diff --git a/sql/core/src/main/scala/org/apache/spark/sql/Column.scala b/sql/core/src/main/scala/org/apache/spark/sql/Column.scala
index ae27690f2e5b..a046127c3edb 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/Column.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/Column.scala
@@ -199,13 +199,13 @@ class Column(val expr: Expression) extends Logging {
/**
* Extracts a value or values from a complex type.
* The following types of extraction are supported:
- *
- * - Given an Array, an integer ordinal can be used to retrieve a single value.
- * - Given a Map, a key of the correct type can be used to retrieve an individual value.
- * - Given a Struct, a string fieldName can be used to extract that field.
- * - Given an Array of Structs, a string fieldName can be used to extract filed
- * of every struct in that array, and return an Array of fields
- *
+ *
+ * - Given an Array, an integer ordinal can be used to retrieve a single value.
+ * - Given a Map, a key of the correct type can be used to retrieve an individual value.
+ * - Given a Struct, a string fieldName can be used to extract that field.
+ * - Given an Array of Structs, a string fieldName can be used to extract filed
+ * of every struct in that array, and return an Array of fields.
+ *
* @group expr_ops
* @since 1.4.0
*/
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameWriter.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameWriter.scala
index 188fce72efac..258fcad49d25 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameWriter.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameWriter.scala
@@ -47,10 +47,12 @@ final class DataFrameWriter[T] private[sql](ds: Dataset[T]) {
/**
* Specifies the behavior when data or table already exists. Options include:
- * - `SaveMode.Overwrite`: overwrite the existing data.
- * - `SaveMode.Append`: append the data.
- * - `SaveMode.Ignore`: ignore the operation (i.e. no-op).
- * - `SaveMode.ErrorIfExists`: default option, throw an exception at runtime.
+ *
+ * - `SaveMode.Overwrite`: overwrite the existing data.
+ * - `SaveMode.Append`: append the data.
+ * - `SaveMode.Ignore`: ignore the operation (i.e. no-op).
+ * - `SaveMode.ErrorIfExists`: default option, throw an exception at runtime.
+ *
*
* @since 1.4.0
*/
@@ -61,10 +63,12 @@ final class DataFrameWriter[T] private[sql](ds: Dataset[T]) {
/**
* Specifies the behavior when data or table already exists. Options include:
- * - `overwrite`: overwrite the existing data.
- * - `append`: append the data.
- * - `ignore`: ignore the operation (i.e. no-op).
- * - `error` or `errorifexists`: default option, throw an exception at runtime.
+ *
+ * - `overwrite`: overwrite the existing data.
+ * - `append`: append the data.
+ * - `ignore`: ignore the operation (i.e. no-op).
+ * - `error` or `errorifexists`: default option, throw an exception at runtime.
+ *
*
* @since 1.4.0
*/
@@ -163,9 +167,10 @@ final class DataFrameWriter[T] private[sql](ds: Dataset[T]) {
* Partitions the output by the given columns on the file system. If specified, the output is
* laid out on the file system similar to Hive's partitioning scheme. As an example, when we
* partition a dataset by year and then month, the directory layout would look like:
- *
- * - year=2016/month=01/
- * - year=2016/month=02/
+ *
+ * - year=2016/month=01/
+ * - year=2016/month=02/
+ *
*
* Partitioning is one of the most widely used techniques to optimize physical data layout.
* It provides a coarse-grained index for skipping unnecessary data reads when queries have
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/ForeachWriter.scala b/sql/core/src/main/scala/org/apache/spark/sql/ForeachWriter.scala
index b21c50af1843..52b8c839643e 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/ForeachWriter.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/ForeachWriter.scala
@@ -130,8 +130,11 @@ abstract class ForeachWriter[T] extends Serializable {
* Called when stopping to process one partition of new data in the executor side. This is
* guaranteed to be called either `open` returns `true` or `false`. However,
* `close` won't be called in the following cases:
- * - JVM crashes without throwing a `Throwable`
- * - `open` throws a `Throwable`.
+ *
+ *
+ * - JVM crashes without throwing a `Throwable`
+ * - `open` throws a `Throwable`.
+ *
*
* @param errorOrNull the error thrown during processing data or null if there was no error.
*/
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SparkSessionExtensions.scala b/sql/core/src/main/scala/org/apache/spark/sql/SparkSessionExtensions.scala
index f99c108161f9..6b02ac2ded8d 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/SparkSessionExtensions.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/SparkSessionExtensions.scala
@@ -30,12 +30,15 @@ import org.apache.spark.sql.catalyst.rules.Rule
* regarding binary compatibility and source compatibility of methods here.
*
* This current provides the following extension points:
- * - Analyzer Rules.
- * - Check Analysis Rules
- * - Optimizer Rules.
- * - Planning Strategies.
- * - Customized Parser.
- * - (External) Catalog listeners.
+ *
+ *
+ * - Analyzer Rules.
+ * - Check Analysis Rules.
+ * - Optimizer Rules.
+ * - Planning Strategies.
+ * - Customized Parser.
+ * - (External) Catalog listeners.
+ *
*
* The extensions can be used by calling withExtension on the [[SparkSession.Builder]], for
* example:
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/streaming/DataStreamWriter.scala b/sql/core/src/main/scala/org/apache/spark/sql/streaming/DataStreamWriter.scala
index e9a15214d952..eb0367234115 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/streaming/DataStreamWriter.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/streaming/DataStreamWriter.scala
@@ -46,14 +46,16 @@ final class DataStreamWriter[T] private[sql](ds: Dataset[T]) {
/**
* Specifies how data of a streaming DataFrame/Dataset is written to a streaming sink.
- * - `OutputMode.Append()`: only the new rows in the streaming DataFrame/Dataset will be
- * written to the sink
- * - `OutputMode.Complete()`: all the rows in the streaming DataFrame/Dataset will be written
- * to the sink every time these is some updates
- * - `OutputMode.Update()`: only the rows that were updated in the streaming DataFrame/Dataset
- * will be written to the sink every time there are some updates. If
- * the query doesn't contain aggregations, it will be equivalent to
- * `OutputMode.Append()` mode.
+ *
+ * - `OutputMode.Append()`: only the new rows in the streaming DataFrame/Dataset will be
+ * written to the sink.
+ * - `OutputMode.Complete()`: all the rows in the streaming DataFrame/Dataset will be written
+ * to the sink every time there are some updates.
+ * - `OutputMode.Update()`: only the rows that were updated in the streaming
+ * DataFrame/Dataset will be written to the sink every time there are some updates.
+ * If the query doesn't contain aggregations, it will be equivalent to
+ * `OutputMode.Append()` mode.
+ *
*
* @since 2.0.0
*/
@@ -64,13 +66,16 @@ final class DataStreamWriter[T] private[sql](ds: Dataset[T]) {
/**
* Specifies how data of a streaming DataFrame/Dataset is written to a streaming sink.
- * - `append`: only the new rows in the streaming DataFrame/Dataset will be written to
- * the sink
- * - `complete`: all the rows in the streaming DataFrame/Dataset will be written to the sink
- * every time these is some updates
- * - `update`: only the rows that were updated in the streaming DataFrame/Dataset will
- * be written to the sink every time there are some updates. If the query doesn't
- * contain aggregations, it will be equivalent to `append` mode.
+ *
+ * - `append`: only the new rows in the streaming DataFrame/Dataset will be written to
+ * the sink.
+ * - `complete`: all the rows in the streaming DataFrame/Dataset will be written to the sink
+ * every time there are some updates.
+ * - `update`: only the rows that were updated in the streaming DataFrame/Dataset will
+ * be written to the sink every time there are some updates. If the query doesn't
+ * contain aggregations, it will be equivalent to `append` mode.
+ *
+ *
* @since 2.0.0
*/
def outputMode(outputMode: String): DataStreamWriter[T] = {
@@ -131,8 +136,10 @@ final class DataStreamWriter[T] private[sql](ds: Dataset[T]) {
* laid out on the file system similar to Hive's partitioning scheme. As an example, when we
* partition a dataset by year and then month, the directory layout would look like:
*
- * - year=2016/month=01/
- * - year=2016/month=02/
+ *
+ * - year=2016/month=01/
+ * - year=2016/month=02/
+ *
*
* Partitioning is one of the most widely used techniques to optimize physical data layout.
* It provides a coarse-grained index for skipping unnecessary data reads when queries have