From a9d88d58d395cee11a1ed7d056d97bed54c63a33 Mon Sep 17 00:00:00 2001 From: James Geddes Date: Wed, 17 Apr 2024 14:25:00 +0100 Subject: [PATCH] Formatting --- notes/optimisation.tex | 16 +++++++++++----- 1 file changed, 11 insertions(+), 5 deletions(-) diff --git a/notes/optimisation.tex b/notes/optimisation.tex index 78e5ba9..c9229fa 100644 --- a/notes/optimisation.tex +++ b/notes/optimisation.tex @@ -1,10 +1,14 @@ -\documentclass[11pt, a4paper]{article} +\documentclass[10pt, twocolumn, a4paper]{article} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{beton} \usepackage{eulervm} \usepackage{amsmath} \usepackage{bm} +\usepackage{microtype} +\usepackage[left=1cm, right=1cm]{geometry} +\setlength{\columnsep}{1cm} +\usepackage[medium, compact]{titlesec} \DeclareFontSeriesDefault[rm]{bf}{sbc} % \usepackage{amssymb} %% Turing grid is 21 columns (of 1cm if we are using A4) @@ -19,15 +23,17 @@ \DeclareMathOperator*{\argmin}{arg\,min} \begin{document} \maketitle +\raggedright Here's a classic problem. We are given a real-valued function on some -space $X$, say $f\colon X\to \setR$, and we are to find the point where -$f$ is minimised (if there is one). That is, we are to find -$x_\text{min}$ such that $f(x_\text{min}) < f(x)$ for every other $x\in -X$ that is not~$x_\text{min}$. That is, find +space $X$, say $f\colon X\to \setR$, and we are to find the point, $x = +x_\text{min}$, where $f(x)$ attains its minimum value (if there is +one). That is, we are to compute \begin{equation*} x_\text{min} = \argmin_{x\in X} f(x). \end{equation*} + + \end{document}