From b3ebce1b3471abbdc4516ff86014aa26bcc99a24 Mon Sep 17 00:00:00 2001 From: "Uwe L. Korn" Date: Thu, 31 Mar 2016 17:27:56 -0700 Subject: [PATCH] ARROW-89: [Python] Add benchmarks for Arrow<->Pandas conversion Author: Uwe L. Korn Closes #51 from xhochy/arrow-89 and squashes the following commits: bd6a7cb [Uwe L. Korn] Split benchmarks and add one for a float64 column with NaNs 8f74528 [Uwe L. Korn] ARROW-89: [Python] Add benchmarks for Arrow<->Pandas conversion --- python/benchmarks/array.py | 55 ++++++++++++++++++++++++++++++++++---- 1 file changed, 50 insertions(+), 5 deletions(-) diff --git a/python/benchmarks/array.py b/python/benchmarks/array.py index 6ab73d18d1f87..4268f0073f292 100644 --- a/python/benchmarks/array.py +++ b/python/benchmarks/array.py @@ -15,22 +15,67 @@ # specific language governing permissions and limitations # under the License. -import pyarrow +import numpy as np +import pandas as pd +import pyarrow as A -class Conversions(object): + +class PyListConversions(object): + param_names = ('size',) params = (1, 10 ** 5, 10 ** 6, 10 ** 7) + def setup(self, n): + self.data = list(range(n)) + def time_from_pylist(self, n): - pyarrow.from_pylist(list(range(n))) + A.from_pylist(self.data) def peakmem_from_pylist(self, n): - pyarrow.from_pylist(list(range(n))) + A.from_pylist(self.data) + + +class PandasConversionsBase(object): + def setup(self, n, dtype): + if dtype == 'float64_nans': + arr = np.arange(n).astype('float64') + arr[arr % 10 == 0] = np.nan + else: + arr = np.arange(n).astype(dtype) + self.data = pd.DataFrame({'column': arr}) + + +class PandasConversionsToArrow(PandasConversionsBase): + param_names = ('size', 'dtype') + params = ((1, 10 ** 5, 10 ** 6, 10 ** 7), ('int64', 'float64', 'float64_nans', 'str')) + + def time_from_series(self, n, dtype): + A.from_pandas_dataframe(self.data) + + def peakmem_from_series(self, n, dtype): + A.from_pandas_dataframe(self.data) + + +class PandasConversionsFromArrow(PandasConversionsBase): + param_names = ('size', 'dtype') + params = ((1, 10 ** 5, 10 ** 6, 10 ** 7), ('int64', 'float64', 'float64_nans', 'str')) + + def setup(self, n, dtype): + super(PandasConversionsFromArrow, self).setup(n, dtype) + self.arrow_data = A.from_pandas_dataframe(self.data) + + def time_to_series(self, n, dtype): + self.arrow_data.to_pandas() + + def peakmem_to_series(self, n, dtype): + self.arrow_data.to_pandas() + class ScalarAccess(object): + param_names = ('size',) params = (1, 10 ** 5, 10 ** 6, 10 ** 7) def setUp(self, n): - self._array = pyarrow.from_pylist(list(range(n))) + self._array = A.from_pylist(list(range(n))) def time_as_py(self, n): for i in range(n):