
Incremental Index Scaling
Our work on Oak (see PR #7676), shows that there are significant performance gains with
multi-threaded indexing (even when not using Oak). In our benchmarks we noticed that
ingestion was not scaling as expected with multiple threads.

We added a multi-threaded ingestion benchmark (see
IndexIngestionMultithreadedBenchmark.Java) ​ and tested scaling with 1, 2, 4, and 8
threads. The figure below shows the average latency, in microseconds, of ingesting 1M rows
using the ​basic ​ schema:

We traced the threads’ blocking states to two causes:

1. A monitor in IncrementalIndex that synchronized access to ​dimensionDescs
2. A Read-Write lock in ​StringDimensionIndexer

This PR proposes a solution to the first issue. The proposed solution is based on the
observation that dimension data is updated infrequently and so ongoing exclusive locking is
wasteful.

Summary of changes:
1. Shared state is encapsulated in a new class - ​DimensionData ​. This includes

dimensionDescs ​, ​dimensionDescsList ​ and ​columnCapabilities
2. Concurrent threads share an atomic reference to an instance of ​DimensionData
3. CoW: Only when a thread needs to update the shared state, it will copy the instance,

update the copy, and eventually swap the reference atomically.
4. Consistency is maintained when the reference is updated. This simplifies row

processing, removes the need for keeping an “overflow” array, and allows fast failure
when a row contains duplicate dimensions.

To avoid the 2nd synchronization issue with string indexer, we use the ​simpleFloat ​ schema.

Latency measurements show performance gains when using multiple threads, which scale with
the number of threads, i.e., as thread number increases, latency strictly decreases. Where
performance is lower, it is not by much and falls within measurement variance. We believe once
the string indexer contention issue is remediated, performance gain in the general case will be
even more noticeable.

threads pre.rollup pre.plain post.rollup post.plain

1 1,101,815.63 1,223,339.74 1,307,184.28 1,104,051.11

2 1,175,196.61 1,338,503.15 1,281,036.41 1,102,151.39

4 891,858.43 974,796.39 1,028,691.17 946,309.16

8 790,267.95 684,077.97 785,634.55 740,663.35

