diff --git a/.vscode/extensions.json b/.vscode/extensions.json index 747814822..5794bc147 100644 --- a/.vscode/extensions.json +++ b/.vscode/extensions.json @@ -5,6 +5,8 @@ "charliermarsh.ruff", // Ruff + "davidanson.vscode-markdownlint", // MarkdownLint + "soulcode.vscode-unwanted-recommendations" // Unwanted Recommendations ], diff --git a/README.md b/README.md index feebbac63..f27c43a24 100644 --- a/README.md +++ b/README.md @@ -2,35 +2,30 @@ # OpenSSA: Neurosymbolic Agentic AI for Industrial Problem-Solving -**Why OpenSSA?** OpenSSA is an open-source neurosymbolic agentic AI framework designed to solve complex, high-stakes problems in industries like semiconductor, manufacturing and finance, where consistency, accuracy and deterministic outcomes are essential. -At the core of OpenSSA is the **Domain-Aware Neurosymbolic Agent (DANA)** architecture, -advancing AI from basic pattern-matching and information retrieval to true problem-solving. -It overcomes the limitations of traditional LLMs and RAG in high-precision, multi-step problem-solving -by combining **Hierarchical Task Plans (HTPs)** to structure complex programs and the **Observe-Orient-Decide-Act Reasoning (OODAR)** paradigm to execute such programs. +At the core of OpenSSA is the [__Domain-Aware Neurosymbolic Agent (DANA)__](https://arxiv.org/abs/2410.02823) architecture, +advancing generative AI from basic pattern matching and information retrieval to industrial-grade problem solving. By integrating domain-specific knowledge with neural and symbolic planning and reasoning, -OpenSSA consistently delivers accurate solutions for complex industrial challenges. +such as __Hierarchical Task Planning (HTP)__ for structuring programs +and __Observe-Orient-Decide-Act Reasoning (OODAR)__ for executing such programs, +OpenSSA DANA agents consistently deliver accurate solutions, often using much smaller models. ## Key Benefits of OpenSSA -- **Consistent Results**: Delivers repeatable, high-precision outcomes for complex tasks. -- **Advanced Problem-Solving**: Combines HTPs and OODAR for multi-step planning and reasoning. -- **Scalable Expertise**: Leverages domain knowledge to scale AI without heavy data requirements. -- **Resource Efficiency**: Uses smaller, resource-efficient models, minimizing computational costs. -- **Extensible and Developer-Friendly**: Supports diverse LLM backends and is fully customizable for industry-specific needs. +- __Consistent and Accurate Results__ for complex industrial problems +- __Scalable Expertise__ through AI agents incorporating deep domain knowledge from human experts +- __Economical and Efficient Computation__ thanks to usage of small models +- __Full Ownership__ of intellectual property when used with open-source models such as Llama ## Getting Started -- Install with __`pip install openssa`__ -_(supports Python 3.12 and 3.13)_ +- Install with __`pip install openssa`__ _(Python 3.12 and 3.13)_ + - For bleeding-edge capabilities: __`pip install https://github.com/aitomatic/openssa/archive/main.zip`__ -- For the latest capabilities: -__`pip install https://github.com/aitomatic/openssa/archive/main.zip`__. - -- Explore the `examples/` directory and developer guides and tutorials on our [documentation site](https://aitomatic.github.io/openssa). +- Explore the `examples/` directory and developer guides and tutorials on our [documentation site](https://aitomatic.github.io/openssa) ## [API Documentation](https://aitomatic.github.io/openssa/modules) @@ -38,7 +33,7 @@ __`pip install https://github.com/aitomatic/openssa/archive/main.zip`__. We welcome contributions from the community! -- Join the discussion on our [Community Forum](https://github.com/aitomatic/openssa/discussions) -- Submit pull requests for bug fixes, enhancements, or new features +- Join discussions on our [Community Forum](https://github.com/aitomatic/openssa/discussions) +- Submit pull requests for bug fixes, enhancements and new features For detailed guidelines, refer to our [Contribution Guide](CONTRIBUTING.md). diff --git a/examples/FinanceBench/Makefile b/examples/FinanceBench/Makefile index c5d909647..da1cdec61 100644 --- a/examples/FinanceBench/Makefile +++ b/examples/FinanceBench/Makefile @@ -10,27 +10,27 @@ dana-solve-w-prog-store: dana-solve-w-knowledge-and-prog-store: @poetry run python dana.py ${id} --knowledge --prog-store -dana-solve-w-llama3: - @poetry run python dana.py ${id} --llama3 +dana-solve-w-llama: + @poetry run python dana.py ${id} --llama -dana-solve-w-knowledge-w-llama3: - @poetry run python dana.py ${id} --knowledge --llama3 +dana-solve-w-knowledge-w-llama: + @poetry run python dana.py ${id} --knowledge --llama -dana-solve-w-prog-store-w-llama3: - @poetry run python dana.py ${id} --prog-store --llama3 +dana-solve-w-prog-store-w-llama: + @poetry run python dana.py ${id} --prog-store --llama -dana-solve-w-knowledge-and-prog-store-w-llama3: - @poetry run python dana.py ${id} --knowledge --prog-store --llama3 +dana-solve-w-knowledge-and-prog-store-w-llama: + @poetry run python dana.py ${id} --knowledge --prog-store --llama dana-solve-all-combos: @poetry run python dana.py ${id} @poetry run python dana.py ${id} --knowledge @poetry run python dana.py ${id} --prog-store @poetry run python dana.py ${id} --knowledge --prog-store - @poetry run python dana.py ${id} --llama3 - @poetry run python dana.py ${id} --knowledge --llama3 - @poetry run python dana.py ${id} --prog-store --llama3 - @poetry run python dana.py ${id} --knowledge --prog-store --llama3 + @poetry run python dana.py ${id} --llama + @poetry run python dana.py ${id} --knowledge --llama + @poetry run python dana.py ${id} --prog-store --llama + @poetry run python dana.py ${id} --knowledge --prog-store --llama langchain-react-solve: diff --git a/examples/FinanceBench/dana.py b/examples/FinanceBench/dana.py index 92ec4ee61..2a6a4cb05 100644 --- a/examples/FinanceBench/dana.py +++ b/examples/FinanceBench/dana.py @@ -12,13 +12,13 @@ @cache -def get_main_lm(use_llama3: bool = False): - return (HuggingFaceLM if use_llama3 else OpenAILM).from_defaults() +def get_main_lm(use_llama: bool = False): + return (HuggingFaceLM if use_llama else OpenAILM).from_defaults() @cache -def get_or_create_expert_program_store(use_llama3: bool = False) -> ProgramStore: - program_store = ProgramStore(lm=get_main_lm(use_llama3=use_llama3)) +def get_or_create_expert_program_store(use_llama: bool = False) -> ProgramStore: + program_store = ProgramStore(lm=get_main_lm(use_llama=use_llama)) for program_name, htp_dict in EXPERT_PROGRAMS.items(): htp = HTP.from_dict(htp_dict) @@ -30,16 +30,16 @@ def get_or_create_expert_program_store(use_llama3: bool = False) -> ProgramStore @cache def get_or_create_agent(doc_name: DocName, expert_knowledge: bool = False, expert_programs: bool = False, max_depth=3, max_subtasks_per_decomp=6, - use_llama3: bool = False, + use_llama: bool = False, llama_index_openai_lm_name: str = LMConfig.OPENAI_DEFAULT_MODEL) -> DANA: # pylint: disable=too-many-arguments return DANA(knowledge={EXPERT_KNOWLEDGE} if expert_knowledge else None, - program_store=(get_or_create_expert_program_store(use_llama3=use_llama3) + program_store=(get_or_create_expert_program_store(use_llama=use_llama) if expert_programs else ProgramStore()), - programmer=HTPlanner(lm=get_main_lm(use_llama3=use_llama3), + programmer=HTPlanner(lm=get_main_lm(use_llama=use_llama), max_depth=max_depth, max_subtasks_per_decomp=max_subtasks_per_decomp), resources={FileResource(path=Doc(name=doc_name).dir_path, @@ -83,34 +83,34 @@ def solve_with_knowledge_and_program_store(fb_id: FbId) -> Answer: adaptations_from_known_programs=get_or_create_adaptations(doc_name=DOC_NAMES_BY_FB_ID[fb_id])) -@enable_batch_qa_and_eval(output_name='DANA-wLlama3') -@log_qa_and_update_output_file(output_name='DANA-wLlama3') -def solve_with_llama3(fb_id: FbId) -> Answer: - return get_or_create_agent(doc_name=DOC_NAMES_BY_FB_ID[fb_id], use_llama3=True).solve( +@enable_batch_qa_and_eval(output_name='DANA-wLlama') +@log_qa_and_update_output_file(output_name='DANA-wLlama') +def solve_with_llama(fb_id: FbId) -> Answer: + return get_or_create_agent(doc_name=DOC_NAMES_BY_FB_ID[fb_id], use_llama=True).solve( problem=QS_BY_FB_ID[fb_id], adaptations_from_known_programs=get_or_create_adaptations(doc_name=DOC_NAMES_BY_FB_ID[fb_id])) -@enable_batch_qa_and_eval(output_name='DANA-wKnowledge-wLlama3') -@log_qa_and_update_output_file(output_name='DANA-wKnowledge-wLlama3') -def solve_with_knowledge_with_llama3(fb_id: FbId) -> Answer: - return get_or_create_agent(doc_name=DOC_NAMES_BY_FB_ID[fb_id], expert_knowledge=True, use_llama3=True).solve( +@enable_batch_qa_and_eval(output_name='DANA-wKnowledge-wLlama') +@log_qa_and_update_output_file(output_name='DANA-wKnowledge-wLlama') +def solve_with_knowledge_with_llama(fb_id: FbId) -> Answer: + return get_or_create_agent(doc_name=DOC_NAMES_BY_FB_ID[fb_id], expert_knowledge=True, use_llama=True).solve( problem=QS_BY_FB_ID[fb_id], adaptations_from_known_programs=get_or_create_adaptations(doc_name=DOC_NAMES_BY_FB_ID[fb_id])) -@enable_batch_qa_and_eval(output_name='DANA-wProgStore-wLlama3') -@log_qa_and_update_output_file(output_name='DANA-wProgStore-wLlama3') -def solve_with_program_store_with_llama3(fb_id: FbId) -> Answer: - return get_or_create_agent(doc_name=DOC_NAMES_BY_FB_ID[fb_id], expert_programs=True, use_llama3=True).solve( +@enable_batch_qa_and_eval(output_name='DANA-wProgStore-wLlama') +@log_qa_and_update_output_file(output_name='DANA-wProgStore-wLlama') +def solve_with_program_store_with_llama(fb_id: FbId) -> Answer: + return get_or_create_agent(doc_name=DOC_NAMES_BY_FB_ID[fb_id], expert_programs=True, use_llama=True).solve( problem=QS_BY_FB_ID[fb_id], adaptations_from_known_programs=get_or_create_adaptations(doc_name=DOC_NAMES_BY_FB_ID[fb_id])) -@enable_batch_qa_and_eval(output_name='DANA-wKnowledge-wProgStore-wLlama3') -@log_qa_and_update_output_file(output_name='DANA-wKnowledge-wProgStore-wLlama3') -def solve_with_knowledge_and_program_store_with_llama3(fb_id: FbId) -> Answer: - return get_or_create_agent(DOC_NAMES_BY_FB_ID[fb_id], expert_knowledge=True, expert_programs=True, use_llama3=True).solve( # noqa: E501 +@enable_batch_qa_and_eval(output_name='DANA-wKnowledge-wProgStore-wLlama') +@log_qa_and_update_output_file(output_name='DANA-wKnowledge-wProgStore-wLlama') +def solve_with_knowledge_and_program_store_with_llama(fb_id: FbId) -> Answer: + return get_or_create_agent(DOC_NAMES_BY_FB_ID[fb_id], expert_knowledge=True, expert_programs=True, use_llama=True).solve( # noqa: E501 problem=QS_BY_FB_ID[fb_id], adaptations_from_known_programs=get_or_create_adaptations(doc_name=DOC_NAMES_BY_FB_ID[fb_id])) @@ -121,10 +121,10 @@ def solve_with_knowledge_and_program_store_with_llama3(fb_id: FbId) -> Answer: arg_parser.add_argument('--from-id', action='store_true') arg_parser.add_argument('--knowledge', action='store_true') arg_parser.add_argument('--prog-store', action='store_true') - arg_parser.add_argument('--llama3', action='store_true') + arg_parser.add_argument('--llama', action='store_true') args = arg_parser.parse_args() - match (args.knowledge, args.prog_store, args.llama3): + match (args.knowledge, args.prog_store, args.llama): case (False, False, False): solve_func: QAFunc = solve @@ -138,16 +138,16 @@ def solve_with_knowledge_and_program_store_with_llama3(fb_id: FbId) -> Answer: solve_func: QAFunc = solve_with_knowledge_and_program_store case (False, False, True): - solve_func: QAFunc = solve_with_llama3 + solve_func: QAFunc = solve_with_llama case (True, False, True): - solve_func: QAFunc = solve_with_knowledge_with_llama3 + solve_func: QAFunc = solve_with_knowledge_with_llama case (False, True, True): - solve_func: QAFunc = solve_with_program_store_with_llama3 + solve_func: QAFunc = solve_with_program_store_with_llama case (True, True, True): - solve_func: QAFunc = solve_with_knowledge_and_program_store_with_llama3 + solve_func: QAFunc = solve_with_knowledge_and_program_store_with_llama if not (fb_id := args.fb_id).startswith(FB_ID_COL_NAME): fb_id: FbId = f'{FB_ID_COL_NAME}_{fb_id}' diff --git a/examples/FinanceBench/data_and_knowledge.py b/examples/FinanceBench/data_and_knowledge.py index 68a75b6b4..1c06305cd 100644 --- a/examples/FinanceBench/data_and_knowledge.py +++ b/examples/FinanceBench/data_and_knowledge.py @@ -160,9 +160,9 @@ class Category(StrEnum): QS_BY_FB_ID: dict[FbId, Question] = META_DF.question.to_dict() -LOCAL_CACHE_DIR_PATH: Path = Path(__file__).parent / '.data' -LOCAL_CACHE_DOCS_DIR_PATH: Path = LOCAL_CACHE_DIR_PATH / 'docs' -OUTPUT_FILE_PATH: Path = LOCAL_CACHE_DIR_PATH / 'output.csv' +DATA_LOCAL_DIR_PATH: Path = Path(__file__).parent / '.data' +DOCS_DATA_LOCAL_DIR_PATH: Path = DATA_LOCAL_DIR_PATH / 'docs' +OUTPUT_FILE_PATH: Path = DATA_LOCAL_DIR_PATH / 'output.csv' GROUND_TRUTHS_FILE_PATH = Path(__file__).parent / 'ground-truths.yml' @@ -179,7 +179,9 @@ class Category(StrEnum): CAT_DISTRIB: Counter[Category] = Counter(ground_truth['category'] for ground_truth in GROUND_TRUTHS.values()) -EXPERT_KNOWLEDGE_FILE_PATH: Path = Path(__file__).parent / 'expert-knowledge.txt' +EXPERTISE_DIR_PATH: Path = Path(__file__).parent / 'expertise' + +EXPERT_KNOWLEDGE_FILE_PATH: Path = EXPERTISE_DIR_PATH / 'expert-knowledge.txt' with open(file=EXPERT_KNOWLEDGE_FILE_PATH, buffering=-1, encoding='utf-8', @@ -189,8 +191,7 @@ class Category(StrEnum): opener=None) as f: EXPERT_KNOWLEDGE: str = f.read() - -EXPERT_PROGRAMS_FILE_PATH: Path = Path(__file__).parent / 'expert-programs.yml' +EXPERT_PROGRAMS_FILE_PATH: Path = EXPERTISE_DIR_PATH / 'expert-programs.yml' with open(file=EXPERT_PROGRAMS_FILE_PATH, buffering=-1, encoding='utf-8', @@ -251,7 +252,7 @@ def request(self) -> requests.Response: @cached_property def dir_path(self) -> Path: - dir_path: Path = LOCAL_CACHE_DOCS_DIR_PATH / self.name + dir_path: Path = DOCS_DATA_LOCAL_DIR_PATH / self.name if not (file_path := dir_path / f'{self.name}.pdf').is_file(): dir_path.mkdir(parents=True, exist_ok=True) diff --git a/examples/FinanceBench/eval.py b/examples/FinanceBench/eval.py index a0eab3e68..ec34f1692 100644 --- a/examples/FinanceBench/eval.py +++ b/examples/FinanceBench/eval.py @@ -17,7 +17,7 @@ # pylint: disable=wrong-import-order from data_and_knowledge import (FbId, Question, Answer, Category, GroundTruth, FB_ID_COL_NAME, GROUND_TRUTHS, N_CASES, CAT_DISTRIB, - LOCAL_CACHE_DIR_PATH, OUTPUT_FILE_PATH, get_or_create_output_df) + DATA_LOCAL_DIR_PATH, OUTPUT_FILE_PATH, get_or_create_output_df) from log import switch_log_file if TYPE_CHECKING: @@ -200,7 +200,7 @@ def eval_accuracy_and_consistency_wrt_ground_truths(output_name: str, output_fil n_yes_scores_by_fb_id: defaultdict = defaultdict(int) incorrect_answer_fb_ids: dict[FbId, str] = {} - for output_df in (read_csv(LOCAL_CACHE_DIR_PATH / output_file_name, index_col=FB_ID_COL_NAME) + for output_df in (read_csv(DATA_LOCAL_DIR_PATH / output_file_name, index_col=FB_ID_COL_NAME) for output_file_name in output_file_names): for fb_id, correctness in output_df[correctness_col_name].items(): diff --git a/examples/FinanceBench/expert-knowledge.txt b/examples/FinanceBench/expertise/expert-knowledge.txt similarity index 100% rename from examples/FinanceBench/expert-knowledge.txt rename to examples/FinanceBench/expertise/expert-knowledge.txt diff --git a/examples/FinanceBench/expert-programs.yml b/examples/FinanceBench/expertise/expert-programs.yml similarity index 100% rename from examples/FinanceBench/expert-programs.yml rename to examples/FinanceBench/expertise/expert-programs.yml diff --git a/examples/FinanceBench/export-multi-runs.py b/examples/FinanceBench/export-multi-runs.py index d48aa7a1b..932581045 100644 --- a/examples/FinanceBench/export-multi-runs.py +++ b/examples/FinanceBench/export-multi-runs.py @@ -2,7 +2,7 @@ from pandas import DataFrame, read_csv -from data_and_knowledge import FB_ID_COL_NAME, LOCAL_CACHE_DIR_PATH +from data_and_knowledge import FB_ID_COL_NAME, DATA_LOCAL_DIR_PATH EXPORT_FILE_NAME: str = 'export-multi-runs.csv' @@ -14,7 +14,7 @@ args = arg_parser.parse_args() -for i, df in enumerate(read_csv(LOCAL_CACHE_DIR_PATH / output_file_name, index_col=FB_ID_COL_NAME) +for i, df in enumerate(read_csv(DATA_LOCAL_DIR_PATH / output_file_name, index_col=FB_ID_COL_NAME) for output_file_name in args.output_file_names): if not i: export_df: DataFrame = df[['question']] @@ -22,4 +22,4 @@ export_df.loc[:, f'answer {i + 1}'] = df[args.output_name] # pylint: disable=possibly-used-before-assignment -export_df.to_csv(LOCAL_CACHE_DIR_PATH / EXPORT_FILE_NAME, index=True) +export_df.to_csv(DATA_LOCAL_DIR_PATH / EXPORT_FILE_NAME, index=True) diff --git a/examples/FinanceBench/make.bat b/examples/FinanceBench/make.bat index d086751c5..1e66dec83 100644 --- a/examples/FinanceBench/make.bat +++ b/examples/FinanceBench/make.bat @@ -9,10 +9,10 @@ IF "%TARGET%"=="dana-solve" GOTO dana-solve IF "%TARGET%"=="dana-solve-w-prog-store" GOTO dana-solve-w-prog-store IF "%TARGET%"=="dana-solve-w-knowledge" GOTO dana-solve-w-knowledge IF "%TARGET%"=="dana-solve-w-knowledge-and-prog-store" GOTO dana-solve-w-knowledge-and-prog-store -IF "%TARGET%"=="dana-solve-w-llama3" GOTO dana-solve-w-llama3 -IF "%TARGET%"=="dana-solve-w-prog-store-w-llama3" GOTO dana-solve-w-prog-store-w-llama3 -IF "%TARGET%"=="dana-solve-w-knowledge-w-llama3" GOTO dana-solve-w-knowledge-w-llama3 -IF "%TARGET%"=="dana-solve-w-knowledge-and-prog-store-w-llama3" GOTO dana-solve-w-knowledge-and-prog-store-w-llama3 +IF "%TARGET%"=="dana-solve-w-llama" GOTO dana-solve-w-llama +IF "%TARGET%"=="dana-solve-w-prog-store-w-llama" GOTO dana-solve-w-prog-store-w-llama +IF "%TARGET%"=="dana-solve-w-knowledge-w-llama" GOTO dana-solve-w-knowledge-w-llama +IF "%TARGET%"=="dana-solve-w-knowledge-and-prog-store-w-llama" GOTO dana-solve-w-knowledge-and-prog-store-w-llama IF "%TARGET%"=="dana-solve-all-combos" GOTO dana-solve-all-combos IF "%TARGET%"=="langchain-react-solve" GOTO langchain-react-solve @@ -47,20 +47,20 @@ IF "%TARGET%"=="streamlit-run" GOTO streamlit-run poetry run python dana.py %2 --knowledge --prog-store GOTO end -:dana-solve-w-llama3 - poetry run python dana.py %2 --llama3 +:dana-solve-w-llama + poetry run python dana.py %2 --llama GOTO end -:dana-solve-w-knowledge-w-llama3 - poetry run python dana.py %2 --knowledge --llama3 +:dana-solve-w-knowledge-w-llama + poetry run python dana.py %2 --knowledge --llama GOTO end -:dana-solve-w-prog-store-w-llama3 - poetry run python dana.py %2 --prog-store --llama3 +:dana-solve-w-prog-store-w-llama + poetry run python dana.py %2 --prog-store --llama GOTO end -:dana-solve-w-knowledge-and-prog-store-w-llama3 - poetry run python dana.py %2 --knowledge --prog-store --llama3 +:dana-solve-w-knowledge-and-prog-store-w-llama + poetry run python dana.py %2 --knowledge --prog-store --llama GOTO end :dana-solve-all-combos @@ -68,10 +68,10 @@ IF "%TARGET%"=="streamlit-run" GOTO streamlit-run poetry run python dana.py %2 --knowledge poetry run python dana.py %2 --prog-space poetry run python dana.py %2 --knowledge --prog-space - poetry run python dana.py %2 --llama3 - poetry run python dana.py %2 --knowledge --llama3 - poetry run python dana.py %2 --prog-space --llama3 - poetry run python dana.py %2 --knowledge --prog-space --llama3 + poetry run python dana.py %2 --llama + poetry run python dana.py %2 --knowledge --llama + poetry run python dana.py %2 --prog-space --llama + poetry run python dana.py %2 --knowledge --prog-space --llama GOTO end diff --git a/examples/financial-research/dataproc.py b/examples/financial-research/dataproc.py index 341c88912..55c69f9b1 100644 --- a/examples/financial-research/dataproc.py +++ b/examples/financial-research/dataproc.py @@ -2,11 +2,11 @@ from pathlib import Path -LOCAL_CACHE_DIR_PATH: Path = Path(__file__).parent / '.data' +DATA_LOCAL_DIR_PATH: Path = Path(__file__).parent / '.data' @cache def get_or_create_cached_dir_path(company: str) -> str: - dir_path: Path = LOCAL_CACHE_DIR_PATH / company + dir_path: Path = DATA_LOCAL_DIR_PATH / company dir_path.mkdir(parents=True, exist_ok=True) return str(dir_path) diff --git a/examples/japanese-easy-demo/main.py b/examples/japanese-easy-demo/main.py index 461cc4806..295e9674c 100644 --- a/examples/japanese-easy-demo/main.py +++ b/examples/japanese-easy-demo/main.py @@ -4,12 +4,12 @@ load_dotenv() -LOCAL_CACHE_DOCS_DIR_PATH: Path = Path(__file__).parent / '.data' +DOCS_DATA_LOCAL_DIR_PATH: Path = Path(__file__).parent / '.data' def get_or_create_agent() -> DANA: return DANA( - resources={FileResource(path=LOCAL_CACHE_DOCS_DIR_PATH)} + resources={FileResource(path=DOCS_DATA_LOCAL_DIR_PATH)} )