Rust implementation of SR-Tree: nearest neighbor search index for high-dimensional clustered datasets, modified to support variance-based bulk-loading. This crate applies fundamental concepts presented in the paper, and the original C++ version can be found here.
This example shows how to query nearest neighbors:
use srtree::SRTree;
fn main() {
let points = vec![
vec![0., 0.],
vec![1., 1.],
vec![2., 2.],
vec![3., 3.],
vec![4., 4.],
];
let tree = SRTree::euclidean(&points).expect("Failed to build SRTree");
let (indices, distances) = tree.query(&[8., 8.], 3);
println!("{indices:?}"); // [4, 3, 2] (sorted by distance)
println!("{distances:?}");
}
Copyright 2022-2023 ClumL Inc.
Licensed under Apache License, Version 2.0 (the "License"); you may not use this crate except in compliance with the License.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See LICENSE for the specific language governing permissions and limitations under the License.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be licensed as above, without any additional terms or conditions.