product. _⟨·⟩_ : (P : Pred A ℓ₁) (Q : Pred B ℓ₂) → - (P ⟨×⟩ (P ⟨→⟩ Q)) ⊆ Q ∘ uncurry (flip _$_) + (P ⟨×⟩ (P ⟨→⟩ Q)) ⊆ Q ∘ uncurry _|>_ (P ⟨·⟩ Q) (p , f) = f p -- Converse. diff --git a/src/Relation/Unary/Closure/Base.agda b/src/Relation/Unary/Closure/Base.agda index 5a210104b4..992e87df65 100644 --- a/src/Relation/Unary/Closure/Base.agda +++ b/src/Relation/Unary/Closure/Base.agda @@ -11,7 +11,7 @@ open import Relation.Binary module Relation.Unary.Closure.Base {a b} {A : Set a} (R : Rel A b) where open import Level -open import Data.Product using (Σ-syntax; _×_; _,_; -,_) +open import Data.Product.Base using (Σ-syntax; _×_; _,_; -,_) open import Function.Base using (flip) open import Relation.Unary using (Pred) diff --git a/src/Relation/Unary/Properties.agda b/src/Relation/Unary/Properties.agda index e0b059f0b4..f30a9e59b4 100644 --- a/src/Relation/Unary/Properties.agda +++ b/src/Relation/Unary/Properties.agda @@ -8,10 +8,10 @@ module Relation.Unary.Properties where -open import Data.Product as Product using (_×_; _,_; swap; proj₁; zip′) +open import Data.Product.Base as Product using (_×_; _,_; swap; proj₁; zip′) open import Data.Sum.Base using (inj₁; inj₂) open import Data.Unit.Base using (tt) -open import Level +open import Level using (Level) open import Relation.Binary.Core as Binary open import Relation.Binary.Definitions hiding (Decidable; Universal; Irrelevant) open import Relation.Binary.PropositionalEquality.Core using (refl) diff --git a/src/Tactic/RingSolver.agda b/src/Tactic/RingSolver.agda index 3ae3451e68..6441342e40 100644 --- a/src/Tactic/RingSolver.agda +++ b/src/Tactic/RingSolver.agda @@ -18,7 +18,7 @@ open import Data.Nat.Base using (ℕ; suc; zero; _<ᵇ_) open import Data.Bool.Base using (Bool; if_then_else_; true; false) open import Data.Unit.Base using (⊤) open import Data.String.Base as String using (String; _++_; parens) -open import Data.Product using (_,_; proj₁) +open import Data.Product.Base using (_,_; proj₁) open import Function.Base open import Relation.Nullary.Decidable diff --git a/src/Tactic/RingSolver/Core/Polynomial/Base.agda b/src/Tactic/RingSolver/Core/Polynomial/Base.agda index d762794b5e..6cfece2d45 100644 --- a/src/Tactic/RingSolver/Core/Polynomial/Base.agda +++ b/src/Tactic/RingSolver/Core/Polynomial/Base.agda @@ -50,15 +50,15 @@ module Tactic.RingSolver.Core.Polynomial.Base open RawCoeff coeffs -open import Data.Bool using (Bool; true; false; T) +open import Data.Bool.Base using (Bool; true; false; T) open import Data.Empty using (⊥) open import Data.Fin.Base as Fin using (Fin; zero; suc) open import Data.List.Kleene open import Data.Nat.Base as ℕ using (ℕ; suc; zero; _≤′_; compare; ≤′-refl; ≤′-step; _<′_) open import Data.Nat.Properties using (z≤′n; ≤′-trans) open import Data.Nat.Induction -open import Data.Product using (_×_; _,_; map₁; curry; uncurry) -open import Data.Unit using (⊤; tt) +open import Data.Product.Base using (_×_; _,_; map₁; curry; uncurry) +open import Data.Unit.Base using (⊤; tt) open import Function.Base open import Relation.Nullary using (¬_; Dec; yes; no) diff --git a/src/Text/Pretty.agda b/src/Text/Pretty.agda index 08c60701bf..0bdfe0cf2f 100644 --- a/src/Text/Pretty.agda +++ b/src/Text/Pretty.agda @@ -13,14 +13,14 @@ open import Data.Nat.Base using (ℕ) module Text.Pretty (width : ℕ) where import Level -open import Data.Char.Base using (Char) +open import Data.Char.Base using (Char) open import Data.List.Base using (List; _∷_; []; [_]; uncons; _++_; map; filter) open import Data.List.NonEmpty as List⁺ using (foldr₁) -open import Data.Maybe.Base using (maybe′) -open import Data.Product using (uncurry) -open import Data.String.Base using (String; fromList; replicate) -open import Function.Base +open import Data.Maybe.Base using (maybe′) +open import Data.Product.Base using (uncurry) +open import Data.String.Base using (String; fromList; replicate) +open import Function.Base using (_∘_; _∘′_; _$_) open import Effect.Monad using (RawMonad) import Data.List.Effectful as Cat diff --git a/src/Text/Pretty/Core.agda b/src/Text/Pretty/Core.agda index f546bc5962..a97db1dda2 100644 --- a/src/Text/Pretty/Core.agda +++ b/src/Text/Pretty/Core.agda @@ -17,7 +17,7 @@ open import Data.Irrelevant as Irrelevant using (Irrelevant) hiding (module Irre open import Data.List.Base as List using (List; []; _∷_) open import Data.Nat.Base using (ℕ; zero; suc; _+_; _⊔_; _≤_; z≤n) open import Data.Nat.Properties -open import Data.Product as Prod using (_×_; _,_; uncurry; proj₁; proj₂) +open import Data.Product.Base as Prod using (_×_; _,_; uncurry; proj₁; proj₂) import Data.Product.Relation.Unary.All as Allᴾ open import Data.Tree.Binary as Tree using (Tree; leaf; node; #nodes; mapₙ) diff --git a/src/Text/Printf.agda b/src/Text/Printf.agda index 7397f908f0..057b2718b8 100644 --- a/src/Text/Printf.agda +++ b/src/Text/Printf.agda @@ -8,17 +8,8 @@ module Text.Printf where -open import Level using (0ℓ; Lift) -open import Data.List.Base as List using (List; []; _∷_) -open import Data.Nat.Base using (ℕ) -open import Data.Product -open import Data.Product.Nary.NonDependent -open import Data.String.Base -open import Data.Sum.Base using (_⊎_; inj₁; inj₂) -open import Data.Unit using (⊤) -open import Function.Nary.NonDependent -open import Function -open import Function.Strict +open import Data.String.Base using (String; fromChar; concat) +open import Function.Base using (id) import Data.Char.Base as Cₛ import Data.Integer.Show as ℤₛ diff --git a/src/Text/Regex/Base.agda b/src/Text/Regex/Base.agda index 7fe7d56cbf..839bad4181 100644 --- a/src/Text/Regex/Base.agda +++ b/src/Text/Regex/Base.agda @@ -16,12 +16,9 @@ open import Data.Bool.Base using (Bool) open import Data.List.Base as L using (List; []; _∷_) open import Data.List.Relation.Unary.Any using (Any) open import Data.List.Relation.Unary.All using (All) -open import Data.Sum.Base using (_⊎_; inj₁; inj₂) +open import Data.Sum.Base using (_⊎_) -open import Relation.Nullary.Negation using (¬_) -open import Relation.Nullary.Negation using (contradiction) -open import Relation.Unary using (Pred) -open import Relation.Binary.PropositionalEquality +open import Relation.Nullary.Negation.Core using (¬_) open Preorder P using (_≈_) renaming (Carrier to A; _∼_ to _≤_) open import Data.List.Relation.Ternary.Appending.Propositional {A = A}