diff --git a/Cubical/Algebra/Group/Instances/Bool.agda b/Cubical/Algebra/Group/Instances/Bool.agda index 098edc2a0b..f9adc941df 100644 --- a/Cubical/Algebra/Group/Instances/Bool.agda +++ b/Cubical/Algebra/Group/Instances/Bool.agda @@ -43,7 +43,7 @@ inverse (isGroup (snd Bool)) true = refl , refl --- Proof that any Group equivalent to Bool as types is also isomorhic to Bool as groups. +-- Proof that any Group equivalent to Bool as types is also isomorphic to Bool as groups. open GroupStr renaming (assoc to assocG) module _ {ℓ : Level} {A : Group ℓ} (e : Iso (fst A) BoolType) where @@ -59,8 +59,8 @@ module _ {ℓ : Level} {A : Group ℓ} (e : Iso (fst A) BoolType) where ... | yes p = invIso e ... | no p = compIso notIso (invIso e) - true→0 : Iso.fun IsoABool true ≡ 1g (snd A) - true→0 with (Iso.fun e (1g (snd A))) ≟ true + true→1 : Iso.fun IsoABool true ≡ 1g (snd A) + true→1 with (Iso.fun e (1g (snd A))) ≟ true ... | yes p = sym (cong (Iso.inv e) p) ∙ Iso.leftInv e _ ... | no p = sym (cong (Iso.inv e) (¬true→false (Iso.fun e (1g (snd A))) p)) ∙ Iso.leftInv e (1g (snd A)) @@ -71,7 +71,7 @@ module _ {ℓ : Level} {A : Group ℓ} (e : Iso (fst A) BoolType) where ... | yes p | no q = inr (sym (Iso.rightInv IsoABool x) ∙ cong (Iso.fun (IsoABool)) p) ... | no p | no q = inr (⊥-rec (q (sym (Iso.rightInv IsoABool x) ∙∙ cong (Iso.fun IsoABool) (¬false→true _ p) - ∙∙ true→0))) + ∙∙ true→1))) ... | no p | yes q = inl q ≅Bool : GroupIso Bool A @@ -81,14 +81,14 @@ module _ {ℓ : Level} {A : Group ℓ} (e : Iso (fst A) BoolType) where homHelp : _ homHelp false false with discreteA (Iso.fun IsoABool false) (1g (snd A)) | (decA ((Iso.fun IsoABool false) ·A Iso.fun IsoABool false)) - ... | yes p | _ = true→0 ∙∙ sym (GroupStr.rid (snd A) (1g (snd A))) ∙∙ cong₂ (_·A_) (sym p) (sym p) - ... | no p | inl x = true→0 ∙ sym x - ... | no p | inr x = true→0 ∙∙ sym (helper _ x) ∙∙ sym x + ... | yes p | _ = true→1 ∙∙ sym (GroupStr.rid (snd A) (1g (snd A))) ∙∙ cong₂ (_·A_) (sym p) (sym p) + ... | no p | inl x = true→1 ∙ sym x + ... | no p | inr x = true→1 ∙∙ sym (helper _ x) ∙∙ sym x where helper : (x : typ A) → x ·A x ≡ x → x ≡ (1g (snd A)) helper x p = sym (GroupStr.rid (snd A) x) ∙∙ cong (x ·A_) (sym (inverse (snd A) x .fst)) ∙∙ assocG (snd A) x x (-A x) ∙∙ cong (_·A (-A x)) p ∙∙ inverse (snd A) x .fst - homHelp false true = sym (GroupStr.rid (snd A) _) ∙ cong (Iso.fun IsoABool false ·A_) (sym true→0) - homHelp true y = sym (GroupStr.lid (snd A) _) ∙ cong (_·A (Iso.fun IsoABool y)) (sym true→0) + homHelp false true = sym (GroupStr.rid (snd A) _) ∙ cong (Iso.fun IsoABool false ·A_) (sym true→1) + homHelp true y = sym (GroupStr.lid (snd A) _) ∙ cong (_·A (Iso.fun IsoABool y)) (sym true→1)