Alibaba Summer of Code 2020

Alibaba Summer of Code Proposal

Proposal for Distributed Concurrent Flow Control

About Me

BASIC: Name: Zhigiang Gu
INFORMATION: Email: yunfeivang@buaa.edu.cn

Tel: 18811228738

GitHub Account: yunfeiyanggzq
EDUCATION: Beihang University, Beijing, China
Master of Cyberspace Security, expected graduation July 2022

*Related Experience:

2020.5-now Sentinel Contributor

I have learned a lot about cluster flow control and submitted several prs about this module. My

work is mainly related to unit tests.
2019.1-2019.3 Ziru Information Technology Co., Ltd. JavaIntern

I taked part in the development of a tool platform for developer.I am mainly responsible for
the development of back-end using java, springboot, redis and mysql. I maintain the platform

and fix several bugs. Participated in the design and development of api management platform

and performance statistics module.
2019.6-2019.9 Alibaba Summer of Code 2019 Contributor

I contributed to Dragonfly and became a member of dragonflyoss/dragonfly-reviewer.
Dragonflyis an intelligent P2P based image and file distribution system. During the activity, I

solved supernode garbage collection problem and supernode cluster download files repeatly

problem. I mainly worked on supernode with golang.

2017.9-2019.9 Beijing Yuehang Future Education Co.,Ltd. Founder

I led a team into the research of a modular robot. The project involves java, python and
hardware. Later, the project was mergered into Guangzhou Publishing House and we then we

set up a company. I continued to work as a project leader in the company to continue the

upgrading of the product.

mailto:yunfeiyang@buaa.edu.cn
https://github.com/yunfeiyanggzq
https://github.com/dragonflyoss/Dragonfly
https://github.com/orgs/dragonflyoss/teams/dragonfly-reviewer

Alibaba Summer of Code 2020

*Awards and Certifications:

May Fourth Youth Medal/ Fi.)Y & 5F 3% &
Entrepreneurship Scholarship/ T.{5 B A1) Mk 2224 4 — 5522

Second Prize of Internet + Innovation and Entrepreneurship Comp etition,/ HE M + G5 Gk
e+ 4

Beihang Learning Scholarship /b fii 2= > {8 7532 22 4
Outstanding graduate of Beihang University/ 1t 5T i SRR KA T AR L A
First Prize of Feng Ru Cup Technology Competition /{5 Ui#f FlH; 75 Fg— 25 42

*My Skill:

good at java and golang

good at algorithms and various data structures.
familiar with p2p and blockchain

familiar with spring, springmvc and mybatis.

familiar with eted,zookepper and redis
About Project

*Problem Description and Work Abstract

Now Sentinel can support cluster flow control by QPS and thread numbers, but It’s not
enough. We want to enrich cluster flow control capabilities by adding cluster concurrent flow
control. We want to control the numbers of API calls at a certain moment, which is different
from QPS and thread numbers. At the same time, providing a set of extension mechanisms
allows developers to implement their own concurrent flow control logic.

In order to achieve cluster concurrent flow control, we use the token recovery mechanism
to calculate the current concurrency, and use ConcurrentLinkedHashMap to store the tokenld.
To deal with the situation of token client disconnection and resource call timeout, we decide to
detect its status regularly. In order to allow developers to quickly implement their own cluster
concurrent flow control rules, we have implemented an interface-based framework for

developers.

*Implementation plan:

1. Cluster Concurrent Flow Control Principle

We can use concurrencyLevel to express the maximum concurrency. To achieve the goals,
we should ensure the current concurrency nowCalls is less than concurrencyLevel. It seems
that no other information needs to be stored. However, the token client may be offline or the
resource may be called over time, which will cause statistical error of nowCalls. At the same

time, if we only store nowCalls, it is not easy for the Dashboard to display relevant information

Alibaba Summer of Code 2020

(which calls are in progress, how long does this call take, etc.). These data are very important
for us to monitor the system.

In order to realize cluster flow control, we must store the information of each call, find and
clear those abnormal calls. When token client acquires a token, it will obtain the
tokenIdissued by thetokenserver. Tokenserverwill store thetokenId andrelated
information in a local cache. When the call ends, the token client will carry the
tokenlId to the token server to release the resources, and the token server will
delete the tokenlId correspondingto the call. Through such operations, we can count the
nowCalls, that is, the concurrent volume. If the resource is called time out or the token
client goes offline, the token server will try to find and delete the corresponding

tokenld, so as to obtain the accurate concurrency nowCalls.

EFREEE Token

: | FETokenlD
1EA|Token{TokenlD}

: -
: < | nowCalls++

MGKERICIEREN - ----------------ossmmessmmsssmmmssmnesnnaas Token|Ds
ERE#Token{TokenlD} :

L > HEETokenlD

BEATh ‘| nowCalls--

BRI Token

1 3

: . | FiETokenlD

< iEEToken{TokenID} , ;[
Token Client | 5+======vesvemmmr e !

; EAEHEERS Token(TokeniD} | BilSTokenlD | o<e"Ps

: L :

R nowCalls--

LR L L R RN [

r i

i b e =

' Efpis {| ZTokenlD

E i HEH

i [nowCalls

P2. situations of the resource called time out or the token client offline

2. Cluster Concurrent Flow Rule Design

We use a ConcurrentHashMap<Long, AtomicInteger> type structure to store
nowCalls corresponding to rules, where the key is flowld and the value is

nowcCalls. Because nowCalls may be accessed and modified by multiple threads, we consider

Alibaba Summer of Code 2020

to design it as an AtomicInteger class or modified by the valotile keyword. Each newly created
rule will add a nowcCalls object to this map. If the concurrency corresponding to a rule changes,
we will update the corresponding nowCalls in real time. Each request to obtain a token

will increase the nowCalls; and the request to release the token will reduce the

nowcCalls.

public class NowCallsMap {
// define the data structure
static ConcurrentHashMap<Long, AtomicInteger> map = new ConcurrentHashMap<Long,
AtomicInteger>();
// ensure the concurrent safe by AtomicInteger
private static void update(Long flowId, Integer count) {
map.get(flowld).getAndAdd(count);
}
// acquire nowCalls
private static Integer get(Long flowId) {
map.get(flowld);
}
// reduce nowCalls
private static Boolean remove(Long flowId) {
map.remove(flowId);

}

// add nowCalls

private static Boolean put(Long flowId, Integer nowCalls) {
map.put(flowId, new AtomicInteger(nowCalls));

In order to achieve concurrent flow control, we need to reform FlowRule.
concurrencyLevel is the maximum number of concurrency, clientTimeout is the token client
disconnection detection time, and it is also a sign to determine a token expires. The
clientTimeout of different FlowRules are often equivalent. sourceTimeout is the client's call
resourcetimeout detectiontime. Thisvalue will bebased on the actual situation of theresource.
The sourceTimeout of different FlowRules is often not equal. Each request to obtain a
token generates atokenIdandstoresitin a LocalCache, whose underlying storage
structure is ConcurrentLinkedHashMap; Each request to release a token deletes

the tokenId from the LocalCache.

public class FlowRule {
// rule’s flueld
private Long flowId;
// the max concurrency
private int concurrencylLevel;
// client offline detection time, which is the token expiration time
private Long clientTimeout;
// client call resource overtime detection time
private Long sourceTimeout;
// something others......
public boolean canPass(int acquireCount) {
return NowCallsMap.get(flowId) + acquireCount >= concurrencylLevel;

}

public boolean tryPass(int acquireCount) {

int now = NowCallsMap.get(flowId);

// try to add the nowCalls

if (canPass(acquireCount) && NowCallsMap.update(flowId, acquireCount)) {
// generate a TokenId
Long TokenId = generateTokenId();
// generate a cacheNode
cacheNode node = generateCacheNode (acquireCount);
// put cacheNode to LocalCache(ConcurrentLinkedHashMAP)
LocalCache.putValue(node);
// 1f happen exception, return false
return true;

} else {

Alibaba Summer of Code 2020

return false;

}

public boolean relase(Long TokenId) {
int acquireCount = LocalCache.getKey(TokenId).getacquireCout();
// delete the cacheNode from the LocalCache
LocalCache.removeKey(TokenId);
// update the nowCalls
NowCallsMap.update(flowId, -acquireCount);
// 1f happen exception, return false
return true;

}

// something else

Weneed to consider the situation that the token client goes offline or the resource call times
out. It can be detected by sourceTimeout and clientTimeout. The resource calls
timeout detection is triggered on the token client. If the resourceis called over
time, the token client will request the token server to release token or refresh the
token. The client offline detection is triggered on the token server. If the offline
detection time is exceeded, token server will trigger the detection token client’s
status. If the token client is offline, token server will delete the corresponding
tokenlId. Ifitis not offline, token serverwill continue to save it.

We use LocalCache to store the tokenld, whose underlying storage structure is
ConcurrentLinkedHashMap, Its structure is shown in the following figure. Its storage node is
CacheNode. When the expired tokenld is deleted regularly, token server will

synchronize nowCalls in time

tokenld 1 tokenid 2 tokenld 3 tokenid 4

: Y

ERSEEEER AR EE ST

cacheNode ~ cacheNode F cacheNode ~ cacheNode

LocalCache (ConcurrentLinkedHashMap3sE)

P4.LocalCache structure

public class CacheNode {
// the TokenId of the token
private Long tokenId;
// the client goes offline detection time
private Long clientTimeout;
// the resource called over time detection time
private Long sourceTimeout;
// the flow rule id corresponding to the token
private Long flowId;
// the number this token occupied
private int acquireCount;
// something else;

In order to allow users to customize the expired deletion strategy, we designed an interface
type property ExpireStrategy in the LocalCache class. The default strategyis to delete expire
token regularly. In order to ensure thread safety, we need to consider locks or other
synchronization mechanisms in the LocalCache design. The reason I choose
ConcurrentLinkedHashMap is that it is thread-safe and can be stored according
to the order of access. This feature is very beneficial to delete of expired tokenId (expiry

judgment is based on clientTimeout). At the same time, this storage is efficiency, which is

Alibaba Summer of Code 2020

basically the same as ConcurrentHashMap. But LRU will cause the key sequence to change
when it exceeds the set maximum capacity. In order to prevent ConcurrentLinkedHashMap

from LRU, we can set its maximum capacity as Integer.MAX_VALUE.

public class LocalCache<K, V> {
// storage structure
private ConcurrentLinkedHashMap<K, CacheNode<K, V>> localCache;
// expire strategy
private ExpireStrategy ExpireStrategy;
public LocalCache(ExpireStrategy expireStrategy) {
this.localCache = new ConcurrentLinkedHashMap<>();
this.ExpireStrategy = expireStrategy;
// Start the task of regularly clearing expired keys
ExpireStrategy.removeExpireKey(localCache, null);
}
public V getValue(long TokenId) {}
public V putvalue(K key, V value) {}
public V putValue(K key, V value, long expireTime) {}
public V removeKey(K key) {}
public void clear() {}

We detect whether the token client is offline by the CacheNode’s expiration strategy
(according to the CacheNode's clientTimeout attribute). When deleting the expired key,
we fully used the ConcurrentLinkedHashMap’s key ordering feature, which can
maximize the detection efficiency. Because the expiration time we setis the token
client disconnection detection time, which are the same for token clients. So
expired keys will settle to the bottom. At the same time, we can also control the deletion
time, the maximum token number of deletions and the size of the thread pool, which will help
token server precisely control the entire cleaning process. If the token server finds that token’s
save time is much greater than sourceTimeout, token server will determine that the resource is
called timeout and the token client can’t respond. The worker thread will delete the

corresponding tokenlId.

public class RegularExpireStrategy {
// The max number of token deleted each time,
// the number of expired key-value pairs deleted each time does not exceed this number
private long executeCount = 1000;
// Length of time for task execution
private long executeDuration = 1000 * 60;
// Frequency of task execution
private long executeRate = 60;

public V removeExpireKey(ConcurrentLinkedHashMap<K, CacheNode<K, V>> localCache, K key) {
ScheduledExecutorService executor = Executors.newScheduledThreadPool (1);
// start of a periodic task
executor.scheduleAtFixedRate (new MyTask(localCache), ©, executeRate, TimeUnit.MINUTES);
return null;

}

private class MyTask implements Runnable {
private ConcurrentLinkedHashMap<Long, CacheNode> localCache;

public MyTask(ConcurrentLinkedHashMap<Long, CacheNode> localCache) {
this.localCache = localCache;
}

@0verride

public void run() {
long start = System.currentTimeMillis();
List<Long> keyList = localCache.keySet().stream().collect(Collectors.tolist());
for (int i = @; i < executeCount && i < keyList.size(); i++) {

// use ConcurrentlLinkedHashMap to improve the expiration detection progress

Alibaba Summer of Code 2020

Long key = keyList.get(i);
// If we find that token's save time is much longer than the client's
// call resource timeout time, token will be determined to
// timeout and the client go wrong
if (localCache.get(key).getExpireTime() - System.currentTimeMillis() < ©) {
// communicate with the client to confirm disconnection
if (clientShoutDown) {
// find the corresponding FlowRule to sync nowCalls
NowCallsMap.update(flowId, acquireCount);
// remove the token
localCache. remove (key);

i i

}
// time out execution exit
if (System.currentTimeMillis() - start > executeDuration) {
break;
}
}
}
}
} 3 . .
In short, the token server runs like the following picture.
5 —=l--
tokenld1 cacheNode1 | ~# ===~~~ flowldl } nowCallsi 1= | 1
tokenld2 cacheNode2 === =—=== #=- | flowld2 | nowCalls2 [i
tokenld3 cacheNode3 flowldS | nowCalls3 : :
P tokenld cache nowCalls cache 3 : 1
1
: 7 : 1
! e flowld1 el -)
IR flowld2 rule? Iy
5 flowld3 rule2 .
------- P flowRule cache :
1
1
1
1
1
1
1
1

token client

Token client requests a token/token client
Locate nowCalls through the flowId bound to the rule
Compare nowCalls with the maximum concurrency of this rule
Reach the maximum concurrency and reject the token request
Distribute tokenId, package CacheNode and store in tokenId cache
Add and delete operations in tokenId cache will be synchronized to nowCalls
The tokenId cache regularly detects the disconnection of token clients and the timeout
of resource calls through the expiration mechanism
8. The resource called timeout and released the token by token client

AUV A WNBR

~N

3. Extensible Framework for Flow Control

It can be found that, the storage structure based on ConcurrentLinkedHashMap is similar
to cache. So we can use zookeeper, redis and guava LocalCache to implement flow rule. We
only need to replace ConcurrentLinkedHashMap with the caches described above. Of course,
cluster concurrent flow control can also be achieved in other ways. In order to allow users to
customize cluster flow control solutions, we should design cluster concurrent flow control to be

scalable.

Alibaba Summer of Code 2020

In order to modify the existing code as little as possible, my solution will be compatible
with the existing cluster current limit design mode. We will add the
CONCURRENCY_CONTROL type to identify the cluster concurrent flow control mode. At the
same time, add a ConcurrencyRequestProcessor to the RequestProcessorProvider. If the
handler finds that the type of tokenRequest is CONCURRENCY_CONTROL, Sentinel will
obtain the ConcurrencyRequestProcessor from the RequestProcessorProvider to handle flow
control. Concurrent flow controllogicwill existin the form of rule source. If cluster

concurrent flow controlis not available,local concurrent flow control willbe used.

—
(;;?E:Rﬁ?‘i*ﬁ“‘

C

g e Sy
_ SRR R RN R . SR AN S R A
— B

SRETRRR BRAARE | MFERER HERR

WI IR TokenService

H Requaest 2 FEFI Fesporse B 5|
E RequestEntityDecodar AesponsaEnt TyWriter ' QEITE
| - 1 :
H M EFRH WMFEIIE i
Server E FrameDecoder FrameEncoder | |
- _T_He‘;f._sen!_i

...................... jl J

! . |
P6. cluster flow control scheme architecture

At the same time, in order to decompress cluster concurrent flow control and
the entire flow-control framework, we specify concurrent flow control interfaces
and use flow control rule to implement it. Developers can implement the methods in
these interfaces when customizing their own flow control rule. At the same time, our default

rule will also adopt thisidea, allowing users to quickly modify the default rules.

public interface TokenService {
// acquire Token
TokenResult requestToken(Long ruleId, int acquireCount, boolean prioritized);

// release Token
TokenResult releaseToken(Long tokenId);

// keep Token
TokenResult keepToken(Long tokenId);

* Proposal in Chinese

— HRREEH

K IR &0 LA 75 concurrencylevel EIx, 8 4 HT AT & nowCalls Fl
concurrencylLevel 1ERLEE, LT R FEEARIE nowCal 1s /NF25F concurrencylevel #iAT T, A
ERLEAEGANE S . (BRI IFEEHER] token client A HE NI 2B E 18 H 2 YEABIN 15

Alibaba Summer of Code 2020

O, X FE nowCalls MGt Rz, S A R 2 il nowCalls /K KT

concurrencylLevel PIEHLA . AR, @R A& 2480t nowCalls FEAHR]T-FA 1K Dashboard 23
JEORAAE B RG] F IEAEREAT . AN AR A4S, R T HATRIE R R
BRI IBAT R R E

N T SEBRIA B K i Thae, BATLAUEEENEHRER, RKOUTFERRIR LA IR H 5T
WH. BAEEIVE, 24 token client RATAFN &3R1E token Server MR KIEMHRR tokenld,
token server 2fFEEIXA tokenld HAAHRKIGE R . HAHLTRE, tokenclient &EWH %
Uiﬂﬁm}{ﬂiﬁﬁﬂﬂﬁ tokenId ATFE token server 5>RBBHEIR, token server Ll FRIXE X
RLRY tokenIdo I IXFEMIHEIE, FRATREAS LIS M Geit M ul IEEHHT IR R, BIIF R E.
R BB VR R B token client HEHIENL, token server &Z2iE 2K IUMFRRT
N HERRFEI tokenld, MTIIREHERAIFF K & nowCalls.

= WREHNBT

FAEH—A ConcurrentHashMap<Long, AtomicInteger> BB HILEMFMEEA rule Pkt
MK H R & nowCalls, HH8N flowld, {EN nowCalls, T nowCalls AJRESHE ZANLLFET
EES, FRAT1E e BT BRI B R volai tle SREEFAEMG . RRHTEE — N IR RIS ARA
H rule #B23 MIX map FHHE nowCalls X R WH—A rule Bt HIFE R B R A T SUARTRAT]
S ST F TR AR L) nowCalls, 4FIKIREL token HIERFWSXT nowCalls BEATHNERSE; BER
token [IEREFLXT nowCalls HATIHBRIE

N T SBLIFRIEE], BRATERHRS NS FlowRule #HT e, concurrencylLevel 2FA 13
EWE I RE, clientTimeout #2& token client FEZEFGMIEIE], 23] %E token WA IR,
AR FlowRule FTXTRZAYT clientTimeout fEAERAHSE M. sourceTimeout /& client JififH ¥
FEE IR AL], XA 2R BRI SEPRIG UBUE, AFF FlowRule FxfRif) sourceTimeout
A RAMER . BIRIRE token MIERAER — tokenld FEE —NMREFMEH A
ConcurrentLinkedHashMap FJ LocalCache #; /N token HIIER#ERSM LocalCache i)
%1% tokenId. 2 JITLL£5ik#% ConcurrentlLinkediashMap & RN LRRE 22 4010, e F2E DT i)
W REATHET IR A AT T tokenTd FOMHIFR G EMRHE c1ientTimeout ij5E)
AR A IS AF il 454 525 AR AR =7, 1 ConcurrentHashMap JFEAAH[E, N 7Bk
ConcurrentLinkedHashMap i1 ¥ 7) e K725 & HIBH LRU £ 3 308 AP A A4k, JRATTRTRAKE
B KA BE N Integer. MAX_VALUE.

AT EHE R token client FZFI B RYE N 1OTEHL. 7T DO I 5 B e Rl kA ,
43 9 R B A P B s A DR JA] sourceTimeout FIRELRAGIINT 8] clientTimeout, #BHTHLMIZE
client HifihJR, W0ZREPIRIEHEE token client €A token server T RBENERE kS5 R
token. HEALIMTE server dtAT, WSEILHLAL I HIATLA AN token client ELLHE
BT, 2R token client FERNIMBRAHMA) tokenld, HURRILNIGSARTF, = token

Alibaba Summer of Code 2020

server KN tokenld FRAFHT B KT HEMHY[A] sourceTimeout (2-3 £F) M| client %wifiH
#E I B e R E BB tokenId.

FAME R EIE 4504 ConcurrentLinkedHashMap [LocalCache %f %1¢fi# tokenld, F:
gErgtn N AR, HAFRGET 5N CacheNodeo A T BEMSTEE HIMIBRITHEA tokenId B H XM
FLowRule B nowCalls {E#ATERIE, TAIFEI flowld £33 CacheNode HIEZE.

N T RS P SGEIAMIRRSEG, FRATIEE LocalCache Zeiifit T —AN2 IS A @
ExpireStrategy, FRz~idHAMIER SRS, BRIAMISRMSZ @ HMIER . A T RIEZFE %4, BATFE
2% R i HAth) [R5 Bl

FATEILFIE CacheNode 1T (HRHE CacheNode (1) clientTimeout JEME) HAl token
client J27HiLk. WIS H BKTIAR I BA AT LA R R ks . A Bid g BRAT 7857
fIfEH T ConcurrentLinkedHashMap $8BFFHIRHE, REBHRAIRERTBRITUE, FEARITE
B i F)A token client FRAGM A, X client W BtiX /M Al —ABHL TR,
A o B B R YT BB E o (R B AT T Bl 4 il DM Bk et) R R M BR B R R,
JEI SF S 8 A 75 I P 0 A R 0 P04 o [T S 7) T 0% 2 SRR IR AR AT B [R5 KT token
client i BRI] (CacheNode ff] SourceTimeout J@) M2 8 H token client
TEMARL, LA 2R 22 RAT R tokenId,

=, WY RIHFKRIHER

REOS R, 7ES—FHSZHL SRR 9T ConcurrentLinkedHashMap M7 kI
T4, BRI T BA redis. guava LocalCache %5, FRATH e 55— Fhsblls
AP IS M B O R TR, SRR R T WAL B e) 9, T
REBSAL T P S BB 28, TN H SR IE RO Bt R A

TR AT RE N A FARS, ARTT SRS T I AR IR BB, R e i
BUAE R Bt R e . AESRIER I 2 R 1 CONCURRENCY _CONTROL X /M F DAk
HWEM I KR 7, [B RequestProcessorProvider 734 Concurrency Request
Processor, W% hander &I tokenRequest [IZEHAYZE CONCURRENCY CONTROL, Sentinel F§M\
RequestProcessorProvider 3RHX Concurrency Request Processor AbFRESALFRI: K IRIE R,

Ik RILZ R AR FERAFFE . MRERIFRIUERTH, K A K RRIE TR

RIRS, AT RRRRAIEA A FRITAE AR, BRATIRE T IR MR D FF BAE A BRIA
FNIRSEIE . H L A B O R PR i AT DA SR e 7 3%, R AT T
BRI IR 2 R H XA AE BE Lk P BE A8 DO 8 eSCBR ORI

*Expected Timeline:

Alibaba Summer of Code 2020

7.7 -7.15 - Continue to read the relevant code and modify the proposal
7.15 -8.1 - Complete the development of cluster concurrent flow control rule
8.1-8.20 - Implement cluster concurrent flow control
8.20-8.30 - Test system performance and writing document
Other Information

Hello sir, last year I participated in ASOC2019 and gained a lot. I was exposed to open

source contributions and fell in love with this activity. After that, I continued to participate in

community contributions, fix bugs and review code, and later become a member of the

community.

I am a java learner, and I have heard of Sentinel a long time ago. So I choose it this year.

From May 25 to now, I have participated in community work as much as possible, submitted

PR and helped Review the code. At present, I have basically read all the code related to

cluster flow control, and have a preliminary understanding of cluster flow control.

I really want to continue to contribute to Sentinel under the leadership of you.

The following is part of my open source contribution experience.

Private Project
Bls Golang lib (BLS %% 5% golang &)

|demix_plus (IBM [44 YA\ E 52k [2803k i AR 52

bugfix:fix dfget panic

bugfix:fix debug mod and homedir config in

yaml

)

Sentinel

add unit test for tuple2

add unit test for tokenBucket

add test for FlowResponseDataDecoder

add unit test for sentinel-cluster-server
Dragonfly

bugfix: modify gc logic err
bugfixmodify dfget output
bugfix:gc peer failing to server down
bugfix:fix the bug blanklist can't work

bugfix:fix the gc time

bugfix:fix api response status code

feature:make cli better
feature: add gc cli config
feature:modify supernode 1.0 bridge

feature:Use rpc to get file information from
other super
feature:Use etcd to manager supernode ha

feature:modify client api
Fabric
[bugfix]fix typo in swagger file

https://github.com/yunfeiyanggzq/bls_golang_lib
https://github.com/yunfeiyanggzq/idemix-plus
https://github.com/alibaba/Sentinel/pull/1501
https://github.com/alibaba/Sentinel/pull/1504
https://github.com/alibaba/Sentinel/pull/1514
https://github.com/alibaba/Sentinel/pull/1529
https://github.com/dragonflyoss/Dragonfly/pull/851
https://github.com/dragonflyoss/Dragonfly/pull/852
https://github.com/dragonflyoss/Dragonfly/pull/888
https://github.com/dragonflyoss/Dragonfly/pull/896
https://github.com/dragonflyoss/Dragonfly/pull/906
https://github.com/dragonflyoss/Dragonfly/pull/907
https://github.com/dragonflyoss/Dragonfly/pull/990
https://github.com/dragonflyoss/Dragonfly/pull/990
https://github.com/dragonflyoss/Dragonfly/pull/1113
https://github.com/dragonflyoss/Dragonfly/pull/909
https://github.com/dragonflyoss/Dragonfly/pull/885
https://github.com/dragonflyoss/Dragonfly/pull/1065
https://github.com/dragonflyoss/Dragonfly/pull/741
https://github.com/dragonflyoss/Dragonfly/pull/741
https://github.com/dragonflyoss/Dragonfly/pull/694
https://github.com/dragonflyoss/Dragonfly/pull/1114
https://github.com/hyperledger/fabric-ca/pull/79

