From 7f8e1965fba42ac077f2b5430f5a7746e37e49af Mon Sep 17 00:00:00 2001 From: David Llewellyn-Jones Date: Fri, 12 Jul 2024 11:28:49 +0100 Subject: [PATCH] Add Chapter 4 and 5.A rules to "all the rules we know" --- reference/all-the-rules-we-know.tex | 223 ++++++++++++++++++++++++++++ 1 file changed, 223 insertions(+) diff --git a/reference/all-the-rules-we-know.tex b/reference/all-the-rules-we-know.tex index e067a01..28c1f33 100644 --- a/reference/all-the-rules-we-know.tex +++ b/reference/all-the-rules-we-know.tex @@ -25,6 +25,8 @@ \def\M{\mathscr{M}} \DeclareMathOperator{\kernel}{null} \DeclareMathOperator{\range}{range} +\DeclareMathOperator{\Real}{Re} +\DeclareMathOperator{\Imag}{Im} \newtheoremstyle{break}% name {}% Space above, empty = `usual value' @@ -1354,4 +1356,225 @@ \section*{Chapter 3.F} $$ \end{result} +\clearpage + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\section*{Chapter 4} + +\begin{definition}{4.1}[real part, $\Real{z}$, imaginary part, $\Imag{z}$] +Suppose $z = a + bi$, where $a$ and $b$ are real numbers. +\begin{enumerate} +\item The \defn{real part} of $z$, denoted $\Real{z}$, is defined by $\Real{z} = a$. +\item The \defn{imaginary part} of $z$, denoted by $\Imag{z}$, is defined by $\Imag{z} = b$. +\end{enumerate} +\end{definition} + +\begin{definition}{4.2}[complex conjugate, $\bar{z}$, absolute value, $|z|$] +Suppose $z \in \C$. +\begin{enumerate} +\item The \defn{complex conjugate} of $z \in \C$, denoted by $\bar{z}$, is defined by +$$ +\bar{z} = \Real{z} - (\Imag{z}) i. +$$ +\item The \defn{absolute value} of a complex number $z$, denoted by $|z|$, is defined by +$$ +|z| = \sqrt{(\Real{z})^2 + (\Imag{z})^2}. +$$ +\end{enumerate} +\end{definition} + +\begin{property}{4.4}[properties of complex numbers] +Suppose $w, z \in \C$. Then the following equalities and inequalities hold. + +\defn{sum of $z$ and $\bar{z}$} +\begin{forceindent} +$z + \bar{z} = 2 \Real{z}$. +\end{forceindent} + +\defn{difference of $z$ and $\bar{z}$} +\begin{forceindent} +$z - \bar{z} = 2 (\Imag{z}) i$. +\end{forceindent} + +\defn{product of $z$ and $\bar{z}$} +\begin{forceindent} +$z \bar{z} = |z|^2$. +\end{forceindent} + +\defn{additivity and multiplicativity of complex conjugate} +\begin{forceindent} +$\overline{w + z} = \bar{w} + \bar{z}$ and $\overline{w z} = \bar{w} \bar{z}$. +\end{forceindent} + +\defn{double complex conjugate} +\begin{forceindent} +$\bar{\bar{z}} = z$. +\end{forceindent} + +\defn{real and imaginary parts are bounded by $|z|$} +\begin{forceindent} +$|\Real{z}| \le |z|$ and $|\Imag{z}| \le |z|$. +\end{forceindent} + +\defn{absolute value of the complex conjugate} +\begin{forceindent} +$|\bar{z}| = |z|$. +\end{forceindent} + +\defn{multiplicativity of absolute value} +\begin{forceindent} +$|w z| = |w| |z|$. +\end{forceindent} + +\defn{triangle inequality} +\begin{forceindent} +$|w + z| \le |w| + |z|$. +\end{forceindent} +\end{property} + +\begin{definition}{4.5}[zero of a polynomial] +A number $\lambda \in \F$ is called a \defn{zero} (or \defn{root}) of a polynomial $p \in \mathscr{P}(\F)$ if +$$ +p(\lambda) = 0 . +$$ +\end{definition} + +\newpage + +\begin{result}{4.6}[each zero of a polynomial corresponds to a degree-one factor] +Suppose $m$ is a positive integer and $p \in \mathscr{P}(\F)$ is a polynomial of degree $m$. Suppose $\lambda \in \F$. Then $p(\lambda) = 0$ if and only if there exists a polynomial $q \in \mathscr{P}(\F)$ of degree $m - 1$ such that +$$ +p(z) = (z - \lambda) q(z) +$$ +for every $z \in \F$. +\end{result} + +\begin{result}{4.8}[degree $m$ implies at most $m$ zeros] +Suppose $m$ is a positive integer and $p \in \mathscr{P}(\F)$ is a polynomial of degree $m$. Then $p$ has at most $m$ zeros in $\F$. +\end{result} + +\begin{result}{4.9}[division algorithm for polynomials] +Suppose that $p, s \in \mathscr{P}(\F)$, with $s \not= 0$. Then there exist unique polynomials $q, r \in \mathscr{P}(\F)$ such that +$$ +p = s q + r +$$ +and $\deg{r} < \deg{s}$. +\end{result} + +\begin{result}{4.12}[fundamental theorem of algebra, first version] +Every nonconstant polynomial with complex coefficients has a zero in $\C$. +\end{result} + +\begin{result}{4.13}[fundamental theorem of algebra, second version] +If $p \in \mathcal{P}(\C)$ is a nonconstant polynomial, then $p$ has a unique factorisation (except for the order of the factors) of the form +$$ +p(z) = c (z - \lambda_1) \cdots (z - \lambda_m) , +$$ +where $c, \lambda_1, \ldots, \lambda_m \in \C$. +\end{result} + +\begin{result}{4.14}[polynomials with real coefficients have nonreal zeros in pairs] +Suppose $p \in \mathcal{P}(\C)$ is a polynomial with real coefficients. If $\lambda \in \C$ is a zero of $p$, then so is $\bar{\lambda}$. +\end{result} + +\begin{result}{4.15}[factorisation of a quadratic polynomial] +Suppose $b, c \in \R$. Then there is a polynomial factorisation of the form +$$ +x^2 + b x + c = (x - \lambda_1) (x - \lambda_2) +$$ +with $\lambda_1, \lambda_2 \in \R$ if and only if $b^2 \ge 4 c$. +\end{result} + +\begin{result}{4.16}[factorisation of a polynomial over $\R$] +Suppose $p \in \mathcal{P}(\R)$ is a nonconstant polynomial. Then $p$ has a unique factorisation (except for the order of the factors) of the form +$$ +p(x) = c (x - \lambda_1) \cdots (x - \lambda_m) (x^2 + b_1 x + c_1) \cdots (x^2 + b_M x + c_M ) . +$$ +where $c, \lambda_1, \ldots, \lambda_m, b_1, \ldots, b_M, c_1, \ldots, c_M \in \R$ with $b_k^2 < 4 c_k$ for each $k$. +\end{result} + +\clearpage + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +\section*{Chapter 5.A} + +\begin{definition}{5.1}[operator] +A linear map from a vector space to itself is called an $operator$. +\end{definition} + +\begin{definition}{5.2}[invariant subspace] +Suppose $T \in \L(V)$. A subspace $U$ of $V$ is called \defn{invariant} under $T$ if $T u \in U$ for every $u \in U$. +\end{definition} + +\begin{definition}{5.5}[eigenvalue] +Suppose $T \in \L(V)$. A number $\lambda \in \F$ is called an \defn{eigenvalue} of $T$ if there exists $v \in V$ such that $v \not= 0$ and $T v = \lambda v$. +\end{definition} + +\begin{definition}{5.8}[eigenvector] +Suppose $T \in \L(V)$ and $\lambda \in \F$ is an eigenvalue of $T$. A vector $v \in V$ is called an \defn{eigenvector} of $T$ corresponding to $\lambda$ if $v \not= 0$ and $T v = \lambda v$. +\end{definition} + +\begin{notation}{5.13}[$T^m$] +Suppose $T \in \L(V)$ and $m$ is a positive integer. +\begin{enumerate} +\item $T^m \in \L(V)$ is defined by $T^m = \underbrace{T \cdots T}_{\text{$m$ times}}$. +\item $T^0$ is defined to be the identity operator $I$ on $V$. +\item If $T$ is invertible with inverse $T^{-1}$, then $T^{-m} \in \L(V)$ is defined by +$$ +T^{-m} = (T^{-1})^m . +$$ +\end{enumerate} +\end{notation} + +\begin{notation}{5.14}[$p(T)$] +Suppose $T \in \L(V)$ and $p \in \mathcal{P}(\F)$ is a polynomial given by +$$ +p(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_m z^m +$$ +for all $z \in \F$. Then $p(T)$ is the operator $V$ defined by +$$ +p(T) = a_0 I + a_1 T + a_2 T^2 + \cdots + a_m T^m . +$$ +\end{notation} + +\begin{definition}{5.16}[product of polynomials] +If $p, q \in \mathcal{P}(\F)$, then $pq \in \mathcal{P}(\F)$ is the polynomial defined by +$$ +(p q)(z) = p(z) q(z) +$$ +for all $z \in \F$. +\end{definition} + +\newpage + +\begin{result}{5.7}[equivalent conditions to be an eigenvalue] +Suppose $V$ is finite-dimensional, $T \in \L(V)$, and $\lambda \in F$. Then the following are equivalent. +\begin{enumerate} +\item[(a)] $\lambda$ is an eigenvalue of $T$. +\item[(b)] $T - \lambda I$ is not injective. +\item[(c)] $T - \lambda I$ is not surjective. +\item[(d)] $T - \lambda I$ is not invertible. +\end{enumerate} +\end{result} + +\begin{result}{5.11}[linearly independent eigenvectors] +Suppose $T \in \L(V)$. Then every list of eigenvectors of $T$ corresponding to distinct eigenvalues of $T$ is linearly independent. +\end{result} + +\begin{result}{5.12}[operator cannot have more eigenvalues than dimension of vector space] +Suppose $V$ is finite-dimensional. Then each operator on $V$ has at most $\dim{V}$ distinct eigenvalues. +\end{result} + +\begin{result}{5.17}[multiplicative properties] +Suppose $p, q \in \mathcal{P}(\F)$ and $T \in \L(V)$. Then +\begin{enumerate} +\item[(a)] $(p q)(T) = p(T) q(T)$; +\item[(b)] $p(T) q(T) = q(T) p(T)$. +\end{enumerate} +\end{result} + +\begin{result}{5.18}[null space and range of $p(T)$ are invariant under $T$] +Suppose $T \in \L(V)$ and $p \in \mathcal{P}(\F)$. Then $\kernel{p(T)}$ and $\range{p(T)}$ are invariant under $T$. +\end{result} + \end{document}