diff --git a/python/pyspark/mllib/evaluation.py b/python/pyspark/mllib/evaluation.py index 4c777f2180dc..a5e5ddc8fe50 100644 --- a/python/pyspark/mllib/evaluation.py +++ b/python/pyspark/mllib/evaluation.py @@ -334,11 +334,10 @@ def ndcgAt(self, k): """ Compute the average NDCG value of all the queries, truncated at ranking position k. The discounted cumulative gain at position k is computed as: - sum,,i=1,,^k^ (2^{relevance of ''i''th item}^ - 1) / log(i + 1), + sum,,i=1,,^k^ (2^{relevance of ''i''th item}^ - 1) / log(i + 1), and the NDCG is obtained by dividing the DCG value on the ground truth set. In the current implementation, the relevance value is binary. - - If a query has an empty ground truth set, zero will be used as ndcg together with + If a query has an empty ground truth set, zero will be used as NDCG together with a log warning. """ return self.call("ndcgAt", int(k)) diff --git a/python/pyspark/mllib/fpm.py b/python/pyspark/mllib/fpm.py index d8df02bdbaba..bdc4a132b1b1 100644 --- a/python/pyspark/mllib/fpm.py +++ b/python/pyspark/mllib/fpm.py @@ -61,12 +61,12 @@ class FPGrowth(object): def train(cls, data, minSupport=0.3, numPartitions=-1): """ Computes an FP-Growth model that contains frequent itemsets. - :param data: The input data set, each element - contains a transaction. - :param minSupport: The minimal support level - (default: `0.3`). - :param numPartitions: The number of partitions used by parallel - FP-growth (default: same as input data). + + :param data: The input data set, each element contains a + transaction. + :param minSupport: The minimal support level (default: `0.3`). + :param numPartitions: The number of partitions used by + parallel FP-growth (default: same as input data). """ model = callMLlibFunc("trainFPGrowthModel", data, float(minSupport), int(numPartitions)) return FPGrowthModel(model) diff --git a/python/pyspark/sql/dataframe.py b/python/pyspark/sql/dataframe.py index 96d927b9ba35..e4a191a9ef07 100644 --- a/python/pyspark/sql/dataframe.py +++ b/python/pyspark/sql/dataframe.py @@ -943,6 +943,7 @@ def replace(self, to_replace, value, subset=None): Columns specified in subset that do not have matching data type are ignored. For example, if `value` is a string, and subset contains a non-string column, then the non-string column is simply ignored. + >>> df4.replace(10, 20).show() +----+------+-----+ | age|height| name| diff --git a/python/pyspark/streaming/kafka.py b/python/pyspark/streaming/kafka.py index e278b29003f6..10a859a532e2 100644 --- a/python/pyspark/streaming/kafka.py +++ b/python/pyspark/streaming/kafka.py @@ -132,11 +132,12 @@ def createRDD(sc, kafkaParams, offsetRanges, leaders={}, .. note:: Experimental Create a RDD from Kafka using offset ranges for each topic and partition. + :param sc: SparkContext object :param kafkaParams: Additional params for Kafka :param offsetRanges: list of offsetRange to specify topic:partition:[start, end) to consume :param leaders: Kafka brokers for each TopicAndPartition in offsetRanges. May be an empty - map, in which case leaders will be looked up on the driver. + map, in which case leaders will be looked up on the driver. :param keyDecoder: A function used to decode key (default is utf8_decoder) :param valueDecoder: A function used to decode value (default is utf8_decoder) :return: A RDD object