-
Notifications
You must be signed in to change notification settings - Fork 2
/
deep-learning.yaml
47 lines (47 loc) · 1.5 KB
/
deep-learning.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# 2-half-days deep learning intro class for science & engineering.
title: Intro to Deep Learning for Subsurface
environment: geoml
conda:
- fastchan::fastai # Installs PyTorch
pip:
- skorch
curriculum:
1a:
- Quick course overview
- Introductions
- Deep learning vs shallow learning
- Intro_to_NumPy_and_PyTorch.ipynb # Done. Could add more PyTorch.
1b:
- What is a neural network?
- Intro_to_neural_networks.ipynb # Done.
- Check out and feedback
2a:
- Check in and review
- Intro_to_neural_networks.ipynb # Continued.
2b:
- Image_classification_with_skorch.ipynb # Done.
- Requests_from_geofignet_API.ipynb # Done.
- Check out and feedback
extras:
- All_the_activation_functions.ipynb
- Image_classification.ipynb
- Image_classification_with_PyTorch.ipynb
- Intro_to_NumPy_for_ML.ipynb
- Neural_networks_from_scratch.ipynb
- Pandas_for_ML_data_management.ipynb
- Pandas_for_timeseries.ipynb
- Read_and_write_LAS.ipynb
- Read_SEG-Y_with_segyio.ipynb
- Reproducing_Roeth_and_Tarantola_1994.ipynb # If we have time.
- Transfer_learning_RESNET_inference_only.ipynb
- Transfer_learning_RESNET_with_PyTorch_on_Colab.ipynb # If time.
- What_is_gradient_descent.ipynb # Could add PyTorch.optim version of example.
scripts:
- mlutils.py # Copied to all notebook directories.
references:
- Choromanska_etal.pdf
- Dramsch_2020.pdf
- Karpatne_etal_2017.pdf
- ML_project_review_checklist.pdf
- Raschka_2018.pdf
- Reichstein_etal_2019.pdf