This repository has been archived by the owner on May 22, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
fpu.c
1726 lines (1484 loc) · 44.6 KB
/
fpu.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2000-2018 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* compliance with the License. The rights granted to you under the License
* may not be used to create, or enable the creation or redistribution of,
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
*
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
*
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
/*
* Mach Operating System
* Copyright (c) 1992-1990 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
#include <mach/exception_types.h>
#include <mach/i386/thread_status.h>
#include <mach/i386/fp_reg.h>
#include <kern/mach_param.h>
#include <kern/processor.h>
#include <kern/thread.h>
#include <kern/zalloc.h>
#include <kern/misc_protos.h>
#include <kern/spl.h>
#include <kern/assert.h>
#include <libkern/OSAtomic.h>
#include <architecture/i386/pio.h>
#include <i386/cpuid.h>
#include <i386/fpu.h>
#include <i386/proc_reg.h>
#include <i386/misc_protos.h>
#include <i386/thread.h>
#include <i386/trap.h>
xstate_t fpu_capability = UNDEFINED; /* extended state capability */
xstate_t fpu_default = UNDEFINED; /* default extended state */
#define ALIGNED(addr,size) (((uintptr_t)(addr)&((size)-1))==0)
/* Forward */
extern void fpinit(void);
extern void fp_save(
thread_t thr_act);
extern void fp_load(
thread_t thr_act);
static void configure_mxcsr_capability_mask(x86_ext_thread_state_t *fps);
static xstate_t thread_xstate(thread_t);
x86_ext_thread_state_t initial_fp_state __attribute((aligned(64)));
x86_ext_thread_state_t default_avx512_state __attribute((aligned(64)));
x86_ext_thread_state_t default_avx_state __attribute((aligned(64)));
x86_ext_thread_state_t default_fx_state __attribute((aligned(64)));
/* Global MXCSR capability bitmask */
static unsigned int mxcsr_capability_mask;
#define fninit() \
__asm__ volatile("fninit")
#define fnstcw(control) \
__asm__("fnstcw %0" : "=m" (*(unsigned short *)(control)))
#define fldcw(control) \
__asm__ volatile("fldcw %0" : : "m" (*(unsigned short *) &(control)) )
#define fnclex() \
__asm__ volatile("fnclex")
#define fnsave(state) \
__asm__ volatile("fnsave %0" : "=m" (*state))
#define frstor(state) \
__asm__ volatile("frstor %0" : : "m" (state))
#define fwait() \
__asm__("fwait");
static inline void fxrstor(struct x86_fx_thread_state *a) {
__asm__ __volatile__("fxrstor %0" :: "m" (*a));
}
static inline void fxsave(struct x86_fx_thread_state *a) {
__asm__ __volatile__("fxsave %0" : "=m" (*a));
}
static inline void fxrstor64(struct x86_fx_thread_state *a) {
__asm__ __volatile__("fxrstor64 %0" :: "m" (*a));
}
static inline void fxsave64(struct x86_fx_thread_state *a) {
__asm__ __volatile__("fxsave64 %0" : "=m" (*a));
}
#if !defined(RC_HIDE_XNU_J137)
#define IS_VALID_XSTATE(x) ((x) == FP || (x) == AVX || (x) == AVX512)
#else
#define IS_VALID_XSTATE(x) ((x) == FP || (x) == AVX)
#endif
zone_t ifps_zone[] = {
[FP] = NULL,
[AVX] = NULL,
#if !defined(RC_HIDE_XNU_J137)
[AVX512] = NULL
#endif
};
static uint32_t fp_state_size[] = {
[FP] = sizeof(struct x86_fx_thread_state),
[AVX] = sizeof(struct x86_avx_thread_state),
#if !defined(RC_HIDE_XNU_J137)
[AVX512] = sizeof(struct x86_avx512_thread_state)
#endif
};
static const char *xstate_name[] = {
[UNDEFINED] = "UNDEFINED",
[FP] = "FP",
[AVX] = "AVX",
#if !defined(RC_HIDE_XNU_J137)
[AVX512] = "AVX512"
#endif
};
#if !defined(RC_HIDE_XNU_J137)
#define fpu_ZMM_capable (fpu_capability == AVX512)
#define fpu_YMM_capable (fpu_capability == AVX || fpu_capability == AVX512)
/*
* On-demand AVX512 support
* ------------------------
* On machines with AVX512 support, by default, threads are created with
* AVX512 masked off in XCR0 and an AVX-sized savearea is used. However, AVX512
* capabilities are advertised in the commpage and via sysctl. If a thread
* opts to use AVX512 instructions, the first will result in a #UD exception.
* Faulting AVX512 intructions are recognizable by their unique prefix.
* This exception results in the thread being promoted to use an AVX512-sized
* savearea and for the AVX512 bit masks being set in its XCR0. The faulting
* instruction is re-driven and the thread can proceed to perform AVX512
* operations.
*
* In addition to AVX512 instructions causing promotion, the thread_set_state()
* primitive with an AVX512 state flavor result in promotion.
*
* AVX512 promotion of the first thread in a task causes the default xstate
* of the task to be promoted so that any subsequently created or subsequently
* DNA-faulted thread will have AVX512 xstate and it will not need to fault-in
* a promoted xstate.
*
* Two savearea zones are used: the default pool of AVX-sized (832 byte) areas
* and a second pool of larger AVX512-sized (2688 byte) areas.
*
* Note the initial state value is an AVX512 object but that the AVX initial
* value is a subset of it.
*/
#else
#define fpu_YMM_capable (fpu_capability == AVX)
#endif
static uint32_t cpuid_reevaluated = 0;
static void fpu_store_registers(void *, boolean_t);
static void fpu_load_registers(void *);
#if !defined(RC_HIDE_XNU_J137)
static const uint32_t xstate_xmask[] = {
[FP] = FP_XMASK,
[AVX] = AVX_XMASK,
[AVX512] = AVX512_XMASK
};
#else
static const uint32_t xstate_xmask[] = {
[FP] = FP_XMASK,
[AVX] = AVX_XMASK,
};
#endif
static inline void xsave(struct x86_fx_thread_state *a, uint32_t rfbm) {
__asm__ __volatile__("xsave %0" :"=m" (*a) : "a"(rfbm), "d"(0));
}
static inline void xsave64(struct x86_fx_thread_state *a, uint32_t rfbm) {
__asm__ __volatile__("xsave64 %0" :"=m" (*a) : "a"(rfbm), "d"(0));
}
static inline void xrstor(struct x86_fx_thread_state *a, uint32_t rfbm) {
__asm__ __volatile__("xrstor %0" :: "m" (*a), "a"(rfbm), "d"(0));
}
static inline void xrstor64(struct x86_fx_thread_state *a, uint32_t rfbm) {
__asm__ __volatile__("xrstor64 %0" :: "m" (*a), "a"(rfbm), "d"(0));
}
#if !defined(RC_HIDE_XNU_J137)
__unused static inline void vzeroupper(void) {
__asm__ __volatile__("vzeroupper" ::);
}
static boolean_t fpu_thread_promote_avx512(thread_t); /* Forward */
/*
* Define a wrapper for bcopy to defeat destination size checka.
* This is needed to treat repeated objects such as
* _STRUCT_XMM_REG fpu_ymmh0;
* ...
* _STRUCT_XMM_REG fpu_ymmh7;
* as an array and to copy like so:
* bcopy_nockch(src,&dst->fpu_ymmh0,8*sizeof(_STRUCT_XMM_REG));
* without the compiler throwing a __builtin__memmove_chk error.
*/
static inline void bcopy_nochk(void *_src, void *_dst, size_t _len) {
bcopy(_src, _dst, _len);
}
/*
* Furthermore, make compile-time asserts that no padding creeps into structures
* for which we're doing this.
*/
#define ASSERT_PACKED(t, m1, m2, n, mt) \
extern char assert_packed_ ## t ## _ ## m1 ## _ ## m2 \
[(offsetof(t,m2) - offsetof(t,m1) == (n - 1)*sizeof(mt)) ? 1 : -1]
ASSERT_PACKED(x86_avx_state32_t, fpu_ymmh0, fpu_ymmh7, 8, _STRUCT_XMM_REG);
ASSERT_PACKED(x86_avx_state64_t, fpu_ymmh0, fpu_ymmh15, 16, _STRUCT_XMM_REG);
ASSERT_PACKED(x86_avx512_state32_t, fpu_k0, fpu_k7, 8, _STRUCT_OPMASK_REG);
ASSERT_PACKED(x86_avx512_state32_t, fpu_ymmh0, fpu_ymmh7, 8, _STRUCT_XMM_REG);
ASSERT_PACKED(x86_avx512_state32_t, fpu_zmmh0, fpu_zmmh7, 8, _STRUCT_YMM_REG);
ASSERT_PACKED(x86_avx512_state64_t, fpu_k0, fpu_k7, 8, _STRUCT_OPMASK_REG);
ASSERT_PACKED(x86_avx512_state64_t, fpu_ymmh0, fpu_ymmh15, 16, _STRUCT_XMM_REG);
ASSERT_PACKED(x86_avx512_state64_t, fpu_zmmh0, fpu_zmmh15, 16, _STRUCT_YMM_REG);
ASSERT_PACKED(x86_avx512_state64_t, fpu_zmm16, fpu_zmm31, 16, _STRUCT_ZMM_REG);
#if defined(DEBUG_AVX512)
#define DBG(x...) kprintf("DBG: " x)
typedef struct { uint8_t byte[8]; } opmask_t;
typedef struct { uint8_t byte[16]; } xmm_t;
typedef struct { uint8_t byte[32]; } ymm_t;
typedef struct { uint8_t byte[64]; } zmm_t;
static void
DBG_AVX512_STATE(struct x86_avx512_thread_state *sp)
{
int i, j;
xmm_t *xmm = (xmm_t *) &sp->fp.fx_XMM_reg;
xmm_t *ymmh = (xmm_t *) &sp->x_YMM_Hi128;
ymm_t *zmmh = (ymm_t *) &sp->x_ZMM_Hi256;
zmm_t *zmm = (zmm_t *) &sp->x_Hi16_ZMM;
opmask_t *k = (opmask_t *) &sp->x_Opmask;
kprintf("x_YMM_Hi128: %lu\n", offsetof(struct x86_avx512_thread_state, x_YMM_Hi128));
kprintf("x_Opmask: %lu\n", offsetof(struct x86_avx512_thread_state, x_Opmask));
kprintf("x_ZMM_Hi256: %lu\n", offsetof(struct x86_avx512_thread_state, x_ZMM_Hi256));
kprintf("x_Hi16_ZMM: %lu\n", offsetof(struct x86_avx512_thread_state, x_Hi16_ZMM));
kprintf("XCR0: 0x%016llx\n", xgetbv(XCR0));
kprintf("XINUSE: 0x%016llx\n", xgetbv(1));
/* Print all ZMM registers */
for (i = 0; i < 16; i++) {
kprintf("zmm%d:\t0x", i);
for (j = 0; j < 16; j++)
kprintf("%02x", xmm[i].byte[j]);
for (j = 0; j < 16; j++)
kprintf("%02x", ymmh[i].byte[j]);
for (j = 0; j < 32; j++)
kprintf("%02x", zmmh[i].byte[j]);
kprintf("\n");
}
for (i = 0; i < 16; i++) {
kprintf("zmm%d:\t0x", 16+i);
for (j = 0; j < 64; j++)
kprintf("%02x", zmm[i].byte[j]);
kprintf("\n");
}
for (i = 0; i < 8; i++) {
kprintf("k%d:\t0x", i);
for (j = 0; j < 8; j++)
kprintf("%02x", k[i].byte[j]);
kprintf("\n");
}
kprintf("xstate_bv: 0x%016llx\n", sp->_xh.xstate_bv);
kprintf("xcomp_bv: 0x%016llx\n", sp->_xh.xcomp_bv);
}
#else
#define DBG(x...)
static void
DBG_AVX512_STATE(__unused struct x86_avx512_thread_state *sp)
{
return;
}
#endif /* DEBUG_AVX512 */
#endif
#if DEBUG
static inline unsigned short
fnstsw(void)
{
unsigned short status;
__asm__ volatile("fnstsw %0" : "=ma" (status));
return(status);
}
#endif
/*
* Configure the initial FPU state presented to new threads.
* Determine the MXCSR capability mask, which allows us to mask off any
* potentially unsafe "reserved" bits before restoring the FPU context.
* *Not* per-cpu, assumes symmetry.
*/
static void
configure_mxcsr_capability_mask(x86_ext_thread_state_t *fps)
{
/* XSAVE requires a 64 byte aligned store */
assert(ALIGNED(fps, 64));
/* Clear, to prepare for the diagnostic FXSAVE */
bzero(fps, sizeof(*fps));
fpinit();
fpu_store_registers(fps, FALSE);
mxcsr_capability_mask = fps->fx.fx_MXCSR_MASK;
/* Set default mask value if necessary */
if (mxcsr_capability_mask == 0)
mxcsr_capability_mask = 0xffbf;
/* Clear vector register store */
bzero(&fps->fx.fx_XMM_reg[0][0], sizeof(fps->fx.fx_XMM_reg));
bzero(fps->avx.x_YMM_Hi128, sizeof(fps->avx.x_YMM_Hi128));
#if !defined(RC_HIDE_XNU_J137)
if (fpu_ZMM_capable) {
bzero(fps->avx512.x_ZMM_Hi256, sizeof(fps->avx512.x_ZMM_Hi256));
bzero(fps->avx512.x_Hi16_ZMM, sizeof(fps->avx512.x_Hi16_ZMM));
bzero(fps->avx512.x_Opmask, sizeof(fps->avx512.x_Opmask));
}
#endif
fps->fx.fp_valid = TRUE;
fps->fx.fp_save_layout = fpu_YMM_capable ? XSAVE32: FXSAVE32;
fpu_load_registers(fps);
if (fpu_ZMM_capable) {
xsave64((struct x86_fx_thread_state *)&default_avx512_state, xstate_xmask[AVX512]);
}
if (fpu_YMM_capable) {
xsave64((struct x86_fx_thread_state *)&default_avx_state, xstate_xmask[AVX]);
} else {
fxsave64((struct x86_fx_thread_state *)&default_fx_state);
}
/* Poison values to trap unsafe usage */
fps->fx.fp_valid = 0xFFFFFFFF;
fps->fx.fp_save_layout = FP_UNUSED;
/* Re-enable FPU/SSE DNA exceptions */
set_ts();
}
int fpsimd_fault_popc = 0;
/*
* Look for FPU and initialize it.
* Called on each CPU.
*/
void
init_fpu(void)
{
#if DEBUG
unsigned short status;
unsigned short control;
#endif
/*
* Check for FPU by initializing it,
* then trying to read the correct bit patterns from
* the control and status registers.
*/
set_cr0((get_cr0() & ~(CR0_EM|CR0_TS)) | CR0_NE); /* allow use of FPU */
fninit();
#if DEBUG
status = fnstsw();
fnstcw(&control);
assert(((status & 0xff) == 0) && ((control & 0x103f) == 0x3f));
#endif
/* Advertise SSE support */
if (cpuid_features() & CPUID_FEATURE_FXSR) {
set_cr4(get_cr4() | CR4_OSFXS);
/* And allow SIMD exceptions if present */
if (cpuid_features() & CPUID_FEATURE_SSE) {
set_cr4(get_cr4() | CR4_OSXMM);
}
} else
panic("fpu is not FP_FXSR");
fpu_capability = fpu_default = FP;
PE_parse_boot_argn("fpsimd_fault_popc", &fpsimd_fault_popc, sizeof(fpsimd_fault_popc));
#if !defined(RC_HIDE_XNU_J137)
static boolean_t is_avx512_enabled = TRUE;
if (cpu_number() == master_cpu) {
if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_AVX512F) {
PE_parse_boot_argn("avx512", &is_avx512_enabled, sizeof(boolean_t));
kprintf("AVX512 supported %s\n",
is_avx512_enabled ? "and enabled" : "but disabled");
}
}
#endif
/* Configure the XSAVE context mechanism if the processor supports
* AVX/YMM registers
*/
if (cpuid_features() & CPUID_FEATURE_XSAVE) {
cpuid_xsave_leaf_t *xs0p = &cpuid_info()->cpuid_xsave_leaf[0];
#if !defined(RC_HIDE_XNU_J137)
if (is_avx512_enabled &&
(xs0p->extended_state[eax] & XFEM_ZMM) == XFEM_ZMM) {
assert(xs0p->extended_state[eax] & XFEM_SSE);
assert(xs0p->extended_state[eax] & XFEM_YMM);
fpu_capability = AVX512;
/* XSAVE container size for all features */
set_cr4(get_cr4() | CR4_OSXSAVE);
xsetbv(0, AVX512_XMASK);
/* Re-evaluate CPUID, once, to reflect OSXSAVE */
if (OSCompareAndSwap(0, 1, &cpuid_reevaluated))
cpuid_set_info();
/* Verify that now selected state can be accommodated */
assert(xs0p->extended_state[ebx] == fp_state_size[AVX512]);
/*
* AVX set until AVX512 is used.
* See comment above about on-demand AVX512 support.
*/
xsetbv(0, AVX_XMASK);
fpu_default = AVX;
} else
#endif
if (xs0p->extended_state[eax] & XFEM_YMM) {
assert(xs0p->extended_state[eax] & XFEM_SSE);
fpu_capability = AVX;
fpu_default = AVX;
/* XSAVE container size for all features */
set_cr4(get_cr4() | CR4_OSXSAVE);
xsetbv(0, AVX_XMASK);
/* Re-evaluate CPUID, once, to reflect OSXSAVE */
if (OSCompareAndSwap(0, 1, &cpuid_reevaluated))
cpuid_set_info();
/* Verify that now selected state can be accommodated */
assert(xs0p->extended_state[ebx] == fp_state_size[AVX]);
}
}
if (cpu_number() == master_cpu)
kprintf("fpu_state: %s, state_size: %d\n",
xstate_name[fpu_capability],
fp_state_size[fpu_capability]);
fpinit();
current_cpu_datap()->cpu_xstate = fpu_default;
/*
* Trap wait instructions. Turn off FPU for now.
*/
set_cr0(get_cr0() | CR0_TS | CR0_MP);
}
/*
* Allocate and initialize FP state for specified xstate.
* Don't load state.
*/
static void *
fp_state_alloc(xstate_t xs)
{
struct x86_fx_thread_state *ifps;
assert(ifps_zone[xs] != NULL);
ifps = zalloc(ifps_zone[xs]);
#if DEBUG
if (!(ALIGNED(ifps,64))) {
panic("fp_state_alloc: %p, %u, %p, %u",
ifps, (unsigned) ifps_zone[xs]->elem_size,
(void *) ifps_zone[xs]->free_elements,
(unsigned) ifps_zone[xs]->alloc_size);
}
#endif
bzero(ifps, fp_state_size[xs]);
return ifps;
}
static inline void
fp_state_free(void *ifps, xstate_t xs)
{
assert(ifps_zone[xs] != NULL);
zfree(ifps_zone[xs], ifps);
}
void clear_fpu(void)
{
set_ts();
}
static void fpu_load_registers(void *fstate) {
struct x86_fx_thread_state *ifps = fstate;
fp_save_layout_t layout = ifps->fp_save_layout;
assert(current_task() == NULL || \
(thread_is_64bit_addr(current_thread()) ? \
(layout == FXSAVE64 || layout == XSAVE64) : \
(layout == FXSAVE32 || layout == XSAVE32)));
assert(ALIGNED(ifps, 64));
assert(ml_get_interrupts_enabled() == FALSE);
#if DEBUG
if (layout == XSAVE32 || layout == XSAVE64) {
struct x86_avx_thread_state *iavx = fstate;
unsigned i;
/* Verify reserved bits in the XSAVE header*/
if (iavx->_xh.xstate_bv & ~xstate_xmask[current_xstate()])
panic("iavx->_xh.xstate_bv: 0x%llx", iavx->_xh.xstate_bv);
for (i = 0; i < sizeof(iavx->_xh.xhrsvd); i++)
if (iavx->_xh.xhrsvd[i])
panic("Reserved bit set");
}
if (fpu_YMM_capable) {
if (layout != XSAVE32 && layout != XSAVE64)
panic("Inappropriate layout: %u\n", layout);
}
#endif /* DEBUG */
switch (layout) {
case FXSAVE64:
fxrstor64(ifps);
break;
case FXSAVE32:
fxrstor(ifps);
break;
case XSAVE64:
xrstor64(ifps, xstate_xmask[current_xstate()]);
break;
case XSAVE32:
xrstor(ifps, xstate_xmask[current_xstate()]);
break;
default:
panic("fpu_load_registers() bad layout: %d\n", layout);
}
}
static void fpu_store_registers(void *fstate, boolean_t is64) {
struct x86_fx_thread_state *ifps = fstate;
assert(ALIGNED(ifps, 64));
xstate_t xs = current_xstate();
switch (xs) {
case FP:
if (is64) {
fxsave64(fstate);
ifps->fp_save_layout = FXSAVE64;
} else {
fxsave(fstate);
ifps->fp_save_layout = FXSAVE32;
}
break;
case AVX:
#if !defined(RC_HIDE_XNU_J137)
case AVX512:
#endif
if (is64) {
xsave64(ifps, xstate_xmask[xs]);
ifps->fp_save_layout = XSAVE64;
} else {
xsave(ifps, xstate_xmask[xs]);
ifps->fp_save_layout = XSAVE32;
}
break;
default:
panic("fpu_store_registers() bad xstate: %d\n", xs);
}
}
/*
* Initialize FP handling.
*/
void
fpu_module_init(void)
{
if (!IS_VALID_XSTATE(fpu_default))
panic("fpu_module_init: invalid extended state %u\n",
fpu_default);
/* We explicitly choose an allocation size of 13 pages = 64 * 832
* to eliminate waste for the 832 byte sized
* AVX XSAVE register save area.
*/
ifps_zone[fpu_default] = zinit(fp_state_size[fpu_default],
thread_max * fp_state_size[fpu_default],
64 * fp_state_size[fpu_default],
"x86 fpsave state");
/* To maintain the required alignment, disable
* zone debugging for this zone as that appends
* 16 bytes to each element.
*/
zone_change(ifps_zone[fpu_default], Z_ALIGNMENT_REQUIRED, TRUE);
#if !defined(RC_HIDE_XNU_J137)
/*
* If AVX512 is supported, create a separate savearea zone.
* with allocation size: 19 pages = 32 * 2668
*/
if (fpu_capability == AVX512) {
ifps_zone[AVX512] = zinit(fp_state_size[AVX512],
thread_max * fp_state_size[AVX512],
32 * fp_state_size[AVX512],
"x86 avx512 save state");
zone_change(ifps_zone[AVX512], Z_ALIGNMENT_REQUIRED, TRUE);
}
#endif
/* Determine MXCSR reserved bits and configure initial FPU state*/
configure_mxcsr_capability_mask(&initial_fp_state);
}
/*
* Context switch fpu state.
* Always save old thread`s FPU context but don't load new .. allow that to fault-in.
* Switch to the new task's xstate.
*/
void
fpu_switch_context(thread_t old, thread_t new)
{
struct x86_fx_thread_state *ifps;
cpu_data_t *cdp = current_cpu_datap();
xstate_t new_xstate = new ? thread_xstate(new) : fpu_default;
assert(ml_get_interrupts_enabled() == FALSE);
ifps = (old)->machine.ifps;
#if DEBUG
if (ifps && ((ifps->fp_valid != FALSE) && (ifps->fp_valid != TRUE))) {
panic("ifps->fp_valid: %u\n", ifps->fp_valid);
}
#endif
if (ifps != 0 && (ifps->fp_valid == FALSE)) {
/* Clear CR0.TS in preparation for the FP context save. In
* theory, this shouldn't be necessary since a live FPU should
* indicate that TS is clear. However, various routines
* (such as sendsig & sigreturn) manipulate TS directly.
*/
clear_ts();
/* registers are in FPU - save to memory */
boolean_t is64 = (thread_is_64bit_addr(old) &&
is_saved_state64(old->machine.iss));
fpu_store_registers(ifps, is64);
ifps->fp_valid = TRUE;
if (fpu_ZMM_capable && (cdp->cpu_xstate == AVX512)) {
xrstor64((struct x86_fx_thread_state *)&default_avx512_state, xstate_xmask[AVX512]);
} else if (fpu_YMM_capable) {
xrstor64((struct x86_fx_thread_state *) &default_avx_state, xstate_xmask[AVX]);
} else {
fxrstor64((struct x86_fx_thread_state *)&default_fx_state);
}
}
assertf(fpu_YMM_capable ? (xgetbv(XCR0) == xstate_xmask[cdp->cpu_xstate]) : TRUE, "XCR0 mismatch: 0x%llx 0x%x 0x%x", xgetbv(XCR0), cdp->cpu_xstate, xstate_xmask[cdp->cpu_xstate]);
if (new_xstate != cdp->cpu_xstate) {
DBG("fpu_switch_context(%p,%p) new xstate: %s\n",
old, new, xstate_name[new_xstate]);
xsetbv(0, xstate_xmask[new_xstate]);
cdp->cpu_xstate = new_xstate;
}
set_ts();
}
/*
* Free a FPU save area.
* Called only when thread terminating - no locking necessary.
*/
void
fpu_free(thread_t thread, void *fps)
{
pcb_t pcb = THREAD_TO_PCB(thread);
fp_state_free(fps, pcb->xstate);
pcb->xstate = UNDEFINED;
}
/*
* Set the floating-point state for a thread based
* on the FXSave formatted data. This is basically
* the same as fpu_set_state except it uses the
* expanded data structure.
* If the thread is not the current thread, it is
* not running (held). Locking needed against
* concurrent fpu_set_state or fpu_get_state.
*/
kern_return_t
fpu_set_fxstate(
thread_t thr_act,
thread_state_t tstate,
thread_flavor_t f)
{
struct x86_fx_thread_state *ifps;
struct x86_fx_thread_state *new_ifps;
x86_float_state64_t *state;
pcb_t pcb;
boolean_t old_valid, fresh_state = FALSE;
if (fpu_capability == UNDEFINED)
return KERN_FAILURE;
if ((f == x86_AVX_STATE32 || f == x86_AVX_STATE64) &&
fpu_capability < AVX)
return KERN_FAILURE;
#if !defined(RC_HIDE_XNU_J137)
if ((f == x86_AVX512_STATE32 || f == x86_AVX512_STATE64) &&
thread_xstate(thr_act) == AVX)
if (!fpu_thread_promote_avx512(thr_act))
return KERN_FAILURE;
#endif
state = (x86_float_state64_t *)tstate;
assert(thr_act != THREAD_NULL);
pcb = THREAD_TO_PCB(thr_act);
if (state == NULL) {
/*
* new FPU state is 'invalid'.
* Deallocate the fp state if it exists.
*/
simple_lock(&pcb->lock);
ifps = pcb->ifps;
pcb->ifps = 0;
simple_unlock(&pcb->lock);
if (ifps != 0) {
fp_state_free(ifps, thread_xstate(thr_act));
}
} else {
/*
* Valid incoming state. Allocate the fp state if there is none.
*/
new_ifps = 0;
Retry:
simple_lock(&pcb->lock);
ifps = pcb->ifps;
if (ifps == 0) {
if (new_ifps == 0) {
simple_unlock(&pcb->lock);
new_ifps = fp_state_alloc(thread_xstate(thr_act));
goto Retry;
}
ifps = new_ifps;
new_ifps = 0;
pcb->ifps = ifps;
pcb->xstate = thread_xstate(thr_act);
fresh_state = TRUE;
}
/*
* now copy over the new data.
*/
old_valid = ifps->fp_valid;
#if DEBUG || DEVELOPMENT
if ((fresh_state == FALSE) && (old_valid == FALSE) && (thr_act != current_thread())) {
panic("fpu_set_fxstate inconsistency, thread: %p not stopped", thr_act);
}
#endif
/*
* Clear any reserved bits in the MXCSR to prevent a GPF
* when issuing an FXRSTOR.
*/
state->fpu_mxcsr &= mxcsr_capability_mask;
bcopy((char *)&state->fpu_fcw, (char *)ifps, fp_state_size[FP]);
switch (thread_xstate(thr_act)) {
case UNDEFINED:
panic("fpu_set_fxstate() UNDEFINED xstate");
break;
case FP:
ifps->fp_save_layout = thread_is_64bit_addr(thr_act) ? FXSAVE64 : FXSAVE32;
break;
case AVX: {
struct x86_avx_thread_state *iavx = (void *) ifps;
x86_avx_state64_t *xs = (x86_avx_state64_t *) state;
iavx->fp.fp_save_layout = thread_is_64bit_addr(thr_act) ? XSAVE64 : XSAVE32;
/* Sanitize XSAVE header */
bzero(&iavx->_xh.xhrsvd[0], sizeof(iavx->_xh.xhrsvd));
iavx->_xh.xstate_bv = AVX_XMASK;
iavx->_xh.xcomp_bv = 0;
if (f == x86_AVX_STATE32) {
bcopy_nochk(&xs->fpu_ymmh0, iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG));
} else if (f == x86_AVX_STATE64) {
bcopy_nochk(&xs->fpu_ymmh0, iavx->x_YMM_Hi128, 16 * sizeof(_STRUCT_XMM_REG));
} else {
iavx->_xh.xstate_bv = (XFEM_SSE | XFEM_X87);
}
break;
}
#if !defined(RC_HIDE_XNU_J137)
case AVX512: {
struct x86_avx512_thread_state *iavx = (void *) ifps;
union {
thread_state_t ts;
x86_avx512_state32_t *s32;
x86_avx512_state64_t *s64;
} xs = { .ts = tstate };
iavx->fp.fp_save_layout = thread_is_64bit_addr(thr_act) ? XSAVE64 : XSAVE32;
/* Sanitize XSAVE header */
bzero(&iavx->_xh.xhrsvd[0], sizeof(iavx->_xh.xhrsvd));
iavx->_xh.xstate_bv = AVX512_XMASK;
iavx->_xh.xcomp_bv = 0;
switch (f) {
case x86_AVX512_STATE32:
bcopy_nochk(&xs.s32->fpu_k0, iavx->x_Opmask, 8 * sizeof(_STRUCT_OPMASK_REG));
bcopy_nochk(&xs.s32->fpu_zmmh0, iavx->x_ZMM_Hi256, 8 * sizeof(_STRUCT_YMM_REG));
bcopy_nochk(&xs.s32->fpu_ymmh0, iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG));
DBG_AVX512_STATE(iavx);
break;
case x86_AVX_STATE32:
bcopy_nochk(&xs.s32->fpu_ymmh0, iavx->x_YMM_Hi128, 8 * sizeof(_STRUCT_XMM_REG));
break;
case x86_AVX512_STATE64:
bcopy_nochk(&xs.s64->fpu_k0, iavx->x_Opmask, 8 * sizeof(_STRUCT_OPMASK_REG));
bcopy_nochk(&xs.s64->fpu_zmm16, iavx->x_Hi16_ZMM, 16 * sizeof(_STRUCT_ZMM_REG));
bcopy_nochk(&xs.s64->fpu_zmmh0, iavx->x_ZMM_Hi256, 16 * sizeof(_STRUCT_YMM_REG));
bcopy_nochk(&xs.s64->fpu_ymmh0, iavx->x_YMM_Hi128, 16 * sizeof(_STRUCT_XMM_REG));
DBG_AVX512_STATE(iavx);
break;
case x86_AVX_STATE64:
bcopy_nochk(&xs.s64->fpu_ymmh0, iavx->x_YMM_Hi128, 16 * sizeof(_STRUCT_XMM_REG));
break;
}
break;
}
#endif
}
ifps->fp_valid = old_valid;
if (old_valid == FALSE) {
boolean_t istate = ml_set_interrupts_enabled(FALSE);
ifps->fp_valid = TRUE;
/* If altering the current thread's state, disable FPU */
if (thr_act == current_thread())
set_ts();
ml_set_interrupts_enabled(istate);
}
simple_unlock(&pcb->lock);
if (new_ifps != 0)
fp_state_free(new_ifps, thread_xstate(thr_act));
}
return KERN_SUCCESS;
}
/*
* Get the floating-point state for a thread.
* If the thread is not the current thread, it is
* not running (held). Locking needed against
* concurrent fpu_set_state or fpu_get_state.
*/
kern_return_t
fpu_get_fxstate(
thread_t thr_act,
thread_state_t tstate,
thread_flavor_t f)
{
struct x86_fx_thread_state *ifps;
x86_float_state64_t *state;
kern_return_t ret = KERN_FAILURE;
pcb_t pcb;
if (fpu_capability == UNDEFINED)
return KERN_FAILURE;
if ((f == x86_AVX_STATE32 || f == x86_AVX_STATE64) &&
fpu_capability < AVX)
return KERN_FAILURE;
#if !defined(RC_HIDE_XNU_J137)
if ((f == x86_AVX512_STATE32 || f == x86_AVX512_STATE64) &&
thread_xstate(thr_act) != AVX512)
return KERN_FAILURE;
#endif
state = (x86_float_state64_t *)tstate;
assert(thr_act != THREAD_NULL);
pcb = THREAD_TO_PCB(thr_act);
simple_lock(&pcb->lock);
ifps = pcb->ifps;
if (ifps == 0) {
/*
* No valid floating-point state.
*/
bcopy((char *)&initial_fp_state, (char *)&state->fpu_fcw,
fp_state_size[FP]);
simple_unlock(&pcb->lock);
return KERN_SUCCESS;
}
/*
* Make sure we`ve got the latest fp state info
* If the live fpu state belongs to our target
*/
if (thr_act == current_thread()) {
boolean_t intr;
intr = ml_set_interrupts_enabled(FALSE);
clear_ts();
fp_save(thr_act);
clear_fpu();
(void)ml_set_interrupts_enabled(intr);
}
if (ifps->fp_valid) {
bcopy((char *)ifps, (char *)&state->fpu_fcw, fp_state_size[FP]);
switch (thread_xstate(thr_act)) {
case UNDEFINED:
panic("fpu_get_fxstate() UNDEFINED xstate");
break;
case FP:
break; /* already done */