forked from Kaixiong-Zhou/DGN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGCNII_Cora.py
190 lines (166 loc) · 6.19 KB
/
GCNII_Cora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import argparse
import torch
import torch.nn.functional as F
from torch_geometric.datasets import Planetoid
import torch_geometric.transforms as T
from GCNII_layer import GCNIIdenseConv
import math
from models.common_blocks import batch_norm
import os
from torch_geometric.utils import remove_self_loops, add_self_loops
import numpy as np
import random
def load_data(dataset="Cora"):
path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'data', dataset)
if dataset in ["Cora", "Citeseer", "Pubmed"]:
data = Planetoid(path, dataset, T.NormalizeFeatures())[0]
num_nodes = data.x.size(0)
edge_index, _ = remove_self_loops(data.edge_index)
edge_index = add_self_loops(edge_index, num_nodes=num_nodes)
if isinstance(edge_index, tuple):
data.edge_index = edge_index[0]
else:
data.edge_index = edge_index
return data
else:
raise Exception(f'the dataset of {dataset} has not been implemented')
def remove_feature(data, miss_rate):
num_nodes = data.x.size(0)
erasing_pool = torch.arange(num_nodes)[~data.train_mask]
size = int(len(erasing_pool) * miss_rate)
idx_erased = np.random.choice(erasing_pool, size=size, replace=False)
x = data.x
x[idx_erased] = 0.
return x
def set_seed(seed):
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
os.environ['CUDA_VISIBLE_DEVICES'] = str(0)
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
seeds = [100, 200, 300, 400, 500]
parser = argparse.ArgumentParser()
parser.add_argument('--layer', type=int, default=64, help='Number of layers.')
parser.add_argument('--type_norm', type=str, default="group", help='{None, batch, group, pair}')
parser.add_argument('--miss_rate', type=float, default=0.)
args = parser.parse_args()
dataset = 'Cora'
data = load_data(dataset)
if args.miss_rate > 0.:
data.x = remove_feature(data, args.miss_rate)
print(data.train_mask.sum())
print(data.val_mask.sum())
print(data.test_mask.sum())
###################hyperparameters
nlayer = args.layer
dropout = 0.6
alpha = 0.1
lamda = 0.5
hidden_dim = 64
weight_decay1 = 0.01
weight_decay2 = 5e-4
lr = 0.01
patience = 100
## set parameters used in group norm
num_groups = 10 # 10
if args.layer == 2:
skip_weight = 0.005
elif args.layer == 64:
skip_weight = 0.0005
else:
skip_weight = 0.001
type_norm = args.type_norm
num_features = 1433
num_classes = 7
#####################
GConv = GCNIIdenseConv
class GCNII_model(torch.nn.Module):
def __init__(self):
super(GCNII_model, self).__init__()
self.convs = torch.nn.ModuleList()
self.layers_bn = torch.nn.ModuleList([])
self.convs.append(torch.nn.Linear(num_features, hidden_dim))
self.type_norm = type_norm
if self.type_norm in ['None', 'batch', 'pair']:
skip_connect = False
else:
skip_connect = True
for i in range(nlayer):
self.convs.append(GConv(hidden_dim, hidden_dim))
self.layers_bn.append(batch_norm(hidden_dim, self.type_norm, skip_connect, num_groups, skip_weight))
self.convs.append(torch.nn.Linear(hidden_dim,num_classes))
self.reg_params = list(self.convs[1:-1].parameters())
self.non_reg_params = list(self.convs[0:1].parameters())+list(self.convs[-1:].parameters())
self.non_reg_params += list(self.layers_bn[0:].parameters())
def forward(self):
x, edge_index, edge_weight = data.x, data.edge_index, data.edge_attr
_hidden = []
x = F.dropout(x, dropout ,training=self.training)
x = self.convs[0](x)
x = F.relu(x)
_hidden.append(x)
for i,con in enumerate(self.convs[1:-1]):
x = F.dropout(x, dropout ,training=self.training)
beta = math.log(lamda/(i+1)+1)
x = con(x, edge_index,alpha, _hidden[0],beta,edge_weight)
x = self.layers_bn[i](x)
x = F.relu(x)
x = F.dropout(x, dropout ,training=self.training)
x = self.convs[-1](x)
return F.log_softmax(x, dim=1)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
acc_test_list = []
for seed in seeds:
set_seed(seed)
model, data = GCNII_model().to(device), data.to(device)
optimizer = torch.optim.Adam([
dict(params=model.reg_params, weight_decay=weight_decay1),
dict(params=model.non_reg_params, weight_decay=weight_decay2)
], lr=lr)
def train():
model.train()
optimizer.zero_grad()
loss_train = F.nll_loss(model()[data.train_mask], data.y[data.train_mask])
loss_train.backward()
optimizer.step()
return loss_train.item()
@torch.no_grad()
def test():
model.eval()
logits = model()
loss_val = F.nll_loss(logits[data.val_mask], data.y[data.val_mask]).item()
for _, mask in data('val_mask'):
pred = logits[mask].max(1)[1]
val_accs = pred.eq(data.y[mask]).sum().item() / mask.sum().item()
for _, mask in data('test_mask'):
pred = logits[mask].max(1)[1]
test_accs = pred.eq(data.y[mask]).sum().item() / mask.sum().item()
return loss_val, val_accs, test_accs
best_val_loss = 9999999
best_val_acc = 0.
test_acc = 0
bad_counter = 0
best_epoch = 0
for epoch in range(1, 1500):
loss_tra = train()
loss_val,acc_val_tmp, acc_test_tmp = test()
if loss_val < best_val_loss:
best_val_loss = loss_val
test_acc = acc_test_tmp
bad_counter = 0
best_epoch = epoch
else:
bad_counter+=1
if epoch%20 == 0:
log = 'Epoch: {:03d}, Train loss: {:.4f}, Val loss: {:.4f}, Test acc: {:.4f}'
print(log.format(epoch, loss_tra, loss_val, test_acc))
if bad_counter == patience:
break
log = 'best Epoch: {:03d}, Val loss: {:.4f}, Test acc: {:.4f}'
acc_test_list.append(test_acc)
print(log.format(best_epoch, best_val_loss, test_acc))
print('test acc of 5 seeds: ', acc_test_list)
print('avg test acc and std: ', np.mean(acc_test_list), np.std(acc_test_list))