./data/streaming/AFINN-111.txt Referenced 1 times ./examples/src/main/python/streaming/network_wordjoinsentiments.py:56: word_sentiments_file_path = "data/streaming/AFINN-111.txt" ./data/graphx/followers.txt Referenced 4 times ./examples/src/main/scala/org/apache/spark/examples/graphx/PageRankExample.scala:44: val graph = GraphLoader.edgeListFile(sc, "data/graphx/followers.txt") ./examples/src/main/scala/org/apache/spark/examples/graphx/TriangleCountingExample.scala:52: val graph = GraphLoader.edgeListFile(sc, "data/graphx/followers.txt", true) ./examples/src/main/scala/org/apache/spark/examples/graphx/ConnectedComponentsExample.scala:51: val graph = GraphLoader.edgeListFile(sc, "data/graphx/followers.txt") ./examples/src/main/scala/org/apache/spark/examples/graphx/ComprehensiveExample.scala:53: val followerGraph = GraphLoader.edgeListFile(sc, "data/graphx/followers.txt") ./data/graphx/users.txt Referenced 4 times ./examples/src/main/scala/org/apache/spark/examples/graphx/PageRankExample.scala:48: val users = sc.textFile("data/graphx/users.txt").map { line => ./examples/src/main/scala/org/apache/spark/examples/graphx/TriangleCountingExample.scala:57: val users = sc.textFile("data/graphx/users.txt").map { line => ./examples/src/main/scala/org/apache/spark/examples/graphx/ConnectedComponentsExample.scala:55: val users = sc.textFile("data/graphx/users.txt").map { line => ./examples/src/main/scala/org/apache/spark/examples/graphx/ComprehensiveExample.scala:49: val users = (sc.textFile("data/graphx/users.txt") ./data/mllib/sample_movielens_data.txt Referenced 5 times ./examples/src/main/scala/org/apache/spark/examples/mllib/RankingMetricsExample.scala:36: val ratings = spark.read.textFile("data/mllib/sample_movielens_data.txt").rdd.map { line => ./examples/src/main/scala/org/apache/spark/examples/mllib/MovieLensALS.scala:36: * A synthetic dataset in MovieLens format can be found at `data/mllib/sample_movielens_data.txt`. ./examples/src/main/scala/org/apache/spark/examples/mllib/MovieLensALS.scala:88: | data/mllib/sample_movielens_data.txt ./examples/src/main/java/org/apache/spark/examples/mllib/JavaRankingMetricsExample.java:40: String path = "data/mllib/sample_movielens_data.txt"; ./examples/src/main/python/mllib/ranking_metrics_example.py:30: lines = sc.textFile("data/mllib/sample_movielens_data.txt") ./data/mllib/sample_lda_data.txt Referenced 5 times ./examples/src/main/scala/org/apache/spark/examples/mllib/Word2VecExample.scala:35: val input = sc.textFile("data/mllib/sample_lda_data.txt").map(line => line.split(" ").toSeq) ./examples/src/main/scala/org/apache/spark/examples/mllib/LatentDirichletAllocationExample.scala:36: val data = sc.textFile("data/mllib/sample_lda_data.txt") ./examples/src/main/java/org/apache/spark/examples/mllib/JavaLatentDirichletAllocationExample.java:45: String path = "data/mllib/sample_lda_data.txt"; ./examples/src/main/python/mllib/word2vec_example.py:29: inp = sc.textFile("data/mllib/sample_lda_data.txt").map(lambda row: row.split(" ")) ./examples/src/main/python/mllib/latent_dirichlet_allocation_example.py:31: data = sc.textFile("data/mllib/sample_lda_data.txt") ./data/mllib/sample_libsvm_data.txt Referenced 69 times ./examples/src/main/scala/org/apache/spark/examples/ml/GradientBoostedTreeClassifierExample.scala:38: val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/NaiveBayesExample.scala:36: val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/RandomForestRegressorExample.scala:38: val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/VectorIndexerExample.scala:34: val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/LogisticRegressionSummaryExample.scala:37: val training = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/DecisionTreeRegressionExample.scala:39: val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/LogisticRegressionExample.scala:38: * A synthetic dataset can be found at `data/mllib/sample_libsvm_data.txt` which can be ./examples/src/main/scala/org/apache/spark/examples/ml/LogisticRegressionExample.scala:42: * data/mllib/sample_libsvm_data.txt ./examples/src/main/scala/org/apache/spark/examples/ml/DecisionTreeClassificationExample.scala:38: val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/DataFrameExample.scala:41: case class Params(input: String = "data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/StandardScalerExample.scala:34: val dataFrame = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/GradientBoostedTreeRegressorExample.scala:38: val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/RandomForestClassifierExample.scala:38: val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/LogisticRegressionWithElasticNetExample.scala:36: val training = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/NaiveBayesExample.scala:34: val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/LBFGSExample.scala:38: val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/RandomForestClassificationExample.scala:34: val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/GradientBoostingRegressionExample.scala:35: val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/LogisticRegressionWithLBFGSExample.scala:37: val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeRegressionExample.scala:36: val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeClassificationExample.scala:36: val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/StandardScalerExample.scala:37: val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/RandomForestRegressionExample.scala:34: val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/NormalizerExample.scala:36: val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/GradientBoostingClassificationExample.scala:35: val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/ChiSqSelectorExample.scala:39: val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/SVMWithSGDExample.scala:36: val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./examples/src/main/java/org/apache/spark/examples/ml/JavaGradientBoostedTreeRegressorExample.java:43: Dataset data = spark.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt"); ./examples/src/main/java/org/apache/spark/examples/ml/JavaDecisionTreeRegressionExample.java:42: .load("data/mllib/sample_libsvm_data.txt"); ./examples/src/main/java/org/apache/spark/examples/ml/JavaRandomForestRegressorExample.java:43: Dataset data = spark.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt"); ./examples/src/main/java/org/apache/spark/examples/ml/JavaNaiveBayesExample.java:43: spark.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt"); ./examples/src/main/java/org/apache/spark/examples/ml/JavaDecisionTreeClassificationExample.java:44: .load("data/mllib/sample_libsvm_data.txt"); ./examples/src/main/java/org/apache/spark/examples/ml/JavaStandardScalerExample.java:38: spark.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt"); ./examples/src/main/java/org/apache/spark/examples/ml/JavaRandomForestClassifierExample.java:42: Dataset data = spark.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt"); ./examples/src/main/java/org/apache/spark/examples/ml/JavaGradientBoostedTreeClassifierExample.java:45: .load("data/mllib/sample_libsvm_data.txt"); ./examples/src/main/java/org/apache/spark/examples/ml/JavaVectorIndexerExample.java:39: Dataset data = spark.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt"); ./examples/src/main/java/org/apache/spark/examples/ml/JavaLogisticRegressionSummaryExample.java:40: .load("data/mllib/sample_libsvm_data.txt"); ./examples/src/main/java/org/apache/spark/examples/ml/JavaLogisticRegressionWithElasticNetExample.java:38: .load("data/mllib/sample_libsvm_data.txt"); ./examples/src/main/java/org/apache/spark/examples/mllib/JavaDecisionTreeRegressionExample.java:48: String datapath = "data/mllib/sample_libsvm_data.txt"; ./examples/src/main/java/org/apache/spark/examples/mllib/JavaNaiveBayesExample.java:39: String path = "data/mllib/sample_libsvm_data.txt"; ./examples/src/main/java/org/apache/spark/examples/mllib/JavaDecisionTreeClassificationExample.java:47: String datapath = "data/mllib/sample_libsvm_data.txt"; ./examples/src/main/java/org/apache/spark/examples/mllib/JavaChiSqSelectorExample.java:41: "data/mllib/sample_libsvm_data.txt").toJavaRDD().cache(); ./examples/src/main/java/org/apache/spark/examples/mllib/JavaRandomForestClassificationExample.java:43: String datapath = "data/mllib/sample_libsvm_data.txt"; ./examples/src/main/java/org/apache/spark/examples/mllib/JavaRandomForestRegressionExample.java:45: String datapath = "data/mllib/sample_libsvm_data.txt"; ./examples/src/main/java/org/apache/spark/examples/mllib/JavaLogisticRegressionWithLBFGSExample.java:43: String path = "data/mllib/sample_libsvm_data.txt"; ./examples/src/main/java/org/apache/spark/examples/mllib/JavaSVMWithSGDExample.java:43: String path = "data/mllib/sample_libsvm_data.txt"; ./examples/src/main/java/org/apache/spark/examples/mllib/JavaGradientBoostingClassificationExample.java:47: String datapath = "data/mllib/sample_libsvm_data.txt"; ./examples/src/main/java/org/apache/spark/examples/mllib/JavaLBFGSExample.java:44: String path = "data/mllib/sample_libsvm_data.txt"; ./examples/src/main/java/org/apache/spark/examples/mllib/JavaGradientBoostingRegressionExample.java:47: String datapath = "data/mllib/sample_libsvm_data.txt"; ./examples/src/main/python/ml/gradient_boosted_tree_regressor_example.py:39: data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/python/ml/dataframe_example.py:40: input = "data/mllib/sample_libsvm_data.txt" ./examples/src/main/python/ml/naive_bayes_example.py:35: .load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/python/ml/standard_scaler_example.py:32: dataFrame = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/python/ml/random_forest_classifier_example.py:39: data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/python/ml/gradient_boosted_tree_classifier_example.py:39: data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/python/ml/vector_indexer_example.py:32: data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/python/ml/logistic_regression_with_elastic_net.py:33: training = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/python/ml/decision_tree_regression_example.py:39: data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/python/ml/random_forest_regressor_example.py:39: data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/python/ml/decision_tree_classification_example.py:39: data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") ./examples/src/main/python/mllib/naive_bayes_example.py:43: data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./examples/src/main/python/mllib/normalizer_example.py:30: data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./examples/src/main/python/mllib/standard_scaler_example.py:31: data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./examples/src/main/python/mllib/random_forest_classification_example.py:33: data = MLUtils.loadLibSVMFile(sc, 'data/mllib/sample_libsvm_data.txt') ./examples/src/main/python/mllib/decision_tree_regression_example.py:35: data = MLUtils.loadLibSVMFile(sc, 'data/mllib/sample_libsvm_data.txt') ./examples/src/main/python/mllib/gradient_boosting_classification_example.py:33: data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./examples/src/main/python/mllib/random_forest_regression_example.py:33: data = MLUtils.loadLibSVMFile(sc, 'data/mllib/sample_libsvm_data.txt') ./examples/src/main/python/mllib/decision_tree_classification_example.py:35: data = MLUtils.loadLibSVMFile(sc, 'data/mllib/sample_libsvm_data.txt') ./examples/src/main/python/mllib/gradient_boosting_regression_example.py:33: data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") ./data/mllib/sample_tree_data.csv Command '['grep', '-rnF', 'sample_tree_data.csv', './examples/src/main']' returned non-zero exit status 1 ./data/mllib/sample_lda_libsvm_data.txt Referenced 3 times ./examples/src/main/scala/org/apache/spark/examples/ml/LDAExample.scala:44: .load("data/mllib/sample_lda_libsvm_data.txt") ./examples/src/main/java/org/apache/spark/examples/ml/JavaLDAExample.java:46: .load("data/mllib/sample_lda_libsvm_data.txt"); ./examples/src/main/python/ml/lda_example.py:40: dataset = spark.read.format("libsvm").load("data/mllib/sample_lda_libsvm_data.txt") ./data/mllib/sample_linear_regression_data.txt Referenced 23 times ./examples/src/main/scala/org/apache/spark/examples/ml/LinearRegressionWithElasticNetExample.scala:37: .load("data/mllib/sample_linear_regression_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/LinearRegressionExample.scala:35: * A synthetic dataset can be found at `data/mllib/sample_linear_regression_data.txt` which can be ./examples/src/main/scala/org/apache/spark/examples/ml/LinearRegressionExample.scala:39: * data/mllib/sample_linear_regression_data.txt ./examples/src/main/scala/org/apache/spark/examples/ml/ModelSelectionViaTrainValidationSplitExample.scala:45: val data = spark.read.format("libsvm").load("data/mllib/sample_linear_regression_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/GeneralizedLinearRegressionExample.scala:45: .load("data/mllib/sample_linear_regression_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/LinearRegression.scala:34: * A synthetic dataset can be found at `data/mllib/sample_linear_regression_data.txt`. ./examples/src/main/scala/org/apache/spark/examples/mllib/LinearRegression.scala:81: | data/mllib/sample_linear_regression_data.txt ./examples/src/main/scala/org/apache/spark/examples/mllib/RegressionMetricsExample.scala:39: .read.format("libsvm").load("data/mllib/sample_linear_regression_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/Correlations.scala:32: * By default, this loads a synthetic dataset from `data/mllib/sample_linear_regression_data.txt`. ./examples/src/main/scala/org/apache/spark/examples/mllib/Correlations.scala:37: case class Params(input: String = "data/mllib/sample_linear_regression_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/Correlations.scala:55: | --input data/mllib/sample_linear_regression_data.txt ./examples/src/main/scala/org/apache/spark/examples/mllib/MultivariateSummarizer.scala:33: * By default, this loads a synthetic dataset from `data/mllib/sample_linear_regression_data.txt`. ./examples/src/main/scala/org/apache/spark/examples/mllib/MultivariateSummarizer.scala:38: case class Params(input: String = "data/mllib/sample_linear_regression_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/MultivariateSummarizer.scala:56: | --input data/mllib/sample_linear_regression_data.txt ./examples/src/main/java/org/apache/spark/examples/ml/JavaGeneralizedLinearRegressionExample.java:50: .load("data/mllib/sample_linear_regression_data.txt"); ./examples/src/main/java/org/apache/spark/examples/ml/JavaModelSelectionViaTrainValidationSplitExample.java:52: .load("data/mllib/sample_linear_regression_data.txt"); ./examples/src/main/java/org/apache/spark/examples/ml/JavaLinearRegressionWithElasticNetExample.java:40: .load("data/mllib/sample_linear_regression_data.txt"); ./examples/src/main/java/org/apache/spark/examples/mllib/JavaRegressionMetricsExample.java:39: String path = "data/mllib/sample_linear_regression_data.txt"; ./examples/src/main/python/ml/generalized_linear_regression_example.py:40: .load("data/mllib/sample_linear_regression_data.txt") ./examples/src/main/python/ml/train_validation_split.py:42: .load("data/mllib/sample_linear_regression_data.txt") ./examples/src/main/python/ml/linear_regression_with_elastic_net.py:34: .load("data/mllib/sample_linear_regression_data.txt") ./examples/src/main/python/mllib/correlations.py:39: filepath = 'data/mllib/sample_linear_regression_data.txt' ./examples/src/main/python/mllib/regression_metrics_example.py:35: data = sc.textFile("data/mllib/sample_linear_regression_data.txt") ./data/mllib/sample_fpgrowth.txt Referenced 4 times ./examples/src/main/scala/org/apache/spark/examples/mllib/FPGrowthExample.scala:29: * --minSupport 0.8 --numPartition 2 ./data/mllib/sample_fpgrowth.txt ./examples/src/main/scala/org/apache/spark/examples/mllib/SimpleFPGrowth.scala:35: val data = sc.textFile("data/mllib/sample_fpgrowth.txt") ./examples/src/main/java/org/apache/spark/examples/mllib/JavaSimpleFPGrowth.java:43: JavaRDD data = sc.textFile("data/mllib/sample_fpgrowth.txt"); ./examples/src/main/python/mllib/fpgrowth_example.py:27: data = sc.textFile("data/mllib/sample_fpgrowth.txt") ./data/mllib/sample_svm_data.txt Referenced 4 times ./examples/src/main/scala/org/apache/spark/examples/mllib/CosineSimilarity.scala:42: * --threshold 0.1 data/mllib/sample_svm_data.txt ./examples/src/main/scala/org/apache/spark/examples/mllib/CosineSimilarity.scala:67: | --threshold 0.1 data/mllib/sample_svm_data.txt ./examples/src/main/python/mllib/svm_with_sgd_example.py:33: data = sc.textFile("data/mllib/sample_svm_data.txt") ./examples/src/main/python/mllib/logistic_regression_with_lbfgs_example.py:39: data = sc.textFile("data/mllib/sample_svm_data.txt") ./data/mllib/kmeans_data.txt Referenced 19 times ./examples/src/main/scala/org/apache/spark/examples/ml/GaussianMixtureExample.scala:43: val dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/BisectingKMeansExample.scala:45: val dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/KMeansExample.scala:44: val dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/BisectingKMeansExample.scala:44: val data = sc.textFile("data/mllib/kmeans_data.txt").map(parse).cache() ./examples/src/main/scala/org/apache/spark/examples/mllib/KMeansExample.scala:36: val data = sc.textFile("data/mllib/kmeans_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/PMMLModelExportExample.scala:35: val data = sc.textFile("data/mllib/kmeans_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/TFIDFExample.scala:38: val documents: RDD[Seq[String]] = sc.textFile("data/mllib/kmeans_data.txt") ./examples/src/main/java/org/apache/spark/examples/ml/JavaGaussianMixtureExample.java:48: Dataset dataset = spark.read().format("libsvm").load("data/mllib/sample_kmeans_data.txt"); ./examples/src/main/java/org/apache/spark/examples/ml/JavaBisectingKMeansExample.java:47: Dataset dataset = spark.read().format("libsvm").load("data/mllib/sample_kmeans_data.txt"); ./examples/src/main/java/org/apache/spark/examples/ml/JavaKMeansExample.java:48: Dataset dataset = spark.read().format("libsvm").load("data/mllib/sample_kmeans_data.txt"); ./examples/src/main/java/org/apache/spark/examples/mllib/JavaKMeansExample.java:40: String path = "data/mllib/kmeans_data.txt"; ./examples/src/main/python/ml/gaussian_mixture_example.py:39: dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt") ./examples/src/main/python/ml/bisecting_k_means_example.py:39: dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt") ./examples/src/main/python/ml/kmeans_example.py:42: dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt") ./examples/src/main/python/mllib/tf_idf_example.py:30: documents = sc.textFile("data/mllib/kmeans_data.txt").map(lambda line: line.split(" ")) ./examples/src/main/python/mllib/streaming_k_means_example.py:41: trainingData = sc.textFile("data/mllib/kmeans_data.txt")\ ./examples/src/main/python/mllib/k_means_example.py:35: data = sc.textFile("data/mllib/kmeans_data.txt") ./examples/src/main/python/mllib/bisecting_k_means_example.py:34: data = sc.textFile("data/mllib/kmeans_data.txt") ./examples/src/main/python/mllib/elementwise_product_example.py:30: data = sc.textFile("data/mllib/kmeans_data.txt") ./data/mllib/pic_data.txt Referenced 1 times ./examples/src/main/python/mllib/power_iteration_clustering_example.py:30: data = sc.textFile("data/mllib/pic_data.txt") ./data/mllib/sample_isotonic_regression_libsvm_data.txt Referenced 6 times ./examples/src/main/scala/org/apache/spark/examples/ml/IsotonicRegressionExample.scala:44: .load("data/mllib/sample_isotonic_regression_libsvm_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/IsotonicRegressionExample.scala:35: "data/mllib/sample_isotonic_regression_libsvm_data.txt").cache() ./examples/src/main/java/org/apache/spark/examples/ml/JavaIsotonicRegressionExample.java:47: .load("data/mllib/sample_isotonic_regression_libsvm_data.txt"); ./examples/src/main/java/org/apache/spark/examples/mllib/JavaIsotonicRegressionExample.java:42: jsc.sc(), "data/mllib/sample_isotonic_regression_libsvm_data.txt").toJavaRDD(); ./examples/src/main/python/ml/isotonic_regression_example.py:43: .load("data/mllib/sample_isotonic_regression_libsvm_data.txt") ./examples/src/main/python/mllib/isotonic_regression_example.py:39: data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_isotonic_regression_libsvm_data.txt") ./data/mllib/sample_kmeans_data.txt Referenced 9 times ./examples/src/main/scala/org/apache/spark/examples/ml/GaussianMixtureExample.scala:43: val dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/BisectingKMeansExample.scala:45: val dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/KMeansExample.scala:44: val dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt") ./examples/src/main/java/org/apache/spark/examples/ml/JavaGaussianMixtureExample.java:48: Dataset dataset = spark.read().format("libsvm").load("data/mllib/sample_kmeans_data.txt"); ./examples/src/main/java/org/apache/spark/examples/ml/JavaBisectingKMeansExample.java:47: Dataset dataset = spark.read().format("libsvm").load("data/mllib/sample_kmeans_data.txt"); ./examples/src/main/java/org/apache/spark/examples/ml/JavaKMeansExample.java:48: Dataset dataset = spark.read().format("libsvm").load("data/mllib/sample_kmeans_data.txt"); ./examples/src/main/python/ml/gaussian_mixture_example.py:39: dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt") ./examples/src/main/python/ml/bisecting_k_means_example.py:39: dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt") ./examples/src/main/python/ml/kmeans_example.py:42: dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt") ./data/mllib/sample_multiclass_classification_data.txt Referenced 9 times ./examples/src/main/scala/org/apache/spark/examples/ml/MultilayerPerceptronClassifierExample.scala:41: .load("data/mllib/sample_multiclass_classification_data.txt") ./examples/src/main/scala/org/apache/spark/examples/ml/OneVsRestExample.scala:46: .load("data/mllib/sample_multiclass_classification_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/MulticlassMetricsExample.scala:37: val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_multiclass_classification_data.txt") ./examples/src/main/java/org/apache/spark/examples/ml/JavaMultilayerPerceptronClassifierExample.java:42: String path = "data/mllib/sample_multiclass_classification_data.txt"; ./examples/src/main/java/org/apache/spark/examples/ml/JavaOneVsRestExample.java:49: .load("data/mllib/sample_multiclass_classification_data.txt"); ./examples/src/main/java/org/apache/spark/examples/mllib/JavaMulticlassClassificationMetricsExample.java:40: String path = "data/mllib/sample_multiclass_classification_data.txt"; ./examples/src/main/python/ml/one_vs_rest_example.py:42: .load("data/mllib/sample_multiclass_classification_data.txt") ./examples/src/main/python/ml/multilayer_perceptron_classification.py:33: .load("data/mllib/sample_multiclass_classification_data.txt") ./examples/src/main/python/mllib/multi_class_metrics_example.py:32: data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_multiclass_classification_data.txt") ./data/mllib/gmm_data.txt Referenced 3 times ./examples/src/main/scala/org/apache/spark/examples/mllib/GaussianMixtureExample.scala:36: val data = sc.textFile("data/mllib/gmm_data.txt") ./examples/src/main/java/org/apache/spark/examples/mllib/JavaGaussianMixtureExample.java:40: String path = "data/mllib/gmm_data.txt"; ./examples/src/main/python/mllib/gaussian_mixture_example.py:34: data = sc.textFile("data/mllib/gmm_data.txt") ./data/mllib/pagerank_data.txt Command '['grep', '-rnF', 'pagerank_data.txt', './examples/src/main']' returned non-zero exit status 1 ./data/mllib/lr_data.txt Command '['grep', '-rnF', 'lr_data.txt', './examples/src/main']' returned non-zero exit status 1 ./data/mllib/streaming_kmeans_data_test.txt Referenced 1 times ./examples/src/main/python/mllib/streaming_k_means_example.py:44: testingData = sc.textFile("data/mllib/streaming_kmeans_data_test.txt").map(parse) ./data/mllib/sample_binary_classification_data.txt Referenced 7 times ./examples/src/main/scala/org/apache/spark/examples/mllib/BinaryClassification.scala:35: * A synthetic dataset is located at `data/mllib/sample_binary_classification_data.txt`. ./examples/src/main/scala/org/apache/spark/examples/mllib/BinaryClassification.scala:94: | data/mllib/sample_binary_classification_data.txt ./examples/src/main/scala/org/apache/spark/examples/mllib/SampledRDDs.scala:35: case class Params(input: String = "data/mllib/sample_binary_classification_data.txt") ./examples/src/main/scala/org/apache/spark/examples/mllib/BinaryClassificationMetricsExample.scala:37: val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_binary_classification_data.txt") ./examples/src/main/java/org/apache/spark/examples/mllib/JavaBinaryClassificationMetricsExample.java:39: String path = "data/mllib/sample_binary_classification_data.txt"; ./examples/src/main/python/mllib/sampled_rdds.py:36: datapath = 'data/mllib/sample_binary_classification_data.txt' ./examples/src/main/python/mllib/binary_classification_metrics_example.py:38: .read.format("libsvm").load("data/mllib/sample_binary_classification_data.txt")\ ./data/mllib/lr-data/random.data Command '['grep', '-rnF', 'random.data', './examples/src/main']' returned non-zero exit status 1 ./data/mllib/ridge-data/lpsa.data Referenced 4 times ./examples/src/main/scala/org/apache/spark/examples/mllib/PCAExample.scala:38: val data = sc.textFile("data/mllib/ridge-data/lpsa.data").map { line => ./examples/src/main/scala/org/apache/spark/examples/mllib/LinearRegressionWithSGDExample.scala:38: val data = sc.textFile("data/mllib/ridge-data/lpsa.data") ./examples/src/main/java/org/apache/spark/examples/mllib/JavaLinearRegressionWithSGDExample.java:45: String path = "data/mllib/ridge-data/lpsa.data"; ./examples/src/main/python/mllib/linear_regression_with_sgd_example.py:38: data = sc.textFile("data/mllib/ridge-data/lpsa.data") ./data/mllib/als/sample_movielens_ratings.txt Referenced 3 times ./examples/src/main/scala/org/apache/spark/examples/ml/ALSExample.scala:53: val ratings = spark.read.textFile("data/mllib/als/sample_movielens_ratings.txt") ./examples/src/main/java/org/apache/spark/examples/ml/JavaALSExample.java:90: .read().textFile("data/mllib/als/sample_movielens_ratings.txt").javaRDD() ./examples/src/main/python/ml/als_example.py:39: lines = spark.read.text("data/mllib/als/sample_movielens_ratings.txt").rdd ./data/mllib/als/test.data Referenced 3 times ./examples/src/main/scala/org/apache/spark/examples/mllib/RecommendationExample.scala:34: val data = sc.textFile("data/mllib/als/test.data") ./examples/src/main/java/org/apache/spark/examples/mllib/JavaRecommendationExample.java:38: String path = "data/mllib/als/test.data"; ./examples/src/main/python/mllib/recommendation_example.py:33: data = sc.textFile("data/mllib/als/test.data")