diff --git a/reference/all-the-rules-we-know.tex b/reference/all-the-rules-we-know.tex index 1c22a69..e067a01 100644 --- a/reference/all-the-rules-we-know.tex +++ b/reference/all-the-rules-we-know.tex @@ -14,6 +14,7 @@ \newcommand{\set}[1]{\mathbold{#1}} \newcommand{\imag}{\mathrm{i}} \newcommand{\card}[1]{\##1} +\newcommand{\transpose}[1]{{#1}^{\rm t}} \def\R{\mathbb{R}} \def\C{\mathbb{C}} \def\F{\mathbb{F}} @@ -210,7 +211,7 @@ \section*{Chapter 1.A} \end{definition} \begin{definition}{1.15}[$0$] -Let $0$ denote the list of length $n$ whose coorinates are all 0: +Let $0$ denote the list of length $n$ whose coordinates are all 0: $$ (0, \ldots, 0 ). $$ @@ -369,7 +370,7 @@ \section*{Chapter 1.C} The following rules can all be derived from the definitions. \begin{result}{1.34}[conditions for a subspace] -A subset $U$ of $V$ is a subspace of $V$ if and only if $U$ satifies the following three conditions. +A subset $U$ of $V$ is a subspace of $V$ if and only if $U$ satisfies the following three conditions. \defn{additive identity} \begin{forceindent} @@ -408,7 +409,7 @@ \section*{Chapter 1.C} \section*{Chapter 2.A} \begin{notation}{2.1}[list of vectors] -We write lists of vectors without surrounding parantheses. +We write lists of vectors without surrounding parentheses. \end{notation} \begin{definition}{2.2}[linear combination] @@ -679,7 +680,7 @@ \section*{Chapter 3.A} \end{result} \begin{result}{Ex. 3A, 13}[Linear maps on a subspace can be extended to a map on the whole vector space] -Suppose $V$ is finite-dimentional. Prove that every linear map on a subspace of $V$ can be extended to a linear map on $V$. In other words, show that if $U$ is a subspace of $V$ and $S \in \L(U, V)$, then there exists $T \in \L(V, W)$ such that $Tu = Su$ for all $u \in E$. +Suppose $V$ is finite-dimensional. Prove that every linear map on a subspace of $V$ can be extended to a linear map on $V$. In other words, show that if $U$ is a subspace of $V$ and $S \in \L(U, V)$, then there exists $T \in \L(V, W)$ such that $Tu = Su$ for all $u \in E$. \end{result} \newpage @@ -844,10 +845,10 @@ \section*{Chapter 3.C} \end{enumerate} \end{definition} -\begin{definition}{3.54}[transpose, $A^t$] -The \defn{transpose} of a matrix $A$, denoted by $A^t$, is the matrix obtained from $A$ by interchanging rows and columns. Specifically, if $A$ is an $m$-by-$n$ matrix, then $A^t$ is an $n$-by-$m$ matrix whose entries are given by the equation +\begin{definition}{3.54}[transpose, $\transpose{A}$] +The \defn{transpose} of a matrix $A$, denoted by $\transpose{A}$, is the matrix obtained from $A$ by interchanging rows and columns. Specifically, if $A$ is an $m$-by-$n$ matrix, then $\transpose{A}$ is an $n$-by-$m$ matrix whose entries are given by the equation $$ -(A^t)_{k, j} = A_{j, k} . +(\transpose{A})_{k, j} = A_{j, k} . $$ \end{definition} @@ -941,20 +942,20 @@ \section*{Chapter 3.C} % Exercise 14 \begin{result}{Ex. 3C, 14}[transpose is a linear map] -Suppose $m$ and $n$ are positive integers. Then the function $A \mapsto A^t$ is a linear map from $\F^{m, n}$ to $\F^{n, m}$. +Suppose $m$ and $n$ are positive integers. Then the function $A \mapsto \transpose{A}$ is a linear map from $\F^{m, n}$ to $\F^{n, m}$. -In other words $(A + B)^t = A^t + B^t$, $(\lambda A)^t = \lambda A^t$ for all $m$-by-$n$ matrices $A$, $B$ and all $\lambda \in \F$. +In other words $\transpose{(A + B)} = \transpose{A} + \transpose{B}$, $\transpose{(\lambda A)} = \lambda \transpose{A}$ for all $m$-by-$n$ matrices $A$, $B$ and all $\lambda \in \F$. \end{result} % Exercise 15 \begin{result}{Ex. 3C, 15}[The transpose of the product is the product of the transposes in the opposite order] If $A$ is an $m$-by-$n$ matrix and $C$ is an $n$-by-$p$ matrix, then $$ -(AC)^t = C^t A^t . +\transpose{(AC)} = \transpose{C} \transpose{A} . $$ \end{result} -\begin{result}{3.56}[column-row factorization] +\begin{result}{3.56}[column-row factorisation] Suppose $A$ is an $m$-by-$n$ matrix with entries in $\F$ and column rank $c \ge 1$. Then there exist an $m$-by-$c$ matrix $C$ and a $c$-by-$n$ matrix $R$, both with entries in $\F$, such that $A = C R$. \end{result} @@ -1093,7 +1094,7 @@ \section*{Chapter 3.D} \end{result} \begin{result}{3.86}[matrix of inverse equals inverse of matrix] -Suppose that $v_1, \ldots, v_n$ is a basis of $V$ and $T \in \L(V)$ is invertible. Then $\M(T^{-1}) = (\M(T))^{-1}$, where both matrixes are with respect to the basis $v_1, \ldots, v_n$. +Suppose that $v_1, \ldots, v_n$ is a basis of $V$ and $T \in \L(V)$ is invertible. Then $\M(T^{-1}) = (\M(T))^{-1}$, where both matrices are with respect to the basis $v_1, \ldots, v_n$. \end{result} \clearpage @@ -1195,7 +1196,7 @@ \section*{Chapter 3.E} \end{result} \begin{result}{3.101}[two translates of a subspace are equal or disjoint] -Suppose $U$ is a subapace of $V$ and $v, w \in V$. Then +Suppose $U$ is a subspace of $V$ and $v, w \in V$. Then $$ v - w \in U \Longleftrightarrow v + U = w + U \Longleftrightarrow (v + U) \cap (w + U) \not= \emptyset. $$ @@ -1222,4 +1223,135 @@ \section*{Chapter 3.E} \end{enumerate} \end{result} +% Exercise 18 +\begin{result}{Ex. 3E, 18}[Direct sum of a quotient] +Suppose $U$ is a subspace of $V$ such that $V / U$ is finite-dimensional. Then there exists a finite-dimensional subspace $W$ of $V$ such that $\dim W = \dim V / U$ and $V = U \oplus W$. +\end{result} + +\clearpage + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\section*{Chapter 3.F} + +\begin{definition}{3.108}[linear functional] +A \defn{linear functional} on $V$ is a linear map from $V$ to $\F$. In other words, a linear functional is an element of $\L(V, \F)$. +\end{definition} + +\begin{definition}{3.110}[dual space $V'$] +The \defn{dual space} of $V$, denoted by $V'$, is the vector space of all linear functionals on $V$. In other words, $V' = \L(V, \F)$. +\end{definition} + +\begin{definition}{3.112}[dual basis] +If $v_1, \ldots, v_n$ is a basis of $V$, then the \defn{dual basis} of $v_1, \ldots, v_n$ is the list $\varphi_1, \ldots, \varphi_n$ of elements of $V'$, where each $\varphi_j$ is the linear functional on $V$ such that +$$ +\varphi_j(v_k) = +\begin{cases} +1 & \text{if } k = j, \\ +0 & \text{if } k \not= j. +\end{cases} +$$ +\end{definition} + +\begin{definition}{3.118}[dual map, $T'$] +Suppose $T \in \L(V, W)$. The \defn{dual map} of $T$ is the linear map $T' \in \L(W', V')$ defined for each $\varphi \in W'$ by +$$ +T'(\varphi) = \varphi \circ T. +$$ +\end{definition} + +\begin{definition}{3.121}[annihilator, $U^0$] +For $U \subseteq V$, the \defn{annihilator} of $U$, denoted by $U^0$, is defined by +$$ +U^0 = \{ \varphi \in V' \setsep \varphi(u) = 0 \text{ for all } u \in U \}. +$$ +\end{definition} + +\newpage + +\begin{result}{3.111}[$\dim V' = \dim V$] +Suppose $V$ is finite-dimensional. Then $V'$ is also finite-dimensional and +$$ +\dim V' = \dim V. +$$ +\end{result} + +\begin{result}{3.114}[dual basis gives coefficients for linear combination] +Suppose $v_1, \ldots, v_n$ is a basis of $V$ and $\varphi_i, \ldots, \varphi_n$ is the dual basis. Then for each $v \in V$ +$$ +v = \varphi_1(v) v_1 + \cdots + \varphi_n(v) v_n +$$ +\end{result} + +\begin{result}{3.116}[dual basis is a basis of the dual space] +Suppose $V$ is finite-dimensional. Then the dual basis of a basis of $V$ is a basis of $V'$. +\end{result} + +\begin{result}{3.120}[algebraic properties of dual maps] +Suppose $T \in \L(V, W)$. Then +\begin{enumerate} +\item[(a)] $(S + T)' = S' + T'$ for all $S \in \L(V, W)$; +\item[(b)] $(\lambda T)' = \lambda T'$ for all $\lambda \in \F$; +\item[(c)] $(ST)' = T' S'$ for all $S \in \L(W, U)$. +\end{enumerate} +\end{result} + +\begin{result}{3.124}[the annihilator is a subspace] +Suppose $U \subseteq V$. Then $U^0$ is a subspace of $V'$. +\end{result} + +\begin{result}{3.125}[dimension of the annihilator] +If $V$ is finite-dimensional and $U$ is a subspace of $V$ then +$$ +\dim U^0 = \dim V - \dim U. +$$ +\end{result} + +\begin{result}{3.127}[condition for the annihilator to equal $\{ 0 \}$ or the whole space] +If $V$ is finite-dimensional and $U$ is a subspace of $V$ then +\begin{enumerate} +\item[(a)] $U^0 = \{ 0 \} \Longleftrightarrow U = V$; +\item[(b)] $U^0 = V' \Longleftrightarrow U = \{ 0 \}$. +\end{enumerate} +\end{result} + +\begin{result}{3.128}[the null space of $T'$] +Suppose $T \in \L(V, W)$. Then +\begin{enumerate} +\item[(a)] $\kernel T' = (\range T)^0$. +\end{enumerate} +Suppose further that $V$ and $W$ are finite-dimensional. Then +\begin{enumerate} +\item[(b)] $\dim \kernel T' = \dim \kernel T + \dim W - \dim W$. +\end{enumerate} +\end{result} + +\begin{result}{3.129}[$T$ surjective is equivalent to $T'$ injective] +If $V$ and $W$ are finite-dimensional and $T \in \L(V, W)$ then +$$ +T \text{ is surjective } \Longleftrightarrow T' \text{ is injective}. +$$ +\end{result} + +\begin{result}{3.130}[the range of $T'$] +If $V$ and $W$ are finite-dimensional and $T \in \L(V, W)$ then +\begin{enumerate} +\item[(a)] $\dim \range T' = \dim \range T$; +\item[(b)] $\range T' = (\kernel T)^0$. +\end{enumerate} +\end{result} + +\begin{result}{3.131}[$T$ injective is equivalent to $T'$ surjective] +If $V$ and $W$ are finite-dimensional and $T \in \L(V, W)$ then +$$ +T \text{ is injective } \Longleftrightarrow T' \text{ is surjective}. +$$ +\end{result} + +\begin{result}{3.132}[matrix of $T'$ is transpose of matrix of $T$] +If $V$ and $W$ are finite-dimensional and $T \in \L(V, W)$ then +$$ +\M(T') = \transpose{(\M(T))}. +$$ +\end{result} + \end{document}