diff --git a/python/tvm/relay/testing/darknet.py b/python/tvm/relay/testing/darknet.py index ab94ecd6d2a9..5ddbcb12b7bd 100644 --- a/python/tvm/relay/testing/darknet.py +++ b/python/tvm/relay/testing/darknet.py @@ -14,7 +14,7 @@ # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. -# pylint: disable=invalid-name, unused-variable, unused-argument, no-init, unpacking-non-sequence +# pylint: disable=invalid-name, unused-variable, unused-argument, no-init """ Compile DarkNet Models ==================== @@ -23,60 +23,41 @@ These are utility functions used for testing and tutorial file. """ from __future__ import division -import math import numpy as np from cffi import FFI import cv2 -def _resize_image(img, w_in, h_in): - """Resize the image to the given height and width.""" - imc, imh, imw = img.shape - h_in = int(h_in) - w_in = int(w_in) - part = np.zeros((imc, imh, w_in)) - resized = np.zeros((imc, h_in, w_in)) - w_scale = (imw - 1) / (w_in - 1) - h_scale = (imh - 1) / (h_in - 1) - for k in range(imc): - for j in range(imh): - for c in range(w_in): - if c == w_in - 1 or imw == 1: - part[k][j][c] = img[k][j][imw - 1] - else: - fdx, idx = math.modf(c * w_scale) - part[k][j][c] = (1 - fdx) * img[k][j][int(idx)] + \ - fdx * img[k][j][int(idx) + 1] - for k in range(imc): - for j in range(h_in): - fdy, idy = math.modf(j * h_scale) - for c in range(w_in): - resized[k][j][c] = (1 - fdy)*part[k][int(idy)][c] - if (j == h_in - 1) or (imh == 1): - continue - for c in range(w_in): - resized[k][j][c] += fdy * part[k][int(idy) + 1][c] - return resized -def load_image_color(test_image): - """To load the image using opencv api and do preprocessing.""" - imagex = cv2.imread(test_image) - imagex = cv2.cvtColor(imagex, cv2.COLOR_BGR2RGB) - imagex = np.array(imagex) +def convert_image(image): + """Convert the image with numpy.""" + imagex = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) + imagex = np.array(image) imagex = imagex.transpose((2, 0, 1)) imagex = np.divide(imagex, 255.0) imagex = np.flip(imagex, 0) return imagex +def load_image_color(test_image): + """To load the image using opencv api and do preprocessing.""" + imagex = cv2.imread(test_image) + return convert_image(imagex) + def _letterbox_image(img, w_in, h_in): """To get the image in boxed format.""" - imc, imh, imw = img.shape + imh, imw, imc = img.shape if (w_in / imw) < (h_in / imh): new_w = w_in new_h = imh * w_in // imw else: new_h = h_in new_w = imw * h_in // imh - resized = _resize_image(img, new_w, new_h) + dim = (new_w, new_h) + # Default interpolation method is INTER_LINEAR + # Other methods are INTER_AREA, INTER_NEAREST, INTER_CUBIC and INTER_LANCZOS4 + # For more information see: + # https://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html#resize + resized = cv2.resize(src=img, dsize=dim, interpolation=cv2.INTER_CUBIC) + resized = convert_image(resized) boxed = np.full((imc, h_in, w_in), 0.5, dtype=float) _, resizedh, resizedw = resized.shape boxed[:, int((h_in - new_h) / 2) @@ -84,7 +65,7 @@ def _letterbox_image(img, w_in, h_in): :int((w_in - new_w) / 2) + resizedw] = resized return boxed -def load_image(image, resize_width, resize_height): +def load_image(img, resize_width, resize_height): """Load the image and convert to the darknet model format. The image processing of darknet is different from normal. Parameters @@ -103,9 +84,8 @@ def load_image(image, resize_width, resize_height): img : Float array Array of processed image """ - - img = load_image_color(image) - return _letterbox_image(img, resize_width, resize_height) + imagex = cv2.imread(img) + return _letterbox_image(imagex, resize_width, resize_height) class LAYERTYPE(object): """Darknet LAYERTYPE Class constant."""