diff --git a/mllib/src/main/scala/org/apache/spark/ml/evaluation/MulticlassClassificationEvaluator.scala b/mllib/src/main/scala/org/apache/spark/ml/evaluation/MulticlassClassificationEvaluator.scala index 8408516751102..390e9b6444c74 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/evaluation/MulticlassClassificationEvaluator.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/evaluation/MulticlassClassificationEvaluator.scala @@ -28,7 +28,7 @@ import org.apache.spark.sql.types.DoubleType /** * :: Experimental :: - * Evaluator for multiclass classification, which expects two input columns: score and label. + * Evaluator for multiclass classification, which expects two input columns: prediction and label. */ @Since("1.5.0") @Experimental diff --git a/python/pyspark/ml/evaluation.py b/python/pyspark/ml/evaluation.py index fc9099b7ec172..16029dc34863a 100644 --- a/python/pyspark/ml/evaluation.py +++ b/python/pyspark/ml/evaluation.py @@ -193,9 +193,6 @@ class RegressionEvaluator(JavaEvaluator, HasLabelCol, HasPredictionCol): .. versionadded:: 1.4.0 """ - # Because we will maximize evaluation value (ref: `CrossValidator`), - # when we evaluate a metric that is needed to minimize (e.g., `"rmse"`, `"mse"`, `"mae"`), - # we take and output the negative of this metric. metricName = Param(Params._dummy(), "metricName", """metric name in evaluation - one of: rmse - root mean squared error (default) @@ -270,7 +267,7 @@ class MulticlassClassificationEvaluator(JavaEvaluator, HasLabelCol, HasPredictio """ metricName = Param(Params._dummy(), "metricName", "metric name in evaluation " - "(f1|precision|recall|weightedPrecision|weightedRecall)", + "(f1|precision|recall|weightedPrecision|weightedRecall|accuracy)", typeConverter=TypeConverters.toString) @keyword_only