From fb0c903f1cf47d890bb40a288afe70bd603dc2cb Mon Sep 17 00:00:00 2001 From: Alice Jacques <51132735+jacquesalice@users.noreply.github.com> Date: Fri, 21 Jun 2024 16:33:21 -0700 Subject: [PATCH 1/2] EMP stars in the LMC --- .../ExtremelyMetalPoorStarsInTheLMC.ipynb | 1527 +++++++++++++++++ 1 file changed, 1527 insertions(+) create mode 100644 03_ScienceExamples/MagellanicClouds/ExtremelyMetalPoorStarsInTheLMC.ipynb diff --git a/03_ScienceExamples/MagellanicClouds/ExtremelyMetalPoorStarsInTheLMC.ipynb b/03_ScienceExamples/MagellanicClouds/ExtremelyMetalPoorStarsInTheLMC.ipynb new file mode 100644 index 00000000..dd15349b --- /dev/null +++ b/03_ScienceExamples/MagellanicClouds/ExtremelyMetalPoorStarsInTheLMC.ipynb @@ -0,0 +1,1527 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "82cc87f0-91c4-433f-af58-56e27d6bd45d", + "metadata": {}, + "outputs": [], + "source": [ + "__author__ = 'Alice Jacques '\n", + "__version__ = '20240530' # yyyymmdd; \n", + "__datasets__ = ['skymapper_dr4', 'gaia_dr3']\n", + "__keywords__ = ['science example']" + ] + }, + { + "cell_type": "markdown", + "id": "f153fc91-4352-4d4b-b622-253d7e5c1115", + "metadata": {}, + "source": [ + "## The SkyMapper search for extremely metal-poor stars in the Large Magellanic Cloud\n", + "https://ui.adsabs.harvard.edu/abs/2023MNRAS.524..577O/abstract \n", + "Oh et al. 2023\n", + "\n", + "https://academic.oup.com/mnras/article/489/4/5900/5568381?login=false \n", + "Da Costa et al. 2019" + ] + }, + { + "cell_type": "markdown", + "id": "55a2f022-3254-44ee-a38e-d9bfb6d0f0b8", + "metadata": {}, + "source": [ + "### Table of contents\n", + "* [Goals & notebook summary](#goals)\n", + "* [Disclaimer & attribution](#attribution)\n", + "* [Imports & setup](#import)\n", + "* [Authentication](#auth)\n", + "* [First chapter](#chapter1)\n", + "* [Resources and references](#resources)" + ] + }, + { + "cell_type": "markdown", + "id": "f6ad8015-7db4-4186-b45a-ca09226c7d39", + "metadata": {}, + "source": [ + "\n", + "# Goals\n", + "One or two sentences, or a bullet list, of the goals of this notebook. E.g. \"To find dwarf galaxies in DES DR1 images\"." + ] + }, + { + "cell_type": "markdown", + "id": "434bc8f3-490d-4013-b8f4-ed517a4c9a22", + "metadata": {}, + "source": [ + "# Summary\n", + "\n", + "**Abstract:** \n", + "We present results of a search for extremely metal-poor (EMP) stars in the Large Magellanic Cloud (LMC), which can provide crucial information about the properties of the first stars as well as on the formation conditions prevalent during the earliest stages of star formation in dwarf galaxies. Our search utilized SkyMapper photometry, together with parallax and proper motion cuts (from Gaia), colour–magnitude cuts (by selecting the red giant branch region), and finally a metallicity-sensitive cut. Low-resolution spectra of a sample of photometric candidates were taken using the ANU 2.3m telescope/WiFeS spectrograph, from which seven stars with [Fe/H] ≤ −2.75 were identified, two of which have [Fe/H] ≤ −3. Radial velocities, derived from the Ca II triplet lines, closely match the outer rotation curve of the LMC for the majority of the candidates in our sample. Therefore, our targets are robustly members of the LMC based on their 6D phase-space information (coordinates, spectrophotometric distance, proper motions, and radial velocities), and they constitute the most metal-poor stars so far discovered in this galaxy.\n", + "\n", + "**Conclusions:** \n", + "We present results of our search for EMP stars in the LMC via SkyMapper photometry. Our photometric selection of EMP stars involved applying cuts on parallax and proper motion (from Gaia), on the colour–magnitude diagram (by selecting the RGB region), and a metallicity-sensitive cut. To confirm the EMP status of our photometric candidates, we obtained low-resolution spectra using the ANU 2.3m telescope/WiFeS spectrograph combination. We identified seven stars with [Fe/H] ≤ −2.75, including two with [Fe/H] ≤ −3. Radial velocities, derived from the Ca II triplet lines, generally match well with the outer rotation curve of the LMC for the candidates in our sample, confirming that our targets are probable LMC members. Our results constitute the most metal-poor stars found so far in the LMC. We have obtained high-resolution spectra of the most metal-poor sample and will present our findings in a future paper." + ] + }, + { + "cell_type": "markdown", + "id": "751fa214-ee05-4a9e-995b-6101d0254398", + "metadata": {}, + "source": [ + "\n", + "# Disclaimer & attribution\n", + "If you use this notebook for your published science, please acknowledge the following:\n", + "\n", + "* Data Lab concept paper: Fitzpatrick et al., \"The NOAO Data Laboratory: a conceptual overview\", SPIE, 9149, 2014, http://dx.doi.org/10.1117/12.2057445\n", + "\n", + "* Data Lab disclaimer: https://datalab.noirlab.edu/disclaimers.php" + ] + }, + { + "cell_type": "markdown", + "id": "d0fa7e2d-a172-42c8-964b-b86cfc5032bc", + "metadata": {}, + "source": [ + "\n", + "# Imports and setup" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "8ad9f77f-2f8a-4143-a374-2100315021e8", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:03:02.101637Z", + "iopub.status.busy": "2024-05-30T19:03:02.100827Z", + "iopub.status.idle": "2024-05-30T19:03:12.153344Z", + "shell.execute_reply": "2024-05-30T19:03:12.151882Z", + "shell.execute_reply.started": "2024-05-30T19:03:02.101559Z" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# Standard lib\n", + "from getpass import getpass\n", + "\n", + "# 3rd party imports\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.colors import LogNorm\n", + "import pandas as pd\n", + "\n", + "# Data Lab\n", + "from dl import authClient as ac, queryClient as qc, storeClient as sc\n", + "\n", + "# plots default setup\n", + "plt.rcParams['font.size'] = 14" + ] + }, + { + "cell_type": "markdown", + "id": "9e1c37d2-137d-4b64-940c-fbcbd250b0ce", + "metadata": {}, + "source": [ + "\n", + "# Authentication\n", + "Much of the functionality of Data Lab can be accessed without explicitly logging in (the service then uses an anonymous login). But some capacities, for instance saving the results of your queries to your virtual storage space, require a login (i.e. you will need a registered user account).\n", + "\n", + "If you need to log in to Data Lab, un-comment the cell below and execute it:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "c0e071f3-203b-4c7a-950d-21d7af6366e0", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:03:15.409803Z", + "iopub.status.busy": "2024-05-30T19:03:15.408944Z", + "iopub.status.idle": "2024-05-30T19:03:15.424076Z", + "shell.execute_reply": "2024-05-30T19:03:15.422862Z", + "shell.execute_reply.started": "2024-05-30T19:03:15.409743Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'ajacques'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#token = ac.login(input(\"Enter user name: (+ENTER) \"),getpass(\"Enter password: (+ENTER) \"))\n", + "ac.whoAmI()" + ] + }, + { + "cell_type": "markdown", + "id": "612185ca-2fff-4288-8942-0e41d63c27dc", + "metadata": {}, + "source": [ + "#### We define a little helper function to make computing 2D histograms easier." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "bacc6dee-ef56-4692-bbfe-61c9d96dac3a", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:03:17.185181Z", + "iopub.status.busy": "2024-05-30T19:03:17.184455Z", + "iopub.status.idle": "2024-05-30T19:03:17.197280Z", + "shell.execute_reply": "2024-05-30T19:03:17.195961Z", + "shell.execute_reply.started": "2024-05-30T19:03:17.185128Z" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "def compute_nbins(x, y, binsize, extent=None):\n", + " \"\"\"Compute the needed number of x and y bins.\n", + " \n", + " From the x and y data, and the desired binsize (identical for x and y),\n", + " computes the number of needed x and y bins. If 'extent' is given, trim\n", + " x and y data to the limits given in 'extent' first. Otherwise, use the\n", + " full data range.\n", + " \n", + " Parameters:\n", + " -----------\n", + " n, x : 1D arrays\n", + " The x and y data to bin in 2D.\n", + " \n", + " binsize : float\n", + " The desired bin size (identical for x and y), in the units of x and y.\n", + " \n", + " extent : tuple\n", + " Optional. If not None, it is a 4-tuple (xmin,xmax,ymin,ymax).\n", + " \n", + " Returns:\n", + " --------\n", + " x, y : 1D arrays\n", + " If extent=None, the returned x and y are identical to the input x and y.\n", + " Otherwise they are trimmed to the [xmin,xmax] and [ymin,ymax] ranges\n", + " defined in 'extent'.\n", + " \"\"\"\n", + " \n", + " if extent is not None:\n", + " xmin, xmax, ymin, ymax = extent\n", + " select = (x >= xmin) & (x <= xmax) & (y >= ymin) & (y <= ymax)\n", + " x = x[select]\n", + " y = y[select]\n", + " else:\n", + " xmin, xmax, ymin, ymax = x.min(), x.max(), y.min(), y.max()\n", + " \n", + " nxbins = int((xmax-xmin)/binsize)\n", + " nybins = int((ymax-ymin)/binsize)\n", + "\n", + " return x, y, nxbins, nybins" + ] + }, + { + "cell_type": "markdown", + "id": "1b4a881d-0753-47cc-8597-50e8817c5e80", + "metadata": {}, + "source": [ + "# Initial selection from SkyMapper DR4\n", + "We will search for objects in the **skymapper_dr4.master** table with the following initial constraints:\n", + "- $class\\_star > 0.9$\n", + " > to ensure that the object is stellar in nature\n", + "- $flags \\le 3$\n", + " > so that there are no apparent issues with the [SExtractor](https://sextractor.readthedocs.io/en/latest/index.htmlhttps://sextractor.readthedocs.io/en/latest/index.html) photometry\n", + "- $v\\_ngood \\ge 2$\n", + " > to ensure at least two measurements in the v-band\n", + "- $g\\_psf \\le 16.5$\n", + " > so that the LMC candidates can be observed at high dispersion on 8m-class telescopes with sensible integration times\n", + "- $e\\_g\\_psf < 0.03$, $e\\_i\\_psf < 0.03$, and $e\\_v\\_psf < 0.05$ mag\n", + " > as a compromise between photometric precision and number of candidates selected\n", + "- $ebmv\\_sfd < 0.25$ mag\n", + " > to avoid large reddening corrections to the photometry and to avoid areas of the sky where the photometry is less well calibrated and frequently affected by image crowding\n", + "\n", + "## **Constraints applied in the paper but not applied in this notebook (because the column does not exist in SkyMapper DR4):**\n", + "- `nch_max = 1` so that there is a single source for each filter\n", + "- `ngood_min >= 1` to ensure at least one measurement in all of ugriz\n", + "- `prox > 7.5 AND twomass_dist2 > 7.5` so that there is no other DR1.1 or additional 2MASS source within 7.5 arcsec of the target (these columns aren't in skymapper dr4? use self_dist2 and gaia_dr3_dist2 instead?)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "87e04ed4-4af1-4f5d-959a-45fc4f8bfeb0", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:03:22.408784Z", + "iopub.status.busy": "2024-05-30T19:03:22.407965Z", + "iopub.status.idle": "2024-05-30T19:03:22.417222Z", + "shell.execute_reply": "2024-05-30T19:03:22.415663Z", + "shell.execute_reply.started": "2024-05-30T19:03:22.408726Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "SELECT\n", + " object_id, gaia_dr3_id1, raj2000, dej2000,\n", + " g_psf, i_psf, v_psf, (g_psf - i_psf) AS g_i,\n", + " ebmv_sfd, ((v_psf - g_psf) - 1.5*(g_psf - i_psf)) AS metallicity,\n", + " (ACOS((SIN(dej2000*(PI()/180))*SIN(-69.78*(PI()/180))) + (COS(dej2000*(PI()/180))*COS(-69.78*(PI()/180))*COS((raj2000-81.28)*(PI()/180)))))*(180/PI()) AS radius\n", + "FROM\n", + " skymapper_dr4.master\n", + "WHERE\n", + " class_star > 0.9\n", + " AND flags <= 3\n", + " AND v_ngood >= 2\n", + " AND g_psf <= 17\n", + " AND e_g_psf < 0.03\n", + " AND e_i_psf < 0.03\n", + " AND e_v_psf < 0.06\n", + " AND ebmv_sfd < 0.25\n", + " AND g_psf != 'NaN'\n", + " AND i_psf != 'NaN'\n", + " AND v_psf != 'NaN'\n", + " AND gaia_dr3_dist2 > 7.5\n", + " AND self_dist2 > 7.5\n", + "\n" + ] + } + ], + "source": [ + "query_pt1 = \"\"\"\n", + "SELECT\n", + " object_id, gaia_dr3_id1, raj2000, dej2000,\n", + " g_psf, i_psf, v_psf, (g_psf - i_psf) AS g_i,\n", + " ebmv_sfd, ((v_psf - g_psf) - 1.5*(g_psf - i_psf)) AS metallicity,\n", + " (ACOS((SIN(dej2000*(PI()/180))*SIN(-69.78*(PI()/180))) + (COS(dej2000*(PI()/180))*COS(-69.78*(PI()/180))*COS((raj2000-81.28)*(PI()/180)))))*(180/PI()) AS radius\n", + "FROM\n", + " skymapper_dr4.master\n", + "WHERE\n", + " class_star > 0.9\n", + " AND flags <= 3\n", + " AND v_ngood >= 2\n", + " AND g_psf <= 17\n", + " AND e_g_psf < 0.03\n", + " AND e_i_psf < 0.03\n", + " AND e_v_psf < 0.06\n", + " AND ebmv_sfd < 0.25\n", + " AND g_psf != 'NaN'\n", + " AND i_psf != 'NaN'\n", + " AND v_psf != 'NaN'\n", + " AND gaia_dr3_dist2 > 7.5\n", + " AND self_dist2 > 7.5\n", + "\"\"\"\n", + "print(query_pt1)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "3b7af685-5f47-46aa-a20b-f2696983cfec", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:03:29.941344Z", + "iopub.status.busy": "2024-05-30T19:03:29.940535Z", + "iopub.status.idle": "2024-05-30T19:12:01.781308Z", + "shell.execute_reply": "2024-05-30T19:12:01.779877Z", + "shell.execute_reply.started": "2024-05-30T19:03:29.941285Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'OK'" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# this will timeout after 10 mins the first time it is run, then complete the second time it is run\n", + "qc.query(sql=query_pt1, out='mydb://skymapperdr4_pt1', drop=True, timeout=600)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "3b1a0720-8be4-46cc-b67e-0553644e1805", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:12:10.363566Z", + "iopub.status.busy": "2024-05-30T19:12:10.362776Z", + "iopub.status.idle": "2024-05-30T19:19:19.116454Z", + "shell.execute_reply": "2024-05-30T19:19:19.115394Z", + "shell.execute_reply.started": "2024-05-30T19:12:10.363506Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of objects: 14924030\n" + ] + } + ], + "source": [ + "res_pt1 = qc.query(sql=\"select * from mydb://skymapperdr4_pt1\", fmt='pandas', timeout=600)\n", + "print(f\"Number of objects: {len(res_pt1)}\")" + ] + }, + { + "cell_type": "markdown", + "id": "1565216a-1e0e-486d-88ed-07f199813ba3", + "metadata": {}, + "source": [ + "#### Plot the metallicity-sensitive diagram for initial selection" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "6a379820-7e8a-4aa3-b16b-5dda556e65ed", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:19:36.073163Z", + "iopub.status.busy": "2024-05-30T19:19:36.072418Z", + "iopub.status.idle": "2024-05-30T19:19:40.789004Z", + "shell.execute_reply": "2024-05-30T19:19:40.787975Z", + "shell.execute_reply.started": "2024-05-30T19:19:36.073105Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyQAAAF/CAYAAAC43A0ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9e3xdVZn//17J6UmTJu2hSZM2NG2gCS2lhWILFqRCUQQZUdTiJerAKKh4Q78/HUWZCfXrd8BRx9GBQQdGBLWjUhUFFAekyE0uLRRbSmlSSElJm5CUU5Imzek5Wb8/nrWvZ59bbj2t+/N67dc5Z++1115777X3WZ/1PJ/nUVprQoQIESJEiBAhQoQIEeJwoORwNyBEiBAhQoQIESJEiBB/uwgJSYgQIUKECBEiRIgQIQ4bQkISIkSIECFChAgRIkSIw4aQkIQIESJEiBAhQoQIEeKwISQkIUKECBEiRIgQIUKEOGwICUmIECFChAgRIkSIECFGBaVUiVKqYkx1hGF/BTU1NbqxsfFwNyNEiCMemzZ1sXx5/eFuRkYU0r5iP5cQxY2w/3gxUdcjV72bNg2zfHkZmzbB8uXOOugDqoEyoAuOqYfXuqRAVT1MBZJABCgH+l3fE0AlUApo4AAwzRywFFQ0RSSSZIQSpnKQQ0whMTwVgKllgxzcWwFTgP3ADPMJMAjUAK8M2+1fvrzMc57+z0zXYiL736ZNXaZtwceytltlnHsw7DkfdxlnX+veZNtXyjjH39SrtZ41/mc6djQppQfHWMce+KPW+oJxadA4QSn1duCDwNnAsYACDgJPA/cCt2qtuzLX4KsvJCSCFStW6I0bNx7uZoQIEcJAqbVo3Xq4mzEuKPRclFoLkHGfo+naHAkIr/eRCeu+qWbQbc5zJWgB1kFE7qs+BGoK0Gg2LwPWt8GVzfAqsAIhDW2u73cA3wAagM3OvtGVrzNnZhcpIvQnKtm/t4b589pJEWH3002wFdgOxJG6LwL2mOPuAm4Gkk5brb7nfi8o1SbtJ/N7YjyR650kZdpMmWZnn0irXFvV5lrfZvYw1z/p7GeVs87POldrX397rDYppTZprVeMx7mON45VSn9qjHVcA0VzfkqpdwPfBKqA3wNPAl3AEDATWAKsAs4Afgz8k9b61Vz1hi5bIUKEKEpk/+Nbm/X3ZCKfY7vPJd/yQeefz6AgxPjjcFzvbP3kcPb3w4nRnrc241/ruZKlWe5rI5BcK2Qk2SZEZBlCElY3CzlYAfwRmItM3FeZ79/AmsgXkrEkCUuSJOJVAFTRT1V0gBPmbWPXtkVCRqYiFpBFZr/VyJDtGrPc1GbISIvpdy3SNlf7hWg1Z3xPjOVaBe3rJ+Tu7UqtRak2F4FoDnxPeQnFOiwyJefq3m+dTUD8xMuPI+U9qBBj2FiWIsNXgP8DHKu1/pjW+oda67u01vdrrX+ptf5nrfVqYAHwOvD3+VQaWkgMQgtJiBDjj8maWfbOHI7fMYNm5kZXz9pxb1uIEPlgovvckdan0wbqTa3Qbga9rtl6Is1wBUJIvgFsBGYB84E5CCGJmTpi3nHU3ON3UkU/nYMNxCri7H5xAbXHd9Lz2Dx42Oy/ByE2G4A7kflkgEWg/9NrbUgnFy3j8l4qBJnus5pirEt2G522ua0cQb/d9cr+xmplkMk64t7XKVe8FpIGpfQXxljH/1dEFpKJQmghCREiRIgQIUKECBEixGFDaCExCC0kIUIUH8Zj9nUiZnAnclb4SJtxPhpQTNe8mNqSL4q5zc4MvEvDcC6wwczor26FTuA8RNfxRbPjVYjrlqV73yy/K2/rZeDBGvi2KdsPNAMHYcaKvQDEonH6BmuoruiljAQ7HjuZ6KLXxZXrKQXDiJtWtav+9ZauAmCdsdxMjOU3E9zHyOam5Vg0vL+zWUKyrXfqb/HoSILalandcG3RWhDmKaW/NMY6PlekFhKl1I8ybNKIwL0d+EU+4vaQkBiEhCREiKMfY/lTz3ffYh6cHS34W7rGf0vnmi8yD5bNgNbSXBwirUyaLsFy04qYAbDlOlWNEI02hIxcgrhpVQIDCBFpRMjFAFRe1kvZVImMNXywjNJIklQyQnVFL0NU0PP7ebAFcde6yxxjBaIbAUfE7hLZ2+02wvDDiWz90H9tvW5mwSTDvZ8XjttWITq6YnbZmq+U/soY6/hU8RKSu5CnZgRRUoGI2hWwCTgJeWpWaa03Z60rJCSCkJCECHH4EDTAGI9BWDiYyx/htZoYFKOV73BZ+Ca7j9n6hinYQnHAIR/gkJFVwEqEgIAjVl+JhOWtAnYjpKQREafHEP1IXLHkDU+xY99CAE6f+QSPdZ/JyKZpzL9wO3v21ZP49nSprw3RorwKrPdaBSwEaSaKTQvkJxOeSGAuAuXX942WcMi2YFJT7BqSRqX0NbmLZcUVxUtIvgKcAnxMa4lubPKR3Aw8C/w7cDswS2v9lmx1hRqSECFC5I3RRG7JN6rUREQOKiRSV7ZykxnVKOhYkxFxKSQjE4PxuK7jfW/8YWRHi6D9s7U13/MopF2Znhel1tpia33IilBlBrPGGiHrDRlZhJCFPrOsQawkdyBkpN9sr0SiaR0EpkLl7D5Kjj1AjDjJQ6UkD5Wyh3qOmRXnhAv/yq6nF5G4b7oM2WYg1pYYYn0xBEkpQ4oizbCm2Y5c5T4Xq9xEvYvSLQ5OG6zfzvc2T8Qy93oAkm12W53IYG1CVALJVpt9vMzRvIKjbf0NvbdmKKX+Syl10eFuiA9XAV+3yAiA+f7/gC9orRNIiOBluSoKLSQGoYUkRIgjB+OV1+Nwz16P9fihVWNiUKzXdbLCPo/m/A/XNbOsIEHtcLsNATLgd1tEqpEIVxebTzeuwImiNcN87kKcUSrNJ0BNkmXzNhIlwSDl9u4dg8cxcFeNrS8BxJv+Y0jUripkKNcIdBDokpWL8E3UNQ/S3QRtE3itHX5tib2fCavsd+cKirrl3j/dBSy9btmveC0kxyk15rv0D8VrIekH3qW1fsC3/lzgt1rrKqXUAuBprfWMwEqsfUJCIggJSYgQheFIE4tPJMY31PCReQ1CHB2YDJKcTzhtf5K9/I/vTsDnDimL0YuYdVZyh4sRi8gihIDEzfqzzfqtiNvWHiT070XAOUlIlsJ2xYILnyNJKfXsYScLPG0ZTkTZv3W2uHfdALzDbPg7Q4oacUIOB8AtFj9shC/guF5rRYtryzrX9W7xrXMSHrrDAltkI+hc83H/c4hK8Yraj1dK/98x1vHh4iUktyP0/h+Bp8zq04B/BR7SWl+qlPog8H+01qdlqyt02QoRIsSoMBF/jsU0EC/ENWI82x1kxfGjULeufLaPJybzWEcTiuG6jbUv57N/PiRDEuPlLud2K7L2U1PMjDwt9uBYa6NriJhBbCOyrG9DPwDcBzzuqmgY0YyA6EZA3LjO0jAQIRrrZ+6F7ex87CQipPjLi+eQGiklNVJKOeK9sv+W2VKnJWK/GyEjVzZ7spPb7dOSCFHWt9qfflcmOe+J6ytuNzG/9cIhIy04Fo5m/PlD3IRFyEOzr561BBGxbGQkyPridxsrRiggMsaliPFJJG3oT4GdZvkpcC9gJah/HrE5ZkVISEKECHHEYTIGbpM5ACikHYWsK2T7eKLYBwiHC7n60FhExUcKCm13NvKdydKiD/ldoGTgq5oRIrDahNQ9D7i+GXUJEkXLspLEgP+LWEsuRywcc4ClQIeCDqm1lCRzz2ynnEEqZ/dRXjJEeckQu25fRHxfjAWfek5IzSokpPB205ybDRFpMO31ZTH3hs8NxngF/cikkUt7/03xkgAr27p3nVOvJdb3EhHv/XL2cUhYuoXFbS3LLIIvZhyFmdptaK0HtdafBGYCp5plptb6Sq31AVNmc64IW1D0xCtEiBAhQoQIESJEiBDFCkM+/jqWOorWQqKUKlNK/YdSqlcpdUAp9Tul1Nzce9r7X62U0kqpGyaynSFCHC5MdvSniUSh5zEWEfloEc76h8gH2frYRLr2jRXF+i7Jfp6Oy49yTSNncwmiqRk2tEniwZuBW8z6OCJUv8MsHYjmw8pD8mOoXfwylSt7AaiK9VNDH/V0ESFFrCJOV/ccurrnMOMDe0n8fDo7HzhJrC4/RT7PN8daZWb9N7QFuJy5z3ddXnqbQuF2xwpyeQqMwpZc62uLuGwFitgjrabtawMF8p7IW4Dfncvr8gWZXLuOFL3d0WwhAVBKrTYRwO5VSj3gXgqqp1hF7Uqpm4B3AZci0rJ/Qwypy7XWqRz7rgT+B3gdeFhr/ZlcxwtF7SFCTC4K+TMZ7R/PkfKHNRGYjHM/mq7vkXwuR3LbxwJ3hC2vcN0M8iPNEvq3GSEYqzBkpFnE5Fc3i8bji8AjCClZaSrfjkTXOg1H7H4QoitfB+CEmS/QQx0L2EnchOOyomzt+sUicceKAa1IBK9VSEb4ZeZ3IyYTe3CkqXzzcIwVmUiBA2/7/GJyL3lx51Txn5OjPQkiIO7909sYHLnLW/cJRSn6BmhWSn9/jHVcWLyi9suAHwC/Ad4N/BY4ATgO+Gk+428LRWkhUUrNQILjfUlrfZ/W+mngI8DJwFvz2PdnwEeB1ya6rSFChBgdChlAZQoL6UdQaMjRzPyOdrY4X6vV0ZJXZLIHwRM5i38kD+gPV/Slyaoz47HMrL0734VE0TLaBbNdIlkhZOPqZiEna8zAdxEiNrcCklpajzsQ0gAQh5KTDti/q2L9bH36NN7IE5SSJEacBFF2bVvErm2LJPHh3Uhm9tVImF8Qncpm8729jUwD8Ex5YsZCRjJdw6DgAW7LiWz3EhBH49EiAQQ8+UIcy5SjUXEIStCxnPuXOZN79mhb40vSxhtHuYXki8BntNYfBA4BV2utT0XsggOFVFSUFhITv/hPQK3W+lXX+ueA9TrL21cp9QugQ2v9ZaXUg8DW0EISIsTRiyMpZ0KIEJOBwx0qdrTIbBnIJ5SwOwu4EUSvNgPVh02hRvPZgSRHvL5VcotsR4jJ2UhuaRBCcjkiZO8HZsGScyUbe1Wsn6UlW+ilmhQRekZqee3VGCO/mib7viMJ1xuJrtvicp1YZfS/gN+KYLmcZcqpUizwt0mptcZFK7jt7vMMitzlrdsfAjmYsAXvW7x5SBYqpX84xjpWF6+FZBBYrLXuUEr1Audqrf+qlFoEPKi1np1vXUVpIQFmAymg17e+22wLhFLqCqAJuCafgyilPq6U2qiU2vjqq6/m3iFEiBCTgkJC2I4mGtZo3b/Gsj1EiIlEppCoTkSqydOcjfY4mZ7LXJZOe5DcZAavTc2yPIy4aCXN0t4mLlPuAKQrkXC+VgSss8xyOeKu1Qicpplx1l46Bo8jOjVBMlnKNhZTzx5KSdK3u46KqiFK3nuAkvcegP+JCLlZAvwY8fd4HGAdfMs6sFcXYUUGC7qPBVuO8kSmKFt+i4db5+K/F3Y45WSbpy7nXq7z3dcWY9VqS+ubljXGqbvZsz1EUaIPSfMJ8ApOytBqcGUKzQOTSkiUUt8wQvNsyzmjrHsh8C9Ai9ZBOU/TobX+L631Cq31ilmzZo3msCFChBgn5GOez2d7PmTD/UeYLyYzrG74B1x8KIb7MRqXwFz5GsbjvIJcJcezPned6YNlJwQw7W0yW9+BYwVhnSQhvLJZ3LTuRHKO3GPaeBeS/LAaGVZtMUsj0JSEyiRsV8SicRoqOimbOkxZNEEV/dzf/RbiHAPAQG+MkeemMfLcNKnHSqq4oQ1+i+Q6MZYbK0eKN6mg9zxzrcu2Pl9kErXb7XS5UlmkxG19yxR+Wdy4LMLhFr5bFixv+935V9zt8hMhP4rhmcwH4+SyNcMIxy+a3NbnxMPA28z3XwLfV0rdiui47yukokl12VJK1QA1OYq9jMxZFOSyZYQ1tyKWFQulgAZGgGla6+FMBw1dtkKEGF+Mh7vBZAjfx7uO8axnInEktHE0yNe9p9CcH6OtMwzIkBvuc812Hd0uPEECb8dtS2AlSeQK4CYjZm9A3LNuaoN7zP6PIFaRLUi+EQtLgJiGSIoF814gSSk19BEjTje19FPFrpebqKyJM7C3Gg4q2a8D+LY5znaElFzZLFG9km7x9/j3w/GCVzNiEQPH9cpPEP0Cduv87DqmpFuAbERazbbgzO3u47jhPWbxumydqJT+8RjrWFm8Llszgala6y6lVAnwJeBNwA7gG1rreL51TaqFRGvdq7XenmMZBDYh4pjzrH1NyN8TgccyVH8n4u25zLVsBH5uvicm5KRChAgRiGx/nPmKukcrfPfXle/M8nj92R+OsMSFopgHu+ki2fFFoec+FoIz2uucbyCHYkSh7o1+l54gBImerbrs+pq8ZdS5SHSrm9YKGVmGhN59FbitWYjIFiQT+7fNTnNdC8AjQjLKGaSOHkpJMUgFO/YtJJ6IUVI2zMD2GrhDiYz3p2a/y8znSuTYN601gnt/SNvihdvtyvrtJ33+8L9B916ptYaIBd/rIJ8Wf31eoX3xZ2d342gWtWut92mtu8z3Ea31N7XW79Raf7EQMgJFqiHRWu8H/hv4V6XUW5VSpwI/QZKu3G+VU0ptV0p9xuwT11pvdS/AAWCf+V186v088OMf/xilFD/+8Y8L2k8pxTnnnDOmY3d0dKCU4rLLLhtTPeOBa6+9FqUUDz744OFuio1zzjkHpdThbsYRBcdXeGwuV/kiyF1lvAd341nfeGtbjrSBrAWvH/n4koeJwEQf80gYfI2fy2XmSEvyuy2Q0Ci1FtrbhIREmmXZ0CauWLTY2dX5I7ACJ/5PI1LmfCi57AAcRJZGDVMh+o7XOWHeNuIcQ4Io/VSxkwUsnrmNWDQudRw09bSZZQviCvaq+d0enGm80EmbQtxRs9XjXm/pOax17qhlXuuH29WqOe271q0SXtm4ZXne85FMZN2J4GVpSBw3sSOPePwtQyk1Uym1SCm12L0UUkdREhKDzyNxjX8BPIq8Pi7y5SBZSG4XsMMCpdSEDlYbGxtpbGycsPpDwGWXXYZSio6OjsPdlBAhQoQIESLEEQgFRMa4FCuUUqcqpTYj9Ps5RDm1xfWZN4qWkGith7XWn9VaV2utK7TWF2mtO31llNb62ix1nFNIUpZixLvf/W6ef/553v3udxe03/PPP8/tt98+Qa0KAXD77bfz/PPPH+5mHFGY6BmvTFFj/G3ItG8+9edbXyEYiyUjl7VpNAL+XJhol6qxohjbVAiOxPZP1HPtd10LSuDnFl/zME5ULSvs79XN4tl+EU629O8iuUc6gGHgNBj53jTnwE8pZjTtJTYzThX9xHiNavpIUUo1fWzbt5iBkSpGDlRIzpEqoNksIKL2WUjekYg7WpTkH5Hf3izt3vMcXQ6loChY7mvlXy+Wj3Wudd4QvZZA3XHLaglot2SUF0uQ370LSLalaYSCNCi5rDtBAQ2OhGflaHbZAn6ERNc6FzgJkVYsdn3mjaIlJCEEM2bMYNGiRcyYMSN3YRcWLVrEvHnzJqhVIQDmzZvHokWLDnczjogX8nggnz+f0RCefNzI3PVnq2e0mEiS5o1kM751jne9bozFFS2f+zSawUxG//hxxkRc08kYvGW6PmM5rn9wLcJnQz4ijkuQmoKdy4MrTVQtEGJguVI9jojWGxGFahVCUmqQ+d1TEHJxN5Scc4BUMkLPiw10jDRSzx5SlDJIBYOUk4hX0VjSAZGUQ2weN8stiBvYdpykjLS4nsVmz6f/Oo31mc03UpebHFhkySkn7dWHgNXNtntVUCJFgXHparKIhttNLVgzY9/biHO+Qe+WTBNBR4pL19FsIUEo+FVa6z8bHfgL7qWQikJCMolwazI6Ojr4wAc+QE1NDVOnTmXFihXcfffdafv4NSQPPvggSil27drFrl27bNcwv9YjSEPS1dXF17/+dd70pjcxe/ZsotEo9fX1tLS0sG3btjGfn9aa2267jTPPPJNZs2YxdepUGhoaOP/88/nFL36RVn737t185jOf4fjjj6esrIzq6mre+c538tRTTxV03O3bt3PZZZfR0NBANBqlrq6OlpYWXngh+FkYHBzkm9/8JitWrKCqqorKykpOPPFEPve5z9Hd3Q3I9bvtttsAOO644+xr7HaTy6QhGRkZ4Qc/+AGnnXYalZWVTJs2jdNOO42bbrqJkZGRtPLWvert7eXjH/84c+bMoaysjJNOOolbb7015/kfCS/k8UAhfz7+ctkGRe4/5BDFg4nSGQXpisbSpmJ6/nJZBoOei3zqCHp+8rUWjnXQmC7ud7KA60Nme7LNFk2zCoiZpRMnMWEfQhAeB/5stu8GboCS5QdglpAQvpKErySpOqafsqnDzD1+JwtKdpKilG7qqKObISoomTbIptvfBLsjEj5ntzleJxLJ606chIxJt2VnXeD19F+n8XofZbufFsGziYjLkgPrHOvIBkdb4tacSNk27/3twFWXZU1p8R3TS74sUXtQH3NPFhXTs1YIjnILySOINWTMKHLidXRi165dnH766Rx//PF85CMfYd++ffziF7/gXe96F/fffz+rV6/OuG9jYyOtra38+7//OwCf//zn7W3Lli3LetyHHnqI66+/ntWrV/Pe976XyspK2traWL9+Pb/73e949NFHOeWUU0Z9Xl/72te47rrrOO6443jf+97HjBkz2LNnD0899RR33HEH73//++2yTz/9NG9729vYt28f559/Pu95z3vo7e3lzjvv5KyzzuI3v/kNF154Yc5j3nvvvbznPe/h0KFDXHTRRTQ1NbF7925+/etfc88997Bhwwbe8IY32OVfe+01Vq9ezbPPPsvChQv56Ec/SjQaZefOndx666285z3voa6ujtbWVu68806effZZrrrqKmKxGID9mQ0f+chHWLduHQ0NDVx++eUopfjNb37Dpz71KR555BF+9rOfpe0Tj8d505veRDQaZc2aNQwPD3PHHXfw0Y9+lJKSEi699NLcN+AoQ75Wi3yQa8Z8PGbajtQ/Szf8M7SHsx2Huw1HCnIN2DJdy0zrx7Iu33aOFvaM+RTEKqLcIXRbxPKxCJOE0CCOkIMrgPkIebgIR9T+ViTD+iKoqBqioq4PgN7uak6u28IwZewcWcAJJTsYpJwUpcSIE58SI2EFYW02x2kwvze0yYC8UTbqtuxidve1Ga/3UdCx/H3FHzrZCsvr3ceqpxmlrM82xxrFOqDVc2/8Weidelo8BCaTG1mQW5dFZLJduxCHBR8DblFKHY/oRjwx07TWD+Vdk9Y6XLRm+fLlejyB5D/xrHvppZfs9ddee61n27333qsB/fa3v92z/tZbb9WAvvXWWz3r58+fr+fPn5/1+GeffbZnXXd3t3799dfTym7evFlPmzZNX3DBBYHtvfTSSzMex42ZM2fqY489Vh84cCBt26uvvmp/P3TokF6wYIEuKyvTDz74oKfcK6+8ouvr6/Xs2bP1wYMH7fWtra0a0Bs2bLDX7du3T8diMV1dXa2fe+45Tz1btmzR06ZN06eeeqpn/Qc/+EEN6E9+8pM6lUp5tvX39+t4PG7/vvTSSzWgX3rppcDzPfvss9Pu8bp16zSgTz31VN3f32+vHxgY0MuXL9eA/tnPfubZx+oTH/vYx3QymbTXP/fcc7q0tFSfeOKJgcc/mgDXZt2Wbbu/jnzK/q2iWK5NIfczxPgg13NUyPWeyHuTqW77+W5yr9vh2S7LDs1qLcvVWnOl1vxca67XmtvM959rzY2uz9u05h75rE7t1tWp3fpE/bQ+Qz+gl+tH9Fn6f/Uy/Rc9V7fpBXqrZo3W/ElrHtXyfbWpv8ks7HA+feeTad1kw98fnOvnfY9abXN/wrWaiNZEstedsQ7XvnZ9vjKFnw8bdRGMJYOWk0HvHuNSrOcHnAPsRfL9+ZdUIXWFLluHAfPnz+eaa67xrDv//POZN28eTz755IQdt7a2lqqqqrT1p5xyCueeey4bNmzg0KG8ktxnxJQpUygtLU1bX1PjBEO755572LlzJ5/97Gc5++yzPeXq6+v5x3/8R/bu3cuf/vSnrMe6/fbbicfjrF27lsWLvdqpJUuWcMUVV/DMM8/Y7mg9PT384he/YM6cOXz729+mpMTb/SsrKwvW6vjxox/9CIDrr7+eyspKe/20adP45je/CcAtt9yStl9FRQX/9m//5rl2ixcv5k1vehPPP/88AwMDafscTcjlnlOIviPf2bJswuxc7hL5CuCLzQ1sPFzT8hXJjyawQKFlihkTee9HK3YOmpnOZRWbiEAO2fqQ26XH/wypKaDb3M/WOtS5SLjZNa2wulVyfpyPLHEkGWEfouvYjgjY+4B3JKXSRgntW33BK7AEkslSkslSEkSpYJAoCYao4K/dSxkaKQcg+sPXZd/NiHB9ERJO2IbRTKx26VxwRPnpgu4gTcbEIkiv4V3X4lxj5Rarm7YmJbdI4L1ya3uUO5yvSZZogg44Lngt6WUCUGzv00JwFGtIfoik41gK1CJPhLXUFlJRkZ/n0Ylly5YFDtobGhr4y1/+MqHHvueee/jBD37Axo0b6e3tJZlMerb39vYyZ86cDHtnx4c+9CH+4z/+g8WLF/O+972Ps88+mzPOOCNtkG+d465du7j22mvT6mlrE//U559/PqvbllXPs88+G1jPjh077HoWL17MU089xcjICG9+85uZNm1aWvnxwNNPP01JSUlgDpizzz6b0tJSnnnmmbRtzc3NTJ8+PW19Q4P4ALz22mseglPsmCwzer7HCRp0ZRNm53JxycdtoFgH1OPlNpOrnkKOMx6uYsXmujGatuQ6h/FyqfO7wuRTNqgtufbN5haWyf0m0zGdNrfJgDdpBsmWZmO9ycTe3gYbzaB5NRJdaytwCZLssAkhKg9GoAzohcTPp1P6qThz39Buk45SUpSSooZetrGYkeEyYiVxdj59kuQduR8hIksQ/ciGgIhZG6wBtPeZKfTcxxtulyr3cd3Eww3LJc4hBC2BJMqu6xCAc4/9gQkcuI/ZmvPdkum9XOxQwJSxjraTuYscJswFLtRa7xxrRSEhOQzIpEOIRCKBoufxwve+9z0+//nPc8wxx3Deeecxb948KioqUErZeonh4eFR1//d736X448/nltvvZXrr7+e66+/nkgkwoUXXsh3vvMdmpqaAOjrEx/dO+64I2t9uawCVj0333xzXvXE43EAjj322JznMlrs37+fmTNnEo1G07ZFIhFqamro6elJ25atTwCkUqnA7cWKyRoY5qMNGa/2TJTI2kKxDajzwXi1eTzrmIzr6B88TtZ1GO9+Nl5i80zHyOeZ8V+7XPoCS8MgMAkPOxBrxEpgRjNYDgirEfIxH4modQ5wg9m2BhG2t2FnM0sQJZmUycLGaAdNtLONxZQzyNx5Hex8cbE4p8QQMrIH0Yl82oQYdpOS9mABd9A5BW0bT6Qff11aH3D0OK3O9TUEz2shsQiG2/IjZNBfl52JPcM9dYjN6Mm7U/e1BdcxWVAKIkcvIbkPWA6EhCREfkgmk1x77bXMnj2bp59+Os0KMh6WmdLSUj7/+c/z+c9/np6eHh555BF+/vOfc8cdd/Dcc8/x3HPPUVZWZltMfvvb3/LOd75z1Mez6nn22Wc5+eSTc5a3Bv2vvPLKqI+ZT5v27dvHoUOHmDLFGxsjmUzS29sbaAkJESJEiBAhQoQ4wnAv8B2l1MlIIkS/qP3X+VYUakiOUJSWlhY0a97b20s8HufMM89MIyMDAwM8/fTT49q+2tpa3vOe9/DLX/6Sc889l507d7J161YAVq6UOIwPP/xwtipyotB6Tj/9dEpKSnjooYc4cOBAzvKWW10h1/nUU09lZGSEhx5KDyzx0EMPkUqlPFG//paRKSlYsWGsWpB8tRb+aDhHgivCeGkJRrNfJt1PJreOfHU/+SDI/z5fZGvLROtOsllyMoWHHQ1Gq0cJirJkLY7uxIoMZVyLrHC/DwN3IFG0/tssVwFumeINiHXjbKg992WYini+x2BwsIIF7GRFdBMropvooZZ2mtjGYrZuOw2AaKwfZgM/BX6M6FKGgRubxXXMRotLP5FujZpMS2huN0An7K/HDSvSDO2i8XBykHgTrcpirCfGkuLkHzEhhKf4n80W1311hxl22pMPjiRrslIwpXRsSxHjP4Fjga8C/wOsdy3Z3WB8CAnJEYrq6mpeffVVhoaG8ipfW1tLRUUFmzZt8rhCHTp0iKuuuore3t4xtWd4eJhHH300bf2hQ4fYt28fIMJtgHe9610sWLCAG2+8kd///veB9f3lL39hcHAw6zH/4R/+gVgsxtq1awODAYyMjPDggw/av2fNmsUHPvAB9uzZwxe/+MU097iBgQH2799v/66urgbg5ZdfztoONz760Y8CcPXVV3vaPzg4yFe+8hUAPvaxj+Vd3+HEeA+O0l0wChNyBolc/dsKbUM+24JcTwoRwY/GDSeXu8tEEqTxRraB7mgHFYUGLig0MMJ4w+9Dnym4wEQOsvJ1oZqs9rjhfn7dxMPKfeFtk0v03OQSjTciOpE+4P+a5RtIzhErlsurEP3i69AMPb+fB3GYu7id2jNfpqJC3teS+LCCOXSxmWUALFj8HEMjkgyRqYg4fqWp/9I2yfruhgn5WwyD5mDXLK+g3v8u1rrZIXoGzj1yXLEAO3eJW3vi9O91pp4Wz/H89Xq1LN5kkUcDLJetsSzADKXUfymlLjrMp+OB1roky1IQlQpdto5QvOUtb+Gpp57iggsu4M1vfjNlZWWccsopXHRRcF8tKSnhc5/7HNdffz1Lly7lXe96F4lEgg0bNrBv3z5Wr17Nhg0bRt2eoaEhzjrrLJqamli+fDnz58/n4MGD3HfffTz//PO8853v5MQTJXfOlClT+PWvf83555/P3/3d33HmmWeybNkyKioq6Ozs5KmnnuLFF19kz549NokJQnV1NevXr+fd7343K1eu5C1veQsnnXQSSik6Ozv5y1/+Ql9fHwcPHrT3ueGGG9i6dSs/+MEPePDBBzn//POJRqO89NJL/PGPf+R3v/udLUh/y1vewre+9S2uuOIK3vve91JVVUUsFuMzn/lMxja1tLTw29/+ll/+8pecdNJJXHzxxbZG56WXXuL9738/H/rQh0Z9nScT4/1nOl5C3Fzbsvmvj5cOxC/KLfTc3PuORn8wVt//idJA+JGWNM3Vhtz7Zs+fkc0fv5DjZDvWeO03UYP9sd63oH7o/xzP9gXVmykgRLrYWmbbJcmgi9CtQrQb5zWLrsM9J9uIZGYfQDKnr4HE49OhHyov6mWgo4b+RCWRSIrhg2XUVPQyTBkAQ1TQSAc7RxZQWpKi76fHiiDeMsjPAD5svneYY1mD8+RaaG9BKUd3EXRdRnONC9knfbCffXIlqE329beIX9LkWLE0Dck2137pk0x+q4rA0pY4upOgd1ExELrxwLiI2mG/1vrjY29NEeNwxzAulmUy85BkyusRlNciUx6SgYEB/clPflIfe+yxurS0NK1eSM9DcujQIf2d73xHn3jiiXrq1Km6rq5Of/jDH9YdHR2BOTcKyUOSSCT0N7/5TX3BBRfohoYGXVZWpmtqavQb3/hGfdNNN+nh4eG0fbq7u/WXv/xlfdJJJ+ny8nI9bdo03dTUpN/73vfqn/zkJ/rQoUN22aA8JO52fvrTn9ZNTU26rKxMV1VV6YULF+oPf/jD+je/+U1a+YGBAf2Nb3xDL126VJeXl+vKykp94okn6quuukp3d3d7yn7nO9/RixYt0tFoVAOe3C9B90trrVOplL7xxhv18uXLdXl5uS4vL9dveMMb9A033JCW+0Tr4HtlIVculHxwpOZzyNVuf6x7/z5H6nkfaRjP61xs9yxb3zocuTiOFIym/Xk976u15LBw5begSUuukTVacoqs1pIj5E+u37eZMjdqzSazPKd1rd6lT9d/1kv0k/oi/Uv9Nv1b/V79U/1e/VN9hn5AV6d262jffs1zpr6rTV03muNFTP3sMO3aoZ18Gq42HuYcSdnzz+zwtNsq78kjEnGuu5M3JGjx5xTx5jUJaoe7/NjOsTjzdGitWV6K1tVjW4r5/MZrOewNKJZlvAlJiBAhxo58/sjH60/+SB8ETiQyDSQKKZ+r/nzrG+/7FFT3aI8x0X0oKHFdPsdNT8SXu52Fkq7RtCvoOEFttZIh2sn01mgZ/FqkoMmsu1o7ZGGNdsjK9VoSH/5cSzLDR7Vm1yHNzhE9Xz+vz9AP6Lfp3+rL9E16uX7EToZYq3fpubpN9ttk6rneHMdKiNjkPfcgInK4EHQP04l1EIlKJxlB9aYlUYwEn3d6ssXM5CToM79zLd4B+/IIWteObSnm8xuvRcl9DLFixQq9cePGw92MECGKCoXEy88lmJ3osJbZ3Hvyq8MSy04ODmeY34k8dqY+k8k9LHOOgsLaGuSekq1MoUL08b5eY6lzsu7fZDy3DlqAddDUasTUjluPrV1oMs/neUjCw2SbCMq/C3zPVNOPpGoDSY54HpKHZAlQk4RkKRxUVDb20ljxElUMUMEgpaRIEKUTyf3Uua+BBTN38vy2U2Gqhm8rCR+8HwkVvBnJedLULC5byczvD+vdMlbt1GjhdX/zP3/pInQasRNQWq5a2sROcrvN+eu2fo+Xq2RhdalNWusVeRWeZKyIKr1x1tjqUF0U7fmNF0JCYhASkhAhigeH64+7EBTbIHWikGkwk2lgE5RYzdrfXdYdYSfXOWcnu86Ayhq4Zhv8FUpwgvYZa90TjdGcY65yMDrCGLRvvvs4ELKidatkZW9vgzXNsN4MmL+Ek29kI5JjBCRhYjuSL+Qi2Vb79y/T82IDy49/jPbEApZGt1BHDx00spAX+OPI+YBkbN+/twb+xzj/70JIzVXAxcixV7eiHzB9sMkhI9ZgvpBzngz4+7TARfwM2ZDfrZ7nKagOf91Bz56f8ORq22gIsRzv2qIdsK8oU3rj7LHVoV4++gnJYTfRFMsSumyFCJEZh9v1IB8U4lY02edTbNevUBes0ZTLtn8+7kBB/udpriCRzO3L5h6Sy2f9SNcijcZtajyPO5pjZtXruLQjsEN+r9aOi9aN2tGRRLToPKzlUfN5j9b8SYsL1s4RvUBv1dG+/fot+m79Fn23rRk5Qz+gz9AP6MoDr2p2jsgx/mTqb9LismW5grk1JBn1EROrN8qGTPcj2/ogDYyzLfN7w3vPdni+Z3P9CmrHaEARuzQtj6L18WNbivn8rAU4DXgvsGI0+4dhf0OECJETkxn+M9O6bKF9M82kZWp3Ntey0bYzGw73zGg+sGYnCzm30ZTPVEd6eNdWnFna4AhB2pOCKxjB/SI9tGgm17FgK1BxI1P7g+A+72zPl39bUNmgiEmZ6gjqb1aYX2tmXa53iysDeotYRlYiSxvijnUVYh1ZgVhLaszyMcRCsgKiK1+n9tyXiQ/GIJKiin7OmfkgcWIMUsEQ5TSUdDJEOUOUM9BRA3El0bTuN4e/BPhKm1hebmoTl7GHwZ353H89/P14MuGPmmYtmVy35Lc3MphYPNpgdaudWyX9GP7nYp2rzmZPvUq1SW6SKd7+EtQPs/W5I+VZPFqhlPoXpdQF5vsspdRfgCeAnwNPKqUeVUoV5KgWEpIQIUKECBEiRIgQISYCCigd41J8uBRxhgT4FnKWC7XWU4BmJGP7dwqpMCQkIUKEmDTkmlHPZuUImmkcq9YkaLYvHxwuUepY93XPkAYhV56CoLwi7tnwTLPt2awc7vXOzKiTFM+/j/s4uSxm7jr824Nm7LNB6mnOei/y2VaoVSlXm/I9fia4r2+2ABaj0UP4LTXBfceVZM+tP4o0m7we60Sf0WjW3YnoRb4FzALeAVyBZFyfg+QisfAslJx/AKZqEvEqYsQBWDDvBSrpB2AhLxAnRi09vEaMLurpop7Kxl7YizihPG7qs3KcbDCakUizR+Dtvj7+35l1F6NHPn3J//4MsmI5fdvkezHPjafuhy2LZIvHyuEPBpKpPW6LC0mxLmXqv5ksJ97+NHkBSMYMhWT9G8tSfKhGQjwAnA38f1rrNgCt9U7gC8DbCqkwJCQhQoSYNAQNbPzI5TZSiDtKJhRy3PHCaOsvXADshV8gmmvwlL0dzoA81yDLf58yuez4t1nHcQ9OVXNh0Xzcg58g9yGBZJzO130v06DdKpvrPvkHhuOBbAO28aofMrtb+TE6suXN8G0NePUhMwBe3SpRrDoQ4vElIIYTVWsL8KrZXoPM2d5tljiMfGYaxBUz5nYzSAUNFZ2UkmKIClKUso3F9FNlR9fq7a6mt7uagcdrYJEWd62HzTHc16YNkyTQIb6Zrk+hrqP5IlNfynVvggi/9/kyLmhWMkTWuQjEOtlu3Z80Fy/38+YNcOF9LpvxvyMynePhcHcbVxydhOQlJMwDwEjAdg2UF1JhSEhChAgxKch3pj4TYclEZkY7K+w/1kRbPfL9Yy3UajNWq06uAbmfOHgsGVMyHy/Ix9uyWjjHbLF/W4PRIMKk24J1CUHtzYT02frmrLOs+Qz0cll+8mnbaPrvRJKQoGNltm6Qc11Qfe6+4fSnFhcZdQbNbFgrRORiJNTv44iFpB/YDvwRWI1YRrYglpTLzfIw8A9QvewV+l+rooxh6ukCYAHt9FFNA53EB2MMUs6ul5sYeXAaIw9OEwLyZaMhacSE+bWu+zrT99fZUan85+i1/GS/HrnWFdpH0p+hNt93h0R4SGSk2ft8Jl3v6UizEJSIRRqDdUVOVK30cn5C5D+3iSJuISYEPwS+rZQ6AfgP830BgFLqOCQY972FVBgSkhAhQkwKcg1ogv50851xLgTj5f40mvryGeQerj/fbOeW0c0qm6g84oT19aDJHe632ba6pBPMFntQY633Do5bfHU7A8Ag96hMBDaf7ZmuQy5rn7eeYBFuvhaabMediBnkbJMG+bQtm+uO18XHHS7a3NPVPqJ4HxJm92LzezsShvcyhIhsRQjEaYilZL1ZqqDynF6GD5ZRXyfu7ilKqWCQMhKUM8QgFSQORhmiAgYi0IcsDYh72C6E3ACscV2LpDPwDp7tDw5/HXQ9cq0b+zvBaosVwtcJ5et25Up7niO+5yy51s634ncBc/rKOnviwfqe/q5eh9+yYuFwWK8nBUeZhkRr/e/A75Gn7xPAMmCHUmoYCSVRCXyukDpDQjIBuOGGG1ixYgVlZWVcdtllGct9/etfRynF/fffn7HMY489xumnn05VVRUnn3wyjzzyiL3tnnvu4ayzziIWizF79mwuv/xy+vv70+rYt28fs2bN4qyzzsra7u9+97vMnj2b6dOn89GPfpTh4WF72+rVq5k1axbTp0/nlFNO4be//a1n33Xr1jF//nymTZvGxRdfzL59+7IeKwiXXXYZ11xzTcH7hciNiXyh52upyDUTNlkD8ewz2emzdv59x/taZnMBGg1Gu69/kOsmA7IuXT/idlVJm0VPrvVcT9s60ubUZfmiO/u6B3HWgMWdX8Q9+PHNpPtcf7KRKauOoAF30D3Oh3jkIs/55GHI1o7sA/yJ6ZeFzFj725r5ujt9wnHraXG5ByFWEWvQuqZVhjq0iGbkfJwoWz9G3LcA43ElWpI1ZtkAZVOHqa7opZGX6KeKbupIUsoLLKSUJDHiNM7soGfbPMlhssgsB3EI0EZT/2akTRH3wDv4eSuErGZDpj6Qa+DuuGU5FkiHhFiTAI5WxG3ttM+p0XUutiVoXVo70iNmGV1JxEtO/e+KoGuXy9I4UQR8QnF0umyhtf4/yBP3I+RpvAW4DrgAOF1r3V1oheGixzcPya9+9Sv9m9/8Rn/yk5/Ul156aWCZ9vZ2vWTJEj1nzhx93333BZbp6+vTM2fO1L/85S91MpnUP/nJT3QsFtP79u3TWmv9s5/9TP/hD3/QBw4c0Pv27dMXXHCB/sQnPpFWz+WXX65XrVql3/SmN2Vs87333qtra2v11q1b9b59+/TZZ5+tv/zlL9vbn332WX3o0CGttdaPP/64rqys1F1dXVprrbdu3aorKyv1n//8Z93f368/+MEP6ve///15XSs3Lr30Uv21r32t4P0sWO0LUZyYiDwX45ET40hBtnwG+eZ9yLZ/UM6E9JweOzKWtfeJpH969/PlOWjyt8Wb98Da7s0rssP3eW3G/YPqzgf55vIoJK/KaI4ddKxC9p3MPCTZ6sud+2WHk2ukSTtLxPX9Ni15P27Ukg9kjXZykVg5R640n49qHe3br0v2Dmh2HdJv17+yc4y8Tf9Wv13/Sr9F361P13/WM4b3SLnbTH1Xu461xuq/6f3KWl9orpHxybtR+PHsvhpxt91/bsHPD03pz3F6zpJr7Xsov3d4trmP4c1V4n3WRpMniSLO07F8GlqvHNtSzOc3Xsthb0CxLBORGPFrX/taRkJy/vnn63vuuUfPnz8/IyG566679OLFiz3rmpub9S233BJY/le/+pVesmSJZ92jjz6qV65cqX/0ox9lJSQf/OAH9dVXX23/vv/++3VdXV1g2SeeeEKXlZXpJ554Qmut9dVXX60/+MEP2tvb29v1lClT9Ouvv56278jIiP785z+vZ82apauqqvSSJUv0li1b9A9/+EMdiUT0lClT9LRp0/Q73vEOrbXW1113nT7++ON1ZWWlPvHEE/Wvf/1ru65bb71Vn3nmmfrzn/+8njlzpv7a176m29ra9Jvf/GY9ffp0XV1drd/3vvdlPOcQE4vD8Sf9t45cA2f53JFhfTrRCCIQWms7IZz93UcI3Pu5j2mTlKyDkR0ZBj/XeuoPPsd04hN0HfJP8BZU7vAMQEeDYn2mAgf1Ee0M/t0kZLUWksEO2W4lRLxNa36uHeJg/X5OiIi1zBjeo5foJ/US/aT+iP4vfY7+g75I/1KfoR/Q5+g/6MoDr+po336p8x7tJFpco51Ei02udgX03XyI+uFCpgSHwaTKfGYgYcHPiP/ZTH9fBP0e7frM51m8A/bl09D6TWNbivX8kBC/lwJfNsulQPNo6gpdtg4D7rjjDsrKyrjwwgtzljU33PN769atgWUfeughTjrpJPt3KpXiM5/5DDfccANKqazHee655zjllFPs36eccgrd3d309fXZ697xjncwdepU3vjGN3LOOeewYsWKwH0XLFhANBplx44dacf53//9Xx566CF27NjB/v37+eUvf0l1dTUf//jH+dCHPsQ//uM/MjAwwF133WXX9fDDD7N//35aW1v58Ic/zJ49e+z6nnjiCY4//ni6u7v52te+xj/90z/xtre9jddee43du3fz2c9+Nut5H2k43KbqfI+fSQibDaMVfecqU8g1y+V+NlaxqbOfW2Q6fi4I2a93iynjdR1KF3u34hWf+wWwTkI41eyEAnXgio7lPzdbJGvcrabIvk4549ve7ncDs/QFbRDxRs5yFq9vuyXQtcq5P4M0GPlqkvINN5rJRdEt6J1oTKQbZD7PSKbvcn+stpn+knRpSa7AiaxloalZtB2XIaL2GqAKaAJu0aIraYaS6gMkNk8nsXk65ZWDLI1uIUacJnaSopRSUnRTxxPdp9NJA3UV3SQ2T4fLzX/td82y2SzJNmg3fbZR2uEWbjtaqFasyG35Ctr912U08D4D6dfbreewnje3y1RgcIf1Lpc5D1o87lkCK+HhWk89+fa9UMh+ZEIpNUMp9VvgBeAG4ONmuQHYrpS6Uyk1vZA6Q0Iyyejv7+erX/0q3/ve93KWPeOMM+jq6uJ//ud/OHToELfddhs7d+5kcHAwrex9993Hbbfdxte//nV73fe//33e+MY3snz58pzHGhgYYMaMGfZv67tbk3L33XfT39/P73//e972trdRUlISuK+1f5CeZcqUKfT397N9+3a01px44onMmTMnY7suueQS6uvrKSkp4f3vfz/Nzc08+eST9vb6+no++9nPEolEKC8vZ8qUKezatYuuri6mTp2aUzcTIkSIECFChAgxYTg6NST/ASwAVmmtq7TWC8xSBawCjjdl8kbREhKlVJlS6j+UUr1KqQNKqd8ppebm2OdqpdRTSqnXlVKvKqXuUkotybbPZOPaa6/lIx/5CI2NjTnLVldX89vf/pZ/+7d/o66ujnvvvZe3vvWtzJ3rvQyPP/44LS0trF+/nhNOOAGArq4uvv/97/P//t//y6tdlZWVvP766/Zv63tVVZWn3JQpU3j729/O//7v//K73/0ucF9rf/++AOeeey6f+cxn+PSnP01tbS0f//jH0/Z14/bbb2fZsmXEYjFisRhbt26lt7fX3t7Q0OAp/6//+q9orTn99NM56aST+NGPfpTX+R8pONyzRrmOn0tIHFS2kPrzbUN6xJv8kGuWfLyi3ziC7MItSdmQPfqRI2S1ymYPNLDOKz5XrlCmJoIW7Y4Y1jvzb8o1teJEyWrzfLetK5Fm7Flll1XDOztrRQVyW1/8VoZ1XhH9IeyIXu776rfEZYtYlSsCUDYrQeY+FBxuuFDr22itgKOBapbFjUwWzUzPnj/6lh3RKdIKa0zlsxAR+32INaIREZjfh1hL1iCWkPlInpEOxFryiIK5UHLsAUb6prHg3OdYcO5zLIzuYAcLiZBiIysoZ4hhoizkBZrqdvJSdyM7bz9JBOyPKLgVsc61rzVCet+5tZntRtidHgTD5OgoIGlfvs9+9vvtWGWs59FvxbCE6e6odm5huW2JNM9sevQsg6T3/eEVs3utJO5rFNzu7OeZ7z5Fj6OTkLwT+JjW+lH/Bq31Y0jkrXcVUmHREhLg34H3Ah9E2NZ04G6lVLYAaOcA/wmcCZwLJIH7lVIzJ7SlBeBPf/oT3//+95k9ezazZ8+ms7OT973vfXzzm98MLH/22Wfz1FNPsW/fPn7yk5+wfft2Tj/9dHv7M888wzvf+U5+9KMf8Za3vMVe/+STT7Jnzx4WL17M7Nmzueqqq3jyySeZPXs2qVQq7TgnnXQSzz77rP372Wefpa6ujurq6sB2JZNJdu7cGbjviy++yPDwsE2O/Pjc5z7Hpk2b2LZtGzt27OBb3/oWQJpb2a5du7jiiiu44YYb6OvrIx6Ps2TJEo8bm3+f2bNnc/PNN9PV1cUPf/hDPvWpT9He3h7YjhCjQzYXo2xuV4VEUwkqn2/bDjdpKwSFtjVXlJnsEaXSXbAcdykTbccMPN0DLHtA0dTqDKaTa03UnRbzuc6VWdvl1tSAs361RShagHUyuAPZv6nZJg/uUKGSCdrnCnIoW8SpZs9AyzqG+5r5+4hFtLzRvrITZq9rW/oAajR9sBCym410T8QATrfhuZaZ2uhc4/Rodf57YPU3km0SXrepWchGH3Ae0N4myxLgEsSNazdwChKK92wkV/QicdeqvKyXkb5pUJmkN1FNb0L+u5ZJaCyW8lc6aWAenTzDMlJWLNW5wFTTyFlgD+43mzbY7TeEO9Lquv/p7o8TdS8y9UvnmTbP9SEn8pU/epZ7/+B712Jy/jj5SAIjqvnqdJ6DFldd/vDHLR4ClO87bCIiyE06jk5CAqBHuS0QRUlIlFIzgI8BX9Ja36e1fhr4CHAy8NZM+2mtz9da36q13qq13mL2mQW8aTLabSGZTHLw4EFSqRSpVIqDBw+STCYBISRbt25l8+bNbN68mfr6en74wx/y6U9/GhALyjnnnGPX9cwzz3Do0CFef/11vvjFL9LQ0MD5558PwNatW7ngggv4j//4Dy666CJPG97+9rfT0dFhH+frX/86p556Kps3b6a0VF7ESikefPBBAP7+7/+e//7v/2bbtm3E43G+8Y1v2CGLt2/fzh/+8AeGhoY4dOgQP/3pT3nooYc4++yzAfjQhz7EXXfdxcMPP8yBAwf453/+Z97znvcEWkieeuopnnjiCQ4dOsS0adOYOnWq7fpVV1fHiy++aJc9cOAASilmzZoFwK233ppRP2PhjjvuYPfu3QAcc8wxKKXs+kOMD3LN6GcKCZorVKh/3WgIy2hntMcbYzlOditH5msf9CefNvuZVl+zd1sHLr/9FjP4MmSiwTfjGWn16Dm42CyRVjObvs6Eb0WmlDashdWtdt0yYDJWE2tWOim/bR/9Qz7tCu7BUHoW6EwDYcDM/Frr0q0rmXKqBA2q3dc6k8Ul/V6Mn24k06C3EDJUqAYk6NiZtqXPklv1mMG+uRc2KV2FDP5XIskMbwaubJalHyENK03ZZ4EPm+8dwFMKPplksL8cKpPMmN1LfXQP9dE9lCKTbwvYyTHEAXiJ49gzUg/AcXUdTtjgHyO5TCwC3b7W9G+3LqLZDn/rvv+j0UGM9h0RRHrS29DimTCwyL193XWra+JB7on7PeAhjtZzGvHeWz95dxO0ILLsnizIF4VY3IseR1keEuAu4L+VUiv9G8y6HwK/K6jGw63Qz6DaPxdhV7N8658D1hZQzxxTz1k5oyCMY5St1tZWbY5rL62trYFl/VG2PvrRj+qvfvWr9u8PfOADevr06Xr69On6fe97n+7u7ra3XXbZZVoppadNm2Yv/qhcFm699VZPlK2XX35ZV1VV6d7eXnvdd77zHV1bW6urqqr0ZZddpg8ePKi11nrbtm369NNP15WVlXrGjBl6xYoVnmhXWksI4oaGBl1RUaHf+c536r6+vsB23H///Xrp0qV62rRpurq6Wre0tOj+/n6ttdY7duzQp5xyip4xY4Z+17vepbXW+qtf/ao+5phjdHV1tf7CF76g3/zmN+ubb7458Jy01vpLX/qSrq+v19OmTdPHH3+8/uEPfxjYjhATh8mKMJPvcUYTBrXY4TkHCJdJXjJFHHLfn7FGWxprP53s0LJW+aAQzJ4ynpCzrjC0VojfiJaoWlb43SYtUZ/u0U5Erau15k/m8+dac6PW8/XzEi1r1yFdq3fpWr1Lv03/Vp+on9Zv17/Sb9e/0sv0X/QZ+gE9Y3iP5jmtKw+8KvXcoyWM8NXaia61xmm/P3S1//qMV6So8UBwlLugcL/Xusq7z9MbLcyJjOeNdpd+PG/ZtGNniXzn32d0512cUai01iyfjtYXjm2ZjPND6PlGxD64FbgiR9k/ACPAfiQZYrv5nkKSJs4o5PjKVFxUUEq1ALcDU7SrgUqpB4A2rfUn8qznl0hIshVa6zQ/JaWUFRWAefPmLd+1a9d4NH9MWLZsGX/6058yukqNF37605/y3HPPcd11103ocUKECEKhM1/ZtQ6FHTdffctojnNYXMZyRNALMQEI+N8MuveT3Y+C3NGCLDaFzVKbJHcFtNHtNuc/pkcj1NQqVo6kSWx5ZavoRdrbHF3JRUAZknm9GbGWNEoG9oHNNTA3SUnZMCPDZcyd10F/opIV0U0AVDBIjDgpSummDoCNieXs311HybRBRg5UiHbkUnO8PqDTNM9y14o4VhHL0iBuUU4yTkc/MbHPfn6WZtFbee69abNTvi29TIb+C4il9FBwG/zv8qz1gG/f4L6V7VwzQSm1SWu9Iu8dJhErYkpvPHtsdajfMeHnZyQRZVrrQaXUNISUrNBa92XZ50TgDDAPGOwF/qK13l7w8SeTkCilvgF8LUex1UA9YyQkSql/Az6AWEdezFV+xYoVeuPGjbmKhQgxoTjSNBD5D/Dlzzvbn9Z4tGMyr1/RkJaQkEw6FNcCwa5T+Wo/RuO+ko8bYzG9P9wDYcc9yGQ6T0oIZ65AXKU2A19AhkDbEX0IgDUEWwo8gjhtv4qE/J2NDH8a4YzFG+inEoDjjN9hLT100kAV/fRTxaaR5ZSXDLH76SaweJHlWbwFyTPtjZMiLmTJNtG4tBfH9c3Uj9LdCCVQhKUrsV23kulEw9m/xZAwi7S0wepm9ANB9Ttwr3O/i4PIT9B5jGW9bCtiQnKM0hvPHVsd6tcTT0g8xxPt9dMIIenNVX48MNnO9f8OnJhjeRJ5xZQikcbdqDPbskIp9V1EDH9uPmQkRIhiQTH82RWCfNvraBUK26/QdoyWIIzlmIXWkW2/fOvJKArVjmORYocMnO3f15p1O1AR8zviKx/Rsqxx72OWK31lrtSoJvP9elc9EdfS5CrjPm6TdtrCDqec9X21s905lx12m911uc/Ze/6utlv7+q5JetkdaevTrCFak0k3kKv/jaV/5rPvRLw/sum8/CL2tH2S3plxO0/MIUSXlFwrFpH1a0XIvgH5/TCi/pyFRNqagxNla6r5HpOoWpYgfYhyqhighj76qaKfKraxmDq6SRDlicTpnFCygzKGOfENz4gW5c9IHKCrgGsQq0gnzrKhzeiYmo3YO7N1YnKF1y2+wX8bTtAKd59phlXO/XH0V0Y3csh5lzg6kXU+ncw69APBbUjPt+KsswlKpNlFRr3IZEkZjSanqKGYFA2JUurNJiLtK0oprZS6LKDMp5RSLymlDiqlNimlVvm2x5RSzyIhJL6VjYwopaYppa5QSt2qlPqDWW5VSl1uLCwFYVIJida6V2u9PccyCGwCDiGvKABMyN8TgceyHUMp9T0cMlKwyShEiIlGMUUMOVxtCfoTz9WWbJFZxnIe4/Enl2mgkm2wEjTbl3H2LyCqTe7Br5N80BF2O5Gw7LqbQVmzd98wywpZT6QVVrdKKNZXEbeWLyEi5PnIwPAbwC2gLpGF75ntIKFT29uM2L3ZzIq3umahTXSuZXjDrG5w3GGsQRFXNpuZdfPbF37Ujipkhyh2E1Ungpc7EaNfnO6EY/aFOc4D7hnifPpj0Cxz8H75tyHfYxcCd2Qk9zrvp1fE7v1ssxdP+yzXqAbkvt6HWEk6kD5kYT2OqL0mKV7qc6ByWS8jv5oGsyUZ4jBlVNFPklKq6aOaPuroZpAKOUy0kzgxdj59Es+/uEzCCceQvnoeYqlxPxueCFvB99X9DE/mYNk/wePd5lvfCZ4AEElXYlLP+axzhPCRVtc9bbEF8NZ7x34mfUlQ05IpmufV/WxJ2fT+UGzWvSMUlYiN8SpgyL9RKfV+5On6F+BUZDz9B6XUPKuM1jqutT4FOA5oUUrV+esxdS0GdgDfQaYOuswyy6x7wZTJG0UZTExrvV8p9d/AvyqlehDPzn8D/grcb5VTSm0HbtBa32B+34hE1roYeE0pNdsUHdBaD0ziKYQIESJEiBAhQoT4W4cV9neCobX+PSImRyn144Ai/wf4sdb6ZvP7s0qpC4Argat9dXUbS8kqZFrAjxsRJ8pLtdYH3RuUUlORuHU3IjKMvFDM8VA/D/wG+AXwKDAAXOQTpy/E69b1KcQj9E/AHtfyxUlob4gQeaGYZoEmqi3BFgFnxjFoVjEfd5dM7k6ZQq0WCwoRFgeeQzI4ZGxQjgFnRtoK++lKVti+VmZBG83vRmSG2rJIbESWW3AsG52ImLgPyRcRx5ndvoJ0v/tPt0mIX+u4ESMWBkeovMistywem5HFmqFe3WyHGWW1WGn0f2KHAXZgQsg2tfqukdeq4J7ddQuR/f3Qufbr0mZ1gxDkR+/+zLRPpn4a7AaWf5K9iZplDrLI+c/DDtXsuz/uRJCiRzDhmdvlOxvaZMjzT4h15GJknvdss4BYMrYCf4nAXKj9+5cZeLyGEz/1DPMXb+eYWXGqEc8St8tWJw0MUs42FhPnGPqoFivLXiUjg3cgbmDW8GwV0pet/DkmAaL7vgbdv4l672Q6Tpr11YQqtl2vXG2VRI5guWhZLl5OEkTs8vbzkWxz1eNoZ5z2tNjlg6y87rDd6c+iZf1MD9udzzU4YjH2PCQ1SqmNruXjhRxeKRUFlgP/69v0v0juPpRSdUqpKvN9BvBm4IUMVb4RiXp70L/BrPuGKZN/G4sxytbhQChqDxFi4jAeAt5Mg7/xwmS5DPgj3hS8v2ugoNRatBFYA6J5sAbyVuSi1a1GkOoEFlBTkIHfLOCmteKSdSdCMAD9n8Zl6xLgDsSlZT7iZ38xjmvNFchgzu2F/DCG8CAi5fXA+cBX1sL1rUJ47kSIyOpWITfWoKmpVY75LdOOtCSI1uDGSbZmk5ike9DkCHPtZIxNzZ7kfu4IRH6tQxrcgQO09rh5ZYsU5K0iOALWeInVD2dABz/R9kTS8qx3CdubWp3+0YnTx+b4DjYXISQHnc8ZSxwp6cLoDrqp5VQ2k6KUKvqJmZwjL7CQKMPsYCG19PCXx1ZLPa8CHxCxNiAEuqnVkCSTS+MBeQa0m+f6zn8ir3m+dbujfYE/mpkJINAo5+F5d/j6fRCyidc9998dvGCM77fRoqhF7TVKb7wod7lsUD8uTNSulBoAPqO1/rH5XQ+8ApyttX7IVe6fgQ9prRcqpU4H/gux6SjgRq31DzPU/wrwaa31nRm2vxvxYDo23zYXs4UkRIgQE4zJmn0qdPYrk0Uh06zcRLYxE4JmL/PSDozxz9qacc6oN7CzqJvByMOGXACsMYNFQzy4GRmIXYR4Fr8qi/omjoKvwZS7BdlvFqL3uNhsXwVc5lqsfTpwBpt/NG37I2JtAbttAFzdKksHQkYaZVFTENISacUZyDq+7R6f/ybvQNgWI1v3td1nObKu5yHrujr+8db1yieZYZB+IrhccMZp7wDeQTZrWr59LRdGW49FaoOtlK4Z8Ih30GrfszWtjkbjfFNgO+Lf8DjiD3GXWXYjoWwOIta5x6H/tSr2b5xNQ7STFxInUEaCavqYQxfDlNFFPV3UM0gFKSJESfBE9+nS37Yj/ezGZrHUVSN9rN08MxvaYEObtLcjWD/i3I/C9D2FIJeVzSnnJsPuTOmGiCfbPKTK++5osRf7eNY9a2q175nfQuQW0iu11vNO80ZVy972bOuOKlguW0WeqV1r/aTWepnW+hSt9cmZyIjBzcBtSqmvKKWWK6XmmmW5UuorwI+Q5Ih5IyQkIUL8DWMsA/vJ+BOZKDN+IftnGrT5B5ijGTT6hdXZ2ukVCWeJRhNp9QwEbVemK5uFDKxplkFZH44l43HzfYVZ/gjc1CbWkU5EyH6JWXdTm5RZgxCYTsT9ZbtZvoHMOH/J1H0eIkheYwaA17XJsZLmcxlCQr6FM2O7DBk0NuK4hzUZN65lyIC2qdkhX8m1JgqSVzgLZsbWJWp3u23Z19V9vSzXNgpzl5LymaMwZStb6HGCjpXLohiMlrwHvu511iA03UXNibCktXHHs/pj0rgWNSIWttXNQjZuQSwlKxG3rCXm8yKznKVhkYZGLaRkGUSmpChZcIAIKd4YfZJq+uhiDj3UUcYwcWLETQr2xwbPZOe+BYwcqKDksgMSyesahCxvR6x1GxyXPtvFLLnWhL71DsbdCBaHF4ZRE8IcZNlxOVznesescyYnjLjd7VIHLjer9ja7jDxDrfan1G/tG+zGVsh/SzG5MR/F6EUSFvpF6nlFr/VDa30tIo7/HPAUsMssT5l112mtv15InSEhCRHiKMVo/ugKmTEdz+hUQb7o/vXB+2X+U/YP5kc7M5fNIpNtUBikefHPtga5vQS5KMkgokXO12UV8GtIvBG0zOzt6mZMWgYhHs0IMbCwDHGVuRshIn9EZpJvbIbLcaJfxYF7muH6ZnG7ehYZWIIzs/04ki/iNnNelnrvW8D6NhlsRkx7rjdtvROxtlzsatMs87sDsbaswuhf2qSe9UaD4JqhVqrNHjB59B8WIWtyDbr89+mQQ/TyGWRm0lQE/c6mkwoinJnKZtqWqY78XLwyR8dy1+EnzpnJt4mMNsV6No2GKdnm6HzOQ5ZqYAZyj/uR/mWRkg/jKEBvUbDduMw1aohBYu90Tq7bQi09ANTQS4Iy4sQoJWUUJP10MYfSSJLEQIUkQvzeNPgHhCxX4+QYibTakaScc2lxzsciYXm+B/zXJhvyuU/e3y5th/XbPwmB/91gEc8W510Arsh0a21ibrsgrnE9B9YzlHS/m906E28/8X/3n697378JjI+FZIZS6r+UUqNy/tJaJ5AItuf5Np1Hjui1Wer8pta6HlgAnGWWBVrreq31vxZaX6ghMQg1JCEOF7LOdh+ByN/3eXJ93iG7xcXvG11I+wrXyLj0HGn++G3pA8VIqwzKNwT8wWfSkFyBzABvMBoRkMFYB46uoxEhFncgxMM6rDVWsMr3A/tNucuRWe1lpswa89lhPucAH0MsJV8xbf8SMuCMuT6/hR0y2K7rToSI3An8FJnJ/gISxNJt6bFEyLZGBNwDSACaWsVv/lzspG7Z/P7driheUtKC5gSnHNemEwJzrEx15kJQucl8PnIdM5uFMJBkWYkPwSHJja5C7UZPdA3SB5YihDiGkNrzXeWXIpaRqUBlEv4nQvSK12mY2ckcukgRoYZeYsQpZ5AOjrOtI0++fCYMRCipPsDIK9Okr4GEGO5A3BS/a9pjh5ROR7G+m62+ZweV2ODWNrlIlUtHAo7Ow/++EwTlC3FyiQQRdluXlpx4bU0mFLWGpFbpje8fWx3qhtwaEqVUJdBkfj4GXA/8DtintX7ZhP39CRIA6lHgk8jb+iSt9a6xtXDsCAmJQUhIQoSYOByOP6jDhVyDS/fA2Bow+P3vvYJr36DbcnsxgxC9QTnHuVKLSB0cEvMwTjbsZpyZ6D3AHIi+43USd0+XfazMTW2IS5ebtMQRS0oVMrv8LCI43u27AHFkYNmGuHZ9pU2sIbvM+rnILPh9OCJiy2KzHdesdbPrc609qKIBI4Rvk1nc9a7ztcrj9WV3X0+/UD7bANze5hO1+8u6iUy2vp7puJmsEoWSmdHt4yZg3v6Xab9M/Tlt3RQc1z0TqIBVSL+yAiSsQSxiryJ9qx8hzF8w5WNAB8y/cDvxRIyGaCf9VFHPHnqoZQ5dHEOcKAlSlBInRqd5OHa+uBjiSvpbmetE/oyQ2mQbXN3sdRe0Ik+1p9/P9MkDZ5A+nu+4XNdX1gf3N3ff9e+rVJsd3CGdZHrPI3DfgL6Rjaik15lfAIjRoKgJSZ3SGz84tjrU9/IiJOcgTol+3Ka1vsyU+RTwj8jU0VbgC26R+3hBKfUuYIbW+va89wkJiSAkJCFCCHL9AQdtG48Z3okkLX43h3zbMNlEyp5dtmC7SBiBqomaZUeyugT0dS5CcrWGt5of9wOnIDPBtyCWDRBicDZCKE5BBobfM+UscrEICageQwjGVMQzGHPcPyPuVysR4tFh6gUnUtL/RUK5zjX7ViEDzUUIGbGwDOxI9RsQN7AGHJJyM3CFifyl3ORjLXaULnBCxm7GuHO5w4qaWV9DbjINqqzr7Bb+at2aRkiyuS5Ndn8Zy/GyDRBzkRN/OUE2kbfpw2uahexaRHk70o8WISQZpP9Y3y+CysZeBvvLqamThIcx4iSI0kAn9XQxSIWE9AV6qbEJye6nm8Q7vhFoxQk/vcFldawGfYfzjnCfy1ivzXggO8H193PwWEXS3h/eCFvpWhTXe8Zdlye6nff58P72E5PM1zAXCv//KGJCMlvpjR8eWx3qO4VF2TrcUEo9D5ygtc4zz3xISGyEhCTE4cDhthyMp1vSaAmI/49tsjFWtxpIn+3OZxAX9MftJyT2bL5lHWhfC1e2ymwywCzQN/ksJBbORojDfByXmJVIuirLzWoRQlzeimNBASEMcxBS0ovMLjeAiaYKvcaysma6zHbvMnVbGEBmui1sxLHObEdIxCWIC1h7m6PvWIYMGjcYS8cq09atpp6bESLS1CrXYnWrc9zrTD3G/cbtkuIZuDW1CnlJps/kZoSfkFj++cngAX0hlpB8MB7PXjYrTJDrjn+WPNv52NfYsmZZiLR6tUEghHEZYhXZjvTBdyDC9e1KUq2dhdN/qoDZwEGYf+Z2m4R0Mo96uihjmCSldHAcKUpJUcpfu5cC0FDXya7bFznZyrYgGinLwuYfgLtc73K5+E0kMr1X0te1+cJZO1YTDwHxWVNUM678QxZcJMR6jsjsmuduV7a+k+s8x8+qdNQTknZkyuYurfVd49GuiYQJMzylEFewoszUHiJEiBAhQoQIESLEEQ9L1D427NdaF5QM8XBCa91V6D6hhcQgtJCECJEbY3cRyV/AP1axf6aZu9HU49/XPzPs9sHPNtMeNOMscLm6NDU7ORqsWUsruaFxtaCpVdysrgLd7rKQ3KbFVQrgF4ir1kpkJvoUYBixXlSb7yuAqVr87K+DGT+T6I/7fzNbXLou1/BlJf78c5OQLIVHlOSHWI3MYp+HCJEtS8V6JHoSOFaWu83vV81+luvWzThuVuAS5xrffsuCwjoR5luz6n6diR/2DK/fvQTXunR3Fq+exzVD7goc4HfZyuTml4+/fCYth39bPvvnu18hmpPcehjnWnqus+UutNp1/pZ7n9VvViHugl9ELBdWX8H8bjTfz0hSO6+LGHGGibKYbcQ5hhVstF2zSkkxSDmbWMHgYIV9yIHeGDwYkT4TR6yFVhCF9W2OHqvdHWTC++wVg/Yt27vMr5GyLKkeXVqkWSyGzQToR1zujGDrtdy5RVQzLk1NZvfXfNs5EShqC8kcpTd+dGx1qH8pTpctpVQzkul9tlm1F3hM66AwHznqCgmJICQkIf5WMV5/FPma9Qutzz+IzyZCtpCPa1U+x861Ln2/wgah1j6eJHKWgNuNi3FE5l9Z62Q0/zDokzK4bMUQQrFXiYvKD4FPAKdp6FBO5usY8CAyYKxJyr67zXTeVJyEdHfjaE/Okm0lJx1gZOc0KWP9Hf0U0Y2sRP6a3oWQJ5DB0hYkYhc4EZWs7Nx7EPcuEJJyCSI4vgInslaj+ewwnyZLvBVJi9WtsMEMnuwIW20ekiJwBpxB981yldOH8LhsBUbZMshr0JjFbSuza1T+YuBCSUa+bctcn7m2y7ADDNiCdjfMfWIl4iL4FHIv+xDt0lykjnZgCUQbXwcg8fh05l7YThX9JIhSSw/1dJGilEEqqKKfFKX8ft+FxGbGaaSDbYOLARh4sEbITwcmOSdeDVO7L1JUmiajMDfSsU6iBNUX/L4z7bT0ZG6tiCGDtlak0UVCrMhzbtK12tTf6SYrXoJuBddwu5mmE/dgojJZuryiJiT1Sm+8Ymx1qK8XFyFRSs0AbkeyBR0AE4MbaoEKZNrq77XWr+ddZ0hIBCEhCREiO3IRgvEhNcF/eoW0Md9Z5fGM+JKLNHm3u4SiTSYnR9IM6s5DEg+aHAC2wNsSbp+HDOisiEGzQL/FNVj+uRafexCCcB2wFiEUcShZbsKfWtgKlWt6GdhbLcQlZtbfgPj1NyIEYxEiYt+LlHkYOc5us60M0amAkBN3VKM+xCKCKRszn3NN2X6E5GDaucTUaxGRm1wDXktfAvjFvFq3os5FBMtNrY42pQOXrsHRC9gDKrNPsB+8GWR5wv7uSLNkeNoQpMuYQloG68MZPCHomNlIeJDVIE2X0+4MSFUzQiataG0gVrlZiJViI2Kdu0TDHcrRGL3DlLWscQCRFJU1caoremmgkzISNNJBH9U00MlGVlDGMF3Us+NlISLVc7sB6PvpsUJ6Y6Yts3Cia9mD93SLQLbrU4i2ZLTvMAtBRFHQ4irjtvbhjUrnjlLnC+zg1llZdfojYgU9Y5nOMROpH83EzmgQEpLJhVLqduANwCe01o/6tp0J/AB4Rmt9ad51hoREEBKSECEyI/NM3fj9KecrGp8IjO95ZJhtx5UfwBJlu2fr17SKG4k1+LawGYmQNQeZc7KqPguYDXq5Q0hqUrvp236s/IjLR/XKV+jbfKwTbagySUnZMCN/nMaJf/8MXYk57H9kNiUnHeCYWbJT373HwmyYsWQvddEedvz+ZLGWmGXuG9rZfXuTkAeQQZ/V5pg5djsSEd8iL40I+ehDCIsVYngNjoB5P+KmZRGvHyMDWcu9BlwuNjiEw73eInb3ucqtaZY6cKIMeVxSchBJsoT9lXL5u+qNxUoXtG20A7zc7liCXNYWgRnMfgoZ8K9CSPQXcCK3xXHc+prM70cQEtIO7IGSyw5IRvVpg1RUDQFQNnWYBSU76aaWJnaylC100kCKUqIMU0aC349cSG1JDzv3LSAxUAFbjYUvhlj22pDnqMPV+GQwkfRfn8l6BwUhq4unP4CAtT4o4plLpJ7J6uN1t/ORL1f48cMl9M+FoiYkxyq98ZNjq0P9c3GJ2pVSceB8rfUTGbafAfxBax3Lt84wU3uIECEC/vC88P9Rp7uktGWsJ5eLVbY//LHMLhaCTOeXa2AWdB6wLnAAoXWrnXGdDlNfU7MskVYhGjeagUKzWVYgg6g5yAC+D9GCrEEGcz4v3b6OenGJ2oLMMnfCa6/GIKapvfBlmKqZMbtXrCQr4IXuE9j/3dkwGxbW7aBvdx19u+uIrhQre1k0Qce+RrG2vAqVy3rhoAmnavn7bwUqkQFopzl2HLGQbEZIxjlm/bApOx9x1TofISO3mKUNmVmP4YSDBScKl+X2Yw26GnAygXfgRBy6GWcAttrkKok0y71pln2s+yxkIj3zunXf8utT6zz9BvD0Ia91zLvdD6seN+HI1obRDgzzda90rpNrsd2xWsTlJ2L0IxYZWYPcj62uil9F7mkN0k9mI30Zs24jjPRNgw5FZEqK0kiS0kiSE0p20E8VJ7OFKMNsYSkVDBJlmBQRnmEZc0q66BmpJXmolNp5XdKn+oFLEbK8GekPq3D6i529PPt7y903Rvt+GS2C2iBYZxNqrVtdmdotPZRFTMxia0pkvf2+nuLuXyYq1yFvYkWLvGvdnLFfBMG/Pte1m+xrO6mwRO1jy9S+X2v98WIgIy5ks2gUbO0ILSQGoYUkRIhgjNbCMR6zaJlmlr2ZzvObnR59G7L7Rmdyx3HPHtsDhdXNomn4Kuh/MXVbs/dW8sCb1sJtpr2WGL0DZzBuubMcVFQveoXe0rlOm3aOcMLxWwDY8cDJcNDlptUGnJGE3ggnvOGvdOxrJDo1wUBHDdHZrxOdmqCuQlxdehPVDA1UkNg+3dGHHJRjVC7qZeDBGma8dS+RSIq+e4+l8pxeBrYbhrIe+GRSxMQDOG5dTThalsuAS9vgnmavpgScxInvAL6NkJY/IuTkW8B/I8L9DmRgabm33YkjpH7Y1GVdM8vK4snPEJCnJJN+IIOFxD+IymW1yNcK6O9To9MzpT+P7nZma4sgw2w74BGAW2TRyna+CnGru7JZ7pk1fFqBbIu7qulHrGePIHqnSAoGIlQ2GjdCYMHx26ilhxSl1CH9M0qCFziBk9nCX1lKigjPbzuVGU172f/IbMdFMAZct9YJ9dzoamdAHzgcYcczwf3eydjPplihwdt8250Q4umWQNe9dAeFsITvyhWswCVmt/d3WVCC2z0+FqVCXWqL2kIyV+mNnxtbHerLReey9RPELn6F1vpx37aVyJv+Wa313+dbZ2ghCREihI1CZ6lyzdwWMivm/1O16nB/Ouvds3XrMu7v3zfbrF3mtsoso7+sTYZcf/jWbKWnrkizk/15g8zIcwfyZ399s1g9rjfRfuYjrlsDyGLhEg3txkKRLGXG3G6is19nWclmb1MjKXa8vJgdLy+m+pxXmH/hdhrqOqlc1MuS9z9FSdkwS97wFB37Gjlh5gtCQCqTIgaueIneRLVNRhbM3CmE5qQD0AElxx6gclGvHCcm1pO+3XVCRjbXCInYihCoHwgZiX7gdfgw8DHgu4hWxMqBcmWzDER3mX1OwYnONR+4ynz/ylqJxDQDEff/GHHFusJc2zuR5WJzrzqRa5lcK9qQB8x2TxShZtessmubNWvelN+MeKZBV5B1IxuxSKsnGdxPg6wn/jKZ2uYcpyWjBca9j/WMybp1vsWlR2g31ilapN0rcSx9jwP/YJYqRI9kWfDuxsFZwFMKBiIwVVMaSbLk+I0sOX4jc+hiiHKaaKeaPhrpIEGUevYwSIWQkadPhbj0SXYjroRLEPKzptW5ph3m3A7hEClXvg7/9Tgc8B57na/f+Kw6yTbs/C/GAgiGqGghXWoKqHOddVo3w5pmub+HwLmn7neoWFF0m6NRsduR5ibmb3e25Jj5o5jI4ZgxPhaSYsNnkaftMaXUfqVUu1n2A48Cr5gyeSMkJCFCTCKK0Swd1Kagwb3fbQP8A5j8Z8QyDYBGA4e0BAuNg8paZfJpvzUoC3Ypa/a4/tjXzZNtfa1xH7IEwC7dQxUygNuPEJMqsMOi9iPRiJZCNNYPZ2kGHq9hxtxu+l8T5foWW0kumDuvg9PnPcbp8x4DIJ6IcQxxEgej7Bmpp6auj23di4nNjNNPFf1UMXdeB/V00UMd+7fOZv9WCZc1SDnRZSZAylT5KI0kiVXEYSr0PDAPdkcomzosG8/SsjQgJGQZJO6bLoLlnyIuaIsQ0vIxZMA413w2mOWPiEvXH5FrVI0kgvy2WbfZ1HFls1iSbBcuxAKyutWrE1htZvEbnd80tTpuO9bscHKtt/8FhoFNh3LtYlnL8ul7kOm5S3cXDOp76S6TwW5WQXX7XW/cbpduguS0wy2YFkJjh/q1B7SIZWpNq1gk3K5aj5ilGiGjq5AACJcj93w2YslYCjOa9hKN9bMwuoOtL5/K1pdPZYAqYkj0rBhxOmgkSoJOGtjICl7oNgEH2qHn9/PEqvhds8RMGzrMZ7IN1phza7fctnK/NyYT7omW9PtkiIPl+sk6eZ8k19pWC62bbZdEwCbmJNc6/dMEGnDfW+te+t+n7j7j9LMWz/vOcnt07xfi6IbWOq61fjuwGPg8Yrv+b/P9JK31hVrr/ZlrSEdx8q4QIUKECBEiRIgQIY50WBaSoxBa6+04IUrGhFBDYhBqSEIcqcjlTz5aDUU+9UJ+4thsZceu8cjdDj88EWQ8ug+fvzTZZ6G99TghNj3uapa/+hrjXvQlnCRtSxH3laXITLGVB8SEPD3h+C3sePpkAJa84Snq2cP/vnwhJ87bQopSYsR5Qp1tt6lJbyVKAoBSkiQoo4FOuqklQop+qoiSYOe+BcyZ2cUxiKUkSSnHEOc1M6XcN1hD2dRhqkv66BqsJ1YRZ2iknL7Hj5WoXSaSV/WiV+jbXQd/iThhf6dqOKjk8yklQvbtiCZktobtCpYk4fqIrJuKE4npLkRrsBRx2brEXCt3KOT1xo/9S0hErg6zb6P5tCJsNSDWp+tcmgFfgjjAEWhb982Vc8HuD748JG43H7erijtsqrsPeXLMeJCuWxhr6Gv7nAKiSFnfnWO59ALu5yBLFLJ0zZQvmhOIZ/ksJG+NG39G+j3AaYjQvQFKFhygpk6m7aMkqKHX7ounspkUpXao31JS9FLNJlZQTR+DlLPr6UWicToI3IQTiS6O9L0Nft1I+r2S8xm/UOCFwq858wYMWUe6psf57n1necP7Ola+dWnR/WydCK7nwc7dsxZ3W7IlRHSfQ756Q6mrsL6drf6i1pDMU3rjl8dWh/pMcUXZmgiEhMQgJCQh/paRj3B2MsTt4yWEt5CJALm3+QeQ2QW/fhcPtzDWPbBrcQZnHThhUM8zRe8D/glxcbpFiYvTFig5RwToM5aYjOm76zjj+AfppIHdTzcRbXydZTM300U9C3mBDhppV1bsXSjdO8Ab654EoIxhOmlgATvpN8lJEkSJE6OWHrqYw0J20EkDMeKUMcyWEWEVJ5ZsYwcLie+LsXSmhFmtpo8+qunZNk9I1CyYf+52+gZriFXE6dlXK8fomC7nd5Gce3Tl6yQ2T7cHn/wUGZSehgwWKxFdCIjYvQxxKenHSWZ3PuL6dSdOkshOnIzb4CIsLqF1A06SRJt4pGdEt+AnqvanK1O7n5A4daS7/+TzHGQjulabghDUVzPtG1TGfe7uwW+ubPGe/t3uEoxbwQYakPu1CnGxqzY79pnvHUjUuDJEUzQXSt57QCJsHXSI9yDlACxkBwmi9FNFqSHV/VTRRzVdg/Uifj+ohMxWIa5aFhoQMmLBJAbMdC0nA/kMxr2C9vS8O1q32oJzVje7cvMYeEICu0IEB4X09REhf9syPR/e7X5SVLgL79jf+0VMSOYrvfGrY6tDfbK4RO0TgZCQGISEJMTfMrLPPBVugRkPq8d4zZ4VWldhs3yWH3erDA6sqDWrfbOI1cCVwFva4NFmybtgEgNWntNLaSRJJJJi+GAZg/3l1NftAaBnXy2xmXEaTGbEXqpZwSZ+9fSHeMsb7qGUFH9U77IP81Z9N13UA0I+SkmxkBfopAGAcobooZZak1S3h1qq6WPnyAJqS3roGRFSUVsiUY2q6SNOjDq6aaeJru45VFQNMbC9hpJjD1Bft4fdTzdRuUjOAYREVc7uY6DDRN2qNBG3ypBZ8/sRHUgNQjoaEMsJwLeVkxjxurVwT6tYShpwBrYgg9uHcawimDJgBmfrnEACHTiJJ+1QwK3egaoNH6k0FhWvhWSH/d0ZhHlnsTM/S7lz1HgHiZnJgntdJutHrn4cdDz/cdPb6opItrrVSdoJknfEinD1RRzrHzg5QeKI5WpAiMgxs+L0PX4sM1ZI1Lbakh4Ws40+c8MXsJMEUaIk6KCRFKW000TPvloS8SqxuLnz28RwgiPc4mqbISfZBtPZrtF4IhtZ9d4Lr/XKgtvqkYlUOOXWmhxHvmPaVjQfuXZZ17K9T4PadDhR1ISkUemN/zS2OtTlISH5m0FISEKESEdmN4/x+wPKNHsb1A4Lo7XAjKYtaTOU7gzHQTOOzcjg5zKzWxkyKD4Px61kNjIwmwrRxtdJ3Ded2ve/DMAJvECfSfJRSpIyEnSMNLK8ZBNV9LOTBVTSTwVDJIiyQb3dbv+Z+gE7NGonDdTTRZJSUkTop4oyhiklRR/VxIhTRT+dNDBIhS0YBljGZjppoJQkcY6hgkFKSdEzUsuCkp30IdG4rAHk80+fSsmxBwAY2TRNzu9xhDAsMi5ceyG67HUSe6fLbLblsvNnnHwj25GIS43AgwgxsS7/LFPeso5YGewtq9MShLxY2aktXIwJCbzWISnupJRmhtm2ojSK+0omCwla53Bhyuwi5Ua+z1EhbkS5JhacU8g00+1s96w31826LlzZKkEFaBHLVB8O1iCE8ylglbhjgekXMezw0bwK0fNeJ/Hz6fCOJPPntVNGgmr6qKHXJuFxYnRRTzV99FNFilLixOikgZ6n54nL315Tbz/yrF1jjtGIkxzT7fZkXJeCLGKFXNPxQv4ExYKLeHgCaHjPNc0S6HNby0ae3cfOx4KXrZ9OzjUMCcmRjjDKVogQf2MI/oMLhtatgX9GQQOZoHqVWos7EkumY7jrztaOoO35EBhpx1rv7ylBbWoJOCcnLCa0OGRktaVLMKTlylbUuTgDZb/Urw2Yrak992UqG3upXNZL9bJXWDpzC9HzXqe3u5oF7KSMBIOUM0g5EVIALC/ZRBdzSFHKYrYxYMhFPV2e1jfwMoNUMEgFy5EJlgqGKGOYxWyjni5ixClniHq6iJKglh4a6KSUFKt4mFUmiUeMOHGOoYl2Khikc7CB4YNltj+/FY3r+ZeXMmPJXkZemcbIK9OoPKeXykW9lLxXBqI8paBD3LsSAxVOHooYjr5kj1kWIQPKjchs91mI65d7wLsS0ZYsQgabN5llK451yoq+lVwrLlwXm37SYfnK+0KTWon9TIJFy73LPRjPiOTarH3b/3y4+2J+5MEdyS13ksSgvi+QhHlBbl5BbbGPFRE3J91mrsuaVkmAaIXTXY3090UICd+NkJHTgM0w8tw0Rp6bJsk2p5pt94t7YiJeBe9IcuK8LdTRQy3dVNFP0pCOuNGRLGOzTZY3dJ8jZOTFBqKNr0t/2Y1YY36IN6dN+1ohp6ubsV2XwOe21YI7SpT/uk3GzH/wO8yKlGWF+m1xLRZaPFofO/yvr8+6wwA77zIhJVa0LKd/tnnOPdc72fmdmTRnssL9zUABpWNcihRKqTdm2fa+QuoKCUmIEEcBCiUZuQY2mY6RjRAEzejJn5YlHm1OO26mWVlrWxDZKdSC4rTDt1/S3SavFSTzIGSdM9O4waVVWN3szSz+BWQwfZb5/cEknJGkurGLnpfrqavoZqA3Rl9HPVESVMX6ObVuM1X0U0c3TeykiZ000sEC2qmni4XsYJgow5SxmG1Ue0bpghQR42EvFpQ5dFFNL1X008UcBqmgnyoWs41u6tjJAkpJ0kU9O1lAilJS5t8vRSn1dDFMGa8Ro7HiJUojSbqp44nBNxJtfJ1kspQl856hKjogg82pkDgYZbC/nIqqIRGvN4hb2sBIleSZ6MRJkDcXmc1ehTeJIYgg+hEkH8sixDpypdnnW5iQruskh8v1zaJbWdMsrlidrvoizbB+rW39sIIPSChT439vu66ss8MB232gPdMAH09uB691pM1jXcvmEpXPs1jIoDiIBMn6ZnvQGKQ5CXIdswaxaopD0li/Vq6tpd1Zj1ipliAakm8huWVeNeVvkiXx+HSxms1B7qfBknnP0DnYQJRh5tFJBYM00GnoSJyXOI6dLGAB7cSJ0VS3k56X6yGuRK/UiPSRa3Dcx75kFis3irGAWffZ/S6Ta7Iu8B0ymndkIfv4Saq1aN1qyJOZIJkCniSOERO6ebVFpM2yChNm3LH4WUTbr3cTuBNDuq0cLfZv9yfg6df5nJt7v3zKHZVQHI15SCw8pJS6RinHr1UpVamUuh24tZCKQpctg9BlK8SRjHxN4vn5lY9vpJlcLhGZyue7bzZ3B+u3hXQ/fa//tL+8tY+sd6I02eVWt8rgajsi5N2Fk/jvKfN5iYYOxYJzn6OUFINUsPvlRt427/cMUs4QFbalo5cam5QA9FNlE4xhxDrRTxWNvEScY+inkl+oy+y2vlP/kkEqAKiin16qOY4OUpQyTBnV9NJHDWUM008Vw5QB2D76m0aWA1BZ4pCaUlJU0W+7y3RRTxX9lJKkY/A4BnpjlJQNM3JAjhuN9ZPomM7yNzzKphfPhLiiclEvFRWD9Dw9j5JjDzCydpqQNyMzsSNlXaDhESUD2x+aa7gRibx1C4571nbgEzi6ARAryepmuQ9fMQOmK5tlYLzZHMPjtmXljHFnqAbHHcZ8RlrRSUdDkuaypfyuP+7Bm1tj4u9njgbA/dvZt9VTthC3LTcy6bvSn5N0dx+7Lrerm5WNvRMnYEM1TlQtN0+27ieIeP0k0R31Jyrpf62KiqohyqYOM6ekizjHsJht1CDJN61ocQmivEwDCdP/B6ng+cdOFd3RI0r60N1IoISNCFGyAhxsNpYdEzkq0/Uq1AoyVhekfF200t5jxkU0yFXULmPp2Zqave5q1r4g3xvxZWH39lHbOuZ63x1unUg2FLXL1vFKb/yXsdWhPlicLltKqQsQ4tGGhGeZi4QueR34kNb6ubzrCgmJICQkIY5mFEpEsrkrpPsOT7zOJBMC/0QN8vGPt7cbIWcaETIhYAFHsG4NVpua06Nm7UH+6KuwkwlayQVjM+PU00UDnTzDqZQxTBX9zKHLtmwAtgXD+j5EOZX0c4zxdforSzmTx+ijhn6quEV9xj6PT+h/Z8gQEsBTZ4w4w0TZY/zxAfqoJmpcxIaosF1koiRoop2XOI4q+m3NSQeNzKGLBGXEiRFlmBQRXug+gYV1IvZ+/ulTWf6GR3lhcCEDvTHYHZFrEdNCVjZPF+tGTZIZs3vZf/9szBhUtCX/gAww1yC6AOv7TYj71seQiE5lCGmxLCp+0nIzTrjlzYib13Xm/tm+9AZG8O4QCsdSplQbmhOcslqnzRCnh111ZTN3CY/9s+6Z3BW9g0xHuB5E1J125hZoW/V5zy+4Pfb2c8F48UnfPg87DLO+A9QlCBmx3BOrEQvhQYRQLnXt22Giru2dTnT261TF+qku6aOKfhbQTgVDdp8qRYIkdHAcFQzyDMvY9XITC+a9wM4XF4uYvcPUvRuxvlTj6IUseO611yKQTUuTbZKjEOScMPGFWAZEh9YBbtG5A9+9s8gF7n3wvr/cUbbARcCduj3BHMxx3M9DrvdpoRNP442/AUJStGF/lVKzEFKyCnnb3wh8RWudKKiekJAIQkIS4nBgvF/exTaLlS0KUHrZ8ROVZiVUU6w/ZO/sYFC4U89sc1Or6EMeBq5ABrwgriGngImsK+5Jj9cw99x2QITp9eyhizkcRwe1dNtC8SjDRIyj1BaWsoCd1NFN0nabipAgaltILJH7MFEAaujj/6n/azfxn/VXbV/7FKWUM2QL1xvoJEGUQSqM41eCODG2sZilbGGQcnqos+uyfPkTlNFBIzHiVNNnRzoqJUU1ffzlF6spOcfJI9HbXc3IcBkzZvdSFR1g97YmmKqpnN1H2dRh+jrqReTegfx1bUfC94LMuj+LzLPdhQy0mhG3IGtM2Yzj8mPlLQEhI8sQ8rHMlPsW9kAYEIH7etcsMgDrYE2rDK6nuAZra1qlrnYvIVEugXs2opHJ4pDJYiHfvWQhH7jbnGlwGBSe2n/8tImGc3EilllwPwONZt0XEEIQR4hmHMnCPhWZJ51hypmgDtFFr1NeOUj/a1XU1+2hgU5q6KWcQerZQ8L0TgvbWAzAjpETKC1JSf86UCGE5BGcfgEuMuIOWJA5KlSQpWuikO/7LT3kr8+64SYo9iSJGw4ZzhQ2WPZ1yIm7LV4CtC6tT00GRvfOL2JCskDpjd8cWx3qkuK0kAAopRqB/wGakCf+W8A/a61ThdRT9BoSpdSnlFIvKaUOKqU2KaVW5Sh/til3UCn1olLqk5PV1hAhQoQIESJEiBAhbBzdovaPINNIXcBCZOrhw8DjSqns5lofipqQKKXeD3wP+BfgVOAx4A9KqXkZyh8H/N6UOxW4DvgPpdR7J6fFIUIUhrG4ARRS33gJB7PVEyzcdUS0ucToQTPH2dvSFvjdqaslbT24Z5Nl9tCahXREpW3Q5JrhXt0qyyWuSuYjbyag5CqJJhVd+Toz3rqXuopulpz7lIl1NUgZCerpop49DFNGnSuq1RAV9mzwKh5mIS8wTBk19FFDn+1yFSNOKUl7XYqIbVlxI8ow1fRRTR8L2EmM1+ijmjq66WKOndwQsLUm57CBFKWUkaCWbmrpppo+himzLTlz6GLQuHRZ4YIlSV0lb3v/73hj3ZP0vCiRj46r6yBaOcjQQAW7X1zA3MXtcFBRGklSWpKiZNogdEDJ8gPi1rMbsURsRlx/PozMsltTT/chwQGazdKGiJh/jOgVrsEJ8zoLkyxxrWRxX4VjfUm2yQz6mlavUD0ilhA7stYUgBapowPSZpZd0Y6ssl7rghW1yRGR21G8IkEz4e7Ze6/o2P8MuIXPNpLpZfwz/tIW6xlcZx8/3brTYguh9QOYoA0tzjMAYjX5EuKieDly/0BE7WsQbdBBxHp1FqLr2AhMlRDAibuns393HZEpljapUgI7MECCKM9wKj3UsonlbGI5NfSSICp5cp6ex8gr08Q68m0c68j6Nrn3lnXEijb1sNdaZV0D57p4v2fCaMTtfvjd4exoVpFWXzmfyN7abkfOcumMDiFWIDsSoLFoRFw5Rdz7RFzvYUsI72uz02+9blr+4Af+fpjPNcr3OhaTlX9ccHSL2m8Cvqi1fq/Wep/W+s/AycBO4JlCKipqly2l1BPAX7XWV7jWtQHrtdZXB5T/JvAe7bJHK6VuAU7SWp+R7Vihy1aIYsbh88vNrA8JWj9efte52hRMbtJ97YP3T3eLcQs4HWHoWm/4zPMQgfRFyIB4N2KcXgoz3rqXVDJC4mCU8spBGqKdVDEAiE5jGc8wRIVNMBawkw4aKWeQHuqopdt2V0lRSqUpJ4RF3LNixO06BqmggkG6qeO7ynkV/rN20gEPUk4FQ/RTZSdJHKTCJDlcQB09dh1WnZaGBCTTe5SE5ByhhibaaaeJCgYByQ9RSooUpURJMGQya3dhIofRz/PbTpXEiL0RSo41SfA66mGvgrlJ+J+IaAwWmf+hbytHL7LaNMTKRWJpS6zE9N/FmzBx/Vpn0AyOnqARcc+60kRC22C+32fKuRNaegjBOieztycx4rW+3A8BrlKXgL4DD7zJEwX5JOTzi4utbZn0IukC6fRkef5ydlnrGXDnVmnGq8v5BhJa93HEdW4Jci++gOMyh9k229Wwu4BVcOKZz9iR3OrpopZuOjiOFWyknEE7WEMHxwGwc2QBlSX97Hq5SRJsLkHcwe7CG/DAuo+rSEt6aWuBXFqfyXhXuZHNpS6onKe8RwtiBOtWFnqXhsTOE2N0M25diP3d5f5l60xw3W+Xi1eh1yj3u3firnNRu2w1K73x+2OrQ11YnC5bSqkTtNY7Mmz7sNb6p3nXVayERCkVBQaBD2rtvNqVUjcCS7TWZwfs8xCwRWv9ade6S5C3cYXWfumYg5CQhDjaMFrtRdCAJUjYaJWBfJK7jS6be/rgKnPUIM86I1L3J//KLAbGEb82NTvZvYMyfu9skug+S7ATHVaulChSS9lCB40sZpudMd0iG5buop4u+qmigkFq6aaCITPor6afKo6jw7ZeVBu1d4oIg2bAnzAWlUY6SBDlk+rH9nl/Q/9/lJnoRBYRGaaMKvpJGGIzTJlNKiwSYgmJLetJP1VU00sX9dTRQx/VdFPHCjbSSzU7WEgjHWxhKTHiVDBo617q2cMTidOJRMR6M3ywjLKpwwCUlqToebmeaOWgJEjcAie+/xmJmgSiTThNrufA4zVyfaci2d1nIAPQZhwBcx92Akr994jAejOOZsSKBtVuInCBEBJL5AuOLmKDM5BzkCnKlnfQZoUUtsOtBugVwOujH0Se03QcnnoyEZDgZ9NbxjUTbyKNWbk47MGuncneDF6bnXwd9vlGmkWHMwvp//3IPVmD3ItlyD2sMtdjNk4ixE44/f0P0U0tKSIsZhv9VFFnLHKW9U0iaZWTMtPCXdTTxRyGqKBn2zy4AVy8WSxhHTg5aFy6l0IF1+Mx6C4U2aKrWcfz5FA5hIdE+Pd31+ElwemBDNK1K653pZuUZtHaZLNy+89jYjU6ISE50lHMLls1iOdct299N955FzdmZygfwQkwaUMp9XGl1Eal1MZXX311jM0NEaK4kLco1mWC95voZb3lfhIsDM3055TrjyofF62gY1plg0iFXdaeAXTanV6PcbVZI2429gB1GU50pqZWmfn9AjIz/PNmSfQ3F6hJUrLgANXnvMKqiocYTkSJEedMHqOBThrpoJEO6tljZ0ivoddDRjppsElAGQkWsoMoCUNPeikjQYIyOyJXGQka6aCObuLEbAG7G1ZixBhxkpTaYvYoCSpdxKSTBsoYpo5uauijjGHbZWsFG2lipx0yuJEOFrONDawmRcSO2FVFP7V0M0gF27oXs617MR00cly0g1hJnPISCetaWpKir6Oe4USU+fPaSWyfLm5ZDfD8i8uENHRC9ApJnjewvUaud7+EimUNMsj9B8Sl6xOIBcUKubwdEWGvRmbzk20yIK7GIScb2hwx/CpkgB4xlrCHcYhnxHFZSY9wZAZulkuQ6XP6EGYwv85FVlrs58Pqf5ncFv3b3X3b2Wedpx8739elPQOZCJH93Qj67bazzoSKbUVyW7RBu7gUqU+5KkquFatTTO4N+3HCXIOQx6WIVSsG1CTte8sZSV5InMAQFXYErRqTIyfGa5QxzBDlRBkmzjFsYSlbWMpOFnAMcSEje029llD+Wzj3F5w8JJZLne9aeAfq6fchn3fmWAbVwe8hbz/zJym0yYhxsVKqzc6VY/dFC03O+UmOHHG5s96DjnuhdX3a7MXTzimu7yanTi7XtlzX5ahzwyoER7GGZDxR3J5pEwyt9X8B/wViITnMzQkRIiPGf1bO+ycdmKnYzJBlcnMIQjChGdsfvf+PMNvAzusO05q2zu3v75ndbmqGZa3i9tPc6uQxuASM95QMvs5IQnsEGjWVNXEaKjqpp4sOjmN19EHq6DZZQ6rsXCKW5kKIQrmJrpWghzoipJhDF3uop5xBOmlgMdvopAEQTYiVA6SWHoZIESdGNb2UkqLBGYEBEnXLsq6UkqSKATtkb5JShqggSoJyBlnATmNBidJPFaWk7ONGSPEMp9rEJ0UpVfTTs6+WhTNfoJEOnuCNNNFu50d5Y92TAPRTSftgEw0VnfRTRd/mYyk59gCVs/sYGqhgf8dsKpf1MthfzshwmYQFNhHKEvdNhwaofcPL9HxCpIIj35smA9AqJBs3SLjfb+C4zYFoF77ruhjnIWRlFVDdLPd2e6utLbAJ6OpWx4piBn4uD600jYYkTzR9ylga7AGcJxqSwO1C4yXs7lJe64e/r2eymPhzqNgz50HPit2uVjkHfPqAZoRUdZjtTa3Q0CqubVYC0PNa5Zpa1/xyLQS9CrGQfBFYI7qqyJQUsZlxhmcbl8NonBQRO6qWZbkTa5xEaLP0VIOU2/qonm3z6JnaAFM1rFfSnmXm+JZ71ppWicTWANDssv60pofUHaW1dryQ8T3mCclr1lnhqA+1yjp3Dh1PTiTs9fZ7LwlKeQm1WOW81jm3fsh+13osIy1Zr0+h7/m/SVgakhBZUcyXqBdIgSsOpaAOmScJwt4M5ZM4ke5DhDjiMNoXfaY/ifSZ2ObA/bLpMvJN1paJPOTjGpGpDr/LjH+G2C7vHyBGms2fu2tGMLkW2lug3QzC4jiz7wCNZq5ir/zrV5/zCstLNtFDrcneMUiMOINU0E0djbxk5/0AyenRTZ3tfmUlO6wzloUEZcyhiyEqqGCIBFEWICGDI6TMvn22DqSMYfqooYJBXvP4rsix+s3o3iJEPdQRNXYRR1MiSRKtHA+WoNgaGCYpZTHbiBPjjTxBN3UMUs6ZMx8DxLriLm/pTSxUV/Ta7jf1b+iilxp69tXSMLOTThoYeLBGZrqnwowVe9n/G2P0bgDi0PPAPHEL+gYiWH8VmQk/zXy/DHhTm2RotzxtZ7kuRKRZAg9sR4jKDKCvVSwmliLxJjNY22C0J+1mkO4e9K1phjtbIXmtq/IWZ4De7iYvLd7BJOvsAaEM8JpxkwDwuxCmz0Bne0as51JNcfZzP7eZ3Xi82hR1rtneJgN4GkG3GaLegbhobTaVzEeu/37kmj6iJB/MIi3fb9GwXVFRNcRgfzk92+ZRUi1BH+rr9piEnJUAVDBIKSkW0E4Hx5EwxFj6epltyZu7uJ3dTzeJTuRVZJJgEZI88zygUyYS3NYP6x74J1MyuW6N96A60/sSXC5yeN+zjqtgs+f+eL63udywkgCtThAG6zhTcp1PixPAwWeVE7LiLW+RGPe5ebdnt5yEICQkeaJoNSQARtT+rNb64651O4BfZRG1v1trfYJr3X8BS0NRe4ijFZl0H9nKu5GpfCbCEex/nD3GfqHZ3/Px+fYO5pwZZucP35ttGzB+/mu9mafXtMrsbid25CwL0ZWvE5sZB6CcQYaoYAE7qafL1mVY1os6uo3lo5Zq+ogiuglLiG6JyiVKVinDRE0m9CQRUrYQ3BKLg5VLZJAEZS4B+TBDVBgBcIyr1H/Z7f2RdgYmFQzagvSFvGBnWO+j2vbXLyXFMFHixKhgiG5qAWigkw6Oo4xhkpSSMjG9rLZVMEgv1QxRQRf1xIjbgviuwXrqK7roGqynrqLbbrelE9jx8mJq53UxnIiyf+NsEbf3uv6t95rkeTdPF/efGBh+JrgLcRNqxp6RB8SS9UdksGoJ1pdh5xfhS4j2xCcEFv2IK1eDFdDAGuQ1NaPbXaL2iPblhDD962LsgbHH/97OE+Lz0Q9IwBgc0curAbDKSx3pz1dgYkd33hFbX4VHxG6L/5ua7ezmgFiTrOdiq/m0klaCWK2siGjtSCaCg0LcAfruPRaAJRc+xdYXV3DG8Q9SQy+19FBFPw+zytZZbWMxXcxhz756qmJimrTz1tyFEJA44rJ3Hs597sDWwVjWEev6+K/Z4UK2d6FtnTKwLbcuHRzgzcLegfOe8yc8NOUyitqB9GSRVhmnnwZpmkY7MTXRKGoNySKlN/732OpQZxVvYsTxQrFztn8DfqKUehJ4FPgkUA/8AEApdTuA1vrvTfkfAJ9RSv07YtR/EzKX9sFJbXWIEGNAobN0uWZUg+rLz4Uq+E8mHz1IrroyCdT99eXjpuX46Lu3OO4HaopjJdFtxvWhASEgFhk53+wWc2qoPfNl4vtitqXDcluS5ITDxs0pSTmDVNFPlIQ98LYSD4IM7vcYMmCRAKu+OroZpszWkYAQHwtW8kKLDFkD/0Y67GSHbliRrkBctmrpAcQqU8YwXdTTTyXH0cFLNNJAJ3Fi9nEs9FFDKUk6aaCaPkpJGeeuYWrosyNzpYhQTR+L2WYnsKuv6OIlGolVxG2rySAVdh2VNXFSI6Xsb59tZ7OnRjQFDESgEdGYXKLFKtWOKADvNvdnLXYYWVa6Tt4iIzEkHO01wDJQtyNkoQ3HvWez6QOYfmAN8CwLhp04cZ2XDIGJXuQiFZYQ/k6HEHgytzd5XQftQXKkFWj1uFx5Sb41oIRMEY+8lkHMjHqz/d0ZkPuCN1ifjWYwvAohHmvEtU2d2yrPxEbMwNX1/FpWEsuF7jSoXNbLwF1GphkDDgqROPH4zZxwoROA5y3H/95F1MvpoZZVPEyPIcIxXpOmzUyx8+WFslOHgqYkNEaEUFoulDebz4vx3Cu5XkGum95r58dYrCO59nVv97tLuTU9AtN2QxicPtAipGV1q0Oq7aSJlsXF/O4AsdBZ9a2zLWme0MjJtrQ+l01gH2xdymRdD124xhn73ZPzxQal1FQkBuU8YBdwt9b6YPa9vChqQqK1/oVSqhr5a5mDzM9cqLXeZYrM85V/SSl1IeJJfCWSqOVzWutfTWKzQ4QIESJEiBAhQoQ4Kl22lFI/Bn6rtf6NyQG4AahFxt1zgG6l1Fu01i/lXWcxu2xNJkKXrRDFBv8MU74zTrlM6IXM5lm/M4UcLQTpriTBM2nObHJwKNNsbgRe9wSXO4PlnmDNhK9C3E7W42gMGpFtl2jmHm8E34mofdzV0QfppIGlbKGLehbygh0+t5J+hqigmj5SlFLBoC3QLTMzwuUu96wu6mk0EayGiZIiQgWDdrhdK+RpKUlbLxIlQYzXGDKi9deIkaCMK9RP7Dbeq8/xhAfuo5pKE52rlJQdPjVKgi7msJAd9Jlww4Cd86SMBB002okUyxmihl6e4VTKGGaOEfIPUk49XWxjMQvZYY4bpZcaEsYVrJSUrYFpTyygLJogNVLK8MEyBjpqKKk+wMimaYAkSxx5bhq8CtHzXqcq1k/f5mPFulGF4761HYl0Vom48oDkowDRGlyC7NOMuPjcjOOSdHWzEyoWfOFiwXKR0rrZdv/T2F7AKK51+lszXr9+yxWs3WclAbzuV9ZxgsOwZnLh8eYiafP2c3dZS3NwyClrR2Nyu/l4BPgtTujfq42WajuOlgrgHa7rth7R+Gw2v7cilqmaJCVlw4w8N43qc16htkSsdD0jtZxT8qBtrbP0RxZeYKHtzvinbX8nCTWBoZFy+q45Vu53PzL3CmKlaQauW+t6xtel5WyR8z+8s/VpAnKP25Q/RHGbbb2w71kjjguW3Tec/uRxyVP+/byurel9xdvvre9BmqNMFuvDfX2lDUXssrVY6Y0/yV0uG9SK4gr7q5R6FThHa/2cUurXwBTgQ1rr15VSlcCtQFRr/a686wwJiSAkJCGONORye/KXzVdnkks7YmE0f0DeiC7ZCU7OAZeLeKTnfmjxko+HzeqL8epF+hHnzmqY8bO99L9WRU2dZEOvNgqMY4zLllsn0UgHvVTb+UWs6Fpz6LLJhOU+laTUzuVRST8RUvRTRbnJ4g7YeUAswmIlUHyNGBFXNvakyagOTqb1S5TjTvw7/TZb6J6gzHY3GzTy+1JzbHem9TjHUMawx3WsgkG6qKeeLqrpYzPLbI3LIBX0UW0TKckb4SR97KGWJKV2hC8riWPHvkbKKwepi/aIbiURIxJJ0R+vcvQCu+sgWUrJtEFGHpwGp2mIG1+8miRsjYib0H5kgAreKGiWRmR1qxAMS3y+zNz3aswg1pAQTN9w559pxEtW/BoSdrgG9/4IXLgSbAZrRPwBJQTBBNxPzt3PvEcL4inT5nLHcbsHpWsGiDTL+S5Dsp1f3SzXsBPHpW2lua7ghFleg+Metxdxp/swko392APU1+1h94sLiMb6WTpTQqNV02cn4nwr99NJg60vsjK091NFz75aEvEqMHls+EtE7sc1iA4obtrQKfdJHzIEDuzBt/f6BbsajRajqSc4opVX1+NORGknOHQl6LSjwIE3R5Jb7+SLumYhqP/5zyWXXqQYSEc2FDUhOUnpjX55WIFQy4qOkAwhScdfVErtBi7WWm90bV8MPKy1rs5YiQ9HmREpRIi/HeQSe2fbLxuZyUYUCvlDCppZK0wb4x5MpbfDiZ/vDmFqSMolSJjXplb0A64By53IrC7I/M0/IIPU1cjMfdWQPXByD94t9FPF6TzBEBXU0GdygwzbIXh7qaaKAUpJ2jPAUaM3sX5bZS2rRIy4nZvEOoZFNqwZYyuKV6kJSC9JFpOetsmxEtTTBUCcY+yQvbV0k6DMPk4/VaQotclUnBhDlNtt7KeSerrsdlTSTw199FJNB4000kEPtbYov4uTqTFRxGrpMaL51+inkr6RahpKOonNFP3MtsSJ7N86m8pFUj7x+HT6Fsm1qG7som/zsYxsnwbDiIbECKT7fnCsDI4XabhFOcRhvzn5ueZe3tgqzgNNzfBPwAAym4/cZ7aabZZFZE2z6D+W4RW4X9kM25vxyXTwh/11xMVOnwWvlsPezxV22j0jbpX1zmK34M+Dkj5r7bTJ81wfagUcQbN31tylWUi2SXSxS1rlOrQhRONhc22vAN6KrAe5/mcj9+YgQhIPmuzpnVD7/pfpeWwe8aoYy45/gnKT9BOwEyHW0EsnDfYz1s4C4hxDA528wAkktk+nZIGxlAE8i5CQixFi9DCOtQtQU9zkK50IjifGOigPimhla4BsjYcx7VkkxNKM0OIE5QD53d6GO2kiyTa5HuAiK673n+kL1js+l/4wGyaC7IU4orAdeCPwIvIWPsa3PQYUZPEILSQGoYUkxGRjsl7i+Ubeyuw+5SDTtnzJUaZZuEyzcUHuW9kzCpuZbisSDcj36833/cjgZj4imn5EwTlJGIhQvegVlpZsYZgyFrONIcoZdlkZ3HlFaulmj4kuZeUXaaDTzqtwjCEZgB2lqsKI32PE7QGZlcCwlKSdcLCfStsqYmVVt6wQgC0stywaf6f+ZF+3e/U5dtI5wI7GZeVGiZAy0bmOsTPKD1LBDk5g2CRglGMk7EhcVuStFBHb6nMi29jECkpJkSDKHOO2ZZWz0MUcm8iUGdH/MGXUIdG3uqklnoiJwB2oXfwyPU/Po3JRL00V7Wx+eiXRxtdJfHu6E02rDbFqWaLri8x6y73ocXN/b0EIhjWT/y1ksHdjs6gMrYHd1a1iMQE80YwaEDKr1qK51umbEec/045Q5crunmatM+5E7ohH7mMFW0UseF1srOhw9gx6xDWg9LTFEBp7xrzNa9Xx51652FSywlzTFUiQAJDr3mi+zxYLyMimadAPlRf1MrC+BpZA5aJeOwlmaqSUxpIO6uniGU41VW+0Azo00c42FlNFP8OU8QInUEaCLfuWknh8uhzPMvw1Itat9QgZuRix5tjX2rl34y1WLxSZJnr878r0LOguUgG+/gKeaG6uCGkkTZCG9RmsX0lv1Lf8ssLnH0wk0zUYT8tK/q7KRW4h+cXY6lBLi85C8mHgm8BHEM3I14DPAs8DCxEfhL9orT+Rd50hIRGEhCTEkY78X9y5NSSQPvNV6J9VUHkL2f7Mgrb7iRGrW53Bott9xfqTjrQ6oUhXenflwxCd/TqJvdOhMkm0cpCGmZ1ESdBEu0lAWM6JbLPzgoCQA0mC2Eg5gxxjImZZg3LHMiCJELuoB6CBl21yUkOfbaVIUmocnlK2lWSQcjsniAUrK7pFalKU2i5fKSKsVJvtsr/Tb7OjdCVM4rkUpbxGjBr66KLekKDXbFetQSrop4ou5lDPHruuTSznBHZQStIOC5wgyks0EjFtHjb5ImR/Od9SUgxRTgyJsjVIOQNU2VHIuqmTOhMx6qN76KeK+GDMOd+KOLt/0QRLzX3qmA4xIY8l5x9gZOc0mG2sJHMRawjAFxDXoccRsrIUJ5HiLpycJHOBq3AG4bMQwnJdwKB9g+mPbkKyWjsugJafv0nQ5ybJQf773gE0eIi1Szfi10QFumx5XLHSdQHpIVxdOiqLiDTi5BpZgZC4b+BYJd6B4yKHuXaNLq1PDCGM8SroUJx47jNUMEh7YgGxaJwIKd7IE4BYzrqYQwOd9FDHIBU08hIdHMc2FtthpXu7qxk5UCEJFwH+jOOi1e6bcPDrbAJdlbK7q05E1K1Mdbm1PUqtdb3HfITWvM8C36Omb9kJOe3QwJCuDWpxrpenHwTrl/zho/PRDRaLdaSoCckSpTeuz10uG9SJxUVIAJRSnwP+BShB8sm7va5+B3xYa30g7/pCQiIICUmIv2UUQlIK2Te7EDKzViX9z9H9p+tKeNaMcbNxzxq6Bl7W4GqG2fE0iC6T3CIx4lTTRx3ddNDImTxmJzS0RORRhm1rRblJIAjYg/QyElQbklFmsqrLdvGNt75XGBXHEOVUmlwjNfSRNIMwy80rRcS2UgAmx4lYZiwNiEWAquinmzrepDbZ5e/V59hkxgr5a+leLAH9EBUkTduqjBgfJNmhtd5qxzBlNsnqo9rkH6mx85lY9boTQXZRb7u7WRYSwM5Dsm1wMQO9Mc6YJ+FeX+puZKRP3HPmL95uW0zmL95OZ3eDDE4PKtEqNGonGV8f4n5lEc4BxGXrWZzEeSD5KuYjM/+WjsStp7YsKG6hOzjaCkCvd2lImrQrTKvPMdwWK/tF5V4/f6uMv59L2bYMWoAWz2DRI763CIh7gLrauJu1r/U+F5aA3y187sCbg8fKN/Kq+bzSfE5FXLUsa9SrMOPde8XCdVC2n7D4r1TRTy/VLGQHC3kBwCajdXTzDKdST5dtubNyj9TO7GH375ucYwHcj1jF+pB2X98M1/gtDLldjgrR0Y0WaZaQjBZecIvI7XsHcv+aWh3CYa2zrB6r8AVgAL/VLb0N2QMmWG3P9R8wEcRt/LQ9RUxIliq98Tdjq0M1Fx8hAVBKzUCmgI5DiMke4FGt3RmB8qwrJCSCkJCEOBJQyMs72wyX9afodgvId+awkHbmY0XJ9SfnHnwJ/DN9LSZ/QpvtpsDVrXAW8G0kE5H1Gt8LJScdYEXdJjuTeB3ddpI2y7JhZV+38osAZpszwBZ3rtdsy4UkPhSXpn6qqDOEwKqzjGEa6LSjb1lJDi3xeSlJm3S4YREQi+RYbl+DVBAnxsnKyfOwXc8nblx5rVwpvVQbF6+o7bY1TJkdIauHOo9uBbDPo4p+Ommgzlh/OmmwB5uWtWeYKE3spNOooK16LPezHSyknCEAtiVOpCo6QAOdPNF9OsfVddC5r4HEgHPsypo4FRWDxPfFAGic2cGOB052BsFTkchOFvk4y+y4BYnEtQz4KZI073LE9WglMuMfw4m+ZQm13QRlEXCT+R+9ulkiONGSFmXLgZmBNtqTtOhu4FhRkumkWp2LkGmXv3+wAD5YEO+ZNXdFbLLb5nLdspFsM7oZhIych1zbh5HBriX8B7GQdILNkS09zjVyLee+oZ3+RCV1UekfPdvmMX/xdlJEWMFGuqmzCUmMOAmitjXQsqhtYzHPv7iMGXO7HWKz1XV/QIjRna72rQ+whHhE/s76w4G0yZe0CGl+4hIw+WJywth9w1g+7P7hjgxn3V/LKrzBT3IDEnZmCHYwHqTtcFhNip6Q/G5sdajji5OQjCdCQmIQEpIQhwOFvrjHEuEl37KQf+SuoOhAuSwmVv1BM5bBLikBf5z+TNsPIwLcmxGryBxknsbK9D1XdBVz53XQQCelJE22dXGPWsw225JhEQZL52BZGEpJ0chLJChjkApbFC6JA5MkKGOYqE1Y3MRikHIqGLIHY25yEzV79hu3JmmD47JVwZAdnchtRbGsJfNUj132GX2i/d1yCRukggRROzmhRMgqM5nlh4lzDF3MAbCtJVY7uqi3RfFW+OFu6myCZIUSrmLAk1jR2t5NHSDkaBuLbdG8NTi1wg9bx62in5e6G6mv2yPHH6xnoNfU2x6Re1mThP+JyD2uwUlmGTcZ3n8+HXYjxGMFQlK2IoPai4BLzYDcwiwcS8Bm8+mOXMQ6r8tWk/YmVWxfa4vbHT99PCTA0XcEuxR5v3tdtOzBdiN2FvI0F0XAtpa4Ik55wuG6LTQXm3O9BCdyVtxchz6zbiWSdf0aJDO6da1i5touFYvWrpebKCkbpqluJ92JWhZGd1BHNyfwAn3Gmia3J2b3o0Hj0vd7/s4EP6hiz756EjdPx3g3is4HvNe6g7QAAm7S5tfpZJ6QmdgBc+Z3myGJVhS4AKIKpFuvrE/whW32k1CDJte5pYX9Ffi1Trl0fcWOkJBMPpRSCgl7cSYw26zeiyQy/5MukGCEhMQgJCQhigmjNZ/nUy8UHirYv79VR7q7yej/zPzhe9MHGj4hq+VDbgl0QQYvn0BmdOcCTUl7sCSbO21rRAOd9sx/Ld0mYlTKQzQA2/XKct9yR96ywt1amdndLlWWZcUiEZb+w9J+SMb3hE0+EpRRSzcpIvRTCWDXaWlOhqigOtVHX2m1LThfpHbZ17Bdz7UtFKWk6KHWdp+qpZsBqihnyBbVS7b5FKUk2UO9Tcaq6CdBlNeIkSJiu4HJteqhn0qbRAxTZrttAbZGxiIolkC+ni7aWUA/VdSzh04aGBopp7Kk3xbCW7lfYtE4u15uonput4QCHojAVE001k9i83T569uLDKCt2fsViGXkDsRKciXi7hNHBtFx4CbTf69slUG4GyvNvuch1hVMPXeCTrpctq7W6H9x+mxQaF9WtzrhhCGgjLXO7ePvWgcOuejAHrS6Z9HTBrluuMTuNvlodxGli3GIR8y13wyExFuWxe3AKTgWpN3I8GMq0A6Va3oZ2FtN7fGdxPfFOH3mEyZiWwW19NBEu/0cALb7304WUE8X9yQuJJWMMLC5hugioxeaCtzgapcVhti+Dr6cHRnE7EEY70F2oW5MaflqXO6mHutXgOufYxUJmqjxitmDrSDBOaAsFOJ2m89+k42iJiQnK73xnrHVoebRjijm7tJa35Wr/ERDKXUsoto7GRGyd5tNdcCJyFvnnVrrV/KtMwz7GyJEiBAhQoQIESLEREAxHqPt/Vrrj4+9MeOG/8TErNRa73ZvUErNBW4HbsQJH5IToYXEILSQhCg2FOpqFTTzlUlEXoilZDRtzeSaFbxvUFZrN/yCTVeysAYcDcAa4BwkXOhpwFSoXvkKsZI4Z/IYIMLtGHGWsZk4MWMl6aabOhazDSDNupEwVgPLCiIi9H6SlNqRp8pd0bgGqbDdvaQOsVA00OkJJWxpSMpIGHcqOVbUJWqPkCKaStBfWmWXj5CifHiQoTKxUNSoAbt8u55r6zUkS7qjS7EsFsPGj9+aybYSKVYwZLtuucMOWxBRcq1tGQHsMMelpOgwPnRWlLJSUnTSYOdgkYzvYh3aljiRxdHn6aOarsF66iu67Pq27FtKeeUgQwMVVMX6KS1JMZyQa7v/kdkibAdJnvi9aU444MeRWeepOLPrt5jvMxDXo1Wmn1iRuUD0Et/C9r/XDyB5bO5E3P+qQH/aZSFxhf219SGNeCNXtfuE6ZYLTbvfPSc9c7snChMZhMkBoW49rmL+bOxNraKnsa7J5YjIvxnHgvS4OV/rdzuiGWl0Xc+5SUlUuBSYaq5DJMWM2b0sjj5vB3awAir0UGt/rzLBHCzL3Us00plooC7aw45tJ4t2ZD2ORWSZOeYsxBXTSl4JtrVnPKJAjZ+oOt19zL3NC5dVy4oIaFl5XYJzj7jdOn+rnwVmefdazBxtjfcd69e3AAHZ7QuzPh1uFLWFZJnSG+/LXS4bVG1xuWwppQaAs7TWmzNsPxVJjFiZb50l49S2ECFC5EDwYDszMrkC5Cpr/eFki2iVvn2tXbf7ezY45dvS2mbVn8+fveWmZUeUsc+nRT6tQYiVKC7SLOuXmdV9iHvMOZhITDD/3O3MWLGXhpJO3sgTxIjbRGQ5G4nxGvV0UUqSJKUs5AUSJq5WuckXkiBqh+UtJWVnSLdyJ0hkrBTlDNk6C8u9yu2mIqF8+xmi3M52brmByfYKqlKSwb2CQaqG++2lfHiQ0mSSmsE+6gZ7qEgNSbb24RGSlNpRsdwYotzOF2LlHbHcwmrpJkKKHqPtKGeQGvqIGG3JcXRwHB3MMckVS0na7ldxYtTRwxy6PNHEyo2gfwE7WcBOSknyEsdRzqCd6R0kypYVnaspupMUpSygnaaKds+1SGyfTlk0QWKggtdelTCwAPu3zhayca+CuJKws4uQAXQcuECLK9du0w/AcdXaj2iMLkP0JCtcSxwZ3HUCnSYK0fq1khV8I17yAp6cI3bUo/a14k6TXCtaEi3fRc/RIn78bcjgM9LsFZkDHletQ7gS2VnPrjPglHCxTmI7NcVHUA7hPDPJNslT0YEQsmsQMnINDhlZghC2T+BoaOKIPqcSWJIUsnAQcZ1rlu+Vs/ugQ3HCvG32/UxS6gr7/JodGMJ6nl5gIV3MYZgytr64guOiHez4xclO/VY0PJDnug9DRtbKNWtf6wph2xz47vEj13t0vF24pO515rt1X1pcn77El8k2eX+1r3UIa1OrrUuyQ0jjaIhE3N4shMXqA1Ncx4k4EbX0IX++Fu+7Wx8iLaKbvLebjxgyciRAl45tKUIMATOzbJ9pyuSN0GUrRIhJwlhCJgaRjHyOkT6zGpy0yiIP2XUjLfiFkFJ3M06mdO8xMvslB0QA8/mHwzrUFGu22PjlA2xoQ32qWQZG1nzRZciMbVOKBee+QDV91Ef3UEOvTRgAKhikjh4GKaeWbo6jw046aIWtjZKw82gME7XD8FpRtKoYIErCtqSUkrSzlEfNDPGQq74qs6+lT4mlZH3ZcIJkqcwJJcrKKB8epGx4hOGyEqbtG5FLMg1SESg1uQ5LS5OUlSZIRaAiNUSq1PtPZeUGAexwxKWUMkSKerpMdK0K004Rolti91q6bR3IsB35SywfErZ40OhJyqg2YvxSUgwTpYNGm3gkiHIcL9FHjT0jPkg58+i0rUUpIsSJ2eGSrezynTSw4MznmEMXPdRTdUw/VVEJPLDg/2fv/8PcOs86f/x1RrJkaUa2bE1G9sTjjOMZ23Hj4DZuk4YG4kC2bGkhsM4WvOzyq+mSwkXhA/1A+cAaf1soC7vLsksJ0LK0BQylZltoKZTQupA2TajTmDh1Y884mXicsWcysjXWjGTJ0pzvH/dzP+c5R9LM+EeSSar7unRJOj+e85yjmXOe93Pf7/f7dV9nspynti1B7TOr4E0+vODBV/XkPRnUDiED66PIAHeDWT+CCB3cjszCf8gsf7/8rfEr++Aj8vfFnn2SNYFAPEFjaNghGO/H/8I+cdk+NGK5ARZcj5m2wfKeAmL6MNQxs92m3VE322n+31a0qN0/pANKBSUmG3O3wxdQp++DI+E+P4cUUXzCfL8ZAV7rkWxj1rwOI/LK9VggwXsWuAi573qeUjHDDXc/HeIi5SmzlePGZDMMvotkGWKUBjEm6OfmGw9z5Gu3B+2+GwFLUd8gzDkOI1mbSFZJr4Fcj6WpbL0YA+3W980DeF6zj4wNwwmhvjfIoo0hky36u42qLJwBqubvBIwXybtc5SzT7p3I36W33xwf5LqZY8T1/txeZbETnVgk/gL4mOd5Pw885Pt+AcDzvBzCxPtNWioutI8OIOlEJ17GuGYlUy3lHJeSndi3KIAItgnPsrUr0VrasZ2How0h+IbN3MwDdXdk2xvM+w6CEp0xj5vvfoJNjJGhxChDvIHHKNDLkHmCJ6iRZ5K6kc9tECNLkRQVklStMhVggEhAYJcSLckW9BjQ0cs0VZJM0E8fk2Y2eJYktZBBYYwGmYbJKtTrdE/NU81B99Q89dXQfa6CnwSvATAvA2sgXod4FRmw5iBenaebCn4MknM15lY1J7l1AKhGiyBlVAVyRilsjCJZGsSIUSdvgEiDmAUG0/RSIkOBHAOMM02OImsYYNwohpUZZ8CWkPUzwbTxJckzZQwYUwwyRoGcNcDLcp4TbCVLkV0c5gleS4Ka3bc4n6Xw6PVk7ihxw8ZRK538L8/cSXldgVx6muee3kbXm8Vra77QDfeZ0qGiAST/iBCv1YhsD0LOvg4ZjD9n/l7uNesziEz0RxBgy7BsO4iUBGopjRu6L/tEuhcC6elRZ8AcUsI6AKN7g0GjS35nr3Ffl8GrAJoDeMPBADL6vyeSwSPObDeEVJRGwLvbgH51ONc4Ys7tzeY6jSMiAIM+jHnwRQKJ5XjDgrquZJXMmhLVi0mya4v0UrD/Q/q39SyDVsRBvHL67GEnjcQ0wFPP7KLr+jm4HnF+/1kkI/McRto3KEHzvBF4wEx8jEZFLoL7TTMoePHKjtpN7gChbK8Azr3yO6mrugpyPGz23zMcZKcGkXJB3SZussGaSDTLXNUs70OaMRuOHD8AtdSd+3TkWSGfm1XKlnLe7ZZ1Igjfk4mlV1n8HIIhPgrEPc9TWckY8sT6I+DnL6fBDofERIdD0onlEkudsVqKl0i79q/1dnrsy1ediah2WT8FAq8E9zvIYPHBEfiyfE9sE6fom248wmt5ghgNtnPMqmHlKJAzGYwkNZu5yFJkij4LRqokrZ+I+n2oQzoE6lGuilaaspUA1jbTBohoaOYDgkyHNwP+avCmkFnoOHILn0Nm9WfMzvo5DnSbd7Otn4TaSkh2B8eau9hFKSkDPuWfFGNZK/cr0sKS8VFuzAT9FjAo+DrJZnooMWsMD8smR+J6mFTMeZdJh+SOxxi0g07ljowzwADjJKhRIEeRrM1cKdcEoDKfYn3XREiJSzNUk+U8tYsJUj1lZkbXkVh3ge1rj3HkYzKl3rNnmtmnewWUZAmUmr4FAR1HEU8S5ZC8zVy0WaTMazUyGDyIlAopEHkH+L8YcEjw/RA4kDgAe/bhf4LAeM6CDQJnbVVKgiblKJvRsBkAx/gw6jOyZ5/zv3GgiXdi1bvuI+y3AvL/owpjbzbvymEYAC6KV8+m/BgnT20VueUXgn17bp+mdjFBJltifdeEVYIbYNyWZmkpX5Ka5RYNMsYj3EGRLHViNIhz+pnN8LQHJXPddyGZmesIFNGUY6HXsimT2hwv5ax/qwkgnSBSk0sbjmmrP0JYRa2VstYwIb6MdzfB380ggWP9mNO+kRKO8kqiDuyLZc8v9/xf7ljOHJJbX+f5j3zp6tpY2b28OCQanuetQv5z82bRWeBx3/cvXHZbHUAi0QEknViucSXAILrf1RI7W9VoR8m2i/FOWm3f6qFpZS9dEusAMmMLwSDT1MB3vWaOW/JH2cxJSmTYxWFbuz7AeEjCV3YvAhh38fM2IwJSWuWSb0WmV8pgG8SokXBczmft4EvJ6eKGniR/oSCZDaCeFCDizRFI1HYDCkbmzPeAyy7gBLN+pfkeD9b5fdKe3w1eLtht7mIX8YaAn1K6x56nnpOCLpUGVmChpHf1Dcly3hL2NUYZsn4pKcqcoZ+EOWdXCnmUzQwwTokMayImeNPk+Mb8dm7tetxmpADOmPVVkgwwzkkjD1wup8mnJ20ZWmU+xfkXsuLe/iVPHoMmm8RKSKy7QO3RVfTcJQB09n/3yoz7zebv5zQCQErIcsy6EkL2HjPL1GDOmPCFfEh2+45TNjJzrzwHNbRT0Nwk7euWG9F6uc6M23D+L0xZTwjcWDK0aWfPviADoiADgv+fm811+BaCvzljji4lb3X4TBy2QWKngH2Knr3GuW3Pk+sqkDB/C1s5QS/TVgI7S5EEVSsX/awBJGso8s98GzHqjE8OkM5UmD3SK309TVBa9xSB7DKEQVuT6/niYh4vVrS6l4WXtQaLuq6tkEeTv4hjbFlvtW0rE9lWsuku4T0AKK3Oqx2YWc6xnAHJ6271/IcfuTrKds/K+WV7ftcqOoDERAeQfHPGSzW781LOIjVlHRYgcLbTp9d2rhbELJY1sQ9bt7TFNQ27E6mx/ui+YKZ3D3Aacj/0POdfyPLa/BF2csSUH01ZULGDJ2kQt6RaIGR8mKFEmVTIcTzDLCV67DIFJRAYHaq7uhDdq6ZeXkZ2qWqQHVEeCCADvQYCPurmpSBkDqyYlQ4QlRrigBB6zHZ1ZDZf1/UHh5m7GDz0ktV5SqtSxBoNyjHJbkySt8aLRdZYZa8c05xgqwUI4slSp0TGGj6mjX+JZC8mKJOyLu/g+rXULFArk2aKPuPu3ksv0xa8PMsmSvTYbIjbhhxX1MCOl7dyR/oRHqu9gdL5DPEVDbJri0w9MyDlRE+ZCzGNAJSVpuwIrCIXFz2Zed+FDHDHzPUEeJ9530mTSaKUPYF/yFHZco0RD5m/23vN909h3c/933NKZ+5E/qZdsKH+OQNG2StUKnMg4E3sRDIvoayMozJ3KFJi45rquSVnO83725D/pZuRwf/NZt1FRBSgaLbbUIfROImdF+hbG5hvahZLTTcHGaNGggHGLfBXIQc1QQQx3RxliAYxTnz2Fvm9NiDZmkNyvS0ghCCbYM0DiRhBLm3y5cW49y6W8W0lKOK9CwGpOskyhvzdfIqw8eGgAk7nd7WKbYF4gb1POmX6mmVWANRuEmipE1BLLf1dDtEBJC99GHnfB2g2RnwE+H3f91sVvLZvrwNIJDqApBNXGldyw17KYP1qHgKtSOPtshmLAZCgry2I6Av0uRWvJdyXFmRPZ3bQ9/fJQxyEM6JlTHugZ9s0ufQ0aSrs4jA5CqQpM8C4Uc9qOGaHdXtcLS9xTQ619CrWEMBRjknWQABLUI5l1bUaJWL1OqVkhky1FMjvvjArs+9VBDDMmYNGQcgMAk6SZls3+6HZkmiGBGf7pNm/GzgGfK/zI5wA32RMvDm40J+gEYsRazQoxGSFAqsCaq6Yt8BEB48ByIhbud4ktRAfwDVGTFPmKDsA6GfCZqGeZZA0Fabos2T6Ar3kmGacjbYfyl1xszk9lEhT4fH5W+npKlkTyxPHbuHW7V/micmdxFc0SPUICJz55LrAEPM0ohIFduDb9Zo55j/XLYPxtwJ/bNYfQQbkBURp6iDB4Phe+eyPRgCJhlMy418iGHQC7B5uCTSCcJzTIQAQAIfcGfRICaNuO+Z8HnXKfLSsB4Ra+qDhXyjvKoMAgP3I0GElUg6VAUpw8y98lWOT25k/2c3qXWeZ+eQ6Nr/96wD2/+X0qUHu2viPVtRhDUUSphxSgHydNBVbrgVCan+WQc6c66d+KSYqaV9F/h9GCMwXte9jdlcnwxA2gbwaBa1rPdB273f6PQSkQP6eDu4PgVEOOWV80Jx9e3AkDMpMuV4TQDHH8S8Fxw4yNc42wFIzJFcSLxeAWc6A5LW7uvx/emzF4hsuEKvjtWV1fp7nvQn4O0Qq5B8IGyPeg8hk/Fvf97+81DZffTSbTnSiE534Zol/iHy/Bfg3SBbpjS99dzrRiU50ohPNEVVEfBXE/wT+2Pf9n2610vO83zHbvH6pDXYyJCY6GZJOLPdoru0Noq3aS5NBV+ssx1JmtZaW5m+eeWvV7yAr4koJ7w3KtJS4eT9Bzbsa4GV93njjF613SI4CWzlueSMpyiYz0qCX6ZAniHok9FCyviKANSZMUiNzocLkqpzlWihJXTMosXqdZHWeRhySM0Iu92YIsh0QENFBMhnnzPuEWa7ZE816uFkR3QezTMu41pr9cgTZll8G/rrND5IF/1649B/h0h0etZUrbRlaiR5r8qglVlWSoZIpzSwV6LX+KmMMhng2Wq5WJ2Z5IClT2qUEZ1EhW29NFCukbRZLOStqyLiVE5TI8Ej5DnakjzJFHzkKTNBPjQTlcppyKUU6UyGdLjP1yEZW7xLTkcpsWmbe59LwYU84E0PO9fhtpCQri2RRtGQriWQHPoOUD73ZXNc/QpS3toH/YCRDMma+3AsOPUnikENSH8OZqXa4UeCY/DXzI0JkaOWzuHyQh52sgcu3Gt0PD+yTbMhzyPvnkFn3j5r2eglI0Vo2tQ7JlmSRbMUb63Qlq8RXNKjNpunbKBmsqWMbuXn7V9nKCYpkrb9PkSzbOWZL9TTr9gh32GxZgzgn2cz0ZI75ahK+GJeM4iFzDd9s+vwQLUq3AqL/YgpPS82QXItoz5sLZ3Jgr2RBHkYyHQ/sM6T9vQEp3fW3acc5smaXI057zn6uGaeJpXJsFrq/vxKkgZdzhmTnrpj/j4fTi2+4QFznzS6r8/M8rwLs9H3/eJv124AnfN9PLbnNDiCR6ACSTrxccTn1uu0kFzWW+sBY6IG1EPlc9g1UXxbrl1vq1XqbgPhpBx6qTnQvUvO/Hlb/wFm7z0BinE2MsYXjVl43zxRDjFrjQfFEmLRqTi6oaMTEFSR3bpbxtX0hXxCAeqyLWjJJ5kJFQIcBD9VuSFwEryFE9fgcAhAUfMya9yoBBwQw9AgBEBcRcLLWvK826y4SgJAqAZiJmW20TeWddDvbTwB/D3wWaPlogPkhqP8nj9kfSzF/fRd1YrbkSkFBiR7Sjo+VlldN0keDOEmqpChzgq1W0lhEjjPWkwSgl2nOkyVNhaPssLydAjkLStSpPjiWXPtjbLeO9EWy9HOGY2ynnwmrbDbGIAlqFMtZZg/2BqBjHJGB7qmT6ClTe3qVSKVuQMqSisiA+4eBjxPIAqtD+RGEU/ECASn8YaSm3y3Z2u0HilUHzcDwkEq67g9UobS+X0nmEKhvYdpW9ahWg0ot+THqW74/LA7yEJSUDRJIw4L8z1xntnlwBP52GL6E/A1lzPLfBn4FASZZ5G/vaeC7fBLZErXZNEzHZfk48HpZDjC4dsyWQg4wTow6cRoWmEzQzyPcwQ6OWmnpw8YsqFjOAjD76V54vS+iBK7CmXJ8fjHCtQmRwl21qJef5xC+X0aAg1uSp1w4x5U95MDulmS55X3G18b+Ld6LlO2Zvxv9O7GlsZGyMbefGpfDJbmca3At48rKoJcvIPmWXXH/c4eXbFjeMtZ7M8vq/DzPewZ4v+/7/6fN+h8H/j/f929ccpsdQCLRASSduJxYKvm7HcHySgnj7ZcvzO94MSKqFLMYgT68b7Qe3HxWgvBuZAZ7Fvgun9zgBHd2ie7nGINs5xg3cYwhTpKhRIIqaSohZ+hYo0EtliBTnqWaFLWo9JwMfGN1kcwFARm1lVBNJkjPiemgfgasWhYQcEEmCGR4Neuhill14EJkHwiyIhoxhAuioGOOgC9y0dlO2wboM9sph0SXK2gZR4DJ3wDPR686+F1w8d8mmL0/Re27YzTicSboJ0nVKm1BwJeJUadI1nJqpg0xQ7crk7JgRQnxRdbQyzTT9DLBevLGA0WzKDpjriaJmkkB8T9JUqVMmiJZtnKcx7iNjKG/f2N+O+u7Jjgz30+qq8LpZzbzhhvl7+LIuZ1sXnuS45NbmK8mSfSUJWPyfLchbPvw3zzJtF1EBup67SCQm4Vglv53gKciGZLdzjNT6/11lvte00Z0lv9eAhDhDDxDRqMOYTv8v2QGqFGewdBwQFT/FAGx/ghSwa1ZkizhjNCjiPngBkRR68/jQVHFOujKzTH/fDerbz5LJjFLL9P2t20QZzvHGGeANGW2cJy0kc2eMKprvUxzmF1kKPEEOy3IbRBj7NygqHZ9yVzPjyCZrIcI+BTx4WCQDk3X5OWapV/Kvdd60hza37RdyKH9gWF4cL8loUMYVHAngReLyYQEfLxWmRONAy2v02Kk/2gs50xIu+gAkpc2PM97F1KS9X+Q/+Aoh+RHgJ/xff/3l9xmB5BIdABJJ64kroSUfjlgxo2lKMcsNe3uEh1bK9WESbWLkdlb9c9d1i7lHwIy6lQ8gAyY3iRfc98lMqN38AgAeSbJUSBL0c7S5pminwnqxKiRJF+eIjkjTufxOWzGwY+B5xDJ/aSQv1kJFAI5XSAAB7PmXYGJS1J32kZlfTVT4pZlNQiAibtuFQJeVhEQ1vW4BP20oCSODKZXOt810bASGVzHgHngK8Dfgv+34JVoinp/Fxd+vJvZd6YobxAVLh14qieJllwBxKgb1SQh+ueZtAAFsKCiTJoSGabos+Vdmg1R/4kxBi1wnKA/lC1RR/jHuI00ZatqViRrxQvGGaB4Lkv9UozMGjm5Rj1OLF5n5vA6AR8gcrVZH/7eC2RvXyCsPqXKWlWCbJbGemAW/J90AMkDzjPzBQIAch/wgagUr1OKaMIOLO8z+6pksOvUHVLlcrKIg067Q/sCR+8HhoP+aOx2PpfAaA4ECmMqmay3gmHzeYdI+xbG+rnpxiNM1NZzW+JfAPmNU8aZfRNjlEkzxKjNgGUpUiXBLBlOMUCDOMdqNwEw86vrBAwWgQcj1+1RHJ+RSMYgAtTs7/Ayqz+1K0UNvjsARCOUCSHsPRN3zmXQOdCouR6DBNmwJp+RIJoz3WHge62u2XIr41rugOSzh7NX1cYGr7Dszs/zvLcjlqa3EjyJGsDjwP/wff8vL6u9DiCR6ACSTlxptAMYV/rAXGzw3u74rVS02pd3OY7ObTglwfqlloG1Ls3SOndbhgIhQzfqjvPy0DC8w2zzg3Vu3fgYfUzSS4E+MwGj4KOPSfJMkaAqmZFqiUY8Tmamhlc1YKNKMICHwIDQVbaKhkr0Jgm8QiCc4YhmQmYIMiRE1rlAQvsAAQABARIFgqyLG1qmFUMGkqsIq3Qp/0T3VeCzWr77K2H+76DrY+C1MOfyY1D+niSzP5Xi/O5V4HnUzABTTkVARIx6SHWrRtJmOI6x3ZpPgvBO1HiyTsxKxKYpM02vLfWZJE+DWEhaOUuRAjkm6KefCUYZokaC4nyWO7se5lPHfoDN27/OAON88dR3snqdHDebKDI+OcCa64qUihkp2cpCz+A05VKK+S92S9nSNh/OesHfhHpefA5R2QL4VwTAPAq8AP5BB5Ds8YMSrF8BftgMPh+I/B99iKDWf5xgMHmns40t1zIyvqP7A9NDjTsJeC0aLoDRzIJmTD5FUObzy4hz/bdA113yxzn/fLeAgnXAYeh685w4pd9cZ8PGMU5/YUgUyebS3HTjEbIUqRj1tQHGGWeAHRy1wFFL+QCmyAtYNKWSFVIc+ZoYV9Jr/jCfigt3RcGflmiN6bWAdopQrQb+LwVPZKGJFHcSx/Z79z4nS2LutY4bu8pJk6NZ9tc1RnSc5kOyz5pFCmWYIapaaPvWopRrKbySy4mXHyAuX0Byy64V/mcOr72qNm7wppbt+XmetwJH19D3WxUOLqGdDiCR6ACSV3+83HXGl7O9G0stVVhKRmWp5MYowTY8INhr9l2YQxLuU6Q8JXRuZoY3i5SRDALrRNp3R/oo/Uywg6OWB5KlyBCj5BBztv7GGRqxGJkLFcmGXCQcPQSSwRoxZEDqggzdT7MZ3Qgg0XmfOWed8kdiCChw5XsV8OgxXTAU7ZtmPyDghFyMLNPsiIISNzvikuF1fy1BcjMuCnzOAH8G8x+HLk2wO1HdHmfm3T2M/1A/8+kuktRsSZcCign6yVGgSNbyQUpkbBlXjQTrmWDKgA0IsibKIZmijwHGqRNjyhr8SnakQK+VEXY5Qep/ok7vJZNjmZ4U4JRZU6J0PsN8NUlXsirE6VnhQiQGL1A7u0oOchjJYmnG5KtIJkS9OTROIwP3VoBEsw8HkUFlgYBHApJt+C2Em/KLI4Fkr1uKpOINO5F19yNEZ/UXURK7yx0YNMcdddp5v1n2ObPP7wDvRoD9DmTwP0vAe1ES/k5sJmf1951l5nQe4g1Wr5tmKHGSKgkaxMkzGeIMbecYcVPet5mT1kS0RIYCOcYZsIaimjUB+JePf5sMuu9BuDrvI2za+DRWzKKdpK0rCd4uriR7vFAsBEj0c6jklEj5FQSTLsMEv52C1Wh5V0ikwCkJHI0CkIDo7x436sQOzQDuckBIO17KcovlDEh27Er4f3O4d/ENF4gbvTOjiATEp33f//Q16dgyiw4gMdEBJJ14KePKSHtL8wFZSNVqIXBzLbI7rfrSpB4EwfcVwHvMom1AL6z+TqldzzPJbTzGAOP0MWXNDRWM1Egw9MJp5lZ10T01HwzYGwSD+jrhEijNfmDWuRkKzWq44MVVy9IMSIGgfEuNDWMEHBAFLG6JVsRpPURaVz6Ill+5nBFdp8dY7ZyPW6rV7ezrZkhw9jfjfj8G5YRH4q99vA97xL/Y/Ay4tDbGzE9088xPDXJp/Qq7vEyKNBUm6SNJjRIZ0pQ5zlb7+5TI0CBmifNVEuSZsqVZ+tu5ymZPGDJELwUmyVMkyxCjjDJEmrIdEGvmpUbCZm5OzG+R4xYzZLIlcl0Clqq1BDNne0kYn5La2VXwaYQv4f5NrPPhFzwpPNCyocMIqCgCHwK/7gASTgTZkA+Zhe9ByrWGhoOMxZ7hZs8JHXhDeCC6e58FNv4XHC7CwwRAxS3Z2kmYeP87yFDloDnuMLAHuq6fY/4jBqkqT+Q08Cbzm8cb8JU4PW+bZnaslw3bRymWsyRXVrm163ELNhRYDjBOkio5CpRJ2xIu/VuYMEprZVJ86ZF72HDHKKePGdWBLxL0/0vAJwiAlw687cx/c+b2Ws/oX060GuS7kyz23maU00LGhg8MB2V5e/bJb6QAw5ZiBdkPexz9vUeDSaAgq7w/8u5kT6JO7UYcoVVGZ6Hs+HIpxVpqLHdA8snD+cU3XCCGvdPL9vxaheGY5Hzff9+iG+s+HUAi0QEk37xxrUurrkX7S5uVo+n4SyGXL1aCEI7wQ3eh/rRS4mpLsnTVZbQkBWAGcu9/nrd0fZYGMXZyhBwFMpTYaiSkshTJVacpJTOse9aghwsEpoPK2YBAvcoFIauRAbqbiQDJhnQjgEPJ5i7f4yJBNkQ/47Tl7uMqbbmqWZp5ccGK+x0CgKGh612ggjmPBgH/RPkjeq5a4qXqXPHg5cdgcu1qMtUStWdWEv+gT/dHK3TNEor5hEfxhzI8/548F7atIkaDKWOOmKLMSeO8nTASwoBV0KqSMPpmaTuozTFt3bvFiDFtS8FAyPJKkG8Qt3yRAcb5Z+5kF49zks2sZ4KTDDHIGMfYDmCJ9KVaDwOJcTH3+7q5kE8DdyEAYyUicau+whcRyd8N5nsJASQPIOVOxQip/aO+kLHBqnBZt/X7zHLlhkCzNLDyS1zgAgHp3SpvmYGoghw9FgQckvsQ3sduBGhAoFj1NnPeI+ZcNLJm2QCs3nWW0nmR31pzXZHC6Tw3bTxKjQSbOck/Tn4H35Z/2KqgbecYZVL0mgyZ8oum6CNDicPssiV307WcZKzmjNzpJzwpIXuPOf4RHKf5IBaaTLkWcTmE76Z926pYudkLDYc7dC+BApsLJlQaGiIqWxHlQY1Qiev+0DIIQFzr+3HrzNKVlOcux+gAkuUVnuc9DQz7vr9kA5ar87J/CcLzvHd5nves53kXPc973PO8OxfY9vs9z/sHz/Ne8Dyv5HneY57nfc9L2d9OdKITnXglReOmLs7/boYXTq/i/G/3UN8UPBa6aj5r/88Fdtw0wrbvO0n3V8svY0870YlOdOKVFz4edZM1vtLXKy183992OWAElnmGxDD4/xR4F5LkfRfwo8B23/dPtdj+d5Aq6S8gKv//AfgvwF2+7z8c3d6NToakE0uNpcyoLVWed6nckNZSjq1nxVxllWg7sn2zpGhLbX8n1R9tQ7dZuN+tCJlBOYE1f/sdsyontezfk/i0VWAaYJxbeZw0ZXJmmjlNmTUvVGRmew7JimipVNRcULMZmqFwOR7K+9CSJuWUXHTWzRDOrtTN9yiJXWfANQvhZlD0mEnns8sr0WyIZkG0fMxdr1wVN6PSTcAP0TbrkfZudPq9Epu1qeegEYdSusdmLzSTQcMn/ql5Mv+9QvorruaxxPQ9azj1K/2cvvN6yyGZoN+WbBXIWR8SNcoDbHlXghplUsySoUyaBFVKxiRDsyIxGhxnC3EapCgzRZ4cBWLUjQ9KhRI9DDDO48bnIkeB8fIAyZVV1ndN8NTXXi8KWxc96BGjPxBSd9f1c0H2RDMLu5CyIs2QaMnW7eD/sJMhGfKFzA6SKcmB/wmCkp2dZp3ySlQ9aZCwupdbiqOkbggbKaqB3p59gSQxBFkO7fd6hJOhfJJ/Bd5qPq9E+DGD5vtngG8355f1RYL3Ztj8uq9z8threOP2Q9bzpUQPd/CI9axxTUY1k3WSIfqZoEGMEhkmyXPk3E6R9/2qF/wfqNzwpxE+zHvM9X2akBeL7w+HvTWc7MPLraqlfbD3WjfT26R85WQ6lC+kWTH1pzno3BdVpGDUcEs0IzYWvRZm+1ApbJAtUc+WK1Eku9L9lkMs5wzJa3at9P/y8IbFN1wgbvZOLtvzu1ax3AHJY8CTvu/f7ywbAQ76vv/eJbbxL8DDvu//3ELbdQBJJ5YSi/EwotsttU1YXDa33XF1YB81yVqo7XZ9W0j6t62CSxvypH4P1V+70pZK3PwVYAPcfPdX2cQY65ngFo4So0E/EwwwzoAdxUHvC7OB4nmDQGZXB/RR3xC3/Gklsq8O3qHZYV3Bii53S7ZU5rdqto05y5LOPlq+pcd0FbbckrLVZp3yPSBcwpUz7a8l4MbkCIMQVxJYwZW24/ZBCe6OGld1tXiulGIZK9sL4hkxTS9rv3Sedb85zapPu+x/ifO7V/H1X93C1LddR5E1VnRAydDKO9B2z5Ol13APJlgf8i8psgaACqkQQEpQtWVfRbKUSbOdYxxnC0XWWJK8HmczJ3ls8g1SfvTo9bBBlKNqJJh6ZCOmqkwAhxLYsz487UkJ11PIlNYgMqh/E/CZSMnWA36gzLUTKT3aiQCD55B170BI5kp418HlfQSlYe82y3aa759CBq7bEFNDF9xchwzmP2K+a7vj5liDCKB5PVZVyxohjgF3ib8ICCC7+XVf5alndvHGG7/IV07dyZaNxyjM50h1ieFhnkkrYtAgxnaO2d9Q/X4mWG+V1lT4YJocTz2zS0DgReDDpt+Yvj+MAJHfwpQxteY+hEpH2wyyIRj4v1QeTPYeVo/cD600seMZo8aF9yF/I45krwUpCsQcOWALdAYJg1a7zd4WoC3MbYkKkixWctvyPHlllXAtd0Dy54dvuKo2vsU7sezOz/M8D/hO4A6CItizwJeBz/uXCTCWLSDxPC8BlIEf9H3/E87yDwI3+77/7Uts5xvAn/m+//6FtusAkk60isvJYFztNkvZdjE1q6WS2oNonmVrL2fpGhk2Dxzsg5TFJSYt0fc+6PllkWXdlX+c23iMQcbIMc1GxhlkTFzXja8IIAPxc4QzIjMEErhVAmlcnH0gACuacVDAMkGQgdBshx7PNTmcddpQ4OFmIJQE73I9XACiobwOCIMpBRUu6T1OAKAUwCgoUbDj8mT02N3OsV3SvPqV1EUaubQ6MIEsdxsvkZgYHqqXyIqnLtH7gRl6/+Ic3nz4VKa/Yw1H37+V+u3SafUqyXLeKmsd5RZ6maZEhhwFq8qlIEbDlQGO0aBKwnqQZCiFFJ2UVK2ZmQn6bQbmWFl4JbNP97LhdUKs7tt+iuK5LImVNWbP5mDMgIxBX/xKnkJAxUpfZIGzwFHgOvC/wwEkv+EHErz3IzP8tyMk7Z3OyXyKICsxhgw8f2NYgAoEhHUFN6o4dTtB5gACaVgVfwABNacJgGzGHOsowUD3B+vwxTjsEunj2bNGZssoac2MroOz0PWaOW7JH6VKkgHGOc4WdvG4FQ5wJbezFI0De9xyhiboN74kz/Jl7mANRUbLQyK1/LluMJx2/tS8P0Qw0N4zbLNLC3llXEvBjasNzxOhAv8Lzn1tBYESGjgKWo6iFgfkvnfIyQRpxkO5dBBkUNSjxPUuGdoXdniPEti9kTbZmssHFy/3db7c6ACSlzY8z7seybfeAnyDsDHiTQgM/x7f959fapvtlPiXQ/Qij8+oOOUkgsgWDc/zfhK5df9Jm/XvBN4JsHHjxivuaCdevbGUG/JSZHTbA4woGbLZfbeVZG/r9vYS0qqnOcPSHAdabu8eO7w8OFcLPpag2qLbhB6cHxyGHMyezXHXjZ8jR4F+JsgzyRaOk6FEliKxRoPkBAFQ0NIjzVi4JVAuSFFlqm6CDIUr4avAQsuyNOuh67R8ywUz1ch3N0PiJhFmnT7pPgoOkpHlDtnc9kf3VYCl6+fM/hedc9IsjpsdwTmOlpDp4FX3M99XTdSY6+uiEY/TiGlWI2nL5GokKN+cZurP1jC1fw29v16k72MFPAOAej9/nt2ff5SJt+Z56te2EbulYcDDGpImw9HLNCkqVgpWy+9qJJgkbz1MlDANMG5G6CUyDCJZDs2S9DNhQY0qO2UokaBGhRTptAE626YplrPcsP1p1lBkala2pejZa5zIlqh3x5gf6RYgsKEB43FZfx1BSZfGLxMADc2yPIpk+j5ivh8yA1IjY2sHqDMESl53Eji610dgzPzvvBlbKsYnkIzJvZE+HEKI6qcJjDvHkNKtIwih/XQc3uSTyJaYHeslsU6Qdf1SjHxiipmL67jp7icokLPAcYL1vJYjFMjRz4RDWhdCbpIaDeI2K6XXfZwBTjFAmgolMsyO9Up/zjj9A8n87BmGMckU+J9ovq95K5rvV+0+a7xYg+doptfNPHiegAZ7z/3UsCM6QAA8LoHnIVmRh7HleVZJjQNQ3wuHHHnjQQM8PCLgwhzX9mmvXa5t+Zf2ofdp39/X0tNkKfFKAiPLPXy8kPnrqyR+D7lT3eD7fugu6XneBuBjwAdpvnu1jeWcIekHnge+3ff9f3aW/xfgP/i+v3WR/f8dAkTevhTN5k6GpBNLictSZLnMNPnltB9Vw1pIaatV2ZfLHXHLHqKeI+14MBLNs3NhfoyTWRkaDpSBQEpXtgFv8rnpxiMMMM5tPMYOjpLlPP2cIUuR/nMFcU5XrgiEeSI6WJ8hUM+CwAHd5V5AUJIVLctSronuP+Us14G9m5XR7IiWabn9crMbEJRVueG6rK90lun+bobF9RHRz5oNgqA0S4/jckg0M6JZFV1v+C9+H3hVKd0qp1NUTXmVllOpf0jMnFyNJFUSJJ+pcf2vTbL2ozMWmAD4Hpz+ofU8+b7tVG9IUGSNcViftkpaDWIUyNHHFFP0USJjj+vOwOeYNp4WMhufZ9KClCxFjrOVHNOsMT4X58lygq1USVKZT1G9mCSbLjJ1TlTBNq89SY0EJ7/2Gm543dOWFzH18Y2BitV6JDPxVgIwMQj+D0QyJK7r+Wlk2uspAoCij2eVAt6JAIV7nN/1wRGRhFVQotmSnQTlWGMEYOY/E4DyHPAHBOVQ28xvOoBkdi4ipWhf9cjd9zyFv78ebpbf8KaNR0lS5cgjt7PljidJUGW8NsCOxFGS1BhngO0cI0aDNGUGGaNsjBG1FE/L8tQP5vH5W4l1NUhQE5nfi+ZcBhGvFgjLFN9LmD9B88TOQuWm1wqAXG42OpwtNrFnWIDrgxEZ50POtq45pmZXhgl+3/hws4LaGIRc3a3Z4t5QFsQthQ2X67ZX3nollmQtFss5Q3LTrpT/scNDi2+4QLzBe2pZnZ/nebPAm3zfP9Jm/WsRukTPkttcxoDkiku2PM/bg6Cz/+T7/sF227nRASSduBwZX42lAo7LIRVqu+0yI0vppzvb6JpltTtOtA7bgpZo3XK0RKvNtWgidUbqpHlgH1375hjIj/OtPALAv+Fz9FJggHEBIxemiFeBZwiDEAhkfjXD4JZgKUCJR76DDNp1UDfn7KNZBheIuOVg0Do74krsuuDFzXhEeSy6Puls44KQVsuV7I6zjQtkdN8ep4+rCUCRApEcYfL8DPhrwZuRfS+sFWAQq9epJIXkPkkfFdKsZ4JxMwseo06NJJdGVrDuV6fp//NJPOdR0kh4jL17gGd/aYDJ7DrGGaCPKWLUqZAmQY0p+oyfRcrOwGcoWcnfMQZtJkRd4/uYokzKGvPJ5ZWT/Gz5u9maPm5BTZk0E7X1zDy1TgbnYx59d59i6lS/GCeeND+KXsesz4YbT3L6l4aEg1FABvpfBf8XHUDyF07J1j0IeDmK8FKuA25AuCRZs82jBLyQvxgWIKHhkt7fY7ZVKeBPISAlSyDtq0+zbQTg53aCrNe46cNXgfvkB1m9YVLkdx835zsIiXUXSPWUSSZqbOcYJTKkKLOJMUYZMhmtMkOctOVxsuuzzJIhRYWHuZMqCcYZoFDuJRavWwnh+a93S1+zCA8H4LsNsNqGkxkKi2u0msG/komdax1N9097Xw1KqRiNlLmqnPNBJwtuSlX9EQNIdhJwh9S4MsSrwXqWBMaK7Sej5NgBwd3lpbzaY3kDkrT/x4cXnENfNN7oHVlW5+d53gvIhP8X2qz/DuAvfN+/rtX6lvssV0ACYEjt/+r7/judZSeAv2pHavc8798DHwV+2Pf9v1zqsTqApBMLhVsKtVCtc3if9pyMa03CDMBKM/k8DCYkW+GPuPs2128vtY/tCe2Bk3CT0RfA70DPXdN8X/qTlElzJ//MVk6QocRmRum9ICggPkFQEqXAQMuT3DIoXb4KARVuaFmXxjlnuXJPlBuiZVuqkqXZBWjOhEQ5Ki4YgQCEuEDFzXQoJ8RVwHIzHBoKRNx1bjtajpVEBjUu+Oqm+Vq52ynYSYrylkY12UUtmbTkciA0S64+IjEaJKmSebLEml8qkfvbGdy4mEvw7P9vgK+/cxsX4qupkSBLkUnjZVIiwxqKnDejd1XmShijvQI5MpRoELN+I1mKlk9SJs20GcmlqVj+SYIaYwwywDgPn7uTLWuPk6TG46dug9NxenZOU7so4Kt2ZJXwSP7eE68SwxshixQk/CP4H3AAyQedZ+ZOZMZffT8eBV4w64YR8vYggV+I60eSc76/GeGWbEMAzecQoDGC8FpmzGd9tGcR0DSG8EfuQv4OnjLreyFxu5Ro1Z5eBRdh9ZvOApBM1EhQI8t54jR4tjbIbYl/oUzKZptAwF+W87Z8T3+vKklrbKkZqwn6Of3MZlHVGkBKlj5troHea1R1DCw/Yqn30sXixQYo9h45jO23HjeYuBkJfEcGzY7qs7J7n/y2L2AI7pGsCNh7suvmHoCeIIMtERjLusDocrmH1yKWC9dkOQOSbbu6/T86fNNVtfEm7/FldX6e5/1v4PuAnwce8n2/YJbnkKma3wQ+6fv+u5fa5nL3IfkfwI94nvcOz/NuMrK+/cDvA3ie9zHP8z6mG3ue9wPAnwG/CPyz53nrzGvty9H5Trw6Qm64w/al4Q7A9RXeZ18Td0LigN1mKceOfm51rIXke8N9ltIpt41W59QOjLTqs9YpR49pr88Ks829wF/Lq+8tp8imZSb7Dh5hiJO2PGTd+AzxKsRPEQy8Z5ABewxRnNKBtFtqFUMyJ255lHJBLpjXOQK39YJpd8YsnzLLXDnhglk+RQBWdPtZghIw3UdfdWdbt0SsQQBkup1lCnrcPms7mslx++Uu0+tQJXCRd00b3QzQRWd5N0F2YCXEqwJEqkl5LCSqVapmMJqgSoM4vRTI2kKsImnKVEkyfUsvX//MVv71n7Zx4Q1Bhn5locZNP3mS79j5MNs+f9wChX7O0GsMLxPUWGPajFFnkrzlKOQoMEE/VZLs5IiVnR1ngPNk6WPSlBHFyTNJwtDgT7KZIlnGGSC7tkiSGqO1zeQ2TNKzU0QU6pdi1C/F6HrNHF3dZTa8a1TAiCl7SgxeEN2YtxKO08jA/yngW0dESaqADMBfQIBJAeF/3I84wD9KuNzKVd/KIQBEheQOm2UKRkAA5y7T/gsE4OROJCu20qfr+jkhkN9lyuvGVpFYWYOVkNh5gXi8QTzeoHguS40EWznBaHmIgcQ4U/SRZ4o6MTKUWM8EGUokqbGV4yEvhDRlW4anAgPFclb6WQA21OV/4wHTz4Mj8gqE8ozilFsuGi4lWija3oNepNBJHs/bH4CGu5VD52SRd7e4Z44jEzGHRsQo8+B+UUUDATCjIwIqR/fj3UdgrDkkYCXIdhgwsnuY4Pkx4gCavcBey0tRft9LUZq1HMBIJ16W+DnkrvdRYMrzvJrneTXkaflRhPD+85fT4LLOkAAY+/n/F6nufQr4WeWUeJ73RQDf9+9yvrcq5fon3aZddDIknWgVV8ITeTG2XYzYvljplCv9uBD5XAmQrfqiviTtjwNu6UUQhkPys9iyhBve/jTfx6dIUmUzJ9nFYSnTKp8hVjdgBILMiEvYVv6Eqm1F+SLK75hx9nGzK5r9UEd2/a6ZFXVdNwP5Sy5RHFgRh8pFSK2U93hcll2qy7sl0UcrZ5W7oSVTrlSv6/IeLd+CwHFd17k+Jtq2y0fRZbp9Hbn2Fwk7wZuyLc2w1E02Jj4nClwAhbU9toyqRA8ZZinRQ5wG5436VUU9TICG38XKv7zE4C+eJjUW9jEZ/3f9PPE/bqa+MUaBXhJUKZKlQC8AOaZtlkRJ6zkjFazckyJZpuklzyRFsqxnAoAz9DNNL0mDxo6xne0cY5QhKvMpcl0Fxs4Nkl1bZOpUP30bZb+pYxvp235KZIGBrs1zog61AclEPBXxIfm6H3iGjCGlSbcjoOPNyJNqFiGeH3TKr+41+yjIWA/88H7xGgEpwTpNUC7Wg/BZvhMpwVIlLRCvlB0EWREtT18npWm5u56ncDoPo3EYqkM9xs03yvPtqWOvJ7HuAm9Y+xizRvVMgcUAp0hTIUHVAhK3ZG4HRznGdiPd3E+FFE9O7qA/f4bTpwbhz+PSz5Lpz4y5LvLjBipUgzRlAdrzRq59RrldLFRyKxHN/DoqWRD8xq4ruynnsvvcTSBs4EoFaxsqhz4azna79+62vL8VzTySdrK/1+K6LKdY7hmSPzx88+IbLhDf7v3Lsjw/z/NWAbcSlv193Pf9C+33ah3LWWULAN/3fw9h87dad9dC3zvRiU50ohMvcXgeL7w9x9T39rLpt0/R/+uTxGdFK3jgryZY/9lJnv6VzTz2c2twrE860YlOdOJVGa9SlS0ADPA4dC3aWu4lW53oxEsS0TKAdgov0W3DcoxhMmKr7dsdO9hWlVFaeHy0kM/V/d3yMDdk2YHQtlp+EO2f78uMnpxLi2Nfwh4n2j/dzveHZdbT7efQsFSUDsKWtz/Jlrc/yS0cJU2ZnRwhzyQxRCo2VpeyIboJuBOaQdBQh/Q40Ec4c6LrLkbe3dc5xHfkAjITrd8vmu+mLOrSDFw4B6W54FWpwrkZeb8wB5ca8rlyEequ3LDrT6IvzcS4hovu94aznUaUt6KlX1qKFSOQAY5KD0PAjYk7bbhywQWzv5EvjtXl5SehtlJeAHGjuJSlSIOYmUWvkaZiSepSLiVlXhlK1FauYOy9A3z++Js4+x97bZfilQY3/9IJ9uz8NP3/fJYMswwyxiBj9FJwDBaT1I0fSYw6ZVKUyLCeCXqZJkOJPqY4yi0c5Ram6aXXyAdXSXInD1M3pn7ruyZk1j9bIkWZnt4i1VqCai1Bz+A0xXNZujbPBRmmXuTzCGHZWpCsyErz6gH2INmU2xEyey+SNRkG3jssGZF7zb67kBKvDwM/PCJu3TcQEOA3EBDmMcd/M5INOQRMm9c/CTGdrA+9ktVJbLtAz7oCrITzL0iDPbdP05WscsONx6mRpEaSnsFp+tZO0SDOIGM0iJFnUn4zwwtqECduDCpjNOzv43JGepnmyckdzJ/sFvPL03HJfOSQsrPnzDk8bF4Hzf2ibsqUhobN/cblv+11PktEsyNLKetqF+3u83o/1PuavNw+OPfWuNxTvbsJZzUGkQzQpwD2Br4iYwiHZI+YGXJoRNYNItmTIVOGVd9vMiYHTEZFfEs0c237qiWwcc18ONenPhI5x2vjcL/csyPLPXw8W/Z4pa/lFJ7n/ZAxRVzKtjd4nnfn4lt2AEknXsVxOQ8u90Gk36PtuIPs5sH4cNOD0207aKsZuLQDE+6x20lQRtuK7hsthZDY67yaz1FAReAHIGZbzefc6hw9b6RZelIN3wZhM6NsZpQYDbKGhzBo6l8SjRrTqwSF+KsJyplc4rdK266luVxJ+Riun4iCjYLzmiLgd8yY7w7B/cI5mCwI8ChdlFKsS3W4UJfvlbp5OSCkUjXg5KK8iAmguaQEeQUc7mclsitwUqCgwEJBh8spUfASi6xzw+WMuP4sGq7UsV7PC0BS1La8GfCqkJwUF/dMeZZMeVb8YKiRq05bB+8YdfGKoW65HOrY3SBOlQSp/ouMfWwDX/jStzL7LWnbjdXfKHHPt/8zb7z/q9TOr6BEj334JozA8ADj1n+kyBq2cJyj3EIfU7akaxPPsoln2YoobPUzQdIpBSuRsX1b3yVlWrNnc+QTU+QTU+TS09SKGdKZChRhvpqk69Y5KX+6jhDx2MbT5vUmX0DJNoQzAlK48PNIqdIGgoH5MIEpIghYGTbrf4uAl/IOpHTrUbPPPyHclt1m2aPAt0PtoVXip7IO0pkKtdk0sXid1buEvN6VrBKL18msKRGnwdi5QcbODbI1fZztHKNBjEnyJKgxSZ48k2zlOAOME6POtCmjE56QwM1nGaRI1kpCb8qPwYY6U6f6hcieMa9hRFXstwgG2u+NlIOORu8nBwgG0O1LtC53cLyQKqJ7T2/1GQj7ohhuB3v2CcgaREBJ3AiF3G9eHHDKskbk8xEMSDETRGPIvXGMQA4dCEq49gUcFILJJUtirzff20PcvTbqZAvdx68G7HXimyp+DDjued4veZ63IwpOPM9b63ne93ie95dIwenqlq1EogNIOvGqjRdjVsfz9gdkxss8fpCtOGCzEM2E+NaE91YgKLrOJbdHH0byea/zvRlAhQDZJbcW+UCT82/TTOOKoN2g/+LETA64HW7a/oQZFja4jcfYzChJqlRJEKNBIZYTOdfkmqCfSvzuR7giq4CNBNkQ108kidim6uB9Fhnku+BDwYkS1i/ApQJUCnDhQgBC6oR58OeAivleNq8LBCDlkhnwX2qYl0OduBT1O9FMiPZTYyGAoQBEgZnbTtx8PkczD8UFNcqjSbZo86I5ITeTBKw6V6Me6yI5B7VYgkS1SiEpA9WYk7ZKUrMAM0WZAcbJM0meKWI0qJGg8q0refTwa3nmtzdQ7wlm/G768Ag/sv0vuO3/fpUCvcySIUGVHAWShsSuogezZNjBk5YMn2fSGi4qEX6CfqMiJf2pkGKrMdrMI5mBG248TmE+R2E+x3Nf2AZFj3x6UpSo6jGRyL3oifrWlyK/xxiirrUT+AVPMiL/CPwOku24DQEQbyaQvh1Gsh23m/3HELDygRHhjrzfrNMyc318jyADffU9+XbzGiDInp2FWFx4IjOn81Rm08w/3818oZt4vEE+MUWWIpvXnmTz2pPm/63OyfnN5jeapJdp+pkwXJIeNjFGryGtl0kbyYE1bOUE0/QyTY6j7KA4n5U+zMYFoGURed8RhIBdHzFZgH0CTsBxLm9W5otOBC02gF5KXI6Mu3tce3+sRzLdoyOSBanvD/nKeN6IgLAHzTnfSyDpDALAtpnP42b/Q/vlWgyAnSQaGg74J2OyXSDd3jozHeqDjeZn1EKTX9G2OnFto2Gfflf2Wk7h+/7dCCv02xGoPet53rOe533D87yziPTGHyB3r9f4vv+ZpbS77EntL1V0SO2dWCgWIvW1I6C32xbaEcLb+5osdIwocdEbNjr3jgt8lBDf6ngKKgCot5ICju7fTKoMzschfb53GL4T/s3df8OdiMfpGpMZSVBlE2NMGh8KLQkaYJwqCTLVEvHGPEl3kD6LDMB1sD1FUA4VzXpcRNyiXXUp53WpHpRcVZBX3LzbS2HeL4ERvg3HCrN8BZAyz414HFY4WfaUK+vrAgbXc0Q/u0aI8Rafo94kUdlgnPZWmm3UGHGOcHbJ3c41Y3TJ8IacX09CIw6ldI8p64mFjBMVPFRJUDHLcxQsUKiQsqpdl06v4DU/fZx1n5wOXcvxPes5/MGdXOjLWNdvgEe4g0GeZQ1FnmXQKHxVOMJO+g2pvUyaBFXG2BSUFLGDIU4yQT8DjDPOAGVSVEhTPJeV36anHHiVXPRIrLtAYmVN3MZXyjL/NQ6p/XE/8AMpIipcY+Y6vQ/Rl7mIDNB7kL+/9QQyuKra9RkElCiRfYyABP5mAlPB/+rTs67A7Ed6w9mabT6rN0xSmU1TG1tFbufzFB69nsQ28RgZSpwkQY0aCRrESJm/6jRlYjQYYNyqZVVIk6HEJHmGGCVLkQn6reSzlmqJpHKVImsYZ4Cpc33Uzq4SAPZPpl9Zc10eIpC3dSMyubHYvfOlIFSH73OBtK5rOBg1hHXJ6lEJX8aQbMgho4ylfjP3YkrX9gZiB/XINaqbbc3+Yf8nJdW7fT3Q8nkSFQlYTBDllQ5GljOpfXjXKv9/Hn7DVbXxVu/zy/L8PM/rRdyGbkAehdPAE8ATvu/PX05bywt2daITyySCbMOBRUuq2pUBtIqFHraXJWfpzLw1qaiM7sfz9CFk3h0ZSPdBFeWPuOe8UDmYe1xpB6y5ovEY8FYgYORbYMPdo9SMiRrIbJFwEMp29kdLf7IUqZIg3ZABVDWZoJqEzIwMeD0d0CvISBLKeFjp2zkCGV/NDpzDqmidm5EMBwgAuUQARNwKJzfOIXfcunnXG+glfdWbQUsqaRS43IxEnCBDoWBAy82iodtrVkNDFciUQ6LKYxoKVgqRbV2uDWa/Wec42rau75H24wi/pHdulgtrEyTqVUhCtlGkFktY8JBhlrgpySuStWClQYwepHyouiHJI//39Wz95Ag3/uQ4qTNy4gMHz9D7xXP88++/kfP/TkqDYiajViPBKEM2U1IjScoMrjXUYPHE/BZ6u6a5haOcN4Pu42wBoJ8znGQzO9YeBQRAzfT2wmycLdufZHRyM4mVyKAy64WVy0AG29siy7YhAOQeZE5Ql71AoLqlPiXKEfldhGuxgaDUaYf5vtMc573AmMfsJ3pZ/bNnmfmwEbLJQW5wgno9RiZb4vz1MaoXk7DOZ2DtOJPlPNWElLqJ03o6xK+RMjbhjlRJWm+XGA16KFlvl16mOc5WMkY2q0SGcQaokOb014ZYffNZakdXwb8iwxGd03saASPvHZYsEG72NJzFDZeLtuPBvTgR5eU1lbbW9xseh7kXvncYPrHPKGCZiA8H4EPNEMecZrYBh/YK8DioLu8H8D+xz3iOEFHb2ifbHmp3H97bDPKciD5PorzDy3ledeLaxKuc1D5NoJ93VdEp2epEJ2guD7BcCmdddNvg+0homfsAaUVsl5rkcMlC6z6NNLVh26mHS76iZVtNM2H18EyZRrSUSyUt9XN4kLC36To0AaxhYMwMPu5EZn6vw/IBkoZa288EacrUiXGSzcatu48z9DPBeopkmYr1UUpmmIoZE73VCUqrEyJNqyVPyhVREOKWZk0RcEhM3dWlGTh3Dp4vQKEu+GUSeS8hgKSEgAst2ao4rzoBaLngfNd1ul+lLvySel2AT71uSrd07KxlVBBkdyDISiinRAGMSvq6BHWXDO96jyhg0wySyg3rcS4S+KqsJEzCv+i8VBrYkLrnVnXhNcCPwaoJAYeZ8iy1WCIEChrELKjUTIYQ4ct20FshRT9nGPu+Gzh87BZO/9g6u39qusqb93yRN/6Hr7LyfMU4i4hZ4gDj5IyhR4MYmwzRepwBElQZNfq3d3Y9bGf346Zv/ZyxXic7OWKPV2QNb9j4CPwpnDi1nd58gYH0uHBBNtShNwJPv4qQ03eZ6zqGZDnuQsqukkg2ZCXGl8Os70WyB282r98117aEZBgGkbnFp5AiiGkCU8FBJIuzDXkNQOHI9cw8tY56Pcb2/DHbvRgNkiurFug3iFmp5Gl6yVBiiFHSlCmRIc8kacoW3KnUb4yGBYD6AinPmyznye18npmzvXKOReT/bhjJjGh8IvgY3POGQ/esxcqIXqxoVarlinbI/X+vAA0OCAj4QOBFwgAy+VJ3pH8/ReC8rvGg2X+3aS8+LCBnBQGPZo9z/vX9hpcSzYCYCR+XR9LC2d6Ndpn4Trz08Woitb9Y0SnZMtEp2frmiwVLq4Yd59w2ZQXtUuDudm4sVKYQWr+CkN+Hu7+rM+8+4EPHNfuH2wuXb7XrZ/i83Jm5cOlXtJ2gbGwkMAqL74PHoGfbNHekH6GXaesZEadBH1PUSJAzZntaDtJLwWZPMogqUoM42ep5ALrPzQechwkEUbjGhjPmu2ZMLkLFZEgqVQEiCioUTOhnBRVu9ZomDTQr4i5LtXlPE04/r4hLpiRuFq7odjbQUildptkTCLInbulWdJmS/zXbou2uIqyupQCjx7S/mrCLvHtcXddHAHoMEPSTAg6TVeGXlJKSrcg2ioBwTQCKZK3iVpoyowwRc1I46mvSIE6MOrnPneemd4ySOh2kiSrXJ/niR7+VM9+xjgopUlSokGKSPGVSZClyhn4A1jPBOAO2vUe4w4LgGA0LWrRvmk1RkJSmTJk0o5Ob6c0XaMzHqNdjzJztxb8h+IuInZ1l/ovmYg4ghGXleEyb65lxPuvpPIoAlkBwTMq2bkCyKEnkb3bQrBtDyuz03/silrDeqMcpl1LEVzSoPboKStDztmmSK6ts6TphNc82MWYzVwoaVS2tj0lOMkQ/E+Qo0CDGmCmH099tgvVMkSdlwEiRNZyY30KpmCGTLVH4qeul/4NIeVnBnGMR+JApddJLVw/fr15qj4zWpaXNCobh9S1c2O9Efhctvdo9LJyQ9yNV8yAgxlXgeq8BM5qtrjv7Kvl90LyPRp4HoXItCHs8LZx1b/X91RrLuWRraNdq/zcPf+tVtfHvvL970c/P87wB4E8I7vzv833/EwvvdQ2P3wEkEh1A8s0Z7dSrmgynWtTqttu//bHCbSxkULgY4InyQ9q2sQKHEBmemYzu24pbEi0pa+qHC5B04DGIlDTsHoZt0Pd7p+hjkm/jYSbM4FHVtfJMUiZtB6r9nDHrz5OkRh+TgJQB5S/IzHisDt444WyIZkEmCatmzUBlDiZN+dElggzIOdNdBSEalwiql1ZElqtGlFuutaLF55SzLQi3xIKRGKSi4MBVDNOsBgTlQsrz0ExJMrJ+FTLwdbVMdJ+LZrkeQzNM7rZ63D7zfc7ZtttZFgd/LZS7u0jPzVPu7iLemKeaDAxFirEsZVLEaVA3EsET9NuyH4AyKRrESVNmnAG7rjKTYsu7n2HTR11bbzjy86/h6K9t44VEniRVSmSoE7PcBxCegzq7gwy81dCvSpIxBqmSYLw2wJsTn+Okyaao+/tXPrubvrecsstOP7MZLnr0bT/FpHeD7Yv33CV4ylzMLwHv8OHDnsj/jiBAYgcCSHrN+xnk/2LMOak7zW9zEKGGKjhUcFMEstAzOM3skV5ytz9v5Xzn59JCuu+ps3rdNJnELJX5FOu7JpgiT87IJ1dJ2P+pQZ61h05TsdemnwnLGVHQEqNOhTST5GkQY5TNgJRsVUgz9YWNUo42gIAqzLmr+7xmDazBn1PiqSVJTdyHxQHKQvfrhba/HG5KCKjoDeBOhAeye5+AjzGzfNB8HsQaGQLBOSq3ZHQEhoYdbp8DzO42bbuAw+zffM9enEPS7lxe7bGcAcnmXVn/Nw5/21W18e+9T78UgGQ9kPd9/4jneeuAx4Etvu9HpVZelOiUbHWiE53oRCeWRdRXx3nsI7dy+P/u4GJvAHJ2/rev82/v+ALZkeLL17lOdKITnbiCUA7J1bxekn76/hnf94+Yz2eR6ZS1L8nB6WRIbHQyJK/OuLwMxsIZArtNfJ+t4b2c7Eir0qqQLv8S+92u5Ev75R4ziHBmxo2mMgaVnKS5nCGYpQtL/DaVeg0Ny+zph0UJaHviGwBWESlNmWlybOcYGWbpZZq64R5kDPE5RZkMsySp0sdUULI1Mi8lRJPIrKyWa6m6linbujQlZoYXDFcEwhwRJbJDWEkLJNOhpVutSrbc5SkCla1LSLJC33HaWeuQo1d1E5RHuapbbjkWzmctp3IzJzFal3TFnW0gnD3RzIi7vYZbRqahxpNrCZTNurEZFb9blLfK3QF4cDklZdK21ErVnlRKVtWuEtTsbH2CKjWSJKgSP9Ngy48+y/WfO2vbvtQT59AfvIlv7BWCeo0kReMqmKLMGfrJUrT8kRoJ67HxBK+1/ikJapQd+YEaSU7Ob6ava4rx8gDlUorefIEMJU5+7TX4twYqW7Gzs/bz/PPdcBYSt1+gdmSV4ZLUJYOyDslynDbX+vU+/DdPSprA+JhA161zkvH4qifZkaOESr5y9z1PqShlV7VZOa9ET5kta48zVt5EuZQSr5F4g1hXw/B2pMRKzSK3c4wek0nSDIpmIUHK1sqkmaCfLOdpEKdMiiJZxtloB0THa1tIJmriO/Ib5o8lS6CqdR/CGxndHwhv1FvcV52y0pdzFj9UPgWE75MRNUEtfdWsj5v90KzG/WaXB502dfvd5j5r/UlM+0MRkryNoDRrsSz+QlLA3yyxnDMkN+5a47/v8HdcVRs/5P3Voufned63IS5ItyJi+T/q+/5HItu8C3gPUij6deBnfN9/ONIUnufdCnzU9/2bo+terOgAEhMdQPLqjXYPvFbSudHtl7bvwrK97rrmtvcGx20DUFqVHbjAYDFiY7gNUYLRqtCg9CtQ12q1T/TahMMhxSt/ZM8+UQjqlZKS1yaOcHR+B2/oegyACmkGGCdFmV4KlEmTY5o8U1Ztq0SG7RyjlwK5RiFQ2RpHSrS0XKtAQGI3pVyXZoyKFgFZHQLOSJkwCKkQBiEQ0C+iqllxpBwrKgOslA3dvxW/ZIUp3VqlRPMo70OBiqvsFMNK71pQEnfeXaUuCEqxXC6JkuF1/4bZvpsArMwRoChte8a03e1sb0q39Dj1bohXhfQOkKzOU012UUmmTZcbVgo4RZkiWeI0LLcBsKRNBSMnGSLHNLX5BNf/r0l2/MI3iNUCBclv3D/El37ndiZTedLm1xXehAAUBT5jDAq4cY5XJWnVowArT1wky8lzm2XQfzoO63xygxPEuhrhkq3HfSGeg/iGPIWUZt1chy/GA47IGPLH93qkNGuMQHkLxHRxqA5fiQtPJOuL0aH57RPrLlD7i1Xw1jqJnjK1s6tYPRSAs3i8QU9XifHJAYbyJymSZSdHOMZ26wPjyjO/lifsvhMGuIkCV8pcs7hDgBeAqMseK99m95090hu42I+ZhR8mKF3aSaC5U4+WvUK7+0z0c7tYqNTqSgfibumTvce5QEHBxxjy/rPAu50G7gUORpS3XLJ73SnZcupALTndmQSS2Gu3d88vKNly1RCbn0ULcRtfrbGcAcmmXWv9Xz18z1W18SPeXy4FkLwFkeD9GvAx4F0uIPE87+3AnwLvQgpO3wX8KLDd9/1TznZrEeh8v+/7jyzWN8/zbgO+A5nCClVe+b7/00s5P+gAEhsdQPLNGe212WUGzOVfRPeJ7u/G5Txgw/25HPJ5a1L7wu03EySbgdJi3Ba3JtyZHVQi+73IYOsGRAbVqBRt2XjMKiRlKJE0+kkZSmxmlBpJBhg3hnbnbXZkgHF6n50NyMEKPvRdeSMzwHgYjKihYSsSu3JF9N0NN1Hggo4VLZZrhiRKel/lfIaA6K6gJJWUz23J6rqzckzc9VEDxNWR7TUU2GhWQwFMncCXZLVzvHpke21TZZZzBFkW41Hix6C2EusVU+0WqeZYvU4tKb+yAoIENUr0kKXILBm7TKNAznqXaHYjSZXuJ2Z5w9uPkBkp222nv2UNn/mrNzO3WTo6zoAlYzeIUSVhneMf4zYSRnpYjRqr5qQnWC/7Tw6wPX+MBvEA3JSzzI71hnxIstUzVEymon4pxvwXu+l7+ymmPrZRnNvHPDFUPOsJQL4OySIcRIYKWdPQBgNghsxnA4K46AlvZDormZab62zYOMbpR4bYfMfXAawh4ZauE/Yceg2o2sxJasZsNG84WCkq9nORrBGLqNjMRw2Rbe5jihNsoUSGaXqZYD3jkwPEV0jGq1bMCHeliLzGgN9GsqGHRkKcEY3LuT9pXG5m+0pBjKwLg5HQc0BVAy+Bdx8hoMXQcADI6sHzQo9nM0T3gv+JMLm/VcYlaiob5tw43JsWQOVyAdqrEax0AEk4PM+bBX4qAkgeA570ff9+Z9kIcND3/fea70kk3/kh3/f/ZAnH+XngNxEB6wnABRW+MVFcUnQ4JJ34pomoBK97U26+OR9wZqyMe7p5oLQCG650pdtWqyxKuE8jzuf9tAcjI03L1G09KsWrMsThc20eJERLriwJvg0YCULd5vebdpwH5iAyAHsIeA66rp+jb+MEmzceZyvHqRkJ12Nst+pLWt4jpTYpS3BPG8fvVNUMQqfM61kkKzLlvGvZ1pyAkXPI5LS+ohK++tkFJdHklCvz677c7VY428Yj7UTlgtH21PvEGDICwYBfwYLr7g4CLOrOd5X6VfAxR+C90jAvV2FLZZLd9uYQIBIjAHsrCTI22tac6VuP+bwSeewYqWBvChKOXHByBpLVGo14nES1SqZasuV40nWBaDEaplQoZV8KFlSGVv8+5l7bwz8/fjvP/sCAvfa9/3qeH7z1r1j3GRFGkAKwsgUdFdIkqTJNr4BapskzSZKqIcSLx3ueKWbnM3xn/vPEaXB8cgsJalTmBV66WQmAmS+toza2itrYKlHb2oGAkV7g7z1jimjAyOt9kQleCT2/PC0D2HF5dSWrrP6Bs3I9Z+P03XGKru4yHIXZsV5Wr5uGm+vkNkwyda6P1bvOcvILr+HkF15DqqvC+q4JSvRYgBGjQY4CNRKkKNPPhDWuLFrf+iwxGqSoEKNOgio5po2pZM1MBWSt3K8S4hMrayRW1iDekPnVI4gj+yGCzI+WaQ4NS3lSXO9PI6F7kkb0vuV+XgrA0FjKwHph8vpwKGPtDQsQ8bwRAVd3ms8HR2Sypb4/AF76jDCu9LqvyAHvFzL8wf1BidoluT6et1/ulVrGFR829+5A2cv2z9aVGvf40f1LOv+FrsurDYws9xAOyVU7tfd6nnfYeb3zcvrgeV4CKeX6h8iqfwDuMNt4wEeALywFjJh4N/DTvu9v8X3/Lt/3dzuvJYMR6ACSTrxKYqGHnUa7h5I+MBfaFwhS8AtEu6xGezWrYedzoIEfPJw0Djh93Bvpd9hoLBx7m86nFWAKzrHZcyXalgu+mq6VTgLtBN4KmTUlpr62kSpJnmQHOQrkKHAbUrpVJWEN27IUGWCcOA3yTFm+Sfez8zIAPmVecwgomUQGd0bi99JUkBlxQYeWZym4uOR8Ljnfo+DDzYZoaEmXlnmVCQBHydnOzbhoOxeIgBkFEwo84gRAw/UhaRAYF84563RfPeBFgjIwF7xAAEaM/LFtQ9XIFATNEYAb3U77NRtZr6VbehyTSambDEkjFiPemKf73DyZaolEtUq2ep48k9RImlKuJP2cMbmSEjlr3pegQK+V6U1QI5Gp8diB1/H47+2gkTDlYTOX+Hdv+wxv/dW/Iz9/1paHFcmSoMYoQ5a7omVhdWIkqdm/xRgNcl0FJlgvBoL5AuPlAXJdBdLpMjOjgUeKRtf1c3RdP4etOnsaWAm5n3gepqHnrmkB5mMefb9wSkCGOq0Py2t+Li2ZliLQUydBjfmvd9PztmkS6y4wM7qO3IZJBrrG6Vs7xczZXvruPkXf3acsR6RCmgYx4jQokGOQZ8lRoJ8zlkuTocRWjlMlSZUkZQPUQDKVRdYYyeOULafrZ4IiWWokmK8mSafLpNNlyeK8FSlT08H0nYjXxuh+eNjIpR/aH8out5rkaHcfulKAsdTwvP1m4mWf/Ry6J48Eku++P2w4H8aH5GBwv2VoOMiCqCO7xgBStvowAbdPXd9HzOfR/aKuNTpisiaO/0m9/fPIvf+2Wu8uW8pzsRMvTVwDUvu07/u7nNcfXmYXepHpp8nI8kmE8QbwrcDbgXs9zztiXjtYOFYBn73MvrSMDiDpxKsimrMHC6eqXaDgZhrcAbeb8dBswGLHiAKJpfBMmtvQbEjAzZDvB4IHlknphx721r3dJUMO233d9t1+2j4OB8dyjRsDoGPKGoaDbWGvyRztFULnDcALsPrPzpK4/QKV2TQbXicu7bdw1M7Slsiwngk2MWY8ICqmTEsHpgVS1TK9T81KFuQMgczvKYKsyAyB9whCYI9mQPS7LoMwMNDt3OyGmzWJju8vtGjjEuFqKLc9BTguv6R0ES41CIeCDQgyFdoZzXi4tWRavjXnbFeNvKJZlYazPQRgA+fY2peqs61mUZIIMFHgY1zgPedY8RlIz9VY84Jc7Xo3NOJxui/M04jHxYyvPEWGEnkmbQlXlqKVCgbIMW08aWQoXSNJwqvxrw/s4G+/dA+ljd22uzftH+U7vu9h1l+YIE3FgtlBnqWPSdYzQZ4pQCRvNfOiWZqtHCdNhUHGyFAimy6SoEq5nGbD9tHQz7Th7lHmT3Yzf7KbxO0XoAh9v36KntunKTx6Pbkfep7Z6Syr33QWvgpTj2zEdAaykNv5PLmdz9PVXab2kCnsOx2nWM7S9Zo5yqUUfWun6MrJxX9ycgcTk+u5YeOosYAct6aGKcokTMZnkDFrAnmM7cRoGJ6W/A55Jq0JYp0YNZIcYzsVUpTIUKCXEhmOs5UsRSbJM1rbTE9vkan/upGp/7pRSso+g/BgxpFMiR2Mi7O5Dvbl7ys84eLGizU4Xqhde3+/5GxnwADxfbaUylsB7DZlVWpyeC/Y++gYAigGsVkPNaxkAClt3GX21UmeewnAz6BpM76PqOu69XIaCj8DIMw/Weg8ryRr0okXL15BKltf8n2/y/f9nc7r6CK7/TnwXdfi+B1A0olXTFyLB1i4rKo5e+AeK1ratdhM1GL9i27bbp8oX0UfYuGHyYHQNkBIGSt8HiPh844Pt8zEuHXJtkxNyxhWOMca3R84DEMwm/cQAgyuk6+pnjKJlTWGGGV6Msc4A/QzQT8TtmZdB4RaztPPGTvg6h6fD5domVIXyxdRQvs5uHABnneyI5rtUDd1d1xeIgwc7GmYdxeIuN+j264gzEmJln65x1AcccH5Xq8Ll+SSAomYs5NmMHSgH3OWK0FdAVo0G+KWfTVarNeOuOBmrsU2EKAsNW1Rd3ftg2ZSFBTOyPL4DNbhPV6FWL1OtVtKuVKUKaV7SFSrptxoloqBCSkq9FIgzxRxGoZjJA2lKZOkRi/TlF+f4m8f/04mviNvuzr8N8/wA2/8JDecfM5kQapWRSpp+CPKSZkkj3ogT9FHlaT1LRlkjCznqZFkZ/oJBgh7okyd6xPOx4Y6tdk0XZvnmPraRmaf7mXDHaMUxvq5YeMoM59cR+L+CyS2XYAdJmtyEQp/fz2Fv7+e+WoSXu9zw91P07NTTA3nn+8ms0ZKGTNrSvR0ldiaP8Ft+X9hjcl4lElTJclWTtDPGZLUyDNFFVE6a5hytCn6yFCil2kDXGqWs1UzviwDjNNDyfJr8kySo8ARdpJnkpnRdcyO9Yr61w5EJew7ES7F6IhkQoeG5f/SNQI0oQP/pd4br2aby3k+BPfTsIKW55kyrPp+ARV3IlmOPfvkb3zImdwZciabxhBlLb1HHRwRor/+6cT3yTJV9BrdD7v3BcDElMBq2a5/CRgNJsHs/du5nq25j+25jFdynTrxqopp5ImQjyzPA2ebN19yjAP7Pc/7M8/zfsHzvP/HfV1OQx1Su4kOqf3VGQvduBdSeglCyYXtTbtaEeIXI3K26lf0uK2NGBdv2z2GhnusqJpXGHDtDZ2nW8oWkNidiA+LgOBq4HOIOVwJ+ME61GPceuMjjNY2szvxReuEDYH87xaOWwPENRTJUWDHOSHqes8i2ZARAhI7BFySi8CMgJFzFwNwoET2MmGJXwhABDRL/kblfbU8K+7sS+R7PPIeXabbqZFi1Mk9tdIYJa4myEC4CluuE7srE9zKJLHbtOGS0Rdygdf1DQLndvfYFxfYrx5ZF5UqbgTL/KSQ3hMX5T1WF6lgNVMsxTK2hKhM2sr4ZihRImNVolQBSsuQyqSZrXdz2y8+zvb/HvxdVtYm+du/uofn7+o3IPgM4wyYbEzGQOJ+S/IGKQk7wk5KZBhgPMS3yFHgES8ohd7lf4nHn7kDgNUbJonHG6S6Kpz+2hB9rzslkrjTcfn8zACJbMkqd63edZaZT0p1xA1vf5rnTg3B6Tg33PE0ALPzGQa7xjhe3ko2XaRGgj4mGStvYkf6KBXzF6RlZwlq9DPBUXZYsK9k/UGe5Qz9bEYUuBT0J6gyS4YeSpyhnwQ1powj5rNsopdpDpV3M3s2J5yRekw4MSDZkYeQ0syHCGR+QQbl9eAeslC495pW616smfzWJbQjYTA1ZD7fg5SixYcFmLwZAdy/RaC4dT9SrpcjILxrO7uHI0R/I/6hIAcC2WBVJzTRPAF27a7Vq5HQDsub1L5x13X+Lxz+3qtq46e8PxpFWFuf9n3/04ttvwCp/V9933+ns+wE8FdKar/c8Dzv2QVW+77v37jktjqARKIDSF650WpQv9ANtx1IWcpxQjK9i/JDruym365fC51b9Bq0Alvu/gv1s/l6umUDB2iS+R1EZkp/VBYlbr/AwNpxJst5BtNyrxriJAmqdra7Qoo38BgN4uSZZAeSFe5jknXjM4G/iPJEniGolYr4jFTqYd6IZkeU3+GSyl0SOwTUDReU6DII80haARMXgKRoD2BUcStFM3hJrXQUt4IqJAlXdUtBiFu61U0zGNDoibQRa7E8iYCYPgKJXwjAjoIc3dcFQNqvurMtzvfVps3VosTlNeS9EZfXZFpm8HVmH4TwXiFlHd7HGCRHgQI5UpSpkKZqsmtF1lAjQY4CG/9knF33P0msKtLAjXgX//yHb+TLP3o7NTN0H2eAFBUGeZYCvYwjBHkFJ5PkqZCiz5R2TbCeEhkylDjqvcH20fUhGciPs4Yix85tt8tqT68ise0Cg2vHOPGFW2BQ5IMLp/N0JavMF+RCdeXm6M0XKJfTzI71klhn9jl2Czdsf9oCsjUUGS0PsSt9mFHjLr+DJ821SBKjTpoKvUzbTEfKCELEjedLgqotWVOwVSZNjDpxGjzBa8lQYpwBTs5vplTMkOopM/PUOlHJ+6L5A3va/K6HgYP7rTSu7w/jDWOdyF0Fvui9pMmPaQn37MuNdm22zHabTAcDiEfMBwy43W34I4MEPiIKJO5E7kujI/DAMHzILB807+rDcicCShzp3wC44UgLBxlv1409pLbV4vtik2MLXZ9XGyhZ7oDk5w5//1W18TPeHy5F9rcHzE0CHgF+A/gb4Jzv+6eM7O+fIHK/XwZ+Avhx4DW+7z93VR28BhFffJNOdKITnehEJ5ZvnPqPA5zfsoZv+96vkJ68SKw+z+4f+zIrRus89L67O8XJnehEJ162UJWtlyB2IVkUjf3m9VHgR3zf/7jneTnglxFjxKeAtywHMAKXAUg8z/tZ3/d/2/O81wBP+74fpWR2ohMvSyxFoSValqSlR4uZ/jVnE4ZD7bntt9q+VR9a7b9QtFJKaT52mADfuuSqtRxx1M+kOTsS1ui31Svu7OH7zaznNp/akVWM7xwgkxVuztKCLQABAABJREFUSIU0x9nKdo7ZMhnxo8iwiTFLaM5Vp+memg9KtNTwcALhOBTMcQ2ZvV6X7EiZoCyrTrOaVatQpSy9AbqEdDe0bAvCmZNWN07lj2g5VjyyTo+px3ejXjcZkjnCZVt6l40eUL/PtdhOsxna4Rkke7HaLL9IICOs251D0jjaXjdh8rtmZiDIpCinRT+rgpd+nzDnclFI7/5a8CYgnpcMSa46TbwxD2msaWGMBj2UmCJPg7iVhpbSrThZipTIUCFNlvPEaXBejT1ug899dTd3vu1Rev/1PABv+vXHyD47w1/98fewM3mECfopkuUIO63c9HaOMc4AGUcn7Qg7GWCcGjVOnNsauvT9+TNWmrpYy7ImUSTVU6ZRj1Mupbjhjqcp1sScsef2aWLxOudfyNKVrDKQH6e4RvqbSYgTy0B6nNGhOv0Jkdi9eftXAXjqmV3ceuMjlEnTn5Z6RZfP0sckaSr22mUpWo5IgRxn6A/5/hSM2aGaIuaZ5BiS2Uka4YA0ZQqn82zeeJyTv/cayaZ9Oi7KYACPIuTtApIBGAPhP+x17h/ue7NUOYTvYddipn6p91b3GWBLqGyGYl+QAQH5XB+B+4bh0WHJnowj2eCDpo3dZvmD++GBfVLGpvEepJzN+pUcgLF9AcfGXD/JeLj372E8D9tHz3PvySO4giPu+V9OvNqyI8s9lNT+oh/H978IeIts83vA713NcTzP+1/Ae33fnzOfFzretTdG9Dxvt+/7hzzP+2vkllRBbOePAk/5vv+ZpR50OUanZOvVF61Kj66kDjcKNi4nTX4561qVE0QfsuFzCoDEkgCSyk+26EO0JEDbDxPsTdmCjokGkDvBDUgJx88iA9RBn5tvPGwGjUUjQzpBjAZZZKCYpMZmTpLlPHmm2M4xUWX6BgJGVElrkkBhS1WgxsW/49xcwBOJmh9GFa6iJVu6nVui5QKOVuGWYKVaLFvhLF9FAD5WtdhvFeHyrlXdQnBf4ZZfQTNHBIISLH25/JJGi+30s3JFogaMSk7vJrg4q53POeT69xFI/QKsjbTtOsXPtOifXmQDts6vl6uRLlcop+WzOrpnEO+SKfIkqJKmwjgDViFqlgznyVr3d+mG+Gg0Sl3s/oEvM/BZJR3B2F0DHPjkfTyTvdECDy3ZylKkQI4GMabptTLU6uBeI8HfeP/etrXD/xfOzPcDEOsSUDPAOE9M7iSzJgA12USR545tI7fteVJd8tc5da6P+iX5sfrzZzh9bIibtj9hjQxHJzczkB9nE2NUSdIgRokMU/N97Og6avk1fUxZgLGTIxTJkqbMdo6RoEaNhOVrlciQpWh5WwVyJKjxOLdSN5LB58lSZA1Fshyf3EJ8RYPakVXioTII/IE5qXECE0QzoI/y0aBdWenS+G9XW060lJJXbwVmMiXg1Ul51X5HrZCgNAsC9SynVM2a5w4TMoQMyqr2wp7hEL/ElUMOc/ICD6pWfL4rOd9vJuCxnEu2NuzK++8+/ParauP/9f73sjk/z/MOAd/n+37RfG4Xl2WMeMUcElOr9hpEe+Nm3/d/5ooaWibRASSvvlgKx+Na3LTbzc41gQSHTB4GDOEMxULnsTBYCWq2o9kNtw/WxJDW5PZom+EH5wF4r2nvEwip9VuAHWIgV5lN84a1j3Gk/Fp2pp8wKj8FO7OrM7ZDjBKjwVaO00OJdc/OiJrWOYQvolmRcQL1JjNjr07sUc5IK6NDF6S47y5AiUaU5K6xEKnddWhfEVkGgZs7kX1cHsmKmANKVjobK4iIEeZ4uOR2Hfi7qEq/95h3F4Q0Itsr0cXNkLQhqVveyWrCvJGc+TxpPrv9cMFOXKSAY3UorO0hU561BPdaLGFJ66oCNUneSl8mqFEmRY2kfdcMQZoyVfP9Yj3Jt//0I7zmweP2N5i6pZf/9Xf/mYv9K0PywuMMWDUu9S9R7kqDGOMMcNz7FttO3n/OgpoENb7xzE523vgY58lSKPeSS0/z3CPbWL3rLKXzGearSW7YOEqh3Es2XcSNGHUqBjiouaGYQlYMmT/FJsaMslaCXvP/M0E/WznOJHnSlNnKcSYMQV0zRykqlOihlwJl0tQMV0fbnqTPCCCnOcZ2pub7WN81wVMfe71MArwemQRQmV8QmV8lYQ8i//8faJ6wuZpB8tXck1tmCozTeShjrJyOVp816iPwwWEpankakzFxwAgEhHUlsD9g9n8IyYq8B/xfN/1S49hR08YYjvxwO55es7BJJ1rHcgckP3V47+IbLhDv9f7nZZHaX4mxaGWt53kbPM/7H57n/bnneb/ued4ez/M2+74/6/v+Y77vf/iVDkY68fLEUtPMVypTuNCN3B3cB3KLSzt2O2nFaLtNylsRycagZCHsuK5lVO3Ak7uve5zAcwT7PdpvBSD+pWYw0i7sut3DsHuflG08isya7gHGECO3s730rZ2iQC93pB+hlwK9JjuioT4KdWJsZpT11YkAjMwgYET9RSYIzPjqAkQuzQiRXUGIvisA0VjhvLtlWCmay6Xc73Vnu3pkXSvwsiKyzj2W9knH5RWa4xKmVAsBI0BYqlc9SFTu1zVL1JIpPfBcm33rznp9jxGUWKms8JTTMTVo1Bo4nO+uaeKM2a9KABy7nX66BozqjTIH8SkhufeemaUe6yJWrxOr1y0BO9Zo2L8TlYVWF/eaScXUSBqhhJIhxwt5PUOJlfEqj33wdXzlA8H4pO/Jaf6fb/0gm0aetcAYsEILDWL0MUWNBDs5YkGRuy1AtZZgC8fZwnFKZOhZV+A8WcYnB0inyxRrWRLbLrApMcaa64q8cePD1vG8l+lAbvhcH6/lCIOM2VKrNGV6KJkMR4oia6yDej8T9lwV4G/lONs5Zgjqcs36ORO6bkrM19LImjGObBAnQY2j7CBGnb6uKcZrA0KJvQfJjnwGyCJS3tcRDL7r+2Vg/QEz0I5HSlXji4OOdrFUUvZC+4bur5fASrzvNr5N9f0CPt5rgBUHgvMaRF7xYRn+PYRkTuqmLGvMrHtgWK7TkCG77xkWVa4HDVgZdMDIkMkkjY5YMMKgA76GhqVN6z9yoG02P/ruXovw5xE6sTzCxzP/9Vf+AmZ833/ncgYjnuf1mGTFFcVSqH5/BXwv8jx9A/AgMOJ53oznef90pQfuRCeuVe1w9Hurgby7bfS40QH+YrEQT6RdH11+RmuZ3+jDdDgCaJo5Ie665vb2htoM+j2ywLnudYCQ69GyVx6UDyMlWhovAB8A7oRaMUOiR1wSlCfSZ2RW647qj9aqD3GSLEXhjFwgnA05hYCSKsG6GahUzcvhjejkvoIHNzNhsw/OuhXOPpqpgObsh7YdBTlRUNIKiBDZruJ813e37UpdOCSWR+KGNqzGiPru8kQUiFRpjigxRrfRjEfdWR5vs189sq1ePDVOjEX20T66/ce00e28DJiKN+bpviCvfHmKJDVqsQR1YjSIUyZFgiolMiSoGSneafqZIEnNenMkqdryqyJZ8DxO/OKNPPLRXczHpax67ViR//imv6T3iQJxGsRpMMizlEnTQ4kiWfqY4jhbaBizQZdbApBPTDFFninylgMyO59hKH+SzZxkIDHO5rXy972+a4JjtZsokGNH+iij5SHjuFKhb+0Uj3BHiAOi0rzbOUaGWe7gy0w4XJBJY2+oEtoJqlQNCNvOMQYYJ0adpJHyzRiPEXffKgnrxD7BeuNbkuYbz+ykUY/L//lDiAv9Q4jM7UPmFR+We4ABIZJ9aL4nRUtDIXyfWqikyv2+GPBotb3e5wKeoGNqe8hRtxpEJlbGwGYk9hiwMIZwQAoIZ0TXgex3v1n2glk/iGSPNEb3w+hIkBkZ3S9lXfFhWVffL47w+iwZHQkmiUZdfmN7HqB+b8+XaV8ed6WTfJ24slBS+9W8lnN4nvcznuedwkxLeZ437nnez3qetyCfpamdxUq2PM+bA2533Ro9z9sAvBa4xff9X7v87i+/6JRsvfKjmfPQwuPDSd8Hy5emm98++7FweUI7ErrL1ZBYOD0f9Q8JHyvsk9JM1nelJJdS7qXhkNrvQx7Qv2tWnUUeyBnY8pYn7WBwMycZYJwSPWxijBQV8kwaw7kiIJmS688UBHxMOK8LSMnPHEGmZAYuzUlmBAJAopP3WqLViifilm1BMNlPm/1agQ4NBTPqUwLBuDsKgtLOuhXONq5UsPJM0kDGlGyBKdvSUigIyrR0WSzyfSVhCd6oBLBu55Z4RUuwogQaBR0xmn1NlHyvwMJdjlm31vmcN+3MIaVc6m/ieJ74pq/FtSkyFypUk1004nFqMfFpVzPDpHElr5C2gEXJoiUypCkzaYDCGIOWuJ7+bIX79nyKREV+7YurE/zGZ3+OkTuGyFKkSJYqSfqZYIJ+WyKmPIx/9N5q+3qH/wV7zBoCnDYxxihD1sekQsqWWanPzjgDprfSpwRVeikQo8Fxtlr53hIZ3sznrDeIgooGsVC2cZpehhi1AEXaFOPIEhl7PmMMkqLMGJvsvjUSTJKnRIavfG03W173JGPnBqmNrRJRieuA95uNXSlcQLIJ+8zgfm/Ao1iAPxKNa81vWHCAbUCTa4AYKs0aJMj8KEcGAllf9SEBAWv3IyR2LcEaINgvFzQbKm+DgKOi9+KhfcZg1kz4tDG2deNyr9krlUdyJf1eziVb/bvW++84/GNX1cb7vF9flufned5vAu9Epi6+Yha/Efh54EO+7/+/S21rKRmSwwTK9QD4vn/a9/1Pv1rASCdeWdFqJg2aHc6j2/p+MJvnefut+3hb7ka0tofWM1I6iF8o49HcznCo325GpF2ZmMs/cV+tj+kS08MZF7e/Qd8OBHr8gJ0xNCUE9ji3I4Dkd4HTkLjnAn1vOUWCqp1dznKeIlm2csLMaNdJmcyJvq5/oRAYHM4gSKGKAB4FI06ZT6UqjuaX6uFsQ5SLgbMsHlkOAZmcyHo3W6LhZk/0s47b3VIsENATzbZowmChbEuoJKzhlG25GQoty9JshGYgqs62F2mdwdD93O2i++l6dWFXlSyXKK/b62+iIEXLtBzwaMu6LhAQ3M8RKHHp8S4aIFKX8i2vAdlzFcrdwnUox1LEaFgQkmfSkrClPEtKtNImRxKjbj6lrKGgBStv6eFT//gWKllBPitnavx/9/wW937+r1nPBFs4wQDjFMhRJkUfk2QpWlUuNyomY5OgavoXlFtpNkUJ8b0U6GPSlFydoUrSZkI0w1IkSy/TbOUEr+UJdvCkdY9XA8gYDSbJc54s542HSJbzTNBPjQQJauQoEKNOlSQJagac9TFNjgwl+7+nPJkkVcYZILfzeYpkqZ1dRc+2aTiIlGv9iDnh33JOfvcwsNdRozoQlIFeRqa5lTDIYrHYNtFyLXsMA0C8Ycyg/0Cw/F6zs4KGewjc1t+BlFLVR+R8c4QVsu5FODSHRiRL8jBCeD+4X0jsA8ix6uberWBkj8mWjwTZ8NB5rmjx3IIFnw+LXZNXWrxS+/1NGu8A3uH7/q/5vv8F8/o1BLr/+OU0tBRA8nPA+zzPy15+P68+PM97l+d5z3qed9HzvMc9z7tz8b3A87w3eZ5X9zzvqRe7j514aaMdIFgsgqzBXgtOFlRjcUaQ7sOgHdhZaGYrXD6wMJm+1YMnABEjLR/8LgAJHzvIiizEk/H9fcbULDKDB/JgfWCfKJxvwNx+ZFVipQyEVE2rl2mS1MibwWCGEls5wSbGWM8Em86cYdOZM8INUVlfVdNSMKKDWocjsSIWHqNHy7OUNJ4hDEZSCAjRV8pZhtOWxqU2n6PRipviOsC75WStjgNhsFIx56llW5U5eYUyFzECHocud+V+q+b7HGHJ3obzcuV5q5H3buR3mCQAFcpfaTjb6D7ajhLqG8522k8IAFXcea8G2/pONshrQHquRnpunjXlGWKNgHw+Tc6CkTRlckxbIrjwS2T5GpOFK7KGfiasGtUzd9zIJ/7pe5nrk7+aFeU63/fdf8uWvxvlBFs4yWabc2kQZ5oct/EYd/AIbkzQb5hQ8kpQ4zhbrcHjBOvpY4ohRg1nQ8BTjDpbOW55IDs5wnnjoO6CCeWN5Jk0JH7J0vQybcu9lEfSx6RTpiVqZEWyJM2PWiHNAOOMscmWtqUpUyElYKucpaerxNTHNwIwe6RX1PJ+GfiI+X0ugdxHDshAfUgyInIPCoi6i92DF7v/LBatQEyoTKvFBJLs5w7498prEAEG1zmrthGW7T2MAA4DKrgOCyaojwjoKCI8lIMjlqsCe4OMSrxFJv5gmCso7Tm8Que51KrMdqFytU4sz1DZ36t5Aas9z/tDz/Pe9nKfT4t4ss2yy3KAWsrGJeRxc9zzvAc9z/tPnuft8DzvRbeaMq6SvwP8OlIi9gjwd57nbVxkvzXAx4DPv9h97EQnOtGJTrwyYvqWXj7+8PdR3CCQNF5t8P33fobXfvrIy9uxTnSiE6/quAaAZLmS2j8G/GSL5Q8grvBLjqVwSI4gFcIPARsRYDCAzHs95fv+Gy7ngJfVOc97DHjS9/37nWUjwEHf99+7wH7/F/hXwAP2+L5/82LH6nBIXjnRihvS7nt4v4An0apNjQV5HC209NtySFZwWXyVhTgirfoabTfIhrSQ+21zXVpzTZyID0vi9WakZOH1Pqs3CGm9dD5DOlMhmxaTtTJp+plggHHyTLKeCfo5wxCjQmqvjtM9MS/tTiDKWhMEJT1TBBmSGWQWfRYuKZndzLS78r7K6dDsRJwwZ8RV4dLvZVp7k7QjqEe53qkW61pxSHDWXUKyMu727rapuOGOmDKplPIrlJtRJzA2VNldJYmrv4hyRHC2gzAHxOWPKJ/EPZEkQbicE233IkGdvLa1mjDpXaO7xWf1NNF99Dw0VkoZl9eAuVVddF+YZ25VF5Vkmmlylu/RIE7SEN21pKpOjJopiSqRoUyKDCXDCYlTI2GI8VUSz17ivrv/mt6xcwA0VnTx4U/8MF//3psAmKSPTYxZ08U/8H7GdvF7/L+0n6fppUiWHNNsYoxnRbKJNBVOspk+puhlmjJpRtlMP2esz4lmK1KUiZuSLJUu1uyIcmfSRhRCY5wBtnOMFGUrG5ylaH1c+phigvXGELGXY2xnkGftvgV6Afj8x7+bDW8f5fTXhoQT9iVk1v8FJCPw4Ihj7EfAxWjDM9NYatbjWnEcopnnkCCHZnvHkMxFDsnGHjK8kUMj8NFhyQhtAz7kNDyI8EAeGJZrcnBEpIAPmvWH2ihZDQ0bv5ZWnD5zTUej922J6Hm0ygx1SpqaYzlzSNbtut7/ocMPXFUb/937lWVzfhEzxDjwQ8jT/FGz7DagH/gz3/fftdR2l5LlGEYG9T/t+/69vu/fAPQCbwM+vtQDXW54npcAbgX+IbLqH4A7FtjvXQiN8v3ttunEKysWIva1U61qJY+oRl4LcS+C/Vs/aJofxmFORkhJ5lKzDHArnottZwEw0qxQ4wCHuMpE7mt5jKizb6u+2vVDuq95SN5rvvYgg8ezHqXzGUrnRRmodjHBAOOkjBdCPxNsZpQtnKCfM+SZJEaD/sYZus/NC/BQ8KHlQwpE5pBSLi3xmQUaAkZABumplTKQTxMe1K8lKMda4XyOvuLOvq2Ahban20a1TVwuiLuPC4JaEeNTzrJWlSWXzGD+UqPFyjoyoHcVsrRcq+EsW0lw7XQ/fXfVtGLm+yyBFC/OeuWSuLLCc4RLsFwZ4YuRNuYIVL/ci9ggkAWeI1AYmHO2uwjenICRRjzOhbUJGvE4dWIMVMdpEDdlS6IylaJs5xDzTBGjwTgDxKhTI2m3j1GnQYwcBSl62pTiL//pXs5vFpQXuzTPj9/3MXb+zRFiNMgwyzgDzJKxHiVuKA8kb7gmaSokqFEhbQf7IGVW4g9SZSsnLIgqkbHk9gppS0AfYJw0ZaN8lbKGhioNrOe6hePUiVGgl7Ih+Ac/e4wCOWokGWeAMimOs4Uz9HOGftJUKJPmKDvgjXVOf2wIeusCRkaQgfcRhLjNARlYv8e8OGBKo8K+GUtRzWoV12pg3VqMwxnsj5p14wgYGScov4oPi8+IAu17nddOs91DSMkqB+AnRwSIHBoJ5H/3DMu9U1+jI8ZQUZQLeSDMGQxMFJ1r58gnL8QbuRIuSSc6cY1jh/O6CXgccS+6wbzOAl8jrMu5aCwFkDxKoJkCgO/753zf/7zv+//9cg52mdGLPDonI8sngXWtdvA8bwewD/gh3/dbPdqj27/T87zDnucdfuGFF662v514GWPxm7PyRvbbz62ARbD8QMtWdLt2+wbr2psguVyQhUBUsLyZ6+KCDv8SkVrlcL+iAwa3r00AaVSySAztkwftMHJ7GZJtujbPMV9N2teWtQJC4jTIUGKQMVODL4pAWuO+aqoWZEWeRQamZwgTr3Vgq1wHE6mk4ZAYadw4klFwOSQQgJEMzcDE5Zy0IrO76zQWIrlHwyW+u4BFAYyLDaLv7noNJfDbNJDLHXFBh36OgbHTCEJBgRLR3YM4AMDyRdz1LgdFQYzup8ACJLsxgwzyFCApmHFJ7ONOmzOE/VNWEmTFDPDtnpgnM1MjWZVXplpiKpm3g3VXWStHgZwx/1OAkKRGzqhNSTdrVEkyRZ9Veju7cR1/9MX/SGFojZzapQb/ac/H2fnZfyVJlT6mqJK0wAHb5ZiBI1nL15hgPY9wh/kfkEzEZk4aieICDeLEqDPAuO0viFHoeiZIU2aUIZ7gtWQoMUmeaXqtpG/C/KMomIkbALadY5ZMn6JMjSS9xtBRPVumyJNnyhLiH+M2xhlg6msbSfSU5Un7mbhkRnT+9R7EADW+D3Lip+H/OsBeQ+w+EBo0L2WSR+NaENij27n3XG8YLOfFinOYe/8YAiRGDflcieqfQDghHyIgpl+H/F3vQvY7DFYRa4953Y8At+sI1Lk0xgj8RR4cMeIgARDRftlzre+3SlsuF7C1SuPVXd9OvLTxapP99X1/9xJfS3Zph6UBkj8A9nue17voli9jeJ6XRDI2P+/7/rNL2cf3/T/0fX+X7/u7rrvuusV36MSLFgvdRBcuoWo2GozuI+vdMqkDoW3agYuFYiEivQ70W4ENd73bTvDwaQYqQRvtSPgjIaUbib12XbQPzf3aK+Vi/j6s+eEYMmsI4tj8MKz+gbMM5Me5YeMoN2wcJbdhkgyzNIixkyNkKZKgyhaOk2OaNGV6KZC5UJEsSIHAKE/1epUc7Q5Q1csiEqmkASemvGltt2RMVgGr4mHCugsw4ghIUaCirzRhEBItu3LBShSMRI0T45F391Q0tN2oQpe2UXGBhi5zMxNRZS0tmXK9SlzgAkEpl9uhOee725FWpoou8X3O2V9LxS4QlHPNEs5wuaT7tQSZmYazvZLmV5uX7r8SSqsTJOegnE7RiMdFSLdcIdcokKJCjoKhi4u3TYUUJTIkjeKbSgLHqBtjxTp9TJGjYEnhqzfM8JeH7uWFzTI9Hr/UYO/3H2TrP54wMrxlyiHYi/X7EBPCCeuHItnBk6wxmRPNymjpVD9nKJO2ZPhepg24ipOjwBCj3MGX6WeCrRzntTxB3FysKfLEqJNjmhzTVE32o2pkh/NMUSFty7YA61MCQsRXQjwgZPZt09RmTXFhD/BWYD2SHXkBMT0cBAo6QDaTFRF58HbZ5IXujwutd7dZrN1wBnrYinMEGRLzWR3W6/sFSOzeJ9+POA3fiQCM39gnrw8Bb0aAyL1yHYgPy+eD+6V8C6Sth5DyrBFRz7Lu7/dgAZwrARwogO2P3LP32kmkdtdiKc+mTiy/uAYckld9LAWQ/AVwF3DC87yPGdWrN3qel1pkv6uNaeRxlY8szyPpoGisR1JHf2zUterAfwFeY77/mxe1t524qljKA6jVAyzISkTVpSLrV9ASuESP43n7m9RaFnuwtmsrmnZvFy0zFvHwg1YirJjlrTC8kyaX9zAAi85khsPUf18iOO+HgT9yNlkJN/zC08yc7SXPFGsosoYiW7pOUCFlbpd1W7pSIkOeKdYzQfbCLHGd/XZn3esISNFBqZYKuUBE/S0QAOK+VsTkPZU0pVz6bgbHa1cG4MQFIQpUlM+RbrFOP2sX3Kojfb9EsxeJnlY0WmVU3FMsm/cmU0TM+USRjQtClLuhwCFGGFTgfNbrqxkJt51Z05ZbBqbtR4GSqn1p226/3Da1PEvBTNS8caU5bpyglK+KAJM6JKs1/BhkLlQkU0LNurrXSJjSLFHhEvPNilXdUn5GnkmSxuk8abw8SmSokTB5ihyrNlzgk4feQnFQiO4rqnV+4nv/D9u//LQFG26oUzxAigrnyZrMxzQ1EsRMhlD/B27jX6iRIMt50pTZyRPs5Al6jERwjDrH2UKGEjWS1kwUJCPSzwTbORaaLwXYwVEjGVxgkj7GGKRMijgNy6tRFbAYdY6yg6Ps4BvP7CSXniYWr8NTcXFjfxT4Y+DTyMBZMyUDGJ5EOOMQ8OHay/e2KhFtPdHS/v7eKhYboIf7MEzgfo6ABwUSY2aj3cNSmqUlW58zr0HzrpmSbQSGiLv3CbD5EIFfyQNhQ0bATOpIxlkc4mV9kyLY0D6sU3vkvNpNbHXilRPfBCpb1ySWAkgGkLmT/4Y8nt6NDFkueJ537MXqmO/7NaQu7Z7IqnsgosMo8TxSz7bTef0+MGo+t9qnE6+AWGhgH9ygnfS8We65ycJ6lOzY+ji+vy/E5WhHKmwXUb5GsP3eRR8moQdpC8+RKFnTOvtG+toOoLn8k2BwcCA4dt3UPd+PEDz/G/AmKdN67tQQXckqacq2bKSfCXZwlAGktr+fCXJMs5FxshRlfrqOmB/qAFgHngXCDt+twpC5V3TDiqR574ZVqyC1WgbwK5Kwaq0DSpKwyhCoFaCsQoBHlDuiGQs3IxItAaPFdxc3RD9re+531zfFlS2mxed6PXiva9lWNMOhjbuDf7e8KyoLXHWWQ1DCddFpYyXh3yEKai4627tZGwUs0cyKxhzhLI1yhRSYrCQoCdPtTJYnWRBye6wOiYtQRfgklWTaZjgAMsySMfVqOpDXda6b+SBjpClTI0GKin3UV0kyPxDj4Be+h7kN8isnypfY+5aDpL9WCZkRAhxjOwlTEDXGIP2cMWVTs6hfSNWAFi1fFJtE4ZnMmh5rVkUBvmYYqyStoeh6JhhlyLahfRZ/EgEfE/STpMYWTlAiwwT9AKbFNRxjOwOM2xIz4g0K5V5K5zP03DUtT3eQbMEwImP7iyOE/UYkVDZdB/gLTX64y9yXu9zNCLe6zy69vGuvvef5fmRwb8qguA8BFbvNcgUXD4OpoAu4JDlkpLHNLBs37w+OyHV6GCnxqhsPEg4ETvaOySGH9oeuVeCB4pSYeftNVieIKPfQbtfJfrwiw8ezEydX+mL5qmxds1i0MM33/eeRwf5ndZnneWngW4BbXryuAfA/gD/xPO9fgC8DP4Ew93/f9ONjpo//yff9S8BT7s6e500BVd/3Q8s7sTyjldM6NN+QW2UfWj3U5IHW2qHcba+5H62zG+7ypZQjLNS3hfZt11a4nCsMvlpzTHRb9xzC9d+2LXUp3gnsAR5E/pvuqjN/spvEtgvsWHvUqhyBlIEMcMpmR6QsZcLWySeqVbwpApPDOYIHf5Xw4NQ19tPQiWh3QA5BuZA7iF4JK0wbK5KGRF41A/t4MNDXpjKEFblWEPiHuAR0F5S0KtGC1hmQFU7XWnFTLtFsuFivi2M7YA0SV7hAIk6gVuUCDgj7g7glU/pygUU3YTAYI1wypxEFKUqaX0mQ8dDfyHVqr0demrXRvnQTzuSsdva92Lq/XhUyVckoEBO1LC1jiJmN80xafoWaCQYu53HKhiQec9YDjDFIjmmKm7Ic/PzbuO/OvyE9dZGVF6q8+7t+j99/+EdxYydPWG5KjmmynKdEDxlKjDNAhhJZivSa0irAmiyqiaP0u8E0vdRIsIOjlvyuSltZzpva8WkAW24ll7tmMj5C8E9QY4o+aiSZoJ8COeNpkrUO9o15uV59GyeY+sJGOA2zN3fDdxsVqfcjWjmDwbmKA3vwPSjbai4rasd5WDgO4HnR++wIrpFrq3CfFb6/T3gjY0B9b+j+6HnORNUGhLQ/joCTTxAoaD2E3PcOEtyjhs02Gg8j236IwGckNyzARFW8FOQ8tC9Q0RrD9jPov5x7CKDZSajw+S+W2e9EJ14tcUVeIr7vl33f/4rv+39wrTsUOc7HgZ9BbJqOAG8C3uL7/nNmk43m1YlXQbjysy4YiZLA282ktR7Qu1K40eO1vsE3tz/SBALazQC2IxwuhQfTbnnQ7oFIRqh522hmpBkgyQO65TG1VONpYDcyyHwqzg13PE3f2imKZO1s6wDjpt79DGkq5JkiQc0O+DIXKnRPzQcP9zryueq8WpGtu81xVyED39XI4DVJwDNYadar7G13i/UrJZuSWgmZbuGbrO0OGyQqIHC/q1yvCxY03CyKyyVxo12pl7tOLweE1bjiBMBJo+KCCwgbIUYzGi7xvFVWxQ1XPCBaagVhMOICoThSZhUl1ysXxAUU2lclwF903jXLEiXs6765SJ/i0IjHacTjtiQqR4E8k4YZkaZqyqUUHOvAv0KKfiaokbTmgEmqdu5RhRhSlBnfMsBHH/pBqlnhYax+ocQ7/81HQ5cuwyx5psgzRS8FCvRaUYcc05bUXjfEcslarCdJ1TqzF8lSIMdWjtPHJBP0088EGWZtKVaFNA1iDDBOmbRxpQ94IAVyVIy0ccX8JTaIkTDHUcJ7kiqfP/bdZLuKZLuKTJ3qD3g/TyGlRw+OyP/nIFYByveHbWlRU0mp3ab5nrdU/ofbbnjZMO0ieBaEt/FHkKzD7mEr8BGK0RH4bQIH9REkA6IKW7oeggzJowT1Gfp+M1jn9kPmmilZHoTg/qCKg5jnRX0E6vsjDuxu6Vs0mmWAF7oeV7KuEy99vJpI7W54nnfNOreoD8k3S3R8SF7auNbp5+aSJmcwvqJZUjea7VgITNh9VhAqpVoIIC2WZm+1/+W0tdTrZ4+zAqdsLSBXAkH5wJ5hmRXcAGyDG+5+mjgNTp7ayk0bpTSr11Eu2sxJhhglRoPNjJKkRh+TbCo/R3IOKdUqIFyRcwRKSiADUpX+rTvLIVzyEyVe6zIIBq/qZaHLq85yl18BXJiTQX6FwJ+kZN51/rlOkC2JRquxvXZPQYzLL9Hl8ch7ytkuHWlHS840UisJfEO0E3ECABL1E9GG3FIp9z3WZp86YeDhhgI/FzTETTvJFtvrMgWNMwQAU9crZ0XJ7Hou7vnnoJ6EcneCzEyNcrfIATdi0vkiWZvpqBkyt2YG5BKIDDBIBmXaEAUqpO3fsYKEOjHSVJign6GvnOTff+enWFFu/sV/1v+AzcokqdlsjQIlJZkXyNnSxixFDrOLfqOoBeJhorLYriJYmorJqKw3xZGzZnnZZoVUMSxDyXqlqB9JkawhvCcpk7K8lG88s1NO4GlPki5ngA+bk9qJcRDXSZcDgTKVG86yhTK/7e6PzVlvzbgsnL1ufb9WT5TgHQ7Ann0CPCDIZNxO4JAwjgCMF5D7Uw65731gRACNlqnVRwI394cQ0HEvgWzwfc4+h/TaBepZtg2VAbbeI0hGZdQFJy4ICXxdFrrPd0q4wrGcfUh6d93gv+3we6+qjY94DyzL8/M87wXgo8Af+b7/jatp60V3W+9EJzrRiU504pUUE29cz9/83++iEfcW37gTnehEJxaIa0RqX67xS4g34FOe533F87wf9zyv50oa6mRITHQyJC99tOJkLMbpiJZyLYXj0SoTEXVMv5rZpqVwUdr1caHZL+17u++tSstCruvxfc2ZIUtacPTwdTbvXsTuVB20d8GW7U9SJEu5nOaO9CNkjDIQwC4O27KZLEX6mKSXArlzs3jngGcQWdhZZDbWVdqapVlKNo6U8/QQlP5ouBmBaHmRkq1V/anubKPtmhl45ZVUqnDBtHGBwLldMyd6aNflHZoTBPqu2ZHoMmg2YGxFqrfbxgP1MHCUt1y39Ci3RpdF+SLudtHsipuhcLfTz3NIpiIeWW8UsKwalmZhomV3mPWuh0kPYc5Jt7OvPr7c56620wB/rRDcz1+XIlGtUkpmyFRLVJJpJo0QY5aizRqoAleGks1gVEmSpswE/dbNXQ5Zt1kU6VqNsimXuvnPv86/3fsF3Hhv/b+wOiaujpPkyVKkQI5+JmymRZ3kU1QokrViEOoXoqGKWTkKFEz2pk6Mfs6Esi4a+v8Xo8EUfcQcRS1xp0+bzMosj3MrT07uILOmxMyX1gV/AysJXNlXIwR2NUQdAytTO7QvZOAXRPO9s1UsVmq01PvtQvdue2zNOAztg18Bftj023VYVzL77QRu9LuRUi3llLzDOfAMklV5GCllGzPL9frs3ifr3Hupm2FyMh82M22WL1SW1urcO9mQxWM5Z0hyuwb97zr8X66qjQPejy/b8wPwPO8m4McQJloP8h/1R77vf3mpbXQyJJ24qriaOtVWPIylbNfqs5QhtV4nEeWQLF6n65I0Wy1vt287cBV9qLQ+pqvStbcFEBlpC3QCxSzzgKw7vBKtBb9E8EB1H6CDyMO5FzgIPXumSay7QJk0t3KYO9KPhAi5gFUFUuKw8ke8KcS+1FVWUhKzqinpch0gdyODIx206vfViIdFN5YbEuKLrEZKLnRwq8ui/JIIrySVDICBckJaKW0pr8RV6QLhnbj7uuFWR7nEeRfktIo4YTBio93kmEsUj6pfQZhvotu7XBNXujdJmGje7Xx2QwGeGjG65XX6+2hMOceP8kmqBGIHVQIPkxnCPCPze9dMu+lyhfTcPJlqKXBwb4wz0Bi3BoExGvQYYrkcKmG7pATvGHXrXwJSJtXPGev2rkINT/3ga3j0v98augQD3zhtVbYGGKdEDwmqTNDPecP9yDPJqHETFUWstDVD1JrwOCJZnKNAzHBYxLH9DOphAliie4yGlSqeYH1o/lTBVZEsNZLWk2VTfoyZp9bRc/u0DJ4fRsq0xpD/kw/TXL7pgBPfH4ah4RBPzg31L7Lr4s18utD2bSZaWkWUGxiQux0wYhSsxPvDgBIFIyAE9CPAB4cDWd8iAkqGERK7ckrej/z9PWdeReCQ8Xi6B7lH3mmu1+59UrY16EgLo14oDiF/KFA9DE3+RM693bVaCi+nE980saxlf33f/4bv++9Bir5/CRlc/LPneU97nvcTnuctijc6GRITnQzJSxeXw4VYqBa5SSkqoh7VjlOy0DF0uyudkWrXz6VkQxbq42L7RbMhriOwe/wgQ2L23bNPaqRvQB62F2H1m86STNRozMfo65oizyST5HktT5CjYGVQ1zNBnikGjMxvplFi1UQt4IuoGeIMsszliugsu87Eu7wQCM/Ku7Ps0JwNcZdrVgTns7uds+zCnGRLLtQDSV71a7xE81g8ukwvtwtI4i2WKYjJIGCklbRwLi4SvysMIEk52YEQV0TBgmY26rTnkGi4AEcBg8sv0UyJm4WpO/v1ONvVI23oMRUQRo/ZIFDVUr6Irtft1zqfVxMAKwMkq/2QnJDv1ZzIAMcnYG5TF8XkGjtw10G7KkslqFIiwxn66WPKEr8Txo9EMyvuwF/I8Uli1JklQ4Iaacr8B++v7Km93/85m9lIUaZAr83O1ImRYZYCOXIUjAJWlQK9Fj70GaSWNP2rE7Ok+D7DPamSIG4kiQcYNwAlbrMoANPkSFKjQI4yaY6z1QKhNGUO125lZnQduW3PUxjrh7/3gt/zfcggOwv8FpIdPYKTIYHg3hFkUFSe1s1UKLcutOwquQ/tuXMRvgjIIH8QARYPEyhdgXA/lJB+u3n/CAIm3oH4jKj5oXJF3CyJgrc7zT4gfJsCQeZkgICX8iGzjSszH98H9Uj22kaYL6LnE81sd2LxWM4ZkrW7Nvn3HP7Vq2rjL70fWbbnB+B5XgL4fiRLcjeSg/0jRBn3p4GHfd//gYXaWL7U/U68amOxLIFGdIao/eyapsDDAGQxkrps0+x+3gRmIuTOywEN0f4vljWJrmt3zFYlaSrv65YGBNvutcR2maUzmZG3IeVUn4PE/Reoja1i5mwvnI6z+Y6v0yBmSb89lOxsLsBWTtjBXJIqyWpNBv8FAolfV80pSlBvIINRaUAGSu52ClTc0h4IfDVyNIMOF8jMOe9Rtaq6+JlU5gwQIAAYUSngKDBxMyDuKdVpLQus5PWKs16J7fq9UpdyLZAsSWUu+LzClehVgKbvbiZDS7NccOeCBt0uSfh6KtCIET5ZPQmV+lXxAF2moEnXuRElyUMgL7wy0rYS3iHIpjltJJ8J1icuglcFvw+KyTWyzBy8StJmPLIUrU/HIGMh0npAHi+b/WTwryVPSjDX7MM0OfY13kvibJV6/wqynLdE8yJZ6wLfQ8maLw4yRpIqdWK2VCtN2cr/AtbPR/unRPZ+zthyrCRVaiQo0sd5Y4Lo9hmEHF8hRZIqk+TpZZoJ+mnU4wJGjlwvA+sXzHXdg5Qo/RaBxK8pafJHHKncISOnywFx80LlaiPZ5vp+XOnehZzbF8pEu9HqGRHe/0BQpqVgIQe8BykUGTOb3Yn4rPwxYvqocQ/B5EiGQOL3Z4GfNP2PDwdZEZVE/5TTxvuR6zouQM27DwfMmfJYfXbE97V4Xun5R879MsBIp5TrlRHCIXl1Drc9z3sdAkJ+EHncfQz4Kd/3TzjbfAaB/Qu31cmQSHQyJC9vXK5qVLt9olkON1qDGp1xu7ob+1LAz1L6fDn7tsrouAo0si6YTbTnfDcyKAGRmHoO+HZgGHq2TdOfnrBlJjUS3MZjRgmowA6O2oHcIGPWcyF/oUCsDt4Ekg3R7IiW7VwknKnQzzrbrwNXHYzqTLnO+OtAFgJ37xkCJ3BXVctV7LrgHBsCAOMAmUt1KM1JpiTKGVFuiX7WSDnfLznLNFplTVKRdVHuCUg52QonG5TS7Id7jSCsYuVmS6K8G3f7lZFtXLUtl0sSPYa25e4HIY6HLY+DALgoKNF2lX8CYTUt97gKPucI/ElisryaF7NEv1tASXU1VJMJyrGU6WIjxKkokg1lMMqkTLlUzPI6QMwTq0aeN88Uk/TRIE6NBA1iZCkySZ40ZcqmHEuzKwVyDDJGjQQJk61QjshJhtjJEXss8T6pW1AxTc5YJJasXG+RNfZSKP8lzyRlo6B1nC0ArKFIlSRjDFIgR4Iax9hOjQRl0px4ZgcbbjzJ6c8Osfo7z4Y5JH+KzOQPIrP7OZzsyH4pRzoUlqd15dPdmf5WmeVoLKSy1SraZbdlQiW4l7mZG+sn8jQhM0LuQ0qvHkIAxXUE6log2ZEZsw3I/qqy9R4EtN1v9tcMTH1/WMmrvj/Ct9HrFWSQohNaoXM0HiadrMjVxXLOkKzZdaN/1+Ffv6o2PuX94LI8P8/zGsA/IPD8r33fb5Im9DyvG/hd3/d/dKG2Xp2QrRPLOlqVMbV6aLUjnrd6qHnDwGgrUrsSC/e2AR0HEPPE9v28mnNcyjbtiethWctWwCOIvU3rpAbbMVC8G5npGx1BpgRN7IGet00zO51ldqyXEz1Z+jZO2MGUzuKK/8gpO2iKUZdZ3+p54nMEUr5asqUDUy2hihKk3e8rnW1dPoiCkogUruWRKM/gYuRdgckq7IAWTN908G6yCysw3A3zuUxAcHdDS67cbAo0e5FAWPo3ur2uc0HLCkNmB7jUCHgkmr0JAQ53AD9HOHvhlre5pVgKyFxwp5/1t3D3XeksawV2VjptdxMWIVAw4rbttt/jtKdAUs9JM2rRY8YRKWnNCl2E+touYvU6vXOCQIureiiTJkWZCmkDQtLWMDFNxRoX5ihYmWAt9SqRseT0MTbZ0kTlgmj2pG6yhhBkOZQ0H6NB2rjA6/4x6rYf6oMCkGeKhsmgxKhTJWHNFNOUQ2T4MQatvwoI8b1I1k4cTNHHIM/yGLdRKPeSyJY4fWoQ1sHM6bwYnV5nruXTSInWp5AMgykpIj7slHXKfSMAH8F3977llsu6niWtYillXO14e+CYNA45x70Hk/kZDjJA790ncrwAxWHxWHlgOJD+vc68njbbf4JwWZdWxWkG6QWCjIvGERxJ38D8MABI4Jo+el6UiL+3KTvvTiIt5Zp1ohPLJG50vAFbhu/7c8CCYAQ6GRIbnQzJSxOXwx/RbWBh0rmub+X03mp5q35EFVEW6nfzunB98OWc3+Ln1L7Ma7ESNp1RDGn1/xJC4NTLsQG4C+ip05WsMv98N4nBCwyuHWMHR61PQoMYWzhuvEhkelEVgwaq43SfmxffEQUjWrYVzYq4AETDnSlfTTh0YKuZEAgyIDrgniEY2Go2xDXbU7CEs62SwAvyXdW3LjWgdDEAEJdo9ifB+R53lmvWJGWWRdW13NB1aWedC0qsF4lmL1x+h4arrKWgI5rV0GunHVXgpyTzqFdJtMQLZ/8o5yTqzh7QG4J2FUApWNLf1+2be17RbEp3pB1k+3oSGnHJkLhRiyWom5OYJUMPJc7QT4oy6tZeI2l5HYDldsRoMEmeAU5Zx3MRbJDMhWY5eplm2uyrfI8hTooaHWn6mTCZkootoxLwXqFGgpT5i1JfkT4mGWejLenSLEuDOCUyZDlPzXirKEG/yBpi1InT4DC7mKCfPJPyeXI989UkiZ4ytUdXwTYf3uEFv4+WJ6mw2KGRwCOjSVkr4IRIhDki7e5BrUjrC93P3G2iy0NtKXgaGhYQMIj0Nz4smYwsQVYD872IZIAPIkDkZoJr8csEHJCdCEjTfRXIPOhwY9xJnfiwBXL2PqugrIlT0zoTv1gZ27XgMX6zxHLOkGR3bfa/7fBvXFUbn/b+/bI8P8/zngFe7/t+IbI8C3zN9/0bl9pWJ0PSiZcsojfKpfApmmeQgnR987YOGFnh8jeawYh7vKCdKwMSbvtL5ce0b2vhUoZw7A2tcx/cQV2y4Y5oJuiDwwJI1CTsPwN/Cqt/dZqZp9aRGLzAG9Y+RpoKGUpMkmcHR0lSpZ8zrKHIgGV3Ql91UsDIBMEgcw4ZsOpAUgGAS3x2B6oAeYLsiC7T/VYR8CYgGBDrgFkH45pNcTMktDguSH910D8HK1bK9pcakFkZmCdCAB4UZEQ5Ju5NdJWzrlVoedYKZ5sVccmEKBhZEQsc2m3JlnbAvaY4y91sggI3BXhzkW31OkTbbUq0m+Xq5K7btlMBi/J0ICi9qjvfYwTlWPq7xp31SQQoqmpX9LeehUa3ZEySczWq5nesx7ogJgP2BnH6GlNMxfoMiT1unc6liw2bIclSJEWZMTahhofT5CwpPmvUrdTdXUuvQMoWy6RsSaPLEYmZY+SZtKVjSpIHAfRq1KhlYGXSpClTcy5yESHulx0zxyn6bJmW9mWSPKef2cxNNx7hG599LbUvrYLvRMjsb0bkfQF+YzgYhOvAenQEq1IFwN5g8O9E9B4ry1oDk1bZ71YRBSrh7LbJ7GoMItkH7eco8MA+KUF7GjnP9xMu27wB+Cfkb+qIWfaQeb8PuR8qsf1+gsyJZjtM+Zf3S4RlfgfBHzETUXcPWwAi5xDI/kp2KcjEt+JGLvTcu9z4ZgQjyz18PDtR8iqMQVprQSaB6y+noQ4g6UQnOtGJTnSiE53oRCdepHi1kdo9z/t+5+t3e57nTgPEgO+gudhx4TY7JVsSnZKtly9alVRdWTvN5VJhpawgbQ5XRkBfaPlStruy0q8wKb3VcSRcCUlHKUZJl/cgs4XPIdZFABukVCudqZBOl5mezPHd+c9ac7Z+JkhTJkeBDCW2c8yqGvU3zrDqXC0o0VIie4MgU6IRLftxMyEueVkzKVpepDPyc86+M2aZavTGCUiqqvKlpHct49Jbpdu3aCmXybJULkqmBKR8Sw+rpokgmZEVBCaK9cj7Cpr9R6CZ2N6K0B6PPLdWRHk3EC59ixLV3XAzLD2IIMBqgoyHK+XrqmLpsjkk7eOS6qPH0pIrd98oPyhaGuaWe+nv7bal7eedbV1hA6dtzZCAqHAV14p5YiWZtgR3wJZgxWhQJm0VuerEmDUKW1rKpUR1zXaUSVuSuZZQgahdKa9DS8I0C1MjYSV9xafnPBP0W3UsaatIPxNMkqdAjgwlqiRDho5lUmSYZYxByuYvqEKaJ9lBkaxVCJss55k9m4MxD74K/GAdfj8uWZJ/JBxq+KcxiGRJhlRpq7UErRK0m4jZhMtmw6Ia7cu6FsqsWIlyCLIS8WFRvdpGILF7J1KCVTDLswSlgRngEFKmpqWqReQ+eBjYhUj/arbob4fh3WbfnUgJl5Zl3Y8t39IIl7O1jnbnvdTS3m/WEqzLjeVcsrVq17D/hsP/86ra+Lz31lHkr/nTvu9/erHtX+zwPG/efPSBiFYclxAw8nO+739mqW12jBE78bJFcIMeblq2lP3k84h91wdidJnv60M10K1fqI55sbhSMBI9lpRWufXTrUvLQkZbdt2Is98+AsMtJbebtuojsHuflCY8hDyEb3AaqseYf76b5Mqq8EHy40zQT9rUv2cMbTdLkUHGQsaImZmaDBInCVzYFVgoKb0bGSzoq8+8VjvfVyPyv/3AJvPejwyEN5rtNhIMyPvNslVm/27nWO7n1S1eapio5UC6TN+TjnFiMpDihUCqd5V5jyPjHQUVKec75nPG2c8FIyuc76mVUrZVry8ARjSiwgBKHHcle13gotwaCNTJWpVwKfBT/o0CN5fDMmeW1Z3lEKiWXXT6Ey0pU05P3GlDv7v9cQUIVhOAxxmnHzFR2tKoJhNUkwlidTFQbBCjlBSA0WNMO2M02MxJY2gohohKME9So4cSfUySpsIgY5TosQpXEDik9zNB3BDW9bPIYq+hQI6akR6W8q4GFafMqkGcNBWyFC0QyVI0alsl4zfSMCVbCbKcN0T2WSsuUSNJjSRl0mxijDxTnCfLAOPMfrFXwMhFZJD+VFwkbw+aa/kJ8xpBBuD3Otd91EyGjLoAYS/UR+w91fPEJDBaRhu+NykPr3mCaXEFrpHw4L0+Erw4IPdBBUdPIyDqr833XQgh/QXgTcAO8yqZdUVE4nzEbHMYkTp+DrmXjCF8kS+Zz2MIwBlEwMi9CKcE811NaIfBApT4vuDF3tB9OVoefDmlvS81GLmcZ2EnXtKY8X3/ncsBjAD4vt/l+34Xwh7t0+/mlfR9f+vlgBHoZEhsdDIkL00sjcgenl1rOXvmBbN5l3Os8Kxe2EzxxYpWZHtYmKjfVk3MvQamSZnRDIioVilHZ/Z0RvEF5KHcCz13TQP/f/b+Pzqu87rvhT8HM5ohBhhiyBlhSIhDDUWApGFSpiw6khUrFt2oSVOnV12VXqdqbuOsWknspDd1b/I2Tp2L6sa3dlbS+rpN7Kb2bZw0ZZKKvdWt/KbxtWsqkSNLNmXRpgyTBChCBAUSEIYccoABZzyD8/6xn/08zzkY8IcoK5Ayey2sGZzf58zMOXs/+/sDFqYK9Jed1G+KJgXmKTHNIHM2aVJztm1MUXhlQfabQFzZT+MS2PN0HinvI6qUZUil4aC81vt6yCwu01wnxndKWG4njOldfYmESXI18Uyr6SJm/0qk9/kjDZwxox5Ty/yvya7yT3xCvHn/vRYseR4brZZM003F1bP8zkivNx2EwK7vtWhJIsUIYD1Hkkk3LdJZgGjHg9i8ZIflfQJ73CDRV0DTDlZ823GUgZLrtYMSN1jUUCWtAaKdFC18fC7MOhz5Rjsxl837QW+bykXR4zTdktDst52Eel+KRKtFM522BPBso8ZSOmMVthK0aZCyanFtErbQno8w8yFN05osLhl1rHkK5LhgLlGbC+RI07TqWbKPli1iptkKYE0S3eVtR3Dlui/fY0TVtJTgPs5bAOn2VMkxxFmebf4AF1/YBIUWfC0pVfBRhLD9KaQg2YVLqIdHHKEdXKekZe6J6tzeWr2ACEZY9d4bT2ivRFT3p6/ssDip4QiJXY9d7yGPme0+OCZFxge9YuiziDXbE0h35DdxJpD344wQv+i2h/pg/zrSJTm4ihRycsQjrxPj3BxY9R4eP+crxWu1zF+HWMsdkuy+HeG+w//mhrbxZPC31uz5vVbRLUhMdAuS1yau5+Z4pRa2Tu+8nv+wgk7uwNfSHn+toGIrj+/6rsGrVR2LQ7Xsq3ZLWt7D+RgygmhUtQaGzwGQTjWFcFsvcE/maRK0GOJspCjJcYEaWXZyghxVbnnF4KNawIvmEBQ+pXApTVa186APe1OUhH1SVIBTSmomUib5a5KgZeE2Oao0jaQqiAlj7tICtfW9ZOpLpBUyFvchOe+9X/RetXDSaf4o/KI5F8B439mEXonmCufS4kSVtdTDRDsgfrGiXRRfkesmL9m3Mr9tT2ELovK3cbUpX7VMl/Wd3X2IlN/R0HXyOJL5asWHRrz4iEOn/PdaeOj7tDdfSfaqyuVLEIMrTFTeF5zCmhZNuh3/umAK5DZcuLmXRLtNM5Git1Gnki6QoU6LhOku9FppXoAZNttiQBXlAOr0Wg8TuRwt0jStapZc2rY1XFTVK+28qOdIgxRzhrBeZNYqdG3jFCmzX4V3tUmSoMUU28hSY4qyNWic86qzU5Q5ybAlwU+dL9NckIKIryXlep1FvtOPIR3SZ3CRRxLtD44RfhqnHjXlFKKisKyVyluwcrl4dFKV8mP1TvXDsN/cuw6ZfT844hUHE0LOfwm5t+WB/WbVfhwx/W3IvUHvPz+JQK90cGYBMULcP0KsFpUC5hmcr4kKAGgoFBY8h3un1NgZ3tZZCfJq160bV4+1XpDsPfw7N7SNrwZ/c82cXxAE/xT4dBiGl837VSMMw399zdvtFiQS3YLk+xdXgy+5B96BFQ+vTg87O4p208qHpx/REbeVuOdOr9dz7Do/HlfqynTex+odofg2/fOxYXDekeugLsYPjjmpy7uBnPm9VwXyed/b/4wGaaYpMco4OS6wjSlyVMlTsV4Kg8xSYpokbfLnJVMP5nDcC+086ACwOrArP2RARrLrfQ4lWktnaZM0cqm9NrlLGvnVDHVrMqemdyDO3EnaDLbnaCZSJGiz4exS1HxRIT4V7xVcN2SBaOFx3lvPlw324USLUoCoPDDIe43vtVYXrIrn+n5XBJwZYm8naV/tIvgdkAaO2+EvF9+pT2zpxM1Rlas4NCxeFIHjlHSSG05668Slnf0Cye9u6PG0iBY4WoDoez1f7ZwUcYWMwrqA1gC2i9ZOyvvZjQM0SZNvzLOUzli+SC9LEQNFKXqFM5KnQoKWLQ5UoWuakuWCKIdE+R++K7sWJ1pEC/yqStWAsLYZnqd2aZTLkqDNFGU2M0ONLEumsJmmZHxOUvaY5yiSosk0JeaWB7nwSo7lJ/skiX7B+2yPEZX4BZe8/yKu4/CU3ks9WFIZp2aVdPetSFdAwziSayKu0Crxh+rQNVAHc8DvONhpvvEgOI4LSLfkAwjsqgK8HykcbgU2IxCt3zbrvWLOdS/wU2baXsQY9icRRa6XcMaJ4JS49nrvIWp8qDLJ5vh9mfUV5xLz0+rG9yfWckHSv29nePvhf3dD2/ha8J41c35BEJwC9oVhWDHvV4vwemR/uwWJiW5BcmOx2khY54Li6gVKfJpu68rHEB2hutrx+st9v7olV9/vlbs6nV799cGQP8tEH5g6kldGoAnvBn4X+FnY8r5JMU0Ddm99njRN8lQYZZwaWbLUKDLLZmbYxhQNUpSYZlv9JVKXIehABI9I7KaRUcr1QBIaeemCVBM5K7XaMCPVC2TtyLCi+3X0WV211QsiabNv6KdGmyRDzFjcfYMUxfMXCfyiQrseKknrd0KUAK/noPNa3nxNmHVdsEWXFicgsK5kcmWBAk7W1++IKDwLnBHiTfGqBaIO65pk+i7oWkx0clrHmweumIl1FiIE8/h6fvck3nnxuyZXMsAE1ykjdqz6XdHQokY5K0Pmf7+o0uLEQMKUTxIsGhf3tviU1NYLub2SLpCiQZO09Rzpp8aC4XZcMAaDWgBoVMkZOd95Y1K4ZEnvPiFe4Vrqkp5n3hYMarqoBUuGJa8DkzGXI2Gc2pt2n+pvooWJENozFoZ2gp1sZobvLo9SOVOEM0n5jg+34I+SkpifNSdymKgRoDVHxUucPXNYS2yfMIm3j81aCUVaCYP1lvOKE8ArRiZYUaCUicoOf8Tcwx4z0/ePOWf1x5CuxC/jyOpvQ+5xv41zXv8kUqBclO8K9yJFxiGzzgAC1zpkuiS+rK8WZVM4mNdU1GOE/SOEX2FFkdWZ83eg433/1US3g7Iy1nJB0rdvV7j78L+/oW18PXj3mj2/1yq6BYmJbkHy2sVr2YZe2YFYCc9abfn4zV9xz/FlrlcNyy3TuYi5lvOPP6hX38dKzsuK8/NH5mwcEH3+V5AHr4FqAXAZ7nz7XwKqErTAEDOUOUWOKktk2M5JhpixxcA2pshdWhBHdu02XMQpNyn234MDXdgsCeHZtGSV05Qs/GWevB0d9qEyMwyRo2qN6jRZ6/USuRzViJeDcl/yzJOmSaLdZv1cE6u+NeddlkUwPGWZrnyRS7iuiV9g+V2flre8Fh5tB+UC1znxo9VykCwtXJQr4hcwljvidzs0oe/jymaGyQ7rxLkkfvjwLz2veCHRiU8S37df4Kz3pvuFk1/4+FAun8CucJlFXLGhgghaUOoyepy6b51uks5WWroj9b4emmkpQnobdarpDZbMrt8vDTUjBCKFiRYTQjxfsN9BfZ2lSI4LtngGjEO8U9vSffkKWYCn2iWO8hXypGhSp5ez5ncgPiNtpinRJMUF0yFRz5RqU/6/+MImOZEXkELkJeS3f7M5Qf/9ZzwIknIzQKBMX8JNLyHJtoEeybV3qlsriw0dEPIhpL7be/y+60FvTUESvz9LPCzQ02O4bogfOh1z7lqAyYch8S7g95Di5KNIofFrsq3w0xA8hPBPko44H/wq8HFzraaI8EN8w8MITGuVZ8v1GiN24/qjW5C88aNbkJjoFiQ3FteiKtURdnWFG/RqpG6NTqNzV+pyfD+6IK+GL7LyHN2Du/MyHZzm/SQBHKTiXmSU71PAGeRBvCukp6/O8suS/e19+zNMLwuG496ep8hRJUGbnRy3OHeV+S0yK/CtdkUkfpV/AStN9nQEex0sru+hmt5AjX4Ly6qQtyRekTRNmveiaLRAlj0cZZxRA1ER+dMKebZz0nZXlNeyhEBwiszZIkVfext10o1lklpYaFGiBZV2SfTPh3L5/8c7JGrSp9vV6xDjmfjFxvfa0W6IX6BYyJbP8/AI2+7zZXVJX+04tIh2H/xOiF+Q+MVF21suTefCpRVbZx1OTWuAlQ7x8fNQSFYf0eJFndu9gs6S4XVfWrAoF6WBwAF9aKB2WEyhGA7Iv0HDwQRVAlihUzmqVv1KXdGbCPxv1uNqpGnSNsTyfmo0SZOjavkcLRJkWbDrVk23RYsT7aAABs5Vj5Dfa2QjRU2NrIUwtkmaIqXBCXYCwh0BOHF+J6l1TRYOFiTJXhfCsUDI7Mqr2IUpMDyuAwgUSQcVDk04boZfSMRcyCMEc6+z0bGw6MCbgM7KW+ANqOwfcXwNEFiWXCjpdHwYUc06jJyzvoJ0hI4hnZHd3sZ3mekHsRy68EMQ/AZiFKk8FZUL9oudp8BcbilI7sXxWSyhPQoftud0DRzGq0W3WLm+WOsFyVsO/183tI3ngnetyfMLguD3gBfCMPxXsen/FBgNw/ADnddcGV3Z325cNa5FBjA+OuSkIqNyh/GHU/yG6/+v612Np+Fu3AdWLBeNA5HziR7vyn3EpwXBox3XXS1W23784SSyvvHizLj63hQdYZQ/kd+0EpPDY270bhrz4ESSPRH6YbnSR37vy/TcssgFcgz2zDHYM0fKyJMWmCdBmxLT5KgKcdw4WOfbFRKtVpSj4UNo0hAOiWLWhVIvlzammEpvY45B5igyRZkqOaYpcYQ7OMIdVMkxw2amKDNHke8yCsBfcC8zDNmkbYoy8+Q5yXYjpppmijIn2EmNLHPGv2GaEpNsZ4YhpilxIr2TmfWDLA72yHHG5Yb1T//vQ5LkfpwimCmuIn/aBRqITVfJ4D7X6ehd5ySEfa5I1iyjcr83pXHFht/t8DkhOr/NSgiVD6vyuR8D3nK6rRZOntfnn+gyCnXTfWnnxD8GLUa0E3LZm67fkYS3HS1ELnuvftcJb3u6rTjRXhXU/O3qMV7EwQeTAt0KFt26mcVlUm2R9u1tiKdOqt20ZPEmaWr0W4iUiDpUDIdEltHOXoa67WqoJK928TLUrSqdkNrbZFiyhYdwopZokKJhChi5/CKv3SRFmwRTlFkiwxyDTBvyR4omx9lpOjFJBjfO0bycks7nk8DlQL6HL5nrMo0k5vcjfIy9ODlbnZ8HOGCEKMx9Z3hMuiM62FHGJe2Ye1HSDQDJq3ZDFK71sPEQcfAtcSp3z4QgeJTgJnNf1H0dmnDct/u9z/UXkeLkBbO5m815/jTwDjNtC66ouM/7fpxB7oH6Wz8IwYeAz5nz2oUUHl9CipFpcxyHJgQONoV0jFoTMi85IutZaJa5Nq1HI74p/jPvSmpbV3qOdIuRN0+EBPY+8Wr/1nD8LeArHaZ/Bfix69lQJ9RyN7rRjW50oxvd6EY3utGNG4wQIhLfb7LI4TQp/VjEydtcU3QLkm5cNa6VgB59r6P68W1dO2RqZXfFER79fV+JTO8f25VGnDrNi0OmdJuduh2rHbv/Xtd1MIaHoyslo/tz3RgfiiaQiSDw1x1xBMy9wH7k/TqgHIqi1jrI9VQpFafpZYlhJgHhcgxxlhRNY+bWIs88INj3AhXaiYSYICYRuJYiWszdI0yLhG8t0y8qRomslTKdpQgIRl9HiQGqbGCJXqYpmVHjNOOMWkjNLIOkaTLDECWmDYzF4frFjE4IwCkaFKjQopcZoECFHFXxakjnKG2eJlMXPH+6hTXXW0EIP48bfddug0K7INqx0C6Gwpc8xaqbIAKduslAmG4y+/pey72PQK5w21jBA9Fuhg978vfjy3vpPD1XvP8VCuZDtvzj0HUVhuVLC8dJ7rpNH1aFt/6Ad810W32xZXz5X40BZNR+AAeNy3vnGVfmipHtldjOZWgPiOJWZrFJOtmknhFeUzW9wX4XW6a74atu+V0LdXZXLkie+QgPZJoSeebppc5Jhq3poZxi2kLEQOCJ6k9SJWe6JWkqFEgZSeEho7I1S5E2CY5yuxF8cK7wTVI0p9bTf/c8C5sKAl8qmOtwDJH5/SSioDWNdBzuNfMPGljUEaR7cgTDHxmJSdseAMYcTAlzf90/BocUYgo+rw/M/dDAvIIA131pGeK3WUYgT8ZjBO9Yh8ekY6Hxy+Z7cLf5/yLSEZky/29GnOh3IZCtc966TyCdlC8iXZUHEfjWh5GOy2fNue821wvc+T+m54GnqvWwdJ/BdURaE979XSZdSVXRj67kbzfeBHEC6YR8Kjb9b4NJNK4xuhwSE10OyY3FVeVxfSnImI/I1YjevkLJ1WRx48e02rzrOf7rkf69Eh/mSjLEdp0O1yB4D8aUK+Y3olhrVcFRlZg/BP4ceYDvg/yul9ncM2N5G6OMR0jho4zTIsEQZ61jtEK2UjQp1AVwnp4FkitVjSob+2kYBaNpSswyaBK1rTa5q5FlmpKFqaTMtDmKtlC5YJSMlCsyyTCjjFsyvCZ5KlGsyknbmWSBrGGi1AyPZIkcFyga8kiJadlvo0FmcZlAPUrmiJoiKkxE5/uJsm+aqHwNv1jRaQmiHJN13jL+q190xJWv4vwcf3lfrrcvtmyrw3L6Xuet894rBCou2avn65PHdT2V4l303vv7Ve6Iz2XRa6D78ZeNw8zUZHPAm6aRRq5t0aynMsQafd738yI0itBK9NB3aRkQblM7maSZkEIAJLnPtyvUEllq9JOkbcnlABmWbNGhKnTKf8pQZ4Yh63OygSoN0jQN/EtFI0CLkQVb+MwyyAYD76qRpU6v/U1UyTHJMEPMcJQ9FvalceIrtzPwrnOOzP455PeuPAoNVda6G0mwQRL5R3DJ+DFc0eGrag2POGNAE1HZXp/kDRF+yQiSwK+QC44bH0bVvQApnl7xzuEIIs+r38c/B36lJcpifwj8gjnnLyCcuS/gyOxa1E4gUK8cUrh8Xs/5APzOmMDCWo9G5YYfQApjNY605+D4ir7E+urPj9dHwfGve6xlDknvvtFw2+H/dEPb+G7w9kmkHH5irbi1AwRB8FPAvwP+NQ669TeAfwL8fBiGv3fN2+oWJBLdguTG40o8ifhynToYnZbvRGKPO6z7xMK4u/DVioyrHd/rMVJ1tYJmJfHdJ5si7x/BKensRnDTD4WQbHPr1kkPx77EHTxPyhBth5ihTYIyUwwyS9Lg5fNUyDNPpr1EZrEp5PCkc8UGqG6UhE04H/L+LEM0SJOmwTQlO9KrI81PmWHahEn6fA+IefJU6jLMW86cIk2T58Z/kFtHj9liCeC55Tv5sZ4/tepceeZJmq6JmCq22cO3qVBgmEkrvwpCYC41puk7v+x4CTpSP2NO7BRO+ldfIaq+5fuUKPdBE2md73cW/MLGLzr84kCnpWP/xwuVuHxuvCDQiKtaacSLFj2mTkaLOi/uWRIvUuKO8H7h4h+/76sC0tC/iCtK+pFr5XddfGUvPX6V/817y5rjWBySAkTVtkC6JPqaaEF1fb8tSNI0SLWb1BNCJF8y32W3uwRLZOz3yJcGbnpcEHDqW1qcKNFd/U8Au98MddtBnGPQdkRSNGmS4jg7UZPE480dJJNtKo/dAsDA3z3HxT/eJKpSZeBbSNdAyd9nkCT93eY6fR6XWD+AVZTiEcTBff+Ik761ssAHpBvyFBGVrYg8r3I+1E19Ml6keGGUvSI+SiqV+4kx55b+IFJ0+F2Sj3nvS8h35BjS5bgVKch+zUx7EMc3AfnOHUTUBh8j6i9yv1lflbemsJ2k8Cs4HxU9N08K2Pdj6cR1vFL34/v9bPnr2GVZywXJun1vDW89/Ec3tI0TwdvW7PkFQfCzyK/oFjPpZeD/CMPwusxXugWJiW5BInG9N7Lrkcy9ktpI9MbuHmqr6bn7ZoASD3dcvtP+VzuOa4FiXWmb7vivXmCstv/VFMb8kTh77h8yG/4S8iD9GPIwnQTeFcLlgC2jk6jDdJ4KGers5LhNhPbyPG2SlDnFNqaok6HEtE3yc5cWaKRlVDlhZKNqaUmsRBWonyUyzBvtVR3drZOxRPYsNU5RJkmbGWMskafCcXaQpsnU+TKjG8c51Sxz8VwBWgm23HaSaj1HPiNSvieevp3d93wDwI44gxndpkKOCwDcwRGq5CgzZSE2YvhYtftVAnLhlQXXGTmNK0q08+F7lECU1N9gJclfl9NpPvzJV7SClQVHvMOg4Stp4c2Pe3lA1KVd9+EXDf60vtg6uoxfwPjFSbz4iEOy/H3oen3edL8g6sMR47Vo8Yuf1VS9dHudlMD0Vc0ifdEFoNUHyQY0+qQgaSelcwJYaWDA+uCo9G+RWdN3y1pCey91K+lbp9eqbCmEsE3CrqseJycZtl1AVd1SJbmTbLcDBjMMWVUvFWgYZI4ZNlOpFyhlpNP33a/cAZsQeNImpPhQyNE+BJ70biQRfxBJFabM/HuRxP9xnNTuezCkciMDHPcm8cN0MsIJk7CXkA5ucswVOyo7/plol8QqcL0HKXQeQAZR9B7WmhD/kWdwUr4F4LeAXzLLvIArtPS7MIWoce0y/2tn6CBSYH3A/P9RnLyxXo8HkALFkzsGXCGm5wFE5Ynj3e7OaojXIu/ejRuPtV6QbDn8n29oGyeD3Wv2/DSCILgZIAzDV662bMf1uwWJRLcgufZYTWq3U+cjLsXbqcPRadvy3unCd9rma9EKv9GRpE5ywx2LCej40LqWgshhlaUosYmARgkxDMsiD+tfwCYqt44eo8Q0Xz9/Fw9uPEjKyJiOMg5gk6sUDbYi/JIMokSUa1wg3Vimtl5GjFONBktpV3yAcEEy1Bln1OLsZxlkycBQVLJUipJtNvE7ubydRE+bRjNlixCqgTjJnwskiSghEIv+Fqn+Os0pMbrY/vbv0CLB2fNDlDZOk6dChTz38DTqWbKHb6NO26KaJLwYlWlVCFehXiGt0Cx1nj+Pg3Et4mSOIWqsCFHIlnZU9H+/iPALD4gmU/HuRidmn0Kr/OKjj+g2NBTi1CBaMGiXxod6+UVMvKjQIuIy0YJFiwJ978PKdPtxqJnus0F0f/EOid8x0kJFj3Mjjibpw+AGvPc+r6RfpjUGIHXZdUdqAynaCXfA2UtLtJNwITMgcK12k0oij7qsA7bzVkXMPbXDqB0S33ixRYIkbQvZEud2cWH3oVdanLdJWM7VDEP0UuesmTer8K3Z7Wy4ucqFV3IALP+XPjm/gjnnV5CughYh2inVIgVcAl5GOgPHECjXb2IKCVM8/DICcaoQg4pCpEhRU8XhMVOU+DCsA46fMhlN5vkArhui8ThSKD1ojsnvcJwF9iBQLMw5ZoF5M28zQqnNe+eo6LZ+pDs0jXRG9L75m7iuy0tIwaFwrQfM9CM4L5YRuWbhp73iDVZ99nW9Rl7/WMsFSXrf7nDz4YM3tI2Xgres2fN7raJbkJjoFiRXj2vVVr+WDkl0m539Q9TIUJaLPeyusyOix32t59fpGNxy11YIrXZdosT2zu69fuGmx+R3hyJxL/JwfQp4B/S8dZFCsUK9nuHezF8AgoPXzkGOC7ZjsI0pD+rUIssCRWYtd+RCZoBMe4laIkuCFlVyFj9fIW/x78ofkYJEpHir5OilzlFuJ0OdefK8dHoYgIFNUiBcnNwkSYTK51bNOW1CipNjgRQlOaDfZMsLSXryiyx/pw9ysPvt3+DE+Z2UN06xh6P2PNokyFHlLp4lZcgUaZoWmqZFSf78Au0kJJVPUkGKkAWiporncUWKdkn8V4VmxSVt/WIBogaHnjwtEIVH4S3nz4/DuPz5/Ti9E+WLaOh6WmD4BYN2TbTAikOlfD6J37VoE+V4EFvPJ+/3e8fgb0uLK/84tRuix5hnJTTM58/oeei2dZ4eZz+00tIlaaVdcQIwv36ANE0y9SUaaSlW6mRI07Akc/0uA7bwAHFb9yGHG4y/SZ0MWWo0SLFg/m+TYN4yz7F8Fe0mzlJkjkEGmePL/A0KVJhaLlM5U2TL1inOvLhd5H3Bkdi1O3IZSdDTCHxrAknuK0iC/znvOn0WrMfIA2YZJb4rTMqHbFkIF26dI0Q7LrYY6eAP5ZPajbs50wjxvooUTgdxvikfQAoQ3f4u4Bu4DsgZc+5TOJhVv1l2NzIYo6j1ERxnBOQe+QjOHLKEfLeOYHkgrkOPK7qSjogP3uCR4dJ0GiDT7ki3IHl9oluQvH4RBMG3gXeHYXghCIKjiJBYxwjD8PZr3m63IJHoFiQr43pI4autq+tfCwG9k1fJ1ZL4Tutf7zFeiYwY31en9vy1FFrKb+l87qvhrh/2uDET4lasCYNin/W9GdHc8aFv0yDFEGeZYTM7OWEVgzYbj4QKBcup2M5JCsyTpcYgc8YroU6mvUSi1aKWzuK7UM8wZEeN62bps8Y3RD0TErQZZ9TCXHQkeLpeIpGULPDilzfRc+ciy0/2QQN6fmSR5V/og/1IcqHY+D9HipEtuKRjH5J0lI3hYyPNrVsnARjiLE1S3MWzgHZEarb4yFFlJyfsOeSNIlehXiG9iCTzDRy/ZJpoF0QN5c7jkmudpqT3Fg6SpOspjCjeKfFDl/GT83hx4hchmoDHk/I47Ooi0QJG9+EXNnq8cbUvLQj66AwJ81/xlo2T7ePLalHTSQmzyErVrT7kmvd5fxfN8er3QonwfqFjzrU1AElTSOr7xY1RG66ldIZUu0kzkYpwSoTXIVR1JaRr+F0ULUK0+KiQp9/wnioULBRMOSQKWTzOTnJcsOaHWuSP10dJr2tw4ZUcpeI0L/3JLvk9gIMgfYmoKeB7kWRcYVAfMNfp4wYKBfJb+kVcUQKSdH9kTJzJtQvyQTNPCxiAT4zAF03XIC62YTslj3pcE1eo2GJkl9kmuOLgQXNf3IcUHmWshxIjkCpfovml9TJvHVLA/CTy+8yaZb9lrkEON7Ch/BIlyv84cm/5ItEirESEvA44VbJDjxKPMBzzCo6VJr83IpLSjVcXa7kgSe3bExYP/9cb2saZYGTNnF8QBGPAb4ZhWDfvV40wDFf+gFbb7lovSIIg+BDSRN4MfAf4J2EYxm8d/vIpBCn6PwNDwCzwW2EY/psr7adbkFw5VhYG19ei7gTvco7AnZ19Iw8y8+CMPACMksu1EgqvdGyvpnsSn9cpIp2N2LF15J+MKD7ZcWNsUaIu7IqzVry0JpE3A+tgxz3fZrY5SDE1x3ajulcwzustEuzjuYjKlnZH1PFcDN3qFlriFIPSljOiUSPLPHmqbLAdE5X7nWGzOE83c1x8YZNLKgBK0LN9keVP9UkSNY0bEb2IqOX8HvARBL7xBM6V+X4k+awiRc2n+tjyLydZWu5lc88MReYshl+5JEpEvoPnqZNhO5MUmaNNwtCJ58jUl6QoqZi/S7iOCKyEckGUX7JItPDQkfyWt2ycQ+LDqOIFAkQ5JL5pIqwsSFq45BwczCvOUdEix+90xMn1cZ6KzhvAdUZ88r1fzPjno9AvLYL88/ClgONEff9YhnCdKD1+hX/50DK8+WA7N2GfKG75yzViXZ1Woodke5lGOkUtIYV0qiE7VI5JwsCw6vRSMFXoKcrSXaEe4Z9UyVl4pH73lGPiq2wpD2uKbeSocpQ9FqIFcFfx65xE3s/9wVZ6fkS+cMuVPvhtnCP7bsQQ8DDyWwHpkEzhug2HzPQjCHxpH5KsfwB5Yn4M+BVv5P8BHPn9AbNuhSg0y78vvwcHtVTH9SnvIpdx//8/wFeR4qiGwKZ2I92PCeCDSPcHnKFjDfj7LVhIyoCEdkq+aq6BDmL8Lk4ieMKc50WcC7tfiEyagZ5jOFjXQa9DYjgl4VfiXZHV+X6doluEfP9jrRckhcP/7Ya2cTa4bc2e32sVndDKayaCIHgfom38IeS28yHgvwdBMBqG4elVVvtj5Db3M8jtqAgx2ZRudKMb3ehGN7rRjW504/sc6tTejSvHmu6QBEHwLPDtMAwf8aZNAAfDMPxIh+X/JiLstz0Mw/nr2Ve3QxKNa+0krNYhiceVOhYR0qTKQNIZ6hX3JLnStuPHfD3Hf71dlNWvw8MRYv6K7XpSxZFuyv4xB4dQf5FHcBCEEqI6A3AU+PtC/C5tnLbGgSmajDJufUBGGbfT1dNDJUsV0pShbkd2UzQsuRbE/6NB2hLEJxm2I8bTlKhQIM88R7mdE8s7yPVUOfnNtwp84hUEz62DjwpzegGBWAzgFHB0pLTqzfsiQtzXyCLdgH3IiPBDIalcjc0bZ2iTZCfHLaE4Q91CuGpkKTNFnnnaJMlxgSwLZKnZa7LhlSXpAlw0f2fNPnUaSPdkwbzqPO2K+F0TjYY3ze9Y+CRviHYQ/PV02jpvG/Fuib99jTjPQsNfxueP6HS/A6HLxzsoxJaPb9/visR5JtodWR/bzgBRfxMfhqWdHF922Ff60q6LXkNPSaw1KPwRLkJjCNIz8qpRy/STu7RAvU84JNoRqZMhYXawZPgiamgI0nkUfsmS4VclaJCKyAerL4nK+vpmoRnqTFOi3xgsqrzwcXZQqRcYysxwYvx24U8tJG2HoefORZZfNifoK219A0cA3410DlTvRuFe4Dorn8WT8X1YugW7kW7KzWbdIzhi+ifGpAtzBLkH6fa1czI8It0HlRIGB3lSWNYRhD/iK2L9XEt8RSaRTsYHcL8fv1sI4j3yIHJvuIzzH5k329KuCzjujEKyPoXcc1T9yz93awgpEX4PB5dV7l7r2p9tq0W3W/L9ibXcIUnue1uY+/qf3tA2Kokta+b8rsYb8eN6OCRrtkNioFd3IoJ/fvy/wD2rrPYAckv+p0EQ/ENgCfjvwK+GYbiwyjrdWCVWJ7GvNPfz51/LzXYloduHc/n7j5PXo5yOKxcJE6sWFvZ4jYRu/HzjcTWZ3vh5RXxDbjIExxWEdSLLuv9xCjT+Q/KzCGxLH+bmAZ16RLLi3n6BWd3HIZbI2GKjRYIS01bSt+7NU6hW2iMqtElY9SBNyuYYpGWy0G+zxyyXpG50uRRr/z/4YQYNE7xBWmBaX1gvSc4zONjIfgQHfjeSSA3IuYWfNnLGryAJ0ce9okyLgWeQhOQJXAJyLKB5dD3T709IovZ2LHfmTp7jsMF7FZllnFFKTJOlRoIWcxQpM0WTlJD9b4YNk0tyfRsIWBSE4J7EHYcS8RdxECc/iYpDicAlzL7srS8TrOtd9pb3oVy+kpRfaLS87fnFzCIugY/Du7RY0IgTy32FK4g+LeJFT7x40elaHMQLJYVdLeKuI8i1zROFsvmwsE4FmE9y953uF9375IxbJz0jy6bMPup9PeQuyeMh3WjSSvSwlM6QvbREKt2wRorKDxFIo8r+CiekRcL+htrGt0R/P5PGvX2GIXJcsHBJ5ZlcIMcptrGNU1TZIP48zRzpdQ0ZVb1sTrgK7JYLsPydPnfdjiIFyZdxyfhnJuD3R+Q3dgxJxpUT8SACV9IC/35gakwgW180y+eJ+oAoMf2jRKFXT5n/9+LuVa8AD46IYtWncIXIQZyU74Q51l1mf2eSUmCcRSCcE2BuM3J+e4AnzXHdilyTCeCdLdiSlHPWJ/wveuf6EPA2hG9yL/DzBu6qxcUHxuCjYwIKfwbHf8Eoa1k4sX+P9gwgvWdfnFcIV36WdKMbb+C4MYb+KrFmOyRBEAwh5irvDsPwL7zp/xvwD8Iw3NlhnT9DkLT/A/jfkVvcv0W6LA92WP5nEGgXW7duvfOll1567U/kDRBXUsWClTdQnw9ib8arkLbjEsGR7kbMS+TVcEFeq9GmayEkdiLqX3m5ztdI15dlvYeYykmq+RZESaG/PyZqMT+CzL/ZLJMDCi1L7N7JCQBL5s4b0rrK+wIMcxLAKlEpaRewo79VNlCjnyZpZimSoGUVtgBm2Mw0JZK0eZ47KDLLFGUukGNhOUtlagimAjdC+y3cqKhyQj6H8x/YP+Kw5yUcr0S5MxraRflFnI/B3bhC5bKs1//+efKZ+YiiVpkpUjRI0rbvhzhLhrp1g++lzhIZSpfOiiGkKm2p3K/+XSRKYtfpEE3k/U6JTtPlfI+RODld5yvPQhNsn7Dtczc0YY8n7fq+Ey/F368m9LpfPV7tYsRDjQl1fe2CaIfjMtECSYup1fgj/rH63Q89Xi1a0t78RaKyv/FOjM431zEchMCco5p8Bg1o9TlJYPXbWUpnyNYXqGX6zSVpW/UtJaYv0WsLdSd13aRGP2maNEgxxTarROfDNlQEQqV9lV+So2oV605883Z6bllkqHhWVLa+YUZr3hHC5YD+8jwLBwsy7RmcKepFJBH/ltnZFu+a1JAuhy+B+4dIsaGcis9MSFGhv61jZtnHcATxI2balF7/Rx33pIJTzfo1M7+AdDEWkA7ou8y6dyNdHu1q7MEp6gHMJ+W79BTSGc3LZ8k+YAwhqhcQzpmS4s94x1vCOdVP4Qj6xuzQ8hHNPFdUmHtxy4ms+GHd6OkWGWsh1nSH5M63hf1f++INbeNievOaPb/XKnquvsgbKnqQNtLDYRg+G4bhFxFXhr8XBEExvnAYhv8+DMN9YRjuu/nmm+Oz/9rEajfTMByLjAL5o0ErZG9b0Q5Kp65Jp3X8fQXvAV/SNrrvCbvtKx3zarEa8TxeDF25yHjYLivxsF1f1/WP3RI+tXj5HpH1xV/kgLleE3DIPAxbE4QTntzwg2OSpD8DfAx63r8I7whJ7b1Eau8ldrz92+ze+jzTsyUyLFFkljQNSkxTI2tJ6LMMmvlzxvatbv0UMizZZKnKBqpsAEQdSInqU2xjhs32r0KBBbKMM8oMm3mevZxqlikyR+WZW+TYL+OSorchI6BnkQ7JYWQE817kWh2asNeYp5BR1zIm6X1UEp0HELhFzcx7HEl6nkD8Cb5h9vWjIfVaLy99cxcnx99KgzQN0kyynYqRXj1qhmCnKFMnY85jiDmKQmBe30vYhyS0/l8ap/yk8/Pm/RAw6P2v8/1kOu3N065GwpueNv/75O+Wt0/dTpKV3Y+k94c3TTsvcSiYbisO7VJ4mBYpWrzoNnwYlt+R0G6R3yFS9TFdXnPyjWbfXifDHmuaqPKXLxag61z0lr/snZMKE7RWbj+Yc8sHDflrDIgMcL2vh0SrRbK9TDOdJltfIL0oHcZUu2mLihpZquQ84nrSqmdJMdtLkzTz5O13KUeVSbbTMiT3OhlmKdIgbSGVbRJ8/fQ9PHn+PvEkqQ8xsPscyw1ZhmrgrqWJhamCnGMB6Sy8YK7LDyMJ9hakk3DG+/sckrjr/eVTCJzr15DuwTFcMZIDfp1o7EbmTZn/7zXbGDbFyOM4KNevAf/I/H3BHGcNNzChneCa2d7NCFm/laC/UKW/UJX7XhUGPnxOlq8g034bKUbSCMMU5J6CObcJnMnhAE4mmANSdN0PDBvBkL3YwkPvx3IvftTcxw/YefoaTrhnJOD8orzl5P21iQzFnyHdePNEGAa0W8kb+vvrEGv5LOeRx1C8kCgi4ymd4izwchiGF71p3zWvWxHFrW5cIeLyuhpxRZH4ex92JIXH6lyNuLpUfFvxgsAtO4bqvWun5WpdklevqhWFlHU6XpkWPWa/QLHXMTliOySR49URxVjXhOSIc2FXqd8PAO8ANoUyWjo+TGmjjPqr3OgPFZ+yo7V7OEqNrPUUaZNkyJAhisxac0PtmtQRidMmKauwVSVHnnkDyUpQYJ4Zhqz6VtVATZbotQVNOtXk6+M/RGrXJZrPrJdEoYokEdrRAMLHIDiIKNoMm47QpDnnKSQ5OAhwACYfluuk6jfJMRnN1ZHO+0ckcZpCkq3fBb4asDxssvdcyNdOC4ajv1ClmJmlxDSDzJqCq5c2CXvNQLpLiXZb/En8UXcdzVe1LU3YK7hugSaMftIP0a6DrqddiwGisCe/U+GrYoErSvy7t87TJJzYMtplaHnbXPSW1U7E5dh6/jnreWvx4hcK2rnRfamqle+5onCqNlFIVQsHg9PiTQsiv9DQ4kOPQbetr3pOuh3twDQQhTTtssQ6V+mWSAGnF5e5tDFFutG0ZomL63vItJdoJxJkqNvfl0aVHBnqJGhZNa0EbRpGmU55VerfU6Fgv2NtEkxRtjysNgm2bJ1ilHHGGSWRbLG0kGFg07xwsQot6f8DLCQZGD4nPj4KZ+pHOgFazD0UismoKq+pytSHEcPEKRynAlwXBKQwUIhoCemiAPxfOE+P1qPy2/zYiPweS2a91gTcOiIFScGso9svm78/RIoSVUnLmuMFeDDg1tuO89LTpmrpl3Uu/vEmecL/OHIv+RQyEPFBc24KQTuDu1d8ZEQ6I5/D+acMjzmn9nvN6+NOZl6fZb4h7dUUJuPPFH/w7VoHz7pdljdvSEHy5iG1/7XjkIRh2AyC4DlkHOMxb9b9wH9ZZbW/BB4KgqDf44zsMK9/PfFY1xk+FlZxs/ZG7XUvOt2AO8GoXEdlJe+j07TgppUjSvHtyr46z1sN8tXpuFY7FwejWn278YiYaekDLcKx6fTgetgl1XiymWUEMjE8Ih2EDyMjeABTAc3bUgyOnrYwpFmKpGjaZEmleDMsGZ5EmyFmqJOxr2qMuIGqTaR03VmKFJm1o8D9xl1aYVsaMlrcT5YFWiSYrpdoXk5Bf4vmH6+XY/5N5KGfMysdNAXbH4xJAr9/xLoeMzxiihEHeesYZQQqYUzJxCfBQL0eQhKfF4BhYJNAW3aPPm/Pr2UIyxUKVIwPSQtn7Fhimio5hhIz5NdXyLXlWqX7mqQrOGfxPhycaxAhuPucDZ8XoUm7D7vS+T4sy4dP4f3vcz20CND9xIsXP/QOvxibpxwSn6ge56doweFzN3wyu+7Xh3qBI6L7y+t2/MJJz1GhV+CurXZD+r1j9CFn2kVp4UbZL3vL+JLE/rF04LqEfYbw3oL155uECemYNNIC36oneknStt2MhPdhpIw3iRYUddMdqbLBdj7SNFgygwZpGlbGN0uNGYYoMkuNLNOUKDFNhTxNUgylzlLbmOXM+LBwsc6tFz4FwDtbXPzyJnk/j3zf34t0Gg4iSfufBc7N/Qs4KdwFRHb3SRy0KYd0FG5GeB5P4KCS9yIcC3DFyKEJ+KC5j30L576+G/kdg3RBfw/4abOOdm1+zxwfkLrfDFzUENPHc8ArSDFS9Y73DxE4ZsEc9yPIfeCDCPflbqQ7ooWUz73ba15vxpHbfxnCf+mJigw7WPEKaXpvYM6/z18rl7Eb3XgTxl8vDglY2d//iMj9/iXwc0jz961hGL4UBMEfAIRh+A/N8v1IR+QZ4F8gt9nfBb4bhuFDV9rXX3eVrSsn9jHuh5kWJ/BpXJ1oPhLhnKwOk+rsgBs/7k77jB9/xEG3g6nhakaH8U6Rf46dujorCetu//61iyTfvvO6nwS8H8eLyEHPLeLAPj+bZ7Q4bjseFfLkjWxV0WsCjjJu1bVAkifhktQZNMstGfiI4taz1KxrdI4LnGWIBG1mGELd2JVjMs1WC2H57vgdsM6MyB5BkoXfw/FcjuE8ClBdf6+IUyUyj2fD8JjFePsRd0AOHsLh2UFw8A+OSEJ0CEl+FEOfg4Hd51hayLBj43F2coIELXJUSdLmXkNWUf6Nz63JUqPwykLUwX0OSXJ1+EMLDk2wwRUkSmZX3onP5bhMtPjwk2aFQeHN1/99n5HVohPvRCFVWqhoFya+X7+I0ZF2vzPUqUvjc0S0qNECQYuNhrdcfBvrcIXGAlFvFbxjiq/r82n6kOuu6/rbjW+n312PVhoa6R6a6TSJdptEq8VSOmP5IyC/Nz/aJGiRYI4iKVOEVNlgVbZmGCJFkyV6Oc5OC40sMc1h9jHEjOWRVMhTPZ8jt7HK3Isl8uUZKkduYWD3OS6eKQonCxh41znarSQLny+4QuMZc81KSAKfwzmhl3EQK31/BiF7/yHy+ziEdPo+hnRQHkcKkQkc36SK7O/z5v+7ca7wH0UgWscQeOZBnAcIOCWsfQhH5GtJ6YzkoH/vPAtPFBh832nmnt4q+9llcpNvBHIf+QbyW/5tpPui234b8pRXf5FXiPLrPm7uB0dwEC7l6in5/VD8eSfhOvIrOSQaXdWstRFrmUPSs/eO8Kav/PkNbaOZH1iz5/daxZrtkACEYfgnQRDkkVvdZmQc6MfCMNRux9bY8gtBEPwwQmT/BnABua3+yut20G/QWB0mBQ4/G+8wrOw+KH9kdZjUAdN5WZnky3ITHf7313Hrduq0XBvH5EDk2OU1lvR6x7viHC1WuENRZon6E/iFSFSl5YDAk4bHoOQd56EJeGrEFSMAuyX5uPhfN5HZtUR7OUEmu0SWBWuwlqdCmVOcNDK8KvtbI0vWMEUbpMlTscm3g40kLUQrjaj6zJsR2im2AXDSYN+XyHCKMttMZqMjw9OzJRnZvBxIAvCLwPEQ9gfyi9ViZHIC9nrXSzscyeg1tN+9KVbM0+vuOk5KPPUKweSI/OpBkhD/o/0yXDy3CXaFtDcmbXKZpM1mZjjKHtt5mqJMiwS322FpgfD0XV6WjojvzK4JsHYO/K5BHucqHie9+3CnhjcvfmdOxqYr30KLEx8u5RPmdVmFhyk5XouhuDN7XHXL56X43Ru/S+MXMro/f32fC+PDr7Sg8An2uh8VClgNlqadnAGiXarF2Ln4nRg9lzjpv4Il4SeBRGuZZFtUtBppcW1vJ0R5rk3C/rbkkASetUDWyP0qDytni/UGKepkqJC3vC6AQ+xnyHznlNDeaKbI5mrM/elWBn74HPmeCq3dCcGQXw6gLEl6u5Vk4d8WBOZUDQTOlU/Kd/0c0i3JIcXGGaTA0CG5Q0gy/14zv4ob+Mgjv9WPIAX9J3FEdxCFK3DJ/7vMdj6J60ToNd2HgZmaaZeh/755cpkqZ54edkXDOoSYvwBzp4cYvOc0c3+yVQY3wBUj92I7KNb0cQvCf3kQR9a/GQc/ewpnfLgXN3ChUuqeqlY8IsiAljzvOj3busVIN64WYRjQ+t6bB7L1/Yo1XZAAhGH4aeDTq8y7r8O048Df/D4fVje60Y1udKMb3ehGN7pxlQhYbt9wuj0QBMG/B54Iw/CJ1+CgXrMIguCngb+PNAlS/rwwDG+71u282VS2unGNsTo5vZMqSFxdanXIUhiOeLwJXyHrYdQXJAxHpJMQ76LYkewDCERsBEdeH4m8djpeGb0aicCj3KunjnIVTohs/2FvNMydv4UL3YSQz0fMPoaNElZrwnV5LI7Zg4wNj8mIW3JMeBAPejtOjghc4v3m/wVgLywtZNjyvkmGMjPkeyqMZsatXG+Oqh3RH2WcEtPs5LjlgPRSp5c6OS7QJEXSQE/EMHCJCnlahgtSJ0OVHAtG8adOL3MMGux7k6PsYYgZJhm2pojTsyWWT/bJaOwmZLT1XuBzgUOZPoUbnT044QinvslYy3jG+Cpr38Ncz0ft9yWu1maVcGzn7ICDYdws149nvL93IZCVcwF1ennyT36UWYo8y12ASLEeZyeTbGeeAknazFJkliKTDFNNb6CRR2A+SURVS0f707H3+of3qupb/d60AW+ZtFlG36u6lnJSdF2FH+novxLBFfqlXYR1uA6Gz9nAOwdfvUvX9bep/ys/w+fJKDfE9//wYWk+pGwR11XR/eEdnw/BSnrrKxlfCek+mX0O1yG6SLTLpB0aX8XL7wrpuQ4IqT3sgzAh0r+thDwaa4ks7USCGYbopU6DtFXNylEViJWR7FXZ3woF221sGnK7HK6YjSo3ax+HyTPPDo5TYpodHKfdStK4nOa+H/szsqkF2iS4OLmJfGaeHaPfli7JZdM52IPpSoYwnyR1/yV6blkUqNNXkS7se5Hf5AcQEvku5HeRRfhVHwhFne6XkO/dTyKdhy/h4G6/PyKwr93m/2Hk9/xes+y0ma4cj3eZbd2P3Bf6W/J3Geq1Xs6cLktnZrgF5ZCeWxZJvfeSwL/mkwLZGkF4L18w295s3mt3pIKwQg+ZfZxBuiMHJ6Qb8rPm7wFzLrtESCPin+Lx9+QeHb3/aCdc1RGhczek07Okq5bVjUiEQCtxY39wMQzDn1mDxcgvA/8KeA6nffkCoqP4H65rW2uZQ/J6RpdDEid2rySmd+ZerOSPXKuPx7VMc7CniUihsRokbDXlk05mjtei0NXpuFac9/BYVIs/ZnoYUW9R7kgZeag/hjy4QR74P/8o/OUYTMLAT5yjlJq2ic4o4+SokjGJUdMbiEjQpkaWnRynSo4f4FmKzFnYVpYaOarU6WWIsxbuVaeXInPUybBEL6cp0SZJghYn2EmDFCfYyTQlBpmzykAAp2bLFIoV5l4swbFALEwfRJIDVeXxMdoK0cIZRvo8ok7X2hYaw2NOBjn+eZvtxnlCtiB8AOcMvwtJfBbM62W49Z5jDHGWJikGmWUnJ8hQZwfHSdO0AgAAZU6RYYlcu8r6801JaE8jr5dw8CSFDoHD0CeIQop8BSk/+fZhU3HuRycOiE8c122Bg0jFyer6qtvR4x2IzYeo2pVfLCzgFLF0nk9y9/fvFwD93jn5y8X5Mz5hv8/bhi8E4HNG8Pal56PCAz68bJ23vL/NlviSNNeJH0miJe9rGSnUUzSY8wQfnaJWyypoTVOyPj9nGbLrVckZonvOKGplzO4bzFOwELAlemmQpsgsT47/KHeO/iV1MkzXSyw8UWDg7wr3CcQE9eILBgv1AvCukJ6+OsuVPjgMqfdeolnNOv7FJoSorlFG7kMvITCsl3DcC/1/t/m8juFkev8RUkz8OVLknEMKhfcihPsfRwog/X7mILVJjFtT65o0L6doHlkP5ZBbbzvO2fNDNKtZ+jdVWHiiIPs/A9zXgknzhTtmjuMJBEam9xcl2j+GcFd+3fw/OYF1iQcpjh435zzpFyEHXAHSij4fYLVnk+MUdqFaayvWMockuP3OkC88e2MbufWmNXl+QRCcQMzHDwZBUAPeFobhi0EQ/BqwNQzDR651W2sestWNVxdXIoJHl4t2ASRJdN0ECZdgK3bf51KsvDE/7K17IDZ/Ff7IsF/w+Am926e/r2gB4vEzktGHiZgNapdEzzk6MubzPwBbVPidnsjyN5ll7zXb9h5ynVW8pENEckSKj8+aGRNIUeKPWH9iTCRzj6yndiHLXLHIdmNiqKTzCyYBqhvS7DAnyVIjRYM2SXZwgiWDWe9liSFmLJ59iBlqZK1bdI0sx9lJgpbpmWRI0WSakpX+zVFlnFFR2qoXSSQle1x+uY+5l/skKdmEFCP9SELyCDIy6Y9E3ot1al9Z3MWJ/xrm4R+lFkW7dd+TzzYuuGALnsc83s9T5nU38AykfuISL43volIusD9ziFOU2WBUtwArFgDYZLNKjnYiARsrJFot+pLLrrioECVsgxu91+QeondeTbrjpGuQ7frSvzrqP4DjpWjBocWJX6D4XBafgxLfj34H9fi0yIjzLbTLoMvrfF+WWAnk2knxOy5aGGgxpEWQX4TpMrotXXcRx4/R8/LX1WuUxBHi9RpcNNsw223kEcU0PdcWBGY/7STU1vfa3wzASYbt55+kbblHCfO+Zboh+n8vdft+yXiOgHRJZtgMCKl9iV4StDha38PezPN8e3YPuWKV/vI8ADPNzSzM5xh832nmZ/MsN+QEmlPr5fdVhv4H51l4ssAy0qnsf3DecjLoR/gXZZzZasX83Yt0WXa34MmkJP7vwnVIdpvrpQk/SDHyLTPvIKKc9QvIPSCLCFtsacv2diOKe1W5hk3DCem/e56F+Rwv/cEu4ZlchgXyckxZs88vJN3xalSQYuRt5ti3IMXYB5Du516koPmA99zLItySI+a8fB6iN0CiPEXLSwPiYiiwUtL+Wga2utENwkC7HG/G2AJ83bxfwlnp/pGZfs0FSbdDYuKvW4ckkhBa1aJrUbWa6Jg4dpbN9W7YN7nW94rEUf83o+DxVnl0nw+v3HYHJaxODwlfV14UnFYmxRIHOhYWq+07cg6erwjJMTcqpyRKJXHfS3S0HiR52A2cg547RVGrxDTTlLiLZ2mQJkOdSbYzyrg1PLyHp3mWu8hTIU2DLDX2csR2UgSulTZ+CW1DXC8AMkoLcIoyWRZI02CWooFrFamRZYoysxTJUKdNgiN/YmR9Skjx8VWkuKqYc1IS+15zXo8DZSKfrT8ieaXPrFN0Kmbi4gMOZhf7ru43277bO9b3wo57vk1lOU9vzxI7OU7CuLvnuGDVzDLU2c4kWRbIUBdX94YUdpnFZYKLSMKsRHPtjPi+JDrtMlE/DB3FJ7aOX0QoHEsTe79Y8AuCOGxJVbx0Pb8TEy9SVitY/G6H36nxier+sp26Kvqq+17vvWqhMeAdXxy+pUR8cKaS2gnxtw0O3nbRW1a3p8d30f2/OCgQrXYySaLVop1MUk+INw84knqdDDX6baGibuxLZOyAQYsEJxm2nclxRqkbL58GKTaYjtu88SRpGxlqldBeopcZhkTxbjlH43Ka5uUUre8lWH7ZnGxVxC5ACO7pdQ0qT95Cz1sXpUuyLhRFrk2ITG4e18XNIn4mVSRR70dUs34J6XKUzXIqkbsZd49SVa1vIYXBO8x+PgP8Riid0nXIfo8S6eoAZHM1KsdukQJmuEVPusHyc31SNOi2Dpr9bDErveId928hUKwpogT2XYhUunZGdODhY8CvPBrrYq8ihKH/q6GtB9WKx7UO+HXj9Ys13SHZvS/k/77B/HLn2jy/IAheBB4Mw/CbQRB8A/gPYRh+JgiCHwX+UxiG+atswm2rW5BIvJkLkmuCOdnRopXJ+NWgWZ18PFYmiNCpO9JZXndlYQAr5V4778uDBK0C/fIhQJ0kHeNKX/KwmnCvke0bGNZkJ8ywNxIHsu7+ETHwOozgpHWkG+QBfDeQCxnYMstw6qR1Uh9ihiKznKJMhiXSNOw8Vf5J0GaQWTt/MzMkadNL3appATY50nXVgyPLAnMMWtPEKbZxhL22EDrx4h7BrFfN8U4imPGvmv8HEC8CkATooLlmZTpcHyclDXSAb0ULiqtJSUdkqW1RGIPIgelmmVHS5IjAPqoI5GSTXPv+TRX2ZI4yynhEIrlKjm1MsZ2TtEkwyrhVNMteElWmpCbnvgWrwrS0i5Ls8F5H+v1CA1wx4fMzFNaknAy/kxFfN2606Hc+Or3qcnEzRi0w/EJDJX11u9o1uYh8/ro8OHUvvHX991osaIGhxZQPT9N1tOuhnRg/+rzj8yFoOk+7TFrMmOmLG3tItpdJXRYOyVxikH6jUDdH0cKs4ryQBmnbSVFfkTq9VMmRZYET7KDMlJXSrhsTUcBCLo+zkzwVCsxzwXC4ppdLNC6nSSRbZFNSDdSa/Vw8JwMJqf46pY3TzNaLLJzLM7BlVuYtyIW8dfQYL50ehjNJKTruww3sfxjr2dJz5yLLv9AnUCstOsrmup4x1zwbu87DHpxKo2yKiRxsefsk1XqOhfkc+S2zVP7sFkAUthbO5UnlajQXMqT66zTPracnb4ookIJojznWnzbb/p8Qc8VnEDhZ1hyjit+9BHzGFB17kYGRnzXzPmpeS0g3e/+YvH5wzHWqy5j7U/SepNGp+Oh2RNZerPmC5D/fYH751rV5fkEQfA44E4bhvwiC4OcQzb1ngLcD//l6IFvdgsTEm7kguVJcDYsfX+ZKnIwVfAmcjntcHne1deK671cveqJ8jdXc5aOdFDcqpgUO+8cIvxI/X69IMkmuPW5b0HRItPePGJjYw3YfEIXD8YkRebD2g2lWwK6QwdumGWLGFgEpmtYhPUeVMlPMMQjAoNE7zVC3BPYhzlqSe44LFn5UZI5ZBsmwZKFeGnOGsK1Y9gp5GqQ4wh2kjKnb8fpOMpm6EE6PmBV1ZBVcAeKNUK7siF25k6bzO33P4tGRMzRCpOvlLxsJ42/Cg2a7WhhuNvP3wfbR77CXIzRJ0WsKuSJz5KhaX5c9HGWaEkPMSCHYXiJ7sUlzHaQuQ6BytEqq1oSvjSRNPkRrkahLepxboom2FgDKR9HltTjxE38tHvCWi3dj4lK8WoDoMesyi0SLEb+I0ePx4V4+IT5efPhdjTjh3vcu0YJCCwgNlUhO4sABeNMSyPdRzyHtbUOv54C7Nq0B8R5RvxHAdkK0Q9I00r0g0EldLk5an6dAkxQNUmRY4lnuosC89THJUI9sR7sjCrdUMQn9nb5w+g7yW2a58EqO5Zf76N81b0+3eTlF89x6UpsusX3jSb776TtgL/Rsly/A8nN9priQzkXPnWb6F/vcdxFzrd7ZgheSsEn8jpa/0yediYNIAbPJ5AnnAhmI2ILwQ9SwsQqpXcIVyW2skqLJmfFh8rtepvKkFCTkYPDtp5n7g60WqpXf+7IULEeR399ZpKDdZd6DSBs/Fsggzn7kvvMMjuDewMn8VpFOif62HyfqweLJjEdENTpEt+B4Y0W3IPmriSAIeoCeMAxb5v/3AT8InAB+Nwyv1GuMbatbkEi8UQuSVzNSE03+JiJFgE/EXrmOn/B3Nhu0ieJ7zIxVEtN4xIuHyPIduje6T1dUdCqkfG6HOUdrSBiFgbmWPd4+pUhzviJ+BydWDMX4J9I1ie6P/SPyoH0F+2Ad+Ilzlpx669uPCWGaKk1SlJmyCUuahjUvTNEkTYOyecrOUqRNgjJTFJklR5UEbQrM2xFc3aYmTwrZ0uRJOSlP8HfYw1GW6OUvuccmRi99c5d4HfyvSeuyzOeRkcif8AoRLUwin23MFJJ4R2p1+N/VYuX30m0j/j13Ybopv4oTFTgm55K6X/g7bIK9o8+QoslengfERDJPxV6fQeYoMW29XvLMk2kvUUtkKV5y3JPkIs4cUTslGgrvmsMVKMo3AVdA+Em4Qp4Wvff+NrUw8AnvyrdQYrkuHyeT+67vfvGj24t3JHS+XzDE4VlaUOn+1nnr6P9atGixot2ZeIdFuydaFMX5LLovhar5hPo+t70wDYE5v9M3D5JrV2knBJKlnQsloGtncZZBlsjYjiOISeIsRY6zg21MMU+eJG36qXGUPWRYIkGbaUpkqDNNyf5uVZ2rTi8LZl95KlTIW2hljiqzDLKwnGVPz1GOLu8BYHvPSSrkOfnNt7L97d8Rv5NmSu4ludApcVWBTdJxvXjGkPKrAUwgJoRf2SrfhRoCf9LuxyvAO1v0F6rUa71SxAC8yxU3y400zCelyPiNre6+sC6WUyQdQSjVX6f5zHrplny+AD9qlv1GAHuQbskX+wS6+oK3DYVlfR6BYa1DoGMgBHvtdjyAxxdB7rvD7l7jBpGcWIbfvV3LRUi3K3PlWNMFyVv3hfzRDeaXb1ub5xcEwVZgOowVE0EQBEApDMPT17ytbkEi8UYtSKDzjerq6lGe+7rH7/Dnx5NGv2vQGUrlJfk+TMmD06zsVBzwkv6VXZDOxxBPNDtwPryCIioL+/CK5X2CvjvmDt2dm3Dt/WHv2k56D737EULoFA4mtNe87kcesu9GRsjvA56AwX8mv9f52TzbilPs4DhVNjDEDFVy7OQ4kwyToEWaJhnqJlGRBGOIGcpM0SRFlhqDzFm+iEbCZJ6CWU9Gki6Fk2SoM0WZw+yzql1NUtIVeQo3UqmdhGOI2s0D5v+bcYlBy33GKwteiHTGIkXftcG0YPXvvWxjte9+rHDWz3QK4fVMA58CalKc5DZWaTTlWu1LPWd4JCcZZdzC5FTBLEGLDcjocJaaHQnPNS4Ix8TvMvgQLiV/KwdlgGj3w4dp+byUNHCelSpbfmhHoxFbzlfZAgcZi/MulYi/QLTDAK7L0KlI0Y6Qdip8B3Xdj98hiilerZBb8eFbfgESh3/5rxuRQk9NLE3HpTUg0LrF9UbaN51lQ/0i9UyvVZsDrAy2dg61eKhQoGF+P22SzDFIgnaE0K6KXIPMcoQ7jBrXBqrkbIGTp0Id4ako0X18dpR9xeeYYYg0DfJU+Prpe+BrSfp/fJ5iRrCAur86vSwsZ6lMDQEIHOqZ9Qz88DlqF7LSJVHHczUa3CQFS36X6U7sbgnh9nIgBYHpxCzM5+DfJWEX7PiH3wZgtjnI0kKG8sYpTpwepb9QpXlZzBxLPdOMnx+luZChv1Bl4VhBui0Kx8IUHKaQsbyzu3Gk9KpZ8AtghABlOe2MaAdFO5rPIPehB5F76yu4rojGFFF+SGtlB/zVENO7hPa1FWu6IBndF/KHN5hf3rk2zy8IgjawOQzDudj0PDAXhuE1s/m7BYmJN3JBEo/VYU4rpXptUhbRZF/Jqeg0on0lmWCbsE+uJKRHEvsIUfwKcDHDMZDwiqlVZBotiVEfRA+OOPfu2HaiyxI9TlhRoKwI7Ybo+73IgzZvXp/C6Uz8pHnd0mL71uNMny9R2igQqxYJKzmrhHSV8p1hiDzz1kdEOyggBckFchSZo8isHcHVIkQLkHkKJGgxR9GqR2kiNEeRo+xhkmFLpFfMek+6wfKTfTISuRtxYgdH2Ndrq6ORk7EHvik4/M+oM3foxkco42IDbh8aq3CblOvyYSSxuRUGPnyOi2eKDGyRJLB2Ictdxa+zh29ToEKWmr2OOapkqVmYnXi3SObeyxJD52W5oA0tk0An53AdEZ+g3sIVJL6Ur47yX8IlZRVcp6AfKQJ8uJeGL//rFyMN73/dPt7+NbQo0fcafvHgw7f89XwpZD1W7YIkOyyPN125IHqevteLHntcIQyinZGk7C/sg3pfD5nFZQCqGx10UbuEooI1ZH18BAq5xBK9hqKetXK+AE3Skc6JKmqpq3uKpi0uUjRJ0CJpPtQaWWYYYogZWiRYIsMkw1Y8Yvp8iT0bjzJLUTgZ5/Lsve1Zu26CNjP1IdLrnKpA5dgt4vmxkIx0KlK5WsQpOnlTW6SDD2+SIiCHFOPvNF+ahSQDw+fEEd5wQQAuvJJjw81VKmeK5LfM0ricZjgzyfRySYqiZFuKm28EAoWsQmqvQLmax9az5Z5Jznxz2HJYKIdSRH1pvXyeu2UdvowoeIFwWY4hJPqPIqpaOijyjPeZf8b8ziP3etO9fcoNmjE8skK1z49O/iPdWPuxpguSt+wL+fwN5pd3r83zC4JgGSiGYfhKbPqtwHgYhn2d11wZ8XGobnSjG93oRje60Y1udKMbr0WEdO5gv4EjCIJ/Y96GwMeDIKh7sxPAD+AYp9cUXaf2N1n4cKlO6lgSD0f/9ToA+ifbmoiMYAfBo65rMDzmOaubfdv/HyaccN4Rdp3kiOOWeLhdd4wr/UnsSHvL7+qMoH4gOt96g3Q4LzhA+JgZ8VKjPiWfq2O6vS5O9pGW7tf4oXwIN2+/91pCRuUeHBHI1uNIV0ThCA8gI5C7kVHBLS1S/QK7Gt0o7uolptlgYD/z5OmnRoU8aRo8zT20SXCWoYj5Wt30UhK0GeKs5x4tnRDFuasCUI4LgCPBV8lRocAcRRK0aZhhZYWspFNNBrfOSHekgkDNXkC6PY8g5z08InCKR8y1mZxAfWisp4z57BxU0H3/5PvmXNjj39cr8Y46hfOrGbHfXzkO+QzVcycuvEBrQr4HP++GTi/+k01wLODi4U1cPLyJbUWBxYkeUp4ZhpiibB3t1bXbH01XWdfZjQNUNvbz8s15aut7aaR7aA0iXbQhZJQ/jwwR9Zv3eQR2tJEoL6IP1xXQZXylLTUWXIeTvzVdggjfQ7kb/nx1Qh/A8TR0fKsf5+6unQfdftyZXkMhXgox0/37hHk9Fh/CdTm2jQGivBCFtg1516aF82HRfZj1WgMQNCDZXqbe10N1Y6/9/cwySJskS0Ydq0Y/s0byep4CM2ymQdr+Pur00iRN0zvZFE1rYJqgRS91elkiz7zlGA0xw1Fut9+LBmnyVJhhiLNGtCJBizJTpGgyunGcefJkqTGcmSSVqzFPgXkKnJotU1nOk8tUqVWztFoJenuWoAo96Qb0t7j1tuPkyzNwLKB5bj3LlT771zy33l3nshDhB993Gs4kZf0pLOdky9YpGpfTNC6nKRQrNC6n2bF1nMGeOUqZaU41y+R6qpBss2XrFHtve5bB951mYPc5GG6RWtckta7JwL5z0h05hxDjNwFTAc1n1sv9ZQGZ92VE9U67KCr68S2kg3kY+ClzX7gVgWl9Frn/Dvv3bkNgP/QolL0O/OTKe4zvNxV+79q6I9d7b+pGN95kscf8BcBbvP/3AMPAN4H3X88Gux2SN1msUBdKRvkRkZuonacFh0cOTo55hYmu8LC0vW8asxClIPDJ3VqUHPDWwSQvhstxCG955RGokeLDEaUkWxwkR6DlwXxucjwDu5+WV0jYOGAJ9lGfEbBKWMkxp7rkrd+Ri/IZj/uiytqHDEzp0ITb7i8jUIKPIgTM9+NUYMoh+S2zDPYI3HIzM1TZAIhqlsB+RBZU4UBqbJiiSZFZs07OOoj3Uidt4CAK7cqwRIU8dQPEvkCOKhuMyG+bk2wHBIteJccX+RHu4lmy1Hhu+U4qZ4rwR+b2sMcc+7fMeRyKiQ38vCH1PwAc9CR10c/JwfiuBJWQ5ceu+P+1hMK24p4xLg54r54a3ENjMp7zmQn4HfNdmMdCgeabeebJ8/yFvfzt4p+So2pFB4rM2uKwToYS05ZDotMLzNPLksCD0gmS7QUSLQh8iVofigQOWqVQJSWb6//KKVHC9mWwhuIKc2ohxeNFohAw5VX43Bafj+FzWfCObT1Rw0OFeilyaJ03Tbkpuk1V0PLld+PhywArfE2LDsy663CwNZ+f4jvDD0CjD9IXxeyQPnVhX2YpnbDS10tkyLBkfhkJ+7tKgS3sT7Ld/O5Eqa5qfldtElb4oZcWdTIUqDDJdrIs2EGBrBlg2M8hKywxw5CVlVa4mP7+dvScoEmKInMkaDPefAt7Nx5hvD4KwL7ic9TI8t3TexjcOkOJaY6e38PAPuGOcCbJSwwzsGleEv/LonAF0GimaLeStFtJUnsviTfIY7fQ+75pttwzydz5QTb/2DFeenEnC0cKLFQLbPmxSQDOjA+T2nSJE1O3c+foXzJNiW2pKY6M382to8dYWM5y5Mw+4YjkQqgGLJwxFcVlpHjwfWv0vmjgrT13LrJ8tE8MGHebeTUct+QxpCi5eUz4JO/ASY0fMa8HvXu9DkpNARwgeM8YkefVCgjptQtsdHkj3biuaF19kTdShGG4HyAIgt8DfjEMw0s3us0uh8TEm4FDsqoEb4RgDp3UqnwlpI48kxXeH6twKtSTQ7s0EbK7zxfoTDBc6SUyscqrR1KEGHHd66yoypWev/I9fFWt/WMYpVwJ5YMY3xHLJ3kAedipMosWMh8cceZdBjcdIVr+JFY2c/A22dG9PEWNLAXmOcU2uXRM2oSoRpYcVWYYMsWIyIKqqpNyFkA6IGVOAdgEKEOdGlnyzDPNVitbOk3JTCsBsECWSYZtYv318R+S468i/iJbzDkcQ/xTvogrxo5Er5n9jA0fQxVtVnvY+9wSnd9JbW21uFbhBuicPHQc4UyOGUd5w405aD5fgLth8B+epl7PUMzMkkeMK0WmOcVOTtjN7OS4JS/PU2CIGUuA1+kA+XaFZiJFtr5AelH4JclFUYEChAivhYR2BpQw7pPTtZg5752LXwxA1AxRCxJN+LUIiBsypr1l+3DywtqpSbOSs+JzPXTbaaS7cpGV/A6/KPE7JiptrF0Y/b8PpxSmXRNwRostnA+K2f6Fm6Xrp99zX01LDQ/VT0QLlZZ5rVCgSo5BZqlQYIYhy89qkrbiEdOU2MO3OcFOeqnTJG35KNKNEbNRleWWbkzW7lvV87LUeHr5Hrb3nKRJSrxJlrPkeqrWe+jk+e1s33iSmeZmhlMnmaXI0nIvO3pOWFnw6nKOyjO30LN9kQ03V0n0yHHOPb1VOrbnEP8QgGrAlrdPMjO7meyGGrlU1XyUbdnOsVsAeMvo8/YaJmjRNCp+8808Fyc3cevoMZbIMPdiyap52QENvH1OBa4Lpt2xKkLA/61AOstPmPkfRkjuDyKCIYcRAY3diOPB/UiHxIqYTESfC/vH7MCR7dp3EGeR6Ve+p6zGm+zGX32saQ7Jzn0hn7nB/PJvrN3zAwiCoABsB46EYRi3y72m6EK23kRhb44R6NLDrgVtR61d1+SKbedh6R5IETDm2trDPllYoDCy7QOSqD9ougqtR22CqoWEQmbgQEc5YLecdiu0YzMSPWbt4NxLVGoXbxktjgz0KgxdcSL7fhhrlDWFLDv5qNOwf4AozOzghJybf42HR+Qhuc/8VRG4AQgZMwesE1JpvjzD3NNbDawqT4IWKZrs4dvs4dv0GvWslnngN0hZpZ0cVdI0aJIiQ50sNZqkaJKyRUrSjMJrwltk1viXXLBE6xxVjnAHZw1MRMmxAIdn75TjriKdgWeQ0ckvIQ/0j8pr+BiEj5lzLCk074D5HA/I5zE50eGB7UO1xmyBrN+ray4a/G2sspzfIbnm0G7YNPK5HvS+CybmPrQVgNl60XhK9PKn/BhN0kxRNlKuLSbZznF2cpydtElYiFyVHDMMMU9eFM4SOVokmM/kWVzfQ70vxenNg94x4WBZLfOqyb3CvDThb+MSfIVTrTd/2l2IvyrsaQDX/dDl1+O6EVpkbMQVCOAKBJXfHfCOETPd7/ooob0P6eTodv0OiBY6bVzxq8VLHkew1+MYNH9axJh1Lg2lWNxoHNhtCp0g0ZZ3Cp1Sid1eI0igUaHAkulutUlQocAsg/a3ljT+IXKaUqCMM0qKJhUKxsska6W3VTZaj0VhYFlq7OS4HTRI0eQtPePMMESLBAUq3NvzFCdP77Tfos0bpWu6L/UcR8/vsXDME8s7qC6LMljlTJEt90xKgdFTNTCyuviUrAsZfM9ptt82LoMk6+QcthWnWFrI8NIf7JLO0J++ld6eJXaPfoPdo9+wHkXT9RI1ssw2RWGsdiHLwPA5krSZ+9OtQm4vtKRLd9j8GQhWKleTAZxN5u8Y7p7zzwIpPNJI0XGzWW8X4olyGIHEHjP/70VgW4+AwENNxWGePyTFXyoM/WLkUe9ZFI3rKTCubNbahXN1w4sQNxD0av/WaARB0B8EwX9GNA2fBm4x0/9dEAT/4rq21e2QSLxZOiQSvlmg/78J3xDQzo97bKzczhVldk23IO6Q3nF03PMVsaNXvtO2jZXSw4AUBY8jqkgPQfgvnSeJrxYWGbG/F+F16ChaGePea47jwTHT6sclpt55uTggLr+v4JRcHgDUduJuZFRwBFGFeWcL5pP03LLItuIUo4zzbfYwxFl+iL/gee6wRnuCOs9YfwKQTofwSQoMM2lHd4eZtEe0nZPU6SVJmxYJmsZUEQSqpSO86iR9ku3MIDKhbRJML0u3pHKmCF9LSnGmJmUvmZ0otGKaqKLYZPQ7FPm8PTnnTv4jflxrR0S2sfoo5fV0VlZ0b/R4FeJYJtLt42NIUfaHIgnc+l6CTHaJfZnDDJribwNV7uQ5q6oE4vXiu7rriLwUmhdI07R+F4ONWdrJJImWUUhLJsksNkleZCWMSZP587gHlg+xShA1ONR5vtyvKl2lkceJclNaRN3kfT8TjbiqVtzlXSFbCgcbwHUzFG7V562j2/ChYdqJ0cLHh5Qpt8TA1hq3QSvRQ9+lZWjBpUHpgCRaLappgSsukaFBygCk5GDialraGamywbqu62ekAwEquZ2iQZK24XosWK+fBG3GGWWYSSYZtup3+vvWqJOxHdE0DVugzDLIFNsoMU2OC5xk2A5kgDNFnWOQ6fMldmw8zhxFK1E9mvoubRJ8ffyHGBg+RzrlCq08FY7P7iC7ocbFyU2kNl2i+aX19Ny3yM7iCabrJTKZOvV6hvS6hlXWAujvkWIsT8XCxxLJFulUk+p5Oa/mufWwLqSnry6Sv+fMji8bSNZzfdJ9HUDuy1XEGPGhED4XONUvjWeQe3cZTGNX4pAZ/DqCFCZHzPTJDs+AiAT56s+nbsfjjRtrukMysi/kUzeYX/7ttXl+QRB8Gsl2fh75Zd8ehuGLQRC8F/g/wjB82zVvq1uQSKzlguRqSddKPfUo5KhzsdGpWIi6q2vHYQX05iZc4tbyZXlXgWbpsdDJ78TEKgXNStPCh23rfaVb/JUICgccHGeaGLFRCO7Oqd1B2+yxgTzoPjECnzOzJw0cIA980Ez7DNIpAXgH9N89Tz4zT5qm5RXkuMA2pqxJmnoagCRHPgykQt52QAaZo0qOfRwm4Y3Opo294RIZg4NP2qRnlkFLvlX4V40s/3X2AQDuKT7NNCVeenEnfDUQiNbHcCPTchDG8PBRJ5EMUQicd72u5hWj8WohD52kfaPzO0+/0j7jcEf72e8fkyITpNC8GUmWvGSq/7557sk8bRPJInPs4ahNHktMW/hcgYoRIZixCWqWGimaho8go/RaUCp0L9WQzzqzuExtIMX6082okaJK3ipvBKIEcy1oFH6VRuSDE+Y1ltzbokCLEd/N/TJRud94KJfDlxnWdf1iw9++Lx2sUKx1RPev64MrnCBCgG8UoZFOkVls0kj3MJcu2kLQd1/3i36Q3506pIP8bjYYr586vWRZYIbNpGlaqBVgC0wt/PPM29/jFNssz6hCnj0c5Tg7qePkhjdQpZ+aFZhQ/x/liI0338K21JT5/lTs9+L55l7SqSZlpuz2krSFK9bM0W4lyWfmOXt+iMGNYuCpUK4WCV765i72vl00c6eXS/T2LNn7TJWcCDGgXcCM7cBU2SB+RefLNKtZuByQ2nSJ1LomezPP89XT+0X291wARyD1E5doHjMEepUV/nfJqKTvFmTAw8ht8xIioKHxLfO6BemK+JDRvRjJcXdvigy2eby1uN+WH6+2IOkWMmsnugXJX00EQXAG+LthGH4jCIIa8DZTkCh8K3vN2+oWJBJruSDpFJ2LEqK8hxVdg7hB4aO2G9CRe+JHxNHWS9h8HsVnuaKredxvZKUh48TK4kO7Oe9BRsRsx+JAtJOxYoTeH8X3EmbfhE+3bQor9hvey1cMOV89No4gOOVXcKNwH0YepiAjesoheRCXwL9DRglLxWmGOAvANk7R8oizCybRAEmCamQZ4qx1Sr+LZykao8MWCaumpV4lAA3Slnyro6wV8qRocpLtNEgxZ9zcFUIyZZzDps6XaX50veCx80ixkUXUpp4bgbtwnAoNVRg7FP2OrOYLs+I75y3fKa6nULnasp3MNK+0rH+8gNfNQ75L/gjtg4hCkXGtfsvWo4AUIEVmbcKboE2OCwxxlio59vK8Tex8XolyghqkrYeJFisKG0rQplCv0EqIn0ZznekKzCwLjEu7J7Jj6Z5okj/gzfP5JgoJUP4FuELgPA4+pduEqImiFgsaynXRwkS7ILptna6mir4ju3JPlJzvGzsqZK0f+Y0NmPn9bteXNqZIN5pcyAxYvw8VFaiZBdskrSGhH1OUyVAXzoaBc/VSJ2sMWOYYZJYieeapGOmnIrORxL1C3rqt6++6YpSy9HenHJUGaUYZZ4bNFhqWpWaU9JoMMQPASbYzyBwzbKZgtukr4ul94Tg7SNO03LMmKQsRqyznKfdMAfDc0z/Ifff8GU+fv4fmkfW86z1f4uvn7yK3sWr5Lb3UOWu6qLP1IpmM3GvmXiyx/bZxGlp2NVMkk21R+vpeQkwP/yjpjAnfEcKfGeWRu4FCS3yNPt8nhPRvmOVeMvPTyP1H+WvgeHgfpTOP7X5EiMJ/1kW4hatzyLqFxJsn1nRBMrwv5F/fYH75P63N8wuCYBHYY4oQvyDZCzwZhmHuWrfV5ZC8QcKXJYxwLm6KdRqMTG0QTEji2DJcimEjwWq3J7wQyojalleMrAgjjetu3k4+1bqQf2YCWr7MajwORI/b62a45E/XU2nYA2abj5ruxcOSMO/3tj88ZpSyRuQ83mOKF5WAnJLFLGbYbE8LHytVnBwTWMBTEDyEI74ffBQeQkbuKkhC+mHkIamnoPMqyAh6GUvk3Fk8QZYaQ8yQpsFpSiRpG5nRjIFbZSx0w5oSkuWHeMoWIwBZFgy45ELkyooJn4ywz1PgODtok2COQQNH2WBHdBukmWEz6vTcPLYefqUl53Mz8rA/ZK7fnRNyLtPy+ennyLRMC8Mxd/29cN/Vh1c88FXe90rxWuG4/fmryQp3WjaiyFb25LAncHK8eaQgrcHyp/qglWBueZDpeokZNtNLncPcyWHuJE2DHFWbjJ5gZ4RTMk2JWYpMMsw8eZvc1o3JnriD542wgfBNltIZ2kkpRtKNZVomQWv1QbhR/mgg/JC0OV4lvqvju/I2fC6KTlMC/ACuM7GeaNcCs4+NsXV1HwNmnRZOmQsclyTfYR2FiinMS/kwQ7hixBRXYRpaeVHSavSB+gFfyAzQJG15OtpxSNJmzlzPJmmW6GWJXgOz6rcFZMFwtgaZs4paaRoMMkeZU6Z4aFkeSpFZS4bXjokQ4PO2U3mKMnMMsp1JhphhiBmy1Jhj0MLHZj3H9yo5DnOnUcrLcJwdLNlhiIwtXgGKzJkuTs06u2u3Q7sZ/T01ey36985zuL6PbK7GD7znLwQaZsxZnzt9FzWynGXIFsKlzDTt5QTt5QRUAxqkOXO6zCCzJJNtGpdjWs97BNLIO0I4Fgj/Y5eZdyYpMK495nPcA/3/eF6K+wXkHnQUUdPSuBXLX+OLyH36CHJvLiGE9ggaYKV8vEiA+8+fbjHSjdc53qQcEmRY4e94/2uX42cRTsk1R1f2txvd6EY3utGNbnSjG934fkQIrAIXfBPErwJfDILgrUhN8U/N+x8Afuh6NtSFbJl4o0G24hG8B0faBqyUrcKbAB+O5WP7bVhYVpQEH4V/+bAunzvwsJPHbcUlgmOEQo/IDsTIz6yQDObBEcLHOniJrAh/ZMwj5CvvQTkPEPEdsZAwjUMT8BGz3MdNp+lHkFHlZ5DRvlvNslmDk/5jg5MuGwjPy3303LLIXcWv0yZhITxZapSYtjh0hXcAVv5TR8gHmaVAhRRN2xXZxhTzFCgwb8m3bZKWsJ5FRkLHeQtNA91Ssu4kwzRJkaDNc3/yg/b4mULUtD6KUasBPvOoEw8Ap2TmwSLi36W4dDRcn4zmlea/liOaVyLHd/Yl8MUdHnadtzLwAWTUdhcCOdkCPW8VCNd9W78MwNPn7+HOjc9R4rTtgi2QpcQ0/cZ3Rs0rC8yvON5+Mxouxpltyzkaap+lksjTazpoG+oXSS8KbAkgsyhE5uRFoAXhgJERVjneyzgolvJCfGK6Qrh8zxMfqrXObEc5Hsrr8GFhnaSA/X2A46/ougrxUule7cp4ESYgaMP8za6zAc4EVM0O4zHHIC0SZFmwv7saWduFnGSYPPMseB3FNA2jftWgRlakcD1/nwxLVqhAZLzLpGnSSx01XOxlycrkKvdrmhJVNlBEJKSPsseq6Y0zSp4KKRpsoMpxdrKT44wzas9Fie1tEkxRtmp8eo5DnOXE8g7yPRUL9wMHA2yToMQ0/+X0+9i79TAXyDHMSarkmFoWs8OEIbB/7fS9br9bZ5gb3wpHpRPSXMjAmaRAVzeZz+so0u1YB2wxX4KFJPQbDsmDyL30R0ORB16H/KamkG7tl3Dd9/0IdwQcuR0z/6Anyw6Re5MfXa7Hmz/WNGRr+76Qf3mD+eVPrOHzC4I9wC8BdyLIq28CvxGG4dHr2k63IJFYawVJJyI7rEz0Ijdiz2E8DEcIRhwhXSPizzEZTSwjPBGfn+FBcmyRoEmZj9ltdSgY7H5WEp6d50MHhSOQ7T04ZooRsx/1htDCYsosa1S0rJTwTXgE9tjy8WNWKd/HY9fyD4HfNdOU2Pxe4KcQGNcPIyT2f9WCLyTtcgO7z5FLVSkYnwotEjLU2cEJpihTIW95JL7qTs4QabPUKDJLi4RV4VLvEVXR0gRDMezH2QnADJsZ4ixH2WNd2Z/lLuZn8yw/2cfg+04z902Rr+UckjwcRh78n/SuKcjDfwqPqwNR8QNHAr8Sab0TlO+1KjJezXZW80eJH2/Ux0c5V973/wEk8Xo3Utx9AfhJ2HLPpE1yd3LcQm12cpyaKUaUuJxnniHO2sR3iBlrqqgQoDJTloit/BLhplQBLMeoSZpcW6Y1EylylxZoJyF1WcwBk8rF0D8tECpECegafkHge5+oE7xCv7Rgwfu/03YgWqTEl/d5JsprSQg0K9GSc2ikhT9T7+uhmU6TaLft+ep10d/UNCV6qZM0ZPGUIaWrtw+IMaIW86J+Ns8U20jQIsMSJ9lOL0s0SdniT7evBdAcQp7fbtTvpoy3kBYj/j6Vf6K8IP2dZ1hilkGqbKDAvOWraGGVoGW3qzyyBO3IgIYS8xVGlqLJePMt5FJVS9gXVa9+MuacQJzmj5zfa+SExe9IuCuz1lAV4KVv7iK/92VyPVVOfuWtER8T1gH9LfJbZqk8c4t85kpax7w/iyj47UZkgV9IYtFnJcTBXRX93mtefYK75bO5wazoPWoVZUZW/rZfTXShXms31nRBctu+kI/dYH75D16f8wuC4L8C9wH/IwzDB7/f+4vsu1uQSKy1ggSunjTJ9KiCkU9Ut10Jc+/11Uagg2lhBIfrk9A94rg6nPOw17nooK6lSZwWHBEPipEOqlwmPmh8PcCpbv0q8HGP0G6LIe22POqOTWMaWSZOyAbUuC9ikLjfcEiQ42L/iGzjfjNNSd8VZATv3Yi07zMw8IFzXDy8CYCe7YvWWGyfkX/dzAxHuZ1hJpmlaHHocpglS1BVn5AhZqx86B5kgKFh/EaStO3y2jU5yu0ApM0I7inKtElSMXyEU2wzSVWdl57eJSpRT5rzKgO/6F0rzPXS89frHSsqNaKGltGE4Ea6I69nrK7WFR8E8H4j+r354Jh0kz44Jl2zPaK6tXCsQKosxrWpddKpyGWq7OOwHUm/QI5tpvrTz71hik3lCGiSrAXHMCdtEqycBR29TxvMvxZCWqDocql2k3SjSaIF9b6U66BokeLLAbcQ9S3tcmjXQ0no582rcjpUUQucGeIAUuwoHyWBFC352HJKcgdXiDRwHZIWliNTXS/E9N5GnWY6HSnmtUBXn48LZp7K9jZIGdnftDUO1WsMcJQ9logOQkbXLiQ4E0TpRm42y4jppRaLDVIUqFgPkrTXDWmQZogZS2rXV+2y6ODBDEO2u5KmwawRpBhlnEm2AzDEWaPllTbHlrI8JS3A9DxTNG3hAVJ8KBleiw/l1cwaJ3qV/s1RpU6Gal2uZTlzihf+5B3c+r5jvDS+i578opP2VYPDg8C7sB5M9n7+4+bzrAJfRgqOy+b9u5Bi/t2IqtYzRONuhFcyxQqRlnjcSMHxWsdaus+92WNNFyTb9oU8eoP55U+9bgXJfcjw2k9dT0ESBMFGxBEqwk0Pw3D8WrfR5ZC8TnHl5GxixaiOJeF2kCq0qlCa5O8f86aZSHoEbrNcEOASqmEHrwluGluRdAoJ3bz1JHkBgvcYyNXBR+0ywU1jZtuxDsmhCeKQl+gxmX2qnvxncS35pCmmVNloKuYOPxy7nn7hkfQeSKqUNYWcexnXBSgDk+b4HjDTHh+R4uReHHTgDJJ8HUIerCNALoQfhYvnCmI2BvxQ8SkDl5gxvstploxvSJ4KvdSpULAE0yFmrOKVqGD1WxnPHFU7oqsk2DZJUjSpkbUjrTmqkRHbCgUy1DnMPoaZZJoScy+WxJBsmijs4ffMa2sCnhoRyNYhpMjbPyYjlh1gfBAtVK+nGIHV4VI38vB+tet3UnyLH6MNVe353hjByJh8X4fN6wPAS7BwtAAXoflegfE1Aba0WCBHdmvNdsfyVJgkyU6O225JgxR1ei0sS528dUR8mpKVkfVVucR8cQM5LthEW5PhBml6qdNK9FLP9JJt1GgmUjTXpyicXSBMQwArpXy1qJjDkeJVOrgPIZlrwQEO/qVFRQvpqgx407Ujo0T2pAclA0tmDwcgaEBrAGrre613SG+jTiVdIJFuG5O+tO0SLdFLg3REQatKjgx1GqbAT9KmScpCrADr2l5myibk+hvcQJVpSiRo02sKhgQtu0/97amPSY4LzFJkzhgo6mcF0imbomyhVnpsgJWLVvNCFb5I0bT+Q5Nst12OOQbpN9tP0Gba3CRLTJt7Ti85qgai2SJrBivkOyXdkRSiLJZFvpODzNliSkOLkVxGzvfE+Z1QQtbfZCR91yFFxRbo+XuLLL+tj4EfPsfFT25y9xnkc+VLyP1Ti5Fjsh5fRYqOLE4sZNq83o8rRvBl6Tur+km8uo7pa11AdIuRbgDOGPENEGEYPmmKkmuKIAjuQDKJPToJOWN9Tayy6oroFiSvU1w5OVtZjFjH8u/Fb7SYhHrMjv6HX3GqWUEw4bocw2OEEzGIVBnCCe2IuG0wqTK6oN0PC2G6319nxHUQDpmuxFP+wWlBY87X+HvYIiQ5Aoyt0IrncSShm5yAkrkealw4abD7+JCuA3INpsx5PULUrNDvepRxRc0kUmBMPuoKmt8ZkS6B8iceQUa7dUBjH/JTm0f8RtRZuCAZ2JatUxSZBbCjoFkWSFOxo9n6kNf/pynZhEFHOQeZJcMSS2QoM0WeSkRNR0e7NUnVBGOGzdTIsoGq+BCYv6XlXp5viV8BlwOaR9bL6KNCzUAKq8eJStomR6BsOEjJEcLv6Xd3bIWq22oP8et5uF+rbO+rVee6pnW9YmQ1uKTuwxbEWsBPgu3QvYBwSu7G/S7uBeaTsA6++/Qd5O9+mXqPGCOqOtMszi8DHCRoJydsoVrz9G1Vjallvg8Zlsgzb78TgDXLzFOxhoAAyXSbVLtJO5Gg1ScQqKV0ht5G3a6bbiyT1I7HRgj7pEBoDEB6BmdyqB0OhW6Bk/1VWBe4YiQp71sDkDR8lkAd5jHcELNOq0+KkUS7TTORJtOuUklLEd4wruZABLKU9Tg5knjXTbFQt0p0ev20GFi5nV4rGawSvAnaLJnCUOFZGuLyvmQV1PZw1Pzme6lQIEuNXgPHukCOzUbOd5xRSkzTJMVOTtAkZfknGerMMMSJ5R3s6Dlh7ynaFf368l3kewQSKsXELEPMMEuRFA1jsVpnyRRnR+p3cG/mL8x5FqwZ4yjjnKLMKONU2WDhoolky1ynFolky0K2mlProQrffXGvDHDIl5XUL12ieWQ9mewSC9k+Lp4r0P+P50mva1D5zVtkucuI1K924S4jvxeQbopCtW5G7ksanzFd2jJQig/gRQfjbrQAeK28krrRjUi8TgVJEAQ/hONyDAE/HYbh52PLfAj4ZQQ8+R3gn4Rh+BSvPv4D8DKSRc3iVLauO7qQLRNrAbJ1JUJwxFdjysCt/Jv2FBG4lWwnBofyfThu8pZXkvlHRoTErZAoC+ExxcQHRwg/HSP6KqfDFCaWw/GQWfegT4bHw+PHeCha6HxwRCAwwApius8F8bxPbFFlfEXs9VII1zTOybeEg17FoV7+iNwryEheGnk4VpHk6ilgjxDXsxtqJJNtEj1ttnMSkFHp7Zy0o7KSMBQisqCa+OSoMsmwTUJzVBlm0kJ0UjTtvBQNm2jpSLli4Kts4AQ7ADE/rJJj/Pwod258jiV6OfIndzsn+X7gCfCQKc4oUqF+prvWydX41RDNv98P9dWMQ6+FNA+rexTE58V9eiJ8KAsdROBbX0LkoUEw8puR71IJUrsu0Ty3np78IoVihUYzxZ6UQPN2csJyFzTyzAs3xHRJAMtL6qVuye7KL/GTZcB+j3REXknNykGokpNl2rXIeulGk/RFkddtJwXmlW44x+/0rOlkzOEI6wANkR1uJyE5R9SHxHRYwj7TFVknJPz152W7F27uJXdezr2ysd9CppK0rZ+IFPGpiBEoSIckZeZWyVmZXL1+KhoBUoRoB0n9Q+bJM8xJ68LeJMU0JXZwnAxLVMiToE2dXtIYGJ7poKj3xzQl2/HyuSuuG9NrPYmW6KVG1p6DFBSDFm41w2ZGGWeKbVTIWy4ZwDwFyykpMkuDlPVLAey2FsgywxB7OGo7sWWmOMoeUqaHO8gc6mM0w2aKzFEjy0xzMztTJ/j6i/fS0yffu+RNbbK5GhdeybF8sg/WwY63f5vJ2e0sf6dPOskFICfw1eWX+4QrYqIn3RCIF8AvIOT2g4hoyEeRQanHiQmQeHBdOhPWV3Arr8Hv6FqiW5C8cWJNQ7Zu3Rfyz28wv/zZq59fEAQ/hgAgvwn8AfAhvyAJguB9CDv2Q0hf8kPATwOjYRie9pa7D/iFa4FsBUGwAOwNw3DyOs9o5ba6BYnEmilITMEARvkpzn/wvDUAD08LthjxcO7OqBDT1ViJv/VNFW2hM0WUUzA84gyofHiXV2BEuChls+6k1wUBp040ZYqqh5AHUBnXEdEH0V6cEeFe83rEOzaFFSm+2C9YdN/6IEuORPkkeoyqknQ38Daix3gQeWA2EA7JM+Y4LosD+87McRqkrAs7CLlYCcgK65ilaA0LZVRUfvdKTi+bD3SS7ZSYtkXMTo6TMolPgpZ1cm6SstsEKUKOmm6pepj0Uuel08OifjMJJgeSrs8R73o+7l1LwFdQi76ulqBHY+UI49rBc19rdIJQQodzu8l3hX7YdZniXTmNuxE1ri3AJgTyUs0yeNs0eSoMM8kFcmy1lTGW5K5J45JRXwMsOV4TcoUIaahik7p/CwSwQZO0KUoatmuQ8l5l2/02wU3QItNespyTel+K7MUm7WSUaN53fll2bOBaSkQP2tL5aK4TF/X155vWM6Te10OyvWyPuZbpFyhj/SyzmUHyjXmaaVdM6Pd/njxJ2qRoWnhVmqZdrk2CBinUlb1ByhYVIhwxaIs+Rzhv2t/tDJttd0l5GWlvgEAFJNSZfYYhUjSYpmRJ5XUyFJnlFGWrpqXFjn5eeeY5yu0UmLeKXjMMkafCHIP2cz/LkPFFkcJgxpgWqou8FhRDzHCcHRSo0CLB0eYe7kk9TZUNtutWIc8OjvP183dR2jjtYGfLOSpnigxunaHENM/P7iV5U1sMD78jRURq7yWan11P6hH57vb01Vk+2Wchq8vP9Um3I4eIZejvAfObuNm8fwW5r34eq07HGeA3zfwVAimx51Vk8KkTcT16P7tadAuPN36s+YLkn91gfvnzwUsQkWH892EY/vtV9ymFwi/ECpJngW+HYfiIN20COBiG4Ue8afdx7QXJnwG/E4bhE9d+Mp1jzUO2rre9FATBw8D/F9iB0DK/DPxSGIbnXofDvaHQkR3L3YgVF0DUdfzBMeE7gHcDPyD4duV2eMlVcBMuEZ/y+SmmkGk9SvChMZfwa1704IiMqH/JrL8XA6Py9vtBxfXGb/4PuwJm2JzLlDmeh3DdFd3XCgiYCdtpMed/CCmG8sAzRk3sQ9LBkfN+1Bo6RrgmvtrWh8127kYgKB81y9yPfNv2IRAnkIJkF7AOBu+RgqKNOK7fwRH7sFd4lhBFRfVGDdgU262E9l7qbPYUlYZNlyXLAkOctSo5kkxesIlX0oyEnzJVn6/ao6Pf3/3KHaKA8wWcys0Xcdf5oNdxOzThdUc8bpH9Ho51eNBLrCaV6wwJR95wD/uVCUyUP+Mri0Ww6pMTBr5l4IQaJaLcnQ8Dx6BZXg/zMEeJueQQ7a3yfRpnlF6TLCupeZRxCz9qkGKIsyRpU6FAhTxlpuz3Q5PmGYYoGBjXILOGWyGVgEAHHYSwZkb/tdhRudp+w1uqJnLU1xt/7kbDKnY1zGB3M50m3SfHXFvfS6rRIN0QJSx5le7K+vNNzt08QOHSRebXD5CmSY0Umbasqx2R+Yx0EU+mh20nsE3SylYLfLFt+TOghYUsk6Jpiw45vyF73lrMKLxtiLPMMWiJ4WnTjSwyy4xXCChPQzuYgOVrpWgwR5GdnLCQyRRNTlE2x7BgDEuTFt5ZI2u7K72IQ3yFvFVly1Ox83VwQwuhHFUStKwssFPck3NukGaOQUqpaVuAKrF9bnmQTM8Sgxsdl6VFgs09M+S3VpipD3H08h6SN7XJbayKxO8m8zkfWQ/vgNb3EnAuYMPdVSqNNMuLGUi2oSyFNkBzXRYuBw5ZPo8UKp8zrxPI/XsXMmCi3fkScl9W+O+wcNkiMvMtvT89vKIjAlfvisTvSW+k+1M33oDx2kC25m+k4AqCIIVAuX4rNuv/Be65geP6R8DngiC4DQFhRtiYYRj+xbVuaE07tZv20qeAfwncgbg+/vcgCLausvwPAv8R+H3grUgDeBT4T6/H8b6a6HgjTY5F3a8V8mRJ66aAODghBUXLuK6bjoVzIp8wCeaE4ZY8agoCbAcjGEG6DMPGyfxLsj0OTUjhsRcpRlRxqozhHJgkdb/sN/y0Oc5Js/2S+UuOmC7JATcqX0YKnseJdm12Ie/vxXVn7vcuTtmcuxZnusy0Kba+BMGvyh/DY9HuUQnnFlxCeCI1cwy7EDLlx8yfjthtBn4SW4gw3GJgt9S1jWbKjk4rlCRBmxLTdlT0pFHEUXlWSQznrLZ/wXAI1H9ZHZw1YVFPCoVmiOpO0yw1xFnz1yRFiwSTbGf8/CjffdFc6D8L5KH/gjkX/1qYCCew3SNxsldY0spOR0SS2U73BBhW6ST8VT3sr+TKfj2hTu26Tftbs6HFiTdNf2dTOMhga0Ku/SeRz2R3S75n3whgPsmJ8dsZr49yqlm2nJEUTWbYTJuEHRWvsoHj7KBB2pCkxRW8SZoptlnBhAQtLhj1pyobLI9EeUg1sjRJ0yRtYUXTpkcnHYa0gT71UiXHAlkS7TbV9Abm1w8wf3M/tUw/9YwUQvPrB5hfP0Ci3SbdWKaRFlneRrqHdiJBLdPPpY0GKJTusZyoJG3mEoPMJQZpGj6VeHakLJndD1W0Eqf0fkMDl2NQNbI6vWwwvzmFSzZJk6dChiUGmbPnPscg4LqL86bAv2BgVzX6qZKzxdocg5Z8roMSsk2ZLypZ0o3R36vC8IaYsb93jYKBlKkCl3ZIMojKlV5/gXvJr3/J8FzUo+R59vI8e9nKNAnaDDFDiiZDnI18rtOU+IGeZ5lhM01SVJelcHppfBfTzRIn/vR2Fp4pkNtYpVnNMvf0Vnryi/SX5+kvz8M66ZIsL2bI3/0yjctpUv11OBdIN/YoNM8ZT6apQNbReALpMu9GBoA+jDxbnsENBoHr1upzcFLvKyPmb8z85vR3h70HrRbXWrC8VveMbnQjElqQ3MjfjUcBIZjPxqbPYoccIAiCLyOYkx8LguBMEATvvMp2R5D8/JNIBvmk93foeg5wrXdI/inw+TAMP2v+/8dBEPwoQi3+SIfl3wmcCcPwk+b/U0EQ/Fvg337/D7Ub3ehGN7rRjW50oxvd8CLkDePUHobhD1/nKr+LIJE+zpuV1G7aS3Xg74dh+Jg3/XeA3WEYvrvDOu8E/hz4ewhYJY90Ry6GYfj/udL+Xg8OyapYdB9WpRwMsAS/CIF9ysOtRwjqHuZ2eMSRlMs4zolPFDTbsl2XD44JrlehUZ9C6l2QkaxPIt0P3+vDksO96YcMqdA73ghB2u/8lHGQqvuR2tosD8hxPIJr7x80xPvH1PDRkekB1zGJH98uRMFFOySvAPsRTYiPmWmHcfhmJVq+1xzPj4YwFUA5ZPdthw1IpmLx+Wp+qKGQkAvkKDLHFGWq5Lhg5HsBiszRIMUGqhaeU2CeFE2LS2+TYN5AQhSqc4KdNIwDu+LRa/TTJsl0vUQi2eLiVzfJOX4LIeO/giOKWg+WlRjrIBBOTvgVmeNzJKJ8o05+JH/1sKwbOYbViPCdZEVX/78Dnwuc8ENyRH7T+80iZ5CR4j0I3v5eIQIPFc8yMystrW3FKcpMMcMQw0xarsd2Ji2pW0nSao7pk58TtARm5XFD1IRRfUp8zxNdTrsTRQNXUghRhTx5xPlbhBvSlh+lSkzqn6HbT9Am267RTiQsmdx6ZDQaTKdLliSuSmDK98hSs1K+S2SsMeECWbtv9RupkaXIHHVDFtfuhH8dGobKraaEet4NUpxliH5P5WyIs0xTsryOEtPMUmTJdGMAC2lL0OIot1PiNCWmOcFOey1V2nuQOdokLPQrR9XyYvT40zTopW7NGgeZZYmM7ZQVjWSwdlzr9LKNKY6z036OvrSwzwWa9lqjc+cHGd04zmR9WLaXqVJr9jOcOslz3/xB8ntfJtHTFjPV7xheCIgyluHQNS+naFYNLEvnnUPumf0I5PUyzlMkb+a9hNyTHkQ6I8ozeQDht/kCG17YLqw18I0KTFwpOi3zWhHfu7E2Yk1zSLbsC/nHN5hf/kowiXQcnrgWvkacQ/JqcupriSAIFoHbwzA8+WrW92Mtd0iu1F7qWMGFYfi1IAh+AilCepHz+xLirb0igiD4GeBnALZu7YgCe02js3pW/Ebp4dIPSoLoFLE8d+wPjsFnXTET3DTmzP402Sx7iTtEVUtUCej+MUnWX0Eabwr1OjjiIFZnMPK6Jvn3VbH2j8h7a6Jnjrds1lXY2K96p6hKTlN46kRjDkp0fwzDP+C9r8p+LL9BcflTCNRKH367zDkdehR2jclyuxBVro8hD8f/B+cSvNlb9wzwIPS8dRHuhOWX+xh41zmGUoLb32FUdNRELYEzK2wakrso9xSYM6ZmsxQttEMTPIVkDRt3Z5UtVVy6JiozDFkybo4qf8G9keRiYTkrqjdP9glR9AlEIUzjZnPOv4LH4XFKbBrx76SSRu30m3T5lQ/v1ZSqrleR60biasfQKXzIWadtxHHmV05i1CAyJkRxxHv/OFIkq8/NjyDf3fuBKix/p48zXxym50eEJHzym2/lJG9lYPc5Min5Tohi0jZAvm8LZNnMDHMMGt6DFDNJ2mxmhobhXaRomG9fr03wnWiCS9ABK587y6A1XNRlquRMieMkq31CvRbQKZrk2lXhnyR6baGiUrptEtTTg1Y9DrCFzKyBUSkXQj1aXGGVtRwrhT9VSTLDEBljKlgjTZ55Fsy2leSuRYlyKmYZZIizbGaGCgWjhrfAFGX7284ZnkaGOmkalve15JHti8ySZYGzBnJVMwpXRWYZZI4a/cxRtIp844ySpWa3p67s44xGOGRKhl8iY8Ur7uOQheVNMmzJ+PqapcaT5++jWc3Sv6nCnsxRe7+pk2H7xpNML5fIZarWlf3i5CaeW1eEQovK1BBMBWx5zyQzbCaTlUGTTKbO3OkhEskWzXMFBobPcfHLmyAH/XvnWZgoMPih01TP54QM/8U+d49V1/bPIsXH75rpymur4DyPPLjtit/dBOg9KKL46EV8sKAr59uNv9IIcT5Nrz4uhmH4M6/6EMKwGQTBczhnH437gf9yA8f1JYSbcsMFyVrukAwh2sbv9kkxQRD8b8A/CMNwZ4d1RpGL838iFN7NiG7HkTAM/+GV9vd6qmz5N0s34mwI6ZrAqdKV7wYNnvyhW8fekH2ndSVyT8ZI7a1HDRmemBLWw270XEesVIfhS8BDSDHwGY+EXmIVB91Y+MpgZWAv4vDuq3npCJkpwgCYNgXVQ0ixpG7tmovnMSNqXodGuyD60Dsi++Nm3KhcAyk+dDxgCnrevygJPYisb36R5UaaW7dOMj1bYsPNVUo903b0WaVUh5ixGHVwJnWzDFJlAwXmmafADJv5IZ6iSo4yUza5G2TWqiSlTapUI0uZU1TZYKVHlQA7S5Eiszy1fC/9PfKkXyLD3Ie2Cja7huv2fGbCSSO34t8ZCf87eCXvDZm2UjHreh/s0e/+X01S8GpHVDsts6LDxBU6JskO2yvjZKb3IYXkE4hfA4gwwbGAgR8+RzLZJt8jpOPhzKTtnOSospPjzDBEmVMRLxLtCmygSj815ijajp7yRIaZZN4m4lHpX5Wf1qTf76Do6H1cZlj9dXzlLi1i1IE8QYsqG2wBoopXTWNgqOvV6aXIHFVynKJM0XQZAPtb0K6KijuAU59SKeA6vcxRZIgZ23FRbkqNrBWl0GS+RYKzDNlOjg4W5JmPDAaoitco4xzmTitPrP4igJX1rZC3XRaQIk5KlWKkoFNBjCq5iLxzkrZdV+87WvzpZ6P3lCob+Nrpe3nX1kM8PXsP9xSftveZGv2cOL+TwY1z5LjAC+PvILXpEps3znD2/BCpdUZNrdbLUPEsZ74ybL1D+u+bZ2HKXGd1XS+H0iV5ErnXbmkJn+QyUoToQI/6jCinSrvrnljJSql60PtWnMd1PfLe3eLjzR9rukNyy76Qn73B/HLsmmR/+4Fh8+/TwCeA/wacD8PwtOFl/0dE7vcvgZ9DSOlvDcPwpVdzWEEQ/BzwzxHu9lFWktr/72ve1houSF4NZOs/Av1hGP5db9q7kHS3FIbhmdX29/0sSHyzQwlNCOPJjDqvezAkH2aj4cFtIsm+mgGqr4QaA8bjAZx87i/jauUpZCR9M3iS9tIkHMHBfw56pMMy7uGi+3qE6MNniqiEMETVrlqxxNkvLr5ktv+4ObYv4qSBdbvTSMGkhZHGp5AHYtX8/25kVC6PwGYUMnM/pMqXRDkGWG6k6S/ISgvn8vzAbU+Ro2pGQGtsZoZpSmxjilmK5Jm3SUGVDdToJ0fVEoznGLTeJCVDOk3TsMaHmlBlWSBD3UIx1ICtbQjrWqDMMMSJb97uTOcAftu8foloobiKy7qLAxYe0clzIyq3eS2Qw9f24f9XkUxcaZ9XM02EuBxwfITX+yz8LuMu5DN7AleYgAwE/0YopGFgyz3STUvTYPp8iR/Y+CxF5phhyI62a9dimEmq5OinRtqoTu3kBNOULIG6xLSVBPYNPDUJH2LGdTu4QJom8+Qt1FC7A+oMDlgolRYaGerWcA+wsr2StKdt5wKw3RBNrpvGADFHlTq9loCvyXvLkOJBujxaoLUNsT1Nk2lK9tyGzG/X7wipapYeh/qWKNwrxwVbnOzkOM+z1w5M1MjaTtNJtpOlxiBzLNFLy3RaTrLdSoHPG/EB2a8c306Oc9oUOUXmGGeUIrN20GOK8grIVoU8m5mxn6sKBAwyx4nlHeR7KqRo0CbJd1/ca6WlAb57eg8/sPVpvn76HlhIktp0id7+OoVUhZPjb4X+Ftu3Hpd71/hW58gOsCmEagA5L28w302mkedAHqcsl0VSFJCBkv0IHDaPDJp8lpjEr3s2xgdOVovXshPbLV7euLGmC5KhfSEfuMH88tevqSC5j85E8t8Pw/D9ZpkPIUq0mxF5lQ9fjxJWh30uX2F2GIYq8n71WLOQrVfZXsqwsjGm/68BRbEo9l4LlIiPweSEg3M8ZdZ5YMwZ2an3Rh5J0n2PjacU/vSw65D8Mk7bXYuCCi6Zn8B1HPYiD5BjuFEtEFjJSzizt4O4YziC4OPVSXfSwK9sQWW6GtpxyY+s9BaZPADHxszxeapb04YLs9ecy+fMsWox4xkiynZMNwmkcNLy85g5h4q89rx/keVf6JOkbwuQC2kuZFwR0pCEYSgzQ+42kVttkmKIGfqpsUSGInO0SFiYhT/6OEeRE+w0MJkmezhKmwRlpphjkLcwTsYkcykP3y+Jm0Bkqmyw0JYa/TRJ205JtZ6LuhxvQZLZzyO+Kp8z5wuihqawPZ8/Yv1jHrbFSJyLJKOVstiV1Gc6wb5eq/irKEauFFeCdF0J6mYTLN8ktIV8Dk8hyVsO+Y5+FGyT46fdvgb2nePM08OSFP5ZwMAHztnvGsAOjkc6HJMMm+5HngIVkrStoabCkdTQTxN5v2gArOxskxQVClaCt0HaFgO9LHGBnC2E1CG830jN6u9HIUZtkmRZoMoG+78WB72mMNBOIYgp6AxDlmPRMLwXNXrU5XqpU2TWO+Z0pFtUJWf/L3PK8laOsoe84W8t0cs0JTaYAYgqOZLmOjVIWyNK/b3LMSyRpsEo47ZDqpyacUYpMG9gWDOGGyMdBvWduWC2Icy0vO3CaFG2l+d5lrsY4qyF46Vp2s5KlgUqhhfTJEW5Z0qU0pYTNC6nGbxtmkYzZde9c+uzFhLHutDK/06fL7F99DucHH8rJ59+qx3IafZnHIdkKmD7e77DydM7Gdg0z8VzBdhiDA9zfdIlGUGeH4eQjrSOu94M/Hx8gCRq5OvDQUXBX5fRaVcuGK42eHK16BYj3XgjRxiGTwLBVZb5NPDp13Cfr1luvWY7JGBlf1dtLwVB8AcACscKguD9yJjL/4KDbP2fQE8YhndeaV/frw5JJ1KsHLOfrJhQiJQPi5qciHZIpmJmbBo+XAvgE2Omm+Aln2WkkzAA/EoMepX3juNmovGZCSHmPk4UxmUI6eFEDH4VI7lH/FQwie5DSCGj230AV3T5sCs9b4W16AhcBUnCNR4jKhG8G9fZeReigf8EjuR+t1lGC7J1WEfhVH+d3MYqZaas6/Io4zZByFOxkI8a2cgI70m2W5nNPBWapNjDUVu4ZKkZSIZzbPZHakXStMUcRY6zkzQNvs0ea352pH4HAAvHCkIgBSfj/Fvm2nieLQ4C0UmmFidAMOkl4p45px+vBp71RnrAv9rj7dwJiQ88rOw0RX6/+0dc5y6PSHOAfOc/jBTxNVz3sh/6H5xn4ckC/fcJN2Bn5jgAU8tlAGrVLO/b+CfMUmSKMkPM0CLBVmS0fIYhdnLcJunasdMQWd2s4TP0W6GFzcxYPojvk6OdCiWAA5bT4H/HtagBjKytg32pU7nCvBRu5sOstIsj23PQKzE8LNrj3kDVOppnWGKOQTugoFAo2WfR8ih2cJwT7KRNgn7D59Lu6HF22qKqYG5W0omR46+Qt5A05WsoD0T5NjNsZptp485TsIaIdXotl0aPTQYsxN8kRYOp+jaGM84MuUaWk6d3sn2rGKhWyFOvZ8hn5oXbspygv6dGtZkjmWyT6JHrpNMr9YKIYJwrkN8yS6KnzdyLJXr66s4Q0XSLF45JEfWWtz/PdL3EwpECg/ecZu6bW+W+eSYphfVmxFNEX7+Ie7Y8zipE9Shy4Ep8j9Vc2V/rruzVjqMbay/WdIdk876Qn77B/PLj10dqfyPGmi5I4MrtpSAIngQIw/A+b/l/jBQu24CLwFeAf3YluBa8PgWJPw1wo9KP4DgPBzu0r33FEc8Z3XZUfBfyuJFiyyT9EE38tWjQ5N+H+kwQTfj1eXGEKH9Dj3V4RAod5XhM4fgk6vCew0G+jiDLPGL2qxF3tgZHVD/0KHxkzPBYTCfkvUih8Xng/UgnRLtBjwC34kaa+2U7PWOLLP+XPjlvg8+/9ceORRywCxZKlbbQDF+JSNyQd9qEpk6vHfWs00uBCsfZaSFaWtA0SNuRWd8d24dsKexjhiEOs48C88wwxCxFZmY3s/xyn1wPH+qv7utaWB50XJvwK57wwQiWf3Qtmv2vhiS+luJaj/V6IFpX2gZEuTGrGUbaz0HV8PQ3U8ZB7LSgV8LvB8zrS0gh/QIy+rwJOAwDP3FO1NVyWK+codRZm9RmWbCeGfqd22BEEpTzoJ0FcHwmhV4lDZm+QdqquhWZZZ48w5w0og0XzLpNe11UqUtJ9AqV6qVufzPqtwEYzw5JnDWJz3HBcjVSNMQPBTFxnPOczxumC6NwMvFvSRrFrBmrEKbmgn7RpNAz7boo3Eyv1RTb7G9fChAZvFggS4sEVTZQ5hRTbLNKWScZtmT3cUbtPSBtCjItZETIIs8MQ+zjMIfZZ/glReN1lODrp+/hb279U+uZoh2YJTJMny/R+l6CUnGahWXXEervkeJr7umt1swVhGty5ulhBvad4+Ifb6LnRxYpFCtUz+fo7a9z8VyBwa0zzI1vlY7Ji6NiegjwtSTcDFveM8mZ3xiWp/KvI1DYY4hy4QM4zt4RpKAG6aybQba4Ota13nNeS/7XG+U+1o1rizVdkGzaF/I/32B++Vtr9/xeq1jzBcnrFa9vhySKj4WHRc72N/GUsbwCxJfrVbjNA4gxoo6A7x+R5PNDuAcBODdyjYOPRrf5ASRpV/jPl3DdCH+dT4wJFOh+5MFjVbVMUvXgWJRgPu2tr9N09P6D5lx8nkkJgRnFR9TikDOdd4RoZ0cfgHjzP4DAsqaQDkjZYPEvywO11uwnl6oCgt3WRChLjQLz1pxMMfhK7NURTcWVV8gzaUwQd3LCyI/OWqf2u/g6IEmeGLKlIqO8mqDMGj0eJa/OMGTNFQEZjfwcUmjpZ6GfmX4WU8AjEH7aJ1Uf8BLkKJ9kJUn9xvkgr/d6N7rutWwbrh3OcdWCZNVX7zP0R5IVHqmDBANI8fJR5PddRgqTqnntl2R5cOsM87N57igeYWq5bHkFIO7kbaOdpYRpcIV3L0s26VZCvLq393oGf35SrTyqIrNcMFAn/U0pnAiwJPOCcSLfzqQt7lWSV6FcaRpW+lp/MzpPlveVt/olQafEDo6TNJwScDyRKcps5yR5A6OS452zPBe9JnqcM2y2sLQMdWNaOG+LKeHDSKdDizrAkuGrBsqmTukN0lY2WGXBRd47bwc/KhSMaMAcFfLmM1qiSYrnZ/cCMFw8aa8rwHdf3GslybVLdOL8TvZsPEqNLJXlPLmeKgCz9SLpdQ0qz9xCz/ZFkjc5lHNzIcOOreM0SPHS07vo3ztPvdbLsoGxcsagvDeF8LkA3ga24bWAFB0RoZMrS4Z36i5eq8z2q41uMfLmjDVdkBT3hfyDG8wvP7l2z++1ijXLIelGN7rRjW50oxvd6EY33vDx2ritv6mjW5D8FYRP3rNE4o9j4VjBSIeVJj0pxNaEjEQlRwwH5QAcephgxFOuKpt1PjkSXffBMcfdODgBL5l1FBr1EAJn+jwOzvVBbzRJoV2Tj8LvjAkU6qcelm7GvcAHRlaO3g+b7sg+YGRERnKPIbCxj5j955H1HsJBxB7x3ivJX+FtrQnY610oJdwrlKli1jkMpIFdIUwF5O97mcqZInPnB+ntl45HmyRNUmw2poUFKhbr3m8cDwCjfqU8j7YdDU3RZNhIcEv3o9dwTeYpmZFNwJJkxeOhbk3idDt1MhzldjLUmWQ7bZLkqIqiFghnRLtAe3EdpoeQ7492ST6LUNY8g0zHVVop7xv12riy0di1jC6+Wlz3je7z+xWv9jxW+Lp4021XxHwuwU0IzDKuimbEKcLHPL7ZLpy63c+b39B7ERGHLwNvM4pVrRIDW2Z57vRd8EKS1g8nuPjCJvp3zVsfk1xGLDu1Y6LQKR2ZzxkCtxojtowPiXZKVNnLJ5drJ1G9NeYoMsgsCdN50M6LytnOMBSBean6lP5WxNunQZOU5XDNULBcC91fjSwFKvRS5yxDDJqup0KytNOQosHXucsaklbJMcug9V1RU9MMS5SY5gh72c5JpilRJ2M9UECI6b3m3L9tPEJUCUuvnyrtjTLOKbbZa6xdpxQNCoiAQNF0RVrmWIUXM8gMmxniLHcUj9hzzVPhxPIO+ntq3Hnb00w2t1NNiVBAEuGATC2XabUStFtJEhkDhbucIr2uweA9p2k0U6RTTarnczSfWQ+7W1TJMXd6iNSuSzQvpwQmqnEZuQc9FcDPteD9SYHLphHOiN8Zb02wgsBulBk7dzuubHR4rTCsayW+d6Mb3bixCIIgCfxN4NkwDCtXW/6q2+tCtiS+H5CtuE/BinmeVwiAlfu1Skceh6TsrTyFLTjCcITgPTjyODj+iEri+uFDuNTzQ8m02m4HgYWoOspnPP+PH0GS/Pj6PiH9FaRAASdr6pOtf9ks9+ve+Sg0S0nz4KBhuoyez6SBfeXMOh9D2EJvwxHyLwO7Qvo3yYE1L6fYsfG4lRkFvIRmyXoxANzFs2SpUWQ2gkVXSEjNYNgr5K1kqsJJHGa/RoEKKZqUmLb4dTVqm2GIXurWcRqkmDlF2ciULvDc+TtpHlkPwy14ISnXQIn6H/f8WlSV7ZBXeEZI7b6qVlSCutN3sxvXF52Uua6HfxNdP+Yt5EM79X6hnKwJHDRTxSq+iFNYewcCVdwUwmOBrLcOBkdP015OUKtmGdw4R7WeYzgzSY4qR5clqd7eIwV20fCqGqS5g+e5QM6KM8RlgysGP6leH1p45Khac8J+aix4hoYtEpYTAljoVy9Lls+hXArhuDjpYV3Ph4Wpu7uAvhKGGyZJ/iCznGXI8kPSOHJ9yxRLZxmy8K4aYjh51iiQidlpniFm7D7rxhhR7yXz5MmwxDQlypxiydwXdBBDpYlBOCwlTvMk+8lR9YxWW5YY/zx3WGWxAvMcGZcbdH7Xy/T31Mz12sDM7GYKRSdKoFydky8KLI1kGxakUN0yOsmZF7dz623HeWl8F/3leRbmc3Y+58z36xkgDz33LdrrtPzFPik8ssi9SL9/JeSergNNVtHPE9To4KF1JW7IawXR6sZfj1jTkK3BfSEP3mB++Zm1SWoPgkCyrTCcuuFtdQsSie8nh0QjMjJ9EyvJ5/tHnKwvdCapl3GEcJ/LoWpV2knw19EoszKZ1+0cmoDfHxENszJSuPyiWe+XccLLe3FKVyr3O2XOT9W/9o91VsqK80s0sfpNHNn+/Uh3BmQbnzH78IuhI8CvgRGpcsVIFidPuQ76d0UftIOjQuzczklrmKYP7j0ctQlKlho5qjbZUgL6NCUq5JmmZEdQE7Q4aX2I4Mf5bxzldoaYYSfHLYlVfByq1EzPJWtM6mR0Voi5CVoc4Q4mZ7cL8f5HQzEc+0Ocl4oqnoEr+iBmSnnAKmV1eqhfLYF+7VVrVhoqvtmjk19JR5y8uQ/4I8PRAtIkcMr7Uq7YCM7rYXICPjEixciDuAGHH0d+Ixdxv8ctSCdlGCnaNwFTYng3lHGJtqpJbTP+Gcph2Mlx6z8yZFzgM2Zev0mGKxTIM++pRSUpMW2VvnSdDHWbwGsXsd/jotTIkqRNmSme5S7rMZ82bIwkbY6z03IvVJVuMzPWs6eXuvUJmWPQdjMAa8YI2EEHUOWvXutFr9K+Pr9Er1OVHIPMWRnlGlmGmWSWoseLSdlOTolpTpkbYpomdTIUmbXdoiUyHK/vpJSZJk2DyfowuUzVLN+whRNApV4gn5nn7HkpcAY3znHmdJn+QpV6rZfshhqFVIXqco5ET5vqebmure8lWF7MsOW2k8ydH6R5bL0Q3L+8iZ47hVPSfGY9rIOety6yvJiBbxgl0QpyP68B38Ldux/HycrroJreg7Sz1/L5IlGu2moDdxqd1eteXy5It0Ba27GmC5Kb94U8cIP55efW5vkFQfAs8M/DMPzyDW+rW5BIvJYFScck8CYiibkdubaSuOaGq8aG/nIqqYsm/ROekaCXvGjhMBkdEecT5v1HzXbLOA+Qm3FEdlW8mkIeMhpHcF0ZcCR2cF0PcA+mB4iOnPldnw+OREfRdFlfvetx7ziVdH/QTFOzxIeQJD2HjAxvBt5lRoJ13Xe2YD7JwO5zpFNN5r65le1v/w7V5RwP9DzONCVrUKhFCUiyIUo5koRIXyNvCbOTDDPKOFVyHGUPP8af2kSlSo7NzNiiJk2TQeONoMThFgnmjBSrOmTLZS/TS52XXhQVIL4ayChlDjcavtf7PDT0O9CKj7QDwyPWh+RqcKzvR3QJpFcrTh6O3AtWOlUfiEkzP2xHn62/zPCIDCD8/AT8/0bgC2bVY0iB8ovIwMO7ke7aBEJEHka+W39oliu0bPGe2iRGocPFk9avJEGLYU5aedumMQpU+GLZfCmduWfGdge1q6CdDS3Q1VlciwE1NNRQlSwdFNDugSb5eSq2M6Pb04Jf/VdAfpct08nQYkU7EifZToqm9f9QBTHAdjFPsc1CLn1n+TQNozCmxpIi3zvOKMNMMk3JQK8uMMU2q+YFMMq4NT1USe9cpkqBeb49u4dCsUKjmeLimSIk26T665Q2ysNB1cfmKDL3la288z2H7GBHpV5g4ckCPXeaYgJ4521P8rVv7peLehlSuy6RWtdk4Vyenr46maycz8ITBba8b5IzDw3Do8g9dhI3SDSNEz25GRkgsSqP7j4UlfN18VoOTHTvLd3wY00XJIV9IX/nBvPL31ub5xcEwd9CHOHHgOeARX9+GIbnr3lb3YJE4rUoSHy1nOjoj4nIqCfAAdPGNjK2WhBMesUJOBUqWOm8rh2RB5DiAGQEXSFUfoL/gHlfRhL9j+KMC/eaZSre9nwY1q0IhOuz3nY0yuZ1yhyPSgdD9KGlx6ChqkEfn3DHrFwWP/Le8ru86bd618AUcan7LwGIfOXkJgAGhs/RbiXZkzkawXXfw1+Spskk2xnmJL0Gi65mY20StiuicJAL5FgiQ4M0VXLs5Djz5G1CdQfPA7CZGasyVCFP3XgfCP59M1Nss0nVvDnBqfo26ehMJoUL8F4kWXyFFd2oFaEJAVhvGOj8nfRjtQ7elaI7UiixGszkeiWVV/Mq8sMleF63xKqnxbqhZW/FvbiOovEv4Rj///bePz6u6rzzfx9JjGxZsgdLlmxhmTGWbMeJUwMmEBoIJmHJZpP90i3Ztv6mLe0maUm732y6TVu66Tpu2ZA0aZq0zdKW7Ia2Wbd5we6ySb60aQgmIQWTGHBjMLYl4cEysiUke0BCtoaRzv7xnHN/jGakGf0cyc/79bovae6ce+feO3fOPc95nufzhEpdXp2uA/GYZNx2yxDvCVDV+DpXthzi2MgWrq17Ksh/qmOEBNlAUtfP3rfQ735DQxxkJy304SuYZ0gG3hAgqMoeNUK858DnQvjwrwaGAmniQZqodTleobpXP11ONtt7J3wtkiHqg+Py4ZVpd6H879Ir2vlaIiAyxO1OBSzqPfL4yQQxjqTWUJoUjQwG9U98uJY3WHz+Th0jgaJYlloGxxt5U9URDme3056QnJX+JzbQeN3LnHslyfjgCla1i6Tz0Dl3fmsyDKZbqVohfVfNJWM0JIeorhpjOSNkskmGzjWwreUIPdm2YNuaS8ZCz8jBtdAD9e8fYPhAU5ibBuJN20rYJ9/bCV/uiEj47o2HFHflG9+RkK0CXpBixvpcoobM0qSiDZLGnZZ/NUOD5G8q8/zyKrVHDQpDmZXa1SBxzKZB4v+HfMnCvByPaK0OH1sbi7NFjJLHiYc9RQf3h4jH5UbzNfxnRcN5ajrgS8is6dcQo+QWwtCqdOSEbnN/1yAPqa3Szr4RSbz3hk2+YeRlir3nJR3Znz9m7y3xYSd3dYiHxxtfdyAhZF7udw1hDQaQGd82ZBC1TI6x/g4pSDYytJzxl1dw+VVHgwKGO5zbxtcG8SEUPhbeDzhGSVBLNpDP/CHX0ktrIC/q80GqyXGpiy33YSN+NrmBIarJMUgTfS6h9bSrJ9JHcxBG8kjfu4JZTH5k4BoL/2DC+Gx//XYQGpNp4kUw/YCgKzpIjc/Cx6V/Z8+YuFiNk8m8HuVei3yjMC7PnCdCcEnESwrk15fh9j3hZMENTJTS9r/l25HB5gHgKxaOGqnpE33cLZNnw+YrDnP8ibdy+fVHg7won8y+3NUQ8dXNQQbnKRfqtZ3DLm9CqoR7qV8gMFCiMrrRHAiA8ywPPCv+s4eoD/YTrevhDRtfWLGXdbEkd39sQBCOCbj6JrKtr02Sdh6RHtrIUU2tC+/0RSDjldolz8V7gnyxyBb6ghwZIMhH8/i8mEw2SUNiGIAk5zjSJ3kfdQ3nqa7JMZarYfhoE5dfdTTwzHSf3cSO1Yc4MrKN4TONkDFUXfY6409LAvqm9z5Pz9k2CeN6uJ3m97oihkidmrFcDcPfbAq/6w6kX61FvGe1SL/+F8C9SI4hSKV1nzf4YN5km5vcCjx3wGQ1j2aj/o+ieNQgWRiMMe+c7H1r7fdK3pcaJMJMDZLJElZj8eJQQJs9ijMs2iMzSenI2zk3cL8nr06JT4iPVkr3r32i+gMEdUSCmiX3RoyiDyGDFzfzNUE/3odpDRLOxnuDyZ1XbEAEoaHijQpfh+Q7kTY+P+STiNHiT/0BJDTrASQk5UHXbh3hLC/Q+AmZQaxrOM/IkMy0+nCHZCJDJptkS+J4UHvgX/FwkPDq6xU0088Q9cEhnaeOLtqpZZRvcyvN9Ac1CfysbhsnGaOGOkaCooo+1nw5I0FsvK894GuWHGML3eObWF51nlMnU5KwDhJqczviHfFJ/z5PIB0diIY5IrHvJ5Y3Ep+NLLVYGExuXMznQGGmn7XQg5p8b8fU139yL1YsvyQvTC8/BAxcf3MbcQ8piNHxFaRfuRvxfHqj1x/yQcSjkgIOA++Ht2z7EUf6tnFtyw85PLKd6poc2xOHaXG1dbxKna8s3sQgXbQHSeZJMmRJ0EYPAzTRRk+g1uXDrkbd+xlXx0RCkzIcZzPr6A1+X2FS+XIyXAqIx2GQRpJkyFFNK6c5zubAi5IkExQrbKcryOW41LVvYJgnuJ4UJ4LfddT7ma/qBaHhVE2OI2yjldNBoUNv6EST3vuyzbQmJPnNe0hb6eVENkVtIksjg/SMtNFW18MLz1wJSXk+r1rfR0NimP6zUhgxe3Qljde9zGC6lVXr+3j1TBPrN6QZytaLsZFuCsNs63PwWA3NvyA5dP0nWyFXLRMga5DJnAvu77eQvmcY6a+/hzwjorWj3MRUbFKkwD04mfej3GKHpbSb6fszYaH7GmURGCS3ztAg+dvKPb/ZQg0Sx9wltU9elTYwSLwqSTovOTyfqFqVz8vw//sBii9iCHFjxkvmQhjmlCYS7uXCQT6MKGvd5T7fGwb3uGO9syMsvug9NtEk+x3Ew8ceIjSUPtMBvxNJrPdG0ncI801uixzzGsSg8g/CYbf+Jjl2Hye9an0fbYmeIE9jwIV0NDAUyJMO0cA2jgQJuc30cd6FUi3nfFCwrJdWhmjgGFsCdZ4e2shSS4o0vazjxkjsXDVjwSDFF5TzM7gJJ1/qpT/9TKqfRT312XacWij8AAl160C8PvdFrptP7I8KFkRC/yYW3wuLZhYKk/CUW+xvLrgYH+aFBmtQnqcp5gVzntXAYwKhel/UI+vvox5kAuJVxEvym+BSqAQ/kV8LbJewrfGXV9C442UAhjINXL36acacDHA1Y6Q4AYgXxHs0DrOdeobYSDowJHwit8/F8AYHEHgXzznJXzFuxCvSTjejJDhPXaB6NURDTC1rOSNkXA16X5jQ/75BDIc0G2liIFDVa2IgUMsCgpyQFvropTXIX/Ghaj5PBMRIOcQOdnCIY2x2x5MNvR/OKElxggxJasny9IvXA2JktCZOc6xvs4RQZRpovqKH/hfbaEz1kqzK0P3Mm2nc8TKDRy8jsfY1skdXArDj+gOcyKaoqRkLZH2zFxLy/voc6zekOfWMiG1UXfY648+vCELwWGalQGwPkph+O2GOnsd3LT5M9r7Ie0Gu2u5QWjxW7HfiZAjkyV0XMEhKmdRTlGJUtEGyeqflXTMcXz5YmSpbAMaY7cCvAJuAX7bWnjbG3Aa8ZK19ttT9VM3R8V3U5CelQtgZh+EYu8OBoVdN6toLuU7Z/q494oXwoRY9bvFu8hQyCNnlEsPb98jgdZczRtqQAcltyPobCL0SuU4Z5LYhD5eHiIeB3euMm3s6ZUnjqqXvk3b3IQ8qr+6VQtZ5Ayc4731itNztVu1yxkiN85B4A+coMjhqdOd1yC073XvDBN4QtrolLcpA46O1okSFxJAfOrmTQyd3ciXP0kYP2zhCLaO00Odiweud10Li2HNUu4FNPedIco4kPbSRJhWEdAzSFAyA/ExrL61ByEgjg9S7lNJqcrTQz4BLhO9lHYM00s0mBmgiwSjdL26jN7uOU3/dLgO/HxAaI2uQAaL3XPmcmbS7vrmoMdERyVXqnBDqU2zG3dfEKJS3MFkOw1xxMQ42Sq2zEO1L/Hfj+5FY+2itoa69Lra/g2CQ6Gez08hvv6sTXgL7aeS++gEiHuGX9Ugicxp4DAkFugCDj13G4NHLAHj67NX00cwoCarJcd5pZx1jS6CA1cggdZwPapj431QvrdS46u3H2ewkcHvoo4UTpDhPHf1O7nfMhUwN0cAgTYFRU02OfpqDfJVRajnMW+mnOSbF7cO6hqin3ynaeUNjjGpOsJERlxc2Sm2Q0D7m+obHXryVbjYFanhZJ9Pt95MizTE2k+FSWjlN70hrcIwNDDGUrWeQpkCx721XPM7brnic2kSWF05uZ3xwBdnhOjZdcYSx8WoaU72MXqjlRF+KROo1qqvGqGp8ndwb1SLhvNZy6MVrGcvVMHiqJciVy6ZXyiTPQI0YI005eA7pI1+B+tQA9akB+IGhfscAQSrMGaR/XQW8G9fXI33w7cjkUyqyuFxIazuCXDXv2Zd7cl/sXo32NeG24b07VajjVAqBilLxWGBshgu8aq39SAUaI/8C+BFwGXAzBAmBm/AF90pEDRJFURRFURRFUcrlD4DfsNb+FEQq3MJjwNvK2ZEaJLPAxFmbSDEzN2Mdb7NPZq5rZDaJB/eKjKfdE+aOfM5te0jyPYJZTz8D3uU8F48TysA+jnhVPo6EObV3SDLifucR2UEk7ndfgaq6uHjz3WFeyq7oDLtb7z0s7R1hIcKcm3W9AQk5unOPLGnCAov7nUflNuRY7uqQULAeJHdlDWEV+K69klNyK6IM9BIya/ugaOMDokiVq6Y+NSB6+yTZseEgOzYc5FmuJEmGI2xjuatfkCLNRtJsoptWTgd1Dnpo4zBv5QW28QLbqGaME6Ri6liXkuFKniXraihUM8YmuoOZ1wzJICTDq/fUkuUI2zjGFkappZd1/ODFd8MZw6tnmsTzM+y+68+5a39vp/te9ok35L7I/RT5/n3+iEe8JfFZx1JZLB6K0MO4+InOIEPx7yCq1lewjklwPfa5153Sr9REZqSjctA55zmp6YB7O6Wo6i2Id24/ktj8HJLw3oP87v4YqTtxCAn7uSC1LLJHV3L6bCvD4zLVLuFMdWRJBJK/8psY5RA76KWVOkaoZZQxqvk+NwQiEMs5z3JXoLSFfkac6IOEPPmk9VH6aA6kuE/TSgND9NJKL63000wLfYxSy1O8jWpyjFAXhFI1MEwjg7TQF1RL9yQ55yR/qwMxCy/J/a4rHg5qF/WyLqhdNEY1WRLut38prfSK/HGdhGedH19O98ktNCVEAKOWLEfObnO90XIyZ5PUN2VYv62L5g29ZMaTNFYNsrxKktnHR2vJDtfRTB8Nlw5Rc8kY9WsHqV87yOYrDjN8qEkU+S5I4Vefb0IncACqakdF2vnJGlgDw/c3MXx/E7TD8J+6HJMDyN9vI+F7j7h7ZI1b/zHgwb3YTpGZpmtvrO/Jf64Vupejv9tobaQopfZBxYonKkpFY4HcDJfK5S3AwwXWnwVWl7MjNUhmgck703zjZHfYPjpQ6HIhN2lkoJ9y23a5QYPHh2F47feUW59y+7trjyih+FCr/ZFtg5ohchxBmMcNbr9erenODlkaCUPGbnDH5QcztzsJ2nv3ihHR3iHL7Yjr/ztuuQ0ZVDe6Ng8Rygl/jrDgYiNh2Nfte2S5Aak2fRq55V8Bfh3Gn19B1dWvU9+UoX7tII11AzTTL5fUVWi+lqdcXHva1S2oZYTlriLyQDBA8IXSqsm5wI8GuthEPy0MjjfywjNXBgOtUWrZzuFAYShLwiXs1gTbHmMLGZJ00+4kT+W4njx5Ay89vFUSSTPAYy6R/dc6w5A6H+Pf1UlgeHpDMa/wYbE8kHiIlh+klv7QnqsH/mzsJxb6scjx5zEdoYH8bWQiw01usA/7hjNYczJ4DCY6orLjKbfx/k753flQ0Pvc4oMCfOjgPyOGyv8jL8cHV1C16XWyB1YyeOAyjp/dQh/N9CFJ111s4hib2cKxINTJq92dczlVV3KILjbRSyuP8C4e4V300cIRRGXK56d4lapDXBlT6Rp1oVPeOBigKaiCvpE0PWwgwSgbSTNEA72s4wjbGCVBl5P4BckDSbMxUNgCCcvqp9klzSeDavRextf/3p8+eS2jrh/IkiDFCY6fdblnVf1s3nDE1TWS5PbEsqzLcbmU5tXSN7TQx0BfI4OnpFDqqSPtnB+uI1E/ArlqerJtvHqqhWx6Jcm6DMm6DF19m6ja9Dqr3nEGHhQDkR8YCclyeXfjL6+QGiJ/QTzs6oL7ux/pr0FCQzOIWErNHvneUwTPqMCoqAnvvTDMandwH5aSC5VvTE/VN0z2/lLpD5QlztI2SM4i4Vr5XIVMbZWMJrU75kL2d+LgLkxChokdeJAD4IvZdRCpxhxV1Yoms3eG9Smi1XEjtQny1ZiCZHq/XYow9yNaGTrl1vnE9aDWhUtgvH1PaOR4Fa1DhLUPIKxN4mUifRX3JDI7dysyM5dBHpq3ExZw/ABSgf0aCxkDy6Rg2/L6EZoSg4G86LHsZtoT3TTTF0tqb6eLJBn6aKadbhoZpI0eutkUxHMnyfAI76aFPrpcxXVffyRFmhGWBwOaRgaDGdu3ugzgBNlABhgIPCVewee4i6N/4eEr4auI92gVMvP8CnHFspo94TV29Wms3eOqecdVzwoljXqKDQwmk6VWKovpKp55WeDoPmJMqJ6dl/juq217cQqf1PwdRC48jXhLbkDyGT5v4Ndd0nv3CgDWX98FENQOOT3eSltVD8s5z+GR7Vxb9xQJRhl0Slvi9RADvQkn2+3qnIxSS4oTrvZPgm7aAyPHe0N8XRMvXOGXqznIaZfr5YUtkpwLCiN64yXlft9ZEjTTF6hlHR/fzLlXkmxpOU4dIzx95CfZse2Am5yQz8xkkwCcH66jbXUP3UfeDPU5Vq0doCXRT/psiubV/WRGkpJ0fmAlq94ttUTGcjVU1+RIJjIMjjTJ+/etZNXHz5BMZDh9tpXl9SKW8erBtazaeSaoPzL+ep3kzl1w31en1GDKHloZKmalrEiIe7Usb3z8COlz1yNG5itgHwDzAfc3yG3cE5GVF6ztKHiPlauYpSizTUUnta/cabl2hkntj1Tm+RljPos8Ef4tcATJ/l2HZCF+1Vr7+yXvSw0SYSYGyXQ74VAdZ+/E+gH7o4PRyOy4T4A/5F6nEUNk1x6R8r2ESK0KZwDsd9tH650ERGpUXBJZnQsNGj5MkBBvOwk9Nr7a+t1Isnq+opZnV0cYrnUIMbL2d4Z1Rzy/h8zM+jAwr6zlZIubf+EkmbNJEsuytNT1kRlPArC56jhHsm/i2sQPgzoG3nvRTH9QdT0q2+lnctNs5H/33UZbSw/nXRJs5myShuQQV1c9TQ9trnDaADWMsY7eQEWo1oVL+uKHQBCy8sT49QyeapGQilNIFfkPGblWvtjhGkK5VXCz1KFBCsXDGwoZJapQMz/M9zWdypAsVe7Uz3Dnh9zE5IQ9/jfsf6O3EBZQXO/abEUGv0n3er2bxstVk0gOkU2vpPmqk5KoXTVII4OBQeAVt8aoDgonApwjSRODgVfF/17b6AkS0X1BQYBm+oIkc1/A1NcFqWYsSFDvoS1IQO+nmXX0BnVTfsx2NpJmlNqgaruEYjawjl5O0xp8foo0aVKkz6YAV4D1TBON6/vYXHWcQRoZJUEmm6SmZiyQ5R061xDIkvtaIVVXi3IZF4C1lvq1g1JT5KiBrZbLrzjG8HiD9CMAwzVBbRiARHKI3BvVjH97hfSV65Hw1ia3b/c5gRH5qtvwAGKk7ETknX0xXCggIw0xKekiililTnaUMxFSjrGj/ZxS8QbJzhkaJPsr8/yMMZcgxsfPAgYYd3/3AXdYa8dK3pcaJMJsy/7mV2svJzQjZhhA6AXxpAkNBiffG3hU0n6bvYGXw0Zsg+AhE/W0RAvs3YYMjINq0ISfHS3KmEIMqbv2SOhVVJ7WH6PnE8igZgfiUflMhyi8fIxwRhbE8IhK+zYCb8/BqRoZ9FyAROo1Nq3uDgYmXmZ3C8fpZlNQbb0V0fpvoS8YpPg8DoBhGhihjsNsZyDbSE3NGMurRMrz/PhyklUZmul3wVojNDIYhIZ4xINSxyF2BB6Sp7iWzEhSYrS3u4HBYyvgZ51BtgY5l07EeAu+gyj7mEBE1tV/j1Np/BeS21QWL8W+z1BdLR7Dnz+gnKj+tzte4T0XMUpuI5QCj8q73rknbpjUIyGVKYJQzE0ffZ7uk1u4fEMXgyNNDKebWNV+hpqaMdZV9ZLhUpoYoGe8jc1Vx4MQSAgLF3r53lpGaaOHLtrJkAxqhNQyGhQr9R4Sn7OSchLDXbQHEty+nkiScwzRQIZkrL5IHSPkXIhYltqgXsgY1YHU8HJGpGBqtpnahExGjGYTDJ1roK2lRyrJZ9vEEDnVwtUbnuLZvh2Md69g1U4pRthYN8BLz4h03qq3nJFcsgj1TRlql40yePQy8To9tkI8H2dWSj2RUy7Us0uue9UdzvBII/2llwb3UuJ+/SChtG8P8Umhe1y+4P48D3tekdVC92NcYrxwntNsoX2YMhkXgUFSsbK/AMaYTcCVSCrIs9ZGR54l7kMNEmGu6pBMRUyqNVpPJEUQ7mQfjQ8uuNNJ7+YihkOs+rsbRER04UP2FRiwELYPKsVH8DVSuvLaR2qnBEURfViWzz0ZJEyeTxMeY9SbshXJEXGze/zAtfOSt++wcNSQuO41spkG3nLFQVo5TT/NJMgGs6BSHV2M8VZ6gxnOLLWBQZImRZYEJ9jI8fHNbKrqJk2KsfHqwCBpYCio2tyEzOz6Am7RkJJBGoMBlK9pkCUhg5DBFRKGdoiwsvy9Ee9UtKDl/uh1Db8v/5D36wpJ+HqWUgjWfA085uJz5vrYp6rZEG87cVAZ60emHHBGwrn8b3aQcHb9K0hf8eUOmWzws+w3IAPmdmi8ToqWNrUMMjZeTXXVGP0nW9m04Rib6CZLggEag+KGPo/DV4GvCSR+xwLJbV9MsJtNNNMf/CaPsQWQMMok50izkW0cYZDGIKG+l1Y20R0rgpql1hketSQ5B0CGS6kmx+BIE+11XYHk92g2wfnhOpKrMwCMjVeTrMowkG3k/HAd2aMrWX99F6dOpli1doDaRJb+F9sCj9Gbrno29KaO1IUekbVQv3VAwrYOrSSx4zWy31op/WJTZFLGP6LWI57X0+56Z9z6AWRCx3tEvDekI9LGebu98VI8ST3shybeGxNz2CYzXHy7cu7f/H0shb5NmTsq2iBp2Gm5cobjy8cr9/w8xph6AGvt8FRtC26vBolQrkFSSmGz0tpEQ6i8EbE7DHOK5oeAzFDe2xkfJDyYZ0DkbxMQ2X+gG98RM4qig+DgQdPhPDCRiuBA6EFxxxrMwnpDBbedDyPbQRiT7IsreoPlFuThC0Ea1PpPd9F/tllis7/+ZnmArrW86YpDgfGRJUGCbOAl8QUKR6hzVUUyQfz5IE0cYZvzq9SRGU/SXNUfFFfz3hVf/6CV3sC7Es0R8XVIRljuip9dGlZQTq8Mi4o1IJWPQc71IUKPiDfIot+RC9vLV9AK75GJs+Dy/t68h33h+iPTQQcCM2c2ruF09lE8j23fhPskP78tbrBE+iGQ37IP4YIwN+Ev3N9bETEKcOFISE5DGhLXvUbb6h5O9KVoa+lhcKSJLXXHYr+9DEkaGaT77CY2re4OKp83MkiCUc67IobnSLKTp6l2GZ/fHX83b6o6AsBpWtnGEU6QCn7PGZJsopsMyaA4KYhXprdvHVtajtObXRd4OFatHeDV59Zy+VVHARgcaSJZl2EoW09NjUx8DGUaJGzr4FoJWRuuYVX7GV59bq2cew+wHS7fdpSXTrbHv6DhGilG6euBbLWSF/JnwAfFmBv82mVwUw7+1nlGfNsdSF865NbVI+GuHUgtkXsJvVguTyT+nIh7YSczJAoVOpwto0L7F2W2qGiDpH6n5a0zNEierODzM+Y/AL9BmNzeC3wB+KItw8hQg8QxXQ9JqfHbpe6rYBiFN1AgmNEyxs2uP06Q4yFGQ9jePpq//3j+SCx23HtZbiPMZYiRl3fiDaJYsjvhvvJDt1KR/z9BOHN3CMmreBD4JWTw4kML3gckYfO2H9PVt4mGS4fYmEiTc4XSojOhWzgWVGEH8VhkSQQDndO0MkATDQzxjyffC6dqWLXzjMxgHtnA5m0/DowZr6iTJEMbPcGMZo7qYGBznrqgOCJA/zMb5Jg7gVEkphskHOLLHeJo9bPLTgjAvuHycfbnDwbjxqD3TE0WkuUpNbdEWTyUGvJZWnhNfsgmxL2p+UQ8p1F8uOY9nfBPrh/yOQoZ4HIkbCiN3PPXiJeTZbDp5ufpfuLNsNbSmOoNBvUgid7b6w7TyzqGxxvYXHWc4+Ob2Vx1nCyJQIwCCMIoPc300U9LkCsWze1aRy/DNDBAk0j8utAqgLaqHhJk+eEzN7LjqgP0jLdRXTVG5mwyqIye2PoaqdVpjh95K83bJC/GM3qhlpa6Prpf3EbVihHJC8kgSeW+Ivog8B4LaRNewwvAVrkGg1+7TLzDa5E+JI0YfQcIPcffIj5pk0HCXI8i4h//TCCNHhMYechtk5I/4eSSJ5ycysc/T0qtvF5sYi5/3WJF+9PKpaINkhU7LdtmaJAcrMzzM8b8IfARJHj/Sbf67cBvAvdZa3+r1H3VzP7hKYqiKIqiKIoSVGpfmnwI+JC19sHIukeNMccQv3nJBol6SBzzqbJVbMYoP343CKf4AOEs14eR2h/RsCnvrSAaclVAPSs3cSbef1YsyTXXSX7olpeeBUJlsCDxPS8p/hAT80UGkdm8qMdgJ+Gs6lZkFjBFoCRTtWKES9dkOPdKkvGnV/C2936f7vFNXF/1BF20uxwPiR+vdrHmWzgGSFLsaVrJUU2ajXSzib6RFq6ve4LHzt7E5tXHXH2SBD1n29i0ujsI/ajjfKDskyBLEwOcIEWW2mDmdYgGCdcaSUqBMp8n0wHcg5PzjXqdOuPXNnI9C98HcWWbaLtoEmn+9jOdwdMZwMlZzNdnai9KJIQrUPfLCyf1v/1de0Jp4IdwOWauf/HhmLsIJYK9PG3KkkgOBUp5PWfbyJ5ZSfO2k4BLZs8m2ZgQ1asRltPEYKC2Nerywbqym2hLyI+uJyteSp80P0QDL51s500bDlPHiOR+UEs7XfTR4jyg5wJ1rgzJIF/F54SNjVeTy4kXZCxXQ0tdHyf6Uow/v4LGm14OlK9WrR3g1UfWwlYr3pHnV4iXoz4Hn6mRcLZlbklaqBkDt18uiLekqtElpi9z18iHsg4RSq+PEop9QNh/vuReHyUMnftjQrl4n+Se30/H1LQ6i/Y1+cx22NVi/j0plUVFe0jqdlq2ztBD8mxlnp8x5ixwnbX2eN76zcBT1tpLS96XGiTCbCa1l9rJTi5j6MKeduDyLvLCK5wxEA5uwwTUoM5AbEAR2TYIxwoHG5OF+QQDmSB8KBKy5ffhByoQV+iKqfREYtE/TKg2tQsJQdiKJLA7Eskh1q3u5aVHt/L2m/e7KspSU2SUBJeSCZRvQAYzXspzgKZAwjNLgmezO4LY8OYNvUEo16VkOEeSLYS/pVpGg3CQE6SCfY5SSyu9fHP8/QweuIzEVqf7f4pwsPAgYTL+US9IEKqV+XCJqOGYHyrhdf6j9UeC7+CSQjkmSyckQpmcuRwQFso98pMZE2ubuD7EhYaa30UmGyA0SHYicuCfiezTqz/5vJIzSNu3O8ngJ2vgGhncv7XlMAM00cQAAzRxfnw5qao0oyRIj2xkS90x0uMpzr2SBKCu4Tx1dZLv9cLJ7Vy+oStQ2KrjfJBv9sKRK9mx7QBHzkoBxnWre2mhn0EaOdGXCvY1PCD75bkaSEHj1pclKf/RDaGBtdb9vUCobpUGGl1dkEyDGB4HkXCqVOR5e9RIDslBJFx1GdInngE+jwQ8HEaMku+597zk8pD7+xVkDvJuwnDQaLjsh3ECKHlGR0xlEQqp981Ezj7YR4H+aqaoEaMUouINkvYZji8PV+b5GWO+iNgSH8tb/8dAtbX2/yt1X1qpfQ6YTvKp/M2L600j+RxtyAPEe0V8AT3yDA9X4d2YvRHlrd2RxR9b3EjxRo0xe90x7A7+l0GKfK6IuDmjJoUMRqyrnp2vzOWqRlOzJzRGajokLjrXGdYu2InESG8F2pEZxKMGjhqyw3UMjzdw083/QA9tJMnQxCB1jDBGDc30c94p8PhcDl9VvZd1VDNGP808m93BWK6G5qp+mjf0MtDXSANDvHRELIdWTlPLqEuCPxcUO+yllS0cZ4Q6clRTTY4jbKO6agySkP3kSjFAvon8fRAZlHwHmbHc76sbd8jS1Rl8x8FAzxkmwRIxRqIP8uA7mOWHu1KZ+PthqjYw2Wx2cdVFv/943H8BIQRX7T3c126ZfPA5bVvdAPHTyO+8vUPu/w5koP3dDpzSdijy8C1kIqI+J4Pwayx8q0aWNqQIKnDoies49eImjpzdxvnx5QxlxCuZHtlIsi4jSnfpVq5t+SHXtvyQ7IUEm+jmhSeu5E0bDlNLlqeP/CR1nKd/vJlRaiU5fuvL/LhvO9nhOrLDdbz06FZ++MyNdD/xZtpaemhqGRRjpKuGyzd0kaKHwRUAADDUSURBVLjuNepTA5x7JUn/i9LPBF6PM+7ckkjftgzxBK+B7LArXngG+APEePm8kfPLGFHE+oAVz8ZhpM/4GaRvvdWtg0BOmQcQz8h+xBABeUa8y303awi/l65O6Wd9xfUC+Wn+eVLM2zodJhgLE4RVCm9TyjrPTIxvRVkQLEu5UnstcIcx5qgx5n63vAD8MlBjjPkTv0y1I/WQOBZK9ncyorPiMVzNj1htgUhV9lLlF0MKzNJPqHMg7QqHh0WIeG5k29A7QBoJX/LhTHd1SNXy7cgD3YUs1G+VMKzhdBP1qQHa6nqoZZR6hhh2Ur7RGU9fa6CPFo6xWQ6DMXJU008LA32S2Npw6RBNiUEGso3UJrIkyQQF2RqCKUdhlFqu5Fke4d0008cL49torurnWN9mqSvShkib/gHwAWRAhjM0PowzSOKhVaGk8j6CQpYFFM5moqakSjYXNzNVWCsUHhiTCs8LNYz1UX7wuWuPGOYpt1OvoPfHSLSx9yJAKBfsVbmSiMxtrhoyhqrLXufSNZlA9aol0R9I9J56uJ3L33s0mFh4y7YfcXq8lcFTLazfkOb8+HJGL9RSVzdC/8lWLt/QFYRl9X99A4lbXgOQGh8QFh08YyBJUAeEayxkDImU83j8g6Hqp18HkPcbEOPiLcikhFe52om850OvGoCvAne6cz2KKGAlgXe4dg8SL1joisKSIfQ6AXySuHy6FxLpiqioXRI+Dwoxk35iohd99pT9FGU6VLSHZNlOS9sMx5ddlXl+xpj9JTa11tqbJ2ugBomj0gySeJjUxNComLHQvidS2TtsO9HwKCw5PJU6SuFt84uuRdpGFXza94SGyCH3fpcL4/AP3V9B2mwnDIEAeA7W/0IXTQxwzhUy84bDCMtpp5s6RhiigVFqGaI+qLa+nBGee+IaWJ/jTRsO0z/ezFCmgdTqNH3ZZs4P17G8foSWRD+NDFJNjtO0AtBzto3rVz8h0qNsCmoQ9H99gwxOPm9koHCAMN47UoPBPhr3cJSa61GsGFnxnKO4YThbRocaMNNnvg3CmYSHlhKeU2wSIzBCUoRhnFF2dUgOg/eMpggLun65QwbfBwmlaX3dok8Cf4VI6J6qkX28PSdhU0kkNCplWX9FN6dOpli/Ic2pkykAqmpHGX95BZuuep7uI2+G+hyJ+hExIs4YEltfo3l1P/1nm0U9y4VdVb35dcZfrxNDJINMjJyCqltfD3NCDgK+hmGaQJqcn0CMiNuRfmAr8RyQqNKY93T4wIb/gxgyf0BotPn6IauQ/BAv17urQ/qcz0WusTdC0u57aMOpHUYnOKbOD5lMIasYlXBPK0qUi8AgqejCiLOBGiSO+TRISpLxjMi9xnMyIJqcGIRTRIoq+nUFPRhFvCF+u+jxFdOhL3Q+QTgZxI/VhxB4GUoX8cAdSKiTf5C/x8qAYH0O/lzE33Z8+gBdI+2013Xx477tbGs5wkbS9NLKckY4NHIlLXV9jFJLLaPkqA61/nPVUDMmA5IzK1m/rYtaRuk+uQVy1ay/ops2ehijmhQnOMI2ki5XxFdw7kdqi1QzxvG/fqvstxYZgDzkziNFWPUYiBl4ecmjwbWivOrpxWatPZOF7BST8pxOIrwOFCqfyfPSiie1FxqUlm6kRCq5EzFWgln7SO2dQ8jvxQ/c348U9/PJ2e9DBuXXWJHI9cZALUFuyfjrdRLaCTBQE9T9Wf8zUpCQ52pY9W6pjD58SKyI5utPBl6RxLIsw+kmEmsjHpJ6Z/R4R+kaxIPxHgs/MnI8/2DEo3EdYc6Yz307gPRl9wJ7EW9L2shrzyDS73mG3fadhKIXIJM3a1ybqEHyOEGobuCBcn1PrAZUkHfm+4ndRL3phaqqe6bql7QPUCqVijZIandaLpvh+PJE5Z7fbFHROSTGmBuNMd8wxrxsjLHGmDtK2Ga7MeZ7xpjzbrv/bIwxU203n0wMhSrQJsjX2O0Gtfsiy27ZR25v+JB5g6Ctz1so/PDYR5grEh7PZLkJ+TNsklsSny31seZhortbtiKznA8h4RkQehd2AoOQ+NnXJNb6AlIs7IPAB+HQi9cyMrScI2e3saXlOEM0cIwtpEjTQxu1y0ZJkKWOEbpPbuGlF7fQvKGX5g29UDNGfVNGKipnCCowX76hi81XHKaaHGNUkybFIa6kldOk2UiajfTTTA9t9I20kKOa4y9ul1ncYWQG91Dk4nTtDRW2AGoiD/RYnYdI+FoQux0aGMXi/X0OT/R7tDbM3Sk0qMjPCZjM01XodTEW00BkqcWLl3o+k31H5Q4yi3tLdwcDXp+TFu2vTAdhP9DVGeacPETYBySBXe7/V5G6JZcjBsEnESPgEcLQrmtkwmK8ewWkDc0beqmqHZX8jGssXGPp7VsX7PvVUy0Mp5vgAqzaeYbM2SSsgYbkEMNHm8KK554na0IvTgPQnhPj4ytGvBw/cMbI5Ujf9b6cLAeA+xHj5UfunP7MtV+GeIAG3d+tru033TLk9jVIqMb3YeQ6JRFj5JA7vh6kP9nfKUsqsr494gnJ+T56b6SfcOG8tqPgBEW0L/GUksM031Ta8ShKySztHJJZo6I9JMaY9yLRtc8Afw181Fp7/yTtVwLHge8Dv488Ar4KfMpa+0eTfdZCeEimmqksZLhM5rmIekWiM2T5KjpR5Zxwm2i4UOkz8F7VKzxOF7pxlzsur7zjwzZucRtfThiy8UFkRrFmDJ6rIXGdzFw2JIcYPHQZ9VsHGD7QxKp3SAXkzVf9mPTZVDDTydeAD1lWre/j1R+4mK9liIGTlP83b/sxx09ug+dq2PHeAyTIMkQDDQw5WdAEw+Mi+dlc1c8LT1wpg4F6xBD5GEHujo/Vjl63OFEVs/D/4t95OHMZrpt+PPd028w1lXAMFxvlXvPJPCTh73tfXt8UXxesz/fs+iKqPnypERl8303cQBhEvA07kBCqAeQ3mEIMhh3A47Dq42fCCukAj9VIWJUvNphuFcPG5XhU3eryPp5fIe198dKtSD/hFfJOEypf/YAwfOp9yNPksy5sE8LcGB9yVY+EYO3ASYC7/uLjwK+5vuJOd528wbGDCcUL2UFYWT3ifYpT+LvI78/9e5MpX812f6Mo801Fe0gSOy1NMxxfnq7c85stKroworX2YeBhAGPM/SVs8v8CdcAvWmvPA88ZY7YCv2GM+UI5JewVRVEURVEUZUZYQBUyp6SiPSRRjDHDwK9P4SH5a6DRWvuvIuuuAX4IXGGtPVFs20pLavfEvA5ArFCZzxuZMFNWIJ/Bb+PX3RyvkTExr6Sz4Ix9sK9o/kreMUVn34K4ZghjytuQ2VEfsuETOd9BOAsKIg/6IVHdGh5IwnAN9SmnwHW/yzC9Tt7PXkiwefUxnjt5JSAJrjWXjJFcnWE0m6A1cZohGmhFCqf5QmvVjDFGNb0jrdQuGwVg8IHLpBAZwL9DrvFf7XH/x8+3cEJ/GLtd0ENVgoes2OtSmCz2X2c2lUJMlfBcqH0xb238vYi30MuV+2R3n/j+AUJP6u0dkj/xFrfZe1zuxvtyki8CcAaqrpZE9FXr+6QwIcBWK6GfGbetT4j/2xrxYHiJXu899cnlH4qc2EuI9/b9iJdkmLDQ4HVIErtPWAcJL0u5fXgp3ruBf0bCsbYiMsj+MxoQT4wn31t0GyL1/pk92N8GczMuUT2SmwMFilYW9rCWI7IwXaWsyT5rsvaKMptUtIfkkp2W5AzHlwOVe36zxVIzSP4ROGWt/eXIug3IY+Z6a+2Tee0/AnwEYMOGDVe/9NJLzAYz6XCLPUAKExY6LF7Ve+/E9hMq9RYLxSj2mVAwRCNKfpK7j5E+5Nb9HhLa0IaEZ3jVmncT1ijpdO+vz0luSRpJck1a+G0jg4ZhwrCqRsLCa2mov2mA2mWjLK86TzU56jjPGFIlOX02BSCFDZPIIOUxt+37ctBVExYbWwPcuzdUDMtNNM4KJa9HH9L5g7RChcjKoWARO33QK5Mw02TlYqpcBUO7JkxY5BVl9UVfvfKUV6n7P0hRwFvd61fd3wwSYnU3IrcNElqVIpTv/dZKCdkaQGoa9SATC/4R/hhxtSvPEGFSPYhB8m1Cyd1VhIbErYjhkXbvfQLJL/NGy+Nu3QOE1dJ9mKpPUPf4yZmgkjpipO0vFAZaXKWvtImOqQUuyjFItK9RKo2KNkhqdlpWztAgOVeZ52eMeSdwwVr7lHt9BzIF8zzwH621w5NsHqOik9rnGmvtX1prd1prd65Zs2bqDUre7/Q76kKD/HhC857IIoUP8we3EwYK7W7x+wg8GLuDv9Z2BEZEdD/R/cUTJMO2+Z9r7R6ZNUz5z9knA/YH98qDvA2ZPfSekucQ42MVokrTSaCcQxeScHoQ2TaDzILeiQwEbkKMETd4qE8NUJ8aoPE9L1NXN0J91RB1jPDSyXZ6s+voyzbTyCDJ1RkSy7JSOfkCkog65JZNNSJF7Acv9yHXpmtv4JEyl0S+l0jxr9DjVHhg4JOAixEKB8STSqPrZT+Fk1Mn2+dsUwlJpnoMpTNT5aRibQomxL8RH+D6BGvBJbs/2CkD9h5kQJ7rFK/FHYgh8hWknwDJM7uOuDHi+oTs360k+3crJVH8q4gB8i1Cw+MCkmeWQgwLT8ot2xFj4SgyOfES4tkA6Yd+p1MmTLwxAvKbz+0VGd79bp0Xt/hc5HVXp0xm3Bc5njs7ZEG81OSct6hg3l5Y1LbYfRZ6aXfnbRtvU3jbaJ9fuE2hzy1FmEVRFMfSTmr/Iq5ggzFmC/AXwI+BtxMXKp+SpeYhWVIhW6W4wifOToaJ5oUlHePSj7EwrrzaGVMl3E/47GhxtIDQKxMe0255AHsp4B2IF8IX/vJF0h4E3gl8z733ccST0YkkjC4DDkP9+yWky9chAOAC1O8YoKWuj+5n3kwi9Rq5N6oDyVAvB8w3gZ9zv/Y7IilVW5FBhA+NuHNP5LW/nlNXOM6vA1BolnOqfcyE2ZjJ1NnQi5vCye2lSQN74uFdhN5GiItdRD2RnyAMvzqKDPD/yr0+hHglvkQYPjXo1v0e4ik5jFSJr0X6EBCDw/+E10TWHUA8FR9Gktc/7967FTF8Hoocq/dq+NdpQjle36elw7b2URd65Q2WrjCk1teVomZPpKYLoYc5N3XInO/XC3lJJhNHKYXpe3C1z5gL9LoWp6I9JFU7LctmOL48X5nnZ4wZAn7CWvuiMeZ3kWik9xljrgX+p7V2fcn7WmIGyZ3AZ4Fma+0Ft+53gV8D1k+W1F4JBkk5Bkj+g2ji+5GHnmPCoAAmPLzi7YpXEC+k4hIj8kBl156wYJc3lm5GHupfQjwk70QMEC+PCWEY1j8jA5PrEK9IEokH/yriKbkArIWqy14PPn789To2X3GY9NkU2QMr4S056psyDJ9pDOPO065xfsjGvQXydlyVdWs7ghoxxVRrShmwlYI+fJTFRP6AN94XTZJT5WuWgLTbtUd+9x3I7/5yxGPiQ6M+QGhU7HLrcOszyMRB1FA5SFhXpIcwH8Tv45D7e4trE62ZtD9iLOxw67v2wt+53+Un3fm6fQXV0T+AeICcQpbP2wvrFXn2RUJB8xT83ATPZAbfbOWKzcWkiPZfynxS0QaJ2WmpmeH4MleZ52eMeRXYaa3tNMZ8F/jf1to/M8ZcDhy11i4veV+VbJAYY+qRaGCAJ4DPAN8AzlprTxpj7gHeZq19l2u/CjiGRAvfDWxGlN/3VpLs73Qolnweb5NnrOQlrseS3L2REB1oFy2mGDJZfsvEQUjhZHlJxnfHdFeHxFvfjTyU1xEvOraecBbSz376EK1OwtlJXyjsGnc/Oy8IQNvqHrpf3CaFyl5x+16D1A14CTFAojkv/vNidUT2Rc6xuNTvVLHc5aIP9ZC59CQps0/+rL2sc31PD6EXAUKvgc+r2O/CmPzv3BsUPq/Dr0siieYgxsHvIeFcryL9yscJcz8+iXhdojkhEBo/n0N+83fukUT0NJL39hDxnLuIARUtOJifZB70c0FeiG+Tl+ifi0quF5jYKWCUlNsvTCWWof2MsthRg2RhMMY8AvQiveZ/A95kre12uSVftdZeUeq+Kj2HZCfwrFuWIzVwn0VqjIAMXzf5xtbaV5F5rlZkXuzLwB8BX5i/Q54bihW1KuSGDx4s+yd6Q4L/H3Wvu/YSDra9URLNGdmDL4QWNTSig0Nr97iCgNHZPymMGLbvFAPJdoSDkPYOGQS0EcZX348YIqeQgcN+JHyiHhls3I94VL5DWPW9Cwnz2g5VK0aoWjECz9WQPbqSbHol3U+8WYyRC+5z0shg5Nu4WgS7w5jwnOS5xHX6Q+PDx1pPfHjvC9vVFH6w5+eFlMJs5YUshVjvaJ7SbDBb12Qhr+1MPns2tp188qLI5Mb+veJRyO0VQyTog9zvx9f62d8p/YPP4/KvH0A8I/e6fafdcgvSP7yEqHbdgkxiNBImx68izAN53C2H3D5TyG/3XndcKbAPALnOoB+MFX0sVn9ol8sP8X1I0A9Hk/uj2+6L9a0xIlXXZ/Kbn8r4mOx3tRT6DkVZcMZmuMAqY8xfGmPeP9+HPgUfR/zHfwb8F2ttt1v/AeDJYhsVoqI9JPNJpXtIJmOyeOFiYVYTY4+n9sDkf1Ys/yTPuzJhRu+S8H/7BvJgT7sVdyPGAcRVcHoQrYYGxEDJEA/tegehos5aCxkTSnuude1/5F6vQ/JFdhHKDN/jBhZRbxHElLTi55zvQdo95fUqxExnNxWlHCbL81io+yr2W4oY8D7cyT4Q9abuhdv3iChGVDr4Q4SeEBAD5BUi3g7nnYjmqj2E5IkcJR4+5UNJOwhyRIKcNxeyZTvd+12dMSnzuMJh4SKR8X45DActaLRF8u1m4/uZ6+9ZPZdKJVDxHhJmOr6s3PMrhDFmGZCz1packl/pHhKlLKIPuuK5HTGjoiZebbzQLJ2f2Y96R0K1qHwN/N3BfmLelFxnEPZgTKcke76BDC4+SThbCZJD4vNIGhAvyQHCcI0ORB44jdQryCC1Cg4giayHEaPlXmSQsg6ZOX2wU2ZMvwLcs9cNKnbLjK2ND4qihB6juMLYZGpZs0kpD3qdxSyNi/E6laOONRMm/Obz/sZn7F2OBLvl9+a8k8bsDY0R9oXe1EPSltxe6QfakEmMTvd/G+I1BZlo+DCy/eNAh8vxOITklty7V9bv6pClxhsUnWJs7N8byWlxn+mSzW2n81a/If2ENyhCz7LrR28Or0usb7F7Am93tD+JLsF1mGVjZDoe2lKYbc+loiiLB2PMo8aYZIG3EsA/lrMvNUgURVEURVEURSmXmxDjI59lhPqDJaEhW47FHLI1GROSzidU+o3UMcmT/Y3hwgjkvYnhXYXkJv125PaGyZtBdXlC9Zp8fIKr0+oPlG86EC/IrYSek/cTFkM7HdmHD/Py7b2K1n3I53u5zUi19XwJ43xPSX5owuRKN9OrelwOlR4qoaFmcZbi9Sj1nIqFdE7oLzy79oQhVe0d8XApl6MReFR9f3L7nlDZykvz3k1YTb3LhX49FP+oQn1ecExBPxGXTZ/Ivvh2QDykdeZCF/OViF5ov1P1NQt1by/F35QyPTRka34xxlzl/j0I/AvgbOTtamTk9SFrbarkfapBIixFgyT+YBRKKX6VryQVfT1RHniiQld+3srEwl1Rqc99YQz5DcSrtncSxny/AoHE5y2EtQN8GFfG/U1GTsqvu7ew7Ggx8lXJFgP6YFZmm5kNnic3yIPcjFyR/sLL5/p+IlDmi6hU+XU+n+MGYkYMXaHsLre7zzgUOYiuvEmTPAoZTfH8Od8uDPmaoCpYYGIjeg3mMpesEnOHFGWuUINkfjHGjCMlHwFMgSbngX9vrf3vpe5TQ7aWEPmzjBOVVMLky3i8dyReOthPRFmqg9jr+IPaP4CjSlSdkXjlfDWZqEwmoTGSQrwgH0NiwO/plMHDJ1y7Q0heyIcQ4+QB1349YrhcnncxHnDt7kMGJRHp3vAco8cbHlMY410kD6fIuskop/104rx1gKFMxWwpvJXyOVN5B63d43IwCvdRkkfRGeRphMYI8jdijPh8jpiqoFfu6uqUPmYQ8Z6k5T2pG+KqoOf2hv/nnffEnJhorsi+vIT2fbG2MNH7Eu17y72+M2kf79+0r1CU+cUCb8xwqTg2Iiq3Bnibe+2Xy4CV5RgjAFhrdbGWq6++2i524FOTv18jbeLLcbftcXk/1ua4Wz4V7Dv8ezzvb+HPDtrXhG2Dz4vt/7hll7W0W8udbrndLXzK8hn3nm/HcctfuXW7XLv2yH5rbLC/8PM+VfDYprqm+cddvN3k16DU9YuV0q/n0jpvpXSi333+//l9THy7SD/Bp2L9SWzb9vhvNugvaqJ9TrE+ML+Pi//2JzufeB8x+XbR4yh0Lab6vMLXp/x9KcpSAjhoK2AsWWiBKy2MzHCp3PObrUVDthxLMWQLCsUdx0OrJsZwR8Kq/CRnOj7TZ+0ejFeuKfq50TcLFP3Kr9URqVIctumIFCZzseM98lYQUw4yG9q+J6ys7Pd/g9RbiV6LaFGy/PCz+PGXGhs/f+EPF2OoRaWd80yPp9LOZy6Y6hyL5ZHkbx+t8B6tXB73dhaS0J34Gw8/q0gIqc9PiTExL6TcPJBieWfRdRczF8PvQZkfKjtk6yoL/zTDvdRV5PkZY/4L0GOt/fO89b8KXGat/b1S96UhW0uYwp19/CEbe79mD/EQK0duouwv6agcsA9DiMt65hdzjMlDehngXERisysaloHkjjzk/t7VESaxtoXHwAcAdku1+YjxQU7kO43ZGyTyx0Mt9kTWTX3dioW7zIe+/3x8VqVSaec80+OptPMpl1LCvor9pkptH/ZNeaIZb0B+6GW8TSi24UMuY6GZl0C0/4v1T1178/os30dMDOPyxxPtE6PrYsecJ4kbk/ed5NosJnnqmRzrYv89KEppWJZgyJbn55GC5fk8DfxCOTtSD4ljqXpICjGZWoufOYw96DtCj4Tt9A/+ibOPQDxZPSCuNhPHDzB2BzOV3vMSFkYLE12BiDclrpIVKHkBkxpeBa7BYuRimm1dCt+XEqfUpOtC3ong7835XtBoocL8fqj0CYipjrcchb387aZzH1/s93+517DSFQiV2aeyPSQ7LDw6dcNJaazI8zPGXAC2WWtfzFt/BXDEWrus1H2ph2QJUuqMVeF2u12xxND7EUpuhonqE2Yf/ezkGxAoZwVhWWJwhA+S3cSJJNPnhU0ESa2elHvd1RnfDpxiz9QJ6TC9B1U0MXW+mGpmOX+2dalyMZzjxUax77TQxEV0XSwhfH8nUVGKuEe2I/b7KObliL7Of7+U481vn5/QP1X4WrHfeLkTDlMdfynvzVbfNtt9ZL6XqZT22mcolcOS9pCcpHC9kRsJNVNLomZWDkdRFEVRFEVRlDy8QbIk+Qvgj40xCUI30LuAe4DPlrWnhc6qr5RlsahszURBZTK1p6iCTbjOqcG024j6VlSNa6I6TSEVmInvyz6KHVu+4s5E9a985avC25Zy7nPJXH9mKYpV5RyDqvMoC02p93OpynXTUdYr95hKaTPZ+7N1THN1boqyGKCCVahgu4WeGS6VfH7cg9QdGXPLeeAz5e5Hc0gcF1MOCRRL3I7GXO8OC46BhEp1RpSqXMX1aKGwQgmm4NVvXB5IR2Q/u/ZgH41/7sRwjXgSq2/jzyH6utTzLncbv91M48Cn+3lzuY2iVBKFQn2mCnmazu9ysu0KhX+Vs79KY7Jjq7TjrrTjURYPlZ1D8lYL35jhXjZW7PkBGGNWANvcyxestcNl70MNEmGxGSRz2XFPkAKOVjIO/o8mqscf4PmSvyG7I23yqh67AmfRysaFkkjlc/ZMeD1b5z2b+1MUZXbIT2afzrZz1b5cppI9nu3P0v5MuRiobINku4X/NcO9bO4C9gPftNZ+cxYOa1YxxjQhhRIPWWtHp7MPTWpfpEyVtF0qpcxI2mjoY64z9p5XwvJKVz7pPVyYWHOE/CTFjkBauFCbeM2AMEG1mGLOZImik1Fon4tJfnMpoNe78ignWXqumEqmu9AxTneCYaq+tdT1xfqhQlLAc4UaI4pSCVggN8OFV621H6k0Y8QY02CMeQDoB55AqrRjjPlzY8ynytmXGiSLnOnMFkb/FmtTSEM/bljsw2v5k+sUSd72Pa7N7mBba/c4paw9BUMg8g0MWyTvK1pXIFYPpQj5g4rFrvV/saADqMqjUJ2QuaTc32WhiYSJtT46p7Xf6ayPGkKFpc4Lo/2RoiiLkM8CrcBVSO6I51vAT5WzIzVILjLyZxqnKtAVI+e9H7uB3ZiOyMP3DUSK17UJPBWRNr6OSDHjoBSJ3qhhU8pAZLKZ1VLlIxVFmX1mKsld3gB+X8l93XQMg8k8MhMl0ot7TmbreGay3XT2qcaUokyGZQnL/v5r4D9Yaw8hJ+p5AbiinB1pDoljseWQzDXFYo+NkQKE9o34TODEYmBhgcKpYqUnyxUp9VjLaV8OGoOtXMwslft/ts+jnD6nlM+eDdGMmZ5jKf2zolQqlZ1Dss3C12a4l6sr8vyMMa8D2621LxpjhoCfcP/vAB6z1iZL3Zd6SJYIc1GIqtBMnrWS1G4uIQjhCvNG3OzfJeBzSKKzg8XCFyZ6QIqHOpQSk12s3XSYKyNHCdHrUblU8kB0qtn66QpflNLvlFN4r5SwrXJzSspVIyuFckPUFEUplSXtIfkR4iXxeC/HryA5JSWjBskSYS4eGkUNA+chCfM9XAiXb5crkH8yS8e5FB6OMx0cLTWWwneqxJnP+zZ/4mSyMM2p9uO3iysFVl6/Ndn+LoY+Q1EWF7OS1F6p/C7wB8aY+5Bi679hjHkU+Hngk+XsSA0SRVEURVEURVHKwlr7BHA9kAC6kSrtvcDbrbXPlLMvNUguckqZTQtjm129kZj30BcuDAsb+hnGsD7J1LN5sx2CsFRm3ZfKeSgXF9MNO5psfbHPKDV8aiqFwfg+9pWkRFjq/idrP9vMtM9QD8vsotdTWeIhW1hrD1trf9Fa+xZr7TZr7QettYfL3Y8mtTs0qb08ppuEWVqC58RKybORWDnbx6koSshcikuU+vmz2UdoHzARvT5KpVLZSe2bLfzXGe7lloo5P2PMamvtWf//FM1fL7VQohokDjVIJlJsgFHsoRRV2lrowYmiKLNPpQxC5/I45sqwqZRrpyhLkco2SDos/MkM9/Leijk/Y8wYsM5a22+MGScu91uIbuBXrLX7J2ukIVtKUaKhEMUUa+IqWhMLH+Zvq1QGk9V9UZRiVMqAei6PY7r7nqqPLCqjXsZ+p4v+1hVFmUVuBs66/3e518WWfwk8Atw71U7VQ+K4GD0k05mxy5/t814Rnf1TFGW+mIv+phL7MK0NoiilUfkeki/McC//umLPbyqMMc3Aw1Mdv3pILmJmJ2l8X95rRSkNnbVVpstcyZzPNeUmtherLq/9raIsJpZ2UrsxZpkx5peNMZ93yy8bY5b79621/aUYUxVtkBhjbjTGfMMY87Ixxhpj7pii/U3GmP9jjDltjBkxxvzYGPPL83S4FwX5D8LphiEoig6qlEroK2ZyDFMpd+VTSv9Z7HP096Ioi5Wla5AYY65CckT+CHibWz4PvOjeK5mKNkiAeuA54GPA+RLaXw8cBm4H3oLErP2lMWb3nB3hRUIlDBwURVlazPcge67kxWdLanc2c7u0z1aUSmFJF0b8S+CfgPXW2huttTcCbcD33XslUzMHBzdrWGsfBh4GMMbcX0L7T+etutcYswv4aXxskaIoiqIoiqIoM+XNwC9Ya1/3K6y1rxtjfh8oKzG70j0ks8FK4FyhN4wxHzHGHDTGHHzllVfm+bAWF+XMAGpogaIolchM+qaox2E6nozJ2k/laZnOcWs/rCiVwtIN2QKOAq0F1q8DjpezoyVtkBhj3oeUsS/oNrLW/qW1dqe1dueaNWvm9+CWCBoWUDnod6EocWZTMjdfyrecAX+hHJCpKsbr71lRlgpLK2TLGLPaL8AngT8xxvysMSbllp8Fvgj8p7L2u1hkf40xw8CvW2vvL7H9TwJ/D/y2tXZK/eOLUfbXowmTc4NeV0VRFEWZeypb9vdyC78zw718tGLOr0AxROP+2vzX1trqUvdb0Tkk08UY8w4k9+Q/l2KMXOxU2qC50qu8l2poVOrxK8rFykwmCSq9OryiKJWK95AsGXbNxU6XnEFijLkR+P+BPdbaLy7w4SjTYD4fzNMZCOjAQVEWJ7NTe2n6FOtvtE9RFKUScKkOf4SkdHzWWvuV/DbW2u/NxWdXdA6JMabeGLPDGLMDOdYN7vUG9/49xpjvRtrfhIRp/Tmwzxiz1i2aIKIUZKkOBDT+XJkJs5mwPZfM5+cW+6xyjqHc/mYuz0/7CEWZLxZHUrsxpgYpKX8zcCXwCWNMYwnbtRhjft8Y86Ax5gFjzKeMMS3lfn5FGyTATuBZtywH9rr/f9+9vw7YFGl/B1AH/CZwOrL8aH4OV1Eqg6VqaCnzw2LxGs7F506VbD4fx7DY910OahgpS59Fk9T+NuB5a+3L1tphZIL/X0y2gcvX7gJ2I/UCLwAfBDqNMW8v58Mr2iCx1j5mrTUFljvc+3dYa1OR9ncUaZ8q8hGKMm30QaooS4/oQF1/43NPpRhGijJ3zI+HxBhzozHmG8aYl40x1hhzR4E2HzXGnDDGXDDGPG2MuSHydivwcuT1y8BlU3zs54G/BTZba3/eWvvzwGbg75DQr5KpaINEUSoZfZAqyvywUIaB/sYVRVlE1APPAR9DvBUxjDE/A3wJ+DQSkvUE8Pc+DWKa7AD+yFo77le4/7/gPqNk1CBRFEVRFEVRlDlhfkK2rLUPW2t/11r7IDBeoMlvAPdba++z1r5grf33SFrDne79XuIekcvcusl4FdhYYP1GIFPSgTsWTR2SucYYMwQcW+jjuAhoAgYW+iCWOHqN5x69xvODXue5R6/x3KPXeO7ZYq1tWOiDKIQx5h+Qe2AmLEPyMzx/aa0tWPTbfWasdp8xJgGMAD9nrX0g0u7LwFuste90Se0vADchhsbTwPXW2sFJPueLwAeA30I8LgA/CXwW+Lq19jdKPcElJ/s7A45VStGZpYwx5qBe57lFr/Hco9d4ftDrPPfoNZ579BrPPcaYiq1sba19z0IfA2IQVQN9eev7gHcDWGtzxpj/COxHIqj+cDJjxPFbSCHE/05oU7wB3EuZ1SDVIFEURVEURVGUixxr7TeAb5TRPgt8zBhzF6Hqbbe1dqTcz1aDRFEURVEURVGWLgPAGJBfH6QFODPTnTsD5PBM9qFJ7SFFY/GUWUWv89yj13ju0Ws8P+h1nnv0Gs89eo3nHr3Gk+A8GU8Dt+S9dQth7seCokntiqIoiqIoirKIMcbUA+3u5RPAZ5Dwq7PW2pNO9vdvgI8C/wT8KvDvgDdba19agEOOoQaJoiiKoiiKoixijDE3IQnp+fyVLyhujPkokoi+DqlZ8nFr7ffn6RAnRQ0SRVEURVEURVEWjIs2h8QY8xFjzH5jTMYYY40xqRK3+2ljzBFjzKj7+1NzfKiLFmNMrTHmT40xA8aY140x3zDGrJ9im0+57yO6zDjhailhjPmoMeaEMeaCMeZpY8wNU7R/p2t3wRjzojHmV+frWBcr5VxjY8xNBe5Za4zZOp/HvJgwxtzo+oOX3bW6o4RtthtjvmeMOe+2+8/GGDMPh7soKfcaG2NSRe7jSpAsrUiMMXcZY35kjHnNGPOKMeabxpi3lLCd3sslMp1rrPfy4uSiNUiAOuAfgU+VuoEx5u3A14H/Aexwfx8wxlw7B8e3FPgi8NPAzwE3ACuBbxljqqfY7hjiTvTL9jk8xkWFiwH9EvBp4EokTvTvjTEbirTfCDzs2l0J3AP8qTHmp+fniBcf5V7jCG8mft92zuVxLnLqkXCBjwHnp2psjFkJfAfRzL/GbfcJpPKwUpiyrnGE9xC/jx+d/UNbMtwE/FfgeuBmpKT2I8aY1cU20Hu5bG6izGscQe/lRcRFH7JljNkJ/AjYaK1NT9H268Bqa+0tkXWPAK9Ya39uTg90kWGMWQW8AvyStfZ/uHVtwEvAv7TWfrvIdp8CbrfWTjnLdDFijHkK+LG19sORdZ3Ag9bauwq0/yzwb6y1HZF1X0GS2N4+H8e82JjGNb4JidtdY63VasxlYvIqChdpcydS+bfFWnverfskcCew3l7sD7IpKPEap4ATwDXW2ootMlfJGEkqfhW4zVr7zSJt9F6eASVe4xR6Ly86LmYPyXR4O+JVifJtxHJX4lwNXELkellre4AXmPp6XWGM6XUhM39njLliDo9z0WCMSSDXNf8e/EeKX9Ni9+xOY8wls3uEi59pXmPPQWPMaWPMd40xu+bkAC9e3g487gdwjm8DrUBqQY5o6fK/jDH9xph/MsbcvtAHs8hoQMZV5yZpo/fyzCjlGnv0Xl5EqEFSHmsRN2uUPrdeibMWKcKTP2M81fV6CrgDcbV+2LV9whjTOAfHuNhoAqop7x4sds/WuP0pcaZzjU8js5s/DfwbJOTwu1Pl9ihlUew+9u8pM2cY+E3g3wLvBb4LfN0Y88EFParFxZeAQ8CTk7TRe3lmlHKN9V5ehCypSu3GmLuB/zRFs13W2sfm4XCWJKVe4+nu31r793mfdwB4EfhF4AvT3a+izBXW2mOIEeJ50oUMfAJ4fEEOSlHKxIUb/lFk1UFjTBMiEfq1hTmqxYMx5gvAO4B3WGvHFvp4liKlXmO9lxcnS8ogQZKop7rZTs5g/2eAlrx1LW79xcIXKe0aX4fMNDchuSSeFsoYpFlrh40xzwMdUzZe+gwgXqdy7sFi92yOid4rZXrXuBBPAT87WwelFL2P/XvK3PAU8EsLfRCVjjHmj5Hf+y5r7YtTNNd7eRqUeY0LofdyhbOkDBJnFc/lIOtJ4Bbgc5F1tyAqPBcFpV5jY8zTwBvI9dnn1q0H3kQZ18sYswzYSuFiPxcV1tqsu663AA9E3roF+J9FNnsSyJemvgU4aK19Y/aPcnEzzWtciB1IKJcyOzwJfNYYs8xae8GtuwXoBdILdlRLnx3ofTwpxpgvAT+DDJSPlrCJ3stlMo1rXIgd6L1c0Swpg6QcjDFrkXjNzW7VNmNMEjhprT3r2nwX+GFEWedLwPeNMb8DPIQM9HYhLkQlgrX2VWPMfwP+0BjTDwwiIVc/Bh7x7YwxR4E/s9b+mXv9eeCbiJelGfg9YAXwV/N7BhXLF4C/Mcb8EPgn4FeRZMg/BzDG/DWAtfYXXPs/B37dGPNF4C+An0RydFQVrjhlXWNjzH9ABhLPAwngg8BtSE6JUgCnlNPuXlYBG4wxO4Cz1tqTxph7gLdZa9/l2uwD9gD3u7DRzcDvAHtVlagw5V5jY8wvIpNIzwLjwPuBXwN+e76PfbFgjPky8PPI7/2cG1cADFtrh10bvZdnwHSusd7LixRr7UW5IPVHbIHljkibNHB/3na3A0eBLKIY9W8W+lwqdQFqgT9FjJERxNBoy2tjgU9FXv8dMlOUBV5GZqW3LfS5VNICfNTdm6PA08CNkfceAx7La/9O4BnX/gTwqwt9DpW+lHONkbjkTqTWw1kkJPG9C30OlbwgtQUK9b/3u/fvB9J522wHvg9cQGY69+Ck63WZ+TVG8vSOAK8DrwEHgQ8u9HlU8lLk+uY/0/RenudrrPfy4lwu+jokiqIoiqIoiqIsHCr7qyiKoiiKoijKgqEGiaIoiqIoiqIoC4YaJIqiKIqiKIqiLBhqkCiKoiiKoiiKsmCoQaIoiqIoiqIoyoKhBomiKIqiKIqiKAuGGiSKoiiKoiiKoiwYapAoiqIoiqIoirJgqEGiKIqiFMQY82VjzP9e6ONQFEVRljZaqV1RFEUpiDHmUuANa+3wQh+LoiiKsnRRg0RRFEVRFEVRlAVDQ7YURVEWGcaYq40x3zPGnDfGPGeMud4Y84Yx5qZZ/Iz1xhhrjNk6W/tUFEVRlEKoQaIoirKIcAbCfuAp4Crgd4CvAzXAoVn8qJ8ARoDjs7hPRVEURZlAzUIfgKIoilIWfwJ8x1r7W+71C8aYfwvcaK3NzOLn7AAOW2vHZ3GfiqIoijIB9ZAoiqIsEowxbcAtwO/nvTUK/HOB9ne7sKvJlpuKfNxPMLseF0VRFEUpiHpIFEVRFg9XATngx3nr3wR8t0D7LwJfm2KfJ4us3wF8oYxjUxRFUZRpoQaJoijK4mEMqAbqgNdBEtyBn6SA8WCtHQAGyv0QY8wKYBPqIVEURVHmAQ3ZUhRFWTwcRMKzPmeM2WSMeQ+hB+TQLH7OW93ffE+MoiiKosw6apAoiqIsEqy1Z4BfBN6LGAu/DtwPvGKtfXEWP+ongE5r7cgs7lNRFEVRCqKFERVFURYpxhgD/APQba396EIfj6IoiqJMB80hURRFWSQYY94BrAWeARqBjyPJ57+0gIelKIqiKDNCDRJFUZTFw1rgs8BlwCvAY8DV1trehTwoRVEURZkJGrKlKIqiKIqiKMqCoUntiqIoiqIoiqIsGGqQKIqiKIqiKIqyYKhBoiiKoiiKoijKgqEGiaIoiqIoiqIoC4YaJIqiKIqiKIqiLBhqkCiKoiiKoiiKsmCoQaIoiqIoiqIoyoKhBomiKIqiKIqiKAvG/wUfsou5zs2C2gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# get number of x and y bins, given the desired binsize\n", + "binsize=0.006\n", + "x, y, nxbins, nybins = compute_nbins(res_pt1['g_i'], res_pt1['metallicity'], binsize, extent=None)\n", + "\n", + "fig, ax = plt.subplots(1, 1, figsize=(14,6))\n", + "hmap, xedges, yedges, im = plt.hist2d(x, y, (nxbins, nybins), cmap=plt.cm.jet, norm=LogNorm())\n", + "\n", + "# final adopted selection window\n", + "x_FeH = np.linspace(0.7,1.2,100)\n", + "FeH_2_mi = 0.0246*np.exp(2.4172*x_FeH) # Equation obtained from X,Y values\n", + "plt.plot(x_FeH, FeH_2_mi, color='r', lw=3)\n", + "plt.axhline(y = -0.2, xmin = 0.485, xmax = 0.63, color='r',lw=3) \n", + "plt.axvline(x = 0.7, ymin = 0.64, ymax = 0.82, color = 'r',lw=3)\n", + "plt.axvline(x = 1.2, ymin = 0.46, ymax = 0.82, color = 'r',lw=3)\n", + "\n", + "ax.set_xlim(-1.0, 2.5)\n", + "ax.set_ylim(1.25, -0.5)\n", + "ax.text(-0.9, -0.3, 'Initial selection', fontsize=20)\n", + "ax.text(-0.9, -0.2, '14,924,030 stars', fontsize=12)\n", + "ax.set_xlabel('$g - i$')\n", + "ax.set_ylabel('$m_i$')\n", + " \n", + "plt.colorbar(im, label=\"objects per metallicity bin (%g x %g mag)\" % (binsize, binsize))\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "0daad5b7-a6c2-4c8d-9b69-036b8741efdf", + "metadata": {}, + "source": [ + "The SkyMapper metallicity-sensitive diagram, $m_i = (v - g) – 1.5 (g − i)$ versus $(g − i)$, for all objects satisfying the basic selection criteria. Inspection of the figure shows that there is a cloud of stars that extends to bluer (i.e. more negative) values of $m_i$ at a given $(g − i)$, particularly for the approximate color range $∼0.3 ≤ (g − i) ≤ ∼1.0$. This is where we expect the index to be sensitive to metallicity ([Keller et al. 2007](https://ui.adsabs.harvard.edu/abs/2007PASA...24....1K/abstract)), and thus this region is where the EMP candidates are expected to occur. The red outline is the final adopted selection window, discussed below." + ] + }, + { + "cell_type": "markdown", + "id": "5db8b5c1-6337-49e4-81cd-0bbe9e7a0fcf", + "metadata": {}, + "source": [ + "# Next adopted selection\n", + "From the initial selection data, apply further constraints to the objects found in **skymapper_dr4.master**:\n", + "- $5 \\le \\cos^{-1}(\\sin(\\delta)\\sin(\\delta_{c}) + \\cos(\\delta)\\cos(\\delta_{c})\\cos(\\alpha-\\alpha_{c})) \\le 20$\n", + " > where $\\delta_{c} = -69.78$ deg and $\\alpha_{c} = 81.28$ deg is the center of the LMC. Limit to a region that is 5 deg to 20 deg in radius from the LMC center (to avoid crowding in the inner parts of the dwarf galaxy)\n", + "- $m_{i} \\ge -0.2$\n", + " > metallicity index cut using the metallicity-sensitive index: $m_{i} = (v − g) − 1.5(g − i)$ (since previous studies have shown that stars with metallicity indices more negative than this value are often young stars with Ca II H+K emission, or extragalactic objects such as quasi-stellar objects and active galactic nuclei ([Da Costa et al. 2019](https://academic.oup.com/mnras/article/489/4/5900/5568381?login=false)))\n", + "- $0.7 \\le (g-i) \\le 1.2$\n", + " > since the RGB at lower metallicities ($[Fe/H] \\le -2.5$) does not go beyond $(g-i)_{0} ~ 1.2$ mag for an old age ($\\gtrsim 10$ Gyr) population. The blue color cut is applied because we want to avoid contamination from young approximately solar metallicity disc dwarfs in the bluer parts of the CMD" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "a81e38c9-29dd-40f7-9388-7748011692cf", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:19:49.479858Z", + "iopub.status.busy": "2024-05-30T19:19:49.478985Z", + "iopub.status.idle": "2024-05-30T19:19:49.488000Z", + "shell.execute_reply": "2024-05-30T19:19:49.486315Z", + "shell.execute_reply.started": "2024-05-30T19:19:49.479796Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "SELECT\n", + " object_id, gaia_dr3_id1, raj2000, dej2000, g_psf,\n", + " i_psf, v_psf, g_i, ebmv_sfd, metallicity, radius,\n", + " (ATAN((81.28*(PI()/180) - raj2000*(PI()/180))/(-69.78*(PI()/180) - dej2000*(PI()/180))))*(180/PI()) AS angle\n", + "FROM\n", + " mydb://skymapperdr4_pt1\n", + "WHERE\n", + " radius BETWEEN 5 AND 20\n", + " AND ((v_psf - g_psf) - 1.5*g_i) BETWEEN -0.2 AND 0.4\n", + " AND g_i BETWEEN 0.7 AND 1.24\n", + "\n" + ] + } + ], + "source": [ + "query_pt2 = \"\"\"\n", + "SELECT\n", + " object_id, gaia_dr3_id1, raj2000, dej2000, g_psf,\n", + " i_psf, v_psf, g_i, ebmv_sfd, metallicity, radius,\n", + " (ATAN((81.28*(PI()/180) - raj2000*(PI()/180))/(-69.78*(PI()/180) - dej2000*(PI()/180))))*(180/PI()) AS angle\n", + "FROM\n", + " mydb://skymapperdr4_pt1\n", + "WHERE\n", + " radius BETWEEN 5 AND 20\n", + " AND ((v_psf - g_psf) - 1.5*g_i) BETWEEN -0.2 AND 0.4\n", + " AND g_i BETWEEN 0.7 AND 1.24\n", + "\"\"\"\n", + "print(query_pt2)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "511565d5-053a-4b63-9f30-e46ee8ff6e00", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:19:52.938266Z", + "iopub.status.busy": "2024-05-30T19:19:52.937580Z", + "iopub.status.idle": "2024-05-30T19:19:52.943885Z", + "shell.execute_reply": "2024-05-30T19:19:52.942564Z", + "shell.execute_reply.started": "2024-05-30T19:19:52.938217Z" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "#q = \"\"\"SELECT object_id, gaia_dr3_id1, raj2000, dej2000,\n", + "# g_psf, i_psf, v_psf, (g_psf - i_psf) AS g_i,\n", + "# ebmv_gnilc, ebmv_sfd,\n", + "# ((v_psf - g_psf) - 1.5*(g_psf - i_psf)) AS metallicity,\n", + "# (ACOS((SIN(dej2000*(PI()/180))*SIN(-69.78*(PI()/180))) + (COS(dej2000*(PI()/180))*COS(-69.78*(PI()/180))*COS((raj2000-81.28)*(PI()/180)))))*(180/PI()) AS radius,\n", + "# (ATAN((81.28*(PI()/180) - raj2000*(PI()/180))/(-69.78*(PI()/180) - dej2000*(PI()/180))))*(180/PI()) AS angle\n", + "# FROM skymapper_dr4.master\n", + "# WHERE (ACOS((SIN(dej2000*(PI()/180))*SIN(-69.78*(PI()/180))) + (COS(dej2000*(PI()/180))*COS(-69.78*(PI()/180))*COS((raj2000-81.28)*(PI()/180)))))*(180/PI()) BETWEEN 5 and 20\n", + "# AND class_star > 0.9\n", + "# AND flags <= 3\n", + "# AND v_ngood >= 2\n", + "# AND e_g_psf < 0.03\n", + "# AND e_i_psf < 0.03\n", + "# AND e_v_psf < 0.06\n", + "# AND ebmv_sfd < 0.25\n", + "# AND g_psf != 'NaN'\n", + "# AND i_psf != 'NaN'\n", + "# AND v_psf != 'NaN'\n", + "# AND (g_psf - i_psf) BETWEEN 0.7 AND 1.24\n", + "# AND ((v_psf - g_psf) - 1.5*(g_psf - i_psf)) BETWEEN -0.2 AND 0.4\n", + "# AND gaia_dr3_dist2 > 7.5\n", + "# AND self_dist2 > 7.5\n", + "# \"\"\"\n", + "#print(q)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "f3289e5a-ef76-41d5-9922-d31b075070a2", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:19:55.936378Z", + "iopub.status.busy": "2024-05-30T19:19:55.935722Z", + "iopub.status.idle": "2024-05-30T19:19:58.445146Z", + "shell.execute_reply": "2024-05-30T19:19:58.443477Z", + "shell.execute_reply.started": "2024-05-30T19:19:55.936330Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'count\\n77331\\n'" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "qc.query(sql=query_pt2, out='mydb://skymapperdr4_pt2', drop=True, timeout=600)\n", + "qc.query(sql=\"select count(*) from mydb://skymapperdr4_pt2\")" + ] + }, + { + "cell_type": "markdown", + "id": "7866f9d8-6d86-4bef-a9f8-e238e0ea313a", + "metadata": {}, + "source": [ + "# Final adopted selection\n", + "Crossmatch our objects from **skymapper_dr4.master** with the **gaia_dr3.gaia_source** table with the following constraints:\n", + "- $-0.2'' \\le \\pi \\le 0.2''$\n", + " > parallax between -0.2'' and 0.2''\n", + "- $\\sqrt{1.7(\\mu_{\\alpha} - 1.80)^{2} + 0.8(\\mu_{\\delta} - 0.37)^{2}} \\le 1.0$\n", + " > this equation was determined quantitatively, where they measured the average proper motion and spread for stars located 2 deg - 6 deg from the LMC center (to avoid kinematics from the core and contamination from the Milky Way Halo)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "2ad6fc1a-d48d-43b0-983a-b073803e906a", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:20:09.942209Z", + "iopub.status.busy": "2024-05-30T19:20:09.941012Z", + "iopub.status.idle": "2024-05-30T19:20:09.951292Z", + "shell.execute_reply": "2024-05-30T19:20:09.949611Z", + "shell.execute_reply.started": "2024-05-30T19:20:09.942119Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "SELECT \n", + " S.object_id, S.gaia_dr3_id1, S.raj2000, S.dej2000,\n", + " S.g_psf, S.i_psf, S.v_psf, S.g_i, S.ebmv_sfd,\n", + " S.metallicity, S.radius, S.angle, G.parallax,\n", + " G.pmra, G.pmdec, G.radial_velocity\n", + "FROM\n", + " mydb://skymapperdr4_pt2 AS S\n", + "JOIN\n", + " gaia_dr3.gaia_source AS G ON S.gaia_dr3_id1 = G.source_id\n", + "WHERE\n", + " G.parallax BETWEEN -0.2 AND 0.2\n", + " AND SQRT(1.7*POWER(G.pmra - 1.80, 2) + 0.8*POWER(G.pmdec - 0.37, 2)) <= 1.0\n", + "\n" + ] + } + ], + "source": [ + "query_pt3 = \"\"\"\n", + "SELECT \n", + " S.object_id, S.gaia_dr3_id1, S.raj2000, S.dej2000,\n", + " S.g_psf, S.i_psf, S.v_psf, S.g_i, S.ebmv_sfd,\n", + " S.metallicity, S.radius, S.angle, G.parallax,\n", + " G.pmra, G.pmdec, G.radial_velocity\n", + "FROM\n", + " mydb://skymapperdr4_pt2 AS S\n", + "JOIN\n", + " gaia_dr3.gaia_source AS G ON S.gaia_dr3_id1 = G.source_id\n", + "WHERE\n", + " G.parallax BETWEEN -0.2 AND 0.2\n", + " AND SQRT(1.7*POWER(G.pmra - 1.80, 2) + 0.8*POWER(G.pmdec - 0.37, 2)) <= 1.0\n", + "\"\"\"\n", + "print(query_pt3)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "fc6bcd8f-97b8-44f9-b30c-9601f73f7e34", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:20:12.941677Z", + "iopub.status.busy": "2024-05-30T19:20:12.940373Z", + "iopub.status.idle": "2024-05-30T19:20:27.670488Z", + "shell.execute_reply": "2024-05-30T19:20:27.669078Z", + "shell.execute_reply.started": "2024-05-30T19:20:12.941572Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'OK'" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "qc.query(sql=query_pt3, out='mydb://skymapperdr4_x_gaiadr3', drop=True, timeout=600)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "1d641a84-9431-44e2-9574-88b37c2ce316", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:20:30.940637Z", + "iopub.status.busy": "2024-05-30T19:20:30.939818Z", + "iopub.status.idle": "2024-05-30T19:20:31.252395Z", + "shell.execute_reply": "2024-05-30T19:20:31.251270Z", + "shell.execute_reply.started": "2024-05-30T19:20:30.940565Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
object_idgaia_dr3_id1raj2000dej2000g_psfi_psfv_psfg_iebmv_sfdmetallicityradiusangleparallaxpmrapmdecradial_velocity
04537139745219144997115126016143.379302-71.91574515.866314.955217.39490.9110990.16260.16195119.571873-88.0302360.1113372.3622040.154266NaN
14537617615222499847610150784139.009968-70.46293616.533915.736117.78610.7977990.17300.05550218.905032-89.3222320.0922711.4175990.637325NaN
24537904245222114812381101440137.728466-70.87236116.193815.273817.70590.9200000.10180.13210018.348575-88.8913810.0302621.942304-0.491694NaN
34579390645222989405162959744137.650562-68.76503416.778915.971418.03620.8075000.09600.04605019.26742788.9684870.0520911.9593560.259633NaN
44579461465223013280882488704137.428871-68.37954216.731015.912617.91530.8184010.1196-0.04330319.38824288.5712320.1077411.8223051.395491NaN
...................................................
1066502178546477806772571595315269.469698-52.99144216.935416.187118.44330.7483010.00560.38544917.641193-35.125362-0.0216811.633199-0.408090NaN
1067502209622478143051760632460866.937828-51.58155016.943216.100918.51230.8422980.01340.30565419.388924-38.2415930.0245011.813632-0.658950NaN
1068502214267477964453276521100862.868680-54.33695116.441215.732517.59040.7087000.01220.08615017.525837-50.0107450.0807211.5528420.504124NaN
1069502223191478005056179352358463.981097-53.67023016.339215.604517.67590.7346990.01220.23465217.923204-47.0384990.1416471.4087270.532775NaN
1070502258349478143783623062400066.542336-51.67927216.655315.806918.29950.8484000.01410.37159919.358819-39.1525790.0721861.790499-0.581394NaN
\n", + "

1071 rows × 16 columns

\n", + "
" + ], + "text/plain": [ + " object_id gaia_dr3_id1 raj2000 dej2000 g_psf i_psf \\\n", + "0 453713974 5219144997115126016 143.379302 -71.915745 15.8663 14.9552 \n", + "1 453761761 5222499847610150784 139.009968 -70.462936 16.5339 15.7361 \n", + "2 453790424 5222114812381101440 137.728466 -70.872361 16.1938 15.2738 \n", + "3 457939064 5222989405162959744 137.650562 -68.765034 16.7789 15.9714 \n", + "4 457946146 5223013280882488704 137.428871 -68.379542 16.7310 15.9126 \n", + "... ... ... ... ... ... ... \n", + "1066 502178546 4778067725715953152 69.469698 -52.991442 16.9354 16.1871 \n", + "1067 502209622 4781430517606324608 66.937828 -51.581550 16.9432 16.1009 \n", + "1068 502214267 4779644532765211008 62.868680 -54.336951 16.4412 15.7325 \n", + "1069 502223191 4780050561793523584 63.981097 -53.670230 16.3392 15.6045 \n", + "1070 502258349 4781437836230624000 66.542336 -51.679272 16.6553 15.8069 \n", + "\n", + " v_psf g_i ebmv_sfd metallicity radius angle \\\n", + "0 17.3949 0.911099 0.1626 0.161951 19.571873 -88.030236 \n", + "1 17.7861 0.797799 0.1730 0.055502 18.905032 -89.322232 \n", + "2 17.7059 0.920000 0.1018 0.132100 18.348575 -88.891381 \n", + "3 18.0362 0.807500 0.0960 0.046050 19.267427 88.968487 \n", + "4 17.9153 0.818401 0.1196 -0.043303 19.388242 88.571232 \n", + "... ... ... ... ... ... ... \n", + "1066 18.4433 0.748301 0.0056 0.385449 17.641193 -35.125362 \n", + "1067 18.5123 0.842298 0.0134 0.305654 19.388924 -38.241593 \n", + "1068 17.5904 0.708700 0.0122 0.086150 17.525837 -50.010745 \n", + "1069 17.6759 0.734699 0.0122 0.234652 17.923204 -47.038499 \n", + "1070 18.2995 0.848400 0.0141 0.371599 19.358819 -39.152579 \n", + "\n", + " parallax pmra pmdec radial_velocity \n", + "0 0.111337 2.362204 0.154266 NaN \n", + "1 0.092271 1.417599 0.637325 NaN \n", + "2 0.030262 1.942304 -0.491694 NaN \n", + "3 0.052091 1.959356 0.259633 NaN \n", + "4 0.107741 1.822305 1.395491 NaN \n", + "... ... ... ... ... \n", + "1066 -0.021681 1.633199 -0.408090 NaN \n", + "1067 0.024501 1.813632 -0.658950 NaN \n", + "1068 0.080721 1.552842 0.504124 NaN \n", + "1069 0.141647 1.408727 0.532775 NaN \n", + "1070 0.072186 1.790499 -0.581394 NaN \n", + "\n", + "[1071 rows x 16 columns]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "q = \"select * from mydb://skymapperdr4_x_gaiadr3\"\n", + "res = qc.query(sql=q, fmt='pandas', timeout=600)\n", + "res" + ] + }, + { + "cell_type": "markdown", + "id": "58236b3a-7df8-443b-9990-bace6ba8719e", + "metadata": {}, + "source": [ + "## Metallicity-sensitive diagram and CMD" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "9a07fc40-ec2d-4f36-b77b-3c01be0e3c45", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:20:34.941324Z", + "iopub.status.busy": "2024-05-30T19:20:34.940178Z", + "iopub.status.idle": "2024-05-30T19:20:34.985049Z", + "shell.execute_reply": "2024-05-30T19:20:34.983954Z", + "shell.execute_reply.started": "2024-05-30T19:20:34.941243Z" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# Extracted X,Y values for Dartmouth isochrones from Figure 1 using https://apps.automeris.io/wpd/\n", + "x_FeH_4_mi=[0.70,0.7110,0.7190,0.7271,0.7352,0.7432,0.7513,0.7594,0.7674,0.7755,0.7835,0.7916,0.7997,0.8077,0.8158,0.8239,0.8319,0.8400,0.8480,0.8561,0.8642,0.8722,0.8803,0.8884,0.8964,0.9045,0.9125,0.9206,0.9287,0.9367,0.9448,0.9529,0.9609,0.9690,0.9771,0.9851,0.9932,0.9990]\n", + "y_FeH_4_mi=[0.01907,0.01959,0.02022,0.02045,0.02137,0.02217,0.02292,0.02378,0.02486,0.02567,0.02647,0.02761,0.02870,0.03001,0.03127,0.03252,0.03400,0.03554,0.03725,0.03868,0.03999,0.04176,0.04347,0.04501,0.04660,0.04831,0.04997,0.05179,0.05322,0.05464,0.05618,0.05783,0.05920,0.06057,0.06189,0.06320,0.06451,0.06570]\n", + "x_4_mi = np.linspace(0.7,1.0,100)\n", + "FeH_4_mi = 0.219*(x_4_mi**2) - 0.2053*x_4_mi + 0.0539\n", + "\n", + "x_FeH_2_mi =[0.70,0.7120,0.7201,0.7281,0.7362,0.7443,0.7523,0.7604,0.7685,0.7765,0.7846,0.7927,0.8007,0.8088,0.8169,0.8249,0.8330,0.8411,0.8491,0.8572,0.8653,0.8733,0.8814,0.8895,0.8975,0.9056,0.9137,0.9218,0.9298,0.9379,0.9460,0.9540,0.9621,0.9702,0.9783,0.9863,0.9944,1.002,1.011,1.019,1.027,1.035,1.043,1.051,1.059,1.067,1.075,1.083,1.091,1.099,1.107,1.116,1.124,1.132,1.140,1.148,1.156]\n", + "y_FeH_2_mi = [0.1433,0.1425,0.1423,0.1429,0.1442,0.1463,0.1486,0.1513,0.1545,0.1580,0.1614,0.1646,0.1682,0.1717,0.1754,0.1789,0.1824,0.1861,0.1901,0.1941,0.1980,0.2022,0.2068,0.2113,0.2156,0.2204,0.2251,0.2298,0.2343,0.2393,0.2443,0.2493,0.2544,0.2596,0.2650,0.2704,0.2758,0.2813,0.2868,0.2924,0.2980,0.3037,0.3094,0.3152,0.3211,0.3269,0.3327,0.3386,0.3445,0.3504,0.3564,0.3625,0.3685,0.3747,0.3806,0.3867,0.3924]\n", + "x_2_mi = np.linspace(0.7,1.2,100)\n", + "FeH_2_mi = 0.0246*np.exp(2.4172*x_2_mi)\n", + "\n", + "x_FeH_4_g = [0.8703927,0.8751304,0.8795037,0.8838770,0.8882502,0.8926235,0.8969968,0.9013700,0.9057433,0.9101165,0.9144898,0.9192275,0.9243297,0.9294318,0.9345339,0.9396361,0.9451027,0.9509337,0.9567647,0.9629602,0.9695201,0.9760799,0.9826398,0.9891997,0.9961241,1.001226]\n", + "y_FeH_4_g = [16.99999,16.97275,16.95185,16.93184,16.91213,16.89213,16.87256,16.85300,16.83344,16.81447,16.79551,16.77535,16.75427,16.73357,16.71453,16.69638,16.67704,16.65772,16.63840,16.61887,16.59864,16.57931,16.56077,16.54232,16.52300,16.50956]\n", + "x_4_g = np.linspace(0.7,1.0,100)\n", + "FeH_4_g = 10.156*(x_4_g**2) - 22.731*x_4_g + 29.089\n", + "\n", + "x_FeH_2_g = [0.9684743,0.9757155,0.9811821,0.9866487,0.9924797,0.9983107,1.004142,1.010337,1.016533,1.022728,1.029288,1.035848,1.042772,1.050061,1.057350,1.064639,1.071927,1.079216,1.086505,1.094158,1.102176,1.110193,1.118211,1.126229,1.134246,1.142264,1.150282,1.158299,1.166317,1.174335,1.182352,1.188912]\n", + "y_FeH_2_g = [16.99899,16.97314,16.95385,16.93449,16.91473,16.89507,16.87575,16.85608,16.83645,16.81769,16.79885,16.78011,16.76079,16.74100,16.72121,16.70168,16.68251,16.66406,16.64498,16.62600,16.60648,16.58696,16.56745,16.54793,16.52842,16.51036,16.49158,16.47352,16.45571,16.43798,16.42065,16.40632]\n", + "x_2_g = np.linspace(0.7,1.2,100)\n", + "FeH_2_g = 3.0952*(x_2_g**2) - 9.3219*x_2_g + 23.118" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "eb27cf3b-c5df-47f8-84ba-5c924c6b1494", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:20:36.940321Z", + "iopub.status.busy": "2024-05-30T19:20:36.939571Z", + "iopub.status.idle": "2024-05-30T19:20:37.264652Z", + "shell.execute_reply": "2024-05-30T19:20:37.263643Z", + "shell.execute_reply.started": "2024-05-30T19:20:36.940265Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAGFCAYAAACYOgv4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAACC/ElEQVR4nO2dd3hUVfrHPychCSGBBEIJvRg6SKgC8lMQUaqooFhpKnbFvq67qyu7uqxlYVddgUURK67YRRCQJkQRpIiyCgpBhCA1dFLm/P6Ykslkyp2ZOzN3kvfzPPMkM3PLuefeOe/3vOc971FaawRBEARBENxJiHUBBEEQBEGwHiIQBEEQBEGogAgEQRAEQRAqIAJBEARBEIQKiEAQBEEQBKECIhAEQRAEQaiACARBEARBECpgWYGglEpRSv1LKXVAKXVCKfWhUqpJgH1uV0ptVkoddbzylFLDolVmQRAEQagsWFYgANOAUcDVwP8BtYCPlVKJfvbZDTwEdAN6AJ8D7yulzo5sUQVBEAShcqGsmElRKZUB7AcmaK1fd3zWFMgHhmitFwVxrEPAw1rrGREprCAIgiBUQqzqQegOJAGfOT/QWv8CbAX6GjmAUipRKXUVkA6siUQhBUEQBKGyUi3WBfBBNlAKHPD4fJ/jO58opToDeUB14Dhwmdb620gUUhAEQRAqK1EVCEqpvwCPBNhsQJin+QHIBTKA0cArSqn+WustXsozCZgEkJaW1r1du3ZhnloQBEEQ4of169cf0FrX8/ZdVGMQlFJ1gboBNtsF9AaWAvW11vvd9v8OeEdr/WgQ51wC5Gutb/C3XY8ePfS6deuMHlYQBEEQ4h6l1HqtdQ9v30XVg6C1PkDFYYMKKKXWA8XAIOANx2dNgPYEH0+QAKQEuY8gCIIgVGksGYOgtS5USs0G/q6U+g04CDwLbAaWOLdTSv0PeE5r/Zzj/d+AT4BfgJrANUB/QHIhCIIgCEIQWFIgOJgMlADzgFTsQw5jtdalbtu0pfyQRTbwmuNvIXZBEdS0SEEQBEEQLCwQtNZngDsdL1/bKI/34yNcLEEQBEGoElg1D4IgCIIgCDHEsh4EQRAEM7HZbBw4cIAjR45QWloaeAdBiHMSExPJzMykbt26JCQE7w8QgSAIQpVg9+7dKKVo0aIFSUlJKKUC7yQIcYrWmuLiYvbt28fu3btp1qxZ0MeQIQZBEKoEJ06coHHjxiQnJ4s4ECo9SimSk5Np3LgxJ06cCOkYIhAEQagyhOJmFYR4JpxnXn4tgiAIgiBUQASCIAiCYFmGDx/O+PHjXe/79+/PHXfc4XefTp068dhjj0W2YFUAEQiCIAgWZvz48SilKrx69+7t2qZFixYopXj11Vcr7H/OOeeglOLpp592fda/f3/XcVJSUmjTpg1PPPFEXMzuePfdd3nyySdNPeacOXNIT0839ZiVAREIgiAIFufCCy9k79695V4LFiwot03Tpk156aWXyn22ZcsWtmzZQlZWVoVjTpgwgb179/LDDz9w11138Yc//KGciLAqderUoWbNmrEuRpVABIIgCILFSUlJITs7u9yrTp065ba55ppryMvL4+eff3Z9Nnv2bEaPHu21d1yjRg2ys7Np0aIFd9xxBwMHDuT999/3WYaioiJ+//vf07x5c1JSUmjVqhX//Oc/ASgtLeWGG26gZcuWpKam0rp1a/7+979js9lc+48fP57hw4czffp0GjduTO3atZkwYQInT550bXPy5EnGjx9Peno6DRo04IknnqhQDs8hht9++42RI0eSmppK8+bNK4gkgGeffZazzz6btLQ0GjduzI033siRI0cAWL58ORMmTODEiRMur4pzeKKoqIiHHnqIJk2aUKNGDXr27MmiRWWZ+4uLi7nrrrto1KgRKSkpNG3alN/97nc+6zDeEIEgCIIQJIWFeeTnP0lhYV6si+Kibt26jBgxgpdffhmwG7fXXnuNG27wu9K9i9TUVIqLi31+P27cOObOncuzzz7L1q1bmT17NpmZmYA9CVXjxo15++232bp1K3/961954oknXGVxsmrVKrZs2cKSJUuYN28e7733HtOnT3d9f//997N48WLmz5/P0qVL2bBhAytXrvRb7vHjx7N9+3aWLFnC+++/z9y5c9m5c2e5bRISEpg2bRrfffcdb7zxBmvXruXOO+1Z/Pv27cu0adOoUaOGyztz//33A3Yvy4oVK3jjjTfYsmUL48aNY8SIEWzatAmAf/7zn7z33nu89dZbbNu2jXnz5tG2bVtD9R0XaK3lpTXdu3fXgiBUXr7//ntTjnPkyBq9YkWqXrYsUa9YkaqPHFljynF9MW7cOJ2YmKjT0tLKvR588EHXNs2bN9dPPfWUXrBggW7atKkuLS3V//3vf3VOTk65752cf/75+vbbb9daa11aWqo//fRTnZycXO6Y7vz4448a0J9++qnhcj/00EN64MCB5a6jSZMmuqSkxPXZjTfe6Nrm2LFjOjk5Wb/22muu748dO6YzMjL0uHHjvJb9hx9+0ID+4osvXN/v3LlTJyQk6EcffdRn2ZzXW1paqrXW+uWXX9ZpaWnlttm+fbtWSun8/Pxyn48cOVLfeuutWmut77zzTn3BBRdom81mpEpihr9nH1infdhFyaQoCIIQBEeOLMdmKwJKsdmKOHJkORkZfSJ6zvPOO4+ZM2eW+8zZe3fn4osvRmvN4sWLmT17NhMnTvR5zJkzZzJnzhyKiooAuP7663n00Ue9brthwwYSEhIYMGCAz+O9+OKL/Oc//yE/P59Tp05RXFxM8+bNy23ToUMHEhMTXe8bNWrEV199BcBPP/1EUVERffqU1WV6ejqdO3f2ec6tW7eSkJBAr169XJ81b96cRo0aldvu888/58knn2Tr1q0UFhZSWlpKUVERBQUFFbZ18s0336C1pkOHDuU+P3PmDBdccAFg914MGjSINm3acNFFFzF06FCGDBlSafJtiEAQBEEIgszM/iQkJGOzFZGQkExmZv+In7NGjRrk5OQE3C4hIYFx48bxxBNP8OWXXzJ79myf244ZM4ZHH32UlJQUGjVqVM5wB8u8efOYPHkyTz/9NH379qVWrVo8//zzvPfee+W2S0pKKvdeKVUuTiFU/GXGzM/PZ9iwYdx00008/vjjZGVl8c0333D11Ve7xJE3bDYbSim+/vrrCuVOTU0FoFu3buzcuZNFixaxdOlSxo0bR5cuXVi8eHGlEAkiEARBEIIgI6MPXbos5ciR5WRm9o+49yBYJk6cyBNPPMHQoUN99o4BMjIyDIkOgNzcXGw2G8uWLWPw4MEVvv/iiy8455xzygUP/vTTT0GV+6yzziIpKYkvv/ySVq1aAfb02Fu2bOGss87yuk+7du2w2WysXbuWvn37ArBr1y727Nnj2mbdunUUFRXxj3/8wyWCPv7443LHSU5OrjDFs2vXrmitKSgo8Os5qVmzJqNHj2b06NGMHz+e3r17s337dtq0aRPU9VsREQiCIAhBkpHRJ6rC4MyZMxQUFJT7LDExkXr16lXYtlWrVhw4cMDVyzWDNm3acOWVV3LjjTcyffp0unXrxu7du9m5cyfXX389bdq0Yc6cOXz66afk5OTw1ltvsWLFCmrXrm34HOnp6dxwww089NBD1KtXj0aNGvH444/7zc3Qtm1bBg8ezM0338zMmTNJTU3l3nvvLXftrVu3xmazMW3aNC6//HK+/PJLpk2bVu44LVq04PTp0yxevJiuXbtSo0YN2rRpw7XXXsv48eN55pln6NatG4cOHWL58uW0atWKyy+/nGeffZaGDRuSm5tLUlISb7zxBrVq1aJJkyZB17EViX8fiCAIQiVnyZIlNGzYsNyra9euPrevU6eOqQIBYO7cuVxzzTXcddddtGvXjvHjx1NYWAjAzTffzJVXXsk111xDz5492blzJ/fdd1/Q53j66acZMGAAl112GQMGDKBTp06cd955fveZM2cOLVu25IILLmDEiBFcc801tGjRwvX92WefzfTp03n22Wfp0KED//nPfyrke+jbty+33HILV199NfXq1ePvf/87AC+//DITJkzgwQcfpF27dgwfPpyVK1e6Yitq1qzJU089Ra9evejWrRsbN27k008/pUaNGkFfuxVR9iBGoUePHnrdunWxLoYgCBFi69attG/fPtbFEISo4+/ZV0qt11r38PadeBAEQRAEQaiACARBEARBECogAkEQBEEQhAqIQBAEQRAEoQIiEARBEARBqIAIBEEQBEEQKiACQRAEQRCECohAEARBEAShAiIQBEEQBEGogAgEQRAEC9O/f3+UUiil+PLLL2NdHMC+doGzTAcOHIhpWebMmUN6enrUzqeU4p133ona+WKJCARBEASLM2HCBPbu3Uv37t1dnzkNtPsrNzc3qOPu3buX5ORkDh486NfQpqenM2fOHNf7r7/+mvnz54dyKT4pLi7moYce4uyzzyYtLY2GDRtyzTXXsGvXLr/7jRkzhp9//tnUsgh2ZDVHQRAEi1OjRg2ys7MrfD5r1iyGDx/uep+UlBTUcT/88EP69u1LVlZWUPvVq1ePOnXqBLVPIE6ePMk333zDI488Qm5uLoWFhdx3330MHjyYzZs3U62ad3OVmppq+sJUZlNcXBz0vbEC4kEQBEGIUzIzM8nOzna9nIa+qKiIhx56iCZNmlCjRg169uzJokWLKuz/wQcfMHLkyGgX2ysZGRksXryYMWPG0LZtW3r16sWMGTPYunUrW7du9bmfp+fjl19+YeTIkdSpU4caNWrQrl073nrrLdf33377LRdeeCGpqanUqVOn3KqUTl555RU6d+5MSkoKDRo0YNy4ceW+P3ToEFdccQVpaWm0atWK1157zfXdzp07UUrx5ptvcsEFF5CamsqMGTOw2WxMmTKFpk2bkpKSQufOnfnggw8q7Dd//nwGDRpEjRo16NChA4sXLy537u+//55hw4ZRs2ZN6tevz9VXX11hKXCzEIEgCIJQyZgwYQIrVqzgjTfeYMuWLYwbN44RI0awadMm1zbHjh3j888/N00grFq1ivT0dL+vJ554IqhjHj16FIDatWsb3ue2227j5MmTLFu2jO+++45p06aRmZkJwIkTJ7j44otJT09n7dq1vPfee6xZs4aJEye69p8xYwY333wzEyZMYPPmzSxYsIBOnTqVO8fjjz/OyJEj2bRpE2PGjGHixIkVhkIefvhhbrvtNr7//nsuvfRSpk+fzlNPPcXUqVP59ttvueyyy7j88svZuHFjuf0eeeQR7rrrLjZt2kTPnj256qqrOH78OGAfEjrvvPPo1KkTa9euZcmSJRw/fpyRI0dis9kM15FRZIhBEIQqy+TJkys00JEmNzeXadOmmXKs66+/nvHjx7vez5gxg969e/Pmm2+yc+dOmjVrBsAdd9zBkiVLmDFjBi+88AIACxcupE2bNrRq1cq1/4kTJ7zGIZw4cSJgWXr06BGwLoMZligqKuK+++5jxIgRNGnSxPB++fn5jBo1ii5dugDQsmVL13dvvPEGJ06c4NVXX6VmzZoAzJw5kwEDBrB9+3ZycnKYMmUKkydP5t5773Xt5x77AfZ6v+666wCYMmUK06dPZ+XKla7PAO68805Gjx7tev/0009z//33c8011wB2kbFy5Uqefvrpch6Ie+65hxEjRgDwxBNPMHfuXDZu3Ei/fv3497//TZcuXZg6dapr+7lz51KnTh3WrVtHr169DNeTEUQgCIIgxClPPfUUgwcPdr1v0KABCxcuRGtNhw4dym175swZLrjgAtd7b8MLNWrU8GrkncbWH6mpqeTk5Bgq9+uvv87NN9/sev/pp5/yf//3f673JSUlXHfddRw5coQPP/zQ0DGd3H333dxyyy0sXLiQgQMHctlll7kM/NatWzn77LNd4gCgb9++JCQk8P3331OrVi1+/fVXBg4c6PccZ599tuv/atWqUa9ePX777bdy2/To0cP1/9GjR9mzZw/nnntuuW369evHggULfB67UaNGAK5jr1+/npUrV3oVcT/99JMIBEEQBLMwqycfK7KzsysYZZvNhlKKr7/+ukJgnDOYr6SkhE8++aTC+LZSyquRV0oFLMuqVasYMmSI321+//vf8/vf/55LLrmEc845x/V548aNXf+XlJRw9dVX8+2337J8+fKgAyhvuOEGLr74YhYsWMCSJUvo27cvDz/8MI899pjf/YxcoxPPelVKVXDxp6WlGTqW53ndj+38znlsm83GsGHDePrppyscp0GDBobOFwwiEARBECoRXbt2RWtNQUEBAwYM8LrNihUrSE9PL9fLDZdghhhq1qxZrhfvpLi4mKuuuootW7awfPlyrzM3jNCkSRMmTZrEpEmTmDp1KtOnT+exxx6jffv2vPTSSxw7dsx1/jVr1mCz2Wjfvj3169encePGLF26lEGDBoV0bm/UqlWLRo0asXr16nLeiS+++KKCp8cf3bp14+2336Z58+ZRmRVhWYGglEoBngauBlKBpcBtWuvdfvZ5GLgcaAucAb4EHtZab4l8iQVBEGJPmzZtuPbaaxk/fjzPPPMM3bp149ChQyxfvpxWrVpx+eWX88EHH3DJJZeYet5ghhi8UVJSwhVXXMHXX3/NRx99hFLKFZ2fkZFheCrj3XffzZAhQ2jTpg1Hjx5l4cKFLiN87bXX8uijjzJ27Fgef/xxDh8+zM0338zll1/uKvsjjzzCPffcQ4MGDRg2bBgnT55k6dKl3HfffSFfG8ADDzzAn/70J1q3bk337t157bXXWLVqFd98843hY9x+++3MmjWLMWPG8NBDD1GvXj1+/vln3n77bZ555hmvoiscrDyLYRowCrtA+D+gFvCxUirRzz79gReAvsAFQAmwRCll7oRdQRAEC/Pyyy8zYcIEHnzwQdq1a8fw4cNZuXIlzZs3B6w1vdHJ7t27+eCDD9izZw/du3enYcOGrte8efMMH8dms3HnnXfSoUMHBg0aRIMGDXjllVcAe4zFokWLOHr0KL169WLkyJH06dOHl156ybX/rbfeyvPPP8+sWbPo1KkTgwcP5rvvvgv7+u666y4eeOABHnzwQTp16sR7773H/PnzDcV3OHF6IRISEhg8eDAdO3bk9ttvJyUlhZSUlLDL6InSWpt+0HBRSmUA+4EJWuvXHZ81BfKBIVrrihN6vR8nHSgELtVaf+Rv2x49euh169aFV3BBECzL1q1bad++fayLETT9+/enU6dOPPfcc6Ycb8OGDQwYMID9+/eH5aZevny56zh169Y1pWxCZPD37Cul1mutvY41WdWD0B1IAj5zfqC1/gXYit07YJSa2K/xsKmlEwRBiCIzZ84kPT2dr7/+OuxjFRcX869//SsscdCxY8eAAYlC/GPVGIRsoBTwXAVkn+M7o0wHNgJ53r5USk0CJgGu+cKCIAhW4vXXX+fUqVMANG3aNOzj9erVK+zpcAsWLKC4uBgILreBEF9EVSAopf4CPBJgM+9ht8Gf61mgH9BPa13qbRut9UxgJtiHGMw4ryAIgpm4TwG0Cs5YBqFyE20PwjTgtQDb7AJ6A4lAXeyxCE4aAKsCnUQp9Q/gKmCA1lqW+RIEQRCEIImqQNBaH6DisEEFlFLrgWJgEPCG47MmQHtgTYB9pwNjsIuD/4VbZkEQBEGoilgySFFrXQjMBv6ulLpQKdUVeBXYDCxxbqeU+p9S6g63988DE4BrgMNKqWzHy/si54IgCIIgeMWqQYoAk7HnMZhHWaKksR7xBG2xD0M4uc3xd6nHsf4MPBaRUgqCIAhCJcSyAkFrfQa40/HytY3y914QhOAoLMzjyJHlZGb2JyOjT6yLIwhCDLGsQBAEIboUFuaxadNAbLYiEhKS6dJlqYgEQajCWDIGQRCE6HPkyHJstiKgFJutiCNHlse6SAL2TIpKKZRSfPnll7EuDgAtWrRwlenAgYBx5xFlzpw5Xpc/jhRKKd55552onS+WiEAQBAGAzMz+JCQkA4kkJCSTmdk/1kUSHEyYMIG9e/fSvXt312dOA+3+ys3NDeq4e/fuJTk5mYMHD/o1tOnp6cyZM8f1/uuvv2b+/PmhXIphbr75ZpRSXpc2dmfMmDH8/LPMZo8EMsQgCAIAGRl96NJlqcQgWJAaNWp4Xfp41qxZDB8+3PU+2PTJH374IX379iUrKyuo/erVqxfRDIrvvPMOa9eupVGjRgG3TU1NNbzSY6woLi6OyvLMZiMeBEEQXGRk9KF584dFHMQJmZmZZGdnu15OQ19UVMRDDz1EkyZNqFGjBj179mTRoopr3FlxVcf8/Hzuvvtu3njjDUNG1dPz8csvvzBy5Ejq1KlDjRo1aNeuHW+99Zbr+2+//ZYLL7yQ1NRU6tSpw/jx4yksLCx3zFdeeYXOnTuTkpJCgwYNGDduXLnvDx06xBVXXEFaWhqtWrXitdfK8v/t3LkTpRRvvvkmF1xwAampqcyYMQObzcaUKVNo2rQpKSkpdO7cmQ8++KDCfvPnz2fQoEHUqFGDDh06sHjx4nLn/v777xk2bBg1a9akfv36XH311a5lsc1GBIIgCEIlY8KECaxYsYI33niDLVu2MG7cOEaMGMGmTZtc2xw7dozPP//cNIGwatUq0tPT/b6eeOIJv8coKSnh6quv5g9/+EPIK2/edtttnDx5kmXLlvHdd98xbdo0MjMzAThx4gQXX3wx6enprF27lvfee481a9YwceJE1/4zZszg5ptvZsKECWzevJkFCxbQqVOncud4/PHHGTlyJJs2bWLMmDFMnDiRXbt2ldvm4Ycf5rbbbuP777/n0ksvZfr06Tz11FNMnTqVb7/9lssuu4zLL7+cjRs3ltvvkUce4a677mLTpk307NmTq666iuPHjwP2IaHzzjuPTp06sXbtWpYsWcLx48cZOXIkNpstpPryhwwxCIJQZZk8GTza54iTmwvTpplzrOuvv57x48e73s+YMYPevXvz5ptvsnPnTtcidHfccQdLlixhxowZvPDCCwAsXLiQNm3a0KpVK9f+J06c8BqHcOLEiYBl6dGjRwVj50mgYYlHH32UunXrcuuttwY8ny/y8/MZNWoUXbp0AaBly5au79544w1OnDjBq6++Ss2aNQH7SpkDBgxg+/bt5OTkMGXKFCZPnsy9997r2s899gPs9X7dddcBMGXKFKZPn87KlStdnwHceeedjB492vX+6aef5v777+eaa64B7CJj5cqVPP300+U8EPfccw8jRowA4IknnmDu3Lls3LiRfv368e9//5suXbowdepU1/Zz586lTp06rFu3LuxFuDwRgSAIghCnPPXUUwwePNj1vkGDBixcuBCtNR06dCi37ZkzZ7jgggtc770NL9SoUcOrkXcaW3+kpqaSk5NjqNyvv/46N998s+v9p59+SmlpKXPmzAkoMgJx9913c8stt7Bw4UIGDhzIZZdd5jLwW7du5eyzz3aJA4C+ffuSkJDA999/T61atfj1118ZOHCg33OcffbZrv+rVatGvXr1+O2338pt06NHD9f/R48eZc+ePZx77rnltunXrx8LFizweWxnDIbz2OvXr2flypVeRdxPP/0kAkEQBMEszOrJx4rs7OwKRtlms6GU4uuvv64whu8M5ispKeGTTz6pML6tlPJq5JUKnINu1apVDBkyxO82v//97/n973/PJZdcwjnnnOP6vHHjxkydOpW9e/fSsGFD1+elpaU89NBDTJs2jd27dwcsA8ANN9zAxRdfzIIFC1iyZAl9+/bl4Ycf5rHHHvO7n5FrdOJZr0qpCi7+tLQ0Q8fyPK/7sZ3fOY9ts9kYNmyY15kdDRo0MHS+YBCBIAhC0EjGRevStWtXtNYUFBQwYMAAr9usWLGC9PT0cr3ccAlmiKFmzZrlevFgjx1wd8kDXHzxxVx99dXcdNNNQZWlSZMmTJo0iUmTJjF16lSmT5/OY489Rvv27XnppZc4duyY6/xr1qzBZrPRvn176tevT+PGjVm6dCmDBg0K6pz+qFWrFo0aNWL16tXlvBNffPFFBU+PP7p168bbb79N8+bNozIrQgSCIAhBIRkXrU2bNm249tprGT9+PM888wzdunXj0KFDLF++nFatWnH55ZfzwQcfcMkll5h63mCGGLxRv3596tevX+6zpKQksrOzadu2reHj3H333QwZMoQ2bdpw9OhRFi5c6DLC1157LY8++ihjx47l8ccf5/Dhw9x8881cfvnlrrI/8sgj3HPPPTRo0IBhw4Zx8uRJli5dyn333RfytQE88MAD/OlPf6J169Z0796d1157jVWrVvHNN98YPsbtt9/OrFmzGDNmDA899BD16tXj559/5u233+aZZ56pILrCRQSCIAhB4S3joggEa/Hyyy/z17/+lQcffJDdu3dTp04devXq5fIofPDBB8yaNSvGpYwMNpuNO++8k19++YWaNWsycOBAnnnmGcAeY7Fo0SImT55Mr169qF69OiNHjmT69Omu/W+99VaSk5N55plneOihh6hTpw5Dhw4Nu1x33XUXx44d48EHH2Tfvn20bduW+fPnG4rvcOL0Qjz88MMMHjyY06dP06xZMy666CJSUlLCLqMnSmtt+kHjkR49euh169bFuhiCYHni1YOwdevWkKfOxZL+/fvTqVMnnnvuOVOOt2HDBgYMGMD+/fvDclMvX77cdZy6desG3kGIGf6efaXUeq2117EmyYMgCEJQODMutmw5JW7EQbwzc+ZM0tPT+frrr8M+VnFxMf/617/CEgcdO3YMGJAoxD8yxCBUOiSALvJkZPSRuo0Sr7/+OqdOnQKgadOmYR+vV69eYU+HW7BgAcXFxUDg3AZC/CICQahUxKv7WxB80bhx41gXoQLNmzePdRGEKCBDDIKlKCzMIz//SQoL80LaX5YsFgRBMAfxIAiWwYzev3PJYucx4nHJYhkiEQTBCohAECyDGdPn4n3JYhkiiRw22xlOn95DtWq1qFatYqpaQaiMhDNTUQSCYBnM6v3HcwCd5BiIDIWFeZw58zPHj5eQklJAamobEQlCleDUqVMhz1iRGATBMlhx+ly4MRHB4hRJkBi3QyRW5MiR5Zw48QK//rqfM2dslJQcjXWRBCGiaK05efIkv/76a4UMlUaRREkOJFGS4Ems3P0Sg2A+znupVFfS0m4jJaUjCQnmZ54TBCuRlJRE/fr1qVWrls9t/CVKkiEGQfBBrNz98TxEYlXKx6a0IiMjN9ZFEgTLIwJBEHxQGWZECGWI8BKE4BCBIAg+iPcZEYIgCOEgAkEQ/FCVe50SCyEIVRsRCIIgVEDyMQiCINMc44RoT7cTqjaSsloQBPEgxAHSmxOijQRoCoIgAiEOkOx6QrSRAE1BEEQgxAHSmxNiQVUO0BQEQQRCXCC9OUEQBCHaiECIE6Q3JwiCIEQTmcUgVApklocgCIK5iAehilEZk9/ILA9BEATzsawHQSmVopT6l1LqgFLqhFLqQ6VUkwD7nOfY7lellFZKjY9SceMCpyHdseOPbNo00PTedqx68TJnXxBii3jwKidW9iBMA0YCVwMHgWeBj5VS3bXWpT72SQe2AHMdL8GNSE6XjGUvXmZ5CELsEA9e5cWSAkEplQHcAEzQWi92fHY9kA9cCCzytp/WegGwwLH9nKgUNo6IpCGNZa4GmeUhCLFD8rRUXiwpEIDuQBLwmfMDrfUvSqmtQF98CATBP5E0pLHuxcssD0GIDbH+7QuRw6oCIRsoBQ54fL7P8Z0QIpEypPHci69MgZuV6VqE+CCef/uCf6IqEJRSfwEeCbDZgGiUBUApNQmYBNCsWbNondY0rGYM4rEXX5nGTyvTtQjxRTz+9oXARNuDMA14LcA2u4DeQCJQF9jv9l0DYJVZhdFazwRmAvTo0UObddxoIMbAHCrT+GlluhZBEGJPVAWC1voAFYcNKqCUWg8UA4OANxyfNQHaA2siWcZ4QYyBOfgbP7WahyYQMhYsCIKZWDIGQWtdqJSaDfxdKfUbZdMcNwNLnNsppf4HPKe1fs7xPh3IcXydADRTSuUCh7TWu6J4CRFHjIE5+Bo/jUcPjYwFC4JgJpYUCA4mAyXAPCAVWAqM9ciB0Bb7MISTHsAyt/d/drxeAcZHsKxRR4yBeXgbP41XD01lGAuON8+NIFRWLCsQtNZngDsdL1/bKI/3ywHlfevKR2UwBlZFPDSxIR49N4JQWbGsQKhsSK8ovhAPjXHMfLbj1XMjCJUREQgGCacRrKq9ongXReKhCYzZz7Z4bgTBOohAMEC4jWCk10CwohGu7KLIqvUebcx+tsVzIwjWQQSCAcJtBCPVK7KyEa4MrmJfIsDK9R5tIvFsi+dGEKyBCAQDhNsIRqpXZGUjHO+uYn8iwMr1Hm2kxy8IlRcRCAYwoxGMRK8oVCMcDfd4vBsOfyIg3sWP2UiPXxAqJyIQDGLFRjAUIxxN97gV68wo/kRAvIsfQRAEI4hAiHOCNcLiHjdGIBEQz+LHasQq4DPS55VAViHeEYFQxRD3uHFEBESeWAV8Rvq8EsgqVAYSYl0AwU5hYR75+U9SWJgX0fM4e8YtW06JSqMVresS4hNvHq1QCPY5M+u8sTq+IEQD8SBYgGj3NqLVM5ZeVPwTaTe5GR6tUJ6zSHvSxFMnVAZEIFiAyhAX4M2QVIbrqspEQ+CZEfAZynMW6UBTCWQVKgMiECxAJHob0QyQ8mVIpBcV30RL4IXr0Qr1OYu0J01iWIR4RwSCBTC7txFt174vQyK9qPgmXgSePGeCEBlEIFgEM3sb0XbtB8oZ4O/cMhXMusST4ZXeuiCYjwgEB6WlJ8jPf9LyDSEENqpGen7BGOZA24ZqSCSI0fqI4RWEqosIBAenTv3Ajh1/tLyhMmJUAxnsYAyz0W1DMSRWC2KUxDmCIAhliEBwoLXGKobKH0aNqj+DHYxhjqQRt9IYtyTOEQTBKFVF7ItAcKCUAhJibqgCYYZRDeYYkTTivjwdsfjxRdqbYTVviWBNqorhiWcCif3KdA9FIDhITW1Ly5ZjLX9TzVpZ0ugxojFf3PPHFYuetiTOEWKNeJniA39iv7LdQxEIDhIT02je/OFYF8MQ3oxqsAY8mJiBaAaqhdPTDke5S+IcIdaIlyk+8Cf2K9s9FIEQ54SqWK3qBgu1p22GcpfEOUIsES9TfOBP7Fe2eygCIY4pLMxj587HsNnOADbDitXKbrBQe9qVTbkLVQ8zvExWFf6VDV9iv7J5CkUgxCllRt4uDkChVAJJSVkB97W6MQ2lp13ZlLtQNQnHy2Rl4V+VqEyeQlnu2USiubRxmZG3Yb+NCq1L2b59csDzO40pJFrSmIZSj07lHq1lrCs7skx3/CFLTAtmIx4Ek4i2enfvMSuVgNalGB1msLIbLJx6rEzKPZZITzQ+ES+aYDYiEMLAfbwv2m57dyOflJTF9u2Tg2oYrGpMrTb8URXHdK12DwRjWFn4C/GJCIQQ8exl5eRMi7p6dzfyaWmdK0XDYKVeUFXtSVvpHgjBYVXhL8QnIhBCxLOXVVx8MKbqvbI0DFbqBUWzJ20lT4WV7oEgxBIr/S5jgQiEEPHWywrWSFf1h88XVhE70epJW9FTYZV7IAixItzfZWVo30UghEi4vaxIGoVYP5ixPr9ZRKMnHWouC0EQIku4WV2tJvpDQQRCGPjrZQUykpFyX8f6wYz1+Y0QjICJZE+6sDCPjRsHoHURoPG2WFikxFZlEXGCECnC8SBWlkBfEQgGCaZBNWIkzXZfO8t3+vSuiAkP54yJ4uKDURc+ZmElAVNQMBetz7je16zZg5ycaRFf+MVKdSAIViUcD2JlCfQVgRCAwsI8CgrmUlDwElqXGmpQjRhJM93X7g2+UokoVQ2tMe3BrJi1MYGEhJSoCB/3MphRV1YWMOnp3cqVpaBgLjbbaUCbunCVlesg2ognpXIT7v0N1YNYWQJ9RSD4ocww2htpwFCDatRImuW+dm/wtYaGDW+ievVmpj2Y5bM2gr+x8kj8MMzs8Xq7N7EyEtnZYx3CsxilksjOHuv6zi5MX8b53CmVaNrCVZWldxMu4kmp3MT6/laGQF8RCH4oM4za8Yky1KBGWz0mJWU5silqEhKSyc4ea+o5ywyKuwch8sLHiZk9Xs97A8SsEcnI6ENu7nKvz8mRI8vRusTxTpGdPdFwuQLVVzz2biIh4sSTUrmR+xs+lhcISqnbgAeAhsB3wGSt9So/258PPAt0BPYAf9davxjKucunM65GdvYEw8Y3WuqxsDCP7dsno3UpSiWUG8M2C8+sjf5iECKB2T1e93uTn/9kRGM2AtWTr+fE85qzs8caPqaR+oqn3k2keoLx5kmR4ZDgiLf7a0UsLRCUUmOA6cBtwBeOv58qpTporXd52b4lsAB4CbgO6Ae8oJTar7WeH+z546Gn5e7+11pRXHww4D6hNDSxNCiRvA+RaET27JnJtm13OGJWvMdqBCIjow85OdPYv38+9eqNAox7OkKtL6saIDN7gp7XaPXft5NYu8vjkXi6v1bF0gIBuBeYo7We5Xh/p1JqMHAr8LCX7W8B9mit73S836qUOge4HwhaIID1e1rBGrh4bWgidR/MbkQKC/PYtu121/CAzXYmJIPm9AzZbEUUFq6idu2LgwpYDLa+Yv1c+BMnZok4X9cYD8+/uMtDI17ur1WxrEBQSiUD3YGnPb76DOjrY7c+ju/dWQSMU0olaa2LzS1l7AnWwMVLQxPN3qyZjYg9dsDmeh9McKHnccru0xkOHvyIsoDFaqa7S2P5XAQSJ2aJuHh59r0h7nIhFlhWIAB1gURgn8fn+4ALfeyTDSzxsn01x/H2un+hlJoETAJo1qxZmMWNHcEYuEg3NGYYdrN6s6GUxXOfYI9hr98UbLYzKJVA69bPhVR278t5gz1gcYLphi2WBsjotOBwrzmejay4y4VYYGWBEHG01jOBmQA9evTQATaPGt6Mklk96kg2NGYZdrvBsM+YCMdFH2xZvK3Q6b6MtpFjmFW/noGh7uVwnw5pFrE0QNEy3PFuZCPpLjerfQn1OFaNf6nqWFkgHABKgQYenzcACnzsU+Bj+xLH8SyPN8MGgQPUrJA+2CwXblJSFu45F+zvjRPq+gae5d+/f76h6/Gse7Pq1/04Zi/n7e15CVTuSDXi0TTcMiZdETM9dqEcJ9bxL4JvLCsQtNZFSqn1wCDgv25fDcJ3wGEecJnHZ4OAdfESf+DNyAJ+DZVVfmBm9QTtMzEScOZcMDIzw4n3rI/GyuJZ/nr1RlFYuMrv9USj7s02zGZ4V5zC1axymWG4pRcaGmYJ+1CPE8+xIZUdywoEB88Cryql1gKrsc9SaAS8CKCUmgugtXb6XF8E7lBKTQNmAOcC44GrI1lIMxsmX0bWn+G1yg/MrJ5g2Th+OIuk2MVB7doX0qLFY4bK4q38gXruka77SAgQI2X2fKY99ykomMu+fa/EXJS6l9cKIjkeMUvYh3qceI4NqexYWiBorecppbKAP2BPlLQFGKq1znds0sxj+x1KqaHAP7BPhdwD3BVKDgSjmN0w+TKy3j5zX0DJKj8wM3qCvurAiBDzbGyMigNf5Q90PZFu3CIhQAKV2dsz7bkP+PdqRRuriOR4JBJxM8HmWInn2JDKjNLaMrF5MaVHjx563bp1Qe+Xn/8kO3b8EXu4RCItW06heXNvKRrMxVtAXbQzHEaLYBfMirarOZLni+SKjr5maxw5stzrM+2+DcQuRbWv67FSeQQhXlBKrdda9/D2naU9CNHk1CnYtQtq1YKaNSEx0dh+mZn9Hasn2oKanx6uUfHsMRUXH4yKMDETI3UQyoJZwXoxYrXim9FjR6J35V5mT+PauPGdKKXQunz8hud1WqnXJ71QQTAfEQgOvv8emjcve5+eDhkZdsGQkeH7lZxcl4MHh5GWdoD09BPUqZNMs2Z2kZGQ4P1cZvR2gnFtGzXE/rbx9b1nr9JoA220DsqEUHALZhklHnqekY6890zKtHv3PxyCN9Hv2h5WmxFgtfJUdSRoNP4RgeCgVSt45BEoLCz/OnrU/jp8GHbuhCNH7J+fPu3cszXeJlUoZRcXtWtDZmb5V0JCIjbbg6SnH6JmzUK2bdtN27Zl29auDamp9mP4wmiPyYgBDLSNr+/dP1eqGqANDQGA8THj8gmDglswywgydu1Zx8qRlMn42h6C4Ek8CG8hMCIQHNSuDRMnGt++qMguFHbv3sDXX9/JsWM1OHkyi8zMv1BcfBaHD9u/P3KkTFT89JPzfTeOHevl9/jJyfYyub/q1Cn7a/+/D3Xq9Cn3ee3akJRUdhwjBjDQNr6+d/+8LL2wsbUCjHpAIu069leOqtIDcq9jz6RMElHun6ryjARLKMJb6tJ6iEAIkeRkqFcP6tXrSqtWT7k92GcZ2LsaBw/m8csvX6H1+ZSUdOXIEbuXwtvryBEoKLAPgziFhz9q1rSLhawsqFXrVhISckhPP0BGxlHatRtD48b275yvpKQLgb8AZ1CqGqdP76KwMA/A7ywJz969uwchkGEJxvD7cx2bET/QpctSCgrmVjhuqElfzG7kotFwutex2UmZKiuxTAludarKInKVHREIJhDK2GdWVh+yskL7AZSW4hIUBw+W/3voUPnXwYOZHDgwnIMHNYWFqdhs3sYteqLUcWrVOkHNmnupVesgGRkHqVXrEBkZKWRm/kJOzkJq1dpP06Zt+fXXTpw5A3XqlDfyEFzinHDHjM1sVJxz+vfte8V1TaH0gAIN1YSyNkS0G85oB3mGS6zOb8bwVGU1jMF6/mSoz5qIQDBIrBtBdxITy3r/OTlG9kgFwGazx1McPFj2sosIOHhQsXPnD/zyy3aOHq3DgQMN+emnzhw9msXp02k+j1y7dh/q1u1DvXpQty4e/zu9LGWvtDT/sRXBEMkMcElJWV4j+UMtT6iGwOoN5549Mx3LW9tISEiJyTLRsTKwZuTAsPr9DYdghKYkS7ImIhAM4BmMZ3agnOe5IiVEEhLKAiXP8jISUlhYxKZNExzXmQgotC6huLgWjRsvpqioO/v32wXFgQP2v/v34/osPx/WrbN/V1TkvQwpKWVioX798uLB+b5+/bKXP0ERqQxwznF4I5H8RssTqiEwe7aKmRQW5rFt2x1oXQJAqAtreTtuJHqeZtePGfExYhjtyDRVayICwQDlg/FK2bt3hssVbeaDHGt3o2ew2rFjGwAcYqi74eNoDceO2YWCU0C4/+/++uEH+98TJ7wfKzXVu3CoXx8aNOhDWto6qlfPo1WrLqSlec31EdR1OxMFOdM1BxPJ76+RC9UQmDlbxWyOHFnutgw1KJUQtoEL9jqM1muk6ifcYbLKYhjNEF8yTdV6iEAwQFkj5EzWYyxSP1is4G50ns+9MQ12eWHnFM9atezTR41w8mSZaNi3r+z/334r+1tQAJs32/8v81B0cLzs583KggYN7AKiTp0D1Kq1g6ZN69O8eXOys+3fZWfbv3ef7eHZOIXaq/PVyAVrCLytEOmPWDw7ZWtmnEGpRFq3fi7scwZ7HUbr1Qq/LV/Eu2GMdcdGiByGBYJS6h6t9T+UUh2B/2n3rkMlxz3S3T3dr9nuQKu4GyPRmAbqYdSoYU9U5Z6syhda22dy/PabXUz89hvs3Pkzv/zyK8eOtebw4Wz27DnKjz8WcuhQO06dqun1OE4xkZ1NOfGQnd2HmjXXkZq6hpycLthsJeTnPxl2D8+oIfCXd8JXHcbi2YlE7zeU6zBSr1b5bVVGrCy+hPAIxoOw0fH3CaCdUuoU8B3wLbBFa/2xyWWzFM5GKDt7bMTcgVZxN/pqTI26Eb3l+Tezh6FUWSxFmzZlBrV797Lju68ncPp0Gjbb5SQnP8CJE53Zt8/ujSgosAuMffvgyy/t70+edJ6lzDORmFhC7drNqFPnN1q0OEzTprVp2NAuJho2LHtlZ0P16iFflgtvDS74X/sgVs+OGTNRPD0lkUotbYXfVmVExFflxbBA0Fovc/wdCaCUSgc6Ap2BC4G4FwhGDGCk3YFWcDd6a0yNTuHzTLQT6pTBYPB2/LJG6wzVq58AXich4R169vQvTo4do5yA+P77z/jxx/UcOlSfQ4casXt3Q9cwh81Wcf/atcsEQ6NG5f93vm/UyB5b4QtvDa6ROrTCsxMMvp6pSF1HvNVPvCDiq/ISUCAopZoA92JfbnkH8A2wQWv9E/CV4xX3lJaekHE0N9wb08LCPHbufAyb7Qxg8zuFT6kEV6reisa6qFwiJrPq15tBdTZaO3c+xuHDS7yW2xs1a9pfzumjhYU12bRpisdzkU1pqT02Yu/e8q+CAvvfPXtg5Ur7/95mdGRmlokG91fjxtCoUR/q1FlFSsoS6tc/z1XecLw6ViQeXNPxXL/RRMRX5cSIB2E+UBdYAfQCbgKylFLHgI1a6/MjWL6oUVp6zPKNVSwoM/52cQAV8wKUn+WhHSJBVTDWzhiOvXtnmToLxFcPJiOjDy1aPEZh4aqQ3Z++jp2YWBa70LWr7/21tueacIoG599ff7X//+uvsHy5/bOSEvc9uwPdqV/fKRz6ULfuDmrX/pFWrRpx4sRZ1Kq1icOHR5OWto/ExPgTtVZwTfsTABJ8F5+IqDMPIwKhE9Bba/2t8wOHV6ErcHakChZtEhNrkpBwyJTGqjI9oO5T/iCB2rUvpEWLx/xO4cvJmUZx8cEKxrpsWpz5IizU2QOhrmJpFOfMiqws6NTJ93Y2m30qqKd4+PXXss/Wrm3A/v0N3PbqAvxKcvIp6tb9lSZNksnJsXshmjQpezVubBcyRpcwjxaxdk0HEgDx4OEQyiOizlyMCIR1QLr7B1rr3cBu4KNIFCoWJCam+WysgjESle0B9TT+nuIAjDf0seox+hIPgWYLeIuniNS9TEgoy++Qm+t7uzNnysTDtm0/sm7df9i/P5sDB5pw6tRgvvwSdu+uOKyRmGiPf2jSBBo0OEhW1k+0bFmfNm1auIREo0ZQLcoTn2Ppmg4kAKzg4RCCQ0SduRhpDu4D/qaUGq21PhLh8sQUb41VYWEeGzcOQOsilEomN3eZ3wfOag+oWYsZGQ3eLCzM8zklMNo9xkDXHmi2gLd4ilg3Nikp0KKF/XXuuW247LLLHNfYlIyMWoB9WOPAAbtQ+PVX+1/n/zt2HGHDhgP89lvHCim0ExLsnoamTcu/mjSx/23WzP59QoK51xQrj1sgARBrD4cQPN7uaWXy6EYbIwLhGJAG/KCUehfIAzYA3+myNX4rLQUFc9H6DABan6GgYK7fh8xKvQ6zvBnhzt8P5VjhYsQ7cPr0LpRKRGu8zhbwFk9hNbzVp1Jl6as94yPy8//Njh1/ROtSjh/PIiXlSUpLb2L3bvjlF/tr92749ltYsMB92qedatXsQxZOwdCsWdn/zr+ZmcbX24ilx82IAJDgu/jC856C/+nBgn+MCIR5QIrjbzNgCtAUOK2U2qK17hXB8sUdvqYIxutqc1Y+X7BlASoEXCqVRMOGN5VbWyNQPIWVCfSsuQvYjIyTdOnSiYwM78fS2r5CqFM4uL927YK8PPjvf6G4uPx+6ell4sHbq0mTsiyW4Twzkt638mH2Pc3Pf9K0NqkqeiKMCITWQC+t9XfOD5RSdbAHKeZGqFwxxf1ByM4e68ieWIxSSYbSDntOEYzX1eZ8/SB8fW4l74l7HgSlEkhKyvIIuAT7WgvFnD79s2u/eHYrG/XgGL0+paBOHfurSxfv29hs9qmdW7d+yw8/bOfw4a7s39+C/Hy7kHAu3uVOQoKmUSNFs2bQqNFNJCcnUb/+Dho23EP16kPIyrKLjHCvVYgvInFPzWqTqurzZkQgfAnUcf9Aa30IWOp4VSq8PQi5uctDNhjle0hn2LnzsQqBfpFSpuEYO3vsRX+XMMrNXe7yhvj6oYQ7Y8BMMjL6kJMzzbEUcSnbt08mJ2eaSzTYRYICbBw+vITCwlURT9QTKZz1evr0LkO9JTOvLyEB0tLySEoaSIcO3r0uJ0/C1q0bWL78jxQUNOS331pRXHwDe/fWZ/36uvzyy72UlJQPbMjKKku93aJFxf8LC2PvraqKPcpIEgkPpFmC30reUV9E4nk0IhBmAH9WSl2ptT4QcOs4x9uD0Lz5wyFXuHtP1psxCkWZBvMghGoM7LEX9lB4rYtcsReBfijBzhgwSigPf3HxQbTWOIMMi4sPkpMzjf3755Oensvx4xuDSqIUbnkidQz3pcg9YyrMOo8/PEWwfQloW7n7XLfuQrp3XwiUAom0bAnNmz8MQGlpAgUF9uXCPV//+x8sWlQxFqJWrQeoV28YDRrspGHDX+jWbRjt25cFcNaubfpllqOq9ijNxPO5DKa3H4020B0reUe9Eann0YhAeMvx90el1MfYPQobsCdJOhV2CSyG2Q+CU8H6yujnz+B6+xH4exAiaQiOH/+GwsK8kOvH13UaKXOoD79nWd2nLRYWriInZ1pISZTC+TGaPYWyfFAlNGx4E9WrN4vYOhjeKJ8pU3md+eHvuUlMtAc+Nm4MfftWPL5zVoZTNOzcCfn51fjxxybk52ezefMw5s8vn+QhI6NMLLRoAS1blv1t2dKeLTMczOpRVgUvRDDtmBEPZDSnHzux+tBjpDwcRgRCU+wZWXIdf+8GzgK0Umqb1rpD2KWwEJF4EDIyfGf087cwkrcfkD9DG8gQBJMUyB578bLDi6A5dmwdmzYNpEuXpSHVj6/pR0aMV6gPv+e99DxOcfHBkK4l1PIESkkdyrPmWa/uwZbhlDUY3OvZs/F2Ps/h/K7cZ2X06OH+jX3k05mtMj8fduwo+7tjB2zfDkuWwIkT5Y+ZlQUdO8KKFaFdsxkdiVh6IaIlTIJtx4x4IGM1/djKQ4+R8nAEFAha61+BX4EFzs+UUjWwi4VKk0nRHbMeBM8foa90wN4+9/UD8vUgBDIERhZbckb4K5VI69bPkZu7zKvnI5QhF2/XaTTCOJyH3/NeeluzIdihDvv0yGouV35SUpah5aAjMYUykOGNlmvUvR7T0jp7LU+kGlj3bJXdulX83umB2LmzTDjs2AGlYSxYb0ZHIlbj2tEUJsG2Y0aOU/bbwRWAXNWJlIcjpLxpWuuT2PMh5JlSikqIv5XqPPH2ua8fkK8HIdAPLlBjZP/eHiehtY1t224nN3dl2GsZ+LtOo42EWQ+/8zgFBXND2r/8uhSKunVHUKfOEMPuTs/rNWsKpT/DGwvXqNV6Wu4eiJ49zTtuuNcZq3HtaAqTYNsxo8dp3PhOdu9+1hWAnJbW2VLPXCzw9zyG6jGKcmLVqoOR2Qv+8PcD8vYghNuTzMzs7whws08B1Nrm8hZ4O24oD5znPsE0Eu6eFff3obBv3yvYbEVBLxjlLqIADh78hKSk7AqNrXNbb/ctFuOY7s+L0ftWFcbG/RGN64/k8+Cv/JEQJr7OF2w75gtvw4XuAchWnFUA1vgdheMxEoHggVk3NNDsBSME20Nxbu8t3XGgxigjow+tWz/nmBZoIyEhpZzaNzJcEcrKeN6O7e0YZrlFw+k92UVUgpuIsvuoPQMh/ZUzmHtqduNitA5DrWsrNIZmEE0XfCS8LYHKb7YwMXI+M64x0HCh1bDKTJdw2jwRCG54u6HgvTfoa3/PmANfsxeieQ3uIsHfuRs1muRz/Ngdbw8c+E9pauQh9Vd2s9yi4cYztG79vGMaXykJCSlkZ48lO3usj0DI0wFTc/siEo2L0ToMpa4jPV03msQqNsAsjM4YMuuaYlFfsfLGBYNVnqNw2jwRCG543tCCgrkud3SgRs9XA2nmGH7w1xC8gTLScHh74AL9GIw8pP6OYZZbNNyGxZeIcj+OfaimFNAUFLxcYWaBESLRuBitw1Dq2mh5YzlVzSixig0wi3BmDJl1vmhgtVgXT6zyHIXT5olAcMPzhgKGG2l/03aiqXTLYgnsBmrv3tkAIRkpX/i6Jn8/BiP14O8HZWY9htuw+Ns/I6MP2dkT2bt3BqDLJZkKhkg0LoHq0L2HGWzciZHyWmGqmhHioXfqD2/lN3NNAiPnE6xVL6G2ecoe6CH06NFDr1u3rlwjCLhN/UugdevnadRoktf9rTLeBPDDD7e6DJQdRUJC9Yi6fQsL81yzA8IRI57nt6ob2h9lS4SfAXAsEx58gxzsWhjhltnYNNjQ82zk5z/Jjh1/xJ5NMcEhEnTMfy9VASu1T4K1UEqt11r38PadeBA88FRa9nz+dwScThNLtejZMGdnj3UMjZzGLhK033H/ioIocBCbpxF338/Igla+cK//eG3U7PdggpsXoTSkHps31R+pOjE2DdZ/DzRQLyVS0zythFUFrZV6s0L8IAIhAPZ8/jaMuEKjNSZmxKg75/vbsyGWeHX7ehqbBg3GhRRIGMh4hNpoRjPIZ8+emezfP5969Ub59BKB8WspE2llsxuMJFMKREHBXJfwM7NOjEyDDXfIo7IbKasJWm9BiZWtzoXIIgLBD96y5sU6YMmoUXe+3CPsPRsHTwMMgacOeTPa/oxHMI1mOIu3hMOePTP58cebATh8+DMAryLBiBveGYDnXBiquPigaQF59mGcl3EOHSmVaFqdBDLeZhn3ymykrBK1DtYTK0J8YnmBoJS6DXgAaAh8B0zWWq/ysW1D4BmgG9AaeFVrPT6U85aNIxcB1WjY8CavY+vRdikGa9T9NcieBthzyp7RQEJ345GUlOWa9piREXj1RyehLN7ivq/RgDpvn+/fP7/c8fbvn+9VIPi7lrLyO4d1yuI+zDIcR44sR+sSxztFdvZEQ0NARglkvCuzcTcDq0StQ/iJ2gQBLC4QlFJjgOnAbcAXjr+fKqU6aK13edklBTgA/A3w7Sc2gH254zOOd8UAXsVBtFV6KEbdF+5DEe6fBTISvtaUgIrDHUYbTX+zQPyVx1fuCl+JnLx9Xq/eKJfnAKBevVFez+XvWuzlP0NZYKjGZjsT0MPij0AeFW+xHrHqOcZ67D3W5wdrDaGUPStnCDVRm2ANYvlsW1ogAPcCc7TWsxzv71RKDQZuBR723FhrvRO4C0ApNTrShQumZxjOTTa66FOoBJt62JfR9lYfvlI1exKqEfV2TvA+PdXX/XJ6CwLFIGRk9CEnZ5prO/drsU8vLcuyCGVDAKEYjlA9KrFwc0dDlISSpTMWWMXL4nxWAiVqs4KwEnwT62fbsgJBKZUMdAee9vjqM8DLqvHmYl/u+CW0LkappAq9tWDiE8K5ycEs+hQKZhoUX0beSHlD7X3ZDXM1tLahVDUyM/tz4sS35abQOcvhT4Q0ajTJb3Ai2O+FM5agsHBVuRktGRnuWRZLXCtiAq7gxObNK2han4TqUQnXzR2KwYi0KAn0+7HS2L9ZmGG4MzL8J2qLtfERAmPmsx3KM2VZgQDUBRKBfR6f7wMuNOMESqlJOIYimjVrVu67jIw+5OYu9zmOXZbwJdFnfIKTYG+y+42M9FiimeOm4bpYQxc+ZW79Eye+Zfv2yWhdilIJ5ORMK2fEQy1fYWEeO3c+5nLZut9H9/uVm7si6Gmj3gj1vvi7xkANRKgGI9Jj74F+P1Ya+zcDMw23v+ehMgqryoZZz3aoz5SVBULE0VrPBGaCPVESeJ8a5In7D0trqF69mWm9Os8bmZMzLWJjic5rNXM+eiRdrN6SMdkD9+xZI7UuZf/++Y57Y0NrRXHxQb/lM6Kqyy/zbAMS/KawdXoKwsleF46Y8XYPjDQQoRqMSI+9B/r9WGns3wzMNty+fpOVTVhVRsx6tkN9pqwsEA5gT7nWwOPzBkBBJE5on7nQ3zWs4Cv7XbA/rGBusueNLC4+6HcsMZzMh+EMe0S7MS67N/aZGwUFL5Obu6zCvahXb5ThtS+M1kHZPbGLg5o1e5Ce3s3jO/PXj3Bv2MOtcyMNhLfyGj1vJIWhkd+PVcb+zSBahjtSwkriGszFjGc71GfKsgJBa12klFoPDAL+6/bVIGC+973CY9euv7sMkL8c+qH8sIzeZF/TCL2NJYZj5ENVlMEsGeyeEyDcxsLuKSh2vdfadxCkkRUpncc0Ugfu90SpRI4f38SxY+vZt+8VNw9P5NaPMMPl7B7VrpQiKSmrwjae5YXQh0jMJpxGMpopq80gmh4Rs4VVJOIarHqf4olQnynLCgQHzwKvKqXWAquBW4BGwIsASqm5AFprVwShUirX8W8twOZ4X6S1/t7fiUpLT3Dw4IflPisu9u2oiFSPxdeN9PZ5OC5sM2cN+HZnO13yyhG053stC8/9Pa/fHoyY5BJwSvkOggxHjHk7t3vdnz69i717Z+Hp4fH1wzPjOSlf5+VX6Aymh28kbbh7eSO5wE+08GWwrB6gF68eEbOHR6x+n+KJUJ4pSwsErfU8pVQW8AfsiZK2AEO11vmOTZp52W2Dx/sRQD7Qwt+5SkuPYTdmZSQlZQddZrOijwHXlD13Q2VWcJa70fNMbuQPI+cs75IHe3xACdu23eFzLQsn/mZt5OYuN2VBKHcaNBjnOh747jE7y1BYmFcuhXI0xm3L9/Y1BQUvBSyvN4JJGw7hDTkES6SO68tgxSpAr7L3hs0eHrHfJ2dq8dNxKVLjGUsLBACt9QvACz6+6+/lMxXKeRITa6JUsquHChWnNgbCLLVr9Di+vA2B5ox7fhfsAk3Gl212ehDsGFm0yF/DbWavytsCU0aMRrTd8M6plfZwHDvOegTjy5FD+LEz4P9aYxEP43kcb54nb9cciwC9qtAbNnt4pKTkCO6zlOzvhWhheYEQLRIT08LuoZrVKwnmOJ5G059L1b5400toXer6Lrghg4qR+r7K5Dx2SckRdu/+h+OcKQEbYn8Nt5m9L2/XbdRoRNMNX1bOMpwxBGlpnSMWLOu+j5FrjUU8jDv+PE9Gh+wiTbS8FrH2Upgp5I8f3+j3vRBZRCC4Ee6DbVavJJzjeGuEwNnzc64TQFBGMZSGzb0u69a91HCD5c8rYmbvy1cwaLBGI1I9UfcgT+fxIQH79E0b27dPpkuXpRELlvWGv2sNx/iZUYeheJ6iPc4fDa9FZfNSGE2DLkQGEQgmYlavJJzjeGuEyhpPp6tOBWUUzZyuF+r24fa+vOW38NWzDLasZvdEveXCKC4+6BYgWRZD0Lz5wxE1AEbSfIN58TCh1mEshgyCJZTrDNYbEKvYikjhLQ16rD0kVQmltQ68VRWgR48eet26dRE/jxkPt7eEQb7OATiGFl52pACuRnb2hKCHUGL9o4xEumqrkp//JDt2/BF73EEiLVtOoXnzh6N+HcGezwrPSGUyHKHc73h71o3i7lEzY+l0oQyl1HqtdQ9v34kHIYqY8eP1lTDI/TjuEffBpIT2R7Tdsd7OH2ovM956Vb56w4HqwGwDGWy9WeEZsfJ9DZZQh/YqU1ZJ8Extn+DInGpsJo4QHiIQTMBow2yGoTpyxHvCIG/HcT+fkZTQvrBKzyxUAxAP7md3vDXy7vfAW4BoJHqORpIrCZEj1Oe2MgslrbVDJKi4+C3HOyIQQsDThW+0YTbDUPlLGGTW+UK9vlhhZFqnmetNmF1Gb7g38matoxBKGYwkV4oUwZbXKkLWLCqjNyAUPNuxWP+WqxIiEBwUFxcH3oiKjXWDBuOCmpIYyg/es+EzOh0z1KCoUK8vFvgznlYZjw23HEaMfyAxGGoZgk2uZBahxD9Y4V6bTWXzBngjkLAToWQewYpoEQgONm/eTIMGDTj77LPLvdq3b0/16tVd2xUUzHXL7GXvxQc7Fz3Y4EBn2mJ7uuLnaNRokuFjBHs+T2MEwV2fL6KdKS/Qd9Ek3HIY8QQFakRDLYMZXq9g7r1z29OndwVVXqvcayE4gkkKF2/302oerVBEtAgEB02bNmXQoEFs3ryZF154gdOnTwOQmJhIu3bt6NKlC23aZJCaOpucHE2dOqBUItnZY11Z+Mx+EAoL89i58zGXINHaxo8/3gLgc02DYLMoeuJpEMy4vkj27jzLm5SURX7+k2Rm9rdM7IEZ00SN9KD8NaLhjGeH03sL5t57BtUqVQ2tMVReq9xrK2I1Q+VOZRV2VvRohVLXIhAc1K9fn9mzZwNQWlrKtm3b2Lx5M5s2bWLz5s2sWrWKN974xbV97drQvn19zj33PXJzc8nNHUnjxm0MnWvPnpnl5vV6o/yCR+5TUTU//ngbQIVxuGCzKAbjzgvn4Q7lwQw0ldNbeb1NgTJi3CLdgJrhIg23BxVOGcI5dzD33jOotmHDm6hevVlYCbaqOlY0VO5UVmFnReETSl2LQPCC02vQrl07rrzyStfnO3cu4oMPLmHbtmJ+/jmBPXvSmD59OkVFdld89erV6dSpE127diU3N5euXbty9tlnk5aW5jrGnj0z+fHHmwFcGcK8iQT3oYyKlDoCx2zlfvTBZlEMpScaCvbAympobUOpagEfTPtUzgFofQaAgoKXyM1dXk4IeSY9ysjwvrploERCwS5fHSsDbwahliHQtfsTc8E0St68V9ESMpUVKxoqdyqrsLOi8AmlrkUgBEGLFhczfvzychVcXFzMDz/8wMaNG9mwYQObNm1i/vz5zJo1C7DnzW/Tpg1du3ala9eu1Kr1Ng0bQkaG/Zj798+vIBDsDe5LlImDJJSyr4hoJ9HrXOBgsyhGF+3x144342Ofylm2/oDWxa5r9GfQQ/lRGo3+t3IvLJIEuvZAeTmCaZTCMRbhCDizPEhWdOXH0lB5zobyVTeVUdhFSvhEu6MiAiFIPCs4KSmJTp060alTJ6677joAtNbs3r2bDRs2uF5r1qzhrbfecu1Xvz7k5ECfPsns2vUR3bp1o1GjRiilHAbSuXqfomHDG8jOHuvqpdWs2bWcKz1QIh1nA+Evi2IkG7ey69HlVnT0ZXzsHodklwdBqaRyjYwvgx7Kj9JIAxqLXphVjE2gazeSlyOYRikUY2GFLJuxFpG+npdY9dDLx5NUw/nbr0oC22zh428IOVL3VwRCBFBK0bRpU5o2bcoll1zi+vzgwYNs3LiRFSv+zbp1q9m2DZ599hOeeeZjABo0aEC3bt3o2LE+GRmJtG6tyc4uc7W6Pwze5gJ7e1CMNBCRbtx8GWFfxicjow+5ucu8uq0DGXRfP8pwGlD3BEFGhkjCJdbGxr0cp0/vQqlEn8GCweTliBT+REygxtMs8RdKHgozPRf+npdY9NDLx5M4l3zXpghsq4jnaON/CDkybYUIhCiSlZXFwIEDGThwoOuz48ePs3nzZr755hu++eYb1q9fz2effUZpaaljn+r06PFnunfvTrt26aSk/Jl69YpISKhG69bPlWsIfT0ogRqISPSQjSzy48/Y+ypzKD2icBrQwsI8tm27C/u6CLh5diJHrMeN9+yZyd69szl+fIMrbsRXmu6MjD60bv0v9u6dTXJyI5o1ezDqjbav58iI0DLLBR9sHoqcnGmmrSkQ6+fFG+714elBCEdAWkU8xwL/Q8iRufciEGJMeno6ffv2pW/fvq7PTp065RIN69evZ/369UydOtUlGjIyoG3bYtq2vYXBgw9z/vnXUVy8LOQHxexxSl8/Ym/GJRT3Z7A9olBnUTjn47vHQ0BpxBvgWI4buwfROvGXpruwMM/N0H1Ls2YPRquoLnw9R0buu1ku+EDH8SzL/v3zTWvY4yEgDnzHIASDFcUQRMerEWgIORL3XgSCBUlNTeWcc87hnHPOcX126tQp1qx5nY8+upkffrDx44+wbp3m1Vd/B/yOBg2yOOssTdu2inbtEmnWLNfw+cwepwzmR2ym+9PXj9RIA+orvXTZfHz7OLt7PISRc4dCrMaNwR4064m/hscqDbb7c+S+8p97L/b06V0UFuZFLEjO33E8n8F69UZRWLjKlIY9ls+LPzzrw4xyWUUMxSodvbc6jeS9l+WeHURruedw2bNnJtu23Y7WNoqKkoHp/O9/p1m3bh1ffbWSbdt24bynLVu2pGfPnvTs2ZNevXrRrVs30tPTXccKN6mSL4JNjhONcdhA1+qZXnrv3lk4l1tu2PAm17a+Ajxj4faMRK/F04NQt+6lNG3qe9jAai5fb678Q4c+5cCBjwBNQkJKTGM6IhGDEMw5KwOxvqZA7YVzefZ4QZZ7rkQ0ajSJtLTO5X4gF11U9v3Ro0f55ptv+Prrr1m7di1fffUVb7/9NgAJCQl07NiRXr160blzFunp02nRoohq1aq5UjhD+I2+UVVrpnEJ1JP117vz3BfKu+0CzceP1SyHSBhm5zMQKJGXswy+AmZjhee9OHZsAwcPfowzhsRmO2P4/phtiLz1/oIJqA0Wq4k3s4hF0KU7gdoLKwzxmIUIhDjE3w+kVq1a9O/fn/79+7s+++2331yCYe3atbz//vvMnn0QgOrVoU2bYtq1u4Vhw/YzYMBYSktDj2cwUkYnwUZ+O/fx1nCG43r0lqAnmPTSsXB7+opoNsOwNGo0ya8wgOgYn1AMpee9ANyi6O3p0Y3cn3A8UuEQTdEshEa47UU4RNt7IgKhClC/fn2GDRvGsGHDAHuehk2b3mH+/KvZurWUrVvhvfc0b7/9B+APZGfXpXVrTfv2io4dE2nT5hz/JwiRYCK/lUoEFFqX+JyJEE4q4XDSS8diDNiz7pKSsqLaW4y08QnVUHoLjtu37xXsi50luGb+hDP9MZLiyMx6tcp4fWUj3PYiVGLhERKBUAVRSpGbewX16x92xTOUliaTkPAc3313iq+++oo1a5azatVuoIh7772Izp0707t3b/r06UOfPn3IyclBKRVWOYKJ/DYylzoc12O4bksz3J5Gegfu27jXXaQMdjiBn+EQzvV43gvPZyzc6Y+RFEdm1qtVgxcrA7EY5oiFR0gEQhXGWzzDgAFwxx13AHDgwAHWrl3Ll19+SV5eHq+//jovvvgiYM/p4BQMffv2pWfPnuUCII1iNPLb04MQb70hI+sZBDJa3rZxD4Yy22AHyq0RSeNjtqF0L1+40x8jKY7MrtdYj9cL5hELj5AIhCqOvwakbt26DB06lKFDhwL2VS63bt3qEgx5eXl88skngD0AskuXLq6cDn379qV58+YheRl89ZLBnDH2aGPE+BsxWuW3OU1BwdyIGuxQAj/NGiONpAAx2tD6+m1EsmyxjtAXrEssPEIyzdFBvExztBqHDh3iq6++Ii8vj9WrV7N27VqOHz8OQMOGDenbty/nnnsuffv2pWvXriQnJ/s9nmfcQXb2xKBX9bNaI5uf/yQ7dvwRf9OgyhY9KkappHKrV5bfZoDbGhXJXrczihlejXC2j0SZzdwm2nirP4hPUSzEDzLNUYgYderUYciQIQwZMgSAkpIStmzZ4hIMq1evZv58e/Kd1NRUevbsSb9+/VyiITMz03WswsI8du58DJvtDGBD61L27p3Bvn2vGDY2kTBS4RoT465B5fG3PBkZfcjOnsDevTPwXPgqWIzUU7A9FisELhq9/1Z0vXvWX0HBXEeAZeWapmg1rCgWrYIIBMFUqlWrRm5uLrm5udx6660A7NmzhzVr1rgEgzNttFKKTp060a9fP7p1a0BGxpPUq1cM2NyOGNwCL94a2XB+/GYIDiOG9siR5Y7lvO3Levu63uzsseWMRqjjkEaNeTCG1AqBi/E8tc/bFM14vRZfWM0YV9ZcEWYhAkGIOI0aNWL06NGMHj0agBMnTrB27Vq++OILVq9ezWuvvca//30MsC+D3bkz9OzZgjZtfqV581KqVTNubMoHNlajoOClsJaZNcvgBDK0wYyLmzEOGQljboXAxXie2ud7imb8XYs3rGiM41lQRgOJQXAgMQixo6SkhDVrXmP+/Els2lTCt99qDh2yf5eZmUqfPt0ZOPBSzjvvPLp27Uq1av51rftCS+GmQI1moxbt3pXVenNGiNf4glCpTNdiJBYn0nhLd2010RJt/MUgiEBwIAIh9jh/vBkZ53PgQH2++OILVq5cyapVq9i+fTsAaWlpnHvuuZx33nmcf/759OzZk5SUFJ/HCzbIzltjXJkaaSFyWP05iXX5/P0eo7Uuhbfzx7peYo0IBAOIQLA2e/fuZdWqVaxYsYJVq1bx7bffAlC9enV69+7N+eefz/nnn0/v3r1JTU117Wf0x+9tkR+rrC9gNcxcKyDc+BCrNOzR6om6r1QZzPNplZ6yt3sWrbJZwYNhRWQWgxD3NGzYkCuvvJIrr7wSgIMHD/LFF1+wYsUKVq5cyZQpU/jzn/9MUlIS55xzjms9ij59+tC8ebDBjWccGSZ1lXU7+sKsxjzc41jF4DmJxlh22TXbZ/lAguHVKa0y1u4tFidaZUtKykIphdYJlovpsJLYdSch1gUQhFDIyspi5MiRPPvss6xbt45Dhw7x8ccfM3nyZM6cOcOTTz7JhRdeSO3atTnvvPP405/+xOeff86pU6e8Hs8Z3AaJKJXoSO1cfiEkXxQW5pGf/ySFhXmmX6fV8LVIVLSPY1Y5zML9+YmU8Sm7ZucsH5vha49G+UIlGmUrLMxj+/bJaG1DqURycqZZxhA7hd+OHX9k06aBlmpHxIMgVAoyMjLKLUh19OhRVq9ezfLly1m2bBl//etfmTJlCsnJyfTu3ZsLLriAAQMGcM4555CSklIugjwpKYvt2ycbih43K87B6PexxqxZAr6OY/T6ozlbwUiZopHlruyanR4EZfjazS6ft2C/UI8djbpzF1daK4qLD5p+jlCxinfHG5aPQVBK3QY8ADQEvgMma61X+dj2cuAWoCtQHfge+KvW+sNA55EYhMpNYWEhX3zxBcuWLWPZsmVs2LABrTWpqamce+65XHDBBQwcOJBu3bpRrVo1ww1eMOOaRpYQtpLb3BeRikEwW2y5bxPsmL37/la6J3v2zHQMf5WiVDVat34u4NLc4WAkZiAnZ1o5QR3rOvKG2ffRTCEf62csbmMQlFJjgOnAbcAXjr+fKqU6aK13ednlfOBz4A/AIeBa4D2lVH9fokKoGnh6GA4fPsyKFStYtmwZn3/+Ob///e8BqFWrFv3793cIhhE0a9bRdQxvjUIwPdlAPQUr9yTcCScLoWcdhnP9gcoRzph9qGWKNMXFB7F36jRa28r1hM32PvkyXJ51sn//fEvVkTfM9FKYbdCj4UEJFUsLBOBeYI7Wepbj/Z1KqcHArUCFbprW+m6Pj/6slBoGXAqIQBBc1K5dm0svvZRLL70UgN9++80lFj7//HM+/NDudGrQoAEXXHABffu2pEGDZ6hXr6RcoxDMjzuQmIjnJD9GCNSw+rv+UIyfvzF7q2SHDBZ/QzNm90J9iSPPMtSrN4rCwlWWqSNfmJVeOxKi0Yqpv8HCAkEplQx0B572+OozoG8Qh6oJHDarXELlpH79+owZM4YxY8YAsGvXLpYuXcqSJUtYunQpb765D4AmTaBbt9MMGfIcY8a0o3bt2oZ/3IHERLR7EsFMATWjTEZWh/R2/aEav4pj9sFHrzvLVFAw19D2kY4h8VVHkTBavsSItzJ4LhtfmfGsl6SkLPLzn4zbuCJ/WDYGQSnVCPgVOF9rvdLt8z8B12qt2xo4xu3A34BOWut8f9tKDILgC601X375Om++OZF164rZuBFOnbIvcd29e3cGDRrEoEGD6NOnj8+kTdEm0Ni7fSz7Dkcaat9udzN7pqEeK5z56+HGIART7liOJUfq3L5iEKxq8KJVNvfnyl/8RTTvS6jEbQxCOCilRgFPAWN8iQOl1CRgEkCzZs2iWDohnlBK0afPdXTocBZHjiwnLa0f//ufYsmSJSxevJipU6fyxBNPUKNGDfr3789FF13ERRddRLt27VBKRaRM/hqIQGPvhYV5jkC3EgBstjM+e5xm9kxD9ZCE4+Y3w3VrtA5iGa8QKe+TZ/3FOqDOH9Esm7Ne8vOfjHpcUTSv08oC4QD2LkMDj88bAAX+dlRKjQbmAmO11h/52k5rPROYCXYPQlilFSo97o1lv37Qr18/HnvsMQoLC1m+fDmLFy9m8eLFLFiwAIAmTZq4xMKFF15IVlZWSOcNNto/0Nj7kSPLHXke7CiV6NPomj0GH4rBjlUQl3sv0UgdxDpeIRrj2FYL2nQnFmWLVlyRexsQzeu0rEDQWhcppdYDg4D/un01CJjvaz+l1JXAK8A4rfU7kS2lINhnSIwcOZKRI0cCsHPnThYvXsxnn33Gu+++y0svvYRSih49enDxxRczePBgzjnnHJ+LTrk3BkAFMRCogQg09p6Z2R+lqqF1EZBI69bP+WxgPI0z4He8NVJEO4grlNTbkRIyVnLpx1oE+SMWZYtGXJG3ZzFa12nZGARwTXN8Ffv0xtXYcxzcAHTUWucrpeYCaK3HOra/yrH9/cA8t0MVaa0P+TuXxCAIkaC0tJSvv/6azz77jIULF/LVV19hs9nIyMhg4MCBDB48mMGDB9O0aVOgYmPQoMG4CitSZmb2D+hi9Df2XliYx8aNA9C6CKWSyc1dZqjhch+6UCox4nPwY0ms8/YbHeOOBWbnADB7aqaVjxcK3p5FpyehSscgaK3nKaWysOc1aAhsAYa6xRR4Bg7cgv2apjleTlYA/SNZVkHwRmJiIr1796Z379786U9/4vDhwyxdupSFCxeyaNEi3n33XQA6duzIkCFD6Nr1EHXrniE52ebwElCht2CkV+Kvx20fYijBPpe+xLCL0u65sHsltLaxbdvtpKV1jrnBigSx7Cm7i0T72gE2QpmiGSncn61wDGgkxtLN9DSVvw/VyM6eQHb22KjXv7dnMVoeNUsLBACt9QvACz6+6+/vvSBYjdq1azN69GhGjx6N1prvv/+ehQsXsnDhQv75z39SVFREaip07Qq9eycwfvwgunQZW6ERDqeBCNX42YcmEl3xC1rbLGGwIkGs4h6g/Fi61gmOOjeeVjmSBBr+CqaerBzPAJ73oZS9e2ewb98rUc/CGMyzaLbHw/ICQRAqK0opOnbsSMeOHbnvvvs4fvw4y5Yt44MPXmbRouWsWXOYZ58dRYcOHRg6dCjDhp3h3HOLSUpKCuu8oRq/jIw+tG79nGMGhI2EhJSYG6xI4N7IxmI5YE8BZ5Wlx70Nfxk18OFmIY0FZeU7DdizV4YrZEL1mhjpEETCIyMCQRAsQnp6OiNGjGDEiBForfnhhx9YsGABn376KdOnT+fpp5+mZs2aXHTRRQwbNowhQ4aQnZ0d0rlC9UA0ajSpUifFscI0vlh6L/zh2eOHisNf3vBVp1a9TifO8hUUzKWg4CVHzpDwhEwkvSaROLYIBEGwIEop2rVrR7t27bj33ns5duwYS5cu5ZNPPmHBggXMn2+fyNOjRw+GDRvG8OHD6datGwkJkV/BPdozCqJJrN3esfZe+MOzx5+dPZbs7IrDX554q1PAlZ0yGuP6obrenc+6kes0QiS9JpE4tqVnMUQTmcUgxAtaazZt2sQnn3zCJ598wpdffonWmuzsbJdYuPDCC0lPT494WawQ5W0mlTEbopmEcr+9TdPbtu1OxzRbUCrF8EyaUMpgtXoN9TcTzOqlwRzb3ywGEQgORCAI8cr+/ftZuHAhH3/8MQsXLuTo0aOkpKQwYMAARowYwfDhwyOSKTSYhjeehESsyupvamU81Z8Tz4BG90Q/O3Y8gn1cH0DRsuVfDXlMQjH2sZ6yagaRFDlxO81REITA1KtXj+uvv57rr7+e4uJivvjiCz766CM++ugjbr/9dm6//XZyc3O55JJLGDFihGlDEUbd8cE2brHO/x+rIZRortQYabyV2d0oK5Xk5kEw7g4PZQgoWsGQkXxGYzX0JQJBECoRSUlJDBgwgAEDBvDMM8/www8/8OGHH/LRRx/xl7/8hccff5xGjRoxYsQIRo4cyQUXXBDyAlNGG173/An+1n0A74YFwptOFy/4CtoLxTjE2uPgr8wZGX3IzV0eUgxCKMY+GsGQkRZxsZrxIQJBECop7oGODz74IAcOHGDBggV88MEHvPbaa8yYMYP09HQGDx7MpZdeytChQ6ldu7bh4xtteJOSsnBfF8L+3ju+AtqsPF/eTLx5L4I1DlbwOAQqc6hemnCm6Iaa5tjIuSLdw4/VjA8RCIJQRahbty5jx45l7NixnD59ms8//5wPP/yQDz/8kHfeeYdq1apx/vnnc+mllzJy5EhX+md/GGl4i4sPAgk414Wwv/eOL8Ni5fnykSZY4xDrmRgQWYNm1hBQIOMfjNCKRg8/FkNfEqToQIIUhaqKzWZj3bp1vP/++7z//vts3boVgO7du3PZZZdx6aWX0qFDB5RSpkSxWz0GIVpE6pqs4EGwOkbqKNjgRqs9o0bLI7MYDCACQRDs/Pjjj7z//vu89957fPnllwC0bt2aoUN70a7dO7RpU0y1ailBGR6rNZ6xJtJGXOrbP0aMfzwLrWDKLrMYBEEwTJs2bXjwwQd58MEH2bt3Lx988AHvvvsuzz//JiUlNurWhX79TnPllbO54oqePpetdsds92gwBtBzWysYT3/DAGaULx6SWcXyvhgZErB6pkd/mDXMJB4EB+JBEAT/5OcvYtasEaxcWczatXDmjD2uYeTIkYwaNYqBAweSnJwc8XIEm3/BM0mPc/nkWK7Q5+sawu21WkH8GMHffYlWbz1e6ioUxIMgCEJUad78Yh54YAU33bScpKRzyMs7zLvvvsvbb7/N7NmzycjI4JJLLmH06NFcdNFFVK9ePSLlCKZ35Lnt/v3zI7JCX7CYOaXRSTy5xP3dl2gFVsaDlyVUzPJ+iEAQBMEw7o3qqFEwatQozpw5w5IlS5g/fz7vv/8+r776Kunp6QwfPpzRo0czZMgQatSoYVoZgokY99y2Xr1RFBauMnWFvlAxY0qjO1aYvWAUb/flyJEVaG1DqWpVbqZKJDBDAMkQgwMZYhCE8CkuLmbZsmW88847vPfeexw4cIC0tDSGDRvGFVdcwdChQ00RC8HkpU9Kyiq3XHJhYV6FFfqs5NIOJ1d/LD0IoayR4J6KeePG/mhdjFJJ5OaaG5Mh+EZmMRhABIIgmEtJSQkrVqzgnXfe4d133+W3336jRo0ajBgxgiuuuMJ0z4I7RoxlNA1PtIx3rIxpuPXtbVZBZmb/mAi5qobEIAiCEHWqVavGwIEDGThwIM899xwrV67kv//9L/Pnz2fevHmkpaUxYsQIxowZw+DBg02NWTDibo/GGLTTKJ4+vSsq7v9YjasHqu9AAsJzyCEpKcuxvXMoyJ5Ns6BgrngToogIBEEQIk5iYqJrjYh//vOfrFy5krfffpv58+fz1ltvUbNmTUaOHMmYMWO46KKLwp4NEavc9e64G0WlElGqGlpTKbNBBqrvQALCM6iubPuyFR+VqlbOm5CTM63c0JEZyHBGeWSIwYEMMQhC9CkpKWHZsmXMmzePd999l8OHD1O7dm0uv/xyrrrqKvr3728oz4I3Yt3Ye7rNGza8ierVm1Va4+Ovvv1N6/S2T3lxZZ+OCrB37yzs9ZmAUolobTNt6MFqw1LRQmIQDCACQRBiS1FREUuWLOGtt97i/fff59ixY9SvX58rrriCa665hj59+qCUCvn40W7cCwvzfAbeVUWcwaFgX8ER/K/S6S2RUploUGhtw76+R+A0yEYIlF0x1kGgkUJiEARBsDzJyckMHTqUoUOHcurUKRYsWMBbb73F7Nmzef7552nevDlXXXUV11xzDZ07d/YpFnyt5RCbxl15/K3a7Nv3CjZbEfv2vUKDBuMCDjv4GoZISsoql1jJjCGbcIdJYk0kBLAIBEEQLEdqaiqjRo1i1KhRHD16lA8++IA333yTZ555hqlTp9KxY0euueYarr76alq2bOnaz5cQiEXjfuTIcrQuATRal1jOoEQbz3sAwa/S6S4a0tI6m2oQAyUXskJciy8iJYATTCibIAhCxKhVqxbXX389CxYsYM+ePbzwwgvUrl2bRx55hFatWtG3b1+ef/559u/f71UIACQlZaFUApAQtcbdaVAg0XIGJRZ41kd29li6dFlKy5ZTQjJoGRl9aN78YdOXkvZ1TKeACLW8kaKwMI+dOx/DZjuD53MfLhKD4EBiEAQhvsjPz+fNN9/k9ddfZ8uWLVSrVo0LLujJOeeso2/fUmrUSCEnZxrHjm1wRL+XoFQCrVs/T6NGk6ISkxDOolKVkUgni6pqlHkOzmCPx0ggISG4lVYlSNEAIhAEIX7ZvHkzr7/+Om+88Qa7d+8mLS2ZoUO707v3erp0KSIx0bllWRKeWMQkGInar0wBcKEgdWGc8oGVCdSufSEtWjwWVH35EwgyxCAIQtxz9tlnM3XqVPLz81m2bBljxlzHwoXfcN99RVx1Fbz4Ivz8c1kOAl9DEZHEafh27PgjmzYNpLAwz/VdLMpjlMLCPPLznyxXXjO29YWV6yJaGK3H8sM2KUGLg0BIkKIgCJWGhIQE+vfvT//+/fnrX6/nxRcvYvHiYt55B+bNg06dmjBhQh7Dh3eOesCZv0DJSAbAheOuD2dp7VB7/lYOBowGwdSjWas2+kIEgiAIlZLs7P7cc88KJkxYTklJFxYs+IlXX32V++67jwcfTGTgwF6MGNGcK664OSoubH+GL1INfbhGO5yltUOdtRFpo2d1gqnHSMdqiEAQBKHS4j4t7s474c4772Tr1q28+uqrvPrqq3z2WR5/+MOnjBkzhvHjx9O7d+9y+RXMbIADGb5w11HwVtZwjXY4S2uH0/OP1ZoSgQj3eTCyv9F6jEashgQpOpAgRUGoWpSWlrJ8+XLmzJnD/PnzOXXqFG3atGHcuHGMHTuWmjV/iZtgOX+pjMO9BpmJYSfcugx2uCZQPQbK/GgUCVIUBEHwIDExkYEDB/Lqq69SUFDA7Nmzyc7O5pFHHqFZs2aMGDGOJUtOU1QUm2C5YAL+fAX2GZm7H+g8weQbiERuAqsQbvBkMPsbqcdo5NmQIQZBEKo8tWrVYuLEiUycOJGffvqJV155hZdfnsmqVZr0dBg4ECZPbkCzZjqs9SCMEmxvNVB8g3vKaV/rG1jdS+JOLDwV4Q6hmB18GY1YDRlicCBDDIIguGOz2fjoo+d4+eWXWLRoK6dPF3H22WczceJErr32WurWrRuxc4fiPg5kNL2JgSNHloflpo6FoY6lqIlGDEK0kSEGQRCEIElISGDkyLt4//2N7N27j3//+9+kpKQwefJkGjVqxBVXXMGiRYsoLS01/dyhuI+9uaXdhw+8ubiDOY/nUIS/vA6RJJZ5EsIdQom3IRgZYhAEQQhAZmYmt9xyC7fccgvffvstL730Eq+++irvvPMOTZs2ZcKECUycOJHmzZubcj4z3MeePe2cnGkVXNxGz+PL+xCL1Q2rep6EaGJ5D4JS6jal1A6l1Gml1Hql1P/52fZ8pdQapdRBpdQppdT/lFL3R7O8giBUbjp37sw//vEPfv31V+bNm0f79u2ZMmUKLVu2ZPDgwbzzzjsUFRWFfZ5we5ueBry4+KDXgEUj5wnX+2AmVl00qTJi6RgEpdQY4DXgNuALx98JQAet9S4v23cHWgPfAieBc4EZwANa6xf8nUtiEARBCJX8/HxefvllZs+eze7du6lXrx7jx4/nxhtvpE2bNjEpk5lj9f6mUVptTF0IjrhdrEkp9RWwWWt9k9tn24B3tNaGImmUUu8CZ7TWV/vbTgSCIAjhUlpaymeffcasWbP48MMPKS0tpX///kyaNInLL7+clJSUqJbHiAGXFRarNnEpEJRSydi9AFdrrf/r9vnzQCet9fkGjtEV+BR4TGv9or9tRSAIgmAme/fuZc6cOfznP//h559/Jisri3HjxjFp0iTatm0bcP9oLUdt5owAERHxR7zOYqgLJAL7PD7fB2T721EptVspdQZYB7zgSxwopSYppdYppdbt37/fjDILgiAA0LBhQx5++GG2bdvG4sWLueCCC/jnP/9Ju3btGDBgAG+99RZnzpzxum+0ZgiYOSMgVrMaKgvBroRpxsqZgbCyQAiH/wN6ALcAk5VS13vbSGs9U2vdQ2vdo169elEtoCAIVYOEhAQuvPBC3n77bX755ReeeOIJ8vPzufrqq2natCm/+93v2LFjR7l9ojWVz8xAQ3uZz2Av85kquUxzqAQrrqIlxqwsEA5gz97RwOPzBkCBvx211ju01t9qrWcBzwKPRaSEgiAIQZCdnc3DDz/M9u3bWbhwIeeeey5PPfUUZ511FkOGDHHFLURrhoCZMwKSkrIAm+OdzfFeMEKwgjBaAtKyeRC01kVKqfXAIOC/bl8NAuYHcagEILqRQYIgCH5ISEjg4osv5uKLL2b37t3Mnj2bmTNnMnLkSJo2bcrNN9/MFVe8TUrKtxEfzzeycqKR2ILi4oPYm1sbkOB4Lxgh2NwO0coFYdkgRXBNc3wV+/TG1diHDG4AOmqt85VScwG01mMd298J7AB+cBziPOAf2OMQfufvXBKkKAhCLCkpKeGjjz7ihRdeYMmSJVSrVo1Ro0Zx++23069fv6isAeENo4GM8bqug1UoLMyjoGAuANnZY01bOTPQdv6CFC3rQQDQWs9TSmUBfwAaAluAoVrrfMcmzTx2SQSmAi2AEuAn4HeA3xkMgiAIsaZatWpcdtllXHbZZfz444/8+9//Zs6cOcybN4/OnTtz++23c+2115Kenh7RcngaFKMZE6OxeFAsiObMjH37XsFmK2LfvlcCCiyjnp9wRJuVYxAA0Fq/oLVuobVO0Vp311qvdPuuv9a6v9v7aVrrjlrrNK11hta6m2N/m9eDC4IgWJA2bdrwj3/8g927dzNr1iwSExO55ZZbaNy4MZMnT+bHH3+MyHm9Bb8FEw8Rb2sNBCKaMzMiEVcQ7jEtLxAEQRCqKmlpadx444188803rF69muHDh/PCCy/Qtm1bBg8ezMcff2zqYlG+vAVGAhmjMe0u2kRzYahgA1ON1He4wa6WjkGIJhKDIAhCPFBQUMCsWbN48cUX2bNnD61ateL2229n4sSJZGZmhnXsUF3SlTX+IJz6CGVYIpi4AqPlCicGQQSCAxEIgiDEE8XFxbz33nv861//4osvvqBGjRqMHTuWO++8kw4dOoR83FCMW37+k+zY8UfsM9MTadlyCs2bG8qGH3WCvT5v2/s7RjTEkpn1Ha+ZFAVBEAQfJCUlceWVV7Jq1Sq++eYbxowZw8svv0zHjh256KKL+OSTT7DZgg+/CiWOIBxXdihDE6EOZ4QSU+BZH4GOEY1hiWjlyRCBIAiCEOd07dqVl156iV9++YW//OUvfPfddwwfPpx27drxr3/9i+PHj5t2Lm/GOdSES0YNtvs5wwkcNMN4BzpGNIx3tJa8FoEgCIJQSahXrx6PPPIIO3fu5M033yQrK4u77rqLJk2acP/997Nz586wju/POIfieTBisPfsmcnGjeexY8cf2LRpIAUFc0M28mYY70DHiJbxdtY3ELHgUBEIgiAIlYykpCSuuuoq8vLyyMvLY8iQIUybNo2zzjqL0aNHs2bNGkKJPzPbfR7I2BYW5rFt2x1oXQLYHGs9ELKR92a8gx2uMCIAojXdM9LTMC2dKEkQBEEIj969e9O7d2/+/ve/8/zzzzNz5kzmz59Pr169uPfeexk1ahTVqlU0Bd4C8cxO8RsoudKRI8vRumwap1IJZGePJTt7bMjJi9wTDIUaUGgkSVE0MJrEKlTEgyAIglAFaNq0KX/729/45ZdfeP755zl06BBXXXUVrVq14umnn6awsNC1ra+eaSTc596CAJ09ersgSQESUCqJ1q2fdxnnzMz+HDmyPKxeczTzHESCSMc7yDRHBzLNURCEqoTNZuOTTz7hmWeeYcWKFdSsWZMbb7yRu+++G3jDbRqdomHDm2nb9t8RL5O3Hj3gdZqht55/KFMY4z1/Q7ipoNPS1P9OnNDtvX0nAsGBCARBEKoq69ev59lnn2XevHkAjBzZn4svXkGbNiUAKJVCbu6yiBtPo/P7vW2Xmdk/qkmN4glf11hYmEfPnn1tP/6oE73tJ0MMgiAIVZzu3bvz+uuvs2PHDu655x6WLPmam28u4d574csvobS02Kv73ez0ykZd5t62C3W4oLKtH+GJv0DGI0eWo5RvHSACQRAEQQDscQpPPfUUu3btYsqUO9i9Gx5+GG68UbNgwUmKiopc20Yigt5ojIO37aKVPCje8CecMjP7ozU+s2nJEIMDGWIQBEEoz/79K3nttef4z3++4fvvf3KtJjlp0iQOH37ecumVozVcEE/DEoHiLCQGwQAiEARBELyjtWbRokX8/e9/Z9myZdSqVYsbbhjJ//3ff6ldu9iUAL94MbrxGNjor25lLQZBEAQhZJRSDB48mM8//5y1a9dy8cUXM23aa1x9tY1Zs7pTs+YrYYuDSCX8MTtOIh6nRoYaZyECQRAEQTBMz549efvtt/nhhx8YN24877yzkR49rmLMmDFs2LAhpGOaYXS9CYFICI+qFOsgAkEQBEEImtatWzNjxgzy8/N54IEH+PTTT+nWrRtDhgxhxYoVQaVyDtfo+hICkejtB5MsymzvRbQRgSAIgiCETHZ2Nn/729/YtWsXTzzxBOvXr6d///7069ePTz75xJBQCDdDoy8hEKnevhGXfaTXSYgGIhAEQRCEsMnMzOThhx8mPz+f5557jl9//ZXhw4fTtWtX5s2bR2lpqd/9Qx0nLyzM4/TpXSiViKcQiNbKit6Ix1gFT0QgCIIgCKaRmprK7bffzrZt23jllVc4c+YMV111Fe3bt+fll1+muLjYtHM5e+l7987CnhL6pgpCIJKJkAoL8/jhh1v54YdbK3gIzPRexGqoQgSCIAiCYDpJSUmMHTuW7777jnfeeYf09HQmTpxITk4OL7zwAqdPnw77HO69dK1LqF69WdS8BIWFeWzc2J+9e19k794X2bhxQDkDbpb3IpZDFSIQBEEQhIiRkJDAqFGjWL9+PZ988gmNGzfm9ttvp2XLlvzjH//g5MmTIR87ljMK7EtRl3lDtK44jODuvQjVCxDLoQoRCIIgCELEUUoxdOhQVq9ezdKlS2nfvj333nsvLVq0YOrUqRw7dizoY8YyxiAzsz9KJbneK+VboITjBYilCJJMig4kk6IgCEJ0Wb16NVOmTGHRokXUqVOHe+65h7vuuotatWr53MdKGRcLC/MoKJgLQHb2WJ/lMbpKpb/zROqa/WVSFIHgQASCIAhCbFi7di1Tpkzh448/JjMz0yUUMjMzXds4jXFBwUtoXRo3aY7B2umZJdWyIAiCYFl69erFRx99xLp16zjvvPN49NFHadGiBX/+8585cuSI22yFGWgdf1MHYzkUEg7iQXAgHgRBEARrsGHDBh5//HHef/99MjIymDChBwMHLiM93bkysSIhoXpcGVur4DlcIUMMBhCBIAiCYC3chUJ6OowerRg9OomcnIl+x/ytTCxjKLwNdWRm9pUhBkEQBCG+6Nq1K++99x7ffPMN5533f8yZo7nuuhTmz29KQkKnWBcvaMLNaRBuwqRgp0yKQBAEQRAsTdeuXfnkk5WsW7eOfv3O55FHHqFly5ZMnTqVEydOxLp4hgknp4EZCZOCnTIpAkEQBEGIC7p3785HH33EV199Rc+ePfnd735Hq1atmDZtWsiZGaOZxjicnAZmJEwKNlhSYhAcSAyCIAhCfLFmzRr++Mc/8vnnn9O4cWMeeeQRbrjhBpKTkw3tH+70w1DiCUKNQYjUVEmZ5igIgiBUOvr27cvSpUv5/PPPadGiBbfddhtt27Zlzpw5lJSUBNw/Fi7/UBePisVUSREIgiAIQlwzYMAAVq1axaeffkpWVhYTJkygU6dOvP3229hsNp/7xdrlHyyRXJnSG5YXCEqp25RSO5RSp5VS65VS/2dwv35KqRKl1JZIl1EQBEGILUopBg8ezNdff838+fNJTExkzJgxdO/enU8//RRvw+nuvfKcnGkcObLcsCcglmskRAtLCwSl1BhgOvAE0BVYA3yqlGoWYL/awFxgacQLKQiCIFgGpRSXX345mzdvZu7cuRQWFjJ06FDOP/98Vq9eXWH7jIw+ZGb2Z/v2yUENF8RrdsRgsLRAAO4F5mitZ2mtt2qt7wT2ArcG2G828AoQvYWzBUEQBMuQmJjI9ddfz//+9z9eeOEFtm3bRr9+/Rg+fDibN28ut22owwXRdvlHG8sKBKVUMtAd+Mzjq8+Avn72uw1oAPwlcqUTBEEQ4oHk5GRuvfVWfvrpJ/72t7+xevVqcnNzue666/j555+BqjFcEAqWFQhAXSAR2Ofx+T4g29sOSqnOwKPAdVrr0sgWTxAEQYgXatSowUMPPcTPP//MQw89xLvvvku7du244447OH26VaUfLgiFarEugFkopVKAecD9WusdBveZBExyvD0jAY2mUxc4EOtCVCKkPs1F6tNc4rI+n3/+eZ5//vlYF8MX0ajT5r6+sGyiJMcQw0ngaq31f90+fx7opLU+32P7FsAOwN1zkAAox2dDtdaewxXu+6/zlSxCCA2pU3OR+jQXqU9zkfo0n1jXqWWHGLR90e/1wCCPrwZhn83gya9AZyDX7fUisN3xv7d9BEEQBEHwgtWHGJ4FXlVKrQVWA7cAjbAbfpRScwG01mO11sVAuSECpdRvwBmttQwdCIIgCEIQWFogaK3nKaWygD8ADbELgKFa63zHJn7zIQTJTBOPJdiROjUXqU9zkfo0F6lP84lpnVo2BkEQBEEQhNhh2RgEQRAEQRBihwgEQRAEQRAqUGUEQjCLPiml5iiltJfXiWiW2eoEu5CWUuoapdRGpdRJpVSBUuo1pZTXpFdVkRDq83al1Fal1Cml1A9KqbHRKqvVUUqdp5T6UCn1q+O3O97APp2VUisc9fmrUupPSikVheJanmDrUylV3dGOblZKFSullkenpPFBCPXZXyn1gVJqr6P93KyUmhjpclYJgRDCok93Yw+KdH/9DLwd+dLGB8HWqVLqXOBV7GtkdAQuBToAr0ejvFYnhPq8FZgKPI69Ph8FnldKjYhOiS1POvag5ruBU4E2VkrVAhZjz9Ta07HfA9jXgxGCrE/sWXBPA88Bn0SwXPFKsPXZF/gWGA10Av4NzFRKXROxEgJorSv9C/gKmOXx2TbgSYP7nwtooG+sr8Uqr2DrFLgfyPf4bAJwPNbXYoVXCPW5BviHx2fPAF/E+lqs9gKOA+MDbHMrcBRIdfvsD9jzq6hYX4OVXkbq02P754DlsS63VV/B1qfbfm8D8yNZtkrvQQh10ScPbgK+01pLsiVCrtPVQEOl1Ahlpy5wFbAgciWND0KszxTsPTR3TgG9lFJJ5pawStAHWKW1du/NLcKed6VFTEokCP6pBRyO5AkqvUAghEWf3FFKZQBXArPML1rcEnSdaq3zsAuC14EiYD/2NNjjIlfMuCGUZ3QRMFEp1dMhuHoANwJJjuMJwZGN9/p3ficIlkEpNRwYSITzJFQFgRAu12Gvp1djXZB4RinVAfgXMAV7b3kw9oZ3RizLFcdMwT62uwYoBj7AHt8BYItVoQRBiCyOeK43gLu01msjea6qIBAOYF+sqYHH5w2AAgP734R9nOeQ2QWLY0Kp04eBtVrrp7TWm7XWi4DbgOuVUk0iV9S4IOj61Fqf0lpPBGpgd4E3A3YCx7B7Z4TgKMB7/Tu/E4SYo5TqB3wK/Elr/e9In6/SCwQd/KJPLpRSvYAuyPBCOUKs0xqUX2kTt/eV/jn0RzjPqNa6WGu9W2tdin0I52OttXgQgicP+D+lVHW3zwYBe7ALL0GIKUqp87CLg8e01tOicU5Lr8VgIoYXffLYbxKwTWu9PHpFjRuCrdOPgFmO6XmLsE8dnQZ8o7XeFd2iW5Kg6lMp1QY4B/gSqI19Ol4nJKYDAKVUOpDjeJsANFNK5QKHtNa7lFJPAr201gMd27yBfaroHKXUX4A2wO+AP2tHyHhVJoT6dA4rJmOPiUl3bI/WemMUi25Jgq1PpVR/7EOKLwBvuOWPKdVaR85jGOspHlGcSnIb9p7AGey9tfPcvluOxzQcoCb26ScPxrrsVn2FUKd3At8BJ4G92AMWm8T6OqzyCqY+gfbABkddFgLvA21jfQ1WeQH9sU9N9nzNcXw/B9jpsU9nYCX22SF7sQsGmeIYen3u9LZPrK/FCq9g69Px3tv2OyNZTlmsSRAEQRCEClTpsV9BEARBELwjAkEQBEEQhAqIQBAEQRAEoQIiEARBEARBqIAIBEEQBEEQKiACQRAEQRCECohAEARBEAShAiIQBEEQBEGogAgEQRDiEqXU80qp92JdDkGorEgmRUEQ4hKlVG2gWGt9PNZlEYTKiAgEQRAEQRAqIEMMgiCYilKqu1JqhVLqlFJqi1Kqr1Kq2LEinVnnaKKU0kqpdmYdUxCE8ohAEATBNBwGexnwFdAN+5LJ87AvLb/RxFN1wb6S5Y8mHlMQBDeqxboAgiBUKv4JLNZaP+h4v1UpdSX2pauPmHieXOBbrbXNxGMKguCGeBAEQTAFpVRTYBDwuMdXZ4BNXrb/i2OYwN+rv4/TdcFcj4QgCB6IB0EQBLPoBpQAmz0+bw8s9bL9NOC1AMfc5ePzXODZIMomCEKQiEAQBMEsSoFEoAZwAuwBi8C5eDHmWusDwIFgT6KUSgPOQjwIghBRZIhBEASzWId9OOEppdRZSqnBlHkINpp4nrMdfz09FYIgmIgIBEEQTEFrXQCMA4ZiN953AHOA/Vrrn008VRdgm9b6pInHFATBA0mUJAhCRFBKKWAh8JPW+rZYl0cQhOCQGARBEExBKdUPyAa+AbKAe7AHE06IYbEEQQgREQiCIJhFNjAVaAzsB5YD3bXWe2JZKEEQQkOGGARBEARBqIAEKQqCIAiCUAERCIIgCIIgVEAEgiAIgiAIFRCBIAiCIAhCBUQgCIIgCIJQAREIgiAIgiBUQASCIAiCIAgVEIEgCIIgCEIF/h+zG59GsO4oLAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Equations for isochrones obtained from X,Y values\n", + "x_2_mi = np.linspace(0.7,1.2,100)\n", + "FeH_2_mi = 0.0246*np.exp(2.4172*x_2_mi)\n", + "x_4_mi = np.linspace(0.7,1.0,100)\n", + "FeH_4_mi = 0.219*(x_4_mi**2) - 0.2053*x_4_mi + 0.0539\n", + "\n", + "plt.figure(figsize=(8,6))\n", + "c1 = res['metallicity'] < np.interp(res['g_i'], x_2_mi, FeH_2_mi)\n", + "plt.plot(res['g_i'][c1],res['metallicity'][c1],'y.',label='EMP candidates')\n", + "plt.plot(x_2_mi,FeH_2_mi,'k-',label='[Fe/H]=-2 isochrone')\n", + "plt.plot(x_4_mi,FeH_4_mi,'b-',label='[Fe/H]=-4 isochrone')\n", + "plt.xlim(0.7,1.23)\n", + "plt.ylim(0.4,-0.3) # Figure 1 has these limits\n", + "plt.ylabel('$m_i$')\n", + "plt.xlabel('$g - i$')\n", + "plt.legend(loc='upper right')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "15281199-ba04-4d71-99e9-e01b4979a277", + "metadata": {}, + "source": [ + "Metallicity-sensitive diagram showing the Magellanic EMP candidates from our final adopted selection. The blue and black curves represent [Fe/H] = −4 and −2 Dartmouth isochrones for an age of 12.5 Gyr and $[\\alpha/Fe] = 0.4$ ([Dotter et al. 2008](https://ui.adsabs.harvard.edu/abs/2008ApJS..178...89D/abstract)). Both isochrones have been calibrated with reference to the SkyMapper DR3 data as described in [Da Costa et al. (2019)](https://academic.oup.com/mnras/article/489/4/5900/5568381?login=false). The upper (positive) bound on the metallicity index selection was set by the location of the [Fe/H]=-2 Dartmouth isochrone for an age of 12.5 Gyr and $[\\alpha/H]=0.4$ ([Dotter et al. 2008](https://ui.adsabs.harvard.edu/abs/2008ApJS..178...89D/abstract))." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "62bcc15a-3492-4da6-b6c4-313bd1574e3c", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:20:43.940872Z", + "iopub.status.busy": "2024-05-30T19:20:43.940051Z", + "iopub.status.idle": "2024-05-30T19:20:43.949101Z", + "shell.execute_reply": "2024-05-30T19:20:43.947832Z", + "shell.execute_reply.started": "2024-05-30T19:20:43.940814Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Count of final EMP candidates = 663\n" + ] + } + ], + "source": [ + "count=0\n", + "for i in c1:\n", + " if i is True:\n", + " count = count+1\n", + "print(f\"Count of final EMP candidates = {count}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "5fd2da4b-f2e0-4ee6-8fba-3b085bfb36c9", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:20:50.960925Z", + "iopub.status.busy": "2024-05-30T19:20:50.960127Z", + "iopub.status.idle": "2024-05-30T19:20:51.282181Z", + "shell.execute_reply": "2024-05-30T19:20:51.281333Z", + "shell.execute_reply.started": "2024-05-30T19:20:50.960867Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAGFCAYAAABtxIBIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAAB3BklEQVR4nO2de5xNVf/H32vGYGbIPXeDpkkeopJSPeVeQi6Va7lVlIQiUolSSlJ4ujx0MYjKLxXlFkVJeqKiRBfFRC6lGHdzOev3x5kZM2fOmTmXvc/e+5zv+/WaF+ecffnutfZa38/6rpvSWiMIgiAIghBjtQGCIAiCINgDEQWCIAiCIAAiCgRBEARByEFEgSAIgiAIgIgCQRAEQRByEFEgCIIgCAIgokAQBEEQhBzCLgqUUtcopZYqpf5QSmml1AAvx6Qopd5VSh1RSp1USn2jlLqwmOteq5T6Wil1Win1m1LqLtMeQhAEQRAiECsiBWWAbcAI4JTnj0qpesAGYBfQGmgEPAIc93XBnHOWA18AFwNPAf9RSt1ktPGCIAiCEKkoK1c0VEodB4ZprVPzfbcQ0FrrvgFcZwrQXWt9fr7vXgX+pbVuYaDJgiAIghCx2GpMgVIqBugMbFdKrVRK/aWU2qSU6lnMqS2Ajzy+WwU0U0rFmWGrIAiCIEQathIFwLm4uxcewu3k2wFvAguUUh2LOK8acNDju4NACaCyCXYKgiAIQsRRwmoDPMgVKUu01s/l/H+LUqoZMAxYZsRNlFKDgcEAiYmJlzZo0MCIy0YE2dknOHXqJ7TWKKWIj7+A2NhEq80ynIyMA5w580fe51KlalKyZLWAzsmPP+eHSnb2CbKzjxEbW9ZnnvhzjCAIwtdff31Ia13F83u7iYJDQBaw3eP7HUCvIs47AFT1+K5qzrUOeR6stZ4NzAZo1qyZ3rx5c7D2Wkp6+kaOHFlH+fItKVfOmKETaWlPsWvXeCAbiKFevX4kJY0z5Np2Ij19I1u3tsHlyiAmpiRNmvxfsWmY/xylSgAarbP9Pt9sCj7TPzRp8rHlNgmCYE+UUmnevreVKNBaZyilNgEXePyUAnh9gBw2At08vmsHbNZaZxpoom0o7NSMcQDly7ckJqZk3nXLl28ZurE2pFy5FjRp8nFAosrzHMBwURYKR46sw+XKALJxuTI4cmSdLewSBME5hF0UKKXKAMk5H2OAOkqppsA/WuvfgWeARUqp9cAnQCvcUYKu+a4xD0Br3S/nq/8Cw5RS04FZwFXAAKC3uU9jHWY5gGCcpVMpV65FwM/neY6d0idaBJ0gCOZhRaSgGbA23+fHcv7mAgO01u/n9Pk/BMwAfgH6aa3zjyeok/+CWutdSqkbgOeBu4F9wHCt9WLzHsNazHQAwThLszCjiyRSiSZBJwiCOVi6ToEdkDEF9sWsLhIheoj0MiIIwaKU+lpr3czze1uNKRACw04tejOQPnIhFERUCkLgiCgQbIv0kQuhcFZUKkqU6M6ePdns27fDarMEwXRiY2MpX748lStXJiYmsOWIRBQItkX6yIVQyBWVpUs/TIUK/6ZWrX9RunR5lFJWmyYIpqG1JjMzk4MHD7J3717q1KlT/En5EFEg2JpI7yIRzCNXVP7+OyQl/YuSJc+x2iRBMB2lFCVLlqRmzZr89NNPAZ9vt2WOBUEQDKNcuRaUKFFeBIEQdQTabZB3nsF2CIIgCILgUEQUCI4kPX0jaWlPkZ6+0WpTBEEwgU6dOjFgwIC8zy1btmTYsGFFntOoUSMmTpzo8/esrOOcObOfrKzjBllpHlbZKqJAMIxwOercqWa7do1n69Y2Igwchgg6/xgwYABKqUJ/V1xxRd4xdevWRSnF/PnzC51/+eWXo5Ti2WefzfuuZcuWedcpVaoUKSkpTJ48mezs7LA8Uyi8++67PPXUU0Gfn5V1nFOnfiYj4w9OnfqZrKzjpKamUqZMGQOtNAZvtoYLGWgoGEI454TL+gXORdYOCIy2bdsWcvglS5Ys8Ll27dq8/vrr3HbbbXnfbdu2jW3btlGpUqVC1xw4cCCTJ0/m9OnTfPjhhwwfPpzY2FjGjh1rzkMYRMWKFUM6Pzv7GODK+eTK+WxPvNlaokR4xItECgRD8OaozSJ3qhnEyvoFDiOc70kkUKpUKapVq1bgz9M59unTh40bN/Lbb7/lfffaa69x8803e20FJyQkUK1aNerWrcuwYcNo06YN77//vk8bMjIyeOihh0hKSqJUqVLUr1+fmTNnApCdnc3tt99OvXr1iI+P5/zzz+eZZ57B5XLlnT9gwAA6derEjBkzqFmzJhUqVGDgwIGcPHky75iTJ08yYMAAypQpQ9WqVZk8eXIhOzy7D/7880+6dOlCfHw8SUlJvP7664XOee6557joootITEykfv1LGTbsCY4cOQbE8PnnWxg4cCAnTpzIi57kdj1kZGQwduxYatWqRUJCApdddhmrVq3Ku25mZibDhw+nRo0alCpVitq1a/Pggw/6TMNAiY0ty1n3HJPzOTxIpEAwhHAuNCTrFzgXpy9IZcdlkytXrkznzp2ZM2cOkyZNIiMjgzfeeIPFixfz6aefFnt+fHw8hw8f9vl7//79Wb9+PTNmzODiiy8mLS2NPXv2AOByuahZsyYLF6ZSsWI833zzI3ffPZxKlSpx++23511j/fr1VK9enTVr1rBnzx569OhBSkoK48a5t2UfPXo0q1evZvHixdSsWZPHHnuMzz77jO7du/u0a8CAAaSlpbFmzRoSEhK477772L17d4FjYmJimD59OvXr1yctLY1hw+5h7NgXmTcvlX//uxHTp0/noYce4tdffwXIE1EDBw7k119/ZeHChdSqVYvly5fTuXNnNm3aRJMmTZg5cybvvfceb731FnXr1mXv3r1BTf/zRYkSZYiPTyE7+xixsWXDFiUA3AsdRPPfpZdeqqORI0e+0Lt3T9ZHjnxh62sKkUe435Pt27cbcp0jR77Qn34ar9eujdWffhpvuv39+/fXsbGxOjExscDfmDFj8o5JSkrSU6dO1cuXL9e1a9fW2dnZ+v/+7/90cnJygd9zufbaa/U999yjtdY6Oztbr1ixQpcsWbLANfPz888/a0CvWLHCp52Zmcf00aNf66NHN+mjR7/WDzxwn27Tpk2B56hVq5bOysrK++6OO+7IO+bYsWO6ZMmS+o033sj7/dixY7pcuXL61lt76MzMY4Vs/+mnnzSgP//887xzdu/erWNiYvSECRN82pr7vNnZ2VprrefMmaMTExMLHLNz506tlNJpaWkFvu/SpYu+++67tdZa33vvvbp169ba5XL5vJcdKOrdBzZrLz5RIgVRiFn9urLQkOAPTn1PrBjLcs011zB79uwC35UvX77Qcddddx1aa1avXs1rr73GoEGDfF5z9uzZpKamkpGRAcBtt93GhAkTvB777bffEhMTQ6tWrXxe77//fZHXX5/L77/v5/TpM2RmZpOUlFTgmIYNGxIbG5v3uUaNGvzvf/8D4NdffyUjI4MWLc6mZenS0LBhPVyuE5w69TPx8SkFrrdjxw5iYmJo3rx53ndJSUnUqFGjwHGffPIJTz31FDt27CA9PZ3s7GwyMjI4cOBAoWNz+eabb9Ba07BhwwLfnzlzhpYtryIr6zgDBgygXbt2pKSk0L59e2644QY6dOgQ9NoAdkJEQRQiA/UEIXCs6PpISEggOTm52ONiYmLo378/kydP5ssvv+S1117zeWzPnj2ZMGECpUqVokaNGgWcdaC8/fbbjB49gSeeGMHllzembNmyzJmzmiVLPixwXFxcXIHPSqkC4w48KTgI0PegwKKWrE5LS6Njx47ceeedPP7441SqVIlvvvmG3r175wkib7hcLpRSbNq0Kc/urKwTnD69m/j4OE6d+pmLLkph9+7drFq1io8//pj+/fvTpEkTVq9e7Xhh4GzrhaCQgXqCEDi5Y1nq1Ztky1kTgwYNYv369bRr185nKxigXLlyJCcnU7t27WIFQdOmTXG5XKxdu9br759//jmXX345I0eOp3nzNjRq1IZdu34PyO7zzjuPuLg4vvzyy7zvTp+OYceOX3M+FR5o16BBA1wuF1999VXed7///jv79u3L+7x582YyMjJ4/vnnadGiBSkpKQV+B/dMDs/pmBdffDFaaw4cOEBycjLJycnUq3cu551Xkxo1ziVXpJQtW5abb76Zl19+mWXLlvHJJ5+wc+fOgJ7djkikIAqRgXqCEBxmd31kZR3PG1wG7pD1gQMHChwTGxtLlSpVCp1bv359Dh06RHx8vGH2pKSk0KNHD+644w5mzJjBJZdcwt69e9m9eze33XYbKSkppKamsnr1epKTk3nrrVf59NNPqVChgt/3KFOmDLfffjtjx46lSpUq1KhRg8cff5zsbIiJSSQ+PqXQQLsLLriA66+/niFDhjB79mzi4+O5//77Czz7+eefj8vlYvr06XTv3p0vv/yS6dOnF7hO3bp1OX36NKtXr+biiy8mISGBlJQU+vbty4ABA5g2bRqXXHIJf/65l48/fpe6dWtw441tmTkzlVq16tK0aVPi4uJYuHAh55xzDrVq1Qopve2ARAqilHLlWpCUNE4EgSDYBM8Fa1yuTNasWUP16tUL/F188cU+r1GxYkVDRQHAvHnz6NOnD8OHD6dBgwYMGDCA9PR0AIYMGUKPHj3o06cPl112Gbt372bUqFEB3+PZZ5+lVatWdOvWjVatWtGoUSOuueYaYmPjfY68T01NpV69erRu3ZrOnTvTp08f6tatm/f7RRddxIwZM3juuedo2LAhr776aoGFnACuvPJK7rrrLnr37k2VKlV45plnAJgzZw4DBw5kzJgxNGjQgK5de/Dllz9Tv34T4uNTKF++MlOnTqV58+ZccsklbNmyhRUrVpCQkBDws9sN5R6EGL00a9ZMb9682WozBEEwiR07dnDhhRdabUaxnDmzn4yMP/I+lyxZk1KlqltokRAs+SM+YZ1O6EFR775S6mutdTPP76X7QPCKHedjC0Ikc3bBGhfhXrBGMI7ciE9uPnrr/rAzIgqEQjh5KVoRM4JTMXLBGru0VKMRK5coNgIRBUIhnDpl0cliRgidSBCEJUqUCdmBOL2l6nScHvERUeBAzK78nLoUrVPFjBA6IgjP4vSWqtOxdIliAxBR4DDCUfk5dcqiU8WMEDoiCM/i9JZqJGBExMcqRBQ4jHBVfk5citapYkYIHRGEZ3F6S1WwFhEFDkMqv6JxopgRQkcEYUGc3FIVrEVEgcOQys8+RMLAtkhCBKH/yOwEwRciChyIVH7WIwPbBKcisxOEopBljgUhCLyN7RAEI2nZsiVKKZRSBTYLChVvsxP8pW7dunk2HTp0yDCbgiE1NZUyZcInZpRSvPPOO2G7n1WIKBCEIJCdJoVwMHDgQPbv38+ll16a912uU87/17RpU7+vGRtblgMH/qZSpRb8/fdR3nhjiU/nWqZMGVJTU/M+b9q0icWLFwf7OF7JzMxk7NixXHTRRSQmJlK9enX69OnD778Xvdtiz549+e233wy1RZDuA0EIChnbIYSDhIQEqlWrVuj7V155hU6dOuV9jouL8/uaJUqUYfXqn7jiisuoVas5sbH+b3VcpUoVKlas6Pfx/nDy5Em++eYbHn74YZo2bUp6ejqjRo3i+uuv57vvvqNECe9uKj4+3vDNn4wmMzMzoLyxAxIpEIQgkZ0mBX/JyjrOmTP7yco6bsj1ypcvT7Vq1fL+KlWqBEBGRgZjx46lVq1aJCQkcNlll7Fq1apC53/44Uq6dbvFFmMJypUrx+rVq+nZsycXXHABzZs3Z9asWezYsYMdO3b4PM+z+2DPnj106dKFihUrkpCQQIMGDXjrrbfyfv/+++9p27Yt8fHxVKxYscBuj7nMnTuXxo0bU6pUKapWrUr//v0L/P7PP/9wyy23kJiYSP369XnjjTfyftu9ezdKKd58801at25NfHw8s2bNwuVyMWnSJGrXrk2pUqVo3LgxS5YsKXTe4sWLadeuHQkJCTRs2JDVq1cXuPf27dvp2LEjZcuW5dxzz6V3796FttU2AhEFgiAIJuK5JbJRwsAbAwcO5NNPP2XhwoVs27aN/v3707lzZ7Zu3Zp3zLFjx/jkk0/o0qWLIfdcv349ZcqUKfJv8uTJAV3z6NGjAFSoUKHA90WJq6FDh3Ly5EnWrl3LDz/8wPTp0ylfvjwAJ06c4LrrrqNMmTJ89dVXvPfee3zxxRcMGjQo7/xZs2YxZMgQBg4cyHfffcfy5ctp1KhRgXs8/vjjdOnSha1bt9KzZ08GDRpUqJtj3LhxDB06lO3bt9O1a1dmzJjB1KlTmTJlCt9//z3dunWje/fubNmypcB5Dz/8MMOHD2fr1q1cdtll9OrVi+PH3c+5f/9+rrnmGho1asRXX33FmjVrOH78OF26dMHlcmEk0n0gFEKm2gmRzsiRIwtVymbhcmWg9RkaN05hypRRhiw7fNtttzFgwIC8z7NmzeKKK67gzTffZPfu3dSpUweAYcOGsWbNGmbNmsVLL70EwMqVK0lJSaF+/fp55584ccLruIITJ04Ua0uzZs2KTMusrBOUKxdHVtZxv547IyODUaNG0blzZ2rVqpXvOgVnTWRnny5wXlpaGjfddBNNmjQBoF69enm/LVy4kBMnTjB//nzKlnWv8Dh79mxatWrFzp07SU5OZtKkSYwcOZL7778/77z8YznAne633norAJMmTWLGjBl89tlned8B3Hvvvdx88815n5999llGjx5Nnz59ALew+Oyzz3j22WcLRBruu+8+OnfuDMDkyZOZN28eW7Zs4eqrr+bll1+mSZMmTJkyJe/4efPmUbFiRTZv3kzz5s2LTVd/EVEgFECm2gmCsSgVi9Yq55Mxyw5PnTqV66+/Pu9z1apVWblyJVprGja8EFB5v505c4bWrVvnfV6yZEmhKEFCQoJXx57rYHPJyjpORsbfBb6Lj48nOTnZq51nHXkmp079zHvvfcvQoSPyfl+xYgX//ve/8x2fxa233sqRI0dYunRpgWt5zppwuQqKghEjRnDXXXexcuVK2rRpQ7du3fKc+o4dO7jooovyBAHAlVdeSUxMDNu3b+ecc87hjz/+oE2bNl6fI5eLLroo7/8lSpSgSpUq/PnnnwWOadasWd7/jx49yr59+7jqqqsKHHP11VezfPlyn9euUaMGQN61v/76az777DOvwu3XX38VUSCYh6whL0QD06dPD+v9jF4sqFq1aoUccWbmSZRSrFuXSokSJSldui4lSiQC5A3Iy8rKYtmyZYX6q5VSXh27UmfFRa6Dz8o6lPcZKrN+/Xo6dOjgw1INaEaNGsjo0QO54YZrCoiPmjVr5rt+Fr179+b7779n3bp1eeMkcvHc0yEmpnSB32+//Xauu+46li9fzpo1a7jyyisZN24cEydO9GFb4WcsDs9Bg0qpQuH7xMREv67led/81879LffaLpeLjh078uyzzxa6TtWqVf26n7+IKBAKEOgyykZ0NUh3hRDphGPZ4YsuOg+tNQcP/s011zSjZMlzKVWqeoFjPv30U8qUKVOgNesvBVvqkJ3t7u8uqvsgK+sEp0/vpkKFMkAM5ctXp3LlwumQmZlJr1692LZtG+vWrfM648JzT4fY2O8KHVOrVi0GDx7M4MGDmTJlCjNmzGDixIlceOGFvP766xw7diwvWvDFF1/gcrm48MILOffcc6lZsyYff/wx7dq1CzhtfHHOOedQo0YNNmzYUCAK8fnnn9OwYUO/r3PJJZewaNEikpKSTJ/NIKJAKEAgU+2M6GqQ7gpBMIYGDZrSo0cH7r77MZ588j4uv7wDR4/+wbp166hfvz7du3dnyZIl3HjjjUFd/2xLPfez27kX1X0AkJV1XpFRkqysLG655RY2bdrEBx98gFIqb1R9uXLlCkw7LEpcjRgxgg4dOpCSksLRo0dZuXJlnuPt27cvEyZMoF+/fjz++OMcPnyYIUOG0L179zzbH374Ye677z6qVq1Kx44dOXnyJB9//DGjRo0KLKE8eOCBB3j00Uc5//zzufTSS3njjTdYv34933zzjd/XuOeee3jllVfo2bMnY8eOpUqVKvz2228sWrSIadOmFegWCRURBUIh/F1G2YiuBumuEARjKFGiDKmpC3jyySeYMOFl9u59hIoVK9K8eXNatWoFuMcTvPLKK0Ff370k8q68z/6eV9Sxe/fuzZui5zmwb86cOQUGVBaFy+Xi3nvvZc+ePZQtW5Y2bdowbdo0wD1mYtWqVYwcOZLmzZtTunRpunTpwowZM/LOv/vuuylZsiTTpk1j7NixVKxYkRtuuMGvexfF8OHDOXbsGGPGjOHgwYNccMEFLF68uNB4jaLIjTaMGzeO66+/ntOnT1OnTh3at29PqVKlQrYxP0prbegFnUazZs305s2brTbDcoIJ4UukIDxI90po7NixgwsvvNBqMwKmZcuWNGrUiBdeeMGQ63377be0atWKv/76K6QQ9Lp16/KuU7lyZUNsE8yhqHdfKfW11rpQP5JECoSgHbMRq/rJyoBFI6Ipupk9ezapqamsXbuWyy67LKRrZWZm8p///CckQfCvf/1LlhaOcEQUhAk7t/ZCCeEbsWOj7ProG+leiV4WLFjAqVOnAKhdu3bI12vevHnIU9eWL19OZmYmgCHLHfszK0O2eQ4vIgrCgN1be4HOOBDCh+RN9JJ/up5dSEpKMuxa/mzhLNs8hx8RBWHA7q09CeHbF8kbIVLxtoWzp8P35xjBWEQUhAGjWntmdkFICN++SN4IkYjnYkTeVnr05xjBWEQUhAEjWnt274IQog87j5MR7I/nYkTeIgD+HCMYi4iCMBFqa8/uXRBCdCEiVTACf1Z6DMdqkMJZZOtki0lP30ha2lOkp28s8rjcLgiIlQFnguV4E6mCIDgfiRRYSCCtLRlwJhiFEWF/mRUhCJGJRAosJNDWVrlyLUhKGmeaIPA3aiE4l1whumvXeLZubRN0XueK1Hr1JknXgUm0bNkSpRRKKb788kurzQGgbt26eTYdOnTIUltSU1O9biVsFkop3nnnnbDdzypEFFiInboEjHIWgr0xMuxvtkgVYODAgezfv7/AngC5Tjn/X9OmTQO67v79+ylZsiR///13kc61TJkypKam5n3etGkTixcvDuZR/GbIkCEopbxuE5yfnj17yuqKJiDdBxZipy4BGcgYHUjY31kkJCR43Ub4lVdeoVOnTnmfA126eOnSpVx55ZVUqlQpoPOqVKliyEqGvnjnnXf46quvqFGjRrHHxsfHF9hB0Y5kZmaavtWx0UikwGLs0tqyU9TCbKK5m0TC/pFB+fLlqVatWt5frnPPyMhg7Nix1KpVi4SEBC677DJWrVpV6PwlS5bQpUuXcJtdJGlpaYwYMYKFCxf65Ug9Ixx79uyhS5cuVKxYkYSEBBo0aMBbb72V9/v3339P27ZtiY+Pp2LFigwYMID09PQC15w7dy6NGzemVKlSVK1alf79+xf4/Z9//uGWW24hMTGR+vXr88Ybb+T9tnv3bpRSvPnmm7Ru3Zr4+HhmzZqFy+Vi0qRJ1K5dm1KlStG4ceO8XSHzn7d48WLatWtHQkICDRs2ZPXq1QXuvX37djp27EjZsmU599xz6d27d94W00YiokAAosdZSDeJfYSoYDwDBw7k008/ZeHChWzbto3+/fvTuXNntm7dmnfMsWPH+OSTTwwTBevXr6dMmTJF/k2ePLnIa2RlZdG7d28eeeSRoHe0HDp0KCdPnmTt2rX88MMPTJ8+nfLlywNw4sQJrrvuOsqUKcNXX33Fe++9xxdffMGgQYPyzp81axZDhgxh4MCBfPfddyxfvpxGjRoVuMfjjz9Oly5d2Lp1Kz179mTQoEH8/vvvBY4ZN24cQ4cOZfv27XTt2pUZM2YwdepUpkyZwvfff0+3bt3o3r07W7ZsKXDeww8/zPDhw9m6dSuXXXYZvXr14vjx44C7u+eaa66hUaNGfPXVV6xZs4bjx4/TpUsXXC4XRiLdBw7C7MViomHlPOkmEQBGjgSPOtl0mjaF6dONudZtt93GgAED8j7PmjWLK664gjfffJPdu3dTp04dAIYNG8aaNWuYNWsWL730EgArV64kJSWF+vXr551/4sQJr+MKTpw4UawtzZo1K+TgPCmuy2HChAlUrlyZu+++u9j7+SItLY2bbrqJJk2aAFCvXr283xYuXMiJEyeYP38+Zcu6V0WcPXs2rVq1YufOnSQnJzNp0iRGjhzJ/fffn3de/rEc4E73W2+9FYBJkyYxY8YMPvvss7zvAO69915uvvnmvM/PPvsso0ePpk+fPoBbWHz22Wc8++yzBSIN9913H507dwZg8uTJzJs3jy1btnD11Vfz8ssv06RJE6ZMmZJ3/Lx586hYsSKbN28OeaOr/IRdFCilrgFGA5cCNYCBWutUj2NSgKeB1kBJ4Eegr9Z6h49rdgfuAi4GSgPbgSe11ktNeoywI4vFGINT+9Rl9UAhP1OnTuX666/P+1y1alVWrlyJ1pqGDRsWOPbMmTO0bt0677O3roOEhASvjj3XwRZFfHw8ycnJftm9YMEChgwZkvd5xYoVZGdnk5qaWqywKI4RI0Zw1113sXLlStq0aUO3bt3ynPqOHTu46KKL8gQBwJVXXklMTAzbt2/nnHPO4Y8//qBNmzZF3uOiiy7K+3+JEiWoUqUKf/75Z4FjmjVrlvf/o0ePsm/fPq666qoCx1x99dUsX77c57Vzx1TkXvvrr7/ms88+8yrcfv31V2eLAqAMsA2Yl/NXAKVUPWBDzm+tgSNAA+B4Ede8FvgEeAT4B+gLvKeUaqm1Xm+k8VYhLVxjsNPgTn8JVRCKoCiMUS12q6hWrVohR+xyuVBKsWnTpkJ98rkD8rKysli2bFmh/mqllFfHrpQq1pb169fToUOHIo956KGHeOihh7jxxhu5/PLL876vWbMmU6ZMYf/+/VSvXj3v++zsbMaOHcv06dPZu3dvsTYA3H777Vx33XUsX76cNWvWcOWVVzJu3DgmTpxY5Hn+PGMunumqlCoUvk9MTPTrWp73zX/t3N9yr+1yuejYsaPXGRlVq1b1637+EnZRoLVeDiwHUEqlejnkSeAjrfWofN8VOe9Eaz3C46vHlFIdga5ARIgCp7Zw7YjTuklCEYQSYYoeLr74YrTWHDhwgFatWnk95tNPP6VMmTIFWrOhEkj3QdmyZQu01sE9FiB/uB3guuuuo3fv3tx5550B2VKrVi0GDx7M4MGDmTJlCjNmzGDixIlceOGFvP766xw7dizv/l988QUul4sLL7yQc889l5o1a/Lxxx/Trl27gO5ZFOeccw41atRgw4YNBaIQn3/+eaGITlFccsklLFq0iKSkJNNnM9hqTIFSKgboDDytlFqJu4thN/Cs1vrtAC9XFjhsrIXW4cQWrmAMoQhCiTBFDykpKfTt25cBAwYwbdo0LrnkEv755x/WrVtH/fr16d69O0uWLOHGG2809L6BdB9449xzz+Xcc88t8F1cXBzVqlXjggsu8Ps6I0aMoEOHDqSkpHD06FFWrlyZ53j79u3LhAkT6NevH48//jiHDx9myJAhdO/ePc/2hx9+mPvuu4+qVavSsWNHTp48yccff8yoUaOKum2xPPDAAzz66KOcf/75XHrppbzxxhusX7+eb775xu9r3HPPPbzyyiv07NmTsWPHUqVKFX777TcWLVrEtGnTCgmtULCVKADOxd298BAwHngQdxfCAqXUca31Mn8uopS6B6gFzDfLUCtwWgtXMIZQBGGggkK6GpzNnDlzePLJJxkzZgx79+6lYsWKNG/ePC9ysGTJEl555RWLrTQHl8vFvffey549eyhbtixt2rRh2rRpgHvMxKpVqxg5ciTNmzendOnSdOnShRkzZuSdf/fdd1OyZEmmTZvG2LFjqVixIjfccEPIdg0fPpxjx44xZswYDh48yAUXXMDixYv9Gq+RS260Ydy4cVx//fWcPn2aOnXq0L59e0qVKhWyjflRWmtDLxjQzZU6DgzLHWiolKoB/AG8qbXuk++4hUAFrXXRHVfuY2/CLQZ6aq0/8HHMYGAwQJ06dS5NS0sL9VEEwbb46+gjtathx44dQU9zs5KWLVvSqFEjXnjhBUOu9+2339KqVSv++uuvkELQ69aty7tO5cqVDbFNMIei3n2l1Nda60L9SHZbp+AQkIV79kB+dgB1ijtZKXUzbkHQz5cgANBaz9ZaN9NaN6tSpUoo9gqC7fF3XQK77XwYzYtM5TJ79mzKlCnDpk2bQr5WZmYm//nPf0ISBP/617+KHVQoOBtbdR9orTOUUpsAz46kFKDI5rxSqgcwF+ivtY78XSsE04m2ULqdBrNGatQiEBYsWMCpU6cAqF27dsjXa968echT15YvX05mZiZQ/NoDkUhW1nGys48RG1uWEiXCtxlTOLFinYIyQO6olBigjlKqKfCP1vp34BlgkVJqPe5phq2AXrhnEuReYx6A1rpfzudeuCMEo4HPlFK5i4VnaK3/MfuZhMgjGp2SnQaz+jtAMpKFW82aNa02oRBJSUlWm2AZWVnHOXXqZ8AFxBAfnxKRwsCKSEEzYG2+z4/l/M0FBmit38/p838ImAH8grs7IP8gQ8+uhLtwP8v0nL9cPgVaGmi7ECVE66h9Kwez5nfw/kQtghVu0dDaE0LH8z3Jzj6GWxAAuMjOPhaR748V6xSsA4pcLSJn4GFqEb+3LOqzIISKnULp0YA3B19c1CIY4RYtrT0nYGdx5u09iY0tizu47f7O/TnysNWYAkGwC3YKpYcDq8Pw3hx8cYMjAxFuWmuUUlHT2rM7dhdn3t6TUqWqEx+fYlsh40mwMwtFFAimYrWzCYVoWRfCDuMngonM+Cvc4uLiOHXqFAkJCVHT2rM7dhdnvt6TEiXK2MrOojh16lRQM01EFAimYQdnIxSPHcZPBBuZ8Ue4nXvuufzxxx/UrFmT+PhER7X2IhW7i7MSJcoE/J7YpTtEa82pU6f4448/gtoXQUSBYBp2cDZC8dhl/IRZkZlzzjkHgH379uVNp3NzxPB7Cf7jcsXkvHOliYnZY7U5RXCk2CNcrjNkZBwENKAoWbIqMTHGrjQYCHFxcVStWjXv3Q8EEQXF4OTwd6iE+ux2cTZWY/d3KBrGT5xzzjlBVZCC4A9paU+xa9d4IBuIpV69SSQljbParKAQUVAE0Rz+NuLZg3U2dneigeCUd8jfVnok5Y0gGEUkNYBEFBRBNIe/jXr2QEPCTnGi/hJJ71Ck5Y0gGEUkRdvstveBrchVfxDrePUXKFY9u93W3w+VSHqHIi1vBMFI/N1jxO5IpKAIIkn9BYpVzx5JYTiIrHco0vJGEITCWLp1sh1o1qyZ3rx5s9Vm2Aqr+42tvr/gG8kbwY7Iexk4vrZOlkiBUAA79BtHy6JBTkTyRrAbdqizIgkZUxChBLsXvfQbC4LgJKTOMhaJFBB5oadQlLNd+4195VGk5V20IPkmGIVd6yynEvWiIDv7RMSFnkKZBmfHgXG+RI6EDZ2J5JtgJHass5yMiILsYxEzjzyXUJWz3fqNfYkcJ6wBIC3iwjgh3wRnYbc6y8lEvSiIjS1LTMw/ERV6ijTl7Evk2D1sKC1i79g93wQhmhFREJsYUQ40l0hSzr5ETqjix+xWvLSIvRNpolUQIomoFwUQWQ40UvGVR8HmXTha8dIi9o2UOUGwJyIKTMLqvmSr7293imvFG5F+0iK2Dnn/BSE4RBSYgNV9yVbf3wkU1Yo3Mv2kRRx+5P0XhOCRxYtMwOrFNKy+vxPIbcXXqzepkNOQ9HM2kn+CEDwSKTABq/uSrb6/U/DVipf0czaSf4LVOLn7SjZEMmlDJKtfCqvvbzcCTQ9JP2cj+SdYhVO6r2RDpDBjdV+y1fe3E8EUUkk/ZyP5J1iF06ciy5gCIeKRPmZBEMJFbvcVxDqy+0oiBULEI33MghOQLo/IwOlTkUUUCBGP0wupEPk4pR9a8A8nd1+JKBCiAicXUiHycXI/tEQ4IgsRBYJgU6SyjR6c2sUlEY7IQ0SBINgQqWyjC6d2cTk5wiF4R0SBIJhIMK399PSN7N49EZfrDOCSyjZKKK6Ly46RI6dGOATfiCgQbI8dK0N/CKa1f/YctyCAGKlsBdtGjpwa4RB8I6LAJjjV8ZmNXStDfwgmtHr2HLcgqFChLXXrTrTlM8s7Gz7CsatnsMgg3shCRIENcLLjMxsn91mWL98SpUqgtQulSvjV2vcMx9pZEMg7Gz7CtaunIIgosAGBOL5oa505v89Se/xbNE4JxzpZrDmRot4LyQvBSEQU2AB/HV80tgic4iS9ceTIOrTOBjRaZ3LgwDy/7HdCONb5Ys15yK6eQjgQUWAD/HV80doicIKT9Ia7+yA2TxgcODCHatX6OfJZPHGyWIs0JC8EIxFRYBP8cXzSInAW5cq1oFq1QezfPwt3tCArooScU8VaJCJ5IRiFiAIHkdsiOHBgntWmCH5SrVo/Dh6cK0JOEARHIKLAgeQ6mYMH50bFuAInI6FdQRCchIgChxGt4wr8wa4zMyS0KwiCUxBR4DCicVyBP84+GmdmCIIQHYSzwSOiwGHYLRxt9svqr7OXCIrzsGtkRxDsRLgbPCIKHIhdwtHheFn9dfbRGEFxMhLZEQT/CHeDJ8a0K0cB6ekbSUt7ivT0jRFxn0Dx9rIaTa6zh9ginX1uBKVevUniYBxAON4dQYgE/K0DjUIiBUESrpaOnVtU4WidB9JdYpcISqg4MaweqM0S2YlenPh+W0m4u4xFFARJuEI6Be9zht27J9pmk5xwvayR4uz9wc4i0BfB2GzV2BhxSNbixPfbDoSzDhRRECThaumcvc8ZwMXhw2tIT19vm8IUTQ47HDhxwGSwNof73RGHZD1OfL+jDRlTECTh6sPOvU+FCm1xZ5dL+mDDhBVjOcLdf2gETrFZxjFYj1PelWhGIgUhEK6WTrlyLahbdyLp6eulDzZMWNWqNDusbkb43G7TZH0RyG6kdn8Wp+KUdyWaUVr7t897pNKsWTO9efNmq83wCydWVk6yOb+tR46sY9eu8UA2EEu9epNIShpntYkhIeHz4t9HSSMhWlBKfa21bub5vUQKHITT+u+dVMF62pqcPD2iRsenp29k9+6JeWNToqk/11MIFPXM0uctRDsiCgTTcFIF62lrZubfjg9z5jrDuLhK7Nw5Mk8QQEzECB2jl7+WqZJCtCOiIMoIZzg/mArWqu4Gb7Y6LTKTn/zOUCmF1i5yBUGFCm1tM601WMxa/lr6vIVoR0RBFBHucH6gFayV3Q2hOgO7jZ3I7wy1jkGpWLRWxMSUdLwgAHOXv3ayGBScTVZWFm+99RZ9+/ZFKWWJDWEXBUqpa4DRwKVADWCg1jrV45gU4GmgNVAS+BHoq7Xe4cf1rwbWAT9qrRsZarzDsSKcH0gFa3V3Q7DOwI5jJzydYXLydDIz/7aNaAkVf529tPwFp7Bnzx769OnD559/TrVq1Wjbtq0ldlgRKSgDbAPm5fwVQClVD9iQ81tr4AjQADhe3IWVUhVyzvsYqGmYxTYj2Fapt4rUTi1cO/TnBpMeRokZI/Mi0p1hNC5/LRiLneq+Dz74gAEDBpCRkcGCBQssEwRg8ZREpdRxYFj+SIFSaiGgtdZ9g7jeu8BWQAE3+xMpcNKURAi9VZq/IAC2a+FaWVCDTVsjIgV2jDZYjZ0qbSGysEt5O3PmDA8++CDTp0/n4osv5u233+b8888Py719TUm01YqGSqkYoDOwXSm1Uin1l1Jqk1Kqpx/nDgWqAk+YbaeVhLoqW7lyLUhKGke5ci1st8Kb1U4g2PQwYnVLu+VFcZi92mNupb1r13i2bm1jux1CBWdjh/L222+/cfXVVzN9+nTuvfdeNm7cGDZBUBR2G2h4Lu7uhYeA8cCDuLsQFiiljmutl3k7SSnVGJgAXKG1zi5ugIZSajAwGKBOnTrGWR8GQgmxezpdO4Tr89tmtXIPJT1CDVHbKS+KIxx5ZfX4EiGysbq8vffeewwcOBCAd999l27duoX1/kVhN1GQG7lYorV+Luf/W5RSzYBhQCFRoJQqBbwNjNZa7/LnJlrr2cBscHcfhGx1GAm2r9hXRW6Xfmc7OIFwpoe3BXXskhfFEY68sqrStjpaJYQHq8pbRkYGY8aMYcaMGTRr1oxFixZRr149Q+8R6jtsN1FwCMgCtnt8vwPo5eOc6sCFwByl1Jyc72IApZTKAm7QWn9khrFWEUyr1FdFbpdBWFYr91zyp4dZDsKXQLNLXhRHOPLKikrbDtEqIXyEu7ylpaXRo0cPvvrqK0aMGMGUKVMoVaqUofcw4h22lSjQWmcopTYBF3j8lAKk+TjtD6Cxx3dDgXZAN2C3kTY6Fbs4XV/YraVspoOwQ1QkFMKVV+GutJ2eL4J9Wb58ObfeeivZ2dksXryY7t27m3IfI95hK9YpKAMk53yMAeoopZoC/2itfweeARYppdYDnwCtcEcJuua7xjwArXU/rXUm7imO+e/xJ3BGa13g+2jGbk7XG3ZqKZvpIOwu0PwhNy1yB2jZJd9CIRLyRbAXWVlZTJgwgcmTJ9O0aVP+7//+j+Tk5OJPDBIjpp1bESloBqzN9/mxnL+5wACt9fs5AwEfAmYAvwD9PAYZOmt0oE2wk9O1O2Y6CCcItOKIxFB7JOSLYB8OHjxI7969Wbt2LXfccQczZ84kPj7e1Ht6vsMQ+LRz2TrZYesUCOFDBp35Ji3tqYjbWjoakHc6PGzYsIEePXrwzz//8N///pf+/ftbYkdR5VS2ThaEAJHIim/CFWoXJ2YckRjdsRtaa2bOnMno0aNJSkriyy+/pEmTJpbZE0w5FVEQ5URzpRvNzx4q4Qi1ixMzFhlIaS7Hjx/njjvu4O233+bGG29k7ty5lC9f3lKbgimnIgqimGiudM1+9mgQHGZHUsSJGYsMpDSPn3/+mW7duvHjjz/y1FNPMWbMGGJi/F8w2Mz6ItByKqIgQvHnJYvmStfMZ49msWUk4sSMRQZSmsPSpUu57bbbiIuL46OPPqJNmzYBnW+3+kJEgYWEe3EcT6K50vX17EbkSTSLLSMRJ2Y8Mk7GOLKzs5k4cSJPPPEEl156KYsXLyYpKSng69itvhBRUARmhnTssDhONFe63p7dqDyJZrFlNOLEBDty+PBh+vbty4oVKxg0aBAvvvgipUuXDupawdQXZvomEQU+MDukY5fFcaK50vV8dqPyJJrFliBEOtu2baNr1678/vvvvPzyywwZMoTiNuErikDrC7N9k4gCH5gd0inKcYeqAp3glOw4EM/IFn40iy0jseN7IkQvixcvpn///pQtW5a1a9dy1VVXGXLdQOoLs32TiAIfmB0C9rbyVFraU8TFVWLnzpEhq0A7OyW7DazJtenIkXUkJ08nM/NvcUI2wI7viWAudhWBLpeL8ePHM3nyZK644goWL15MjRo1LLHFbN8kosAH4Wht5zru/JWfUjFonQ24TB10YmXhM0vpBvtM4nzsid0GYAnmkZ6+kQMH5nHgwOtonW14OQylvktPT+fWW2/lww8/5I477uCFF16gVKlSltWh/vqmYO0TUVAERrS2A50aqLXOEQbKtEFqVjtBM5RuKM8kzseeRPKATbu2iK3gbNk9DbiX3Te6sRBs3fDzzz9z44038uuvv/LSSy9x1113oZSyvA4tzjeFYp+IggAItCAHOzXQ7BC21U7QjChMKM8Uyc7HyThhbEwwWO1Q7MbZspu7D4+xDaJg64YVK1bQu3dv4uLiWLNmDddee23I1wwXodgnosBPginIdp0aaJYTDEQ0+RuF8feaoTxTpDqfSMDOY2OCxe4OJdzkL7tKlaBatYFUq9bPktlY4N6/YNq0aYwZM4YmTZrw/vvvF1p/INwNiUAbpKHYJ6LAT/wtyPkzz65TA81wgma0fgK5ZqjPZLXzkXBy9CCRqYKYLcoDuf7p06cZMmQI8+bN45ZbbmHOnDkkJiaG3eb8FFcPeqs7QrFPRIGf+FOQvWWeXVugRjvBQFs/ZizDbLVjDxYJJ0cWxb3bEpkqjNll15/r79+/n+7du/Pll1/y2GOPMX78+CLXHwhXfVNUPVhU3RGsfSIK/MSfguwt85KSxkVFoQ+k9SPLMBdEwsmRg7/vtlMFrC+cHun65ptvuPHGGzl8+DDvvPMON910k9Um5VFUPWhG3SGiIACKK8jR4sS8EUjrx65jLawiWt8bpzsSb0SjwHN6pOudd96hX79+VK5cmQ0bNtC0aVOrTSpAUfWgGXWHiAIDiRYn5ovc5z1yZF2Bz57YdayFVUTje2OkI7GTuIhGgedUIaS15sknn2T8+PG0aNGC9957j6pVq1ptlld81YNm1B0iCgwmGpyYLwIJnUabEyyOaHtvjHIkdmulRuO77UQhdOrUKe644w4WLlxI3759efXVV4Pe0CgUjBC0RtcdIgoEwwikovf2ItupxScYi2feGuVI7NhKjTaB5zQhdPDgQbp27cqXX37Jk08+ybhx40La0ChY7CZocxFRIBhGKBW9XQuIEDq+8tYIR+LEVmok4hQhtG3bNjp16sSff/5p+YBCOwpaEFEgGEgoFb1dC4gQOr7y1ghHEuw7F6lRqUh9LiNYuXIlPXr0IDExkc8++4xmzZpZao9dBW2xokApdQ2wRWt9NAz2CA4n2IrergVECJ1w7DgayDsXqVGpSH0uI3jppZe49957ady4MR988AG1a9e22iTbdrv4EylYA8QqpdKArcCW3H+11rvNMy28iMK2FrsWECF07Ja3kRqVitTnCoXs7GweeOABnn/+eTp16sTChQspW7as1WblYcduF39EwbXA28B64AzQFpgAaKXUX8D/AU9qrQ+YZqXJ2FVhR5tQsWMBEYzBTnkbqVGpSH2uYDlx4gR9+/ZlyZIlDB8+nOeee47Y2FirzbI9/oiCWcBdWuvluV8opS4F5gOpQGvgW6XUpVrrfaZYaTJ2VNh2FSqCM4g2QRkIdotcGEWkPlcw7N+/n86dO/Ptt98yY8YMhg8fbrVJjsEfUZAM/Jr/C63110qp+4GhWuvrlVILgaeA/ibYaDp2VNh2FCqCMxBBWTx2ilwYSaQ+VyD88MMP3HDDDRw6dIj333+fzp07W22So4jx45ivgAFevv8ZaJXz/+eBlsaYFH5yFXa9epNsU4HmChWItY1QEZyBN0EpCNHAJ598wlVXXUVGRgbr168XQRAE/kQKRgGfKKXOAx7XWm9TSsXnfP9XzjGHgCom2RgW7KawJRQoBIsdI1+CYDbz58/n9ttvJyUlheXLl1OnTh2rTXIkxYqCnK6Cy4GZwHdKqUwgFsgA+uUcdgngyPEEdsZuQkVwBiIofbNsGWRlQZcuVlsiGIXWmieeeIJHH32UVq1a8e6771K+fHlLbLFiLI/R9/Rr8SKt9Y9Ae6VULdwCIBvYrLU+mHPIAWBsyNYIASGDyQRfiKAszKJF0LcvXH45dO4MMf50nnrgrcwZWQ6lTAdGZmYmd999N6+99hq33XYbr776KiVLlrTEFivG8phxz4BWNNRa7wX2evl+Q0hWCAEjg8kEO+AUJzZnDtxxB1x5pTtaEKwg8CxzgKG7PUZKmQ7He3H8+HF69OjBihUreOSRR3j88cct2cMgFysGh/t7z0DyQ5Y5dhD5M1ZmJ0QmvgqvHZ2vU5zYiy/CsGHQvj28+y4kJgZ3HV8DOIMth555GillOhzvxcGDB+nYsSPffvsts2bNYvDgwYZeHwrmD1Bs+bNiLI8/9ww0P0QUOATPjE1Onh62F9CODikS8VV47ep8neDEnnsORo2CG290dx+UKhX8tXxVwMGUQ295GikDRM1+L3766Sc6dOjAwYMHWbJkCZ06dTLs2rnkzx+lSgAarbNttyW8P/cMND9EFDgEz4zNzPw7LC9gKA5JxERg+Cq84XK+geaXnZ1YevpGJk8+zTPPtOKWW2DBAoiLC+2avirgosqhrzT1lqdJSeMiYoCome/F//73Pzp27EhMTAxr166lefPmxZ4TTD2UP3+0duV8q3G5MjhwYJ7P61kxlqe4ewaaHyIKHIK3jA3HCxhsn5VdW7d2xlfhNdv57ts3m/37X+P48W/R2uV3ftl1lkN6+kZGj17Fq69OpF27N3n55brExRnTFeOtzPkqh0WVAV95GgkDRM16L5YtW8Ytt9xC9erVWbVqFcnJyUUen56+kQMH5nHgwBy0zgqoHsqfP/kjBUqV4MCB14uNGtiJQPNDRIFDsKoCDrbPygmhZbvhLY9zHVhy8nQyM//2mffBOrp9+2bz889DCnwXSH7Z0YlNmpSRIwjmMXbsHRw//hiVKp2dKRAusVpUGbCroDIKo9+L119/ncGDB9O0aVOWLVtG1apVizz+bD6fBjQQ+HudP3/AnZ+nT//O/v2vEI56zchIayD5IaLAQRhR0AJ90fIXjri4SnmDq4oLhdo5tGxn8uexvw4sFEf311+LC33n5PyaPBmmTbuW9u0XMGbMHcTFlSjwLOEUq8WVATsKKruhtWby5Mk88sgjtG/fnnfeecevXQ7P5rPO+UYF/F575k+uSD94cK7p9ZqVkVYRBVFEMC9aroiIi6vEzp0j/Q6FRnpLKBz468BCcXRVqtzE4cMf5X2uXLkrtWuPcWR+PfMMPPww3HorzJhRn2PHHiv07oVTrEoZCA2Xy8WIESN44YUXuPXWW3nttdf8XoOgYPg/lmrVBlGtWj9DWtzhyFMrI60iCqKIQF+0giNwY9A6G3D5HQqVllBo+OvAQnF0NWq4p3L99ddiqlS5Ke+z03j+eRg7Fnr1gtRUiI1tQcWK1o8QlzIQHGfOnKFfv34sWrSI0aNHM2XKFGICWFzCzHz2J09DDf1bGWlVWuvij4pgmjVrpjdv3my1GWEh0EhBWtpT7No1HvcCljE5wkAXOtfpswzsbL+/ttn5Gczm5Zdh6FC46SZ46y0oIU0dR3Ps2DG6devGxx9/zNSpUxk9erTVJgWEUaF/s8u0UuprrXUzz++l+EQRgapnT7XqbbCb02cZ2N1+f1ua0doinTvXLQg6dYKFC0UQOAlvTu/PP//khhtuYMuWLcydO5d+/foVcxX7YVTo36oyLUUoygjkRfNHRDh9loHT7Y9m3nkHBg2Ctm3h//4PLFryPqIxq7XqfcZSDdq3b8+ePXtYsmQJHTt2NOx+ZuEtfZw+yFpEgVAkRi+MURRGV0D+XM/pBThaWbkS+vSBFi3g/fehdGmrLTIGO3UDmRlF8xTjmza9zYAB73DixAlWr17NVVddZch9zMRX+jh9gKmIAiEkjCoARldA/l4vEPvtVGF7YmfbjObzz6F7d/jXv+DDD4Pfy8Bu2K0ry8woWn4xvmNHCR5+eA6lSyfy2Wef0bhx4yLPtcu7Xtw6FE4thyIKhJAxogAYXQEFcj1/RxPbqcLOj51tM5otW6BjR6hdG1atgvLlrbbIOOzWlWVmFC1XjH/wwSuMHv0m1atX4aOPPqJ+/fo+zzm7QqE9VhSM1CijiALBFhhdwIy+nt0q7PzY2TYj+fVXuP56OOccWL0azj3XaouMxW5OJtgooL8t+dWr/2DQoDe48MILWbVqFdWqVSvymqGsUGgGTu8m8IWIAsEWGF3AjL6e3Srs/NjZNqPYv9+99XFmJqxdC3XqWG2R8djRyQQaBfQ3avX6669z5513csUVV7Bs2TLKFxPyMWKFQjNwcjeBL0QUCLbB6AJm5PXsWGHnYmfbjODoUbjhBjh4ED7+GC680GqLzMPpTsafqNVzzz3HqFGjuO6661i8eDGJfgwKOSt8zwCKSpU6U6eOM1fetDv+LxElCFFOuXItSEoaZ8uKyM62hUJGhntQ4bZt7imIl19utUVCUeQ6b4gt1JLXWjN+/HhGjRrFLbfcwtKlS/0SBOB+v5OTp6NULKA5fHiVKfYLEimIWOwyQjeSkTQ2F5cLBgxwRwdeemknF174f6Sn+05ryQ/r8RW1crlc3HfffcycOZPbb7+dWbNmERsbG9C1MzP/RmsX3pZaF4xDREEEEu7R6NFYGUfTiH+rePBBePNNePTRNP71r4vYtct3Wkt+2AfPLpDs7GzuvPNO5syZw8iRI3nuuedQSgV83WgYO2MHpPsgAvHWr2cWuZXxrl3j2bq1DenpG027l50IZxpHIy++CFOnwt13w8CBC4tNa8kPe5KRkUHv3r2ZM2cOEyZMCFoQwNkoRL16k0T0mYhECiKQcCrqaJkO54m0Wsxj6VIYPhw6d4aZM+HEiZb8/nvRaS35YT9OnTrFzTffzPLly3n22WcZNWpUyNd0+kBMszAyWhv2XRKVUtcAo4FLgRrAQK11qscxKcDTQGugJPAj0FdrvaOI65YEHgFuy7nuQeBZrfXMouyJ1F0SwxXSj+awbbBpbMVyzk5h82a49lr3aoVr155drdCfZ4ykdHA6x48f58Ybb2TdunX897//ZfBgZ27J7QSCrYPttEtiGWAbMC/nrwBKqXrAhpzfWgNHgAbA8WKu+xZQCxgM/AJUBeKNMtpphEtRR/p0uKIIJo2tWs7ZCfz+uzs6UKUKfPBBweWL/Ulrp7ciI0XUHDlyhBtuuIGvvvqKefPmceutt1ptUkRjdLQ27KJAa70cWA6glEr1csiTwEda6/yxpt+KuqZSqj3QBjhPa30o5+vdIRsr+IXTK+NwYuVyznbm6FHo0OEkJ07E8P77P1K1alOrTQorkSLuDh06RPv27dm2bRuLFi2ie/fuVpsU8RjddWargYZKqRigM7BdKbVSKfWXUmqTUqpnMad2BTYB9yul9iqlflFKzVRKlTHbZieSnr6RtLSnomZQoJ0oah63Ha5nBVlZcPPNh/nppzgmTOjCmTNX+v1uRsq7HAkDJQ8cOEDLli3ZsWMHS5Ys8UsQREr+WYnRAzDtNtDwXNzdCw8B44EHcXchLFBKHddaL/NxXn3gauAMcBNQHvgP7rEFN3serJQajLubgTo2Xy/VjP7nSGiROBW7L+dsBaNGwerVFRg1agiXXvoRLlesXxGPSHqXnT5Qcu/evbRp04Y//viD5cuX06pVq2LP8Tf/IqVbxUyMjNbaTRTkRi6WaK2fy/n/FqVUM2AY4EsUxOBeFLuP1jodQCk1DFillKqqtT6Y/2Ct9WxgNrgHGvpjmBUvphmFJlLCzXYi0HfDzss5h5uXX3bPMLjnnn3ceON8XC7/Ix6R9C47Wdzt3r2b1q1bc+jQIVatWsVVV13l13n+5J9nHZicPJ3MzL8dl0ZOwm6i4BCQBWz3+H4H0KuI8/YDf+QKgnznANTBPRMhaKxqkQRTaIqzzektErsRSa3VcPPxx3Dvve6tkGfMqMHx44E5xUh7l50o7nbu3EmbNm04evQoa9asoXnz5n6f60/+FawDz/DLL8PQ2iVlzQASEvC6xrStRIHWOkMptQm4wOOnFCCtiFM3ALcopcporY/nO4dizvMLq1okgRea4m1zcovEjkRSazWc7NwJt9wCDRrAwoUQGxu4U5R32Vp++uknWrduzZkzZ/jkk0+4+OKLAzo/N/8OHCg0CS2P/HWgUgqts5FljkMnPX0jNWvm+cgChF0U5Az+S875GAPUUUo1Bf7RWv8OPAMsUkqtBz4BWuGOEnTNd415AFrrfjlfLcQ9BmGOUmoi7jEFM4B3tNZ/hmqzVS0Sfyq9YGxzYovErkRaazUcpKfDjTdCTIx7oaJzzgn+WvIuW8MPP/xAmzZt0Fqzbt06GjVqFPS1Dh6ci8uVwcGDcwu1/vPXgXFxldi5c6SUNQM4cmQdSnmfaGBFpKAZsDbf58dy/uYCA7TW7+cMBHwIt2P/BejnMciwwOhArfVxpVRb3IMLNwGHgfdxD1QMGStbJMVVetJashZJ/8BwueDWW+GXX2D1aqhf32qLhED57rvvaNu2LbGxsaxdu5YLQ9jL2p9IW/46MDGxsZQ1AyhfviVa4/L2W9hXNLQbkbqiYTQgo5KdxyOPwJNPuvc2GDrUamuEQNmyZQtt27aldOnSfPLJJ6SkFI5AB1IuZUyOdSQmqh9PnNCFFJ2txhQIkYkZzlsqE+fxf//nFgR33OHe6MgXIvbsyddff027du0oU6YMa9eu5bzzzit0TKDlUiJt1nHyJCe8fS+iQDAVs5y3DPBzFt9/DwMGQIsW8MIL4GujPBF79mTz5s20a9eOcuXKsXbtWurVq+f1uGDKpYwLsRe2WtFQMAcrVw0za6W2SFjJL1o4fBi6doVy5WDxYihVyvex4d72W1bTK55NmzbRtm1bypcvz6effupTEICUy0hAIgURjtUtL7NG50vY0RlkZ0PfvrBnD3z6KVSvXvTx4ZrNYXW5cApfffUV7dq1o1KlSqxdu5akpKQij5dy6XxEFEQ4VofZzawkJOxofx57DFasgP/+1911UBzhcipWlwsn8L///Y/27dtTuXJl1q5d6/eS8FIunY2IggjHDvPopZKITj78ECZNgkGDYPBg/88Lx/tih3JhZ3IFQZUqVVi7di21a9e22iQhTMiUxJwpiZE84jmSn00IjHC9Czt3QrNmcN558PnnEB9v2q2CRsqFd3K7DCpXrsy6detEEEQoSqmvtdbNPL+XSAGR378oLXXfDiBQx+BkRxKu9/zkSbj5ZveKhe+8Y09BAFIuvLFp06a8LgMRBM4nmPpKRAHSvxjp+HKGgTpJp4vHcL3nw4bBd9/BsmVQxED1AjhZbEUKudMOK1asKF0GEUCw9ZVMSUSm0UQ6vqa5BTr9LZzT5cwgHO/566/DnDnulQs7dPDvnNzKa9eu8Wzd2kamCFrAN998Q7t27ahQoUJAgwoF+xJsfSWRAswf8SytIGvxNags0MFmdhmcFuz7ZPZ7vnUr3HMPtGkDEyb4f55E6qwld+nicuXKsW7dumKnHQrOINj6SgYamrz3gdNDzk7Em9NMT9+Yt0VrtWr9CnzvpDEFZr5PoTzb0aPugYUnTsC338K55wZ2Xykj1vD999/TqlUrEhISil2YSHAeRZVpGWhoAenpG9m9eyIu1xlkD/DwUJSDyb9Fa3LydDIz/6Z8+ZYkJY0rcH5RjtHqwWlmtapDccxau6cc/vorrFsXmCAAWfDGKrZv306bNm3yNjcSQeAMAhHvwdRXIgpM4mwl6xYEECPjFcKAL6dZ8Psz/PLLMLR2hTTw0ArM6sIIRWz897/w9tsweTL8+9/B3d9qsRVt/Pjjj7Ru3ZoSJUrwySefkJycbLVJgh+Eo46SgYYmcbaSdQuCChXa2tLJBIvd1o3PtScurpLXwXT5B9kpFYPW2YQ68NAKclvV9epNMvR9CnYQ4pYtMHKke1Dh2LGGmOI3dnsHncLOnTtp3bo1Wmuf2x8L9iQcdZRECkzCs0VXt+7EiBIEdmpRe9qTv2sg1678Ieq4uErs3Dky5IGHgdpoVHjcjFZ1MCH8Y8egRw+oXBnmzXOvSxAu7PYOOoXdu3fTunVrMjIyWLduHQ0aNLDaJCEAwjHYWUSBSURyP6ndRot72pOZ+XeBcQK55HemiYmNC+WNWXkWigML58DGQMSG1jB0qHscwSefuIVBOLHbO+gE9uzZQ+vWrTl27Bhr166lUaNGVpskBEg4/IqIAhOJhH5Sb04pVLXqayZAsARjj6+8MSPPgnVgdm4Nz5sHb7wBEyfCtdeG//52mR7qFPbv30+bNm34+++/WbNmDU2bNrXaJCFIzPYrIgoEn/hySqGo1fT0jWzZ0gqtzwBw4MDrNG0aWivP7lGZYB2YXVvDP/3kXo/g2mvdixRZgd3z3E789ddftG3bln379vHRRx9x2WWXWW2SYGNEFAg+KcopBatWjxxZh9YZeZ+1zvTL2dl9qmBRBOvA7NgaPnMGeveGUqVgwQKIjbXOFjvneVGEs0vo8OHDtG/fnt9++40VK1Zw5ZVXmno/wfmIKBB8YoZTKl++JUqVzIsUKBVX7HXtGkY3e76wHVvDDz3kXpxoyRKoWdNqa5xHON/lY8eO0aFDB7Zv387SpUtp2bKlKfcRIgsRBYJPzHBK5cq1oGnTtQGNKbBjGD1clXu4W8NFCZ2VK+G559wbHt14Y9hMChqrV5/0Rrje5ZMnT9KpUyc2b97M4sWLue666wy/hyd2TG8hcEQUCEVi1vS3QK5px6mCdhQqoVKU0PnzTxgwABo1gqlTrbXTH+waXQpHl9CZM2fo1q0b69evZ+HChXTp0sXwe3gSjvQW0REeRBQIpmD0vHxzpwqeQakYzj//RWrUGOzXuXbs7w8VX0JHaxg4EI4cgdWroXRpqy0tHruKNrO7hDIzM+nVqxcfffQRr7/+Or169TL0+r4wO73tKvIiEREFguGYUYDNmyroXoZaaxe//DKMxMTGft3Hjv39oeJL6Lz0EixfDjNmQOPG1troL3YWbWZ1CblcLgYOHMj777/PzJkzGThwoOH38IXZ6W1XkReJiCgQDMcpBdg96DEGrV0AaJ0dkK1OHf3uC89VH48cWcePP8YzenRTrr8e7r3Xagv9J/dZcseuRDpaa4YOHcqCBQt48sknuTdfZoUj7G62SLazyIs0RBQIhuOUAlyuXAvOP//FnM2RsomJKWVLW8O9qiHA1q1tOHNGc889HUhMzGTOnDiUMvXWppB/Z8xIDTlrrRkzZgyzZs3iwQcf5KGHHsr7LZxhdzNFciRG5uyKiAKhSIJxSE4qwDVqDPa65LFdsKIvNTfSk5o6iV9+acrs2e8QH1+Tn34ybhXKcOCUiFWoPPnkkzz77LPcc889TJ48ucBvkZQGkRaZsysiCgSfhOKQwlmAQ21J27my8adSNzqSUL58S77/viVvvjmWjh3n0LFjJlu29EHrTMD/VSitHi3ulIhVcRSVjjNnzmT8+PH069ePmTNnojzCOZGSBkJhzCpfIgqKweqKzUoOHJiHy3Ua0LZtZUT6qOTiKnUznj8mpgXTpn1I7drpzJrVkGPHUvMEAfi3CqUd8sVJEStfFJWOc+fOZcSIEXTt2pXXXnuNGC/bVEZCGgiFMbN8iSgoAjtUbFbh3rTodUADoFQJW7Yy7BQeNUNAFlepm/H8998Pe/aU5rPPSlOz5uX89FOqxxExxb4LdskXO0eB/MFXOr777rsMGjSIli0vY8qUSzhxYpPP53R6GgiFMbN8hXEHdOfhLeGjBfceBdk5nxTVqg00tWJJT99IWtpTpKdvDOi83JY0xFoaHs0VkLt2jWfr1jYBP0dRlCvXgqSkcV7T3+jn/+ADePVVGDMGrrrK/V21av1QqiSggFhSUl4qYIu3vLNLvjgdb+m4Zs0aevfuzaWXXsjYsd+zb99jhr9zgr0xs3xJpMAH6ekbOX36d5SKRWssdzjhDv95hq2rVetn2r1CHbtgh/CoVS1jI5//0CG4805o0gQee6zgPZo2Xef1HmbspCmcxTMdf/wxhq5du3LBBRfw6qtd+eefyVgdjRHCj5nlS0SBF9zb+7bM6UctQfXqd1o24tqqLoxwVuqhOlQ7hEetHNBl1PPfcw/88w989BGULOnfPczYSVMoSG46/vDDD3To8G+qVq3KqlWrSEjYzZEjz8ogwijFrPIlosALBw7My7e9r3uAVaS3QL1FI8JVqZ91qO7lhuPiKpl+T6Nxesv47bdh0SJ44IF1JCWVApy7vXMksmvXLtq3b0/p0qVZvXo11atXB6o7+p0T7ImIApvjT6UbaveC1QMqy5VrQXLydH755R60zmbnzpF+LzdsJ3yJKLvPYDlwAO6+O5OGDb/luuuuY+vWWL/fAaeLISdw4MAB2rVrx6lTp/jss8+oX79+3m8SjRGMRkSBF6pV68eBA3PQOgOlvPenh6uiL67S9cehF2VrevpGdu+emLcHgFV9k5mZf6O1ttQGM7BacBWH1jBkCJw8CWPHDiA2NgOXKzaql3u2E0eOHOH6669n//79fPzxxzRq1Mhqk4QIR0SBF9wDq9b64YjPoFQs55//gt+76wVrj69Kt7juhaKcUv7nABcQY1kIOFLD0HaZmueLBQtg6VJ44ok/qFt3Ny6XzBawC6dOneLGG29k+/btfPjhh1xxxRVWmyREASIKfFC8I86/u949loW7i3OmRTmls7+5BUGFCm2pW3eiZfPJIzEMbWexs38/DB/unnr44IN1OX488tLfqWRlZdGrVy8+//xz3nzzTdq3b2+1SWHH7t1uRmG35xRREATu3fVi8+2u5wqoBWjkS1CcMy3KKXn+ZpUgyCXQMLTdCpM37CR28qfXOee0YMgQOHUKXn8dYmOlG8AuaK258847Wbp0KS+++CI9e/a02qSAMKJc2r3bzSjs+JwiCoKgXLkWnH/+CzkD41wB7a4X7pegKKdkJ4cVKHYsTL6wg7P1TK+fftrKBx+cz7RpkJJiqWmCB2PHjiU1NZWJEycydOhQq80JiGDKpTcRYfduN6Ow43OKKAiSYHfXM+olyC1IcXGV2LlzZJGFsCinZAeHFQx2LEx2Jn96HTpUgTFjatGiBYwYYbVlQn6mTZvG1KlTGTp0KI8++qjV5gRMoOXSl4iwc7ebkdjxOUUUEHy4KxiHasRLkL8gKRWTsxxxZI3aLw47FiazCSUsmz+9Zs58gVOnSuV1Gwj24I033mD06NHccsstXnc8dAKBlktfIsLJUcxAsONzRr0oyM4+YZtwvr/kL0ha6xxhoAxxjk7op4fA09Gs5wpXeoXaXZKbXgsWHODTT7vx9NPQoIFp5goBsmLFCgYOHEjr1q2ZP38+sQ5Va4GWy6JEhFOjmIFit+cUUZB9rNgpfWbsfBfKtTwLUnLydDIz/w7ZRif104P/6WjWc4UzvYzoLsnKasFjj8Gll8KoUaaYaUvsLnT/97//cfPNN9O4cWPee+89SpUqZbVJIRFI/WZWS9nueW5nol4UxMaWJSbmn5w1B1SBJXbt6iTNKkh26ac3ukCb9VzhTC8jukvuv//s3gYloqTk27UM5/LTTz/RsWNHqlevzooVKzjnnHOsNslQ/CnLRreU7Z7ndidKqgbfxMYm5iyxO6zQErt2cZLeMCPkZId+ejMKtFnPFc70ClUIrloF8+bBI4+4d0GMFuxchvft28d1111HbGws77zzFKdPv056euS0bK1yznbOcycQ9aIAcpfYdeE5WM8OTjKc2GHQSyAF2t+IglnPFe70ClYIHj/uXsq4QQO3KIgm7FqG09PTueGGGzh06BDLlv2Ho0f7c+RIZLVsrXLOds1zpyCiAN8vkR2cZLixetCLvwU60FaIWc9ldXr5wyOPQFoafP45OLy7OmDsWIbPnDlDt27d+OGHH1i2bBl1637Nrl2R17K1yjnbMc/9wS7jIEQUUPwCP055qSIBfwu0hAj946uvYOZMGDrUvZxxNGKnMuxyuejXrx9r165l/vz5tG/fnvT0shHZsjXSOQfqMM3K8337ZvPXX4upUuUmQ/e7sdM4CBEFOdip4ohEAinU/uSFhAiLJzMT7rgDatSAp56y2hoBYNSoUSxatIhnnnmGW2+9FXBuy9YfjKhX7eIw9+2bzc8/DwHg8OGPAAwTBnZq5IgoEEzHjELtb0Vql5CcFTz7LHz/Pbz/PkTYoHZH8txzzzF9+nSGDx/O6NGjC/wmjRLf2MVh/vXX4kKfjRIFdmrkiCgQTMesQl1cRWqXFoYV7NwJjz0G3btDly5WWyO89dZbjBo1iptvvpnnn3++wGqF0Sxc/cEuDrNKlZvyIgS5n43CTtEiEQWC6VhVqO3Swgg3WsPdd7sHFf7nP1ZbI6xbt47+/fvz73//m/nz5xMTE5P3WzQLV38Jt8P0JdJyowJmjCkA+0SLwi4KlFLXAKOBS4EawECtdarHMSnA00BroCTwI9BXa72jiOv2AcYAKcBRYA0wWmt9wITHEALAKhVslxZGuFmwANasgRdfdI8nEKxj27ZtdO3aleTkZJYsWULp0qUL/B6twjVQwuUwixNpNWoMNlwM2A0rIgVlgG3AvJy/Aiil6gEbcn5rDRwBGgDHfV1QKXUVMB+32HgfqAq8BCwA2hhpvBAcVqhgs8WIHcO+f/8N990Hl18Od91l/v3smAZ2Ye/evXTo0IHExERWrFhBhQoVCh0TrcLVrohIs0AUaK2XA8sBlFKpXg55EvhIa51/dfbfirlsC2Cv1vr5nM+7lFL/ASR4GuWYJUbsGvYdOxYOH4bZsyFflNoU7JoGduDo0aN07NiR9PR01q9fT506dbweZ6e+ZEFEGoDJ1UZgKKVigM7AdqXUSqXUX0qpTUqpnsWcugGorpTqrNxUBnqRIz4EwRfp6RtJS3uK9PSNAZ3nrUVhNZ9/Dq+95t7j4KKLzL+fHdPADmRmZnLzzTezfft23nnnHZoUs650uXItSEoaJ4LABuSKtHr1JkWtyLXbQMNzcXcvPASMBx7E3YWwQCl1XGu9zNtJWuuNSqleuLsL4nE/12qgf1isFhxJKC1du7UoMjPd3QV16sCECQV/MyvEb7c0sANaa+68805Wr17NnDlzaN++vdUmCV4oqkyYsUFTMOXPqq45u4mC3MjFEq31czn/36KUagYMA7yKAqVUQ9xdBZOAVUB1YCowC+jn5fjBwGDAZ1hPiHxC6T+0W9j3uefghx9g6VJITDz7vZkhfrulgR147LHHmDt3LhMnTmTAgAFWmyN4IZzdXsHey8quOVt1HwCHgCxgu8f3O4CivPc44Cut9VSt9Xda61XAUOA2pVQtz4O11rO11s201s2qVKmS932woWQ7E4nPZBS5LV2IDaqla5ewb1oaPP44dO0KnTsX/M3sEL9d0sAOpKam8thjjzFgwAAeffRRS20JtdxHcr0Rzm6vYO/lz3lm5ZGtIgVa6wyl1CbgAo+fUoC0Ik5NALI9vsv97JfwicRBU5H4TEYSKS3dkSPd/86YUfg3CfGHhzVr1nDnnXfStm1bZs+eXWBxonDjWe6Tk6eTmfm33+94pNcb4SwTwd6ruPPMzCMr1ikoAyTnfIwB6iilmgL/aK1/B54BFiml1gOfAK1wDxrsmu8a8wC01rldAx8Aryil7uZs98F04JucaxZLJE5FKeqZZCqZG7ssGBIsH37oXsZ4yhT3eAJPIkX42Jlt27Zx00030aBBA9555x3i4uIstadguT/DL7/cg9bab+cRiXVhfsJZJoK9V3HnmZlHVkQKmgFr831+LOdvLjBAa/1+Tp//Q8AM4Begn8cgwwLVn9Y6VSlVFve4g2lAOm5BMdZfo5zQogrUkft6pkhvCUQLJ0/CvffChReejRZ4w+nCx87s27ePG264gcTERJYvX065cuWsNqlAuVcqBq2zAZffziPQutCJDYxwlolg71XUeWb6KyvWKVgHFBlby1nhMLWI31t6+S6kdQns3qIKxpH7eqZIbwnkx4kVlr88/TTs3g1r10LJklZbExxOzp/jx4/TqVMn/vnnH9avX0/t2rWtNgkoWO7j4iqxc+fIgJxHIHWhNDCswUx/ZasxBVZj5xZVsI7c2zM5ISpiBJFcYe3c6e4y6NsXWrYM772NcuROzp/s7Gx69erF1q1b+eCDD7j44outNqkA+ct9YmLjoMLX/hwbTQ0Mu2GWvxJR4BCMdOR2j4oYQXr6RnbvnojLdYZAQqdOQGsYPty94dHUqYGdG6pDN9KRO9mh3HfffSxbtoyXXnqJG264wWpzisTMxk6g9dK+fbNN21Ao3Dg5ylUUIgq8YMfMNtqR2zkqEipnHZdbEEBMREVEliyBFSvg+eehenX/zzPCoRvpyJ0asZo5cyb/+c9/uP/++7n77rutNsdSAqmX9u2bzc8/DwHI24LYqcLAyVGu4hBR4IHRmW2kwIhkR24kZx2XWxBUqNCWunUnRkTanTzpHlTYqBEMGxbYuUY49GiPWC1dupSRI0fSrVs3nnnmGavNsQX+1kt//bW40GenigInR7mKQ0SBB0ZmdiSrSTvj6bgiRRCAexxBWhqsWwclckqvv8LTCIcezRGrb775ht69e9OsWTPeeOMNYmNjrTYprATawPE8vkqVm/IiBABVqtxkprmmRnydGuXyBxEFHhiZ2ZGsJu2ME1ug/vDbb25R0Ls3XHut+7tAhGego8rDtTa8E9i7dy+dO3emcuXKLF26lISEBKtNCiuBNnC8HZ8bFQh0TEEwzt3sBlmk1jEgoqAQRma2EQLDjuMbnEAkOq777nNHB/IPLgxUePqTLnaPcIW7TBw/fpzOnTtz7NgxNmzYQLVq1Uy/p90I9D3zdXyNGoMD6jII9l0MR4MsXHVMuN93EQVeMCqzQxUYwRQIERGRycqV7s2OpkyBmjXPfm9GGNPfCtWKdy3cgiU7O5s+ffrw3XffsWzZMho3bmzavexMoO+ZUe9lsM49UsL7Vgh0EQUmE4rACLRA2L2FJwRHRgaMGAHnn1945UIzwpj+VKhWvWvh7pJ74IEH+OCDD3jhhRe4/vrrTbuP3Qn0PTPqvQzWuUdKeN+KLmgRBTYm0AIhYxgik5kz4eefYfly7ysXGh3G9KdCtepdC2cLcNasWTz//PMMHz6ce+65x7T7OIVA3zMj3stQnHskdCFaEfFQWmvTb2JnmjVrpjdv3my1GT4JJEQbrZGCYAciGdmKMCuUfuAApKTANde4Nz8Kxz39wcp3LRzPvWbNGq6//nquu+46li5d6qiZBk7oQsxvI2B7e63ErPxUSn2ttW5W6HsRBfYWBYFixgvk7zXt3seca5/nevBGrEVhloMcOBAWLIAffnB3H4Tjnv7iBOcTDD/++CNXXHEFderUYcOGDZQtW9Zqk/zGDu9FceS3UalYQKF1lm3tDYSiyoTdyosvUSDdB0KR+FvJ2L2PuWBFFPjOcUbYECibNkFqKowZU1AQmHnPQIiE8Kwnhw4dolOnTpQqVYoPPvjAUYIA7PFeFEd+G7V25XyrbWuvvxRVBzpBrOUSY7UBTiY9fSNpaU+Rnr7RalOAsy/erl3j2bq1jSF2eatkQjnOaHL73CC2yD63ghVRNkrFFHuO0TYEgtbuwYVVq8Ijj4TnntHOmTNn6N69O3v37uX9998nKSnJapMCxgnvRX4blYpDKf/ttVudm5+i6kCr6sdgkEhBkNhR+ZnRSvB3oItVU4D8HYjkaV9y8nQyM/82bFU+o0c6v/kmbNwIzzzzIS5XJaDwAkKRMLraLmitueuuu1i/fj0LFiygYUNIS3vKcWlr1/fCM3Se30bwb0yBHevc/BRVBzppiqSMKQhyTEFa2lPs2jUeyMYu6+ubVWisGFNg5dgIqzlxAlJSzlC27A+89NLllCgRZ7sKMNKYOnUqY8aMYfz48Ywa1cHWzsdpGFUvFaxzY6lXbxJJSeMMtzcUZExBFHNW+Z0BXBw+vIb09PWWViBmtRJy+45zQ3e+rm1UH7NZ4sYpfeDPPAP79pVi5syRxMRk4XJpR/e12p0PPviAsWPHcssttzBx4kT27Jli+355J2FUBNMJre2i6hin1D8iCoIk1wHv3j2Rw4fXYNSgNSPsMuP+4Qzd2WmwVP4ZC0Z1NxTFnj3uZYxvuukQTZpsxuWKQSlFXFwl0+4ZzXz//ff06dOHSy65hNTUVGJiYkxxPnZrJYYTo9LTrl0jkYaIghAoV64FdetOJD19va3VqxGE01HbpUVwVgi5o0EQQ0xMKVMF0bhx7kGG06ZVJi5uOr/8Mgyts9m5cySJiY2lIjSQP//8k86dO1O2bFmWLFmSt8mR0c7H7n3hZmNkejqlte1kRBSESLSo13A6aiPS1IiW2VkhlDttytxo0P/+516T4KGHICkJ0tL+zpmyZY8oVCSRO9Pg4MGDrF+/npr5N5TAWOdjp8iXVYgzdw4iCgwgGl74cIufUNJ0377Z/PLLPWjtCqll7zluxB0pMEcQae3eBbFaNXjwQc/7R3YUKtxorbn77rvZsGEDb7/9Ns2aFRprZSiSj4KTEFHghWju/ysKJ4if9PSNOSH3LABcrjNBt8zyC6G4uEocO/at0ebm8fbb7imIr74KuevlREsUKtxMnz6dOXPm8Oijj9KjRw/T7yf5KDgJmZLoMSUx2vv/nI572tIj5Ib8lSpB06af2bpf+PRpaNAAypeHr78GBy2z7zhWrFhBp06d6NatG4sWLSImRtZvE6ITX1MSpUR44KSVp6zAziuKQW6othQQg1JxnH/+i4Y4bzPfixkzIC0Npk0TQWAmP/74I7169aJx48bMnTtXBIEgeEG6DzyQ/j/fOCGKYlao1qz34s8/YfJk6NQJ2rQx5JKCFw4fPkznzp0pVaoUS5YsITEx0WqTBMGWiCjwQPr/fOOUUdRmjH0w672YONG9guHUqYZcTvBCVlYWPXr0IC0tjbVr1zpyTwO7Ea5xVzK+K/yIKPCCEwbUWUG0R1GMfi9+/BFmz4YhQ9xjCgRzeOCBB1izZg2vvfYaV111ldXmOJ5wRQyNmkUkBIZ0qgl+k9tarldvUkQX0HCNmxg7FhIS3NECJ2PncSapqalMnz6d4cOHM2jQIKvNMZVw5UM4xl0VnEXkyptFFOo1rXxPrb6/v0ikQAiISI+ihKsVtG4dLF3qHk9QpYrhlw8bdh5nsnHjRoYMGUKbNm2YNm2a1eaYSjjzIRwRwyNH1qF1dt5npWJCuo/V76nV9w8EiRQIQj7C0QpyuWD0aKhVC0aONPzyYcXq2Tq+Wl9//PEH3bt3p3bt2rz99tuUKBHZ7Z9w5kM4IoZGzyKy+j21+v6BENklxUCsGvAiA23CSzhaQW+95V6PYO5cyMjYyO+/zwOgWrV+jstjK8eZ+Gp9nTp1iq5du3L8+HHWrFlDpUqRv5lUuPPB7Iih0QN7rR4PZfX9A0EWL/JYvMgbVoV+nBRyiiTyCzHAUFF25ox7UGG5crB27Ua++64lWmcAoFQpzj9/Zlh2YzQSq4Sre6Gq8UA2EEu9epOoU+dB+vfvz/z583n//ffp0qVL2OyxGmlAFI3V6WP1/T3xtXiRRAr8wKqpeE6ZAhhp5LaC8osypUpQrdrAkFvzL70Eu3fDRx/B0aPr0Doz7zetM3JGW2tHiUCrxpl4a31Nnz6d+fPn8/jjj0eVIIDIH+8TKkamTzAO3in5I6LAD6wK/Tgp5BSJ5BdlWmezf/8sDh6cG7SzPnwYJk2C9u2hXTtIT2+JUnF5kQKIkV0RA8AzxLxp0wlGjx5N9+7defjhh602T4hQIj2CK6LAD6xa0EgWUrKWs6LsNKABHZKzfvppOHIEpkxxfy5XrgVNm67jwAH3mIKyZS9m586RIgIDILf19dtvv9Gz52U0bNhQljAWTCXSI7giCvzEqtCPU0JOkUiuKDtwYB4HDryO1tlBO+s9e9x7HNx6KzRtWvAe+fM3MbGxiMAAOX78OF27dkVrzfvvv0+ZMmWsNkmIYCI9giuiQBCKINdpV6vWLyRnPXEiaO3uPvDnfnbGTgOmtNYMHDiQH374gZUrV3LeeedZao/R2CmtBTeRHsEVUeBQ7FRZ2MkWswjFWf/wA6SmutckcPqy+3brT3366ad55513mDp1Ku3atbPMDjOwW1p7wy5lP9x2OEG8B4uIAgdip8rCTrbYAW+V00MPQZky7n+dTsH+1DPs3j2RunUnWpLnK1as4OGHH6Z3796MGjUq7Pf3hVEOyk5p7Q27lH272BEpyGgcm+HP+th2Wh3LTrYYQSjrk+dWTrt2jWfr1jakp29kwwb3csYPPgiRsIZObn+qu+pwcfjwmrxnDSe//PILffr04aKLLuLVV19FKRXW+/vC2zsQLHZJa1+YVfYDLYORVgdZjYgCG+FvhXK2soi1fKCLXWwxYrORUCt0z8rp8OF1jB0L1avDiBFBm2UrcvtTK1RoS66zCndFvHfvGjp2vBqlXLz33nskJCSE7d7FYaSDskNaF0X58i1RqgSgUKqEIWU/mDJolzooUpDuAxvh71QXOw10sYMtRoUPQ51q5Dkq+auvurJhA/z3v+7dECOFcuVaULfuRNLT14d9BPaRI19w663X8euvLqZOLUnFigeAemG5tz8YPTLdyrT2D+3xb2gEUwbtUAdFEiIKbEQgFYqdBrpYbYtR84bzp79SsZw+/Tvp6RsDWrEst3IqW7Ylw4ZdSHIyROKOvVZVxE8//TiffurirrvgkkuybTdH3Mh0yT82wY5O7+xOhhqt/cuL4sZbeNaBcXGVSEt7qtjnzv0tN4pilzRyIiIKbIQo3uAwqnVWcF2COezf/0rAKxjmCqQ33oDvv3dvfhQXF5Q5tifcYvCjjz5i6tTVtG4dS48eusi8tnJUvBHp4i36lZQ0ziAL/bt/cekXaLnzJ6KXvw6Mi6tUYDGvosqhDDY0DhEFNsPqVrcTMVJMlSvXIqcFlEWwkYeMDHj0Ubj4YrjlFu/H2GUql1PYtWsXvXr1omHDhsyfP4PMzP/5TLtIcBBWrprnb/oFWu4C6R4tV64FaWlP+Z0Gkb7KYDgRURAlRLoTMlJMhRp5eOUV2LULVq4Eb6vtRoLTCicnT56kW7duaK157733qFEjGWjt8/hIcBBWrpoXSPoFUu4CfaZAjo/0VQbDiYiCIogURypOKDBCiTycOOFetfDaa90bH3kjEpxWuNBaM2TIEL777juWLVtGcnJyseeY7SDCUS9Y2ZVoVvoF+kyBHC9dr8YhosAHkeRIxQkFTrCRh//8Bw4ehHffBV9T56VV4z8vvvgib7zxBo8//jgdOnTw6xwzHUQ46wWruhLNTL9AnymQ46Xr1RhEFPggkhypOKHwkLsDYqdOcOWVvo+TVo1/bNiwgfvuu4/OnTsHvBWyWQ4iXPWC1VFKcbDRi4gCH0SSIxUnFB6efdYtDJ54ovhjpdItmv3793PzzTdTt25d5s2bZ5utkMNRL0RSlFJwHiIKfGDWfGOjCneg1xQn5D/B5Neff8L06dCrFzRpYq59ZuPt+cPZcs3MzKRHjx4cPXqU1atXU758eVPvFwjhENiRFKUUnIeIgiIwa76xHa9pNVaHS/PbEUzaPv00nDrl3iLZyXh7fqDYNDEy/0aPHs3nn3/Om2++SaNGjUK6lhmYLbAjKUopOA8RBSZjhuqPtJaEnUROMGm7dy+89BL07w8XXBAeO83C19r9RaWJkfn35ptvMnPmTEaOHEmvXr1CfyAHIt194ccujRI7IKLAZIJZ9cvolcTsjp1ETjBp+8QT4HK5FyxyOr6ev6g0MSr/tm3bxh133MHVV1/NM888E/rDOJho7O6zyjHbqVFiB8IuCpRS1wCjgUuBGsBArXVqvt997azxktb6niKu2xh4AWgO/APMAiZprY3ZqSNIAlH9Zq0kZnfsJHICTdvffoPXXoMhQ6Bu3fDYaCa+nr+oNDEi/9LT07nppps455xzWLRoEXGRuja0H0Rjq9VKx2ynRokdsCJSUAbYBszL+fOkusfnZsAHwCJfF1RKnQOsBj4DLgMaAHOAE8C00E0ODX9Vv1kridmdcIocfyrcQNL28cehRAl46CEjrbQWb89fVJqEmn9aawYOHMivv/7K2rVrqV7dswqIHqK11WqlY7ZTo8QfzBaNYRcFWuvlwHIApVSql98P5P+slOoC/Ky1/rSIy/YFEoD+WutTwDalVAPgfqXUc1ZHC/zFaS+nkeQ6nfT0jYV2RTOqEPgaRBfstX/6CebPh5EjoUaNoM3yaqdVYdRg7xuKSJ06dSrvvfcezz33HP/+97+DukakEK2tVivrPidFXsMhGm09pkApVQboBTxWzKEtgPU5giCXVcAkoC6wyxQDDcZJL6cZBDvy3V88K9wDB+Zx8ODcoK/92GMQHw9jxwZljlesailadd9169Yxbtw4evTowciRI02/n92J1oaB1XWfUyKv4RCNthYFQB+gJDC3mOOqAXs9vjuY7zdHiAJwzstpBsGMfA8Ezwo3lGtv2+beFnnsWDj33KDM8YpVLUUr7rtv3z569uxJSkoKr776KsrXutBRhNXO0Uqiue7zl3CIRmVlZF0pdRwYln+gocfvm4BdWusexVznI2Cv1npQvu/qAGnAlVrrjR7HDwYG53xshHuMg2AclYFDgZ6UkEBizZqkKIXSGv3HH/wM4PndyZOcCNawhAQSExIoe/Ikx4y+thF4S4OTJ4kniPQ04L6WpoWJBPV+Cj6R9DSWItMzfx0WYhlN0lpX8fzStpECpVRT3IMM/RnCdQCo6vFd1Xy/FUBrPRuYnXOfzVrrZsFbKngiaWoskp7GIulpLJKexmJ1etpjQXHvDMYd9l/jx7EbgX8rpUrn+64dsA/YbbxpgiAIghB5hF0UKKXKKKWa5kQCYoA6OZ/r5DsmAfeMgte8zRxQSj2llPo431cLgZNAqlKqkVKqO/Ag4JiZB4IgCIJgNVZECpoB3+b8xeOeWfAt8Hi+Y3oCibjXGvBGdeC83A9a63TckYEawGbgRdzrEzznhz2zAzNf8ANJU2OR9DQWSU9jkfQ0FkvT09KBhoIgCIIg2Ac7jykQBEEQBCGMiCgQBEEQBAGIAlGglBqqlNqllDqtlPpaKeVzHVWlVKpSSnv5i9T52gETSHrmHN9HKbVFKXVSKXVAKfWGUqpauOx1AkGk6T1KqR1KqVNKqZ+UUv3CZavdUUpdo5RaqpT6I6fsDvDjnMZKqU9z0vMPpdSjSlZSAgJPT6VU6Zx69DulVKZSal14LHUGQaRnS6XUEqXU/pw69Dul1KCizgmViBYFSqmewAxgMnAx8AWwIv9MBw9G4B7EmP/vN4rYjCmaCDQ9lVJXAfNxr0j5L6Ar0BBYEA57nUAQaXo3MAX3wNx/AROAF5VSncNjse3J3XBtBHCqmGPzb6Z2EPdmaiOAB4D7TbTRSQSUnkAscBr3jrXLTLTLqQSanlcC3wM3415o72VgtlKqj2kWaq0j9g/4H/CKx3e/AE/5ef5VgMa9KqLlz2P1X6DpiXuL7DSP7wYCx61+Frv8BZGmXwDPe3w3Dfjc6mex2x9wHBhQzDF3A0eB+HzfPQL8Qc5AbPnzPz09jn8BWGe13Xb9CzQ98523CFhsll0RGylQSpUELgU+8vjpI9zqyx/uBH7QWn9hpG1OJMj03ABUV0p1Vm4q497garl5ljqHINO0FO6WWH5OAc2VUnHGWhgV+NpMrQbuzdQEwW6cAxw26+IRKwpwrx8dy9mNkXI5iHuTpCJRSpUDegCvGG+aIwk4PbV7z4leuLsLMoC/AAX0N89MRxHMO7oKGKSUuixHaDUD7gDicq4nBEY1vKd/7m+CYBuUUp2ANpi4lkEki4JQuRV3+sy32hCnopRqCPwH9xbWlwLX465oZ1lpl8OZhLuv9gsgE1jC2V1EXVYZJQiCueSM0VoIDNdaf2XWfSJZFBwCsvG+UVKhTZK8cCfufpt/jDbMoQSTnuOAr7TWU7XW32mtVwFDgduUUrXMM9UxBJymWutT2r0baALu8HYd3Pt7HMMdiRECI6DN1ATBCpRSVwMrgEe11i+bea+IFQVa6wzga9zLH+enHe5Wlk+UUs2BJkjXQR5BpmcCbqeXn9zPEfvu+Uso76jWOlNrvVdrnY27i+ZDrbVECgJHNlMTbI1S6hrcgmCi1nq62fez7dbJBvEcMF8p9RXuQW934R5A9F8ApdQ8AK215zzvwcAvWut14TPVEQSanh8Ar+RMo1uFe4rndOAbrfXv4TXdtgSUpkqpFOBy4EugAu6pc42QcRqAe8M1IDnnY96Ga8A/WuvflVJPAc211m1yjlmIe1pnqlLqCSAF92Zqj+mcod7RTBDpmdttWBL3GJcyOcejtd4SRtNtSaDpqZRqibu78CVgYb41XrK11uZEBq2elhGGaR9DcSv+M7hbZdfk+20dHlNmgLK4p4qMsdp2O/4FkZ73Aj/g3sVyP+5Bh7Wsfg47/QWSpsCFuDcQOwmkA+8DF1j9DHb5A1rinkbs+Zea83sqsNvjnMbAZ7hndezHLRJkOmLw6bnb2zlWP4sd/gJNz5zP3o7fbZaNsiGSIAiCIAiA9OsKgiAIgpCDiAJBEARBEAARBYIgCIIg5CCiQBAEQRAEQESBIAiCIAg5iCgQBEEQBAEQUSAIgiAIQg4iCgRBEARBAEQUCILgMJRSLyql3rPaDkGIRGRFQ0EQHIVSqgKQqbU+brUtghBpiCgQBEEQBAGQ7gNBEAxCKXWpUupTpdQppdQ2pdSVSqnMnJ3ejLpHLaWUVko1MOqagiCcRUSBIAghk+Ok1wL/Ay7Bvf3w27i3Z99i4K2a4N4h8mcDrykIQg4lrDZAEISIYCawWms9JufzDqVUD9zbQB8x8D5Nge+11i4DrykIQg4SKRAEISSUUrWBdsDjHj+dAbZ6Of6JnC6Aov5a+rhdE4yNPAiCkA+JFAiCECqXAFnAdx7fXwh87OX46cAbxVzzdx/fNwWeC8A2QRACQESBIAihkg3EAgnACXAPOgSuwosD11ofAg4FehOlVCJwHhIpEATTkO4DQRBCZTPuroKpSqnzlFLXczYSsMXA+1yU869nREIQBIMQUSAIQkhorQ8A/YEbcDvsYUAq8JfW+jcDb9UE+EVrfdLAawqCkA9ZvEgQBENRSilgJfCr1nqo1fYIguA/MqZAEISQUEpdDVQDvgEqAffhHhA40EKzBEEIAhEFgiCESjVgClAT+AtYB1yqtd5npVGCIASOdB8IgiAIggDIQENBEARBEHIQUSAIgiAIAiCiQBAEQRCEHEQUCIIgCIIAiCgQBEEQBCEHEQWCIAiCIAAiCgRBEARByEFEgSAIgiAIAPw/RIR8UKQFK9IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Equations for isochrones obtained from X,Y values\n", + "x_2_g = np.linspace(0.7,1.2,100)\n", + "FeH_2_g = 3.0952*(x_2_g**2) - 9.3219*x_2_g + 23.118\n", + "x_4_g = np.linspace(0.7,1.0,100)\n", + "FeH_4_g = 10.156*(x_4_g**2) - 22.731*x_4_g + 29.089\n", + "\n", + "plt.figure(figsize=(8,6))\n", + "plt.plot(res['g_i'][c1],res['g_psf'][c1],'y.',label='EMP candidates')\n", + "plt.plot(x_2_g,FeH_2_g,'k-',label='[Fe/H]=-2 isochrone')\n", + "plt.plot(x_4_g,FeH_4_g,'b-',label='[Fe/H]=-4 isochrone')\n", + "plt.xlim(0.7,1.23)\n", + "plt.ylim(17.0, 16.0) # Figure 1 has these limits\n", + "plt.ylabel('$g$')\n", + "plt.xlabel('$g - i$')\n", + "plt.legend(loc='upper right')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "05dfe29b-649c-4daa-8797-9452c9f1bd46", + "metadata": {}, + "source": [ + "CMD showing the Magellanic EMP candidates from our final adopted selection. The blue and black curves represent [Fe/H] = −4 and −2 Dartmouth isochrones for an age of 12.5 Gyr and [α/Fe] = 0.4 ([Dotter et al. 2008](https://ui.adsabs.harvard.edu/abs/2008ApJS..178...89D/abstract)). Both isochrones have been calibrated with reference to the SkyMapper DR3 data as described in [Da Costa et al. (2019)](https://academic.oup.com/mnras/article/489/4/5900/5568381?login=false). The isochrones have been shifted in distance modulus by 18.5 to match the LMC distance." + ] + }, + { + "cell_type": "markdown", + "id": "2a91ca33-344a-45bb-9736-60ec1aba6d86", + "metadata": {}, + "source": [ + "## Radial velocity vs position angle\n", + "Only 106 of the 663 final EMP candidates have radial velocity measurements" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "56a182d9-1bd2-4ab2-815b-ebdcd5bd5b72", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:21:19.954014Z", + "iopub.status.busy": "2024-05-30T19:21:19.953227Z", + "iopub.status.idle": "2024-05-30T19:21:20.191878Z", + "shell.execute_reply": "2024-05-30T19:21:20.190789Z", + "shell.execute_reply.started": "2024-05-30T19:21:19.953957Z" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":7: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", + " res_1[c1]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
object_idradiusangleradial_velocitymetallicityg_ig_psf
045799304519.31558986.92565135.4423500.3148510.94910014.4681
145815512617.32593388.909939280.3608400.2333500.91290015.1683
245832818118.06863283.7683631.1352050.2810001.01200015.3190
345918799718.93721083.27751593.3199700.0842490.93930115.3865
445979199518.48786175.90920065.3839600.3741020.96159915.3516
........................
13750151544317.517159-3.233622265.1152600.3591500.84850014.4853
13850153863518.807033-4.841401311.5770600.3745010.95160014.2512
13950170705018.391424-23.360933222.6355600.3005501.02030015.2206
14050173740519.604192-20.102916318.7091700.3185500.84190014.5711
14150201100313.542131-53.444259185.8836000.1789020.79740015.1837
\n", + "

106 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " object_id radius angle radial_velocity metallicity g_i \\\n", + "0 457993045 19.315589 86.925651 35.442350 0.314851 0.949100 \n", + "1 458155126 17.325933 88.909939 280.360840 0.233350 0.912900 \n", + "2 458328181 18.068632 83.768363 1.135205 0.281000 1.012000 \n", + "3 459187997 18.937210 83.277515 93.319970 0.084249 0.939301 \n", + "4 459791995 18.487861 75.909200 65.383960 0.374102 0.961599 \n", + ".. ... ... ... ... ... ... \n", + "137 501515443 17.517159 -3.233622 265.115260 0.359150 0.848500 \n", + "138 501538635 18.807033 -4.841401 311.577060 0.374501 0.951600 \n", + "139 501707050 18.391424 -23.360933 222.635560 0.300550 1.020300 \n", + "140 501737405 19.604192 -20.102916 318.709170 0.318550 0.841900 \n", + "141 502011003 13.542131 -53.444259 185.883600 0.178902 0.797400 \n", + "\n", + " g_psf \n", + "0 14.4681 \n", + "1 15.1683 \n", + "2 15.3190 \n", + "3 15.3865 \n", + "4 15.3516 \n", + ".. ... \n", + "137 14.4853 \n", + "138 14.2512 \n", + "139 15.2206 \n", + "140 14.5711 \n", + "141 15.1837 \n", + "\n", + "[106 rows x 7 columns]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "q3_1 = \"\"\"\n", + "SELECT object_id, radius, angle, radial_velocity, metallicity, g_i, g_psf\n", + "from mydb://skymapperdr4_x_gaiadr3\n", + "where radial_velocity !='NaN'\n", + "\"\"\"\n", + "res_1 = qc.query(sql=q3_1,fmt='pandas',timeout=600)\n", + "res_1[c1]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "57ac0118-6b5d-4dc8-b5cf-bb8a21d0649b", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:21:38.941964Z", + "iopub.status.busy": "2024-05-30T19:21:38.941214Z", + "iopub.status.idle": "2024-05-30T19:21:38.968558Z", + "shell.execute_reply": "2024-05-30T19:21:38.967480Z", + "shell.execute_reply.started": "2024-05-30T19:21:38.941910Z" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "# Extracted X,Y values for LMC rotation model from Figure 3 using https://apps.automeris.io/wpd/\n", + "x_rot = [-198.9599774,-198.0313388,-195.6740254,-192.9595434,-190.1021938,-187.2448443,-184.2446273,-181.1015428,-177.9584583,-174.8153738,-171.6722893,-168.5292048,-165.3861203,-162.2430358,-159.0999513,-155.9568668,-152.8137824,-149.6706979,-146.5276134,-143.3845289,-140.2414444,-137.0983599,-133.9552754,-130.8121909,-127.6691064,-124.5260219,-121.3829374,-118.239853,-115.0967685,-111.953684,-108.8105995,-105.667515,-102.5244305,-99.38134601,-96.23826152,-93.09517703,-89.95209254,-86.80900805,-83.66592356,-80.52283907,-77.37975458,-74.23667009,-71.0935856,-67.9505011,-64.80741661,-61.8071996,-58.94985006,-56.09250053,-53.37801847,-50.66353641,-47.94905435,-45.37743976,-42.80582518,-40.2342106,-37.66259601,-35.09098143,-32.51936685,-29.94775226,-27.37613768,-24.8045231,-22.23290851,-19.66129393,-17.08967935,-14.51806476,-11.8035827,-8.946233165,-6.088883628,-3.231534091,-0.231317077,2.911767414,6.054851904,9.197936395,12.34102089,15.48410538,18.62718987,21.77027436,24.91335885,28.05644334,31.19952783,34.34261232,37.48569681,40.6287813,43.77186579,46.91495028,50.05803477,53.20111927,56.34420376,59.48728825,62.63037274,65.77345723,68.91654172,72.05962621,75.2027107,78.34579519,81.48887968,84.63196417,87.77504866,90.91813315,94.06121765,97.20430214,100.3473866,103.4904711,106.6335556,109.7766401,112.9197246,116.0628091,119.2058936,122.2061106,125.0634601,127.9208097,130.6352917,133.3497738,136.2071233,138.9216054,141.49322,144.0648345,146.6364491,149.2080637,151.7796783,154.3512929,156.9229075,159.7283052]\n", + "y_rot = [217.5621729,215.4580922,213.0583471,209.4209983,205.7604478,202.065952,198.4727207,194.726164,191.041326,187.6805115,184.3814157,181.2674762,178.3695523,175.5950659,173.0520248,170.7095697,168.5831301,166.6727062,164.9937276,163.515335,162.252958,161.2528856,160.4842586,159.9779363,159.6413405,159.5516197,159.8476411,160.2825297,160.9180043,161.8312132,162.9912971,164.3673966,165.9286524,167.7676426,169.838078,172.0782401,174.5344177,177.206611,180.0485309,183.0447476,186.2878393,189.6080795,193.2677728,196.9891848,200.7105969,204.3477171,208.0532994,211.8097997,215.4122317,219.137244,222.8584846,226.450173,230.0984368,233.7467007,237.3572476,241.02437,244.6726339,248.3397563,252.1011712,255.7494351,259.359982,263.0271044,266.6565098,270.1727641,273.8374292,277.6618201,281.3674024,285.0729847,288.710105,292.431517,296.1374993,299.581177,302.9014172,306.0519308,309.0327178,311.8129189,314.4388231,316.8178524,319.0117253,320.9895827,322.7514244,324.2663911,325.5807719,326.6637074,327.4843382,328.0735236,328.4621232,328.5266993,328.4678379,328.0540937,327.4860526,326.6557068,325.5630563,324.2698199,322.7142789,320.9581518,319.0014389,316.7824212,314.393677,311.7734875,308.9681417,306.0084991,302.8328408,299.4874559,296.049493,292.318366,288.5718092,284.9446326,281.2331641,277.4877504,273.8918903,270.184765,266.2696246,262.4304898,258.8182285,255.1682502,251.4994134,247.7740011,244.1051643,240.3986105,236.6920566,233.4954618]" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "3643e643-1fd9-44a2-915e-2ea0b5a4e4f1", + "metadata": { + "execution": { + "iopub.execute_input": "2024-05-30T19:21:41.078103Z", + "iopub.status.busy": "2024-05-30T19:21:41.077364Z", + "iopub.status.idle": "2024-05-30T19:21:41.371718Z", + "shell.execute_reply": "2024-05-30T19:21:41.370854Z", + "shell.execute_reply.started": "2024-05-30T19:21:41.078049Z" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAGBCAYAAADlgoKqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAAsTAAALEwEAmpwYAABsrUlEQVR4nO3dd3gUVRfA4d8JLQFE8aN3ECkKUhWD1FAUEJWOiBRRsGHFChawIyIWRBAFQRBEaYKIdFABBWwgvShIaKKI1JCc74/ZxE1I2SRbs+d9nnmyO3Nn5sxmkz175xZRVYwxxhhjMhIR6ACMMcYYExosaTDGGGOMRyxpMMYYY4xHLGkwxhhjjEcsaTDGGGOMRyxpMMYYY4xHLGkwxhhjjEcCljSIyBMioiLyttu6ia517suaFPvlE5G3ROSIiJwQkbkiUsb/V2CMMcaEl4AkDSJyNdAf+DmVzYuBkm5L2xTbRwGdgJuBxkAhYJ6I5PJVvMYYY4wJQNIgIhcCU4DbgL9SKXJGVQ+4LUdT7NsPeERVF6nqBuBW4AqgpR/CN8YYY8JWIGoaxgGfquqyNLY3EpFDIrJNRN4TkWJu2+oBeYCvEleo6l5gM9DQZxEbY4wxhtz+PJmI3AFUBnqmUeRLYCawG6gAPA8sFZF6qnoGKAHEA0dS7HfQtc0YY4wxPuK3pEFEqgIvAo1UNS61Mqo6ze3pLyKyHvgNaIeTTGTlvP1x2k9QoECBetWqVcvKYYwxxpiQs379+iOqWtRbx/NnTUM0UATYJCKJ63IBTUTkTqCAqzYhiaruF5F9wKWuVQdc+xQBDrsVLQ6sSu2kqjoO55YI9evX13Xr1nnnaowxxpggJyK/efN4/mzTMBuoCdR2W9YB01yPz6bcQUSKAKWBWNeq9UAc0MqtTBmgOvCtb8I2xhhjDPixpkFV/wb+dl8nIieAo6q6UUQKisizwGc4SUIF4CXgEDDLdYxjIvI+MFxEDgF/AiNxum4u9suFGGOMMWHKrw0hMxCPUxPRC7gIJ3FYBnRV1eNu5R4AzgHTgShgCdBLVeP9GawxxhgTbgKaNKhqM7fHp4BrPdjnDDDQtRhjjDHGT2zuCWOMMcZ4JJhuTxhjTKYkJCRw5MgR/v77b+Lj7Q6lCS+5cuXioosuokiRIkRE+KcOwJIGY0zI2rdvHyJChQoVyJMnD27duY3J0VSVuLg4Dh48yL59+yhXrpxfzmu3J4wxIevEiROULl2avHnzWsJgwoqIkDdvXkqXLs2JEyf8dl5LGowxIc1f1bLGBCN/v//tr80YY4wxHrGkwRhjjF9df/319OnTJ+l5s2bNuPfee9Pdp0aNGjz77LO+DcxkyJIGY4zxsz59+iAi5y1XX311UpkKFSogIkyePPm8/Rs0aICIMGLEiKR1zZo1SzpOvnz5qFKlCi+++GJI9CqZOXMmL730klePOXHiRAoWLOjVYxpLGowxJiBatmxJbGxssuWLL75IVqZs2bJ88MEHydZt3LiRjRs38r///e+8Y/bt25fY2Fi2bt3Kfffdx5AhQ5IlFsHq4osv5oILLgh0GMYDljQYY0xsLDRtCgcO+O2U+fLlo0SJEsmWiy++OFmZHj16sHr1anbt2pW07v3336dz586pfovOnz8/JUqUoEKFCtx77720aNGC2bNnpxnD2bNnefLJJylfvjz58uWjUqVKvPnmmwDEx8fTr18/KlasSFRUFJdeeinDhw8nISEhaf8+ffpw/fXX88Ybb1C6dGkKFy5M3759OXnyZFKZkydP0qdPHwoWLEjx4sV58cUXz4sj5e2JQ4cOceONNxIVFUX58uXPS5wARo4cyRVXXEGBAgUoXbo0t99+O3///TcAy5cvp2/fvpw4cSKp9iXx1sbZs2d57LHHKFOmDPnz5+fKK69k4cKFSceNi4vjvvvuo1SpUuTLl4+yZcvy+OOPp/kahhtLGowx5rnn4OuvYdiwQEeSTJEiRWjfvj0TJkwAnA+8jz76iH79+nm0f1RUFHFxcWlu7927N5MmTWLkyJFs3ryZ999/n4suughwBs4qXbo0n3zyCZs3b+aFF17gxRdfTIol0apVq9i4cSOLFy9m+vTpzJo1izfeeCNp+6BBg1i0aBGfffYZS5Ys4YcffmDlypXpxt2nTx927NjB4sWLmT17NpMmTWLPnj3JykRERDBq1Cg2bdrE1KlT+e677xg40JldoGHDhowaNYr8+fMn1eIMGjQIcGpjVqxYwdSpU9m4cSO9e/emffv2/PTTTwC8+eabzJo1i2nTprF9+3amT59O1apVPXq9w4Kqhs1Sr149NcbkHL/++mv2DhAZqQrnL5GR3gkwDb1799ZcuXJpgQIFki2PPvpoUpny5cvrq6++ql988YWWLVtW4+PjdcaMGVq5cuVk2xM1bdpU77nnHlVVjY+P1wULFmjevHmTHdPdtm3bFNAFCxZ4HPdjjz2mLVq0SHYdZcqU0XPnziWtu/3225PKHD9+XPPmzasfffRR0vbjx4/rhRdeqL1790419q1btyqgX3/9ddL2PXv2aEREhD7zzDNpxpZ4vfHx8aqqOmHCBC1QoECyMjt27FAR0d9++y3Z+htvvFHvuusuVVUdOHCgxsTEaEJCgicvSVBI7+8AWKde/By1ESGNMeFr1y4YNAhmz4aTJyF/fujQAfzQDqBJkyaMGzcu2brEb/nurr32WlSVRYsW8f7773Pbbbelecxx48YxceJEzp49C8Ctt97KM888k2rZH374gYiICJo3b57m8d59913Gjx/Pb7/9xqlTp4iLi6N8+fLJylx22WXkypUr6XmpUqVYu3YtADt37uTs2bNER0cnbS9YsCA1a9ZM85ybN28mIiKCq666Kmld+fLlKVWqVLJyS5cu5aWXXmLz5s0cO3aM+Ph4zp49y4EDB84rm2jDhg2oKpdddlmy9WfOnCEmJgZwajlatWpFlSpVaN26NW3btqVNmzY2HoiLJQ3GmPBVsiQUKgSnT0NkpPOzUCEoUcLnp86fPz+VK1fOsFxERAS9e/fmxRdfZM2aNbz//vtplu3WrRvPPPMM+fLlo1SpUsk+zDNr+vTpPPDAA4wYMYKGDRtSqFAhRo8ezaxZs5KVy5MnT7LnIpKs3UNWpTfC52+//Ua7du244447GDZsGP/73//YsGEDN998c1LClJqEhAREhO+///68uKOiogCoW7cue/bsYeHChSxZsoTevXtTq1YtFi1aZIkD1qbBGBPuDh6EO++ENWucn35sDOmp2267jVWrVtGqVas0v0UDXHjhhVSuXJmyZctmmDDUrl2bhIQEli1blur2r7/+mgYNGnDvvfdSt25dKleuzM6dOzMV9yWXXEKePHlYs2ZN0roTJ06wcePGNPepVq0aCQkJfPfdd0nrfv/9d/bv35/0fN26dZw9e5bXX3+d6OhoqlSpkmw7QN68ec/rblqnTh1UlQMHDlC5cuVkS+nSpZPKXXDBBXTu3JkxY8Ywf/58li5dyo4dOzJ17TmV1TQYY8LbzJn/PR492m+nPXPmDAdSJCi5cuWiaNGi55WtVKkSR44cSfo27A1VqlSha9eu3H777bzxxhvUrVuXffv2sWfPHm699VaqVKnCxIkTWbBgAZUrV2batGmsWLGCwoULe3yOggUL0q9fPx577DGKFi1KqVKlGDZsWLpjR1StWpXrrruOAQMGMG7cOKKionjooYeSXfull15KQkICo0aNomPHjqxZs4ZRo0YlO06FChU4ffo0ixYtok6dOuTPn58qVapwyy230KdPH1577TXq1q3L0aNHWb58OZUqVaJjx46MHDmSkiVLUrt2bfLkycPUqVMpVKgQZcqUyfRrnBNZTYMxxgTA4sWLKVmyZLKlTp06aZa/+OKLvZo0AEyaNIkePXpw3333Ua1aNfr06cOxY8cAGDBgAF27dqVHjx5ceeWV7Nmzh4cffjjT5xgxYgTNmzenQ4cONG/enBo1atCkSZN095k4cSIVK1YkJiaG9u3b06NHDypUqJC0/YorruCNN95g5MiRXHbZZYwfP/688SgaNmzInXfeyc0330zRokUZPnw4ABMmTKBv3748+uijVKtWjeuvv56VK1cmtdW44IILePXVV7nqqquoW7cuP/74IwsWLCB//vyZvvacSJzGleGhfv36um7dukCHYYzxks2bN1O9evVAh2FMQKX3dyAi61W1vrfOZTUNxhhjjPGIJQ3GGGOM8YglDcYYY4zxiCUNxhhjjPGIJQ3GGGOM8YglDcYYY4zxiCUNxhhjjPGIJQ3GGGOM8YglDcYYY4zxiCUNxhgTxkaMGJFsiOacqlmzZtx7772BDiPkWdJgjDHGJ/r06YOI0K9fv/O2PfbYY4gI119/fQAiy5w9e/bQr18/KlWqRFRUFJUqVeKJJ57g1KlTycr9/vvvtG/fngIFClCkSBHuu+++86bqXrFiBfXq1SMyMpJKlSrx7rvvJtv+0ksvceWVV1KoUCGKFi1K+/bt050V1N8saTDGGJMtKT8Y3ZUtW5ZPPvmEEydOJK07d+4ckyZNoly5cj49d2Y0a9aMiRMnprpty5YtxMfHM2bMGDZt2sRbb73FpEmTuP/++5PKxMfH065dO44fP86qVav4+OOP+fTTT5NN8rV7927atm1Lw4YN+eGHH3jiiScYOHAgn332WVKZ5cuXc/fdd/Ptt9+ydOlScufOTcuWLTl69KhXrjO7LGkwxhg/GjduHMWLFz9veugePXpwww03ALBz505uvPFGSpQoQYECBahbty7z5s1LVr5ChQo8//zzDBgwIGnq5ldffTXD8w8fPpwSJUpQsGBBevXqxb///ntemQkTJnDZZZcRGRlJlSpVeP3110lISEjaLiKMHj2ajh07UqBAAZ588sk0z3fFFVdw6aWX8sknnyStmz9/PpGRkTRr1ixZ2e+//57WrVtTpEgRChUqRKNGjVi9enWyMmmd+/PPP0/6Bl+xYkUGDx7stYTiuuuuY+LEiVx77bVUqlSJdu3aMXjw4GQf9l999RWbNm1i8uTJ1K1bl1atWjF8+HDee+89/vnnHwDeffddSpUqxVtvvUX16tW544476N27d7IZOhcuXEjfvn2pUaMGNWvWZPLkyRw+fJhvvvnGK9eSXZY0GGOMH3Xp0oVjx46xaNGipHX//vsvc+bMoWfPnknP27Rpw6JFi/jpp5/o1KkTHTt2ZMuWLcmO9frrr1OzZk02bNjAY489xqOPPnreh6y7Tz75hCFDhjB06FA2bNhA1apVGTlyZLIy7733Hk8++STDhg1j8+bNvPbaa7zyyiu88847ycoNHTqUtm3b8ssvv3DPPfeke839+vXjgw8+SHr+wQcf0LdvX0QkWbnjx49z6623smrVKr777jtq165N27Zt+fPPP9M998KFC7nlllu499572bRpEx988AGffvppuslMdv3zzz8ULlw46fnq1aupXr06ZcuWTVp37bXXcubMGdavX59UpnXr1smOc+2117Ju3Tri4uJSPc/x48dJSEhIdq5Ayh3oAIwxxlseeOABfvzxR7+es3bt2owaNcrj8oULF6Zt27ZMmTKF6667DoDZs2eTO3fupJqGWrVqUatWraR9Bg8ezOeff86nn37KkCFDkta3bt06qXHfwIEDefPNN1myZAnR0dGpnnvUqFH07t2bAQMGJB132bJl7NixI6nMc889x/Dhw+ncuTMAFStW5PHHH+edd95J1pCwW7du3H777R5dc48ePRg0aBDbt2/nggsu4Msvv+Stt97i6aefTlYuJiYm2fO33nqLzz77jAULFiQlVKmdu3fv3jzyyCP07dsXgEsuuYRXXnmFnj178uqrr56XnGTXb7/9xogRI5IlJQcOHKB48eLJyhUpUoRcuXJx4MCBpDItW7ZMVqZ48eKcO3eOI0eOULJkyfPOdf/991O7du00f6f+ZkmDMcb4Wc+ePenduzcnT54kf/78TJkyhU6dOhEZGQnAiRMnGDp0KPPmzSM2Npa4uDhOnz7NFVdckew4KZ+XKlWKQ4cOpXnezZs3n/dBHx0dnZQ0HD58mL179zJgwADuuuuupDLnzp1DVZPtV79+fY+vt3DhwnTo0IEPPviAiy66iGbNmqXanuHQoUM89dRTLFu2jIMHDxIfH8+pU6f4/fff0z33+vXr+e6773jllVeS1iUkJHDq1CkOHDiQ6ofxnXfeyUcffZT0/NSpU6xZsyZZYvTrr7+eF+fBgwe57rrraNWqFQ8++KDHr0FWPPTQQ3z99dd8/fXX5MqVy6fn8pQlDcaYHCMz3/gDqV27duTOnZs5c+bQokULFi9ezMKFC5O2Dxo0iC+//JIRI0Zw6aWXkj9/fnr16nXePfo8efIkey4iydoeZFbivu+++y4NGzZMt2yBAgUydezbbruN3r17U7BgQYYNG5Zqmd69e3Pw4EFef/11KlSoQL58+WjRosV5153y3AkJCTzzzDN06dLlvGMWLVo01XMNGzaMQYMGJT2/5ZZbkm4DJSpVqlSyfQ4cOEBMTAw1atRg8uTJyWowSpQocV67gyNHjhAfH0+JEiWSyhw8eDBZmYMHD5I7d26KFCmSbP2DDz7ItGnTWLZsGZUqVUr1GgLBkgZjjPGzfPny0aVLF6ZMmcKRI0coUaJEskaBX3/9Nb169aJTp04AnD59mp07d1KlSpVsnbd69eqsWbOG2267LWndmjVrkh4XL16cUqVKsXPnTnr16pWtc6XUokUL8ubNy5EjR7jppptSLfP111/z5ptv0q5dO8D5QI2Njc3w2HXr1mXLli1UrlzZ43iKFStGsWLFkp5HRUVRrFixNI8RGxtL8+bNufzyy/n444/JnTv5x2d0dDTPP/88+/bto0yZMgAsWrSIfPnyUa9evaQys2bNSrbfokWLqF+/frIE8P7772f69OksW7aMatWqeXxN/hCwpEFEngBeBEar6r2udQI8A/QHCgNrgXtUdZPbfoWBN4EbXKvmAgNV9W//RW+MMdnTs2dPWrRowe7du7n55puJiPivXXqVKlWYNWsWN954I3ny5GHo0KGcPn062+e8//776dWrF1deeSXNmjXj008/Ze3atVx88cVJZYYOHcrAgQO56KKLaNu2LXFxcWzYsIE//viDJ554IsvnFhF+/vlnVJV8+fKlWqZKlSp89NFHNGjQgBMnTvDoo4+SN2/eDI/99NNPc/3111O+fHm6du1K7ty52bhxI9999x3Dhw/PcsyJ9u/fT7NmzShVqhSjRo3iyJEjSduKFi1Krly5aN26NZdffjm9evXitdde488//+SRRx7hjjvuoFChQoBzS+Ttt9/mgQceYMCAAXzzzTdMnDiRjz/+OOl499xzD5MnT2b27NkULlw4qT1EwYIFKViwYLavJbsC0ntCRK7GSQx+TrHpUeBhYCBwJXAIWCQiF7iVmQrUBa5zLXWByb6O2RhjvKlx48aULl2aX3/9NVkjP4CRI0dSrFgxGjduTJs2bbj66qtp3Lhxts/ZrVs3nn32WQYPHkydOnX45ZdfeOihh5KVuf322/nggw+YPHkytWrVonHjxowbN46KFStm+/wXXHBB0gdoaj744AP+/fdf6tWrR/fu3bnttts8Gq3y2muvZf78+SxbtoyrrrqKq666ipdfftkr40CA051y+/btrFixgnLlylGyZMmkZe/evQDkypWL+fPnkz9/fq655hq6detGp06dknWnrFixIl988QUrV66kdu3avPDCC7z55ptJNUoA77zzDsePH6dFixbJzuN+nECSlI1bfH5CkQuBDcDtOLUKG1X1Xlctw37gbVV9wVU2CidxGKSqY0WkOvAr0EhVv3GVaQSsAqqp6tb0zl2/fn1dt26dry7NGONnmzdvpnr16oEOw5iASu/vQETWq6rnrVYzEIiahnHAp6q6LMX6ikAJ4KvEFap6ClgJJLbIiQb+Bb512+8b4IRbGWOMMcb4gF/bNIjIHUBloGcqm0u4fh5Msf4gUNqtzGF1qx5RVRWRQ277pzxnf5xbIV6rqjLGGGPCkd9qGkSkKk7Dxx6qmvrQVz6gquNUtb6q1k+r640xxhhjMubP2xPRQBFgk4icE5FzQFPgbtfjxHFCi6fYrzhwwPX4AFBU3DrHuh4XcytjjDHGGB/wZ9IwG6gJ1HZb1gHTXI+34Xzwt0rcQUQigcb814ZhNVAQJwFJFA0UIHk7B2OMMcZ4md/aNLjGUfjbfZ2InACOqupG1/NRwJMisgUniRiC0/BxqusYm0XkS2Csq60CwFhgXkY9J4wxOZOqen1uAWNChb97QAbbiJDDgShgNP8N7tRaVY+7lekBvAUkjrk6F7gXY0zYyZMnD6dOnSJ//vyBDsWYgDh16tR5w4n7kt/HaQgkG6fBmJzln3/+4eDBg5QuXZqoqCircTBhQ1U5deoUf/zxB8WLF09z0Cxvj9MQbDUNxhjjscR/lPv37ycuzm+dsowJCnny5Ek3YfAFSxqMMSGtUKFCfv2naUw4C8jcE8YYY4wJPZY0GGOMMcYjljQYY4wxxiOWNBhjjDHGI5Y0GGOMMcYjljQYY4wxxiOWNBhjjDHGI5Y0GGOMMcYjljQYY4wxxiOWNBhjjDHGI5Y0GGOMMcYjljQYY4wxxiOWNBgTCLGx0LQpHDgQ6EiMMcZjljQYEwjPPQdffw3DhgU6EmOM8ZglDcb4U1QUiMCYMZCQ4PwUcdYbY0yQs6TBGH/atQt69ID8+Z3n+fPDLbfA7t2BjcsYYzxgSYMx/lSyJBQqBKdPQ2Sk87NQIShRItCRGeNd1m4nR7KkwRh/O3gQ7rwT1qxxfto/VZMTWbudHElUNdAx+E39+vV13bp1gQ7DGGNyrqgopwYtpchIOHXK//GEORFZr6r1vXU8q2kwxhjjPdZuJ0ezpMEYY4z3WLudHM2SBmOMMd5l7XZyrNyBDsAYY0wOM3Pmf49Hjw5cHMbrrKbBGGOMMR6xpMEYY4wxHrGkwRhjjDEesaTBGGN8xUZFNDmMJQ3GGOMrwTQqoiUwxgssaTAmmNg/9pwhGGczDaYExoQsSxqMCSb2jz1nCKZREYMxgTEhy5IGY4KB/WPPWYJpVMRgSmBMyLOkwZhgYP/Yc55gGRUxmBIYE/JsREhjgoH9Y895gmlUxMQEpn9/GDfOaTtjTBb4raZBRO4RkZ9F5B/XslpE2rltnygimmJZk+IY+UTkLRE5IiInRGSuiJTx1zUY41PB8s3U5DwzZzqJS61azk/3hMaYTMiwpkFEqgM3A02BCkAUcBjYACwAPlPVMx6cax/wGLAdJ1npDcwWkXqq+rOrzGLgVrd9zqY4xijgRlc8fwIjgXmuY8R7EIMxwSuYvpkaY0wq0kwaRKQuMBxoBHwDfAt8CpwCLgZqAC8Ab4nIcGBUesmDqs5JsWqwiNwFRAOJScMZVU3165WIXAj0A/qq6iLXuluB34CWwML0L9UYY4wx2ZFeTcMsnKShi6r+lVYhEYkGHgQG4SQRGRKRXEAXoCBOMpKokYgcAv4GVgCDVfWQa1s9IA/wVWJhVd0rIpuBhljSYIwxxvhUeknDpaqa8vbAeVR1NbBaRPJmVFZEagKrgUjgX6CDqv7i2vwlMBPYjXMb5HlgqevWwxmgBBAPHElx2IOubcYYY4zxoTSThowSBhHJo6pxnpZ32QrUBi4EOgMfikgzVd2oqtPcyv0iIutxbj20w0kmskRE+gP9AcqVK5fVwxhjjDFhz6PeEyJyn4h0cnv+PnBKRLaKSFVPT6aqZ1V1h6quV9UngB9xbm2kVnY/TuPJS12rDgC5gCIpihZ3bUvrnONUtb6q1i9atKinoRpjjDEmBU+7XN6H02MCEWkCdAV64Hzov5bN8+dLbYOIFAFKA4kditcDcUArtzJlgOokbxdhjG/YvBDGmDDnadJQGqetAUB7YIaqfgI8C1ztyQFE5GURaSwiFUSkpoi8BDQDpohIQREZISLRru3NgM+BQzgNMlHVY8D7wHARaSkidYDJOD0vFnt4HcZknc0LYYwJc56OCPkPUAzYi/NN/1XX+jicRo2eKAF85Pp5DOfDvo2qLhSRKKAm0Au4CKd2YRnQVVWPux3jAeAcMB1nvIglQC8bo8H4VFSUM0JjojFjnCUyEk6dClxcxhjjZ54mDV8B74nIBqAyzqBOAJfzXw1EulS1TzrbTgHXenCMM8BA12KMf+zaBYMGwezZcPKkMy9Ehw4wYkSgIzPGGL/y9PbEPTgDPBUFOqvqUdf6usDHvgjMmKBh80JYew5jDJBB0iAiVwCo6j+qOlBVb1TVLxO3q+ozqvqir4M0JuDCfV4Ia89hjAFEVdPeKPI3cBSYA8wGVqlqgl8i84H69evrunXrAh2GMaEjZXuORNaew5iQICLrVbW+t46X0e2JosBdQF6cRoyHRORDEekoIvm9FYQxJkjt2gU9ejjtOMD5ecstsNujpkzGmBwm3aRBVeNUdaGq3qOqZYE2wO/AUOCIiHwuIreLSDF/BGuM8TNrz2GMceNpQ0gAVPV7VX1KVWvidJFcijOV9V4RuccXARpjAizc23MYY5Kk26bB44OI/A+4WFW3Zz8k37E2DcYYY8KJt9s0eDpOAyJSHLgGZ5An9xoKVdUxwJ/eCsoYY4wxwcejpEFEegLjAQH+AtyrJxQY4/3QjDHGGBNMPK1peAEYDgxT1XM+jMcYY4wxQcrThpCFgImWMBhjjDHhy9OkYQrQzpeBGGOMMSa4eXp74iFgtoi0AH7Bmd0yiara2LLGGGNMDudp0jAAuA44gjPLZcqGkJY0GGO8JzYWuneH6dNtICkvOHr0KDt37mTnzp3s2rWL2NhYDh48yMGDBzl06BBnzpzh3LlzxMfHc+7cOSIiIsidOze5cuUid+7cFClShBIlSlCyZElKlixJ+fLlqVSpEpUqVaJkyZJERGRqyB8TwjxNGp4CHlbV130ZjDHGAMknyHrnnUBHEzJUlS1btrB+/Xp++OEHfvzxR3766Sf+/DN5j/gLL7yQ4sWLU6JECWrUqEFkZCS5c+dOShQSEhKSEoi4uDiOHDnCzp07+eabbzhy5EiyY0VGRnL55ZdTp04d6tSpQ926dalTpw758uXz56UbP/FocCcR+RO4SlV3+j4k37HBnYwJcjZBVqaoKlu3bmXp0qUsX76c5cuXc/jwYcD5MK9Zsya1a9ematWqXHLJJVxyySVUqlSJAgUKZPmcZ8+e5ffff2fXrl3s2rWLHTt28NNPP7FhwwaOHj0KQFRUFA0bNqR58+Y0b96cq666ity5PR4WyHiRtwd38jRpGAH8E+ptFyxpMCbIxcbCoEEwezacPOlMkNWhA4wYYbcpXM6dO8fXX3/N3LlzmTt3Ljt3Ot/lypQpQ/PmzWnWrBlXXXUV1apV8+sHtaqyd+9e1q9fz4oVK1i2bBk///wzAIULF6ZNmza0b9+e6667josuushvcYW7QI0ImR+4XUSuBX7m/IaQ93krIGNMGLMJslKVkJDAqlWrmDp1Kp9++ilHjx4lX758tGjRgkGDBtGqVSsqVaqEiAQsRhGhXLlylCtXjg4dOgBw5MgRli1bxvz585k/fz5Tp04ld+7ctG7dmp49e3LjjTeSP79NmBxKPK1pWJbedlVt7rWIfMhqGowJAR07OslD//4wbpxT+zBzZqCjCoht27Yxfvx4pk6dyh9//EGBAgW48cYb6dSpE61bt6ZgwYKBDtFj8fHxrF27ljlz5vDxxx+zd+9eChYsSKdOnejXrx+NGjUKaNKTUwXk9kROYUmDMSbYxcXFMXfuXMaMGcOSJUvInTs3bdq0oUePHrRv3z5b7RGCRUJCAitXrmTy5MnMmDGD48ePc/nll3PnnXdy6623cuGFFwY6xBzD20mDR/1kROT6dLY96a1gjDFhJDYWmja1qbZd/v77b1555RUqVKhA586d2b59O88//zx79+5l7ty5dO/ePUckDAARERE0a9aM999/n9jYWMaPH09UVBQDBw6kVKlS3HPPPezYsSPQYZpUeDwipIhck3KliAwGBnk3JGNMWHDvVhnG9u3bx6BBgyhXrhyPP/44l112GXPnzmXXrl0MHjyYEjm8PUeBAgXo168f33//Pd9//z1du3Zl/PjxVKlShc6dO7NmzZpAh2jceNqmoSfwBtBcVX92rRuCM1Lktar6vU+j9BK7PWFMELBulYCTLLzwwgu8//77JCQk0LVrVx555BHq1KkT6NACLjY2lrfeeosxY8bw999/ExMTw/PPP090dHSgQws5Abk9oaof4Yz6uFBELhGRp4CHCaGEwRgTJHbtgh49nO6U4Py85RbYvTuwcflJbGws9913H5dccgnvv/8+/fr1Y8eOHUydOtUSBpeSJUvy4osvsnfvXl577TU2btxIw4YNuf766/nhhx8CHV5Y83jsT1V9AxgPfA88ALS0hMEYk2lh2q3yn3/+YciQIVxyySW888479OrVi23btjFmzBgqVKgQ6PCCUsGCBXnooYfYuXMnL730Et9++y1169ale/fu7A6TJDPYpJk0iMhDKRfgL+Bf4Eugqdt6Y4zx3MGDcOedsGaN8zMnNYZM0cAzLi6OMWPGULlyZV544QVuuukmtm7dynvvvWfJgocKFizI448/zu7duxkyZAhz586lWrVqDBo0iL/++ivQ4YWVNNs0iIinaZyqaiXvheQ71qbBGONzd98NY8fCgAEs6tCB++67jy1bttC0aVNGjBhB/fpeu70ctv744w+efvppJkyYwEUXXcRzzz3HnXfeSa5cuQIdWtCxcRqywZIGY3KwQM+M6dbAcz9OK/HpQGURXps9m/bt29vgRV72008/8dBDD7F06VLq1q3LmDFjuOqqqwIdVlAJSENIY4wJeoHuwrlrF/Hdu/NGnjxUA2YDQ6+4gl927eKGG26whMEHatWqxeLFi5k2bRqxsbFcffXV3HXXXXbLwofSa9MwREQ8GklERK4RkfbeC8sYYzwUFQUiMGYMJCQ4P0Wc9X70y5EjRC9ZwgNxcVwTEcEmEZ6+5hoird2CT4kI3bp1Y8uWLdx///2MGzeOyy67jFmzZgU6tBwpvZqGS4DfRWSciLQXkZKJG0QkUkTqish9IvIdMBmnkaQxxvhXgLtwnjlzhqeeeoq6deuy59gxPm7Vii/Wr+eSu+7KWQ08g1yhQoV4/fXX+f777ylRogQdO3akW7duHDp0KNCh5ShpJg2q2hdoBigwCdgnIudE5BRwAlgH9MLphlldVb/2fbjGGJNCALtwfv/999SpU4fnn3+em2++mc3799P9q6+Q2rVh9OiwnWgrkOrWrct3333H888/z+zZs6levTrTpk0LdFg5RrptGlT1F1UdAPwPqAd0AvoC1wLFVLW+qo5T1TO+D9UYY9Lg5y6ccXFxDB06lOjoaI4fP86CBQuYNGkS//vf/3x6XuOZPHnyMHjwYH788UeqVKnCzTffTPfu3fnzzz8DHVrIs94TxhiTCVu3buXWW2/l+++/p2fPnrz11ltcdNFF/g8k0L1FQsS5c+cYPnw4zzzzDEWLFuX999+nTZs2gQ7Lb6z3hDHGBICq8t5771GnTh127tzJJ598wuTJkwOTMEDge4tkJEhmMc2dOzdPPvkk3333HRdffDFt27bl3nvv5XRq85+YDFnSYIwxGTh27Bjdu3enf//+XHPNNfzyyy906dIlMMEESW+RDAVZUlOnTh3WrVvHgw8+yOjRo7n66qvZunVroMMKOX5LGkTkHhH5WUT+cS2rRaSd23YRkWdFZL+InBKR5SJyeYpjFBaRySJyzLVMFpGL/HUNxpjws3btWmrXrs1nn33GSy+9xMKFCylVqlTgAgr2Cb+COKmJjIxk5MiRzJs3j3379lGvXj0mTZoU6LBCij9rGvYBjwF1gfrAUmC2iFzh2v4ozsyZA4ErgUPAIhG5wO0YU137X+da6uJ09zTGGK9SVV5//XUaNWqEqrJq1Soef/xxIiICXEEb7BN+BXtSA7Rr144ff/yRevXq0bt3b2677TZOhdG07Nnh0btfRG4SkWwN6q2qc1R1garuUNVtqjoYOA5EizNU2gPAy6r6mapuBHoDFwA9XDFUx0kU+qvqalVdDQwArheRqtmJzRhj3P3zzz907dqVhx56KOkDJjo6OtBh/SeYJ/wK9qTGpUyZMixdupQhQ4YwYcIErrnmGnbt2hXosIKepynzFOAPEXlFRKpk96QikktEugMFgW+BikAJ4KvEMqp6ClgJNHStisaZYfNbt0N9gzNmREOMMcYLNm7cyJVXXsmsWbMYPnw4s2bNClxjx7TMnOmMA1GrVnCOBxHMSY2bXLly8dxzzzFv3jx2795NvXr1+OKLLwIdVlDzNGkoATwDNAU2i8jXItLX02GmE4lITRH5FzgDvAt0UNVfXMcHOJhil4Nu20oAh9Wtj6jr8SG3Mqmds7+IrBORdYcPH85MuMaYMDN9+nQaNGjAsWPHWLJkCY888kj4zBnhzd4OwZ7UpNCuXTvWr19PhQoVaNeuHc8++ywJCQmBDisoeZQ0qOpxVR2rqlcDVwBrgZeAWBF5T0Su9vB8W4HaQANgDPChiNTIfNiecw0+VV9V6xctWtSXpzLGhKj4+HgeffRRunfvTp06dfjhhx9o2rRpoMPyryDr7eBvlSpV4ttvv6V3794MHTqUDh06cOzYsUCHFXQy3aJHVTcBrwPjgLxAN2CViKx1a9SY1r5nXW0a1qvqE8CPwINAYmpbPMUuxd22HQCKilva73pczK2MMcZkytGjR2nTpg2vvvoqd911F0uXLqVkyZIZ75hTBHFvB3+LiopiwoQJvPXWW3zxxRc0aNCALVu2BDqsoOJx0iAieUSkq4h8CewGYoA7cT7YywObcaaPz+z587mOdwBo5Xa+SKAx/7VhWI3TBsK9NVI0UIDk7RyMMcYjv/76K/Xr12fFihWMHz+ed955h7x58wY6LP8Kgd4O/iQi3HvvvSxZsoS//vqLq666innz5gU6rKDhae+Jt4BYYDTwK1BLVRup6kRVPaWq+4HHgTR7MYjIyyLSWEQquNo2vIQzIdYUV9uEUcBjItLRdctiIk7Dx6kAqroZ+BIYKyLRIhINjAXmqaqN0GGMyZTFixfTsGFDTp06xYoVK+jXr1+gQwqMEOnt4G9NmjRh/fr1VK1alRtvvJHRo0cHOqSg4GlNw2XAvUBpVX1IVX9NpcwRoHk6xygBfITTrmEJzlgMbVR1gWv7cJzbHqNxZtAsCbRW1eNux+gB/AQsdC0/Abd6eA3GGAPABx98QJs2bShbtixr167l6qvTaZYVJMMh+1SI9HbwtzJlyrB8+XLat2/Pvffey0MPPUR8fHygwwosVc1wAZoAuVNZnxto4skxgmGpV6+eGmPCV3x8vD7xxBMKaOvWrfXvv//OeKe77lKNiHB+BoP9+1WbNFGNjQ3P8wfAuXPn9L777lNAO3TooCdOnAh0SB4D1qkXP0c9TRricabCTrn+f0C8NwPy5WJJgzHh69SpU9qtWzcF9I477tCzZ8+mv0NkpPMvMuUSGemfgNMS6CQm0OcPoFGjRqmIaIMGDfTgwYOBDscj3k4aPL09IUBqc2j/D2dwJWOMCVpHjhyhZcuWTJ8+nZdffpmxY8eSJ0+e9HcKtgaCge7lEOjzB4H777+fmTNn8vPPPxMdHR2WE16lmzSIyFwRmYuTMHyU+Ny1zAcWYT0XjDFBbMeOHTRs2JB169Yxffp0HnvsMc8GbAq2BoIpk5ioKChWDNauDcz5A51EBchNN93EsmXLOH78OA0bNmTVqlWBDsmvMqpp+NO1CPCX2/M/cSagehfo6csAjTEmq1avXs3VV1/N0aNHWbJkCV27ds3cAYKpgWDKJObUKTh0CN59NzDnTyuJCoOGow0aNGDNmjUUKVIkqQYrXIhzyyODQiLPACNUNaRvRdSvX1/XrVsX6DCMMX4we/Zsbr75ZsqUKcOCBQuoXLlyoEPKvo4dYe5cSK0Ff2Ii4evzlywJ/fvDuHFOgpByiOi774axY2HAAHjnHd/GE2B//vknN910E19//TUjRozgoYceCrphx0VkvarW99rxPEkacgpLGowJD++88w4DBw7kyiuv5PPPPydHDSEfGwuDBsHs2XDypHOboEMHGDEisGMrREU5tQ8p+SOZCaDTp09z66238umnn3LfffcxcuRIcuXK1qTQXuXtpCHN2xMi8rOIFHY9/sX1PNXFW8EYY3wgDKqLE6kqTzzxBPfccw/t2rVj6dKlOSthAP+1tcjs+yZM2zxERkYyffp0HnjgAd588026du3KqRycJKXXpuEznNkoEx+ntxhjglWYTEQUHx/PgAEDePnll+nfvz8zZ84kf+IHWE7jj7YWmX3fBFvDUT+KiIjg9ddfZ+TIkcyaNYt27dpx/PjxjHcMQXZ7wpicKoyqi+Pi4ujTpw9Tp07liSee4IUXXgi6e8shIzvvG0/aPORwU6ZMoXfv3tSvX58FCxZQuHDhgMbjt9sTKU56eWozWIrIFSJymbeCMcZ4UZhUF58+fZouXbowdepUXnrpJV588cXwSxi8eQsqO++bmTNh9GioVcv56a2EIYRusd1yyy3MmDGDH374gebNm3Po0KFAh+RVng7uNA6okcr6y1zbjDHBJgyqi0+cOEH79u2ZM2cOb7/9No8//nigQwoMb96CCsb3TYjdYuvQoQOff/4527Zto0mTJuzbty/QIXmNp0nDFcB3qaz/HqjpvXCMMV4VTOMMeNnff/9N69atWbp0KRMnTuSee+7xfOcQ+uaaLl+N0vjbb1C8OMybF9j3TQiPQtm6dWu++uor9u/fT5MmTdidQ2r4PE0a4oELU1lfGGfgJ2NMMPJVdXGAHT58mJiYGL7//numT59O7969M3eAEPvmmiZf3YKqUMFJOD/7LLDvmxC/xdaoUSOWLFnC33//TePGjXPEsNOeJg0rgMEiktT5VERyA4OBlb4IzBhjUrN//36aNm3K5s2bmTNnDp07d/Z85xD+5poqb99KCLbXJxhvlWTSlVdeyfLly4mLi6NJkyb88ssvgQ4pWzxNGh4FGgM7RGSyiEwGtgONgEd8FZwxxrjbu3cvTZs2Ze/evXz55Ze0adMmcwcI8W+uqfLmLShvvD7evvWTA26xXXHFFaxYsYI8efLQrFkzNmzYEOiQsiy3J4VUdaur98S9QG3X6inAO6q630exGWNMkj179hATE8Off/7JokWLuPrqqzN/kBzwzfU87rcORo/O3rG88fq43/rxxjDS3ry+AKpWrRorV64kJiaGmJgYFi5cSIMGDQIdVqZ5WtOAqsaq6mBVbedahljCYIzxh127dtG0aVP++usvFi9enLWEIVEO+ObqU1l9fYLt1kYQqlSpEitXrkya6CoUZ8j0eHAnESkO3IPTzVKBTcAYVT3ou/C8ywZ3Mib0bN++nZiYGE6ePMnixYupU6dOoEPKOWJjoXt3mD49+7UtwTonRhDav38/LVq04Pfff2f+/Pk0a9bMZ+cK1OBO1wA7gB7AKeA0zpTY20Uk2lvBGGOMu61bt9KsWTNOnz7NsmXLLGHwtpw+vkOQKlWqFMuXL6dChQq0bduWZcuWBTokj3k6NfZq4BfgTlVNcK2LAN4FaqhqQ59G6SVW02BM6Ni8eTMxMTEkJCSwZMkSatRIbXw5kyW+GmLchpHOlEOHDtG8eXN2797NvHnziImJ8fo5AlLTgNP48bXEhAHA9XgkYKm/Mcarfv31V5o3bw7A8uXLgyNhyCkDQoHvepFkNC5ITnoNvaBYsWIsW7aMSpUqcf3117N06dJAh5QhT5OGY0DFVNZXBP72WjTGmLC3adMmmjdvTkREBMuXL6d69eqBDsmRUwaEgsDdSshJr6GXFCtWjKVLl4ZM4uDp7YlRQBec8Rq+da2+BngFmK6qD/kqQG+y2xPGBLfEhCF37twsW7aMqlWrBjqknDtbqD9vJeTU19CLDh06RExMDLt27fLqrYpA3Z54FPgU+ACnQeQOYDzwCRCmM8QYY7zJawmDt6vAc+KAUODfIcZXr4aiRf/rfplTXkMvCpUaB4+SBlU9q6r348w1Udu1XKyqD6rqWd+FZ4wJB1u2bCEmJsY7NQzergK3XgHZN24cHD7s1CrYa5imlInD8uXLAx3SeTwe3AlAVU+q6i+u5aSvgjLGhI8dO3YQExODiLB06dKsJwy+GFwosdbit9+yNyBUuDYAdP+dJDp92lkXbq+FhxIThwoVKnD99dfz7bffZryTH6WZNIjIXE8XfwZsjMk5EoeGPnv2LIsXL6ZatWpZP5gvbiMk1lpUqJC9qvxwbQCY1u9k3z7ripmOYsWKsWTJEkqWLEmbNm0IprZ46dU0/JmJxRgTCoLoG+++ffuIiYnh+PHjLFq0KPvdKr15G8FbtRbhPrSy3drJspIlS7J06VIuvvhiWrduzU8//RTokIB0kgZV7evp4s+AjTHZ4KtvvJlMRg4ePEiLFi04cuQICxcu9N5Ij96aV8JbtRY5tRFlZthcH1lWtmxZli5dSoECBWjZsiWbNm0KdEigqh4vQBGgAZAvM/sFy1KvXj01JixFRqrC+UtkpHeOf9ddqhERzs8MHDlyRGvWrKn58+fXVatWeef8vnDnnc41RUZ6fG0+PU5K+/erNmmiGhvrneOZoLVt2zYtWbKkFi9eXLds2ZKpfYF16sXPUU/nnrhARGYAh3DGaSjtWv+uiDzrk2zGGOM9vvjGGxsLERGZqn4/duwY1157Ldu2bWPOnDk0atQo6+f3NW99Q/bVN+2s1Br58vZUEN36ymkuvfRSli5diqoSExPDjh07AheMJ5kF8A7wDU5Xy3+BSq711wM/eTOL8eViNQ0mrHn7G+9dd6mKqFaurJo/v1NzkT+/6i23pPrt959//tHo6GjNnTu3zps3L3vnDmfZqTXKRI1Qpvny2EZVVX/55Rf93//+p2XLltXdu3d7tA+BqGkAbgAeUNUfcabFTrQZqOSV7MUY41ve+sbr3rhPFXbscKZChjQbup04cYJ27drx3XffMX36dNq1a5fNiwljWak18mWDzHBv7OlHNWrUYPHixRw/fpwWLVrwxx9/+D0GT5OGwqTeS+ICIN574RhjfMZbIwCm/NDKlQsuvRQWL041GTl16hQ33HAD33zzDVOmTKFjx47ZvJAwl5UeCb5skOmNY9utDY/Vrl2bhQsXcvjwYVq0aMHBgwf9en5Pk4bvcWobEiXWNgzgv7kojDHhIOWHliq0bAktWpyXjJw5c4YOHTqwbNkyPvzwQ7p16xbAwHOQzNYa+bLrozeOHa7jWGTRVVddxRdffMHevXtp2bIlf/7pv5EPPE0angSeE5H3gNzAQyKyFLgVGOKr4IwxQcqDD624uDi6du3KwoULee+99+jZs6fnx7dvnunLSq2Rtxtkuv+Osnpsu7WRZY0aNWLu3Lls376d1q1b8/fff/vnxJ42fgBqAh8CG4FfgY+AmpnY/wmcGot/gMPA50CNFGUm4tRiuC9rUpTJB7wFHAFOAHOBMp7EYA0hjfGPuLg47dKliwL69ttvZ/4A1qgu+Hnjd7R/v2qPHh41pDWpmzdvnubJk0ejo6P1+PHj520nQA0hUWe+id6qWkNVL1PVnqr6Sybyk2Y4vTAaAjHAOWCxiFycotxioKTb0jbF9lFAJ+BmoDFQCJgnIrkyEYsxxkcSEhLo168fM2bMYMSIEdxzzz2e72zfPIOfN39HNmJktrVr146PP/6YtWvXcsMNN3DKx1ONezpOw48i8rCIlMzqiVT1WlWdoKobXcnGrUBR4JoURc+o6gG35ahbHBcC/YBHVHWRqm5wHecKoGVWYzPGeIeqcv/99zNp0iSGDRvGww8/nLkD2AiKwc/bvyMbMTLbOnXqxIcffsjy5cvp1KkTZ8/6bvLp3B6W+wK4F3hZRFYAk4HPVPXfbJz7Apyk5a8U6xuJyCHgb2AFMFhVD7m21QPyAF8lFlbVvSKyGacGY2E24jHGZNMzzzzD22+/zcMPP8yQIVlo7mTfPIOft39H7u0xRo/2ToxhqGfPnpw8eZIBAwbQs2dPPv74Y3Ll8n4FvEc1Dar6pKpWBJoD24ARwEERmSYiWe1w/QbwI7Dabd2XQC+gBfAwcBWwVETyubaXwOnieSTFsQ66tp1HRPqLyDoRWXf48OEshmqMycjIkSN57rnn6NevH6+++ioikrUD2TfP4Of+O7r1VvjkE/s9BYH+/fszYsQIZsyYwR133EFCQoL3T5KVhhA4NRTXAz8A8VnYfySwH9fIkumUKwXEAR1dz3vgtIWQFOWWAmMzOq81hDQ+F6bzAYwdO1YB7dKli547dy7Q4Rhv8eT9nN0GkWH6N+NLTz/9tAJ63333eb0hZFYShrLAY8DPON/6V2Ry/9eBWKCah+V3A4+5Hsfg9KgomqLMJmBoRseypMH4XBi2+p88ebKKiLZt21bPnDkT6HCMN6X3fvbWJGhh+DfjawkJCfrAAw8k9kD0f9KAMyJkf5w2BudcH9JPAOUydTLnlsQBoLqH5YsAZ4FerucXup73cCtTBkgArs3oeJY0mGxJ7xuRr2eRDFIzZszQiIgIjYmJ0ZMnTwY6HOMtnryfs9tdMkz/ZvwlISFB+/fvH7AulweAp4F1wJWqermqvqSqv3u4PyIyGuiLc4vhLxEp4VoKurYXFJERIhItIhVEpBnOWA6HgFkAqnoMeB8YLiItRaQOTqPMn3G6ahrjO+mNWheGrf7nzZvHzTffTHR0NHPmzCHKukXmHJ68n7PbIDIM/2b8SUQYM2aM14/radJwPU6twsOq+kMWz3U3To+JJTi3JxKXQa7t8TgDSM3BaWz5IbAViFbV427HeQAniZiOM/Pmv0B7VbU5MIxveNIvPcxa/S9atIhOnTpRq1Yt5s+fT8GCBQMdUs4S6BExPX0/Z6fRapj9zQRCRITHQzF5fkxPCqkzJkK2mmGqqqSxPOvafkqdsRyKqWpeVS2vqn1UdW+K45xR1YGq+j9Vza+q7VOWMcarPP1GFCat/leuXMmNN95ItWrV+Oqrr7jwwgsDHVLwyuqHvzfmYshu4uHJ+zm7k6Cldo5AJ0wmfd681xHsi7VpMFl2551OY63IyLButLV69WotWLCgVq9eXQ8ePBjocIJfZhv5efM+f6g2MAzVuIMUXm7TIM4xw0P9+vV13bp1gQ7DhKKOHZ3q1P79Ydw459tQVqeWDlEbNmwgJiaGIkWKsHLlSkqVKhXokIJXVJRT3Z5SZCSkN8xvbCwMGgSzZ8PJk06tVocOMGKE59X2WT13oIVq3EFORNaran1vHc/7NzyMyYmyWw0b4jZt2kTr1q258MILWbJkiSUMGclqIz9v3OcP1QaGoRp3mLGkwRiTru3bt9OiRQvy5s3LkiVLKF++fKBDCn7Z+fDPbtuYUG1gGKpxh5k0554QkY6eHkRVw+trlzFhYvfu3bRo0YKEhASWLVtG5cqVAx1S6Ej88He/peUJb8zFkNVzB1qoxh1G0mzTICKe9pZQVQ2JaamtTYMxnvv9999p2rQpx44dY+nSpdSuXTvQIRljMslvbRpUNcLDJSQSBmOM5/744w9iYmL466+/WLRokSUMxnPWZTJHszYNxphkDhw4QIsWLTh06BALFy6kXr16gQ7JBAtPEgJvjDFhgpbHXS5FJDfOVNXlgLzu21R1kvdD8z67PWFM+o4cOUKzZs3YvXs3CxcupFGjRoEOyQST3r1h0iTn58SJybdZl8mgFJAulyJSDdgMrASmAOOBicB7wNveCsYYEzh//fUXrVu3ZufOnXz++eeWMJj/JA6lPsn1/fDDD88fSt26TIYFT29PjALW48wyeRKoDtQHfgQ6+SIwY0JeCN3bPX78OG3atGHjxo3MmjWLmJiYQIeUc4XQ+yJJWjXS7uuty2RY8DRpuBJ4XlVP4ExDnVtVNwCPAq/5KjhjQlqI3Ns9ceIE7dq1Y926dXzyySdcd911gQ4pZwuR90Uyu3dDyu62l14Ke/YkXxcm86+EM4/aNIjIUaC+qu4SkR1Af1VdKiKXAL+oan5fB+oN1qbB+EUI3ds9ffo07du3Z+nSpUydOpVu3boFOqScK4TeF6mqWNFJEvLmhbNnnee7dgU6KpOBQA0jvRGo5Xr8HfCYiDQFhgI7vBWMMTlCiNzbPXv2LJ07d2bx4sV88MEHljD4Woi8L9JUpw7cfTd8953z07rhhqU0R4RM4QWggOvxEGA+sAw4AnT1QVzGhK4QuLcbFxfHzTffzPz583n33Xfp3bt3oEPK+ULgfZGu7IxUGRsL3bvD9Omhc70mVR7VNKjqwsSholV1l6pWB4oAxVV1uQ/jMyY0BfG93XPnztGzZ09mzpzJqFGjGDBgQKBDCh9B/L7wqVBsx2FSZVNjGxNG4uPj6d27N1OmTOHVV19l0KBB/ju5fdvMmlB+3UK9HUcO4Lc2DSIyV0QKuT1Oc/FWMMYY30lISOD2229nypQpvPjii/5NGMC+bWZVKL9uod6Ow5wnvTYNfwLq9tgYE6ISE4aJEycydOhQnnjiCf+dPOW3zTFjnMW+baYvrddNBPbvD41ah1Bvx2HOk96EVX1V9bjb4zQX/4VrjMmsxIRhwoQJPPPMMzz99NP+DcC+bWZNaq/bpZc6j0Op1iFc23HkUJ72njDG+JOX7mO7JwxPP/00zz77rPdi9JR928wa99cN4ORJ2L7deRxKtTXZ6XVhgk56bRqWichSTxZ/BmxMyMjOcMFeuI+dkJDAHXfcEdiEIZF928yaxNdt0SKnliFXLme91daYQFHVVBfgLbflHeAYsBWY5Fq2uNaNTusYwbZccskl+v7776sxfnHXXaoREc5PVdX9+1WbNFGNjU17n8hIVWdE/+RLZOR/ZTw4Tnx8vN52220K6FNPPaUJCQleuigTMHfe6byfIiOTv6+MSQewTr34OerpMNKvA7mA+9VtBxEZhdNt834v5jE+c9FFF+m5c+fYsmULZcqUCXQ4JqdKq5tZrlxOCjBgALzzTur7xsbCoEEwe7ZTHZ0/P3ToACNG/Fedf/fdMHZsmsdJSEigf//+vP/++zz11FMMHToUEfHe9ZnA6NjRuWXRvz+MG+e8V9yr/o1Jhbe7XHqaNPwJRKvqthTrqwBrVPVibwXkSzVr1tQdO3Zw3XXXMWPGDHLntiYdxgdSfvCnJa370Xfd5XwoJI7xn5gceNDnPSEhgQEDBjB+/HiGDBnCsGHDLGEwJowFau4JAWqmsj61dUErX758DBs2jNmzZxMTE8O+ffsCHZLJiVI2/BNx7kd72nsgrfv/GfRCiI+P57bbbmP8+PEMHjzYEgZjjNd5+lX7A2C8iFwKrHGtuxpnauwJvgjMVx555BFKlizJnXfeSe3atZk0aRJt27YNdFgmp0n84E+sSv7iC897D6TV2jydXghxcXH06tWLadOmMXToUJ566ilLGIwxXudpTcOjwEvAQGCpaxkIvOzaFlJ69uzJ+vXrKV26NO3bt2fy5MmBDsnkNDNnOh/4tWo5P+vU8U7vgVRqIc6ePUv37t2ZNm0aL7/8Mk8//bQlDCb0Zaf3kfGZTM89kTi0tKr+45OIfCjl3BMnTpzghhtuYNmyZYwfP57bbrstgNEZk3mnT5+mc+fOzJ8/n1GjRnH//SHRJtmYjGXQ4Nd4JiANIXOK1CasOnXqFDfddBNfffUVY8eOpX///gGKzpjMOXHiBDfddBNLlixhzJgxNlulyRlskiuvClRDSESkr4h8JSJbRGSX++KtYAIhKiqKOXPm0LZtWwYMGMAbb7wR6JCMydA///zDddddx9KlS5k4caIlDCbnVOfbsONBzaOkQUQeAV4D1gMVgNnARuBinEaSIS0yMpKZM2dy00038cADDzBs2DDCqQbGhJajR4/SsmVL1qxZw7Rp0+jVq1f6O+SUDxOTvlCeDdOdDTse1DytabgD6K+qTwBxwNuqegNOIlHeV8H5U758+ZgxYwa9evXimWee4eGHH7bEwQSdAwcO0LRpU3766SdmzpxJly5dMt4pp3yYmNRFRTndeseMgYSE/2bCjIoKdGRZZ8OOBy1PB3c6CVRT1d9F5BDQWlV/FJHKwHehMrhTam0aUkpISODBBx/kzTffpG/fvowbN84GgTJB4ffff6dly5b88ccfzJkzh5YtW6a/g90bDg+ejCJqwlag2jQcAIq4Hv8GRLseVwZy1NfxiIgIRo0axTPPPMOECRPo0aMHZ8+eDXRYJszt2LGDxo0bc+jQIRYtWpRxwgB2bzhcWHW+8SNPk4alwA2ux+8DI0VkGTAd8GjwcxF5QkS+F5F/ROSwiHwuIjVSlBEReVZE9ovIKRFZLiKXpyhTWEQmi8gx1zJZRC7y8Do8IiI8++yzvPbaa8yYMYObbrqJk+kNB2yMD61bt45rrrmGkydPsmzZMho2bOjZjvZhEj6sOt/4iae3JyKACFU953reDbgG2AaMVdU4D46xEJgGfI8zLPUwnBqLy1T1qKvMY8AQoA/OjJpPA42Aqqp63FVmAVAOuN116PHALlVtn1EMntyeSOm9995jwIABNG7cmM8//5xChQplan9jsuOLL76ga9euFC1alAULFlCtWrXMHcAmOTImrHn79kS2p8kEymZxv4JAPNDe9VyAWGCwW5ko4DgwwPW8Os7tkGvcyjRyraua0Tnr1avn0VSiKX388ceaO3durVu3rsamN62xMV40fvx4zZUrl73vTM7myZTxJsvw8tTYHo/TkJKIlBCR0Ti1DVlxAc7tkb9czysCJYCvEguo6ilgJZBYHxsN/At863acb4ATbmW8rnv37syZM4etW7dy9dVX8+uvv/rqVMagqjzzzDPcfvvttGzZkuXLl1PCbimYUJKZbr7WuyekpJs0iMhFIjLF1QZhv4jc52p38AywC2gAZHXs5TeAH4HVrueJ/xUPpih30G1bCeCwK3sCwPX4kFsZn2jbti0rVqzg9OnTXHPNNaxYscKXpzNh6syZM/Tu3Zthw4Zx22238fnnn3PBBRcEOixjMseTRCAndhUNAxnVNLwINAE+BI4CrwNzgaZAG1Wtr6ofZ/akIjIS57ZCJ1WNz+z+mTxXfxFZJyLrDh8+nK1j1atXjzVr1lCyZElatWrFlClTvBSlMfDXX39x7bXXMnnyZJ5//nnGjx9Pnjx5Ah2WMZ7LTCJgvXtCUkZJQzugr6oOwuk9IcBOVY1R1Sx91RaR14GbgRhVdR+COrEeq3iKXYq7bTsAFBW3Kfxcj4u5lUlGVce5kpv6RYsWzUrIyVSoUIFvvvmGhg0b0rNnT1588UUbBMpk2+7du2nYsCGrV69mypQpDB482GaqNKEnM4mA9e4JSRklDaWAXwFcH/CngfeyejIReYP/EoYtKTbvxvngb+VWPhJozH9tGFbjNKCMdtsvGihA8nYOPlW4cGEWLlxIjx49GDx4MP379ycuLsMOJMakau3atTRo0ICDBw+yaNEievToEeiQjMmazCYC1lU05GQ01GEEzrDRieKBLA1Y4Go0eStwE/CXiCS+i/5V1X9VVUVkFPCkiGzBaWA5BKfh41QAVd0sIl8CY0UkcTrKscA8Vd2albiyKl++fHz00UdUrFiRF154gb179/LJJ59Yl0yTKZ999hk9e/akVKlSfPHFF1StWjXQIRmTPYmJgHs337S4d/8dPdr3sZlsS3ecBhFJABYBZ1yr2gArSJE4qDMPRfonEknrRENV9VlXGQGeAQYAhYG1wD2qutHtOIWBt/hvsKm5wL2q+ndGMWRlnAZPjB8/njvvvJPLL7+cefPmUbZsWa+fw+QsqsrIkSN55JFHaNCgAXPnzsUbt8+M8UhsLHTvDtOn2+2AHM7b4zRklDRM8OQgqtrXWwH5kq+SBoCvvvqKzp07U7BgQT7//HPq1avnk/OY0Hfu3Dnuu+8+xowZQ+fOnZk0aRJR1mLc+NPdd8PYsTBgALzzTqCjSZslN9nm16Qhp/Fl0gCwceNG2rVrx5EjR5g6dSo33nijz85lQtOxY8fo1q0bCxcu5NFHH+Wll14iIiLLw6UYkzmhNolZqCQ3QSxQE1YZD9SoUYO1a9dy+eWX06FDB4YPH249K0ySPXv2cM0117BkyRLGjx/PK6+8YgmD8a9Q6eZoYzgELfuP5WUlSpRg+fLldO7cmccee4zOnTvzzz//BDosE2CrV6+mQYMG/PHHHyxcuJB+/fp5tmNmRtYzJiPB1M0xvfd2qCQ3YciSBh/Inz8/06dPZ8SIEcyZM4cGDRqwefPmQIdlAkBVefvtt2natCkFCxZk9erVxMTEeH4AG2LXeFswdHOMjYV69WDVKnjssfOTh2BKbkwy1qbBx5YvX063bt04ceIEH3zwAV27dvXr+U3g/Pvvv9xxxx1MmzaN66+/nkmTJlG4cGHPds7OvWdrPGYCxZP3Xlrv7Vy54Ny5/57bDK1eEXSzXIbSktVZLrNr37592rBhQwX0vvvu0zNnzgQkDuM/mzdv1urVq2tERIS+8MILGh8fn7kD7N+v2qOHav78quD8vOUWz2YCvOsu1YgI56cxqfHVzJIZvfciI533c3pLZKR3YwpzBMssl8ZzpUuXZvny5TzwwAO8+eabNG3alL179wY6LOMjU6ZMoX79+hw5coSvvvqKJ598MvMNHrNSPWuNx4ynvH3by9P3XmJbhVy5zj+GtVsICZY0+EmePHl4/fXXmTFjBps2baJOnTp8+eWXgQ7LeNGpU6cYMGAAPXv2pG7duvzwww+0aNEi6wfM7L1nazxmMuKrxNLT915iMhwff37iYO0WQoIlDX7WuXNn1q1bR6lSpWjTpg0PP/wwZ86cyXhHE9S2bdtGdHQ048aN4/HHH2fp0qWULl06ewedOdMZWrdWLednRvdzrfGYyYivEsvMvPcOHnQShvgUExwnJDhjMpigZklDAFSpUoW1a9dyzz33MHLkSKKjo9m61a9TZxgvUVXGjh1LnTp12Lt3L/Pnz+ell14id+6MpnXxkWBoGW+Cly8TS0/fezNnwt69qScvf/yR/TiMT1nviQCbO3cut912G6dOnWLUqFHcfvvtNiVyiDhw4AD9+vXjiy++oFWrVnzwwQeUKVMm0GEZk75g6ZVw113JaxbuvNNGffQBGxEyh7nhhhv46aefuPrqq+nfvz9t2rRh3759gQ7LZGDmzJnUrFmTpUuX8uabb/Lll19awhAoNgBW5mT2tpevHDwIl13mPL7sMvv9hQhLGoJA6dKlWbRoEW+//TarVq2iRo0aTJw40YagDkKHDx+me/fudOrUiXLlyrFhwwYGDhxow0EHkg2AFXqiomDWLNi0yelouWmT89x6+gQ9+08XJCIiIrjnnnv4+eefueKKK+jbty/XX3+9dc0MIjNmzODyyy9n5syZPP/886xZs4bq1asHOqzwZV1MfcMfNTfW0ydkWdIQZC655BKWL1/O66+/zvLly7nssssYPXo0CQkJgQ4tbO3bt4+OHTvStWtXypcvz4YNGxg8eDB58uQJdGjhzT54fMMfNTfW0ydkWdIQhCIiInjggQfYuHEj0dHR3HvvvTRp0oRff/010KGFlXPnzjFq1CiqV6/Ol19+ySuvvMLq1aupUaNGoEMzYB883ubvmhvr6ROSLGkIYhUrVmThwoVMnDiRX3/9lVq1ajFo0CCbNdMPvvvuO6666ioefPBBmjRpwqZNm3j00UcD15XSpM4+eLwnszU32b2NESwNMk2mWNIQ5ESE3r17s3XrVvr06cPIkSOpWrUqkyZNslsWPvDHH3/Qq1cvGjRowIEDB5gxYwbz5s2jYsWKgQ7NpMY+eLwnszU31gA1LFnSECKKFi3Ke++9x9q1aylXrhy9e/cmOjqalStXBjq0HOHkyZMMGzaMKlWq8Mknn/DEE0+wdetWOnfubONmmPDhSc2NNUANb96c/SrYl0DNcult8fHxOmHCBC1durQC2r59e920aVOgwwpJZ86c0XfeeUdLliypgHbp0kV37doV6LCMCV7ZmYHV+B02y6WJiIigT58+bN++nZdeeokVK1ZQs2ZN+vTpw44dOwIdXkiIj4/nww8/pGrVqtx9991ccsklrFy5kk8++cRuRRiTnqw2QLVBuHIESxpCWFRUFI8//jg7d+7k/vvvZ/r06VStWpVevXqxbdu2QIcXlOLi4pgwYQKXXXYZffr04eKLL2bBggWsXLmSxo0bBzo8Y7zPFx/WWWmAam0gcgZvVlsE+5JTbk+kJTY2Vh9++GGNiorSiIgI7dq1q65ZsybQYQWFU6dO6ejRo7V8+fIKaK1atfTTTz/VhISEQIdmjG/ddZdqRITzMxAiI53bGCmXyMjAxBNmsNsTJi0lSpRgxIgR7Nmzh0ceeYSFCxdy9dVXc8011/Dpp59y7ty5QIfod/v27WPIkCGULVuWe+65h1KlSjFv3jx++OEHOnXqZI0cTc4VLA0WPe3KabcvQoIlDTlQsWLFePnll9m3bx9vvvkmBw4coEuXLlSoUIGnnnqK3Tl8xLyEhASWL19Ot27dqFChAi+++CINGzZk6dKlfPPNN7Rr186SBZPzBcuImZ62gbDbFyHBkoYcrGDBggwcOJBt27Yxa9YsrrjiCl544QUqVapEq1at+Oijjzh+/Higw/SaX3/9lSeeeIIKFSrQvHlzvvrqKx588EF27tzJnDlzaN68uSULJnwE04iZBw/Crbc6s1n26pW8NiFYakSMRyxpCAO5cuXipptu4osvvuC3335j6NChbN++nVtvvZVixYrRpUsXPv30U06ePBnoUDNFVdm0aRPPPfcctWvX5vLLL+fVV1+lRo0aTJ06lT/++INXX33VekOY8BUsI2bOnOnUdPz4o5MMuA/CFSw1IsYj4rSTCA/169fXdevWBTqMoJCQkMDq1auZNm0an3zyCYcOHSIyMpKYmBjatWtHu3btKF++fKDDPM/JkydZtWoVixYt4vPPP0/qJdKwYUO6dOnCzTffTPHixQMcpTFhJjYWuneH6dPPr8mIinJqOVKKjIRTp5zHd90F48ZB3rxw9iwMGADvvOP7uMOAiKxX1fpeO54lDebcuXOsWLGCuXPnMn/+fHbu3AnApZdeSqNGjbjmmmto1KgRVapU8Xv1/l9//cX333/P2rVrWb58OV9//TVnz54lT548NG3alI4dO3LTTTdRsmRJv8ZljHFz990wdmzqH/axsTBoEMyeDSdPOjUJHTrAiBH/JRgdOzq3U/r3d5KH2FgbEtxLLGnIBksaMqaqbNu2jfnz57NixQq++eYb/vzzTwAKFSpEzZo1ueKKK6hZsyZVq1alXLlylC1blnz58mX5nAkJCRw5coTdu3ezbds2tm/fzrZt2/jhhx+SjTdRs2ZNWrVqRatWrWjcuDEFChTI9vWaLErvm6UJH2nVIuTLl3y91SQEjCUN2WBJQ+apKlu3buWbb75hw4YN/Pzzz/z888/nzbRZokQJSpYsSZEiRShSpAhFixalYMGC5MmThzx58pA3b17OnDnD0aNHOXr0KH/99RcHDx5k//79xMbGJusOGhERQcWKFbn88stp0KABDRo0oH79+lx44YX+vnyTlvS+WZrwEBvr1BiUKgULFzq1CLlzw7lz0Ls3TJz4X1mrSQgYSxqywZIG71BVfv/9d3bu3Mnvv/+etBw8eJAjR45w5MgRDh8+zIkTJ84bG6JgwYIULlyYiy++mKJFi1K6dGlKlSpFqVKlKFeuHFWqVKFSpUrkzZs3QFdn0uXJ/WkTHhITx2rV4NdfUy9j74uA83bSkNtbBzLhQ0QoX768Rw0lVZW4uDjOnj1L3rx5LRkIdbt2pX1/2oSHlIljYsIgAhEREB9v74sczLpcGp8SEfLmzUvBggUtYcgJgqnvvwmMtLpI3nqrM0C0vS9yNEsajDGZEyx9/01gpJU4Hj9u74swYG0ajDHGZI41bAwZId2mQUSaAIOAekApoK+qTnTbPhHonWK3tap6tVuZfMAI4GYgClgC3K2q+3wavDHGGId7gjB6dODiMH7n79sTBYGNwP1AWk1qFwMl3Za2KbaPAjrhJA2NgULAPBHJ5YN4jTHGGOPi15oGVf0C+AKSahVSc0ZVU70ZJiIXAv1waigWudbdCvwGtAQWejtmY4wxxjiCsSFkIxE5JCLbROQ9ESnmtq0ekAf4KnGFqu4FNgMN/RynMSaUxcZC06bWYM+YTAi2pOFLoBfQAngYuApY6mrHAFACiAeOpNjvoGvbeUSkv4isE5F1hw8f9k3UxpjQ89xz8PXXMGxYoCMxJmQEVdKgqtNUda6q/qKqnwNtgKpAu2wcc5yq1lfV+kWLFvVarMaYEBUV5QxENGYMJCQ4P0Wc9SZwrOYnJARV0pCSqu4H9gGXulYdAHIBRVIULe7aZowx6UtrcKLduwMbV7izmp+QENRJg4gUAUoDsa5V64E4oJVbmTJAdeBbvwdojAk9NqplcLGan5Di16RBRAqKSG0Rqe06dznX83KubSNEJFpEKohIM+Bz4BAwC0BVjwHvA8NFpKWI1AEmAz/jdNU0xpiM2aiWwcNqfkKKvyesqg8sc3s+1LV8CNwF1MRpCHkRTu3CMqCrqh532+cB4Bwwnf8Gd+qlqvE+jt0Yk1PY4ETBw2p+QopfaxpUdbmqSipLH1U9parXqmoxVc2rquVd6/emOMYZVR2oqv9T1fyq2j5lGWN8yhpshZ9Q/J1nJuZAX5/V/ISMoG7TYExQsgZb4ScUf+eZiTnQ1zdzplPjU6uW89PmsQhaNmGVMZ6KinKqTlOKjIRTaY2KbkJaKP7OMxNzKF6fyRRvT1hlNQ3GeMoabIWfUPydZybmQFxfoG+FmGyxpMEYT1mDrfATar/z2Fjo3h1y5/Ys5kBcX6BvhZhssaTBmMywBlvhJ5R+54kfyKtWeR6zv67PxmPIEaxNgzHGhLpQaJsQGwuDBsHs2XDypHMrpEMHGDEieGtucgBr02CMMSa5UGh7EWq3ekyqLGkwxphQFyofyKF0q8ekyt8jQhoTehIbl02fHnz/hI1JlPiB3L8/jBvnvG+DjY3EGfIsaTAmI+6tvd95J9DRGJM6+0A2fmC3J4xJi7X2NsaYZCxpMCYtodC4zBhj/MiSBmPSEiqNy4wxxk8saTAmPd5u7W1D6BpjQpg1hDQmPd5uXGaNKk0wsh5CxkNW02CMP1ijShPMbD4I4yFLGozxB2tUaYKRJbMmkyxpMMYfrFGlCUaWzJpMsqTBGH+xIXRNsLFk1mSSNYQ0xl9sxD4TjEJh+GkTNCxpMMbbrCW6CSWWzJpMsNsTxnibtUQ3xuRQljQY4y3WEt2EMxu4LCxY0mCMt6RsiR4RAR07Wkt0Ex6shi0sWNJgjLe4t0TPlcupbdi61do1mJzNatjCiiUNxnjTuHHOP874eOf5pk32D9TkbDbWQ1ixpMEYb9q3z/6BmvBiYz2EFUsajPEm+wdqwlF6A5d52kDSGlKGBEsajMmsjP652ciPJtzMnOmM8VCrlvPTfewHTxtIWkPKkCCqGugY/KZ+/fq6bt26QIdhQt3dd8PYsTBggE1vbUxaoqKcmraUIiPh1KnMlzNZIiLrVbW+t45nNQ3GeMpaiRt3Vp2ePk8bSKZXzl7joGNJgzGeslbixp1Vp6fP0/Y96ZWz1zjoWNJgjKeskaMBq3HKDE/b96QsN3asvcZByto0GJMZHTs6yYP7jIDujb5MzhcbC4MGwezZcPKkU+PUoQOMGGEJpLfYa+w13m7TYLNcGpMZNiOgsRon37PXOGj59faEiDQRkbki8oeIqIj0SbFdRORZEdkvIqdEZLmIXJ6iTGERmSwix1zLZBG5yJ/XYYwJc+HUrTZQjRHD6TUOIX69PSEibYFGwAZgEnC3qk502/4YMAToA2wFnnaVr6qqx11lFgDlgNtdu40Hdqlq+4zOb7cnjF/FxkL37jB9un1DMqHLuhiHNG/fnghYmwYR+Re4NzFpEBEB9gNvq+oLrnVRwCFgkKqOFZHqwK9AI1X9xlWmEbAKqKaqW9M7pyUNxq/sn60JZTZ+Qo6Qk8dpqAiUAL5KXKGqp4CVQEPXqmjgX+Bbt/2+AU64lTEmsMK1db31qc9ZrIuxSUUwJQ2J9bcHU6w/6LatBHBY3apHXI8PuZUxJrB88c82FD6QrU99zmKNEU0qgun2REOcWoPyqvq7W7kPgNKqeq2IPAncrqqVUhxrF/Ceqr6Uynn6A/1dT2sAG31xPSGgCHAk0EEEkF+vvyKUuxiKKqiAHIXDu+H3jPdM/3jZOI7Prr8u1BWQlOsVdIPTfikY2Ps/C9d/KVwSB3GH4XBRKJoH8myHnT6Iz5fC/XdfVVUv8NbBgqnLZeJXqOIk/6dY3G3bAaCoiEhibYOrLUQxtzLJqOo4YJyr7Dpv3tsJJeF87WDXb9dv1x+u1x/O1w7O9XvzeMF0e2I3zgd/q8QVIhIJNOa/NgyrgYI4bRsSRQMFSN7OwRhjjDFe5teaBhEpCFR2PY0AyolIbeCoqv4uIqOAJ0VkC7ANp/vlv8BUAFXdLCJfAmNdtx0AxgLzMuo5YYwxxpjs8XdNQ33gB9cSBQx1PU5sOTUceB0YDawDSgKtE8docOkB/AQsdC0/Abd6eP5x2Yw/lIXztYNdv11/eAvn6w/nawcvX39YzT1hjDHGmKwLpjYNxhhjjAliljQYY4wxxiM5KmkQkYtF5C0R2eKa8GqviIwRkf+lKJfhpFciUlNEVriO84eIPO3q3hnURKS/iCwTkb9dk4JVSKXMHtc29+XlFGXKicjnInJCRI6IyJsiktdvF5JFHl5/jv39p+Sa9C3l73paijI5dhI4EblbRHaLyGkRWS8ijQMdky+IM9Ffyt/zAbftIhlMBhhKJIwnP/Tg2iem8l5Yk6JMPnE+K4+4/sfPFZEynpw/RyUNQCmgNPAoUBPoCTQBPk5RbipQF7jOtdQFJiduFJFCwCKc0SivBO4HHgEe8m34XpEfZyjuZzMoNwynoWni8nziBhHJBcwHLsDp8noz0Bl4zfvhep0n15+Tf/+pmUDy3/WAFNvTfT1ClYh0A94AXgTq4HTLXiAi5QIamO9sJfnvuabbtkeBh4GBOO/pQ8AiEfHaoD9+VhBnoL77gdQmwvDkekP1fZ/RtQMsJvl7oW2K7aOATjj/2xsDhYB5rv/96VPVHL24XqwEoJDreXVAgWvcyjRyravqen4X8A8Q5VZmCPAHrsajwb7g9FRRoEIq2/bgTAKW1r5tXK9ZWbd1PYHTia9jsC9pXX+4/P7d4l6OMwlcWtszfD1CdQHW4owU675uO/BSoGPzwbU+C2xMY5sAscBgt3VRwHFgQKBj98K1/wv0ycz15pT3fcprd62biDMMQVr7XAicBW5xW1fW9T//2ozOmdNqGlJTCDgDnHQ992TSq2hglToTZiVaiFOTUcGXwfrRIBH5U0R+FJHBKW49RAObVXWv27qFQD6gnl+j9L5w/P13d1VDbhKRESm+beXISeBc7+d6uE2A5/IVIXxdGajkqo7fLSLTRCRxuH1PJgPMSWzyQ2gkIodEZJuIvCcixdy21QPykPz12QtsxoNrD6ZhpL3OdX/qOZxvG+dcq1Od9EpE3Ce9KgHsS3G4g27bQn2atzdxxsf4E7gKeBnnD+121/YSnD9x2BEgntCfGCzcfv9Tgd9wpp2/HHgJuAJo7druyesRiooAuUh9AryW/g/H59YCfYAtOMPqDwG+dd3HT28ywNL+CtCPPLnenPq+B/gSmInzf6oCzq3npSJST1XP4FxfPOfPx+E+OWSaQqKmQUSeT6VhR8qlWYp9CgKf41QpPxqAsL0mK9efHlUdqarLVPVnVR0P3A30kxQNRoOFt68/1GXm9VDVcaq6UFV/UdVpQDeglYjUDeQ1GO9S1QWq+onrb3oxcD3O//feAQ7N+JmqTlPVua6/+c9xbjdXBdp54/ihUtMwCvgogzLuM2MWBL5wPb1eVU+7lfNk0qsDOBNluSvuts3fRpGJ68+Cta6flXFqHw4A16Qok/jNLdSvPxR//ymNIuuvxzqcbxmX4sxAmelJ4EJEYs1Yar/HUL4uj6jqvyKyCef3PNu1Or3JAHMSn0x+GKpUdb+I7MN5L4Bzfblw/qcfditaHFiV0fFCImlQ1SN4OLWp637tApzGMNep6r8pirhPepV4PyvlpFergVdEJNIt4WiFU8W7J4uXkWWZuf4squ36Gev6uRoYIiJlVDWxmr4VTtuQ9T6MI1Vevv6Q+/2nlM3XoybOPwz333VGr0fIUdWzIrIe5/c2w21TK+CzwETlP+JM9lcNWEbyyQC/d9veGKdXUE7jyfXmyPd9akSkCM5tmcS/+fVAHM7rM9VVpgxO49CMrz3QrT+9ueB0EVwNJGbYJdyWvG7lFgC/4LxJol2PP0/RuvQAMA2oAXTEaU3/cKCv0YPXoAROEtADpyVwW9fzi13bo4EHXesqAl1xbuHMcTtGLtdrshSnq1pLV5m3An192b3+nP77T/FaXAI8jdOTpILrtdiMU8OQy9PXI1QXnFsxZ3Ha6lTH6X75L1A+0LH54FpHAE1df9MNgHmu92x51/bHgGOu93IN13t7P3BBoGPP4vUWdP1d18Zp5P6063E5T683VN/36V27a9sI1/VUAJrhfCbuS3HtY1zrWrr+xy8DfnT/v5Dm+QP9Anj5xWzm+qBIbWnmVq4wTvXuP67lI+CiFMeqidPa9jROhvYMIdDdDqfrVWrX38e1vS6wBvgbp4/vFtc++VMcp5zrH89JnFsWbwL5An192b3+nP77T3ENZYEVrt/fGWAHzgfnxSnKZfh6hOqC015nD//VkjUJdEw+us7ED8WzOAn+Z8BlbtvF9bcR63pPrwBqBDrubFxvWv/rJ3p6vaH6vk/v2nG6li7EGZfiLE4j6Im4dZ93HSMf8Jbrf8NJnPZ/ZT05v01YZYwxxhiPhETvCWOMMcYEniUNxhhjjPGIJQ3GGGOM8YglDcYYY4zxiCUNxhhjjPGIJQ3GGGOM8YglDcaEGBFZLiJvZ1CmmWsOiiL+isvXXNfT2QvHaeqa/S9XOmUGicie7J4rxTGLichh1+h7xoQkSxqM8TIRmeg2cVSciOxyTUldwEun6Ag84Xa+PSIyKEWZb4GSOIO3mOReBV5Q1Xh/nlRVDwGTgKH+PK8x3mRJgzG+sRjnQ7sSzjTFd+MM75ptqnpUVY9nUOasqh5QG70tGRFpiDMnwycBCmECcIuIXByg8xuTLZY0GOMbZ1wf2ntVdSowBbgJQETyicgoETkoIqdFZI2INErcUUTyiMibIrJfRM6IyF4Redlte9LtCRFZDpQHXk2s3XCtP+/2hIh0FJFf3I452DWzX+L2PSIyRETGisg/IrJPRNKd0EhELhGROSJyQEROiMgGEbk+RZkMjysiVURkhev12CoibUXkXxHpk865S4vINBH5y7XMF5FL0yrv0gNYoqqnUhzrUdc1/Csik3DG8E95vr4i8qsrxm0i8qCIRLhtz/AaVHUjznDPHTOI05igZEmDMf5xCsjjejwcZzKl23Ami/kF+FJESrq23wd0ALrjTLzWDdiaxnE74kw8MwynZqNkaoVEpB7ObI8zcebVeBznFse9KYo+6IqnLvAKMFxEotO5roI4E/+0AmrhzHkwU0SqeXpc1wfvLOAccDXQB2euj3xpnVRE8uNMsnMaZ6KmaJx5Bha7tqWlMc704O7H6go87zpnXZzX+qEUZe4AXsSZHKg68DDOpEh3Z+EavnPFbEzoCfTkG7bYktMWnAli5rk9vwpnKuvpOFPvngV6uW3PBewEnnc9fxNYQhoTZAHLgbfdnu8BBqUo0wxnEpsirudTgKUpyjwL7EtxnI9TlNkODMnk9a9x3yej4wLX4nzYlnbb3pDzJxpToLPr8W2uY4jb9lw4bTi6phPb30DfFOu+Bd5LsW4xsMft+e/ArSnKPAD8mplrcK0fCawK9PvUFluyslhNgzG+cZ2ravo0ztS0K4GBONNV5wG+SSyoToO81cBlrlUTcaa63SYio0WknXs1eBZVdz+ny9dAaREp5Lbu5xRl9gPF0jqoiBQQkeGuavu/RORfnKm4y6Uomt5xqwH7VfUPt+3fAwlpXg3Uw5kG+rjrdf4XZyrkwjivcVqicGon3FXHef3dJT0XkaI4M4aOTTyX63wvu50rM9dwyhWHMSEnd6ADMCaHWgn0B+JwPkziAESkRDr7OF+nVTeISAWcb68tgA+Bn0Sklaqm90GaVe6NJeNS2ZZewjICuA4YhPPN/yROD4G8Kcpl9rgZiQB+xLmFk9LRdPY7gpNYZPZcAHfi1Epk18XAYS8cxxi/s5oGY3zjpKruUNXfEhMGl504tyeuSVwhzngB0cCvietU9biqfqqqdwHtgBigchrnOotTNZ+eze7ndGmEc3si3Z4YGWgETFLVz1T1Z5z2Fel900/NFqCUiJRyW1ef9P8/bcB5PY64Xmf3Jb2k4Qf+q9FJtBmnHYK7pOeqehCnZuSSVM61IwvXUMMVvzEhx5IGY/xIVU8AY4BXXK3rq7ueFwfeARCRh0TkZhGpLiKVcVr8/4PzgZyaPUBjV2+CtAZzeg1oKiLPulr534LTmG94Ni9pG9BBROqKSE3gIyAyk8dYhNP48EMRqSUiV+Pc9z9H8loQd1OAg8AccQZrqigiTUTktQx6UCzESXTcvQH0FpE7RORSEXkCaJCizDPAo64eE1VFpIaI9HKV9fgaXI006wFfpvuKGBOkLGkwxv8ew2kUOQGniv0K4DpVjXVtPw48gtPKfgNO+4Y2qnoyjeM9jXPPfSdpVHur6gagC9AJ2IhzP/5lIN2RJT3wEHAIWIXTi2KN67HHXLdcOuD0NPgO53bMCzgftinbHyTucxJoAuzC6RWyxbVfYeCvdE73EVBFRC53O9Z0nEahL+DURNTE+cB3P994nMaXtwI/ua6xP7A7k9dwI/C7qmbqNTImWIiqjf1ijAkuIlILJ6Gqr6rrvXzsl4GiqtrPm8dN5TznXYOIfAeMUmfsDmNCjiUNxpiAE5EOwAmcxpQVcL7pC1BHvfxPytVbZCDwsnpxKOmMrkFEiuGM3/Cqt6/JGH+xpMEYE3Ai0gtnuO2yOLcXlgMPuhohhoSccA3GZMSSBmOMMcZ4xBpCGmOMMcYjljQYY4wxxiOWNBhjjDHGI5Y0GGOMMcYjljQYY4wxxiOWNBhjjDHGI/8HhiGnCvqh8PUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8,6))\n", + "plt.plot(res['angle'], res['radial_velocity'], 'r*', label='EMP candidates')\n", + "plt.plot(x_rot, y_rot, 'k-', label='van der Marel+2002')\n", + "plt.xlim(-200, 150)\n", + "plt.ylim(100, 450)\n", + "plt.ylabel('Radial velocity (km/s)')\n", + "plt.xlabel('Position angle (deg)')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "ff616444-86ae-44eb-b3de-6ec51b2e7506", + "metadata": {}, + "source": [ + "The Figure shows radial velocity as a function of position angle in the LMC (measured east of north) for our LMC sample. The black sinusoid shows the LMC rotation model derived from carbon stars in the outer LMC disc ([van der Marel et al. 2002](https://arxiv.org/abs/astro-ph/0205161)) that sit at radii similar to the majority of our EMP sample." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f8f02b29-27ef-46f5-bec7-aacca0a4f8f0", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From bb75f794d421c610de2f4a10fae9c347fe8c7a53 Mon Sep 17 00:00:00 2001 From: github-actions Date: Fri, 21 Jun 2024 23:34:30 +0000 Subject: [PATCH 2/2] Automated commit for HTML files --- .../ExtremelyMetalPoorStarsInTheLMC.html | 8959 +++++++++++++++++ 1 file changed, 8959 insertions(+) create mode 100644 03_ScienceExamples/MagellanicClouds/ExtremelyMetalPoorStarsInTheLMC.html diff --git a/03_ScienceExamples/MagellanicClouds/ExtremelyMetalPoorStarsInTheLMC.html b/03_ScienceExamples/MagellanicClouds/ExtremelyMetalPoorStarsInTheLMC.html new file mode 100644 index 00000000..09789c67 --- /dev/null +++ b/03_ScienceExamples/MagellanicClouds/ExtremelyMetalPoorStarsInTheLMC.html @@ -0,0 +1,8959 @@ + + + + + +ExtremelyMetalPoorStarsInTheLMC + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + +
+ +