From 8d07bb5a5868abe166da450475aad038e7834a9c Mon Sep 17 00:00:00 2001 From: bmerino95 Date: Fri, 25 Oct 2024 13:44:33 -0700 Subject: [PATCH 01/19] Adding latest version of GHOST nb --- .../GHOST_IFU_Star/GHOST_IFU_Star.ipynb | 1815 +++++++++++++++++ 1 file changed, 1815 insertions(+) create mode 100644 04_HowTos/DataReduction/DRAGONS_reduction_examples/GHOST_IFU_Star/GHOST_IFU_Star.ipynb diff --git a/04_HowTos/DataReduction/DRAGONS_reduction_examples/GHOST_IFU_Star/GHOST_IFU_Star.ipynb b/04_HowTos/DataReduction/DRAGONS_reduction_examples/GHOST_IFU_Star/GHOST_IFU_Star.ipynb new file mode 100644 index 00000000..369535eb --- /dev/null +++ b/04_HowTos/DataReduction/DRAGONS_reduction_examples/GHOST_IFU_Star/GHOST_IFU_Star.ipynb @@ -0,0 +1,1815 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "f941c702-6722-46ed-ab44-285010cd1cb0", + "metadata": {}, + "outputs": [], + "source": [ + "__nbid__ = '00XX'\n", + "__author__ = 'Brian Merino , Vinicius Placco '\n", + "__version__ = '20241025' # yyyymmdd; version datestamp of this notebook\n", + "__keywords__ = ['GHOST','Gemini','star','dragons']" + ] + }, + { + "cell_type": "markdown", + "id": "72dc5d10-66e1-4f22-88a4-1846e9f3c9ea", + "metadata": {}, + "source": [ + "# Gemini GHOST XX Oph reduction using DRAGONS Python API\n", + "***\n", + "## Public archival data from ghost_tutorial - GS-ENG-GHOST-COM-3-915 (XX Oph)\n", + "#### adapted from https://dragons.readthedocs.io/projects/ghost-drtutorial/en/release-3.2.x/index.html\n", + "***" + ] + }, + { + "cell_type": "markdown", + "id": "60f75de4-ed74-4236-97b3-04b1a193ce8f", + "metadata": {}, + "source": [ + "# Note: This notebook may take more than an hour to run. \n", + "\n", + "### If you want to run this notebook on your local machine, ensure your DRAGONS calibration database is correctly set up. To do so, make sure the contents of ./dragons/dragonsrc looks like this:\n", + "\n", + "```\n", + "[calibs]\n", + "databases = ~/.dragons/dragons.db get store\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "123b968c-1c2b-4552-bcaa-f64d01886f09", + "metadata": {}, + "source": [ + "## Table of contents\n", + "* [Goals](#goals)\n", + "* [Summary](#summary)\n", + "* [Disclaimers and attribution](#disclaimer)\n", + "* [Imports and setup](#imports)\n", + "* [About the dataset](#About)\n", + "* [Prepare the working directory](#Prepare)\n", + "* [Downloading data for reduction](#Downloading_Data)\n", + "* [Create directory for raw files](#raw)\n", + "* [Create File Lists](#File_Lists)\n", + "* [Set up the DRAGONS logger](#DRAGONS_logger)\n", + "* [Create update_list() and reduce_func()](#func)\n", + "* [Select and reduce biases](#biases)\n", + "* [Update list of files 1](#update_list_1)\n", + "* [Select and reduce slit biases](#slit_biases)\n", + "* [Update list of files 2](#update_list_2)\n", + "* [Select and reduce red science biases](#red_science_biases)\n", + "* [Select and reduce blue science biases](#blue_science_biases)\n", + "* [Select and reduce red flat/arc biases](#red_flat_arc_biases)\n", + "* [Select and reduce blue flat/arc biases](#blue_flat_arc_biases)\n", + "* [Clean up working directory 1](#clean_up_1)\n", + "* [Select and reduce master and slit flats](#master_flat_and_slit_flats)\n", + "* [Update list of files 3](#update_list_3)\n", + "* [Select and reduce slit flats](#slit_flats)\n", + "* [Select and reduce red flats](#red_flats)\n", + "* [Select and reduce blue flats](#blue_flats)\n", + "* [Clean up working directory 2](#clean_up_2)\n", + "* [Select and reduce arcs](#arcs)\n", + "* [Update list of files 4](#update_list_4)\n", + "* [Select and reduce slit viewer data](#slit_viewer)\n", + "* [Select and reduce red arcs](#red_arcs)\n", + "* [Select and reduce blue arcs](#blue_arcs)\n", + "* [Select and reduce spectroscopic standard](#spec_standard)\n", + "* [Update list of files 5](#update_list_5)\n", + "* [Select and reduce standard slit viewer data](#standard_slit_viewer)\n", + "* [Select and reduce red standard data](#red_standard)\n", + "* [Select and reduce blue standard data](#blue_standard)\n", + "* [Clean up working directory 3](#clean_up_3)\n", + "* [Select and reduce science data](#science)\n", + "* [Update list of files 6](#update_list_6)\n", + "* [Select and reduce science slit-viewer data](#science_slit_viewer)\n", + "* [Update list of files 7](#update_list_7)\n", + "* [Select and reduce red science data](#red_science)\n", + "* [Selet and reduce blue science data](#blue_science)\n", + "* [Plot reduced spectra](#Plot)\n", + "* [Output 1D spectra](#write1DSpectra)\n", + "* [Save plots of reduced spectra](#Save_plot)\n", + "* [Make reduced spectra IRAF compatible](#IRAF_compatible)\n", + "* [Clean up working directory 4](#clean_up_4)\n", + "\n", + "\n", + "\n", + "# Goals\n", + "Showcase how to reduce GHOST spectroscopy data using the Gemini DRAGONS package on the Data Lab science platform using a custom DRAGONS kernel `\"DRAGONS (Py3.7)\"`. The steps include downloading data from the Gemini archive, setting up the DRAGONS calibration service, processing biases, flats, and arcs, creating master flats and slit-flats, reducing the standards and science data, and finally creating the final reduced spectra for GHOST's red and blue arms. \n", + "\n", + "\n", + "\n", + "# Summary\n", + "DRAGONS is a Python-based astronomical data reduction platform written by the Gemini Science User Support Department. It can currently be used to reduce imaging data from Gemini instruments GMOS, NIRI, Flamingos 2, GSAOI, and GNIRS, as well as spectroscopic data taken with GHOST and GMOS in longslit mode. Linked here is a general list of guides, manuals, and tutorials about the use of DRAGONS.\n", + "\n", + "The DRAGONS kernel has been made available in the Data Lab environment, allowing users to access the routines without being dependent on installing the software on their local machines. \n", + "\n", + "In this notebook, we present an example of a DRAGONS Jupyter notebook that works in the Data Lab environment to reduce Gemini South GHOST blue:2x2 and red:2x2 spectroscopy data fully. This notebook will not present all of the details of the many options available to adjust or optimize the DRAGONS GHOST data reduction process; rather, it will just show one example of a standard reduction of a GHOST spectroscopic dataset. \n", + "\n", + "The data used in this notebook example is GHOST blue:2x2 and red:2x2 spectroscopy data from the Gemini archive of the star XX Oph from the GHOST commisioning run, program ID GS-CAL20230416.\n", + "\n", + "\n", + "# Disclaimer & attribution\n", + "\n", + "Disclaimers\n", + "-----------\n", + "Note that using the Astro Data Lab constitutes your agreement with our minimal [Disclaimers](https://datalab.noirlab.edu/disclaimers.php).\n", + "\n", + "Acknowledgments\n", + "---------------\n", + "If you use **Astro Data Lab** in your published research, please include the text in your paper's Acknowledgments section:\n", + "\n", + "_This research uses services or data provided by the Astro Data Lab, which is part of the Community Science and Data Center (CSDC) Program of NSF NOIRLab. NOIRLab is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the U.S. National Science Foundation._\n", + "\n", + "If you use **SPARCL jointly with the Astro Data Lab platform** (via JupyterLab, command-line, or web interface) in your published research, please include this text below in your paper's Acknowledgments section:\n", + "\n", + "_This research uses services or data provided by the SPectra Analysis and Retrievable Catalog Lab (SPARCL) and the Astro Data Lab, which are both part of the Community Science and Data Center (CSDC) Program of NSF NOIRLab. NOIRLab is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the U.S. National Science Foundation._\n", + "\n", + "In either case **please cite the following papers**:\n", + "\n", + "* Data Lab concept paper: Fitzpatrick et al., \"The NOAO Data Laboratory: a conceptual overview\", SPIE, 9149, 2014, https://doi.org/10.1117/12.2057445\n", + "\n", + "* Astro Data Lab overview: Nikutta et al., \"Data Lab - A Community Science Platform\", Astronomy and Computing, 33, 2020, https://doi.org/10.1016/j.ascom.2020.100411\n", + "\n", + "If you are referring to the Data Lab JupyterLab / Jupyter Notebooks, cite:\n", + "\n", + "* Juneau et al., \"Jupyter-Enabled Astrophysical Analysis Using Data-Proximate Computing Platforms\", CiSE, 23, 15, 2021, https://doi.org/10.1109/MCSE.2021.3057097\n", + "\n", + "If publishing in a AAS journal, also add the keyword: `\\facility{Astro Data Lab}`\n", + "\n", + "And if you are using SPARCL, please also add `\\software{SPARCL}` and cite:\n", + "\n", + "* Juneau et al., \"SPARCL: SPectra Analysis and Retrievable Catalog Lab\", Conference Proceedings for ADASS XXXIII, 2024\n", + "https://doi.org/10.48550/arXiv.2401.05576\n", + "\n", + "The NOIRLab Library maintains [lists of proper acknowledgments](https://noirlab.edu/science/about/scientific-acknowledgments) to use when publishing papers using the Lab's facilities, data, or services.\n", + "\n", + "For this notebook specifically, please acknowledge:\n", + "* DRAGONS publication: Labrie et al., \"DRAGONS - Data Reduction for Astronomy from Gemini Observatory North and South\", ASPC, 523, 321L \n", + "\n", + "* DRAGONS open source software publication" + ] + }, + { + "cell_type": "markdown", + "id": "6b6af986-a038-4164-a9f9-8d35ce21a939", + "metadata": {}, + "source": [ + "\n", + "# Importing Python libraries" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b1f66156-8e55-405b-bf37-afd00515ad2c", + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "import glob\n", + "import os\n", + "import numpy as np\n", + "import astrodata\n", + "import shutil\n", + "\n", + "from astropy.io import fits\n", + "from astropy.wcs import WCS\n", + "from astropy.utils.exceptions import AstropyWarning\n", + "\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.colors import LogNorm\n", + "\n", + "import gemini_instruments\n", + "from gempy.utils import logutils\n", + "from gempy.adlibrary import dataselect\n", + "from gempy.adlibrary import plotting\n", + "\n", + "from recipe_system import cal_service\n", + "from recipe_system.reduction.coreReduce import Reduce\n", + "\n", + "warnings.simplefilter('ignore', category=AstropyWarning)\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "markdown", + "id": "f9714b7c-cb16-4c9c-a90c-7b3b4517c73d", + "metadata": {}, + "source": [ + "\n", + "# About the dataset\n", + "\n", + "The GHOST data used for this tutorial is of the star XX Oph. IFU-1 was used to obtain standard resolution of the star. The data was obtained during the commissioning run.\n", + "\n", + "The table below contains a summary of the dataset:\n", + "\n", + "| Observation Type | File name(s) | Purpose and Exposure (seconds) |\n", + "| :--- | :--- | :---: |\n", + "| Science | S20230416S0079 | blue:2x2, slow; red:2x2, medium |\n", + "| Science bias | S20230417S0011-015 | |\n", + "| Science flats | S20230416S0047 | 1x1; blue:slow; red:medium |\n", + "| Science Arcs | S20230416S0049-51 | 1x1; blue:slow; red:medium |\n", + "| Flat biases
Arc Biases | S20230417S0036-40 | 1x1; blue:slow; red:medium |\n", + "| Standard (CD -32 9927) | S20230416S0073 | blue:2x2, slow; red:2x2, medium |\n", + "| Standard biases
Standard flats
Standard arc
Standard flat biases
Standard arc biases | In this case, the calibrations for the science can be used for the standard star. | |\n", + "| BPMs | bpm_20220601_ghost_blue_11_full_4amp.fits
bpm_20220601_ghost_red_11_full_4amp.fits | |" + ] + }, + { + "cell_type": "markdown", + "id": "a31475af-f209-470a-bad5-2bdb38a14528", + "metadata": {}, + "source": [ + "\n", + "# Prepare the working directory\n", + "\n", + "If you have any intermediate files that were created from running this code in the past, you will need to remove them from your working directory. The cell below defines a clean-up function that will remove all the fits files from your working directory. This function will be called again at the end of the tutorial, leaving you with only the final product. By default, this function will delete all files in the working directory. If there are files that have been previously reduced that you would like to keep, set `save_reduced=1` when calling the function." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ee7b5efd-e8c7-4554-a1b3-1d805725f964", + "metadata": {}, + "outputs": [], + "source": [ + "def clean_up(save_reduced=0):\n", + " #Does the calibrations directory already exist?\n", + " caldb_Exist = os.path.exists('./calibrations') \n", + " reduced_dir = os.path.exists('./reduced') \n", + " \n", + " if caldb_Exist:\n", + " shutil.rmtree('./calibrations', ignore_errors=True)\n", + "\n", + " #Remove existing log and list files.\n", + " work_dir_path = os.getcwd()\n", + " work_dir = os.listdir(work_dir_path)\n", + "\n", + " for item in work_dir:\n", + " if item.endswith(\".log\") or item.endswith(\".list\"):\n", + " os.remove(os.path.join(work_dir_path, item))\n", + " \n", + " #Next, we will remove all the existing fits files, except for the previously reduced files, depending on what you set save_reduced to.\n", + " if save_reduced:\n", + " all_files_0 = glob.glob('*.fits')\n", + " save = dataselect.select_data(all_files_0, [], ['PROCESSED'])\n", + " \n", + " for s in save:\n", + " os.remove(os.path.join(work_dir_path,s))\n", + "\n", + " #Move reduced files to save/ directory\n", + " if reduced_dir:\n", + " remain_files = os.listdir(work_dir_path)\n", + " \n", + " for item2 in remain_files:\n", + " if item2.endswith(\".dat\") or item2.endswith(\".pdf\") or item2.endswith(\".fits\") or item2.endswith(\".png\"):\n", + " #Check if the file already exists in reduced/\n", + " #If it does, delete it and replace it with the new copy\n", + " if os.path.exists(work_dir_path+'/reduced/'+item2):\n", + " os.remove(work_dir_path+'/reduced/'+item2)\n", + " shutil.move(item2,work_dir_path+'/reduced/')\n", + "\n", + " else:\n", + " shutil.move(item2,work_dir_path+'/reduced/')\n", + " \n", + " #Create save/ directory and move reduced files\n", + " else:\n", + " #Make save/ directory\n", + " os.mkdir(work_dir_path+'/reduced/')\n", + " remain_files = os.listdir(work_dir_path)\n", + " \n", + " for item3 in remain_files:\n", + " if item3.endswith(\".dat\") or item3.endswith(\".pdf\") or item3.endswith(\".fits\") or item3.endswith(\".png\"):\n", + " shutil.move(item3,work_dir_path+'/reduced/') \n", + "\n", + " else:\n", + " all_files_0 = glob.glob('*.fits')\n", + " for a in all_files_0:\n", + " os.remove(os.path.join(work_dir_path,a))" + ] + }, + { + "cell_type": "markdown", + "id": "29fdaad3-1807-46de-93aa-6c9997af2edc", + "metadata": {}, + "source": [ + "\n", + "# Downloading the data\n", + "\n", + "Download the spectroscopic and calibration data from the Gemini archive to the current working directory. This step only needs to be executed once.\n", + "\n", + "If you run this notebook for the first time and need to download the dataset, set the variable \"download=True\". The notebook will not redownload the dataset if it is set to False. This will become particularly useful if you run the notebooks more than once. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "88d13033-2c71-4965-a52f-d92716de351b", + "metadata": {}, + "outputs": [], + "source": [ + "%%bash \n", + "\n", + "# create file that lists FITS files to be downloaded\n", + "echo \"\\\n", + "https://archive.gemini.edu/file/S20230416S0047.fits\n", + "https://archive.gemini.edu/file/S20230416S0049.fits\n", + "https://archive.gemini.edu/file/S20230416S0050.fits\n", + "https://archive.gemini.edu/file/S20230416S0051.fits\n", + "https://archive.gemini.edu/file/S20230416S0073.fits\n", + "https://archive.gemini.edu/file/S20230416S0079.fits\n", + "https://archive.gemini.edu/file/S20230417S0011.fits\n", + "https://archive.gemini.edu/file/S20230417S0012.fits\n", + "https://archive.gemini.edu/file/S20230417S0013.fits\n", + "https://archive.gemini.edu/file/S20230417S0014.fits\n", + "https://archive.gemini.edu/file/S20230417S0015.fits\n", + "https://archive.gemini.edu/file/S20230417S0036.fits\n", + "https://archive.gemini.edu/file/S20230417S0037.fits\n", + "https://archive.gemini.edu/file/S20230417S0038.fits\n", + "https://archive.gemini.edu/file/S20230417S0039.fits\n", + "https://archive.gemini.edu/file/S20230417S0040.fits\n", + "https://archive.gemini.edu/file/bpm_20220601_ghost_blue_11_full_4amp.fits\n", + "https://archive.gemini.edu/file/bpm_20220601_ghost_red_11_full_4amp.fits\\\n", + "\" > ghost.list" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1be79639-cbba-4503-9d18-abde66a7297e", + "metadata": {}, + "outputs": [], + "source": [ + "%%bash\n", + "\n", + "download=\"True\"\n", + "\n", + "if [ $download == \"True\" ]; then\n", + " wget --no-check-certificate -N -q -i ghost.list\n", + "\n", + "else\n", + " echo \"Skipping download. To download the data set used in this notebook, set download=True.\"\n", + "fi" + ] + }, + { + "cell_type": "markdown", + "id": "b593d4ba-fce6-407f-a3bc-ddad43c8fd9a", + "metadata": {}, + "source": [ + "\n", + "# Create directory for raw files\n", + "### This tutorial will create a large number of intermediate files that will temporarily stored in the working directory. To make sure none of the original data is lost, we are going to create a directory called raw to safely store the priliminary data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3a791cb9-e88d-4b35-b1f8-76bb40ac0fcb", + "metadata": {}, + "outputs": [], + "source": [ + "#Check to see if raw exists\n", + "path_string = os.getcwd()\n", + "flag = os.path.isdir(path_string+'/raw')\n", + "\n", + "if flag:\n", + " #Remove existing /raw and its contents\n", + " #os.rmdir(path_string+'/raw')\n", + " shutil.rmtree(path_string+'/raw')\n", + "\n", + " #Create fresh copy of /raw\n", + " os.mkdir('raw')\n", + "\n", + "else:\n", + " #Create fresh copy of /raw\n", + " os.mkdir('raw')" + ] + }, + { + "cell_type": "markdown", + "id": "51955138-886d-4e0a-b677-e21d9a4970d3", + "metadata": {}, + "source": [ + "# Move the raw files in new directory called raw" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "004d359d-4278-49da-97ab-370b9b95541c", + "metadata": {}, + "outputs": [], + "source": [ + "%%bash \n", + "\n", + "mv *fits raw/" + ] + }, + { + "cell_type": "markdown", + "id": "ef3a994b-d4f9-40f6-acb8-eafecf509c9d", + "metadata": {}, + "source": [ + "###### \n", + "# Create file lists\n", + "\n", + "This data set contains science and calibration frames. For some programs, it could have different observed targets and exposure times depending on how you organize your raw data. The DRAGONS data reduction pipeline does not organize the data for you. You have to do it. DRAGONS provides tools to help you with that.\n", + "\n", + "The first step is to create lists that will be used in the data reduction process. For that, we use dataselect. Please refer to the [dataselect](https://dragons.readthedocs.io/projects/recipe-system-users-manual/en/stable/supptools/dataselect.html?highlight=dataselect) documentation for details regarding its usage." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "56161cf0-4f4b-41e8-9951-6d9171255c75", + "metadata": {}, + "outputs": [], + "source": [ + "all_files = glob.glob('raw/S2023*.fits')\n", + "all_files.append(glob.glob('raw/bpm*.fits')[0])\n", + "all_files.append(glob.glob('raw/bpm*.fits')[1])\n", + "all_files.sort()" + ] + }, + { + "cell_type": "markdown", + "id": "a97c553e-aa6f-4dd5-99e5-1009a69e374e", + "metadata": {}, + "source": [ + "\n", + "# Setting up the DRAGONS logger\n", + "\n", + "DRAGONS comes with a local calibration manager that uses the same calibration association rules as the Gemini Observatory Archive. This allows reduce to make requests to a local light-weight database for matching processed calibrations when needed to reduce a dataset.\n", + "\n", + "This tells the system where to put the calibration database. This database will keep track of the processed calibrations we will send to it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "87f4630d-2de5-49fd-84fa-d256f6a006ef", + "metadata": {}, + "outputs": [], + "source": [ + "logutils.config(file_name='ghost.log')\n", + "caldb = cal_service.set_local_database()\n", + "caldb.init(\"w\")" + ] + }, + { + "cell_type": "markdown", + "id": "990307b9-71a5-4450-91d7-22a294e28a84", + "metadata": {}, + "source": [ + "### Add the Bad Pixel Masks to the calibration database" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "27b5dc41-fc3c-4364-9daf-f1272c89a1d7", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "caldb.add_cal(glob.glob('raw/bpm*.fits')[0])\n", + "caldb.add_cal(glob.glob('raw/bpm*.fits')[1])" + ] + }, + { + "cell_type": "markdown", + "id": "04e1d2fe-cf05-42ac-83fc-5e9b05cbbf3b", + "metadata": {}, + "source": [ + "\n", + "# update_list() and reduce_func()\n", + "\n", + "This notebook will require updating the list of files in your working directory and calling the reduce command several times. To reduce the repetitive text, we have created two functions that will cut down the number of lines included in this notebook. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "34c8762f-9323-4572-8493-c9fd9de24ece", + "metadata": {}, + "outputs": [], + "source": [ + "def update_list():\n", + " #Create a new file list that contains the intermediate files\n", + " #identify all of the files in the working directory\n", + " intermediate = os.listdir()\n", + " new_all_files = []\n", + "\n", + " #Since os.listdir() returns all files in the working directory\n", + " #this loop will pick out only the fits files and add them to a list.\n", + " for i in intermediate:\n", + " if i[-5:] == '.fits':\n", + " new_all_files.append(i)\n", + " #print(new_all_files)\n", + " print('%i files in the list.'%len(new_all_files))\n", + "\n", + " return new_all_files" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b9d3c788-8776-48a1-89bd-7107e7f4cffa", + "metadata": {}, + "outputs": [], + "source": [ + "def reduce_func(files_list,uparms=None,recipename=None):\n", + " reduce = Reduce()\n", + " reduce.files.extend(files_list)\n", + "\n", + " if uparms != None:\n", + " #reduce_stdred.uparms = [('scaleCountsToReference:tolerance', 1)]\n", + " reduce.uparms = [uparms]\n", + " \n", + " if recipename!= None:\n", + " #reduce_stdred.recipename = 'reduceStandard'\n", + " reduce.recipename = recipename\n", + " \n", + " reduce.runr()" + ] + }, + { + "cell_type": "markdown", + "id": "99da7d68-ef56-473f-9033-d857dd6f9b06", + "metadata": {}, + "source": [ + "\n", + "# Use dataselect to choose the all the BIAS files." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ee9368f9-8bb0-497c-a711-7bac8041e3a0", + "metadata": {}, + "outputs": [], + "source": [ + "biasbundles = dataselect.select_data(all_files, ['BIAS'], [])\n", + "print(biasbundles)" + ] + }, + { + "cell_type": "markdown", + "id": "93d85654-1d2e-4553-96d3-0a9d90c2e847", + "metadata": {}, + "source": [ + "\n", + "# Use reduce_func() to reduce the biases" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c19bcfd3-fee8-4fa3-99bd-41808f826133", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(biasbundles)" + ] + }, + { + "cell_type": "markdown", + "id": "aad016f4-3b0b-4b49-9c71-2d4659925905", + "metadata": {}, + "source": [ + "\n", + "## DRAGONS' reduce() function creates a lot of intermediate files that are stored in the working directory. Before calling it again, we first need to udpate our list of files using update_list()." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d7cb75a5-64d8-4bc7-b6f8-fb4ecd71db4f", + "metadata": {}, + "outputs": [], + "source": [ + "new_all_files = update_list()" + ] + }, + { + "cell_type": "markdown", + "id": "73c98840-7017-4c9b-b2a7-7563678806c5", + "metadata": {}, + "source": [ + "\n", + "# Now use dataselect to choose the slit biases." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "36ebdc0a-0b5c-4e65-8bd7-dad7c188805f", + "metadata": {}, + "outputs": [], + "source": [ + "biasslit = dataselect.select_data(new_all_files, ['BIAS','SLIT'])\n", + "print(biasslit)" + ] + }, + { + "cell_type": "markdown", + "id": "2e746361-a3b6-4c6a-b3f5-e484e3dd02bf", + "metadata": {}, + "source": [ + "\n", + "# Reduce the slit biases." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6bdac1fb-1c4f-4ce7-93b9-cfecc8d38534", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(biasslit)" + ] + }, + { + "cell_type": "markdown", + "id": "00fd742f-9de5-4418-b962-bbd858651b8c", + "metadata": {}, + "source": [ + "\n", + "# Once again, update the list of files." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "61486074-f2a4-4724-b438-8175b3c43268", + "metadata": {}, + "outputs": [], + "source": [ + "new_all_files2 = update_list()" + ] + }, + { + "cell_type": "markdown", + "id": "564370a4-2eae-4b2c-b400-9550bcdfca56", + "metadata": {}, + "source": [ + "\n", + "# Use dataselect to choose the red science biases." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0605f88b-20ab-467c-bde9-d77cef2c2f76", + "metadata": {}, + "outputs": [], + "source": [ + "expression = \"binning==\\'2x2\\'\"\n", + "parsed_expr = dataselect.expr_parser(expression)\n", + "biasredsci = dataselect.select_data(new_all_files2, ['BIAS', 'RED'], [], parsed_expr)" + ] + }, + { + "cell_type": "markdown", + "id": "68162881-2526-472d-a295-a2744ab7167a", + "metadata": {}, + "source": [ + "# Reduce the red science biases." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "34b6fd52-b6ed-42c4-87fd-3add7b07c9cc", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(biasredsci)" + ] + }, + { + "cell_type": "markdown", + "id": "d263eb21-fc93-42d4-b6ba-8fd34733710f", + "metadata": {}, + "source": [ + "\n", + "# Select the blue science biases." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1c04dc6c-6bbb-4568-b043-95598c752640", + "metadata": {}, + "outputs": [], + "source": [ + "expression = 'binning==\\'2x2\\''\n", + "parsed_expr = dataselect.expr_parser(expression)\n", + "biasbluesci = dataselect.select_data(new_all_files2, ['BIAS','BLUE'], [], parsed_expr)" + ] + }, + { + "cell_type": "markdown", + "id": "f978bd97-498d-445a-b2b9-4d8c1e008b2c", + "metadata": {}, + "source": [ + "# Reduce the red science biases." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ed66021b-570f-452f-aeb5-3b9874664a20", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(biasbluesci)" + ] + }, + { + "cell_type": "markdown", + "id": "d0f2171f-08f1-49a0-baf1-d4292a4a626c", + "metadata": {}, + "source": [ + "\n", + "# Select the red flat/arc biases and reduce them. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "859f22ba-3a9e-4cfb-bd77-b9aac31ced87", + "metadata": {}, + "outputs": [], + "source": [ + "expression = 'binning==\\'1x1\\''\n", + "parsed_expr = dataselect.expr_parser(expression)\n", + "biasredflatarc = dataselect.select_data(new_all_files2, ['BIAS','RED'], [], parsed_expr)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f8b4068c-b675-400f-b7b3-ce6ab7a71d2d", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(biasredflatarc)" + ] + }, + { + "cell_type": "markdown", + "id": "3a5078c6-844e-415b-8b6b-e5543253a43a", + "metadata": {}, + "source": [ + "\n", + "# Select the blue flat/arc biases and reduce them. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ed5d34dd-7c11-436a-9bd8-b63f45f318be", + "metadata": {}, + "outputs": [], + "source": [ + "expression = 'binning==\\'1x1\\''\n", + "parsed_expr = dataselect.expr_parser(expression)\n", + "biasblueflatarc = dataselect.select_data(new_all_files2, ['BIAS','BLUE'], [], parsed_expr)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b940e9e1-ad7a-4c65-91fa-d3f2cbfa9a7c", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(biasblueflatarc)" + ] + }, + { + "cell_type": "markdown", + "id": "270893d8-bd66-431e-b208-f246f054677e", + "metadata": {}, + "source": [ + "\n", + "# Clean-up\n", + "### GHOST reduction creates a lot of, often big, files in the work directory. It is recommended to clean up between each reduction phase. If you want to save the intermediate files, move them (mv) somewhere else. In this tutorial, we will simply delete them." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "488c5c51-4da5-42dd-a86f-0aa319d7152b", + "metadata": {}, + "outputs": [], + "source": [ + "%%bash\n", + "\n", + "rm *fits" + ] + }, + { + "cell_type": "markdown", + "id": "0c8780c8-2cd1-4754-9dd7-cddf56ab461e", + "metadata": {}, + "source": [ + "\n", + "# Master Flats and Slit-flats\n", + "### Debundle the flats then reduce them." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3d560058-bdbb-467d-a7f4-20e1461cbcc9", + "metadata": {}, + "outputs": [], + "source": [ + "flatbundles = dataselect.select_data(all_files, ['FLAT'], [])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e6c9f829-7a2a-4d79-a93f-00753d321ed7", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(flatbundles)" + ] + }, + { + "cell_type": "markdown", + "id": "f0b2d5ab-659a-4209-b283-077d91b4c22d", + "metadata": {}, + "source": [ + "\n", + "# Update the list of files." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "215f0fd3-2778-4f1e-bb52-cafef537c749", + "metadata": {}, + "outputs": [], + "source": [ + "new_all_files3 = update_list()" + ] + }, + { + "cell_type": "markdown", + "id": "44271bde-0dab-44e4-9fe3-515d3d1dd32f", + "metadata": {}, + "source": [ + "\n", + "# Select the slit-flats and reduce them. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "db681449-00ba-4416-9da3-eba4d85e8604", + "metadata": {}, + "outputs": [], + "source": [ + "slitflat = dataselect.select_data(new_all_files3, ['SLITFLAT'], [])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4e83e801-1260-49a2-ba1a-c34a7d8b3b1a", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(slitflat)" + ] + }, + { + "cell_type": "markdown", + "id": "fe493dda-c1ba-4a6c-9d75-dc3ecb1cd983", + "metadata": {}, + "source": [ + "\n", + "# Select and reduce the red flats." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9497235b-42ce-45e6-984b-91ab71beadda", + "metadata": {}, + "outputs": [], + "source": [ + "flatred = dataselect.select_data(new_all_files3, ['FLAT','RED'], [])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fc7173c9-2b0c-40c9-b96d-a643098aca1f", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(flatred)" + ] + }, + { + "cell_type": "markdown", + "id": "5feb5930-a4fd-4696-a520-6a9f5d649a3b", + "metadata": {}, + "source": [ + "\n", + "# Select and reduce the blue flats." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d8d64d4e-e45e-49ff-b8bb-50a039b3b7e5", + "metadata": {}, + "outputs": [], + "source": [ + "flatblue = dataselect.select_data(new_all_files3, ['FLAT','BLUE'], [])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0b5fad40-9b59-4713-a2bb-d1d0d8764335", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(flatblue)" + ] + }, + { + "cell_type": "markdown", + "id": "31461ce6-e27f-46d9-9504-4a35c99a5922", + "metadata": {}, + "source": [ + "\n", + "# Clean-up" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "29e46034-188d-4a64-8457-41262c201d9f", + "metadata": {}, + "outputs": [], + "source": [ + "%%bash\n", + "\n", + "rm *fits" + ] + }, + { + "cell_type": "markdown", + "id": "27471604-8a19-42e1-8341-e92548e3ea6b", + "metadata": {}, + "source": [ + "\n", + "# Arcs\n", + "### Debundle the arcs and reduce them." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cc571cbd-4e39-4650-a42b-fe27d8b47fd9", + "metadata": {}, + "outputs": [], + "source": [ + "arcbundles = dataselect.select_data(all_files, ['ARC'], [])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c9489051-474b-4806-aa94-c6698c765bf5", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(arcbundles)" + ] + }, + { + "cell_type": "markdown", + "id": "0d0210ff-d10c-44e2-8b12-33d7a657c617", + "metadata": {}, + "source": [ + "\n", + "# Update the list of files." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "906a351b-d602-4208-ae9c-076789d20ae9", + "metadata": {}, + "outputs": [], + "source": [ + "new_all_files4 = update_list()" + ] + }, + { + "cell_type": "markdown", + "id": "5cdfc143-73bd-4680-8855-536e59f3ace9", + "metadata": {}, + "source": [ + "\n", + "# Select and reduce the slit-viewer data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "46d52ada-7eb4-4cc6-aaa8-e0769e30716b", + "metadata": {}, + "outputs": [], + "source": [ + "arcslit_1 = dataselect.select_data(new_all_files4, ['ARC','SLIT'], [])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "50678030-8f63-4456-ba52-a23de4443a00", + "metadata": {}, + "outputs": [], + "source": [ + "#The original tutorial orders their lists numerically by default, while this version does not.\n", + "#A few lines of code have been added here to manually order the list.\n", + "arcslit_1.sort()\n", + "arcslit_2 = [arcslit_1[0]]\n", + "print(arcslit_2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1e70d3f4-5fc3-4dc0-b490-3b4b7dabc89f", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(arcslit_2)" + ] + }, + { + "cell_type": "markdown", + "id": "84780f43-be55-4590-9b33-66e1d9aab0f9", + "metadata": {}, + "source": [ + "\n", + "# Select and reduce the red arcs." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4850523a-0af4-4dac-a1e6-2cb8a2a8bb10", + "metadata": {}, + "outputs": [], + "source": [ + "arcred = dataselect.select_data(new_all_files4, ['ARC','RED'], [])\n", + "arcred.sort()\n", + "arcred" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c9de35be-c6ce-43b4-a44c-2f421228b5f5", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(arcred)" + ] + }, + { + "cell_type": "markdown", + "id": "8d36e7ce-7913-4bcd-9cac-f2866a846659", + "metadata": {}, + "source": [ + "\n", + "# Select and reduce the blue arcs." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b4065d83-c241-454e-8b98-b636642eec6a", + "metadata": {}, + "outputs": [], + "source": [ + "arcblue = dataselect.select_data(new_all_files4, ['ARC','BLUE'], [])\n", + "arcblue.sort()\n", + "arcblue" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3f5aea95-6a16-4e39-9caa-90f4fad6dd53", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(arcblue)" + ] + }, + { + "cell_type": "markdown", + "id": "2e2aadc5-59f4-4ef0-b2f3-d6de791a75e0", + "metadata": {}, + "source": [ + "\n", + "# Clean-up" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0d45be17-a7ab-4dbc-9342-53db81a2335a", + "metadata": {}, + "outputs": [], + "source": [ + "%%bash\n", + "\n", + "rm *fits" + ] + }, + { + "cell_type": "markdown", + "id": "3a038983-c1ea-4235-9e78-79a1130c3082", + "metadata": {}, + "source": [ + "\n", + "# Spectroscopic Standard\n", + "### Debundle the standards and reduce them." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "717bb16b-044f-4750-8d70-1899d7eb4048", + "metadata": {}, + "outputs": [], + "source": [ + "expression = \"object=='CD -32 9927'\"\n", + "parsed_expr = dataselect.expr_parser(expression)\n", + "stdbundles = dataselect.select_data(all_files, [], [], parsed_expr)\n", + "stdbundles.sort()\n", + "stdbundles" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a6bd2a13-1c13-4ad6-964f-03d1caf6117f", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(stdbundles)" + ] + }, + { + "cell_type": "markdown", + "id": "23417207-14b3-4aba-9e35-cf741ffde27f", + "metadata": {}, + "source": [ + "\n", + "# Update the list of files. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e2ae3b91-1ebe-44db-ab1e-76efbcf21e78", + "metadata": {}, + "outputs": [], + "source": [ + "new_all_files5 = update_list()" + ] + }, + { + "cell_type": "markdown", + "id": "4eaf441a-c0d1-4067-ae95-cce2c3cd197a", + "metadata": {}, + "source": [ + "\n", + "# Select the slit-viewer standard data and reduce them." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "13fc4984-7658-4a75-a05e-d496a53e1284", + "metadata": {}, + "outputs": [], + "source": [ + "stdslit = dataselect.select_data(new_all_files5, ['SLIT'], [])\n", + "stdslit.sort()\n", + "stdslit" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3e3bb80d-9f42-475f-ac7e-aa98b030a4b8", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(stdslit)" + ] + }, + { + "cell_type": "markdown", + "id": "4cd19e09-1e47-4892-aafd-302813bfc3e7", + "metadata": {}, + "source": [ + "\n", + "# Select the red standard star data and reduce it. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "313aa461-a831-4e60-861c-f81597833f8c", + "metadata": {}, + "outputs": [], + "source": [ + "stdred = dataselect.select_data(new_all_files5, ['RED'], [])\n", + "stdred.sort()\n", + "stdred" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f79bf239-f1bc-4582-b233-f812049ce1f2", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(stdred,uparms=('scaleCountsToReference:tolerance',1),recipename='reduceStandard')" + ] + }, + { + "cell_type": "markdown", + "id": "e3993a36-ea26-4a2c-946e-f4fc6c82d38d", + "metadata": {}, + "source": [ + "\n", + "# Select the blue standard star data and reduce it. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2372b1b0-2922-4cef-be58-10638fded64e", + "metadata": {}, + "outputs": [], + "source": [ + "stdblue = dataselect.select_data(new_all_files5, ['BLUE'], [])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3f4a6fd3-c55c-4519-9275-60fec540127f", + "metadata": {}, + "outputs": [], + "source": [ + "stdblue.sort()\n", + "stdblue" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ccd307fe-514a-46f3-9394-4c0e70d6f8b6", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(stdblue,uparms=('scaleCountsToReference:tolerance',1),recipename='reduceStandard')" + ] + }, + { + "cell_type": "markdown", + "id": "c5b4fd80-a087-418e-adc9-58e438648a9c", + "metadata": {}, + "source": [ + "\n", + "# Clean-up" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9ce55399-21ca-4e12-a39f-eccbab6aaf26", + "metadata": {}, + "outputs": [], + "source": [ + "%%bash\n", + "\n", + "rm *fits" + ] + }, + { + "cell_type": "markdown", + "id": "74a5fa43-cdc9-4929-ba0d-ab5b2f0a1ac2", + "metadata": {}, + "source": [ + "\n", + "# Science Frames\n", + "### Debundle the science frames and reduce them. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5c8c84e7-e3b3-4a0b-8be2-bbbd1292b79d", + "metadata": {}, + "outputs": [], + "source": [ + "expression = \"object=='XX Oph'\"\n", + "parsed_expr = dataselect.expr_parser(expression)\n", + "scibundles = dataselect.select_data(all_files, [], [],parsed_expr)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "62155d2f-c778-4d00-81eb-816e94d0b1fc", + "metadata": {}, + "outputs": [], + "source": [ + "reduce_func(scibundles)" + ] + }, + { + "cell_type": "markdown", + "id": "d8ba0a20-25ae-4493-9131-9ab3d0a830eb", + "metadata": {}, + "source": [ + "\n", + "# Update the list of files. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "398d25ce-9d6e-4899-83ab-279a688c5ea1", + "metadata": {}, + "outputs": [], + "source": [ + "new_all_files6 = update_list()" + ] + }, + { + "cell_type": "markdown", + "id": "8753f26d-0d92-4f6f-912b-09275da350bc", + "metadata": {}, + "source": [ + "\n", + "# Select the slit-viewer science data and reduce it. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3f8ecedb-cb4c-42db-8193-2141c7fa8fdb", + "metadata": {}, + "outputs": [], + "source": [ + "scislit = dataselect.select_data(new_all_files6, ['SLIT'], [])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f512f23a-680e-47f1-9e6c-3c1253325dc6", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(scislit)" + ] + }, + { + "cell_type": "markdown", + "id": "36f5957c-3523-45b3-a33a-a2a853a290f2", + "metadata": {}, + "source": [ + "\n", + "# Update the list of files. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "273e004e-bc20-44e7-9056-abf94b5ec252", + "metadata": {}, + "outputs": [], + "source": [ + "new_all_files7 = update_list()" + ] + }, + { + "cell_type": "markdown", + "id": "cd40e904-94df-4e38-be1c-47a9b5783f29", + "metadata": {}, + "source": [ + "\n", + "# Select and Reduce the red science frames." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0a4b4764-e0c7-42cc-b6b5-fe7c79f78b8a", + "metadata": {}, + "outputs": [], + "source": [ + "expression = \"object=='XX Oph'\"\n", + "parsed_expr = dataselect.expr_parser(expression)\n", + "scired = dataselect.select_data(new_all_files7, ['RED'], [])\n", + "scired = np.sort(scired)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5ee54444-8d78-4f57-bb0e-5db1f00d79b7", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(scired)" + ] + }, + { + "cell_type": "markdown", + "id": "c82e5f2b-f8ac-4af6-a1fb-d9235e3b0955", + "metadata": {}, + "source": [ + "\n", + "# Select and Reduce the blue science frames." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6332eee5-d749-4461-ba68-455b40fc3306", + "metadata": {}, + "outputs": [], + "source": [ + "expression = \"object=='XX Oph'\"\n", + "parsed_expr = dataselect.expr_parser(expression)\n", + "sciblue = dataselect.select_data(new_all_files7, ['BLUE'], [])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "321b65a6-c52a-4060-bff5-5c4f2ae884a8", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "reduce_func(sciblue)" + ] + }, + { + "cell_type": "markdown", + "id": "e2f15278-9c18-49a2-b9e8-bbcf56e1621f", + "metadata": {}, + "source": [ + "\n", + "# Plot the reduced red and blue spectra" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d9df8d53-4b10-4ecc-b35f-52e07dc7a4ed", + "metadata": {}, + "outputs": [], + "source": [ + "#Display S20230416S0079_red001_dragons.fits and S20230416S0079_blue001_dragons.fits\n", + "fig, (ax1, ax2) = plt.subplots(1, 2,figsize=(13,5))\n", + "\n", + "red_file = 'S20230416S0079_red001_dragons.fits'\n", + "blue_file = 'S20230416S0079_blue001_dragons.fits'\n", + "\n", + "red_pf = astrodata.open(red_file)\n", + "blue_pf = astrodata.open(blue_file)\n", + "\n", + "red_flux = red_pf[0].data\n", + "blue_flux = blue_pf[0].data\n", + "\n", + "red_flux_array = np.array(red_flux)\n", + "blue_flux_array = np.array(blue_flux)\n", + "\n", + "red_wave = red_pf[0].wcs(np.arange(red_flux.size)).astype(np.float32)\n", + "blue_wave = blue_pf[0].wcs(np.arange(blue_flux.size)).astype(np.float32)\n", + "\n", + "# Convert the λ from nm to Å \n", + "red_wave_array = np.array(red_wave*10)\n", + "blue_wave_array = np.array(blue_wave*10)\n", + "\n", + "ax1.plot(blue_wave_array,blue_flux_array,lw=0.4)\n", + "ax1.set_xlim(3450,5450)\n", + "ax1.set_ylim(-0.05*10**(-12),0.2*10**(-12))\n", + "ax1.set_xlabel('Wavelength [$\\AA$]')\n", + "ax1.set_ylabel('Flux [$W m^{-2} nm^{-1}$]')\n", + "ax1.set_title(blue_file,size=11,fontweight='bold')\n", + "\n", + "ax2.plot(red_wave_array,red_flux_array,lw=0.4)\n", + "ax2.set_xlim(5100,10700)\n", + "ax2.set_ylim(-0.05*10**(-12),0.23*10**(-12))\n", + "ax2.set_xlabel('Wavelength [$\\AA$]')\n", + "ax2.set_ylabel('Flux [$W m^{-2} nm^{-1}$]')\n", + "ax2.set_title(red_file,size=11,fontweight='bold')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "6aa6b37f-94ad-440f-be0b-ed52aa49bc5d", + "metadata": {}, + "source": [ + "\n", + "### If you would like to save the finished spectra as text files instead of fits files, use the write1DSpectra recipe as demonstrated in the following two cells. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8289d6ab-a0bc-4569-a70d-58b6d601ce7a", + "metadata": {}, + "outputs": [], + "source": [ + "red_to_1d = ['S20230416S0079_red001_dragons.fits']\n", + "reduce_func(red_to_1d,recipename='write1DSpectra')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "19553148-c4d6-49ad-9bfb-578f41183f27", + "metadata": {}, + "outputs": [], + "source": [ + "blue_to_1d = ['S20230416S0079_blue001_dragons.fits']\n", + "reduce_func(blue_to_1d,recipename='write1DSpectra')" + ] + }, + { + "cell_type": "markdown", + "id": "ad67c690-0127-4876-903a-b17e95bf97c6", + "metadata": {}, + "source": [ + "\n", + "### If you want to save a PNG stamp plot of the reduced red and blue spectra, run the following cell. You also have the option to save the image in a different format, including SVG, eps, and PS, by replacing 'PNG' in the second to last line with your desired format. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "edab3b43-ffa5-4a05-af25-07e37fd98348", + "metadata": {}, + "outputs": [], + "source": [ + "# .- Author: David Herrera - June 2024\n", + "# Create a list of all DRAGONS reduced fits files in the current directory\n", + "ls_fits = 'ls -1 *{blue,red}00?*_dragons.fits > dragons_fits.list'\n", + "os.system(ls_fits)\n", + "# Saving the list of DRAGONS reduced fits in a list\n", + "fits_list = 'dragons_fits.list'\n", + "\n", + "# Open the list of fits files\n", + "with open (fits_list, \"r\") as files:\n", + " fnames_list = [line.strip() for line in files.readlines()]\n", + "\n", + "# Read each fits file name\n", + "for fname in fnames_list:\n", + " # Determine if it is a red or a blue spectrum\n", + " file = str(fname.strip())\n", + " if '_red' in file:\n", + " band = 'red' \n", + " else:\n", + " band = 'blue'\n", + " # Open and read the data from each FITS file\n", + " ad = astrodata.open(file)\n", + " flux = ad[0].data\n", + " lam = ad[0].wcs(np.arange(flux.size)).astype(np.float32)\n", + " \n", + " # Convert the λ from nm to Å \n", + " lambda_array = np.array(lam*10)\n", + " flux_array = np.array(flux)\n", + " \n", + " # Define lambda ranges for each panel depending on the band\n", + " if band == 'red':\n", + " lambda_ranges = [(5370, 6330), (6270, 7230), (7170, 8130), (8070, 9030), (8970, 9930)]\n", + " else:\n", + " lambda_ranges = [(3790, 4110), (4090, 4410), (4390, 4710), (4690, 5010), (4990, 5310)]\n", + " # Create a figure and a set of 5 subplots\n", + " fig, axs = plt.subplots(len(lambda_ranges), 1, sharex=False, figsize=(10, 8))\n", + " \n", + " # Plot data in each range\n", + " for i, (lam_min, lam_max) in enumerate(lambda_ranges):\n", + " # Filter data for the current range\n", + " mask = (lambda_array >= lam_min) & (lambda_array <= lam_max)\n", + " lambda_filtered = lambda_array[mask]\n", + " flux_filtered = flux_array[mask]\n", + " \n", + " if len(lambda_filtered) > 0 and len(flux_filtered) > 0:\n", + " # Plot the data\n", + " axs[i].plot(lambda_filtered, flux_filtered, c=band, lw='.6')\n", + " # Calculate the flux median of the range of flux in current range\n", + " flux_median = np.median(flux_filtered)\n", + " # Set the x-limits \n", + " axs[i].set_xlim(lam_min, lam_max)\n", + " # Set the y-limits for this particular panel\n", + " ylim=(-0.25 * flux_median, 2.5 * flux_median)\n", + " axs[i].set_ylim(ylim)\n", + " axs[i].set\n", + " # Hide tick values in y\n", + " #axs[i].set_yticks([])\n", + " # Handling ticks\n", + " axs[i].minorticks_on()\n", + " if band == 'red':\n", + " axs[i].set_xticks(np.arange(lam_min+30,lam_max+30,step=150))\n", + " axs[i].set_xticks(np.arange(lam_min+80,lam_max,step=50), minor = True)\n", + " axs[i].tick_params(axis = 'y', which='major', labelsize = 8)\n", + " else:\n", + " # Handle the case where no data points are in the range\n", + " axs[i].text(0.5, 0.5, 'No data in this range', transform=axs[i].transAxes,\n", + " ha='center', va='center', color=band)\n", + " \n", + " # Optionally, set y-label for each panel\n", + " #axs[i].set_yticks()\n", + " # Only y-label on the 3rd panel\n", + " if i == 2: axs[i].set_ylabel('Flux [$W m^{-2} nm^{-1}$]')\n", + " \n", + " # Set x-axis label for the bottom plot\n", + " axs[-1].set_xlabel('λ(Å)')\n", + " # Set title for the whole plot\n", + " fig.suptitle(file)\n", + " # Adjust layout to remove gaps between subplots\n", + " plt.tight_layout()\n", + " \n", + " # Show the plot\n", + " #plt.show()\n", + " \n", + " # Save plot in a file (it can be a png, svg, eps, ps)\n", + " fig.savefig(file.strip('fits') + 'png', dpi='figure', format='png', metadata=None, bbox_inches=None, pad_inches=0.1)\n", + " plt.close()" + ] + }, + { + "cell_type": "markdown", + "id": "fe5ed48d-f3ef-419f-b557-468fe79e50b9", + "metadata": {}, + "source": [ + "\n", + "# Note: This notebook's finished products conform to DRAGONS' fits standards which does not comply with what IRAF expects. If you would like the final reduced spectra to be compatible with IRAF, you can use the makeIRAFCompatible recipe as shown below. (Uncomment before running.)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "34e4571b-8ec0-4f15-8dce-770260888013", + "metadata": {}, + "outputs": [], + "source": [ + "# reduce_iraf = Reduce()\n", + "# red_dragons_files = ['S20230416S0079_red001_dragons.fits']\n", + "# reduce_iraf.files.extend(red_dragons_files)\n", + "# reduce_iraf.recipename = 'makeIRAFCompatible'\n", + "# reduce_iraf.runr()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6113edff-3d7f-4aee-a7cc-4ad5a042f3a5", + "metadata": {}, + "outputs": [], + "source": [ + "# reduce_iraf = Reduce()\n", + "# blue_dragons_files = ['S20230416S0079_blue001_dragons.fits']\n", + "# reduce_iraf.files.extend(blue_dragons_files)\n", + "# reduce_iraf.recipename = 'makeIRAFCompatible'\n", + "# reduce_iraf.runr()" + ] + }, + { + "cell_type": "markdown", + "id": "b69369fd-eaad-44a9-a47d-9bd32c0f5b9b", + "metadata": {}, + "source": [ + "# This notebook has only used DRAGONS' default options. If you would like all the individual exposures to be reduced seperately, you can look into the combineOrders() command. " + ] + }, + { + "cell_type": "markdown", + "id": "e704656a-605d-4ee6-8735-8e550cd47561", + "metadata": {}, + "source": [ + "\n", + "# Optional: Clean up working directory. (uncomment before running)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "824c9071-c125-4744-8b6f-5387d2ef9e70", + "metadata": {}, + "outputs": [], + "source": [ + "#clean_up(save_reduced=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "340a15ba-a217-4d9e-805c-5de8ca5bafed", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "DRAGONS-3.2.1 (Py3.10)", + "language": "python", + "name": "dragons-3.2.1" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 3e7b60741cff431a299f7ea6a7e95860fb692674 Mon Sep 17 00:00:00 2001 From: github-actions Date: Fri, 25 Oct 2024 21:20:23 +0000 Subject: [PATCH 02/19] Automated commit for HTML files --- .../GHOST_IFU_Star/GHOST_IFU_Star.html | 9730 +++++++++++++++++ 1 file changed, 9730 insertions(+) create mode 100644 04_HowTos/DataReduction/DRAGONS_reduction_examples/GHOST_IFU_Star/GHOST_IFU_Star.html diff --git a/04_HowTos/DataReduction/DRAGONS_reduction_examples/GHOST_IFU_Star/GHOST_IFU_Star.html b/04_HowTos/DataReduction/DRAGONS_reduction_examples/GHOST_IFU_Star/GHOST_IFU_Star.html new file mode 100644 index 00000000..ad00aab6 --- /dev/null +++ b/04_HowTos/DataReduction/DRAGONS_reduction_examples/GHOST_IFU_Star/GHOST_IFU_Star.html @@ -0,0 +1,9730 @@ + + + + + +GHOST_IFU_Star + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + From f487ecd0cb073a549fd05212bd365a8f531d354d Mon Sep 17 00:00:00 2001 From: bmerino95 Date: Thu, 21 Nov 2024 16:17:29 -0700 Subject: [PATCH 03/19] Incorporated Alice and David's feedback. Still need to add names of files created at each step. --- .../GHOST_IFU_Star/GHOST_IFU_Star.ipynb | 100 +++++++++++------- 1 file changed, 59 insertions(+), 41 deletions(-) diff --git a/04_HowTos/DataReduction/DRAGONS_reduction_examples/GHOST_IFU_Star/GHOST_IFU_Star.ipynb b/04_HowTos/DataReduction/DRAGONS_reduction_examples/GHOST_IFU_Star/GHOST_IFU_Star.ipynb index 369535eb..2310467f 100644 --- a/04_HowTos/DataReduction/DRAGONS_reduction_examples/GHOST_IFU_Star/GHOST_IFU_Star.ipynb +++ b/04_HowTos/DataReduction/DRAGONS_reduction_examples/GHOST_IFU_Star/GHOST_IFU_Star.ipynb @@ -9,8 +9,8 @@ "source": [ "__nbid__ = '00XX'\n", "__author__ = 'Brian Merino , Vinicius Placco '\n", - "__version__ = '20241025' # yyyymmdd; version datestamp of this notebook\n", - "__keywords__ = ['GHOST','Gemini','star','dragons']" + "__version__ = '20241121' # yyyymmdd; version datestamp of this notebook\n", + "__keywords__ = ['GHOST','Gemini','stars','DRAGONS']" ] }, { @@ -30,9 +30,9 @@ "id": "60f75de4-ed74-4236-97b3-04b1a193ce8f", "metadata": {}, "source": [ - "# Note: This notebook may take more than an hour to run. \n", + "### Note: This notebook may take more than an hour to run. It may take more or less time if you work with a dataset different from the one used in this tutorial. The total running time depends on the number and variety of files you want to reduce.\n", "\n", - "### If you want to run this notebook on your local machine, ensure your DRAGONS calibration database is correctly set up. To do so, make sure the contents of ./dragons/dragonsrc looks like this:\n", + "### If you want to run this notebook on your local machine, ensure your DRAGONS calibration database is correctly set up. To do so, make sure the calibrations section of ./dragons/dragonsrc looks like this:\n", "\n", "```\n", "[calibs]\n", @@ -42,7 +42,7 @@ }, { "cell_type": "markdown", - "id": "123b968c-1c2b-4552-bcaa-f64d01886f09", + "id": "8e6381c1-8c86-4d70-b33c-4a52e4cec8b6", "metadata": {}, "source": [ "## Table of contents\n", @@ -88,28 +88,34 @@ "* [Select and reduce science slit-viewer data](#science_slit_viewer)\n", "* [Update list of files 7](#update_list_7)\n", "* [Select and reduce red science data](#red_science)\n", - "* [Selet and reduce blue science data](#blue_science)\n", + "* [Select and reduce blue science data](#blue_science)\n", "* [Plot reduced spectra](#Plot)\n", "* [Output 1D spectra](#write1DSpectra)\n", "* [Save plots of reduced spectra](#Save_plot)\n", "* [Make reduced spectra IRAF compatible](#IRAF_compatible)\n", - "* [Clean up working directory 4](#clean_up_4)\n", - "\n", - "\n", + "* [Clean up working directory 4](#clean_up_4)" + ] + }, + { + "cell_type": "markdown", + "id": "123b968c-1c2b-4552-bcaa-f64d01886f09", + "metadata": {}, + "source": [ "\n", "# Goals\n", - "Showcase how to reduce GHOST spectroscopy data using the Gemini DRAGONS package on the Data Lab science platform using a custom DRAGONS kernel `\"DRAGONS (Py3.7)\"`. The steps include downloading data from the Gemini archive, setting up the DRAGONS calibration service, processing biases, flats, and arcs, creating master flats and slit-flats, reducing the standards and science data, and finally creating the final reduced spectra for GHOST's red and blue arms. \n", + "Showcase how to reduce GHOST spectroscopy data using the Gemini DRAGONS package on the Data Lab science platform using a custom DRAGONS kernel `\"DRAGONS-3.2.1 (Py3.10)\"`. The steps include downloading data from the Gemini archive, setting up the DRAGONS calibration service, processing biases, flats, and arcs, creating master flats and slit-flats, reducing the standards and science data, and finally creating the final reduced spectra for GHOST's red and blue arms. \n", "\n", "\n", "\n", "# Summary\n", - "DRAGONS is a Python-based astronomical data reduction platform written by the Gemini Science User Support Department. It can currently be used to reduce imaging data from Gemini instruments GMOS, NIRI, Flamingos 2, GSAOI, and GNIRS, as well as spectroscopic data taken with GHOST and GMOS in longslit mode. Linked here is a general list of guides, manuals, and tutorials about the use of DRAGONS.\n", + "DRAGONS is a Python-based astronomical data reduction platform written by the Gemini Science User Support Department. It can currently be used to reduce imaging data from Gemini instruments GMOS, NIRI, Flamingos 2, GSAOI, and GNIRS, as well as spectroscopic data taken with GHOST and GMOS in longslit mode. Linked [here](https://dragons.readthedocs.io/en/v3.2.1/) is a general list of guides, manuals, and tutorials about the use of DRAGONS.\n", "\n", - "The DRAGONS kernel has been made available in the Data Lab environment, allowing users to access the routines without being dependent on installing the software on their local machines. \n", + "The DRAGONS kernel has been made available in the Data Lab environment, allowing users to access the routines without being dependent on installing the software on their local machines. It is important to note that when a DRAGON command is executed, the output will be displayed inside the cell. Make sure to scroll through the output to ensure no errors are missed. \n", "\n", "In this notebook, we present an example of a DRAGONS Jupyter notebook that works in the Data Lab environment to reduce Gemini South GHOST blue:2x2 and red:2x2 spectroscopy data fully. This notebook will not present all of the details of the many options available to adjust or optimize the DRAGONS GHOST data reduction process; rather, it will just show one example of a standard reduction of a GHOST spectroscopic dataset. \n", "\n", - "The data used in this notebook example is GHOST blue:2x2 and red:2x2 spectroscopy data from the Gemini archive of the star XX Oph from the GHOST commisioning run, program ID GS-CAL20230416.\n", + "The data used in this notebook example is GHOST blue:2x2 and red:2x2 spectroscopy data from the Gemini archive of the star XX Oph from the GHOST commissioning run. Because the data used is from a commissioning run, there is no program information available, but you can find more information about GHOST's red and blue IFUs on the [GHOST instrument page](https://www.gemini.edu/instrumentation/ghost).\n", + "\n", "\n", "\n", "# Disclaimer & attribution\n", @@ -148,9 +154,9 @@ "The NOIRLab Library maintains [lists of proper acknowledgments](https://noirlab.edu/science/about/scientific-acknowledgments) to use when publishing papers using the Lab's facilities, data, or services.\n", "\n", "For this notebook specifically, please acknowledge:\n", - "* DRAGONS publication: Labrie et al., \"DRAGONS - Data Reduction for Astronomy from Gemini Observatory North and South\", ASPC, 523, 321L \n", + "* DRAGONS publication: Labrie et al., [DRAGONS - Data Reduction for Astronomy from Gemini Observatory North and South](https://ui.adsabs.harvard.edu/abs/2019ASPC..523..321L/abstract), ASPC, 523, 321L \n", "\n", - "* DRAGONS open source software publication" + "* [DRAGONS open source software publication](https://zenodo.org/record/7776065#.ZDg5qOzMLUI)" ] }, { @@ -159,7 +165,7 @@ "metadata": {}, "source": [ "\n", - "# Importing Python libraries" + "# Imports and setup" ] }, { @@ -207,7 +213,7 @@ "\n", "The table below contains a summary of the dataset:\n", "\n", - "| Observation Type | File name(s) | Purpose and Exposure (seconds) |\n", + "| Observation Type | File name(s) | IFU, Binning, and Read Mode |\n", "| :--- | :--- | :---: |\n", "| Science | S20230416S0079 | blue:2x2, slow; red:2x2, medium |\n", "| Science bias | S20230417S0011-015 | |\n", @@ -215,7 +221,7 @@ "| Science Arcs | S20230416S0049-51 | 1x1; blue:slow; red:medium |\n", "| Flat biases
Arc Biases | S20230417S0036-40 | 1x1; blue:slow; red:medium |\n", "| Standard (CD -32 9927) | S20230416S0073 | blue:2x2, slow; red:2x2, medium |\n", - "| Standard biases
Standard flats
Standard arc
Standard flat biases
Standard arc biases | In this case, the calibrations for the science can be used for the standard star. | |\n", + "| Standard biases
Standard flats
Standard arc
Standard flat biases
Standard arc biases | Use science calibrations |\n", "| BPMs | bpm_20220601_ghost_blue_11_full_4amp.fits
bpm_20220601_ghost_red_11_full_4amp.fits | |" ] }, @@ -227,7 +233,9 @@ "\n", "# Prepare the working directory\n", "\n", - "If you have any intermediate files that were created from running this code in the past, you will need to remove them from your working directory. The cell below defines a clean-up function that will remove all the fits files from your working directory. This function will be called again at the end of the tutorial, leaving you with only the final product. By default, this function will delete all files in the working directory. If there are files that have been previously reduced that you would like to keep, set `save_reduced=1` when calling the function." + "If you have any intermediate files that were created from running this code in the past, you will need to remove them from your working directory. The cell below defines a clean-up function that will remove all the fits files from your working directory. This function will be called again at the end of the tutorial, leaving you with only the final product. \n", + "\n", + "By default, this function will delete all files in the working directory. If there are files that have been previously reduced that you would like to keep, set `save_reduced=1` when calling the function." ] }, { @@ -362,8 +370,8 @@ "metadata": {}, "source": [ "\n", - "# Create directory for raw files\n", - "### This tutorial will create a large number of intermediate files that will temporarily stored in the working directory. To make sure none of the original data is lost, we are going to create a directory called raw to safely store the priliminary data." + "# Create a directory for raw files\n", + "### This tutorial will create a large number of intermediate files that will be temporarily stored in the working directory. To ensure none of the original data is lost, we will create a directory called raw to store the preliminary data safely." ] }, { @@ -420,7 +428,7 @@ "\n", "This data set contains science and calibration frames. For some programs, it could have different observed targets and exposure times depending on how you organize your raw data. The DRAGONS data reduction pipeline does not organize the data for you. You have to do it. DRAGONS provides tools to help you with that.\n", "\n", - "The first step is to create lists that will be used in the data reduction process. For that, we use dataselect. Please refer to the [dataselect](https://dragons.readthedocs.io/projects/recipe-system-users-manual/en/stable/supptools/dataselect.html?highlight=dataselect) documentation for details regarding its usage." + "The first step is to create lists that will be used in the data reduction process. " ] }, { @@ -511,7 +519,7 @@ " for i in intermediate:\n", " if i[-5:] == '.fits':\n", " new_all_files.append(i)\n", - " #print(new_all_files)\n", + " \n", " print('%i files in the list.'%len(new_all_files))\n", "\n", " return new_all_files" @@ -525,15 +533,17 @@ "outputs": [], "source": [ "def reduce_func(files_list,uparms=None,recipename=None):\n", + " #Use DRAGONS' reduce function to reduce the provided list of files.\n", + " #By default, this function will use the default settings for reduce().\n", + " #uparms: This is a list of tuples with the primitive name and parameter in the first element and the value in the second e.g. [('stackFrames:operation', 'median')]. \n", + " #recipename: The name of the recipe to use e.g. 'makeIRAFCompatible'.\n", " reduce = Reduce()\n", " reduce.files.extend(files_list)\n", "\n", " if uparms != None:\n", - " #reduce_stdred.uparms = [('scaleCountsToReference:tolerance', 1)]\n", " reduce.uparms = [uparms]\n", " \n", " if recipename!= None:\n", - " #reduce_stdred.recipename = 'reduceStandard'\n", " reduce.recipename = recipename\n", " \n", " reduce.runr()" @@ -545,7 +555,7 @@ "metadata": {}, "source": [ "\n", - "# Use dataselect to choose the all the BIAS files." + "# Select and reduce biases" ] }, { @@ -564,8 +574,7 @@ "id": "93d85654-1d2e-4553-96d3-0a9d90c2e847", "metadata": {}, "source": [ - "\n", - "# Use reduce_func() to reduce the biases" + "## Use reduce_func() to reduce the biases" ] }, { @@ -586,7 +595,9 @@ "metadata": {}, "source": [ "\n", - "## DRAGONS' reduce() function creates a lot of intermediate files that are stored in the working directory. Before calling it again, we first need to udpate our list of files using update_list()." + "# Update list\n", + "\n", + "DRAGONS' reduce() function creates a lot of intermediate files that are stored in the working directory. Before calling it again, we first need to update our list of files using update_list()." ] }, { @@ -624,8 +635,7 @@ "id": "2e746361-a3b6-4c6a-b3f5-e484e3dd02bf", "metadata": {}, "source": [ - "\n", - "# Reduce the slit biases." + "## Reduce the slit biases." ] }, { @@ -726,7 +736,7 @@ "id": "f978bd97-498d-445a-b2b9-4d8c1e008b2c", "metadata": {}, "source": [ - "# Reduce the red science biases." + "# Reduce the blue science biases." ] }, { @@ -814,7 +824,8 @@ "source": [ "\n", "# Clean-up\n", - "### GHOST reduction creates a lot of, often big, files in the work directory. It is recommended to clean up between each reduction phase. If you want to save the intermediate files, move them (mv) somewhere else. In this tutorial, we will simply delete them." + "\n", + " GHOST reduction creates a lot of, often big, files in the working directory. It is recommended to clean up between each reduction phase. If you want to save the intermediate files, move them (mv) somewhere else. In this tutorial, we will simply delete them." ] }, { @@ -1514,7 +1525,8 @@ "source": [ "expression = \"object=='XX Oph'\"\n", "parsed_expr = dataselect.expr_parser(expression)\n", - "sciblue = dataselect.select_data(new_all_files7, ['BLUE'], [])" + "sciblue = dataselect.select_data(new_all_files7, ['BLUE'], [])\n", + "sciblue = np.sort(sciblue)" ] }, { @@ -1590,7 +1602,9 @@ "metadata": {}, "source": [ "\n", - "### If you would like to save the finished spectra as text files instead of fits files, use the write1DSpectra recipe as demonstrated in the following two cells. " + "# Save 1D Spectra\n", + "\n", + "If you would like to save the finished spectra as text files instead of fits files, use the write1DSpectra recipe as demonstrated in the following two cells. " ] }, { @@ -1621,7 +1635,9 @@ "metadata": {}, "source": [ "\n", - "### If you want to save a PNG stamp plot of the reduced red and blue spectra, run the following cell. You also have the option to save the image in a different format, including SVG, eps, and PS, by replacing 'PNG' in the second to last line with your desired format. " + "# Save reduced spectra\n", + "\n", + "If you want to save a PNG stamp plot of the reduced red and blue spectra, run the following cell. You also have the option to save the image in a different format, including SVG, eps, and PS, by replacing 'PNG' in the second to last line with your desired format. " ] }, { @@ -1724,7 +1740,9 @@ "metadata": {}, "source": [ "\n", - "# Note: This notebook's finished products conform to DRAGONS' fits standards which does not comply with what IRAF expects. If you would like the final reduced spectra to be compatible with IRAF, you can use the makeIRAFCompatible recipe as shown below. (Uncomment before running.)" + "# Make IRAF compatible\n", + "\n", + "This notebook's finished products conform to DRAGONS' fits standards which does not comply with what IRAF expects. If you would like the final reduced spectra to be compatible with IRAF, you can use the makeIRAFCompatible recipe as shown below. (Uncomment before running.)" ] }, { @@ -1760,7 +1778,7 @@ "id": "b69369fd-eaad-44a9-a47d-9bd32c0f5b9b", "metadata": {}, "source": [ - "# This notebook has only used DRAGONS' default options. If you would like all the individual exposures to be reduced seperately, you can look into the combineOrders() command. " + "This notebook has only used DRAGONS' default options. If you would like all the individual exposures to be reduced seperately, you can look into the combineOrders() command. " ] }, { @@ -1779,13 +1797,13 @@ "metadata": {}, "outputs": [], "source": [ - "#clean_up(save_reduced=1)" + "# clean_up(save_reduced=1)" ] }, { "cell_type": "code", "execution_count": null, - "id": "340a15ba-a217-4d9e-805c-5de8ca5bafed", + "id": "854e8435-a1a2-497a-a985-e2456d58312a", "metadata": {}, "outputs": [], "source": [] @@ -1793,7 +1811,7 @@ ], "metadata": { "kernelspec": { - "display_name": "DRAGONS-3.2.1 (Py3.10)", + "display_name": "DRAGONS-3.2.1 (DL,Py3.10.14)", "language": "python", "name": "dragons-3.2.1" }, From 0c2d3ce09720cced6f257de85e6d3f684b925d62 Mon Sep 17 00:00:00 2001 From: github-actions Date: Thu, 21 Nov 2024 23:18:30 +0000 Subject: [PATCH 04/19] Automated commit for HTML files --- .../GHOST_IFU_Star/GHOST_IFU_Star.html | 133 +++++++----------- 1 file changed, 52 insertions(+), 81 deletions(-) diff --git a/04_HowTos/DataReduction/DRAGONS_reduction_examples/GHOST_IFU_Star/GHOST_IFU_Star.html b/04_HowTos/DataReduction/DRAGONS_reduction_examples/GHOST_IFU_Star/GHOST_IFU_Star.html index ad00aab6..12812af0 100644 --- a/04_HowTos/DataReduction/DRAGONS_reduction_examples/GHOST_IFU_Star/GHOST_IFU_Star.html +++ b/04_HowTos/DataReduction/DRAGONS_reduction_examples/GHOST_IFU_Star/GHOST_IFU_Star.html @@ -7519,8 +7519,8 @@
__nbid__ = '00XX'
 __author__ = 'Brian Merino <brian.merino@noirlab.edu>, Vinicius Placco <vinicius.placco@noirlab.edu>'
-__version__ = '20241025' # yyyymmdd; version datestamp of this notebook
-__keywords__ = ['GHOST','Gemini','star','dragons']
+__version__ = '20241121' # yyyymmdd; version datestamp of this notebook
+__keywords__ = ['GHOST','Gemini','stars','DRAGONS']
 
@@ -7545,14 +7545,14 @@

- + + @@ -7770,7 +7739,8 @@

About the dataset @@ -7920,7 +7890,7 @@

Downloading the data @@ -7987,7 +7957,7 @@

Move the raw files in ne @@ -8094,7 +8064,7 @@

update_list() and reduce_func()for i in intermediate: if i[-5:] == '.fits': new_all_files.append(i) - #print(new_all_files) + print('%i files in the list.'%len(new_all_files)) return new_all_files @@ -8112,15 +8082,17 @@

update_list() and reduce_func() @@ -8163,8 +8135,7 @@

Use dataselect to choo @@ -8190,7 +8161,7 @@

Use reduce_func() to reduce the @@ -8242,8 +8213,7 @@

Now use dataselect to cho @@ -8375,7 +8345,7 @@

Select the blue science biases. @@ -8485,7 +8455,7 @@

Select the blue flat/a @@ -9392,6 +9362,7 @@

Select and Reduce the blue s
expression = "object=='XX Oph'"
 parsed_expr = dataselect.expr_parser(expression)
 sciblue = dataselect.select_data(new_all_files7, ['BLUE'], [])
+sciblue = np.sort(sciblue)
 
@@ -9481,7 +9452,7 @@

Plot the reduced red and blue spe @@ -9523,7 +9494,7 @@

@@ -9633,7 +9604,7 @@

@@ -9680,7 +9651,7 @@

@@ -9704,13 +9675,13 @@

Option -