From d14ca52eb70c1ec6d8b592ac09371b6268a9d191 Mon Sep 17 00:00:00 2001 From: Yulun Yao Date: Wed, 7 Aug 2019 09:59:00 -0700 Subject: [PATCH] Tutorial: Build a Graph Convolutional Network on TVM (#3681) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * add build gcn tutorial * add dgl to docker file * add dgl to docker file * Apply suggestions from code review Co-Authored-By: 雾雨魔理沙 * add dgl to docker file * rerun checks * Revert "add build gcn tutorial" This reverts commit dbe8b5f0e02a13fdd586a9faa58fd1326653afb0. * resolve git issue * resolve git issue * resolve git issue * apply marisa's comment --- tutorials/frontend/build_gcn.py | 282 ++++++++++++++++++++++++++++++++ 1 file changed, 282 insertions(+) create mode 100644 tutorials/frontend/build_gcn.py diff --git a/tutorials/frontend/build_gcn.py b/tutorials/frontend/build_gcn.py new file mode 100644 index 000000000000..acbd27f9c849 --- /dev/null +++ b/tutorials/frontend/build_gcn.py @@ -0,0 +1,282 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. +""" +Building a Graph Convolutional Network +===================== +**Author**: `Yulun Yao `_ + +This article is an introductory tutorial to build a Graph Convolutional Network (GCN) with Relay. + +In this tutorial, we will run our GCN on Cora dataset to demonstrate. + +Cora dataset is a common benchmark for Graph Neural Networks (GNN) and frameworks that support GNN training and inference. + +We directly load the dataset from DGL library to do the apples to apples comparison against DGL. + +Please refer to DGL tutorial on installation at +https://docs.dgl.ai/install/index.html + +GPU support and more sparse operators will soon follow. +""" + +###################################################################### +# Define Graph Convolution Layer +# ---------------------------- +# To run GCN on TVM, we first need to implement Graph Convolution Layer. +# +# You may refer to https://github.com/dmlc/dgl/blob/master/python/dgl/nn/mxnet/conv.py for a GraphConv Layer implemented in DGL with MXNet Backend +# +# The layer is defined with below operations, note that we apply two transposes to keep adjacency matrix on right hand side of sparse_dense operator, +# this method is temporary and will be updated in next few weeks when we have sparse matrix transpose and support for left sparse operator. +# +# .. math:: +# +# \mbox{GraphConv}(A, H, W) = A * H * W +# = ((H * W)^t * A^t)^t +# = ((W^t * H^t) * A^t)^t +from tvm import relay + +def GraphConv( + layer_name, + input_dim, + output_dim, + adj, + input, + activation=None, + norm=None, + ): + r""" + Parameters + ---------- + layer_name: str + Name of layer + + input_dim: int + Input dimension per node feature + + output_dim: int, + Output dimension per node feature + + adj: namedtuple, + Graph representation (Adjacency Matrix) in Sparse Format (`data`, `indices`, `indptr`), + where `data` has shape [num_nonzeros], indices` has shape [num_nonzeros], `indptr` has shape [num_nodes + 1] + + input: relay.Expr, + Input feature to current layer with shape [num_nodes, input_dim] + + norm: relay.Expr, + Norm passed to this layer to normalize features before and after Convolution. + + activation: , + Activation function applies to the output. e.g. relay.nn.{relu, sigmoid, log_softmax, softmax, leaky_relu} + + + Returns + ---------- + output: tvm.relay.Expr + The Output Tensor for this layer [num_nodes, output_dim] + """ + if norm is not None: + input = relay.multiply(input, norm) + weight = relay.var(layer_name + "_weight", shape=(input_dim, output_dim)) + weight_transposed = relay.transpose(weight) + dense = relay.nn.dense(weight_transposed, input) + output = relay.nn.sparse_dense(dense, adj) + output_transposed = relay.transpose(output) + if norm is not None: + output_transposed = relay.multiply(output_transposed, norm) + if activation is not None: + output_transposed = activation(output_transposed) + return output_transposed + +###################################################################### +# Load the dataset +# ------------------ +# You may substitute this part with your own dataset, here we load data from DGL to benchmark +import tvm, dgl, scipy +import numpy as np +import networkx as nx +from collections import namedtuple +from dgl.data import load_data + +def load_dataset(dataset="cora"): + args = namedtuple("args", ["dataset"]) + dataset = load_data(args(dataset)) + + params = {} + params['infeats'] = dataset.features.astype('float32') # Only support float32 as feature for now + + # Remove self-loops to avoid duplicate passing of a node's feature to itself + g = dataset.graph + g.remove_edges_from(g.selfloop_edges()) + g.add_edges_from(zip(g.nodes, g.nodes)) + + # Generate adjacency matrix + adjacency = nx.to_scipy_sparse_matrix(g) + params['data'] = adjacency.data.astype('float32') + params['indices'] = adjacency.indices.astype('int32') + params['indptr'] = adjacency.indptr.astype('int32') + + # Normalization w.r.t. node degrees + degs = [g.in_degree[i] for i in range(g.number_of_nodes())] + params['norm'] = np.power(degs, -0.5).astype('float32') + params['norm'] = params['norm'].reshape((params['norm'].shape[0], 1)) + + return params + +###################################################################### +# Set up model Parameters +# ------------------ + +r""" +Parameters +---------- +num_hidden: int + number of hidden layers + +hidden_dim: int + input dimension of hidden layers + +num_classes: int + dimension of model output (Number of classes) + +target: str + currently only support llvm, GPU support will be added in next few weeks + +activation: , + Activation function applied to the output. e.g. relay.nn.{relu, sigmoid, log_softmax, softmax, leaky_relu} + +dataset: str + Name of dataset. You can pick from ['cora', 'citeseer', 'pubmed'] or you can use your own. +""" + +num_hidden = 1 +hidden_dim = 16 +num_classes = 7 +target = 'llvm' +activation = relay.nn.relu + +dataset = "cora" +params = load_dataset(dataset) + +# Check shape of features +assert len(params['infeats'].shape) == 2 +nnodes, input_dim = params['infeats'].shape + +# Check validity of adjacency matrix +assert params['data'] is not None and params['indices'] is not None and params['indptr'] is not None +assert nnodes == params['indptr'].shape[0] - 1 + +###################################################################### +# Put layers together +# ------------------ + +layers = [] + +# Define input features, norms, adjacency matrix +infeats = relay.var("infeats", shape=(nnodes, input_dim)) + +norm = relay.Constant(tvm.nd.array(params['norm'])) + +data = relay.Constant(tvm.nd.array(params['data'])) +indices = relay.Constant(tvm.nd.array(params['indices'])) +indptr = relay.Constant(tvm.nd.array(params['indptr'])) + +Adjacency = namedtuple('Adjacency', ['data', 'indices', 'indptr']) +adj = Adjacency(data, indices, indptr) + +# Generate Input Layer +layers.append(GraphConv( + layer_name= 'in', + input_dim= input_dim, + output_dim= hidden_dim, + adj = adj, + input= infeats, + activation= activation, + norm= norm, +)) + +# Generate Hidden Layers +for i in range(num_hidden): + layers.append(GraphConv( + layer_name= str(i), + input_dim= hidden_dim, + output_dim= hidden_dim, + adj = adj, + input= layers[-1], + activation= activation, + norm= norm, + )) + +# Generate Output Layer +layers.append(GraphConv( + layer_name= 'out', + input_dim= hidden_dim, + output_dim= num_classes, + adj = adj, + input= layers[-1], + activation= activation, + norm= norm, +)) +output = layers[-1] + +# Analyze free variables and generate function +func = relay.Function(relay.analysis.free_vars(output), output) + +###################################################################### +# Compile and run +# ------------------ +# We achieved 6.5x speedup for this dataset against dgl given the same model parameters. +# Output numerical difference < 10e-4 %. +# +# DGL version: https://github.com/dmlc/dgl/blob/master/examples/mxnet/gcn/gcn.py +from tvm.contrib import graph_runtime +import time + +# Set up weights. You can modify this part and use your own trained weights. +params['in_weight'] = np.ones((input_dim, hidden_dim), dtype='float32') +params['out_weight'] = np.ones((hidden_dim, num_classes), dtype='float32') +for i in range(num_hidden): + params["%s_weight"%(str(i))] = np.ones((hidden_dim, hidden_dim), dtype='float32') + +# Generate graph and library +with relay.build_config(opt_level=0): # Currently only support opt_level=0 + graph, lib, params = relay.build(func, target, params=params) + lib.save("lib.o") + +# Generate module for llvm +ctx = tvm.context(target, 0) +m = graph_runtime.create(graph, lib, ctx) +m.set_input(**params) + +print("finished compiling, testing inference time cost") +totaltime = 0 +for i in range(30): + st = time.time() + # One forward pass on the entire network + m.run() + end = time.time() + # Retrieve output Tensor as numpy array + outval = m.get_output(0).asnumpy() + + totaltime += (end-st) + + if i == 0: + print("features of first five nodes \n %s" % outval[:5]) + if i == 4: + print("5 Cycle Average Forward Pass Time ", totaltime/5) +print("30 Cycle Average Forward Pass Time ", totaltime/30)