diff --git a/mllib/src/main/scala/org/apache/spark/ml/ann/BreezeUtil.scala b/mllib/src/main/scala/org/apache/spark/ml/ann/BreezeUtil.scala new file mode 100644 index 000000000000..7429f9d652ac --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/ml/ann/BreezeUtil.scala @@ -0,0 +1,63 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.ml.ann + +import breeze.linalg.{DenseMatrix => BDM, DenseVector => BDV} +import com.github.fommil.netlib.BLAS.{getInstance => NativeBLAS} + +/** + * In-place DGEMM and DGEMV for Breeze + */ +private[ann] object BreezeUtil { + + // TODO: switch to MLlib BLAS interface + private def transposeString(a: BDM[Double]): String = if (a.isTranspose) "T" else "N" + + /** + * DGEMM: C := alpha * A * B + beta * C + * @param alpha alpha + * @param a A + * @param b B + * @param beta beta + * @param c C + */ + def dgemm(alpha: Double, a: BDM[Double], b: BDM[Double], beta: Double, c: BDM[Double]): Unit = { + // TODO: add code if matrices isTranspose!!! + require(a.cols == b.rows, "A & B Dimension mismatch!") + require(a.rows == c.rows, "A & C Dimension mismatch!") + require(b.cols == c.cols, "A & C Dimension mismatch!") + NativeBLAS.dgemm(transposeString(a), transposeString(b), c.rows, c.cols, a.cols, + alpha, a.data, a.offset, a.majorStride, b.data, b.offset, b.majorStride, + beta, c.data, c.offset, c.rows) + } + + /** + * DGEMV: y := alpha * A * x + beta * y + * @param alpha alpha + * @param a A + * @param x x + * @param beta beta + * @param y y + */ + def dgemv(alpha: Double, a: BDM[Double], x: BDV[Double], beta: Double, y: BDV[Double]): Unit = { + require(a.cols == x.length, "A & b Dimension mismatch!") + NativeBLAS.dgemv(transposeString(a), a.rows, a.cols, + alpha, a.data, a.offset, a.majorStride, x.data, x.offset, x.stride, + beta, y.data, y.offset, y.stride) + } +} diff --git a/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala b/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala new file mode 100644 index 000000000000..b5258ff34847 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala @@ -0,0 +1,882 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.ml.ann + +import breeze.linalg.{*, DenseMatrix => BDM, DenseVector => BDV, Vector => BV, axpy => Baxpy, + sum => Bsum} +import breeze.numerics.{log => Blog, sigmoid => Bsigmoid} + +import org.apache.spark.mllib.linalg.{Vector, Vectors} +import org.apache.spark.mllib.optimization._ +import org.apache.spark.rdd.RDD +import org.apache.spark.util.random.XORShiftRandom + +/** + * Trait that holds Layer properties, that are needed to instantiate it. + * Implements Layer instantiation. + * + */ +private[ann] trait Layer extends Serializable { + /** + * Returns the instance of the layer based on weights provided + * @param weights vector with layer weights + * @param position position of weights in the vector + * @return the layer model + */ + def getInstance(weights: Vector, position: Int): LayerModel + + /** + * Returns the instance of the layer with random generated weights + * @param seed seed + * @return the layer model + */ + def getInstance(seed: Long): LayerModel +} + +/** + * Trait that holds Layer weights (or parameters). + * Implements functions needed for forward propagation, computing delta and gradient. + * Can return weights in Vector format. + */ +private[ann] trait LayerModel extends Serializable { + /** + * number of weights + */ + val size: Int + + /** + * Evaluates the data (process the data through the layer) + * @param data data + * @return processed data + */ + def eval(data: BDM[Double]): BDM[Double] + + /** + * Computes the delta for back propagation + * @param nextDelta delta of the next layer + * @param input input data + * @return delta + */ + def prevDelta(nextDelta: BDM[Double], input: BDM[Double]): BDM[Double] + + /** + * Computes the gradient + * @param delta delta for this layer + * @param input input data + * @return gradient + */ + def grad(delta: BDM[Double], input: BDM[Double]): Array[Double] + + /** + * Returns weights for the layer in a single vector + * @return layer weights + */ + def weights(): Vector +} + +/** + * Layer properties of affine transformations, that is y=A*x+b + * @param numIn number of inputs + * @param numOut number of outputs + */ +private[ann] class AffineLayer(val numIn: Int, val numOut: Int) extends Layer { + + override def getInstance(weights: Vector, position: Int): LayerModel = { + AffineLayerModel(this, weights, position) + } + + override def getInstance(seed: Long = 11L): LayerModel = { + AffineLayerModel(this, seed) + } +} + +/** + * Model of Affine layer y=A*x+b + * @param w weights (matrix A) + * @param b bias (vector b) + */ +private[ann] class AffineLayerModel private(w: BDM[Double], b: BDV[Double]) extends LayerModel { + val size = w.size + b.length + val gwb = new Array[Double](size) + private lazy val gw: BDM[Double] = new BDM[Double](w.rows, w.cols, gwb) + private lazy val gb: BDV[Double] = new BDV[Double](gwb, w.size) + private var z: BDM[Double] = null + private var d: BDM[Double] = null + private var ones: BDV[Double] = null + + override def eval(data: BDM[Double]): BDM[Double] = { + if (z == null || z.cols != data.cols) z = new BDM[Double](w.rows, data.cols) + z(::, *) := b + BreezeUtil.dgemm(1.0, w, data, 1.0, z) + z + } + + override def prevDelta(nextDelta: BDM[Double], input: BDM[Double]): BDM[Double] = { + if (d == null || d.cols != nextDelta.cols) d = new BDM[Double](w.cols, nextDelta.cols) + BreezeUtil.dgemm(1.0, w.t, nextDelta, 0.0, d) + d + } + + override def grad(delta: BDM[Double], input: BDM[Double]): Array[Double] = { + BreezeUtil.dgemm(1.0 / input.cols, delta, input.t, 0.0, gw) + if (ones == null || ones.length != delta.cols) ones = BDV.ones[Double](delta.cols) + BreezeUtil.dgemv(1.0 / input.cols, delta, ones, 0.0, gb) + gwb + } + + override def weights(): Vector = AffineLayerModel.roll(w, b) +} + +/** + * Fabric for Affine layer models + */ +private[ann] object AffineLayerModel { + + /** + * Creates a model of Affine layer + * @param layer layer properties + * @param weights vector with weights + * @param position position of weights in the vector + * @return model of Affine layer + */ + def apply(layer: AffineLayer, weights: Vector, position: Int): AffineLayerModel = { + val (w, b) = unroll(weights, position, layer.numIn, layer.numOut) + new AffineLayerModel(w, b) + } + + /** + * Creates a model of Affine layer + * @param layer layer properties + * @param seed seed + * @return model of Affine layer + */ + def apply(layer: AffineLayer, seed: Long): AffineLayerModel = { + val (w, b) = randomWeights(layer.numIn, layer.numOut, seed) + new AffineLayerModel(w, b) + } + + /** + * Unrolls the weights from the vector + * @param weights vector with weights + * @param position position of weights for this layer + * @param numIn number of layer inputs + * @param numOut number of layer outputs + * @return matrix A and vector b + */ + def unroll( + weights: Vector, + position: Int, + numIn: Int, + numOut: Int): (BDM[Double], BDV[Double]) = { + val weightsCopy = weights.toArray + // TODO: the array is not copied to BDMs, make sure this is OK! + val a = new BDM[Double](numOut, numIn, weightsCopy, position) + val b = new BDV[Double](weightsCopy, position + (numOut * numIn), 1, numOut) + (a, b) + } + + /** + * Roll the layer weights into a vector + * @param a matrix A + * @param b vector b + * @return vector of weights + */ + def roll(a: BDM[Double], b: BDV[Double]): Vector = { + val result = new Array[Double](a.size + b.length) + // TODO: make sure that we need to copy! + System.arraycopy(a.toArray, 0, result, 0, a.size) + System.arraycopy(b.toArray, 0, result, a.size, b.length) + Vectors.dense(result) + } + + /** + * Generate random weights for the layer + * @param numIn number of inputs + * @param numOut number of outputs + * @param seed seed + * @return (matrix A, vector b) + */ + def randomWeights(numIn: Int, numOut: Int, seed: Long = 11L): (BDM[Double], BDV[Double]) = { + val rand: XORShiftRandom = new XORShiftRandom(seed) + val weights = BDM.fill[Double](numOut, numIn){ (rand.nextDouble * 4.8 - 2.4) / numIn } + val bias = BDV.fill[Double](numOut){ (rand.nextDouble * 4.8 - 2.4) / numIn } + (weights, bias) + } +} + +/** + * Trait for functions and their derivatives for functional layers + */ +private[ann] trait ActivationFunction extends Serializable { + + /** + * Implements a function + * @param x input data + * @param y output data + */ + def eval(x: BDM[Double], y: BDM[Double]): Unit + + /** + * Implements a derivative of a function (needed for the back propagation) + * @param x input data + * @param y output data + */ + def derivative(x: BDM[Double], y: BDM[Double]): Unit + + /** + * Implements a cross entropy error of a function. + * Needed if the functional layer that contains this function is the output layer + * of the network. + * @param target target output + * @param output computed output + * @param result intermediate result + * @return cross-entropy + */ + def crossEntropy(target: BDM[Double], output: BDM[Double], result: BDM[Double]): Double + + /** + * Implements a mean squared error of a function + * @param target target output + * @param output computed output + * @param result intermediate result + * @return mean squared error + */ + def squared(target: BDM[Double], output: BDM[Double], result: BDM[Double]): Double +} + +/** + * Implements in-place application of functions + */ +private[ann] object ActivationFunction { + + def apply(x: BDM[Double], y: BDM[Double], func: Double => Double): Unit = { + var i = 0 + while (i < x.rows) { + var j = 0 + while (j < x.cols) { + y(i, j) = func(x(i, j)) + j += 1 + } + i += 1 + } + } + + def apply( + x1: BDM[Double], + x2: BDM[Double], + y: BDM[Double], + func: (Double, Double) => Double): Unit = { + var i = 0 + while (i < x1.rows) { + var j = 0 + while (j < x1.cols) { + y(i, j) = func(x1(i, j), x2(i, j)) + j += 1 + } + i += 1 + } + } +} + +/** + * Implements SoftMax activation function + */ +private[ann] class SoftmaxFunction extends ActivationFunction { + override def eval(x: BDM[Double], y: BDM[Double]): Unit = { + var j = 0 + // find max value to make sure later that exponent is computable + while (j < x.cols) { + var i = 0 + var max = Double.MinValue + while (i < x.rows) { + if (x(i, j) > max) { + max = x(i, j) + } + i += 1 + } + var sum = 0.0 + i = 0 + while (i < x.rows) { + val res = Math.exp(x(i, j) - max) + y(i, j) = res + sum += res + i += 1 + } + i = 0 + while (i < x.rows) { + y(i, j) /= sum + i += 1 + } + j += 1 + } + } + + override def crossEntropy( + output: BDM[Double], + target: BDM[Double], + result: BDM[Double]): Double = { + def m(o: Double, t: Double): Double = o - t + ActivationFunction(output, target, result, m) + -Bsum( target :* Blog(output)) / output.cols + } + + override def derivative(x: BDM[Double], y: BDM[Double]): Unit = { + def sd(z: Double): Double = (1 - z) * z + ActivationFunction(x, y, sd) + } + + override def squared(output: BDM[Double], target: BDM[Double], result: BDM[Double]): Double = { + throw new UnsupportedOperationException("Sorry, squared error is not defined for SoftMax.") + } +} + +/** + * Implements Sigmoid activation function + */ +private[ann] class SigmoidFunction extends ActivationFunction { + override def eval(x: BDM[Double], y: BDM[Double]): Unit = { + def s(z: Double): Double = Bsigmoid(z) + ActivationFunction(x, y, s) + } + + override def crossEntropy( + output: BDM[Double], + target: BDM[Double], + result: BDM[Double]): Double = { + def m(o: Double, t: Double): Double = o - t + ActivationFunction(output, target, result, m) + -Bsum(target :* Blog(output)) / output.cols + } + + override def derivative(x: BDM[Double], y: BDM[Double]): Unit = { + def sd(z: Double): Double = (1 - z) * z + ActivationFunction(x, y, sd) + } + + override def squared(output: BDM[Double], target: BDM[Double], result: BDM[Double]): Double = { + // TODO: make it readable + def m(o: Double, t: Double): Double = (o - t) + ActivationFunction(output, target, result, m) + val e = Bsum(result :* result) / 2 / output.cols + def m2(x: Double, o: Double) = x * (o - o * o) + ActivationFunction(result, output, result, m2) + e + } +} + +/** + * Functional layer properties, y = f(x) + * @param activationFunction activation function + */ +private[ann] class FunctionalLayer (val activationFunction: ActivationFunction) extends Layer { + override def getInstance(weights: Vector, position: Int): LayerModel = getInstance(0L) + + override def getInstance(seed: Long): LayerModel = + FunctionalLayerModel(this) +} + +/** + * Functional layer model. Holds no weights. + * @param activationFunction activation function + */ +private[ann] class FunctionalLayerModel private (val activationFunction: ActivationFunction) + extends LayerModel { + val size = 0 + // matrices for in-place computations + // outputs + private var f: BDM[Double] = null + // delta + private var d: BDM[Double] = null + // matrix for error computation + private var e: BDM[Double] = null + // delta gradient + private lazy val dg = new Array[Double](0) + + override def eval(data: BDM[Double]): BDM[Double] = { + if (f == null || f.cols != data.cols) f = new BDM[Double](data.rows, data.cols) + activationFunction.eval(data, f) + f + } + + override def prevDelta(nextDelta: BDM[Double], input: BDM[Double]): BDM[Double] = { + if (d == null || d.cols != nextDelta.cols) d = new BDM[Double](nextDelta.rows, nextDelta.cols) + activationFunction.derivative(input, d) + d :*= nextDelta + d + } + + override def grad(delta: BDM[Double], input: BDM[Double]): Array[Double] = dg + + override def weights(): Vector = Vectors.dense(new Array[Double](0)) + + def crossEntropy(output: BDM[Double], target: BDM[Double]): (BDM[Double], Double) = { + if (e == null || e.cols != output.cols) e = new BDM[Double](output.rows, output.cols) + val error = activationFunction.crossEntropy(output, target, e) + (e, error) + } + + def squared(output: BDM[Double], target: BDM[Double]): (BDM[Double], Double) = { + if (e == null || e.cols != output.cols) e = new BDM[Double](output.rows, output.cols) + val error = activationFunction.squared(output, target, e) + (e, error) + } + + def error(output: BDM[Double], target: BDM[Double]): (BDM[Double], Double) = { + // TODO: allow user pick error + activationFunction match { + case sigmoid: SigmoidFunction => squared(output, target) + case softmax: SoftmaxFunction => crossEntropy(output, target) + } + } +} + +/** + * Fabric of functional layer models + */ +private[ann] object FunctionalLayerModel { + def apply(layer: FunctionalLayer): FunctionalLayerModel = + new FunctionalLayerModel(layer.activationFunction) +} + +/** + * Trait for the artificial neural network (ANN) topology properties + */ +private[ann] trait Topology extends Serializable{ + def getInstance(weights: Vector): TopologyModel + def getInstance(seed: Long): TopologyModel +} + +/** + * Trait for ANN topology model + */ +private[ann] trait TopologyModel extends Serializable{ + /** + * Forward propagation + * @param data input data + * @return array of outputs for each of the layers + */ + def forward(data: BDM[Double]): Array[BDM[Double]] + + /** + * Prediction of the model + * @param data input data + * @return prediction + */ + def predict(data: Vector): Vector + + /** + * Computes gradient for the network + * @param data input data + * @param target target output + * @param cumGradient cumulative gradient + * @param blockSize block size + * @return error + */ + def computeGradient(data: BDM[Double], target: BDM[Double], cumGradient: Vector, + blockSize: Int): Double + + /** + * Returns the weights of the ANN + * @return weights + */ + def weights(): Vector +} + +/** + * Feed forward ANN + * @param layers + */ +private[ann] class FeedForwardTopology private(val layers: Array[Layer]) extends Topology { + override def getInstance(weights: Vector): TopologyModel = FeedForwardModel(this, weights) + + override def getInstance(seed: Long): TopologyModel = FeedForwardModel(this, seed) +} + +/** + * Factory for some of the frequently-used topologies + */ +private[ml] object FeedForwardTopology { + /** + * Creates a feed forward topology from the array of layers + * @param layers array of layers + * @return feed forward topology + */ + def apply(layers: Array[Layer]): FeedForwardTopology = { + new FeedForwardTopology(layers) + } + + /** + * Creates a multi-layer perceptron + * @param layerSizes sizes of layers including input and output size + * @param softmax wether to use SoftMax or Sigmoid function for an output layer. + * Softmax is default + * @return multilayer perceptron topology + */ + def multiLayerPerceptron(layerSizes: Array[Int], softmax: Boolean = true): FeedForwardTopology = { + val layers = new Array[Layer]((layerSizes.length - 1) * 2) + for(i <- 0 until layerSizes.length - 1){ + layers(i * 2) = new AffineLayer(layerSizes(i), layerSizes(i + 1)) + layers(i * 2 + 1) = + if (softmax && i == layerSizes.length - 2) { + new FunctionalLayer(new SoftmaxFunction()) + } else { + new FunctionalLayer(new SigmoidFunction()) + } + } + FeedForwardTopology(layers) + } +} + +/** + * Model of Feed Forward Neural Network. + * Implements forward, gradient computation and can return weights in vector format. + * @param layerModels models of layers + * @param topology topology of the network + */ +private[ml] class FeedForwardModel private( + val layerModels: Array[LayerModel], + val topology: FeedForwardTopology) extends TopologyModel { + override def forward(data: BDM[Double]): Array[BDM[Double]] = { + val outputs = new Array[BDM[Double]](layerModels.length) + outputs(0) = layerModels(0).eval(data) + for (i <- 1 until layerModels.length) { + outputs(i) = layerModels(i).eval(outputs(i-1)) + } + outputs + } + + override def computeGradient( + data: BDM[Double], + target: BDM[Double], + cumGradient: Vector, + realBatchSize: Int): Double = { + val outputs = forward(data) + val deltas = new Array[BDM[Double]](layerModels.length) + val L = layerModels.length - 1 + val (newE, newError) = layerModels.last match { + case flm: FunctionalLayerModel => flm.error(outputs.last, target) + case _ => + throw new UnsupportedOperationException("Non-functional layer not supported at the top") + } + deltas(L) = new BDM[Double](0, 0) + deltas(L - 1) = newE + for (i <- (L - 2) to (0, -1)) { + deltas(i) = layerModels(i + 1).prevDelta(deltas(i + 1), outputs(i + 1)) + } + val grads = new Array[Array[Double]](layerModels.length) + for (i <- 0 until layerModels.length) { + val input = if (i==0) data else outputs(i - 1) + grads(i) = layerModels(i).grad(deltas(i), input) + } + // update cumGradient + val cumGradientArray = cumGradient.toArray + var offset = 0 + // TODO: extract roll + for (i <- 0 until grads.length) { + val gradArray = grads(i) + var k = 0 + while (k < gradArray.length) { + cumGradientArray(offset + k) += gradArray(k) + k += 1 + } + offset += gradArray.length + } + newError + } + + // TODO: do we really need to copy the weights? they should be read-only + override def weights(): Vector = { + // TODO: extract roll + var size = 0 + for (i <- 0 until layerModels.length) { + size += layerModels(i).size + } + val array = new Array[Double](size) + var offset = 0 + for (i <- 0 until layerModels.length) { + val layerWeights = layerModels(i).weights().toArray + System.arraycopy(layerWeights, 0, array, offset, layerWeights.length) + offset += layerWeights.length + } + Vectors.dense(array) + } + + override def predict(data: Vector): Vector = { + val size = data.size + val result = forward(new BDM[Double](size, 1, data.toArray)) + Vectors.dense(result.last.toArray) + } +} + +/** + * Fabric for feed forward ANN models + */ +private[ann] object FeedForwardModel { + + /** + * Creates a model from a topology and weights + * @param topology topology + * @param weights weights + * @return model + */ + def apply(topology: FeedForwardTopology, weights: Vector): FeedForwardModel = { + val layers = topology.layers + val layerModels = new Array[LayerModel](layers.length) + var offset = 0 + for (i <- 0 until layers.length) { + layerModels(i) = layers(i).getInstance(weights, offset) + offset += layerModels(i).size + } + new FeedForwardModel(layerModels, topology) + } + + /** + * Creates a model given a topology and seed + * @param topology topology + * @param seed seed for generating the weights + * @return model + */ + def apply(topology: FeedForwardTopology, seed: Long = 11L): FeedForwardModel = { + val layers = topology.layers + val layerModels = new Array[LayerModel](layers.length) + var offset = 0 + for(i <- 0 until layers.length){ + layerModels(i) = layers(i).getInstance(seed) + offset += layerModels(i).size + } + new FeedForwardModel(layerModels, topology) + } +} + +/** + * Neural network gradient. Does nothing but calling Model's gradient + * @param topology topology + * @param dataStacker data stacker + */ +private[ann] class ANNGradient(topology: Topology, dataStacker: DataStacker) extends Gradient { + + override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = { + val gradient = Vectors.zeros(weights.size) + val loss = compute(data, label, weights, gradient) + (gradient, loss) + } + + override def compute( + data: Vector, + label: Double, + weights: Vector, + cumGradient: Vector): Double = { + val (input, target, realBatchSize) = dataStacker.unstack(data) + val model = topology.getInstance(weights) + model.computeGradient(input, target, cumGradient, realBatchSize) + } +} + +/** + * Stacks pairs of training samples (input, output) in one vector allowing them to pass + * through Optimizer/Gradient interfaces. If stackSize is more than one, makes blocks + * or matrices of inputs and outputs and then stack them in one vector. + * This can be used for further batch computations after unstacking. + * @param stackSize stack size + * @param inputSize size of the input vectors + * @param outputSize size of the output vectors + */ +private[ann] class DataStacker(stackSize: Int, inputSize: Int, outputSize: Int) + extends Serializable { + + /** + * Stacks the data + * @param data RDD of vector pairs + * @return RDD of double (always zero) and vector that contains the stacked vectors + */ + def stack(data: RDD[(Vector, Vector)]): RDD[(Double, Vector)] = { + val stackedData = if (stackSize == 1) { + data.map { v => + (0.0, + Vectors.fromBreeze(BDV.vertcat( + v._1.toBreeze.toDenseVector, + v._2.toBreeze.toDenseVector)) + ) } + } else { + data.mapPartitions { it => + it.grouped(stackSize).map { seq => + val size = seq.size + val bigVector = new Array[Double](inputSize * size + outputSize * size) + var i = 0 + seq.foreach { case (in, out) => + System.arraycopy(in.toArray, 0, bigVector, i * inputSize, inputSize) + System.arraycopy(out.toArray, 0, bigVector, + inputSize * size + i * outputSize, outputSize) + i += 1 + } + (0.0, Vectors.dense(bigVector)) + } + } + } + stackedData + } + + /** + * Unstack the stacked vectors into matrices for batch operations + * @param data stacked vector + * @return pair of matrices holding input and output data and the real stack size + */ + def unstack(data: Vector): (BDM[Double], BDM[Double], Int) = { + val arrData = data.toArray + val realStackSize = arrData.length / (inputSize + outputSize) + val input = new BDM(inputSize, realStackSize, arrData) + val target = new BDM(outputSize, realStackSize, arrData, inputSize * realStackSize) + (input, target, realStackSize) + } +} + +/** + * Simple updater + */ +private[ann] class ANNUpdater extends Updater { + + override def compute( + weightsOld: Vector, + gradient: Vector, + stepSize: Double, + iter: Int, + regParam: Double): (Vector, Double) = { + val thisIterStepSize = stepSize + val brzWeights: BV[Double] = weightsOld.toBreeze.toDenseVector + Baxpy(-thisIterStepSize, gradient.toBreeze, brzWeights) + (Vectors.fromBreeze(brzWeights), 0) + } +} + +/** + * MLlib-style trainer class that trains a network given the data and topology + * @param topology topology of ANN + * @param inputSize input size + * @param outputSize output size + */ +private[ml] class FeedForwardTrainer( + topology: Topology, + val inputSize: Int, + val outputSize: Int) extends Serializable { + + // TODO: what if we need to pass random seed? + private var _weights = topology.getInstance(11L).weights() + private var _stackSize = 128 + private var dataStacker = new DataStacker(_stackSize, inputSize, outputSize) + private var _gradient: Gradient = new ANNGradient(topology, dataStacker) + private var _updater: Updater = new ANNUpdater() + private var optimizer: Optimizer = LBFGSOptimizer.setConvergenceTol(1e-4).setNumIterations(100) + + /** + * Returns weights + * @return weights + */ + def getWeights: Vector = _weights + + /** + * Sets weights + * @param value weights + * @return trainer + */ + def setWeights(value: Vector): FeedForwardTrainer = { + _weights = value + this + } + + /** + * Sets the stack size + * @param value stack size + * @return trainer + */ + def setStackSize(value: Int): FeedForwardTrainer = { + _stackSize = value + dataStacker = new DataStacker(value, inputSize, outputSize) + this + } + + /** + * Sets the SGD optimizer + * @return SGD optimizer + */ + def SGDOptimizer: GradientDescent = { + val sgd = new GradientDescent(_gradient, _updater) + optimizer = sgd + sgd + } + + /** + * Sets the LBFGS optimizer + * @return LBGS optimizer + */ + def LBFGSOptimizer: LBFGS = { + val lbfgs = new LBFGS(_gradient, _updater) + optimizer = lbfgs + lbfgs + } + + /** + * Sets the updater + * @param value updater + * @return trainer + */ + def setUpdater(value: Updater): FeedForwardTrainer = { + _updater = value + updateUpdater(value) + this + } + + /** + * Sets the gradient + * @param value gradient + * @return trainer + */ + def setGradient(value: Gradient): FeedForwardTrainer = { + _gradient = value + updateGradient(value) + this + } + + private[this] def updateGradient(gradient: Gradient): Unit = { + optimizer match { + case lbfgs: LBFGS => lbfgs.setGradient(gradient) + case sgd: GradientDescent => sgd.setGradient(gradient) + case other => throw new UnsupportedOperationException( + s"Only LBFGS and GradientDescent are supported but got ${other.getClass}.") + } + } + + private[this] def updateUpdater(updater: Updater): Unit = { + optimizer match { + case lbfgs: LBFGS => lbfgs.setUpdater(updater) + case sgd: GradientDescent => sgd.setUpdater(updater) + case other => throw new UnsupportedOperationException( + s"Only LBFGS and GradientDescent are supported but got ${other.getClass}.") + } + } + + /** + * Trains the ANN + * @param data RDD of input and output vector pairs + * @return model + */ + def train(data: RDD[(Vector, Vector)]): TopologyModel = { + val newWeights = optimizer.optimize(dataStacker.stack(data), getWeights) + topology.getInstance(newWeights) + } + +} diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.scala new file mode 100644 index 000000000000..8cd2103d7d5e --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.scala @@ -0,0 +1,193 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.ml.classification + +import org.apache.spark.annotation.Experimental +import org.apache.spark.ml.param.shared.{HasTol, HasMaxIter, HasSeed} +import org.apache.spark.ml.{PredictorParams, PredictionModel, Predictor} +import org.apache.spark.ml.param.{IntParam, ParamValidators, IntArrayParam, ParamMap} +import org.apache.spark.ml.util.Identifiable +import org.apache.spark.ml.ann.{FeedForwardTrainer, FeedForwardTopology} +import org.apache.spark.mllib.linalg.{Vectors, Vector} +import org.apache.spark.mllib.regression.LabeledPoint +import org.apache.spark.sql.DataFrame + +/** Params for Multilayer Perceptron. */ +private[ml] trait MultilayerPerceptronParams extends PredictorParams + with HasSeed with HasMaxIter with HasTol { + /** + * Layer sizes including input size and output size. + * @group param + */ + final val layers: IntArrayParam = new IntArrayParam(this, "layers", + "Sizes of layers from input layer to output layer" + + " E.g., Array(780, 100, 10) means 780 inputs, " + + "one hidden layer with 100 neurons and output layer of 10 neurons.", + // TODO: how to check ALSO that all elements are greater than 0? + ParamValidators.arrayLengthGt(1) + ) + + /** @group setParam */ + def setLayers(value: Array[Int]): this.type = set(layers, value) + + /** @group getParam */ + final def getLayers: Array[Int] = $(layers) + + /** + * Block size for stacking input data in matrices to speed up the computation. + * Data is stacked within partitions. If block size is more than remaining data in + * a partition then it is adjusted to the size of this data. + * Recommended size is between 10 and 1000. + * @group expertParam + */ + final val blockSize: IntParam = new IntParam(this, "blockSize", + "Block size for stacking input data in matrices. Data is stacked within partitions." + + " If block size is more than remaining data in a partition then " + + "it is adjusted to the size of this data. Recommended size is between 10 and 1000", + ParamValidators.gt(0)) + + /** @group setParam */ + def setBlockSize(value: Int): this.type = set(blockSize, value) + + /** @group getParam */ + final def getBlockSize: Int = $(blockSize) + + /** + * Set the maximum number of iterations. + * Default is 100. + * @group setParam + */ + def setMaxIter(value: Int): this.type = set(maxIter, value) + + /** + * Set the convergence tolerance of iterations. + * Smaller value will lead to higher accuracy with the cost of more iterations. + * Default is 1E-4. + * @group setParam + */ + def setTol(value: Double): this.type = set(tol, value) + + /** + * Set the seed for weights initialization. + * @group setParam + */ + def setSeed(value: Long): this.type = set(seed, value) + + setDefault(maxIter -> 100, tol -> 1e-4, layers -> Array(1, 1), blockSize -> 128) +} + +/** Label to vector converter. */ +private object LabelConverter { + // TODO: Use OneHotEncoder instead + /** + * Encodes a label as a vector. + * Returns a vector of given length with zeroes at all positions + * and value 1.0 at the position that corresponds to the label. + * + * @param labeledPoint labeled point + * @param labelCount total number of labels + * @return pair of features and vector encoding of a label + */ + def encodeLabeledPoint(labeledPoint: LabeledPoint, labelCount: Int): (Vector, Vector) = { + val output = Array.fill(labelCount)(0.0) + output(labeledPoint.label.toInt) = 1.0 + (labeledPoint.features, Vectors.dense(output)) + } + + /** + * Converts a vector to a label. + * Returns the position of the maximal element of a vector. + * + * @param output label encoded with a vector + * @return label + */ + def decodeLabel(output: Vector): Double = { + output.argmax.toDouble + } +} + +/** + * :: Experimental :: + * Classifier trainer based on the Multilayer Perceptron. + * Each layer has sigmoid activation function, output layer has softmax. + * Number of inputs has to be equal to the size of feature vectors. + * Number of outputs has to be equal to the total number of labels. + * + */ +@Experimental +class MultilayerPerceptronClassifier(override val uid: String) + extends Predictor[Vector, MultilayerPerceptronClassifier, MultilayerPerceptronClassifierModel] + with MultilayerPerceptronParams { + + def this() = this(Identifiable.randomUID("mlpc")) + + override def copy(extra: ParamMap): MultilayerPerceptronClassifier = defaultCopy(extra) + + /** + * Train a model using the given dataset and parameters. + * Developers can implement this instead of [[fit()]] to avoid dealing with schema validation + * and copying parameters into the model. + * + * @param dataset Training dataset + * @return Fitted model + */ + override protected def train(dataset: DataFrame): MultilayerPerceptronClassifierModel = { + val myLayers = $(layers) + val labels = myLayers.last + val lpData = extractLabeledPoints(dataset) + val data = lpData.map(lp => LabelConverter.encodeLabeledPoint(lp, labels)) + val topology = FeedForwardTopology.multiLayerPerceptron(myLayers, true) + val FeedForwardTrainer = new FeedForwardTrainer(topology, myLayers(0), myLayers.last) + FeedForwardTrainer.LBFGSOptimizer.setConvergenceTol($(tol)).setNumIterations($(maxIter)) + FeedForwardTrainer.setStackSize($(blockSize)) + val mlpModel = FeedForwardTrainer.train(data) + new MultilayerPerceptronClassifierModel(uid, myLayers, mlpModel.weights()) + } +} + +/** + * :: Experimental :: + * Classifier model based on the Multilayer Perceptron. + * Each layer has sigmoid activation function, output layer has softmax. + * @param uid uid + * @param layers array of layer sizes including input and output layers + * @param weights vector of initial weights for the model that consists of the weights of layers + * @return prediction model + */ +@Experimental +class MultilayerPerceptronClassifierModel private[ml] ( + override val uid: String, + layers: Array[Int], + weights: Vector) + extends PredictionModel[Vector, MultilayerPerceptronClassifierModel] + with Serializable { + + private val mlpModel = FeedForwardTopology.multiLayerPerceptron(layers, true).getInstance(weights) + + /** + * Predict label for the given features. + * This internal method is used to implement [[transform()]] and output [[predictionCol]]. + */ + override protected def predict(features: Vector): Double = { + LabelConverter.decodeLabel(mlpModel.predict(features)) + } + + override def copy(extra: ParamMap): MultilayerPerceptronClassifierModel = { + copyValues(new MultilayerPerceptronClassifierModel(uid, layers, weights), extra) + } +} diff --git a/mllib/src/main/scala/org/apache/spark/ml/param/params.scala b/mllib/src/main/scala/org/apache/spark/ml/param/params.scala index 824efa5ed4b2..cbff804c806f 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/param/params.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/param/params.scala @@ -166,6 +166,11 @@ object ParamValidators { def inArray[T](allowed: java.util.List[T]): T => Boolean = { (value: T) => allowed.contains(value) } + + /** Check that the array length is greater than lowerBound. */ + def arrayLengthGt[T](lowerBound: Double): Array[T] => Boolean = { (value: Array[T]) => + value.length > lowerBound + } } // specialize primitive-typed params because Java doesn't recognize scala.Double, scala.Int, ... diff --git a/mllib/src/main/scala/org/apache/spark/mllib/optimization/GradientDescent.scala b/mllib/src/main/scala/org/apache/spark/mllib/optimization/GradientDescent.scala index ab7611fd077e..8f0d1e4aa010 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/optimization/GradientDescent.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/optimization/GradientDescent.scala @@ -32,7 +32,7 @@ import org.apache.spark.mllib.linalg.{Vectors, Vector} * @param gradient Gradient function to be used. * @param updater Updater to be used to update weights after every iteration. */ -class GradientDescent private[mllib] (private var gradient: Gradient, private var updater: Updater) +class GradientDescent private[spark] (private var gradient: Gradient, private var updater: Updater) extends Optimizer with Logging { private var stepSize: Double = 1.0 diff --git a/mllib/src/test/scala/org/apache/spark/ml/ann/ANNSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/ann/ANNSuite.scala new file mode 100644 index 000000000000..1292e57d7c01 --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/ml/ann/ANNSuite.scala @@ -0,0 +1,91 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.ml.ann + +import org.apache.spark.SparkFunSuite +import org.apache.spark.mllib.linalg.Vectors +import org.apache.spark.mllib.util.MLlibTestSparkContext +import org.apache.spark.mllib.util.TestingUtils._ + + +class ANNSuite extends SparkFunSuite with MLlibTestSparkContext { + + // TODO: test for weights comparison with Weka MLP + test("ANN with Sigmoid learns XOR function with LBFGS optimizer") { + val inputs = Array( + Array(0.0, 0.0), + Array(0.0, 1.0), + Array(1.0, 0.0), + Array(1.0, 1.0) + ) + val outputs = Array(0.0, 1.0, 1.0, 0.0) + val data = inputs.zip(outputs).map { case (features, label) => + (Vectors.dense(features), Vectors.dense(label)) + } + val rddData = sc.parallelize(data, 1) + val hiddenLayersTopology = Array(5) + val dataSample = rddData.first() + val layerSizes = dataSample._1.size +: hiddenLayersTopology :+ dataSample._2.size + val topology = FeedForwardTopology.multiLayerPerceptron(layerSizes, false) + val initialWeights = FeedForwardModel(topology, 23124).weights() + val trainer = new FeedForwardTrainer(topology, 2, 1) + trainer.setWeights(initialWeights) + trainer.LBFGSOptimizer.setNumIterations(20) + val model = trainer.train(rddData) + val predictionAndLabels = rddData.map { case (input, label) => + (model.predict(input)(0), label(0)) + }.collect() + predictionAndLabels.foreach { case (p, l) => + assert(math.round(p) === l) + } + } + + test("ANN with SoftMax learns XOR function with 2-bit output and batch GD optimizer") { + val inputs = Array( + Array(0.0, 0.0), + Array(0.0, 1.0), + Array(1.0, 0.0), + Array(1.0, 1.0) + ) + val outputs = Array( + Array(1.0, 0.0), + Array(0.0, 1.0), + Array(0.0, 1.0), + Array(1.0, 0.0) + ) + val data = inputs.zip(outputs).map { case (features, label) => + (Vectors.dense(features), Vectors.dense(label)) + } + val rddData = sc.parallelize(data, 1) + val hiddenLayersTopology = Array(5) + val dataSample = rddData.first() + val layerSizes = dataSample._1.size +: hiddenLayersTopology :+ dataSample._2.size + val topology = FeedForwardTopology.multiLayerPerceptron(layerSizes, false) + val initialWeights = FeedForwardModel(topology, 23124).weights() + val trainer = new FeedForwardTrainer(topology, 2, 2) + trainer.SGDOptimizer.setNumIterations(2000) + trainer.setWeights(initialWeights) + val model = trainer.train(rddData) + val predictionAndLabels = rddData.map { case (input, label) => + (model.predict(input), label) + }.collect() + predictionAndLabels.foreach { case (p, l) => + assert(p ~== l absTol 0.5) + } + } +} diff --git a/mllib/src/test/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifierSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifierSuite.scala new file mode 100644 index 000000000000..ddc948f65df4 --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifierSuite.scala @@ -0,0 +1,91 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.ml.classification + +import org.apache.spark.SparkFunSuite +import org.apache.spark.mllib.classification.LogisticRegressionSuite._ +import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS +import org.apache.spark.mllib.evaluation.MulticlassMetrics +import org.apache.spark.mllib.linalg.Vectors +import org.apache.spark.mllib.util.MLlibTestSparkContext +import org.apache.spark.mllib.util.TestingUtils._ +import org.apache.spark.sql.Row + +class MultilayerPerceptronClassifierSuite extends SparkFunSuite with MLlibTestSparkContext { + + test("XOR function learning as binary classification problem with two outputs.") { + val dataFrame = sqlContext.createDataFrame(Seq( + (Vectors.dense(0.0, 0.0), 0.0), + (Vectors.dense(0.0, 1.0), 1.0), + (Vectors.dense(1.0, 0.0), 1.0), + (Vectors.dense(1.0, 1.0), 0.0)) + ).toDF("features", "label") + val layers = Array[Int](2, 5, 2) + val trainer = new MultilayerPerceptronClassifier() + .setLayers(layers) + .setBlockSize(1) + .setSeed(11L) + .setMaxIter(100) + val model = trainer.fit(dataFrame) + val result = model.transform(dataFrame) + val predictionAndLabels = result.select("prediction", "label").collect() + predictionAndLabels.foreach { case Row(p: Double, l: Double) => + assert(p == l) + } + } + + // TODO: implement a more rigorous test + test("3 class classification with 2 hidden layers") { + val nPoints = 1000 + + // The following weights are taken from OneVsRestSuite.scala + // they represent 3-class iris dataset + val weights = Array( + -0.57997, 0.912083, -0.371077, -0.819866, 2.688191, + -0.16624, -0.84355, -0.048509, -0.301789, 4.170682) + + val xMean = Array(5.843, 3.057, 3.758, 1.199) + val xVariance = Array(0.6856, 0.1899, 3.116, 0.581) + val rdd = sc.parallelize(generateMultinomialLogisticInput( + weights, xMean, xVariance, true, nPoints, 42), 2) + val dataFrame = sqlContext.createDataFrame(rdd).toDF("label", "features") + val numClasses = 3 + val numIterations = 100 + val layers = Array[Int](4, 5, 4, numClasses) + val trainer = new MultilayerPerceptronClassifier() + .setLayers(layers) + .setBlockSize(1) + .setSeed(11L) + .setMaxIter(numIterations) + val model = trainer.fit(dataFrame) + val mlpPredictionAndLabels = model.transform(dataFrame).select("prediction", "label") + .map { case Row(p: Double, l: Double) => (p, l) } + // train multinomial logistic regression + val lr = new LogisticRegressionWithLBFGS() + .setIntercept(true) + .setNumClasses(numClasses) + lr.optimizer.setRegParam(0.0) + .setNumIterations(numIterations) + val lrModel = lr.run(rdd) + val lrPredictionAndLabels = lrModel.predict(rdd.map(_.features)).zip(rdd.map(_.label)) + // MLP's predictions should not differ a lot from LR's. + val lrMetrics = new MulticlassMetrics(lrPredictionAndLabels) + val mlpMetrics = new MulticlassMetrics(mlpPredictionAndLabels) + assert(mlpMetrics.confusionMatrix ~== lrMetrics.confusionMatrix absTol 100) + } +}