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Abstract

We propose a new technique to construct left-to-right matching automata for trees. Our method
is based on the novel concept of prefiz unification which is used to compute a certain closure of the
pattern set. From the closure a kind of deterministic matching automaton can be derived immediately.
We also point out how to perform the construction incrementally which makes our approach suitable
for applications in which pattern sets change dynamically, such as in the Knuth-Bendix completion
algorithm.

Our method, like most others, is restricted to linear patterns (the case of non-linear matching can
be handled as usual by checking the consistency of variable bindings in a separate pass following the
matching phase).

1 Introduction

Terms are usually interpreted as trees labelled with symbols from a ranked alphabet ¥ = [, .y, Zn st
each vertex labelled with a symbol a of arity n (i.e. @ € Z,) has exactly n sons. With certain symbols
from £, being distinguished as variable symbols, an instance of a I-tree t can be obtained by replacing
leaves labelled with variable symbols by corresponding subtrees.

In this paper we focus on a restricted form of the tree pattern matching problem which can be stated
as follows:

(*) Given afinite set P = {p,,...,pa} of E-trees (the patterns) and another I-tree g (the subject), determine
whether q is an instance of any of the p; € P.

We generally assume that patterns are linear (i.e., double occurrences of variables are not allowed).
Non-linear patterns can be handled as usual (do linear matching first, then check for the consistency of
variable bindings).

The problem (*) arises in a variety of applications, such as the implementation of equational and
functional programming languages. For most applications, the straightforward algorithm to solve *)
(successively check g against all p;, i = 1,...,n) is unacceptable since its running time depends on the
number of patterns n.

The usual approach to solve problems like (*) efficiently is to preprocess patterns to produce some
sort of matching automaton. The tree matching algorithms of Hoffmann and O’Donnell (see (7], and also
[4,6] for a discussion of regular tree languages and bottom-up tree acceptors) and the discrimination net
approach (see e.g. [3]) are of this kind. Similar work has been done in the field of functional programming
language implementation [1,9,10,11]. All these techniques are based on the idea of somehow factorizing
patterns to speed up the matching process.

We will propose a new method to construct left-to-right matching automata for trees which is easy to
implement and is comparable in efficiency with the technique discussed in [11]. That is, matching time is
independent of the number of patterns, and the sizes of matching automata are quite reasonable (usually
much better than the exponential bounds obtained by other techniques).

A left-to-right tree matching algorithm must be able to handle ambiguities that arise when prefixes
of patterns overlap. For instance, consider the patterns p; = f(z,a) and p, = f(g(z),b) (where z is a
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variable). When scanning the subject term ¢ = f(g(y), a) from left to right, we are not able to determine
that ¢ matches p;, and does not match p,, until we have seen the last symbol a of g. Hence the matching
algorithm, after having seen the symbols f and g of ¢, must remember the fact that ¢ at this point could
still match the instance p] = f(g(z),a) of p;.

To solve this problem, we introduce the novel concept of prefiz unification which generalizes ordinary
term unification to arbitrary term prefixes. Prefix unification is used to determine overlaps between pattern
prefixes, like the overlap between p; and p, at the position of z in p, in the example above. By simultane-
ously unifying all possible combinations of pattern prefixes we may then compute a (finite) closure of the
pattern set from which a kind of deterministic matching automaton can be derived immediately.

The formal properties of prefix unification and the closure operation make it easy to systematically
derive efficient algorithms for the construction of pattern set closures. In particular, we will also point
out how closures can be computed incrementally, which is interesting in applications in which pattern sets
change dynamically, such as in the Knuth-Bendix completion algorithm [8,12].

The paper is organized as follows. Section 2 introduces basic terminology. In Section 3 we develop a
formal model for left-to-right tree matching automata. Section 4 covers prefix unification and the compu-
tation of closures. Section 5 states our main result concerning the construction of left-to-right matching
automata. In Section 6 we briefly discuss some results related to the complexity of our matching technique.
Section 7 summarizes results and discusses open problems.

2 Preliminaries

To make precise the notions of X-trees, terms, instances of terms and left-to-right tree matching automata
mentioned in the previous section, let us first introduce some terminology.

Given a finite, nonempty alphabet X, by £* we denote the set of all strings over . |v| is the length
of a string v € *, and ¢ is the empty string (the string of length 0). By Pref(v) we denote the set of
all prefixes of v € ¥, including the empty string and v itself. We also write Pref(M) for the union of all
Pref(v),ve M C Z".

We consider a finite ranked alphabet ¥ which is the disjoint union £ = W, N, Un of alphabets X,
n € INo. If @ € T,, we say that a has arity, or rank, n, and write #a = n. We generally assume that there
is a distinguished nullary symbol w € £, which plays the role of an anonymous variable symbol.

The set Ty of X-terms is inductively defined as the least subset of £* containing all at, - - -t,, for which
a € X,,n € INy, and ¢y,...,t, € Tg. Observe that, in particular, a € Ty for each a € X;, and each term
at; - - -t, naturally represents the labelled tree with root label a and subtrees t,,...,t, (if n = 0, then
aty -+ -t, = a is a leave). Throughout the rest of this paper, we will use the terms “X-term” and “Z-tree”
synonymously.

The length |t| of t € Ty as a string is also called the size of t, and by A(t) we denote the height of ¢ as
a tree.

We say that ¢ € Ty matches, or is an instance of, p € Ty, written p < gq, iff ¢ can be obtained by
replacing the w’s in p by Z-terms. < is called the subsumption ordering on terms. Note that p < g implies
that |p| < |q| and h(p) < h(q), and p < ¢,¢ < p implies that p = ¢. In a slight abuse of the usual
terminology we also extend the notion of subsumption to arbitrary strings over I, i.e. for v,u € T* we
write v < u iff u can be obtained by replacing w’s in v with terms accordingly.

3 Left-to-Right Tree Matching Automata

To specify the notion of a left-to-right matching automaton on E-trees, we use finite state systems which
in each move may either read one symbol or an entire subterm from the input tape, and change states
accordingly.

More precisely, we call a term acceptor, or TA, for short, a finite automaton A with state set S, a start
state so € S and a set of final states F C S. The possible moves of A are specified by a state transition
relation § which consists of pairs sa — &', 3,5’ € S, @ € B. Configurations of a TA A are denoted by strings
s, s €S, p€ X, and A accepts a term g € Ty iff s > s 5.t. s € F, where =5 is the reflexive/transitive
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Figure 1: Transition diagram.

closure of the configuration transition relation defined by:

sap— sp ff sa— s €6 acT\{w}
sup— sy iff sw—s€b ueTs.

That is, a TA A essentially is a finite (string) automaton (FA, for short) with the additional capability
to skip over arbitrary subterms in the input. For a TA A, we will also consider the corresponding FA which
performs the same moves as A except that in a transition on w, the FA may only read the literal symbol
w, and not an arbitrary subterm.

3.1 Lemma. A, as a TA, accepts an input term g if and only if A, as an FA, accepts some term p s.t.
p<g. o

If the transition diagram of A is acyclic!, then A, as an FA, accepts only finitely many terms. Hence:

3.2 Theorem. The following are equivalent:

a) L C Ty is the set of all instances of some finite pattern set P C Ty.
b) L C Ty is accepted by an acyclic TA A. ]

Theorem 3.2 justifies our choice of acyclic TA’s as devices to solve the restricted tree matching problem
(*) stated at the beginning of this paper. In the following, we generally assume that TA’s are acyclic.

3.3 Example. A TA A accepting the term language L of all instances of some finite pattern set P C Tk,
which even is deterministic as an FA, can easily be found by carrying out the following “prefix construction”
(also known as the construction of a “trie” or a “discrimination net” for P): S = Pref(P), 8o =¢, F =P
and § = {sa — s’ | &' = sa}. A TA obtained from P = {faw, fwb, fgwa} in this manner (#f=2,#9=1,
#a = #b = 0) is depicted in fig. 1. ]

The TA of fig. 1, although deterministic as an FA, is not deterministic as a TA, i.e. there are inputs u
s.t. 8 & su > 8", but s’ # 8. E.g., for p = fgw we have that spu 2y 34, but also sou — 87. This is the
kind of ambiguity in left-to-right matching of trees pointed out in Section 1.

One solution to this problem is to employ some backtracking strategy to find an accepting transition
chain if there is one. Such a scheme has been used, e.g., in [1] and [3], but it may be quite inefficient
because the subject term may have to be scanned as often as the number of patterns (asymptotically).

The second solution is to construct deterministic TA’s for matching. Unfortunately, it turns out that
for many term languages accepted by TA’s there are no deterministic TA’s accepting the same language,
see [5] for details.

Instead, we will now propose another type of TA’s, canonical TA’s, which accept all languages accept-
able by (acyclic) TA’s, while still admitting a deterministic matching strategy.

1The transition diagram of a TA A, as usual, is obtained by connecting each pair of states s, s’ with those edges labelled
« for which s — s’ € §. See fig. 1 for an example.
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The idea behind canonical TA matching is as follows. Let us call a TA weakly deterministic (w.d.)
iff for any pair s € S, a € X there is at most one transition sa — s’ € §. That is, a TA is w.d. iff its
underlying string automaton is deterministic. With w.d. TA’s, indeterminacy is restricted to situations in
which sav — s,v (by some sa — s; € §) and sav — s, (by sw — 3; € §) for some a € ¥\ {w}, av € T;.
Let us define the following canonical restriction of the configuration transition relation:

¢ siwvp ifsa— s €6, a#w
savy — .
sp4  otherwise, if sw — s, € §, av € Ty

That is, an w-transition is taken only when no applicable transition on some a # w exists. If 4 is w.d.,
then = is a partial function by definition, and hence for any input p and state s there is at most one
canonical configuration transition chain sy = ' (s’ € §). However, some g accepted by A may not always
also be accepted through a canonical configuration transition chain. We say that a w.d. TA A is canonical
if it meets this condition, i.e. if for any ¢ € Ty accepted by A we also have that soq =5 s for some s € F.

Observe that the TA in fig. 1 is w.d., but not canonical, since ¢ = fgab > fwb, but soq¢ <> s7b which
does not lead to a final state. However, this could be fixed by introducing a new “closure pattern” fgwb
which is determined by “overlapping” the pattern fwb and the prefix fg of the pattern fgwa. In fact,
the w.d. TA constructed from the new pattern set P’ obtained by adding the closure pattern fgwb to
P = {faw, fwb, fgwa} yields a canonical TA accepting the same language (note that fgwb > fwb € P and
hence the set of instances of P’ is the same as that of P).

In the following section we will develop the tools to construct pattern set closures systematically, by
introducing the concept of prefix unification. Section 5 then proposes our canonical TA construction
method and proves it correct.

4 Prefix Unification

While ordinary term unification is based on determining least upper bounds w.r.t. the subsumption ordering
on terms, we analogously define prefix unification in terms of the following prefiz subsumption ordering:?

4.1 Definition. Let v,u € £*. We write v < p iff some prefix of y is an instance of v, i.e. there is some
4’ € Pref(u)s.t. v < g, <is called the prefiz subsumption ordering on B*. Note that < is a well-founded
ordering on Z* with e dv Vv e 2, v dpu= |y <|pl,and v Qp,pdv=>v=pforal v,ue 5. We
also remark that if p,q € Ty, then p<d g < p<yq. O

For instance, we have that v = fw < fgwa = p (f, g and a as in Example 3.3), since the prefix fgw of
{4 is an instance of v.

It is easy to see that for any pair v, € X* there is a unique greatest lower bound v A p € £* w.r.t. <
(ie. v Ap Qv,p, and for any X € £* with A < v, we have that A < v A 1), which can be obtained as
follows:

svAp=a(Ap)ifv=aV,p=opy',a € 3.
e vAp=w( Ap)if vand u have different head symbols and v = w/, p = vy, u,v € Tx.
e v Apu = ¢ in all other cases.

It then follows from lattice theory [2] that for any pair v, € ©* which have a common upper bound
w.r.t. g, there is a unique least upper bound for v and u, denoted v v u. As usual, we may complete %*
with a new “top” element T ¢ ©* assumed to be maximal w.r.t. <, and set v V p = T for all v,u € L°
which do not have a common upper bound w.r.t. <.

4.2 Proposition. (I}, d):= (2* U {T}, <) is a complete lattice. m

*In fact, we will define prefix unification on arbitrary X-strings, but what we are actually interested in is the unification
of pattern prefixes, hence the name “prefix unification.”
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The binary operations A and V on £% are commonly referred to as meet and join, respectively. Note
that A and V are associative, commutative, idempotent and distribute over each other. Also observe that
vV applied to terms is really nothing but the ordinary unification of (linear) terms.

The following lemma summarizes some useful rules for the computation of joins in £7. We assume that
vT = Ty = T Vv € T% (extending the concatenation operation on I*).

4.3 Lemma. Let v,u € X7.

a) yvVu=Tifeitherv =T, u= T, or v and p have different head symbols # w.

b) vve=eVrv=v.

¢) avVap=ayVu)Vack.

d) wvVap=awvVuVaecD,\{w} a

For instance, we have that fwbV fg = f(wbV g) = fg(wbV e) = fgwd.

We now turn to the definition of the closure operation. It is useful to define the closure operation not
only on pattern sets P C Ty, but also on any set M C T~ of term suffixes for the same prefix A € £*. As
we shall see, this enables us to compute closures by a simple recursive algorithm (Lemma 4.6).

4.4 Definition. M C T* is called a suffiz set if there issome A € * s.t. AM C Ty (ie. Ap € Tx VY € M).
Note that, in particular, @ and {e} are suffix sets, and if M is a suffix set containing e, then M = {e}.
Furthermore, any subset of a suffix set is again a suffix set.

We say that a suffix set M is closed iff for each u € M, v € Pref(M)st. pvVv # T we have that
LvveM. ]

In the following we generally assume that all suffix sets are finite.

4.5 Definition. For any (finite) suffix set M let the closure M of M be defined by M = {uoVeyV-- -V, #
T | o € M,v; € Pref(M),n > 0}. a

It can be shown that M is actually the unique minimal closed suffiz set containing M. We also remark
that for any i € M there are puo € M, v, € Pref(u) for each p € M, p # o, s.t. & may be written as
E = oV V,em\{uo} Yu- This is because for any v, € £* with v < p (or v € Pref(p), in particular) we
have that v V p = p. Hence M must be finite (on the basis of our general assumption that M is finite).
Also observe that M C M and that any Z € M is an instance of some po € M.

The closure operation has the usual properties justifying its name: eztensionality (M C ﬂ), mono-
tonicity (N C M = N C M) and idempotence (M = M).

The following lemma provides us with a useful recursive algorithm to compute closures. For a suffix
set M and @ € £ we let M/a = {u € Z* | qu € M} be the suffix set obtained by “factoring out” the head
symbol a.®

4.6 Lemma. Let M C T* be a suffix set.

a) MC{e}=> M =M.
b) M € {e} = M = U,y @M, where

M, = M/w
M/iauw**Mjw Mla#0
M, = ,
) otherwise

Voa#w.

3For completeness, let us note that we assume the following precedence of operations: first /, then concatenation, then A
and V, and finally the set operations U and \.
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Figure 2: Computation of closed pattern set.

Proof: a) is clear from Definition 4.5. For b), we can show that M, = M/aV a € ¥ using Lemma 4.3. O

Note that a computation of M following Lemma 4.6 always terminates (given a finite suffix set M C =)
since each step corresponding to 4.6b) reduces the maximum size ky = max, gz || of the closure element
suffixes under computation.

4.7 Example. Consider again the pattern set P = {faw, fwb, fgwa} of Example 3.3. The computation
of P is depicted in fig. 2. We have that

P = fP/f = f{aw,wh, gua} =: fH,
where

M = a_M_a U wm U gﬁ;
= a{w,b} Uw{b} U g{wb,wa}
= {aw,ab,wb, gwb, gwa}.

0

To compute closures incrementally by combining existing closures, we can make use of the extensionality,
monotonicity and idempotence properties stated above. Suppose we want to compute M U N for some suffix
set M U N, and have already constructed M and N. We then have that MUN C M UN CMUN =
MUN and hence MUN = M UN. Because M and N are already closed, to construct M U N we need
only consider “mixed” closure elements uV v 5.t. u € Pref(M), v € Pref (N), as specified in the following
lemma.

4.8 Lemma. Let M U N be a suffix set s.t. M and N are closed, i.e. M = M, N = N. Then:
a) I M =0, N=0,or M=N={e},then MUN=MUN.
b) f MUN ¢ {e}, ther MUN = U,z a(M, UN,) where M, = M/w, N, = N/w,

M/a Mia#0

M, = { w*M/o MJa=0# Mfuw,Na#0
) otherwise
N/a Nia#9

N, = w#*eN/w Nj/a=0# N/w,M/a+#0
] otherwise

Va+#w.
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Proof: Apply Lemma 4.6. m]

Note that if M is closed then M/a, a € ¥ is so, too. This makes it possible to apply 4.8 recursively.
Also note that by 4.8a), we may stop applying 4.8b) as soon as either M or N becomes empty.

4.9 Example. In particular; Lemma 4.8 can be used to add new patterns to an existing closure as follows.
For (closed) suffix sets M and N let V(M,N) = M UN. Given P and @ C Ty, compute Q and then
V(P,Q). Note that if Q is a singleton pattern set Q@ = {q} then Q = Q and hence PUQ = V(P,Q).

For instance, consider P = {faw, fwb} (= P = {faw, fwb, fab})and Q = {fgwa}. Then

V({faw, fwb, fab},{fgwa}) = fV({aw,wb, ab}, {gwa}) =: fM

where
M = aV{{w,b},0)UwV({b},0)UgV({wb},{wa})
= {aw,ab,wb} U gwV{{b},{a})
= {aw,ab,wb}V gwbV({e},0)U gwaV(0,{c})
= {aw,ab,wb, gwb, gwa}.
Hence PU Q@ = {faw, fab, fwb, fgwb, fgwa}. a

We conclude this section with a technique to delete patterns from closures. Given some suffix set M,
the corresponding closure M and N C M, we want to compute M \ N. Our solution is based on the idea
of generating closure elements induced by M \ N “on the fly.” By this means we may identify the members
of M\ (M \ N) which have to be deleted from M, according to the identity

M\N = M\ (M\ (M\N)).
4.10 Lemma. Let N C M C ¥* be suffix sets. Then
0 N=¢0

Usez @(M/a\ (Ms\ N,)) otherwise

where M, = M/w, N, = N/w,

M/aUw**M/w Mja#0
M, = .
0 otherwise
N - N/auw#*N/w M[a\Nja#
« M, otherwise
Va#uw.
Proof: Apply Lemma 4.6. m]

Note that N, C M, and, by Lemma 4.6b), M/a = M,V a € % which makes it possible to apply 4.10
recursively.

4.11 Example. Consider P = {faw, fwb, fgwa} (P = {faw, fwb, fgwa, fab, fgwb}) and suppose we want
to delete fwb from the closure.

Let A(M,M,N)= M\ (M\ N). We may compute A(P, P, {fwb}) recursively following Lemma 4.10.
The computation is depicted in fig. 3.

In the computation tree, the elements to the left of the bar denote the members of M, where the
elements of M \ M are marked with an asterisk and the members of M are unmarked; the elements to the
right of the bar denote the members of N; and the sets at the leaves of the tree, under the bar, denote
the final closures computed when either N or M \ N becomes empty, in which case A(M,M,N) =0 or
A(M,M,N) = M, respectively.
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Figure 3: Pattern deletion.

For instance, we have that A(P, P, {fwb}) = fA(M,M,N) where M = {aw,wb,gwa}, M=MuU
{ab, gwb} and N = {wb}. Following the edge labelled a we find that A(M/a,M,, N,) = A({w, b}, {w,b}, {b})
= wA({e}, {e},0) UbA({e}, {e}, {e}) = wB U b{e} = {8}

The final result is A(P,P,{fwb}) = {fab, fwd, fgwb} (read the paths from the root to the leaves
labelled with nonempty result sets) and hence P\ {fwb} = P\ A(P, P, {fwb}) = {faw, fgwa}. a

5 Canonical TA Construction

We now are ready to state our main result and show how to effectively construct a canonical TA for any
given finite pattern set P. Let L(P) = {g € Ty | ¢ > p for some p € P} be the term language of all
instances of P. The basic procedure to construct a canonical TA accepting L(P) is as follows.

Construct the closure P of P, using the methods outlined in the previous section. We then have that
P C P C L(P),and P is finite. Hence we may construct a deterministic FA A accepting P which alsois a
w.d. TA accepting L(P) = L(P). We show below that A is canonical.

It is worth noting that once the pattern set closure has been constructed, to derive the corresponding
canonical TA from it is a trivial task. In fact, the closed pattern set can be stored using a tree-like
representation which immediately gives the state diagram of the canonical TA (compare fig. 2 on page
and fig. 5 below!); such a tree-like representation will also be helpful to implement the recursive algorithms
of Lemmas 4.6, 4.8 and 4.10.

5.1 Proposition. Let P C Ty be a finite pattern set and A a deterministic FA accepting P. If Ais reduced
(i.e. for any non-final state s of A there is at least one final state reachable from s), then A is a canonical
TA accepting L(P).

Proof: Ais a w.d. TA accepting L(P) by construction. We have to show that A is canonical.
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Figure 4: Proof of Proposition 5.1.

Figure 5: Canonical TA for P = {faw, fwbd, fgwa}.

Without loss of generality we assume that A is of the form S = Pref(P), s, =¢, F = P, § = {sa —
s'|s,s' €8, = sa} discussed in Example 3.3.%

Assume a state s € S and input g € B* s.t. sp — 8,4y — 3; € F, but sp 5 sypuy. Then p = up,,
U= QU U, @ € B, \ {w}, u; € Tx, and sw — s; € § (ie. s; = sw), while there is another transition
SlL > 8p1y - - U, 4y by SOme s — 8, € 6.

We have that s, = sa is the prefix of some final state 3, = saji, € F (for some ji; € £*). Let
3) = 8171, = swg, for some I, € &*. Since F = P is closed, 3, = 3, V sa also is a final state of A. We have
that 3, = swh, V sa = s(wk, V a) = s;w™g;.

The situation is depicted in fig. 4.

Note that for any s,s' € S with s’ = sy’ we have that sp — s iff 4 > p'. Hence sjp; 5 3, = py >
By =y Unfly 2 WE => S > SpUy - Unfhy — 5y € F.

We have shown that for any “critical” situation of the form

Safiy < S — Sy > F € F

there exists another transition chain s,u, — 3, leading to a final state 5,. It is now easy to show, by
induction on the transition relation —, that A is canonical. m|

5.2 Example. Consider again the pattern set P = {faw, fwb, fgwa} with #f =2, #g =1, #a = #b=0.
The closure of P is P = P U {fab, fgwb} (cf. Example 4.7). The corresponding canonical TA is depicted
in fig. 5. O

The following lemma is useful in determining the actual patterns which have been matched in the final
states of a canonical TA.

5.3 Lemma. Let A4 be the canonical TA . constructed for some finite pattern set P, obtained through the
prefix construction, and for any s € F = P let the match set P, C P be defined by P, = {p€ P|p < s}.
Theng¢>pe Piffsuq 3s€ Fst.pe P,

‘_Iiote that if the proposition holds for this automaton A, then also for any other reduced deterministic FA A’ accepting
P, since then there always is a surjective FA homomorphism h : A —» A', implying that A’ essentially behaves excactly
like A (though A’ may identify “equivalent” states of A).
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Proof: If s,¢ 5 s € F, then g is an instance of s, and hence of any p € P,.

For the opposite direction, let ¢ > p € P. By 5.1, soq % s for some s € F. We have that ¢ > s and
g > p and hence ¢ > sV p € P. Now it is easy to see that since 30 > sand ¢ > sV p > s we also have
that sog = sV p. But then sV p = s,i.e. p< s and thus p € P,. ]

5.4 Example. For our sample pattern set P = {faw, fwb, fgwa}, the match sets associated with final
states are as follows (cf. fig. 5):

383 : faw s : fwb sy 1 fywa
34 : faw, fwb s10 : fwbh

6 Complexity

In this section we briefly present some results concerning the complexity of the canonical TA technique.
We assume that A is the canonical TA obtained from the pattern set P as discussed in Section 5 (using
the prefix construction). We will derive bounds for both the maximum matching time of A (which is
ma,xx76 7 |B|, assuming that each move of the TA — in particular, the skipping of subtrees — may be carried
out in constant time) and the number of final states of A (which is | P]).

We first consider the sizes of closure patterns p € P. It is easy to show that for any p,q € Tx and
v € Pref(q) s.t. pvv # T, we have that [pvv| < |p|+|g| and A(pV ) < max{h(p), h(q)}. Since any p € P
is the join of some p € P with some prefixes of other patterns in P, it follows that

<Y IplVPeEP. (1)
pEP
and
h(p) < maxh(p) VB € P, (2
peP

i.e. [p| = O(r*) where r is the maximum arity of the symbols in ¥ and h is the maximum pattern height.
(1) is essentially the same result as that for the matching technique proposed in [11]. (2) tells us, in
particular, that the maximum matching time of A is independent of the number of different patterns.
Bounds for | P| can be derived by counting the maximum number of different joins of pattern prefixes.
Since any P € P may be written as 5 = V,¢p ¥ 5.t. 1, € Pref(p), p € P, we have that

[PL< TI (el +1). (3)

peEP

Again, this parallels the corresponding result in [11]. Tighter bounds for |P| can be obtained by further
restricting the number of different combinations v,, p € P to consider, depending on the structure of the
pattern set. For any pair p,q € P let n,, be the number of different joins p vV v ¢ {p, T} for v € Pref(q).
Let k, be the number of n,, > 0, ¢ € P, and let n, be the average of all n,, > 0 (ie. n, = 0if k, = 0,
and n, = ﬁzn,‘oo-np,q otherwise). For each p € P we then have that the number of different joins

PV Vgt € Pis < [Tep(npg+1) < (np + 1)*». Hence:

1Pl <D (ny + 1) (4)

pPEP

For instance, for the pattern set P = {faw, fwb, fgwa} used as a running example throughout this
paper, we have that [T, p(|p|+1) = 80, but (ns4,+1)*« +(nsus+ 1F10 4 (g et 1)Frove = 21422410 = 7.
In fact, (4) indicates that if the k,’s are bounded (i.e., there is a bound on the maximum number of patterns
with nontrivial overlapping preﬁ.xes) the size of P is linear in |P| and polynomial w.r.t. the n,’s, which in
turn are always bounded by the size of the longest pattern.
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All bounds derived in this section are sharp (asymptotically), see [5] for details. This means that
there are always pathological examples of pattern sets which produce excessively large canonical TA’s,
and that the bound (4), in general, is no better than (3). Up to now, we have not been able to find a
more specific measure for the actual size of closures which can be determined from the given pattern set P
easily. We think, however, that the k, parameters of (4) might be useful in characterizing certain classes
of “good-natured” pattern sets in terms of syntactic criteria.

Some final remarks about the closure construction algorithms sketched out in Section 4 are in order. For
simplicity, let us assume that all basic operations performed in these algorithms (such as test for emptiness,
computation of M/a, etc.) may be carried out in constant time.

We then have that the recursive closure computation following Lemma 4.6 needs time proportional to
| Pref (M)|. The construction of V(M,N)= M U N according to 4.8 may need time O(|Pref(V(M, N))|),
in the worst case, and the computation of A(M,M,N) = M \ M\ N following 4.10 needs time
O(|Pref(A(M, M, N))|) (assuming that in each step we only consider those a € I for which N, # 0).

For 4.10 we may conclude that only those positions in closure elements need to be considered that are
part of at least one element of M which is to be deleted; in this sense, 4.10 is efficient. In the case of 4.8,
it is not as easy to tell the effects of a change, since we may rescan large parts of M and N which in fact
may fail to produce even a single new closure element. Another difficulty is that the complexity not only
depends on the “sizes” of M and N but also on the overlaps between elements of M and N. Somehow
restricting the possible number of these overlaps, in a manner similar to the derivation of (4) above, might
prove to be a useful approach to the problem.

7 Conclusion

In this paper we presented a new technique for left-to-right tree pattern matching, which is useful in
the implementation of programming languages based on term rewriting. Our technique is comparable in
efficiency with existing techniques used in functional language implementations, such as the one described
in [11].

The technique is based on a new approach to the construction of left-to-right tree matching automata.
The theoretical background is the novel concept of prefiz unification which extends the normal unification
of terms to term prefixes. In our framework, canonical matching automata admitting a deterministic
matching strategy are produced by computing a closure of the pattern set which is determined by unifying
pattern prefixes.

We showed how closures can be computed recursively by simultaneously unifying pattern prefixes, and
incrementally by combining existing closures and deleting patterns from a closure.

There are several directions for future research. First of all, a detailed analysis of the incremental
closure construction algorithms still needs to be done. One might then consider to apply these algorithms
to Knuth-Bendix completion or similar applications involving dynamically changing pattern sets. Up to
now we have only used the canonical TA matching technique to implement a simple prototype of a term
rewrite system compiler without incremental features.

Secondly, there remains the question of determining minimal canonical TA’s. Given some finite pattern
set P, we may always construct a “reduced” pattern set P, C P s.t. L(P,;) = L(P) and P, consists only of
the “most general” patternsin P (i.e., if p,q € P, s.t. p < ¢ then already p = ¢). There is strong evidence
that the canonical TA constructed from Py, in some sense, is a “smallest” canonical TA accepting L(P).
More precisely, it seems quite reasonable that any weakly deterministic TA accepting L(P), as an FA,
must accept at least P, in order to be canonical. Together with FA state minimization techniques this
could probably be turned into a theorem characterizing the minimal canonical TA'’s for a given pattern set
P, and a corresponding procedure to effectively construct such minimal TA’s.

Finally, from the theoretical point of view, prefix unification and closure construction might be useful
concepts which should be explored further. In particular, it might be interesting to extend prefix unification
and closure construction to nonlinear patterns and to the subterm matching problem (find all matches with
subterms of the subject term).
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