From 2372b75acfde38f934d77cba2ad6e9bd6473bad2 Mon Sep 17 00:00:00 2001 From: Alexey Grigorev Date: Mon, 24 May 2021 13:58:19 +0200 Subject: [PATCH] chapter 02 update --- .gitignore | 3 +- chapter-02-car-price/02-carprice.ipynb | 118 ++++++++++++++----------- 2 files changed, 66 insertions(+), 55 deletions(-) diff --git a/.gitignore b/.gitignore index 424e4bc..699ff99 100644 --- a/.gitignore +++ b/.gitignore @@ -1 +1,2 @@ -*.h5 \ No newline at end of file +*.h5 +.ipynb_checkpoints/ \ No newline at end of file diff --git a/chapter-02-car-price/02-carprice.ipynb b/chapter-02-car-price/02-carprice.ipynb index e51557a..5f75d95 100644 --- a/chapter-02-car-price/02-carprice.ipynb +++ b/chapter-02-car-price/02-carprice.ipynb @@ -429,7 +429,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAZa0lEQVR4nO3deZQlZZ3m8e8jJSCCLII2FEuBcFD0jEqniOMuNgKtonNccGypRpTucW/tUXBpaZeetqeVlnFUUBwBF0C0G2xXRKV1zggWCrKJlIhQFkIhCIK4FP7mj3hTLlWZGTeLvJU3q76fc+7JiDfeiHjvmzfzufFG3LipKiRJmsl95rsBkqTxZ1hIknoZFpKkXoaFJKmXYSFJ6mVYSJJ6GRYaa0k+nORtc7StXZPcnmSTNv/NJC+bi2237X0pydK52t4s9vuuJDcl+fkcbW/O+lwbjvg5C82XJNcADwZWA3cBlwOnACdW1R/WYVsvq6qvzWKdbwKfqKqPzmZfbd1jgT2r6i9mu+5cSrIL8CNgt6q6cT7bog2bRxaab8+qqq2A3YB/BN4EnDTXO0myaK63OSZ2A34xV0ExedQlrcmw0Fioqlur6mzghcDSJI8ASPLxJO9q09sn+fckv0xyc5JvJblPklOBXYHPt2GmNyZZkqSSHJnkWuDrA2WDwfGQJBckuTXJWUm2a/t6SpIVg21Mck2Spyc5CHgz8MK2v4vb8j8Oa7V2vTXJT5PcmOSUJFu3ZZPtWJrk2jaE9Jbp+ibJ1m39VW17b23bfzpwDrBTa8fHp1j3KUlWJHlz2881SV48sPzjST6U5ItJ7gCeOtjnrc6hSS5KcluSH7fnP9muk5Jcn+RnbThscohvzyTntX69Kcnpw7wONL4MC42VqroAWAE8cYrFb2jLdqAbvnpzt0q9BLiW7ihly6r6p4F1ngw8DHjGNLs8HHgpsBPdcNjxQ7Txy8A/AKe3/T1yimp/2R5PBfYAtgQ+sEadJwB7AwcAf5fkYdPs8n8BW7ftPLm1+Yg25HYwsLK14y+nWf9PgO2BxcBS4MQkew8s/6/Au4GtgG8PrphkP7qhwf8ObAM8CbimLT6Zrs/2BB4NHAhMngN6J/BVYFtg5/YctIAZFhpHK4Htpij/PbAj3fj876vqW9V/0u3Yqrqjqu6cZvmpVXVpVd0BvA14wRwNxbwYeF9VXV1VtwPHAIetcVTz91V1Z1VdDFwMrBU6rS0vBI6pql9V1TXAe4GXzLI9b6uq31bVecAXgBcMLDurqv5vVf2hqn6zxnpHAh+rqnPa8p9V1Q+TPJguqF7X+vdG4DjgsLbe7+mGyHaqqt9U1bfRgmZYaBwtBm6eovx/AsuBrya5OsnRQ2zrulks/ylwX7p34ffWTm17g9teRHdENGnw6qVf0x19rGl7YNMptrV4Fm25pYXh4Po7DczP1Ee7AD+eonw3ur66vg0L/hI4AXhQW/5GIMAFSS5L8tJZtFdjyLDQWEnyGLp/hGu9E23vrN9QVXsAzwJen+SAycXTbLLvyGOXgeld6d4R3wTcAWwx0K5N6Ia/ht3uSrp/qIPbXg3c0LPemm7i7nfpg9v62Sy2sW2S+6+x/sqB+Zmey3XAQ6Yp/y2wfVVt0x4PqKqHA1TVz6vq5VW1E/BXwAeT7DmLNmvMGBYaC0kekOSZwGl0l7NeMkWdZ7YTpwFuo7vc9q62+Aa6Mf3Z+osk+yTZAngHcGZV3UV3OermSf48yX2BtwKbDax3A7AkyXR/Q58G/ibJ7km25O5zHKtn07jWljOAdyfZKsluwOuBT8xmO8DfJ9k0yROBZwKfGXK9k4AjkhzQTqovTvLQqrqe7pzEe9vv7j5JHpLkyQBJnp9k57aNW+gC6a6pd6GFwLDQfPt8kl/RvVN9C/A+4Ihp6u4FfA24Hfh/wAer6ptt2f8A3tqGRP52Fvs/Ffg43ZDQ5sBroLs6C3gF8FG6d/F30J1cnzT5z/YXSb43xXY/1rb9H8BPgN8Ar55Fuwa9uu3/arojrk+17Q/r53T/sFcCnwT+uqp+OMyK7YKDI+jOR9wKnMfdRzmH0w2RXd62fybdOSWAxwDnJ7kdOBt4bVX9ZBZt1pjxQ3nSBizJU+iO1HbuqyvNxCMLSVIvw0KS1MthKElSL48sJEm9Nsibq22//fa1ZMmS+W6GJC0oF1544U1VtcNUyzbIsFiyZAnLli2b72ZI0oKS5KfTLXMYSpLUy7CQJPUyLCRJvQwLSVIvw0KS1MuwkCT1MiwkSb0MC0lSL8NCktRrg/wE973VfRHb2rzpoqSNlUcWkqRehoUkqZdhIUnqZVhIknoZFpKkXoaFJKmXYSFJ6mVYSJJ6GRaSpF6GhSSpl2EhSeplWEiSehkWkqRehoUkqZdhIUnqZVhIknoZFpKkXoaFJKmXYSFJ6mVYSJJ6GRaSpF4jDYskf5PksiSXJvl0ks2T7J7k/CRXJTk9yaat7mZtfnlbvmRgO8e08iuTPGOUbZYkrW1kYZFkMfAaYKKqHgFsAhwGvAc4rqr2Am4BjmyrHAncUlV7Ase1eiTZp633cOAg4INJNhlVuyVJaxv1MNQi4H5JFgFbANcDTwPObMtPBp7Tpg9t87TlByRJKz+tqn5bVT8BlgP7jbjdkqQBIwuLqvoZ8M/AtXQhcStwIfDLqlrdqq0AFrfpxcB1bd3Vrf4DB8unWOePkhyVZFmSZatWrZr7JyRJG7FRDkNtS3dUsDuwE3B/4OApqtbkKtMsm678ngVVJ1bVRFVN7LDDDuvWaEnSlEY5DPV04CdVtaqqfg98DvjPwDZtWApgZ2Blm14B7ALQlm8N3DxYPsU6kqT1YJRhcS2wf5It2rmHA4DLgW8Az2t1lgJntemz2zxt+derqlr5Ye1qqd2BvYALRthuSdIaFvVXWTdVdX6SM4HvAauB7wMnAl8ATkvyrlZ2UlvlJODUJMvpjigOa9u5LMkZdEGzGnhlVd01qnZLktaW7s37hmViYqKWLVu2zut3B0Jr2xD7SpImJbmwqiamWuYnuCVJvQwLSVIvw0KS1MuwkCT1MiwkSb0MC0lSL8NCktTLsJAk9TIsJEm9DAtJUi/DQpLUy7CQJPUyLCRJvQwLSVIvw0KS1MuwkCT1MiwkSb0MC0lSL8NCktTLsJAk9TIsJEm9DAtJUi/DQpLUy7CQJPUyLCRJvQwLSVIvw0KS1MuwkCT1MiwkSb0MC0lSL8NCktTLsJAk9TIsJEm9DAtJUi/DQpLUy7CQJPUaaVgk2SbJmUl+mOSKJI9Lsl2Sc5Jc1X5u2+omyfFJlif5QZJ9B7aztNW/KsnSUbZZkrS2UR9ZvB/4clU9FHgkcAVwNHBuVe0FnNvmAQ4G9mqPo4APASTZDng78FhgP+DtkwEjSVo/RhYWSR4APAk4CaCqfldVvwQOBU5u1U4GntOmDwVOqc53gG2S7Ag8Azinqm6uqluAc4CDRtVuSdLaRnlksQewCvg/Sb6f5KNJ7g88uKquB2g/H9TqLwauG1h/RSubrvwekhyVZFmSZatWrZr7ZyNJG7FRhsUiYF/gQ1X1aOAO7h5ymkqmKKsZyu9ZUHViVU1U1cQOO+ywLu2VJE1jlGGxAlhRVee3+TPpwuOGNrxE+3njQP1dBtbfGVg5Q7kkaT0ZWVhU1c+B65Ls3YoOAC4HzgYmr2haCpzVps8GDm9XRe0P3NqGqb4CHJhk23Zi+8BWJklaTxYNUynJI6rq0nXY/quBTybZFLgaOIIuoM5IciRwLfD8VveLwCHAcuDXrS5VdXOSdwLfbfXeUVU3r0NbJEnrKFVrDf+vXSn5NrAp8HHgU+2qprE1MTFRy5YtW+f1k6lOk8AwfSVJC1WSC6tqYqplQw1DVdUTgBfTnTtYluRTSf5sDtsoSRpjQ5+zqKqrgLcCbwKeDBzfPpn9X0bVOEnSeBgqLJL8pyTH0X0C+2nAs6rqYW36uBG2T5I0BoY6wQ18APgI8OaqunOysKpWJnnrSFomSRobw4bFIcCdVXUXQJL7AJtX1a+r6tSRtU6SNBaGPWfxNeB+A/NbtDJJ0kZg2LDYvKpun5xp01uMpkmSpHEzbFjcscb3S/wpcOcM9SVJG5Bhz1m8DvhMksl7Mu0IvHA0TZIkjZuhwqKqvpvkocDedHeB/WFV/X6kLZMkjY1hjywAHgMsaes8OglVdcpIWiVJGivD3kjwVOAhwEXAXa24AMNCkjYCwx5ZTAD7lHfSk6SN0rBXQ10K/MkoGyJJGl/DHllsD1ye5ALgt5OFVfXskbRKkjRWhg2LY0fZCEnSeBv20tnzkuwG7FVVX0uyBbDJaJsmSRoXw96i/OXAmcAJrWgx8G+japQkabwMe4L7lcDjgdvgj1+E9KBRNUqSNF6GDYvfVtXvJmeSLKL7nIUkaSMwbFicl+TNwP3ad29/Bvj86JolSRonw4bF0cAq4BLgr4Av0n0ftyRpIzDs1VB/oPta1Y+MtjmSpHE07L2hfsIU5yiqao85b5EkaezM5t5QkzYHng9sN/fNkSSNo6HOWVTVLwYeP6uqfwGeNuK2SZLGxLDDUPsOzN6H7khjq5G0SJI0doYdhnrvwPRq4BrgBXPeGknSWBr2aqinjrohkqTxNeww1OtnWl5V75ub5kiSxtFsroZ6DHB2m38W8B/AdaNolCRpvMzmy4/2rapfASQ5FvhMVb1sVA2TJI2PYW/3sSvwu4H53wFL5rw1kqSxNOyRxanABUn+le6T3M8FThlZqyRJY2XYq6HeneRLwBNb0RFV9f3RNUuSNE6GHYYC2AK4rareD6xIsvuI2iRJGjPDfq3q24E3Ace0ovsCnxhVoyRJ42XYI4vnAs8G7gCoqpUMebuPJJsk+X6Sf2/zuyc5P8lVSU5Psmkr36zNL2/Llwxs45hWfmWSZwz/9CRJc2HYsPhdVRXtNuVJ7j+LfbwWuGJg/j3AcVW1F3ALcGQrPxK4par2BI5r9UiyD3AY8HDgIOCDSTaZxf4lSffSsGFxRpITgG2SvBz4GkN8EVKSnYE/Bz7a5kN3t9ozW5WTgee06UPbPG35Aa3+ocBpVfXbqvoJsBzYb8h2S5LmwLBXQ/1z++7t24C9gb+rqnOGWPVfgDdy95DVA4FfVtXqNr8CWNymF9M+EV5Vq5Pc2uovBr4zsM3Bdf4oyVHAUQC77rrrME9LkjSk3rBoQz5fqaqnA8MExOR6zwRurKoLkzxlsniKqtWzbKZ17i6oOhE4EWBiYmKt5ZKkddcbFlV1V5JfJ9m6qm6dxbYfDzw7ySF03673ALojjW2SLGpHFzsDK1v9FcAudJflLgK2Bm4eKJ80uI4kaT0Y9pzFb4BLkpyU5PjJx0wrVNUxVbVzVS2hO0H99ap6MfAN4Hmt2lLgrDZ9dpunLf96O6l+NnBYu1pqd2Av4IIh2y1JmgPD3u7jC+0xF94EnJbkXcD3gZNa+UnAqUmW0x1RHAZQVZclOQO4nO6Ll15ZVXfNUVskSUNI9+Z9moXJrlV17Xpsz5yYmJioZcuWrfP63UVYa5upryRpoUtyYVVNTLWsbxjq3wY28tk5bZUkacHoC4vBt9h7jLIhkqTx1RcWNc20JGkj0neC+5FJbqM7wrhfm6bNV1U9YKStkySNhRnDoqq8B5MkaVbfZyFJ2kgZFpKkXoaFJKmXYSFJ6mVYSJJ6GRaSpF6GhSSpl2EhSeplWEiSehkWkqRehoUkqZdhIUnqZVhIknoZFpKkXoaFJKmXYSFJ6mVYSJJ6GRaSpF6GhSSpl2EhSeplWEiSehkWkqRehoUkqZdhIUnqZVhIknoZFpKkXoaFJKmXYSFJ6mVYSJJ6GRaSpF6GhSSp18jCIskuSb6R5IoklyV5bSvfLsk5Sa5qP7dt5UlyfJLlSX6QZN+BbS1t9a9KsnRUbZYkTW2URxargTdU1cOA/YFXJtkHOBo4t6r2As5t8wAHA3u1x1HAh6ALF+DtwGOB/YC3TwaMJGn9GFlYVNX1VfW9Nv0r4ApgMXAocHKrdjLwnDZ9KHBKdb4DbJNkR+AZwDlVdXNV3QKcAxw0qnZLkta2Xs5ZJFkCPBo4H3hwVV0PXaAAD2rVFgPXDay2opVNV77mPo5KsizJslWrVs31U5jcx5QPSdrQjTwskmwJfBZ4XVXdNlPVKcpqhvJ7FlSdWFUTVTWxww47rFtjJUlTGmlYJLkvXVB8sqo+14pvaMNLtJ83tvIVwC4Dq+8MrJyhXJK0nozyaqgAJwFXVNX7BhadDUxe0bQUOGug/PB2VdT+wK1tmOorwIFJtm0ntg9sZZKk9WTRCLf9eOAlwCVJLmplbwb+ETgjyZHAtcDz27IvAocAy4FfA0cAVNXNSd4JfLfVe0dV3TzCdkuS1pCqtYb/F7yJiYlatmzZOq8/25PWG2IfStr4JLmwqiamWuYnuCVJvQwLSVIvw0KS1MuwkCT1MiwkSb0MC0lSL8NCktTLsJAk9TIsJEm9DAtJUi/DQpLUy7CQJPUyLCRJvQwLSVIvw0KS1MuwkCT1MiwkSb0MC0lSL8NCktTLsJAk9TIsJEm9DAtJUi/DQpLUy7CQJPUyLCRJvQwLSVIvw0KS1MuwkCT1MiwkSb0MC0lSL8NCktTLsJAk9TIsJEm9Fs13AzYESaYsr6r13BJJGg2PLCRJvQwLSVIvw0KS1GvBhEWSg5JcmWR5kqPnuz3DSDKrhySNqwURFkk2Af43cDCwD/CiJPvMb6vmniEiaVwtlKuh9gOWV9XVAElOAw4FLp/XVq0ncxUY012dNdP2vaJLEiycsFgMXDcwvwJ47GCFJEcBR7XZ25NcuY772h64aR3XHWvrEjozrLPB9tMcs5/62UfDWR/9tNt0CxZKWEz1H+seb3mr6kTgxHu9o2RZVU3c2+1s6Oyn4dhP/eyj4cx3Py2IcxZ0RxK7DMzvDKycp7ZI0kZnoYTFd4G9kuyeZFPgMODseW6TJG00FsQwVFWtTvIq4CvAJsDHquqyEe3uXg9lbSTsp+HYT/3so+HMaz/Fq10kSX0WyjCUJGkeGRaSpF6GxYCFeEuRdZHkmiSXJLkoybJWtl2Sc5Jc1X5u28qT5PjWJz9Isu/Adpa2+lclWTpQ/qdt+8vbuplpH+MiyceS3Jjk0oGyeeuXmfYxn6bpp2OT/Ky9pi5KcsjAsmPac7gyyTMGyqf8e2sXspzf+uP0dlELSTZr88vb8iV9+5gvSXZJ8o0kVyS5LMlrW/nCfT1VlY/uvM0mwI+BPYBNgYuBfea7XSN6rtcA269R9k/A0W36aOA9bfoQ4Et0n3XZHzi/lW8HXN1+btumt23LLgAe19b5EnDwTPsYlwfwJGBf4NJx6Jfp9jHfj2n66Vjgb6eou0/7W9oM2L39jW0y098bcAZwWJv+MPDf2vQrgA+36cOA02faxzz30Y7Avm16K+BHrZ0L9vU07y+8cXm0Tv/KwPwxwDHz3a4RPddrWDssrgR2bNM7Ale26ROAF61ZD3gRcMJA+QmtbEfghwPlf6w33T7G6QEsWeOf4Lz1y3T7mO8+mqafjmXqsLjH3xHdFY2Pm+7vrf0juwlY1Mr/WG9y3Ta9qNXLdPuY7z5aox/OAv5sIb+eHIa621S3FFk8T20ZtQK+muTCdLdJAXhwVV0P0H4+qJVP1y8zla+YonymfYyz+eyXhfaafFUb3vjYwBDjbPvpgcAvq2r1GuX32FZbfmurP9b91IbLHg2czwJ+PRkWd+u9pcgG5PFVtS/dXXxfmeRJM9Sdrl9mW76hWR/9spD68kPAQ4BHAdcD723lc9lPC+41l2RL4LPA66rqtpmqTlE2Vq8nw+JuG80tRapqZft5I/CvdHf1vSHJjgDt542t+nT9MlP5zlOUM8M+xtl89suCeU1W1Q1VdVdV/QH4CN1rCmbfTzcB2yRZtEb5PbbVlm8N3DzDtuZVkvvSBcUnq+pzrXjBvp4Mi7ttFLcUSXL/JFtNTgMHApfSPdfJKy2W0o2x0soPb1dS7A/c2g5tvwIcmGTbNuRwIN3Y8vXAr5Ls367OOHyNbU21j3E2n/0y3T7GzuQ/p+a5dK8p6J7DYe1Kpt2BvehOzE7591bdYPo3gOe19dfsj8l+eh7w9VZ/un3Mm/Y7Pgm4oqreN7Bo4b6e5vvEzzg96K4W+BHd1RRvme/2jOg57kF35cjFwGWTz5Nu7Pdc4Kr2c7tWHrovnvoxcAkwMbCtlwLL2+OIgfIJun8WPwY+wN13CphyH+PyAD5NN4Tye7p3YUfOZ7/MtI8x7KdTWxt/QPdPaceB+m9pz+FK2hU7rXzKv7f2Gr2g9d9ngM1a+eZtfnlbvkffPuaxj55AN8TzA+Ci9jhkIb+evN2HJKmXw1CSpF6GhSSpl2EhSeplWEiSehkWkqRehoV0LyW5K92dVi9N8pkkW0xT74tJtlnf7ZPmgpfOSvdSkturass2/Ungwhr4IFb70FSq+3SztCB5ZCHNrW8BeyZZku67DD4IfA/YJd33iGwPkOTwdtO9i5Oc2sp2SPLZJN9tj8fP4/OQ7mFRfxVJw2j3KzoY+HIr2pvuE7evaMsn6z2c7hPHj6+qm5Js1+q/Hziuqr6dZFe6Wz08bD0+BWlahoV0790vyUVt+lt09wTaCfhpVX1nivpPA86sqpsAqurmVv50YJ/JUAEekGSrqvrV6JouDcewkO69O6vqUYMF7R/+HdPUD1PfGvo+dF/ac+fcNk+69zxnIa1/5wIvSPJA6L4zuZV/FXjVZKUkj5piXWleGBbSelZVlwHvBs5LcjEweeXUa4CJduL7cuCv56uN0pq8dFaS1MsjC0lSL8NCktTLsJAk9TIsJEm9DAtJUi/DQpLUy7CQJPX6/7zIk6GkCdkPAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAanklEQVR4nO3de7xdZX3n8c/XgAhFFIZAIQkENV6Al1aIlKpVFDvGVoudV9E4KimlUi3jpTcFaqu9ZIaZaW1lWmhTsVy0ItqOxI5YkXqjw8VoZRCQGgVDTLiIKAGRS/qbP/ZzyvbkXPbJOmef7OTzfr3266z9rOdZ69krK+d71rPWXitVhSRJ2+sx890BSdJoM0gkSZ0YJJKkTgwSSVInBokkqRODRJLUiUGikZXkL5P87iwt65Ak9yVZ0N5/NsmvzMay2/IuS7JqtpY3g/X+UZLvJLl9lpY3a9tcO4/4PRLtiJLcChwIPAJsBW4ELgTWVNW/bceyfqWqPj2DNp8FPlBV75vJulrbdwNPqarXzbTtbEqyBPhX4NCqunM++6Kdm0ck2pG9oqoeDxwKnAW8AzhvtleSZLfZXuYO4lDg7tkKkbGjNWk8g0Q7vKr6flWtBV4NrEpyJECS85P8UZveP8k/JPleku8m+UKSxyS5CDgE+Hgbunp7kqVJKskpSTYA/9RX1h8qT05ybZLvJ7k0yX5tXccl2djfxyS3JnlJkhXAmcCr2/qua/P/fais9eudSb6V5M4kFyZ5Qps31o9VSTa0YanfmWzbJHlCa39XW9472/JfAlwOHNz6cf4EbY9LsjHJmW09tyZ5bd/885Ocm+QTSe4HXtS/zVudE5J8Jcm9Sb7RPv9Yv85LsjnJt9sQ29iw4VOSfK5t1+8k+fAg+4F2XAaJRkZVXQtsBH56gtm/2eYtpDckdmavSb0e2EDv6GbvqvoffW1eCDwDeOkkqzwJ+GXgYHpDbGcP0MdPAv8V+HBb37MmqPZL7fUi4EnA3sCfj6vzfOBpwPHA7yV5xiSr/F/AE9pyXtj6fHIbxnsZsKn145cmaf/jwP7AImAVsCbJ0/rm/2dgNfB44Mr+hkmOoTfc+NvAE4EXALe22RfQ22ZPAZ4N/Edg7JzTHwKfAvYFFrfPoBFmkGjUbAL2m6D8YeAgeucDHq6qL9T0JwDfXVX3V9UDk8y/qKq+WlX3A78LvGqWhndeC7ynqr5ZVfcBZwArxx0N/X5VPVBV1wHXAdsEUuvLq4EzqmpLVd0K/Anw+hn253er6sGq+hzwf4BX9c27tKr+uar+rap+OK7dKcD7q+ryNv/bVfW1JAfSC7G3te17J/CnwMrW7mF6w24HV9UPq+pKNNIMEo2aRcB3Jyj/n8B64FNJvpnk9AGWddsM5n8L2J3eX+9dHdyW17/s3egdSY3pv8rqB/SOWsbbH3jsBMtaNIO+3NOCsr/9wX3vp9pGS4BvTFB+KL1ttbkNNX4P+CvggDb/7UCAa5PckOSXZ9Bf7YAMEo2MJM+h90tym79g21/kv1lVTwJeAfxGkuPHZk+yyOmOWJb0TR9C7y/p7wD3A3v19WsBvSG1QZe7id4v2/5lPwLcMU278b7Do3/d9y/r2zNYxr5Jfmxc+01976f6LLcBT56k/EFg/6p6YnvtU1VHAFTV7VX1hqo6GPhV4JwkT5lBn7WDMUi0w0uyT5KXAxfTuyT3+gnqvLydxA1wL71Lhre22XfQO4cwU69LcniSvYA/AD5aVVvpXVL7uCQ/l2R34J3AHn3t7gCWJpns/9eHgF9PcliSvXn0nMojM+lc68slwOokj09yKPAbwAdmshzg95M8NslPAy8HPjJgu/OAk5Mc307wL0ry9KraTO8cyJ+0f7vHJHlykhcCJDkxyeK2jHvohdXWiVehUWCQaEf28SRb6P2F+zvAe4CTJ6m7DPg0cB9wFXBOVX22zftvwDvbMMtvzWD9FwHn0xtmehzwFuhdRQb8GvA+en/930/vRP+YsV/Edyf58gTLfX9b9ueBW4AfAm+eQb/6vbmt/5v0jtT+ti1/ULfT+2W+Cfgg8Maq+togDdvFDyfTO//xfeBzPHp0dBK9Ybcb2/I/Su8cFsBzgGuS3AesBd5aVbfMoM/awfiFRGkXleQ4ekd4i6epKk3JIxJJUicGiSSpE4e2JEmdeEQiSepkZ71Z3aT233//Wrp06Xx3Q5JGype+9KXvVNXCiebtckGydOlS1q1bN9/dkKSRkuRbk81zaEuS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1MmcfbM9yfvpPW3tzqo6spXtB3wYWArcCryqqu5p884ATqH3pLS3VNU/tvKj6T1caE/gE/QeglNJ9gAuBI4G7gZeXVW3ztXnAXj+85/PbbdN/gjrJUuWcOWV2zwFVpJ2anN5i5TzgT+n98t+zOnAFVV1VpLT2/t3JDkcWAkcARwMfDrJU9ujRM8FTgWuphckK4DL6IXOPVX1lCQrgf8OvHoOPw+33XYbGzZsmMtVSNLImbOhrar6PPDdccUnABe06QuAV/aVX1xVD7ZHbq4HjklyELBPVV1VvfvdXziuzdiyPgoc357XLUkaomGfIzmwqjYDtJ8HtPJF9J7LPWZjK1vEjz4Le6z8R9pU1SP0nhn9H+as55KkCe0oJ9snOpKoKcqnarPtwpNTk6xLsu6uu+7azi5KkiYy7CC5ow1X0X7e2co3Akv66i0GNrXyxROU/0ibJLsBT2DboTQAqmpNVS2vquULF054O31J0nYadpCsBVa16VXApX3lK5PskeQwYBlwbRv+2pLk2Hb+46RxbcaW9YvAP5XPDZakoZvLy38/BBwH7J9kI/Au4CzgkiSnABuAEwGq6oYklwA3Ao8Ap7UrtgDexKOX/17WXgDnARclWU/vSGTlXH0WSdLk5ixIquo1k8w6fpL6q4HVE5SvA46coPyHtCCSJM2fHeVkuyRpRBkkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjoxSCRJnRgkkqRODBJJUicGiSSpE4NEktSJQSJJ6sQgkSR1YpBIkjqZlyBJ8utJbkjy1SQfSvK4JPsluTzJ19vPffvqn5FkfZKbk7y0r/zoJNe3eWcnyXx8HknalQ09SJIsAt4CLK+qI4EFwErgdOCKqloGXNHek+TwNv8IYAVwTpIFbXHnAqcCy9prxRA/iiSJ+Rva2g3YM8luwF7AJuAE4II2/wLglW36BODiqnqwqm4B1gPHJDkI2KeqrqqqAi7sayNJGpKhB0lVfRv4Y2ADsBn4flV9Cjiwqja3OpuBA1qTRcBtfYvY2MoWtenx5dtIcmqSdUnW3XXXXbP5cSRplzcfQ1v70jvKOAw4GPixJK+bqskEZTVF+baFVWuqanlVLV+4cOFMuyxJmsJ8DG29BLilqu6qqoeBvweeC9zRhqtoP+9s9TcCS/raL6Y3FLaxTY8vlyQN0XwEyQbg2CR7tausjgduAtYCq1qdVcClbXotsDLJHkkOo3dS/do2/LUlybFtOSf1tZEkDcluw15hVV2T5KPAl4FHgH8B1gB7A5ckOYVe2JzY6t+Q5BLgxlb/tKra2hb3JuB8YE/gsvaSJA3R0IMEoKreBbxrXPGD9I5OJqq/Glg9Qfk64MhZ76AkaWB+s12S1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1MlAQZLkyLnuiCRpNA16RPKXSa5N8mtJnjiXHZIkjZaBgqSqng+8FlgCrEvyt0l+Zk57JkkaCQOfI6mqrwPvBN4BvBA4O8nXkvynueqcJGnHN+g5kmcm+VPgJuDFwCuq6hlt+k/nsH+SpB3cbgPW+3Pgr4Ezq+qBscKq2pTknXPSM0nSSBg0SH4WeKCqtgIkeQzwuKr6QVVdNGe9kyTt8AY9R/JpYM++93u1su2S5IlJPtrOsdyU5KeS7Jfk8iRfbz/37at/RpL1SW5O8tK+8qOTXN/mnZ0k29snSdL2GTRIHldV9429adN7dVjve4FPVtXTgWfRO/dyOnBFVS0DrmjvSXI4sBI4AlgBnJNkQVvOucCpwLL2WtGhT5Kk7TBokNyf5KixN0mOBh6Yov6kkuwDvAA4D6CqHqqq7wEnABe0ahcAr2zTJwAXV9WDVXULsB44JslBwD5VdVVVFXBhXxtJ0pAMeo7kbcBHkmxq7w8CXr2d63wScBfwN0meBXwJeCtwYFVtBqiqzUkOaPUXAVf3td/Yyh5u0+PLt5HkVHpHLhxyyCHb2W1J0kQGCpKq+mKSpwNPAwJ8raoe7rDOo4A3V9U1Sd5LG8aaxETnPWqK8m0Lq9YAawCWL18+YR1J0vaZyU0bnwM8E3g28JokJ23nOjcCG6vqmvb+o/SC5Y42XEX7eWdf/SV97RcDm1r54gnKJUlDNOgXEi8C/hh4Pr1AeQ6wfHtWWFW3A7cleVorOh64EVgLrGplq4BL2/RaYGWSPZIcRu+k+rVtGGxLkmPb1Von9bWRJA3JoOdIlgOHt5Pas+HNwAeTPBb4JnAyvVC7JMkpwAbgRICquiHJJfTC5hHgtLHvswBvAs6nd2nyZe0lSRqiQYPkq8CPA5tnY6VV9RUmPqI5fpL6q4HVE5SvA7zFvSTNo0GDZH/gxiTXAg+OFVbVz89JryRJI2PQIHn3XHZCkjS6Br3893NJDgWWVdWnk+wFLJiunSRp5zfoVVtvoHeZ7l+1okXAx+aoT5KkETLo90hOA54H3Av//pCrA6ZsIUnaJQwaJA9W1UNjb5LsxiTfIpck7VoGDZLPJTkT2LM9q/0jwMfnrluSpFExaJCcTu9Gi9cDvwp8gt7z2yVJu7hBr9r6N3qP2v3rue2OJGnUDBQkSW5hgnMiVfWkWe+RJGmkzOReW2MeR+8+WPvNfnckSaNmoHMkVXV33+vbVfVnwIvntmuSpFEw6NDWUX1vH0PvCOXxc9IjSdJIGXRo60/6ph8BbgVeNeu9kSSNnEGv2nrRXHdEkjSaBh3a+o2p5lfVe2anO5KkUTOTq7aeQ++xtwCvAD4P3DYXnZIkjY6ZPNjqqKraApDk3cBHqupX5qpjkqTRMOgtUg4BHup7/xCwdNZ7I0kaOYMekVwEXJvkf9P7hvsvABfOWa8kSSNj0Ku2Vie5DPjpVnRyVf3L3HVLkjQqBh3aAtgLuLeq3gtsTHLYHPVJkjRCBn3U7ruAdwBntKLdgQ/MVackSaNj0COSXwB+HrgfoKo24S1SJEkMHiQPVVXRbiWf5MfmrkuSpFEyaJBckuSvgCcmeQPwaXzIlSSJAa7aShLgw8DTgXuBpwG/V1WXz3HfJEkjYNogqapK8rGqOhowPCRJP2LQoa2rkzxnTnsiSRpJg36z/UXAG5PcSu/KrdA7WHnmXHVMkjQapgySJIdU1QbgZUPqjyRpxEw3tPUxgKr6FvCeqvpW/6vLipMsSPIvSf6hvd8vyeVJvt5+7ttX94wk65PcnOSlfeVHJ7m+zTu7XRggSRqi6YKk/xfzk2Z53W8Fbup7fzpwRVUtA65o70lyOLASOAJYAZyTZEFrcy5wKrCsvVbMch8lSdOYLkhqkulOkiwGfg54X1/xCcAFbfoC4JV95RdX1YNVdQuwHjgmyUHAPlV1Vfuy5IV9bSRJQzLdyfZnJbmX3pHJnm0aHj3Zvs92rvfPgLfzo7dZObCqNtNb8OYkB7TyRcDVffU2trKH2/T4cknSEE0ZJFW1YKr52yPJy4E7q+pLSY4bpMkEZTVF+UTrPJXeEBiHHHLIYB2VJA1kJreRny3PA36+XUp8MfDiJB8A7mjDVbSfd7b6G4Elfe0XA5ta+eIJyrdRVWuqanlVLV+4cOFsfhZJ2uUNPUiq6oyqWlxVS+mdRP+nqnodsBZY1aqtAi5t02uBlUn2aM9AWQZc24bBtiQ5tl2tdVJfG0nSkAz6hcRhOIvezSFPATYAJwJU1Q1JLgFuBB4BTquqra3Nm4DzgT2By9pLkjRE8xokVfVZ4LNt+m7g+EnqrQZWT1C+Djhy7nooSZrOfJwjkSTtRAwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0MPUiSLEnymSQ3JbkhyVtb+X5JLk/y9fZz3742ZyRZn+TmJC/tKz86yfVt3tlJMuzPI0m7uvk4InkE+M2qegZwLHBaksOB04ErqmoZcEV7T5u3EjgCWAGck2RBW9a5wKnAsvZaMcwPIkmahyCpqs1V9eU2vQW4CVgEnABc0KpdALyyTZ8AXFxVD1bVLcB64JgkBwH7VNVVVVXAhX1tJElDMq/nSJIsBZ4NXAMcWFWboRc2wAGt2iLgtr5mG1vZojY9vnyi9ZyaZF2SdXfdddesfgZJ2tXNW5Ak2Rv4O+BtVXXvVFUnKKspyrctrFpTVcuravnChQtn3llJ0qTmJUiS7E4vRD5YVX/fiu9ow1W0n3e28o3Akr7mi4FNrXzxBOWSpCGaj6u2ApwH3FRV7+mbtRZY1aZXAZf2la9MskeSw+idVL+2DX9tSXJsW+ZJfW0kSUOy2zys83nA64Hrk3yllZ0JnAVckuQUYANwIkBV3ZDkEuBGeld8nVZVW1u7NwHnA3sCl7WXJGmIhh4kVXUlE5/fADh+kjargdUTlK8Djpy93kmSZspvtkuSOjFIJEmdGCSSpE4MEklSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmdGCSSpE4MEklSJ/Nx99+d1u23386hhx466fwlS5Zw5ZVXDrFHkjT3DJJZtHXrVjZs2DDf3ZCkoXJoS5LUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRODRJLUiUEiSerEIJEkdWKQSJI6MUgkSZ0YJJKkTgwSSVInBokkqRMfbDVEUz1B0acnShpVBskQ+QRFSTujkQ+SJCuA9wILgPdV1Vnz3KXt4vPeJY2qkQ6SJAuAvwB+BtgIfDHJ2qq6cX57NnPTHa1MFTT33HMP++6776RtDSFJc2mkgwQ4BlhfVd8ESHIxcAIwckEynamCZsGCBWzZsmXSttMd7UwVRIaUpOmMepAsAm7re78R+MnxlZKcCpza3t6X5ObtXN/+wHcmm7l169YpG081fy7bPvTQQ9Oem5kqiKaat2HDBpKML55yOwlwGw3K7TSYYWynSf8aHfUg2eY3GFDbFFStAdZ0XlmyrqqWd13Ozs7tND230WDcToOZ7+006t8j2Qgs6Xu/GNg0T32RpF3SqAfJF4FlSQ5L8lhgJbB2nvskSbuUkR7aqqpHkvwX4B/pXf77/qq6YQ5X2Xl4bBfhdpqe22gwbqfBzOt2StU2pxQkSRrYqA9tSZLmmUEiSerEIJlAkhVJbk6yPsnpE8xPkrPb/P+X5Kj56Od8GmAbHZfk+0m+0l6/Nx/9nG9J3p/kziRfnWS++9L028h9CUiyJMlnktyU5IYkb52gzvzsT1Xlq+9F76T9N4AnAY8FrgMOH1fnZ4HL6H2P5Vjgmvnu9w64jY4D/mG++zrfL+AFwFHAVyeZv0vvSwNuI/el3nY4CDiqTT8e+Ncd5XeTRyTb+vfbrlTVQ8DYbVf6nQBcWD1XA09MctCwOzqPBtlGAqrq88B3p6iyq+9Lg2wjAVW1uaq+3Ka3ADfRu7tHv3nZnwySbU1025Xx/1iD1NmZDfr5fyrJdUkuS3LEcLo2cnb1fWlQ7kt9kiwFng1cM27WvOxPI/09kjkyyG1XBro1y05skM//ZeDQqrovyc8CHwOWzXXHRtCuvi8Nwn2pT5K9gb8D3lZV946fPUGTOd+fPCLZ1iC3XdnVb80y7eevqnur6r42/Qlg9yT7D6+LI2NX35em5b70qCS70wuRD1bV309QZV72J4NkW4PcdmUtcFK7QuJY4PtVtXnYHZ1H026jJD+edlvgJMfQ29fuHnpPd3y7+r40LfelnrYNzgNuqqr3TFJtXvYnh7bGqUluu5LkjW3+XwKfoHd1xHrgB8DJ89Xf+TDgNvpF4E1JHgEeAFZWu6xkV5LkQ/SuOto/yUbgXcDu4L40ZoBt5L7U8zzg9cD1Sb7Sys4EDoH53Z+8RYokqROHtiRJnRgkkqRODBJJUicGiSSpE4NEknZi090Uc4L6r0pyY7sx5N8O1MartqS5k2QrcD29S+1vAlZV1Q8mqPd/q+q5w+6fdn5JXgDcR+8eXEdOU3cZcAnw4qq6J8kBVXXndOvwiESaWw9U1U+0/8APAW/sn5lkAYAhorky0U0xkzw5ySeTfCnJF5I8vc16A/AXVXVPazttiIBBIg3TF4CntOdrfKYNG1wPkOS+sUpJ3p7k+naTwrNa2WT/8aXtsQZ4c1UdDfwWcE4rfyrw1CT/nOTqJCsGWZjfbJeGIMluwMuAT7aiY4Ajq+qWcfVeBrwS+Mmq+kGS/dqsNcAbq+rrSX6S3n/8Fw+l89qptJs+Phf4SLvzDMAe7edu9G6IeRy9+3R9IcmRVfW9qZZpkEhza8++21l8gd69kp4LXDs+RJqXAH8zdh6lqr47zX98aaYeA3yvqn5ignkbgaur6mHgliQ30wuWL061QINEmlsPjP8P28Lg/knqh21v+z3Vf3xpRqrq3iS3JDmxqj7Sbgb5zKq6jt4t+l8DnN/usPxU4JvTLdNzJNKO5VPALyfZCyDJfu2ZE7ckObGVJcmz5rOTGh3tpphXAU9LsjHJKcBrgVOSXAfcwKNPOP1H4O4kNwKfAX67qqa907KX/0pzKMl9VbX3uLLjgN+qqpdPVC/J6cBJ9K7y+kRVnZnkMOBces/t3h24uKr+YDifQpqaQSJJ6sShLUlSJwaJJKkTg0SS1IlBIknqxCCRJHVikEiSOjFIJEmd/H86F74cEb5G1AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -443,7 +443,7 @@ "source": [ "plt.figure(figsize=(6, 4))\n", "\n", - "sns.distplot(df.msrp, kde=False, hist_kws=dict(color='black', alpha=1))\n", + "sns.histplot(df.msrp, bins=40, color='black', alpha=1)\n", "plt.ylabel('Frequency')\n", "plt.xlabel('Price')\n", "plt.title('Distribution of prices')\n", @@ -458,7 +458,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEWCAYAAACe8xtsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAeUElEQVR4nO3deZhdVZnv8e+PhFGGJKTAkAQSII1EH5VYYGgcEJCpkdj3EYlNS8Rg2gZH7AsEUBz7oq2gXBWJJM0gMkVaIoIYZr2PDBXmUYqASZFACgMJMwTe+8deh2wqp6rOrpypTv0+z3Oe2vvda++99tmVvLXW2oMiAjMzsyI2aHQFzMxs8HHyMDOzwpw8zMysMCcPMzMrzMnDzMwKc/IwM7PCnDysqUn6haSvV2lb20t6XtKwNH+jpKOrse20vaslzajW9grs97uSnpb0ZJW2V7Xv3FqXfJ+HNYqkx4FtgTXA68ADwPnAnIh4YwDbOjoiri2wzo3AryLinCL7Sut+E9g5Iv616LrVJGk88Fdgh4hY0ci62NDiloc12sciYgtgB+A04ARgbrV3Iml4tbfZJHYA/l6txFFqlZn1x8nDmkJErIqIBcDhwAxJ7wKQdK6k76bp0ZKulPSspJWS/iRpA0kXANsDv0vdUsdLmiApJM2UtAS4PhfLJ5KdJN0maZWkKySNSvvaW1JXvo6SHpe0n6QDgZOAw9P+7k7L3+wGS/U6RdLfJK2QdL6krdKyUj1mSFqSupxO7u27kbRVWr87be+UtP39gIXAdqke55ZZd29JXZJOSvt5XNIRueXnSjpL0lWSXgA+kv/OU5lpku6StFrSo+n4S/WaK2m5pCdS91mpS3BnSTel7/VpSZdU8ntgg4eThzWViLgN6AI+WGbx19KyNrLurpOyVeLTwBKyVszmEfGD3DofBnYFDuhll0cCnwW2I+s+O7OCOv4B+E/gkrS/95Qp9pn0+QiwI7A58NMeZT4A7ALsC3xD0q697PL/Alul7Xw41fmo1EV3ELAs1eMzvaz/dmA0MBaYAcyRtEtu+b8A3wO2AP6cX1HSHmRdif8bGAF8CHg8LT6P7DvbGdgN2B8ojSF9B/gjMBIYl47BWoiThzWjZcCoMvHXgDFk/fuvRcSfov9Bu29GxAsR8VIvyy+IiPsi4gXg68Anq9R1cwRwekQsjojngdnA9B6tnm9FxEsRcTdwN7BOEkp1ORyYHRHPRcTjwI+ATxesz9cj4pWIuAn4PfDJ3LIrIuL/RcQbEfFyj/VmAvMiYmFa/kREPCRpW7LE9ZX0/a4AzgCmp/VeI+tS2y4iXo6IP2MtxcnDmtFYYGWZ+H8BncAfJS2WdGIF21paYPnfgA3J/kpfX9ul7eW3PZysxVSSvzrqRbLWSU+jgY3KbGtsgbo8k5Jjfv3tcvN9fUfjgUfLxHcg+66Wp27EZ4GzgW3S8uMBAbdJul/SZwvU1wYBJw9rKpJ2J/uPcZ2/VNNf3l+LiB2BjwHHSdq3tLiXTfbXMhmfm96e7C/mp4EXgM1y9RpG1l1W6XaXkf0Hm9/2GuCpftbr6WnW/hWf39YTBbYxUtLbeqy/LDff17EsBXbqJf4KMDoiRqTPlhHxToCIeDIiPhcR2wH/Bvxc0s4F6mxNzsnDmoKkLSUdAlxMdvnsvWXKHJIGYgWsJru89/W0+CmyMYGi/lXSZEmbAd8G5kfE62SXv24i6Z8kbQicAmycW+8pYIKk3v4NXQR8VdJESZuzdoxkTZHKpbpcCnxP0haSdgCOA35VZDvAtyRtJOmDwCHAZRWuNxc4StK+aZB+rKR3RMRysjGNH6Vzt4GknSR9GEDSYZLGpW08Q5agXi+/CxuMnDys0X4n6Tmyv2RPBk4Hjuql7CTgWuB54C/AzyPixrTs/wCnpC6U/yiw/wuAc8m6kDYBvgTZ1V/AMcA5ZH/lv0A2WF9S+s/375LuKLPdeWnbNwOPAS8DXyxQr7wvpv0vJmuR/Tptv1JPkv0Hvgy4EPh8RDxUyYrpAoajyMYzVgE3sbYVdCRZl9oDafvzycakAHYHbpX0PLAA+HJEPFagztbkfJOgWQuTtDdZS25cf2XNinDLw8zMCnPyMDOzwtxtZWZmhbnlYWZmhbXkw+JGjx4dEyZMaHQ1zMwGlUWLFj0dEW39l2zR5DFhwgQ6OjoaXQ0zs0FF0t/6L5Vxt5WZmRXm5GFmZoXVLHlImpfeY3Bfj/gXJT2cHpb2g1x8tqTOtOyAXPzAFOus8EF4ZmZWY7Uc8ziX7P0F55cCkj4CTAPeHRGvSNomxSeTPcr5nWRP+7xW0j+k1X4GfJTs0RC3S1oQEQ/UsN5mZtaPmiWPiLhZ0oQe4X8HTouIV1KZ0qszpwEXp/hjkjqBPdKyzohYDCDp4lTWycPMrIHqPebxD8AHJd2aXlG5e4qP5a3vFOhKsd7i65A0S1KHpI7u7u4aVN3MzErqnTyGk72WcirZay0vTY/XVpmy0Ud83WDEnIhoj4j2traKLlM2M7MBqvd9Hl3A5enVobdJeoPsTWldvPWlPONY+7Ka3uJmZtYg9W55/BbYByANiG9E9qa0BWTvd95Y0kSy9zbcBtwOTEov1NmIbFB9QZ3rbGZmPdSs5SHpImBvYLSkLuBUshfYzEuX774KzEitkPslXUo2EL4GODa9QQ1JXwCuAYYB8yLi/lrVOVf3snE/RNLMLNOST9Vtb2+P9Xk8iZOHmQ1FkhZFRHslZX2HuZmZFebkYWZmhTl5mJlZYU4eZmZWmJOHmZkV5uRhZmaFOXmYmVlhTh5mZlaYk4eZmRXm5GFmZoU5eZiZWWFOHmZmVpiTh5mZFebkYWZmhTl5mJlZYU4eZmZWmJOHmZkVVrPkIWmepBXplbM9l/2HpJA0Os1L0pmSOiXdI2lKruwMSY+kz4xa1dfMzCpXy5bHucCBPYOSxgMfBZbkwgcBk9JnFnBWKjuK7N3n7wf2AE6VNLKGdTYzswrULHlExM3AyjKLzgCOB/IvBJ8GnB+ZW4ARksYABwALI2JlRDwDLKRMQjIzs/qq65iHpEOBJyLi7h6LxgJLc/NdKdZbvNy2Z0nqkNTR3d1dxVqbmVlPdUsekjYDTga+UW5xmVj0EV83GDEnItojor2trW3gFTUzs37Vs+WxEzARuFvS48A44A5JbydrUYzPlR0HLOsjbmZmDVS35BER90bENhExISImkCWGKRHxJLAAODJddTUVWBURy4FrgP0ljUwD5funmJmZNVAtL9W9CPgLsIukLkkz+yh+FbAY6AR+CRwDEBErge8At6fPt1PMzMwaSBFlhxAGtfb29ujo6Bjw+lK5oRZoxe/KzKxE0qKIaK+krO8wNzOzwpw8zMysMCcPMzMrzMnDzMwKc/IwM7PCnDzMzKwwJw8zMyvMycPMzApz8jAzs8KcPMzMrDAnDzMzK8zJw8zMCnPyMDOzwpw8zMysMCcPMzMrzMnDzMwKc/IwM7PCavka2nmSVki6Lxf7L0kPSbpH0v9IGpFbNltSp6SHJR2Qix+YYp2STqxVfc3MrHK1bHmcCxzYI7YQeFdEvBv4KzAbQNJkYDrwzrTOzyUNkzQM+BlwEDAZ+FQqa2ZmDVSz5BERNwMre8T+GBFr0uwtwLg0PQ24OCJeiYjHgE5gj/TpjIjFEfEqcHEqa2ZmDdTIMY/PAlen6bHA0tyyrhTrLW5mZg3UkOQh6WRgDXBhKVSmWPQRL7fNWZI6JHV0d3dXp6JmZlZW3ZOHpBnAIcAREVFKBF3A+FyxccCyPuLriIg5EdEeEe1tbW3Vr7iZmb2prslD0oHACcChEfFibtECYLqkjSVNBCYBtwG3A5MkTZS0Edmg+oJ61tnMzNY1vFYblnQRsDcwWlIXcCrZ1VUbAwslAdwSEZ+PiPslXQo8QNaddWxEvJ628wXgGmAYMC8i7q9Vnc3MrDJa23PUOtrb26Ojo2PA66fEto5W/K7MzEokLYqI9krK+g5zMzMrzMnDzMwKc/IwM7PCnDzMzKwwJw8zMyvMycPMzApz8jAzs8KcPMzMrDAnDzMzK8zJw8zMCnPyMDOzwpw8zMysMCcPMzMrzMnDzMwKc/IwM7PCnDzMzKwwJw8zMyvMycPMzAqrWfKQNE/SCkn35WKjJC2U9Ej6OTLFJelMSZ2S7pE0JbfOjFT+EUkzalVfMzOrXC1bHucCB/aInQhcFxGTgOvSPMBBwKT0mQWcBVmyAU4F3g/sAZxaSjhmZtY4FSUPSe8quuGIuBlY2SM8DTgvTZ8HfDwXPz8ytwAjJI0BDgAWRsTKiHgGWMi6CcnMzOqs0pbHLyTdJukYSSPWY3/bRsRygPRzmxQfCyzNletKsd7i65A0S1KHpI7u7u71qKKZmfWnouQRER8AjgDGAx2Sfi3po1Wsh8rtto/4usGIORHRHhHtbW1tVayamZn1VPGYR0Q8ApwCnAB8GDhT0kOS/leB/T2VuqNIP1ekeBdZYioZByzrI25mZg1U6ZjHuyWdATwI7AN8LCJ2TdNnFNjfAqB0xdQM4Ipc/Mh01dVUYFXq1roG2F/SyDRQvn+KmZlZAw2vsNxPgV8CJ0XES6VgRCyTdEq5FSRdBOwNjJbURXbV1GnApZJmAkuAw1Lxq4CDgU7gReCotP2Vkr4D3J7KfTsieg7Cm5lZnSmi7BDCWwtJmwMvRcTraX4DYJOIeLHG9RuQ9vb26OjoGPD6UrmhFqjkuzIzG6wkLYqI9krKVjrmcS2waW5+sxQzM7MhqNLksUlEPF+aSdOb1aZKZmbW7CpNHi/0eGTI+4CX+ihvZmYtrNIB868Al0kqXSY7Bji8NlUyM7NmV1HyiIjbJb0D2IXsxr2HIuK1mtbMzMyaVqUtD4DdgQlpnd0kERHn16RWZmbW1CpKHpIuAHYC7gJeT+EAnDzMzIagSlse7cDk8I0OZmZG5Vdb3Qe8vZYVMTOzwaPSlsdo4AFJtwGvlIIRcWhNamVmZk2t0uTxzVpWwszMBpdKL9W9SdIOwKSIuFbSZsCw2lbNzMyaVaWPZP8cMB84O4XGAr+tVaXMzKy5VTpgfiywF7Aa3nwx1DZ9rmFmZi2r0uTxSkS8WpqRNJxeXgdrZmatr9LkcZOkk4BN07vLLwN+V7tqmZlZM6s0eZwIdAP3Av9G9ua/sm8QNDOz1lfp1VZvkL2G9pfV2KmkrwJHk3V93Uv22tkxwMXAKOAO4NMR8aqkjckeg/I+4O/A4RHxeDXqYWZmA1Pp1VaPSVrc8zOQHUoaC3wJaI+Id5Fd8jsd+D5wRkRMAp4BZqZVZgLPRMTOwBmpnJmZNVCRZ1uVbAIcRtZCWJ/9birpNbI3Ei4H9gH+JS0/j+zGxLOAaay9SXE+8FNJ8nO2zMwap6KWR0T8Pfd5IiJ+TPaffWER8QTwQ2AJWdJYBSwCno2INalYF9m9JKSfS9O6a1L5rXtuV9IsSR2SOrq7uwdSNTMzq1Clj2SfkpvdgKwlssVAdihpJFlrYiLwLNmVWweVKVpqWaiPZWsDEXOAOQDt7e1ulZiZ1VCl3VY/yk2vAR4HPjnAfe4HPBYR3QCSLgf+ERghaXhqXYwDSq+87QLGA13p/pKtgJUD3LeZmVVBpVdbfaSK+1wCTE3Px3oJ2BfoAG4APkF2xdUM4IpUfkGa/0tafr3HO8zMGqvSbqvj+loeEadXusOIuFXSfLLLcdcAd5J1N/0euFjSd1NsblplLnCBpE6yFsf0SvdlZma1UeRqq93JWgEAHwNuJg1kFxURpwKn9ggvBvYoU/Zlsqu7zMysSRR5GdSUiHgOQNI3gcsi4uhaVczMzJpXpY8n2R54NTf/KjCh6rUxM7NBodKWxwXAbZL+h+wy2X8me2SImZkNQZVebfU9SVcDH0yhoyLiztpVy8zMmlml3VaQPUZkdUT8hOyei4k1qpOZmTW5Sh+MeCpwAjA7hTYEflWrSpmZWXOrtOXxz8ChwAsAEbGMAT6exFqDpLIfMxsaKk0er6a7ugNA0ttqVyUzM2t2lSaPSyWdTfb8qc8B11KlF0OZmdngU+nVVj9M7y5fDewCfCMiFta0ZmZm1rT6TR6ShgHXRMR+gBPGEONxDDMrp99uq4h4HXhR0lZ1qI+ZmQ0Cld5h/jJwr6SFpCuuACLiSzWplZmZNbVKk8fv08fMzKzv5CFp+4hYEhHn1atCZmbW/Pob8/htaULSb2pcFzMzGyT667bKX2qzYy0rYq2tt6u2/EZhs8Gpv5ZH9DJtZmZDWH/J4z2SVkt6Dnh3ml4t6TlJqwe6U0kjJM2X9JCkByXtKWmUpIWSHkk/R6ayknSmpE5J90iaMtD9Wu+q9awqP/PKbGjoM3lExLCI2DIitoiI4Wm6NL/leuz3J8AfIuIdwHuAB4ETgesiYhJwXZoHOAiYlD6zgLPWY79mZlYFRd7nURWStgQ+BMwFiIhXI+JZYBpQuqrrPODjaXoacH5kbiF7vtaYOlfbzMxy6p48yAbeu4H/lnSnpHPSU3q3jYjlAOnnNqn8WGBpbv2uFHsLSbMkdUjq6O7uru0RmJkNcY1IHsOBKcBZEbEb2R3rJ/ZRvlyH+TqD9xExJyLaI6K9ra2tOjU1M7OyGpE8uoCuiLg1zc8nSyZPlbqj0s8VufLjc+uPA5bVqa5WYx5gNxuc6p48IuJJYKmkXVJoX+ABYAEwI8VmAFek6QXAkemqq6nAqlL3lpmZNUalz7aqti8CF0raCFgMHEWWyC6VNBNYAhyWyl4FHAx0Ai+msmZm1kANSR4RcRfQXmbRvmXKBnBszStlZmYVa8SYh5mZDXJOHmZmVpiTh5mZFdaoAXOzPvkpvGbNzS0PMzMrzMnDzMwKc7fVEOI7t82sWtzyMDOzwpw8zMysMCcPMzMrzMnDzMwK84C5DSq+/8OsObjlYWZmhTl5mJlZYU4eZmZWmJOHmZkV5uRhZmaFNSx5SBom6U5JV6b5iZJulfSIpEvSK2qRtHGa70zLJzSqzmZmlmlky+PLwIO5+e8DZ0TEJOAZYGaKzwSeiYidgTNSOTMza6CGJA9J44B/As5J8wL2AeanIucBH0/T09I8afm+8hP+rAdJZT9mVhuNann8GDgeeCPNbw08GxFr0nwXMDZNjwWWAqTlq1L5t5A0S1KHpI7u7u5a1t3MbMire/KQdAiwIiIW5cNlikYFy9YGIuZERHtEtLe1tVWhpmZm1ptGPJ5kL+BQSQcDmwBbkrVERkganloX44BlqXwXMB7okjQc2ApYWf9qm5lZSd1bHhExOyLGRcQEYDpwfUQcAdwAfCIVmwFckaYXpHnS8uvDDzIyM2uoZrrP4wTgOEmdZGMac1N8LrB1ih8HnNig+g0aHjw2s1pr6FN1I+JG4MY0vRjYo0yZl4HD6loxaxl+Cq9ZbTRTy8PMzAYJJw8zMyvMycPMzArzmwRtSOrrAgKPh5j1zy0PMzMrzMnDzMwKc/IwM7PCPOYxiPnGPzNrFLc8zMysMCcPMzMrzMnDzMwK85iHWQ9+HpZZ/9zyMDOzwpw8zMysMHdbmVXI3Vlma7nlYWZmhTl5mJlZYXVPHpLGS7pB0oOS7pf05RQfJWmhpEfSz5EpLklnSuqUdI+kKfWuc6P5tbJm1mwa0fJYA3wtInYFpgLHSppM9m7y6yJiEnAda99VfhAwKX1mAWfVv8pmZpZX9+QREcsj4o40/RzwIDAWmAacl4qdB3w8TU8Dzo/MLcAISWPqXG0zM8tp6JiHpAnAbsCtwLYRsRyyBANsk4qNBZbmVutKsZ7bmiWpQ1JHd3d3Latt9hbuVrShqGHJQ9LmwG+Ar0TE6r6Klomtc21kRMyJiPaIaG9ra6tWNc3MrIyGJA9JG5Iljgsj4vIUfqrUHZV+rkjxLmB8bvVxwLJ61dVsoNwisVbWiKutBMwFHoyI03OLFgAz0vQM4Ipc/Mh01dVUYFWpe8vMzBqjEXeY7wV8GrhX0l0pdhJwGnCppJnAEuCwtOwq4GCgE3gROKq+1TUzs57qnjwi4s+UH8cA2LdM+QCOrWmlzMysEN9hbmZmhfnBiGZ15gcsWitwy8PMzApz8jAzs8KcPMzMrDCPeZg1CY+F2GDiloeZmRXmlodZk3OLxJqRWx5mZlaYWx5mQ5xbNjYQTh5mLcZP7rV6cPIwG6ScJKyRnDzMrKy+kpO7tMwD5mZmVphbHgXUemDR3RA2WHiQ3Zw8zKxqnFSGDicPM6u5okml2crbupw8zKxhmq2rdiBJZagmokGTPCQdCPwEGAacExGnNbhKA9Zs/2DMBoui/3aq9W9tINtp1L/zeiWtQXG1laRhwM+Ag4DJwKckTW5srdaSVPZjZtaqBkXyAPYAOiNicUS8ClwMTGtwnfrlpGJmrWqwdFuNBZbm5ruA9+cLSJoFzEqzz0t6uJ9tjgaerloNB5eheuw+7qFlSB63pPU57h0qLThYkke5P9ff0rEXEXOAORVvUOqIiPb1rdhgNFSP3cc9tPi4a2uwdFt1AeNz8+OAZQ2qi5nZkDdYksftwCRJEyVtBEwHFjS4TmZmQ9ag6LaKiDWSvgBcQ3ap7ryIuH89N1txF1cLGqrH7uMeWnzcNaRWv5HFzMyqb7B0W5mZWRNx8jAzs8KGZPKQdKCkhyV1Sjqx0fUZCEnjJd0g6UFJ90v6coqPkrRQ0iPp58gUl6Qz0zHfI2lKblszUvlHJM3Ixd8n6d60zplqojscJQ2TdKekK9P8REm3pmO4JF1YgaSN03xnWj4ht43ZKf6wpANy8ab8/ZA0QtJ8SQ+l877nUDjfkr6afsfvk3SRpE1a8XxLmidphaT7crGan9/e9tGviBhSH7IB90eBHYGNgLuByY2u1wCOYwwwJU1vAfyV7NEtPwBOTPETge+n6YOBq8numZkK3Jrio4DF6efIND0yLbsN2DOtczVwUKOPO3f8xwG/Bq5M85cC09P0L4B/T9PHAL9I09OBS9L05HTuNwYmpt+JYc38+wGcBxydpjcCRrT6+Sa7QfgxYNPcef5MK55v4EPAFOC+XKzm57e3ffRb30b/cjTgBO0JXJObnw3MbnS9qnBcVwAfBR4GxqTYGODhNH028Klc+YfT8k8BZ+fiZ6fYGOChXPwt5Rp8rOOA64B9gCvTP4angeE9zzHZFXp7punhqZx6nvdSuWb9/QC2TP+Jqke8pc83a58uMSqdvyuBA1r1fAMTeGvyqPn57W0f/X2GYrdVuUedjG1QXaoiNc13A24Fto2I5QDp5zapWG/H3Ve8q0y8GfwYOB54I81vDTwbEWvSfL6ubx5fWr4qlS/6fTTajkA38N+pu+4cSW+jxc93RDwB/BBYAiwnO3+LaP3zXVKP89vbPvo0FJNHv486GUwkbQ78BvhKRKzuq2iZWAwg3lCSDgFWRMSifLhM0ehn2aA6brK/oqcAZ0XEbsALZF0MvWmJ407979PIupq2A95G9nTtnlrtfPen4cc5FJNHyzzqRNKGZInjwoi4PIWfkjQmLR8DrEjx3o67r/i4MvFG2ws4VNLjZE9X3oesJTJCUumm13xd3zy+tHwrYCXFv49G6wK6IuLWND+fLJm0+vneD3gsIroj4jXgcuAfaf3zXVKP89vbPvo0FJNHSzzqJF0pMRd4MCJOzy1aAJSusJhBNhZSih+ZrtKYCqxKTdRrgP0ljUx/5e1P1ge8HHhO0tS0ryNz22qYiJgdEeMiYgLZubs+Io4AbgA+kYr1PO7S9/GJVD5SfHq6OmciMIlsQLEpfz8i4klgqaRdUmhf4AFa/HyTdVdNlbRZqlfpuFv6fOfU4/z2to++NXpArEGDUgeTXZ30KHByo+szwGP4AFmz8x7grvQ5mKx/9zrgkfRzVCovshdqPQrcC7TntvVZoDN9jsrF24H70jo/pcdgbaM/wN6svdpqR7L/DDqBy4CNU3yTNN+Zlu+YW//kdGwPk7uyqFl/P4D3Ah3pnP+W7Gqalj/fwLeAh1LdLiC7YqrlzjdwEdm4zmtkLYWZ9Ti/ve2jv48fT2JmZoUNxW4rMzNbT04eZmZWmJOHmZkV5uRhZmaFOXmYmVlhTh5mVSDpdUl3pSe/XiZps17KXSVpRL3rZ1ZtvlTXrAokPR8Rm6fpC4FFkbt5M92YpYh4o7dtmA0mbnmYVd+fgJ0lTVD23o2fA3cA4yU9Lmk0gKQj07sY7pZ0QYq1SfqNpNvTZ68GHodZr4b3X8TMKpWep3QQ8IcU2oXsLt9j0vJSuXeS3fG8V0Q8LWlUKv8T4IyI+LOk7ckeN7FrHQ/BrCJOHmbVsamku9L0n8ieO7Yd8LeIuKVM+X2A+RHxNEBErEzx/YDJWvsSvy0lbRERz9Wu6mbFOXmYVcdLEfHefCAlgBd6KS/KPxJ7A7KXGb1U3eqZVZfHPMwa4zrgk5K2huw90in+R+ALpUKS3ltmXbOGc/Iwa4CIuB/4HnCTpLuB0pVZXwLa00D6A8DnG1VHs774Ul0zMyvMLQ8zMyvMycPMzApz8jAzs8KcPMzMrDAnDzMzK8zJw8zMCnPyMDOzwv4/jFug2Z+0ymQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEWCAYAAACe8xtsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfUElEQVR4nO3de5hdVZnn8e+PityESDIp6JALCRjRwCMCZUSMGgxKtJHQM42GEYkQTatp7w4koqIznRnGVlTGBk0LclEIAW0TnQa52IDMILFAaEggEgmmioRKISgBMZDw9h97lWwqp06dXTm3OvX7PE89tc9a+/KuItRbe62111ZEYGZmVsRujQ7AzMyGHycPMzMrzMnDzMwKc/IwM7PCnDzMzKwwJw8zMyvMycOamqRvS/pClc41WdLTktrS51skfbAa507nu07S/Gqdr8B1/0HS45Ieq9L5qvYzt9YlP+dhjSLpEeAAYDuwA1gLXA4si4gXhnCuD0bETQWOuQX4fkR8t8i10rFfAl4ZEacVPbaaJE0CfgMcFBFbGhmLjSy+87BGe3dE7AscBJwHnA1cXO2LSBpV7XM2iYOA31crcfTdlZkNxsnDmkJE/DEiVgHvBeZLOhxA0qWS/iFtj5P0U0l/kPSEpF9I2k3SFcBk4CepW+osSVMkhaQFkjYCP8+V5RPJIZJWS/qjpJWSxqZrzZLUnY9R0iOSjpc0B/gc8N50vXtT/V+6wVJcn5f0O0lbJF0u6RWpri+O+ZI2pi6ncwb62Uh6RTq+N53v8+n8xwM3AgemOC4tcewsSd2SPpeu84ik9+XqL5V0kaR/lfQMcFz+Z572mSvpHklPSfptan9fXBdL2izp0dR91tcl+EpJt6af6+OSrq7k34ENH04e1lQiYjXQDby5RPVnUl07WXfX57JD4v3ARrK7mH0i4iu5Y94KvAY4YYBLng6cCRxI1n12QQUxXg/8T+DqdL0jSuz2gfR1HHAwsA/wrX77zAQOBWYDX5T0mgEu+X+AV6TzvDXFfEbqonsnsCnF8YEBjv8rYBwwAZgPLJN0aK7+vwJLgX2B2/MHSppB1pX434D9gLcAj6Tqy8h+Zq8EjgTeAfSNIf0P4AZgDDAxtcFaiJOHNaNNwNgS5c8D48n695+PiF/E4IN2X4qIZyLi2QHqr4iI+yPiGeALwHuq1HXzPuD8iHg4Ip4GlgDz+t31fDkino2Ie4F7gZ2SUIrlvcCSiNgaEY8AXwPeXzCeL0TEtoi4Ffi/wHtydSsj4v9FxAsR8ed+xy0ALomIG1P9oxHxoKQDyBLXJ9PPdwvwdWBeOu55si61AyPizxFxO9ZSnDysGU0AnihR/o/AeuAGSQ9LWlzBuboK1P8OeBnZX+m76sB0vvy5R5HdMfXJz476E9ndSX/jgN1LnGtCgVieTMkxf/yBuc/lfkaTgN+WKD+I7Ge1OXUj/gH4DrB/qj8LELBa0hpJZxaI14YBJw9rKpJeT/aLcae/VNNf3p+JiIOBdwOfljS7r3qAUw52ZzIptz2Z7C/mx4FngL1zcbWRdZdVet5NZL9g8+feDvQMclx/j/PiX/H5cz1a4BxjJL283/Gbcp/LtaULOGSA8m3AuIjYL32NjojDACLisYj4UEQcCPwdcKGkVxaI2Zqck4c1BUmjJZ0ILCebPntfiX1OTAOxAp4im967I1X3kI0JFHWapOmS9gb+O3BtROwgm/66p6S/lvQy4PPAHrnjeoApkgb6f+gq4FOSpkrahxfHSLYXCS7FsgJYKmlfSQcBnwa+X+Q8wJcl7S7pzcCJwDUVHncxcIak2WmQfoKkV0fEZrIxja+l/3a7STpE0lsBJJ0iaWI6x5NkCWpH6UvYcOTkYY32E0lbyf6SPQc4HzhjgH2nATcBTwN3ABdGxC2p7n8Bn09dKJ8tcP0rgEvJupD2BD4O2ewv4KPAd8n+yn+GbLC+T98v399LurvEeS9J574N2AD8GfhYgbjyPpau/zDZHdmV6fyVeozsF/gm4AfAhyPiwUoOTBMYziAbz/gjcCsv3gWdTtaltjad/1qyMSmA1wN3SnoaWAV8IiI2FIjZmpwfEjRrYZJmkd3JTRxkV7NCfOdhZmaFOXmYmVlh7rYyM7PCfOdhZmaFtepicYwbNy6mTJnS6DDMzIaVu+666/GIaB9sv5ZNHlOmTKGzs7PRYZiZDSuSfjf4Xu62MjOzIXDyMDOzwpw8zMysMCcPMzMrzMnDzMwKq1nykHRJev3m/f3KPyZpXVrj/yu58iWS1qe6E3LlR0u6L9VdkFZUNTOzBqrlncelwJx8gaTjgLnAa9O6/19N5dPJ3kB2WDrmwtzb3C4CFpKtqDqt/znNzKz+apY8IuI2dn4b3EeA8yJiW9pnSyqfCyxPr8ncQPa2uBmSxgOjI+KO9LrRy4GTaxWzmZlVpt5jHq8C3izpTkm3prfGQfbmuPyrMLtT2QRe+g6FvvKSJC2U1Cmps7e3t8qhm5lZn3o/YT4KGAMcQ/aymBWSDiZ713F/Uaa8pIhYBiwD6OjoGPKKjzNnzqSra+DXOk+aNInbb9/pLalmZiNGvZNHN/Cj1AW1WtILwLhUnn+X9ESyt551p+3+5TXV1dXFxo0ba30ZM7Nhq97dVj8G3gYg6VVkr7B8nOw1lfMk7SFpKtnA+Or0nuStko5Js6xOB1bWOWYzM+unZncekq4CZgHjJHUD55K9d/mSNH33OWB+ugtZI2kF2buQtwOLImJHOtVHyGZu7QVcl77MzKyBapY8IuLUAapOG2D/pcDSEuWdwOFVDM3MzHaRnzA3M7PCnDzMzKwwJw8zMyvMycPMzApz8jAzs8KcPMzMrDAnDzMzK8zJw8zMCnPyMDOzwpw8zMysMCcPMzMrzMnDzMwKc/IwM7PCnDzMzKwwJw8zMyvMycPMzApz8jAzs8JqljwkXSJpS3rlbP+6z0oKSeNyZUskrZe0TtIJufKjJd2X6i5I7zI3M7MGquWdx6XAnP6FkiYBbwc25sqmA/OAw9IxF0pqS9UXAQuBaelrp3OamVl91Sx5RMRtwBMlqr4OnAVErmwusDwitkXEBmA9MEPSeGB0RNwREQFcDpxcq5jNzKwydR3zkHQS8GhE3NuvagLQlfvcncompO3+5QOdf6GkTkmdvb29VYrazMz6q1vykLQ3cA7wxVLVJcqiTHlJEbEsIjoioqO9vX1ogZqZ2aBG1fFahwBTgXvTmPdE4G5JM8juKCbl9p0IbErlE0uUm5lZA9XtziMi7ouI/SNiSkRMIUsMR0XEY8AqYJ6kPSRNJRsYXx0Rm4Gtko5Js6xOB1bWK2YzMyutllN1rwLuAA6V1C1pwUD7RsQaYAWwFrgeWBQRO1L1R4Dvkg2i/xa4rlYxm5lZZWrWbRURpw5SP6Xf56XA0hL7dQKHVzU4MzPbJX7C3MzMCnPyMDOzwpw8zMysMCcPMzMrzMnDzMwKc/IwM7PCnDzMzKwwJw8zMyvMycPMzApz8jAzs8KcPMzMrDAnDzMzK8zJw8zMCnPyMDOzwpw8zMysMCcPMzMrzMnDzMwKq+VraC+RtEXS/bmyf5T0oKR/l/QvkvbL1S2RtF7SOkkn5MqPlnRfqrsgvcvczMwaqJZ3HpcCc/qV3QgcHhGvBX4DLAGQNB2YBxyWjrlQUls65iJgITAtffU/p5mZ1VnNkkdE3AY80a/shojYnj7+EpiYtucCyyNiW0RsANYDMySNB0ZHxB0REcDlwMm1itnMzCrTyDGPM4Hr0vYEoCtX153KJqTt/uUlSVooqVNSZ29vb5XDNTOzPg1JHpLOAbYDP+grKrFblCkvKSKWRURHRHS0t7fveqBmZlbSqHpfUNJ84ERgduqKguyOYlJut4nAplQ+sUS5mZk1UF3vPCTNAc4GToqIP+WqVgHzJO0haSrZwPjqiNgMbJV0TJpldTqwsp4xm5nZzmp25yHpKmAWME5SN3Au2eyqPYAb04zbX0bEhyNijaQVwFqy7qxFEbEjneojZDO39iIbI7kOMzNrqJolj4g4tUTxxWX2XwosLVHeCRxexdDMzGwX+QlzMzMrzMnDzMwKc/IwM7PCnDzMzKwwJw8zMyvMycPMzApz8jAzs8KcPMzMrDAnDzMzK8zJw8zMCnPyMDOzwpw8zMysMCcPMzMrzMnDzMwKc/IwM7PCnDzMzKwwJw8zMyusZslD0iWStki6P1c2VtKNkh5K38fk6pZIWi9pnaQTcuVHS7ov1V2Q3mVuZmYNVFHykDSU18BeCszpV7YYuDkipgE3p89Img7MAw5Lx1woqS0dcxGwEJiWvvqf08zM6qzSO49vS1ot6aOS9qvkgIi4DXiiX/Fc4LK0fRlwcq58eURsi4gNwHpghqTxwOiIuCMiArg8d4yZmTVIRckjImYC7wMmAZ2SrpT09iFc74CI2JzOuRnYP5VPALpy+3Wnsglpu395SZIWSuqU1Nnb2zuE8MzMrBIVj3lExEPA54GzgbcCF0h6UNJ/rkIcpcYxokz5QDEui4iOiOhob2+vQlhmZlZKpWMer5X0deAB4G3AuyPiNWn76wWu15O6okjft6TybrK7mj4TgU2pfGKJcjMza6BK7zy+BdwNHBERiyLiboCI2ER2N1KpVcD8tD0fWJkrnydpD0lTyQbGV6eura2SjkmzrE7PHWNmZg0yqsL93gU8GxE7ACTtBuwZEX+KiCtKHSDpKmAWME5SN3AucB6wQtICYCNwCkBErJG0AlgLbAcW9V0L+AjZzK29gOvSl5mZNVClyeMm4Hjg6fR5b+AG4NiBDoiIUweomj3A/kuBpSXKO4GhTBU2M7MaqbTbas+I6EscpO29axOSmZk1u0qTxzOSjur7IOlo4NnahGRmZs2u0m6rTwLXSOqb6TQeeG9NIjIzs6ZXUfKIiF9JejVwKNmzFw9GxPM1jczMzJpWpXceAK8HpqRjjpRERFxek6jMzKypVZQ8JF0BHALcA/RNoe1ba8rMzEaYSu88OoDpaXFCMzMb4SqdbXU/8Fe1DMTMzIaPSu88xgFrJa0GtvUVRsRJNYnKzMyaWqXJ40u1DMLMzIaXSqfq3irpIGBaRNwkaW+gbbDjrDXMnDmTrq6uAesnTZrE7bffXseIzKzRKp1t9SGyV8GOJZt1NQH4NgOsU2Wtpauri40bNzY6DDNrIpUOmC8C3gQ8BX95MdT+ZY8wM7OWVWny2BYRz/V9kDSKMm/0MzOz1lZp8rhV0ueAvdK7y68BflK7sMzMrJlVmjwWA73AfcDfAf9KsTcImplZC6l0ttULwD+nLzMzG+EquvOQtEHSw/2/hnpRSZ+StEbS/ZKukrSnpLGSbpT0UPo+Jrf/EknrJa2TdMJQr2tmZtVRZG2rPnuSvXt87FAuKGkC8HGytbKeTe8unwdMB26OiPMkLSbrKjtb0vRUfxhwIHCTpFfl3nFuZmZ1Vmm31e/7FX1D0u3AF3fhuntJep7sdbabgCXArFR/GXALcDYwF1geEduADZLWAzOAO4Z4bauyxx57jIMOOmjA+ieffJIxY8aUrPMDhmbDU6UPCR6V+7gb2Z3IvkO5YEQ8KumrwEayV9neEBE3SDogIjanfTZL6nuOZALwy9wpulNZqTgXkj3MyOTJk4cSng3Bjh07yj5E2NbWxtatW+sYkZnVWqXdVl/LbW8HHgHeM5QLprGMucBU4A9kr7c9rdwhJcpKPmMSEcuAZQAdHR1+DqWAckuQ9PT01DkaM2t2lXZbHVfFax4PbIiIXgBJPwKOBXokjU93HeOBLWn/bmBS7viJZN1cVkXlliBpa/MyZmb2UpV2W326XH1EnF/gmhuBY9Liis+SrY/VCTwDzAfOS99Xpv1XAVdKOp9swHwasLrA9czMrMqKzLZ6PdkvcoB3A7cBAy+1OoCIuFPStcDdZF1gvybratoHWCFpAVmCOSXtvybNyFqb9l/kmVZmZo1V5GVQR0XEVgBJXwKuiYgPDuWiEXEucG6/4m0MsEpvRCwFlg7lWmZmVn2VLk8yGXgu9/k5YErVozEzs2Gh0juPK4DVkv6FbKbT3wCX1ywqMzNrapXOtloq6TrgzanojIj4de3CMjOzZlZptxVkT4I/FRHfBLolTa1RTGZm1uQqXRjxXLKlQpakopcB369VUGZm1twqvfP4G+AksmcxiIhNDHF5EjMzG/4qHTB/LiJCUgBIenkNY7IRZLBFFb1wollzqjR5rJD0HWA/SR8CzsQvhrIqGGxRRTNrToMmD0kCrgZeDTwFHAp8MSJurHFsZmbWpAZNHqm76scRcTTghGFmZhUPmP9S0utrGomZmQ0blY55HAd8WNIjZDOuRHZT8tpaBWZmZs2rbPKQNDkiNgLvrFM8ZmY2DAx25/FjstV0fyfphxHxX+oQk9lflJvK62m8Zo0zWPLIvwL24FoGYlaKp/KaNafBBsxjgG0zMxvBBrvzOELSU2R3IHulbXhxwHx0TaMzM7OmVPbOIyLaImJ0ROwbEaPSdt/nIScOSftJulbSg5IekPRGSWMl3SjpofR9TG7/JZLWS1on6YShXtfMzKqjyJLs1fRN4PqIeDVwBPAAsBi4OSKmATenz0iaDswDDgPmABdKamtI1GZmBlT+nEfVSBoNvAX4AEBEPAc8J2kuMCvtdhlwC9ky8HOB5RGxDdggaT0wA7ijroEPczNnzqSrq2vA+p6enjpGY2bDXd2TB9msrV7ge5KOAO4CPgEcEBGbASJis6T90/4TgF/mju9OZTuRtBBYCDB58uTaRD9MdXV1lZ211Nbmmzkzq1wjuq1GAUcBF0XEkWRPrC8us79KlJWc+RURyyKiIyI62tvbdz1SMzMrqRHJoxvojog70+dryZJJj6TxAOn7ltz+k3LHTwQ21SlWMzMroe7JIyIeA7okHZqKZgNrgVXA/FQ2H1iZtlcB8yTtkd6bPg1YXceQzcysn0aMeQB8DPiBpN2Bh4EzyBLZCkkLgI3AKQARsUbSCrIEsx1YFBE7GhO2mZlBg5JHRNwDdJSomj3A/kuBpbWMyczMKteo5zzMzGwYa1S3ldkuK7fiLnjVXbNacvKwYcsr7po1jrutzMysMCcPMzMrzMnDzMwKc/IwM7PCnDzMzKwwJw8zMyvMycPMzApz8jAzs8KcPMzMrDAnDzMzK8zJw8zMCvPaVtayvHCiWe04eVjL8sKJZrXj5NFCZs6cSVdXV8m6np6eOkdjZq2sYclDUhvQCTwaESdKGgtcDUwBHgHeExFPpn2XAAuAHcDHI+JnDQm6yXV1dQ34l3ZbW1udozGzVtbIO49PAA8Ao9PnxcDNEXGepMXp89mSpgPzgMOAA4GbJL3K7zG3XVVuTMTjIWblNSR5SJoI/DXZe8k/nYrnArPS9mXALcDZqXx5RGwDNkhaD8wA7qhjyNaCPCZiNnSNmqr7DeAs4IVc2QERsRkgfd8/lU8A8h353alsJ5IWSuqU1Nnb21v1oM3MLFP35CHpRGBLRNxV6SElyqLUjhGxLCI6IqKjvb19yDGamVl5jei2ehNwkqR3AXsCoyV9H+iRND4iNksaD2xJ+3cDk3LHTwQ21TViMzN7ibrfeUTEkoiYGBFTyAbCfx4RpwGrgPlpt/nAyrS9CpgnaQ9JU4FpwOo6h21mZjnN9JzHecAKSQuAjcApABGxRtIKYC2wHVjkmVZmZo3V0OQREbeQzaoiIn4PzB5gv6VkM7PMzKwJeGFEMzMrzMnDzMwKa6YxD7Om4RV5zcpz8hhGyi18CF78sJr89LlZeU4ew0i5hQ/Bix+aWf14zMPMzApz8jAzs8KcPMzMrDAnDzMzK8zJw8zMCnPyMDOzwjxV12wI/ApbG+mcPMyGwA8R2kjnbiszMyvMycPMzApzt5VZlXlRRRsJnDzMqszjITYS1L3bStIkSf8m6QFJayR9IpWPlXSjpIfS9zG5Y5ZIWi9pnaQT6h2zmZm9VCPGPLYDn4mI1wDHAIskTQcWAzdHxDTg5vSZVDcPOAyYA1woycvHmpk1UN2TR0Rsjoi70/ZW4AFgAjAXuCztdhlwctqeCyyPiG0RsQFYD8yoa9BmZvYSDZ1tJWkKcCRwJ3BARGyGLMEA+6fdJgD5NyB1p7JS51soqVNSZ29vb83iNjMb6RqWPCTtA/wQ+GREPFVu1xJlUWrHiFgWER0R0dHe3l6NMM3MrISGzLaS9DKyxPGDiPhRKu6RND4iNksaD2xJ5d3ApNzhE4FN9YvWrLo8lddaQd2ThyQBFwMPRMT5uapVwHzgvPR9Za78SknnAwcC04DV9YvYrLo8lddaQSPuPN4EvB+4T9I9qexzZEljhaQFwEbgFICIWCNpBbCWbKbWoojYUfeozczsL+qePCLidkqPYwDMHuCYpcDSmgVlZmaF+Alzsybj5d5tOHDyMGsyHhOx4cCr6pqZWWFOHmZmVpiTh5mZFeYxD7MRZObMmXR1dZWs82C8FeHkYTaCdHV1eTDeqsLJo4mU+6sQoKenp47RWDMabGmTJ598kjFjxgxYX+7fkJdNsSKcPJrIYH8VtrX5NSYj3WDTeNva2ti6dWvZ+qGe2yzPA+ZmZlaYk4eZmRXmbiszq4iXTbE8Jw8zq0i5MREPto88Th5mtss82D7yOHkMgW/fzaprVx5erNWxlRw/kjl5DIH/yjIrZrBurZ6eHrZt29ZUxw5mpCceJw8zq7lKnk9ptmOhfPIZLPGUO3awhzmHQ+IZNslD0hzgm0Ab8N2IOK/BIQ1Jub9W/AS5WXMpl3wGSzyDHVvuYc5dWUmgXolnWCQPSW3APwFvB7qBX0laFRFrGxvZznblNtlPkJsZ7PpKAvUwLJIHMANYHxEPA0haDswFmi557OptspnZcKCIaHQMg5L0t8CciPhg+vx+4A0R8ff99lsILEwfDwXWDXLqccDjVQ53OHC7Rxa3e2TZ1XYfFBHtg+00XO48VKJsp6wXEcuAZRWfVOqMiI5dCWw4crtHFrd7ZKlXu4fL2lbdwKTc54nApgbFYmY24g2X5PErYJqkqZJ2B+YBqxock5nZiDUsuq0iYrukvwd+RjZV95KIWFOFU1fcxdVi3O6Rxe0eWerS7mExYG5mZs1luHRbmZlZE3HyMDOzwkZk8pA0R9I6SeslLW50PEMhaZKkf5P0gKQ1kj6RysdKulHSQ+n7mNwxS1Kb10k6IVd+tKT7Ut0FkpTK95B0dSq/U9KUuje0BEltkn4t6afpc8u3GUDSfpKulfRg+u/+xpHQdkmfSv/G75d0laQ9W7Hdki6RtEXS/bmyurRT0vx0jYckza8o4IgYUV9kA+6/BQ4GdgfuBaY3Oq4htGM8cFTa3hf4DTAd+AqwOJUvBv532p6e2roHMDX9DNpS3WrgjWTP01wHvDOVfxT4dtqeB1zd6HanWD4NXAn8NH1u+TaneC4DPpi2dwf2a/W2AxOADcBe6fMK4AOt2G7gLcBRwP25spq3ExgLPJy+j0nbYwaNt9H/OBrwH+iNwM9yn5cASxodVxXatZJs7a91wPhUNh5YV6qdZDPX3pj2eTBXfirwnfw+aXsU2VOranA7JwI3A2/jxeTR0m1OsYwm+yWqfuUt3Xay5NGVfrGNAn4KvKNV2w1M4aXJo+btzO+T6r4DnDpYrCOx26rvH2Of7lQ2bKXbzyOBO4EDImIzQPq+f9ptoHZPSNv9y19yTERsB/4I/KeaNKJy3wDOAl7IlbV6myG7U+4Fvpe67L4r6eW0eNsj4lHgq8BGYDPwx4i4gRZvd0492jmk34kjMXlUtNTJcCFpH+CHwCcj4qlyu5YoizLl5Y5pCEknAlsi4q5KDylRNqzanDOKrEvjoog4EniGrBtjIC3R9tTHP5esa+ZA4OWSTit3SImyYdfuClSznUNq/0hMHi2z1Imkl5Eljh9ExI9ScY+k8al+PLAllQ/U7u603b/8JcdIGgW8Anii+i2p2JuAkyQ9AiwH3ibp+7R2m/t0A90RcWf6fC1ZMmn1th8PbIiI3oh4HvgRcCyt3+4+9WjnkH4njsTk0RJLnaQZFBcDD0TE+bmqVUDfbIn5ZGMhfeXz0oyLqcA0YHW6Fd4q6Zh0ztP7HdN3rr8Ffh6pU7QRImJJREyMiClk/91+HhGn0cJt7hMRjwFdkg5NRbPJXknQ6m3fCBwjae8U72zgAVq/3X3q0c6fAe+QNCbd6b0jlZXXiEGhRn8B7yKbnfRb4JxGxzPENswku7X8d+Ce9PUusj7Mm4GH0vexuWPOSW1eR5qBkco7gPtT3bd4ceWBPYFrgPVkMzgObnS7czHP4sUB85HS5tcBnem/+Y/JZsa0fNuBLwMPppivIJth1HLtBq4iG9d5nuxuYEG92gmcmcrXA2dUEq+XJzEzs8JGYreVmZntIicPMzMrzMnDzMwKc/IwM7PCnDzMzKwwJw+zKpC0Q9I9aeXXayTtPcB+/7/esZnVgpOHWXU8GxGvi4jDgeeAD+crJbUBRMSxjQjOrNqcPMyq7xfAKyXNUvbOlSuB+wAkPd23k6Sz0nsX7pV0Xio7RNL1ku6S9AtJr25ME8zKG9XoAMxaSVoz6J3A9aloBnB4RGzot987gZOBN0TEnySNTVXLgA9HxEOS3gBcSLb8vFlTcfIwq469JN2Ttn9Btu7YsWTrDW0osf/xwPci4k8AEfFEWiH5WOCa9PI3yJbiMGs6Th5m1fFsRLwuX5ASwDMD7C92XvZ6N+AP/c9j1ow85mHWGDcAZ/bNypI0NrL3sWyQdEoqk6QjGhmk2UCcPMwaICKuJ1siuzN1d302Vb0PWCDpXmAN2YuQzJqOV9U1M7PCfOdhZmaFOXmYmVlhTh5mZlaYk4eZmRXm5GFmZoU5eZiZWWFOHmZmVth/AGYLIlmQQnkTAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -472,7 +472,7 @@ "source": [ "plt.figure(figsize=(6, 4))\n", "\n", - "sns.distplot(df.msrp[df.msrp < 100000], kde=False, hist_kws=dict(color='black', alpha=1))\n", + "sns.histplot(df.msrp[df.msrp < 100000], bins=40, color='black', alpha=1)\n", "plt.ylabel('Frequency')\n", "plt.xlabel('Price')\n", "plt.title('Distribution of prices')\n", @@ -487,7 +487,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deZhcVbnv8e+PhCmKBEiCkIEgRAR55AgNgsORK6CAQPAcUBQ1YjCiqCh6GQQFERWuA4oDigYDiIwqBEQhoAzeY4AOcwiYCEiaBBIICaOEwHv+WKtJpbqqd3VSU3f/Ps9TT+299vRW1a5691pr196KCMzMzHqzVqsDMDOz9udkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIyaINSPq5pK/VaV3jJD0raUgev0HS4fVYd17fnyRNqtf6+rDdUyU9IemxOq2vbu/5mpK0vqQrJS2TdGmDtvEJSX9rxLqbod6ff71Jmi1p91bH0UhDWx3AQCfpYWBTYAXwMnAfcB5wdkS8AhARR/RhXYdHxHXV5omIR4DXrlnUr27vZGDriPhoyfr3qce6+xjHWODLwBYRsage66z1PW+Sg0j7yCYRsULSJ0if8ztbG1ax/AP5m4gY08Bt1P3zX8N4pgFdEXFid1lEvLl1ETWHaxbNsX9EbABsAZwGHAtMrfdGJA3U5L8F8GS9fii6a11tZAvgHxGxoh4ra7f9oA7xrPbn327vRb8WEX408AE8DOxZVrYL8AqwfR6fBpyah0cAVwFLgSXAzaSkfn5e5gXgWeAYYDwQwGTgEeCmkrKheX03AN8BbgWWAVcAG+dpu5OOkHrEC+wNLAdeytu7q2R9h+fhtYATgX8Bi0g1pg3ztO44JuXYngBO6OV92jAvvziv78S8/j3za34lxzGtwrK7A13AV/N2HgYOLZk+DTgLuBp4Lq/z1fc8zzMRuBN4GvgnsHdJXFOBhcCjwKnAkDxta+DG/L4+AVzcy+u7FHgsz3sT8OZc/o2y9/lI4N+kWuizwNI837rA9/J7+Tjwc2D9std/bN7G+RW2/wngbyXjbwduy/HcBry9ZNqWOcZngOuAn5JqD+XrfE3ZZ/MssDlwMnAZ8Jv8fh5O2uf/TtqvFwI/AdYpWVcARwBzgafyNlXt8wcOAGbn9d0AbFu2Dx8L3A28SGpBeRj4v7nsufyZbgr8qeR1blTD5zUlf1bLczxXln/P82f1Q2BBfvwQWLfss/oy6TuzEDis1b9TNf2WtTqAgf6gQrLI5Y8An8nD01iZLL6TfwjWzo93Aaq0Llb+IJ+Xv7jrUzlZPApsn+f5XfcXn16SRR4+mbIfCVZNFp8E5gFvIDV9/Z78Q1USxy9zXDvkL+62Vd6n80iJbIO87D+AydXiLFt2d1Iz3w/yF/XdpB+EbUre32XAO0gJaL2y93yXPH2vPH008KY87XLgF/m9G0VKup/O0y4ETihZ5zt7ifGT+bV1/5DcWTJtlfeZsh/2XPZDYDqwcV7PlcB3yl7/6Xn961fY/qvrzOt4CvgY6Yf0w3l8kzz976TEtA7wTtIPfo9k0cs+dDLpB/XA/N6sD+wE7Jq3Nx6YA3yxZJkgHSQNB8aRDhr2rrQN4I35892L9B05hrQfrlOyD98JjGVlQn0YmElKEKNJP9S3A2/N79lfgJNq/LymUXKgUeF7c0re1ihgJPA/wDfLPqtTcuz7As9Tkqja9eFmqNZZQPrSlnsJ2IzUPvtSRNwceS/rxckR8VxEvFBl+vkRcW9EPAd8DfhgnZpiDgV+EBEPRsSzwPHAIWVV/29ExAsRcRdwFylprCLH8iHg+Ih4JiIeBr5P+jHri69FxIsRcSPwR+CDJdOuiIj/HxGvRMS/y5abDJwTETPy9Ecj4n5JmwL7kH7UnovUDHIGcEhe7iVSE8nmEfHviKjagRwR5+TX9iLpx3QHSRvW8qIkCfgU8KWIWBIRzwDfLokD0pH3Sfn1V9sPur0fmBsR50fEioi4ELgf2F/SOGBn4OsRsTy/pum1xFnm7xFxeX4/X4iIWRExM2/vYVICfnfZMqdFxNJI/W5/Bf6jyro/BPwxf14vkRLb+qTaUrczI2J+2Xvx44h4PCIeJdXYb4mIO/Jn8gdS4gDW7PMifS9OiYhFEbGYVHss3ZdfytNfioirSTWUbWpcd8s4WbTOaFIzU7nvko6SrpX0oKTjaljX/D5M/xfpiGZETVH2bvO8vtJ1DyUdvXUrPXvleSp3vo8gHcWWr2t0H2J5KifD0uU3Lxnv7T0aS2p6KrcF6b1aKGmppKWkH7lRefoxpKaSW/PZMJ+stHJJQySdJumfkp4mHYVC7Z/BSGAYMKskjj/n8m6LKyTBaso/N1j5fm8OLImI50umFe1flayyjKQ3SrpK0mP5Pfg2PV9/LfsKlMUf6USR+ay6v1SK+fGS4RcqjL82x7qmn1el70XpvvhkrNo/1dtrbRtOFi0gaWfSjt3jSDQfzXw5It4A7A8cLWmP7slVVllU8xhbMjyOdGTzBKkqP6wkriGs+gNUtN4FpB/U0nWvYNUvYS2eYOVReum6Hu3DOjaS9Jqy5ReUjPf2WuYDW1UpfxEYERHD8+N1kc98iYjHIuJTEbE58GngZ5K2rrCej5D6RPYk9YGMz+WqEk95rE+QfszeXBLHhhHx2l6W6U355wYr3++FwMaShpVMG0t1te6TZ5FqLxMi4nWk/qVqr7/IKvHnmtdYVt1f1uRy2kWf1+p8LxZUmbffcLJoIkmvk7QfcBGpDfieCvPsJ2nr/AV4mtTR+XKe/Dipf6CvPippu/wDcApwWUS8TOoXWE/S+yWtTepUXrdkuceB8ZKq7ScXAl+StKWk15KOFi+OPp7Vk2O5BPiWpA0kbQEcTeog7YtvSFpH0ruA/UidlLWYChwmaQ9Ja0kaLelNEbEQuBb4fv7s1pK0laR3A0g6WFL3KaNPkX5EXq6w/g1ISedJUnL+dkE8jwNjJK0Drx45/xI4Q9KovO3Rkt5X4+srdzXwRkkfkTRU0oeA7YCrIuJfQCdwcn4vdyMdtPQW6yY1NNFsQNqfn5X0JuAzqxk7pH3l/fnzWpvUWfwiqW+gHoo+r6Lv4YXAiZJGShoBfJ2+78ttx8miOa6U9AzpSPUEUkfsYVXmnUA6M+NZUkfjzyLihjztO6SdcKmkr/Rh++eTOuUeI3XEfgEgIpYBnwV+RToqe450pka37h/bJyXdXmG95+R13wQ8RDqL5/N9iKvU5/P2HyTVuH6b11+rx0g/2AuAC4AjIuL+WhaMiFtJn8cZpI7uG1l5ZPhxUhPZfXn9l5H6lCC17d8i6VlSu/5REfFQhU2cR2qKeDSvZ2ZBSH8hnenzmKQnctmxpObJmblp5DpWs507Ip4kJdMvk34QjwH2i4jubR0K7JannQpcTPrxrLSu+0k/jg/m/XLzSvMBXyEdsT9DSnwXr07seZsPAB8Ffkyqde1POj19+equs0zR5zUV2C6/3ssrLH8qKeHeDdxD6kg/tU6xtUz3WTZm/VYz/hg2mEm6GLg/Ik5qdSzWOq5ZmNkqJO2cm9vWkrQ3qf2+0hG0DSL+d6OZlXs96T8zm5CaJT8TEXe0NiRrNTdDmZlZITdDmZlZoQHZDDVixIgYP358q8MwM+tXZs2a9UREjKw0bUAmi/Hjx9PZ2dnqMMzM+hVJ5f/sf5WboczMrFDDkoWkcyQtknRvhWlfkRT5340oOVPSPEl3S9qxZN5JkubmR9Pv0GZmZo2tWUwj3RNhFfmuV3uRLtHdbR/SP5cnkK4Xf1aed2PgJOBtpMtInyRpowbGbGZmFTQsWUTETVS+quoZpMsLlJ6zOxE4L5KZwHBJmwHvA2bkyzI/BcygQgIyM7PGamqfhaQDgEfzvQ1KjWbVSwp35bJq5ZXWPUVSp6TOxYsX1zFqMzNrWrLIVzw9gXQFxh6TK5RFL+U9CyPOjoiOiOgYObLimV9mZraamlmz2Ip0b9+7JD0MjAFul/R6Uo2h9Jr5Y0hXD61WbmZmTdS0ZBER90TEqIgYHxHjSYlgx4h4jHR554/ns6J2BZblewlcA7xX0ka5Y/u9uczMzJqokafOXki6H8M2krokTe5l9qtJ9zGYR7rW/WcBImIJ8E3gtvw4JZeZmVkTDcgLCXZ0dIT/wW0A6YaDPQ3E/d5sTUmaFREdlab5H9xmZlbIycLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVGtrqAMzqodp9K8ysPlyzMDOzQk4WZmZWyMnCzMwKuc/CBqXe+jh8f26znlyzMDOzQk4WZmZWqGHJQtI5khZJurek7LuS7pd0t6Q/SBpeMu14SfMkPSDpfSXle+eyeZKOa1S8ZmZWXSNrFtOAvcvKZgDbR8RbgH8AxwNI2g44BHhzXuZnkoZIGgL8FNgH2A74cJ63oSRVfJiZDVYNSxYRcROwpKzs2ohYkUdnAmPy8ETgooh4MSIeAuYBu+THvIh4MCKWAxflec3MrIla2WfxSeBPeXg0ML9kWlcuq1beg6QpkjoldS5evLgB4ZqZDV4tSRaSTgBWABd0F1WYLXop71kYcXZEdEREx8iRI+sTqJmZAS34n4WkScB+wB6x8oT2LmBsyWxjgAV5uFq5mZk1SVNrFpL2Bo4FDoiI50smTQcOkbSupC2BCcCtwG3ABElbSlqH1Ak+vZkxm5lZA2sWki4EdgdGSOoCTiKd/bQuMCOfXTQzIo6IiNmSLgHuIzVPHRkRL+f1fA64BhgCnBMRsxsVs5mZVaaBeGmDjo6O6OzsXO3lq50mOxDfq4Ginqc2+3O2wUrSrIjoqDTN/+A2M7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK9T0mx+ZtTtfddisJ9cszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK9SwZCHpHEmLJN1bUraxpBmS5ubnjXK5JJ0paZ6kuyXtWLLMpDz/XEmTGhWvmZlV18iaxTRg77Ky44DrI2ICcH0eB9gHmJAfU4CzICUX4CTgbcAuwEndCcbMzJqnYckiIm4ClpQVTwTOzcPnAgeWlJ8XyUxguKTNgPcBMyJiSUQ8BcygZwIyM7MGa3afxaYRsRAgP4/K5aOB+SXzdeWyauU9SJoiqVNS5+LFi+seuLUHSRUfZtZY7dLBXenbHr2U9yyMODsiOiKiY+TIkXUNzsxssGt2sng8Ny+Rnxfl8i5gbMl8Y4AFvZSbmVkTNTtZTAe6z2iaBFxRUv7xfFbUrsCy3Ex1DfBeSRvlju335jIzM2uihl2iXNKFwO7ACEldpLOaTgMukTQZeAQ4OM9+NbAvMA94HjgMICKWSPomcFue75SIKO80NzOzBtNAvEZ/R0dHdHZ2rvbyvp9B+2plZ7Y/fxvoJM2KiI5K09qlg9vMzNqYk4WZmRVysjAzs0JOFmZmVsjJwszMCjlZmJlZIScLMzMr5GRhZmaFnCzMzKyQk4WZmRVysjAzs0JOFmZmVqimZCFp+0YHYmZm7avWmsXPJd0q6bOShjc0IjMzazs1JYuIeCdwKOmudZ2Sfitpr4ZGZmZmbaPmPouImAucCBwLvBs4U9L9kv6rUcGZmVl7qLXP4i2SzgDmAO8B9o+IbfPwGQ2Mz8zM2kCtt1X9CfBL4KsR8UJ3YUQskHRiQyIzM7O2UWuy2Bd4ISJeBpC0FrBeRDwfEec3LDozM2sLtfZZXAesXzI+LJeZmdkgUGuyWC8inu0eycPDGhOSmZm1m1qTxXOSduwekbQT8EIv8/dK0pckzZZ0r6QLJa0naUtJt0iaK+liSevkedfN4/Py9PGru12zNSGp4sNsMKg1WXwRuFTSzZJuBi4GPrc6G5Q0GvgC0BER2wNDgEOA04EzImIC8BQwOS8yGXgqIrYmnXl1+ups18zMVl+tf8q7DXgT8Bngs8C2ETFrDbY7FFhf0lBSc9ZC0mm4l+Xp5wIH5uGJeZw8fQ/5cM7MrKlqPRsKYGdgfF7mrZKIiPP6usGIeFTS94BHSE1Z1wKzgKURsSLP1gWMzsOjgfl52RWSlgGbAE+UrlfSFGAKwLhx4/oalpmZ9aKmZCHpfGAr4E7g5VwcQJ+ThaSNSLWFLYGlwKXAPhVmje5Fepm2siDibOBsgI6Ojh7Tzcxs9dVas+gAtouIevwI7wk8FBGLAST9Hng7MFzS0Fy7GAMsyPN3ka5J1ZWbrTYEltQhDjMzq1GtHdz3Aq+v0zYfAXaVNCz3PewB3Af8FTgozzMJuCIPT8/j5Ol/qVPSMjOzGtVasxgB3CfpVuDF7sKIOKCvG4yIWyRdBtwOrADuIDUf/RG4SNKpuWxqXmQqcL6keaQaxSF93aaZma0Z1XKQLundlcoj4sa6R1QHHR0d0dnZudrLVzvZyhWa1mvHE+G8X9hAIWlWRHRUmlZTzSIibpS0BTAhIq6TNIz0/wgzMxsEar1E+adI/3H4RS4aDVzeqKDMzKy91NrBfSTwDuBpePVGSKMaFZSZmbWXWpPFixGxvHskn8Lqhlozs0Gi1mRxo6Svki7RsRfpj3RXNi4sMzNrJ7Umi+OAxcA9wKeBq0n34zYzs0Gg1rOhXiHdVvWXjQ3HzMzaUa3XhnqIytdjekPdIzIzs7bTl2tDdVsPOBjYuP7hmJlZO6r1fhZPljwejYgfku4/YWZmg0CtzVA7loyuRappbNCQiMzMrO3U2gz1/ZLhFcDDwAfrHo2ZmbWlWs+G+j+NDsTMzNpXrc1QR/c2PSJ+UJ9wzMysHfXlbKidSTciAtgfuIl8b2wzMxvY+nLzox0j4hkASScDl0bE4Y0KzMzM2ketl/sYBywvGV8OjK97NGZm1pZqrVmcD9wq6Q+kf3J/ADivYVGZmVlbqfVsqG9J+hPwrlx0WETc0biwbLBrx9unmg1mtTZDAQwDno6IHwFdkrZsUExmZtZmar2t6knAscDxuWht4DeNCsrMzNpLrTWLDwAHAM8BRMQC1uByH5KGS7pM0v2S5kjaTdLGkmZImpufN8rzStKZkuZJurvs0iNmZtYEtSaL5RER5MuUS3rNGm73R8CfI+JNwA7AHNINlq6PiAnA9XkcYB9gQn5MAc5aw22bmVkf1ZosLpH0C2C4pE8B17GaN0KS9DrgP4GpABGxPCKWAhOBc/Ns5wIH5uGJwHmRzMwxbLY62zYzs9VT69lQ38v33n4a2Ab4ekTMWM1tvoF0i9ZfS9oBmAUcBWwaEQvz9hZKGpXnH82q/xTvymULS1cqaQqp5sG4ceNWMzQzM6ukMFlIGgJcExF7AqubIMq3uSPw+Yi4RdKPWNnkVDGECmWV7tp3NnA2QEdHR4/pZma2+gqboSLiZeB5SRvWaZtdQFdE3JLHLyMlj8e7m5fy86KS+ceWLD8GWFCnWMzMrAa1/oP738A9kmaQz4gCiIgv9HWDEfGYpPmStomIB4A9gPvyYxJwWn6+Ii8yHficpIuAtwHLupurzMysOWpNFn/Mj3r5PHCBpHWAB4HDSLWcSyRNBh4h3ecb4GpgX2Ae8Hye18zMmqjXZCFpXEQ8EhHn9jZfX0XEnaTLnpfbo8K8ARxZz+2bmVnfFPVZXN49IOl3DY7FrF+SVPFhNpAUJYvSPf4NjQzEzMzaV1GyiCrDZmY2iBR1cO8g6WlSDWP9PEwej4h4XUOjMzOzttBrsoiIIc0KxMzM2ldf7mdhZmaDlJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK+RkYWZmhZwszMyskJOFmZkVcrIwM7NCThZmZlbIycLMzAo5WZiZWSEnCzMzK+RkYWZmhVqWLCQNkXSHpKvy+JaSbpE0V9LFktbJ5evm8Xl5+vhWxWxmNli1smZxFDCnZPx04IyImAA8BUzO5ZOBpyJia+CMPJ+ZmTVRS5KFpDHA+4Ff5XEB7wEuy7OcCxyYhyfmcfL0PfL8ZmbWJK2qWfwQOAZ4JY9vAiyNiBV5vAsYnYdHA/MB8vRlef5VSJoiqVNS5+LFixsZu5nZoNP0ZCFpP2BRRMwqLa4wa9QwbWVBxNkR0RERHSNHjqxDpGZm1m1oC7b5DuAASfsC6wGvI9U0hksammsPY4AFef4uYCzQJWkosCGwpPlhm5kNXk2vWUTE8RExJiLGA4cAf4mIQ4G/Agfl2SYBV+Th6XmcPP0vEdGjZmH9k6SKDzNrL+30P4tjgaMlzSP1SUzN5VOBTXL50cBxLYrPzGzQakUz1Ksi4gbghjz8ILBLhXn+DRzc1MDMzGwV7VSzMDOzNuVkYWZmhVraDGU2kFXrqPf5GdYfuWZhZmaFnCzMzKyQk4WZmRVysjAzs0JOFmZmVsjJwszMCjlZmJlZIScLMzMr5GRhZmaFnCzMzKyQk4WZmRVysjAzs0K+kKA1he9+Z9a/uWZhZmaFnCzMzKyQk4WZmRVysjAzs0Lu4DZrMt9Bz/qjptcsJI2V9FdJcyTNlnRULt9Y0gxJc/PzRrlcks6UNE/S3ZJ2bHbMZmaDXSuaoVYAX46IbYFdgSMlbQccB1wfEROA6/M4wD7AhPyYApzV/JDNzAa3pieLiFgYEbfn4WeAOcBoYCJwbp7tXODAPDwROC+SmcBwSZs1OWwzs0GtpR3cksYDbwVuATaNiIWQEgowKs82GphfslhXLjMzsyZpWbKQ9Frgd8AXI+Lp3matUNajJ1DSFEmdkjoXL15crzDNzIwWJQtJa5MSxQUR8ftc/Hh381J+XpTLu4CxJYuPARaUrzMizo6IjojoGDlyZOOCNzMbhFpxNpSAqcCciPhByaTpwKQ8PAm4oqT84/msqF2BZd3NVWYDiaSKD7N20Ir/WbwD+Bhwj6Q7c9lXgdOASyRNBh4BDs7Trgb2BeYBzwOHNTdcMzNrerKIiL9RuR8CYI8K8wdwZEODMjOzXvlyH2ZmVsjJwszMCvnaUGZtzteSsnbgmoWZmRVysjAzs0JOFmZmVsh9Fn3gtmMzG6xcszAzs0JOFmZmVsjJwszMCrnPog7cl2Gt4P3OmsnJooH8ZbaByvv24ONmKDMzK+SahdkA46N+awQnC7NBwknE1oSboczMrJBrFmZW0erc0tW1l4HLycLqyveM7n+a8Zk5ifR/ThYt4C+OmfU3ThZm1jI+cOo/3MFtZmaFXLNoI/3pKMt9E2aDS7+pWUjaW9IDkuZJOq7V8TSTpIoPs8Gm2nfB35HG6xc1C0lDgJ8CewFdwG2SpkfEfa2NrLWaURPxF85awftd++kXyQLYBZgXEQ8CSLoImAgM6mRRjb9oZslAaNptl1j7S7IYDcwvGe8C3lY6g6QpwJQ8+qykB5oUWzUjgCdaHENfON7GcryN0+dYW3xA1ad4mxzrFtUm9JdkUendWiXdRsTZwNnNCaeYpM6I6Gh1HLVyvI3leBunP8UK/S/ebv2lg7sLGFsyPgZY0KJYzMwGnf6SLG4DJkjaUtI6wCHA9BbHZGY2aPSLZqiIWCHpc8A1wBDgnIiY3eKwirRNk1iNHG9jOd7G6U+xQv+LFwC1S0+7mZm1r/7SDGVmZi3kZGFmZoWcLBpA0pckzZZ0r6QLJa3X6piqkXRUjnO2pC+2Op5KJJ0jaZGke0vKNpY0Q9Lc/LxRK2PsViXWg/P7+4qktjplskq835V0v6S7Jf1B0vBWxliqSrzfzLHeKelaSZu3MsZSleItmfYVSSFpRCti6ysnizqTNBr4AtAREduTOuQPaW1UlUnaHvgU6R/yOwD7SZrQ2qgqmgbsXVZ2HHB9REwArs/j7WAaPWO9F/gv4KamR1NsGj3jnQFsHxFvAf4BHN/soHoxjZ7xfjci3hIR/wFcBXy96VFVN42e8SJpLOnyRY80O6DV5WTRGEOB9SUNBYbRvv8J2RaYGRHPR8QK4EbgAy2OqYeIuAlYUlY8ETg3D58LHNjUoKqoFGtEzImIVl9RoKIq8V6b9weAmaT/NbWFKvE+XTL6Gsr+sNtKVfZdgDOAY2ijWIs4WdRZRDwKfI90xLAQWBYR17Y2qqruBf5T0iaShgH7suqfH9vZphGxECA/j2pxPAPVJ4E/tTqIIpK+JWk+cCjtVbPoQdIBwKMRcVerY+kLJ4s6y23nE4Etgc2B10j6aGujqiwi5gCnk5od/gzcBazodSEbNCSdQNofLmh1LEUi4oSIGEuK9XOtjqeafFB2Am2e0Cpxsqi/PYGHImJxRLwE/B54e4tjqioipkbEjhHxn6Tq8txWx1SjxyVtBpCfF7U4ngFF0iRgP+DQ6F9/xvot8N+tDqIXW5EOJO+S9DCpie92Sa9vaVQ1cLKov0eAXSUNU7pc5B7AnBbHVJWkUfl5HKkT9sLWRlSz6cCkPDwJuKKFsQwokvYGjgUOiIjnWx1PkbKTMg4A7m9VLEUi4p6IGBUR4yNiPOm6dztGxGMtDq2Q/8HdAJK+AXyIVIW/Azg8Il5sbVSVSboZ2AR4CTg6Iq5vcUg9SLoQ2J10aefHgZOAy4FLgHGkBH1wRFTqSGyqKrEuAX4MjASWAndGxPtaFWOpKvEeD6wLPJlnmxkRR7QkwDJV4t0X2AZ4BfgXcETuO2y5SvFGxNSS6Q+Tzpxs+8vBO1mYmVkhN0OZmVkhJwszMyvkZGFmZoWcLMzMrJCThZmZFXKysEFB0rN1Ws9mkq7Kw7tLWibpDklzJJ1UZZnNJV1Wj+33RbUrnkr6nqT3NDse69+cLMz65mjglyXjN0fEW4EO4KOSdiqdWdLQiFgQEQfVMwhJN0gaXzDbNCpc8ZT0n492uUqv9RNOFjZoSdpC0vX5XgjX53+xI2krSTMl3SbplLJayX+TrqO1ioh4DpgFbCXpE5IulXQlcK2k8d1H95KG5CP7e/J2P5/Ld5J0o6RZkq7pvpTJmqh2xdOI+BewSX+4xIS1DycLG8x+ApyX79twAXBmLv8R8KOI2JmSy8tL2hJ4qtK/8SVtAuwKzM5FuwGTIqK8uWcK6dpAb+3erqYjuZ4AAAG9SURBVKS1SUf7B0XETsA5wLfq9BqruR14R4O3YQPI0FYHYNZCu5GuhwVwPvD/Ssq774/xW9Il5wE2AxaXreNdku4gXWritIiYLWlnYEaVy4/sCfy8+34REbEk34Rqe2BGupwYQ0iXt1+FpMOAo/Lo1sDVkpaTLlzZ1/uQLCJdFdmsJk4WZisVXfvmBaD8Frk3R8R+FeZ9rso6VGE7AmZHxG69Bhfxa+DXkPosgE9ExMMFMVezHun1mNXEzVA2mP0PK295eyjwtzw8k5WXuS69Je4/gPFruM1rgSPyXRSRtDHwADBS0m65bG1Jb17D7RR5I+nmV2Y1cbKwwWKYpK6Sx9Gke6UfJulu4GOsbOL5InC0pFtJTU/L4NVO7H9K2noN4vgV6Sq5d0u6C/hIRCwHDgJOz2V3Uod7oOQrnv4d2Ca/5sm5fG1SM1bnmm7DBg9fddasTL6b2QsREZIOAT4cERPztA8AO0XEiS0Ncg3k17BjRHyt1bFY/+E+C7OedgJ+km9etZR0H2oAIuIP+cyn/mwo8P1WB2H9i2sWZmZWyH0WZmZWyMnCzMwKOVmYmVkhJwszMyvkZGFmZoX+Fy62TmztW4mpAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkdUlEQVR4nO3de5xdVX338c+XQQMICJgBc5kkIAENFBQiRQ0VRQsiEtpKjQWNCEaQKt4eIaKC1lhaLVbaglLAAAoY0EJstQJ5BJo+QEwRCgkgkeDMkCsXIVwMZPg9f6w1ujM5Z/aZyZzLzHzfr9e85py19l77d/acOb+z1toXRQRmZmb92abZAZiZWetzsjAzs1JOFmZmVsrJwszMSjlZmJlZKScLMzMr5WTRAiR9W9IXh6itSZKekdSWn98i6ZShaDu391NJs4eqvQFs96uSHpO0ZojaG7J9vrUkbS/px5KeknRtnbYxX9JX69F2vTVi/2wNSSdIurHZcdTbts0OYKST9AiwB7AJ6AGWA1cAF0fESwARceoA2jolIm6utkxEdAI7bl3Uv9/eucDeEXFiof13DUXbA4yjA/gMMDki1g1Fm7Xu8wZ5L+k98qqI2CRpPtAdEV9obljlKr1H6mCz/VPH7ZSSNAVYCbysN5aI+D7w/WbG1QjuWTTGeyJiJ2AycB5wJnDpUG9E0khN/pOBx4cqUfT2ulrIZOBXQ/VB2ErvAyVb+zkz6P3TSvti2IsI/9TxB3gEeEefskOAl4D98/P5wFfz47HAvwO/BZ4A/ouU1K/M6zwPPAN8DpgCBHAy0AncVijbNrd3C/C3wBLgKeAGYLdcdzjpG+wW8QJHAS8AL+bt3VNo75T8eBvgC8BvgHWkHtMrc11vHLNzbI8BZ/ezn16Z11+f2/tCbv8d+TW/lOOYX2Hdw4Fu4PN5O48AJxTq5wMXAT8Bns1t/n6f52VmAncDTwO/Bo4qxHUpsBp4FPgq0Jbr9gZuzfv1MeAH/by+a4E1ednbgP1y+Zf77OeP5scv5Oc/zsuNB36Y989K4BOFts8FrgO+l+M/pcL2+77ejwArSO+xhcD4Qt2fAg/mWC/Mr7FSm/29R+YB/53/dnsDJwH3AxuAh4GPVvj7fYb0PloNnFRl/5xMbe+74v/Eh3Is3yT9Xz0MvDmXd+U2ZhfieTfwy7wvu4BzC3Wduf1n8s+bcjuLC8u8GfhF3n+/AN5cqLsF+JsczwbgRmBssz+navosa3YAI/2HCskil3cCp+XHv/9HJn2wfxt4Wf45DFCltgr/GFcArwC2p3KyeBTYPy/zQ+B7ue5wqiSL/Pjc3mUL9bfwh2TxYdIHzl6koa8fAVf2ie1fc1wHAhuB11XZT1eQEtlOed1fASdXi7PPuoeThvnOB8YAbyUlhX0L+/cp4C2kD5rt+uzzQ3L9O3P9BOC1ue564Dt53+1OSrofzXVXA2cX2pzRT4wfzq9tDPCPwN2Fus32M1t+sG8D/A/wJeDleX8/DBxZWP9F4Li87PYVtl98vW8nJbeDcjz/BNyW68aSPiT/nDRMfUZue4tkUfIe6QT2y228jPQB/BpA+e/zHHBQn7/fV/KyR+f6Xavsn1red8X/iQ/l9k8C2kgJvxP4l/z6/5T0wb1jIZ4/yvvyAGAtcFyf9rctxPMhcrIAdgOeBD6QX/v78/NXFfbNr4F9cmy3AOc1+3Oqlh8PQzXPKtIbq68XgXGk8fkXI+K/Ir/L+nFuRDwbEc9Xqb8yIu6LiGeBLwJ/OURDMScA50fEwxHxDDAXmNWn6//liHg+Iu4B7iEljc3kWN4HzI2IDRHxCPAPpH+4gfhiRGyMiFuB/wD+slB3Q0T8d0S8FBG/67PeycBlEXFTrn80Ih6QtAfwLuCTef+uI307nZXXe5E0RDI+In4XEYurBRYRl+XXtpH04XegpFfW+LreCLRHxFci4oWIeJiUhGcVlrk9Iq7P8Vd7H/Q6Ib/eu3I8c4E35fH4o4FlEfGjSMM+F5B6RAM1PyKWRcSm/D7+j4j4dSS3kr5RH1ZY/kXgK3nZn5C+te/bT/xl77u+/xMrI+K7EdED/ADoyNvbGBE3knovewNExC0RcW/el/9L+lLw1hpf97uBhyLiyvzarwYeAN5TWOa7EfGrHNsC4PU1tt1UThbNM4E0BNDX10nfmm6U9LCks2poq2sA9b8hfXsbW1OU/Ruf2yu2vS1pMrJX8YPmOSpPvo8lfWPu29aEAcTyZE6GxfXHF573t486SN/2+ppM2lerJf1W0m9JvYzdc/3nSN+Ul0haJunDlRqX1CbpPEm/lvQ0qfcGtf8NJgPje2PIcXyezfdz2XugaLO/W/7AfZy0v8cX28pfVLoH0HbFeCS9S9Idkp7I8R/N5q//8dh8TqLae2WL+Kn8vuu7P9YWHj8PEBF9y3bMsf6xpJ9LWi/pKeBUav9b9Y2tN77ie7mW/4mW42TRBJLeSHrzbPFNNH/7/ExE7EX6NvJpSUf0Vldpsqzn0VF4PIn0Le4x0lDNDoW42oD2AbS7ivRBVmx7E5v/Y9biMf7wLb3Y1qMDaGNXSa/os/6qwvP+XksXaYikUvlG0pjyLvln54jYDyAi1kTERyJiPGmu4UJJe1do569IcyLvIM2BTMnlqhJP31i7SN+Mdyn87BQRR9f4+vra7O+W99urSPt7NTCxUKfi8xpi3aJc0hjS8Oc3gD0iYhfS/FG111+mlvfd1lxO+yrSPE5HRLySNCzcG+tA/yd64xvIe7klOVk0kKSdJR0DXEMag723wjLHSNo7/5M+TTrctidXryWN0w7UiZKmSdqBNC58Xe6O/wrYTtK7Jb2MNGk4prDeWmBKP0ezXA18StKeknYEvkaa5B3QUSs5lgXAPEk7SZoMfJo0YTsQX5b0ckmHAceQJpVrcSlwkqQjJG0jaYKk10bEatJwyT/kv902kl4j6a0Ako6X1PtB+iTpg6SnQvs7kZLO46Tk/LWSePr+nZcAT0s6M59z0CZp//ylYzCuyq/39fmD/GvAnXn47z+AP5J0XB7WOR14dUms/b1HIPUax5Am5zdJehdpnmCwhuR914+dgCci4neSDiEl+17rSQdbVPs//Amwj6S/krStpPcB00gHrQxrThaN8WNJG0jfEM8mTcSeVGXZqcDNpDHb24ELI+KWXPe3wBfyUMRnB7D9K0kTnGtIE7GfAIiIp4CPAZeQvvk8y+ZDDr0fto9LuqtCu5fltm8jHaHzO+DjA4ir6ON5+w+TelxX5fZrtYb0gb2KdMz7qRHxQC0rRsQS0t/jm6SJ7lv5w7fDD5I+7Jbn9q8jzSlBmku4U9IzpG+iZ0TEygqbuII0FPFobueOkpAuBablv/P1OZm+hzS2vZLUE7uE1EsZsIhYRJq7+iGpJ/Ea8vxHRDwGHA/8PSm5TQOWkpJdJWXvESJiA+k9t4C0D/+KtL8Gayjfd5V8DPhK/p/9EiluACLiOfKRXvnvc2hxxYh4nPRF5TOk/fc54Ji8X4e13qNszIYtSYeTemr9DZfYIOQeQzfpUOSfNzseax73LMxsM5KOlLRLHqL6PGm8vqw3ZCOck4WZ9fUm0tFhj5GGv46r4XBcG+E8DGVmZqXcszAzs1Ij9iJbY8eOjSlTpjQ7DDOzYWPs2LH87Gc/+1lEHNW3bsQmiylTprB06dJmh2FmNqxIqni2uoehzMyslJOFmZmVcrIwM7NSThZmZlbKycLMzEo5WZiZWSknCzMzK+VkYWZmpZwszMys1Ig9g9tsxowZdHVVvzV1R0cHixdvcWdbM6vAycJGrK6uLjo7O5sdhtmI4GEoMzMrVbdkIekySesk3den/OOSHpS0TNLfF8rnSlqR644slB8s6d5cd4Ek1StmMzOrrJ49i/nAZpe5lfQ2YCZwQETsB3wjl08j3TB+v7zOhZLa8moXAXOAqflni0vnmplZfdUtWUTEbcATfYpPA86LiI15mXW5fCZwTURsjIiVwArgEEnjgJ0j4vZIt/S7AjiuXjGbmVlljZ6z2Ac4TNKdkm6V9MZcPgEoHrbSncsm5Md9yyuSNEfSUklL169fP8Shm5mNXo1OFtsCuwKHAv8HWJDnICrNQ0Q/5RVFxMURMT0ipre3tw9FvGZmRuOTRTfwo0iWAC8BY3N5R2G5icCqXD6xQrmZmTVQo5PF9cDbASTtA7wceAxYCMySNEbSnqSJ7CURsRrYIOnQ3AP5IHBDg2M2Mxv16nZSnqSrgcOBsZK6gXOAy4DL8uG0LwCz88T1MkkLgOXAJuD0iOjJTZ1GOrJqe+Cn+cfMzBqobskiIt5fperEKsvPA+ZVKF8K7D+EoZmZ2QD5DG4zMyvla0PZqLVmzRomT55csc4XGTTbnJOFjVo9PT2+0KBZjTwMZWZmpZwszMyslJOFmZmV8pyFDVtld8Jbu3ZtA6MxG9mcLGzYKrsTXltbW9U6MxsYD0OZmVkpJwszMyvlZGFmZqWcLMzMrJSThZmZlXKyMDOzUk4WZmZWysnCzMxK1S1ZSLpM0rp8V7y+dZ+VFJLGFsrmSloh6UFJRxbKD5Z0b667IN9e1czMGqiePYv5wFF9CyV1AO8EOgtl04BZwH55nQsl9Z5+exEwh3Rf7qmV2jQzs/qqW7KIiNuAJypUfRP4HBCFspnANRGxMSJWAiuAQySNA3aOiNvzvbqvAI6rV8xmZlZZQ+csJB0LPBoR9/SpmgAUrwjXncsm5Md9y6u1P0fSUklL169fP0RRm5lZw5KFpB2As4EvVaquUBb9lFcUERdHxPSImN7e3j64QM3MbAuNvOrsa4A9gXvyHPVE4C5Jh5B6DB2FZScCq3L5xArlZmbWQA3rWUTEvRGxe0RMiYgppERwUESsARYCsySNkbQnaSJ7SUSsBjZIOjQfBfVB4IZGxWxmZkk9D529Grgd2FdSt6STqy0bEcuABcBy4D+B0yOiJ1efBlxCmvT+NfDTesVsZmaV1W0YKiLeX1I/pc/zecC8CsstBfYf0uDMzGxAfAa3mZmVcrIwM7NSThZmZlbKycLMzEo5WZiZWSknCzMzK+VkYWZmpZwszMyslJOFmZmVcrIwM7NSThZmZlbKycLMzEo5WZiZWalG3vxo2JgxYwZdXV1V6zs6Oli8eHEDIzIzay4niwq6urro7OxsdhhmZi3Dw1BmZlaqnnfKu0zSOkn3Fcq+LukBSf8r6d8k7VKomytphaQHJR1ZKD9Y0r257oJ8e1UzM2ugevYs5gNH9Sm7Cdg/Ig4AfgXMBZA0DZgF7JfXuVBSW17nImAO6b7cUyu0aWZmdVbP26reJmlKn7IbC0/vAN6bH88EromIjcBKSSuAQyQ9AuwcEbcDSLoCOA7fh9vqbM2aNUyePLlqvQ9ysNGmmRPcHwZ+kB9PICWPXt257MX8uG95RZLmkHohTJo0aShjtVGmp6fHBzmYFTRlglvS2cAm4Pu9RRUWi37KK4qIiyNiekRMb29v3/pAzcwMaELPQtJs4BjgiIjo/eDvBjoKi00EVuXyiRXKzcysgRras5B0FHAmcGxEPFeoWgjMkjRG0p6kiewlEbEa2CDp0HwU1AeBGxoZs5mZ1bFnIelq4HBgrKRu4BzS0U9jgJvyEbB3RMSpEbFM0gJgOWl46vSI6MlNnUY6smp70sS2J7fNzBqsnkdDvb9C8aX9LD8PmFehfCmw/xCGZmZmA+QzuM3MrJSThZmZlXKyMDOzUk4WZmZWysnCzMxKOVmYmVkpJwszMyvlZGFmZqWcLMzMrJSThZmZlXKyMDOzUk4WZmZWysnCzMxK1ZQsJPmqr2Zmo1itPYtvS1oi6WOSdqlnQGZm1npqShYRMQM4gXTr06WSrpL0zrpGZmZmLaPmOYuIeAj4Aum2qG8FLpD0gKQ/r7S8pMskrZN0X6FsN0k3SXoo/961UDdX0gpJD0o6slB+sKR7c90F+faqZmbWQLXOWRwg6ZvA/cDbgfdExOvy429WWW0+cFSfsrOARRExFViUnyNpGjAL2C+vc6GktrzORcAc0n25p1Zo08zM6qzWnsU/A3cBB0bE6RFxF0BErCL1NrYQEbcBT/Qpnglcnh9fDhxXKL8mIjZGxEpgBXCIpHHAzhFxe0QEcEVhHTMza5Ba78F9NPB8RPQASNoG2C4inouIKwewvT0iYjVARKyWtHsunwDcUViuO5e9mB/3La9I0hxSL4RJkyYNICwzM+tPrT2Lm4HtC893yGVDpdI8RPRTXlFEXBwR0yNient7+5AFZ2Y22tXas9guIp7pfRIRz0jaYRDbWytpXO5VjAPW5fJu0pFWvSYCq3L5xArlNkrMmDGDrq6uinVr165tcDRmo1etyeJZSQf1zlVIOhh4fhDbWwjMBs7Lv28olF8l6XxgPGkie0lE9EjaIOlQ4E7gg8A/DWK7Nkx1dXXR2dlZsa6tra1iuZkNvVqTxSeBayX1fqsfB7yvvxUkXQ0cDoyV1A2cQ0oSCySdDHQCxwNExDJJC4DlwCbg9N75EeA00pFV2wM/zT9mZtZANSWLiPiFpNcC+5LmER6IiBdL1nl/laojqiw/D5hXoXwp4MuNmJk1Ua09C4A3AlPyOm+QRERcUZeozMyspdSULCRdCbwGuBvoHR7qPe/BzMxGuFp7FtOBafnEODMzG2VqPc/iPuDV9QzEzMxaV609i7HAcklLgI29hRFxbF2iMjOzllJrsji3nkGYmVlrq/XQ2VslTQamRsTN+extnxFlZjZK1HqJ8o8A1wHfyUUTgOvrFJOZmbWYWie4TwfeAjwNv78R0u79rmFmZiNGrcliY0S80PtE0rb0c/VXMzMbWWpNFrdK+jywfb739rXAj+sXlpmZtZJak8VZwHrgXuCjwE+ococ8MzMbeWo9Guol4F/zj5mZjTK1XhtqJRXmKCJiryGPyMzMWs5Arg3VazvSfSh2G/pwzMysFdU0ZxERjxd+Ho2IfwTeXt/QzMysVdR6Ut5BhZ/pkk4FdhrsRiV9StIySfdJulrSdpJ2k3STpIfy710Ly8+VtELSg5KOHOx2zcxscGodhvqHwuNNwCPAXw5mg5ImAJ8gXfL8+Xw71VnANGBRRJwn6SzSEVhnSpqW6/cj3Z/7Zkn7FG67atZwa9asYfLkyRXrOjo6WLx4cYMjMquvWo+Gelsdtru9pBeBHYBVwFzSPbsBLgduAc4EZgLXRMRGYKWkFcAhwO1DHJNZzXp6eujs7Gx2GGYNU+vRUJ/urz4izq91gxHxqKRvAJ3A88CNEXGjpD0iYnVeZrWk3suJTADuKDTRncsqxTkHmAMwadKkWkMyM7MStZ6UNx04jfQhPQE4lTRstBMDnLvIcxEzgT1Jw0qvkHRif6tUKKt4qZGIuDgipkfE9Pb29oGEZWZm/RjIzY8OiogNAJLOBa6NiFMGsc13ACsjYn1u60fAm4G1ksblXsU4YF1evhvoKKw/kTRsZWZmDVJrz2IS8ELh+QvAlEFusxM4VNIOkgQcAdwPLARm52VmAzfkxwuBWZLGSNoTmAosGeS2zcxsEGrtWVwJLJH0b6QhoD8DrhjMBiPiTknXAXeRjqz6JXAxsCOwQNLJpIRyfF5+WT5ianle/nQfCWVm1li1Hg01T9JPgcNy0UkR8cvBbjQizgHO6VO8kdTLqLh9YN5gt2dmZlun1mEoSIe4Ph0R3wK685CQmZmNArWewX0O6ZyHubnoZcD36hWUmZm1llp7Fn8GHAs8CxARq9iKy32YmdnwUmuyeCEignx+g6RX1C8kMzNrNbUmiwWSvgPsIukjwM34RkhmZqNG6dFQ+VyIHwCvBZ4G9gW+FBE31Tk2MzNrEaXJIiJC0vURcTDgBGFmNgrVOgx1h6Q31jUSMzNrWbWewf024FRJj5COiBKp03FAvQIzM7PW0W+ykDQpIjqBdzUoHjMza0FlPYvrSVeb/Y2kH0bEXzQgJjMzazFlcxbFe0nsVc9AzMysdZUli6jy2MzMRpGyYagDJT1N6mFsnx/DHya4d65rdGZm1hL6TRYR0daoQMzMrHUN5BLlZmY2SjUlWUjaRdJ1kh6QdL+kN0naTdJNkh7Kv3ctLD9X0gpJD0o6shkxm5mNZs3qWXwL+M+IeC1wIOke3GcBiyJiKrAoP0fSNGAWsB9wFHChJA+PmZk1UMOThaSdgT8BLgWIiBci4rfATODyvNjlwHH58UzgmojYGBErgRXAIY2M2cxstGtGz2IvYD3wXUm/lHRJvj/GHhGxGiD/3j0vPwHoKqzfncu2IGmOpKWSlq5fv75+r8DMbJRpRrLYFjgIuCgi3kC61tRZ/SyvCmUVz/mIiIsjYnpETG9vb9/6SM3MDGhOsugGuiPizvz8OlLyWCtpHED+va6wfEdh/YnAqgbFamZmNCFZRMQaoEvSvrnoCGA5sBCYnctmAzfkxwuBWZLGSNoTmAosaWDIZmajXq2XKB9qHwe+L+nlwMPASaTEtUDSyUAncDxARCyTtICUUDYBp0dET3PCNjMbnZqSLCLibmB6haojqiw/D5hXz5jMzKw6n8FtZmalnCzMzKyUk4WZmZVysjAzs1LNOhrKDIAZM2bQ1dVVtX7t2rUNjMbMqnGysKbq6uqis7Ozan1bm68ZadYKPAxlZmalnCzMzKyUk4WZmZVysjAzs1JOFmZmVspHQ5kNsTVr1jB58uSq9R0dHSxevLiBEZltPScLsyHW09PT7+HAZsORh6HMzKyUk4WZmZVysjAzs1JNSxaS2iT9UtK/5+e7SbpJ0kP5966FZedKWiHpQUlHNitmM7PRqpk9izOA+wvPzwIWRcRUYFF+jqRpwCxgP+Ao4EJJvmCQmVkDNSVZSJoIvBu4pFA8E7g8P74cOK5Qfk1EbIyIlcAK4JAGhWpmZjSvZ/GPwOeAlwple0TEaoD8e/dcPgEoXsO6O5eZmVmDNDxZSDoGWBcR/1PrKhXKokrbcyQtlbR0/fr1g47RzMw214yexVuAYyU9AlwDvF3S94C1ksYB5N/r8vLdQEdh/YnAqkoNR8TFETE9Iqa3t7fXK34zs1Gn4ckiIuZGxMSImEKauP6/EXEisBCYnRebDdyQHy8EZkkaI2lPYCqwpMFhm5mNaq10uY/zgAWSTgY6geMBImKZpAXAcmATcHpE9DQvTDOz0aepySIibgFuyY8fB46ostw8YF7DAjMzs834DG4zMyvlZGFmZqWcLMzMrJSThZmZlXKyMDOzUk4WZmZWysnCzMxKOVmYmVkpJwszMyvVSpf7sBFqxowZdHV1Vaxbu3Ztg6Mxs8FwsrC66+rqorOzs2JdW9vou+nhmjVrmDx5ctX6jo4OFi9e3MCIzMo5WZg1WE9PT9XkadaqPGdhZmalnCzMzKyUk4WZmZVysjAzs1JOFmZmVqrhyUJSh6SfS7pf0jJJZ+Ty3STdJOmh/HvXwjpzJa2Q9KCkIxsds5nZaNeMQ2c3AZ+JiLsk7QT8j6SbgA8BiyLiPElnAWcBZ0qaBswC9gPGAzdL2sf34baRqr/zMHwOhjVLw5NFRKwGVufHGyTdD0wAZgKH58UuJ92b+8xcfk1EbARWSloBHALc3tjIzRrD52FYK2rqnIWkKcAbgDuBPXIi6U0ou+fFJgDFa0V057JK7c2RtFTS0vXr19ctbjOz0aZpyULSjsAPgU9GxNP9LVqhLCotGBEXR8T0iJje3t4+FGGamRlNShaSXkZKFN+PiB/l4rWSxuX6ccC6XN4NdBRWnwisalSsZmbWnKOhBFwK3B8R5xeqFgKz8+PZwA2F8lmSxkjaE5gKLGlUvGZm1pyjod4CfAC4V9LduezzwHnAAkknA53A8QARsUzSAmA56Uiq030klJlZYzXjaKjFVJ6HADiiyjrzgHl1C8rMzPrlS5SbDSO+F4Y1i5PFIPikKWsWn4NhzeJkMQj+hzWz0cbJYoh5mMDMRiIniyHmXoeZjUROFmZWkxkzZtDV1VWxzj3mkc/JwmwEqecwaFdXl3vNo5iThdkIUjYM6iP5bLCcLMxGEc+p2WA5WZjZVvNRgCOfk4WZbTX3WEY+J4sG85ixjUbueQx/ThYN5m9g1qrKPtDXrl076Lb9vh/+nCxsq/V3/D1s3YeMNU7ZB3pbW1sDo7FW42RhW63s+Ht/yJgNf04WLcTjujZaeS6v9Q2bZCHpKOBbQBtwSUSc1+SQhpzHdW206u+9X/Yl6sknn2TXXXetWOdEM3SGRbKQ1Ab8C/BOoBv4haSFEbG8uZG1lnpdu8dzEtZMtcylbNiwoYERjU7DIlkAhwArIuJhAEnXADNJ9+UeNWo5WmXjxo2DWre/b2f9tQuek7DWNVyHdsu+oDUjbkVEQzc4GJLeCxwVEafk5x8A/jgi/rrPcnOAOfnpvsCDDQ10c2OBx5q4/YFyvPXleOvL8Q6NxwAi4qi+FcOlZ6EKZVtkuYi4GLi4/uGUk7Q0IqY3O45aOd76crz15Xjrb5tmB1CjbqCj8HwisKpJsZiZjTrDJVn8ApgqaU9JLwdmAQubHJOZ2agxLIahImKTpL8GfkY6dPayiFjW5LDKtMRw2AA43vpyvPXleOtsWExwm5lZcw2XYSgzM2siJwszMyvlZFEHkj4laZmk+yRdLWm7ZsfUH0ln5FiXSfpks+PpS9JlktZJuq9QtpukmyQ9lH9XPqOwCarEe3zevy9JaqlDJqvE+3VJD0j6X0n/JmmXJob4e1Vi/Zsc592SbpQ0vpkxFlWKt1D3WUkhaWwzYhsoJ4shJmkC8AlgekTsT5qQn9XcqKqTtD/wEdJZ8gcCx0ia2tyotjAf6HuS0FnAooiYCizKz1vFfLaM9z7gz4HbGh5NuflsGe9NwP4RcQDwK2Buo4OqYj5bxvr1iDggIl4P/DvwpUYH1Y/5bBkvkjpIly8aNheDc7Koj22B7SVtC+xAa58T8jrgjoh4LiI2AbcCf9bkmDYTEbcBT/Qpnglcnh9fDhzXyJj6UyneiLg/Ipp5RYGqqsR7Y34/ANxBOrep6arE+nTh6SuocMJus1R57wJ8E/gcLRRrGSeLIRYRjwLfIH1jWA08FRE3Njeqft0H/ImkV0naATiazU+AbFV7RMRqgPx79ybHM5J9GPhps4Poj6R5krqAE2itnsUWJB0LPBoR9zQ7loFwshhieex8JrAnMB54haQTmxtVdRFxP/B3pGGH/wTuATb1u5KNGpLOJr0fvt/sWPoTEWdHRAcpzr8uW75Z8heys2nxhFaJk8XQewewMiLWR8SLwI+ANzc5pn5FxKURcVBE/Ampy/xQs2OqwVpJ4wDy73VNjmfEkTQbOAY4IYbPCVlXAX/R7CD68RrSF8l7JD1CGt67S9KrmxpVDZwshl4ncKikHSQJOAK4v8kx9UvS7vn3JNIk7NXNjagmC4HZ+fFs4IYmxjLi5JuNnQkcGxHPNTue/vQ5IONY4IFmxVImIu6NiN0jYkpETCFd9+6giFjT5NBK+QzuOpD0ZeB9pO77L4FTIqL6DSGaTNJ/Aa8CXgQ+HRGLmhzSZiRdDRxOuqzzWuAc4HpgATCJlKCPj4hKE4kNVyXeJ4B/AtqB3wJ3R8SRTQpxM1XinQuMAR7Pi90REac2JcCCKrEeTbolwUvAb4BT89xh01WKNyIuLdQ/QjpyshUvV74ZJwszMyvlYSgzMyvlZGFmZqWcLMzMrJSThZmZlXKyMDOzUk4WNmpIemaI2nmDpEvy4w9JWp+veLpc0keqrHOspIZe7DBfwuXnkp6R9M996m5upSv1WutzsjAbuM+Tzpno9YN8xdPDga9J2qO4sKRtI2JhRJw3lEHkY/T78zvgi8BnK9RdCXxsKOOxkc3JwkY1Sa+XdEfhvg275vI35rLb870d7svlOwEHVLoIXESsA34NTJY0X9L5kn4O/F3ugfxzbmOPvK178s+bc/mJkpbkXsp3JLVtzWuLiGcjYjEpafS1EHj/1rRvo4uThY12VwBn5vs23Es6Ixjgu6Qzgd8E9BSWn066Uu8WJO0F7AWsyEX7AO+IiM/0WfQC4NaIOBA4CFgm6XWks/7fknspPaQrqNZFRDwJjJH0qnptw0aWbZsdgFmzSHolsEtE3JqLLgeuzXeF2yki/l8uv4p0QT2AccD6Pk29T9IMYCPw0Yh4Il0WjGsjooctvR34IECuf0rSB4CDgV/kdbenwsURJf0L8Jb8dLyku/PjayNiXq2vPVtHujLy42ULmjlZmG1J/dQ9D/S9Te4PIqLSZbGfHeA2L4+Ifu9IFxGn/34F6ZHcCxms7Uivx6yUh6Fs1IqIp4AnJR2Wiz5AGh56Etgg6dBcXrwt7v3A3lu56UXAaQCS2iTtnMveW7gC8G6SJm/ldqrKV0R+NfBIvbZhI4t7Fjaa7CCpu/D8fNLlzb+db0rzMHBSrjsZ+FdJzwK3AE8BRMQDkl4paaeI2DDIOM4ALpZ0Mmlu4rSIuF3SF4AbJW1DugLw6aSrqA5aPmJqZ+Dlko4D/jQilpOGvO4o3DrVrF++6qxZBZJ2jIhn8uOzgHERcUZ+/ilgQ0Rc0swYt4akbwELW+1y9Na6PAxlVtm78yGs9wGHAV8t1F1Emswezu5zorCBcM/CzMxKuWdhZmalnCzMzKyUk4WZmZVysjAzs1JOFmZmVur/A1HSLnVZzkMWAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -503,7 +503,7 @@ "\n", "plt.figure(figsize=(6, 4))\n", "\n", - "sns.distplot(log_price, kde=False, hist_kws=dict(color='black', alpha=1))\n", + "sns.histplot(log_price, bins=40, color='black', alpha=1)\n", "plt.ylabel('Frequency')\n", "plt.xlabel('Log(Price + 1)')\n", "plt.title('Distribution of prices after log tranformation')\n", @@ -610,7 +610,7 @@ "metadata": {}, "outputs": [], "source": [ - "def linear_regression(X, y):\n", + "def train_linear_regression(X, y):\n", " ones = np.ones(X.shape[0])\n", " X = np.column_stack([ones, X])\n", "\n", @@ -657,7 +657,7 @@ "outputs": [], "source": [ "X_train = prepare_X(df_train)\n", - "w_0, w = linear_regression(X_train, y_train)" + "w_0, w = train_linear_regression(X_train, y_train)" ] }, { @@ -676,7 +676,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deZxU1Zn/8c9XRRERkUVltUkElxhFbJREY4wSI45xiZqgxqBRWw2OSya/0UhmYiYhYzImxmXUYFzQiHsUkjFRMahxjSCIIAqoBBoIIoqKaCL6/P64p8uiqe6upru6iub7fr3qVbfOPffep6q666lz7q1zFBGYmZkBbFLuAMzMrHI4KZiZWY6TgpmZ5TgpmJlZjpOCmZnlOCmYmVmOk4I1i6QqSSFps/T4j5JGrcd++ktaJWnT1o+y/ZN0sqTHm1F/gaThafkiSb9pxVhWSfpUWr5J0k9acd/XSvqP1tqfNc1JoR1KHwDvp3/WZZJulNS5FMeKiBERMb7ImIbnbbcwIjpHxEeliKvSSDpQUm254wCIiJ9GxGlN1ZP0iKQm66X38dWWxlUo0UXEmRHx45bu24rnpNB+fTUiOgNDgKHAD+pXUMZ/A7Ze6lqL1r74A6Gdi4jFwB+B3SH37W+spCeA1cCnJG0j6XpJSyUtlvSTum4dSZtKulTSG5JeBf4lf//1v01KOl3SHEnvSnpR0hBJtwD9gd+n1su/F+iG6i1pkqQ3Jc2XdHrePi+WdKekm9N+Z0uqzlt/QYr7XUkvSzq4/usgaZikv+d3V0k6WtLMtLyPpKmS3kmtq18Wej0lbSvpD5KWS3orLffNW98ttcyWpPX3SdoqvQe90/NflZ7vWl0t9VsTki6U9Erea3l0o2/22nGeJOlvklZIGlNv3cWSfpuWO0r6baq3UtKzkraXNBb4AnBViveqVD8kjZY0D5iXV7ZT3iF6SHooxf2opB1TvbXe81T2iKTTJO0KXAt8Lh1vZVpf/zU6Pf19vJn+XnrnrQtJZ0qal177/5WkYl8zyzgptHOS+gGHAdPzik8CaoCtgb8B44E1wE7AXsAhQN0H/enA4am8Gji2kWMdB1wMfAvoAhwBrIiIk4CFpNZLRPy8wOa3AbVA73SMn9b7cD8CuB3oCkwC6j6kdgbOBoZGxNbAV4AF9XceEU8D7wEH5RWfAExIy5cDl0dEF+DTwJ0NPM1NgBuBHckS3ft1sSS3AJ2AzwDbAZdFxHvACGBJev6dI2JJA/vP9wrZB/M2wI+A30rq1dRGknYDriF7n3sD3YG+DVQflfbfL9U7E3g/IsYAfwHOTvGenbfNUcC+wG4N7PNE4MdAD2AGcGtTMUfEnHTsp9LxuhZ4XgcB/w18HehF9rd7e71qh5O1jPdM9b7S1LFtbU4K7dd96dvW48CjwE/z1t0UEbMjYg3QjewD67yIeC8iXgcuA0amul8HfhURiyLiTbJ/yoacBvw8Ip6NzPyI+FtTgabEtT9wQUR8EBEzgN+QfajVeTwi7k/nIG4h+6cH+AjYAthNUoeIWBARrzRwqNuA49MxtyZLlreldR8CO0nqERGrUhJZR0SsiIh7ImJ1RLwLjAW+mPbZi+y1PDMi3oqIDyPi0aaef0Mi4q6IWBIRH0fEHWTfzPcpYtNjgT9ExGMR8Q/gP4CPG6j7IVky2CkiPoqIaRHxThP7/++IeDMi3m9g/f/lHXsM2bf/fkXE3ZQTgRsi4rm07++nfVfl1bkkIlZGxEJgCjC4FY67UXFSaL+OioiuEbFjRHyn3j/worzlHYEOwNLUfbAS+DXZt1zIvmnm12/sQ74f2bfb5uoNvJk+ZPOP0yfv8d/zllcDHSVtFhHzgfPIWiivS7o9v0uhngnA1yRtAXwNeC4vaZ0KDAJeSl0ohxfagaROkn6dumbeAR4DuqZuqX7pebzVjOfeIEnfkjQj733Znezbd1PWes9SS2VFA3VvAR4Abk9dXj+X1KGJ/S8qdn1ErALeTDG1VG/y/v7SvlfQ+N9JSS6waM+cFDZO+UPjLgL+AfRISaRrRHSJiM+k9UvJPuzq9G9kv4vIul6aOmZ9S4Bu6dt7/nEWN7LNJzuOmBAR+5MluAB+1kC9F8k+VEawdtcRETEvIo4nS4Y/A+5O5wLq+zdgZ2Df1NV0QCoX2fPvJmmdrg8KP//3yLqa6uxQt5D64a8j6xrrnrpTZqXjNGWt90xSJ7LWwLpBZa2ZH0XEbsDnybpfvtVIzI2V18k/dmey1ugSsucLDTznIva7hOw9rtv3VmTPq6i/EyuOk8JGLiKWAg8Cv5DURdImkj4t6Yupyp3AOZL6StoWuLCR3f0G+J6kvZXZqe4kI7AM+FQDMSwCngT+O5343IPsm3uTfdGSdpZ0UPr2/wFZH39jl7lOAM4h+zC/K28/35TUMyI+Blam4kL72TodY6WkbsAP857HUrITylcrOyHdQVJd0lgGdJe0Td6+ZgCHKTs5vQNZi6fOVmQfkstTfKeQLhYowt3A4ZL2l7Q58F808L8u6UuSPptaOu+QdSfVPe8G37MmHJZ37B8Dz6Tux+VkH+DfVHYBw7dZ+0vEMqBv2q6QCcApkgan9/unad8L1iNGa4CTgkH2zXBz4EXgLbIPlboTmteRdS88DzwH/K6hnUTEXWR97BOAd4H7yL4lQnYu4gepK+R7BTY/Hqgi+zZ4L/DDiHioiNi3AC4B3iDrOtgOuKiR+rcBBwJ/jog38soPBWZLWkV20nlkRHxQYPtfAVum4z0N/Kne+pPIPlhfAl4nfdBHxEvp2K+m16A3WdfN82Qnxh8E7qjbSWrV/AJ4iuzD8rPAE408r5yImA2MJnsflpK9pw39RmIHsvf7HWAO2fmn36Z1lwPHpit5rijm2MkEsmT5JrA32bmAOqcD/4+s2+czZF8G6vwZmA38XVL+e1P3vB4mOz9yT3pen+aTc1/WSuRJdszMrI5bCmZmluOkYGZmOU4KZmaW46RgZmY5G/SAVj169Iiqqqpyh2FmtkGZNm3aGxHRs9C6DTopVFVVMXXq1HKHYWa2QZHU4MgE7j4yM7McJwUzM8txUjAzs5wN+pyCmbUfH374IbW1tXzwQaHRRWx9dOzYkb59+9KhQ1MD337CScHMKkJtbS1bb701VVVVeMK0losIVqxYQW1tLQMGDCh6O3cfmVlF+OCDD+jevbsTQiuRRPfu3Zvd8nJSMLOK4YTQutbn9XRSMDOzHJ9TMLOKNGbMmFbd39ixYxtdv3LlSiZMmMB3vvOdVj1ufY888gibb745n//850t6nPXlpGAVraEPhqb+wc2aa+XKlVx99dVFJ4WIICLYZJPmdbg88sgjdO7cuWKTQkm7jySdL2m2pFmSbktTLQ6Q9IykeZLuqJt6T9IW6fH8tL6qlLGZmeW78MILeeWVVxg8eDDnn38+Bx98MEOGDOGzn/0sEydOBGDBggXsuuuufOc732HIkCEsWrSI66+/nkGDBnHggQdy+umnc/bZZwOwfPlyjjnmGIYOHcrQoUN54oknWLBgAddeey2XXXYZgwcP5i9/+Us5n3JBJWspSOpDNhfubhHxvqQ7yabOOwy4LCJul3Qt2Vy816T7tyJiJ0kjySZP/0ap4jMzy3fJJZcwa9YsZsyYwZo1a1i9ejVdunThjTfeYNiwYRxxxBEAvPzyy9x4441cffXVLFmyhB//+Mc899xzbL311hx00EHsueeeAJx77rmcf/757L///ixcuJCvfOUrzJkzhzPPPJPOnTvzve8VmpW2/ErdfbQZsKWkD4FOZPOqHgSckNaPBy4mSwpHpmXI5oy9SpLC84WaWRuLCC666CIee+wxNtlkExYvXsyyZcsA2HHHHRk2bBgAf/3rX/niF79It27ZVOTHHXccc+fOBWDy5Mm8+OKLuX2+8847vPvuu238TJqvZEkhIhZLuhRYCLxPNjH5NGBlRKxJ1WqBPmm5D7AobbtG0ttAd7IJ0nMk1QA1AP379y9V+Ga2Ebv11ltZvnw506ZNo0OHDlRVVeWu999qq61y9Rr7zvrxxx/z1FNPseWWW5Y83tZUsnMKkrYl+/Y/AOgNbAWMKFC17lUtdEHtOq94RIyLiOqIqO7Zs+Bw4GZmzbb11lvnvsm//fbbbLfddnTo0IEpU6bwt78VHml6n3324dFHH+Wtt95izZo13HPPPbl1hxxyCFdddVXu8YwZM9Y5TiUqZffRcOC1iFgOIOl3wOeBrpI2S62FvsCSVL8W6AfUStoM2AZ4s4TxmVkFa+srzLp3785+++3H7rvvztChQ3nppZeorq5m8ODB7LLLLgW36dOnDxdddBH77rsvvXv3ZrfddmObbbYB4IorrmD06NHssccerFmzhgMOOIBrr72Wr371qxx77LFMnDiRK6+8ki984Qtt+TSbVMqksBAYJqkTWffRwcBUYApwLHA7MAqYmOpPSo+fSuv/7PMJZtaWJkyY0GSdWbNmrfX4hBNOoKamhjVr1nD00UdzyCGHANCjRw/uuOOOdbYfNGgQM2fObJ2AS6Bk3UcR8QzZCePngBfSscYBFwDflTSf7JzB9WmT64Huqfy7wIWlis3MrLVcfPHFDB48mN13350BAwZw1FFHlTukFinp1UcR8UPgh/WKXwX2KVD3A+C4UsZjZtbaLr300nKH0Ko89pGZmeU4KZiZWY6TgpmZ5TgpmJlZjkdJtYrR2kMl24Zt8uTJrbq/4cOHt+r+mtK5c2dWrVrFkiVLOOecc7j77rsbrPurX/2KmpoaOnXqBMBhhx3GhAkT6Nq1a1uFm+OWgplZkT766KNmb9O7d+9GEwJkSWH16tW5x/fff39ZEgK4pbCWQt9UPW6/2cZhwYIFHHrooey7775Mnz6dQYMGcfPNN7Pbbrvx7W9/mwcffJCzzz6boUOHMnr0aJYvX06nTp247rrr2GWXXXjttdc44YQTWLNmDYceeuha+z388MOZNWsWH330ERdccAEPPPAAkjj99NOJCJYsWcKXvvQlevTowZQpU6iqqmLq1Kn06NGDX/7yl9xwww0AnHbaaZx33nksWLCAESNGsP/++/Pkk0/Sp08fJk6c2CrjLLmlYGaWvPzyy9TU1DBz5ky6dOnC1VdfDUDHjh15/PHHGTlyJDU1NVx55ZVMmzaNSy+9NDcpz7nnnstZZ53Fs88+yw477FBw/+PGjeO1115j+vTpzJw5kxNPPJFzzjmH3r17M2XKFKZMmbJW/WnTpnHjjTfyzDPP8PTTT3Pdddcxffp0AObNm8fo0aOZPXs2Xbt2XWvcpZZwUjAzS/r168d+++0HwDe/+U0ef/xxAL7xjWxql1WrVvHkk09y3HHHMXjwYM444wyWLl0KwBNPPMHxxx8PwEknnVRw/5MnT+bMM89ks82yTpq6Ibcb8vjjj3P00Uez1VZb0blzZ772ta/lJuYZMGAAgwcPBmDvvfdmwYIFLXjmn3D3kW2Q3NVnpSCp4OO64bI//vhjunbtmhvxtKnt64uIJuvUr9+QLbbYIre86aab8v777xe938a4pWBmlixcuJCnnnoKgNtuu439999/rfVdunRhwIAB3HXXXUD2of38888DsN9++3H77bcD2XwMhRxyyCFce+21rFmTTSnz5pvZQNANDad9wAEHcN9997F69Wree+897r333pKPquqWgplVpLa+hBRg1113Zfz48ZxxxhkMHDiQs846iyuvvHKtOrfeeitnnXUWP/nJT/jwww8ZOXIke+65J5dffjknnHACl19+Occcc0zB/Z922mnMnTuXPfbYgw4dOuTmdK6pqWHEiBH06tVrrfMKQ4YM4eSTT2afffbJbb/XXnu1WldRIdqQR6eurq6OqVOnttr+3CVRXi39nYLfqw3bnDlz2HXXXct2/PyrhNqTQq+rpGkRUV2ovruPzMwsx0nBzAyoqqpqd62E9eGkYGYVY0Puzq5E6/N6liwpSNpZ0oy82zuSzpPUTdJDkual+21TfUm6QtJ8STMlDSlVbGZWeTp27MiKFSucGFpJRLBixQo6duzYrO1KdvVRRLwMDAaQtCmwGLiXbJrNhyPiEkkXpscXACOAgem2L3BNujezjUDfvn2pra1l+fLl5Q6l3ejYsSN9+/Zt1jZtdUnqwcArEfE3SUcCB6by8cAjZEnhSODmyL4mPC2pq6ReEbG0jWI0szLq0KEDAwYMKHcYG722OqcwErgtLW9f90Gf7rdL5X2ARXnb1KaytUiqkTRV0lR/ozAza10lTwqSNgeOAO5qqmqBsnU6FyNiXERUR0R1z549WyNEMzNL2qKlMAJ4LiKWpcfLJPUCSPevp/JaoF/edn2BJW0Qn5mZJW2RFI7nk64jgEnAqLQ8CpiYV/6tdBXSMOBtn08wM2tbJT3RLKkT8GXgjLziS4A7JZ0KLASOS+X3A4cB84HVwCmljM3MzNZV0qQQEauB7vXKVpBdjVS/bgCjSxmPmZk1zr9oNjOzHCcFMzPLcVIwM7McJwUzM8vxzGvWbniSJLOWc0vBzMxynBTMzCzHScHMzHKcFMzMLMcnmq1NTJ48uWD58OHD2zgSM2uMWwpmZpbjpGBmZjlOCmZmluOkYGZmOU4KZmaW46RgZmY5JU0KkrpKulvSS5LmSPqcpG6SHpI0L91vm+pK0hWS5kuaKWlIKWMzM7N1lbqlcDnwp4jYBdgTmANcCDwcEQOBh9NjgBHAwHSrAa4pcWxmZlZPyX68JqkLcABwMkBE/BP4p6QjgQNTtfHAI8AFwJHAzWlazqdTK6NXRCwtVYzWOP/gzGzjU8qWwqeA5cCNkqZL+o2krYDt6z7o0/12qX4fYFHe9rWpzMzM2kgph7nYDBgC/GtEPCPpcj7pKipEBcpinUpSDVn3Ev3792+NOK0VNdS6MLMNQylbCrVAbUQ8kx7fTZYklknqBZDuX8+r3y9v+77Akvo7jYhxEVEdEdU9e/YsWfBmZhujkiWFiPg7sEjSzqnoYOBFYBIwKpWNAiam5UnAt9JVSMOAt30+wcysbZV6lNR/BW6VtDnwKnAKWSK6U9KpwELguFT3fuAwYD6wOtU1M7M2VNKkEBEzgOoCqw4uUDeA0aWMx8zMGuf5FKwsFi9eDMCYMWPKHImZ5fMwF2ZmluOkYGZmOe4+soo0aNCgguVz585t40jMNi5uKZiZWY6TgpmZ5TgpmJlZjpOCmZnl+ESzlVVDJ5TNrDzcUjAzsxwnBTMzy3FSMDOzHJ9TsGbzRDpm7ZdbCmZmllNUUpC0e6kDMTOz8iu2++jaNFHOTcCEiFhZupCsrbk7yMzqFNVSiIj9gRPJ5lCeKmmCpC+XNDIzM2tzRZ9TiIh5wA+AC4AvAldIeknS1xraRtICSS9ImiFpairrJukhSfPS/bapXJKukDRf0kxJQ1r21MzMrLmKPaewh6TLgDnAQcBXI2LXtHxZE5t/KSIGR0TdtJwXAg9HxEDg4fQYYAQwMN1qgGua9UzMzKzFim0pXAU8B+wZEaMj4jmAiFhC1npojiOB8Wl5PHBUXvnNkXka6CqpVzP3bWZmLVBsUjiM7ATz+wCSNpHUCSAibmlkuwAelDRNUk0q2z4ilqZtlwLbpfI+wKK8bWtT2Vok1UiaKmnq8uXLiwzfzMyKUezVR5OB4cCq9LgT8CDw+Sa22y8ilkjaDnhI0kuN1FWBslinIGIcMA6gurp6nfVm+caMGVOwfOzYsW0cidmGodiWQseIqEsIpOVOTW2UupeIiNeBe4F9gGV13ULp/vVUvZbs6qY6fYElRcZnZmatoNik8F7+1UCS9gbeb2wDSVtJ2rpuGTgEmAVMAkalaqOAiWl5EvCtdBXSMODtum4mMzNrG8V2H50H3CWp7pt7L+AbTWyzPXCvpLrjTIiIP0l6FrhT0qnAQuC4VP9+snMX84HVwClFPwszM2sVRSWFiHhW0i7AzmR9/y9FxIdNbPMqsGeB8hXAwQXKAxhdTDxmZlYazRkldShQlbbZSxIRcXNJojJrQEMztc2dO7eNIzFrn4pKCpJuAT4NzAA+SsUBOCmYmbUjxbYUqoHdUhePmZm1U8VefTQL2KGUgZiZWfkV21LoAbwo6a/AP+oKI+KIkkRlZmZlUWxSuLiUQZiZWWUo9pLURyXtCAyMiMlp3KNNSxuamZm1tWKHzj4duBv4dSrqA9xXqqDMzKw8ij3RPBrYD3gHchPubNfoFmZmtsEp9pzCPyLin2nICiRtRoERTM3KxT9qM2sdxbYUHpV0EbBlmpv5LuD3pQvLzMzKodikcCGwHHgBOINs8LrmzrhmZmYVrtirjz4Grks3MzNrp4od++g1Cs+C9qlWj8jMzMqmOWMf1elINgdCt9YPx8zMyqmocwoRsSLvtjgifgUcVOLYzMysjRXbfTQk7+EmZC2HrYvcdlNgKrA4Ig6XNAC4nayl8RxwUrrcdQuyobj3BlYA34iIBcU+ETMza7liu49+kbe8BlgAfL3Ibc8F5gBd0uOfAZdFxO2SrgVOBa5J929FxE6SRqZ6TU35aWZmrajY7qMv5d2+HBGnR8TLTW0nqS/wL8Bv0mORdTvdnaqMB45Ky0emx6T1B6vu13JmZtYmiu0++m5j6yPilw2s+hXw73zS1dQdWBkRa9LjWrJxlEj3i9L+1kh6O9V/o14sNUANQP/+/YsJ38zMitScq4+GApPS468Cj5E+xAuRdDjwekRMk3RgXXGBqlHEuk8KIsYB4wCqq6s91EYzTJ48udwhmFmFa84kO0Mi4l0ASRcDd0XEaY1ssx9whKTDyC5j7ULWcugqabPUWugLLEn1a4F+QG0aW2kb4M1mPh8zM2uBYpNCf+CfeY//CVQ1tkFEfB/4PkBqKXwvIk6UdBdwLNkVSKOAiWmTSenxU2n9nz0ntLVUQwPlmVlhxSaFW4C/SrqXrEvnaLLLR9fHBcDtkn4CTAeuT+XXA7dImk/WQhi5nvs3M7P1VOzYR2Ml/RH4Qio6JSKmF3uQiHgEeCQtvwrsU6DOB2S/lDYzszIptqUA0Al4JyJulNRT0oCIeK1UgVn7sHjx4nKHYGbNUOx0nD8k6/b5firqAPy2VEGZmVl5FDufwtHAEcB7ABGxhCKHuTAzsw1HsUnhn+lKoACQtFXpQjIzs3IpNincKenXZL8xOB2YjCfcMTNrd4q9+ujSNDfzO8DOwH9GxEMljczMzNpck0khDX39QEQMB5wIzMzasSa7jyLiI2C1pG3aIB4zMyujYn+n8AHwgqSHSFcgAUTEOSWJyszMyqLYpPB/6WZmZu1Yo0lBUv+IWBgR4xurZ2Zm7UNT5xTuq1uQdE+JYzEzszJrKinkT3zzqVIGYmZm5dfUOYVoYNlsgzZmzJh1ysaOHVuGSMwqS1NJYU9J75C1GLZMy6THERFdShqdmZm1qUaTQkRs2laBmJlZ+RU79pGZmW0ESpYUJHWU9FdJz0uaLelHqXyApGckzZN0h6TNU/kW6fH8tL6qVLGZmVlhpWwp/AM4KCL2BAYDh0oaBvwMuCwiBgJvAaem+qcCb0XETsBlqZ6ZmbWhkiWFyKxKDzukWwAHAXen8vHAUWn5yPSYtP5gSfmXxJqZWYmV9JyCpE0lzQBeJxth9RVgZUSsSVVqgT5puQ+wCCCtfxvoXmCfNZKmSpq6fPnyUoZvZrbRKWlSiIiPImIw0BfYB9i1ULV0X6hVsM5vIyJiXERUR0R1z549Wy9YMzNrm6uPImIl8AgwjGz2trpLYfsCS9JyLdAPIK3fBnizLeIzM7NMKa8+6impa1reEhgOzAGmAMemaqOAiWl5UnpMWv/nNC+0mZm1kWKHzl4fvYDxaea2TYA7I+IPkl4Ebpf0E2A6cH2qfz1wi6T5ZC2EkSWMzczMCihZUoiImcBeBcpfJTu/UL/8A+C4UsVjZmZNK2VLwaxiDRo0aJ2yyZMnM3z48DJEY1Y5PMyFmZnlOCmYmVmOk4KZmeU4KZiZWY6TgpmZ5TgpmJlZjpOCmZnlOCmYmVmOk4KZmeX4F83t0OTJk8sdgpltoNxSMDOzHLcUrNUsXry43CGYWQu5pWBmZjlOCmZmluOkYGZmOaWcjrOfpCmS5kiaLencVN5N0kOS5qX7bVO5JF0hab6kmZKGlCo2MzMrrJQthTXAv0XErsAwYLSk3YALgYcjYiDwcHoMMAIYmG41wDUljM3MzAoo5XScS4GlafldSXOAPsCRwIGp2njgEeCCVH5zRATwtKSuknql/ZiV3OLFixkzZsxaZWPHji1TNGbl0SbnFCRVkc3X/Aywfd0HfbrfLlXrAyzK26w2ldXfV42kqZKmLl++vJRhm5ltdEqeFCR1Bu4BzouIdxqrWqAs1imIGBcR1RFR3bNnz9YK08zMKHFSkNSBLCHcGhG/S8XLJPVK63sBr6fyWqBf3uZ9gSWljM/MzNZWyquPBFwPzImIX+atmgSMSsujgIl55d9KVyENA972+QQzs7ZVymEu9gNOAl6QNCOVXQRcAtwp6VRgIXBcWnc/cBgwH1gNnFLC2MzMrIBSXn30OIXPEwAcXKB+AKNLFY+ZmTXNv2g2M7McJwUzM8txUjAzsxwnBTMzy3FSMDOzHM+8ZuvFs6yZtU9uKZiZWY6TgpmZ5TgpmJlZjpOCmZnlOCmYmVmOrz4ya0T9mdjqeEY2a6/cUjAzsxwnBTMzy3FSMDOzHJ9TMFsPhc41+DyDtQclSwqSbgAOB16PiN1TWTfgDqAKWAB8PSLeSlN3Xk4289pq4OSIeK5UsZk1ZNCgQQXL586d28aRmJVHKbuPbgIOrVd2IfBwRAwEHk6PAUYAA9OtBrimhHGZmVkDSpYUIuIx4M16xUcC49PyeOCovPKbI/M00FVSr1LFZmZmhbX1OYXtI2IpQEQslbRdKu8DLMqrV5vKltbfgaQastYE/fv3L220FW7y5MnlDsHM2plKOdGsAmVRqGJEjAPGAVRXVxesY9bafK7BNhZtfUnqsrpuoXT/eiqvBfrl1esLLGnj2MzMNnpt3VKYBIwCLkn3E/PKz5Z0O7Av8HZdN5NZJctvQeR35w0fPrwc4Zi1WCkvSb0NOBDoIakW+CFZMrhT0qnAQuC4VP1+sstR55NdknpKqZLGjHoAAAhySURBVOIyK5X82ejqfsfg3y7YhqZkSSEijm9g1cEF6gYwulSxtIQHRDOzjUmlnGg2a1fqupUKXSHmriWrZB77yMzMctxSMGtjDf2+xC0IqwRuKZiZWY6TgpmZ5bj7aD01dFVSfb5KySqFu62sGE4KZiWU/9uFOn369ClDJGbFcVIwqxAtnbjHE/9Ya3BSMGtjhVoPjXG3j7UlJwWzDVT9ZFH3gzmP3Got4aSwAfC8CRuHQsNzF3rvm9vSMGsOJwWzdiz/PENd0vGJbmuMk4I1yt9K25/67+n48dkMucUmC5/LaN+cFErMo6xaS6xPUm5olrj1OZZbFRsf/6LZzMxy3FIws7Lx5baVx0mhTPxDI2tv/AHfPlRUUpB0KHA5sCnwm4i4pMwhtalyJwqfVLZiNPTh73MS7UPFJAVJmwL/C3wZqAWelTQpIl4sxfEK/WEPGjTIP/wxy+MvChufikkKwD7A/Ih4FUDS7cCRQEmSQmtq7tUeDSWeQvupu1zQbEO0ePHidf6GW9J6aG4XVUM//iv0P1ip3bdt3S1XSUmhD7Ao73EtsG/9SpJqgJr0cJWkl9sgtmL0AN4odxANqNTYHFfzVWpslRoXFBnbT3/60zYIZS3lfM12bGhFJSUFFSiLdQoixgHjSh9O80iaGhHV5Y6jkEqNzXE1X6XGVqlxQeXGVqlxVdLvFGqBfnmP+wJLyhSLmdlGqZKSwrPAQEkDJG0OjAQmlTkmM7ONSsV0H0XEGklnAw+QXZJ6Q0TMLnNYzVFxXVp5KjU2x9V8lRpbpcYFlRtbRcaliHW67c3MbCNVSd1HZmZWZk4KZmaW46TQCiSdL2m2pFmSbpPUsdwxAUg6N8U0W9J5ZY7lBkmvS5qVV9ZN0kOS5qX7bSskruPSa/axpLJdMthAbP8j6SVJMyXdK6lrhcT14xTTDEkPSupdCXHlrfuepJDUo63jaig2SRdLWpxesxmSDitHbPU5KbSQpD7AOUB1ROxOdpJ8ZHmjAkm7A6eT/VJ8T+BwSQPLGNJNwKH1yi4EHo6IgcDD6XFbu4l145oFfA14rM2jWdtNrBvbQ8DuEbEHMBf4flsHReG4/ici9oiIwcAfgP9s86gKx4WkfmTD5yxs64Dy3ESB2IDLImJwut3fxjEV5KTQOjYDtpS0GdCJyvh9xa7A0xGxOiLWAI8CR5crmIh4DHizXvGRQN0YCOOBo9o0KArHFRFzIqLsv5RvILYH0/sJ8DTZ73kqIa538h5uRYEfnpZaA39jAJcB/04ZYqrTSGwVx0mhhSJiMXAp2beQpcDbEfFgeaMCsm+7B0jqLqkTcBhr/ziwEmwfEUsB0v12ZY5nQ/Nt4I/lDqKOpLGSFgEnUp6WwjokHQEsjojnyx1LA85O3W43lKP7tBAnhRZKb+SRwACgN7CVpG+WN6rs2y7wM7Luhj8BzwNrGt3INhiSxpC9n7eWO5Y6ETEmIvqRxXR2ueNJX4bGUCEJqoBrgE8Dg8m+UP6ivOFknBRabjjwWkQsj4gPgd8Bny9zTABExPURMSQiDiBrus4rd0z1LJPUCyDdv17meDYIkkYBhwMnRmX+0GgCcEy5gyD7wB0APC9pAVlX23OSdihrVElELIuIjyLiY+A6svN/Zeek0HILgWGSOkkScDAwp8wxASBpu3Tfn+zE6W3ljWgdk4BRaXkUMLGMsWwQ0kRUFwBHRMTqcsdTp95FDEcAL5UrljoR8UJEbBcRVRFRRTa+2pCI+HuZQwNyX4TqHE3W5Vt+EeFbC2/Aj8j+CWYBtwBblDumFNdfyOajeB44uMyx3EbWRP6Q7J/zVKA72VVH89J9twqJ6+i0/A9gGfBABb1m88mGmJ+RbtdWSFz3pL//mcDvgT6VEFe99QuAHhX0Xt4CvJBes0lAr3LEVv/mYS7MzCzH3UdmZpbjpGBmZjlOCmZmluOkYGZmOU4KZmaW46Rg7YqkVa20n16S/pCWD5T0tqTpkuZI+mED2/SWdHdrHL85GhodVNKlkg5q63hsw+akYFbYd8l+ZVrnLxGxF1ANfFPS3vmVJW0WEUsi4tjWDELSI5Kqmqh2E4VH4LyS8ow8axswJwVr9yTtKOnhNPDYw+kX3kj6tKSnJT0r6b/qtTKOIRszai0R8R4wDfi0pJMl3SXp98CDkqrqvq1L2jR9U38hHfdfU/nekh6VNE3SA/V+1bpeooEROCPib0D3ShnWwTYMTgq2MbgKuDmyOQhuBa5I5ZcDl0fEUPKGO5c0AHgrIv5Rf0eSugPDgNmp6HPAqIio301TQzbuzl51x5XUgezb+7ERsTdwAzC2lZ5jQ54D9ivxMawd2azcAZi1gc+Rjf0E2dACP88rr5vDYQLZEOgAvYDl9fbxBUnTgY+BSyJitqShwEMRUWic/OFkQ1CsAYiIN9PER7sDD2XDZLEp2dAHa5F0CnBuergTcL+kf5INvNjcOTFeJxu916woTgq2MWpqbJf3gfpTqv4lIg4vUPe9BvahAscRMDsiPtdocBE3AjdCdk4BODkiFjQRc0M6kj0fs6K4+8g2Bk/yyRSpJwKPp+Wn+WSI5/wpVOcCVS085oPAmWk2PiR1A14Gekr6XCrrIOkzLTxOUwZRKaNv2gbBScHam06SavNu3yWbQ/sUSTOBk/ika+Y84LuS/krWZfQ25E4mvyJppxbE8RuyYdVnSnoeOCEi/gkcC/wslc2gFebekHQb8BSwc3rOp6byDmTdT1NbegzbeHiUVNtopZm53o+IkDQSOD4ijkzrjgb2jogflDXIFkjPYUhE/Ee5Y7ENh88p2MZsb+CqNDnSSrI5jwGIiHvTlUYbss2okCkebcPhloKZmeX4nIKZmeU4KZiZWY6TgpmZ5TgpmJlZjpOCmZnl/H/ceOcnLfFAOQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAphElEQVR4nO3de5xVdb3/8debm6iIeOEil4AKxUtAiB49kF0s0lAojv6iX3jITFIxu2pqZR1Tsk5HT1ZqpgkWSl7IMDsdvPsjb2GiAipiDogww0hy05AZ/Pz+WGumzczes/bAzOw9zPv5eOzHXuu7bp+998z+7PX9rvX9KiIwMzNrSqdSB2BmZuXPycLMzDI5WZiZWSYnCzMzy+RkYWZmmZwszMwsk5OFtRhJsyRdlk5/QNKLO7mf6yR9p2Wj6zgkVUj6aJHrfk7Swpz5LZLe3UJxXCzphnR6iKSQ1KWF9v2uNNbOLbE/y+Zk0cGkXyT/SP/RqiTdJKlHSx8nIv5fRBxSRDw7fFml254VEd9v6ZjKlaSHJH2h1HEARESPiPhbU+tI+pCk1UXsa2ZEtMjrapgAI2JVGuv2lti/ZXOy6JhOjogewGjgKODbDVdoqV+A1jH572f342TRgUXEa8D/AEcApNUEMyS9BLyUlp0kabGkDZIelTSibntJ75f0V0mbJf0W6J6zbIdfn5IGSZonqVrSekk/k3QocB1wbHqmsyFdt746K50/U9IKSX+XNF9S/5xlIeksSS9JekPSzyUpXfZeSQ9L2ijp9TTGRiT9SdK5DcqekTRZiaskrUv386ykIwrs53RJz6fvx98kfbHB8knpe7lJ0suSTpB0OfAB4Gfpe/CzfFU2uWcfkt4j6YH0fXxd0hxJvfLFlCfGA9L3cJOkJ4H3NFgekt6bTn9C0rL09bwm6RuS9ib5m+mfxrtFUn9J35N0h6TfSNoEfC4t+02DED4vaY2ktZK+nnPchp95/d+PpF8D7wLuTo93QcP3KI1hfvo3skLSmTn7+p6k2yTdnL6WpZLGFPN+WY6I8KMDPYAK4KPp9CBgKfD9dD6Ae4H9gT1JzjzWAf8CdAampdvvAXQDVgJfBboCpwA1wGXpvj4ErE6nOwPPAFcBe5MklXHpss8BCxvEOCtnPx8BXk9j2QP4KfBIzroB/AHoRfKFUg2ckC67FfgWyY+i+mPmeU/+HfhzzvxhwIb0eB8Hnkr3L+BQ4KAC+5lA8uUr4IPAW8DodNnRwEbgY2k8A4Dh6bKHgC/k7GdI+rq65JTVrwO8N93PHkBv4BHgv/N9xnlinAvcln4ORwCv5b7/6XHfm06vBT6QTu+X81rqP9uc7b6Xfv6fTF/fnmnZbxq8plvTY78v/azq/hbrP/N8x2j4mhq+R8DDwDXp5zwq3ffxObFtBT5B8rf4A+DxUv8vtreHzyw6prvSX/ELSf7JZuYs+0FE/D0i/gGcCfwiIp6IiO0RMRt4GzgmfXQl+ZKqiYg7gL8UON7RQH/g/Ih4MyK2RsTCAus29FngVxHx14h4G7iI5ExkSM46V0TEhohYBTxI8mUByZfXYKB/xjF/B4ySNDjnmPPS49UA+wDDAUXE8xGxNt9OIuKeiHg5Eg8DC0jOGgDOSF/HvRHxTkS8FhEvFPkeNDzOinQ/b0dENXAlSXJqkpLG4H8DLkk/hyXA7CY2qQEOk9QzIt6IiL9mHOKxiLgrfX3/KLDOf6THfg64CfhMVtxZJA0CxgHfTD/nxcANwGk5qy2MiD9G0sbxa2Dkrh63o3Gy6Jg+GRG9ImJwRJzT4B/71ZzpwcDXlVRBbUgTzCCSL/7+wGsRkdsT5coCxxsErIyI2p2ItX/ufiNiC7Ce5Jd5ncqc6beAugb7C0h+5T+ZVj18Pt8BImIzcA8wJS2aAsxJlz0A/Az4OVAl6XpJPfPtR9KJkh5Pq0I2kPySPTBdPAh4uahXnEFSH0lz06qhTcBvco7TlN5AF3b8jAt9ZpAklk8AK9PqvGMz9v9qxvKG66wk+Xx3VX/g7+nnmLvvpv5GusvtKs3iZGEN5X75vwpcniaWusdeEXErSRXFgLr2gdS7CuzzVeBdBf45s7o9XkOStABI68wPIKk+afqFRFRGxJkR0R/4InBNXX18HrcCn0m/EPckOUOp28/VEXEkcDhwMHB+w40l7QHcCfwY6BsRvYA/kiQrSN6D9zTcru4QDebfTJ/3yinrlzP9g3SbERHRE5iac5ymVAO1JImrTqHPjIj4S0RMAvoAd5FUX+WLl4zyXA2PvSadfpPCrzdr32uA/SXt02DfmX8jVjwnC2vKL4GzJP1L2tC7t6QJ6T/lYyRfPOdJ6iJpMkl1Uz5PkiSXK9J9dJc0Nl1WBQyU1K3AtrcAp0salX4hzwSeiIiKrOAlnSppYDr7BskXTqFLLf9IkpQuBX4bEe+k+zgqff1dSb7QthbYRzeSNoRqoFbSicD4nOU3pq/jeEmdJA2QNDznPai/tyGtWnoNmCqpc3pGlJto9gG2ABskDSBP8sonrYKZB3xP0l6SDiNph2pEUjdJn5W0b0TUAJtyXncVcICkfYs5bgPfSY99OHA6UHfRwWLgE5L2l9QP+EqD7XZ4jxq8rleBR4EfpH9bI0iq/ebsRHxWgJOFFRQRi0jaLX5G8mW7gqRBmojYBkxO598APk3yRZRvP9uBk0kaZlcBq9P1AR4gaWSvlPR6nm3vB75D8qt9LcmX5pSG6xVwFPCEpC3AfODLEfFKgRjfTuP/KEmCqtOTJGm+QVK1sZ7k7KHh9puB80h+fb8B/N/0mHXLnyT5cryKpKH7Yf55xvQT4BQlV3NdnZadSZIE1pOc0Tyac7j/IGnw30hSfZb3fS/gXJJqukqSRuWbmlj3NKAireo6i+QMhrSt5Vbgb2n1ZHOqkh4m+Tu6H/hxRCxIy39NchFEBUlbT8Mr134AfDs93jfy7PczJI3ea0jaoL4bEfc2Iy7LoB2rnM3MzBrzmYWZmWVysjAzs0xOFmZmlsnJwszMMu22N6UceOCBMWTIkFKHYWbWrjz11FOvR0TvhuW7bbIYMmQIixYtKnUYZmbtiqS8d/W7GsrMzDI5WZiZWaZWSxaSfqVkDIAlOWX7S7pXydgD90raL2fZRWk/9C9K+nhO+ZGSnkuXXd2gLyIzM2sDrdlmMYukm4ibc8ouBO6PiCskXZjOfzPto2YKSbcG/YH7JB2cdhNxLTAdeJyk/54TSAZfMbMOoKamhtWrV7N169ZSh7Jb6d69OwMHDqRr165Frd9qySIiHmkw5gDAJJJBTSDpR/8h4Jtp+dy0f55XJK0AjpZUAfSMiMcAJN1MMriKk4VZB7F69Wr22WcfhgwZgisWWkZEsH79elavXs3QoUOL2qat2yz61g0ckz73ScsHsGM/96vTsgHpdMPyvCRNl7RI0qLq6uoWDdzMSmPr1q0ccMABThQtSBIHHHBAs87WyqWBO99fQTRRnldEXB8RYyJiTO/ejS4TNrN2yomi5TX3PW3rZFEl6SCA9HldWr6aHQdFGUjS1fDqdLphuZmZtaG2vilvPslgK1ekz7/PKb9F0pUkDdzDgCcjYrukzZKOAZ4A/h34aRvHbGZlZPz48VRWVmavWKR+/fqxYMGCJtfZsGEDt9xyC+ecc06LHTefu+66i4MPPpjDDjusVY+zM1otWUi6laQx+0BJq4HvkiSJ2ySdQTIIzqkAEbFU0m3AMpLR12akV0IBnE1yZdWeJA3bbty2gl8YxfzjW/tWWVnJySef3GL7u/vuuzPX2bBhA9dcc03RySIiiAg6dWpe5c1dd93FSSed1LGSRUR8psCi4wusfzlweZ7yRcARLRia7QYKfWEU849v1lwXXnghL7/8MqNGjeLDH/4wzz77LG+88QY1NTVcdtllTJo0iYqKCk488UQ+/OEP89hjj3HXXXdx8803M2fOHAYNGsSBBx7IkUceyTe+8Q1efvllZsyYQXV1NXvttRe//OUv+fvf/878+fN5+OGHueyyy7jzzjt5z3sKDdve9nbbvqHMzFrKFVdcwZIlS1i8eDG1tbW89dZb9OzZk9dff51jjjmGiRMnAvDiiy9y0003cc0117Bo0SLuvPNOnn76aWpraxk9ejRHHnkkANOnT+e6665j2LBhPPHEE5xzzjk88MADTJw4kZNOOolTTjmllC83LycLM7NmiAguvvhiHnnkETp16sRrr71GVVUVAIMHD+aYY44BYOHChUyaNIk999wToP5MeMuWLTz66KOceuqp9ft8++232/hVNJ+ThZlZM8yZM4fq6mqeeuopunbtypAhQ+rvV9h7773r14vIf5X/O++8Q69evVi8eHFbhNtiyuU+CzOzsrXPPvuwefNmADZu3EifPn3o2rUrDz74ICtX5u3Rm3HjxnH33XezdetWtmzZwj333ANAz549GTp0KLfffjuQJJVnnnmm0XHKjc8szKxd6devX4teyNCvX7/MdQ444ADGjh3LEUccwVFHHcULL7zAmDFjGDVqFMOHD8+7zVFHHcXEiRMZOXIkgwcPZsyYMey7775AcnZy9tlnc9lll1FTU8OUKVMYOXIkU6ZM4cwzz+Tqq6/mjjvuKKsGbhU6VWrvxowZEx78aPc1YsSIgldDPfvssyWIyFrL888/z6GHHlrqMHbKli1b6NGjB2+99RbHHXcc119/PaNHjy51WPXyvbeSnoqIMQ3X9ZmFmVkrmT59OsuWLWPr1q1MmzatrBJFczlZmJm1kltuuaXUIbQYN3CbmVkmJwszM8vkaijbrVRUVDBixIi8y9xvlNnOc7Kw3UptbW3BTubcb5TZznOyMLN2ZcKECbTkSJi9e/euv2GuLTz00EP8+Mc/5g9/+APz589n2bJlXHjhhXnXbdg1+po1azjvvPO444472izeOk4WZtauVFdXM3PmzBbb38UXX9wi+9m+fTudO3du1jYTJ06s74Qwn4Zdo/fv378kiQLcwG1mlqmiooLhw4czbdo0RowYwSmnnMJbb73FkCFDuPTSSxk3bhy33347CxYs4Nhjj2X06NGceuqpbNmyBYA//elPDB8+nHHjxjFv3rz6/c6aNYtzzz0XgKqqKj71qU8xcuRIRo4cyaOPPrpD1+jnn38+FRUVHHFEMmLD1q1bOf3003nf+97H+9//fh588MH6fU6ePJkTTjiBYcOGccEFF7TIe+AzCzOzIrz44ovceOONjB07ls9//vNcc801AHTv3p2FCxfy+uuvM3nyZO677z723ntvfvjDH3LllVdywQUXcOaZZ/LAAw/w3ve+l09/+tN593/eeefxwQ9+kN/97nds376dLVu27NA1OiRJq87Pf/5zAJ577jleeOEFxo8fz/LlywFYvHgxTz/9NHvssQeHHHIIX/rSlxg0aFDDQzaLzyzMzIowaNAgxo4dC8DUqVNZuHAhQP2X/+OPP86yZcsYO3Yso0aNYvbs2axcuZIXXniBoUOHMmzYMCQxderUvPt/4IEHOPvsswHo3LlzfT9ShSxcuJDTTjsNgOHDhzN48OD6ZHH88cez77770r17dw477LCCnR02h88srGw1NdZyS/zxmzWHpLzzdd2SRwQf+9jHuPXWW3dYb/HixY22bQlN9eu3xx571E937tyZ2traXT6ezyysbNUNnZrvUVNTU+rwrINZtWoVjz32GAC33nor48aN22H5Mcccw5///GdWrFgBwFtvvcXy5csZPnw4r7zyCi+//HL9tvkcf/zxXHvttUDSWL5p06Ymuyw/7rjjmDNnDgDLly9n1apVHHLIIbv+QgvwmYWZtSu9e/dusSuY6vZXjEMPPZTZs2fzxS9+kWHDhnH22Wfz05/+dIf9zJo1i8985jP1I99ddtllHHzwwVx//fVMmDCBAw88kHHjxrFkyZJG+//JT37C9OnTufHGG+ncuTPXXnstxx57bH3X6CeeeCIzZsyoX/+cc87hrLPO4n3vex9dunRh1qxZO5xRtDR3UW5lq1A35ABXXXUVX/3qV4suB3df3l6VQxflFRUVnHTSSXm/5Nuz5nRR7mooMzPL5GRhZpZhyJAhu91ZRXM5WZhZ2dtdq8tLqbnvqZOFmZW17t27s379eieMFhQRrF+/nu7duxe9ja+GMrOyNnDgQFavXt2inQdakoQHDhxY9PpOFmZW1rp27crQoUNLHUaH52ooMzPL5GRhZmaZnCzMzCyTk4WZmWVysjAzs0xOFmZmlqkkyULSVyUtlbRE0q2SukvaX9K9kl5Kn/fLWf8iSSskvSjp46WI2cysI2vzZCFpAHAeMCYijgA6A1OAC4H7I2IYcH86j6TD0uWHAycA10hq3qjoZma2S0pVDdUF2FNSF2AvYA0wCZidLp8NfDKdngTMjYi3I+IVYAVwdNuGa2bWsbV5soiI14AfA6uAtcDGiFgA9I2Itek6a4E+6SYDgFdzdrE6LWtE0nRJiyQtctcAZmYtpxTVUPuRnC0MBfoDe0vKP4J5ukmesrw9ikXE9RExJiLGFDv6lZmZZStFNdRHgVciojoiaoB5wL8CVZIOAkif16XrrwYG5Ww/kKTayszM2kgpksUq4BhJe0kScDzwPDAfmJauMw34fTo9H5giaQ9JQ4FhwJNtHLOZWYfW5r3ORsQTku4A/grUAk8D1wM9gNsknUGSUE5N118q6TZgWbr+jIjY3tZxm5l1ZCXpojwivgt8t0Hx2yRnGfnWvxy4vLXjMjOz/DyehZXUhAkTCg5qU1VVxbx585g8eXIbR2VmDTlZFGn8+PFUVlY2Ku/Xrx8LFiwoQUS7h+rqambOnJl32dKlS7n66qvbOCIzy8fJokiVlZWcfPLJjcrvvvvuEkRjZta23JGgmZllcrIwM7NMroayDqOiooIRI0bkXea2J7OmOVlYq2vqiqc1a9ruZvza2tq87U7gtiezLE4W1uqauuJp6tSmugUzs3LhNgszM8vkZGFmZpmcLMzMLJOThZmZZXKyMDOzTL4aynZZU5fGQtteHmtmrcPJwjIVkwxmzZpVcLkvjzVr/5wsLFNT90mAk4FZR+A2CzMzy+RkYWZmmZwszMwsk5OFmZllcrIwM7NMThZmZpbJl85aWdu4cSNz585tVN69e3fmzZvH5MmTSxCVWcfjZGFlrVOnTlxyySWNyquqqvjFL35RgojMOiZXQ5mZWSYnCzMzy+RqKGu38rVndO/evb6sW7dubtMwayFOFtZu5WvPqKqqom/fvgBceumlpQjLbLfkaigzM8vkZGFmZpmcLMzMLFNRyULSEa0diJmZla9izyyuk/SkpHMk9WrNgMzMrPwUlSwiYhzwWWAQsEjSLZI+trMHldRL0h2SXpD0vKRjJe0v6V5JL6XP++Wsf5GkFZJelPTxnT2umZntnKLbLCLiJeDbwDeBDwJXp1/2O3Mh+0+AP0XEcGAk8DxwIXB/RAwD7k/nkXQYMAU4HDgBuEZS5504ppmZ7aRi2yxGSLqK5Ev9I8DJEXFoOn1Vcw4oqSdwHHAjQERsi4gNwCRgdrrabOCT6fQkYG5EvB0RrwArgKObc0wzM9s1xZ5Z/Az4KzAyImZExF8BImINydlGc7wbqAZukvS0pBsk7Q30jYi16X7XAn3S9QcAr+Zsvzota0TSdEmLJC2qrq5uZlhmZlZIscniE8AtEfEPAEmdJO0FEBG/buYxuwCjgWsj4v3Am6RVTgUoT1nkWzEiro+IMRExpnfv3s0My8zMCik2WdwH7Jkzv1datjNWA6sj4ol0/g6S5FEl6SCA9HldzvqDcrYfCKzZyWObmdlOKDZZdI+ILXUz6fReO3PAiKgEXpV0SFp0PLAMmA9MS8umAb9Pp+cDUyTtIWkoMAx4cmeObWZmO6fYjgTflDS6rq1C0pHAP3bhuF8C5kjqBvwNOJ0kcd0m6QxgFXAqQEQslXQbSUKpBWZExPZdOLaVke3bt7N06dK8y7Zt27ZL+27YK21uj7TgXmnNmqPYZPEV4HZJddU/BwGf3tmDRsRiYEyeRccXWP9y4PKdPZ6Vr4igV69eeZdVVVXt0r4b9kqb2yMtuFdas+YoKllExF8kDQcOIWlwfiEialo1MjMzKxvNGc/iKGBIus37JRERN7dKVGZmVlaKShaSfg28B1gM1LUXBOBkYWbWARR7ZjEGOCwi8t7fYGZmu7diL51dAvRrzUDMzKx8FXtmcSCwTNKTwNt1hRExsVWiMjOzslJssvheawZhZmblrdhLZx+WNBgYFhH3pf1CuZtwM7MOotguys8k6cPpF2nRAOCuVorJzMzKTLEN3DOAscAmqB8IqU+TW5iZ2W6j2GTxdkTUd9QjqQsFugk3M7PdT7HJ4mFJFwN7pmNv3w7c3XphmZlZOSk2WVxIMrrdc8AXgT/S/BHyzMysnSr2aqh3gF+mDzMz62CK7RvqFfK0UUTEu1s8IjMzKzvN6RuqTneSgYn2b/lwzMysHBXVZhER63Mer0XEfwMfad3QzMysXBRbDTU6Z7YTyZnGPq0SkZmZlZ1iq6H+K2e6FqgA/k+LR2MlM2HCBKqrq/MuW7NmTd5yM+s4ir0a6sOtHYiVVnV1NTNnzsy7bOrUqW0cTdvYuHEjc+fOBWDLli0cffTR9ct69+7NPffcU6rQzMpOsdVQX2tqeURc2TLhmLWdTp06cckllwCwbt06unXrVr9s5syZjBgxgn79+rFgwYJShWhWNoq9KW8McDZJB4IDgLOAw0jaLdx2Ye1eRNCrV6/6R48ePTj55JOprKwsdWhmZaE5gx+NjojNAJK+B9weEV9orcDMzKx8FHtm8S5gW878NmBIi0djZmZlqdgzi18DT0r6Hcmd3J8Cbm61qMzMrKwUezXU5ZL+B/hAWnR6RDzdemGZmVk5KbYaCmAvYFNE/ARYLWloK8VkZmZlpthhVb8LfBO4KC3qCvymtYIyM7PyUuyZxaeAicCbABGxBl8ya2bWYRSbLLZFRJB2Uy5p79YLyczMyk2xyeI2Sb8Aekk6E7gPD4RkZtZhZF4NJUnAb4HhwCbgEOCSiLi3lWMzM7MykZksIiIk3RURRwJOEGZmHVCx1VCPSzqqJQ8sqbOkpyX9IZ3fX9K9kl5Kn/fLWfciSSskvSjp4y0Zh5mZZSs2WXyYJGG8LOlZSc9JenYXj/1l4Pmc+QuB+yNiGHB/Oo+kw4ApwOHACcA1kjrv4rHNzKwZmqyGkvSuiFgFnNiSB5U0EJgAXA7UdX8+CfhQOj0beIjk3o5JwNyIeBt4RdIK4GjgsZaMyczMCss6s7gLICJWAldGxMrcxy4c97+BC4B3csr6RsTa9HhrgT5p+QDg1Zz1VqdlZmbWRrKShXKm390SB5R0ErAuIp4qdpM8ZVFg39MlLZK0qNAQoWZm1nxZySIKTO+KscBESRXAXOAjkn4DVEk6CCB9XpeuvxoYlLP9QCDvoNARcX1EjImIMb17926hcM3MLCtZjJS0SdJmYEQ6vUnSZkmbduaAEXFRRAyMiCEkDdcPRMRUYD4wLV1tGvD7dHo+MEXSHmnnhcOAJ3fm2GZmtnOabOCOiLa86ugKkjvFzwBWAaemMSyVdBuwDKgFZkTE9jaMy8yswyt28KNWEREPkVz1RESsB44vsN7lJFdOmZlZCTRnPAszM+ugnCzMzCyTk4WZmWVysjAzs0xOFmZmlsnJwszMMjlZmJlZJicLMzPL5GRhZmaZnCzMzCyTk4WZmWVysjAzs0xOFmZmlsnJwszMMjlZmJlZppKOZ2Edx/Lly6mpqWlUHtFSo/WaWWtysrA2UVNTQ69evUodhpntJFdDmZlZJicLMzPL5GqoDmLChAlUV1cXXL5mzZo2jMbM2hsniw6iurqamTNnFlw+derUNozGzNobJwuzPDZu3MjcuXPZsGEDffv2bbQ8Ihg1ahQLFiwoQXRmbc/JwiyPTp06cckll1BVVZU3WVx66aVUVlaWIDKz0nADt5mZZXKyMDOzTE4WZmaWycnCzMwyOVmYmVkmJwszM8vkZGFmZpmcLMzMLJOThZmZZXKyMDOzTE4WZmaWqc2ThaRBkh6U9LykpZK+nJbvL+leSS+lz/vlbHORpBWSXpT08baO2cysoyvFmUUt8PWIOBQ4Bpgh6TDgQuD+iBgG3J/Oky6bAhwOnABcI6lzCeI2M+uw2jxZRMTaiPhrOr0ZeB4YAEwCZqerzQY+mU5PAuZGxNsR8QqwAji6TYM2M+vgStpmIWkI8H7gCaBvRKyFJKEAfdLVBgCv5my2Oi3Lt7/pkhZJWtTUqHBmZtY8JUsWknoAdwJfiYhNTa2apyzyrRgR10fEmIgY07t375YI08zMKFGykNSVJFHMiYh5aXGVpIPS5QcB69Ly1cCgnM0HAh4w2sysDZXiaigBNwLPR8SVOYvmA9PS6WnA73PKp0jaQ9JQYBjwZFvFa2ZmpRlWdSxwGvCcpMVp2cXAFcBtks4AVgGnAkTEUkm3ActIrqSaERHb2zxqM7MOrM2TRUQsJH87BMDxBba5HLi81YIyM7MmleLMwnZTy5cvp6amplF5bW0t27ZtK0FErauiooIRI0Y0Ku/Xrx8LFiwoQURmrcfJwlpMTU0NvXr1alTeqVMnIvJewNau1dbWcvLJJzcqv/vuu0sQjVnrct9QZmaWycnCzMwyOVmYmVkmJwszM8vkZGFmZpmcLMzMLJOThZmZZfJ9FmYtrKKigr59++Zd1qVLF0aNGsU999zTxlGZ7RonC7MW1qVLF370ox/lXbZhwwbmzJnTxhGZ7TpXQ5mZWSYnCzMzy+RkYWZmmZwszMwsk5OFmZllcrIwM7NMvnR2FxUaAAc8CI7lt2rVKo4++uiCy3v37u37MKzsOFnsokID4IAHwbHGtm3bRm1tLZ/97GcbLevatSsHH3wwF198cQkiM2uak0Ur8lnH7mvjxo10796duXPnNlomFRpiHiKCTp065R1RcMOGDUDTZx4+67BScbJoRT7r2H116tSJCy64IG+3Hl/72td2ef8zZ87MW+6zDisVN3CbmVkmJwszM8vkaiizMrFt2zaWLl1KbW0tS5curS+vqamha9euAKxcuXKHdrCGbV8TJkygurq64DGaavPYlW1t9+dkYVYmIoJevXo1agCvqqqqn+/Ro8cO7WAN276qq6vr2zuWL19OTU3NDstnzpzJ+PHj815ckbttPm4v6dicLHYjTf0yXLNmTRtHY6VWU1PT6KqrHj16UFlZWZqArF1zstiNNPXLcOrUqW0cjZWrQpd0V1VVsXz5cg4++OASRGXlzsnCrIMpdEn33LlzG1Vb5fL9Hx2bk0WJFPp119TNelkNkK5q2v1t3LhxhxsBt2zZssMXeNbfQFM3E27evLm+kT2f7du3+/6PDszJokQK/bpr6ma9rAZIVzXt/jp16sQll1xSP79u3Tq6detWP//973+//st+27ZtebcvdDPh+eefX9/Ink9E7GL01p45WZi1Yw2/3HOvpKqqqipNULZbcrKwZsl3OWbdfQH5fsna7iMi8lZR1d0DYrs3J4sy01Tng+vXr2/jaBrLdzlm3a9Z/5Ld/TXVAWI+48ePp7KyksrKykYdLHbp0oUBAwYAbiBvD9pNspB0AvAToDNwQ0RcUeKQWkVTnQ/ecMMNbRyNWXEKXSm1cuVKevToAcCPfvSjHZZt2LCBww8/HGi6gdx3lpeHdpEsJHUGfg58DFgN/EXS/IhYVtrI2lbDbiBy1dTU5F1eN0ZCc+VWN+Xu11VN1lBTY3Rs27aNPn36cP755+/0/n1neXloF8kCOBpYERF/A5A0F5gEtEqyyPdLpqqqqv5yw27dujF58uS8286bN6/+CzXfJYqbNm2iZ8+eeZflXtWST1NXqlRVVeUdJ2HdunV5+xuCHfscari87p8c3GhqTWtqjI6m/l5yL9Ndvnx5/RVaudVTkH05cFP3f6xdu5aDDjqo4LZr1qxh//33L7isf//+jcrLYSyaps62WutMS+3hcjhJpwAnRMQX0vnTgH+JiHMbrDcdmJ7OHgK82KaBFnYg8Hqpg8ijXOOC8o3NcTVfucZWrnFBaWMbHBG9Gxa2lzOLfEOPNcpyEXE9cH3rh9M8khZFxJhSx9FQucYF5Rub42q+co2tXOOC8oytvYxnsRoYlDM/EPDtymZmbaS9JIu/AMMkDZXUDZgCzC9xTGZmHUa7qIaKiFpJ5wL/S3Lp7K8iIv9lQeWp7KrGUuUaF5RvbI6r+co1tnKNC8owtnbRwG1mZqXVXqqhzMyshJwszMwsk5NFK5L0VUlLJS2RdKuk7qWOqY6kL6dxLZX0lRLG8StJ6yQtySnbX9K9kl5Kn/cro9hOTd+zdySV5NLGAnH9p6QXJD0r6XeSepVRbN9P41osaYGkxne6lSCunGXfkBSSDiyHuCR9T9Jr6fu1WNIn2jqufJwsWomkAcB5wJiIOIKkYX5KaaNKSDoCOJPkzviRwEmShpUonFnACQ3KLgTuj4hhwP3pfCnMonFsS4DJwCNtHs0/zaJxXPcCR0TECGA5cFFbB5WaRePY/jMiRkTEKOAPwCUNN2oDs2gcF5IGkXQjtKqtA0rNIk9cwFURMSp9/LGNY8rLyaJ1dQH2lNQF2IvyuTfkUODxiHgrImqBh4FPlSKQiHgE+HuD4knA7HR6NvDJtoypTr7YIuL5iChpzwAF4lqQfpYAj5Pci9TmCsS2KWd2b/LcUNvaCvydAVwFXEAJYoIm4yo7ThatJCJeA35M8otlLbAxIkrbocw/LQGOk3SApL2AT7DjTY+l1jci1gKkz31KHE9783ngf0odRC5Jl0t6FfgspTmzaETSROC1iHim1LHkcW5adferUlXDNuRk0UrSD3gSMBToD+wtqSzGPY2I54EfklRd/Al4BqhtciNrFyR9i+SznFPqWHJFxLciYhBJXOdmrd/a0h9J36JMElcD1wLvAUaR/ND8r5JGk3KyaD0fBV6JiOqIqAHmAf9a4pjqRcSNETE6Io4jOQ1+qdQx5aiSdBBA+ryuxPG0C5KmAScBn43yvYHqFuDfSh0EyZfxUOAZSRUk1XZ/ldSvpFEBEVEVEdsj4h3glyRtiyXnZNF6VgHHSNpLyRBhxwPPlzimepL6pM/vImmwvbW0Ee1gPjAtnZ4G/L6EsbQL6eBg3wQmRsRbpY4nV4OLJyYCL5QqljoR8VxE9ImIIRExhKT/udERUVni0Op+INX5FEm1celFhB+t9AD+g+QfYwnwa2CPUseUE9v/IxkP5Bng+BLGcSvJqXYNyT/sGcABJFdBvZQ+719GsX0qnX4bqAL+t0ziWgG8CixOH9eV0Xt2Z/o/8CxwNzCgHOJqsLwCOLAc4kq/K55L36/5wEGl+CwbPtzdh5mZZXI1lJmZZXKyMDOzTE4WZmaWycnCzMwyOVmYmVkmJwvrMCRtaaH9vF/SDen05yRVp72DLpN0ZoFtJkpq0w4R0+5cHpS0RdLPGiy7r1y6kbD2wcnCrPkuBn6aM//bSHpU/RAwU1Lf3JUldYmI+RFxRUsGkd553JStwHeAb+RZ9mvgnJaMx3ZvThbWoUkaJenxnHEg9kvLj0rLHkvHiliSlu8DjIg8nc9FxDrgZWCwpFmSrpT0IPDD9AzkZ+k++qbHeiZ9/GtaPlXSk+lZyi8kdd6V1xYRb0bEQpKk0dB84DO7sn/rWJwsrKO7GfhmJONAPAd8Ny2/CTgrIo4FtuesP4YC3S9IejfwbpK7qQEOBj4aEV9vsOrVwMMRMRIYDSyVdCjwaWBsepaynaSH1lYREW8Ae0g6oLWOYbuXLqUOwKxUJO0L9IqIh9Oi2cDt6Shz+0TEo2n5LSQd9AEcBFQ32NWnJY0j6QLkixHx96Q7MG6PiO009hHg3wHS5RslnQYcCfwl3XZP8nSgKOnnwNh0tr+kxen07RFxebGvPbWOpEfk9c3czjogJwuzxtTEsn8ADYfH/W1E5Ot2+81mHnN2RDQ5wl1EzKjfQKpIz0J2VneS12OWydVQ1mFFxEbgDUkfSItOI6keegPYLOmYtDx3ONzngffu4qHvB84GkNRZUs+07JSc3oD3lzR4F49TUNoTcj+SDvTMMvnMwjqSvSStzpm/kqQL9OvSwXD+BpyeLjsD+KWkN4GHgI0AEfGCpH0l7RMRm3cyji8D10s6g6Rt4uyIeEzSt4EFkjqR9EI6A1i5k8cA6q+Y6gl0k/RJYHxELCOp8no8/jkUq1mT3OusWR6SekTElnT6QpJuor+czn8V2BwRN5Qyxl0h6SfA/Ii4v9SxWPvgaiiz/Cakl7AuAT4AXJaz7FqSxuz2bIkThTWHzyzMzCyTzyzMzCyTk4WZmWVysjAzs0xOFmZmlsnJwszMMv1/ofAm7O4Vku0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -690,10 +690,8 @@ "source": [ "plt.figure(figsize=(6, 4))\n", "\n", - "sns.distplot(y_train, label='target', kde=False,\n", - " hist_kws=dict(color='#222222', alpha=0.6))\n", - "sns.distplot(y_pred, label='prediction', kde=False,\n", - " hist_kws=dict(color='#aaaaaa', alpha=0.8))\n", + "sns.histplot(y_train, label='target', color='#222222', alpha=0.6, bins=40)\n", + "sns.histplot(y_pred, label='prediction', color='#aaaaaa', alpha=0.8, bins=40)\n", "\n", "plt.legend()\n", "\n", @@ -756,7 +754,7 @@ { "data": { "text/plain": [ - "0.7616530991301591" + "0.7616530991301601" ] }, "execution_count": 21, @@ -804,13 +802,13 @@ "output_type": "stream", "text": [ "train 0.5175055465840046\n", - "validation 0.5172055461058329\n" + "validation 0.5172055461058335\n" ] } ], "source": [ "X_train = prepare_X(df_train)\n", - "w_0, w = linear_regression(X_train, y_train)\n", + "w_0, w = train_linear_regression(X_train, y_train)\n", "\n", "y_pred = w_0 + X_train.dot(w)\n", "print('train', rmse(y_train, y_pred))\n", @@ -827,7 +825,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deZhU1bnv8e9PJSICoqARGrRJBEURERqHiMaBg9FrVBwSnEJMBAe8DjneGyPJ1RODx+QQ52OMxoEYcY7DyTEnigcHjBMoEhCcIkIDBxFERNSIvvePvbssmqruarqGHn6f5+mnaq/aw7u6uuuttdbeaysiMDMzA9ik0gGYmVnL4aRgZmYZTgpmZpbhpGBmZhlOCmZmluGkYGZmGU4K1iSSqiWFpM3S5T9LGrMR+9lB0hpJmxY/yrZP0vclTW/C+gskjUifXyTpd0WMZY2kr6XPb5P0iyLu+wZJPyvW/qxxTgptUPoB8HH6z7pM0q2SOpfiWBFxWERMLjCmEVnbLYyIzhHxeSniamkkHSipttJxAETEZRFxWmPrSXpCUqPrpe/j35sbV65EFxFnRMSlzd23Fc5Joe36dkR0BoYAw4Cf1l9BCf8N2Eapay1a2+IPhDYuIhYDfwYGQubb30RJzwBrga9J2krSzZKWSlos6Rd13TqSNpU0SdJ7kv4O/K/s/df/NilprKR5kj6U9KqkIZJuB3YA/iNtvfzfHN1QvSQ9LGmlpDcljc3a5yWS7pH0+3S/cyXVZL3+4zTuDyW9JumQ+r8HSftI+p/s7ipJoyTNTp/vJWmGpNVp6+qKXL9PSVtL+pOk5ZLeT5/3znp9m7RltiR9/UFJW6bvQa+0/mvS+q7X1VK/NSHpQklvZf0uRzX4Zq8f5ymS3pG0QtKEeq9dIukP6fOOkv6QrrdK0ouSvippIrA/cF0a73Xp+iFpvKQ3gDeyynbKOkQPSY+lcT8pacd0vfXe87TsCUmnSRoA3ADsmx5vVfp6/d/R2PTvY2X699Ir67WQdIakN9Lf/b9LUqG/M0s4KbRxkvoAhwMvZxWfAowDugDvAJOBdcBOwJ7ASKDug34scERaXgMc18CxjgcuAb4HdAWOBFZExCnAQtLWS0T8KsfmdwK1QK/0GJfV+3A/ErgL6AY8DNR9SO0MnA0Mi4guwKHAgvo7j4jngI+Ag7OKTwSmpM+vBq6OiK7A14F78lRzE+BWYEeSRPdxXSyp24FOwG7AdsCVEfERcBiwJK1/54hYkmf/2d4i+WDeCvgX4A+Seja2kaRdgd+QvM+9gO5A7zyrj0n33ydd7wzg44iYADwNnJ3Ge3bWNkcDewO75tnnScClQA9gFnBHYzFHxLz02M+mx+uWo14HA/8KfAfoSfK3e1e91Y4gaRnvka53aGPHtvU5KbRdD6bftqYDTwKXZb12W0TMjYh1wDYkH1jnRcRHEfEucCUwOl33O8BVEbEoIlaS/FPmcxrwq4h4MRJvRsQ7jQWaJq7hwI8j4pOImAX8juRDrc70iHgkHYO4neSfHuBzYHNgV0kdImJBRLyV51B3Aiekx+xCkizvTF/7DNhJUo+IWJMmkQ1ExIqIuD8i1kbEh8BE4JvpPnuS/C7PiIj3I+KziHiysfrnExH3RsSSiPgiIu4m+Wa+VwGbHgf8KSKeiohPgZ8BX+RZ9zOSZLBTRHweETMjYnUj+//XiFgZER/nef0/s449geTbf58C4m7MScAtEfFSuu+fpPuuzlrn8ohYFRELgWnA4CIct11xUmi7jo6IbhGxY0ScVe8feFHW8x2BDsDStPtgFfBbkm+5kHzTzF6/oQ/5PiTfbpuqF7Ay/ZDNPk5V1vL/ZD1fC3SUtFlEvAmcR9JCeVfSXdldCvVMAY6RtDlwDPBSVtL6IdAfmJ92oRyRaweSOkn6bdo1sxp4CuiWdkv1SevxfhPqnpek70malfW+DCT59t2Y9d6ztKWyIs+6twN/Ae5Ku7x+JalDI/tfVOjrEbEGWJnG1Fy9yPr7S/e9gob/TkpygkVb5qTQPmVPjbsI+BTokSaRbhHRNSJ2S19fSvJhV2eHBva7iKTrpbFj1rcE2Cb99p59nMUNbPPljiOmRMRwkgQXwC/zrPcqyYfKYazfdUREvBERJ5Akw18C96VjAfX9M7AzsHfa1XRAWi6S+m8jaYOuD3LX/yOSrqY629c9SfvhbyLpGuuedqfMSY/TmPXeM0mdSFoDGwaVtGb+JSJ2Bb5B0v3yvQZibqi8TvaxO5O0RpeQ1Bfy1LmA/S4heY/r9r0lSb0K+juxwjgptHMRsRR4FPi1pK6SNpH0dUnfTFe5BzhHUm9JWwMXNrC73wEXSBqqxE51g4zAMuBreWJYBPwV+Nd04HMQyTf3RvuiJe0s6eD02/8nJH38DZ3mOgU4h+TD/N6s/ZwsaduI+AJYlRbn2k+X9BirJG0DXJxVj6UkA8rXKxmQ7iCpLmksA7pL2iprX7OAw5UMTm9P0uKpsyXJh+TyNL5TSU8WKMB9wBGShkv6CvBz8vyvSzpI0u5pS2c1SXdSXb3zvmeNODzr2JcCz6fdj8tJPsBPVnICww9Y/0vEMqB3ul0uU4BTJQ1O3+/L0n0v2IgYLQ8nBYPkm+FXgFeB90k+VOoGNG8i6V54BXgJ+GO+nUTEvSR97FOAD4EHSb4lQjIW8dO0K+SCHJufAFSTfBt8ALg4Ih4rIPbNgcuB90i6DrYDLmpg/TuBA4H/joj3ssq/BcyVtIZk0Hl0RHySY/urgC3S4z0H/Fe9108h+WCdD7xL+kEfEfPTY/89/R30Ium6eYVkYPxR4O66naStml8Dz5J8WO4OPNNAvTIiYi4wnuR9WErynua7RmJ7kvd7NTCPZPzpD+lrVwPHpWfyXFPIsVNTSJLlSmAoyVhAnbHA/yHp9tmN5MtAnf8G5gL/Iyn7vamr1+Mk4yP3p/X6Ol+OfVmRyDfZMTOzOm4pmJlZhpOCmZllOCmYmVmGk4KZmWW06gmtevToEdXV1ZUOw8ysVZk5c+Z7EbFtrtdadVKorq5mxowZlQ7DzKxVkZR3ZgJ3H5mZWYaTgpmZZTgpmJlZRqseUzCztuOzzz6jtraWTz7JNbuIbYyOHTvSu3dvOnRobOLbLzkpmFmLUFtbS5cuXaiursY3TGu+iGDFihXU1tbSt2/fgrdz95GZtQiffPIJ3bt3d0IoEkl07969yS0vJwUzazGcEIprY36fTgpmZpbhMQUza5EmTJhQ1P1NnDixwddXrVrFlClTOOuss4p63PqeeOIJvvKVr/CNb3yjpMfZWE4KZhtp6tSpja4zYsSIMkRixbBq1Squv/76gpNCRBARbLJJ0zpcnnjiCTp37txik4K7j8zMgAsvvJC33nqLwYMHc/7553PIIYcwZMgQdt99dx566CEAFixYwIABAzjrrLMYMmQIixYt4uabb6Z///4ceOCBjB07lrPPPhuA5cuXc+yxxzJs2DCGDRvGM888w4IFC7jhhhu48sorGTx4ME8//XQlq5yTWwpmZsDll1/OnDlzmDVrFuvWrWPt2rV07dqV9957j3322YcjjzwSgNdee41bb72V66+/niVLlnDppZfy0ksv0aVLFw4++GD22GMPAM4991zOP/98hg8fzsKFCzn00EOZN28eZ5xxBp07d+aCC3LdlbbynBTMzOqJCC666CKeeuopNtlkExYvXsyyZcsA2HHHHdlnn30AeOGFF/jmN7/JNtsktyI//vjjef3114Gke/HVV1/N7HP16tV8+OGHZa5J0zkpmJnVc8cdd7B8+XJmzpxJhw4dqK6uzpzvv+WWW2bWa+ge91988QXPPvssW2yxRcnjLaaSjSlI6iNpmqR5kuZKOjctv0TSYkmz0p/Ds7b5iaQ3Jb0m6dBSxWZmVl+XLl0y3+Q/+OADtttuOzp06MC0adN4553cM03vtddePPnkk7z//vusW7eO+++/P/PayJEjue666zLLs2bN2uA4LVEpWwrrgH+OiJckdQFmSnosfe3KiJiUvbKkXYHRwG5AL2CqpP4R8XkJYzSzFqqxU0iLrXv37uy3334MHDiQYcOGMX/+fGpqahg8eDC77LJLzm2qqqq46KKL2HvvvenVqxe77rorW221FQDXXHMN48ePZ9CgQaxbt44DDjiAG264gW9/+9scd9xxPPTQQ1x77bXsv//+5axmo0qWFCJiKbA0ff6hpHlAVQObHAXcFRGfAm9LehPYC3i2VDGamWWbMmVKo+vMmTNnveUTTzyRcePGsW7dOkaNGsXIkSMB6NGjB3ffffcG2/fv35/Zs2cXJ+ASKMspqZKqgT2B59OisyXNlnSLpK3TsipgUdZmteRIIpLGSZohacby5ctLGLWZWeMuueQSBg8ezMCBA+nbty9HH310pUNqlpIPNEvqDNwPnBcRqyX9BrgUiPTx18APgFyTdGwwihMRNwI3AtTU1OQf5TEzK4NJkyY1vlIrUtKWgqQOJAnhjoj4I0BELIuIzyPiC+Amki4iSFoGfbI27w0sKWV8Zma2vlKefSTgZmBeRFyRVd4za7VRQF0H3cPAaEmbS+oL9ANeKFV8Zma2oVJ2H+0HnAL8TdKstOwi4ARJg0m6hhYApwNExFxJ9wCvkpy5NN5nHpmZlVcpzz6aTu5xgkca2GYiUN7z0MzMLMNXNJtZi1TILLRNUYkZazt37syaNWtYsmQJ55xzDvfdd1/eda+66irGjRtHp06dADj88MOZMmUK3bp1K1e4gGdJNTNrks8/b3qvdq9evRpMCJAkhbVr12aWH3nkkbInBHBSMDPLWLBgAbvssgtjxoxh0KBBHHfccaxdu5bq6mp+/vOfM3z4cO69917eeustvvWtbzF06FD2339/5s+fD8Dbb7/Nvvvuy7Bhw/jZz3623n4HDhwIJEnlggsuYPfdd2fQoEFce+21XHPNNSxZsoSDDjqIgw46CIDq6mree+89AK644goGDhzIwIEDueqqqzL7HDBgAGPHjmW33XZj5MiRfPzxx83+HTgpmJllee211xg3bhyzZ8+ma9euXH/99QB07NiR6dOnM3r0aMaNG8e1117LzJkzmTRpUubGPOeeey5nnnkmL774Ittvv33O/d944428/fbbvPzyy8yePZuTTjqJc845h169ejFt2jSmTZu23vozZ87k1ltv5fnnn+e5557jpptu4uWXXwbgjTfeYPz48cydO5du3bqtN/fSxnJSMDPL0qdPH/bbbz8ATj75ZKZPnw7Ad7/7XQDWrFnDX//6V44//ngGDx7M6aefztKlSwF45plnOOGEEwA45ZRTcu5/6tSpnHHGGWy2WTKkWzftdj7Tp09n1KhRbLnllnTu3Jljjjkmc3Oevn37MnjwYACGDh3KggULmlHzhAeazcyyJJdYbbhcN2X2F198Qbdu3TKznja2fX0R0eg69dfPZ/PNN88833TTTd19ZGZWbAsXLuTZZ5N5OO+8806GDx++3utdu3alb9++3HvvvUDyof3KK68AsN9++3HXXXcByT0Zchk5ciQ33HAD69atA2DlypVA/im1DzjgAB588EHWrl3LRx99xAMPPFDSmVXdUjCzFqkSp5ACDBgwgMmTJ3P66afTr18/zjzzTK699tr11rnjjjs488wz+cUvfsFnn33G6NGj2WOPPbj66qs58cQTufrqqzn22GNz7v+0007j9ddfZ9CgQXTo0CFzX+dx48Zx2GGH0bNnz/XGFYYMGcL3v/999tprr8z2e+65Z1G6inJRQ02Tlq6mpiZmzJhR6TCsnSrkPPpKfbC1RvPmzWPAgAEVjWHBggUcccQRG0yP3Zrl+r1KmhkRNbnWd0vBLI9iXzxl1hp4TMHMLFVdXd2mWgkbw0nBzFqM1tyd3RJtzO/TScHMWoSOHTuyYsUKJ4YiiQhWrFhBx44dm7SdxxTMrEXo3bs3tbW1+Da7xdOxY0d69+7dpG2cFMysRejQoQN9+/atdBjtnruPzMwsw0nBzMwynBTMzCzDYwo5TJgwIWf5xIm+U6glFi9enLO8qqqqzJGYFZdbCmZmluGkYGZmGU4KZmaW4aRgZmYZTgpmZpbhpGBmZhk+JdWsAflOPTVrq9xSMDOzDCcFMzPLcFIwM7MMJwUzM8soWVKQ1EfSNEnzJM2VdG5avo2kxyS9kT5unZZL0jWS3pQ0W9KQUsVmZma5lbKlsA7454gYAOwDjJe0K3Ah8HhE9AMeT5cBDgP6pT/jgN+UMDYzM8uhZEkhIpZGxEvp8w+BeUAVcBQwOV1tMnB0+vwo4PeReA7oJqlnqeIzM7MNlWVMQVI1sCfwPPDViFgKSeIAtktXqwIWZW1Wm5aZmVmZlDwpSOoM3A+cFxGrG1o1R1nk2N84STMkzfANvs3MiqukSUFSB5KEcEdE/DEtXlbXLZQ+vpuW1wJ9sjbvDSypv8+IuDEiaiKiZtttty1d8GZm7VDJprmQJOBmYF5EXJH10sPAGODy9PGhrPKzJd0F7A18UNfNZNZa1J8Wo+4ufr5rn7UWpZz7aD/gFOBvkmalZReRJIN7JP0QWAgcn772CHA48CawFji1hLGZmVkOJUsKETGd3OMEAIfkWD+A8aWKx6ySfN9vay18RbOZmWV46myzEurfv3+z9zF16tQGXx8xYkSzj2FWxy0FMzPLcFIwM7MMJwUzM8twUjAzswwnBTMzy3BSMDOzDCcFMzPLcFIwM7MMJwUzM8twUjAzswxPc2FG7gnrijFFhVlr45aCmZlluKVgVkGNTXZnVm5uKZiZWYaTgpmZZTgpmJlZhpOCmZllOCmYmVmGk4KZmWUUlBQkDSx1IGZmVnmFthRukPSCpLMkdStpRGZmVjEFXbwWEcMl9QN+AMyQ9AJwa0Q8VtLozNq4xYsX5yyvqqoqcyRmiYLHFCLiDeCnwI+BbwLXSJov6ZhSBWdmZuVV6JjCIElXAvOAg4FvR8SA9PmVJYzPzMzKqNC5j64DbgIuioiP6wojYomkn5YkMjMzK7tCk8LhwMcR8TmApE2AjhGxNiJuL1l0ZmZWVoWOKUwFtsha7pSWmZlZG1JoUugYEWvqFtLnnUoTkpmZVUqhSeEjSUPqFiQNBT5uYH0zM2uFCk0K5wH3Snpa0tPA3cDZDW0g6RZJ70qak1V2iaTFkmalP4dnvfYTSW9Kek3SoRtTGTMza55CL157UdIuwM6AgPkR8Vkjm91GctbS7+uVXxkRk7ILJO0KjAZ2A3oBUyX1rxvYNjOz8mjK7TiHAdXpNntKIiLqf+BnRMRTkqoL3PdRwF0R8SnwtqQ3gb2AZ5sQn5mZNVOhF6/dDkwChpMkh2FAzUYe82xJs9Pupa3TsipgUdY6tWlZrljGSZohacby5cs3MgQzM8ul0JZCDbBrREQzj/cb4FIg0sdfk8ynpBzr5jxWRNwI3AhQU1PT3HjMzCxLoQPNc4Dtm3uwiFgWEZ9HxBckV0jvlb5UC/TJWrU3sKS5xzMzs6YptKXQA3g1nR3107rCiDiyKQeT1DMilqaLo0iSDcDDwBRJV5AMNPcDXmjKvs3MrPkKTQqXNHXHku4EDgR6SKoFLgYOlDSYpGtoAXA6QETMlXQP8CqwDhjvM4/MzMqv0FNSn5S0I9AvIqZK6gRs2sg2J+QovrmB9ScCEwuJx8zMSqPQs4/GAvcBv02LqoAHSxWUmZlVRqHdR+NJBoWfh+SGO5K2K1lUZlawqVMbn5tyxIgRZYjE2oJCzz76NCL+UbcgaTPynDJqZmatV6FJ4UlJFwFbSPon4F7gP0oXlpmZVUKhSeFCYDnwN5Izhh4huV+zmZm1IYWefVR3sdlNpQ3HzMwqqaCkIOltcowhRMTXih6RmbF48eKc5VVVOacEMyuapsx9VKcjcDywTfHDMTOzSipoTCEiVmT9LI6Iq4CDSxybmZmVWaHdR0OyFjchaTl0KUlEZmZWMYV2H/066/k6knmLvlP0aMzMrKIKPfvooFIHYmZmlVdo99GPGno9Iq4oTjhmZlZJTTn7aBjJfQ8Avg08xfq30DQzs1auKTfZGRIRHwJIugS4NyJOK1VgZmZWfoVOc7ED8I+s5X8A1UWPxszMKqrQlsLtwAuSHiC5snkU8PuSRWVmZhVR6NlHEyX9Gdg/LTo1Il4uXVhmpVX/HgT9+/evUCRmLUuh3UcAnYDVEXE1UCupb4liMjOzCin0dpwXAz8GfpIWdQD+UKqgzMysMgptKYwCjgQ+AoiIJXiaCzOzNqfQpPCPiAjS6bMlbVm6kMzMrFIKTQr3SPot0E3SWGAqvuGOmVmbU+jZR5PSezOvBnYG/l9EPFbSyMzMrOwaTQqSNgX+EhEjACcCM7M2rNHuo4j4HFgraasyxGNmZhVU6BXNnwB/k/QY6RlIABFxTkmiMjOziig0Kfxn+mNmZm1Yg0lB0g4RsTAiJpcrIDMzq5zGWgoPAkMAJN0fEceWPiSz5qs/t1FbsXjx4pzlVVVVZY7E2qrGBpqV9fxrpQzEzMwqr7GkEHmeN0rSLZLelTQnq2wbSY9JeiN93Dotl6RrJL0pabakIU05lpmZFUdj3Ud7SFpN0mLYIn1OuhwR0bWBbW8DrmP9+y5cCDweEZdLujBd/jFwGNAv/dkb+E36aFZU+bpfzCzRYEshIjaNiK4R0SUiNkuf1y03lBCIiKeAlfWKjwLqBq0nA0dnlf8+Es+RTKfRs+nVMTOz5mjK/RSK4asRsRQgfdwuLa8CFmWtV5uWbUDSOEkzJM1Yvnx5SYM1M2tvyp0U8lGOspxjGBFxY0TURETNtttuW+KwzMzal3InhWV13ULp47tpeS3QJ2u93sCSMsdmZtbulTspPAyMSZ+PAR7KKv9eehbSPsAHdd1MZmZWPoVOc9Fkku4EDgR6SKoFLgYuJ7k3ww+BhcDx6eqPAIcDbwJrgVNLFZeZmeVXsqQQESfkeemQHOsGML5UsZiZWWFaykCzmZm1AE4KZmaW4aRgZmYZTgpmZpbhpGBmZhlOCmZmluGkYGZmGU4KZmaW4aRgZmYZTgpmZpZRsmkuzKx88t1Rrqoq521JzPJyUrCymjp1aqPrjBgxogyRmFkuTgrWJvlezGYbx2MKZmaW4aRgZmYZTgpmZpbhMQWzdqCxAf5CBveLsQ9r+dxSMDOzDCcFMzPLcFIwM7MMjylYRmvpMy7kAjgz2zhOCmZtmKe/sKZyUrCi8rd4s9bNYwpmZpbhpGBmZhlOCmZmluGkYGZmGU4KZmaW4aRgZmYZPiXVWpymnNbqm+mYFZeTgpn5+hLLqEhSkLQA+BD4HFgXETWStgHuBqqBBcB3IuL9SsRnZtZeVXJM4aCIGBwRNenyhcDjEdEPeDxdNjOzMmpJA81HAZPT55OBoysYi5lZu1SppBDAo5JmShqXln01IpYCpI/b5dpQ0jhJMyTNWL58eZnCNTNrHyo10LxfRCyRtB3wmKT5hW4YETcCNwLU1NREqQI0M2uPKpIUImJJ+viupAeAvYBlknpGxFJJPYF3KxFbW+WzS8ysEGXvPpK0paQudc+BkcAc4GFgTLraGOChcsdmZtbeVaKl8FXgAUl1x58SEf8l6UXgHkk/BBYCx1cgNjOzdq3sSSEi/g7skaN8BXBIueMxM7Mv+YpmK5jHJczavpZ0nYKZmVWYk4KZmWU4KZiZWYbHFJqhkD72ESNGlCESs6bJN+V4VVVVmSOxlsYtBTMzy3BSMDOzDCcFMzPL8JhCifncfmsLPAbRfrilYGZmGW4pmFlR+Gy8tsFJwczKprHE4aRRee4+MjOzDLcUmmDChAnrLffv3x/wYJu1HfkGlK39cFJoQN2HvplZe+GkYK2Gv8W2PD5Vte3xmIKZmWU4KZiZWYaTgpmZZXhMwcxaDF8AV3ntNik09MdX6rOOPDhnZi1Vu00KZlY6/uLTejkpmFnZ5EoWpU4U9S86haQ3oKHjtucuKieFIvD582bl4/mTSstJwVocJ1nbGHV/N5MnT16vPN8Yobu4cnNSaEH8R2pmleakYGYtkr8kVYaTgplZAXINWANMnDixzJGUlpOCVYzHDgz8d9DSOCm0Ym5em1mxOSmYWatSjpZFrtNe65/F9Prrr2/Uvlt6N1SLSwqSvgVcDWwK/C4iLq9wSBXn5rVZ+RT6/1aXJPJdNzFt2rQmHbelJIsWlRQkbQr8O/BPQC3woqSHI+LVykbWPhWre8pJzWzjlTtZtKikAOwFvBkRfweQdBdwFOCkUAT+cDYrvrb2f9XSkkIVsChruRbYO3sFSeOAceniGkmvlSm2YugBvFfpIIqsrdWprdUHXKfWokl1uuyyy5pzrB3zvdDSkoJylMV6CxE3AjeWJ5zikjQjImoqHUcxtbU6tbX6gOvUWrSUOrW0O6/VAn2ylnsDSyoUi5lZu9PSksKLQD9JfSV9BRgNPFzhmMzM2o0W1X0UEesknQ38heSU1FsiYm6FwyqmVtnt1Yi2Vqe2Vh9wnVqLFlEnRUTja5mZWbvQ0rqPzMysgpwUzMwsw0mhDCSdL2mupDmS7pTUsdIxNZekc9P6zJV0XqXj2RiSbpH0rqQ5WWXbSHpM0hvp49aVjLGp8tTp+PR9+kJSxU95bKo8dfo3SfMlzZb0gKRulYyxqfLU6dK0PrMkPSqpVyVic1IoMUlVwDlATUQMJBlAH13ZqJpH0kBgLMkV6HsAR0jqV9moNsptwLfqlV0IPB4R/YDH0+XW5DY2rNMc4BjgqbJHUxy3sWGdHgMGRsQg4HXgJ+UOqpluY8M6/VtEDIqIwcCfgP9X9qhwUiiXzYAtJG0GdKL1X3sxAHguItZGxDrgSWBUhWNqsoh4ClhZr/gooO4mv5OBo8saVDPlqlNEzIuI1nTl/3ry1OnR9G8P4DmSa5pajTx1Wp21uCX1LtwtFyeFEouIxcAkYCGwFPggIh6tbFTNNgc4QFJ3SZ2Aw1n/osPW7KsRsRQgfdyuwvFY434A/LnSQRSDpImSFgEn4ZZC25T2SR8F9AV6AVtKOrmyUTVPRMwDfknShP8v4BVgXYMbmZWApAkkf3t3VDqWYoiICRHRh6Q+Z1ciBieF0hsBvB0RyyPiM+CPwDcqHFOzRcTNETEkIg4gaXOZCbYAAAO6SURBVAa/UemYimSZpJ4A6eO7FY7H8pA0BjgCOCna3gVXU4BjK3FgJ4XSWwjsI6mTJAGHAPMqHFOzSdoufdyBZBDzzspGVDQPA2PS52OAhyoYi+WR3ozrx8CREbG20vEUQ72TNY4E5lckjraXYFseSf8CfJekmfsycFpEfFrZqJpH0tNAd+Az4EcR8XiFQ2oySXcCB5JMWbwMuBh4ELgH2IEkoR8fEfUHo1usPHVaCVwLbAusAmZFxKGVirGp8tTpJ8DmwIp0teci4oyKBLgR8tTpcGBn4AvgHeCMdEyyvLE5KZiZWR13H5mZWYaTgpmZZTgpmJlZhpOCmZllOCmYmVmGk4K1KZLWFGk/PSX9KX1+oKQPJL0saZ6ki/Ns00vSfcU4flPkmnEzLZ8k6eByx2Otm5OCWW4/Am7KWn46IvYEaoCTJQ3NXlnSZhGxJCKOK2YQkp6QVN3Iarex4YybkFyb0NpmebUKc1KwNk/SjpIeT+eqfzy9ChtJX5f0nKQXJf28XivjWJJ5ndYTER8BM4GvS/q+pHsl/QfwqKTqum/rkjZNv6n/LT3u/07Lh0p6UtJMSX+pm1KjOfLM9kpEvAN0l7R9c49h7YeTgrUH1wG/T+fevwO4Ji2/Grg6IoaRNZ25pL7A+7muOpfUHdgHmJsW7QuMiYj63TTjSCZB3LPuuJI6kHx7Py4ihgK3ABOLVMd8XgL2K/ExrA3ZrNIBmJXBviTzMwHcDvwqq7zufglTSKY4B+gJLK+3j/0lvUwyBcHlETFX0jDgsTzTYIwAbqib8z8iVqY3JxoIPJZMg8WmJNOpr0fSqcC56eJOwCOS/kEysWJT71vxLsnsvGYFcVKw9qixuV0+BurfMvXpiDgix7of5dmHchxHwNyI2LfB4CJuBW6FZEwB+H5ELGgk5nw6ktTHrCDuPrL24K98eQvUk4Dp6fPn+HJ64uxbpL4OVDfzmI8CZ6R320PSNsBrwLaS9k3LOkjarZnHaUx/kpsimRXEScHamk6SarN+fkRyj+xTJc0GTuHLrpnzgB9JeoGky+gDyAwmvyVpp2bE8TuSWVZnS3oFODEi/gEcB/wyLZtFEe6tkc64+Sywc1rnH6blHUi6n2Y09xjWfniWVGu30luJfhwRIWk0cEJEHJW+NgoYGhE/rWiQzZDWYUhE/KzSsVjr4TEFa8+GAtelNz9aRXKvXwAi4oH0TKPWbDPg15UOwloXtxTMzCzDYwpmZpbhpGBmZhlOCmZmluGkYGZmGU4KZmaW8f8BfTJSIKr77aAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAo/0lEQVR4nO3de5xVdb3/8dfbAUEFJEFBBMEMVDQkxLKDXdQkNYGsOOEvTfOCFzzYOV0wrGPnl5oeO3oyU8NUsJTSDAPr9MNL6aE0xaQERQQFRQTHAQQiYQY/vz/Wmt1mZu89e4bZe8/l/Xw85jFrr++6fNaemf2Z72V9lyICMzMzgN0qHYCZmbUdTgpmZpbhpGBmZhlOCmZmluGkYGZmGU4KZmaW4aRgzSJppqQr0+WPSHqxhce5VdK3Wje6zkPSSkmfKHLbsyUtyHq9RdJ7WymO6ZJ+nC4PkRSSurTSsQ9MY61qjeNZcZwUOqD0A+Pv6R/UOkl3SurR2ueJiP+NiEOKiGenD6V03wsj4jutHVNbJen3ks6rdBwAEdEjIl4utI2kj0taXcSxro6IVrmuhokuIl5NY93RGse34jgpdFzjIqIHMAo4Gvhmww1a6z8665z8+9MxOSl0cBHxOvA/wBEAafV+iqSXgJfSdadKWiRpo6Q/ShpRv7+kD0j6s6TNkn4OdM8q2+m/SUmDJP1SUrWkGkk3SToMuBX4cFpz2Zhum2mGSl+fL2m5pPWS5koakFUWki6U9JKkDZJ+KElp2fskPSbpbUlvpTE2Ium3ki5psO4vkj6jxA2S3kyP81dJR+Q5zpckvZC+Hy9LuqBB+YT0vdwkaYWkkyRdBXwEuCl9D27K1dSSXZuQdLCkR9P38S1Jd0vqnSumHDH2Sd/DTZKeAg5uUB6S3pcunyLp+fR6Xpf0VUl7kfzODEjj3SJpgKRvS/qFpJ9K2gScna77aYMQzpG0RtIbkr6Sdd6GP/PM74+knwAHAvPS83294XuUxjA3/R1ZLun8rGN9W9K9ku5Kr2WJpNHFvF/WQET4q4N9ASuBT6TLg4AlwHfS1wE8BOwD7EFSk3gT+BBQBZyV7t8N2B1YBfwr0BX4HFALXJke6+PA6nS5CvgLcAOwF0nyODYtOxtY0CDGmVnHOR54K42lG/AD4PGsbQN4EOhN8sFRDZyUls0GLif5BydzzhzvyReBP2S9Hg5sTM/3SeCZ9PgCDgP2z3OcT5F8yAr4GLAVGJWWfRB4GzgxjecA4NC07PfAeVnHGZJeV5esdZltgPelx+kG7As8Dvx3rp9xjhh/Btyb/hyOAF7Pfv/T874vXX4D+Ei6/J6sa8n8bLP2+3b68/90en17pOt+2uCaZqfnfn/6s6r/Xcz8zHOdo+E1NXyPgMeAm9Of88j02CdkxfYOcArJ7+J3gScr/bfYHr9cU+i4Hkj/K19A8sd0dVbZdyNifUT8HTgf+FFE/CkidkTELGAbcEz61ZXkw6g2In4BPJ3nfB8EBgBfi4i/RcQ7EbEgz7YNfQG4IyL+HBHbgG+Q1CyGZG1zTURsjIhXgd+RfChA8iE1GBjQxDnnACMlDc465y/T89UCPYFDAUXECxHxRq6DRMSvI2JFJB4D5pPUAgDOTa/joYh4NyJej4ilRb4HDc+zPD3OtoioBq4nSUIFKemU/Szw7+nPYTEwq8AutcBwSb0iYkNE/LmJUzwREQ+k1/f3PNv8R3ru54A7gdObirspkgYBxwLT0p/zIuDHwJlZmy2IiN9E0gfxE+DIXT1vZ+Sk0HF9OiJ6R8TgiLi4wR/wa1nLg4GvKGk62pgmkkEkH/ADgNcjInvWxFV5zjcIWBURdS2IdUD2cSNiC1BD8p92vbVZy1uB+o7zr5P81/5U2mRwTq4TRMRm4NfApHTVJODutOxR4Cbgh8A6STMk9cp1HEknS3oybcLYSPKfad+0eBCwoqgrboKk/ST9LG3S2QT8NOs8hewLdGHnn3G+nxkkCeQUYFXaDPfhJo7/WhPlDbdZRfLz3VUDgPXpzzH72IV+R7rL/R7N5qTQOWV/yL8GXJUmkPqvPSNiNknTwgH17fepA/Mc8zXgwDx/hE1NxbuGJDkBkLZp9yFp9ih8IRFrI+L8iBgAXADcXN9ensNs4PT0g28PkhpH/XFujIijgMOBYcDXGu4sqRtwP/A9oF9E9AZ+Q5KUIHkPDm64X/0pGrz+W/p9z6x1/bOWv5vuMyIiegFnZJ2nkGqgjiRB1cv3MyMino6ICcB+wAMkzU654qWJ9dkanntNuvw38l9vU8deA+wjqWeDYzf5O2LN46RgtwEXSvpQ2uG6l6RPpX98T5B8wEyV1EXSZ0iaiXJ5iiSJXJMeo7ukMWnZOmCgpN3z7HsP8CVJI9MP3quBP0XEyqaClzRR0sD05QaSD5Z8Qxh/Q5J8/i/w84h4Nz3G0en1dyX54HonzzF2J2njrwbqJJ0MjM0qvz29jhMk7SbpAEmHZr0HmXsD0iah14EzJFWlNZzshNIT2AJslHQAOZJULmnTyS+Bb0vaU9Jwkn6iRiTtLukLkvaOiFpgU9Z1rwP6SNq7mPM28K303IcDXwLqO/8XAadI2kdSf+DLDfbb6T1qcF2vAX8Evpv+bo0gaa67uwXxWQFOCp1cRCwk6Ve4ieRDdTlJxzARsR34TPp6A/B5kg+cXMfZAYwj6SB9FVidbg/wKEln91pJb+XY9xHgWyT/hb9B8uE4qeF2eRwN/EnSFmAucGlEvJInxm1p/J8gSUT1epEkxw0kTRI1JLWBhvtvBqaS/De9Afg/6Tnry58i+RC8gaTD+TH+UQP6PvA5JaOnbkzXnU/yYV9DUkP5Y9bp/oOk4/1tkmavnO97HpeQNK+tJencvbPAtmcCK9MmqgtJaiSkfSGzgZfTZsXmNAE9RvJ79AjwvYiYn67/CclghJUkfTENR4p9F/hmer6v5jju6SSdz2tI+oiuiIiHmhGXFUE7NxebmVln5pqCmZllOCmYmVmGk4KZmWU4KZiZWUa7vrGjb9++MWTIkEqHYWbWrjzzzDNvRcS+ucradVIYMmQICxcurHQYZmbtiqS8d7m7+cjMzDKcFMzMLMNJwczMMtp1n4KZdRy1tbWsXr2ad955p9KhdBjdu3dn4MCBdO3ateh9nBTMrE1YvXo1PXv2ZMiQIew8Ma+1RERQU1PD6tWrOeigg4rez81HZtYmvPPOO/Tp08cJoZVIok+fPs2ueTkpmFmb4YTQulryfjopmJlZhvsUzKxNGjt2LGvXrm16wyL179+f+fPn5y3fuHEj99xzDxdffHGrnTOXBx54gGHDhjF8+PCSnqelnBTMitTUh1RTHzrWPGvXrmXcuHGtdrx58+YVLN+4cSM333xz0UkhIogIdtuteQ0uDzzwAKeeeqqTgll719SHVFMfOta2XXbZZaxYsYKRI0dy3HHH8de//pUNGzZQW1vLlVdeyYQJE1i5ciUnn3wyxx13HE888QQPPPAAd911F3fffTeDBg2ib9++HHXUUXz1q19lxYoVTJkyherqavbcc09uu+021q9fz9y5c3nssce48soruf/++zn44HyP9a4MJwUzM+Caa65h8eLFLFq0iLq6OrZu3UqvXr146623OOaYYxg/fjwAL774InfeeSc333wzCxcu5P777+fZZ5+lrq6OUaNGcdRRRwEwefJkbr31VoYOHcqf/vQnLr74Yh599FHGjx/Pqaeeyuc+97lKXm5eTgpmZg1EBNOnT+fxxx9nt9124/XXX2fdunUADB48mGOOOQaABQsWMGHCBPbYYw+ATE1yy5Yt/PGPf2TixImZY27btq3MV9EyTgpmZg3cfffdVFdX88wzz9C1a1eGDBmSGe+/1157ZbbL94z7d999l969e7No0aJyhNuqPCTVzAzo2bMnmzdvBuDtt99mv/32o2vXrvzud79j1arcM00fe+yxzJs3j3feeYctW7bw61//GoBevXpx0EEHcd999wFJ8vjLX/7S6DxtkWsKZtYm9e/fv1U77/v371+wvE+fPowZM4YjjjiCo48+mqVLlzJ69GhGjhzJoYcemnOfo48+mvHjx3PkkUcyePBgRo8ezd577w0ktY2LLrqIK6+8ktraWiZNmsSRRx7JpEmTOP/887nxxhv5xS9+0eY6mpWv+tMejB49OvyQHSuXESNGNDn66K9//WsZI+pYXnjhBQ477LBKh9FsW7ZsoUePHmzdupWPfvSjzJgxg1GjRlU6rIxc76ukZyJidK7tS9Z8JGmQpN9JekHSEkmXpuu/Lel1SYvSr1Oy9vmGpOWSXpT0yVLFZmbWWiZPnszIkSMZNWoUn/3sZ9tUQmiJUjYf1QFfiYg/S+oJPCPpobTshoj4XvbGkoYDk4DDgQHAw5KGRcSOEsZoZrZL7rnnnkqH0KpKlhQi4g3gjXR5s6QXgAMK7DIB+FlEbANekbQc+CDwRKliNGuo0F3L+TobzTqSsnQ0SxoCfAD4EzAGuETSF4GFJLWJDSQJ48ms3VaTI4lImgxMBjjwwANLG7h1OoXuWr7hhhsK7rty5UpGjBiRs8xTYFh7UfKkIKkHcD/w5YjYJOkW4DtApN//CzgHyDXHa6Ne8IiYAcyApKO5VHGbNVddXV3ehOIpMKy9KOl9CpK6kiSEuyPilwARsS4idkTEu8BtJE1EkNQMBmXtPhBYU8r4zMxsZyWrKSh5usPtwAsRcX3W+v3T/gaA04DF6fJc4B5J15N0NA8FnipVfGbWtk2cOJGamppWO16fPn0yN5OVw+9//3u+973v8eCDDzJ37lyef/55LrvsspzbNpy2e82aNUydOpVf/OIXZYu3Ximbj8YAZwLPSVqUrpsOnC5pJEnT0ErgAoCIWCLpXuB5kpFLUzzyyDqKQv0N4D6HXGpqapg+fXqrHe/qq69ulePs2LGDqqqqZu0zfvz4zIR6uTSctnvAgAEVSQhQ2tFHC8jdT/CbAvtcBVxVqpjMKqVQfwO4z6GtWLlyJSeddBIf+tCHePbZZxk2bBh33XUXw4cP55xzzmH+/Plccskl7LPPPlxxxRVs27aNgw8+mDvvvJMePXrw29/+li9/+cv07dt3p/sVZs6cycKFC7nppptYt24dF154IS+//DIAt9xyCzfeeGNm2u4TTzyRKVOmcOqpp7J48WLeeecdLrroIhYuXEiXLl24/vrrOe6445g5cyZz585l69atrFixgtNOO43//M//3OX3wNNcmJllefHFF7n99tsZM2YM55xzDjfffDMA3bt3Z8GCBbz11lt85jOf4eGHH2avvfbi2muv5frrr+frX/86559/Po8++ijve9/7+PznP5/z+FOnTuVjH/sYc+bMYceOHWzZsmWnabshSU71fvjDHwLw3HPPsXTpUsaOHcuyZcsAWLRoEc8++yzdunXjkEMO4V/+5V8YNGhQw1M2iyfEMzPLMmjQIMaMGQPAGWecwYIFCwAyH/JPPvkkzz//PGPGjGHkyJHMmjWLVatWsXTpUg466CCGDh2KJM4444ycx3/00Ue56KKLAKiqqsrMlZTPggULOPPMMwE49NBDGTx4cCYpnHDCCey99950796d4cOHt8q9NK4pmJllScbINH5dP2V2RHDiiScye/bsnbZbtGhRo31bQ6H56bp165ZZrqqqoq6ubpfP55qCmVmWV199lSeeSCZSmD17Nscee+xO5ccccwx/+MMfWL58OQBbt25l2bJlHHroobzyyiusWLEis28uJ5xwArfccguQdFpv2rSp4HTaH/3oR7n77rsBWLZsGa+++iqHHHLIrl9oHq4pmFmb1KdPn1YbMVR/vGIcdthhzJo1iwsuuIChQ4dy0UUX8YMf/CBTvu+++zJz5kxOP/30zNPUrrzySoYNG8aMGTP41Kc+Rd++fTn22GNZvHhxo+N///vfZ/Lkydx+++1UVVVxyy238OEPfzgzbffJJ5/MlClTMttffPHFXHjhhbz//e+nS5cuzJw5c6caQmtzUjCzNqmc9xRk22233bj11lt3Wpfd8Qtw/PHH8/TTTzfa96STTmLp0qWN1p999tmcffbZAPTr149f/epXjbZpOLFefULp3r07M2fOLHhMgAcffDDX5TSbm4/MzCzDScHMLDVkyJCcTT6diZOCmbUZ7flJkG1RS95PJwUzaxO6d+9OTU2NE0MriQhqamro3r17s/ZzR7OZtQkDBw5k9erVVFdXVzqUDqN79+4MHDiwWfs4KZhZm9C1a1cOOuigSofR6bn5yMzMMlxTyKPQs3o9zbGZdVROCnkUelavpzk2s47KzUdmZpbhpGBmZhlOCmZmluGkYGZmGe5oNitS165dmTNnTt4ys47AScGsSN26dWPatGk5y6699toyR2NWGk4KZq1g/fr19OjRI2dNwrUIa0+cFMxaQZcuXZg6dSr9+vVrVOZahLUn7mg2M7MMJwUzM8twUjAzswwnBTMzy3BSMDOzDCcFMzPLcFIwM7OMkiUFSYMk/U7SC5KWSLo0Xb+PpIckvZR+f0/WPt+QtFzSi5I+WarYzMwst1LWFOqAr0TEYcAxwBRJw4HLgEciYijwSPqatGwScDhwEnCzpKoSxmdmZg2ULClExBsR8ed0eTPwAnAAMAGYlW42C/h0ujwB+FlEbIuIV4DlwAdLFZ+ZmTVWlj4FSUOADwB/AvpFxBuQJA5gv3SzA4DXsnZbna4zM7MyKXlSkNQDuB/4ckRsKrRpjnWR43iTJS2UtLC6urq1wjQzM0qcFCR1JUkId0fEL9PV6yTtn5bvD7yZrl8NDMrafSCwpuExI2JGRIyOiNH77rtv6YI3M+uESjn6SMDtwAsRcX1W0VzgrHT5LOBXWesnSeom6SBgKPBUqeIzM7PGSjl19hjgTOA5SYvSddOBa4B7JZ0LvApMBIiIJZLuBZ4nGbk0JSJ2lDA+MzNroGRJISIWkLufAOCEPPtcBVxVqpjMzKww39FsZmYZTgpmZpbhx3GatQErV65kxIgROcv69+/P/PnzyxyRdVZOCmZtQF1dHePGjctZNm/evDJHY52Zm4/MzCzDScHMzDKcFMzMLMNJwczMMpwUzMwsw0nBzMwynBTMzCzDScHMzDKcFMzMLMNJwczMMpwUzMwsw0nBzMwynBTMzCzDScHMzDKcFMzMLKOopCDpiFIHYmZmlVdsTeFWSU9JulhS71IGZGZmlVNUUoiIY4EvAIOAhZLukXRiSSMzM7OyK7pPISJeAr4JTAM+Btwoaamkz5QqODMzK6+intEsaQTwJeBTwEPAuIj4s6QBwBPAL0sXolnn9OCDD1JbW8umTZs4/vjjdyrr06cP9913X4Uis46sqKQA3ATcBkyPiL/Xr4yINZK+WZLIzDq52tpapk2bxsaNGzn88MN3Krv66qsrFJV1dMUmhVOAv0fEDgBJuwHdI2JrRPykZNGZmVlZFdun8DCwR9brPdN1ZmbWgRSbFLpHxJb6F+nynqUJyczMKqXYpPA3SaPqX0g6Cvh7ge3NzKwdKrZP4cvAfZLWpK/3Bz5fkojMzKxiir157WngUOAi4GLgsIh4ptA+ku6Q9KakxVnrvi3pdUmL0q9Tssq+IWm5pBclfbJll2NmZrui2JoCwNHAkHSfD0giIu4qsP1MkqGsDbe5ISK+l71C0nBgEnA4MAB4WNKw+tFOZuVSXV3NnDlzcpZJKnM0ZuVX7M1rPwEOBhYB9R/UQeMP/IyIeFzSkCLjmAD8LCK2Aa9IWg58kOTGOLOyqaqqYtq0aTnL8q2vhBUrVjS6oa2eb2yzXVFsTWE0MDwiohXOeYmkLwILga9ExAbgAODJrG1Wp+vMLAdJTJ8+PWeZb2yzXVHs6KPFQP9WON8tJDWOkcAbwH+l63PVy3MmIEmTJS2UtLC6uroVQjIzs3rF1hT6As9LegrYVr8yIsY352QRsa5+WdJtwIPpy9UkM7DWGwisIYeImAHMABg9enRr1FzMKqZ+fqMePXo06svYvHlzhaKyzqzYpPDt1jiZpP0j4o305WkkNRCAucA9kq4n6WgeCjzVGuc0a8vq5zdat24d/fr126ns8ssvr1BU1pkVlRQi4jFJg4GhEfGwpD2BqkL7SJoNfBzoK2k1cAXwcUkjSZqGVgIXpMdfIule4HmgDpjikUdmZuVX7Oij84HJwD4kfQIHALcCJ+TbJyJOz7H69gLbXwVcVUw8ZmZWGsV2NE8BxgCbIPPAnf1KFZSZmVVGsUlhW0Rsr38hqQt5RgeZmVn7VWxH82OSpgN7pM9mvhiYV7qwzEpn7NixrF27NmdZbW1tq59v/fr1OUcXgUcYWdtTbFK4DDgXeI6kc/g3wI9LFZRZKa1du5Zx48blLLvtttta/XxdunRh6tSpjUYXgUcYWdtT7Oijd0kex9n6fzFmZtZmFDv66BVy9CFExHtbPSIz28n27dtZsmTJTuu2bduWWde1a1eGDRtWidCsA2rO3Ef1ugMTSYanmlmJRQS9e/feaV1VVVVm3caNG8sek3VcxT5PoSbr6/WI+G8g9xSNZmbWbhXbfDQq6+VuJDWHniWJyMzMKqbY5qP/ylquI5mi4p9bPRozM6uoYkcfHVfqQMzMrPKKbT76t0LlEXF964RjZmaV1JzRR0eTTHENMA54HHitFEGZmVllNOchO6MiYjOApG8D90XEeaUKzMzMyq/YCfEOBLZnvd4ODGn1aMzMrKKKrSn8BHhK0hySO5tPA+4qWVRmZlYRxY4+ukrS/wAfSVd9KSKeLV1YZmZWCcU2HwHsCWyKiO8DqyUdVKKYzMysQopKCpKuAKYB30hXdQV+WqqgzMysMoqtKZwGjAf+BhARa/A0F2ZmHU6xSWF7RATp9NmS9ipdSGZmVinFJoV7Jf0I6C3pfOBh/MAdM7MOp8nRR5IE/Bw4FNgEHAL8e0Q8VOLYzMyszJpMChERkh6IiKMAJwIzsw6s2OajJyUdXdJIzMys4oq9o/k44EJJK0lGIImkEjGiVIGZmVn5FUwKkg6MiFeBk8sUj5mZVVBTNYUHSGZHXSXp/oj4bBliMjOzCmmqT0FZy+8tZSBmZlZ5TdUUIs+ymbUR27dvZ8mSJZnXy5YtY8SIpLuvf//+zJ8/v1KhWTvUVE3hSEmbJG0GRqTLmyRtlrSp0I6S7pD0pqTFWev2kfSQpJfS7+/JKvuGpOWSXpT0yV27LLPOIyLo3bt35qtXr16MGzeOcePGsXbt2kqHZ+1MwaQQEVUR0SsiekZEl3S5/nWvJo49EzipwbrLgEciYijwSPoaScOBScDh6T43S6pqwfWYmdkuaM7U2c0SEY8D6xusngDMSpdnAZ/OWv+ziNgWEa8Ay4EPlio2MzPLrWRJIY9+EfEGQPp9v3T9AcBrWdutTteZmVkZlTsp5KMc63J2bEuaLGmhpIXV1dUlDsvMrHMpd1JYJ2l/gPT7m+n61cCgrO0GAmtyHSAiZkTE6IgYve+++5Y0WDOzzqbcSWEucFa6fBbwq6z1kyR1Sx/zORR4qsyxmZl1esXOfdRskmYDHwf6SloNXAFcQ/JshnOBV4GJABGxRNK9wPNAHTAlInaUKjYzM8utZEkhIk7PU3RCnu2vAq4qVTxmZta0ttLRbGZmbYCTgpmZZZSs+cisUsaOHVtweodVq1aVMRqz9sVJwTqctWvXMm7cuLzlN910E3PmzMlZljyS3KzzclKwTqdbt25MmzYtZ1m+9WadhfsUzMwswzUF65AefPBBamtrc5a5icgsPycF65Bqa2vdRGTWAm4+MjOzDCcFMzPLcPORWQe2cuXKzPOaG/Lzmy0XJwWzDqyuri7vPRvz5s0rczTWHrj5yMzMMlxTMOtg1q9fn7lju0ePHjvdvd21a1dOPfXUSoVm7YCTglkH06VLl8yw23Xr1tGvX79M2bXXXlupsKydcPORmZlluKZgZTFx4kRqampylvXp04f77ruvzBGZWS5OClYWNTU1TJ8+PWfZ1VdfXeZozCwfNx+ZmVmGawpm1iQ3/3UeTgpm1iQ3/3Uebj4yM7MMJwUzM8twUjAzswwnBTMzy3BHcyfVEUaT5LuG9evX+5GbZi3kpNBJdYTRJPmuYcmSJVx33XUViMis/XNSsHZp7NixLFu2jCVLljQq2759ewUiMusYnBSsXVq7di29evWid+/ejcrWrVtX/oDMOgh3NJuZWYaTgpmZZVSk+UjSSmAzsAOoi4jRkvYBfg4MAVYC/xwRGyoRn5XXihUrOP7443OWtZeRUGYdRSX7FI6LiLeyXl8GPBIR10i6LH09rTKhWTlJavcjodqL7Ed1btq0aadk7ARs0LY6micAH0+XZwG/x0nBrFVlP6pz48aNHH744ZkyJ2CDyvUpBDBf0jOSJqfr+kXEGwDp9/1y7ShpsqSFkhZWV1eXKVwzs86hUjWFMRGxRtJ+wEOSlha7Y0TMAGYAjB49OkoVoFlnU6hvZ9WqVWWOxiqlIkkhItak39+UNAf4ILBO0v4R8Yak/YE3KxGbWWdVqG/nvPPOK3M0Villbz6StJeknvXLwFhgMTAXOCvd7CzgV+WOzcyss6tETaEfMCedsKwLcE9E/FbS08C9ks4FXgUmViA2o20NEc0Xiye9MyuNsieFiHgZODLH+hrghHLHY421pSGi+WLxpHdmpdGWhqSaWRuybNkyamtrAdi2bdtOkw927dqVYcOGVSo0KyEnBTPLqba2NjPhYFVV1U6TD27cuLEiMVnpOSlYs7Sl/gYza31OCtYshfobzj33XI9zN2vnnBSs1Xicu1n756mzzcwswzWFFqiurna7upl1SE4KLVBVVdVmxvFPnDiRmpqanGVOUFbI9u3bdxpm2nDYqZ913Tk5KbRzNTU1bSZBWfsSETsNM2047NTPuu6cnBTMrNmyaxnLli1jxIgRO5X379+f+fPnVyI020VOCmbWbNm1jF69ejFu3LidyufNm1eBqKw1ePSRmZlluKbQylp6x28pOoz90BQrh+znPterf/6zBzu0P04KrWxX7vj90Y9+lLOspR3GvpnMyiH7uc/16p//7MEO7Y+TQhm19EPa//GbWbk4KbRAbW3tTuO5s5VibLf/4zezcnFSyKO6urpRO2m27PHc2d599928CWPbtm0sW7bM89Bbp+FZddsfJ4U8qqqqGrWT1su3vl6+hFFVVZV5aIlZZ9DSPjYnjMpxUiizhlML1HMtwjqS+t/zhlNnwD+e2taWHvtq/+CkUGYNpxao51qEdST1v+cNp86Ayj21bezYsaxduzZnme/A/gcnBWuT6p8PnOs/TfBkbdZYoQ99SEbqXXLJJTnLfAf2PzgpWJtU/3zgXP9pgidra88KNS1B0rzUEmvXrm003Ua2G264oUXH7WycFMysrAo1LUHSvORRS5XjpGBmbU5LRi2tX7+eO+64g/e85z0592tpDaSzcVJoQwqNTFqyZElm1IZZR7Z9+/aCTUv5EsaSJUu47rrr8g4Z/9rXvtbqsXZETgptSKGRSb17967YqI1SKdSZ7I7kzisiCjYtWWk5KVjFFOpMdkeylVNTz11/++23O81w1k6dFApNV71jx44yR9O0XM1LblqyzqRQ01JTtcu6urq8U9e8++67TJgwIWfZddddx+bNmzvNcNZOnRQKPd/4zDPPLHM0TcvVvNRRm5bMcinUtNRU7XL33XcvOHVNvulpevXqxfr165sbalHa4g11nTopmJlVUqF7KypVA2lzSUHSScD3gSrgxxFxTYVDMrNObP369fTo0SNn09OGDRuoqqrK2R9Rfz9FodpAW3weSptKCpKqgB8CJwKrgaclzY2I5ysbWdtXqL8BKNjnUD8KqLn7NSX7uB5hZO1Vly5dmDp1Kv369WtUdvnll3PppZey++67Nyq77rrrGDFiRMHpNQrdZb1y5UpGjBiRt7xUzUttKikAHwSWR8TLAJJ+BkwAnBSaUKi/AeDNN9/c6UM5+0N6+/bt7Lfffs3eDwonjfrRRQ2PWc8jjKwjyDeUvFevXowbN67F02vU1dUVnLajVM1LioiSHLglJH0OOCkizktfnwl8KCIuydpmMjA5fXkI8GLZA225vsBblQ6ilfma2gdfU9tXzusZHBH75ipoazUF5Vi3U9aKiBnAjPKE07okLYyI0ZWOozX5mtoHX1Pb11auZ7dKB9DAamBQ1uuBwJoKxWJm1um0taTwNDBU0kGSdgcmAXMrHJOZWafRppqPIqJO0iXA/yMZknpHRDS+dbH9apfNXk3wNbUPvqa2r01cT5vqaDYzs8pqa81HZmZWQU4KZmaW4aRQBpL+VdISSYslzZbUvdIx7SpJl6bXs0TSlysdT0tIukPSm5IWZ63bR9JDkl5Kv+d+jFcbleeaJqY/p3clVXzIY3PluabrJC2V9FdJcyT1rmCIzZbnmr6TXs8iSfMlDahEbE4KJSbpAGAqMDoijiDpQJ9U2ah2jaQjgPNJ7kA/EjhV0tDKRtUiM4GTGqy7DHgkIoYCj6Sv25OZNL6mxcBngMfLHk3rmEnja3oIOCIiRgDLgG+UO6hdNJPG13RdRIyIiJHAg8C/lzsocFIoly7AHpK6AHvS/u+9OAx4MiK2RkQd8BhwWoVjaraIeBxoOCfyBGBWujwL+HQ5Y9pVua4pIl6IiPZ05/9O8lzT/PR3D+BJknua2o0817Qp6+VeNLhxt1ycFEosIl4Hvge8CrwBvB0R7f0xTYuBj0rqI2lP4BR2vumwPesXEW8ApN/3a2J7q7xzgP+pdBCtQdJVkl4DvoBrCh1T2iY9ATgIGADsJemMyka1ayLiBeBakir8b4G/AHUFdzIrAUmXk/zu3V3pWFpDRFweEYNIrif31Kol5qRQep8AXomI6oioBX4J/FOFY9plEXF7RIyKiI+SVINfqnRMrWSdpP0B0u9vVjgey0PSWcCpwBei491wdQ/w2Uqc2Emh9F4FjpG0pyQBJwAvVDimXSZpv/T7gSSdmLMrG1GrmQuclS6fBfyqgrFYHunDuKYB4yNia6XjaQ0NBmuMB5ZWJI6Ol2DbHkn/AXyepJr7LHBeRGyrbFS7RtL/An2AWuDfIuKRCofUbJJmAx8nmbJ4HXAF8ABwL3AgSUKfGBGleUBvCeS5pvXAD4B9gY3Aooj4ZIVCbLY81/QNoBtQk272ZERcWJEAWyDPNZ1C8jiAd4FVwIVpn2R5Y3NSMDOzem4+MjOzDCcFMzPLcFIwM7MMJwUzM8twUjAzswwnBetQJG1ppeN8QNKP0+WzJVWns1c+L+n8PPuMl1TWCfTSqUZ+J2mLpJsalD3c3mZ5tcpzUjDLbTrJ2P56P09nr/w4cLWkftkbS+oSEXMj4prWDELSyiY2eQf4FvDVHGU/AS5uzXis43NSsA5P0khJT2bNvf+edP3R6bon0vn5F6frewIjIuIvDY8VEW8CK4DBkmZKul7S74Br0xrFTekx+qXn+kv69U/p+jMkPZXWOn4kqWpXri0i/hYRC0iSQ0NzgdN35fjW+TgpWGdwFzAtnXv/OZK7RwHuJLlr9MPAjqztR5PMBNuIpPcC7wWWp6uGAZ+IiK802PRG4LGIOBIYBSyRdBjJne1j0lrHDpLZMEsiIjYA3ST1KdU5rOPpUukAzEpJ0t5A74h4LF01C7gvfVJXz4j4Y7r+HpLJ1QD2B6obHOrzko4FtgEXRMT6ZCor7ouIHTR2PPBFgLT8bUlnAkcBT6f77kGOCfck/RAYk74cIGlRunxfRFxV7LWn3iSZnbemqQ3NwEnBOi8VKPs70PCRqT+PiFxTGf+tmeecFREFnxIWEVMyO0gr01pFS3UnuR6zorj5yDq0iHgb2CDpI+mqM0madTYAmyUdk67PfkTqC8D7dvHUjwAXAUiqktQrXfe5rBlm95E0eBfPk1c6K29/YGWpzmEdj2sK1tHsKWl11uvrSabAvjV9StzLwJfSsnOB2yT9Dfg98DZARCyVtLeknhGxuYVxXArMkHQuSd/BRRHxhKRvAvMl7UYyw+wUkhkxWywdodQL2F3Sp4GxEfE8SVPVk1mPrTRrkmdJtU5LUo+I2JIuXwbsHxGXpq//FdgcET+uZIy7QtL3gbntcVpzqxw3H1ln9ql0aOhi4CPAlVllt5B0Krdni50QrLlcUzAzswzXFMzMLMNJwczMMpwUzMwsw0nBzMwynBTMzCzj/wM0emq6lQTyuwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -842,10 +840,8 @@ "plt.figure(figsize=(6, 4))\n", "\n", "\n", - "sns.distplot(y_val, label='target', kde=False,\n", - " hist_kws=dict(color='#222222', alpha=0.6))\n", - "sns.distplot(y_pred, label='prediction', kde=False,\n", - " hist_kws=dict(color='#aaaaaa', alpha=0.8))\n", + "sns.histplot(y_val, label='target', color='#222222', alpha=0.6, bins=40)\n", + "sns.histplot(y_pred, label='prediction', color='#aaaaaa', alpha=0.8, bins=40)\n", "\n", "plt.legend()\n", "\n", @@ -920,13 +916,13 @@ "output_type": "stream", "text": [ "train: 0.5058876515487503\n", - "validation: 0.5076038849555178\n" + "validation: 0.5076038849557035\n" ] } ], "source": [ "X_train = prepare_X(df_train)\n", - "w_0, w = linear_regression(X_train, y_train)\n", + "w_0, w = train_linear_regression(X_train, y_train)\n", "\n", "y_pred = w_0 + X_train.dot(w)\n", "print('train:', rmse(y_train, y_pred))\n", @@ -1011,13 +1007,13 @@ "output_type": "stream", "text": [ "train: 0.4788482615078598\n", - "validation: 0.4748256737225879\n" + "validation: 0.4748256737227088\n" ] } ], "source": [ "X_train = prepare_X(df_train)\n", - "w_0, w = linear_regression(X_train, y_train)\n", + "w_0, w = train_linear_regression(X_train, y_train)\n", "\n", "y_pred = w_0 + X_train.dot(w)\n", "print('train:', rmse(y_train, y_pred))\n", @@ -1102,13 +1098,13 @@ "output_type": "stream", "text": [ "train: 0.4745380510924004\n", - "validation: 0.4685879194659594\n" + "validation: 0.4685879194659198\n" ] } ], "source": [ "X_train = prepare_X(df_train)\n", - "w_0, w = linear_regression(X_train, y_train)\n", + "w_0, w = train_linear_regression(X_train, y_train)\n", "\n", "y_pred = w_0 + X_train.dot(w)\n", "print('train:', rmse(y_train, y_pred))\n", @@ -1284,14 +1280,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "train: 65.13125477580496\n", - "validation: 53.439089141342365\n" + "train: 1607.4898641126447\n", + "validation: 830.8920785817741\n" ] } ], "source": [ "X_train = prepare_X(df_train)\n", - "w_0, w = linear_regression(X_train, y_train)\n", + "w_0, w = train_linear_regression(X_train, y_train)\n", "\n", "y_pred = w_0 + X_train.dot(w)\n", "print('train:', rmse(y_train, y_pred))\n", @@ -1309,7 +1305,7 @@ { "data": { "text/plain": [ - "-2037176210554855.5" + "-6.947006956027172e+17" ] }, "execution_count": 40, @@ -1334,7 +1330,7 @@ "metadata": {}, "outputs": [], "source": [ - "def linear_regression_reg(X, y, r=0.0):\n", + "def train_linear_regression_reg(X, y, r=0.0):\n", " ones = np.ones(X.shape[0])\n", " X = np.column_stack([ones, X])\n", "\n", @@ -1366,7 +1362,7 @@ "name": "stdout", "output_type": "stream", "text": [ - " 0, -2037176210554855.50, 1.53, 2037176210552875.50\n", + " 0, -694700695602717184.00, 278.96, 694700695602667008.00\n", "0.001, 7.19, -0.10, 1.81\n", " 0.01, 7.18, -0.10, 1.81\n", " 0.1, 7.05, -0.10, 1.78\n", @@ -1377,7 +1373,7 @@ ], "source": [ "for r in [0, 0.001, 0.01, 0.1, 1, 10]:\n", - " w_0, w = linear_regression_reg(X_train, y_train, r=r)\n", + " w_0, w = train_linear_regression_reg(X_train, y_train, r=r)\n", " print('%5s, %.2f, %.2f, %.2f' % (r, w_0, w[13], w[21]))" ] }, @@ -1390,14 +1386,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "train 65.13125477580496\n", - "val 53.439089141342365\n" + "train 1607.4898641126447\n", + "val 830.8920785817741\n" ] } ], "source": [ "X_train = prepare_X(df_train)\n", - "w_0, w = linear_regression_reg(X_train, y_train, r=0)\n", + "w_0, w = train_linear_regression_reg(X_train, y_train, r=0)\n", "\n", "y_pred = w_0 + X_train.dot(w)\n", "print('train', rmse(y_train, y_pred))\n", @@ -1416,14 +1412,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "train 0.464312489461214\n", - "val 0.46023949640725603\n" + "train 0.46431248945738135\n", + "val 0.46023949632611183\n" ] } ], "source": [ "X_train = prepare_X(df_train)\n", - "w_0, w = linear_regression_reg(X_train, y_train, r=0.01)\n", + "w_0, w = train_linear_regression_reg(X_train, y_train, r=0.01)\n", "\n", "y_pred = w_0 + X_train.dot(w)\n", "print('train', rmse(y_train, y_pred))\n", @@ -1442,14 +1438,14 @@ "name": "stdout", "output_type": "stream", "text": [ - " 1e-06 0.4602250809424434\n", - "0.0001 0.4602254944985981\n", - " 0.001 0.46022676275472696\n", - " 0.01 0.46023949640725603\n", - " 0.1 0.46037006957867715\n", - " 1 0.46182980426576337\n", - " 5 0.468407962753369\n", - " 10 0.4757248100693066\n" + " 1e-06 0.4602255729429437\n", + "0.0001 0.4602254945347706\n", + " 0.001 0.46022676266043516\n", + " 0.01 0.46023949632611183\n", + " 0.1 0.46037006958137333\n", + " 1 0.46182980426538955\n", + " 5 0.46840796275338076\n", + " 10 0.4757248100693528\n" ] } ], @@ -1458,7 +1454,7 @@ "X_val = prepare_X(df_val)\n", "\n", "for r in [0.000001, 0.0001, 0.001, 0.01, 0.1, 1, 5, 10]:\n", - " w_0, w = linear_regression_reg(X_train, y_train, r=r)\n", + " w_0, w = train_linear_regression_reg(X_train, y_train, r=r)\n", " y_pred = w_0 + X_val.dot(w)\n", " print('%6s' %r, rmse(y_val, y_pred))" ] @@ -1472,14 +1468,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "validation: 0.46023949640725603\n", - "test: 0.45718136802882486\n" + "validation: 0.46023949632611183\n", + "test: 0.4571813679692604\n" ] } ], "source": [ "X_train = prepare_X(df_train)\n", - "w_0, w = linear_regression_reg(X_train, y_train, r=0.01)\n", + "w_0, w = train_linear_regression_reg(X_train, y_train, r=0.01)\n", "\n", "X_val = prepare_X(df_val)\n", "y_pred = w_0 + X_val.dot(w)\n", @@ -1541,7 +1537,7 @@ { "data": { "text/plain": [ - "28294.135897784377" + "28294.135912260714" ] }, "execution_count": 49, @@ -1555,6 +1551,20 @@ "suggestion = np.expm1(y_pred)\n", "suggestion" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -1574,7 +1584,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.8.8" } }, "nbformat": 4,