diff --git a/core/src/main/java/org/apache/spark/TaskContext.java b/core/src/main/java/org/apache/spark/TaskContext.java index 2d998d4c7a5d9..0d6973203eba1 100644 --- a/core/src/main/java/org/apache/spark/TaskContext.java +++ b/core/src/main/java/org/apache/spark/TaskContext.java @@ -71,7 +71,6 @@ static void unset() { /** * Add a (Java friendly) listener to be executed on task completion. * This will be called in all situation - success, failure, or cancellation. - *
* An example use is for HadoopRDD to register a callback to close the input stream. */ public abstract TaskContext addTaskCompletionListener(TaskCompletionListener listener); @@ -79,7 +78,6 @@ static void unset() { /** * Add a listener in the form of a Scala closure to be executed on task completion. * This will be called in all situations - success, failure, or cancellation. - * * An example use is for HadoopRDD to register a callback to close the input stream. */ public abstract TaskContext addTaskCompletionListener(final Function1 then `rdd` contains
* {{{
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/feature/Normalizer.scala b/mllib/src/main/scala/org/apache/spark/mllib/feature/Normalizer.scala
index 4734251127bb4..dfad25d57c947 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/feature/Normalizer.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/feature/Normalizer.scala
@@ -26,7 +26,7 @@ import org.apache.spark.mllib.linalg.{Vector, Vectors}
* :: Experimental ::
* Normalizes samples individually to unit L^p^ norm
*
- * For any 1 <= p < Double.PositiveInfinity, normalizes samples using
+ * For any 1 <= p < Double.PositiveInfinity, normalizes samples using
* sum(abs(vector).^p^)^(1/p)^ as norm.
*
* For p = Double.PositiveInfinity, max(abs(vector)) will be used as norm for normalization.
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala
index ec2d481dccc22..10a515af88802 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala
@@ -152,7 +152,7 @@ class RowMatrix(
* storing the right singular vectors, is computed via matrix multiplication as
* U = A * (V * S^-1^), if requested by user. The actual method to use is determined
* automatically based on the cost:
- * - If n is small (n < 100) or k is large compared with n (k > n / 2), we compute the Gramian
+ * - If n is small (n < 100) or k is large compared with n (k > n / 2), we compute the Gramian
* matrix first and then compute its top eigenvalues and eigenvectors locally on the driver.
* This requires a single pass with O(n^2^) storage on each executor and on the driver, and
* O(n^2^ k) time on the driver.
@@ -169,7 +169,8 @@ class RowMatrix(
* @note The conditions that decide which method to use internally and the default parameters are
* subject to change.
*
- * @param k number of leading singular values to keep (0 < k <= n). It might return less than k if
+ * @param k number of leading singular values to keep (0 < k <= n).
+ * It might return less than k if
* there are numerically zero singular values or there are not enough Ritz values
* converged before the maximum number of Arnoldi update iterations is reached (in case
* that matrix A is ill-conditioned).
@@ -192,7 +193,7 @@ class RowMatrix(
/**
* The actual SVD implementation, visible for testing.
*
- * @param k number of leading singular values to keep (0 < k <= n)
+ * @param k number of leading singular values to keep (0 < k <= n)
* @param computeU whether to compute U
* @param rCond the reciprocal condition number
* @param maxIter max number of iterations (if ARPACK is used)
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/MLUtils.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/MLUtils.scala
index ca35100aa99c6..dce0adffa6249 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/util/MLUtils.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/util/MLUtils.scala
@@ -196,8 +196,8 @@ object MLUtils {
/**
* Load labeled data from a file. The data format used here is
- *