Skip to content
/ ghw Public
forked from jaypipes/ghw

Golang hardware discovery/inspection library

License

Notifications You must be signed in to change notification settings

antylama/ghw

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

72 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ghw - Golang HardWare discovery/inspection library Build Status

ghw is a small Golang library providing hardware inspection and discovery.

Design Principles

  • No root privileges needed for discovery

    ghw goes the extra mile to be useful without root priveleges. We query for host hardware information as directly as possible without relying on shellouts to programs like dmidecode that require root privileges to execute.

  • Well-documented code and plenty of example code

    The code itself should be well-documented, of course, with lots of usage examples.

  • Interfaces should be consistent across modules

    Each module in the library should be structured in a consistent fashion, and the structs returned by various library functions should have consistent attribute and method names.

Usage

You can use the functions in ghw to determine various hardware-related information about the host computer:

Memory

Information about the host computer's memory can be retrieved using the ghw.Memory() function which returns a pointer to a ghw.MemoryInfo struct.

The ghw.MemoryInfo struct contains three fields:

  • ghw.MemoryInfo.TotalPhysicalBytes contains the amount of physical memory on the host
  • ghw.MemoryInfo.TotalUsableBytes contains the amount of memory the system can actually use. Usable memory accounts for things like the kernel's resident memory size and some reserved system bits
  • ghw.MemoryInfo.SupportedPageSizes is an array of integers representing the size, in bytes, of memory pages the system supports
package main

import (
	"fmt"

	"github.com/jaypipes/ghw"
)

func main() {
	memory, err := ghw.Memory()
	if err != nil {
		fmt.Printf("Error getting memory info: %v", err)
	}

	fmt.Println(mem.String())
}

Example output from my personal workstation:

memory (24GB physical, 24GB usable)

CPU

The ghw.CPU() function returns a ghw.CPUInfo struct that contains information about the CPUs on the host system.

ghw.CPUInfo contains the following fields:

  • ghw.CPUInfo.TotalCores has the total number of physical cores the host system contains
  • ghw.CPUInfo.TotalCores has the total number of hardware threads the host system contains
  • ghw.CPUInfo.Processors is an array of ghw.Processor structs, one for each physical processor package contained in the host

Each ghw.Processor struct contains a number of fields:

  • ghw.Processor.Id is the physical processor ID according to the system
  • ghw.Processor.NumCores is the number of physical cores in the processor package
  • ghw.Processor.NumThreads is the number of hardware threads in the processor package
  • ghw.Processor.Vendor is a string containing the vendor name
  • ghw.Processor.Model is a string containing the vendor's model name
  • ghw.Processor.Capabilities is an array of strings indicating the features the processor has enabled
  • ghw.Processor.Cores is an array of ghw.ProcessorCore structs that are packed onto this physical processor

A ghw.ProcessorCore has the following fields:

  • ghw.ProcessorCore.Id is the identifier that the host gave this core. Note that this does not necessarily equate to a zero-based index of the core within a physical package. For example, the core IDs for an Intel Core i7 are 0, 1, 2, 8, 9, and 10
  • ghw.ProcessorCore.Index is the zero-based index of the core on the physical processor package
  • ghw.ProcessorCore.NumThreads is the number of hardware threads associated with the core
  • ghw.ProcessorCore.LogicalProcessors is an array of logical processor IDs assigned to any processing unit for the core
package main

import (
	"fmt"

	"github.com/jaypipes/ghw"
)

func main() {
	cpu, err := ghw.CPU()
	if err != nil {
		fmt.Printf("Error getting CPU info: %v", err)
	}

	fmt.Printf("%v\n", cpu)

	for _, proc := range cpu.Processors {
		fmt.Printf(" %v\n", proc)
		for _, core := range proc.Cores {
			fmt.Printf("  %v\n", core)
		}
	}
}

Example output from my personal workstation:

cpu (1 physical package, 6 cores, 12 hardware threads)
 physical package #0 (6 cores, 12 hardware threads)
  processor core #0 (2 threads), logical processors [0 6]
  processor core #1 (2 threads), logical processors [1 7]
  processor core #2 (2 threads), logical processors [2 8]
  processor core #3 (2 threads), logical processors [3 9]
  processor core #4 (2 threads), logical processors [4 10]
  processor core #5 (2 threads), logical processors [5 11]

Block storage

Information about the host computer's local block storage is returned from the ghw.Block() function. This function returns a pointer to a ghw.BlockInfo struct.

The ghw.BlockInfo struct contains two fields:

  • ghw.BlockInfo.TotalPhysicalBytes contains the amount of physical block storage on the host
  • ghw.BlockInfo.Disks is an array of pointers to ghw.Disk structs, one for each disk drive found by the system

Each ghw.Disk struct contains the following fields:

  • ghw.Disk.Name contains a string with the short name of the disk, e.g. "sda"
  • ghw.Disk.SizeBytes contains the amount of storage the disk provides
  • ghw.Disk.SectorSizeBytes contains the size of the sector used on the disk, in bytes
  • ghw.Disk.BusType will be either "scsi" or "ide"
  • ghw.Disk.Vendor contains a string with the name of the hardware vendor for the disk drive
  • ghw.Disk.SerialNumber contains a string with the disk's serial number
  • ghw.Disk.Partitions contains an array of pointers to ghw.Partition structs, one for each partition on the disk

Each ghw.Partition struct contains these fields:

  • ghw.Partition.Name contains a string with the short name of the partition, e.g. "sda1"
  • ghw.Partition.SizeBytes contains the amount of storage the partition provides
  • ghw.Partition.MountPoint contains a string with the partition's mount point, or "" if no mount point was discovered
  • ghw.Partition.Type contains a string indicated the filesystem type for the partition, or "" if the system could not determine the type
  • ghw.Partition.IsReadOnly is a bool indicating the partition is read-only
  • ghw.Partition.Disk is a pointer to the ghw.Disk object associated with the partition. This will be nil if the ghw.Partition struct was returned by the ghw.DiskPartitions() library function.
package main

import (
	"fmt"

	"github.com/jaypipes/ghw"
)

func main() {
	block, err := ghw.Block()
	if err != nil {
		fmt.Printf("Error getting block storage info: %v", err)
	}

	fmt.Printf("%v\n", block)

	for _, disk := range block.Disks {
		fmt.Printf(" %v\n", disk)
		for _, part := range disk.Partitions {
			fmt.Printf("  %v\n", part)
		}
	}
}

Example output from my personal workstation:

block storage (1 disk, 2TB physical storage)
 /dev/sda (2TB) [SCSI]  LSI - SN #3600508e000000000f8253aac9a1abd0c
  /dev/sda1 (100MB) 
  /dev/sda2 (187GB) 
  /dev/sda3 (449MB) 
  /dev/sda4 (1KB) 
  /dev/sda5 (15GB) 
  /dev/sda6 (2TB) [ext4] mounted@/

Topology

Information about the host computer's architecture (NUMA vs. SMP), the host's node layout and processor caches can be retrieved from the ghw.Topology() function. This function returns a pointer to a ghw.TopologyInfo struct.

The ghw.TopologyInfo struct contains two fields:

  • ghw.TopologyInfo.Architecture contains an enum with the value ghw.NUMA or ghw.SMP depending on what the topology of the system is
  • ghw.TopologyInfo.Nodes is an array of pointers to ghw.Node structs, one for each topology node (typically physical processor package) found by the system

Each ghw.Node struct contains the following fields:

  • ghw.Node.Id is the system's identifier for the node
  • ghw.Node.Cores is an array of pointers to ghw.ProcessorCore structs that are contained in this node
  • ghw.Node.Caches is an array of pointers to ghw.MemoryCache structs that represent the low-level caches associated with processors and cores on the system

See above in the CPU section for information about the ghw.ProcessorCore struct and how to use and query it.

Each ghw.MemoryCache struct contains the following fields:

  • ghw.MemoryCache.Type is an enum that contains one of ghw.DATA, ghw.INSTRUCTION or ghw.UNIFIED depending on whether the cache stores CPU instructions, program data, or both
  • ghw.MemoryCache.Level is a positive integer indicating how close the cache is to the processor
  • ghw.MemoryCache.SizeBytes is an integer containing the number of bytes the cache can contain
  • ghw.MemoryCache.LogicalProcessors is an array of integers representing the logical processors that use the cache
package main

import (
	"fmt"

	"github.com/jaypipes/ghw"
)

func main() {
	topology, err := ghw.Topology()
	if err != nil {
		fmt.Printf("Error getting topology info: %v", err)
	}

	fmt.Printf("%v\n", topology)

	for _, node := range topology.Nodes {
		fmt.Printf(" %v\n", node)
		for _, cache := range node.Caches {
			fmt.Printf("  %v\n", cache)
		}
	}
}

Example output from my personal workstation:

topology SMP (1 nodes)
 node #0 (6 cores)
  L1i cache (32 KB) shared with logical processors: 3,9
  L1i cache (32 KB) shared with logical processors: 2,8
  L1i cache (32 KB) shared with logical processors: 11,5
  L1i cache (32 KB) shared with logical processors: 10,4
  L1i cache (32 KB) shared with logical processors: 0,6
  L1i cache (32 KB) shared with logical processors: 1,7
  L1d cache (32 KB) shared with logical processors: 11,5
  L1d cache (32 KB) shared with logical processors: 10,4
  L1d cache (32 KB) shared with logical processors: 3,9
  L1d cache (32 KB) shared with logical processors: 1,7
  L1d cache (32 KB) shared with logical processors: 0,6
  L1d cache (32 KB) shared with logical processors: 2,8
  L2 cache (256 KB) shared with logical processors: 2,8
  L2 cache (256 KB) shared with logical processors: 3,9
  L2 cache (256 KB) shared with logical processors: 0,6
  L2 cache (256 KB) shared with logical processors: 10,4
  L2 cache (256 KB) shared with logical processors: 1,7
  L2 cache (256 KB) shared with logical processors: 11,5
  L3 cache (12288 KB) shared with logical processors: 0,1,10,11,2,3,4,5,6,7,8,9

Network

Information about the host computer's networking hardware is returned from the ghw.Network() function. This function returns a pointer to a ghw.NetworkInfo struct.

The ghw.NetworkInfo struct contains one field:

  • ghw.NetworkInfo.NICs is an array of pointers to ghw.NIC structs, one for each network interface controller found for the systen

Each ghw.NIC struct contains the following fields:

  • ghw.NIC.Name is the system's identifier for the NIC
  • ghw.NIC.MacAddress is the MAC address for the NIC, if any
  • ghw.NIC.IsVirtual is a boolean indicating if the NIC is a virtualized device
package main

import (
	"fmt"

	"github.com/jaypipes/ghw"
)

func main() {
	net, err := ghw.Network()
	if err != nil {
		fmt.Printf("Error getting network info: %v", err)
	}

	fmt.Printf("%v\n", net)

	for _, nic := range net.NICs {
		fmt.Printf(" %v\n", nic)
	}
}

Example output from my personal workstation:

net (2 NICs)
 enp0s25
 wls1

Developers

Contributions to ghw are welcomed! Fork the repo on GitHub and submit a pull request with your proposed changes. Or, feel free to log an issue for a feature request or bug report.

Running tests

You can run unit tests easily using the make test command, like so:

[jaypipes@uberbox ghw]$ make test
go test github.com/jaypipes/ghw github.com/jaypipes/ghw/ghwc
ok      github.com/jaypipes/ghw 0.084s
?       github.com/jaypipes/ghw/ghwc    [no test files]

About

Golang hardware discovery/inspection library

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Go 98.9%
  • Makefile 1.1%