
Week-01 : NumPy

1. Numpy

This is a quick overview of arrays in NumPy. It demonstrates how n-dimensional (n>=2) arrays are represented

and can be manipulated. In particular, if you don’t know how to apply common functions to n-dimensional

arrays (without using for-loops), or if you want to understand axis and shape properties for n-dimensional

arrays.

Learning Objectives
You should be able to:

 Understand the difference between one-, two- and n-dimensional arrays in NumPy;

 Understand how to apply some linear algebra operations to n-dimensional arrays without using for-

loops;

 Understand axis and shape properties for n-dimensional arrays.

The Basics

NumPy’s main object is the homogeneous multidimensional array. It is a table of elements (usually numbers),

all of the same type, indexed by a tuple of non-negative integers. In NumPy dimensions are called axes.

For example, the array for the coordinates of a point in 3D space, [1, 2, 1], has one axis. That axis has 3

elements in it, so we say it has a length of 3. In the example pictured below, the array has 2 axes. The first

axis has a length of 2, the second axis has a length of 3.

NumPy’s array class is called ndarray. It is also known by the alias array. Note that numpy.array is not the

same as the Standard Python Library class array.array, which only handles one-dimensional arrays and offers

less functionality. The more important attributes of an ndarray object are:

ndarray.ndim

The number of axes (dimensions) of the array.

ndarray.shape

The dimensions of the array. This is a tuple of integers indicating the size of the array in each dimension. For

a matrix with n rows and m columns, shape will be (n,m). The length of the shape tuple is therefore the

number of axes, ndim.

ndarray.size

The total number of elements of the array. This is equal to the product of the elements of shape.

ndarray.dtype

An object describing the type of the elements in the array. One can create or specify dtype’s using standard

Python types. Additionally NumPy provides types of its own. numpy.int32, numpy.int16, and numpy.float64

are some examples.

ndarray.itemsize

The size in bytes of each element of the array. For example, an array of elements of type float64 has itemsize 8

(=64/8), while one of type complex32 has itemsize 4 (=32/8). It is equivalent to ndarray.dtype.itemsize.

ndarray.data

The buffer containing the actual elements of the array. Normally, we won’t need to use this attribute because

we will access the elements in an array using indexing facilities.

Example

>>>import numpy as np

>>> a = np.arange(15).reshape(3, 5)

>>> a

array([[0, 1, 2, 3, 4],

 [5, 6, 7, 8, 9],

 [10, 11, 12, 13, 14]])

>>> a.shape

[[1., 0., 0.],

 [0., 1., 2.]]

(3, 5)

>>> a.ndim

2

>>> a.dtype.name

'int64'

>>> a.itemsize

8

>>> a.size

15

>>> type(a)

<class 'numpy.ndarray'>

>>> b = np.array([6, 7, 8])

>>> b

array([6, 7, 8])

>>> type(b)

<class 'numpy.ndarray'>

Array Creation

There are several ways to create arrays.

For example, you can create an array from a regular Python list or tuple using the array function. The type of

the resulting array is deduced from the type of the elements in the sequences.

>>>import numpy as np

>>> a = np.array([2, 3, 4])

>>> a

array([2, 3, 4])

>>> a.dtype

dtype('int64')

>>> b = np.array([1.2, 3.5, 5.1])

>>> b.dtype

dtype('float64')

array transforms sequences of sequences into two-dimensional arrays, sequences of sequences of sequences

into three-dimensional arrays, and so on.

>>>b = np.array([(1.5, 2, 3), (4, 5, 6)])

>>> b

array([[1.5, 2. , 3.],

 [4. , 5. , 6.]])

The type of the array can also be explicitly specified at creation time:

>>>c = np.array([[1, 2], [3, 4]], dtype=complex)

>>> c

array([[1.+0.j, 2.+0.j],

 [3.+0.j, 4.+0.j]])

Often, the elements of an array are originally unknown, but its size is known. Hence, NumPy offers several

functions to create arrays with initial placeholder content. These minimize the necessity of growing arrays, an

expensive operation.

The function zeros creates an array full of zeros, the function ones creates an array full of ones, and the function

empty creates an array whose initial content is random and depends on the state of the memory. By default,

the dtype of the created array is float64, but it can be specified via the key word argument dtype.

>>>np.zeros((3, 4))

array([[0., 0., 0., 0.],

 [0., 0., 0., 0.],

 [0., 0., 0., 0.]])

>>> np.ones((2, 3, 4), dtype=np.int16)

array([[[1, 1, 1, 1],

 [1, 1, 1, 1],

 [1, 1, 1, 1]],

 [[1, 1, 1, 1],

 [1, 1, 1, 1],

 [1, 1, 1, 1]]], dtype=int16)

>>> np.empty((2, 3))

array([[3.73603959e-262, 6.02658058e-154, 6.55490914e-260], # may vary

 [5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])

To create sequences of numbers, NumPy provides the arange function which is analogous to the Python built-

in range, but returns an array.

>>>np.arange(10, 30, 5)

array([10, 15, 20, 25])

>>> np.arange(0, 2, 0.3) # it accepts float arguments

array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])

When arange is used with floating point arguments, it is generally not possible to predict the number of

elements obtained, due to the finite floating point precision. For this reason, it is usually better to use the

function linspace that receives as an argument the number of elements that we want, instead of the step:

>>>from numpy import pi

>>> np.linspace(0, 2, 9) # 9 numbers from 0 to 2

array([0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2.])

>>> x = np.linspace(0, 2 * pi, 100) # useful to evaluate

 #function at lots of points

>>> f = np.sin(x)

Printing Arrays

When you print an array, NumPy displays it in a similar way to nested lists, but with the following layout:

 the last axis is printed from left to right,

 the second-to-last is printed from top to bottom,

 the rest are also printed from top to bottom, with each slice separated from the next by an empty line.

One-dimensional arrays are then printed as rows, bidimensionals as matrices and tridimensionals as lists of

matrices.

>>>a = np.arange(6) # 1d array

>>> print(a)

[0 1 2 3 4 5]

>>> b = np.arange(12).reshape(4, 3) # 2d array

>>> print(b)

[[0 1 2]

 [3 4 5]

 [6 7 8]

 [9 10 11]]

>>> c = np.arange(24).reshape(2, 3, 4) # 3d array

>>> print(c)

[[[0 1 2 3]

 [4 5 6 7]

 [8 9 10 11]]

 [[12 13 14 15]

 [16 17 18 19]

 [20 21 22 23]]]

If an array is too large to be printed, NumPy automatically skips the central part of the array and only prints

the corners:

>>>print(np.arange(10000))

[0 1 2 ... 9997 9998 9999]

>>>

>>> print(np.arange(10000).reshape(100, 100))

[[0 1 2 ... 97 98 99]

 [100 101 102 ... 197 198 199]

 [200 201 202 ... 297 298 299]

 ...

 [9700 9701 9702 ... 9797 9798 9799]

 [9800 9801 9802 ... 9897 9898 9899]

 [9900 9901 9902 ... 9997 9998 9999]]

To disable this behaviour and force NumPy to print the entire array, you can change the printing options

using set_printoptions.

>>> np.set_printoptions(threshold=sys.maxsize) # sys module should be imported

Basic Operations

Arithmetic operators on arrays apply elementwise. A new array is created and filled with the result.

>>> a = np.array([20, 30, 40, 50])

>>> b = np.arange(4)

>>> b

array([0, 1, 2, 3])

>>> c = a - b

>>> c

array([20, 29, 38, 47])

>>> b**2

array([0, 1, 4, 9])

>>> 10 * np.sin(a)

array([9.12945251, -9.88031624, 7.4511316 , -2.62374854])

>>> a < 35

array([True, True, False, False])

Unlike in many matrix languages, the product operator * operates elementwise in NumPy arrays. The matrix

product can be performed using the @ operator (in python >=3.5) or the dot function or method:

>>> A = np.array([[1, 1],

... [0, 1]])

>>> B = np.array([[2, 0],

... [3, 4]])

>>> A * B # elementwise product

array([[2, 0],

 [0, 4]])

>>> A @ B # matrix product

array([[5, 4],

 [3, 4]])

>>> A.dot(B) # another matrix product

array([[5, 4],

 [3, 4]])

Some operations, such as += and *=, act in place to modify an existing array rather than create a new one.

>>> rg = np.random.default_rng(1) # create instance of default random number generator

>>> a = np.ones((2, 3), dtype=int)

>>> b = rg.random((2, 3))

>>> a *= 3

>>> a

array([[3, 3, 3],

 [3, 3, 3]])

>>> b += a

>>> b

array([[3.51182162, 3.9504637 , 3.14415961],

 [3.94864945, 3.31183145, 3.42332645]])

>>> a += b # b is not automatically converted to integer type

Traceback (most recent call last):

 ...

numpy.core._exceptions._UFuncOutputCastingError: Cannot cast ufunc 'add' output from dtype('float64') to

dtype('int64') with casting rule 'same_kind'

When operating with arrays of different types, the type of the resulting array corresponds to the more general

or precise one (a behavior known as upcasting).

>>> a = np.ones(3, dtype=np.int32)

>>> b = np.linspace(0, pi, 3)

>>> b.dtype.name

'float64'

>>> c = a + b

>>> c

array([1. , 2.57079633, 4.14159265])

>>> c.dtype.name

'float64'

>>> d = np.exp(c * 1j)

>>> d

array([0.54030231+0.84147098j, -0.84147098+0.54030231j,

 -0.54030231-0.84147098j])

>>> d.dtype.name

'complex128'

Many unary operations, such as computing the sum of all the elements in the array, are implemented as

methods of the ndarray class.

>>> a = rg.random((2, 3))

>>> a

array([[0.82770259, 0.40919914, 0.54959369],

 [0.02755911, 0.75351311, 0.53814331]])

>>> a.sum()

3.1057109529998157

>>> a.min()

0.027559113243068367

>>> a.max()

0.8277025938204418

Questions

1. Convert a 1-D array into a 2-D array with 3 rows.

Start with:
Assign-1 = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8])
Desired output:
[[0, 1, 2]
[3, 4, 5]
[6, 7, 8]]

2. Replace all odd numbers in the given array with -1

Start with:
Assign-2 = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
Desired output:
[0, -1, 2, -1, 4, -1, 6, -1, 8, -1]

3. Find the positions of:

elements in x where its value is more than its corresponding element in y, and elements in x where its value is
equals to its corresponding element in y.

Start with these:
x = np.array([21, 64, 86, 22, 74, 55, 81, 79, 90, 89])
y = np.array([21, 7, 3, 45, 10, 29, 55, 4, 37, 18])

Desired output:
(array([1, 2, 4, 5, 6, 7, 8, 9]),) and (array([0]),)

4. Extract the first four columns of this 2-D array.
Start with this:
Assign-4= np.arange(100).reshape(5,-1)

Desired output:
[[0 1 2 3]
[20 21 22 23]
[40 41 42 43]
[60 61 62 63]
[80 81 82 83]]

Additional questions

1. Generate a 1-D array of 10 random integers. Each integer should be a number between 30 and 40 (inclusive).
Sample of desired output:
[36, 30, 36, 38, 31, 35, 36, 30, 32, 34]

2. Consider the following matrices :
A= ((1, 2, 3), (4, 5, 6), (7, 8, 10)) and B = ((7, 8, 10) ,(4, 5, 6), (1, 2, 3))
Write a python program to perform the following using Numeric Python (numpy).
i) Add and Subtract of the Matrix A and B, print the resultant matrix C for add and E for subtract.
ii) Compute the sum of all elements of Matrix A, sum of each column of Matrix B and sum of each row of Matrix C
iii) Product of two matrices A and B, and print the resultant matrix D
iv) Sort the elements of resultant matrix C and print the resultant Matrix E.
v) Transpose the Matrix E and print the result

WEEK-02: DATA ANALYSIS_AND_VISUALISATION_WITH_PYTHON

Matplotlib

Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform

data visualization library built on NumPy arrays and designed to work with the broader SciPy stack. It was

introduced by John Hunter in the year 2002. One of the greatest benefits of visualization is that it allows us

visual access to huge amounts of data in easily digestible visuals. Matplotlib consists of several plots like line,

bar, scatter, histogram etc.

Basic plots in Matplotlib :

Matplotlib comes with a wide variety of plots. Plots helps to understand trends, patterns, and to make

correlations. They’re typically instruments for reasoning about quantitative information. Some of the sample

plots are covered here.

Line plot :

Example 1

importing matplotlib module

from matplotlib import pyplot as plt

x-axis values

x = [5, 2, 9, 4, 7]

Y-axis values

y = [10, 5, 8, 4, 2]

Function to plot

plt.plot(x,y)

function to show the plot

plt.show()

Bar plot:

Example 2
importing matplotlib module

from matplotlib import pyplot as plt

x-axis values

x = [5, 2, 9, 4, 7]

Y-axis values

y = [10, 5, 8, 4, 2]

Function to plot the bar

plt.bar(x,y)

function to show the plot

plt.show()

Hist plot:

A histogram is basically used to represent data provided in a form of some groups.It is accurate method for

the graphical representation of numerical data distribution.It is a type of bar plot where X-axis represents the

bin ranges while Y-axis gives information about frequency.

Creating a Histogram

To create a histogram the first step is to create bin of the ranges, then distribute the whole range of the values

into a series of intervals, and count the values which fall into each of the intervals.Bins are clearly identified

as consecutive, non-overlapping intervals of variables.The matplotlib.pyplot.hist() function is used to compute

and create histogram of x.

In Matplotlib, we use the hist() function to create histograms. The hist() function will use an array of numbers

to create a histogram, the array is sent into the function as an argument. For simplicity we use NumPy to

randomly generate an array with 250 values, where the values will concentrate around 170, and the standard

deviation is 10.

You can read from the histogram that there are approximately:

2 people from 140 to 145cm

5 people from 145 to 150cm

15 people from 151 to 156cm

31 people from 157 to 162cm

46 people from 163 to 168cm

53 people from 168 to 173cm

45 people from 173 to 178cm

28 people from 179 to 184cm

21 people from 185 to 190cm

4 people from 190 to 195cm

Example: Say you ask for the height of 250 people, you might end up with a histogram like this:

The hist() function will read the array and produce a histogram:

Simple histogram:

Example 3

import matplotlib.pyplot as plt

import numpy as np

x = np.random.normal(170, 10, 250)

print(x)

plt.hist(x)

plt.show()

Ref: https://www.w3schools.com/python/matplotlib_histograms.asp

Example 4

importing matplotlib module

from matplotlib import pyplot as plt

Y-axis values

y = [10, 5, 8, 4, 2]

Function to plot histogram

plt.hist(y)

Function to show the plot

plt.show()

Ref: https://www.geeksforgeeks.org/plotting-histogram-in-python-using-matplotlib/

Scatter plot:

Example 5
importing matplotlib module

from matplotlib import pyplot as plt

x-axis values

x = [5, 2, 9, 4, 7]

Y-axis values

y = [10, 5, 8, 4, 2]

Function to plot scatter

plt.scatter(x, y)

function to show the plot

plt.show()

https://www.w3schools.com/python/matplotlib_histograms.asp

SciPy

What is SciPy?

 SciPy is a scientific computation library that uses NumPy underneath.
 SciPy stands for Scientific Python.

 It provides more utility functions for optimization, stats and signal processing.

 Like NumPy, SciPy is open source so we can use it freely.

 SciPy was created by NumPy's creator Travis Olliphant.

Why Use SciPy?

 If SciPy uses NumPy underneath, why can we not just use NumPy?

 SciPy has optimized and added functions that are frequently used in NumPy and Data Science.

Which Language is SciPy Written in?

 SciPy is predominantly written in Python, but a few segments are written in C.

Import SciPy

 Once SciPy is installed, import the SciPy module(s) you want to use in your applications by adding

the from scipy import module statement:

from scipy import constants

constants: SciPy offers a set of mathematical constants, one of them is liter which returns 1 liter as cubic

meters.

Unit Categories

o The units are placed under these categories:

o Metric

o Binary

o Mass

o Angle

o Time

o Length

o Pressure

o Volume

o Speed

o Temperature

o Energy

o Power

o Force

Example 6

from scipy import constants

print(constants.peta) #1000000000000000.0

print(constants.tera) #1000000000000.0

print(constants.giga) #1000000000.0

print(constants.mega) #1000000.0

print(constants.kilo) #1000.0

print(constants.hecto) #100.0

print(constants.deka) #10.0

print(constants.deci) #0.1

print(constants.centi) #0.01

print(constants.milli) #0.001

print(constants.micro) #1e-06

print(constants.nano) #1e-09

print(constants.pico) #1e-12

https://www.w3schools.com/python/numpy/default.asp

Sparse Data

 Sparse data is data that has mostly unused elements (elements that don't carry any information).

 It can be an array like this one: [1, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0]

 Sparse Data: is a data set where most of the item values are zero.

 Dense Array: is the opposite of a sparse array: most of the values are not zero.

 In scientific computing, when we are dealing with partial derivatives in linear algebra we will come

across sparse data.

Work With Sparse Data

SciPy has a module, scipy.sparse that provides functions to deal with sparse data.

 There are primarily two types of sparse matrices that we use:

 CSC - Compressed Sparse Column. For efficient arithmetic, fast column slicing.

 CSR - Compressed Sparse Row. For fast row slicing, faster matrix vector products We will use the

CSR matrix in this tutorial.

CSR Matrix

We can create CSR matrix by passing an arrray into function scipy.sparse.csr_matrix().

Example 7

Create a CSR matrix from an array:

import numpy as np

from scipy.sparse import csr_matrix

arr = np.array([0, 0, 0, 0, 0, 1, 1, 0, 2])

print(csr_matrix(arr))

The example above returns:

 (0, 5) 1

 (0, 6) 1

 (0, 8) 2

From the result we can see that there are 3 items with value.

The 1. item is in row 0 position 5 and has the value 1.

The 2. item is in row 0 position 6 and has the value 1.

The 3. item is in row 0 position 8 and has the value 2.

Viewing stored data (not the zero items) with the data property:

Example 8

import numpy as np

from scipy.sparse import csr_matrix

arr = np.array([[0, 0, 0], [0, 0, 1], [1, 0, 2]])

print(csr_matrix(arr).data)

Converting from csr to csc with the tocsc() method:

Example 9

import numpy as np

from scipy.sparse import csr_matrix

arr = np.array([[0, 0, 0], [0, 0, 1], [1, 0, 2]])

newarr = csr_matrix(arr).tocsc()

print(newarr)

Pandas
Pandas is a Python library used for working with data sets. It has functions for analyzing, cleaning, exploring,

and manipulating data. The name "Pandas" has a reference to both "Panel Data", and "Python Data Analysis"

and was created by Wes McKinney in 2008.

Use of Pandas

Pandas allows us to analyze big data and make conclusions based on statistical theories. Pandas can clean

messy data sets, and make them readable and relevant. Relevant data is very important in data science.

Data Science: is a branch of computer science where we study how to store, use and analyze data for deriving

information from it.

Pandas gives you answers about the data. Like:

 Is there a correlation between two or more columns?

 What is average value?

 Max value?

 Min value?

Pandas are also able to delete rows that are not relevant, or contains wrong values, like empty or NULL values.

This is called cleaning the data.

Once Pandas is installed, import it in your applications by adding the import keyword:

import pandas

Example 10

Get your own Python Server

import pandas

mydataset = { 'cars': ["BMW", "Volvo", "Ford"],

 'passings': [3, 7, 2] }

myvar = pandas.DataFrame(mydataset)

print(myvar)

Create an alias with the as keyword while importing:

import pandas as pd

Now the Pandas package can be referred to as pd instead of pandas.

Example 11

import pandas as pd

mydataset = {

 'cars': ["BMW", "Volvo", "Ford"],

 'passings': [3, 7, 2]

}

myvar = pd.DataFrame(mydataset)

print(myvar)

Indices in a pandas series:

 A pandas series is similar to a list, but differs in the fact that a series associates a label with each

element. This makes it look like a dictionary.

 If an index is not explicitly provided by the user, pandas creates a RangeIndex ranging from 0 to N-1.

 Each series object also has a data type.

Example 12

import panadad as pd

new_series= pd.series([5,6,7,8,9,10])

print(new_series)

 As you may suspect by this point, a series has ways to extract all of the values in the series, as well as

individual elements by index.

Example 13

import panadad as pd

new_series= pd.series([5,6,7,8,9,10])

print(new_series.values)

print(‘_____________’)

print(new_series[4])

 You can also provide an index manually.

Example 14

import panadad as pd

new_series= pd.series([5,6,7,8,9,10], indec=[‘a’,’b’,’c’,’d’,’e’,’f’)

print(new_series.values)

print(‘_____________’)

print(new_series[‘f’])

 It is easy to retrieve several elements of a series by their indices or make group assignments.

Example 15

import panadad as pd

new_series= pd.series([5,6,7,8,9,10], indec=[‘a’,’b’,’c’,’d’,’e’,’f’)

print(new_series)

print(‘_____________’)

print(new_series[‘a’,’b’,‘f’])=0

print(new_series)

 Filtering and maths operations are easy with Pandas as well.

Example 16

import panadad as pd

new_series= pd.series([5,6,7,8,9,10], indec=[‘a’,’b’,’c’,’d’,’e’,’f’)

new_series2= new_series[new_series>0] # check with 7 instead of 0

print(new_series2)

print(‘_____________’)

new_series2= new_series[new_series>0] * 2

print(new_series2)

DataFrame:

 A Pandas DataFrame is a 2 dimensional data structure, like a 2 dimensional array, or a table with rows

and columns.

 Simplistically, a data frame is a table, with rows and columns.

 Each column in a data frame is a series object.

 Rows consist of elements inside series.

Case ID Variable one Variable two Variable 3

1 123 ABC 10

2 456 DEF 20

3 789 XYZ 30

 Pandas data frames can be constructed using Python dictionaries.

Example 17

Get your own Python Server

Create a simple Pandas DataFrame:

import pandas as pd

data = {

 "calories": [420, 380, 390],

 "duration": [50, 40, 45]

}

#load data into a DataFrame object:

df = pd.DataFrame(data)

print(df)

Locate Row

As you can see from the result above, the DataFrame is like a table with rows and columns. Pandas use the

loc attribute to return one or more specified row(s)

Example 18

Return row 0:

#refer to the row index:

print(df.loc[0])

Named Indexes

With the index argument, you can name your own indexes.

Example 19

Add a list of names to give each row a name:

import pandas as pd

data = {

 "calories": [420, 380, 390],

 "duration": [50, 40, 45]

}

df = pd.DataFrame(data, index = ["day1", "day2", "day3"])

print(df)

 You can also create a data frame from a list.

Example 20

import pandas as pd

list2=[[0,1,2],[3,4,5],[6,7,8]]

df= pd.DataFrame(list2)

print(df)

df.columns=[‘V1’,’V2’,’V3’]

print(df)

Example 21

import pandas as pd

df=pd.DataFrame({

 ‘Country’: [‘Kazakhstan’,’Russia’,’Belarus’,’Ukraine’],

 ‘Population’: [17.04,143.5,9.5,45.5]

 ‘Square’:[2724902, 17125191,207600,603628]

 })

print(df)

 You can ascertain the type of a column with the type() function.

print(type(df[‘Country’]))

 A Pandas data frame object as two indices; a column index and row index.

 Again, if you do not provide one, Pandas will create a RangeIndex from 0 to N-1.

Example 22
import pandas as pd

df=pd.DataFrame({

 ‘Country’: [‘Kazakhstan’,’Russia’,’Belarus’,’Ukraine’],

 ‘Population’: [17.04,143.5,9.5,45.5]

 ‘Square’:[2724902, 17125191,207600,603628]

 })

print(df.columns)

print(‘_____________________’)

print(df.index)

 There are numerous ways to provide row indices explicitly.

 For example, you could provide an index when creating a data frame:

Example 23

import pandas as pd

df=pd.DataFrame({

 ‘Country’: [‘Kazakhstan’,’Russia’,’Belarus’,’Ukraine’],

 ‘Population’: [17.04,143.5,9.5,45.5]

 ‘Square’:[2724902, 17125191,207600,603628]

 }, index = [‘KZ’,’RU’,’BY’,’UA’])

print(df)

 or do it during runtime.

 Here, I also named the index ‘country code’.

Example 24

import pandas as pd

df=pd.DataFrame({

 ‘Country’: [‘Kazakhstan’,’Russia’,’Belarus’,’Ukraine’],

 ‘Population’: [17.04,143.5,9.5,45.5]

 ‘Square’:[2724902, 17125191,207600,603628]

 })

print(df)

print(‘_____________________’)

df.index = =[‘KZ’,’RU’,’BY’,’UA’]

df.index.name = ‘Country Code’

print(df)

 Row access using index can be performed in several ways.

 First, you could use .loc() and provide an index label.

Example 25

print(df.loc[‘KZ’]

 Second, you could use .iloc() and provide an index number

print(df.iloc[0]

 A selection of particular rows and columns can be selected this way.

print(df.loc[[‘KZ’,’RU’],’population’])

 You can feed .loc() two arguments, index list and column list, slicing operation is supported as well:

print(df.loc[[‘KZ’,’BY’, :])

Filtering

 Filtering is performed using so-called Boolean arrays.

Example 26

 print(df[df.population > 10][[‘Country’,’Square’]])

Deleting columns

You can delete a column using the drop() function.

print(df)

df = df.drop([‘Population’], axis = ‘columns’)

print(df)

Load Files Into a DataFrame

If your data sets are stored in a file, Pandas can load them into a DataFrame.

Example 27

Load a comma separated file (CSV file) into a DataFrame:

import pandas as pd

df = pd.read_csv('data.csv')

print(df)

Read CSV Files

A simple way to store big data sets is to use CSV files (comma separated files). CSV files contains plain text

and is a well know format that can be read by everyone including Pandas. In our examples we will be using a

CSV file called 'data.csv'.

Example 28

Get your own Python Server

Load the CSV into a DataFrame:

import pandas as pd

df = pd.read_csv('data.csv')

print(df.to_string()) # use to_string() to print the entire DataFrame.

 print(df) #Print the DataFrame without the to_string() method

Data Cleaning

Data cleaning means fixing bad data in your data set.

Bad data could be:

 Empty cells

 Data in wrong format

 Wrong data

 Duplicates

Plotting

Pandas uses the plot() method to create diagrams. We can use Pyplot, a submodule of the Matplotlib library

to visualize the diagram on the screen.

Example 29

Get your own Python Server

Import pyplot from Matplotlib and visualize our DataFrame:

import pandas as pd

import matplotlib.pyplot as plt

df = pd.read_csv('data.csv')

df.plot()

plt.show()

Questions

1. Follow along with these steps:

a) Create a figure object called fig using plt.figure()

b) Use add_axes to add an axis to the figure canvas at [0,0,1,1]. Call this new axis ax.

c) Plot (x,y) on that axes and set the labels and titles to match the plot below:

2. Create a figure object and put two axes on it, ax1 and ax2. Located at [0,0,1,1] and [0.2,0.5,.2,.2]

respectively. Now plot (x,y) on both axes. And call your figure object to show it.

3. Use the company sales dataset csv file, read Total profit of all months and show it using a line plot

Total profit data provided for each month. Generated line plot must include the following properties: –

a. X label name = Month Number

b. Y label name = Total profit

4. Use the company sales dataset csv file, get total profit of all months and show line plot with the following

Style properties. Generated line plot must include following Style properties: –

a. Line Style dotted and Line-color should be red

b. Show legend at the lower right location.

c. X label name = Month Number

d. Y label name = Sold units number

e. Add a circle marker.

f. Line marker color as read

g. Line width should be 3

Additional Questions

 1. Use the company sales dataset csv file, read all product sales data and show it using a multiline plot.

 Display the number of units sold per month or each product using multiline plots. (i.e., Separate Plotline

 for each product).

 2. Use the company sales dataset csv file, calculate total sale data for last year for each product and show it

 using a Pie chart.

 Note: In Pie chart display Number of units sold per year for each product in percentage.

WEEK -03 : DATA PREPROCESSING AND REGRESSION

Data pre-processing is a basic requirement of any good machine learning model. Pre-processing the data

implies using the data which is easily readable by the machine learning model. In this week, we are going to

discuss the basics of data pre-processing and how to make the data suitable for machine learning models.

What is data pre-processing?

Data pre-processing is the process of preparing the raw data and making it suitable for machine learning

models. Data pre-processing includes data cleaning for making the data ready to be given to machine learning

model.

After data cleaning, data pre-processing requires the data to be transformed into a format that is understandable

to the machine learning model.

Why is data pre-processing required?

Data pre-processing is mainly required for the following:

 Accurate data:For making the data readable for machine learning model, it needs to be accurate with

no missing value, redundant or duplicate values.

 Trusted data:The updated data should be as accurate or trusted as possible.

 Understandable data:The data updated needs to be interpreted correctly.

All in all, data pre-processing is important for the machine learning model to learn from such data which is

correct in order to lead the model to the right predictions/outcomes.

Examples of data preprocessing for different data set types with Python

Since data comes in various formats, let us discuss how different data types can be converted into a format

that the ML model can read accurately. Let us see how to feed correct features from datasets with:

 Missing values

 Outliers

 Overfitting

 Data with no numerical values

 Different date formats

 Missing values

Missing values are a common problem while dealing with data! The values can be missed because of various

reasons such as human errors, mechanical errors, etc.

Data cleansing is an important step before you even begin the algorithmic trading process, which begins with

historical data analysis for making the prediction model as accurate as possible.

Based on this prediction model you create the trading strategy. Hence, leaving missed values in the data set

can wreak havoc by giving faulty predictive results that can lead to erroneous strategy creation and further the

results can not be great to state the obvious.

There are three techniques to solve the missing values’ problem in order to find out the most accurate features,

and they are:

Dropping

Numerical imputation

Categorical imputation

Dropping

Dropping is the most common method to take care of the missed values. Those rows in the data set or

the entire columns with missed values are dropped in order to avoid errors to occur in data nalysis.

There are some machines that are programmed to automatically drop the rows or columns that include

missed values resulting in a reduced training size. Hence, the dropping can lead to a decrease in the

model performance.

A simple solution for the problem of a decreased training size due to the dropping of values is to use

imputation. We will discuss the interesting imputation methods further. In case of dropping, you can

define a threshold to the machine.

For instance, the threshold can be anything. It can be 50%, 60% or 70% of the data. Let us take 60%

in our example, which means that 60% of data with missing out values will be accepted by the

model/algorithm as the training data set, but the features with more than 60% missing values will be

dropped.

For dropping the values, following Python codes are used:

#Dropping columns in the data higher than 60% threshold

data = data[data.columns[data.isnull().mean() < threshold]]

#Dropping rows in the data higher than 60% threshold

data = data.loc[data.isnull().mean(axis=1) < threshold]

By using the above Python codes, the missed values will be dropped and the machine learning model

will learn on the rest of the data.

Numerical imputation

The word imputation implies replacing the missing values with such a value that makes sense. And,

numerical imputation is done in the data with numbers.

For instance, if there is a tabular data set with the number of stocks, commodities and derivatives

traded in a month as the columns, it is better to replace the missed value with a “0” than leaving them

as it is.

With numerical imputation, the data size is preserved and hence, predictive models like linear

regression can work better to predict in the most accurate manner.

A linear regression model can not work with missing values in the data set since it is biased toward

the missed values and considers them “good estimates”. Also, the missed values can be replaced with

the median of the columns since median values are not sensitive to outliers unlike averages of columns.

Let us see the Python codes for numerical imputation, which are as follows:

#For filling all the missed values as 0

data = data.fillna(0)

#For replacing missed values with median of columns

data = data.fillna(data.median())

Categorical imputation

This technique of imputation is nothing but replacing the missed values in the data with the one which

occurs the maximum number of times in the column. But, in case there is no such value that occurs

frequently or dominates the other values, then it is best to fill the same as “NAN”.

The following Python code can be used here:

#Categorical imputation

data['column_name'].fillna(data['column_name'].value_counts().idxmax(), inplace=True)

 Outliers

An outlier differs significantly from other values and is too distanced from the mean of the values. Such values

that are considered outliers are usually due to some systematic errors or flaws.

Let us see the following Python codes for identifying and removing outliers with standard deviation:

#For identifying the outliers with the standard deviation method

outliers = [x for x in data if x < lower or x > upper]

print('Identified outliers: %d' % len(outliers))

#Remove outliers

outliers_removed = [x for x in data if x >= lower and x <= upper]

print('Non-outlier observations: %d' % len(outliers_removed))

In the codes above, “lower” and “upper” signify the upper and lower limit in the data set.

 Overfitting

In both machine learning and statistics, overfitting occurs when the model fits the data too well or simply put

when the model is too complex.

Overfitting model learns the detail and noise in the training data to such an extent that it negatively impacts

the performance of the model on new data/test data.

The overfitting problem can be solved by decreasing the number of features/inputs or by increasing the number

of training examples to make the machine learning algorithms more generalised.

The most common solution is regularisation in an overfitting case. Binning is the technique that helps with

the regularisation of the data which also makes you lose some data every time you regularise it.

For instance, in the case of numerical binning, the data can be as follows:

Here is the Python code for binning:

data['bin'] = pd.cut(data['value'], bins=[100,250,400,500], labels=["Lowest", "Mid", "High"])

Your output should look something like this:

 Value Bin

0 102 Low

1 300 Mid

2 107 Low

3 470 High

 Data with no numerical values

In the case of the data set with no numerical values, it becomes impossible for the machine learning model to

learn the information.

The machine learning model can only handle numerical values and thus, it is best to spread the values in the

columns with assigned binary numbers “0” or “1”. This technique is known as one-hot encoding.

In this type of technique, the grouped columns already exist. For instance, below I have mentioned a grouped

column:

Now, the above-grouped data can be encoded with the binary numbers ”0” and “1” with one hot encoding

technique. This technique subtly converts the categorical data into a numerical format in the following manner:

Hence, it results in better handling of grouped data by converting the same into encoded data for the machine

learning model to grasp the encoded (which is numerical) information quickly.

Problem with the approach

Going further, in case there are more than three categories in a data set that is to be used for feeding the

machine learning model, the one-hot encoding technique will create as many columns. Let us say, there are

2000 categories, then this technique will create 2000 columns and it will be a lot of information to feed to the

model.

Solution:

To solve this problem, while using this technique, we can apply the target encoding technique which implies

calculating the “mean” of each predictor category and using the same mean for all other rows with the same

category under the predictor column. This will convert the categorical column into the numeric column and

that is our main aim.

Let us understand this with the same example as above but this time we will use the “mean” of the values

under the same category in all the rows. Let us see how.

In Python, we can use the following code:

#Convert data into numerical values with mean

Infected = [2, 4, 5, 6, 4, 3]

Predictor = ['Delta', 'Lambda', 'Omicron’, ’Lambda’, ’Delta’, ’Omicron’]

Infected_df = pd.DataFrame(data={'Infected':Infected, 'Predictor':Predictor})

means = Infected_df.groupby('Predictor')['Infected'].mean()

Infected_df['Predictor_encoded'] = Infected_df['predictor'].map(means)

Infected_df

Output:

In the output above, the Predictor column depicts the Covid variants and the Predictor_encoded column depicts

the “mean” of the same category of Covid variants which makes 2+4/2 = 3 as the mean value for Delta, 4+6/2

= 5 as the mean value for Lambda and so on.

Hence, the machine learning model will be able to feed the main feature (converted to a number) for each

predictor category for the future.

 Different date formats

With the different date formats such as “25-12-2021”, “25th December 2021” etc. the machine learning model

needs to be equipped with each of them. Or else, it is difficult for the machine learning model to understand

all the formats.

With such a data set, you can preprocess or decompose the data by mentioning three different columns for the

parts of the date, such as Year, Month and Day.

In Python, the preprocessing of the data with different columns for the date will look like this:

#Convert to datetime object

df['Date'] = pd.to_datetime(df['Date'])

#Decomposition

df['Year'] = df['Date'].dt.year

df['Month'] = df['Date'].dt.month

df['Day'] = df['Date'].dt.day

df[['Year','Month','Day']].head()

Output:

In the output above, the data set is in date format which is numerical. And because of decomposing the date

in different parts such as Year, Month and Day, the machine learning model will be able to learn the date

format.

REGRESSION

Regression is a supervised learning technique that supports finding the correlation among variables.

A regression problem is when the output variable is a real or continuous value.

What is a Regression?

In Regression, we plot a graph between the variables which best fit the given data points. The machine learning

model can deliver predictions regarding the data. In naïve words, “Regression shows a line or curve that

passes through all the data points on a target-predictor graph in such a way that the vertical distance

between the data points and the regression line is minimum.” It is used principally for prediction,

forecasting, time series modeling, and determining the causal-effect relationship between variables.

TYPES OF REGRESSION MODELS

1. Linear Regression

2. Polynomial Regression

3. Logistics Regression

1. Linear Regression:

Linear regression is a quiet and simple statistical regression method used for predictive analysis and shows

the relationship between the continuous variables. Linear regression shows the linear relationship between

the independent variable (X-axis) and the dependent variable (Y-axis), consequently called linear regression.

If there is a single input variable (x), such linear regression is called simple linear regression. And if there

is more than one input variable, such linear regression is called multiple linear regression. The linear

regression model gives a sloped straight line describing the relationship within the variables.

The above graph presents the linear relationship between the dependent variable and independent variables.

When the value of x (independent variable) increases, the value of y (dependent variable) is likewise

increasing. The red line is referred to as the best fit straight line. Based on the given data points, we try to plot

a line that models the points the best.

To calculate best-fit line linear regression uses a traditional slope intercept form.

y= Dependent Variable.

x= Independent Variable.

a0= intercept of the line.

a1 = Linear regression coefficient.

Need of a Linear regression:

Linear regression estimates the relationship between a dependent variable and an independent variable. Let’s

say we want to estimate the salary of an employee based on year of experience. You have the recent company

data, which indicates that the relationship between experience and salary. Here year of experience is an

independent variable, and the salary of an employee is a dependent variable, as the salary of an employee is

dependent on the experience of an employee. Using this insight, we can predict the future salary of the

employee based on current & past information.

A regression line can be a Positive Linear Relationship or a Negative Linear Relationship.

Positive Linear Relationship:

If the dependent variable expands on the Y-axis and the independent variable progress on X-axis, then such

a relationship is termed a Positive linear relationship.

Negative Linear Relationship:

If the dependent variable decreases on the Y-axis and the independent variable increases on the X-axis, such

a relationship is called a negative linear relationship.

The goal of the linear regression algorithm is to get the best values for a0 and a1 to find the best fit line. The

best fit line should have the least error means the error between predicted values and actual values should be

minimized.

Cost function

The cost function helps to figure out the best possible values for a0 and a1, which provides the best fit line

for the data points.

Cost function optimizes the regression coefficients or weights and measures how a linear regression model is

performing. The cost function is used to find the accuracy of the mapping function that maps the input

variable to the output variable. This mapping function is also known as the Hypothesis function.

In Linear Regression, Mean Squared Error (MSE) cost function is used, which is the average of squared

error that occurred between the predicted values and actual values.

By simple linear equation y=mx+b we can calculate MSE as:

Let’s y = actual values, yi = predicted values

Using the MSE function, we will change the values of a0 and a1 such that the MSE value settles at the minima.

Model parameters xi, b (a0,a1) can be manipulated to minimize the cost function. These parameters can be

determined using the gradient descent method so that the cost function value is minimum.

SCIKIT LEARN

 It is mainly used in machine learning

 It has lot of statistics related tools

 It is open source.

 By using the Scikit library the efficiency will improve tremendously as it is quite accurate.

 It is very useful in algorithms which are very famous in machine learning like K-mean, K-nearest,

clustering etc.

 It is available to everybody so any programmer if he or she feels like utilizing it then can use it.

 Scikit requires Numpy

Features of Scikit learn are as follows:

 Clustering: Scikit can be applied in clustering algorithm, in clustering the grouping is done on the

basis of similarities like eg: age, color etc.

 Cross validation

 Feature selection

Example:

from sklearn.datasets import load_iris

iris = load_iris()

A= iris.data

y = iris.target

feature_names = iris.feature_names

target_names = iris.target_names

print("Feature names:", feature_names)

print("Target names:", target_names)

print("\nFirst 10 rows of A:\n", A[:10])

How to split a Dataset into Train and Test Sets using Python

Scikit-learn alias sklearn is the most useful and robust library for machine learning in Python. The scikit-

learn library provides us with the model_selection module in which we have the splitter function

train_test_split().

Syntax:

train_test_split(*arrays, test_size=None, train_size=None, random_state=None, shuffle=True,

stratify=None)

Parameters:

1. *arrays: inputs such as lists, arrays, data frames, or matrices

2. test_size: this is a float value whose value ranges between 0.0 and 1.0. it represents the proportion of

our test size. its default value is none.

3. train_size: this is a float value whose value ranges between 0.0 and 1.0. it represents the proportion

of our train size. its default value is none.

4. random_state: this parameter is used to control the shuffling applied to the data before applying the

split. it acts as a seed.

5. shuffle: This parameter is used to shuffle the data before splitting. Its default value is true.

6. stratify: This parameter is used to split the data in a stratified fashion.

Example

read the dataset

import modules

import pandas as pd

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

df = pd.read_csv('/home/student/Downloads/Real-estate.csv')

 # get the locations

X = df.iloc[:, :-1]

y = df.iloc[:, -1]

split the dataset

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.05, random_state=0)

In the above example, We import the pandas package and sklearn package. after that to import the CSV

file we use the read_csv() method. The variable df now contains the data frame. in the example “house price”

is the column we’ve to predict so we take that column as y and the rest of the columns as our X variable.

test_size = 0.05 specifies only 5% of the whole data is taken as our test set, and 95% as our train set. The

random state helps us get the same random split each time.

Simple Linear Regression With scikit-learn

You’ll start with the simplest case, which is simple linear regression. There are five basic steps when you’re

implementing linear regression:

1. Import the packages and classes that you need.

2. Provide data to work with, and eventually do appropriate transformations.

3. Create a regression model and fit it with existing data.

4. Check the results of model fitting to know whether the model is satisfactory.

5. Apply the model for predictions.

These steps are more or less general for most of the regression approaches and implementations. Throughout

the rest of the tutorial, you’ll learn how to do these steps for several different scenarios.

Step 1: Import packages and classes

The first step is to import the package numpy and the class LinearRegression from sklearn.linear_model:

>>> import numpy as np

>>> from sklearn.linear_model import LinearRegression

Now, you have all the functionalities that you need to implement linear regression.

The fundamental data type of NumPy is the array type called numpy.ndarray. The rest of this tutorial uses

the term array to refer to instances of the type numpy.ndarray.

You’ll use the class sklearn.linear_model.LinearRegression to perform linear and polynomial regression and

make predictions accordingly.

Step 2: Provide data

The second step is defining data to work with. The inputs (regressors, 𝑥) and output (response, 𝑦) should be

arrays or similar objects. This is the simplest way of providing data for regression:

:

>>> x = np.array([5, 15, 25, 35, 45, 55]).reshape((-1, 1))

>>> y = np.array([5, 20, 14, 32, 22, 38])

Now, you have two arrays: the input, x, and the output, y. You should call .reshape() on x because this array

must be two-dimensional, or more precisely, it must have one column and as many rows as necessary.

That’s exactly what the argument (-1, 1) of .reshape() specifies.

This is how x and y look now:

>>> x

array([[5],

 [15],

 [25],

 [35],

 [45],

 [55]])

>>> y

array([5, 20, 14, 32, 22, 38])

As you can see, x has two dimensions, and x.shape is (6, 1), while y has a single dimension, and y.shape is

(6,).

Step 3: Create a model and fit it

The next step is to create a linear regression model and fit it using the existing data.

Create an instance of the class LinearRegression, which will represent the regression model:

>>> model = LinearRegression()he

This statement creates the variable model as an instance of LinearRegression. You can provide several

optional parameters to LinearRegression:

https://realpython.com/python-variables/

 fit_intercept is a Boolean that, if True, decides to calculate the intercept 𝑏₀ or, if False, considers it

equal to zero. It defaults to True.

 normalize is a Boolean that, if True, decides to normalize the input variables. It defaults to False, in

which case it doesn’t normalize the input variables.

 copy_X is a Boolean that decides whether to copy (True) or overwrite the input variables (False). It’s

True by default.

 n_jobs is either an integer or None. It represents the number of jobs used in parallel computation. It

defaults to None, which usually means one job. -1 means to use all available processors.

Your model as defined above uses the default values of all parameters.

It’s time to start using the model. First, you need to call .fit() on model:

>>> model.fit(x, y)

LinearRegression()

With .fit(), you calculate the optimal values of the weights 𝑏₀ and 𝑏₁, using the existing input and output, x

and y, as the arguments. In other words, .fit() fits the model. It returns self, which is the variable model

itself. That’s why you can replace the last two statements with this one:

>>> model = LinearRegression().fit(x, y)

This statement does the same thing as the previous two. It’s just shorter.

Step 4: Get results

Once you have your model fitted, you can get the results to check whether the model works satisfactorily

and to interpret it.

You can obtain the coefficient of determination, 𝑅², with .score() called on model:

>>> r_sq = model.score(x, y)

>>> print(f"coefficient of determination: {r_sq}")

coefficient of determination: 0.7158756137479542

When you’re applying .score(), the arguments are also the predictor x and response y, and the return value is

𝑅².

The attributes of model are .intercept_, which represents the coefficient 𝑏₀, and .coef_, which represents 𝑏₁:

>>> print(f"intercept: {model.intercept_}")

intercept: 5.633333333333329

>>> print(f"slope: {model.coef_}")

slope: [0.54]

The code above illustrates how to get 𝑏₀ and 𝑏₁. You can notice that .intercept_ is a scalar, while .coef_ is an

array.

Note: In scikit-learn, by convention, a trailing underscore indicates that an attribute is estimated. In this

example, .intercept_ and .coef_ are estimated values.

The value of 𝑏₀ is approximately 5.63. This illustrates that your model predicts the response 5.63 when 𝑥 is

zero. The value 𝑏₁ = 0.54 means that the predicted response rises by 0.54 when 𝑥 is increased by one.

https://realpython.com/python-boolean/
https://scikit-learn.org/stable/developers/develop.html#estimated-attributes

You’ll notice that you can provide y as a two-dimensional array as well. In this case, you’ll get a similar

result. This is how it might look:

>>> new_model = LinearRegression().fit(x, y.reshape((-1, 1)))

>>> print(f"intercept: {new_model.intercept_}")

intercept: [5.63333333]

>>> print(f"slope: {new_model.coef_}")

slope: [[0.54]]

As you can see, this example is very similar to the previous one, but in this case, .intercept_ is a one-

dimensional array with the single element 𝑏₀, and .coef_ is a two-dimensional array with the single element

𝑏₁.

Step 5: Predict response

Once you have a satisfactory model, then you can use it for predictions with either existing or new data. To

obtain the predicted response, use .predict():

>>> y_pred = model.predict(x)

>>> print(f"predicted response:\n{y_pred}")

predicted response:

[8.33333333 13.73333333 19.13333333 24.53333333 29.93333333 35.33333333]

When applying .predict(), you pass the regressor as the argument and get the corresponding predicted

response. This is a nearly identical way to predict the response:

>>> y_pred = model.intercept_ + model.coef_ * x

>>> print(f"predicted response:\n{y_pred}")

predicted response:

[[8.33333333]

 [13.73333333]

 [19.13333333]

 [24.53333333]

 [29.93333333]

 [35.33333333]]

In this case, you multiply each element of x with model.coef_ and add model.intercept_ to the product.

The output here differs from the previous example only in dimensions. The predicted response is now a two-

dimensional array, while in the previous case, it had one dimension.

If you reduce the number of dimensions of x to one, then these two approaches will yield the same result.

You can do this by replacing x with x.reshape(-1), x.flatten(), or x.ravel() when multiplying it with

model.coef_.

In practice, regression models are often applied for forecasts. This means that you can use fitted models to

calculate the outputs based on new inputs:

>>> x_new = np.arange(5).reshape((-1, 1))

>>> x_new

array([[0],

 [1],

 [2],

 [3],

 [4]])

>>> y_new = model.predict(x_new)

>>> y_new

array([5.63333333, 6.17333333, 6.71333333, 7.25333333, 7.79333333])

Here .predict() is applied to the new regressor x_new and yields the response y_new. This example

conveniently uses arange() from numpy to generate an array with the elements from 0, inclusive, up to but

excluding 5—that is, 0, 1, 2, 3, and 4.

Ref: https://realpython.com/linear-regression-in-python/

Question

1. Consider the hepatitis/ pima-indians-diabetes csv file, perform the following date pre-processing.

1. Load data in Pandas.

2. Drop columns that aren’t useful.

3. Drop rows with missing values.

4. Create dummy variables.

5. Take care of missing data.

6. Convert the data frame to NumPy.

7. Divide the data set into training data and test data.

2. a. Construct a CSV file with the following attributes:
Study time in hours of ML lab course (x)
Score out of 10 (y)
The dataset should contain 10 rows.

 b. Create a regression model and display the following:
Coefficients: B0 (intercept) and B1 (slope)
RMSE (Root Mean Square Error)
Predicted responses

 c. Create a scatter plot of the data points in red color and plot the graph of x vs. predicted y in blue color.
 d. Implement the model using two methods:

Pedhazur formula (intuitive)
Calculus method (partial derivatives, refer to class notes)

 e. Compare the coefficients obtained using both methods and compare them with the analytical solution.
 f. Test your model to predict the score obtained when the study time of a student is 10 hours.
Note: Do not use scikit-learn.

Additional Question

1. a. Consider the hepatitis/diabetes CSV file. Create a regression model and display the following:

 Coefficients: B0 (intercept) and B1 (slope)

 RMSE (Root Mean Square Error)

 Predicted responses

b. Create a scatter plot of the data points in red color and plot the graph of x vs. predicted y in blue color.

c. Implement the model using two methods:

1. Pedhazur formula (intuitive)

2. Calculus method (partial derivatives, refer to class notes)

d. Compare the coefficients obtained using both methods. For a given data point, check the predicted y

value.

 Note: Do not use scikit-learn.

https://realpython.com/how-to-use-numpy-arange/

WEEK-04: Polynomial and Multiple Regression

Machine Learning Model evaluation metrics

The various ways to check the performance of our machine learning or deep learning model and why to

use one in place of the other. We will discuss terms like:

 Confusion matrix

 Accuracy

 Precision

 Recall

 Specificity

 F1 score

 Precision-Recall or PR curve

 ROC (Receiver Operating Characteristics) curve

 PR vs ROC curve.

For simplicity, we will mostly discuss things in terms of a binary classification problem where let’s say

we’ll have to find if an image is of a cat or a dog. Or a patient is having cancer (positive) or is found

healthy (negative). Some common terms to be clear with are:

True positives (TP): Predicted positive and are actually positive.

False positives (FP): Predicted positive and are actually negative.

True negatives (TN): Predicted negative and are actually negative.

False negatives (FN): Predicted negative and are actually positive.

Confusion matrix

It’s just a representation of the above parameters in a matrix format. Better visualization is always good

:)

Accuracy

The most commonly used metric to judge a model and is actually not a clear indicator of the performance.

The worse happens when classes are imbalanced.

Take for example a cancer detection model. The chances of actually having cancer are very low. Let’s

say out of 100, 90 of the patients don’t have cancer and the remaining 10 actually have it. We don’t want

to miss on a patient who is having cancer but goes undetected (false negative). Detecting everyone as

not having cancer gives an accuracy of 90% straight. The model did nothing here but just gave cancer

free for all the 100 predictions.

We surely need better alternatives.

Precision

Percentage of positive instances out of the total predicted positive instances. Here denominator is the

model prediction done as positive from the whole given dataset. Take it as to find out ‘how much the

model is right when it says it is right’.

Recall/Sensitivity/True Positive Rate

Percentage of positive instances out of the total actual positive instances. Therefore denominator (TP +

FN) here is the actual number of positive instances present in the dataset. Take it as to find out ‘how

much extra right ones, the model missed when it showed the right ones’.

Specificity

Percentage of negative instances out of the total actual negative instances. Therefore denominator (TN

+ FP) here is the actual number of negative instances present in the dataset. It is similar to recall but the

shift is on the negative instances. Like finding out how many healthy patients were not having cancer

and were told they don’t have cancer. Kind of a measure to see how separate the classes are.

F1 score

It is the harmonic mean of precision and recall. This takes the contribution of both, so higher the F1

score, the better. See that due to the product in the numerator if one goes low, the final F1 score goes

down significantly. So a model does well in F1 score if the positive predicted are actually positives

(precision) and doesn't miss out on positives and predicts them negative (recall).

One drawback is that both precision and recall are given equal importance due to which according to our

application we may need one higher than the other and F1 score may not be the exact metric for it.

Therefore either weighted-F1 score or seeing the PR or ROC curve can help.

PR curve

It is the curve between precision and recall for various threshold values. In the figure below we have 6

predictors showing their respective precision-recall curve for various threshold values. The top right part

of the graph is the ideal space where we get high precision and recall. Based on our application we can

choose the predictor and the threshold value. PR AUC is just the area under the curve. The higher its

numerical value the better.

ROC curve

ROC stands for receiver operating characteristic and the graph is plotted against TPR and FPR for various

threshold values. As TPR increases FPR also increases. As you can see in the first figure, we have four

categories and we want the threshold value that leads us closer to the top left corner. Comparing different

predictors (here 3) on a given dataset also becomes easy as you can see in figure 2, one can choose the

threshold according to the application at hand. ROC AUC is just the area under the curve, the higher its

numerical value the better.

PR vs ROC curve

Both the metrics are widely used to judge a models performance.

Which one to use PR or ROC?

The answer lies in TRUE NEGATIVES.

Due to the absence of TN in the precision-recall equation, they are useful in imbalanced classes. In

the case of class imbalance when there is a majority of the negative class. The metric doesn’t take much

into consideration the high number of TRUE NEGATIVES of the negative class which is in majority,

giving better resistance to the imbalance. This is important when the detection of the positive class is

very important.

Like to detect cancer patients, which has a high class imbalance because very few have it out of all the

diagnosed. We certainly don’t want to miss on a person having cancer and going undetected (recall) and

be sure the detected one is having it (precision).

Due to the consideration of TN or the negative class in the ROC equation, it is useful when both

the classes are important to us. Like the detection of cats and dog. The importance of true negatives

makes sure that both the classes are given importance, like the output of a ML/DL model in determining

the image is of a cat or a dog.

Classification

Here the goal is to learn a mapping from inputs x to outputs y, where y ∈ {1,...,C}, with C being the

number of classes. If C = 2, this is called binary classification (in which case we often assume y ∈ {0,

1}); if C > 2, this is called multiclass classification. If the class labels are not mutually exclusive (e.g.,

somebody may be classified as tall and strong), we call it multi-label classification, but this is best

viewed as predicting multiple related binary class labels (a so-called multiple output model). When we

use the term “classification”, we will mean multiclass classification with a single output, unless we state

otherwise.

One way to formalize the problem is as function approximation. We assume y = f(x) for some unknown

function f, and the goal of learning is to estimate the function f given a labeled training set, and then to

make predictions using (We use the hat symbol to denote an estimate.) Our main goal is to

make predictions on novel inputs, meaning ones that we have not seen before (this is called

generalization), since predicting the response on the training set is easy.

LINEAR REGRESSION

Regression analysis may broadly be defined as the analysis of relationships among variables. This

relationship is given as an equation that helps to predict the dependent variable Y through

one or more independent variables. In regression analysis, the variable whose values vary with the

variations in the values of the other variable(s) is called the dependent variable or response variable.

The other variables which are independent in nature and influence the response variable are called

independent variables, predictor variables or regressor variables.

Example: Suppose a statistician employed by a cold drink bottler is analysing the product delivery and

service operation for vending machines. He would like to find how the delivery time taken by the

delivery man to load and service a machine is related to the volume of delivery cases. The statistician

visits 50 randomly chosen retailer shops having vending machines and observes the delivery time (in

minutes) and the volume of delivery cases for each shop. He plots those 50 observations on a graph,

which shows that an approximate linear relationship exists between the delivery time and delivery

volume. If Y represents the delivery time and X, the delivery volume, the equation of a straight line

relating these two variables may be given as

Y = a + bX … (1)

where a is the intercept and b, the slope.

In such cases, we draw a straight line in the form of equation (1) so that the data points generally fall

near the straight line. Now, suppose the points do not fall exactly on the straight line. Then we should

modify equation (1) to minimise the difference between the observed value of Y and that given by the

straight line (a + b X). This is known as error.

The error e, which is the difference between the observed value and the predicted value of the variable

of interest Y, may be conveniently assumed as a statistical error. This error term accounts for the

variability in Y that cannot be explained by the linear relationship between X and Y. It may arise due

to the effects of other factors. Thus, a more plausible model for the variable of interest (Y) may be given

as

Y = a + b X + e … (2)

where the intercept a and the slope b are unknown constants and e is a random error component.

Equation (2) is called a linear regression model.

Fitting of regression line

Let the given data of n pairs of observations on X and Y be as follows:

X: X1 X2 X3 . … … Xi ….. … Xn

Y: Y1 Y2 Y3 . … … Yi …..… Yn

where Y is the dependent variable and X, the independent variable.

Suppose, we wish to fit the following simple regression equation to the data: Y = a + bX

where a is the intercept and b is the slope of the equation.

For fitting equation to the data on (X, Y), we follow the steps given below:

Step 1: We draw a scatter diagram by plotting the (X, Y) points given in data.

Step 2: We construct a table as given below and take the sum of the values of Xi, Yi, XiYi, and .

We write the values of ∑X, ∑Y, ∑XY and ∑X2 in the last row.

Step 3: We express of aˆ given in equation (1) as follows:

Where

 substitute above values in the regression equation and get

POLYNOMIAL REGRESSION

Some engineering data is poorly represented by a straight line. For these cases, a curve would be better

suited to it these data. The method is to it polynomials to the data using polynomial regression.

Polynomial Regression is a form of regression analysis in which the relationship between the

independent variables and dependent variables are modeled in the nth degree polynomial. Polynomial

Regression models are usually fit with the method of least squares. The least square method minimizes

the variance of the coefficients, under the Gauss Markov Theorem. Polynomial Regression is a special

case of Linear Regression where we fit the polynomial equation on the data with a curvilinear

relationship between the dependent and independent variables. A Quadratic Equation is a Polynomial

Equation of 2nd Degree. However, this degree can increase to nth values.

The least-squares procedure can be readily extended to it the data to a higher-order polynomial. For

example, suppose that we it a second-order polynomial or quadratic:

 Where x-independent variable, y-dependent variable, a0,a1 and a2 are coefficients, and e –error

term.

For this case the sum of the squares of the residuals is

we take the derivative with respect to each of the unknown coefficients of the polynomial, as in

These equations can be set equal to zero and rearranged to develop the following set of normal

equations:

where all summations are from i = 1 through n. Note that the above three equations are linear and have

three unknowns: a0 , a1 , and a2 . The coefficients of the unknowns can be calculated directly from the

observed data. For this case, we see that the problem of determining a least-squares second-order

polynomial is equivalent to solving a system of three simultaneous linear equations.

These equations can be rewritten in matrix form as follows:

Where:

 n is the number of data points.

 xi and yi are the values of the independent and dependent variables for the i-th data point.

The most common way to solve a system of linear equations is by using matrix algebra and methods

like Gaussian elimination or matrix inversion. Here are the general steps to solve a system of linear

equations:

Step 1: Write Down the System of Equations
Write the system of linear equations in standard form, where each equation has the form:

Where:

 a1,a2,…,an are the coefficients of the variables x1,x2,…,xn.

 b is the constant on the right-hand side of the equation.

You should have as many equations as there are variables.

Step 2: Create a Coefficient Matrix
Construct a coefficient matrix A by extracting the coefficients of the variables from the left side of each

equation. This matrix will have dimensions n×n if you have n variables.

Step 3: Create a Right-Hand Side Vector
Create a right-hand side vector B by extracting the constants from the right side of each equation. This

vector will have dimensions n×1.

Step 4: Solve the System
There are several methods to solve the system:

There are several methods to solve the system:

 Matrix Inversion: If A is invertible (non-singular), you can solve the system using the formula

X=A−1B, where X is the vector of solutions.

 Gaussian Elimination: Use row operations to transform the augmented matrix [A∣B] into row-

echelon or reduced row-echelon form. Then, back-substitute to find the values of the variables.

 Matrix Factorization: Factorize A into LU or QR form and use the factorization to solve the

system more efficiently.

 Numerical Methods: For large or ill-conditioned systems, numerical methods like the Gauss-

Seidel method or the Conjugate Gradient method are used.

Here's a simple example using matrix inversion in Python:

import numpy as np

Define the coefficient matrix A and the right-hand side vector B

A = np.array([[2, 1], [1, 3]])

B = np.array([4, 7])

Solve for the variables X using matrix inversion

X = np.linalg.inv(A).dot(B)

print("Solution:")

print(X)

The above code solves the system 2x1+x2=4 and x1+3x2=7 and prints the values of x1 and x2 as the

solution.

Solution:

[1. 2.]

Polynomial regression is a type of regression analysis in which the relationship between the

independent variable (X) and the dependent variable (Y) is modeled as an nth-degree polynomial. In

Python, you can perform polynomial regression using libraries like NumPy and scikit-learn. Here's a

basic example of polynomial regression using scikit-learn:

import numpy as np

from sklearn.linear_model import LinearRegression

from sklearn.preprocessing import PolynomialFeatures

import matplotlib.pyplot as plt

Generate sample data

np.random.seed(0)

X = 2 * np.random.rand(100, 1)

Y = 4 + 3 * X + np.random.randn(100, 1)

Fit a polynomial regression model

degree = 2 # You can change the degree as needed

poly_features = PolynomialFeatures(degree=degree)

X_poly = poly_features.fit_transform(X)

model = LinearRegression()

model.fit(X_poly, Y)

Make predictions

X_new = np.linspace(0, 2, 100).reshape(-1, 1)

X_new_poly = poly_features.transform(X_new)

Y_new = model.predict(X_new_poly)

Plot the original data and the polynomial regression curve

plt.scatter(X, Y, label='Original Data')

plt.plot(X_new, Y_new, 'r-', label='Polynomial Regression')

plt.xlabel('X')

plt.ylabel('Y')

plt.legend()

plt.show()

The coefficients of the multivariate polynomial regression model

coefficients = model.coef_

intercept = model.intercept_

print("Coefficients:")

print(coefficients)

print("Intercept:")

print(intercept)

In this example:

1. We generate some sample data points with random noise.

2. We use PolynomialFeatures from scikit-learn to transform our input features X into

polynomial features up to a specified degree.

3. We then fit a linear regression model to the polynomial features.

4. Finally, we make predictions using the model and plot the original data along with the

polynomial regression curve.

You can adjust the degree variable to control the degree of the polynomial you want to fit to your

data. Higher-degree polynomials can capture more complex relationships but may also lead to

overfitting, so be cautious when choosing the degree.

MULTIPLE LINEAR REGRESSION

Multiple linear regression is a method we can use to quantify the relationship between two or more

predictor variables and a response variable.

The Regression Line: With one independent variable, we may write the regression equation as:

Where Y is an observed score on the dependent variable, a is the intercept, b is the slope, X is the

observed score on the independent variable, and e is an error or residual.

We can extend this to any number of independent variables:

(3.1)

Note that we have k independent variables and a slope for each. We still have one error and one

intercept. Again we want to choose the estimates of a and b so as to minimize the sum of squared errors

of prediction. The prediction equation is:

(3.2)

Finding the values of b (the slopes) is tricky for k>2 independent variables, and you really need matrix

algebra to see the computations. It's simpler for k=2 IVs, which we will discuss here. But the basic ideas

are the same no matter how many independent variables you have. If you understand the meaning of

the slopes with two independent variables, you will likely be good no matter how many you have.

For the one variable case, the calculation of b and a was:

https://www.statology.org/multiple-linear-regression/
https://www.statology.org/explanatory-response-variables/

For the two variable case:

and

where

 Σx1
2 = ΣX1

2 – ((ΣX1)2 / n)

 Σx2
2 = ΣX2

2 – ((ΣX2)2 / n)

 Σx1y = ΣX1y – ((ΣX1Σy) / n)

 Σx2y = ΣX2y – ((ΣX2Σy) / n)

 Σx1x2 = ΣX1X2 – ((ΣX1ΣX2) / n)

At this point, you should notice that all the terms from the one variable case appear in the two variable

case. In the two variable case, the other X variable also appears in the equation. For example, X2 appears

in the equation for b1. Note that terms corresponding to the variance of both X variables occur in the

slopes. Also note that a term corresponding to the covariance of X1 and X2 (sum of deviation cross-

products) also appears in the formula for the slope.

The equation for a with two independent variables is:

This equation is a straight-forward generalization of the case for one independent variable.

MLR MATRIX FORMULATION

Multiple linear regression is a generalized form of simple linear regression, in which the data contains

multiple explanatory variables.

 For SLR, we observe pairs of variables.

 For MLR, we observe rows of variables.

 Each row (or pair) is called a case, a record, or a data point

 yi is the response (or dependent variable) of the ith observation

 There are p explanatory variables (or covariates, predictors, independent variables), and xik is

the value of the explanatory variable xk of the ith case

Refer further https://online.stat.psu.edu/stat462/node/132/

REGRESSION METRICS

Residual

The difference between the fitted value and Yi is known as the residual and is denoted by

The role of the residuals and its analysis is very important in regression modelling.

Mean Squared Error (MSE)

Mean squared error (MSE) measures the amount of error in statistical models. It assesses the average

squared difference between the observed and predicted values. When a model has no error, the MSE

equals zero. As model error increases, its value increases. The mean squared error is also known as the

mean squared deviation (MSD).

For example, in regression, the mean squared error represents the average squared residual/error.

Where:

yi is the ith observed value.

ŷi is the corresponding predicted value.

n = the number of observations.

Squaring the error gives higher weight to the outliers, which results in a smooth gradient for small

errors. Optimization algorithms benefit from this penalization for large errors as it is helpful in finding

the optimum values for parameters. MSE will never be negative since the errors are squared. The value

of the error ranges from zero to infinity. MSE increases exponentially with an increase in error. A good

model will have an MSE value closer to zero.

Root Mean Square Error (RMSE)

Root Mean Squared Error (RMSE) is a popular metric used in machine learning and statistics to measure

the accuracy of a predictive model. It quantifies the differences between predicted values and actual

values, squaring the errors, taking the mean, and then finding the square root. RMSE provides a clear

understanding of the model’s performance, with lower values indicating better predictive accuracy.

RMSE is computed by taking the square root of MSE. RMSE is also called the Root Mean Square

Deviation. It measures the average magnitude of the errors and is concerned with the deviations from

the actual value. RMSE value with zero indicates that the model has a perfect fit. The lower the RMSE,

the better the model and its predictions. A higher RMSE indicates that there is a large deviation from

the residual to the ground truth. RMSE can be used with different features as it helps in figuring out if

the feature is improving the model’s prediction or not.

Ref: https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics

https://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics

Questions:

1. The data set of size n = 15 (Yield data) contains measurements of yield from an experiment done at

five different temperature levels. The variables are y = yield and x = temperature in degrees Fahrenheit.

The table below gives the data used for this analysis.

i Temp. Yield

1 50 3.3

2 50 2.8

3 50 2.9

4 70 2.3

5 70 2.6

6 70 2.1

7 80 2.5

8 80 2.9

9 80 2.4

10 90 3.0

11 90 3.1

12 90 2.8

13 100 3.3

14 100 3.5

15 100 3.0

a. Create a CSV file with sample data.

b. Write a Python function program to:

Find the fitted simple linear and polynomial regression equations for the given data.

c. Compare the coefficients obtained from manually intuitive and matrix formulation methods with

your program.

d. Plot the scatterplot of the raw data and then another scatterplot with lines pertaining to a linear fit

and a quadratic fit overlayed.

e. Compute the error, MSE, and RMSE.

Note: Do not use scikit-learn.

2. When heart muscle is deprived of oxygen, the tissue dies and leads to a heart attack ("myocardial

infarction"). Apparently, cooling the heart reduces the size of the heart attack. It is not known, however,

whether cooling is only effective if it takes place before the blood, flow to the heart becomes restricted.

Some researchers (Hale, et al, 1997) hypothesized that cooling the heart would be effective in reducing

the size of the heart attack even if it takes place after the blood flow becomes restricted.

To investigate their hypothesis, the researchers conducted an experiment on 32 anesthetized rabbits

that were subjected to a heart attack. The researchers established three experimental groups:

 Rabbits whose hearts were cooled to 6º C within 5 minutes of the blocked artery ("early cooling")

 Rabbits whose hearts were cooled to 6º C within 25 minutes of the blocked artery ("late cooling")

 Rabbits whose hearts were not cooled at all ("no cooling")

At the end of the experiment, the researchers measured the size of the infarcted (i.e., damaged) area (in

grams) in each of the 32 rabbits. But, as you can imagine, there is great variability in the size of hearts.

The size of a rabbit's infarcted area may be large only because it has a larger heart. Therefore, in order

to adjust for differences in heart sizes, the researchers also measured the size of the region at risk for

infarction (in grams) in each of the 32 rabbits.

Infarc Area Group X2 X3

0.119 0.34 3 0 0

0.19 0.64 3 0 0

0.395 0.76 3 0 0

0.469 0.83 3 0 0

0.13 0.73 3 0 0

0.311 0.82 3 0 0

0.418 0.95 3 0 0

0.48 1.06 3 0 0

0.687 1.2 3 0 0

0.847 1.47 3 0 0

0.062 0.44 1 1 0

0.122 0.77 1 1 0

0.033 0.9 1 1 0

0.102 1.07 1 1 0

0.206 1.01 1 1 0

0.249 1.03 1 1 0

0.22 1.16 1 1 0

0.299 1.21 1 1 0

0.35 1.2 1 1 0

0.35 1.22 1 1 0

0.588 0.99 1 1 0

0.379 0.77 2 0 1

0.149 1.05 2 0 1

0.316 1.06 2 0 1

0.39 1.02 2 0 1

0.429 0.99 2 0 1

0.477 0.97 2 0 1

0.439 1.12 2 0 1

0.446 1.23 2 0 1

0.538 1.19 2 0 1

0.625 1.22 2 0 1

0.974 1.4 2 0 1

With their measurements in hand, the researchers' primary research question was: Does the mean size

of the infarcted area differ among the three treatment groups — no cooling, early cooling, and late

cooling — when controlling for the size of the region at risk for infarction?

A regression model that the researchers might use in answering their research question is:

yi=(β0+β1xi1+β2xi2+β3xi3)+ϵi

where:

 yi is the size of the infarcted area (in grams) of rabbit i

 xi1 is the size of the region at risk (in grams) of rabbit i

 xi2 = 1 if early cooling of rabbit i, 0 if not

 xi3 = 1 if late cooling of rabbit i, 0 if not

and the independent error terms εi follow a normal distribution with mean 0 and equal variance σ2.

Illustrates the need for being able to "translate" a research question into a statistical procedure. Often,

the procedure involves four steps, namely:

 formulating a multiple regression model

 determining how the model helps answer the research question

 checking the model

 and performing a hypothesis test (or calculating a confidence interval)

a. Create a CSV file with sample data.

b. Write a Python function program to:

c. Find the fitted multiple linear regression equation for the given data.

d. Compare the coefficients obtained manually using intuitive and matrix formulation methods with

your program.

e. Plot the data adorned with the estimated regression equation.

f. Compute the error, MSE, and RMSE.

Note: Do not use scikit-learn.

Additional questions

1. Consider the Table Contains the Average Annual Gold Rate from 1965 – 2022. Gold prices

fluctuated throughout the year 2020 because of the COVID-19 epidemic. With gold functioning as a

safe haven for investors, demand for the precious metal grew, and its price followed suit. During the

epidemic, the stock market weakened, but it began to recover by the end of 2020 when the price of gold

fell slightly.

It’s crucial to remember that gold prices fluctuate during the year, and the figure below represents the

average price for that year.

With the exception of a few lows shared across a few years, The table shows that the gold price trend

has always been upward, supporting the claim that gold is a secure investment over extended periods

of time.

Create CSV file and Write a python program to find the fitted simple linear regression equation for the

given data. Compare the coefficients obtained from sklearn model with your program. Compute the

error, MSE and RMSE. Predict the gold price with the year 2025 for 1 gram.

2. Consider the Question no 1 gold price with following year-wise silver price. Create a CSV file and

Write a python program to find the fitted multiple linear regression equation for the given data.

Compare the coefficients obtained from sklearn model with your program. Compute the error, MSE

and RMSE. Predict the gold and silver price with the year 2024 for 1 gram.

Year
Silver Rates in

Rs./Kg.
Year

Silver Rates in

Rs./Kg.

1981 Rs.2715 2002 Rs.7875

1982 Rs.2720 2003 Rs.7695

1983 Rs.3105 2004 Rs.11770

1984 Rs.3570 2005 Rs.10675

1985 Rs.3955 2006 Rs.17405

1986 Rs.4015 2007 Rs.19520

1987 Rs.4794 2008 Rs.23625

1988 Rs.6066 2009 Rs.22165

1989 Rs.6755 2010 Rs.27255

1990 Rs.6463 2011 Rs.56900

1991 Rs.6646 2012 Rs.56290

1992 Rs.8040 2013 Rs.54030

1993 Rs.5489 2014 Rs.43070

1994 Rs.7124 2015 Rs.37825

1995 Rs.6335 2016 Rs.36990

1996 Rs.7346 2017 Rs.37825

1997 Rs.7345 2018 Rs.41400

1998 Rs.8560 2019 Rs.40600

1999 Rs.7615 2020 Rs.63435

2000 Rs.7900 2021 Rs.62572

2001 Rs.7215 2022 Rs.55100

3. Suppose you have a gold/silver price dataset with a single independent variable (X) and a dependent

variable (Y). You want to fit a polynomial regression model to this data. Implement the process of

selecting the appropriate degree for the polynomial (e.g., linear, quadratic, cubic) based on the dataset

using Python.

4. Imagine you have a gold and silver price dataset with two independent variables (X1 and X2) and a

dependent variable (Y). Implement in python, how you can perform multivariate polynomial regression

to model the relationship between the independent variables and the dependent variable.

WEEK -05: LOGISTIC REGRESSION AND STOCHASTIC GRADIENT DESCENT (SGD)

Logistic regression is a supervised machine learning algorithm mainly used for classification tasks where the

goal is to predict the probability that an instance of belonging to a given class or not. It is a kind of statistical

algorithm, which analyze the relationship between a set of independent variables and the dependent binary

variables. It is a powerful tool for decision-making. For example email spam or not.

It is used for classification algorithms its name is logistic regression. it’s referred to as regression because it

takes the output of the linear regression function as input and uses a sigmoid function to estimate the

probability for the given class. The difference between linear regression and logistic regression is that linear

regression output is the continuous value that can be anything while logistic regression predicts the probability

that an instance belongs to a given class or not.

It is used for predicting the categorical dependent variable using a given set of independent variables.

 Logistic regression predicts the output of a categorical dependent variable. Therefore the outcome must

be a categorical or discrete value.

 It can be either Yes or No, 0 or 1, true or False, etc. but instead of giving the exact value as 0 and 1, it

gives the probabilistic values which lie between 0 and 1.

 Logistic Regression is much similar to the Linear Regression except that how they are used. Linear

Regression is used for solving Regression problems, whereas Logistic regression is used for solving

the classification problems.

 In Logistic regression, instead of fitting a regression line, we fit an “S” shaped logistic function, which

predicts two maximum values (0 or 1).

 The curve from the logistic function indicates the likelihood of something such as whether the cells

are cancerous or not, a mouse is obese or not based on its weight, etc.

 Logistic Regression is a significant machine learning algorithm because it has the ability to provide

probabilities and classify new data using continuous and discrete datasets.

 Logistic Regression can be used to classify the observations using different types of data and can easily

determine the most effective variables used for the classification.

Logistic Function (Sigmoid Function):
 The sigmoid function is a mathematical function used to map the predicted values to probabilities.

 It maps any real value into another value within a range of 0 and 1. o The value of the logistic regression

must be between 0 and 1, which cannot go beyond this limit, so it forms a curve like the “S” form.

 The S-form curve is called the Sigmoid function or the logistic function.

 In logistic regression, we use the concept of the threshold value, which defines the probability of either

0 or 1. Such as values above the threshold value tends to 1, and a value below the threshold values

tends to 0.

Type of Logistic Regression:
On the basis of the categories, Logistic Regression can be classified into three types:

1. Binomial: In binomial Logistic regression, there can be only two possible types of the dependent

variables, such as 0 or 1, Pass or Fail, etc.

2. Multinomial: In multinomial Logistic regression, there can be 3 or more possible unordered types of

the dependent variable, such as “cat”, “dogs”, or “sheep”

3. Ordinal: In ordinal Logistic regression, there can be 3 or more possible ordered types of dependent

variables, such as “low”, “Medium”, or “High”.

Terminologies involved in Logistic Regression:
Here are some common terms involved in logistic regression:

 Independent variables: The input characteristics or predictor factors applied to the dependent

variable’s predictions.

 Dependent variable: The target variable in a logistic regression model, which we are trying to predict.

 Logistic function: The formula used to represent how the independent and dependent variables relate

to one another. The logistic function transforms the input variables into a probability value between 0

and 1, which represents the likelihood of the dependent variable being 1 or 0.

 Odds: It is the ratio of something occurring to something not occurring. it is different from probability

as the probability is the ratio of something occurring to everything that could possibly occur.

 Log-odds: The log-odds, also known as the logit function, is the natural logarithm of the odds. In

logistic regression, the log odds of the dependent variable are modeled as a linear combination of the

independent variables and the intercept.

 Coefficient: The logistic regression model’s estimated parameters, show how the independent and

dependent variables relate to one another.

 Intercept: A constant term in the logistic regression model, which represents the log odds when all

independent variables are equal to zero.

 Maximum likelihood estimation: The method used to estimate the coefficients of the logistic

regression model, which maximizes the likelihood of observing the data given the model.

How does Logistic Regression work?

The logistic regression model transforms the linear regression function continuous value output into

categorical value output using a sigmoid function, which maps any real-valued set of independent variables

input into a value between 0 and 1. This function is known as the logistic function.

Sigmoid Function

Now we use the sigmoid function where the input will be z and we find the probability between 0 and 1. i.e

predicted y.

https://www.geeksforgeeks.org/probability-density-estimation-maximum-likelihood-estimation/

Logistic Regression Equation

The odd is the ratio of something occurring to something not occurring. it is different from probability as the

probability is the ratio of something occurring to everything that could possibly occur. so odd will be

Assumptions for Logistic Regression

The assumptions for Logistic regression are as follows:

 Independent observations: Each observation is independent of the other. meaning there is no

correlation between any input variables.

 Binary dependent variables: It takes the assumption that the dependent variable must be binary or

dichotomous, meaning it can take only two values. For more than two categories softmax functions

are used.

 Linearity relationship between independent variables and log odds: The relationship between the

independent variables and the log odds of the dependent variable should be linear.

 No outliers: There should be no outliers in the dataset.

 Large sample size: The sample size is sufficiently large

Logistic regression is a commonly used algorithm for binary classification problems. Here's a Python program

for logistic regression with an example using the popular Iris dataset for classification:

import numpy as np

import matplotlib.pyplot as plt

from sklearn import datasets

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import classification_report, confusion_matrix

Load the Iris dataset

iris = datasets.load_iris()

X = iris.data[:, :2] # We'll use only the first two features for simplicity

y = (iris.target != 0) * 1 # Convert target labels to binary (0 or 1)

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

Standardize the feature data

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

Create a logistic regression model

model = LogisticRegression(solver='liblinear')

Train the model

model.fit(X_train, y_train)

Make predictions on the test set

y_pred = model.predict(X_test)

Evaluate the model

print("Confusion Matrix:")

print(confusion_matrix(y_test, y_pred))

print("\nClassification Report:")

print(classification_report(y_test, y_pred))

Plot the decision boundary

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1

y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01))

Z = model.predict(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

plt.contourf(xx, yy, Z, cmap=plt.cm.RdBu, alpha=0.8)

plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.RdBu)

plt.xlabel('Sepal Length (standardized)')

plt.ylabel('Sepal Width (standardized)')

plt.title('Logistic Regression Decision Boundary')

plt.show()

In this program:

1. We load the Iris dataset and select only the first two features for binary classification.

2. We split the data into training and testing sets using train_test_split.

3. We standardize the feature data using StandardScaler to have zero mean and unit variance.

4. We create a logistic regression model using LogisticRegression from scikit-learn.

5. We train the model on the training data.

6. We make predictions on the test data and evaluate the model's performance using a confusion matrix

and a classification report.

7. Finally, we plot the decision boundary of the logistic regression model to visualize how it separates

the two classes.

You can adjust the dataset, features, and model parameters as needed for your specific classification problem.

Stochastic gradient descent (SGD)

Ref: https://machinelearningmastery.com/linear-regression-tutorial-using-gradient-descent-for-machine-

learning/

Questions

Note: "Refer to the table that contains the average annual gold rate from 1965 to 2022 and the year-

wise silver prices available at Week-4 ML lab manual."

1. Let’s say we have a fictional dataset of pairs of variables, a mother and her daughter’s heights:

height of mother(x)/daughter (y) pairs

Create a CSV file for the above training data and write a Python function program to find the fitted linear

regression with gradient descent technique. Compare the coefficients obtained from the sklearn model with

your program. Compute the error, MSE and RMSE. Plot the graph Daughter height (Y-axis) vs Mother height

(X-axis) with blue colour. Also, plot the line of best fit with red colour. Predict her daughter’s height with

given a new mother height as 63. Plot the graph of error in y-axis and iteration in x-axis with 4 epochs (6x4=24

iterations).

https://machinelearningmastery.com/linear-regression-tutorial-using-gradient-descent-for-machine-learning/
https://machinelearningmastery.com/linear-regression-tutorial-using-gradient-descent-for-machine-learning/

2.

Create a CSV file for the above training data and write a Python function program to find the fitted logistic

regression with gradient descent technique. Compare the coefficients obtained from the sklearn model with

your program. Compute the predicted y and assign the class label (prediction = 0 IF p(fail) < 0.5 and prediction

= 1 IF p(pass) >= 0.5) and compute the accuracy. Find the error for each iteration and predict the probability

that a student will pass the exam if they study for a) 3.5 hours b) 7.5 hours. Plot the graph of error in y-axis

and iteration in x-axis with 3 epochs (8x3=24 iterations).

3.

 x1 x2 y

1) 4 1 2

2) 2 8 -14

3) 1 0 1

4) 3 2 -1

5) 1 4 -7

6) 6 7 -8

Consider the above dataset with two independent variables (X1 and X2) and a dependent variable (Y).

Implement in python, how you can perform the logistic regression to model the relationship between the

independent variables and the dependent variable.

Additional Questions

1. Write a python program for SGD by considering the year wise gold and silver price data. Compare the

coefficients obtained from sklearn model with your program. Compute the error, MSE and RMSE. Predict the

gold price with the year 2025 for 1 gram and, gold and silver price with the year 2024 for 1 gram.

2. Suppose you have a gold/silver price dataset with a single independent variable (X) and a dependent variable

(Y). You want to fit a logistic regression model to this data. Develop an example code snippet in Python.

3. Consider the gold and/or silver price dataset and to evaluate a logistic regression model using ROC and

AUC:

1. Calculate predicted probabilities for each instance in the test set.

2. Plot the ROC curve using the True Positive Rate (Sensitivity) and False Positive Rate.

3. Calculate the AUC to summarize the model's performance.

