
Principal Component Analysis for Image Analysis

Alex Moini, Tyler Clough, Dani Lisle
University of Colorado, Boulder

Abstract

Principal component analysis (PCA) is method of dimensionality reduction with
applications in a wide range of fields including epidemiology1 and diagnoses from
ECG data2. We apply PCA to the problem of reducing the dimensions of images
while preserving visual discernability. In our method, the dimension of the images
are are compressed for storage and then decompressed to produce reconstructed
images, albeit at a lower resolution. A convolutional neural network (CNN) is then
used to quantify whether the decompressed images remain discernible and thus
viable for use in applications of image analysis, such as epidemiology.

Author roles: Alex Moini designed and performed testing with a convolutional neural network.
Tyler Clough and Dani Lisle implemented principal component analysis and analyzed results.
Everyone was involved in writing and editing the paper.

Introduction

Image compression is a fundamental issue in image analysis. As such, our motivation is to
investigate the utility of Principal Component Analysis as a method for image compression in
the context of image recognition applications. Specifically, we seek to understand the extent to
which an image can be compressed while retaining visual discernibility when decompressed and
reconstructed. This utility is measured using a CNN in order to mimic the standard of using
deep learning models for image analysis/recognition3. Furthermore, we are interested in this line
of inquiry because - as will be discussed in the following sections - this is a direct application of
a Matrix Methods topic, namely Singular Value Decomposition, to an ongoing issue in industry.

In order for readers to better understand our application of PCA to the problem of image
compression, we will provide a brief synopsis of why image compression is important as well as
how image data is stored on a computer.

Image compression is significant because it is directly correlated to efficiency and therefore to
computation time and cost. In the context of predictive medical diagnoses, image compression
is useful when training a neural network to identify irregularities in ECG data because the
extent to which the images can be compressed without a significant loss in the performance of
the network directly impacts the cost to train such network. Furthermore, it is important to
emphasize that simply reducing the size of an image is not enough, one must do so in a way
that preserves the image’s key features if it is to be used for image analysis.

Now, images are stored on a computer as three dimensional matrices, known as tensors.
Each layer of the tensor corresponds to a color, while the value/index pairs correspond to the

1Nobi, A., Tuhin, KH. and Lee, JW., 2021
2Zheng, 2021
3Ewan, 2019

1



color’s brightness and position, respectively. Image compression is then finding solutions to the
problem of reducing the size of the image tensors while retaining as much of the image’s original
resolution as possible, i.e. using reversible operations to encode more information in a smaller
matrix. In our case, PCA involves a modified process of Singular Value Decomposition, which
is a well known method for reducing the size of a given matrix.

For our purposes, we will be using CIFAR-10 as our test dataset of images. CIFAR-10 is a
collection of 60,0000 32x32 RGB images that span 10 different “classes”, each a different animal
or object: Airplanes, Automobiles, Birds, Cats, Deer, Dogs, Frogs, Horses, Ships and Trucks.
The dataset is open source and was created by Alex Krizhevsky, Vinod Nair, and Geoffrey
Hinton4. It was compiled as a tool for training machine learning models in the context of image
compression, storage, and recognition, making it a perfect choice for our experiment.

In summation, our experiment is an investigation of Principal Component Analysis’ viability
as a method for compressing images in the context of image analysis applications. Specifically,
we hope to determine the limiting size that a set of images can be compressed using PCA before
the uncompressed images can no longer be accurately recognized, i.e. classified as the correct
class by the CNN.

Lastly, please note that throughout the paper vectors are represented by boldface, lowercase
letters, matrices are indicated by boldface, uppercase letters and entries of each are denoted by
subscript(s). Additionally, a superscript T represents the transpose operation.

Methodology

In order to determine the limiting size of image compression via PCA, we need a set of im-
ages as well as a method of measuring how much information was retained in the compres-
sion/decompression. As previously mentioned we will be using the open source dataset CIFAR-
10 as our test set along with a convolutional neural network to measure how much information is
retained in the compressions. We chose to use a CNN because they are the standard in industry
for image recognition applications and one of our group members has experience with these
networks.

Next, we provide a formulation for the specific method of PCA that was used in our experiment,
followed by a brief outline of our procedure.

Mathematical Formulation

Principal Component Analysis is a method for reducing the dimensionality of a given dataset.
The method accomplishes this by preserving the variance within the dataset, which is defined
as the variation within each variable5. In other words, new variables found with PCA capture
the extent to which the measurements on the original variable differ.

In general the PCA method acts on a n-by-p data matrix X, where each column of X
represents a different variable in the set; generally, the jth column of X contains n measurements
on the jth variable. Equivalently if each variable has an equal number of the measurements,
then the ith row in the data matrix X contains the ith measurements on all p variables.

Now, the variance of the dataset is defined as:

var(Xa) = aTSa (1)

4Alex Krizhevsky & Hinton, 2009
5Janakeiv, Nikolai, 2018

2



where, X is the data matrix, a = [a1 ... ap] contains the coefficients from the linear combination:

p∑
j=1

ajxj = Xa

And S is the covariance matrix6, which is a pxp square matrix whose Sij entry is the calculated
covariance between the ith and j th variables from X, σ(xi,xj):

S =


σ(x1,x1) . . . σ(x1,xp)

...
. . .

...

σ(xp,x1) . . . σ(xp,xp)


where,

σ(xi,xj) =
1

n− 1

n∑
k=1

(xi,k − x̄i,k) (xj,k − x̄j,k) =
1

n− 1

n∑
k=1

(xj,k − x̄j,k) (xi,k − x̄i,k) 7

Thus, S is symmetric by the commutativity of multiplication and so it may be written as the
sum:

S =
1

n− 1

n∑
k=1

(
Xk − X̄k

) (
Xk − X̄k

)T
=

1

n− 1

n∑
k=1

(
Xk − X̄k

)T (
Xk − X̄k

)
(2)

Since we want to preserve the variability in the data, we seek a linear combination of the columns
of X that will maximize aTSa according to (1). It can be shown8 that this process is equivalent
to solving:

Sâ = λâ

with the added restriction that â is a unit-norm eigenvector (âTâ = 1).

This implies:
var(Xâ) = âTSâ = âTλâ = λâTâ = λ

meaning maximizing the variance corresponds to finding the largest eigenvalue of Sâ.
Now,

We can simplify this process9 by first centering X to obtain a new matrix X∗. Here,
“centering” means subtracting the mean of each column from each entry in that column, i.e.

X∗
j = Xj − X̄j

Centering X thus simplifies (2) to:

S =
1

n− 1

n∑
k=1

(
Xk − X̄k

)T (
Xk − X̄k

)
=

1

n− 1
(X∗)TX∗

Equivalently,
(1 − n)S = (X∗)TX∗ (3)

6Janakeiv, Nikolai, 2018
7this rearranging of the product terms is necessary for the equation (3) on the following page
8Ian T. Jolliffe and Jorge Cadima, 2016
9Ian T. Jolliffe and Jorge Cadima, 2016

3



Therefore, equation (3) links the spectral decomposition of S to the singular value decomposition
of X∗, as it can be shown10 that:

(1 − n)S = AL2AT (4)

where, the columns of A correspond to the non-zero eignevectors of (X∗)TX∗

and L is a diagonal matrix with the singular values of (1-n)S as its entries.

And thus, the method of PCA is equivalent to solving the SVD of X∗ because maximizing the
variance corresponds to finding the largest eigenvalues of S, which are the entries of 1

1−nL
2.

Finally, PCA gets its name from the linear combination of the data centered matrix X∗

using the coefficients from the unit-normed eigenvector corresponding to the kth eigenvalue,
âk, which is known as a ”principal component” (PC). These PCs are then used to reduce the
dimensionality of a given dataset as enough PCs are generated to capture a sufficient amount
of the variance within the original set.

Procedure

Figure 1: Procedure

10Ian T. Jolliffe and Jorge Cadima, 2016

4



Our project follows the procedure below, as illustrated in Figure 1 on the previous page:

1. A baseline was established by training a CNN using the original 32x32 images from CIFAR-
10 and then measuring its accuracy score on a test set11.

2. Next, in our 5 trials a PCA12 was used to compress the set of 32x32 originals into sets
of 28x28, 24x24, 20x20, 16x16, and 12x12; however, as images are stored as 3D tensors,
the 3 layers were first split and the PCA transform was then run on each of the Red,
Green and Blue matrices. We refer to the matrices resulting from this transformations as
“intermediates”. It is important to note that information is lost during the compression
of the original images into the intermediates, which thus affects the reconstructed images.

3. An inverse PCA transformation was then applied to reconstruct the images from the
intermediates and a CNN was trained on each of the reconstructed sets (28x28, 24x24, ...)
using the same method as for the originals, i.e. 50k training set and 10k testing set. An
illustration of this process is provided in Figure 2 below.

Figure 2: Illustration of the PCA compression/decompression process. This intermediate is 20x20.

4. Lastly CNNs were trained on each of reconstructed sets and tested. Finally, the resulting
metrics were compared in order to determine the extent to which the images could be
compressed without compromising the CNNs ability to accurately classify the images.

11Specifically, out of the 60k images in CIFAR-10, 50k were used to train the CNN and 10k were reserved
for the test run

12We used scikit-learn’s PCA package for our experiment. The parameters were adjusted so that the
PCA performed was done using a data centered matrix and thus mimics the method discussed in the
Mathematical Formulation section above.

5



Numerical Results

Accuracy

Figure 3: Accuracy of CNN vs PCA Compression

Here we define accuracy as the ratio of the number of correct guesses over the number of total
images passed to the CNN. This metric is useful because it is a direct measurement of the CNN’s
ability to correctly classify the images and thus is also an indirect measurement of information
retained during the PCA compression.

As a baseline, the CNN was able to identify uncompressed images with 84% accuracy and, as
you can see, a proportional accuracy score can be achieved by compressing the images down to
20x20 intermediates, which corresponds to a ∼ 61% reduction in the image’s size. Interestingly,
the 24x24 and 20x20 compression scored the same accuracy score.

Precision and Recall

The next metrics we consider are precision and recall, which form a paradigm commonly used
in machine learning. Both are calculated for each classifiable object (truck, cat, dog, etc.)
individually. Specifically,

Precision =
True Positives

True Positives + False Positives

=
Correctly Identified as Truck

Correctly Identified as Truck + Incorrectly Identified as Truck

&

Recall =
True Positives

True Positives + False Negatives

=
Correctly Identified as Truck

Correctly Identified as Truck + Missed Trucks

6



Both quantities, although not particularly significant when considered individually, are useful
when used in combination. For example, if the CNN guessed that every image was a truck, then it
would have a 100% Recall score but its Precision score would indicate that it was not functioning
properly. Similarly, if the CNN only guessed that one image was a truck and got it right, then
it would have a 100% Precision score and the Recall score would highlight the reality. As such,
it is necessary to have high scores in both metrics as an indicator for success.

The subsequent tables display precision and recall (as well as accuracy) scores for all classi-
fiable objects, over all compression rates applied in this project.

Figure 4: Precision and Recall for 24x24 and 20x20 Compressions

Note that Precision scores are on the right and Recall scores are on the left

As you can see, the precision and recall scores are very similar between the 24x24 and 20x20
compressions. Interestingly, the CNN had a harder time correctly classifying the animals over
the vehicles, but overall the scores are respectable. Also of note is that the 20x20 compressions
(red) had fewer categories in which the precision and recall scores differed by a large amount,
but in those categories in which there was a large variation (Cat and Deer) the difference was
very large.

7



Compression Time

Figure 5: Time for Full Compression/Decompression for each Compression Size

Here we have measured the total time it took for the compression/decompression process, which
is another relevant metric as this is directly correlated to the cost to train the CNN. As one
might expect with computer processing, the time grows exponentially with the image size. This
exponential growth is largely driven by the fact that the PCA method requires finding eigenvalues
and corresponding eigenvectors, which is a computationally expensive task.

Discussion

Results

Considering the whole of the accuracy, precision and recall scores, we determine that out of our
set of compressions, 20x20 would be the optimal size. We have come to this conclusion based
on the fact that the 24x24 and 20x20 compressions have the same accuracy score and that there
is no clear distinction between their precision and recall scores across all the classes. As such,
choosing a 20x20 compression saves both storage capacity as well as time both of which translate
directly to cost and efficiency. Additionally, in applications where very high accuracy scores are
needed, one may consider using a 28x28 as doing so reduces the storage size by a little over 24%
an minimal cost to accuracy.

8



Additional Insights

Figure 6: Comparison of Intermediate Matrices for various compression sizes

Figure 6 illustrates an interesting phenomenon that occured during our experiment: decreasing
the compression size results in a clustering of black pixels at bottom of the intermediate matrices.
The RGB code for black is 0 and so it appears that the PCA has encoded no information in
these pixels; however, as these images are the overlays of the Red, Green and Blue intermediate
matrices, any pixel that is purely red, green or blue is 0 in the same position for the other
colors. What is then unique about these black pixels is that the pixel has a 0 value in all three
intermediate matrices13.

Now, before an hypothesis of what is causing this clustering, we must first clarify pixels in the
intermediate images represent. To begin, the variance score for our compressed images did not
reach 95%+ until the compression size was around 12x1214, which corresponds to 12 ∗ 12 = 144
principal components. Interestingly, this is a much larger set of PCs needed to retain such high
variance than is noted in the example application from the review by Jolliffe and Cadima, in
which only 2 PCs were needed to retain 93.7% of the variance in their original dataset15. As
was discussed in the Mathematical Formulation section, each of these PCs is really the linear
combination resulting from multiplying the original data matrix X∗ (the R, G and B matrices)
by a unit normed eigenvector â.

This means that any pixel with a value of 0 corresponds to the nullspace of X∗, or equivalently
to a eigenvalue of 016. Now, only singular matrices have an eigenvalue of 0 and so, in true
scientific fashion, we have termed the clustering of black pixels at the bottom of the intermediate
matrices to be a result of the ”singularness” of the original image, which we define as the lack of
color variation within the image. To clarify this metric consider Figure 7 on the following page:

13Note that the pixel value must be 0 in all three matrices because there are no negative RGB codes
14See Appendix for full set of compressed/decompressed images along with intermediates
15Ian T. Jolliffe and Jorge Cadima, 2016
16Note that this is not entirely true because a nonzero number could be treated as 0 if it is smaller than

the mathematical precision of the computer.

9



Figure 7: Side by Side Comparison of Intermediate Matrices and Reconstructed Images from the 28x28 Compression

Notice that for the pictures with the most color contrast - the red car, horse and 18 wheeler
- have the least amount of clustering; whereas the colors with the least contrast - the boat,
cat and elk - have the most clustering. We hypothesize that the images with the least color
variation has similar color values in the same areas across the Red, Green and Blue layers; thus,
the clustering of black pixels results from there being a number of eigenvalues, b, after which
additional eigenvalues no longer contribute to the variance (i.e. are 0) and these are most likely
to line up across the Red, Green and Blue layers when the original image does not have a lot of
color variation. However, this is only a speculative hypothesis and further experiments would
be needed to verify it.

Now, before concluding we believe that it is important to note a potential flaw in the design
of our experiment which leads to a further line of inquiry and possibly a improved method
of compression using PCA. Recall from the Mathematical Formulation section that PCA is
intended to be applied to nxp data matrices, where the p columns correspond to p variables,
each with n measurements. However, we applied it to 32x32 Red, Greeen and Blue image layers
in which each pixel is, more or less, independent of the others. Therefore, the PCA viewed these
layers as data matrices of 32 variables with 32 measurements each, but this is not the case.

As such, we hypothesize that rearranging the data matrix to better reflect the expected
input for the PCA may lead to an improvement in compression. This could be accomplished by
choosing the natural variables of an RGB image, namely, the Red, Green and Blue layers. In this
case, the data matrix X would then be a (32 ∗ 32)x3 matrix with the flattened Red, Green and
Blue layers as its columns. One could then pass X through the PCA and then reconstruct the
image by un-flattening the columns and overlaying each on top of one another. Furthermore,
the dots of color within the clusters may be a result of limitations due to the mathematical
precision of the computer used for the transform; for, if the additional variance contributed by a
set of eigenvalues was nonzero but smaller than the precision of the computer, this would result

10



in the computer misidentifying the eigenvalue as 0, resulting in a 0 PC and thus a black pixel.
However, this additional variance could build up to the point where it was within the computer’s
precision, at which point the PC would be nonzero, resulting in a colored pixel. The fact that
no two same colors appear along the same row in the clusters supports this argument, because
the pixels are ordered along the rows.

Again, we have not been able to test this method so this hypothesis is merely speculative
as well. However, if it is a viable solution it would greatly reduce the amount of storage needed
as a data matrix of only 3 variable would have at most 3 principal components and thus the
largest intermediate could only be 3x3.

Conclusion

In this project we have explored the method of Principal Component Analysis and applied it
to the problem of reducing the dimensionality of images. This problem is significant of its
implications to the field of image analysis using Convolutional Neural Networks. We found that,
out of our set of compressions, a 20x20 compression was optimal because it saved more storage
and time without any tradeoff in the CNN’s accuracy score and with little change in its precision
and recall scores. Lastly, we discussed a pattern that occurred in the intermediate matrices as
well addressed a limitation of our method and proposed a possible solution.

11



References

Alex Krizhevsky, V. N., & Hinton, G. (2009). Learning multiple layers of features from
tiny images. https://www.cs.toronto.edu/ kriz/cifar.html .

Ewan. (2019). What is image recognition. Retrieved 2022-04-26, from https://

deepomatic.com/what-is-image-recognition

Ian T. Jolliffe and Jorge Cadima. (2016). Principal component analysis: a review and
recent developments. Phil. Trans. R. Soc. A..

Janakeiv, Nikolai. (2018). Understanding the covariance matrix. Retrieved 2022-
04-27, from https://datascienceplus .com/understanding -the -covariance

-matrix/

Nobi, A., Tuhin, KH. and Lee, JW. (2021). Application of principal component analysis
on temporal evolution of covid-19. PLoS ONE .

Zheng, R. C., J. (2021). On the application of principal component analysis to classifica-
tion problems. Data Science Journal .

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and
Saining Xie. (2022). A convnet for the 2020s. arXiv .

Appendix

Convolutional Neural Network

Figure 8

In this paper we use the ConvNeXt pre trained convolutional neural network as a method of
judging how well the PCA is at lowering the dimensionality of an image and reconstructing it.
We chose to use ConvNeXt because it is the current state of the art model in image classification
and image processing tasks. It ranked above ViT (Vision Transformer) and other state of the
art neural network based architectures17.

17Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie, 2022

12

https://deepomatic.com/what-is-image-recognition
https://deepomatic.com/what-is-image-recognition
https://datascienceplus.com/understanding-the-covariance-matrix/
https://datascienceplus.com/understanding-the-covariance-matrix/


ConvNeXt uses a number of convolutional, pooling, and residual blocks to build a high
dimensional vector representation of an image. The vector representation can be used to classify
images when paired with a dense layer of neurons as a “classification head.”

In our implementation we used a ConvNeXt-small pretrained layer to produce a dense vector
of size (1x768) followed by a dense layer of 128 neurons. This is then followed by an output layer
with 10 neurons, one neuron for each class of the CIFAR-10 dataset. Each neuron represents a
probability of the class being the true class according to the network. In order to determine the
prediction we take the largest value in the output layer as the final prediction.

Each network was trained for 3 epochs, on 32x32 images, each with the same architectural
specifications and hyperparameters.

Github Files

We have provided the link to the GitHub that stores all the files used for the experiment. Be
sure to reference the ”readme.md” for the purpose of the files in each folder.

Intermediate Matrices and Reconstructed Images

(Including Bonus Compressions not Referenced in Paper)

13

https://github.com/alexmoini/PCA_image_compression


14



15



16



17


