From e2d270e10c7aa8298ca98fd90f1dae60386e08c9 Mon Sep 17 00:00:00 2001 From: Github Actions Date: Tue, 25 Jan 2022 16:47:44 +0000 Subject: [PATCH] Eddie Bergman: Merge pull request #1379 from automl/v0.14.4 --- master/.buildinfo | 2 +- .../example_classification.ipynb | 4 +- .../example_sequential.py | 3 +- .../example_extending_regression.py | 3 +- .../example_multilabel_classification.ipynb | 6 +- .../example_sequential.ipynb | 4 +- .../example_interpretable_models.py | 4 +- .../example_regression.py | 4 +- .../example_multioutput_regression.py | 3 +- .../example_extending_classification.py | 3 +- .../example_successive_halving.py | 12 +- .../example_interpretable_models.ipynb | 4 +- .../example_extending_data_preprocessor.py | 3 +- ...example_parallel_manual_spawning_python.py | 153 -- .../example_classification.py | 4 +- .../example_extending_data_preprocessor.ipynb | 4 +- .../example_regression.ipynb | 4 +- .../example_multilabel_classification.py | 5 +- ...mple_parallel_manual_spawning_python.ipynb | 90 -- .../example_extending_preprocessor.py | 3 +- .../example_get_pipeline_components.ipynb | 6 +- .../example_parallel_manual_spawning_cli.py | 10 +- .../example_resampling.ipynb | 2 +- .../examples_python.zip | Bin 110298 -> 105390 bytes .../example_extending_classification.ipynb | 4 +- ...example_parallel_manual_spawning_cli.ipynb | 2 +- .../example_resampling.py | 5 +- .../example_random_search.ipynb | 6 +- .../example_successive_halving.ipynb | 12 +- .../example_random_search.py | 5 +- .../example_multioutput_regression.ipynb | 4 +- .../example_get_pipeline_components.py | 17 +- .../example_extending_preprocessor.ipynb | 4 +- .../example_extending_regression.ipynb | 4 +- .../examples_jupyter.zip | Bin 157773 -> 151577 bytes ...hx_glr_example_inspect_predictions_001.png | Bin 16399 -> 15967 bytes ...hx_glr_example_inspect_predictions_002.png | Bin 307238 -> 301152 bytes ...hx_glr_example_inspect_predictions_003.png | Bin 39740 -> 41262 bytes ..._glr_example_inspect_predictions_thumb.png | Bin 14594 -> 14304 bytes ...sphx_glr_example_pandas_train_test_001.png | Bin 45025 -> 44871 bytes ...hx_glr_example_pandas_train_test_thumb.png | Bin 37631 -> 37306 bytes ..._parallel_manual_spawning_python_thumb.png | Bin 26794 -> 0 bytes .../sphx_glr_example_regression_001.png | Bin 54864 -> 54882 bytes .../sphx_glr_example_regression_thumb.png | Bin 54239 -> 53963 bytes master/_modules/autosklearn/estimators.html | 182 ++- .../autosklearn/experimental/askl2.html | 38 +- master/_modules/autosklearn/metrics.html | 83 +- .../autosklearn/pipeline/components/base.html | 18 +- .../pipeline/components/classification.html | 6 +- .../components/feature_preprocessing.html | 6 +- .../pipeline/components/regression.html | 6 +- master/_modules/index.html | 6 +- .../20_basic/example_classification.rst.txt | 590 +++++--- .../example_multilabel_classification.rst.txt | 57 +- .../example_multioutput_regression.rst.txt | 103 +- .../20_basic/example_regression.rst.txt | 139 +- .../20_basic/sg_execution_times.rst.txt | 10 +- .../example_calc_multiple_metrics.rst.txt | 78 +- .../40_advanced/example_debug_logging.rst.txt | 12 +- .../40_advanced/example_feature_types.rst.txt | 2 +- .../example_get_pipeline_components.rst.txt | 897 +++++++----- .../example_inspect_predictions.rst.txt | 22 +- .../example_interpretable_models.rst.txt | 59 +- .../40_advanced/example_metrics.rst.txt | 64 +- .../example_pandas_train_test.rst.txt | 8 +- .../40_advanced/example_resampling.rst.txt | 51 +- .../example_single_configuration.rst.txt | 86 +- .../40_advanced/sg_execution_times.rst.txt | 22 +- ...ample_parallel_manual_spawning_cli.rst.txt | 52 +- ...le_parallel_manual_spawning_python.rst.txt | 268 ---- .../60_search/example_parallel_n_jobs.rst.txt | 14 +- .../60_search/example_random_search.rst.txt | 959 +++++++----- .../60_search/example_sequential.rst.txt | 510 ++++--- .../example_successive_halving.rst.txt | 1233 ++++++++++------ .../60_search/sg_execution_times.rst.txt | 26 +- .../example_extending_classification.rst.txt | 61 +- ...xample_extending_data_preprocessor.rst.txt | 87 +- .../example_extending_preprocessor.rst.txt | 48 +- .../example_extending_regression.rst.txt | 41 +- ...restrict_number_of_hyperparameters.rst.txt | 2 +- .../80_extending/sg_execution_times.rst.txt | 12 +- master/_sources/examples/index.rst.txt | 21 - master/_sources/faq.rst.txt | 639 +++++--- master/_sources/index.rst.txt | 7 +- master/_sources/installation.rst.txt | 42 +- master/_sources/manual.rst.txt | 411 +++--- master/_sources/releases.rst.txt | 48 +- master/_static/documentation_options.js | 2 +- master/api.html | 438 ++++-- .../20_basic/example_classification.html | 590 +++++--- .../example_multilabel_classification.html | 70 +- .../example_multioutput_regression.html | 104 +- .../examples/20_basic/example_regression.html | 147 +- .../examples/20_basic/sg_execution_times.html | 23 +- .../example_calc_multiple_metrics.html | 106 +- .../40_advanced/example_debug_logging.html | 37 +- .../40_advanced/example_feature_types.html | 27 +- .../example_get_pipeline_components.html | 935 +++++++----- .../example_inspect_predictions.html | 51 +- .../example_interpretable_models.html | 75 +- .../examples/40_advanced/example_metrics.html | 109 +- .../example_pandas_train_test.html | 40 +- .../40_advanced/example_resampling.html | 88 +- .../example_single_configuration.html | 109 +- .../40_advanced/sg_execution_times.html | 35 +- .../example_parallel_manual_spawning_cli.html | 69 +- ...ample_parallel_manual_spawning_python.html | 326 ----- .../60_search/example_parallel_n_jobs.html | 37 +- .../60_search/example_random_search.html | 975 ++++++++----- .../60_search/example_sequential.html | 519 ++++--- .../60_search/example_successive_halving.html | 1286 ++++++++++------- .../60_search/sg_execution_times.html | 37 +- .../example_extending_classification.html | 75 +- .../example_extending_data_preprocessor.html | 101 +- .../example_extending_preprocessor.html | 62 +- .../example_extending_regression.html | 55 +- ...le_restrict_number_of_hyperparameters.html | 31 +- .../80_extending/sg_execution_times.html | 29 +- master/examples/index.html | 227 ++- master/extending.html | 37 +- master/faq.html | 433 ++++-- master/genindex.html | 6 +- master/index.html | 39 +- master/installation.html | 88 +- master/manual.html | 281 ++-- .../20_basic/example_classification.ipynb | 4 +- .../example_multilabel_classification.ipynb | 6 +- .../example_multioutput_regression.ipynb | 4 +- .../20_basic/example_regression.ipynb | 4 +- .../example_get_pipeline_components.ipynb | 6 +- .../example_interpretable_models.ipynb | 4 +- .../40_advanced/example_resampling.ipynb | 2 +- ...example_parallel_manual_spawning_cli.ipynb | 2 +- ...mple_parallel_manual_spawning_python.ipynb | 90 -- .../60_search/example_random_search.ipynb | 6 +- .../60_search/example_sequential.ipynb | 4 +- .../example_successive_halving.ipynb | 12 +- .../example_extending_classification.ipynb | 4 +- .../example_extending_data_preprocessor.ipynb | 4 +- .../example_extending_preprocessor.ipynb | 4 +- .../example_extending_regression.ipynb | 4 +- master/objects.inv | Bin 7957 -> 7329 bytes master/releases.html | 321 ++-- master/search.html | 6 +- master/searchindex.js | 2 +- 145 files changed, 8904 insertions(+), 6709 deletions(-) delete mode 100644 master/_downloads/6507de4916ad481ba20cb60e6dc3309e/example_parallel_manual_spawning_python.py delete mode 100644 master/_downloads/986156f70b0b7eee4d669b791b35bd6d/example_parallel_manual_spawning_python.ipynb delete mode 100644 master/_images/sphx_glr_example_parallel_manual_spawning_python_thumb.png delete mode 100644 master/_sources/examples/60_search/example_parallel_manual_spawning_python.rst.txt delete mode 100644 master/examples/60_search/example_parallel_manual_spawning_python.html delete mode 100644 master/notebooks/examples/60_search/example_parallel_manual_spawning_python.ipynb diff --git a/master/.buildinfo b/master/.buildinfo index 298464334c..cbee93a719 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 13a06760a87ac8d7b659b4aa6efbd203 +config: ba5b8e6ad6e1c8d0fcc11a6163f03902 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/_downloads/16fb4037a0b549292dbf3df70af70372/example_classification.ipynb b/master/_downloads/16fb4037a0b549292dbf3df70af70372/example_classification.ipynb index 7cc4b7cd39..934f27b5c7 100644 --- a/master/_downloads/16fb4037a0b549292dbf3df70af70372/example_classification.ipynb +++ b/master/_downloads/16fb4037a0b549292dbf3df70af70372/example_classification.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.classification" + "from pprint import pprint\n\nimport sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.classification" ] }, { @@ -98,7 +98,7 @@ }, "outputs": [], "source": [ - "print(automl.show_models())" + "pprint(automl.show_models(), indent=4)" ] }, { diff --git a/master/_downloads/1a053e45a20a2c15032411b9fee890a3/example_sequential.py b/master/_downloads/1a053e45a20a2c15032411b9fee890a3/example_sequential.py index b991802470..fad088396d 100644 --- a/master/_downloads/1a053e45a20a2c15032411b9fee890a3/example_sequential.py +++ b/master/_downloads/1a053e45a20a2c15032411b9fee890a3/example_sequential.py @@ -8,6 +8,7 @@ sequentially. The example below shows how to first fit the models and build the ensembles afterwards. """ +from pprint import pprint import sklearn.model_selection import sklearn.datasets @@ -48,7 +49,7 @@ # Print the final ensemble constructed by auto-sklearn # ==================================================== -print(automl.show_models()) +pprint(automl.show_models(), indent=4) ############################################################################ # Get the Score of the final ensemble diff --git a/master/_downloads/23ae4950352edc8dd9ea5443ba77886b/example_extending_regression.py b/master/_downloads/23ae4950352edc8dd9ea5443ba77886b/example_extending_regression.py index 7ee53cc975..3bdc008d4e 100644 --- a/master/_downloads/23ae4950352edc8dd9ea5443ba77886b/example_extending_regression.py +++ b/master/_downloads/23ae4950352edc8dd9ea5443ba77886b/example_extending_regression.py @@ -6,6 +6,7 @@ The following example demonstrates how to create a new regression component for using in auto-sklearn. """ +from pprint import pprint from ConfigSpace.configuration_space import ConfigurationSpace from ConfigSpace.hyperparameters import UniformFloatHyperparameter, \ @@ -137,4 +138,4 @@ def get_hyperparameter_search_space(dataset_properties=None): # ===================================== y_pred = reg.predict(X_test) print("r2 score: ", sklearn.metrics.r2_score(y_pred, y_test)) -print(reg.show_models()) +pprint(reg.show_models(), indent=4) diff --git a/master/_downloads/2991959d1e025c5f9f27e3b4d3265a81/example_multilabel_classification.ipynb b/master/_downloads/2991959d1e025c5f9f27e3b4d3265a81/example_multilabel_classification.ipynb index 341f5b333e..bf999ddaad 100644 --- a/master/_downloads/2991959d1e025c5f9f27e3b4d3265a81/example_multilabel_classification.ipynb +++ b/master/_downloads/2991959d1e025c5f9f27e3b4d3265a81/example_multilabel_classification.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import numpy as np\n\nimport sklearn.datasets\nimport sklearn.metrics\nfrom sklearn.utils.multiclass import type_of_target\n\nimport autosklearn.classification" + "import numpy as np\nfrom pprint import pprint\n\nimport sklearn.datasets\nimport sklearn.metrics\nfrom sklearn.utils.multiclass import type_of_target\n\nimport autosklearn.classification" ] }, { @@ -44,7 +44,7 @@ }, "outputs": [], "source": [ - "# Using reuters multilabel dataset -- https://www.openml.org/d/40594\nX, y = sklearn.datasets.fetch_openml(data_id=40594, return_X_y=True, as_frame=False)\n\n# fetch openml downloads a numpy array with TRUE/FALSE strings. Re-map it to\n# integer dtype with ones and zeros\n# This is to comply with Scikit-learn requirement:\n# \"Positive classes are indicated with 1 and negative classes with 0 or -1.\"\n# More information on: https://scikit-learn.org/stable/modules/multiclass.html\ny[y == 'TRUE'] = 1\ny[y == 'FALSE'] = 0\ny = y.astype(np.int)\n\n# Using type of target is a good way to make sure your data\n# is properly formatted\nprint(f\"type_of_target={type_of_target(y)}\")\n\nX_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(\n X, y, random_state=1\n)" + "# Using reuters multilabel dataset -- https://www.openml.org/d/40594\nX, y = sklearn.datasets.fetch_openml(data_id=40594, return_X_y=True, as_frame=False)\n\n# fetch openml downloads a numpy array with TRUE/FALSE strings. Re-map it to\n# integer dtype with ones and zeros\n# This is to comply with Scikit-learn requirement:\n# \"Positive classes are indicated with 1 and negative classes with 0 or -1.\"\n# More information on: https://scikit-learn.org/stable/modules/multiclass.html\ny[y == 'TRUE'] = 1\ny[y == 'FALSE'] = 0\ny = y.astype(int)\n\n# Using type of target is a good way to make sure your data\n# is properly formatted\nprint(f\"type_of_target={type_of_target(y)}\")\n\nX_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(\n X, y, random_state=1\n)" ] }, { @@ -98,7 +98,7 @@ }, "outputs": [], "source": [ - "print(automl.show_models())" + "pprint(automl.show_models(), indent=4)" ] }, { diff --git a/master/_downloads/2f293025f5b75af329925f2c3ff58c06/example_sequential.ipynb b/master/_downloads/2f293025f5b75af329925f2c3ff58c06/example_sequential.ipynb index 4b401c5b90..89111256c1 100644 --- a/master/_downloads/2f293025f5b75af329925f2c3ff58c06/example_sequential.ipynb +++ b/master/_downloads/2f293025f5b75af329925f2c3ff58c06/example_sequential.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import sklearn.model_selection\nimport sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.classification" + "from pprint import pprint\n\nimport sklearn.model_selection\nimport sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.classification" ] }, { @@ -80,7 +80,7 @@ }, "outputs": [], "source": [ - "print(automl.show_models())" + "pprint(automl.show_models(), indent=4)" ] }, { diff --git a/master/_downloads/34d1d3a5e629625f2f22f39d7c3a650e/example_interpretable_models.py b/master/_downloads/34d1d3a5e629625f2f22f39d7c3a650e/example_interpretable_models.py index a9a4e015c5..a78695082c 100644 --- a/master/_downloads/34d1d3a5e629625f2f22f39d7c3a650e/example_interpretable_models.py +++ b/master/_downloads/34d1d3a5e629625f2f22f39d7c3a650e/example_interpretable_models.py @@ -7,6 +7,8 @@ The following example shows how to inspect the models which *auto-sklearn* optimizes over and how to restrict them to an interpretable subset. """ +from pprint import pprint + import autosklearn.classification import sklearn.datasets import sklearn.metrics @@ -70,7 +72,7 @@ # Print the final ensemble constructed by auto-sklearn # ==================================================== -print(automl.show_models()) +pprint(automl.show_models(), indent=4) ########################################################################### # Get the Score of the final ensemble diff --git a/master/_downloads/42784b4d4739b840b1eeb6159bf08f4e/example_regression.py b/master/_downloads/42784b4d4739b840b1eeb6159bf08f4e/example_regression.py index adfc390dab..6b47607db0 100644 --- a/master/_downloads/42784b4d4739b840b1eeb6159bf08f4e/example_regression.py +++ b/master/_downloads/42784b4d4739b840b1eeb6159bf08f4e/example_regression.py @@ -7,6 +7,8 @@ The following example shows how to fit a simple regression model with *auto-sklearn*. """ +from pprint import pprint + import sklearn.datasets import sklearn.metrics @@ -43,7 +45,7 @@ # Print the final ensemble constructed by auto-sklearn # ==================================================== -print(automl.show_models()) +pprint(automl.show_models(), indent=4) ##################################### # Get the Score of the final ensemble diff --git a/master/_downloads/49577cbea6f814a2c9a5167f35be2814/example_multioutput_regression.py b/master/_downloads/49577cbea6f814a2c9a5167f35be2814/example_multioutput_regression.py index 5db733da0a..a2e345fcac 100644 --- a/master/_downloads/49577cbea6f814a2c9a5167f35be2814/example_multioutput_regression.py +++ b/master/_downloads/49577cbea6f814a2c9a5167f35be2814/example_multioutput_regression.py @@ -8,6 +8,7 @@ *auto-sklearn*. """ import numpy as numpy +from pprint import pprint from sklearn.datasets import make_regression from sklearn.metrics import r2_score @@ -46,7 +47,7 @@ # Print the final ensemble constructed by auto-sklearn # ==================================================== -print(automl.show_models()) +pprint(automl.show_models(), indent=4) ########################################################################### # Get the Score of the final ensemble diff --git a/master/_downloads/515ab036d01801cb08e4878be1aef556/example_extending_classification.py b/master/_downloads/515ab036d01801cb08e4878be1aef556/example_extending_classification.py index 3c6c880a0c..b6132f4c18 100644 --- a/master/_downloads/515ab036d01801cb08e4878be1aef556/example_extending_classification.py +++ b/master/_downloads/515ab036d01801cb08e4878be1aef556/example_extending_classification.py @@ -6,6 +6,7 @@ The following example demonstrates how to create a new classification component for using in auto-sklearn. """ +from pprint import pprint from ConfigSpace.configuration_space import ConfigurationSpace from ConfigSpace.hyperparameters import CategoricalHyperparameter, \ @@ -149,4 +150,4 @@ def get_hyperparameter_search_space(dataset_properties=None): y_pred = clf.predict(X_test) print("accuracy: ", sklearn.metrics.accuracy_score(y_pred, y_test)) -print(clf.show_models()) +pprint(clf.show_models(), indent=4) diff --git a/master/_downloads/54625156807f9d21fa14b78034b1df5c/example_successive_halving.py b/master/_downloads/54625156807f9d21fa14b78034b1df5c/example_successive_halving.py index 4f95296aef..fdb29da6e0 100644 --- a/master/_downloads/54625156807f9d21fa14b78034b1df5c/example_successive_halving.py +++ b/master/_downloads/54625156807f9d21fa14b78034b1df5c/example_successive_halving.py @@ -14,7 +14,7 @@ To get the BOHB algorithm, simply import Hyperband and use it as the intensification strategy. """ # noqa (links are too long) - +from pprint import pprint import sklearn.model_selection import sklearn.datasets @@ -110,7 +110,7 @@ def get_smac_object( ) automl.fit(X_train, y_train, dataset_name='breast_cancer') -print(automl.show_models()) +pprint(automl.show_models(), indent=4) predictions = automl.predict(X_test) # Print statistics about the auto-sklearn run such as number of # iterations, number of models failed with a time out. @@ -143,7 +143,7 @@ def get_smac_object( automl.fit(X_train, y_train, dataset_name='breast_cancer') # Print the final ensemble constructed by auto-sklearn. -print(automl.show_models()) +pprint(automl.show_models(), indent=4) automl.refit(X_train, y_train) predictions = automl.predict(X_test) # Print statistics about the auto-sklearn run such as number of @@ -177,7 +177,7 @@ def get_smac_object( automl.fit(X_train, y_train, dataset_name='breast_cancer') # Print the final ensemble constructed by auto-sklearn. -print(automl.show_models()) +pprint(automl.show_models(), indent=4) automl.refit(X_train, y_train) predictions = automl.predict(X_test) # Print statistics about the auto-sklearn run such as number of @@ -208,7 +208,7 @@ def get_smac_object( automl.fit(X_train, y_train, dataset_name='breast_cancer') # Print the final ensemble constructed by auto-sklearn. -print(automl.show_models()) +pprint(automl.show_models(), indent=4) predictions = automl.predict(X_test) # Print statistics about the auto-sklearn run such as number of # iterations, number of models failed with a time out. @@ -245,7 +245,7 @@ def get_smac_object( automl.fit(X_train, y_train, dataset_name='breast_cancer') # Print the final ensemble constructed by auto-sklearn. -print(automl.show_models()) +pprint(automl.show_models(), indent=4) predictions = automl.predict(X_test) # Print statistics about the auto-sklearn run such as number of # iterations, number of models failed with a time out. diff --git a/master/_downloads/5f58bfc8fd90dc731fa26fb9996d2aa5/example_interpretable_models.ipynb b/master/_downloads/5f58bfc8fd90dc731fa26fb9996d2aa5/example_interpretable_models.ipynb index b4b7eb5b6c..04a8cc6aba 100644 --- a/master/_downloads/5f58bfc8fd90dc731fa26fb9996d2aa5/example_interpretable_models.ipynb +++ b/master/_downloads/5f58bfc8fd90dc731fa26fb9996d2aa5/example_interpretable_models.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import autosklearn.classification\nimport sklearn.datasets\nimport sklearn.metrics" + "from pprint import pprint\n\nimport autosklearn.classification\nimport sklearn.datasets\nimport sklearn.metrics" ] }, { @@ -116,7 +116,7 @@ }, "outputs": [], "source": [ - "print(automl.show_models())" + "pprint(automl.show_models(), indent=4)" ] }, { diff --git a/master/_downloads/60abb5e0c4b0861f5ecbe4ae9c2e51dd/example_extending_data_preprocessor.py b/master/_downloads/60abb5e0c4b0861f5ecbe4ae9c2e51dd/example_extending_data_preprocessor.py index 6a92fa2bc9..7fdd72e971 100644 --- a/master/_downloads/60abb5e0c4b0861f5ecbe4ae9c2e51dd/example_extending_data_preprocessor.py +++ b/master/_downloads/60abb5e0c4b0861f5ecbe4ae9c2e51dd/example_extending_data_preprocessor.py @@ -5,6 +5,7 @@ The following example demonstrates how to turn off data preprocessing step in auto-skearn. """ +from pprint import pprint import autosklearn.classification import autosklearn.pipeline.components.data_preprocessing @@ -89,4 +90,4 @@ def get_hyperparameter_search_space(dataset_properties=None): y_pred = clf.predict(X_test) print("accuracy: ", sklearn.metrics.accuracy_score(y_pred, y_test)) -print(clf.show_models()) +pprint(clf.show_models(), indent=4) diff --git a/master/_downloads/6507de4916ad481ba20cb60e6dc3309e/example_parallel_manual_spawning_python.py b/master/_downloads/6507de4916ad481ba20cb60e6dc3309e/example_parallel_manual_spawning_python.py deleted file mode 100644 index 8e050537b7..0000000000 --- a/master/_downloads/6507de4916ad481ba20cb60e6dc3309e/example_parallel_manual_spawning_python.py +++ /dev/null @@ -1,153 +0,0 @@ -# -*- encoding: utf-8 -*- -""" -=================================================== -Parallel Usage: Spawning workers from within Python -=================================================== - -*Auto-sklearn* uses -`dask.distributed `_ -for parallel optimization. - -This example shows how to start the dask scheduler and spawn -workers for *Auto-sklearn* manually within Python. Use this example -as a starting point to parallelize *Auto-sklearn* across multiple -machines. If you want to start everything manually from the command line -please see :ref:`sphx_glr_examples_60_search_example_parallel_manual_spawning_cli.py`. -To run *Auto-sklearn* in parallel on a single machine check out the example -:ref:`sphx_glr_examples_60_search_example_parallel_n_jobs.py`. - -When manually passing a dask client to Auto-sklearn, all logic -must be guarded by ``if __name__ == "__main__":`` statements! We use -multiple such statements to properly render this example as a notebook -and also allow execution via the command line. - -Background -========== - -To run Auto-sklearn distributed on multiple machines we need to set -up three components: - -1. **Auto-sklearn and a dask client**. This will manage all workload, find new - configurations to evaluate and submit jobs via a dask client. As this - runs Bayesian optimization it should be executed on its own CPU. -2. **The dask workers**. They will do the actual work of running machine - learning algorithms and require their own CPU each. -3. **The scheduler**. It manages the communication between the dask client - and the different dask workers. As the client and all workers connect - to the scheduler it must be started first. This is a light-weight job - and does not require its own CPU. - -We will now start these three components in reverse order: scheduler, -workers and client. Also, in a real setup, the scheduler and the workers should -be started from the command line and not from within a Python file via -the ``subprocess`` module as done here (for the sake of having a self-contained -example). -""" - -import asyncio -import multiprocessing -import time - -import dask -import dask.distributed -import sklearn.datasets -import sklearn.metrics - -from autosklearn.classification import AutoSklearnClassifier -from autosklearn.constants import MULTICLASS_CLASSIFICATION - -tmp_folder = '/tmp/autosklearn_parallel_2_example_tmp' - - -############################################################################ -# Define function to start worker -# =============================== -# -# Define the function to start a dask worker from python. This -# is a bit cumbersome and should ideally be done from the command line. -# We do it here only for illustrational purpose. - -# Check the dask docs at -# https://docs.dask.org/en/latest/setup/python-advanced.html for further -# information. - -def start_python_worker(scheduler_address): - dask.config.set({'distributed.worker.daemon': False}) - - async def do_work(): - async with dask.distributed.Nanny( - scheduler_ip=scheduler_address, - nthreads=1, - lifetime=35, # automatically shut down the worker so this loop ends - memory_limit=0, # Disable memory management as it is done by Auto-sklearn itself - ) as worker: - await worker.finished() - - asyncio.get_event_loop().run_until_complete(do_work()) - - -############################################################################ -# Start Auto-sklearn -# ================== -# -# We are now ready to start *auto-sklearn* and all dask related processes. -# -# To use auto-sklearn in parallel we must guard the code with -# ``if __name__ == '__main__'``. We then start a dask cluster as a context, -# which means that it is automatically stopped once all computation is done. -if __name__ == '__main__': - X, y = sklearn.datasets.load_breast_cancer(return_X_y=True) - X_train, X_test, y_train, y_test = \ - sklearn.model_selection.train_test_split(X, y, random_state=1) - - # 1. Create a dask scheduler (LocalCluster) - with dask.distributed.LocalCluster( - n_workers=0, processes=True, threads_per_worker=1, - ) as cluster: - - # 2. Start the workers - # now we start the two workers, one from within Python, the other - # via the command line. - worker_processes = [] - for _ in range(2): - process_python_worker = multiprocessing.Process( - target=start_python_worker, - args=(cluster.scheduler_address, ), - ) - process_python_worker.start() - worker_processes.append(process_python_worker) - - # Wait a second for workers to become available - time.sleep(1) - - # 3. Start the client - with dask.distributed.Client(address=cluster.scheduler_address) as client: - automl = AutoSklearnClassifier( - delete_tmp_folder_after_terminate=False, - time_left_for_this_task=30, - per_run_time_limit=10, - memory_limit=1024, - tmp_folder=tmp_folder, - seed=777, - # n_jobs is ignored internally as we pass a dask client. - n_jobs=1, - # Pass a dask client which connects to the previously constructed cluster. - dask_client=client, - ) - automl.fit(X_train, y_train) - - automl.fit_ensemble( - y_train, - task=MULTICLASS_CLASSIFICATION, - dataset_name='digits', - ensemble_size=20, - ensemble_nbest=50, - ) - - predictions = automl.predict(X_test) - print(automl.sprint_statistics()) - print("Accuracy score", sklearn.metrics.accuracy_score(y_test, predictions)) - - # Wait until all workers are closed - for process in worker_processes: - process_python_worker.join() diff --git a/master/_downloads/650cd19a8dfee813a7d7fb5b90341ed3/example_classification.py b/master/_downloads/650cd19a8dfee813a7d7fb5b90341ed3/example_classification.py index 86fc09a5f4..fcb99b65ef 100644 --- a/master/_downloads/650cd19a8dfee813a7d7fb5b90341ed3/example_classification.py +++ b/master/_downloads/650cd19a8dfee813a7d7fb5b90341ed3/example_classification.py @@ -7,6 +7,8 @@ The following example shows how to fit a simple classification model with *auto-sklearn*. """ +from pprint import pprint + import sklearn.datasets import sklearn.metrics @@ -42,7 +44,7 @@ # Print the final ensemble constructed by auto-sklearn # ==================================================== -print(automl.show_models()) +pprint(automl.show_models(), indent=4) ########################################################################### # Get the Score of the final ensemble diff --git a/master/_downloads/6dea5849db1f35abbefe123cd0eb49fd/example_extending_data_preprocessor.ipynb b/master/_downloads/6dea5849db1f35abbefe123cd0eb49fd/example_extending_data_preprocessor.ipynb index 490787f633..bb3899d5a3 100644 --- a/master/_downloads/6dea5849db1f35abbefe123cd0eb49fd/example_extending_data_preprocessor.ipynb +++ b/master/_downloads/6dea5849db1f35abbefe123cd0eb49fd/example_extending_data_preprocessor.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import autosklearn.classification\nimport autosklearn.pipeline.components.data_preprocessing\nimport sklearn.metrics\nfrom ConfigSpace.configuration_space import ConfigurationSpace\nfrom autosklearn.pipeline.components.base import AutoSklearnPreprocessingAlgorithm\nfrom autosklearn.pipeline.constants import SPARSE, DENSE, UNSIGNED_DATA, INPUT\nfrom sklearn.datasets import load_breast_cancer\nfrom sklearn.model_selection import train_test_split" + "from pprint import pprint\n\nimport autosklearn.classification\nimport autosklearn.pipeline.components.data_preprocessing\nimport sklearn.metrics\nfrom ConfigSpace.configuration_space import ConfigurationSpace\nfrom autosklearn.pipeline.components.base import AutoSklearnPreprocessingAlgorithm\nfrom autosklearn.pipeline.constants import SPARSE, DENSE, UNSIGNED_DATA, INPUT\nfrom sklearn.datasets import load_breast_cancer\nfrom sklearn.model_selection import train_test_split" ] }, { @@ -98,7 +98,7 @@ }, "outputs": [], "source": [ - "y_pred = clf.predict(X_test)\nprint(\"accuracy: \", sklearn.metrics.accuracy_score(y_pred, y_test))\nprint(clf.show_models())" + "y_pred = clf.predict(X_test)\nprint(\"accuracy: \", sklearn.metrics.accuracy_score(y_pred, y_test))\npprint(clf.show_models(), indent=4)" ] } ], diff --git a/master/_downloads/77f2a85d2877495effe09ede1c7a1d31/example_regression.ipynb b/master/_downloads/77f2a85d2877495effe09ede1c7a1d31/example_regression.ipynb index 3bfacf545e..acb7673ace 100644 --- a/master/_downloads/77f2a85d2877495effe09ede1c7a1d31/example_regression.ipynb +++ b/master/_downloads/77f2a85d2877495effe09ede1c7a1d31/example_regression.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.regression\nimport matplotlib.pyplot as plt" + "from pprint import pprint\n\nimport sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.regression\nimport matplotlib.pyplot as plt" ] }, { @@ -98,7 +98,7 @@ }, "outputs": [], "source": [ - "print(automl.show_models())" + "pprint(automl.show_models(), indent=4)" ] }, { diff --git a/master/_downloads/89647a1665eba015b7197cfe70420e4d/example_multilabel_classification.py b/master/_downloads/89647a1665eba015b7197cfe70420e4d/example_multilabel_classification.py index b46caa2233..835b110ea6 100644 --- a/master/_downloads/89647a1665eba015b7197cfe70420e4d/example_multilabel_classification.py +++ b/master/_downloads/89647a1665eba015b7197cfe70420e4d/example_multilabel_classification.py @@ -8,6 +8,7 @@ `here `_. """ import numpy as np +from pprint import pprint import sklearn.datasets import sklearn.metrics @@ -30,7 +31,7 @@ # More information on: https://scikit-learn.org/stable/modules/multiclass.html y[y == 'TRUE'] = 1 y[y == 'FALSE'] = 0 -y = y.astype(np.int) +y = y.astype(int) # Using type of target is a good way to make sure your data # is properly formatted @@ -65,7 +66,7 @@ # Print the final ensemble constructed by auto-sklearn # ==================================================== -print(automl.show_models()) +pprint(automl.show_models(), indent=4) ############################################################################ # Print statistics about the auto-sklearn run diff --git a/master/_downloads/986156f70b0b7eee4d669b791b35bd6d/example_parallel_manual_spawning_python.ipynb b/master/_downloads/986156f70b0b7eee4d669b791b35bd6d/example_parallel_manual_spawning_python.ipynb deleted file mode 100644 index 7851c9efc7..0000000000 --- a/master/_downloads/986156f70b0b7eee4d669b791b35bd6d/example_parallel_manual_spawning_python.ipynb +++ /dev/null @@ -1,90 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n# Parallel Usage: Spawning workers from within Python\n\n*Auto-sklearn* uses\n`dask.distributed `_\nfor parallel optimization.\n\nThis example shows how to start the dask scheduler and spawn\nworkers for *Auto-sklearn* manually within Python. Use this example\nas a starting point to parallelize *Auto-sklearn* across multiple\nmachines. If you want to start everything manually from the command line\nplease see `sphx_glr_examples_60_search_example_parallel_manual_spawning_cli.py`.\nTo run *Auto-sklearn* in parallel on a single machine check out the example\n`sphx_glr_examples_60_search_example_parallel_n_jobs.py`.\n\nWhen manually passing a dask client to Auto-sklearn, all logic\nmust be guarded by ``if __name__ == \"__main__\":`` statements! We use\nmultiple such statements to properly render this example as a notebook\nand also allow execution via the command line.\n\n## Background\n\nTo run Auto-sklearn distributed on multiple machines we need to set\nup three components:\n\n1. **Auto-sklearn and a dask client**. This will manage all workload, find new\n configurations to evaluate and submit jobs via a dask client. As this\n runs Bayesian optimization it should be executed on its own CPU.\n2. **The dask workers**. They will do the actual work of running machine\n learning algorithms and require their own CPU each.\n3. **The scheduler**. It manages the communication between the dask client\n and the different dask workers. As the client and all workers connect\n to the scheduler it must be started first. This is a light-weight job\n and does not require its own CPU.\n\nWe will now start these three components in reverse order: scheduler,\nworkers and client. Also, in a real setup, the scheduler and the workers should\nbe started from the command line and not from within a Python file via\nthe ``subprocess`` module as done here (for the sake of having a self-contained\nexample).\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "import asyncio\nimport multiprocessing\nimport time\n\nimport dask\nimport dask.distributed\nimport sklearn.datasets\nimport sklearn.metrics\n\nfrom autosklearn.classification import AutoSklearnClassifier\nfrom autosklearn.constants import MULTICLASS_CLASSIFICATION\n\ntmp_folder = '/tmp/autosklearn_parallel_2_example_tmp'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define function to start worker\n\nDefine the function to start a dask worker from python. This\nis a bit cumbersome and should ideally be done from the command line.\nWe do it here only for illustrational purpose.\n\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# Check the dask docs at\n# https://docs.dask.org/en/latest/setup/python-advanced.html for further\n# information.\n\ndef start_python_worker(scheduler_address):\n dask.config.set({'distributed.worker.daemon': False})\n\n async def do_work():\n async with dask.distributed.Nanny(\n scheduler_ip=scheduler_address,\n nthreads=1,\n lifetime=35, # automatically shut down the worker so this loop ends\n memory_limit=0, # Disable memory management as it is done by Auto-sklearn itself\n ) as worker:\n await worker.finished()\n\n asyncio.get_event_loop().run_until_complete(do_work())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Start Auto-sklearn\n\nWe are now ready to start *auto-sklearn* and all dask related processes.\n\nTo use auto-sklearn in parallel we must guard the code with\n``if __name__ == '__main__'``. We then start a dask cluster as a context,\nwhich means that it is automatically stopped once all computation is done.\n\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "if __name__ == '__main__':\n X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\n X_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1)\n\n # 1. Create a dask scheduler (LocalCluster)\n with dask.distributed.LocalCluster(\n n_workers=0, processes=True, threads_per_worker=1,\n ) as cluster:\n\n # 2. Start the workers\n # now we start the two workers, one from within Python, the other\n # via the command line.\n worker_processes = []\n for _ in range(2):\n process_python_worker = multiprocessing.Process(\n target=start_python_worker,\n args=(cluster.scheduler_address, ),\n )\n process_python_worker.start()\n worker_processes.append(process_python_worker)\n\n # Wait a second for workers to become available\n time.sleep(1)\n\n # 3. Start the client\n with dask.distributed.Client(address=cluster.scheduler_address) as client:\n automl = AutoSklearnClassifier(\n delete_tmp_folder_after_terminate=False,\n time_left_for_this_task=30,\n per_run_time_limit=10,\n memory_limit=1024,\n tmp_folder=tmp_folder,\n seed=777,\n # n_jobs is ignored internally as we pass a dask client.\n n_jobs=1,\n # Pass a dask client which connects to the previously constructed cluster.\n dask_client=client,\n )\n automl.fit(X_train, y_train)\n\n automl.fit_ensemble(\n y_train,\n task=MULTICLASS_CLASSIFICATION,\n dataset_name='digits',\n ensemble_size=20,\n ensemble_nbest=50,\n )\n\n predictions = automl.predict(X_test)\n print(automl.sprint_statistics())\n print(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))\n\n # Wait until all workers are closed\n for process in worker_processes:\n process_python_worker.join()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.12" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file diff --git a/master/_downloads/a23bc40b83b60b7e97a3eb188a82ad24/example_extending_preprocessor.py b/master/_downloads/a23bc40b83b60b7e97a3eb188a82ad24/example_extending_preprocessor.py index a67528007d..9ac93a45b3 100644 --- a/master/_downloads/a23bc40b83b60b7e97a3eb188a82ad24/example_extending_preprocessor.py +++ b/master/_downloads/a23bc40b83b60b7e97a3eb188a82ad24/example_extending_preprocessor.py @@ -7,6 +7,7 @@ discriminant analysis (LDA) algorithm from sklearn and use it as a preprocessor in auto-sklearn. """ +from pprint import pprint from ConfigSpace.configuration_space import ConfigurationSpace from ConfigSpace.hyperparameters import UniformFloatHyperparameter, CategoricalHyperparameter @@ -130,4 +131,4 @@ def get_hyperparameter_search_space(dataset_properties=None): y_pred = clf.predict(X_test) print("accuracy: ", sklearn.metrics.accuracy_score(y_pred, y_test)) -print(clf.show_models()) +pprint(clf.show_models(), indent=4) diff --git a/master/_downloads/a7f5a98ecf82e30e146cc9bfe484c397/example_get_pipeline_components.ipynb b/master/_downloads/a7f5a98ecf82e30e146cc9bfe484c397/example_get_pipeline_components.ipynb index b26c9ab89c..33f2d673d0 100644 --- a/master/_downloads/a7f5a98ecf82e30e146cc9bfe484c397/example_get_pipeline_components.ipynb +++ b/master/_downloads/a7f5a98ecf82e30e146cc9bfe484c397/example_get_pipeline_components.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.classification" + "from pprint import pprint\n\nimport sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.classification" ] }, { @@ -87,7 +87,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Report the models found by Auto-Sklearn\n\nAuto-sklearn uses\n`Ensemble Selection `_\nto construct ensembles in a post-hoc fashion. The ensemble is a linear\nweighting of all models constructed during the hyperparameter optimization.\nThis prints the final ensemble. It is a list of tuples, each tuple being\nthe model weight in the ensemble and the model itself.\n\n" + "## Report the models found by Auto-Sklearn\n\nAuto-sklearn uses\n`Ensemble Selection `_\nto construct ensembles in a post-hoc fashion. The ensemble is a linear\nweighting of all models constructed during the hyperparameter optimization.\nThis prints the final ensemble. It is a dictionary where ``model_id`` of\neach model is a key, and value is a dictionary containing information\nof that model. A model's dict contains its ``'model_id'``, ``'rank'``,\n``'cost'``, ``'ensemble_weight'``, and the model itself. The model is\ngiven by the ``'data_preprocessor'``, ``'feature_preprocessor'``,\n``'regressor'/'classifier'`` and ``'sklearn_regressor'/'sklearn_classifier'``\nentries. But for the ``'cv'`` resampling strategy, the same for each cv\nmodel is stored in the ``'estimators'`` list in the dict, along with the\n``'voting_model'``.\n\n" ] }, { @@ -98,7 +98,7 @@ }, "outputs": [], "source": [ - "print(automl.show_models())" + "pprint(automl.show_models(), indent=4)" ] }, { diff --git a/master/_downloads/baf53fc945368668a0cd202acebc6220/example_parallel_manual_spawning_cli.py b/master/_downloads/baf53fc945368668a0cd202acebc6220/example_parallel_manual_spawning_cli.py index fc03d52655..41200cd78c 100644 --- a/master/_downloads/baf53fc945368668a0cd202acebc6220/example_parallel_manual_spawning_cli.py +++ b/master/_downloads/baf53fc945368668a0cd202acebc6220/example_parallel_manual_spawning_cli.py @@ -11,11 +11,17 @@ This example shows how to start the dask scheduler and spawn workers for *Auto-sklearn* manually from the command line. Use this example as a starting point to parallelize *Auto-sklearn* across multiple -machines. If you want to start everything manually from within Python -please see :ref:`sphx_glr_examples_60_search_example_parallel_manual_spawning_python.py`. +machines. + To run *Auto-sklearn* in parallel on a single machine check out the example :ref:`sphx_glr_examples_60_search_example_parallel_n_jobs.py`. +If you want to start everything manually from within Python +please see ``:ref:sphx_glr_examples_60_search_example_parallel_manual_spawning_python.py``. + +**NOTE:** Above example is disabled due to issue https://github.com/dask/distributed/issues/5627 + + You can learn more about the dask command line interface from https://docs.dask.org/en/latest/setup/cli.html. diff --git a/master/_downloads/bb7d59d9ddc2ff29f0d6eb99747a3347/example_resampling.ipynb b/master/_downloads/bb7d59d9ddc2ff29f0d6eb99747a3347/example_resampling.ipynb index dbe33aaa65..55c4cb4f14 100644 --- a/master/_downloads/bb7d59d9ddc2ff29f0d6eb99747a3347/example_resampling.ipynb +++ b/master/_downloads/bb7d59d9ddc2ff29f0d6eb99747a3347/example_resampling.ipynb @@ -141,7 +141,7 @@ }, "outputs": [], "source": [ - "resampling_strategy = sklearn.model_selection.PredefinedSplit(\n test_fold=np.where(X_train[:, 0] < np.mean(X_train[:, 0]))[0]\n)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=120,\n per_run_time_limit=30,\n tmp_folder='/tmp/autosklearn_resampling_example_tmp',\n disable_evaluator_output=False,\n resampling_strategy=resampling_strategy,\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')" + "selected_indices = (X_train[:, 0] < np.mean(X_train[:, 0])).astype(int)\nresampling_strategy = sklearn.model_selection.PredefinedSplit(\n test_fold=selected_indices\n)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=120,\n per_run_time_limit=30,\n tmp_folder='/tmp/autosklearn_resampling_example_tmp',\n disable_evaluator_output=False,\n resampling_strategy=resampling_strategy,\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\nprint(automl.sprint_statistics())" ] }, { diff --git a/master/_downloads/bc82bea3a5dd7bdba60b65220891d9e5/examples_python.zip b/master/_downloads/bc82bea3a5dd7bdba60b65220891d9e5/examples_python.zip index 63d76d25a987cf4bfbfd4fdef3c8b104bf0817c7..fc04d551d2f70b3dc43be612cefc52fff2ba00fc 100644 GIT binary patch delta 3456 zcmb7G4NM!?9lr-QCMJNt%2#OmlCYW>f23JifrhA=R5dAU0>f+5b}1b8flt^z&v%%m zqXe2}S*0mz`qI39Y%6G9QYb-PZ`~@G4<{dr|~ zQi|b3A}PidEXER2Qknl!M{XZCk!|KGs~3y$unZ*Ou}9~M?*(U0 zYHIDMmE%Uq2lmsq5Kp29UFwI9pXKKYtR-XShg3&-pV@R}e`8Sn(>8Ot=?724Tjd)i zcGCs+_LtEuC5{=`HTTYKzvm8)W8~*3{~9Wz7muSVmDX&^yM+x4E|#dz*8bGAFD!-> zQHt})y|_OjBn8~r8I!_7v_lMcc4Dd9x&aG(D1!AxEXtV2y~18E=Hp?U;-h_nv9?4^ zNQx`G7#HI`a0R-hWQ=DDK#tUnl?bmGqWpLpdwE2Nx@F9`@jRc5MMVZH+zV#7J3GDX zJITj;**i#ruaG1w3p+ww7Ghmdp`%|Adm{QWk$hzhI2aK!h67uVm=fZ+YcH6={B(zT zh3`ltg+x*c39>9D=LM3(*UI)~G$n{YY2Z3#G-Y-WT0~DsEOxNL%4oXy8#~ zp}(@Djp|#mR|<2}l2xu>lb@Won#@ec%>0?42CP$j#B%>)?Ff$Bz7!>IT+Y zN$j9Pb{@B=?N_cAEen)pFGa;jmFBK3uWahj^{wV*XjmISTDuutT8=j45b1QQ_OcZ{ zvAn*s?Q-NS11CP3di0px!Eub%L;P(MXoGgX0{wl(@`ts@ep!u13YHl(uXgJX+qCi; z6xHo5T5Mn&$y(cwXrl)W6rX`m{?W#N5-jAnpjK}~{EE%W2-_h#bQD!-haBk5ZF1^T_9_Txi1=VaZ)$+!CG5V^Zecuk`xpfk|>5(?%(9A7JD*FGN zejC)jm;U&H9dMHv`3<$FA4cM>oYuhUpzXdd6=Rg=%D>52MIS$g*27#?Nw1$kt8vbR zqz_}pUwZg63+0ca3i4_}IX!d?;5m~{7Chl(aOdHG-9TqeEHJe|`N}-$VN|7~Y3*@T ziP;#^{B8HYrpq{vQ8x5)jWKrA!R(>WDfGc{RF(J9z4|g~e#1qd8%L}4!G->J47O&! zVQhUdT27l_3+GNU8B@6QaO2~dx#mv2>Ch3T;GHK8DZ9?tysa&ZQO#{eONBK*V{lC! zD9++yE#%F-w}c_cXGY#dCNSX|HB2}+hH5bDF&4|&miOUmGOEdf{$|8bFy3#Y4P)S3 zRwIIDRF?(+^CW{;kUi1cvg~0^rsUnoSSe&5BTp9BL#G&5!@3(ZpbRcOoSt6Nj(kgF z#2Ufyi&sy43Ij2tY!`m~iOzQy&TSGI=@66)pRtxvk8eNWJ|6UaqRRiNy1 z%Br9cahPB;PkMNd&tThWL&dhGrn9<8qmys}{!>qXe*%@$S0|C%vv~eFRWc)$1Ebv! zGNyI3WfI+vbIM#6^o0%vZNfR_C=2zZYzTaI2RON%rEN|f$-;j)WZ=&|j7rN|Tg(uB Pj;nxQ4a7hp2)_OY55F(K delta 4343 zcmZ`+3vd+W9p5jxJUEhYmxMenuP+bDUA&wjL5h*65vEFc2!^(F0y#E!d)$`0-Sc)Y zN3cv9M`_15{0R$aHCS}os)#*1*AZp}JHv=65PS?%MzppSh^8X7($;7H-)`=5+t|%~ zncMw-|Ht?HKX(5Iley>4=a#Qto^2`R*cE$R?D_eTtNX9b<+y9%XC-e!5y^vh4%^|A zd7UtRIh=T;FPp&4S6bkxcO884N_XP(vNs8Q(w+kYfzrg43J0;b|3d89@znaqZL>L! ztyb+xAeEYJ7b#ENlz#((8@Jiuy$v*RY}Q*@*;2%l7%A{uQaWG_zgGLco46AD?0+VO zpQ1-2!=IhI+sbiwLxtm&43DnWs{2WC;J&GNIJPa_qlD;os~!F}yvG zhuaSt7&`P=eu@>0%Nzoc607CDCs4uoXmL^TdHi+i zFKyimN;rUmI0&8j7@c@fhzbw@XHIY12CEDB2QI_Jt{&L% z`#TZ`N7iOpwlSx2_Z-i+>|omSRxU2GEM>nwyRpb_*}`^T-@0v9;lO^er_|XwzND7p zmLv|JygiFh*fD+^tQqfs^CxXkeZ~r>KdykP@qxrcXB<`bb10!)Gxp%G=W!fc&G5>} zxrwhoZO+!ZYss3OeQF~6-(Stv#+!(qfAH!f&B^5!@~#E$3REHy-MeXWyomIYbbx;voAm|jy!#=`?`FNW2=sNp&i^y3X}U<$&Ez2 zwU(^j+4nGv#vSln%hi!bNm25nHgYgCD__%Ivk+0&H;VdBM82`SZ|69+8gzYqdxP@4y- zoCTKs9UAqMI=KDRyu!Gs1~K_o52`^~(#|X-3*gX7I}HAP8O%97Y~F^aPxtAe@xaJw zTY(kRn^y#?2m+moRT|`%zK5SJ=Xb zQHNIzN1CC&uculFh>}19G0CTjGFF646_rQvxE$RK-DP#Kad9qe{F5cT)IhQ_nu+GA zpI0{PLPC@VqH>r<^y7Kx+MuXl`H2eUX}_paUo6}&L=`z~RGbo&V&Y z+XR->U{v7!O4oez^N<)2R52`cbzJYJw2|^LRc6fi^iV0mn2MgpjW%kWj4Cp6kFgHP za)b(!UojaP3gfw>gWixB7S*mcUFlL$;aU4NwrH4__)S7skXQz@$fGir5ww4hcBB1P zWiysQRKhLRpwsGI3~o4KM8ePr=c4S{B&c3t0IhnN=T4U= z8k4*+Nfkq0pUf&o6`bj)xUh2WgmV|>!sVJ`c=T9K2=kQ31eN4CWlRoE*HH^2E#-8J z{*poVjB<$zAs*9$MxwG0Q%F!e)<(?0wK9!ijb{q7msNz1qNEUlp)2LHD9Z%IZq#ZU zNY&6r4=WYSU}>s+rwY=?>I5qix#20Mr7CPu-6$3hiui&I3%sPD6pt+HME_5KRXGwt z_hc*;%A96Q#8kaBQep8}#Q^n!YqARJFTOa`NauU#5~M&y3FDCIsU`SWTw-#Q4eMuTWuPm#^n^ujig{7WPL8Po0mz<6Kqs^FG*!!BfR%Uc|+>XFyu`i zfOgT|4LTX{;a}_EmdQ$(Jm0h~1xM?cn_apW<{o6ORfb2X(&d~wswYi+y6CCPZH3XT z4p=%_X45rd8Kexs)^``d!FMZmen8>C`I45@^G4c{$&)W6VwI$&*y&;Ah029fZLsVA zTAvC7lb$Y6ICar&VV2;Q=UNL=CiMsQ1=Y5WHuE91`f^fd-~*Q$Vfa!rj9zlUZ!ax# zq+})UkL7+-Cxe`cURXDQr`lQu-8EISr%GS9^7ur3WlD6=i?0+>nl=f?C)(iSiDoGL zumPGstSd<&Gd0|G|26rk=g?i;kiOCOUr$!fN;3tEK58;t=O<>y35B*3ipkTE!mp%sf!w_-C@|3K?+g3+38T4dHB% z$jdvv{H;QcW2?yo-xAllHPTLJ4jI$11H%vBXDF5LEz}P0M)%kxp^fcE_sCv-OZ#d! zX`*bbxbE#E@GrE(mf5wj{S118K5}SvBPcxkkfFD7aj7jcqHGk=TA2EpV+P{mtu`%$ zmZ@nrK@#Ur`-yRR;&nKBvcr@eGe#4WK-&Zgl)~4a&edx7l7jjfBZLWEYa?*%WCtF@zh$lUrFQ-VqBJM$UT&87y^ zA!oD*lhlf3+8z5yJ?j{h&S(lI=z~8npx7hkXp0|1!cDyZ`+?hp|1xOcPwgX>)Lif! u*Jgqq`3ZyGWMQSQjqSzY=Imro%C)celIGGJ`_\nfor parallel optimization.\n\nThis example shows how to start the dask scheduler and spawn\nworkers for *Auto-sklearn* manually from the command line. Use this example\nas a starting point to parallelize *Auto-sklearn* across multiple\nmachines. If you want to start everything manually from within Python\nplease see `sphx_glr_examples_60_search_example_parallel_manual_spawning_python.py`.\nTo run *Auto-sklearn* in parallel on a single machine check out the example\n`sphx_glr_examples_60_search_example_parallel_n_jobs.py`.\n\nYou can learn more about the dask command line interface from\nhttps://docs.dask.org/en/latest/setup/cli.html.\n\nWhen manually passing a dask client to Auto-sklearn, all logic\nmust be guarded by ``if __name__ == \"__main__\":`` statements! We use\nmultiple such statements to properly render this example as a notebook\nand also allow execution via the command line.\n\n## Background\n\nTo run Auto-sklearn distributed on multiple machines we need to set\nup three components:\n\n1. **Auto-sklearn and a dask client**. This will manage all workload, find new\n configurations to evaluate and submit jobs via a dask client. As this\n runs Bayesian optimization it should be executed on its own CPU.\n2. **The dask workers**. They will do the actual work of running machine\n learning algorithms and require their own CPU each.\n3. **The scheduler**. It manages the communication between the dask client\n and the different dask workers. As the client and all workers connect\n to the scheduler it must be started first. This is a light-weight job\n and does not require its own CPU.\n\nWe will now start these three components in reverse order: scheduler,\nworkers and client. Also, in a real setup, the scheduler and the workers should\nbe started from the command line and not from within a Python file via\nthe ``subprocess`` module as done here (for the sake of having a self-contained\nexample).\n" + "\n# Parallel Usage: Spawning workers from the command line\n\n*Auto-sklearn* uses\n`dask.distributed `_\nfor parallel optimization.\n\nThis example shows how to start the dask scheduler and spawn\nworkers for *Auto-sklearn* manually from the command line. Use this example\nas a starting point to parallelize *Auto-sklearn* across multiple\nmachines.\n\nTo run *Auto-sklearn* in parallel on a single machine check out the example\n`sphx_glr_examples_60_search_example_parallel_n_jobs.py`.\n\nIf you want to start everything manually from within Python\nplease see ``:ref:sphx_glr_examples_60_search_example_parallel_manual_spawning_python.py``.\n\n**NOTE:** Above example is disabled due to issue https://github.com/dask/distributed/issues/5627\n\n\nYou can learn more about the dask command line interface from\nhttps://docs.dask.org/en/latest/setup/cli.html.\n\nWhen manually passing a dask client to Auto-sklearn, all logic\nmust be guarded by ``if __name__ == \"__main__\":`` statements! We use\nmultiple such statements to properly render this example as a notebook\nand also allow execution via the command line.\n\n## Background\n\nTo run Auto-sklearn distributed on multiple machines we need to set\nup three components:\n\n1. **Auto-sklearn and a dask client**. This will manage all workload, find new\n configurations to evaluate and submit jobs via a dask client. As this\n runs Bayesian optimization it should be executed on its own CPU.\n2. **The dask workers**. They will do the actual work of running machine\n learning algorithms and require their own CPU each.\n3. **The scheduler**. It manages the communication between the dask client\n and the different dask workers. As the client and all workers connect\n to the scheduler it must be started first. This is a light-weight job\n and does not require its own CPU.\n\nWe will now start these three components in reverse order: scheduler,\nworkers and client. Also, in a real setup, the scheduler and the workers should\nbe started from the command line and not from within a Python file via\nthe ``subprocess`` module as done here (for the sake of having a self-contained\nexample).\n" ] }, { diff --git a/master/_downloads/c6beb850ad22be83885d2737cca63b33/example_resampling.py b/master/_downloads/c6beb850ad22be83885d2737cca63b33/example_resampling.py index 39e76cb481..124316a60a 100644 --- a/master/_downloads/c6beb850ad22be83885d2737cca63b33/example_resampling.py +++ b/master/_downloads/c6beb850ad22be83885d2737cca63b33/example_resampling.py @@ -98,8 +98,9 @@ # data by the first feature. In practice, one would use a splitting according # to the use case at hand. +selected_indices = (X_train[:, 0] < np.mean(X_train[:, 0])).astype(int) resampling_strategy = sklearn.model_selection.PredefinedSplit( - test_fold=np.where(X_train[:, 0] < np.mean(X_train[:, 0]))[0] + test_fold=selected_indices ) automl = autosklearn.classification.AutoSklearnClassifier( @@ -111,6 +112,8 @@ ) automl.fit(X_train, y_train, dataset_name='breast_cancer') +print(automl.sprint_statistics()) + ############################################################################ # For custom resampling strategies (i.e. resampling strategies that are not # defined as strings by Auto-sklearn) it is necessary to perform a refit: diff --git a/master/_downloads/cd4c6485e901a328467de871ee3487d1/example_random_search.ipynb b/master/_downloads/cd4c6485e901a328467de871ee3487d1/example_random_search.ipynb index 753e1b54fa..1748e1bda2 100644 --- a/master/_downloads/cd4c6485e901a328467de871ee3487d1/example_random_search.ipynb +++ b/master/_downloads/cd4c6485e901a328467de871ee3487d1/example_random_search.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import sklearn.model_selection\nimport sklearn.datasets\nimport sklearn.metrics\n\nfrom smac.facade.roar_facade import ROAR\nfrom smac.scenario.scenario import Scenario\n\nimport autosklearn.classification" + "from pprint import pprint\n\nimport sklearn.model_selection\nimport sklearn.datasets\nimport sklearn.metrics\n\nfrom smac.facade.roar_facade import ROAR\nfrom smac.scenario.scenario import Scenario\n\nimport autosklearn.classification" ] }, { @@ -62,7 +62,7 @@ }, "outputs": [], "source": [ - "def get_roar_object_callback(\n scenario_dict,\n seed,\n ta,\n ta_kwargs,\n metalearning_configurations,\n n_jobs,\n dask_client,\n):\n \"\"\"Random online adaptive racing.\"\"\"\n\n if n_jobs > 1 or (dask_client and len(dask_client.nthreads()) > 1):\n raise ValueError(\"Please make sure to guard the code invoking Auto-sklearn by \"\n \"`if __name__ == '__main__'` and remove this exception.\")\n\n scenario = Scenario(scenario_dict)\n return ROAR(\n scenario=scenario,\n rng=seed,\n tae_runner=ta,\n tae_runner_kwargs=ta_kwargs,\n run_id=seed,\n dask_client=dask_client,\n n_jobs=n_jobs,\n )\n\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=60,\n per_run_time_limit=15,\n tmp_folder='/tmp/autosklearn_random_search_example_tmp',\n initial_configurations_via_metalearning=0,\n # The callback to get the SMAC object\n get_smac_object_callback=get_roar_object_callback,\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\nprint('#' * 80)\nprint('Results for ROAR.')\n# Print the final ensemble constructed by auto-sklearn via ROAR.\nprint(automl.show_models())\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" + "def get_roar_object_callback(\n scenario_dict,\n seed,\n ta,\n ta_kwargs,\n metalearning_configurations,\n n_jobs,\n dask_client,\n):\n \"\"\"Random online adaptive racing.\"\"\"\n\n if n_jobs > 1 or (dask_client and len(dask_client.nthreads()) > 1):\n raise ValueError(\"Please make sure to guard the code invoking Auto-sklearn by \"\n \"`if __name__ == '__main__'` and remove this exception.\")\n\n scenario = Scenario(scenario_dict)\n return ROAR(\n scenario=scenario,\n rng=seed,\n tae_runner=ta,\n tae_runner_kwargs=ta_kwargs,\n run_id=seed,\n dask_client=dask_client,\n n_jobs=n_jobs,\n )\n\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=60,\n per_run_time_limit=15,\n tmp_folder='/tmp/autosklearn_random_search_example_tmp',\n initial_configurations_via_metalearning=0,\n # The callback to get the SMAC object\n get_smac_object_callback=get_roar_object_callback,\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\nprint('#' * 80)\nprint('Results for ROAR.')\n# Print the final ensemble constructed by auto-sklearn via ROAR.\npprint(automl.show_models(), indent=4)\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" ] }, { @@ -80,7 +80,7 @@ }, "outputs": [], "source": [ - "def get_random_search_object_callback(\n scenario_dict,\n seed,\n ta,\n ta_kwargs,\n metalearning_configurations,\n n_jobs,\n dask_client\n):\n \"\"\" Random search \"\"\"\n\n if n_jobs > 1 or (dask_client and len(dask_client.nthreads()) > 1):\n raise ValueError(\"Please make sure to guard the code invoking Auto-sklearn by \"\n \"`if __name__ == '__main__'` and remove this exception.\")\n\n scenario_dict['minR'] = len(scenario_dict['instances'])\n scenario_dict['initial_incumbent'] = 'RANDOM'\n scenario = Scenario(scenario_dict)\n return ROAR(\n scenario=scenario,\n rng=seed,\n tae_runner=ta,\n tae_runner_kwargs=ta_kwargs,\n run_id=seed,\n dask_client=dask_client,\n n_jobs=n_jobs,\n )\n\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=60,\n per_run_time_limit=15,\n tmp_folder='/tmp/autosklearn_random_search_example_tmp',\n initial_configurations_via_metalearning=0,\n # Passing the callback to get the SMAC object\n get_smac_object_callback=get_random_search_object_callback,\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\nprint('#' * 80)\nprint('Results for random search.')\n\n# Print the final ensemble constructed by auto-sklearn via random search.\nprint(automl.show_models())\n\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\n\npredictions = automl.predict(X_test)\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" + "def get_random_search_object_callback(\n scenario_dict,\n seed,\n ta,\n ta_kwargs,\n metalearning_configurations,\n n_jobs,\n dask_client\n):\n \"\"\" Random search \"\"\"\n\n if n_jobs > 1 or (dask_client and len(dask_client.nthreads()) > 1):\n raise ValueError(\"Please make sure to guard the code invoking Auto-sklearn by \"\n \"`if __name__ == '__main__'` and remove this exception.\")\n\n scenario_dict['minR'] = len(scenario_dict['instances'])\n scenario_dict['initial_incumbent'] = 'RANDOM'\n scenario = Scenario(scenario_dict)\n return ROAR(\n scenario=scenario,\n rng=seed,\n tae_runner=ta,\n tae_runner_kwargs=ta_kwargs,\n run_id=seed,\n dask_client=dask_client,\n n_jobs=n_jobs,\n )\n\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=60,\n per_run_time_limit=15,\n tmp_folder='/tmp/autosklearn_random_search_example_tmp',\n initial_configurations_via_metalearning=0,\n # Passing the callback to get the SMAC object\n get_smac_object_callback=get_random_search_object_callback,\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\nprint('#' * 80)\nprint('Results for random search.')\n\n# Print the final ensemble constructed by auto-sklearn via random search.\npprint(automl.show_models(), indent=4)\n\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\n\npredictions = automl.predict(X_test)\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" ] } ], diff --git a/master/_downloads/ce2e8ffc7b9780e0d18638781ffd952b/example_successive_halving.ipynb b/master/_downloads/ce2e8ffc7b9780e0d18638781ffd952b/example_successive_halving.ipynb index f285520243..e62b893576 100644 --- a/master/_downloads/ce2e8ffc7b9780e0d18638781ffd952b/example_successive_halving.ipynb +++ b/master/_downloads/ce2e8ffc7b9780e0d18638781ffd952b/example_successive_halving.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import sklearn.model_selection\nimport sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.classification" + "from pprint import pprint\n\nimport sklearn.model_selection\nimport sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.classification" ] }, { @@ -80,7 +80,7 @@ }, "outputs": [], "source": [ - "automl = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp',\n disable_evaluator_output=False,\n # 'holdout' with 'train_size'=0.67 is the default argument setting\n # for AutoSklearnClassifier. It is explicitly specified in this example\n # for demonstrational purpose.\n resampling_strategy='holdout',\n resampling_strategy_arguments={'train_size': 0.67},\n include={\n 'classifier': [\n 'extra_trees', 'gradient_boosting', 'random_forest',\n 'sgd', 'passive_aggressive'\n ],\n 'feature_preprocessor': ['no_preprocessing']\n },\n get_smac_object_callback=get_smac_object_callback('iterations'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\nprint(automl.show_models())\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" + "automl = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp',\n disable_evaluator_output=False,\n # 'holdout' with 'train_size'=0.67 is the default argument setting\n # for AutoSklearnClassifier. It is explicitly specified in this example\n # for demonstrational purpose.\n resampling_strategy='holdout',\n resampling_strategy_arguments={'train_size': 0.67},\n include={\n 'classifier': [\n 'extra_trees', 'gradient_boosting', 'random_forest',\n 'sgd', 'passive_aggressive'\n ],\n 'feature_preprocessor': ['no_preprocessing']\n },\n get_smac_object_callback=get_smac_object_callback('iterations'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\npprint(automl.show_models(), indent=4)\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" ] }, { @@ -98,7 +98,7 @@ }, "outputs": [], "source": [ - "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\nX_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1, shuffle=True)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp_01',\n disable_evaluator_output=False,\n resampling_strategy='cv',\n include={\n 'classifier': [\n 'extra_trees', 'gradient_boosting', 'random_forest', \n 'sgd', 'passive_aggressive'\n ],\n 'feature_preprocessor': ['no_preprocessing']\n },\n get_smac_object_callback=get_smac_object_callback('iterations'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\n# Print the final ensemble constructed by auto-sklearn.\nprint(automl.show_models())\nautoml.refit(X_train, y_train)\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" + "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\nX_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1, shuffle=True)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp_01',\n disable_evaluator_output=False,\n resampling_strategy='cv',\n include={\n 'classifier': [\n 'extra_trees', 'gradient_boosting', 'random_forest', \n 'sgd', 'passive_aggressive'\n ],\n 'feature_preprocessor': ['no_preprocessing']\n },\n get_smac_object_callback=get_smac_object_callback('iterations'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\n# Print the final ensemble constructed by auto-sklearn.\npprint(automl.show_models(), indent=4)\nautoml.refit(X_train, y_train)\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" ] }, { @@ -116,7 +116,7 @@ }, "outputs": [], "source": [ - "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\nX_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1, shuffle=True)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp_cv_02',\n disable_evaluator_output=False,\n resampling_strategy='cv-iterative-fit',\n include={\n 'classifier': [\n 'extra_trees', 'gradient_boosting', 'random_forest',\n 'sgd', 'passive_aggressive'\n ],\n 'feature_preprocessor': ['no_preprocessing']\n },\n get_smac_object_callback=get_smac_object_callback('iterations'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\n# Print the final ensemble constructed by auto-sklearn.\nprint(automl.show_models())\nautoml.refit(X_train, y_train)\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" + "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\nX_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1, shuffle=True)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp_cv_02',\n disable_evaluator_output=False,\n resampling_strategy='cv-iterative-fit',\n include={\n 'classifier': [\n 'extra_trees', 'gradient_boosting', 'random_forest',\n 'sgd', 'passive_aggressive'\n ],\n 'feature_preprocessor': ['no_preprocessing']\n },\n get_smac_object_callback=get_smac_object_callback('iterations'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\n# Print the final ensemble constructed by auto-sklearn.\npprint(automl.show_models(), indent=4)\nautoml.refit(X_train, y_train)\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" ] }, { @@ -134,7 +134,7 @@ }, "outputs": [], "source": [ - "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\nX_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1, shuffle=True)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp_03',\n disable_evaluator_output=False,\n # 'holdout' with 'train_size'=0.67 is the default argument setting\n # for AutoSklearnClassifier. It is explicitly specified in this example\n # for demonstrational purpose.\n resampling_strategy='holdout',\n resampling_strategy_arguments={'train_size': 0.67},\n get_smac_object_callback=get_smac_object_callback('subsample'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\n# Print the final ensemble constructed by auto-sklearn.\nprint(automl.show_models())\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" + "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\nX_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1, shuffle=True)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp_03',\n disable_evaluator_output=False,\n # 'holdout' with 'train_size'=0.67 is the default argument setting\n # for AutoSklearnClassifier. It is explicitly specified in this example\n # for demonstrational purpose.\n resampling_strategy='holdout',\n resampling_strategy_arguments={'train_size': 0.67},\n get_smac_object_callback=get_smac_object_callback('subsample'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\n# Print the final ensemble constructed by auto-sklearn.\npprint(automl.show_models(), indent=4)\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" ] }, { @@ -152,7 +152,7 @@ }, "outputs": [], "source": [ - "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\nX_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1, shuffle=True)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp_04',\n disable_evaluator_output=False,\n # 'holdout' with 'train_size'=0.67 is the default argument setting\n # for AutoSklearnClassifier. It is explicitly specified in this example\n # for demonstrational purpose.\n resampling_strategy='holdout',\n resampling_strategy_arguments={'train_size': 0.67},\n include={\n 'classifier': [\n 'extra_trees', 'gradient_boosting', 'random_forest', 'sgd'\n ]\n },\n get_smac_object_callback=get_smac_object_callback('mixed'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\n# Print the final ensemble constructed by auto-sklearn.\nprint(automl.show_models())\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" + "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\nX_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1, shuffle=True)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp_04',\n disable_evaluator_output=False,\n # 'holdout' with 'train_size'=0.67 is the default argument setting\n # for AutoSklearnClassifier. It is explicitly specified in this example\n # for demonstrational purpose.\n resampling_strategy='holdout',\n resampling_strategy_arguments={'train_size': 0.67},\n include={\n 'classifier': [\n 'extra_trees', 'gradient_boosting', 'random_forest', 'sgd'\n ]\n },\n get_smac_object_callback=get_smac_object_callback('mixed'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\n# Print the final ensemble constructed by auto-sklearn.\npprint(automl.show_models(), indent=4)\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" ] } ], diff --git a/master/_downloads/d6ccbec3202b9c83accb060d07132b4e/example_random_search.py b/master/_downloads/d6ccbec3202b9c83accb060d07132b4e/example_random_search.py index 292f005da9..2c9cc76695 100644 --- a/master/_downloads/d6ccbec3202b9c83accb060d07132b4e/example_random_search.py +++ b/master/_downloads/d6ccbec3202b9c83accb060d07132b4e/example_random_search.py @@ -12,6 +12,7 @@ as yet another alternative optimizatino strategy. Both examples are intended to show how the optimization strategy in *auto-sklearn* can be adapted. """ # noqa (links are too long) +from pprint import pprint import sklearn.model_selection import sklearn.datasets @@ -75,7 +76,7 @@ def get_roar_object_callback( print('#' * 80) print('Results for ROAR.') # Print the final ensemble constructed by auto-sklearn via ROAR. -print(automl.show_models()) +pprint(automl.show_models(), indent=4) predictions = automl.predict(X_test) # Print statistics about the auto-sklearn run such as number of # iterations, number of models failed with a time out. @@ -129,7 +130,7 @@ def get_random_search_object_callback( print('Results for random search.') # Print the final ensemble constructed by auto-sklearn via random search. -print(automl.show_models()) +pprint(automl.show_models(), indent=4) # Print statistics about the auto-sklearn run such as number of # iterations, number of models failed with a time out. diff --git a/master/_downloads/d9369ef2377e1dc469a08a83d0887d1b/example_multioutput_regression.ipynb b/master/_downloads/d9369ef2377e1dc469a08a83d0887d1b/example_multioutput_regression.ipynb index f3112d78a6..7998b22d6f 100644 --- a/master/_downloads/d9369ef2377e1dc469a08a83d0887d1b/example_multioutput_regression.ipynb +++ b/master/_downloads/d9369ef2377e1dc469a08a83d0887d1b/example_multioutput_regression.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import numpy as numpy\n\nfrom sklearn.datasets import make_regression\nfrom sklearn.metrics import r2_score\nfrom sklearn.model_selection import train_test_split\n\nfrom autosklearn.regression import AutoSklearnRegressor" + "import numpy as numpy\nfrom pprint import pprint\n\nfrom sklearn.datasets import make_regression\nfrom sklearn.metrics import r2_score\nfrom sklearn.model_selection import train_test_split\n\nfrom autosklearn.regression import AutoSklearnRegressor" ] }, { @@ -98,7 +98,7 @@ }, "outputs": [], "source": [ - "print(automl.show_models())" + "pprint(automl.show_models(), indent=4)" ] }, { diff --git a/master/_downloads/e2278309f0c9a94fb08745a1f915766e/example_get_pipeline_components.py b/master/_downloads/e2278309f0c9a94fb08745a1f915766e/example_get_pipeline_components.py index 76132291fc..f7a97ead27 100644 --- a/master/_downloads/e2278309f0c9a94fb08745a1f915766e/example_get_pipeline_components.py +++ b/master/_downloads/e2278309f0c9a94fb08745a1f915766e/example_get_pipeline_components.py @@ -14,6 +14,8 @@ the sklearn models. This example illustrates how to interact with the sklearn components directly, in this case a PCA preprocessor. """ +from pprint import pprint + import sklearn.datasets import sklearn.metrics @@ -62,10 +64,17 @@ # `Ensemble Selection `_ # to construct ensembles in a post-hoc fashion. The ensemble is a linear # weighting of all models constructed during the hyperparameter optimization. -# This prints the final ensemble. It is a list of tuples, each tuple being -# the model weight in the ensemble and the model itself. - -print(automl.show_models()) +# This prints the final ensemble. It is a dictionary where ``model_id`` of +# each model is a key, and value is a dictionary containing information +# of that model. A model's dict contains its ``'model_id'``, ``'rank'``, +# ``'cost'``, ``'ensemble_weight'``, and the model itself. The model is +# given by the ``'data_preprocessor'``, ``'feature_preprocessor'``, +# ``'regressor'/'classifier'`` and ``'sklearn_regressor'/'sklearn_classifier'`` +# entries. But for the ``'cv'`` resampling strategy, the same for each cv +# model is stored in the ``'estimators'`` list in the dict, along with the +# ``'voting_model'``. + +pprint(automl.show_models(), indent=4) ########################################################################### # Report statistics about the search diff --git a/master/_downloads/eec25698bb5fb78402eba3ef5551d2a0/example_extending_preprocessor.ipynb b/master/_downloads/eec25698bb5fb78402eba3ef5551d2a0/example_extending_preprocessor.ipynb index a44db2d221..fa090d2f9a 100644 --- a/master/_downloads/eec25698bb5fb78402eba3ef5551d2a0/example_extending_preprocessor.ipynb +++ b/master/_downloads/eec25698bb5fb78402eba3ef5551d2a0/example_extending_preprocessor.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "from ConfigSpace.configuration_space import ConfigurationSpace\nfrom ConfigSpace.hyperparameters import UniformFloatHyperparameter, CategoricalHyperparameter\nfrom ConfigSpace.conditions import InCondition\n\nimport sklearn.metrics\nimport autosklearn.classification\nimport autosklearn.pipeline.components.feature_preprocessing\nfrom autosklearn.pipeline.components.base \\\n import AutoSklearnPreprocessingAlgorithm\nfrom autosklearn.pipeline.constants import DENSE, SIGNED_DATA, \\\n UNSIGNED_DATA\nfrom autosklearn.util.common import check_none\n\nfrom sklearn.datasets import load_breast_cancer\nfrom sklearn.model_selection import train_test_split" + "from pprint import pprint\n\nfrom ConfigSpace.configuration_space import ConfigurationSpace\nfrom ConfigSpace.hyperparameters import UniformFloatHyperparameter, CategoricalHyperparameter\nfrom ConfigSpace.conditions import InCondition\n\nimport sklearn.metrics\nimport autosklearn.classification\nimport autosklearn.pipeline.components.feature_preprocessing\nfrom autosklearn.pipeline.components.base \\\n import AutoSklearnPreprocessingAlgorithm\nfrom autosklearn.pipeline.constants import DENSE, SIGNED_DATA, \\\n UNSIGNED_DATA\nfrom autosklearn.util.common import check_none\n\nfrom sklearn.datasets import load_breast_cancer\nfrom sklearn.model_selection import train_test_split" ] }, { @@ -116,7 +116,7 @@ }, "outputs": [], "source": [ - "y_pred = clf.predict(X_test)\nprint(\"accuracy: \", sklearn.metrics.accuracy_score(y_pred, y_test))\nprint(clf.show_models())" + "y_pred = clf.predict(X_test)\nprint(\"accuracy: \", sklearn.metrics.accuracy_score(y_pred, y_test))\npprint(clf.show_models(), indent=4)" ] } ], diff --git a/master/_downloads/f9a47ce26ef58a0617f152bb7396464b/example_extending_regression.ipynb b/master/_downloads/f9a47ce26ef58a0617f152bb7396464b/example_extending_regression.ipynb index 5783cf90e0..7e7efbf899 100644 --- a/master/_downloads/f9a47ce26ef58a0617f152bb7396464b/example_extending_regression.ipynb +++ b/master/_downloads/f9a47ce26ef58a0617f152bb7396464b/example_extending_regression.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "from ConfigSpace.configuration_space import ConfigurationSpace\nfrom ConfigSpace.hyperparameters import UniformFloatHyperparameter, \\\n UniformIntegerHyperparameter, CategoricalHyperparameter\nfrom ConfigSpace.conditions import EqualsCondition\n\nimport sklearn.metrics\nimport autosklearn.regression\nimport autosklearn.pipeline.components.regression\nfrom autosklearn.pipeline.components.base import AutoSklearnRegressionAlgorithm\nfrom autosklearn.pipeline.constants import SPARSE, DENSE, \\\n SIGNED_DATA, UNSIGNED_DATA, PREDICTIONS\n\nfrom sklearn.datasets import load_diabetes\nfrom sklearn.model_selection import train_test_split" + "from pprint import pprint\n\nfrom ConfigSpace.configuration_space import ConfigurationSpace\nfrom ConfigSpace.hyperparameters import UniformFloatHyperparameter, \\\n UniformIntegerHyperparameter, CategoricalHyperparameter\nfrom ConfigSpace.conditions import EqualsCondition\n\nimport sklearn.metrics\nimport autosklearn.regression\nimport autosklearn.pipeline.components.regression\nfrom autosklearn.pipeline.components.base import AutoSklearnRegressionAlgorithm\nfrom autosklearn.pipeline.constants import SPARSE, DENSE, \\\n SIGNED_DATA, UNSIGNED_DATA, PREDICTIONS\n\nfrom sklearn.datasets import load_diabetes\nfrom sklearn.model_selection import train_test_split" ] }, { @@ -98,7 +98,7 @@ }, "outputs": [], "source": [ - "y_pred = reg.predict(X_test)\nprint(\"r2 score: \", sklearn.metrics.r2_score(y_pred, y_test))\nprint(reg.show_models())" + "y_pred = reg.predict(X_test)\nprint(\"r2 score: \", sklearn.metrics.r2_score(y_pred, y_test))\npprint(reg.show_models(), indent=4)" ] } ], diff --git a/master/_downloads/fb625db3c50d423b1b7881136ffdeec8/examples_jupyter.zip b/master/_downloads/fb625db3c50d423b1b7881136ffdeec8/examples_jupyter.zip index 1b5ea38bd831e0811fa28a51d3af12418d0e2fa9..0eca0ae90b1780bf9d4f4eacc8e54b024a9d942f 100644 GIT binary patch delta 3367 zcmai0eQ+B`6~A3ej?Gw>9VwQ-+OF)@mStN?itUaCY4c$yv{O3+{)2#sb&^ifjpaM_ z?rg`&w8klA+MzRvd%(g#Tf>+Rbs%MOkV`^7+CbB^lqQ{KIsuXe6rNL{J_PvsnQuK?=i)dvRx^C#sKZfoV{ComSf}xE#nVN`PuyFJugBNd9Jt?@ zsq3;=Uj15kf78Zqlny&Mj*Z*s=Z#p`VF^ZZIJ%2a0yO;9bvTzd56@XjL?>!X5 zj_u(1&+d_)lE7)nm?his@^Jb|yvo?q__qQ`ee$DS#>Uo$QrnKNclR6nGA|I@@g3d$ z=08`WBOY7DL$G-Czn$*#S(vS;Iq^<3z;V%l;p}nRmN#kieNHGDkBc!)lqFsnBcmxn z5lAF5B*%sHfEbTNh@1#Z0v}5eYmJC1;mM#d)<$?KPDc3ju#jC_gc6e_jTa?RO2VBc zWMznF_+d#-5G}=PS)>42pPh_1tAr_&oSI5RO$8sC=bdPdMB3Q5!b^i}9+u!ECac=~ zh9IfJP&6$Jj0$2hm0f1uX(?geYfTl>i2&(eSW&}LQXCN^(hwc9Bmp$eYy3b)5i*J# z6I4}Jau)Qdbk+F0WkpCT+09^cEX}K`m=FafX)yvQ>R?*n6=`6x;QU&i0uU={iYTZ7 zvSC;wz|_1Wu@Qy`X855@n(?S=;|i|{N#LEG3f2Wn-nyCCNLaddJE|rtLL7*n#}ZUc zgd30*m0_ku6#_B4$ykSbOv_+kRMb*T!y!v=`So(!t8A7$(&#RK4xIhj}6P?Y2i4`uODG8dufB-Tg-ldiFpQ$Fb4Dag>ka zPBRli&tnYkzxE<}jIMhT1!!a~sw<9!6d@6!-V>;u1{2sbo*Bz=?)Ufh^?xSh_mlNe zc|;(>R`wpOfQySN4^KW$;t+tE3^Ay}B&BH?H53dc;Wme(ftWlLjPvSX5TxOuMTdd$ zpe3mWJG*YbgWYRb+AI%~7%vg))k46S19zfmgY9`pHYVPWK3(Q8;7B_k^o8ew95-ja z8bOzrPb@C;6#-Q_uV>4AZyS05nOjHDUABU~Q`^w{_N7*zK<4NUw53oZi#GTOsxH)n zy#{3TJu{0czX;Ax-+%haXfI5rxxo&cWpUW z$8qP(13vs3u3qB#YwUqAZc^rKE8bg0`45n1QLQ%7K6DjTo&>Z%A6xgw4YeG{Mvxx% z;RgDZB(5+Y{SE3s^xZ3{-aO;PccEp?$n@$z;BrdZaFcnc5}$K>t=7Q@xip}rs`o0&&P0?)w&Eyy-`-woUgg5L-}?^6*AaT3S$_>aAiy&qV>Ne%4xb z#&9!Xg~R^DA>W^X5H_0g^gsN!<dxajsMF7xIW7mkBo?AmX7qP7C*eY=Adi~VDz zgN_58MPeh{_2@sI^w5_XpG(w|MPUB5G!n-ftV~URC;&ib9MQ`C$k)CYKQDVj2KQfs z;JE3D;f$r?qHjk~HGMY@M<~dcc?!l#ceVa!#J?eIHx0gyo=mZ$Wa%lRaC5nKy(& lvhdJn6F@;h$mc0M)t*y;6ySE-i`iy1{H05v*58fc>wmg!R`dV> delta 4601 zcmaJ^4R8}x9^bc3g#zgZNxy-<656J<4J|FAKuT$Qw6xIHD|dL3Hr*!MW^J+?vl~K{ zTI-0Sa4PQL^MkK;@W#^{DFoed&Qlz@8D~TRz41mpJ&#kl({ubDQ5n7e+fCYpg2}wh z=Dq*__y7LC{XcRj?X@#$3%c4RyozA&F* zF3gX&TTGf`8^);9?_N{aK^%)F9SC#r+Mm~AB zh0Q(MzMYMpV~4L~#($$1=Kd`uYxNKzR)%@0QU3mZB0II^qHx86iLb5Mr%p#>e8 zJ5yj{WKDZOR1{sbSA*c}_AL7-_kL)R1s(VPs z)o4Qf=UYu`$3Lv<{*SxWwu-^%_VZ7snqCH7qZOaMnQnTIqLz;=x0-g)r$PROT+;|W zwVV($%)7^h?&H>pr&~%HrbS!pL>F0v$*T=$J-NRDRguX-lsP9jtoS6+5ghI#YX?z2 z+1!8>?X|TiwAkD@A$0ftxO-$`DZ@-?yMyR+6HTIwy>67H_MCiCi)=;f(#abSp?r1X zgL18C588yZ-n-BmlfJ3FbT9fcb?R|H(&PtGuW^>Z5PBHp8B}zW0Lu5rmVSoJTS0wu z<+B;%=?pWjNzb9Gltl5TG)X{jBbq*+ny%pe^W>f#=oX5W^$wtYm9=kdX&%GSRYJPF zD4QJL$XbjDS4^PZBmuSBg~yR=_9gbI89P(8AC91!s|>?BpGB4wQyrjdO%Ol zWrYK#h!h&)LlmXiAffd)lZ?~RW7K#cBn5CR*YGBvAcGDv=5W8DU{5&E&xd3wz++DI zV%aB!{a&0QczMq6ABM`uUP zdjaeKM?C~?6Swld&7P{mGMO5BZHVW*va{xr1HUl9(?oLCF0aJchPkjJQ5Sji zaLK+fB$gC0`m$jkmL-S-1l%u4LFm<92tOV*l+u3#V18)W?H2-q;;hzDn+2JJhK`LR z9N>x1d74&w)WF$aFDQ*|C!K_<@rTQNM8* zQdi-(DUbpYp8&UUfagRRm^g@l9t5gGLi80W7zA}Cs3=U0AP(qCv?R&o5PH%?eXpL_ z=p@&;(D0}Y*Enz!ctZhV!``VJ#r6#nWK@%(3r>>&W(Y&WE>k(2$xeIBI>(f|<9(|Vm&eMT6n~2>6gYpr zLx-Z35f?$s*Q1rB?FMumv1~@!SI75lxHi#49=`x}GtEZrCftoEe?_cKID}jE_ib};{xH6Um_E=i0n;6#p<=Y=BaysYaydMQ5yY2I(yIpb@i^g+f_ zxw{uFCgZ)RK$rOEUR16>eAsJ_zz ze*f!fNiBV-#2}m14;McT5BZ5hv$UpubP-uP;GOMZ;fGsW;Ju%&YZ!){?PM|eeJ7i% zRTr>#vQuxdr%xfQ6)t3h>6VZnDv%Qc4!C?HZv6#Y%{p(PZ%&pQ0CM=nH&2h{GYnld z2IMk|)`hhCrR+V3?0*&AL?&4_n|#W$_1bt1d(QHUs9r!lkorb%K>@?i1@D-KqSc*j z=F#>#^vvt*76VrU+`Mc9EyTk$I#b60p#AaX1+P3)2;&&6+Bn+j4%Vs#|BVPsRrF|g ze~gah{E}iO7eHy!E9h83A!4m5R~Yfg@fLP5xxbagIC*Gem}-3}G=2_`Jzyq_TG@J> zG>}1Hij%0`!sK)-yA;ouy^^T5)T!@hAZ8Q=%xI7 zF~iW6EcuC`PFc5}&DZB4Qm}z7KsS@(Ha3@R*ua+H8KY5>q-9U({4gn%Vmjoc?tk8X z4(y|=EQ#`WFX)tywX;PyX$XQrXh{;~?QiIm|7&9x=)(?~2Xh$v&gc4WeLGvG4?g6{ z^{{*NC%UU{94W}`YM%}morlQvK#=mue5BsICtKac=aNU)v-67Sfb^@|3#BSL+rmoL z@=p~yIU#MJX3_)&Q&e4&nu}JFJsa3YoHQpv9#K+N?aS+B{*rOfw^XJ66yE@ z2IOAquLx|~yl40CwwiDpWgOK$97E3Bzk(X)K` No}JAw18x@n{U6Ah(aHb- diff --git a/master/_images/sphx_glr_example_inspect_predictions_001.png b/master/_images/sphx_glr_example_inspect_predictions_001.png index 1d54b34313c4662683034d184142eff030fcbc9a..f067635f4462decf5ea5fdfce7bc0c323eedd605 100644 GIT binary patch literal 15967 zcmd^mby$_#-t9sRL>Vb ztW2RS@}y9x+Gv*IF9M&MzTtnuwlW&Fr!0+Z9rUdYDGK_wR_2zr<|b!1+Z$Tjm{?lu z=N91R+q2o&*4D~Kgoo$CpKsu{v_8-CS^sAqF0$O}sHP2tLa$H$ql%GyWQZyKvT2 zF1X+M*a?dZPW}(?)7Lep-@lU@pCzMpH+uQ8q>lc!=0%Hk3lGoEe$f}(qxEj(Fl)!O zvjp2PZ&FrAFnwLt*u+@yq;4yvh<7Cwg;KcB+=vmYqYQ4LETT{}R#L6TAJ5Ww;!hi- zDT^tTl#PovQz)KqR#WiyJzf+V3gryn;)8ho7RUeAN8TDxS;=kfqwq}H7_rm*0FxS?bz|-)h>g1>hZq%8$W#bpgcX+U-R5hJ}NpoE;IA< zsqbWQYM%NVy>hN3XrxL-9`UWcyktdypWl-#o6ep{Ux~^)tfK4L*mR%GXWR9T40_C; z{_*37>8B^xY7;ag&xbk5vU|*=R#sMW%B2~VDcjq>+`yxo@cFZb!oz(sr!y>S#`+r> zSXgFm2?&QOvWht>ad2?Z($H9qt78v_HhJlH{dQyB&6_v<%4$7l#fqq>#`?{~e*CsB zDV&wgdkq7F;konY>s)T@<~eWT$sM|kg?_OW@p<>|XnT#io}IX!mX_(_B}+E3yAB=7 zd)t^{8P0KI89ker<51hHB1?AMZM;M6R6+22g_@e059Q_RMn=)`WkzYc1O!x_oSX_K zoQrrz#tY_kMD6=35;W5|<#HSb?>Aeho0`VO>lquzU|$1*f}X9}DqFp&bELaU#BItp z@!~d<)_gb9s%V8P9+EgQy;HinNnKsW*REdW?;5pOR)}r<@WpE9mMu@zTn-<;iu>c9 z$bSBOpIukQp=T$;)y|xWn42z`Kb_HJeT(zGMMlosiE=)(u;~-^_4UDm7qmjh1TQp@ z$nexN?W$`!o%VnaQsZLtxR^Ok+t1H0AS9&M)J7!qLs^+>f%|Na z_?@b5TQ_eWK|!^9_wJ>?-NVCE_tuA*$MiV1r26|9T?D7$xpT&)5BQELDym__1RMsm zRn^o?`#z`oJ^d7UBwpH^?!(8A_ie|fo!`HIpWPD|Z#y+&;`a0X4(GwV@sW-Y%VQ$b zPGg9W(MoxqSewp|Nd{-0Jb4lj7B+ChkK|3sRw}EBp)VrV->yG@{`_1~$VH)9QHw-pHt3ro7t_%b##^MUUbDoV-$yl)+|pm{}@xXZ}QaCsfAM`e9u zhoO;?>G(i%LyGzLIhe0n5olS!&yrq7iKw|5nfrPHmy9}^!g-QUw%P!KPU zP~uWgs>a_H66h$Di4}J){W#RL93Plraj>Bi^_0NADhahXM%EkRj3nPU{M+iuc*#*t zRW%T)*V8=z?Y)0P+IiozXU|qYH!N{3;FgfkO~m#ey@9H{g~n4?Sw-b3{*mub(K%EPeFobrFYwCgXN|s`ao+iTUs}diA)29MV!sQwQ$pjpN=383I>Y{1{)GB9#g}%@t}|X? z)Eau%yjiAd2Le9r`P^SK<-yDccvFp}uzQnn_dU#nAze)Qrn!J1v%AliZh6Rmd|rb7h{4l+{u3`0H=n zV`^5b@@TG}enslo>q8YdF@@VX!o{^T0tos-?=}DS@cwPLblgMv7%r*D$HzxYN2hk| z*iF<)+gJIP1+y=guG|=5-`^0clVg8OK_Rhf{?#&em4gQlCKe}VwDiPU|4}a9++_Ih z?p;N7>?u_xr3j?R?!9{zyy@8`Ea&ZdYfZkryEj!VIrlg>S4`%}5i|4=5v#U?iS8LK z&hd1tBHx@{hh8lU+ll60SSe=B(-si0ezd#l$Z$uQKPOro`ONF9%Y((7e)8nEe6fnb za)N~{!(@Hg_ICHtoiQ#f4(ZqN}S_kpDGi zx8ve=&yG}`$R4SbH%m`GouT;U%a`nqV6&0W2EN^&Qw19^YA2(VrLKP{MWwI zXYZ2t))Dn%Jp+R(*WniD-bAhE=WbZr*a(=_?n%@u(3SRDd9Ucpfx(Sv2DGbI*@-`i zjAWjZ$6igO8W}MTec(zqp8WY8ttRyHl`A^^TV-!s%{rhcIgfNbj!()y)?1rcRVLJ` zeg08t>2Z|%Om}V`o*j!(ULJWjih3gWX;-dPk&}~49P{&ADjZ`Tzw>F@YDO*@1#h0Pt z2nngrPL1ZY^%|9jC2rbpv~$OfBj_Im6B5(ogLSC}#nt(4E)Md@r4)W&7Ha={_a0}o zx}Uzq$fKsO|Cr6CkMHkYh-?4;su~ZVnc#hfH(T7sb>95;+dGSl5{r!ZCr_mOR8F3J zJU>1^7oI=W!_{A(b|fn+E4w!-2MPY{#S8uu0V@IAG|>gxhQ1WpeS5dY(9jSaor{m} zq_D7X(hBLZfo86de(hS<;W8mr9i2p%fvjh>2TnaxthvRLA5&O(&~3cgK`YlW^_aXo z0|P_Ut1HXQ-rn9sOH2Fn@O$jQ{qOf|C~j*y2`Kb1oD%lL-;A~XJCWr70r>oX<0I{< zlmi}ft~jur2M%cL+O?|z7IeX3tO&fc4T9J&Je(0t2IfM&k`j?jzS! zFJ4T2_F)NPWRLISLIy6iom;m`<5W}+9lGQ^))$MjWtDK9$epcAJpJt6)+0Ua^Ap}b zfBsz0%9@BH>MguPog|TVzPz?KxgcrDiVeo?Z+)`A`N;>|zaNduI6XOsb1I?bU0G!1 zaQ8nb5=Fd7)+hq3{kJRlaRvqk?%J|N>ehz6mDks7b-!5p^QZMSFE7BB;};rUTpVOX z#UA1q=wQikpv1?=2Zo0yS65ftTxl>T_o%C@oA)**F0S%~GzV?ca}7 z>u~OC%qYL2iU6MQH5#B>y7(4uJ~%>Zj@3(Cr)-YEwp&9vX> zHsMSemU?BOqUzXlCQfAXP>in z-MT=3|Mu+b27@hm&+9*45X_(K2#HHdss#c(W%elc)U%#9jCui_;{Ot&UhH+bj7=Y^ z5cbT!Zi6oBS+H-G2NWYdm7on+X zgctW;b!EkdJxTy89UnvEQCIpur%I!j+fAvfs^X*-v&UOpM$zf@tePyEv%AyEB}CQD z_Y3a1_~UDPJ2F~ta1OwWNx(FKP#12UZ0%}Xzhb>3=gHXthk~k!AMFD6eHwC=VD2M7 zirIUc9a?Juc|q5!p7~CVbZ?dGbZb%7PBTIhj2ym^lA@NVC189$Nj`|XuZxN@U2&thljm z$HzuVaE8Z^A158LwY9y{$_ywKKH0~|3o!C2Z@eWQkYFb;S-9)Z8|aCnU%c7FGCV-s zpP9okdnfzv>^PcwM`;3yfgfwr%MR^2d&eP0i-LywKRw6Q5j5FF9k?(s|_< znN1zPV#&qLo!@4Wl0&;(vSZ@5th^?GoRksQNN0{qR zIR|ft*qE4#B%Pd*UcLDS1A`|fySce*AwV>D4ekdgkY)Ag{1|%mAjNZ+m^FiytgIIr zc;vTl=SKS*)xla-K|*`u+Wvv^zP{Jrn2|F#jXu(l>y$>SNoM8&xyq+<{PDc#o(ekWNg+wd?c#8EUDwG-8~ij%AnR4Sl!xZ4Uz0H<*>g^+-P9WtT%1m z{M>X;W!IS8ZK*y@kS%5GM?1gzxf?Ar@rARPMt+8^W2JITK7V2D( z@`5)y*eF(s9$tmqu=w{%-bbp%bM(lWRm_52pu48v+l0X2sMAUoQ3@kJaH$7Mvap(&9RW)Aip$-#;!X`smY%4g^Y*Q`{IY3EQH%#%-0m56hadLKrxeRas zh0o9~J5=ut2}SEP!ecjb}ogQ~cFMj*h z^!tZE^7k7xRFpPN7HaAlcA^?otj`RwAv@`dOE){V`xpgLQ4U6a74^j7{5Q$4|C>G3 zcS+&oa3>db;nk~G$K>QbMJt4Ge0y z0$jelXtb~Xl!=Lni0j0V)Aa9+gW#q0n>Kad`}G+rFa3=JbWrM^NVrWIx8yqcapIVv zODa6zJ%mm;S6}z`x8IDv{&pkyz{MxUZv&qG1DG`V%md2QcBQFI7}!efU-g4zA14TO zfk8oa&e*{S?hI;D)V^CCSife?$#`)9Rr{P~GXtaZ=ehX#t4FWjxnoh`f-W&3T98G1 zVE_J8AV*2X`EJvt+{;n*cL>-xc&4QAE?K%X4(f}Vi=5p1B|JmMxA}gR?dphed^lw- zu3B|Sx+*2(>ko<{C|MsLi64kAWD&-g_nV~MnK#tCG58HqK zP6w#$CF*6S&DnONOk^#q+W-GxYgMIvizpMx&?vxJYjWn_`|n6UU(N<976X1Y>aGK! z6#`q$-L+JOejuw%3Mjt_O{Q5lK&l$3?6My0lp#jIRiEup;~;>H4(MrU#6U$d>8_0G zsf;R-$)l%4%q@Hv;waOL{dH0DjP@gxh&312U|jM~vlG{4s|#gzp)UhsFd6o}e*Id@ zL(mI_-fo~N>(kq1p3#NBCMM3KHR^^LjWucKPvk-W?rF>zTr%x3^63Z>0LJ?2BLU-~ zRcdDUziiYlmz-$30(O2evF>S9)GoBtQ`@LBkD_R1PxZtz&$`L_FxAAg4>o1_ucm<_ zw3ectpz-+j?Uj2qQVxQV28%i*VLI}{pqTEOw|8ClJQ}PiG$!cYwfz~bN!YAi&_P_6C`>U%or7n6O=6S1*cR*P2^5#|*V1jL@H70cl0B)) z1Hw3ww}S=Dv@g`@x+H>iq@Q`UNbbA?MP6P$-FdWUX^jdd7Znvspgge(A%d%zs1IJi zTFBhs`7$1%(J873FDQ2Xw+_br3v$`wq~{+Lq#j>jJJ#Mj-&bJKEP|Wt4K_>qWZ)|v z4G5!?a_1kx;_RBCf20PJ6)SL!UCGP({LpVF;XA zdp;D6516tmE3#jo)xXOo}K83j>OqA!a6GvGw^b!w?QEGw(4;vv^l9qW&<8!4ifd?Z9!x@5`4 zdo&gA1P7BVi#%d@q2#(9$PKCAM)8boqVwFV^+HKm*$;&b@;!HVpUh?mOU@X5lurk{ z&ra=v$OT$yo1UnXqqd-SP4{7h0f=@A<*Rw`ri0YYd?OOV=6lz(vnK=3JGssT$J;XZ z?l$P|6ZX8wLPcHpRqW@Qe+@?8-eKjEV-k0Mfr&)~_EfI&)Cut@6tbT5I^C*d_famw z<6B*aeV`fcl~b0HxrTlftzYD|Yu`TQ9Q*!Ckd%1f)u^Z_qI9exl>TD-TY;%*Td3gi zwp0;o{w?XP_?`5+>F0XP&uP6hf2iyDWeGXzo~EocsH6QN)Vu)ot#0F?WSEH2jEszo z36$7iK7*y~!zk35@3(eRrnUe?1+#tZruLlT`-A>UxU5`BiTDy17su_mp?8vhM9|g8 z?$Bz_w*X5NNtHijes+nZWx?AQZT6J4NzG9LyGox+;IV()bMp_eUuc9TY+_=e@F zEcV>~lyA^aYGP@^6+-VZA7(vBFHlgt~VcCC8 zwXqcdsNZ~6SY=Ku9U#+-wnI2XQdg?S-<6kJzHpH$Vj?2u%;m3N&xQhz=(?Q<6N`9YIfhTW7InSYs`)zmCGrOUMCG6U{^Iar~z|&-&ynD{=@LHEg(crEn~onDV&7fL zU9^{-ZqUen`Ow1X-u>R4r)zCu-E`{P%+bi&kAgM~rk8Jw4stM2Md14p{*mdd! zpa9ygCM*G!7c!bVoLhKTDujxtk~s}1yNp+dQSsbY z81DW)t@+E7K&CYq)+;$WI)={axlcyP-eHMF32Szr?kBYb%z?~xz)j@+$b0|;a~-1m zo0}&@AAk4+^2>$Rd>w%Bu$>SdCNlq%==+++tp0!AcQ<)Gj)~bxhMmFuCVrf;kZ>WE zXuUALCwqJ2k6QwO)j-WEfXHwb_~aC9!M;3ar_Jce4_RAABJJ0Z(9u=f!R8KTEC15b z(CMZCBDingKGSs6W|PsL8o!U*t)XsVtW-A)(FNS&q^@p@6LlNO3849f4mdEQh4VkR z!@e^f89*}XwREez&uU8ZcYBJM^GFORw$gFZ0>BoeNOLW@XHmW zlYjUYuDD|$*yi%Lmgl8@S&!edTMU2_NPyuwyU99G+ivNnEsZM9y1=8 z@k`-SiLCuSW1@83q@|?RcSg2S+5Y>sJ7+#0ED7NU6Q5}tXdq zj1UOVkW)tZY}vXs5EckpS0ILl%!`p^khCyma*qKeXLLJUVppeAceG|g(ARbGBMhDR z4BkS1)`VhJ)0AZc^&l3rsbhW^1twyWxDz6n-$?bT6DDni3)AwEc)i(UB|$uOLanZm z7&prMtzW%50)3_@Do9rusiIR{cvwazOKLlAjOp$F)cFutWxa(1+iYsU`n{iNG8eft}S`EKzsb=I1AnI_gP z+WcQoH+tj0b}Y5u6TLL?BzQQnq@+Y435Q*nX8Kb>da(0L2GtNI<9<&;O#Qj=b;c|^ z6dx%W8+XYRe6+M&(rGI~N;SMRJ2!7G?6c<9f@qJiWI7Bk7KWXMrFl*dT!wkaJM;(2 zsscJuSvj10AnMG7$QPXf7G_w#{+#`;`+vTlt)oRuEzG4Lj|O)^=`5zh$Nq_X z{NpZEc<<59RDuR=6r?W)_*>UHKQ}JY4~!iw;g-FeL9-b1B<_hOP|rM#>eWo1ewz+hKXUMAH9__br@cw$8jH4Q8m;kqaXu}ST->Unm-^J6DsDUyo`>e0_8uU zKJC0&{c}U3pw0}!yLj>^q@WSUjLsXN+_=yDII@mw*rU~bI&o~UH5tAbf`uX2lm5T} z)C)h)1D!Cv5Kt^SkaEzb9?W2~zj!fMr<xth{CSg z#E>D29>tRn_m6gxu^AplLAG&)!BAtz@Nv6$qxsZ4rr2A^8B{1Jv!e});t!YHV2qEs;=rpzLPIXQnS?h`hB z>wyEGH}ajmnrh##1t(-IBs4Bdh03R042oso11@p6mK47mk-KUh5&n{lP_<>TW2NbA#7eVnv z`Umr;lYX>ap$}HNXZOPR(`(|exZTrZs@{nFJfrQ>pDqhq)$xSVg4s?<=aoggBxSd5 z*>aik`5pMDk$FpQmg01-)9{`(Vx`r&PBvR5Bw8MbyS%&z#y&i@i;HW&MeYw-9`z14 zf;Nl>rM@P3v%70x!h8yc#QnLLcV&Nbjyke+^qObhj1>O%HQ{g+d{YRzPFi zr~Tc%tqr&t&Tb+@Ky9(GmZ^P3YX1((6pPe#VM1g9eYmg#n7|~b&CWlQoPGcFL&7Dy zK{ryPdG#;1xD1M81}>)z4<%{WaGXgabM|FP&A%a+lJxfVbbE*1!tXeAhAgD(Q{)t} zk@jACn+AymO`~A%N@u}2r|u#$M+aM5`}XZ2-YtTW>kT#5_O`H~Lv`jw>=F~x z#!uT-&asl#It{^mgoDic$w+F~sptnfH@}OGR-YmriMW2Cq{KK4cch2SHxIg>S2mpU z#Zp2n^EJr|@9)uk($;oHt`ZGPz^HU1tE9VjxZBvn_Y6}!zg9%3M&~0DyJMDlqxU7I z`}Rv+4BwNX1j|KWIoi%ltJ@x*qOl=+pG$lrc13`;gFS+=aV>V%{~ zmdO0uUq``ukbR$VMZ^jTM!+SKy1EHVhv;haoWN#AFgJ;hi8<<5jjAp_R7h=F|2*n_ z;H2cjVl)wUl0;VVTfht2%PS6$2!2ysY*rR5015I|{dWyo8%ws1d_nF-KTg74VE{O0X4kEZwx;}~yCe+MzO3rJdyl2v}960m) zNuf!dhSCJZI(_ZhwLMK|Eo%>?_tZE46Z~f|hvFKsgmt`nW^&jpbk!*Cm}~d$58pn_Fe6nk z255MBA!I2XOAM*RxY<*n8EBDNYjP2c%KF5VH_lN~Q*K2CMU29O}&lN&HJTX2A8L8%H~oAMQRS=P}!>w{V%M z?q?9C>YynmEMs?70)r#Hjg(!tfh^k3=dP|E=G?yh0~}|_V=NQq`ijXpaUhz_Kp#@q z=5E;yo?cm0K^#D+1R$ZXM44b)7wm5C(-&5;OEmSZo!x*Ni7yuy_1q3PleGG5T0ISi z?g+6yzyk;$Wg(CIu1xeq-M9}-8sqsKl9G_DG_VPzK0^9~@~-GN@|M}Mi?9`7r}u$V z?0;mL{~9URqRw!Sq`BGYc+Iqikgw-IKKcY7dn~g><|`cfy51I77*Kcb*@MCu{MMH} zS#%&%`qHIK=~FD?&MI(AG~Ihs^k*)-pBvP(kOasr_gX!-#a!&l(p8m@rM<~>3h{a1 z)%g7^olYVeeXj(K`gP>C=(QY7e&z>als!YI8=U&j$e_Qy*tc$WyfqoU$qli# zUA7L9uU_XD%C!G2XRZ)Ch5cj z4cD4tXg?@`{>Xa3>LBzxCNakp@C8%lz`4J&^30dl*ZiKsP$hL;4ryy@zx;ktwvajo z?ZhzE$@3bMxJ(IqOY{W{Aj)=@C-V{FSI$A1S}k=wi_C$6xs-_4e^_!3V^aUPpB|`4 zO`zh=U5~v-8qAWjEG~@#PZP*WY|WhT&B+mU_J-=zj$b{=b#b2os8Z)k{qSA$6s0G)t?I_(Or;L)#kA^opH(pS;ElB$b zScbfaOC5_N-5(W#p5y9+9T;^H>nA`81Jq0~m>B#DV@oA!xPWDgSepFEX{?`I9-Tjk zllX&3t$xp-xr|&WjM8-qOEsy93xtoQCe`2wCN5_E4e34gY0vOR2hnU4)Rmzz zPHA%!Oj}VXjQz1=b@_w`e+XChBQ_Q-Lh>F)P3GZQ8q%fxY%xrRZzkW56JDL^-0_%e zohbuUh0_bsd^Rk^B3q6C7tT=euy5qf_hvLb!DAG?2n|8fjI)_Wpszx6l#gd|`u6^+u!kTWOWl*}dVrR%^ z!2(1~dTH{h>ubd+53Zn@TsJBUHbMJHvboWwgH@#gCR?IC7h%~pLx2!i_UCIq^Esrw zjDLQ6-;iw=k7;F3)BQelQvTR|^TiAIxAhGBbKpD7pcLrEhA14rm6*R=Vd=GO@#1%1 ztQ=FB%=DY7J;(8+1P#Yxwcp4`wo(?&e}Sq1zdFqP5N=j6UYa0>{!r&~)BzSczy@hn z5nCnDJe~3DkBA4^sgu<|K8+4bcO=wgwN&Zw&k`Q9Pfuim#a-+ZZ8{0TlbrkEyIrkg ze&LW8A7q!J;VVZlj?|vEB+mmV0lCKKoi7iA4{l%T@5_ghfUI!>8i>fu%oOQYe0EB5 zcElfw#IoOakbso#hV*zr^Uq4p+~BGJf(`ofbv(0iRDp(g&lByXj<%N|Y#;C$*tQi? z!F@@XC3%Vpiy+T^q?HVtEu8A22om_6NjU?Rh-h_%a0wlP;_}aw_4MOQG zn4XUvJ*A~s*i*s?{gp^1FU{+p+`LJP=P^!eYHE@Kg2!ciyvWL0UWmq(qa??{NzF#&Qv!`JmnK$%$1(UG#QxvB?a#JW3 z(Srr^Ex-tk!0>_KVLr@4@DZuT#l+m@1YeTDITNJ15IkFc?f&)?VF^LH&T{zXL_5g_ zl2^oR1-(U*oH+Zh6Hl}2Rci(=uxltPDzbwmciryi3lZ`A>s3IU2%8wiX#yi5Cq4if z{d>ORiM6h*&M<#G%LcgsIh8;0b%jDOzZ}@VV2)V9LcabU5G0*ojKs4G#PW_O7HU=r zHASFT_g-Vv<^AK$?Hf0;E5pD}Dk0j7U(pvO6uoa&2W;nO$4PX;>Cc~YxF7>U-G%0C zRX|Y^J$UNH++NPzmz>%W%E+Ost2Ne;X!EAf93`RRAea;JC}Z8#n+fg1<&t$6ET}zmdv}*(3ePw}IcuH``Vz_&o*jB*@NnKKULAt3RqEK`Zg<$+e{q_md}@(1Vo$oh#0VyG4VG z2NPyT3d2Q)6yHf8O99AZ7g}=b8Kltkj?r9Nc+~;V!^r7*%%kO%P-alvT@?6H_va>-kLLFL6 zlx1oQN!3NJZI-$|4iG(G2{&val(XG1YJ2GuO?fmIs$Z&z*%@*qL#xadY9|?hFYGxySRfDTohw#<{EF*&y| zk~R<0XVc8w06MIKL$SQ)_NiobXpQGKP zEqnO7re@e3v$jydrcUd!&O>*9bA3z8DL1sNS@znMn2z2Swpj^prpK#RnzOz4mShVW zlCM4N5y{Y#_pPVFYt*Qrbk~agSk%K6cA3lZ)7N@6g@!`e;ZIpYp&aF3D1*OU*-W9O zQ1n*NtfEk!9be*$KmE3!vJfBIK>IsB@_N-j`-rk&=5mW2E_sF*7}#`<9*xP*&oASp z!&NL-y!_Brov@yXiQ8^~M>@LW5zY7SpI=_Sd|4oG1uiM;*!qmd(4#L)*E6DI@v~>o zWE48Ka&6o8=BpLHJtE=pV=Z-c^}u|``w}7)qw#vtZQCxA6-#J%@j13}VWEFp_0?+H z)-SKGtlzY0r?j**Cl{Ah>Fu2%eR(c@`Xk*nN~uS(by9RvZ(h3=bGq3rL6+_1uA8@S z$6vg-WMXQHhnrjB{Q2|mw=-hN84+tJy6Hx#H*c=HpOC=A$EVhm>#TX|R7N1Hr2E@h zT|?(v-g8qeJX^QQ?Q!Y-;J0+G(6JW_y+*0#fl@=?%By+O^Y3vg-L}B*RyE1Df^Xb# z{#M3heiOHQ^stftu?_T_IQaS13p~bZ?;X6t5!rH%Z~Jyd&3NU?;jZc)A=w~SNvAr) z)0U&XRDl)yuV23&ChnXZuM*Csu$`M*T~9Cc_Rb^m{3gZIy{`A~-(R+JrH+EaQqeQm ziJ+{SrlzKrb!mpVBeh336+FiJ zwXwMY{O8V{yA>MhO65;UPS(=b*Kb>dlc{IkNC{$-<_#~8fB5hrbKkLJ$F^_Zp4;od z$;r8F$&y1?e%ncw*;S)!ToZY^nOh;SE$u|v)vGHO(b4TOvZ1A?Q0y(^`xb22up#ke z!;_>350nodKCGyqpguL)Cv4yP%sn6^EG!wjTvEX(B5!lqMkG8VGt>F&o7D#o97yz; zoBc63$e*`^LTTNMrR?9g?`vCI?3XWJnEPJ8e!Yx=p{UoPxw-jrK)@{yP7aQ3($dCE zOiawX?PJ<i*=LFZCTi0RQ<5|jtXc}a0-tntTI|$& zD8nv$byxZ>d<{SI^m=>T*2he9HEfhveXmPiMn=ZRY`YfmAd~C{ZEbB%h0B*Nsk^$m z2JkB>DP_40edA%yOgfzBk}4a(e1Cl0wf*bYP8{RAw{O)wJ@d&Qv#jgF47X4y-zlmS z%XV{e9&9TKLU^DAx|`{B+?ahKlE zs;Vk2Ev+~|zlEk|X5zMAJ{9>Cv44=)aC3Xg>ND-INy7Ee?Ck92D_5#7ujdhRAGVN- zPKfr_$MW63UYB#~{>a^Qs&wbOva*}e(b0m6E_6)Dys3WCf)v7~1Gt~)dJlnR(^XR61{Pf5~ zB@v09v%GqY#?R3phicmKJ~G5}Zr{{g0XK?vjMNfe+j|I@%YlKljZYm-vm31Q&9fVB zUB7-eG<3trKub&9G8&3+!ta#arEF|$|P{#CTDZhLR3p{#r=*e%_&XS zf`S;16p)JcQrH*w_Lqe-T*e^o-o1T`7Ate-?^fV8n zmMvfI{E}WY)KGS(F0;Vtfo7E@3+Jo&h}LMdNjGbMs+i-qZCqT%U2VGB+FhgwU%h%W zJw3g;q$TfkdXz`M*sYn4P!3Y*b@ovnY%R)|dFLS{BmVuKQ;dTY`(CTZkM<}|zK*4N z$JfA@)KcM$`p)V{(Ni<0P16jLzSY%qx<$JrXLn}l)8iA17P+^cp&S0jmnN9E4!L!F z;WKxEun9}+>xQ>d?XGQETgKaQS^GC?R@NKd*gMhG``9u@6E+$Axbk_$QAuqrE&1Rd zKYlQqPEYnP(9@lmm{4U~i^HMEg>oMz4SjukLnSTl80~@u<-F))IUBGAI8ffC!Ki$P zV{M&0)K3$Nk5&s&D76PD4-&3jTcr{vl=OZkeOTRo72d z47+Yfo^o`oiIofDncaw5y=kEg`3vns*Vq+e{2~W7Z;~L!{*+(+0D(Z z#+9B`;?v=F(&TSz(zbTjq}&P)zBfGVge*=vl5MM~s#;qaE5}FmdFfBjyvOCi>_mmn zb~HM)31%USYb!U2YsI#-K0imQbcuCMviAFJq-9p+uXwqOSzP}3@q6xL{iz49{H73$ z;(71hJt5O~>r|qpX3T@KsWxOyzwOkIb7(785cgU9{bQ0Qs*+)W)%Kk`we9U6Dk>_j zTenUtogY!qsJ`D(^;`u-M^~3eR8&_%L4lEOWK>5(Bly&*Q{6(c2M?ZqA0?TRl9rn+ zJLON$vW}TKnZ+(&JxFpiR5fC^1C>Adziej7)f*}#hOTa5XSeoy^ZXp0^~8_%ckkX+ zDe)D=1+a)(y}7nIgK879k)54=|MTb119ed#XMDJ^I)>V^URop1!Gi^3%^vj+kDZ&I zp5EAJQhe26T1-mH$S}{PW~9zIot{OcGjLCTqOhu!RkDVL#zyIo+qc)yB3^m#J~#i1 zo;LT^q@yA_ozd7+eQv5~E+x${Z}vpXXkP;l2gd>F>F+N&TgFC4v=1FR6o7rFSXtXs zY%1@aM+Bq4?vM*_venhmxji}B=Rs}zRvw-}%{1o`6x1wmADN_9h`D}`!PeZpc=4kD zZGuKDRjG@)(2?x&2mPD9r%twabo4wbVbw&*=TZ*+U4dEDHbO&FbJL8mdlzSUDF1%D zf|1+zVq=kC&a>6i$sBGJNK|-8_uT!qN*y!;(`{gsna%GPlJgB=k&l zM27?g1-bNox|`kNeI!9OQscylxW)9$ak#0{y1F_h&IR*vOnOM~0)h!|bxjcf8)NxD z#yarp)AIMZ~JG5wa{X^*PP=@xeCK0yNo_O4i?gi$`e_ z4;U;Htk@)gqUGbS8I3=B3=||VNR7*Q zdwY+tZWR{R28a%F|Tjn)p~@f9%~_v7L$rpE{IzL3e`uGsU- z8I$w#4c2lgU*kY&R0X2fmX-DA=(-_tOE1A1^RBqSuty_>uI zj-cEoai>Gd%2&c`3kB=f7fyXQvv z%(^L5RjWy-{`hf9^2Zx?ap&%vwoluC18NoN6yJ;U+HJ`ubNZE(FZM(8P9ekZ_*2+# z{{?~lKbXb;t3@nf(X-cA7bE7nJx}u1Fv*XQj3<-&#}MzuC$bFwL(>nL)*tECy$t(I3X|Y)AnYp#b;oA z= zxl;w@UQu5DkeOM0Tk*A-sj1z1Um60AIJy8C37jP8 z!#eG$Y^LeQoNhChH=) zoXpFYm#ts7?&DJ*Q`7qZR0*h7P=4wra&mHZXW39Qq&R6Qtr`nuT=UPKr5)*|W>!jX z1@M#v(;cp$p~T!>;%gC1NEXVW_(my(bRUN@I}f+F7t-x%T%T{?@&#JK262$2{)vrJiCXD zIn~eV5N*@Ea~&gN0xFBR*Yt80VbNOI>Z%F3=dXXPTSf6zAa6sD6SAy|lbwqwZnR*g zPy~ewcsfxZKK%Z#36KvNewQ!;^k24YS$893zM^8Ep5#X&@rxwUg z8*4qsV5C0R*k~XUxR@fel$9sm98(X;W%Kl)Ivu7GHLDmBaG-m&9>tOw*qz!?J(Gc^0N=gw_PPfSd7_Yy%} zOBf2x^VQVUgv|KGb<=M9XT3zyY1GK{U%6_{nk~>-)-y8JS@7}l7WUG!2Jpv2Y5-R0 z8F9ngbgCdz?$m#Ls3J-dG@{)iv!M@6LIb*7lbJH!5K)IW1m6TZ9c(KB3^nSmP6+yq z*B}vHUnO+c-e7_XvrabXK=TWJ-|}^EW~^n;tY_zk%|Iq9z#z~CQ>#O9r9`%bh0j20 zd!Qo`sH?7iea)IRH}Bl(%DH4RH#_rVw9qwU5OPR&b3tBP2Ps>#(-X|Qj{1t&d^(iC zk6k$=txBc)u;~$j65qAr2MF2ljX(eAga2P`*8e6}iN8Z#MEP!j{BQgV@**GjFpHT1xyE-lK@CD}R~mTc_sQ`Fzw33?iTitYc$KhjtrRJjEb6 zd<`=ZtNg_bti2EB5m70(F%8p0lM@rKaX`uuem9P!BH}Bd zfCB>q!-Fi29!wMq#fS`g<$o&D6zI$$Pf`H$i8>nF7awk`v2Wkm+dB?#>6&JGrkS8> ziAl&v@}-kUDIHTo(Q^;p-q;#$D0{B2xgflNLL+1uZ?{0x&@dHM_kMi5czymK!v`hS z8#ivmf^jmRge;KtqWPC%0}#+T+F(}~A?D~bf=R+DQjCDx#JqWd+&b(Qww@xQo&tcA zCgKbo@uwELH&yS^zD;{voF>QDur^bR|`Et#@d!KU#absd} zVh&nGNyRxjhT4m(+1IUI8w>c33;>lR(6Me#+fqh_e(9T zlukfYcVkmxeO6NRZZ+605Hu^>P!iqN)<)2uq0h_+!8iRmZGrkTsD;)M+B?ucKxCDy z!2c{1nLQcp<>fDWdU|RZ7#PGBUr zhhhlqZ}A)o@Sf>0R{A$(oz7qUtt@P2a-{m*EuN7^$BHg&x%P#Xn;zRXiI=eYN=Zr8 zKQg&Mbf-vhXGP4ph{6bdT5jZv4WR#e(~Huy8iLNZl*GiGURz3tM$5^g%+^PkDfYVa zH8?~Q%Z`%tFdB3Kw{BfOQc+%R+7LQ->i*}vLbYR?Jr}5~rCB8t`-g}t%HbCiKj}Zf zb8vid7*`?fVhY2nx&dGFHlCvtnVm#@ue&1_^@3J!0Z?YxMMxo$QeL_0#qTRB(g%&r z+nCCHJy7Un))HwR`0Z|`bcdqdv!`qFP7iP`q_suGq^LXtfYWskFfyzeTO5&_WAAm$ zB(h+keLE`4hlLShUK&j=3u-dr4$UTbMo1N&*1lCAA@)G$e#h4%?Tz$f4H4Az{?E-n z#7`F|wb3R@qZJ6zyl(Njn=iK@F4pH}pvZf34*4pYj-UqhDn3^F58iElLv(gu{$hCM z;QfqlmWAAj@9dcBM>;ln(gB8s94E&C(rX+mBoqFa2xME;DAqX_z3gfeF-85Ufiep& zB_(&n$?5TLJM>~O3<=fUu;UE5K^gf2H~YP&CuCWQ1o+gBT#3?l9XsKCf+bWo8?)8` zW?@A#dP>$#Ayulc@u{X`$NQQ@_1MQ|<;?qjXI@Y8mF_sZ#h7U(bsY;!3Z`Zl&Z=UT z7dQsdn9Qgm_nc0C`0!f#IfuhG3+X9|=R0=grT6yQkT!-PZu06`j<*dBN0O3~y6e)T zF*U?IQO5DIUkN*f)|c*!SXn>epTTjwhPehmW|sFcPSOOBwX-Hl1)ZHo%}LDD#z>gp zIDAz%3SIKZELf}c@B(IX_LQxYPkZ=|K(_*^lpHD()PH#N4D{rU=EkVC!d{b31bU?E zXK5H2HFK7<)+-6EBNN!x13>;GxwAhM?fW=$mM+9JNC$MYLyoGgqeEJ!bi+VTdQmMh zf{3AV4Z?K>u~P#@#ux_AQY&&Asn6$r+pyt{V5s_XbIjVumr8&2Ntv=$Bc04`j;&!` z1AlX`KdCh%<_Ax=*?aqz}#k*fdB{TV}Hl!Z+>F*Mxt)`M%#~FoH{XN zTWN8+xps_uhx2+66umT>S3U&1d|&$un~RSXRh4|Np=)?XC=b+>>pZM4OGI{AY$I1! z{d&3N``{8Op>^|&Lx>;TtU2HiCNq@A4P@v3jk!lPG<96Zpd8?H&z>W4fg9DKOHPgr z@BvI_mY!mIk9AU%$h7siiHUQ=$?W-=;mPc#_)nkoQVsKJd#eom1+nI50%Xvu9xL0G zme*f3;61hnR4)a@EZTcAi40|ht!ph_U0iJzLhU4@i!$DO{BQ$ohx$jR+sl>-=6dK_mxF@pwnlquw0ZqAA z-;t?2gmIMJ5uB&`dS$>G918pWS5z9$P3l6ml|_5Hi*a*o(dOZ!)&hZxg>F+KE>k&3d_s0+*Mk?jl#OiHxySOl-CwlOI?r5-4@m#cm;+usz zOJYn+YsLVGQ=a=odkDq?+r02o{M6TrZ3QrGjP%s0`Jhvg`4t_jYiqCxkZO`?>21~Y z8AZTAp>eKj-Q8B;d)tMDYbw9>{f+M!{0PN{Lf!mmp@eA{CgdEyj1bpBj5ZF?(b4h1 zogpSB7P7(@NCa7bYT7_wzy6vr`f_OR`1J+vW?Rd}$E59BeL;0cZ+L-OTURhzujl2K zn4a@oZMCka#n?LrReZAJ-FfmaL}K>t1y&8*Rb;nigNTNgzr?nzUDCT|v;PCz`edr< zs;*wiImNhsy;yV62bZT(b2~A95;TARpl*Ow+08;#Pe+1kseBqnZ3MZ`~)8A7ad3=&3NvdFR z%?zXcT`V3z2{KV4G!$76$kNd3_}r9TUB}f%i@vw~a$$7dAUZWa3MbL2TZ|WAT6^c( z#cfSf<3p+}cEwkj>h*_{^7G$!r{yi~Dtvx!(-g(b%xwEqTaf7n|NhI}NhRhLF7+L` zv5Q+4HQqb89O8^7MD0M4yrwivy+-;P#)3mkAtOL9WOHTD>5<5t3>X8I=z1@=% zGsD%}`S|MCgCy<&xp&<@Vyh0h4y+{Nj}>ee64EmE96T?3b;DirXfGYow^1U5kH1<% zk_{vz>j34ex;-hVyb{YlRaB@UECNRn_Q{woyv3hRLR&*%^^;2=gbYrlJdIy78*yg7 z3ZMFkN;cI|Ajld6@R@~Zo5xF|FH&NX1_uWpy~^?qd8zvhVf|k!D?bVL)sp@NuE%_O zpc3BT0W-HxTRstASTXed6UB9M*ir#GcJu8mTu&&FI7oKy9={wk^hxeHG?GnHo_a7% zfISHiN~f<6wzLhpg|8g-=>|tT)^E)cWd&}b9z#OyPeoVk2QAgXyfMEZefqLgkmQ0+ zR1oX*f?7y+I{?z(?o?EJ-WY!2sVKwG&#E~0_c(qVptU8_-M{nNHLQPe*9XS8RxBFAYH#tm@TJmZLbaV~2Dh zD{-ktB%)uu>piuj9YfbTu%h7~rF@WXczCMO6;zVnF@I@m8$tW4vx=7XDTDxOvhQH+ zhe9t8BE_Ic3fIFamWJLHu60Xz`kQD`C7;iP(hO#U4v+ilvy?DW!w~S+rCV-={Y`n+ z@FigGREJqWmSr_prjh_X&4+-E;!g5d{F6Xj3E8n7ZIiEHI2h_v8E^TT+kD1pPaQj~ zUid9dPD>NX+gK{Epil{rH}c6OC<&b%#G-1`>BhUTWLbhJn}u{dBE6KaXj%jMbo$_& z34+mkdQfgH&yXjq4mDuU>%q^_NUR6Hyavg;0B_l2uPK+z(jklGjJzM=3(9ip(%2;F zu9e;Fo`N}39K@lNoSaX+KMYEJkKil>zEwoqy(%eTDGwJF?Ju0NH332PFEONr_ZYXFa(ot@WIUpBL}cYa#YtozAN z51;q`kO;)Yj-zX`C%q0{L)b9lz^uB%?F#vy3RqtZ2+$7UHGB+80Hx3h3K7mvG;c?c z*#>`FTH411_hTryVDX9%5XH-QO9iB6$4!Vg0+Yvdcsx=?TRb)44He1Tp#{DN^@Lh$v4$jug}n=ylCkC9)H-?_%SD`^sFN(ZG#j$5${3 zyvpfLPPtl>qKh+=Ak;0%Zv1&kYmB3SLQ=I5&V_2AQ zQ$=tgI+=EGZxbIWZp!MIP!ezo@AarzL5@QxZle4a;d1D0oE>dlI$|V1q zX|!hW+61qxGwClkIsbGkg;uv!&1dq)ix)4-co*0+@ffTaNJD+sJJwHK9KV!wPN-1v zpmDfGxwlZCA+*5byFIVTsI34gUmBNePt#NAuyK!zGHk@b98Iom0lDA8td-N=h~q-L z#umzC?_a`Sf+9(ZFtHhn*1;RahvN1>92YzIXRJnlAqVS>eF~`e^;Tkok%;=4W&w*=Zq$pNiJqHI=+7IFg3MMH@nQ## zg~8EhHLQ;E&dym#MROOX+Zg6>q#8V}>J`{=3Cls&Dm8x~RxC{0(34jFytN1#Cw5}A zLa88L)l8*F5rhhrhVbbkM2M1xfXy$SLb1+JxaB5QTObBWZKa{tNR57>=Tl%74g~-Y zQm|B`B$6tm=Ni8*lVqH~vwLP{jJ{V0JHdSz!X_cM`PFM;8iJ8kp^9+&eDm`&F=elE zMN2Su5qAB4l-SL?Yg5BHEFr%^5UB?CF+1fP74XL$z5%Cnp^ibZ9S-uDetEuzlJ-1T zR1JeCq8ww4C?5hE$Z-l)S#?I%r#NNWc6*FIKwlXK z4@yFVHVZM~CMaVnENAH}6?kettUmBz9HoPF^w!p+gk7RxYWCEo3VV$9>Q7bO9emht z7>lkZ?)dF0)l_c{x$8nMRF}w+=XEabS@{I_2jU-l^=E~r<~|Zy!{cp1JusefX@8r*<#SNuaWwaReJQU?O6uHSHKT&4B$o~G zk9|AV&j+bo^aljqo(i8?$ADE;IBKGt1WC{C_E{}*@5WX&^!YR$59sAMSxcY_?6VxX zdz978(uW*>4rF3Onv4KRDw&zzWyxCgbyP z>07}9A0}iO40VT70sSo*f;=4m$8YeA%wzMZp(Vat?0z{H2=gb(Uzl);o5nPD2JxQm z)RUSWrgg{scvCnZJeY6{6FVzFrt?_S>C%#t1ledzHhF}EZf?!k&Gd7t3u#5Db2FuV zIH2jbt6muU1#~=Vu&ut%E{7tfA6o!J87cvb`Q3=C&UWC6d1?&O(+}&Pob;edp;)rc zg~Tw;r#_D_e~f!4!G>yE zG}C8?X^nPD6Ly$LL;(Rc50AZcs?pZHb12drZR};E@c{sJzg2ZC{Kx&`hAO5}GVB9p zVt{2yjU$FvI9JSWbqg9fG*HLmiLT1`dX6g)ae$l1a!tO zR36Am)iHa|Ibq&&BY9Z)XF=P&pmQ-+v|Rzu0C4$*a!5)x^{&~07Kw598bJ8RwZ?u( z5=YOz=3HlMZC%}P^(eVN@33R);Y`_qqPapsReOA1X#arpaU4cTvp9t$qE>>{wCVeg?@n(wX3# z`v62e427WQ($=UC%lYz;x?I9$4!Gl4lgU0ipA@jO9>j8R9GZb8ymymrY;%c#CzjZW z;P=wPbnoZsW6?!Qr|go=-^f@4rh($XO(}S6>SRlyAtVr8c=1S&ga`1B;k^>%LJA(d znZrsr70AmnGQMxuAEqPGA4TcZ!DTFgLeKT!(b^)-Og>*jB z8>6(kH3mZ-1UMKh`W`9rD!tdjbK>b$LS6RDM?@m=VVJabs!=14~$=Dq(-Of8G!U-Ui-6)W?q+z>=-F`_v&W`6q z_Fa5Rn2lqH>OncVaKp>@$t`R&SkTFZhd|=dkHtng&ssM*lx(U;FF<2n*~3aHdoJv2 z`*q)v&pU4R(8DH19^Zg@IRyt_>%N03Io4>RVHy?W%s@#i(S2rn0)l85&_DD`ntd0q zzz02hA_p`K*}XjF(Qotn0A{>u-_e5)JSg^(w7-8h2GU^%AIdC+hEi$2_G0)vF5uL= zTy9nks9Xb*08iKMsMTUXS_Kf4xOB}okxvssLLdWy?-{10ppN;>Q}3O-styvEsq)}g ztNe9HBo+~>br_ES4)tBmBiptKQ^KRie=VQr2Y#!D2x))x=uuXEpGzL>_}23c{O1m? z-gnWBwA0?+Uj07n+6U?|I;kYS5uXnwn}vO{ynfeEm})Gx`Uw?2ek>HgCT)cCff2Y4 z5CTAmcc*dT{3Lq55tEph--|LqFk7$j&lhkGw~4hFpB?F}+)qSm5=n%<&+is|;evPu ziM$Oo1GX#y@-|CLOEPDq-lqxhC+BdG0s-dXhC*6@Q-~3=;API;9zVXml}%erq10`r zgk43*!u=X%c-E9)34?_)H&*W}6ZD>T%~X2017{R^#Tu~B4o((*C^UF#FLrJsdQKfZ zRBC2ea~>fyKFy@I)4<7w`!*x*=!o)ACHg!@%bW^iC_!|{8z6TqqPAM#UU1_+z!oGU zcY}#0fd>)84I(>Cnii1fHk+29Rg>5Pb$skSGs#>LOXj>pOd;yV&sh0++DNt<@bDuk zlF<6VDMasX={bt4^!&OCCU3Rqc2-$-O}W~z&Itd*>#$>13RXzOVuX&02$jF5l&|RH zW6NqnV*c3bpP^;m-}saa>Y>5G%YzZ()+YC!RMMx3Lixv=pPX@Ehy3ggVEWjGDu9_i z(VpS=CanX6n2St%l!jdioFd7CgL58eHiV0KR~|=D$*%<6yl=^ai{t?DfGP*^R(VYh zla*@5dNt>}O+v>Q2`QR>9rq3*p;Q_O2w>JnJlLU?GXFYE8U$?)ru)n&6^*~HD6RuynIe_Tg%xL1|^hpH_CQnKL*E!4>vy)@}+kv3bWfPJ|#4ZRLaO@C{Gy-9c zxG5oPRn8|+?X>|D_}6igR`PPklxmKA*)^#!G@VrvEStfZKO33Z90n$nXM)<=(iNzf?PA`XVaO0 z%auGLrH|5nx{jzT|B&*qcxl7xkTL@u%c}OO$9?9tfBHBRQV&m*5YL#!9vHWyyhaZ< zxphQx=@2%79@Dt+i!AAAIIT`QpQ&(o&Nw3(He-0Di-cA;prb=n|F<7i bpYRbe&pUG_#Xb^RJ4NB3>VdR^w2310us{Q4AL+l4R`pS z^E>z4zwctPX69XQ?7g4-e4b}VfBc|`hfRqM008im-pgqM0LY;L0Ma@pI$}g%a(Nr^ zA>t{o@2TZt`acsm zUEFQC=FQJL5u0GSzBljy00_*V|B=2+mDvN3001SqciO(WhYx|(xt_j!C1GNwcpXW%8-_PO6n?Z$i6cWk%J(TAugM-a z!S*!3ji+c5s%n`O{*gZM9LB z$Xw?z=^?3g)X#02jZYp37mnKUNi&&5MTb!n7<7O4WRdbCRF6xLXkuNuL@!|2eKg_fou)1Yq=k9hX0Y4XFO_ zTK-!gG4AmH^Y|3oJ3v0pPVUxbe{2;5@-5B3iNN;xg7`kJ1`KTR*pB7CJK#F*Jaxb` zoT^FUdq`PZBm_WT z+th?Uq-11j8j_x9^WWAQ;K?tD)tz_uAv|;c-;Iq&tb&4qpuUKk9B;VQw9BfVt<{0- z-x#WU;oWVLc2)hqHxJoYnu|gDUrz^S@Ee2^s%h5v<8{QW>AmXS^W$MP`Jab5-q6PT zHcN;UCQj?Rx^=(xln0PUiU#T9mF&#z7PraxL%C81@q#LN9 z1=q9R6(z#;5%(UQJ;O1jtS|lYHEMDBIMQgx75|u}Vd7O7X&wf$tLG{hP_x~%$|g>G zf^_0Wzb3{UQv4Fz{8js)Lc|G~8SiBF&(}nF3ZOXMVg+!+1`WX*xj(e}M2XvW`&pk^CcBgd*loc?E|IAIk|gD3=5FP&3~! zC8vwK| zH;jPeA6QE?jrmlS+@G`;1f0~-=Ejbe*5(pARsh5qwaQ;I0h7tqibxb>E%?iIGXauQ zC2OoKkE)iq#T$YO2RZp`2DEjl z=7>0eGq!T~dy-Fgv0q(;|ADU(Cu^-AA_ETJOSM9YdrCT_g`*VT#3~?>YMWuBQ0<9d z1GWM7vX!n+lB<O(%(K%!EDZYK%p|Vy?@p+K5%Io^siQ{?-yp1JT;= zSr;42{cCcCB~bi0J2R@U`;VG$B1|kkGFtARPD4s!qJmMrG;&fShZ2SQGY*Mkk7kU~ zxj&M;t!+DN*#j`LOM6b+vwX{|hVIXQBwjqFnV80zXvO^yulc&u^Fz8c=)PS?;trwd ziCP-)xs$7c9Y%whEgi=PAV}}o9r=fqK(QTH8cc(+m=w4jT+HUS?{ZuM*lHK`k%}N5 zjigl`dCrrsu1Y!w16G1ur008zWkW&%uTM}$d{M7ag?F*croqr$4a=7-A2U`lN~cx; zVX{k$82={GTJ|%>klg21;Kc#?$S=2oLS^1`ql#ugzgDC8V4E{&P?iK@RG?;)1JezW@?!}Eq_y1DIpANds!s8wZc^b+<=&k{3aWY~2VKE+1jw}== zW7}dTv*mdAWaBbal>|we0K@MY^2j5=0%LLh1JGpm~qS`oqWWVwQ3ae|Zf+ z$%x}H{Ufar_hTZmPP|6UPxdh_D~0&Be$X{;$iM#yAo;dlXJ%s^b)T@rDmnv@?YVn2 zV5jkCoFkm8J8M3sQe*wx4vYEmF>!l*er|Dv*1g{7rF^v!v4UbMW}dx~12s9blfsHq zi-xPKH(++7X`KPOH-B?++GjgU6%C+FEwyNXfjfO(bPnj5SafLYXd!p)Y(Rzb{K5cs zsG&`eigv54t4TyczZQ7)IRDKQD}2j}r4KM|xCoA^vh|GP>TZtF zPR&kZYU_itC~2GF&oH!oZ#TWHa`yh;63USCJIT`K0QDgXbvT<|}i6&eFYn zi~~HC%9@wocAj|))tij1Y}PrSU1N(X)CJHIcKRp6vC|qcsVaMx##Rnxa=a<52JQ|4 z7G^Q&-3es3w#da2c_lI`=YKn{+nIazIvUe540mWw8x>vVcpPRY`Tq^wSx{K{*Erj7 zwb!^ftH(|OQ<nj8Kdx6WBhy2I<=DQHL7Iog?4YC06KK3#xka&pCu9uS+v)3P zn3WCJ#w(n_c&`Im;_H%E!~ZKM`5(4Vu z4})q70Vu9U=$TFv#@IccG<%87_EiTmzY`s8a!(c)6~9@VK_9}tO5O(JpQC}_r&?{` z60A=xTQDR<@8*>J^Ek)tQr88Xs&uSA9Q(k*Qn%p1`z^Xb@;<87Q}p25vXJb6-Ye0ef9LX2Jc+E>%1R)x~9ANMtA#4^5L&KeEl*=n$;CZGz=r`5cwZeaw-hSM6Kp`Gm>0dqF(RBFR;a`~m)C(6L9&9te$83}{ zE$-{|1IHVkI)b~htu9htCOMmNv3h5Ay544-{n9jp~D`}tV9SkOH;}+vE8{0TC*{&l$2(mQ3ewsC13%%o3zOZI#`>q3^gEYR!s@{mO z-|i`lsab&ylV~- zqkBA!@;fkG8%}(>PK1v?-AJ7r!{_$ep%0PbT#wpH_ARYFdI#^?2BV)y zocPbRUn5r9(E6?;&Cbr&&LRZS5g~Tm^7*RsBq(ms@>w8HLv=!GeK~9QHmj$RLZ?w7 z*HKJLKN27J63^8TM+RPi>5SFxeQC94fd9(y0;aO-p%inI>cY9u+_fAx?n;Ub z4zR&*^M!M-E9yb!oVp*LQcFAYBXY|pR zNotn8;xtVw;I~x6&(Iy!Rw@b-NDnw&m7v+?uFbpQ^Kk32%*vuX^{9JLb-GJ3OCnB> zMP+?c0!wY2*MZDkq8YaDp`gcfaKD_C`D^AaF5dJ>=~|<@AU{S|et$opl51gg&z4rj z(3k|xjx*}l;N)+Ab3+u`$=CqbFCA9(O>P;x;Z@@QSfBpp{IylTx4t_Fd8nbgc_a(o zAQKM07cRKpX1z%`xyJ9h3h2&2n4Q!kPKJZhv==pPuEh91PB}I`gWIN`gCbJC^Fdn(EQYd^8LRv5vxyv zP6BQQTnf5z)*cV@KfP}y#k2`;kddv_XCV&A) zhnZ(m2?o4jyX@VXYjGqWH;mJ@SU-Ig`E&4n(mb-EGfbf~?Rc?A_p>)PSx;PDjIQCY z_}IT;`@3<%%|FBCGD6$F&CKdZ7b^CYn#6e+0?G|}B9sO3I?)P8kmvb;D=9~8Il9s- zFo4-vSGr+`UlGNw(iPm$X}a@jdLvlu)K0?5x1;ScPszNs=(7Np8>4Z6=9|e$148wI z)1v{-p8j}}%Tz)pPLu)Pr`S5*N`qn3J^!|)E%nm>oZz!I2X89|hd(Q^QFky6nf5Gf zEN^RvD@0`NI(}`a=6<;5bU>&pIf^bgQ|cyFYQyyDAOx@H*>kgZ=Mf2c>wM&Wu`Ja!qgx?^}^> zF-s%CxZ%jY*4j^A2fv7Z+emHvgCI>+n7inD1Zhq-<&%iqw;nv*56N@JztyPs@$Xt! z)=pyT?X}x0m9~mznaXAtD5m@~{gFKWj~i#Tj33&fPr`EMX9Y7{usNdxTD!pyMRGYT z^;x7`xh9_d8Vh;LXw`p7fNe}eumW2>o2J`rEy27J^$!d5kBSyD=W-3YOp4MbHrw7~ zH;jO~x`Ya-Y9-ot(9!Rsqn$fb^dvuLWcc;G)4m|GHml87U>AC@m`!B6>EhQdo#EnR6_;nQz2?;&TeB4tA2^0!0VE^#OCr@Dr-Y}&TlHAg&1p~uW_4V>0cJe~=2T_CT5pxP zizZ*CVcef8vdAeak$9cM4{tdSGa9`UG`U@X)rl(kne~S^#->-B#MEgVS+m9mFPTcg zm+4K(1<()ra>d)EOWIPxdWE+2#IC-jP88*XFTT*2T!OT_h?!r%LhuHH zsVR_oQ3kKWySco`zbj15f;(~I(wX?dzegK3S4Rqq6#^1dEofZ%~f{aR(2dY zxf}#v?U+99=!07QFCDI~)EghK6Q44l^MRe5?wcGW9uI_}cHTY2n%-NC6-bSLWz!S( zJ7)sWUH4!lEDwTA;FQ4+b0K-etRHH-x*m&ZLv+UD-N*Pi4gc8)M8VO~94|D{TVJX3 zBjV4vQ2}oa$Cl zRLwL6s%}iR58Iuz4M+avcDQ_CC1QClmBhx<3^-N>-dl(lr=cR-*+#Y8GLyAv35b0H3c&jh_3X)?Iy!>lN;^xD+Ot5MD1-bgP@P#kQ z4zls|Nb+C0S6eCI-rY07{m6p9weKb!HujF3Yh1?4QArcMwuSTk%*#kw2rR$@&q7*=m* zo6nn?JL7#i4~zqEGD1Y=s*SfKPW%X-z3fe8$YqV>uH{<5N$33^t_Px;fRzLCc!m3i z?x(B2m;Ng!-H2fK={c2c?tVDBM`)1n)>)ZTO126ma_8au#bKsxwpr?rPF=Exg~s!eZ}pMa%Eu{=Cbtv51}L&v?;SJw z2l}pg?`AO{6>$efvSUGf7-5a?apf!CXv!wXtU@uR)KhW{2a_KRZ8jK^Du5$ZCU$6B zCtEiL)!!dFl1oO2)TH>33){UQ^U8(+aogl;z%DiVHNm~ixTno5#M+UbyaBp9+vCEhLw-w8XIfQjeZ(e8kTbN2jX z0DmM`2)v5qmjlsIh2#^0Dg<@^0|ky>1rl(D+>H30#hQ+G-)B6f)ZDezh`F~ncU?jP z;X)yNF8)(F&lFw4{V`d{8QBfO_h|eF9&pGwT@UAZy7nu(Vq9+0U2bv{A5I=uy0=^& zAl?1XZp69!!TWJR>dyAQv-|3*ZH>zEy5{M!`+Nm~J31aOYhcIiC%de{o2=KfE)Tjf zMS#M!6F5f5DaQRe!6SXhQO$$EGo?J9zw-=YIxJ8NWW6fcyPymk)Be4^9UJ>Co5?E_ z@KS4WmzF^Nda=rKD#dilChR^ZLo}U(Rzc32L(dqQfTt>rXqkB;SrVbwZ_YjRR@%`$8hB>Q{cauqXE$CID_S@rHjNTu zz?{9*cYY6EV@+Nl3^NA1SPY4K$!D-ae^Bja$Z^nH7!#C>JX9{3KDk>^!TG~}q z_Tl>NjVQWZG%nwF7^=FL7t?f4XLN8V0*HxUuYX?l7?)7LJ<+R~;nQj!-dx)IRV2V^ zh;Jh>+)ti&;&KwNPqsJJT;6NLV*Lg?SGduspotLo!L|FHw3ZZkzPHF{`q#2J?o zr)k*jaEl_HOe%N*ritUYzNr~7DTLbA+a+FU%5u%%o`;JIF@pXK&-I>h5%kk%5Pj2iawi#l3=2+pMgiMp!TV*t@SL^L zhpV-51Vnajdk|Ya!w*KprmTXen*ta!mmgL)B7*fbhuk&8rJi6<+aulgBLxw*wH2&D zMC#K0%T;)LHQ;2Y7lUs5+0~591^%8BXFhGND61JBh@r3qYC+Q(1RO85K0wI+4CKui z(R|g1QGCUl8)POUP#&<3osBsP9xjhZ21(q(v)Q7Up_j!#9(LT%)2_}T1K@ToZy1LY z$jt=x(V*z>6~8Z1P?S!r#z&^?yyXdhR};=~jwH&{O7cwGPVot3Co9UMa~IkIkN0^Q zO(3GI!53;%Pyor8L9UMWDt0A|tVN?9Uq;2}4Jk`lAN%A5k-ZjK7GY;0p-tU1sioXg z8I+XO%`DIn0HK}XQ6uc(Kq=tYu>t}&c`0NX@)3BtERtQos!nIW_YIxGJmI{6`cjN; zy_4}^sNWucNL>luBq5FMGV-d|&6in&VPGbg_Jn|c6#Ol@8EKCqunbwma^9U3*uhgQ zs{Yb1C57oNU^`-IiK&fmOd8M-jCJMl@;!^9bcx9xw^oqK`Wwf>xTN;Up89+I*speK zw19*74?FyOFaFl%oXmIa)g~+?jO-#kS^~E30>C%ya0oK(Yx7E*uo_5!^ z+q(|h0oSbscOtIO5NzED%}?<_ooC;uC{{LOCfhIa0JtF*KuHcvY8Qb zlTk2fX*!cydFDGx@VHLke!MJ_KqEHrtU&N;MDnsASp^H4foz%SHV9Q_&7_M@Iuh`H zsD_O?j67EDZX9S$p7C?Er)I+g`2LmR(X%8HgG2@+MZm3g_nfq8g-n$$0ZDFN+Gp!C zJQ<424Hf-2^Y||{0&V0RO$F2YW>d)#8K+Tl7ydfAY~cwpRkrFiybZ~YgOVA&?w zDU|B@Oxu2ob*4&1O4_wCb`yIO7HRZ*v*^DqR_dj`O@%^DeiSk8#Y$^pG<(KvM>GCR z>7le9K&Y9xS~yP;_?u{1y(V_^|UxUUc1D)iOnWU(u;ADsMpPp?4;sP{#2@nes)G`f3MS}T< z_-=G*1`C2T@|HRX^|tzG*|h0CwpryYWh*{j4{pz(m{n^dKe=Mwmkj=Z)YDddvyLG( zBz2APRCt#)n_csCTLXKRxATpVj?T*T@xi6PP^+=aeNIJ1+leB066UvE>Hqc;k#`<_ zIq=mP|FH5l)&-R0X2DVBNR7Y?idVZtSbv27*^e!I*T_# zh|jt`Myc!)IznkM6StT`98*ry0+u-^Yk#9$u7r2AOIp~ILxWb>=%mD6FwfllsBO8J*$_zJ@SBZ#=P zQNJewhWY8Y?Y9-J32RJ;FmK+DIMGbIKRuK-8@VRXJy|jMjRnlOyt2v6G<$qP z^`A{qt5(SB^R)n{x0eU{pmzNveOC4S?XJ7y_MNqko8Kb#MSRJn-8GQ5N1hvuWA8!Jl7U%Kro9Pl+&ZCSp z2%ZzKoA5tbl_8*_^*7HSKQ0>5whpj-?WjkW(o56+=@47U0@=u9==k+JU-}zhukx^K zrd)_Xt0Xv}z&^?Dm~9I!DN?Xqgp%Av>>q{nQMnT4wU1MgsxtBayj(BSH%v+RliDn6 zM8UF-Wh}^)0S0eHbuIUHHcyY3Uoo%<6tgg^XRvr=MhJ2#EWPG9%(~2PBaHG~XfZRQ zkE_H1RJ$FH8*-}en|aqYIum*@+QbaSWsm*MqkNCj0%X(lCYn?%jsA&2lEorq!5%i%?yDPJoZYh-yuTmv*8gouLa-10&`)7 zdNw*j)B6HIZO<`|W|`8j5-I)75<>|3{*`IX=4LN7Z?6dzE}LBucxqbX|`k=20Ls_K^Tf zveH}S=m24%YEz`|B?`gYgmnF9e_WRqb2Mr-abCh6$q&dS*f2ZK5Gw| ziK#FVzsH}PMD}lw2NoQ?nFgJ8#yexQ6r6K`=lw<++a1(D+Qh~9vC~~}&AuAnX*4e= zaG8VO3ug*Zk5W~~v!#VqK#fE)&nAxJKw#{&&23<7GFKU#^`t*#%>5y4R*T5@-E zHgr^&wp9=|F4aEr)lF??-qnromC28!*J@6N!%ZdSRug_w0@PH+R#^jn@>9UluV80N zp!jN->?dM$SyF?^caST*&!eGXTL);SeslP1w-r`nckS}P*-;d~Hf;Yal7f}Rr#QtU zHIav6Mw2iyygg@a%prUVso{GhFd7|3zhvu!a>Ef%7N?`OuUif%W|zU=gyNS{x*t24Y(dAbx#Cdr!{Oo{_XD#yf~PL_83 z5%HCM#P$k|pmz zZENeVnMysRU!`{z-+T(x5#3meP|(F)P|CK*WfS_|CSE#5uaGyz=&y0-ZSHpAC`LXx zlF#h@b|gX&VRe0Jc~4GhjYVlls!A%3DC>dv94kpdtLO#-AlF|~Q@w#@OZe&5iES&r24{sNyqiHs7p&g&V#|oAQ$Z^ zLCBV6;O#Kxfth6z_h`4LAV6KuT474xhe@|@(8bx8IOb09XTvp>U#-qcg@xq;%~x7) zQ>wk5$S_XENds1PY8+DbZ2c5D75+HvEdR&^ofwb#eTBw4;_gfnqJ{GBHgUMt)Znu8 zO_NO&hd}P)P~BZj+3zoCimeES`M;90rP{|&68%jhN6IbdVZyR7Q^EroF!*fiV49Xr z-9dwUiz&S>MA&;xdce?S-ZrnCSzZXoWye>0zE>%Vi%Xo#8RE(0cUo4Fm%)qn$PMf6 zy5G5%{0Z;b-6Zqtq5P{Fz(l9T2~kt(GMr=yo+tIO4At+wm1tDd`uzzd+U~f6QR7A! zTOvLs_s@W7_3>Xbylt*C0a4(nS$_sinIFpX*sh&i0;ry;kip=?L4fbt-RfWj4w>&| zrRi_P=k;@;cq?}cBX}L7%WUxF!XPHH-sLhoM8Id+ZEy;GA_L|yAo%kfcig)4SocE% z{*YI@M<1}d-8gu(EQY==fSPqT>K7h|Gac#g>UeM;GTFy(IDUp>DlJF0HR>YGLblq1 zRb*IKx#Z_5TC&yD!@^BcetVRp2J>?PZ@46<27UX>Y7(yd)J?Z;i;J8&?9@sv@iQBX z(o$xR9#y4nl3#zQ-nroYJWELi6o|6!t8%oj!tt|qCv14N`mNm1Xnw;5AKQ6pOr&Xc zYumrqH1G_|dF}7n5?$wL$m2R#+|yd-Kzyp+IL%QgJr z3+~q|&o~`aB!v;ESai=OrltWP{r##Z+{bcR!FQBu#%H{2zXxvFp+ge;hFuv0u!=35 zhA3*12F`c`)ER}70580_bJ=U6-g=5cH5tNiLu|D%w`X~=2ObB2>lKFv#m+@=3pREEKx(iPcrwz$4(@Xi}V)8A~ z(67uy2lcu`PFT`HlgQbO?OEZ27ZW=#7Lzbu`&%jM#A>xUa6rgdJ#hMb6XMdJPx22E^5w2mqbt>HLnAo=4kMs5rLa+LwmKwZwD*a>Db z)#hdwX^I%NIjFmwIFKVbwt8)&#qvldo^Qq~LiOsRY@%^DsX{rLM0#2mYRye$(F{7u zVLw0r8fcwQNxupKG0zURk^^XpT<^osoFOk!T>&sE?VMysAe%Gx&ijE zW;5?Wa~&_SSA)y^Yt1y?jhm6;B#jl#*?1#dRm=>XP4-4kRdr09Ql9JvDv7T1W2Z6a z%QIT%wPSe9lAy1r%h*ZaJuh9SYft~@6!U5dD=aQy!R=2VOHS%h#E;a9(rOyrH>>bY z)4^Ym!MTIrH$le*haNXg1vei^ik_lDM{xx=jTUq`RwR~Y6lMMgYQ3B8XRe$4ex3cF^AJ> zo8abK6+b|q2|xw=qBO$+zpiEZdt;lNg>`8ZCzWFPo60&n$CpmM z%hrQWmBbYas~tc_3Ri_>=5SZb868n}cglFw8uI_Rm>F zMP19z{E<||t1ah_=P*Ed50So6#Jjbeujs zHcvy`{XTe7#@i&{2j?{ob2=fZl(XnO^Sb)%1j8h5toEoSi^EeGSl`dz@5ipRXH@5? z=RslYL=oz)IX1QdcZl8x?Q(m$`& zN?)m^_Ppj)K&2!B`=;$NRz}Va2WZc?M>xJht{-|kAl^&(>2#GvPHZ)1&tC zgTwt+|K2&zPsBD?Ua}*}wO;E%EP-^L*K5MflZyGTYKaYs+9#FkEZ*0R4&XZJ!7|f1 zz{<3 zDGDA5+RAQ&>T}_I!K=dta-lAvzVpm~dz$_f4=7 z@(1jcSM@hB{Lr<#HTW?y=6IUXeJIQ-6ktT7S&J0dffbQ&&V1+oV~{pNqYsb z>@)*%n9IaO{P7=v?%a-gJ30pbPJLmlRg5KH`U{ub$%+KH?;g(S`K2&<{-yp9PDjSo zIK9d|g&Yef*49qkp2}x)+0xALxp5`wz?Jv!??-{zi(aWZl(5%SiEKGz9Ea(iXd0mJ zGKvfuv8n^?$!>1)=}8pt8++f)<>#g2fhQuJA7o%;6kR{G=6$CF2I{6)| zRbjPb#OBzR)y1`OF>PL>+35^^yQ+@QZKkX`t9SAN0=4cV^oI&Zxfb7YVmamz4E$6v zG3(%pX2&=tE~|BbirIWbD8q7?=1`%tldDOnnK*h@r9H}vm#5n=6x>V<6mc zp+7|ZjRecUs38mM%1K~4}5i-%|}y7 zbpKSknv>cV@WxONrH01`%M?jOmF(0yEO0GNU~5)gxx0fYY_R-FDZX+bPJwzc0WDsk z`!O83a<$u(h=27MMcGqH4LA8F(y4JOz_q-=b}Xr|B+8j+rF&ZGytcl49A|phBO>YL z_OrLcJd+gx^g{E@BQ;`Fz$u9)!rQ|ex#B#5Go6Nr&QHm}$E3V2a}F))H1715^#51{ zxLW)iuPf5`FZ>mXwyN~)3}f|vw8*a$O9j%93R)7sv!h$m`3 zV&~TUAM6se{9oO?DAkH+{2bci>+p>UUI6$j5!J!^-KLf4ba~YT z4Y#6bR35T7j^7)pzBTXpP4$n@3%~0ZS)82`rpi|&@1Gk!Flzpxs(h%rBGF`5qhpt+ zQYjd(AW0*t28>!$YPJmlPU)*yGKw92G`am5P1P=GV=b$SRH9WpbXO9n3$=yfB6SWkQHgqm!Ya zg|>cI!OlXglIuq%(Y8)ip=&W@RoFL&2&dS?6?aEFCz^&~-fBwx(iAV&!ZD2|ym)2+ zi64IFH209T_yq73928~nhq;5T_X05 zTgXd4mc$IE6sENiVt*t=g=us^#KwALwaUf?7#&>GIGPh#U#A^^7?}tE^gD@!E2d8E zg=+slDARt<@g^kHoXfmnVtUp?U$i>m!1dLO!VEk4WLC$2M2&xp3be)RrTYB$O0qAP zCvL;*owM{3*hxM?`}r!1b(U1{mOh8G^K|S@Ckcft*pE40wunDB=577-?^PMEg7=Oe z!>iX?3*dJizypz{^t0Pk6u~K&vzFoK+{NK0SwXDw^}5rW_&Vxv@9Mq$FwQ2Yy5Mgfm+!`5 zovL1TOTHABh+^Ulk~}K?@PKOYE6Io#EYv5A0CjM>es3r~nBvt;Hq*>Iu~Me355)Ne zW%fX2Rzn3yc>FKi3%ItRUi3SVJctH9z*`QiP{{l_5HPBlLBH>}WjkDp`ej zsT7vKO!ttmoS*kCMaUi3>YZojp(3IIt-EI@m;L4Bt8M2q=w;VZ`Lbs_^SaH-rnlSK z7qRuhw<|~KI;@=W?XcISI^W_MkwYS|+Uu`{CU>SIXJ*^b4#;}vi$&i;1eG~12$9Hl z|1yAw14v8bCh*fwtT&>2czFZpaW!Wm(OMlB3b4NC=;Ad1Rf*5Yt>0w~9>K6cS>~PZ zMcQX@oX}T(2RNd%3q$(fi4nk^VHgaq|IED-opvxCw_1HnIE{E(B{c6k`M+gQ@G`<$ z@BqHRk^AKp``_Ok$$wL2l~L@1njl7Ih6ghGq4%&eCQ(jy${mU5N#Tb1WB-%(o4jZS zrqvN1rs$uHnJ@b4g*ZeqaWcQwDaSN&+m%r4Vu|&ol|qd~t6D>}zkRjMWX@f9{T(<` zTu(jfR7P-)xn!4Skpwzkq_y~3lwsF(jwTlPprSsZ@4I)KcE^?2>Qt$iZ1;Hj2^4s} zEIG#_;8)QC3g}sYNPaf*;C5;C)aS_;Li9tqxkGva<`3B>pN_^`JwHA(Ezi{!Nlpr` zPf{pVS9&9hTQjxqUoTaS1g8cLO-Np0pIFycnf}=lsp*OOi(?)XLp5w&9)|ZYC9J8F zn^=t^TVI#j)PPd@yB>9$r>BU>^)2t`by|hb8S#2kz>k70J4md}gIvplMC+B@qN>iW z*-Z|ab2zqLy7eD$J^HdBl41{O?`+;T+N?HFt5V^kw3`ZQ46;CM$fS$By7=mU4ze`9 zXY?SaJ82!I6?OjNgthiQXO74c1+2m9EQ*zvI>sC)i`HY+DI4(J(13AAFs9CJ!(S%? zGiRb+msdnC>HsE7c zhPwl}5Hpl5;bKyG61_QFuBdU8Y6Kj>X9Kkol~<^7Fw$?)o|EYLJe#teAD$T&|H!b( zj3-@Hhpb#yVt0k0=M}7fH#)w7jBdOvbd+V2v6%%bmc9EVzuB!>7&mae$B;0{7@Loe z^%SjZ)mxIwR1~7=8|`X$D5HOro5_>lNNIJI#guJsa|%QqI_M0CFjyN27}5TE-J;DV z=pRW&OZQPQ{jp)3?QI(44*a)O<-~{nAozk^8*b3*Yt|){(io6?u@Y38-CUyXzoD z03x?5M^seTg`-NA`s)wq@ZFoGx_Gx?l_*Gt$@;Ix;B3?W=eK>ezE4p}e2`KLx}ATt z%LBx>G$bSxv2-9&9V8fSgYj1DzF5FGK zwa~^eN}z7`8D$&%{xTgzgutVrH7ygLYZHFp$0!vQP&8qPJh0<02+~lsd?6(yJE|hO z4fHYMfpEYFypi(Nw)Rp!G8&i3wNI*)^f%0^h(MFWM_<#7LCdhOq{`Xv8nWG(>FXV= zUuF?}Xlkqb^N39*KsTdm9Pr+U<8=wY61J~=KD*?heapN9L}|)ZQk&c~4b`XUGHr}w z@#Czhibr#dlMSjAW){7j`^mdiM5n2F!;!4CIs@nUwq9XIX|O4ccaCd?+SLV@739@FKS= zj+RmqR*u5&F36e6I3sT;H`0P_^iSR-;NisZ_u9o@ekk>5-&P|pLz6*c)wgVx?Hi>z#55NSX2wJn2jyce|uZdO=RS#bnRNjJs z-AG|Oo#cjHx@b*fZzy*r;%&n=hxJ1<87M!51-_p8M4wcQ9MLg$_GcaCtu|rT+Xdh7 zT@Ik%IX|r-y;lb^jZ2y9C+3WfZnW5AjTNRBCzzJIq?6`QXd|TT9}f55+`fwMrbgNC z9&o1}O74+oEs$_Re-5LGqr(Ng&)}uTKP`T)RDYbV08gvAHm~q!iUxQ8KTMrvTa@4T z_6aE|rCYkY8>Jg*7)E5I8M;eRQo4ts8zhGAP+@3rC>a{1yGudze|>)s?&E$19H9H! zd!6xF14MLe$QHJ#LoA^znnC=yq?hY|)pv{}T?F}cOM}L1-LkXZ6c(Dmnuv=8hq$Ga zMZ82KL(k&AH#BDZ>%L0OuEU|XRKuCT+RKUd`~fYEGyK)nYE6Y2@|!GPZsdc|#D7oW zEZIJc(F|ud{PiT(2s9bE)}RE1qbX;ri(NK8GEeVHAj;jT#T=;xf;A{;4~sU1wZ-|@ zbQ<>GOfx@H${Lz}Zi876X)j3f~SiX75X{S*Y zi21m_mkM}2L#T`yZ6(Uer=r{LPs%pL<|_hs_bCY+rM&%daWZ|tvY$Hsjd8!nR4Mpc z3yYttN(|2`wBAfQRwM=IUhMtNW0&~j5q9ow9rz|c9?wTH7^1o=+jd9WIsIq-t@-co z+fRYF2NHaFNA2npT%#d02Yxmm`m;HNhN9{`gX*qxJ+s~8ViD?-5e~Fw%zHg!V(Jn) zCEc^71Y&105^X(zVV(UHTz7 z)!RX=SaWc?u60OOWA3AGu{%R^(J^Bd=3dmvdsbhJG~o?i0&)gXl{ZGe)LZm^8N)7?)i&$@Qw>SWg&AKK!PJO>4(534p@UaSm;6uJdSD{sl>45s+^m zNTot|ij_AnW@$+{7e?~YuM`7Iq7p=EnwW!iUj+AqRvBF|QRWx38mQ4Pf2&f17^x{y z^Wd&UffWoQDxHx{$N9S7&#`EhelFD^%H7z#N+>+ZUA%whX z@83)ao7J&A)f0L>-=u1>E1o*#QXlGg;)ycu?x20L+nxw>0C5(}P|L&x>P@6Y@)L8C zAf{v0g9v|NoViZ<-EsJv`GJ*>-o=K#|JAQa0_s^kT)kJMwyX<|` z52>(A*$8P=l4{h4=EWf`-!?q3&WMuQ9b(7aYjuMf+>3Q0e>r63>%#;~EaFUjT;VZ$ zsX)ZZ7iEnZ*5~`avX(KudY@HaFnO%#2f3q5&-=)qzw|BKlyjS@k1n8UGx^OOmpA0SbEYfo}q5gJjXF3V#lHU1<}#zZdZ0sh9IVr-pH$_a1D-kUn;(!8+ia*AM= zpO??{a#|xahGaULbr&69W*l$$#nnlXgUDqEp3sy}0a3KkIx*3#*fc{;*@HW>rv@R6 zx}w@KUrk4+a-^)Uw934`Fz6UY(K?yz}KoZMo-k9h<^a zy54IoH8(Pdqs}pkO(bWuX$u41+MvYKdAM~(_$&6`OwA?|ON~)d!7%KI2Rhl};>lf` z8xzZ1?K41FM2>A%ph>dAEa7@9+GG-N2ydBowQ!WT--KttRF?fk6xQy4mSuc%b6{6z zn

weWBBmqOqP2C#rVBhvqvG^{P9@v64q?DOxp=@MT2mhfMagCGc53TM{-(oDy-S zx0C}BiamS&W=dH5YkkSy{*x;{sPZO*-)2>Qc|u(X-&YfH8$%UN8y~d2aoa13cthW= zRT>ymt80l5x$;+XoLk)OYx0u2WP4 zoppN6p2(zKfo`-vs7LcUAUfq!;>$)v_tdojVLgKU=B0nR7km1tYKOI2=LzeU*fiD- zZs%h*cU`;=)|7Z;m2oN7B?X=xlwsN)8fBV`PS_zXZ35oXEoS2HMW|FkoS&^m>|H@X zm&EnPC{CAbca!8bD$CKRok8Eq-;u*~)d&P(+&Hp|5e_}S@#B+QukgzsLjG=O?vD}= zDt_==@Y>~6JA70sUj>tNg%Lz#bBfkhHx^X1WuRj#8j@^7crCXm^I>9^bSfFQX&4pT zB|KOm)D{Y>jjTiX%W1e~LT&Tg;m$nt5YAh!4Xir)`KXIvj^Bm9bHTeaYAovoOG&G!RLcd|pD1Ey#!tJ?dw{yeSF6|BvDY)PbVi$;*eS5cL@1x)?T&XFMKE{X{7N>St z=3T?QH(aA-pDj^mn%ujl6+NkvS6^aWgu~jh=!|fj7$r5EcC?J%59>pF5(~{cKUKsgJkdcqI@D;|r^ClWln7=B57nR+ z65fXS8N{VC8<_xGV6U7Yh!vXZQ($PHjcc>lPa|~pf#b>~apXB?`5@k2^&i%FVUe6x zR^rz{f+Y^$L=B5gH~&;QnhTIxdf@Mv6Z@RSmX{V5x6q zqO1_f)YB0I$&+^u;d6se?Y$LyPDO2V(E*Fqh|Jq2Ld3#okApa&PayJ|+x=I(Z?TF& zf&)C(2Z#sHeIsL=w-7Mz30xt2&)8+rcg1Cw=w$n_exYDZh#RieRzwQUoC6ZbUBaTQkp+EPwt9#g&~1~ zsZN+#&UueZIEuvdp2t4vab;+3a+nF`M3h!BBI@l7TSbx${EG8?`60d3CSxTz!$EU; zKT|XbM_F~TejRW;eW}eyBcI;o03Q3zI7tuKv=awrRFy>r`~BI*dP>toMo4`n!r>CR z)(|S1op*H+W|Lwy+a;mW2w=q3e(tv*%$=cX@AL_jd<&yypueDg9h#O^u=;c3Z{B@f z!Y`q)cd6E}Gt&T%%L?lJqCyV&E~U-M$z#0zVn+|q`G?7q^Qk$W(k4Km3LMWWT(8T= z%u?qlZQB08M~*t3w3sBf_H`lNE`D7G2q{qyGK0cdyKuUb<@{)iyo>>ErVd$q@Lb;7 z6Y79PS*FjjeU{@L{u)c4J+H!HhmL}p*YT}sUq21}(RwCne1VxzTL@+^Z8r3t-twtP zEUCvy$Uall^|M&ciQZ zIJU`=U|?QAKF^fXh#uL7hcAXSR)Q*;^=`fT+6g?h8%3ZF>W?QxOj%EGU*2WU9BmDEyBrkZzc|m?xp21QX?%@Yt-J_ z{h23Q*=%ffMMzmDy-(Kk@4FDKD%DHR7?yywfl2kUcTh`3&f8Yvs* zX!Y!{+Sio5(w_ncTJPOkV17xKz4*`8@=Zhy0hK2g7WCwqdE%a3WN(^UNwY?jngLI* zrl4IDEn46{`C(74ek6A=jcqF_o#+`5n5iE7xM{Ed!Fj$}g_Cc7Y>oX54% zG$T*!d#4EQ_O^ncP1%Y$SuX-dPfU+@3zn*WH^C))LQly8#TE`}Nd2@F6n3cV(5tE$zY z9~_0C9Q_@yjAQp2Q9hH6EdRDApKaG2W451OE#!X(h%*_>|o3Ozb)mBNtbwH z2SovQU_ZYwEQWjKw<}-R58J*m3GV%-BPE$$41QKg&YY2U`KyfFV;u{+0fK;rFL9L} za+LE94Tp*nISr>s-DD916i=o4o_K#Z8M(Z&wy0-kY4U8#oYY@&`aLD+tFKN%x6UaN zyDxYE;>l21IcX$z^mX*#FDHm#UB6OKCO@PFvXyKyFudky!#Po>S|@b4kIVsMYmB@B z%@u_utMjABlPzAlI|8#d!8JKBOAb0D_rptwPo2tg2%Daoeo0hRtF^_HvrRlZ@>Oc2 z7T+TbH$*u^BtYJUe?FKesH71sLf{jU`_<{70ixS~j!x{Ma>i01H^S*DcP(})RCtLm z93WiC^o>LJy?o~UOvvC`i~6hF8J*3JE@rmJtIba5p89p8D8WQxyBAa3tsf6!mqI9Y zL(xCvPntvWI65<4iL<(o)+#!;UDIX=*Z(IqSqhYFiidh85C{xB$x7q8!w-!2n9}r8 zL)W`=kl34P5&8l7oq5Pp=d!mi+mf1`KOIc*ek3Vv_?Y9KIva0RM%8Og^la^@+#5WU z;>eOK^qJ4}Bgl!sZ6D{O8$wt+ea1+_&&gK9oOj{LWs$Fw65F#y&aTzkkDqe)9NdsA z!wdbyT&gRB8!Jl_Vt3gN0tU2pqN1O&I5YIsFB14-6KE&t{ki-;Hl_YcpgOjB6y-Q? zeAi2nZ6GvR>CQN-4mUVth$-ioPWsMmbPUvrudPwcIy6*R6SbEN6HpQ^0X%!;i5&_# zZyTbah#)bjj`BOQ&v^m!9yTik#265y!P*aT-{tjzm}HthR{mDCrpUw9{x4wGih3xI z>)mNg6J@wK%MlT(D5b}{OTDST{@$hrg}i8smT{B}4&7c|4m~DJ_VF{iXuOR1GgesO zXe0sD`|5$n>-=gbGPX63uQblUn&E?y#cqcr@9)b?Jo!NTiNCd+I^wT`ZY9IEw=03n z%f(`^jOp^l&rG0z5hvGn|0gr6@J$$cDpU(|S@#^(|wcZwP zCJL=Uz?O9kCi213jsYN_Vg2MpYt**kr~~8|BKcLZ+gq+ON%^+D-d7`6=GQcS>z*ix zy_~}9G)_p@hd%gE*GPRE50!iVwyBjF9N~9Ql?YjFJzEgv{VJ4#aM>;=WXOUhO#|s$ z!(Dk|n?rS``Eg%T6C#QEewvuA_pB05;es_$OR-FCuJXiY7I2k2Ye(*Qa5;!ai&*TJ-~* zcs}}5I*fO^&xUh&UxhEES5t&neFOhfO@50Y4t9*6Ql957&R2bHzNInMW`zkJGG{-7 zYM8Sv?WEOoyK}gMm1GOrvf8ZaK92t@*QrzgZx0X5$F_gQ#XgvWirj24f0XgwcWyH^ z)_iyVX6bYz(Dxk}hc2c5+?QMZho(7L5YGDDfB@iD73FrQZ->9?rOm02a!dVTZJCU* zgyH6A`QPLdBPv^4gv11VsHO1YUP#&?G-`eA%@ky>m ztqc=Zv8MR^_UxZjNd1Zv@nvZa)rzV!`q{c~xZM-e73t^;D_hb_F_D9URW~#gmcEoX z?30=ZbFfVt@g`m<{HM^|yNm89^MWkG!TemAh*S z=_K!XD$#^(xU^8UXi`GY<+wGr0=&awuYz7@wiE4AIVv$MLxNT+PX@=jfj_kanz?U3 z8HZABkm08iMCOU}wSOZYykXwGQtu;7A`a?1#}txRv@6XrYD)qPh__ioe=Z8&Nirnw zT&bg8%Z7w!`U28>|y_6ETea(28szKTrC=B#Zfb!AW-)QQy13AgxzoMRo zT}%l!cWoEf7y~h~cmu?FmUU>}xGh1i;%Asxy+G?_9!TidRVIOuTsLZndE4OG+V)sq z-hVZea%9}Q$p)o*z+#5LD|>7l6MLP%#kOYryP4+uj!vhCN7j7X1>KDMZ)3gd>4G{w zSE`9PG?L7?e9|qNKMu0*<)~gPH5>!%?TQz;WaYfo<2Y9@0-ufJ3@};s6bKiHI2G~j zHX!<=z8$m9V0-63a_p9Wmw+piXH}QHYQ)6y^DSJ7PyK_u)*dzOgRtQUwDVgF8EpJc zvW!}lJh#F%^7@Nn0r_Geq8R^Y2lYI-EsDm-^xpI~>%nQFE^Gp-}y6#gPTXdt8FPKJKW2FdK4NY!hd zI#YyeQrP4t*u_2f1`)i^m4F#8dcQR?loV|(X{(zh9+52%$98^NTdk5Svu9-g0YCib z9w#g)M)p1bqEBXTluHSi02J6JY~dDjs?T+8P-B=xPn3h4oR2 zWCGvtns0P36}DYO9mgDy!g*2P?ayYP0=-}#49PAN5rhuek9V|zb2T~hV)S=A%-Cxw zdD=aQ7mv7Vw|SgPKG9E>xp&A`cZk+?1WLnJ1D%wF93FV@EXVwngaZ`3o>eaWG{xva z8KJ$nJ2!36O-fLfhGa`t8AnhIKGUNoD7u*T88i3%L-BY;{!iLGWXIZFM|47T&L6xt%e&kvtbg? z6u(TOn0M)4`x}9F*@pl5{V?V9Qz?e5tmL?Tv~+8nvBSZ5R{#0n#1PnIv&(;;LA{wgs=n1DfXt=CM zVNJ%j=<(nn5A>C|!ia-z`VLE_Ud%UNJXzC}mw`Z#`_NrPZ~~NidUX-`j(17^N!Cf3 zYt<`;uwAW|6+ss1SOkqW*hvJ+OdO09KlrQy6_$ugwC;a3dPMZ{Zs+L{0WaQufZ{|kWTDSH{$krHqF9T^z=5JyoWp?Gpt%7vL6n`Kt&V|~Fu*DUqiTfQkqO_mC#lQClfv!+|89uCGlA7 zMgtz|sVyR{r6<5fESX`kzJkA|p^{5Rc6JmsPE|zZyODv)W2Xl?KP!elU&dHk`YG&Q zOL}ZezvDAzEBP+f&oQ66Jq-)1BmL<4>b80L*h{+{2uo3Qmh)r8K;JI%vWhXi>#64w z{>XmqxpvcCa1{hj5F$BY?|3S2f*vo@AM0;u&G{z@G~Vl^ zG%0&eq8kKFfxoaK4j7^R*?o1EcYh7t2=i(FvI$EC`|Dd zp(!mnA=AAGSQVI7NQzUNH46y821gc&4p1EB%#`=A6{nAa)D(*G_g5gDfMnfk|KR*Y z>#=fV+JmKv(yTaQmo1s;EcFr(ESo0=<&XG&mU(-0<_1{S9WFutkljamk&DZPtpKS| zNKRqvNIh96hSDBtd0Ng6^4e|0G$++zTFaj{kf@XjmT!{UTwpG3gOP^%KZ7#1yWIlm zQn{+%Bc=B%ovWKrYu_{o>@1|PV}eVN(bLT+{bv>b_x7)TQsGMP$)P-_|JFVJgom9J zj$hjqj=#PS`^U1`RQ~!S_)V|oo}=i^L~yEmOP_QG9&T?|TxW$}|=F@isoU`%c&{RpYO z(vdA37Ftv29SS!ri$({N>{52mMmuZLz61^Fl6WWj%&05!TisMprW?6)X%Utj>oB(r zaaghtGuOH2+f|!MN*^nz@m{beV{`1pv8sY(lAUPB)vfP~EX_c8Y$-+B zeIptXQDuh$yjcB}T@vK`UlG~=0)J@aB45jwXML8W!_D47{`*xgU;O1EbiRQS8+c6_ zQ#IZY3mK8Xz%TIOD(plGfkR8rj0&CKR%4H_KjIx`?%nicb!N5N z8fEs&2775bZ@r8AE<7Qo@9K0HyH7QR#{2ea(ObB_Q{K5V(8B-HUC*hWNEAYB;C4;B zbMZE3gw;nn^X3||=m~(cD+R|pooe9{EmVB(l*m_63S8*_-rcS#>6|$Lw@4bgSSY1? z0IP1xQ>t}ZCewi5$CDt~*gr`Kdp54JiqcT3A1prc+eBt0Ve}xeoby#*({O}ewptIV z3)wrSG%BR1{dh5D)}~t%Jw)IH9;cLx0E}*wgOUmlcZACQUD-w-l-z;kquh|=f3`Ig z2Z*@oR8*B!*oqEB!5h|eEcwVBGPnQyO{m$_&TI8UhMX>M8fU2|)KEdoP45}&mHOt_ zeDWqw^nWWU1*fh$5B9b6g)A^QgdXqv`A5r`b4es0ecRiPK9=9Kca)Td&;1#V=mv;u z&Ga(n8k8Z;Il#CQ|L^c~jeMwEoKJxt~dE`}uEq+2V%N_xDZ0D6byP=Z;|Ms*sdc;DVOLEl)SZPKClPtj5> zY^ND@E!hv36LbbvT8ib$@xO7xRaMZTwvojA;XRf066iKCy`>=IL{}AuSJH209d6uc zRvIisz=V~?YkCnxEj8v(vNT$T*)IDqkk?Deqe=QDuQ|ji5-fQ<9F2nt*|A4*4+P4{ zXOqx#J36OD_H!o@lj+wxW*`8R6-~@}-q?81cm5{lRwJUzjQkJ2pAUva3g&fPp0TU+ zKk;W-dL+g^!wW;rlM^=F$OB5s>z`TAvsR|F(+j@-;3@f#=5F1p>}~Z5|1r@)r03_P zwfb;DJhAEO@zZbS&F>4BDY;D9)y25QbG3M1B z!3N7q%uOWSuS))?`<=+fhNZr$6n)VUzh4nLLNBUIL~zc}DZ;Y$oVkLFzXVb4V&7OW zm-LW*is9sn*kYLqP8t8yw!Qe7%Igs2GF(`PYGC5ow+c2-ai4ZdC6XL3aQNX{FH+QZER<|`@ZhsX}k0LOYVTGEz| zAuNbBIh$6kzR=(Ka=PCG`6kmTwx?muu&rd4HVbm0wW+L|EKG790pv#M6{a!Vu8e`n z03Ga19cw5z{I|tHz8%bz`5`mo%b{a*K1AKYm-?xRL{dyZWsCXHb5C2m#F_oXaKt+l zfQ5pp#TmtU@yOVNs@QCV#IW9xIuKKn?tDj&;&9FZ^)$?|yKDtOl=@_);qbG(Qt}tt zJbwpgIOadI#SsD;jg_-odk|Xubs(!k&hNIr=vgFRI zVfVKu+T?|h0g@tFn3N$3&9rOpV<}NbSR#}Q1FZk3hwKioM6BJ#y-HV7AJNio+Cen7 z=9Tuc><)tXa=;#ubbLJE(gX^t<+Obs=N zWk`$%!%=+I?^jABd%WTs{pqIVD=}$7Twnf$^5rN#Uz!@4`oK?X-Yy(9Fda4hl>ez* zwb+B|<+Qr{!T}e1)uWlo1DK@mL6h*vg39otN?F}5f;-O);RD3=1fsH*j+SX^DaD@8 z4kZT1?ghO0a=Jt5Je`^*FEZ5Pw*x<{23IG-A%9NI?ztM_ACfCs=8z5b669@lJmjTz zOccjQSHA^QmuXsus*|)WO5TZT;@KCW3>K?KF=mk$MS8!?p=cky9J?7bzK2;)DE^=! z7bdK92;xSrT(=#;x)>2RFw*bsjVLM{6B&*1SZ7W8&s~B|N;L|}8pJ9tkXtu%;QfN+U^__^g?w1`n`_BGx z+!nvNV~6f$S0cTW@>P)^w}5O##}oG((KtV^XLZ{INLE|6JtEU7Jbmc+dXGZ@FSEET ztKXCI+nLB#RxTag+a5JsW?GYJf*$L#mF(NW>AbP||_i(M1N zJOD%BB6u|EwHAOqbD!OZV*GL+s}p)Pjm=q(vu!zUyykmKUXBO&x+lIH``fbKzeZF}0X$FVR~iR{Q_ucAjHm(K&a8aUCOL5P?FhW~ zo0RMoU*DuA`87KU-W~hoP?~iycYD;ZHr{bM!(y&Z8Q^wHO952=wo8+lqHh|A4b}Sp zD(vi@iM)H~fA;%b|CcLhfDv$Xk3g-wbn;}#;DQD;d43+6?3s9#73XF2l8$)%HE)ah zAp4FL{gu!Ai&Y$9sT_W>S5%d{^Qo;vxbN$+uwgWVp78jjB~8uV7jME2%p6MRy?Pu* zbkhYB2F?2U!(DR_mE+e|ryRB01ad0OW1`A(w+Ej#`XRA|CrjdRIkc!s+Q=5EEk!R_ za@w*)m>WcTS?vJ27gi_hY2PRysmPXYW)q9!H?G~z)(vAlz$yO*ZZGI;l`dyzrg!en z5&lagRAk9#P(q$ihmY>T0NV*DN=|gRbx*z;j@HG}5&>u*&&(ih@KVYq_Z!vRcP^zG zsdO%f9kMw(d|glHFPyA>+&u(UH3XqQ)P+cMTs0OY%hY|A(eGOewz!$1Y4VYldbSFj zT8sQ!G`VPzde96zL${S`vx!+*@ng(LS&T+Wuu|d2o2;{Tt&fuAbok@66Q+HT7ck9;ZEG}vM%$f92AJ_vu4>Q(5bg5D+#&T}rI^7O+F z*li-ofXbnLX*dG6_-n* z0C8^u$`|zZm#_f4^vhQM0i<$_A*72i!(X3>$<&kK8H&D6kM{trz4R78@5b8C_N?tr z2Du{4ZxrJ2)C_eEGQgcwIABgE3x`2a5#Um^? z;SvQO$OL}IUgy2ze6}c>cd6m;IC0Qs%UPz!iMWlA@lo{CQXc2Br*C-~*SxIox4(Dz zR}M8(Wn0qiT0kOc;Sa~P7C<@y1~Ts5Nhis;3_#C0x6wb8my1Z4U+V-!w1gl3zMGzW z5#8ZCS=k`Z8tOT14hg+hkjq=#^MQm7{R{mm8}{p~UmGrukc`Au6!3_Kw}YQ$fff0q zSOm%bi(e{*{bWc!dhEk@{I-h+Z``j&?cb2B&oXs;!D;rV`IXLZ3igTWD_=H)#`ObM4)7YX9mA7Cc0aPxhA?RsIt zj^iy?3~fHsLoy<1WmUkskZhXIZ>Xx2heRaNQ7w2P?`hn+Qr_UD`OyR;{5FBi(I#LQ zw}eAdo8}BG$Hki5kR2}U;|*z}dgdg21o=`v!Br)Nob0hXNr-TMtxt%7mx<%B>a@V7 z=~@nvxEHCO4q}eI^Nwbgf($4C(twnqp-4jn-&_U5RZbQQO&L&#_mkqJv?1qRKzL5r zP@}?X(d@mIE3HPANrtVuzX8pjTF63p3dJLbX?$#_{6AK9Ikw2~=3JS8XRj+YTL(;W z6hdt|$eY{J5LS|DkSz@AH{W{9ThRVZA2`cM%GAa7IF#+K06l>=Ho5`;o`Xns^r)#b zT>9|mhd45uYdyAJ#IfuXO`80dU*_K5zsGPL(5nd7Lb8)xF?dj`4ZZrVLvy<=AOF$> z&j;!p@f2dctWUvBGCdV;7ze2{+_U+al3x<{ED5#GNBHBDtIAAgr8_$-=MV=)pI^7w z$i7=FnsfTGtuBqayIiV=Er;T|4cgZyQX#ePvP^rZl2S`qal%f$;W0@s^O@i>O}s5_ zrXJjdm1tRAX%mpB8zrVcZ^!n9K<4U_`EDvCvNUG=2l(Q2F_wg-R@zcaTZ`T4b`YDM zYu@WNsOv`jio=vz>oQUEUt7V+th2BFW}2nd{urmiT%qH(nyht^&Xe+9OUYuNr7KlX zd$YhT>TFOcx*=H6%f}HPASAzoVrDbg?onqhbkZvr(!|TA1hrC?Qa-Rk-U4oHw%}EW zQR|Vu3lltPG54`k`^W$V<@47XDFA?`W&m zX#Lxt@<5KKICEnw7*&((fqR_(M!*0r@uAg?p9@WB9WXChi56Y^xA^w2(zDQvtbAJU zUEqfOy+vsqHcthxU-dl!Jl^i^&96Y<2btdd^$>|f7+8@ZvuQMAo_1( z()Q<2=@*gS+{Yae{)&f{hA`wF_cz4hknYzSbB))ZlJBxyAI??G7fGqFcA(bHQz#?~tcy^K(YSmd3S7w0777aaQ4|& z_-Bge^-m*AAT&EX(4aApQtG)CL`Cmc?h!GM{UQBTQ5ma4M2uEH`S9Yg}lkqng4NrjxprJ9M5iL9)Wv@p;Tl?VSg&O~T3AcGx0Yj$l}AQo z#E`qfZ+xxCfsBiWabgP8ee zWnkJ&-5t^R-!q@ygtg5lUh&cIV>rwAvJ+rGR)xADm<>e)vY%{os^@P)dAOo!f&U<1 zz5P}^EhK>v3RoZ!6Kj<7&3b5c_@1V`!y9lQ6&5>4MO6y6_8MZH5soGbJ|Zjs^Th^& zQL)!=ioY4hi4)7{$?ERo1Dy*6d(UkYJw2<5NoD&-P*j1)UIuDOsJpnRozRW2hT^m7 z_qxGuwUrMo*+~9LloywHfRG+_PM&Hy9a}g^h`(f@cOaDCIlqlHJQYUIa6 ztmnJHf^33P=Q(qaq1Q85Cy9{O{le4@RE`c**`8NkOiilQ-}9Dp&wpmpwzfJEN616q z<#}MC4%^D)R()S>y>Tb>+1E^3;LThbH0vBwmRL@+MKFvG?jNxCKDQw4ZfaEqCnx&7 zd6GSsHYnxM#eB>^?RsTAEwwM*$01A%us(K(LoS}kzjcKJ`B`As8B{Gy9D$fvGBuOL z0u@Kt&R8IWCjm)@)(58oyxUKXVj_Q;+}mE_rS=2OeRvk*o6@= zfxYIugG-0ad#>0k=Lr?xou~Y`+f(zuld12tjrj4fWqP70`SaMLBOaO_mz<~cbE7YT zG+*vH-{9-eX@VIOF&-;4AuUs2a|oy~rRM@|AH3MC z4Pp(oRmEI=ZSKU85EcwE38Lmlw*3=7K+nH+xXKWTsM-7ek%bUCB5XyQz}}Q1P+^zm z4c$w5@Wo-8?0#%)qeSWK}PLw285$oMeJfR z+P=M`%Nr}ncSpd5Z#ezn91Pp?!rZFyA;Gp^gOymMM0`x_=+djpi7yySDI=6I${#Nl zxP8penJZ{&b1GHVh?0(N>Wi|BN%i>ClsGx{Xn`~@|oaY}(_vTld8RMFkZ z#6iCo{d#V}iWC9=)&f!Q7DaOie`V=w(|7Si%eCEIiH-`d7RHIxy8s^FU>S@iTjSlm zf1zAJw39sPv3{qou&u{Z3Kwum13GLv7a7=Jx}FEB0aINqAUJ+!uo!2e88y;~vdemo z=~OxmS}=wRRN~?cIiXHbPM~Zoi8`yc;F5n6#<5pjqIJ%B$Oib6boNKtiIwNAx}gNd zo#LWWZ)-GVIxQPyH2ZjfWYk*Edhwx{qL(vK;9WMPStzY+g2tiMUK|>DWiwP+*8-`n z!seJiZn`ECLps1P-@rrn-RLJ5WEtdCk%g&meAU-W5^I4Pfb_?~i8vRT;$*tE2W zzl@ZsFLk31?vr%FqMW9s6bxtCo5wTO^eyFpd`LuAl}492%O?itbWsa9#H+d+%X!tJ zU=<0fDb%OUS#;4+5JZ*{O*WsLhh1uXs;C~HKrGG29tq9GqjJ|9SgRI;Iow_5kJ}k zEhQBn0uv-`$|({{_jH2$*xz1yu1%AJzonf75f z_4~`g2->heKLww4dyaItj*!PX!vWT?R>!VI;eQWd1+Mu8ZZeV`;?uCeU+T5OJsPc203?$KI`wiDu(h^C9e?7TZ~MM>3AzL&GJ~2cq=xc zV`BCZ4p4~!OIUEd%9Wp{h%LSrMu603;~s+88f9O&WYVPKU0t%nNjW0U?^Mw<{L|kN zjwxKPR8ftPp-;8IvZfdA8(L)9Yb}bJ3;Xtf1!~gAEY^a_{Df%axRSRz}`0l0n6I|rIAo-bFc zudiD|PdtEicw1E%UkOA1OskAGD65x9P#s|4TYZ6l{E*gGjBfnK68v@V`OKa>JP5{% zzRY09%p+sWCl8nkbkCMd+vajj!S})I?87McBbzfC=l?l0SY#XY2PplQW;M)Ba;ONk zl#UOH3fi)3=^Qdv!PI_#4@Qk%=K%x6JBVgRN!#b;J~V{8hJ@$7s2{u~T%EKRoxaN` z@m6i&Au|!!{6@HJ(gtRn>no5-fnq$E=|Pm6Ele#*Z|P*?4#nWXi~UH1O-w#Y~*a00A7f9lmxkuOBe(qn<= z<66XUKD^%rqFLuk&$>`5^A+!pP=`g>t9#`=S66fZA}B^IH;R92Hb+UReHc%%c^L30 zSDf_Sw^w?_w!W(;*QBRaH<1zAi8n8K`+>cH^i}=mdm1jO$3SHM;`8KDczFJcp-RET zARzK0)pPYoo2M=rdZ8*JNUs>Yp3xN@j`yMHY&B#E?Bw%`)zP^)WltoFUd}6XUwO-n%q$qwPOa@6;)f#ol6hA(?zOL(*we|c{ zv|VzjV2xSDl62W>hgn%ZeW&K&RwEVoPXrjWhz|Nssxdfl|GwMO^a0_jd~b@OOQ!s= zJk{A3+h_pwx*JXmKIEX<^`rxjLKw4F+B1$n0BatS0X)tN401tDrJ+k0GU!{2_qzOJ z!o`+&SeGsVnb}li0%dZ#h&N>HvG&Rk2pKE{jCCk=A;&N?pYx)lCi&N)Z$`#Zb(?v+ zz)L5lPQO!Bu$=s9%aB^h%UI4&aLtT_uO{3>_TT!zJN;I>Drp~lebI4|2j{02iGZtCe*95 z^-%4Wj1{LEZEQ(Puj^zv3%7KzyEPHhFQm!4F_`kev&^HdT|qJ4wc8h*>qU zDKr+Ox*$Kfc1qSQ6iTipxi3z!&Z=+y(w%z3(HENf2td=l9qaKwnzS=-0j8gCbai^# zfV~`Z2@4XqjB2G4SiJ%DDGUeq92`l$ez%M3*nS6m)l6x+rJ(%H)$4bvSA3;Ssm%LL zi+kMh&?WqDxgowEgI;0wymBJTxi1wS(f7n%V-@Rn28 z!G<|yw{vk43p*P?M?;(!Z^XA>UUOhU>U(C?LEZLR;#a!k9f2TrH`JQ3G z#3>jf2{jtsEVLL8nscM?xwz5Oue%)~7jRqfxewi%R;f$SeyL3pGo}1v&mPQ}1&D9o zKZ^ORSqL)1R$6Cwp(ip!=hxvnF+OXz*$ORbYWLHX&RIW)RIDv;!xtGvMNJxRwRb<+N(2$nw*Bw8xtukV?{ef{z3xSQA8u+irV zd53G=;Zh>+t$kAf7|Mnpk8n?k6osRU3q^#yy(4_n3(N$lTrLzqp8cn3fa^t5N&_(I z5ft|LejQZF)-5+oQ-_$$ACsN&85;qEa%AF;vUO1jtqPM*O%@~p=#G?elW)}GTJ|?& zH7?FuRFiA%4>)H(sDn+jUuj-k}9xNGyFtf za?9_KJ&iM!K&;oK8OFh01u<*abs_j}rv29%PptS!Pjs-EE68A;DQWaTV4uyQbP zvz4XkR>)#dmWm_6ORZe&a52*VD%{KD(_T}tCh_4zMk{|`Bx8?se6HXZAp;;(lt7NmBR`Z`e$d5w z1@#g!7?19)+ViPsEpPQ!Y%&pl?nT#s!))saZ=TlS>9>3I1mYi z5RQ_B`iOY-Z8MJUV}jF=z+|B6X)Fn|c6f;r<5i=1yKI&W7(?H(@-1y0Q*2u{mO3`r zc5i?G8hnb^jGKH)H63D5>*Yvu+XgI>_%48p={MaQaNEf8I^Wb zZYqJ@j=5gD`h~`aGXEa_LV@yNCECZIO9HRY`M`BN_{;ELUlindSns1~OXWj``}UD= z%Sjuv9}|Budv-&<#D(Y|%b)E2`b~uK<=_0@JPlH9+-#@dVf$}$jqrGvWg}dK5i|=t z?~*E%GrX?|nb>v^vM4qCK>0V>CuXhCbjAuMP%?rLz{aRE>n$>53vnL-Ie zG>poZw)1wWPo-+;Vr85e_1FrH!v}`$;f9~E4&6t@ubL>z_e-4FlTjj7>=C}eZYtk> zS$wEzS=adYJTwfrgpKKOtR6DNa^Lz#(^@@HyaePTuwre8WVW#sOSCLaf5Oup0iDDx z@-~;t<@)y7c5o4~_kfV<9s{)US~ zop1C)&5j5f)IY?Glx1N7h=Pgfo=0`q6q;nv;y7kS*OGx1mUbOuWTUmZ(0oa*p2^5q zCV_m6Pps9w`M=wF#sBYEhphxe8Gz|9<5Q){NS@4IWOihnG1{6%HM*K^eyUB_!TcJc z3zufu0I)kOU2VYph_s%OnFjGOdzg&wwMZuDiLww$s8{4!Ov*Hx0fN&RiNB-7e0Z+^ znuSRMzetI#bEu~*CX#jC!UmNvqw7NZ!q*KfRz+70cw1$!vWvH&+l+s>=Ok=yEOo8r#)T5Ygh7|GvUYYUYY-xu0lO~ z(!hu2yl4F_>8S`Wy|uT?2$x{OudTtSmb~d&K&rjI%Pj&Or1)+<1-OSl)ozkgtM?pT z;nsJ!<@2S-MOae4;m1#BR@Dg25}2ARR+m28@y#A&d}^Qc_ZK zG)N7p(E~dxz6>#@6Nv!zkjxS(sie`nJakV zJJ-nz^*;vp`ej|?wnaa`zyaeU#!zC?sEFWa&-TG(cn2rN&e;)hB(F%AOyLyWcS3hB z{b*LMudf81l!mZvgpISsAYu8ZZ=Ga&TaRm9Lz5_=?#2_51Y zY(gI6h1i^pr=nu|p7!g-2<%vA5%4?_8|YqdC|6&0Y%m`I1N&xCma3zec)jrxz#+q* zz)@suwPBqCjD~dg`%Be)0oI;$hL@vl^L8E5KT^83RvX?4G-gwHS|WYiNz|#4ZLs`s z_?Pmh63Z78`px3|3?;|XF%|(#FgcAehdalgvIu@;Hj1nK0is3_QjfmVu9{zHGd7y% zB$|SaGDYe7R;Ph@bl?^NB5W{!iLYFe>wE=@;3do=!M=Q&=5E|S|9B4mRMH=$co-bf z82X^yiyvX2z^!Z`z&S0)B!3bOd7ku>lEO~gFy3EggHoTHE#{*g^?8Oqz@l~+BW9am zP68#DJA0HRV7odqqiPSi(G2R20fvv2nW2C3F((vHtu$3XnY_5upy&K514&kLPRV9A z4(?NdXFW@P7twI!-4J4oq6Sf`cq+II&vUJHKLr$mZ-gJ(M7~s7Ukv(PMZWLF-*y_@ zeVcKue7&EEZB^u_d;6VPL*+BFQEi&AQtM7oI%Xb zhKBCIS8-X3_re1A66twiqJa4Hu|5-^CUP=a^|vPUl*B@3qo(X7mciD5}zm5H%5bHsKfE{txl&Z)f6uRkQe zPEFpkP2V_98TZ$lV~J*YZlLw_T}C(%*Sz~R^|3+{!bb4NI@wBL7D?ESvF#+ZR~+=b zMOv`tOTFt_BYvxPwGB^xad3J6%o^hUB>4mH%5()XA4vC){$CviY=VS!?Y+R{EPmzL zpZn{Cu2jmDbLn?Re`(U0bq|5@E8L7LbCL>T-^_>zjHL;W>9? z{R0SLE?d>DaRAayBF^XisB+|8Jgtgw+k3NY@4@FV>Onh7V0PKE?N5bN;C0M6#UX9o|DsqftG|Jxjt@H_Ztz26+*pgMY_eo)geHBaX^ z=;rD8x46$4N=QP&tx=;;C0DbN{2zzu>N^|CQ7wUA1asNPfAQ;yL4Ij=JbyZzIWbFT&bJp-s`8-t;#!de_|Oo6_e&IkJe1SF9m*9F(I%27+{4|XWtkTtpK5Dz zLb;i}X&{c2NkY=`Q~2k$4#`hfOu0bqyjJBqmUxzI7*X{Ng@Ph^;Z?3-*(`ed4sD=r zwRmDITb~M`21;V|KK|-Xq1)pfvZcWc1j)oT6xO-X3B4C4%;=s6auXg9Tcpsy2IXX# zIqf9Tp*hPky@giwcul)jo!u{>V000iKiCkZjJf9dV4L=dLs}gtSk9BKnIs(UY=Cb0 zxoNr~IrHjAhNE^o6{=v^*V)=UC51SC|C{Al28j!3#_fCsMy+y zH*TZQGSD6C_03RoTh*B_b1v`lFw9@muX+_18P%&dlRrawZjV_dAW>P0@WU5Clty!z ztCU<22mWa~5Ni2$Xx_U40?@SPW!+71Pg}q07^0XG43+;gwLUe@J>8Yf(p|Wg)GhA9 zJ52~%h#gI~Zt+iL zzw3ZoJ#>M+z8E34EGyE?b(y~`@#a335OxajiS%v48;cwoyEf2-r%B=?H z*Bgp{8$R|YCReX-4fyW(UFNtWb6PZ$D&9cElRA2SS#UI#(q;JTt5M?r@@+e0V$o%! zaVT!O+QAhKt-O8+mBU-QI4oOEd2R9cN+Z+yLZLq*b%`)pTzLn0Y07!A5+Z_@&oAy- zTN=~oSe$A(v*$6$3LDruCeqPP^xhXHx0wJo9E-Y!VV7-aDup59>Fj;6vEsd)V;h(( z@VEOWVO`nr$F>C%YR{<6jJxjY)H#qrPKGQav-#pzw~`q=o=X(}Mahg-QiB}^+-U93 z0{y-qy96H#qm_nJbA)>M*Q|eO4tBoEFjvP9K zqwI!0JAmK=hdh?ZRf{~Ku~jN)p3uC*{fYm0AVw-qZ}tA@qZCF32{=(ndGzniITg)1 zdE#v(7KHTSbw)H_PEyG|H3dnu)SnTv%c#eHNZKm1-W1AGsvyCQOxZ|)VR2qL-wkuV z3-A^cl#$794#=P!MPP%iB5rqet*Lwl&FQSby(q+MpOd0 z+dxS8f7aP<$-&f>wG7=P6)Fm}n1Y;b5fodAg>2oT5!LJ~o9VCwcHVV)EhmcHzU(xP zXZ?Y88A0W$pVz?1fj{6L(lX5(jSksH2Nhyf0blM5}ZO9s=17lxA$tp=8{9+(Ms zsK^F;iim{Qn&$4D$#bs$t3;H-ZB+Ajsh?_$vTUjOg2Ij4Q21`*(}d1aYgi)#@58as z3pEd3+I$O%?ZS=SzgiKZ#vjwJjzq|{(J%Wh`x>c3j+1C)2EN+U$?H~5S9rKq;&Skk z#nmv|tIXj( z_+ystFou?095rAy!91W!O8*&0{Os>*ZimE3bnmb?oAix)Q}X9tum1B*ySh8qw|>_M1v7O+_{B6DGAjJNl41cFV&W_srS@n!caf#5 zt0&gC4YfV}Gr;n>>iu}QiXe-+2`9s7!=g<_*&EfQ2b?l`nz~~`_=ds`4rHNu)jMo3 zHiaP5@|q^a!Yfn0QgbZ6nyr@SPm^VMPR;%lm|pN%dvb*TafMuLRPM@Nl2*fCjB6^r zY^M(bMV<=pWZ`-qA`vIfK0pG7;Hs-E6-ng`mJKCg3lwOWR&=fq+-B1GPIbbtX$&P# zyek{8ooxq^AmskU$ny(wT3ATa{>a%{*_2bCrC>$^l?)S4o!qy-gKG4sl}+_dy_=D=A%2`=*&;?mhXOz43i%}>Nf!6bF)o2BWHfLL9pUAe87v29B&J7q zWvv%(Y8_rmo8MUg--4+yfF6^58 zuER6bIyH<%lV8vZVZ1ag3FVtxZ*m+yTNOU=yAgixEx&igZ{!I2+He@|A^l@2okjJT z?U~SV@JAXhjH3EIEStlnFu76h6Ag>DC-)UKb+^9dle`-9tRR!1rcIf=$k!ZTQKMGO zCL0zpBO^EDs@D)aK_Lc)r9loIOdp?E_k3d`FBX=m{up*KBj{!jr94v!$D)SL9X637 z^Z^-;MSfxh+{38!;E}_$j#hhTwE)zXUWVEGLW6r{ZN)4Dd0ivbgYHC?@2V75G#L8a zczN=X4kPd+E+yK{R^95JN1*I4&1S={C6;=di3Z&jL)=JaP;^KTN?Em8;oV9RRxgKn z+bzzq=WIo=G$i=GMm5?UN^}c`ATiK5}+egR}zQ+z#y6)P{+$x_k0~?&G z7HvQ)NkbT1sV}_sr^5m{6Q>op=8i&BA@zm>6|=pvoMZy?8su z_Oo1xgdBg*>!y<^c%w_!v6xg2i9Qak|M(gAq>=+K^#Z!$BBh-TAg+v95EY*2#ScgK zOZWG?SrbkIgNc$&O*xhGZW0E$7M|V9RNn_5mtY&5(oF9)yu70y= z{pzgR=+13d^OvyHe8%HieFX~cL+3d2TX1;~2mkjavAb)=l%f+dvv3$K@zapA)nilaik zVC>&x77P8>eF!A1A+yip36j4ITKDWP?{)Ac@CkOW3Cy14YQVif7{<6bM3NKu>B!e> zBdP?ZHy0$~BcDkPGLnQ0G9VL)QK-D_jbOBfnGhpqj{zHfaA%A3+H^|*3Qk~DDW6HZu;nbIL<+I8as#5>Vhqc&1u>Q3iE)0I`WZ&+MIzg)cPgj9+7 zQzr8?@e@q%Bn9*LhIIJPrewZZu!AiNwB-?z3ka?pMA@9d8k>^MV@a15nwEcWSV)xT zvjSrr2M*lvHT278F?)JLG58lYs%T5rYPKscXxneGsU45vs#o5<8tXk_;rA08MrwVl zOdTmgp}E0GW+F5eWaFL`=4wCbda>4gVMTOMgqh!v_x|kIv&W(*-<|BCr!9GR^S21S zOvMET&Gfzfw_v2Ol_vU=-jj}uyD>!utyR`Ba(gVEoUU$)Of!VMsYqtil^oBWTdSg#V>2ROGk&M2FlPCLIq(%>eTc`_;3rgJ(Y(y{mA&?dvVR*9OZz_!Kj zg)b-Z-Czpp531=u3RH(hh&x(R3lBd-8~bvzB(nm7`weDL+Y%eLZ9Wo`@4hCXa=-o3 zK1ehunErJ?!7>H3rUmxZI|u`5UAd^=_9uSCn}IUTdC{vGz$OyX5+T`5~M1;tQ_@D48S;=QDO(TYi` zq$aqynDdgjXj=BW@=!q=$zpdpgQ&=loAz$62qE3EJUwC0et;UB1gs}rJ#2D1LX2q+ zQwR54{;9;B&%arn=UD1i_4!K{zTkHl_+#OP3lO|$(!3eH&dN{E%fan2=;LEh`1`~m zZiOL_i_2KtNPt{>FXG)%;kwTUBJZQ|2ZKW5N$d}l2MjTi4X5uiO>Qsfm#a)u;{9LT zm5c&rLJ5f~1Ht^sP5#^GMiW+a7IFkt4xx*Zp(fCW7uWwzb}yPvQ}&l8obO)D{R1*w zkKP?nV-<|Q`<9?>c`Q}#L>jkg&84Jp@N*WD;Dl`IQPPVd>ASx7VIlP^(KpJi@9uhZ zP}`SJJzjHN9UZFQl<019{&Q`4IRq28M^J3%Enzf zZ_8*??hX09PJPwe!Lg{HEoDC)tGG8Kv^7u^27VJ>TRbM$Vx_z31!?>FOLbkdTQ2e$ zL^dBEe&3xU*GS4hAToFKJ0S$8#X+eY_iJ1Dd6SZ!8ib@Z*kQ!sdjNJVsaJMs09b%7 z7na3RB;E@bqtqT0wV)W)=%QQ@wUHFXYHAl~R-1(xM5BT5Br}89`}FMuSEGT-vDzS3B&&FQ?JsC9wI!$eBFbSo znS#Ht0I+b`2z}BcFw^`niE7_J^-lF|vz)B3nFhsitYKmes3n18jm`Lp`IJt`v+Um{ zuhRQO4Eu45u8$(&lP+&4t(jgl6@ff!Oya8rBuBqW1P=g*RY-=f$A&&XXcqneYyKol z^5^(|rem$->N=u*iOH&ZcjP>XL^GaBv4_~0i`=P~DhD?#ombp0?dnz?WM-R0Gb2N!*XuZGZQ&;?0hf=MJ7Xa)D7Nh&;nw}2^Fb4_PSO51Pft&$_mlB2_3`SF ziL^1t)2TNkojmfn<+Cg%`_IoGeSnV9^*=?w?63P=yJ(T2g%m;OElp=bLMtiShU$jS zJ(s-`xr-q7W6GqXX|y=TnyCA12ozH=m~jtBEu=13=UClsIN;{Q8<*pmy?m{vVAfjQ zMu4k~$5=ZrsKiC0RSlE~4?e#qWoAf^1FAmyCGW-+c`AL#cF5hA-iOZ@1TWDzv05qR z$&Fegn8U%8mvF{hy7R7$dRw`NQ;9OPO%>+?QtmdasV}ZF;?c&J%+RCh2|bVls<^v@ zyMy|0eeaX;K%{lq_?dVTt1B!n9p28v1)Tr;FQ#pdOJ7&^&W(OmW26TEG_#u(vv;C< z$X(2_&42H8Dvf;=7;u&~vBFYWib9(L$u6cBZl2ce+2tGg@;>|OcbVz)j@~>=$GbVZ zu%M7+;mHRFO*obLUXZ-QTO|BZg;Ault^zu5yEg`K6L*xSA!AjX2_rJv zInA=G^hmC^QwXt)E0%&O%6RpO_Q~?JosI0>?W=6ny)UA{1#wiY2sX6QjF5ncV2_Pk z|1P5TTH3Dg#kx47DVi{?|>1JV?78j*7a#`6-4$B9wMO#Tx% z9}yFdQr67)&(7exum(0hu3+BOM?NNN%6 z@BfFqpXX(-JskCivq)EZ@)TorszrEKj)(fQ(aOTzqJK_lJ`hByO3}n-uR4KT9O;Ck zgj%bj2TXZs=b#y-4?X2;oP(ocCg~(B$x}sB9THvc187urRJ6P2%O*{@GiSR2k*EqS=a2-Klj0nrG{yuHi|k%wFD{<9xrXj!2NY>OAzX&-w1# zw!U3T%DN5at;LS7I%PPYvn&EY*-E*^aIm@@5;q5xO9B;x=|t=KGCm&uHV6-PIH;SW z22TIu1}C-n#45VD1;5R}F{C0S(t)N}lm`G6Lhm2V`~4$H)JySR3}Swb@bV{TNq9I- zi-~|SjftScQmWR&JF(BOqBt1^&DNimv8w>d;4Odu;qS^fN4($#y1UI=e}RnhwzNL& z3a$1F`oR`K)_UoZ)vr^Z$qH3I#v}lBT&DP&IKOg*k;b!X7Lz{-HqJ6RMPO*g$Luk! zE_lzToo$McZULn$gq4YNZyu_cm*x6}s^TS!e4Sj9T8=-0WjNZ5i~hHkTbCLHhsl$& zqNTyWzYn7e3q-!j*h%VG_UlI)omR%6{AW~iQzYfMVO3dn6y2z!Df-@@Yc!-jv8j6AkR^}EC^eMe5YN9 zQA2zoOC1Z2fKmB3aeiUL`26?t{o+t(Wa>7 zk=)%()a@7NdN`UEYp_`xWLiFb=wVUWZ_o==kfRaJ-%HYL{H#w6Mj6yq*5Sk{B=7FL zv%FW#b?Fk!*v)52jMZEEg>a9wkROaQpK^_kFx#AdF{lkfs1zuVS6bQvzb|-9tV}JS z8X16wN3_Lf|AN;N;wqEk7}zzZcCh5H7EG&0-xk?c&{XiS_pqv0qL*$@L66Zj96ezR zKAVBcN#!H1Z|jDekB8j`9;eKT6A%5GN^NiVl)Ry(fvX=7fB}m--yv|NjYZ-;;ID!IyoBX#N#TnK@-X}$03d1=ZC76XH5zLPtdk42=p!MtYFsIsb98FLuS~z= zeiJSm9 z;~R|dHeA7fpda=lSWi`obkG|Dyp)vHMppQY&10~Ba8>3FpLNGP?eJz}hOVy2iognR zsJ0a!MNyWjk6NVd8M5VtnYi$z6O9{4BbsnlA4rMZc>VsJ!8!7`IkW}UjwFV_h{LI1 z@yqdPKHzEovK1%RvZtbT6IY!~?NIZN|J1frG86k!j>SGG;S=$!;qr;_D*+mjGUhvljHv#-hO{7PDEdp}aDoakzf zsaE}nh?GLk=?+{NhgdJ!-Eb=PNXRvilDO}f28f4k`l=Cfwpf3Y=R1HoH4cSiu?oOG}rEg=PbH^%=ZEz;KI zv|eXx)kr7vW%U0wOAq zA&Ha)6v>u0(?S&+x7BR0g>~?Mn$_fK!O5nS*=gBabqyn{p}Tx2bfs9NpljrA6F(LU z@7rTppBG;q;9wb0c_B4nm9usP6kmDWW3;NzxD+1%o+Y5UfYMPC6@qGUYs@EOWB#@+b&u@UR89PrH5mSMm5pmM+2c^fX=SUHYA{` zn0PeoG^%aWNWBZU#69)K!e=X_ImWE!GG+hfe@*qd-<3Q_SsC^rqLmIeA~A8A6i98x z1?ev2j;=cPAN{srW05c zG4JoEC3DL0vFp`ezaLZJL^o^M90twnw=0HEf7vBX0eU%Dl3PRv2ZM;N%oi^5nP(+62iYGi0=rS=8t& zvW+^w^?b(~tILtfy1FyvePiHEZs*iASecfD7zz#L+y2NI-?#|wS*H>Xu%kA5aZ!uu zW>HI0APBv;qc}CCWc<6IaOg5q0c8%oJCU%ofLw`=b;dc8Uo{+kxrffjqIXF0jNEhLt^z)jjcC z%T!VtP%CK;QRID?9j|q_r{;=`j}%s6G+8J1{v9dA5L;uI(NTvE z`AFRto5s;SwRe@qqqW>%k+&ARYVKh_c|@I>&-y`+mXwCi5;k%SL!(76XZPZp91$xl zrgZBk(%~H3WxN3^o;_c1OaG42AN&0uH22#f`E7DlZL;FkeC~DGVR9`$e~NZL6n=9o zeBJAJ$zSJtBUw~rlD2=z-F(FD{qNlG&A*M8H_Y=_^XEs);rvI>Zd*+jy_)b|7n_;4 zn-ixg|5MUBtv_G>nJbqIU1RmsC)&IT7~nHdZ-5Z`Q^izT)n5{M8+5m(FXS>R*anaXruH;CuX#M?LeNMu{{|THwg=) zSG6wTePW44J+YE_I%at<-VQ3-j$u>fOWDyw_sy@9mk`#Za-ntQTpmW;s56w}7uHed!{Qu&h0? z=yP5wU@zI=A&wu1v$XmxEWc}RQB@Rv{l!i$t+!36bkTc)h12bCQ}+Ovagf{l!-wHO zRzi+iG>gA04d|F7|IbfLS`E8Zw+`^_2*Dz|-vuqyv+|Dj*lB?j^Cvn2pp(rHPg;@h z>1OH>a=klk8+-o>=|WGZjZbbQ0Ki|UFnsCE=MgMGLr_u#_H&+_H!;JJi_D-yoD1lK zGZS%t?(q)ju1-_0PW}P&XiMI3?OAt|fJwVG_eELA`&__V2JAf~Jr%8@Y9d@z5O7M_ z9I1%Nf&Efs2A>eQmEfp`!cSe^;P8z7p;Jh9aWrMT8pZpHhE5@~ytSi6gSba+Y`i!Y zB^Nf$ffgQfN{hay)S=J58mo4e?u?1RiDhCn<6~KtQV63iJ;&k3#L_dOx&P5(?5D%% zYoua)R3x3LknlxANmPL>0n&0YStx@~W%Db6a;Vw&rX3@k{HR++!>TDCfxRY)l;dQ@ zu#C_rVMMtBmU3)FkkSD$@oe1ASWh3DWN5EyjqJLu5{^oIDAY^Y)A1AT0#Gv{qLRg* z=?WJa(5Uztxa(I>tih<9u>Qk` zv%+8_+-m&-w&N+j1AI=KImfK_h>x5m*Rp$w#|(t$YSqw2$xOM>tA=%Rlp@rg2T><% z?PP3!|8)D;?5%Qthi{zOjFmejpxCB0{6f$Lu*B^x4Y_xbY<_CmUH(cWW)M5FHhF;= z$lq80rBm3Yfa`EqQ(xyi7GH^T@3ipjzp*2`&3|(<`C+x`U+XCjeaCyEe!fF$;ZoiA z7Vr1sKaIn)Gf}^r(tmEg7a@KZ;kVb1ZxKi@{|C99?&3IPrg-ihFc@}Qm72&2I&X0x0BbybvS9ik?6$7d=$jg@bA!wgu7Z9EE#E)^}?J#x0y`?4uNFBW z8E&;lJJJoi zLSE?G3ENCd`w8G*CI0o^SpSZQ?nx@fFC|OQ~BN9bER!31(uY*p%dMOzzFRdbEJ})uSaz5A86(Ddbx@BDL>2JX$BYTRB~2 zBSq-WM*QjnJ15r*Bgf<9xeg)GgM{%%|Bh=`JRPxLO&o6e{IKfK342!~gQ&c)r;+K1 zR%>^*h*r5ycj&jQ?X>-?2Fv<3+tDS{6ellAP2KGNxCYbin-V*jaE~Y%T!KvrGDmw% z;Dc3QRrC{w;#hyJgcdJQ%(_0)d@1)`sZ4l5oZ9bA>w}Nl-@eyJ&H7>4fBP*yV!Q(G0w zcNY{w;b*LxPy&-o{}C{>DJ|odXBp)1P`zN+pbAF2Ff2pt0B|@nRREZ=Le@xTow|BUUCzopdE-Y-IFoxfZfxbbh=|q*jNMWSO?oi1LNwN@ zWF>}*3YDdKmu%(%I0`SQ7#@!;RO(GZek@mV)|)0jFR9XRmvF~rxzZbwU%3b(Y_Lf> zd?z$&acPM7%HhvLWa)rjZ60hEtJiwHE#@Gt%B~`Ba?zz1?mMbSm=xCL*;jo-VCRq+ zC*KDixcu?2P0Z*25JIU#!W9>qr}yF{|4skG?Tnw-r3h@|a@_Go@Aco|A5F^(p8H-4 zz5F*L{D-0Mz5UrUy<-h)J{_huU#4DPzWIl5Hh*J1T6w?|npE%&!#yx()|<5p6(Z+k zF=OUaT`p!*8et6?)H;;5JtGH2v{FI>nyiKGr#&!reRXQOG7>*rmZIDUJZN(79T~Iu|0pBf6qpVMl6s}c z6NAaD5CcTU;!LHclVx=k(*QaXup#+m8MErWz862IECfvrLr?V zMps{qz27SvaorGm;B1Vf`gfhyRmDq0D39Miyn( zg8P(lGJ0qLOMWX#vny8%E9e6^+^Yeg@R8eiBlqO{o2WmTa34+*9<&CpW00 zl$?Ca?&$Y9<@RnK=7C2>viVENI)!gtAli|}Z%T_^3)k^d3{}(22$l7RiH8Jusue!> zz6owqP&Dr`%9BWCqrL(NIS!(=?BMYGKWgl&;nQp@;vfAev>EIh!@@k%%B3K+uVQyT z4T{zY9C+9l_0I6036Q2El8AK~|6>_o;^a^@qa+NgFr{V6PsT|Aw9^~jTHz>;UXs!O z{=OR&-V6rS=RZkd?63ip*otvVc1Jy@Dka@NDF^2J5${^7-c5)ALaAbn-ENGapu`51d zxS|lXZBQj9Wn>HoWNY<+_#EiFXix(%cesA|F3(8Zz6ypVTN*GvaR@6kryvF?fg|~< z^#p&A{A~(AKN`0z95Sb$u&7+2SRd)In*{kxm^W@eVIxTVKqEB$LrdL1Vz?zDJOJe? z$SX+T=AC-%lPS<&C#IZ*Tt3^f4KNt>_~PCg)WqL6&9K(75`Bv4&kkmYLG=LtQ2Mhg z`}0>BQ|aYzQ~`yeRa<&C0AAch#hN1@y#2h`)jlf0qD$D#-0kOOrQ_V<8<>x>i~PqzaI9nWTT_oy zpdvzS!hrk+B|DLz6B%Wz=SF~T-fKS!5D z3Tu^gI3Ns)O1*H%dw&n$p2lxUzz;jHM^mZ`4Y{$2};%fTw>DEu&g|V5pKPDtH z*nua&&VMqwbG7rH2~Y^Kwk7djUM!p}(!AeS`yVs`GUo1neYSk3!Lh@#WOUI9BuoNK zV{{nIw3qXcHm-Ln-~0XhTMU+W@Z88-6`!{P=oY_S>;X>=pis|2&k8dm-~Zcnv>3YN z_j+(0GS}vNz3{3RIPk^AWp3%lZP{kfjbQO@!>CXPnm~BxEl-D_n;s1)%Hcn2U;;Ui zp6E#E^O!;`x!*BEBYVGm)pp{*xER2grWe;3eg0PC`RY!RX?$^jlrm!&Lc{-3Iu7`c2iZ0y~a0|%Iy zjT&iNG&+y*DH6lYQQ^szRHlN^%`wvdjN}|)(N2sw16B^HVo{ajpKJYKU-xT%JWC6v z4mK;B!oV*v%eNhUTGSIXSSOrB`fbSGuhOX*oVCp}a!)aa$4YsijB{|H zp|}=7F@#WiF>PP2B-fmg=ueFuavZXo-WfDkgXH{L8tw3lr|CR^$ z-r5V)j9-Eh*2hIR1fC*;_6@GXn~zRQ?OtB++djBnqx|~vdXeZdWB>An?={XZ&Ao9O zHd~7bXg(CXCG{ZGQscP&NcV`xS9OnGdy9kFMpkGrzl-7hQqi9lifZ1 z^!b&ZA$i8>->lZq<%1xu7d9v-p+^ao)29xiQcMc3xo5*F0B54JJ6%D!ae4dQT4amf z;L4V5xXUYv#)f&mSsrAn8_4f<>ABHh{tDCt!Q5$AQn`oc8JNoK+=*a5%NI0bBc|o0 z;&I%Cop6h%>NO`oA@LAG zWL6_ujq*TB;|E`Gd7Juu9}zzE1EZ{w3tFiUMeIMn0(3)pXyu#m?y!_zZZe=7Sklkr z&yH(Y9Y6G6sPk>@k9#X|3+5{Ud$?-gp>-pJ#m*pNdu%EIB~yrD2MR1 zmt&aamNaI{%9_FjG5He@1?Uf2+#{N(j_MnUMwEP8c`ev}sEQ2zlJBD9@jL@3Hz4o3 z{4>ygH?opu7vi!<`?u;pcg=eJJCgOk0$M8IGI zD7z|49D=^cB;th6E_rK1PHJq3PMZwPF)B~Miq@6Dk(isEfMM6z@GNH2^pBX@@Q}ui znN_YF6?kd;ZYTQ;3l{-j9ZpIMN-~mVyhlpe zn;%oQS3CUXAZ7KzN@Zt3>kRo-%|v@w?-%nsBd(BfNj_i_z$@;%e2O6Pqac$?30N-O zpf;WMM~Zd(vsb>m{C;!W(?qx7Tz4vY+RlA^ZzlZG_y3~z4Sa8|n)a`f)bp=99j`l| z-K3v4?)x-c&F!z}`)=hUO|J4x{<7YVnEX|JAoCUNhgdoadG+dp?rGSNLhP8PPD|ZUP_s(GzsO;81uA*OFJTAse?p^u) zjP`iNt@emqcNkx&^Mhtmi@C3K{o(l<_lL(3%1O@dl$ByJ1H(|%av7YPKEx=q5cEo; zuu8;JbJ%VYxMrOfY~vEf@pFqSZ{0}QDbkFK_F!#-s}GXCclivJ0b=eS5xPEY#4RVC zT$>;@*d7FLsSc0;%w1K*lQvSo+>9EGy}QTqqK0zW{MemW_Qh*R_YsUm!fP}Mz}b7^ z>+8zD#ns^AY^kusnos9|Yyr??pV?!s>y!f>!$UcGEZU|vYQ>QQOFU23pV4^51@@zR zSMW1*gTi|eOihPdP7+ApLmPG7Q1bG%6#K{CUz#8|k;{blvuiab;+>Uh^In!;Kf>t- zI|3_&Lp_ene`FVW?yvn%p!gq;>4XQj*SM+Qd*bHkMmO(f*)^y6+r{gVD;H^k5JPeq zftT=bP)QA#93(>M1mAd?OU)kc9~sqlf7{_xCZY6abZ@iI)*{u)f^pNQ>kIcVja!j% zzX5{9msXFxY^{49|7*@<;0!RZP4qaiClLX{Ee%dZs!BbeRM z_#>EfFJ=FM`0_Zsi=)R0g81_V+46ZI@wwuHxiyW;vAB86y6dZO6tAF5xLg=28=a&m zq(D|_UhqcxKK;3O`0=X`XZw-l`%Tin|A?rsQ@`JbuqX(|3}_Z+h&4G>j6}0!(A0Wi z7dw?%>gwudUC^w3zfqQD(-=VKs~B*bHeZIkLc|Lg{j&U)x^RblrL*iGw@A_|Ix*jGB(LD&S3${(@H2 zTWxTqEE_(1j-hYOT|DE+UQ;1If)39+L#k*-3YnB2eFL^J^WseNHih0hw>IQ*$dNmt z7ze{+8^+5{XmA3a-t`?n{w3Emp?wycf8G19{lU>{-1{S!H|H*2DGl+1nRp_<10s{* z2S;Z$&FPLeF4>IFkG;ghSN{aI`y`|zU4q1jCDJVWmetm{4T>?alqhwBFe^5GZZ+9i2e_uD z-bh}3#q{b(Svilf9aVCTaMWaGM?3VJrP8PJ{iGx=2UB#CP8+JN<68&{t~&AjVTb^~ zWmP5>YmEXUu9C8CsJ3Ecwa50p?1V%LyV`O@!!Ka$&S*z9eq@*_udvQ+u$Ns~SMKU&V%3R(SkHZj@{~;}4k~{*_*kP@iyE-)wFKdf zHm+QK!liPO3elc6l^vHEgTh|I>i&UJ?2M?pBFiWBj(IXO)#54a*IT%~qh-Wz1>6!n z-fL&zsYZHN8?;C4Rc$Mn%VXy9#o&(mMa_HqGO_SU8;MzJ_ALVg@AH{~!z(fMT49P^ z^OAA?n56hGKF;R)6XF6{u#x}%^&e#MuXck=Eeh+}NCd!gKs0VilN-vYK zw;%oP;YD)E4>H~FUIcANUi1CiCUQLRyDHiCTeQQpN>;<-jAhk`V^tl@wtn|^!ZeXj zSy|0ARRR+}0)ojZ72s?Y)Dxk{VEG;wSL?&YBXZK_;O$F1Y`nHqRMuK{(NhPheP0>};WvQde(5O;2b=EKaLb;=&HpEDl9+lyR4k7Bpcq3G?g}pb8 z1>Jyo6exDPUWtTG+q!xeP%8c>J*T|{*SgUBx5ip2fS*SE9tJ*(`%6a0=LPGMHPh!Q zt2Z=~9BC?g@v3bys#J|Ro?QP-bYrXtH2Ds88lqj}n)aR0`-p|YJKtx}Ez+FuI=16n z3r89RRtef3TVO{+!;8yaN~uLf^qENOJC$`Q9s3*H*A{l-iMa=(xtPuGM1>s3d#yxk zMw@NW(9(z0m^^p-_a(d#{Xbu7=dizQ$Gb7N$Y6(Tc=eag?q734;4fsGZ#zl;z_hg! z?&W@x05$QVXP`z}nxkcqaRY$0hxCfT#X(rTN-;>SuQ*=GO=3{8B9X8u_r;pXmCJBE zQnv#hEf_9zh9_>yJN~WkY$kepagxvtTCSwRXg5hnV;&`))N>cRP<3D*9*I$%dCIm4 zTwDMg^%{L1-F7R*cUCKHbC5-wuamH$=0@fz%6zVnlE}q0oV{&WMQKO1XiD=Wmz8Y7 zqH!&Id&rfnYT7i$a#n(vTGW17>-GO*>MWz8?xMEutpZ9aDMKg-NOub&B3;r93`h?{ z2ty;KAl=;{HAoHJB_Q1(3?bcJA|Ul1-)F67J!|=iFHZdDoV~AoUB7(~p>|YyGlMb0 zd368YiPyrJ*Oi~oA(7j0?~9A%%nQn!&en4ZSffjLb+tgtnMZ44NePGd@e3c~D77Bd z+uy1uM7K*4u!v8$+wZT7ny&ZkHZb0M7(bc=xU;YY2aBRPXj!`jlS7Hr}00#zkOcD!I*QcGgax|Y>wahpU ze)-%+W8=6iYdN{f{IeT+<9JG&VwTkS?|7repNUNw3_q(C?ey-*5j!NJ?Z8lC-Sxeg zF|`HE00GRe!b$l+<8qG-39<8X3r8k7A{S4BUz)zU8smAnl7x3JGF3KO>^IC$;&%VU z^Kd38_Vv4$sWe0-g%5B=EX6AM7&)`{HtVpdWy#Ql9W_#q;9n4f@u%2!FaQ6@^rY3N zTk!Vq%&xr0u;})zn&<9K`>Bj~A`y5MvbTek*~x?bjH3M9V}`7HW-SJ^aL z;7*3=*pbp-<-jbvqUelWvE}JFH_>+Gb0=j^>Eqlh zmKi}SlVn3iT5SwNN&Yca#)Zotse3mYWE#o?P)oX^Xhx+*94)nN{ku1rG9o9sohIb* zVd*;x|J@k-Fs=Hz$8h=mhi@=oPopZ+NrVpGT8iLZ41#s7A34&@J1#`Uqw3z5(hSu* z67%9}94o}A-*?WTo|G=Y|J=}YU@rfkqIQ-ksI^-1sha)|&xs3jGXn zRyVV*Hb;q|;C*`Gb*r!wY4G2J!xM?y6U9frNmRw!hHrLf*3Nnvl%C0OnM8#Y?Zj6hjagM@ z<#VT0QJjLV2Kw0V^b4`l>d0dlo}UbIu;X^avJ*!Tg#QhWFwgEV*mVp#iIP)|Yx zARz4A{(Zx90iL&JvI!~wD7+hCs-n5$Gg5}QBu5v-lGBqD#l%3_B^SV)zF#WyG$M_e z$bv^m<*tPqYB>yCK!P+*MsV`VAgl=o^AgFF_$DX%Lvw?otjQ-e)PfDP5iF+R*~Oa| zf;D-us}t(76V_8tQo6sUV^r6_z>X>mE}n5shQ0zWTQQQ)Vf;ddrQeaV1H0 zj^<=KokuGV*>bQn6#(N}SntfiYDRTjqS0kRe8#t%eB1sT@T(h$y~$l2zei?ws2mwW30flVcL4ce#y5*Xe|m3^(A&K(bklz zsQsTsB4}p`$kc4N6gyaupE5F3PUhIa_ z^?Yq2w>+VwI)x3JR_;02u^tCX$MGpLSf}fCWr!~j2Q`};QGuHx)wn;W&}>=#o^gyL z#G($>Hc?HU81SlotO~qnq}r&HnQBS^y`%sZqgMwW;|w0FNu zb$Nm-Ip)F^hb`9}dwR#9BT8WJIm5t6G2*^&LPR`nhV*=04p7F{9; zSPhoCKNT`B1~Q_EL1Q{wDe{nbthn8gfdK?X>x6&1n^pGf*Unz`y>J1Rhy{CRf5jqY zZO>F-`sKu5J#3T+zc}(aqjpv8gzimagL9#>>Y0jSOtx9&-qGnrA=LX%~`oAVi z9gk~cPLu2pGkoi`L9~OszZvQCwiMpEt4&s94Un`eIcN$s(6-o?$>H)70Ox8v>cpJP zf_R6?cMO;kYpC;Zq_#GBk@wkR{yse|EKEtxUO!OHn@TO>^fT`vXqi3*Ii6hUUNA28 zA!j?Pi%=30D1-pf%>tuO?ukMJ&BEmc&*gZMe3B`I`1Qh>ExQyoEcot_iYZ`0i)7n2 zirJX3(e!{h==@uiu7oT;%@-pH&qXuRkw5ksx_F%@Qv{(4&CWfg==4%>EK2q&~XPvroyP+_?>k5ex&j0TxrAVeIA z<*X!wHo0Q{$X@B5L6N(K9nc-txAhd~51!?$K=D%|KK8se>Tg~!LXl2>0NvSp1 zqDmWe- z#8e*;2lM@HVDlPs_PQCzlN}iMb)*T5u&d-#xSyv+*5t(6`B!h8K?QHU{%s3^e$DF& zKvjnY$_}5Ns}4UsPLD(%7rf+q)yTI}Eyy7OpS(qQLs2Us6Y-(Qf9%cXro(#6E{ zCHK;EFosK!M7bx$y{+dy=RJ)y^Yqy|D7F43W*A*EwQaOE%QP#VXxy)5Y7$uz5w>_- zxN4t*bR`8fny_JRm=v-oL7>VYHqH$W2FHY&y>ho?Qud2a!g&BXS$Lr87^Iy{1HuI7!=zOi1#%ZRd{lb+P(VSZ`+ zT#53k4aOs7PH411{ZG4?I7T%+6Ma!>sAEOc#@o2~%?3H0$&`#A3<&~SjGSu-=AoU~ z*K#<#w(9cFt*)#o@1|l1Xoh1Rw-mX#gBGE>Mpg?G=BqTu_EXLi#GzG5EaX+tT}K?< z?bS|O`-qX>N`j)CXoS6Rq(~Z^)LnkO*3GD7P)MA6wPk|bV;o40+`lUKDb zpR*}){t*x0NPJ6&aWcq3vn>}}+F5qJo_E@6^bJ; zG5|q%;Q{6%$b#Ue0O{|a0tj6ucP;tQSC8R#s0wNvf>h)2ED-#DL~xJMXFt5S z0iFEzf|v~8po(i~M$OC^U&aQ3+1&O={M0{B3(BAO`j>eJge3jsQ^5Ov1wruWZUr zlq&86#FQHklK72B>_JpXF9lhVz5HBAme-2ra%R}tuP{90V14yxjK#H!PTycO-gh-2gPk~Ho#nl&d5=~1no|aG zZabETg=;(9#lpr(c|F=QLI6xeY!3}oZH_{pHb@!vScrh;-n?_3eW~|E*?Y%7xQx%% z-7-8orXm21x5*^0H)1z+6)Y>1{DSgnv%tFS&8pN@y3aNLN}Xm-2iJA76aM+ng&PY! z~h|tBpMtv>UPN4-Y+TKJ$|3wRzUiX{(R~{=# zfET*eVy8Aie4en*IR5SHO0pBAhPq-WL_a5qN*1r0OWrK);6d`zZdAj>iMxF>fO`QNO)q*{G$jU=+AbLO>EXP?J9d^%v+rG;P2>u z1qNlJQdhU`PTHEh%Azm{K6C9Vf^<|435(MR!@z$?HX^;6`w%m-SmEbNiuh99e9jfw z&-!vnepw3_*I;EOteTL2+_G*)XUopx zBljGHRX5$RcWe_&4E^-;-$3h}SxM4sGj<%z4W1O+VwOis1U<&%E-@)rfAd`csA7*d zlvrUgc<&WB+`#DEQWR%A$x%GA8Sz8@8A&+by9Qh6Z-ZFyywgtaA1*KX5-kWz=P(Uf zi)pMZ4H8md(`L@5pV$(W90|4TeJ<_sy7k`~yc;Ft{rDi_t)0DvMyXYAMp~yx8+1l| zEO=C_Nwy{UK8bqy%_fZ~I)X~)j0&!}fZJRqSL zBOlXc(QRI`@(z>oNt`14VJ>;}IW*w#<7^(LiiaOrF#ifjkT1;4{quIt6I3*K{`9G* zVZi;&pv1zaYds6D=h4&7^w|?zLD3j+(aI&J49LeJ?WlpUH#t=; zo*9Z6!>LWSv7yjAqLH@MAiOll-y83NPq@KTt7-xciGwC)^!o+DspKD?zt@90pg+pC zj3A=2j!VA{3~ZNJEVR{w1V?J6gTx~pLljIkk zlS&puZ?PEs3VueoWAS>Dbs@WE_C_CIZ!pPOK1mSMT5|&1kqLML{e8K-jJAOIDRQ7=iZreCMBw~yVo`f2b znO#}_-cd>5o4Z>1k|bjxlaEltxIhoP0ktxP-4XCThzlQ*_VoNoN*55?_y=@zV-EQV zd1XF3-4i%vpWb)3aeC|EU`GvHcfpR5tXKs}++wq4o3s4Xeob*at#DjUMWI|iYs(nJ z_|=%sMmfiQ>cC%=()Xc~CG^`V=+7mgVFiVE$fT{Puu+@_y;YC$k7c^oq6f*T#53iS zkN}Xie7A(01lGF6t*E{quD;Bk*c)oCPFmfUnFv=XsKPvZNcXw@r;SS* zHQ?X?^NbAmiY`RmG?qo_k6#%zR7#NfsXEH!c$^{J8c~l)$)*ni1Io?`@ z4z_SzDiPeC>I=&E#iVxAaqTK!gy)})SZ`KS(=Ke=FX)Bd9yoS`X!mI>me#{WZOA6X z(ped%`9nImU~4Q(z=?2OArXo&gQ}=~Mo^xkb1OXOCYCTC$PaHNCaIc(klH{HK}8Fz z+iK)*C6Q_==Z4XVzh8dut90%SYWta(qou@`-d-X#d3(5ud+gia(B{;2Lg7cY0DyJd zKSr2Q(txh_f>iJ&kSHf4#%(EoL> zPd964*7BKq?YM4v;g7?z8HXqQ0G7UP&pFpB&F*VV@Y=5;rno_a0~=TqrCR5X!+g8G)0pmkqQzQzL9^yE2k0AM-6 zrjukP6%2a?F8km6JZ=3Q{1S|d8(P9msl=*A*Ii3#DyLn9afu^*VLcUV#Y@_$|N7sIfeBe zM1OZxn$(Zz%d8caI0W*#I#wBH5yT)c`_W1&8WE?}8!Ai3MLi@8&5g_Z>SLopc!18* z$ckRWf)=Q0aIA1>2=Ja!gB)D{+5{6#w^_n!+I>oS!*RPAfE#FM*w}xoo`6jdYTQA` zq6mhd<8mQR-Q1h!%L=Vt5Qj|Pb)StK>#OC1Ii^88>i*olCpN#u@Rc_@S3Xhvf!}Qr zA~=QsG~D58CvASHQphp$%9ui|Y|Turd*=(g@TpYBVpp2^8enNxdR5D}_GZDfdFAlx zvy#UvN7r@+r6cy(iHHuMhRfP1ml33&CJZi#WzCi)zZD5UnI?}oa*W{;<`bs^;ia4- zwgC--nR?03pU!VC&WPR~Ue2GA)gQFlH$(3ngMcK%Ku-}ahCd;~=;DrIst-x2% z;+kI)QTvB7nCT?vVwuOFT8V&jv}V3rHwCpVKm=(IUrI@)_7|?#UxV@15JRJ`f2BTZ zWTE!*l`UqKf57d?erTS7t`85^pPNrTgc`dPP6+Gr(r|!v8#BGV(1jr)3W|_LNza)8 zDo{>Z%=UG6?WP-f1IoBCdQ_%6XDew}<@tWt{ZM;tm`CBggnw)c?9>iuyYQo+O^e|b z;6!QQ(qh*L7t@`b7%2%qyemS4S;J#0HD44)NOvavq@wsgS~T@iPLqg?KukBJ3FrjeGEc{Gt{?M}l9L zJ%5X-19G!+`m}C@VnA7KVz+=lq5~0zwiZUoXv-lz5mV3D6jjKR>(ccJJ;sA>4|gBC zLyty2Qt{XMl=P;nDJ4*Np05Y7S#xj_P^ImB6l5p>ZX%E$QP8J}SLQWh-rS>bi? zyPd7Q%536e;$poSyF6I&xmn22!EeVH(qI<(B>wIJdR%Gw&1m3RN-34j$j|dW#dBGmYX1O4Y>@Pjy!VeJfa5(0B&4$UnP_0p-rf7Y{!Kt z=3EW_a7T87{8D?$20~}7ScVr0<}fxnj^K1pj>HN}Jn73x2LeEm>#qGmH&rD9*5h%g z;}hUZy-;!x%?O9@kTNcRaKV4~*b&M3Yy+zP2%cxwAY=nU2NzH&p1hAEXONc9BaA#N z;qSb*hA7~0#QAX-ed~jae+jT1wRdXQ?7?@3n!YP4uMdC+V~h5YuIiD+6e*{k_+e87 zygF#+{V@q#V8iY%c3p!xQL)dmGy{_2QJo)WHd*;T@J;Omk7Gn zRNHMJpBZXE?nvqt-fMKSu52>PAk(bgq~szn|L82H3hbLm2+GD4W;0G&V*)+ei!45R z$(2?%>Rhgz4ovXZ0fWz}Z1HJcA+442f<a=dbFBFzpu9>9gH5# z+e@)ZV)PiU+du2-C*ALojI zBG^5zH;=6C*N=Kj1<}6v4JdXj^F|l)>n~GZJwS6z<23UuA0w?hp&*~A6kgd%rvy2o z^?hbD>NO{W*lxkb;xpK?((6p{9k7$1D5!-n9UPs|a1ucN*-i`6St@l0m__f-r@s}^ zdPrnja}iJ^Rde|Yg$7U;8ObjGp*nZ!GNEv80k7Wl82)<%$|U(lt;QOdWA|pEh&mVU zoSo1~);`6S(>4L`gFFpDX?k9(0t_D=`opKXh(;K#;Kd-ENcRT|7cI7!N7>iC?OcR( z%*Gci;73zUJ0M1Z&vW>RAP4gCnddrms9FAtVVitZbkPxTDN5pKj0YVPd?u+rIzoN65gIf_J7Q2?U%Ujv5g>q zsP)jJGN>e?+hrIYO%CWzAr0+(`1}NfsE0TwUl>Zul!JS%>XXA<}8ciXLG?byU`mpkTIEBjWz7`aRuZKv=z3@#a^zq_)w|MPY2^*=KBD9t%C> z8>`SGhq*(eo4YpJ1fBHISzwTbLb(+tM4)zHn;yR*g0b%$EQ%Tuu8U)?cB^9Oi_xox z|K!u^PXUa72cK~%5K{0K+Oh^6`R#DbI~R28&AyP6CUiXGUuBSc7z0y(t`KaU`hs|6 zx{QEbE(NM_7-+bNNrw#@PnDreTR` z$cMj6;ev^Qv|QBKo>zZ>0ge97a>ZMWleXSnW$%8MNYHrm+r)xG9g;zbR1laRed7NR z9Mttf5xNYF)ebR2HnE^enQ(kq8Il7X5bpcN3e1a;=y@}D|17_fM?wwli$CE*#%r`g zY!7(r1v^mv;8^E-sUZ(PX76i|!8p%*6m)kV47u&Nq}G0Ly;z-N(K0w$&7-TyIx3ZD z43$xiQs6TuMm24;&>hsJwxDx3C*VZy_IH2P!H-Zl&;?B==Z9P7ExypDoPt=OIdr?>-^zm^ltc*TiQbzm1@k+n>@AQ)FxHs!=8QIp$ zA845Qe)Q|ak^Q3SW!VM8pb@8*UCez-xJ2{IrR2F}?h>W+6YH19mhA7aQgDIk`1QCnL#v; zp)VoMvwuW{;79pOLcYhBf;PZH*z=`k;b@iAxk+xC@}V7iB?b0GFd_Y2|H$p@Hlff? z?#h?p4`S5Q{5!A#6c$v@L%K3kz)={#{!~c{uzvNs@w_kpK6F))YMcH^#zx@(x%_@% z(~N`sF<{4qWFh*?^|~uZ1(1^w9h!s>0UC##53KD5-S)gYknr_w74jOXv3$E&LP97a z)_;kIZwi3003jeZc#tm7VuNnX#?>nYEgzL|A39_f4Fc@I%I@I3sPS#H3<=#s4x*Cd2t0A6j>Y4$wpO3@Pvg?T&!ZEPap z#*=`ydUQW?PkqJYB0w!642knZBw5iP7Dj~)9*9-HBNEZa860u%ujkY%0cD3@b8y(r zZ9B$bSx3Sp5l%?{!`&Zl^`rFhy|Z(fSf3N0zX3u#+@`?&W18Epu=pBA@**_uAA4rwA;4l=&L|d07s9F<&^$Ill(um3`@wR0Bm4~!l6t|hA1ikp0fb#|$L8bnh~=iZH$r-Zb6RUXIUM z$`5{;z_aFV0S5tX`XN?dO(wn!#-!9sj2`edAQu!!y7_w)>X~w0S8OOUx_<;K+J|(B z`75&3J;G$VYwN{+Z(R!J8+R?iLf&hc#*$`JP4E+p-gSF$HaKQo}I;Cq;yj}@7|bNuH-91_uc(CXICti-~~<9J>pZ>Vka$CKRvPHL9x z4l>iq^1PJYXP$v)bFB)qd>4n|8ZAdRbQr?Be=Ht%pL`K!b9bxk9AeJ?wiN7WKuGa$ z{M%ydM<>6RIiJ$y2Tb*CZxV0UmGK93Y@0_z-Ly%)>cd(pPyMG7;uB`L-y3@hg!8&| z@icI*bPCNF7h8)M1QxtqpypBsat`v6pMisIQjZgOS~_c;Um@Xr%u4lBc4ec;BO4k5 z8Uu>umS^O-iWIrN2HgBvgG4EU1`F9+4<23*F`Mb|YoF|@DGX`s4`w-$q&%e+ ze1maaTTvS#Gbi&+$jZB_SO7+uJ8RjT0gAo%rN1et5!EKiGFX;YP+8;FJ-QzoHzZ4t z#30agVR-@AHiPIz9^Wb>a&t5D68cr#j0FRG z>#FaQ&eZz9+#1l1fFFJ~FZ6W}I!Rzus<UwJtXmM-?tGydJ0S@#SRj-Dq z?|)wmyPhBJJ@nZw7kFiV9oO_t82aPe7Llrr>-q1wqZ56Z+|g>Rqay^)M`8Mg*43(fr&5 z!Hj7|U&6r&zcLeZ72EG7#G$YbCUNIJ99`yqIVU}FQ6Hr_&|3wbkl^cKg^1*Th~SoAbtE{BI(u%KQ2a~ZLuccm-+Y|c_i%XC$Ugg!9QQu3Qlx(#UtAA+??e3*S3Gc{Q={^h0 zT6d#h0N~RE2Wv9WJjiG5RooAM zzMmljMqTmMs0XHgX$$o(O6sIANi3FhT1F8a>psiZ)wea_Z=kjJkrA9epTNE2$+offZz8+`j@Zr zhDZ0Tl{wM;i58E#<2Y9t2C$?bZ4fV6Y=L;vsA)r{tAgU{yK?@@rYmufKz~{UGXdZS~r(YqX1SRE&faLz2(&64UJLC*5jW1^)oBc~oPCM?GI0287oMTqA3*7b$w$vx|Vm#!rN?|bVJTPAozoF`t6d9x02RXJ!ZoLuYd_pBkf!;=UP!Jh)refxU? z)OzTlH_{1M@@@0%OxnARHP)k51WE?^cc`UI^S120H$y$K-L~ZJ)H9NSbftToDJ2Aj zF#0B3c3RV)mo?mB&9SdU@*y+eOR!N5dAa4}ouTa;bvoeqf8tPnm!)5>nyJ_N%^If{ z<5YE))Iue&-wVzVBR1H2d!c9CgNiPwH*f8gytX#UOjC?t4H?SXxNko~%&CX?jY(DArWW^z5oETWaha7a?7HF43Zg9D(V6Ze z;vVN7UnzvfRDGLxEC1%dZ`L;bxyIHYYSgmSrUhb4plQzwduw9jzTr;`h&@M*B%%?W z{6mKvel>O`+oDLriXgn@;%7tF;B*}qc!I?O#?sCu9c9MA*Qx<@O3?0DizhOaJctR) zk?sR0f%l?UBJ`l{YE1Uv@M)&_s!{af6UbRrRp=!7R**Wr%(Yw4*>gsB@`%#-WfgwSN?GBAzjqc`~Y> zFZ|Cm#$=08kI)ZK(UT7NoQ2r_$zi+-Kiu|M2}(!yuya~A0C(go3Y>6rSu0oKatY<1 z1RRjmY*I`zypLu7*K1mA_?zQr9KdTjC*K1KpQ%iy^Mp3P9p(9tS;H4C!a7*QtnF(E zhEX+lM!lE>YtH8wSpQeFHELTts3HdKn!s~)QSKGBF4oMqvf?TOh@l`S??{u`I3ASR z{hu<}&9g_C7^r+)LEoc*|4f5NC4gyv7PRYV02C2&b1EA2m-K_iAy4>o(bggAjI^3$ zXxpz7DR*?8>$hL#1m&M?#F-Czl;WR9$W8*A&@OBD?-0oKP%QQANZrd2_aisSltk)5 z4GT4<>DFuPO5qJK#KmJEfeEME^wM*^$$JsS;9c&mi|A;eBu;=n*(D0rTSo6c4 z9hUQ~qnZHdd_xRbTbq3d%aIeC{Rk;AK>+m+L3(`6pkg4Nif>#+%wrHvgy|v_`m}}{@4Y@I!ig*fOhg0%OGldB zFOE6FCC-LyZ-z2G@1Hn-`q>JOi_ELRjZUxkpM#T-zEuDm%^CY*r0pl;%UK>}8;$2m zxXanOg}H2L@pt_v3n3jNTXp2K9oRb@sZC#`W3qD8tY=~#qIwa+y4`o6afAW?9I^^M{cca4Kfh-{-7@ay*jWOTqnQ& zMH8R5pUiuA(wVYI<$15&a9;=%<|!YMl{9F>`5Vk4Xl7cltkUY`@YazkS`+-#bo^jZ zlO!umKVVa*k+H|T>C`3A&3baQ?W0_WN7Pj|V&g`n7E0}55FW*U!>eFNaj>hx-GGl!9gvNGiIV$; zWLa;%&K1rxhnC5KZ98vf1vZ5kp4ROolaeXXOZJ#SCG~oIB7NhG$1OY&%qY0E8aA*HnWrlG;H9|M2;AxtpCEC)i;bT0ksSaI6*@c*8at>-12UuAL%eZ z)E4?nES%@j)*uiqX@KxKI!p2)l0HKivz|OhsaK*lA+Ui%0HTw(krHQ<|La63{pI&e z4v!E%7QF42@JzzUBL_8HjA-$KWU zF{4mB57_2~Ta5}#6a2Iz)*pseMeVAr5j!f;V0i7>ADe+um%*?}G*6xnUd!=efT{f0*UdupHvM4+t7q7Oud+(P6mY8Rkj@V8OZBcgV242;KfV0+X zJls zD%thZ-l3orTiUqUp9x>*h57 z%nh^lDiQlt>s2rfxaZBx2S*aikBUm-QN2DVlN>kQx7(u_XPLF2*fg&LdY5Fb3?&|vPn!aDp7xbv5NQ!o0zkJf=VNBYB$5tFDjt6?_QN^G2(#8zl zi~9QBJRWrDFHd5`%Hi(RG`#{1fKqJS@UK+lH8WUiAUWjbds=AKYv7`65RQ>f3}-@5 zf#2spzE!6r$lBGpLXLYINzgPy!DDa2INTW<-rfsQfJfuL>aJcD*SCF%pUMg0EeBkU zU&0xVV#B(&(71S}iu=kdUOK>(?%Tv{Sx-(9?{IPxI0*)2pOb`Cq)=*oh^V7BYuTxU zUf}d*YmwIs3PX@@h}BBm`&xi|0b-S;=56^0gFFJ^fwg*W3G$_M7vGg<7XfRgN1-1? zlrv`1E94xPur}-^>yr<{-+;p*0XQ?mkv8d2%^+A-F`^M0Je_ko*jGI|2qKTlJFAg@ zBo7^ILN`faqBm?5Uh>xR&$L z*1no5L-oF*IbELv#%ARCQ)LS8j;eOV<6N_Q9uSmBjFg;J2cb zjXxU$%lMzJ5$$dKOJgC!`ZWzoraS`xiNxE$#WXofmgbhBh zr!B~VC9%9h2Hoa8J=m_0o0VMvqFrX(B6O|5SJ59wzc)9VY-Lfv;Y=9u=*+^;{zm7SzaY5OIoc?Bl* z=eSoh*&LR{kWuswQv{5<#2LN3c+rLVtQF#9D0E|`U49s{RD6Hb}OrFhdyA@Z9f5_wn54~A_ zg6Y>RKGja$Kl7IXzi9pWZDT=b;ZN6N<%Q)r3J3ZYhg)Qs&Q$ zTk~scTMxFa_o_WaoQHlJQ^iOLC`4201+YKSChd^7xnCY7j7`mu88#JUe4jk~0guf? z9vj){;;ESDF%`YW$z2Gzie2MD^WTpi?jHvOcc!gz3n*z*Ivy?7OAJoKhxInRCL0bm z8cKI=Z?6|bl6hdk(cjn=os@HSQegUL53<8_h~RP3ouM8y>;})}@z&L3T8)pk*bEFM zk~HENL1oX?T-V7UM_EF=Po#6Tt^YzZZxtZ~%*0d#-benn`{^7P$IUz;cb~TYT&jLS zvK}nf2v;x59F4|9-TCj%9r?GCn)M=!3l}F(KYzWQntU2?ukPDQ>1+G@B=7Z>15g!{ zG0_3p%(?z%<1$dmw0Hq$gBu_D^qG+|XU?Rz0>Q{1-0I+BGX!57JBB z#0WQq*uD2BKNWvFKfdOXOsiaQ<#r~J7}|MUT9t=MA%_}P%puj{LtIr7z7&KxH%9m) zzER9jNu@kQits1;(fxyDjsrt z3Tjc5OAW6xc^&;5$USN+P-t$(hV;?&Eso)^tI5}x3KSE?PWJ!Kz~w6gx}MR zrn0%Et^l3eG3K!ABrY%RWlyqL3PzmDNBWq$%IU@G94u)=dw6B%3gXAf>|iL*boZHP zlRJM-F{xfn+cd8QrTKYzSi7=8-T^d?<8F*-MG-3<$Kpjg6V75xUO05K9^0e(i|I&N&{*2pZ~{00KIr^flQ(q8JK!eZeI=}qtO)7} ziSd?Nt_*=#XET$T{})&pBp+24rmh|QqgQ}EU9#hi)@v=YNeGj^ZDc}8bOKos^Gfg3 zh8x}6`=8~DHl5>=;agR<^`u3G3Q-EXGkW7D?_M~D`Nc7CAVeWl9D(|&%7XfWMBT3p zFea2Jv5foFN>W$4F^;69O3K{qMGWwGvsLJ4gyoY4-=}2GS^8sDj6`DS7Z242g|Ds? zN{Xs%z-!1|gTS_hVRM!yR=61)U(c91gfslvpO3bXojO`Q5&h<%rf-+z1YwG6R}$Bk znh0SMv!OPUR}f|r6s$|zr}@U0iG3ZN&>0v(=@JL z+;a-UdAgE8QScm|4U;DY3~kuqpR;8)e90=r*ExpHzce_W-|}6eU-zUOcW|22C$#PU zuIlhvq?F$9C9Gn!>ipcBqWh=td)&!QKAlESd)lw`M_)7RXW)-5uKett8X<5OJb9&b zSPK=@H4T3ukj{%pyC)U%yzYBjVf0+VAu$5OX7S`U)f{>WZ9ad6Ufq?vEiaM4$L><) zWops9a%a(MDX`9!mX7ll66pBWjW;ZJnSkaYARf}Wi!*N}lH^Q9bKdgl6y7m-a9eqB zv2fa|`-Ku`{1Z;crxo{}58X?Zn7{Zs4;Q?}p0nZpC5WwX(LIHc%#LgdD$Ufi^{86T zVi)4N4tpL~tp2fx-K(jyGLV8<%bo;PN-L>_1i9vzXB8HfrH53!T4k4?{AQXnFP?s4 z&wNz`O?rfKU^duq+&zOSN&RN@-oxeB)QX~87;oEZV4AfJ9IOFupfRlb7RG%SymY;c z{Z+P9cO8`RP@je8h7xl@jEC;!qY^Y=-C$yBhDyBt$l-!j<{w5ky5``&9O?nprf0q;*LRChymucT{a zYQ-JZ7kSMK>m6Qc<8{BQ7y9?${95XFl}+OS_GYWYeZ;eXsQM%|NKM`M(2C-mWm3_a z_7Se>ExmK(P-+EmR0^YcGt_$A`?NlANfm%4{>HMjx}SyRAlkKO*C)08#-){@-a_+sCB{hi#o(XW zg?06#3`2_ZB6^R^u`rVmw}dW!IgvE~`{hQWg8GDotXnUovD^pCcZ8Ids}}dhu~cPV z0iQqtYe1GdIb%q+VVY0|$5FBtv|_r(`a)hI%Iv(H`-oqO@0A>QCXKhYuk)*0vW87EZ$waDqx_z0rve<tvh|>1z6z_rl=27EaAO%548Ad2 zE{rc}ew(tHwW+55t6XoSdiCWp=hKP%fN;>LK>P++2}$kuZ17<$weq;-3`ENxmNXvn zY|tK`ru!Xu+hID{mo)tNq*&RSN=`aBw5c4aYL6U+OIV%|gcj{^D&!rOWZ~iiK=boQ>YZP$Z?uq)_~N`uCT_d-?M>;b9ki z!=)PWxUGLDgIA+8#_WWZv>(PkLmf~SkAd5n!hK9L6V8zWI>?rnP|VDi=6wxep%qG>+)WpR#I#N7SYbxr#v=hIl6NliRylj7i{w)(5MXu!+jSTd}X=;1vDY#%A@u7 za-{jfZN@@pB<^>j+eZr`hV}=Z(&K_)pRQ}Q+k$D+`F!+qIiYnkTAn`|;K`q**&s^4 zhri(bVBsmc&XsefJe5lMRrSJJbv|Ein;TSIp?5Y$S$Q3VIxS zarZsQhxe-7-D~~f5C&;FAu+A2_l-f76=vjSt9h$3gejB$@;QaMWv>i=;y7GaxUYXy zJoe@8O+KfTOaR3Y>0E%G>+bz|y@Um22Cxd7Kx3u8M9{S+bt=G;Ot$FDnQCH~b})6o zsc`p*0CvWGOyr}(lh!`PB+cSQ33)j*%~W|$yvcv z#q9iT#v8w+^ z)K^AD*@f*|prnFyD$)%OFof^|j&w7WbR(TIQc5cA&@J8FEjhr@Al=<5CE?kgb-wTX zbuHF}&+L8QR}$Y;wNDVAf1%k?nYwf~?3f3z)Tr1D4)_k8 zRkM|`m9I}9wpM5LtLlQOZK1q^;B;p8mC%%MbaqR}J9N%E*;+kOf{7TzAj5SR)FRO49>8bn7gafgfMb+$_Pjy8k*F70zvV*I?&=1z(GSI;Wn9X*srh7ioHPlY+M(s&iyY_=EK*q414p{o-Z_ZL%Ze+mp&HBxWSyGeM`gLX?1(!hC>{a)+GAh z7*WfqOW)tyh;71amHRzGK404%RxXGTt&72xz8zLy)7DlruJ6|!1?dfCEQ&()jxEA8>JXkW{&xe*O6Bp9Zsa62q|YV3(hX{(Yj!5sFAVmzwuDfnY}U^1x#{6EiMF0hkaxiQ?IxF>U%xr9sgaf) z5roIMKn6)hi|yiB{~p@Y^6D_S=dildh^?x{&4|Rm#U%xa`E%>duhVjhkL9@RPoK6r zcN*Mwa+cDtgDgtzNafhF2}nHvTi#;Tl&GYaO;>(qY3&CIOD%_!UKnpyA1)PDCv)800bZe?Q8^2s$yr8qGcgCYSJJG+`K z0r|TQgHPnMcO%N@VgndUKF5tpWY<`4hD>P~EraO?++*Kq$QG^32?HC8h>hO*!Bwzk zTEF|gVPJOQo(mO44fiET)v4xtTG`F)N>$HJJtP?@x6OUvN*((>UVtY2LCp-mfIt^B zu?3wT;@Z6pRH`$}xxixfv?UD>bVI`xR;o-%a{Jq(%hPzy%&?adFm0t!m98R^uS(d8 zV~YvK)dB}{0<0;)-p?+}#Tkz$*YLZ6)9x1l@K=8rRZKuw*y@=JS*ZpjXmB6;WDCP~an8SWfZS#UoBJ z%lNH^;B2gd+#Dmgzb zqaZlGNqN{MAk|`di*>WGj#Hl%$ZRTYSI8*PT2&Jb1r@()rtM~@0_*%XjU>MPa37u7 zFJ>;-;^Zst7GnXgm|4hYqn%ot!K@6=g2}*HEDM@WZ6v`K9~FnpD-Xt&CG!5G6Jal! z!V{s|SCO?led&mux94ihi6@d6%NZ4i=(@Y=lVCq6GLw6>^$ESQ zdQDBDGAQ=x>?^$j3js^0#fPS*$?um9figqoWPfpEj z5rWnwTW667cL*|kAyehW@-JJ;v0-k$n2dsW43@-#qjonOI6RM)^U(ktqmtW%0PBhC zUI?+lLth~Qmtw2qIdhQR1&?r*6H&{(eq;55DI^{iuUB^{@_ywruEO0kFTI7c?niQ4 zwM^!KC_Y`R#v$cw!##JpbGu*jffdm_{mYOQ7xLFSU8dFEoyx>ICE5}Bu2gDLaN>-& z{v$Q%71M50A7--?`;mKjz-T$;V~IS&{D9QLpE(_^q`4J;e+0juh?W;&JFvIMT`q=PwTC{bgJ2A z`CRoqc$e9pqOt@%&vhc+@6uQ+NVV^&46Bo$$!7R|wfdCWws_qqx#9Yuk4_pP6ms=@ z9bbu&AQRqS-GUb3c(Q`@S+yuRGVtF09I+2fb(l&_qF^}VKm&6&)qteAw?tx$dw6&{ z*5JyvrHuMd^NuCc7{_M&@2|L4(pu^VtG}QR=O~Z4e0B&8JP(tz*b#_aG^;FP*M0ET z=x2|Tl@`S;UW!K)E$2N?@3Cy7_W(F*JuUTyJh)TYUGA|U2)?{Cq)TZD%jrx;#C9*s zd()QUi-ZcTIOeVzlCv84K+K4<_b!@+66j3G7&nRFe`R>xIKV{|Y zk=dJsat7Ps=c=pxm9bd16YlXPztFNkBAT?Q zJ(Qb`M?IiAXDzn0*2d1BpWef5%h_k^xj6`II&z@m)@6j|^x4UAZseq&xa>LCgm#td z(lMtL_{wT|itGMh!4}L|AM~LO`sOn3q7y#&vvTS{NOwo@w;qc!sbgT8G^uy#ZiVcr z&VmZh>2qLa1Uvf4&+N@_xOoz75!uRKyjU_JgmTX_<&c_1we-a-@=k-ASSDimJe;bL z0=7KY9Ip_Hv5e852WnitGl{ob#t>MLbIksjEZZ5<{Q(lAC7(-G>fTP=cLnc z>^7fW=4!5jq4~8L1yi#fMMB)6y2o;*d&^9MsMF7yX@g+tDVAY3P&vNaMlQ25%F2Pq zD1I{<0V^~LURIujrb;mvysbO9c*A)?-E!sL4vEB+ghyu~VCvFkZO)V&{0$@#C}YFv zeZ&@uD6=ms9-ap<4#(n-g+?*ghy?oO7PO7Wp{$=@GqJeO{BYy-2X2bN4{e)!s zSM5bh9~L`!-!|4lPXww0d>Y^jPc&FGjF*0~R}V8<=znwJ;rs~6V& zMd#w!xbI4J1KFH^-p0`6l;6QMH@)Qk-2oC-h8vJ+)$`bbja_Y(OSDx6%?G2*>JitD zm6$LHBoEIYvyKNj&GZ9TLoGL7pKyf@Q;V4X zyirpVH0Tzg`U6hDoR&~uS3IyzsS`4t7cGscix;rBhZgnZv&K(uL_xT$$JMc7d~@Is zYV!S!e{r^ZF6>~pjt|r^(1le}=LlNJ$!zvGeOKBl2(-4csZIG*#r{f_Sdet_O@cEt ztlTB$_6s^>*4FJ4zSLMe82XD=h-TH()#IgDDqomT(9eQyZG9v7^k;H!-4=v#jj`137( z_CWO4ppMUQ)v|@?5O4#+*A18 zeljw=xoKB&y0aX;U(->W)(=FB;Y>nylcQY(Y3ognO)m$}I3QW!7(uF@K7 z2Wwrr5R9Gn>kMCIqB{OIl~#iqTyx)h2pyc8kB#_opEw;gj$8=8lVCI_5*?y2G`z+* zWx+kZ_f*$Lfw=!adgHatn#886*?KZPuGLV~D;Cupao_a(y)#{1wN)Dy0`m~4$sSXY z@t5R3j*2?D*1vThjy>a4NAp|G3fWF(F$Yxq4gEgp$}zG+?EBe0mQgj9*pV8aHXDO@ zl<(QCVnDjg%MaTW!GCPBUOX1HmF*U_wjxHpQ zgWJ63O~_3(efvBg2rSe5*OsQ$Cfl`Urutj3G6b-H zD57(6q8MTo&vT*%x~JA#I%-q01m&og zJWN+VnmDaxbaNqL=!%Z$admc??9!?S2axG}fFCDNJ_L^I##}bhkG4PC*q8jGh<(mz#Z@#!QXbjVP}AVYsZ0OVjv-1wMM;n>$9(`mu=5m-0J0!*Pw zu{K-}49q*YHS>OE>!Zlj1*Vx4V^ z+crzit)N0r1MlaaKG9PvcO~b@lt%Ft&rcOHzbd>x9d}*wIr%pFappZqwGV<{#5JCX z@yPBv>#A95VFq%3zD2}WPFJw>`998!6i!m`KD~7=DHWL75ds+Zp(xesv*$!G?9~p$ zTQo=`jnN-lQ5{-6hGv=UCUY>Tm{*!PdsWJeLFyVd(wUEx7KPTkQfj0LPmt-fm1Ad@ zYuWflI$%&}Id%`UW)9WhJ<<2aYREAp$K*P!0oNIzKq|9)D$f6K0*EX(>K=^XYHU9Y z6WwrJw&*+p$B>)6y8c@T5K*z3vmmdp+A2J4GHXfuyr$5%bu)X>Mabgg9gIaXYQHlH;ghN!4O^ZDFP znH$O0KgH??x#4h+5C5VdqddLqm2J_Cjx;4^7~hj@9>k03s4eQeXZ&kA@)T-T6{-!x z(1uTR<$@`5TYzKkldcF31K*D#S#_dVnZb;S!|4Vh>&XfK22q{PCZ8Jml8#Y(TS$HN zv?+lZsa+48Jzx>=pP5!F>clxEj$TWSCYil-gYJjw|D}6)#l@O^rQ{w2yfic((_iMx z1DD-$S8ZW>1%>P)*+Ehy10w%0gN3!jOdj<-aLR#L?E#lvt(BJ0qC4az3pT*p7AyY? zU}u{yJp19uxO@OW5$g-7e&3?NYu{{eL~zzskGzoY65Q4nx~2{~q#C&T#`dO0nA70K zu&4DbVE5+yu_V65OCwf?86|`5qhHr*qq@OY5?@kk>ZT(sc+gtLaT!I=5+ue}j-hJ+ zL;_BY{s$w8UVmiMd`?nKN{T!HUOyPi^VlTKqvLZXBGe@B=B8M*_0Ql|(80?|^~+0r zQrH&*PsgOz^MqTm;f3olkgT!KwXohxU-S)gRDAYeN|)UIEuzhP5=8pB*ifT}>&0{& zc|(R>Vp^=hBTEDem3}(t#XpOmRyVh-s;U12Aaq)tR&Tcw=A9oBFTUk|zqkGFXX#;kY&LNW)>j>7uv|ag_TSAvr^J6}{5 z`VI8`@y2oT2&*}T`Q`Wjq8UV0nb>68_i!>1c2n z7+o?sES%{5of2!>(&{VQu2`4DI>=!v6~7$8XZ?2S8*UpJivg&sK(nL1Y|g*O2G`6u zml3vJQ$b|ezI$IQeCLIzuAhF`>)D;{+@>q(x+4sU*w5{Ic=$v=Ru5HIcX#=`k0ueJxXuvo zHSKpdTN-gxph+%`hiP-r$MP7feB-{{(eYz@xb2_bqh+{~o6PxYjGc8v$71f`VZ;JV5=;+9u7XqJQ9%Jw+zJ;Mip@N5bhdml4rOVz|Pt z=A-MCEqOn6Dr-khyH*PN54#jOC5970)1SsN4!?aBk_A!6cxpd@ofq)F0N7P#4Y-y} zD+2jUP-w$H#$74r{?mv2TVuWgFyk5k?N{}#WGl3%a^sBvCLV4(G zD!ELnJ~=vBw9dsEuQo%ISH+87S#U+v&3#M=l=$@#mtd4DBO1Kdb$ve|mq_M%#h=J8 ztoIlNns<=lY|yXjWq;-UqBUui1odPmOfi!CUx}!#Q%2dFP!=y8NmZdZrVf3v?3c5=a!-_rg~Kzw}Oy9bdzXO(dX$VtMVZ=pUx_t8*`VeY!> zjpJ(6DQ!dU1f`JXWFlE&U+Z3rQc?T_LFujI=Pac4yeT3kVEmsKhmOO9kR4T)B z#JbRx%zA=oJJuC)P|=BudvKc)z_J-qN8=}W(^-9A%&}Ps*t6ch1?@j2Z1q1?5>F4d zkpPg5e}onO5}H`>0Ig15N0LPS56rf+uVMa@Y1PTvt4ti=C-VZ)F4KKXM<=sRl`19p zDP^R20`g=O35(Y2RM;^4mctC$r&w0qOeQt^Vx6$(@+geh93wS9odp{JPV_y}AHtS; z*)#I`8syA?>ZVQ3gW3hY?oPmi!|TY;hW(L0si|(vm;{SVR2F+sli+EfTzC!-`mNzY zL&39L!Aj^W*#Mc#W;+x37r8fan>GHh+A-H7_7t;Za2CGS$WWI~m27q=kIO_7e%8PrLYh#o zK~f$w1t|vw>eh*m20M*aw#^$7ebf3H4BGlU5rloR%Nyo?9ae9Vn_C6lmN6C6{Jn+2 zOp6UQ_+4ZJ;eizHRp=Xea5X1&h-c3gM>n;)jI zZAe}ov_!BmJpa2XFXA;M=Bc8WJO^qNqduF3?wTBfC9q()N`do?$``V!ruoN3&ku-m z?p6(2(O@+i=8G8!{Gzu@|2M>EKa+h4j44L6E0AZomb(|qMl;H1zp?TG|>B zOxwa)_V;|jflwj^bMWVg`=h!I_cqzu;)-h7&l~VHACC?=yTnv|&Oj1WIqr_6o`|ae(3p8f4GuoVp*Y23bFhpxjjeIcJS1&}h2u z&iM)wnLG!J=GDpe?aCW^FsVL56jlx7-e07m;g|VKaTKvGZL923;$;fV*w4i_&in*X z&f9n7iL#5Y>sv+)i;Xg^WxbY9rgrOb<9H0}#kwIxNcF)|Sp0X=754o)Odz>v^oppl zeMX-lXe}h9f^_DM5KIihuXevoAhzTH{ILe!wOz zce;M~bdrd|PgT72CH1&ti15TX^l0WO#RmWPMS?fkFR=f116*Xv8At|{WZha*$F-(xM6>XSwFbze;nP^+|yw4 z4px(lYfPQ{s^O@J;?uI9F8WZm<2KvP)AjqfyDhX-EOE5TRe!&~Sj$h*s_z8 z2t>M2T&|b>#M`*+nW3wQ&Z2NNCxx&aTVPx$q+hj3<<{+5%l<3}o}Ks9>CFN=Yse05 z=~zuL@=gVIYaZZTjW&PxZ>Y5u3YQt;%lof_iLI`3eq%;w)pwnYQ4nw!V68!A!Nezd zp70Xz8_>AxlGg$2^QuZu8^pBP%&~rx+fqn`su=817)C}`{eH>bV?>+h>?^(Wrj;hn z)|tJ>y6>0)YGky-9Q@Nb6T&3zgr9p~hO;3Ju39lxQ{S+m0w?}^HJP?T&I%qIDtd7L zc>^0jHr0Uf-5-mOSEIM&98#+j8X;1f_oMz;OxTmzK&TJWuKleTWq9FT)n}N2IVXl> zKU8@_oDy?<%@V*-dUV%|yls(dT^_av^G2JSRPsdY$vKNbU8T52bn?(EAn=V~y8l$_ zWnj)xoWab>Uy!IW9WfOl=FyC1WvdsmJmK>B5TVKGD#rWe=Ihx-%gNU<*jxSRPDJlJ zwE0qkNJ`)u42I^}sz;i6H9RBgsa*Rf>0{>L!Y(W-f~H6j!MjX}PYub+CY?vr1D1IS zUcE~Oa`r~O#&>8-Q!^}PP^D5G8&J^0ATK1;KIS2E&Jv8Qv3{0?;izg%@gYo1d{opX zr8-td|H+H#@o|ctw2)}Cm>-1>^@~g0@BF+w8pz~^cD_o714b_c*bmzs|LXd=T zuP!*qL`qAQ7D#=ko@^hbw})~8fL%gy^QAYEknu#mP*(ogE=NeJ#mL3mxH(6K0#&NA z=VI#)J5g&4l`l5uA{<=8ssjUZzAbPKbV=9zs+syA3}UC6*vWsH^Ue-SS0LfZqZN3g z5|;R8a7SJo!GbXfWD$LD_KTZ^bux-s>LlT$2jyZ0+28}FHSil2ve_;8Y5$z0k#~2X zQHB#!Yohq!>TpKNh7w~|>_AR`zt~rYK~|9`4)ohf2o+;X?Asg`GHw_H%UUQ=ajk45 z$(gVWt}ue(Z;P2+!}9`NqJj$JI$0U(21y-h)2&VW-&X@qyZ;0haZDkdwh zc5cD&*y@ai<{EuCxyVcgQcbY^+Ea5$kNOsa_+Qz{5%Mb*pY_#7@Or{P|4Mz*busjH z%s0)$&d=w9%aaJ>0#zfrCrMRIZ!y8+Z&g*$=$Q$Zh$e=*#-HhQv{(NQdB`Y>vjB}h zJ;?trj_cwLkY>S?>Q(XHK#s&qcMqDv#IuvF1a_W z7nBk%iQ?hXFYu0byzuP0O&>azZ;8#e-gBkapR;y0X_kqNOJ=82+#n>-c*&k?9;P3U z34|NEsJH8M4kePqX&8+kb;0wNu}aZY#zEc?^84ow0RhCQ%!X0-2z!j4))uSMH%SvJm<)?AXxEutHu2!#*TD~p z`ds>k%K2~(rA#E0+6IYquLeKYqR6S%*7IJy1<_+3yntOlOs3PX9SDEyPz@F?gAcEt zs)Bn7xz13KVMu}Pb6&4-cTCAtguo0MlWyPT2(#W*s47^wgD%x`5bOwW7(pl!0Wj6% z)3oAq{`}hW^f3m27wwPD5QZljUhHTo<;=)pl z+&nG1v#p zo(K_pw3GK@z)A2G-+ud(*p2qOxqTUNB6>j+F*6dzB0hS!iH2Xu>K=K)J3{i**@L5F zIlU5lh^hQ0)126;p!SoWcMhD=$)I$Y|47STxZgLv(L(f;Ide6hIXGEU)w8!MqhO7W zjr0r~_5~Kn`}=h}ecYQ;=B>oxXZ-JLT=1zM@>IidMZ_CC9ct)$8GMKMTyu=tr|G(t z;SDACgSU!iYs58TGiHIE4OcT%1B=VH)@lY*Duk?(e^{YC8kPAu6ZSTq$aMX6N7u)= z{Cr)5(;XYr2uI7ti=5PlJbl|~!RKDajk%%ua!7yz_BQ4-SlSLNT zmmQAYA7D%@I5DhRTR{BG;{Q;!D{mn#9Sjgct5qE#smia{9WiA@){J|0lMIS-jN-nw z1#e{rb<{XfXvpe8{*b{ZtB}Qdffc5b3kUg>zc+%9jD=G~h=j5N7 zQk>jPBbhn2g^;ls6M93jui_%USo|oUcqPV&mK6%`v!72X8!OLKw*H;?B}2W*jhjjF z^?zoWW|g68SK70fmD~XZD}x$IO8N)K-OIl7;R-77CNGG|ip5R$-@E@$3(?-aY;lFI zf~gh#R{3Eug^h@1{8Y}J7Zz<|#xr_yAXkK@b`|l-m*6&qJo|tmy6yfnmcuM}Qej-W zsW;U{Y#OC5y?kQ2a=OrqJPRD)YN_kZZjplTvflt+PPzL&Oyvt*xumzwf7(ER1MDxb zcTZF}o9cw$a{v%5(`+^IUoiF}>0^$cmc*xR+rhxcAoJoX*;Z5NQ6n{vACa`?sU?XX z_npXl)Ce(BSDE9Kn?V{o145c!R+2FROUvkq-<&Y_OR0H6xcDFZZC2bXAk>>{qc^NWw%18?6Upctxln*-;ut?aW9FUE1W@f6U&kWJ+bRb<&uBPe#S5;feOC4JV#% z%b8_+rsIp}_oUoo3kr~%#)(cGVQCEun-lLsxT9P`qY&(wk_tw{+`VkmjYvWLV|Tjm zQI#*Ew90e3ycdh79a+#?S&sr)scW<&oer2RdoD+-T^dS27DQ-AXhDINbzk0@Cqv>A zxLZrkF?O9=zFvVNZN8FW6a6T!j`!$tI?38|V}@c^Aq3k$NZ_Q4AqnfEau>uD6)MW+ z1KCAUMsiBYz^9JxYF8>f?B4t|*<4;W@~dNvnXU=58I_kMYvo*|OOVo?P*;pu&~?WX z?V=kcuC{a}uIgZt*>?J#BULd|C_om)=Yo_7)heJQGlT1c)kWlR3$L^;D!y$?3PJ(fJm z4POv^zr0N-HsvM{cyv1Xgm)MKj}d;a(BfS7BV#4E^eGT5KvU%u&$Cm}?lIiIpX*QW zpZt5D&&bCYL&Wq!uJhsSqeGJ4vA0tv|`YDl3Y} z@5uJ{GmAb^S`__4c(?0w%H;DuTr@azXa*#({<~n8*J~b5^g1kHmD#(T@xub*>0N6u zIWb0{mb)(1N{?Bd8&o~@8tNS9Gf)5QSBg*J^5OIEj`X2ICG)L@c8k*Apy-5~!ygYW ze|WVZ?*tmX>OEaW?~28a98C;F>xAI=V60-jI5V{M^6qFBy!27Ig^MqvEB`cbr4ADDp41DWLYRe-31`nI z9D4@)K2^UT?jo1#-M3m^=WK5Wnc9P@kAHvH&^|38n-^#^~)|=g;zDgBv$&^T!lyi)xrvG_t19WCwe4GU>mr4wavBvm7pZ@$uM5RKo=1YNb)~E?eoq z2^w+~1%!>nK(<_~q>+bx)4tCKX!XOV9kdOk0y+{?$y`C_5~`_RYYiU$B*r@ z+3Nc8k*osNgQs4)YMX-^g(QDN@HJ12Wp{|fkm>#rdQ0nDXZVtuBGxzwNTw)I85O{+!}UY z@roDbvH?&~SMPMnt`TV9z^EMM_@9pYo~sQjES=f^eO>VDRK*7xGK1cW>w_9#&_LOt zUUJCAs&u=@IMjraaXwE~?3h`iVz^t!JtG%M!3_0#q^5Q?zAjqJ zPYIyC6X2#&GzY>*iO85oy&ugKhBRhJuJ&R?#e6KnQmvomjOxMF$wMAeDM>E8(USp| zvt#zKfmqW*k637KN6~-zSP7F{l4llzlM^~O^M9{$|M$G{sp9g@C~}AB z99KVn4*YS08qbHu5!@%otI195%0xzkS2BUtTXS>BaFuu>Uk$7Hta_rzL#mBx)L76Iqdp)h$8LT5~x%Rj~e-dQk_{|KaP3kBydMF@|Sz-xak;iX_ z)8z#*N6mFq1g$2ViB6hr0-IINf&5D#(3*I zYW{;0g-eB_X&}Qaw18Wr;45gF`#g`MAxg3wfGOe4+X4eG7$i^ITCz6a+>-ilJ zpr9-4jPW8!G_c^vo$6@L4M%SBa`cwxjg(NLEo#l=TCe5GQno``FjZ=eSa(}yVyC*A zaq$!HdZlKge0wq&UqBF)a1vg(clWmJ=i@iHTGWso~2F56?a zQrhxA1oyT`YbnSY+CQP!4gPKy0!Fu+ze?=f>+j#g|2y+Edr8Dg-<9NBTNcQ(zN_AP z!`3!Vj7$_xB*G}jD4VaTuQ=ejcnyqQdPCrw$9W&*v3cJcxjg>l1x7$%zJc^>ej$>N z{4)@nlmb?)QRIl~5nyYR25S5YeuCe>4;fHvB-V7FRb$3IrqO<>et&3Ki@v?r85mvY zmMv+JqzrnfpOv`py!+Z9d5w`2ZqpVDjc!Iet~a_m z(S*(ky_d&*Kil|mT@Cc{HwyQTa|BAL0RLEw>U~CQL1%MiGqqzSa zx1h<=YG{9l-snq|)5p4899F-PK2otLtn;>4Cmjf^V73$z^2?E|jJ?f*b(znm@9wCd zO{%EZKPg?&xO`x|`KXYV=<4^5IF6_M#u>js|2+#7QB(A z!qZWpwoPeLO`5!viw63h>~QRl-ArlI95IscMxu=B~+m5SRrjSL!pUDLyVoM`rR}p zbmjH-r-ER>@^8@IQHq_JOkarAiL&0i%0v)kA$pU7UIT7MUgZgzV*sp!?-IWqRUK;o zrbNzw#9_@pG~UV1OoV}PzxvHLfu6p42VE{4+?&_f(D_Jl4o!IqOR!VRw z=BDictpVgQsLIIFIa(mm+@8V2n>B2-eQqw;dTmLEe}v60x!V2ip#s6yIqH1I(}D5W z6IezaTw?4+6OJcFnhu`mfJ@-Gd>%jIov1;JKzg36FFljIa|T6{$rd)HLQ-t52{X1m z)gbvFmWL?A(nB8n=LHo&lF11y=xtA5+u2q&&3~t;0I<{aBWA|OpsdvWXhmiY#VCa$VM0l=7*DtB?ppI@cQ1WN9E1@h4i^< zq`iOl=3k38|NB{-?6k=*O`k^ADr)q%hsxa&fepy!lc1 zM#*4$dG)$kYyu2EX8#7CkF7V6+yf&!<)!IXbvf@)zmDaXLkB&#Ct_mOJRX{b!MAd4&YzSDfzyx8V}qiPS%;?`Y|FS+_9Q^5Goo`Ura0Omu4;c81RB+fO#7zmTyqFO3&?wf;q@%QruQC+|ve3k$uG|LH% zXZ6J-UPDV^9T{<@G$NaEnwZoqH<<6!4(9yc%A?y_!4zelZF!84IO!VHxhXJ?5 zI3hS~@p*1V+FBE$%8=OX-$=HLphM@&{z;XIUvKg*TN)X*Anb9!Ha<}=wcy?aSB2+J zMN^@RLRD~Z#<&cpO3DJg(+>!nbRi-3kxfcXaTFX|@wU=RkXPm#Z~YWgzJo!G>~fm} zERvZ0;fT(`IaN+!bS2z3zfhv+hw;)Dt{?8~u+@|h^?Q@tRVSYz*3ZY zDpwOxSc?0;X_$_-Gy@<5#Jq9Sfj8ud+B6%}X$QOB05H4yto=W|uMd>8 z>}UtOyDpka7)~v>vXEi_bij z5(QGc7c5gn`Fjlo8KBtAsVxUng$?uBRYg0 zOAiis1ouOiuJtdd>_mo3_cefFWjwIvc;C;)_q%?(C#<3%t4HB9!<$7@-Y;}jTlqBo z5sr!F4$R??`K)pA%i* zTRk+7g94sj3_<@C>FNM|q<^qtSP}VkZvdm|aG5($rGyCEHl&_;iJ>Zr$gZ7MV-&yk zQ3g2!4e5%fo~6FNj&KNJ!hi>4)KpladWgK?sk>E ztSnavN!B;r9u_tqsg(cIB+~cd%`RZQ+p##mI@A|7UqgZL0E^Sefs&5wRMe~#4wc&a zHdI1D-A$N3C+E1`Eore{Y$fXYO}BSD(}i#mGC65ifhP39r;@>0DY?5D3(n)6DDqgA zArbl4E&5E}H{-wX=K}}Cymt434kRT5l=Kc%G>8Go)n-w0j148SI{iI z3Q%|%o;^}w`aoHo7>qdJ)({HcN{TQiP)RhQ6ngXCBEdYFa}7zBC0O#Z0Y%T&QxII> z4@dGmRsFARgii$g=Ga~>6ftYRWf7Q20^|VTuOJFXFRb)OY@cj8G=&OkcmLM&)8ss> zuUYu9OWv7KcN)@=G+6;)J(mvPJXu5tt#3nq6tPkS0y`{whA;O(Ic^N3@JS^VYWxV7 znuw>T$+co_TWgpvF{5mn@VOS62RH;lTw$s14sex%v=UF>?ZFlP+=5~eeRu*mFvr-|!t zjTZ&wdJ^TE!}0E06oTHuESVq&BN01EAt;rt%V%t2`e2GVxKBjho%fq%qY!ZB8X#8v zRi2GG3uI7VQDGL7f7ju-|nz18(gL@1fnZ>}2eeD&|)NOV4 z#_#=mTcEwXtz-brngB6&xRC$6^{#l^MV@$)w;b}lR=Mrh7c{sIf#vC+Sz06t*qj_V zdJBDc&-3r0o<-KC5#1OPoVVTvB;5=c)E!H;{4Zg?;y?@{j@+*;2dC*;mQ=dxLvg?& z$~=4)+TehE-{<_EV|nh^s(*FP(i7m4cDnHFEy4^d5wPXFcvJKTv-nr5Rs`xk41UtC z7}Q+S!8>@lbIa3uydcQHU|j<1_|85Vm|rgIL=oGT-6E;-b3_C{Mc#it(asJdZXLRX zrEn@#A50j`Y=eX;5CH+)q}H$fEiW}>+UVqg{f27j6;d|?#ZN(!%0VThNANgLP3>6I z6~)UTI}=W%EHDYH0u6LwoCp#eChjR_4sN`WwLMpuN1QnZDkQ!VMt`&?!5bFU)Hw>b z(PJ3IiB$FTh^tGS?wQqcjS^bokXCaX~Dz@~l4 z@kuuR3*4S#)@5KgeVqB39!>5}q7COgRiglFX4pe`HCA#;zk ziLX!8ymw|kkD0ZH;cdIMxV{+{joyxDO=Hh)i=(chH`ROVb;4MmP7J4!G*2AMTmhd+viIHlV zEd9xdl4>4(rml)%r5fc!`4ni37CR9qBi*>-ZA#6}8}xX>6&8q?VlqiHOZI!rZ-FF~&hT@U^VS&S!6NG@Mw9Ewp zXJC`{-st|^+=6BY4pclAIR_3r$>)-3#raL%z@9e7pzh!`uo`pA$#vk;$yeM%URPwo zo<f|oWvnd+~UP;(G*%=&oYt@Zudru`wjSM3vu|1 ztByZcRep|r8yd5Et6quO@%vh;%P+8Zy#?hxl)k>Tl_-)KZsL@GSTX;7F+B>_`IryG zklZ}JK>|&naPw)*w9>Y6r0Oc=X<(CA!`k_~hwv{_QIP|&T?1!~0F{^2{BYDHj^cOc zKAApj%nM$!!Yy9ejmVL|4UH`}CZk|F^=DV;RRQ;nWUG}Ee*~z;gy7B8d@E@yZE=*) z%3bpZqKUDMW#~^n!^VBb4U|?vAA8@EsFeotIO<2^@Y6ySu_qEoV}#$! z>aSn%rWdd}*6C1a{&6xH<_jo58t&VR{U4s*!Y|713-^9hLQ?4z5QgqfMPle41{_K{ zq)S3V5s>aq0Rc(r4(S*gk?t4}X{6)bzUOxie*hn5xbMB!y4H1lS0>*PpuPwh>eBZ{ zSv~+LsKKg@t>Bi6ta%3B#SmH)=#wz;;(?(DoShlwO$Em{I^lnl zhTj+BfUwt=Ts+UPXckWIrW-*Ot}Cvg1+c{aJlWXFQ0}lyPYbaY9ALoU5^&Sd-Xj!2xjT5OM)Yp_2i? zoD4d>IAn-eAj$t>MoJ*6nd+e)Btq1hnAoz8>8u$I?|jvG$X@r>eSR z+EUM2E2fwRl(I&o!*Y#D%|+_eMyH%P^M_@L)x~&p&^ICysurtQVj5~KIK5cV%}_TM#)xJKwv2v-TNS^z)<9MpC5=t zf!guR8~@AC8$}$|AZUV1n*yLKn4^m%{g)(c%k(yd7}s}|qMTNXUXsshofeF3P;A&yFPsJu|dK*b-a--9<(YURaz=U!Gk;WrhlwX4dRo}=71jKp|-JWU-PUS&w!0sjqJJn zWJuxU2az(gT_TI2fIrt_`l|W`grFA!7x|@D&BFDIXm(qgYr#BsN(h*3qd>otKiE$scG?wdl7cWQ{>g$Jn{>{N#F2O|^M zZMl}cMJ#A~6T*6xK?-di-$NaMsoNpP1R1QMn1ct;M+i+kO=LzgWY?$WcUmV?+5#LL+ZUEn-s%2yS+AwSWZH_J5K?cXg z**fqmc7ox+nNGNVI;W7nP*-Ba%kyil|1c*t=;LnCkYge#KO+Q3>5x64E#oy;;GdDcx9714k`c|P)yA+v^kCX78yk4at6~BgcgTU!M`%9a`(+0S zL=+^_WBRk*`PMV4E!<4r&h9q;Ips)8f@WZ!dgn2QB;*o4zoGvJN$G(k=$}v3VgS{A zjhQdFb>bYPf&dX|Bw6cgW5I|+ALEEC2rBaag>lGiURi!Z3G0K+jjJ3RN3SyiE%&r> z`Ny&M-JsbgAU*#nRNaWx;F%}zG50a-c%v0nusAvh%^oyfgj%~AE$zNSw?dLD!zjv4 zw={b%>3hetL6z;S8oBH%vUQm$WIqj2((=1qB(T>-efQtzyC41j^7#)NDp@iQOaF}oB^Ei3sZJbPw! zdRg46dHpc)+RP5m?_?=ZfE#r6!=U55+jXRQdLI(Mldnn!oo-mLJ)HJG=Hoti$5oT( zAM>}c@jo9P1KuMr=VACI5q|<#`EF7fb`pLwXNBKi6SKc45F<;Ws%b5b@vLuUbp}Or zZHNn9{hNpW&jH1U{R+M`0PKaCHc?|U&7(OVy_QRr<=O)COHfO7YgWUfiQCRT?87Zkv|`Ruf)Y>YiMJOKTCHgt1tcS zf7k8zq)P)lT=2Y>r>rAwzzm^iOb=nBF$X6+c4)1KKNNl<=jxFt0*Ux*`Df;O+wFyUAs>Ew0dq-fL+ z+4JN&h!1Am>Mu=D*#ce^sjfB96_v1b6%B`Ew~MZ9S%w2HOBIXfiGpVnCM z8fxC88_f2b{MqIly6606agoT#YU=$;t_aPoC3x{pG!*isYzJgizu4?1u{mSvW${}9-2afM! z+6pd!2J>jAO4OZT`W*M>t8q=-h;*M|WA)S*6hhVp444_!nM~apDwkG{zjWY;cdmJ( zJUfQ}V%XNo9UP4@b16|4sLhWL42IdHOw{2@=ogy&HZVGQ9cc6HqYg-s0c&s7yt}6a zHaRA%sxnYTmtLlw7;nU*NUk3x=dv{V?-Q9fT7NUhL-zh%(O382Dqavtw1MUF;rBv|Q&nBArw|Y0fo2?|; z7uWc8ul|vzN`+Mcx9lkj9cboI*ebU~d#L@loBHpWHyV#Z9{TL-C5x~FoXt!B{h(n< zp8u|%G#}hUzCXD}fI+imPB-3?_!~nJ75}ZPFE6{; zLj>q{5d~pqr6x9j@wD1)l}I|&6~V$fpxl^oYOtHj5?+;|7-O_W%q>z#zp3knBWK32t4n``)TGw8AgHy2=$@{)aKW$xd^{R77X)^fWr;s zA(%uRX}N(5nUibAtN9r?`*;xfrE38I7%{q}hXM~a1|DmIuHria{T=2Y<1X#m{RAd5 z@+wo56yxmqrTD4=87vlr&ji z^*D@{^&Md#ScT$T>x@jb< zpV@y63YtPTcKiZqDGhkTPj}!J50})@Y^TqI}ploxWlko&_G!?M}V$F*YQr_<`Qh|5NY!II2Y+p8jd~ZlC!=U0i zUY1B=*k`U&=pj;|!}(1=T@i8=nAIWB6cB(L5Ewkl z%aH0Sg$Zb5Asxi+YV4gWRi$+lxrE&f83x;T@%e29RAPRO%qB&AxX~lCwhkz?(G%0u z;la~llIoP`4>@@_9i#R!Kzed~)}gtyzI6E$*n6_m?9m32&mb_VVp!!bk4!PadnHJ` zL%#3!OhU$j{A+}+i^!5ea>zG$#)%u@FIE<80A2u-uCIc$&Xiw$P&*Mw-(-EjI|rxV zvY!AWs}kkk$VGlZYMH`i;x1t11Lj$fr3-FzBa?J*L;_lE*hBE3iloW|R%yIqf2-?# zCxNF~7b6m9Niq=$tpA>MUyQl_N<^Vzd0MqYwFgg>7LtRv4YQmHs&l`VMvDCNXw@G? z@wf*idx+V&8~AOOF)T^EK6bos+y$aeU_62)g?e;tKwtwL@o_aV#Hlub44~lh;Gn>( zqYr4Ak_O|I?oD{{(1fF%l1EG>f&W~e!+k_TdZZvk>9>DISr{Hz%HqjG>@&W2LPDEy z3BV}rhd2LN0Nj!(cVjQCzX5R@6CU)&&mx-aTx?(zsx)hGo!viM)$VZor?+iXY8PVa$C5CG@Ha_oo0EU2`e@@(}wRAdP!$}U;*K$L4 zgk|ML!?i$n1IQ78Gj@>qSmwx_W)%^DbWu$l=gZrBYv)c)4BgzBK`q8Jdcluw`;1<}=4J z@f$IbHz^sx%@G3~D!3nA@b3E&=CVcTVkKYWy=xLW$Oti!gMpk^ zPA<*i% z?)Iw3Fh)YoRUqpFlXkrjW8twi>5=g^{}b48E*&T2{v2o2{wEe0w%MD9qrgK8MuTi4 zJHi`d4f=hL0bi~e1~!el89pN>QHCih6F8hpgqN~_#2kp%DROxSXSWE&Xht%oHU^hh zg}LH0KbMj0<#!jFKSOU_tVUCjzzK4ClSHBx8G$wN5S_rN{;k7u3#lY~h>_D;VS+_a zdALKl&8}VTGmNazT%|OHI5HRV-hcrw3G5U!RybnyHCu4;QwRt?GO|JpjazM$KIiOd zB$0sO5f6?FXq~y-dm4zW7y)qO=aua0RVn}_4kxK5Y=SAkmvwCJBV~`zKATG+xq*L^ z0In3I|L{~~7!;MaOgg(X6<#kBikEi)TO$}cN1AO@bJK%B_K`897a&jL9v6woPZ8@S zNhP5&xY3_xSu&OvxmdI+f^C49#}n2+^^~5UH7AhZ-lFwsfx!Sr$*ju7x=SFuohgmNK;bh0YELWh+E(%F^0_6aZsN94`<1b_S@Ab#&58&Y z4ApReI&ZeZ0p^H~RS5k6j#!oyJjwlcl(b%gXMtJ_i2!aS(w4?|)VxJ0SNk0w3WV45skdD4iH$>*7ujVK&h^T-wPM(!+}Sy);(%jR+E#3*lxH zQ0<83lPdq2nG>8}ZN&TrSU@f1N7}$Y-W}6kSbt>Ql0K92K>!N8h!z2lm0CmJS;wgad ziLxH)isdGX7$*HZ8RMZwssRTRNC!uO9bpbID(Xu7>Td8%Af&2As72PZ?qg0T1O%N$ zP2x=6QYO+fbte_Uv`lu`#Gic>JD13`&_2AI4S=SMmof{Mh;;pggBD>fYv4#=ZK@Df zOj!QCv7t^XjYK;n;YY0i7#RLz<+@QGw~~a~hsfPBe}4jS5ng=25ZpImL4Bni7Gb$w z`a?Z1|2*$k^#%zn-Xp%}O}P`La~(r$+n^>5NP|G>bO~3k0L|@&tir@o(;z zegAJLs>P#DR+9}^)rztJls${(GDg}GlsGHZ-@qlG78Oj30$Kjy174PHn~v7iFrIlF@AB^j`JxUfh%ka{cXI6nO#zC!IDr7(+Q5xmcC-7)`GZKsI)t z^u^U^CWr)&w2bt$)-C;`{zoSD0JlV#mh~l`@;W%#e4O^pY}kNj@)IzjgAr|>z4B9l z?j=jVI{sl%zwW2&3QHh!+G61x6U=|1D zw+<{YGk|!re8^#k*bIRCtd#IZ)^v5Q7U@W^mBD4Eqse4E7s&)ipX9M9GXYGlqpfl3 z=`jFXKpWH40ZyhDqpwQV3xFZGkOt-P)@>BT0;Hb1QU9Y#Ouc7NVgpl{6W97*jT7e$ z;-}zr1krJ?lqw~ccTHT}cJ&~~E3HWkpw=_MDa6H#K=N2n;GEkKGCjAjQ&GRZy^$|H z`HN*RY}8=yq<1yrHcKWnq!w7C$BD-|mY!V!?Z;Dy8Rb+3r#xsgP z`y5>6%9q^v1+_!1CcU3^P3GNfkrDc?q?m=EWm0d_xO%fekVIMXM)%Sq5IyMN?GnL5DDtSFfq5yoQJdukbrdS>g`mT%+&_COd!@~k4y`~F*)vs>Hlgbx*o z=tIDDj(ojP7F-ZZDr$iRMSnE9L6j_ZN=XXJQm@+`?Yoxe$;*w|hAE2x;POtM%Yu8a zc6JwgXC*V9(J$i&G{>C~v-GM-cvERMt z$|?i1T#;0{4R~ldTX!Sfo3*A&0NLSsLYY7!z=0>DiwLAJ(fLxMK}xbt*PJ5jCZTxk zd2Sw5!1l-OnRk{{0_k7ZsTqexH!6%Lwi3Utt=K0HShuqlMg6qN)W72;S|Cg)9;OPp z!)sE(=4D>_aBK%{)k9?^|%DS)RD4^)W zS1qaXHkmv4oPBhP%5r{6lX2V4rNriX2vYJiH3W7zFFVOxk{mS1VmpP6V=_a1|NOH3 zZc6w60P?bD9v&XtWVUztpVHpSXJlp`9V59<>hI5%wu$)LifF^O#X89NFx$)v=1j^sRpw zXX_b9r*2+KK>JV@rP?*YU85is$A1JXkm_U`LG(^6B|jE$_Ri$&R++4D15;&y((~lO zO~GJ=Y94kpj(R4#fQ$_Ld(K=Hzp44C4sRsknDsExZX**QNgF~Z1bd%{r&*ktuTA6Y zMRG3~p~$l4%_*#W)>i}b5P`*EPU3^uP30Ytk)(#xblhw=9P8GUCo4WZe1iie4~xTC z%0vtU(F7l#UZu$!=`6g!A-^X4d$y(qHm^gqbiUej2=tG+vwp$EONVfa8p@Jo-(Pt@ znkLj)Q=2wfWA@QV*JUb6`TjD)1@xWF+~;H3LG8Ca?}U0eoSnP%>m*Sjeys+lN^%2v2|(9nC3WWes@9q9PoaJ^Avw{ ztB?O9?NNd5F#)h4>a$dAQZZ;VuK#uVCN?)~I8@eQgOXl*A=~l>8*k=Zq{bUt7uVk0 z{iFf55hDYoyDz)yt`Abk7(rqfY$y3@vXkK6yXTY`^V70O_e>n{y5dS#JVEk;^4CrC z2OE|T*TMP9Tn$ze&bTUu3`5vPOZNOF;Xlgix`5k4EZWPj8HyNyo*nh0fbV<|5Xcf- zg6#zCiEB*@_f}Ha4yd^ivV^g9A$$TLu8VD2^HvNad+wlODoJy(U!CI8^uHZ17hcDC zLUn}BnvhZ88r@!li$1!<19SW1Uq}Bk zp_NM;jl-mAOu;oLz@*ZrD5n`<_WO^A{n-_b|NbQ&O{5IS9^i=Ej{u5Bn=t4_S&HKv z@D>k*IoR0n3kkrb2F#lOq|j)&2U(0(>ht4X>rMmlm7`!{`cu2$Bk??tcStQ?2X`7x z=PmQ>yk|n-c^42Wv=`{8=&(9#PSoM)m3Itq0PWxvEN3U>PmR3*+(MIC(cSJ7Sia-; zV$u8Bx`Rp{hg1_o;rTW~to%8&&i3~=?1dSp*}bNSBzk{oO$Z~}wjiz?GSDUgz{iCs z#ZXd8T|X60u&1>ZUA%rFA$g^XznD)_a-T{lPwG_Sr3R~hifDN{yqVaB1iw1R=(U*P zs4Ses(oac4-6`X0l-Vyp3oeq>U6RFZszf|kB@0{WS;WuEKRUQS?)%@_)&KC27Ko4i zZ|-;fGw(MfFV!!GtX_64U+MdY`=3VN5qKOdS@`B{q@s(4;*CSNxD zpC23x-}NqE#4aCzldLHFL%z7Do&sU2coOw<=8Pr^w-3JIe5V}S_Tr^1)k!$w7!#h`%Vtj?vq}! zku|shz<|B|wF z$+J80*OR9b2i<;-YH!q-KfiodXw}60AJKoful_S-f@;rXJlMT5%x+y+ozO~M%;~d@mK*9y&>1k!x8zHa2TmNF$8QHvKo z>y@Z8FeS9y#xX>_>*^gNVG55qe^YG$k%>mlnnm* z%erCa5n<6x44>6sEBchLvcz>6kk~I>^Si>y#5*rE(Hjf>(e^c2@&_%{-2%t)Em9{)}8(kLDm=x6xIT&r)om^KYBFXJlO9K zZ)`Kl-`}1|3;EJK?=G5pf!mq_5?w!tDz=)+I42~q^^$_i*-uft9i1uK|K)jgkE^`$ zWiJ4;6YCjzdaYPGB`D#z_ab;tH2G?vnq-xd$1$;xncy%sq{_qC#(g=~FtjHaGzG;P9)X$;c_z*ljr6@)O;s#` zMEHG6YgJU$!lzgh343y(Wl7MuuM0a^Wy|?$p~^@LfPPebr70I@;i)+&5<)Q)$aJ!% z72227v$1N>+#QZeUl2(UY}+=r^@w}ZRv2&UD+?;LR5^F&H+?khq?lT^T5Y= zU4+*e<14lNGKY_D(W3<0b?Sz8E{?HE@g(S@nYJYJNU;7+0IprWF>No+sXy`b`6cl1Gi zzi-UG7QNeAzDdu>$XF3sro_G8Yxn@QOHnc+Msx1%4d^)gf?6Y&PR?b`-MiUe4fINJ zcCS_Gn(#U??wpCXNp|1orcTcmS(cra9qef=7=}CzrF}0G9ac2XM)A|$x$Ac`0q_)m z_D#N%SPRNzQn&wA^qSI)TTFcD`Xr<^rw@e55fcwWsW2IqUZ!aAY2V#2dw810X7HSu z(%>1;oW97KEsfm*<0_s@bNZT(!*P%49cM5Uq@Nnmq0P{`{b#Odx(!`8X!;ZRVxshm z<*wb&J*Ze{e;)^_Xrm0b(H9bPHxg%LR?v2sPeHmw8d`&9SRMH@i8`&0UnEO2R3{U+ z4;&J-D&5{Dk?-hm#)}|FWOvvF!z*cB#Yh%dVMNd)%pl{8uXKtHCSg>C+Nz0*ANyw1 z8|!qy7wviPInr7lo}*+ZXkVN(I5T><9(ZE^xykHlVZg_H?g+AAw#jsP+{F+~-{d?+ zg(M3A@KG9;jy3k!m`ulb-86WDq7+c-e71)njk4Zln-(r^aZ)3e|1LqP$tU2q9g4qK z1$CssqA{5=UxE7Umoc=teOIR@b7K=L5ez?hhA9JpQUu%?wuk=rYrad8X;qV~C#gvL zm-l|jZB(n<*ad8^JouNe(ee{;K(v1BgD4=%(qvP~F`+giL3J_%6WeMJfhOCyN9jmA zbdh5V7I!yD_?Hjt#ZxGtn+dNT)v^`ShoXICF>%}m|IV8UDtQQ^BOFC#U{roQvYIk| z#h}2yVF>qAN*%b{ zG_}kI@@ydl?EREH+Q6RvwY$AcZ#EkZ{c_uth0Mz_&d}jVyfbiH6vJ7U%di9oX%0+~ z7mlt-%2E`XU9t2uF1U!ywOQPXl<7~6k~!idRU!ELK|npP4Y|VsQFKkSh~H}pEyjLU zMP;GVb@AunP7ju*f$?uXTlaJ%(n2rlV@~MfesJQMm5{vC6FOl*8E+7D2dwZs;m3t< z8O-Mx3VlnVM8vxCVDo5q?9Ee!{y7LX8)KzX2}nt%!PR68%?lmv4_D;>SW951Z5W~F z-oZ*d^fFcnkU~ggw#+HVU1jt@zIuRK9ZgtB3A(W6e|f_+&xr|*O9={~@GRVQkvN@s z=Jk~#&?|}wCv)-1i^^_(D%Jh0kr~=+3B3vvT76d6a=3KvN@OeVB+uqREp{1{%O?#- zraLH~u$aS@??{nPDmaGmb731W99kQ-7RphpCi&jpr7~ zlcKLlo21KmYhzu^gGEYgwrGyCkKMp^8f^Z;fU zPw}4DD{GZJK<2%~5pdE8AQexj72|9~*<{px{FQZCC@9}EBqLI!V$I(2;VD~rkcWhb zKIhE0D>B#@`4cU(rKwVA>e^@zR6|d@d=*C~t#-A-2k!bPc(_nY|3B-T zHA(7@zqUtY@Pl8fJ8EABWqaKmus~EFk7{1SbLPDNH~=SeVmAE# zYzJ3(uwjPP#Fo#IRz>k7W2$K&@|IO9?&MLl`-t8mo;? z^P*_In&qh_0r1IX`?w^6>taA#V~yJ_Q2Z1i0ES&au@OKJm)=d(%=cfumGR z)_5K%sa{_5k$Pl;TPn~37TdxL1|{kZ3r#5+G^==;H-0|LjNTKNbr5Uu(INB9f_cZg52pn23VHA3cKU^i%qcz%;m{f2$@#$rDv-6Nr z&qjQ5+Je}bNUB#vOM-0)eCcJz;et+PT+wkY<|E6t59amA;2#(Le2lQwqDV1e`~m~S zyOawG5@oO~&8TH&%Z(75=mW5&C9qr-8P+vY{m>F0Rs=R5>h^3fPH z^PE)hq=sqN&&})GMON^~P3dc62)1|@+9`^F@FAMrTQ=Io zw@xNSZow^Azrm(HHI&K?IZW5nuBg)zS&(b%R?MU-Z?@6b;wrMa*u^Rzzw(FCs9u{| zrYn+P0I^m%g-s@Ip=a@_!$1Yy4Qlcyw9>hdz9u9%H-?mc&$@`?G+2J}RmvjAGkBtC zCK`t>C(Ws$0M`Dg;T1oD_)ec_aB+nezXoG!#6!a*GIY(MvFJ*{R5}8ORpc{XxtHXa zH~V`q{J!T=IfoZYL77o3Yh2vP&H_Q_Y6S}-DKVC!%=|fKAerA^HI%qX2>z4>mV5_W z3Car=Yy-V=C-;1%l&>v-z2HWw#V0FOgQy2})KqbU%95!2QEoycc)K{(+(>f=r0WE5 z_?H%Fokh+@d8{*`bzzzvZ>h6ez6dqMg ziw9Qt6V%JmytsHWBpi~$gRj~2sc}&eUDPrksY6XcEN826EGfwy!*58dr*lG9+sctf zQ%E2!O6{rDA9Wvdte5W_8MqWCpBlmd?6*VwGYrE)rLdGikudw(QSz_h?D=v-8w&f! z`nuV#U%xze@{=!S`tA&=PQL@Y$9o$7Z9twcc$0jkNPZf`ut zj`XWn+2bAzzidebm|LOqH zzO~bPkx3!&vDg5b>w#9`kkSz1)lj1)rQ3aB@38`OXRzA> z<^u6Mp5tpj@{67BhCNTTx6giGOrjKiW6PQT4eB8SWoL`ka8mdj_3(aW3W&$wNV zZTC7zO1wVfywyXpm%drdzlyE20-jXg!MOfwpX4tUe!{Cw0gWT~=H-?opGXhl(8UWj z3NT|aK$KVLRd0_-x7``{TTX776Xvo6OfqX`?D%J*2j^R2?dO-_eD+=@skGROQ*`8_ zTMOeji5;eVazzuy5lbf8{3sjbXlKZ%b!%6${&YF3>wf`17+>~M(Gm>)di z?$BU-Tc=jY!Q~#tVP;K;N{dp!dib_(+uTcYa3*}GnHNvqz`D>xX>uGJH5?1mzM#xgMQM)M`HT_KkKHh(6f!IN-< zn>1VG^{)*rID}$p6q;*Px`EQHVcDb6gKu4JnNiJ^K%ZIpTb0VJR;nkftsvNNv{#{5 z3&zUyoQx{lqYT7|+@0-|Vz3ET&x#C&APf%Y8Q2~+Z4v4CDa&-T+Q05My6Hx0@)jFu zk;yYWfW5lL{Q>d_9*Zc`b1SC2e)L8~&@R)sBV-C5+pEbd_%+v!M<$sr zUQq7=C68qQ^g7Q~aO$W?{dWt?@3Tfeg8WIl$!$;j1(_ER*}PDh9(Q^ETaLG7?LEtP z^ZwWVe-He>KdEHFRx5bUJQ))i44ot(y}pfAPq5%f#9fm>IZRs=*;Q#xULG$#H;Fr9 zi2h!oRqeUC8gm|1$N^Us+7+rod(V*lZeV2~k`mO74jv=P`(Vg-MP58KneI**p8Vd3 zctIj-JoB@*>NAj%NlyudkMtySGnWl&(qcSxo{CiN3#CqP}08zN4F zNgk$B{gucnpdi~^)C*tH=nIQ!=@=UYwYty#xj~BvRM%oKc#J9-@sX>`tVA&DbxH0Z z;b(^DY5OCxV3VX^Sj&%a!ranVNw4B9a#bEL$Q!9VEsXGW{vjGXn3#CH_NB_xQvdM^ z?HN=vnUum;xI@e0cb!^{InJ|Kg6NX%sKCDr3_5N8~!iqN2jA_N+tbm#e=` zU0OXGKJz9ky>3=H{iIN8%jhfDyX!ZtK^z_L3cD@4)-t=Wu4VjJ)utP!-7j}g!k&Lu zt;fp-K+%s%BfVaafsDQ`(*vE?0 z9bW+{+@Sf0!kj;p=nWK}!-_CkL5?{y2~NiIDhJ^e3@<7@!@T z`;76*zv6!<)E^HA_fRd9S8VB&!*L@6khSr#O&HmH#BJbt6q8jR2OKz>%>1q{@xr8e z7F1Mw$Ab!fg~M_o%mXeEH1B?m9?9xgB5vO~ba@55RxvWiS*bSAYmgY~rSJ#iU@ z0kw+fj7Lz)5)s-10=z=k^34@_iuVj}3`%X8$mT3oZwzlPJ))ReD#gJ@WUd+|jwzMj zNeU0fwSzo6dNVF~TM>bQ%sJEZZu)%T^u1;any>0>+4ULESn!afyWk+WA{Jh!e+6E^fyymm(~L3yg4C#V*R#mHlgKg0?%n(mUWu1j zz&LWbqypKKsMcJs{p_2olKYmuyU2+k{3ltE0FoCk(f{vq%f)*!%)9&Y|8CUeeq^C4 zo0oXW!0d-$vgx9-N-}NMMcp+3TB(nY4M8MwZ~7=#}BZgAFL#HA-UbuFaom z3w_*5q%?orDTr)y)hJ7}PriBxN*sE2?3YbbU+h3JDYCkWDPw7()HUw)HZR!zv8|ug zM`6&rsz7rPLNnj=6I4yI{rAR0!WifFuNj=fkuI;lh4fD!ulN2@=GdP3+mYu&1H zpHhT{D=<5*ewlX=GcaJ|#UWgpOCQS&C6L!tU%+Bq(`))}8N<<_P1`<3dZ;F2*7_DeWyqp_2LzXW zf?!SC!oR$ZVtQ~b6HPaQDAyBEqSre(+lkm00K=bO#Z0#DpF1Qrj68b#m2DECWbin1 z8hy@c&3X~?tBX*lr6kqJw6dHM=@THH9GX7&qURo?q_cfi^|I-2DQU(J zyq_m=WxQ>*2`NH)I*;(DKNQh-4@6!by9CugVe&Dr4u&YYu}M2TMTr8(a9ZBcEK>QV zq(1uM&nEu;#qN8FYWO<1NKg)sZ;I{FTnfcEk>_oq|LHw^S%t`FSz*pLLZy~n zA&w4Bru_%eS3JCfeJ|CrKT@srfHt#7n}on#GYLX-hAmj{o+nf)SYt%yZW4G09i%6B*femIHYDTW6K3}a116biq! z6U^+Pi6!^qZI%JqrF4$ZO9CtTm<&we&c+EFvZ4K)XJ#e=-gfyzeeclt)#6tEF7md! z7WO&O^tniw)fS7cQbnI*kDgzU%ed|_uzoTX?_ z?%+;>N)jnzx0wD%M`l$hRoK_WP}-C3w}}Y>T_!)?AuaPv0MwTT*WgtQ!|M#0QM+HS z%kRX?E#fxatR6V-MK-$gNm50#R}FbDc8?L$;JwHNxkMaQF7Cw8iHLK2kazjWrd-30 zp5SrQ73bH?#>-av(LQ1G>3<@hXyLO964^D zdIF3qW={64gFR}Yh!pI=5ru79L8vqvb^)mBA}Jc4hm`_7b-obE$Ea-bhjD0)*q1<% z<+(G@-`P^}n@V;tk>5TjN#fbWT}%-^m(#Y-v=aLLC(1W~#bO&v^~-;p=~gC>lFFUh zV5ZHMN9pz625(9Z??ORC!yW;_@rjl0;8Ca~{wB`UFHP(47Q2q=@#81gT*VJb=8Z+7 zE8S8z!-9%GkXa_EkO+sQ_DOeH+k}lpY*7TWnaXv^c5}U~MHGH5p;nc?VOh;XQQj;{ z4rx05Yvo2?oKySXAKd%CN_hnqTwfynFS-3;ME%@%Yuv}lcN1^cwzoqpt1sW*`O%&| zm$T{Zp!b%eQ-P959ut<5Je&8 z|8W;+l6L-1VyF_j_u$??>=E|`FU~-C0H$vTqd}RT)x_u8v>wM6|G_7cm7S<1v9;P( zELHjS&)KhgH7p$dsC%v(U#XsF75qp<|L>~(`c4@Xr$Urx2VUR(ng6F#9ZR;hASINF zwy{mp__1Jb>w4AZJMajX#IrPO1(TH4OkdZM84Rt9ekRIRfAcnvJFIIG5lChMl=H0F zZtK{5-mC>4M&yjq0^poC2c4Ho9u?Y$0DQTTr2=e8qf(OY- zgQZg(VGsA+P}X6AOh_O}t!^C=8zvsE8>}RCCN!0WXPoBq{RJn{*A{;<8JH~bW`88v zxCvnxeck{cTtDBk=)!qqEc|giE(~NuSmQTDA8{9$;F!UCCQ>kYJ>GM5d8v5NOr!^! zL!WOv4&P5Mz=mZ*6#wA)z7xYoQIa-yX>453hgEZsp(p0|OUpa30I0cq9cAg%z08ls z|IRW0L`wj%!BoI|JHaOazdiBAgFHQ!4UzNH6m zJCUM8jSdsvKibb2NxdSd=E<`wlBm>MJ$6ZqD;moVMI#5I&Yl}v+_xll(xw8s2Vi>a z=~JeJN{ilv7$hP7@tBAZg941;{&6|Cbrv0mXnCgO$jnq!=# zq}f-1LJz@~S=`ZD4zLM3+!Z3jacU(HfkbutsmpE4ME|q72i%g>RZ|rMu18t>BMf2| zpMvcx35~=bV#0waz|Jv27S7zl{Z`CATnFvkckbdk&B0HIm<2T z#6l<#!6itzrAg;-9xEaX7Bc)H`$Lhkf%WW$f`MUC3@IT@l72+i?*w!Os5_)p8~gPg z)%3afgA4Avp7s?hzb&f^%=;DE!v)vTBUj0D*P99MTf%zBWlI~IP{|XkJ6u~^usG|! z3yAPOi_DUjia_SNK;7SD`+qw)2YZW-AfO9a>5;}HV-!tS#o->jn7e%mcH4mIH%=xY z72fBtqT`AKO~b&vc3+Xr{UYSl6kiyJ^NDruZB{r3j=X)f`Qv1mBFdbwV#*EZ`GBCN zQ7@47V)~U4HOmRzmfy0)Mh|$Oy^MH{2<7~`nYn8&FM@s{7N|oAkX>!^QXLEGB3T$5 z(;PxnLbih89NZ1lM9$`|UV-!sUoz`L7FnM<{gzWK{EBnzw@iX)GD?WsLQi4?&to;6 z#h<>fjpRo<_K|zRT|N1H&PlH8PXE40o9DfBj4+Fh-rPt3QAY%t5u=$h4`2@l_y1gU zn0t6h7_#wEV3gt-%P&E5LzF>s&6ql)GEb?XcQc<5Ol|p&P0!@p8pe0n(&$%H*wO{V zOZ!E$dKV5x`ojbMHpu|{y9)H(`qUj> z>XelJQb}T8d*{z{JW!S4JwP`ajvnx8BZ5m8d{(9x!j_J7y?3NxiJtoC}b28N;fE3X=GBk`LqzQqNoW`=(mXe#r=qA zyXnxifW_ERb%QsX`JW##8TJ1ls#I1lhc|ff0RVX%1XWZfhPfV7RshYCskS@(!Yq3y z&WS0h#;YAfH!@4>H51&~H(Kv$>o}CZ$@ivdo>?&{`0tx`-|h~PjXAxbXoo3q^6JvM zdGRQL~Vw^KEH%f<2O%dAwTBS9`HgbBsz&-b@wKB)nRj6l}KcRL~@Fsc3-uB$!_D z-+;rD@DMz_BEuKQiw^*86O4SP()#NS%Tqj^2bacV5}_~4%ll`VdV3h9>_sxrz|^KU ztAG4i1A$S3i+gS7-&#sVF3*hMf(k7m4Q&cZuy%tWjDsti|ILTrU64&{>SODbEZ-8`(Km!tS073C(u0xQgKbNx$XP zm?h&Lo<99f{&XQGxU5>IntUjTVr+~A7fP>)(~Dz$i@C!9E=^}CxP_6Q$Oh1%Zh<<0 zP?#c|+jiX}Oe*JlLI|9AN43~~F~?i0fh{Z|?JKFIL4js$rBik^U@YnPAhK;f)3s3C zYDF&4ISisW6FjIhDTe`u_b%Usfo3O^j*m#Hmc&N$q2RUPhX>gtR2Wq^G-z9{$l>HY z#k~!TJ`iYV(?p#~JGN@pd;T3i>(&(EavgE&pC{fB)QU*?;{ii{rlses?JUJ6yEepD^{K^Sh5%S53F!twQc6MI%jbQ+?{C*~F*EmlUFV#=_wUTk&R(v7GHoXNi^nF3L8vy%ti9?>5hmbWzqs{&4H|3SJ3xbL2E(At1t#K0Q!BJVMK!1 zk=5kRiaz|5{8W(<%uqS9P4o2rdSe&Fhh`qUwBJacju`Q2n>;c1|{K8y@ zz>yW$Fkj7069y5KFK~Hkk4^t8ZAI6uP(iau;VX-_lglRM;7nvbNh3cgolDSHCXe#jZVC4%OOWMq!&DeojoKIqyt@pC@zgcxS~jlU-SS8V8!O{&KVl^H zRBv=jv1Pr>uz)R1%{zu?+c}FkKYC@0v|zM}Xe*+Es;g?yPnBYhrDsQ3sIs* zg|u6dLDU?&YT6bO`2?X$gpuMB36T??A+ciN!h5H7o&_vD$Cm{-h8VrhL?il9k+ zm2m_4D)$MGmnKX^z|M|uO01j~#g1cqCZDF%!(7xxV#X-bPa3-F_3?X>CFt(tVx>uX zBQu8@y1sqm9?(l_EZ_qVm&F=Kl!I2NjcnV;8A&#jd}0Wm7B}=w#*x({@ZwT$?#4*Z z3FM#z@mDf?47i&v%ST4l!Dj)4DZjs0d;yu*UWib&WwG?ug>>hM5YIAYTsC<$WfGjc)E=3;)6JPUcxL7T1gi)Q=MF2ZiyQp(a3vWh zVh^7C{=Ku)hjjGrWqY>o>HnD~s9p!g|MTmg#pb`ZsP_N4{MtAEsDe=4Tzu+7gMj+E zTmO9N-8%lrO#TJh@Q}#d$GL{BF?z$*D*wR99aQi?ID01>(Ntnl71SOTD7jQ9a7mKp zNrZ7*Igd!kDEi3;O=k8!?oe< zOp^j(MRT=2Er}`ja(Ftu66zF>u@bTjgOg>%kc~Kh<20f}@!K&#>nz)+qYz8pnac=# zWGc4*J+m-Ad61#_ZYno>N#$#`H1(UY{`(Fp+O4ZQlrJ!%i7?SDdRuf+bgr_E(eN0w zQ&3OTi3%mtCaU+SQjY^k7y!ZzZ~fyqNl*X2p|4sHFe)>ilg^sR4poSlz8vt%fDa|G zMQ{!|7!Vn=CE4{^)LZFL0M6^+O%}+z9$L^yet((5A@*aspUdZ5^SAPW1$glI>~E9e#;IoJkyhmqM0}t)Nx3{Gtc&|2zCV}mB2yFC5+qD1taj^+tF$@6N~~e1 zGEnQ)6O4)?an2^UqjTdG_G+PHu${rHklBZ4um*u4;UL|u!_;C(R)yGnR$d#2 zfC9d3(|z2qqTY{WA%&wyb_iLdftwm>fkCwhTs^-R*TEOy{eCGD%TO7&O)-x?$JdK>L3cFq9Sxi zDat3fN$qJVg8a{;0IOrazva67L6-R8 z6K_9h5MFZKt@c6Pp1l^@*8%>wH3&&0OimVqH_!S9zXQ6Su~F^}bH zycMT0V^M84R)_|(gW>AkD$-II5}I!D<7AEo5r!$Td3@3P8BFBzdC1?-*R`*o0-Gb8r>`a5A-u^sJPL(+guH8lMG8K3F}>lWwf6( z=~r`_aEIlOa?u6_zK~?qa95KzS}XeD4BtiE>}fwBJ({ik-4rO)HAeZPCLq;=K2L() zi?HYZWo1fH8%(AC)ejxmV{9tBFrm(dc4T3{c$i}1W>cfgO2FdgAHG`jORh%Nxcx5; zodfsYLLIvoIG0Q(WK&y5DcYgSJ`9K8MqzJx%wmX9oF5xo530Rqe`!DR$wU0Ka27&- z+P!=mNhX=6`Q*nzW9=)y#dWId;~gb?Qm-$k!}wyF8>S9Yek*e12(qnr{PXky6aE}G zrzW{SRt}E%`9*2EhEcoQ!YH{7KQNa^YEwC&8`ruYie8fuh zndT+#->EU-8 zeTA@A#nTw&pIW-<(mdhE(G~RMP~5asl~0o}?ay4fC_Ys(C2Lu=c#3KIb1+!d_Et!( zEgT3z25juc=!{kTNCxDYcZZXIZ>y4zxyl=en;b)cd$Iza(xb2Xffno&eld{0P1Bh! zpdX3^$FRT=@a&;NT)vA^fJ?GnVQT}5e<^_7R8(t1GvsKyOw;Xn(d&_}9srA={)8p) zh#Ym0g4ejmpcwG$LCR<}3Rf+Fk(8Y)5^7CPkX8BSSrM?r+E!We4YM;DB^dE#Y!&(3 zX?g|qjKe@YZ1V<(u(W!ro7+DnxtBO-nUB0=l>H(nqTf)DJwabL2 z&;i%BB8qK6BGa{O(@o$A44gfN$kGf{er-Tz5K|#68$VPikz`|DLy24E8dO*t1l3$~ zhjuIdE7opVxtaUco7BT%bqzY}W238MaxK41_RoB*@f zE@1Un9NxPdN%y2x!s-lF6GsorzQF*rzo9anNan!Ne^rs#sbX)UE7JdcnQCPwwqj)V4tXwg71$M* zx=l@rj}D`VV|!SFeFrZz@QtV>QfJlgn5Fa`1!X9q7N(i1w5w>&Nf9@RP3)_-nOR(d zp6Ue~FviqRWC6qV1K|AzgS_du3$XlZKrhNlFif1`&L>@U{UV6)DUc1dlfMpDm0AV@ z>zJ+@P=D8#x@f&M?7zZ@XSLiqLZk{H&ptRkbryA2$(O@Kz{VVM-fGzj?oBg+rRKLs z>rtW#2_Ja|gQ9~gGz0nW^J445K zPrBFW7=Q5X&n@%C2MP8PNsmMN$|lu->IZhkbWTeQfi?7TE)k_>nd=~gWBsoe=J6eB)6kJU9Wlnj&-HpS6sRJ)L9knEhcBcE6O>H5O z9TK?XYDPNWVQwh1^;NdjZ4)gG>)%3-^qWmm9ArCzcU0x%nwp$o^LX9-41eM9ICt6qv%mgtYs&Sy!Slp5iTwP;_4b&>Y+Q#( zxnv3jBNg-T$(9@y1;;mq{hda9OAW*sOic}gDnn}li`d7x+YZbT(jH>{2iWKcrqyma zoeEu1ZOWW`(u*%fZPLM+_DN5DL%Y9~GVPIiYP@a4UeGs#YItffRSo-5-!pl|6gG`~ zQUpn{2stvbZqWn5l0#T)XS~J`EvFJSki=B*NzD1(+{f|kuDPB1%%|T$;Gp?k_!eD5 zyYHudG84kru1%v24;#&T#&tn61n$Rxs=4m&%{3cjhV?)E?0Y_9b>pHoN79!VJumd z{nOM*38~nzj2<9y7QwK65V_GPVIuWzU5Z>7IW!EaWIW0bDnWgtj!7?2T7~#-cdmcA z+Vyque%KDD#Pv=Fw8R4;%}>`0qxylmH~v2Q^n8=WuKxa5Y%|&jEns+nX_$z2L>~<* z#!&NruA9%A$O@INaeYdKoB13#nrQ5syrq{x7yzt`Z&`Phj592y0opM_*{9#VYt4r2 zpwauKsaeSp$bPtF4|mDt^#WP+0nF@S)W@fikeBMIZ2x?p4{6*BS#vA*PE7fDQx2)# zrj2@VHNAqfjVxnly)dzDn=TAv8N3W&+xH>dqQ!N$t1$dFiV{~Wn)Ve}82f~I{MePa zk^x(;Li9^JZIzj?;INk~cFq*UX`G11I=+s6zqzR+n@pjsBiraa`q_*9O?X;AA?Y)_ zZEkDLRvlYpu2mr{MXljD9*gWX9$EnsA8@=U!Z&%&{xHPifRnqVa=4d#vC)i-q#7At zZdw64=yliK<4}_VV8O}h^`NLKwX^kXcGiN0B z2X15Q9fCN1gHeif?fb&N$WGt#aiHEfB~X8fODzQ_$G@q$RbvRZYEz5Y3Yc{P1`Q$s zz~|fk^q_L#n_YzJe@|k_f8@6>h}#rfqG}NV9`PT3ZQ}ErJGhIJZ0V}0k%;O9K*k@xCt{PU{pX~iVA zmte69HslgPI?^Iml8K zn;P@El`b>)wQr5NdJ-X4G@cJ*-^AS}?Ea`&Wm7p`Zd7Op3eIwB-{vddkZV~%PGs~| z_#R~7%7JXD3#VDwjrEk{rV5KT&o;*zu8Ycklt z8wKjlXx!-lI%v?cQ~08c5viLCjyNw_4tqc(tnKf#b?rX6y%j{K)@!`!{ifnBTs3nT zN0)X%hLQ`Gmd0ah$|p=rMuCra9G>JD&P^>%6K1+?2y|Z12!%g$Fm*};T7m+y{}7&w z8lxSCxFa8bQVr8+v~t_j-J0PwlQmO#-Jl(m=eR|1?$#Yz6P(B6xrv`$Um23e<#*_k z7WI?NCGjv@rV8lXM0IZB>s4`HAJZkTGd64gSMvjiE5BEKOK<2Saznv*;0KsGX$$F< zmVG<#eUX*X11bIa`=wsA_iD5U;nd6_eCY~HTZQX6r>}k)qifq7Tg5S4u#PT=~=>+ zOKA#>gc&7vgYYMriTWLWmGkSSrnitc)=nXAVNgoLhOnH-ifw54_HZuPs*V0I$eLq2 zY8#rsv>J+!;Z_*<7ePc(xMXY8&z^{5&M9#1^AnkefX59OYig|Bg$TuIE_y4~I;dz9 zlvZDJ4mpai)O;)yqQIT^Rcr8Z0jp`5QEL6nq+yh1!1SB`Nf*XQ@^CM6kn^=h z-+RL~e+~aJeAiXy_+5>m^CH`T{wJG4 zNy5(er0HAN)drr0J~y3L&st#&UEmRxeo^$s@7ezs`UBxUD0!?tzlu?@@duE-+&{(r zQeh^FJPu0F79i}Bx%Z0C7RA=@4jM`7Ayzj_t^br7$8)ht0SvyRR10zAweLRy7H%3qr-`wSY6 z$wb`w{a>k>S7I8F=*S=^x^9LTc~Wbm@dF5HePJ;{1Gk$v!La8@T#4?e-dO055o_Rh z147I8NfGniX#ekQNnn%?=Mm2e1vNQ$D(CNp$9Qp53yYyjaiEY$L0KOBP+Z;5uDI?|0D_ z4@v8dBvP7kBU-+pn0SD_t(PF6i_hP$rAJ8#aE?P^L!*@4@2UCWU?<5hJ3*PNc05(e zs524{zipT7$h_al1wm zXrr$dGLsxzqo`+r0r=jZ1zP2cV3*#p=}m)02{5HMH7Tn!ul4cwZkJX$z*5Mg>T2}! zmbaw0UhRJFoN58)&p_Wl;nhVE(VZ^_sG!%J%Qg(-8A{OlC7;5`(cd%}xsJ&(@PYrn zUbL;$uLZet@LjKZyPQe9!`rHSe9IwGp~hm~%&bI9@T)L!L>_*Dg)s$qCUbQ^XaWQE zgaFHkhnkru%-L-D_sf(hRa;>10{!aT{ww&itda)AR1|WY0gA?z)2y3uE%yS--ii;I zz#&5E=dH6^~bf1yFopOasvL&Tpx|XLoMm#Q|)TEkvNm;4# z@gIohZu6_*CnbyXgLe)|)wabZe>?A9b2xAyNe_yrNAf-H)9v%PNfG5+GN+e4k|^D$j4^}2$?zk-qMLPB5uT0jqOVFss|qFsp+4x4lZ zjmk`-n?jJxo{8CYqbmW=hwV_&#$fykj51@;rGEE_pZe)nIXxOCuH!BYYKA4Wu#{(T z^_A1U%+1=J%Z@T>upqU}y-{jYY(Z+>mFx(#c2oLAz3y$x;%moZjW&x`BW5lpG?;#- zK&KSy7vD`yu1{}_F7~xto0~D6RyBEk(L~=p49JWW-tubvLXk(Hnt;%e0R|0w5 zAA`oWN}oJ_4TQWE`yS)CgAM}>IYPh{!`yecN`VjFUCs<{R{k94BGCRP6zp`F8W-L5 zKai6GkTT#kFZ_-PHy}ji2dMSwa?x|&yTf?p3(^JF4nl4i!c>RkB}KV`lMaJ4x7BFS z&gk-jR?7Cb3l5p75#NNnCrn*U9ei2aBiOEWZFVKoAE57#=~S+kx`&)#5Ywn{(O*CO z#vPD&^qxOj+=MuT;Z3~cRHeispCGXgxNEJS(5$_zx`7|Ttd9G>1){~S4H8RZ$vp7EXIhZhcIZ~GGNKt1rDJ`Gi zVqxhXttqv15OQSiUYcND0fryAnvY*zd+0hyf)`y@O`X=i66z78%+(bS5J9Y%8>lfq zs+m}7?x3}n*&wGjmZlr@9rZ?#cj_7z8T$QnVNy>y-%Vlrw<{qSXv$--D0sphf5Ch` zD6Tvu=}TFNnlDa3_IOs87PC%)ZriO-Ms&c(E|lCAZe~^gscH;%yb{V@uX|tuC?0PG zf$z1~o#o!2=Z`!N{}a`&v~Tvl4Ge$cbDazbaIV0=p+5nB+)On&Jo8SanjeOk_L2z+ z3=AbiNr9wVu|U}tuiwR7_7S~~$yXl`+~Pk9twLC?hRG>6&wQS7nx1=<wAhhbB~#$~@_ShD?dof$=9>0U4SX?`i*NKj(aq?gu#PGz;z=heav3ns z-d>f)VYKY0>GBx5o{MIPn{qA+%N%+DXq#;w!VXv{@bdmc&K7g||60^6T`vEu|^dXv9+t_=BQ8K#8bkx_hP zLelL92wn@jlN^`r!h_!nK zkQf^}=vI-dG9!^c=$#ps+vl899n!qi)bkvlf?00BU+?`f&_p-RFL^&dxNGcNc6>wWMgnO85f9MOWrR&xTjbnKVCs{^|+enfi9Ge0G-kA_%l zOh|gbukz9=-GGr~#z}l`Zx|%Y&-ve(t%@z~9I2KuB~l(ddHAK`u8C&44=G6XU1#h` z;QKh&gUb6dMdn39){FF^joLe}|Gqf;zp-}N-zYKK3ocvv9Gj0Hi=rEq8I6l)ro+PX zR6N>VBqbbF5%Kq;-$JnZkC(liYF^mIYT1Si2oHx>5+M^0+e3;`XgU77i(u?X#Q?b^e{ zsOD?XtjrUfTS0*TijPzY|Q28!TK|uvFd$o)nWmt^&TA zx>2sEFJCqzg*AhkdL`18JbPFYZ)Z15cWVmIF|Sut3$5e+aKy5>hwem0J+DCHfX5hQ zi#+@Blvd;aO51>ATI$yfefZrkW4TykZ#d(LLQlD~Bk-)gFos-g|GW|erF8WCT_jbP zT^9x4kv{SRJ7xGlSs^zVv~-Qx0uR(3#wQya%gJRAX@m}~fVh<1GRLk$*y8T}xa!k! zr*XP;65s^!zkBX>?9=|`is3xT^Y2h zMMQs)SVFq{m~OZh1hj+1T-nc<^Q{+In54!-UA7@} z&so(H@mi2#^Z=V+FYCi-Uez$PxE4oI+cx>+M6eG;Q~iz}%6Ek^#rP2*t(u)c^d+_% zq&aN@w}f4-De$>d`&GVeY!A^*i8-lVg-o4wXKKiE=gW1C(_RGi^50AerJ*4JjX$Wz zTDWykz<%roL8AbW)q9B?+8%E4)M`yT9@{Ha!$Kq~Vj?x*@D3L;^g#?i;y5Ug>xlKv zyT@joj$OhV0y}$HoyH0vu_LCltDwo!f z<3Y?w{FP`QLHz~#3p62It>l9s8o{6uBrL|AsE`=`;e9nC#Om8uAY(SbR@rD-`Rz(v zDvU`HskQMRficrBLCsV85ERc}orCkS6}p0B6cN5?OL`$A%<<`1GIRg*cCukHfuTP@ z3LIIqnkWfZegxq_*xI< zjar{KFLr2k32O+wshoM>0}lM*T87jjcG+aXUsl8X5~k)wnSE~k`TcFZn?P6S?_k+y zR2L8dl{wp^fR;Y%0ZI+(rYZ0%CUCsI*2cIy77li4gkEXi&}n;tatNw5Apyzg$qP97n*)xvfV<96QUgqE?J1c+R8&k}I#{JJ1-&8c)LLqaTsIX)lOkP8tyJsCQ#7 z5e|Tp z?Bx6_>u==&7FXzqd|{6M5KOY&AQq!l%*#AyVbU$e>?6w#yDMQ_vKVV8g68`3ER$07 z=K)Co41mlFu=Npwxg;+d?V`{%+2=0E{X9)!xEdn+E;!p32eU^5^$p|WacEG`RtAa; zNM-bB0VjGt2fyfrNA@Ka=ir{RzZC8gI4~xd!P3GUE`nQPcJeNvcciOib$I1`LWr@m+Aeq1W-O~Y+A#e@fPJ7 z=aF{m;h^0EnLd0g+5EHBY4VXIn2%!z4 zymd}M9<^jztS|&HHgY7?xL|GZu7Pr4So5EJA;MKs+#NSb{M%<_3Fv<@r~%M^-@LsjD;ru!B9~IDVdT1E*LdgD^|z`lMjk!ylNb17F?P zdhWd#$p3Gt%il2rCRaFBsIorAU=Ucwai5*5f&Fx)`WrW;DyxcuzH`@TJY@v@ZBuW! z70WBbVk1s>S#xE==4ZgISUGdw{+qOl!*tkF#0uD*q89fIY=xcvRoO!ZC8GQdF&R9KYWV=8e_>XP`Jemoc$KhHgz+|^>qT$aqhPDKoYV9#fhm%@ z4x+E238jP`kk86alY-Zs(3Z*09boVjD5u8N31MBLX2`v@X?1LyTKd7hPssY zO&|=f&N=$MfDQu8w}aed;0M*PW1$y`0$`nO-632GDVAtqHA)u-jd~AB>M%hg0N=>6 zB~7CKM^ssCdZh;3&!uR;#Zan9h=(|d06abQSv(akwUpe8qc?7BMqB3qwme{2W$Cu# zIsCMdHML)Ig4s53&7;taeNafhm^~7vqu3pwkW2y7BXUYrOpYM*iC;@53SGw_6QVpu z2~oO6?Qn`C(`duzS;L0BCeELo-z|JR2Czc`+>pQXE!N!Xt!-avR-pd4>U|epARWt4iQ&Xem#GzL?an_um zMC_hojMiEYa*Su8lt|41xVgdk30m_^YuJ4yHhI}Zw$uTtW92P+o>X8>wcO$`HRnFO z6~}v6eFylUvkwRZe`6O@{I6qn;s_o;0(&w6ONU&u{Oz20$0TJ9J;{W?vJKrh_crKp z!7}M(C|G3FZaBSFC3g@zNk;|dUr_S;LSCghbdbVY%fe2>uZ^1^!Vab%z%d32gAv7) zBxd&Te}o#=n>c%#@-b6urp5Ht)D2jvr8;LYV3rI#ti^NVk};uK&3eX5N|o zdkgRSbRHFOQNr59xf=K6Ne*gKmTZ0}&|?*SU~>0H+5n(StddiwomcGeELPmS{nwTH z_4R(4bn7_y3wjq$tjER#C|Gi)nLrf30Z?t+yFTn~oog#Lf6x~4jFe_IH^tcqko!h; z7(<(DlCdcPdL{Lq)~~jJeLXae5NrOBy-ob~7`^KI_?>*CbGfdlmR{&zn9Y(RXcJb! zP_jiS6Cg3voz+{hCtc^BYdv3|5%+xM96oBLY*H5YRtgBoS4Kz5nTL;6(c5-9YJAgo zOjXMaE%mA5B4AZD(6UWWLNcEsSkS(ASV_lx91A;jx=byMg2=Fn-^asH%_4Tc*bDJ};|eXLNn9ZHDvm$bk9K73P4GpP%W- z1m3Uu{NNmw%i*7lAhgq?g==SzwbT~$(x4_y^?i3-z7Lv5;-1H;vPlS*BJLoiKjku; zwa>jJFd?9XD-bQ3Zm1DR{RohWoB)@}qHa`XQ=Pde6 z(Io_m1dT1LSevMg%YzZO)sWnHhcr(NTX1uZ5{4Rh&GXCz0kDfhSs378i1ZXwa5Jwp z1D!JhPx~J!kqi2gxjv65E@qn(FZjT-hL8;;Wjg=$lG4mTg7MBJz*+eH(8*BTJ`1Y_ zL+pbyOaJM&=QrU~CgDN$vMP%)hNT!lL1}R5+}2$a(6|I_NWpHCLSvxcmyeZm5%`RH za}i8C8%zKA^YuYaW8G91Xg!8u;TOvssYcu;Ks4Mtdw8k*8n*AfS?AUrwP_;V%w`_; zd@oLdj_^ixNntWC=^~WHtyZjH{jS+OOpUf461D{tegLVvQ6|lxLjiemRDY}<%OPj@ zNy}9-N&<7wo6J2u@ruULT}DweNGw|dkzqJ>)U5YaOfhw?;h z_?dLl(iW-3Q^9zb#wH%q+<#ehU!4-mu8INn(Kxr@5b3v10*=EkO?JWWLt1+>G4lNImtF9{ zz~ZADzk^TS*5A17DtojB0x7R_7)+D~LRb79dTC56A?Mgc6DkhUkvD4V6$4o)hTMf=WiMjBDBCerhEqS2MFM z;B^nvLwp!zmVM560QRBF^MBA2Du=V&k)V4Ogdc9v|K^6&4q?yVygZ?lE<^+lyQRu= zDxni=#Q-&cVa7z~_19G>w;GnB!TVpt3mJK|r6KA}%vm>k98VCDQuL;bqf< zsTDIIcv?>tfC1S!U_iY5Vba4ef-~tP8hIORqOK0>%6@go0Cs5dh{e*@3$pTCHJaIZ zFO8LpYZO) z|6u*!n&_?;->VQK9}@`3 z6vQV3lV@U+RU5i2${f8DbZn`P5Cy2UdZT8X4FP%Ac9#R32<`$@AFfKmI#j;3YP!Gs z{?Q$9Q8zt@2{-A)!}_r~J-sm%#GyR~MgJ`N;&H$eHI|JyM|LX?*%jMXi5+Y;3R=r_ zi|UFxu@6=D0X8%kxPX!woN%t<_+vH^8|`;j6uCMOo*6Ktu5(QB0Og~A9Hezy;}P}P zGjq;yMMd+$&NxAMf~QWE7lZopPb?Q;TQ*>;=3T?9GIOW_+SJx;eI5%u%l36|ECd}R z6)@`*iE0T^Za$g#0#89M*)AEI^OV3517?j9=^;2Ph1?(NU0LZcy^qZczkjS$NCXfm z7+C!%O(uJ2nYqdllo=>Z0&r_Z5R~~^3?5RY*ydnW6Lbi)O*K4A{l}bnQuuv@bq&TF z^*`AwO<|t=5?@XN;^_a7x5GD&bRz6)=|4>(KAC4mFdu>ZX^9CqpVW~;V-bkT$dgZZI`Aqj$%+^t#b6H2af` z0{8iY=)+tJ6pHG%j%BK^WkJ{V4$r-d&I|V129K8O3buvs*;=BV)4!({A8y1wtmy;_ z9EkjY{HRrl-I2Xa%TOFunjXJgzpuWHS zkK<6H7g3cdRlsM7$yFh>91B(O&L%r$kYbzXe_b5b42B ziiW*?L(ekMl{?GHqDqzuGHH%@da8(2n`P#j+rK}2-g?YVm^2C07GgrjL}B%_wyuxR|VQf z06236Kksu$fS^AZqP;MV1vG5Xw-tr8 zZ$9^`U-aNg$6@}d$c2*0izoQb7F^xXmy*K$R4)UG9?c5Xdj0Hf_cQ-C>_dh>z@BMY zXeDq;R+O*OHx4Wf(+zUpbPJ8ar^=JMmwpH0zve?1nJvsOKJ^03CO|}<>6JTij}}*C z&{=H${1oVYx;Q9+pt((U6mbDRY>MW!bF$46KA zwkQWvTYQiP4iD4ldjEmP?`jzh1pe)TXCMiSs)d8cMlP{)|7qi=32q~B3V;DA0Tht# zH^*8F?7+J&o@3>hsc~yLvGj*7Z?NNiY%u{PO4*$OwOs!b@A?l@)6suS&44Eat0TV#k&)9zyMUZlpIs8iZRAgBn5WRpP%d14~Qj;*Upw(IaaLboL(?1Bh+4Ig2 zoHY4wMiGuh(d?>34`quCY~7gG?~dl@aeW?O*L?m}08UB{jJm%G4}VV3ivWZKAamcb z&Q2_~;v@qpaczn>cor;8dX)I80GQ`GtkSjg!ztZ^_l};v76q-CGT4dMzb)N5DWYEt z;nC5y++`owU%-dKUaL!lWN@C zTBG36&r0Cs&EM?Kd^$5XoqgX{0$8(LJ3<`Mhk?Hncz{}?l)H4&OzLIQBdS|ks_S#+ z(9OYL^U;LvdI=n2g$4S)9)bVC2dtlW3TJo)tZs0*r5-==v&kB1_8;6_+;I`0f+ zXPWthVy;Yk&J^qWh1zf8D!<>g)Ur~?`@C4jGhH>Sf98Bw$|w*`*c$lvdkc*}i{+1Y zVHpy#=s^CC*-?sAD$)e9gYE^N1f~p+V?zaH?#hr5g+2=YwRU1YDd-Z@HFKYB#V@=nC^AROBr^*GN#c7vXbF+z)H6{^ z$U#xfH}23=>KC_YW6@Ued0{&SCrU+u8{whgINk+P7j>UvkyvlzRN zym4;9CwD&xj&IF1|a-@EPk1h{;(*MDAZk1TzbuS%DWBk5 z=3N0x&`Gxmi}g@6x99HmP_!>idG~EJFPi=>N*5o)MsAi+m)Q)P~ywu zyYeZV84wcQJ`Y{w-1}8=Tx7oXBv9-Dznk+u&RI^{Xa-(p1B)X;D&Ojs9Qvsv0lmmu z22%G$&UDTw=~?)I+iE5!67g$9&Kqw2_;DFb&*!gSQVQb!McJ3BJST$IAM>SA)Oov~ z8EU?hXg>Se87`NKt|Ps^Jh^4=4<|Ef59u+yF-wpkC@!i_8$*%+cj1IjHOm37*(P-#ZYgZy!2$>&37fDaJiQ6gjsY5nYy zIi3|pff%j^yzt7Gxj%j;x{<>*u@lai2I>ISQYk z>?{Y5H-B7S?mt?y>RAp2J!#-^a^O+_Bj1~W+bF3I^`kGs-1^I!Uk!?%Z`@i+Bq`R* z;Fx@RxgGcHx@GISCCmT1x#`ia{YB&T2K%4YC89}F*ilUmvj%Qt5lXZ|{f!uzeS{(= zIHw;J<18BPFO*i~X1(M!*b`j8VcKyC0VOqonF9YSvcQIUAUER_Bz7@**r(Tg8pl2i z0!IiIZq@s+d>BYDMK{xkQSDaaEW=-T5+nHTt|UWoKgfx%KRc}Y-VmPfnfjt?hd2t8 zx2#C(OA-mI>?THZMUiRPK?1!Q^Xs&^KL;1JyMF`kb3|fJ!UtUPC(1fN8osIzFaL0V zKNJv;#y*#OQbL#G_l8&*PY~wbZ|ZCc2>G^v0si8c7z}e+HC>PKTtcV`vBvShEP}&G z><3c^FuN*K!FaZWD3@(+fXIjQ1N6UkwHM%afrUaKXeX`WyYCQI+7IwfU6VHEi%i0v z2zjfOh}hCnfSNOlv*+78a@$C{Q?7~ zXcbZig;F3lx$Hn!X(UX0&NcFUDxxX~$P2$qEv|oShZQM%s^GDiaKxbOkYPC={VwH# zuUF$9{r&${mR(h!Dt~k5`al|2+JHUo(%v4QL792i+136p6F-Bg+N9e;p4OrnqPFtu zfS?WR60YI|;$PMPBmS8inoo_;aTpMt1}LM%2LMA5t2gO8eJoBF72PWbhAN*O#Bt&d z-W+)E_JE3vT8izRVTn*23UoEJb%K@93Vo4u1Q#nmJ5rb~_69qBB&7H1RvK&oe>@2I z;u6eE*A(1_|4!Re+0hhruCELAB*p*C@A%vMB*fGHV`Znx&c zJxMPLK>c;kGI|p`4;36tBjrBNZCa|#lg*FkaF`Bn8k5ZXc4joPzPQ8JP*iSOZCH}w z*)Iu5{C+137M2_Ln;xN(kX-RcK^AXZ64 zRV)E66D;$bU)AE*n~oh@|8;|0)gVE z2&q3cp2(86=sf&~c+%z--FLm2KU87_ zSlGqr35Qn&SPE@}f)NnVD+Zp>zuhl$%R_!X={&Q$ph=ime2gp!(Cy-Mn0J|#}0OQgi!!L<_!3lVOt6$4a7bY|$ zEF62;b-3ZfmpacfT~yN}`%oZ{?qnT+2Oy!#4@%?!^dOXaS&`h5VbCQJRK10B1;^_m zfIXL%YgP-YvEJT$I^bF7xdf6<;7L@M9KOQlt61seZ&V|QXT);x9FURv1arRK!6Q2G z3q1l5|E_Li<ma1o1u>%1O!BfVD$%b5qu?SGDV1& ziFq-)$iX)mAg?%MZ)&qtI(A*xwl}vZc=m{-;)1_xbWA(Awm~(1O(ig89;%I@uH-OIe z$XwjmQQl2;Sa0O?%W#><9Xj6AD5x(FGpQ_KMPpK&?p2SYe%>Sd#+N0m&5#7 z#?e*Q#)Y4xW?EdnH2Gw9uz^&@@+*#o>kfY52XwRSYj3!Rs-N$VAmZrklZouc%i`hSB&bZEnrf-9sI>(AO>bxb)-Yy=U>jz#m{Ftjyo|^#Z z_qkJB2kC1}Em}3}L(qQ-Ws?sIK`w_r>W;7q75P%pS+*T!`b>lhFW)PK9#!{Jh5O~0 z7QPmcVMml4b=zdNTwo#{`h0JaCf{h?5~3l_^4=BYHflOY-Ce96lI-*FKl2#-RJ$@O+uYZC+>Q-D8W*i2jp6 zjs%9~&ZVg8On%xwBzkF5kHSNpA_@tbwHlFHe8Jlu9#EWnOn&qN#B#aNA=y&)floGX zAteg-2s>gamE!4l80eGX%%B?1d$a@m*4!$jFEcP2BVJCH{qF|M&6-sb?+@4LXdFLe zyNzc?udIv9T$)d4WjU9t(`s@i|Ma`{drHeTn_NzIe(-TBR*ej-cQa>lcF4@lLc zTAscsbMY!r%i3tF6Et7!fKCvB4PY13Hx&s6PHn~3g1*9D(zk9;^(!I=D|4J1g_kCc zM9mxbcnOgKFw1h&gKniK$_d~zbawB-bxCDU)c4r2Km4K9u?^1%M(1I&@rzf|Nt36Y zSNq=TmA}X;4+lQ<{pij!BFRZdm%D6R^}gbMHVVwKj{dFULi#%~&nGr|ZBOW)zWH)= zp!-mR{5-2m_u{2RG@iXEJ(~$HRGc0?SEdKS zU)W!PyQ7odzRZ;G{r_dRv<^q}x}~O-jB#$gPK(Oz)+SEU!G1F2OS!;5i+R#kqrekS zDv!jo^H^mjzl%&X?@uD;ER0}khbfd$6QmNsg*(-&a5|tb`u1KsjHb)csovq{(cvR> zGnjr9nigLXe+NWB{P_@C!lC^vX)Xuon2PnpBA_{C{HBSO&-bUZ!<_7jO5yyldmmeE zP@*`;=@zT|?`zXKsPRSh(pKd8>{H?k0eN5b>yh8A+BgzpKgvO^5)jn*98V@eub4*V z>ioyjMD%iiHGAPb!8dF}a#Zq*5s(Z9MkSy$U>t%s2*gSHy4EWtuFEAUuiqv8J0`P5*vsO$`R2%h?4D1Eg;SwdD%MiJfv&E}zFVJk#oy zF_w_&3rY?(J^r#6bMY}W`C{oTd)Z{?h^M6v3sI=6dA(NO=sTin zP+Bc;T;~QWu!)@82}Qqcy0J}fIqP{V7b+;1fEt7*YC=+>19k6s*PgJ^fQlXP)#9W1 zs0CGR!$&HG$S>eii!csE{CFr?+u0pG{ezvmJ{_ zT@CJ;+u23?pAP+-p1geQuzgbN7Y;x(V3O$%N2?}A@OHoA?l+^&r3JFjPh~j8pYd;z zdo&6FiOLl9Ik>DT`Z`4^(ID9)s)Q>gjcVxQ6_p`6EE1+4zeX4B8z3U11L15?8rKq? z=796TK(I~pH9qkhGKy+|S6WnwA5YPEieT>-3KN5BCVI(*Lh;D+opQ5L=!$D&+e!O> zy=csoVg~Fln)f6|AYlSuL%B8MF~4f`KGSqZNCUE6Ltum~RgYoRY)+BAlI?CqE3uqd zgC2j%m(87zKJND(geHWs4~PirE-z~(eIPxY&Abhc`hPkf?ceAKrXFcX)_RZ=YeaLz z59tB${$fU|90P;EiaonEK-GY+$a?y2or}VfqW3OVib;Va4)>V!l+d!U06*|mwXL&L zbK6!h0RRBELrKAw{k4z)_OiMITsRbO(dTD)q+rCIrpJ4o)=%G9^Mc9}ST@ClXnHGqTO7D`UuzDiJESTcLa zv;TKK$RnGC`BB-etea87#?LjjlCBj4MHO_14o0)>G4SSX3=0^s^|Gp^@TrC*Bz-N9 zFX!KqIF{OtLAS0ty11)!9C;TawrT5c&C=G-ie-TBDpegLsT7GqG6N}9A#!p^3p;Np zr`!D=M6#M%uf_*eD0rI6$Fs3l^Zh>LS`%qPg38Q2&H*AU&`NC?VI)vK!5&-S z36l*?V?h`d=X>7tjO;J5j7}m4(>x4g%sly0#G>v&Ta0)#Xf-SajW8UJaSetjA4oqQ zez(!XiYViS+=d(P{INTI4uZ9vmiQkeG`;71Gu0458fHHWGFZfAvg31{-HjkSa|{-n zUF_YPX)0Kal4K%V)$^`)Srx=O7i$F5NG9%1v;oDo(APrVQ?qW<)e!d5sFLp2X%V@- zKw>rcOuJ;7Gc@nL)1w3kbs8sJSP&`$CIjx}4oZJr9*3B2m+(-X($7DibsF{m=qM5< zZ`|LY7@C1QBSmXrwn@pKiS43Zh2Hgf5>7 zNI`l~Xd5xOG1>f#Og14Q`GkG}p7)T33oXmB}rd zsffj2_78Sj7MPA^-U|v>U~j3Xf3C|nMg30Y3X}wRBFlg1ETAk`D+P!|S~QkMYVUpI z`RBKHO83$7wiY_inqW_S&V0x6GtBN^m(;=V3^2d1ouJ9ydwYBP9Ou!q47u#i*0(39 zOZH@nd!(eNuefAi(q*b`Y+r|cJNc{M(g9SVt>K=#M%mFi;bWQnnrWcB7QF0Sf`odv z*%UShq?=v+TVLi-@Wb#`<4S0j3%+YqTTjtAaqe>ke9Q(Af(|WMbw;v5#PHpfjtr_$ z5mV`m2$PQS@A!Xmc^evp<dx-*kNz1fi3%?Lw~|rmE)9xsKu`|8k8 zu+0eJ<-Par;&w{QQQ|$uWwXg){e;m>6VMg%bS+maLXvb+3qLIM`8UrudCC^$o3qzY z`5IM@SZ+fm^+h7UkG(rt=<=bo$aq_%=mDt>x>H;YHYMs_=ewg>t9_+V+z8D3=0$Bu zbA0|=GL|AE+)jT?lpIJLSFCz%+Cl&M;4`$Bmv{d+shY6zva6Ma?|l!ydju{txPx1V z=dj??SIrIAXz3rOy&c>iUMPo-7GE!VIrKS*Kn7$wow?$Uz2Ew;+cOCZ^tZ~DDo0>? z4j_u}VdmPQGvYJf)y-1#O`eZ$xj$Nbj@r*O0Dt-T<)STyRYxO4O~vE43ygy2qM4Kg z63`+_ND7mqD49aiiw(Hw{1%E&j6*Fie6J@x+gFNC3W0hYm0*mmp0*c`Bk0k^N3LZ53zfZ%;E=dcssIF0->2dRBo6(AhIjf=+UO~GjaLSdV%nzIF&#Sb|YE4HnH92?KmYHY>Z#|a|1O~p+724Oz3ZP;QIT8!RzZKT zOR5U4FvJ^EODdCIlFQ()j(LXbGxYka3&x_-OlBnc?EE##_Xeueu){BVt&@oV1EdC- zfW-l2=$X0T^6umJoT1DWj;`uh(sB~E4XzHwUY!MIHp{ZTqgDA#Aa8uAB4PwNF44Ou z&P*>i*b{fr%!a-XKd1lqR_S(NYwOh^&kg^VmVaU&SN6|WVvdUb{mgEw`uuG<*&nQk z^>^w7mcg~VCpMjLeqVicqE!a*0=?%&v>1GHWQCt-@E{9r*aC!t$H*Cb67M#^+kwk^oCRQuVVz6M{X zc&BT}-ts(-c-#ocl6>wR6Dxi=57L2*mzXJ@48lQaMJAJ%-!r>8ST~lr6hvJ}P#&+= zqtO%FeV73m=ziZ&FjhhZ6sp@U?wY(0JncOCp$Zyg;YkfW(gX6zEJ}sF28xtvb#br! zInl*#s;0H}PVbD0+kc@FqQ4IGM|)XYLLLb>^oEP3_bI#ab68p~k`{2Re&XPFdjl9z zk(d2T5ZuMMBu=<-6A?nrgbTQZ@R+mdZo7>`!rA+V$&+#@DOR4~BjOkmfcd0PP`T+f z^OC9ITXZbTe+_S5A}Ifz$3>!ORwJC4ig9aQ)n(cHzl`Uf^0_iYRddWa+22z}I?V)Q z3BZ5^Lf_^vT}4JxkMd~XD2GLUd^lJ;tDiesClmiWZd8voM<#E=9q61Jm?1^KMmGkLQ>}^xYSWw2il}>MeKUS=*dJ_6`ie z4SkB!W4^t-QI0H?yNzDP1S1!-w|ELOb3=CYrBQ&(G#!b-#6)lhoLOn!4EAGsBgx)Ce5~XHYE~4>bCYEgL4}OCK8w z%xH1eAd2rHjLbRgBvpw3O#k#u$vF)b9T_PoZ`3g|W!Y>|^{X3!C_!w6P|;_J#w7DPwlBxh#})Z%933SjiK zsQ^KdBBuR1#;+3q=&$)A_L(67wjD(dK|+M8CeR_r1M=HV`z|+hVpuzMC6zt@+h6Vo zCh}kp{6}A7a=6@gISW}$rXyasmIUW=bBPsH5xJn^M(3%|p~9;1+I8!cv=%u_Dxz~7 zQZIb}MAO-O7_Rr-vyayj5LDwybh=K&ruBrohlAE~E^#yTZ&rGVNg!7MyUza3AIUkr z7w9#)Z`{lS{1k5~V!li|wG#=eZK_GL8g&R8XLLoAWG&DUxay>tQX{YESORW2ec_>M zq;G6${bKxlS>+W&2he^DIXt)xUXj6v-z@`$Pc5%bXfn0ag>L3d5X!Eve(=(zngpF)cV|F_d9RHy&hXKpqd z=&<$4F#;_UWQ}t?^YkRBfWQk(D8)H_%XZxVTLoJ_e7gA6(m^SF3G#IW92_=*{v}h| zI7h5t#7zaHEW8&br`$xdU`<>@i0!7HBh*DYkn zZHOKrBEjqi9e?&UgnRPLG9|5FsU2xn5meG+Fqh6xh&+_o&>33NR)#D#z;il|a)V|J zLrdrZKqH-*6gJkFqvXoTTFTTw<;8ldu@oAojQm{AMNsxEy{gbrG67bB^?t`HN*mkD$1GySWn=h6nB8ekg&i1|>Bun{( z_}~1xy>QyiWLziw3C@Rs1*tpa3y zV^Wt}jXvbJ@BfLHE<+v$?!8{=A$2h@c(+YZ>#&Nme{p%I;)zO!DW3|)E!7?S$+oyS z;_&^G)O8&F`6@SaJ*HO>mr#3I2MR|CQoP*0zBZXB5bBpqyFUPycB^eo9KSf7(>{ft zK>DEiOK(0$|0I!3VF>ic{Og?`<=>z-Xrq+Cj+gyE$&^9@a@dO_g6IjGGjTmN1N5!P zQ20>QXA{iYhizEe0_yKh-Anz?ol zqw0EATKKUdV#8g2(1ZfH%~>RdQ|0$fe8tE(A1TOE^w}Enp0cwaLBxq3RGLF#kd8$g zhiwzLRLK{w>#G#eYdg_~N+BVX5xnx~Nc=wJlIWf|^7$+2wn);adL`iCDGNrzhU%+? z*LQr9!g+9vyi3!Kz5osFIl0G0 zOe>}4iSkxS%%7zf0mg;nLPkBbvsb|nunm6wD~ZP(ipkC`At@3=ktr_wT8f`*_I_z@ z>Ko}O(&HE5vjmQPaBCmH%=7G4LO6IFh^a65=tX82RkSc&8}h5v{km={hMP*s+pLoh zEF|hjOu)W4o&LPgv`rej>S6C1`SJ71GN?|vt6VOE-ztgt0h=TOZtB5)s`kuq?YreV zfV|As|ASG&NJeS^9JTJd@oRQl>?(Bom8?@pg_6(jFFuQQ^?NOc@01BzTW-#7B#(}c zu7)384<}zA8J`CmFP@*L&|hNcFW*Tm+kJ1I;5l&j=zS}0=DcV=!>Z=I`=oJJ%6&`C zrys|ua-wpdkiMMK68uMH;j3+#Tx8G7h$D?KiF?6-41EwbmeI#0IPYI*NJhqShYh(X zo9_j>Qg@=Czaz!SHvQtQpK}34n2sxnAP6Pbj?WnMyoRIv?xqS5vb?Jf8xO$>8ymFZ z!@u6+e)#2Qo&U~Zz4&vAGK$R7p3A|nP60vQU4wzSS~#qJ0R??l1hZRWvm&nDJ$lwt zpD9BUuEX1-?`%l@_=K`b5~Sdw2&ssLh#G-ROJtW-j>RY^Er=T~Epc2iX^WgOGp!j$ za6i-Wbgk{&g?y4ClyfRk*dYqC6z+qp_tI=^aDD!-q22VwwAHkTX4|z{Ob#jU0}=oZ z=?fK!qn2eqIRTL1Z^nQbmz$Vi!awLL_RnL#L}V$y?ioR>)qweCxa(4DG$2H*O8X7; zUM1l&$?HO3a>x=>j1(LDA%*|Vd%gVoa~j2;uN3lm1ra|U!XctXHd_*y z36tjBLt5R&*)9CFVdwT2y0YD7%UwZE9}D^P|3<5M&>a5kq39ZWzp;CA zfmS92e|pi7ZKLk1)Y7bUlCDQ*)NCyLh@3N|E$KU7%l@p8=sq*OL@=aJVHG@0sNA~o z_sTQGUhPT4%i8=S;g&TfKuz?We6!Epk2bi~{8gasr+IJTz58|7r!PdZ-=gJ>zcYi*hRbtCZ1b4i@>vE85=bKK zu3j9K7|?}7`f}{81L%u;SE+Ym40q4uq-*TAKMSc`i4^R0LbZvxq1qTXa=o}uo-#@# z-C^bj7RDmK>{QoQn+BW*C=BbY6<%+Shg3LThbRuh6u{IS&-kF*6r^|~E&SRbVIcIU znhM1gA4FNS8lX5dOe}lLu69sg8TZpWvzT_hj-Qle&o0f3ap!GV`sqm2Q6%C)(d`B(;NYUaE4B`Y50j@R*kSs-Z>F%E$F}G~ zUP98}=w5^A|1CT8uI~DiM-AHFO5p&q!)R1rY!*B)lX@A)0y=U%c8+%D%tqU&MqOlF z^>D44&%#;$oe+AvT1tkL?tfSR?090L)M&f^_cT`cBi&P@3gmABGoIy=Xi;;ysTy`kAF4vt`1tG|cac8JynjWzf0MgxNJl{d zL3`Wi@$bP{*j?4T2+h|eZ&q6=_fGUm^{&RG&IbPvQx_HzI-k7xYkaip(Q?`M@8W1k zYUs@W=B&ED{^G>1W9FT2x$&}#M-13E$RC;U_zipM*{9Ul<|q;%<32a|?>M@@oO-G) z7Ztj9W{9?7y(7H3K0+jepaRk-&WHr%K7@*4!CsKcH5H&4xM*RvN$IZyjDFEnO?vXQ0z^)CI{p02598Cd`l&8qk9*Kc1| zQ=gLN=GNZ&Nd$)HO*P-Rd@V@8Ybc6MPadEwEqhBLNX_%`Xja8ECm>agu8?t9CM^sY zn5=P|SXW9Uj%HBp=>Dl5L6#|UBBXQ=&FbRj(6QYJFEouR;gF~?SPMT9o3rk>SYR2H z6|-Mw>6gxVR5n9XG{b^^gGxgWBInHO?fD7eyC-yQvM&-Z)f6(;0si?LJ-B

0=L| z$BH6JPjwd7k}@BUF}#EasaZLYRlXL+H_LH7T1lY;N(&560jIXgf#ckh@K1xE72FY# z(g=k4D2z=ZsGXESk$>4h_9nPpkBL3vOl{l*WAAe5*#E^?6rk&$h3tN@sP5=88Od7Q zu8?fe$V2EjF=O(`3#cQA{1QiaaCr6ZdAx&zpo(&t2P(ywcsaedzn&9yn2Rk*dD1E>3T_`YWe>%RM*{6PnWlowW1Yct@!i zu;=5Ny5O@C`~5>#QH2{o8E-bdpDq)gg(`#@j!b^VYpN2y^xYG{7a6J9{Hf}<9Ams_ zUL-xO(USG%y07BDS!?g6)9sW^ay7TIBrP|^W{Q)64?pOhQ?0d&6Q)-QPUZAht$PIa zLf2fWK`CQR#8m4wQwMIYIAL7GpkH1-qcYMkPm@389$(Q$uS#3cuJ)q-vPi+UY@%E6 zC#oNRodNSbb2>jfPx)(uV&-wqnq;#x6f~>OirngvN&v2k%h1E&TiR|!a*sDD5jjZC%?K6l+tfJg3m%%} z;cE@paQD=z3P%_r*qSvRFYpE5d@^D6>u_Wxa~*pDiOGZI<#ST~O3!&ntg5-$cze!T zVO&Eb4WGQIq}R3d9y*s~V|l28gWxOoSe4s@LdoU9o)NN_CSfa4Mla1hf1BSiM1WJa zwu^}@SA=TYxgt7$LJkecCXG_~2v-71iX%K;#DnmZ-UjKS`_tdI%_A8Uy-?mA^TTXC zE&vEEP7g@7+y-NMBq)_VDID0UC&^=Y$!g|L5|65%Vi{P{F6yw!ll7pflsXmtrm^JO z*k8UIwXu8ZWoOxOCRN)zeZhINy&)ddNVNWH{j5pcJ z{lM>TX0EtglJIOEGqSk86g4z2X5qbgxaoYiZx|HBs@uUlef>FKqcizQg;&2-JmJ$F zJ;)=1C)8CMY~0xp0|s5c%Xi6LliL!_^9&JkGNv@LvwLEz@g2y4)n#Oox{>H7%~8*r z=?5T~0hqCS%J62lML}hv65NqF#*$Gpe*eqO(4Nenp&vaTr+M&8()*$W-h^gCNC)(_x(LKm6IAZrQZ21pXa{s#88;s%sElcAtEVv{T;D zE&`5Dn6lWLJIOrrPlh?)Mm2@)YEvmxNfgmuwByJ zKR;Mon4(*9c=7ETZ6ldZJ0+;lvfTJfaN;uD;& z*UW=gW3$UP-TT|LclKVlEzzJv72`i0ruJ?&4K0wKs0#MX`Xen?*>~(3!kl(4~O*_4KJJ0vZu53@+ zaPW%jIpFgg0bI7>zprh@A>okyVcYuq8LZ`1t&}^OXLeiQlvK^5_v*@W&vEDa-yIXx zfN?ao088Wl&$q}k|Ak5uVp7=o_W7RijOD6)am4!Me{bOw8~RHP!Sr;lQq3k)9&8B-y3Y{2J|v1&_f zNYQ&Qgf&5#Wadt2pkf$33-G;64|m+g`S6Ajlunv#(P%PtmMIgPKEq!QD#>2P;(R~| z!HDFh65^p(+-XzkW&hrD9y;TJ;%CZVHCIAa58S&msHg$WVqv;_|%a>qjkl-hIm zf`Sut*Fne+P(;8J^wO&}Ax^E&)9!DFv>q0NKFgRd<5YFaw=&80qUT|)!{k{84$g&e zi?@r;D2D(@xFtG=KvpL&A2VMQUL93#76SsfA&OKH_gl|3J9|WFr3Oc|OBAjn&af|Y zh<$8p2m5B2jpnGGOfkJvF(5*$Xy~gV|I4A*Z}pE0r3t-uA_D&g2NUc`jxU>#IKv)` zrxlh~3Ln=w@uF%`ntZO!mD83b7NeQC{Sh)@oQgGN_u$67k5TycbOZm%8IFCzYb{dC zo0T6GUF{A$bs-OQ@b-+e+@l+-pn^~r6F?Nz^70S1XrJq(GvU??y8^lDhI+GEQu4P~ z;1)74sBkjPk)GD(pymwJ>*z9`Gb;gC36K=w{7XxpTVNeW zzIqH)JZkK=^yTrbUO@OY$gnE@R1c!SpVjEyKR8TjP!chC(oRh%ND5DyrmO1@kllIz znn01jdE|TQIfm-ef|^-)y~7|iBO~OQ!l`kcK z+5YQK750TC-=QzkG)C>tp7^c&ejF*70JL5J-!Yh>2NCbbg}23-v(e=T^cDDbr=-VC z>}o%hD$I(d9Udf~r3OFNjL%URhEhv>)h{x9%yzY+*S*{QDh{&#mX*Gq-LKfYI+k{h z<5KueuE>vJZM7OZwOYGFgJt)jrO7W(UyeLCDE@7g77!$xg{t9VwOlXDFebCf0e{J9 ztC{!aXpO6m4eQHzr$%wJRXJ@UVr4jfb<`0d`5+HiFoH3ZE_VKHN9i&Z^if+w9d#uL ziaZ2$>evyBP|S0%uW1de%Qnj9?YpNnNRzSAsYu(?hwt7F8%ZoF*(?Q4$?p1FIov;? zrRWeSp%jL+18lt_?l>xl7cHUoL|XESW1i*(oeA4+=5nU1oj|M$LP6(S<#ZuLa&!-_ z*in6yiV~2pc+db__FOg4|&yo3uf{(3g)BR>o|66*4 z-O*q%?#*OQ9?K-TPHm+GvIhUU`L%GtADuS3M5pqS@)&l1l*1u|ZOym``!>HgbB?F@ z9LHFuTuP}@B0i@VZ|bgw?N5Kz)@Tp zl%Wi%ue4RUPPxXkmhHq~f6FN94x67J*AlT&gvLj3bk?!RP>IZ6(I%kq4axofbm?rH zdkyOMSx`Xw15y+Q0KDuXg3qqU>C1-Gk&)LX+J?HY1n< zKA-{{3XXob93>J5D?Y0B+5tj{P4UM(c99hqb7qt>ann|MKF2wC?^VYFR5PN)*)*rO zos0jw-U|m3etf0}^4ycBU7!K2QN7mFvvv?e>TKuGJGVle-8{0gmid_N4GT9E;Y65R zUD0d%u;ccznn$O>V;vCzW7AbRI*Q9KkZU+S(}k@r9ndir0mTNd7X3hF0eyX4D}AHH z(3hsVP^P{N#0@5PUJGz^Xh4m@UVhq7#*7{RBt7U<*(oSk!*XWlV+#F1Z zUbf|fVscY+hoeSr* zSK}>zbr&LH&Y9h;Bid3g0J9brLR%W8eNOA(QDhZia?406gZ~tX-exTtO7e1Y>Bf-q z1ODC3JBX6yu6gy#viHTT)}0m$D^|Zvi*YhUPnpp+6!p02&qKHIB!N;|vy78)eFE5Z z$R&^WCDbc~JprTcU@QfM3kPwLNBxtwf2-fmJP+lWCy#9S$}PEP>30SiT|kU}czl!^ za5V0w6sZsK5n=-mk325xOaoZ^s5rHWqu1{KSUFlr+?5sKKp-qiEDm-P?1&84|6%%$ z(wRey6w=nM2%rdJ3L8X~0n%aTsD9>-xgxS+_&!I3O4bI>`_k?Vn;D7vc>wHFi9Alf zlMF~u_GB6%g~cv>9{Y!)beAwCrdpp;Lx7f2t7=Y3xL|t$Wekk|Y@Y4s<$2b2@gik2Ccq`x4?~~VtGor z4Mnpu_kmvSydK9YLyKk$EukQ1wWLLzNz*)3^#obv1%?tM_y{lad)%vWZR)zXR<+yK zoG^DmWvupH*&Ae0R7Gi>CQzk0wxzt8mTG$IH5i>Bo$K3xnSB9(mrKfY$M(SmMBS}4YF_QmJVbgDk) zddOPSNVP&-@MHiiSDl~BL14{_gNz_bD;=)9`>PBw3UaJP21L{D6DE;{AN)OlEqi=y zgiff=dlU|o)boQx@fy-DQ8lWgf`P}zoTvVi=`4PWCB(D5>)<>CqDi9`LBV-X@19Y- zBeJ63dCuGc$j9*O8-OcFPSe4P;OziOeWH_lP6y!|(u!Smk+G7>pS&R7Q|K29@JxQ$ z`FQ@S#Vz5ao@C*oo5}hCU}w&o*>qFx;%9qazsIKiFqoE20u>UvuS;jBu-VTCu>Y=h zdDlQ)w z0SPyVuWObCl2q!Tnkmn-ityB_$y0V@#skm z$YUn^*M7o1hvB)uPaGLvQ6+o|_^1*}m&>UoOp=&2+NEeiB5ZbHOO%~tCraX{#D>KX ziweIAq7X6qLT4C~@+GyqN};SiM`43|0vBNfH~;#V`x3O+sxaJBb%SR(!+7?eM7>Nd%@IL!y+tmg`K;me;Qk~xAgcmv|G`+4@F{DQ z#K?!YQ_{4_`5a$%)f7fEN=r5eOoN<~N$8h-oO1Ms6g7)Yk@wDwj=$@jTR@|Ee>=Y5^fuRV zP!#(A_I|qlZC*qcZ653V6{uJ*C-%$c&C1;3C~g`ToKnXv!rigw?F*|nsoS((xL0{M z>!`1xMo#Prn8=TYMK+Zhe0;9dawPW{6s_!gdcsK$cJN6|o4P?ub!O%xHj+oDNezlc zt@7i~qQP`TC>Xh7-CFH&3GNS=oQdTQ`B-= z2zY&Fl?3~k2`04AAi6j3*A;r*5go``&_McYvi&zY*$4^wiNwxT)PrRuJ=JgW^*Vb79@7Lkt-)@Y6rj4v3Y3l)r^PY zT~8jh3wdVOWEx-uKC()Blg7ys6Uu~F^ww$0lNG^~Xa?fd{Aotdn1I9@D1cPc@CkoP z4>0xJEihe`&sTsbMvxYsYep56!IWv3h2?RG5Lk7s^V1IDng~qe36XJ0L7Muu*qHoBc7yUF>5qOORPF*XvJRWI-fPSGfC z8V>}EGPAslea;j%tSESUbkM7B`H`VkvFo|)HG=D96jjg>59WKIgB~gW4gwx8Xezqx#7#1u?i>0~CBL+O zCWya84&>^M0y(_5Z)mbmSCDnD^FSN)svtVP6N#u33VaQ%Y~j$EB&Sv+nUxZbs2_7n zIp^D;D3!qIywWib;03VKn!85?Ww^a*mP~a%ey5(ICB`10bZMwKSfdxjZx78~Evd^% zV5JH9%5^W)EE~{!vsNQ3@V@!L)H_L*sqv^_OcL2whCMy-WllXo9>S7oS;uY%{a(B#|= zG&s4!gkFF9>HL?j*}T?ILAucTtWU79&#q*89=MY%w}~GY|J|nl-WrVMZ1_8I>(fG0 za~xr-`hp13e}^;(IJI)cqp9i{|7-r0W}XJYbwbdQOq|1jH%brEI2rq5H%Jt6Me<%0 z(5d+TRa41Yqe@eWN6Ch78V%{*t+H8_0~=gqAA);u^0ke=?L!0i(5Ejm1P-K4@5G_x zjeeUiWesf+j#|(VvavoUSktTlwSEyErnkr(9fOuA^K}>GExMMY$d8FeZ zz;sR1kw}zu(w1N#r2U~?ECs}ZQT)EgK>2|Z^HwB9?%YWUJNo*|be(nEQa6v!2}t39 z*SZ0-fDGHRpTB&(bl#M1MLNw%{0CI`D#vlg`*x@9-Kju{BKQcOHs2Fa**S+3r}GWg zi|!o8FV+{c=47Y3!?t{IBBq|5xq=4U-mi#NL3opI~DjX;ic8?A2ecUgXY|`(F462^^NxtiTH@4oUbSLIc zp=tlSv32nNrk$+WlnL7ryc&By(5y_wLI-s07i|(wFR>4oqpYdOB}&DBQp2?r8PzmS znb{bs`x|*wAq2-Ay^V3+~= zlW?R$RYqC?STao0nAWr~w!|}cV$wsAbo(DqSj$w?n`x__JBm`_$tud1eRcu(-`oT} zRN>(hr_s}us2T;bZ%P5KEfc&4D;d|AP$oi)Jo+La{aX^r7eB%N)11qs{RZY zKtO`3)OA1EZYB~P7(P+GW2$<86p!s39Q~#}?Z`mAR!jTSx-oJl7kE;o;N99OEI%w& zUU5U^Rq;*}JIZ^p`nfAcFc?7L1_s5;ow+HsuEDSY(Ufz#kJoL=oW-YpDY42X*8FqU z?+e)>ik)~o(EUu1Hrx3xD312o+al^}3-h`ITHUN0`7ByXkTlmitX> zH)(&vNeFf=Nv!M{A$|@s;R;CoyUAwgQHZP{jK42^p(*W8A@BhAZ#%ciiCS#@hF8uf zQoOab2C8ucQFLiRZtv(FmT5R!8emAMhWE_FM&F8?XmCN>MynZ`fV|zz6E)1@zA!f>i1Cdi|feSgUq`*jL2L+DEDM~36 zS%0R_mAv@v%E?N?3-se^{e!KhE}JW%$UTuL0ij<)1It5&-MQjk-}XSigwGKc-1`Lsl0ZoTRfshYFH-+j=L=i;wG;(JXhN6L zeG@gcOdx{ohs(2yr~M#UlVQNiwV=10IrPLme9y--&i{Dk8z?sIyy|RDA-e8NbWP8 z1ycuz74;W;!pI)*P&eg%`#7u~l|Q`xQAO$xA$T$Ac7b=ZNWZ_O?w@A#|VuP$VMZV<}mx+l~{*QwIQEMIz(zRcOkEeDTal_fg(7!2?Da!g0 z{XCa~cRdA{umg-dwh!v0_A6ae8*=yw1%N68wR>V%S|~p^ni7KCss?^0iP{`uBDyQ-4XQM9a=7?o`3^}~Uj~rMrj+(W6pE>ku9`yRZLfXg zvm#MD;9j92Pbd#68{2 z*Vb#I16w5m&Y~n2$HgdL97>956mezNv7u1Uw2jRd_4xSYf&6XYz%L;v^=m8z?y$KZ zD|%s+Yzp;M#69M)K5%Ef5utBStRRgqq;^4>LT-nr(qn`VMKeP3z0}4=BOirD*ja6Y z)W5(S0#AGFPleH_JnQbk;U6*l%Mca?=iZPuV3-ENzM;9TBcKIjQ(&j&7lh{_!ztzF zMoY-(V0=o+j=4dBnypijfXkA=%rhu1sX6GR$Pj7k<;ONwzh6;&0rEB-%{U7=o7I(> zx%|F<{b<d8BzxmXvlbphW7yZvIjQZKWJmmv2(2_l`uw;);;6tAu zUO9A5y4gw)4r}R!7kv)L`+e4AmUNb3@8VT|8rs})6Z5}<1eb5`W_Je&R8v(NKNEIU zLE^{^pTU!Q2*iKPWwozscw(O!TGVPT1IoP9AUvLNm@5KeE9t~J<)IlbDf0P2=KJrM zDUkP(;t>%fj!+|%02wA+<84!DNOlo>W$ihFGzyZ%DMWJTn7hr6%I236XJ$k$X650U|72-|G-Wrld}jV-%AK72j5MlqTK&Ljn02$Y!TM4 zk#>c)>_C4F@=Z4OP7iW}9K`s#F0lNBh)5Sg#4>Cpb;b|~g`AKTK;TI>8uW*elA<(# z(W-Pu9S7u$$hY4UwOnSQYG?~b4*&r<5S`@{G6k~s0U|EA^at%F9Q+(ql`Tt5tAz1E zZZ{S=hcuwmXIN=BDTw1}?$4^L+u74;WxeF;%o8U)FqN4i0g?i@xyN?H)<7Le{P zVW=MSHG{n>qsp|$0$NsX9lwtQEc5obUd zW8e(8XtF*XB2obknuo*5S3v0CoIk)&+{XF^80CSbYYy!z=(RXrP6Ef%1{e!_4K6=f zsy(Tizclh_WPH4gf7^n8Jit4Aod0m1W#Qm(a{2AT=Unc~`TsZewX2^uyO$0#6uV%k zN*CvxsW87wL9`8x5Y5*@UVg`7B_k~sYnpmr==;i3!=DoCEQAaRM4n_!UiU-XAleA@ zVwYKI4E^udJM|4qPP>|p%S!}42|VG@OkT^UAdy<@jl$rxjdovqKcH!_ZQip2!ngPa z!INs#?ARkYyL@gE1T;K{Ld$U*Y@%pi5Bb`{0$sjYV4=5E2C$Yx9Kggh+ak2XYRPmv zP+C`3Ry97f;}pm;2E2mekvzDBZPNP~jFNcDol^y=&ws@Gm4rv97P3uzf|Em>jk$M( zQO#-pgcAZdKXHBmP-ZH0kHJ?MU+$xw@h4m$Rq{>j#W3An?AjJP7}Pq4%n~h3z8e>% zTYY8KtMe`O#O&eH9%cP#qA`yN`y(f5pK0MAy#%#_YNJN*@(bFzSdCsU}yxci|s4AR}!4m(TOyE<1Yv(r$><@=&;$+w)fc!=7 zNw5$WLzV{=RGY;ZAw=9fx&;X6lrmTlf-%7TNn~zV3?=5>959UMTd&HXYSSs0Xmbxc z*-{OJo<%ZG%V;0i+I0=JY$RyodF)CjWK+g%2~#==7{)qzR4OivU8gQJ4#xOgL9;y9 zLMt+OUNQgo{o}-^C~Y@cGhsfPC_9nab&$Q)9-)WIecq!O_2p^-|HRJdw^Uqb0av7n z&xz7!ugVbB_IRCwq^q)+%#8`Js7d6V%hHyS$3K!nR-I={M+6PAR|PHD&VAF3zGjLj zA+IeCXK8VyRpdq5b}V*S?sk6j{lN+bEvmoR(^D!^+0*db7#!jg?vD()!_g(u|5;|; zAdyrG$>UC5Z94n()$A6nG$h;c3vmy$VuU0T*zjbB+`uBnx?_!W0wgOoe*z*88)@9S zqRhi>zOC9B_#cdBnHMH;lqX5DkIOM6-2Su-@b% zwZN8w>3m0+`R0LDAFA?;TdusL4lwhX4FbhsFd0*gM&Hl~Xf(mU8wgw-GJ|tG)$8;E z4a}y&wQhyQyr~HCcy^Qh$tBjRrN6b z7|PTSav95ConOstFcu}ZHD9d?Y;Cf8ou8uGrX26=y@DF7Xw`Q>6@|u2xc)F8CH%8P zC;ost4EzC1mSS8W!Q|)Qoc4IA9r|C{f%Klwnc$a%rK_l=KO$Y%gmk(?(f#pwm!56w-F> z+Qync6sEUV=kAbqey&-iMa>HL_+v|h87KDHrc$C;9Wy?XG6Z$xW+=f0c$-Q9_&4{v zjt_}pzijXOMk`o#Wm`Rv`b8}J(o;V(mohIgd0!a*Gh3Q9D*io6QFsSPL+ZN^6e0-p z(v5#g$o(5+yu#4L{UNHeRH5rr`U=1bg1f0C@?^~ySWkXVx=HknVjr_UZEq#obJ;9r z0+#py1z%Cz0tDMfCsN~hOqa#7b|LxRigZLF=A~KUsvK)nd8^j~X^xv-`xM+?=;bjl zUOmH6tCCETIcX6FwLKp$P2@_xaU{<731!tmZFjFmiG>Mj`#(S)z{A6@XRi6}MF7Mc zs7DsrR%BSw1Wg*vVU>KKurED|nxVYLr(FR#IAfY&MR|^VxU-ZVsJt4Zg$R+_L9s1Nr`QAZlLcU>M^Y> z0iQiECIxI8w@jOpu|J`;@vVPa(3ZhI4=O(b4+Am^hr&K)Lkh3SRs0q$EvO1ogTP?m z!L_k+dSylqMhune8qqp$^LW9Sv*spr0W^KOq|d7aKMKK!7XBtUk+eZtv58h!e_sAR z3U_!Gkqec49pvAc|QpFVa^f6x=5QMe7s;VeJl9QCWucZ z5c9&3)pVT+e@eW8OE$^eH5ec{G%B2dQ_e-tGS@)zYo6pm>Q6z^o3FZ=<%{JJ8n%E2 zko&C=Ov2n&L8d$r#|$R&Lk%zIMg^Ilz|}+g#usW0|b8*qVhKlZd}* zR@9$J*dW#!Ji$T%1o6ydp#y>qpjB9s^^qe64&R_3Dc=ohcy~#5zTfYToKKNeuypC% zd{4+_FO?|vMByh^f|fE0(D-+A=@!j4tbH5GC;?Bl!%7a>=daA0edrFsWMNAW!#ks`?oAP`#toGB9*1LX3j~PZl?TdVp2-Asvme!o_Xo(t=Uem#26WxmD!$xPtLTP z?7(!##L?_$?@XPKJb3i4PyTY_>H(2~;UabURyI!!LJ zttg?Bu(+nIzwR1;-at=`Ry~zOe3@0#mtk3diOD$h-PwKA9y&`)E5jFGY8rqdG$3pk z5XFJnLOy6P+koF491Qu^nqxA@ty9vDM1l6V_EbOl?Q6xc4W9<`Me|DW)?d2*j*$P27VrX%DX2FF}VsXvd;)14zjW9`uau3 zE7&i5F7jT1mjH16<_6g|g@Cg`+l%E8UoPsL>P~N7Esi(BpIXlG%X~0?=v{G#W4n)U zY%jr^;W8Qq27tVISEafz^;q45^gV!mItgIWhfTUk^1&@CIogQFX0>T48VeoVL)-xa~5ea`{pYn zAk6B*lM2$r`rLvJ=wmvyJe(`ROP~-T z80TUNg#i!FK+H_m)jsZHqcQ`6s@Q~}wbQ7(UbL_0*Fji}QY4}XpFm28vn9c2hOZGy z{PzR(Q#-0sK)iPXE+&qb@Gzd%8j)soxvMvgCgxogK*o4(Nl@%W3V@fq zXKoNLoE_c_(${I9V5=_ZbT(?vF;&#ksm-j!OE;X-LOP6`?rnG_5E5{o()V zEavb6$(No8kybU%d#(*2NuTd75#pq1Zi7UhxU_FiHhEI}4JM#vrrS0_3^izdYYy^PG8jT=6=NBVpN?TiYUh5_7z<*r6~*p6 zH&?xCh_P&o(PzVfV@j=xC)cn^5?UZ%y-l<^*eCiF-AHhpGVsXY?b8bf5bK<#i~-!~IcfG{y=i6J6Z z$k7l0u``~w9W&S`{)zg4G~kREjB*)Ft;+_L1K#45HqD?pIgZl9C=H3_0phT?3S{$h zsFH_W6dC2w5T&cK|1=`gV@(Bfz88NNc==C?^vO~(k@5S)r(3R-jSN;sG}2v0YQsV& z^~f+$5+a%8u(3q^^i<1=qvcM_m{P&33Ca+lyMdUw%29(I(Fi=w->5)W`4(M;V7EGs zGP_VQ&b=C7)$)uZCjGVqpHM}j4Gnzd<_}u%3(;`qG{?kI`CuaRgzMW;Xyf^UU%%2E z1MoV3R;|9SIC^#R#d*)i;POt}&`ts6s`P%cd6g*Z3jJZ#=oZ`N<_FDW!@~6RUq(aG z6nk?wz%@R%q^l}XukOV4GA``vtv&tnCx{={1X!ZcnAbn-0%i3vXlA|LHI6U%g6`tp zPc)W^Z-566-zc3qRP%nv>2j0=CG*d!wAgoO((wF#-1_Pz_o=jKlljM#;Jy|Dr3w7f zw;rZ;eHCs`lp8>g+SU6uOm^1&*k6?}PRv!3JM*VY&~-S_`HhylfaManS-vedntRB) zQSn5W^dY;vWcH5$!siRAe*Y4l@Pr@P-Qb{Kg)oE?wL!WC0x{oAnZnaOW(h!q(*vrcCqT$nHvJ9r!M;;V z!O`8Ta!4=(0e}SyYv88fb*^pDUjrMQdJ~clltGn9nfNWB3wY(Ts>gAvmQ_D2swObI zd-IE3g!XpYim9%erm?1F`1bIHs~o+(bCJR7!v!ra@zErPBnS87>}oZoqT0?91sXH(H?VgpYi5U0$dtW6bk{seca<7H$eX>D*SM5(72@csY2jd!Wdw)oFfpomyZ2|9P;s#P- zVN78u5JQm`O*JKa%Yc~I)l`G47p%(3f?gylqv)6FJ_jyb3N9BJT9ZBz7bT&XB^jD3QHygf8TUyY7Jjsk&EkTNU0%JsirSL0evoGtsY|7;25CW3lm34WJuGy#_ zLoE>ws3`M>pWcB*W&@Y$cJR8qyNoZmduI@evs&aH1RsA8g8m}gmI5F3wYIAq*xO^d ze3So>mC6YlGq-hpkt396K!On+R0M`KW_iXS6WYVuuH#Qj_ZTQHgY=0{RG zM^UyJn4N$I0O?mWShhKE5e%&(@*GQ#P8Y{t;&s#AfDi-@r&3N=9dUQt=%X*z8A~<4 zWwigH8q3l9qX-q^9oFpo>QyV8#dQXntp|DC|KWzi*6hA? zZ~UJvkLL3}H^_-#{u3e~F!GC&X13w9kKO16;2JNxt)h28(ZRT zG37wyQ3+I9shnx3V%NJU4s67h;Sg6@Gld+R0-&95r{~`4#)N7K)bjE15hB(rfL&0~I=~Ne{JqL^G2>N&Cqb`u)TBm(S$C8fEYQugI z2S8_vx?@GK<;n{irdMbQf(2=;6bI(%{o;t}Dl=GKt3-*FS@NCIZz_U4Zl-CrIu4!% ziXK{)0=bh_Szl)mTW;H!y%_dWkWkecns)+(YaQuPH2GqmEnD!#z5Nwpk9Q~y3~R)n z`H@SR167_wp+7)Ys$^UjwSu+Z2yqxNIj&WgxLmi)3fS$d303QC^p&&-G?a;MNRiD& zHpI@!;WgimQF}83#qQ=+^Fvtw?HQ*H9XlbGB;}v+X79ApsfP-eFu;EN^01fyX7XTc zw}J0s^riA2#qPFtc+vRtI$7@mRX174YbkAo_(Yrz{0}F*?_QF-NyZfTL7wRtr-SiG zlOB2gdHPdMlXg@`pFQiZ zQNn3pm^wPK^(U@P!%X5qx0Cw*_@eC6DAA8IW~L3YFvfdV+aK{``V}o z^T3`CfnDT>?1^mr$rT^^kf?%dkd)%iZ3sO#QB8?86V{Eh70{9?AdmQUZ#|B*wx*59 z=(8;g2iTj&!tN73$N*1|qm6-O8OOP^0^VB`QSn(0vSRYK4-P^X0R3v}w5=)VvRQhXk<#-Dc4}a?P!tRCaP97^C1b?d;uu-Yjt;x z@jnt&E!~scXD}j2pe{MALW>O<{kA4cMFlvYY1?NaggGLa!7kg6lA+(;xv&P^(whgK%)VcdgQV&LoeGMSo`n zg8x@K*XD|Oc7vYn4A474dcoa@(R|)UU6gLR^IVhxpQ5bP(<85|CCVL0KjzT>$8 z{k)3ftPQD?z)E%$e3@xmCXT05lm;~Th{6-#-YVyCSR2WMPu2d?mxHZj=ZSz`6(1oE z^d@06POeRDK=kw5Jm8S;KT+)Kk=m+le+KJ7S_LqT0wa-HAFh?|`>W3XJChz3mu@~c zA2mOSe%U(mYNR=-GBo0SVh_Peh4i1aCGrCDuTvf;b~9+e7kh|I2^35=vCCY6odzIh zfT!#`9~7{W8q4}!mrV1l0E+Xt=Uqm~*F7<(z0fb$od#f23IHBRYc{G#DS)x^aQH|| zXi4}XUR_{t8cMBK=ydSD4b*Ko@D>e51xZ-T7%?8!qIR!V3VSM;v6Q?}1yOs!g<~aH zhRfFNn{(6#5LI5VjI}Uw=b^0HF6!-BZN^r&8K1IBu6z<+nuiFZSI`$nlzZ$GFtJu~ z5HSjOtA>(6QXWTr0i=}dzI{AzCO>ip);Hdf9tD*5NY{^Qw9&RgzJ=$SU0ko4^H^vcN>#^ z9SmtwgtHJD#;khxPt?@3xGb(OYT~vHUNyM0+cdKOAW9K4b?+jtNbZ|KhTqnrcRX;z z!MHoy#Y17qy8=daOIz#uVa1vX%+8sf6d) zu%K%IM}bUSw*FO}#EkMH-!ZTguC421>L!QrmeF&w9meJA_V9(uk5N6=`93!Q=fh*B z^Ok!Q=)?*DpO91?Yz3J8nslHD7WMniF|4I(Loc5pug>N7g!cLDI0TLa-*i5OTN=5M z@|>BjU{&)w!@mXZJto{zReRqGsGcr*oZ$z)3x2~R5i)2kV-kLE6}I&ABR{ds?|4cp z^g$zQ7hIkuBmzv^*JNv8t0R%hI||yz6I+E^=31=2Q@Uj}jdL);;&{ICHMne~L!qk2Yw00m>^4zeKp>RBwE^DP!W1^62EpY*BHVKQ z)p5ZXp-h<%NTGM2!7^6nBpOdf(zw#B@di7L1}@x50W|T91Qu!kjY?2HY)pB-ocM7tM55lheDT?ijv%p2RtZ++JXl~PnTxB~tUiK0vmd)y+T~|FVL}(Z+t~)4bk$;Hm*(U* zYd~1w?m}F1GmDbE-DUa*Zx=xrvzVmLj=@DpPFnC2(#3{%MCcC6qv;jSGeT7-rIVa& zUknP7htO{PvI)@dqY&jTVsh|llB_pz@-DMI8F7qyJKKUw2#g@FK(HT=HbKzYLPl zGl45t5Ja_g;%Baa@-qu~I{}BLT&p_eF?VAj`Pql^0k>C8ZA%Y>dyj7IN~wOT^Iz33 z`GmzW8)5*o*O8}9YV%DP`~1Ndmq+Jb3dW5FE6mLogqCE|+NTFK|1^#?SJ#|erzX3} zU6O-l+15NpyoCtFn|5OABcWb-p4MB+Cm{0RSw|cGez&A|0Xtz8U00qReWsZLp-xh` z{blrR%Ayv;`|QDhTbCbhT@{?&w;t-RrSYHfUeMPm04_pHr?vQ@kz>HCQ>ZKBx5Gfk zjrmy3uF%5KxKJ`#>6hYjpq+{pfA0V)bi+By@w6c5+a+h`X59~fef}u@(&DvSG!}QX zu~t&Blv46^-2%-?_+P`0_oT+pd0b#bvf0x69WoAGha+-vjLFXd%~A&ra($X8$I^mp zBqAxzufpUf4E2i$Nm!4P>N?g5agfw(vbb-oKgxSMJ9!v5&F!`w z#jpYGu&sxP*dM@WfzZ=gX65~=L+KV_7pjx1ZBw7*AnjLh*+ph6>d$3?KEHj8FZnq} z{+#*A;ZsedamU*w%UZgLj3Ro6J^QYHQ3eYi<;f}G1r8v3X#+xH&QG`>-mz&gmFe>a ziv7pv{2$0X?fnPc=)g{s;u!ksvGzeR(M(^b;5a+tEYT&&$lW%41c!EUtx@o(jQulP0d?S$GLv7DTo*l7>L?ZEIYj@qk> ziKCm@FMD=(FJIrE#PCw#=^7br<$w8`e?8Ov`p=WU4Io!xp1MXp^i`x_y(YkJ`%z|- z&G?DQEu-U%@_hMYn*|8p>eBHV7DVPKkb9mM8V#|y~ZR+$dwc5NNlVEc?MP9Vym zfZ#n1G}6>&Y+%^}XY^}FhfGVbX7k~qi+rp~t61@*CKW=E@pCd*rr3rs4`dd1hMD{c zK>_!({sbWXGMa^VJPqT~!hFvXRB;sjNCVoJfDh9_$Es;9bhyT!an zr_HtrrDPa9lN2gl#Q?A%@Pzmh4IYxd$7fc%at%$Q8-GU=AqqOSi9!pk zao;Ee>p2Y5%XPSg##zgz*hWiIt{h|mu|l2SFMaC>A8hw^>e_O_rkQgZKmg|VhXC?G zCK;W$%HqR>Qr#Q2o>fa=JkMrtTO9ob$Lm_{nBky=@+(8kqAlAf_GMU2Idd#_K#`zP zfxDY5^kE;T5ta7kcu7k7PGWEGEJe73XNnmRWYh*>QT~X3^OJb`ANj^bXv1e|!>oQ_ zA_mA*l7iKL@I(FFfMN5AzG0z;0KDW#%>!73@BI3~SR8=5gvU8f<{Rl~#Fm(boib}D zw`xD59iCHB8x@~D+$O{vvvVF8TM^c``-1ZpkaoFC_;l-xWJV^5$ilt>xU#bhhwO;(omJ0D z#}iC8r0k%ULoN=`2@r#@gr{SHciF>#M)GyXgr*C{bl^q0Y(VLFkok!ID=ysG5g6}= z>~nv$NF)W4@(zIz)$@E5Aa^DwD+V|O=Ofi$O6U%K7wxPeYmWrwbw14koqxV9Wk>2G zwGf520|pcc0sf$bmuUs$#g~>S-~e;bIDVb0b(MG-Y*=QRx+=q3o;Y5ZYU0LC;MoM^ zpMScjkxUi()w9%fCLv=g?pvN{3URZ$qGAniyR|xou9ebE4QIrV##YYOOm)cr4|l3#;qB3AgKN_YhH0(c4wd`&F8&>AxFB_vZHlS=YR`^TT&kM_yZ^ z*E?DFRz4frK0$ibwxc_@i&YPRy9>AJ5>s6P2$1$jDr32DL3>TlH9j|-7fN6tB6u=vrdcK-y?_vj4O)DYi zM}I8((}o2UA^~MFCE-SbYECw=jk1g9)iHo*`XZiB4kJ#z-|>0X(8`Qyi3yO;(i3O1 zYpG;6@2H^dR_P#JbG2yc%)SHF`Q1B*W&Sp5lq?`%1-D5Ar=d!SFLw~gTzMi8%dR4>J=Zf&;2QxlG_uYz0ec80)Z`o9hEX59|2o#{r6n9@MX9#-77hCW3Z{le>n{T zCxUah>;n}T6nQq;Fn}@y{~0vl%~iOI3{rOr5DSqSV_$}cKgL_!rjfbT%w>Q(5R_rS z>f5iPME=AqOtll_slRrr=r+1Pw({8tdIg9N9lF6dU@)caCa16e{S?5M@8>_O9ores z7?Gz$Ym`3JWTz{6BnPXJbDg z;s3IHbMmqAUv>6yuwelFpEU*yaap3`I))2Rk%NS)D%c^ z|52vSUHHzQ)0682+(SU01NPS-J1VnT+-x}*p9u#+&#OH}H@q`QZzi)kW)eg+$djBM zYK20pWCCBE!35h&ur~6z>=g#ib{CtJle9!U4K(f{*#8p&8-XT*vf)b|X*tUC;*9a6sGhcTxHn)5Y)3qvGuR z_fSd`(HPqvRBLdxmTD|3>{$ep(m(pEtD*C1h;4_fagnFfDk0LO5eX-472{OgiAHtp zrnWfI-Frz1j{_J7-V=sH*UmZ##KuFRRovEjMhZ}gGkoMHhWyD#ajV12qn`kH#jHjE zG_f|(doGdan7;+A1Tm!o0R8v5n_8X%j47THx_kXl{X+Uv_!uCKvJFOs)6o<8!mMc3 zKN@2#T~1&TajtaehvgwUE8AHQ!iNCol9<9%RXTIy-v`NZ(RGMMt0Rob1P9*RdwIeJSDnxt-5#;?e;$j%a6=-yLNZk z#7`N-+hQKBVjeOd?uPH?hfiQ2>YPpThYLNf$XgcA-3Gr)XR88Q{m7a+zwKpPn} zG%yBF=OXQI@r7dQeg=tClO=#B<(%L4RzrXfJjOaj145x1SeChDOg6YwuHCN*g&7UZ z3pvI@D`;1K-zR1gfqLsAzDrVu?7bG;*JNDz_63!S7}#SP$7@zN0~Hf37jFfv1e{m^ zcssIo>}|9CDH(wx9$yws6@~R;E%NM4(qgGF95QXOwBf4#>ksEkI50HUdxykP668@N z(+5C|_t?(h0nlOaaoMLDsEd65@4McYb9wKMNXX#GnQ{NEZ#?%=x zA?Sn&Abjmvz^8fg4^DHoe}6AjdpGVQ7pgeP(XeZLUCL0dKV%ju!i#Dhha!6- zJ%rALZ_-~Kc|TmKK9+y~O_J?7=e3@aQZYS`spWp?-NEJOrLF5%=4pzm%<`HghxpM( zh96x*COz?FNS`gQIm`Cid{mWM345n?S3iv+0{7(8$H~Tmg@Z|pQWhKubkbD1OZOs#FT$N zQ|qjMdAL)8YC-Q0x~BlF=F52%Y+l%C(^MOOJBEH}khB&I*rqe*@8dC^DFxM*4?e8z zsXBG1Zzngu+xrN@XAV5hyXYDnI({JgFBrbw3w3bwsj6-1eAn479~fo%PdvKDf$u#P zQ*0PsaL!Zef}Z6h%!CxbEUt8CfWuQZ_@*5CR6aE)k2guMVCK05{d}o`AZ;Y?n`JG3 zp;qk98Lc=*Etz#3%hc_^X$a{QWsy$CghGE8ulJekdcWpll|;QgB|_=?f63Cl6r{~B zPDgP3eCyUj@jM<15tT>>$%bhM+;ay6mHxer*yfx4ZFlKuE$O)ma=WLCzIrde=4PuU z`kJz^#6x1~joW5-P%V*8HO74{WM$^MOx(v(AZ+0ovoeVaX&>s;(xqg072vP#U!vMl z)!De}6Py%ahC0tqovcM3vb-lo>eR_w#51DQU*>9ki`>TgcrovgUA5>eGwvIC9j`J; zV1aNa6jT4@Oxi~ZDz}UGJu7eIoh_7@F49|j)Mh@^<1~`XBn$Com?F(06k^HBN2$2a zO`dzakcoRr6!(abQ4$})Yv#|AOA{zx$VD909$1}~wV4^j^SP0GIy(3&`%T0Cg?Bt( z-ce^{d&+Elr{Y4Zmbri^^^fe4M8g#JvZYIkkg!KWN|G3S=iq)ZLB7{?#<8W2s`*kT zZ%K8wtQfT9X_4k`;_0XyRllX^-2FPMcGRNQ0%$_M9L1Sa*U#o21m9NPY}ImUug7p4 z0C!dG(9RC(!>u0Y@ztP!-V47bO=58HT;2Y_%W9fkpF7MnrNaC^X#G+SVXi+*!)3si z%KGk+O=Y+K{GP+GNva|ISqPLam>l(!k%B zat%w*GM270Zf9cd$iq)}2S)32V*~uup5;r9$F;gnr#)NaFQEw^JTIJkacIN=E5}`x z{^bk4MszD;UdZu!eX@N`zWS^p=i=4*V-DlWm60AwU`pF)d@Y#9p^MIFp zy%aRd-=agw&p(|w75Sw7!CWyqII&IkbI0Gf2+>-aV*Zdy*=UeI>X6@mP$d^19(B0! ziwGVE0tPafxBoV3^st16#^b<~emXy9C0YpQ^V914u#S6Z$l|c&g~_R?V;8+0DH)!u zNE{*dUR<$P@A)N^6muLwn;U`Q9-NlGJ4O*MfLNIB@58`4LP-&^0;k8*h}_A0ilToTMiVC-GzO)QzI; zA&fBlTh)z0&febs@<^k*d8WAq?qsGeMZE(8VVG&QiD>~3iJr|mO_O_%=wbTG+m9VA zPj$bq3vJ(gpK=l_8(jy>zt>(Tp@Qip8ddy@59fGk8Qd|YZbH0CYY%rXw`x7M$6URu z>P?#tG9TYx&={m?X(ZeTcf5ojd-XGM?v!PUwT1>p1t1fri} zGHJkR;{a6YmE^QScBJ(JM2>qkD6v{(Q`P8vKaMO_sngolpi-`Me`O zy=>ux8HV=>HA!xSAodL*Mb(0Xbng^MXlx4#;(^OiwKS-IivUk^#$n1{2uCnmg?<@x zuEt|vDcHg(5(coe5BT0yb(t(8kT7s}sPIx7*^N{EO?=_kiABUMnOUksjH4ng_?O^7 z;|)T>aQfH;B{PdvSIbF6A>NS>XXeOr|6Gha`iF?tX_whA3WBcQGIS<|j!@Ta8ToQ$ z20IW%z?#CAp@FU&Ovbo>fvT*My&uX^Qo`2Fo#+FN5BQt=ND9U*M2ZPdK5i%HR0UUt zmW)M{4a^mE3fVj1IdCS^!p#wuly&EzDoV$C-pvo&xvGyIl1sP}1Zy4Ea|&1Y(o=^_ z3$T7B#M{m?ApSc$>DqN}O9;POl4jx+>yg0WhQB$D^Q!Z_uTK?3< z^vod;+z{fOh2QYA|3$^>JK9LL(m(%mR>h;6kYfb2W-ZQ_8a1mn8a|Xas}@g!H5?L& zY+7D}!C?B0o)^QnqLh@BUbkyBph5M(r@38zQtNTXBz_ejE>A4;0Kas2hK}A!6EXVm z{mV^OHBX>b0FJ;r4o1DLl56_Uud>*mNL7h42p||1?aRAZlxt?G9M48bjHe|!hP{hq z$n)nb)N?dOD4tNneELJLdg!cctFAFiJ{C_n39l14 z_hy|{kbA*7LaBixdpy1^oZkxN*~|DzU`Yx*JytxRun|QD?OE4vom|PLmFL0A_<4A2 zscRCB+MnetJM<{cd9x)v6#>edNYq=Q)=`jtQ43&dnu8|!Yffh$Li56KD+NaxNMA+? zrhn%)`1w=C+~hT8P2F_+h0Is8+FdSKIeK_|%q-1S+|Q#r;Y7c|{4BlF_}Mts z)22*hi^TAnch;Qr!>xd2KDOAex0{F8SWb-CdfM*q^ZHmq!9aUGb&z9FqsN+GjvRCn z`W#32^5Zyg0^ME;|D#4s%N? zduOE{ukd8o?6)8V?C(Y0cOe%sN8b7a}*?3GkY_C6Tmksc1!!v}wW?8MzCU#@kG z74e(QD zg|E0>vbAF2N(R=LL;r>b>C?$S+LYH#^_Ls%HNuC@zy zn0cz6K0D_K_ERg4#DmMM=)HO`MWhsp6JGl>1;Pdq7_7#vR+%BcVhLaRd1!~jlLK(# zI{33ppoX*WbAQCx$b5Tc9ODdGktRIGdFxErVd# z#)aYucO9GRnz>&7R?z;1*EbwCVZTHLUX)@EQ4wZJk5i=LQq1gbbeUEVB6meawe;)d zUvve<*)bvEj1Zg>Y8)Uza z%KbXJRe_PA<=h2>;rvd;^qDk3Qh6wmY=;=XY1Qhbz_LwwziX0MId>*B*;6q~q1Lt$ zW66Np?K~CS{|?qr@uABXYh=P$z%Hi^)u-kAw+` zGJsC%mw|CP;Hcy_sSz``J>}H`aVreN$P-zcQU}osu!3Ja>&; z@^9HB0hbvhEc}PYFTMtrR4$GH1X^Fa%P7HiJ5fU{Ese&M7NGt1B*YS&C_m1&!WmG zEhGOLhVC(c%M^P50?*rU9`}8tO7B=osSY2O$e{6?S9XpTBA}ZHR8aJBq=|>-ilaO_ za=q)-dA<7Iw8XSok?^PtRCm=^{1~-LlzPs9#*&^h^(DeA^!tLMs%4cKXvdguWZFi^ ztX?QEjpaKA_c^LKBk=w<#iHh6W;M8mBKzj~wKt>kchQaels~8;9EZ3)J8U0uLnaYHWckhuq20E8ag5uMQuk9*5njtd-eY|2 zW9GqzJvN<^ebOBtazAMDNQd_uYQOLCG#&LQ`Kr9=Ue~4ObIue&l4d=$+?0nkw?L59 zIJ$bDhxNoeYpd#W;>(N;&uA`!uDW_M#oMo6@wPt`Ttbs;U1{;K^7Dy6Q{%>&>~U)m zF}(QUz9Ly%t*BzQg)&n>V zjgkoLo0qm0j(h~w#P9gpS7K*pb@A}<+z&n)^*<56lAzk^A3wR3k!`W_98VkJi;D3% z&+VqUX&1kh`qwKyLr1B*&zF<`GPUDjY`j7e<%_G*r9~p}j-i1IDUNl$+=-^iqb!qi z)Y+{-^s$nP8F^M?D7_R@>%jHwdAU%w4W%*(F7gz^A=$zEOV3CQWU1hFu9cy7G278X+~#yxnLvij3d7r*!D3p)!7CRmnk zfoaszWiZM8b{?9tO2;piEfrfg*&2z!!b0E~#uPzHA|w!PHnV1xo68s{kW22|UGi;& z^z0Zj4g}L6uBSXw?|}QWcZ>$@l~)~;Q%q4d)Z(cG@V)CVDWeIMgM)Z80x*^ zt1P7(DSdJ2c!@Z(E{(`Ug^5!PW~AfyNhk1|JVkmAuw$E$hr?6HQ{i1h7kod^g6bc{9rTcN!%~PLfv(4A4lm2ZE)AJyHO1eCV>{lY1P);{v zDOW}y(G~i_5beLUGWiDI_+OXbJ$_OL83ZLX=sIkvaINa;F4Fxzu|)c(RIx9Q4I0ZM z!d~UZ@#+@6133_`^*J|gMR5#v;b<3=Qe`zds5ECPdu1)3@1+1e+kS8EB&K?6we@($8l#5u=t`%*ka#AVg_bnJj+>|1&t zLvXYQdT{5j74SsBL!kZA1n;V9c^sAyh!n_9cw64xYj%=|ADP3`8ELC=2UK9!vxLPLR6jI&!aVVmw84PHwps>_MFsZS=SSz>6q``+w)DqxuA+6Eq?@no z-NVr|jAGTZ8}{2yuE;luW}unnJ!W|A(%4%VEHCPDeYx7N`-PFum$MX5|0^1gr2#gELM?qWWB4GPfs@?V-c^pUNlC0M@@M`#7oa z>pEYi_M5DQjj6Z@nr>p1DB~2aBwis=J&3ZV0D{Atvu(^AeCT*(((Ib;qVw%8V|~E` ztpCcMl^iRVi$F|NDR%>7zCtH^_rvYh)}@d}KOKW~88-!^QobM_<{COYNm$TeIj<3g zkizaY@1U$xC?%7bLZ6W0&W-;IvOJ0ibB*<$_-%BO7q}{jx5!eHJ-P4Tv}Ymx1jiHE2PID&H?^wEYhI~9vmappg@Ds_q@ z2>NW@Iu3?X{Kzz_Wa6~Ah^suQOK5lv_=E*v|Lt$%Fm+ZVdx&3>h^y9A9hJ|WjcA3{ zZ$?11UwE#i>=9|d9o1m|>J3!^%XI%~-$SH3NsOONLyH?ZBOg+*DXKu656 zuJuKQjFwF1cBq(Z9q7AF@%~aHa;Ul|DG-vfU4~1{q0$6K!<6YC)>GJZ!LVSVBm~(b zDR^!kEs+q`bzZ3VVijUuVgu_3U{?rjzIT=%SvD)-8Vgb|T&F-NJ%e>w4mIQK_H7KU z!qvyim&Zz3wVejojQ;XmehTSqPy#lGPcNQ>N~qRXuPe^LQ$Pa(jE@d&>xP>N6(8Z@AWtyHM=*C9c`4Q zsd$>A}`LLPj~uN{b3DmlO^JF*MF4&4Qv@kAdUxPwk{* z;ij{y;3>M5tQ+wv2K|||Tim(J*@5BFN_$3zwb#baTr| zfjNR|C<>1mp%oJjky&g7-;gSqP9b*VfsiuAV=%hvu>ja@BoJPxPMl6)quRmxDYP6# zqDugi)A09B+4PyZxv}l+Zs_W?Kwz2+IRsM3f=X>z{8N3CU64I}g*H!*ny<-5ui$!;R^jO?NX)H`6uE@9p#b{d;@dk8#d*z2aG~Y?aRF!pMM5 zn_2Pr=dvX{F*GksRKA@32xCu#PISRiJ0Z(246At}_SH!OP&AANt-FL8|M&aPJT==?Wn(=E~; zXsxcOutDgKHJ5$tfLN~P$rNbN7R!ZYJB9QYmGcyDI0Gp7t<36=#xX~&|7L7J1VThF zOo%JF2OUSqVLuEiudJ5?&Lpm4mfbhj`#G<3Wse82X@#?H>Eht%z8@uD@A{CA86WSc=QJ!$iG2*ntGw9%VJz;qf*JmJeW#5OEmpj!eXznjI8+wTO7b{;&5Tx z$n!sxO&c@TuJ*}p?%2*-`ov1rQ|R%gVzK|w6udWCr{ zB%xDaxx=VVV*DIF@Eey?J)akYx`8;lF~3V~j6%k!l;8L#gXHHXdPfN_{ji`;)hY8< z)9NwjMo)_T9Xtj~8LBXooTY>6F`~R)Y?@u(gESWGZc66EFI!_osD@j8bZwh+J5e8- zo|@@w-6sPbPGpD3dkcusM|KX0HvX2H>8%e=QH9dFX)swYoag?;oxt6tOv}#~-4b3R z-QW{d-Ul2to5A~JxN;^12NZJbB3WS6uPZ;wC_t;wqEF=D8dtOV?e#f#5w_gl7Wbn( zw7g$_OQA60+1@O%6ba^MhztO39rEKX@+h;KZv=A-iIp9kH)Zjf=zX<*HcKJJ#_9{L z_P6;Z6gXJXkEp4v=f)s{{AmpTdop5sPMbl`6C(*xNPh95Bnt5yj-y?;#nU`rtwt>y zwD_?s$D(4lQroS;ll6<~?pZe_!?oQ{qvVHkH-puEH~C|?hczeY$L{(CjvnF9)4V?a z5_i{~$J%ZeLsPHv3_fS<4zZLyWz6`l#&k6DbK@D9w`Q(2B=SxS^d6ymUr)!xgtAIq zT&jjv{0S12d0TXN64W2TkeF7Y*4e6%)d&bS-7(YR6hsP74BXh34AaBBl*a+VH%Sr* z9k5gym0V+O8{aU&(dc3uRrmKNL}9yg;Owh<1-=b0y;y|N`xKF`u{7qiNpwoAUUcJm z3UHIgl`o)x&|=g9$+56s-%Xw#HF{rlDldm)WJ+Ckgofjl0Gc*}83ey#0t~`-aqQ4J5v-Cv~VTe%%SNaS5_^%dUGi2fk0Y=cv4FBMoy z9s0NI>OEXbL&>R0&OU?m#6m{u*Ptl7g6kNKV_?hSmzV+n5} z4YxMs(_+(Vewi!J({!TL3tf2y^Gf3hQmOeLnycT*mkE5M#&$fwdb@U_pQ|&3WnqC1 z0BtpqZR^~oDXhY*lA)o^F#auZ1jT^3_@1jp6h5_|^khHbDw%Ib@T|s0p!K3GbQrCFNdu+wm#rT5iiKS-}p(9c?4~2n1K>@LHck-lj9yh zem6$GakZ6eVGBH&5BG<@>UzJ(f3}R+3D@_CEETP8w;YHkmzaE^KbncIqu3dE_R@QX zIPV*MZC0P?Z2LJC5i(oC!u}0ol0xhLB63MgpRHXdsK@E_X?qu+ZAlwvLS%=qz9lAS zD4^7!9Nl2y^Iz~f`Y9;k@G|v94DJy9lpY5+530Y9<={2?D^Z}3O+va zX78ZfuUREq4bG!m;!IL;=8Wo}zRDZd+O7rDHGhs@Y0z|n&GyEd0tHFP-fMwX7?|Q? z-dhtaOVK5_bQeqJIHcKsR5Dbw^2kQ#@VEtmC8TVw;CcWY&U=u-upB~ogOqzu`(-O~ zZz#B`ORY^{(*ajL`o)KVtpB!V4z2(LfR@s&+SMJ2Q@;0V#xlbA1f2aSC{eJ0gfE}6 zqKNmuXR>>_2=5b3S>DkhEhlfBhmnjsB7vZFgdqrtRquJ9!hRCcosIqu%!JaQ8Yk+- z`jf9*V}TYCG1m09T6KU;rv`N`=r`@J*KiUsL!#eA9z-7Td?${#^EP8&b9nC6I7f4J zDLo{dUmDEsI5^n7PcdsTFCG+QP%rU7Qpe+K)hWXwRA%QYjG)d|={4cWq)q5l9045s z$)99;1)i^#R`XVkdlyKpyR~w+{W$enC4VNJPy~g$$4vF-_fP9iCvLA3bp*bvZX8@u z3g3rnzy#Ho4Sd)60KzRrrnk0m!E#hhZt#L#O?~r|MbTyJg`iB&&FRz8CoWQ(QYCFF6vS7 zktwbuOSFB)L1{c(;BxD3$hv%RRvs{;_MUgV)sJJx5Y2NyMysO@VN_`2R{P6KDh7`) zi1ON$%gUf*Ju;375dsDDA1uq1n&zyBO#~aA)N~OVhP}yvhi@+T-y|tF|6@}G`TJZ_ zN3e_Q_SuZDge8=ek_rkd^EUnfG~zr->^QK^-QxC&%73Yl!p7;p)hM`vUjEx=cqBD` zBWk3=O(dXsGXkpGeIAIVl~Sc#6R(s*Zk~JpdRiI;fj{Co1A@Kg^^|CKH zEC~SpgfU6Mvr7SkuUrxCyNxISox5#AztPMX3=XCY$#?Xr`&IBm$V0AUT&*3Jm%}47 zk(7W~lc4+i{Hva;vyjLBOJVu0X%{3Q$tZ@S6$= z6dp4XuF>{V&$(gI_g#5rZ)UcEe&0N6!%h}Umn`ciy#*u@l8CnM?rwv1Y~PQ&$%~x^ zm+K1P@pZ5&@hgwuwzVc0Cq!2J6s?kEU&@uwkH$OJds^OXQM~cWXTz!fD*m&s5FP3DxrKGJJ6?{&;y+Hu^;gMCdcyfRI412w$d)oc1jh9Ce@4)mdL|6tT^IPRa>N8DNb<~Cw7nzA%{{wo|$bpSOanY=)E z@vwU8UmR5Pzn3rcrqO5juP=?F@}-kV-^K~4;CBPMg24+Zr)4T9%DJ<6S{d?zn3s7F zzi*d5w8Kw(aXBX#dn!vL#jHl^+3?*-+GZs&6XuJjwOPYJ7UBWtKcH+Ok#e&w{M9dx zGv$l~fSV9{K7ZeoIWF088Q2d$8Mp4YWqD5|Zos+k+0ApBQhEHcHDhPQj$ z|Kggm)|h@oUZz*}!(U#YLMeSAmJbt4;aG)emyhU=NNJcBMp7GPjT523ngU9|-Rig5 zmD1baor57SMdM#DUYNAQ3gUSheH#Y_Bj4ebVygF046$d3wH zq}BM#?KXrz21&m2m+Bh_z=C0&O3AOZ|7fwaxFT#Ml5+5g>nuwux!;+~QujfbHg9eGfuO+LYcRNx^1P+ZPPjVIL>F+4qE~7UK)GtVBybBSLPcRJ| z?2F4BV$-75%>mt$i&0^tK6e3Fw79{!hl~w+yPqZz4oTpd4~@?~8nu#Oeb!_AAC@HQ z>oRp-(3?SHiPhy@|I-$CRn<2}(HU#fy5%xJg7NIW11HlICrBEs;Fe|m^@|)zZ)h4s z23IHytCtqR83Ejg!A_!U@*O8x>-K(+TlbC za7jgpSCC@3dsYwFg1MF^NF@SXBgaUVQsM!xFaS;fu*%Dky>)AYrGUG(beEx1_5 zloAvA{3Dz=!r`Cxf{3Unyc50nP$KD5-UGma#ARGb@HI0V&N(HbJnp1#|I=r_1Sc>= z#Zf(t+G!z%lZ-g+#~d8NCc1vRQZ3&nw!R#)=~ThEl4&exb?0#;5yb%_Lu}N)c7%9h zbxU{yD};Hv+TO2=U39;#2O1Vf+la{K&-qZZ0^{nb^R!Y;zzE3W1`RX{qFws)WdE-m zEqWHV311H36I`;{@#<{l`ko>Sd0+W~tFUv#$4nQ4r#B<}N5o2p*uLR&n4yH)po?n_`I!bbV)`L}4=x9nP;94yK zv5-&3psyRYncdv$45}19Qiis%OyQFD)+D=xK67}}zM@k%L;jqy)D@eh zNRi@9pP+J#%%OP)iw2cftZP)=G31gAkDj}zFlf9w7uut-^csX+i6b+v&1PqQQp>1?8&-}y({Y<`>S>}J=35CGtjbpSL~}2vS=aU4d_4@ee_|sq|M^37==*TfxRv7tR9zzirx=Gm7tM_>yT3I& z!!=xfjAvf*14&i!E>nMsBEs_M);x8;Jk+E_H;oBsBE`9iPIq>hm=Dmf?8e4DrWYo9 zs{+WWXF~eDXQ>sjeJ&dHuGhlS6C{R}A8W5?n>l^OX={(&8VXwp+=K0!En+eiu%;5@j|cae_1}cc_ht=;OU5|7Ilh_$V?n>@)XGXC zSGP#}PzTm|ew%UEYU2>u4+m*MmiHZNtj0gMx?_$1dL()(T9ljO6wu+j-PpK@50~Xd z3{AvJVEyjh9ZV*%ffw+^JYi$DZ5G;9crB5jSw3r=gi{2OPrgbBvqGmXn$ZRqvT34h#Us^e?Y$oun7U@ssbbf;<0TWS49R>^JAa^<$d==94D0u5DR%A*7EE5J~zB%6KvE(m)aVcOwLs@Q(wtqqgFf{hOn)ffw#7{R@e>mnztDki=eWH1OfGOM}=0eal(+f{dz&pQN_-X_nNCziw zU;q3k5CJ{@Tw$rs-Za6F~^2xX1O~=Af*5VFeov+|u8L9dxWY{^?#nZS>s6E7xB`Bj*finKL zdRys#=##3PJDYS>(g)koV&IRt(Tn}z?~Za(7!ni)&bpzBv7l%fbK9}1W2=~cOaXDp zO^k^=UG55S=qfaGy)7c@sD*C+M^lNRCHq=9`o-o-TyTU~*O)Ri-TDO*pxQ*IjOmL` z=UvICV*whm`lWI)6ifH=du}d^vPt zeHnx^|C^Ubha&4XOJ3a)%SFNnB8d?gR1ncoyhEZcwf14aq+%MnWW0jeG-234kFz30$l!v-4@1NLcVl8( z-`y$GovAn-+dO9A=86WcAzw~W*@$hZQS}@O{gfjq^1j&pAl>HU zH#h9tKBa=IAG|mn^7sRej_Cz13|d<0k-vPJ^ZpCZUA@0KdDoQ)+)}h zEB<;G@Eki4Gud+Kk^P+A{JRoY+|mc6o)U1VEeYoAUi1zI(ya{Rj4W5rU8y>wo>`-@ z)B3fuBv$7BBmDBElsz`5oJx)z9XHdd8u^cHFJRVG|(wO+iX z0Q4~66$Olihh^iSlFuzlQ^_NJ>Dbk=(3=Su4cWx_(W$$)EC**{tIy%;qnyD|1!OJ* zxaGP+32!v(Ft`~JP{4*J3REtHp{UmCnT;h9zKk_KEOt3njFJrRbOPlehDm&D!sS~9V$PD)=x>%Te1q)%Xw$bZKz!qN}pNZguK zBSVD|UC&!ZKi^+cj;%yaDUaiknEo{enWq41Y35=f!dj1bY2A2e8ePUH1-XLxjT z3(J?n3+9yGOd#UZl&Wr3WT#`wK!&&`HnXWK^m}?gN7HQ2PsLM@J?;R)6QC{`DpD@*BF@FQyj_7QE ze!*sdS7{Q#$j7(xJh5ubv5`$?mNt!&t#{lsfzhOX%W38UbuGzC(W2GV=r5X268ll7 zNFRG=j@kh6c1Zw#xXp9%6|@z|@Ncw5w$TrWz-gYz(lz2vq2mMLds^8JuaO z_`-up_(GH$$nS$>`emm!_iT=5ZmU4nY$*O~cZVXStU_2u`)3BT)}407HR<>D(^k9~ z3Y(|({N9(VZC`h3usW3ocC#{vL6}y_vvM%%UNmrC`J|MJI#vrGX$q56E}VXMNuSCH zEDnG9gLY^XH$6C_>z5M26;^G_CGVdM**7#0`Dmzuhc}`_(Q8mvu*X_sAPQKKY=har zUI(b{UTILbR3IEAfbQ`wq<*nJRA;FQWGlMD)I(74yBq{l@?=u}J)Jv9UvsK&vT^I_ zLCgYS*Vu#$P|fn{tymJ+Z@jns?;UjU^OC@jQ5b%wz>nE3Ziv2b{-X}!=hPZ0exZtb zI?&vMZ@FOMX?CT(-OqbdQoVQ&pXQ!W=7VZ>nZ_pHM$wG6=#IA|hiC2s=_nj(-toW}ue>Q&=2-_te;UE!6ERLmpFHj^fgb;r@y?rS^ruPdfJ zb{jwbj@1R5bZ$VwQTvD7=(@;4S}=Piyz4!ECkN)yNhiLP!jp^w_FO$X2T%HuN3wp0 zTvrrs+Ah8QlT5c*wU1ETp+7lLXvFp(P{B3PtJHCxh0nlbIQn_B(*wfG`=SCN@I-)~ zmWEPgAmuhD^c73Sh`gCNH%3cTN#J#`NN=()m%yRe78yZop{G_A(ycq6YeMzEt9{tz zRpdI6#d>o^QA7sYp6>%J-&w-E z+@@NsmQI`KMdF)tPMmOZnGE1RP`bTq#NJo&%j?~HE@N1HLb&s84qH|6MjT z=>9hYh$R4=_#BNT-WvG2Cr>k`UJ5@P5zXnvPM3YSG+1;<$-_Tx)FI7#uzndh6nlSN zeb&M9qifP8JyePNGAC5yK^24Is8;XE{UA+wJP((7BxVRTqAvgmc4XYb8X}V)OWzlT z2n#G9x$m5@=OjGtPmmv0{EhW$a1k@)8s?DBC%IdZ`}$hvd$>&bUH2nJzkqX7LA8FThU9o zkyOqSvYmCgWQgUK#e|mAGpaM?Lrs>0!7|`DWmK@KJVgApc)MmdA}UX&p*7CxWlm9W z8MwGICO}5mx;w0ep}x}ZFKw1imjU_oDm<0TfKKD}^DURM9ALZHjuFj3_-(R&IYbo; zrbZVuu^`El!FEU)cMVQyG%eoFV0XCP`nJ(|?@@KI91Ikui|eyxWFIrw;GFIQvvg$I zrC8#qxecD396F>KVk`an#hdQy&bU3JVBW5k#FPmrvaOx9iFS}rF8du8{V%Ku!J$z{ z$Ir(L?-+xWlVdd2ESZp)WqsrS?>7mGNV^=r-tSmRf+kV@)IKm`$8YD$vTtO$)<2}>?%#t{^5&Y%Iul`=cjGi~!pWMl)yc1N7QjX1>F6`3{78bmN3h}2iAav)@YiS@< z=c+ywi6?sG;1TnS~ZCJ zrcs+U9jFD{$Xjbhz|uSZ-21v}ZGSiz`-R}KalLaeetq+!hS@0V&H{2 zvikQS0p%wK%=?Hwv_lVje^}tpe;LT2IQi_Rf9eJJUOO9)u)}Hcr)$In zAso6D4>;xh6PKiB)7dn zE~~QHWz>*pml&Ju^|Mm!8Ha$yUjraZ^Kr=;9oBdQfK53Cb0}(JRDD*l0~i&Ds4fVM z4O}=m)!#kndl0e*KdKgR6RxJRQitZrdlGhpoHnNutZ)F zKD!rV87rznQq=zBqP*E0aMYEv$Cu!>1e*zAFe-3?O_%*nqa)T`BpoLU#<+_si=kk9 z`~%@@G3n1h*C)JY8?kk%bPg_v7y^R`PX@COwCM{n9ARqR`*L`jHEf3bl9PH+3P>tG zYFNfFske>cHt9q8`q&v$B!(U5UZv4zWM%gULMz7{K@|bukQW5#&8iqp3JvYI(FQf9 zUtQkr1CySq*v~7Q=uL{RyIolsRgDg?eAACn2!c4e475zrSg;t82?}=gl#{V%gUH_5 zd8;PVU)of$1?Y+0B1`za6>8fiEc^d>iBQx4kcHQO>Cg|5n!Aw$G@Du7`22#Cwp2{Z zb&TO*JmAe`9>fJG*H$3@YhZEhnZ#Xm&+p#26UuEJ6Ma^QRwy0ZpYE>GuD#$PagzFo zTMg`9pYQgh|F9U&TA3_{8z!vxVhez~6Im_T%M4STw zoK@Wiu(Ai*v?qV2h-6ZZ0mcS|dB>$nwtzapmD>7#2zTJb41Fu7o*7XVPiaJpt+aS> z)LYEw#`59iYMPRs9S}5l7&Z4K-#w+-#awc}V2oX`IoWTK(R-k7SX;2iYN(J44U_{gmvBm$F9+++6MtX$7xy(vThXFm)84TJkmWMt7z%jv zmFWo{dv)jSrU~hUlt@01(@FDG>l-n(N89`tYcwt$gi1}=s!hN=*4hE^T>~TvpW3k{j;i9qwGAcNqHA3JK!<*UHqCEa(r42%aX%(BPe!yTod+n`0t(nMD7j-KfrT~u zH!Vd@L)07)M5haUW-+eVs#eA#KGYop{Ps0iv$Iz}$1bh%9~hWI#BVnz_`#SD5+3Y; zh5P;=@dtpk|94y=?D$FwXUt*gAw>PY%eS$erkw2aEK1zNdFH|Lp3TaD(49}g|AFaB z^UDAo0`|c})FNYWo(d!Qs%pqlU7*54uRw*fFOxokkqr}jo>e3sCREelBfk`D+04Rm z#xC6!3GWtpo*>@Go<{dKEkiT`wWlnpAQ8hbogW{qJuVNm%zon4cEelSH*9BAO^C1` zIXvk?y_6rnnj=cu7Zx4F_;PxwQ%%FO-kRcNP?Gmd4y7;w6)89xNo(2oGz18vUR~}< zCIaPlS*d1*Y(~Tkw^(92(;vtuTsS;@B5F3j%W+5&4lO5d(w*O@8o+iN!~;HwSUsWD z-g90-z2(JVY}+?$D5!9Wz?Qst4s|uHZB#pMiHtr#XAh6ysoV#hy;b0tr!cP;TD^-saWtPt%{RPhIKsvf=50uxJbgyCp!W@0CG_?4?6M8J)X|qj%hSeo|Ki z(|>n_B$xu2FDP+4f8(w~3xLqJC2l7{Vs@PRCl%j$fIpYN#x6Sv26*(-PjKJH4xG%7`nWGETj%|wJU!*h5!9v=Jm45HUh=TFVW6wMhC<3#x`+!hK z<(|FP*LQ5|K62WC_s!V@>7x!I_i`KL)4eX<#5hP}GPXjig6083AA>egZi6FKJYO&t z(1}3Q#;Q@(*ue8;2PGc?jN^{5PSxc=7E&;LR|sou)mp0y)sJ<@s-lJTcM1CYf`2u# zeqqe8$q*R-0%$kDjy-SF1f-i}LRuS0EPFUzqAlJdqT#^)0k3ZYlKs=w7+U6^=ZnY* z&`ks1OO#TVOqDo5T5@lhM@*vejo2wW1LXliz)G%t za0)750HC-E?TKd*I*NxJm5eybzU)+E6% z>Fyi=eGI>0wD^tKxi&74A*8Vq37~=~G7aRbc zNf^xLAtq>^*;V`|foH*xa_@s>Uc(8pJI}>Z zCH1#j3;Nev3w8O4PIjyn{!t_Tr1ref*^hrx(OqmWt|Pj|p5v$QB4J)}2m;^igoTHE zFXyQNT@9Z=cI6`@Bm{D*zG4#oY_|G8CinLUn#)g4wVYzZ-l7X>URy?9rq*+7YuVb6!p0$GR6>8p3ez|ogZa=+uMj0 zeMUgxm6e=+W#92!4@=ntpoUzi;ZgpnafRtmw(%HK=(%Z#c+DfIJ1Fuvut(InJ%-Eo z&ViMg@8CO=I-|2f+qp^8n!Tf?qB6}iejEMYgjRiPb&lT$JprK zFV#b`^72aqI0)X+;m&Z?aJ)bAAvhgl2oHWk&I>Es;i&H^@3C`)57V%Tdun!Mz!oZ7byz^Y8 zU2z1lgR+kCN+cL+4av*b3 za-d*8VbpYlWkaP;7mV-*m<71%s z^!|!0<|Uer(X~<7X!ni>Z(LXQTLzaiFZ;vvS>>Yf2S$xd{6XCqz)12Um0b&vLqv@|xL>L8uANCmR#B?T$m=l_O+T?UN;% z6jJV8>xgsPdU-IVN(NX-8$CGJ|M*AZcg=GdY_?6I0pe{ZQvtZhadpjV|#(U+~$6-OMo4Q;YaJ@rfcBeA#FPPa-1 zz6o~s={*jCLG=r4UBXu()i$n@0-sC8Mq*(qBTg5_;fFUHBV#1K#ZO>HPa3WB`h`7j z2oEw??i*S6DmMR5GF45ycP`M4GpL;9mnXelBAyk&8A&0tjVTtA$4bjZUChl3FA$FS z7%LV)i<^KyXV_$ENKE8F*`1}Df<;59C;XKoLK@zi8E{I2)I{ARBFI81KW_5ArT}fB zic!w8N_=sgdOVtB0yz<5JDO@$jR5}W4_2sg0m7WVCaTM{s!qv?jh!JftqkP>VnEv1 z#sNkQs5GQh%<{}Wh;Q*Bb4nPOa+&|w!7iW!i+()*h)WW5UH+9EJnmf>_P2FsE1aCa zqc~OJ4zy=KunAND-2f4+EKYfT9-7)@aj`(8Ix!3O#1kF3yLsur#@*Xe^-!MNGWbxs z?_Y~8hqi#%j3LMOqe5*Rm^bTj=+`$8Z4yW@Y(w7HB;m7(!ce*!8o#a(YbgBhBcs}KDoDWQ-Ow~qe}=mUOi?{f%Jey zpB~P7ZDu8#nyaR2IHQ`4qrv9eO8_`sK6(RNfaPY5_~$WkdV2a5ocL1dwo~cyoWO&dQi=&OnVLysJ;yqKLqKW?D99{6=12e`>qf8s z79sCMV87P8F$Q<3YXSnhjl}}?7k7R%+!+w2=$)26a{WIv5gf8H-BwIAy$>?o3+QGE zj0HBtz?lP5=w@tU9|yIC)>vwpb%o@tVnDb;WF%AG;V}eA6!l@}HjS-!WeX90SFW?? z40cG$>s5Af?&md0_{mT?jU)X84o~YR1`>H8m;Er%akUaO%Xq=0s5%tBUEETfSInL) zGiG5$X;QO+0`fDUI3D>b^y4DHQ8+<#ZCTQ9EYUFX$7C!Rc-sD(3idkQ@Qo}EXLDJK zgrz|~otk+ixMGhJhSDa8yHs8MBw6@Z71*#7F_{3wO?H4qA?+N;|OHbQY8q$Sv7bNmVsR=jUa7<>I04*fnn5Z4X zePjYk(|^2hi*lPv<;riH7=Yq+bpvuZ3Yj1oglVKGoh*B|5xwM3nE>*4UyGOTb}~A> z`^;M@8`3~K1d#(Pzk1ZVdU5H*5}K^E-G zjDWVrSxUr_8Ipc4DF-qXRsRnuNcY^@l1qyaP5TN&=M?f`)fiG5GrL#1e|9Ixf;$}~ z5fp=Os-P-EguwEtpknWw41C9J<406jUaqD4?3mb$3KH-YS2^bmrw~B56QOi|Y}XbX z0lSF=CF*GJj*UyV_rV8Z9Sx5=?d+)#CmTO6kLcSlAPt02tX@&7Bw*7J4seA=Z-ycK zf0@6dOUoFv5|m=90G%_{!q$yYDIt5&xoQ~fiF^pZB_G$+yVlo!WdnoBHf^kf=rd=u z(m`X^B&Zg3%uu8YrsQ;H?Vja>?BO&ZGzX%>=dHmMv@G?& zsztf9?vmT=L73<v zbxo}*u9_lEG-bu01c5g3Pl2`j8!z?i-2d2)D1l}bgxx81vALh_pp?arW_M{tAn23O zQ2=qZ9JzWjuAh4kYp+xz`#C0_0R3Qv=^@q=3kQi;Zo~K=V<`^|isPv1Kxh`obAU=? z%cdw!VFleok@T<{a{+azpLEn1%?&h+oLc6M^z5H9%iqwCB*}wsL2{Tvo*kHivmL~l zir|&bb$ra^t=^pI zUjEaj9OccG?x|R06N$AwPy|wex&UFTJJ$Zn1k5kU@T`BaAuiBXLmh-E7H3w|AcDdKFOQIUMIZX>IvCO27`71|@ z)6A#YubGc4gq)G(5>UuF3{#% z`RIAMe;}Kqh(dx`!U>z zDgOSHVud+kd$HZb227M7C^24zma?@)IjRF!#&}ywSD46g=5#wIIOS8hO@2Qm_V75= zS)wonKO`er8&e_$=(0e3g2P=JYah^k*wjj$3C3fxsZTaGZ8_dqN~g4?rwhp8K2^6} zSAY;QAD;Kc!9Wm5S$t6rPwSJ!Nmr!DncyB~+DQG+$UjWg!@PPxaT?^gp%o76FCh-Q zAWTmyg!W=*cW%I?GTVd{RVQaK2C7M9P}sA#NPm~x^+*JrAh@8^rcMepLBIsjD)4HJ zR4TiGU;~gJC{C>KFRW zo@Uon$o zq%ma7+r~E9HAWQ_-ws#v&o`@Wl5Q1UDk&X?!8Pf{@6pu(MuUoYE<6kn?!1uJAMJ^`AOmUTv=SNL~({Z%wAj(b=^Nr!P) z{+5L9Jn8r8Q&!IOsS<^dUc{8T8Fr4Xku^Pn6?l+et|fuKH#-iH$q|}z(yFD`teoM1 z+gkMTNy$J|&Ypw4OLEb$)rLG)>l){*&v3P6$}IgKFah7km4P@j2=g*{RMkUr$k#lv zN+>z>AR=dAK@TVfMt*8c7E&Dz7|HXmS|Oik#T{IutctgyS!lmKX}^qZ{tRBla?^No zLY?g6^>r2;C}9RA!0`z~*?<)oT1@b18ok>g=V*Y+8WqI+ea*o~$?RxVii5iQORFgZ z2?BW@!>Wa&ZTb5*s46Zl*ltCo2A7UtM$*injhds%WyQl%OKuTaRCWgr4f(zd$PB$0 z%O=1lgfDwheXenM(in7Zqi^u9Rt&sie2-FaS}r~-f%p?Jc1MFUg9>EQ5BHUG??VcE zy{E1J&q!=he+@M-c8m7|6o&9a%4t^C@I>#!PW*If?IW-R#8M!X5y?xWcfTLbXD#@%%Dv**6=JFQsfxurLelBbK<-)k;4rqMV8AmB%X8%i4$K}Ao4&G zO9oTQfAx}k7vj!eDXDxkIC^^tu8koC)TlA#Y&z_H=|pR+<|US@oLr_7?P~8@-me?i zO9hw^bOrDLya-%&O+|(mWlW5!2UEm=ywriqQLAJp4rC#(>OKp*I-sKfhus~Uxi^4}n%1zI5TNh=J5G%LVMTXJGC6qhU<1n~%N)>xn**3~xS3Z~!TDjm z!wff{LAI#U_LLmE{2KR)NWGdHb2IK@Dd<6lb>M^qqhDtmWz1 zKBhh++9zSzO3w7+KKGw%D2dLgVfn@E8g0OS{J(gP0>Zbz-r^#v1`QRAj@hz$15_ysbxtg@!>Znm&Gmi zKQFqm4qL2KT8d998A5M|Ir#USd(xWPUkg=rQ&|)mBtOF28U;^oc^)>GzE@VZJ-Ub= z3U=IpSPsD54`=J2K=mlzl3(Zgd?k22b=FnpYSkpScK1Yue zKN8!?wikxL(`gJuQddSa;{dqL;w&OwdEO1uBG|H3!ixI^ct1IV{2XCjL34jAKbFsJ#QVvu`&l|$c#joCp1!UdIFp77BgYkiQ51SaH-*ZT7atD!8wwhuB(gH<({dyg%SIr9-N$!el$-yx^hT(?hSn%*a zZa+jJ(pBOR8u!G5CQdp{61crksx0@!I~*|$I&FHhfiI@TQTb_e`;`P&m=ZPGS*BmL zA{fJAY;oVV#3?0aCpEwQ33BK*#BQULBaA7hWLOR*6f>|y3e^0%?M%ZSdliA4E}ml6 z!)8{YRc`;_7z|?FWA%8UL+l_8UWS^mOeMjwD&C|lUQFE-f|{Ua`Fx_!XPPirm!IJK z(gocgO1x^TT_6G;qj;|Z9R`*UhFNLp%gXnnydnLnU4>i0Ee#8Z4M`y3U34yyOlX&? zAUPR7c)vH{5h;%y#jjFBD?-?g#$z_f_1EwKK>--(C5iwUrL4icfSfF1>GME6I@`e zQpJ1T&y;4dB22R7%~{0M7lX^@aKpUJA|P&72H!@)CftkRZ||3ajQfq@ulcr5#_hdY zNVpxyxW3B=6f+LlyVH^v{ruZb8=M%XZ}maIuiE8CElXNCz-zzrpAn$N|FGpeO4&D9 zuB4ybW5s#=KVPqh$&>rZ|DRuJT_gKZuu^K(3ZSmRpR>gejJz7KA3;A z-#2QYdsw}t10;Hnq3oMO%yH0>xq;{Qd^-hcDBDbyUl}h6CxUJRbd$4Kh*Is+@gF+(Hnka?b!R)K)v&@pM)+&3$gi7U|d!B5~X#HEw!TVo#H@VWkD! zZ8)?~b-ipiTmc_V>o8tM<`pi;R2pTvOcUyU_Q!)vV}cQrb%=K|#DBR!A;H9cjHb(uPCs9@IpRewKQ+`?igIuLK5;efI*-i69*$g)KOr$ zH$m+&W8FWf=Ej2P9S2%>8RY$USAql1APRv8~_Xj$o_z8 z1liKFwwAnFzWV5kcRn%5~0H66d^!YEnq}|jSSGlWAG#B@V{kb z?2>@%WdWr#ApV+&f$zYn8@yBiQ02o`|Lq@=U^c%qycSz}~HR;LH?ymZaw30cikwxXNXZwKgX z4_J;M4)M#7XT+IoBp}ZO0$eHkfSPdJO1*&b(le+Ry?WjS1Q70-BxmXFIkt}oOTl`u z1-$&hg1P(go(Eqa4kjXyZx=o7rzk5WTf5lc0-M7GBY|Q*l&m+I!d-Lp^dMw#4l75J zcY7(X?&;7V??J|;kAqaqA*(Cq(&o)U6&d!rQv@f>mVcy}efeKDEvs;dDpJR>eVjni zs09>EO;DV4d!#cux`CtVAG0Igk`@r1Rj0B-Q#4Xf{5^O7@2+<8uy*nQ5qmm$dg%E- z1uh|66wq+N%LFtu05UE3G+iYF)f_3>K!F7K$FV-^#iDl%80$NC6>?MJ$Xb>QeR$$= zv{>H8m)9>*#H>hY;uHntP2Jsb-LPkP{;2EXFw(Z2BENmD)HJI1{AyliFd@y( zToUK#m>*yzcywt}ut=*}snR9Yg^;Mnk_R=6o=GMkQ6yBiEb^0JmoP&tasZ1Cz^W|4 zXy*#|q;KI@%D|qPs*=@2k$a7gk zy1Iw2La0@bH*PK&~Q zJCK1$x{!vHP$E8sR)2oFXmvD2lTvFgb)KHjGU!{ONAbhG37M~vXQi{LjbdNqcT(eM z)KH=m|G{o&<}qeXC&idx-W>>Mbee z8!%u(p!t8tp1VxkF9B9cD(=v^pPWA*x{5dPN`Q+P^=mNz5L}PZCN~sF3ny zHx#L5E0Xi8#h1Z4SYNj@zi|UMgDiJNJnRgEf$9=GkgG<$PRT*`6)5=9X5Dt*Vaq#j z(t??xmvhjd^4AEe#0X?%Rje^HGE+m^v_KwkSGxDT`v9I5tZ9sCzx*xlj z&0$=4lHb1LWe+?P!^s`4eE9+cNi@E|1?-!IETjKznRs5cS``ce0Ht}dFLV(o4*2?J z`@`VgW7c(0IEn*uNI-`i>_zo*=tv;^2F)U9#o>!2ju)R_rUmKJp$aAg9!V+H(2$>3 zX3c^Wvgzl&E@47&c^(u7Y4LnzBinkQ-5ZzqqSa8|_SfEm6?YIJXBuCk`6(?YZ~H0< zXscloY;=ycum-bza5Y$sBdUw!`2#znftZWH91H^gkaYL2v%%78Jnf<2Ge4dJt6_l< z&iUsI+`KJ15w`mlA2aW5l}`EOR9tnh_&*daLS`=E-}s=8r**Ftp-~4`HP*8vh`{Wy zeQ%KT`tOSxh58L;MYz{k7V~%3?O8DI3^ow}gG^z$vvZGh0N&Z8&mPEfFf>lTA3vH0 z7nFV9u7i5LDOC>5c}9(BU{>Expq(7YV-gT_PIb96?iE3`XcnXeNR`NA{w<(XZF7L) zO2BLZwnb--S41zd2`ytf?-W8XL6ZyZcE0~b?$^&<6&CI)kY?12-5KP&W}2 zG~UO?GOR|W%z6=w%@fkO`JMsH5D3(tYm((=6?#E!y)IN_Ec>2~l2BTVk!5>u$Z5aA;0xm{tz4{fjkn)r`%AN!^x8vm3DBPuX9A*u*fV z8E8wfBh`S=+!cwSv~~*ZxLYXz4V#|00)c+`a}wVdxT}I89y29O)V^}6nfVZ@}c4En=frXPlv{u7er*g@& z?pZMqCi+xb=O~<~G5JN(;DZ|R%ST|ppJD;XODSS|{{nMiPJl9& zBS5XoV$OtSj}(oe0Lo`GsWZHjgKEvD&2<uXTHbPCHtxT02DNxVo(E5F z-8w!)J8-qM2$dcn-N(HoSUUL&8stCr1SD~cw7PQ`Vlg`%Rq|$ac;CydCO#M!@IK5eGlnWm`nzvTl$87Vd z8w8@S7f*kTsg1yl_0sVjxCe;#%xsSKy*ov1hz+YBAXV1911}Z>_Wl@dz*q45C<9Sa zgo8k)ayJN*5q|xu_nc^$Gyi^v@n2uFP|tjyr(UB?>9&Fd;W1M`a&AjH092#HBoXQ#k;x_}1!c7y8y;j|H-(u2hsAP$C z88|U;6F=J>;IW47JWZ_ygv+Mq!Lv5}?gcjOy|uG;E88nNehvurV zw+iX0auZ~`Cq7E6w9#fBV$M;{x|)OFYvmiqJ7Lt(;IgU%D?tIft@8N z+&0r8k>vDYE>~Ma!qPks_vEH~3L=JF)grxOv&4fWnoL)xf!~@A@<=79YuaN3AC6q4 zth{JKVkIC7cgpGolr{;z&FvJ;l&YhVGKI4Zl7LPwRq=}YD$XybGLBk_D)VE+p+LMc zK5U<5fpnm5Tan^xDgvW(vpFZP!&bLJN%_VWAP>;V?s#g|3ntTXo)4A#b};s@D=Wn; zer{@>;64;__hySpLu0f&FD}odn@p|BP(bDTi6OJ`l2hL=VUM5vcCrnJ*su@7RLh1Y z=HlRr&5v(m(L8AP58*cDpZLg&6btO9RKBJcgy%;F;|MU)EeT(tS=SDDFwAH}Mr7<` zck8f5pJ_KM4-~LJzfEt8Se1I2SoO}@+WTKmNZ;->A!RhbWYyxnPY8IVX=k~(p)dfI zTSrXFD|XJ#wp60UzXaC2Y@#V2JQ5NXWIo;rCI^E4%$`5p4P<#tD&xM8XVWc*`fbne zhXXE!{rEm-b58R<7k5AxX;+dUVxajJT8(ZsM5?2>!s(~B;s$E zFStCN-3Rlkg62Og)RBOlE18~q;C75eLT7=> zn0~4PzB(a4{^m8I`ce83#LX&@a+oOlLv|qPP@qVZAtnb+F7z4ZW`w?Y>*Vy`F%MMe?HMgYZn;rjOb|2ws`2tNuO!x z7DJh~zcg|v5_@5XGvG2tWtuii0a95@Zsy>3yu8(YPF0TEX55tVRPL8?pDSJoieoVv ztdqJpcQ7{Yc%?Kz=()oCFLFdC9j^x;DvW~>CQJfLm^)8`5KE&84v(-GuEVQ5$gcme zfkdHhFl~z0n!9PTnK~krYD;|~JC&Q{hO(l2$3KORnJ@b-@CY*#6=G*ta6WW2F2n0` z$X(h;&ko3TV}p*sw;5w;-}AOEGjoko-?%*6qT_^9y%AgiK(bP5+hCVTRzNUoSOedC z+aA`7u8M~&37j1&$7U&B^FL`Fc7wV ztsoA$x{iE_sqGY!d6YNhC%@IErT_MI6Dv96AhG;2uI&D`-XhM^{SIssKx*It9j=Uy zO<8PN=5BFulVIPkIzkFU2DvrE5`FKIhTs!VmwB^aN8O&nuA+GY4-XGJFLF=J&CFh` z-?X_Ok&KOv-QQ0=33s1dfPnA@sb7?KQ};Zda|hhT-tnF7eo_3YF1>uw2_nDI;4G=( z3e_f<|4sx&!b+KZw`@X|3SoZ%VW~tfzO%r|J^2Bkg0F9fa%5ItrW0@<*o0# z__p^(9SA2F*hZ~PP!(k39$={^C-U-;3;Fmk+%D8RN2qcVm^N;xHP6N=p;tCATte z!ad&)PRA@#dRs^LgX%|k`ez-5?0gs}D(Z7;_Neju~o2^>{@B>$v}9 z)EUl^Fb(ZbFC0Zi9Ys5%%USMsNYn31!~~{1pt+mt{(lJaJAdvBy5^nq_{8UXu5vwH z&sHLsD9mDb4kQVN#eSQ5EGt`Vp*1@GRw(P_UDGS}6h8~idfl}Hf3W<~;_~7)K-e{{ zsYc$GX={0l^QI=9k4c~81z)kr-&WONXmlf%dJ3moU*{MRN-2vuZHi>dQgSZ_qUyN! zaDfQQH_G7W4pa)L+=%K`FjH)S^y2yIisW$oq$Oq)L9>)JBLuuyu9=JrjX@N$wRIJq)r29U z-Fo=I#NhY^3Vq`O{;IG9YqS?Ex*+23Y1t)DG~g?#Fy7BkPfRM$6&_qtz8Ez9-pUnG zJ>{$)!7yngYs>%oUMeB!pKl{8MIF&-k^D0Z$B|!cdr{*#U##xmPN~!D>rJgOOAj(# zk72u@0bGIWm(KyYRyleRX6Iq}RuF^H3dMJQ^+Eyv&37J)fQ>VNaRZ;pG)b#DTAa{c zv~a6|MZIwp(P+&;c^1uUx1hQz1yOczAxzlmi%ac{z*`WG z!vhc5-C!Ehy4M2h>nk!L5zw2k#m09n-FYk%rfgt8(=3v1E1)#Bw{&!;kinIi9lJd| zuF0x2i8m6*y9k`mSK$*)56??0zLT~8z7n}c`tOaqLtVeY$kv&@y~Eq^*!$aOLGI>U zVp8o(sr5*XqDF9O3LS6Fn!oIY(ncO><@VULnZra!v;$oJ~c4|Cs z_e^_c88_wd&{MafL+AAZloZ5}9L01WzSj63sP9T z1_3u7>E{son3E2xyu$MHO}NJ=AyH|@de$EjXv^D%8NmNyi-#q}Eao{y2Dk*C{zU^; zj*a}nS!UhI78~K2Km}B-;?j5TO);763VYReN(4pp@%;@*nNvG;b5BpeF;G^)ls zfVtMtt1)A~FJ1LkdIudlZ119Fzq-6R&mEZcF(B z)_=MAS1PaL3U`Fnht-U=`b*euKpHqdB!5ok)v3ugb86-Ah`Y}WA~E^GmCgVfGll#j z;Cyt&&JbXl2RU8<+{KXsbuwG==)`da)+qSq8k#h+)QW0IM(-f|fJY0A;RQAXx=Ekn zd`FkC#DM5^8cbx>Y162VJQSxw$9W)~oJbEN77Rxb;geDi6a8x8^BY6Boi<@4nAbA$ zo53}T7Co{GxYu@);85%&cx<8$3Spd%aYT2V zs1~S_=|j%|q=gj0oc9bOQ5Wf@pjMCo86c9^_PSa6)X%heZ<)Uy;1Uv52nw3%^IGRN z!R!OgWp{B`$}9w<37+oOt!vOgihverKNSQt8SUm$Lo8xW+92UMN7xzeNZ^a(V$%%c zwl#drNa%!t4!vXOR}NJUubV95?uT(S%#XI`)4TtMFfae2F%fx9j5!zZiO$-R&+7pr zU;vx#$`3pvNUM|;U95XM&Bf0FO$9}Zf@I)8Oj7>n2x7-h18>u7xb(T&4j(1Givn#G zb8I`rNwyU(#6)@~q(81~-@4|_a?|_o=LuxH_l8wJ2W1e2k+-8A1T3z(fz|Oc)L=7; zzHC*Oyql6i3Yg`4O|N+$f47kz>#;(cK&I5f7HWRfb!GOn){fn*@ebcrQ{)@k&k+5&?-jWiPah1uE*SgE zV-F&85(93_x@^zWOKa!w2XgckNr#nTq$;&MZ#ytRKh#8xGIP;Ch4856b$v8%n3~q` zcZ;=iO~JsAQQndafpa!#(v*IwX2bDGQ*eQRM`18uRaI9zpYO<$4SUgdFKAbH&$Inu zXFsl8BT=0o`F(BZ{^CUkyMOJZF31Eh_U zZb)_uG;?QLJ4e{pE5EAX{9BP5aBt0!05dST3Wo+zOWPpb67;rC4ZMZc%);J9fVO2` zVUEM7QqR**XVC)xPJu*)Du2HkgD+P)x;D+IL}km8%9=|Rf3Qd`%hF4!3f)5Z&tDM5 zbW2C!3&ALHywYwKEXMf;p2G@C6xuN+f|M2Hir5*lBN$zvd2BSVaZFgJ-&{dAn0doR zbqy^_&AaWw?beZ(4mvzd#wFgLjx^RemvNqYITVd~OZSRv|I$5Ak8C3GrZ!?y;2;(s zTuEyXY}o#^e$-yOv^%??kJg1HuFhoTdThYt?9v`tGYWnTpw=^C&juc%lj^3odYnP{ zelFvGLtZw_0E0q>HJ2gBrvzU%hpPiY>IV9hv?yUO@sdw}w~c+U&+}r<)}T~^FsbXJ z&?L&F(k(0icmUV%nfG#aU6G{dIh5UwLEvgaVQ7Dbx#pS)Z}ArPE$M5?&EArJd`NkA z4|{QOAHqjY9gQn``Get8^5-vHVpr`J{y^58<#qI66Imt8bGK<;gmi?eg&!a1WO~8t%sO21-SU@;HRL7%8~!$FfQO`a{cRE*xvl#$ntG;^-S7O2KH!rEj+4rfiFDYZ$aI~KnR zjxUXbezb}`dzUPW-H5oLoLGz?zrcYX7DQPqCRIBqD@Vi#aGGz5W;|%Ko5kjT?lJ2j zz2N&Sa?Y$Hc*CA1o7CDU^7+8?A34iCutrv4Pr=Bec(SfsIEOr=<~7gg8+{4c$y79k za{}<+^V0Tsng3$diq|`SgCILv!K72Qd>3)qwTW}SC=>E)jGdp(At_-s=!|eU(Nc8G0VvSqn^Y#9c7C!wMRQ_` zw)tLU8lx48&*fZT5H#nBYd!)*MsOoDYEbhTd00DB4Z4aso=^t@#<71)>i-ZlaM zqk_ZB+{A$tM1nB}LU*M5vV7kS&9>v7TB9Un<7B$QGs4&1EzQj^c+VZ*wRT5^E^zLP zV36N954_@wy(>Er4I};Ld)szY_eei%GX}iFRT>Qj_Mps$TtjxRTO2ehRga_@=9tZT zxoU1c?s9?1*otL>G?;lr)HlAbJ!6cV!E0?6qmd20sL12~V&w`xt}^RS_lvga`yJFh z5Bo?tpL(9sF;P$_?A20JAkNuUGd-d3hhzgm=CMA(FkVAaKa2~vJe2a{W_@X!! z&L;$hir8*BDJ%QVpHW+>LpJF=in@+Mc5Z)|a00Q~!s|9>WsAYuLY*5CLsN1vmsK7- z{8GaOhoL&z5>wcOjg(QDU*gG=IL*O1HL6B0zJQOhU0xVP)2Fn)t+foczb^2xDh$VA zt|sZ{pyaVGo4P1r_*$vABv%xikhiL%XXV1{UhvrI?`Z$^;l)Vil@~-`O=z5z0IxOf z>7q>xql23&Js@6?eXMY@?3VCDqZF5A)PhTDE?a1f-1^&n!J=B^gZ9qZg2s6`!=t|T?TosSSeQW_^}T%Pab)pN-1Ddzo!o+3=I` z7aVaulXfPCj7s~z7EJ*yV?TH?l+Aly)joJ!{aU~jtL;7RE#XF6JnC@$*BFOe#_7lS zEkQyqB6Qlu;Rak{KBO3opfY@BkeA?uq44`FK*$EtX^hWGV&jwMKC8P>QGoAfNxbPm}ALF^ZNff6*8WlYhb z@ZrnOXMAAn(haVvNiMFPanrSrpEgH$rIYSy*A!Ad`clwTG5vODjsPs}1~q~p7x?ZM z82bso)lrM)(*a@Oose)^)<{Ql!%@4=FbQ=MR9OJZ$9YG4mEbr%pK zA2ZTmQAMkrmyQ}NnHFSkE^6e>Ps7h0@+-}BRY48Nr2*g(7o~Wy=sNq2CJ%zQ+3ToC zKU)kDwiC40X1<-HGKT#{YUOGV0LwdRH;c|ekBC`*5wEZZC|>$+Na><>_2T2=2Mkdy z00{0^-h_)`N%8_PuFr)}*vvB6T0?W#on2YL+|Zx~?BgS+V15?!a*tUcui-SrIb5HG z&;#%Qfebl&VfLJWaF%$IxmM2GRaFUrvWs51v>;L!6ENK3s|LT(r!t{vV{5#06c8QB ziJu3Dmo0ft9`1DA3vl#ZkXu=`HS>Y57M6G#nAha7zEw3#bvl%U7t28NLZlsdyu7={ zIwlpIEo;UL^Z@+}<$=(*}>flu8r>v*TMZx^`@8;E< zrUiBd%rq>Qv~Ujr!8EIO^UW}9ZTARpQ2}d4uJ&)>hh0kr(#aaE9H0Fh*s{8dZ{S|B zTfU#g?CCw!s@PG8n}{Fy*j+oUF!KjR`}no~R~W+S%Yf6D%mgv_^NtS$cfNV3glsBb z7w&+uN{N7g;E_Ed$P2vX?y5z>h80aXzq9-T;%Kz_m7TA3hUo0UV@hp|^nU0D zqUt8y?(F($>C^5-6QB!i{5D7eH+fhum}B8W$C(U77q@c6apH4ir3{cRPV=Tuxb*#P zB}|d5#M;cZpLTCf*k(?)Q!b2(a7L5QJ<-m;X>AA{bjrP1a4ypc>dGTkR?rPjWQFjylt{)^2`p8`R(un`DZ4U(S1KK#TU zNz{tn&cH45sOzBo*G>#Tinr?K=AZXCS)lP7X2H75Sz2d-1zYG{vcxZ7Dy{m_pnyM~ z@!2XokHeiVilcflNJfX)n_8M7?721G;P0!|kf>iwuMPxf-hYSLE#cVlia*diY)B1n zo*xGSH^%*AivD;itJ1{Iu!>`bo{@OExsn3mEoOfANRE;M_|vC7EuV-DeDxh>_WvU$ zGJq=d!l*-Sx8oSP`xjL2wNU5|p_+Ls^@hCW)%vCDza=KzXSo2cY&D;Fw|D+3) zfu60Ci@6HNUF3}u(PoClv~~q72G`ZVJlsvB{@c%^--+mHw!=T9ED$4iea4L(L|04; zC8jg`EcfAW4yT4o`vt?9}uc0Pm|q(uDalIr!VQ?94O#GD&&h06<1bh)zqblH2ta6t2JB#N1}0m^A%Eb z6zSO^Q;awVVK`Ea1cT7OHZYoXPmc}fB2GXt(zqa@Wv4ERIhbw=k1L1$xDYHYs8^eE zF3v0BMX_Ff{+=wM=ruiHNFNmT73jtD%eJ-7!7axaqH(d&7d$>KJ`ZPr6z6U4DCBiA z(@f9*d}~V{!J!~oAvgIsoiCG3Pk|tG^Fxwk)z4{6UHjPD2bESG_&0Z!`t?)m;{b1>JrJM}hqC4&2vRS~x-@Z3-SN@X?4UODCm73?@=$T4$OGPNkU zR2KWgG-C_MVDreTXjuaVLB-qgD*`Z$bsj9zMKD5yeVah1>AqR61!O;okH^TTRcZ>g zjaMqJI{y8*fckEi$E0xuOLY?FcHAo&VV5r1K0KMCHaR4|*rgMns<%?Cb8j4Yq=Lgp z2k)mvzz@BpQ%ydfiRowzXInPR=SHPZx7Agez-w*i+X2@q(@!WlhA;VI0nzoVh(U=^ z^eu3CyGr(Bs@I1H6AmQ~Dr7+J9mRZ)|93P(a5zv}2>KYfn*(J{&unQzB(?7g-Hg#nxTNDlPl z$yPXW3Vn#)JlN5JD@K@Jcy;rD&DdU?G{dVcJjv&VNo`BDOZ)uy<2hO&{88!i7Su5I z3l{*nCig^yZ_ITGr<|eEeuZOi-#kyf0THMhV3jabEh;WnY;2RtC0JVeSq3aH!)rJU zvGf|%q=c*;0F|e5yO!@1qn185Nm;}(k&ownOGb$^Pqu98tNJI`ncjp@HZ0NMjlXiT z+b8b5prSo;FurieZp3?J+d({g zNJGM+?67VX0<0d4R_BAr;0SY-qR~@HmKg1qSTioj1|9)l-D1V$;@@$!vEX%^L|HfI zW{vKb&RCy_($`TiBJ5T_NaKx(zzkv|QKYfsVJ;4tX1oJr>!FbEeW_NKPfC z;4qxuKe!;;XTsqhc$j8n%lQi0N@(+ozvr#uG#;^G5^`Z?*}|U{>m`LfUQ1Ml4zr0` z%IM-~Xh{rGpNcN4ekz248!-gbY5XKBgwc4{iJ*YBFRj?#ueE3DX#!ll^G`HR2K4G? zW$aw`vg+SCg`8@jo2QGR_46doMW4W5+isVJ=Xp68fV!c}6!2mdp@r z?BpU<73R2J$tOhn_-Dw^#J|c?fGdkM=f{6w1r_H!OTfrXO71a!-tc9Qmn0+*RmktB zIHp?Wn=ID3i_YC!1R(!)h-4fj5BbUC*BoKq&06v4R_*b>O)E>r*RRea{XBwmNFEWB z^UoGir_<~?hMe@NbJY!iZx0HGQf$c?AcDvn(#UEoGdI3S4uc}{Y0fI*(WDGu@K7E3 zB@C$?m}s8x$jddWFn4kD2xJ{ISp3C#`N6#%V|EA)(4mTKAvW!yl#Ddmpn~tm9D_^t z*3g#Yb^OwQJ%749x>*(;2GkkX10p{_MqZ_pJTVTOaK4 z^v|(c5K841G)Z;=hm$4r)Y&Zn_R(-<6Cf{h>@g+7=V9=D2@2WZrg>0B@2*o0zs-X{ zWN?1p7#gh*$L78hKYPD=Gi{#LLQ!2WX4LUVRgP!~>{5km4J-hiOKN%3ewgu~RW#tw zZwxpA%8v#D)F!l5RhW|UzFqg~@QES&@c5=bnOcYmAh-x-}L zvyDHTu*6vnI^F&s5-UG6`sgYv!P@js&Ge)K{=`=z%suIR{j)vvG{EkfRB?XMXVE@G z^u5Q=?5nvB#q6cWU(q6}!t}YQlvI!mER>kO&ZwZVbli~+&gYf-(rBNAYcR4;mV-0f zt+rRfw*AmOyxsEi8CfoDGaPxhYSMQ}Fp#h8lbqRpf>#tyJ>BEFJFT29xq8Z{<>$0w zAfJ0)`e6p=L=upPptU^)e%;RIG**dn%o8TPE^h`-gqtV99b?7xu2<6+P)&N;Tc^O( z9JcP~i_RE%_tH^t{ORUvjnkLB60?{00grOMc~5I0G50r)f(q;CcSU7yWwEJNC<7*_ z{Vz5T!8CP<)^%y2NR^JV?r}r59&kcqwI|1Zv9Dd$okrUGbly)@bm|T%;6y`uPhFhp=9_ zM6=2ke+sT)vaSd%U;#Y2K8-NZ2@OsSVl1z@BTiHCBnz(WX(l9-52*~PZw$%of-`Gy zX{goW(KJ``W$4wIL0OkG)i^1r?A|_TVj~tWF&@1n3;Okn=4?~HUL)I`WB#W_CYx0# zZF*|iyie5nwoHP)$7@)QhO>5XU2S zXtvuTT61a~ReK|CyOUB%!{WFz4ED+Z8}^+D2}pN%#84_4+07%yGK|Gw=j8Ko?})Mm zL69mHzhbq5%Y#Ui&A?urW>U7B4FH`?Q4W-v)R>;NrwKY|pWjZr_2b*gE8(iA+eG55 zXLa_ic*k6Hc59Q1C23FXWdFI&F2ofL4Gh zhs!VUE9cmP#2+hm@%$qC#@)~o5ggmQtL6c%g#vh}>q=moOE@1{dEK0|Y?9}2IWn+E zzF$YzwQUjIqB%`wQrNsS#Y|glz-^cPvivrw&0=<@R!JmwJbF0ApL&UD;Ji~T|4Hz zyxnn00UpW|&X!E)P4l7yWKGfUVJYJz`TZpsQ#*z zvi;|0-b?U*_=)62Ld>$?B+lg6*uSZ(Yd&MPk5 zWLA7!qy&s0F3w``Uek;gtCN-f&>wjE>H&}6p9tQltBHyC4j{jy(UrrA$V{3%c~ zjaNfS!S5`aPf4xW2LsOcR|W@~&Bk^5fvdgWl=t<2C&LNL2Wg=BO=7w78bO`BjZ#@UH%8v}YfUi6#Oi*;^$PK{L&{={&g_^go%s0ir$tSwMSopx`v0BL2eR=ly7b|F$hu#8z@Ovo`-Yy@!2zK9WW71f`E7Rx{BCL8CmVdG&OO-(Sn_)To(ljXP*bNd)_pJLiT?|@kA4e0H)Jff z_{$SvO0y%0>PcEIRvLx*T_Tm zx22JF4NWSnL6VREeKfAr%j3r+LfkTBS(NY!V61I2qZVI2*z!4rE={81 zl8F^>0|p6;0#mvUJ1L7fdK|O{i(vx^+aWWtm>JhAWtQ8^p;;QtaWSkfkX;S(d4dWk z3r27NaCqDw9$y^5WbJ2(<&+8 zm+zvbGr9nF&+3%CpbeTZo83*;I57~|qBTp)>($0ie@o>za2mfgvc>gM4NFmY|tm+jxS)g|LW1jix@xKX5Qnn95;sCH6Xx7vweb(Pl^c$+1j zh8QiQy>Y)62Jm9&%y9w5ZkU~q zi2r#CV#*CPS2B4MH-i+q{@bL2E1ac4=oA#Umll{Zadr5;WXDR%wc0}&Pj4X08NJw= z#A1(bog)KM?lfMM-rDCA1cOBij*oA3Z4+JeoF6fWQx=0E7hQ;I#x2|rZoeLT#$Jsa}@ z{6`;xN-(8^umI!Nx5RhYDTwO#&Q@+bnxU>@ElbiV^vOJymGFx{v~J*U4GcE}Ry8d$ z$*F`le_}f`N5J}qUK}dZXrEAGgQ1yTizW&6P4wFFj;X-~*>>Dk|M6`;eb$Ac#lNF# ziRHnvQrfQyL#I}(xw80XG@}j`bAV@{=VpT|f}!3QU}L*U>vcxX`<3#K^2SCEgw-Wu zKnCZV0t2>}#u)O4fO(autwT%x>nl@j&OoUZqSzEfabB7hHtZG` zZSTjmJO-=N#Zky|$2rf<%w+|i@%xx4Sm8POH;jS6qhZn)b94no21gr!`vGeEK{x|L z#Z{+(Wuc#&b?TJkJ=lL*uOzO=hjoZ#J#-B(ybA`dmrf>N)&c7HeTMws`;{Ebi{IhB zj9`EPGCC*+i1%3-tL$ujp$x-=qRQfEd; zSSkuRNW`;mUT*ngNg&tL6pffxXxHP5xM^iZle22h3)KvAJzVa-up+N(J zWcw!PT4uim(mqPdr>DUcEDL{$tuK$9<_2fx{?y=(uBlXvCz5K zt#=BYZ267^$&A4gjhxz~i8yYAeei=8f56e0wCQvZe(*il%Ft6{q~7f=VM(h}T0p)Xi|MFp4rhXazQR6P zRSOMs;9&u35#C@_kTjY2yo#rHmpEq;(Dd=8#^MJIMmBz}$(Yv>qJb5^09Vp>LnV27 zB}2m6?`g6Zh3Zs_I9d$n074U6bG}6S1_X6n!uyM!E|31t=NNF#7|@UTFpcRvC317R z5rX;O>FsvH#SeAmvjR-N$o~n9-Ff z{X7~#E;PY2v*Bv62s*v}Z4*<3s|z}Qm`^9wQ#xz8i+L{>_uDnNNFFoCu8+CZSr^Xt zqsP;_z!|)AJcI&-94@E-js-Nn{m^($5RW@Kp2jb#`A#!by#qeK+m z|NP5qu31SFH^R6Qjv!E@x+TqQ1&QO#!cUOXKVZUru#yBme3gt4y!BrYgDBpA4k{E1slNJRgR(~Q05T;f#FDXMg z9f-COIElqW$CbgBxoV~-TP`{EC{NyOUw!Ns2()*B-}8sdH+c%%zt}x@rz{s1F~A}o z?l2fvI`I%O>boVELK$#G{djwz2z((^UAr8Vw?EJo3{47+&l`H4$exLv{gm|I38DwY z*`BjWdK~udkGnyuy z6}zr@k|sNdXa-3%8vn=}mK}#Pbs~x8_3aAt(=dIKH0LcDtZ$9d&jGvs8fJwjMJJ1b z0~l;G-(f^3yRlNdR^YtJV$Iq?52KP>B5iH7%Wq0I{+h-uD9zY_$Bh(C2QqDdu%H|K z7ef<}>AHf9f4E6eRKCez!ciYJp;DpGW-X||fs~-NvtrBRL;$C-Ztg>Yaxw!?_*UX; zS*+p2V$PDP_cI#hd+5nTf=Yp`ebc!5fi_w%WEqOeS3JIqM`h7u(<~P08@>cBxiUZx z8o+H41o>UHp{-MiASV29&^9E{GiQc32##d#3(0Qyq*o`?W>~Ihb-`5bg=7t%o%>%3 z;ADP%#oFPADHaVJHBIRg*3fL#S{|UU*^QVs34BQBU!<#kd-USb+H9kMxzO2WQ546? zlP2Ow`gg+m)Is5h)`CgHHi!E7=L)WDRlzimFKlH$76^&oo_9+wnCBUuaB4Su?#sO}e7>B(Y{9z*8AeN} zX$E52FoR2H>oWYl)DuK#hSFB4z0}{U<4wLv|MwIJ7XYCsE(jCnx2x3UN~Vw{@Z2*0 z_X0F0gNDeL0rxo}L0*z1y=iIqYd76DXOA~MPxK$3;7|AY7acu+JF04G{EGk@cYfi5 z!J(1d|0IexI$es09=O=SGM-uv+ZKlrpvs_G__C-uR3!;f@MCx-QqX#*nqg#3^wGDm!g6d_4f_l*TAV&FWmjJ zz?|96!|z^)C&pt^+w*9X#E|c^{ahP?}_-iZm_e?EkbAb7hwujh9zmn280pT0xAW206_hy*rTp zO#UD!_0~Ea^7S8z1(LV+LR7Li(dkNS8j1AC%b3LNrWK;P98B3LDy*cT z{*uo9P1Ov?=LP0+f&izwF_+aw_=qQZUj0w98KPD+1I{!Jd}@1e`v{W@9|@L4(Wu|T z`bmaV{7FtKV~G;!H>N?jLukQkvT`ffz96x9RbY;LAmPxh{~%NBNCGK>VH&`5_OHrY zplO;Xo?HuOH!Evtx6U=*Rm%JPb`{xs%}{2E!fzr+Uqt;HCt=-s8v&VKemCMcAHMP- zY?5iCflp7T{hv|zSNH9G*6SQRRzs&J(;5EtMM^Hs@zY*8L_P&TwSb!MhXK#WHx)a1 zBnOE%>}dQ#ejdJypsuE!D0^IuKBi^_IAQWgalUct8*&nN`4mV52s44UH=vu)mBai* zg+6Z8gmGolKq`5+&gR|@mz{(DlXyyqe}go0QK1YDSW_l*;~i%bdUXnjlRhb_^*NF` zZe|Yzf+bKh<=LVQ>T(P}sBAkP;)<{lh*#X*7sR$u-vtRHFfzzDp&4N{%scDUShmfR zMfYYv(e#6`-u^+!0>xj_9mT@)^0l{Dx~OcNtJ7-aX`% zfEl9F*SE{8Mka%(Y67_g2<&#=-6EuTrARw8f>FHBbVJJbGRzS83~T4kJdNA>t+e!6 zQ@I+Y{vT0q8C7N5wQVaQf^?_gq7ms1QM#3q5TrvvS~?V^yHmIT0cq(D=}rNWZjkPV zcX~f#eBXZ^%3__zdCWbw`4loMB~eluba9(VaWyjz8^U*I_Is-0#u8bRwvO8g--GX( z$}Ne#IAo5nv3ErD4u#{4<8rqbhuD;OM&?*t4!iVc!kWN;yKBfSCmDk74U=+-Xb|Ra z&on|-5_&I{R6l0zy2!{ov+b8LW8hKa_fu#@#QNH=TGx`DL^E*WGk}sz};{l3Yi;iVm zVhzIkY<@8VsjJO!y|uLZO#!iM;laJdfsg#u`G@061Xo?3 z6+Dhw;M?RW{k%nSc+r3N^}P4hXz7M0(Prr{lxc}9Kj02?vk&cKbPnvVaq$bQA% zvnHkHp!#Q56Ih8M9vU0mx%Z}Ph#=!8r0C@!#jg%Dswo2h=16LE+$*MU?=J-m6^GS3 zM;l{aEBS9XN|4eMa+61Ee?{* z_(VN&Dq$s-z2^7ZS~4b^De6nQoC!~CeHKQQ$1FnGn7lQjp)r_M0q(i3Y7%kuj@lV( z(wJ8f8$OUmzo!&w=kq1x(b5H{=E*%PN8J{>pQ?2C8ms4^=@&f4Dy5bc#Sg}5Wi8aZ z!hM*_10eO(pDIDg*r&m*NK$}IY&3d;GyO}M<{J%}#`6jFe^aJk=7&;0`J`+|>AS*9 z^#@F0=Uu*fY*xp)%RD>U1@r!}rG#J#D*k0MFcv#<4dTo-HOq?*f|v`{8)y+4rre(~ zkK)oV`EvI@+z%o9bu=Aui4!X*r2XGpG{PsbjT9wX-9Kg=)oEJCv?~Uw4Te{L@Do#)PFq2>P1;LOl&*e{?3e& zh-khOy`n%_Fn`pc1=;0Lv!&`wiPnD5Xkm}KO3DG-b`WNFcfEmyl$`w?qQcd-L;m-$ z)ZDJs!o%Jt>z$u`$A7!NviLBS$L=egjD&rB$F9z`G+GNo0&JFrx7)H(Y&uDxTqkLr zfrWTe017QTBq>o;deol_^pSgpH!_y0ugNnY^DlzwIZ%C9j9cHNDCXQRV_=cav~F{x z+*6(mt1~=;F1@VA^RvQe4Cuk5n|e;}4`Fk2+qZzQyfrN8=Y5^*+YaC3+8@x4|G_pl z3l{Mz>%V-cwb(jnQ!?vxCNt+0GUs_k4FAf{SQfE^-PE>V{8{HYkzGOIR!H1<9Y$(g zadcoA!3^$do7M5cdyg65-V0LoR>)d>L^t|#o@mhEOJKh4S3&wG(IhKTFb1G!N?P4j z9a2YEP#e-fm5RG>JWSbzZxIy2`XJ0~4oeOnD4X`u)aF$|Z>uRf)`JvD+qX_V$LkOu z9+~H@vtXvc=EM8KvR%n6{*0x+N`+uzg#6RJqOKi{6+#W-qH!i=n0o57(6O|CN=ExW zqL(A^D>|du7Dha9S@(17cuW6=ZbY_+EVSF_rU$iVwS6AOWLX6cNIU`uAk5#(&7>@5ZLm(Y^K7KZ3{C(7EJ23slh&|ee8h|zQfc^$yiox zDDsqv{4BD08&WO0f3~B!d1gI3dGZjWrJ`3%rdg>{;)`y^0VMYwU-%@D$FqKo=0=rO zW3$Goo+LIn_eqb8!k0vULm133ie3Y*1cXp@257ToHk4 z&vy~m{9dU1rgxP~-_<-t`^Nn1;NI8t!Q<@EB3Z@dCkNT`b3}hOn!F5g_~p-Rc3#gr zKh)28?@pPDtKFJi^kdYH6crKnQW~jkVR>XWB8B1TKw%8#2K_zW%$Ry?8zIj2;@iEM z|4*f%K5IrhThYHU^_oZX`iS-rw{EkO+B-$;B2#Qp(`!W&DDQ$UTd)#x*5+vC&Hg_x zT&9TktS!qE;7^c;=KDhn9rLV^fzSSrwUT{mX)P^eX?(vRxLgL@;s5B)%Y(-}_&G8r1D> z`z7ge;xtDu*PfS|Fy?X%vy)83)n}%K)GUnWthPAXdRKRgtEj-287VQg$+N(3<0R8- zS4WLo;pW$|$m=r_l;CBw9;qZLQSVnRSNCiDsCcR3la8KVZGjZJ@3^DzqIN{RTJ7`# zLFKM9eV-G9HR zv^=Quw636(kLz$8rU?ONK<;nHpKU{J{kxToa*Eul#E;2{^T_U5cj;Jy+=&AJZjWq~ zKrVf5LM1)jl7}+rPM&UDvYi1d!Z_{9~-Mf50_y?ahhiJRqyI#=tE&q zf6zIneTLqX8|S1`w}XROn|UWaXlAtW+8djTj;HE;!t*L#pF?-Sb1e zLRQrfdy2}@GUcr34#QY-V+cWtjj6xlA!jMOucVEBv_oJfR zlYUJ0wLVLw_b*-g zAYsIb&xMjzKXR3j{QNdaesTobfte{|HI4k=gfV3CTp{Dlpkaqpi_jg=mRJZ&1ctzV zpIdmv$$kESz-U4-WdWhcwaeYarS+IID#pNPvhPoI7X=oosO#Eqn%7{Ji^ABnKxE+O zOWENOSjRnGr3)MIppb4&iq{F$tl;ZUFUAQYzX?iwOaAv>EoS$-2Mxq-=<78s1qd{B zBk?Cy8szpM6h!4!A=3|~qKcGH)a|-+Rgg{9mbiM)BrA?K@uB9&n9Ky-&Kss^s^Xu# zQj7b^RJBV@gEjJg#%hA(5@`a&$o{khfueBq*x3Je0sRROt!5SzF^d>8SaE zb1uf51BeZdI7`6AyX5*K)WgbjdvQZKIh9^_C1+#YOV*38&s{u2GIlC64Q76uWNSJn z9XSt?SUpCXfaW3JZ_Oj>tG&dK=RsA=O5z4juFJk>v`PqeEq4r=XQi5!t>H^Dzs1jF zf-slL;O5nuzRT$U*-!|q`FP}Eui;?1k@%31%jBYeX}(c&zR3+&%GAES^-yfD6xhz* zJe(_nEK{JFHo2bhxP_<^qR|y^%Vr#0TO(QcldzR>xiz^2`SfUt^RI@>rdTIRuUe+U z_F4uYZVjPiP7R*#X1q7^8&7m3!s$LuQ0JD6p28-WlgpcGW?1bPyJjoe2?%0ALA_=y zW3yi3;8<3rDcBD&T!9Q#BJS6v0+5m#9^*SCNx;7E3h%OhVvf>57eD}qWiuAet9IBNH@E?wG~s$E(#0FusBEUv zkldaw{5JIOOJ+YT-nQBGm`yCaQm~@CXZ_5akn4yxiYLn=a5-3BTDSNO6Yh)6LOf4> zMH*hzeezmyUQ3SG_<>@zh|hH4>AyJZM8gYQ{cFydiXOwUPa)?mDsYHiK>jC+&|>rm0q(Ra=?K$@%w*!XD5h481+CIpc=+hdG1RncZBBW*C%-eOyQQ zes7w=Vie4W+Qll1_Fq@S0Hy>MsQQjdacaQ}*1nd-tI74V<)s9eYq6VJ2n#m~h?@fVF1xC_Wu8dn_=gBMOUp zl?P30ElSh}e@q?U$4|Gh3VSpPKm!j!35yB!KfcH! zit0t+?c&<(nNrP;ehKTmO_mV1e#ROPTu&IlCi}U<0`Z}}F@_ffAJ)S?loip!|k8+>Ph5lSUJty#95_a9lr-Q^YG!rDeG8oAR19nx7ZML&ls3kYm2x4g9d$ zqYb5y{lrbB3<206eDl{A5;TOQ=jd?^3^v*lhUpm)q4+3foysF+LFs&16yTq4p4dmB zKi*B&fevH$>JWecxN3c6$#(QF!B$mkTn7^566u)* z%Z?CW$}`>`S+f*Ltsledewu0SMw{=Hd8Xa# zEQTqz5Q8X$sy;>7q4NWapuVha*wOtV0D&j!=)p4RJgadL#I{$f1V{0QaB`9QD zv5Tvjf>!|5O%!VxO#u+{_DJ^bKQHhbpUV8~7@d*D%^w!v?vxq4DU*<-Xui(Hce+K*Jvo&GM@Lda?%@7C-utH{=B4y3d!>A;Oe%9PrcHe z?GJqOJ@X7+c9YY+m3Jn*kM)T8Icw2qf0%+i7{{(NkwV&fKhaUW9U9)3%@FM!!vXw` z_IczpHB;D*vRmyCcV61a5)VA?$7s$_}tDSY>6^lk~_f?Smxi7R~ZS zqmubDAo~G7oZcNJtI=~`s~8b%=2Br8Jkj^pNVTwA*CyobG_6L8Gjo62JR4Z8O_y!= z@>ut0>#`G{XkYDfzt;V|Rl*f15ou7jTQcdutRwV1WrWI=ko9v)E~g`kP?p8pGdpoy z)U(JS76sM`F4@wy!`GrdOsidz4*?5bB9>wG{Xf~O6<@uZ<-{jY*l?Mcd^^w|4@hAU zlGIRxp>qVGy?;flUsj)D-A)YtGFHAoD*RxAP?*B*$Yn;qlt_zx7uQI_Y5!%?tjMH9 zb#Nc-+^24K;W-nv;OA+#kp63M!>!Q8R@-10I_+S2VF>Xj^TEMmBl0RIiMQG^z0Z2i zv|;H77?@UEgUwXQ{6WMM6cTLPnBP}XNGg(eU2JP$H1O0F>xiI#*f7gr%%VsHemfaF z7@7HJc6~!c-j=?0v_yknV9Rpp%<=gN_hF4UZpoN*;-*GMhG9*_8=qEcs1~>eDIH!(~YG#4m;$a`Hj{7-KrEtEuhy zc?gx>L}+Fi=csk1J*`t}Fj#cM8?-qR5TeDTVz{3L|R569KVE$^><`=d!ZrY(M3eW2v3J)6Q4D!N@%#F$2yB9VZwCY?DG#P&rh#!VZxIc$+e z>*0m@*Vy8XK&~Y);oWD1;mJRW=3-Jz(uW* z0@_0XV81$lZ|RYYTjO&Rc;50_`IjKD3)Lo)JWiw^yiZ{neu(kiBjy<|V{^X)Q7~AR zWh*08s4-kDsA{y9LA%2bj0v?7=6Oe*n->QO$5rFR_sA90eu(}w5#`gE|C*CsZCoTv z`ao$9FdslngW%F4-NKG97k4aX6*+CCdl*LtSzbVHzPa{$p=Um#(mF(#p@z6obohQO zc91iG%sMEy$P;VRMzK{?$@96Pur;9>xmSZ#Z(%Z&?M(t42tOwA2z}sy-Vs)pj`J;Y zC=_i$H^P3gjBRmWf_)hT%$#vy(!4(VC!I{B4yqb~(B*}|Df6uDH|3ab0H8=#!uycK z&kLEe1ZHnG(H?XJJTGSRe&0(&sHLZ^9;oHzc5UH^W(N}sO8n>h7d3bZuwcU2heW}Z zPxzD}ji~khPyLN;EaSKvk3X9rpy*W1g71aTT4l=Oj}?%10lcOBg3a5@FkC=RRxLei zOar2!1myvrUN{ii->N2_yZJ!|FybRHn()QWFIx2vbUd<(FEzj24OvRizaG7QN+9#TEWLT&}NLM-O7Pq*ZooXsyObAQ2QcMfx)ZAwZ1 ziH>k`Lv-~2Lg{>0x0%7r)yZ%OwF|r)q`qk~RJ6NmqKqcaGz|COPvvmqGcIN6_<kRl=o zCCdJld8LWxa5+w!{~-)ful4-9>$`_@uRd*nw0eS;n!xlIsdc|kCw}5#?q25$o5Ke- z!aau+dN+$L*xtLm{va6NUa`NK_jc*zyy=(VKWjCw)G9E8=0@37nxGwc=yz#3~FlqvOC(>(3ans@Nmq*Cb4RD2NV z{zoUxQt@;kZMi9Tt%xQwh3s`&_JB&d^Sa2+gC(4rp}u-_DeyH_l7v2K*GFy#`UA31 zic5(r+5g;1{d&@Cr6%#SOX9YdP!Z@-vGf@{^kJxRmPIiO-26$???PoqV;}@C@e{VZ z%e;X)P3j5LJbaCOgM71?b*J(CH-TPglE>7iuZ(M#X&61M5to-HtllZt)4u(1u*ew{ z=2$mkG5PMlK82b;+T7f#)}ml{IT_Uy$y?RXPqP1&bX@F!_pjqD{q)83yRw%9^Iy<` zxv#Qts6t;VcH9+$VbxbqP$KEE&KiHRHsckvFEcCPu^*$M-w|FaTAic$+T{cP0k zcHuN~K<$99e5RT!SjC_yNg~ph?jx&Aa%p`}FcMfs!L0wX6iw_pYEU6)0wDUC)4nAc z=G*!HTO!_%yWY2#=i75P?`LmsP7g=Lu1D+lS{|^nvmgFzWncX%z9tVBJ^9UlfnWU2 zv(RP{fIm>a5_NKC^CFB^A>zAWtHnGVV@+apuwvXk4tlxOnn0$NEFH zrOG$;Z_HNZl=UT+1K1$Qn~)b(Sb6PFg_Vk7t_wZI#|H$?8crIdFIVycE|^JSc7!^| z08pm>%tk`stCLdJ zh7D1DkiIL2@wkE#=G=dUXr8317a@qxTp39OI}#dEUjlSuhtx~n@bRYaKF42NqftgN za0sEb^$FNC79H*iM_(dUP|G!GXZdd}=;NX4E9zphg5uzb)0NrcRX_~Pe%vmSND{}* zQ6$2GOYAUFWEVu-M~(Z3;@=6pXJ1YX1&1>Yv@^Io|L9Qr+~HDc_#G+4v+nJ6+lr@; zY=L#v<->n{Ivl;(wVM8iw`X5F&)M0x4z{Gjsatz$odxwxzC#Vs-y_WH&3PUsw8cH#R#K>Q#@OvF7>T z7_#=!g?{S18R~q1&#Gru83UnyRSta&e&_3e{-RzpO&+}@gj%;n43|(T9UeXNPpvfJ zBWuf*Hc{i;I75W_kOOVWLu(AG0t!ilQs)D7f+16M&y>9ADn}V^~^v4Vi_#7&~YTVNSU;`F=`w0Rg zuET@ARUEV{{z#LE2;0nv$HIKjI<@L*_qc2SqokK2AC9u3_UGmq@Z zM?WCAYWof(A4=hWTuKE?#3F_@^!(jD<7tb+Dyk?t)Aith7ZNJ6c+Vk1xC&A~L~p>4 z5>{3!8FPrFkDTXvU0VHP%y?a9T2RxdkbALbCnDA@3{5i+&EFTqg;}SBC)$ccVpY$} zuLB;u78P=OMxW1_$UnIy1Ux2#JS3MV|1FEZG1st>|_$m^%G57A%La8t#cfUwD8+H|@ zQtT}{Q40sSY?h!yi7=AR=XESEVbKWsW;ab11^_9`OqQ;@9 zt)fJEl`1FayGfIad~`N5Tq1IIxekn_y=2|#&J_JSBOT+48oz964w6B>SbEO9K{&%0 z?TG5r3++5pLDAPH@XA*y8znohuNDP^{=S;h&u=E^TarlYO96R~m~n+Bj!Bi?9NWoM z{5H?&vfsn>R{b0$iY`e?FG~nJ=9Kp55sMBIgOJ`;&#{5Mj=u5wa4E97wh67bVN421 z$JM06>y%XH{onn>yH7=>g4&?am2S1+aVz@ZYS4Qh>GX*P1W<2hc109$8KI|1?0UT* zWb^cCH*kf_3QdB=-M{2=-W) zq6tL)<7U~W(}}8@r%lBlVlf5GclF-AqUcc`>8B8wTD-@3oT41lc2uvmp504)>?1`A z=^H(D?ZqyWuyc8{fo5P{8dk*w?o~{j?l960BCwyA#TTD-hV~WO!)XimRu=lqkea6dm^D zRX>FPN|`Vn!Kt9Tt3V(S``8^cB!tcVo%Hzyh-?xLJHUsYz@{y(M#^a7h^i6gVpi5E z4;zqk_SfH`i3PyAh#q-Se^vz`Z`^}7&|?BYj5L17-y7)X(9#5b49Z9lKRFI-4cuQi zJ+#c+o|i$CodNH!fDNuY1eGRlA!jUy^nfVXV9U0t#3r)`xUp0q%GV3vNsCJ$Gn-~b zW$kvxD8|mY+ruXav#i}!0Kup$pqK3p%fcywNZTM2)Dw_vhnt0vwi#ua`S@y9!TFK2u-KlW^Y0YHdEOFW#)sFM^z`A7Ypi6|$$)4c>Pd<$wPb zn6?UiX_5#|iLnLO?b^AXkAPWvQu~OBHD5dR#MeV2;yi|AJsbt1|Au*doxi58?kB&$ z;xL05?j=1ra(o>L3m}$5d)y~DDCLm2={3{^VV zr|g>O8H5tilVze0b#q5ZU391amb~oW^ULI2a2i2Hr9w$!uxvaUY{fEixnz=Z6XxGAHC743>;&2Xg33Asj&rSr{hDqd;ZMKXN`4bUNz$M%)H!D= zh$979GaZ875wTv+T+T7Ko-~0jY4l0!an?7v9_6{rwF?u+P>2C8sk!3u%#wKIK{>s~ zw=dpfhE5K!Qef^$M1nyF)&&KGVo0hk0k|*u6Wp^!g{KDBOxeO1V8C2h2V^lXKOy1| zNn|#4feXF$#8P2rHfil*hqsl`Ae;t|0#I`bEi72)2AH;8zXi&g;U=*Kf})>Mg1)tq zB!-Gdkkugmr@JY?$&>yl2dOb7ggdv&oo(>_5umD#q<=`5DJPo<35&Bb_OXSH#!&6tE8{BIxqlw!*5u>%b~_MtRC23G<2a%q$E%F)%$Fm7U+oW1pLC&y!vMO znR8f3i>o6|8?Ql8JMPwu$> zyGhiomCiogU(Ngg@^H_`lmdSJ}}k|TaO3}z#Sgl*Ck2ZK-G^w zy~p~BOT9DAb4oPw6|Dk(VR{5PGgn`18B|sdrlm>LqT%nQQwLt1Mh-%}3LbZ4c7vSF zp<~2>U&KK9duk1zob3pmH)|3vtRt$_8!wAo!MDU`zFlN59y&$Tb3Br3{$;vI*D<05 z2x@qupgg;b6(6m{)*pM{8PSW z@x!az{0$C5{wQ(^s_;7EAl(_NA7Xpev!o>=k)}m-l-Zh2R98%bAGO}hklY>bb)cVS zlGfCKr6!fs_K;q!X~(B-Di3G|qnOq4$8U$WwCI*#8c1E?fG{htY?AYU7u4<;CbYNokyKSu~5 z{N;VU_)wIQ#{8WzlBZ%uw;~BEiy#$az>fymwnY%RAM4*H@dw}w(Ux?aAR;M(V(>eW z`f(Y7fAG_4(x}t|w_O}fd%!|}q}#o&p2Mu-(U)l{g{2QNd6Jwwek~fJDjWj5YA%7+ z(iTj}eoMy^NkPSHn6c#srL*ONx+GW*Qzwyhf#>pmz}dp!Y+`jVEW>FI%oVB4=1?nL z7ryI7h?j#-!>!-LvDe1J78F(7bGIPh)~rZ&*v(XT)LYZLP9cuI$C%@4V-n#-$JJ_6 zAuZB0ETLusmssqvG9y%01sFK8LToQ&?8GO~H-zq1GKR?HvA*gFLS)JsT~N0pC71sx zhkcZ=Q?`~CehY^AOM4p>N+$D1ik}()jTH!AJ=uhBa5FTxZOgdYnRglUPc366@_bqw7lxJz z2lpz48CEDnD=ae=o|xO4aCLT(Xyssa(%P`pJ7xKibbtoIh>h>2EbG1=$;lh0WD5HQ zbf@ObOOh6DB#3m7A2m(xgux5>U#TihtSOYF9R&SFo!0avl&h70X2+VKuqFd4agR2` zAp_tlk7n+RkxT3>1&FzOCD+Bv_Yoh8)N#UG51c6;tF#qP*&E>FUB>6ZN4FBKnGASK zVgkX>RcR?kIlGW>Umk_lU@6!H@~{oO?Zmj$uNlMhKqng1vc}B;vZo)ix+OGE1cf4( z*3~~1q=S_&3loK5&I?g<4$YgzZCsjw`wsL)JAnZ&rF=krkIU0um)dG%p0`+AH^-{doM!d`I<=kNLRZp?)@m~$EHD@pXaF1nL zkEtrpsfi@X z=aiHdY=m7@!!RODm9LhzMZmCd`(^L<0!3oGs{~*PF_pG;Cn5m<78^+U4~ILqwZA1D zPwinsj5-s;Ixh#4|JY#b-&S7Ek8l=7v`tlNE0`uR%(;+p5Z!NLG6{3{4m zZlZpDLPlLnOn6@%QF2xYtM}U5*Sa)c9A+joG-`=rSjP_(#`QzaRFwal#rIzrh;HM? zl=G;NXX*a7aEbZ0_C?*E+<((Zh;Of5XaB@hzZbo^e5upwRJTPyu#0GRqYhYeP&h92 z3rd$S-@3z&Z#_p#;0h+Xw9Loy$J$?4+~NYSNQ$%G6j>W{S@Y}EBBFT-qv+aCP}ToD zXqTKAGI5j=DELa_rTu>HJ=$^Mc)-_G8D2)jk@TlK1>>EQ$+axh_YZ_KKi;^ICl3?0 z&^-!}O40PBRN}>G^Ph%3yvOO+GRV#{7H?&C;fo#2T(fPiId^+G@nBU3BwvEi3hdA^+?HeV(xN7lFHO*Q37X<;m)Z2TmAtmK;qe;Ud zzlQhg@$6#B>xr{6%;}F6m95h5ZA<}BhXqZb(aJuIqyx>(P)wdfBa#py7Z75=Z!j;7 z_R?8F4Mr(I6hu-Vr1B+ujtHz87?KlL&G{9yO;ZA z7y?EJ#qhU&ZDdF#eY@%|dkrC6=FHN`4|@{NWn8W!$st@1p!a#-X)DaP*vQjN3;{+M z*$j@;L46eA<76&);3$PrM{!F^G`%bVC0bCuH|pCS5Ky2iKT<*)XGym6hP7<$!|!eP zElgcA1+rPMcTtH(exYGnhfY>$jU)%F#vh>T3Kv4?jYGu~CK(kXJ78hBZyh%v6U@fv z@hF}D&JqQ0)^+as5FG0Dnn%!D#jFo_>~8eOX-*Z@(__9dlrfo=6dWviITUozkQKvn z$*plm?ZmMsq$JLd+~QNx?FYrRtz32Ss$cRD0Rxy$zFAexj72a^ae0Wyx6_($a_b&b zv(cDjq$&K6HUS?Rb6L(*#0eP%p36#4oX@|Qy&cn&@TTDTcqi@VD982Rv2lL5R`P%J zrQW8i-umlpo7<#R#`{QIiJ0E7pr_B-bHbU*PcPN`K@|${c)p8n_EzcUmcQ4Uy#Yiy|($a48=Gs7lnB1+o+HiOct?Du{ z+*QAG`Fq+?)wNUR4V(7x(`&?$p5Y1W`2*SkfK0=@zBJ0fHiH@iP84SghmrTXT7P0+ zj3P$%fT(}Zbc4EK@$PVmCtx7q9SqZ=^2Exr)hBpHpEV~})xvrjX;|41nyj=i#G-}N z==Rq6*^~UyQ^cw~G3?|3JZb9$d0#BI$Dm$WLTyi1ICQXED;gekW@Eq|nKEQzlqbtH zm=NbLuaRdQP`EXU*de+?;0x_soNcop1qs6GVp> zt;$h>EU>ZNRSkm}GB;qnm*AuxZi#tz7SX^$@xf~X3sM%kH4pTnl;g|*9&i1!n8 z!nZ6aLsY^7TJG^&K7s4^@Q_~wWGcjclsuib`|F1Y{lKwtH+ipD=@J~^Do9a%06M%M zOEkASp|(($B`>e3hXlrYm}H~f>@N=WPxGWMc-eWBJf2Z)KX>J${xit)SO(|iR>|Mh z3)B1Nr#nf)WAn4Ln=6Fa@r4AO#fJ*sCrG6zw|j;DuG{io-ElO|4%aHRY(fJ@V&09< z|5H<6q|GeyKedZ(crM%1Tl_Ix+2nj|SFp9l_kf=;^i+P#J5*_O`$Brx(0fXLSyvc> z-di}Hib`g=aggsOy2xi&p%oL7y$a|YSm@JwFiv@4b*$@DTcnk>+D^_EVEnLlx*5yp z6@vqcVV~QS6oNhgl}E_bA=p;t5OMcfIRA04ae)u!GKw4e`t(hLxAdC z33NGW#v2V&e#}0E{lxZu@=q9>Z%bK+sZe3=rAG}@GJ_ji74+9j)qC+7jV=$*(+uyx zI-js7Ty7J>*l-p4hgzl<%gJJPdES!ApZv?=-jrwj4b%LVcp!lq+-z_xusvAfg3{@5bfbMf<^N`>E&+%D?xJ#IR9tbcm?o6N;yJy&VgzF;7@ z4tbGhrAzY7Ua=dtQ^el5F#$lC?2z!Novi+GrbeB_Uol{|s5DEPe_?6O(xZ?fCa8$5 zwRJR849)fF7Jl&p!mN`!HR{|#+G<&wC=ue!`F1V^gSC_8uKMZO9pxs3Yz-3S*!zefjIM!l{ir z+Fe9I$x+6tlpcl00DUeF(oKiIf}de>mW%r0S1OvZ`Q?|rkW7v}XSo@N*!{W0uwPW^gI60z0j`zEg5`8H$&XZq3YpBBacb%9jO&XR}^>ub3ZGhtQ>g z&F)bxPBv|5)D^(Ygx}ec`#}HU#C?0ipT3mz+En)}0YpR;5mlhVuUmiG$2(f04WlL{T^+hWzs zB*XU4=O)aGlw`z5S&;R)bN`3oA7{<@)7aQq-&4Em8JyeilA3jY8J_<)`S(=qYe82? zH9xIQ{i$c#+UfU{1o{2hYt&a15^?W5buvFxZu*zAl2km&Xl3AHP{5b{!Wx4w!Vzy= zGrrX0YLdlNvjT$_~4_aTLOOs(4>Fbibsz zy7;ZdCFxp!AXP|SuT@-c-EH{Mabq8Ky3@-Y8Cc2@H(&D_i!WKCHts=soBH_jg>wA6 zL5Mw(t3}GKW9W4*wXZO&EJuW9(=W0+a6Z&yvNvMsud?}7T|bO?_g&FEbJ>VtL$*sT zn0KI%|2!9MO+bL5JVH)wMLMf9^eY>+psrbtrGs^0AVt7j>ukmy!NKr*RHCm*L#?+0 z)?Z4*I?wc`iIug_dQhsx?qA=LAb7kOPk=U_j6D7qc{~X@+d-vNC3LX9+Ap11%d0E0 zgszlTW%HPcQ3*aNNA1=0bCI0vQr$oAAT`36Gb&Q0yH?YF&-#u`j~(`lY}Gia9$HW>NOc<#p%fPBTc61U3md#qP07-s7Pphh&qva*eVgAq=V=n=A--lNb%(cC?sGbYtp}G< zp-nKQ1iHz*TUM|A`)AYYlbX1eC~73XW2Yiz*o&w3ZGy)hPQ9nl@IyBJs&Lo#w4xjpJCBjsY@Dh~$I>G>s?8ac z7~Gs^Q#R3fWI|_#h(cenWfSlc?*ANd*lUfjQfExVjk%Z-tcxvbzI16E`WBMa$DeX? z{=Cbn(1#yrR~t4+_F zdM@0}8R={y(}%{O@KMpD*i?xA&#!WgYiQ+uY_VaXBq)kzk}cib!MsJ* z9|Dsx{CngU@nR1t-dE}n*WiVjeIPs(utmBElbL?Wl#_90_;K@|R;oXun=(<+VNTJn zT_>$r?~h3dS2H%!YANSxFlXGRXXTVpl3;YOofVgo`Mj-lrcwoMA7i)5_|_1CZgWXY zx7HuYSgD8ZPm7G}?(#d;vW}r8B=t3_dXV_rJLH6~)Cjx@DC#<*1kz>rL$+w8bt^up zr>>6-Ic!B6U9;pZnJkds;4YpouI`8)x?+bv_!hKsp*y!>pE;5x>?kLtK26j1K=R~0 zTTzJ?)qg!NH~y##@j29xUUo)_)Ut;Qj;PvH_=(sRw)D%#e>O(XsFg0XDO254+YP>7 z^MaB}LbF}zxTb=5qOy)MP2SFhwR^Pc@0Wl<--M#lDyH(Kp8+PrVu%4MG`4RS_`mJTUuU5te(#|EI<@>q8BP3bFC8&jBcNF&^ii@!{j4MQ z{kg-eDNA5)a zw53T4p4p?p>)?Wq`uSdqj9y3@8s{%=H^gR+OKgtmysk(1ylvgEIv*s+lIa#6$;t4J zlY3_P;huOO8IX;>tgf8N`cpE*i#qW@Hiq%-GuJJ z=q!5s&mUzZf1%(Z7(L5$czv}OXm>(HpgV0bTB5reZ088AwOPjdZEfZ`w5lTNQbsn9 zq#5#Pdl9q;6-M*c!k;wX`S8t^c`}UP5zC|3za%AkM*6{s_LVwI-tfcff~tEiUQ9`= zpL*Y^30xZiHXeh*^L~sP16r?K53RXYnT>;8S*w|4*Q|I-CINHE#M@?TP0}D~tGf5; z%!_PXB;4@a>rBk9#H=j&-FK#@TH8*UkvEs^Jh(3oN4VKxiQfG~OO3gcFA{~8fo8Ba zisqDr;Cqmw1C7t38eS+I8D>m8_ge6n&pd_NzuEa~x7+(ZEago)3C%*tMx9*@9hb~} zTwv;67?DnHx=a-uD5^N?@m2CVTSjp|u)8@YVc+N9P0kSfao%)wLRL?+e0#C}Fii2= z*;$F*Kmp(RNkvfCtp>f<@-ks6_1L6Jxr)4w8~`D{j`_~Z_gq}#(NqxQ)1a?yb?fw{pH^VPW- z;lID|vxu@zFcOS*OMg(*SUqrx|2mF4ffGoMp*LmBYItxK$>j-vlp0DhDV-vIe-YPA zzl@KM6eMZMkHbP&P(7|>6UF7*%ucA%-c2l?zy9E-{EV+?xIz@ZOMN6pm@^;Yi29yq zn?Ku%BhJ8Wr0QzRN{=7s69JFt3*Ew(yTU0c@&uzAul{SE(0>)OO0lt;_PLQVV2h&Y1(x;SEkhc?`Q8_NC} zO6Zf+vc!rs{lqEEm&lOD^ZVWFWdym`{idTFVQuLTmX1*L0DSSD+` zfJA+J);Txg&@^f9kycVJ=e}O@i!>t8f_37eZ)M5j>NlyKM7puN$cM79Jo#UB#A@fH zINRO(0Q-79_UQH3yWBOTyZTJ?7mprS+*O+t*qus~iKBDWSj~zR;&;06IFb#72XH)D z;+fI9TSyK<_qRpaOJ!Trvd`3CmKX1N;qHazYlOYXb}@Jn=CHY~^1Y(d&6uX8Qo+va zww)I{JXp4jB%T7ruxnoqPvLas!RxL5&gyFB@hR>}CYUF)B8p+2+Bk?=wRa3;l6%X+jjr2Bt3wV7@@9N@0X_P&d zC1pWdjZ!p25pUT?di58%XxEXf_9+}B4`-8`@^hD*mZ~O8ndq^?!gAJsKdeYq%9@%S zOMnYzvC&2$-@O993!Y21S{4Tbo(lJdxB9qWe!20%ouwf%H%kmDZ?=*9xFzCSI!CH9 zev7qLDm4c77250KI|Ly}n>G8KE^W+fMQzcnJEC^GP!$E8l}z|hZA3Bu;O z-Z{k)^=?Mmx}tsO&6$hfS3-FXgNkwPW?!6~3YmYf&()~V8)EeJsq@u7DCSr9ZSXzY zS-$SMZ+ja|J>6;FFvu^>ag=Bk;+{PUN5%2ihjAqKR$LNucGcQsLnV|&*3O*jzMkzU zr6{4FdX*1zE*hr#8Js)@~KeT zT2=)EJ1f6jBK+~i594mw<`Ywh8YY5A8IRj|P?a=(>&w$9;KznZnXeDW(h!U#Dkkbq z?Y!J}m;LhVlCSCT3IjG9%+|4Y9?RosL<)$+eM?DNzWRSWeRWinUDU4%($dl)HH36G zN_Pkd(lB&)hteTAbV`?ifV6aXcQ;5k2rt~j{qA?y;xAoGnP;A}&;Hfkk`WOHHY6fI z)`U1>wRl@ZsEO~Mb(;K+?b@L|PTN@coMe{t_l3?1rfJirs)eFL;k-2lJugByyw#O( z>&>6;N5=>Za>h@JQeWt3Q~JAkn-;c;yNLqrf26PNiu{VM&|TTkX!V80mkRf{eDYUX z6&Vh?!fU->Vvy=p75vT9+a1X*{p#b}apRGSntHu`M@xRVT($Vf@$1dlX1>N+sT#A% zLq2e0JLlJs#lzDwQm%12e2FJ+ePWy>ul9-J5t^d>4sFQ1y(x8-+8Bt zG}H@iJapIp9yc-fvUXuYk%6gJe<53f?G_Vr8516744jL2-(k0q$3$7Arw*KM4Ku_s zvSnh2R@QER3O$(eM2Fqcg;Q3}5Gc#;EzRw7#NItFzw=Z2+$M4j73qNjw`d8%(X8*$ z?CrnV))D-c)1bP`3tuorB&+qp?Ge58@t}3&znlNjW=>N^y@P>@`-vgpc0cRU0s?{D zl7lHDSeP=@7{a&jE-o&9Ycc&_XNmVZs{Y#L{v-*%^IrMr&F7{)5x%;1JCQp7Blo^= ze}?uBP5%HWy=QJ%Oo1$?=Z4}{mveA58NShkBs69x@4Qi(L^(XlhERo-48P2Crd@n^bj;* zNB8f;iJ|&`wa8}Ox@O6f2hTwH0DFmg@ldRzHb&4RY38l9ry99^dbgLf(o{JJtJo+M znF@zy(`~<$k9s<_IVzZsJiIetd~2da5x$Kubsr@i6+=_S2Ceh3enZ06@VCkR@*S^~d-(8k59fgToO&{HB$25BA< zRixNiHwep3gWt{bH&cj_U`NcUB6HRve}NJ)bZ4mL|6*#%G=AE82&Mqqoz$ZktDGc zanzN{il0vA)AejYv;2^?Dl*#o-w0(b{&_o`#G{CQ!vIf(x`(+^lobB?Lk6N5n@f=2 zeTKGk2w5Y9EjH?$>PG(DYPEg@e1q~e2b3Z9JPW(AXYfxOs#3gMu;xLkR=+F7)YN8J z)HaLON6ZNV1;jc@NR8vf)~Wbkb-&rG%&+PPB}2~K18vv0{}OD7(h$eGYOfk z^ZLp8?|VMlE0HbBd?~LzOoSgLD2TESXbRaYPJ4@FGOBw{RE?tiCF3OZf^O9VWs>B* zs3{{TMfQuX{o;YfJ<7P(Z#S)LLj+rwK4=&NRBqHbF!rYChLKtZVliNx11Vt6?HA?7 zA(T<$l#onpJL~RxS};xO8T$wm|Cv!-oSr=Js{+?7*F=Sc?S{c7VmI;cPaecBv><0S z+8la-U4|k#eXcU$9Q)iSw&t~6^t5a?5Ge{u>_@GG#h@~bv<401Su!gt67$wzQND&4!~Irqc!#%j{v$eEaQO?_`|Q5p<3%!XgF~xLs&x(~iTKe- zvqCA^G9%B(9|sXvr@S6*3}4;-)o2}Hc{*ol{d*8C@_1`yq<#F^@4)Uqrjluf)=Rn8 zuIp=VTE+CW_xg7O5PJ$-P!2I9dhux3oU!`wlj&FKq*C#J4J?>qiVUz5z2 zLOOg8(WIlb|L?;GrV!?%Y$G^p;jOFak=Q62gD~?NV@T#q!QLE@?kGp-bL6ba_?&wa7+;{($eBG>R z#qJEx-2KL1S3HtIE`DRDyu2`(mA+8^GIr1xeJ0bPd`6(}j;7yS}{bYsapo{kllbua?7SU;m5Z*6%)o4ZA?HOS#yUsoj8@ z8p)6yr~T~JnJ-TBw(jQYiycQc=j}+1^OKpTt0a1lt>o4Ww&iNDW84QwR%wA0F&cFo z=HNl2@#H!S}X)2*y(i&gxpw_SZYnbaFnn5hI(nhATWT@b58=Tphj4 z$nM-8X3mC3&F59!hZoR|I1nJEZ0u;Sq{dR%S@(H;eC4FGdhF;^*sJ9v&5)BVgKhg_ zlRicJN;r!6G_%=byzR&t`CDFj3_BN^0t6|0p%Mw}Zml>}vKp-1cxj6{ao8kZpx|hc z5no(AzUS0DkvrqUsvcc!#l&pq;y$`Ul1XmwTGlVmJwO{B?c`H9=u}4pKom6<(M30b z&-*p71i54Uj2f}$lg`4SqY;1S`WY?@BUkv91mN zjmSL8f?T`OUWp5MpT6!lzI$`LAw8;s)tZ|RS~%(ncd@Wd@NZR(lbj~VY0H}$4dHM6 zvCHmjI|D6&!Z{o17ysIAwuG?LLi{><$Qv|?oyi*|*mrYyDz~$`3ibJYP4LE>Ua$!} z)_2M35?n>eQ^&*-jEcKk)U@NwGFaC##x;s|OeM=l5HwGFM$e4Brj9Gp)JvFLlg`nix^wJG1vhL`PJv8B%QT;xz~Q(nLxtYr z{B(unBi(PcjBLQ`b6Q1GU<_@~9V1Ci$A(cSaSM2#e!!B5ZD^U?o)Zr*#6K_(?+Wm8 z1P`Odr@2R-xx;laCq0}sGklDQpCnD*2_UhnBW7gP&KtOMWVl6C&62SCOdOa6y94Pg zPI7X;bD#)+Yd_$IL_971wnk`cIw# zdK`sVi))+mqsuu9?c2bjwzjt~cMBjKu*ldjiyQ|P6F^>o!jTkKH%-PxVHir;uEs4% z;ot`CeNWsPm|ex)F*3B3Q;}vT=q!mpIE)UmIYyA-^~$Y-#_E5yz559W;6qAFe>X$> zRG{d!X1IqPRNs*Hap_Qiw`I&4NSX&QT3IH`hh@GWCcPg}d% zTWWgaHTW$_+ry-$Rlvq}N8;)8Hua1Acl!}g)V{lSZy%4ToIqD_zUqDa3S`VNg#Se6 z;#jQIwYEhJz5#F_})0v=_ zb~(S6P)Y8W3S|HyfK-B^IVx2ID_K2R6O z;~<9UEKVMh1hZ3j?WV!V9LOaF`7B*Nm6`yz zFM;EzGm%&G9nJB zI5LJmDU7jh1dEsLI*iJr(8p`qqQUo$O_^ip<^+eIAnME?8h8k&6oqe!>1crFc;~Nc z(f|^ga3cHd%oRf-zP&kPf7@9NwIqCIdJ zNMF~TMumDcTF&44Zu0mBWZk7?-3svHW!`y9aB%lUo8vsF((47xk3Cv|GiK|Mr zDMel!kZQq&ghHHL3VXdNdf>b+KxlUJOTch&wtF!vzji?pQFK=RViPZa z)LS^T|3R|5;2N#9y3>g$_gm8V##vlywq=o(3lSag42cI9+ZWo0^j%v7zaJ?YLudiKa~ z0ow?4;o`o(Hx!bIqIR92g}srM(b-2h{gpadWwjEy zCzu?#f+AfQq6Jmsv#-Ck{OM4pwy~~}*uZ0a~ZtMFisL7Le_!)$(6Khj)H zXjl7cBD3#{&HdTl5x~mmESNi$&g`~6t_l0zr@Po}|bDes+)j+a_sx;cNDRlM(xH zvlAh=7B|m((poLb#;O&kQz?h=g7PX_{QQ{kF~UYPn{O9!CdjHP_WobXkJb@i;lrYd zmVVwi2xTRg$9(@gv~BdWjtT9HDZAA~rQk?KU46@P?s(l8ZqVH)G@8IO`R}kvLM^e7 zGqremdHk`%1NB5JIA?VtU5>XzLQ?YFy)frsvdw*@V20{(lJgG7jF~ZT1pvkHnS9i! zYXTp1su8dBiXxT4!I?6WJP^EL4R+iS1p`xF+^a2m`QuLJ=+=-bmCAuyA24kV6fYnK z8Hk%{mcI$zLqXl{vK1_r{@~c(?GlHTux$ypZ1Cz1<}TDABUdhc9WDsk_EK9A`%Dan zB(_lyOpYSFDn79G@HqtJ_NLxKIKX|nKv2^4=;&`bYsieh{verT^r`nk)b_JieTx#N zsE(?5j>6D8L-X(XL42oE&Z(mr^LZ=P$$dSy{fMUZRrC2~P2!v>_=#y?9E&Jld!}f5 zFZv(Xjrr1*QM(WXO!3Z}=POvJ!SVIi07Q)Qh}PSPrZ?-04J&_TmTWO@Z&+4SPhDNa_TJ*p6L zA)Sr$nZ7Zg)|%#z>Ie@w`g{e??|sj>aSG5zWxJG9Mtfy?ot-6qh=K=Dz>X#CX9_E} z4iwvzX>lnVaOMu*MFfoyEin(TvSL*$322hP6kpx#Tru>AqEHA5W);SBg7e2ws=%O2 zteX(FkD{V$K1niK$mfhCCM_ZHNkZ86oy@NV0(*;U0F4bS*=r9b$+>(`x8X0kc@v3$ zO;(2PQJOOHg_-v*x`JA6-jh3{1WtWMXojj z7O+mJ40b_Vxn_CvcDTBW+aAh_zE9}p>qB};4`bm`XYL;Rc>SLY*z~HoP!BZSENAiD z7*;*E1tg;dH{uunNlvybzSkSP>hDH-mp6ldQXMw5oO=k6<9XLKDcOA5?v{M8-`#X+ zdisE}Y|2BcuwQKHqOP!uQTiqhz3)ye-;2j(Se^NsC9JrPwO&PqbMh>`omC&RSlQX0 zn-kj?gmRV-6;Ivtio>R>j(-RAO`2h;1#T0S-Xa4RaDbny|3hPhr=(!k*J@OH>X@;n zIgq#Fv$@dOf2^&tewic zPwBnU@eU7P@e_#w2RCsj;LMl}hbpQ}4W>E2-9RJF#e;EvZThOV@`uUUuf0%_>H= zST;7?psSu3JKYN9lL&kNVr%$S3gCohdkbW+c>*?tbs+B*l(Qy=kJXXj4LIoO?8ihLP@|=Q8_%;gwBx%)OeArh z5x<2Pv;ea(p0$t0IkR4CdrdR$-i#fzKZ?v06X|+7CDoHPDJy6blZx5xyJ`7a!atgX-oaQ$*4u^n9`BNvPZLnJIsaw$5w#3Dt@6M&p6=#YX~6N|ghC=U`^21q{&FoDxQr3uc8-71?C(jXho*LKsIW6X^R)nwaK()J5vY zQGaK=k3beBtkuRN9h68ip$w)pW`_%rTm>L0uHQPox|GS9=SMPoO27CoIKz%bp43L& zmA|LpLkT*SMjZvktBR84mZD%B4`cD*%J$RE*F)MS512BWr`xXJ3aYVC!jKXVsAM`~ z%lhJ^4?h^K)r0nQjF?MTb)Jq~Knr461iD`p3yl3aW-(d=W^yRwTOc2iFh+Rmi6A|b zVhR6VEM7ST#1t{(jN?9F0v2%F7#a!iq1wBF(Pk{`3Gh_@3?bd{8h@3WQ0f&mP!|$QbUVSMwcp$o|Xen<( z1t6{W-2)^ju)V(+4YeEIYWO9nquSJz4CMTpJLG;_FG`1n^&9Gkr;m=!@7JoAE2ZwX zH|(m@x#z64DDf1MKqFw3+5x1rB<`j^W`1M}alCaaIWu*HO38Up{)hy!!7JgDWsSAg z|A?hL&OQgMdb@^!jWYa+gF4&;b>&9}MGW9*bU7#BOj;<)o6Tz|o)1Ox<8y1PEpV$g zAgPEIT6q+)GtQIU<;lpaY7)pz5X^01^DmZBJgxVekj*D;e&FlZ5$=&IRRDlhb~eYx z0~d!st&9SQ47x(~P8yoT0ln-CXy`h%bxHV2S5;ZHesh%eL zr9+N6sUD6DI~u`MK)E}=vjKd2K{Xq2>Dj7z{tkK7Nh$Mdf*_6)xIgiH7R{6>ddM?Z z@@AZP*%P<6tb?cjy%39SsGkmEZM*Q+)7;-c{4QK-f*maHwKw7P%26e<(mEcln>w;Z z0b+W38_NbfBF$U`S7@L~7kJo=KJGmeYw>jnp|w+^r+LGmyL*4V;^+3NPx~aN)#Le( zXBzC7kiKS2)Fi0hq_!Lw@RObmm-6%Ujx^E^v?RFymW2gTOD6gtG zJ>OS7ToYg%^uT2%lgdzN>O_(yUpYfkrMaKYfH@8JBX3RrEg4&RyMeI!M~?<)8dM-Q zvE;WX4jC<*)#JFYb~4JPsT}@`5f|T{a}TG&q2DN|jc`AEh;baq!{muE3CpG`@F5+f zA?E-FNl^a5J`3R#&j7BY!GrBceF|Gl%9-B$JO@N{2%6Y}Sd#4Q&W>VIzKY;Nrq1^p zCR_p~34$m{jF8;e4#wOBa~efm;Um=Frs&^a8~|{5 zv6d1#Sgd5Fg1R$ z$Museld|zbtN(GfwcZkk+=05bJ+%n;!l!9PMztDrvkyN8Z{W(U-5Nlde5>AI#_tuf z&xj;iE6Lv;Uz}Zx&BDy{rThjU0xSi&6H#5N@ai4@WSBYS42xmWoNwE=Se-qvm2dL>n}>I84q|8uJ7ezH5{X~z z(CQl}yVXnp#iBY%h^AoJu#kJ;uI7cF#V-u*@F_1mC8inBRLH0n3SCMQY?z5VC&=qS z`Ej=UyNM!O2BG&6;M|{Y$T|h`IuXnOAr zr}*Y?)BClPkIy8LXa2WM1aSZC%?lTxj52YZi7A_akL~f$N6AgL{T@y82xsMCf zz`62hMmghLevIK=HnkMskd0C(xc%F0gDbIdsu{ko6Mx;dK8RlzW{y%q$(9zOqDW+2 z%M|s!&>W3qq^!;rI+v;Y^I~j;m*lxS z>dI&9-MGc7ckNA@ z;l_G>>uBDn`$4OizE0!MRST~jlpbdkK{vH&6T$&`qkzl#u7WJZ5JJ9NNR~>2B>EU#Xghu=ke9=s zQZxcAs#|hqJh#&o`esc~!-jQT;05($pqVY#-0_^CZ~f3&G1?-P z*|lY^5_?W%D`xMtn6rAvm@&2Zp)Q-@>E&>vd3`QXDkbMW1!d*-#^(^J-3y%sY*u>- z1ksfLw&AgVjT8Nv!Gz$7B}mFJlWA}_F@C2>9_T4@VFLBb979l1zVHiOPlMKe)hFT~ zvcFdT;!JZQluHTQemc-HHbQ{S)73Euv9m>nS%0?{&rQevBR+`g@nDb4f|)vbaR3Hr ztkE847%5SF+q`?0ZYgB|BKgx6RD;)gb%+9*?j3yLUr!3nBC9qpS`n{4D{b7ld{mB3 zLz#{Zpch7guoTL#)K&Bqr=S7v&$Its3M1imqu~v9L61BCz}OiGR)gofedrkx^vNH{ zZF)KuXT><1xEsOJ^+nE=QVx2cErq4fy^nk;)%#j(%+&`WYP2#8H%p|c9Y|sN{B?Ym z|6~D;_Qx-~FH$x-v;Z?OCaMI?!3Cu?`T)?o%CZEE)8YufO6ZmZU^{>YFhm+|>AcE7 z&&ZZyHUu{C?yzFC{!mxM0vduZ|JeyB-{%(q?8T?E#s@R z8fSSObb&uH;v_=g1Qbg@`&9ASg+$-#|x=-d_V#%K~3ZhrW^C6QAd zGBG}@6X50h0m`{e-00t$91($VbY=9bL>DXC*|w}(#P{KapR;Sgpti2>;S@Yrnf0(a znkl79{g~E^!I}|y8ruoA=0torkpL<;L*>dYa(gE0^vI9IT zva?2heCXNY%`BmqbtOKZ{|d!=WpZlTeE}EXUii?8s6X5`uO6nOVRPis-B1$tl1LJi z8{Z_CYb&huEwgQHaV-;q?biZn<6MS@`mk(SPRX7IV{s`8gHkAmGaR_LHdBxialkzV z2A?#l;2Q@a-s~g~cWahh-(|J9CICE!CPDd@W6XpQxUu+Sb7IE8I>PQT+>x>x-sVrc z6Otin@@5P+F;RrZlnA)Yo|F(NN4+IvnR&Nq1JUlcvXD%^BSQJzRkmJR~`mRiP@WM`qE$F zM;T`b8!7FU9X`UcXR2A9BN1;*Q{*K)3>!vdo1>3H9*z*r`ouW_t0o7)P%2~P3K1p` zr%|x%5@wI6ZY+Jif~yu@fAWZr>KAO4$a$Ub!2CUD`KG}RA~rOo`SZG=cG-{;XB$XX zjPW?uHB2qu4r!wDyOK3h;;?>k7jSYj$~#&98(ZhOYVodn`9LSi_byDKSZAY;;REcrv-TZB62J@|gM2Rj2}luJoYJugw;b=TT^ZRb?)%3u5AcOjMCK>aDW=t!sS|9i3c zRx4(4+zFe~^rw*X7c$+iW>TfbBDj)qYT~)jhNY5Ab95avbv%#XhSFfj6nTTKRW5|x zqGT_;zBG!MVX|RQm$((2(fKOSq;%)W+;I&NR_L51#zD%-f31*A)CmpH!#;I*tLMnf zV!t`IfoMWXV9~@CrLf;RScSAkcfn}7=_Qa$d4P%V_FfEfmFVKr|7n7|t^Cj9(T-dX zFm3;sqaPk;|M$XcAW^Chu{*q!PGyjSsCK+yOC4*~p)Hcd#^+i5jlfJ>_-QY-!ze%G zAjG-`;b&d2F%^G){Kqo0Y8~QtgQApVHe|i~#etXvf+IzHXsv z%K!FD@wx9JPnL2-L@UgzUfoj52js$JARKJRS%biYyE~iay{nY~+z@xkVI{I#&C=r{nXdcH6b`0gw3xCrj1_VqAo z5OBcP(=w|z$$lQyZKA*igB=&6A~TSi@$ZL?KCUJ5~!%d`?TA zzO#}d7!H5NLzr?0XZ6DGQp)dALFC#g>wZapi@wF~YKFLt?77YwdQosR(0N6$G21x1 zJ7>2+QE4)@OC}Ems3lp)5vgHa_JtY4Lbry=z?N&icWmOzpp;|yllGLhguP$IymoF^S(j)8NbucYlJ^{#*Py| zIGj_4dg!{|Bw7j~l(VqYyiK_vX1c}?+N)itw!jF)xp87Cn+Ol9j)n8` zN_a1a4RorMqP6)e>u+rP0&eB}LLvsaG&3DQ{Ij*yE7e=MrJ-UF8q5{44` z1QMG^wOI2BD=e}~Ick#3v%?$~5gWD-3f*k204E}Iap-^=ceqe^Q3RnV5A^<>`Yd3!E3XaH!ZM#}9 zD=<4Qf;f+A;UKfM{|rez-{w??W`$bAQ$j3!|@&%++M1x-nBlhdw>%4 zu-ESZTKK!m|0cnUVy34Ft>$av#C4WfmpVx?SaW{}SQY7

lZ9Mitm3`r~QEYxnjN zj$^3#6~m)zk=v)qOGW;~R`j><6bEH5leqbL0VZ;cn}2Y#!__axx%~6hYLOJd7L2dq z?9OYi!J@J=bEeApZjOrsAzd^qW`7qi>c|$*xmi43P#~8NWy=h+FG@FPp`J+t`5%x) zaqz6^Hnj?63%4RsO1t$15>Ft-yP$eKx*Wc5Ah2^+A4MJrfQvYSySN!Q{%+BZXJSD4N|0SNVz8=GR*a1%77f_F zg*TKYprqVoLGut64w!jjJWt^*J7 zCu$lV?sl1F*I(t*bSq8WeAM{hWhlxA!PJZ*X7FE!Mu68=sj%Ie0Y2wevoqmVveIVWw&J~=tH{5ZCn6ci6&tH-q6!WxO|=~ z;fHSxUsa2z^e?ra7G{%1ZL%5IZ%+EZAMY>%tDazEYai<1o5n;r%y9J|403st{1~IV zxBs?LfOY{Ko`B*gc`w*Bw+0lF@&hOlLocl=AF67O-c>sU#s;_Gh5H(74(}4JzAJ`9U!a&QRuw8pip|=JC z2j_h&f>GqZW(e4Uk18Qz5gz%vXyJLeh1>Hwto%R6gqx?5BSu%YlN5%`arS#~5lRZ}hvg!IJO&E2{% zB}FEN>b$2>0B7X{*av6A-5|7U1!+tU?JQky&?9NbaXn^#PV5Q%MnErNghd_ziF#!W z7euLCwZxbse<299+T-TPbT*q#4AXoF@Q3k(tB! z!{{KX_B~$#I4q2fL^s%Dqm)nP2~rK<^;Z7c8w#!U8HeAS(tatq;;UXT&KF(-4#^JO zC}{7+7Ynr8>njvM#el93iiir5r*}QmD8LEC7!S*RDW1ML`6W~PCvcEtbjxb|y3aw_ zFAC0)P6n68B|W6;>S@3g5v(_7OEL7L2mQ~NpVx%EHh87F$63P;#tg$E4|}i37a7ig zb=;_whMUdz-FaB6r$t{v89K05-wc`FRjR6z5Gb7;SqbQ@9L9tZ&b34rmx?=wjW+)t zSusivxi-EX*d~oD7*G-s9CR!j-5vRPF%`-1)D1WJAVMb6=4Lx32}w@F(PN~%E|43=kh;Ep95_$!V!a>| zOOe|EPg7mKE$J|-krFOovxg%~8O51?esKZIM=bb}C+@X( z+Phl|5`>0=IP00koJn;}52uw5!fvhsDb~0OiL9JK;3WP}1dD`J38bEoRcS0NoA!xz zXSJJ5aaoW~|9mxK7p0(>5C-`jTmR1YX<125dyKPYWo$pd$1)MW98D_*{cXurL+xbu z*(>W=TH;wgcIGNyJ2A-$4Nm}YvMZ^*&MC8@)l8SJb&>BPTRH*5?O8ke&C%aTboZZY z^z_bG#{pw~Hbn}G&n@NThuoIPs!;y>f2O#j7_MBNY`R~Q^!w?&%idNLAcZV=I!R*& z%jbdI7k@d+C9Ed1nfOgo^g)H?oSsJ}co@V9WWW~#ES=KWApQerh|1Pv_s(=9FoH}Z zQ%jWSWouTw*1GVo4;8O#hF@4$mWemHTvw~!zajn$dN+TtQc4&1gZtg@4=%A=@CV|prKuHRS z=!Re8JK*|js9)(pHRQ)>9}C=PF=PN`xh4~iVy-1Q^{8JeWuT|O$JzGt>zTnTp(-|* z)D1o_YbLc}k@xx#zmiU=QA112mb;NEo4q$E34)win=4-&Ht#YH-e%T+&L78rZ#szM z9&fBhi?lXnojN(Fpjh!6NO&GkqTfz*DylSzf#YO2dX*zANBUuWo{5bHRn!@{^JyGZ z38zDgP{98%Rt*T-95W9PM824?#2Gx>*CfmM*7>06FSUb8?F_IdKw*Z&gI9c<5MRaI zlL@i~N?T4O3vJhW*T!iGQkp949-lLns0fr5i~3EDHovRO>mdYkQI_gCnq9O2YU z8Dwi+nUeIMb~bF2Z=*9w%&Mun{^SSB5Co@dTj6l1`JT5ETF>q(FI)&X2$hTFFcAzu?jP5Qd!42uT0;uuXh2p~0SPN*HB#Sq? zl&K%kmRuLmb+hKZ<3-#ZBJ+yR)&po##q5$aZYC^Yn=lKYb?~?~PI;jNIT&2zNb5k> z3Zd=#J$?ZP{wkpy=!S$!tMd=Q&Yu7R6gXS=JUBPoh!l}6OdI}0Vn)HDY8oJNm^|G3 zJe0E09K~i9h&LnOKKb{B`s?qb+$`H%4k}7*eL~1y8=;Tu8n(2HUrjdfqYtB$}oOSYP0wWiEZyMenr;Gq& z#RH3e(}v-yalD?)SmB^b^p#7;sIB+));H zOxz$zk*1P6?V3gbJ}??;YMk+yx5yIMJaKTnh@w3cD(KNPguG-)b&Vj`MYU;hoT9LK zN3r_n^Ez=--IsFIk!5fCsFQ%r`@9??L!{;Gi0t==&el4!yKC-om1^+nv6??GRo)g| zk)TKA*ZXk~W}o4LHdkM;dPLUe9i~CST4OoaJ=$^%6h{V3)o>WK#tVyK$y@}JF%&2p z#XH6b>V>xh!-@yv<5ciuRRAjyGSdc<<6$Mz&pFxxY41~mlwOP^-q!J*OW6SHskRF- z*G9an%+4~cXd_YD9Ax8pL_Cy-@jE6o^&AdoLf)5!J5|q-ThG;XR5Koroq|5Dtl{3! zzYIZvBU;eV&HKP_UBGuifBM@N7fx$X=y3%NJjOyBt6f4uQOaflV@ggS5FH-2x>B{pTb`ffe~=KON~eb zjjwtl2iowgRbXT3iq7Sm&5;kBBatm))hEga0!9<~ljCYB)@tU{e|XEd=krgctopDm$R++?~)OTaJ8VGiy zByE5zJ=c1_Vtv?jyn6+FnN*+DaAk71oE`rAYAg=OC~3*5S>3S3Or_jid*CJg`#IzY zWYyY%Cm0C%_Yn>`cCS8OXkB$BkY?&zo{IJM+6RD%X>OyFHG+?iUc1Rd5_gLjL+@m; zpY|KnUHL%;`5^ny*H2F^`Yi3O|5Z$qUBv23ZxUPuCbHWgjKkfr+r?@MkN-z&7OG)} znr?rt5!o2E0B(h*S(R)ml5@}l%Jx#2_6==q0AVqf6}QDHw`aEEkoA`jc0qW~fH^jr zPAuQy-OI4h5g z`3$_!_CMm+^0_J{V90=t9ZE8?=C-*`*q}yBSoN_5MK7MGSvFp_A_wTAX}B zoUE9F_4+`~4U-Qv>R5a5gnh#?FsGcHBUT_%m)M~SkrnhS{kV9ZEKSUbNS4LR9gGhs zohi{o`1jYI`BLnP4so*xwea-j`_b^iLxFi{RT!KhDJ}jS$x5kiuo)P2ZvaEJ@;=}Pj^{Q zdV<}HC5j3rz(nE{M6jGaC^@)M86Y9AzJ8F@-S=;IRYYk@84#s3C8dCLSR`HVOCJ&k zjr$H53}n>NbphAnY#WfhdDag#Y4OOFWj3{6wRXM1&`zMimD%`QBL!WvU)4zjmznQ> zixD971uf>LCZ6u=3s!TAAR0|`9qj#=miU+&wF&2~_)mkzq^Z$wE%K&}``G*VQ@{4~+h zsEm+D?KLv4Itco+CxZglt*%AiuPUt7v))_ zgR@UBdBd6Y3=v$dmY9~b3+vd|t5{8JkgH2bq|Ltl5D`jFhE4O2H z`P9A6inWs}jGmTC-jouws^G^O3`J?y+∋oA%5KlaGhOELN&3+UBPr;JPv?jEd3h6m zjH8AUQAj~Pp^+qY%VsSh6<iU@x- z>neWUCk_#%V3rpGsXZd0B;b+Uk7mk zJ>=og>l!Fb?7xLt>|J4!uY(Msg-{Ot?@q>o z-C9l`oYvSg*@27yuaJfai}?s^hPdti{rZxP!b-)R(p$sY9o#~Fhg?i9e^ zPI|C#-M0NtF{DC&g@SPMw*THNhWfU1l6Z*+w)5Gi4TR;q>CYG_4cr`6d_J*P9 z%fJp|tM)IC^3{)3qWV|f=~3V{7koyobxeQWt^IRFl!+sdld{*1F2pAW8}9+cxa%5c zJ4X&+NuS>;PE!we7^g1dW^{B&2-!sigDtAi3QDlCb6&vlteMt?WTU+JUC{SEpDI0F z{_MVRcHUY`-c)|X?zeO@KW)J$BdZw~_v_D*(>pJ0wqBrr)6v;o^7PvB$NOcc9!E#* zEVu>@83gt$CzI;VZ$|#53Fuy^GVCe|-*8UHyrVvk?ldGoPF6MAPz~6jpf53N+B|Lf zkMFY;9PpDNtFDJcDX?bZWvK#+a?Tn#(U`)P)!tiC(M(!WEjUV(uoo@i&gem*Ico*) z{hB%F09bdEoRX5Q$#`z&cWp)@;+sy)V|%(5fbpqf_NhwgOhfA##|1M#T?^FB!J^OB zR!H*m`T+stGL1m=@l&z>$ap{z%Yl(UyPa8hP<%1?6+k71^`hf~k?&9cL^9St*Nm?Iar1}bSoq#{!S{#u z;Ap%DgQT#6F~{Em-ZiK zlLGsik4|*6_~{KtBQdP-5_n$@>!7snbt86dr;A-}jFDxFkw8dZoGS<<>$PS#fZb%< zlU(erHj+#t8?Hknz?nvcW~%#|$t4}VQIQTO@`*s$Vad?mJxF5U3_+Lb!M+3w6%sr~ zy)!ZAjx{kuIdi6W0Jd?r&Xyihvq0B{OhCZcn??rUWF9C+s&1ge=Uz0X*xU4?oESbAy$0%Ey;K%hP2CyWk9!sx%se=>B|lQ}99DOCw@duQFPeJ* zI>gRsG0A(s@eKP=2?p^z1+-*Md^uM9EM$dU@;7t+pas)!ub_yBH%(f?T6yH8`_8Hl}^-X+M)N0zqXYiMm8+f{XZ<7by$?! z_x2SK>F$n^?rx;JL0Y=II}~Z@1_6Ns3J4O?0@4iv!q7d0G)N5j+kD^mzvFeCbLMj9 zdG=oGUibZ3dGcnj)97=hIXFJqH<5o{6v~>BFRX@vCznr7O5d8#)HaM+iP@oJ+vtzy zi|x|chST@qe-)ej9!)ZVW5(UvHLD_ou2ou?d8spJms~IeaiCk$OX4<%A;sTEJ!W<6$ieLD6ZZ=gcy27;_l6Qhln+u*{@SxrPAw; z_%3#PAf{?zqQ1oVAsYlpZ|XNi7q0p(Js z`gyXNWm2@^@FJd^gcFeWJ@~;6GB#7Y^TF^XhRFYh%5&K89n!oiU5m2eZQVce=051&@I{4ZtKEr9Iq$S?xsbUPn&(gWbHlMjk1MqobX z#xe3{#1bzSSor`+ArD#ss3}*YJD_o(C!bc#VaXRMesV7mYA@DKfP2 zwpTR+L}XHdd!gkmt|shu$CGX5hG3&x(W7Ll2YY=oQcQu72Nb2? z)qBs?dx^l3PuqyEsYo{Wc2L%+IioFeU^80TWZ?*pTh~#%OZ~ur1324d`64^-*Z6=q zUpqygzSbEy!DiN}y&hXB`qM2eMT3f*5qDBHG`J!9L$9>(yK=B4F^Vrx02o$=`uP&o zOLrF~6c~HArm#E0#HX+Rdw%!prNpnSj(@Mz3&e&d9u6kXuphc4*Xj%J**H6{H;fVF zAAQQ5Rb|~0zNn3V<8P^(q;>s!_j{5XqEx)laD8Z}Pokl4J-5zNRWty4= z9bb<{0{p-TL@OnbmOS*l5istKG*Tt$^~nH?owMHs6zDLB13OP%P&q3wT-I5MiaeuA&w zvfEsQyuD;S5EkcWn|?D%!LI}mIncA;da)oC)~}Od`rOZH4ODM*JRB&oq%3Q@uV&%%Lk-$^D9^?KWSalfAoSaQUkB*0})PqZ)j zq`BS!M&LUjv1~tuhnui8g7=nfV&D|xk7cN4Gp}@Hw!3L8H$75iO8kxb0|+*N3=GYOs#(yb_hYJ$|Myg{mGN)`Kf>vN-E6@2n>6tjl(C|o zu;9Q*Y)YJkO`{10!WsB_P(P6Pw^@msK$%#=fB~>OgN)v-GSt?nix+cy3;)rRu_n-7 zjcvOJ7uvbb2zSmh5JTa4U&{O~T84JsF0Acm`T7IV{Bf857XBAT3E);a!*am%u^Jkh zP_CMObv)q_(55kQHq^^k4Uik}aYk?xGKvOO6HI11sOvgOc7SWc)`j5vRT{Rsma=@a z;hvX6N#s7*+ACcu{@;pU&bS;bU%LZrZS-*%5`lJ12aSoxPtrDvx@e4vyu+UATAmt{+W)5X!JL| z(#)}kaKO~ij3Ec1k`C>S+p~w;f^XpwG&Cp(x_TxjVaHdYNnZ*>b3<+~Pp=*yRu!Pf zi7((%v&NJqt)Z`RKA0^0tuZ?G0#C}Zn3w{s1+aLYxpmeL0=?-ab_US@0OG@!yfU7g z4(A3G-=ATDdaqDKxE9^#$bbU`Z(6d=W!Ry&5Y+_BZk(KE8SXt$>n8p*rj;>BU zvo{W^X+sv0wf&10MFyqoOjhE=TK-$RvCK}Qk1J1cN}@f4o(v4o%NGFd;q$!TZ+_f1 zzKjHI<=pRqm~M@CS|#%oLf-7ydYMWJeYxTltiY2pQ>_NQj7ivdkln5u`*j*a%96Q1 zP1OuhCDco~rheFBnOLegFN$~}5nR(-KF@aEhXnO&1^0dAo7K`}K2nXG;9bp}{~_5r z0weNQl6_a(DsPF`%!1Eos3irYXiv8dk|kpT8LQM*l?KiVgD@$Q8lqyN|LBn}o-5^& zm8S6ewYf}^wgT)_FJ?mYj!Ee1B&VuFtvbkEqI8=1?4PE{jx?u&ZJ|LjmNUiKHO5g6? z(9O}{Pq+M-@7Dxs*MI>_cU3NlkXW5y6M0);Q=qZ^v&U8_@I7X-w)&W6UYDHb-JP6z zU?qG3S*ML5a{ejYjFL3cJFcxkSxaK*=q>*mH_dR!6tC=otcN zO#s%xtmBTr$fLD==FyrtQXlUF0v~A_B;RIV0_Z>R1O@!zj39Mg5S_X}PIc~gPZ zfV)Yds)-#NsRa-D^4QDJfR@nL?K_%>3(cY7ut0!2*CEW6m&*j{erq71yYJ3ZRj@I* zMfN&%CeomQ`5b6b-fgDE#ds${bNMcvlg2VZ>PH@#0+)FUZ(467s@oh1CxINTtn7DF zi1Wm%=}uV*nTO0Pl%kb-kY54ca?O&tAEiVA(YL-%MFe@AkJ?hmz!x1)r}7^?9VGZF z;8viaIwn>{fe&=)+0|&?Y6?ghqM^S4#{pX!%_BlpRUzdUx=iSSnWWn4DI9)v{Nz<- zR97o1=Lz!-P>5+p<@N#H{5h~E!J%QH5fcS(zs%OxIzLuFvsa4>JD=RmQ?{*N6kW=jL#5LgUO3O1OW1ZMU1$0p0N{FtxBs zuh5Ojvo0os{fMn*YL@z?U8*5c_CIJ=S%2Wj#)f>Fq(mp?uMW$PVAKZJejgHvL}{!_ z7>^q9Zu4|TMbtj7J9Y>HZ&nXkTMvAWIPfJKCvZCX&B_cL$;&bIAR;tt#kMhDy_Itx7g@r<_8LjhW7X^{|K@si2PShzZP_j@=t1JZ$nf&E~e-Z_mLc zA-}rb)h^thiu(lRd^JF_An zoNyGLAaIM7C9nu~PJ*N<^{2N_F&S_MO?rue1PwkCEw#AzHn1WCoVRxSgb7C!4F1n0 z3BFM|@H-TzZklLq1Qu9GgEG{QaY65bQ}w zTzd(!iAY4i8V023uhk%x^dH@VE4`>U$jZdSj0yu+yRZ?8TU(t9m>I^JeqLg{Pp*bd zk_i1!V7=6prRU|DQly_&t=a)Lr4L00U8{*T`vx2!XxUJZP^S2gy>Nvo*2avP!yTz) zZyyk!1X;x&CaFKs7c<{YF=7`p^GJp|qJ@K5P2^an97i=S(#a71COCs0@8XH!vlnsh z9LRnzU)#~4bv{gAc|4jNvFFDh`~80m!%t(sH#jIK_h3*etD|YXYb1fIX1jYM%bzj( zdppM%Gi9)rk(J_WRJX0yuVaZ$`6?$1N0!L{)M;Hcm1Fgsf_63c;s)!1GpTkdxe<1f z??ebRfRwnefPA!w-eSj)upbT7P*r_q2p>2#J%BwqWS|~{nZZ!Zu>UaN>?a+<4H}b(KZvzz0-LJG&u38VuNRcQ3q&3|v|u!- zfT^vO0roV259LlFBCmM2S>lA2^EHZYBs;DfklJYJ9O!W;H6bKImUvk)G4^c$&e5-p z4D~|>C3D)%$kqPKbx+)o{yNd z^uNT;6au(Cw*aQNn1+_RWg8a!B4Kxc4Fx{u!H;i(O-F#jorJIB;LQ0t69V3-XZ}F< z0lCVecHufsa?P6s~@w^ zGE<;7iZkEP(%ccR5Kz@WagOLHj+?*zg0>}#U+TLaNX*y<#q30!H8y=ki1w>!Lq^E^9%GoqC;yRtmxlh-iY)pK(3a*hn0JEB*s>Dp8(^SsBwuoU-8HK&j{FkwB3&jST z6xPAP)Vnj`>KcyQA=Lf!GBOWx}ja2eAn-OZIV=ORXj-L%x3EdH%o z_DFeEbNs%%)lXz7?6%yBBF8^yC$jVZ@k)Lge>bao*8_|NkVsIBCBlI3Urh49WG)c7 z0G|h|MSM|Krv)Paaj5ygITw6XiW%6b;0vJzknUJgva*VrS+X@aEs#hbEGY)C%deat z?*3vmRfwnJVv;g_QSG0`B|}VVan@b?i2!E%?2RHa#TCOt^B8rI^=mK=luLaTl{iqE zAdtBOmK|hL3kwfp z4(?uGCf)@7l4hobh?~BgK+hgiVET_PeG~b~9`zNkC0l7p*Psd;bXOsL5Jfy(y^Vvw zXiw!GAVOMpL&&E=-6>7i4fOZx`jMwpFnCqpdy!K*n#MO5ops#5s4$JrF5=;x!gEcK zpg;FWc~Ql}labgb@ANbx-u`V<=>qUnAirDOayb79tZ9rQCDWPT&6|Dp@XO?vii!#W zTI6!ripQ%r zMW6N}W^ZZc5NkH({*AIckZ%Cq0QOGYlFX}Q%Emlkl*ke^3wF@lf6hrS6&}NYfL^OK zdDnn!i6HEKm%`PeF>wmGoI?Eh^9jLi`C387@kD~UXdWr17@(^f!PjTmjr&+M1V+ny zUk$`ToOPx@eCFl}S<}whh8P&&O#WKJ0+3w8OquFnHz1=!7832PYb8Klvg7aE&}YQw z$~0F!0Y;k$LZ<5Oj|cg}4UIcG4w&U1=fcNPf}I`F0AHh4cMFqz0$Q>1b=?Vz;*JJl z;Rx!Qw4B`|Zw`ze{XIAuYJ_F?XQ!YibG<@JNGnS{Bej)l*hl37sZ0wN@^-63N+eoD zeN|7lwzPV!{ApJ9XIPn=A1nq7EHT0}ZkUp^aRt5L&F`v*zs=rmSW+l{puKk6@I5{8 z|I7K~AruI6e)|cmlru^S7pD2Y?-q2xW083r`1Ix$XjPzeb z|7jJ7X5?L}xYDx8dAU>f>C+h3a%`>1{^{r#Afxmb#X=|-UsZtaI^l|%N&8R;(EL0= z_z1``;DeC>!NlO3H#c7-zK)^5f{gXNm775Sn6kz$dGv~6;f|&{Ih)=s@S1{@^f{}V zw;>(rq;Lo0NNp@1<>KbK-E6D_3%+5Rw8>6+A95T7M0oLWc!;J0TuYUfH2od)vf0)2 zx=v-N=8e}j72@wYJA?CIZu3y&D4+kc%*Tl>SN&L}`{FS54PO}SQ*JpONw!V+;b#>i6AU)}X&|+G! zbNX*uWA${-Px>P2XmGv+3`wm5=x()AAVmGCZQWN~7y*}W@>j1f*}>b<3xcxifD$op zk`5dj4DuK)Ux+K0zW&Qrl)Jt?UX<}#J88)hsA&(UmXJ^{**Ss5FIpF~yu~?FDHMt+ zixoUPRpPd(H7Oi1ro3q!06RlK4VRvV+YuTNeY?%WR43cO`l*H7CBD<=7$TZa3jzvv zyW(j8b31=Q^l|_X`~%Qft9PcGg2!Edph)|hbBv^%66CTRlQFYUl8@jov;nK@>Q~g$ zJK*|vDKK?3XX5eDS)Mr`gINK*kE7LVySdJi)1X%+-;=p~J=nhMeYe?VV(=C)CW5k< z^2yN{0QOCB)UY)7cnGhd?nT>R?xGR}kkcm4P7t2I(Nn-`*Pa50^NKgwz^_xFfaHd} zgkr~#TB-%xvjr&B@4ckWs5a18eEWJzH+D(B0mJmo-}~h|%b;|1Pfr##D3Mx~Q)W3l%M6?zrojs;w zNlhB!88{G3$dZmG@VWUK7i79Mi?azl3&mfg2zHtrTeWploDW~P03zo{MGA07K3Pp0 z@~OzHXu&-}nWXj+g#a+hF92-g@}7GS=XA3 z0IVC2GC^jO*&6k&f#dJp#U;TkE6enC(8NFd>n5_(&l9U*99jM8mJ1U5m&BXFhi6y= z45>m=g8;^8-trv#c+BhAIrBoka5W?}19*JiYpPC+S2r>27h2UpqVTvogi0W1Tf%R?8wh+jwc>@~#FwAgerUnS0EvVItfV8>&&)iahXGV= z#TfbDx;7m?GOEK8-Zj0>98uI!f6N-A#^im#6pHS~kG!Mt7K3F{TVC z;9rutPTnUQH%R19R`>xJ)~{28>WkIn$*bYO(ju!O$XTNPJ|c3pAOc-mc5Ziv<$G{m z+Ls_7`EKg%ivUx9HFYA=ENvZ|PRxG#Gy@zOF53B~ohVqCe8!9y;RqHev52Wjh^m&7 z0^~Zd%N;<7b@jh~9OcoOXTsI90JQp{zJ;wivQc9hTpah0#2w&OMpG3^~KG^=_B z4)bI#0*u2phgZPl{R@?efp6*c>((AF>vrK^7r{}XF~iH`uhrgripX!6B8@)TfHI&i z1#2IuEy`yHP7zi_&A^ujqK}q5^l#E0FNcgl1kwEwfLOMZAJ4>t?0sDxt{92;j5zF| zNV`fZu6gak=46PRNMroR zUR{PKsx~m)rNn9<`(+RH0nSPEu+lJUv~dF!CtK4T@SQk{^i%~Vk&A|aIv508-0zcl zo!G&XUJobHZ(Ps~dVU+H1y;;~8AFW;KITmMJO;SB{2$)rgKWKrj*SHMj$fe}Xaxu3 zM#Xs@5Fif+o{{~#WoD^sAh;ynhcxhI$~&6l3BYr@M-Www$4ijuL?^c1tBY)yX;6)t z_}81`hNWkH1lM`fAq_Y~+o1C$Y0Lms&Ee80tf{_oN}3f@HBK8VWMxaTc>vYW&Fnk)x%#JYu@YaQ$~(=0#07AUDKJcfl>{*0 zdmK{z0EPrxRw7VVap#GF-vmH^;swjH0!zD|u5O_G@3``(KzY0Dn&Ns^lf}ci6PKXVM0j%aiwl?7JGZ=C6p!Z1k5Ey zFd+zLKaTX?p>H2%8(-~B?D?WKz^LP-A?B8y2=E z@8x(VX()TPA8!VwI(!1sI1A@rbF+7ZGz@#1ZvJvljp$KQuWFp<#ToE4?GQJ!;v%)y z;2z(4oer#^Z%tg!5>)i$wJo-h)9z+U(RdL(E-@K%Ru4SwA#%nI249)CHff0*(ZI$( zOBM|=ytV3BHhoq~j!aQq5#)h>?F06*W=+6pk&Z}aI~(6)b7IeTGpWGCiuq{M{q2tr zRrXlDi4N&VRL-zMz{V5Yi&5B9q0Mro(4I2R2`>%o9}BrEeg^DoQf=U(Ua1*i7S8?)?6)3g+C z>#UQ-A!`Zws{PxQBWl$nmd_Yp=$Tg85!^?%3~`X2wwAru+|5{N*cAGCcQ*3#JpcG- zJ8v*~9sjMbZ#zuCM=Z(jnEkizy#cY-GbIA1vYwB2mWvGI#L6zSWGpQPG47hOuh%-5 zSMP80vIGpPSyf>rCLGMy)Yn=CruJO=id_01c~j2&{z>au@KLVUp4+euSh116!pG#v zxe7Z9paLp9c&O?3P%1Gqtc3vj+9ygoG?E7&6Aydn4`EuPD{eYOAooF4iH^;)d-zKbeu27?FXidih%#aHvv9~lsO&o`iUaivM=fQ^&6(lO-~=4qN<$5iIzXc zKbar^7+|&tb&J>M^rj$FuU(n)x9w2Z;m3KAVxVXlNYgL7vif1=49UdB{tqGIvgh*& z;>2>4#?9hvtde$%C1|C9YYwL%0eauRv8;OWb69@ZPh)3N;|YC278lCzSE1OidaO4d ze7_$CGDS(2_}Nws1x`0PlPb$)4=U7BCPg`>#vuvuv|v7`TP>>;Av@2CLDfD4Sbn@(XvJ; zSK7aaLr_Nb^;YWL!bf0OtF1;>V6j8N5JeE0Qh`~8M`%gUO)1(fa+*n%?{BuOb#Ihq zPi~j2wt;#!K>|n0w3Ls91sU-#gt#+o=%~MBdo~;Go#+z_&P%3SSL4`;98Wxx5I18a z#5`M5jbhbHh;sBWXOds62`Ulh$r?7@228{8t#Sv3G&suREnLrg#I_ka#?6)olh0z! z5WqErK)O|F$Gg_~;Ic9CFb=huLNHJ&*!Wx4DHdSKqM}zjNaubcvZ>g(c~i(+F|@mn z(wV=t(c#qBl5okdlGGGb6-K`_%Uh})+Awr3h8K&JqG)|<*JYmU_j8l-?vKX(pTqq1 z#q=t+egnmgUjIz=SCZ83Jj5{N(g+%qCH_pCq6Imk7qet!T?HOCY;3f#bRe{zThRwk zAPaPxc3>li#g6D56%L=xMe_7n$AI5%I}Q~|>a)|_w?BGsO?ZSP3c4?lv?qW0?vtK0 z^`3O9*=MeLV#NKPay}}I~Erqr3`yt#EEVrnI+|; zQ|8!*?*)IVw(xLm?{SpbBc*#eFPLu4NBN2pbFG=mr_Z{)?DrI#^MDM_o#U)MgE9|Y z{rstML(d*pP+aW(n+oTF(sDR&a0hXbBE$9$jhWk~pA)KWOLd*Djuv~gYVYcH?kEiB zL{s%;gIzZZ3PK&zXA*&2n5JTskVq~qQ~aW_^}Io{l~vB-<)jl6Lp*><{tUQ*O|XA#2)^Y@+W>QC7I|&QKEw-c13zd&qVbvPDpx*77{Kb+tI9jp{u=hAt$`jtj?Yb)h7xk=G;jHU!gjR2az#a@WRwNhdAe0iQrV z`cyTh!jd;V*4>^@1p@K#ZC4XoGY%)zu~^6*)0L2CAcN4TP*BI4o*P%5q{(q)2BX&vnfzl<8vn`u{93g0Ty$}k^U0ztFZR$c=Gm1!FX3RjG z@%&vwS=3?R5^u`-mU2XyNgSr z%$W%e3iU|g`bk@GqF)slf&pqYiXz<`#Kp2eW-}71b5(7~CThDA>VGe|2_>)AH83urRS$ z+jak=ZLuoM3M%HNb8g&9c~5u_>q63{y&86D>BiXbwxy^=Zb)!^Sr&I zSU_p_NTr&Dw|z{Aj1s8fMhQ1R*reDIlbMt=f!pA;>4LWX8lRievSt7-yi! zP>6CXd>D(vsBfH|*`rF^uWY)xYoE%y?}9c&GcgXGv;T|nr5kiG=i@mPj}IzYUwwTp z2`$+Kbk9y{z^yTeXHxD>s(Mp|J{>7E`B|2QY;DjW_ucgcd&Aue`S{v{hC)U+BqahN zu20qtMV_`*V;x1kYGe7U%&wxSy*{Sh>s)pd1vaj(N9y@d<6-iPser%A8I^i3v`%&~ zr0c*s>?Q5|$T5ypKkJx@&gLlF*1O&NP5Y>xtS9%OHPL{NVTD7e4ft4a9PG@B`Xd~$ zLar-SY~K8BCn@NWTWIZh=t4r*%Rnc0L8$w6i;dwL^m5xbJ<$}px#gHvq)XCw!u!%^ zar^X~5IN1_C}$Mh*amY4bt~E_a$vsTPU%hU`qNfe_gM@9*swQ|CnyQl{T_}`sj?}X522@TPTIHfuiF0^-TV~x z_KvU2LmR3YmF0+n+`KWH;G78vXpl3m7ZUokML8`zn@iSEt)$=N@7U2VFH^eEKr$kC z-P^u7m^x?+j^GzYrfDO2rUxzJlt@mB2G`v$57WPKN-Z{@4Y3%@>M%;Xzs>3uymd~-0C!OL4_(QIy}d{g z(CnViaOm}cMYrRc48ztE!^G;Y<_iL~;e*Q4G=x|+c3eldq%1^x_TdSc;}1nhr;6dX z3|@OrYb58&2@YFdTs)mYognT&5=xTqhn)Ql`|bqFV@Ik5#TU0 zNO!o$Am@u2e0h#>@nyH;|tV??av)H6ulHH3ikBWj$CB3_X@Qv zb@yzpw>pA6Xm6>^`zMwhdlu)C36~5 zOTK*CCYgWi&b}Vv$+C)a?^Ug3wgQV5jDP6H!&>8*>R2gX`1dW=Ks{G^n-}$e`H`kTKhV zPSA?4b+tT~_tFAN;heqGCu6r$6*JxIxfEKk9&B*F0qYf5dS3L08~8sRhLPFFw)Ws; zyolVX>(6KnWt+qb%)a8M$~jgHIn%0ZX4W`oDeG@8>Jw5GkgpBfzI+aZn`F5ZYsC#? zeMi~%2vL}o?D@$MO+~oZYH6bs%ZBk!ApKae;lr-|Z*sY*dwdP5%Rws!AoR}bV|(6Z z#m})4Ack&#-GsFMzG(M(A z;C}74oy0s!hu7B$qBe`k1h9`u*I*4qjr)_@YJcPU)+ZsnkwO>MeeNQoFi+w|p8$K; z@Y39FHwkVH4yp}PuK?A7k|F~NDkW__RaqK*bnV031Ll5I#SLH2D94+6Yt!Xz&}SP# z1u3zV5GZ>rc&M#3xVtR%K+*7aW6&TjiGsAFZ0aJz%cksHt0FG;(0>%GSL!57onnBV z;>38eY}0K#w=se(Ru#K0cQVRydNa3k^hKFuTXw>WCf*eG0h{)6t;1XbJld#0B8euI2CEZd zI{~oIp$n#*1>*io`uB24|It%WYw)IHc)3Gj_q(u{_|bk9=9`??3(Lg}@hpF`yt$gs?JOlV?tO#s3K2CE+BOHxe~ zBDs;aEf|pZvIuzb{22{p@(r725ns@_L$`W`>L6a_OZ|g4{ZR#;EpGPJZ6_wm z^*MuFSeZOGE*+B!1-Xirs(kfn-VFPyh#D^?gXg5^R8h-x@IdjJZ|ab>rXJy9BPw!4 zTc*^rzZW-$5`B5Y>GR5QwXYe!22hnK}WE*3_NLqccTONX@+ld$TgJ`7yMCFr-gQqoLU!QigwlO^$U?4sJTQLN#nSz4vwF{cKFRs_|@u4waGFpdK zMlk85VijL+thuM6!?4(A5blVa7>FR0s8jrRk|(jw|H?2}n}|dNa>)u_*0JGamL9Tv zJ`4nvk@Y4mXr`)jvooV#M&wPf#=^9mBlaL98{Fy3B-2B(&^QGaRTjKo z=bx8mTMYizOwKCFS(kZ+668~dStB?%rMZ4S`nyAX9k-m= zy~DG1NNz{gTb05ltRCNHqf_xiTQqLzx<~j$@Wg+HslR;1qI7U)a|1aon1`v`Yr0{c zc~OpO2`>ZuC!SqRY&$R!ft#*5F@CT0gEgwwNfMA-?nsY8d(z!@g>`Zi^5PBo14c+m zB{-bNRB7c!$hQ6&kxzK#3=JsBBk=j4kGb2kh~$|{W}eAJzZ9-tDVuNjS|QI#EHUaW zA>UGUHV0Qj67ycPp`kLTD}*qiezc?i_}_iNA?V64iP9FADV9AAzQGIP@aLDy-?|BQ zY_gk&PXMxk-v-wzKLv@hwxh${X}r@9zBIq_EiTF=RlY%Z0#UqPMiM2tJi&_&-=c18 z3hL4#BS<$7Nq_Y!8sKx3(?sQpm3@gig$wr}7LYUwbWP)_x!RGObnNEJ2 z6ugtY&ZV7U(N}##&XUUXZyVxvNH?V!>{Mh& zYorj{A zEX*`0xFD7VDfVdIPbatTv9FJcI+pY+&@6ap13GhE0Y>@$51z2qJE{T$I z1Kx+M&uZ#C@QNri_Jy48G%ZoOQZ%BjUc`6PuP0NUX-QP1wp^P#IbnBmT$~*I0j{-O z_d28%6@BxVVJ%h=!lG|E>1_-^vIdl$fWMBI)4uk*$h2D4T!ibC)1*X|EMXpH@7Lx@ z5?|BN>8Q#J3#HTGrIIMg892e;zSn8rFS5Pqp70f8ID?Xjg>iZ+AgwVCn8p77d}?4BnFwDVgn-h9@*vP(u`R? zr-x&eQe)HI=Ny477E>(DFaGWV8Zz95Xo|uAc29hoA{E&P2!1!M+_H z4J8hB8Qan>A2Cv)hs3uJ^fEQwu>o!vQ*RGA(hL%*dx%gKfs(VeS>%+-^>%E0=5}58 zgH;LhLhD$c_RAjM;F7=62v3@*MwNgTMl^Vjy4E3mx=8g+K0$$1eVQ!YlaqO?trudz za%EjoN{fcjvp0Bo)3JzO3M3S8As?G>lx=P{e)YjDF#QVT^87D5P9{t~)h!eL0>csY z!k`c1Nr{)%IKV2U+s!QOt(*Nbuk#T&X6V6*+T&Y8Njwl4-2EtM@~uKBQ9%*!6iG4C z#*#M22>N+y@|RbwGqKWE)OnZ%YTfDD{tfdbm>nD{@ldQ?`$u^i@04aRSk0qE%4TCz zkXg5vpN>jXF8c275=AR$e{1k|q>S$jSrt0ZLo*ZCFP@r$-LE$q z3)N3;gH+Xf8m^pp?#zUs~|gYhc-p^tDqjFE0nTKtR_Kc1f0 zA+V1z1x>|-jWu}pHw}G`J!h*x)U9C9Sy%8kQ^_(8!G&{zSB<1wpd!8`-fol+M~SM zLYO0>oQXG*1lAb4*(z&IS|Z3uoGy1sFb&2ndksXV$)j27>@^1abg^_{JH5S^p4|gU zSZNv`<_}1o4hwqm+f1kN9uLEBs6yak zNOZNDukqtjFSnslp_2@JB+xLcIy-YrgSGa%g`TtA#-WDpu6P*b_6c&jcsjO>DKc~` zBw?Ljpc6tSEqs3!3Y!6mLs!4WjYox+6qM7~zt?GrSkS;hsT2iPml&@pm&#}ofnOFx zM1x@_k^YKLC4CYV)q3TQO7KIU9>KD7rYso9CaPJ32UUfGs<(!6+{GI{H))ZY^2`ou z9D2o09W+A3xuU+5qW_Hv?eU=Sp7-Gd`!U(5%6DvH)t=~t`mT%mWKSb3cOvA-Ysqgl zB=`wJgh+k;jF|K7PX;%C#`yU7yMu`bHf-^KzsW-}-9BWrc7vec3cvB^(p&2Ef&S@H zw;T9Ra<$bndIEy`S@+STe}N7yL%}mPhj-Ie;3hGOl9)5!&abtwuN3A z=`M(9aQ+Ff?da!4_o>#cCJYXWM+JAQr@c_$Yq~*eiE;ng$Ff%4^TiXZ944>6XPA9! zwO)ikbD6B=11;d|gB;ZfH?YNn-vmle1k`~4ObN}$egHXO8cq`Dpfh*&xOgz7=|Zt6 zb@HntR&upxGX!y0BBX;jS@zxDJE6d1GR|0pX}D0d!aa9dmcFsKcUqZav4H@X7ApSo zdza11aJ>M>YpCvP(T<+D>k9zG&~w2fvh|ie5p=!Pq>Fd+6xHZqp@9+huWi{lC$-o+ zd`gGi8M+@V-y1=#eQCxuMY>_ii%DXbiXUxCy!rDu^EtRvV|j98&uU9#?zZvI#X2=* znp`Y#b5eBEQ$SemfRig5qh4D-=R3>KAhUP5mfHGi3|_TOd;yz>{geT)$A5(nIvo!e z-_M`g<-570dy@a1p$iLSk8sIHyNBh@TR*pJ|IRbk&TcSD(l{;G2tf;fdR&7~lXPwJTcdik)z;t5|2z(S ztMA|dFl3|FM>pgdutvAcpSt=(@(4fp@@C4$!M_yp5}9;FKE%qZhYpNbvjbm=zTtL$ zyK6(JfWT9B$eoVnVa*q5(em@>>_(Az09x#FCK%V$ENHgq9u<=a;LnpBFPqU&B>M-H zb{$L9%PQ0}LGIHNWUZav(O*Z6{55{V@%~v#xGc2Buo}+mgYdAFyDe;x`11X0ZbAz# z(v`OaT56K`I^51+HZ7=|F|FFU0G(w&tNmT=xSGji;`a9gVyNCl1Cq$=@=~{nV{u+H zs}5qijn)F(-ta@tT`6_)(!U8Gth7|YTTmsA;kGIYX4ivbEi46+T2OFn18%0VBS z4atanP@`BVB-K`A%Zhdz?ey?PuB3QN|MDj3=c`-#>-t2F8x_eU%|>F)x4Gzj z-;0<=kcL~(YE(KknKRf|L+N%aas$m5J;MrKM>hlOshS@9>665|zerp#Qw8qQ+S=LW zWM{8kg&tpBr%=OF@+2}Ha(|w5quRemL#41(a~t%-h3GAgbNa&y$C&H z3`=D!@Zaz$?BT+|*d#Pw^lb~7-g(KDn{XxxGNTaKW2&A=*<*ZY^~ZP>od)>gRU+?9 zB}z;60I))?wrX1ePtu@0*~n$5>HUfLCfls;B^CpiWoEA)Yy?tGes+`e6rZfS7-M6K z9VOVfJ0^aUA{&DYp_&&BcWjl7z#~?sOiV0$vS`fNlL580KSPenX%>_c-adK3VuP_mY(QZKjl5)FXyiqvItP(83$c~Ih_nPQ z9WnZ{_D918CvXSXQV>f$>vP9>@y`7$A&bH2sS&m9>{ zNBrM33iDnOV!8*jsg(;-3#G*KWM0&-eAjIS3I@2+TM~$9P73Z{fbrLrx-EP&&1uxl z*WoMC<1s!um}qZ_-$ofYGJ)|lRhy=T8TZg?7!<=yys0ar?)^@{mL=^rE826Vf9RC_ z8T2L0KnnrWG4RAAK~`tPp8nA<8D_IOgz zO?hg1|8_mmq;~&81RyBFC6AkIZqESW<$tMpf0==bHVbx#x?C^JJTM?J}sDPAq$0%_8HG-Y<#b zE)s=hB#r~&@GdY9)YZs37GNLnLtkORc2|yA<4#H<@|LMu)EqIrcc%ARJj%b$bXbdLK9aKV^>q z<=je`15`hQvWTNZcn?h-2}BjH_-HWzprs^-@QshJBiJ_rRv|CM#A6)e@%YV*T~z_0 ziNK=K2Ig5hRaCVoR2|P22fRVH$anSyjYkSg??%meeme1oeGwYzfA3}wFLs(sH(F>s z{&Vs3bK~}5)OY-U?F*U#whtNX%di{QE=DwWccDJ83*)IBw&V#)s0w!#1_efQ!J`{g zlWjap1f#6`;eFiN&P7M_*5bdX;*y_Iy-EOHsX|1*#|69}B#I`hmbR=}Ey@0+_iZav z_D)1O{y1Ylat>|Oz67<%tbi5)kYs9Z3g>~zOjZDLU(+>TZG*F#6^+(m1lZ)AExpcqz{m z$ec4Da&e-;|`_Ed;A5ufx5^yZBbGMCk9y#uS$hvG4?&#yG1M=ux@`p-B-!_% zno??T0&+{-&~JW=`3i^nh2NTi8wa+$-h@4?IIfOFwVyee?9kif40ZSoUF@GNp8FQ; z)B?vvUqj_TB=R_^bC5 zqSwgck*hCO4)O+I_x>pbft{JVeTkkrH7+BmwU;vy1mev}3*Zs2r*ux(PxY_A4Xfn$ z%NZ3a+M^a#>6fxI$?DmOa0x7vj4N4l^vfN1TuRT?(YDjnfPbl}w&Qrm&rYDyi+FW#$u$)B z7D?nM3wAb8tcm{B2>k#JZWSfR zt$TPOs-JQmKH+CA8q$qN5i3GpN?%02+w{W&(K z1!?8&;3!I>E7iyAwH_y19fxNd=e|wU&e4)*4WK&F1XaAS|pVXyVSa(Jb3GhP5n2w$@%~!LRu>&TS z@>5p0u|F^7>irK8T1dSb7J@N;o^A7y)A z_*&b5E>BVof(2(vAjy1MIj+-2?TD)*cS_)a!5@3GqRUNNTSPZS_(QqE#9J&HFKf%` zPro}HwwX$gxKaGpRyZCbBG885Qh=Qht#-Y#*RE)`b|?+i{YYuH8oZG{^qq=bz5Rs8 z0jxRsQ$z+)@J$QZ+?=WLy8X27-b420m7iOAi0* zS&v-pAK|7gcwAvzGA2+$pJc?>Dr&x6OxIJXtLk7qjXSb?^6r<3X1jxK0mG$k$7Na) zMxommqTiVvU-{*8bRvKt-=U^Q>xh6CmGbkkuwbHDQT{B`rk@ypPk99K+2$c7+m5e` zEz|WmkOl~cd6e3I>m;p;xm2`66B-#|sQ0ma0vx5iuFO|u$RZFbwzNYvS4y*56`3D$ zaDk-Old=mu+v2iC>MN-^;|^K&3KtgU6txGP&9OsDWA9E~7EriZt2HOvchC8tea|l# z4hH-68w&=fg???Vt+?dm&GW6B<|Za@ zu;baAmRYOqkjn91yO%s$mU^>|kVDnw?FEzbi4w2-wqt^H%N>B^;3)x(4~_&$WFAdV ztGh#fZ+-$5-V-u<+NW44>}pd$_RyZ4F`{ojHo5yZon0qnY!Q_RB7~L#{IQ`jULUB8vT=HI(PXLtj`SYTA z4@OCQ?|6BgrTt6;u*k!`ZaWF3Zyj5X*E}v-)%f#+JH5t|FP>;8X#d>{xiO+w(dUcc0a)#}vxkP?@ZG2c>fxxl}r(;&Eh|-ll)NKh?z*lz&fpr4v=f zZ<8c1`#D$JnYdOXeP<_`+^{h_rUDNIlCOxEkfd?kDj`jhpYkGb<$KmuAH=2>% zKAU3Uu#J{A9W@;oHC%WF=o^{l&&k7#i5r-;eNfwM>WJ zcK*TH`Hm}FxUpake0LG2m}H|S<(LE-*)>`e4KEj|~BmN;UMm3xD&E6!EP z-^4VYVk%u!G7nmBk4{YdHaP3{dz!B{H(F}!eb{X4^TOmGjbMliouI;p}fAdpAs5Z-llNx_C1 zWkMih%9nA_6^`Fzfitm0$K5v$-D4CMc#Ko7>b3OMxzI)7f*c6J5yHgRmTK>#5T2gH^2oYdeLK#KKQiZ0*0&g^^TZW(&re0M&>PZVIG&Z z%(2yF!J36EnmttQ5gsYAkuXm#>h7Deey02N!fhJm2}QLdzply&+3wKpB`)8OeH>uK z_p|@!?%R*HW8U*d2^~D~5WQ$VS+vzj%tAO?i}i@+og}VrZT+;diBum4aqBWEP~Kf_ zL9LJYT-tsg=89-;6vaqy$s#d8p*(-_eS$&9C`&8#7EGE0tSuH*5}E!IOP|vgXz9@%PbNVO$cDyn{XO$iBvJ-`#nB zoHbJzG%7Qb6K*Y^T?8yYz&&Q#+c6-wK)$2oFbt1v^sn}ZTsQR+^= zkN(5WI*r>AQ({g|PXCFue&-wKJ{K6h{_;wk%#!B39(PmAs(&$MkyU0Z;=S@S`0i0S zK2M^^Uk1e)Psjm?e93#e(Dc{eATlBZ(cp-LLE%I7M?1{6@kTPD(U@}wq-elp(f9up zIXg2-8W_R_*KK9rL89&I2!fc^?Re+9R@eta!WH42LOj6-qxR zGf~E3nKT}%-$r(V4r1hhNwYk?*ph$sGddMA1d9X?&X`+V3iN)%sMW$Pv1pX7>MHFw z{>Ep&JIs$eD#o$qQxwC(d*tHp=wT(pt zGuzvI)B8Ttm8a*hhSRy$-i@+TgXWlvQk-#Lh2 zff2(%TnDTdwwt8efZW1;S3$L{nU>>U@>;B!->g-A(A#HqBO!*Hj|%I&HZEKWyS9^d zmiOMU8lpq_-tVXr(>}G}FxHlIVKHtJHun?VFna6z``E1+}9?Il$9a_8poRJ4Htnk5#7U0 zYGeI+(^~Sj%}Nh}Zo>zZ4egeugxwDL&O`+aEe2#y4>H`)3Y4!`sr)?hS|Osb`S%gS zu=nFG(7-lQ>1KTJ!t2Zp3^5@a&wl+$5k%Ks$@Z7yqG4hWYn8@n*3iJY3fUpAhs~Tg<|=TpJHXCw zA^6>1M4p9fXK0usZw+``t*;z#oTaCkDjF(&NdcTR@QY4#HgE_Pqiefl=K10Q_wXYD z2B1|jnCzO@TSbNHd!)C(WO+z2xCnSf&d>nlQ>4i*PYDS5Gc_46$#V^LHc`S$m*2mb6i=QqH++V`jmWCRh3vIPl=5TLH3XM z!{g@6{!OvYHfcDS7T?hn>&qDz(6T$SnJTsZU4to4oG%;WJsJ7LbT6jrEbi(-xs9I( zsx|4E9i%-5D~Xn4qeI-M11>^5;dlD|Ls1EuiGHk`(e9`R%PU`cG;d;998otk?Cp5< zab>5F$UYgQ7u7^C5XVK~K7F&WR*<{o0o?0uV(@}H5NIUz?N;^b@K)qm-n&Mct;GX! z*GKkWYKpW40U;q~B2^?4t!H?k*!XeZ=ZDaclQF0{Ty&=QD9y49KxY6Wh&J`HLb)fV z^(jkPs}PSJi^4_Ho<&&v)4kZrCq!>;0w`kQ`v;_(_oWc>u;T{m*^Rk$YBuBehp8qvn^;D6=W&w?d<1}#9rV+Y;qldi*UpF z2WNHDY7*^6N()WO^caWgvay9ui*Tf2`P2|QLiz;#IZ0R|(TtDUI5+#KR5;}x1X{vM z>bRRS(u=oFRNj*^F#d+wxG+r*^!hN|TN2*xG+JaHXO0PB8MVhFs6S?CCI;ddQ2rHz z*(**zy;DOpz2Z~MHMXxFcu3`A_)_t$K{;{l+l4A?{!{BIpkvbQOUW@?+%_BxewW;s z9Eu*^KWOxWJqre~l)IUeGbc~X(S7Cs_Pb?u!j3epOfk_jSH;Ll{Ps4_OIT9ijCnxU z@#N}dnZ#9E1CjdPw<;luT%E_H6r)1%HMXlS1#H0OQyK=>=3aVq;~m@G#I-q39)Y&S zR~(NNDsL$6E}o~-4oAHW4KelVWYH8-_Gj_E*tz!d7B(AJuOvk_rmC1lgEHX4@A^xp zc<}V;#cxCr(KqR`2Y3(0-x5GP;UiPYz^{V# zagZ8T1?f%~os+BmXoX=RO_XY=yUt^~HQ5=9Z(Pe@uKHdcC?XRx*#nlS})g?(5( z4a7slcJw7xSM@JqG?cJwGcYcKRC7kvEkC8=&8buA>7Mf@>_>ij&Lea%-bS#I+FkxR zd8UgK`vJE)leCrK;~^4P3E;HeJSGM+iX#Rq$o;a9lka%dFn$Z6K(uQn{H(a*LB#;# zCaI(Qzwy!1)odC;PGZW*?Iddb$we2>7uE@=fK`v*9sk%Cj37LG3{#6SDyOLx48j=Box$t%0!+G&4JFiT6H7@GP;Y!G7xKp`VRl^dN z0?Ps=LB_d|b%uHQd}(#w!$Z=w4tw1Ohu7~@;M^F|<=cwkw%571>E^rSwm#(Hjo$j_ zovx|Lh9LYfz04E_*EjJmR}QK*R#dC0vLjmF<*{-NQIM>A)LZ&WL)GGj}GT3r&SyHxl0(5Zr{}aV4yp{f-0!~hFHgL+lr0UuQWvUxJe{FX}kg`Qq$}2RZaDDrFM^*h%6}$m- z)Ix`Us>uv$l|g^UND_9jK*Y=AJfL}v=!a<6NSQ)K<=>BKf=NFZAae!b=4LgrZm1gI zWDkZ5s&tq>B-68Q6^vDJldneV!)sPx}in<-FjB%C3SxJQ)1*XRT zh_b4~R8tv3_fOBU!*+02hqOt~LzuaLKKOa4l19o%JC1a>(F(#v1jKOJmrg8B9uw5J;)Nsxx5G_}5xIh(HQeZXqGfkD z9m6>BehFyMc+3^}(FU!!0XtYoy!&yAHzPY&3wt0kkugJF`#dzjYdxx=crP}(Urh<< zFhH4}>+9ZP3WGV~{-v!o!4=r2u(+7U!D6mbSt--Thb}w2JB^H@n7TuEdyV4}7x98{ zgOzfCV;96>p7-XHLQ|*IZr!bUG>_hJ^{!*Z_2Is-;ZxyeLZ3FWt7Ie0GqpuUj6bexCN1<255UFK%sc&6iD z0dB zi^Z#>(5xZgTd$>bj@4*rpp+QbCD^YZd+LtPz%hA|WhF8iB@IUZ*8)Z2Rsh~2$;P)l zPuzvlEzwM5@ig*}_1(yidfH3qWgcebr4pH|exrDw?TqVRk(e35^)w4ZlHnzNEO~(> z8ga~Xj9uHf1Is!anh^|>km`K|&Mh!i6Hn4A^4ja)YhfuR2~U$`d*wMRY7PV|835D_ z(@P^OgiShG6I+!=8<}0D{R21FePVdjD1nqsoZspl!vQ;ixNQ!i{_@=EyNT`A%u$9S z-djT=8&d|O`g<0uRN;pAPFH&Zm-;5d2_mouYzF4Md7$uQsiDQooyZi-S zUT#enFcUg=q`xVsavwV+LI_}zxRIVq72*AxdQI);lSlqKbhL64r5 zg_lizq! z{sNY)tW@v?G^f`WNPbcKS2jU(4lm?=UETQH@|R4E&Khmqw+X;RAiVTKF|DoOJF6Go zgYpqJ#zbMkRIGe+o{_xNJVuXNePOxc>ubmH6Xpdtk$tBAQ(v)nuT3q~vO}tz9>5<5 z$J{V8VVFC<3b+6RJ7)130&oDE2O{NEcZeU{?`MLp9Rz#CH~t9t-vHnueoO#3KZqI* zks)bDquBW5df3m^aLH~5t&JNVwiO#t*A-83C zKc+qExV^iq6|Ne7hUAAx+Z_4+I~&5w)997&PHIjG_W zGZ2zhDUUu}YU$cIpkCd$d~|V>>gr|0vtkrH@Y9hZ+pW=RKI1X=8QzSD?bcjcn8(b} zCde6`YAlJ~$30T*CDt8jz=1+?4xMQ+x{A{Jb$13qHvUG&<7BC9huQseRuQ)jYp+>d|n!SdI7Z66Ml8`@<}$t>960&U*s9s?XHi zpR}M%ZR9mO8=Q{7tdpgSr%KgrEu#b*I@6(Dzf zIhM@hLQWW!)LNKtl9I*9=%RBcfF_e{=-X+k4LfY~?KOkvKgA{U0xVYJP7)V6z(lpx9(*`IyzQ^#~ zS=duMHH43MB3L}{9xrPZ`zRZUFD~I->jCrA<8eqv#z1n=$jpAG>Q#3 zRTuj&9VSev=*UXFx<|PvMdvg-v0o_?qNkJz{y}>gquo`a*s3*&XsO4 zXOt&Y(AR;BxIXE40Ge;d6V-3dbU2dFR`)aYW@CLWnHVu&{Mh8Fy5Evd&TN$3ggO}H z4pHS)f?YCXpTgZY{~3aPt2agL0>DbQuE&Byg{6dN)o6wtLvay;qL6!c@ZCr;W!pJp zOW?wXJT<&I>`V^cT+hDV{sDTdiQJ-Pt^yy+{SV{y!s;u_Vm=k^;0RXU1U3X#gj6HG zYoxpxk;<#7P|6?|e5tlTKWcUB#K_0X$*rN_ugFB;O*#-8ds_^|_cSxWZ6qy5-cH;y^eDl_0ODUEFwQ+C7lB@bI z*cp~9=<$L^iS2ALyq}2m0#{6ENTVgaJkmix_7+o=U^FVvaWc%2=B1pnRS&#N1CU)A zJ5%^QjnR7LewdgHzCykNwX{xznf+%Op(`fC!KJEBq$r!0OmH7f?o+d1t#Js^oJSQ_ z>+aFG>zQ3Uof%?y!78{W)BNuDD18SP=XKG>Ik^rELk|V4*>-p(?a+Igpz@0w>iw12b4Xwyi>9e_I)ym&ip_lV#h%fO*4M-(t7v~5^ozF!W2+$!{ znVF#Og60qYQIxIfYffipx^9P3J<<*r_*$*GLKi$`JQ?3#=oU!uM9auDIn(1_pP>7C zL7_ORZdj>nWvB`X{6@)rAR_PJ zwj2a4O`>*g)5?K8Q2}NmGJ$;Wt4E1h=WIi?(KE0o%XctQ;@i9PhnYP9XJByPMBadn z_Eq1jK#1aK$~~#1hqV*b%w$wIcsF5PL=2OL71=6s!NqB!Coku`$Y_Tsg6yR}#$3hW z*-@wL+kNZG&SW^wGplb}VLZyOPS{cw`WAtBku}1rIjROY1h`Jsn%ES))c4|Tlt4tD zrJ)u{_`=M^+F${LprDr1%P}yu{5!P$eD{J~fLv2wn~y_&SAQ%;Y}QX8M3sgS40~%b zAQXm+hiorV|B-=urxbP&o`-9GkZYXu=s%?pHn4Q^=86ObU(3!=lcdHJEZiOS1h^#< zJU1weDH0kS9^irlw7oaWr6y34n6*sU8OGI1wQVc_1ntr#>ezKX+|)xlJLpn(1YHWk zfBDDqE=mbbaSP`jf5{Albrv0SYgcz~(#UT&TzWj^SJJ7={H)pr-25*tJwo;BmZCgh zr2x?q3}rTNl7F^AJ%gA>^%LdoxBp;aW6fvJx45g9i*&3Wcr0KI|Cp%A+k zN4gRl98i%18u+N*a+*A;5I7&H@8|Wp`GwFp^#Zr$AM1?mqjQJzf9cN+0Oo*|!;Tw! z7M1(xj|U!TcD5D~0wJ*w~&$OoDZPr&T4p=zn$MN0qgP9$ZxD1 zPld3FoV+!t7y?|1gy=I&Flh|$;Y0A8L5IXFM-@g*zBMOo91Ri5E1yjpW{J zEfQ+^v#(>&qQ=8$lwF{#7#w!R6k6u`xgt0dNRXhn$35V|MKsd>>$v;X!C9=Q)(mf% zMlf-nS%C$)de1}6{j@^6Kc$1F(+@H-mCr$J71_T($ zm{XcflD%2pEP23!1+`1|Z0{D_`6&o7E;r<5;RJy2eA1hyH%+cWc6uvjwVn;*kngGl zxlH7eA%C#=CM5J6dRfa{cB(^*927 zU$0em6;@kV2Z5M^?!8tuQPhu_H3Uf`P zuz{NCV8>KLh*G zsaX{<&u?fU3x`CmC{2Ff6$4STS~ErlA;rA@`BUddx!jzcHBNzo`hQW?MjxbE$%c_* z3LN;Qa1!k((s2#1O=s!*rdL;#sY4RH_DjWPyyh)?lZ-_Bbd6QKF3TIk+OL9Ysi}|o znIHsNuwb3J-;gcSS29+t%Yz;V;9ZKvc~YxQBSK`T0XgFP3@y;-nPT`bPnCzpzfGEJUVy9PaTe=2FwX=gw6 z5ljxw{B0=}f=+D@7#m(}12zZh3nXRr$DKbBcu6ekZXPUhX6{!5>mqry@+y8nl{|!*dUh@PjD;|s+Yb*O$P&K ze^%#TslXQFr+>m9S6G1yNYnSEQk;02U5L!>LLAdIf>4-#vbe6r$uwb*zqL?7D^*tm zn*w4HtPmwVgyRr(A}tgaC`%!z2%vw`H^EN!(a*%`Oh|?pWv{-}E53cC&+X31z|gS^ z(PkB(vKV?~>>u9OyLQquOXpyMcwA<8Ve-F8ZTDaC@5-iOrMEDAL&1+l0ozSszTcQS zqE^(}GktBO;W(q};e!;-n8?H@VqDP903DC_Q+7Cc;e5w1yuGIKgwJ<$7c?$FJqE7> z#PS4x{h-MJnXmW{7<_f8>shAVf)9%5z+YYikzoCl+AG^%^4!6Bj8VB&Y%Li?Wg zG-yOnoV>^?8eNwho3l3Pn~ba&JaOlM#$t)5Y*1 zn>>(`77#8U`8WjL1IznE8VDW&KxK&rViM5Zyq(fCq%udaQm!%NQ-WQ59HnlkL6_lu$#<7;U5xW*Ke+#K%ssSO&0Tc6uT1Y*u|RcAJ`?^$pl+bh z!sKJK-dqh9Wf!rTWC0W+vHE4_c$9(?Z~iv}oqsEd($z((s){Brm`2F^FBG~ApKmka z`{I5eoKmVY-S}|BT~(+SoU6gleLB+EgEqXNx0C2V*|GN)3tDa7D%CJ6fuae>=t)A~$^2%0rk`ss+OlT z=AF^OlSY>|!wnJ)mcSb5hr!e&9|^~@<_+=kRy$v(3`lqQG|n5pKHECpvj-&@)(RHt zmK`xF&zF3%Po^j89#1+}>8=BB9WPj-(1qbVuW2L4x8l# zHw=delRF`(S#azWZ)bwEvqIVDglm^X=kY7+6G_z!aBPSJ#vqp3}T1DYAGPO1EOn2txg6oopT5bDk zcterR9L$ScM-DD9faj(z9$(!I3A1RKsKP;B_Uro{(O7wG8Aj(*xdU- zfTic4dA9A5I`fTKa98F80zo+Col7XVqt zvG=#HlVG1wXoxaVNN&yd@(6*=lfN?|O9bxj&<(d(_=CG=S1U?VXSol3xfnCDCq_E_ zuh5IT=TRj+;sw)nk{F_HqR*_j2nQVtZtJ7+SfHkJZunW%W@C@-P_71FhqYMeX}K^~ zE?=5YdzJ>?O7riE_CcMGcIC!Upjhp`nToC#_^f41=MMh6AqmN?{QX6-7M$2v#WzJQ zHAvaqqJCZm-M*GG28ix9G@lqqy=m4Dw#ROP{|?vluoH6BYXIL)eu*1n=Bx^BXbI&Z z5k~%JvOxvi*%2fY#0O(R=f|eZ3~gg5nt>({-V})Xi9zbz{G|>+F*hZ|oF^lDqii9Y zqN<_zy-cpU$jQC6GH{H~Wqp~%&%q2XkJgs0JUwhMky#8`XPgJH1fX7clFSUmSksk- z+O+)kJrH@PF*1b6uZ~7PzWdyyCMGsJauTdu+&=^k|*!pg89v(LoLc4 z4wHfqSgv2FZUC861r3BJ=+m|B2G_N8x+%GPK3W}2MU=)gF2l>ewq1+S3c!$Q1AMTY z2qA07nz8Q=dR!eXj^gc3FP`wl>h-(zqBM7sY=K{ge0?oPebnlURa!OI(1vOwZ?prT z71`RboWM91arph$+SoKuND$r*34UM2$c0X@IZm=fXBCP*h>}DvV49A4~sA( z9Bp%2w573x#B<(f5A4?@yFFFS5e&^cC%PCT78!OX8;z0%d&_iS6Mr83Zx{a^QfKrY@B94?TTi0`a!>WwT;45#54s9Q-M6sUwctIk)Aq%L<9=}_!bX6{geHAioqT>-?YI(+=rqXA$=Fuf z4=G9><`^F+@W7nB^6D?`>{<<@%kZb6fl|F_$ix9pk9-Yp#)uAWX_g{C`w^xl!;VAz z8tK{(BP1tVE-Gr_paa~73H3J2og-An((p&ptfJ$O#a5#xA0OszH^>zM5&NUzZJ)i! zcNsx>=p1&fk7U0JZjMcKCrD#TJ4+V@x`lil?7m+(LY8v%H{dw`H{(6WdIR7aIk61%%R^9IUXAe>S1<3e zv_G53*udz`zaG&MIn<0%!OVbzf48Bo8M`44S{1Dw-@K`?6Fns=3$a+xXu*lGyB9Ei zTtbS6$j}=_Tqh~77`!k7d6gSH*hOrc8Q}XooX+lD!$ElKoYP%ADqRU6-Y)~865Yn z=?pu=I1Pjx5s#)z=5;>Rl3>kGsuNwc;cqXLLdF6OOd-r{l7j;v zG(YmXIo>P(t^gR+pQTu2Wt}E%VAoPMz{`&Cwn|h{xJ`TQurPx1tnd7g z%u0!Pb5I0Km@TlQ4jNjd!FqwhvSDPG@(;fZ@IBxGHaMbWcqtc=r9W-xSgi6|o+tpm z1uI3{78EE<_d=P7gF6C%%1;CR9U*Wv25i*DA}lxqkrE27337KTOpLvz($Hx8Y@iD_?c*>7X%8jBIXv^ zruZ>EdOl=>0m$H;gF^z)>`P-5<)B-Z<>m7#-Dt2GpqGB+@srPun4wV19zhY8h}3{L2cU7n4jQi zarRXf>3rQYI|rL-o%XqbYV&|1bX$GSP7U?v3JVRKrj5kSU8CYW;67DI0C0uxgXe-f zsCK$LHtHzHk8Y^1rw77*uA93unQK+nduBui>6^1P#oxY3mo@TEQQC~8j>7}gjYit` z51j5bE(NZ+hkgw82_mY>>U8~oyW4;IkN1QfzAdcdZ@e-bG&uCIOC=aVh!?-1gci=G zVC|~(UjTj{|1vHdt3j_K!?o@(wPf<0wA8Ifm!0(3_3k8@D`3jC;iHQF%P<3Yp1CDc zZ}qNV_zE1gwO)ULPC4P)DJUDG?c0gWCJeg3uj&QiGFU5olg5ZGnU%%;xqnPIa~91wvL zE|v?`8BaIM2?Y>OKgEpNTnEGqw5~agn~imxnQrIGfj1vW{D8ZH*z;P>W+`Bj#09U$ ztf9c(1kqI;NdnqN;~yadVF9@cf6b4s;nuWVAFbe|>AKU*A z*)yL0^3IILv&RpauE!>Ku21c~UDauq3zSml)hx)bSBt!c=k}B4h_Z_=qM_(UOJrh{ zt)Ap;PImHFfzv;x%2cs3I4!Qwf0A;i)y{*;u41-N_KFP7WbWVz`r_Im7i zwX&0*1M}4-usB~=Kdmr^#d|Q@_uQ1I{J!Ds6_8LPIZYjd%b42jWW?7YYVP!xo9#jQ)MDosyN3e_aQ@DFD^Ap53MEOj4tti}$@9k7wNrZ*9Nms-L@|}H$)L_`+}OP9YIf_@ z)wwEMbkWj()HQY-{DL%UdOVaiJE$%77@qD8D#~muE}k=v3AtnX{yXXVOi5tZK$Vqc zNEUYIAN&yzi*9!jr$?LeQMZ(d|0#eY z%TvlWldF&2M*pVL-&C01bXiGkd8>kl-ua~%0)79)ouJG4JyYC#&kA}8u=?)IN)l9$ zDo+s+ZK;p=ym#)uE_P$op{#G#U$9rWpcU2qMAf|9O4lvFg<6}|W|EBoa$M2yWhe+F zAPw(pOmP1~n%|iBJp0}wFFh&I{*u$fim`ZN#E$*QmTgv=*ZSoj4j7V{4p@93>Kb!( zy1yW8p^9HU2)QydYd9tth`X+Y@P`(s>C&D5sfW`Z*lih-uE{7!^tZO~{fAb%o7iP6 zCH=9;+vukvmY*2Ld^p)oA%;i`bg)G*Dh+=E4eQCplb`4Av5gN@zpoGa#3BnZ!aF&JA72U;N1R{BVX(V>Vr zZPMXf%F8%cN=Qj&7-qzxr~{{XDro3nqr%p}-z1&GSwQvX4=)O&6;#SgZ(-^Jn*=E9 zVV)n~oIcjL>$3dP&gvzvcXk57eVwbIvMvfy$~=5!#?(+aY$eLGD$cA0@_28@mpg3K z-3)Wg=QK|B;VaMj&4qn)_bX(kdmo_C@&}`2=}=WBQuCOF3%cNVAr^7RY@!L}m$l|T zij0^KM1)yPyuy*$c8dJpnSY-IE5E{r2`mNhQEZO9k8r|L0%-1X3I5_rE8*h%5DvUT1{i7>t=bk&0tS%6tBRd)qhhryj}@*Oncd<9_N*LpBlYY$PZ}E84 zMJejt(aKE?p;{1ywyfXHIw!;9hJ4?mX5W-)E)rs~&)*=m-i(GpLm!75{*Q}Cr1Gp6 zE+nNtm3gSxra7Tm2g+g&RfOOK!lH-y*!E&EkP(!WzAD0;Ne#t7FHa%O@sreWkm zSPW#9ix@Co z5$vUE8X&{NP&NBYj_l#)Whh@@CX0u1`h!1*SoEaB(?%cT0KtpaATs0nlbO|0N<*Ra z=<9K?B$Ri9N2A8yBu+kN(>$ocy;!KHHfT5_xO9YqFFYYQ+-Q_2mxUfv$~0H$f66tP zp4O1DL|CM|>e$BUUCG``=iI zb1&M@ofv_dJ0(?YbH2NU;BygLZ-vN&ZktF;^rOU0rDkzdVQ+DVk80%x^%z#<^O@4G zv$;G|e125C)7^N|9WQ??ic$PW@#%Q6!(40F>eN2q>tc=n6dGF-I5kSRBC4x}&$=WJ zZ)0nLM$;T^UD{sNT$@L3alsWDV2^{CSw5vE%>Mz>n6zMdR?Z$zRPaZfFBK*o-0b5S z>^}`Cl#yEmf%G>BrCBlme2(DWSiTP=_hUBk&V)p-8nZCvjUg* z83ndZ9ViI;HT5f4$}MlLY(wCu*QuPafj7eqCBtzNzk?HkTvWS^U^`rw09FW`DV2I^ z;P9x^S6fkqJ;J0cBfZCJjLJ}jm;d&4SGYu|sApS^qSLEYl?)D=E51L!&j5dNxFLBA zt}dy}!%WPjQjB#EO;tUT`dJ^O+;=snnln6{sNX~l{Ta&Ate6^XoUt=BTFm7 znp_=!|Am^+iw}fKaZb*Hq@jds_rI62GO;rE!byaC*;N zx;Zn~76DgeTCHdHm>n*ipJbNXO-lqeGxj#IC0CCp9jaAQh z1V%;Uvx;;ei2>wscIp|+Tf?!Fv<@Dqbgo#F?}l1VJ@Ol8!?GlC;aBe2BmrqGb3N)^ z9xRp+Oa;ht@R9?#HUR7<2Pz0s;bs-3c&}O}1hwSr6NHuP-N2n*S_i@b-deP-BGjt^ zVtPN}dA|xb%(MyJl+!|+v*MR^N#Tkg$f#6`qw)TRb9?R11us;^drEf87`(=T^U)*q z?CexTOR-GWnu)@J2P2SewYUY6=jhyAZBUoo?W$Sm2dCRSpe_7v8-0d8uKb-GJ_NkBTZ0#bk4d-ewa&gAC5kw9yL^{HeZ!eZ~JB z5bG-HxZzzs`BA*7D!Hrb{YN$P;*3+~F}=ab9QEPa^qGzC`jYQ@>apZ@Cu{B5`OVWD zzgBFRGvRio_qNh?e^3G!Qom=`eQOuZD@U~8$UOW#s+ov1+>wNP9e~7ynuSr{pQnSu zXH(LufCYDzD8d~gBSU~~nO&K~sFy&7l?7o~%?N?T#9Nkn#bn5N z0$sY!XsW+syCbf?YlX1b!|Z*0g&cG*7~RpmNy63R&?J3HtnRZ^eG)Bp$-{hq4tp{k zZR*0kcmgNyzX^gHBPt<=$6d4?9Rm+C(Dz>p;>*t=Q|i*K!=%wW$v-^+WENkjplXP}o0*PyUH-^jKy-feJ5E^h@7*L_tk#qa?dl~{YB%KG zRNILtNSviB^xEr9Tb1M`pOHn|_6sWF_DNSTKt3!k)H4V-CI)xKVv}2B^?#G+%PkbS zf8Oiu?}T?ZcO=huFqL5+J9DBXeyBbdcWLQ>TnxHlPk=|iuCwuc|NKlzxMMf?$N6!O z$5eT7Q@|_&ZdiLDk+|6C?G+0e>sy<0!>1Gn2mOX;>p`lZQGh4zcQQZ=jD9DW-@vWR z8`sWv$=fjCj0!D#o#HoTUpEN7fojp{wf?2XC2@Kt&aW2XkBGyRX6Mrg!fihd=LgG3 zClo^xz(ceC-^8sdRWz{oDVS6LsdMuS08C2rwS`O&8C={@d2)8(_v6F}>a1AY zY(zSH_g5nKEhLyjr;T<}WMx%fR)fgFxkYp^SiQyp{ho{uI zO|)8vxO9QWyBsqsLmZ<;*dIFkMpR|?=(sc5fL~(CH|q6 zbnj!2TC(e9^ilU(r%U3P5KWk@2>qqPjkI=!EfTtifDMP-DI|@c6uc`3FI=qbbJK!6 zdOuTPN_)Zbv*h$k&-Pxq@}dJ&fO}|=G(N?k!H-`>baYQv6Yl~L501kmReZ)0ufdw5 zW$t5TDq*n?M*MWSg_wAZh=$M_o!Nr^-6$L2lb@l=f+`cAf^!PCbZkU@1tG&sD#m(&MleF_kM|Fm_`?Mq2 zozPAc$Gs3ihW{)>>}e%tVXNcj(qQHpKU6uPzlGpP?4EoRG#R91`TM3pyZZl z-_~CvAGG)Ma|!;Q*nWzfl}_Z32}ixzE=~d8?SQ9O^rc@F4XJZsOyO#nFi!O+gV)RY zncylC{}9_TqW!wPXGIkc?!`~2r)b-Jse;wfw&f<5V2r)QH$xzyf$yd`!q!tPy$1;44(saAA!3 z&cin`+9l9`4g2fPl+R_{7g-bAKKSqJJsQ#F8e`)G>okIg=u-EwA0$)SC!?O+ut{2> zqNj;mQ7)o2Z!xM~8B3poK~{5gklgTCJ>3_JPPBA@8^Y1f*DegAuHP!LH9Fe}3OOQV zvXlM4&oOXmQju&~C**aiOb!%eMW2OkoS$t>H=MrDJb~K--b^I zTdsW_8iU^I#^uT+^4JThEB4t#X6%$>8JD4z0NVe*3aBp@azN4sTZ_m^`Sy}@mk`2C zKRtstHO#is*p0^<9QZ494^s=2lz4#+3XY4VBk19tH6P~zhq254Rc*xyw2fM#p~yEd zOff$7PhZuoM|^E+$-jxkc3o4IqD?=d#i`9h@Ujf6N0AE3WH<54EKeMzyzJ9R7=D; zI>*F#I*skunroUGhl{G;zMYWm(toe@1~L3Dd#J(-SArg{HyqnC`kidq;4Ihh{J*}G z!43yKH}qx4+u6#Y%F82?Lr^`;O0YR~dKq$p$uJT>p*WTQnINA8Hv|Gun4R})*aif- zUYl<)<$3lP_u9FF7zm71V~rZzIF|~j6nqLG*_d1>GraNinu9p<^&s5L28uQ7b^Mb4 z0k9nQh#Oe`s0{*JCz#K9#ih*%b!|QX@(TrjTwONJU|NBFREhWW<$9E$9b_(SzAPt# zTww&^gmUAolqgAsr0O%S$!Cy+&4){3NXV;c^5rgoH>t7?QK05ac{{xDHw5E7&qzg4 zm#%ov($$;*4;dDOsd=s^aHqoAy5n)23|Gf3+BljXgzMOFot9>lg5FAniw$1BMwgQ~ z=|hT8yj$NN;y=8mOq`Zm@I9r1O8f2hB-z zrMIXPnJHK9`qwf1ufYj&1#7rWO`j!CUrRuC(6LW^-+rzYU*dSI?<4zJ$I@^Cv9m21f%)2OH<7jsF#Jx}8h_ZiUUeVH0BDN;EWUu#5mM z3JxAz(WD6%C(1zG*3MdC8oft)q;`+9rkzEdF$jFotHv6AkjclFzX-PS+QACLrLbQ};U=_nB|X?SsVfJM1QEch>TCW{ zSuy=h73Yg8V<-4M-(b@nxw!61D^JSSQu{Nn(xRXtrQA~F({~&&*bSxGxbDZ-__VB| z=Z9_dUO?dkPEXkiZG)DRGS$^?va8DLG*uZP^PT``K)%{SP+p3{ySNp#?uTPR2v;F2 zQ~`^6J-TEl?R-b73U<(b=iewYeGtaLRmUV@=kM0r63zdIrmGB#s_WXKhzub}NGUn= zNSCCfbPpZUDcv9l(ji?#Ntd+5P}1EXAt4P)H%Rzx-sk$}hkx`M&zybsT6e9pH#h12 z9UI=s$>!tretx+&Xn1#gZrle3@^dZ+LaK8ZZaV!gakTaIY4O4;0SNcKaQ91A@>#{V zAGrE(oDmO3>4m!giFp4bglYT!au3K_Q}A+bVLWL3nL~yx_W=5a)satN%Chz+t@uf0 zRSlI8%n;h5tQrUnk2C)CEJy68a->^8lM`oNLk>eYDmq@Edlb*chaYFZ7mxP8rie~0iPc582S;r8OohAS4b2-OL zQSf~!bpl4R@LOPEm;c64#Pgxr;GUtmQM!Gu29{e7ibXOr4tfehe?ujwQHzn|UYlp< zi(gA!YoitCRjwqGi4Gl+I288J@>eSrZq1u{g3C;cUcCR#UqRHx=xve}OJwq!qmlX< zl%#GXZDc|ylC7WF*EhlG8(a(yJ?|0LTnH_uct%G;sAf`ZU9HY-HTzRQr!K{VeVzt~ zikvHf|31=HFSu}%$^>O=BZr=+5;8>^>np@%65$@L3WjV{|wL?QYZux3?%JA_!LdH*_hi z_S@f>(FoOOLr;d6C}mX=n!^hRIEr!QKk@x*gsIf3C)qqNh2sw@%S=QzJxaED!r1|} zZ`W-MASyssn4}*Iun1$ z1kIdF?wlVF9vd)M(-{oa?_(FIFi{9Ed3~{74}@eCkA_6^{yNn%Y+a%s;aF8aJT;G! z>ZerXEZ-gF`>wOGk-^T){YgHQH?(eECHkI|^zV2TMC#Br-3RE(jZc^mnxr7e#Dh>t@IB_fexU^$3Q;DnMc5&=T zFqfg}N3HjIYLxEChRvp)O3(YpmS@+!+431JNs~!dHd&PxyN6SY?`&i9_o4Arw2)Tc zLOHW@I+TlG^1&a1PcE;=|6r}2R>sX_Y7(hsHN{_MtG!>RV4qnNLe=~! z@*`WC1AbO=!-lD)Rac?nYJ>sndzv4WSO~>(zI^$zd@D=!fFhP}xM9v!dLlAB`?x)K zm=`@exvnQ&-?t%4FV0+VF6($;KQPPNIJL~b7vJVgJi0X=(<~5I??C=_t=7tr&ClTn z?p{xSH4CguG@ZVYl}>`RI`K+iTt)Sm`ueS%c z8{QlgGiO+t7|JN!K_n~%DQ3}&uczb^k2cevJY&*7Euw5WUVPD)AeICo% zzmEd!-FG=L@opH}u_qVgn~bV7>Yp-)3(=dd_i)MazumeTXSItu%ng+INP7Z^XkCvx zeEbyy_;}c>ptrsK!izaa>Xoj=03Haw+ZgK~vk}Ce&qgV{P0s9hB^Ul68$^fH$hiM1 z_IYvIYcB1MSSDjz*Y#u>9;mW&jg&VtQLk~W{kcn6j2-3NaV@EH^O#qOJ2qt5jn509 z!A^7QUhdc@R)Aj)nGE7|bqhs;Lfas)0geTyRJ@vq65gvGDelIIfUmu;_{X-&wPyFr z%szd-Tq5jEB0ltW#mIXu+s~OyEo&yCYAo5g9S(ZeOSEFh*24ruNbvPncq!_Coz+(?{n{~Wg4ZjrQVe49C+g6V8 zXnoxbP>h4-KuvZfv06gQ@pG7+SY~xRxfXXGXQ8SqB*O5!WLo=FxVf%La5lKh>?8tNb;7qVm7Ox|E0eG5Srn`c<2GMsZe* z*_em4+}Y}Wpvm6EBeFd0q(Tjeu;m-spntbP`XjK!SSa7my4NYFrVllCo{Q73OZBcy zZY4eauorCCmC+he+@G#r%;sRC$hwu-UQBV4WjL2_Tm+kb#goRv`ab%wBl7#-6&icp zs))(R2yc8v*2L7u?0#Ogy-LD$ePSEqYNB>-FYR2+k%{5u6D&JivKXT2<1A!fdB3{b zir^O_Z{>e^j`?o-axL^l6cPW)zB=iP0-FpMTn*0XVUT9M!y-d_!~`+}gCQ>PJwt*^ zVt4q{jxPtny9z%0r!Ob4e=MmEgjYhWz-UY}vU(@9@X_D7U$HwdPLt%TA8&vI*uX&f|sBco%3a?tfVb)z*GT zkq*ZxjzW+#7cpjGxn+2mgr7>U@o)IVGqVQgk2trIm(DpJ-+vDDF;FhiQxIZF5WDji znRZ*cBhs6Ui>T^vFwnSCd*VctJ1h=Tp@wJDg`-oUR2sS#5dNV%1jx4px~D z{|+5)s1#VS95lCBcdXetu8C$9QJ-ynX_S7vdY%%|gpUQ^lpfsFDwRMx%?L#lpUe&j z)Dt;&2JXeaCH{`!h#NWyyjBb>?}N?Af3CBQlXqZ)fE!gb|1-^wrcir{dVfSLPF}g5 z%T~Xgg&7^?&L^qjAaLRIMLMOhUb8Y3qMw-hm;FnnYW=LG4lIFUXeeqj(w~gu+<1Xa zRL%5HU60hH*PFw=s88b8$&FHC6Qmffp!8$}4CLgnRuTFQ+nr->_8$vHqoK%Tbs4`4F){m++S&X|$6DK&#;<>Y)J z2LAQloB$a8o9z9(5)7Hy>~PFBJ_I)nlxn-P7m6^A24A){=K8-c-v3N#?3mkNVzrH$ zeR*~BBl?A?XBvhs0>ZMZXgSC4{+Ar@a5uKc{nee6T^~`oEAqz)-$eE05Rx{j1o_Nm z2BKY_Dp+%LE;V*R(dkcCC2%}WkQ!AWDWmyYfQrby5FJ$x9#21Q%~0J13q|t(^40f@ zp9jsq6@NVKdb@Uje~>#qHm&|oZ)+g6c-%UtFXKb~*kWDMYE*nyqxGJz)33nAY84}J z1nV3T<7q*W&D+X{KVVU{jgtL+kAKZZIJIx}23iG|%UV`P7D#s$zgzFdS`1yRdTT*C zQOPar>E%DH5k@JC98Wz8veEDH9g_XAeq)`;h5tfcyqQf@(+mo&3nAxSO~7iG{jqwg z>M2}-(a5ycZEuJo*sAO~KM24EfE(_NsLM3Vk`R26P0Oa!;DbGdhoF#J&eMgemA@Ra zOmfNe8qVp_wBML!t1Hhb#h4Lz3NWu_xO{>sco>qEGPS{G#!A-=TFYo1lpS7wN9yoZ zf0eBMiJnl3lUG$_!9cop`C&)Pvw87oLod7A_gjA^JXtFHPz}`8IENUEVL z^bkjC+&86pC$qAN-6dBaXGb5K_4P$LbfCgVn0)|xKGp-LpP|eMaC#|96Ic|5OLR{$ z{KhDY`~1Er!R0YLc3WPIu%MioIu+md&i0?`v+PICkv`^vMP>Q=#F~_004yzZn(`O|z`F^~vp$^8 zXw|y6^E+-=$Tby_^t={Ds|-6f{W0iN=;q{nt)tKJQ>q4NL~6j`jJQ zZLnQtoXP}zpa5e%QCmb&C2zr0`$2F?<@nd34_5|@0WH6H$UUFcP>ROV{z)1!?tX_f z-%JvT|0w5;U*Oy70&W8U*GgqG3}mE91oLJ(>RpY7SHZsCkDxKkN?O%YKV6Lk)ZP9Eub5@_IM_QRduN_6&QsB&@_B z+05T_sh3FCA=w}k%zSZ_I5SV(tFT(qWH)-fpINFL>WZ&40EVq??Cx%X(1@&F5g&LrJn)CbF%IeQu^6;vF831fG=s2&uCS>MMPpd{MBg>;daqLXs8}2^1>nh~L zo+G`RE z))F%yd)2Le`$bS0bv#$PWkKBt5$!FxUjZ%{%{LJc(K8xw&-PP)HWp+57uU&ex9_O4#RK8-udfN9#yomb1(h%Jr zz6lc&{BiS3)xTp2^Tb62$kma&u4sLlUS6@#T4wta2dyC!gGP{5|DCRJUZQ$ zD-aPHhl(<#AmsOyncps*-9_w%&je{bL2c;6NXBF$V!qx3)4&3ilMrzdn354YIu$)m zK$7YMZI4p5dm)b$s$T$2-%Q-3*6vF&lbT5Pn7X;$P2K3YQU>euHyGfvbU^U%@cIql zH6AU4Q%aXdoR~O-eu}s!pue6l!`*sO(D~})FxlwkFBgfx!LTGZU2{*mfAvLeN_8^+ z%c@vhD~=+KApF!F9)>%XiiRp9tF1|q!s#O-XB)Dh5M8JyE%C+1V+#0~Q2Nj&A7iN)2F%^)HpMOvg= zWH<=3=$6ooSiclsCsVt_-CziypRq(nRv6&F&kvXRg+2H3y6A+*dU1L-3w1Z@5tp`c zzMXLiMhzR$yB*gEDH)4DZ<{N*jct}uJPF?y8#`GS2Nd^1i`yV-=AtYJ1nrvgVUSEP z8J&D{N=uazu7!k5I6hSVCUhUxfqi_f!{LOP?uP8Ba=Y^w4j>kh)vf?%3zj(KZdGy~ z7pGuULpd?=6=4b5X}TL&=`qRmZ{;_2yC3o9Yz6LO>D5VHMdm?erd~zi*z$PnYsFIz zY%)?&Rp;e0a@f=VgDy*7N3CK12Txf6JQZ3Egb=y)N=w_;$--uq8s5a31+Xq{JATv7 z(dPk86XoCHqz!{pYn5jUXXliuA}k4KzCA`W-tIzQU3(SBU=Fl%^D67=@o&W5kdpN4 zu`mK*hvuV#X{HO_utm0&PjAyg;V=z}sbocEU4FrRp4`{7F*+`a}LoPAvkVCHC&|_!677gt!B#kRn zhOVDO!y4&8?#Z5E^(L;HYuBgga$}GE;jHb?7pW1)8Zy1gW`FJa{94#HHD-*qHwNh( z}8M6MptqN1?P)=JAUF|<`-Vlmw**SRNw2fEatPi>KD+n=?lGOpIBna#Sq`F)ol-xixRJSu|pvRnl8B$T0ljPS8S zV$4VRbxZ-gk5F{#c39+5P69)JrAttFwkn5dNs{CbRqd|`hPbXf=!17V59Q}CtD%|ZpH46}`57NnpYi}fqV(l(6ue|Xwd6GJIGP7tQizbsuUflHqU`c_n2 zu`;(SsLPM&m)%=y2B)yClCY=$O#2i|O2MH}ZEBfc!YJ!5P0|k-K?A>3`2yCa&1O#@ zaIyumh6a^^RI@egaAb-C_reWv8$3oP$8DE!{Spw3d^cK%nUX8b~WHs!1@tb!1>g*WkpqvEX#( zU$Roak2RNd`65k|ly*5k1EQeo*IBpMi5{QO^dVZ{!xQZ|t^2b_i$T$Q68Js|;&t-X zKs-^qG|jZ*i@;zq&oM@J|52SRs9NNnA;H6ha%S7>VGQU+$;Y0J8Zs8!k|D9qNd=U0 zcr*NJaq45R-#(Wfm>>Pgj>?+EbD&u#HD}EV%zK*fJn>M%1$;o~GKt#RC$mQcS4e0BE+etJNqLd{(dySa74~ zoBxu`!WiU_@JaNOAiqQ(_8Iz^-@a%4Z_g|hf_3?bPnVv4{k5fE zY(acwJtxmcu$pYEGHN^VtO&xpY8Dv7=XUhgdfyen5+3+weXv2}B`Ly2b}n zR}%_^Nl-*$$s8T+#Ss4G(prdse8!J&GJzv0K{<#=D{fY6u2O4|aj`RU+)W6m;T&n2 zLRuAtqmld2Y(z1F3H@@U<=G^qR5C40Ki_DlFIeKaxfVjIbNYc53*U($ZmX|%T3L1o z-C(*N(@{SsW)TNqML>~^MwQ09I+^`8XS@0EWVGTeC73;8W8tYqjhWF7sbkU#>Q#aB zoVrz#OF4ynSX_O@1K-V?<9UOE|7f`qpymE@J&QA-i%zg>^K&`EQBr>Yf%tI9Nqu@dWX%j6qjuV%`5O$F=9{ld2t*OMR06z zo+F})^BDJyjOOcBW#cMqpe~#6t_FG21lxt?7k?YzA1ZaH6_-?lHiN3#Mw52^J8{z> zpc=Ir_6gT?oimJ^`Csn9vLvGr{qn|p`m8y*$93iJte8@9^%f$2D~QLuQG@=iiLr{I zcl`R}y&_A3RT5W+#F)ESGiBD|q`K&jp=iezPBV+`SQMr5AD7=htnwvgJDT}*{J14C z5$RE;{ai2iZ4+%eo^rL67tLqi>4}<}$G+vKUX7CNlCIg&;eHFzHdS!s_AnEz_~xIx z$bU{oSz$y+ZjawUw91HHE#I?5ipTeOz`=dFT2Lv}<3r-E1}m@UG+~%X%XF@h)y=xe zpt?M;HIS3;DyE*9`!Rmo1_wizH8%R-Y;lWwIw*l#$hFrz{QAtK4vhst?P!<(_f5B> z{qAHc8sO>gc9?V@MMDS457)`Op8-kWsMhB?#6)^}_1s&8dl80>wnY=gG)h$2S&9qn(U#flzjP$*oL3d=Yc+?KLR~oRe4f zbG#t71Ueg6>acm(hE8S;89m7iKPM2`Jby|ybve}zz@!~=1*1SiyQP#!YEw5GXbgVy zr4Na##3{;zN+=HGDK{x$AoMvhg~laV#l+;15YiAOMiAo51OSeajt|vBh}C@MJTW1y z8=+TZ1!6=`iUsPg?bmuDDbHxU2*ZLsLfee{&p}$SV|R z4-A)bOPa4sE^H57=E_}P8fD@gi+tE+2xnSDz0z<=H~%*1N$!+xY8&NaFiSd~fd(`< z-_@aq-ZaU6CsBL#K0=z2yse)x{|BhE0HA&b$jP6&k#;UV0`&`$#%D%xKxZp|DX(2j zDp))I#n>91s-aONH?LHyv7;-xScjB#fy~L(FT6lnuvI4;P#LlY^;c2!(>8oY9mAQA z;<`*qYddlNP%0vqQh~gjxztB91B4#YIH$kdnIAzxE!{ev^71XOq1@c54|%g6;tqf+ z;B9{doiA%q9S8O@JAZs4K~SGu>Le;<8hBVX&vS($XWV}eQ*%k?*p`6ZjhX1P<4(Gs z*s7hv>aiUz@wLyT5QW6k+b!R&N{^e7#MKJp`?Fg% zyid^IJQ$7}@#^e|!sDORJH2w0jWaK*?uxhJ)}j4G+21hd96BLb+F-Opj0nieTOjKy zl3hCgV4gdovuJFO=iq5S5OEP~e~l1s(wqH$FNWO|DFgbye1~>8o}>_Gj`L0EK=T56 z{QS_XGskY{1^7LSWF8@#y>Y0_-0`4;*6^OAfL>&Vv>Q)F9qI_odi`BK#Z*rqg-Q;O zp2(oq5U4Id=T>BeKdra9=<$@?+jTlSOs|HCB-acQP9X~y0E(M{ndBNd8)pw~d}8dK z&+k+)r$Pl5+|J98SfVN&&a3|3B=XR=O-cxe+goz5S2{eFWDSZdm3hYCB=qTNL{Hdh z6-3p{TqFw))}4dH9|Ea6A0hK&>ZwBJcUSj52fK&23$b)6Nlv+I$7ceMU5>ZT3YMF4wdCRe=A(vCs`L` za0_0oZB|kzMQo9$eRrc6;G;V~VY&)6TkTH3N_Cr)kTPDSXTX5L<#h-@A@WD#EjXZU z(Rk;DDCnt8lQ9)byX;Q*0P)_FT_=@bs&_C{>AKPV^MZ5(CW>$YR#^`-@1eek*EM=8YlT1UQ}#YJ=leL?4=nW+!lz%?tD0FY z;a%j+r0|qt1Si#ZzV($z@`uTB$&wDj;}QAn*m#YTF{R)JQ%X|uO|UpxR}Br9cM{p3 zvTeoMVG=%qkLV6Od>T#BLt=zb(IB*aS%)Uf%P-DUFz`E{W7KvEIqnKD13R3#B5v{G z{m|O}LxTnZQ~NkpZ%bKWZ!M0Kl6P}cF%R?;(eWF;2^d*q@;fO+DPifRNfp^E93@*nKnUoNm^b4C#Jp_EWh!mNm^6W%tN1#k|U2|HP%#6o&}<>!=N zPqU1d6Fax>)$krYOKpo*s|zLk}>$m?R1rluhT0!_oT>#t+i+ut>k52Zy# zMcbn>?pIC+tio`L$I+uZ@8pZZ7xE9WUhxtqZKbsXq|P_2>;6`UXVI#!b|mudrt=Oc zj-?qSB93nU-r~_FuhPJu<}zD}8SI3d7a_XE+JIfoi)X3HZ9LgEY@Gbqitprm);`y^ zSQTBc?ncYo^mNgRJnMXS9IY&_J->x9x=g*wWuvkhDNynJ_HwS9_Y(83vv(?){uA-x zWD#MXuVE#9sE%I5i{>R9jZ7vC95rm_tC&!k9OKQL3Og%cNqn+u+iQ)WmI;&rLhn=> zX^VCr?*Y~rLF%TDwnVIH%(23Bb#_kaaW+cL`=TjWkhgg9&J#|iB(Pc-qvXY$4m9O2 zhCCc?hN|4c3_Yv~om)|aTxiPom5`hckX!K93 zVSZG%zr`vvyMO9^h6!`N_{nA!5$72`p3ueoNp4EAdtrlU$B}1k1+dJP(kS~m8XxYs z;){#`AKgUc7r_$Qb)V`|!8E}bS5TC>-NbGXV+~ub$^_qcjn2%`AoBNf+la1~)=^L< zwwo)#y#W0?i3#jRPtW;WUhG)t7y*fRymqPX)T@kqM7Q%>GVmyhv`lRLyF!xrT#qcj zGMt2~G2;DC0rU-I0B#U&7o*t6vQmH*z)k)@ziL5lc&{RDOZ1i?-NNk{>V=PMBK1FXf1JoJ$VP6L{`{h8O zag!UC2~lF?Lf6b^Ru*J~Fum1GQGp+qJjtF5oW(f$!v;8xdcEwOhtar%-V`NV(+0n##D7aPv=rk!E*uN%Zo-kl1=5XbHE#}&77V`vN zblDniH=`UJzsY*cSxm|R3w=WUiw#~JVw5KdJ1V0pd447jycRkqfxz-78d7+)d)KSe zyvq0sGZH78$ZTO({^~f2+&4~@lRIgEt}IS;214R)o+mbzCJB`pP#yjP=dsk{uclU+ zP){mB)5I~q=@e=1*zfCxsKuZT%)>5(&l{`!|Lcsr_w^Mx0mDfO?ubI42S721Pp+eT z@qQj?Diuqlhq3st(%FobC0^Lf-P{d&1Bg`21SE=8RLD>=@dykKd~=%&NHsKj0Ix+m zw4g7tC9sfp$+Axn@itee>io;)eY5o&Fz?(PxWm%-XMXZjUUAi;?Z8$^IUQxxiL z4{4PnzD_B)1z*8_fr^{jm*NEhl^y40jf!blEB^6-qOWfOi%AiOT>`ELvOT?^@7o}M zQUTlfiR>@w;h<%F8*V_jh^Q$CHonYmRrhhs4x0AKT1;h7s`fl zcgSP{*m*khQfh>zB(`csToIS6wNIOJaYYnkAHai3^52y(72{%k;>|+22`Zd!{ca!k zzeRNCzF$NQYdYY$f*P;PAuYN8j2A-VySk0%{)B~A96Y+s--OI_jgIC9Us7K5di#_G z7xx2Te%z%KrFJ5TM=!rUEC#+H!%7<1C`f~BZ7-9a!>$M<@97fd-2)Kqu+=xRSbQ6{?Rj|t0JAX=_y%=GKdm_)Pn zYn32g=rXABs87JelR!jaV0vurdou^MBBv=p9YE!B8eS&K)XTU1t&U}8_i~LIyehQ2 zxEl}gkaaKe>Sp69jfhw*Z8bqj-9S8sk;1cSp@o%qNl#Pqcspaq< z(GM`^)qGrxjV>MlIvTs251>5U5y9GZ669B6XXzc9YD;dm$= zB%wX3_U5an>v`GbQBB0J5O*m6b41&{gTx*PKm0&%oNu1Pgjes)G6?@frk~|J2Q=|m?i+tv61@ZD1I+w z#0>Pn`P=58>%S%MEJ(-P#cdTN6PL|rHh^+&VgZsaPGh zt!Ip&$Dpe$vs3lQvW|t+Twlw{4PPh381>3nu3K4!5W*`@;^|q^E7dtdM0}G1q8WRc zgRs!8=dS_~`Qt1k+d9I`vrIeE>ko?rutAWaj%v~`WBa-Y1R2*wF54lv`BjB(Oj47VGyNE3z=f6q3fd!=?qv`1?`8{oD@pP?2Q< zIjBU#zsvjxm}BAAeSD8~krbDfv7i8`dYh?zSD`5A!HQA|c`!Iu9D%`7=HctY&aMdb zc-wu~ludFY}C-lDRur45j+V!K9cpc>LK#*kAGJ|+^y!TxzQ=czJbn67?uTrrTS@bE&L;blY7YrTxGI^WgWWe;$O^RDi< znfa}9x=;srl1)s(f0|{47pw9BF8q?}3-FzyAN@%R&L0Gls;)j@dBE}VA!g=1G68*i zfgu|{F=wj-(o4m%%RbhUU- z+x+nCfrZ~qKDQ$=1!c}&uZh+`p<2{#i!~2ZO1I{8IDWBGvGf9H&JF>nx@rvCAnXYY zqOjV=VVG=cgUX#LdLJ~bkT(qm$1bNBx^y@EWlRd>n<3f7_0%Z-Bs$JxV<09DEA~xA z&t;)SHWR~>l+7GEQCTBJ2eRz7lg0>N6E#&)Mw)0?KlfYt%|obb;=RmqYW$G3z|<ERIEK*DbvWpX-!4d68T^?3FH*6f=0&%P3y959&NW7le zD8!F&0h29LXo62L3BT)RDFVcl4GL{beBRX@jm;17x;h_Scp0`b$Xvw_>W`GEKegEM zJ-@*qI;R5`;jK&`pwA}sL`4WDz}HI(Mm86|c-ikd-@cQYfoPSaym+4sqS;~}VUMIK zMQgrJGHn>Re4t;H*}J~BP@lXhmBjWq`*{F4Tw{Yl**8psDZiviV(Tds4OFj%o` zuN7?A*GR3+&ffWuX%>Op1@TJj5}1YyUF#4qHtZ4{n&GQ7;P1=_S?!~*CeDP1t9!-^ zqM+iq7WWXdk7lI<3LvDXS541Y7;?^8dIC!y&bP$063qT>}7hQ zK~u3x?o*J}1c6gZ5E`DOq?L7Qe}&5@Dock-nO(xf!9gpYV{YA`BAWzJv`x@1OhcOJQ#l{B9DfU-e828sQ7WHiOe0k) zpCKo$+LVN7;yBGe*Z-h=Lu=JT(cCA+PakzGtb4E0 zf-GuGcqGD1nVYKw4bWPm{m&^ujEK0=*z)P2&V;A*ebUva+HqkuSdg&rViRj;5lJ|e zG#>xj$FQtwRZh!UG#U|eJg6;?EeObrr*`WtW*u(maxO4P<}pg+&FMC0`rY+Y{}=Lj z8+G3fL8)I4`Z|4L7PW?nq*x{@cN-^!Oe%+|X?-Q`N^Mg4OK-)Zd3Q8*o1}E3|f;b2L^bQPu za#hYXc#EOAsarwh)&s)GQ0<;xrMmmO4w4_>du!z2K;LrcOvuD{YC6d2_gv8Nd+tzw zfJa9HXU>`wSYoMB9w}8^wDP^uJKW5%x7jw@!RRF#5cK<+y0vQ_&`LIu$_LdB&K|G~ zm%!a{4st|9%mBiGb8rFBiNJ+apkufhLs6UrZb2Tk$twN-;!s?{c9CTHvtD+i)R6Xl zhA#&aeQ}h80k@8AW7sHR)v1_GRb)p4BMH!9AedhE9WAVTWgCOp4=~a&!bK^~u|T=H zYS7mPLC5!J67N?oCc&T`lv1ITJ1N@*X1Zb~$jw;!thr@@guuz_G_geHbhaf%9Iynx zSQoMJK6?TIpitn-c*yVHF6mxe{~Z@)xY`8Pd4VuUwl7DsZm~OyNn2tRg$Ka4q^9R| z8QP+=Z2c&f2>;6?(B8*oLE1$eUdi>?|BLk|#h(xKdDd38-{iPp8Q`8eGsDYW&3#tY z)5!Fb3wi$l)w=ffUeYZ-;|Kc88m5`;ZIsem+(H0ToqTKm2CF~imA|}6eCnHiT;?sF z#6&0ZuZzR5_4T`A>*FEwwMrf0LK2WvW+zC^h*g?X#)+5D6sZFy&*ehm(`x7m2n?s9 zL0AvupB|VH6fTf^?kb5B$QajHoy=M%CL;P_Lz0H%+DY~pIE5gBh$E*4;?h^k<8;%4 zA52!e7hX0*E}&}gsW8weYeDK@<~}eMLHq;)1YSM`5ZkfgjyTf@OGJovkAc*L_vA-D#jy3rSfZ2K zG&SFgpqJ@vqVcq{N#SJ!d3ag~H_H#X%ud2hMg4g)QYq-*UhOEv?-{j$3{C1|h*1J= zUI3d6c!>rgtaG3^o6%I8JR+G655bh(d>3>^`n+WNVyEoCkU6<1o>(Zwxy(&vs$$`k zH8)*6p%qVluL z%dqoDy*rAJT0L@mK{8=VHMOz$Xp7g&vU=#PV%_$r7|0%t*1RR-lDp!Nlo^~9r8~)w zw~DFMsqrw+Z68nSHf8w>qRj}*CLqj0L#teZXcW?ZG`e~$86;Hl9s>hCkD52yF7en? zOjmRE<+X>(fc2tjwk@R$-e-!F{In0{yGo2?7-z_QnQmn;(!w`fq=OuHA-4D?$6p)Q zGcvZ-T}EXh(odv}l?ZUz9hVZbr&EhmQ;xHz`@oM8EbTZ?pR$3F==!mBA0#O2#7HW` zhNTs^QTothALGD4GbURu`Ds#GL{bk-9%OT?g^nFN0-=K+o1-YY8Aldgc-I(m33 zAsSb$%u_ta)L5ciCQ<`W7jfyOV?O?9e2m9si>)0Dkli7sQn_js7l;eL!viP}P)%W1 zuUNP4Hi(JuzeFKLRt+GFt)#gJV=aVIh%~*iAmyOWu`bekodS%~d|OLF_qH$&EZF%Rl z^$lwl>g$>qFyUjpxNb4ZI+=miTrJcSrpB|wg~u!`=`g}x3E4oZU{+OEXA`tl18Ws4}pth2R6qI426nn5U*JJC})93 zD$$GswFEWnqr9}GwQw%q(Fe38GQSz`P3e;-7gF~D7Y2`+`-CdxASytXSnz@z#+wlP zgF_MFCdCAZh7BEf7S{?Xbg3UaZGq;8*=qWw_M2QyYULaMPU)9?aOgQcr(i)n{W9|)Dq)~aOeRq@Fnh<|}$ zC#4FPtMy_Yu>g@)mo~BPWz(i1pz?j)_SxAd=8a52h4}q`M3&Mh=KkENW#?T9M>vfA zoW`q$K%xJ{BAG|NPv20@?ceH4x|fF#r<#gdk6OZ&N3{BAk&S=3}&?BSx}kXuqLDEsGmb9X4I1-;H|6 zRM!K37lPWkOkk}hS%6EH9}HzVI%P|^KR>3|^v22v^(UH0lj^bpDGsf#q*^CQ-Yt1G zT0GlL>=$THlRpuNCt4=C3OCR8wVY32i3}X(5X{HSS!(x5N8Sc{i)ZomS7JX_(D<$R z$nN4r2bZL2Kx)=9>NBwcX77joWu;(@kU-LWH%R^_5Q@KE7fsE(B9)zE6KF+FK|I78 zY9=G5f{K8G*`^U#TNJs$_P^h~Nv#J5(f`RkBKL9+%f12_w?bHfA*dG)UPy@_)7oXJ z&D8=RrANj!hz63|%XYsuQiu5qlbKG_W3*!&jH^Jr_2psMBql?J?%&Y(1lGk}kTnO9 zOAwoiF4IuS6CBUAEds61Xo-AU5r;7yeBp}JaG|M{mj74M{ zKmuE;mnu|^2l1TZ^-_*D&(i}<;8;qL1LtUCB;o{^};JsY*S09`uQv{LT}L=E%~Fh~JL z2_KZe#^8_DG}%odtOF^R&mL*Ukad4#@-M;QKyk!K?c)_8uU7Z%>s2Cz{HGa&H`_d3 z7WudJFWv80=??Pb$rHh|DYcs#zw=R#yQ?hD)w0y5pz!uP=ojsY*Hy}!!0DR7De&3$h~ONA110B!JgP?|! z`!cmmrD_ddmDWh^&T3@ZEs1w7;2UJ{WQC~SnG#bmwo~fX5B6XP#j|lhj|+~S7(Yme z07FXhsc7u=jcVzXX1m>BxuL^-Q2%U(gh;`iIS5AwtaE}efGv|g<|8$;Wl12d4Hp?H zvugyD@C6^rqDbce>|xMt#l;;qtY@mc+#9PC<>4D zRgOJHImGBc6cNfd=|KOJ7#NPr2|oT?5xIHdd#34^=y%2XkCx)^Sjgq@uNwv5zlDAX zo0;;ehRdGtZlc!1$9DsUSIj=AxfI=83chQ+zMr!G7H6$aZQYxpz5`)TO{Ao2r4`*LI&;CA3}H%lL;I?K)Wlq#73!pH^zg8j%;wCBoFD4znz zZDO^=fb_v|utL*UHIC!Q;lP_~^|EOboBN`tit|bfT#@-?f%XI>9;S3X>-Kx(cq2ML zygfR@c9Ma_-Xk)da`eHzqWC~Cuq^Vdc0lvDUwp~tMDr7#p&`>bef$mR-ar{J^21|0 zGJ!&X)scpc&ngdUYJk=|YdlP|PxzQ-E($AB?mb%-r+pm$Wgy}PQ>)?PpZr+nKRAZ{ zTb`!JH!xD7$=V?=QFj3tzvl~aQn9qa)b9@O@6X3G)6YNXIZgj~TQxeRMBKs?i zme%1hW)f(kh|R0k7~NsOqoAP^kqpDqHG(90@bNLTFlqD!HmXogj#z3rLG_zj*j09& z_iZGzrLNzOeaqh2Bv<~p<)QBPGu@kG z@V1tDgS)21JTOMa`s<#(#T4?ArE3+9!FGJE_hSJ1=7ih1ybuO@Whq!yFc-1$4sUtr zmBdd%6FW9rRc<)w9&;%XWt}G&#^4`<#F@{ARCL8J60k)9ZtXGtvA%A+;eYZIq#PGQ zod*f`p9+<`7hD>FA*zf?f@s3j{7~^%DSvhVepjtjvO{FQr1G9`7W$c#pDr(%Xd!z?MNnW+*ORuF0y>!>y-RwR`nt+CK}dt5Pr+Z zj)rX=`J`c!QN8nCXNMRAC#V%4INY`Nx#mWHFicoc80}l6!X)MrK-|K-Ma6hGSZ}8h zsGI=|9ntL(tH_jrdOL2~XeV758Hnbz$b2N~?kawRhgS@!FbFQlaQO2QnZ&`K6k!1Rfz7uC_=R!+hIMcowl zP0~ikk zpx`Sk^ADjY1QXgv$9ApVe}dUDIDRzUOw~lx%zn47=+)W z{t8<^_VrJeDuHtlbU{Y}Awi$)A=Mu~;@y4N_+B+1=RYL-;{$wqc{)cMv#jCXF^1aRp(|Swx=*+>r z^+Kq>GNl?;UCfS&$Fes}d`-CpUL; z-V)B77LqD&LIs20@2hFma5DvqHJQd>Y&TIQ@NGc$Wv>-@#r-X!nw1jj>2!eEn(ujbxv~+iahyn`IA<`fvb)S8{zwsaU#l82< zb)0dAV{F*&y*_I_F`qf-%Ifj?H9I*{_J%>SV?-q7)hRtO#~aQEH~Z*?`op( zr+k#fK{~W0Y>_aq7e55OKoQJz;a%GYO=nVQ-EwsM%#fby5W@)Qt zd#!lceB$}tU54%A9yxjlukwSID}1ET@8uLu`|dmczp+<0udn8>eOmW|xt^unpmDlB zGP!oYnwvlOiS?x#ZT^~s+tD9gXh^yK#EwC+HyOw*9@V3}EuV+>gL#>MS|TOmqCXe@ z1#}JcfD%fo=YQz8uaICIQmr&3I2CXj)9@?Vo~a1 zuw0PA&j{1Twl|^+dwfgZsx&(h2TH|fz^{lE>6MHi3e>jH#wXBvve)(2@D-WiI~xNb zBj(sdty?ae30`75;XS;y#TCN)XQRJ>=4-Li6ZMOHs6TgQl8PyT!PUlk_+3mFdlai3 z2vr`!=b;@<3C2lacWt(Oun#q#h@7!X#u{lIsBcK9@U#gs=h#0yARuqN>6byw)ZkQV z;DzauVKqxpUoR<_#>k*4#~_g;8E;8U!KdFj$q>}<>e<3#PKie=ohYfp5X7$VIE~KQ@`F&EkB3p2o5+2D0|R2dZUb z_3rV^VQ+7*@J_BH!BgXUfhFcqP97&|KE`rvzeVq44@K)z)3MUWE`}+9sKQt?H3YcP zv_T7i8aHNgNo>Wu3KX=w-OI<3Sz4(+H2DZ{+6g-&&~roF7X54#&`j*<x$L7Ygn`@7El~T)F3fVnhNclM_wS? z5Om^l#z9Cz1SU-W#RoE#UN3w9S}dD0T5e75v;=xao zDlvQ<+B$Sf2WLXkS~syhFz>!%9wg!aCL-ieX{#YXAoL&$THow+u4a}MsvbtI0tdUo zs%Kky_?KZUO8vZH>v{ar?<%x0=x~mi5aStq~nKa_2XoNrb8UL9tM-+HZ|w0}0{|Gw>N z>iS>0@h;8vvj4F7Dc1FC@vCKVKjnQaaPkV-?;ZK>slBd2Z zu!bM*sTk%tw-`XZqNex+iTc^hUzAA6a7FE&n+tZ6j92l?pTvF&FCvjyYuMutkO4nBaX=hdQe z2ls2;tfq_tHyF`){l*eZJ3lx2kp&18!ve6^6fr&tsDP;x znDYQG9Q+FhSdiNI?|@-^D4$Gt`g{L&-|eA>9^A7}8AXFI(*#;?q9szL4T`jlBTC@N z_-=U907Uczf6u(tt!1p8fHfT#k1;VgAtcKJJASN12R}I7D0K4?PjPiPtNp_#~k8yI93>?Qo;8i0mmr-S#OxP%J-py-q17dz~d@_7czw-WW_2gAGHNos{jnV(Ou6o*NBkuWaB>QayEMH`{9eSQN`Je3i z&5t?OIDp_bschw4?JpeXG-mA#{bFt>DF7mt?f7#TR%bjzKi|jnJm-X3brgQ8eU5!W zc?t}JS>ka8e^x;<<1*ScE#!sc8^+#o`~_6~mF~en`9OBH!ao;MM=)VvlwZp0W)6%& z7wZKe=cqe=Q+&|j=zqjn_mA_sZ(RU}cL6{oa*L^X0TXhy6ekcn{5m@tEuZ|29QbA$ z-O`WCcdA)moV}yPLwftZP$X$)D;3WH{p~@f^(18^ePP2pxhU%^OA&l9Q#&?#@imXJ zJlkSEWg%y_-=l%eHS9y|I_zp3$tl4+bxoY}ty9d39nof(YBEd<-^^I&4UWMRL2Tk# z(ipMs!OMmK61p|Ja=(nlkcP}?wt?r5Ll|6w8SU6!NLy{m*~j|MYKYKo>_jr1xgWZV zvpn80Y!wkIzj0P?BI&zrO5;Hy?op-pe_F=1|HokskM5rE4EF!18E?5@;CPWk34V@$xDpJFB;AB1@%GY`LTjkYN4;fPLaW?!zb|=Oc z`uQKLO7Ej*QY#Ir53p-!7rUi!^b<~(jySQjXaxEVzin4Z{?KsFO&R5@dt&nrABMFl zm^c0X%-cu5#N4JW@2{^{So>fR+I?H7AIWI9;Q7Exp&C?M93G)h%A5KR2t!y{tmup1?zOm z6}okxYzG$<<|(`95yQ!4C#RQBJkA;phse_gOIwE;-ceGiMz$zQIIfLzZbFR#P%4}p zq-`6xz{L{*0R7#T^FpXPPFR#|NCP~{q$~m*e^Kq{rHfkNfN_RgSC0L2_9@k2uUW$+ z93YIDv~54L!QE6%uf9*3BU2&#_q4j?4sgD{S-LSgI?5|Xl$K-|uq+o)_#`4^6ABF| z(+MKuXK z>g2;uV_}n%OM9ZWcc+PGb5>|nLgEKY<;Vg}J`*|a2R^J$5-=Ku=epO?(%k`<0IwG> ztLo8x4+{OH>AT(%t$d(4k+S}CxSEazQzO07bYLR==OPqzG2SEE>(>buX~P3OxW)He zE&T_xjJ6koS+8T&v#c5%D*5-O(?O&(9IqP=q{Z)PJy4p1XF++JZ|DyD3YU1(=njL$ z$k(%#R9R@GzZ&n5CRtMGV#D9n<0?g9~a!D5&n^n9Dv>gRk8(ZEVD2$(h0Qu&h0!Yd~O1#Quu&1 zoh>!4!i`k+HVhx0PAgYxr-qa|e>NI5pIY+^1V<4tD;sQ;CT9i{CGUx~6*CHEm5pJJ z=RrhK&CN9>EUuBa=(3B6b(FDO%q{c>=|_1{CTPum%S62i;v4#60dw;nrC+oI=zedV zxudZY-U_Nx2;bBaXY|dyr-hjEabDf<{o}@S{RCOl}hXz2twDzu7Uvro~G;u=fo zJe$pCCr6nCOWzBN^c_A6&n+z;9U+peQNERiTvZSc0W|^KVrIEJ9+MWkM}tj?6e@UM zz;raGR;gaoxY66T1!lviv#V%GmGU@eB5sFw*V=_G!D~==>=1|oz6$%Qm|;JZ>=-7< zrZ&7twvmz$@T}rG?l+O_5QIYf2=@s8-YCU}PHvwB2~HzL?5zO3uln_^b)R((C;E>*+31pJ)>YxUuovU03g-;f`D2qIf8u zj=eB*5(37Fxi8WciQom0RU@(Of7^5p_&^w%>hjTyc0_5&Oa6{6h#ZUD=*&{ zIQKo=A&SR!_-h5ekyi&;Qw`n=duR7W|5d*>P+X_)GoV$({$RQZ)>iX4XM-bR#&6B+ zaJM4@N?CuWNxfwN!KalUFn3O!<4RdX6EcD;6QmJSmRdu%lwHL5XFpQ*_ z+P_+YKU(1or9RW%QdEm%d-q6iHjTB+234I=jaMosX5j7wW{(~7s&V=!=QcLxF)mmC ztKH1Gt&^_#T}}NmL-CJ>oc~RG>;4lYHso@^fdqFKWMyPfPN(Q43T?$%XU$zZcM`)V zAar!0|GmuvvSW~qjb~x_UfIUpxZ?<}TRe(saNg3W9{K>|7Ftc>f6WI@4!s0T-}rO6Z+vj9=?rI+<^mhlGf5xtzT%*4afy!A;h z8@o>N^NDnHXRwJ|DffHn>Oe|j{(J!gv?3O3%>BIIRHCgE3+xL466%;Xw{uL(dV?^E zufQkONs<^W$*QGut=l~~s0|JJ0Bp3z2r5SOaM}nGD`#A(e9f==#T12Afh65qQK*;> zuW2m1ot4s7UyM)TG6z42PF|*I|G8zCDEj#BEuXzNzrI~cYK;FML>CA^-86v+lKH>`58vP#Ug$Xp5T#)`PW32 zDP4Rsj|3jwLDT$?JmI4-;xGKbfHn9ajCXeJ_X>|oMR1(+uu_X7U$S!~M*bdgGdDd+ zpx_Yr19&UuIZ*HoQJ&LhInLi%3c+bC2HE-$e`I4Gj}v`@%9k=**y?tftN^)dkPbGg zq$s|04k;bNru#i+zV`6X+3kIHrD+;@l}jRK6~(W<`iui}z9!4(HchDIwN|@zmb*{> z?BKQRmXrRy@qTKZK)gx+nl4lEKW=(cIPz>}DoPL)!0=C0Wuv}IVDY{HmR<+|KcEs> zk9k<{z2Ib(rvx&;l+%m#<%_`B`DhAGfv zq}5z1SW|%G8@<4il_!uf&Vmc3kRs9~9L{aEmtM>#OwAx%gFYkrYFPdWDb#vz#X0H0l5|&#`#^wkl}bS;ji)v49Rh9J31CZqmncV%6Mq zN>xvtEN?JbT+qHO74$CGIhcz%57d1pp$q;@XZwdk;-6jF{yTps$nz(Wzz|cb4C*aV zumaixc&7o;|6ny?1~R0YkF#CwIJMD$9U|1vmdY$m*?Yz2s>s z)gP;M>!$6eL0bw+k>uk7@(6rl`=dK@#!>7;z|n`%cmliTR|_GvcEFPFNh&6fTLjY% zOjBW;I)m4a#Y%d4(P_tMUrTN0iJ!AXa{qjPafT07vCB>m3tb!o1qy?r6sqrm_DvLI z*3>|*l3A$(?}6FXmThuoe4km*3R3+?V=TBJ-IoTEv0nj0pvz8Bfq;7lT%E`I)II~v z-_&{~5f@yq>PQQjxfdPMB3yx+2(&i*VdvDn44UKq+tF`vQ8I$FHx=jz}USQh&R z2Nw^#do!EAYCON{Fy8~}$1)w(P2B6vshui;{cx?0@L*z6W$P_j7`f=P73wuqTpUE> zD!92*T#y-ui%dsT$>c(yy+l zWm{^HZ4UFIxPhke&|)&3DI_PSn7Eh$1~@R(_sh6f1;SMxcL?>V7!b4=2M(07?!7W; zPMLpu-nrYta%v$Fe>h@=6K4@_|K5gOkr=zb|C$TkA{8cZZ}DXlxcM-oCs=K8Eu}lc ziD$Vv{^v}F`x+VCEv1(M6A-4)GA|_-Xaq@=`RL^~TSzac6rqVT6pg(;OYAE$5V}5E z5`$HRBme?i!AgzZueYu)1?u2QULS_WeDS0Qr_fG@MOU(OL1(FvZ$IqyfhjQ4LV+e= zm2L0hQrSHUM2hX3UoWKFEEK@cZwZqXYA-(aXy~?xnFC4i9x9VYYGVVZYNWEO=NFMc z1de&fx#9zh55`}M z(kQEG^LK+}4v))*OI}Q`V0{{%yWhEcWo|aC>>C=%?3#^Fn|IHDmH`n^Hu$?ZqKHio zL^N?=z9c*9niBuf>%Jgaf-NoV;_Xo96Qtb)?p!cZuEIir3-o9ZRRAC|MEWN3oP=Gq z11>`_f<48Jr*+kTGYCvq}a~H?ohi4^540PbgrkwaA{Ux;u{awSdiq8(>#zc6IbW?R@^Y@OXM86kdh!sL5Ah*Bp+D476y+}boQXKfV% z)pv>y;`+%O>4cY&!Z>uk7w__FqnG>KKoMah(_3QfRh;4Y_o^@lkq>*Pflszq!xe>v^~2EN&;W6MKCR;3 zY-R6_?N+k?dZ;F(;1%Fo9Uu-egL~hhV{1bX&>JiYPn`#kMsLB;w$1ltW-E#F(X&C9 z?+)QYbHg1=gH1a9^RrNYweMr*obbR)pB<{J{yyaztC;Ivl>j)7EI zzQ>P~X%&gUHGz~EJ((~c428v9n!7z~d!J6HJ2~VH8gzBy5YMtK&b3?KW@3NKx5O^} zk@va_Yf`^31@;ok_1QZ@X#tsc9U2VUshb<%`n{^sI zN;Ftge~O5y!^Y88B~{iM=f`m8{H-l3m3Y{;du^Cxk|p=_f3aT<$)E>9UGlLNa3tDymPQ#QpF>e^QvAmY^=LKl ztjG#-vHmB@Z|s>sU8&<6%m;O9;Ysjpv&;XghP^jPuXBJ0!Htpc#U0gmf^`O9q^_bh9M(| zBdgaR95#K|e0Sz+0quH|?vs)x#e{Cy1(U3<3a8~;@i=O=_W90(!|GtULodCzxU5RZ zM0dSrI0KB(?_XG`a7o0=3Gdn@D<-~8{{^;9bR!3UbQH04;+=D&&;+FG>EfvHsRn&h z=`pTVW#;WT^yW%t$$TO*@Jx+#D%N!x-Zl1A>N+gE`l!FwEfwBV99~4`SQ_X_CWW2A zK&R@D?kDYYBZmdIxcGJ(;`W6=?&(`^^uK5JlYC*1etz1cF`4d&)B@3ae*VF{XboIR zA`|9o=jupZA+Qglc^F&3!d527F|e96@#kBup4BtkGM$8oUAHA4e<2MAOQq`jIv_|F z#sNzQ6dR@rzVLXeubfnXY$sxas)2n{rSU-y<4&Mh9q4oGFUSYR zkW^{wp0#^t0>Q)a*AB_3s6IPK9Ssf%IV0^Ffw2y%?7;PC)y4S@s!gAk-MJfyySlH7 zS30L2-YQO#to{f{F&L^WZYjMR@d)pUP#n;>q4f-M(zc9d_tlly`}NBT^}Gd+iWlkc z-jTW)U7Kbpb;Kf&lvglVaF;3$8H}7E0i&d%hz_uua~D2YX=)Z=j3NOBDhzj?Scth> z1DVF~&~Hmr2;(SL1IKqAkHcv3`OH0Kbl{J0ZmrW`r{RZW z^p!U_bEYvIL?qu^mC{AcLGP^d^7Tu}*=@}myrk?i%#1|+#-1uS@X@yT6F)l$<^`)C zuRgzDzVf3nqU`pZ7dXpTu`iEi3bRCX{`te!SVpFk?@1wrox_qdwduS*dPgl&D43m0 z+!NQY;(sF3v@Laf;G1HD*J? zS9WAEl*Hs(y}55a_O#j#dG*g!P{iwy3Z_3qyhDl@t~+R>%)V^fY8A6Lvau69$MF?kwZ@{$rM z^e0GQ=G@Am@nGHMs5c2!_Bxj}R}S&kw+4X@D8*y53|8LsrGaTj4YwlaOB!O?oBBzW zm6ZW6$P~GEb=ilcCir%KHOb$SP02s&63Yubd4zoE4mYTQ(xsoW7r)G*OLg1FJPSDA zcvC*G!;>r*8FAn-1sDG}6(Yc1ii)Ln)a12j_3#M`>Ne>5s8eKG#0x)Bg7u&=5n+TO zty#&Rx(a76n3zVi6?_JL&*xrmYqopLXRpijS9MG2cTMWl%5%=3-B3;}`i=WQd@YUS z4kcH~Yu5D~E;9$IPb-o5QrP_mZ^IiV@b-4nR-4+q(nqeFAu^+XQ%%+Vv9KZ)9Gj)T zkXQh>F;DmO+IPg>l9k=~rM^#1dQpcAV}Y;Z$@VWQnLxBI*O#sT)yvc_D4R`CvUBu{ zybc4H^whk1kYcrS`R6jTlC+X-IUiBC=-RkQ{wKtNTV2G)^53Kn0 zff~vt`YiGKioUsib0AAP-2<4vHl&{yt{w7w`;3KGKZ)lr?-KhX`}H-|#o0uz0g2>; zNk^uG)K&)4(40SFyGerl7=-FftEKcS_!I!@icCmB zioIYyu|vxhrjb2cQq_A|XH7Jc$6dGl8b!!H{kXW8Te2wjHfDU~ z-O{Tr*4il_TgQ_6(?9pYf47kQ-!&u)ATFz7=Q*PHyUsJZ`n@D3nX!KnkGag9ZL>)p z0k&$`6K_)!D>Qgvv;ZQ&w)06sY_OA4Oyb$6&%p<$xIVSomsZsQQQZPN_-7`qzUiqn zBn5$$WQi6ONlaQ_b!J)UR7tuoi}lhX8_$I{YDzT;;w%)_$@-05Q_nSDoRp_u#c5|r zIn>;fX^kRo>5<4{>X4FM{`UA?mSA1K`g=pGJO|RQ?f)(KF0z|J1*)mzEQM3kId>qjWLoi7<3UQ+^&W+Q}_P5aD-X`hfZY_2k&zmO}U%S1ZzwMG1BuKhb7Sjbjd$bin8>ZeiA0~~k^dM&OO*2E?w3conK{WAhx~%2CGX$Gj1|lF&!~3&pw6vF!qtO>YdQ*^CEPUm0~B|BZSU(??OBL!bxYR z#PCIq>d^NOa+;MweQM+ikMRG=MTiSuc)y_0dnMVkICZzGjpJ&#gYc-pv!^gt@ucw7 z&R&eB0bL8zYjIg0Ea#_qPS>_I^>|pxr7w&MPw7`!ljGw9Zqmz16lr&kj1Xw$t8~DH z&Ikk#50750ed@r4=gw?^9(yk=1`0wblQ5EuDwjc{Z{C3{U%&#OwMD5PEAcsL`@yF z+!rfNOSG`J*mWVo$jJEeY&AJsn{DyWp9q_Y{KbDqn?_aT*f#ftP^SsW97Ma@#^&TI z%Bjm`PM6bNSL<_&IwWW?{&@>78(8ue+x|T@u_3jEn?kl_Uu(Qxim=t*-2C8l%iK*} z06Q2pgG*;Qbm(0nKe^_UCs>sl*a1XeT;&uPQGfqIXDRvG^<_AoM_8nhF?B(+qt8z? z`u_7JY*Wu_pKk%Vgt02f6(!ZZL(OcFxNx6}aPUSVZxBBX7Kpp^Y)q zOcxvb{{6dxl9H5y0yZBdK|*38&#QlKE9>j@oScN|4_|bK5Kx`E=jY{hOihu|%g3N2 zhO@+J$T*+22cTgsY;H#W{p+TZ!i@rF?e|O_7eb=syV-JY^y%LT^~JR{Om%hjr!C&3 zI5;@dwJ)g1&8Mp@@t9Q8f|i!d1cim)EDLt`_THnVMKm-tXq0@{`}{m!aSQVe3M{g` zn;W0s=_1zjj~|P_Jm-6Ya7dhXW*<>*rKV)Q=CQeeZl(UHv7SXk@|jT>6!81-M0 zqWD(hF6gs~QueDTq^=WX^w^{D+i#7sGFiA+P3Og(ZYc=_-Ol&l8o2^eY&T66ZeURN zm=*5W?tQ2wOfw)9iYaNM3dHD{wSGGs`mW`9wY9gW%8aDP-iw}9u73U}gwE_g zwe4)I_u%eV!da%usw(2Uckcq=`8qk7%=gtRxSbrQbs;i5yrX(dERulgp+w%}>?h^M z8b#WBM@OquJXXWxGIDZezZ%`AtF3QXjlGY)xbVfN;QctTO&Kl6@=j@MzKsTsfux)q zX1-cxL_z}bOCKLJL=261Or?3>JyFp+P$8TyMRM)!fbhDaB92Sr$XgUHNGGHbi*jD> z<)2nFzrHV(_H~?EP98C{=ogK$(KZ_tk5cxS=cC8HTTco%cS{WW7X4K3Oy{cImFxZR zxvpzBaHalq&Ji#PClK>g)UE0YAT7j0=S$oQUu=t@$SBP^j>b|Cx4#J476BRSuhaz_Z6hOs zRFz4KCb?V`gx}q0IW%VG0;{RR8Lu=u`pNS8dh&sRf&P&ZSxZaCsNR2B4Q%gl-(V7S z);ljF?>mg5engCX3TkSEVrMHP2nk6^6u}tjHor@i$)bskg|)R_@ni)CY#bb()Pm+_ z>ibX1WOQ|Jv$3(YJ5zr);Lv6xMSLhM#1{4byAUak2#bp1)9?FHZS8z^UeR)3jG>7 zT3F!<{Wm)9RaJMPm7*|n>PWGmZ^=r%9AF^-W*BfSYA_%BgoaPQFdXCcuq1Yjd0~-x zp>3JnCyeLCuaC48xOXVjFWUNP{~kEy^PFMx(92h1lTAhm40+6${rOgejgQ}5X4C}d z5-)c=O!5t;WO;d;tsop_yxZ*UwJ&BW{IC7+?~0JW!McH|aV^V693GdPj1}MS)}-#o zDlGJnT9lTK4#jhKt|yenFRZ;?VtQtVUPvfy-ofrUA0DzDqiOQfKk#6zadz?c`n++VsgUs{O%} z-Q|ow#?>=U#Aw9v*x$VgPwd#6e%nQ%w^z_&5Qk#jYm6mZiE(Seqf3&aC35?%ZSPs{ zbHW)B5m8|`#d&pW7cP8#&O7$mW?~O+B*meipqOs+7hhUlKCAumMZ<|YG$I1m?`(2# zbhKBV=2ehlA`?pC?y#o5{y^Qy?mP_yZ6=N5vO<$`FddlmmKEeY8c|LlY36CZ%~|vtFv=JdODTI&MXcM4Najo8@oyC zti@esW@dBC@CX^J$GmyJRqT?qe~I- za!H)ofgme(ec>7u8k$>NjH{f)9*~<$KQHF7rT2H|7ZozlezqY2jk#{wQyj#_cz1oh zp#5Ak#YDbpR~o~e!1RNH=WJ~Kcy0KndUJAQ<-u!Cym*5xS)Q;}5SrMhJD#2jM zXO{A>l6Ksk9ct*}WLSS)JVOdp0+m!b4je?<{T)SM%91^B6pm2nIYOhgd-UPwGp{>B zX~c8VA!AEjPMntPeg^y$L(HPm1ut>v?l9fLbzW#kSy^2*{qjLluilC7q2t`_vsU7PcE}TxSER6) zUl$ZG&vO!oJDu*C!p4-5k$DDB^mJza3KQYGPEe#Bk;tr$Oe_zqhT9=k?fLH%U0ADUv4@QVeNyGafh*j1lPGuE_Tz?E}dgR<|UunJUuny#l%sz z>`k;&X}25ALL%6rPc5{6-;`<`PT?_kTI|F~v}wCjZ?@DOPLMCkbUU)r`^ff_aZBU) zad)>20~6E3l)IFaKNsHaL~^x0Kk#jTjlxv$vAVh%1@Y?N-^BtiA0PAGxt3^$bRySW z)QUT0Pi(V&v@gQ9WeUyZW*f^(Xy(f(9`n#zyv`>aiP^NaY5v%LFfg{z5FnCgV+>j;^6{3MG0gi|N}lb@VJO*o1_HVG$9X zaEWYs#>vImVag*{CeT_yDOlmYImsDYZZIZEi}(}O-eo|jBQ$BT&x}IruWe;VaMY8P zmlzrFXx#5~XZt3LvGC1?0jLu6h)Df|hz`OGN_(5V4!NJTBj6j~yLS&&K8BjdQ!nUq zTF)I66=h}V$B&6Uwx$CL3t8-cHIgDzyQXIR06%%GO^w0dKi~1VTK*E>=6pKM!Se?n z^D`f1wdJGc*(5^&^ z#dExUBqZN(lSpCHJ?zWDm1r@JZEhC%q*oc31sfKbbXQhZQh0c^c*BVd?o*_zV?R^z z$G8&lMg(5Ib^5$l*@jIQMD+EDy_mA_(}_60#g$oT zVti<75|+7lb8u)#H9t8yIepfxDOdNCUckqX3|C${I;7rze~;U2?kb5Iq3iMa5rv!_ z1tyfu(|0q~FouT9+=DVgTU#4ZNb@1(AjHx%O0wj8PEHQ0QeIU@OC-()?rj}}5(6-zZkOwSnh#W8hVWK=xwl)&F!#4SR*WMc^WEE+0$ zg>qSs&5)#6r0wyigHS5XToZ#9!NAA}VGU(*aS@Vh_hhM|rjgOe32sbmY$%lLuo^c$ zv@Z8A$1g#x;_$067>b^L3*N+=KT3PvK6}!P>Qd zU6&a;D*D@z8~rpJy0@PoS`P;A*SoG0LUF69s~eIn9eR(R{>?6V&f_B5TUXvMX5fU} zq@)}a_up+f*_-p(HT_no**`e=XJ>C_^|aG^d}=;ZZHP#!@vQE8sO_kD5{MLW zf4{^6Uw^}IQ2Xkuj?#7W1l-*Vl5k#>2YGZKQ)o!t1>5gD`?ajT93)|qsL;fN=3F+%o_q`G5o?m?X z9{c^97M;xC=WOiF4J#KTvlpuTwsvVIeTnjjlH%faXO4N}GX6%}mY~l%%JL2V=U#Sy zE`QGYG}7;$^v%>IDJ!H+Oj65XZ`3CpsN0SGE&Be)YHH$b%o;a}4`r1J)~{x-3EN&2 zh9I{xC?8MH&(npY2(zi>!nSQ433E}2j?4+>T3=C(j*dQ@r&!*9T?J_rs_r$yKDKeO zEo!3{8VYl$;GtmUe-!8#O*v%xSInN~r{lKtdFi%L9ICv{S60J5Sy;M_sdO*|K5N~ z8iN+Os$tRDsB!;$NdrXzfdG}TtcnW$$H%O1l`L})Av>$Q7om7ubnE^5_j*-;0sZ;Y zD4=m4##iV863-5%D@@-sbXC2asdJRq(13=J8rf7%6sV^QGn9;{jU779C!z)*un4Jt z&q;9LuXc<|J}P$~&Ri};Fdz^RW0H-%aU7fX<#M;F`%Dj32EJ?_3A+Eeb-eQ{61q~_ zM~@oP>1)*NCO=8q*sxx|JRA`ixsxEP{J%K*`0-<8Q)=EHM@KI1Cj!Ol@SQZB=NpF? zdbYO31LwRCAJ+Pye%5%4C46JGc}-s?#ym)bj-US>>#YdPiMF#fDhO@*`uY^&+sm=y zRxS-08*YsbQD6R{V`5g_5Ib$3HPw69->(4qS>)%4*jPdkyxz=LOf8l!fpj4Ogds0s#*%*g4X;Q>0Z;Vb+8D zHYsW8@?>7X^ZD%}Xtk*O`2YDez1+`9&GG*CNxvEsF0ZGCryX-wG@`+ET`G6{Sw|qo z8sUhU=3Vi3u$9HQeiK7d|<&|ECYn;9qYm#0St{S60|GwO8 zFPP4ejf_i4ncfm6;BdCQv@Ld|HJ32Zts|f7A#=lC>%DR!Q(Z4HirgSg< z89c21;o%jZJZLQcFSxG}j7A9^9?qsf{H?FA7t!gVk?^VjtFBFvq=f&r^`E}lM$g^5 z&@n-S<>x1c_@JI87B^r)F5o~7@XG$5l5#VsKUwbI?;3n}pT}{oxnKt`_rdDQ3ax+u zS=;sH?&8)~R7M6h`_pI*X=lM}dvBSD~zo8JqJA+V+xw^QRNr&K@ z3VUolqwY%;aC(p{GVT2K&|qx#ky<X= zgN$1C_@u9quh2aV!TtXb&-7~khiIj}IG-vv36-E-aHNpMrh6gzC@KZ-7hX!7u9AvM zHylu8z3gWYdskG$zyKG%_#uWIHeIR2qbQN^7zA;;H8=UsmQM-{fpv8PTU)>DZh=h< zOKAM@2h=z>JwO-aqR3J59^(iI2&km;Vmv8(x;O(*GhDygs^j~2QZ+R->>D@a9UM64 zuf9Jqp@Yf`icY}O`u=WAoIT7`3k3s?uCcKj@Pkl_O6ltAR_{|kazRHPU?(Sua^sc? zI1=B!f8XDR7)s-R!DIY#5kv6NBh&4lH4B1-KSf`}I zbJrO8KJZKMAH=ul_hKMuyLtoL1{&C|zCJ8C%>qBJevju?KI=ebH)_09R#vumeB2Aa zZBSEwecC5(Hu#p6X#yV;O+-|5|A%!}jqRNvBCWSwja;GIKdM9LuM%S?In{-3(tmt& z1#eyjt62s6^mvG?tpY+%RmU5w2QkYj2BlVTuFasSu@Jx5L%Yw(X=P($v-Pb=D~hN0 z>T=irLA*jYR3blu@yPVxuo%`k+-ci+h`u z`+or(*Y65?8s3JdqsLo6y2_q5bV3LlgbIEdzQd^(f*Wd|TAvdKkJUj^kL6y1{HaZS z7Z+Y(*ERem?<2NzfPYf7*(~A1zz2Z_(Fc&rAAqXqL7utK!C@(s8DrGs5smV!?cxB> zJgPEXz>&8|dvI+ua|jm?PapaWS5HrCR#w)FWBF*xo)wozhBdaNO>P^+GfkdcB-rR% zu(}*On_FAAPrR4j;3>W-^CVpp(&@nSGO7~(l5uu=x;KVW0q3!)X9|Li$V2ENue{*&1Du&QAkwD# z-v4sbMF0BgGIjj<%KDGiSHg({7E#NBy?U<>sCmqS2E3t-0i<%sAS#@v7b4h?-e{_` zb*%z5%kc2F1O&k)C3d+(YwPRFM^h$_pG!Y{Kv4H(o3!~cO}Go)fh0XawC9)g+)aH#^rs`${YG#s{G7Hr0%{x^Rt81{(*rGI9^|>tN+>tgP&GjUAau(8cL; ztgjDX+hUi0wPu?<%g0T=z;Zy2>xOlv`Wze*61Xe~jnC)Cb{srBX-&lMG+zkz%X>tk8+05uU(3%-Vl z$-{FYBy5o7_YY_O)yW-*H9?+pURc(n89b@X02sicBG&^pG1VP!)1BD{7FO1dbjQ|k zNU%%&@$_KOBMBclsB`qZekAn)me0wKEWA5pY@rt|LDQ6jrumIRp?UfFOS!RPoiTTW z0cy~I{;R5r_c>o0VR`!J_y#U1hRNOON^|>#_JHBJx%a_AK@~8e`LE1;&`aLrcPW$( zI7Q;nstVh?s=Ym@r1bP5F8{p+$%k&gHJIWRQlRTi=P}2eKd!engo2zTvS+xjFH|*4 zEEB>>4A0~qs%cxZThJbqx+$W5jj!lC^pBMCk3OBd=>1tp zRTMpn$0}(sk?5-fWi+OrpPz!N>WjYybdcyjK5`?VrPJ+x&X)sKEF6`9$3@+ET+PpR z;-FU0qie*BBf_f!pu69qN{(hsRI6b3+^p~8UO$Q literal 307238 zcmc$_^;euv&^;I@cyNc{!Gk*lcL=T-f-}J2HfVyoySqDsTY|eY1a}644DPa%&-?Cv z_v}BgKQMF7(B0>$>gu|;>h=@*Rapidg&5_FAL_wNwDa8E67 zBfj{ZrF5Lt?aZCsj2z8gC>c51+t@kV0F6JonmIZF?QA(&xmY=wKUz9F+dB!cv4Q@d z0jze87Hp$gk`stUknLr4onE}aH2U}VvP85P_~PY@7jlwf8txf~k6?(|g6>M_6I8EF za0NtV%SDtLTgjm=UP>C+-F7|Gkt#dvDGEFH=8sOp@4h|KcBLae@(|z57%M*c;PD7?g$N4kwC~ z&Jb`xsWe=+-q>Nc38e*ixEBr7(7t>#o+&u6KT~YDH}=nXzzd{|@cp{BJ0PB|b4R zap$)aVoBp0N6S>!|Fcp@b0FLQ@vMT7+5gA2Blsu(d0GKYf6H&t0}^)?tMwgX(t(UOJS3d=1 zkA-q}^b#<*CP!RQKFjAPAkn5#k%fGdVCc}+fqlvhmd_gD#}I1zp!7X<0NnD+b8WRh zcp%=BJg3koeTTbbWYGBB12^_vK6k8^q`C4J>dKJFZcFbU5j>Jkwc=Kg)=d}0UKn@B zy%0g>+J@hpZaKHD><~OMO5y}~K0Sb|x}NTKJR!Z<(f;#m_HW?AdZk|gUm9o>k>$?S z-r{yQo_Kz=Z*ZC&H>!NF%^Ya$TN7?L*MZsNSJ;(>A%$jNpIhbkAZ;R{H&{2R_#)^|F9#1QRdrxufv15-8i;_K?7ftpo!ibC~>TTwwZsw6&oMbMO?#D&J=t9 zi*#O6Z%UC8Nk}BWb9N9ZOQS;v!P%b=%5ajiz0+JrOM)^#7FBf9de^V|^VpM%9u;o0 zP;~)%Q@afxr&oU$2Q-G+xH@+5aZl2F;{m-s0Dzb zh}aS5O6#(1x_@Oigsl=#bZK4r4f_{uk~?Vvl!FOmxy6`)GtV*Kz+SPtI2mi{&ua-Yk(A{?o90xSzHscgVE|cxsNv!F@>q<)@)P-j z36{Kx@8H{yf;ow^R;zkQWs9mF!G)C5%pZJ9JImhIEohi(j)={*@A#CwYSC%1an6oa z?UlwMAuG#33f(qR1E++r4(&QcBaDpG@p)hE!@QP{u*{LqyFf;_jlV_rBiHoq1!@;> ze+++`Ytb31WF94sl`Velcrd(B^y@<0k~;+dY#~K9fOP1{#qyk0#7_S$>UP-zK0L67 zC&01Rs_1K_P7N6EsEC}313euSqAX#_O3kKJsK~S_E6S1wCLAZDNoH9ChK%d2cOjR=S&bd{UaeJ$Q`OaxLUU`Zf?|xB4rPSAj(q4`Uery`(x)9z*3hy#yD58KyS% zl)?XF+c@P#?W#ig&|O? z_o1OI>7q1=iwkriK~ZIZ=CM`Q$@zU92g%3Hr{q-)=!<)0`{3RIXK^sXCceOE3{_bsk7P4|?s zyjFm3wrlOT7+LW?Erw2s%!<3x^xSJh>q1&Xm#aOv3S?z9POI*+(>VoZPwv?+E^obe z^HhPfob3;3bH(iw*%(Q0?EgXfCT$Q&)K%66h$M39=WtAVc8xxVOG#n7&QzP4%hBfx zlMnLw6xm)p$$e8!$w+@<;(F%TJVPJ`(vJ9y=Fv?^5UpN4why3|_DU{5QGiXAot5#~ zo)WiRtR(n7Jk~^yXGu~26`o_kB0hL26`gjpf3~iqseRgWra66#^3}qJF`Bfs-PBH% z@VVU{`0p*OQI8Fet}htr-Ybv=OiN>KmIXVmZnn(vv?omWQHJ{i-%&YT_M+_9#aDAyaHRQ*6e7xT&-LOB=m@wS{lXDo9V3$U}+m zHI}fe4D?+ZYyq)>eK8sS)%B&z4XV7sqZAG$lB~7|Mt%!1!~HgKL5(-{fqmCopIZzo z%*p8z!&%PEDY)9|Z;u#6<`+VO5%kpf7ci#V5 zUf!1Ry^y&bwGffe)NH?MsNV6tUwh&OJm1YXO}NZ|b35%=yYF~d$bKZ^UGw7XIzjFF zCAfNu;RAE?33ltcU-^#>J*;CseeAmS>nph zm0}pc^yn`VbAJ4>RP@^UYdC{1YJ&}Y0xZLVht$o;q;$zXegokN;0|mXJ%|@Niq$uL zVUA1_jGfUjl%^s;_JN!T5Wl)Jz$)k=9__o%1ultF=wSaUehC+@AMX4(u@X9_K0U2S zhqHR!d42j{$5hTHGWW z-r_}(3lE=e4S?5wA~>h#+DNd-1!ep7!}7!|PUN~}f`#4(!8>Pq zCG>I578_}{f9QDs%pmRb%3{CX4BxYqgVq~-cL)zS{SfMi5w^&ok2VPSC>SkMllDlK z%5P*-=B{0)C8Fi2`Ig#$YGM^tRI$j~ZSpgfZ`())qi|w@O_AWX0Ha1SuetFTdVI|Ur*dmJl~31fIyMYXNFIxYiBHL-SFop zxYP6F^*NI72~vg-82g9s4dyc?+#&1Tp#FzO0jU zoswi<`1~smc2g3$>xZ!q-nR6MXaB9q-S`10bLhNd((c92CD;_e$WWx{5njl$yqpPF z15@TSP=S-0j^tSe2gvSrWW$ZVna||58mj& z9Vt(Cr4O;8R-u7cWh7I(?u5H<&C1e4MMYsvRN0lH{Kz;2Wof+zJ=Hl&0CEPSM(we9 zj)`(%@1zUm0v7BSViiLLCRU@oNf9+gGXHVMHNa<+-p5bH=Pcd^1lsWXbupUCx$H1N z=C#G^L)~?o-Ziwedc{NTbs{Em8me+K@w6cNdi^~6SqQ3U+ji9WI$9UE?`P>JxwsR= z`MLWAVgumQn+IxE0!o`HBK!w;JfBogXFW*QWya1xnFZIguInSUdMqn&B zXjd!WF4!Wo#g!N7X$KD*mxo@eLlyBJ(%L=C&ju1#oY&rr;}jt zTsfex9B|3_qJN9MpHSp+U&UnfH|*&8{v7nznbrDj$8`tX%+oU+)91v0*}ez80646_ zdX{tr&PGGbuygMrxfxq~7#pb)bUpkN@00Nl(m!?{MvBJ3A*tq@4fr8YujFi{km_=aSb_lQ+rQwfEY9jOd-J$ioKa`O4bk%8^U8=gL71 z)Ny~h@ajng9|2~*y`oP8&na#l2j70A@HaL#E*{u*J-U*Ex3T_(W+;v$$K7nPh|4$xenWB@azY%L?4mpvFbxW%gN8AO4jM}l%YAMn z#AKENsrGFiSVrI?scdOeMaFh!eDUEITRpc3R@4kXG7x;$FAA9z|D0)E9;fX%$0J!+ z`d2zyju8fboaw8tToGLUEBbKjQRQ%1pF*3(1D&7e_qh1<{E+?ZRMoOeJf6YdbHDcd z^tx&P(xd%;1-|Qhm;FTFc~QuAnu&m@B{$%TO4D*Sa?>Kg`v9&#` zjrNW}oZLCDb6($b6On5KW(`+A-&LO@@G224SOVeAQ{RG_)Z~V>(27YHG(4u3?PCwwPfHh3Gqj)~;-{D*0D83SAcp{~1QWYOu~-4MwN9n+#^13Fa;-3(J1m z&)zkB8u1-ksJCc&yjr^bk9qAQ2mpBXZ#kx(H6jQ2g#UNcqXduFua@j!1U?%Ci|>=) z{o4)q`L@-*rL`y5f4zy<^9aCtBo@7m7ahWUTE}#}I@IOi;khZRzGLj%(eK=G$i6px z2>1PsI0o0Jck^9YGsPHHVTk^n5K{9)z{O!>KI=$> z{^%X5uePh0J4K!-e(2to(Nt}_rK>E}Z7OY$7``Y2dQQW1e^wIrO!vEK%T&!IU0o-0 z4l}hye>_GNYg;+-Las>k%s;Z>Y~h30O4u~q@>AI3wbg}-x45zJnUfhjfE0f zRxN5KLAwJeG+rC&GWM(`0nrALefyJ(oF+P)<*1PZNWNxz?j?51benDX_j$N6YkH2QxW)28Aeg`5(~jZp4x2Ck^Qq{Q z%zr#@!1rOG{TPus)F${zF?7FuGxPO*<}i+h@neeIeB@nmR##9=a<@JCM~&MrEA4hV z?~k{V^libz*M^l2@g6`pd3W$u^NZoeu9QoL8== zLz2nhqR<)AU!0GthAwYT#_W7J?Yy=~Zu<-$q+Vn=Wr%pEb)CCCjhh`Q{7^4eJ~a`& zGI==adTd%6`A4-fm5Y1q9{TNsN@0jud%t-+xB|6@4(X{BrA?(WV^ppQO$ z$MbSp8lXFVJl1?_375-k@63>$QTJwvE`BK_6jwPW;fbBhrtIuqi}fDvUCy51`xMrD z`gzD|P*XkA8aW@@n|qd$!lVsL8&(G_eg#1k!_#ziIfq%c>WtNN&dMk~s%TNA#juH{ zb>5p01M76+1H(+{LuIK~wBGMc_TC-!D(K|<9J3;r_#K~^n^bX5wJ~Un1cP3Ak#FY|L z#XVZ<**GDxy~S2R`j^gbV<|Qe6v)QL=H%a`f7E;#wL@2-eXxd?g}+|d%tDW2l*yKF zdgqK%!w~SVNjxy~f~P;!+-HANGDzzjCN$nQ!fFSTI%THB)1|ArYiE$;GObws>l9wOVGwm~v*j)C09SX&V zE<*7Z*Ly>8mJx-YcKd|j+O4wB6U;ZOsq67**>Qx$>(GQ^tI7AisrIUt-sRy!<(cbw zisC=ojSAD?E_u7rZo{X)wH$KoQ3$-Uh#}Fkkt(|{%Xsi!Lfw>K&=K0iUgkjg zZcB?-1t}^}B)lhhspbs);e2!ZL(5wC#g;^>_n1^L^3EnaICSs#8Yb5CiIW;9^ zZhv`y%c=sJU5lAN?6o%DOD}<&btKWjwHp#&|KzTRolk|$|LXWG_$|55rMB-SJN&=E zgn7d~4ezh*`L-|iXC?-A{|O`$FO<@+562^n0IJZaMB7n${90j#)NQ;~3hzxMkJznL z@*a`Fbs^uHQ-u21a1f=`SE239mc@f0uJd>AZL9_^4D_u$yTwL`!L5cd`HRgNHDD%wF zcnYv_7Z|9K^4feNV?CTWvC2g+#_hMHLf0jYl}h7-7WBvTtBuJ~NnjIEvCyB~pxlF} z>`%O~h6Z|OfJcB(t|TZs>)*z)duQ3L`dDN_A|+GzVMKPzvdn@D9mCcOA_lDC^b{uvPI|JRrhJ@&3=-deP-E-Yhws(wCr-W2TI z63j{jg>4c3*mw5$IA9xEjyaYP+oP_K891K4ykjgN>F7n@qI^wdON<0BD+6fTg99EMleFlseY0MSWS*DbLQ zrq$qG{2OXlE~x~OCk9SShM3?7qo`EKQQztZ55~y`ct-0M3MkT0*s1l_gSgxU3LI2X zbprS4r9eak(PZ$v?C*DjPW*MpEh#Wm(vM-m1J$~4hGB5x*$D*ggWnP_ara%(&_1VL z1I_UXtT6KuYw*wJX8sfwk8YfH8uEjND6bg{97I%>p;TC3a`Y45tw8ezBL%v_!s$Dv zX%yF5_Wt9q`_*faRm8{HKdSq$Cf$5Zaq}X6C;)z&1%D~Y>-vuy&4@nEyzn}U&)z;< zsQ<4=hWLJ%cs_rQaEhXM+Mw{!Y8)W!SzIJeX8rbxCjGdNj@g?5p)&67(yiDge`@_J z0#y)ti`%escpMSzR)khOU3AdPv1_fzU)H*<0F%~Obs8weQ?7R56J@?xUhqEd;@W(^ z>_3pp9&nInlYUss793fHh?7WFpgX(?ou;X!3#V?~FvX({l0~MJqn0us{W&ZVG4pA+m4U3Fox6*@ba0|^0F;Bcfa=OjR zgd64G+Aumy^jXJ!wsVtGqX!+{f=u#Fb8(jES8NrDQ(s3N5WKEx<=jCuAD^%PRT(&< zr#J@9_CM!4uNu5A@+m-(l!(ra7+Zquxe)9hBm379+q=GRKlldUocDd4*VWhegf^A} zMR{rLL(6gWtp8DDS~1^P;}mTn2>-@|eLr8d{=oMgp;p%nirr;5hf(fw20QSAs%t;q z(pJW~CqJeE>FN4-g09&DMRLV;9Kqd=!CZ;3MlONYX3keJ9Z|bvexYH1ZSoyl0IE?q zb)=REB$8Wo)^t8JsvH@hjK~CwdUEy&baW_*ZR?)`C*z#f@y0#-rTSJYQ0^Fk3Ov$p zn!aCsb=UalFgC=eAgP|**BU9lAHZlz&m$R24-IRzT`u8vDbWzd4;9+e$ix{8Lf|%C zw$-m{XxJgc-xma9)EpMNXk_7ujRR>tp6(;~<==zRX~Kzr_5Ia7hu=!(<9Q2MhJ4Fc zVXn-7@6lJ6m2R`k@*o{wvQLi;ym|2A53(_I;s3$*Cd(!%sv)VYENg&8f3x(XT-@t$ zf7&V^cQ()}63>8*iu_qwe@>}ilnlc}2Z79?vK7Gl5oNx@8SL&k`~+E#T_LIfqk z6*p$heySThZ(Dm#=5Ji|?uPj=z+QCT(LebrmP^BEL?vXj#6uIsNhqBoWksXVKK82Q z?rx6?WW;?nfhUH*u=2meGnJg2-N^3P)_RmcsI-3mU=Dd+YILBP`wb2FpqC#o(C;aP za=HQjfKr&FJZk(R%RHWvZ+aPqzgiN7Ac z1xMoW1DdPZIilT9xrMWFgsTc(ItLGK8F4H;I0XZ?HVwn`@2ey~>wjDKtKHt$VCuLA z6&`;P)(h50$p0ZvRtbC2 znZVB6!xmlpki9vj^F8bGT~4ehah@d?2b;Dh6;5|Zd}lHZ;&GO{TGr|Lbsmx`UH67La}PB2K3)CNwvlSb(xd zmnkIS_r|2M`a5;;qcWx_V*TE&hPrI!f-$GUm(It-{c+L+I)4USnR|Yh5+VV*L`n!W zYra-;7Q`AA;xwTqnbGfs{_kCn^B`5g={hu^zKyeADiW1m5Yx1FbMz{~>Hcj~=HYo| zHGf}z8z=c{mc6;f@MAjlxXlD1K3=UVDFqFh(@3F1=-H$S`ax!jH8g1(p4v@KWEO0c z&h)tX7JId*L_%60yx`7+p37L^cl$+2>zdNBGQ=COh8B~KQ8AmGX+yC6kIL+wxoY-w%?+iC#jdU8GR^6&? z$j2e6a9alZ1YDnJ@=|Ot*+qaYJ%=sG7dAS>amfFWI{4_sXmhX7?B2}$ycerg z;X(yf>)9pQLDQr<5%`|LTd0!TnmrW#LF)rZ^A1Fp64c_(*HCEU8lI)87G%b}Tg77cI*)|xPn>O1t)0GGJ zw^Sxd4UVA}1pjjpNQl0q0s@A&aT&R38D|z(Fv~L_=C{ZV!N!lBtQvZF*BsE>>f=!F z`Q5TswyID~$QM%UxLHd&ELg%9_UH^qwK5olLZJrrX?3e|d~MlI4r&gNbo=vDkw-3{ zT*Euf=suJc)Spsy?u7?mxV)hLj#)quk+FWaJE6ex#EaNi-_TH5lQDVx`sq*|IIXFe zlO>mXb%~XNuBW_3DH(2JJdg9|c1hwqS;!CIY=kn-N{aUS>wTMy@%+U)PCQ{fvcdcT z>MiDiR|^n_8OthR#mGDy8Pg%5Ct9AOv7iGfEGFFm;&SRu{P1- z>m&|X0E=YNNBH36E8}xVSxbm=JI~0PBg+VA5T(0btJ6nLNV#8OPq6-v6zi_V&R})C zM(SklIb2fGCuHXRVcPl_;W!PA_KiE2Rp%`%@;_-Oef9Sl3z_!ww^*<%3p5M79KOZy z&nP_fcx~z`#MV`YBYTBdf-_6v=?$|b9qQuB!(sB!6{p8YY5EhDEyTY6gG`vRaR{}9XgJ?=_sVxv`xz5)OE zapJU^^zsIy`5=Vzs04AfMirXNGj>_E}J@Sa65mrY%MP48Cuod)W6ETy}C8>`3mn z!EiEfpoWIwFfnKz{YllD)!H>#t;xb32zmtejTdarTFLJSwauhWLronDs18x0C7qWN>>3Civl#dV}ey#w{8JOH4h z@&oo-U*FYf>V;PdCwt{~#&P{iOV4m_cn4m?IWMxV^<^6f; z%mEo_5oMG9ZxAk)RBj>oY8zYBpHzI@!om{a6-mU=aYyh4@8tgWL-%aB$JS*A$?kF+ zzqy6R$*t49P@S;3o0_VC6t9*+TN*n96Kj-wMni=uGJUieA5wf>(OJ|%^wnoQ2cxc> zMubY{V8u;49VC`iBXq^)Kp3qp#f3T#&Z)@l#rPvM%ocw}j#`a6 ztrtLCyBNAh_pVaHIr2=0Ehv&vqvw2)eUv3}jFyz-7g$mMW&CWYEQ2D=T%RP#6doNG zQzp$eQ;@1zE=RJ|JCm5J3jb-rq82kf=;4@re|;Ko=TG*WV$fSDvr=oIk|6xl7?i}* zig5(2l*48(x|j(O!=ITzW74Hc?Ei2;J+y4>$dJwmJlLhR$Uammt6A&96h$)LwP zWl=gDr2iIyl!jkwT*tf<}eqcI;0{u^&VKC8y zBBX{5>Q!?mJ<0z!L&Oyyr?$=Q}x(pEEOXlEG6@wY7QB+gga z-^oTR*9ldyoNk}!*uvhWfz4`$6rC~5F^X2}laoune7N*8SB8Wbqp|nLSSsN&Ow;5M zpr#HP_sA2+(*2gq!zE{N;QWc3)DR$)94JA=RQVl;%ZsvHm4TLqC#JH$f+~@d0umwa z8dd2k8$l@T0hDBuoaNHwf|=35OKK2pAlG8rr5V2sh;hRFp`v`)w5mX`Q-;AGt3Cu`)je{Irggd7rJ;nn{*HJSNYZ1mp^(?CSDUgd9&Pf$%-PZ^sP9Vak!Hg?bb>)zm$>i^*2%ncpv-qH)4nDKrH=u zzxJz7a2+{ns{B-~s4-yRSy=vKz@@DsP-?PsF_f^vTyZ$6FL^_-h2WHayc_E4# zu8MEcEu#GcGG!Ss7ntf{y_0O+?* z#pAS+RVtjQiqO%=n_mRH7%AblhlaP%@X;iV~|4H8eiU7QSj^h96>kx8$F9yDNPdO zYBHmyEMXdrY?O#m+I*}O_!0m2Nj+b+HkD%m#~)C3^%RG^v=IQI&Kzc&zZx-C-ZJVY zltGdq0gMGW{7+&YkOGleT$_9CKg5iw{w{#<9q1gVv#rK_2cUG5Mq@1L2UUbZVkF7@Dl|g|ROJVi zjk#25s*G?(sr1G|KQw>-^~)rtT_O+?Y0W!9i94u*R|b0X2#|Ph4OjJ176InDP)(in z#pV)N-|6-aB}M=k>mrz;9Q;y&3@nuOH6_fRVA^j1b;brzMTG$fB;rZ|<)Flhf^+~Q z_!YrbJpOcIUmAdTN+lrYsy?N`R*^JSD}1lLoer}ymX=WjRW5%raSezy5vh}UB_+6t&IUY@ZYwmbL?V3L z$%Qx=HYWtp$LIUOZVXlfP(B#j_@To==*#(vBDRaFw!aP#Yr??>hxK*Ba=%(JoG8SrSa*eJnQd68K{733cn05Lb!txu$CzD-+yLuiuq& zgd$T*{&~}piLy2CJh}N&2d-aP;iRUbfr1)JnC%g-#RG@m78RBCj2~Q!6P{VDo zP}5Lknp(&E{i{~Ev@|$xsN8C?^dsQs89BOZZ#*FgNqcYvmF())4cAsrfqz+Kj zMVJuqaxO`CCv_JOA?@htjz>F^FS>3UjoY0YlMp!JTMx-87G8?%^;fvzyaOuIC&D5k z`aM&9sp0;IoP~I+f%Dsivj@wYpM)vHifY9?7gOiQ4sd3|HF!FbAGK#O&TcLGJXP?C zYz6tH#IKV$&<>r158c4-W zYGcD#@O92c;-z19GV0ysD=rb17NbvM=Ctn6!050{fz~GgtUgQ2uDe)&8@GwP-Mpow zzhjuMc56Q94nh58*t+wny45xl(Zn~c-Dt#l{dB&PeyD;9^@bc|Y#r!RCsRW-Q5JAWn=!lu=?PJcf#2`C0~h}+O&%M5~&WJkx?GlvMfxv0>O zYzw!~tvW39WD^}yv=3q2FzL5_;~E?vE13fdxDE&u>GPsVopH2gLgti5<>`y!i9H-7 z(}*Znew;JLh!KHg2ftNh5I7nLx)yWbS3@GrRWnw{_9RSjW1*z`bpKlm`PPh|BhoHg z7MY{1?=S=+DbG1*9Jc5P)c9cC$D~quQitP>D4lP5AN3C>td99bw|`c$d)8wgY=40& zNLJI}pn0WlX9wEUDPubv>Gg9n5oHUu4P*<|^ferOvlWK!D8OX+a1EW7*a5zXYGEa{ zPLPGKA2Q~glVgCQ^osj!d~l~P4x5w*sKMdPoEg(4A$|ak{m-eWbm>F1gW+g zlYc$qrFOO?IFN$LH@CSNvrgs04>L{7 zS++h1=pc3fiILiuEaUm5o6&F7?+96caYY<%;+f)PYbOpAh7S9j0W$igk1>wsKY($h z!Zgx(s1fqAe^l>mZ)|hPlCI}))1Ax#ZC4E>%ILVnMoP8qq@6XudE(n(WN1DKi82PZ zfQ)AW1-NBSCU*m*s2^^ZwyeeS0raID}z>t z0D5uJa2iR2p~HQxu6 zmEChDOkvCK(sp!y#U}zG<0Owq-*m76Og%Hs3!Nkor7cH!uN1up=@(!rF(nnK@S_5k zKbLu7y8TG4h&5RcVkbukCL)_RWP_JfXqLgY0UT*vUI*+?)0G3wpBZnaTPVvj2@iy_ zo9*IPbo*+3hT8xx=)Py`7`}JwJj4?qdL%{ErN;gwcP|9>>IX-jXUQIDQ5W_g%Tsc? zG)#Y@HqE1aHx8CJ(9di{qe(8QHpp< z<`SQBORL-#m0=t9jQXV241Tlj{rxKoA921MXKW45+Ar*IpbTX?8+#ZRpD|KsQ8q0l z=4Xvv=F0vmSEUggu-yx5vx|(&sJuA&b*^f{JNdeo1pOy+*Lth!mB{r;-0vt9*^F~O zp-fbiP5A%{U#Hd{*5tMlhuDB-y_wOepHgWC=PPvK#7n0s;~G%`Gd&LowYl?wV?F?macft4 zJlHFv1RavwsQ0>(bnTXSgT>~wG5uorPLOOz$n`^H?SD7F-I0ym)J|^e?-4w`+g>X# zAupS_?vuG_b&6)x0kp0CZ!4ZOc#L2IeIY$bs8w*|7!`*Vqj`3Jt#5p(S+ zO>9vGiyU)he5BYgQ z>PIQ4;WE0>piL>S6ssVsr5r|%z0V;^?|+Ch1iN9t8X*1RI*#hxxUH1YGkiL#;WNUx z{hz+FLLL)huzTPCbjnTpw4|X=ADH(=BeNKE@J(#@+HdppeU>@7uoGX~=XTCt%fJVB z$yy8*4S|W~vQ&7eu7Y@Ekd6et42NqKJHMq=oMl~3_yLU*nZ7X>9Ym)R?@Vis8;W>W zgpg%i57sMbl$l>e24xy9qr(JEmAOtAVW6$)1^4~b=A$)L;}3R}rD(7F1X2ayY=e!k zrul?SDSyVDkdQ%QKHi4ujScM5#^$DfYLy%H;LS^yJhIszB&6D@om2+3aIu1&MU%m! ziTU;b+4eKb>P5wVE*{eTLT4N)w$N@qQ3+G=5Z9xjgD@b&8+QXeqM!V6kFoPnbGD;` z0PvXlt*kKUzjj``=y63aKilsnpd~{fj(d{i?D$t`mU0E3L%~3UwJ-o&Ht;licIw$kn2adt zT=*AM+)eF*ros@nOcJU)y!}6g-T1e$%A^cC=Mnd98rx5hJ^qtBL00g0-My zp&66Ia~~FeGrl3_J)RwuefKS16egT|SyV6#!{vcIVpoztn{!f8SYSD*yM>F9bX#^nMK@%4b{rf@qALW`45o|%|BVwJG@CWNl^H4 z@VVOE(z?4)_2udeIu7dDuqrgE!FE_XLoYX*_+J&i_82aFWsZla6CKShMj;8Wf%rgY z+&q>F`bb>eydkEPgeU;E!%A&LI!|l+!!`;gDEihdyGvG8uS#%wqgl-+ni1kBSf#sj z002icD0e?Q!Dz3}!AGHdXVjV7{OBx2Ewi znYPitX=@MLL_zh$n7H8E8$nCtqC_c%F)Ow$9U4ya!p+@ME8w+eB7OCNtCo%CT*7J- z=!>EJ+(58;rB<5kEsr)!m~q6kCGC-@-=|f9(s#PBg3AN$QitX*gpv5zAF2Baw)co5 zHTd@RVWoe+%b)x%Fn%;}BTPv^f}{zG|7`4A0O~J^vsT83X^qXz8T&9-nsSO)rv5ZA z+>j1$IN5a|K5Hg)>~JRuCj73^{0r%~NyMQ7-trXj5bK+0XxLE>|AnI8xYD2oPD@;0 zm@V-PYFe9eUPz)ePzfmPsXm0x%p|ix#`?iEP?3&ZuOC)viY!+k+fBON8$#94n1@fXs*Tw z2_lJhxousFb~27R4Ml1M+gtl-ebqzY_`CMMvy5)v2v1vNP?W0*ysl!sJ#=a4a11$z ztpT1r0!`V3CriFQNh`qL^2YB;6Wb=>XGKfOojLFsO-x#92px2@9mmg1LLWM#B^cp1 zNC-9YXGf0JBBZ5X9!6Z2dE1l^F&fd6eyQa$1}Ui(3&C{s!$YcsxZ#+DP_z6VK)g|^ zSZSG2*$_Wb({T2u-ye!mi8cnShQ+e?)hV75&z8hVe`I>e;GPoa?Yhc6muhA=?9aQ0m>XC0e{lESfb z2{$8cLF+=1*7Lq3U7k{87DLXDbq~-3*`{pLUv1)|0%zk?xs2W*4PcxOnyJ9F4s38F zt^MjyiH2#CC+=qnakX zrc^$7ep(|l($+FZf=I=d1zbp|Y}QzJ4(PON)I|%l@;uMd2}xTBn0WnPkz9q%wOv)R z11tDY$B6-ou8Z>rEIH4KB z{RD=2bP{|GQimp8Dvy>bFVgK%7|MZ{5X{fEqeqxv;9)hBAXPI8V0AN0620CIn_4lD zT&dkX4p%q+hUghihoWB_5azZcqOHv)8rA1=mBk~}s51U!5HNK-V8XOQaIEANyB?J9 zE#Sb+!bpFvZbntX=dC~=9-QYmyUM{J-q6E8wZdPDpGKF#`hGcna55B6o}TiJt{z|< zIt$qRQ8w8be}g{McK*ZhO>u2TVIYk=6-btf+IC*HNu339#z(Np+iu!3M`_yZYWxZ7 zDAy(jLz9ez%Rkb8VdNtq<6J|lj6E>%56SypSuyMoe;&u&N(tLF)H4hKQI!Aq!8`4; z3$jk~?S|Q;7$n@q-|y;jGQ+tkVrXSU8L)haO66x*N;s?fLmHqRzAU!0xEY%_F^21J7QCc64{W!3=Z z?0-q({6`TU<(%Lx@31vpAiBipH$mo3OMSdEH=?)`)wr|l{-8gf1hBiMDx@q8-%z#> z;2^~|S{C3s6d<&xWgo{cZ0ufFQ^HRdKS7Ap&nbvQzMA%#VJ8O~Dm9`$o8$o8FACaP z2>?=VWle@PD33B#>;G%xstQgNQ!H*Q1C#-RccB{>9?~{k@zc{vTz2jIguGL9^P}dFhIp5yLN^%7(o&Nr zoXHFZ=@JNO6_g@S>8$#5#CSs)m<9^s;7iRF>>?1nL|d8Kxp8%^sA*}jc}7;XjF|1Z zqG6CWDzuA#=4tZXd#c_{VtnHtL7p^%F7s|pB#d12o>KMU~^ zEByXfE+&yY(>^R#Q-YxYhK!hwJn?P??Ys~^YPp zB(}o?&KW9O6YiAd=l9T20gu7QB4n`i{KBK^&aRUII z!a1fRRFrIfPD`{#8SS#&u#R{6PXTe)F&>|ch7=SpR!^rl|H zEvgL~;-juBI9`dnX;`yB5J|@gpIK787vvs`@OI%_k6w|p)Tzlz#A!v14*G|t2<8O zTuokv7$qaT^cDF+Uu(y(xnT83A_OKxT++Z3v z=a2|5a&tHLaHD)!aRvRK4gB5qgWIST?ekxg5_vm6V3YS%JM^`(U>%d-6RWF}y|p-> zzyUXy*C7pMq*OAN47nYA)q%BLJvWr7_ra`MW zQ>c*H%~YE6W&g5{j21_FN*w&rbwP}!l1ixq_a;`);PeiKB|PAMaG->6Osmu)^i zEoicZ`o_%Ei;=;ZL9 zj2nr>nUBKS@n}HI&oY$Yj<%8Tg>o#0MOV1CZQ@@7Z_`3@ooS32)y{cprZx$899Z)U z64E_!Qcp^YR%=~FcBSF{EUQ|4fhChMMB77s+K^W>Q(m*WJr5Q0%JJ6m4^RV>+fJ*M z8AoObfONdchQAwTKQS6UYQ{#mTw=rHMs{|y$fzlxK33%oxL6R2m7);Rr!WB|obtd- ziW-X3sGe8pJu~V`m{##G`I8PM`S>03E>YWRjz_hrR8?MzKW)ha8e;&|`-VTBno`Wq z*K|E6%~UViQ*$(?yL`KMEe)(=)y)wv%Ci~<2D}?YR$ph{X1ArCuB9CS0!ifWouCd3 zrP@($e+G#E9G&gj+}r7-szlUw>~nT2pS_7fwr{9qNPO`PtMI-pl@V~?Z4Yu@-a9$0 zl^@tCLSOz|@7|DRw;7PX4!vpnGn2WH1KaNW^xfZ^om_*Mv(c-Aveyer77Acz)D&#i=7tb2<`e3&m(U_+;7k0z); z`DLsjHu>J*jN1SrgLxoclHMZ5#nj&mw|Sr>g3Bg0vp&W%wo~-fO-PYub~uSGf|Li0 zV0K-L6=JlfayPDl>Eo3Z zA-_<8L@md`%%O(5Ufq&8cow2e{=*V{zU809YwhZr53>I#4z$5B6|PQiXw<^7eA2!7 z@=(f3j!zSf;eQ{YF$%2T>1YIbmlH0`Kn4#{?y$aN`(FQn1CPNcbW0rmSW}(mSjR+W zOjAh)jX!)m*?AnWy@rQ-G?pKwL!1DTJ-`Y|4=W1$=A}2GPL|3RG0$sTz4Ba^T2YP* zaalqRD5urn9wiylm{H-%usLGGk6Ht7q1ZSNaKVf1^sb8X?{z4rM+;@x?WJh8I!|5b zrNA%|*_+UKJDP2m2av2ZtBuQ-8W7=TM8=>8Zx; z)RSyq2Cyt+j#}P7+ecbQ9ip4Q@*BCp83liN(4FSuKi?d8mO^w}8sPiZqj&7}<@KMg zL-qzqOI_%1c>lmg9H7v|zW&l0j$6|!qh0M@MR^u|(|Y3TEWNx9L?3tz|NMjPI61qd z4yfM*<~9JC%j~MtJU}(Lk2^$WceFT=!dZ}wuhNU0aPGAGE7FDD>XbG4mDa848HyoG zCoT{bw(oL0l>(aSc^342lSYJ)K*o?tSKTDyDOIGd<%8t!D0bn~+!^RNE{KO9hSi{q zH}Al%`ddG8aIqJfUb4yh*wK&!>qQbRGs~t?q!sM5=j_vsIVY z|6NPgwhMAktGgZgM`kB@x9=~$TjV_Iklfk4kIM!3RJl8zlYY7<=Wv~L`%?^DxPc%4 ze()L_b`oDKZWK%i!Ko*4j?0nzc2^)E@CkUq<-hrg74C%h`Z z1Y7>c7`vSO*3V32gfCz=WfeZMQ)De#oe8A%6f3?pe)MynY(~n^k5fL0Vh+`b(Iz2= zzow&(Gqez|bKw#68a_XJZ@@*q@srBN1{FEOIymm-VDT?j_LV_^dJ+AB;^WEisSwg_ zG%6jfW9>%Ajna)5;L$jA`Zf6r8@Q<$;9~pox+x`>obDg?Hf_>kSKkt^0ZyVrJ2s?> ztZ>cv@CRWm_aj!?Cxdmw?xdAJgRWpgT-@T3Y<@2bE9ljEX4KrO@?9OoY>KndU6RK> zgXA}jDPS(X8|H7z)WuTuG_&!{Ikj2y2>?$5eJL~F`{jK<0#7COoil6uN1dv29)Z~J zw)X-~1zO%rMp#+#RzwsvzC4kp3g+y3%xl}EyWHaqR+mqoH>qpL_Y)=FiQ_Om$X!wH}8-j5Xjd3d-TR{CWH5u`MDR(q`zP9MW6zhyvpdeg_SREZ9LUw!z7q@?w z{DgxR+N4^1)3*XIt3Id%bG)vhv=AaUv$^I`>H`IR zewwbkuFV-iqMc{!9erIH_V2sgHSx-S9cuFowmTwVSc?E9?JOToR`;F&%t9EZB4vzX zBye1^ZQg+gl)CJPx0|``j@FNPUXBI^yT$-1cv1VEbv`Y&BgYt-?BHWYQ!kbS)@boI z4JjJSc99!xD{H^n%skS01toT;n7xqFjpb|H%r9pt&_tZF6xgNe7N!4?CKOsIu7{!R~`Da&2&SDmN ziSM-j@r6@sC=cmoU%}#3e@``KF!#%l@roq_BqDkZ`UFm=ft>S~hL3};t_yAc-ZJqc zMkm2$unxn-T_$_;u%_pR6Z~^$W78$M={UKN_*C)OfsIzcT{Lx`d!@oYW6C={nIK>A}{r-R#nf3-U zF&(!0b3e4WTR0vAzojW9#>xQ4$W_wV?|2tZvJqvGTSbGUc$p4L4GXQ@OC&1>aMyCB z3k9e#ICDK~P#26*7phi|&|}KEPHTCLRHSxLPK;1I#{TpURpTPSGec+V1vp zYdv_UH`O6gvvM=q<(y;)B+n#VF%c&MO{SXfa2sPpeHI)q?~9vZp99eO=JB}hefxag z*$)$LBW-0STq?xSE(R%uQJ-a)WA- zr0WtJ1}|&l30+83cvkJEwc#9-NMnT=<6A{=wTDHrajFra4cV&TDZg+B8*>WvURf@> zE&;-2_5`6J6zqGQK(jT1Zp-z>B(g}CE3l9x_eKmj@-1&|RH5;*Jf2~|an@KiP)=2KBpJ@2KmB-bhMx1+aE)F9=VrDF--L&88E z)Uxm@L9TwRUX1mdC@bHD5~tV3l7N@sXhp^zSI!eEvU1I#`g?hyPhpdjJ)NDbV`PG$ z_948$E}0pF>Q!)lSvVua%Pr+iyO=xYNSNOblGXT&L*|L3HRI2Bf+9J{UvjNV7}Wa( zhAJ1UF$Wk(VP?p^5Hp+zw|Ft>u6ga=c-of{dgR{LfU&C1s9TFyV_~VBsXJwuv<_Qd>dpZSJIUjfif~bY!dTeLB0*?5$p-ih@D2UG9eHRXxw{Xrpt)gp@R6#f+oisn*HDjh znUH%F=?hx&>Z=*; z8)BfAZ(i9-6E$QmMmh6|(-apArx~S#VIthUS6vmm+Do9$`SZ9w!_HSMchLy-xjVpo-^!!`jI}MYb^GV`vlEe5>Gqpy6B8;} zD`xuh`eaSPXqK+CxIRBk#6Yz6xPydcx`txkQI&Pd0w)V{Vi*7KnLP^Kl$#DP zvqznhJB^7ybRb#t_G#=105Gz-$Y|3n^0u2&qmwPA{ILq(l*~9!3rK3$JE$|og*#|; zOd-ezS}#%!U}8VC*>r7m!Jo`i9csmVdH9|lvprhq6b$4`y9j*SVJVrW19fv1hW3-g zb2*6S|H&DmQgPHA?pHTHRJKl5rll(8J6kcc1-DzK!APyz5}uE!+g{(2>i)M9!2@C6Y7x=8w^c3vvK*3{^VH(tfj|j zy`iUkJ}y8Y{<`>2;0vETT6asf?b^@V?Alc}%FvTtJ8!Dp^c#txcO0<aOtzK@9gY377@-JqkDSs~)v%24Vk7>LG|2ggZ{O5;M%OIOu(cXY!F!nbZ zU&|`13j;2GVq4ws^ELe4cFzW$ZoQs*c(Rjw7B(p}ikCvmv39}(pHH5H54=mxZ_w}7 z50!wA#6Hub$f1-{BBn4QnPpNKpVaVDt(+FtSBzmLdb5?A)C=FBq7+-171kU(ArY(| z_?80F_0sU@ThnLXn=25`r=FOgy~9?K524&(jZ!Iw2S-&UoIF)}PJy~8Why@UcRDbk zN>k(i@CsJ4$efDQNT{Wg`?t;;jVavJNvZpws)f?gO=ZMev6wdt8&ouwIHwJRQd6R8 z)~NJPt?5~*+($cVZW*+(Se>z`&&_jn%UU|>LL-RNQ4-aN1Bu_BmP$I&6rL{77Q)q% z@a0>p4ZAlQ4E7=X!H8!bx{H$U8g0Mj{Ay$)I>no6{uTBNf>2{rv*C*tdm>Qq6*Q~G zoVAjj5$6Gsl}MFD-H5HUsu{8Xn$nk7A0k=P>&{^$$uw-&H9ZB@$gnfjWI{e?rW-iA z+~Jz8_R0#@jjBftIKIYX_=0kUyF5`(&M>rPBl;F_Re>;Kxaz!dv;?@|HfH6b?}YZp zsD}j4!)DKr8IR1RiS10}7k1`=?_gNDV}&K`oDo9eR+Q~}=$~^(pQerBnXt(-Q>ILXsbLip#Q)Vi^%qyQmxr<+s&Iq5D|< z<;H;26pJXMtS7=e+8`!ZU7@6>#xF!)YNe@|;iN_*xWhKTq%LLZ9yZoc+aE6nSt&hc z7m8sOud*dR=+4xpNu?QSJ@sYxBmdGPmKq3hHshg4Y-W#b)>lfrlw5oLH(CT|W$9Kd zR`#1()2v|YOw9qpaxLuS9EQU8pIth$%9{gEemuo7ZAIyJM6H5H)H!qHy6y7O&) zf$`s{|HX?hi;A+TK6!fQ=Yj_&Xj4R}3aB&4hy01{u68Y^$|E*$e;WwMC(DklM+nFR zdAxJdXi1${I#Ph2;9J*lc)Mr&L6alh9?hEm&#D4NI9@}KeKZ2|q+&VMh$I#G7P!Ic zW%&C2UX;vIj%;n&Qm8Gm0`c7yv|v(+a3>{r?J1%5)4!nYodYBZ&dlnO>P2y9~} zZQ>>5P?_^FfNN4`n9@=HcwO9_tsDVB7!DLdd;Pw9L_MJW*-$ogTri-$sinDT zK_;ste^|(^J3oa=#YSbTs!DaEZVjWws#m{&>ld#M#TI_4&yQ3o@KRR)Cd#hQ=Tjn< z!7c_bqGlyly}`ZXMOSV6id;-?}!;O_75#$BB~KVuNa?*aA{o zZjSt^h^PKx{}j6|@(bh_3<~A2Dt_}XS191@R+R}CMd5 zjBSvp_O-Sf&EQx2@&4Hgrp>`ae}YunYJvRxXBaWAzLnX9(CJOMr;n{a3Q`*z&F!S!V&uPXRlU9ZeH~$?1MC}r#mUFF0eCpGpbUk~Pa-^s zh}jrbpVDs@7ujsY65e{)4w66mGE~|;OkwSku|wfDk`sQOJ`qZwXzFSp&nz!eS(t%69i4eQm2?c=!`)gPd>ruU=yO^Ej&A=o;; z&kVbdffRLQF5Oq;5=us#!-ka%l=eSz?wD9U@6E8++W*!iS^c44a`@mFXXKqy^GrTz zXk50$Z_~yZ1?t6o{WuMw-%hX9#Z?ts;%Cl9v?yYaWCc{t%${VQK?O?kJ&pGVzmmK0 znpHQX3uWgDGJd@V+QdIS#nAmKTHe_SF`@3B8-M+18GveH9zQaIrDANVzZpoqcv3F# zoJbK-Ol`gsWM%GyQ}LR^sL!F9r+T!@+v%~33)F2YoOr9jmgYm0fpIl^vMpPzBzCIp z&{tCc`RIxj%jd?WNdDGGw_bzI+?!kt#`v*wHU`KlX$zVVD47&CY~G(uV9dF48YM-s zGHLmxzcn%p&lTWBYBOcIRW(hHL@?03XhJV{mG-uHit@VTg`qU@9dAiSzw)x4)KpVi z%wDm@q&-xm(rK~Q{lQ@giX}IUHsQR@n{Ufr9?AWdiRUMC(&dC3Q>8hnFs3(dlvz_f zlgywDJ@;dqtgps)b{_=P;!R{GXMhl6W*d9MihE}zt3nzQ*< zItvfelWPx_gj&`&y$&2bR0H9w)RkEq^6MVaxnM9_g~gCZYyH2XQ`tJRruhh75)xT> z10#j2v5<#<&|k@OuS5uVeXSKEF-62q#(*-LNhW;FUQ55m^zE6zAPa2*altkPTurIi zI!UGKduBz0qk*Al4NNcm#C~!NEG?9Bu%Pj5$Vjgvy1+^lOcy=dat_1;y-V1Dl6;Zz zE6&~@LgD?i7s9w2=Ev#@YyJ`zg{4Gos@ZVH#xB59Zy>jROtP)7!J)*ZS!BFVElXJ;CXweL#ki+g^Cck4;03v|gX;ada|w zs!HpiWHsri`e3Qn81%yr9*wHpI1{}*^r_}(jQkmx=q4!goY8aYL z@QWWOPgxp^xS*O?t|T*IK@3)-q1Rtv1NB}laj@71Vfr@!8u)#K-jT7pIb*Sor8_fQ z!k><|C=IzaBWV|4sw*?R3EXR<;1)t4hO0UCQLORh0-#ADSU(fZWU|iqw$Ark z&Xt98Av!w-WY^6D&Afmq3W&$yjZG>;n*r%tWF-~rweumf7IXGYT8P6C5MqP;qmu)r zt)R0isrwS+2#_BiPiKYO*7e=Sq zHU1^OIA}iZl(V~(kd;NiCb(4cpF3HSK~8C%eh1aYHS*S;X!#;l@7q*?CS9yC9+Ic(r;$=T@eQN#U4nQ32ftO$8 z;Cnrs#l9EKh#!<Po6lj-!*J~W)h#iGtS*{+bOmsB4}9_n)#T1WSfi4t>$@}gT} zFjbb4e3T`MY8UhZjnO!e{u5-Jw&Px@`xmXJCCJ9eQM^IlM1I+mP={@T&B6}z2qVCc79 zZjiG0b8j+D^{NCY2Y_1x{~9=#kZL`Kj@FuPUo{Q63#7Y6I!S?|fh`^2am zd6WTsjuD0;3Fjmcegma1mT+WctRSXE$vYhv{H=L=jligQJ<`*7Ar_*@c}#SS&0qjl zoK#j;{y08vY&boCoEh(2gUjT+Tsg6>!WLSb-Qee>;$vAov}sf3I~~ncyW>Gdl-y=J z$U08+Up$MZaua_hFU2O=2XQSP6~|uvm{$Pki@+c*U0+2NWIunT-TzO$4A)XN zxT=pePM%b!Cd2SG5CqpMx*(-)P)=1Y3A*!Q?1(QmUj{Y21TY(70|z?;JEB{IXi(mf?ufSq(?p%FV(8J0{~3l0w|?)%40)l3R+*V?y@@-*OWC$o|O zCgoxwnmX)DHTwcjEpI?0svAt46GyJ%%NwpN0{pK4<$s~d7O0{?H``J?nL5^1rzYQ4 ziTZ?%r}ktPX4#l+Kzq4=<>E_)mIQyZczoRT3`K#ts`4hOkzd}r+zN7*St`wD1>j7E zFAQhXmuZo$rC)rD#-7od{S~|=dHUo+NqMM!0OGuij_6q1Z&pjy_oAF!?&2pu@MdMD ziJ26p#0QU?xV#+XsWlt09|&o`A^9A#t0J!Y`0tlmM!WX3UPizoZu1;EIG{6fqA-eq zsZ${2?tT)!_-vPYhc2n%m7W1OM~iMiQ=1IyhJ;tMqIx+cg`}B|3_4UK66Nn!R5GAb~N4lx$lYBzz^@<@U6{ z;hHqmwn*hNQIGoWP*z>f%}fQ=+1P>SLe;zhq~$wW_&oUO+;ljhJL)*}Mx^Fx$`dE7 zwtTT8%vyBRrb#xOPa8e9&9{DODTZs83kod8kXh+Q-y3kL$djJ7uYrvZ283ILfVYd= zw9xeYKVbh2(DP(c_~8&v&B~uAifv##QnrT2wdR50)RXGAOxujOjftJ*OoWZ8$P~xa ztupMP|Nh!6~Ik3K%71E^zW zEeBSfIs5Vi+j_d}&Sbiq=5&k$GE|4(Nekn=pc(rdUq8cFbEO&FSN7j%48D{G0U|dn zKKKI$WdUn=S+khGLxvrz7w=jSkNfViA%e9Zsm|?;r4>C~W#?wsRlKEeArpI0Zn9B~cQG%G z3=5Rs>LJXuYt(5}V9=JK$CMF|Tj>sfi9TPAXY$9Sucr}n4L^a0p$IkE&x=~w9xd9S z`=5DQ0BZphgUJ7U)+*1je$!`6@+$AQc2`@zhqns|HWJfVcly|=;ehq4JA-!D-dlBM zNHR5_4uiC{p;%}Q?F`4J5hWBK$IMM!SxA)l0bG>BU2&6OwQeS%S+oARMN5<3nfFn( zQ*M_ERn3|{tI9Zi8coknOi~x}dG>U4eASa?2amL!>mU;9jc$7>=ITsx-R6}kmE#5x zt^qd6mOdOS6?k|Wc|q}EH{E&Va>0X>%3dcMO=L;N-sP*jfhV<$F6?1*n+es~>M(or zeZf<%SQbMW_Xfyu(Ydfv6*(d1vnC#7iSP{iBqs8TzE+UNKe{O}vD%vMxb$2Ee!bId zXQx{yQ=N&VI4Hc4O#7Hl# zd6--sj!DoM8n2!)O(u@fh!Xeu7`cf+uR$MnfUPUG=Z zAWz9Bp&0bYVdNglnI?IFx%#9lZv{7 zOjb2X)~b>A`45Bn5JQ};`pw0p=oW24VY;xS?$HDPSr?=!WkB&>pYd|}N? z13vPgW1^N6A}fq935&8|LN9B&C<)7J*IkFg-gc$dj#zXIt7DB`R(x!aFUP6&a2;vl(_N1`*4M2BTStXrx94wryokU(m5khT2 zs)4_5KK+)uUNdi52SlIp<9_)N-$1-Te)W`w@ioTT8y07;}766Q4Q?Q@+ictrSziB=d8>vsIlMx&rA<4mFj`**asSkl~yiFl(y?o{3rw14l zt$Fgw4}Ugp*8k(Fk-4r4Ij*&ponJU5`g2DKG|O3@mZ{i@^Ep6u62W9HnlyuaGhvcrvci1N7Xr0qZcI75<` z$Ps4uB#`ppSL9w7>IX)F9h7EUaP&dQImFN%V8IImMEIX+fc#XPy8C~y3IQccFz)w1 zROrV&u?mb<^;l147Wc%(q<-BFRK&-don|pzO7agUT^mRdG87B6|#K_dGE@pk0l zu2?O*H(lek7AbY8HE3mT z!_qH^UwB2Mwd-$GF*mq(>EV#%vBzjXKQ@|TGFJ8cI@!>*D8u~@Ls$vvoh*7A!mfg! zSeh|t+L`VanDhWm93NLw!Iv?pD|XZ$v7&uRT_jZOWlFRCCBTjK@Mc+vmzVY~O>G3x z*=AlRQTbC+m!)~!ndBrtcn^`EdVFVLihT4lBX~dK7qC$W!f)F49|CqpBX?dvbW$SG zy)WeQ=RHy2yO7h@_qaegriGPN=;zCYdm5mCR9-9H=JogMyzkn9Z#~BQR#ICYV^a7~ zp8nU&gC$u56+-U?{RH4QmTnnK(OUK{IuR802usjYXxAGR{CR$KmDNs|j6(!-X%^D=~JL}#tNM*v_P=t4MdM5c&Oo8zL zAa>HZzp%zxH3l<0sCGR(;Gnx@0UBmd+9Zu@q%TtxE|=P>vc8?V(5azpiNfqJaRv^0j3@Qj-v zDV&7BtOK<7wSuhl;X= zr!6plZ6Pew&-6~20gHJZF6Gbvm{c!O;VZymg(@9D?KTvO8SB1V(&las&#Eo#n76u| zWoK+WOa=M)a@GD$;1;kGpr~&fVIKUT`s)$#>UT^l~1yiCs;=dkOd`#s|f8=HPONAuj|yFsw7oLKKb)D1rBS zX6s8{liF#=PH$a@0>X?v?`Yy|AcK*&C zp6US!Q>i419a*&hU2c&yV#yjS3PGQ!>&$=3eWerry}OyBa>szA^?CHSUhroo|6JoJ zL;0p417kHAN^6=8A>~l2alE?qJUH!&^*Xcl$WM-6BqcjfkO2ASu{R6^$c z$?0$4h>@}OXl<7HW|(7QL#J5( zQyiAI8tm|2pFlJ@uw>23-^dKPyC?C97eJml>bN7{!@ZA_ zgL!G3ILK?N3p@vbaTVtG8~&H=1#VHrRdhs$+Dp{2D{a|of`oN1I6PDOcE-uwdybJV%8(sfh{dLs7%W(hO z{LcYr@vrOrKi9j~v_XPuQ6=LA@SJu*E^fD(7FKQJOpF7}TSCEv)RP%f1UY8+G~E6; z)AV}m>v^?eEKsxPGHiPoX#6U`vWT2i1^o=n!ncvuqyB;#F2(_ZGGHI)S{nC=&x!*b z{GijWtyjJ@K}nj&Z@z{m_xlankkfg1F%D>dFixh*+G(e;iq?r?#d?xrUeUcMVr6HJ zwhqMDvrqZC3GA+Ekbdt-&-{mDV;KBYQm&nQvNDyY{I5pNjvwWG@@WFMQ4valWvO%` z0~aar$P{P9ltDf?WP|Ah38}3E8ikehqD&l{X@S#rCVBujbD@T97;tld3<+m#CIv+- zi;ysSzh6Bvm|Z#tU@&vAfVe>!$p+S+#jj377UIIuTs*jFhIDfNjF@qMfr3u%;C2gG zqX=Ky&E^}z%;v&N5?sA7A&*?v&3?wMgahFkvxAuord&xJpzsR=R%Ukf4gtwWOUh@v zEx;xZYRq@dYNewMQLpotHUJ$>c#=mN+>fX+DRfVe53;A+-k6Yh!6ZPxlKR0!;>izk zHUL3k>D2QEVpPGl8E9|7^)#iTpfd-K23A&ReSNyyR54KG@?p7Gy+mq8Ybndn(+WPP z6+1Ta!nOUv=igA?pvzA`%uDv{gi_Vn9bSoWDeNpvR;dPH`Y?kHY9PBRVzeE7MuZ$_koHq!BRab2^OBjVC72Av0v#fA#cBpfKC z4JIw4m+B_#CHR(d$qqO5fWEas(3rS2aqTB(ByS3ytwF%$S&GKZCXu`)`P5Iq;{cQN#Xpd3{GP(H z>)A7$61efll)xs*4JB z7Zez*bvQ{xZJd^}D1J<-3ps=@=56uN1BY%w*~^;(gL}Y9mkY8@1nMAYS-WgS~JIQ{zX z@2RqFVq5R4iSzwD6Ww&&;AtN2Nhu&yVJLwWK|tyUU~-{AsF$|g+@{@iF^ff*Bwj!c z*yC)|Cr$_sUeZFwKh9Dq6gjMD6>-+dr#|+v-~;+XvBaG%j1Q#Y{q~0LMH#M58SWPP zK!n%*E}4I2D+S0w>;sHu@L=BxX&m;8d(~AJJx)yr-q*iJ$J(z!iPPB6zhd7>3ck*l zn^?b=35mS={O2xX_5SAbpPTEMj8FYQDSZ89!;9OV7vECzZ&`s&N<;Z`9&!d0cjY*( zes2+qG+Ex;+#oz9in0D^N&S_y42nEDO;+)b4QKn*jmvltV_(`L8?N6J)Z@<3Rn7Fw z^yz^DgOx`X;z`6d!rJzdJWCAG9^PM?NEH_=S&ydpE2st||`XXPG;F?rN&{7+t31r3>Ovq1!LXG1dZL zx)Dnym<&h+o_{n6bea=?$F4ozeVdxa=2Qsd<||`u%6dguSAE8}_wew6g4w<@Ag%$O z^4ng5dz>$9@hHW%Aer@W`ugOSK9IoH9%BJ1z{E6)B!}Jx!@xhwKfq`_nmF{df5Ta& zi@WfayJ)Iac;=ra6E>=&*)B`xWmDgbxccL!l~j|_9oPZrK0x7A#IfJ<=a+X1#I=d? zs-dqlYXF~AwoVE#iXj`HgASWnlXqUfSlq$iy|e*UeAwdQlAzl^>CBe`+UYj6BpBG@ zm2a}BmdZ)8Hu~x1_&qrwk}Vku#A>@ zK?!H!-S`30%7VtU7X19uuAWKPUFIPCW7ANP8gzvxOA{yMIEq*H%1*a_g<te{>XMb1?`yec1bIG5ziO=w!p+5$9VC0ywxoCD2gafX&_nPJ$Q;(F_Q zv&DRHiRpe>F7jz=f0DyA2>MmaP~B1Abu`w*zZod>6~Zn3B+BdS=@N0}I^i&g3I1?Z zCzEVnei?A241QhTNFNsDREndf8-BiEc7 zK(%T~_OP9WWMj^1maDDL;9Ajt(!;tFAc>9T3qqZumFFjFW1l>SPrm>9s6-JR@pIBc z>GBMfo!|*MC^e;_uz&1h+StqSVr^ry?jtGf{i)NCpRe8c!)&WjXv19xkiJglR}H|$ z^R@OF%v$9#*dEsHd#36SL~Gxj#zeMqXd;F%&i&;Vgl>xheO)`ifB|#@^e1lsvOCa% z>bo+Q(13XjkZhf|@;>I9<418f0`Xv$0pQx0p!e`i4A9#~XFdXyr5=aZ2Ojqd1p;l2 z@7X2i{!Fa5*F`^Z1wRSf6dYwy}^msSsRL{MPWy?P+{vv)eSqd)}i6?CNCGTLERXrVZ8UB6uElAP;=av${IB3}G%KNY70lLpdpRC*U{}&PKIwWhwR5|<=KV6%8o4CLXMpz1&V?+OZnQxY(q^AVlvv|;W&0JK>SPS*rBoI6-^+_t>Tv6io{yX7 z-MkgttvO?HmR#Ph{d6QPT@FkQN3K%?1z~z7suBslv+=6G7R@OChFyJEFDijRV)7sg zu4C1-c?;79g4}UD+O>9p=lGO?fG$U+?(gFa=FMtpjg;JN6%I?iDD(G$q;mI#mH3nagm zlhpB==JqDll8BFv&xtx~AcU@V%o|Ib7&ic_`+Qf+H>91R`f!(ZL`+LPsc6)y+VW6C zS(?f|Ahe2AQZKwXbe~WM(WvS-TL(L9;WI4LofV(4Ff8XaNKH~xQXDIPt_}?=1+)EB zZys!Ou9Etc;^xpCDjbtrKRyTBAN=B4GzMJ|?P>~qH(m34-jae+TKXMqc*>4UVZ4IOu0Dguy9_ZQ=;t!jv1uEU8 zaYu)T!NvMA3N{{@BK#FtPd|6Dt!)k?-)*sn>i9BS4{G}ZrE-u2XE756_C@9)ebVrv z>&+z#9^7mLv1SiIucmSmOb*1J&ba?p%TS=Gm#_965PNv^iFHVg@;p_=?2IyzP-<=J z*Tv@(gQ=0Ld%>Ctil2Y?IYG5^B+J&N+%_Nita>ewAD@}6Uzh<)K2NZ%pTwT>A?|m8 zlOs{%J_Zc{G)u(57A!8O-S9hLZ<8Hhog+U3HXvl;No-&v%>zQsO?x?eV8IJseeCNo z6lPqQYrsaD|GRj)0$NXYty5gKUC3V4;6L7~K*X-eYMvKKu&E3uUaS|J-*#3yvS_FE z&<36e<><$hPj3zsPS0)l(OL~VNNm`f6GCab(u2Yf+M zc1Z+vRuA1GtHXYDIadKuC!ogrzUb?b2C1!Gq%i+8wWgF%dusqfJWtgmd=w?)SRYQV z5);gf=;ax2!B!h(NWAl!>sU1N(s+r%N(Hq#U zhgfMLN>!;p7kOIZPpCs~5axp)Nl(gw7F};nK=uI0X_>`}pkip`IEbV1FE~vD(yMr=dCd+PkRB8xH?}y8LZ`H-{_RpIrB7V) zd>x}6_oNZspP>9_RZ|25P2RJ`);{V101}qFFsr+`R35JNU!$p1eBz(b?!aYW@`onS zkVcw~jUGK31OyRKkVaxO(#`0R(%mp% zbT`rs3is#xdvgCDZx8m`d7ekS<2aJ6ljA?V4*L&(517b5xIp=VJwUdeExu<&x}hhh zS`GqC46L^-4aAx8!-NK-^H1(5J{9HeFeN6|cl_h9RfIzFK2 zRn39Zec;rI60Z1JzPC3e>9ao&h0$OHrk)>2wDd4Zif>&KkbT#&mJCr$jAL|922GJP z#wXD2vHcC^L!1ojr>~DN%)=c|?yU|-0ud^hs<%hAn>JBazphgyH;2US6en|HbYkAU zdY$orHh8j{mTa2%szZ)ct!{ypTZZ&;uPGz{3$$~JH7RI0Z-FR?_*HbYvd-&5Wnul{ zB+*09gQUx*%jBNBwSO1GB_*$m@yU4%ujMV|6{db~{rP=iwB+4#>6^Y3>#`--Ici`v zp3x_6-J=dEU!JEu<6B*w@;RS5lmY+X;jSu9mD0JhvLuHhrJxRf_K( zoMnGRmsVnZ#b*5GbsrbbhhAb`B7{Du5T>y_+F(8pPJBgWUby)bM@!9z?-G+ zad!pHey1c7D{^$<>EK<fy&pR)mDhWLUsK4(u6Y)KOt=#VsW%{>iI`Zbeyof<_oTWlOT#xd<>?nM?dTeG*-Nc_9CwFisfyx=J!-_f4kMCgB84dPur zDJYoomaoRsaPFL?r_`pz8fxl;;-&r$Z)tf_#@AVi8j1w_Mn(7e23ns)txwQ|7RkE6*)#Z(F+9l`qu9a2G1c!u>J!(6w3h8m8eeehEVnN*RfR72}LF z$BtDAVOvwkk)_)qreVux^5ElX%XbT{7D-vzuA{EjpR)>+^2JS)UHnqllAT6R*=?^v z@fpET1~Sz%xL>xK$Y0a3&{2} z<9ytt!tneRx8Qx8gWZ*Gbg-TY87!ggw?pw~uEU$p;BR741$megxz9cbre&v&HMaCc zI8*sCw|FlxB{ko#;p^S8Z&hIBxP-j}TbPRd<_>pmiMhS3L?(~Qnwy>rD8%}|MNQ9GM?7^~FKlOJ(89T0PZH%I~QsOhwiMeG0G$w z)p#SqPcfmVa0M+rdpzPsSb|dGTHzDS{!4*mh{pwa?F!S?~`8)gL!RQFo3#jrwNHQx{*Z40c+E zNVB`%C(r8$g%-t9gz$w9h|Dv(`E$6w)a3-Y7DXlB7}vXONMawnrECqn8#Z`ma8Lxxu*25Z8`JqJ-*d>WZK&26Q)idpUFX z*=ObM+o@N723&iRs0Z_H0X1+-Eb+IBQvJF;kR!^m*3-7OL;IG8A(C`ajI=|^B*inb zZ?d^(Z_D+|#-s|=kd13SCpDfC)XO<-A0lp5wec?dcrsWvl2sg?TQTQRIC{0@YaQix zGoCBO4w4fpJmN(MWhgCr+?TeNEfqcZJO1llK%}ws)9ZZ zHS?4kXCUJ}Q$O>aeR?muidh#;t}sQK(;|D1Hw!&#(#rf5lPQRU%9VTp?Q%oI6&K4x z^Ug47r60mHtg`yPyTC@1GwFvatKK`ekXX!=HLEQ4h&~W)S2a^P?GSP|1#+u|5+{U} zyyC<49rxhz_E%bRwXO~V$2kkC)jt)YsIZQ92l;$}rooKAUcgH^SPSR3@-j=)dSF-* zxA0jNlHAhRXX+tZFS82mvhBPzu!U}KkP zh5H7(x~Uh&Mf=w3G){Cl;m;*Z1Va2~WHsaP=Z4E@x?EB@V=+xfoP&K_-&toBk$1D2 z<|McFGvf3f7Kw7KyO?oK9a2e8FIBY*WX7dEsyFv~*siEywO`?#(NuVQc;1Ws`YrZO zHKIoP-~sq>eEPusQPoni_sPY1OW})h#GKEz?8{Z{UpEsC4@&luHGFrq|0YSFS~c%1 zg{)oChDyo0KWNrP?1>Rap8l4^jcu~1Q^mCgm(7rZbk|_kFiqsq&RI2dY_A}c_lhveF za?3ub(!b$FmAWy78Yd=XA%NMTvjORjRT%UU%u8(4+9G~?8EK;w2T$dE@*QDaO&^Hb zD>)WUX6;TWLe(4e2HNRnctAPws_|AU83*KRy+9FTW1ZsD))V-$YmlIZ*SVx~>@PmY z0Ft!#Z^(3;;t@{Mr_@n-Hp zKs1Bq92W->j9%<@K{vl?qBaG9Se~dfwTmyG`8sX9y2PLpcTKEg!kuBs;W&2WV0BKy z_zV9Q*9UF%EO9U`!)4HmX82L#ui4e_AB2Ev?O4Jeag-hP+;hqF<%r-_0-y1Z?6jb? z$N{~9*F3g&31zAL_}bp-tsmVD7w0nI0xF!|$YH_Kx|+%ETK6yK=dKKDu6;b`-2Hhg zQEyv%tQJ#8kC56vnW573JCGK7D+{iN%c4Q;ziYnS(%H25?Jc=Ix2wm~bP$Yi9j2s) z>z19?NTS-lU`>nH#&pL6vTPH(II;^Y7$~W{1B>^pkz|YkaWRL+so0FkX=K~nr_BcB zbPqpI+?1ZpOteF$Ro`!?(er0e8PrFWPku?Ew8ENe%jBEvWp-K2R!xeYnaRZks&P6B zS!*7Ryiq_A0S#m>6HDXm?Z+SZkACU-*&CK){vVYAVe;L_+?y)~XQsM5x9WWSGl<4N zm%iMOvPw3`xG56sC%u*Sb8*q?o~4ZoVmdkACG}N=P+gUk@rr z=4pAB_K(%S@6FL|vra1J2q61|n6nr~+kD0g!mG+@1-Su72a|sHXtVzt<(AgAcqmvR z%vJmWC;cijZvp2@qczRT1+p&P&0_TYBuJhOO^72>XtMA4S zmjB0=01M^s-P8TkmCdbT;`sx2_nwq zvM@1-CAk-FGuNMjNG1<&Y)skW?q=9&C|t|wt%jnCzXu9`Cz6X;$_3N~Qa`?qIB{xFJIotqK4-=@W)omcYtG1)rmaLK#ZOG z^wZ1H8Yx>H*{3@`buWuCX(z5{zr* zD5*2eS}&1=YiR0A(G5^7ej@yGwD}duG#=Z?^w6dU9D=f|rlT)KD^6_9f!cXX_mZ22 zL+Ao8={>wap;wO%mw?{I8L@nNGJ~@;USGN50#d(n5nmA;oY|R{19xTHaE}E=_Av=x zPw!oGb{K`W$U~M5fuE#evd0}0)7bHJVANWYCcB{X6QRf>6++2Ow}S@^>LgNzJyi(u z54QY~F2MW3RP`1GjR|&C5RQ|e9O{~!(d#ZrnR^nk{I}@K1ILXUg#LrO!I8g&9V^i- zN0fIsTU%Q`M}aTbDgBNqvE9+x+1X`#SO4Zm{?R4p9lJ_jx~8V4meX8>2=vCyFO z=xYNstGg4xG8^CB&j}ux$RyR9(E^Nf8 zs-lp&K0py)=Pz%bUG+lDAWs3NBC4e?p(qj)o8 zx@%zOz-G!QZe#|o;*JAk*q3aLE z;-+-{-7^GqU#>R42FL#JyUHb1(zXEsw~j(H`E<39E;&eaB*E=XicZLVa9DVhv`DKU z;iA|tfk;=Jfn{^7s6h_Pryv3bLMB34tL2n+-Hzb0i=8LLW$8R}tRF*~^9$sctacnX zu^}{O zYp+J^j4CZ_x#XEMs|EJMI<9a{C>c!-uEm%pR;c2)XXUWl#Z($up=lbrUzL}uJ~5=s zQCa}WdC8_egUM8SX*(Eal}Vjd=IgH_D1w!V@X8@RVqE476&2baABmNyZZ7 zFnUf%-1zqMn}jbas)k@qZPD{tG9gG_>JVuqbhQISshR2L^_!CCA$>pZ71b ziBZV2^>PkVa^zQiyEQkDh;mU4v`g{ttdAGQu&;T>6f7~_%IJ!w4wAI1He?zif*qDD z8`qBQ7g&Z=HkH~o7)_}t2s>EhITXGF(oU@t|1ZnsbI#&_8l~#7-8GMi-$b}DM7{^! z>+lwJ^5QZz9?wY5)~uUvSY=@n3kw)?G_4o*(#z-FNG%vxzQHh3FBERTOr1=O=&>l? z;MZ_1Dq-YX84ANyGCHpH`}Z2Q1f?Ax-V{$}4fcP6iK~K#I;PCe0*+9lgu$wq-zeE+ ztZH^@6m)6Xg2MGyFzYah&W*kwFOv0HPnBGZEPmhJ{tboxEdv@}Ia4_*oR*-zIZw|k zK7Azi=O(7g-dc*Pd(YwA0{oFIUUiBrX*D8@#mk>r{F-%y{_L)F|4~aR=(+We*LJtRaIGSaBV}VM$G$x3cZgiu&%0*ZXRVWOHPFki9T5`xXIVW%WUC_7h116kxCDO~!8$!GjFxP{#-rX=&i!-(XsYbP+G zh7qa*-uvN`{%9)_F?9bu$fh3M`VJAIfccLon#w#!5*bIXM%1v#Zj>Nq`p|yB!0M{u zeKJcQfn}lnyUh0opom=vWEMh)C=_eforma6>^VT8Kd1vN$=%t?RP@uHz$n!*M%a~E z%hvej;7mL2i9?t`6|!*q&*N4e2>XZE`rat{xmec;oeBzi?Rob%@ukTWF}<4DfGK{E zZ`zI_c3gn|Lp{y+ZB7Xl?XS9;O*~|~`I-+7N{V*8D54IlXZGp_V*&=``k7oGT2f7PCyU(k$3aZ7p!>|{In*UdQB0O@v<2$Ga`CD9!TxG zWJYJ%J568K1tK)~4If*V6w2%bcV% zz-oB*+Rb)6*qlS9U^T38jpGDo+Xv!MQ`Y+OfgEOTUxFX?WJ6*H$H@AOiGAUV%vwJ*`{3LbrM-=a-Z_*`6Wm>2)b^dwY^yfis) zEqNKNWp9t?a^*tb_Y}!q9{|mSxWT5sXhH-3_a61cF!t06xTl5E5D*QJxM_~m zY+t>9I%@snBnJ31vz6M}`;|g%(`KudPQ|wC>^(ZuXcDq8@;kxwDsC%YnxyerzlZT< zWRe=JJLzFPXb?B%W2@iK5-6__LpU;ZMChc5)k#$ZCpgm1jE3>`&S&CgrdjleSC3xmC3OxNvdm+-rk{(E(~(d@V7UG`wTvE|1vueDVD5hPWA zzwzYw>WFg1EuX8Gffc-F6CHA4H@Slu6BdZ-eWY%n6+?`ZZ22RRoO)8H#w}TIwxZVM z3s_chqo%~oM{x70{lnMKaST&yB44*{>JD-9Pz5XN02`OTvM-srJX`F}*#O7<-lG)@ zDxduZFDSNVeHLci&2p+r!cX&<4>M7~n_u3Aqpy%cZ~P^QI0xRv&HK%cibF^NTv`Sm z5MT+`5+HkIcoq@KG1yc%8;7)!fr;)pB->DBbZ??LJKx}bU9gv=yYRu|Ny*YH-(!%8sTw%5c6jquHpQp;`{ZSP|9)n8VifC(Ti;*#9&;1IayD%(-fIE;TsxjXX{Z*_{p)Tl z#b@(^1;fAAg~5%?6wv5*-*m-*ayGCjQV=xi%#7&Nk?q0yZ=54ZFFwD+s^>{^97Mvp zr4@q~+>}-v( zh#yJH3qZjZlQ4u-8>!_Nj$luCv*MEEQa?z=o3q?otlafhnK`Y{Zn`0;5Y*G2&&A#! z#Lr{EOs=U}ddMY<)#=P?vz&wH?^nJsm=01;#B#@`R%`j`kv0uUl_vJ!4wU5B+7hbi z2Z_3-;pr4{1Z`2B`KBQ4#!nGAbFcK}ew@npcS)JXkTKU=$HC$keq)cPcc@2D(-#P6TDU@F+ai<`{ z0v%dC<^T+)660QnUWrX02eP%-%1=76E^ez5@sRY;kFWxTKHJ%k!bcMhVWNER(Kumz z3`0Qwrv?^na%osTE*1HJ`4-r09iOimlxg#Kc0mAwDW7w%uY9pQ$7<}!Z`!iw)ZBZ_ zT{rG15F*5~XKT*5%R2;(w|Y~=k%Y$L1r9zw=l@eZ${0_y%$HaW}*TiUrj*BI{;Ezastfo!pVu(nPQBlv3AX$DJK>+Mb>|%sd zY_%5@!?XA5C{p}~EC(|83_Z~ynPO(eYR*Y<;aTBuPIG3=gfme+YoyCdNS=a8(liL`i(Mr;V}d9#E})xhR#ffIweq3}>%5*Zq?yiV!( z`0cm!y30h6m>FuZJmnw(_M+qpvxme9N#T1x58tI?fv@WgtYq*JR>(8vC4;%W>;9#W z#5aF{VN-{NkcDCoaYJ4;u=Rida4E2rrR*`_=Qypapf;hQY4Q5h2{fWIVC>(cwUq5- zGML68+H>Eh4_LbZ?OA5~wYYK~#sXl^FMWLgd}&bndY41vpjzBG=Z^q$OWdGL*Xd6jb`gG;*S-pxZNFDy%IMU- zKf^vP8xxS9eX-#p#<}D%a*g*G)yK%uw+AWxJp+x+kCs74^gnrAWZ01 zYD%r*mc`7dyDl%E?F7kkj;qevN3QEMqGfWzpsjBl?!zrGq;W7j5Q!s7*CR# zKB}w1Y|1`)b0O+;01NWjvF`t8s+g+JDJ5gvm}wYkO=Ro|GG>!g%X&X5qT6?iI!lzt z%|HESbH*wsPVec_5{95|@~XEW*$78cCk%u~ z!46$36`cvw_K|^G_*A#S475jFWkxPiVKWYrfA22$Pi_}K9r@NDF4Zq`J-9yLTV47W zaqF|vCO54RV83v*7}ruLT@@M2TPHOLT7Fsa#cL+b5dKrd z!(R?)Iy8is2g}UGX=&5u^wYUsQ7k<-JkH<5T}zO>)`qEkdhg23M?0&Lb1YikizC1X zYsOXXOmF_CfgGoKn_llK`J?+~Wo2HG9Y=|jwvDuph|d@;t9-6{BL_yzoQ#57$X~Lz&pnt=b3JJYaXLQ!Q2T6hyFH;Mb0H6(eCfHM0X~5Mcs` zJ5eA~4O`365BW9%GH6f-59F1U39G!-7xm$mwIa)#h$uf7!AW_t7VUS}PR&QhSFRdy z`LepcW^!f7w6mr;%zWqXfPRn#ysyW>VR@$V_1l`cO>@zPzt|R+1m{E--~agWT~S0n zM&huePKT7G^DBy9zeP6*p0jeVrlz5KK9pTrgVOkiuXFWBz$7?0d+C!mY<_LGWJQt zkj!j_Vjz{BVoZ@`6WN4ToKizn_5(~HGQwZMXuz{htMGX^_Hydry_MxFEP9-bM|ZQPO#(HA!Q`q0TWdx^o>0uU)IL2XWou&>WUO5M@?j_^j%>J$p5C5-D>l|(fXg=uWmh@Kc|c4# z|FQ>KP)+@xnvbRu!wG&+sf`J3mTy!2AI}5aXLnyElU032!f@eZJ>kG^DDV-A$D(#hN@ESiZOp*h}%}oS;3)T5S{S76iR@ zsp+AN+7z60ArkRPsq#`--nPgkJ5kd751zGk*YfZ9xu5aD?I+YF{=4Seuq$c5m50XO zVzIpp-<=D|6fzaM2wod|syR9ll7}CFs}X@lCSe;edE;{*>M=B(fHfI>2!#CaaB|1% zCz)J*=+j~yx@1;ffhB<*2^aiN++?kZJpo|H($%Iu9q<-tDNK>Q14 zUgeYbXRqlsDjCZhuISF7K0UAcIV1C*`)zdT!enWL1uL0#yGDCe#^h`pj+$=LzawbO+D8`|7cPCBjUqb2MTaSy zT+qvA>Hc`Zu!KOOU-Y5zA5r#^usxi0Z)AF3`-`csFY?1q$sLas&&6Lr8PQ>)+qj!t>}Cz7#H&<}ZzE>kr%?JD)8XhzjlIu@5f_^1{MsTwg#q$|={CNUJR#6hkn*Y3tJ?e1L;Gfz*uj@cKG(#bRX zw1N_`UwtxSI^aWp^U+HlG=vwO8_UV8Ycv_-X&Q#Chl8o|ShF=)MnZ(fK3L}VtLQK9 zqwU7^$wE+Uu^C9KLZ$chL1?S*IhpnaWNa!JFR=)(m9e-FvEQ;vY`j=+>4X2J2b=z2 z?iv+F&+!6SU}a%_>XzynbccO|I-Zg|l7&Mh9Rb`*TAtv2q?%?2Gl|;zh9Eo%X_p|K z%(^WI3(25S;{RDuGz8R-OSJ-IE>?8#$LQhTnXeF8C7mMffGE*E-6?l#+;JwAPw=hN zbdR8WQBl^~%!J~}WWJ+uqw7s zOtJIs$yORNq#W0x)8WXbyR)y%f z*$37Yj0vaxOCLD&@(4zmA3c%w+_-gFYH|Io|KMc7xbwcpael2hYLhD2jYDsETvwsk z`hdIi;L0)RByIMm? zR!g*I8-AjV^|-Jr&vn&_%s?GhBzI0<=R8@uj)v*LU5Yx;;C-`nI%_JQR*;HPw}F4@ zUIWG2kHWE2Zq(T$;v3$;*4Je;xj#wOO|lfavcPi3mEpp&_VMqt9(nO(%rw}+P0RRZ<=XSI9@&_N-NQK{Hg0Q=XCyGC=sCaRYg`Bzt% zSqGJU47W12s#XlCIMW^SdDd^Tio}yxx#MLWYu75V=W$=fw=U#+HyFEg0jmkS*P2-y z7n_Q$?PBfHR)5gIhSn&_9OA{-Uqga#{Tu_#cYU^R@N_Xwf+5$LhAC3bq(@6WyJ|*~ zVV?JnZ$0zJS-Z>J zdY;IJtEpG9+gbN~?qYtj~Qbvk~T3zcsDTlwS-H+Z7*3^skdBWjn zd^O^iy1)1tce&P3`aa5d*_w`&G7ILAY*{M$D59u{ohG6IB`{ea;-u!Iof^UQsa&rA znVVNU3_*>P>?oP_%UvzDsl>pNMd@|7$W8z?z~mE+Ah+d+oGn@*|5zt^U z$gt`3Sx>|ZM9cSxB(jo!rjG*N;F=^LKQj+4T1_ziy=?bEXf|CQ{4B^me=Ry*>+Caf zz1*>e$Ke;B(kW#88|bPvo?#8HZZt`E=KE8U8CT=Ld7u zvvgm?Yx1Z$kQnH;nfU<8jTa~cs41v*7e+nYlNHv=4_(cLmRFd&N0;r9PKf`a^@R0r z7(kZtZ4G|n?4e7smP5L26?6CzVd7+I!dL-82 zXa&*1I<(jmn@Rv?V-1iGZjf<`PK^q~zw%eO^Q#ffMgPptbP~%QUoCamO=sh|M_x`@ z3l6Jn+Q=m8SinQ_LKrIcAqIKd<(5hn#BZWbLmMd4!ch;plUcir<^*Q;l&t`gzr6$? zItB5&hS(a!W(<7eH^z}0Rs=4XtUd7UN z&{$eoME=CS?Vplr9L3&c{++UjuV~pMqb$ z3&t;?7mDa4YQ#9tJhgX&DXg<$z75ESn$rO4fNflnY4N^aLBHI)Hu_v!x8GmcT?!CIu+sJG;qETBo3wRk8_`B z8%cmiU5NU%njJL`t37?GGKGnhGzsedB4EuOs6e=NcssP5VWalWM{n=^e($i$egD%x z*Opj<*88hNpL83YuX&|wPvJBl%W9m{nU15qnSRFF)Q3{om8&WZOxsJk!3gFidhwNt z6IpWQ?pVleIEFnQzOg&=bxxqk%M0}u7!c-SN-bQ0P&5a;FB>$gk$7qaFLW86{3PeB zTMS`1gD^dr%lU6cO>Z(LRY!M1S<41q``%_*tmJgL-9?zMoT z7ndgrCPLOp(?PuuLE+Z|AZu~FW^>aWnh<5aqLiSfxK(l0+*hJ**WmPBVxxtpp7-&@ z^dpuemQu-`P;RZ5tjs%x`QY5$OJHH8j>aQ2<})#=pa3ZpG}UR$PFlopoaI@M?z= zGpP)0%`6>Xs%76S1y5ri&*!);e2ciD>0UVs;D2v@LQpnjQT2V3%5m5R#am7O(u`G^^Iv#!BpmhW7TjUPnOOdb#3D~NrYX`j-@83ZvlL1q}}nALm2Rm#E?o*o#}qE7;>Dy zO`oU*R9v{Vw`LVuZ;2ZLneiUc#=_Kw)W!xzyexH?`nz}#Z}#Aq<)`hrMY;*&IueRr ziK#%Il@MAfoF20MbS_j+q@7?0K_r_%2R|Dhmyhs`2svZVgnLXD^AH!FzwCgJ z7k}v0NrwO*17BjdI6w?Y-%Nj%>Ctx5N@*(bI=658ZQ2PMUSG+y^I4r@9Z;ReNT2`V z1)#zEyQI%PJ1cSd7Z3o0#jsQ6XLC{K8SEZ9RH{c9a*G4 zxtWPU+Kqya{?@$pdL~-y1BvXT-68-4ZC%1ZTh;bkv;RvEW0~pCb-AQO8$u$N8m4+0 zH(vsf_;MWiq5FfDt{aD?f&1f^KJme^(UrF4ZV^btD3QI7iYmT52XXgzoW(8oz^MrX zPGU`2=xo>ANfV+YgYs!HB70-}T-BN;3rbuYD`qS^a9XJ#>L#V4(A!)Jv^-u5ALA+= zlY*L?fAPpld;<1Cm6H3vD(j?fR<2`DvHXqQww^}j5rW4}nw*wE zWWw(Z?T$hrs!GVhs+AdgcRCMAV%puewBM;OKfH)yeb({uY_fiQRY|{6tL$TmaRcii z;=3)N>4J@{WU#@Mcavkiy04|olPE#%+2z_IwEiIoYY-J#`;v_8*HL=m1x5U}SpZ;) z>yv)3II2S-Iq!|k*N}Dlm?F{fy?(fW>k!(r^y>_Lbs{o9^n`^ zSHGV$QS+(@1QLOWL^;+>?|a!jIlN}vSYcmvN$Ojiajzezd{CQL8dK#qUTIl9D3-<+ zo=|BlT+@kA&yIof0ybvM%ubyfRDkE-Iz|$p5Z28_MeBU)*MW+l?Ou$v#o0=(r>b`V z4`cn~G&G%0{*M89Yli6_kX#qTNKwiayGZ5fz zVK0e1|M~P?Gp?8=jZY8-q66)c=I77GKoOFZFZ4yE)VH3AiW>g?^BlH?sSR$Q<+cOV zboVFmuJ6|J(-$^+(&z8~Up~RO$){ic<#2}PN3C2#A)Vd8LWQ~wv+>id0T$?zrtSklf&-D7xw&qf8opM0`{~j)c zrVDGf(qd8w1_&T-j?w4?)1}(&D^@&-Q_z+VuX$i~0rukWeq;y0o9A=s-L{H6bzPBz zvA?d)aF!E_;|!iFQk4304cv>dUHOxb>_sPZcF9sC=UYq)%=!}Y2826^2PGOd_K zdWmKpHa_77Al`$aM^1Fk^@D{)$ua|*JHLtlr{%E~w@$uLlhzQwRvBIcV)!t;H_f!y zBFUe4E;OxHuzn&Uyy^0D7SS0ZFfT~5gQYB$*MJ!pc%~V9r3(|jOP0kvY2990PM3n~ zi~P)kUH=*;U6?mD5Ub8c$0lR~8gdhm+R{Sh`nFVxzLC zP2U3{_0f+;si+RT!beRYRIEGOZi z;ecrftf|Sq?57)O)%W@$W9xXrA?06sn9Vkw28oean)4y!x&@LXuYI1>swBLqxZ$;9 zhE6xXvjPF$VAW%hCJcqQOyD0!j3U0iHnxIWiP5H!;#D}7CIZFx&aQ_)v2(RqA@FQ7#1O~Hw zrb_g)+iU#&gO5Q2XoQuG+1RjJxc*V?;RF2U)RdhY_$P&Bu-`mAI&HgI3Mkr~06CGG zRsnu8BW5nHcOAm+AlSS!_?#kPphiyO%FH!b{gxM8)%zaovq| znzUn-`Oh3BDlJiiGp6Y^4;M&{@Cl#~3ry#u=jwVu*5LR0&^@UX^GGjysU(`Qc5CL( zIh5F&#(kKapsUx8rjJ3#(FpAyBCW= zQvJ~x6tlb=G@|{Po@2VX&!AQZ^+)$?cJ~~}_uZySYO+}2df=QEE=JumuOyMfM*4Ik z#m>i4eO{+#eRfuWQcT7q<&Qi4Ybp zFs_p?MOo3E?qVvPnm+Z4Gxqg=uSkKi1Qkut&Y#M%3cBDS?V;dJZi@OUuXW-?vX&^( zayauQv|-clX8uvLr(eGjcH_gZ+4cBXmVxT!`hUFiBaA$D!tn68}RN6jzz>``#TS%?B>PPLR*w@25qqlyaI`_6z7}U%a2B3M*^1|7R z8#aB?1=W}l1t{E0Gg`d#LIG<@`x@M@dmQ|Zi3un44$R%olk#DLA<9r@maztYxrUIu zqe&ccHVz3Mfd0nhSR^S5DrE~BG|<2$Bv4G|hT2$bP)P8EJAKcnlN#yBR0WTJ`v|GH zlwHHJ#>Fge1TT0_C0=PBMC4u?6Q}y{DuqkPNQ(rhp^jNI_*XqGZA! z%fG(3aD+fPc>XzGe^sYSa1inS0H%;SD3n$G-=iNWj!%LXa9KT_&hN@J?@f+_SS5BM z%U%un%WA8Hc0(gHzL#2?*f#7!lm&c$A686W7+B((>aiPTB|fH?O?b3av~Bp*QU&v> zT(!ZUIl6>dwb{<4W~&P8UPs76aOs28(lJ{;RgE1&tGe3~SypWO$;8A!P+bZG?E-GB zro;c72L-vT#aTbwl7OCCES(`@a|*=L<>=H%0aNO8g%?kJU&0dpY>x?U1Y&Rg&hEed z40}m`)t~)LQ}6i6Vl6>(w?2ca*!C^JdOwPur0g>5_WbHvJ1uSrZdW|v^8{93S+sU8P)xvo;o&{+z9>;qX+B(%?*GJkMw*%JJC=JJqapstSH4&Y`!z$Z|HpiKcsMU-cVLuV331TNDoZ-a{@=l2?lTu1Qiul z0IE^iw^4^b>cqM1C~QIs8E6113a%Kp02;0r#jp2e5Das*$CxxC0I|l*eqA-4D?O>O z3ch+iS6q0wI&|i^-r}M@Le_IgaH;;vf~GTUwy^o>Xb(qKtoDE0VQ|^7`l$%HynZjSCkO{q9h#Yu=I-A}R`@3tG09Y9{>Y)~Y{V(@TQdo_}lgG|g z(_3bHbm(jO7HM4p_E%rtHZB23eZ;p6PyT()LV2#N#4R;Rw@m=JHu3Enzlg1?LaR^L zJ;rY~BTjL{a&k6kp~0pun#8i%Yaong@xC{h;FI- zVRTWW-$uT`Vpr?w@A=D?H0-Baqqm=}*q=#6DuHDaDdu0w2fR&Yn;-%(fOb)$R31PX zYi6K=58o_!Ou3dM5s1!ire)yiVH{Rr)oixhwozn*q&7uw1^9BEf&+Z>?OvUGiAMvzl^CR?rIO!Br%-k1Zjgu!%{yLf0?)dC@vf zjLTVS>uCMhfXiYg>d@O)ZlymJdka2F7kdv(Thdh9)6emjs|jEVUNPG1ilKc|P;8H% z5+#1X?f9th3&WofVE9NS){U^|zarTR0pc|hElt!?w3mf)BB3V zE_$J0Cz_2Sz@cU^2b#85VQL>I`u~_Z>!>KWs9!4zN-9XF(w##ODAFyR10oFFjf5i7 zp>%`P00Rs?q@*ws(nxogbQ|})cdh%~?{Aj@4(IH%_w#$U{bcDN@@?$kv08Rb3iM2j z!p3DOmC^OFAuSOWQ477D(Q#3@ju|vZ@S!7p42jwE)cGaA5{FdM^4Qt_v@=aCSq8m_ ztzViY!EH8Ukg>bGWf?gRZk8=Q2hl9=*LiGMhUvUZkzti|>VAKXbNR`dlD;?x^jQU0gT)@keSovks@0nvSO+TVE*u zquAwQ#~Zt2^aqLV26b>iAmVJ@cxCC;7#(3-Uk39B$Ce%)eCH)ya+e3f#Vd_f*T?n{6C(fBx0l%igrGq1a$e zzQ^5tecT(*ucn0;#Y~PKwY$gsoG8@$;r;q_%$km_{{a@f9aeH(rI zplYSBd)GHbdrEjfSETRI>gx?f5XsWJPxr14ezu=3{dHh<0|D!OPndU0oFEe}q6lHp zI=G0goalFRMvX`6Yb?k!R=aXt_>DQnjgc<@h zVXNXMYd~0-NHkl&XPs5jVTm)0I?JsfT2axlDa&n93zZRzm7~c{7M7Sbx!#W|-Y&`i zY0%q-wkdbhRA&l5@aSo8F}41PR4w5!(weGwRhwxa%eT&1@3%GlOx7j7-^>bILLj-u zw66-9QH=b0-mQ6fYwB?19;eW2ZC!35Wf^-(i5#9`TJ`ZSqu=`zYV49MTM}5m3+mAE zxe-o5pp+Q3L@eqfM~e;nus9pMv?U*_+=aa+%H|=)A5Cck^t3kEZd&6L!hl@fP2qZ1 zT*@NpL%Vqv;P!iwjy1`vC-w*Vb6<~;j_Rv$b7|IrqPwm|hwkr4Jf_c$tV6eXrDzCa z(Kesg$-4PvU8q6jam~1P(_zC@b-n+U`1!?^$he_l7(?qUXbPTm6;O>c+oUIf_wslP z>?ZgJbm)5gc@REk;<_hwc;|r#92`akR3JYJc#TK2p4VqIOx*Y-!p`Qr;1}nd!bb(y zn*I>|>tV~i{oic^#~gmGmwrnrqaTasTc2hZvnQH%_;C`n1H@abKfRd6?-`F9VIMBe z3^SGi#C?uu=Cdf)19K;D_u3*TW%xWp-!y9(r!l&3GI)5+#3^Ump?XDfyIH|ZH)~J_ zG~FohWs)54cfF^+FOm^u8g;7u^{4y6cdlLIrq9Ct&0V$s#nT@Ia!kykntqPUr;`SZ zixnejBBQjA#n;%kR+v{kS^F52pBbm39ct#>wsFXf3#xUk$z)Rne2w)7C+ylw^C+h0 z=Ls4`j&Nxc;rfE6R;Jw8@1>$W60{XY5YJw02fYS>y6*i1S#4d=D~3SOvm#+Ap*X=+ zQwSI#EAxPUOI-;iuaJhdfMQ}=tq~_mv`DK?9fq|A%wCHm#X; zHrudwvFtcVdxAt3PCdAm1pwxQQ8 z@Q3aN4Ab+oc-yx`pi9d~J1m|fM?fJC8X;?5?7cvjk8u15av(Uhll3L=9|wv>3Lx3sIwNCEfTo2S#{{PCAexM{WiHn@H*7| zE!orvB@e!{BX+>KZGX_zhU;T~Tp$%EsXnhxt5YBCA{>08fR~fh<4n+e*uR>AktG zzzIn9sNj}+`Wq^0g9mq02a*8D7H4@fsVH>*mhPgNDA&(pFuc;M$t@%z1AS=e3~PsPfqT{ z)}FM92WU!~c5moL!IUWIa{Ka|x%*I#x~qW-!(CdHUp*uQ)m_;p-6cdQ{njJo-|8dj z+y4b4z8Q}o=g}^1GfJqeCo-3PJyHR$TrLjuv#;%Lbv* zppQm%lmOD$iwrN-y9;)s0AMN#3fQy6NC zXHY4iXPK&C_t;C=+gTFJ;h@a6=^*aZ3)))uIQ18E!q96~Dq4M+De!3o+)rW2&!(Pc z#OV2b?6ov%Ei)b6H=K5JtZ*Hn==(Z}sriKSc9M=;<;>Us{wy*2>(>LHG5Kj z`#fq8$*j&q)xH&-lyAR%+jXAVEAGcpcYY8T^F~I(w;SGjZ7Mh9!C!KtMSV#KU*Zy@D+R!gj}!$= zoOV_LN4fPY4m2Z!D;%I`o_rrL!^W^Mv{ZKrJ%IhaHUHYpo^p8Lj9D3lBQcF~jw zG-%_3MXyL8POzkK+r(1peQ@RJw0>rRn_7hfMDGXx4bc^!(%q|7^Q*7-|AJPMOT*vV zcUQvTfhsj+t!NML++5{WC-(XHqFF1Ixg$)^}Rc?;veij$cW*&!95jS4aNl&xsr@S zDvqiIVmTGH#Ep&(2VR3a@HD|Jo4UXdF_*?!pS!UNA&=<2uO_Dy?xTB|Q-)di9O&ol z;@Kb8!)*bwvx~H7*gFjo6^)3F65|^2%+8Jrx7is?`~dE@;)~gJ`R;o4TpE+R?Lq!> z#t}`GC7Hr)+e}knszL7#jXk1^{*!|-|Chei&Ug7oa>^h3>Czwh0Kj1R7f`CE#xnA9 zA++)&EU=qdMQ$Bv?uw$Za=8qIo=geT$0pTTbX_U0;#yVkb0(wlIm!$K+@xF_=8~EY& zrS^D730iq>E+uuE9TrP#Oj9?|mL<#LJ$Ag--#PqT;?$UV2K>EJhUqhCCc=*N!2HTW zN>gM=ISJ?@m`@E^o|tkAww>7a?{LSvW$wOk#1?6hGH7b$L7f$iPaSiUD|gx)#{D-+ z>}c?FYzZyOf3W42*Z7fz2lKk@Kv2`&OxkGVoaet;0!>>_d%!vPXrwKjPKeCG3|Jm_ zyt}OY1)vJ)w_g>rrhL(j8}xBZIKj*GC&-n_aVnp1;h;Vnq9Gsg<+QL7gaZ*Y=mum~%2ej;_|Lci8c zib=sz;3dtP9U^+l_B%3=Zv83?(p$!&WW|5){VlmK(_1Xk}Ng8 zob!}QzqVw#Ks+@`MWd`z)_x-GCBr3rpZE141(wuu{&u`y{*4g}{?NjPL#0sDhKCud*^FY1=slZCAc~Ix~C!kZ1YuaAi zDwI<40S^!$MIr2<_2c;pmg!LiZyUIXQ-NiN;or7;&`vUb22QV5m?il2g-szBqGN9S zkPHeQTtecYnv9|NfuKz)WQLS#JAt;=8Wnj~iLT15+{R*?HRghAA>x(a~J} zaxd`Qb@bG`8F>tQ@rLsm*J)KL9>V7=M-qsUc>`(Qq=>!zHBZj44`eT{?3Zi`;J98e zr_Xwm>>XuU-=TAcH1hiY(v~*w8nG`QvkwYD)X5;^7G^=P&Z%=XZgr-z`?XbL(jrPp z>8%Q>D4QxJF5bct@_?d4>zD)@OLsXuA1(PADy zFgK3is@RJ3wj!s1Qucre4InCs^H}__ftXfM=Qqz&$wQkKy3lH-I%_`$SZbBv^(h}P z<@TT_`o*bx+#jZ4jf+F5HS-wG#WUVg8Ru{`nftHrzky=y-*$7!mEnJUd=|T7>FsSh zr)Os23vpa;em5F!ZO(>?+1oK=K>vg`mT8EhEXLqm2uFJOmyhq8VxII;EsZRLv@ivI z{R9(~;CHEkWdOH1E!Qr%EA>Y`C`j|~{;ZXzlSEd}`30ixwUeY!86R0_g}vwQ0uPl# zCVQ#tI5-5^%{}Sr=%COE$?I#Y8pPX}bt28xe8azIOrj8l%q!u9cm`lz$f}WsVp#wy zI3AZg3wzny*igHP;QB)oM;x@8l%t1~iZ}Nt_wbY8t>J`(nv`Q}5G8OH_Y9=z{_MQc z^HR;c8{Wm8l3!Hj;FPx5*M%+vC|l%I~7!?J(Zsk z?bVTR$A)>Tzk0Bc!X)^gLTMj) z4>t2+IMKR$hI?%k@+Plt^|WwVaIgd!mSZ#O9y({p@its+S+`L5!K|(R@EmJsFIV!C=sYOtVUM%Ra2zSSV%eSiM_OwH@bZCfbHj&_(t!v+^V zsr1wNwH7I%O>~l+I9k7%ZjQ9DBhEdx4Md4-X+f-4-Y<1j6Vt%VJKV5yH5NRtYe&h| z-QQBtYD!kh_=2}AjGaptQBw64;WotGSL!fIcM~U*kQ&nsu-#&xxq$T>aAIGF<(lgX zD<(!z(En&MMTmtBP0DoC%Y1n{^i$MRwLmTZJ)*y=M#)_R!Qo=YOUdhTlcPRd%Wju+ zwYc(S>-0(^x{T&73O)iM1do(TsSNi+LBtxB>B2+GP^xbJ)Q3C+9n}Q&U_;#P%{8dR zk~&iMVd^2ECkV6_ptA_-dYL7P@27&G)KCoAjD6OAneGIEB?johEE@;KGJ9<8xzSW& z^U}EBAiR5j4>UVX(I&j;(a)rWlo<~7rRq7s2w=5(l)JO4RoMcly?Gh64r%NSf*ThVi%kx9oY%J z^n`&9mp<-ow7dFeGtq`>HXlMo$6ZZ`!0uNVJ+IPpOHt8sEH#t9(CM* z{4z>ucoj5?1L9YWByxQNG9Q^80I6}Y#|rOFN~9AFZR|@RqGNbhK1{(d7*QMLr+sv0 z7F}m6wvAuEs;a2tp8P?csppuTdm{oUuVx(uR8`^y$P%FSbH~&6Ex*q^{JF99HB2WW4BRA|o?kM$#(q0CcNZ|MmU?F}14~6A+E2N&Nm^;qDVW1PG0EBQV;kd6) zSHZTaU+JsBQD0ex1$*dJeK6+J{A@y(bG)EwzwB=8srV%Z_xbs}NOYrVEqig^dqirw z)tyVzXoDg0tRF?wOZH6xXT3OXMo(B-9t0Xldp^oDzn^^u+S2~Eo!Ww z9&OW0R`YO_wQ1iv`lb>7r;Tl`n}5xglO3g%R;pEJ+buK5O2Z?tp5E-b{%wPoYAbNb z%-q3b%Fv4CN&OO4vj#?B=AaoU0^hcUBJ2hez<&}sh}wUCu=bHZ+3mNAsJN@zjT1fw z5*d{t#*h=}c*tE9IYQdK&-{eCV-#e-Ps;r=?gXWp~#%X9p#VECV)bU-pcy(7$gjhHVHo-y9ZIQB`A32&wVR$AL9NOP!a3&ye^1elqAe{x<$sno`Xgco4)&G?;GOAn{ z282IoHjEd(1~#AIZu$mqW3kPKUviu9ADOADZlOFLyTQ_8kA3IId zK7a-7N2(LucHT%7`t>+$;hRY&o_#i!dc_&qIeoZ9JVXPY~E>i=!rgCff1k>oTc66(0FYaa?>rf}bEacf(#JxtM^A(Ni92_X?0$jY$y)Nj8uYjj@T2qWEOf>MK~VXT0z2NUx#o?A&n2*S)2ua)}D? zkY7r1pU5gVo6~k3 z{1@-}<{3QRk$Q-0>Slbt6FN+R^`2;48=hvc4*%mMSrzP5HAx;b2vBtUrL`OD=mk`_ z?uH3NtR;X?we&4)l_cV9)+EDrp?z&SOd3mdr05JV5+3$oKCHKsYY-!V^WEDqR-sPx ztb)!342YMZ1Dn@u6SiR@dzSJNosI&*M;9j-i3 zFGjEU&94tyDwf^@t)F_v%Q=f4GWbO9X&RjJAg*UJSW|oA_n;yQB=HX0$NvA&&n0tf zhnrX@jFmD`E^@_yHIxVYmS-=+PaFAu-;map^K&y?wJ_6?YVYS)(kL7!OjrGxOR0ZI z11Qac4w;A2IY^a_zxQsY)!3au0RY(7kEaT_#b(Dc(x}O(ngohC8{ngSjKFpqeO;Ho6% z1xR~m^RR%8m5**oYw0yR!bln|jt5pS(MI(9+DsgcVu91b!abu2uWl|IkA6HN5h&^r zmb2r{swo$BfMOQrR!Y+}Oui4Sau9MMXsTZz`I?X7&@d<nY7w&g~I1`wH%Kn0G#r%#MA$Xg;Z$D*wenIEe{eSbq zlkL8QOCnbt7M~VSirRW=WMZ^(E~&}F;IZ2WS@|orz9MEpLRQ#cZ!Ah;bPX3Hbm)_03LRK_Km;5D0eRlNvdlm`=1!HL;=NjYu%Dg; zd%t*Q(O$@(4j-}kDmzGs;+hhRJeh8+QZkn6%lk;2;CEBnN|(TZN@D%mDEit-s4CAn ztrvShjl@(U=ZE!cj#mvo!0ieyv$%@N0@2|utj{@YyVv>igVfaWEW=@H0&HIDYfarm zk1)7W!|Pze!k5Dl*6fi&f=$- z&e-EW{xd39vs~NyrtGLtCo$BGAci8GdxBUY*6f zZoHGeKIx<}-C4@q#t}hJokd|g{sAT@iDfu|$Gm>IXn^Q_0^*Y>mp9vE&tO!qu}se1 zq4GSSs=gbZG6@DyG+hA9<|wm5i~>41fDtl#ZeF9N;tBiwU_f^|9Q?+ElplhX>;qw2 zM3MpEQjy5{qLhJH8Iu1_0Z7es78O}rL3KRqc&O*N_80K)W%?555>E!unIQ845#^Jp z2Vi6)a@Tfv1bJO z7$-0Bq?QCY%J9_3zn1~mzfhz{uZ6<%D!(@^KfEz;YMVQ>7l9&kL|e7G@DN^KNbL2u z3iUQ`D5jPmXYruwJDx~jIE6+r00zSJg*2Hjeh56{>(sMc?)ZrDmL!GCo8i9t{Sz_l zGN1c(?@yyK8t2{ib>QE!cZVUM#5=6{yIJh)VPJO@g+v?}f(#lIb>cW`b=II(G_YA> z+fai{m!krM&-t%0VkQr-8q4n=nF=QmC8fB~?Y7OhtHZK7rBYM4VDw?>wfD93^vd$(@M7{4h^tC* zuV!9VZJ{_bW>H0j%wtAiOBZ_|l>&CO+$+(phxg|Mzxg5vIN=pff66OsL*D3)cp__9 zc{%m=?V}hRkaACV77w_XrWkqr_~ZQ60y=jfEZkPy&UlgaE^Yp!7t=F66 zaiV{)1?+)0JZ3NuK-~W zOr0`}YM}13jXWWmMTrmgywY8{px}lAI0#b%xwDgDZ+sKzaL(j?6o5|YH z{tzE31#u&@lcj%=p920zDk4hs1w4tKh^uE0X%A80Ci1iKz&*B0^lvPdEXy{6V5W0( z1~AnN=X{NvGUpsIh92jok=Gm$*{Q@)<>m7HZ*A48hDpMp%>}xn$P^7D*wn|Ssyo<- zS=S~YbdHj70JN^M+4wn6&Z2`GRCyEvZe140smjL*sbS+!5Brh&uvU91G%PZlN7f{y zCUDMhFGRnfh>T`bz$?FQ+4EVm^4y4>KjVmV3v1vKiFSbY(Q8@(Tp{b~7+$G4s}`nX zsEN}9^I+?xAa!K3MdP6Ffnz6dJXEfo%v+?!F4M#^lnq-_Z-I^|IJhFIFcbZa7TeT9 z8>V}=AbG8fRZS35>}@hXYd_$_MAq6n6=$6_w6Wf>t%P!AM7QqzPUU7hWK$K&ag zZy7<`#;s{Lpp>C|dtl3vkrf$E)uh+Rh@W$NPq7&T@fOyqRA!Mbp)aeIuqRzeY5%*H z>Yed($1n?(0m0I`Fl9qms?DY2z>ei2% z&yT0(3MwmlM#qXFg(RW+lz!@5w}77ojL#g@XBy7sniPj5_e^jCjP+vcL$G4RwfcLy zd{a!K!x1bpX3nm~bm6FER4kJv=A{5^eJ=?g2IgS$!#>+@-ymw$1lq6Sl+E;G^o%iL zNni!6UQy;wsp&>D(r{A{Taa)@cDMQ25KW5FGhD9zq)|8Z*|x|c8cHs@e5Y4Gg`*3X z15(_GS=G8ez*BTm#yIdz6GL(a66ffMCRVtsdR~dBs*u}hq$QKW3j{Y+lk2&Asx0w- zTBAlxL1lN>7}5J>ubL{2yEY?Ig?cQBNW6*=PyW5qNrQU=ohsh9x)M@yB}H9TVK|Q% zgX+{M;i&6{RCKX-3mDmlgQjmY$_*0fCq~Y#feI?-H_7yx$g$fsRns|9@Z7QEP2U2| z9o{wmtX6+)&dP~ z!14p>ckc$lfZyh_xz$r}t-6A|GMf(!&I7iMbN`(c=lmBKTykv(Mv*4<5bsFejGv@zD+Yt>T?7C%ImshO^}D2=Sx zwT5w{{u;>#Xa9Jz+M0i0cy^CwDdh>OOrv>#*}O&e9>%JD?{f+vYc|pk+hw;_Kz}yjdRY<*x*kAaV7EeqJaHg z9KhPhOm>Vilb1(3og8Pw}UT|JCN><&GNHdZhm;3nlj#9 z?MJCpb959_KW7fE2q>t06!801nv3kr;tfXJAqlN{Yt(A1c$oJ#L@lIx@(H4a@_nZU z{=cJB`TEMNvmgC-b|{9QOqhkYpTE0$7Gd zm4KXzc%vmpW#&xM$B3xdy<2igsql)9o(94q3djyNRzw3NyRkftO}tn~Sw4e>Wk46w z5X>aL49p%9Io&UN#LResH9$sNe`2?4muuS%Q~OZ&;#y&OUHkDW`!?xYne{zzAhvVq3WR|8^O zjyWFEpNyk2DJGM2Y zH?$132bRSYb5Wll!`6(xEeu4+8y^jt;S+{*w<&5*)X`=q+6@9TZRuVV8yWB3#yE?c z{+L5L6g^|z&UUof{)gtW2?Y8cRJyn}4f-Bi^)gnts>kMk__Q$pnsoE`bYdou;RIbz zdWhFSj;6iw)yJ>5&*=+ZA(+vnZcW@*>5mvr_{`gxfAo84z4LD@EN9;GJzoGJ(`t$P zEbt#5{!Sypyqi?$JivW*W+gefR3X5ZV% zbZ$M|nLsRq1;}_Ui;6%``}a77Mp_THvOaK$ovu5Fw{)`rV}V4~s5@mHZP0O%j>wz{ z=!mQc7TbS0c%l7rSUCL~iyq-EEOQU|D%GEW92q-zV?Etb>6GHqu~hk8&Hek+VV%#f zHG{6Ch?ZN*HNOTC#nKKUjT0Q!+e!sKb1&=tYOth)OcaLls~Jd0s!rMZ<^QoSjWHf3 z5&CI8(5VG&=95lyHQ%YhnkNHib><~YDIfz>^REZYGsa2o9h z6f2)3T_%jI*gAdes|kyjmAq`4@{|iTJZ9|!J71{ZZpOY>ponqTGht!FLQZ*R6-qu2 zLA^p_2{FX8NCi}n^Ax=Ouy)0$5&i6emlrt368KBgib7Yr$@f+zT?^muHjAM9E$B0srjuAM}gp`jlc%&$d~qu1-U0NM3O8vVmK)I@+^(^@#n>@f4H7>z?X zJa$ZbPjzRbTTM;KRszl1^QBbS^IkaGY3%8Eeg}H`z|heP3WoIvi-#Sp_P&4Z|JyV3 z%{#jNwh06~gRXwQUuqNrCL9~6|H#JW^M(P?y4tw`U`?)3)^UH|2Rm+~^Wk5(EB^_f z!OZHU?*rk|n|OTye2JMOKu>@Hx_`12bfO$|oa_O%UE$*dclQYDQEO)^bL&L?=rCFm z1zp5c&D7o3S*M54cO4)$|7U=OFPEpWn)r1ZHKVJNj*j;?s~1e|?XAhf=`{J%`m7-B)oy4i?%; zlzmL>;$$_s$Hk zcy_yeKNyI>h}`2X$jUDPk6q9XHVo@Kd~2ULH7uL6-~iHIh=A2dbzs9XZxvlxWdAm@ z5_|d?aGM3n+`lZxfzsB|OA4sW)aC@h@>n?|jU?r*;yvn*M)GsQlo+yR9ERq_0#2F~ zJXU%!R!r^3M86BVrEXRLr#b~-Ru2CvGTg@f9Xi~`I;sbo)2xh_Gv46Q+!sOQ3274p zZ;$e9JgN*8Uv+g-6OXcBS)0l)?{f&9<|i~Y=@y3D1KD&R@nI7HlLy%F0jR#>9v^x9 zL#W!zqBO;;woOwC2>QX^k>#wB{mGrECBl185c$#PS zZXIO9*Q1I}d9^icsJ5cl|6vy2VW!cDt-xiMjXIAKU!+F1ugC6Opk#HX46|asRTTRE zL(A`l``5Dch93kdI|@1p9xA5=RG$?s}2)I+GED#^Pz_h;j@Y3T$y%@*HYn zn=CbzJpAgO^?XrpQfqf^0y1iO@c=^Ipi%VIzS8CE(yjFHA@Rl2{KP#8)`hTFw9Ps4 z-OXu*-#@;oQ!`?wGSZLNtMSQ;$ZX%raP*-=dD6|ILiK&_$WOsYHpPwf1qpQ!ZE2=z z>KXScBqVg!CCSFwE%z}osUOn&RjKqO5hF|zIh~6gmIXZ5TPdg`*Y(pLj82YP!HrAl zh#L=7wa5-Pt_(gHOMS2tWxN4ed7G-)6%}s#gkvzydW|^4(~b- zevOPX5O{afq<&#@xBYJ~E}@AHy|t&5j+&fuufp8gH5bp%Odk&N;Qxfx1gvW_7+^MC?W_vnIk|wYd_He@JVv&qikJj}*$hs!9B`m)L zOfi4&P&E8kq%@!y$lnJXQXIG9JT_m(X8vL<_mu)QR3mKxi?Of8=dxT#Z!v_!AiG{{ zs;=~1eVnE21Asz^C5iN$(|ujLRwe3cH`6OhX0OMhF}c*{KeXoNTWV?4ldq-qz8>9E zOQRmQC2$yv;YYD|zKK(=;jfzE9b5^O7dS zi2tT{2A6N44Wm!Lb1DRJYjoqCsEB-G=5fILYBl0b`(*C-CKiMXZ>*eA4d2?L3-bL= zq})f9i#nNm0y=`0^XO9S*V$sZgU?9c3|A^dOIgZP?teh`PMqj+Kd3kM!HJ z>RWSrkw$(d6-|Mv^Rq5cPE%%HxE8cdUQf%27-jSN>#;QH2aWUO(RRslRMd<^3s1(!U*>C5*xEV_;Fg9>1izEwwFd{_sW2yvGXO(;+ltJ6A_1OG2H3 zE0ZG2G4x6{k#S*!Y_;w+F~z!kWWH{V3r8}koUnA!g_V}xvN5#@T`HGTd|InpX9ehSPosCl>>x5{D9pv9ighvvUOiP)>EdP@ z;w<@A->ihEFWlBYR`itqC!PB+WY=*K|97nG)uxt;7DE*oGh;10onUYOq)~c4)?l^Y z499)gM!0ddp5UhmYv3?q4L3kqP3TwdE$xpt&tz=z=oH^yjCD>NJIa>eSPVgwz7OD; zj8_rnkwWM~vQe?6RNQNIasRkVR0KYLwCgO{WZ|rLW#alqiG_#CGxKil(v9Il@M`R~ z<}Ba0;~j1>eL4&FM{+G2|QpDE~!>1^VLAe6Or zvv?V2}s7H6VTy(Q+w$+B(7e}a!*4+Xut8$og_yYH#5e0R#wN_{XJYcrxJ zHFwbO)U^|$bj+RH$SQMX*K^($g0ib8mt<9Pzfq6YT%>(G!FwwDh@#cIf=#fPf6ab) z!m-X4EA^aegAp+me@w-tr2C>x!tdPni9^JNCVE$C?xM{ ziDkIeOjyLnqKTMV=bqj>PXrDy;U3&H;+P%OCTz`+Hr{UQ;sb}%){L9R&f{(g@&Bn=? z>0XsGCvrRdQOhD*XDRfPN!rNbdoq-Qt87-aSmS43AU`*{ar#6i#xU%~>u7Cy(kM=i zR(&V#V}j&z5Uz&-JqtPvCI(F+XZ*s+dP%hr zI=`|jd=Ce=(tnVTKV|9n$ccH`j1IHQ3^=jQ_0bIcyM9XZJF$}9qyF${&^mKm{#!xy zi#CQBELt5KG8-$SzGwr9EM7}zA}N(+p-087t&_{OpSG^tUcw|tYQ4Z(+i~qQY-~Sl zhUTB8l8aPS^yq1XT(kSj6Zfos%cXhn?Tn+1*cQ5tbWpKxb zy%4xekHYxoPvd(HzdAHRNM&_qb|eTg$n|=PG|=2-Hyz038Nn01c=ihAKrys^Uj&lf zYpP9dinPDkP`QRgU1!>Mrd*h(i+Sr;)9^KC=PSJ%!r3nl8e7lU2GaP+a=zq6 z>bnv5wZ&q|YdtPBFE*H#*lvzPu#@U0B;`9WH+_CcuEnW9!kMH}x-f*T=~5SQLPF^4 z*3j*Z+2GQ&o(}8%Bvs$5Dcv$u8MO1>{N36|8xd;S!8fcyF_yb$8QS0J_+(cze)u|# zEH@p97~B%I|M?XGz6uI7bm;d7hrn>(unX2UmZwpW%0aJ2vRVb2u}*@+=1pH zRT5g?l>H|{a5~zzj{bN2!!o})?_}3GJkBPboW-U#Vhujn{%?g&p^erQd@`>Fa$AQK zU5NfmIQ_qR!i_qB?j_zt!NAGbNFL`01~&rn(v#(CpUvw1P_~YRTx&6K3 za$$8G!pzKW95VOSY()+q4TG3Ja@@a>Z*g&d+A}G2rz{=6oD;+)+0i8{iZK+)sB=t& zXH8UcE)7HQQXGg#|LxHVWE|Q>Dd#0Hf=yA{O~7+dy(eEqJVhIGm|dUf^G$^ z;*JR7RElmb$0+T>5y#o%ET7n(H6xEE!qRwqgY+?G$`_kZQuVmJQo%(ehFr1s;qxCx z4q#R>xoW>;NoE7h`4|%r{MwwMd7e_F53dtFxU16&?|R*EZE|!7Fg%h1e+>={tJC%ocWB1E)I#bQi^8Zd+FJ zS&^;D94V zMm;hID>Nbi^BP`2##T!yA3wDBXEchU^6dL*0;0g8ggU(Tv8sXCrA`XiZYtRGv*&KA z9;5RkAsGcl11b_Ig;Vw)zwv!W~Q7b#2t(Xu+p16=Orqx!C39HsSensdUm1Hpi~* zCd;`TMcr0M2678M*s<+HyxeaIW@7qStNIn`7~!|Y8*g{oa#wVa7>2qM%*)8|IN7-~e=ex9;;S|*Z4YT}iGuq@pdXRYKIMLSW7eDUQ zJx>N5s`Pf7IAS!5lFtM3ShcOOl6Zw8pZVFSU{Vk6;~GB_5e>E)XXQN!d%~bo9H0^7 zo?H5jUWAtUzx4o`DR6#V3;l*6gIZ4zYHdHOe!MJat+k8auPeWs5ZILO6IUT>cdJ}A z#jinLdhlSw?X_*)Y=JrMPX!uaJ6~A#7aJ_jquT4$I*}OZhl~+V7sjt@ zI1P-53w#bcKU>ix1k+VC)*V(&xu)JQyN_wyE_GaW9u4{awL3ZkqsPi0Dd8-c$h#+n z99p&#T#Qo8cE>a$a%ZR2mDkPbmkU&FG|e5@%ZvAPhUD@M_OrDdO9mt>-TaVSfenQi zi`zr*SGRPipb`ECesZR8TJgs;39 zhWu(r;Zd(25rh`OgKhfid?Uk*jj>bX01JX!#@`m2@`f3Up*?mP_CQKNj$Oy1WdrmX zQh0EC2#ErOs+vqNxL12B$BZK552nRXig{*d5lw1cUqq-`hDze3C;NW%I|RvaK*B~- zWcorh_%+b)f-ZcBfA&C7D_A;qJ9#d-=6(2F?SH{W3)~)lEhBZGhI*9evV%9xq!6el zj-6f$Mm5q|lBqk!@4uMseoIqrxkwmNkz0w!JvgCD5NM&vKagiAFtN0)w^=wf4SJXHA9me2fc=j$xyjCMR9Na-Txr&5{ zZ&-8jZb1*DZ=3^9X=7e?qH>cOsh%(0^R#j9+so;$gZO}#BiM*Ez8$#GU2vGr(VN1O z&+ynUEG!FpAtd$ly1QXvHbfSio&!zUT$lvatqI>0V4XFRCa*D#53?~A1@%rm*p_aY z{#>|c6@Rbf5D;~#8^X9~o^2+5pr>X`j#q$xIhIU0OuJs%QwNzLXV`~QjPYBqzw5cC zHLI0Bw&6F-e;fd$Zt)uYQ|7?d z9Lq!=T!I3>K{h2!V=+s+TDF-q2HXWnB#n~7C^0_cPy)@+#K&NE47mk$l~|AQEQ`r{ z+*^nRK|#hSJ-ckaI1(0~LjcXDRg~@Am%Xe~5q;dvX0kq{E~lc76E#HlpG4xJ9ic^O zH318nnx^b&07mXd;R?%nmbYWZn~XT*IX{(71J29_2UyG-P)^>t106p5Pe3}#E{fj+ zg2_b~*8VXY z9D9TTeY`L}4ogHeEC3-Ul<28thNkX8lS`Yuba4;7b7|^leuSW`b5b0kUs5?{V;$jt z-z=;Hocr?vXB|wWK=+{K*ZJG}UH2mwWhWOh~Hy;3uPI+3retyRs)63J_K3NZ^ z7yJ_+`$6IuuX>j;Iin#s|9OEp>PUb=xj^K(sFdcKJTiBs@>_BELA1ma_tld3D-oyM zz8>W!L0h0HIlj4%luD^ysPo+Kk;&hbKw>BcCM4NS&krYjvT<^+HKjHm1|b&j-zSF4 zPdF$B2~=pIqZK?8JsB3d9P>>}(*LWM_vSSJj?7BMh$*%$W@+Go{+!K58v5VS2%Xy| zyhEQ$&h;4ghgaEuBiub9&)yRXeguqqx%d#zi7oEX_gwcRV7(xuqhCPC$e(U>O zEgOSa*R?9v$KWzh`@oxkr|?{;89k!iST|>1H?W5zz7Se0isDInYrP<-7a}kt&6D!| zQoL7-8$^T894Ro49bTMgwEz3<#B^%fyM!3?mo;47JPbJ~nd3A{8_y68L5dft% z_uKnK-2#90#C|+b`MJ+{bBmio3v~s_pTO8L#+c03De%3{_gi zZ6hS^FHSPN3wh=>2rcK(ZJ_bz^??@Q%+_Q>FTL@HY$B!tV2Gd3Uol_VN)#SgrxYt` zKMmvsusCiJk;$civA zva+O@wnEZ8VaqI2Q61G&!op-+-ZbwFM$DaN^jsk&Cn5{2H2JW1wNtvAEMf?5JT-=| zdCygtcdUbQ2C1`VLb=sQ_CDt@k&=@(hnF+cSp}7K>-4cIkzi73ZghM5j^2GXWBYM* z{w%#k%ZIB7uy)j568_FWmX^$a8>dhSa2-C%K^4h`)bPBCuh-l8f?v zqhMbfetpoA+Z@H2i%q8URA>JYg#71!mV5Y)`oyKi4+GrvUhXC5hjyOjwBG*3zRY?t z#MEdsG~2*Lx8qHam)9il$d!mqqJqzx>TY0C$m`BeFzCOsor4q$2Gw$P? zJ@67piY{lVWy^%IjA{)u5gPr`U)g9XV=&SNq1drR^fu54rU6fsOHjVT$)X#Mv|krn zEJyIpTchzxQV4WgtoI&5$C@|w-;CZ!F^dXO;!;*OM)`%74Lnj4)1H#uLm2Blk%v`b z_rWe)P>l0O&GRBHd5+YdLR`tv2EZW6C$Ulq~xbmJ?|W%U!WRYdo;Qyztr=gS$)dZSk!k0TciZDq;S#@@7J|i zBDhej7})O?KVJWt&D4GTp^Wd}F`ECh+81rV%`p_{H;Oc>0mS+UW(8I-l2qGL(U zXX3^;1n;T}}$dBhlRlbs(wy#FF6Hlpu!*Yabes z**^5W?s)3fX+FVB^}k*catWyPth}#)K7GLTpwk3L5ldsR(hxqcVMgK?^;%mpB70X` z9Ox@WthD-34Wt-GG%#*y2nt0ojcB9-&P0yMfg6V(uH z*UfRM=p&ZVu*ueFGF8E>5MlBVfr3G29lN=_!G9_toLb%2&aAi5t$r|qt=gUo zGDqc9c=UfPzCCMlZw5TZPPhZnRO=J88{9RtUU*QkID+`fN=!e=wpJ3`Ie&xOk~~tw zIQlp~Ba4;W4ga*yX8!Hx{e~?X5FOWoM^K$u^H;&R|`IN14vep=A7QURhyZL7V|*!B>PieN68| zzqBEyhGOM4y%0E?-gnQG@Fw&`zbUW@03E^}W#D}m`lb)t5qq0{%&uN8JUl9CfQ9*L zz+&cl`c2^`7(f=bo;Tdw-g}$iK)14e&r>q9NbTBdMNM+;&L-VLy5SC~X1+WzaGO*g zkO7;+1f^(J_INujur@dWHPQli{7-=o<|EL)*IHp*Gf~b#!E}MpzCrI8xD>jgq+W z@@z89=$p&e$;qLbg?8zAQlo7B0vXb5&v%y%cAEfvU%6aa$(~tE01wF~Y)q0~iGPw? z%7nSs4OTKSH6M`I+CA<|=*}v~dIiOKiZ2D9I8*$9BP^`Yr|dkM^hg6qL?l7-^xSh~ zOd+Cz7lV^dNQFaN=74tMn^DzV-EK33l?r|#+W)5C81Ayzzu>&u>%6UgXPcsW-2X}L zrM%Pf+cVEg4^OK!__Xa$d%f}^;8H$0P2_*kzKk+?ee+v5?yWFsnFkjlhi5>+7Mibe zlWEmnR%r?&NS^(Z=F9o zX8X#`))m027lDPTGJD`Xd`qa8%(gXB4~4;Qx8I=HHX{FyC@-&CCOKWY45+2EPo!cn z<0_!AV+uhk3esD+De&U2{9h$641-1RD1>4CH(*! zCKus|)+b}{1ylN5^rCW81%Ca>>WmSo>%A99xGYBxsd>`(p6r?#SHdh8bvpF76EAo5 z{(or`WfJZZf$lo%_H1T+`<15-Nf)=s=R(_GQ^;m?_%+G`wLcptjjLO>Fl5mSrM57N z3~BY+bL#KvHq$h`8QuEkMrP6KUcWxU1f=yQEhf&@inDvOU_YfdO2l`}w9QOz$BQoM zEW&Yx2a$8;g8%c`a%j91PNG2QB|5cTpCK8F_P^1=`KLK5iR;?+E>ThSKfI=T%WFb7 zT_|DnY0cg6eu%7%Q%68~*o0KRF+tuhW%249f?~hSxCN)kd3@HJDw+{Y0waTw?u03+ z;n^6>jeyo(ydJAh1!4|1dUQqCK#(GTUXb>5^gd_-&q>g_VNW4!sCqqsSNJYD5mJIr=|o(WGs&Q z>oN$fcW8Efc?Veb+#{@hX9v8|+YdGWaNvzSzO7x|%6v8?@b7rGM_$h*H+bBgB)qW@ zQMTv52HJCj#cb|locnZ6kxo9y4Q>P|!KQHVg85oE89&t8g#+ztsLjn%4ZTsuMjDHX z_F4*7xz#G;X{A;^eY#ydN&Op2MG5UX2jS7rm{&o4ykP60I==qKpGJR!#nXQIpcid# z4aZ%sVnqB7LKtF!ccf%Yc-@7}fL4)^5J>NK#V`!Q1| z^b9c+IKNAqQ~G6rtEp~=(8HdNs@jt-O;kcnOLCoBV?WR{W8imZjB~Yk=p$cctz4UP zLTNRkZ6mDkE+ynzZ>1Q#D^rd6G=rQUH%BfV9X`U5xZ5i{+$gH;1c~8oynfy$d9d&#}RRb8tCI;oGgb^%>RJOm&u%82KdJcm`i@x& zjRG29lW1rl;#1cr7wZ6txElZYVFaFNtcz67nzKBa_6mF*y)B$74Y;b&WQ6V6ts9uO zft6wABvepERbQlI`OPI~3o_f2tEj0=Fio{;&eg-bZDhIfQ~7uMR$uW1B7xw}5x(Ts z&jn>CukU|FtR(-r*FoZ8zq@xJ|6Y|n!<0~AAR>7Fjcg% zEm8+ObGk8wWg-33x^BU=;^RrB5Wj9y{4k?6dCf^_j$eN;TvdKvDgwO~7b;}9Q3uxKz zxkmQC35I!#7ime6DKp^XF^Z^(z8u6-hY={b!17nPcAM92_3d?BQ`|kR?suAVR4B?2 z&6Wy+X+L(zadi0o5>75o0z4C(O~zOAS=m|8Mw5yj6vju&(QFu(Y`dKc$CESwz{3p9 zz(Zh-7mv}>wM#Am=Cc1G>?2dVhxcS z4XuQv2Vj2DQx*tRF2HZjshq11a<3z_8w5g2epvZ$UADS)wWCN6VO%f`b3+mt)v_I9 zPbU+buWS}5$6one(35H2ZnvO(94flc(y6i(AKR*-Ua!2}av*T>9@%h7JT@gi{p}T> zz7K8x?a^D4&i?+tvf;Eo@XCX~GArJGE&vb;8oQ?SM;M&vWJ~NS&W0+WH9&PzyH_mS zr2p}aa}4T%R`Dj9e?$JG3Vpl4M-_(`9$qy+#@d|zEi3&?Q*m@&cYC;WHvfZjp0{P@ zb_*619J$Q-OqD3WRwW^vEkt096R#x)PtBoJsDmUW2s4J^<%XGjzW5mT>~2#|%;e@5 z%b#C7^%66*`lhW?$Z-{3l>ls39-#>)NB!=eX&6gh{ERCO1iIxyeX`s%Ho#L*3_g=4 zeVcFH5R~mpL)1o-VdhQwz`=QMe)`#A>R8|z%uYkia$d*|S$Y=pmQ5mAf}7xPg8L$WQ?peNW`EQnnSh8}oO zux)MHqxvEP=`p=spKq7x&ELB`45KV^!No@N@$Z^l>KT?6s{>lU zO>hKv&5jA^^yGO;<*Prb5_S&<4Ee>Ig=sEWVn8@uVt=bJ=Y&gQFmplwYdn-N}Tpb+?`Bxd(z(AQ%n8$@J(Nra!=4)9=O?)#? z_TG`y;72#pgk)29I|nb3A-GwJ5{OdM8oT&pKqUkeGnM|d#3;M>79{9&+T;vcjx+V0vlz(&jQB%^uZ%u%npyN9Rb&`|AvW%Quyo9uUT%qq``tkGuu z#-!@QS~ty8_Qo(=Jky76I)H1y^T_tcJtScoUqZT*YTbFm>J#NwS%3}U_ZYGW(5^!C! z-C=RmFtS!1HM4&ri_$hX<5_6&@b!4q%Q5>p0fVsHqEeQuWy@1j;&?MMi;^dVLHoWj-WII$ z<(=4?^NVkAQ_wNJ1JTd8q+l#rbHDy+!ZtiZi)<8cuXuI`lv&ZUMyK}e00%V7<#}fL zsesA$Qn$Ex-IjSOE7@Jh=Sn+Uv;5-!>ppMS5bu&4qiw>a{HY5lXX^dOCU-muR+n6* z&Q77CtfL;69s`+EM4l>6fLwP&Hhm_xch47i#L-dl1rM^VB0a|2?>sQlCi2^I9=$Lk zMdnp@X({O+OsJZS$`3vgq%>$#b00(qw3y0(9-{3m8m#1v*>? z^|&t9=g;4iX13IDnfMbp2$RG$+E}|vX4y{LK(X~S!_=xq8ToE+XeDYgCSd^7Z zBqU{UnEv+h9j9Ss9o6IxE->7mr(a&*){ZYFq#O2Xd-;|W&BxP!FkbF+fjsR{O*&M= zadeJFOmoX?kuto!mlpy$Ne=-mE=XeBi?h*_fD;y??WFuF@ZaK6Nw@RD-FGU@-lp&H zz09aM!_Z3 z8M^-@F1XX;h0+9J5IlC=m40ATeuZ9MelW+7*uoSI=o@@`xlbNRUt~ z!+Qusr7>3o`_|Gm$0lYi7h0>Qa#tYNsU!`JZ8NuPPp?`^|1KOYqHM`(=ITA&YNU|7 zVP^q>a{UW33ehCoSc#GLb`r*9Z{xw1LhYfR7zOG`jbRD0LJce?m=uheZ6iS{MNM^r z%T+sCZffRBH07HNv;h0!Mn$9p4lYb>BKEOSH^1c@#Pbj7LVA7wb#@eU#r#m5ti=_o z|K)1NY%(64KXtCCzG?`%k-6}0xGenTk5%c%V>})_xPp59vJD%lJ+5>*8N|tI0o8=1 z({%s!W`AXduw@pQfQ`WvR3Xv1&wJ<-RUPfd4QC+(r+bJ{E=#T76b#at8H5&SLjoq- zjKZWCs+7v&Yv=TWMu_+%A{7>^7botaO}u=Gta>u4iuDTsvib4=ocsnGY#UiBBlma%x2uEfVs-Sdd2t+mParBbaKJtF@%p zcU;*r7rN1liz`KOQ_;!TWh`3k9v>g>hGU=}sw8cYk=GXms!q7zfP_r2ObC%|+LVGB zNVnlb9}*`(y*V>wt0*Ipg+e!U8%cb0KQl^-38etDp?=uiFkZ;T%HU;5#n&C7X%ior5U#t$vWB?k(?D0}9sck7eS3SS;k zatiAGfY@cC_;rAdfoF8r8wg%7YJ%AeA}_#Cj@1e1OIG8PlbaZD(di*KZOP7l$UKkU z=9Z#Q&(1F*t($RZK&`@sFs4G|%_P$j!B)4ZuQJ`!fZKp)e+k-$oYH%r%OhWc&Gy9H zdPuM@RG>N7zJVeDkQZwVx%AH|?PG z{XL0)KuNk*?PXNa!)Z#=4P2nW1^4iT8&0p-;5AQsWZ{st#R=L2FCsJHBG;JpVx=nF zs`a7JCexa&*u)%(#ogxL!kyE$?vyUjCp$D9X9BXGC=VdU?wuy|DtGAsm{twfh9Pm) zl=Id156P@lsOp_o=jzSQexL+LVzMbL3uolAuw>B(m_hNWRzTA?H$u$5u<1hPh;sR{ zE52UFKMx>DZaPi{upYd#X-s&y(lybFhH6wyqLP4DbS*;JTp+kNq~fCAx^3f&5k4Im zP#OYFLu>28mcPecY)*iV4Q@H!TWV!-@`6z?opcE+lJVPV$n~z#ZO(WF>g==oT`mh| zx4tzbFjc%GL{57A@sLX!2=$$dizJ2FX7jbj`eoZTmRM%hLJx=Uy ziu|OBY2YDTSo;0vOZMgL$5%7oAHh(4_7&W=aF3)>gR9kNX%`YC#~oI8Q?H*1>M$s3 zVxm|-u{Th~m-r?ZzD~m-pLF!Q8^}0=eJ{cQbTSgLTj`{}Qd=N`qhyRukVQZP9TtvE0oNcFYoB*C@A2Lqd42wrtIG{;iTQV8kf5HK_3Fk5_Vt@2_4HXDsjZ*H zCPROZ%(FId*vC9Cdr%J4>qw)=JZJ>sT{{MWxmMajoVE>DtNJmS%_ZvUq463ja|dr0 zNxc+raTGM?Y!|NNM$h%o@HrjTc0fkV5g}Wy5;V+};MZvrgE724x2e zcgS#uOww~;LU`K)Kh9K2Zy0PnJ4pafQ+ue3hcCJS|E}OiCmoHvg8t%%>g5xy&zKPc zsKh0XLTt|u31*#|&xrFp2cnDub!<2;WnOAFKZ}uOJ&d7s$v3S*RV_G!vsB*DQ)-+D^PkLEti3&An{PwJ@Jow!g9M_E%4KI$8c z2}3BxtL%_h*#ew%hqJ%Vg%N2ju5spHndCFuD5@i!`Lzj#{kWd5`;74l8uYq;(sHVo z7tE4_B%2lM9(d{=2V*DQUfS)ik!JrYQ*dZX&lHJeqx z={w+;$O|P8HFr0Di{p&oqGx`xOj+>A&y_vXrW?KDm&@#-02|O3)&&_pXQAUzQX?A7 zS@$7w6o@cuU5JgkbV;17DN-3!t12uW@z5NF{Lb?JeYI4SQs|srU1VHlNh&b)5pB@q|O)9!rV2~Hf68#B^KRq z0Xr`|WJnPD68OMe_N%5L{aW_g85KPTDTz5}WDt7!Ll5G$6uvzR>XXDfvMj6PMU8!) zSzq_nb#ft8NlFMR$MbqqO~UW;5Wq<(ZJ+uSG=+q-f&qae+98XJFW24 zYGJm{M#Ev`97Vr5bq_ORL;`rvTX)RrSS12wcnp}zcJ+YKchuI+v36@-CwQwT-I&xl zv|tC+I=L&gjsDxtm%1qtN$8#@_c$~adUp7E$6*VP!641_N%Zd?p5Vt7JKw!BlcccF z+cVYPmRF*Q5B^jmcBG-X2WgE3(h1v?Bd<;$HD~Q0-YUqzo~W`(GjFNB@LjuyIy=rB zUg+v7nAH-F7$HbJ3Z$p_`-c#BMY2-rMB34xikRr~Nhw^QI4qtT>x^h<1o%61vUj}--%Y$ z!T^8C?QW&QZJXBG_;b5gJJ5`+NTodA(PVa0du7d#`~>5YQJC_NI?T05j1LkOZ8Kh} zZf-QXtNPwDt+;xwTB`@pY>xHvOvMBX;{v1@n?#CtDbAw67*5-7SS{~yBA@!_HXLz~|6cFhi`<6;m)1LOfB3_PZSP2kcDkswgaXA~zet5q12-@-Xx2yuk zW1_+0^$CI1fAe*G1M>gm>9dcHkM5T`hF0zu{L`nV)bzb}>F-BZuHUp?%-gJ-IQ#$V z^NUpWznNOOILW?F&0a(L-yu8p$8P>^1=5USMVsTtNQ=BOK>SyZtLuepMc-23*W?-S zQ7*<@<*i%7$AHh*dGMt9uB1t7Q)OcrJJgZpWNJ<1;Y9s}QbJq0d2Hw-`Jmh3b; z36?uTjgIRmCA6gL9WiU$Cle!;B-Dyn$O743$vwkFP)fzUJI)D!jXV<8@6F&e?ox-C zEZC*v{W|xsZUdPx8EmxDthme5!yQ_kkq!*D0wNRO)pI00yO_X&ek!*> zBu{!SS+YKBKJrMJ~npu5J!4V?p4#PuyV{Zt+ZY6;PR zxKuyscDjaQ@huT12rImrjS>l|c{(=T=*@!n@skDC5YGUd9t}t)$nCRB!2pPNaPG;2 zO;(ZTahqIsvf+VWwQweoaW$JXT2{w!IjVseMGz4Z`TX{Zk)r*uLeb3t2HJwMs_-XK z&drMBgr1FsM^g_@2R~pBjeG3MCxcJUN(()^^-d-}_d2ll{yqG=iu3|6aO8<~7i{gZ zJraBpRwe%B2v?yavNi)5k_S&Q+|~At#Xnpg=bbCY^95p|0rl^@a21|&w75wZx}la` zQpH=zaXOV?Rq+n9NeJJzO6N(dIkL_cgis0(3K%d*dVYGA5-hIrPFusYiBw$?ntKHQ z^-LG6U(*}wslj2UskG{ChR9GVFgCLw1e!L&OsL^N_SWFkS?T^>p z(sK|QYsJL?iuPH*h^;HQgBm#3hhD93kOB2*vXDflXQHIssPL%lWB^R#KS^dsj-$kO zi*fteonlf?4J)w{X_Goz?l%DQwJ8Fe!)8+%u_yfGM;|Znhsd4gM1L)Dfa?8@vB8C) zEq~iMAU5in9`m%W>8z_mxBoSE)zys|(fAG~?*c^?W|5utt|4lqdPbrcI6t^Ide=9* z5aJ0(WcwKf-Z_5nWb2u!o9`jbWj!rTN6$gIyF{JW!<+HXt_xCG*|M-CQ6B|;5%Ct&1$8Ks)Jp4=ddU@{r! z0&87W-1GOx?X{9qe@qEkLsjz5?U5?VLjv8(lB_^z4b=&kga*Y+bxlAveTa}=afB?S zwQTx}hyN(7f-;~G0gy^cNPt#WS{ljg5PuP^#Vc6_pCu z9+G0`S8y6}n@>o(nFq#Q9}gBrE5zdFO%_}FdL z&ojF7+E#zj`d>M8rzR*^FVDgt(?7Ux@vb-ZXQ4n=TK(kq=IBn60`|nPNTjtJ>uYpG zqF@BivXJh7d4i%|-u-m4+^$5TgV)*1BKaG;!vT~sn!w)cX;+~TJ1F~WYiV?Ag{>cJ zJ#Te+E+9uWv?im#&H)%)SARaU@awfDQc+?2DZl_6c>ojxVk*(IMTU->o0q_90nDAF zErk!|^w)QbE3sB&9`2A;zP5A#)&~8K&hz=VO|P$VC&q4R%Ki~YqnW(_)Gg-tW^k}G zStz=*lKI$NPYo^&=EKmi>{y~x5o3vgfCftT$c;RatizT|AAflJ47PAHycYjgnNjba5*f{B6bBhQyr!GXa8BcRRx zgUC`*5AYF6lNk<(%wd7s12Tv%t7<>2w7*<$iiB0snL6t6KVw37+}MO-b&YpcSOB;i z1+!!p!SxYQv7%V~2%yp{wk}1d z;oR0}oN1zP0%9X=1$&OgHgS*sh(}Utq+a}Y!C!_so^`-6DeTgLw(GZW=7v?*E(<}3 zC;j$27?JQe0HNDzh(N6j$LgELd_JJXY4ck#h0vqESEd5*YVsaPEF>5Buj0q-Pb~>T z>sv-uKBSQMorTKeK9JA^g8LaDZhhGSfc(CVk9Y8X5B!?aKoa0NeV3AOThfBEl>ebW zW|l}aIlDXC>do>rCFa-p>~4$CUYVNqdE5D_?GM@kEqlz=^)-Rjx}|3*vECBRmPifm zz~B+*bawp~?yLVdXwhJQ$Me7H_SunmvEFgZ`B&k=V6~}*MM%eu=3f^7gNnPlqnq=N z-wGW)ocHUTPEJk%DBsJF&KDQ7!B(RuxBCI}txRO~l1D@ZT`cp5LdoM>Ttr$&9*NUb z-;2$qgzi-E50%-8E>LiC2`Btn~&H*qmxcDHv1>_baE|2g1Ye z!b0_Mp=(2bcqho+^or$wZNu)~0{+C1LI{h9F(M^>Kc~UlsO1d05eDHDgiC^XM{a{l z(qB{K=hnz_wJUc9Q`e)68Hx$u7_}sKfFwg(4&=X{@BIW@O4Au@VqeE3QI61tSNHI` z&X@1}0&$_i#g(CFLkV$G87Hg4hMRrWyPpNUeUmjS&MWtriojjs2|xXD$E-s8_{Wr) zq=tI!{`;F8Cb&H|j$1A}xB8!{*b0$U{Cu?fq6x12SYK;^o${rk513(nr<1+fyN|rH z`dr2ep<1)GbA6Ip`Om5|(`ZVa^ls%juBnO!C9?Chxfnr+R`JUX>|iu_lZL%o7u@Z) zq_WF<@gofB2rYM^{9sqR&#EoI$1`626UC|2d|MbWeCDvRJQ zHwXks`_+yzRFlxoD)aWO|A_(HX1;8s0-;a+{Ih+#ba*V6HvPXUJ+>@RutoYS=JAJ8 zz9#?ro*KohIqQ?rxSi`sHb!PZu24Z>uLhiM*h4^?c?%=9Q1n2q+;<@VexM!f@^}4` z`|r{RGJ%4Bq8ZbggH>%I|Lq`X+WE@GA6GzNm;bwmaz#D**@kCr-_+Vg<-)|iGT=Xm~im>i+dRD*L z+F8rNhu(>sKp!dH{vWAObe=a31u?r!q0zwatsJi3&j;fC9S+a7*D`8gkpJ;7EM!~9L zQ*k)I;R#jYJmK;V8X%Qj{gLm78S*{Wwr@SEI%KLFlg>Wi91Da+tf5qXsY(#jrmsjTBZ3T?T zWXC(UDInDWh{g5uvC@+T_r68ZWYh%OhC`VdFCH)Ooy0edoe2NnhHYBXg#?}#jFd&8 z>rjPM7YpdnwK~-ec_bctP)-l)1cJ(qqqosJzI8LcQFCc=Tj75z1YCpm*=*Nie{YBW zPZFd1Fr|RGeE-y@$q`I5Xvn;#H$QlK=?5{=VOmqM}RaS|? z9!aA|I^tA|XP8g_Kza>r1ML%t_6laklNN#NpX~j7))p)UAM8B?kdNqK6>eg%okQJG z^<2`oav75jhQegZ(O1MqgJ(K+Y0m2!B_@x=aH02r@964I;ptEZf|j^ZNj zx9*$9SVn<|*#@ffJui9S#ma4E8xtX5wk zKi=qxJp*8xP`y~}zr+KO1FvF)I0Ie}ct7;9o>xnRg%~gt*m6n z`Sw~Qz=zf(kj=BfN>h-hlOV)u7^F^2ak=IQTU3WzwGeaa?jD13ADsWs(2tQzRLoKZ z1EVq5Id7LDBqo90!f%k#9#;_lgA(ck7Mc*5?KA@?e8VWHuhHcv&z0?ui`+ap}b~{9dJA@_}s-2@?$ei^XIdB zTC)XyVK?*E3Vr6}1+Je>JHfdHDm-M!@|J5V2Ii&o!=uddV>LOVdFwZ}wP@J9*t|e} ze&Rv!MV+Xe{`cd)|Fpa4{_95jXtRqW{20jY>xvq zA~I|BZQXPrHr`=LDqrst+<*irM$R-0=r&1RY+8H zRGAG}Km5I<8kj6Vx822N(PmXOQJ?yR+5QE)Kw8A-FB{|_ex7zPHMq;h#f3^wlOz2J zP!is}7rFx38Yi^t2f6gh<}b})6ZJTyLIz%BW=!fCf0)H|D??S;^wtWqmkd+;Yrmn$ z{6RPDWd z(257@b7nb&R=Ol~OeD>S87s?XU4|K|fI5+VcIo{%z4l{N^oU35@gM*_l6W{-CTUIZ z6A7i1ViR11#gL2oAc18Tur((q`@Vh`iK66GXLz~~J$!tIFE04AuZJzJc4S1ou225{ z68$rF^}A4X1SR_S+J6J-zlLqF+Wq35EBo&)>Tg|IXU9GAuaN(S{cV)}pQ}G@q3+7b zpg23?MlF>qgqfDt+fwz#ic2}r1u!{6GyNp4V0xPKouCYF*RR5!EO=^35d%$#k?1}d$5(+#gFkZeHD6eOIA&i9klgMghBep zKqz0FRy!;Mm`0HyfT4H@;2R1FWynhw%Nb0Lo&q~U%n zd`%7nm`T1?g=Zq|H-9^@zxyw|{bheY^_tr??9*edA7q6JMz?%anb9WiHHbX*5t=!i z`t}PxmJLH*I>(Y2HQ%;B2joY4GdC2mwxCPQUP#85%~-M+^%QtEer6?uV2s%-lr605FE0 z(3zgIJM4XU`)STv#}*l!NC8YTeMN$lHr-|n6gOC)%diN-`fyph00 zavNR1;v)Q5LQO#Lsn~}9)gCvy4(j^gnPZYOPt4QFM|zsOf&rF)csW0S;v`LI_Q?*5 z|Bme$7)1`teBSnt8A06w= z7~Bu}r;hnu)c73O82mx{jdmRDUV9LSGYpg5cp~|%-hiDx_~!I7yt^|v5b$%0xllxsqwyCRda%xj;K-T*;%AU|kc! z#$*InS$u3 zq&xdx1-hilpiViVTsrU0K0-)Fkmh|x6-VQailZ7ibKnj{HRu2>OFLzExiNlHb{WAp zQwc#mx+|+u5IppQ)lNIQ^F;UiWOu;`YYP<^de-{;CQWfp_wA{jFNZ-DI(hXP14Lc@ z4^d|s7UdUqdka)bx{>aoI~3`bj-hJ^0VSmr1f;tgqz0)01{fNoQ@T3^r9o2S?Em|o zbDeK~ur6kv{oMOrYyDQQ_X4egi|_WZ2$=Eyt3}!Es||ILV{d;{CdBySuN%>ZJX&Y4 z;&VveUt|QgZK@k3Ui0A@#h%)uR&VYtGd8LO@cjWJ7x-WWy`avmDxt2<21;_@zi7me z;DNLGI|ig96UxA>W2_N|%mlO@D2;vwIC#M^6468@8a=$EW&ZtD-PAe=I+fKr4Da&H zqluq+;_+Z=>DH$D62l9;!r;Z?Ez1R4q?r|y^eC}ED}nadf?)#>0~>xHeWEF3)_&ZbxW^>-WJ zKriW1=iTDUzt19X^wBe@B6jVu&#zyqYT2X_QgTU+=QX+&z#H7Q)*&HE=1ume>q$6u zLO^k|%8I^uqN<^;9g0up@$prHPUgw=T|j4pSun`Gq_aV*VXVhaDAv?8OiO4*tD26^ ztbeI6$rDu*-iojX5iI%N@ff@`rjZo6kH3dYbqdyt*dDFF&&aiLZdIDgLGQ8yUOW~I z=tFERSq&YCYOeV%zheTpgu}^7E8pnkZlu;wVh_fS?Y^CnoiX#Htdxj4vX4p?*56%e zvjkW&V4JAc2{5g;TeTS4*?`72UGcwbWfV-1G8IR4zY`YD)QXig!DZHVzF!K=N>{MUW4i5L%w;?lPf34|_@&mINkd<|MbpA@4?+d(Biz6N_8TJKwc7#NVqOP zb4k!@f)ngrkTTjRf16qK1^qe5950f`6 z+2F$*z!+H+ZE%+ee3gvfASGA(fU3k!YASl<`I-0lYJM!7g~QXisT%;(ex8{Jvakzh z%iavPxZ=QRfq9e5v5u8ZI8*kCVt7f3ZFrYDhh=*`zav=%fEr~c)=s~TH|mh-Q2Wpf!`opy$6LLwfR15_eLkGnL0WZ6vK@hb)As?v*ONA!E5r>+&oS?r(2@?1I>^FgG5}PYN zXBhXLdN}`SXI?C{dyZP;60NfEzf^i7Q=n9yx@CG}UOhY(Ok@sILsf^ppYH>kTW4lY zF7Bp$C`a-QNRq#?v!RN^od1IXep6vPF4?> zGU*3JJUSrDRU$Sg33+>+SE5jjp-RxY%q~Wi9^F1?#PlGYE$*9!3G$g%a+U2TLlifz zyN+-<_;!CDDT&humWb5egfC*u9S>@;l8OY$7fn8ZPtZtNwAuwXp?)kubnsPKLV|8> z53h=AII_T;%!tZcylL60XggjHpWAGg9F+@PBf`dVDcFEL+;s=Bdig7*a+}$`uU!aH zK3_BDjE$vgvcLycy-WMZIrmDp{ftd%-}s0yn^k1^*GX=Jo~{OQwVqZh=BMuJl3^}s zkO^0n?4|d|{_Ms*8UqqO8>zvJOff<@#P!J??GU=3Y(~;+?ZP0k`%gHSROW6gix2Ds z-_QKAeVIS`Td(Lev=-I*)WZiWoe6}EfTV)dp0zc^5|1G9n1^fxoO<<1`0aj0*c@R} zFKz5w=782@ACMO2Co#TK6MwaO5H@m5w|2D;U^fLD@2sHR8+M^mj69hfA+8eUHQ}=d zjW>lc`^WaCuN#L(mk;J|rX-Fh|2M(?SnokV>KhZEeS!bc^uMIO`RL(s#qPINaYLa> zbH77X`355~vxGUWM+Y3>ILqP<~_F{~) zo4@tJ6i#J=>`*@);^$KgQ!#zqEs>{McD-W3(J&S)3RI*wHh?s0>EZ|0V8IAQ9F$ZH zdwBpLhjjX?B|;&fkJ+~agi7n~-Hr2#?QGdRlO;8D^#v+VDH4=9zn_%~GbASj#ppdJud3=%1a zttLx~AAMcgkFeaYzUXbf0|=%>@r`6lAl-*h`*?@K2W+kVh))j2;>Xz5l9q5r9P79q zPowduYZ97el&Jrk2slH5#w^5{YIkAa9M6=2)+SiH@|Z9R2MpxiOnpj!DNz|1Po*`%y=5<)l2SId|Zw$KIQ$q z!@%t~)RAZ-Wccai{7W*u>=oMp(0*C}@r9X2@Zz;@7dj13rxSziV>EN|6ImVnA~X;m z*ft<-1o81~*TW&3Qp;+I^Dq}Oyw8{3Ibg^y8dONtv6Ji-2t(or#rwH?sLT*)YxMG@ zqQ~Q(B&b#J0S!(#b=+0;w`Sr|QMTd67=w%!;W_%tkq>oO+oob`TUmk?ha+TY@gE$% zo9%qlsr07Cqp1rKv?~U`ePwkzU1oO4Yky&kvQeo+l>9ofvbikE%VICUljsgf|EBAWjVV7f>bBz(Pw3XD z@GjX*Rx{?!NHP!Aj9F83c4T!xS!}dcuYm0=c?5S;q}yI2ah;GjppXY6^6X07qH!VW zu^6tLN|+#k-;Z(5yasdmYH61U3qzC$Co6men<;}qntml5ctDQbJbu1in!B7!`PA@0 zd`W?C+q)rp)+WCz&)kAXWY zJdu&#VT@RiG7G70D=G@+KR1U2=UDC+S~cVz$Viu$k$RaBd;qJGKTTDP_05Ru;^BW^ z=7mMUgss(E?f$WebHo%d4R=6Bm|qsI0|s*qw&;T;#83VqV0!5v)U>!CkIeTPYUj85 z!`uaZs~bMeuL9%0ZwJ`E_jT&(!kO~oWFcq&Si#?G(mcMNMUYea>V}o^YC1ZqkmrTwb$0hLT^TeH!#vYGEug1C;D|JYOfnv10Is<1 zI-dUDWX1o}_k&C?(eBzME}#BqExH-!y2Zc0q`tR2SZwILz800ZKb05(yCc8d54YtX zt{c@ptrIwW_;9*%S9iaE@%QwOTf-@D33vPxR3`0Lv)H#Uhi6DE6hics?+wdwIys%oO?hN$wLkJhyvi{W91bw#ib6lpq&2g zE8@8KIq(5=ag*maq5~Mf>NT)Y72~Kdx%_d)de*J}_0gXI9tI`G@1Kdbfl3fnX!q&N ziSyA1X?j)+q$vGlb=TZ9%FQ~?4Hu~?YEDFyoJ+v)=mhBS$+^y-S1XrJxdohy-Hjs5 zPj@xceCdL+^L~IT3r*(G$lI^-8?i9R+X0sT{?hO`E|K(#1Jsr2Z67wJ^0voe6lsMf zxQa-)RF6z#a3G~f&49*h>ML$T&WQC&tEa*XK!?i&7{~3Kb}J)Ye@Q9@MTRh(DCWZ` z_GX4U??+NzczG3dFZ8kxXx^QJ?=QE5{>^k2pKr6EYdyUE{m2?njjOrM{pf}U7`SW~ zM8Q(hcwuwO{*{TJIDP5nn&=Ds^yq%jYv2jk$3OTkH}~Cr?_2PMrpW=O99;fx)DAN> zbVgCy@p%O-UZ&4dUl==9g)94>%whkhR_T*>!f#v8{QOe?-97dCTv4&bb-NWz&%V$01F2w|gQ__u#M1TJvhL+Zt_QSG>D^B?t znS{DI)SPWZevP9tdWDI7DTy<9^*HZZG4c|~`bWV7a|g}qAzQcNrS5hpTCYV^F1Ldy zOZaBR1qGPc;EzFVcS2B?wkUi+ZZMC<96xk1uY@gZa7fufdel(Qn{x*JWoK}ArFkwJ zMg+^&9m{I_RX7cY?Oab`b&V9iuNTw>70N}xk7bOIotU=OANRMPM+f?P>En=KMwu^| znbCUNooc!~|Fqh#Lm6ZwwYn5i3W%`fi#B$?xasN0%3X38(*Fcbg;SHL!7$B!8(;qC zt;J&BX~Y+5;X%2j!s#8~ww&zC+g&qM1)DfgxyWa(=S2@eWsz8+a}BFfII|%cmG}5pT1zyoZKY`d#LVmL6GvBdun-t+^n_#yew)E zn?ls|Dg~MvzrAifqAZ+x%?}9#j&55o;urD{b)e(NDr=07>`ad4YhNelx*j?_*Xhiq$@^__fueQ|pyTLE9_MT`j-+5u_Xruf-z+N+24eP?^`pSINVuYO%SmS?^Tmde~e?F`Vf8C66UVtMvA z!bXY?qdh^mf^K+ca$`)Ef#E*Iqsak~8Zd&fo&D{?JNOm;Bi#Wb<5xvm?mv=XEeB44 zWXDPkOIl>!rWNOPZbaEwT{JOp7BVYg_DCuv5`%0?3c{^kFfpK_jAjHAY@=35ML{P} zW2h5H77}t5_>Vvo6%EM1`6n;--JDdya@k75|BE)dlMO1ajLz*hl+~$NOAhP3ur6DV zT*@9)do^K!2RqxD+yb8uqVfNaWr+P9^ZHG+ub+N*lK>GD$S z6uj&jj%{h}h2T?d`C{X?#X7QuckE-YnSA#0>(QckdEZ^MywUIz-Q(?Jx7u|pvg(Bo zC-g%9ZX_g{MryMM1MT{B7p%eR=HNIUUJjtk?0|m(%bY-AzfHztV*|TJ7?E;^a)mh{ zkSocqC1nW$i=~zhxTuL4hbYFLSQ>|L?JMhA>$qZI8`H8At)DdI$m@WSq!AHq|16?> zKNQD4)_0qcCEs_*QyZ0_$wQq+kyySR8NJHD`-2|ZpJ%6>VqMO9oF1K9wG?-=$B^>7 zLyTD&K*z5~Ep1joX#0#*s=#3;LDypXC^CiuO47P9xC1Bz%nR7vGDX6zFezjy2Vf_Ve9i;*FUmHO2{EsjJK)_8dTkS;!MH=>f_U zNQw@Nvylp7-OXh%-!za2U1f!6^$7g+B8LNPTRe`b&hhkEzzgHuleB*X=gj`%9s}We zh>!ZgB9fWh&oy7)d-gmsN^7fmS&&Ej%llFjWyg~L>tasl`xlPTmZ!X1BthIbL2F zYAvqk@~9U#Z$3V_|2}hJARA&AUBZ$QG~V6F()f1QD&l+a#WMKB4*rL&?LUsI1 z&XB$w*@$CAd+u&}ty$x*g>sAE>J0#{h<6cUr)Z*dqq@Mu5YOH(V$ucdkBwNA)c>9z zWS^*?4?8!mp5Q6$?A`0Qy>=y1+!QB|GRV!rxtJ{%i7JCpHKm3RnPxfW556uK|h zxOW&3)KAAhYuSKx&CwBim?+CptHEhMyyQ5t?7tM?SA9EEGP;=aAM199_e6_0m#_&$ z51+*cph~OfT!4469fB{n@f)=4Zh}!uZ~^tCj2&a-eXZATrGJ`Q&nrWD&zT>>5y%C1 zAe-HkirHii!!}OaH_?vhlkOfSD z{#X5QboScRTO3?+Akvo2N|o4AIiIY79IyA+D2wD{qq@$b$l09joOt#VNJ3=YAMGSm zc{~Zx;NPYXU`jP_`3-EwV6)Jq51t)8QKR1tfZPCt!dt}3<2z4}2lo~CCkRqHR_o#&TQuT zfqU#(ZbWX0cu93zXN}n`($hL0P{P_$Tm_- z_WY|uZ=qd7YTzUhX1Bs}cyB07FHO3;DA8H^*gWn*9-0#HjPf6e|vzh30hPlhiAci0`EzYk4!?Sj0=44R7V51pS zjwYs+HObw@&|rG5I^nG%Zop`@;`D7oJBS2jxaVd}DGk=G4#q`WJ1Lsfir9^_kEuWe zSR<^smq!}}huhAES%GeP#qMa*FurzpzbuWoc$JQjOedlo0tS(RocmQGkU<2e9>CWx zS9yw`KB(m|o zl2uR-@AwcKkC>IiPDvz?y>vsDhixu>?fl?>FX!(>SvN08Ah99;{)ICL3FbSaa22I> zbRs{~(y)a8sJ_ovGuoE+IaKR7ml(u5qCUIsH0i>W?xIuqulJ{&ACR5qeLw5-t;EMK zwRW0}Z1qFdOP}(+B?*%WY+!No7xFZ4^Jgr2c3DL^isTNMrqp5tx=-lIKE=S}vi0XhJ9s_#q=3JDZ(C*@9ZE_^# zvKS_~{IvJe5kELHNJ#nEm~t>(4I7%{l|$EB_pWh|`aUft;vNE>nM{{vx*GM{ompAC zV=>EzRVjh9jTVkL9;5h-p55(taZOucyz7Egx%%-w1bBx2T`+r!e!4q0k{T(+(9!@V z1}oWq=Jz-t)-@uLK6>hKBTTQNY|>082T;H+mb2^su>>cCqP?z^GPn-8NKsgKy>-Kk z4RS@CvqZ$l9xKrZ6o-=RmW|2c>aTQp4L0#w+A7V9;ZNBs@7pT=UBtLPy!5*~Y-Q>W z%pG@3wU7(tJ;*KxO9rYL+^AAVTr09(_hFO`83S|}8U1mu2|XA=V1p*<9fwys%CEyF zd*aCz9vzp1Yr}{_OnnLvWn>>GR|*}sF$&Ia-}3o+1OO| zJux&daWc-gNR2Aee3>!FmggGf7Kl>pGKuJP#-^0}d$o4y9;Wq@kz*)o9NAJjiN~Z~ zvMTC6a8Ym&V?rUm(2)}7($Cfh5BKw0H^;Z>Xe9p?kD#!}Mm6CW&oFQ)0e}p6JAxh` z48E5m(gS%63a-TF(Wc5_aLFF=|5j7O_dT`X`vVyH-^_WB07tUD5|&HH)SJ*fgY9lS z^GNo`70Gc{<0Fol&7L2?Cy!i4UAA2G$S6j``}tP4CA^dFXSQ>=BMKg>>#U}UQrFJ| zT8j%e&fK5IzZAqT zp<@I;*Br1@UoVG3DvlsYfzU4Ap?U!~4gM_ZmMNRG#80d5Qhb=%U;lH8EM`^7k1S#F zI#9}xxLp^dZo85vu(|qQu;_u>BlChSG+%>CEWY0cA|Pst_UsdX4B52z4*&{%8S{8N zk3q?`G26lE^N5TN;oB6tN{-U-Gk7;xQ-B0Hf|cO9q=eH;**CsAyjmH1Ey`S4YEB1W zCjW|SA#IgeF$`+yPl}^{6_RbN`=A%60@xt;Jy_-q9778BNdZ$YK*>DcapDxqNLe0j zSXZjmbjr8|B;4LFU&5S8ICKagt_khB*PkMZbU6OYnui_i0z%u zKMXo8Mr&Buujbi}Ll8E+20i0=V#aICXnH;`saxi@i_g#{4PuGoo8z_^J%)85(#`~Z zOpsy{I46Z`Y7&5_5w8Bs7jf1-S+jrTU5hgy(CvH^^?nCRbEG{o36LFaC)W?#P7gx! zO7!gw)OBRM+QCi-kk3g&Y8Ihuj?|al}A1j}Kdr-AVKHHDe!V_nze(D9wDP_PC`!d~|ewGqPe$7Uuf# zkByA`#kqm$`jeO<+88*VhVFQcyFdLd+XhV$1Vem*CX#RXCK35v-+loEH?2$UT^qx_ z{&{xWrp5l())6i}K}cn`z#IDKZ486dtS20liDg2hh&A47fWmrV9Y@u|tu*0a0~@PS zagV~EXa4eZ9V%%r|GCq6EkUXpf_2&ueC#zPwk4!-)Ktb@Y-XOwHS`z58 zuzZ-S>rcy~-Q1GZ-V=kK!PIKe9;{WRUh}$LO%{Cix@VeLK$H(7*1+`=-3208f4`bzs$pJb}e?swb#XMh^@eGf#X5GMw^xEJ_TF zLIJ@H)x75I;P)gwhSD+`rhLVmxTtkA`=iK&XTq2`# z^f1HFW&iff@kVAD%j_Raj*l~Z0ACjVh`MEbBgJ%i+ht_q_ZhmQ;dYL%uQK5k((^-? zSN|1CHdFD_Q*=Ej-X=+g}2s(*DkDdPmgbv2G36ELjNn_0$%*yE3y95U_bP(zU9)SXNaGyK1hg zD*tk=SCH{SRNHx;NdFn*UR7CmjeYbw^=lD%8^8^U4fE^EkfpO}B_DOY!){pLe=b>L zHva14&2q_VpKm<9ve`Rcy<~gRbf+Iz&L$0~N^UxN8)-&+!k+Ne{#PH1%O_RI&u1{; zcjD_)#_jj`8fxU(g>hRJ`9|kod$xj}N~5kZz1D_ zcwNz?@~lh5cm4qwLGr8WKY#lvN2Jet*ZpE%JVqf_$uNMBqiauWy8IH%V3#YtmygH6)&$a5NmaJlFFV{Gggyu#Qzr~4l%CVP!EFv&ts*7Kjc8#0G$ z{Za%rE9+Ww7w+c`qj*^joyC2A?kY+7K(b8vwATI%8W7D6Fsy8g`zsEwT7J>eo=T6D zJtKG{O&XS0W0rqb8#rNjyLi9d+&Y!B<#%;L4{~@4%@Ohr8A`J^{ZL<^ffN40S;~qh6$2jzMX@eF--=L<(%$hG(~}*yIAk zv4Zoy71J$Q_Y2gIp4Csf#>UQ)p;NwG$B@aqjAA;VLz z;L0znU@e+tt{N{R1w4Y29JxYjCy&U&P|V9hC3N%;h0cqbQ4-yJ+Svx>6K+o?+*(*4 z3^Foy$^!ijkhCI%=}Q^|8%xY~c|j<=5?3z143}zvn`lv6G5*PqCf3DO0YlgvUon(C zfo2U5sTvDUhJP|C6aD%HSW|`}TJNdDs?I!V!}Dr*i+{F0lv;8=(+XU-9>kNaEOOp( z3by}l^r!x&i6R7xc>Uu0!1^t4^$&A407ChKyp}<9w|s>==tAHUCq3N^9~@@c98=>8@qXAoHGCEz$B+rQ6XJ=FxjqwI3?v3L={FD+Wc-t9bDMI+Vzj|7i`%^ z21ZJp9bh{cZ}lvHU1|0jlA8dVGAvaK4^rJ<(zO1bF6F~X*}Yp^!i)75;{@r%+_csLsqdD?dkXdJu%Z!tc?HbTW&;SDvZ^rsA6ADB&|2oegTA+ ze~b~nEjh@`XWvupa-SyD{~+9aZxLZLQj;2NG3ltCagwzm@-zY0Q1AB?7T6;O5}0 zNLV?BoGX($@CbhWZz9xOKh8A#EMtB z`DgmsJtw``Y1cNGiT$RJuQU<=X5RiO5Kn^Mt2$K#B+gtE)dzQwP-7{E#{)}v6Z0ts zTH+ch+kZx%h!^rI>@(Z_bUnJTWsj=Pe2q}4ek}@BM7j6P^iN9!htHyT>ew-s?`c%R zz#_w&W-lnO7r}<9aWEf8hAUObVdJEvmKCC6dd|qjbJX-`F=O)nRx~|1UNz>^F!u9mTZL;DsMAQsMZ~R(jR-bO zI?qytG&l0CRazJ~HjWOJPpgP#``g=1a>UX4@)D4iwNyP=l~;_;8%PD_L|te}TG=Gl zpXBJ=evtCkWE07JhBakIYm{59Zo4IlXiqYUnu3ou2{=9;RG0Cne>5+#EH>W!ef7us z>U52Owk%VBmp0vqa=7N3q8B}Q5&Bk>aIdWcRawF;(=}^@=-8b;SSB&guU-H{-- zV#w9e7NXCU8gjYJoZQf8wBdSjt)nH?!SmH>&5ZE)v04SUe%D_cp1K(8=EDwrF=^^I zshT*}Wz#AkM`FA^Una;AAY5cu`pL^@sAYrfKBw){zizAHzUNFHjb`Oqc99BArBl1h z?q|^G>6%&l?msO;MT>p`Zf!E1xQ50(=lA^ph~n(($F{SB>H(px!uMGxzp&0E9Qr() zLEq5ykL|D|@?f^pRjYPA>L|N;(d=TUs@-F!ooXQr1s5K4u{s7)m1sn!?|xOzQBQlM zKXtVc-{n9jUIc?p15=GRk^x_l^P>?6;*{Iz?K|VCzby2EEeMV2q#+5J>xFP^no&aS zYA&4a#)$ICJ{KNqgdusSY**ARtEB`?pHVB*(8bf*SpPhR2~TX}fpKygGwUgfP3?OZ zxMTG)q5uAby4Ad>PWC~|2AW1PVC@MS5F>JdNf+RtWK4)Jo!`y~JR1+Fq6TuDUdpZ! zl$d_QnFa%5s8^5Dl#XKr2WL|+U+cAPhb>-psO!2)vl%%k#T$I2bU?`=T!uv&%tkp+ z(#ScIWtUql#hvquj`=KXioB7n%6;8cIBJwIY%AU0^4(6!P99)NWo?l85Ui!wvS&{R zMN3y$^SmHvZG80$(@+{Lu~iMZe|QU2HK2?Gh1oAprepJ=3c7Yl-q|~J4riaE;T^a& zV$Zz}8^FuGu(P7oyKkArtOa)5o3paIB@eJMYr|ui@_}D8a9wkEU4+A83*z@%V@ec& z2UjKuX0k+PNyg@70@^4=v%9B=V#;pY(5%DT%bSt}YXdInUmG8ND|)Jg)a!2YfT?Pc|f9d^Wy#CGw^+>$KB{ zH!sEQG!{Y?>#SYiFn@+zC42$-El;}e@LtVCXeu5P+dPlmZfGVSJv zEd1$2NJA)9rEd7;_0R%G)OBLN>GnGgdl+Tw7gvo}j#~Xr+?xOBzRqt$4CCjZGEO+& z=*5~$gs=m=ln+4;lqK{ziq^$hRaQkYdK<4PKNjfIgmmat@85|x{HoHei?a%|V<4@X zc=Kb;$34O0y`Yy%?c0gz`V~_rS3jlLUy~e38+Jo22_h3L(rk=>P~n!}rM$K6{)8ie z0gF;qZYF5ME8lM7RE0s7ZcynuA{3gqN=k05XGO!6m&m{cQZ=RS8H{R0cJ{W&A#Mdy zPW&E8&D?$lajkDnJ{!-0s;}fXDYD;O1A7$KUXhYEtmwnU>{f5ELkP)Asn-Z6S5j9 zxtn>Y5*g|pS<(try2t&7q~n;z{1;q9ug}f*&xb%N;*O)wNo@rZu-;>ou{YS4{1ip zP{t2=3w$`{_GHPm{cEG&dUYt@ zG&!+a`HVU&NF#QYoJ~M$jr~P$^O2c?3E^z|8$$7q_`T3}enPT>V7f4waPjQ{q17l<{qr!j3*M4-k3{37$W+F%V3rJ1z{N{}}wb1i}|1iy;>;HK+lqulXIZO9M=H z!&Nf3z9UyvuM|Nuy63G~55>QUKW&P@sukuYI)0K6S@D{DB1iVJ>heNQmvY!cTz8k) zi&YfSlCBv0%QLv+`y(o4otJ-tq784~(o-6XB;n7d<5~>HuYQ1e^&cBGKLE@Jjd;u7 zY}5=@(87n`EmVonw^Wp?G1f(vj%um~pH4Bc)ExXwUm5?c)7O zN8m%QMe5N?9p7~-ipUN^J-y4xrPt};7^1{wU>(VFJf1%QY6G4X8619ctHybnBv1d= znkN~-Z4&CRJviw8%UmfFQx(?B$Bx&u6MLveM+jZ7TNai~HtU{9>mgHua(^axPNUaI zEU9_Kyy7mmQ^+4woBY!S4d29G|HE~|^;^ydeg~$l1L8_{vvl#AdN2djfSeX3`K=6L z;6nZvn&G(bJ*V+qB{t*bVO17!nAp34zCWDssuXy~`Q^1>Sh6x{b|nfXEDx0l9{grt z|Elq=PlJJMMBAA^DA~rvy?e`L#{+H73OD;We9_?t55Z^;0MBCN0*B&bNJrlc8OzWSh^I%NCuj& zQx+I;VNq2|QQ&_dHsZ-#n7z8vSEz6LX524E0p$(w z#vA#7(zn-l!2W#RL%SdDDvXUEH_sE3iay6Gs;FgEps5n_tIA2?sarvX-f>7Xh z$bGs(75492BQ{z%_VH~nQHG{eWRE|FnTfBl(D94GYj*0EF4L=>tq<21ci$g;!kn)2 z#`8PvdC2uT{hR%x!CdY6h^S=6*ie2fEe%iMlQF_H_Q99-*t@%w%^yC#+Tlt?r-N>e zDOfdgiipDD|DoR+3qgyOfAIie;WOl2OU^`2uXxF$eh%Z@_a!&Ke$u}?g}@z z3c+5&J{{J+bXTsx5KVacILFm7B)I%J=`q7^Ln@>Kd zWqoDtgNxkU0l4^BT;XSW+(neegyFYdD#EIK_jl&%B$>?KL?5J zbj6}o_!_!-3ZtcI;P{HX`3jzAXKrl8aZ0GJaGjNNF1?F;Q+7Yt?%2C0P=siGlr!HN z5B!*|Lo)$NKK4-!!d9suaQp(TQ1B6_M{k*3bhn4R( zn*^P(lg{8fxK9;_=TN8a@Ap5TS`#pTwB3xDTJ7~(p-rk1X_5Ss&m`&sdz6R(r+z+l z#;`J6Ys>}p{&1s6W4urj>7<7FQjKcDW#P=@li{yRRiPw?cKVZUK}Ptp1CTxz<*?xL zaTk6iMGK??89Hdkrs;oEcxZ1xzAeUCI<*WFV}clbOR`2Q7Q+n z=zhjO0+acycq4Qg!HOTf=vd5|Yn_s4!7p-)ThbL|Nh+|`>rmSad# zZKLeq)boT$P!ZeQDgkT(f8fDv(k2)Tv0uB^7`i59ufq`ogoz4;q(Xj@%g$z~C7;YA`d8+mu*Kmq zKPm*zIUS!Nue!JxoF^}!$6I=x48T)FXzCNQZeW(XBt7Je-tgeSIW z{P>n90gOz*94i@Ly-7wIKE#hdqa24u+48=4Gbofa@k=fj4yL2t_G0{Cj?X>RceOaF z?&kkrFFySqi?vJ5W#v^h+&1bp#{&hVCb20}W(zKE+4|*UAO8wbsiK*>Zb#pwj;v54 zLp77%F{vsaEm2ArzW<$R>Ou;!_}EJqS75hWlp2d9hc3jBGkUtK?z;~2Dxe`D>*K{{h;~k`MgiE79W2cjz#!{c`{~VL~;LK z%p;Te3@84mSV=QWhZeg16bDWb@XV*CcXX}=%v@NrBxc$*iTk0#O8SbJm+e?WkMOl| zIx=;WB9TS_QTVJR07ApH>dCfqd^qoLG|a~V0M0%eu~Et0TiGFW%6pLkO7dDRho0?G zw`3s+4;Iwz=A`uSN!0mtINgj895eN<;@~2OE>3<8xP(7P0XE*b*f4*K+z7B*jm~40 zE*Ebf*5MQtq2=OQM{q73LoA9c5Z!je;`s1%VS+eUn{+`EZ%zV-x&izhm0I&yAF zxR#Z|?6E}8weYesp_%xM7TSkoY}kf{?|1dnN821xXe|24;9^5@{98;qID&Kr7tM5# zXN<@{mi#hIVe5Muc;kT7r!!4vY6J`YPvstSsl?Fl(pqR0e_m%9BJF0$PZd_H^Hgqb zAzYGdtSsy z1gh>8l5PO3mtbs6hv;qqV_#_n+~)4XuZU~(Xw?{ zRLoB5!(i}21KPotuMA0DX)G$kTyr%>SqV@nKfH-EnGWR<0^W2*nw~T}lW%PJNCwe{ z4I0`KqfLAF2$P>O@k%Bu1X<&~4w5`?NtP6p6Y58gW35OzzYdcA;0tQ7C^yg5dw+1J z(&vJ@rn~r*zvYAs9U~0Oic?z0H9SNp)PaFThe7+TCi`S$S*_r})k^AW_< z&a~qJ)lZN#@cbS+!foHm?#rIC)nzr%9qq-Ad3vu$RxA?vtHOM+2&J zP28fI_Q4g+>B4=;i#CptTOmYU*@Gcuq}t~{TH>BZUnFje?)kH~ot>QCl&Ju^aP;)v)qijq`X^jsj}Hfloo3wmS}}P(1Y+9r zUHR|2@Uu3vA9;kX-G;#m`hYBA$md9@!1o9$WwBX5v%xB9aQ zsW%bWXj(}Pt-9Nv7R!$7nq9gE;%c9lRZhI(~( z2?t}zWb>xOQ$wMcG@0kGMhYOx5aaGi2GrAsz+0S4&-*2zj6snPReJ0?FOqrmH?Ntdp^RzfKTzJq12Auodilt3Yrg#eUr06-p zC;7tyGV@@_+$?R`Q#^GK9}3M*6vnLyTr13 zdU*^Su>2T@4Ga{}D613V=hHB#JfR;MwMt%8N~V)cPvUoo0>#q*p7-+6KJ=n&urA@{ znEAH*ZZWv+8~i|qT5l)WpPCO5URXvLPd=mV>=tFBT1hE1k0YR* z4^i&H%%xa)$w_*Zr(i#ap5lYp!R5ryD|?dwo6hJ+#D$}&Di;|Fsl&qBrBrgJ$)z@K zgdegFyTFMwEbwd!prCq{=)U4jav_GjCB6)qysLS5!5>c?5}t)Au~Ua$pth~;U}(ex z4f1Mz-N~%7VH4CHk>1akENxG(1=vjQ>IZj}Su73UJMcTac0K&M5aNoZYF%r0nj1mo zd$#qt^{-QCaoE9vhp|I75dZ2b4*0NLvgf`>d>?0#j%VcbptMr#0ev@c+63-$q_^d{ z94%C1v~=Oq-T=PO1ZfM~pO@!ou2p4H_$sRAlng|ZrgAe3fNZX7s$l=I7mwNx*&DH7 zDT?T`IN!*8|8tf4KIQQ9|420-6dzvhjM2B=|7*+1%A#5q{&ld_lquntopU>v!x(M( zKe*GC1Nr9i-51_?AE@45P42%2*T<|3Rj{dYPPo6zJFPT-Dcds%b?fy?!Po$IH`cdc04i%bUt0pzL3&YfZzX!lo z%Nfx{(epWKG?s7`TpJcm#U-8{FHxV3&~2d%(#C-%LBpF9F}7yCRoJw2Z~EZy|!d&7fWGb`Rw({Usjdl zzZObN?-5}UKl(gX!w+5^>CyghMG!9u3H;(uov%ojt`R32qK`QFYHVD%^~bGbaW}p2 zIH{bLOPmrZf&cUsG)@CXCQZb(mY3Ma-ufqrD0eD};d1>J4@i8h0|CL7G|G(8h;=e@ zw16V7){V-!kE1$aPnloG1a}DY;eb-M?R6^?9{=R3O^PlT= ztyf2$dG71p*WRCvC`$>ZM$qRn4bScH2){oxRLeHs;m>$2SoKFt+`UP97&4vF@+mGd72D<=ru zg9=F;j}@8PMpB=*EHM;y>wzK)j%hgy*2QG0c=yQF(1`QF;#a4$$BWbd zW~AJLk?L;&Q5=JQSN#mTDwh(O&;EMnJjH{Qm@1`EY?qJPPH_>H4ir-)h)If_P2{lZ z*zM_rqoJL}Rq_*KS@+n_E(zc&CD`0v&%oE3^(511_$?d|7@?1YHB&4=fnAc;LJNW6 zeb51A>(%kH#XLU28sMqp2A@%(QqI8&40J~M^|q^8I6fSXstdV+vb-QL&?pn~CFRY_ zU=H;e((7Eks8i|q#1wTh(4L;ODH7__0mpdXyozPju~$&|F`Mta>-<8Se5z4l)thpn zB1^1pv2D`Aaqs2Dz-bhmiYIv?S)p?F70Lj0>WpkBgAahgCxcnug0r>$>55Sx#g*$|nx!-Hu^j z1d)%6Z`UvLu`GYrV!6!CwD8eEz+`@9NU4Zzo}Zj=su|5+4y{}K)Hv$`q|`rMe40k{ zxrfd*%XMe>ucEyiM~?{aonULFH#R*nXJCe>#QidDTRIQ6zsg-|Qcl|#>Lf>L2~Utm zy#*K9xKL`XWUyYq@I-ST^^K@fL?=EQGY7FBW7qTaj0fk*)*1g!r3_!en?>vTE;dxU zjR+|I<$oZsD1${m(@bf4?{@0`NC5{wC(#=>hezLpms|pj5o`ay%_aUTdy#6*@(U|c z;NVb@S^T{SvtnS@!ir$KGBlLa=~hPGMX1Q3EkZP@AHcf$JV;B2q)E9lK#`D6Ls)=E z69DIZszHQ5A?}JoC=rae2>*)ndKL<$N(EUszKT9xSxVV$C`Z(>f%~9VI1nNko5wez zDKfsgbd~Ps)Cd~z63FnYqhqB6*=5|bs$#GTSE3SH7`OHkq~I!MO{M_zX`21`5vetM zdHE>l-Kt6`j_zobA%6^UR+mf&)w~)4oiTLy$_a7{{J0v)$%X>qG%CqBW*iv&6fvst z+k5{l>UADF^&I0*A|73mkw(&3;UpB)e6M*=1GT?!=J2kG zAp{W-kPn2?_F#M@q53^1hHnT40seeAKV*Dj6c|^bN z(+)#Fdkmyk(^k7*HPJ26P`Z+Mt|KSK0-EB~s6hRfbnSUtz9shZU$g3-;)G7Ier!j3 z^3gxY9W;K542kvBdn0g!t$tX4H7^JDeM|W{cJp5ZbEEUe-3j3;n*o8r);5G!neAf0 zKIDuHzd=|z(en~(py@*;&J4HCJFdmQxvWu-q^VhkGwYa>#$KMRt0IFAL(eLh$mg>}bzbn3fID}M%D&y~8tzXLy*>!fQcB$M7%TKFXZYIx;CYF*GF>Ux(d3w(pJBulw-|P;~ zMo>RC-f1ozeu&F^q_iMYxNO|w9>lE-Wl+#Tb(v`x*k^&ugSN3nU+eCx)Knj6qhC2; z3iU4#4Qhw2evj#`qa&(qS?`uN2mjpa4T6}4hdl*ta0C4^m!{o3xs8V}ptK2cIqUys zx%;leCY2k`A33Wo5JS2SnV(+e0>g;kN^n~dTZ+suc~RU4l1D%D%5oF*SxpC^NbhTB zxj@R)O&pM@I&yD4vr81!2^2qC_Zb6^K5z5-J!}W=SYJVa;25 z`+PN;A~E(^;(b;p@!PYrs)Kc`!@%>;Z%X-6to4QR%J>rrSR@UeJuT!cRKl-?9UC$$ zmd8Pv6|>1KL=^Q%EVC3)cMJ>*w7cWNZ87bzx8F$axHUB=BDBa;J(Sz0Wxhu?%DY{? z3)*P~t0Gk9YN<#JtU!S|1#WK3pAFA%Uhe#K2TyzF9@y|7{nqZ!J1$*r+uf}+(93Zcv%geFzM;Il& zssXDB7M^7b?mPP+_sH9S)S31Ujw(YL7+1TruHlVDfK=l=fAChRF#dDWlbXEo56%$FZ^YF)B}gg z1p@QiSc$4!30W{z^|;$DzCpuL4js#9CAA-nzY~;28h}m=o_L>G#ePN)Ya1hZ5n3VYq6^BgSaPkxA5O)j zgK7kVzrS{H8aP6%7R#I0)~i_9F3_t);=%|yRk?r4Nqc^2$H}Rq|+;~Yp|tLv%>Hg8)t#*r1lvu^*P?w zJh#MAm7s;<>Vg09-3RvxKz*G6m$C)(CA*u1oH{xBS?=zxM~wRBg7q8k`T_YW?*EBJ zPVw@`j3`;Pq^)oHE1w%0BDZ{;y5+B|Kj+Pn@Vs%N--;3X=()43-dez^i%zU_e*DUC zMXI-Z(qcb1iqw2!+S|w4Z-?ITOUGT$6BCZ-1E_?uvbd12&k@e03(qKRsPuJ&=j(B3 zzLIQHKSBtCQ&ro0r9G*+^2mQCLyaP5wZe7t50!V;vVVap42_N*xzOTr^K|a2f>ud~&cL zBaV~KM9ITqx?L?Uyc_K%lIV2Zh*3&Q6no+FRT!|fF$Oy3{)=D8z525SyiYQyj;4g+ zri93p8Zl50hK~FnuFj_%jL5GqhKmbiL;;95skq;tT!-802*sUUqNkd>;mEmMnLR=(G2tVcdw3C0 zUIair?y>rr+CSG;fX{d|=gBTiH@50MR&f0rfF#-KQ)dqvoccOjBlu2zV@&uhTiYc0 zbT;uDWo|Tg(VaD>HOx`mlFwSE@KdmF0rh6}*5Dy4)3Pb$9riIR?h&xI`|&;hL?Y0Z zN(&8!?^Np)vXVVy zreUnsd!~tUB;VoK1{Ot-%CxDh|9DZDJhC&sq&t$Q9`z3A>=KIQQS9hawwp}F+&~=m zs$`8utV#WG*{qMCMv=b2`|CX1@#-)436g(Z4q!4zo>B9DO&+VjOA0VjfcxA7F4@&0 z(tsTE_xQlo{S(#Yi)lDN+~C%hRXFeFc_uYup%(!pbD-P9Q0>5gYKzt&$LXB_8>%r^ z_x7wIoQ}TZPR<|dj&J&2GfJMUcnPjm5tSfAA{QXlE7)l8 za~lNzr^g62Qs+dEP{)KAFM7Rt40!%mMtjFKxz7wzTHZ<|N^)FuTo=6k>h+9XV$1IXH@OR8xLNNA>|4N z#uWgb)8vIHb+mP_fF*$#S$WR{)fes);Vl~$If#cw=Ldr_I)KVW4;K}Tw8NydEHqIT zH~WPD0W8JL6w0_(WWwG1b!876Q!y6NHJa$NF&0*Y3ae83Fo`T|0Yd8A?_(62D6p2Q zk0f9??Pg(=p^1Sv(?D4Ux<<(hHHE)xDzb38zEY8$vMAK#t?q!8TG@k%{Se7lt3nVQ z4O~v>g2OJ?_*lagoB4k=vwoFx(<5a zJ?m_MQvf#M7YUsYBtC~!m9?}8SOr3u6wT7oGq9LPT@mQrY4))6>Qd;qPpqJcxv!9xQH{z)~RZ@Wr?vCvTu| znx{rJO|i4O%btG@p9LYv zjP-Ra4W!#AwZ11T-$wiEN7gQb)QdCaD(mVlbuAJ_PJfAoeXtYbtiZY2^ap9UU1*uC zPFfNk<@p;2yV=tIlVPra${W@hfIUstxg)aI?}38N15u$Fp~g)_#A+qUe0dHWgox6DZu?=kaPB^~l1; zyFH=uJVfGD$GrT5j0ZV`+9$+O<9lgH7oYBxiU+K}xA?#dL`^{OUTkJ9T=6*PSFrc3 zD!Dr?C1Z0-*Y)FkaC4l2*dkM4x$1m&CBSy~hR5lFNERztqP0V%w8-7@YSpPrXzMXR zjeVqXtnWlm1{2xhh#opZm^CUmtGLATco>LjY{Wi@Obe=F^ZOmmT~dCm^X*{Z{}YYA zetjl>bCjroWl(xg)^D zn##+}i7oPMkltmWl%4yH}GcS2FIuyO#0tP}L``1pl_I7wZe+z%{9rVk?@x?f80? z+5CMB?&p!NSa(F?OAY-(1S^j+h@Je5r;UAYQe5J;W+Dep|0W5b_6&7|q3sV-4@5g} ze>EKN{s9=}V|AHVUl06ZGdxQ>HtwyXUQ}BpkwZL`3%)5_%#s;K1PuJs=>l&y7Iw&u zfOAGrdgJz@L+Fl&bdLZzKa3?n>i6(}&xL1%q6E(85{;l0FP5mjFx0VasE=HW`gFfB zT!gq{@%P#}bszXa6F?9WrsQ_GpD1-7fI64PxTv6>OJFwTw>93Szi#8^JMX zQ!8UY4lAP;c-o8{B(cntZX4ln-61-F1vQFXl>$ zkAKX8wJQTNvm(cFI+x0w?FTG()wE+K(Yz~vuJJmXs4s6v|4=OY7Z~0xe7u<)RjkR8 z>6(fA0W)QpxNGl$R9Tr`Ni+7p2)cib6Ty;V&@A|n#w92T)~D=@2>(EC*l)|0^BK(X z#oViR9!eLj(R_M%E%82gI1<`au2O=};WDPH7 zE1~P;cvaOiP4(l;o57>|kJ_7%?ULwnRM1Fm~Wb$q#ZRp^v;yd44u z!V{e39CFXWos71={gV6B%iMw6{hqtuF8-2o5-F=5s<HcG7j*z zBE4I`Xwg3*l7pW*&@a}ZNdXRCP1GtlFs{QDcASY^APIFLh2*rkY+Q}tpfrJiWXfQk zS{5VR0yTQx8_+@3AO|l;V!#QMO$8!TlkjAg6>5C2#paJ^iwTj{t9klcBqvOvHmrgj zY?vg2EA7Cqiz>jqNH=2WS11lxWX-GkfNfiE6&F~n2qbo8diL{W%CTR|#&HwWbygN- z;c7W$f*~XgPpoSrueZ1=vW#=6DD6f}oGT`gGo#MF9NYE z!J-E)V$AoolEIie0H95u72m_P{&tiU=coLQS9)2j1UV75toTN9C86lf+MNE;s>$jI zI2OCDP&6qlrX7pA%jWfwk8VpDTL&a=SGo1CaX`h2^-m7Qz{1{k#O6wWjt?|!-&F5# zNH3m=lZMOedsX|H(JxowSns6^q1)v;{j2b^{Ea7$^kX$1^^rh$otM8Slzq?CXw{B? zzB9^c@itUhnWen^*jmCl0Y2DNtG=~U+xu1G&h5c(kt^bVHslQB4a^EXY~}gh6yfVU zSv53FHdswWqI2L!O%(RM0o8S-d}gE5`bTS#H1|{QXi+3P<`v*-Y6dUk53KT9zQ@Wq zrWUSbhm>PU<^Uf8FEPK&Gp6y^nzCj_-MJoy|IKJ-MbJc=2Ujar9B5Rx_1ZDFyKp?Q z)k9mLf?>*&?lc-2c(pm9(cUa4g#8dJ;eVojjqE)q9z^IYN3`}v0zK+qHoD4BAzKVCW6VJQS z{)pv*V#?ubJYcUesZp@Wq}90J7-)Ln_stigur22Y>_3XEBcaLq_IE5cEhWexaAPHC$@@AAU38*xu=p0f!szcA z`(pU*E)ZKIpvtcvT;V@M13i7tCg!|t$!{&QmJOWeTWEt2MDLWQBLfmur9TM|*EzFZ zMI|wVJdb3Gn`IMb1+ffjyjgLS6SVJ65?Cl^X4#dz&?5(aHrU`?Zq(V1EpTk^ zuC>w>e-DTG-;c?Oe3gd7Vdm||wt^O~cjvS>;?T!GuxB>WMJ0WgjtE^&w!HTIqSLl* z*H>e_@VTTJq*%Clpg3U=N}6mdsPX7UH=gh?_%zElv|6+X8XcXe6RA5%T=ClBFKm28 zzpO=FvbwP`3uVB?U5k643gN^azQf;t!C&x`lU>a+nu$GA7LQ1IYc5_i=0g%?$KFQ+ zs>hjXIO~gaI9M^+(Mjh_m~i$kauNf)===XM%A&WMMWu~1O$tA>C90DvLfMrmL96bI zB$EA>^av716WdZr7tp*l5mr68&+3x;>^YdG$WT#ObAH6(6=XTbPsfFV>igr&2oei%03>>eHI6mko_ zTj7ygIz!iTCUsvc!k!a4;p0T_VtMhPMBoO*85pbO|H~hd*mm3U#=wXAIDDj2GP-ON zDl34+NKATthkG?nHZwV$xfZt8E7c5DhCcD2XHivhH{j#fx7C~E%599%pt}e;qAV7% z<*wCn`084x$003Y#bEX6VLTgIa%w=1fL>RaZL~f6hbeI1d1t|^OnuIWN-pZ>cd;ZK zBQH>fABVif0+8EBpWU^^9;#^3{7n{yvqNk-K#(HDAr?Qx$xY4ymBn>o^(tj>j+t(R{J1bzEvQ5R z*k!@P_N$2f+uvh`$cfD6;*X29FWYB8PzUqb!4<|LDVO;!3?-Slj^LO~FJ|8^H=qcl z1<*Mv#(3duxy^4fMQ`BhjB*_sz(I(lg|yNMh$tNWGoPUP$_0bFbI z+169P%|*UCHnPhAwOR>MzBizIFGdFEGiCO%qe`YIdKcQ@Uu>1KfddR>HZclyw!-(k zh^>*GaV3>eU6~x#fB6KSR0+ozh2JDw;7MREf_FJHvj^xRp#kpJO+FrUggPd#m^y^Gq{Trb3cIU;y6#ozGb`D-B;8o-7Um0AY0Da&}2@-YH zzv4kj%t6z*sr~X=FHI5Cin)$2D3fYEckWZ_Twk!BpX7>1@HF}hugw@eHKDWuYBIwE z`A3Nn;-IFdQ|AjZG^_=FaoouVEMkjIb5g0yj`TyB;p{2!-_VzpQ@UX^`Cpf;eMwa7 z5MZJK>(X+zbj}aU#kqKAmu|;c+;EYWEx*_na@lP$2yV1(TFoYjCz zV|2@srf_^@fI&1`){BP|``S2znKnT(JJzvNuTx45#*i}v-h2b5I5=K}V+HmiqTs== zL%>y-UkKDkwo=b4Lpg<&@F`uSGAZEDk7b_rptif`84g&SuxjtXpCBi9WOyJCTuJZn z#5yWzr-^Oz%+kgF4l^2FU)Y)lDRv4wCQDzEx110Vquoo8&IW<>HJr}p%l?!uJ%P8< zGv~hfuiHY`Xo_Ly0aeAv$()9pE*Rjh2lq8dGMH&L1l?dL{O`XlrMoEEe0;Znc9mkPjNF+P*T~=F$7@ESO z$=hR6g=S_n+O6GLxi$m@RwDwGCX80NrYU44G>Y2K)mAfO`dHBv2t(mF zh8om%%~g`a)3~W1Xe;oW?Cy4kY+PP(h5Iui{OC2Gp_-WMPl6khGP9l@U?R~i(}y=< zDXwMFDn63y2G_4p#l98TI_JFfc#B1)?O09M!Hl35+MXqX1vE~Lm0x-Hs)|tG_dCYm z$=97DzSnK+Ag|&+eSbN#ONr(-=mXE;>gNphK>U z!r*vg^Iq+^^Qa(=R!9*Fh;}*`y$sofH3Imv`PfrNt)Y04r^V<0XjxnX;WenR@(3)%f=2D^uU7vr7~v(m>sW|17YsOsjq z?takvKa=#kJ7T`4@Nb6%-`XyhZf~kDPk8))DqodJ{3-Q5KU`_JBz4;T8*0$SM$vV5>YbSEJ7vG9%Q2h*ZVI74(5LxeUPZRMn}# z4VjUyfYYPk`thy={a;Yk0jM@0iW~>>)x82uvu?8t*ri1q))+($LY6#CU%LJUWnbC{ zA-E?iDKqnowq1^c2#9#grr?7dM{mBqHG_3a^V7SqU^RAEG=1)kf$&BGD=Ba|TMN-n zay^vRa#jfku@o>)skzhK1H*yOmQ`wU{-F)IGvZpWey!i2tI+}B0DL49jvo(7`05nmgph{hfgzaclyv4a$YY63Z`#NGkS+A9s%jyyQR~U7m(HR5 zA(HK~3(N)S2K!AphOWSsR7?J7S3b37;1xM;{#q7^hSP)pj%zLY$C@VHn#NCbonn5B z0rwmb8hPU(9Wu`=A_HQ~`@pM(nqr_mQC8=V`pDYXt?%3Az_vm-n|}}B!MM5cZm81M zaXR?2D46gV&}AGpF?URs#B<2DXl8Wiux{+^fVn5vv~6LnsZU-|W^x87c}|eAPl86T z5ilhjj}AusWIwuF!maDM#>Ao|t5&~G z+nCOvszs8o?{UeZCYKlM9t|6jSuxJ4mun50r&3q!tuh-U{H!Dzg39EJ6?kQ6_0=&o zT?)OH%^#5FhDbarLT+14DAuPi9VZY8?STQf_|CmQ2a`A(90uJA8b+VxW=>lkZVjI7K?IT5H1!!~T>g z&W{0bg)ggkL!z~eVgyXl{aI@4Gb&|@s_$%^fICraS6lalI1`&@P%t+ht)d@ozu)a!JIrQQ_wZ&d^`he2Gr0`IW`~oHzFc?zB^4w_Z7S zWub=wl43_GH`Xw6>Fa_#2Z6YkQB#u!;11sR?g@SqhzkG;Gj8FwxV=+63yB2Zs16x3e)z36bU_v2RbF7uoZh9)= zS1fJR20Wm>Cz%z43{1dS{$-6sBh@FMPBzKnhj6B=TOiBxO0^!>1rvtNFdw-Y0g)xo z*?gH-+;iZ6BtWOakOQA(_}j8&0A4A4<R`XR|?HnG;%t!%XGX+Lew&1Cf zZZ|rjs^4Njpx`-(K{H8Z$suhl!5pQ-c$a;z)g|k?!k1~*_Usk;a`6gBTJ9}gBO=pPnmJO!u<@-0ZgG9+ne0cnT z9|?}9B-23p@qBrmn_4Woro=G+5*nnpqU*IuV)@s4mjd`YVfPs?{pE*)Cj^% z6H$I_9Js`MQ@YgLd%Z@3euTXa*pmKK8LF@>y8C3rJq1x%*m=(;mW`Hrr!7K0Ed!&v zX$9k<_0qTgZ&y1EvBGPvBj$}!Ad+Alc%2yuE|Vby%9H_6QCa=#peHN0CUpfx)}{5=xU0vGR;lfF?+=ljqn?$VqOzzPWzMLN`M3%#*6+9RWo#wW@H}mY z$<1DCpSG)InX;hT0i%pXOc*V|hEI-?)4<6X)x>sX;R&a)EVEku zi61NT{Ge1##z=wOQqm|YqRrefzwd%Fav;4~vf2ud$WkxKn%Tz)vf-01_6Qf-R-5TB zKL46*H^q>vfnl-Egvg91%86hCl|~N5k<}Tc_#X{ItxgjL8>lrYcEmf;HgeU?LSQ~2 zr?aIPejj5pi(G=rDzKiGROC3#e-L_ATWGP|D--R!H4RT^BR%IJ(Ph!6T9|2J({&R4 z^sM~@(OMb^6*Fi~yo~@OyucBh0tE>#%dGA5*5XIo<8>~2le&o|X35h4s+hh2E+p85 zU?PsS0=JLuQeZLAB^tQguw5{2)^zR$skWJi%Eoi;mt*jo1A1!S=kU)a4Mf>R!hvb03ton z_<)aC-ROJP@;1Mzy0hgRS)8o0`6UPyEr_;HQGo5V3+PUOV;Xoog(G(5}|kal$7NDtYJAG?=+=Sq=kNw~YW zModBV?t#20$$*UET0enQMjp6aZgTiati`?uJm0AVX_^9 znzZN`_@HoeggylqpxXYn3mqKf1_3eUj5$VmztvN`TA0>j;*8;XX*Ei*z57t86XdYk z=!YewWH#HN7_$9g3d!y9%u1~Xq2%LW>`vsMQt)ow8LEnZAie}bg-34>PHadB;JT+U>rMQ7M~po?i9QURDHd>sj}oZ<8mWipdhbcxNO?TCwPi=;Pt@mARjjjYD%hqsQ~NsvzJ?As&_i; zT9{On#Q}_eVGZYtd43B?p^v_XP4hiYk2fO{)Vu_sTK=uoPxvZ53{PHzIuZ}4ikhM_29(Hxc7H_G9isgUKS<^WN99I%d|GfF-RdWA*kuDQf&GY zMDoF26oI^GWo-r%aDo-q=u^B24#{^G)bIA@qHx)4nZ?VnS7)-^$G$EmGRK z3QnlYnok}3@_=d25q!Puk7x;pPI3y~1RHZT_I2!sutFww3po%@K#!7tWL3rGvd|`{ z&X$@OcOe?1h)ab?^k;^#SMSTV5vtr%*7?YJugIRQk5;C5`~35~D7pkX$ZWfVZ{m?z zBY~GC%ML;zJ`RB#&FF}Mx%zHbVE*q`m=g%=VjIM7_6P+}bFO*8;IBr}g@j>vpSO!| zn7ti*2Iukb#UnzkWSgg=`k_IW|K-;gxdimD0VyAWq|s)7iRRXT0{Y-o=0 zGI%+*`fy*CnVB81GG2D3bpbp08(}7zn3}MJ3iI6#wkLp3D4nTp;KYiezV-}gtVta@{ls05^}(a@UaKr6t_p%4z!t9nuGSTpS& zm6BtcpaWqZNN#3_52U9$-i^O@@oGuVmp1KU7+YPAH(Xm1 zbK-~Sy|)r40ur6Zptmm^p>okDFOJp5Dt?4_^Vj%x_v-Vv)0xGX#B=EeaEJN!ci^t| zJTc>}O-}t7&mV&j7yvr1+3@EF@;;YZ^{4t?+7Gov9Xl_d0KC=bi0#YI`wfiBje)goiTva^)A~Y#d5WFW!r9#b;ufbVrA{fen`#00O(}Mvx#8?M{14@+ zaz1Kq4*|AGEp)j8ylPv*7Sw{u75tXRAzZ!hM@gh+O4%V?@})Wg{jn*{#jCv{`7Itp zP)yc6zB7)QSG{D0LK*;MtdHS{QB-u{xtIFmCI3 zmRJ;T3xBAGw_dtN-mc6nF-58CRe|OevtmbAkegCauNAXq*y^j5%F6%-oL59x^n3-I z-|gbT6<5B>qp3+kS_h_AA6+5;4%ME(Lm~lLw&6z+m&59!7Q6PS?gqWU2SCYt;JX`9 zu7C_lD=GSBn0RozR9&Y`jOOk!SYz6}F-ZsuD;gA|z0X#=Js{{1pWYm!LGztbQB9Fr zX3_#rMiFxzz(ijaL2bI(lmr*^Bs+-v4^W9K*?)_XHSNs$Xt92Dq@%{)OL$y=DgGcr z(o$+1RYsGU9apAA?LgD3Ba#yVq}Dq#s=^cQAhOap=>h)BP-mQxN+%ySuLzF}l^c0f zSA0M8QM~Mj5YYjgx;Aj=}A@Yeh^($HG9`YPFR91=IosPNuPnH(`oOBpG}0kM$CIBC9>O zM<8JBL#SnwuVM%o*l;LVOrx!xd5O;lPI2X_nAVD-XSd*51&$Q}H|OKpO}36Lv0{UE zu0B}X;h34(ZMhBUMkqD<@UBgTvODPaPExGz+zh(DVfzlV}?RvZ^gg5!_0jG__OqUROz&5J=Y{F}7)Hoj^TmX$ZLRffFJ6D;z z6|B{&3!LB2pEIK@`S3*LIl#jA2iE#8bFtsKeRI3{%~Y8FIOAsA7>wG_O_5x5qSvb&dTHX7bSKW#ZxxvpxedySn9M2h z@>1bTsAag;*!}>o!;&u8mZ>IrbN?(SG7|anGh8{O@Bj{mA1@R(2pn zf_@eQ4a;Ij{s$VAE-$KCj>ViFs$4Ww)7L2Qizc*(=Mhkl{5FA%m(g6cr4AbGy>2Xt zfewNJAdO;(rC{_viwG*+IcXi|{#5k!kCe{9qgH_+WX?vZ$#-U*t!F^t9)fy;Gl;F& z(avuqoj9YJp}s(yxEZHv%K={@mLpxpC`-Kh8D$;orPBoZXFOE6{SH3 z%jQI5@$E!2d*ecLinA3vN$B=d%nx^2BLPxCKU9QB|1r|d=tu6I)ieD%#Hzvi$Apk4 zrD7iue2d>E|4?6)MP=7|^hkCnT|YRRJq;ZGY|t>Ox$@qrN%TOt2&!B&btZy>v85>B z)BG(~IC>uUGp6==vc<8~9gkrS+TE*^c>D5qO$u;5fZIZZo%=(gGY4gJ034`s-uO96 zU5Qzi`*$#!C2+W4{!?R%UeOT2sr91=_k(#~u$dto=s312!s1hXhE7Mp*+x}lqfEvw z5YS;_H13Q5Bu;H9d7;K1e@3;kf_b8d)_jl#QLCz{rj#%-`Y34UC_wpbHo$0RATB9} zBg+@V_hR5~VzD&{3LPC`J((Y~6^IVm=t_HcF*1C<>0E4@I)&#mUIP$AEnWnUA>~75 zn2YXbk1S|LW-neU@0xesTZInPZg%0sVm`r%juGy@aqo1Wau#A_&L+Fd2esm>ZZsd? z7Yor!c5x5?5EOX(moKmQ_~t~}rgjKe9#KlaMTyn)c#p^cF!$;7Op*nu|KFZqT=?v( zOeEHdT)?O?h(X3U07-SuK%X?XJy)%*`kNm`_iAdqHDW@SWe*I59A@EfBa2hEPP+($A}Ik7#ha(*rM~54AaG z2=>Z0zlTO|b{Cu>Vnb_)4^#KxORRE?w&!FOD2NMQ5o8Dj>?1>0R42=YO z5)=?TLV0S5E$&S$BKjbm~ zQGCGacUDXcR`F&G)_X+$H^cUkGG*KQ7cQ7|%Zvxc`>tY%AhtOK2JPH8MB;%?ecdq| z?wGn_W}kG5Wa8+ec`;+mab9Q z_xd*B;k7gXXtcs{$u`^Nh$sg?8yYR|549u-ceFy#=A+K;-xIcNE?gpt%YfDX2qQp5 zsfYoG=q#PQMR=5=U(ViRMEKi*5aVs_zdsbyR^(TG-(t^b+BVVVl_YP{0AG$$3MI7Q zJrI=)C-_Fw%S{Nw?ltbx0?Ji9i}Id|bcv~y(Q~yZ#{hK3RDr%(v8ij*ZZJ%M0H@8n z$*L}jtX}@^=kmr0!7P9-rXQBVAi8e@5rk~9DfQ-WZ6UVW>J3`lp3eaD@`P=JbN(@? zr`Mn{Ae5zEAygrMXR4Q^Q?ti5JjWPmAscO94qx3vC`js95XwRo2yTA+3gP?^RXEqF z-kWeC%9EH`|GYp0zKbx7>$E;Gk9PibJAp&M?leGks>0+gMdm~AXa&PK`Lwdma-34B zn2l#?3zeA5p=K)fXp?)35-6s-ZyX|P;WTiln6mX}Q!*G$IqYa%FIPWO09-LpDA!wW z;xueP%wNwrXbiJ$w;|Q}Ycn>i0zORTp$RDAeIhdBa={pQmG!^WsyzMk#cZl}AeaN0 zN_L*_VjJ8y<}qbYT}X>toCDeLqdzV8<{4UEoY~-BovVrFHnErx7Tk8TsdQGCbamMzJsLwG@$?VhCmr?Yr&pAziFNo>4ur)68|E& z{8*>iLY94;mp|BFI8P4h)ZhT9!kOV6K0?Imi*7I64;hHBV^*}Ivre#*cs;`3b~I6E zBZtQ`|KdG)V2$kfJsIo?o+B=^O_vyKghMc^jW8`2Xiio4lqdB;fscuDbw}?~K76?a z7W|13h4xL0wRq$7FLh9kxTJrw>Qxpdg)`;O(;w?g1t}RXKGZoviqtW6j#@5$p4;ry zL1)U)$Ugeb;KEHpq-Z4dkDon9gQK8%@vbVNU;r?U+z|1Hgz3P=@iiOh^x)DSd)|yT zbTA`zF#?q6f1lYVW(YozsUr&2APe_c7=t<%y+ zfvXR9uX^GigX7B!pi^zu37*)f9pB!J6GN7>AXFK4gdxC(?JZ2Wqgsc1hz>#Oz&em^;iYOlD>A%?l*xU6PLVjuWKx%@KCn;aFNxfyJgmY#Guyc^BMtG2$dKYZTQ*07oH?z~_s`_(T(-fviW0_Nx4Uf*RtaU3 zfzK?jLZc4Rq3N#dU}$rsy~7d!JspS#r4M7XG`Lb77+w?F5*P(*slLF!C8$Fts8hJS z7Wq;X#ng|Ts!6(LBCo?1lfpY#9>_EFFdGV1$+~4IaBKUj7*$zjVCd2~TUo#Xk)H@_ zm+~8C8wT0ILM*FlAvnO~A!s6k&xigkm{j8RDMSh_cgfp8rU0dOoDdJH#hkaCdw|I! z&C)J`S2iZOVR=R9VQ!IPA54ieEs0HPq7d|p0BWZ+J6~c~*FDAUrIT8aGXU)@EAaKj zqmb+}6Wc;zKOe7<;(?a4E674~G*t0wkjhK<81z?KH!6VdX-n;s2z8_$gByLSm^Ep% zMPh{{=kT99yl&oG6 ziHjEt@(KG*>>7~E=pe#Lqd3`;s@cecC%=Gm1|F-s?+-7-HSC@2=emh3_{{W!} z&9fJx#LIN|1&q8$<}rr8&&BsagX5+K3}Ul_CpFcmbF3=HC;*OVTxvxy02PDL3hrzBx@4SW zDZ(Ys`v35B)=^P^;no)flvIXJi2;d`Mp98==xqkNk^--kF)QG7@WC4+<+tR?A3pIr1FxwmOA3W z(L;iO3?5?p8nGUX6B$v+fv?wX=D~YnPAkPYL@b)o#BMSWofc;e?l+7dS>DXkgN-rJ zDH`TVmiwrh$)cSH1i?LYiPDbDrx5H;#5Kh%eFC@sIz74%oDC5ZL4i-Ifbb6N$xi~@ zsGyO5I)b>J|Eavx;48bnP5rlSX~ge(hbs)$DM7-%7oc z-#P>6aBG$WVnPQ0K4k$IMz&M4C?Fe@G;6k13Q8vax4DhEmx%)DGqqvgo1Jc#ihWqQE;xx7UYT*RAH<>ljN1a?h08Ux}Z>3z6eww;Gcj~~-YSv(R8>sLjxB)0RZ zY7#x=Wq#wq!qP4%NC1~i1T6wqrg2dG>*#U?tf~Y@m3QcJebhe@Dpu~!Xc{Z z(P=H~8QyjW2Hin2W3GfFT)>5#Q2LEI@r}PYA$(#?1_0`R(u4yJS5)ca_j}c^kSum# zGWkqG46i3A0Jazeh(PcHDhEzEu%7*{LcU*>tn7S<)vOghycFh{p;`lTXbchaqsrK>J4e` z?MdM!f566QWp(w@m6w;qRgJ{|gureYD5_wJdvv3h>#1i|f}wXS_pNPzy&)-xzexki za++-#D2r;SHe8kLdz}Q0k_@r>S}V4({Y6wa)gE}I09Z&TrBnz;F5k-?;2C}^4!YG2 zzsUp-wSwvdu$YaxaqVYP0rOAGxnXpHUCYJbNCa37Cm_qJ#NxnKdB61sSZ!-4Kr$UO zt%3g5B4%1C*B>1Oh|M(%l`aJ7sDuU|rUd>~2I3E!|C$!mOP+7qrn!le=%sZ^W$Le{r$A8@l5(_{ ziE!Q<7sMslb`rq`^nviVQR~cj{ zJFKb|(;~BPiwu6*t}W~vA-F_I!CEovoB4ae`?!HTTT=vW=lb!>>Lb8E43<#L z63c(}Z+4@$CHnvI;_vpJ?%`FwLnNhQzdpUvv(+mE&7zSFuMKq5E^wR8m-&PQ(-B#2 z0Mn}w8CPg-v$Gv>=1O3S`!zhi5XD}(maZ*S@hVZ_h&If>Q+y;rftZ)lQUu8wMJO>S zABCx@&Fg_{r1RN;qqV8$XPxqBjZI@yf1eJSjA>_Z+vwXxYvO3BgyM)58y<>sYeh}r zblE9-CR0011C12y=!VBJ6A%k354ekrr*?;6hECz0C>?#h{JXn}(CxM@6a+wIGw33`YObaz26i?may-_eQ<*Lz1;+sL75skbFTFF6=lY@Tr=4 z5|e2O-{@XUl_y4`L{5)@Qs@*i_=&ZLQS9g(RkcY8OaLZh90hw_hNAvWBpy|5QDo)f z-8hn+(`PpPc>cArRRAep#mo48Uz_yVr#X~`G-er}h9HGC3G;dFP{&$FE%_C&9vntW zWl&tVKdA6E8o8=4c2>lgad>_?_2x!<;W+2qw@mf)jYaEJu<(i5OV66V*1$gI-De8{ zo?zDHjn*(0%Q~7^1{N^op{d3ey?g^t&cDYI)^B?OKD(Lw?W-V~r|yPEmejo=@&oS8 z%zGyLd!0{`D3M7f795K1|zz~A^E|`{7FyGD2PQdZNK=_0nS@Zz$&twETRHt z@y)k=0Cyx-r{A(`m!Zay0 zm6XZVZCw?JgfkQ}D6B_%0-rAIPg!D^k0=VK!=>eWhaPBxazIcc{*=3}$bdTc>x-q{ z?X0@|8a@694c;g_eQI#7KlqV>O1rvmvSggadtw&HN_^uD=+=ga(!@29H*@rm0_@GE z=l)sI9vDU4@$OCK9Xfriql$n1JE4z#JHra9w1g5B8pIALy?D*JiQ)C=$|+aiKX1>@;bTR{Nq@c^K1BH$pyR9f~mCu7Tp2Y_VY3;)F`aMcAiU zM%I%hUB~I# zJL_>_f)&$iXc1}&Dvz@I3=;yH6uiDXZ-`G_e=N5Tv;l_|fH$LHeG4>EZ$np1R`?Gz z68`(9IDrDF5mGo)1op8iGPL<5R=uJK_p#^XgkCWXWwGR9^aw;GiZ-t&PNRwubezI{ zoeHo#rIen$pG=sS58)ar6(qDn$E8|85pl&4FdKLh@NRT9Mo0xGeF+Q?BI{>bw7!OI8QbrsN$as}O& z;ODIc2#W+);BHh+;fp${6Hr3m1tZ5z3QhkOkIWhz-6@5C#mAG3(JzF77k z*9m(Pi!N|;e*7OB9}Qu0D0s0dvEC_1^=-$0r`KEVc24UWJ{Xjd|9N}$$E)~`^#_gl zuSWnX(Q(Qe1p_PjcRo2=5#GG}Z4Ixo$PC{UneK9cJlf!L%7XYt-WMDLBUxXnO-Y~Q zbOXPtD;EMS_=@Vw+RkR~XP`+(OzIA{u{E-t1=^_gWT!(SS8ZgBQ+$_=b5~uv&%d6F z=Qeo)kGOTCRbCO_lcqMgjMVFJUDbCZ292DupenfkoK1;fho+2_TukTu&J_j+!=kj1L0jpb9;8}IJT zJtE5YxXf?1XrCB59~9Cf%vbuZcS`zx6JXYf674s)yfWS(*kCVt7JcQI9b4C>Fn^6_ z{02z@NKhSyYnayBR<5(-jn0;Vc@)QB8+-m2Q@dualIj6F!q`oma1@n!4=2auew%p- z9N7867}?fW)67iNi(xKNz@~ttVWl9a1HhviF{x`|>nhWu97QAgd56cA*b=8j&DTHs zeq5fWf`Ub90mtlM*M9v;=rG`)k~3FIy9JTx43zhs-ni%#@^Df!EK&-mO;`^{&)_`sw7u>F*b} z=h=N~mTg|nArzY)hKF~5Ytn3?d=A!ATig|*XoOCs5JZoXiV8t~K{`unat#~ub`4M( zCKYKeFK~TbRy6^m)P;xU4PeG;y zZ5}>XAi7Mq%F~S0|J@RAwA&6EFiSq>AXezCA&l{Do91kg@`6>H&ir_IBD_7fKEp0(AFI-eY_;un>ss<42l6-t1+DQY-cifa4r)kp80Fk6-a2nh4f?p0 z%Abjz1e0p(9HOv{G=EazTtC{MGYKGd6(&pz#r4n9W#i8t24@m91L8Tm_Jui~dtcdm z<@(8+XQy=@_X7UmXH|iIbsZgW$X)3OPN_EmrMrM*^kDS^NX9oXtaR-WV*M)E?`dcn z)ahdylLH0`R5+;={xxd3XX-!MEjo=s%_sdr0wHr*9(?-x2)} z4`$JbKJM&Dxlw;*+!<`|`75qJgkUl&*YAC}@PM~X>p-DXR?-^FzVP%);1mugVRClh zXic*@kqjf9?q>F8hVSiO0{%SpB-=Wj!81cC%XeG(0{~yOeuNs@pWDKS!jw2an|G-3;y;FIIUl#GYh>KVs7%PH1xWeGNjNhIL9A+}Q5(6`|jQrvk4WYMYQ zMx+RXRI+n)<8_`UWh&utl7{+LhIER|al?Fkxq%JWci2gjqo-3210|MmsN z7U5y_xX`=(WjzfrGFUgL;CA&yIH2hD>{l{&ei9zo8!h(Jwcqsttno~Am1o{+^5e#a z5B>Ac6p~=f!=@#UAQIlIG2cBw230_-_YOc;T$mcH`f46>L)y>TMh+q4WxGE@k&R9O zy)TJisATh3&`kGr$sH@H>L*4Q<4HHz{8#LuY9OCaZ()gnTrycGC6Cp zd_vMDwsK$l6j>7N={LM;$+?w~mlaShyfqEddIlbWy7GUw@F~kwV;1$sfG>ds@+TX( z2xAuklJRKplD$(P1)VU|pqd;6&V@&SK&r7^Dn%vg@H%f&&_17CF=QJ|s>-bvI!ni4 z3jAbc2QnF=vbrvwRNMpJrtb!q zVeM1e8F7Q+5VifLJQJGYnFdb2WHqHnTJoLGyVLlG-CKmac(rtB$dj~I;8d@5mcm7_ z3qFL+;)HQ%lSW`FCq|T*`&Zf5jJvuJ=55Dt-gwTBjcH*p2nm|D;X-&f+PwKd^$fYa z=%y%F6GtM2i+@KR+wzw#+%U8oc;f}+c(fvOZ?1_DTv;orsaWfhA1wuN{nrbaCot`r zf(keZt|{S={i_$i57heN@yI-SAiSI#lr@N1l-Rpg?3)+uAo4e=%2*$)riB%Ns-nOC zK_vro!r9UGlM2DX^6h2GBGs_Ng&{gnFQF)y{Lbii<@|BO^tpU=kT)9?!xlH*QQ+sE z4(z$N2wD}%vtA51m#6@Q$by#Vq}V}3dS0ms(_D!PO->pifepWzfe`B0Fs)b#RhAEon9Gdg?vMcVL-6xWH83n7+ zBOy{?tfLS~cAQ-bJQY+d5FA&<6Z7d!zElNzP4`ue!*`HKuj#=61Zl1%;>#cTbUm=`@2t;FjW6V8{I3LA;^JlSlNO~cic$dwa6#icA^{(jFTC$m;+-Ee#fRMHsm-Z; zs`Id%$8{8v;b=KP^VY1_+CjTKkGn}xPcX4z+EA2{)MY89|g%L}YDF-`DlAv_K|v{6pQlubIs_qE84NThT}%y=Id8^U{w zx@~22T$K2dg9JgWWm~w;}rL~4@J!R1y&u@W{L>6DcjUfe88O39Dp057d zhwt8pCQ$?WEdwzdonrnU>i$0IqIwgZIv)2jTNfGprXx5NhP$pPW9Kp-w?i z9fxzpoQsby_%B8GMKk`%?V0_X)Z^Qd=~X& z<)AtrZGGBy)lyi*{NioXmV4NnSd%SS0Bp;5wu4W)a6glq`vX=5y$aREzk?4fydb{(w|WSWV-2S*TP*L6U^Op3w(NGt z7tuE}RL8eNbV}OmM@fq6op-mPbRKXk5RD&zgeNCVB3>Ck{A{nEBJfQ8V~y_Q2x)6D#6+RqU^0YS@47ZUr&2&QK|UtywEr&OL3bi&|?<>~n7YwYuKL z4siiR5MZ!Yo;A@3ML$u-jKUn@ZUCnoxYCWoRy3y9JA=BG1-j#pYv{K66+uslkt|qY zR7)Jm^DW;_X{Aqv4VZ&=>+i}=*&`R{+;sf-{4bA|_<(M-d5*S;>RyM3GdwFE3Fi4P zYeYJtx%^>AeI9#=>j+e#ANa@1A!}5vw%?%N5*{-zNhUS4EP>NJfmyVGg51zSF>m8S8`lbZSCtx@w%fqW;L+LGV4Qpw(%I^oWZzbx~dveOlvvfl%<*f$Ot6`2)a z3!f?wedoh}Tk-V*kb{5#HS2Q1xD4_?%OY^(tvP}GoaNrBU#Ac+ z=38wSSnSuU>}iox63~vl;9Y)Gw|%!n(|qqbUe`F~-xx9T#GQx8RRCLxg6gL~jG>hU zyVYAMCza_dS!5~c`_}5xZv;m)8E-n$h7>TgO zq!ocU#@_a+VZqusAf( zJevowE91kGfm%KPjzJf z#qD?TYaB7pRGzqwEj@lLp#mZe4D2Hi(n?OlITJnxeliDE%&F0sRBx5ze^cDu@6wnyyI1YL|kACkx zlv4LHX&vcTz4#tWZ=7;?(fGXHhkk#?4%EHoERs#;@eFwNH4*{wq~E#qZD;B^x&aO3 z_UODpEZdQH3twTV+s=?er}Iz(1thN^uCA^~hKzXAcsH*g3fjkK;Y2&yP`fpe+t=bI zAdAEUIeA6F;CF9~p(=PzryJi^3Ah#HqLT_T(zpa+v0d{0pt*E(U%65+9dvOd05Qu} zg!)m1(A_Lw;B|f5!g~x#Hy-j=Ydph9|cL$z@SDLJX**9?D?S)zc~4 zi!!78hSM|8n+E5^nh{_R={HNi5D+Mv)3Xw^raT>~KQP1C2MgfQ{Wx$O8M6rZ+qAw8 zpyxkgUUr$(F0T;qaw+o<;~qH1lt)r}<31`AnxVpxtCrT=hIneTD)Eh*;%UCcp||Do z@&j}LhdRgiHEGG-F+~H0Z;D+#zo@9I@fP5LKFTf*(m7rMBsDo`OV+PbNs6SqlT=<( z_t3WTSvoAz^%1WZVwH2};-2yv?Rl=7O4H95(~_1$;ePeqe2vAy({aR8+I2p&4=~f~ zo>2xDGdU4Ssm3T<;Ktw`WRbCC5JWM>4S(#Rp4Qp%a_yab7uMpz^E!#;w)?)~Ojxht z0}^WFi2l%u3++-LN`FAHQV?!o`CQ2^EG#dIZay|y#8p3Q8)c>bw)e$1_rPD?`|H@{ z+|9H~A(s|4mfDXIfz=?iCZuZRaPFsqHeEk>HcqN%{}a|A%ED(r7yXp`?N5hUQWou} zsHo3)5SVfYuU1p}$d`3c1C|ya1YNy5&8#@yeGiF6kr&KyY)^6 zQJ^+TQpWVaQdFC|WMgf%*PREyZGpstghDsqx4V7blw+I(H z0#ws8-U*rRy4E~?qMEF#RPYR))}?MSuaVavrHwNO=6P;TKF|R;pQoBd21Ow9+@PfL z9!#DHCeDyr=m>sO+=$Gq1-&&vYm6|N16-S!d7_2w=Z-#UV@SC?Xe920GJjKGq{8L@ z1ld6b!8pOLL{izhm3?Gh_fhX0-NU6D{jQ~sFRT=)hDoJhpTKjX(d+-MKfc7NFa##w zUoAZ}(O9|U(q_>09ExMyIlM}Bj)OtPVx%agV@Zwfm9hu=$C?*4?}7O%QbP>{su*?U zV2cNyQspq=5X49Cwh6t`v9p*`@oL@#)}Duu*8>!d*{DqIdxet#^O}yu`*f0Y_OURQa^g=1 z5wN=7Rx+$DFKZC5o9g_brNVK~J|%K)!Ipu`>sg;kjbqh9ZP6@sH7r3$P_yd?>Dw@R zu%K+5&m@6jQ#3taJZ$IN7oUEe$nw|t+X9b?nyH4&>%p56L3({>h_y)J)Yhv+7N|VW zU*K>~_hH^6^3~U-j>sFdA*&cv?GD`odO4xyYC$mj=o}4SG#}Tq2Jr@U>i|l(%OtU^2w0OsK@H!$2BJ9Ap^lE+4)dEI zU$l)r*n0e@O`vTS05$f3bTc6smDr;&jgSbZG!MhWU6LUog`3E(+W3zW7BzKicGS*^BQULm$ z7Z386e>{=;veV|Y*NT1EZ9^Rl&|rv~=Cu*+B+S~h#C9gvH%Ek_9wA9X0ct#S*`l~Uy$^N_WPDvsysKiqYaxp35 zv*r3k`I_mdTN`c$L4OD-xL2)Y%+NdCw6#WN`P!MBKiaLSycbCKO@fKyW^5>*R0>RU zK>|ny8L2T6+5#;Qir&_aTVYcvA=n@V9bxvF4Pi1G>szeeud~1kkn+QN6WloBqyWj> zdkhWynFzO*K#E;Ti>K=jYwGl0A{(!P2bjH|BoP%65}CC^~>S8+5GJJ2_X z`sg2!xTl>*%>T{?KOyOB)aJL;X{LAgbORgz39Wf;OfaD#jT6u&roo_Oh)SQxHJ zF{}f8_`eG=%V{@(|IUZ|U1JNIs1#_7Xl@lT&Kj>2jO%4QW&@JV7(MVa)Uq|!Y4uH5 z`0pK`H_V@lOxIoR$?C8}sf<20xbGbPoPB|%Wz?xEQqs?gn$7DkJVH%3)gRzW`GhPD|CAJ(laD8 z*5|e_X_etJ8du5H2QpP`73ai|5b4DbpylHC9a8@M0c|Z1kwPC{Vin8y*Ss}il%WPcQL;uN7yZ;!DcMfBO zhZ<)*w;MzO>92_~Dt7&@|EB?xCHd8yg;Vyo?JL|c7zoUUa190pyGmz}b^f%rS!u0< zO&FRyAMvEC6J;t`>mA7A-j5f_kbcE3`oUk4J+KHsX&mY}_Ld7+Qp?SGVl{|*I|YqN zS!{LGQnWH?zPMpVWg2KWDy0necpqDg@Xy|V`Odn%v3z)s&7#E7d>e1SwdIvFwfm}9 z?}%{wIM#O|CB@r0^OEa1iZfS_bRa4?ei<cSzbwserbZd0|ZhHLZ z)(kj#5Gj#zgT)CgLTNQZ1P_xjwLgZi>S*$4!+EYrBhiizhqLo*e({W|an`GB%olN69hX(3!AI&;>u%T`TiZT^m~& zXGjgW>%YW3>-_?kpPs4`{3txUeM#Jx{{c)1b9Sm^h3>C%f4j*$4K7sM>bkwHoEc&`@eY#dYJw)zDyeK9)Exl1&DAh=F7D zE~g-PC^YZ811U3M?Gr*iVM8uyYV z>A(eBsWYaqKD@hHbk5#jX{HVZm zdZCjEc!Vy(S{8! zf&c2#eD}}&xy8i9-s~#+8ciF#i1>QCgZuUDh}TxVa*4W@mTvm7eqp&i&w&|exQ+It zQ$~ViU1_~Ti*SJxhwt`6$QSfLFpY8@r-x)#R9Z$@{y&QCTyw;5-B_04j%dq!aj8TW z;};-3;SomgIjZx<-V+K95&+H1qirct5|#ywqGoaIn&gl-zo@`B36w3#Sq_*@uKCWc zTafc);QP;Z(L5v2UXh$$_Q(M>m&oGB6fFL*w@0=*m1;tI#p$r`(oaXC-PiCiefS6g z_+O5XjB|9k;}j>;@j-#xpFfZ8@14ECIgZH7MR7p(8$s!lEnr~_=Y+KQ^T{Um$VnkB z!`kkZa0wC6&pN0hm-Uc z)=vMEcaf!PP0VNJ%NGx~Acr)B^#UW@W%-cCyhW>HB1Hrs4x_Ms#j(L!*_gQ%E#y0Y ze5{dFO|0fVoO8oN^u&*S=eNK%7sBm*T!{cP> zH&v?e!%L}DR;eNK>#upaF18)(hsShpab7<9stnp=dx5!9LUn%K1lFco$12KPUX(xq zG0jNc5RvB+c4x_oy$0;MwH~HPgf_xHz1G1fZCSy~tE^+aKvYoi1wX^hYlm+_ItdRc zuf_$SG45IjGjf)ew|wTmtv~ZI@l`1-riBD4{Kt-&3)W!REXG-h6hNCVu(iJckt)fW z_fJ4d72iB@lXIwZJq!P`2R72r=i)&%q!m)9tEp!fv6h&T#}~^-)Q2(2z&HTXaGi$& zP!)b)2mep{V`zN;SPFC?IVObKBFqV|^v4YlLTMiiB};{)cosuu?cdwp@&yq?s(SdsLQtP%K;wtQqrcYdZa ztGbS*>JWH7cYz&uk=T8ZqRsh998vZK*<;tW@{f#OJwAA(`+7TnGgB5` zr9lr4z|f^JKBh?+5EfLshjJ)<`agpj;YH5|Z@#`CWL#XL4xWZUEcN~aY&^&`j_ZoM z!l!Lqn>V@@^#%7F1gQT_VumeVhn#rr^YcdK#;ppZaOdsI+ii)P!t0s%8_K6opNd}} zbX|9=USp|>ALhPfNFE4za+&yKIW^!il`2-o!O`)sD&8+9-gk}JdFK?Y(yp_oRT80I zUils1QQXLdmGe65a8^hq9h=JjS+ejmSEbMrMK0jup;cyj=~ps3#gf{S@vz|K>^iGR z6v5^%BJL;3fM{h{BtRK07z|<(gD^RH{KP717M236{pRm^+gm`=6(CI*KMfnU@6+Uh zHP9+yp2?yFvnj@E$>@QQDTY@CXzgW(e-FW$^_kPHCT`V$gCQBEH+rQUhOMwN{c9i)>9qa?uuPG|V!cZ5Twxl3?RsJh`}j=-Ec> zCln3*j>XzCK*A|ptE^lEA{*vO0#XZxYU%FRC@88y8x@S%8eCTnL&c<2HcSh`lQ^yG zmgM*1vCb>3cEtVLhG7ccwgKNdpxtVmIy8`gzsqF)%ZgWeQ6a^}z=qM&7-z)zOaL4? zQP6vfk4gm_yjK_%S?+fCok%RPGceC9zPoyKP||3peL7HnY(h&$PV+oq{e}Wu>*Jm3 z8mgi9iVU*rW$zv=&R{Pc`!G)^d4zX2@S1Hs?M4LZdrDX!SWA|+;RvR$#1CvgW8TZ% zT3$L!HSepen>w-@X5THa#P?&j@&I6Xn?q1~(Yk$<4KU3F&9hoB`y1v^RwO$d zsx3RF2Cu6s0Li43Re7xfy?aSo@`4uBbt*$YLcO8nd@0B>)6aPSzd1|;xlZLIpUQ%V zH9H#L^JSh-OAD~i`NC?_1RhMQjccd3U}+;mL>P(lowXD7oM&qtgHdeTKM1(Egn<>U z)NWM>pWpap*1_O%47P5Upx{|JM)+g|1M$zM4A3L{DzTtAjcnB$kz|9Q2JQ>siRqYm z%Kb_^l+l#>6K3uF7-+R3;U;O3lIr5M43eW<9MnKraeRl-5vFI90ZOEmHo@m0ERENQ z+noD`ns9-|p#0TBXOkYS-at75K=A=T+4uOIQT@WwcS9#WqsY{T@2V?7U?|Zdk`rIh z_+^gSXS^p3P3`VtBr2O2ED-gKL^R8;W3oG4qImUB*9KQU>oQw6+q^J)j+NtFnTD{= z(DJVAw(uvLfOiNCejrV)l#eM(vG_oW1m4zulk(jomTma5vz54p$Fj(DtXg2)NRad` z4#tpYZ~=NiW(d^MLRhee2=7Y_3TI#e+e9>B@S6+H{oDT;+Q?DGrj*~TY8KCr4eFh$ zDk~3=IlB}AhZL8Y0msfqlM*+RExShhE9OtGC>L-4ERGCk3Ly*)ul>H}LUEtm9)yGc zto_rV?CtG;@9j-EJil|l%aU;O+dYK?n+x!xUm@+g5d#&izTHFN{Pe~Z$7`YF@4_)d zn)wed=CU!4)gq+te))_B!+_nL>OrO0L+SA!0_kv2kvLyy)h}N4(_-oAKZ3wijZXtw z!AO@K&qhy_kYvHHs0*xfj7R&PV-4*{POnFU_Cdq!!uki_I%CS>y6TM$J{hTROZe4< zmk$6ZEpTWCp5mx3QjNbAxc+3(YRdP}eD6eDiz=xUO95b#FOl}qhHuLGPt4mYUn~{9 zmU~?IT{$?mZorT8lwWvTW)@{-7b4$#>|+j=RNX}`dsEM1QEJ-_)c$G5%|h>Eg0R?Z zMR5X-@&rdb9l>nsL-zIHR=WoB_`%$tE4J!xU;~&!b}aC$>5NJxLUm}!oKS3$i*k2t zOMz3Y_R7(Kcw*f7esaYIau`WLMD-q1i-U(uq>1CW!yezzpgi}_918=d+jFtEr~52| zQo=nJOD0TNlVKbn5={Ak7tNG4R#*NoU-_~5E?#OXV005a*C!&>EZFQ3Zx$o}J5<*r zHu@!9mitW?wQ=btT zGwDy6jz+&r>sqxsR;f*1th6$&GQc?s?36wcZ?Zff37imv+JbO)p47Y_akanyHjAI_tzT=Tf(`Sn7hO=mC%C1k< zpV&f1%Glu4nxva8!s$$mT@MrO{mjImO@uC{3acC5Z;sP`FzXh^% zeRP2iC1)Z?3Ia@H$7V{(mcRR;jWgdrM@goAgf)p?N##D!v7=RG&iP4&Qs4s`J^g~s zLHRKqu*w|(OEjuXb^;CD0S_nj3V9B|*QfBohn zyq4;}ooZ7*+j26Y$QIT4F5vv#@$LE7+<3p==FWc`7f#FH9bT-)A16y(Cf@_an@RnfY9U>+1R8gT>$POSDgJ*-Rj4prS7HZ?6BtQLT2O zhD>r?oVRMUdO|JX9W$yxtd4hjE|QK%mrY>_j6t%PafQ6iT_2jt_|jxU3^PRVdmuKlDSr9xPQjIwH#CKO#NC~hQq}?g z+fSz7unh**jg=C!?S+*ZMUiWHtlr4od*o+r7ueFd7=n{VW7o zArY?z0u%QC4Rx{z#l!2(Is`u>m?-@UOqX>N-`bJcYNxpHfhIm_TGjh21kY#5AC-R* zp8jI{3*@oy0}AD$e_7w=KGDOZm^jDE2_A&4zJQ~$hhK6jrmiA*=ax6Nv(N?OWeD-g zUksdhz}YP4OmE)*;nPwEpK6x<@wV9gWqR3_c?vPZttJrv1MYQG4w*fTkI!BlYNFK# zqaSF3yK_9OL*HmM@RVFgbraUaTCZA2uvmIKs(w)uUkV&4z!eI97yp47xD(&zt#;Qp zwIzyukT_0n2G^ot^t1ndX}2JmqDu`CNV(%6VfKTh6k*OWZFMi$^l;4yt~_LVOP+1* z>3P`8aAs33e2!X$$sbjOA8Xypeh`w)s*QXzEZ}LE1Y0vcyD9HUK`IGy<`v9_nYXUb zLe&{O%8Ox1EK16s@IR&qXN1|aD{&T9K_e6E3fL*N-@O=>{)WmW{T+W_#Tu3N89^P! zG+F7 zMvEVQs7Y00MRvBU5)eiaZ4T=|^ws>?($?h()j*lz(`u)Yfxa1YwyDqBXeT?Y$cEm` zrf-k%!$^(s@!?{wY+yHQ`ng1B;JA0@yLZxR z7o6b66AQ4FO{o7AmXli8(CCNkmCCCb2o4U)`eIW7ox;h?1D9|ey=kq?MP zOhN8NaTJAfBH4iZ5wcw-x>3g%H4Gj0zVT84sZ^J;-dnlrg{hC!pipb2;{>M6s=$9O z{b`k8led`371$hF+xmFqe%b)_#qs$s@(Nm&pEMVMM@Vi@4kob8x4i@{X`rTh#wt3I zVzScnc2nYb?0R^a%~z3_|whqIJyp6{)5e0dnDT3K1ye(t}2epG*V zwkV^XB5~lkBFq}MT632(Y~|qK(6SwT(YcT|9dAAN2RCA;F;1!wjUTI|?q)f#t}T`r!9u6g?NKHmT$jU| z0sEXWXru@3&}dq%#h(^ti~WVD_?36wqs(xoK`!Cue$uQrE{$zWQDwt;#(z6+Kkb}t z*+gmB9-7JcM=?dNaB<@i4`_WT!Y|B$MbDQMajwB5%^%9-!Q??M4Um$P8Or$LL(6-A zgxa*Q0iz77r=qz|tPFAor>?w`pY(S%APNc*@CZ^-ah&{%>_Z2-V;viv)Jh<)KH;4% z^@v256D3LOkoL>P1g8jaj%o3Vjwrewf6nB14g0U*k)uFklVRU?EW;FI205+rF9{JmNlyfzy^zE6%7De(X}t;@hG;- zpM~$JE^(u)Be5{&q2UMw{-EFIS8{?F_AVr-1S(BOg@?Ee& zby63P#BV5$m6lgYYGe;rK~WoJtV&Rb>*L8<4|1R+azxf(DifQ(k`IDDV`uBfV`I+? zfl;u=CqcMXM(=e-mk&r9Neq$wAmvr?mr|rCK#6_%Rm-F0N?1i$z-Nm)+4CnS{>kQC zy~gTM(vU!Z!(=9iTfW@;kHbVsJI`QxTNH<3WVtC1RfH$SjegVdvsKuf`V$s{t0}z+ z(~>>P5WzIWP#hK8W5=wQVixt^;KRCqO9LV*T>?!5U6E|8ZtqBQHfhAbSad`UL{=9* zp`l%?008)T7N8Wx_+Rw&U$_RiNx+?2>^VZmO&k|jlebQSG8E9n+D}PAjRxEHD6@(+ zxElj=KQONzEbl6Uk;9;nK8!;+YLX$}w&Yuskt-g*BibQkd`DVdv|{PgN-eMXUz)G0uUZts$h$%`5ugemcQ#uj84ca$ii zO=Yq^V#yDhXFA?~XSOG3iO?k~1h$JNb`9invAD6f&7unIys^L(MOXDpz}r{RAw<=h zF%GSR7$pv4ojhkAlmxeMSK+gCSrL_~vX|LU&33e+1}6P>WAR9^W^Y8U^6x2<^kg-U^XXm3;v|In2N3r*j)n?N$4{#?w>V|;bb ze~uvvP>%V@iHJ_1KhN`cu7H82seCJCU{(Y`DZq6G3-#{Wg93d z^SvGUAfI-$7W(|Fk540`C9E(_02a*~MGmw+Je! zbV?3A^pK)R3?0%8-Q5i$DBa!ZfPjFEgrtCUH&W6Kf;5uCyE*51&vy_Uu50gqto2*X z4bK9<@+*x&OhlO4~bCwv`y<<=ufJUz3C?CqLv(j-X7E}tv3 z1o9|(G1U#{^D6jGg~>3eR6^1bY>c4C1(i>ts&N^w36=||Ga=|;7on@wb&nxFK#GVC zBE?_vtD7M$$GJVgaZFPv@wntkG#pbO;d;5cP#NyXZc<}WJ;P1zoqw%O#Fz+?+VW5! zl#S0fHr%;^w7!AZOIlJ}z?4!7sw0UbB z4P3!w81%MZcDG>;<>PG_RMGE1`+?sTcscd0%V)O2ox~Oh;6Gf(GiE?YeWp`6%>jqK zfE~+2k9pX&jkH|ERh224Iue?fA=t0xd_!XAx$%XlDh5JG*<6+UKGC!gWai@av>O+( z^J0U9L3XgC4MxOjU~%LZ$pc>%0Lp-;O`VSgNY;>bb~+T=Y5K~R_#ng$6O346YP&)q zF1*B9>ouwHObz5|;PZVnon?NM&A(hmgRnsy*k8B^(9 zm$xEXyUl%uJt3cP?NV9<`?2ss!Mgi_TsIHKH^um*u!j^ zn2BPIFC`Pmm@H~ziB6Yk7=>D4G-r%HT%^1JoF)ki)2Q)4FZ&u<-UI_wZ{Q0ZB2$rX zV=hltlY>+{Pu>!Oxrb?`4;2AQ8tqLRRIskO-<|>`&x%KdfIULpt4GF%`4*c#);^r#TG%`m>w-6y>8T z`uwAKfLs%TZSf1^ZYpwOLcFF z-TCDD9rsn|-If11tGhTY78@e{anZGOp3bg~dIrY_3EnSuFaE6s+{9g0(p>Yz#>L&W zPG9PJjXW;+Z|;rFEX4%(#%vB?IG%vtDj%A_;`0w6vP<=K+-JYM|74+he7u6r#R=4! zOgI=Hp1t}W+C4d$`I=itM7uO z0^oryY?MnR2IfB){7IRWi*AE=7p|c;k-kFP81XR`aF`js$Xp>~J7}3%d8ke5f@>mu zxQavmL5fxWv*vd%L?|%Eu0VhbPAij14(y=#U`qLp);f*LZOurYy|+9Tm;jFq_J0#z zj}<#W{OYJXjxF(lyk_U;Gh9KiqPKY=0vv*0p1oL`23{DSzDpDfdJu#`78^_ufJg!W zi#Lk8)P{hGyh&;Xa$*}>*v}ou>lymW2M^mLXQ;O0U6}{y&&qJI4G5PeUNj4H?WqhC zh##YYF9}N*k57UqkGaV<0xFn&&sDfB5eMOioG zIfeFSWD`pTdqW6)A5r4A>-+bG18NaSHs};C_ykBv^(j)7KRA~xzWmp$e_B+?Q%+{h zYYL^aWNi1KqP8 zVZ`gIPDI+6f-Bfh_^4LRRsq#N$dMaWz)VW!?(37UfQ1aD4(ZMTe%PjJ|0t>7q~M#E zs6tl{WN1m>UDX@bVMuVol>~?j-bb&x*-?SS$6X6D%@XNZnk- z)2XczWSxM3@gV`OLb;lWYheASmF@b_Kr>q~E&589$vU07d-La@>9z><@UBbbz1Z!V z*lkh3d6@rp*y7IvkM9OV@RifkQ+9uUU*G=Y<71kO^pq50n9_Bm%fZ?1w6L%+og9Jt zzjH4~Iqk$IOMtp0h=m^5{>GY&!b0`1e=IqHi`onHwdMpaB2k|yO^Ieb z-G{Y>dn^!DFL0hDl4*VbKhbYBL=vptE15jKP;}3p0j+(B;~V<1EE&a)6GxJ z)wWMTj|4n19rI13FS2Z=qLt5H@aKZo00~u_AUjhNE zZN#8ZvOrq;VbpQTxxET_+X@zNL~sJm-z;l2gin=7HpyiOV+CC!dTKN6?+ev;cry5i z1UFv7_D%2zwecUB(ft+BNC6sJ>(cG~bqnzx7z;l9OjjL!?5)f2OdNZ{3kaOmP@Aj4 zLxeQD4A^Vt@*Q`webKBYYBgH+7-t#-A$|3Y63OemiJiMWKdjL7oE0fj+ZVYR6k+o6 zZ0iC*;)w;o<~e*xeG5gH&Mz^ zY?sy?J`0f;V=V8m*Yj+wG2Y|gpc+f8<^o8ezCkG;o~dKDueU0wu)wIVi-;bqC?;4e zNIrpe2yo9rmEhW)-Y2VpQH9uEXE|**igqj*1Sc$AKh1#~uq5~!TWK(pnn?*#HI>(c z%Mw}S!W-e^?-h;ggMJsOwHd91nPUR~=~xvm0G1@unS8=vu70LTvLk7!4hq|oQQzu( zm^WBNS$T%`zPBrdDVYdm$$+=q0L3Ag-h(C`z>9rI(3bYoA_M^`lCe=8&tnE(U72T^ z!S-CwilT6EEt{ST4Er*7xR2rAiX2$>VkA(|DQDaeQLf9ua&=$BZdWCl1Pe46&;;FST z2n{@;{F?17gr^GmP-^=f#Fwci)4%*w{fXx^L_z-z1q?Wvd-y)|l~D33O^aj1GClaO z5t8}nUV!cO_SLS#uHBE80CFo5nifn@c2DZK@{3D!!g(R ztQUlP0o;h!s|v-;G(h1ZEE0CnGPdI_LSdmkqJVbB5HiYYlAXlxzE7KU*YDyMo=UMA zC36$?yIm^n4H^wt?7I&b3CB**oi zWY=9&12r1>EI*U8@k_!r85>c3T0Pz4=D=CJ|95j6_+9KgKrZV*n7T`WEP5zN8a`eJ zq_UFZ_7Bg9zlZiqg93nf^_ww4XEMPcgNcByO(vk^fOn??H^pinlf^S}OEx6f4)b(C z&}iqlj4SV>EPd|I*bvG2SHT7!(X}JD=g0Z$Q+?4wTso!XLPh;MFiYyfo1ev9!j3G5 z+m=bO1ppr)R~o&lddP(K9v_o->2C4FoKauj-RHcE6ZG7VrzxF&A30h4tDApt^ZQKe zE|tq3`=zs5p8|_`YNuEv+ZqOIov)j65k3l8^@dN@?Sad%LZzzB90h{z)K59YoAp0= zI6!G;_%am@u{=vjt-d+L01JqLHozHTc$V^hbU1$(Ta?gyWk|4)DM;q$^B|PT zly7PD@mm*VLt*VgHTN(uHK;`z_wvdWHrvgzRY4&Pjr0@WLN4j#Lli_0W4&iC-tK7BHuJ@~9jdRKlvS^X2HzIadKYK@Z_r`B{GSWN4Rs$MR-LkBPAx!mw)jH_Se!B+u1pd4-wY@XtGK60jd_J6PO1I`zy$=#179Ux|kz z-xroae=3@EM!3bx4}0jN%6|$|g}r8l<%vrdTY_y<5EugWK{tQ7##nht|5VKB%Ipq7 z4S)y=zPc-_7&L)K;Ec%0ha#Na$I(FZ&lAT>qW`?-&Grz1dBZ1@-=g)4>r*??x1wN+ zZN`Qr%m@xIpIp^y_o+-04(*|pG{_1Kh?wAk6PKh3M68i0#(X8FCA;AXm z5g38pbp5y>Md<0R$poCrJeXNp+Pb|y*eam;$MQd$$3Js*mkI$pTt|{(r;<0laW}nL zzC(4s&%^?XM@aW^S&tJ>?uE@=%uavf86$cG^r)248u^1@?7}5zZKV1^XQ|fJ-;4V5 z%L+6zE3}^$gJS7xj-oKxW0qchL)TgBEMUAg@*NQ-Lacy_?{-q8Slwl8em@E|4|b`a zBL~$MmKmO+KC<%uI2@$rB{+XXJ;AajIZYZqA@N#>-K(@9>T_;ksPY6a@VBgScZ?DH z=Ke=wgeV;=At#!|7>wiF1O>bb2nztmMWWQJgPM&;puh~*i}`&cv=-8gS$E9`#yF$g=sc1*!#tNM_)MB^qJ!Nz1f2uKFX}X^>z!)4fs&RJ8lKL|B`^HBwbo3`f`n-=2F()5@>);?Z|gf} zmIF5MZ)V-g?H3h=67^8sx3AHWc9CR1z>$|kDgr)A?=$P+G8w)mp@QAW=N_u9qxVp* zQmE9Zhr(K4)V*C;sY3%GWrnRBK^j=dl5cYuO~jaLIs51=;}#0JYfCCNL-wkptY&TTV{^*UOM;XS_Vx0{5}?3%2Q0icjzlCGzvHh=1@Y z+-?s<<3J}p{Fn8(c<^`uD8bdIL|WfNb7}wHuhZfQV^GGBR7waw4J5z{E_*4bkPl@J zSKmK$($?7`=HG~C{oy94;82O%3 zuoUxsaB!MAOfhD%NY07m=w}XH7-1fK`jg&7MldUaQ_=jnb}_V&FC&De@bq7BL|Qxv zW2|b%86*NSByBO##rMgkq~^I2MyC%1se4bvEks|Miy4=&l#rq z8x#~uGQ}1)ELeM|55W{bCMg`iBvJ!~DyBxm)f3csaY7OX`C+=L;1Oz!XJ`n$$o4&n z=Q>c_1|ypyZanqXPaiGIU`ht&xzkEG1{Ni3x92hvGEL(!Fcu5tIR)vebVW?6f*wWU zgSSHK#su8B=;t=o4ksVVu=RDn05lsYMe5)EHX&y_=a@ds2V~uFv(HipWgUJ^D#_jm zU%n&6uf|UHFg_y0rsTPY&*ozATBS^)k;8NWKQ+T+~xzcV^jeM8=;d*oKT^gW4ACVgetO2?UTH}i+|e#2nsrhu*tB8-2*ju zo(kFh`1}7j35HGH32^~8Yob@%+9KMyZ}){;w%)dcy*=M=F5J5A%e(30dv?kYC)yr& zcM*4j@@mF@|I}~!VfG8J*t~zUc`vX373cY9-p5rv;%YiX0}3#|yYqlMn%`)*;O2e0 z%53yvqh^g9Xc=Xz1FgIOyWA5qiGWMa#Un*EKA)Yy2Vrc(mWV#UALWz1sv#Sk650mz zyWVHc@>-EO#n8T{Ew!{BfvhHP?v0@7)ZT$aFpUB(DaYJFVY2Hz97%AdoOp#nr*Oc^ z#o3~;dsoH{PddNmX0x1B7PJ%j z&}FTW4i!EUgB%v(f|JI=%3s_K_1mr%CDIclX4m;F4L%}kKsa6fI{HOBj9C$D3XE?W z@s#wekd|PGxeDE~Cg3gmMmYd3<^%w+GFqgpULY+2{3vF2tRivg022HyVTYdAnw{Y@ zKc%E{=p_fHSR+9iFM$;!fwRq+MH$w<04xLy7DR~Gt_4NXUUIG0bdVb+=0qSzJe~)B zTHf4=){e8>!x2r?7h3q8+CL`Lt`eL8n0QlqBykQk>2Pu&YKU%LkN%;lrM>~+NktOH zr;nDeB2MU)7>8U9UuGU%^<@JW&h5-rL(V;e2ExS}MSw`Ko_my*N@XaP&2vadgh9Pv z?Pf8%;Z1PVs+&~UILvHxP+-T4Fg)ImdT#iN2oo)@Wp=ADh&2*@I*m#|gmdm;T$Di= zxWNb4?nh;~o`hv4p#$ zM8--4RDSH=_lc8?3m%M$H-xjZ)jH97Nq3(w*du{MXGbW|pyYLkgFL9C^I24hFbzm{ z=uc$1A2EwdL z>gq_OM@mQ$&7mAMrkR0?7V1BH6idcGWiKRrri?wyhQOAk$B zH;oLv9w3X&jWBZnd6ljWEx(Mb*IpxzZ*G$pp`{;x9nb#U0yK;`wHqOsX>+YilB(eU z-d)pAT9b6?WcGJtDgCM)#(qo4q}u(Eou7Kf8bpB?yzV7V{03olEi#PG?*-O3FxfZT z5%Ey42p|fV;9|Yl%Xwhukwi;aU$$lwOy8zEfLx0lv=(HGB0w+> zFOC}ci9QL{W3Jx*ULg4G9?l5pG^FRn^CB51x9q0lm6I;_(9EUN&b1$rXrn*?@oz`v z1ZcSex<>MRHpyQdet7x}y>0r6z-apZ=-GjG#xuV1aBFpY%b-h~SH8PVHDW5?Iz|kZ zguiNK^*?8{dw7_%tu*BDfKT=7bLBCOjFe1qI!xW`ya2zT%#x$IuX)G4zJy9C2z`&SHAAveDcv^l86rA;f zI4qH92m)3zeswb0V}eBJ)^}>dHDjv7z5Q?q;YTG%d_pCzcK{MZ z*rH*I_esyKNKBiQn2dYiLORKI%t?^!`8w7!`F7qg%!|G92OwvAvcFvPsT&^igYzqD z#wTq+!!h0li0b1mIN%R}LUH3@po(5gh=VvcDD!aJ=sKU(5rE*0nuDZDuD!UO5i_uY zS@J6f0(_)c9GK|=dClo&LMxsSDAxpR@b1}|+1lT&6Jln$`D3kk4AZ$W&G4AfHbyUFVXr6@7~P+^@pn>*_IV)S(pID zUL3oXfx&h-V87&F7|IC*I(Qk1 z(Q!$=vhN{|z-VOa&Tt9Qj;Ib4BBl`k==vTTUCoJt7Z+{{*CqM_Qv?M#3rD&%X5%MX zR&H!HOVv<%$!Q)N;rw*@@oesah{SAK_Rc3i-|!G+_+(cC#Eu)?)ilv1RF|_)O1tN4 zw{K&?`}Ua@dae#u&f8#I~9(Onnb?nF{_y2WF{|LE^TG7BsF zO^j4(RDw+^sTKJeut7n&gmU2MC8IMaevZso>7i#K<6j~d2i(%71B-vlU`9f__k(De z6x>!Nq!P*nIl!Vi>G#z%H-F2G#A*7{_zTlzPEaVG0?ry$F;dk}LwF7uJz|MY2cq#q}0D(4Xj(E@ftG zA*|=pAHu&6xN>q#0**8Hq15?-JBeB{!PcArbM^bBhFPl;%fo#IY`FNyea=_uXm(jVPQAb0e?rl_jq`|`|mew zU6ci!eXRnk#jiL0U;X}n+jC33;3jGAEW;3h%TD!11{TPL7nWon{OW9&8M`eBOPl>& z59UeO<@2pu896)%44ywf-35NdhD)fKzj9w9$fUn`ui(+Rk>>%}`Rj zqGXFc-w9Ka4G;n3<5xB`5@3>6e1Nyz$P{BML&YS#Mf!Y-f&?fffEWxqsR)tVo@)QL z3`Fz#+VkJ;1`F)w|6Ja5mod8!OGh)7LaPJ^)IP%ZjqI`;c%$;cTEnyb$J>=>awItQ zA(`;>@Tei!7y1aIh>*;CEbhLML&ZGzNMuVwp7V)$H_%V|@+G8J>P)j@eHam*_P8gm zN({Z$G;b1Gv!;iogT44hW4Oh@aUc+_h78 zG-s95V-wG-q893gT(OzMdJZsSal&L_fp4{UA`~@C=9}{=U3sInhv2X=fCge37);6r z;{`z@gO4`0r%mfnPRBiF(I0{Qd z(o}%}dxZi-aNHBWlF}G)CD#Dz9!w8S>?9}-9nQZV9=9b6$q8q6-`us-htW$arTJJ_ zhZJCcyoC0X`QSek+Zxh0Z>;SG*!1Uc)%yDF)1^ z$0GggoSd22E9f9h;h^Wdt8dVn%m}HHfc)6Q@e7173}Zb?p$uqn1hH|e{g>)|u#fA; zRGJY)1OvEHDUCDPvQO|&674H>tGOqk+A>i-f2^l27a7>ZW@#a}`FAIK0wFsvJ_f5i znk0f-PiY`E^-D8A!IQnYhxbr<3%?9EDr{=^C&$AdzAw3yf!`k|C|Q)NGISH1L#0Y zEh}8wnDJa@t)=FXlKM(_$wwZb7szcI1;(%r(u0`U=a+#Sq~=Y2+(;g*JTR0BB<`AtKsYaa~|%UU;CXF&}<0$uL%y13spha=6?K}yPO3bn;3WdpC3i{ z<J zQ9ykJjfLMtmw*N9(amBwfPVsv2H1Lo2)}^K!B??JQ(FQXt*W2gK1&-IK(Pf_1ztIJ zM}R+E?D!ODN<*OoWRXy5{*yUmby{%e!!`UV?da15r{Hp$0VV_j)8?mfaA!$yF96(;<`9+bgAT&m(kgwVfbu=qLFF-Lowe9POUqj z#KD`{B*F|kC%j|;N~L<7yS`S9S>A0w+ZXUrc`(%k=J3+e?3Ign&aYmCD^y=Q*VCXJY?t9td>c9%6OQ?1O94@K+WXLA5k-MLJ;AkJjiMG!AwI zqs$Kb+laX2GNik**#1kirMTOAs&7uP8Q4{$!N4v*m1#tyJ%1ms@Uy%{w*Rwhz!_WB zv(Jef@;5>~Drz@6pZ+{?Y4L8-ec3&xsR3UPAK-;f;;c3;n^Vv!fLD)J&RaFI2+J=C z+A$^sj%Bbr3@t~iq%5V6EKqBTivT&OIArK(s)Sa;54k|jkyh3eLQOhiTT!_K9ZrBZ zC@3Nv2`ylG#z;R=4-LU{+AAJ3OGx09d&9?X8yc7|Ka<(7J7L;vp_x_lL@!B|IN}5I z>gZIafO4UYerbf?q7bq3#rNV@iO~AYG}2vngPhC~x&dy~ZBdeq2GW671CCtVww`1X z7WjE z|1U;2Jc*Hn-61m=68W*oywU`#_*}G|$79i>r4N)3pcD4;b-NKF-C+P3FtG!sDcNIL zU1Xa16S@jS+uwuU1CTbbC@+wHm$GR)0v`HausikJocfOo-xqF>3JAdZ%bg)mIkrA5 zfNum?2ZX*e?~%7jz_8cLCcr^L!veVVERHCk8v;-1Jh^wTY?G%D6T5toNvzqEllUUG zFM`lalyj7k0SZ6~x;;m>6uz5frb-*G)3VyvaDdI)LoTEv+r5%9+c(=c|9XKNc-fxo zqQr@|z}D2foY7Pw%wHm7Yfpt9MBt=K#+%!F8npcRMgQYnwTu=VmjX+1HG2`3zxIUh z=iSL$>i=gk)WTaX*Q*XoHR|fQt8C)P;ShUEQ%#x2Yf`Lx1&=uX<_ug;Fdh+ z`?wHH5=|%0nE;zyK1{xrwOb1?ssR};;eej5`%Q72;B^rS-U?`4#BZjw{u%*uFRRDL+&TLQ@ZtDKXoJ}NPJKo)^wniX=I zCc@yGphUJ)!j?+}wqjtk;qC+YC@`@jLeML^?&FH)&OPVDB0zCW>!1*Oaqk?@Me%yj z_(8toXL5>%VodUGklmqsFqxrJOVcFZJ1_NYBN zvjoY;eW(@)>G-)G$-!zmkoubm)Fo&_z+j{qL7GXAy%&WXuL^mkqG>+fv}{ZSVp}L` z`)5>2l@WpEW$w>o3Pa%wQ(*ma3$-MA;@tQpoXSj(blMu88XR31xen}us_UDkKiTQ` zI}gw!WbZAyWQ_nT4k+V59rCyUU|yxFe<$kRb9z5H+P#sFekd-M-i0XKn&{-0*50X? zsMAlzSbMFA6)1l<=L!3QMY0DknYoC2m|5GM4}c+jmg0jeuu^9}39p5!8u?=AN+y<^ zR=k!gvAoHQvj_4d7k$;O?-&iPRRPQBYNR_(=im4eejgfA&hLGff&rvp08|5B;qE8` z5XE4!<4%QtR@}#H!Ag70SlH^q?~W&pe=gmA==H8fdEprm4kGbh=*FgW#S-3iRMa^o z<@haaU9r@0S-!*EYq@f^w!Z$Sah=%O21DFa!#})HSiexx10bJ-UPf1&_(4mZh9mU| z0Co0R_N+?Ob!+vQI1wG5{(1E^Pnp~s&GMbk*oHNM$qt(h=kc)iZ<12A*s0i?>K-$xq!VAg2J@|n82Kc=CJpk+98s!Gwlh1Q(TzkrgNlm}2 zc01*UcZ=P?5OJmFHcTuR5`S0vdi1Vv3Q%40zE4;Ygi|(^uznGM?w@Y{4|b9^+|6Dc z4lh-<4k`=aaOO1%w~k76jvPVT z_@#PWnk{(Z(9OTG4E$EuaxFe^;f}o+J%h(G;R942UBBz?2I;wQMr2k){_ANTZ|CN| zKIkVF1!X242W>MiGGkk;M*7O}iZ?_VL$yQl9S|=0mim|LX+Qj0$ArwAElw5(4D6Lw z+`Jyo3mtLuM}$ph`3=-C0yk*hgSai#egJF#s)^S#%s0BHr^lboUW=;)W*lwE=M^~S*F8*(kSxk!D{OUj(j||I%18Sh>)q_F} z*OoPBlQ9$O4g05}(v!HB1d)|JU{FYHSi%>@Yxpw5<-|Oe9uQE#Rh0!G;QSg?k``qQ zRbB^w{l=lif^ncwPY&s{om=m7dtTd!mx%sQC3@^>H=Uf8h7ewc3(GjQ|GDK;ZEX;H zL-{<5rO(^B1~8<}+QfenEmlqfDSU+(rq4(ho`Oe`QNRWn_(E@@@|`|-J-)!OcPvQ zo)Z2}X_-+_0|R_rB5O?o+3XGC8SSnqjpO6Hk;Q;VbE&!K@0Oi5zPSkrFJw1fdrB3E zOFjAz!pPl-&1)wT%uvhB0=xWYvEyJ|Z1P*?eRQ%_y-Q>XTehw6cB$eLc1gO# zQ$cM3A^rnn8w&qq-eZQpp|1>+KbE!Q{vl(NU6w&4tkTgb(BCSnLi$7deakw5>Q~$R zhGiqC8QBdd@_?>k(CIwoG!<(?a=> zmh|5xER2Pi!2sBDK4)gzrqug$TUH;q`L_(tUJ{hjkL88vFJy3IO11a-N?H^37`C&7 zgIF{-izHgPO81m1&T29I?(~q-2;>vt56DQN)`bL>M03Cdo2Rv?-WtmZU4Qbp9ugs` zkiK~{I5FV2+xGqzO0VP!c!9PyUU$*X9MYcz(uncp10Xs*$JMDz8=zG!|DfXsG zf%)N#Ysk}FTOK@u#aWulg>#|IU=5BCg(%HbN`V1>y4$Jyy+hXuWI3jsuA2U*p*kcp zR(xS9xUI-^+(XilMrlV;qBJ$Kob}WS|FKzK8&oQRcymCa_x5sEW*h6&l85Gp(8y2_ z<_K!~g7oX3aTJ+`Qp}c$K*raMrW(f6kB(#~!~5w7h#J9SKvi3oo@A(DXY+9M(htvY zwhpzf_4Vu^RIhge8K%-rIEwPb@yUB!$<2|MHHwqt!u&>?3|6{eAjiqkEC?uAZJhrt zEmE6WV_{?1>m{P=To|wO9ZL0Fs0s=zqNADZVH3P3#pctV94~qC>&R++RLbihp_4%w zkUdwOKgklrBDqiL0g8ITMk?EqC2_l!JX5jyQ?*u|O)B~uZ!btBr4qhRnapPUpnb-Rr+dX^9TZL|ztSXSQdXV(StuxmLvUM04J0XtD z7;qaCFUu5>H?bAYeiW=KooMCGL?@n1JSYZso>gDo)M@@A4q{FVxn2@LFHk2kVl)4BMol10EYf@zNS4CR86}6xhh>T3<#>gk=*6cfS*)A6VIIk|ZmxSMAo9 zV@|VhrTp4g-=?C=yliBv@7ZD^L$49+(a2+FKG(NkYN$tG{>T1Ez+O} zny)Cypb*b?y|xD7a14qVPE{{(S@qb|Rnom2sT94J`hXAAcAemJRcAv8FTdW}Fj67e z@rxb7zvFIi-fMpV1Ad3Qy9=R6q*FqziPqLhKY>TD^}YC`O_;c@LUB_ zS-SLRct%Wy4)v10-2{*08tuwg{|ofpasnqu+{>#RPB+FFx%6?iou(Gy)+j#ZItO4w zoYZLW*ajLy70$E-^N=4$B|ZOl65ZDP_&a@3V|2~$f6N?^*wxjwM%h|$cJEfcH8fg% zX|VJM?q}uInWfiZw&K{O7J`EG3BNE}o%ah#Y3xc_z|XPieXIgf0$p|#{Q$v!B+uT} zv8A)-AEr_B0ubu574`d0tW329|7jV3$W}%sfGQoFOro{=-Ekoq^wATm-?Dj(#ws;J za*$y(R-$#PR^LIXhI`Zzd|BGZ%r$(p>$LCYJB&29_FLbhiUdx-mc~A)V#Zers5Xau zk#yf1Rr8Czy4r?!+vA+Oz>lnJ5ft_^j{Q3WATNY*4IZhha87VacNiu+pBT4KF5sJS zS(aE<>DG}y#(esnPXoT%5c9}tQ=W>bxUD8sscT$_>ajbx)L0{}^t4?%f`bx9z~ARL zb956}2&%r3A*2&}8kNo_CO_&i)-E>d2^6o3Gt?%Z+cnR&*G1C1IwO|p9Puo{$<`1; zKqERqVlYCl=%l~;A_EyXuKZf*s*Wi{q;wsb~OIV zv1>*{=@7tdNKI_kggv|wGFi83%6b;>DYv2h$~lp?&)c_o_%Z}b__9*{q*+I-7h}0? z#;Tf|QZ({R_j9I1fi_h=9c2^JKL{k@{%hvzD7Azecj=S=P`fq514EJ+ zZj%1Vy_l{Re7gN>Jfx^oxYAUAHE2MM8oIxCrJ{FT<8bMi%Kgr>a5dnc+n|O z#hs+B2)MQJHU6tHwu)^EmZN3D$wUh?!!Oa|;U9BI0?=-zTGT2W?J=J=IK~W<2|6W6 z+_?X`NVfGRK`_-x*T%W~$glAYlTAP8Gk9`ijcG=RCXxA=tSD-+kn=L@GAe(Q2Xu&b zaW41Zm_+f+NQr9I@sc?afZ#3`MlfLwmao3gd~iaXprlvLuYvf)ZXqn%peC8PJd7M@ z>ttZ_{}EE!*QxL%@l$w0^tK`cgtaH0kqIN=fz+n!5Q|5s`Oc z81VDXXv*s?{?`Lc&yj`woZT4-AI~l=JYKhrS@L$vBUR=XdSSFOo_O)%Hiv78PMMFB zW159hVuZ(tXQ%$bkF!l`U>qx+vISF|w+3k_N>@wNppowqMcmgZ^eA@uh8D5S{^4|& zXO(Jo!V6WvpY$g|hRAAAQ!!V!Y|Poc_L{m{mX-u!?6jU_*^ZcJBk#27{@ZG1$8EM3 zf$Hdui%KZ!t*{rOFwA!Sy4_OK&$LC_58i#jzs&Qyjj-oQR)V%)1fS1yn^J=(%=}j>ylFp>1;1x&+|*RI(zrpY;pEE->Ipq>r@t=f@Tnk^0;D)hh2Ys1SNPeRQGpgXXK*O z%uRpE%g481_`p#3qj}_Z3602tDazK>;_cvwSal$h_2%~Mp`xbc9`ntq`aqN4*Esr! z$G?~Eem#U>LNRg|tt-^3z2ADZX9#Ca)BFV|y7*w8&VTZ)@(asi|CZ&LOxk;fhZqzH znCJ4n{l88d~<028E_JpVgG7V=!00)yHjXIOLQT;&+ih#VW2cW2qOHAHnUa=MUqSXVH_$ z5dV^GA#QtUuLs}*2S~}Jc+QLRC z{^PayD&+BPl9D<3K2<|!1j`f=qG)GZbk7IvmKwwxy3f*FCo86Glq#i1KB?=-4>$Od zxt%F7I~t67-o`UnoxPCI({`as{Vu~wp!7m@7+eC*6w4u)CfO$mZXB=Ni~9bddU6;@ z3&T@(6(u}F`SOJbV~=5L_%-< zBSDaKr~Qis=mF>?OpxsWSzSgGzd`RhsYbjw zPkq$J$D#FGK$7c|Sk#X4!(9E66%yWzuM4~Pq3u2E#ku1O58~$<40!PXVS%`Ok(%L6Asrbn3fy5$tDS z)d}V_glQz;5$#>XVOxYvAAgS4rmO_qzoC%GWV=0XahIMCHPL zoc>ie+dgHK$R+UYpOyDpU;r!V@K@#)D5%=TiC>*{@?I0(>HPdshJ{Tmx!yX(kt;U4 zDm6eCPH@{cy-&zQ4&E@}CGeE9D%f#eGj1nE{W4dzIaDgn-;$QOQlnC7OqQ@8SnS&8G(pl=Rnu)Ve` z`3`wB5)MHLWLrCYLg}GAlBP<0sdKM+V%cRgVd`cz<0{$;-Fx~jnLbV<74B7l7|-zK z@e<*b%RT8-OGydkzW(x4(Ozkze=&S$F`BlIg`CX}H%r|O54^wYUH0cMVeshYPHVQV zaUv?oWy(N^Sv9jraw_KpTgDfDXg*|Zvn}}AAnjj55A506N<(CyAA*^sTeb@7;yJuh zu(dU2o-tzZa@nY*Hl(OD+h*=Uu3vw4^(l%bGC4D}ix9)h^*6ID>9swUB^`W_|F8JrmNuK;&8lcD z>iDRKL^u=ufc)-Y>`I*Tzkq|Bhj=}&#Iv7g@outrXybzINbM5d7&E;-KX9ePM zA>!>6ndi!o1i!>W3CbKg6FbvS4!fpUKiPHyQ_?qK3L2Gno>AyYpe_z_Bc83&Vxn#R?V+O115jSoXmGd3ayR<&{28Vr*<%nboB$GHNqzax~ zM1P%=omo&oGM*$;Z~-GMN-E*%z7$U!0G!ZSoM%WU&kJe<7c-|pp>W|@l99+Wt%#i5fjWW5qRoa|SGU1Wa~;RB;Ojoa zI}M;b#QSmf_f-d?lbLg9!b9>#HvP>j51$Cyq535k#Agcqxvb?!JO+ZRVIw0vr>66? ztJs1fr$rC){QMFI*!g=`j9Mx??4DlrEPlvD9$x(orfHtp%vr#!<&0JnPdqvgxNHd6 zZMpJVIA3aL;lfy6y3z}Xdi<37@cedh={hea;12rb;4l3?j_AIJzO;X*%y6xZ&=Q_S zz}vUI`=eV)X`4O{cD*_DXGq(fY-?eC!xCO>^%mFNaB#&pM9MuY%+6px8KBW&j&^ed z{fL!Qr=^N}RdC3wjj6HV>*r}=0X}k1EFN<%xX312fo@E{tsn}(d$S$WbUy2X>hh)F zI_Xkfw_lfe!1~G8#TiCr-dz21Iyqql{;bKyuC1@nk3rq{T{4dk8*jm8@b0#N8QlGH z>7Vr3Mcz3+t5&OPXwq*};RU}v1Tv*d5}F^s@kA@F$oVUSGkPgK4%9Gtlm#YlGQpAY=ZJX zmCe6&ZCG+ENvBXjX_b&-(lhHZ)?Rad6(!1SPDHJyV-c&HwTvPz6JF~8Wro^^_;mDD z;L*)j`2TqN?s%%-H|_=sQT8m^qm!LcqU=55Bzte!GeY(r2gfFa5E*4t_TE|9TiGKc z-Q$4U^M@Z1ddfS7i!LzU#=C95>$9=|?0#XaCWJHaeF1aIb z$Slc~nylvbJ`Py*1px*v-FKu`5M@U+R7y<1R^;~Dm7&arKyjv&V~5TFh4V0xiHKA$ zBOuF2h0i&LPnAc)QzI3XOM#0F3n(DZYeZWcXb$CqKWL`x&@(2x7@ zb_2>x=y19db0)f!r&%L=C-1;a#ej3z|0GlTHJd{gj~Ae(nltUG)LqJ_pKuXsB5 zsWs4G^9RiH9hp%9o$I(72~3E{U8D_5&4Jd_7-njQSw%|0L5EkLk`l|pQy8ctMJ08e zQYB{W{3~`1Y$fAvPU}Ow=R%wcIgx)>GtH`?vufVf$ML|xtd6zN?=wB>^70CeL&Rzn ze{Fi|`-u7FtLt7EH552HoAvxT=lX-{%XbOMF6A74sOC@a@>NB2%$PE=&vRnQ#;nP< zzPdjxo7J8P=K{s*7Uj2~IVQjBRTwJYI>3^o$;Cz%K71~tocKq+E&aIXW2k)Xr}8KG z9jaATYAaKoNt`4UdnBr$)^3bW#gY#b?NT$54a7oK70Wq?Z82Pq#z#BQx?xgmX!mWg zY{tnPeQSt!d2<>zYyTp)I7C2g8Y?!P`U2v zf?<46Jq6)T+o+H2YkYTyoUT}_M-VYxSs}$>(WSbM_r^vVh4bcLT5&f~H}bDd2ZMC* zaB7B!OMsus_kSH`9&5Ym!cM4~hePb}v$I&0xmqn=HyF-gVSl#4AOGDyV9b)#L~!PP zcC1myvi!T)Zo3$EDeWQxCJNUl>?$bxtmTryvI#1$C-Zc&JojA8FzkKv^E*&>acS1r zAEeAExer<-qlPz*u>^5d_k@~;k z`6*A07D{K+E2-uhaS#3SGnC8J*dHQa6=;5N_xkkc2T2G+x7#n9DAz-#4-(;8Bcohj zrPu|+S_@juN%uzkf*TRA=B)%Ne&yoDlv58bkK?ZlwEpvy4J|99nk2~zF~cqmJ#U7E zy`o26rvXY(fM#-XzfK$Y(j=+5RB0>%&~;EHwE?zV+|4V^LdCXOM*i?teWF9my1PxL z_$*1JgVcq~#^~tx#kQH73|E`e0L)Bm2BJFm$uk8eC-!)eQ!!3yNVx~vDcsjN4A&(5WfYTfa+BG_;*7)JHsXAGrKw`R7T42MuXR?6_b2Mt&5Jc0 zqxnSd0iwW|T>28Wr~xjo)S;9>@&eIXM9o^|?L0U8u8`d3fE?}$rqtg6x~5YRFtL_% z=Gd&mU0RwGH=w)f(}T4FPismQ+_yq+f)($wtK2h}C{F`p8zp#6(ehJxU|4WY7sVX`!{6smF<-O`mKa(hKN?mF{bH zb%VtCE2@r+nv8xyItjC09vN_CGALljrpD0l?1}DaFBo?l)LRf4({<)p<}X#NwW#25 zUg%Tus6U!8*9d=lHT0UaO`(s^wua=&5!I zahZ6}A4X2>9atVsQ_tBySxe8}qu$}uC%)ql1ZXQ(tWD|}|b3uLixr$G| zOkFv@LAF8c3SHE3-+UYkRIMV>)fFOi-Hy~cVh<$Ozr8id$R`80G({Cx`F+z;oAS{T zcSp01sMOc{>cW4`K3+MC*E@;#UiZG}F%#aeZ)owTX_yR4G&w27VhRq(T}nCfIG75~ z8?*FWw8^+}J>hFjulK*fVL)f)jvm9-w_CDZ`jV&m%L_5lg^+jEFOZNRAMo3ITx)&HzO1=)H_G*c>`Pz z+ol8^@&(zzhK4rj<3O|i!Wp}r3yo&zLQ(qRlmMsPtjVJm*+1kzEPplq;MC)yAn9AM zxRWhSs3jIvS%F0@k71Z=X&I+LA{JkQ7ttE}9NpZU-tJc%hLH2zaf&q?qmpm(*NC&@ zyj5k-$<&=`Q3wnPZ?FbDo!({dvJ0oS`#>OVw$iPw{VCd1(A!NtRhSVwT$Ct&^_od` zKKE@8c6w+ZSx1aX{9E?h3b#lsQ7#qW(KD={xBK=aXI(PR2~&jd*=!@i)O$%~2x%-q zhoFvqjvC02{6U@8T-xv1YRE|x&OJHgb`gSAgnCDo3v25qzPnp@6`*0JKGVAg%X4|& zMDld^r(YcG??~!%c(_3b}G*ra{)?5oy9-BSNZXC-BfxUrdNgxDY^#+kO8p|Z-~gc4W!xg;*D?N{^&GR5O2X= zQV*udtx^$<{_v%nX_b^M)ke_CEQ><_ch@d4ZSP!L=6&f@9TxjCB;7;pvCkqKJbI;_v2LVeid5(9P$N6PSZr zm9D%1X8*!|5#WAUcQLAMT?V|u>I#|YYcv@z~pR!qTn1AAHp!X{q>@Kx4mS5XMdlw>luSS(kh`80Xj?2NJY_@V& zcz=({J$?V+&2=r+0p5U&x0Xp%r$h~Q=Xd1P-CeR3M@Gr}=o(Lkh#Q>Nqj`h6A0UO_ zxI{Aa9!qgN{h-6=HjuL0;t+2uyyj?H+~UYgx$r{(KmQdavnJm@$zVJMDd}1HzDb$T zYTsa7Iu!)X6*`BVguWvSS<4XU&DUT%PvT@E4-JQS8}KlQ>tmj=EdFdv451;ry7@Sg z*3m{+95pRMXhDl+w=rD2PuuOF_*G6@w}>l@&?QLNM0I)SMSNL)8UMk=Zx4o~n-?s4H~x5-=vSUR`oYxjqP~<{8AKcT2kWk>G=MuqPJhDJd_QPP9iyP zw*Rs97eThd`ex+Hd|$5d>KYa!%HGHY{ADNC#>pjkSwn_@(8iA*Ij$r)KyVivgejCduS6q6aRE1)|F zf_7A5&J4`i@-+Fv9)*D_)^Fw(5`9VJ{?HB)3fg>Um$>5IXW4A})xhYZEP)cKodD|s z&0=c9(WdW*?Z6ML zi6%TEmmBv|-g03|mxUMPmp@7bLB+>clu-}WE#jQyklof}P$(^pJ2 zQgX0y5oSIMYrY+CBGDc~3GU<}F6&}ZZ3 zkIMbh^%&F}GG(c=o<<4GW0t8Y9FT4{PEj?r-Xk7Zn>A37SZ7zzX-BH^=n;P2)ijy! zIjwA=heyrbt+e_`~j3tokb#(;UM4=^Lj2J6B%glp$>RJM!7# z;@{hU3wmc^aor||M@RW;Y;m$V+wF37X6v=}!Mbtx$@n|qFmfAk&ex(#aHeeONl*ZZ z1@P@;p&O$yWR3>;O)~@Se8wveNE6Tna2!^;N}i2sd5HRJ^Tb5E4IBx4Qx=Ue?&FBB zauuNObo`C(6S){A%`M(BA|vYvd%2(StxnvGawjQ)1}E#pGf8%E;>|!x>12le`hZEX zltc3tUtWLFTJKf--Xun>1dbtJ$|))+~R<#@ZfzFW7@Zq>h&vd zz`#u(>T04MVjHWlze98ieSIl~a+sN-=Efu9o?Fe(S;ifU`l!Wr`^LSC^ROeCa%!!B z?g!4ABz}#EEE6kjkwii!Y^g<8Y@e5N)v*uR+0_LG*>;;(SJ$cuR!O@q6g^IAH7>7P zX1X=~9ddTJ;(5D6?K#z6$G3*Iz8N;nw;3+^<84GJm%I$E_tO^Ai8s+nnIRjynPdcv zf-1?P_!{hzEsOUh6C{$sz2KEk*WLbCU4zgxSn7g3(f1m1vj|Qlm|&rTXLLbAt7{OYkr$IvmX76_O(rTYo?dJcr`M@BVQr z9F~iG7i|9U>KdL*!+fCzZ4!nnB23|gHLZ=xsQ1P!U%Hq~bWB}|ciIkvx3Uv^3OeK^ zQHfaCB&zxupnx^wG;(G65|30hnv;k_*!TZgAeQjm-!~z(D$OrFyU_M0B_PeD%A3QIYKbz$4iDprP=OV&5kp$ zmaV=Pn{WGq*l&<*9mnI9ctS-AUWE+=S9NqMKk9N{|NI&d3 z8Fd2vTLX)?w-1kx0|XWOkT(tI-yG3D4|6lp>S!P>fKOsxvE3xcwDjqLyG?eVY;W5S z68K~O!}ha6ewUNw)v@Eh_4j7qa6VHvNf#NJyExdz-R^9-==<}Q^-5($#qkoeNax`p zp8>hUYTsSObfHeYi*@fb&RZuVdgmkm7YlMAsQk;LTjvb063+9F?Jl#+Q=*s(@q(16 zU*xcqK99ILn#uPLt<}&H?v(ED1K|Y{ICWds37R*z>OcCVm?B24VfYIqOM-w8-b(*r z*z``;gCGZ$hsv2PR}%m1*a+86rOW$h`N>*nPe3bEnFAM9~~t9 zg<)Y*KOenJ5fpnzEi7|^3YYVmFkTh!;5RTcd6MMYUx*v38ABM9x&9louH z2z)H)lvQ;SALeE5#Nc?)Zy_=d3y(2Il3qL{dR%iUWaF;4Xc>>PZ;l@0m)gL8TTs#Fxb7_MRuNHr^L)s2LLAB9 z5_HcMU#G!sKUno)N~KF+i+w0V_t|(WCTOVasQ0qTR$;09EWBZ0iE}CzwH(+S3qrPr zS>|vF#ofCGXpz~(zvYT;NMK7+k9)&zB>EVzqss`oQ7TZh zzJI{&7=QHg;)Vz`>QE2%8=Il)7wZqc3DVscP?jZ)%omhFm& z?E?)n9`#F6EZ4v{yD%|Xo|r7a1TDrsgs&#Ugh;Kd$W^XTLm|j+qzQ>czEZn)9>c(Z zoyEY+g0h=>_CA8Npy>{6)?~}}9!r3+*?p$lDs)p-^dgzoI9T)5E)>Jc?1|g~ErFM*~Nz%9$qMLFAaq^i-Q@`Dteo>mGrf~o`*8|1C zhUVJZg#G0jr4jt!rcZeyr;XDKNEG{`ohD*u8o1LNQcaLEV1w%iNvNj7sH48pRU`b-c&J%DgNq)D>7f zHN(+41)WhknsfAKFi>c}{Xus;>3A)8MM@r561Q?_&^0 zz1QJ_ez}e(kvy`{O2xI4{pEeLnLut6yx80h@M@b?ZbQ~q0h=mJ=PoQT%+2tASXryP z5ch)(86s(Vo3YbGrC#w#wEP71vjM71w-S3eeEqa3sY3aY;2J&PfDP@p2b9fC~c_O{(IlEs(ItN-FUW)s;Xz@)^mYPo^;D}MW&TL1+u6) z=9$NdWkV&$QzLIz3b6_w1%b|lSjPCe_kngwa?$?h*`Gvr^+Z;fY4nzK#~2kHZKxH; zH{3nv+X!;mfH+P~;wV>x78eoFpn;452!x%c4ISqzT8t4FYv=37GJVW6DN-nZcS-e& zUekBmtCyVp#VN-uc%|;-(os$RKw2xb;i}dN(8>^Gj2L2|P3ep(46$Et%k~-;u{x9# zq9cpD+OeWESoWN0?pnUq5p?;-r14LBL=?4ZOab0J(GkLr6!%#O1OHG3%v|CmdTE3rwx36|TLpVW^o86rfJH6%Xo?jwlQ}9ra%|ndCfCZwd6! zkQK`CLV-BRrSrXY!K-BQsHm{GOaM69D86)4J`tmlQay2@ zI9`3svq5=ZkfDj*ky8!y9nCJ3q8Z`N=vMF+!@`+oNbJ4|C{`oT z&62~CXa@YYtDkN0)*{6~z<7LOmQX$W2X+hg;rqD;AldB-mV$CP2@fx3!4s>X>hKNI|L!`va7Lre30s+?xAJEE{ujBPSjH`0zY-JfRQYuzEX|8=LsVhG{8jK33sTb%! z{GM&SMxN|X)nY6tR6h8u%hBufw{U-k`A&}{QCaF(1=f^M;)_b&T$LC1yN!p`mMAA{ zx+J^jy`w)7T%$Ew0S_+sD#ju0FRc(S<%g)f4w|UXH99U1Muk(JCJ1%I+@>lbG@E2xKp1&| zYEY1jv{0y2bJ3h|heLPLkTmy;tmx_fifM+e5cQ7t>F)kUWWebB^*l|dT-pcDVNaw~ z?;V(a`higFk0(EEx~anVLsXB)h>!tND`X4`S9cfE@Za*cs4e@Reo*=P=&y}i}^dF_+ut*Z9?A_Mq5xk#Qn^X~|T>=J*xsuuDu~>&W+kkNXB4^F}nhh;Y$%#y|Q2F?k z+VAvf!hF~)Gn)rb*(5;E z%_d;B_RX_GW4lV8WgZS&E<7S@JRn>W3pJ(7q9x@0;u?AHXmst?^7wojQ}CL9yAFF! zzfgVCphxP(sni(o_s6acPC-x7Sast_xq>LlrR$7x=~T;7IcYn=g++VSCXO4|P)&p39&76d`ff)CnX27->F}@=#D4w)WggV;s!-rE2M@q|dL^5b=$fWWejcA#DktPsQr0IM_%i+ zLJxX13DZ20W;~*p2WckMir0Ud#G*0@TCl^AvA0ugKxSua8#TW1=D<`q0u_+iwdCH$ zL!|&STn^M0$*nh(Dr0GPH=Qn?Fw}0f_ZH2DpbD}0R6ofX(8#h$cS-+HT12k zR|NUX^f~kzQnvxLWS3>)c&guZs>tVNTJ*dS!MmncuRGi8zN|x!BJtsNO?xmXfO8u=%j0Wb}Z8|EEidf1<9isTz#5Z;lHR(11=V4_gTrbqcn5W z2SKS=pGc}Z{uFsDcV%m2XT#ji=kJIpp6n|j0M?KV?2_v5EgebORnnVYFc{0(BKQ28 zMAFt^m!)_Xd}ErzL@s-NtpDkdl6Xj@Ahv!9H&6c)brUY)JtC=2Qie1DLU&Oy6e z@@R+CDF9WRl}~7e7i(2Z)ZkLftltHI`pGz54HFTgU^kM8L($#JszZf<-_#r@mtCIf zc`CIL9xpP>f~p7Ek}qp)8Cslyct^$f5d|BdX{n{%QOEM%Mt`9oo=w6ClwxWq+RK)- zbUH(&-1(kXv4ef7D7x7+a~KY;n(X0}K=1H~+>4eal*`ML*3l;Z=c_uev#l zVccB%7iwCB*K(teRuB=d#{8aT{Bp8H+;SYw(L~|xzX6;&S*BJjsDZ7bM{*s(H(B^Y z!xl7!g5h9>tA|8fn$j3v%+-7!{aS;jZQY4H%LhN?{ml3%KLmK}N^$h4x;hDapGVge zIdI}@*p7oqXZiNFQw(FwiyhYn&)X7cJGD#K9%6+0-l6FyetD2p(1iV-#k-<;o&EC| z#*aFK{cJKaayJ6A)me{onlpVeAH6y+=~NT7TX-Cbuq}Mj04QlH+OM>~MF|)@UO!Hm zU{tD5{~$3%w_A%JQQ89;v@+v>T0DxDSMh;!ic9DBQ6#ZOQxxDpgS>a>yR(eQ$#kBJ z#dq@TEPNQCn6& z^wnY7_{Bs~FKDd43>~PY<`u1CEolKn}jlw4ax#7hu;6<>w6SGWsKkJWashzh- zgZAP%a|(61&^s1fLt-RT=nF9Vh@$7#kKUxFJ9h8@W%Mp?U#>snP9}yQ1(4VNCrUAi z97#gey0A(_4G=?pRRCG;*-ikalf=Sp8|tAFJXq-xF|k3`2{kJW!S=TxSlwjnZtq$z z$jstGUhE1LCO)>^4h@+Ay^`0_&#O3g`*vN!>&~N;e77Id@z1<8xqSAbbP^YX`g`}6 zYK1T^JXEgyYvMS&Hewm?eSG_ZcG)4RQ2q0eP31{G#D0&Cj{Z{*dgs3RJmcaptP;xG zzn%Sa7IyHur>dHW#RcTxQ$Rdup3LT2Tf%v`)6|Kj*D%7!eCb?jee(1W>z?;k2qPt< zLd$P)(I-5+Mv7nV)+q<)Z#(6}=XJ3mmgjb2kP(sFOC$%saN6|-m(SfHxnjMeCrde) zy6yw3NfD0$D*}zZ%LL1_q^2*RREjQqLJt-p;Kv)uY^cllZz+?6TpasR)j3u6!$A%Z z<9U*R^P{`<0}&nK5_Yc1w2E#>zYv;z5JsxINWow?Y&Fc@w1Wp?zGD?mjnEvGuTZ)L z@&39sW2;*+a=k;x1Jz96lQ1PU!F;4=W;SR4*4vk=?HZoJM}e9Frn?HBEeR|# z6+MYlz~qo!BNO~Ke4iKijHVDEE6rGg?3|i#pzKQZhKU5!Y#$G)_gx1(S@Wa zjM{9U`pld198_$%S)8ndchLo;`zC&{HV45{C=DO<&M)XKAYfd0=U|^N**tn_aPI7Y zoaKy~x|X8s5NR60)S-+(fGLkk!nnE?6SCj8D0_(J@5gz7JSr2m^BmN+fQasZAOb{VGxBdq%j} z$0?)27$VTUo9)j@Qe7k_LK^9+Uu_!V#*HL64mVu-M8@S|yhjcIuY} z6Wwp{>re(G*6%CgScmzHR?3O~hTJ0P!C4EaYk0Ke)y~LlmScK3UaM_XzVaH&(6P4t zyw-UQDYs}`E8aW`HgIdar$fAEMJ&eq)PU3ta~kAZa;g7w`JmfR@+w(l*F*8lf4K%} z-Xo49ml%u@ny}^KF0j+_g5U{%m?~)(mJ*bZ+Ws6*7L5!2w^6-ty02|cb`*GTNwD%V zrP$2aqRX$LeO}-La>#u)gsJ9QS_q4wlvhuqzz|$3D+&1A0Ly?6`;jp2J&P(ZrnN%;O%!OT3p> ze7TwLAK-wJ8Zrjx$v(!@C#2jU@_pr0;wmMqfwis>mYx5sWW1&;K*E67=~l$;^w$tb zdt6_5W8q#tYhAgBsQ{kfBaYBo=s7I)h1#HyD}LpUjOml+cIWy%DUm^=1UYhAbZHp=@Qj<$3(i%9iOe~u-lq@4ag zEA82Z=PqBG#dq(MY_p`oV7Fq}GC`DJm}yut$d*}12rjO*f}ZoO@S_ZK!{6K&8zT>$ zBvz#Q`t3Oha-&UUm^<}X**?`;YJRNy=m zpYzyZ$N659vqP4yLx1((8Ijz5nN&T*1xJ(bx7o`>Y6?iLdp)o~NtqKe1@Q4nJZEBN z?iFV`q{mBS>y}`$@u8EEkk{<{w8rGz25f<(it$gz2%;jwLgy3~1qjx>c13SP#X%W~ zEru+?%ZYXjKAIj4$Q>PQ6{|C5!LV=p9>qeHyjDEcL&v^3S@TWmB6Zo&cp@qIL*$>_ z<~Pm%Tq?`-?_t?9@jCfYJh@JzLvm7TfrdM8? zLw%Az+- z0o-(sX+Ee}@!k8H)0J#V2M`pg)`9{xvc05u7#gToR^!x)o()dfVsW|R_HBi?v8b!B zM&=H%r+`(H5-pp$40cNpmXA{LDSaMu2aOE?O#*$F>(1vN0{nUgrKWqZ>J9PcX^d8v zJ#88=A!Q>4uw;xs=*Mf7o^M~DEHHCCykk}}R8m#pxZE<9rm) zJoX#&C(EMu@d}e};@<6ldl{K50(Zz0`@Ig!FAGw}oZbKa$~(!?`^$*v{_Ayi{6EA= ze~Ik2b^!1et}g8#B^+9^je`=lj}rfKfmX{Cpw!P(zjyY|?}09;x=bcrPL%4Sbko;3 zF%XHp709u)ocdKI5ZDxzma$q{ya7IFj#O(0&fTja8D0({v$Zb4*|-SVR^@1%y<2Sch@%seiC24a>31XvmuBE zm%3jc^dJRKk};FE8$POphMEl#P6ZA?FqI3C=h=#i&>xbsBsS z;A_x&xjG>eWftNC4nBVJ z?arh~#jBO2)Ml#NH?&0@R2b)p8>+PDPlyy=ra%q#yn&L>%d5Z9Ao7a7!@Tp3iqNbn ze3(6KD*_?oly`OVdIpQkNszZ&#>>t*xD2|qGKBL$r5_A4NYc6ZRir~1**329Dt}U2 z8v#pZu}{<~f%kftYpZ}lg1cu}^ zb?h%5N(%J0{GV1STl|B(c&qdm5nSxBn0%VNgX!pOnT~O??7sV?ono7zjUi}-W-e(S z>ESpAvcGk_{n%mnXa5F_%*b!@hB0vIk!IAwBWhkI-;dkc_^>m$ESyCVJ8a>hVwfR& zSBHu8P^v&@w23kfvstw9HP=VXJF<+br}WP(a)RyRu(SMc)Kg4er%{b%rTAS+RAKzF zod`>ns5Cr9$NnQ51)I$sM^1b$-XutINM4zGoIEE%_gf{#B#S{J2J=~i_M8|7%S?Ni zxa-?|8zUBO_$ESVc=Wj3P3!v%d$YC!HzLGmjxC#o`Q8hm?B)M;Y;)uJyS(D~cMqye z3_rrZw>MOOublIF7o)t6X{MnaCq8f)IR);X-yZYmfqyc)W9R)U>}H_-s@Lc!^23%I zj^0e?M1`MY@JnNG=h^IbhB>+c5%<}3{N5Y2hxXGzM@Q+UuKxOpWfQm4*B3m-e`6!^ z8hV|n$dHmdRpNuYV!l3zh?WcWkai09077ikc z8mSRe4&Q~(Mu0~h!f{r|sjxFk^VvWnmH;pGuM=(vzJO2Y*_iPH@2XT^<-~>u;CBdl z$h(cw)1Dg%^1DV};ArI9#7}cLLGia8f3Ew1;nYA1mgiQQSfEYINh^0QV9V>=tl@MZ z^UEJ$lXJd-4BUKon-GD-dmI}*DWwXXf0oUn&kel^qjLo#GfT9~-3*a;CS7j`gW2Fz zhYX1>aZbv%mrh&P>W<=j38BVe&IE;Jv?ft?g+g9EO3 zZD2p_r+@A`GK9V8zxi%$2)G}I5z+X0*BQY%(5Rw|_d?`w{q1p31FR3#A5gOw|IZyU@9Z>-)*lF-0un7E&(xJYM{#?Q8jn*6EIQsS-fgl z5r}b69}V`P+mEk(q|OmN(yUbLLI?MGvLTRG9Xwz=u!6}A*Z)pX#uR4L%rYshD zN0}_s0#7TeXSRg9^kl1-C(wqL7MRP1*nd?S$kuXdQAfPR(uGEHkj_FWcwb)vE??2R zb!PJd`8zrO7Ll(zK&fu$6fY^$KKKY-!1P2cYK!-~61VB|oY zgkBp>)Vir5*eEKfo3vnG!mh;6OEsV9DC-#%=Ole3VY(5L#UHFn%684<5Uvp%P(8Xb z6PH}Hdmx#X_tL5zfAO%RDHiw+Jy$FwbUsDc634VNL(4j2{ zDOM&)U|$N?A!dVPcH78;Zs1Ik{ z89o-rJRbUfM_8Ev-xjD~N!}JA9mbOBaP)#eernkeU9B0pPJCr33rRZ@M?+T0oXflh5C0zN7rUGfd{?b zv$C*{waGbyIqaeP8Rj$P(D3m(J$X?kN?I zTzaaP2(|o@)`XZ@^{QqJDBDug%TGEc+`G_iN!3HU&zEAJKkSDvIM4|Fy;TPhNCN%v z009W*|12ONw z$3EY7slGLG{9E9-gopN;a5=8*bUpaI^V90{?nJ*ATFLwG@a(!=UEX@_y{l1g8Rm4Q z{7r3dOSCBV4p}7N^>M@xaiQWHUdH!nSNwNfFIs+4R(TR1thG&affkKg<+hI!D z^E*PpB-4=iE`LB7Bllg7&o99|DD3K-(OS@{Ic@53nZ@DelHG`#rwMQH>dZvmr$X&X z8Zq|LpIsIcl{hFOOEu@k zYnx62xFgy27pB=cW=RJ5n3H`~#vJLXRlx&dS>g6xT!tx>MJH!Im}+ryQtYn{1_}f= zfnA2kXX)VCuV(k30nH(m*7f4eDD3Pn`Xh~y5@~=k_{~-pH_V;_HVR_~u9p&q#nvUG zU*PK2UaW&eO;EmZi+MHzM~XM8YWbt|R|VWV^nipFp&H?rDWEg3VgvBDaNAx0Kl($e zO!R;&J=i5d1Od!qGxSDQE~XrpDXq3r_CJ`wsibQRp7 z!0yO@^0=rhlC3k`H<43z5Q!-l8-sJ-W_pwhnM6DoqFAQwgh|Im*Wk!dlm3QQ2CN1O z=->EhrTw!fdpZCJ2_?nFm=Q*lc?l8zCHuUsJZeJdue!UToy0LKM7Wl&(QiLsdDPwj{mY55WergWQI)y0li67>V7xvu*u&c(L zDLlYC!g)vsrNTBWgp$82+VZOj6G$IG1ls~4j|WeX`lS7&v=*~!`Uet}RC%j+Ul!uO z$s9(KgcLARZ!1WVt@w#0^rp+%lE#oNw$?nnmm7*0c5s3$O}LdbeJ5lB%0%Y=EzP4R z#liB!{*e_Q3VG!gglE{PzJwlEWRlr`<^eg0zJ+1xUhOY)lX1ohzCe+-GtUCN=!hv4cQqg!GkQn%}tj7@P6lIC_ zxrh>at`9cm*k|%YiWSsq5=`|| zcZ~`z4I^r}!%;@TA94Z;I4fV1Z1>WW?a#NY0&JS1lQ6?;I49w65tv;l^lk9Hq1A$L zQRvZ}`EQ;*|L|w=2B4HyF5k_Lvq*g3Nf=~Aqk+b_hal2h9mOY+6j`fK^_d;BVMf(0=`D@6Ku`lef)%%!)Kq4O7 zKzOSgctj%nxIWwBvr-stcnBPxa0t63$G%oMc)AhNxBO;Ua7JqEsNEXR^wZc~CIfj_ z!m^n!F^nhV?Dv>hVKRe4nk}$Po8;d@ntl~}f zXd0_5h%w~aqXP(CcoWqp+dThsEBGH`q1kLwsC-7BvgI;u$((wCB8b6VvfO%Su-p+A zpYkUM9XJf#93tP^W<7R=MVx9HPcR#AZYYTTn<&(R)SIr{rhVpQ&x13eMU9qiJ&~o~ zTZv_v0Ic0y2uF06@+R3w8&WmZ=RW|Mp(-(xMPK8ORWGwPJ5pZ;oG$>9hLK#CA>FEv zuYqjJDo26k!pd4}JRty10DgYTztFW6EC7K+lq7N_qEiJCuRDw}iAqeZ)U7fFkhkmE3bDctuWjYc*!Zl62LoQR_kNss?5ELzAZBNc+A?p)w=1UjUstn>5^J89Mz5{`|*ySGckpi+R$-GEy<_!_;=wMuZSTXVEM}cO@;2OBZo%rd()syWS0O z0Zt@ng8|>Sb~(N0thM;uJCH__Ivn=Xc5gCF{qDiz)}tcS^=}7fkELQobpA*6fAesT zsyBE>o+s~@n91DMAcHUQRxEXyA?es`GTK6rsR$)GGRXQ1gsU+o)!(mCWYO!CBeMiJ z?2w`4H2rioG>Tyd=~u8>k{%a2$Nn)5`4brN`sP79#O}hraC#Y~7fqaT-dfY^Iq|{3 z$~@FJE7;JW*t$%+oF$1(H?C|trIhD@+>OgC4rNS%VmR;u^b-6fop@2t7Tr~dXP!7r z+zWkL#AXtQNw1y!hLF#xj9T6(g36<-Yct{ozjI2ZHoZn z0GGAp?EkWNl;l|!KQ6|sb3QPQ$eLpEul#rYz_gW^+%?EB=QU=sBr#s&Tg(>llH25W z`+b>DKVB1S7-j=6cz$@yDgUCuC9ipG`(T{r1O$_pzIyP^gFcA2+s(|oDJ4aW8zWJZ z-3eXzD6BP^k%^4 zky<`}XMFNuVf*)VS*EDZ-&mjfqotPjZQeJ2pQv{$93?AsbWHLO zC!ArOx((c|I#Md5NiQ^Y*DDTjK_r&?^cP)DV9%}wGCQtbovvu`hLhi9hQ(rZ=?5E5 z{xGL7VD(?>QiBfTMFNcgCLNICLPs31(w1`jhp(Q?0!^&pMz97ekef}huNgz1lmp#) zok^7{FDW5B9zm?(hCHH+T#h;L`|>UOkolKAG;!Y=yB}F$Z@sh-199wxY0`4}Ci}7u z!hH#Juhs2Su->q0>;9MO{qXnoIbA~58WtcN6#}PG%GX1O(!-MrFN2Sijjb+UWxC&0 zeF7p@o_G87vzPQ>D|UMJT~s$2)OUb;;imTJSZ#8;p#q(Nrrk9$B&UXSy?Q8a`d21B z_U}{z{$zSgW6pnP4Oz2>BwUered2)T$QTioD;wlERL*YuU$xZygifh0xHC&**k6Hz zA%2@bM2{ehRDQBk?}Ls`Y1bNrAD$NhiN;bQ^s=e40gxUrvoQyepWe&ANS%%cM0gW5 zKXAM*`6U=r6fcL@3|&iQ28gkXqTnFeW`2su`vaLk%yjd#CtQ3|V~&H+DC(k!d?qa6 zNm5O7D}F(1)G2C{&ETjz60spLjpZhc9c5Gk>KXisz$Idf#23N9WjwQntf0}GJEE#) zv8U60&8Y3;w@Ex1j$1>Wd$bECqE5!E(txxEJPW3EuPIsqbah#?(PubWo@57WF^)VG ze~~@+qxDa_&pW)o{S=isE=@tz;qb|;<8!vm630J0^)OFla|NiU!So5V6Phprf1zgq zkH8-cHq)k7>xLxK=nXON!H~~~Ap==$h>sEtUp{%u`$9Q1xrM`2KMT^)u(C3oQvAxl;t>EFO3K0Fn2xB$L)Wn z!MbX9`bpgR@M{EqU@eJYlD z-S3ni91%=R2LRbUKc>4J7|%l6oyurcjgmt?*xdDtxdeus9~H3wE04rZ@x?mF?-$2U zS=!H7{0{bWZbmGx4=lxosqQ+dyuY%YW>*5>8fDBg-;L;3ec~gS#p#QpsnvWK*Ym~6 zRWFi+$J1a;FJ!ioZY4pB=5AUj-_7w)tN=teQ-^?8t^n2iFcdNbrllf$c(|6jV+ppO z5Opo@Er{svmW7^|&#;CVVtI_Q;QYNSB%Wz%)C7{@xmVYV`^xi2kt56egEzrD?>sE+ z6?@g2s=12zUJPKSESZjOrbVNIDbY!O(Bpo4b42CP-9#GE&dzXa6W98_n-@ql;w4+x zoX-jp-fb}_1*rfVcM@pfvSk{KH_ zDaF%v?MJS1Xp@8WRcTo{0Alu9Fip#iR7(&&W@kes^8vOp!h% z2DsMrz(&0^mY6RWRLE>si;`{8X0r}Mzw+XO`;IJC4!;{W154JuVr`ud{4VtCCg%U; zMSAA#8JA+nO!>FSym`ikcUK0ufYYO*vsZn9%}=`eAI7Mu6t^}MMdFf?reGK|`PgkIx=sWOqoGn#F6Cwyc2;u6?a+oeI#mXMt-^ z6T|o>XZwGBB-{4w-7^!C2m%+_x4)&ard{SI`BChHafK8Hh(Q1~c?l6nM+zx@Nk^KX zYV~)WTT+{VxxPZL~~OLX)CoRM@xN}2vNfxX>aNj0b}|Yw@TE$(?h(J1t|J%%YBPW&=LEG-v7OIRq!xN{f3$XN7Y(^JDtwFVv_xC!y?0WwF(xQA;+A0{Y% zhEZwR;C>Xw))9>5Ji+&l9s3#2JU_mT$7r1c!W5#&E1Gdp2?*4`p;2Ttz`ZJq?`@gze@g`^I{@729n%lqqVZVLM@80Nf7Rt){>ajiN@6Y14*_7M1 zui(^r_-nfW#t3(R5)}TOsV3>C+F~vdS%}y|rl`Br-s(;_=CKn>49h1H|M`)_3%Z_`b1@ouSLHG456K1#vZVpoBeLlupR%i~s^tbXo4hswJ%R&6nM+z+@nvMj z@9=lwprad&_y2|({!$6}oUe7$k;?=C6lh^(&`Bp? zV{F{(EitAT%d6crMZ=O#G)J}$A@AvL?JBJRBWK-;1^yyg6cR67KAd7KOF+jo2GPIo zna>|CP{q>|;G~f}YA1E_s2kKpLNDg2JiuRxfFcS6GJH~QMPk>Wkl|cYYoHqbM^n)$ zrw|JR-XE}c1CXxLgDBcHaBEG)=w@2VC<~2F4i_S3)JPso z4g5V3K>h@;*h^GiJQ*z^aaqcHG?o)ftH_3!Bh(_g6I4F{oiF9`gBzA-gQ4bA;xI%b zKE<2*m9(J5zbPXk$bu0Ie#$YnhwCCR>P_hXr{d7NT%1Q`2;GW z^m3k{eRn*1J0i~}fJzVE4+YOd3{$+eof6ZC4Jt_caa2qKLuR06NH*^i470O7EaXyp4y#)kt$Fd=}dx=pT+jG!K#ef5;)VfTi2rEy`$ zsI_fWuX{UXrG1QifwuAhjo&2`4t#_~zFk0M-xbIxZBMC;z5(=LgD?5ywc`I1A{+h$ zxYKl{MSa{apZsv0@3=5CY+cw|UL$~oP!l<77!quRFvU4nYpws&VV>E%(haQ2IT>3H zdu~8%09cP{no1`0z>8O8=D>{(^xzf>7R!@+9=KprUrA2%db7*@bW<-Yy`n}3IAp&$ zZX|*L5^hD1G7<>MFDL_}6~O#MJCS~Lv~j_8%1GAS|T#Gt|Mr{QlC!{ny`Sh%M(jJT`6pfbr8U`{BnL68C{RJJcB zvq08dgf~!>`Pc#{EdP>|j`f_2LC%5<*E(dwd|_>m2e^}FbM1I$^u#0i@M?SI;ML~s9M{{!=Y7GVss+3=NOg4z1N_@0eOI^Jy- zfHwU0zOK=cpH5EQH6(jN<2&XP<55ju34Mnk2!A|zM($FK3mCm^J3e^)h+ z`6=zDnyD{Au4@uvO4efzma65c%+3}XyF1)zTj?O+b&<_~V3?;Y%q_A+sEee28BcdD z_FeLp9X8zVqWAtDw?Qc$VrL+*jh-AubNNQTafOi95QaeON<4x>!ql;)Y2>Ubtci8& zFh=9$TG(^=L*C8<8D`dJ4x?5&>C%|olOFY8J-HnR3gGS7Eo6~DrG$fSfYPW$jZ+hG z$8iGaaJj^4buNh1yg}|)uOv03u0~@$oNYTM@DoaaiNZ3UT@V<6fe1#f21`bpKNUHu zHHbmGblpQ+l~_}kMphk!JOM5<;8zpHIXo@&^Qjq6vH!$Kili#`2WB(HugFf279Aql zt1gB3ItW71xQE#_!^bqOA|L$@?%lps?CCDQcvz;GX>t1Hk@H;zJ4>0NE>16=Fz#C? zk^uR$oDDvW`hdJXi&=snL=<74Menr@CREXm9sJilc- zR2#M~VDi3k4ZX_A+0o=0KZR%a+q+E=rj@lk`$dZ=@rKtANV|0vS5lm8Z)hFqLurTc z?DZ@aSJAa)CF-Ls0ue-R4r+&rJvZ{0b-s)k^*JeSP5 zH|gm5<4n=V^o(tDyAzZ~!MP>;&5RvD%#&pOd3!k+&zhbyRb_M&2d8i4;Pzp9e_X)7 z^)&Ljcc0bp*DI&Iy^|C9q%to_MXl|^tk)i zoRPEsL|xQl&p)13xr`y*!!zNDfriJfY%m~p6&^nAC&ym!$sw-yvU3q$_NpITQ04_> zM(O0$U(3L5ZCtToYKuX|-`;U}85CIPSYUJhRm_)A@~IpEeWfsjtsXM$-yLBJye=P06;api6dD}8!fYoWCpNsb#B?@e%k||h_Yb02! zNW~OZ4k&h^K}b1qb$L%DT>pwX#+#CICg)ZE7^qTrW}F9ncudKpxxL6y5cKJ7F1P8} z_D$rA2nN_6H^uj=^YoXb38N_Fb727EJ_xa-pMshzXakGcg2>a9WQ*{c8W`pK3U(s` z|E(nxFt@~$I^}-GQ^18C2eI0GQ7Z6EG67+Z-v2VQx-eqYZW8Z+M=lC`<`+JP6D9Hh zCq;z-q-56)^s@3=J^%4wc0J`gq4`)Zy=dJcA#B85+_4h1;$@OC#dWi1C13oT#QXP< zs2N+HA-is+E;Pv*h?OX1n0fj1%zU@b8%Y0hXes2T^XY!zhbBTn@4-Lsa@{rhtN`n2 zRv!D9;CNS9R-qb zVF-X`fbWI?ZH{9;Pmu^l(IB-(sJC*IBdZcjn=T@`Q+*y@355_G)s{_vLU}S5tNwH+ zfs@|XDOF(~24vEX%n;%b`b7i|G)cg(pvO*5SXL;(|Fg;4!~#tx!MYM@8^7JEnNLm4 zLIgCoj({vXUhhi|LP(L$yA*dQyUQ6M^E|-Eku>2t|EA=s0VN z2r+BR6IvpD9_Up(5GX+%{_K}kM66uf5Xr_au&GYuNLiJ#C%%e8@=Wj_&5oohguV+x zAC1*O7-gCRN_Hn6Nt(2Hs?m(#o1E6xe&rPg`-s}aT!uN{{vwj(rGPI~BSfr}B5L`+ zNy_UO{(L`qIh|idlZ@BXC=`aD2cZk+0$(gZa>mrkkcpku&HC-Mu;CwFsi3T(3UP<$ z_XEj83C-nDYhm?F_O~hG#qLWTlF_lTq@IAKNk%;~Dj(krwq+|W4e&vt-%NEfzU+I+ z=~Sx7EJwf^y;Tich?L#H(!~`VzhwNvgU;_)&?ThIdqYLsz?9DX4?p6g=Dm%TMCCQ> z*yd6*3<;Yc2%c^pwfy?ZfgOWiZ+J3?=nG8%tr-P`W_z3a=7OC_5}nt;-+d)%;naPg7J#zxzMHFIV1;^Fv-du{4pRZBAtkbfH)8jYuk?R z3b1S=;_>UHT!uVinWr&@r*4$GH_3}vUkz9OAWdBPD4t)4W3?O1kbe(*#s?f3sZH^N zT(&+=Ar6kr@jxZikjAR#y?Q5X`wE~D>>@k%@_MgUg!REPmP81tkGggl3L3b!1PrZ*Qm@#E@{=yXGUowVGG%`6 zHZyZDpM`USy7Pr8aJh2sl}0fSXIgCwOuFnU24T}H2dCa_KZNbyuIH}xno7N|)gp^g z?&P#4a3Q0MYzpM@Q6kjEdp%E{gn>s==PsVf>a)4YaJd7 zaIS#n{8gWQqyGNstjfsUz9Rzo0exDx`Y~M7#x#6 zpStKc9NXNMfc;FeRN(WOri!Hv28sqq*g7pF|A4!|r}0IN-QBf9MmeFWmaXTv-+dQw!Uq*V)qBqqBvEu~%%Px#0WZ>jOcG;AYjts&aX4T&neQXMHV*D#FQBq1f#$HPVb%aUL=1`Yxs*2 z3~dLb$LXTDC=5D(f|jPp)E26=argr(=BJ%}(b(urm>gr2;WIWk9=)cs;MJQX0j`Yx zAJg5o{OCdR)KOr^Lsa*b)4==F!wK-7b|bSz6@RmIMAIZh=Tih=0xbI1!#tt$dEr#W zQdR5=?rMOKALJ+>_(W?zLduq4f(%_Ww@CKjMeq5}fp-A7cL27bl?#%v+DU6cG~7i( zOwWXeH>{*ZRheV$8*HnVXTXOct6R+zY&qNFLZ7!= z?-HDUL1Cc)0u4_`q+_!x6()(4kd$!8qtXHgzlt=C^^S`2$V8p5IJNdIckE#D{rc1T zlI>;itleP25sAA=#E1XN>-q{v%Xul_kwiNwLw0}YTWfh%Bl#8<8&uav>=10rAFI@d zt8}WE7Em+3qc>bK%!PC+OI%ZNzNr}Tj74RVb8G8GhQzV;bzTI^ok(*s;Toy!te%) zGDi?81P8Xjg7TR&?-h}*=oYb)Inry251a1RUOmsp#_<_QRld4;Jc>9kS}6?_k)}kq zcFN=|Z2n$OJr)z|Z@R$~^2xDL-U(lLmF@w6vcJsQOdWlzqQorNwy=_j>;DS7R=_0s zOa}qje<0||tqyHJ_%M!zr+P3oE}x6aB|BQU`F{W&kD$Dgbs6+h<|<8Bc5cM2^*(cd zh5#1KqJj&)8lJETQJf=hT(njqx#lom&;8+o+|JDRX@0(_uPUT_(lbVW%(zBqEg=O5 zJc3YdXhglT7X<}9?$2{nOu99!<)ap$ZovGI4ms@rp^EXH)A#5=S3Yivm~Lj&Gm258 z2?n8=j4yFAXV{JNcYqQ$mZHL;RTmV(adeGK>0o>nJ6b7YN#kEVnioJWb#NgmSoyM% zHL<5p!xalxBPncDFbpp@GC>Nma2oQtu;c(sSa1WtbW_>%q1w*e7^s(jOgJx5mRDVE zM<9ydJ_R$%4gOmaQWKS6mVM&DqkNv%LZgsZQY}PCv!kTtfb=Q1>NP%DCiu#N$|To3 z{wWtMVIx}jaVz{&y2tB}ZuyDr7ZZ5x4?j_5$OR}{miuDWABOSwxhY=B1!{~UF<73L z*Y#fbrg_zg{Ry8+YWKC0_*VB!NH)?^e4L ztkZSMf7-znh)@)sOexeqM068`jTu=|oNQ%$5cSLN&AJTYAH$wXbt>wrvdPx#?1+^T zULHs;i0Obb4ahv_H@X@NJNJd(wsUk;I| zwrS+P$p6SKfTZQM9~nRq=JT)p-4FVuPKr%XkP7olIAQu5h-v2j-yWRC zHTxi-_+6>MI=5LqOCCT<^t>CF)P{ibB!t=7!?I&^CWu>Ma1Y2%oSo|5F00;LD+rZ0 z!0@K4q_f*yuCT0=&$bpsX7p$)44iNx@p z+qoG0O?at<5D?Hh7~&hXUL8p5MQjsUA*3Z*FoPJt+O|PQ?!Oy%lCb-Q@PmEL;D03QFc8{aQeh zgs@M%s|4=bj6l5xe`pdu77`lXv9HB$Q61LGVEA}(jX2h$SLUQ_Us_u#&RE=2WSl3f zKsbDUm@M?kHrzjRYu`r;DZ&G(5-6X?SFD`Nvp4WT&&sY9!-FZMQ4V4Q zeOI!D)y17J7B0{dS8QedevaZ~6~TGvIM5N<=vOk*d-${h(LX_0Y{W+N$4OGFsF*GI zrlh9+7-m%+gmn<@4VwHp^1lU4I;By$azD=`M$)GU(@`Q@OR9D1m=u5Y46**;!O z@}xaaX6`!RIN{&{=uHlSG@IoPRdWy;^e@NPB;KhNu_I!c4yfD2yk0*kJ|7DjTI8Bj zMWhS{otl5&SeFU(8|-yj8qVRa7VM9c!!XQ3`T>5T-n*cojc zO!OFG6O&m;nLVTh%QODHS?vDYXXu4pEDCSePXeL{qG6uXmpnYVEM&JFvzPynC&1L# z%QPt#g>rkm#i9P4TDgPmaVa128jVX3ze=qvqDP&_E!Do93C}R~hck@7rGjO#K{L;k z{BEWu1DeQ+Q8XuPH21rP>t*m2=owAv`j6Ycb)SZGV`lh>-W?Eu>tH@Grld48eY8e> z*wNan!-=*3oLrgqJlJpE~fnyU-AY61(x*I~)9pLrD~q!KdV z+OlqWElv`t_Kl6Zt~pQD5et0tcw~yVcL`Xt;GO36=BA|>h7?m|A^$S4A=tGc%$NB> z&uJ@at(Xo`L_@`BBcNT$u7MaFT+)9c@} zC>Nh=%b8r{P`c+(izwy_*8v$H2kyYNo+j|z0Qb2DELngjVW;wjCWIb4`&P25_!wK* z938l^)iS>@Vt~+DM7~xGUvREz1+B}jOsRk%{;9BT#k^EFBZe0^KnVZ41$Nes7bMp- z(Y-%4-<9&_v#tQOkjJ)gcIWN$N8g?Du+F(1Z5~IQ4u+hH<{!X@)gS;}% z6|ZrM`pO>}L9LBk9X|=c`D)ZUPh-CerdBB=e{r?lLWOv;uM%C~;w=}?71#vdja?86dv z7{hjzXejyBw{w#)a++rHbSLI_-J!{>;C|hv68;yk1#(QP)f@J_I3g_~N3&&kiqHS( zg^nB9o;FY#A_dV~=GvXz?0-mRA)@kg1P~v_Ur0-FNX3?CAkKXK@w%G@;uuoNIpN4)bZxTbGI4@JOmVQt93B2X6|U)w)S6ku#P$J4cVC%bZ`{%Iw<+awnp|21 z6N)~~S6Kn%r}He&!2t%3ppVV|&w17xVL9Wu$WP)7CT6?gg2|PN=gg8$%_E(R{09Xu zzN5)#b9@TGVN7M7&J>@0AwYt9triu;?g|oKA_}>*>(SN;#G>Z+yrQ}_---+q(P_AF z4hv-U#s`~O{So2VR+<7OE$Pi9ci%X?@Qu`RI*p>bB-?u7p=gR5%+(>^*vW}rWpJjk zUTAZD#-Ck|X+e-j=4~BUb&0YCb9TQ{y`y zjXKOzN_hc*Ql+)F+insJG*Z4pv9q2TT|#8!|lk3yNEfS{L8dJ0uW=wK@Lw@%hR;*t#9^u{n5HO11**M6!%X}=nwCZ(~ouB*|!Of)n!`h^37{8$<%6n}D3;ZCs_%n9? z*ac84<3x5kjeR*Hc`KbRG5Z4COvq}$X1uv*7a%>EXO51)2uhG-u$4%7EUny})icSg z7CNzt4HkyT;{j{u9I5+A5;SJ^RUCwqe-mA>C~iD8-6_@1$f@12A<%Ac_DjqQLLiMM!1Q6@dMo-sU~%T;>(u$feg9O@ zaytTI-FJ9Nf*yVoKe(+))ui_rfhgd?`@6$Vq}%+!?R;enfhZ96r@{|V8L8j5IK$eG zv*)da4HXj$-iwhqdRPuz+~X$G{K&6-6(ykN2GH}-mHlb+G`3kBU^q5?B{1XQej=Mx znt#4z30Kuhv-P5dtfpO1GLQ>+`u13YVf2Je8s`2pWnNBb4 z(bA9OH;YR)H9j?gd2=1$p| z1SS}O_q=UTOm5GJeZG+Qq!tqnq*uFMQS>nyUHo5PSd}*T3R1g{Ovk`z(iDc|tQ7Un#V% zKC%S;*L5-5@p)T|Wr-jvxLe`Nt5xKzF`9O#xgRjNIu;XOT+eLqBs252-!)}`FLXj7 zX;ziWG9GMru!tmjEQK}BxNHYpGKy{#C-#rKs1ZocFnopCMz36dayp8yJ0vJTrGrfq zV%X)tOz)bXT1AChyb2Oa$gvfYD3Wtkt6k!HE_9d|>@I;Wv`o?-PdSn(>E7fmU9ods znq|#?HQx!KA!JqdJL?-jf}zYeqkF z#IF3FAj5Q9n7^TkZjH$;k;R)!cV|q2zF;Fd61OZp#=@H%1$RzSsj9O}E9080t>V~A zoGotrfK5Y2sby<=r?S{-=evetzCm(kn1aP7!(DV}^7U7ha_923lirLEV3zoJ-lPv& zuIebWQDHE=r@)fTgXVs*ZEc*gJirVsCTFD!~|3MlW6#h1Pgir|tSd#SExiMgQo2-A+ zO3P%5w}Hs*ZZzZP?qHfC`f`B^@(uMCP&1h4u@KX(rzXI^lyYk6Q#2}%Zwi2+{|>UU z4QI6De#`6oz5PCGiS+PUUhXt%MJpv5M@9uO`!*>%=DMU!X5j@_vv6#--71OEn@i{S4w38gmU9s`I+FFRNU|W!3SS*B)D58@Ud*J?Pafipr6^k`Axp3(cA)6d zFwB3VJxlR9fcR`H<5j&ErFHs`Y&Z|Gb0FsR2?Fq9&VL@pJdsriSn*J>Xfx+BBJvc` z&|utg0WdUITPL)y*!YMibz(1n9h?taP#TudC|Pg|NV3!Mc`cjNW^wZj9bgNGfP$+C zOISQYC#R?(5&FU)2?U?fhpGSIrc*@0x%6=xjpO33JizvFZ0U#hZ=D^*aSu1z=Jtqr z535xwGvNbQy(!XWcG#b4-%-T?q#3Aud~yJShT~V)&V`aI~e5d)*N6 z*9PqQc(D7zqhkV3U>u(oSVh&$>fhxzROTt-Tsg*{?Xlec7ZHU7<|)@KI3rxCJ$DZZ zLUH2x#^3nRRL!l36yMnjl*V*=$~X|k@||a9dYIi#G{By^Ki*%RZ-_l?+^ym~tg>Kq z;P{?=_C8C<*~B!u?)v{h4;Z=R6)q90u4a=vtvI2x$$~e#{$XlNGt(S&L1kWDU4F$| zXKgKTYy-3Bv{XunCi{{R_$(cW`8dLIzjIBQa`uo<9)quJAd)cH4zWBOntB+%*18)v z^(Y8Q%GXOLcU~35b>0iBQJ1ssIqJM z?$tEN#wU8E3|U1;F%@s1qD%78%bS_&!tugJ>&0*d!?{NX^vR0TJ(fN5lqY`_=c@)- zgD+ftiNo#NRqH%%i^6zGHJHww4Qs#m;5w)lh8Ld2as5q*yEh3lD_v}du6BHv8vwWR z6PyZ70TAmME1|dHA6UZv$CR>t+9aRFGysgoljLL6UOE2*zWSUNxZ7o2`lR*f zj}N_gkKJUR82UUZ8nk;LmV-O3WhcUW_EeAoj@)U8`jH|EcmQakG+bcx^6C)u?IGU& zeQcioxA9UtYhY$xJkz{r6OEwb5H$S2&sZ(xM&QuGB>>%~)Ol0&-Z@M|t(=fGI=*5J zgyLSk@VP`4wb1XLA@rw@{>#$33 z5ak1sS9D6|C_V^+i`w_9i+5)`LfEmT+p@B*v6joc&HRgOUWU6<{lN6nYYPQ4Kd6g- z%e_BDVYm5f_XDPIqvmRlA_7PFn}1Nx_sBxA%Yf^O_bY=at6~pz3<4xF=1l)ZNQ~kZ zg_W93V=*tA>V3BH}U#!aw2m$rE zcv2h-KCufQQf3&9*BOH3FgOQvBl2XeswFx#tGHob;Ooc+fV_}2AKyC}(%sZV<2=<9 z#yu+ayGxbdsKHC3g@uKa%Ofk@3`3%$1Bh!b|5Eb(dZU)<P6uBk&485Z# z_PSfa3v2_Q(uzqTI$m)7fEK=E*QwZ2g@hxh^2~#Ntdfp)aOrHCdK=X-|5KEK@Cg=UkPM<+nk^pWn1i+Y@O`5 z|2Ap_Z0&N1P4)wgwAp#aMhJCEyfOgWL(;-i`c$ir}7u* z+fDb#p0VZqwi5O%52!>J#+8N0^(`sDL_cl$%e-R&m3e0F53+yO+2`7&jpD-7XF@p5UCbJ@mG(ex|yk7Q3Gk8?CdQy&iwO z5j*#4zw&CmT{?c4YU^!q`92xx4t8q3-}@DWKUL=2AyZ&4z}cdSMNMj@nKzTpV4_CSkxM3logad#dihgRn^4hC zC|J_$z%eN*cEY%bCi{}VoJDrV2e!v<%HdzZ8+CDh`pMYe3M*({yuX?zv5 zdRCrEO zyNVKv?BX;Vj}MayPkw&LU3*^{9(P;TLYr*MtFp3}JM?Xy@b&4dEAp#HER{uMp#SHzV0T-ZQ6VyfIdsr3U&E6WLi$k)rRrn3FQx(}t>`B9w-BMT!~JGS!U z^lxdwVLeaoj@6n<9T8rGMLMCyv0m$vTSk~JiL#(+wauD5OccqZVD7Tx!hx-2@oU2$ z>_pxiNBD4BM#TK>AY6ZpsBkc`9q?R`oHYj$meb`LuFPzfIIgxI(QVG`>t@7mph8fg zh$F<-SJ^U-cZ#LhSix9ZU<2Z=UVS(B71+EUOcfb>nKbTSi~A2ELodlWlC zfcx4@h4YJd>2QiDB-iK5+%p`TXGbq(w85$ub$D7^p0OH=ujyaK`1h}25OI%HX%Bqd zY@Olf8JS^f?trlpEy$3gw`aDy@-bY*Yi6_OaS1(Z0>G-L6RND{y>XwxUj%6Zi75%or2;}VHHlWzKx_%i4kt^AH0k+p5 zTK2U`yjr!3jRs>qF&*dt!{IS2evYy27pr(Vt)6eYC#_XzmVJskrDyYbFx<~4nStxe zq-I=xbbB^uarO2n%hGY^?pf}*_c}aubU7%17}209xDmD$(W^MQ`GFxLbfrb?50I~i zLc705(g7|&v^D%v#rvwn-W{jALGCHqNidstz`q&@V6+jZ?jwLQa+C6SW^|T))w-kd z$Fu#9LVM3YOG#BjL%+z?Vt4zk+ha^9rRT1#?{TQ;pWNA=3DS^&w9&gU_0l&X%)>l#!nJH7ERu_sT5sZq4o(Yq>UZY+Q_rY+HYH+ z+jrEFFNVI`jJvZP>8^&9CRJnnZTUi{VgcOL!{0IK>b>5?E?J#}QCLC^>?~x+863eb z`N8D5^bv?+?=Gs&c)q8AJ%AVi1x0Ve*OQkltN1&KgJnIQGAYfj! z@gg+1TJEK#uut)@r%X?_KoNkh7wNJ~Et}bby+*&P1-ORA!sR%t()#84?B>@I(-=4v zKjR>scFoi26IV!ivYEfSA^E`1TNlqtVQ3QnZ5}s^4^d%D+3a%9FEDa-5cQ0{&HcY= ziqFrJS)f{n+IE3#Y+~}*24m)5nDEk>&Gs?sE7fbcBkDum43~dm=#lG_AEghg=|)Tr zBi-f_tE`Q%8`XmW6(~^wLZIEvkyuu@baNLl*DfAl5BmxGKyf7OSS&fFdgJH2PF82# zwvR~f9h9aN8zoVeAY$e#n56PKYk4Jz-9&PYg5dRA<`3Div7ctW**57mzfm*>QBNQF&Pi zvF?JeFvzLL%)E-{-s+OhnSp#UC0_)5j}M^d%w$?kU02;k1+DPW$$Z)KgBK!qswAq4 zS|)8YCv1n|}tI6R~r@J>7F<;U11&XdNxeeEg@M`a%<^;WaD~l+f87|!up)L6)~DMlL~TK0ah#L`||pM-BTqk zos#*x?Wv5Q@US=KbEs~k!~+oYe$`YKT`)n^7fC5}iW!3#=h`{9B8q?S{wW^#vJB~& zft`AJj^&EQfcuvG?x^=w+rCv2Xyw7E>*ra>6H^>-z!a{`NEW3GXOJpbA z`zlSBQ>t<;Y3X&#GZk|}BIuErde;okwgRw%N&}q|YBqloo0c5`x~RvNKmI6%)&jNU zdXHkv{w@AdI@?JXJeFa;DPf}|tzrI=GRoaIKb8tYVZAw^4tzWR#gp*03oAz_L97$m{mn-5z_pokJv4u42gp@j&(vL4;!v207aL(`vF${{DAlrI@BBpE= z?ai&VHDZ??s%-;2Rmv+H#_1GzJ?NxB{8gjp+-R#-;3*Z}u>~e(RWq(>K^!mze5AF^ zfI{@E54Hr~g#MuCC+1Zk__Tg|d`=ieg5B2XH9&`TY*pO{Qfr>8Qvs;YSKAH4BqVV30H2gkkyMnp}83 znW#a@a?8nDTYQfI!;W;6bMlCd_N0BGrYGLB?f1}UY!XQpPR-Xj%)^apT^*62OynN^ zR{UnDwIrTq?Ky55a!iTFpta_QEbau7#`P!UmZUMc)$gkWrlG2ABm>nQnFp6Xyv<;7 z|K?*{Sh*%lLIP+uuwc1~_+E3~^IfVC@LQHvp@0IKCm+FCGGs6;0omNbMi%i+DLSoH zoQ`4fG9JR8N~ga8G z9RTL~k0gNm9z|75QKDy_)&tZs%GzlxdQdG^)a)?yask0on!b^XJKL5V;7?hH1M|l~ z2D8^Q4%2#`w0`^WXTL8#BiNt8n2y`+iDa~IaEx@!R#95dH9zNBoLp*r3h^D`+86n| z;cxQtyeMA_3)aaYY8LD3`#6nD#x)pE%ei`FX0 ztrX#4_}z2J8cMwb=+@O>Q8A(=Jc7|W-JFNg4zdn&aj@TVLj_5UY`*mbH8XEi7`Z~?y zX3ib{!;RSE&exj<9G_juySdnVl6&7rl|R1re`rK~ia!?tN5Cs5ll<|kC9dI&*lEDn z6*Rw({v6a>>To@hVrS!##V#j6@;5V`6%3Wz9KQEvjivGjw7ZXE#jX(0OyyGLEAo9E zZlRU0522zvxByBA3NU@I5jk;ptQqG=Yg%$e*$322yCg>3rS1T7wL$AfwTQw&@7YOa zAGU2VpFM08$&CkExtpHk!7@o8DiwB@+4kL!hR$E=L zX*n+nlGMy(fu8~T;I7HiQ3zh+GdVokWOn5$m!zcT?!7c&0ZHm7uFuzV>*fh}Ljwz| z-`9cr5M)rRe!LJy)!1C+I6k#8e*hNc9*i_U_p0ctwP*`VXGo5r@`b#gHe;4Y*32qcs!uxdu zxVFMmE{&E=KqJPMH{e$fsI_Atv2B#0^5hO4dn6Tgktfw?NeJso&C@n#>c*_G4q%Hy z6;R6E+?{KdC$a32i-214hbZ$Dt8w$-y?kpaMnB34s^j;%1tW=0g7uYgaHb{49z9D% zF9JjX4IjUpMjkgv+7uUHhf%uL7=z850pDuhLs&(dA4z^HNNq$mNynon)nzVV1VIRu zR@JIiI6`R(TNM3Z8}w1plI90<7vtK{GMax1llzRugfT3byEhV# zTbE`Sa^%v7grHL>|MXr@(r?I*Ten1L058_u)pt0XRqQixw<7!2;EIa-U4wG*wqw2oaz4kC^4p~!>9|M*P10_v>bemZqrYt z3m=ITK{W`nA5=ysK~gPH%L}*9Z`_%pXd&Eh2T>W|XQ8vV+nr(TV>-}`e|?U;2nd=j zMYxcW`Tg%eyeX|LP=>l*2{X+Zb?aJdr_g64_dSt)%&589n zF#CFw_P+YPW@`Y zra!nah=U!|LCO%Eur7u`^Q({7Lm%7UarBXDKRVNL3ub--*;2UY5PA+ zy>~d(|NqC|5SfKzQ{tG(mYuTqmh3&VM^;9%_ulkIju07q>*^@y^?E)Z<9@&0v$01$9aDHdxKei#=UUmV;{VMFGkzH@v7^Td>(s}Pd?Y>J z8N1vObh}5B!V5d)0kmwb)3Gz#k!hc4a{}e*$6`2iDJ^7Rf4_)3(bbnOqQ-_Xpc8Ui zYl`H$_fDSSV7Tug*g+ObzFiHxlj~2myEQ@T5rR-sXQbg+bdE%X;HP3V9Da8 zu@1wajQsszDwDtV8#*V%$$Sz}>rv(_?jz^+C9o!(-s@y&t}*z!pMS z0n=+mDgGkOqFf9QQb%o4Ol|w!s2x-*+`SED$qPe+-;puGv=Pc`D_!R1kL$u9NBe5` zFP7%?H{*k;JJRp5t&82JAMo-8H&a!9JG^Fc60W{9ox~8XYbbD|rQXNM*RdCdn-o}3 z+2Od&#od{0>HQ>HF+3(6W3}tX@?A*mNQ_;BSIg}dNNEO0GV@B|Q(hF~2nJruR#qhu zAon%9cz2`mmuGNYWyj^eKlv~MZ6J+U*jsP@zoO`TFYzTpF&Zy@r*nO>E$t|0Lp-`M zNkE~O8(Si|mx?u`_^u?OFNX=@HVP#kV$aO$f*JB4AvlovCh{OCI{Fteh)_77hMB4r@jUWYB6+7Ugo<0aBG zpU-!2r)ns6l6uF0D4f_!W9_+5dvz07a8iGia#0ziBKri?tLprV0_~Y+9aOCGZ;rDO zn;Akm{nduclm|OFQy0u|N&&M>CQ)X#Y>LnRHL+OTx$Co~NqKnSTDu$a(L>*1`_2`2 z0hEKgBBHJW&peNCmV@-L5?S1ytQ851NAxrAUg)Mg!H6v5$XykA`h zNxN28*68>LDm#A1=dt|uNPUIbDJRZVs8Q*5HD{Z7`H1u(@XEh0_YVhT6&;xEK6y6w zm1UapkRdX)=IZov@v@Sg*R1oeYmc`jP|%*ff3hqjN5r78wvzfMjUxlkH}}%d!PvhqV)o$T!XbGYZVN_Y)4 zjn4nzNQ!%R-uG^`$N#*?=y+>qdz({CY$Ubie63^Z#);MC_PhPl5&s;fcdrll#12nZ zVqI6d@pqcf95CNrzeF#bQ{D5~=3+Of?`&^>DUtk^miBgF$K^eOP&Rh<=AFosOcnbB zsPGnicB$7>S%HPW&L3Q$ul*HLV#uS*zPjL@hjmpBNl&fq1k=SXI2_LEz6&hcndqKP8l*A}Dok?Tsy3bE{-q`97a^8WDV-A(UENPXpdFdNK5@=D-)tnrRA5 z;AO2(`V6Mp!zp4eXPPgJhM|I~a(+7h%ujFdGI{8lnQ|*iSr(wn^@&A3Fv~%iXNl-s zMV&(Cv-(4Fx1I+M2WnC9ZKZfC}Wk-|66nXei*XsK`KCuQgMDEyEB)-hi}??S^1bN{=0 z)6t~)w9B3yOOg}0#+w)uF-8f`W}fSmp#{d+sBJktFrPFz%TAHR%k$id?23@3xV`*I zL=}mRr$i{nl+muJHv2hKl+2NmD%n!J1bjdQP8kpGh146v1vw@2J|hX>{x^cK)03sIj{%`noGaX4N4b z(GLBH1IR4~*URpgPdcBzB|Cmmq$8=;Zpznlp+Exdl{zxRE4#<>%L5Vui}a|NlQt#pmS~oOgOriu>QbKv>;G zjuWgi8-#PWx|gds6cBjHmd^^UZ86l^pO55=5++@{W^hwRqe6*>)XhR?mC8 zmz{F*{uxfW@tOYAG(92o$TBqAH@Cx2+Sm z@Yp8fO>S>Hw%DF^w8*S#>(V2GrRD;!!``A+-3;KB@F~@lSmF(Q!9(=wak!&$M zgl0jzf%9+Yv%z;Wu2awo@<=_{y^@?*e9-?vT=wH_ZclLZle3B1nuhhrtgQA#VTY$y z)P(P`Q}W`>DU!3=iYTuCoI(>L7Quk|wOoDsFn%FUq zU3d=}k60?6XMkwijgR-BGLTo&(aIgCl_R|bc%GDi`#9#Nhcux zwZzVu)|l_-?}`k!#!}Q0_D~W4Cbvlx)a%Q)xV#j2WyaY$9&3_5d_3~eJs!#Y1M`Qd zw)Kgt5NL=6g^eJ`wPWji^%r{zs+`A3r)cf;hof$uFm||x^M7?76>b}U{w+t7US8Ba z8sqa4fAFU6lAAWr$r~<-hs;g`96bBmX9{ z{nKdnlrkqJm&`b=on! zJRKX%I6P((EhY15Jp@*H70H%FM4UL{S8DGa+{cSQlqUuGQ`a|z4a&Bor+3eg=F~+( zBIWv~C~FV`8LL$i66hu`!Vpe-@kMWzqy2NvglnKH?*|6e`uGi5pao z547~wnmmS_z|8&jp%z+U^5GuU|L-Jnyxf%2mAD+8yH|Ka!0XgDN){UosLr zfPjXeaw_~)DMnP!BbR`RH*KfRVQYcGwHMvj?(lRG zZf-34cV%Q_R9KQWA*ByrWQ;aE(tdN z=ku`&W^OJ-m1Ec0BJwYmT;{t7vPn1UP+T&0r|szq?bjFRq0CvI-6qG|7#Bmel70E8F^S=8<5^4TGnyuxuN?Oz7@=+nC?)V%q(Ye6911i&HBYso>>V zAddqeTnk3WJZ2)pIMo_HYQ6P#=~!M8v=f}q4HO^ZoLIsHzYfcL!Q@jx~8O_k1S8a%1Jn)?i2 zX%aoM9aKL91?!Zi>=%AGF;_yZM@1*tlfQQas2JK*@H+)h3m3XtqI$=L7&ufOC%Gzc5K4YPi?cq<+p zrBHQK<4KA4np4`b*N-xU81|m+>Mgd2R18Zb2>+~wv8PLnBe>aPL*+B15!)SM`&!~aa278n%<$*iw{2@q|mV?@GQ$^gT^8cVk*|L$XEPHm3j#x4Q&F2Mrq6s>55-&8<_+ z5kc!cZu(;;dTg22mF<(Q^br~`=PWi$D4>YAA;Ce4;-OHKl2A*dyp*h9=$>IAtMP_* zhF+muv*Jb3nxJ|$3*^BY#9rhoBs`5nA{3RZfAIz{BgWaT3*U_8eG6+?`s&%-L3$+~ zV2GS`1f=Kn**&9v?2{PBwBuG=J7ZO5eXwU6oUHrrC262@f=i)jTdev|uk6BIw;7rU zw`do`Y zj#0{6X&JpnM!Sl@U#6gdexUKtEz#9g3bK8S{+%nqPQ}WS#&DLRQtWR1IFGB8@({WR zjR%!m#nvO2kU%m-zd$#-*l~ZO!^$UV!Z8-4nKJ6TE8^5W)RYD9Xr@L9RWLqq+C^^~mw- zAu)cun;o7P&JRBsLK2+V?~}Kwe_pWZt>Q=HU2i`hFC~EVjyLx;T-~l-|45j;BiA;M z2mq01T?7OA4`hn1QrT1Q|67FYo7Ey!?btFNo6`>)hSZ~WHX985A|;H>Y&uY zYEqBals2*x>$O|QSd&|+?mnF@eS0RP-BGMc%8H14g&dxo@obl4%gD(k%;gQ75k~?~ z&jOIS-}|qZ*6PN6R~J-k_=MMcJa)UIy7C#OD2+Jo{u*h2qIiqFvI!-ZkbVFSkU88g z)nO>a&XIZklG=V+{|Ak$ufO6Dmq3eV+o-wjN`M}g8Iof8 zg;PCb2TJmc%*@;fL6wUkDwM_jJ93rBG)dSD?2=5_@Te=1&fp@tU*H)Z7Oq=_{itu0 z4D(JvLGeX|@n7vvoXRts4S?k!?qoS;Lr85KvOdn(@}Ylf3JI+)Lihek*Xwayxz61R zFT3%$lnL^Z>MB`0gAxN8&|R2l%zaI}dsUM;*XRhl?-08gZ-@uI*4Ku_s|8l4}v56lG znIb;+8c<8*|Fj+iLD81rm9?@ZWg?7NE$M39Y2nfPe9EF>ov@H1At|>HLTgP+aEj@2 zKM=Vv5?WEHvGV$WhL7*y`kN=LX_P~OaVaNi-IJ{ynYu%VA@akjduHKHZ#XeF0NbIN z&Jr#$a9ThFa?ldKrQp)*@Kh~ZccyoaMsFy?NqrAg-x?&~U-NXxSD|;@Luplv1U>J! zHRz5cg88o?dH4;J8sle}FH5nB(v7j?^L#S+HNlyVM4aUZ2Ns86E0SBWX}M&jKOCdL z?dUFK-(4c7j3h}U9ujdBn=xONnayBy1ld1ACoh9%BT51$O#vWD+iJIbH?|k2ps7kLdR;`>tDFA#_v>=hyQ`cAadc5seDTvk!5eX~hf95AtA}Uj4gx zj8>c1xQ%MZmVxjC1G`ZAiR$4XNbVb4Yiv8*qC*`vj64?P(T0V};<&JHtX^q_)4$yWQdN1pd5VWnUZfB2TK`>wWLY-3E`G94a0SUX~dlFr#&kONwl& zf9qBt>W}Ds&Au+V|KnJE$AEc%v&q*@%cMHRtaQc2n{fp6QHSVnl#Zfm>s8u!B*zmN z6U{dt%>Vp8AE(f8b6KEcJh^C=Ze+deo+7>iz@^Xf1BN@-&*O;>E+x%o`3r8IRAR6A z?)u!n+O}O&d2))pO0_*XzWldvNDszN$Bm;W=Sz1EJH*aA&ig-|{39-)ebCJuxMwc(IJ-Kq>qWGJ_!38(Adwg2=?o9B>-?7-M6ciWq zV7lXppX29M8+_$e{NX#X3IcqK0l}WNs29ie&);(N{ z%$EH{I<<^kxpLv#0$hoOSraEih5U7mJnfUYJTd#rL8l2DVNh9lKP%+H@p_ft^LlLg zXImJM8jPB)V)9CzZBeZ-&RRwXFcbd%mrG?rfkO*k-W?sbTv?(oy2O7l?>R6ZNL_H| z@?rOmN5S%JMu*VvqW#ZZjwolm;6|3&q7cR^%?dA@su5z3dd0jT@X>+iz$Gu<%46dY z>eKT1S4HdiJBA3n&IVF>gi3VjBu@uQ8lkyKjM$dTNxwh`MMd%Yl@6t=XCRM4QalBrD#WCGly{02$kZfUBFNrl{^1Zi?x@eFL=!x#CVq6Tw&Y_JFPK^!#vvg&M1Q5^FR;GXzL34H0(-Pl# zEtO#16m!kk;EhMl$0}9l6JbX~>3FHa^AYchPqWuwAAw>XkMWsEv;b0s8XwZ>; zua8;2~X856m_7_wKI@Nki@d3Mk=-kF%#P0qgXXQ^Zkr@Q^10uF>DzZ$ojS@Fz*8l zrI1m5+~JKZQ5Gdyp;+1vlN6(ScHQdSIU&xA((A1N2~8grmYG8}<5TG@RNzb2haVr? z4G)p_rL%r(ldh>Rz=^uK;}3#DhYYw{@i34-k0qq%16Qe-$28-JNuhRGZVk?vox0cC%LFzl`!|n=TtDYnQRB?bRbOyHjn7MA8S&UA zL*3aehL4(8%7jQ#Jo1-xR^|Xi^rm`*%0BJjDq3^b)Um8u2b~JptieKAk{&S|B1uR6rH8b75)=%9)6bkaQPH1 z!+XG}U=ewFvc`uK(*IV570Okl+{Z6H&{!5);+z*WSgDbugJ`hu)AksJOs|V{NGB-o zL#a@+-|vsTt8_VY=(QY?NPb_0Ex$y}v6C=C(tO-3*eDy&-Lk$@_y4;8J6c6fR};_M zInHlrm+4<${JlAGKH>jY4By?R;{)85J>1YwM}NMwWYf#U?B(9^ zy&Z7>a{vB1{r%J1K0ZE40~R|imwqr|_X|1OY1nmdx2CTP2X;b!T-=*)RL4soSD!fQM-&rTcy>KT2M`s1^E$AhUK$nc(=f2AaQjK%CC zZN+AsR}BJ~!RJO%4#8vB6D0q`jp08?%NR`b5VCtEic`~F;Z4wU*E5}yD044T zSOVmMDU4vtO+QPC?3ER%o?n}ZzQ@gdhdtHPsjgi>{)2Mxcd{>-@WfTr179SnV$)31QtEJJuGvNBSoDD)=RtnhYuIyu%M}6+kw**1%$NYm*Y+sM#zh0s$ zuW0pQ*rK{FxP-%I0rm@OY2`m$Z_NsYVJAeH>_z(o#IPUESK&iGljrJ-ZHd(mj>h)du&!l=nB6{n_L!tYFGF_s!NBd6pdF;C)ndhjt04IqNZ+oKNLWJh zjH&t`Z2i8wr$6BAf&!0X6~9|uJ-=lsgXt<}nbYT(i!@rfLgH%_S|nZSW8n8>c`b6$|U(1jcrTs$~Vx4hpUx}|0 zdAwlItRyvo11tS^4V69WL%BKp*0B;u?nZ%Nw#=VHn%v0dvspZ&`WY18Z=K!x6SekN zBW5+`E`CK(YznaPB9dhB&?O#zM4HZ_bN+>Cvi7s+-F?wF0wfD9n&uwl>V2Cc-j)54 znG((k;9&$Mi0dK4m>{m1d`d`BzecK2tBclqeIUarw!v(Db`~O<_Q*KY7vje^f=g&5up)hT&|^=^eSl&g%Sg1@O44d5jEQRQ=r4xd*~qRL1a<{ z;bOG%+%aEWs7r*6cxYBjQtyW=1L9{{s*e|+_L@2z7SBdT%zm=2x8VQ&AAYT5p`p{Vhe4iOlY&>NP4lUS7D7il zK{CdR$B|p_GxPWMBI~WZ$m*GFC+Oj#Z;pN2RJw7_ER_OU0QoV^K0Qhu#(d@M`bd(< zM4nq2UeSM$tKWCh=4^D;vpT_YGAZzWH{>MVX%-mJZK}-ccx(nawoYB5h|cy^HO^bN zeNonNNV=i+*h1=O5?!N7pUQ=_((CfNekgy1D67ST`MA_qAsdyF`PRlSSxpk0>^<5! z!f;yBMM5`v_DFe%|RN2|6-y%MFw)Q4^j)dxf(hGD(-8HY{7-^ z%aMWZjKr2jFol{2W#pTEz=6llaQde!C#lc~^lctAr7oB8IQg`z?cD*B0ygP0|qoJ$DKJ%$f$V^WgcOAY+z+oyRM~{(BK<8V(`-W zvqROqvlN#QfdEh9I+>VH}6c547hH`DS7+OR7_yybgi_&$0@4Y-m zm9TpBce9DD{sT=%Ut!tKVN4>vLru4)-P`*<$Jk}RqETlJ|CwRPiCe9L(6F|Kr+ri_ zk2yDK!s|!4P))9jjZd$)Py4^#l{fSx0EHj_6Off#uG+Wn?{)U@0e9m)&zF+AXecJixJ%)nkml`(&~nsl#7 zN+60TxCISN99LcKJv?QtjEbiR$sXMuy3sDM_H#b&Lao(h22E2)3HQv@u}ow6%=+_} ziX$Xu@oN#~=PJulb%Amrqsb834D8xFACtI%_&2?+1oZ;Ah2$ZI)0)o0)J;U=GczUY z6zn^;acY*KKmVT8!mRM0EYUN%O1TT>0%IF!fXpe}80jj9aHYb0`X&Xr5_`Oo75Ku4 zA2-~n6)~zLsKEVXXf*fh;S6PU*6`6=uB~ir20fX~_E)i*Mw{p}-L18}Pof0QZ^P7R z$K~0Sz)Gm*?gsf^)X3Ug^0R)8^?W)x&`CsZZu;ihIfL{J>%K0!Zs^|Dukekhuk@e5 z${yNCSAy&Fy@@S5cVBK6`rE|uOH`7eX3Xn-kr5RYL{=E6hLvO=eVQlL#N2K6 z(0zS$@AD6jx<=vUnQC^j8Vt!9Tr+bFneq&N<{xyroHvm=D6}=4kY8OeefdpG*8z?r z3mRQW6N)bD?R=Fl8TElAIPignd(fGvgh0}<%yqxC8x%1QgyOz6Drd-hYINt6mS8xG zdl20gXlAWa_wfAfNn;T2Wn%TzpIUV|Q}fF3K7H?G`^c9tnbG2-58ka zS=%_2AOfT`8gePLiD8v^G8)zh_ew>W%#d?Lfda>d?&L!yQpmWT?yg7#n}$0t4oW!* zHEXN%LYSQAHl3o@qA^I?DpiNU8&f++2|?okjAYgoa!9(%!~!T=wj{RZd zUO{6agLAq!0qN%M1G`MJ4{LZhDSu#1)=cHnAPVC-a946H*s2`8XJoR(flbpgi(UPC z2=9Rq=;>;|W$g7omFHYs?uYbyVClgQNP}6gjc$Ko^ z4miit-`{*;efFYk8k8_l0fd{@njXGub_*S7xH&wy>SbEmb3Dg4Lgx5Il_4C~H0m7W z6PWVt>t(+V+tC4dOQZKfu>rsIuYgFWIW!bd)=DYhP1SkugRh@U#W+ONQ%(6LWl9`|D9C{ zgRcl#`0(|PZYCTFnmQW}nmUZ~8c>*5NWWQVDpyKict4?G-#5-#IFtG;!D-ht9c2cV zl}E4`a8c%*3z1-;y1AVHXq{g*w*q-KznA;YCwQ-;zhr&j0yy(FK4_Ea ztEpAyH_P>FipZ2;x&D1P?ngGZAGO9n`fQVGp0Taloa*$s%ynVkT)o#5#pKnVCjE&X z-(N3DXCBqya`Vz8TDG-D6XgNce&WH<;?H>yZ(N}S_F3w?C(XfqLafN5vGzh#W{6AG zJl(quh>QE}X|QGl+sT)P%Jn$>Ruu?Z5B zGt6NW^$%85YR>$KR#>m6aQTk<7xL$3w8GoLfEQC*uHX25(bZsi zTFo>i2xKKQf5ow{Clw2gw_9zyIw!R<7$U#Cvpy)$!$P3wFRiA$uZ1qoW>2YIlW*0F z)q=dF^SLh{^ZE~#deI}^zD#5R9Cm-4JHq7RaQIgRTBCz(=yT9FkDKBI`bK%vvru$$ z&|sdwkj3YflAc2R)S#Jy!VUx?p#S+pzw?<1_*g@UkecbvgjYywt)KycJV${stPdq^ zZiMx<*f=QpCSy)L-uS+0Dh#`0 z2}To1%o{m|yycoCa)jOsyujg5mKmiG1cgr*JPglkzk$q%?*V=O(gwo*CLo_^PCMmb zUocJOIbnV;y6O<(n;-B_7e{UNY%8k?gs}cD3t^o&HdRytNLoDY*uB%~kT9&doyaML zs;I_-yG(hW|6@uGt8UaytR~4}z&0;>t+-=f8UPJ|Nen8BAg?;$?eWRqy2@M!YtO%N z1J`Nv!{eINr7;v^_pD*sUU=#&pc8<{i<55+_Fg(EaQX<4-}R6duF8O7&PK| z@XhiB7!re&KV|_6g@`RhDMx?nim|9v!Uy|e&=%UTKAngT91ge4Nv**&Pw4&8SR-ai zB#BVW&Q}VB@d~{d47FT14=C!}$GqOBto&l41i$+9PTl!%7fnv>jOAja^MUENZdD5; z#!b6iQvi|bY}LYC!|{o3eirc@n?&+yzJd=VQ&nj8Ilp38nMc&sRxuE3Xo35ucFrZ7 zh|smLMEp#n@|M7lNOe#}Sk4=lZdK0bgkgmjsa1A`38m+#Uk3*Kl+z}}7E4b7II!^W z<=Uj5`b~#T@yp1SdU9%f_CJpmjH0D2i4ufPwcm8ZbE5hw;rpPkrF^E_KuJ4ThU z$#jkk^7?itssU&QY#vB@E6AX?vH=~wMrzUYUj!#dh3;jL-UnY07qEy;iN0kF(OfqUG#2 zWIlcgUh%B6g>D$c$uQCtm>Hy37@uOp$VaY0ahqk%rfm;8#WB0MTvMv73=+yw-V6D* z4NO8XJ!(>C!{R9Ar68Wx138|u-8+TBA0>ULIe*hfgml~WwMP>HzBn4J*q`XyZZ`tq zfR87b>DkqM51gT3!!C%B>f$W5F>BX5BMT(ynE7&vUNECv(H{h-2ZWdQI0ZOXmFj<44I} z&Q`q=GX3Y>8kyF`gFYjCGuvLXHqknzYo5CXuCs#VhwaMmx)Qq1c5*KNCu26ecF@hS z44OO+hdTm%iDGu&EOolUcm^^H0-)G}r!cX~3jj5l2B~w+GT+8-`IKxO)z8sjC0<0zZ%=a45~ z3g3LULX8PVu)z|`f&6e^;mpq6V0aJ#qEp$n$vcPkK8Dc#7pw=H+sLOybOxMWp$cnF zqKbPb_C5Qd$pEw(a69)ydiRnRM{A*Ff4o$Jo4`gqrt!n~jviUe{3osQ#@Szo`K#sR z69@`DZGvaD1)C@T?KHj`1oH5lT&s7F1@ys`*k-{fSvF0(;X%?DMS`DZJ~VNHIRnny zWzDF{$cfQ|$rqig->9>lX`4C1g3%~gk9|${{rC4G5@@tehsKiMxN2u8_pvy3_Mzv4 zivh0*_&iRRE)@KVC^;k}8UJ5v`R=2X$UuSW7J^GGDUBtXLaNt`&9_`of9&%w-|lYT zaH`tMV>x(``H=^^kl?$GGZQvKeIb&f_Q5Z?fcuQ0386?Oic>BLv36YIWj6XkR?R~? zCeMwY+GjV+5%$@2d85Z@Jba&@DfY29;K7GAjinX&=zXl9qS2>QE|^1sZ;JZx&dK@Z zJF?zcL5HF0-+eZ79o|;o?W)Visnt1SI##qht`05 z)LG(O7Lkyh8}`0r&HXBQBIir3J10t*keM|8X`XR0Yg}$0H)KD6O#4Ti;2c}|i)tIv zkDK@YbG2z0xo;o{sO7u?oNtYgTt$n`0~NztgKuLxWz%WJ?K`bz{>VRx6-*I(75C$B z)Swb9v2SubP&Cc(iiEFsrViMF*xIka-VIWh{*Rijng>GfJe^~!W5BZb-1A2`=B=&d ziKwyPIvCWpC(r@__%PDqLHem~@Z!Km#<=FCua^g8pFFq@)TT~^Su(0!|JddE`DpBm z;uo+?2X9`e@xhNrW7!G`QK_%~f}%rRdHu!Ql0DN;07lS;5q)U=C75A-6~_R|}cPw1}10Z{8BdNd;lwlP=QTI$a8-pp9&e9pfoZgo1hZ`RR? zYDc-KJU)c=AJDv4cnF3XZFphTp45NvIi!u&@6S=*j3t%nLl?Ja2z#HK?}l;|5-dSzVpa?zIY9$7;DTU6eJT9i ziD2ndBCQEEjs(cX!Bqu1Q)Cn*0Q6|;lnPQi;wXL7-ojZy7OY217s`=G?&~NQiu^Km zP(JdlDWg+Zl)j;B;O^F6c%=Nk>moY+LegT7}7T>yg_FOaCk z`0_u&$WCWod zRp@#I5l=pb%je;l1Y9K@ZJbY^r*)&>u)Znlhy0wNkD4?YQf~$NHtGm{RnqL=+sv*? zk8~WG%`)e0b+6(l6A#@0igCVsD7@9Pf_op<-FI|YT^!03=haW94;uir1*P91+6;gJ zha~S}2X`qsUT>^M;Gagvk%sNC1&I}&@7_naoCKQy|tAQ5V zsQFR%TL@d((Pd8H=L7$1J>C9v^kaWdo7n7}(6V0MNFfC+@K~om)PdsO;>-HM!n*~_ z)t;;jLW6<8(#VO1`-kH@0Y^0o2^Luy&LGa~7VqkwwD=R+_LT5Z zk8^-KWI~qVdUi-QCtQZ&75BkN;};_L{)J zZThw|J!ZYEEa$XG-#z1<6kE>EN`!^rikr2GwTbnuxxC!Iut_ra@Sex|x8t`mKmBEP zN>@$msmTIWld5Utds#WrB*jO(aykf6iFZ2h$E;(v>4)RDE4J_a5v(z%=|hjcw~G%= zVAep)3>nJu)l)q+`y~ELD?QoAQnI^w);ImmWiQ6)M#1O?IP1MEJ;#2*GxSK86{+MQ2&T$#C)FYUm>fwzH z|F4G^i``7jWFuHVi(}OJ#uNYQwyrKZSE5sf>wCT9p(2=|K|x#XoR0h(=eQX6IK1m` ze3hxntnBIBGz3QWU+6gEYBrUR&pmys6c9`xn8*>}hJ{Po z&#Ot|G5QTn`eb}jdLsAZ2@Rn<2uuLI^&HA z!M87?AB=p|tSwjV#Fms^QuY}f@MxH|7xpv>Dv;B3C3P*pvrt%{)z6uzrZ&=Z+;7k( zkbP6A-7mtKoEeSb%51wEEv}JlzM{2Aa@rS!x&8U_3b> zdr404B=Q%n-6DD<*Y$?Di-pP7)c!jKE=>XJ09z8z?%1y2v(8sN+1G}YY!^7aaPxwG zL_hE#km*h6bm=n9wF9EgtSU7lhojrfX6?sGNw)xdYjgbTC~eq98t3y_ep%=KBN0(E zT;v_2QO%a_!E0;C{M>2I`Kdsk%E#$tQJ1e#1ha9%Lxk{|FER$hy<^e?<>tT6e=EPo z^>&w6rq*Oo@kvKf5u1e`Z?mJ_tGY3A)e*{BhZxU)uOi7N;X+hhbXwIIu+2(mS0ADL z_(kSx6{E0d=$owxatz`^XL;A(**A?5i**xP_Y8{m!g=_VXC=N4-8a8*cDNS%^TXzr z5P(RvQt8BP|v~pe1b(4V}wj$~q#pEU(>F z;&Kl*7k8J{*pDR(r+#{rcFk0ED18~Ftbx5ONj@aKT=!Y#UUbgL{3!h8_t?b!;vwmc z;ko?+YVD)ZdmZFVQTr=tF4FlKJTt!pw~zGORe5zXid8ug=K>~+VN<%FdF6H9Ru*XV zfdRDtc@KjUQSQ>=jlarx36gj=Sk+7u@?4Jd#%W*TlV7P zWK~aQN_Xp8l{Dz54eWOuj~pB|*w4@IIDg?oH>Zmn53PL>Ip9UsveSO47Rnd z{I`yq*Y6fXJRw-Dlf6*a$l;*R==HWbt8ap-c$J6MFXfrElZjfpq?QA8>H56h)Kr4Cet&Oe#+SMl7CSyibm=JYB0o zsiepw22G_fi0(9{omslbRtBM%&GCc3y!v~7LhpLs@PE@(mtsp?0BW$oVsCm5y zh;Tx7)l4PwT2NGh@JS{6gKDq!HV|tJWm)pM4(J{DLwbyaLQr=l!^13#tkNG@#4wr2 zq-%&W8CPd8SQRfz@b593W86HUQX-pkZdHcSY&x&oZcej(4Nck35yctdL@*v0%yd#H zRHE+O|Miv1##J$5O7qaAnlNk~<4eW*pjggG3^x+EK>aprCyKxOMPCsML zZ)<49XxGTJ4H=S8xZj}kRjGZjl9b4oIiVpK zmReqWB_>yf#mdT^UY<9+jCz}fWqB*FZ(Pf7u^FBydUKWnJF3RIxeiSRhsV+%5+r}@ zJMX+fTiWdP@l3o%#|z5W?B|YOw%y;wRGkfI;uoinBCc0{>PROxMlyC6&4j-c&n9(4 zQRzucJzRz#b78P|CZMbizcNQ^C)hER{3>7YU=p-xpAk;v|1gcY0>cqfIHk{8f1zdLau9N=(dYpYk9zsG@y!_DKi>DKXbAOOELlVE zGw2JGgZR)*r#rgy$fYAFs!X+-52$~#EZNSIGvfl(*hA=&Od4+I5NX||^e*YPD`b*&q#-mkC4{LL4SqzKA zu5FnI_KSS~eU19JfdfB=*{K3Qr8#eW%pTc&16nKV#)^qGP0>g;IsG{r{1bCWY&2 zpEbYJS2T@j1*ZqTVUvSL($$u=hbq%R(ZF=YN%3xBlAQsqo_lf*@j>62ZPtgiW_$Tg ztkYS4vkSSKy=N_95E^lG^teHkOe{*rG1|+nK+$!>`B+s^>7G$(<;=Z9$AxK=YFm1_ zy-`z;RJ%;=+>1$jl&-kWqd&iS_|?{{GGwq^b$IcFtL5KM(u1JbhkYzluR@b5>8ky! zS@%RgIeb3d{&urnV5xaiBmqN5!mL5qvLIpYT>rWO$v*8xMeW3H-SyCpfY^6sE~6e4 zSlBhW+-?&6I&b02nH5Dm`?LZ{njxNV{&Q3$;|BN<(@P!p!8IK*>cikId;+W|0Ducm z#)0Ur?3j*hi3b^zn(6Hrc7~Pi&tE>ypc|vcOynR>9!eP)>JAW4mNZ;IK7peoW-a2P ztYOTpGGcbu2Pz2!kC3oIXbu&3vi~k6znnUy#Qypr${H`0QB6i^q2L$0ut6+TgJtIG zHA8(5@{B)l-&Fa3c>3;eEZ_J4ccn!377;zR?46OlMM%h=*)yB6_ud&HWELWu?EM%a z*?W_{^*w!#-|_pqI^ucm>$=bLHTm93+jPAgT`(33%Ik{DyD{}gr0qmLC{Hx1HE)!zbG;Nk5xZ^=`zYv<-4f<9*;UZ?@5GV!n^S=MD|k0|r92clo+Hon z*nID<+o?vNJF^8*XQjKCY-;Nn<4x-F^96C-*JGIi5t*OU(y#5fHGR^^fLTe-AdAhr zZIH;q4NOP~-}_ zRi~3ghI+?_+h3MR34aBhbfABU{tvA|yrHDqJh{&k9}D`p%7xe{a{0 zLj|2y0vD_j;#4`mH|xT$lG7Mow~5BaenxxCD2}K4G})Ld;aLQ3df6vwM63i!?sKvD z=Qw$5j0B2)^(8N>FkdkdL4#QlznEOWubf2`SCu{|UC(>GlUNWyn3NSiTCk!JN}9f2 z51|qDmE)_XMlv|G$+az>?5&*xzg#VH2)e678RC-}jW6Rk2YJC2cql63jC#3;C z-tf1WUL3VO-R_C>fmypoo4$``C|o_Q8zgTRt1*KYaCH^ETC@!;RzDV%2S`27FA2=@ z59%8y#1pd8MkmZ`U`>=xlG_#VYvD5}TD1GYowte-&kSiaA!M|0PsiW4K8OinNkOoD z?-XWI|2QKtZbgPZsYCpdkMn6uQk0Cs_%W*Ix|Ux-Jv8RhfSuZtLEI}_W6I)LxF;2B ztVu}3Sa8zVvtqTU5aBD@jW?_DA2OquVv~Fkv0O4O40$~Pl{}g{D@86?qzfh)>CmW+P-yhhsTRad+!Ps64MF9j){F-*rCHQ&0G0 z_VsMVy}x?@HhucP{yYC#QCTU8Q~!)|>u6l>pRQorNy*HvM3SQuaa4ePhD(xK-9NZM-|0F ztYQ*SM!Y}4bU_|@n?jc!WO%_P53bZ^!)|^PwV5TT_`95mfZyQnuMiHUGY-Dhz7@y!SsIidQ|us>-rA;9+gaR6IHza9)z$a*{0c!pQ~H9X4EqEMh=! zn(W&M;nyPx?%otq`}eZ3PJ%xzqaw#@7qkfIET<8&pl5wVr#}~n|1?o9HIx-k72ojK z1wFNuZ{BXLV(1|RvnAJ7-^pMy-FaK-{x-ieAzc_kgg-{$ezkHsT{xn}W+5=g)Y&-0 z2+PI5W=(QCvk3|_SMeN16QqHiWuCcFO zdEf6cvl0}Q$FQ!ktHgp3zbY&Cqs&8&R9}Sbsfy?2@^;|u53kCdB)t>fvwdZ(J3oe@a`RScx4W2rf_=YG@&C4MSX9>Qp39);;;jcx=D@L66vQgA= z`*U5DK6P_c6&TXv6&6P;B{#yX<>HT3HgQ67&rsZubOUjyGshlBfL_%jC#(EqhpV$q zRzXSwlF=B#>Apu2gcwRG2so?5UH=jQYn>&&+#-fdfxd2|mW6gq7mE3qAwbVoe2Xhn-tt{y10Z({jXU_UtyUV;b;Q z46L(8Rg9^&&1+WEm2rUA>!!@m+KcB zRxUca4UWQVo8vY!D#aRGo=%(b zMLG)YHV#6_4!}QRHekN5VG#dqh~gmb#Z#YIk(0kd7XSSV`Zw=0C-M*Z&+#VjCDrE| z`Hx@ZfK#OP&!2~1>-W+B=RWi~(!0{2Jfv#;dgRTzFmCh1)qXqr$GeMo>+}@EKkZe}3VoS>p3mQ>Bj69H4Ec0%=#=#gyoR+5>8DF+3p)s?4f^u4y;e8&^RrlTg!eP7*eMAzlLh z5Qq?3x_mP)WI5Lw^Saf%Tp~8FtspoRLIG{9PbPN5zMqdAk)ME>eHkM*Ue-JH_2x#Q z9ZRAWrnq`!{`=`}0-gXP}Z9^k$69tcJ)>;Z^K&5->@Q}FBPkwxPV(o&a6qYj(q>&MO5)W({% zbg17@1Z$I5Q&gR=f7QHIda>L{LwAN1@$arO9D=)EJqM~X%w3*N^k`fQpa(AKk1_Qk6dIy%Bb0r?9mPvt*TsG;g*w7 zFKkqNiU7fsPuknJqCo0i3iV6LL>l9eZi$y9-+HQ)To5+r0+GlrOcga;?kBPg5eCir zzJY2cAxO~g34~F)Q1agRi{LmC5rwE91e|Vu;aS;C=w^B41lE2q-QlzwYR&AK zV+mU6n3NgDe#Rqvn)HEKA^17^U3sI*Sd#*-0dlDll+o!D2#JasI+zR79o;Q;1k7@@^ zZHM!V#F^zK8`M~p%{b7akco=HjIG+e0oyeI4j)nP469`u7aR&v{eTn+xVGxE_9r!t zZ^260@w_XIS%)yvRWUiebO)1OQ^03FOY?d?X&l1fM6UmmlRXV$)v^6lh#tj4D4GaR z$l-MK*RMZPSSMhu>me>Bw=?kxHt7Ov%;%tn5Is?J7V|BJU})k%$~w6c&YlNvYFe?0 z+p*d<_LAd2p|>yu3H7pq2k`Gr0RwGPul@Qk4HR#lUHJUl9a(oeh0G~RpTVHh#<7cr zV7*%V<|cO&GKK(H|ITeB#?;*G8oTImzGPK)1UC{p6tblKK&BNd<>@jIuRieHlZqp| z@PbMzJr9SFqr^dydb_&z-D!*1QIi&w>#aK#hw0J%k(^Y)U+O)7^!EEvL51(cI)p5) zGP!77&UtZ1o51Chn76N;bOICli?4|_@7O+By@kg2J_3%{wZ6zs;&3quQ0is7wDnS$@=I^WV(+z0%)?&gHWwGB0r{M@UXz*S1Wo3!0fZ z#9JGcj~%TmqS#B{8j+5e;7xrN$@NlF9!0lKwC~-x!IpF%A?Ghz^BO+cw^3~pFlhLp zjJRdhFl+wdZAW_LKRm;2x~#+$_O5Li-+dSJ-skV+xQcPeXrUxS4#X9R91oJ~HH^?^ zs(|x0smlFzU{7U(a4K_4*~L#6VGb@*fVr1hg==LR^u5=>SkqZ|Ysx$#svoOm%HDRD zfi*meE+8j_<7969+d!=an^-mqE zC*S>sR@)8tt#>+7x(EdJ5p#aNH34Ew3+qB?H<^K{Wu8!t)E7Y&YEWZgK!(nH41-wb zVFzxPaut^a{~c%++zyv)B|x-TsaMLrhtJ>Ab{D#s_KG4dqbbVorVoB;UBV*R z4?VqCD#QP2CAJ@Jj%#XZW$S)Dxan;PBW88DIJVC4+?V~ceT?cAyldGo8+HmQ-ax~8 zb+yV%$|e3h)5JZWAPsWr5Jt`le%`%njG6FQ>1@JG11g$IVvwNugaC&)`AH#;)IOxo zKEX4gBtE56Y~EDQvv>HsGSz$@_AyhEuQat%XCjj7iP;PWQy%gNgM}yWc6`VoM zvbvo*=k1#vcE}zIl-c-bvmW*LJ^EXPD;evLyG;MMQV8q!CR(~e?EO2?(O4|lsP1=} zz7ec9MN)0$GPQWLo4ZZX>f*A z>vb+t>}Pgwa8N$eS%ze|5kyy7Mvs>U^54b(P>siOYc*otY=_xK!{P?}$P2e78tIW1 zS)(-+cG=WW!8)`Vj%0=Dr(VN2N>dkx?rS6Vx8Hzvq$03KVaOBNuVyqilwm&mM&u^T zi^=0ot<7^OLi&o))BxIEF6oxfbN77Hb;_O9Wb+nLVDy9^_s^3|jUTmKw2H4-ayUQo zcAKfqo9=jUol}UWu_f@*n>zhbdQLz?z4Ii&{1A-twBh)d%EkF+4@ezI6A*+doDY^U zyb)cr3B?22&+e3NAIZjiF?Cjxw2O+NF>c1jBaq}8Z4Z|s$!~F84ntd37&5L&H7T=F zMQ*_8t=l+hkQF~4XSR7b9X!^Rvl&?J?T;_v8_tC`)Hq5q{P1pCdbfSH>E2hpX``he z2u*<&pOKNf03bTf0nK2#CVlfhJ(mbj!7(CZ#AZ!|7Zp$!J6zK6%)>92M|-|WF9*{^ zEBtU!t3jvH`z5qb>111KkjGzBA|`-rEDDcEj_Be}5}#}es}}IGk&BjKRauL?qa_~I z(Ac@0E(|>-NI|Y3vW}K1I$1zU#=2G&ggU2>lgpoeALGRiTnp_RBsLf?;?_=%u8&^b zB?p4+b2IT*ZnOmeKGmSN6@^cwcmI!RQlWJ;C*ie^-lTr1{{9HE^xL#EgR#Wp)2|Kn zy%luw%<&bT$0c4smShTOuS)M^!WwtL#5%RSKk%M�}7m7p3uM3lVo}bAp@BrWk{A z{?nA>e|8`pe7C-~wx{Wg_g^6NGzCjjdc|j6O=K>wdhe{BUapEDUtG4m7+iM}UK97! z+q}|kn{6nMB9j8%fmB^GrMa1R(x}nlB6_-1Tnb-oIrHBV!?8OH%sQ0b`hl#oR>12# z9adY|y-uls;Oe>(cI2$h{)W!{@AHsOV!IZ9--7*Nsh|t92WcO>_bMxSrpu6I+E=pG z6#=Dk#)=7Pr4AMR3liL&*co3B;Ex~B#6ceupl&?1Sg^Ps)6Ypfm51k+#GO92&2S>m zc>VULbY3>+lmU9<%0!b&Q%*3|P+*v2cWX_SpbJ3y>>KRjC2_6I7#MhqIA;pvp*u_4^=(0 zwO*-C66pDlTmi=(7VCDRq8J!e<@M@%r>j~4Waqla!Y>ZDY|NQhAXx-eLfSyrgQ(rK zAGItHXZ3DvYGm<+8Fz-T`l`squkOWfTiDt+q-s-H?33|Qe2%{@XrYQ+kI%x7b=pr( zWA57!o3}+jmiwENOpnX!T1c%@7O{v_i$%vY@E{)~aSf-F{ZAVIpWGPK$agdj@}KB@ z&?+{;1ZH7;x5~{j|ApgPRu6|Nzh6x(-xHS$mg%x+{$ExR*NDu&QwotpfTOQXMkeO``GMD-;$GnQp?Z5_H-_7S-d!I6u;N6 zj0rR$j)NjjK}pSefo~b6OyJqq3MB@V_ZA^wL&fB-Oo%Ky0jYXIa7(-j&O8cQC<;id zCHhTkVoj=&4YuvN;4}i1DafW_yw!P_{@ltUEgFiKbJ3tyhh`aIhvTl*>xtWWrGG1* zJ@utG5U}M)Kz>u}W>fwCd$$H?iuOJH0R@wQI5_M~n!tn^e&Nu56a*5e=s7hZ4~5qb ze!)O?Pw|tp>-GKpWsySvVY@Ues|#h<9Ayzf*#Efz7U`X;j?U73_&0wR-&c&Zurtfz zrNTDql*Y-(_>o+gLVd0>BGa&VFo7T4?2+|cx!cp3Oo zYVlzF;dd!vmxtoN&^~=KU%yOwz*#(IrKY(++*CVYIyv7-nX=e^ghhJu>SV018tOzd zQll|x+I2LjdY{|9bs~6)SO)S@MIB8i28=V!%98h%rd!#uS%?^3Gm7&rNC@>>4FRlw zu`Ti@?p&Gcz0acUB_D}vYku$o>^rizB*Oe4A*P~I5vpzH7R@UnUR`37q z94>w;0_33#(RngysXcoeQXh$Tze5rT9Ln}#lk1hv7v;PmtEUww$iKtWSbEj&@2$UF z>Iu8uR#Z9tlP<2SWx3b!4*TV48R{wtD*I+*B9KmN{}Bo8~jMjXT~A%U4Q#U0}K%-fqBQ_vD_pOzLNPNG2DpPKD6XDe?YNsla_lNUOoNc%^x9-zJj}cm2Rk^+_;(%WH{O1RQ_LVrXRz7;WdIyZ6-eYxQ4N zLCv*k4$Z@+@~%R}-5AZ-{!#3h$m)q|7s#7<%y zE!sqOsfdB2mynD#)a`AFWE$eq&&S7)z*V0o=xrB*;qvbpsSUUE=eKguYhoF>*Am=N z8bsE<7TPu)>GA@(*cac9J;mFKt&=>zrLc2{yJGh1dE7l%SAIvW)fk$PNp$aFDuK_$ zdATl@`t#dR{CaBvP*%Asy(dGM7fLv{^koc$Z9j*-6-y8pO32AlCfwl1RnseTPGej7 zBqGXc%9Zz^rNL*=#m%dzSAO$R>YYr^5uSVteyn@Ko7=de$s8JNvItx*z3x=d1pt)| z>Yjxie>3e0XNxlofRN)q!zu#O5>mcfqiN>4lQ}r7p#`Rx&@&^nzs^Uci^Gm(NT8V) zufkx)Ez{m(&zMAISqQiKfRb6wq{C@XiFoQ0O7XZMgv?8{x7lWD#%R6D?8YH%vTrek z?%5zneg^i0SR{_9YJxUV!{vMnQ)nl%w?erpB$i;DIO4728oQIYlVo-*_g`QCUJoI6 zo3`#$h;_HBL@{cJ+Pm6|xkp&opzU-k3Zv`*3@*K~ zbCHQ=n9rnQbHA^fQN-aN#=oszOSoz%MO0VI642dr=Ko#U&Qj;dE^!9x>zX-B>G~tk zFgKAt8;3%`Fc4ts$0882zJ;Nz-Fg?5dW!+Xx^uq@R4=EHSLC(VC3M1+f$mMj_D!n} zfWM1%8&;Yg)M*@_ZKMN&xwIg5i&gG4M4AY?9X*7SUQBDO0>|@jBf%OH&H?<0fU2(D zH#3X9yx5wSQJO4f$xlN+&5yn23pJ5l7+KACGsOoq#TX_L%4&yjRR z{`N(M7IJS`>w$>e&Cmy12`IR$%X#&ef_@!PTb*^XC@lu~>Z^2_7e9);;b)3|JnJLC zq)28RcDz0Fd&Azlv>8qYn0{fUBe{V15~I=K2Fyb}i2r?%y4 zRkNI!9>}AuXM#ROlCzj8>5u2+;vO$~N{J`rx{z`z==f_gl}iYjk$;s*f3Bc962I8N zD*F=Tm{*N1f}(E!LtU{qC>@5Ro$+4 z(vKHcXn)sqH0N_3!&9nGr1x&*?t#}w{zlD5Sds+&T~S>R(aV_)-a?-HX0rGG=rd3| zQ`%LqFO2I=8`K!$(y>2~e4rC|2J_fiKkvH~Mq@U$l-@}p^u!LJd}|q})}PW{MDJ$8%w%^JJk*Q4%0VA7k3Y~dQ&2d&8;BdEx> z+3nLf5=Pj#B0f-NGos%WHzlV%Ous*l4LB$((fML%uA%vc@pOqw6}Krm>8nk{xV=B7 zK^i=@81?tX6C#(N7$iqW82Nxyg7$JrAow_`fizhDP{^Cisa?c>i zIiQ5l&pNOC`0t85bxii+{X6X?9nlpdZqRW*TVECt4$`V|6b_}BiM9K8!tmPwkn6V@ zH()g5(CNXEWYA7$4-$v5v-}OAy*31Y8re2CW4}Fwc;g8AKhzytUxjOAW+OnOuHV3& zXR%rT-CM?td=E}OHZ##{+tArFapJrfV^UdPd2JyUmiuvw#HHM5Ey~IY<+Rf=pGNpT zG}8@B)+z4m-cztqQIn|L*cQ1LUC=IQ6UM>+B>CKm5i zCF1K5iN=$6{%}&sfT>+T4<<#n9T+u;@I@9m9nH@cQ|tLgIX z!W9NncYWDt>loslhw!z~{r@oU0bM2fB%y7F{5SKpm8w~h5N#%| z=pWU)_>zeMV{D-{Zfu5ILHGojJ*Jb(E7v%RxJyL53WMAsF?4@j;H{~8H!h*DdcMh- z&2TP=K5nWLl{gFldv8yoqqO&RC3^@G&AbfG0u$$|I;_b@K?8hC#zMXAcMbBU*1;X5 zfD*7_HyFRXa*lQxVCUXa1r%9&I7MJlC;~ALlJuDA!pH z6f-ZNpq+)w4gKOHcb~EfKXt_JpTCF8T3Wf6oebLpvtkFPDofvztC35y+RWTn!N%t0 zY2l{peIDpg?sH0XA6Qay>|10a%n(pnNouV6`2zk1jCTD=wmhe+$geSZ%HYUu3@mxOq>ut6cx?QBkp_?Hy_?yDZi9z)>McGUJFD$68(|8*s;12j zHiPEF0~#{P4+tVA9b9driq`|5dZb-G3NLp%DGgHVHyYns_)nWzyVIpudNbqt^ZbDr zdu7<7@qPu~i}Yd&N3y7%2Sz-Tx3luP@Z7|6baASyTv8c28k0|D@t8HXj1W^=juNpg zh7+leS8mVz*&cGF9_SCQPT4M%pMgHzkOXlva<;T+Y`H3>_OV^JM`Rsn7eZ03F;Te; zG938RId+t0m>+(eKQ@hYd4)p*0y6u2hF9aNZgG$C6t8(5r76p}##6;1-Cg8-N)dvB zx)X*a(lYm_))`_E20n8ydsCgHZX0}Nz|+>jo{X-ZuK#h_`4U@a`+o4-GQmhkJ^PZCZY zV$y4p>;Y&^ZxU%@;}=6ly^+hjtlQ-i4_}ZpxMd^e;gk3K5R}FEx|Z5pqEJjq6>8{! z7Hg~>gBZ51R7R)^b5~NJTSS-?J^l7+@o~$TvFLV;u|<_=_p7&9Uhg~%O&$fXmmzX` zeKUafP`S;(K-fF?%PA5L6gbTKTW>TNQT;|o^|wAdrQa6`X5%to1OKcjikF5$U!kU7 zoHLm=@o@6XSK>)`wSNynEs&KeeEhin?3^@VX<2q&K3z8BlH*kuqf8LI^p_=Z@c zW7!T3e_8Gex&D){ANp}6X-uHLW@HgR-x8i?5WX%+K_#TE%@G^zfSsgD^(e`pBTD9s z8sW^;I!OGJnP7b|uI5Wx9@m|ClDsD1;=#hfV3v0PuA|zV_Zn5TuoIjb^m)&AqCsRc zZPRh4cNf`n%|w1azE8SeA<1UxNulYv89gqW9c)N^dCbeTOt@jOW+Qk&=}o zpzE~Eyop9rhbgVYK%sj$h4oPYbC{{^8rouz^?hQS83J4uTbq;n3;vyny?x%|i{oU_ zSVr8k6iZWlARSlZl8A$hgj{;xT=qlQmb1FwKx(}&yI5mcM_iMybe0v+rzJ&YS0 z{Nm=Me!-z7s#QlPgh97#5B#4k{-+)jjhph}EqWlW(<91XeR~5ISVAC9A0kBsDU3s4 zC^1bRfkfaUZ|P@gZ$wL@V%gZW$jp>U1OI}C?w?e)H-toCr1gCBBJNfptG15}$y##V zirCv8P(!DbH-S+h#}Dk?l3Q=+NiGNPR9sGkRRH$c6vn(~P>3x)a@bIay=l3Z5m4Zlow%69gK zRjfjl-xp%cY?64Z?sb}J48Y5(7UL?pxB#4d0#9N%`Sx4U)@9SA^YS>-kkdY;oPChg%D zbFn7I{q+ORK7zi*_m@vR^O?~ijAF$|Xdp`fUjp)nl*Y<2u3UJ1Np%3V8zx1qZyYr# zFpT3>AEUiBQCmp9`CM;yZ9hy;r}G!VfYPcm0eicrQ*K)Yon?L1#QZzQHkd%Gvi8nj z1-TE*olQR7&`kHs==77PZgOebwI3wo#Ci$N#O<;dmL&R{96;C#hGP7?6e*5-O#K16 zgL%}m`ErfJ5IB;)*|`;??}A6-FHHA=a1by`(%`uWzlu)FisK{%X3KjXsZ*VgY^Kz@ zQ(aTj4JE%2t58#OX8mt#c=-Q$o;d zDhuC0{0m|+K0ai2#< zts{Rx@t`l{A!~7^EUgxgP7)hoz^2C?HOYk!0eCQxV+FB%wLLujz5dYWdfpAjMF;_} z+s4hT8`du~yxD#Wv?5t&_?{;kU&omxxm~~e2#9H)TH*@Z+#<}-&7)Vh_E4&IdpDLi zeTl6$3!ir>l6$98Q*ItR1l~6h>KU(_Cc$k(J3+3dur{V6G7)GlSeFRkcJ>1E#gB|NfAm&u-%!> zkqabWXgSItG1hx*LV#E||F0 z5rFfqG#jl+8q;N7<$Th6@0;r|cyPLr&I8s|iD}bZi;+jDaP(l$1E+|Xl$DEABZ);k za{`;3n{`pE4YKu@iIQ5m034rNo~hY%QU3TH2Au@e{P!8Uu7O!i0|Tv#IGr>r5;HW+$|%X zm(;hw3q{1R6R`9Vs1U64(PWvEg2M~elZ1Y(x3La|8AfXX5QhD!8?PkB{BL=!LVSyB zi;nQKxW#pR^>-c=N;r5@1*a9>!G(-z={*Ni>x>WLDujaZe%er=eklwmlUR7xt{f8Q z&j!}2Zii9BrOvJ6HcKbJ^S&i}dW!ZR>WA zIRrFaZ-sccBYo((-Xlf+3BC}yIxIt5`jSn*aD!#ltY%z%!rt>L zfw$||Ehjglx*%p*tExw)=wkX81)SWal;I?2R82lP?cxstj4(&vb$%d#uFX3znX5$- zk54WsMsO+qZ9x%{LopFcr2TY2pp(G&Omz-8yZNIMiu0wNcRA1UQn^X^T66@oxkz1a zK^VN1GkJzq!HxT%6#o-Fp6&J_*b$e3G9Pu1Oh|2C-WIOY3Ci?#5BNH}J%_?xAsIKu z275tSR}zQ}7X94^J|*Mg-o5b349`>UeYnK&@GSgX@km&Dq-@Z5wGkM6#wWK+ZF6PxnS`SiYm@>aM$|1Sf}Jlp1&YXU0lP7_J&2fwoBkw z!s48UBwj~CLA{$*sH+I!i^F%k$3cd^$)iKG{!wWKUdTRj>8}mk`x8IBa1#<9D?DhJ%&R3B9)HU+|4cQ2<1=U^N6*$ov6Gh0+>C2fp6zJ|HB5?HrMAPh? zU7Br>S&5vmUbZU}mTnzad+^apanaFecVZg4mp;!VQb?F?1UE%+46#aYYFgnWfz=~z zRr{9UO%IrKDatYU#c32pV`+Lwy$o%_NL&s579`nK;_+UjE@{1LMGF{sooKw1*?$AH z)P(E*(Vch{Jqqn_qymv_rRoO)5_r~~5D$zo9ZY{qJb`w?pW_6X6l}7zH)YC!35BW;JYDP(7@h0*L2P>d1>Zfcgb5NYL8hI@@#+0cTbUlsQ@t%G6!-6K#M zb9`Of$3*rhRUB8TVVY>mh>jrSz7omeIT|pO*fYG6-D79dMVL|mHZA4!;02Z%S~804 zH*-bAAU(TjF^qI)H#qj&1nRjD*Q;-xAPHeou6R>*s^`73=iwgZL;vu(q{{Ev*?irv zO`A|M+GXG00QENaSa!L1h-WR03 zj?=1rU(!@I`b5rXePRJAXNUwG>3bkM>mr$vG;KLK5wvQ!5@sP z;Cu}xfQ5$~Zv&t3Hg=(%0d$aY++{1LuP}e9blKx{N|Ze(Em6BW?gGomcd4njq2Wyj zj&84LQ!7eVTvwwr$jZy}yg7l~hhkuO@X$%pZ^`B2zRMb#((}=m zi>>C_cAf2NWlE}8s@OQ@YesFrz}oQpWi1hWU7?6Qc~+~x$V|P?VZv98zJkDv2_JL` zx;%W+LZ6p5`WC}$46CyR@#`J{qV2MYcPP50hGoh`nxAW_E2c@IZ=!1u z8#1lx3vg+DiHr+F?5-M-vKBiJ zs)qng1Y7{=T`EwzbG!q$;AA-sx z`Kbw;+Op2-neHs1YF8E#60#DxyFQ}V=26JIAP_u%p78vMuO`2A57cx)`V{ zWj_iU=lugKT|Lc`w2Ag-C32I#Yhs_{OQD9ZA_SP9n0vV%Vp>$X9BkT5*S6{rB5tNi?!-l=qAYMVD$jy84 zNQY?Raop;Oj8&&|USU#nvM;Gnb{?Eq3f9EwmZ0go7|m6TQot}_!5`;X;RYJ8U38Y6 z!LaD}aQ?V7-`cqN|DG65Fd83!!!Axjw{<+#{irB>v2%&Tkg#FsAwErkzU@QCsHaI$ zl3ly`pdkQN8Q_~Qlb?oIu}da4<(o$4bXs5tVg*smAXcbsEf5ScpX2;Qy^}&{Z9`dG z(+Z%4#8PoyPOsokTro#bDZb&`eS4*BN}3zqJtgk=CYi|-Svqo(BP^#lBE4Se zX(VayP<%w@?yKeWJ@TpX_mfHh{4{+!x*mFc|7vaIBi5)E(Oq*bNd-WPU~yP5U-_yykH$AbcRjJ<+!$ z4jFv32bDeA>3eOmMcIr!WkvwIxQhBBLYSK#%Z3=;$H%>=)3fnK#_C9jqp**Yu1Kx? zUXsf>sHu{fO!!oP)J%{p`a>se`Z3${#OLY=$UdSLPkWEwmiBQ#rQA97Nv7P`9Ox&t z20j_DPyOCKSkOZ4ResH^Ic1JPH!H;O1Dl*c-LOjEfzNJ&5=G`^PyWDI4V$)p#iHQ` zM}vLacE^9Js`L~0USt-tX|qAbDUE#Fd^nw3NhnH5*^8WA1B({dmwo17N-XlYg8*N9 zZ`wx&w*7YW8smc7+0jF;c3EAppd{_Sb2H5CQyK?1ns|q|KUv4?K;KgOtt0YK(g?uK z3h9{>I6?kQekf?AYRudr+xKd6S${5uliQe|MiLJ}qjA|7b|9&yY4~+_P8!Vx`;lB# zN4GnXY7FFR(HiNoRhos-qTb1bu6Dp)h8*D)xdR?aN!sP6)1iyq^{Y!!krT?U#G@3X z=RF*$sLbp2%nr7h>+*=j$ccxmEu+a6I6gzla2V+d^d~Y>d*)HtE%8z90CD?skBN{>Gm*rV>f_TOdRb+Y5H=-t?sRx~ z`#&Hf{N~HDK69f(*zt1c&)jLSG`9^JbELLlr=_R1@lSaK*o%QAu#SDfZY>6BZaDg> zXV#HZIu(6uQdFphWN}rcLFDbvPNeXAgHcwhE&LAG_m|HW86>>9QY5SDO#sX&y zA5-;*!Nf-mv#fo@B<@sjT*%4YsaZ?)L6elnSn;~*?V%1>?%-Ab@)cxJ9l)0dWY^|L zA>GN1G7zL0*T@jGDs`IJ&Xq^^^wH3Yi!4QK3(GK61YkTc2|Iun4}{Q6I#!o+>I?37 zrE;jmzh@5V7GXdw2+GKlDGw)>Kq>1Y#aMt9v|Y`((XK&sbj;1OrcG{i0l2%_I{U8f z0&?Qj17MrzWTCx-pZsn-a|At+X(}{RZ`w(G%lx}!fhHe!26_wyo%!ntL5OH-I@?nR z)Byy8kF0cLKI~L=PVpwS9vM}6uml#`{qy{=^LsUH{2|yJ#f9IM_oS=~zNOv^so)+< zHG;qExl0bkc~9=0znV ziGi1pb1<6rbE1H`$z%CF!RhHb*fx#oH%9-AHqoti?3!2?sV1w&{`DUby01o39z)HWNQD(^ zjr`Kh|1~^qA+NVkJpw6PHu!E8jWP$)#^o^p3q*%Yh6}TcOfX4wF4zc)9AVmvgEnT; z2))Zc0@~I=HL*Cs!euYBQ+w?k7<)}S=liX3NornpXEAX!?VV%EroBv=^LTFhm6c5v zn>C@DO=FJo>eyMJ6e<3|#CxrUE6Jr6E?{WIxonqSfd{!+!{!Hx`|aF!Hnh;kA{8U? zus)aR#`+OgWCA9n^XvB_js`2*JU&Kx#Ztbq<|b0T-zF$>m|6%x!*D;_zmZM>k6&D& z5P-4_UU+@Yaw~2@^N2RJv6iZ_1Mv6^;^bl6D=HmxU|F`A&DBT8JxQ1r{`!ncJ^>>! z!=TKHU8mY*>37VSO+M52P~GHcUiHKxp3$k3KtN|5ZsQt0`%7)5^YeibFo!nDIPGYa zX$+_Fnv1_B4kDb511EO)01&-uY~9tdjh3^6U|jpsE~{>YS$zW|nL8EhEFrZsw7Fq` z$;VFx2jVP1dH3i*Z(4ax#RLrx@tL6Zg!=lU+D|-G$C*q07|NSNI$H>D12YTo4Fq)i z9JC~7Jh_jz`-ZG3j_xudVTe#^tO5~|jIKM4FI5zjB=@_v$JC=Q!ta(rn$rF*23+n6 z?5*=%WMOX!SE|ZA1BFtLsP1ia4b-Xk;X7p9|-(CvZb(47n6Lzs{2g)p|DC`>KI9 zGVD3jar+ZRm_)rde)SYq?Wq(5wIG|GepU4Ra-EQZ&YMoqgC>lVUZB~>>OVwh{pu1! z7}A+2zl0G1&fwB5?AOeb0DfOryvSH;ud~*znWV}u`Vv>Ma_L_-_3-?6V9Qy}Z7;f| zv&kS&>ymaqXvR@m<<~^o|9cZN{zIUcHz-bd9V@CN(ap6{1{nqsCLn#b8fqIR#JWcT z1WF&VHAQOMqEqKB=rIDn+a2D=p?B)(7vRJTdKAie`Q8^Awx|t*rOX&Tnefj zrC(MV{3!ywp)Ia68!^mjf{MjcQw&`>A^+4o0>fe)ztssrRSKAv`kt(P*&G4*(Cke3Hv7gaZ_ZHp89#rsFP_8dhmH+-a9#bsPV6*8@;1+F z_dAM-e7xGv@44G_IZ?H~oG>H^_N0xW%>UbAniL=x_#!RE9l2@qB9%rlMzi>J_*F1i zIEK|E7-gOt&9UzXq!7@ zJtM4uk)8vbLmi@Ruu3FaKBje!$U?p| zQy|EP28w-BI)QeG8n$5UwW2z(*4PpkF@%+Tw50U$?&rs{pvQ7EE|3^vTb}8v5zrm##Gvw}$~fokueb<4>F{o| z*|mPNSWc#UE z3v+{G1-tRrT@DBFDYm@LK>FCh_sA7R^eVXtp5N=}8}XZ+w|5H|#87p(U@`444O^A= zm-WSOlPT}}jm@Am@J%JzuFzB!Np{#l_0c+rFMv)Xj3l*($>rH?lY$})zx%2Q>yhGt zqW*&2&Rot32b^v_ntpt;GI-xG5^A!$!5aA0#tFof(ozYsG;Hc<5R0-|19be*OVS{; z>9Q9{T&w-u&}hN*!c`gk)BSDQ{twbmZIzKBIGdfXdj5k%19zq1ykLb6h;T_SLl%A1 z0nq#GcQ@m5v62hHw{aJM>{O6w!iT0FAZ$V~R2%p+qE#J^&=tXZIB%|t7{f;K+S`QG zmyIU8J=8U4dEqA7(V)s0$_)jpqd@_cfz;)n>$rZ;ChMx-*w!9!J22bMEkCT3L5(?L z{D%hwYmtkHsY(PIFn*xwjk^`1Kp+Ya8&e8`VM>r>KcMNV+rvHcUzX*6afqK>ilw>@ zJq4=y!d+j_#ft!db*VFIbh?T*on4kPx}h_{Te_AC(Y&`r(;oM797x8oMV|GfV@;Pu zq5N{ZH>ravqHrc3g{)962bnRCWzdtts+-gau;`O@wAqWL<$-&gN}jDt>fHHZ zQ1=vf{P_GbVs)nKQ>Sdt&*mKVzx1a5QbtX?`!E*J<7x%+5v^6gQLv$XA@py1SKoc{ zJ+L-V7x#v}Rc@48wjEVS792{Xj8#&OB;O{8M3LnPsuvEQL#w1>gYT_@NV$ z#`cMmNXgtIyJ1KzAfUW`3x(a~(9w(cGyhwbgFLyXbZw(vyi0UGdz&}$Hmj^k2V*k; zo5_x;o!xAm#H`ljWd1gk7-&X6S+R_$NSbPWY|lmH1CW9o$S9H8wmXgi*ztSEs4A4X zdFwfcT8-mJ1DwpfXzbVTEEjSz|L2jQNM!Mb_5rMO3J|mM;aaZ7=DtW3h??xD+ExJx z@gQNqXsV)+?eJP%@sGCDvec0RW5o?kOda*#=KOD_cZVLH!X?%S97gw^ruKKW4gR6( z#@d8XIi%e>{CZRcgVNod(xG&BcWk=55s>aW<9EJu*7Apo1-f}+=AJ8g)auwA z{AWIWkgd%+TPkAkGkW2ug zUu_K;X!E1;otpDW?l2PT+(BkuA8cyw!0qAhv}X#IkR5g(sEeo|wXd{-RB)DNcNwU1d`;oC@8-MO1W0B}wTDRcUo9 z=usWj&oUgheF^mXIkHiloP3-5mF@l@T%_%+o5IxeE%@!=Qs5%@(+1|}1>jhKG^(#1 zW&X%@Y3^XtkF6lTQlS3RR(un&IK|h_u}EGWSmolW4EkJd>?I@ZA6};>W+0BLpCmd5 z%Q@Ibrk90kvrgvh{G&;;=rMr;K%-~@j0$@7D_doP72+Ke(vxxFwPLdvcdftzKaCH{ zK>bPww37yMzOs8Iv1$!_KwkE6f3{x(x=%b|Ssw1x%%7g(zCdSY`(F|Jy{9u~9R*G3 zWm+)SYnKOQ`)0l$Vctz4h6dm`CDj!sQ6r2)|>F;1rU*xdydzVzzYt}K=)Rj*-- zjxBM)&|>LB2kii_pwfPMycN%q=1>2c$Bni^zk>cnab=%;Y4NYJF}ZQ>_9LY;T97>ggSyOt_^U+`~l(Z3)}tceZ0Gqoc9lx`NdcuZ)yc zy)sI=p?VscZ+3QB0|HYp^N|ip+~0mLod;nNMH~Xv8XFs;r*Jy6!a;X*oC^Pd*T>(j zgq8da4axLx8poU)Pr<|slCHRel9`j_x8(t%&KyB%ANSpu@LeS`VIZYbBeRZ_(av-w z0_``=UaZfq=sh6l3cwjz4D#D3G1$!3pce{%!Wr%^LTOcQOf`AFS%lj3)9~I@B?91y zxSeRWBC>xl4 zbwH*F^n3aYAPT#i!J$pKcMRJ>LNcCuR37gp>m1^+6t(IK#3Wd(>X=b}z`W5VNBu=C zbGcLs9n@rrd;OjLO9YbbQYb=8Ad=8hGoTv2_rzlft3Zjbq^`dP3sVzQU|z`B2}m=+ zY@fjfY7}hR>SgrRNagLgeIJRKpsLT&68+xvIresg;QvOI5@IQFEYx^+J%Y0r=8*!Y z)Q;8Z_dzC@R%A>4DxeTk9tRnSC{ldzB!P#)A3<5Ya96==TiEqa#tMuy1mUF4>!9w& z`g!p=!TV0>nI4aMNz3Olun43GJ!H1o1wPy44D7o_^d^=%nHMuAFaf({9248S$k;e@cQ^#EkET?g>Aq4Z4;H6oGNFs_SIk2hOuhPK zV3Ouk?8s`#fq0>2A;Ti8h@ccqrPgr*`!7*MeJw4KV?lu(AXShBvJM9JDs6c1I95OJ zCg$%O8Sb!Mh-Opupg^U2E*!y-diUQrl@!rHD?@;sB{l~zHGaRG zdCiR;2vY%8z^{GDrc$}s3enOKjHL9Km~mAQ;lQd$!-g0Idu^mMFe8I$K*mdScN6`y zyf8Mc4{)>1)hj!np%)puf?BM%(f6kRxUkRWxZtU7d+5dl*izOpq_TT(>(A5o_{yHy znFS!x4gVoG+miT-HLY0dp))eWwAH9e`*CI`3r)^5E+zlp(CJ&~yg@irJ8Cih5OKIc z$=k4{8`Q@W%G;#X+awyuiP8W!owdc+c&6KmtKDHGTsdfZM%b z)Uud6Z)wOe6Y^~utspEKMhZAGKA>OE8T%xjUm*)o33Cv5#peY)mCUX_58?tJNeS`k zgM9#nRfsX*MO?j3mavbqV2RdsV4lX6BT$^O2hfKIjF#G<3J}y75Le&b(J6XO1TTC_ zIZPc|vIwk|xxWBo296*g#54JIcnt>}9~!@nWMbn0T>0S#xI4(rQNDkZT3Y4eWEta` zDg%{#mc))DI`*1HE53D&Mki+esQN>Jx^av?|+~eDB@K*MGyph=38&CyZ?cdfQlR( z=S}$f<|1#wSwJ0Bx-TAsWC>Nv@C>}lFC(YjvdO>h;ZUVW&Rs(fM#y(fD+Ro(B;E*= ze=_3BT!&mw54>YAk6pF=^F{_)uX%he*7VOmPjeGF`x7`c1E-!0ri*zUOwY|I1HQg; z5l{I8Wn}CnkyX;C$`2I@z#wL_wWx+q3+8AWN9&JF<^V)9z&s=ZK1355#8SL&?Ukd7 z86pn#!IO6FAK4`wpzKUuqe~=BrLx-k*E!)m#=YmdbVO_%Sp*UVD`#?E<%mOv$LeG& z<jb=&vG6M%_8?fG0OYo9TS1=$%qV zAvh=BE*#N#AFt{H5*L>x=yqNyZEdx=QH<%A^5C9@lOWd@F$=M^c%U9W$`^A%qxFLq zsL+oKE)*6MovJaj(72EF`sSkmz(zyKuKw+|w1G;N$4iIhS%^BbMefhkrXy3nmL~>;N z(H)ey2Li*U{CKv>!CbzqvCnz)3X$>$Rb+)M{e5{;PA)!XLGEr8P|nsZb88^lGebXr zw}qgR&uarPQT*az$|33mSzOraSD*s|=8*hK8n&@_jerGPWI{CJ(Hvnvfyygv9I8g- zeZy72Fq;d+eFIX@y+G2S`3SiPBj#HY-NN!oEJ%HAg}sT_Z6kb*$tl> zC^uRub3X%YJ+k|YW<0fpj)*#yo35W_AvRMws70DyW;Q@3fKcbq164x>%TvZbea+Z#62IrCH4M8~xFba)4lG~;jroI^wX@`bVdu;?$ zKh2+;Bez7+sxve-Xv^`-twE9-dXiu zw!B!>3GAutksr_9^#djo3pTNV32BHK>MNvNL0o6(ZvHu4hzF7NgmVvUulRw<(d&44 z>@Bpz;DYui?8^+mgIx6_{c`?Wc=FR?keguBs)`yH#}-@7;d}$)d*9A;se+BZw_qaWoo}C(U%*OR-{}Z5imb~F@*-zT|OMcze&sR3#tp)2>n`iTt00( zZxQ(_x8-^z{t%SkELmijDt*5FQ3a9rjHTZfzA1SR#5EnCa1sW&yq~gopL*m7fzT54 zzBoapW2h_~1v}|_xzw1CQIGc*2;Mx*_3%FZfeZmxv1pMB2ei^$BxqmuWZC$mOG@wWCStnQ z4YJw>Ye#cJsZHb(cou1}WEFmZI#8|@$^~d;QiK#=Ano9{Q zGG|O+$1m>wGGwq7+N`D)J$LM$E9G|ZTZH=8CL-ISPGkn(qBCEhD|3gHv-YjfE_JK^EXEK5h92FwSx`mV`*2kl0BLJX?{Kt z79yh#FHKx^FW@fGfJtdEb*`~<4DTQv$jAW`o1JHC@VT217#C+T7J8#e4T?J-)hbs^ z(rIF+9afQC9jm%PdT~QGt0mAQ*3wF50^^QTYu0)!Nc>6P1dMfj@d)(2F@WRSn7D?J zD4rIc9~_Ho$;ck&5qJB|-dI~X7Hum`P_36NzW@fx#F+(+09o0=lARWek9K?yde2h? zBzi?p(PPgYQosK126xEEhX*7+0Sp{^jde!fGbrh#ZDZKAhCyxL5*2U5%3qzkE!f*_J;=qM9s{MJNM_cl!M?uPq&9>iQ{kRMVFs{$jIa`V?L|? z5?>5Zp%6kr{(_PvoAV9GQT?4IkIc{T3ep8Y6K_XSP1*T<;Exu?rpC4~FseWaE{TwG zK7^XF&%oy;a{D9M<|SZAHY@ilu8OE*V{2v`9)LhcTjW_n&kY`fvSW|}8pD_+gH9bq zkv|y!TjXzKpKH^wKsH^%jiw5DF`Sk#Sqt z^DjI|)nu$>tnlKYkX2Eft^zO~hz{*f?%a6>>64rOYzHM6b%f9*)(sG!B4~Xwy~s2Q z+dAEh04nQwzMv+C*7}Cu#@;9kR+Di{Zzc(4+tb9KfqwC z3{+5;L^aM)5|Xiw)&jxYnshDPurdJOU$j8I4Dmyo`DA=5^Frfp+|#a>hti)g5=su> z@r!+U*_x?}#&o$5J1zOOKJaqHca32$P?EPMpqnrIP*+~2ef)WqMkbW;saIyu$#mGn zG^`|8|3GU51E_=#uUni2@icvaMkhnN$i`Mg|0qs|<1Rg$DIlZXDjX~z&m-@(lSZm$ z&u``<%g*Apm>6|v3Vsnqc$OZa^0FD9Ka}A1ge83;ipX(q%;#{8e?DW;-cl8W8TK?5 zWZrg_MygC+D7!I{=JWAwrjZ%ulOb!Y%A6C)C;csv89O`Ve=Vt-#3~pa1}0cQ*EsaP z09iDwxUo#Z*aX4+OwknO8nrHNHG|2Z?Syu1rsF?ud7!guB?L)c_Qp+8=8P`Q30dVD zH4UukyYVH=O~iPb(Mc>xjOt7Pt_+{S7nV(CNxo?L&L7Tp=l4r%h+yh10wL(%SVT2Q zvI9ZJ_62{Igow^2z7Xm_TwIF!;p|@lWt8(fF{ef-kXqo#nO3A^vAqW935Zr8(PJ8a z7wqkA*f0!ohgRL}BWJnz#br8s{4oKz`2$acAye^9805!)_D|^` zzfj*FN=dnXovI4tIr?<$V!{-r3?MsXk}y#99HH%kLuqO9{#NbMQwF*TU^{sDHS0ug>Il4)1a}lvH?gMQ9D4sb$x|4VYZQPA8u+31c!Wfv#_Zvq zX3#R$lVcqxK5UyngJ|Sb?P&tVB3C`^BLNWuA`oc{#AhZ<+`Gp@@f$IeGK){fM1$42 z{c*f%&1^vphG`jzjcqH?EiuORAnp?aA1}xl1;QY_-mph>nV52v_<0}n5AS2T*QMo0 zCO%Nhs!$;T>+I#yVz>@C!&!#!^S&Tc9{F=TaU1;8C^CX_OrnzwN2w5pog=odNnKRR znTV)N$&@zP_n478NJAJ~K{JMx{B4k$rBDurB%As*0+?*)v+2c~b%*=WUfpOx#*Kn) zd^%%k>6*ey4Zpr2&>;_j0xieDZW&4W>h;`y2up}_0)-q9kDYAECewZ%0yGF{uS7+- z=86WvRK8%*+FO@+DN(aba&BH`0U6l`DdugbhYZgLZ=Gp9RN{{!x+LYkuUHdD0P9@M z&gp6Wf{z%i;FTHm$avd;YP;S3EbQE~GCq^+(H<5IKe@wS$)Tm5-$v-UC& z1DByx21K}Lo%c|Q0K$7QFpIE*F^>*}dwQisDH{Xz2M7|4y$80@f63WQueImX13r3! zg(H0cC6_P+$0+8F&Pqcvqh8x0)O(GL+}4RtO0b}6`5csi{GhTe&M+?6Enjiy-+KcP z>0xZfV$JXacQL>y8Xt8=;kBZf@B3AB9K*)R+~K+Fk-bCGu@QW+qS-*(`O zSVPDxGIez+5*YvZ4qT?KosOv0=IS9WeouLYogcR^Q+|JsGc0^Vj~PIbVi2A42DmQ9 zvE{)L35Rdo5GE@D3n1aTt(@ASZz1f}#MC_Y1YYo9JGi}y7UPSo4; zNUC)o6TA5^Y$GD+#>H@`odHG5m~quMdM}1ol24qIbS8^G4Ijs4K=ZDG2)yexa@Pa)(z@7!#p6}aW z!ViJZQJD_|nOm6;vEH43|1v)xWa3WX-nL)r|e5+pe z_aE%RLCf$!ns_yL%q!qo*(txWQ8R)nAy<&VZ5H`bQa1>zdr6SU-Zl$3m<_#SD(XIQ zHGmX?Uz>KeSuV(dD~F(nA#BfeL+rBOFc?IGa-2zYsZ@UeiO~cKJ8x&-O`ZFw9r&|l zx|;o{b8_D}dFKLR6+sL&!$?+NTU#{@`ks1JVfXeiH4x;h52=CG<(h;jyqyL~CzPSX zOYgS=a0P*MHlI9VL`HW5(95$a#b!m9GVq5#srfipQyOzFz^&O%XmIr#s>j3!iG){I z%ps5o?2v>}Z8m!tjW37slUvOl|9vMGsh>x+^zv zWl?kNlR4RBsRY@Fom6+m1WVxU8twSFXWYoF9AkLEZvA&D^+^fgY511j>uQtM#b$j` zDO_0oQu$kokZjp@m#!zRQPTlYncFYTNB-8`M>-*=x9S!;<+HTIi&Qvm1#uW>VZbe8 z8$&^^QSXHhsRa){Osh!@=xbx9T`clC!5uFQ83sDD87(m%*6kgy%%&r@5P0Pjc2rD~ z6qZVr8W+c3?(!ADZ5mc217PU+eV3$w!N;msD+@TimCZ%Al?ldP>}pMwi>3v;U=xTe zQ+3fNhpGRqZm8w|88dwgB3^ie)z>CWBGtJU0Nc{6F&6(OfmvEE091>;1RXxr#L>d; z23&oq{GMLtm!Jq*a>^nd5l=3x`L$X?6zy(#)__@vpI?||e}4?<_=x6IZDuv8VzM&y z<)KzIL{{jzgc|W~Bf^yIixcwLP8t?TCQ1D34f=uB!5o{Y%scjjAeZS5GL8;L#Ks5z zuza$i4LABqe7C|7(HJVw`al?TUVCs;h$(uWo}XKxfrwYd_X@J@APDqX#vsJ8fmdb& zxPy+el+xOP#R(+oJYm?qU}0uHd*62U-eUtRlMHx}?heZA&$eWqdfIOA9{!X)F|?iY zx1EcSZrpzXQzV~AH`s2Hs7}9dr}G;796bk0~K)eHTBR$ z#lf-u+IYIzMFImC$mu{LD*GnoMW;R7B&MRGI8~XJJjkw9UAP@?O+XN>h#HkRv*>Z@ z6bhVCujwB6W!3*RI=L9;bppj4i7o?4s(CBH@0BU+)8jxUqhEA|7l@PD^WN?1-P4Z1aE z*1Gz7c~xaj{(MP2m?jY%+Wg~`dK4iht6uRCRJwh3Vi94--kVoaIycSnA%iEX?^3MP z0%_NR9%pk;JfNzM@X*O0$(Y@=@)IWiCa|y{UJ=DK4pN@;qQ<^;W5sKwkB4i2( zf)?Pd_-WkL2F-#6`>5R4D8bc57=9T0F7o0rxUm<+nfuKHhP)l;awtOA3pCTELk^>B z!xjmpINALea9a428^!X_y>%C%qI${Iv%NVI!S^3$seI7m=+^S4Q9q-zB}Q^&VDx7s z(NIeKEM^zM&yvP0&bILokg#7n$z-;K!=%^gnNpLbCzgoOutc3R)9l9_-r5icoUX*g zK>H;dXR@mH*n389bpCBN93)mX|NU&xg2&63v2kb@x?Jj?MPE-jnw>B0he5|ayc7G- z^nCb~G$@SyN}oM>YcT%(@bEAzCufhT&^ZB#=Y?`YVj{2W8P(&HR)dkSyjzpf#$`G) z9ydSZ?47uBw+79qooD+PQqTeWX;Nb%hr5SBk9n$2g1ILqTli#-|Ez;Hv{m2G>`i7{ zxqqoNfPX3~J_Pouq%E3lx*IxoycHu!huQy3Gh#Pq*ORw#{l!11jgww}x%2(`<`0b$ zDdVSu2JBcq#6cNdUCYWD{3vdy$Ke!wG2?l|xt4T0t)h~RWx>!lXn$aY8vHL=TyE+< zwEF6K>dc_=3hh$MYdR_@n6sn9&8O~Ar%PSdBTP5CIg>9FzUPf@t%d~KK1OMAuIodL zlN&^R;QBV|x%CGUy#jna)Yp-y9NFGrBy_g;smR|ZF4K0*G zY!;Nu8HNaKoCcS!jGcm9Bxnw=Q6u{9fIkJtDxxq}0LHA7TbhoQ&6QJZ)ey>;uBNv_ z3K*2jrXZN5_S0HN@{*2DCs~*onvT^h;#4DWtDVK-NJzePP{5@`Qy|gF8T#hgt_b@< zN0Aw%toR39ZSZ@J09p8KLEMC^5i@L{2$>hM+je`w`vne!t9v5ejM!_%sqoQ@85fw_ z0tRlpf=aLTb52y)_}>N#hxB{5m8yVlmWQpcit@(Eqt9lC&mB#_%-pzjh9Xl|w5Jr7 zcZJRfoulPs(ksFgXRnUkh$Ip;%u$hif^x};3KQ!Zee@DJ@f*Rx1L)U7bF)rk(G+b8 z({`35Q$g!S?V?!e--~@s<{s6sQk=0`ZIYCMXjbe5r~6Kiq>%HQA4E+$iSM;^-oXXV z8~QYertMnI?DN0ih2*4h@o31Ri7Y*j;UC zfXUe7-ULN6fEE>d?hv^_`RF_v3kshzI+?r==p0+us;)5%Z|UUK+aK|1(k=2ixK=>UytAFB} z$k~gfWq!)mgCact_3Y`$x5(0?&{Jzkzj~JGyQCDd(p`Cs_|FG?OT}n={3K}d#7-#Kk=>sB?Xanx_O_GP?wDhQaZ9FqDS#mn2R(1gQy zG~{iXg!I>3hzOK8;&D*IRt4&M40#6-BjYu#kip_&NI+M z#k4i46OE#FL2PuTG&;nbD6{|M&@h-qXC9<1@~iXmCa=SU*t;NsvL25M%&X0Om)ybd1f{jEHm;LO+ zP7zc;w3!L;`_Ax|aTq+B9ImnIGbu!cx%I8f+lR7m`>qL;`i^hiZsA;yp2+yVKZCO+ z7PiE?^~`mA`^KDh|vby_+4$we-a5uK2bNX zV{O`&g`G8p;Q(*|p zR?I+r;S+tX1FjssiKLD(`sQKYa_fIa*Ti0r+m1rEZfV*Az1&t)$^E_2)TeF;8rCRM z_ug-IXPcG^o_$SGcW%psJ^T<&?XDl2?hVG8ip;O98WWs>2xPmKANMq=Q`IVt?$q6E zF9dZhy=B!-rNG$LT^ej@iZIl|OX5NLbQP7|JH^D~rD6^TvEB*32vQrzCOMVaoA&WH zv<2)-zponV$9EpwV&i+!)nf36@Byyvh0dB0o+Dkp>}0k`f;O^~G(@Pq2(Y_fV(Bbz%roUYvdq74gIF7!uJAWIV%uPvfI(W!Q&+d&3X8Nqs8oQ)~$f>V?Q$ciN73w zbMulogoocOCvb>_xAt7#sl|W2BL0}oRjy3sZz!4*HPzFi z>EkwQ+-i2VAQ>3n``wQwR^bm3BMpy0#!gw=^O$GLs281NyYkPz&%-kq&uaFzeVsj(I5jA$NE_rz5`R8`>s4WMx@RuMV~yrW9;GeJMM;56 z+-WzUFsHz>wXEywBTX`D;@>h?|0ckmXuO6n)yNz|Wa~x)gM?B$HE}Ikh7P0+oCaU4 z1W%xe3Z4I3p0 zz7w9a`L*=ep`m)7JnNV0gkga(h52Flhk#O;tfw@-#4zr#d!sV3@Y;@IX8g{7i*E~a zk$bBU#4&aH#A16|#n2_Jn-;GnAyPD@Z1GqHdHhxe9QmvXxB@M#KJk*7>Yu-CVX~1V z4^fia+Sm1cfws4!(B(UjBn`7BW97)PylyBTpC{aJtz5`H_9*jV8PWJ+%5M7ig?>{) zANZUge@5$FYtGEa?ygJA%-pO9mq5&7#%T6#tH`5QOLIrI(1O6DK-CF8DF%AO;$cOY z!7u77DtnVKL)pGDKSDQw^E>-Fl17jKo}a!Ii^O$ zvbAB7IzL`WYgyPIGwfe-zxWLK-gdR}O32O52P-!D{w{?Sw3Fqgi-F<08Kz%-WYL%tmXAya6X-Y=Dd22~XV42+@h7xZGA7pe)d zkgraSsAVN}uIrzDFK410JRgZzf>ATsM`a@;@m=|7>QQEH5uXCwkcVWc{QWN^nfz@%BRUw) z3$`9adSS89kj@PapM4J>vatSc&U||soj&MVkT{lb7=HbWgoE>iZ>iNqBG`bJMBsQ8 zi%3(Yz4UF8ppi;yUv9RxsTx5@8C!YaoxCYZ^M9zHRdOAG_qFF}A*%I=av-MvQOyV( z7Kh%}FXOK@k{2U`qTDdiUKPH6OgL_;oc9jDzel~+i4GcI&kOsJEo~MOcI3aMfWv~` zbdjDl1P77XNST|@7)~MUh_3kHeN{1k?`HWJ9r3-3b&K?Q(|dSV=$co1b{mfL=0ES} z<7ZDWr6#Ahw7qqy0$+_+*IoC%A$4if;5(C?Xn7o3?o{U8e!qVJ6dqzanQnfT8!*=z+ zzyM=#(%^hN4VWC=QR83#fVDOb^eKf`&A&U*DziKr@FveU+4>oDac2sOHs>1!=7Qay2Wv-Qoe4J5h{C+IcNa2EB&1N+fLuvdS2EgqwTxJ2EN(T`r8YOtV7doc zf6|5|y-!I?>Oa}~@$zjR)$;hwvp#(=5bl;g_4yMOjM{oenD;OGV??hl!@M~OaEItm zCCkf%KRkLJ8{FS@K?cWo*z=Ewbz#=kQW9Ee?$kst`YZRw!i~FM+y7!x5oh@7duu4F zU+ea=o@mwx47}2PoKG9E=N8VEt$?JI95P_QqJ62WX>QjvQxFq;zNejmNW+n)XMKKY zu4Z*~MNb38w+&~-ZlNHqi-z5n>zx=_r)3B_{caj&xuRc8 zj+tEwrobTz`$0G96=5d$JmlO?cX5+!wTrlTcc`9ylwS*n@f6sD@o8z;%ssm~w>%2Do_aNv8-{GWH*ohQ!s=RML#%BQ~PQ|~Qb(g(6rmo&Y*JUv5a z=S1(vvgb>FuVJ?qMRa&ohWI8S-6GX`r=tbIwjGcnwW;oXsm|;D^x)|ksRvpW)<_?G zy-y;%C27%jenf1O4PoZ_bv|ECa8U_=r?cw_^%hSJNt1&P>3o{3HF>@=vlS0MU`(+H_v$1OZlB+~25B;=jyp z&WlOt)-SJtu-NC5KYR^-y@(MBuEsSAY(@4S6kRQ3=gvXV$w;Haoz9Br)ppIVdQ)8Ryc z1yBsr3)z12QIXw!a7*>R@c-rUx2B}-@PyhizAK(eigrSvNn@+XmwF?mQ*qX$2^t#_ zy2}zqVKs~3r`)Z|9I+XwU3LXeI*zgzd3CuHiZm*3ieFEzvzW8u?7!)by-y{Bi71Pd zp-nedE12Mf=&@-6rse1J??^)cydpVrH&74i7%=z6V~|O zH#M<1NN{z(S;l>@vU-u!(W`qEb}c$U;tAlG|a9T%>z3XV1v$$0gl>yc|BKZh8 z2qp8NkQB(@2w;*7?3^SD}U;Xf_JGsx8lMUZCo8=gTFUvDmf6!W@W4n0|P z2-Q2WOi|H-q%oPESD2P-xAOVOr54V6UxfU{!y+?&moHxKg{Q%eg|)X#EZe~`^tFRJ z{N~rkj51&0*N?4|?V+Ke4|UH+-a~qizr1n2mw9Zz_c(--c2zPO-9D{st^O`4VWOd> zb$zV3-MwTf}l zq6nLuoU|T#_3-E0TeW~80DyosRb%1fEcOS@=HSsCtnb|&vOZxXUE!h;VR<(fp$Eu1 znJ)6gY~fTwHo3##d5_`bB*_>8uGrA+SKuN}IC?w{i%q)o8z^I+p2^1cwo^h2fwXk+ zlcqT!%!2h#pEm^GdTcK+Px8jb#u8Xf-|=MFteb4SQzBsmlu0S6-Pd1Y3!iSUSxRj! zC`Obrk{6mVbmlR2{BI36GR7va#*FiXw%lq$cLT8}_-cy z!!S#-xWBZAia~l`L-tyA@m5MFKP)kn)Az>}I2!yZ(`u1od_?Xp#ln(3+iJ_2_6E%GR$ z$Aw05@RQ6R!#3F2ODA_!^yslyXJjE1!$~0ov0qW(a~<}O>Mpba@N!YFMyT)lB0g7f zX6p6#xYD2IZ$^ID$gB<+{+(aRXewK%0ekZBmI6559@WCBh|iu8G`^UxAG8p8crrrz zOo*#q%a4u47sHt5QAt%XgTH}DZX&;46VCkPxq_pplz;1<$usI(b$kEx_*A|pr09Ymo@+1f zpLVLGmtxtJ8^v%#mwuzk^kR3i0xA(%t@kaZEPZ-WT5u`-lslJ>9Fd=vm^v$bWccZN z4o<5>&7l7!mx+AdLe-oF5>Y~_^j6FrNz~%0sGTheRdDH1bQnFTZFgZFwGirPKdrA^ z7E{;XLvRuCBZ%c?iE{?n2meBs$qC{LPLJraYl++ps5c10CTCyYT-dWA zRT;o<-qnw`;~O3NrNGD{u5N^iy$OU#@yjpXql6}G+ZhRrxTE3OdURCQ=opmB_i&;n z#9Gubeb&OYca2pUBr`62IK;BQzP!7oTz)a-n4XtM4UUS}LMHeKa&mI=3JNVbeGWQ! zlOJxwS8q_fHfX&Jk2f>#rV7mJ79VD;A7^wj!3OC%n#Sv!-K_i5FH1u&(Kz{Fw#x=)u;|7B%aZNdxHd8 zk&{91{gE3AB(|Y^e!Hyg_`kB!S{ab^G>W&kKr&SGg1Z`^Z3@{0q`GMw;RPig~2Qtmfchf1COD< zN(`M3c>h4b=FAv1;Vk|TsIj3Cq$*|j%?08}|BgF*os#94YO{~XIb1ns3mc0JbHt8kr(d`bBPmu;aJWB&=??|lGC(T9;sPoxiK zc;BsOn)bgu@i2r?{PFw|ql^<=^xIXh{GR`na?Js2I+o(Y<<6&ETJjed9RBcN7bvM6 zsk1t)TzN+!H&*kKrV62thTVY}tq%pMGb*)-;;-f2ozGFq6t7@9@a}B&DkioveLM&2 zrJWn!kh67gg%!FuQ4!VaDB$#*u=QW3D`m=;hQ|mi*kn}2-20cpYf$sGViC(~3GBvQ zw7o7aG%!47OOTPnrk1P~{sI6HNfeVc;h1B zWRb_l6c3`TOsiK;uUpqf);y6^Z%lLL41lcOswsb>asg~r7l&r6hh<`VMEC(BMRac3 zR&=sJs$eQy4?HOkU$1k*x3ty0lN;@f9@!Y}ji<)%-np-SX44%W9)4nozYetcozdRWotaxpG-yRG+R{1MxMgM;HCyzP{G#qec?WolktUX#$3^Yh=;yxD_O zxwZ>AB0h&8jl=uMf)yv+lWohVTW%|Z2GF={|1-v@M(978jlPITj#MR^Z+s)OWz(;7 zf&kE>Td%V_l=w@)v0R+5G$y<+imK2_f@qF*R35ae49R+a?6d2kAHlA^=5N$Is;FM1 zC00*np@A1@u$-*X0f77M6jqh$Jt|z^?xPd~IB(vDbEW@~g6^F>QR18h&t;4ol(7Ar z!Q+mIOv7J&|J2F4vE-IInezdY1-*Q5xm3`OR4Pr&eBAk^qM{L#6CDgq`$IK7RpiY+U(MRAl;@h@=Wef5(gC_ZFk5!K z@oIyb`9qUG{uP z<5mOH^`JZ`_llLdXk21gHiQ{)U@ja+m0W}9CkTqK(fd3?N(E+T~tFwo-~;^MXx{JYQNP1J;fNhFD=gdC^TX>K?br&M_P?ka1*i-3(6a zSj?IVnA?@7>6aKQA1sJ}l#ivSF>Jmr*DzQ#Lm9^oey=4M(`ch$iX1=CJkX9RPCNF= z)jeIul zY@6d0HfC$bo7;k2dMZaFnfkn)P#RDEwJlW>w9raz(sJzs${|cZ@M&73%5-D5I$0(z zXN&|!d>&Kvk2pH*7JVTGsnrSee_?t>llBO3uIJvjb5Q_9_= zD5DLz;q*iSr zT2u!B9^jQTYpJq)ugybL={DsMYesOS=xR@EHdTj9???4l;)|DJz3hA zA=|=r6sHXK1{Yx_ay2b29L2J#D$3`&8kM$NkpEzmbEoG_Abh>cxnWAkBQ%oH1@?;L zyikh|fq;SmSP5R;Law92mdnC5;&+*ECoEonF-S6)9x@sVg~QyqaTJd8&F2$8;Y+Hz zbMX_W`j!683-A!;^=dC!?$C8pmXDtQ8#1S`h|*7E$e0jIv$Qj*FUU8lrJT{tM~5Sk?HBgikU(q zcx^X5g3$hjg$4cW0Z>BpV9*CdRr_4LPOK(B>cpockLn=#4fF#zj`%# z*P?GJj`>wK)LUIc>uKzvbujO%!O{R-P1QTOVV%_6A`ZjPjl6xI;3sU(3Lfo==y9q6z|p=hj~lM-N0kW}vpzj5-E21~-2Mobn~kS(&0>+~K!7|YT9 z#`kW6g1&2ub~(Z6YFbtWK1im1>jOydaN_WIYj{}c;QyiN zDx<3Gnzo9H3ewVD(s1Yo>6TJJ0coUDxd(X^OL!9wQCE+aDfn7tPGafGO=#B5hAjr?u~Rc0PYzj#O7zr|o!78^?zJhtl~;XF9mS|Y1}lA9FERW$?U8>(-D|r& z_=ob8B0EkeM7IX7cX&5Nl0?N9hJ#WMJV!9gTC&(w>8d$9Ny`k>g;83j+CVRH&`!r7 zel&4om~#?T8T$_HwJHpDdlBRKJ}YLgFHgS_rV5A@ER%-5GkQ&pPj5JCuAideG6n=}UfruFeFVqwZ} zG;jOe%=I;oT9u1a&W|>k#nv^X!aid7?n%_!8e_-kvhENU%PDm%!xqY*`o~@0#5UbfMvftC(=3Vo@BWz zJ?s7TZ>5A|xC1BO-q!#mzc9VYy;6E7^Rhv;;nj|_5o2JM&*p#@tsiA9`sVYylep#` zmkyVweaVnCk6x)*DmA7MU$!h20Dd!slNEz~eVF5(NiJJbX+`X!hypauzQ_G=fL<;|2P{6?!#qEmI zEEWCVzYFiHR$-Az@87*I5xx-<&0tD`h9qLT;#!YC!FKqF&gckPlY(#+Q8|Y4BoNb~ ze?fUaL<-;|-@8$OCWQ8_n4_MZo`<2rj5gvGs@9GD`f$BG-BKVCmyW{Tcc0jjtN^jC zjG&5dAHz5@?J`UBvy^5Qy*ICu3^*#>b)ibG9gzxYNo&y?K5OyM>g|cu zIo+ZX?5vKU8jKzPAFuA~>)`pQcPKnKgRid5{@;ma`Fhn9Id=|%csM*%Hh28o;&_KWkl-dj2v>0N@d300i&rLhD@CSql5fb5U`f z#T8e#%CE;AzFUNbIH(uxyNk~&`j2l^>>loYb;N#Vu-zysn6x^fa%}hN{F<9EA@nkE zkdlO)mRgB+KB3U+XZd3SS)J{)5Hl&m7B&hti?N9c`oN37zOw$>giB!ZcOgWQ%Xkg{^;*6bTGfnXG4%W_=JL`4-lOF7YYAr4I^f!KQ4((Yo=2ek3 zmFMGRN%2L_3nGySOj&Zv@?EYM3cq~~y*He#w9MuxNgg{j(nh{neU`h>UZsk3PG@JV z`f*M13R`I`ts1X8-6_A_uyx~bfwYl8Q&{3?gclycw`WO(GXd?}h)jXA-UugB-#CD+ z)R6mqj3xz`$yp^yd|eeL<-6}#@L+_J2BxE%`$`%@ke;`-KTA|9=qIU?l0HCkYTTKG zt_(wn!fhBr&bE>D8_z&HJk!aWP+Y;ny({soXy(=FjwZz{_9#JmLEhpS4Qlj}7j)?D zX^T%)f7|Pf3B&Uc6=jWn1K8D{`nQ@{X+xT7ziw)Ds`V7jyTb)+ZcI?EqefP6KY0)Y zd-oiVKH;(&G?(JY(yAS5U|7K(8L@|MAp**n7hru?(2Nj75jt}5rl+xuyZE?1F=nHy@uPV0R=>jb)m=J|mmI9`x9H9u zfp{^lu1NNqdinqa+BE542 zv7$j2Dp=#GLuw9w{0IT#0V9v+&wVZWK&lNr%2+Cs^DlgsFS#)a33?vBi2K_@H;cb~ zQ!f$j`uY7`>Xa|HtRH0^J7|0JdT~I7uVAsQzirFU?%YRA#4lo|n!KH&TDRM_TD?=4 zcJp${l4_}>YwToO@`7t?PMfzav%>s^!(;aWC$U*mZldBh6T6=NCqeP6f36|1!QngP zx;;&~J~gA=!VmMIE?Y6|56GOP%$4W>l^s-v?l`F+_0Fm;g7m@Tc%78zwy*5|q{!QB zz~1w-KAz=?KOA5LpuPVMBHq(QUEY3rHomkaVEx@*az?$claI0Hc4*NR7d_>!u)%^J zbysb0MNl|pExC@r6w{u1e>@*&skysklkKj-&z1&KKtIjOOf_}|J9%H5Xi6uTaTk5J zvBwlMqsB+}GVn^82wT2m8L9J$f6I61*cNYzoh&E};(>e8y+F~+sjLD&0_v!Y_GJuw zbC+J3?zizHx;A>Jk2qR1>a*(iu`TBy>f+ANWJR8wRZ20>V>@ zvJFS#a)vSE9jK&Er+X}_TjL?kytt^=H59AkPxgcE@!N$Tht9Eej_*}E7%Z$R>y%zd z_+2oqi4jJKr1Y?|-iPQm5HE2Tb$esYEo8P(gP0{zCtS=4dpgzBk}j$d)K5}K+eyP8C9u6mcIsh<}6|HGwx!E`a7dm&xwt~GiH zazo!X9(aYv?q3a3O$})lGZC?TE5>_}#H;p^1QS{1u znVQd*OM=a{_1-0pH9g&Sc5(moI45Tjg(myUH+4%y>=#;CmuBKuQ)coPyx1^d+Un;c zOvrAm3=o4F-{H^GT@jF?$M{ICt1~DvFw8sno$T{ha1PLf^^A!MX3s@2{%!mC;@ZD! zS544@aKq=Q{`-{KoSF)q5XSZ5?AT64b+s)_iEYwrqx1_DGU5!jtY(8KiN7P5Xh=(V z9Y$hdn{Z*qYUXL1F3j`u|QITKpC3&@h8D=FK?bzcDQ8jj97v%q*B!7nkp{B z0&wzrVM0z0fnH)nWC?N9>cqU_^6zco7ftp3kHvVqOjhTSCuawl`g1$ZFWI^RH4~*Y zFWX?LJFwqN^fS;TM}&P?+> z4-l;O-FulXzqSu>TG9yLGimoY_u@E0=YD32Cxo&yZarTxI*HvEPw7s!w+wo{hJTJd z4SP0>JEBSZODt7xq3ak8?)Ri7!ICtVV-4PP)W^@AWcnT=2GwCn6HgfBn9>KQ0vr}> z9qr3u#S=NDvXe8nGy|Q&rIoaK)BL)Katv;lVSXY%s26W)gwyt&L{CT2Iz|4lo>f`z zqBQQ=2WlL|4!ftk=U4zBfwIQ>UXor?pFa7M1Ud8wM^1t^8_(AIdE@HDl`UlHN)m1O zUoc6X*j)EC;pka7Ux{dwNvD$ipWyHJ)=4o}^!J^6CyvY|JPB>?Q(i8MHDko;O254I zzEa=04-MY*&UaDKRDfz_31s!ZzdSfY*58p9Ko z8Ep`wO#5c^^4|KCuqapd>dz)oh@8aOqTrt)1koRr1Ogm6;5i@>6i=EKL}&eC&;}?s zr5F6v+X^-CLU6b9lufDKhVMVgON&m3wE=nzPlj5NcC|2Z?Ce*afyKTPAQ!k=X8*>< zF;0$J=KsG0q*ne`S9mF-V9U$i?%^4ACnDG1IaUWLd+lg*lN^6q@I~8Gh6m%l^iUh_ z!ky;1kbuW?c5@v$3-FG2c#@_P(WtFr_PWF5mD|8oH4oeehsrh|CeY!K`lFZwWAw@~ zVsqJ)ZyNWO&xymUr;ymWxyg17oENa1F&hAQQO~!hDfq?&vRC2|%hWB9sP7+|1P-PQ zmW(1hG>nNy$(ye*$yc`YM%9UC^?QGq_hXuC0r(Xua7{=VB@TBg4Uri}HMUOvEYoop zYM5FZ!ax-Dw(crKT$NFErO38NMrC%mGGAy!Qet?<;JwJg2aE^OMz& z|MMD|Gg!$+P{71_Ep%bfB{p|^%q;HdCKgm^P=$xQ)>P`iz+xXDeAoD)z!l0~o#nx= zXHghrc3yOj$F*Tf0}t@bmPt!#O`F6yE9*VX3uR?GRXB$9nftVd3T&D%=i-}8me`Ak z1LPKdg4CYrhF&7Emv|0m6_;<%g7koj#S%P9$Wj4CKujP=EMPE^(tL=kb(*@+7*oRf z+cgwek^M!L*x{T7Gg`8qeNhg(xrKjJpI&&o#daJX2JYGjpBW=tO8zr+wfk{3OB;ND z`P^)YbX@3weM?k>pn4LwYYF@zX+D3iNx1qN>f38>&wy6kGLQZ}8fPW{*<+&mQSEf} zVwcWWw@5VZ*w=-L`nNo)vor3NNgc$JQhRI;KtfZU%_zCBpkV-PP4s5u9jdH@^<|BZ z6uynXv@n85)lJwUsTixaUty2sHT)6e*IYcQ8^YG}IL=OB!ouh5-5(P+H zYfE~Fx_A~<+mNYGX)N*&`ii}=XPJP^X!8%1Y?8ldZ~jULdH05P2PiN+!7-!~H#BZf zGb^+Ed5b0{u-|OTsCaoX3>PL}PQ!|Ql-4q|=EozeWJsIVni&}#bHDvO=GYj^@3!}^ z0HX0I27M1_93e@q8I}v6og?3F7UK~!UD=+6azW^F zq7ZT>hKL>lm_P^TD0LcyKe7|`U_{U|6=4>+IAOg>gw406i@0*QT^a%?wbAuIl|vl9FdGJQ(;)3)?+9<>y+sqQMg3@iXO)@o=0vKYBlNWFN7JLDg1wa z_(iimLka7ZQIwaLSC1e_z^&Qm%sM%TB7W+@=k_Fe$~2WEK2vB+blc--nZLIWYfsS^ zDO`!LNj*FQ!@r2~r{_V3@?^`UOq@EekDRF(TKAQ%N&dM&kUL(lAxPjc#gwC4T*fES zEb5MGAcL+w&>0{SX8Xxd-cYP|D%6HgtR+@TQ#&j9D98q(gMoS10^?od8~O+^Gk(m& zmBrmst$yZGS+Ve!1(UA1z9)H`W7aM+c$NMvM6Pyse@rO~T#(olWj~On+y5Q;xreB4 zPs4^=YaaC+!|W&FX%R^_DL$J`!H%AuF81n1|RaXG5AvCzKpcKHR~} z&}#om6p#&jnQu;`?C8oiNW@`((EimNygG2?e{VCcPdyWCA2!91od-e6n0?&r(e+&k zO~yNPaHTB%p^0NBcz+bKdU4?um70>-y6Z?Xi@kt1IoaR~fsoLE?Nj(4qlDlQFa?3i zkU;iF1@=p<&Is8X0Cbi7Xsbr^j-V6^lTmq;z~EIMN2_eIVAs-*(U9S@B^R@{cO+%X zLbN_C%G(td8v}>*5iyN&)ja9aEnJt^H{lnF79A#?wQra;Qch}S_5@9rtc!}Bpv(S; zwJ9|weSU(>5J8K(sa5v=9epv!&XNyVVe5WgP3Dewr z?c<=)gq8tVs;fm*Px#O>07|-XGfKM%ZTMkvZD6eEoEHPrBOW@1ko;bO~&!1_8K> zUw+J%Y@@M)elipNeRzVV%R#@ZrfXi#azNh(BEQhs9+w7Eup5EPqr1kb6+C)3jr>`1 zjjS5NLOP`o)nRkr;xZU_3%1-PtPd$ttWD6{EYCmi-v;n~SF8q_@w`m{WiFA^5A3(G zz+Yo=`(vCGEdx#Qc!l|O26;02B((#be&4|qaJs=V7~Y&i2)O;5-i zL4jDe4Pe1D(OO+F{*rr+TbUP|9!!=!0hJE2RP5hjuonIO7;uiNJ+=g)KG`JYQI51| z5m2yNYI9_wUJu{=IKF|Y`Waj5%blhC<4Yv`=znNt*R5?i_N(YGr+3l%?~GclMJc*9 z^UL6}_vcUH-YTczx(9>5VF(Lo?hxZT1BZ7no8v;DiNVaizAFq1(I@b7`u~eEW-D%%4qAl;^ zA(AUrQB*JH-a@}#GqvQ%(1)ye%3LHfdb+Pfb}7CKp6I*(khz}mbP`|A{r7hMhh0i| z+&9Rb?8f1|lirtUHrP@uot@XS?UnoE4&tcW+uw3yA6l%OWfx!s+tWHRq}qK7zbW_M zhfxnd$x4Yi!Rw8Hsi=Qhx4(yZFxMSL(tCFO#aUzN1L@i#H_)`yx)gpPn(LKm^0c;u zK1`hJ`Y900t*E@>y?!@>84sb#i1~Tq!ELoqzc++0sA-eJ6DDrmTYG93Ko&wy^;k>g zF7>h56t!h{Z`zjuWP`8v6FHsa7LQVi_Z15#S_`;ct3Rs=iWo899u!gqGBvtK&F>`X zZV6>AysVk4AALa5L&QG!rUIbme?LrluBy9Ti?WmslwH4zPQg-I_(&haOc1X1M*A(P zr56!e%dM?r^d)6L;l4HX^f`H&?X@7AOqbI!x$=-IYw5d8Xh;P}aMm|GB9$`@rZUlB zT1Xsu@=cA|>p^S@_hX130mL4giWQ%x zdbXBC@ZEdRw?PdfR8oASQ84Y+QzUlSn?brvvdn>H*tWYjt~`fNzG67|Yjkw_)n8pNu80 zT*s@%jn|`(B+if;KDNS^JyWFHiG(;- z9RXSK$|9T)t|T7t)m7LYfp0Ua@aA2ELeq146Yeec%3~CN%ohf?J|7v zAAm=&qn?JQ`xU5!4^}?k5GWH1!U2KNc%4{#t#&@op&)n8O0Lf)qr`b9+b~;7JpChb z30);;&$6hkTcBX6y=Ba#0Sj7z;ZZA)^%;Je%0tH!Mik<6;%3Up*7{~b&qmK@#Up1s zR(56t5Yt(TC~&ALzI*Ub?#Q-!7D*N3mVbv=50Xboe4fsU5)D1Z5d)4UO zLPE^WF~RE5DYGeI+mU2F@@mmZyxOgj)F#$q=mrm#htTqq;;BNsbyFb#<`E7}zexi_ zQ7`#>`o1nx-cXJTDsCMGu51{vXkB!XD=pu3u7SI~-MKE3K(=5R@o|(-)y$RA#e|@G z{K3aRZ}P^dnwF=Y6P5=;P=tEGSx}z|gY4AAhR7GE*?L=Oz+9(RB7$Wl(-d}oFM)0D zCY!)*oV&JCP7_@}Hox1}y+$xmCMlATTBy*Jl%>Jqo)BJi%6ckwg~;qK0m~39gWQ<4 z_|@)srbrLB>R!uXyRkai&{enLM;hiAT<;LvZ9gi(jG4rEx>bia47mMj2nk4^yr-CbLe8PFEevM4>dBgtf>(Y^1N7z6=3uAD zgtQGNdJ|Clf{tHJW!-b%D5BD^4CtDARPfd3n9J#hp7c${{#^2H-`Vv;?b}*9B*Vno za)Ea}dE~+yFJH08rM+`BV;jsr@Pz&fZlUg)+hP58mk`ORIvFcV2*^CsV1gE!(U}nf zTmIA!>r_4w(o{rEXgkHtope_$jA}G~q5A0h5c zvIpHj3)QOLsDD4X|E*!;yF`T6dRAjy>y!?_*Q z^1~ituj>nq_5CA9LZCVJ_i;~#^6;DZrBU z!xk-eKX232(C3xigMSJ08(4nW;g){8+uAP4|3YPNUYg zlnJez-D1^Tbze7M(fo?vthL_7&MHNQbeOYJkF#`i8rz+nW;xSEJUQ^+Cjl7!Bt;kU z8w|)6(P>I)$A7ml)#&1I6l0Es$_ZECg;q_GCWbSE!`G|+anF7{jy{ug5(JYF3AB9A z>CJXUt9D^hR#(_iF<%a%GJn5OD#gVz=GKB`h!Z=e8Qs9<47Vnzi;HdI^xfX!yr;#IenBR7ZzFSc-4I<6sBl#^?Hc@C|#D z=j0{Fwe!oDNHvtxVCH92A*uA^fFq2%!N5FbupE?wlU-sluSwKGh4ADoP&wbScC=pB zIE`OWJmKe*eQwUy!FQh=h$A^$Dx`oG`?Pxbfj&0d@VZ!7KY2w#)!%s5=a2}%zbmHQ z+)wUVyrrYGsWSI4Y8Smk=Bs(0;t2Xco>Q1kPBsiE@vc>0Lxce)<0E^vCVLF))vSMYIryZFE_4IW12C%9Bk z70JNXU!_af)C7aaroPV`alGZH<&W!F(}1KbN{j``;Khux%@u^v(uNd~2YW0}lxecfTA(0o*8^~}YedFv-zJlS#VQ*XxwR~fg15cH#VT`hE#8?nltfFB zlyp}jQC`E$+JH7D7r5Hx{@#E5oxM*^>%hOy5}*uJxCUK>v|z+WNj^$@Ks--bKZHpEkAHM zYUl%<$*!mbaTf~%Ni+^G;I}nf?)Wf_>ly2#~t@G?B0h2-%8F~gtl#7oc|e3 zWK#wkEa;!X%u{Li@dSsvxzy2BRCV}RhUcq#`e5e!$Y}U0>#E&6x3}1%tb5kHAT3Da zv=6-);*dP8n)*QP^vgO5OdA9|cjx_mq8}0|`<(s4s;uCZr@3w-znd=25X808^qkM< zg-Vj!4F6zWzlo5diWbRZGPtdIvSE2`-0)KK^^S`=29+m2!L7XXtZvx!z%$2??dK^C zvJA*>5A1&%5!G$yn^dw;(G%%6+oL+DLXI&$xxdx?X4JlTFiX^srqFZ7xzM6ez7E-0 zQ7qC3T+@x)K8GO+ig&(-7e32vEvX)_P9Nw_pl@uPT;0?#IG%;3F}mnMH|5Y;GcjA?65G?nXv@xuX*FaK-)~3<84C@~V_DJ` zxIssRCk!JE#56Tc5`wrDM6N(X5$D@~f7&CZB^s+*kUo@tYW$H1Pdq*9U{U3`LM#PT zz^NP#V5gP`Iv{5%otfUlr(Kfxv$YFTTHx!OlR1On0SD!fQS^^GaNwk|@Fc~7=6EM2 z!H#p$t(+5&KPVhnM9puKDTX~9a7(&j-7vnL0lFexHBBWF2a;K@e1v-&=a27aX3=Nw z?k0vnugOehh-2anH$Zh*N!h*E1#)e>qZ_jXcsESPH(CmoSv)}jX&VT*fiZDncu8aa z#Dn3J-Pw!ljvj2PP94{NAlv6B6X_BE$_wt3`X*R8y!@8qaysFf@@yDvU|7o})!uB1 zc%`&FFI2eFV`|5UN9tg)$d_xU)d?CXQ0MH<+vAR|Ov`@u;`?})GPD0+(&kF`TRnqQ zol*Px=B|i#k?9$nK-_UN=*kHczf73HJ3u8Y-VF&)b=w>-+M4?lstLln$1wkfcN|WL zf(?Dmo@(}r=o2_UmGQ!k{R@S>?X+Rn0#K%1$sDRZSb*VZLfe(=ZJPpmYk<=r-|d3{ zJ0vJb9PJ&>b8jmBr?ZA(7Esxzq|$$4dr%RWe#HA7{@%$D113*&Z(t4oVs6-Qr6)E9 zp@nnq0CyWxg=r9c?Mq?^hIDJTRxS^h^g;#6(6!6UipyCW0#Ru*HItXfr&R_*3;;kkxjpTG z*BWfkaY9XUIU=EF2DwcRdt`mYhtIWP{Y*7XYjBy*?h^}APF6^_t>ehWBkIHgTx)m7 zYJE&fRczl-P=vfwo~aXqCcu-sAG()XJDyYl&wa^2fE44Hm(B&neS1I~^4)%VBa&<3 zeJSkB{&@Q&^{=-)pvryoXu54zz2{tsl;*;7hG#R-uX8U{z(au4YaQTgB0TTq zi8K~S5F({WM5jBgemth`Ih=>5%!jz|`R^%(MD*#WgnQV-tIS21_S!8Vtsjze=~Z(1 z^b~2qNVNXBiM)SOJa*mm7wPMQq4a6;dw8%y33!Lk-ay?Tk{NEOshGXQ)St?bUb`28 z%l?^Y*T3dadi>}-f5PwjDc0ea^4pIG);*o8WpKWvR%pYQrfsk`x!m=YXDyI-NOYeM zKxRmTrPb*IcpYPYhcR;Di?t@wVU850LRX7}yY0^AVLKzsmXw*-J2%`55!8ic`Sjrd z_(>!cI=58L(8Bs*wgFKwRY+^|%)9t-T)aFcJkw3VanI_0N7Ldcw$GoPBcUyYaa+gT z3u4jk3Y3t=Beef*B2%D)nK4MPEiU4|=uB74(PiQ~l!1grI48(VAOk4sM z-1SKw!ui@(hM-;h==bYY^W=M7$`H(WPX8(<37-V(jg}}^@-%B~!z_O(TTBft9SpdH zk#{jwA0Y|;)Q1&)+ejRMNqETu{hF56ov%2m8laB~V0%=)3%n5Q_N9`Q(U7rWqMZSo zkZ`V~&g(XbqR3c#Bwi&3ETS0d@_flCFIv=k>jQ->uEDHj)4XM!I6dvVEdJy7|KI|| z0IP8DY6Qo!S`Xt5Z9T}IfN$>B*8)@Tm2syOYc$Q~AU4^FuoHCu_WWi1Y42{OtLp6K z&I)=M6^r?x`1GMnuqmZ%p+P_#`nSr3r2DEWIe%h@K{f~ZPE2^KxYb5hIv*OZ^5z7> zPkT}Kz(D@l2hn#{2Yu=64fJthyj_uxVU$TE!AVI%7Ez4cj`nSXPiH|#lnbe!8D7IQ zso@ZIGYq$cK21vxzbHS=@yb6z_rLS+|K8Z6*tkMop!CmAoPOz|5cm0@QodWGxyzF+ z0NCR7rNMK#x}HzRS5hFC+a0K1!nb(j+SaRPYED;56oZ&d^4^#go1!*Tr_Mwq{A??6 zJnWRYkJ=aMp0p5hmVfkc<$rkU=7}$H=WIWjq6S55O#ge|WP+*t)lvIbd*oWL zZpN{C=jMk7HY|dqGz5Zwen^^Svb$6R}^X3QOoJOvsJTGkf7C?Ar z^!3jOLyN)-e}3SK(uTzl)yo?mf7qD`fDE}9g1N&NLMA}UvFgY$n1CXPq(=cXH`yJ~ zT7tn7v(1wngFkL&Qp080D*Vfb1@bh$0T~JdQp88K{(Yt=+MpmQq6Yg2N*ep>;ZBB5spi{@L!d=-E zkPAR(1YK;z2O77BVe^I@)n`Rg+?aGjm3-CupT9M8IrctuHIoXR|66n^CG|Suf+|+T z?gb?4VHXdieH%r6{N%tF#)d?P?hlLwY@CZzJ4U;Xe(UYI6HfqS7^7^4KQvonfj|~< zC2m*I3u<~(YoG0B4>$uPP@e?-k4N=lRV_S>OFl!21@v?ta&Ui%);8UQl$kG@Xb&+V z2+S2o%H8%dhFIH|K&ymVn#X+##`Ir z^~>{Zb4m$yqYCcm{t+IHv1zvG7DLcY@Jelm+a4!A1?xl`8mbR!{P0%8H& zn);shzk3sl$mZFc7B6MNl{dC(09hW7qiCdJHpqR7oEgu|Fb$rlGepE3#{>HWn`F|X z=x88^MNdnn!hD&uh7DpWKE$Nyh4n?P`PM)0OXn1wOH&s(?+TheUEV$(D7QhHB|YFDHS%HmZh<@0PB=sBPMlGeVJ7%KdX z?iyzZSK}q}FA)3tbVL7Uk?qGv!3lZHY)@}WS>&68{SX}YFnt!8dV&++&O@i;SM`Qd z(M}eOa{p=7HI=%qZT7HL&T7W<5^3;cADyN6WE6$@l_SBI*L;0oA5 zwbPk{c*oK~ps{s&byz}N+E)7%d}Yw&`Sz@r1k3s@Pu{l{OD!gf0#4RvQ6arNb`Yd; z*T4=G*1mkOPMLkXbK?})KA`q2+RPKenLq019;I|iF+XxybcVuZG5c=RokUnXgC+0V zmH%#c#uDlpetx%4(CiV7F@c8CX5*t?|D#Qpi>W4dTFC_ZD7B}TGb8`NK*GIOVutuzuz*izpfHg3y4}u_pI-`r9yn|65_QKt=!ZEQ(?5m+tV$7VT%4` zH&yim>^FE|70uixj7U=wD&*1Os{RY!yISq7-3Q(lD$~p7uZ?@Ro4IPBBkCTzv602A zjn@pj`RJrovU=7Ay^Csoc+T0m+XC(mBGcIx-!T+%G2^)Yv~}%x^(_@)$p01H>9|C< zw5WAZ#Qc7BlzN`e^qzte1nzX-PhjK@?85}W3Y;Yt`)l*O_ujr4gQz1Qy!fB8vdI1Kw#V}H>TNX~h<*SL zmZB#P=xvi)b5tIkxxGNBw}{m`at3mkQ23UN5j`>+hcH*|bq0#U=-j8DrSmki(XUer zeIM@8n8#Tei@%txI#3L*okF%uZn36jw*_f?{ET5`6l`MKRx)|c60yEok@D4Rt)wATyk z7_AJJQD@|Xd5?ukcnr9pHUaqfOYCQXn7$$iy&%WM3R~>9y(G@fg8MNKiK58KhJQcM zg64Uq4zd}cuhvrf1ulicEX1+1+X7QUCbRlg?1hjk>Z|(ixlP&!=C23>K?q&ScJI(k z#dz_yD|?=y8>A1Zd1SY~4DWhjb&iD*|R05CegZq>s&( zqYLjt|MVO!?93!cdX)eI#qq6uc-cuI^ozG z#~vObZ}wT6ynpp2vIh6351tP^P{C9+uSi>wWbX6m_Q1II5rHG(TLDbv6}Sb`DlkjM zu7W48sxAOB-#@aaHWoql6vQjExbrjyt45SK@VVX03)lAk`81n#)m-4%Hm&U_C-ToO>C5G3<5vUk+LCVX|Z`@Kk`uG;>5 zLerYz{zX6(kao|d69lZnHR{+D4{ePtnzWdh@owS@8itp$cADNZzEe+yN8{qmQk&{| zAqO4MQ+Xr9`Hc$i23SOguNOQC zJ)a2VGo5OO9@wx$*p^v6@wySB4?Lu}>S|=VhM%<1G2ERFI#<3fK_ba7rY@_Ft&_I@ zN{wQo46$5m&6r7>IqIrwY5Q5p_s8eo7eeqafs00l#^>i4A(RHs-JjghxnVuIIpV(Y z$LHV=2c#NW%EdX=&g7eVM(b#HzDhnIvumy&ek>;1)pW!k$}--71{{7PERTkbPg>(b zv5$ZJT_X?u62Q$T9P_u|VSWj^qI{t*ekxjFcm>z4RhlZwJkmD151Pu(t62E=iEFEq zjG!DUCQ^n4rkwuUj1ZVG6^&|#-1V~%5EYU(YqywWJy+NuCpJH|2i2ObJ3#HoO&!^?X z{jBVSO3W4*j8@XCP*XA|#VsvrRMwnSWN#B&?BS4JU`>ovUz3$rvsUfD~! zo&z=cG~Kb#KPkG+0;N0KHe~{p1Ty{Y8IO!0mUGO% z*QJqRcdnAG2YWoN>LQlIm})}S!)`j5{>xNm@_&hvflj%7p2CYx%Ay=0lkz(A^xIRN z&a|}`FDx}4q=SDqmI}V>r9U(v`x52NTo-Au_W8Mwbrn%2tPWZ^7iVr4ot-l|8-<>I zNOT8CQWZ?_cgtRhe%hCvJVXa==gk@{T|94^9Dfa;*|@y?HjZ)SsH>k_?hC%P zhH;m}-tFam@@~1g908k>DNAmft73R6Fwydn@O=PR-51{9yj34d%xM^&K^(mYj&AiHcATB5i;eJk3{RX58mP zp17gkF};7O&B~26wxXEo1;|8TEP3AI3-IT6`{!VGJ7XOlKmqAA{Nnpn^qIujB5%!= zY8FKA*n=xT`E{0+v0p{NJ|aM*$7rcoztM8Sieo?pg>Q+pwYesJC`p)j!tE3@9ptHl zvTC}%o!1XJ8eYI@TADUp*Ahw!TX#-FXnddh{DJ<}QO@!-#AVgm{Y1xICJ7$bn%-^d zSUJlz@WH?-lCS)whJwYQ6;X z2tjk5L0daTUZc5{|1HtTSNSl#z@!W(EL&#mdy-jk|rD>@ezD zL@^e@<}+~^Y2dSOOpAxIpdfHg{Ah&@dIB)}KoK_Q&s|KeO9|H*e=;=CT6b!5NC8f# z(}fqhtAGT8gKGcbu*yEf(!Z=3II>P{ta!(yuC%o>NUT%e0;{d%x+hMDa}B6V%0Axa z0GN2>0ZF@yEX>fLvWDF1U$Lr6I^b?|4Hbt44IZyF;0mPSKKmE^uO5a4Ji-X%9c)Zz1oR=o<&X5YGYX+~%ZRs0q*HHhUtG=%b^)8dHPy}bFT z7eoV<6?{!|#6~TUF=ot7wBG9x>HN)T@l@9yd_2%)C$fPPe@QItrlS|v(qk<0TxTVs zbN}W@D%lD2mgJ9us~-fyZ27|u*>cf~YM^?;Fd1P(+eVYe z>f>GVx#w|Q?PyJ-#VhJ)h0ouPi)(E7ei z1H?^^ru!zjoEcgl-db^GD+fD}qj7mx6srk2r!rRx;wmGmuY|Yo%_D-($}mLv*2d=b zK}!wtmEX5g!;I-MX$+qKMq87SQt>sz>SMV1uts3!dfN*z{ue&ab36Wf_^=^Gt`~Bl zIPB~Ch;J|)cUviW5r`q{#1av&cBy~eqJfUFH}NA8VHG@U@Bf~)imI^@IwYO|lpRxQ z^gH5vCMC!WK=C#48P6UEPj=LhR355G!#o%*l@x=!oD<7t#mp3|ewt)_u_2=Xkl*T1 z)Y>;wD?efH?1=xa!79`g*4eohebpAR%ol&Yss8&LWfOwiiwBizSu9NHN@NY}0KYJy zGd<*AOAh2LBXS~Ks@|+X3J=Hvfc`b1#b5to5e6s(vosyK(?z|=yZ33|z}*<0*&FCyje~?I@e!Nf!=Pt2(g(bKf(#gH<5W}nDo3NJSZRcdC)6Zy5FEI8kdnXRK-eG|Kk z{yn7iL_K2NK_G#ly2Bk%2qn``uHvz@%CI8B|7h^}g~NhjH)&g0$F5@pNOn}_SAu(3 zK?C|OaTJ!fE{}6o-nH>%ZaOLYx8xiQuEe-OA~1rkt=Z>BL3{_VX z)U|&FP$5H_h(z6d)LfX4f!Imou(_Jf?j<>;_uO|d2EZ^eSTAd{2#Gd0iXg23BR*}v zuAyM0JU-z+P;uO$17YN}6ATIQS6T@eb6vV_N*wGF%o<#Oklh!R8L)k&chJ{@G!X^v z-yiJ~Oz);O*PuJ)^ksS%cemO9*d1+aS^hM)^F2g^UVoft?c~D8|4s08wP-0tRGEkY zAOMLs@#1;-Afy(o8R@<0^zsVnfXbG~%9iaKpIz@^)V$b4FV>K62?YPgY_05vY+6Jz zUpgz(gcsKEf_2rjpV+Km1#>6wUCw}t2d(9QJ5Uh{y3Uu5t|w`I@`imResd$oT2u>v_N+x3I# z>1@U~k8=9^6g4hjtZAy_&tMT&;b{`IhYbc1S0dZUH-ecce$nGFh=~U7OWu`*;En(tJ{=-FvC_a<$iX+DU3_GFLOCx ztfOAvpb|rH?Auf1vSvcUz#s4zNiuSn3=rr+90YXvdc@g7@Y_Ix8hZxi38aiAnE#w9 zEqE2gWm1l4Ew0YD^oEOq)HgF_b(F%(Bmah71$8v^zKb3=3i0BY=`pJ<1s#20FwbO< zx?DJ5g*d@)Feheb;XGPkk9w_%w}4$O_ac`M=xe#2{YJxW=*l)51Gv47={F9WPUk86 zKB1bP;J**j(n{Y=f3a zVc?R#pIkQ;Ut*gD`V$yZbQ+pJ2%x`@3>SaS#8@qwYx2#A(P8NpO@lRBbG>_N_43en z4_`AW_z_Xeem#;-M7-vy6#_$-_l8M}_^g4(1trB}u=Gz>e3j`oGCIFFCqjbv&-KX? z94uTeM>NQ31|ZSK`(=%aQ)jR>Cb^q17R=;15N2G}8lcquHjz7C{!YeRj%wX9wPKZS z`^i5Af{2B|VFF@_?Kd$q=?aNtuOXh%tf)g)qwl2x1s- z5=1=7LbrfY$&B0&zm2 z?|OZHuL#~X?QlJN^zu^A2YqI9W`M9WbK4~yHT7|>D{_M1*Pb}(USO3RauFvXifl^<| z&dm!QD*crSvy7>cb;vyYGh)m__AsxEsRp*Z8|MqHs0-EUT$J~3LdFSl1_GIBv zBEzxo!&A@sg5eKrFDB;s|o0 zm)&u8(0Rywd}T&^?Sm9U zQ)^!GA;D*kyl^cAWnaT@LqT=y=4W3+HgCAd*(2ybYxBQ!EUVc#Tg2QT8+GGL(>MBL zlg+&iK9~`ysD$Z4qaMaub`*4AW#CJ}UKGJA)0l$r=j8p~oJF-X_%Ob7|AKZhH3bYo zWm?VD+AG6G@k0q=RbtjpZ=8Qd%TdFE&KFpu=9TeRj%+epOX}MpOhl}eY4t2vHZ~MI zi4NGNC@4QEGUSZxmZMu_hk^!v3t-XsGt55-qxjQQ8$;b@YdWY!RFXcm`#9PJdy6M< z#yh-F1u;~SFU?}<6d@RJ=re=#r}lccY%GbZQdDoV1@rvx6&weCc_BFllj-2cu1+Sp zwY?W8&^moPBO&b7FNg|^kG0NtJ~(>15>cO6h?Fp7iPNWu)zB84jV0gICXszGkUW&s zlYLZ(*tWhQxS-=~obpXYIa*S?^GIH=0_(HFb2pbh?!A`ib=>$$lHz*XyBmph3q2zi0)I z9`EnV2D(PnYidqb3f?fKpWOU9a4hyi)H^ z7N7h+05EnVSoS_<6L(cIV1U>RM@!|Q&5rN6iyxS6Me@PdrD}QBV?1AO!4`D;7aQaA!j~}!!3^HjU^Nb!W*7v6Iv?(C zC9LJNzJ^B7#z@f5*8pKmsQlhQ7e(IiE>|>x5zK1{45LrkHbVZs6P!(ce0p&?5#Q5h zvK`u+@*5U?ee6&5%1*2lr4|||K6LEY@GX!!?c-zX1{r&;L#@A zHQqEas-NvTmb4J2X0Rcp%&u;OGc8VvXfcUVSUw0=#MR@+?tBEpqws$`kjERwP0pY3 z>8=!yTEK27`yq_J5Px+xj@CWNDg zKMv{s>g~ne~Jd(xT5bzs8An1BQx&KD)xZ|7qnl=5^?nkeYwh~;8=N` zrq&kWb)7A}tcTev0l|?h3F~iiHrWb{f^O}IbRv}q5_w}(ZK0x^n#u`r@_P9dFnDfH7%8v__7<6JWc%fRT3tR*^O zAq^7~FQ6Ko1xMO$Xg;<6Q3p=#KKA3IlF94!rC{blvwdE3{_Lk6#941@q=Bw58GN|S zGI3P-O(|v8%al=<&*M!%p!g=0Nms1Pw=s$nbMLPyizg-hQL9(pL;bsRHJfQqQ9nZ5 zFHY=L+ki{iyiFTu7(2F9GBz?5m7c#U488AC6b|Hm!lLdftYq`W`)Xx%nx4cJ+PzhT zSbfXNI=d}O9^QOdTb;XrVX*4c8)_CWO8c!}s2C!#EwkjmsQn`? z)t%NS>Vwsydx{;=pB~8)$@h>$XV~#mvkNetfvnzt8@N9B9?s&h z;G2YXp^UTSVXRlkCvAz9|YH(f+;{2jxZ=l>ygZUsH-Xl9< zEf|KMYg2Dj4Q(5QKV#-4n?0XCNG;g{xqRJNVp12srWd-OOFh-lmm}08eDC(H_39fQ zb#>RyjrCAApY@N9vxmyut;Y<7Sc<#3Z^@-i`Luzg;^U^i>rArc=3e!vREzIr9<%Dup{l71orz5>2cS|7u|8kwU zjq~B00?R-YG@SlJ&BV=l*5#jmngcV=@g`&twrAvEbZI%Hu47;3;$>GG#)uL0@0Vs< zF~GKQ}$Ea$a; znUVMt94UjxRk;({KP$NYo+THI{LH{U$mbcOzA{<(!xV?qsQ4CH#zvkq*2*B4l*}o( zN7S;}f;VGk+%~SH68uus^_PeofJ+=o2A#5rkB(qt;}qgDmd8^ihVSs_a)RzZONjbZjHbp}ESVB5-$6)8io zAsuzC>B{^l;0HyS&w8mU5p~%GpBY0;eq$X#5e2THh55sWv+>xAf>d8E*ud{r6R`nm zd+m&}WaF=uZ~u;TNZBc(HMvQ!B_o|#sO zB@qeumxvZS-Iy#=@Sey)$s_#m`b4e z#9z@toYrOmxeNuu7YX^jx<9XBuL}4;}u}%My|jw(eBMf#-kRCh`cXi zIE|mo1m`u8;`H2-^N|~}5wVzP+HBH$3~iFMR@1yp`uNrcsb_?!xa!%rS}8S0X+-Hk zTaIs&_fPTYUao5kDdQ{M@*rN7^ZmWNJ$?1*3n#r$;N5---4@wFHu7?P9+xvu61xO{ zfowWNJb84r)?rg^aMd^%&a=Qbm{utXnjyZUm#)SOoppWRO&hnSrelo}D_f%@o;A`R zZ2i?YUewdaA*CQxw(hLDwV5@CH+9Xw6)VHeDa0QenU?44WOJ_*L{7%rGL~B25Tqbp zTRQSzaA!VK`MuZ1`40PMM7IdfzPo?B77RBV?s)qL8H*S@qat%&vUQ;ck0@Ew-hbNy z6(1ipe4s;_k9c2q+Q8(a z_SfuzK0;rsnslJr10ShB*&X!=CR~i~YUI;fHNSSh4}X!n4eh>4q6K;Mo=WrccW)wM z&*Ap1Vm)})5S?yq2(hX~jnjB@5U#on8#!i;PIv!Y7_`#Ug0a_Ib4v+qeceP?4T~s- zjzicfGO`6_%b_|LtFiV5?eG$~w=7KC7FS;Yyh`Cz4NLWYdrIk|ny4c;Ul!F{k3c~RIj$9x{wa?_L z+vovb1ff1@s}5b-IE1B<647R|W#<&TrL5P8M%U_=+fjQ|P>mxzCmhY~abXn~%uK|i z$(BPofeNCDCQ#G6+1*FLO8hLdbRLT0kk47x^Hq!r^p5 z!*)2lytrym?bDXZ?Ht)Y3q^F8*l(i^WnnM9v5EMXAqf3wep`PK;?MWD;4 zvDpjaYT9N0bP!aQP6}@))4HhPc%xR{^Y+QlAz}?ei}eFLfk1*P#?%=SFu3g(KL4)r zY7R=jd}w^qL2-bPIlrfR=##&4xEVdZgoWP1Zto87r6nXJ7Cc}yw<~ma3>S#ddnekP ztI^Ox#8m-eWpg+WMYcPQN%@lOe%1Ua0Om-9`o;gja0cuXv( zl%NH6K6myENG_yt9}Oow6qo#d_9Hd)ZfmQxVgBbNN!tBt!IR6$#Z#4%uv(Rck9gqG zcvcE8cPdxs=MSe(khEpOKAYp($|T5@6Y;m+Cs~j$ko$ z`L~YTq-d245Sq7qmi?~h4_k>_WNQtB)e5=yX7{EWX^xWkc~;6ht=HFCl{|GIVP_aV zFW}k+3zEOq3BP2cxV@zj_y~nN&X+i$f`6w!cbRS%E-W%AqLnmaVOTi^y@FKMY{W=l zis4iHi9fT>xhZxY$#dx&6qFPZAT4};4B3Sk_1B`tCs{+i+Zm`qRsyB zy=F71OX1avi%a}zHSmmBu}AdB38TR)VB1NcQhIpXw}J>n;w$ZhKyRJ&BX(5k>i}4e zna2)#o_|CXoUw!LOmS$3f4_M2 z>>6J_EeBral^^k_oTXHOFZtf?Japx7&!8CgzaBf~>xW0TL-x|W6*B)E?*3}szkAr| zBy;&zX1SE^AKOf=skNu)2?#LC8oc!d`=4OPYcL)C44%-d!P_5hw`d@RA?Ppo$+#kO zC>!;fQ_o39-WaMN}4d(v)v-PymLki=OK?39^c({ zV%>hF6IT?Iax_@m$q;U;m4{(oPCX&Z;mCb9XMA_i!~*WMrsV#C9m%ZbCmlEL zZ@xy&Gsaq-MEB%e35IYd6LkePecx%7)b%eoG^t#><_kS6boj97GFjL8If<@c-9|`r zWc_L`VIG`O7Eg8}F%k{vYa{8Yd^O^J$)HY9r=qnMg<`5yz$6Cn003k7u6s4+81#b4 zf%SX~tVl~iIP-Z~^u9&cARu_elbFLrPAz0UfA6r3 z24)T)G;WW4`uLuut>vYE8;0vMEUI#W>t6NKFuV!t5x2j;|A<${ERC~2Vfm$2M5Z)( z&HX%yp($ieT9`O4mu+F9jyU;G1YO6Il9ww^>J#Y?@>YB0>)1cSqc<=C$)ZfGT!FS~y_klA9I# zwp+}@TXA#Ho+5KyDuYCyY)wi^dO3`^)d<=B8nTNc1zYq*46{lfW89s6yPJ_Y`TgDE zS+Vwe#9{jA7GmsFB!(7QWLaA%fl2|ixap7lO*eT87nl3glYfk{Rt!phU0SQ=abAnw zLEC)$Wbk&^Ty!|i^!Rem(VnN@Y8fp*d!Ur#S7A$}w`?zloPy4>X-swEf_L=Zn!TOh zsvQ<e?eb2IiYL+kB8`2<7cJ;2$|d9!Sy|gBou{y6cJ)O~3LEA_FAJ{I z3+kL@aG`)!n_g{g+%vYH}mpQHxRRqC=x0AA_i~SRlx^Zpt6KMwuQpV?u8H;~$bnt(h z52Q}ma?02&M<*_%hOadW9N~vC=~6h$*wwh`2e8bcqrHL?_VL*W z=B!PK2`b9rqp0gM)^V(RQ<#!EBnN@F3Yt3i)7iVAQ`lKEV_W?3ycC&iWFk8OD@Fvp zRTUv*jMD#7C$U%!41AG#+4h1trMhAeS&K@clBEk3l`$Iv8TF%HbeZ_$-t4QA?_Ke# z>g-{?Y~K?Y10DuY5PT;2ZF=pd+H`3f*L~of|DE~WdZ=Fjhlj+)zgHPwCz>9xwxr{= zr3<%K%=d>k`4Ya#h`W8n(oHs7e9*Q$-Rb~q(QR6a7BuoOXiMT@IS1mV6LCW&2J@SV zULT2K^vM74oGzjpj@SBSs=~PnMYgB0+O+H2oaJ`(v)tJm^A0bW`{g@Do2Nn!As*GR zje^JNMg^@UBTrJaPOMzI<8p?Ub_>i8>nEw}-Fg7oR-p|^`_}cP7m%c9bjKsT zL?(53VxJ{0d>i>bNFQCcPE1Tb!3}-W^&|A`;BDZlTc`E$o?}e5xAoU)F8~MG`(G+K z&Gd3xZAUu$xZrBp`7c{Uv1z_^Ffysa(Y6gA$p1OP;qnJLC7*@QTsRelfuyIZ&kkYR zW^r`DL01%X+QH7lY;DT0SnSd6jkDu`)4`H8(wehRlaNcA?m&Dj<3$RN9!)gTNyGw{oJel z_I^VV9P=EWymg;WbhlyuxsVoLZcFOM>4w=oG3qKiKk&9Qy88!q1Jwsam7d^y?nXfD zt%3>%Snvy8)LsRH=kwF;PuY>inuEIhx}qVNHk00I3iygBC=IzPBFRs8DZQ9!jEIj* zBh$#h&$RjE=KgAwY!0A>KC<6DmF%1g?maw~*FROJ6Z~(&3vu)x#OOAt2BC)P8lAsF zogE$Hs}1Y!#$abR!JC_#N0NA|&`Xi~O~la(Ug)Jz%9$kI=;`^LG&%Otq?qd&^=3R8 zlnvltC=8Zmw$@dI$gCEPTSqcdU2>ziVS1l#JKMLet|aU}ZoY|NTUj;8`Y~22?QX|;&)j86jX(s4dEv&{NSO1A?$*#XnoZnw9e`` zWq`@=?c@3h0qp#+Z$TjmAlP;>Pyb6t>Zo*k@)`_)t^7GNEl$OKM9*EY6&cZqgadKG z|EA*xjv~dn{L4V*>|X*AXq*8KVRZ14JbuVT)}FCKSD3`gqREyoZQ?QpkCQ(mbb$QE z05U(Ul#9u4Iwr=SQ*vdw~E_`V*q2e_Z%${FF8QD28 zds8p=_vPVlJ%08o;!`m5y-->Kn8DwIutPJa&kN*0>kjaUp-gO*_YVG?#5klr!|&V( zU>Hs=33Vr=4PAz(^QH(!+2;2Z~ zW`b@eox|huHG!VKlh3NgWt{e!jc{EfD!*7;(AGxv!|RX48mRh&vwy_Uk*ITq9w9M_ zl-L7Fi2}3_#Y4_(`Bx)ye0fhhuKwq@vAgX86>jeUZ+3IvnQ`UuEhg#V!g!_mXo8k}RDd$+^8D+!;fKBgmsS#fvvko#CwlH1df|Izc>l+I@!V;c*c<$<((VqpQqyy! zPuMBC-q^$k`kUO4~1#w+7*w4Nr6UDKttfJ_a5230CEg zyldi0X(xUDXz#Df-Fh1H!yG~@`OekG$E66wE-15lDL^Fs-pg5UzYrwB7D|HLEWJqZ zrOxffv+fG4`TjkQlXdIYi8~Z>8%p~yrHYBAZ!MW3uYiS{$gqmn>?YNC{>#rOR0&%< zq(Blirwmw-TKLMvt4W&C9!^~}B2X|h@Q1&FevI5dHllkJA(nUjcYpYYqRA}n=cRh^ zN3e=Ub+W{nzk8>>+526+XVKGr&EZH&n_{TotukMwxsvQoD`C zr%#}p{?wK^_g^d<(jeYt^{EiOWhirRd$Kw|V39cU-l<0o*Y;vj1v|^Eb}K|b!F>lL zZKI#OU%I{m30#oyorn>u{_aTtCjAUjt*~H+s2by#IKHfG((doWvG%#9W#UmFMOApb z3MoE}6qN4FTP7n|H{4JkTi6vF6Txw<@|KFzTw!|IYM#DnqF%C==k&s}QpWT{x!Cmi%xY zU%yJ?4whKAuBhOf^qyTtgt$dv6Wr)VJn z4f%C9==Qr4@`7CjIYE`EAj5ozo%AVla}9Sf%owq;7ZkoWaRu@e4x%@*$T{zL_m%^1c=B-m$m4E~-=h_fe z{fH;&EoRE%U_?uyAxEfa%v5AOAvQ8XhF%(3Q}}jYnKKgyiV~pN-Hid(eq@pn_G7HL z1_~vDEwdfG8d|D^FFC2y$-Ge*3Ka9XU;hqqWNn;O@5HJ&p-iT0obdgyE+4@0Szh+8|w zGktxq?>X?HOmwn7S`*!zN8AbD?-l)P6uFi3p#HW>wLUm5h@){MOK_}2(fZgt#Dhu^ z|8n8j3}p5p9wbB>58*5TR)*YiyMbJm;3Y4Z0zd0m2Wg0Pe3-q41hqL&KS&FwZZJLE<^#gB(*YRl9hY;hbWjCW)JNE z6f2vHyiZk*oHddU(rshL1ooBeWn@Oxs^~SaD=OMHrv@N5bK!}^*5A@El7B@OR9&|a z>OHQc)~fTlJjjqXGJW8k9W_hGeV0-%k+b26IPVdEZd(w&{}H%ctdAZ`|J%_zeOT(Y z5O~;dzg|7}9rr!8p ztgvh113*gIX}x%W(cg6C&qx@+KxVAc$}$!6pD~vmCeH&lxWvu{d{?tXP zy7IK&#^s2YLG1we&AUcQX5E#PZ(aq5b>2BY9XfX5D2pCYu*t3it}n`;-A%|1~wjA~ZlJt^FD5B|Inqv5mv9*BUZmg{v zKg*%<9ZpvJ)0e;xiTN7$pErlN>hC|Zp9Eb1M9N>`;R7h9ldGj+;b2ya<`2hS_I7Nx zdc>+=p@B#J`HxrK);C!XxU~PxX(n;l!%{%G#@TiAyTQpH`gCQF)9$c?!}YJ*nAHhWEKVA2Cmakhy&%L)0w znA6jzE0(d$D?H07Sez;4-xPMR$a3-(BX}Uwnj&ew*SI2o!TE8pJk$eE_h4i zW?e9?&U9h3K$$fgz5|eM1q6nlXRC(S`syX$p|s@p;~dEn`lAXw#B!RG#=)%NYA~!^ zRP5FJ+zIrOY}TxKPy-I7U)VBM)Q{I+o=>3#vuccp3gxk?5l)MrA6P}pF_(h6Qo9#F z30T6zJHm7^oGV+eFz}&f-+(1yr_67WiOObfDS?Uvv_11udBcSXYs&dKTqonYmETs3 z=fSe|l#W_}P6pI86%IP{3F&lwk?KB|Q*!NwrvM^InWd3BPt~4Mb@@dN?EZ3_P?p@w zg7Iw?I>7s$&^!xKQ= zKLUuX$9)%}CjNvka_v4y27U!^IKtd5pzBApI<5G)CjF1W(CvHWigqM}>QSj21U@3f+v>S!$huk8BNa>zTa0JUG76 z*PvCaxlEY%k_CU=2@KJx%3OM!+)IM1X_KZ9?o~}wXngPP zcIhDpLYk@)*)a7QDRupmnwp2bc1`ydQSs$f$=o*w(Vnn2Y{&P#u!di_Hn+41sDCZ+ zVvnu@$a6eJ4x3smRImn8{dBLIJhuDnIyR{`DJ-mVV2>v+KYMWP3123i$LHMddbYW} zf*aOlwkuHt(VSqJ@|=%~63NqTObm-B9*#Twe*vBWx?&MxZ+%DwJ46n+TEPbuRXvAV zU2DcF^fXMDk_FN3th$oF1Y0a%KKLkdO>%>{r&((B&mwg)B~Xe3`N@|Cl~b zTq3%%;*?}cWSIhbEKZ))-`>gRa1dOQ!@X^SpcreC2ge;cZgZ`fItP2F!R`DvwO`MV z*gI+(Zry0_bsvtI3pv@q5>g83<5?7VPTr$uwxw1xdXZ^Nj2&g(&Gi^Q^1U19O{ug=i-U`9c%N^ofa_-Yyy_`sX@lPneuz$*pGxuT`0YN2fHSCL!Pq zs0-C~dCWA3S;26b%ajrYl@+>}>lrezc0z44g3--@4?m^HOO19OzV@=3{Mizm~ za!8G+Z(E_^wJIiaf4p2fpA$2$DqATNm^W$|^rl)DadczzYHIq)D= zK_bG)K1>fZpohHcKG+dLqphXW9bgA|#5gg9(L+m#y^snz7O~P_v{w(U?5+d^V>>>K z9^G3B^q`-$N3;jnS}f)A`(C;NhEdxle5WI=IZRpFUqC1e*Jq27i}eF^>ep$!wYYo{ zh~Y`2N}aJeDgU`r$$7!GK1&fL8B#i6Eg~Uv(rG%$JaTU?bIz0!C~@RNsNq)O^e}Q# zt+{+fIhp8QOknmw6Ar!G#zaE;cD>992IN`jz`!h$2&Fvt3|i3Y5cce1jiKtJK^&lK zuk4T|@0Vv>EF834%pkal<9I-}JN`WR$(fyjh?xWkH&;#;ampmd}ijkT({#LES-ey~dbPF-H zDx$LRBB{2a)+TOy()f<8*Ca;7m#2qyM9dhhcAhF$lsZ0E<=s~OL5d_i$pCv02FLvG zV%U|H<6Y38@6lABM_cebc>o|1fPkT^{HXfOxy#Qoue#~+sqNd8!raZ|D8eevhNb38 zJjsSC1rX4uz*hkf0}^b|xB}b?uOQgDt)yYz;nP|_X!X%;2m~{502H} ze#w2_15X*C0(M*N-FCp&uqV83fa_^)6$;pT=Bn3h5wc=nF~6P4?Ee<(nNiRM8^ihq zA(1c6)t_*zf$WXQ#xFE!1M@?VB@Sw-Y6~r_h`)OxcYxCcIF~Pp_Ap*Q))Qdfb56sAXzvpiFo; z90t0eZ`WhexcZF%-dBPtrJ)EK*|gdM9puF!Pr87Ou(+^!fMvpd*K;#NQ2|4XQ0BKA zF)bnLqv!sXjWHX_09CyDT?sF(YY$g}^<{wb7C?Oq zt<uyC|1zdxMh1P8QQ0AD1`Q*{pJ1)%&lzgA%7wDThRaIW& z1$VI7@mHjY*kn?Xp2@a--}8HnXI^(0--n``kOcmu0 z*iy;rc1Es7Ls^N2lI7CwPjlF%B;HSZJyQXzhf62?%dyY~HLy?sn65qY5s3X9=dCIZ zPX;eO$X_+n{qjYE=qxK)D`=)`Gkb`fS;uE&4g--S*@zpTJJJI$EU$kgS5)_{Wf)ve z=@b5UjZe;ttNG z&og)-afL)+D{2J&`&c9{*jCyu&H{b8&Cl0R1q9AVydZC*_fY-g#Z={59P}P^g~u|9 z9{*nRAX;q7>wOFGVg-Pts->GLLa`R=(#H~fvb!i96 zAMWENp)Nltxo*{Y3m>l!UyOrcDTm{a-YHt>$&m(T+t7`cI-f3Y%jfYm_#}t@62M*n zsBL7bgpUH|!uA=e`~nVlyIOeqpo^f`*--mg%ht5`PUfLi8Zwc?+2O5HilgS*>=bS$ znWqi=6O6qgmHDg&wxiB6(gwEogM@TaQo~V6Up6=(+QYj+CwqGb&bhGrU8)%eZ0cn7 z4bUDhcOf%_wqA2U`>DOq!IGgux-Rk#IPe@2ZzoGWkR=-IwMwCOR#I*ScP{TLjK!Rn_%7DQ~ z|6YZVLLX9H4erUvX9%n~pC|*Rbl;?0MIg#DdxsChpfFV;RdANEDRpU_YgUcSj^JL4 z!T`xhWaVaI@hC1F;4&wS#DJoEAgL0jqa&Rh$f=rTx%YVg7)`Lk*0&O`6G)#KC&ADm z1|3yrT1;hpWc@P)4n`?C4>m<>Ws>?RCVEKUjdA+&>bGn1_}d>M(V@Bi62rrt1+}&h zMK|#ndpQ*8U?Iuz=GPV1oO}_&Z|kwQV#%}@TkcOhPRWJW*gNeEr?%<5nt*xl|E?C@ zcv^W$gwhgd?!ZG?Gu>EuW&*g=8;%|IX@k-4dXSMCAE1Xk_C3hf0L#<0nbVp#>L)1D#1g|k*s-P^V>LeD@nil=iTmG zY{Q?S6=m8bQDhamJn)mG!k%STISuK35l&sfNW18*nrs6p?% zKyPKge2^o7DB*MW59x#frE;0T$?RTv91$M%r=x`cvKg)Zxth$6WJ;3l(`C+8`T1P* z=tySdI=ge6LQ0%XoOgK_v~q-C5W)oly`U|%w>5>mK}Po5N|NsHd!mwPL(hVeQVMez zlP9K6f@asRN5bw8)2kIchE^j7KqowAlUZixD5A^z(1Cb%O0Ne5!{wiF43Q>@yu(g| zU`QZm8IRhs*X?7-3}Ur32-uW4SblVv_p5jIY!$X>+y&5R4iDwakUo%JjsMIL0!Rr@ z>pmq||D;0si8v8O4mju#O;HK+_ij&u);y(LsIqXDLY)a`F8tS(@@l#U!QBv;tUlH( z=@ZQzA|jjl;&~2)pvB%iM}ia+g%6vW4wh0M;eFbiuX9!Q7Kp;4rkeYcexy1YY%TRO zYLZ*~6S(4o+%<4uO5KM3fbnP-> zB7ulqoKHSTocGFP*P}xuuDc=R|J|iB!4D$K&$IOaOpx}rihsdEQ~OPa&clZP2DA9f zcs+QogUXs3Bd-#>`k8)OtN10D&_kyevu6?%TR))fEyK}3ZM;M;y55=rfs#W*B16)){diBZvhNU z8VczkOHwhcbS5wMgVGR|V*2wY+WYeX5|v-^e@qh;4f2GyrUSR*;d*AJQYQ{cLCIQM zqEfHuNiCM6KfJ|9QbhtyYz(g6_MEgxo_uB=)2gVfF7sY<|5-pEkT$m;f_D#99!Q+| zOveC@>+GW|qoPZ|pxPKqBLmcgq75?2GZ+roCXny;#m=5~+*$^@pL+xu%Ea6~ddYPN zMZeCKTgO~lDvayFKQc1OFveR&bH^&cp|SKIaP|^efHA)2wYbkS^0#cU@E4JEKqzr+ zT~Ur$FW~(jt!hj$`sifyW*caSPj{uHee5Vr(>~&vD4Dfn=~MM%82X|?Faj&7p=_Tg zsrfP{VpmZHQ(6M+zkFrDtaNYh5CYrEeiYg2#Q~m&wsX8&4cJ(L!gHOK%-%S@&5l3kN4WQVz>Q2htN>G8ybq-SS8m>E#O4AI2c8dx7&3;&|T zU6%L*z%!#YX8>`+%g??|)BgrheT^+8+>Sft%pOLG?8|d(U2Eg+DXyiIWpw!4*_#tk zM!Adt2mRccovrsw--|Mt%+s|-Ie6XEPPicD6Q1dan|B&Yctqug{SkVk$LthI5e%n` zP8wzldwlx5en-zRWbt1*&Hk2E5Gw_~DDaj8dIeYS#eGj@geGw>9BZ5eaDo~$m>xau zGo?HqtgiszqNgdJg*s=@Ju;@4p>VF1{jsFmbI_`$U`z?f6K#@?+bt#^0LhfP5GZDB7uM^atrSI|zfq{}HJprwIV} z-8%eGfY+?Q$Vfb)f6CWX zo3at50u4)rOvZrCx-qeRu_dv!D(WQOC((e-9OCIS{O8jCU2N&eEE*8bm8%=J);wfXh= zjm0@bOZnE1Y)Ey8eH7D%2XZ7$C0v9G3wVAt1vdu>ZzTTw?iig^+dICquyo3-+9Sd< z<3E~)G2QMEeE=Z((Gwuc0br1raE5i0ZQ2Zpqg3959NGP|9Ppa`OqkEEf{)>V?aIqQ zNCV`|9*8bN^8k;$uC>yqNWrXtjJsXfaX4xF>FA`uTd&Ok|W4c#&adcq;|Z1O=I|K#)TCmJ=gC zTf+;=1J{k2`wV6jGcDTfPoqv9KFmtp#0RbJVe7neFBR)M*IhB> z|E2KG&C~@HfXi>U3m#Qs4;{kS+DRiRBLF~NHdI{`Y_TnIk%XMw+P2g0eu zpJRAn?N#X^3b;`wyu`5ezaPs3env8&Gj0QTE+W{UD|qys(=*0@*JD0ui{u2d^}f4! zwNwaz6N=G+f9ks1wsegiYQct??w_NkB%h&p?W&R(#>kS`0Sqqo+mS7@V54py1{}Ny zKgk8L+^~ z1qNw=+~~CCGuLd4Dl&6OPc??V6Tmza)dLIyE?|-Y=L1TODzQV7B$`h*&w`lpNNVdW zIbY61Hb>shG4opiuP8cpq+I!wvQ2cJMDo@h=UJ11=HX9>(mHL3*$MrY3`uqSQvqBMWV-gm}m6E6-?xMw`WxM}< z(f=^0CSL74I2h7j<$S8JJMH*9Tah~_6 zg#Q(94hJQtfjV$|Vw6TYok>I4A|6RdQOze@UeX8<`_|~VGRKFpYzyJnQw~3 ztl<2L3K@3mDY{N_b?~n0`i=^ij`{ypN(VF~*h~SeD{1<^UqgvNy0nvNLQLKC&hN_B z<}XgQoT^AV@5a1d?B)O($&)1o(xW+J*8~y`_#)^n*c_Zhs|U8@6`1Szie^6li#@9y zJbw?Os>kA9zoK=;XF}H&)<2jtWUT(_XQ^)XyfN~|wZ)!j?FmB!8-65)yh!))gd(1P zw5P!aJaV9TM>1gpTNT=s1Z>B)5YzxR zJv}e>EJx&Ib=!emOduEmTH=mcV44}N^$`=xgX!6#X&N)hOa0zB%$$C5zwv!uXmL8;8+Bx@EravgTRH*_kB#jSzz}Dc*Zc8&W*riZsYcS0MLK%b=5sU8kM znwizb0wmn3~ZwOrMAe zWWgpOv|UTf0m0}PL&VrXBe8Evw3*26WgFOSy@=LKXH|s>oG>|09lylTicm6%gIoaF z@l+s52!H6)66ngXXjttq^Rs`Zp#$poZvnoddcQR}tI2O_iyMMuvT-luTizeq3Z$&+ zn(7;HN=&eu4t7#`VG7opbz@N+U~1|-($}F+J_3_!tPUi+wP9pu7KwH9gfmke*b~nR z2=L6Ez^=0EWHN#@*y@9s)SKgdY{0uXe&jD2NjOL_rB1C+-WrFEO12NI ziGavb_3?Kgi)1UgpYVb+^EEcj-Pgmq#szXP(ZOW?bu$3ZG?i)0RHmZ!a&aYN#-|>j zRs{WbJPNGbGZp>Q8_wuL6?`R=Me?z)$b^qs_`yaL;eqq+wVWp0gJJY=6#2}j_9TKv zedpGDyh8C^P9<>XC5!DS=QC>1>4B+rD*tC!gDN@mCtv3|14>&m1-^22j{xDAV))<1 z)ULJT%NJCGSjRotylNtW{~j2)pA=Cg#mi_IrZ5-=5r13Htbe)$nHtbF&~ll>L%!Nv_5 zHC@!;(TmYzrUy$t$BxO%-SG=Kpz{$km=}J+%5O4H;o;5RKEv;VBL$2hnge=QN0m>3 zdJypNQNz+qBFoD*nQIgN+|$<}_Mpm$#E8&8plldmy8yP}lvz!;x0ekoCUOUh+sofG z#R5ZM--`s`JAmsYzn!86{dG3iHqbm3!_~?3fD$-#c`jEz>;7_&#g~iNe_MNlL?B#h z-oD0#=@D2qzBMfY8jwX`rk15g0|xi8DM7=F7cOv5r^q!$PQ70g-Je*zynTx|F1mc8 z0J8^Z?tvZZip_Wc+ds{vB%2Prt>!UjiM3kt4T6T=eP@cq0Naco+yQ&yz(b&}|3Nx& zc5e=t(qeE8fA2_uYEu%6Bn7LOZj38IF@nDQM6SN6UON*QblgK)#i_%mkD{yi?pZ8q z2U`yo5{fLn8=O2|VHES@8&hwi57|0KoK#`YMo(HkPgOMSo|41fKdpREsM`OT9tENr zv8IUKnTo;-$QS}6HgZk_{!bU2&26~z!DOtl<2G^srZ|~(zn?SRU7z4KlQCgpKp}*R ze6H`_$0L;`Mpwq~1eKF9#9=Vv_c837u?w4zA|D-1;&tKuuTanDJ)GlYt&Q`@agYem zEU*q7opoI;8gf0r>lZ`UkD@aK#{$t2o^5jY{lG2t(y5{`3@D&Lml(Xvn83&+^1-5N zLCoB$RqO#>7|4%ic@Ey)pGFy?(Ph#7uu)BcjESqw4e_M3LFezkNkTESxSIe-q)vtn zK!BFdY22nSWrq}$nBCZ@Kiw^dUQ^K|@R)o&PJT-SR9*}1KY+b=ss6Y()=2^x+}+>{ zgR1dF$vgG$hK(GQp>%GMX6%6DRy7f@Ol)d_(;YlNFe93pEjCWvN z>`chItW1z%;#9xTz-CVp@~=2}p5M|-@%a^X*8T*f`Y4QdV)yVrzmg>dy22NIp z(j^<_V(`ePt>7Sh!isG}ut%RXNu-jB`q(J8zL)%|CfosY>QgKg3pn|; zG{9P5iNAV@&qA*T0L`*bYKW8i(wPvM(B;cX#8A@z_53zG%s}qX$#E9KsLlw0>^11n z4hwhzC#A4n$M*rhdxC8`P@vLaDT4O(EIFxCZHO2L7!&v_PA6X^K%zl#&21{sY}>RS z9&IOmA(1rauf(ICV=4lO9BBUmT&FK4^lCjcFaT`+Yz$?5PR$x=IRs8Ts0lVW8MFw-v*$dvkq(NQ|fH^ZMTr=JjKy4#~W$CASjW*j^xY0_4?`N9V6)(N@Pbs$mBqENY~WL?!d$I0@)4-fkH*6JX*iZwfGy3` zzAl4O!2v@fL%{|EMTfq$YH0n}40d`XsKT{EfXt1e*aXZ;o1DT?|d)#L-d_YU!}Bx93#Xxf7YjkS=bo9puiE$d8*e~MQ7&?qW%}ag9%wIqG3yuE+ZL|L{uCggBsIX`QyvDw=kUbfO&8cX0o-NZG-#~FpCXRjlT)a7b1B5G zk{iFJzkx#>XleQQay9{`Azk9!zBvU0E>o_?2NDk!-2G@l%ysiwpi_pEm2)w0u%m5z zNu%jgr@rnCz4i91=uH|W7IyLqg>Fmf&Wa)5o%jCk&gfP6N;Visu5M1>6@J5nu&m@5 zV1e#3t)>Wb2%W~OFocgu$|uwxks%1YwSb%pHwNx`6?9(yl+A7k z4ls|#BnXMyRpjSpx>$>>mQh+?k?OKKS#q+gC&KcKG1E^&b~O5R~B)$7MBp)vA? z%4AR*839$qv0pfy__R8oDp$rxmZypW`T%IK*59!l70pve;gE0s-iifc6%UN3d=I7= zl~7R#6a`;`jVMO;`w`8!ovh#xt~uxx3yg@dLk$Fz>|2zAg$A~)9G=`td_vAWCQa4s z^Dk;%?Wb)Tb&h8|d_W7+5D--+`=Yh@ z;OUq2P5|Qfe1rlja~K%i)Isq@s%T@SN!%9oL(teIzJR$U4B+7W;6yB&_`>Z072S)1 z-#ijdCEKxVZnx$T)b`Q}yRLxP=VenP!w^-GV90Q#-vY)hm29aN;_s$k-xzd&q?akw z1W9F6;HMnu9%cl|9pK=|LPh2Y2dzk8zT;^Cd#O2cvSP~iT)4vrtEnd6M3@ya0RPby zfYgTKOck(o2Z374(pguQiEux9#eBXe4pTu=JV9nwkSZd(Qk8UJK}^Ccq&*yU1u|{zU45w3)Net)3h`?mUN$`b**3b-(P@%?9Os#(MpBpNii$X8~ zL)BOV(PhXK;W56LjvT!^1Xf0VB@o}KMhbVEFOM#kU36|gd{RX!Mg1**Xy))O+kZgv zYV6Bt{P8O$$eM6pgS@J3txY?snW<&PP9VA>2ah6qp+TFkbI~N)W5`;tbJgTS zKUuVKY8I|EkR2ad2i2BcAbU()^r?mg<1fc$j0}U@_W92fvd>jN;bf)9-6ZM4U=uU2 zKOm)&vbX5%3veZEE=|No)0mXA15_`XrcT+f_%>>j)3<2OzT=j)CuXgJG?xj+2S z?!Be}vU>9m)V-!k77SG&kc4IKUa)D-q%qxmmAQd2bzT}cuFDx!*>SLS`jCxZ6i+!L zfXfGY7?dnM>ePTJP05}BaydSOorq#?7F+jeGeiRn4@qVJ%5a5UPWOAXHy^&4z_XdD zZT7ha$Z0O-biQ2=Wh-G!RG~H%Te+HzDr;f_4vLbGXX^^N(KNv0t-ngB!fIN;S|oIV z9`ci&S_V_sy~}(On0OcbqA8+|STeRyGCGK-U3`x0CA!st63nu|AB&pPi&?-oj5QJ@ z_$#3U0wIzLSpN!MC4P@rndxj3Q<#iE@5c{-Sw{9)o{6U-3%3%$6IFphDwhE5mPQ7h z0zgRQnX=>?F#gzwuu$OmHZ@Zdeu(qN9lU1wABQ*e!r>VRbfHqZQY$VrdwfQe!4uci z!#z%z9GsjuqBaF^LOM%{iYW(d&UR`DS<$7j{5VEvq9*(|os>KQj!~>pVhN~L_aSlm z@qbTyW%M0REfavv`t15o`1#_Fu#P&0ESjFM44XODzmdfR^2Zeo?y?=um*F94Y9Bhj)2NPHB8W%hA#pOjSw;q8 zF16WDxFc|sEXH+Nk#!-pv5W}%-{OGRQ72eJX0HXx=q*+#8;D%y&I33WfKtV7NvCbaxMPlP&0zP_FvXmm5x?zk)?JqOi z$4_80B!*WaQ1wZuw2m{4mLZ|^q#p-_kv8|qGF%(RysA39xzTO^cl$TXr|&=5>5~8% zmFz`fB#eVMTo6=C7a z=zff{$)b8HKgxl_A*C^1=*G5-Y0sW*A)J&4B4 z4mWDvDOb!`d@=BEG(89NkcZ-oT0lF7QFV2f%g)QeYGTv=J@W6^oF=*R6jNAD26}r7 zryhwkYC!+J)JmAN$+Zjw8Z@z(OR1Ax$QT%OW~Q-9JFGulU6w8=Yg_x&r8cciB)qrO z#%j8m2Dk=C|qi8 zib4>)1MJO##%V$x&gzlxKh2$ESEd)8xyfVm%~SJhPa+Wd1>vE3(O@cqHJU$!l=G#4 z5=ZEKzQN~SsS6}tSj_X6!LOR8viztX?=Bw(gO<-dPP5Gl56{*EkifIsuj*z)X>hGfkA0Z&om=uYvn1aQj;|@pip0VM)HyF$;`R(EK zgl_;+c!z-kM_Mxtu^@PK*%wR^$DmFqYY$~c{F@yQ><*X^zCuS&b_jKnRCPtYox1Fo zM74||OZ_E+>X~}5;($z@#rFgjLUbu!qp=~y%|A1eYxQ>T5MJA-lgR?VfVi={m(@(< zaevu5)(mz`d#=|#tW)4IT$v}9gbb#H7!`_%bz=+`jfBe5l44@LZd!0zeH&MZ$KhsE z;VrgdISNwSYj&d>H^WU&2u23up2Ks<|60!XLN9;``rX z?)K=QJ!>}U=u#WC!O@9L+oJz#(;pbd6DfAS$v@%K$ZX~^vbYzlTas!5>C`jC1mG?q>z zK?s<@DZkq^yoU)?q6*trKbIZ%z)y3Z`W~GYn*)i~{DQH`w!<}F3cJ{fN&rHt;@_Xx zoiHre9}NaoV@nJEm@zLiGWtsK@QvV+)!dthpQ(^OJ9C6w9_TnY93ic9baq_t@tehZ zR9#@Yd>`cM8S?;3h~Vke*A)Rs1Xelp{$Lm=4QvqNAd3mCD6EkH-LpSJL3GDsGgX}w z(ZHSd;Bos+w)ze3FcRf;uu8VqU%u7cS6J?!KQnP%^D{Gv_@CA8wo<<}A@jTwa}X6} z#=g?R_x&H*lSlkQuEfIzoL0H(&=CNCKX5Z6Yy^W~BLG`OVgc}n7kDwvP5MCJa5hYD z|1+$;d0HA97No|>Rh$C95)cT2-FMN}@fifY(1x2lvc6bgd6hi3%z=w$(IAg6VQI>Q zp%j!oI&?&DbH~UKC{m&a{(dXx*J^z5d2V3>_KUoBlhnZcv!@j94;{+AsFZ$xVs&03 z^@f&&?2qFu$><& z{P~elkSoJ*VJMH^(N6ugW5UG2N`U-R3h&BxcQ2O1M)dy$YW@RULE2_br?InnNBDNg zifwH3sVISg>>-<0BmB|3ERcMCnI$CbHvbm*Q#*N^hQ+79B+gbpBFJL$3Tdsc=%y8v zIXlyg?&dBV@4-p133^sXZ%YClcZ&tJNjZ|9P}cDG5uoJ9dqB-_KY`AJP`2aB-O6plM5GfeaFf#P zQ6sT@u}IP!%@252wFyf>SIfXaau7ta{_xI@rj~&Z(v2pLqGQ^&d-j7!F_RKc5)^^> zUKpTERjcDemq2P2H%wbR(iW@}?29o*YV9%AH2bz&J4cu>O?_fO$7;apX=Kv{`ax5! zjK#=qSEa&JiRgBJz@k|r0j&0uc}4Gs>}ByJ7zrq^LUe)XSv!3dGAL7(9%URVa-+Qm zK*&7q6Vtr@|*33S7zDMjBTpe;j1V7vXE*M?mAbxQlMNZ1k zr}XMSTr^MPWv2jbk`>GRP0JNC(4G(LGqeN5^OJ!XCM-xk8JB*qaQL!3KWsL0uir;-LU--;2PXE9+?M+VlMrA)HNOk&mcW%brhWjge0;r3C z&8HVQWPy;zRdOq&0?IF*#`!Tvz`SL#-qW}&sIusq0Y}ZG@g;y2>=38Na1dUDrdb!g z;-AwozI}`#AQVOyF>J$*ysg0ho(@T22gOyxl-~gzisuk=0R0Al{MPJ20iz&Yl8rTu z$Mfb7J2cCd)bEXviTDt?P{=R#M5>SQY)0u|0=-!B7kYM(NR<8IwBQ>%pT-v}P_+kB zt>{jnPni*@$l!m1s!(dyGD~`;v0_&`u>U%=Z*=ECCS;E3^N+lu^)_Nm!&<+D;56Od z>UT(=hZF4Rfw|)ZJ9c2?Prs zV`;Zr#C0IjpsJ&KTyB}7YV_wld6G_w2?y2|S4d}vzD2&N@_4a4lcZX)(8Z^}Uc`_T zKJD?uK13cp%1Vbfi~DV4{w)H?Iui^)qz?M!?68+7h6J{jU`fC+$9%ns&n^y!f@--JzPk;0RLccyyZm?$U~*$(}z@VDcU zzy<0fby-nt*hjJg8}Ef~c@2&X*C3wo?qv-(3M)MxSwl<>M{mt{4#__Vy643xaB2&Z zm-?s>B~&uwFLZaQ;|2-aAP<(qQ@+|v*FAceutq`#hOq;gkv$us^OJ)2(ZbJ;x zRFeSa=!d`QN&e0*3m~>xLTNd^P`2`9FVf0-J3y8I zUB}`9ug`V}VMA^Z83J(RL)3JTLL+Gq0o?6r|GU8QMLH*{A<@`Ma(quWK8s^iVFrdq z$s_{E$kCD^C>|l$N!)I|KyJSWn9>wXUCogg3Q;HwPrYm_HI@<<@>&di+u2j7pRfn`bS~~x~jxG}uR&CpnOI{O$4|u|Bh)@F&Ts69`DGKPsHK-z6 zfm^0_zXk9@K4P>An60T{cyKW1^1s*u(w17Q?Bk^TFLm{BMBpe`id|O9sc0y?_lcW? zD^Jj{X@)D;lV(I{MUzF*+ucLn!}VziaWDCf9j0Kdc^BQA7%u)#$YAv!bT>CtJO?JV z|Gs<$LLgO#=~gVG9fQJ$0at;hO-J-1&=wHBlnesl7~nI?W(fj#kpQ}}lQIO}9to9b zJOt3Y7YYBhj1dHJd$FXm9)gvp+K;_qxR$6wAg#3Kg{Qi(tPS3j)~~#JAyy)(UfiRR zbZ1A_X$g7vIIS8rktpP8X8p@Zsc7 zFhF9q_taCLu=sH0-~fKUT_S0+2L_1qm`*TmMNmKuMx_r~k=+YA6^?68lFJ$cR@POl z)N}}25mhZIVgqLI&F~)5EMHKs8UYyPh$YW7r%Q<`nk3mnSHKfJrA`1zutEVED>Oa> zbDAnpD04qpk(`WjP37KhjO$dcpfxR3HYwyd+&xqGjGA9KpxjSCgcFn3t55k#5jc4jZw(d5bBkMU_bP=P>QS=OC942%Y%U$H@^K zZ5akZgRMGI4$SLoKW4gqnytD~HCVRjA40zdm!Zqyi=y$Ak3HbK%-dlrbr*ghEeA?8 zQ$v%+FPGz^0>C`22Afm4?NY|Q6##9f3uF*9>du7VI16^_sS>J>vzTx76azYQ>Ougb zumbsbQrY*3h)Iqazca`_%KC|$1WQ|P-p>nJddk9~nK)s`|1mpuFU(Hgg*Z^e z7~PTQ@e1|2uNAYMfp|L2?1 z79w!zqaah~MCl1Vk5lsOw+Uy`-bJ|(MX!8h$)T|L%9zXn zE+qwxB`z8z7iTxcZe=R=wu~QZtt*A6x4;plloIYixn(LV9)rc78iXZ^U$WSS!J<>U z;)V4uc<|;rl^z8axc96ly4;|bl>E1)|E{pw9j}g@{jRu2d<`>w+>~kZY|dmpaq|4? zKT*DkpZkBo)~FO<`zr#jEA2GXqHq_4i2z_I6j-V!y0(eKMgd;CsKq^G$sS5^QHyQ;m>HTyChWNt=aB5 zznSzOY0?X{*rG!*^O17(Y^Ln$cafh=1JT`WlgM(hjMMKzETRrX2^(#T-~&#S8r zrHpYq9XXPTSFH3}#LRZ6RASD&K+rZ6p?&B@W$?zc_zl_7 z#KsQ=&yI}C+bmqaD!-h0uOBxgIgfh$QU4_b+|z-_x3fg+-XaNpq0M zW3R~8^TX-qag%>Xlh4sFsZGRqEQT=ax!xy#Jp6V&{Pxa8m_3+Nr>GKau3QVjB$NpU zcc6I$?JXy9$;5b&Esk@Y;p zDza;_d)ogPEu7E%DJ}f)4$g@Ygb*kljbciiwOH`rf5HHW*9+_T0gPGh(Zy3yN|Gkw zSC&eZFkCq}ZveA`Kssh9P=!;x4jgke+;rrMB8$XE$&k~O#GqEtC;*|_-`?Q!Vi>$L z&;|8j#P`5Txjr_OcA$Y`ccpA+#qnjy+s1-Yl(X1>eH-!pe8iujv}#*&UAIhcwW6{1 ztXyR6zA0^T>#1}-%%^y?@U4}X-kmqzK3kNee`bp1$HvE>`X(op zshI7rfWie>w9FcWHpcWZG%yyA_<;x-9xe4nu6ue54hN&J?3dIzYfnoWpp|q-=P-#B z^r?s-qtZ6)Q!p&e2EqT~ps;B}d(W!He%6!zZ5bN)#qrCB@{L1_2S6yi@F~A~{vk}T zO3&;!yX!QL_De?`kx1a-O_HwSnWlKCb`RmQvhsDMToG!fIMjtyneUoxG zO&Hh#pAX!A()OGnZw$iIhfGPOBB4edEb%2%ErZ2k=z#rykpv7;yoP;O1O6a=wNE9G zwBOa1R1q^{;!sAFp=wD})M9Jn9i5JI81SNxK70&O|LD&=j8?TlR z>uZ|7PH>xW6@!1<@`(7zUUp!d(?dljHLniL8Q(m_T>e%x_*rs=%W>%5{QC6&Y|R*iTGKHZr2JD&I3 zIuGjh7ta^%T%*mK{5Q1eanD>rbN;9chT#d3@M@EjgSG^O2?0g!-XggyCWi)VI^Yg9 zGS>dharME(PVRu(#j%+Ci?HK)559;}`aAsW%y%Fo6o^2L7%+)`*XJzP`t-2U6v_e4 z2YA;(0DSdKqqdD6er;d=Fbb%SIN?Y>2zCxjO%|Kd0kJX2w)YwS@{z&k!8z!DN-RNw zgkO8d8^jzhb5nsX>5u5*RzemNf2uS(HH=X-IWq8YrBf-GYV3H}8O17CEPj}n@_^X? zgx6motX_0d#zsfCit|y|5lw=@RFQy#Ym{ETaPnv}`IDl_bWrKAYD2BPvXR<9N<=6%BE1@uUBH|VA4P= z*2SpDtieMA%zIV7N+n1-fxu7J_tlv4Hv9UKwi_!`r0ycU<*uaNgaoG!{{+gYV-`XohzZv+{hWA`)A>bn5x>|R+!<*FYmT6T1_EB z4Mlr;Y`OEEbgp2Za2tw;RugW@H3#vR822x!Pc|;lcIPODrBIfSC%+A-W_09&>=^>> zGYjYqR~92HoS|8Kl!!}>{AUon4WgNDI2zf9hJP77G6&swG@SoiT~@S{PLyE}TC-Yr zI^c9I5*>xrLhJ21{kb@cTS}fe4$qgDqctzaEF(`!_Uh33_)t;YqRu5N_qB+$7Q2~U zp8qL=dH4y^T&we)8>*%3@k0^bLl!@;0&1F(>rTQLtPf#}#B3`XKR=q9v~=%JE?aEH z1S+NoM!fgm1;wkB-ztXbg&~sneL;Sem6=)17*$(aYd<^xn%Y`sH>S8Ihad z+s!7K7r9*zddUd$W!_x9hWX~v$X>}Vnm;)_H$ay{&O>xaQ9m$?!g4X2Dr0oO-=@21 zYZtDH>GtBXqtCY+KsoIJ!U zJTzM8eu@G_MEv+FTcs3RMwS6-*QTLb!j@ZwLUy;=V0-$ihxp$9hNIK2t&AmBWCKrH zoFqwNfF^fj!|foN4()Yh+_h``gsF3(Zc0!7;euSD;GXePxbehWH3i89MLWGjk*aTI zYQ8Yori?^s`S~`H#N&vff7~*Y!}QY$A59#HvJx5AnjF^15QKmHT2hNz>kylL4s6M7 zJhjp*%_XY%wm`clAXnjQ@N|tf*E+A^7Y3zN$YBs$w#h1*zk7k?J^_8i%85d(V9?9i zFwqjyFySgdXkQvT_|r)MHQBDFjjNx&*Xvn@DwgU0J^eTHkT*ho1(H$PjkW~#9+Nr0 zPg@U}cP4VOKCezsgXlzvmv8L&6^0L55Z1fE?@OyAe=$NH?I1!#hlSV=3c^dX16m#G zBVRE|Pi<{zGKXeThtB?uq7+&C( ze^!yVVT`eR7ib8t78dGx9;C}@#^I|C6%kFb#irBtE#>pk@ka-nY)7&*ZvkI#zp$AK25{1ETMpE^SJ)!HhnLw92IK6%52T?VF*%q zNnLweMaEi3UDCB@X7zl)?3CquQ>%#LeHn8n0%eW$V*V|26G-rlM`L1RE4-Hwte6m2 zJKvpa$LcEQ*s%cbM%{AT-xa3qzZm#Grhl<}d<{D}Fxi{x-k)M~MV%dbLMCjq15N*I z^^yL&^1*zgy%vmLasjExH;(CE9aVX;u^~C5DVFs7j8WPHC6rcwT=roEC;U2I8$qs))Kn%R%yo|D$ZdlYh33t9T}@?>*8KdY+rdI(0sB$^;m_NCqUCgU zs$e5RTf1m1#o~yfT3efNBTK^GD4%R6akhR#yyG$y;$alhQ#%Vimu%y_AeDaMMovlk zYd*wK=h?Df^;C`muE~Lo!IE?f}$XjpytwehQT|qK;rO9XRR~$oEF{2DJ z#OCYsI9t=76n>T#26%H&%=Et8&jR&Z*A4=f`~5WEy>8^>?U$=)^bs1Z0{{yE|P&ZwT|Nq5y|8EJ;E zMY7&Ef-cwn?eK6xm$ci+@@He|SEM$bAB7?Ju~fS`+9SEwROgmR23Dp_3%?V;fTdK> z@vnPNXQZbV`2K*hPYrjpi92CPTcI39l~ggGGw0y-o2vxuHoc^lJ5DG@6wwVtN!YWrx^aD2?2M3)=GmC0(3uQn=m-{HSyDl6Ma!QtUdCjU0pr zNSUp#i=M{azCroH_i?o7b!9+~!fqB9Ds7S-MoxVFIx0V^9QtVIBz()?*4LrziPuJp;u$n176$oOp?Gx-grnadhyt=4DUvZa`} zmFF}~8KX=!w?`slVkqpkb)OVC(&CqQXPgAGn~C`$$Uny3s;#skQv{=LAUjOK`o98I zgV{tjpF$3Q%KmKW<$_5ZMpS?EN$cUObRlnU4Gj%JaCy8Ed_3zN%i@W{GxQAj(;KFy zr3LT5b~<=^bK`wCcVb`2m1?YJ08b*#{9$mo7pd9O7?v*Ps^Qp_9d|f7X4I&L%hPxCu8iZYZ`RbIE89HyFyvOU+xC#6Uq zH0x#6@5{4dG+9K9iHo#nhh-W^b(6ohq&jJA!{1sqJFv8%%ILQEeO@%IzqQ)ZU8%2} zYoE~jb;su|AWcr|jS+t$@U3#1;BN~G@$65>EI1{#K~7g!rg@R~^sLePhdE_d=~5@= zm1Y5|+^Mz03^ASq6uC8QsyYfx9$E8dd!G6c|`zkOC7(qzw#+Y4d#8u!&WCBT#CG|)K3MPx9`|8Q@WUd~|< zHQRN}iO@v&3FGKnbV*nKNdjyxE>fCbKsq^s~) z*<~MG>wP0k;|q;Fo1C{zbyBm0@9Qeqr1U6yLzmo9P@ii`gRCf#&iECdtKC^b43iSS zWDP@*)A`%um#(q<{b;?HF>UR`m1o}$9!^DA*!rL)Rj&n@(R2Tjlrd#|Z6Bm~#im~} zuvhy^M=u{+fdJF^_bQt3$}g#*O){Hp-R*(oyTw&}6AO8iywNXwnNsv2Yj%l4bR}_& z9|z9FSCc(4NKy8u|y-Nl*48w7K;0+ z48c31)NUa4PN%LeCGN&uc`bp=X8Cr7`E_fA)q!a(H|ddeZ@yJM^^A{dnz4FD97_uP zkSNKw|MqvRPuGrz0NvjV_271OJkPHPpXd-< z!K;?jr03FP5P~iq-mUPuOBmsk;!+YWIOW8rHbv*jj-09s`34qh$v)pYzQKE6{-t$j zH0blHf4+^vcce}CjA**+%i>6~)C%p6mV`L>Ce`KCo>MkDL{AwrrgkOhV%z6?CrSd? z;d;sZ`ECz$v{Ipz;(SU;w}7xY&qzFxN=my$OQaF;+zHJd1UEaxc4l}2SU=PiL)zmS zl)}iT<{Y@JtPQF}0^N-keg9%|9^wd;X^G7HSWYW>Bg+d%v!&FvA4%6cD(8d!!SmnkvO5U=!7K-D57v<$vH83W<+VLLtT3&l zFs)G)R@H2L+0S5f@wb;$ua1H!@}fYk>y$#ykEx?zU?J^-QjGn1O?#3a(yJc4B6yMZ z9>M+kk7^f=S~>l7n`Kn#-C-#I++6)Ez9L&mpESQs(y(q(9k;ihfOgxrp!oSB#`PWf zLKn5cir>FO^R1$pFYA0vC;X^>dj8;)C!JI=MFnA56v}htbWIGLPoFlT`XJR zI-*nLDeFY+p#$yVLxgF2BYhRVqOmm!ibkx(Os0%R?RjL~W}90m34>E)BT5>q`qxt# zwvwOkIaB(rtU>oROEOvA#1t@T$6h})c)D8Fy*)L&5Sbq$T$#i7IxJspK4JY0>CtwO zL4{>kwK$Jr4QFbxGM#%vpH*xzpP59u|7iD=IO(}-s96>vfdL^|#>m;sgSSixqdpp{ z0f&saoievT<_3OA?kK6{A{9p@zB0juGOnXZ;q+U@q(-~QcIE=BC`DA2OiFrHO^XA} zYmsHCIC?F9=qlS?6rvxpNzTo#{0~?AIW9L#=pfvd8T!#a$T%+wgW8Wq6OXl$qHBtR zv=|Bxs%diwPZxna7+>OLRU@mjv>Bq7jn3kP?CNRQC6WlPr4sd7JEA*%Rp0ATK!!F= z^^5cPNzp2LtSTVpB#*#thJVOmW3r zc`sW=m<@k@4{!a}HnV{lO{mGYgyU&+x_SItLRF3*(FMf1`KqsiD zCP)frGY8qcCymIrVZ0kO%r)o;s<%_ab=}qd7wIE`NkCXgPe@5Gl?I34O`IMoC1_XE zKp#18#$LlPR&FkzrY>BcUnvgeF0Z|+%Df?8UsLVP`yI}$%(P3PRiFP-M)lt}}? zjK&I9*IQGE;M9q1dbsszvguK>39Bt(R{C$dpS(sJ8=EOSNj&h;W}G1IJj*d)WP zL|33VJG+sC8oP|)?4{{<$A4H<11rYcA@gbh{`i~|l;jjPi{O?|QqYU8La4P>!%|YS z2%eOeX76p9c-swbINYk${s%5Q^$@{5ez05|(s(snq*r~jI$(oil|!_VW^|$&gB8`N z`lB(7bT&VsDN=$41Wa$m}r_Fg_V$&w2!0UAz7>{#gJF<25rS z-+ULS9`XbGE<2G-=Vf^i5MMozt#bn);Jm&cpa+NUO(yh`0~6b0ZGVnbzOStIkP0s- z)=YLs{36#cnFt;s>-<-Z3kgz_#*J54{=T-X6tO00HKl077}PtZoVxML&8?nVbpfds z7c4TmtoiT)QdODCEGBJkjS~?eNtkSxU4gQX>U?Z5=fuL-ZJ-*EquURcF8Q7B8(5XeMqQG7&$KUYt^_>%Rn&6Q(1 zxj)$m7DgY9u~^28G52#*s9Gp)LG_)b2Rt|i>ZI^$>ZpeS!o@uM(Lpb9M>`ULOBou; z@V}E`R$QrOE$Q4jr6Z{96v(#RJ{JDrY*6KwsT4W?rw$iRBp5$Bjms1aPkrsK%W72H`2yMictpjuS2qa-*HiAKuW~^@7 zP~+#Es0rALHP}XZU~#Z(YRKi(q$5YFvm(D_xp^1f>hrgj%)V8uYhw~)Fxg~v1H}(0 zfpiP#tuqVj`RQ+sN0m}&Rq3Mo@)5*mlKTgpbs<|EVg`{R6*RuI-#V_%;j zm#*?HEsQn%CAMV#h((9YpCMe}U#CQ8qOXyD5uf!%&yN_{>8tIs`NQ=weyEt48MRWW zT8DH{v}&X)zoLl=<#LmQ1t7wI@3i4<$i#!S8i9}){%g) zZ|fWZr>Rhh=@rxl4`&d) zvn3L7?ary%^wdo45WGZGJ_D!YNMC(e156)FAz+wFIO`S7%bz zIHE)=nWZBS>#JI2MVU#&aCd=HAP?YY&D>PT9K0i-E zlDBB^0v;z+IZB)EZSbu!8^}t}t=HWnOp3N&kH0YPZIF6XWGj<&9ZnIb?hPtOuKlP( z&Kvw_>=s`UXvoDDo+=f=m1@ws&0CC-A4$BR`llcpCFhalQ?$-EsF<$B9^8-cP zL|I`}%X*O-esUJj zBPaJylu!}C+GAzY^wlbFc&xiyA6dyJj<`;=cTZ>dZi@25pKLgba%UaRrY)|)^oTAL zJKd+NGG{7x_mRUU!x=OyAl`#=Exb??lrNUiMF4?mIV*CuB}*MSdu(fywP2#rfZdnT zJ(8uOyB45-}<`Sc;;y;Gco6jlHPF0al4wd-_t^>n}&WNbpi z(je=qAmVYS8J!SSX%>vj0A7%HCu=V7fKKv7Sqwg#zcpB%R?F!kp0!x)4VvscfHTBV zUQWc1wmSY2O9gzX=2sKAx&;JsLCgc#-j>m3Q=D|jpYSyfC^H)A&-k@FiX%)1C``;` zO*uJX6V#D9XH74rUS%CpGA^$KzSbwizITBp$qrRAVN^8XjH!(~5{+4%^7p6YA(9yh z9fLyJ^62_$6rwNehQJ|(t@hT@NTwAR6m!O1vf$EWn#TUt#8cBG6k@d(&2X-wu}+>i zrhMdrdCiZnx@Teo2^O+*A{3Y@s?`DeMN^DDMUozTf;y`~r!k*C&&$kmD8T4I0u#4J zJ@k7{TfeuzSY6&MS976Ai<`18^VuPx zBD;+;#>`3;Oh=XF)GbmsHdO{5{Ea?U7CZW=9~Jbvn>w|c%qdZlr-7Z7mK~koPnGs~ zqOpXf$pEg81J&qphI|P;Cy(r%Eq-umN|hyoTM6s$5vDBwCSkNQmJ!@*6d4)We7g~~ z*y{G~RcW3dzsHJ`bki{r5s?$`+xEMitXD;<^!9DX+~wuvXLml}oCz`;P2Fz#e7$Ia z7}om;2BUp^yghH$XSTMs*8bte1qR_T_xJY)i<3|AA2P0j=_mHP_kjCI=X0U4Z^{B= zH!lJ5i=#Mu`*iv_Z_OM`=G1rlr2&2tBxK~4zcccSH70`?Et=wQ8NhqfReXrT^q1Yv z6bjs?xs5P{9}8=o^*B%ys0iMHLMNuemOoKP*My*;44ZlO3*)-6i*NM3B^(yM${s~R z$he|Yfvmv%f%NIao!gIyCpYirccyi3oX2Fhg-IUoJy%;dM;V__6e@Ym5K@e)w(zlx zl;oUpF z%P|h9=KYc^?G|V1C|stE!Z_iLk#|*Ffym4sFL%c8d^gT{--tZ2cHaN0((d#VDlRUT zpuhkN(0j2x`e`@E14OW)01S^jK?Y{10o%}h(aiIQp=O0{zuJ4DelUynv->-5nxsFE zmy@*U2xoJ84mHO8NRNIZc>0b|`+uj?H4MU`lk~cLS=;+2uT$~cGL!mLt@P27v>6m@ z)?}y5s(;Xjn$d5hD$dmon=&f&e)N%y&rGEwJs$VH3sRENt1jhAAszOntE<}2S-!c6 zwu3J(kjCS?-Bpuzo@jOs#l0^Ic^__~Oku+2xB5-`shxDqL)g&b^xu)bQ$Nn{ToLdD zl9Q9q&Id_deraeqjWRV=``lglblvnIvp9}(&3~~X(=h9*jd(^#ra16LgRRq-_^IrxQ!5GJWRAO9l-j4=W1A06@)Gw2+GST zLivOm>_*kS)>v@Wp*G)Idb~rO#-@vL9e9n6OZY3qFw&RiTa!mT`MmU-FD*hyjUl6W z2Wsd|oxZh;`fWK@*OSY72OQ~c2aeBH#?+LNPwZY=f8`i)drxmpJ$yL{VTT;BVx-RR zeBcEqESmVH_??cH+dpxD3F%R z&UstT?{4(N>uUSo{9wpSFqYDu`75lbIa_$=|*3~@5ZvKs@;>eQ}e}IGfqy< zk2<*Lp4s4OzT&oD83KIPMK@{J-~HJ(;?3SSBBrCMOfatl>_?M^O`o|Nc^iqpKl5o5 zFBErl7CsNtp!&pmTi@n_2TQ1ByNp~`viEtg#)j|vw!xDvcB^$H3|`T zG&oH%0o7@{yi=5vNPcWkB$(u4G{O>w-aJ_qe ztG@r}yajV7-SjdzEYQZs#~+U@L`)W{jlcn;Bye00X>}utk>cA-B@0S6+8VaiMK1vo5WxdoauOez%eo_r~rV)F`(0JuFwmeV6_KnLS`UPQqKO+UM zCE8@yk8l!C#b&Q1^vX>BWFzWlNUH{AFt591Cih;j;oL1nx(>%M(`uC>{1Ufwky)sEgy$NBYzq7pUlWZGODD)Ih-F(1$D z2fxLqzthqgf}hx9VqzE#T9W}W=R7TmcYLz~1g(FXI-i)-N|lNW3xi0X&%!(f^PWG7 z+^o0|a9Lx!?2P?MkR~C=jBvd9?E$@|hh+i2V<0SYGk8`lryUPpD=W=+Cvw`shbw*$ z$Ld;IH@n-I8}Y**9)v9wi`Y0rDy=-T;f7sPJx8R}B16+9)q13$&`=|P6ViQ+((Usm zG;or*P$cI4`Zv>YR4epy!r;Ts<^#)CWfTo-I~7@X9=h?=lv|Eu6mE_AIH3~%K9&8C zD@|NR?X#BSm)|ao)Nd%mB6oNyAJSH#*X&4MXEC`0FLDcIG8p?pf0_Ne4Sm@VwA`VSrd=6tK`H~2}#ktY-(c*6@(Drm7wx-OMO_R2TAuxIk-D7Z z2vytr_xIYKaqa_F58{7Vog653Ws1E72YU3ol|>)#%nXpx*2Nroep>{^b-*efB&PL?n#lI$|F zMJJ>ZQkJr0-}lPS453L*rVbj}H3ktfw#IDl_c`bN^ZmS^-yc8!_;|)V_x;@W_rAW@ zb=}{YJ4nOi>{-4^-=A=#*$%(MNRQY9sNxf{x$~(t^yi_Xr}NLrxx)A%x$W^T-mZzg zLNO~#$-??+zue)Q`096rHEehGIVN|vnV`Hq67^s2e>xQhYy5(dQMU{KHQ{uON=%28 zV#L>Cu_T^}J*FD%unLRI%C7#MZ>YifN&O>BtCi$Mslt(4f>&%`UE2w2YYL7vm8~D~ z@A;(YtDJGN?s4P(M^qzMsQ^c5k=WxZ+gzfAN%9>khu;aGK}D*d99n{o!^R{HPDgfu zLU)bz!K)b&90tH-&9KXeBd{E4{rD+_`2a;h-`Tx1{#T+@cu;$gN%{7xVw*bq^}!+$ z<`s?NnJ^8f?;)&YF8Pk)DLg-bAkv{L58Pe^-&0>|S-ClEnywn>-dD)8+Q7M&6&aamnk5SRJ*&!FS`x9yPp`tdhRctWoFH!y$I}93r?%4uXq)?I zYnR+=WU|Br%@OP$Tm60tUF3?F3w_`H;G9rU23rj-T1FPH z4>#XZhOOKd_WE!};E+3mRzDuD?$ff&Uv{wqJHhFQ*)@}L$y;sqx5s2o$k;2lT~tzn zcKOR4Qt`%+PjZ`@Lb7B14DyBcoC)~mfmSWHN5#g*9v6(<+}!l;nV+9${(kyN5A6-j zpO(dBhX*bU>HQ{*S?sF`2nbMdc_)lqP!ScM{VM)+N^Ctr`ZhY*0(dFVGbVdb-`;0V zg(1Ek=TJ{boDZB8+DJotLmRw0MSb0}MHz3PhO-e;3aZ*Gy}&5dzt8wIx@KjrDg3Wm zl(>7lvl*c?#<21-7xRR2eD8L2B2@xNWyjRb!PEYuo98QsbJR0D0x|f(?CmHXD9h=| zP`mjIic_Kuj^(;b4`g0ALzfyxy`d7fy?KeC{!tHmZFQQ-`a;exbXTx{Jv%EB@HjD~ zI>I26qR!_?GDID_;~>-}U)AztDSV?@v$9?xHdd+WJ}jMKAL56bWKGg5vQ`g3LcG6W zf-&T9$=cdl25Ez^(fX&--`RB_agga@F;;@P?2YHA+;;ZD&^kQ{T>`Fi_(bG4587#M|Ga zOboN?xmo@=F+4A-Vg_%&1QPkYa!@MS+a?(~>}pWksL3V|~uW|Rs@ ztvN3lX4XeU7Q`P+dXU{U0Yw&+iof~jC~+>_$E_A{6XAje;9h0{RB7{_>T1M}UoKIAdt+p+Upp1C)HG5x2~ zP&N$V5&CeF``S!Uq;6TaRrko4Od&Pz2y+W&Et3oj zEcjS*oi+JHB3T=%urbs}C!YbM13@oj zl-AbPNHn(!qloaV&=XhR3Uc7g(^xCHwdk~7qq%mD6yAw@Kmnie%N?Bakt0Vy9a5YlRlyBw2P_4%&yk-Pi@0Ll?Q%e)IXaJXK z{eq#o4*)nD>iR#Iv$ct2O}pkm#VuR5;EE@9500G~7I=2pSJaQaC$f5oW@ct8AG;2|{y$;L4-(kUfKTz;1ejV}fRubtSfJYX)enD|uOjv$ zMcH2UqpHrT&hfoJ`ZF{X1ZV+Uuk zCYBf8vUec3C2s2SFO+rqo#)m0|B&pT|8_f!+WQag^%|g#!P~d`WhA1^5ZL>Qk><(9 z6lyZRzl!RZToWnt@Lc>pv7$FYR zr0=ub+(Sx)pI7RwZSXb*4hOmi;a{T z&lx{c(X~q{IFxu_OwB(Z3zp5mC7;#;RiCkP5oM?Hv2dnWL6QZRN#vFZc9?;2VJR8G zsIZy7q|FI=A!E{2TiVjnk7XE+{%Qm_?t-VXgZR z7=_#UBj>)jWm#XU_qMKTT~C8d*3blxLmx(!zJ6_`360;F|6Fkcl%ZUvNm=m9bjd)O zO_|qlT?v=7#J%WLWuxfSVk=uZxyW5w zW*1~@VU}rYAp<*4k7TQQ4rU`l#@fN5e43nM{2F_0N}=gES&I5RYrk<7|`Xgv5l;%vPJB$ZJb6e*SX_jzdqC6W&@pJv}W^uetELuOG~e5QqAkGbXO0_l91%nby;A z>^YkONDKu@n_)D@Kvj6{C0bdM1(ChrW38vB$5G4nZlt9|65=8EnLC1|#+U(NZJz2B z;$H8ibt#xbieSZvsRx$7^in5&0B)ZH%lV~(k!*6AhFfpOmjz5;p|K@EJxRAGKgj}c z&IbHOUk>9)szYuiJgU=zd=v%)(c+2z3Dnff@zE<-E;+ZjxR`WX zi}mB|#d6zru;sFF*X%^PU7iGK#8c+CIM4N$WDRcsb(w&angb5lxkI|x%xOr6TC?-x z6tE*OFlqn{#P1+De-n#)2@`rx2)(_n^TD3x1sij7-Lq%UR`vR^*C;FfmZpBpg?dXI zjtm38p96=kqb<~;g|nVuzgz0(3GrR`@tOG=t2~_>tMoNSn>8twY`(f{8>;Ja^VAa~ zQB_Y-Q*HLC`2v6Vp-hM_ua2K>T6+4I z20v-&W`NdKJ3?4+I2**2nP@Xc=szhJmB19=5}v6;3h_%!?Sm`4O0?FM$$CRAmb1-pUu6U%cLbxqd7}9+oT>l+nCM|HC|^^E|N~7G`ET z=H|beYOd|QROdMf2FO7Wh##tmU@#p607Lv0=!fTUT^zKSm@IF@s{%!jz(mJ^Plv&B zZEM2M2mPFk;lWHs?Rf?sA!5%Iq&i)J{mvHVVlz_b%KBy+F;}AjkVHLAWb6bKR-UI+ zxdC$o#(N)VF!N5;RoI(ofmaX_;5qdAfh2oYzuc*{X;>AJQ7~IqAZvmRyY?((^4>vj zXV`cMTM8YgLKIFW+c;h3uo!=3s_%DPB32CpD~I6 zn`jnmMtcU5=()aAb8~Ybv8Bc0B-U%Xq{L=T?tdNJ*qpB_^P|3%P3vmHJSmyNk4aG~T zE+I69A_`y8pymgR)YBJ3h$t+MNr1%qo$x9H&$EnoLJ*N498!um;a0;5-@*;Tp zz;lA(*5kz>srN+2jPQzF0oUnJKZUZ<&^zg?;yGBI=Wqz>N;CoR(4e^fDG1N0TS9!+y?*9OFV3`I0 diff --git a/master/_images/sphx_glr_example_inspect_predictions_003.png b/master/_images/sphx_glr_example_inspect_predictions_003.png index 21a97b7cbf60d7e71abdd65b44f25d30378a66d2..078fd17e20f6a9740462d7bd3756ba93c756cbf4 100644 GIT binary patch literal 41262 zcmagGbySpX^e#N~&AgI9*2+ArH6MRMJ`{E|} zN7O?>&*QnXwTHKvn-%1lnTLymvxkG7IfIv#o4cK}lK{66Hy;;+t%rw;yBH6T{ZwPv9ZgF3S4u5D1|e@-NDJ=`uSAq#*l=ysWlQ&fb!@p0>?A=Apk>A4K4< zF}lMnXY40$ix@r@zVDXx?4{Z7V#>4YvcLTaEYEH$Z?}83M@@6KEQ|74(Z*Jw@2}hF zITk04IU1eMSf+2_%;!d2)UAP`5rG5Wm93ORiLo#u1e7uS0-t>s5{~>>?5K&N48B6N zZu1_(jQrA(fHs8q-w#o7K(N7g5I1;a!T)|ZFcL=w`5hu@ISdBmccSwPQInC6=^xYh z|9?z;jwgg~RfNFG$_h$A5GfBgql-fRa$w??@8rx36E`=3mfi5o$$N-HWL+IUGYd;y zqAc=t6Y{REe8j}W1~;DC5MenN7hcF}Ps~R|3Dh(vk}hxS=*Qhb@_!OgNvyvXbWs;5 zc^fsauA7s;{-hN4=Po9mZ$$L>X}<`m>Iz64GGiLI@gd(8G4?hcR#$$it{7mgJFRJ8 zIXE0NutC54Sxhl*@f-$tQsjn|xX zZGACi-$6T#R%W~>*T>(pjJUq7;^R)mE#&BLs2^IovA=osaF^|y^M6U183LdHQMyN!E{Q8V)}o0yS_)aQkV*uz3(5_Cw_+$ z$Dpr%x|Y0s2e~;Kq(7Q`uDZ}ZuG!9B};VNso zh>H}nC!hG-zi!N4EwPH!h-QN~8dz%If1#ATC7eATyKykr$ka^=%=dqQnGpKbR(AnO`fbLqC^ z7xHC#_NAC#^+24)UiXHCb_*Ek1+4XD%mRx9YWd5M#`^#)r?N0l=6|AHdn>9gLq-*G z`tcKrp%LA#@?(Wm@}!-cxJrwLXzc~8w;Y_il#diSgCA)d8Q~`lhHYPttW8W@2oX^ZbzQQM8(!PmfKjfxKgq z$*IyrsfwIiDY94Y#0ebczKD(D+pkp9A1CHm(iJJ7GI`W!>+22LQek%l4)$%~cGJ}Q z9GO!l3=A}{ubWS&pxdinL1y}6R+wDb7RJ3gBMcQ)x-67fL&0Wku`M{wN=mti_} z8L9`2Uk!WR(zHCVWJyC%T=a5~FXEgG>NJ6Hq^bP<{R7Le$-(Z1a?o|Q&I%WkfOd#C z^FV_gb-Z;$zS8)N(eW#*Dq9*#hQR5Q766W zJD7qkQKitjC=@=LQtbiVjFdQ?e15T4KX!OJW5UG4Lr5t3mxzlT_t#kdm{``>Q0!AB zWo3!F$KyD7W^(Wp^Z8_PSXNHR)WIi|>@VG7#Eg%Ksk4KB2fYlPm&2;vN^h*(5X@$I zgd&7Np*MKw3*LY^k|#-X&~ZXw?DzZO-@Q4K!9=>gNPHS@aY}^K=$mSbf|;$N(zbA* ziNOJn2Z=FEe|p-IR(igFiqaosELI?`fT-r4Q0^qgZml?7zv&zjcZ>CmC)dQ}Fnb(V z78V?S1zB!Udfi*OU*E1GlZJz%$t(8fum4>5MFLL%G?ua3pgBOzYP$;n%lRB5DDwTru}JzbC1pnq!M3<6oAbZxPRQE)=lg`6@5 z?PE1TKi=*Jp)kf{uskd}+Y_DU%PM)TBE3mRJ{DWDT^cg}$P~^3W8{mD-41?c-)Tb^ zK?DhAVI%b(@gWe}a<2i$FL!NkhRZGRsu^Fm8pR@&K5%h5hW8n z8-E~(hiSn_a4WH~kI-48gcrme3(I zZ5Q$WREmNp4DyyB1UT*ciyt4)^!_epHGt!RAf0;sOvxdgt1|EaKg0fmo)UbMU#pyy zKLJxXEX4DTwPrYGpMj$(T_5XrMk2V%t2E60A4+E5>VoPL5y~V?6PTv+AV(d=ox9jx zJ59SnTUC{}@MvLA#3`Q{NL1kV*P8prWHg10Kahc|$dRJPV z|EFksjm4#wrX(ZL%40SQHdS9=aQ3IyZvuxXzRM>ECqwiSgn>Y#2ttVX+Dis4-@Ks> z{i58w5M9Ie2I-~jEp$2#7yrC;o<=@EH<*Por;lKC!;J1{o5zP9EO#DC|H+ubo@(^v`ZhCSD~I3>7k7+#u)K zV>iuL{j^#u6nUBgWnhiw?2u1E?O8Z76Qv%qu;`@S2z<^ibGnFRPU@{hzMH=6WSy#71NRYxYEhc#T>PRrGR5G}q zb!1N*w`|NIbjccI&}2>=D72UEM_xop8!1iK6?%@cq8n_5DMh(pe8;rB+8PK&toU!( zWu?f#BVkoEn3BM@&NkXJ3jk-DnW;Q95Ft z+I5ki;m+RHoM$BK7`^WPR`kqyz845XK*f_mq#5@?dYtE*U9IrgEe2>uP}92?%FM)K z7^(q4kDucM-D?7WvbwbAf|%s?EQ^8ePsS1LtI;j<-Sd_4GmMGS(1{6GpFv}!T2ooT zDTrg_X|Mea3pGkmlX)pBr{5WUHLbk<={~IqZRP&wW72r797Og~SDY^ivRt3dD_W-) z^5zoX6(d<1zZWBR|o-oayqK>)Grhba?Bt=v|g{PQmb=gJli$OoE z_@kW)`Aw%p(~p1d?=xn+c|z01d_;?m9g7#PiTIZQ z*5+5?QMJEK4mQS{jKG!XS%EHNqvc<>*2Ho0(V>5re`QM4CnE9+O)el4QQAMb+-!b& zOxSY*pG}p81`|0lBk#|l_UH52Pw5|>G7}XD{PYhxG$D(c-Z z7&w1C(V!p^c0wrAohhQsjF&Rj)n`l!NY73G6JU zjq=bMcM{1E;v-EATbIEG8`CQG!GVubm|I6RiShyR%9ePvQ!he!s^6?J*67ga4KnD; zVlcoO0Kk-W{lb_L{{p!4ggFSM0*a$b8rsA6hWgt`LI6HmHKG}dVbJZa*J?>1_G^+^|1cVu|duA>13 zuIe?__^UUm|0aA|SQDoWfyQg}Y5xr383k2WC1tq{^1+^qKM3Cc3@I@>o+x zPhq!o5xv>Ppa4&pwEmlySij}nZO#X>e6()DK0nU$!NsJ6dp|-fVVn9yIdra;=a>Y} zWKQB41njqF?4)OTj?XL^RA1ap;U)v+y~4>Pe(pckzhgxoycOY3oR~~gh?_8gl>aXT zxA5x|DiOj2Ip%blNh^@=dmXWgo~eX4D$ime?Xb%p6Qm>9CuK)kc;AA>Nftebg#Ejl zZV#Pk&WQwJNB>eZwLMS)Y7xP7uVZcS3G_sv2FMUy0dsv4<38&Lc)$@hi5Q_$?ixIC z?;l*MGJn}zn<4Q^N;u$(kan>x7Z?z4)~4koIgYn*4L<@m&bS3jws?NIM*C7%z!qpx zJz1F66uzEkt2DafLk1`6 z2t>pj3B7EvFztus*L1?EAwa_rSWI~hIYn)v>kB%qD_lRgvS~PhwRAS-`VS1#z(6UH z#6H&ifY4M{^>zCD3oNO-3k!++o0H0-6diuSa$Hgzd@m)xyuYBM zo#$Rmqn{9F)?z2^VXT?PaZh?bP8iA-hPK8l3M#$lQbv$Odg%uyftL>l66xY5C$&{` z#mLm9Zw24-l!?}LIv9+xvvEs7Qfon3i7&_RS?p5p^l?vxZRw5)Co{rTwtsXZ~(*X{tpa$?}&NisA2`NR`eauyQXzOMcaSpw8cp zC;R725=562VLt5XxHRzTg+@4Lq{@9JCftT@RZ(715zfzFr=M?VU=RyqQY=usdc9g9#L=(}+38jP#wd=(bWU^NlHDGI2Lxgqh?ARj- z=@W~KnLAEK#ot#{AQTiZI5@)nNppQx3N8qs1hG9$CP8KZ(h3U+)>0sIcZpJy`E_0X z_S+hIpdgLNh@Q%s`b0N{uTVO!v|fi7OjBn^AFRiL1v||*U`IqmAPaoJ^AXX|ELutoUD1p6H0F7F9kWl-n5@T*Vw23aB<5Fj9loo+cd^d>UH{+c-W&%ws`)p-%-*0h!#lTJDg*DI(JuLCcrs7K zVtP}@U;RKxLg9-s3?XXLMQg_)I%HgKaj90Vjc4?ZZ765uinHz7BbPT03f~^D>%bMKD13 zBR^!&Zg4*64xhU{0lXR~bYfv+h+yqB>}FqH5{75ics!|K}O&+N$GX4_Oz-IpY>fBPDm zS2kDPAB68bLtkGi6@%+PV?I-n22ceLPE2fskqP^dISbn(;~ElK?H-lcoqfQ+AQ72K z?BoEWgam%}%w0E#N~##I8d@x_>RmGM^{$VkSKTfKQ}aKj0=+6I6n0kTc)l5KQ2#?% zFGC25cp=`aC;wvdO4h6|`pypb`cU32aJJqzph{_A^oCbFH>nIf_oUmb# z!`uh|gN+UiVv>KQaHa)ox}S&v z^}*1~K{eX5+V8XtLjBYC8P2Y*VZ5(mh-_>kr_ zHij-ZmpxMru6iE|o;LIX$0z6Rh*kzX=bnt3H0EM9@4|EHG0+5@jX#rCKxsK{ym(aa z@=v~oNs$d*Ohd33_k+kd1yHmyrVaP_i}a9{-h~6!KhQ$;I;2L=-o<5$8!3gH@41m? zSAa^m{6JXiyumW;s|7A}36z6C+oxX3w3&5OeCXPlDuC38JAb!9`B>tgTmM3cDhP)M9k%l5g z(N(1N{(JcbI$-@$OgeCwi%Tr|MV;u}r4i-}W>f7S`(8ecDhpR-Ntdh8?y(cDPn?jC zdUIC;Jp|mA7FrlRD8NyZlQ}6#S5RbSHD}LuagbN3tTj?J+sU}DJu*2kyZ=>HxshxS z{XK~t)r_+%TqDef(qz8&4E-qmAJTLqd)}6yq@X~s^J*Bt9QhiL!tdZB@JS<)h-WJS zn4=r?tZbiIJ`8JQ9IMqPeh=3mL{@Dn2UtI3094=PC?;kH)l!%zr&P$ovnn2FD>dMj z^*0`bv%nu9u>`r?qg~}qZ`4LJm#OS-ciLUHXYb*1X4OQ~$f}Eu%Wq``O%2FmhKTmP zoWZ=yCcX4G;GLn5s~7ZC9|+NR1)dSo&LYv$v3N+#llPL|0CKVj{yq}%lF`GGy|Mad zlrINsimNrSY+cWa4_1g7HmxHfKd&VMlQQxl&F;D;&gs_4xzS(Y4s%7ATC9cp5Ha&g zpuc^EYzRU4QD0Ot5y7c(B5>+iB~Tl=QIY4?L1G|Ozz|4sQE&sIAzWD22f#BoQIVvB zE*IcO$>c2)9Hx%X*tzp4rXS%U!c7B`u#qUo;o=|4sU&%Sr_7OtsQ%t<&0CW=q5K}4 z76mwv;E$3Q-76F!*XLY)Z7&Ys_mkX*0ev3^p58x=?!rw{?#=<{_I)MY6nLMoO2BxL zjYKo>8ZX`owlzBRlp$uRE*xbbu}6p3@Z>FD(mbi?@M65Zm3rDif_ofDvhucWT=LU5 zUm+uTeVM=lTqp;g83ezX%$rTQr4z2aBvK4}0I@}rV7z|_B3JFXC9{oMe_K#zLZA3~UE*ds zYA9m0b`E{&qh>UK&neXT&Pe#o_;`Eo3-M;&kYbb?TA?FiKDpVig#_Y)@Fol8&6 znzI?xCO%R!b_p?eivJq%A^*wh#duwIKmN!JQ;>aM!-yegS_c8nNJ<5jdkCbKyz&LA z9kL<8#wnRFY7_~vojp(gZ=M7VYbEl(b%~q9{Wy`JGq#Q5aA=YWSu~O}$b1KS;b?vlJUMv<7cAsT9?pNiGWefj;eb_T4{$NaJVUv|0TKL*TD+hi-Y`X(J@of8H%wls9k~Uz@B_tam#st>H{OifNDN zR|I{NSJMvR{Uv6fSB%Z+23b$-R_M#l9<<%DHo-j21@X4Re-Meu&_LXCUCxU9{5{_Q z6Ek2t@0CTzutkB`46DP1xv1pYR1ukilzBCy+jARU;kJF6n#MyS?2PMH??3bt+Ak}- z{)`bHbVxPr8ZdD*@$$XJ1~|SYXLWeB5!WtdLgkcBxIAWUB1(a0smhm6cXZfCX0&6B zTp~CWr)5VyI~1m#dc37GRU#XkJtq?Lo{16K911=9bgGJL4z?`vTsyn=HG$_zF5(W9 zZo9eTpP7Lj*8|?0@^sPy=(R3=hCxIs))Nl`QgNg_H*7?(Y@Qg+oLGD2zMmX0RLSH( zER^$(I3vPnUte*rdN^X^)iGFlUaq9RS+Z8Ny41&`3S{jo4v&tTdez$|Dcx&Up)egU z8m+8q1uUr5NX^BG;!T#!v?c^Hokh*ohd{4)ZfmNcOrh%q1qt(`mr)IB%eT%7$S6lz zIStpVQmEp9kuRDnobz>wz|#~8ho@4OGRxD_df`s*n_$*=QpUU40&`QhmRpd_1-?0OQ?;EwmkB;?9Xn?54z%BY0%@!`LQS6zLM>eG z{d?&z3c|z}h3sdQV$vL+Z@G!15HZLt$?1&y9>1EP6U{Xd~wKU z=G0T3Od0{nRSbQ%_`25vK8fj?DqJfy7~kdrLS+IqJ+`ZXTX#AAP4X-iEF~s+_*1)X z7?H`ES9{Ic(5uOuVcD1Gg_L~PY8*H7lw&6@liExoERmk15PaX4m;#e#%a2@~B8!$$ z64WT02T{76HVVG`G+P3mDcM@g$}@ONwAkCRrE&P=UOWv%={1jeltU<#XrP=A5gxuF zG3(+WS%E{q*fuPqYIsp$Dm;6gJ^vrB#vtyNOG0@A=}x%vG#|CTeLNIT7c{kp?A#G# ztG6p;AU(Dwu6(?jb2!!b5EdkGTvhn^x$Lr2&X<*_kT4rY;ZC&dns6u{pqn$=smNOW ziRKC)mp%%>(4vw&t!a?9!D>sQ>=jcidd}L6`|950_BVd?{)2De3&*`24ZEwip>G0l zv0Edbel`I;N@8k)TR@hY0P^$VmUu#-QupZB5WLMUs~qU0pxz8?#)h524meNBr+BsQpq! zX>}&2-W0Z6kRH1=7d18EZLmnj7Zhk%w_=+)UVoNj6KjEG9g3(19NN7XY@pY%_1bb$ zQcmYanw_LSK~}@XZjd?6+M<(kF>w#+5JW>~Q^vgRJShF96cTVYX9J_4h}sxT0%Rom zo=RB&C+8@Ff*Q?e`(ACNTstH>=BbkEORF$ih#z2D4R<1X|n5dp#cUoS>r5_%mi{uLL&0TH;sb2|`QIp3t{OuHR zzmmzed??Qb@aW-fMUd(4+7zYl3_ai7a#Z;R32*Zc?B$I}xQ597vmIP+c->QK;NJ0N z&G6C>E(F0D6(i6j?S`-CXP0E%U%#p#Co%MD%`s3h{wC!?(Z)_h>}nAlX(o-$CLj@` zVSejhL$j|DxHh!(ph-N8mLIZo1AkhUxV2x9F-jFarzv9%$4{-r+4a7MjBX4h>wC-6 zkPV9w+eL!dLNsYCLWi?RfCZ>5OPsYga57Op)vOdSaZ@xAs#5Idi@x}<_tMZALt@MV z)b2iqJy_qHolRc0xD@J}Y`KW6x`6uZxw@Rq2LLH3Kr}*;3UEJ#d zx=g6tweFhbs26}HjNF|}mTnl_IpT@I5PV>uOTsErb~JBYYkbvJ_B^nICU^n z(GYxONl^DE2kB-NH>l_~#YptJWUHi+5eb4-p1?x#RGFuavVuN@+n@m&bUAENeJSee z>pR=x%Cxh)3kEFK$zR_$FZXN708`mtU*fB9Nk8`tY z23;RiO4O2jwZod1P9@%aeS2Rw*k3AicIV!1lss%`6NJfF2~tVrLKki6@rm-D0JX)R z)_hN9x3E_#qjI?nm0Ntn5pLlnxHj-7$k6qhCFhI>V#?nFBVQIPQUC%}L^4>%R~8n_ z{s)pBcUQX!2kB{PW{WMZ7hv!wCDZp*w}vBar|w-!bp98EI4i6mnShr(syTuAx}B_K zLH!gU6;?`j5I0h&F#_r)KF9s>w_UPUG*R*K*Zrm-hKcTcOSYd(hT77aDyTgiScK1ql=^DBxTJ)UQC8%mnDXv|+aDrs^8LPIJ3=A5Ed=zE zK4~xkUuovu)re-l7ft+cTobZM62Vs2x40BUQbF9v40%!yn-EF^rBwy4J#0o(gflpe z;#Kl^^=a1oYY%`rhd26<`-T})*8+#~dMz<-hYudNp+_W6@xC?MTL94zGXmGq_K8_7GEaZi< zC=Y@;m(bo5iKe`{goz@J@Z&UZ$K47S zguLWxU=;dvdY1>Fg4E|f4d%al=s~ABZq8epFh*XaSpo_Rb=)E>xENb=n)Nn0_BlSAXkZ~DN!0z;a$Gn>a9X8?5#9z#>y$}^wpUqX~YAf z=KSnGh)(tLwLVLH3bbwB)y8z-PGPm#?z z9cKaa%bo)m-4fYGsn$n+1UDZwM{VE?VX%CtS@W2ja(KWCNxsWqD_2 z%$NSquX*Y5`TWX-CY0or-BpxsN}ys0-)?Mv*&p{(2ZcvWEUl#Cvp>VY6l_i$Gx$n8 z6}yc9vjU@Q9!xMvyhF{~;=BIyFnKr)%v1E{{0|uIajNJk`0Y-V!d%JHUc4`)dXK~? zB&V%gydGyhKu7PTo`+o|_8Op6R(rr%nmo6NpM#cSNt1CBSyUiGMTHzQfp!p#e2svV zUAfRqYWp2JtF%=j`cR)1*N+3up*QRQu{3Qo$BP<;_oA(?)M6OO%)?s7+fM?aGd zV)j?u56Kgqj>d-3UvuCtwLKLY_rjYihYcQ*F3p zqIL8>>S5bCdN%%?t+~chw!(?;*bPLFPyj;-@_z~-WkH*pR-n{M0EhBPL_7G!sEhLf zPt3%$kN$rA!?Ws#mH9ar_+<+rR#EAQ61?8M_H-G=GU^z5zRU__3|W=n#%n!Qvn^T& zlVDQ4S{|^q-{(mDa^%Apd21#HjEj<6hoK=CkbuK)Ue+-2wK_Hhj@NVBx%+dDZfGyR zYEY+%88Kth1M`O8DDl%~eOw;qSTkXM%LzNYAO*88gnTnEGl^OiFx06QyJzV?rq02iHMma5)ZsR2J|b{}G*P=IL^;g(x#w7>Gr(PoZ5GN+0rIQ-d?ao^~FA84OI9xM*@v;j9T*^QPN<`-G1n3qr0qz z?!5;_l1U`S`mE{@bR3mw2f*MlW+2p%(O(O^2i4Q`DBjrM`Y$pn8}+;nvHAy3d;5O_ z{!mW&!?>=o%vnmKi$Q$!pGEo~d48F{{t~mOmbn2h0&}jmy?QU>yP3`C8X(lvGK5r9 zVLq+{&GK0; zwvj3-&{7hJ_PjDA?3FLJp0_T*CX9Tp?<;UBQZC-t;^n~pGC*S0{2T&3w5PD|osU_h>!3JkHD`vfd+iq<>5G>u z5b{6PzqMYVfxUZKevH5;e!g&aB(E2QCf`u;j7-n-!lt;1CN_jg5ezd#>$>D%8RB>q z98U%gp$TqFo8iF!o7g55hrI~{K+s}S1LUODMW_EsCVnZF9Mf{?i(c1zSx?=p<+2lk z+d)Ia?K!a4$WXfR-4nk3Ce}i19MES@&bH>8G5hh|llLt-oT~(PVC5cNJFDsUC|DHG zkBcLE`xXhJgd%KUlg2)VOz{}m=>JqkHp}a8y>R9Nh7}ii+keECL;AO@hCa^T-a6_NMmw z+2A1PpJ&EJ2p5+&@7vjNK)&G58TnCPV(cROAO9QjIA!!X^^|VVXt+yJFuIn5vhQ|$ zyH{@zY#f|zI><$XTm=cfRKCqj81M&oSav@$X@X%jg$-Aee+#Tcmsr=Asi;FrHM%7$(FZy?;}D6E{Qzk zDnfB}6RlxlWeAvrO4;|f_*yh3SMAUq`60X^(#TgF2Cw-|4>6T+CC?O41oEb`xbw2a z-yZ<)N8+uI{wmofGxiv(oF6+-BM>3T3J;V_U1pQk^;DqL;~)!$|2%6s8vahU>PvtG z53MhKPDrp@i4#vupWbNbz1|YGGwWbd>CvGYX>S z+@-j4(9Ao566WQA_PZ!5F>M%|yi&LDZPvp9?bX;8B76Kn(J!fBnMXoQtepp@ ze}KOT#RGq#R3|mRKoig(Y>EH!WeD)ANxAHr*vk3GISEKaZiYi-P7i|d)QB+ zZaUv!x7>zqXXXDDCq=i0fNnlX;hqr`FpQfO9AC%G7g9W3#JTVvy(I6%DX-jLU?b{{ zZET@5EAL(SvGbmvfsF;(Sk=yX-|vV!fNT`&uZb0VzPcvq4yM5E=IOd2HrT&^t6QSQ zj;wM2?o8o|d+i-gTPbq_Be7R=itN#gH{6nlf(Y%W!+ST}L~Gb>NGir?Ls;MhVK$2d zj&BZyJxC_z!^LjAGl<4M#gs4)6{I!+8K+v9(p2JN}|5El#+jG^y=jF8}r?i#+vEhu&G+Y zQi&#XH!(0xJ)4)~IPOKZ{5L7JtgdjMyW=*9I~y$)vIdMY*d0U1!zcXPa=)-M`s=k` zjFy+xO`Tk=q5BH0Y!cZC+_`070V)s-6HE+kxIS)j(R|e~l*3E57Sn6b^%RN=riUrp zFThAPx5bEPlzv8tjYM0NI=)tsu3qfT%5TH2ty5gG!Mm9PV`d`UAfQ zI3+c0LnQYvOiaSQDNXlk2R;BrE#Fa3S)q3Q9KBpLQR|+t3`fYzhn0%IBnEpNo8U4O zBVu2z;xQIdM0t@pPsCB}z4o5d1{m$K!Fx-6<93L}%yQP3{5=&Y8yx^@`!!?joJF)4 z?a0~cFy5Wf%g_!ZIjDX6u@^(Jg$?q^Y#fTFT41a|S36TTVpAH&dDFtzj7&?c;q`qN zDDM6;W#gU~wQLfxjOhgvRq>|x#oX7-?bQCB^#lE23?p-__|7dx^vG=xljX;$OM^y` zxA!e;l3QQ`yW$cJg!#PPa~@*SpD6rDk`tTEN|B< zt$h#inwvu{wlwOIPJe7m{;rELHFQ7>X}_T`zeZZ@e)N~2{u)E)vcS}EL9{_vm&_d) z<%0nr5Y;kn(`~xm_7B=7I{1zOP;eWM&hE(TgWb=2S5hX}T!u|}=PN9J2U7EWW$*+W#B+usS%zsW)JAxi_;lRd&{p;4FzB7M0@BCpi^ z4XtZoe_$g?IVVV7dR^S^M}|$N!*3sr@1CxTRDa38-8H#Kg)F)b(k*vv3ekzWp@aFcWR;Tb zsSgw!9312IHtIL0AA=NhQO-1u$+P=HO8_TjYfJ2u-3}$jUNUBK9NciVa5onI>x)%@ zL!fXU^BnddzgLW$@tw`1N3ymRhx3d-^A}_Cn8N2&M)b@P^8X!XJtzXi_R~WuTndfYw9mZ)hL`4x71R{S?wXaBK=7js#CK8mXCHgxf$S9SS(V1@fuwi z`=9RE|J8_$#9nVbJs*j9811tSHZ{06n!vK*7mQ199Rm&E3|KM{9`a!Npc_6wXL63@ ziq9CX99NJ(G6?Uw`N;#AMKJg_@M4I<*atV9}R(@($ zR_yUHXwIJBlxuSomzKVJ|9-o|q#Z24Ave7e4zg8QWRt1|^ml7+Rtclyc0*!*99SXu zMYE?S$9sR8Kk#^x%WHktr-4;ZWg{Og&703IGhHdNBZk~R)l6rk5Q=(N^Pyh+T zBE*EWyaZFGE+}7SM4psrl@}1}rJsJ7bNj;!=*Q3fc7$+2!M9*yybplWv$!bDyms82 z;h61s6iQ)x0-(U+G*L$#WlR2{7ro*#R$`jbDD?y2cnWE(ACe_Ze4?x&-Igv)Tse-p zYmKPmPR$!X)TKZF`j-9ulfO3`>9fa=?`{u*&ZkSV9x*ec6G~k$AO~E*o-JHdlqv|g z0t%$w`rE4$iRH~>k=mOfp5!N1Ew_It%A4u!gw)FLv(+5rPvc^dqHYVuF3w&0!9GS5^NtD$( zDSxhWv|Hd-5ihw17hB!U>gSR(Gh?a@o8f}mK4qaO@U-pThyVTja0y$ZITq{`~f_cy6`VcFs_bs_XS)NSlzNgXC5UvKtP zJP4AM&7kfUi#*5a-rI9oB@&t^V#;O7?_(s;usjOnCy#LWjR6S7i7LG%PWa@2<6Yv4r!8NeBIJk0m z_Bi94HADuiMU#WERN$8(!m%siOC@C~L4Igro|H+QVOX_b2Lm1O&wkbv9O{1}w964) zuFr|4s>2wZw}{q168zkg`FPZuZHWR&e8m)M4%*5saJdw0P4?aquiEj*NsqJUvQIjY z&cj~Zi}g63!!7B1sxV9;QucPQ{az$MZeL1#yzJ9wn0`z{J7(rN`tki^UDIj0xB{GU zOQ=KC-^Z3ae!B`1iI;%klie7ZUavPT^Y6OdJ}7KRtf z7}w_0`|E{TwFlYTAWVX`#lTj6P-6M>GU32V(A9`eN*e4Vlvc$s#hv;;1&594;-n4w zHDP8n=v~bQt}%Rd_YQM!hyAdEC@y-jGB@z6N1J9=a2DbbQfzMAi@HnoV%2pe_&&^8 zNLY6F2XO8MVHZPuXD@JRdwcuu;AO*7%jM5mC#R?VcKHJtuY37&q`OE+oO~f>Yeyg@ z!rVnFX9LP3o~q(Ru1L|#n!ze9V2CU;=TTwXb`Oy5V?)JR7>lTGee|KYW3pvlp8$-j z*c3F|`v}14ELg1$0DUf>gHPvK0XJcUQZh*odaL>)`uANo(u+8|PaYui{ifTR&@J=2 zMoCxn9+UkVFAcRpi^L_rrP~hKljw|$u^h$esvlsb#duPoliYQObea$1Qws^W-f!l! zn_zZW?w~@$B0z`iEwxj8{`^_5*(tY~d!zoUQX%& zvzM)k>kj_%14hjmZ-^hB{MIhxj*(*XFX1{(hYo~*21I@J{DCO?!04Ns07!Q{mB1m` zPG{m)^D*j;u-wR$WaAW1EEk}cbBX3ve*|0O2aNaSkU_==6{5LLihoo9*)>a1crs1% z?i-h~pq%u4ioJc4i2&nItfUkaN>P#q-D`CgbA|atl$4Qk-d&LLH@D>sa01#vv)$ix z??oC3-Abr$2h?RPRs3b0$XUZ1a(=(zEenDgX>_AZ!{j$gak@!Z)e7uqszEXbSgK!0 zx)~VFV|Vua`m!4?uu}O>?wW5~+LCQoq&Tg0i5txGWarH}@X^#<&WcgSsxt{bMBBJK z6hRf-yM6*gbVQx_tP110Uqw-R;KW$b$&xzl%)Pf6%X|O+y^OXtso&Wic8omW&v~vT zz`sd@?gHt@RR5Q?<#Qjc*ZA=J%fbxZY&$9iPmYXCFeZDs ze7v}{DoSYHW@*;H*Zw{Nmr?3{(_eU#?>;D(;H}3|#w0k1ebaO=oHZj^fXhJF~;$}bH`rC#gQnIGo^;ax5zC2g*gyRr#gtLnwrziJ=i~%*U=&0?6MaEBO0|pEG+rENlg?#-yJ##w|V4+8lzo< z2xO4?MLVHmkxtoug)kG%MyA?U+ZyZw|H%rbD@b=LD&Dex0`WrhH)^XR}?TP-(Podr#;ck_eKejm*1e1*1@F` zD&u)4b`Rfq`hnp&I}v4}g3ll+y4PC9W~)3rrQjz10qhAF=Os;`uQ#M+D{o|Cm=CFO zA^Q=Z?z69N1qxv{9v-F11LH=@1TfRj*X!(z;x9s|Lu-hiJ{&veElH?=>vRh{s?~p{ zffdQX%#2DWPKeNxM_3%$2+zoVh*PxG#@X`{Kt&DB3fM1sM+lkt!F~Gx+nFqw$nAv7 zQ)ssCNZQ4)YN*YhpdqH$Zmw9`6DO+cf>@J^O2e)Z8XFTSEcF2VHw~Mg&N13}cF{d; zc~jSu-2GkrzNyh(`A{KuLz8g)^HgoMUzZ`>oRdbGk!2=0RW!#gSY zt@(j7kmZidMHWR(7ug)R+OF6^v@2wonXLrx)MzC;9<(>#L!KoQ%w^wWlxQVzFDVun zj%n($-#{4=pn=8xixy!TO)&pn)ZP652hTP zfER&+$po9%lAAja5mDA+j)!U=mqWmOD_pEu&bGbD@kA%h`vGgGVNy@rFGedLdP?rM z7We+rG9<8AnJN_fSMs-@pA6jep2+kWA)Y zYHjiJ7vJ`*{xBEQY6PmwKs?p|qUx)oqI$z_hmxUZ=on%^0YOqp=~h8$kWN9myB)d} z1nCd~X_b_2L?xsqj!d%t!6a4p4QX3jb9(|hj+Li<*D?MFIp@@C+ZbcT3b zbXKCRJ@&&$!A+3rk0Rg#DyLoZei8LiKamIR*^NrG{_X)aZS|nJD^?_5J%Pn=m~qLI zuI!%Wu>OtKqNeyhh{py!+fGeQ7RxXaWp`Z zqh8{4Jnqj+sbjM6#Y>j^%W+FWxlcBIgikH>)nH;9Kr(c#~S?b&ub1V@Me1HwkD!dm2+NJ###H`PZ+- z{TEJ-_Oxo-fmr;)f=SWnO}cZTCI_EMD+CP*5%Q%Oa%!O04e+8#`X&V;QlCog6;nGv zPN^Ddp?oxm95Vm%10eLC*Gz)awWnyxnm2%j9MU-v0NP31LBkRg*^ zj0aD54fkB0sOTTGIzYTXra=+(oUnLq(Nc3nRp>&DI4&VM8X>%!j59?e(8 z+pH`;Kbi>AdX=1>Qhmy5B)i+;)1j-0Vd*qIKkGW3nNUpb^n6DZThOkUpHeHxwH^aP zk6R-vQ%Id5()s~%?_qwp^3dQfoxm!}CJ%25lW3v)RGnZNH1IcY*`QzCwnX zerGEwkf5X_afsUXK%2CaRKqt@AinD06i0Q`PR>QAH{O7XT76>aR5@7w$@ z!X%`{#lU; zXud<^>`!T`AMq)Fx!61d{wmLW<`RZFk1U%pIzb_sz5ai~T%xUe)3I}Y5= z{$UZ`vD7+!UsBe-9=?btI`M;8>D6te!S@gd$G0+7oJz*ah3b{!6ytzN{rSgkAQe7u zv@a^Z+Zi)S058gAb2kR+6Gr`6VZQXHe-*J-SNXc(jh+o)a z-!{G$Fz}#zYHu8$dPtbsP$2U`8$gQPo{}$8GG*cRI46`OQ8(`0MVuXQmKq)0d(VLr za;*>fB#MCmu5T)KGkn>&tUEV8AWSn?D!!g9k)IurDPyMg+8Dz%lcKn367liTABK35 z3YD;qB{}klBIwh?&wbgT3(%RK zLQ42Q)qW8-UhNOVk>AIR`-Umk4>^-;gb|eFSt1b_uU;?ID;;sHxfdWBuy zOo3-4$w12Cn06#719x}dWPL^v_J;MlNH!|r76A8q_?;j#wC|tKx=`h5Jd`fiWUjJh z{QaV$EzVIgsOl5>V-=WBTzYWh=N{D>SFWT&W?s`i*V5&A-bhV+JX+S*MY8VeV)h)z zR~N?X!ltUr_BwA1?R@7w2^zlB;<#GU|9*@ULYBuwB8&|w;x6wIk8fMdeXmZ z0{}N{<-E5beNVTtRX+uulzGQn*#8CD|IW|KavHY@Wn`Fh@rDJ?P75enM-JzNo$biP z7=&!{@=e{w1WS+apjw@LNWLA!v+(6p0R%XVAv>fq#z<-Be#8$FS?J4}sL$RL`?KK@ z%1;$nV|-x<2Ap?!xfS|0yZ1WX*P~uHn)lAv!_@*)No-YlU*o!kf7&B|%5{VDVOSm2 z*>nH;t{%7JijADxc2MtAdStS|%m>0JD)Lk2wah9duQaAC{Xvm;$hBnDc|G$ zBov7EPLnvLKR7P)^I+3B^}3AtweME`qBJk7AU!ykTyL);a0MA0Y;TGs7k09L3<#j zvdqx(i>(w4zIw4b&l(fHy3t^E$P9U(Ke+wkI9#Ue)_}8Wm@OR9=RrDjwk_Lx<{<7f z>q#*6jFwQ#iODOjW7qcXyNucEhNU+vx+jYs02|nwF^46)yB^*yOXYm2E8^p>mghO| zgbFLh=EM7Li({gure^+?s#-7h{M-l93JQ62z(ChCa}DGgthV%T880!MoyB>b&zk_L zMq5=!C(i$CO0Hr>mD27Y%rYD%#N~m4d z!45+)e>7A~T4fAZ&Xv=AjN2_q1js`mstCu^t;PM3UOn_RDG@U5w{m>7EaoJ#9kDe* z^sRUqaF-T~%0q^C1f%*QM}iW^veIV<9H!F zwOk3VoBsgHNEctT|M9NC!bQrs6l)4| z*)vj)%QdE%rzFQWR&*mAcLJ_2VdsY=J(3a(kmPT`vvhWL=G4?s_Vx8CJ$~E{`g>?4 ztqjRPBiNJ7xyt2sHS!dO?te|6q^mlHVbPCA^1QShL-kv{)(`Z+F<}bEW{b1$Zo4Ys zwfk*=aHYA{$9|kJ#6`rn=$UJB!n$pE&VzQVFF!N6c8kfe7Jj~Vh9bFIU5R-9gvhX{ z1+Y?C9XrbE%HWF`kgoo0dz)g^bu4rpvq!w6=FUL^Vk@EF zl3FkMk}ZbzJ6BRTy=dP2RiKoYkLXiw!?+`YZ0V7tdxT%DIR0vtG`JR|9u5HBZO|)5 z?ygmNMkZ4!9gCmOx_eE3q*u(P;gcAmdVVZM?ygGH_*w~%>3H=FR!ao_iL(6Q5tTu z;~9WVqA1Nz(EjbD3#VitiSHRbtvZZ*S5#8cI(Z+rvS}SEW2QbRaTS>E)v@%N*J;du zUGSU|=;XlPj77@30a=09N(Bqz2*ANn^{#=4d09KWi&z>o>10)w@)?htxQh2wbNv8Y z-1(Jwbea#iQ^c!}ftB2+dh{IY`3+R4l%I{tbcgO%a$y{G+;8dUz53O(g`b7Yb)FM7 z3}m8uf8I?{nhs#hnO;Oq{|ORRCIHEM_w^1Q`L0NC#*JO;+i_3G8e;un0i6tUnow+k zKoZ3|JdqmTQc5;S#=m2$O+^;a%a+~S3_Oy^_RqR_*^t6OOJES?@ zF!Pl>lv&Dm3b=}&IP7A`m~y8iV_=B-BJs#RZRd4Pr4)JQJ=v~F4!Hu<^5HcB6yJ7= zuKvqJyB~lH8{J)=br3QNymHsn)O--IeLU^hPJpzpOY6!R9V=qHC&j;_ulx&cHJaA;t}-ojqxjv z5|J}ywkE|T7=x;phI+FfchWEovztNjrb_->FhG3GrOmQB@&L74?ZiNgfoy~B4h~A4 z4dX53wW_0zcTkCrVllr>o2qWE7)`k=8pdjEDBRcjVIX&bNHJf{o0kcS+aa_`iQb5w!+<1Zi$qQw8&VhEK|N6Hn)KVgzBYGbyib(ax555R1QpVx z51Vc#_~h`FQT<(M?(?sOq#)bH!zT`xxS%4GmtTKiN%|!+Qn)Dq%Znr&BVHl~QpT(8 z(%9wj!07mXW=gi=T0}%QRb6);KC6b*y>mU`AKIu7tPjrW6sj44oK+?`rYqw~v@nJW z+rNG(N!dfoy)z27b7Q>*5R#J+2}wPHq!Y3lV!f5x055!`w7K z*gcTH6c5`k5=+O;T1%L7WCwtBH$J=sPA%cjfpjjli)5oTV5$0N+X76N=z1YQl>Eb?y7QRREoY--X&gnYzT@J3i?|IC#4}s=^!p>Saf)* zH;?4i(pmUDL|^IQ7|+ne4|#wP1<5lsE>^mt-m`7Tsok;~7~Ho5MU$|uw)pu5BLdpD zL?3w)m2Ri3XtEd7IXW1J6_@`6-w3o+2_dH!^EUyL*^h3MdWkVO8b&2(dyY&FHu`

yO`c zeZ=C;#ijq{mcYb8yP{L-cV!pDjXKOVhhA-C^KQ?9iuPflK>ICSl}ia0(EI;NE8%gd zO2p7;C8W*W)XO|YQT@2^G3b3m7-txz{iYoWBxNETH-(P4?Jmx57QQLTDk)I8J&n2r zDf)se;^D-F+$Q-ZWBnLkW@%Yh!QK`0ozvPsC)_26M#Y7I;{Wwc)-B>e9BHk>`lZX+ z8m2_0*817X^{pJjF)0cJbR$r)dEZZ#;O)YEwSj5k(DFeLD7BMalnT_@e-mxl;fIoo zW|HQba(ws~G;(^D+W?RxGG6kU8fY{M`=38h*U;Dp{d?v+cW_Q-J+r}4ix^kiSBwbc zJyZ%U*KtfL*9$I^!V%-kt)wBW)Z82jxSZ%7_*=L%VEH-U5*P-5lmJgjm zmW4AW41(HUQK=cKkT=u~?y;9`f> z|E9rXCu%_QW=1~+*;xV#i!p>Qan@S#DNAP$J-U;^_e?Ufjyn^`wpLUfB}*=jTT#i< zkfTlmuBh28mM3cGbAK-&-^VgU{`^&#dsXMGgb;=tFbUvm+x7euYDQJny?)+|wR;nE zNim%}YyaxU$-Lwx27Px*tF8fIvUYTxkvL6(d4=_W zk%h!16Y04SSCH26n+Sf<%D=IJ$eR?qLwzUx^z51yF~rk~$2IpL*m=1w^5H(Db;YU8<_pVvKdxg(r{yx8 zI2Jw;C>Ab(Rc;%|@qzBg@Gl-lhwsh^1MYE(<`9^N&BrH|KEKwK=tQx^aVr^_pF&^K z1H#^u(D^$q$)u()i=j`RSi+z1W>9jH+Xy5{r|j;$!NpCSwy<^LVObr@6pfu6hhJ}v}58S}X_ zU2vUA41ES>e0onI<8OkGkVCz@*@=n4nGZdUj`s_mq~z&T7|k^hB8BW-+lWhN&neK8 zZ;C+FDSOshh2CZ2P2#teh>ba-3yD*h))~&8aAt~soB=(gaB^(5ixI+(iIt-g(>>SX zkE>r+RfRlqeA$k<`04Ak*z}!E6ABn(5Lm-t=|0>;^=7NW=ImAl@(XSZ3rV}4EOOCi7T58UlM0a z;1Bt+na0XNXt+xq&XQfxS}qwFTNgkRv7QtHG34DYYU}Q>a`w}Z@QK^;yK)?RtnSN} zr=iUu7|=*oU2x0o+hcj%M&jyV?mDp-7LMGC$KCuf=^0Mom0^v71k@0ZKQoczM!rNn z@r>bW~3F!G`f5bY&8MZBwquBv1LQ?Koc+I zffzH3K&9Sns;~e&(5sHcEqBhAHQ@8-pe8-YIR^)%>xUVi+2qs-eBPD%Jf5}yvyG&h)6{ z0o9i>D`&LWdg^xYk@mVeX2_jjvrVfDJVx zmeLV-#3}Jgj=QH*=dIL-!z*X|G8G`>1<#YVu;`fU+xoF+Z<|)cE5}BGsU&Tn^kv~- zBTqIbnpm3Zthie|NXAVA$Hdy&`t!{&m_$0Rs-wP4pxHgnHjJ#?Uc{iIhISc7HCrg1O$yN?^T-Zxh6V* zx|sdy*^_;J$QDB_?c3&;*uT;`e8h+ZYGn$u$jd;`<9f@t*tkhf$Gh|KEBz@Q0EdE>%ZmHg@=SS|xVdSQA>w)~nvzTA z9SO%j3|Oq|nd%E+$UbSkb`SAPFCIX~P; z@fYLZz#knQooi5zR=Q1!9tbPOGspwL06>`i0~yf?+DTcjkNO@o9*yY_+Em9n0#2ZP zYT5&;0axAT9nRE}C_vfh0yHf}pi$j!S!=oycun$_V2y8alq&bhV>9|bN9wq&Fy*^5 zj~=alPB-PCIBx$QW@)#X^%hK=ihgaV8W{yl_QW%YN1dK}IU3%Q>afX|W3FG-2g+!m z?+mc6=-U7sIa=8~RnVRmU{PJVN>lCuqM|~6)qYuB-9*V*-w#*OozsAo`P?xDv+YJ) zWPuijj9>T9_NLR7&qA=V3P}ZVKgn2oJ6W?-B2#w3T;D=XAdM9D*D2v~=zLnY?G>Lx z%aw=N$&Bmi*;+Odzt4PG~@YW;E{?-*I1c;)r%jr zBcr1N9(~vA`SF!6f3f;q9gXXLu^ysm(JoMzE>QOtxWCT;h_5ZBH_*O!WJ6Z#Qvb|z z$@y!Q>8uWrC^nyY-KA<{t<_RCxw)A`Xn&>|S!2P@&+PJ)8X)p4N5)yi^iFy7&^_3* z)pXrT6AV%^vc-L`gv3M)pd0@1PaW2ixA*qPEFqA@#Kc(oZxvlO)tIf8C9*)X64B!= zK=zVu`X^&&*VPv9>YO4R!O#W#9YB12ds69rRv6Jsi^6!*DK2UBUAe$gl?{3UiKy<5 zN`NjN2bA6wU=ox*jaCAvhvdh1Brdk^Hy#c@>Fw(a2HwBIsA&+Gg`;6!7tr1YgaOqV z*8y>_je?XM?UMaTtL(+gv%jeiUXp$`_}yJ9*+A(|^_O?03eadbkS?*@3)8bZ-CzOS ziU>R&Zpy$!9+Gi3q}U$I=0D+?cLB?*!y9xKp$?>OIl3J^B$4AN)B0GT6uyg9!2FsnCDOCKD$G1)D(&w)H) z5|@f7ud^Jcdgq@USPzC40q$AL|2YL1?at-v8ZAl59IYrSk@1dR0l0l#W_p~j zs#VTdORP^7vXSpV4|d*p(k=l9>bskke*il_+WIcq?H+0R@YVRYONZHp#U94M#_eUv z%RMZh#oy>ovxGawU=aMR(LeQIfl(Y0K2OKA81l2K~ ziFp;CT3@?A=x&lowMKIW@id<@zxbXS{Ml;2?00V>BnUt+7l0(6Rn1L&M0C$`_opA( z(#1n&!?Mq!mng`Qzo(9q5b}LdD-pD!gzuICbW^r`(e8||hzvDr)Nf!JEGU}l9#g`< zz6FP~Trvcq@z!@WK9~Tox)<=L=x$-rsEyn19DTZwV|S%#2l@i??P`4P8D2=3@!v9O z72d>9h?sCjgvaU!1|2QQ$9Ov+F~79W)yhNkUs9Z_P@eu3;MtxoslIcovy&hY1dtU$ z-Z!i&dDlMgyKHP9SNSYkDbb^|-oqDwbm{U2@HZy*{z~TVOwli=h_S7+*&Rq84|7

(*!-KwiLYb4KvrPye%n2Hacl)0`jgY?VEMGkz*C zVS60!*n`5&4il9_^Cf??0%B4b?pWUO9+FUh4-#T-4p?4Xts;hiE>Y`M%u^C3C_TYt z!tppGRaoIv9D>2afcYGFj;QEpo(nIKxr1gQ=nlddfvSo2?gfojXb-<=(U%urcc%vLu zduAA?06=K6KA5ZY^eNg&LLk7xW!>B!G+!O-I~s;XjC|0T1V|++GAe-fk97(R#zT&G zdyAdA|7tO?}km&}R7`fUde1X?~==2FcR5*>96kR`*cm$G!Pev5Si<1<`)L_AwwLg5sw=+2B zb89*`nYjEa=UNhNkUec79mE|04Cp}EFvJl)N{B~Zu64&{X^jXZc&s!m4%tthQKBNq0kZCs=N&?}IP-~o5+wWMx~3(i z{(UhLrQ0C^G37iJ3Q8H3I_X&7YGpZJ|7WGHYd=jv9)b=ia?BV5e^svey#Mu;B7*9h zDf`F$gHRIrLyn!Q=$I+gtL@l%o-HY3Vn)i^*odwE&dISYkH+Sp>o5A>qkD=w{9_mZs>Haqax5dsIs3HL_dkvxV(JbnpN?b z#tS66NmOMoqF;HwHWy=%q*dXKpRy# zELCjJXhn{+rn*1{8qy4!y*n z*Sjw(BO;(l$;r9qJ#pycB`qBcdIs20Ya*AQuJoN8*glATqE-*~OkzVBOqRP|sMUA~ zn03d%P7{u_9r{jD27w$UxXTO!f~GK}ih1*g5z>T!am6KI`GC3{ zPW`_*(x8tT*?C?R4J*YCC-BAML;iLFDk8srt`rSO zh9*7}4{LQY-K}DtTl+ML)WZAf#HTaDblV8{&dxC`*q#ex>pTGg+4Xk`7xOVj!|18# zLf(G_WmP~oguXc9cp^Xk)?Z14@2H!tI7d(2sFF%{j9z4r|;wfI3{(|Jt6u?85ef-fX8e$vN-CyKL79mdR?0Laly8NYD6gDOwT_W^I;;IzrI%VQxK&@5GK zNy<>g+lUVm$C$q#n@TFdWYRuz@^r7RWFwhvd2cDxb^vK@>YvNOava-vp{~A66sJb6 z@zYrE3?>5Ob$~WOJu?vFSV@-*XXd4T!w{h7R$&L-w-W0yU9QPCmC%V$dnSqDZq2@> zBo}ngM_hBLeNNx1yhz%qv@-oQ9fxw>76ufkz?HW;++SX+-bFUJvfheg^t|F>LP5g{ z%5TvHTtnM3`FR(+x(=6O4U&t$5N=|do;V34g5kE4+77}8PSUPa zYHykpPzZQEKjGp7BE5ajDQ>m`np%#KQMxZu`l8hMm@mn6G4*saI^o+!Zl*zYnI?(h zV<2EQZgEc#=@L`vsG*Z2?9|^$2&C9z816tp-IR9KZ&G}>BdI4V+yL3E!;d;Gp+9@5 zR<)tisgf2V@v2y!?4?A?PzWTmQnB>iw@o-h;r|@9h-c*U8$KM6s|)~k{}h`I<^!RT zBw~*)LZNWH+WyF+k{g`4jZTo|1Ll}Q8o6(^?ZCy`;%DdkhZ zgEH5ShWC&82TeGBS5hWAp}A=vy4YR9KWpc*|-Y>G3mQX zf{`aEBPC-%a}KbvdP)5Ak8W6^E2EV4y&sr&6^j=+T6jqYU5s7%=q8slUGlRPg|74I@DgmlKoWjsa#ScGSPy3Y6dXw+3!d z<-Q~_fr}z)<-)KI+=qOYB3QUH$9s=NgVVgKaWMAcPG84smY!R`&O0?mvpD~ z(a`W%vJ~r)<)Atyz}I+(2XJ1%l#BB^BRAgs&v#kdVV8*d`&HX)q%k}D@$X^6oRM}(JS9E%r zd(j)5xtN2v`(oh~51U^B<>Mqps$b1W8L%|LYj5jAV29E3;Hm*h0@Vy!`Y>79F0@>4&g> z6THRm%*xA7TiI&^hvQl)eF=!7VTOu7oKm%uvG`O8J_?LP-!RR|>g5?>xQS+_3fNMj zt8Y+KEq#(a@e)H9+-7EGl~w~l4<%*!&)3~BncP+|?CE22-qH=UqqiBz?)(ihkz!)t z;$bdC(@*WBN8{`xvIVi4&QHM4PHDjSotff#D!!@{6(L8D-ps)P>i>)$o-XQnz$@{@stmn^^Q6Eq>-I1lfc=cjYzcI*uiJ6IQszB|Am{q zd?eZPrmnB+%;2+qj{nR?gMt((dLHOY-yKUA9?swcWqXz-2NLb_Q+MKUEaLF|eg8Lo zBb(3lzb#gpZGbj!))>|+Rv_sGE*EE1-m1#?#HLP}6?Ob48jq(%DwNR_BzaLmr|iHw zBG-hK-nUB{sHrVUg(&$#FeQv2+5kdu_Zsq`*;q}@d9=cJtE`q*hbpvJRVOl;?m9B5 z^zOR2@EdeWp=oN;ULP)*@&Pf|*|V+1u>w`HwV|JVu21LldXk1_m=9$896GKVMY3EVEJj z-jIP}n;9lHkPk@J+ShA0m7D3FOd7Z*;0E&Av|)k&m9C=L%2kQ81YSe=j?X$NY8G>q zl&{vFbOwK+J(PgYajwxe;Hiy`&F5wvWo1HQgz(^Rb1(#q4fGJ;NXF;Dh%?sn^`eL= z2u(d$|EpSr@(+oI1rAnD)iQv~%8iTe33~Vfc{>hYg4uvOpJuZXhRzSvsz_+)-=Iya z_7_pTOk)=#Q!6GfKR;=rkxeA8(}EP*C;+!IBFbjsFS=0%*1<8c$clBOi~M|Li4NjY zulh*DxuVDnP^TPOYifpWl)fGn!6kF3N{K64Vt4jVU(SeAFqg;3qPqN;Ts46z3T|&! zu`l9{Y`|p#A69uMDk@4v{2 zg)5Ukw2)@bD$Sl>tGFtW~OGN6Rv( zGO!2pn>rFlCRK;=>d46w@h zJ?gNT7o~Q6Dn*|i6zn+{wxDb3n8Ehj=Vx-ZRCtWrza#EF22U%<>kKZHXqPPZ@2ntyOTJ~%qYq*6Jg$9S<@CrYzRwr3AVW(L_L*kF zjSdI-`0rUDPhR>=t8?MY6Z%VcZ{&&M?(giuRw1*1^xTU=bv1PmRUeX$8BB(Ps9Yp zvyOv|TSlFJD?}5*-vOE{J7*Xk8eAX5jxjA<&Ywv~2wizp^YHTFJ@*`t-V$6C#+k)_6xdOIxGL~KD9F@0v>(RgLy%I&!oam+`0Fz=#s+=9r8=U7A;a>dB;sh5$j0nHt@tdK21&=^!-1!mA8|oIB`@ z^44YlcTF|L^j$qp4&(TMziw)s{}M%x6v{WPu7LP@R)qG9RZa=*SEn!)?2w}jy3IXh z;MA=kO1_KY%vFH}5Tr(t;*yev&X?@@tS5eowfjCx=-(!-9AE(lmz~|E6rl=|UAyTP z;ty{`pvq6XbG*MyDfR*k)l+i)*o@?h95QJFYS$*k!+%ALK0TN~R4vatJ+wzVDxe}d z`zjKKwD~k;Rf{Zj3UTG?+z+qiLpzOGEc9xF7WOQ9sz_#+E0zxy^!XqvlS=!(fxaXT?~1X%7;pFDph`>f zpnh-zzSF<=>NnEEnLPy3tRP(dv*nu31+srPrOBaV{|GHl))y~9QlNKPh=RUU0R^wl zqS46qG**0vbcsLe3#OH!_{d_rgy9x%TJ9L$MG`-Rz2AfR2d)nUQxoDt)Z=_=IjsW; z>WjY@qPa=uiw%8A1W-~nyT$~|#c#key^aOn-7r@5Q{N;goHI8YQxJ61pOAYb;y?Hj zM3Z*+`ky;60_wT@f2U4hSyMzH{DO6V2cSg>c(opK@(2krj#_##I&*afM9D#$+&^G056Sg!TSMvN1nGyGGgXl zoukEqazGCiR79%P{&bjTW_(MLII3GfZVJAn^HV2VPU=ggehDO~ei+lxjTdAicMkP8 zxWIQI`lJ_g>V0&BbnkULL=2+$+F}E0g5AJu)W^(+Igg&Uty^WGICM`*wgF{M(UQxD za0l#saDQ%73XLScPP$i>q3uA-0df4-;2LWThr2S$S=(WP$_R=%;5^~sNA~e#TS3*w zH^%VtUJ~v61gC6-?j)xzoSgHLiwb1(tW?JVCTM_U0fkfxnl60SK*IOpngtpegTBS9 z!tuD1;X*m9tr94=pRILwqH|RVS~9Va*R7Vkvh=K%9TaA|&p%U_4u+jQo&5b!@(~>` z?V)b%5ogRr$1)V3?3$B9MvrXG*?jA|x=7p)*6>H1cX0*uRsGCeA0V6M)-T4yo>E!h zn^s(7NcqR&98Ic3Do>CB|M9XFHyatdA` zsOWWrk$QN}Inogi!}zQ{E=7a9T>VDrPal$p3WUg6P2dU5Vje%kkZzw>l#ZwcOnAG= zdc^8494MnO^o>y5L^OPC&pib8x|K*Mb+RM8Z;P_tv{iEdubgNqN^e2W8`d3u| zz+ocoip|Zy$J+pzXdvGPA`V3b6rxZJ5Z4n413nJp=Iu~`L(o|e1DPb z32*mi+$S(CE(Yp~GSHVS;2oE&2r2GN)NCm3iG^c$&fGFoC;j(^t`89j9HH}{<3Kv> zXWf{V`tOa3?luL{rw5?qaywh=Yguk{1NA!@CC;k#lAI_YleOGn=Y9kw)B;^gL%=4% zXKc74K>yyrG_d+Z{aUH=A(K7-zc6z8E+8KIKKUIdCmeQU{c3P*^j@W11^X)RQ9>{c}%bdNVvc@XWLE75x9KT4pNM5UA9twL4-g7e5T+-U*d7%x@kG8FZTGc;~lOi0pg@ zU^qMVlSNbYSZVKX#{{fCDhdgm*NKJ=i)NgQVs}9UN9Rk0WQF8TRdQrEJ!GXh!S3^1 zuybfS&QazlYZm(WNzX*rfK)L&V4g=tX$$DI_R2ZoPn6b1y~q1P_q@r!Lm_v4PKVgLWQo=!5kZfma==gHir@s38T!v+&>) zKsR{|%T~>Ioyl$1*QC84)aH0CuOyJ~cZ7eu=zZ1Y$|gm~!nS2I1C8D*qnZRyml@L` zg-rjXJZ$k)4OBa?A}g8*--QJDgOhn*XH$L%OI4XO`GcsCTW<4_S$dW<6b@vegSozH zw|ep8E?(i93~yCPalEODlZV19{|eMYBPat%q*A(WX(b3pab)3I@Gn+q)?kB+f+qAk zbiAeSR|^znT*SgP1-~f6@wbfo5S1`yT2U%r`<(&(c;$`5bBchxYMQ)qN%D_7n^s9^ zI3Ez~fD#g-{@^$LL?bXnTvwU+_~16xv|#Ap{dKo_`dAw8C2RO7$as?8#-Q=K!*+4sM6rADT5xl;ZmZ<@Cl~3UcX^}te1Y5>U>cjju5=Qx*}JHS-49?J zm6Vk`v&4P(dL*ymAWx4MJAl6GL>as*n?sdNO15e1h4kij@Le|7=S@(nK;aBJWq1IN z1ma4+y>Lj}T|D%KbZnwT2Ty9|A{zcx!Wa;Aa!zq`38bCu4+3m#IM8(}fRzBfQ|vaI z(vG)WlI>~*iX(f8)cdVXnx}9X2hdGQPzntkZ_TTf8aD((I=b%G$OeN3=J|`r@($|< z%=eT})6F9t?~iMnZ>=&e@YBEr%*fA)`z+`qVM|!TBy4F^i7%RP8mJeaVepOX!8Xmo zNs;7)oNQ0N0wOJNKyhzcT@yhN3nSvXPgGbnY!z7o+QGW}?H`h@=AT(yf8IkCoM~Hm z%Ru#O8uZvfIYKj zh`X4hfnS$1VBS%(f6R}Z0}$Z08Wl+ZJteGL7F>V*8cZcor%cgC@j>j)Gb>BNPswp- zLWq155p)BhVdHq^5FmN-{}2`SlOOxQ2$9!jg#B_qKCtukohRiNXJBDkx5hK^QM9BD zfB=|9mp_6+Mv{zL<5VPN@>IR4y{Jq8E#l4fur?hFI_4+GPgT+F4NzZ5b=M@ z(8NTeivZ9l=mek}X8>VZh!vW%9z!oCFVbv2VNCy$X}Crr)#6U@o0jO-yby`>5a74N zWiEr7K2iF2TL8HrLx*qz{sQ5rW3)B~(D=QkG$|(>lPBa96uE%QBQGz%=OrfWu}uwO z5*MeJmX_}Q@uLfT7N5h6Fj{2>$N@kgy%zixl}kNind0Q+B(;Q}@LO)f zsE;2x(C7LT^m=F|d4OUISVCvLRo58~B4O$Ei6mGu+ZoYACFLL5{Tl@vo|-w*W`6~0 zx924`aB{B842X$fJ)HdBrprbYs^#K<7On2HCl)w4y|>tb0jX#__(pM)5hb~#0(v%_ zEq-)E`8{SM9VZ(5icr(Xg!U$4VI6tTF|a%LJ*U(`Es1CPW2Mr3MaPlFW5(;SZxif3 zMs~&n4vEsr(u9uHSbE}6Tm!Na2={`K-j16Y`jtK-)Q7nWKT)vmds1_}*D3eWQ|~-znn|F}>3Htzuqbq!PaV(2fb@OfXE>0tSqsrF9JJG5y?V_%$`? zq0y(AIG28`AxG~dN$A<>{^&R-EjMOzNGAf8uF60$AO@vBWiN>D0>$6x>5VX%JD2-5 zAcUaK7sz4g&(TBut*ZhvZP=J3*;NlAK&ruHXhk?c3igESXJc`5cgP@gk?Nxm&^DDx zi~Q?VdGIxm>5C4dMI2opxK`AIMf7vjK5bGIA;B%yM686@k4=?|v}#AwX-9u0BK3}U zEVm_HvILqHqW~;5RX)pWvh)w=`d%`yMza0|y+QR&mo-|yuPcXb}fk1w0 zez)0CGGd7%&47ggZroUBt%9JR0|0)0D}ZQj~oJz(Cz(AC*d(5>5x-lRjvDFdK- zqI>l>eDI5HcD%o!?y(?zc|0Vm4b;GMiNTiRVF_a7NpewW*af=bJVAa=M=fU*Is z2bZCzikH4$2n0rMR2KeB!W5z?B~9c)(n%z1RTIYCm5M$QBMAh zfZA4z{sHq{h4lp2P)pz{z+@V0zP?+) z*h$YOc2Hk@e*=o|dH!ISOnHyx0~RJtgnV-K&#(n2=WUGA5@+Ot7+@%Jju(CQMdFo= z=Gpqt;u%k&V^W#Rc->>ZzX+bRhdk(nRUPr%5w&}5fx7IDyUZ+_`%Hj-?YodDG<5>d zSC!<{RpF+&fdZXt|5C%9N$RibG`&fW(G#~$TOf>}Di0L(tSM_d@aomYcv`zYee}r( zsicJc_@sZ)%qP5MN=dBxsDJOrr?Z(GMfr@RHOJa{`^NR*Yyu~ErCgGSp>V{3@woZ+ zk`)ul-faFQIFIhR=j6i=(d!@Xp{ow&E;UG+ZQ0=29>N6pi=})IDtd*psZpS3NW(s2 zgZ?(}wSK%Wdq9N!g*`lQ9l`(o(6s!iv<39v1p z_S_0G6|@^mNPG<>fIp9*Lwbk#0wfLWLyyVL!@k4$)_gm!Fc+T~-4T<~OYT_>l3|Ja zilA)55lvLa7^3x%eF}^{;+2|lT&!eZ%+LS`hY`XI7U1p}rrG6$Cf*`@y|18qle)HuxFlFU_(OaV}uZczds>*Rp36x>J*3F>9v21 z!KpB2N9PbRc;*go3m%hbX@Zu$L~(g{Y$bI54+DCGwm@_)<<|8Tw}RLi`vdsW1XKkI zGK3+W$Pc(oYsXR?6wmt99GzsTII>1Z>5y4Bw5ZFtQQh$B`D^+PM&qEIBKChbQpFHB z>u};7^mElOg9pQxgiA3YXm#lkXd0}oYLu>OHNC}jf`tT$Ui1U}`%BljC_U_+$mO5m z1>b^l*!SIDEO=+RqqG&#diGxn7)n|KaAg?-Ajo}Z^z(r$}my zuh$V+yIhy4fca61Ba7)2p*5NRMT7(rWk9fdEcF4_Q><6JC@dNcGJA9?sES?$hF(@3 z_UlF0N1l0wnWUHNqb+P`m)ssR;h>gwM7f^VHH0;2U>p3ir!WY#2T2p1Chc{PMyDe( zg=v~_kI~}^AX+~*E(>SQQcE#Q!&Emm59a<}``@eKfW)kO242nZkiq}f5jrRx-0aNy z8faQxL%AMM z4Qg1u*4DUBR7&`WFd4#QIHD?-5bcs}`XXzdap!4OLJW)3DsT45mOw?yn%EjbVomKu zvxL=8S0$Hf01-V(7(fK2iE?dcuJBbDsmRmMG&Nj9O~xfew=i{&Ef@dLyN+gN|aCLM^OF`g<5UD>&8SuQ^2%8v1>3% z8_8Z&F~XT!BujrWc?AS078e(toScHv)2Hcc%ZiGET3RH@@o~WHX!P!xsK%QQ z@ab%S1p1FknnLmN4B0EAaR1$A{CG8_myYZ~ou5A( z;MuNE=7Y8tF7^jU9{sydO1GLY@C*F1G)h|BX-|&cj(1++hx(n58+_u1s5t+b5kZ4` zC+c0Wk?AO4t$2m^+p6z_9!Lm zmO}oJ$Y-MI-WJb#IG0F}lqa!2x_kKR#>w8_Fzka{#`nmkYbH@EV_kF+L_xt@Cg7*gp z2Q|Fa?BC{kz<>cfF?CN-cEL*sk^5_w%s!Dar4?Z#W9m|oZ zca7m+?0^1?Bx}GhrHZ z;ajVT>iRDd+D>m=EpcjNp%=2LjmY~GOCm+G-OME(+*I{H9KgIvvf`7v#)-uaeR6wa zI@~#X(0QbL?K;C5eBP_x#y+Ey_Y2=1hWTe`7avwZH~dQS-qo^R$)iIeSabugmTpoqn|!R z!3|sUx+_B`KT`cggNYO!x^Vs zDwg=N`V&n!X(UhAIYXT^ywuQEoOx9?oi2rg-CFXz^`VT=ijNoE9_N5VjBVYtKL>r* zJ{>ZPq6zU{8sjV_zY1@?&CXshQ=5+BVbVP=+MS)>Cdy{2wofV4ut| zsXw0Ik7SG#;NO_r5s%?0CpFf&CF?bB7|ONk4t0k_JRp(O)8PC$!nc49YIFIE&x&7y zdg~Qm|H{l$jBpdYPB#3Z?QBquZ;v`u@}tLyQ%`RpucCnImB6BTo4j@S^+OpU?RXY# z#Amf6^P?=wr$^&jL9}kXyduWSU1@K4rn1W8nA!I0zSs?;y77f}gKPb(B3FPqS3pgm zT2T?@#c%glOWVJ(*fLJoW{hbAvgU^!Oy_btgQJC6+$XO-4_oNt#r56$cj zSQtLOZ{NN%{I_6&zD&)(RNOQ+wpX<7MCD3-t1agmXTZC%JA zS=r^(?7o8~OCOpej{c=sdsxRl8A*%u_cUlqwb zj*Vp`c67JY|Lbyi?S0Oj86X3#)z=<~f{$x14i4h^Z%J1zp%YrNjnLjPRLNA=&=#K3zLFfnSwpRrQS)V-ac7lYN*`HF5{*{CjvPVO*4DU`T-iW>xx0te-C=l61re8&Y=Z4%VtgC{b(OK5#h~8u zK4D5tB1$Pe=JFvjCFQWKt*v~>iYqk0&&^qt`G7(Xz#*GPM+Fua7fE;TCaNcTx+?LY zU22Bg)S$?htR8>*t=}{Qsu2pJwC~``oy}EU7}pz{Lh>i+&(F`N_r4AC9vm7HQc~hn zQ&TfHP&~k>EtT8v&d$$|GGuD{*S>zW1(5yrf;Umu!9mEf*e*w0_h_vD=UkvfSUkdgFF`#>Jrbu$VdT>)l@NY zM+#&^M6W5uz7AdYYI*-&2r46}Iwib68#i}MS(##9Zu$9yi)W3DIEspjjuPGiQ2@#{ zRq@Os91UdeXcqp1XP=qF_h_#2`aRR#^#1*6SEV%LbFM>PqqPzU3FRGE71h+(AZ);z zN|sM`_HcJUcp`L-)4O4(0%pXI-W=V@`mIF{aImM2RP~>^M}C0A!_9pHoPP7R5>+7~ zA;+OI=T_%BJGt%c?G{jJ7dhw56OWjudyUmIv$C@0Ia$3yF$LU;`+y@XUla@S!4Q{V zl%nTctTj)ZVCUqFf;#Dwq9PW!g_kQlZ`c&JLfz?EJigR8>tx*Iq@#H9S}c;Hg^FBKQ$6GcKg27jbIsHVi{D#fI0oxNRWiet4fArX-tek;DM{@jTq)Pxev83e$_iUP0O8) zGGRj8nI06kJzzuq+wo<(baIN@LE!s2EXh+RBVaN3`k zlmx=2Pg%~$7RJx1c;MWxG6RtVrJ2O*LeUm-K zpFf*BUA}~Ozv|-Rf)d+azIt^N_8(+ij<~@H!124VLPSJF0(5M;9NZgrUZ@Ia2ABBO z!F~hqb+Zc>$Pd_MK96jNcJ=glQAkCg%?EnihkyL|!T;#<^4EpXQQ%LarN^k~Xs4fl z7xHHqM}RuFy_1tuSn=L{_;l;qrPs(jHKZyN3kxG&ZBo+GEq^Fe>>M1o$YgS$M$t33 zj}eTFjJioF>=ar#=1nQS+7RE~eg0T# zmUz>ySfwYr|3CQsQHNjSjp%+-60s8k zOPdCT>6AHl;npL6#dBgX`(d_%Jkt>gi370x4ptC&Wv|xXgR=Bl{*R8;RaGc(2nF72 zYa`S&G^GyB`w{JcfHy5aq=8^wmnNg3rbdMTe~OMsBuZdAbYMWR(Sukm>C)BkLn_{* zN);UrV9^M3Na*O%{f&){^k6~3>s@=Jrbhikme$odS3=UJGH%XRK|z69J9ePdsV$04 zM?_4la#(o*E{> zlaKZZ48*XWSV>R~_?|#6mCm%xKLnFhr_hoS)~JH-q@EeN8Aw}KhixdnxS?>$#>OUp zDM*^zrV^Ikr~FHD4jvv-IyyQnz>1Z)CXyr`#rEVFqcIx05;1af9PI4u*4&s#;NEWEM5I_e1@BdD91!fFHy`=fstJQwA47Z#9i0fdn{uJwXdU_af zWo1mI*GLnX0LV?%Kv;kH@Zr0zE~6TIJ+i3Jz68=s4iGC%tt*a;V-5=o>n-HnTQb&L zN54l$ClG}dAP81fS2yD#Ht@H}6Xc$h5W_N{i%i8!uK#w?-29&F6A+*Wi)JO{#J?gcGz3sCTHIE_mA4pJrh}E2ob!~0=&?-Kx9PPXdjxb_~jxP%f-$RaXW@~$I zXKP(pPL34~ppEtj!lxO`28_p+hY}V(GatC&RUlv65oI`PZCVH-Wm)hJHG1es63c!1bf2iGC_O8yH|2M1Y^;KFC+9t$ z;|!>wDx7ggug~(=ZZCIrR~VU?MCaxT8)s_9pd@j$F9MwKFY`Z7$6_X+Wg#vhp-`mZ zGmd}j@^{Jj>fwVgAx27VMpzgAa|%hIqx1`w7$TM7|| zGU#-lJH^S-u>~}*(+K_>%g$8VKp@wL+S{v(`Ff_N3GfJ73Ce_Fk&KLtD7)grI`j&G z^HwlRzq_g?{fw(64y2AUfisSt>|UmeFF4|4!oJnX1Cy1F!ws@-7~9G%(N`-&<` z!`^sX$H8_T^t{1T83S}7-G3TUP@E%FWWk(;C~+=UQYl4n@+H!lh+qzS_KrJm-)cZ^S97AcN zKy%PN6ISE=*J=*9zv7Spz)MR#24q2*WF~(0AI(O9d80;5lx~%=aWEY@Vfxq5#?5`~Lh(6acrQC}VVcgJcY>vgw|c?Tn5d29prTXh7po0OHz0 zpe;6$1)(RJ!PQVZY#! z`=Jl?Z}5shDY7s*J=s(v1hTGJ}X4w5Q2vmI8mKA32IQ-vpr4aXv-jF-%{f=>SPeA=3{+B72n2$mq$sNefxw1BATaC5h~N{xiRItmhmeOO)9|AlVg4vQj#JxrZy>e(AQ0{HLDFwwv+^@V>sjwe3=! zrAsb_ummi3%|YEOUF|E!E-hcYOA(aa(Fm9GEVyDAdD7g2KAt4MwAZGdr@s0B6qJ=wOC~GL$BSW4QPbbQr)6VH^hSSPZwlhik7DuD z)64F;G(#Cj5UzNz*&WK}(xr5=)Ptb{ zjiuGTK*+b@GF#~ytuIMht}B5j7Nbw%W5V)cn%H%h>L;66PpvuL=>Y^ce1Z*!L>>2M z1>d`>`;Uj}%)TEurdP^!Bh>cXIGblkt0Gur@sOl#co|{mr}PS=(&!(4s!v|OlM9ir zEsUViKRZXuJAFk$5fM5Er|N}&z;sE^O_DB*aX^fr_#4*_{r=u8S&hH%0LPM(spdMU z=F-k6z777YHsk^A!-o$Vl{0&5-4Z@Wi{FHCEqg2!`|9D442P(He=gTCD)~nqi?J3m zB8-ZHhgyt68K2>ufLP-2;@*YhfY@Y;SjTM%AE>exG3peA#Dr;WqFnH-Yf7BXQ znpDN?>LtYiqEPXCtiY?|Z{X>F%o#J3xomzAJFRs+6rF5c23R&MkanaDQ>Tqm$KAhe z!1Lg1G@^SajL|bl)oo1?>89qG5VkgG2t!;NJ@jMlL_0$YC3CD_7!eQ09HOVMPe+VS z%f(gSdw_?Br)g#uJaOf}o9Ao6{o#*!IfBY-O{ONd_Ul_3+2IV*Id5`u-CYYdi6LRs zjjUPxF;kd%<^06^h8JMf1^g8ojb9ChENC~;dK|fYk4>g$XJ@-}#RA`Z)8k6Z%iw;l z+<#(5QOAvipBfZ}VyrzPg-cd0{N79_Weax^0B%sODt}$A_G}7;iuJ~`%M<>lper?+u&sPr#hm|g_wun;83TSpM#3Vj_Y-5S{Fe?GS{^eBS?8(*2@ zaWn%3n%qryhm6J7;oY;n!t!tqX{2gs=B%O0rTAv9bt6=an`n}yTCuC0fpmBa9x$d#^eRUl>Bn09Z_F?^RJuJ5P-v_^m_>@JPMzB^Y%gf7s(s9 z`FqtzL10PPo+`tJ(-Fq}_3s?r1An)M{tn=&_w0LF4JMFO72_a!InZ^Ob-5Jbcr?-D zGJi@6#y;qNY+YzhQ1nY>!AJJH*>7jmucYyN`=2TQY}9P;t|3D%5J{ZIG$73}O4Po~ z?ns|Mf97;u6;02~ELKRSG-z^|K_HS*{7#*!2#JLcr#6{_I7|EC5ahvYS2{VFeubC$ zw9+GtxslLk7rtZ_wt+j8hg`tDuc7;Wj?JP|6H}xb67^GCT`aPwh}N&u>~Oga@8NDr zW$e95Wula`^SAA_6zrd>$G$wD)s7=8XZygZC-l7zUs5qAO4R&taq6ZA`IBvrQ1=Z# z6ng)DA|;{t4zmvUxObZJn=D=jVUMoInC5ULI1rMyf;ot=DCUWoy7FS89nLUhZyI40 z6}9&%^VNu?6bEAB)uS1NaYXcLL9n@%SnD9(=VEZDkTsnyUbi9B>N8_s2s|V%Ra(wo z4lVro^zxv#mV8Sx?f~S5oHRlUc}BzEQ{b z(5k=!QHn1~VZ}k`f4~)?8Ixnzr}q4%Q+0Q1J*$b#$UA8FxC5iGzp>*)PVUN!NRaFE z2ToBjEp;UQ^zK^t{?+g$@yAs(j|{?g5B@Jn(t-ukb~qQOeB08NlUrUm=3DDM3loOb zni%bgsFKpz3B4&X*`(QJ%Cz4x`j5XYbRMkl9ui5|2aBq~DNVI()Q~i)Fh`8{k0+%J zmVY7u-+0%XlCXt@^(9G4QIR>_q2!7zIoDO<4Mk)MT6wX`sqqa9gfBNSLi<3+O{g3~ zUovu`JRCZv_fr^=hDLxTkQ!=%9Vp-mqMegLmkH zUb+mhS$&Zgms{Hyh?Gfs7jhvAIT1bT^7t&`L z6+!_4S}=-6FJomh9K&GWsX@_^hM`^4k`n zu1y1cfj46jxhx`|DhUdm%)+Ew_co{xxibR>r$fbyo|5z{K8oXc!*(KwO%Pfl$3yx~ z(=_NkptS5C7{!#bz3;zahpVm`ygw}~W{zmL`PETDhBP!Tqy$M(et`}BWXfC$o6=}! zx;5p#d1^V!g>27ll!p?VhiI{tyw;E;OPGMXnhy19dK1o~{vIj9q%Ki|gXfv<~DQp*n2_jpA;xB9w>N8YgFlpiP3qf+CWaj$(|Wcg3{HgH21WOu!zBX*tt@EHCATENd%XQ$#jeR9`F%OS~GwAuSdd zwQK=*qu2 z_=rMMw_uNu(uh7WF~a%jwdKK=(yHPV8?8C?#ZjOGD2IBbU~7I3IiNcTI;o0aWr6)~ zej~uN@k#webDfp2C!w2olZCO$J^yqofq+r1vesen9V_rJ<^ue4I)$rZtWx1MZTv+1s0S&))el+NuqsI2>Z%#07jtLUNKj(SZkBnlrRBrv=19cBoDT zbZu-LHIsHUbSm;bAwv7Zh1(P=H4R%DKpwiltA->gWFCQ}+@wB=?>MLDGsTG}5|I<| z$uoVz@}0avWHq0{hIN(UJ5-l^PaK$aas9+peKn&1*gaMTz7vlHN7T9^O?lfS!-vTAv2=~EVF5x(n%Zz?0U`9gbm{fd7jZfRzc>`mR=B(Ta@Ux7NbEh<099$LrUb>Jt+5@%Um za1yOpz$f4Dx@C)yqVSBZguwxpe-gPDVHrx=h%rV4eb%WDh@qT}sfwJ=KlgCS}tSz3U4Wa%j} zxsAg+HR)Hq3xa})N(g0<;Ln?+5TgHMrAQquU(OF@&M49b?-Wb2xOb#}zkR?7GKUHs ze+tXGI5oHy%4BkA-%#-vIv~EZLr6)n`J_d%?s0Z56N^1tRGen1^0ROD%_|Ueb73v^ z)NxE*dXO0g3Q=-^Rm9V7^Vu~7cmzNRBmtND^VtfV@5X5QV@tu=0A;I_-mK;@pH`NN zTh0wLL>psan1lTdMe)bc^5~(_@ei^YYABfv`|K6~!iG=064m=->7s$Uhq7u_pr^@; zhvwFbTLFvEMNU9@Y_C5c7IBl}tlN?2j+X2?AZV~;@Y`3)KKoXlpEl~DPw>w$?7sMG zD7szIW_{3%!}GiM1{Qd+z3~B8rw6c!`ULAia!CJMtzK#L`0i_p2yAv$inm0gnA?2^ zo4Z5;ZQP`I=3@mj@^ts))ez-3S~1e!+xGA$5G*V$X($8sXc}EsNJ$eB7Zw)$j+*Ay z&nG(cCj|jTO4)r~(uYD>+f2fKNNJ~>UorwTt<-sr2X{A*CQ?|1;yI)27u5 ztoZF79l2Nle#qU@+UZ6#)n;j?nH5E%n_5|X#5Wa;LX@_w4U!;g?ecoZ2L`Ya-F0tL zp^ZhV}DtiJ?~at(1(6Nc*Wz8*RHE`-|k_4HW2dc}UaTz5e5a zjaiKTll}!U$Bip3DI9hHIDKTXvan&r6VXPU=$L_1Rqy1zVEnk6nwnx_V=XBn+-g8< zo5ItS;GmY0?gtIg>@JOi*xpcK3Bz9BZA~04`2B}AW|b+T`aNpTfzR!Q{rwizQ;&7B z*zDetf2Y~JQ!^q*$(vX{`reK5XA9Q=R6>^SiSBG$0$!xA_*tj-WXE>3y01K9Zg5-< za4kl32Cz~7KRkSEZ#q(LL!zdN3azj*N?i_;R;rTvKiIn_!GzV}`AM`B2; zcznUeR?RFy(MQv!f(guzc?gw_BUAV(Iq`2B`Fh{OR8WIB(areU9XT$h3pqcy-Fo5R z3j117AV3N@_uW60!&l#)r6Mh|3+np7n*K`i#)X6$E)jkCBL*>wytj_tCOpkxVP@`) z!J$j}_%X?MEr>{0SC@%{L&0B&;+QdWj+q_9KiZC-oJM~$Y66QU|rd2ZU;{bpucT&QLNMy3>$agh|@*xtC z`v3&7_aRl~J#2OW=!HTiZ%uAxk>=C}bY*ltp@oB3 z9t=GcrI?FE;oq?>MMO#+cg2-X7Fu$zWetF=l*+!PR?$f1q|kgD7`(~Duir}h<%y(_ z+gP5(nY=_yZmq;8I(+g?XHsNI1!sc-KzQ;4AKuwBaMH|C3p0=mmZ&%xcO`h^pNXKR z#a7x=Yc=7*5J~JF8=*cg7phz+Pu-*b3L@P%k`B{SMC&TB%+Gqj^jiR5o^IJD7*$dZ z-+W5)wKB>5>ZcD~y?EeDZRiy`Ns^&ExwsxpC0Zm5iEkkXU0wIcYLjpA8SsAQGTQ)T z?kjmlW>JeoKs$VAEyF;&{pLoGlFf2d28=`h@*Cr8N$a@&q!~wW08cZ_ENNhEs6b@% zNFZ3Oh+2R*XBfdIi(CkV{ok+BlZ&{e0Da##JKgJBc(KmlXL`?j?>y2tXa{J#jPy&Y z`49DTxBv0nDinYKzwus6$$#Gt7_3~{jK$9!O(Os zDx{G!?Phds2r~_M9LOQX^Z41J-u)_oWGQw0qQzLRQD6Aft_=t)$Cqh1VqctjwyD11 zrtO&!wXkd7R1uO;zx750=CPD!$)I8Q#0R(>+G*c^qVV@)(`jJEHqy;=DIvMRzsH4D z0^!Rl6A&lZdS4o%8j>Ux=e1d86i;{v54s<~S@q$xDI-h_sV@<%?!X*iaO3MnKhn|y zy1|yt9xHE-z`3}q6YxbkU}DQw`L@Q3ZC0KTP=ne-x&jeA@gVgj~F1LbY6&y(-7uIvq?xHC|&PX!(W z4&Une@XMp4i}g4~CjhViBIE=$Mn(7jz37zgH(XF^Dpm zHSPi1qm5Rxm9~lwo^M=7n$%CDZSf6W^(+Yr%B54<#@&2qtC?oqs6U@T)1Xb|9T@^iUkdBA zQY9=zkb;nWv72x=E*Zw|tE-x{5p1k%xV<%HUzDqO*zic)t5*dYj?~xJOl}Zr)3vBd zcQ?{BRLrCu7y$&K0|*qF=K12T&i09NdRDLR=nGw&u5m*C1-y!8EGXCDHYW@U4!rh} zKi-rh_BpSv+QLSB_A+u+I8ESWhAWbY2lU?AR%NkzAe>Mc)oSDq_&eQ(#9Xaz=|bc< z*N5uqa$q367At%~`Qs6iq4|_rP-uiw(5GG#KYUD2z5^yGOw-7~3~Iq*Nz@eSLgJTa zH%HBTDTEB!n{s7Q(L~{tdr_qRWG@(C2bcTPX!x}^+8?1x38|3<(f67tC?fyC$GGIr zIjV`aMVr1UUhGn{~=tH0$1XA_hBlpKr7_?+IK?@hRtH@f*LS=NIdHcJef;|pCL-40C#S*R1;;-g9 zzR!3-qSPsc*v{5?{_el^#uSAz1(D~n^QciV*M#KB(n{^t(4~X~aL8)*gauWmX0PIq zCWg6NN%u|t51fep11B7H7v5fHu7;%E7a6f2eR<}45wJ>LkyzQdj|(zxccFLGX(La@ z_cK9vUVFUop)q(vEgRFZd3y`CxJz|VC>KZ_t7rshcMsGJ6k`3JD@;G}8l>0_Lc0;42u&sM^`rmkar1>Ul;HTZ5ZDC1aG^L8gsj_5xHyS@ zA@5}~la*uawTO}H4iliIsps>$WoouWiRGl@zFRNTzN-uDx4EDYO7PB&DF(sfcQfyS z@JA0KmRkimlXukVH^f2TA1VPAD$@D`Sxjy`k)HBIdChGlC$VN!)5!oU$u)(EwgcpO z2iDYvovGUlNohs970&x${1Y=c357^hd(w(qr{6^9Q-R5hq!FZ;WY343WBo0VCdPYA zAerz;ekr|%c+sCbVG!TzfD5sBPz*h@fw0*q+e}hXTLVDq!GDmN>zzJKpX%my{=U}T zjXM%O*frD}9pa5pFr|j@oUUzo7CP=gT7%T?k9K$6OY8(D@fM{Y*Z4U>Nmp1HMK}*- z=Z|OA7A|gml+8u>wi9JytRpP$2XrYas!R%eVK!Jy;OI==sD9*ct3+9wP+Q3h*&zGq z)IeG2IdGLv`FVL_NmjIB+ZZFT$P#q0b1Zr(AwgPKd<=fPQFL8NbT^WwO=dzh@OC3$ zIrpJ++#CBfG*F*}uL)W=>zDuaRsdl6yI?i$D}e%!XO7q}IY+}G2*g0yG4&Tq<5NC> z!x9|jHdL-Cc-ez3_a28RlNxECT^&g1&{5B$7;9?EG^tT_s=Jmn?e|ZcK}?JFR9+zz9VX*qot2O>yy<38=d`7tGD?tjy60qve)0Qr#i3|6 zn)Q$xSoeAQTu)YZk1!&nM@u7azKR%73PIl4df469=nL!TS`}SV+aKZHr{+_U+E-Va zib~GOt=AVjNpgw{5Q(JvlI9@`M2!bZH{0XD(<(e7JrH82e&iaJmpb=29(l5w17AB- znS|cPA2I> zEn*{RhUP@j9t0x+cXUraog`1Q~8BHvPA1M6XHt1Q0TBeh3XTZSBIw z@P<%uFFl|4aGt~g5@b6A>Df+u^ZrZ_YPMpY4l|UTs-6R;QE?)1-Ik*sfd-}nej z%lh+*nvV5iO@M7jAZzYGE}2pc4iSv*@s%n=6cmBrZXyZSThdn^;@^H59}iw5{f_Q0*AH~U= zi35T9laxpW1rdCNa8IklVmK_}5^o6eb|aD~<=wmRi05vAG_hkx%bJ~zF22>}Sx8~f zkksD%8)B7D@J#6r$kN!mKPe;hY{QkS9gpXsPy|i<`ki5;bc%(j>5p_=w;%VHbB|~x zdv@VuLDMPQ8y^z7b`+*l8VXILAn0B~Ys=1`9NzuMH-ceN5Q!hks$VmZ&F5I>wjo_* z()P}qyiZXBd9$vXP`UKD=o=Me&x=8&&7KgG>PK(a%6E6SC!+zz*VO#%1h(zEsTMtW|#t{KYTn9N0i>H=zqqajchRpj~-zb4ErZSuD8dt zy^h35P1}>@{rBy21-l5$^2x*k5*6eRC_xX&F=_w`#R3HKN+1MI6Pxq6u&j_zt|3X5 zz1QcS_;&TjP=_f*(A!ERK%E#AHpT8fsP3(li2)yYjo_F%0WT05hRgwx(;NU9?BDCH zz%9QyDL?N4$=`gii?XJ==p$szY}KJ65qyFWWWCqMlZIq7-LJ=0xM z`uF^sQcbSJUjMzRM30tng2-{m_UCvB>EY7t+~siB;Cm`2-hk!nLr0zaNSHv?7wPr& z%ef=yenBb2B`KpaA-x+${!V6l#WxFVqB$p0dOlMoiYVU+dKMaNt#2>(6T4LP^ay8b z&6AIoT4YKc1kK8UDOz_w2A*zbnwwn&?f%S*H*Bz(d0Mb((8M9Oad6tcesiKeJW84r zMkfzyABqEY2BURWTXVl;Us(K^;*cqH$v$Gn4OmLv@tAom-I-R}TRP`aUvc!6D&4i_ zKl2aHhh%)UNBv#*60)_mg+mo`!;pB={UrXl8}eB8I9^&>N-Pm9x-*`i{P@7JvZYX} zWvapZ?vy%?b~bl8?ktY3b>p9H;oOuVy|i@ifw$$tEY*6`2d>Q;B+Gp1u}k0fnI zPMd!`AkIZTv`~o2pEY=xcz!`fp}4k(99`WOYVfbfI~x#&>a&P-Zt$RWcGV#1`uOl` zX>$alr9(Mt*CHYVgQ03f(MuEM~$o%0=su?1Ki2PKGV3=u$yqc}D{e ztKsHFGU@*b-d+9F6K>vzh3Mhd*8=d4TrkGum+Tr-by=d&lI?jtAH<>a_r<15?t231 z`EVUjXoIR;phlxL0w_H6CN`Kw>kN(?vUzy3psGo(3FiRVkm{yNfoKUyyiwFOBbc-~ zi<#F7Sj{o7a6XzpMm=*y72A>p9^E+cK$q7Y)u;uhAB`HaevbOf zE~iGN7&Zk;AcbG|`qhc9wf@-*VuVTe z(NJ^Gd_5g_7E}^aL@iyjX{%H4a6yPpGLr{Z9PA45keebr1msg^={sk&aeR`RJ57M+ z;ul(J+W>`_E0DO&Smq;>mY@8PtQZ8&5 zG0lkg9Pzq35skB|?Jrajs8P_!(6DH`sfqAh{qVW!-#)BU)8_(kXT4&V^M0gxeUTHh z+K>1pNj5tL8(s3$zwq9bjF&QZcqy(XBJfMngk%p{s8;{@pO%*)7~G4zN0>xF(l|=d zgyvs8g%@D=P+WDQw}t1sYDo8uMe&GebOiE&@t+#U1L;m~IP;@)_rAIr^*ets zLg`QF2+yu$>GnY;g}rcKvWwgm7oEXSIU_tm%p>HtL+~eOp`TT9R<>R2q4;?|bd}Ci z&E{aT%FTY|!-`;_i@>L4Q9OA(^R+A}6s>za;>}VBwBZwa|4D9Axva4G#ANHwJUJCY z3D(frB56CGG{Yggf-{2`^6LBF!BmG?G9<6Y{uM7MY3Sd>P!S%RLL#N(MUDeWxJiOy zL5T|p#O!`Y4IeKNt-!>-y+E5^r4@w3ZyKa)1SI<=^g_&53B5KB@69jmd9)T^0E*(+ z!;)rjygkvsJyLGfbY>lT*C|0G;s}qJK>SS@lg85id;yMWxeHy>{^(hN(`?yIgZ}wa zlJm~z2Q#(Hyu|ctoz|iu0!L%X*Ndlo!1r2EHjP6}tXcs&K0;q_Vh* zbP&HwK4$b>pQadOxb%Jg50o$G#i$U2V2@j$UMSMvJLzKMVutrZ^bQ|M-f!X!lXH@Y zA)R}_kFBFYhJ{rlnq~;z5uE!dhNLPi(fJS36C6N+EArR-XUAzHS=tc)!{~G3{K2`j z%>8}T_-J6!~rxJugH?wkLR zkH!qq@b5rPJ0>0g$0JuJI{b0rqVgRGARERw+V@n(NR^i_T{;is%K7ejnO@M7gCxqJ z{x7SY6)xB12mJz#zkCB9>sof_^}Hws^)0O>%wl?55N{D zBc9_iYQ-$#O-@&oN#WoCo)MqS?3|)(UBSO?;W)@@VtD>NyEPS9y zpAZuc>0ZH9_2LC{e6pIdJ;&j~akY$GO}5T4<1v;L#bJF@F0UmPMW58bxu>9^!rXU+ zaKTFfIO;}kGZ_)arCG+4!*NWmR@g5zY5XIOUVPk<%&wGLspnaPy*SMaR_3OoBbhg# zU-$w(JQP30gO>pdlKYQ3;nU7do)W-K=J;Y#iIW=`l6^R?*B9_Wp`)P9=zcS3+b1JV z<96?-+Lfv)VO0IScqrbCU>b$-8Z64%KgaSg_Zx7_**>iS8+W~Q#7LWDxEjX#Hw#8s$M`9Tv{l;^M}NTu0_;O*-8^pd>6(=@%-5bJFpT$1n_Y_iO}Ll z!xaGG(1#z0^lm;dCAYZ<%==@WaKxaF4-J)A@9*nGE71Alw);>k$x><@2j!K=4mYUx zMR7R8qAPxqy`UVOi^D)sH_L?6D#g_jGVfk|&_imhf7@hSA!-!4^u(D2+-Ouym!??t z+CP4;zO+BR<;9`h;Mtsx1FfnfgmlREXZiO-c4 z{Yaz^tgqoS>gQIbSuS=9))qR3$l4;E;c>aO!lUe?zu?&CWbx&ygj3^3KZ`DV4LR+3 zy$zxR;~ARxDV|n5qnNId?EDDYAG6U)qw-^s>AB~VsQOb#-a0o?jxGH#ed;b4#{vpj7##_&~!r5VK|Vfff|e4-}zpLwd%MGws1q zWzD3Zs$lgy@5-ZPOqO=4#@hIo{~qI4M0Fs1hyGoe^@E<6aM7saZm%3kRsZW~d znZV1j-1{+iBLQ*KYqwBdujFJCF`aSZ2?bNXDZCEn3&n!o0b;_wx#1t-?m+7gSpbmR zt+uhIk023?3~$s*FjazkY?XB?;qZyO3`?fWCylzK$(JoccMq4|Q@#6*_gT%0f?H5~Eujr8bodcAumh+1RuFjo)&8KO zIv%Zj;lk$PcnYXev}q&Qm{{j7W@<@fv>t)Aw|Fv9=)L8d#iSjp`(B$*k0(!H zF0w;I4BuXw4E0}efgLNu%C#VvSuh-;feJ;hB+RrE^&6VT{jQ1N+H4c3@aNfx0zNl0 zEtx+&_cwx$k>B0_v3ApsVDjWSF@y`J=Ja1qAqcJQeiX(>MOgLUrTCG}SNV8}84c&! z@fVRGG#3pX?%Mxp91;qY27-r>xvdhiy~~WQZN1CfIPz_$-HbK-px7xBa3+(2<}dhv z2I!xoPr@j)_e#x%Vhi@85!S`T+snjW!`_>}J+x#EdZ zEq}eIW*vPcYv$a1K|U|bg)4mK3nMGofYKQ#5OPosEV%omU~6k@J(NVz`tWaQqTSc^ z?e#`laoyx3Pdb7LlFM zi^9J(gM^xVoBKSQs-0u8mo*|hh~QKvQ0&@`S!HcfaN3B3wY<^+GI(sl&?2VUrvGC)=y1}RG`Uz8zH@^@;nOJ&K+efS&|9fmI7d6&j#NAp#TNJ( z45vjRhC;jX=KF~AuNLR;;5CN|XI$&e?$58`t|hgfx@ljwtNu&Jz@9J;34XlU<@}&> z8S-Aa)bHuxYNEkb-D$N$NC!)%CISe(j24uP8AkVWiUv?jWPehF%3{a2p*#Arhp!z; zDqn372aTg2H&-CHY5m(8`gJl(W;oOudS^mVWOVN9GrM~sWxehg`EPU>02dA-~<{2y9Z1nvIQ32TQdkbZECPeC6DdyL3J2ZbzE7ke?7FnFg&$ zrAYkJpEaz0H5%jOz559aJvXLp2qS}P&T1rHhNji@uANbjvXa69&m5F`48A+Zs9QBe zt{o;8prN5{T;1i|SsFK1mzJgYS`i30=7)+$+>jEgDQe@$!5k#HN-v~V|N2&HF&&gF zO+?TyOh`jxS;-R3!v3*c`e1l}jMM9f1@QP8e_&$#abQq`9}w|mhA>%9P5ioxVWauO z($=G6qC%|$P%0`JL4Xyn5^6=&WxS#hZop%ZxPeV4?Ya%d@#yp+{|?++;lDu2PVUlH zs7rE(S=z5A7A;~uASS{-7bx`g<;Q5KfFx+BB~zgJgd{_+|FvEo@3sZLS5z!-Tk)w{ zZO3ogRiml5mRROI@E-nsL6;=Ua95E=e0N{H^Zj5K z-5y+N;d^=}jGmarwrgay{Dn|8in5~Jo~~ynDsiaJFlaci^*gem_oax_^j%d@_fwQb zyAHyRkYeI}n`e*aCz`_YJ7x4*#G3LHv0(aih8+p=LpOMUvF_$+o))!d`+Mfrn84aV zp-gmvUM1Jt>(dw~EjDDSm*TDH;`wmTiVI)9JAPc}w)q#FA#L5g4ni_?27Ucp+6c1q`}gzoenv(H zHhf|4TF}1*TS#d8NtZ}E)`Mq+pR=_)14gGB2Ye4R8!m8 zjOUS%pn{y<9@K7un=P!|JUo9xo~}ZOxvb#TK8nU>WyN2?|5t46ybNhxa2k7e<&brh zVbF1<(D;)$L8|zgtW9S4vTn(-&Sq}h?E`Dd^czn3WgjAXtw+rFc$3S`o{P`bHRipg zzb!1xakSxK)W4M<)j9}3F8?oQUiCNXLicbqRd5VP*EQ_bim!RO`0p2EA9#?SPM#jR z<=1wu|88AYrf_uMbGx){6GFV{4z#qj|4yk(Y}5}?w(s3_o&OZ^1G|zY6Nb*_E+$P* z!e#j!OmPxh0j{Ng{h1{`6+{AZFU07QILS-~u`Wp#S^tnx-QuD_y&=gxERC_b@Xqb= ztD4}bqlF4Th+xeb0&#iizf#ja^!pzX^SZV1NseT5DS z7|SYbZM}YXA_A_L{K&p^40(|=Hu!B%*t{nm)aJsCoPpHrMz2WkF7=VF0eSYkn+=jO zmUFn4V_%B#aTIe{?O#3UDK#;&FBseZcTcsM!%`)*==v4vFqqk1(Wg z?MK+se)@)PxL;@Qn?z7=;UJI?;oZ)&qg%RJZe$?>X-9l&0|O0WEmU8gj46|ms6y_! zW~+^(T~@wI71~|LK3vv@V9dyvaurX+3{i!U*LMCRot&IZNlpFF$04ChE?XxbM!&@r z#bo%Cfhl`Zfwdd*Mk9WTeiRe}FrUD8ms!m4#JRcXH8d^J0UsF`poi-r6qxKRH~zQy znUHRN*zYYiT2X8jIh?U6jwV?HIDb>dlDZHz_8fhB5K3V$WU+t?NGRIvVZF)b{de<6 z*fx`-yW@5&mlm>zyQ`tw%L5z=im{hd8E4lf26cBxvL7bh?t;L8-!B?J+^$?qR=pEL zbcJn0dT+`Yviv|it*`S^!vvn0xiVf1A&KwR$=9Ml#j745z9u#VCdJ*4hvbHAqWu-a z6fz)20jGKF&sYRnsFAQIU3cuOL06`;nl+>E-{A?md+-T2=R;Q`kiI0z4D<2KrCS`; zMZAEX*+g`#y4dQN(>Ms;A|*n3z*m zw=&`Q4&x3K<6$6L+Bam#VZgjtu`4H9G z2_{AkIka$aYnt5`ALWn{X;5K*vpnAZS{(mP4WN@q5>oJGI{LSsQ%k7KKOJdo_>P;M z93U!&hleHQ+Vv6Y740Dr82V@SvP7W#vH6&XdZV#iN%-Zj44>c$O!8W_VM>O{`E#f9ZuB4SI1|3!!R#!NKxIFR4K)|t4Hts9==AN0YuH_z zv?}hW4hZ+jdC%3zD?5qIa!Kn$d`?y=p7-_l@$N*x??K|}M&0XVRZIs9kIUois;Jcu ziDB)3qeffU9&)4K)vO=DE-S+5c+VHpBA2utFeiSskI zC^Q$ZjY*^fA-fztq2o?!&-%KYLzJBN6CAK_DRI;`#XYOsS;g)L*8&ZDyYJ^!vyBUtce=(Mg5g1A~!*4nY0C zQ&OFe^AY8ZKA^YYRNffytQRz!DaIq~;X;nge;#-tSR10`OMksjfA>y0Q;gm6a-^Dx zRU(1RB@i(HE~Mohve5W}yVcBUX&vD%O;->VXtevMFwd_U(3QOSvQ05`Iz(kd5g}V} zzyiUd5QegwewAd&*!)!}li20l;<8e+TiExWWBptBiiC7!;vgt}|JY8XmxlD%R1RjF zO7uHd$a>7t5c}V)n5a=umy}{7z`#V~WtTI}YAV8it%0orx9Xl}V5OyDfk1!(!_i>y z)DH|LgUZLmC)bnKOhC;^R|4cHccAfC~y-yaJ%tv3ZS{HFndw z{d2cq;!EC@!thCKQ4B^|OW}nEdwKv~)JgzH!r!;eDqzivo=&V^F{uWG2VeYs`sCkorR^ZKq`VdQ{X-&OcJux?Cf~jociO))2jEF3Y#J$Z0R_! zf91(-@(Tj!QvxcA15~6uGT0jZF=|j!T?2U|wV@ole(JhqmO3gyEIx6juvjgX@-V}WJ4-qNnAZ31`2@S{;B@3E=-mp+tzkZiis8E3 zPmEQy+C#r}q_n_#8el9*@V^8`38Pyt|i#%9h+@bfrL#X0rz^>U6EPHYNi-K8IU z!qGx=$imePQOwCa4Bc)gY@|G#tv6q8hOVG#2N7QzQvF5hQ}4X*Q;c4a2wz}xoJ<)` zS{|zDTV6HxF}aPw&SAEmirWe#~VWYY0i=Jq8AGcWSv#K<5hz4KlAQ+~!OlEDAYZ|=8vy<~Rq6-_d&!sWyi zUyc|Z(T=zK*poFw8J(CDk_@g4T#BP-@)J@>2R|~XWc_2Z+M3t>OMjMYt|{SdMZ{nI zglkldqr~i7&$WxDqf2PnlVV&rLCo&g{m^B;>w?vNL|NXL+Ig#{NRKOr6P$ywXy7Ae zEyhoVJ~ATM9wf4;nr)Ez3L7+}Wh)>MJ05$^+3t&48;(Z^b&w)fu3-~Ja2c6$Cn2h7 zKaUR=GsCprVxb1#Q)BgLIB6Cxddf)1N*5Jh5aexS;NNk9crFh^##~{|_^Ly+kSKw& zgU8I9`}1)a2)GOHcigs18{AF=0TdaJ^-_v@{TqNf*fwcUR*%KrMUw!wk?cwCN182i zyqegPD0e9pV-ZGCz;cEJ&$;ZkM4IOuM(w(x&}`7HUs;Z2yB2D zgnKw$x$(~ukwY2|E(Es%zb4x#{a73|$b&rXZMDLM{Av-#aL}&jfVWfP6l-%|3VD3O zM<0U~VREw&+}_a8MzygJGJ`@rNrucmv#n4XJuDg~NtU$DdLpgAXAyFKSJnN)63z-s zn4fIM{~6P;CYlExHE9Gf)yxPx*4d4}Eh+u??H5-X=(*s?V#9-0sE7Ybv!wrmJ($!j zG9EV{LL^0Zk5M0no^|i4RGiY$dpL=9P-c+L(Yc&zplAIEHnGcbx87(HsXK}1sNbC$ zFH~0v6=frhvx8I1W0w1MAagS0V)IV5aLVG){Nv#4(-pzLpnD!@LFib>Exx;RalKNZ zw0|(4OQ1h2di_{8(~OHGLmXyikM2Pj*bKNg2KM8czSYzcxDi?AyK$jJb{tIIzR>XS zUbe$vcgL~Oq8IiajE^v}vqz2ZI-dFhmPVWD=M~8rLrfciQm!0JD(wgVZ+2ualMN*i zq`l5<=k=~vs0rjEa4P``FdDvL))V(nQYua?0arQU;XGhea|pNOldp7-g{*Rmy>xo1MaWLE)DMv$d0z{Mul)#)sNQ~A14u*oo{Xz<{4V?tBb$X*#*<=+`9|tIguvwAJueX zWUd@5)HcU!8XKb(|NSGOHjLVHwH8A4oFjtkGD*o2kHkDSKYBj!*wzJJxq$j5Pn9iv zJ_m${2g!PLELn=d@sS6C{tTR?vA{!U1kx-uKR-c4)M^qKqJ@DJF-g*Pd;V?MeBez~iHd z?dGxVP=ZB@tm>r`(aoAd#OVq#^?pgkoq@}>fHA&0XA0RUhG`tyk2KQv<=4W7S1g@O zQHN<;h2?ym@dJtKZRqnBd{?}Qx~@0TI!^o0hDS&HI{eRpKIC|U>Fa^o^ORrH(SY75 zCe?6nml!Lj`yZ-bHT@8XB=vfr1*$~Y4%2{!2d(mS4Tx1ecui} z^w23?0us^<0|?R}-60avNH+{1k}3!a(kMtHh;)Y{DIJnZDlJ3KyW{u!-uu1vT+2Un zG0e>U+& z!+3mXws*OvY54PJ!S`edmS#UL4g;4ZPMA`u!uS5KUDYO?`sT^% zvx*Q5VaVk;eX2;Qy0I^lIK}*{d!NvDuP0{Q#hHO|DU?9%Xh^u`J+)P^igLA62o^2W z4#U*a(sKEaYSDP7MM$q&ksDyMu{gu(Hh98_`x0Lc_it51M1mo%rkU_$@S8Oyb;;WFw>=jndCJ+(6YhJq z61;xVp^0$BBT;k|>fC%{|6K+}`kPx99$)rSzgV6SzgQ~~FhG_gFq;vy6%prHAlT5g zF*RX~o0X;Aen{-`qb{uj#s90L7PFa$xbQ`i>E##W92w&jIYJ){$a0uo6obcbCtt)) zmnb&`v4^rZFfh2*un7*9_TQVu$oIJC1x=+RCl@YscrpIzT5)f-8DasgA9LPs7xA_50grS&gFrTw^?NMt#!Z$2KbhWlwQaZ6p-p$?8woXO z!k#8SZtppGo$An=6w<_h1Ia%c6t2&fWGedA7Cqe)zq-{OYbv}eW#~SeNFrRT^$|zb z8fj&%bvepMdvO#~lVNPXUF7Mo&|=eLX>0d}7(!C5knp+QS@!&kT;R&6L|3|VXG$LF z%8%E#O&eV9-XP&lZeMTrG#hbN6vcVqcukh-o7O$V5B|HCKqvBOWzH$DFB*ri#%VP7 z;?X#worXrk_l^}J8Hn*fc+yM<6n9ZF{0%@5<~JwBfWWkoZMODR9p2X zx(9z`@$if(+FjuWum3ZLB)`#^YM=dzJE_v+B>R&&GI$l}$eDILmU8vqSDDE2-jZ>J z?y6@x-VuQRogIfnGMz2O?9~=|KUrnVx%Rl@pYdk=@YVP?frzZpbj7j<%I^&GPY31I znJ2KgGk>yq9^R`6yQWPi#TgF@TzHgs<83`xrcv*jXSy6QwvV5$okyhAYDAEs5f}2P zzAMhpk%!ky=*tr!Qo%zi5c5Is8a$jh?Y{hUm=#Uqs+@6y-`N$!ut z3Nf)Cdbe-;(Wt;_KjE}*`J5@-)xj-{kA@Yfh`5x6R^odsaWbl^9<*AP!9nkFZDQ_k zG8@8@4)6nw!%(Cg$$3xZdjLq{+vmo~DfEs*na0HA;akB2!+Y%H17~WfN^)K+$Bwfn z{oI4}OO12KW`r8g$D}Sh=63uIfhrF45bQR_azXY94G;C@q;$pk6S5iiXjJ0hRW1_w zh52BApk2*Ti8xqyJGzHK$3Db{BJQuZ!}XiH$WTn_fMk!qZXGmr;zGe~Olm2NN{=2r z;*n=G8EK3Py4pr5o-X6IBCdX%-}&*gqZO}XIg!CLtoCMKyyBAar=ydQf476=^E&o_(>E6ie_kKSNN_uqL?^$G^mt>-!z|(aF~MY`x0^ z6>6ZvNoYQFmq%V(_x8P)K(_eb!YwSVgE0KPqn7==k-f!Fwz$s5v)m|eSj}(T#W0Ug zarNewy2}iX`vr;TAKfUJ&)ex=0*Li*E?QY<x5a@WbC%uK6&^e7)QGdbN)~PJFWAn*TdgfjUNT#}#^c3olNYFJ3E(_iMZM@h^DB zRzPwjz1e+<2y)j372LIapMxAb zrVF%oSuJJC1I0A+Yi7->lEr=09o2Esj%N8Z*X}Ph)0`L@s(NL_*1W{)7>L z&qCCGEX*VJq&G6nYu$UcW^dsPwh+OBt3}@c#+Bt~GHkN4=INS+tAn7JrwI?d53yMvmiR2OTqbtt9jckXc;U{^bGt zJ0#Xvz9Jb8Mj;Ozie0;#r(l1achghRvA@sUC}0AC=ovZpJB=#;Xc-J1Sqy!CdiB2(ywDOOuo#yER7SXl7xoV@~a;5|LbRbNW)Id|7 zeZ9D2f`&d|`QqCJceh_(e|w?M0lmQTvT%c8DuL>U_VjY+5kwObR!@CFyYy2*kAeU< z`qT{A%us%9Hqb14(PeAECLK4tv%Md?N9`p<+q>Y|k&L#)qN1Xb3_9YdtE)TMDX(S| z5uqTJJJI7|io&B{8jUKN1AWbHGzE zzZSb{XrMivTu-}=obza90)*Hg%~z|7BUYy$BUmv&IhJ;+)jyU!p!n`#Kogu2I|u0q zSS&e_jnh$)19&AmF};89648%S-HNYqf60lBle4HFNg+d^XY}x1Ck;Z_IyKztgK)4{ zNd2xe!S=ehFCntB@kcirtOQ8jXyC?kwH=$~5>1-cvmYULRzT2|l}Hr<84K!tSnR)- z@S+vV%lw0|``?A9I`=zf<5>`hgvimvlI0Fkt6l!2zytYdZ@BC7rcEL5KK6@dzgT%; zj6xP5>MAT;BZ}5Ms{O4+7pxFWQGe(bJp23Hi}h&ckBU~dXm9=fSQW0A0XOBJhj9MI zcKSAMzy85(to&&)6hStOvgXfschj4jdmQyCs;&bZJd*^Vk8A2zNT2;m(rZ7)UC2&@ zcf&_s-~*xpas^iZ;BbK10feT&tHXg^o8`8UfQ_F&|J|xzOP(p@dz>psO9AA%Z1`3p zYyz9{m21V-pD>OTH1iGbV+w^&Y?Fl$a?UAjqTK0v7jz5nU$Uy0Oxo|}b;PlXVJz+E zE$&%#f|7TD#=Ub;f>~`o--Fm%&{VvuX&^d-+3jBFBmN7mKNA&mkbKz=`rVt4#NU_O z=;XMcM8haod@olk{FH6#$g?93SCX49$9aw7bHipw9>@zm#Ie19AAi2y#kXr0M=5f7 zpLD7R){Ry_44Gq>j0BFakwV_?vU5alA>Hzk$Oi8ePF}VO zTh!hDr%8Y34qDn~&+_`Vg3l0-mj8aD&QK~aVs8o=`akT>dJXEM7AS@={#VB~H5uuOpViMuGL#Y{hlV!36&bvb6_BS7QLuz|d=DG97>qN$b;Tr3s6!t^ z07P+kGh&N}d;B)msO7^1SETIK6IJ{@M_+LpeS~f5^0VLi$ zmta907!WMn&DsDMDV!7&2DnqeZOf(7-XOwQgEV|4hp}jm{dE{w3N znS=F-v$W{|#tWkL^($P~Vi(h)QM+MX=EA9ZhVjQN*;Il|$R&?Jckvu?=6eHsL@JJ! zlI&R-`3jJb`iyVjqPw-x>h?>f!|KPNK)AY#Zn*9 z*XYi~`DWe#Xo0RCpN~~qNL+2}MsyE8XE#%0XIubm7gZS(+liNgij^G~AE^*&2P^e& zYS&si*zJ0GP8dXzK)>RRw)%d3o|G?cb?XtqpXOZw-~fpUF|M*q0M2@GM|M?T({De3 zL9uJXuY>oNT4jFjC0&P~Mcy!J! z8kz^N>eJ-4F-XSs8oE5qXcm7|v>^PmObR%P0Zs<|jrvHHW9gt-;$ii-Sk~9qoS5W6 z(nFcPAsE=8yq5&Jp{r5U73p-96=BKI43k9Bz2xqcTQcxdArnqeJOL@sfQd~Q&in5P zfccRse*wkE$KP7IoM@D4vles{w*Xd(=f-lhuzm*DA8fxUDlF79Humq@J=MC4ggIr4qR^zv8EPJ--`x$j}33`%{$p24?6 z#J@%3)TzCi3-0cK#y*EW%!TSq8e{~am%kf@eSc{cmz1#55*0ppuLH%6`3(B^hhO=s z5n!<(hlhtxQ&T(k7Md&tAdx2l<f*FLG`Q+5H$wE8lY4&sYo7sDM#^{xh@Xdzo)|Xq5xnDu%on$c>k}XkSZ4`A}Lw zutZaIK%uXE3NvwE>5O`slG2YwDjNynyi(CPx;9W!Qo`WUeRn7F)z?j5hnp82tR=g8 zCk)EhEcgj3AR8PCzu-1J#HT&${%A=99#f|@FVD;NZaEy5-K@bct2%no>*+yp85im zSFJx^S&UWND6}Hi5{a!*n+hnpmVo_!@cb!1#5ePXU7U37OqIWu6<>FPxJ4+Y8spcHC|mM*@-a6+!o6K+bhGyJ8Ktn%%X|n?Ytu((cJ$~XIVeI<{-Rh z0RN=a7Igebt9j7uLjnc2{qe8if?!&BRYIRZ9L~^9%J_FDgF`iSgn5S(=U0>J&d-_F z#cTW0K^o=bO`4#AE%3$IUfFWKWTC0nSbt4fgLheuOZgM#mX{>GXr#Pufu0__W4EEl z7uKA)RwxD2TVgB9B>-+tJdKW|8d8W~IkoRD_btnGf(B}o+i7V7>fZ}j&Al9&NbCBw zRtV7?fh{;+!Vx!Dgx07YQiXi5*ZzIJul>Df^-Qn`-{Rt zuhxSYNJ>SY99~%)L)EI@(3h@(tMxNS^)P-$)bdnEz5?`h4(gLKt2>rR(9y%4YPBqj z_Dvc|-ckD_iqY@>Fjg|>;a@mj)ReZ}t(h$E%d}aY`0lJ<;MTO&6TCCN8sYhrz5vVX zJ^L#N>&El~*2OSv3_z{%Jh*r(69DIWSpZ081;IRU0S!u3{<#Y|Olt`)`3oYka88bH zY%C0Z8>AHK{SBh;sD;(!~^&)LYog1+4^Sjm`ZGj5Gu5dOL2LqV``u?uto2DikEccCKW7Ka^oZvn~)U;`JJR1;p7pYF|30A?`gjlg^` zl%Q+xjhGelvZCxHetZLwi=+3`+l5qL1woY^?Z$kk4yKBA6;}aq6a#{dDS!2OFRb^|c8U@OH=qDP z@oUi_{G(0(r0h#s!+YUs5vt_+l&l%CZZSd|Ibs5|>!;|8EhvGs%q8>;f(`$SBkQp! z`R%O?4e&-gt^R0U8Ms}NDFo1FJvk!Q(@=SdcAF~!av4$}^-crsrkKVRNb-brIkQ;=@ibRTl7{tqOqoV`b5=#h>M*!4T zk+Kih2mlF0Q_9b&U5}e$cm}WOD44T}D-(WQkdxn^_OK$lOppaNlmI0?{nFsGmh^pU zp&wtDwk8B#f*tUXJyKHr!;^b#xAvIpRr3 z>wbQZBUXu25jYk`E;M@nW4qDN;FTE?yw-|iRgPPE8}OqGkSLSEd5zyGP$&E-;7Rc{ z)ng$2{V#Zd0T4_>@yV*cN0lsJQ3;1#*sV++R;;I?*3OBt+a^=8($UhLvclf@=P?U) zDc-7Z;2%eXYbP{$>swM{qB1b5gRro(V{z-`K&N`rs2@!gOqI$u(L8wcpGewk;7{EV z`nN+pSMv2U1s!CLz@TVowKWbFCM9op2w`Ss;5hGpR>uU=@?;xrK2Qh}HMHUS4Z1y4 zX1Innz{{5sWi_#%t5WrvO1A?cONsXeLeCu4jNZpQ@6iyMFXD?C)twt&Z+PUbXFU2k`~-z#N+m- z#FSvHFJlMxD}d@?eE`*rSbnF?03eMnH*t1p={Mm~FZsBhVNzFJlBP>j+*=lT3(5fX zr|44SdNpio;=8avwOsA`^Ok!0wgF;5b$qeMnE|fx5G77VW1fie`w|ll_FJF0ntXu2 zzCz^{P15Z-+TfmKbYc$gbt&t5wttg?(03T~Jkgu>9_0LY`Ds1`zb7<9#!lmBBYyq& zwdmV#mX8xUXyotTN3+ATI`;OTdd?7HagRlL!P)v=UA^V8YNuq+4JVJ=csT8?&K~U{ zm@XYYT0Qk@R>%h~h`yXbQqe2qf`J9hdnJMU;KBNfjsl}pGSH)uMCS@HvqlGeH?>sT zD?ZLFz=H8FAWh%} zhUjnlKE&|Z-TvB>4&EG$Ymk9=zb&7R{<+*9kF;YSi&%t$b?}2lgNAEfqqT*-@?!E8 z(;cBq^XEDA*1C~f62dM%L;eDYA%leby5Hi`kD2d+Zq|bNX9iBqh^~Y8O!2iweCS`{ zV{D|90RvMWiWoC=RJadYa4daC=#91W(Sm#mKyOKuh#=Od6kc6@@BEjWm5jydjKK74 zzXzFVgD}ullVVentdAs%VVk+;F#2gRUZyR*OKTDfjG=*SpfkFGS=l|Q@9DxH@YF%a zLPe?bnPZ;P!KLu(lvLW+?%h_3ruyz9_N}o>V7-yafsLd7FjSBwJrgP9p@KYtU~iE_ zT`h#$l&`&b`)gVYSr1*w~IF8!pE%nz_ z%O?-EF`#1vEcn8pN5q`j9*-co7P7rEMHeMAUyO}Xj1;aYzPx;wKdMJRLz~b#WxORR zkL4^_xz>)CKX6B}oUr-@Z|ekkRgj#{H=84g;=lCC|Fpj7jgWopqyPLPb##v$8V>}%jm!MnFB`l3tr3r_Q0wxm7_qR-?m+NHw78senS%JnS- z-^VC$$%Dg0060T^^+qW`O68oC7duDLY0~m8X*oX2Ca}S+$_DECMB^*MqCX*w0ER`! znJQ%=SZ5s$D*CQ8?z&BmcHnEW+i&QVWL%@hftirkQ% zGR*6lXh3zL`F*V7Q6T6I`gtupuDt@?5E(BaTrI|7X%ZJ)CtgyYWlXLWd?4d*?7W*f z$(8^f=L58U`ftkB|ad*FBbl8KDsl_6Oh$;U+ArNUd3?KqtE^f~{XlcA+@N7G! z#wDi5t~5>rLnsp4wY|NCxpZ@hz`p@xAd9*>hGJt5Gl;_Zmkucyjhuwf56#e-L;s#w z2J-x6BTV5TZQPTwv7@nH@%7x={X{N z3p3z8n-ov4v`%;)5lV1@-Q2YNVoq}?fAtF2>$g<9MJG0v(x7DCgV5WcZ_y4Q4oD=> zfvgoqbUYfSXO!_L+MTXcwzp?P%VPlJTsQErkLD0)Rg}w!Ivy_!Ys0YlO)tqr_3>%F zcW?dMkv;Qw5^WXy$SJJD@ClON0NWtb@IKZ*7M-8JdC;yS-(tB{*09UpmVKO1^8>Rz z2VhV|k7ugXwXRO%z5}TV7+&H9dJvlJc{97Q!;c;xOppUw>NlI40HEP6L$Y%u;den^ zU7hG6A3qkh`*REy6{vdZ>EB8>I@~JqW?Nn;|3%J6-cy6e0$atg4GId1StC`v&KnvU z5N`@J!`TC-b~A=qll-T3luT$wH(pWDOpxWhWdKb9hei@Z?J!F z%01V3lL->je#7uo4D7J*LCVmGwhu$%thGjg{yi&yZ2Uom2@J@R+d*m}<`UQByIJ_@ z)2ExCdvhPPF9KT+0~wJwn;rQ^sjC2fCPJV7#}9Ac>3=bL!~B9pb!I>?W5$U?(; zM6aj?Q|jnxA0XQ?K?_A%1`p1n@eNx4*xaxDW@`jLAvuix)3yz^dU^mxJAh zYSGjO3X_Jh)lHpvD#BOSw<__LBXeUez!8Er-D4oBQXc+WNh`A{RjSPewzQLqlI^Y4 zIycUY#WP3+&tajFD^e^9SMt9;JIu^4QpLPh6kAWHElMjYRJtQPTPm$usP7e#y_NPO z_~M}Q!u&C3xb->4J%t18LUIfAz1oBe?zE|$>eY{?LaS4mEDyZS9CE!n9mSRD2F@t3 zY^Io=xa55S*9*TGMsHvIX0*O3>LHpA2iW)E=%87rjFJ$D^Y?eeC&6+c?T*)ZE4|u& z`KKojb>#%+o2+M;Sa*RE)MAfdxx~=qZC{;Vp8Zu%1VTP;-@*=&mPm+fHNCjL9CLhR zzXvEe^0K_f& z(v>~L#wB5dzSW7xV+w?Lwx4sA4_eL}*3-l;WZD5`y0XK{B^@j4#@fH$*WZ10MiG)Q zHDcg{;Z>Et2A%hF>jB@;t;D~#_~26JJ~YPtq#xmjfdsgoWgXs15FH(zX|28LF*bqn zuCBZ4m#E~dqe)91vCsenH^S2L&+A(}7PUm|xv%k+**CNCrA8l^<9sg-2Rd>MC^U`l z{LX{DDIJx8!|Z*ZZV9O-kH;y$@^?1mL3SaqF-e)7R#WeBDOht$<{5tVNGx1acWp4^ z(AYFzcP)U>lu|YF_^pv|0@Z!Hc}(1V%$h#)T2DH(`JUsiW6_z+G$9V`7}Iv7gE|#K zQpC2Zy5pkXDH|hj!!T${0tJ(giA6!;&rAH|Pxe^pWveZL@Q!nfd`@7@GHTaXJdj)R z4w!J35nmcBXXmCUNoWD5W5jFFp1>af`q5d9@+MD=2jL^}t61mqYIC%_5DS<-<>7I^ zAWH_Hutz_IU5IZ&+AEI^y@aeEVPmXfqIW*353N;HL`py3Uud}bdTWs;l8Upv<~IgZ z4`bFI8XbvKjv{t!hoR3c1lQ8;aVy} zL%&b|$yV>#w4-|hvG?{kcoe*}l&qQYo^(|0U%pTsUdkfF4_nloXBc9*b-_k}`QV?2 z0AtcB?NWZpgteX!$kn{SNG$$$H?S z@dEQx`q&!>HFS#U0th;)S{k^aOcF%2#zPA)C{8D`V|fcF_TJ$ z{?Y?^RW%%21Ze7Hbs()ClDv5a5UhV^k|=X3X|G**+~I1t2GH?d-5RR3DODLbQF)@C z98de}0Up#QupN6Vpt)d-7YwpWZz`rvuv^4}<=m&l9mF^H)bXe-d0x#dL@tptf= z6~NEkFvYeMNDn>2kZlm(T3fT#x*xS*AFIMvz?Np&C_)vVzuF2pG1^m|`3vMkq93ku zNGlD_a}9l@R>Pv7PYy{n;FRD=H~{!>H=-5>M|y`I^VaXoVk!R#C4#K@wm`0$F$3$G zAym85g^#`m_kMCubYZ^2QnhGY?XCL>bQD`Y3ze363v8=h56ok8i|~L!M=82KTlyA2 znDy0w`Gp0@nP@G1AKv<)vyVmy6sw^7BKQaudVLsRb`%z_V8<<=;QNQH7Hfo z9Z$rT!9)|H2jJfL^6C7b<#*P}mdFWVG%N)t)VlYbQ^D4Xj$|b@pzP>x417tO{&;Kt zL^@@OIV|ajD7k>+RkDxq8$0z$V35NDLT7^A4|M1h;=gX)*5qlxO={i^m!{N#a#v7sdd*cp z!rNw9pV^0DZ8EKU#)^Lwb1fe#xFc_+FsICw$-Z?Ar=aNJkZ_U8p~}$X?gJ(_>p1M`i~VmQQ@GW4Y>L4RzNI}gslfR$kQjCFK4 zTK@Td_G^x-pmP2#>3lr&DjG_SH+lk@KD}evUkAlhesE5K^RJzKU%R811)uOu*X#P< znow>_V-dHE5?ZezqTY9p*yM|d>)$yu&eafQXNDzDlgbe^87Ka|U3A&$ zlcrN@q?HHw#&i+X#U%&E=J}hUgtKNp;f8F>4l5O6;l2Iny{s`t*C|wUaX>%&l|U%G z|0PHoyUAE-BjJ@%%ez$(RtDKRX{XyHtT08}O=@&-RN++}-u^C>_oX^Q#@&sdDx%oz zd|2Fh9Y9&m=|vM?!Z4i6@L9NYhNb)cfDw!D<5W)-?JhE{&<&Sn@I{;^gDI}81wTB~ zQHEjf(eR?f?s6@A+K)CqSDm+UZ52dS^df(+Hboe7Q52y%+`F^Iu>|oq!5E$p4dP`Q zez#YEsEQm3g}C)I9s}~*qEG3a zA)CV>%OvP^0Ph`lH=?`oBudkzWO_SD`4t_u2a+ccBARH3ddX@B1MoI_FHXG&|I($M zb<*pb_GP=2i?#Jd5(9~&p(sD!D;6vEa)oyV;;Kpo`aSN#Sde+$Ttq#_wb?z+J6WTv zkvW(6ESS5{I|NjbjPsVQ%zZ60wnr}o$J}h-l78VWjSlz7@3l!Xh`rZYUuj$}c(NRh z-D*wgwg@fx0eKKCy<3XtG&937!URD_wn4|a5Gij#bDyuQzP|VM;)@=h*-zLnokpVI zePl z1fVGW&wow5Gcx?@?|7B+cc({6AsbHt{CqV`D7^iJCV%4ST3b$|~-b2$&U*;-0(<@h28b9j+w`Q$dB?P!Z|vTuA1;;S6v?gM^4 zrTKme(hrZ8=)V}RD?R~pE;v*eNeHPcku?1ZS48z(?W4}H2?Mk!AjG6F_);9Ot3u}1 zQenA4<&|TcM`4Uz`ah$~B$nkMKmo4OckkXdC0(8>8nrY1e6mj~62^5ROyj{v27i-R zvd8c9DwHH_*G((&@EpTmtSDT<`-2JC$QBQny`%cxuANTLnFMnhWT#M7Onhcp44Tq5`LKJE1XFpCO z$rvzv(Poj^RzkF$S0xeXNmJt?TZ*8(aj6aUpfRpSl4HEbV$XYx56&-mYf*ea>p7Ey z!~l5kb%9)@6yM>3o5EDdb^`>}hO6GH)BiWe zPe|i3a+8nx^xGVL8<;duH3znm z-DR}GeVK|yowDm8KQsu5dd}rNHY)1iqd^o~>dFe&Z=wLW?J}$;RPxYatTzFa&=YG{ z%}cwzgHE~8;;;6@oe_u^jb90@*p}585%Wu9-txEtz>bhw$>;%g7;h*VnwyTmb=M+~ z(`rG3Ip&o5l+Qo<(tQi@XLZ>N1ZM78ejM;OZ&yy0y3X&|I%N>H1=j=bJbjWxLVe-q z!Z_HV82EDi;_?n9yM*^<0HfUb*}vVr@(HStUKpp^P5X* zA&@_v7fc_wX}i~X#LB(`5Y$s6Jdu6b2X|0lqTZk7;0lZqbe%_xF}dOJ>@# zm$9+ZeLx-VHlXOtw>AT*GSRY#iNHFVwF#uK`BScBR8)Rl%glg(gI4(fZ-o4D=P}?U zb9KER;W?oNDyz=mza0GvCzJrU6&0=?isDqbrZCDDx1FqbFTD3-0YDKO63@N`Ie+H@ zPKWmr>}d@nApBF{!cps|gt2@xfrQC3qbCy)F-pRKoPHZ8q9b768mL`YvOU|C%+2Z1 z2o5ksp}hN=NLTLEaPW8|XHfNY`#S5Y_c%?Xr}+~X;&CAhi_@lo>EAy}=wwbL=iLs> zN4TAr@Fc7Soj>F);Ws4g|F+5Zz!5U|1;Mhj{(mqW6ySx3BYlB!?xQOHv^mW+EN<5ko~5D!3aJl-4~IQlun5GGSS zLs&gyfu5-3|D|zQE&v9|TlQbSNu}|zJGo@RtkJvWmZt4oBh7sZu7c4T46s|^a30eZ z=HDU)puY0{EK@4}KP;20F4mc(e6S@Jy|Ao9ev2hBNK}nChW+o6w&2kVT=N9?l& z2AF93f2KrPEs5=cZnhnoMtd@@hUUsx{{8(w&5^D2u+8sKnKu7b$T|UjyW1xw8S$_Q zNzm$>8j_C(4r||zBM|cs|6>7qH@hI|Cn{t>|0g{1zgjPCIX! zfBz@|6Q9{Q+?qaoC?JSoimY;#0HSii;@QVJWMVkjD>aZ-`o6wCz~}==%{{={1`TNl z#C^U#%DQ^sIlGz=pvELID=>Y0Gzhpp;?LYiZisD9 z95LDmhnn9s^1}z-(BokVB=FAJSr!1j&Dhvjlj}gHRIEgk8-^n0K+L#V#O{bL6axTw z#)8*GFqNdBaOz2}_RT1Aa)DMO>JvuQ@~r~fa(@;s@e0j%gox7zduY>}LLTdby8s4) zbnaGngpYT0yaI$_>S`oSUEB|JsZemq0d*+=RN47ORnv<;8`y#;q+jlg2t)=%TH^#k z82Pe{5!f1KIVgi(+oc5Y+t2+TNY#Cv<9apii5X0^)d!}s+IebrRe>e1T0%!CF7g_w zf|OsE_cO|yshcI+FDWr2OZro1<)2UOBolO&kF`a3PLo0LA2Y=hmuH5PKxi-5+)9%| zQ9f)OfOk81trcwI7bqI_$q)y|KqK|shO-$2m%G@(ZS!$qPvS0O^o_W!DIe{ti!$T4REr)08cpx)ReT);(ht< z@1f{rZg|PB%Xddpz`+ohKrQ++O!Hq8rD+KHkNE1*AyJMh>c!AZrpOUq?!p&aJWxXP zuZC;Duqzhopbhb)tU*VHCrp#^;0`j+!8{f&B?me5XMQzK)C0vT#1I|8{QOoQ7{}@w zz@cZKasWZwhz~YZ#Lb1;7E>>-U($pUf@>2@aO;xpcMSS1?@SbGQw2q0rt#4$=+4Pq zIzc+ijuzgq8-TnFsPjBLLhhhHAo=T@Pa*iLk&R!w!$>=i13N0#gj!%!6hS`?Hp1>9 z(jKt`v@5d()-aI5<~TulQV4Fj&nprO`N@f3+>w4EPhEp>f7PWQv$^4y+xY*yIbJMA+GLyuBebIuNaF}qHvB0;(PHDu&kj{=pjrdDp1^7 z|6@3?KUDs@QMM(P*3U-X&7OyD5}*!Ufk5R19gfY{)iT}M1wU94qFP0!y#vPpm*L3O;2(@$~a;7LaZs((Zxbixp-^w~KkH`rA%0(}U;# za3TV5eihm2L!>|C(27<7@3c%%si`fZ?`uW)pelf8rajCdmkH~%Co5P_J>H`IS~m#L z72a$Snr>q>gZ&0|o8|93imYcA>3$W1&jsXt@UjjVLlZ2}? z$P=R$+h?SyRyaRGsI32e2MENZ66f)&P~6w|Vh#m6pd~4&o;gGsVNm(w0?j0Vm(@jM zVEAxmuvUz9$g}ydHnTj^gU1&Lkoq!%eUDtfC=33tHKG3g-t}e z%h%%kd~Cx0PPYS`K|@Pdl~z{#Zq=EmGfE1yo9>IlVc(uqG5 z9E~yA_GZLA;6*Zj;Ma{BXqB%*xqsshSN!-sL(B|2M{Kk@PePHcmdXpdCF|ve5-#1D&x*zh}HZf zK>je39@2T}^d6KK9KgDj1CE1*QL!Y%oFejG7`eLrR72P4Rsw9Iw>5)$EB*|#}7a9CBn5b6!=$h1vn%Z`-N5ob`(-EvfHwLHz((NX&&6#nv^RItE(lu@drmXnD z8Nz4JPVrFbyYPF;Ad21depwlu?zCXlU$XTsJ*X$lCK+P|;vM@m((gcXK~;*0!C&t2%y<4}HKj*d|S z(cucy8=<5o-ehsIcd`17D}l)&!t1MrODt%M1w%+^XMt1nP~D6qnJRcH#ZB(Abr^uI z3zG=si5vZ#2^O6-nLu(0MBim|KVxaKj6oD7tjLc6h@JsFaTlyrH(J3teRD(yn3CvF zkRX}j%B^Lm2YFL|wKdOmH(L>X19T??Izq#4d;IR+9LnSD-X9TNFs%tc3c^u$@VS=$ z1gAjnu%p2h(9^^PeDWfJ$21fVtrPf~yi0~|Un&GLyPuK6tDX(H#oc`cxKyjX1{8{x zvX$t|MRCc0|Gi${fCFIqD_5l~I%Ol$-mO`q59LYzdpv6A3ld0D%Tx<_;EIKVuoPj9!#R zN#%UP*6g6b^X{U@8=UB-9IdD`tls<%Z~>zaTX^#ZNV?y_*`9a0Hi&Ds|JpbUKA8L7 zxc>3IXZ-T6-7W5i-M^0sKyR#lPo%=)h%Qe4g5{pPbPP}_sK4~FsMJ$AwlTzrTv&?| zxR@7+3bc}!o%`#D{u^l3K6G<#zwgV*Oam#bXqu73oBc_Y?>?dHoP9!JIimQnZ9jtm zP>%oGrKZr8^`2`C+bW0$3XH}_>Z;}+lH+}9wu%&#GIOI6Kue1Cb^=HP)CpHUe2C-C zMU(HAj2jHUMr_+v9u~Rt-Hh^Dr`A|6qb(945S!3L)gsTc{Rk9;aXA&BEcblP;LB#E zb8(s8H^W#+0Ltl$^0e}Fbko^9E&5H79;Zre3Yq@5DU4pCXM0NwH$w-zPxfYo(dr;1 zkhgWOnc?9pWT$vWpN_F6y*h^?VbS(ULZ`VB7Z{qiXO;<`Z(Iz{N}%f_#m%02*QtB2EY zY3En|g4o-;;MAC*jTFffipMisTU+@qOo3CJD&V(z1Feg-QQZHSR{Psro{D@Ghz9iP z-0=I`C9{pehx>*En4>+KGR$w%fO8=PI9d=e6{X}w3;FHh&lZVq|3~5BXf-}y-VrWG z!YrSJLr4uNl?f$)czb)JDeSwWu$v!?O}@g9rzg8W*(5HdC>G9(aTjCcYZRM7Yyo}=(jerP`nWh?u!$5VDw6bpV|Iw zCZ+}Rz?G7QrpHaZ=<{dVE?XEL2_pmobo{u%Z8yWH5KxT|4E-hM*s#Y8XMPoW zD)53^H@4OY?LePKJ>t};>;X;n^#gIOko-Ika}7PN#Q|mG>9wBDpY)oKY z0N669?wq#%ge_!^HFFEwKRKwSan%*UhgnIYX79TIUV#~mTDT~+d;-lRmGow*PC)bm zC6agm8Fn5`&!3i;Xc*q5)50-I{y8`#AmR=85rFt!_ktajBmrWjsD00km=`sb{p30+ znEehikOQL`c;;Y)1g2*tmg|GSCo?tE*f1LAxd)06aJ4lR4|6wmw+2Y`k6d7Jh~5J? zE-Nbxq1A;75_8HBa|;Id!u8W+!c_ay;4x1zxPblcTv(}TBksC&77nOtn5z)5ZV{6V zumx{JDyN<+;Gx~@(+FoD^Xk_H>MuQ&@Y_JafUK3fV+iLpm#p!J=;>?cyw_jB1NWB3 z-XeaE>dgbOF}%mU(e7u!zQbgNQ~uq9{)kmm9#Q#VgfhQkJWnC_eb^e_7tW2n=KUEW zk(^_><&XQqKMC0xTxwCV$Ml>yRW4P;}Q`>X=ts zVm^JdjH;+|7oA?LGcWPDt5)fHK@a-EOgH9Oo*h+z2l?$^{M}CndT@vLr$~1S3=&D+ zT3koap?37=HMr(w9;7a|22qTRj2H~Cu(7eZZUBPC)_Box&l)?dSpwGvdZ1{Cj*ac3 z@ODMsTwi+m`-2~lumvn)KgPG+^9`iC)AAJ-mo*;0dzu?k4gDzKD}X}o_2dbn^;VwI zkY;BkOXkqRl+|MyO-;?4=ZzGPXa4WcqhD+=SqbPWzjKEqqF`iXWZQJ&kt*O%a2#6?W@bE)D0I)w(Q$Ecp=rzFoCf8G=rw?b#Vhh#)Ci<;LnJw{?_VFaY5A{h)&Pc=ryX&Yz8qt(fucVQVv8mZmBr zD;t$(Q~J=Yt2%m9baRHO!8=3U{#&fX|lEy=R9=dq6| ziEOYq5#ro~8u-H7F$P*{-V_g>K_}l5+g~Ib-S5-#(XB*3|4~3DK1m71xDu z@)#j=X^pV6vwN*9GXw+#Xi0lZ+dDfe8XI}eejTp{v!MCat02_xZ57}yE-f_|`^g`2ZiZ82Gezdnt0z9Hv-6$&*Z@IKCvb|E8dOf%jUw?cK z5=^lvDNtBnCnO>=@Z{^eN(`kvv=ROEn0`wOexzqPhwhO@M53=<6RN*e|u->E@R>1eSfYb!k~Cx=@hA*aK!Ohxo-2T7mJ!NCE& zZ^h?*=D&Q@{;UHDYLKqN4rEsqdk=^kpLX4qS2CQ@)^>m^xUPM!ZfLpt)5X%#of|f8l!~t>8YD*EG8uCB?0M+X@!J|c zaXZ}SfN2}|*p5L6a@#M?O@eFsBb6FTtsnOG-@_tJe^$0B5$NmdyV89JY9pSVLs{ko zp~f0iWl}*w!3rg9mQ`2M(bc6BFm%|-Da(1(>}@CA`S@{38JX2(%L|H1%F1jc3C1)( zp>zz-NJ>hwpxxU=Kk}$7d4P?B)1^&h^XA*Q_Eu$OMk;^Nfg{ULFtu9qQ7U|VeCXz| z&dkj0ih9

xlYiP>F?h1#UaXU=%o)F8j4F z!#>rVUkHVUg-Pk_Kdqd-=c)VWNqv2NFeGbH^mjuf=85P0p{wP)4UAH8c^b(zdALYhp= zz0D=@R8L7*P!NeQrg!h&UC~Upa%)h(pPRcLY~{98&*jf$zp$_8;prP6zdSwd+i0qh z{l+cx?p??Ft1_>{-B)V|1>S)x!gvU(2pE@xQ~3+fr1SCdfpI&&NK)tG;xasV@YxI5EQI{5G;MIm;X~6yb#@AIy$Vo^@z$m4al-2`xs;R4& zgKBJf^ynqCcv&;J(l2znLvy-`r9uMoOL%njI&F`35(#Dy2m57#-J0Qq+mj4$=`&ts znDWU}hC@-{IyXOGUR}MKkZ=a;He+*3nC6i*c?AV-dwctdiHV@=*EhYpu)@$gH%CTr zi_@hyWS$q%@XO23S7ZCVzG-rxHjHevHQ~8)tbLI}#boHfH@v8o^rA7*r$EGQ^g(c5eL zJr0=P1(Ka|w4+O@s~2<(h#d(Z^z8W4WO}sYXCYx>ZdFxPLMz=2!Tz`rSMv=XIpjZn zv*=AT|B=IDk5P?QD4#V_}s z|Hfm>m`QL>D=gG}-q2uw;)I-y8YPf2v0jpYzg*7!`=`Dh<>26G@9G-JzB_l}SIWY# z?W7HH7Er_A3OUxbii(Pej}$dEvcbw?q4VNkV@lEvA6X9%4?AaPPIyhKK7+2gJoDDJ zvZZBXO-)UHVWF{?SH5%Z!-s+miOM1I@f%;fc=3L0EM}veg`P$eni;5_oAW|+BP4~a zp9E?N3kz=>Knf*MRu7b!Y?d3kxTqu`Vj5v1?j8-;Ff6t>97^g-S? zw*EMNw|nHVnotG;%pJ*7+ufL5@4)z(J$xe(bBf7!eg!0b`82d6O4<P z+3t8&wvrgqN10;s-@`YY$CXCU%tE^JqtI3VxZCK(;6yA zi-Tfg$;2_q;rqutwHxZ=<@kk#qX>HHbrl;UC<}vB8GA;dj@!dSbX`*m(z0#3)%sTaG1TR z+xc(ayjj=KP>B;pR0*r({!)0S`3!=anx6+XUJz-7nQTt&jMlkIj&x+k#Kiu^`6(i!!<3WL&Mq$o0F7?jc?M4j)0-Z7d%t-B@D9eWy;DwAl@A)L zF)!!Pa9|NS6Mtl92WMx?lb%&pX4H3MufqXx6iKBTGW@|na{z@8s)ts7#R1jCvIdPv{xFRYk3IXUa<>w|-Xf6P$#@tL}i zS{OLvwl_taS)YXbIryulX5ntf`ucjPylmD!+08|SYin!bh%ILP&?wEO#MkwK5~4_q zkGYYtG5^MmA-TCqU_W!i3;og5M#6M2g+&GSrk&`1a(0u6iAj5bL$#S~(m%L!5lh!~ETzhrM?V`GA>fu#fDY!ylzCLo>RqB6WNKi`KBZa+7t7S1ac zrS4cGxpU_cO#^jx{@b^2TbKCCcXxM_1q4Eo_FTrZzMTT9rSr>arfzKNby~$@?T_OZX^VKGk0D<2R4id@0cchI6j%h@zwYh5)Xh;$j6Wi(AOWneAgKR_-`z<2k!C^nBU#F&m z@!USTbeWoY)}K$3pI^(IX_W!=3hWV@knqEuy*DU+TPQ5azgF#~X5Q6bn*JG)LFe1l zXkk-25Dg*Aa^e;v9IsP~pCWGl>vQ6I{z1>50|b=#4!`bya*3K*3cvck5daA*kul1*Zth74$|J8m z#80tTZHj`4j*&^5Vn`?<ParK-)KF8vt};#hcW7u2+1^0f z%EM>(D3bG(?EQax!RIHpnk;+cLaqrJ9UYx|l2lB(Mgr-8Tk+~Z08MAKx{(CQ1LvVxu-@lN~Xx-r=hQ#n&m zuYHY4F3A<)#3UOXy$+Z1%uIZp{Ih=$Rj#mV;FVJhl;(UudZbQtZ6 zMwu-dA64K8UK_l8*K2=NRP^BC!)fo{y{l)R`SOAxO(l%Dm2G5XtB2pxDsJ1Q(Y`MA zWu}lfa;zz#y~xFq%X?NKBs8>W>Q!;)`|F3Tt*zCQW#VFuymsC^m!T=*IB+60Esa&& zZnw)=V}+I2(JLQFOiWF)WOI7$V~c2T^Cau%_o$@Zm)~4%dHU?x)%-52_H-&TGBVd6 zUxEh)u2hGys~Q<`;pT{qC+R^P74&t6V&wA$@0n{NxW@g1vl%{3$cH&m!H{ z?YpiFRRw?OdQu=_TJ1RTnMbJj=h3A0ojidX#P2+N_AL3OKFO_Hx3IAfVqzvAohIjD zqdpjEu!~zRu_H@A-+jgi=jl21ve2=}(9m~v)Jv5?F=)HOo!2(4X{t28if81Keb=ma zZQqKUm)Trj=vW@3R}2b`VXSr7Eo!lgSLNOwdHIyUz-^_&$cccxCogQCbaZ_E;4ZD= zmlG69*cp8@^3Z%s!)tvdtam^9r|R}H_fNYGJ4%pKQ@?WSFG}*i@%z{16sOy?sS1&# zTM{)7{P{goV_&FW)O$rZGA8CzIH&Y(N#}hkX}R@^iW=>&yQh)lL7{ERdV4&TpGk0N zHcLmIP#D~}YoYt+&-MUC8=FH#x1Xt}tnTKEzQ4edY8!vr&0e9P#)d8M?)TRh1bca#d;>XTlOkmwWmHU$j*C+Lhs1eEPmbd=c6v@RM9IudX!Jor@u2X;!e#+&6NUGzj$=5#=lxI*WP6| zZk9${nX>N4X@a067m6n>dZWQ^*ZG)*~giO%+1X^LOxiDIgixR$*s?xv}jHY zt~1LN54IOi*tv7(i)F8n)X$lESvHpTJ9(5Izq6u1b>i!B{77}IFE%!|rZG1vXD!A5|#i~S6_Q*IRL;7@HmJG<;YkwDs1o%;)CZqq7yDF5rgpPmT(?=RM+g3GRT zi=TgGc z%%#UWcI+_C?;^44$Ye71UEQDJv&`z=#c6#ImP!b?hIkcE;?LxGn2-L0(;K6&!wXJ>9e%whdJ$3exR zp&^-36XD%KK|vozod?~DWm{tZsVx+%tE+as?>mfhvH6C3%9+&8o~8F$TO8c@Gn0{* z7xm&?Mjp1lt*!0dOxYh|lc&EIm`=7md*jfbjDjKTx8Yr1Ute2SceUr86E;WphSA-R zI@4+@Naeo^m;86{+Ro)Q!4u9cAKqcJ9}CUPJL{-<#HKl$PtsSd&_mPL_VX9vL$?ohE`$hV+6pB1CZO@JG-7+4+ zp)5z1Ih=rf_U|Y8m<0{0I`oa3*d0pzGcyH@N*+niltk~~_Ky4%%5v`P*|XE00RaIz zjGz8QypsUqxw$#q%$)+;Z)*e?6Pdu1jru=7KhMw4 zKTyN%S7nhu=v-9W)I`?Ir9+UC@f5#gK8<)#moVaz1BF^cxa1ug?&bg*xuA6G#ze_zhqBc>Z{COzki>Q4r^xp=)*nke z7v8PUHx&K(RZRTE9e3a&DeQG)2Uc|?e;ajPJ)DQj^;bBMrSenwt+l7Tn@mr5eL*1b z?%noRm!;Q!&uD3D(-H|!eRpeNcUXrF*}(g$SHqcEuN2$GQd3jc|BdZF0?)16)05>d z2{5;$*h;-$dD)GW6BEdzzx;nw1b-TtVF5lOAJx+{k37pfq?y5x-*vCz%50BCVYgFp zFW4Z+z&htlDv(tfl_n%rx46Z=&@}ggOnHE@=b|DR-;`_L*toV)_LrEnzcd9pO@zkQ?dx5^1YH9rr=@QiOS{XCZ46AGgk1; zX!wKw){^D#wgQ*mGp4nYfB5|5Bq}W;{{~ldLP7(PF;vHUPN3Y{dK-m)Iy-#aTBrCf zx9{%4?#rX%$~wqHg1WPcT6`{Y8MndFhj93i^Vp0Qk`j3^p#-tV1nxiS)O`|8P= zSfP=Tk=bVHnJ<^ds#8&?5ok85bmhu=ddLb?V;*tw)rIVf>mDnrc2C|?9wH_CELPjtI5HZ`VoH^3G&`)T!7G0x1+WwO;DPS% zS;ZigItMa(7M7ZKPQ#BRUHB~W<0M_iUf=j_4@`L^=Ocw9vly+90W9WTsURI|jQco0 z+92t>E@5AoP#1lGfs^y{v}X%<1B+$EzP!A=xTQ{0*Qu{m8l|7pXsN&kCwt-?S>}bw zdW4QMY>4@9S zE)ndf*Zu%MzZ#!|-wp`0>1&54U4Lp+)-yD785r^hY|#y)w2jz2+pBKxnMfWz>~6`V zxQ!aebm8UsmJ~nP9cSCwXrk+stgN1w^OA7{RDAelcRMirvQ@%ouBDPRvFO%7ljp0A z1tIek0tyO`?y0PPlN<2aqOH#o?>mR4xT=w)=g_rxB zG8-}avPpgQV0~A>eMFG9q2bw&yvGh5=G0?$*@&;WvSYvd)6<_F9u{DxBnq95 zj*ecq;)s9%&o(vxZTD7IRt#o}fA`&(5(%aqGT})$NWl|08^Ra_IL=Y?H>?87SOq!A z`l-qnNXv41?1a!+Y4=}dzj}(qtlI*6dJMPIa5a9Ukr&8XzfH@c9)3bd5gJ0~caMvD z+|kkYEnIges$6`iC%s7d3VUOEdL|$Om6;!?V{wv|VA`F`N zO*)=7mF_-ik=ozY7C(!Rcc|>T--h9D2}T0-wiLcU&`JrHKf67^pWXf)@uM)qkC?@6 z{SW-}{}ZA3G(#4ZkZ=ZxR?t1|Chh6z**U#@sE~z;>3(eN_{;@xwjZ@X6Kl4H*dv5K zvzQ;L`}w^ftKKK;{L7)S1P7vmE%e|v+(3ycfnK%sF^B&n5w9J|ZfsN+x9j|nXWk&; zI6&f1y2Pw+=yZEL#2q5H(n@T;;Yc}&3bq>*pD3 zRk?kta4@K0OZsNO|MGx-iYhCy)XYPU%M$=R0yHwL<1i1L-GHbl`qO95 zKx`b?w=b}^Rt?2d1-u0X@wxMDnS`c0O%_NO{euJ%S)0A&5A<+uk^L>~{>u<06+)c{ z3K{CR_3gDwa%&U38;Amv!tRT2tmq=-HzaUVrgc&KJEz_Fw35|bU0n;tW!-goaq!0V zMLcQ!by+*~JZ~9O87IjbE?vsY&yPbn&ne&Vy37l53lIx~F3L5lqX+-@oys}XCsS^3 zsxV%^HInBbv{&Fr^rip*k^R$CcM_f-Lr^L|dy4Yw_eZq=`QWE$Yik$$5z|Nmbi4r% zku#y7i+p-QDeb(r_J?1+#aT>2tyX5gfAyjcx8@kj_t?9~{5htVA8NlW+IhV3i8;!3!2#0fEt;gz{z)JMpU%wE5t zs-3_}NJ|m|dSYYmc2D#1@!i33gXLQ717NKn4W4IbmkgX0W(!-N{YW!{umDQyu~%k- z?}2hix&2fFR$Vrsq?<+LWM(ue(;* zTfOwnxP?JW#=m`XpQL0QIJT(czz3U_!~KVj$Px1FNZHC>S+B)+1ADa@Z-<0Xkig~& zNVjHLlt^n;13m&O#wvDjFG}UpvTOyx@bZ!}_WOGb*~A5|0&?-d_Eph#)P7A(YPc(s zC|SI`ya8mC%)+h{+CBEiV-1~m!cKdt8o{NPJkzt|!)@Q2K_7Gs4XS6^Rp%Cm^QT6a z`V2OxEuHgzj1~l1HR9H~y1Ib94D|Gh&^wM29E3lI3PyMEI%b1f9RP&nnzUGm2!!%lE?lQ`2ZhU0Q{do<8P_bKNtGodp`kcUMeBL@Wp z_8mP+e^Vz-#R+;P3f@Ypa_BnKC9xCC?yNiBt_Q@HZLHklPU9bNeZL`{adnJT^)-q1 z-6^+=&Xh1 zZU+WN#;UXkxsW=up>{3#(au~`@TY|@=d`XC7-Y%L+}6Ak^5K5s12yNfLo>cTznJSf zZ#5bEUc4m#6w$vV)`z;?R_I{d(gJy#2A`D#wqx3NrBy6!omJJ)Ot&K}Gt;YPmR+NL z#L95u^!e1#o95yPB5`ap@^kPsV4rF!C@2*CLHqzX@#Wtx?0soaU;!XT?aEexmqSn|6Jhd;lj?IW^1{*wvM(W80acRWkw-^C_Y zo6kP8>S9?i-FB%TvA``d5YHR+f&&x}3bwryiIU?*%iiXW^jbW?I7}he06q zoU$tqu>JEnHKkpwoEeVa%_^L_j+t#Pp?pC_K{;KMeB77@O<>S}t10ueZof_$sJ}~60XRMq<_-)T1 z5IQ^p={Y#m?d};;E3CwVPElP@^j?~pAaB)H^C#zVJ=cBFQYe-(phA1NxjRoHZ;-f^ zi6Nl>0Ps9Jm$o@kGN8$Vx5^^RIXy1jdKZU8r2P6I%@V8L7vj4IkEi(L#t9l>zw{KnhZ9XyZL;on#1`nDY zvy^)663e4E3=KR2N5%xRt{pJ7v#q-Fy5rr0PhEd)?x~nkWi2S^H8>S#F#{_`z66`D z&yPBNQP?V6E398iEO+I0!)UclTdj;+;CePgqTj*Td>4+>F$pa`KS6)csPJ}Uk6-wu zulKV0^25uTEWJ`oFWrh~xk1gXo&nea3RKiY31 zjGrZ>EyN8WLmwPGmnoa`AcQuR=eeuI>g2ewW3i!Lh@#E_>Qc$y<`A0%HMU*bHIt;2 zHJhzpy&IwsoBqbGOwd4bst6b{dY*~t)`7RbTlt(i!`61-aX-ZfOw^zKs)?(AZ%BwQorBSz||xeR>j0}n6RL!L5A z+z=afD<-VuB{ov{Wyaw%y^Ylw_OIL?Y`JnY{+-Car)vR>j{BsXj=9jA^yyr?!BU`Z zJ}zpT=~Ml}K4#XUDfr?%6P?De&#L&3DhD#>wMA=ShH#uZcpy9}Yzee=i;A^)LfE56 zyFp5@Y@i%HJ^g2~u-REh*iABI^K&)a`A{M-F>Oj}@1f<8(SCb$#K7PRwzZAsGCEA7PfCz(5@`SwY%M(^*uJM;J#&Z(lJ0-ol; z&!q$u4U^nNAD!sB{DiThO=>EtPv}{=O66Vmge5e_6&OjvwUjJUordR(`B(_5G_xrT9^?2vr=uTt~Q~fQ2ZJ z0+sCoZTU0n)>N|5(NRL=5KTN(Sj}XaQ?NyP-(Nqe!zj18?t;FU_1A1x!Ao!V$;c$a zfum<;z5^*KBGS6xJw7I9#?8T_bdr{XLrKxG>C!91uj02GzRT&h1pi3suf7#8W?c#U z|6;M5AdrMW5yHnqcN50i0%;L=yl9^B+!a6aQsX-YBVOe}3!#){kxDr&Riis#&#}&L3hd ze}w((sZT5)(CdkhuaDM}o4j~(=*T}E(D-!hBWIZ~y+)(#WakF1xY(7CGMI$78!4$~iOIU%2l}(P6yZ)^;`-7VRvh9mW#%zL+ypa))Kk?%1d=F z^y$-mLgnku#7}A3iXkkzix)3$nVZRLWm5AIO=yCBqA|1Ew;gSaTeobCG`c%K)zp|4 z7%YVk9`7x7|0aE_-}Ptb{nxLBOHEglb#)o1y9>Wb-_a6#&m$n4$Zkum)SWRU ziu8r@`SZ*XGV|mFcgxBtqj-L9CnxoebLr|=mw$FaH6XzVBYiP^RP^xq>;Y&9<#w^< zU%d@mX=F|)DERl~dYe=R?j+2?KR>jn!0+Iy?RNa*(j2VXD_PHtu?q7FiLn zL)3f4kzn{PEwVMY$SAG4-@YV%+ooWCBwA~JZ7PR>j;5PO3T|17t4mfdi^D9@j0z6IcNqsO&@NdGYb`o}5vWi%uc<<`zyV z*F8|#iHV6fFYaRn2kt3yvF^&-kDkCN>gE=g`vs^ev-rFD4_j#*KQZag_T88vYmAJ@ z%p?dq`VG;@KH1+rAAvZ80x|ZUyWKZe!Z&ro<~}}wPMG+X!>uJV7ijt9G9+^vw^m`7 zU60@9Uy{Wi9ijWrJe&p7(bmKoLI*ZAU+r_`$hXPVK+gFWnc@W+)lnomzTS{+})>P#l z*LDr4Zj~8+qpWMaHL$f?aKyx{fvcL{r%$;tr+i*a|F{g9xc|_h%;fejG=4KZ7mb_! zXrOg&qJt>DmR1x0Jd;h>@^Ht#G448=#C{g+HP+rD~4Pr-jAYYhCk3YP@;PKc3=c2;3a zfxq$T)>{g?XIDv=es8yo;JPdn+b2@O=d!1~0$~b#1)YgcZ+&BZ4(2T?4zHx-MQpe8 z%IsCS)e#0HFyz~tYuyjQsUX5np^M))_anQcBoRcXWrvoxx6GwN`)BSmePL^Vt>deS zjR3|eK{!u#2Sv>Wo5GN zLWct=yh4}XJ9e4J>Rh;>hBG?3GQ@Y|>S`O*oab1aCBJ|`75v}AZclg&MQcB@mcq|l z#>B*^KN9vwK1V%z6x1-fS4c=`PaiwsgLtlv#>$>NACmgos&#L?__a*;H&U0%yd@Kk zJEY@y2yepmS5F)qlu6Ep1B42LNYubu;g|6qJ{*eH?e;1*uHxQi7!L|qB#?Hbc&5x0 zGZyG8E6rGq*Y10N1Z}rav=EHECil0jOcm92RyR+(MJFaUB5D~TO~PS?X(V%DB%!Fi$o^{;uQEiP;mrV+B$qAfBE!m6C*%cx68d&;$?sSMzjwCDUj z!ZZR4de^68!|SrA3=<;NsEBH3&VZO;X-i9m+bG?%Mh2Og9X+c?8h8 zix*E}iBJ#75?VUCCkSWTwx>IB9u}WMnBLfR(d+32M?{RbojKAWZIGnq|HTA;0$Rd^ z6#`GeWAHZ13i`ODChBit2M-OIv~)?syf=p&mCBe00D0bp33kV6xLOBJA{NRje1!x- z{{>eAzUSJ06C#vry0w_?SAi=O`}Xc7jjkiC3vvpI%0WkTi5O|gOvKnuojz^S{q`E7 zl;-Y71$Y+EPLRf=TSLUO9BQpDF+t6Ekz7V6ETZDPwS$_FU7Nn};G94rmHH^vNJ4P(NUa1np$t+g2r0 zo8VAZ2SWpebP%vi6BI4g+?8)hlT*6P2FFezV7rLN?7+>gl{|2n@#Guf&~Sty$((YrMf6F()Rraf-(Zx0> zgZ;ew^?nLv@&LRfX6lCzA4c83uYi*d4h~N4-l_o3cj>Ji&d%tA*-@wQB=@6UixW3j zU(2FlaOR=FAl7^pO)xY$%bxgjdI`dQqmf^aEbQ|N1qLV14cCZTeSUmLSpGotM42N7 z%;3Li7Q0Pfc<1Ou&z>D(?F+tlk2rT!H_FgYm8c;r zi|tw>Y+=dQ-fT7B?*;#qut{$$|9s-mUq*mF#&2d3dUK7UEfbtMnsAn&Ya9s0fUUcj zZvoGs@n=^)G5_%O`M9F4-Y5(^yPkLViD5PZb5Vh3VIB`T7ron9n_3E=U^*DNprouU zg6zR|5*cS%n+fK%r)+R(x|>B$Zzm1SI0gWgd&(@D*#0W6sv%^+*q=Y=fA#*yp_Uh~ zFtZot%l*t{W8-%@12c0qZ-k5@Ix{51j+N0rVowmpTun zme@g~QZJFKmD^fa-h%a^7nJ29HFL^8vBvBuW+TyUq2ciPw1Xx*Ffwc-VR&rMhyNM}{Qm>`G z=-^@46uVYIBoBHDONeB++K?PD*QinWFBI4?;d7#GSb~G4vhH}RPwX0s9zxu%^Ys>G zoeSl@vKk5E1fB4zSpcX}A#a+)j`zWydWyEsKU1WNC)7tUbu|aJhmFtx8Ad-uPgCFi z=X=-5%BJJ}jia%~za%SdzP-A9qS24U%)(+G1HAN{oEmtCNMw|_10X2GZgS$bHvay( zA*YV-)QI4ct%YQH`t+#|iy9`E;M(>$Hwb>{N*je{5izME59g5FOGd9|@W!eF^DtVN zp#9fiB7q!e$fT81*Gj&4@j~Fz+j}5Ln7CyXG1;aiyY!$h_eVCE5|mmP*q`&_gbr>V znn(<{MHS>338vz*`S*AGvokEzTrz4{X{%UR)~olYL5;r_yE`O%jR7AK! zU}bMxH-DL!n4s{Qpyh~Kn(NRnNAQSrYfN()&3G6^w|m$+K@SsZr$v5KePOI=75)h3 zRP|vN-R*1rkqr<4`Elyd(D8zRG!XRsJ0dxrC3zdnHmc@`h z^~rsnYy)(@bda2&N{}8ECb_~kU!LFWR4E2E#%zqJeUC&-OPJ@adG7<7iF?Gv7z?|h zD{aAbD3RLKK|EYM>q>8r&OO7aB!Z8i7mx--%kQ2B;@*X2La>b%ac+O@a1w|Q3$)R< z!! zv790A-o4~hROUc*jC-S<1P6-p`EP!ulY35HD1Y+wX&}*-#dI(N)COBg?yTcdhhb;sn1@$1BfXFjUm9|Pp(Ne|fpSpJ;VNU%A==o1K>6!9Pxo?-xxAT>nt~R2P{7BT28ZerQnynnl zd_N}UnY#cFX*ig%+e}{*F(HIWP(T;3ga~x}RbaztPrOPR4Ed4H5-WdCdXUMWyYSuqXMk=pw`zJI2-NX+=*Y;&;4^6RTtV00d%4T9s;Y|U`ip;W`Vsj2Kpu4!i>}^&d3kP$;-;IK znIIgkR#i3y^x#1*mG3>lg1gH7jqL~imku3P*vJfVn@54Y~U|>jdSK=WJ;qXsXZ5M-_)Mg~R`>_Ik z&?!yL>Pc66po#E}LrKNttv9!9wdyaEMYq&-vQ2sB!gYimU<`D}^X&^Qb@eJdPVkCq zZ{YL$iPck-NcL9&Wsr2~S}B@NP9ns-9ty8i#sWr&DnNPeHH?~obi!l>us(6mmXdat z99mp-P4*btNj%U1=MREocGnpS9&f_kLSXaq@c8@wUGpsKNPqT>P=hGZPEtud-V04| znUU%kqw}hnkHd_-3x?wfL~(Q!#)9FQs{AKLZsWlR`@%G9Hn-v=q=XZEl?hzRPMp0d z;rKYP>;pLR!-p#UWj;iJFo)hoV+ZCW;u)8zcF{c;ILk@I8l)zs8~F&KgE0<6T&OWw zR{F~FxwCpPKqDtW2z4Mutc#6LNXA>4PaU&f~)BtRg-ara?sS7E$4`J{GIm6 zr;i_#U@!zxY>_XyhtCA(1YK&0+LFwZ4Ez?c>l7|cTMYyOJb&I9BoPxuz~gI+`o0X6 zEoSt+v0#nOnCAM&aR##nG4S449ml2w<1Qd>1}?T^a1NEHT{32dXiO4%Ow6G#5q>?S zEW2>`XY$ral%2gtj?lz5jIMS;bwx*~neOf1NkM^e6Esgw+uI8fJZkS=#hD9o(aFib zSZ&1E!eHo}JAXdiQ@n!ITs+WrGkhdpM*HdDO(GHd}d&0Z$RcB`nHvBsIZPB=tvUE8OD=DUB=Y8d=_P!%fGM^iSdx|bN5q_YhcKu~Z&}`6j!~;PHHLn`_ zy#uwl8f;$hJMTZ!g%}3t5W66BHx{F0NPZVmzd$2fUM(bCFoN9&;vTn;SRahr*X6gEIYh z6ryrh!*FCpTM%S-=W|gSpBf-Nu>k0EF( zs8cPZA-raW_;flhE=`Qi6BZsuK#+zy2%>zr$HZ*WU20B``MLv>-wO_7v;WyKBB&)L zS(SC*>OUKyq6CJ*s7B_>YGRDYT`a%_!)O zB44X5X8Ql-e?CCOVHS4+)b)g2`tAvUpnV~`o?aK8YP$CQ&CZ~r!#wM1Zo^C%pJ%!l q{LixuLpEwyl^duoU{$531R?8!Krr*;;YwYjF+;YOPgqXnm?c`4a>jH0uXgHc^ z&=sXma2`>s+K>Y(XQUyzOPcsSub!SB*&9C}GAdhG@JxLv$naeFzBoI`t{{2YDKWeFTCe!;nO-Gt zZ<(8Gzw1nkzq!3$nQuBW=T+I~)_YC2;EVIg!u_7)oVAWjE>-2%Wd&kBe$-6Q z$k-AR5<;TRelJ<_u(p9g)2z?3^mF_E52Np6ALr-S+KKOBU&BJ+?<1J*C0%MqZ%LwUpa*V=%i<<3ii1wh#9NHoIJoa|XT;+&**GC8?!8U$2z^(4q9p zuiaErWthV27*E^~Qs;ey` zMz7rtXDCK;@$islbTsB_WMI*+jJKw|ve+#bQhy*ft^Hc>^D&9)mB`ugpZ%{pD{r`y z)JHH~oL$by$nae3Pzqq0^yfKn;QDAI-C*12&!4q)bau0_JTd0y478FrKb*g?59ff` z`i1W;W`9?gR1?KQ*-m)H+`XIbE{5Ns&ph3l;X3uDV(E*)@%_7W3iRs^m-oHH6M64F zL&;e?_Ebg4!s+od+peE?oB!aZvX!Gw2hz&@QJ@^%Y8Yl+gS!1>sFPDfNl8`Q`$Y0Y zgrk?>84dcgXV2=Em{X|dln(3*ZWwtxbiEzd^jfw~RK(*k9kcnQSD3kll7eDRUP*y; z<}W#CV5(5kR!JYhXvgJs|JvH^^Z~=Y9r7CVefAQhq@?49Wt!UBefGx#@Y($l2Daw!RHw3B zzLVFQmKps@jSfq{p8xKgW7#EjV+u~WFBTU$67w`Qy~7U1ve#WX`YAy#i=Wc6^yPqA zYlOw<*jPuIZI|pI*?|-MEIs%dv+F(d$~HEK(r*6lk!;}JziWrV zbGx@QZe0f{aB4RGuC06vpdmJzH}QtoZQwEUW>WQ$zkb#e#@dKULe-xy*U>r z=TP$U%YJ)t`@WExpJIo8bh)VJ&;d&;wxI2+B_kd=duj*iV~ zr#35=Z4-ITnB>SE86{W>vLx-ogDel-v85IC{}|4>+0%s3v{@+ zxu^P!E?zu?p4yUlEJLrDJ8W;)RwDZxONhKrbR9 zLXw-Cd!;p5vU|oY@5vL-KSROq8ymm%TusZ$&yUE=Jg~Yv+xAd4z@OnfIj8(K(t^|K z$;aO&9<$Z0@DP6OHZz>!J}~s-NnyQ}m}zN`$8>Rn^4YV)DCu#Ox+oJ9)2C0L+MirH zLbhvv<2_7)*70M^k#EBU18Il3wwIkA9v%*fjLfp_dU`xX-NwcyBq9QBFg7l3`+g-|^64u!^3Z{?`YALgG5SYKfx;ila3&r_8aw-7~+hC@^CE==^m!6f-)?8(w5v zTP5C}%crINBmH zxKqat%f6T2iu7)BvZ}T9!5zEy6HTMGq2Z#DQERbTgR+XsP_*wlx3v3DbF9~c7E8<( zPfyQhRvrE`z2#=&NyWMwuW3Bx<+o!TcvKqoWU7#JGW(%_nwoOa$owKf$KsWdNghwV z5!KgcNX)pV`-k<)Y#3BjRAl}xb}s(-98R%^x5#_NX?}jbNS_#2)JZKmvz~4HKckr2 zFI~u)+r=jH;BCN;H6L|#_3vK{97wOA1L2YL^7zC2-(I$o7d>kK)q# zmn^kaFfQdgInuuTU(Nsjj12zY{!8|ilb&vF;!W{K_@tx~-^cRpVP~hg)j4TC`7vv{ zw>-MGR-Vmkf^&Fegcvpsl}n6l(ZR-le_YDU%-k-TiUUnX{*_J{n@lv~?jn-|yu9-` zCl9TeN${IdtkT38$62lSC#52JAbNGzi5tH&jjMf{Q%|tubn4A|*1UUnfu2XVIEYrx z@Zm#Nzx^k?=#yF$2di#Q_PrE6e{$u(uHbF>L8)cSJ~1m=k^+PB?-;;w@$tl=_%&2h ztSgwWUlz8$?)~(|FeORV-`@sqvjb{+dQ8WT9eW#g7{`1o=?r=8q>E{>u6lLI&|*_= zp8mLdNoncIV(0mUWNW5>m8)kh^IcO6ISiycQ4ot&MC z`&u6KJ%#BzhEmJCn4@lPY3Vec;y&N!+-4%i%yje$38wy1YS*O8YP}|g*94yxsi_#V z=jvq6`<50SE-wGLIQkDCKA?shY|7^2tJg_!zr8cRTUuXjZmhlho@jeP``)u>&#ox! zkt3%gkxi+$6;GP%Db1N3fAC=6U|MHqXWPmHw2v!_0J3x(BFtFL|1a43|MqbHpRQ&~ z`91cMj!ubvzZBYuIy#94eVzLt&8hX%>gu~5KYr{o^@aKt=D^*gr0}jOqQx!#?3aEp zhqV$rjSV#v+KXPqAt4c8{ddM;ee%5Te1A^fAxTNe3ak(Dr>Ykq(FV{{v+IWW>7*qJ>s*BG;(qNI#UoRV5+w;}AZ{LK_aqp9`-_P6WOXL5p zrbg0d{W#I7?E7D}F5HWYBaqE5R;j?QDeC`fdpSjC&z%d6iX!9S;@W!rrj}`${>|!< zIgcMQmebwEKrsYP6>XELNmmFbr=r@%As`U0mLzUc-g{Hw03PWSFm7X`GDgT2U@@!2 z?*iKf!;@59)m5^xvbJ1rIo5U5`_Fat6e)!y@oOZF&CLfyMPmVqEnAbB^1F#Ay3kIU zc_w(*16AJphYjlew(V$aY$Q7H{*&Gh=(rWH|N15??l8~{Oy1bqntiFzDBq|uvAbIr zb3)P3aR0xjam?wFwSJK)6@cVvS(a_ZJ$B8B$HD>Uzn0lHpmI^KsEaK{4udE2bp-lf zxtgv0o*}VHtj|_UB4FarzL&1*?x;B{L;6$IEmLmf7j$(S0j2exS=}+B!+ch07mEbN zD7ii)XD8l!{%_v=MfcQbLuLN|a5#5=Dl3v7iAhR2r=g*dQr6g-`}i@zCPWf`s6~q> zsG6IbH`*QNtd&&p3k>=2;VhQOwbj;~SOcK!fACmdUI{pnl_oWlh%-1riz9gK?gSfzHZS6w>0tu4Nyp>){dCPvjPcL4& z`od61m3I$W&CB4L)+Ix<*R|Q|w6L(S+rfL~#Psl~cUEE`g}3WWU*hF1SJ+UesMKDiCLs0v+TUtl zFhn1DvW_EWd3iuld53N^Q*jEV(u3lWS1bD&*6$?S1`JYYD~o!lKP|M)*n5sNn1=nS z^Uz>IS&@^IlgDi3vK59)Wm%CRBNgxqx0KYXrV^u^*cMHW_${yd)%EoBDg_#jshKs# za01i;@&7o{YFhkBfPpjc_!-Jkk?UQT-6vUP$?5#fcgh137-#;&9C#*3H4P0_!8$8@ zQ`Gr*czBMdv`Up<($Y#^@U9@BAJ4zg@4nzraRb{3sGcRjhwD#+VpCH0e%HMY6?3;| ze}ixWVAaMQy!dCzc#}Eb3Wd3q!zy5cPd)hxP^F+z#RJTQxmM}f>r0<6nTauP*(Ywd zPch>TDtAlHIg7dBI?%NQw0>f8+rJ#U@70@~>WMobze)PPg?nHl=$}8=L{GcA9@`Zh z@adBlploP#bk4(vZ!U4L`~2Z#5x09|U%o@21kVvp`)sQ)b7Yk*xtQ9SPBGQ&S4VQJ z6AMqb+CBENq{8!0*_C=Vu)4Qb`}$H+QF(%h1~7of){;`{`yJrpyQr`K0llUBr8D2$ z+#CjZY<#>@ywK(AFAZ^u(9Y1g-&&T^?b%ao;jI@vt@(QC_&*fPH zb53qAAf~eCH@_VZPTUY58XA&W?sFdf{=MXC8`~?F$#(>~ZD99}0HWDgUy<2dUr0gh_yplXTfwXGT-cD$Jzrz3POyYq2 z|NqOm_TSs+hBb*L!}&Ez`JB?0TTr0TN$~C;{UA7JZtonbXK|>Y7Y-s<(d0;12@ef@ z=(jYfGOho{NzS4dLP;ej#D>} zI#2DGZ2f8Z#(57J4;i*fGjh6;O#D@oek|FHTQ1~H%thUFm0w#E-G*2s1SnrrGTRs4 zUfpEB@s|Fmk+(djkTmY1qqp3dYPM2%hqh~){cWl%V*4aLesQ$w^HsO>`d?bwnBB3( zibV0}E8pFh`dyL+6M|ms$NeZ44!4WjmyJ1DM5lhMEaGY>>2$r6&QEC{%`zqzeK10C z*WaSxyluuA{Vu(v>~rLfl6SY#MH<I@9d3p}33I1`^j z=lWk!?(A!auBVrYna?FC7@@@G83>VJF8I{C9{>YJFB8C~d!M7y(UDMI`N{{v5o905 zNN3W?)B<0~fP#H!YD$oBV2kBdGsR^pfO!eQhd)dXCFDHbYJrJ8IzBGyFd)Mys7ny3 zeSmAA3Ebl1zmwZo7#Vp*ZG}WZ^MP<5q^H00+Pgh9I-MU=UP~LuZP=gct(Dl_*w`8% zT$bH>Ax#9@z(nb`6JPy3a}Gng_ z7}o;8X0M@4Vz#i;sPe~;AJ-!VYAwKAQ8gIfB>Q&e9Ffq_W;lM+uPdRqb-l1@Y&euJ z^$loaN=nOPuu4|vgZe|icdyyeeZV~2GBW#bp|b&G5h#5t5H;V4 z6DjlaPE`PFSLzr!Ye(h`f87bD9UjIeeSLoITr}H>2O<`f_wL<`V3CN5WRV~ibh z7mLzEX`O(fz7!Z-axe{gZ*GbMp{1oo%g%1>peCr+InkLz)BoDNI?nM(Shn?x{-4f1 zCLhJ9qZ`soGQIpkp&hFv5;J>=mY$x7XdiDHZo3OAjcnV1l74L}?m94YJ&?O0N z@@>QcxrnB*^!)tkWYL9JZZo)EvXpDyz|F*L4FiK42f0>T?8_Ixe=g$wXHP~q)I7eJ zgEm(u*{~fy@)!!*J4&v){oeZ2ZZ!z1{S#jbk_LqRxkND%Jk@7^bYEjz+tt;@ zNszfD%a+6y-rQt5oa`}9fAx(ZibveI>Y9Mg1>Fm}o9d)H$wnr}s(oA-&q1QPci(Z^ z<0SjdbqW&`ooDRE){m1{gi^`UPewi=zQ&WGKT3zMUoBK%SpqJP5WQnmuGau&H31!J9qY0hy~wsI(urJT>WD1vL;IsMn4%^h;tuBP7W)$&z^h@; zI0q@0JolJum!^*QUGPFLCCRJR(+n0`m%db<$2<|_)hgVZQ9L`5H~CNQp3VMFqks>a6-_LI>yHN( zJPnPWuJ!cqe6?w9KKvz%6H8A{8QpMhh-Q#ZCo#OoW@!4cDOmtrfb8QNrCYmrp$#OO zh$P)Qq;rH@n2_o?maRs?7qm zPfYybCE84{U@}nQxj5CCHdXj~SNVALxtCa)z{CEHxw&42Io2_KQWP1oA4W6@^>MqJ zm;MjWS%VUngW#?OzA02!3i-#MsIhdHnX&xPyBIgSPb>t28gSVQa)K>ij$k^GNLLe_ zws6)NRR6tsUirtOY-<=c=NL5B|1qB~!-GJPX1nj~ASro}{x5L;PavgHP!Kdu9$k3Q zdx09zj+i58)<0Mu%Mxopyqo{v!6CH%DnyO2;6px8eS!R}`8m%YZ`bfrCn-iTIgF+ciVP`Bt7 zXeVSHm|e{egfj;2<*Hc+?1%c_l(E9dtf+mgq-yo{08^K+-Jc^+Lb?MP^9_sr%~nXC zStmtg`=y`0xEe_HpY5o-X=!cH0rf!M6ciK)V0njIsl;_khtNIc<+o=jMQ1;Jcnj@* zTMo@8gkZQSHXkDo2a;2d@kL*JArM~L6(zw>hWXw7YnFN+ea)t^tZtpFm4KqQ#X#I0 z51B(MDxroZOY`5K&B-e$4J~E6>=-!fp?mym^!%d7@!rPxp|Y`y?3t; zK)a}S#>wj(`J>ktcesCR^Jni=^=~9l#;5yU#?}PWh?+Ojf&sM-*M$@981yO&kocLy zV5-ERHvtWxf2ydfKV7a6ihnY23slO`2864-o9Yy^RnMV>?rx9OrK#YWNseO$(rMoF z6bDmY$2{of3Q-B*vnnmJ6K8>XnVy>);x_YD*mK?-%oC#q{KG9XSFNMYpUBnGX(t&d_5)!vGI+vEW%LTNonm5YHCK)X_AT-K<4nW28L-VIAFF=NUR{3S@9S9K zc)uG3*n$jxAGMOz!NQJD*_akazkl|JH;qxQ+TxOg+wpp~stE_;j6JmwK&pf9nn8Uu z`+0m>JJpJ&NKy-db%7F{!H$OAUN1$_9}P>tQr^4LKkL(g-|mfBi#e9mvW})Q4h+n9 z`0(M(4d1IG3Ed?YR4|=P&@SRf2eVo%GXUNn9FqY;7I79upT=t9|KmmV4YoWp(vzbRyVY zmuLC6TrKZC$j?t6>Km{2^t8}1G^#?Q%Ec%;u}ha-8FZd#&+e1$D6u$)v%G{KR^C|t zA}!aRnUzJlv{m{0t1Okv+eS+(m`3lqT`8YG;*sYI5G#*D$27T(^Z|Sey8k5 zbnz#r%}?h4+tiblV1hS9vv)}=UdYY+fHrhfv`2=G269`cr1rPt`=g{zUDDRRd{^&A z{JWm3JLRl@Ys<=RaeLjr>}+Jj#& z*gS5j#PSwHh^|_nKUX=jqV{x~WOQ=!{_kyR=b?KgoV@vJR_-;p?y;4HNw{P(^Nrjj zi<6zf5Jj9O+Bvb&$GsM#@oinPi;ybJb2JcX|8wW z>Dr&4uV=f#f=B8jJ2|yk;~O-2<3FspQAtCaC@wCJKi-l>H+@g~$i31*@Gi0|%Rl?o zHYVmEPEjZHoE?YA*O%Eq@ojx?>DL)I94aBl#5dNfX^im?I;?hv()2iYh#k%(>uj?W zNsyaok!sI8Kf8WJF+5>9Aa|qk?IiF+Lx%g#>i7E^&;Rm}NtW^4UDy?#Z4E;-7GgF~_O-9iI;4#Pru$#V zpFj0C4#^DE_vKeECXgRq^xH!nT8!$t0(%QVlhucUPzbFO zgan2WAE9iIjg7$!uK!i1_T?RAW-Q-%5!)|mr7AOy>0Y~bnCJlC zlN_=^5+E<#y?a+~xN?hK|EqhKjBkE+|8Q1=o;a}H-W3BK%y#eZ@(^7iB4Q_K{td6i ziML?WOXwpveoup_8gW1az_SBKJ&<;{S2nB}agoA7m%=Tgiin^PoA)nS``0t#l^H3V z0TX`DESea>YFp4XhNU;XERQ~ayx>&{@9s7Vh~q$8iZA*>-;LSIKBuO`RlS0Y;ZdPm zaf()G!Wj>9iHqO=`cH z-~6LQ^4wvtb$+ag<)R-EGLg|QvmsE|ahC~N)J1OIS@7`KG+UaS1}T(0;m#a8#t`46 z0PgMa>+O!EC`MY?5~e6&><>lk7tlQB!Gp##G$-gqUaRP6YtOysOZzobJ_y$Z4`=@7))w3gd0|%*B1^zN z=K()4?u32T|11~@J>15$jpDXwzyvHMPS;mC>FNH}>tjby0e9iZz_WW0HPi?kQO z6*Le|QR+nmCMAi&E8y_Fv0MO?FkgycxbW((Dw=w`J;vZ=U z0njTvg10KO&@9SX+>#9mYGphv2P;A(-O$)><7fwA9-W=F+TsXG?6cN8IDGv$Qh9xj z4Xn_Vgbq+@;cWi5t6FSqt2sk=YJZ{6kSz z=Endr*|fE-drEj9I)0JX4^Z|?Za@Vn01hJ}f;`PpD2V9fO)FWjiG%bmeF*D&Nuh7yfp)PBPB1|$+fs(>%m!ykpFiH*ns z!bD&V$Qxf?IkG(>!Y?@(hYXY$X#*Ms4XduFtbh?zp?bR4UvX^CZf-;)vlx5-KBFe7 z)8d4Nk=G;-ZW<%L&ugkc^}$ij1NE{4K5N&I{87eZzF26LK4Yrczy!)yfng6$>O56Y zj)DFrM(p z30lIk)zM+ZdA5K#T2-x!s^N~7`8ZlVhs=|fcHPkR3)&2Esf5C)Z zKw4&7M#qGKqO{gi`BU(q2}2BP)91a=LiCI2X*(m&F$RctS?(2N5MGEoBSd46o>b58 zOqd`K#IG@9PT0q?QE6!3gFIR4Hlx35|M53397g~M#sX+g5+P3n6MnFEAkum@G%|AR zd9QuVjN8KcLfe|U-sexB0&68I01BD3wL`lk ze^9Hdq@;wmI_e{n?`mfnvPh%o8-yuMvXfaXS7p}5y&fA<1235gt{3=Ffq` zA{^_#YG?=xl$BKtcEHN#LZ2*bM5%rOJtJcY!bJB4^^gpDs1VL5^XFTDn$PNbf(k2< zh=l_Q&EM42^u^eHgFm>rr|vSlo%gr@9q#sq#o{C*2HFffJ-y%7uqN-Xu;}#2nB9LOwB4&qrPAodm$DH%*AWhv> zH>ForRx1Af?uAvThsPV9^T1l0|C=+wHDqCPAF2Aog>!DBdgcvT~BaC>ar#i3?~3kRBmwJ<%zUGvzpfX^E_9z`J*HV9{tT zuGs<-u1Eom0u7{tAYpc(o!qYdv*Qf_JfYPCY8bkH);7O-)fwrFVvjjffQD{7)nr#; z+H4I{9R;xLFI>0)ms~qmC)6H)?ih^#DkhW~B+UR_b~1?s0_gu>ee%|8>4yR?Ltw-mG;Eo8bbuMB zwVCqZ+T+R?q@JU9lqLXrUc1kJ&wKI|t(7>s#640=^u58%AU+Au1wtxn^NAlmCH7a0zinVWf+v(do?U1sg9h8CZvd~t@}}2r*WoM;1GMvlyxD5 z(T-i0+`kKC;sd0$CJ>evKVMBDgkkyhnYEV^RY=>Z&141v9U`GY41O#mjv0-dX?8-k zHF#4Bt{j`3+-HLF0xuq*go-_=p~G*3;i&WfO4q;{S}>nM^ZB3#f#&xYg%GB&wx%I#Z*EOfs-XbdH^P*2&Ik> zw6Yte|KbTn8of~gXOSQs=!zyaw}Wa$zG8d435<6WjVLW?o@A^iitWT%oNa_Pi8vXG z#i@o`BCz%#8>hegeG!UGl!Jd*7^Tl#xbXxl&o{IS%;5dNIhkn8RTd}Z9_`;kczqy^ zXNF(Va0<}@!yqPiV8C;n6{|!+L4iaf5d%AW_9ON)p~dp|>|h(zk{82a0+1h(Uk+@( z`xAT7oFW}RR1>@=BsATb6Fu8T*sWV7X^_Cib70r&r?=6AN-a7a2DIIHG_MO_P_GH`6^P%2BoQ zoyBK!ZBW#-mYf)kNUSqSx#SKMZ{H?tg z`pN=yk#_0(w46#n#YDsjFjWcd`5%Ez7us(&lmyTpB=m6jjwZE$FHf=_d`R$HpTASa zomuDhBCas!A%iHv6zjQ=7;ZC;aY9VN#m*`ykOI;Y6HOySaT4bh>;(n&4ennKdVgWn zY8WyCy0f}l2(`It^@ji$-Jh=NjWL7ebL4coB4qP>bPA1H03U%0nwwRBRxS_3=(*6U zAL-K6(vnA=T7S;FH{iIn9;Jg;b#imv8Kv$q@hCWP+SFCfkjsfxnFIJ9ZRWaH!WM1q z4l(MC4rLFITbeBGSR&}?fERLC|ppD!5~;Ituz_7E>9RIGeY z!Y#qieTo0WR~$wENK9mgECn4McIpRrt%HH&`$(gfGMg#q8fm*!2pB>@P3jDWET zOL1D-7Qov3WjtaQ7hV3LpxmUYCMKM4!$$B49%11-DD{6RO``u{`CG(-!ShA;LxL6a z3Mn)I(KDtTUqt^b?>Qq6`mV`wsB%5HFKdnvtqj z`}`$Z|BIRDy)c;@#+*8EUzKJQbWY|wNBM|oG6WBL1&w`DE>_Cd?sy@QJJ@^x@<{It zuei9*xR&3-tnX$LCJypJcrPPvdIwkS`B>o?BDpbwlmWq%*1tzkmm87r&4Ya{Gj7 zWMBQ)4Ns1aydCl;A?QcH6S3)JC@jn%0$rowd>#$BY~XFz_3?uK^^C_;+`IQ^A%Mi_`!OJ452 mj9A=1j{pBfta^Tv#8qC4g7Og81m0~VQBhEre=2vy|Gxq8G$#1~ diff --git a/master/_images/sphx_glr_example_pandas_train_test_001.png b/master/_images/sphx_glr_example_pandas_train_test_001.png index a970657437366ac15fc1eca7308b4f2dd0058507..02ffe04388b46adb4ea1d6117a2ab4da53a5d6bd 100644 GIT binary patch literal 44871 zcmdqJcRbgB|3CWH&WMsSinOe35gDbBk)5o_rtFasX;H~2p=5=uBxI$m%!~*j*@Vj8 zn{$7CuIpUi-|d|9JHOxe{CWPku1}v&yx*_!d_Erc^>{u~RhFY7XCx<)NL2C{&a0D1 zn{JaxWW77K;lG@0?EHm)h&sz?J8RgPJG&Y=nvpIVIon&?Ia^y9AG%@Y=wxMQE68(_ zhyTPOOJ`?$Cox`LoB#X(kDa3h?+>HtLVU0P$``LmjC zk)vJi`kE~(B~uN2qqVnp#IfH!9Cvv9y5%*iWV6BOdAgG)xgDy7vh=fNBZk5fLkFjG zZiQR@JUsqr-}tAYz(a{2j;sjOb@s4)DgW~BP_6hx+jRpz*LsNsaaSHe>fz3t?-bPb zZe_hsBfY~&pibc7V*lqajgOM;CH{_&KbS;L{QL`gd6Ex) zjaAA2=$vQmGyi-N?U9|Yh`+i2=;{C8KjyqB9RtH7g@pdB2FcnieM?Jr&QQN^ z-@YX^^RfE9c>a9P>3@K>gknEW2L3*&hn=;C4{znm;lqdT5`XQz?x}y}%F_DEgyKi}K`morV|kIj z6h##kHg4{;*AZ&hB*yuT%*=dzd}Ma#$v&LEh;Mzrh#yZ;jorjsw0OACW3GmutZpna zzs_k~D@}K6$*Z&X7W*Ibl2lVPedQ9%%g=XvEnE>77teVAzO=3Fd4uE%rHmT+_tqnF zfi(2=4+vmiw0)m2RJXi zIiGW_g=E=NBr!MAHayy%<^1~_nVz2B8?CgONKq&9Y!lY>kMMXthwrv~A zqtN;2%yH}1Eo~j0zVY$;FHesIc>KJ3?_OqJ9vcS-N5{vt<+*sr!J6OBVrB2S^>V-E z+UVgr?d|P*EA|`ynke3=&n+Gu8{0`uopinJ9d2!Mc_e-KN70|=BtfInEu?GTlZ_Vj zYQ*cACARa;xUGz&7t>342;rhmiHh=jF4{LWHMvdplAS$!Rx?@k4mlm?WcSSpvz1TH zBXcM8KhQ`?Nxe-=b8vDpS)A-EFE9V~Ny>+vqD~QYBjk9G_lAUo$7~5+?ya@uOzU=m zT`ZDHGech~uCz_|mE}7OY&(5p^y=4_CuP$){7P$ii|fX_J~0TG?g(H!Y21-(qx6FB z&PZE&*458<#Yc*~R)l#ACO6^Q3O3ePaDBTO7{V>olbZjy4FrfRPF1nAe{eX0Rcids zY-4eN`lIt7>E^_X;lehI=H}+U=SLc(HeTbwlMYCFzQAsn`guKFElv02;UhCf=Y;Q+^h2Pp#`=O(+51qg%bd5H5-&0x zlaT02_C(ctAF6Wk;w8?@@7~UiwhK0_J<(&@w0U#r%ahj`qov#?&p6oItLo-jryONt zV+#H1&o3cyB}FaXxBt(d6k-=@AI~Zr`Ikiwe_ zoOs?-Q&WD=o;?$={=paTC}P*GiGmmqMt$IvDp|-vkGE9YyxB?Das92TXjAVChj0&+ z2TpyP6rXXsIZJQb^)ZKd?7NT1(uXA^C2?V83wo$*tj?%xRV~_BzZpMf-SzQg)u42U zjKG!?<>!d1V{2IOCxwuqbRKAmp-JImCtgOi`*JOj3ZL(LpTzh2H_U2l*2M;eR zD=U*$(c~<1eu~#7CL}a|aZEbzxNn_T27M6yUiDEQ}oW|wwvgxWI z7B=+oOp_|c`H6TlX1RuFiL5!zl$L8JxVi86$5yT^OgxK@R?ag2>ObG%OT~nCtP~;4 ztydUsDk2)={sAz&~eG$I4;=+fw zB*aJ+Az~+Nor*iXfB*iICr_@jFAM}pspnj~gdM!ubaWWY<6F9+RGEX*!uXZ%*G{7O z)Hys{Nz3c5xw&2P4(mBz`a)Oy$Mb4?eJL4?wG*{cty3{QSIVCF^+|0wbDw8ll^U?K&t%vwQdF!P@8fo=XDwlwYWqqd#*}FXXub33PUK zVg2*z8syntDH|c}+_|%}z`c3$gVXS?Cl1}0@o0$J!NbE-FkQp-RzE-Z`}gnG9WNzr z3P%Xr7^7v1Mt_=5R(#Gw#%JGq27oAlxyN&cDkUYwx13W{G#qW4vEIbl!QpdDODJxX zzQ*)YyllXMJe@S%9BX+kA96Z!=b}s6+Vlrc-zcxI--V)1z^dMR)Feuq9n{p@`4|s- zX`ZbS59~Asyf{h4C{*(E=Sx32u6{I?p|24E^LlP>r^d&}Pn|wJoFDM&)uFh!xW$ z8@CC8ps3;Kn>-zvSzaqQY^h8#&m@r1`z@J}Jg) zKD<##fT$&pDO%GF8&Fvm$MSl9cRyd0LNO4 zkloZYpXlz)cM7PNspZUCSBsa;L|>~6JgA5tb8vP(pP){3V}`%goY(EHXo=2|Z(1^- zp=D;S$1_oh5_5SWI{T1#@?a3kx-x)=44qUW%f9p7?Y4=?C{ry46Ac&=Hra3f!*_?E=U>#e_r zW4wjMWSI~CotvLGM?dQ<_LgceIFqA$5k*i3n1*Qb*iJPrA0$%i21ZMLD2O$hAr9F4 z@Zm%2l~_Qf6S~|? z!^A#g;JbPzTEYZfzM`We0$io;w`aOic-glnPu;|S239=YzhBYLQdxjD@~zFofB-YV z64^lmx4x|h4jg!adIAhCn{M{5PWY+D zwTFo*VoYHQ;5Yc?%bLF}sqG(KxV)BU`8_1~_-F!T%iii_If{#%9FgRD+qoX*cP>WK z>)Rjax=2yMj_ZH^{Bac7qsDWA`W2sh@%l0sI&s13bggJn_nS*xWv{;hR8=%KJ|$L? z+mx{;CtY`UH_-`2qxXLYaUr2sUId`SR%$c28Gu&Y7<+EJd=wO9u{1qsDa82k#@NdNvGk&4POi)Ej&)PD!~Wr6IemToJ3rT&6nUpmo|@RX}?T=_`A{WlzyBLRHmj@5T^oME{Ao4VwtLY5h)cHW{E#_~W;;ypL_8}X z;RNLaCv@g(9Gr@QQQxOLv22TlnzHZqF+ke|N~b~+wzTx?li~! z-ovH~3G7=7#%|L{KUBAAjFTytsXu*QR@VH}CaoQ;@Bh&ZYsh5OEKw@xxU@pt|K6ur z3U-1_7)Pn7r1T3o#td*dQqt?C;jN{F*AYkWvu}RA9ZF+O2E-kd)H~0f(b^TS3CDO& z%gc+%?@-(JAN|pk`F|=dez{blawfgaX`qq{g*y7L7bhW1PA%@0VU?6*c6D{Ft5eG2 zRoYX+W{)3%Sf%ihfsiNNDBIp$iAVE2*5$v4b!RUvgcOp%u0sK`8n0ch=ji6z_1J#c zZsu-E&VRRDC;El7{~?DkwnUmEdnN19=kP(4Jp+js@VQS!M^hUu{f?1k=j33;gmg&h zYCPP1w0^pLukn^gS>pUY^nFtULW9kDN>06c|0t{X<^ONWs^hL#G&<~l(jFdSVo~qD z{QZ6{=S4)sv*2L$*K=XQi8M(ZRFFbPiuxe_{hfkkO ztgLiQ4Lwn_?%&@60jYNGe*C|`Z#W*05ncYY>o`FAouD9<{BGV-A-tC@429kvh0N5{ z)YdjOkF#wH4ODb>8L^)RmlezQ_6zyYpY5-E6c9i~6q-VhmW)6eGoA3o+U`%TyeLa$ zU0nx56)F-hMoeE}6A}tJe(~j1Gcy^$6m9U1TmeJRsjUVE2HJXh&F{?=QAagr1NNIK zxUavbl@@1M@}wD*4?p#imX?<2O!#4$J2i6W&rd>}Y(h0wjy(1GN2Upbm@`4o1w)oV z>KR0A4?rOrz<(FA{_zC*1ivu#nJR+%KA5bTTt9FYi7ceeI(*H5YZ-lcXQ^U*>5bBS04@hLG+)dipQ8 z$UFWsg@McxHLvBLQKmAd>++UeBF&AwE8lOY z`fOch8zplV7Q7d-*O`MuMN>s<`TmypHH(=^wI^P>*Mf9H$z{y8nZL0vPD)5JF*5Us zt8ohqZ!a!Rty8TN@V*>tdOU=a4xnr6PiO1|@Csnp=d-i3#=EjD$9`nSzmAyH+$&Tc z7d@VOg7f*#s}A8pR(nue1;v9NKQ1dPySLxKjSSVtv_t-e(~-uu=Kwewsao81-v_g| zt0wWDB{I?ZIm!H@B)v#r zbl1mBwiEu!5*`_INimDP13{v$Q-`V6R<(;PcNgVcBeS2LC}xmy7m!nl1}jrbHNO~E zAEns*;GB=qc4~p8XDX*WrjPQ}*BAV=GZtBI+_*tn6uMs73vFcYEuV|55h>cA!?$Kh z#$L)Yr(_Wc?DAfhr&3V~;78VDPMo)ulIgvGcK)USyzy&YiPKq$x-j~oZboYOvxbeQYz>`U&9f(#r{td zqz`V3e3#R&#A^gGcNV$rW|Na!&%41rp&VZNhPSA<@K5v7a3z(P)P^|MeqQr6yJCK) zaed=~ez(HQypj>3&EKB=YJSTQ?@MJeJK48tH>T?w$ncEYw|byT(4}-s-~p-n5S^@3 z4nvf>X<@!|BQx!CER7$|Za#N~lrC{#ZgO_Ax9RB-Pa#*HV%zr8r&8;D2To`0JJH*5 z^7;p-31$~h&qdQ|Q-j}=2kx=bGOi~IJ<_DWbo__>SJ z)U$v7tS&s}U7Syf`EYYXvgqV>0jE)I1Iy-Zp>YF$b4I?8b%t+zjjCpR=s9=oaJpetb5~TJfp=72dSTeja}+;lQ(FIIG>upV2j30#*=nAf`=b44 z?E9RGy4G!idL8~fHrA?ia~DcYny%%5C)@+JF;Xj!u}P3O8mK$)SP^}-Gw z2o`9sX2|8{UL5<;>oKc5JBT*+!A+C#!6qt~4(()$liT~) zVmwP1q&DiXqXq^B%D{jagp9Xby4F%!Aib58=rzwUv!A;Z`VVwRKF`uErKP1L`q@q= zA=}Ouyv1w#a&*7K1jul3DvMJ;R$5l(o?<8^xxQ$k^-iY@V0g!_T|-eplE%1p1}Z+m zftkVDrNx0D_u;iio{;h>nNRvzM7#TnK&kH@juCX|Ki^G%I;?nOohekoM>n38Lo{5a zc=7Ir*M(qAcD*cnK<%_LZ{xe`V9jYkb9(a~d|A2X3qxOjh>7j_XhHq-=~MJ9 z`nGE=gxH|H+HzSx&@b-B*w4C`Cn>#hjP^Kj=XdusW%4?WF%`oS}*gRGLDh-oqyo#D*&Dn?bWyS z1m~s0?WK3mmiacm)e+n)W7J*XUa%UoVGnHzfbEp$EPE*DCF0@18e_mZ@JYR%>-F*K z=S}-=EgduTnxljKZeHO>H@kzpA1)~Xu+e(P^Xoq&MLp-+EugwjLhTf|`s)IZVUfSP zqv;q*fBiF1HI<@6`}l#kq6Vr%eO0uA5gc@DxJCVy+M1|*Gv{${Z*NkUzM8_Z>n`6TK5}o|l^GqCyYoYL z->8Zpq#&Iv^GtB)vZ*Us<`>tOM|g{t|8jME&RjfnMBcjX-9ZwZLrKE#g}?#4MN3Cl zL8xjPNxMj3Yrf0yH^0J{u|4J8T2=J`zFH){pD_5!^ethbnh|DTMFqcE&EBHbX~mZ! zcFGgog=8;IIUG*Y%M)H^Q%r4nZ(6+v4#v(BXc{Scc{~qx9gG9(Y&VXAUkA1uFBim2 zB7EX3i-zfz%Z7syr1hSSH5Oda>V)@(;H*B6&inhQ7E>T zmE($Eh&mky`@u7UO6IjZ zx4A^*&}~K6@eJeUbW(#wlLp{;5GvSr`~}JnV+(@d#A(-)V0%q+A1!CXs7f z9uNqwKOvu3Q}af@XH4eTJEfzyAztYhdA3iA!=k{=_l}M#;b9V3rY+rY*n4Azg>*#L z|7vycv4Vx}n*~#qOshcO@Q4DxMu;%|r3Va0-Fl5xnQhs47dCqEix*#dH|=8Esm6#8 z4u@iM&iDxjNJnJ=6H~N^+bN+Ps!(f4fa@3WO$3g|n=^xx>^%B|kh7TfJb%Wf;`sMF z2VoJFEr+w!feWbS*>+jaSsd30H(b_v-c{t)@#F~zRkL_4pD{#cdq>B92oddjN)Tf} zO(&dalvTkKAnH|(jr=`pC`Y1j=q)d-lb~4wPV0ZL|NN~8ehXt%L&ry#>rkgZ+!$ko zO1@;v_AD(e&4|Uka$;~0>#MNw{c2(qnDiio&3@SPrlt3H`VQifjN!fB_w{u|nRXUC z2)w4?@F)bk$_3V_T(iYiIB8#(4LUw7efhUZ=qiUSm7@ zegwfe3ufaq`iMgbX2*eX-_nC@oS~cpt7mc;Lw#iKcnrI6aJ*nUre?OBttEq{y z`fBbLevX}9{qeQy+)3ig%VlCA+1dUzIl8l%nZHd;W^Ar&jh6(R>=|5*3)hL3Hw}~s z%b(Mde0$E!CW_ygM@!ou12W>$IeqG~BXAO%e^M-!=wmWXhl z8RCcBb&h)YScBhRDmb*$A&Di?a!=SEKH z>cpC+oRe3sPu5SDi+OT;y|0LC59g&y_a`^nX{)M4Mbu~dAD=3kHEzsNA( z>~ma;{N?;S2)xG$bwzxHYS*qXR>P-Up$eCJV}BIfOPru(S3>LYzykH~PqvPXo0-eZMF z|3e9ADrKRcPJVtqkwgJpb6cBhqbN*+Z}R?H3+EnMTB@DrV2MFUT3lXctcils`surw`?uvW#DPh4L;J-^BVeJOrjei8pu{1t1KA`=K9Kb#_Mf_Fl#22p!qKicA6#z(E5bQbFIpYX%+=l~z*nZ){l-b;lDY(k!Tz zrqDQ1svZED5aMsV!3H!R7_Fr+93J`mo5H2tvVA+#9#`lJPz)4IO^*WdSXd0R{oJ0f zlka#8?xz`$W3nbEw%^X%Xn*iw0i1{!2T}&I`uYcGk1Ks?jUR$Hh8MGA$Bq)LAaZKn z9W~c*w=kEf?Ck7t!{zYD2nG3i>syZCQ-r67SWNPjPs05C{OF|}PkOg+-%i*I1~!ho^*?4MY7(ZK{pCd+@+{aRv~Nn#yg0 zOianznXe;`OvkEEGwRW~`$33+MTA((;i&C20w2fDNlX9MB~QG-!IQvI84|J=zDF{a z;X5{0DIO?(SU8LUiRBY+>X9`bkq8I%!&_}YWDIRZf{<7JzNFGh zoyeXZGnu8e+I{~-MnwtDSZxT6yw?6!XM7M+7a`6wHEH#4Ri=rea7iyQ^fV97vE9-;G>E`LT<2qdf9NC*{pF7ir(I4^ zA9No%#d@DTjY!8nbiAOpx2d^V5$f_obp>Q8Yfcp!G{A8|R%aXXB82FOl;UO@Mnn;ffQB0f?n+ z1nQ_KkQLH1Phg|rrBK~ko4br~QW;lz!CmZe1QGb&2x7fOOioRGMkE1}CpLGO#aki( z0XhML=cSm--we18o5td?yGh^RQ^6P{ax|(@&=^ow2%`+CKjJ1Jdy14(eS-z2$r;+` zZZO@^hGL#=*Tamv;M7b$gXV}jK!P|a022e=?|oz*ZGL7$o-6Zp5$qX3y5k%83(THH zFp6n$$@?_Nm39Yl3kz$Jg%GPQ{WLfC#rABgXTf1%TEASL@58b~V;RI_RB&{hE~c3C zkdeRW*8hMaf&?8a%ip{Q@^NojltpM`VDI7#f@&to4hE zih2(+I@n+FSV3F+MH3#8*|%3`edi=3BFbb)I2>RM}(Hx83SZdsq+uAk6oB@ZiCF1e1;l2&kh>2E9k| zkV$IhK>kaMMA+C0KxhD*W1byP+lnM_L0~d7ODLFY)vJN55rP8C{&+vH7CtE+={YPg zT?bd!%Lqh;K%>xOfPX|pV$YojpK!qz55el-dd_R81)%hNc*BJtd{jZjw=``Cj=K$-!DR%_b5Q|DrjT-%2KLLI@#!K=c)ks0HW%rTlUb&S&`y>9o+Dfz!Jei9sV+4Pi_zs9Lq^3RT+KYu>M ztacx=H`TDjWkIlid~g^ru@Ox7vH|1Kc9E>9udkoHd8_IHO{p_Xx%0M~oEh1*#rn5q zJu<$TeZTZ%O9l<#<^u%1VYO#pZ{z70`CnsdSU`tuL`-M14~jaLf9r6CvCk~-cJ=qA zx|*+FsjyIx{wqZZH27_!qpQ2=Rr4S6D@n5Pv35O01X*I1@c5Q<{qlHEF{}X!IB2pi z`_9|0d_({pUiV`LL32~RDu^1$WdbXMs%$xv+JbWW`efo5Lv_vg3Hb~x7 z)8=%Qmfl6rnL>8O#MV|B?ikidjqqxO70?o14x^l$oS5sl(zR=xNaL~|Kkf@uGnk)- z;$~!GQU+R;qLoJ2g$Vx-=?%l*Nl{NAhtgMBSLcs5IRGQ*MfuO#+Q*QXcGJ+@#`CA+ z)cle|wKO(@7mGlB1ESDhAMQSq0Wk;*136`;{rmTKdyH@&S9)9$;6XX-LxT; zSfq{}Mq0U%0s*Uh5WD{k@ebOv9w5p51i_Iwc5)OGyt9Qz9X9_Bbm<)}aWxzpbP1u- zrQh*EFT`9p0Y{Gs2?_Ox9Yo+r&|(*$HNw`-1@2CGTo&{-F(P)%fbk~C*=VNehJN|- zMZe=oPZ4^$Fpk^B1tPdtRBktKO(^cH4hY z9@-+X){=n>_kEfKA4)Qc|IS>}L&t0A;RVZoQ)P55z?U$$gX*?d-iv@f-_kmfH2TM* zT|Doi6eAf0_)I5%(~*{eK^}n@zfrG!(jk(#5;bL{Lmr|zhdK)?X#Q*d2N_cFma%ub zIpl0?N!GR0ERuB*=v(Jqf>@-Yv6v;)4(bff2Hgd@9d3w80#lI5J;-|g&*2&3^F+nO z!klT#k3fo#`4Cul`te>iNa7I@OhZG1GhBzcxv3NtYlCflX^ts)kbKw&5CIG-E|vnm z)O@S`6x$PO+KV)cB&Zq$QiK9W4UB?pc^#zlfWKni>*4@p1R8`qLde2^d;cW+RLXF z9!AD%ZfmHM&Lgb>$UYJj3K=hiu#pfU9C;G(;cdWPJoTkqHmK5#@p2j|>c;>r35xxI znnk!^9TAaOt<-j?NdFGeLS1qgs$)15-{ye8KPnf(;l%9G+Ujqb49r~tUiCv@D{XBJ zBcuuMja!gem4I{*&lv!`V-*+g%&3n)R}$XwWqERXdefPtX4C>2B5VRUjmaCN7QZCF zL#3EOaFf23ii+y1!wxqPHgw8OTwGjlG*e0u*HJ-Or*H1=0mFQ?y*^-i8kkN1inVuj zwLpemcA^^95~2sen!)X-kYwBU#s;O+|KRC;cy5UE-|;ueL%~{E7(Ji{W_|akmm;_K7f!oPX0`xMmoIB)>b1J5M+~ zBEsqSH&)=!a@1ZBQ9H_Xg1X}o5^+hSjed815`noj)Rdq|@;@MoT(#!>cvmfMerdK@ z1w%jZb+a61jlp|im&yLj61kar_mq$;3YEP1Pc>ABAgWU-Gcs>pA1RLo$fg|m3Rq+op$GhypjFdR=p$Hv zU?syJZw(3KONq!hM!@>pEn>DJ1f+oppIgg+*oanzaULS1t(|9k@CkopXOapF`jK@q zu`H@{1Mo1K(P80M)K@=aBSwOHZmn>GG-s;i7X+pk5O)DrXcA_G1B@z+w%jKqfjOkN zi7=St#;OzEOckEH+3&5~N*ze%L%SNlBKn25LkQD|m)YY9!^6@2ZF2eH`?sF+6BKG& zf}5XNEqQatEZ?A>mwK4yV{@lQR!)wH^9M0YQ0B4LE>|oi<97+jL-O?WM7!My*b=9a zq)Zs9lauz+=gy_*=L?V!liCSnSCdn8OfigLZm91*|5WBcq^R~m$Hv6X1?YY=0iW@z z{*{%ToSPd&B{-p-aoecOcQ?EqC_0b){7R9>`Eo%QS6hSs5PtIdKA;_pqcqdFf}c~l zSadVLL)cO@`q@G<;3KwtC6L>1(@j8TUJ1-!n zYX48}n_=F>U>h~F^#!rx%8?fUyTb*{{9>P9gGT~m@>JWLU|uXcxx~%+a;Ol9kdl)S zJ4EEeh+Pl-7U`D;BDvk1L=F84eeTK2moF{!&?dovwkw96IExHJlJY^@&JUllAH&g7 z&CMCScDf%lbjK~m!L`JT*^Q5Ub2(iZs1@OWsl&Jm)}XNI2J+bTzkSA#iW|H#ERs^S5mXl}nMWF7t-#V!_M<_2ty zujq~l_983C7^N(SS4cHn)ZWnnwU+tZ8qBgGT-xzNhi;>EI{f{fvdKn-t*@^S8wy4R zW$lR*CoC~@0{kw>N%$0H6TrBT-^{r*XmomLMMOkOPCWu$ICAWm&xa2m#7BsI@&oas z;?-$lVAFSyu%(EcbW01}&6_ugU?4^o$XhDGq8jmm@e3UIa`2yZz`p|~WCH_SycqvE zj&TaeiNxp+-nu1ysRWclh)=K!CDb}z3fo-E?#5=@Nkx@_B8f@}r5J@~m+B<3Ka|kV zzW4;>Q*B>i@$B~iY=OdsAx3(SBhwwWXEFV9WAw*o@I=B00bd;|qn7&B`#G}11|r0) zeu8>z+XzKLq1>^fN53JxD!DeRfzJStK^WA;+*}siiuqIb+qu-1YY<8Obkl@AxSe)j zi^jsEc<(-Aj=&!gkVTrF8EUOZ|Ckh&PS3NtqsNoX+zVBDycP~p>^pG?Sv7*Pgr!4C zflMrjc$jXUZNR;IoAGeI&MmsB2i^2^cXK1EB0)RQlHH*7g`alixj8?|uV5Z?ABsZb z44$5W$Dd=zRia@F3er_%a-Fwg118N!f7{CJ_w_M$a+ml)J&KM^$8P&1sHZ@bJ%p!@ z2Zq6~YLG^XD?#b$ywH&bP}O~-li%)_`h~FAag;7HpqIM3It<_nQYO)TkFWlM0S>4@ zX8|WsD4-ca8%P8e%x}fI`3w+E57hPS_(fx2OMk|bHTDTf%1Ks5m4ZMd z<~bv6ib^3!tD^f6S$1OkKu6k&q0jdv9iHl#OR~W8^qgzCoPDjO=66m;1|L!4i4n=N z_i{J$$eUV;K5bOCZLbXf(bsr!c){2NIfoyWVQ2z8wh^yRHt>Kv3L9)5q4o83cpHG{ zCiI(l{Bq5hKcTEtwYTSMuM7LIfBp4ve;nm$x5+~oh3bb`1}}|BY2!^CJa<@~9v@PQ zs6XzVFbBbuUWmI3+-{uI)gmNQB=ia07MTg?w4Z_H>BSK{qJ0J91W&gL&LrZsEZPNb z#Gp0VE3D!IxaZ&l#8(i%f_Y0~E&zVewyUVk2>oIjVh3J$B{n$K)J+c$z?DUeapz-L z2@BCZmq1H--5!r2GH1AqXc27+W1SZi6pX(-VU;zLTK;_mUsHkRPA_ChgP|th)OUpi z1sA}1@t!*iZ$5wh`t_!<$E6?LXO1JLIGodFa0Jt!xCFnW68&U0lFK*i*5QH531A>G?eWUOiC07e0 z_%uUeqva0-DuH|xaBoV{;^A=37mV5@W@Pk_@_^v`NHZW-)r*GqTOwzG1op7_tt} zFByX}xsLdbSd>`|ojn6W`1);Nu}-jokC3D1#~!DqrZ!e=m-zz-)%nroG12lMmzKrj zen^zqE(DLyvol2Wp&Iqk-(xcwggsyETJ+R1m>L-w8P**sx;dNx$_K=pAL4HX@X^E& z-QxB>c~MbO!U#Z7Cx+4Cp#H*Ji^o7bi5RyzFnm2J+F2YE4?`=;+LZTx#QkN|j~Q_bQk~D1F8hY0QY^!pscU zpP`*b!9;}Ih-UBJ^Qx+>s+gFh;8{fkm+H+@Au{fGdSKh5BG7|nchrzL!SeL<2QNO$F?fw*Br zCHYHmE(#OC{^g@CJ6X@G;Vg}Zjx~*qaBEa;IsQqB4-GAO-~agWqomJ1I%))KLqjjg zi=5k`Mp;uwGr8Z;^9~N60A0_<*emi9gSuL&Ez^y1EPXh&0J1!gJ2AE=YnG@I6R40N z-~qgx^r4Iqvj zVBf=M!g)3U>VVG(yc{wz-+;k0ptEn5Lf_wAi2!s)_0j8{PfALnJ#fGu)*vdJQn)}x z@~{9HA-bssvfl`8S+>7F78@Ju+m>!nsDR7_cH$;PPcgr-d(R$e(Dj32&ZJkE@WD3$ zDu-C;;s49w_-SWbKJ9a26%Yvi_DvPcmN?}B4-`;w60~SHMhppW1Z*1kQOK@468wg- zW$9mB5+pqqW+IU(8W<=`FJ9MuNraacux^QD}lP!r}L1hy~uO|{zcrVa_(G$0kV2Pb^b{0aZugT)Z|HlDoP-47#GQYR4 z&&X{Ja@SR?yH)g8Aeg^Wt;h8}K$&a=;Uk7CA*;qr z6ulHMBZr*}y_h@lv}+*#+1KB{>5R1WCUlAc$Y-m_eGwyMgoaXRKwSb*0O6Gq&5#FL zi4jC-VgLYLn8}84bO|vDF#&$J$*b#_SHFArE8XzJeSA`74MZ zl4=s7nBvyJCVTxlA%V`lD}gB9qM|yYH|O65M@Cv}Cn_pw)-SiZ|E0cSY<#D~YxcJq zChm_M$@(YaGKdLresR0DcTvPS1n~m!SuTT+CByx(ZhtSsFCuao+?pzV;z#B=vJm3* z1B`wBpZ18p+FqG(QK!V|QVL$vQQjzJFdnsc28C}(HGoXhHr`;XAwYSY9);Z**04$y zFz!JoqZR_Op7UCcZvL&ckBuG(P80}$(Zgk{=;<+p+3FEEhuokZSqKCy&yL`ni|D-7 znb9z|b%<|p7Q6CpWMyfI1FK(Hd;ybR82G#Dwu>FnFJW<&3m0&l0bb=&E|LJYHNBtj zIeCuZ!KH*^M0JdBiNQ~1<0E27);7 zi|+dM>+xpc=Y(~xV39-Xzt;M;8dW5E!h1|QL>Ptl7id#ePfrXMeir&WkhCLr&#SYW zAKqz)-duFOkiWMhOwC9(fvtCMeS$z{eR<)pqV1# z1bj~RhE7HJ#RQx}ZGoD8EIAYs`^;OSjOtO!Qsen{Y8Wull%D~dU$)3Y750h;i; zBaAwQ@C%7~acH4aI2I<;u1B)$Iw8@ZS`m}&AI1T5K~ng1_tDUl;Lp?kQ@CnRg#Tq% zq_Q3eAYc(MG7#@7)Nv#y z&V{3h62T)J3G^s1&>UMj+omH7#^o=M=4l917y+Pa80hc6?eDZJM|bR*@3o^@MRD)) zgy1+{%lYZgYFOCKXPT(3)93VSlC~|4oqTHN&Qm`+n2w3%hvmH&$Yzy-0t`Mx+!aAH zVfHQ|JpwCH$}f)IxW?4hHag8VO8Ef}_n>65@RFEWs9T%37Qx(8+^r`T$M>9B>>*5kH5A+c+{u;Ab2S@(3F*%cN?TITE%QR+q&D zTJHQlO-(IJUwJ?Ub0T2S$NyLd^SKxOnlT?ndJ>#={z&LKS2@JUohQC@CqA zB94iyFhMy%PyX>nkQt)dm>s%Q6~Drow9r{uS($;&i`3!^L>uq|8nj{(63k-fuUkDk zS%0_u>5^+)%eAb7K?#?vmLs{9eFCxyCW7v=&+Y6TKx5sFRuqqAgPsdkh)GL6$RT_o zaK9h-EujArrUMuP?DK;-lcqYe8&?{f#N9n@es3n)VUUqjlPL!Ugk4KOoB-4hS&{fwBNh9=ZK>2d!279s-u7PC(Xdh)-SXk4a~ zsn$9!f?NU-S48)2Mj8Mls1nvS_<0{dNFM|t9KXcc;Q_3SHebd56v7WR{-ynA7=xjw zr#KPph!k8*t{aGb`h?dGdo0vgDpV%o#0@_6X{a{ z#y2%JARZ8Ro(2b(q8UTN9!3jILLtbvt-{$m=+jP60rYE$%pLYN12Jbts076DHF$%m zseAK(4R;tBslEPJOatj4)KuTXLa*HB?a?7|?3fxD=yO|eVe@sWYb{hd{5m*TL(F8s+Fasg!;TD$WgAw?}ZrI=h$|4f)1UH997Y;Fo zF~Ar3v~PIBkQ=J8RWO;$k5Sk@oQwk-Jq7^!DG^+R%B%6|h7D>op^yP)LAN6OV0amD z2|%9cz>LpP=A&W_L3G3v9}9{!%qgmkUbA-*O9so!%h+<#_+d;$6I!B-n*V$j)()__ z>`E7QtG;sK1o}j9EEf;Xv5eDZ{`b&Z`16g_80J-^`{GO&k|y4w=(E zH!quOw8vaQfgA`|d}TCCX8nIK@wP5mq!w_^?Rs++{kr@_=wYPSKj;oa#qw)7Y&L|;Jr^q`sG*!dT zDTdGOKZdqLfF{@x=aDHxqPh+_IN}u$ps+*O$s_vYIKH3X`8N^ck;fY+-XSqZil=DV zW4dktC6y3(Fm-^g%Ze@x{TsC3KR@67PLbxlyLT_h%g2KIqY9&altJ>M9Dzyahu8fA za*X}jvI{(399uz0d}>`CCBj>Xx-DWSgTD~@ObF;#akLnuWdgAsHUGX})y3o(FA3{4>EG>u6G zv+HuLr#?CVDJ9kbF%tnm4}pQOP#~^ke+e2+O3Uz$2wzDQ@-(N@(y^WyV7H7+%;24# zb50j^7e^_*M2z9%A#nhBN_FoV@m(@8h0H^sGxD7om_5j-5E6^apc~#6W&$k=Lh^vEbC(F-lf`nWxgnxkf{M z6RI(5pFpZXuy=-AFKplhoMbh%qxGE_=}vgAzg6E2NQ>qbG7&`j74($QxQGxc^iHb% zz7YEu))vB0#sD+&9S6xl9|#LHy!B}WUEMMd=1O!M0%PRY2!L^ z2%7~^ExsLmK^o2h1mo_12^BB)9B0FmOMtZ+)bYJaov|aN1q*Ev%9Nw$nAFA+H74H& zHEf^K#1(J~5{bgaty{MuzN&fDCI8bWCw#29q4!Uy9PgLG#OS4Nc?PD_&H0#1?`S?w z{J1vi8Ad|WU;saD`jPk+ZO`<@T{&F0MtjkH#eYVb_r5&(-#d{rE)tRICw=SfG6<0E z2~`Lk*7xvfEb_XEFo_xTg#qPkd0w#bm7~jF-I0DGj?h%FK6&r{# z2WSiSH*O@tsDbO=mHZBgLli|OB7b-}of!fc(wCV~{Ze4A{u ze}CPW7lEq4afVQ9`M)pyUaMsZ4GRON;{&J%+h;^U0?@N@TSGmEICua)3~^(I#gfGv z>!14OP(OQzhl!vOqMhyI!=nge1N$LPERFdDIJBDx5u*{w#j;xmKrQj;+;cDOP!lF( zR-U~wXCvNl1(K4kD#sifjyl z&cT5;lcJQXz?S^d(zx+Azra=qd!^241!0EX{Nd<$00BavL^6lK5}>;pz4XLK<>!lH zEW((WdWw;XLC&Fa(gU|lI02y1kzy`>AUVy5B_q_kr34ba{KboA;9tZs5I7BGFM1_T zQou0%X3~Bh{XcnZ&>g5j z^@YDLL6rT~9*9;SiJB4$sell>iE$vDMMT2v4skvr+=wCsED6=!8^IWyq(DMmJOO7H z70myxrS+Q@YZ!kPSqCjVAD^DaINQGbe6gMY`2 z5AXkDyVqlU0}|R$QBR=5XAiy6sID7LN7r+ z6>1ma48%>KPw~NmgJY-te{gr+@m&6I-~ULHBs(J_G9xmwRmjTT8QCkFj0lC0y~)bV zCfT9vT~<`eCVM56aUXAef7kE2?(4c9_y70zpKt2p{G8|ee2-(jo(I(aLmC&t>DbpE z@45c3$z5>ru*tVaoE;oGE3f_|p#vv&1iIW(FLiDNvn>Q3P8Gy#UzJL)^tu zAFc4Cvi7D;h<6;SfqH0i7YN65PRuwBnyH34%H951{Q_uXuVht=IzaSyx_vWPGl=;B?yt7R`5zf41I&?1&X&{LO8(hyB?$t z0R(m*0x(OX)lnjzzfsL9s!a+Bxf{`JY-SdBwH4KHxc~g|VATZT#Ltai+zRNw4JC>W z;4k9{5x*d-)AMu7qrhc#_JLAaz`empL5|=Z#HE4rV+=(seno8n8Acu-Y(Y>(gSi3B z+LT44V?ui;2=5XS5)545T(cKRETFz&hk;B!EOLlnN#+dLgWwLT=wDb}L`C%AE+DNp z1fXI$^n1b1JF8J)y1d&N1`ct>hSroE(9}3vN54OVeQ!q7>@fsgAdZ}c$}{2KVSYOv z9(W=p5_0$!&p!g25lNS{QK=^Edu0rLVXdyemb751nOx}QSbD_l%Op6>aW8;t2|`my zUkVw>^H6;OI~J%;T)@(|dASIwd?Ij1QAs~6egaa`Ra5IUd|d>9OM zC>b|4AJL#sKvWm@?s4#D5mfW*H2_be8X1&Ugk5SEX5A~OR{>E4RL>qk`M^SY!KSHSl|*(At-@aUXK`g#HbeiKr2 z4a_4>7f3CGDfxium~(8K3T(0eE4e5qdkjVVA(o475~BJuNSut+3e41;k8pz#V^f|3N)7KK>4jcSP`oRmceG42bMBiF|`o5`IRL0I|^^F8v|gjt^!( z9CxJ;m$eaL3{^dW>9~=6Ea#s>Rfv}&+$gy9h%t^wHU_{YvKZxfen#I2psawY1e6|7 zKoVPg11Ao?2m#!d-xhA9bGO7tM&5!T2CRLijr@yU8+O_t`a^;aFr8f=J(|-3l(v@Q zU&;`3?}xxi<^NLl-wV2!3s5>w0J{nt5Ga8N0U=r_V;GxOI1L-R^5esDqFcn;5Y&M6 zkcm7Ms6U4?F;tBwq^=8xm!wLi(C>htAePBbaml=}W3mqO3iYnloxepK3wtE(S$H`R zm|=;m0r?=BE-A&L)>&D1K{(jHWy37N)ARiNt!W9^Xv9me@$uzAw3Ol7*~{<=NMiZd zM#F7LhtuAteI0IH;3LdI<=oKId9zU zGY6WKDvqMULhGU^8nRf(g+e?yIy%}xG)vMg?5G-cQzmAMM%50K1MJ%TOc@90ugNY^SeYdL16g{LCG-L{HZ$a!YjhU7p<%o9rjHu zaqJTjz6!?xr*pOA;*t1@?hdM?{r?o@pFSu(JRc}6$2xBseedscrVoC$TcSxxE_)GU zK)~=V+99`_-W%09{TIqqw3QYNF*wh@5O{*n0x|)?Fc48nMuX-mp!`OFbmgtMhoyi( zopOH& z;Rk3lz}1}w3U4}`i4ZVZEnP%i8pPLSrS6(pnBTw{rEI_da!a@IDod)2=dt+M*jC8- zA(z|$4oY$`IgJkw_W6sV5)%#&!|(*C1fN{Qmz`NK1{ zdLScW{gZJc=J)Y6dxRNbDX6;GKqOy@ z?Z178y5T6Xg`{B~xtcXe^eZD@9oEs`Cqk|>GtYBsYt%>oKK`+#_c$MU2~1EVQx_kDke#4LZ7s1ec5gqP=qh^27?Dg5@ImP zBq2wsS!G8HekP*Ectidk^;H1l4+|LuNI(nKk%-?3ZWBm+koS(GlLN&Kv?-whwSfhK zk(}QJUzV*JF?glh!9p2>o~A0oB>&u@UMa_#z`?I*JkLxzI5Zg7D> zB!HS2fZKBt9nQnduu}!(7#)N@|M3&&qKB@<%8X8b59b-sY##^yPOq~oFE{t#4>yQQ z0`g^vXz1t{CbzdkG#?APVSBIp)H94y3@9zk9d$Ah-`)CLfs1jn`VpF1Yjmcv)#)#4 zFo4kh#)e2O$LLM#Y(t%#FAU$PqUa#a%Z$>eZ$B+UWl>0RwWb=;oLm{CbW#YjuyvOt6d4Cc@&Mjw}j2zcUW)W^CwsAI6@w zxCclvqt{4$dYZObB_e&O)O?r$^WA1Oq)siNnnt4fpH3_(L96F<7zB7vxZJTi80aj6 z-|GMSTjHh975X+>R=P03^FN-J`_=f~Gyd|gfBN&Q__Sfc z!jV%VRvy@*&&-YrkCeY~Z#Q;qMrPYL*NfayV4Ko1S!8oz-gm-YGO?ki0%HG4Y|>Y6_p|caKyriZ&wGI)pAr#}rW-+&KnS~~2xg{LZ4O^D0 zzBw6&Q=zFD?ctzG1xs?>6%BR(oAQ7&|Jg9pJ&*9{&b~#K-qkAcNcGgKZn7|@D+Ug6 z=|f}|wQPfVUQrcPgj`LItd2`Gv5u}k%by9`=6Se(hh2uYgY3tbH+l4Ux1v?hiPtG4 zp(NF}5ct6%Mcby%Dxv8me_aZ^uSE8S=DT=G1Sf1>l>3qYQYUpg8#a4Q=eHExzDa0I zwN`!L3$U%CVORqQGlp5|Eu8&n`>LWxi>QZYM=r-XyQ*na5shw`nC13HrfH4eHwi7w zBFA4D%?zz13$2LdPdfZ%n?85nIy5x1p}1>Lf1XF~)u%@jsn>%P06Z2$O$z_ZP- z=rK{jn)V%kNe~mEKxcgT8@A0#a=f_NFSVvZIuwT`&)6MBikAlM<{!NLYGRYkrNdxp zYZB2`ZSBTrTM@gPI(7xN5-be76rb7HB%NT9_eXl;7=<7btezne=L#~92?>fEy zLv>4KBExkjm)k~B18e4=e0y)WMQwilr$17FA>@0dEd*8=GwrUQk=J=778L4{eeiKM z{%sc7`mS|F>_QTUWV?ImE%uHVvlArQ57lQi6AvFf{@T!#5n|%1dYV>-AEuP6uYBW2DGw~*ZmX9(=F=l*d&XPUF2b~LgdZ@{%J)LYS zo^&sp`cPa%#Z*?qW+vvUr};UKb6f~P=22IIEyI<=R8tr ztt&ow{ps47wfT9D@%y^m9f=hItH`Win7P@BeLFJla~T;qS)g9W0l%4 zRy*?#mUVtuf6*Etkr-&X469@ErQkaGVWGemO=2xnEoc&v&NM3b)(`+XSQC zpid;ZDy8R~lNXiS_@~Txo>|7{PJ2xCBMm-v4M5bKoJ&|HVquRQ02o(5@bhk|jg{oN zz5UIkFn)yxmJdQ_gsFtiO6y&m6BsPiBqO7Y%Ney?&pi6_Zt8b3N6RTU`X@1aiw;-K zwJF1H31uhd&z*_+-RloGcJh`^Ma(}; zLe7*-n5r&IoDn-^@35fPp%9r7dt_2dQelC1R(7_^-35U|!I_}qG7jh}5`2&Q(<;km zIL>ACsy`+luRbk)T8V42f3nK%@Cj|7pvxf@0Y06SMt@mMIcMejoF`#@(X8bxgN-uD z`(=Ox6A77p&Lws9iY{)i(VY)L8_p!CKU^YLjp^OC50Z^m-5a;4x&*cO$&>RnattpD zT@+G!k(=t!CE^GN#_A1|`{PJ^D(vWX{Z1A-kL^B(Pn-0X#zm(@7ZxOR22&(b zNV@dCn$kIShqaB+y!x8j#$62@iKMr;ch(r?9_e_q~o6E1% zv|bmsnwZfq)xncB*1;;ccGZ)BN}8!TG0!7X9M5!?*LAEWbYbLTiF2oLscILAJJcMx zM6FUJ=erynxD~bNca;{jDjPW!=_TVhuQ~i|eCvDYMn=czpc;E?$b;2eW@2);Vcl7( zb?FP1)Z-g%QC|p0Ux;m~-{1V{kJ~@+b8mmnnR--)&Ul_VZzxwxjDtoe@3Uw*FL93G zncS-L&z?qNUZrhGNy&N-?%biaKRhT>I2HY@YtjLdc7vy?N_kf$EE*t`>63vn<~%;wGL6SI=P(;!SE; z-Rr5yw0hm0*J@VDvZguD&!f}UViq$@OQSp7vtut?Q0@5#^xv!PRd+Jb6v4PR| zFe2i#7#J=Ns#+h=AYnu%JID(~mUjEfB~dL((2fS^C26;~-3UW}|N z%d0Jq)~Vl0r|%s%^YWAZ%0)e-ZA|~9yq0*;?+gVQr9gvLDrFqa`CkJJHu@oR@3L9< z>b6f7K5|vbx5(n+JL|wG5|f?x?9Ba^WAxq<($?pANw}yLZYf>5x<2MxA|^eP(M9u1 zZh?zEi1sS&6ah{0>THjXI!1$Z8bFB$O(S9FOy)*dEf|}=(rIi*uA01XU|?a#Il*vG z>lE%O57r$+ax3Y%*5vj4={tCB6q@lJ)l~>+t*NeNjpKQ6YP->3Y|d`-)Xv=bf@OU6 z`t#Q)_WpRgt>g973_GL`H=F7RIYsTiC_3*Y>bE?$*OM!H@ba!L&8Ve0)Q?FlKlEVH z%e(ax6D!Fw)TGDvD6KPUC?+NGPT17tu70l0d6mh4I%hmaN}jxe+utxX+)_1h>#pe+ zdZ?udmvO^2XRp1n&gzhQE0K`NgmXy0XH@4a)K|tT%v0&XY)w^a z%lXjkE5-iBn?#2f+y?H`L?s3JKk&Yh-u#09$Ez&LXNLX;@*O4RIwpB2y7mm`>Q*lcBLCeECwcgD6Wjd8jM4-E{ z;yowxv6W{}lQ)|ttgYr_*d(>Iyu6bfPQUUUAHm45eq zm=Ud`?+OboKJTV#1&k&XAh z*Kg$a8oxq@|825!U66Z0HMx~TwXMI#iQ2}!uCdP7_$`}_3EL~pd}B)0l=$5DUpS}M z>0j$Qsd%S!j8e~ckUNXCO7P8!J@UpKfRfu3VV^f_4?bkp={VhP-F1hvkK!BtwnMi` z|4)n0o!aqQie0&+&a9tWDxVZj>bGbrot?(4L)))IM%6`h2?k4=Y=F=?{#s&Jey|IZ03=E;sBej|@ER?bs zl&8tQX^xQNTZ<-2%{nQC8hmbgX)XJQQDke%f~qX=i+Gc9=aEsTF;z6{TAz~amrUEy zwe&fEUXutnK~N>2EnAtG;g9|crttq1JZAo~`R$Fib!#=VZtB`7aUC`L1OEon#;wcb zU8<&vt0bo{;I4!?=&I#t+_+#Lrmrx1Y1-+{gkJTDY%%LX@?~WTfy`kUDt}9hsa9v$)1k7bS4c%>hJRJwoc6^1T!1= zKJaFJX~z()s^RreVB6@usB@La>ez%rNIAdme*T)nWtY8t0g=9+>>cYCNh1z1vVYQZ z3)NKa*oLZ=tLjlvcqg}JpMKI^Mf)e~6dC`cRc@~_!KTlD%&JIfVhWS|5>AN7*YBtm zgy~CoQRt3H&rBUYHN8FIM=sGHD+dvM2taQ_sdn_A!*^YelCnf3>w3-G1&qx9M2x8r zy*}$U_eO}CfrmOqxmkFUwBj&j(R{|c+V7&eJxf3>CW0*J;k^@?>clD4F8Et6`f*=z z-DK2)0awUvQuv)^x8k%k=C1P0?~jiBF52~Ng@v21wmy8&9OLhK?joibiHNAYASUOEbMiw#n6PB@g||5 zbi1nu6gev?lilC0C)GP9I&Oa;S6KV4==^M9r}p>M>ZAg8+{qn*KZd!z4k?4BG+gZ5 zc3V9+@bgbw^ciNoZtQI=a=L;i(M&waM#QNtylWTBdo{%R1s}o40Xdr!^RB*=kyF<8 zWs~b4a_-7@yV@-Ve$`Oz#%OpqjvmwoGdpv_nfym1tt-hexmbN#fl!Qy=tZW<;#eQd znv;KuM{g_DDET}*%RTm9v1{4Y;l+G`_m8o(-*z9*o!CsTn^9`X`{hJA6wb|5?~cjddgW_ByWBecPch@)@Z9D$TS?)h_rzDGF=m}JpD~yExu?6It6wT2 z|4H7BZ$Zzs^}{Vas>|ZlnaVG(mmPb==h`pMCw#T*1drBSn1?ID-7_-7^QayWu~T$( zMT+0Ct8sp>JNvS1Vr?VXXgr3)SfrPb{?Yg2ndZ(*0xmD~<#iZ;HeSrgcYEQkJ{}|a z*lBCkr_Mxx>K^u=II$(3ovEo{$CEG4JyExPIz^=8wtE_K5YD1zqhIJJ=065x+$$m^ zN^W0$uAuzwLjviyx+?1!=%M#}#X^3J|E?%C>RyhmSHARWNc&oMC0AboNPPLlx znTX>hN$`AUa2wh<7>mmGSMSkh9y~f>Yt8pa&q6gOjEZXZZz{I_4Td*8>-h1A9X&`K*^0-!7x}!c!-mg$y0<2?491TCP~v_M)llt4H&cT* z#k?qv&v`vNT*NK*OtpV;XI)kLm}V&KE2Xba?YU11yimB~$Tu<8p^`7~8Le?Wi)s1f z&fTQTnHB9jm$z2&;#^GWpJ*ID`9UPn-+Ri`G^yhC^qUxx94a<`qX?OTatg}>U!xdB zZC%d<3QoLNUinv@SGil>PI3%Z;=VM{CJg;;n3UI2SK6V_%nHH!B6$s0&x?B>X^NKo zdA_|o6ezK0nU75%md14XJg=PGooRM{EbR8wYC8(AD|wmCt*-&6nA;&odJ88$fn+0( zH3r8+z(mL<#eZbc&*omDNb+VN-;Lz+ExEo-@{Hp4S9$*I-@mGAx$s4;rNO~@Z$HXD ztgfqNzjw6G=($4_GW+rkrHZffom z?wMU4sf~5&lJlqcHW?J)2_62_s^W;Tb5y!sle1S8q><|AAcU`@9FHn?pYWsDQn!_@1xqA z!Lcv3c(DKNmTUa>1s@4tHejL8+O zJ%BC8Ls2PI^JPMU0UGYO*Am#A&{uApfhJ@9BfeSr!7(YCB`)?Lh#~Zje*gwlRu}CvLP4yN7tPj zj@xG;H1N3-bUPEPlVJ^3tufVGx(idV3&dA{D>nQ!jsLD&PNELuV#!n3TxzYsU%E-b z$1Z&T+fvh@g<67ov8&M>JtICY020-zMc$T@9Bj+9TFYuU_5L7_#@z_gg z(&8`n>*p09UQ9Pd$L~2e=DVuBSN>pzt%nUFHu9~+Z1_?2mcNEl%#T^fS~+UhO@`=y z&089~(3{m%d86U*N*rj4J8*|A26F{S6`1EqAky2+;@&iVwPaSU%4OGpu!?!A@wUZ2_|(*EMfLcOi*hmL%ze!?G=AQ{);xZxUq{FnE= z90L=Loew8peJaSjr)~qetba5_NCov@HAHiOD4D2Tt)GH+W{8muAV4U3JE}A6{6|uR zusPpqcwi=GL$PUf1p|~g4i0*)h5!QVl<_FFOn%Sfl&@3$^Uf0L8cGhY9nv4S{NB;{ z*;brR15+%c)MGlxP?$euGcKyzQ+>o!qpvA8Zp=b#r&N&YH$$Xvyz0Xup{@?mqQ06t zcUgwnboqWg9=*{;@ek^$Oo&;9Q(Mh@m@oZcou|8q=BCy@SB=QnOV{!qmmvUsUio#0 zQ-wK5`L#;v98~U5B3=~~(4dmOrVS`u2!l#GNkx~k+vZe5mJ(9*|8;`mkB(;P5S?LOLZx4Kwy?eE@rE^qRF zg5v$C!vmenub{(Ehw>JL8S0BJl7E_$HMort2?Z%Bh$C8{Hp~KasX#siAPFb*+>1i> zY#*~^$!_odPx6=lAtxBLhxw;3hEK5*OWih==dA?JhYLTaIj^*2+3##iu~St^Y~01| zU(uc%d&v?a;CA0a<@GZ+rBk6TcJA6aISGo7&aJ&VxY27+y$x+4aJ&H)1qnTbo<)u2;%DrzEur`x zkWW2OhV5t#Dq<3K_0Pouz;5_g3Xv)3!bMi?kM?Oac&YjFBfn*J8rHmt1P>+}eeS*S zsJ`NiJ&G%eZ%A<6Z<|o=^4~Isjm+*Aa|0~T;dgFWYdi&IAJBOK z={3($-SE!OAN9|EtN7wY-3>iP-ANl8#h4Km|5I*a$9C{u}7A=>cMFH)hemAnVbd4v@c zTp9{vQ-d^zb`$UJCN`)({k@!*&YpK~7EGY?Cf**4XQGr|zP`v2@}RvdgK}cY=8mPZ zfLCE{^Ovx51ojIyMRU(kg~QC*7x$yN~kYP}I^m5IE4-nw0I6vg7hfeNy8Gu0asQp>nAs+h3%FJCh8JQDt_M_*l$zzmIoJDX#(hKSXn*w0Au>ZZ3HI^F z)n3PCowI*;XV2eg$lUgEkZH@+OB(>xrzJX%eP7G!!i3_JRq$(*@F9KnGTg)+XC zAnuBu?EU?v%T#;II8eloM?7hNl>1IsRe`6pN$I21EGuP&AWlS2#2)vb(=O?me2M{W zv?viD!1Z3;NP3QMakEiTv|#yam5Z=X>cJyl>;_-5%|a?aCa=E(VG8TXBeA;AOIsGK zC*O398#Oa5i>5TQ>c%?Kd#H$s{B3Spc%bP1rOo&g&F9l4tDV!s^ z$c`o#%2~mh@h?w4aq-mfR7)l0{WKK@?4a2G)AjoWPRB% zBd%Hhz42k8MUBj{H?f1bua4m)ec#8oGNX?EE@tpIO|P_~^*MgPKuotL#3rDwjKtnW zWoLhLpn1=lq0XoAZ`nelv1+kK#A6lh$?XSf7{UxTEzw1$;odQhiP$si09M^OT>j>! zqq=n}(|N&z7wU*Cy`8*eg=(78cdhb(VZ(Z{!q< z6KC`SX9!uUqM2EWj;AvPcrUGv(Hxi(l3*Vr)nZtFXugefC&tcDt|*N_VJ_Xg*AVgB+IXt1TWK!c{-dG^>ilO z)xo1bVRUqvVYrO{orkx+GEyGH$gjvs{DjNwCFlEO%Atz{K--?hkJj;gC+p|&&G_ya zn@vys@uF!8V?7kplYd#-bvaM@=yNNR-`|q@OPoyCRlpa+P7<&?VP)DpvA6DI6ep=_ zGJ+u_Ao$kQFY_#owukdaA!abo>e=Xv6C*X#Hy-aifp0r|bd^rUhTQA^cb88$=!K;9 zVFK+nN=)6UdN0|^qf38QQquo&aoqI6&xaVDh0nBn`IxV<`~JzPsqdDT zjv2+>QDy#nt(SU6W@nSX5FFGAzwE=9oy#)l`FVq$L5Js|g*Zv;$?$-HS4nJa&Of+H zm`^qgV1-qGo%&UH>%rmb>d3*^Sj3B#Au%qRqf4>8DvBfWm!A(f=UJE5XBi%CM}nTN zdxAS40EXcAy}zHjX_hOIb8z>XvBRk0!aF70-+UMToJ7*L6u`Z@= zJyFkpUwwIat>>q{{qK(?MJFRW4AJ}e8Q?^!ef*cz6S8b4F>Cx&({scI!*gEuzrG#| zcf39}GDGm~8QvuV0wogrO}l2?D8V$9!`6=r+&8?~E?Q-`(XJ1x!nLFg(6v&q@(KxzCCTYxsCpK=vwoYWKUudHbFHIningDIWi$5x^U; zVx_mb5wD^8@FH<*1YlSi z&%>a(PDhm4XZi7W;K>UjSI^_!t4XUWIsWHUYD;U_WQ09K+sI5r!qF-=ZcNg#?(@3! z=%;Jx2{vn|DhGC4&a!i~26Gbdg;{@Z%O3h_)PJM6WUS4|ZMk(J=(&vD{o91R-Ot-X zh~ZN$e?LVO8uod-dVP6qFd(+%b-CD=UAE?Kk$|0LGDT$_!=;V(;P|`PJE@0zr=a$< zq_p%Vs7dUAZ~E-J7sMJ6x(`~af`-0j+O{Q7POZ#|b z<``hshJh;e4A3tmK{|u{HDDeXfSeB>!U+3+)}b8sGN=RL(V#9*66jvJB=tcnQ2_z% zgCL!Lv!p{qJ0S2r-`YBw79(Xde~dUDIo2%q9ra(@KY!nmrEk%1s&|%_YDfx!XMCw!eDXZg z<*6oBC-#_wLnZ1fW0>rmoQ$ff3s7Bul}8UKVxVSQ@c9ZY1n8i$`sU4>=Lv{ONG3oL zz~gaTC&BX=s@cB==;A-Epd&vcC|DaL$r=Y5Ew!%4cLOQ7j& zu^=MOG%!Oj(qP{F+11L&zAFtnv+S=-0pWks_`KtPg_VT+VnRNePjALSLZ1T5>mF3{A)TNeX)>x^L$K+(8V`3j7 zL|#p4l|LuVPJio|+q_%E6y-$;J%Rl|pSuT>%D*%+k`Vm?prc*bl^s1je(LuG66JHS zF#%Fpzof;*jcp!WEF52mdzRDo#rQ$nHH(0$fNc96i zTS74UQO63zpG``lLdwYMQatT!6k@1x-5pog9c(XBO3Hf+70_@9YHC4Wq&Dvf zRs*vVktkmkU$LM5r{vc8DsHOJZu7mC<5Dz(R+A5wHeUJ1?{T7IOtt(06#XCRC zfuS-Kj82w_pwA=s(&t{OyZ$P#C@D4xd7)uzG}U%y$7I=pc-E0eG56>!Ab9&_P_q4v z*p5>n{%O0t9Aohh0s*25W*2I?^G+Up)oILqYqP){$(^*ZoriXIrIMe@zm9Mpo_-uE z67u9N9hfR=0q6?}V*1;MNnmGrsmAAmd1qVN5s=_~z9YxxLN!+&%h9ENh=5t>y3rE* zL-eIE6;0Vqb$9A|U034LF?t6cMXaM6Qc4i=pl({T@G;*P$Hu%1Og(IdbG*tUGT&$R z=)nktqhmr&)I6(rw`sfcKDPqzwJjKz=@}#YTg=mAvzBT6M>dG~On(U&g%Zcp?}qtf zyhVRyUvihEVo#~EneKd*{`ae@wLWW(2TpvyaIFJh-ln3xx4muqdDujo8e>H2J#%<1 zNq;}*$FuhE{aS$7n@644A2B(scQC>O@6F`M zBo+_rZj^b}rf(kl{t(AoR#gQm++2uEj^Gd>gc^8gO>O4|sN+Kcw)U2gPCZ+(-x_i$F9k|h>VAHBd=Uw*Ka z{}4)J{_@j2U`dAC`&aL$Aw`m-LpR;hOuvibSNTYH0#3?t5G{#kavl9rfa;N{LlDt< zbmw%+9#>@DBpFk1{AEvkh7vB|!2mET{r-e0xnF~r_E4dJ8{n68*%EPyW~3JbH2>6Km@b zunM64CuME4Wd_=(S^j-wy<#*|o0Pr;_YT8Gf{d#Fb)5b^$dciyskTdmmdzkwQBqbm zT;j?jnN!vpyq20IYogTT0c~IhMi`g~Dc@1N0WlyFNdpgd2R3*F^uZ{OM!A4G0HE!S z(6J*Npk_-Bc_;pLfthZGw9wsAK-D1#0BW3#`VNBD55r{39^!|09}gkDA>bK=bhW_B zLKtn}gV;^A;=wR6O*jN=6zSXqW&kH>NI^GpQcFwA9JrUIU3m`Z{(gHnu*Y1F^LC$g zghTK2nKSPJANCY@p5r;Gj~hXFX}>-xVP5_~H_unGysM`t2B-tTnC1#z28J03y-nVE zW5Es%&z-rDCuv~t5>%Rjk{J=8aDauu&K?U5@nj_>{q3LU-%9E_J4LF|5-pMn3dAH? zzwWF6smG7&S!T;#y^;b2{FUOj8$kw3AiUUUCQ^`6R1BYIWFb7F362UmcS!!T)V_)sfo!))>0$QCx54gg?5zr5{w6;o$ z{8_qAzcSZSI7G(8FwoIKL$rRtt)Icik9+%8sL8YJ^=o6m0#B~4 z+7>vlF0Ukk`iRb9uH_-9qSE`!n}>%rV%c?B0F@mFa9mk9B{?|ienv**7sW#(!cMTN zj6u~2jSZOS=$M(AgI;viI;IFX%ZRTOP%&GuORVf|n18D&2Ow?7HPB)5Nc7A-<%*4t zX0l-i(nJ;{^SFTQ)?^vpKdYSSB=318t7i@@RR$Io8D87(Y@i$>A&6L7dO*%&84aC0 zG#nfqC8mo_ZK3nsrSjLd8#J2O)pBsrJB0!AGPjAHa?O=j3wSO^IsK<|fCGG|vSwt&5J85VFXP(CR$ zmT;;;bP2j&)a(fX3E+DffHkD7sCbF4GokC$%+Kv@zG>A)o$ptn$rHTaHz55PL`}4c z0(Oa+1&w56g6L*9K&gaaEFkC%L5MN`;fumq-7{k|+}pcs%*+w+HlTZI5+E*R?CeTl zuTVr#Zr8Fp;0K_#RUp;uD+y^&ZaJl)q4BxKIlr`1<1Dqb)(KGTKL=$fC>$Y_j=cjN zk2qmOL6L3*iv!~gf$}Nnc7@u1a&d8CFyJMDAY0tPfEKpL5b~Eg)UlgDw!*@IY!x3I z8H?K_}19ebP`AnG?@GFDojP=OlG>< z+YyHm3j<+tzQyXd!@v{geDv$V^z`(7!20+@4+cAE;?-9$r?PsJT;e#`?mU00g@8j2 z;@B{N{!f7h7RCAjCz$&OVINEnN7)qQLCaQ_q5zb4Se8@JJ>eZBBT8Ubf?N>1T5M1c zw?KN4fPw-C6j=zc4f7BbUKk9txdDXwB|g64cINI>3sITwW^k(z^$#^o1bG_pOj;q2 zr=+NO-*wXc(IX?+=te56DNz&VrV2MVH+W=#<8!O;&ipD#`ppR3?WcehHlW?fdDOrc5#d4jbrGHqJb~+rbF*VJKy(6K^$Ez4pZyv? z<*@=(5fBN&B{1HQT(6>Sw3h_qIew~?_d6|}mf%PJpr*kv7?s)F; zj*booz?3#w?<IzLQdu6@J~M+4etpr0=jbi)aU6r_T9w->tvbqd(}3ESU>spgb9 z1O@K_T?)aEV!&aRfd;#XloLyx;iSEnm%UCM386Q^_*@UuX?9tUPT z^mLAcx!DCHOwYt51q!+=kn$vn5ZvwFs@6(L0`?7SIlPaYgKbG@@(EruxqN3I&D0J+ zc>`-}YeAnc1-rTN!QSrVj~`6HW{U;?0A%3_urYkJTjE!vrhF&EvM9&3|MU-#B!H_# z*8t?0fW58e-j0q45QBoZ9RM^DX?P@+>nAjnB^(z3t=xgsTq0Ign-dOkErxQyUz64Ub7ChVJ9eZf#`5Vg1G0S!7{f9}mX;9=zE zR!wnVV6JvuPdD&@e>H^d0emCadb_*j$`WKFg62j`44wuApf<}7W;egLEdlZg0qvpR z%>JqrK?FEQl)V^s*vP=Qm3DQl659Vc;QwbJ!w7pP05rAibXhcS>FD6qkwU|5m_p2( zs#}jLIZa|Z01qVt#IPbDQ4DJ)hfUrj-)fNCf>;O}bQgPTd(SZy?Xm0YoTCQ-`s=o2 zmpJHTc9@gf1JNT~C<1`qXj27VrLY~lM7Nm;YgFIp+y?AZ{!#oti}}%zfVvS{8`QzY z;9)vvxGQ&s0F(vKQ|GP*bX6u;3P8JMq4V-&;RF{HHr!3muZdF(9&+TA?-~GWbj58p z!E74h2{G~U7vNh7A_NthVG01mlfxNHexGOy+J45t5lq<{$EHOGP#hlZM-r+gy}%uR z9x&=Mn^>yGJyo}{xoHAqGIT#35EA)JmXX(;+i?6TvuUAJFXY{&0G8hjTrb!<5QzhI z4z#zk3rDYyEt(=J)VRm;o}7^8_3Yb5`r!yJ~a9oOQcetxWXo@PblvL@HRTS0M3mEFWK*!;0U{Td}WP$b~+<;$02-qI$8Qu6x=X}_@- zFJHbK0gOgS>kAMg$fHl;F(g?S86Ea4^4J3rZyuqA)F@I7{H!ftFVtf5sKN6>qk2Y&mvIGq{+`e22fCIUbjOwu@7xne1QP(7dxii|;kkTH6d>Mf zB`u52@=O=VN$v}-z_q%7DuI}>WWZ5?S!~loqIa`5RQ{>YqwBc- z%*5#jL97Ga2K)!M{-EZvrK!Qv$wAebxw*^y{MCad*Py+2XmIdZR6B4%@F5#e9Tb(7 z9mWKs;V&T+mj+M^Byxg!0^Na`xEB-->Q^!jE^fmvfzWX8p`i$%Lau!V{~|Ur5=m#*c&p>Sr9f66r;!kw5q9YNSNr7p!4#v#{?6C+(n&LWn z23iA+tyw5)v6jK)X$CGwM11^dKrI1}cG!4#!DQ*&ATdm#E+9?O1A)`ur601ZabP2M zyf*2Qx%hMqrffT~mb4b){Q$G)wp>1J3@8^mItPH7OUuaQeLg>v=AWb%qvXYFATJ*} zT4kSMdOI51QJrlL22P@xJB(5Jwq!(}SNHcC=dO}QW0}G5&6VKaLv@c7DgfLa4OUaN z-NciCXubWe&dx}nMm4$oUTE+Pu#C;4d{tl?AhaomewclG`wah3xRNjbR&@C0 zO>!7w%>|L)rZ%w6_5(##tKMVR(^jTPzkwaFr^NdDV-)$xD>+|IUK0_~15bb+4(F)M zO!{i4`AF2`VgsD8E`YQ^NDWY30EIOH;&4{Ijt7j*+IoLx1&Zp`;aB5URH&31(H5<#~*W z4dfYS*lZ;u8svZ9aNEdqb#vM{ z+g|uyR|`iyYO4tzR++X{R*;e!w&o|lz^yh$!06nAzHNB2>%X6BbLiI4gJ}@~EF{$E zNcQ5eLC|2h3Ld!xgkk@_teEJsbn;d3f+PSQN(!w9;61sOf0B;L_;Jz>#u)#tfAT^1 z(4!C9U=~Dz$MU@WX|aYA?3htPP4amEy2!t-3E-KB4=W>-&|a9=XoELHHHG{ovFR zAjB2~uRHBd>_N!fpgDj599r;Uu-MpS^iQsXRS5)@V|H`y67Y)J;KiR6tt>6&%*~I? zr_DJETxY^4K;$~oLH&*-Y(fC-KLKn{9!met59WntJg6gBOHYrs>ZS_X&=V z6uG1ueQUbD?%?kMvWywXa?s>g)1p5!5Rhb)^;KU6U!m&=TdWn5ZYV9($ZkKrS^gdNNCf1E4y2cWxI_qXP9g@4Ad0`& zU}64y%}Dt1a?D*Ny!+s1bK8t+0!|FIGC(V0elRx*?DiuUcr0)?ZHgTnXg28H3+KpX zr~oaP=wy}rZzDVu9?@x9fj15#WDEs`S?6Sg9i{`25rzC$SR7HXmvw+kG6RsdSTGqo zVLIV$*TJ&dThu?~N~(Vhm@R(rS3>4?1TFtgF<3MIUP7vzro$M$+J|=~gD=p+?SNm+ z2pJcStxe$8APdCT*Y`pz4lb?ezP!nW!7e?S&msEHG8t64^>>{J zGoW>oM>TNcL~asHq!Q>&4AgjZVgbhfCb%Auayh$=s_ejWFtE0^zEB3f1=NW_k5a=M z&zYH+PD2G^Geiq4h1$lHZo_3!DgmY+$|cOe#odp$u86TN0G%)f_(WhXf|J$K({mTv zwJ9%%fXNXJ9zZ9wm@&NYJTx>Gz*E3-cE1~Y&*GmkaN~3QaJ1h3`GYDy48!+FrPAO> zx$VxxF|e|BT?4c=KU#PIkn92?nepe>CTLaxjP=#L1MA)Y>20yJEm4RG?+>-WYGQ?% zvhCS+-^1fAFq!mHJT{~O=oAA-!{7xI5w8Db*e-;$A2v)^k}m>n1+bx|?pv0yU!8)) ziUh!nF&LQIuhjBm?Qsj}j-CbMc&xJn9_3&E|GC{=g9Xn26L5{>lWzFH*<%0(K9m|Z zLR%tey{(LZaJ9`WM?2}!5`$R_xe~OYs$#Y3dKU-)sD&8pYfyW=1|XYJoQm~-Y$Std z(?^M|`HAj&EFr-E0~1&qT4)#p|G1Ss=gYqqSmZ0TyiiO}c{hH@8ABtUGhhHYM=1q` zHrSyC>m2GMDL;*&ZL46PHv2lwT7KG`TeAPE|$i-0s2>IH!o18hLJ;4DMH05&wtJLs;94R~b)e+OeQ z0J_9O#LplVwMs!b9}-seG(e@mR{$?=SAm#}%m_FruK;NZtN1C(_ox;^%mlDy62Nh} zZ)Noy{M!5AFRF>cP|2W?U@O$ACM>raMx91DpC$lyXjKj<5nrdkN56bfOWOM}xn4utKtvJWE9A-V-I z%2PCtcW5C(e4dO8v=ja?p~Ly?hK#D_o4UoLn?u z_^~d5)#G~Kdi#@NEO=|uVq)GC4^>s8;hjjUtH&A?Ky(R3)mmCw{7ccP4`Ic#m00aS zXVSJDgS8w9{; zj~|+Oyvg#X3f1pf%IW9pL8qLRTIkf#_w3VcaaHQQ)A0e_k-#I&{Ynv%Js5wmGzke% zjM&46yeLZu{zdF>Ffho4)|-hShBN{MJ=j=LHwXg=PM|6RfJo_^;+;B2^$ra^bk3WE zx!wj{N3J<9s1g$stG-g-kFQs!OJ6{hJgV=<#%KVthoVXlyHH;U16roH;N20xTZKYY zcnZvflGo7R9fjZE@Mi*=b@_+=Kif?M14NMel>iPb3MfJNt+dnf0DO(r+U2P!6_Y=V zbXzDXmbV6+a%8=uXgbU{G$ydMp_md}OA@%>P>dS_&d?MbY={U8F*sB6Di|s|XmJCK zew22H%nQQ#K~&!t+J!=E=Ls<1Ik|(?3}Ephw+_KOA(H`!`STEIRIBi!Q|5q-PbLm< z|Bz<_y^aZ>`4BAa`vB^My_*!O3?R$02D3N=EZ4PPza#;9hghF*ik-r&^~-X+1UCu- z*w|1s`+o*p$!iDfb;#%M`N#$w3<4dK{O10CdEk_IXxL|<20>ZbUSKqU?t6*YoW={h zw;>c90GB!>et!Dp;!+|HEHi)$jX!CB=vWa|z=}EtwH_EuDNPk6e1f6s>p<(hNGWH* lvoj=3Y9STU6l?zcpW*49DOQ=~w=XgPfv2mV%Q~loCII7GMMVGr literal 45025 zcmeFZbyQc;7BvcXVS!RA7J`J*C1HVpNDC5zG}7H=fV4^@B_JZwCDJGY5=xh(qzFnX z4R0Rr{k|9Djq$xV#{2W#ajzHU7w7D=_F8kzIoI})mA*l?hh`562??2m_;q;_k}V!2 zB&378cHm#Qn|nv_fBZJ0cWe~Q^=<66tn^53Y1vqqnA@1#*FI^dXJvig+>G-A*9A_N zlZG}n7S;k6FPi?(7hEv6GPu|fd%Y1KvfDyj#hQfVfEMvT(l;W>_en@Hr6sOkQFMr& z>T`6F>RhduZPd-V80;zjSp2m1-t1`#)`uX7Gxfvgoehle=FYe5#VGPuAbxe~jPiaZ^*%me731d42tc2sv?X@`MEe zi$M}j{f5sxq$Lisr|ZL5oi{=cCu|GeChINrv9gjMzn&laQrX@f%5B_1VH+x?boJ_0 zIpyz#H*elN!_A%lCRNTv=ohz^o}QBjn^X1~)U>)YF@UU<7+T}ZrgrpEQ_*Qrbkw5#?gG97VV{5_gp z(4U}QXr-8T=a2`F={MO_C05*_Vb42Oe3s%H*$0int1O!1TFY~zB}+qoAjWj!V?&P8&3!vd1dP3*+`LO-?*BDDXyXvoB13f%Qj$TkVyfg6n z7VWpZ`@u<5A0F)-{`Je$A;xjv*u(96Xa4-Ds;l#T_Uxd%g2M7l<$?Q6FG&Lf1G~Dr zo8R7MwwvycNm4J>X#D88H|1_IPe(_``=X+jY@Hi{$1m-;JlT<+qL3{8ZdNH(DWIaF zqD1=C%`lb^0|RupOhG|GDsH0?xtnUTvIqbE{d@M@IsNVe^MSJW#l?xO6Z`7lnRH)G zRZ7pw&8__K;X$~jTcq{)S3Q1By!NrDXLF&o!Leh?%OcAib@krlw}5 zAjC38NO%X^u+!@5bU8Jr{=STi3_gB-cI{8Qa2E(b(ycr9f9me0MiBJ7F7~mw+dGxU zZr^)!aC-V_em=LEnVCNo`@_}6>2XJ4PsZI1ennfZQZN{Iq{ZW@+)-6+DKOUzyKuLz zIq}B*wl~e>;oSIWv)=a~aMyS8jY69RMCBYtLzTNqoq4Z4*`H+AS7g%jF2IMJ!D@ZQ zcC0Zj&bYg|x!LAN6REPYa=-JmP;_*(x3~9a?v&OE8zPX_7FuOYy0VD7=C3i`T$#Km zVEgm>qa9=sJf<}I`ubkijW;*exy*X0JQ8m_wHmA-)o}jB&7_nje*OBko8cFdZbk7t ze*E~Jv9Yn@Z#DB$&(u_AI=7{GIpfCl)y0Xf>@$7E_R03s{cCge7o}cs`FzVaZpE`w zZ>&P-%q}jDhbn7)= z!-HO!>^$Ic{E}T$(oM>`@QaOI**cc?_Ty{I^J~Z){>LxzbUKabB2v#XFw9ren%~2& z^z+-Bot^En`m12!S5Nr&$|vNMlr{DPt~c)8J9#7USUlFvYyHXo<8{7An18gTkXL$< zond7Sz#UlsXgWp1WAfR9bSssx3!gz_Y?4yCs@Hnp38A{Ao8b{0dXgFcq5}Ej<=tYt zlI5`|^%93>i#}`y9WAXZal)=kxb^P5`{boge>kS1A|gK1xvzadGLuVfCrMMy_r3CH z#~~`J&&hFalG@s*iAB|`4~yor{KzOFjReES_AHE5Z4NhQP^iISgPnkv%nm;l;c(w@ zL0Z`Bk(z3pksWYCh{oRD9!c#({Iw@bV^QW7R#rn554I}4RrEpn%SOfN;LsVdETjOhebgT#*mZUtIAAb4R7HHPg~nsXW{Ojf6BvE1rn=a-%i2wK#WVUQ z{P^RPq+R7(hZPTa*Hh|Tu!XVMews)1#EBCbBz1G6^|5a3E3O!6i^TPNpuSwTS5+aJ?4m}=9nz5L^38sWv^__dbR9)H($$hl>dIVKDMaN$ z-oNLos;!lv7It~xY{zTfuXybE@qn-cG+g4OA&dRa7i(7ZcnrQC+b)X|m76v{Hz&V? zj7HZX#nU5doudG z+Iz?QNk^K>qo^oa)1G(RTZ&Cr7bYsPQ3Hw!_Ee62i9(?IQ*%}uE?=51d6d9t(w#%! zxgHZ8O|mrKDAH_{UuYKf;)P_UMk(?4Zq(xA0ydv*SA!X3td{5WR{l)ZAPE#&kMFnt z-FxcPsR!X2PCl-yf8#qRNwc!E*{71*jS8I?FWi2s_@TDe$9-d&;bwQ`lLNeY6ngsR z=8c={1Dn(uYDkCgEp;-~3xkaB(q&$glG=xli?^NZK;`m`h@d)Is(10ig+MIL0c4}Z zb%EcKoOQqTTxGV?pPyA&HlL?Yc}*5uWklrSuWna;XR`ZM-1yD|Cz_Dd zD{WC?j<*?c-+IAS`_6Cm3-3U~`nIDLP4U+P`il`fFB$hBp>wk+q_%UJbT$1@UB&*l zw6S@GbrZAXGHfDoc3w3ZKA7<8`8L^IE#+*T8Fz2?yffW>-~a;`S4dM65$7MVCA#vB zmE%uL54dkuRaS0AQc4`Xkq?W!9Y+@khXXl{#-)Y zCL5*#81O?CIB-Ic%_KPT=~J0^HEDOUwZqQVcX#t^4yQkS^yq$P#&J74JJd>iN*#*l zfqQSR-MK^MAxAkeJeT{W_4E0$P-f-B2M>CnOaiog0QN$qp^hoY%3?!7x3ILV{X>Q7 zdX|GD2x)rjgijxCmWu7(<&0H5b%XY|w>eeK?%$UftqUcaBwbmUxF#=uxO{Wt(la+x zv;LAujZ!D-{$hXQ@hVEq2CH8t17$Hkei$YWM_?0FKNQ{@%5DP}RyF8MU4Z=nv zGxL#c$jQmC6sn^N0 zYsB%I6jt(L>B8amRAqzy5=RFoC+++9Yw@fjMcm!q*)lSQN`{)2S~+dz`Z@mj*}m_D zV1%-!Yba2Ie1_lJ%xN~ZgS@=FN|_p8_FgQh_}QL{LYs^tC!?+;{es8T zx1fL*mz$_r?zT2tLx-f=j7(n1Lp|<{^#{5#IA7V@yTn{mS6BCDG&^h5=B{3W;JowO z&dKx28R~(#BqQ8^WxazgAHIA_TxJGY+Tgu0Z?2~MdMGyJOuMqCmX6M&++5DfVauO6 z3c_?hpI2F!o6`oY{8Uv%oxerny~T&D6D?|X97UZcjX9e0?knK3>KNi&J{}NRyA0r> zf~SIF&iPG$h_iU|7FBZ*Dk;^M9TV6IB&PkngTOOrE?)=nSXiZih6dWAa zqg(2}HoFt?zqYYDEtW3y)V^8olg-~LmA8s1L8dB^1+}bZ1_t9M#jkUnH?2|M%Vi6# z^xW3}C?^_^%w}k4YHGeS?WrzxUbHgZu9(^m(DL*Mv(n5&a$Jt(aP_g`9?tsrUoU8s zh!X)?ub`lSjoWB-!fEmM7eHK}fPhiJfsZ{sQLk@B(X>;(By!vfm#ZI&zQ=`RW?sBx z|NE7w-%alaq6}$GkiVEzi>GDyQz}gG`EVD*jA%cB2oV3Gf1z-s*ATZc&y|I}<=d zic0P|)E!;yn~?Jg=Q>v?!}cE+xQFbBqCw`0X;;QolGD;gWjfho3ljSqfO{6ZhWx~duSh+j$YudSzp-OD?p2VK zEe-9xpjjqW6L`FN^3T*jc^rOmn1VvL>m7D)+uPfIaqb(DG~7nAsSS=~ z*V%!tUN_n|637L}aG0Hb;mr%}~qkj<9{9~}^vkYNA0@rADu0GbHmwoJ`9JR&mm zMyJo5As{-dYToC$xY)J2CAAg2!QoeaXI56$OCQzW#3L`}cU_ zBi!8F>Z19r{a>elt`*r_OGI0voPyM(t*4iS?p%7JCCQJ#?v*@|$q#BxYJ=$ayp)Py zyCN47ot)2aIrO-t)Y(2sDw4xDG&FQ*bTnz`d`}W2`_ro~D7y#!?;=|ML3cKqz|qs&C&^XaD|H5?)_W7)3d6w5xjt z#Buk2e@UUXj!q&XHwkI4?y1OzVcr+~COyx5K!ZTzQ&UqR_y9d@B(a_}jZ)PV^}-yK ztCY5MHD#h92yCqoblW&W@2VP#Cgwbn8F9(-nHoZ)jUt;3JY#uzTzX%l`6W@wj)0FL z)@-6JCD>|hX_jTw4W)F?%Z3-+%#HJ5-H3}&R59kGN00hOMMce_N79en!%(@C&gCVE zB!a|>#eDI1pX9xJFNc2ocymWhjk&C>tPZVOKt>}V&v{@L8O6q@!Ykq_vhfeK(H}2t zj4e7v@tD5Y!U#%%M>SUAZrSn}Z4zGX8xRmMG&uOOE#t15BeGH`Ew7oNT&X8xprUV3 zW6gfhg^V2tn$OtEx4_7RUApIa@HD3ciRZzO+ZcVX#t7IlD!le@P+)lcIoO|+;;Q#y z7Jz50UJT$gdM9c(G_(mBK?f7IAy?tkJ|Mx&%+3-Z8m+XSjPUZSH>qbIGm@UgyNR#U z(>;OL9lYu-FNT`?fBE6}mJ1~4z5{4^Ei5b?G8$8e_k3zqpzuT|0?ft6$sA*<6-08h z0xy|aSYY{SL@=I1=haJ{LeX9vwdMAGeAZ+8;NT$1E6vL^0k6G{gL%`H>QQ>g8uPif zzosG=SEu(mU%l-$b@;zOJ97ii^Y9#%k&&rfbhv+Z_dQZwn^hyO7l(sMzJ2?a&}=C6 z^V-KY?JYj3XW6SFD!7I@{{88s!5%vHT`ehhSdF-X1PU;9|9%J|z%cPIA66A6r~0U;(=t6HaZ^1-+*x^es*R)4Glel)=I0&_lU~7Wn^9K)aq~F zUZBgc04n;JS;8nMHR>n5OKxdo{z^p9VM}g?vu9KiB zAFYG(0G{bf))%5BTACe>1X;AXHh;kOXWJ>z6+eFbFgW4`;``L~Y}wO?D^Sp90T5e( z&|OS7f$P2x4_5+grN|}jxN_yn!c=$g^87gMyGUO16X>H1K0iCvmZlPn(zi!VO|5Km zW0m;0p?Dyu!I6=WNgi;$$tWR>Ny6K+ag)fN1l#+d4tJ*i;o){q`Q+%35NoE#4u7Sr z_F?<(M8gr&oC6xQI)HZPtEY;8$jcKYq9iaNV0%mQ z(I%sOPo>SrLeAn{xyem+^)EXoEsO19qMq!Jlu{PcstVCJmr;%4dDUO!8R^Krlq*Zo zppgHns^*bT?}Ob`LoFf>B)(UF{+Z-Ad+Qe<+H7RqH|A(Okjp^2vC$C2UYV7aUBDav zWWP@Mv&%;EEehes*H)*yy1yM&Em1ncob$WKd|9R@&`VEe<&Vzw#@OXcVq?Zl4f`4z zWK$X{q(V1}BUM)NBWG8KGwC)oq8WX)my|O*MP@e;K%#QE_BZW6KW6kR)GuwEZW%ICL?^T&Rd<2O^H6Y^i(^Q2Ky%Hfm(1rhRgEqyFL1U{ z2ynlYk=iDD#eUN*uxBDTSk9(My}+?QB#$d3gd$NOh4jEBwFP$e?MyvY4f}$Eo9P)S zv%;SK0GRt}G(W>oKAtC=aU~SwbjXvC5#^;gedt-6q9B>Y@blumKTDmZ_toGrO=r)NDhp z7gsMy2Sw3Ja2r#oI#MqP2*t<8E2hYA=d_&_x7zbIOS?r?ZNB0Iscj@j1m&YADa?Cb zy*jI-rx#huNpWl}BAnU4`_F27 zY9uz{_3L6oqZ1NMSz7+bIL>O0FGz{+nwE2jZ<(#+5xt4K<`;p1H*`Q$`jq3!J9 zuhM~Q=D$??BLzZ_Xu8!Fw$1^&!z=7; zxfdC=kPDxVnE#-=aVLk#R2K`oR3zJj0}Rq5T|VSeG2DK^28{{rMkxxZN8=i!B}zR= zuBnh@3Qhf)nOhi{%hqX#=6o_xVDi07)15jaMrD3{zVGer-ZJO#pKfk09C~{mTrBfW zs7Pw6Z!_x-iYr?WqaSc>d``Y8TUGN!G|uH}tJ9y$nNOaiYpb~JJZ;`P_)8_1Z>dq_ z)$641qu)O;4A->IdQy_?+6^&fZFw7=NMHivHpR@ZymanTdNMK#PC}dOE5>D;qm;jU z%VqNGLYEDD`2_Mzc2|^lW-27=+}PkX*gvqgKz>6ePQQ6!V&9MEN2A~cK2Dc24E?-a z!lb0z1`KW0bdrtp%5z zj;Y>i?_R&FrI%S>@QAkN-H#6qzmnQ+r8}=*XZPDgp6;;cAq6Wd4$JS~?}VIxR8@Jv zPE=03MR=3pWY?WHaulAQy6!Y^zYr{bC$c<3-m$jAtjVh86&FXh`uCU4%;)DJneyAM z4Gc(LyKeB$AHDDiEY9;YH#oG1u7d<3rCJ;EYfDvrnpw8GKVS7rZ7@T&rFCV3I{(Ly zAAhtITm((dUay=!1pKgV`}Wzt4UsIGWrC$!^z~h`O{jDAzi5ABh+_i@?&W{t76dv+ z*B`QDZnN8i&)pjOV>!%cJ+`mtJzvAIDG4dbq1KD#Bksl>=z3})Q&f4pJbA6O?Ev{@ zzbCr~UvL{oKz3x&D2V`dXF2p~x7Pu>!0Nsjptw<|z{7_R|7gjiLz6Q6qnY4>IZe9Q z`eWHE*{*p+=5rVGnttqPelFy^c=*tv56@0rvq-=59N6ozsHXcZL*29aM(x_*a7Z9n zS^fD=>EqbVap(Q}mmP-UQj*%Wn;YO2H>K3oj}b!2qW2+?V%d(9O5i!KK0P61*j^^& zy0X9?eIx(T)}y0!&E`uM8o&E`WH-U9v!PqkfVSgjH7cHyb#G?oJGjDwqH+@Q@l z4QyJXGeOVI=d{L$-c1LZh|N^jA%uZvs&SaL09Nj(%bz3Y$G8EWhk@IZS1TT%liQD0 ze4)UMCL<0I`Z-r(|NzIgulnV&*M?)@tp_g#LNwze5>`T8gQwkOjXKWN__f8E%6+)+j69a zPW4QqdHL|9%l4Nl9sKX)?1xJ+_bpdilXbSP z4Y+Rv_rG1{V)bA;qI!~5;Kdu2T(+k&6%F5LIMrwsJ9r{g)Dm;Ds~f71a?%yRI%7G35<=~>*t3upXgokqKP4o_krCar^mHG8f8C)^K8l$d$4Rix z*Or0VUb}B@c+KXb#dDdhq9l}D2u(DqSHK4}p!p;rXjYXXoAc0F6QJdi5UQH~mlu|k z9juiWyMedS=G@o1Mh4R`Eb1D3HU-8z#;o)oI;=6Elwz0bh z3APN|d~>xFmE-Bm|nfovK7!&eX481or@5Ko4!z)58@~CMG6e{7Fx;u=vX* zim@AauzV{pKTzR!vCJ@Uop-?H5p+ICpSa-**e+WLv}b%54X!o7>L)OrJ1Rhn)!_zI zvhIH7eR=68IM`MebSfnTsgBP@y3ClT!ticEM?lhIec(UCpK3^30&?>OOvaw(muEm!RZ6(-Y?cd3Yk-8pV&9%CfLF zsTW<3j-=VUbM?j~-MJ{wNZmcHa;GyMFD*G-y>^W(vl1=@VDAeTE)Z%SGNm>2-HpZa zO;R?i5pi&M4aL)C^^=+9U-3k%ifkvlAhO5%&komc8aADTfGG~xPORDP-MjbI8rTON zth!=o$mrwakgK_?s@u6asOL4-(Y_v>48s`ABa zLsmcA&P&G$BO4m;TQ%7C^1y)u$%rzQx<>KWMu6FRDmFG;uv(CSN^gB5cczjD?Nbd} zQi4~KAR#||c-P*&IzO7?_t6RWW(l&glHIsbBiPuA4gfq;;Hl-UhRq4vp_3yFX?`lB z4N06W!MB|e7LH9-&IDNzI&R548LrqPB{VzK(yRCsOX8YB@35PG0Vjl*cKU7yg?i9e^Sf3Kfb z_|dR_Z+b*H0+9sHkn5gLbjCUEsHhw|dUOYsy}hoBrGD>re%BQnLgfQj-Ib%axApZc z9ju(qWJdtrCgxA|0ZW>5tXMwjMxRA@Xj~6_oT6AXWFpQyDt$(2dmViT!4&XZ-52VA zx!^HDt$8Gt_&v(Jj9rx%;rqM4v>r{#?A#m>i!V~$^A|5v9j@rk^2R}ZihFDs7goG?SUeF4Plrs|x@=@~JI3L{LlAHCp z&3BnCyTQ;iFQ=}v@4J)e)0%WcGn4Lz3gH=ic8<&4?FAuBhj!lsCuFsLwc+=9I_Qbt z5s!sov=kI)@0Oju!4$ejtv+Fyyw-fnom~A}X=!QR{{CDxv-)ArNyd_l&@QB_hTG<7F%EWgRL81S4k_jM*)f@Kp$t`-@7Fa&%x|csUG39wzfu+c!ZqaRPMgX zAgqM)0M%_f-sSc96dxZINMo3Q^t*nyr6>^kcTg}|AuV(Br^(3-&-z8vT7}{)!G`9 zY;3ImG5#O|;5p9e!m>~ew6uHIu6w{9-Tj5DdA9YF0*>D{Jp^xJ1wcyNQHlSmW7ZID zn6D~r(k~TrtokY~ePkqgz5f8G>P1e5Kx`KBV1G3h&U{^AqjeX>u=skxGqo;t#p#?~ zTYbhGb<|SrVtafUluv`Wx&D`s7udA65ch!efeXNXzh+^|^uaib zrEfqq-gjI8dFk~*z(weMyY}qiu%UEvcD9Cv3k+UXK|xJbRnq10lMDp$5AGHQ9a1QL zU!o>>b&&0J@X&y z?Fn*07qSvq_78?I2aI#LtvMhD#XR>MAskm$(d;_a2g%7R;i0&O3JE9S$l`!|O=DxG ztZF^hEm16B2vJE0KXy}w4yP3&IrIR4%Omgzu`pukN(u#LcPrnQ_x=ovdZ^AYG?Ajn zq!<=<@4k-!-LTa>T4JC4cVaqMbCoD~ndr-1Z=Lq*>bipfMU_9_=13BE1lSNN@Px@# zcUjLPL|=zHTUuJ8@LMiL+X{!2;T->+(pQXMEyBe7(Gv}gF1$ycLz@HLh46&)tC zICAQd-1XYfyyJ^!(MWrWd{aTcjrkBV+_NhVo3#<$4nTq**LKXwtk{Sn(g zj}I0;11al$*c_ze!qryo6AA z_3A^dQV8ipvrD)I`}cOc{-qIWKlLI&PwdW+4=cOaJOJGGc-zH z7^e-mt+K+;QGtJhvXQG>8{`smhK`Po1b=%XnUsLqzs$r5vKewP+;W8L5E4p5tWeKE z-plAOE$r-GTaDH^cAUwyK7Q<&6v|dsetuPVcO<^z_dxl9%aW3NU~Y+wI!$wl+mQq#8*hBO^KG zq$Ua_DNt3C;^N-m?iLK=H8L5`&o*w}$W*owh_Tw-aD_2yRAmu5(VY~H(xM#ONhNv~ z7Aci7mqJ3?!V|awjT6Q*_-5q(PIV`uTa~`w{x+0Y_{t6Zr;cz7ogZ(EQ-%QgDow3G z8o>D#tZXo#y@i|fJYeX*Uv1mDlNqR20jiuy*Fb&!O-oBlxw4g?%%dT&1f8D1GH zvM`G60q1)feY7tN_r$47tZuj+Jxj{s5oAYN`{er9ob`J$KFT5YUyN@CAC8;8_!iA< zRY!*sjM5&>b1=9tfi&hmyB#hCuCyL>B3r1mZ7nQ5v-{8p*u0s8DU*t|r`)}q5YYZD z{c`!{sz~L^n>UQxWnW9j7~Qc0oxfcc>D^46gp}~dc$t2U6Uij0gCpRGXzdGigp1>&S;P8G6BW$8T8qEasl-IY-vgVq6~q!8>kiHKan@B*b@uzl7; zz3~sa#tF1y?^a<_k8d}+-<;s773t}@9ctbf+_PdmJTRKgIJ;#YICXu3$dUZnS)PmL z6kjZl&}&9j*VJq!+--0g+{^olJr7-c;WR7DzWUotN1h4W9c)Qfo9N7>LjutTv_~Qd zK>2NfsR1SpYIf~y{~VH2P+5iETJemI+chwR9vX-B01keiW`TUw^@cj)8KES>U+5Wg z$-br7-W=<(*rxNt>QW~U50A|4v0?Dy`^v{{U3Z<5Bt*B*K9bwR>>SM(Sw=WX5eMf$ z8(~JH1zVP7lJjsy34w0_d*{&qv=V0Oi<;5}W_@q)MUdn{`H%X%jiZA|2=vy_^v!;D zNc4oD!#%^>4Gnl4Xl)4^ZgXQjZs`tq5E4j<3>Op z@=?EFgQX-TB}MyI7jiyW=lGmJCj_?Fpbbj?bf}>*I1IG_HvU`K2n5J8FIzqbOE-)S zo`{LrZiBeza7H7jtp)WpI%{5Dc{Jw`{`lbQf7SOrB==o#Y3Rcqfg}oJa{{a>B@hN3 z?F!$v8xb8MoX&-|lSg3(P6C7ErSt~20zkHUi2Ij;5oIa1gVn@CQy6sW0ZP2za+YXW zk&aP5jtsai-VN+IK+Cfa@DOBeB~og3Zf+tjzwn)h9vd(3I5?_%_>Ifb_a}Kq?Y^L2 zM^s)vdbBmp^)Ge!MNQx{g6-fj@Aro;w@;NAA;4M^o^xV=0ub=njb@|C~8_ExxWu4)2?ZQZf&By6mBnmMLDJdif61B43x1xgA9ecb;E)m=$! zrm(f0d)014m~OFUcxd8o2OUw8g2U?ZlPAN&!;kXwZBKQ~Oh8D65941jRZ>J~t3!&9 z&{y9ckn-MDTK8GwUk2rtvhuj?txKu@FxJ6kVtyszQxv!HQA|N}Z`k~7n<#9r92gL( zang;Iys_()?+e0`5aMv=M&K*h`@1uk(41he%>QQ6sn_6%(Wj~hX9>jDh|NJs z8J>_K7HfZZ@2TsSr|wn|Q0`!oKYsuJ!re+>Biad1a5Ik4tV^kPN^O2D> zpIUJqLGJ@2*~`m%QvZQ^M zR7hf?j-2up!Rq$*{0co?L6s2|`P6opA7OY}m3pe62m#-(J=evPaZd}e(HDUmWsB`h z!Gyxyu@5}S8SL1b_0mY3R2U(dE?WgWxPTAfL@Sb*154axD<k`Bk;FqQFyly&Vy;&Q* zHbU4!&?3&k;%2?E=7{LIhRkoxq62~h$kGz+yYT81r~cRITFmEoEa-lR)d9FD44wuM ziUTtrcG8VFt)Z`)8S=YGSeWp#YKU~mTS|dX_3Bfk$HvA8x*mQj4&>Uh^}lMBE4Z}% zCj>vE6oO~tLhemKX;&v)*nkJm@mz6Dgw_@3wsIb^0K0FF+qx48VJ-!zl$#3t1=lo^{^?}d?aES`9rKmUN<2GLc8{m2DJ<4)9vH9SUBch6m z6y)cmKF>N3tUqw>2<&!HEMky?iBTs)Vb9h9AK>}&<;!D>jeKHw!+!*I^wkceFcrzb zd$J4zJIJW-l?Oydko^omH(qwKw}SH$B{VVKADyWIe>E<1qPLKfm?1+4#d5bO1REj{ z{Xmytac@RuFCaoJnBw_AotoBAw_r>c#}*=++zI*sulfw0<^z7ejAula{!&Js7gYzk zOC21Rdq%$QyD)k+-L(N5@q0`SsoR&@`hze-;P!^jLVM2R}9O4``VW zQBzBxLEC2ut8}-lUG?yHY`*Yc5hXSBXU}HAgsGHvN6U~Na|P6w?4}06|LfpcdYLBQ ziV}nT3KW6WqrmtSVBKY`GKL4PC&^QTal^!qwzvQkmFv(@BLr-jVDTft;8fVDYhEMo z-K*ItMB@QcfDPub%v%Yk5e5VH^{gx{Spb(KU~k~_vO!a!6%GjrQJ*Z*tv!q_rGhnJ z3iUOT|=JQH&t6aVj(DPJZai{DCAlwq%`oPND5evg0^Ogn7?4VD>Uz2Cp{4uNH3G)1}8U+P2e3=UVX`(XZzhZU5VWck`nWn0b0w@ z0wpkRXJKnwg^L3!^7{PwGsD|q1o8cjw8-YwHs})oeT8D@_?)rI1$aQ2L zB7|spOxSF`#|kh6BJuVwu}i(;98^G>B3DU&pGbTZIBmoXrio5rkJwx$ps zRpKXF^IEL#S@v$$`d_Z95Z(y+ z2fGGf=tGtZ_AH392Y5BQH%@}MiWpF0pEeFI?xs-`Y` zAD9}kz+<%-rHTYAiejt-+b*QfEfd4E^PpBKkz)YW$?pDCO%Ef8-pI@u09m5$h|}$L zoM@r1%sY?vVOd!J3g*|Ip(~ul#)92KA<_23hYwul{n7Ai)@M!4cBHSh;PcBvs_$ z$@pPEop1x1A_CeY(GYXOy~tH5W9G)_5uw%Yqv7&~m5%(_u?FzbB>qL69JJg<6etXd zXp#wj9Md+Cm8xNCn2RA16%!*!O%#@YsTNEz)g?O?5{SJ??wcF?j`2N%_!tTgWZ*IW zkDzJ@Lp2G=A04o-fTM88Z)OoZ^BOUcpvbhbHZKE?>z0d)ONK4L_Ap8$A%>gu6@`L= zhXq3#iArTnz`IN6P3!loxpsbYHEnY4B&H3TU)#AYgKR&oNXvA z!}*;W#N;F-eXIGgTlgNbS5KW0PgJ;=VK6*WF#_B-<)<-LKGB+7h_P>|8?e6U^M57m zA?TB-g`Bu3FQ^X^PJJ{@Xy^OcsxwX^>wX|uUjQA90_{OqRfEh!YgbZQN)6?WnCXGh z_bl3a0%4iyI({oUQvE;h1bqbZ*+7}A&F|hwR0a;cI*PHcF~;v7e3!tC22ssiTm(`4 zw83S26?<5};QRtn2RaP06Nc(uq8}k9&KMYyT^M!{<4-W|A^mU~wJ}x)9yjJvnIqGD;w|4qgnf0lDJ8giZbxG88QG+dMFL$fi@hj~ESx70{|Qil>t3 zLkNZ(Bd!Y}d2@4uoSbH(|<69))*kY8AJBa)mbIE`@RYCs$ z*f}Y%obzs<{Nq)8#BZ*ik&iEe(35Crd^0o6AJj8nusre!%{Vb3kER*wcI{d1y1?_* zx0@n-d&aNtST=FDqW`tJs`Bi?fvdY7VVvpSe?%LsCQ)gj(NIXvF~F(3#1^pGvHR2> zQFZlbEs_m_z-fDP2ne@FA@m3}^?j}?uhLQ>40V7ogdsZCfhp+Yv%4`In-rokl8*=# z!Qt!r`nq3{)7213bQq7>Fx`6+p}`W8155#a`&Bas5E$YL;Lyt_CN6pE=fcuT36!TX zpWiJZe!_TFB#QTox37wGEDY9rXN-A{~#dhi+XKAeo@^a6CfTg+byD&=p~} z|E{{ax`n;H0s0Lwy}R!%9w1z_O-*ls=_3jmP!U11IjkXrwWKI8fYZ0Mw$_0n2pcrR zz#kdRc{4KZx^d$M#xClCR{~Toz>Q4EnMaruDn~zh_`@1KXM3WhqN*ofz`R(GD#wLC81+7n(Q+fB}0CPA$+t?IR$-mKjVy$e|*` z5QXs%4scT^Sy@>%ZI521kfBf5J_FB>Ho>J}l8ESBae%@>%*z8K5MzX4zmnlv1*%g4 z5=P!OK!PW%2iO9#Xt65outZ{X9m~rDC5%EirA0#0>37ZT?yeE%9`MazUg{0vT*Yvg z-k7`s)yHqQ4$?0OD2LEv39Lr!NdQ2gr5nkuvmhblfn8Bs3DX|(taL_=JC1q)$95XG zt%FfINLlP?GKpb6q9SHeAraOB5fB*-&}%q=xBn#=VkD_!9_a26OT=Uy#s(ntK0t$E zh1m{35u92<0eX3=r{Dlk4_-wm!>z5s=#g6CYeF5yDBFi~PpymL?10*F9dIRr-}>CM z{)d!@4v|(kPnXt!qmu?u#4#LWSR&9kK7;`cbtlW|j}gYW>adD%`p5^?5Cc>MmxaL+ zEubho;y8pFB)D+(NnYEZiuiuQ+yPF39s|a&o^%=_r9hZ`ebsXhF(rw1h^X)|$&;dZ zZAFi&2P=M_ac3a>Tft~8WV5wJuO;l8*yP`scHgXr04pvjsf`sUkONllAr4l6tpwCd z326nglT~`=!2~J=Ne>h_W~ieaB^?tszE7S!fs8z5QgBhTtR%-_Ry$D-da?4#;ZMoocpLpI z)j#7Ki8sY%{|_>h>NM<6%pPEop6m62j|?HE!M!?h%Svdv?&saYHHAQkKJS|VLeoSJ zjBzL;s&WPOmC++dt8#~^90k3gpgL&?h)$fJ!1zzCz#L>E2T0JjB*fb1woS~wCx)s( zD_sMQ^D@Ooe?|NSBVx-Ch>zr}rmL5`^}UJ4)Vu@$Xbuz|c@Ri?NHyKDakzPA4=88r zCY=V!7=|ZKXUJtW0PJ$C9+{rbgbwsMs~_?fhJVYxbHBvQSJjMwu&@Sc2*Kj06d;!{ zVcx6Ot`Em;q$9;Mg3kM5=L#Yy6lx1C>tuUscnc0eNi0GN`^uQ{?>e}R!bJ9@Ub(P!v?SB!jJDJ@_vt9eRC3=MnfLG2;J;nB_m`o%Jk6>*4*SUqyc z5=f|ku)AP1K)5q0XGr00;L~DRBYEuL1^%k?=Ec(MfVogFD1p9*k%0Kk=nfvdw@~D= zJO@ASRtxa<=s(e2@}`-CThFKwvHeMb!zrqf@n?eBLr$}>uxPS_D5pSTcj!aUfeAx@ zsQDlVL0P|5N;k6c$ABnJ9UVA0LW_kr>>glWG!A^xta1H!LV(k8I=V&>!-TmK6djxx zX#180MQ(DG9{{Naxv+8-fOEhl7zDjM#CoDG;54FpckJgzB(VL$b(n{Uz7EPua}FSY z1>UZ%BZy1oH2BITun7`|;Xk8Cf|D$d8Do82+X z7H~>vN_t4W1h&V0RPsOa$`EXFE9K82WA2hDO1 z84N+?eL#501CR2xy_U$k^1?#LusL8S^ln(b-N&s)Po$38$jUPo*-K zWtJNG9G}Tq0exXHU@=U{qFqW*N)4#XDJZy+**TBfXf1PfMqT}cJV?x0V%C#z-KhMG z(&TTi1=jv|3PmL#8PRMq6X&WjVs-mhY-0a9|)P2`o=Jaq0 zPy|b-j$BaV-{gzsT+DxW54PTUZ*d9_D;Y==6&0i*F$s(ESgI9;^h51-VArmf$P73^ zBpb(xcTUmt?MN*Jo-aW%D`j|WDmyP>_vDaSV*;W`I-rnj#TM@BH%E>5L)E@Q;(JIits3i-@3(J^7YPZxIY2{h~rs^ zX*?YNP}%hj@x0|3hytuMdY6Wy+FGA9@+-57QIEb^@huM%Kk-fIjn7M32y?< z2_g(g0Lu>3rHgMMeFfH7LSX`60Yg3Z{tM_%Y7w`R@3vS-uzJL4N&#Z?kDm*<<3S+V zg8+0!enCUwnUJL|DJ@NuT4Vhu3!}S=?f4X6~EQl|7vQ80JoJ12B6Teq|lMs_b5(akZ1s{27x{Xv8%MOBG?H# z1H`Vun?OjnsAmMzLX2b}4(3q~BWRLHKLXb|S$NhZW(pFe)_KaV~Sa3C14@*}=h~ z39&^Gj_`yfG1R_r%10v8RQ+OIxPg#iiQS%xRNYkgAiW%k*GeY);qE| z&BTBX4(NX7h_&89~ z@$Vns@|iJ-DmH#@coFU4VemMwB!YkZ$B&5Q(~R_j2cPRwt54YpeN;kP`XB4rZUnNR zo;Vt4H3P?Nfj5u%?~!5XK5k;ICh)@C0Iye&yY&H={1dC7j zxB=fVnK|P08`g`@07`FQvIVjNea5?i)cV?N>^l&@<)0an}$>~ zA37+pM}Bj3Vru*o7Mz?1lC`R?PEsXX+Y?hi2_>`Dw7$W?!32c_Fh`sjPzO|P(6s?H zUxxq<1wp2VTvLY&cmpdPRp0KVua~A7fl%deEK?|$n-3aGm% z%xMse7J)4wY8bs|$MH8UKisVmy})&zF#m#PkU^SD)tVr@&U~_1<8gazz@npQ8?E5Ni?p29=* zlfP4Zm)2WJDKzg6e+l0wLUV5t3&0;?PR*0b>?Eh7dkWSA9g(M1^uvyc**~K9K>>m? zKGkDO|6Ppp)b-j^pdN-Iq0A>k#S^RN82j65$R%pE^@^P>lk`8SWSG?x96@NB+I!*< z&QsSPz-jUS?l?{#8bODw@5|ku^rug6L1vm%calkfr4AfihHTy8tGk}N!>Ra>tN4r! z2*04H(SN#ZxJaH&yT*#judoDJV)A}hRHKnIPgp z0}^dJCg=QPakyIfW($suijIi^)dJB!4o)-jLx--QvnGXMPz;A;Im`^IPjWcS+#@U& zxE6dnkPzI_={52PUmtK_y{>gow(Q z1%Vq4AaRDD7aH8mn*SW$2v#*$u(2Bl;lKjo{b1`(uoMnxph<|PfpBiX7ess-q7mz5 zm7aPqK{trd1sHuF@`x_>x^pmyIQsbdCIEF2=e0$PxP!O*+k|a#to{xz5y1TzsxoX} z{-A<#F#JUb&%~)K$gIR~2uTK5_hjcVfQ|?B#plF~AkNkxWJPR^ALzi!bcm1o|6IJK z0FT;`e*u5Kf*?q6n!xlBD&a(E;QWe2&{FQcX)^ExK7}Tjr3l|JW3J=;SYgL7^3fo= zM?z)AafHvo6Au3RMfOTWIuq3o*2i45|LEwK(24u0rtcWUh%}A>i6RcHK`+7v>j5I< zg&to8K_J8k*z#EpZNocZ#`H&uCB~|V86ZM&1#YAga;nC6Umyt27dxcM)^neCO3Z(hJQTLVsS+!fgFJK@T z2#A!5ph!qaHzCFn2V4!0s|W|Py4q!6X_Xi zDuNY?P!f=&2lyo0K@E@=fx{^UTB{XuiJ*?B4WSis!=SQ?XukCH9)dAJL6$l^GDHUt zRX;)aDYyhrn$>~b^n46F;-^PU_Q18<$_WJZ1Z>drE~97eGu2R_&)e_M81+{2MbJ>+Kww^A8`7cM zk4Ci==`vU>cYFHOvu_o${kV7UUQaCxcXDI;ai#^KdJm z81|;*4)2^kb3YkU94#mVdH@r00HeZ3Qv z4H{-7lmvG>20}@YWYG@hb&b#1+SokL7$^jJ6{sWM&$|IL#c5`C2xvf1yn_5_BN)u( zi7GZ&rn8Xx1;uyz6aL1Yo}MK;$ay_@5rjzRo;oYq{F78)Hzf654*RDXNs}|^WO;Cn zyMz5{qzK#wTBMx~kf@|k^@9A~w122FXaGRHjTjFr8=DJLP@kz-|M!Yyk@Nq%ili@> zDpQ&3Jmgv#yY?ztvPM=RBJAFDBj9s)E!AHT{79pTV$ie(1>?q`_*Cw&aSz17NKFdadmusxL^8Ac0qI2t_Xhgctsw^lNvE$6PR~EO3Boa`v%J@W!VcUHgfR>`C{Rwy zBE8#SZ=Gj~fFy$y5+O4I_mu%!&YRThIVMo1rl+4lRhTm&1Qsu%B!l$m+lUC+TGe3i zrCvh63K#(c$RI+UY4`~(M*V-T2%cA`EhmtAFUYYzLb?_)RKOuak%Ev0p~!-x`xYDs z@EM$j4M98x1xj!={Ij#Or!T*UO$37OT{i@Z3l=y9HaZjl4U9jz#Q&p-1RpaM%G4kx zD**Cr6Nh@8I}g+Wk%Jh4yFd+fB+P0A_8cTF3&HOOi_(H%qah~Ujz^<_g$ZZ$D=3~r z)F_Ami6P}Uy+BOrZ7fYC*+23y2nm#ymH}snp>W=LJP_@(9U>*BMR9F zNChxL1_rE~G-XE;Ae3gBm`_zHyeV%%k}HUa1yQ{)fj6#OtU>mCdg1qQ^mQJhWAY}Hl#-;5d-P_drw9f;H;($jxQ!0V!j#g!P%7#1ECY+JC|hd zn;h?Y(X~aOS>}z9WINn1nweP8Z)OMeqRUncD7?4mzeIC!*=C9Z$P$Tx;84cR&b9S= zfixZ3Mj%xa5%cDP7!#dr5QZ32UPiF6^ev>1HYB7K)RH3UScBk}3C8-}X8jkm=pzI2{=9I*mf=cfNWnHj-3Te*B!;dy4?_$Mb^~d|dXlyN z=wH8epFvqk>19{a6Ds(&n*=2)>T@JJkT!($7Zi)c7rOBO>&oEzg#9w~i7s&cb@tC& zlECf%f5guJ|MN9|Iuznq48l;~^z8tD7tzqR^t}5){k`W$@4m-dd^>qD8Gm6Eh$=+E zg+|n)kdFju;lnob5*1o-@tQ%m0?!&ruR~$=s$4n}A|-|nGV^fd#bHOs`^pSPGDwq? zp&o+}3yu(OME?Y)@Dq507cXDNxqCNZZ4V@a)6k-30QDj$ry#B9AiQsdTtZ@{7+euQ zHwm%C&nb-nOhp&bBepEL!661=c+2?zE$7LsOtZuU54<~G$crJ3NeE9H5lcXskk>8- z(F!~6$qek!jM-fBWYhTF@SR`1nT1ijg%?#!Tznq9Sg0`c6nup&4`gYq!C5iehg3uZ z(8P>lzys+qYuw>OAjWq-b=TI zON|@@uI%XyweVlo81iRsIdbu*tBff0^50TkoQcga`q;=z!R5OWft#;)@Ov6zK}3r9 z0OS*@GE`Rk>!758RQHRhc}U8&4G)(-)#sB0Aq(XS^({`=ln?X5o6osm=X5Z?)p}Yy zHl0Bunp?5avWd!K(EQh%Iv$=nO5q8mJ3(l+1Yt(XJk&cICnk7)xT&eDkCj_LfD8h( z|KLLmjz~cuzjQpPk0zGL9Rr6lu?7hJW|o(QfshV~AW7mGn-q|o7wV#ezuwl^2wG}c zO89nRfw9_oF5t_=r2$G zo^FC_TLLU&grE;Co*^3fi_quQ?eKT;@xt?SJyfJbu`Jz;0zs)CjE$P{PdsKNN@xn23ny?^0ZxU7S_Cp6lU8 ztcbQFs7@Y%G&DnH_~V@_!~I`lx;t<=!?3|_W&Yh&E>y;x&sQf^u~g5#s0gDZmFVzc zo$D~fMta-w2vyEBOlc%f95w#-M+&@qDLhc9S7yDMBBI_TyN8;nzLXZ9<#an;ht=T5B?`Scv zFlxAtjO?GcBTgBvD}A+SDg6(TueZB01^J3K#3HMj|N5ceQ9_-z=a*AF7KC~T6I0Z3 zxSS*73K{qE*}6mxmzJ)^l)9Wp2i>^@;bBS9Zc&E6`hEFKjD6yxE%7m z={g4CDk&@7I-Y9rWEJm9oNzH3D7}7rAsrj{eNK4}?O-{l5}qB)#q+DG zHL^Q0!!7xS)AS|MBpRyEML)2w1bz!h4~R3 zt!!YtwWzvI-h`=%-?iT28wS+Za?L_wa5+q`-Z9^nn9KRv4Z~P`9AuznI}f`_Q@RF4#D7hw4ra~-7bir1(wERR zKh3Z9hpvgY{8y09l=sxmHT?W0DzzK@Zi8gewY;ZU z8MsaYK5x9F-$bcr#~n5?SSyzm7fOk;eZI+mD-8LS`vJ*eIYWj&R-z6UE~N}th|NyV zgkLq}#O4yU3(2*JZBvlsREq&LABf&2vcyrt`L^&P5!}nFx{%-fm+twP6aDhsN7ns&$0pHF0Z1B{9@(3Z*op4(-u1O)OW2&cla&uK1{-FYYfW;m zLnCD((gid(Q0TGo?(@KGUZKH8mAM`#HmN`sQ1BfhHeSs);5F(rmTygoI49%V_;3k3 zyc+Lq`F@E+h=iI;p>?DKAO5SFSwrc={7KSxW^!^tIk8xw_iE5AGoeL08Nh z;v}IX$s)?ar`|Uo3FR;Oi}*2${ALWVEgvkuvu{&u$0V}ln&6uCONr3XbTK0@P$64T zH@#tKSl;82=5XhPjfKb7b<-JB z-ndfs|CB@MKBgD)O`E)$<$BaYQTtWF=p~nn_NCp##??0J z?kXpJK*sup*=;YPGA=G=Hg}WNq$3+H$5O~LXHcP+18tKAX%^(YQ~3&C@HO@PFY5s% zd^0w25H5k&(Q4KG1f?61}cT+RT(niP`7h=iNd;;WW)KJuX@sJ?p+l?eaM~ zTLLeGTF(Bn*~_C&rRaAY&jm}7U&fMV5LT;*@QlHXRfqy`tw6)_4yQ%)7?l>$Ssx#j(_*SbTI6?pAYFd3APs&k zc`#5s*lke#k5%~G?+;dR{xFDnI5yIUkL7|jXuz0NO-TfX{9Rzdk4=HL zG%bCL7jF3(NkbY}q+jW|?!jXP22ac!Rjl0#hS>sF|EYIrpi`<{rnaeaCV_;aWT&G`7mdxG{fKE)N`%pDd5}e%5)%j15ej<}=Dp%V%HXwd;%u!1_{0 zpHYW(y(XcsRO%2Y+EIKUl_ai zP=M-vy5y|NI1AlGP4myW8l(lmulx$w1sm6$7)(68yVOJ_bBCNqohiNE9bp#>2tF%y z6P6q{4VN^#SnWO;XUC`<+|gGc${f8y&59CuOo7RnfMB9zAfYz6l3|J}79>nQw?RB! zjnkBG6CzuY_gGvrH>kL3LN-z{K5cpDPGvX)s;%;sLmr+(8%nIx2~v(nCw8yIhDmO{ z6!ksO^Yhs9{(+&eL`FbIkEQjE%yM{H1Bm#l~Pa=4|RPJ2@?1{Pn&+x+U+N6Y?GoAXu&#C~-c zWeW8?T$%eG-*&{UHam*daur17z7ww4{igY*CcVq)XuZ?>IG*ojOJqbD2A|v8SlZ5k z%s?#rko18yrv>M0)*Z%1Io()4v^240{m8@F<&=7;7Oc6`5voPJ=C8abnwNEgp;aVT*Tl+5YdPDhnJ4y6-sgFM^v zFM8ZZSEaY=(nN`EL^FS2t?c+bt{T8?C{Vw-rFs-w_;Co1B)srW0c6Jg!r-cm8+uzrzPuFO~=qrUm8+GpZId)u2B(nP{&N-|k; zQ-5@hdUI{8ev7i#(79Dl4K+>ux*$F&VwqdyS~|PUeH_2EX>lPhzP!63Si4z(qR?`U zTw<+KWI)kvGj~H}W}QG{c!hm$!wp5n`A5^4J1ie9DePhDq``${+SXD@Cm|gb6JDH_ zUr{{A!lIW2&#dCmUkJvb%A;6VcGujXwmWU*T(GqX_6dF%))FL9FKx3yPzwQN-(CB$mCxVL>J!g z_ek`O5#+7PPADRIU`*{(#x1G3l517m~b#b+q+9lO@q`Dk(+%7dViLn!rUN? zW+ZZFd?2D;VWYl-WNJ#MoCNjHBL8pvOw-+F(vo4O+&3!bFLH zAyq&hSKBkbwH%`Q=3yE+HaHOFKUimbeqM$EPNW|ARiXyxTln#0%%W%Z`7$J-ZPB3+{M z>*3XG>?gjyo*K&&alNlu#RC=k!sDZYB=k9Fqqgv(V+cn%GtRiF1YZw&ztz33OY&1b z;T@$xwL3d6Bgb|f)<{M(8s?HL>8AaWBrh|nZL}dTk+y-w_7mYj?#k@%OLh{g@d4ep zcnLS;#YC=+tZOpGK0Flp8p%!Kw&xhWxH>0#=?~@>Ji!2r$YjdH16KSoD1@}YI43|V zFcXPOD^fTph9+a3q7C`*N$I;9MQ^`dcqWx?m`8hilgjuPr$->4gka%DzqyRvm}GGn zv0*}hLdR{nfpm`pQ)zaK$X4xDW|=_O%&2=zU0ffOHHFM=@Je=BzUHJz#Tak@l=qYQ z+R@n&wxoYAMNy5!4WxMk8))lhDh{Y|I%>U~={UP5CqcJPJeXRxr^l|Shi;4&YhR-O zuFmiFO8khKk$BQOf$3uh@i#5M>DJe&a(6w{{T6x$*bY|tnW>B=6L<9OHFJMgsZ-xG zHuxgJn2{_YK5*+QnoKu`UfO(W7@Rk_sHb zvX{&aw_eNz^X?Zes)BO$W9kW3*df7vNUEDD?*1U8~tb|C|&Nnckk>NTjFc(4wcX^^_x}ecvRahRoHjU<0%U32Uz2oh*dJb^!Iv?j#ZUTVlPUeZ>w*pVzAT`;xss) zz~CeKIR~v4 zFiS);44$)n92yaI*YlvFEd)Vf`-4Rk)iCM$(_BJum8+6T`Tu8#J4!MoAFgH zAvW-p_j;6jCOCv_Wo)C|zIK1jT2YHs(Knga940wqJU!q%)Hywf9$zRMXnQ|I{Cg*Y zlaHKMB}YzSRCzQ;EE#4cD1K_yYiKgfof%k5iaMgC`dY5NAiVHKO!P7k3Yn-byLh&@ zziE*R`hc2;!qLkqOBPvP-nidXe_iU+GwG33xrmDew?qb(Ic{0U@kt66?v9J=gj1t2 z8Ee}|-OtWtp1qhbB(xOod@+yha{hhFNpd%fQhvR3))WI#tYe}IYm*WA)3Hu_a1zx=ib?J9$uft-C#kO!fMNo1~I zZc$0*iW=_&by!{`v|SBAF{<44c_D6jZ9lkt&ko}WsV3BrM|+P@hnZ)>W}MDbHCwmL&<{zi~H;@&j+M?^>mD{K4!Vj z7^U@fW2yi^Bw8FAGb%SN$^D0pI4XivdP$87HN=g2Y-Rj*XnSe_gb6itY9}I zOP2g2p0Vt8nUm!O>_3M3M|JYwU(2SwL8lTB4rA~Mb>p}tWSPv;N6Es)cQ{}aKqZ(x z|H2#3PMq=)rMC5p)ouYPq{?u4`rl~wN95szQ&OW$`8{2JJl&neqWSn$9 zJ3VN$boNoUIr9>*0+~0dyg0YZxyoXHuSADFisIc}NG^rk z&S5O0Pe1#iW!2D$4OuO}$O}7Xgzifh&Q7mqS2mpGz7-Jr6eF0<*}>sHMuWXPW^zBEmdBgjb>|Q*xJe~I-Ngza~W5ZLuRhoVGcAwv zeq&?2jeokK_zOP;;@$ z^>GNFgwW>VGO=1kf|inn?x%$`qWLA9sb_H}c}l9>@vh3M_5Q)#gHuD?z1<)n=46O1 zb{N=b?k;Cydqn=ItCV$tbz_uoD`xyZK%j`Rky(#X-cq1v^$Km1d&Hi>twbHXOR$|j`Pq4yO9)hd$` z?N^%21-0%cyCR6a_@%_58S2Z(BrBcbM3iJZD9xa(15s1W~Kxx@m_7v38Qd z^oCgaPwga{rjD~1HpNFAu+RuaoE^+8naFQ8LN$`yj z!5T=c_(8Cb^j#w@9SBeL$3JaDPz?rL0wL6JfV~#K=qifzy39*=shOD_b>CFUEuETO zW$atFbF!54?)(wiHrbLCt8XGRkoJg0&16dJaMZh7gfxibE4pbgQ8Z`AmsQmy4_5X0 z?>^}9r>jJZSOU^zU<=A}JuCDXk_cFc2^ZI$;+qyb{%fcYGMMQ745QcjWXkET-B&ux zl#a+tM)bozCO&+`&pY@OFDd>?y5tI245Ygmc?QG3`eBp|TAu<`KVkYg%$Kj8$BLQ4bbpA1PoHjA76Rq^KLSNB}U zzwQLw<5`xCf0*%F0qaIfDubvGrX49CcIp%INoic0K1_2n=eylGJM2ekI;zhCJDKkp z+=o=Cc$#F2baV9kP>v7@{T}S3LIJLY(_d2*ksm(1gk}#w-lc=$h6jdd1tMeWKz;K+4@kv1K>Hp}O7;w5_%F00H z?DK85jAPI6qV>K^xyLZkdil2lJWJ}KS5$+BM0}6a4>VpIx9SHl{Oiv&af`NK%c@yy zo1j+xnQso1<9Sm-_p1AI{=LfCX?^??`e_NDXrX`#`~uQJ4_fBm&}E3=c(e?nN~qca zP7d7@$b@2Dbr9@BYiwuHIMg)-PWmFh94)lXG7On%yfz8$v@zIV2{HGdI_(xHb;IR9 zqz+-;kiO(V(ngkJei}35a_PSYTb+-$x*bj1=K3?aSm@fqb@Y^;1(&M(VvF27H9C`2 z2LCF6Mr+5wL>Xw|dZFGJLk^?Kg|`N=NWv0iLmfa}22doJGgTXALKhJGy)meAjhbO9 z#Q-b>zq$4cIiqWl-22>`^zP}mg-P)kCk8|g*> zNf9y-9F!MeFK#Qx&x{omm3&lY(=;i`tAEGWRAKcbpa2*0Rd#P*% zn$Cx`tssgq(2jz_s2>2N5L9?)XRq3XN^+Cjpc}4cF1T!`xivS{`s9?yCc4-q-)8fh z_)2NMz=VCGl1j869|qJBlb?!wEmH@`Gw7Md@_rN>hW43)b_R50tw^sajU|Zve3W^l z-@MP#l8lzND|g@IMR&hWel*D*a!S}U<~CwH-tv}+wll>&+>rb#yd!y#YnQ)FHb0A@ zbL~jjji%$i^6z1{;yQnl&=uJ)U^hw#EV66JArEC)MC|Ivo4s#D(i-zW5l608zOp#G z9%6oDu_0HW)ZOiNNd=)Gi*69wlHHzb8PkUuK4bCIm~%)QcYx{qPp^Zr&riKVG?c!# zEBf9{=Rb}0K^a^yxcDXaW^iM1)aX?`N5SZLKy;lU|op_MQT~TZ-J=?gJjvrAY=%c(qUW!p!<80 zvZ#nB_DoJvX?8x4SJ`g6CgVwbY|-Y<@5Q6 zF!u!2Pl1~r z=XdLL;`k`uXMIriI48#5PgKYvc}X9WoHT&zya>&W7fLO$6F(TXmp{_{b1dNC57n;& zUT;lap4Q-R=z{7zqylv3b??nVIRom?to9jaLFvqHC5*QfOp?!nb(US}32`h_YPgbe2u2K!1By-gsDNd2_GVyisz3^rN{Tazb_v+pdS-PEL(L zM)}?JX;sh_{&70A%#_9uX;S%dgerdADRM{_%i4Kg-j-7~{)wtzxDXUW;H7zDms~1C zvP7f%?5s8m9&kMCI!&T0MwX!DM3kZVRq19J@eQN=m}ciSFZZtWcwZEBNs>Xg(aH&vraCJ(sW)He#Wbo}+d?@jN z-~<<9lSZZc{OzaHoezU3`<)@MbUBU;*-d%5+Yc{DGrs$Bvlpq(f=11|D)hkw#W01H zBQ3LjuCSl*eEwO2;l!^LwJOKD%xns8VFc#|^;Kv|kWPEX;fmJz%6T75^o_-yAxHN( z540psedC`sm=YGHg6iU=Vi3Y0?;8)c)cG#8bWIEwvK)V%5_>0AHq{xf%OLJb%`dN# z8nK780^0A+-@U~**o&NgC%4s9mUtGLz?^FumnTM)PNttptOp51Kf)EhDot>{B&2_p zzb~7em$q}%H&gGFE1)1}2%gg9Kh$p326NCQ(EqoH3|BzgOGLMG`Vre4U9JtD^slvt zUg@1B7A7V<7FEY@9tN_=Dj9DK%KS#)p6C{Ix2qT1fxaR$ zn^M640o!ZD&S2Bzb{lVr%&GJZG!0J-DrXHlD8WM`UnS3PaTNPz9Ha@BASM z_(R_QCMG1WE-Hbm|xHBQ`4W~vk^JdG8{wsG`Jp}|(U06#md-MJZF5Pz_a}vMo{v+Hc z0=;*7@YA-@nJ0cF?=Vs6b!O3MVL8hJGe_+l@UhCyqf`hn7E!@YRnI-}(+KN{cb_p!05#F>nY9M0Sv zsY{vEE{JHGTGq$x@E&eGY-1+7rchmPI7uZ(iVJhr6=ttx3trV7OzO{Ma%?(XUC# z$gD~gM*Mn~CFSI6P4zd`Zf&%q_p zXd&AX#~a8i#f>gsf342l_h|6KpR)*m9#hGgUmc=K45swQjXdAn3P{Ge<7w0%_1)D* zZkR2x*_!#ctR(t3WHn(sx|}!24IZqGaL2QUh2HQm^6xou>#HB@>DR}ZxP1=|Bi@#*X9VzKN?>q8dHh5Tl7NI{!2gx`*PN^~j1@qAM@6YN(HH`aOCe#k~3I zg|YM{oaj4k`x_6Zn@_pnb-P68_iExo(%$-SixGmirStcf+ica^X}2T}$_AyBF>642Q}G$w^pdX4l!>cF>}lH(JvV-&$3C9E4>f z-*Em~mgb**w6A7_DHu+vc!1(;mX~a>C~Jw3`YkcPG024b~{S2tOBi!hR;P z*;NmcTfel0v2ivO2NP3w294G{x)7NDtA2WoL+xcOO$hQJq-i(J)_fbza9`KzKA-yj z1vP*!YMSrr4PD`53%$Fv1-4FlEsj?{`1xhtHjce~Cei(^QdjoQXuQu{31NG0b&x#C z8Rle&I5x*9RxnQjt@`8!j=2!Gjsf=?e=*zNEPWYK#`=RVzD+A=a_ z21rW39NXVFzrj&CI@^$Ofx%To@xb2dZ676j0moIaNA4Ys?wkQmN#YxkdaG`s1!L5inoe|J~T`ur9PH{rWMU|G*M zVY^{ljQ$(gD{nzF3XRI1&`nQDMYWv1e+JD{2+0+C{$P|mG13|y`B5Lz} z+=)FowcwiS?Yk}E4iRBaOVw#z5AF^KUO4CzBGCqDHT01&Ll4U4e6(g`M+XMzBy;yp zL0JhfN*<(5@Zji(jG7t~J}JNG?S=&M0eTp*>7T?up!>GjJ@5U5YGqZ_QZXQ?bh6BQ zyt98o*-lkt>!133_f+6bQ4u3tGdeV6FoqIdyUe}S{s6i_gi1mIHPQ^N9)MKzhMhaPx=~UI&BNV{h z&90SA)>^niENk_uzcg^)9HpmjT&lsgWhD!y8ivhBQwF%aHYAWleh z6!omQ(DpS;O6kI9=)zVg&8FC`MXe@=B*S^T2ZznVM~KUSDbWJ3;3t67fhLQeyY>{~ zvED$58gi{FD7Xno6~BOhH`&>y;_o%GJG;6Ht!H0A!za4Ey@~5YSU?QQLO(7Z6ROFA z30!;CG;jV8voow?88pyST|}- zir2SIEZRbIW$L1kTT>&~Gprn4ZXh1h8p-cB4e38gE~cua242320{lf7ZzH?50S$CA z^QFM2fPUqh`1lSZKftBxuS%ySp4r6EW_S91r}Qi=;0;sD=+OzoaVh!Lch8TfacA;= zToqjUxs;ALV98t=h8X=)TAFC;-vhWEvjXhZv<(iQj>9^w!zw!p*3fq@Z83_%!PG zhHx}4@`JUSXZG@~r%N=#U3qV2Qxa0wn?`opHLGyVSV=vk7O+_|4O@c?lN1>|V=Z_^R5^Ii)L#uCJ(H++9v z{=RjGwd?(ryB`v(Tx8`B<-1&; zBL7@8`lZ8PA7Cl!8tdgR9v?5A?npQY>}6Z=xJid^MQY45eGfSX zE6w*pN|$)sv0xcB_CzkT*K*+t*(W|*`B{8rV*qnnnzz8FpwKqP_Ubs|W(hca9h$(F z*8Q&APMk0`)_NUJ|HUtjh}S;g!~WhwA_&`>R>W=cTaPs~WxIBobYaK+{+`wz-Xe7>V{bl|JL_wbA}qNpC$Ji%5-G~ zZtOkRl{AEyU_|Tu0$3XVcMis0S3W5uCnpA?u!h*TOM!BOX040;o-Le?D*mOF4X|Xs^O4)if|6O)wX8oS| zkDFsD=;Px~>ssc2FTJEk>)W?4XPmgN&ese-|qOod2V8(Jk{3z{ zii`edUdNc@>$ch;MuHgTJn@g?pv)T#p&jq%GEO}qP zfG<8+4jse|M$B-TL~RxQSUr*Mne2+5mD_0)W+-;+(B|qJ8j6LCI|KJdG+I^{ff_^6 zoRpK32v8jS1_qB%mX59?qdI)SJ4EK;=;`Y#!(D3npWaOf-i?}#4IhY?jk1zFKEQKN z{`e6Ez~E7I*)LoHL_@%8Mo{UnaRa*U5o!<&)MWQK<-T_L!cM8}JoJ(O{`MSe8d}9# zZF+g$Ha7CZjEv5H{h=#x#a4Mc&r2%M1{3KgaQf4r;YWm7JOcWCV%h*6@fhaC-A?H< zYUo@Sx3(@65EK*!5~`CKI7P6?Nuf&!2fI(cc5CaEe_$Z4_`pLhE>!^m>c@}g!F!XD zlF}NRS;t-!;ggHYhFj1R8S*|VikeH)x%IMChKQ&ru+jw}?@a-37XipvV9OW7G6Cdi zH5s54$zJUWrc>bI;X$MD1ArgKIOSAVt3j(fd2D(I6msIMbJAO!(o#S-9pF|sI<-+b0`TRt+?&rXr~qwNC^l4 z_%_w!>=YU=A3(<>!z2)eq~Q7)TLupn-n{!yaW5}Z?+{=rNP%S<0XzqB zpq1-^bA3DSXgEAP9Quhh6!JBYDKvQ4?|%Itt*II|&_VTq>l!rV?HV)firdiLx! z_x`v|vT-cXk~IYK&TN^1EeylEoFWS$il~5Ummc`5b_%Nr?Y+GSpi~sx@l>d0^~30t z!!FHJGO!h7WXRXV;@OdkZ2AEo4EzQ%ae6=5HTQAq25PE`up)BUj%O0f|zr{;|Lgy*T*al z(MEOUXV!mbqEDhKnfM{tZx7@bdduUOq}zGARbs z7ob|-Na^zfYSk2& z(IDnFy~Z^ZV1Ece%QF<-FHD`~&#nHf;VLRF)_yWr7d-^~76YEn`Qr5##MnQqu7fI_2D=N?)--@(*gKu5E-NUu82}(JjJjk%w z*yXM;`d^7Q`SU)a?)c>r<%{239r%?Oj$)cqH<(!pnY!3$JAADc|jL>Nl|Npfm^ z-NHS{7+A5h0OJKz=vzUPx)^Y*r(z5fks$`a8bOCiC9o_S+uGWWFRyQGghG@0vO%6j z)H3w%T}C0eb{QD6&Bp{hU-3}3(Vqi(_2BSO8*Uv!y@P#-f&zmEkV!2t=^-Vs0?i^( zcz_vx3;3sTe8(%=c`zj+6#D-FOK=D5hElC72SBufVMk&^hi5Z1vI4x;4<@-yROflB zE>>DiqnVkT_mx}gZtLzm(G)5Eb>rpdkmb3bGc!8dqhPq{U=2mUTJZN%D>JRh%zO#! zLl1iHabTP*g!IfL{huX^ii#fc@JzV=uzgtt#WF^ZQ`hYSxJP;b!-URFDu^k=03Ia; zM9T+&M*}+$&YAzmz=ACTx?}wThuRJ{iJX!$vvbIOx4YylAMhcMp}R90j>t|xdLf&Q zEIGddr@{##h^aeh)_jfhYX|-sg0~8fjirW790@pxPR-LTd|^pRWZsCVpr8-1wwDa@ z1T5m0p%yIPgE82o79(K;9j7Tqv5578NnNHfPqg2_)NtA3lM{rnMfQp%R6|3tEW#A9 z5Ayd?-X6-_C9Zd#+gG$B1n!=avvVbklajgTIE8AXYiPm@#&&)-l#ewD2prRC`hm6i6grRA`2NnmDznVVv!zv?24DOyD+?jru zZw(OgNVri2!=^R3Y@Lzu@iai}Mh55|0!|J=uEN28ANrGP{rrHdBkf>gmm&rSEe`fO zn0B>dlGoYUnOa`1gj`%lXD9p^kT8J_S~tZ9<^Z)*<)>zzxx=Vf*0}>Y4iRJHEIk8* z6@xsn4Q%8IL3*VNqOtB-m`H~W%T&2Y42Mqde>m`(s1KZ21|c~$%yVN}ss4NS^kjNSn}LsVM2?|L-K z!HMolU{wb*EE440SzqYfK_8t1`u=+;j;rr0@pQ}E#Q?17E2MGuR42Yhwhv`50nv;~ zP*89SismojP;PE&O8M@DlLbe>t3NS2tcv*b8qAtswVgx3)r&&CaJd~u)#tgGxg|V) zSJjnv{tTa91xixd&gzIHlF|@<`7#Xb4R*y58A7#X=i*XSzB8~x#_4fd4OUkgj;%R} zM;QSbc%nIJOLmW^bIs!0?22PK6adClQECDQp zN={CW7&FKn{Qk<+3&FtEg|--p_vQfQx_phm6Z%wuLVFD%!62v3cpJ_-%Lv$sO)#T6 zV6LxVVm1Q3Zwij&Pt1x#FCGD48>M``v%J!_tis(A5>m535lq~$Ki);Y>GgvLzvAAg@})a-2Z%!lWadfCx&k;F#oCD3yYT$a9ImB z`72&79mw8*@t zMqr&g+Bh`8SbEoVC_4X#3`0bF4G%gX^yw#Ew}ZJ)4`ydpR;WS6lULPf`D{qdHZnJj zSZXMSmmKw}u`v~F)Xy{wn=q0j1-w%P697b2FF@%oI$=__SK_IW)%8rAxn4 zVFHH~NF|>mj<&+P!>BC4?DT950e*cq~LRqxIQBxn zDqSTHH+sS4nA*!Q-NfAp)LP)s0HntLBfw(_K%WD_(l-E$!LWy0umXJFzC{ND06Gd1 zJHnaubu##hTFp@|uM`8kEeeYbq&%gNPk?kIytjDN`cwIB2tWeTjd2JGset;9@LFJA zZUk7h4oGJT%&k=5fMW3-Of=~PY6Tsf7Vp3}Xop#^%9g`!M?84&p27m%|Kr*}h+0-G z4UeMyOqrx#QB_f)Mt&Vo<}dB-Oa0Vp9Fb{H{V>L5tkgUX{w)RhI}IR_(}VxK1?RNa<;qitNl@#nMQQ-d18@1&lr*N5nAu3H53f%ic{WdxFN}8nm^>>`+~$*Go0O}4 zz{%4FxThnmWo_6#;D3CA0OSLo2QNxJ$aY{D$x|Rd0fXLgVpg2~J&-#;0o8wLAOj1f z%cCU}xn>CN;amTW^Pfcjd?ihrxvC!GTnt)L0E}isAR5yK00uIk>n!+qh-(I!>o60w z7%_K()Q6mu^cg&T3ZTkt!O1kJ{~zz9x+qpf=0YKAwGTy-s|-x?r6E&PWW~ouSm)qh zK-xA6R#JeUngh8Uj1NYlEd*T$qg`xECiRVlsgYIgha@8YxxeR^**!}-WeQVh@Bl+7 z1U`%t4a~O##0Lrr(C|^}0gB!Sv_0SiUjpFfMJu~~M+mbuJWlLjC~TwF6D^>QC>82l zg267TYYxi8c*wH)XQ`gAS}nSo`D9L=9B(KgC?0mk!LfG;v)*XH1%qfy_jDx=JW^1MzKmQ05!$fv z30v}iT)0C#*_J4R0x)`o3P#`D#(oE@P8GRa#Qv|lr=_JWB!R373A+KFK}V*j`F=O} zKQ3UovQd=IU5X}WC#Mc5URm;D?0uh%e*gX@*eb{{2*F`A59hy~%4)*-j{l#(pukRK z;L2^{deaZQw6w}a0^maH!x1U(o)j5Lj%;kmvLnHz9#p8JD7QnhKKyF~{(at!YR+AP zcF%DS>*i~+0ziZY4u~#Do)NnQK_pPNUPHKgV{B~fU{&+XWEp28;NR9X{yPlf`pK-! zOi##m!`8Y9wJ~H;DcD!QEHwl978?f#DggiKSNrT}sxB0{ulA<}!b$~1RS}TFkqnO9 zxxGApj(<&&HXRvu;svE#P{+djJZuUI3S_z+t-3_8^uIrNzq}SpG|=P*Ux%Ib2F@G^ zdRqJE2MPXt5hj~%-a%5aWRL&WhX22$`=o33e--!YfWR<{&dcv5VQCbdr(aH7x-r{{ z8%)Ol-RO1EeC0EE%?$WMi2EnFdY|kw24vFOlOdS;%180=p%w&uFwZvA=_||$1%Oo) zWw75%W$ue&0=HonnDOc2!op?ofzLq|<>hJ)SIU8chy;`xPV;!o7UKkP=(q8m9ZKH9 z!_x-W&}g)P6aon#ihZX(%LPDvGMFtZYwKr_0fMOFc z`%{2sg}DeAFopXAOyGc71bqOcuKu%LC2umsd|lIZ^Aem3Sb$ImvEgMvkYyiY+$YO! zhNQ2pF?=S%W`vmR324=;4`u=hIBh9GZeIxFTOc8ZB=cHYT2MS8e*6fOX($W{y?Vt6 zzT?~RakXnOw6=bT=N(i<+mPHF{H+TgK)~(zMBrk6%^ndFM7y6Hky22g1A@yhDCi;z zs6lVS{b&M}E+POu220Qk#5=XLVFawDUUeICM@>Lzd+Twss_6)|sCSW(J}^M%65?{f zyvHC2`sAHJTTO$kG9dKn!jLA%qvZ^kfjP~2P$w$TiA$F3JoA4wcdjo@hG7_gRaUXs zU=0-wXD)PL83lRj0Fhf^QZy(<0!fE`5C?u(;$(DCI{3jsMIUB?bbw$R>PpaD;jBC& zR@7!=wOD}|Cd{pH*jZJjr9(>-z1D>+>!&W= z>`-p|V&0eFqX&srR#xU*mBlh>-LBIemZnG_DUpzfZAwo++30mR9H|Ec`$p=alCG2Z zn9Za8kwZc+8sF0!iB^chvhwmuh-IrA1cQ&yHXgu&hYkLS&GsZwB3ZFWa5j6XX~t0A z3_o0_y?ZLc!JYe6;EvsE%_dVC(taqqkL?S9;v^p%X^Movrf45_?eE=LRHQH(jcu6z zzQ(xY+j1zA%b%Zf*RH}UejKzzYuUJOtRtV33^SHeQ!`)q0|7(>%aQBt8NQ)&?0Dns z30Ea6dB685KlE0hLT}kCP9j*Q=jQrm%p$rSeLG6ByQK>_7@A0Y-$CTuJdbzAB(Qq} zWl_X^Rq!7MwEu*%^`JSF!G1AZuRsgR2MZ+(V1I#(g)r3$CTVxv?yvTy;%-M%zSe0L z6Rr?KeM^463^EO;*Z$bcU@*()FK|Nz3g77!FwwJcSc4I+B%vL8541f~g07=J+1RsiGsmc;6+kVq7c*0FfpSXXCK1v@h`(m+rPn3(n4crjs;}>}w0lQ72E3Zi5*4CUNM?$x>}-irX0l~QgUk>~b|JeY30X-UoCDR6wS z>Jqs(@keb)JffyzxyMt*%4(|gLdjsy&Ag6C!Ml3l(~?=OZg`PT?9=`VFDVZRHs;&j zTAJ=rQB&K0^XAQ$iX2zf)y^?%#FzP|pwu5PI2bm_6PXPEC8) z((&o;=%Ooc;RIix%z*jGd%d?4odscYb9Vg$1Ln<1yJZshKQ1H5SDN_dNAuCL?SO=Y zgoftgMBd#FL4DqXv7$~KXU>I86N6FRg|*d-L%lZDE%(K5}+; zwh%LwA_tAPx3~ViHsh6l|FoNi97Kd2MyYjmb$@1P2QN)_xLx4kPk(&GXDE5 z&Vec_Ir~->m485hyqw%j(lvd3=7$d-($dq1Mn@~m57)^nD_7n)6A~Av-1XVfFDS@l zYjfjycz9ES^j;ELZFOD5Q{_N$;(WXM{o(oKZmU3ohW^@}> zK`a9+vjYNFoiCG>qOa=f*H(vdnztlVl9=Q~9+eGpes>3#G&nrm{MqqNLSkZe$0S}y zt<>W_6^qE_Xu-Rw*Ye(t{4u=0NJqTQ^}>4&e}DS1Nj>SEo>tM)qNfk=#%cQd`;Y#9 zd&t<>m^j{*6=$aNRufJ6cUpPp=I71ZJ{&)L_UwqQ&lL;N=8L>HJ=VrJD+3wJgC#b< zPnT}h=e8QuG$qQqEVY^H7CE0SDJd!XH&rNL-t1NR^w2H7NS$KWb2!?M<}FXu5@q^q zglvSEFU!dAnbtGA-@h+j;C%n>r27AOe8Xi&x(q~4m#m$@C4epqpbt*&sGg zA?~)6grl|m^Zudt-h*~S;o70kpA*O8ys_9SK1>=C8u~R;H)m#fd8D`Oap%2`yMc$r zqns4#yLNFylY=`s@hR@c6R5ff)VHS*(w*jD1XS|7=oLujp z>|0|0CUS^_^f~P6d%9%h(f99iT5t6#s#ra1Lys#s&)1#TExdPX@$avJr{}wGEKRgs zmX@~dxSQ96@L)fB)X(34jzLaFhV1z9<2aOU(RDJ9$tW4bT?HgI7HA|kSB_d2FVbsY zcchb-mnVX*u~C(epI=@`LJ&T z!4kYv`2$q5vsJ8n*}PB}`q##@4&tKwaR(0Mb-QM8ojge^EiIkkxwY9JZC!$Q?Q;*>W^7l{1V6fle8 zz?a_ZoHSaU8|weTlSRuLp`aKirmGku)RYt3GDe%Bokfo%r+M?{P26&fatZ_AZQnly z_9@hozVRMw@}0I-ERy7GQ>9xTw$sJSarbz`s*iCfMIB34jAXAh$r)|SNzuu*2sb?x zQFEOBw86=#&*QvoUexiPn=au48c8h(&We$EPhKzT{(sY@2XTYK8wHd)?=N@#_jz%m zUv}*CZMg7H5n1HhUF;T+lypo@Pmeq9{*vxlt4<*`EiDecJgZYLc(1#*7vJQI{Ps)R z@DysqF)wPwg_OSIFU^F^OhxyZvRw&=r5?mRNR$os|MN#D+jY?b*Mi6`)XBGbEvKwZ zfB)YS9V!#?agF}|Of#DJlbsSPdo@Go^y!duAqvkI$6Lc*yr?X4ng3o}d%GoB2}LoX zWlWWJr?eW0SVL4Yo7a~iyKOcrGdJ5m-3>6vlFe#ud3RkjG&IyVFz|Ny6H11sGFAmc z^i##l261jv!he6it@-}!Xu;awjHdC$+UWDa9oD6>Zc_!jY!2S$uD8bvQL$dAeZ23& zsBl(ksf4hwuwtx8_{4-I1=$YN9-Wi)=m&S(KeC-XS({jZl7O~?rh~+(hj<0v9oZes8?*c7MENJ`{Pf? z^YXm);mys>7$Mt7yw^XgYG`+WCZ#gV3u718jVqg9)C8B33wcuJ) z>__TTx(<16zT-g!6zeI(N42%J{b=!P&jZ)Rzc&S=iA+WP!)xqJY4NKtN(((48nDa! zNCcO});d4R|C`Lrz~0^)l2TH-r5@tAhOZX6uAge^>yuHNABcu!jVe;^-8+E8*8DWy zp36h!vm>W%qS{L)h`D;EuUt3JibXwHaaKUH3&98MFpmqj8-JVU8kCsM&Bn&2@3A^m zG+!^8ug|NYDV^2If9Lnf7-i1A2YHX3KOb?;s-S{jFV${dW2m;s&OD8eIH3Le_Y=Rt zEM)V*kA^dWYfoQaAG3r<(T`7vqmfoa&$n|16~f$nZF~4LRx;URPtxxNN->=qtX>#v z@fmAL35$&M!%0Yz&&|!5{dxa-BpFEj3@ zVDwYb>7p>eqxs=zYd+_h8yD7Rq#iwfylt6_!>4@PgR&d142oSXJM)QVj>@Kpvay?z zawt9Hol$4LEzxn2o9{mV|{F&7t?OvBPR z;2(bLZZSSSJ}w@ff%1J4Ngf+(n)Ni))ECh$+KOEGfl6-=*G77Ic{LWhIqBtENGHlX zeaUZ1B^!MBO;J(I&GIMv>FH%GEl&bzT|hr0UiQnEi^$)CvE=A{G>SiXnH^*ly?s8c zl?@HS-@aWY0F&@E5>vS$PJG+U>}+3hwAI}0DLSHI;8O+ncy7hw9A|+r`W-~XbG?Xi z2lRwjC2kJ7D}d_^I*pr*ocP@LqsKTn>`-D4yNns0Nm|BW^sg;f8o)afd%nCfqHEViAe@gF+P45?e4^J9S>+u{d>>i7$7SBfNIz@8TiK!MCa^pbI9za@^;Y)zz~`-^jOb->xiLVvscw zX&P5%k^8}8!xdj*xZo}XvSe-a_=g0y1Q$`q*6r%;70&B@d z`6T^5`rlX48IO1g4J0Z0C6NhdG5HEmW7vBZ6Y)_0YT|nU8DYD@?~Jl>>n!Q%TGx)0 z&A$;eOFbpR{iM*9lYQg>DMN~@W5ea zXU)^5-HGwU!{b6zQ>4NW4TK78QIN|C;KlkEZL6TO{ej~~`W zpSSOFY$c92Yc#`(_rwl0&2UkGtC*@pR$)7@Z{NN#U3I+2EaKohTo>)8x#MTh$1~A& zgCip}hYpQvviR&{O$OXH_;n*&2N$)tcBZYfQy+PN8f?&VBd6{Ak00zf`#Ve|D9@_2 zLxH)0si|C9ts&`Q_}C9xB=y#5=mXyTsI|0KJ$tie$j-%4E33|A-c|2`=+&$|M-;ZK zI}h5Q(f5{|FA^Up5?t3R+lXD)RCw5BRhlX}U?`@|E^LbSE*L$T8FhnJy38b}&#nO1 zXmIC~8tu-2ibpMD3sFJ-$x2EsMRD|68NV{j)n1odcZFuoTpKr|+knG63xO%}k)*t^jC{4s~a9<6rzI z=a4}MggIu7k)I}S&6xzFDJ3LInKYIfgkqKP+7~WdFlbSYZvHyv;CjFLb(fW_8f}B* z&G2dru|-AtOyBXg(SB17B5lQP=K(iQ^mzQc8{QzGbZc#4j3~XD8CtU_&!8^4oO*^Z zE8K2=%L+A~aQ>Di1Ih3TGb#HjviKf6s%tvSv+3EtQ~Kx$8)>y4YHzb2Kex!boZU8gj8($Jz+6WIGb;bvgIQct zJ`uv|-v;(@vy-$6geRVH3oC6=JG7w5nfs2+=nO;t#!|q9w+7?1-Ek9O__ zln-P&=l}JqB*vtwYu3fm=*vWZL@mKcNosTGs+QIZ)2-1_GZmkOo&>I52i1~$EPr21 z(N1LY;VL3s=%n31$wivnsJgu)x7?9?Vy$hGLzS5-Cgtmk_`R-)`xjhogc@U% zf9_G&(iF&`Q}UJgWLsd$^Y2%_q z!ma6fNsABP%v0CW`wdhRiZ{_qk6m-hG=9*eo zp3JeWp|=z~w6V6FGV^VB5R3Sg^4=TEC6W)6ecrcqj;Pb>3m!`DH=?rcBEAv0ZJX!q z^^`UBpX%qhZ{{VAE@tW#zIgS3gm=0oQ04^~nQvO4CsHdg{5x zEwM0A+&J@~#=FL3hocABo)Mk{h) zW^WpEKt+DtI$m8LZPNUgWit7EKr$)E4cq%@a$Lk^|Y5JtY4qJ=u zDdP)$e*Ous(z$tlXN~msl{<`eMtj~`dSOt7veYvQ$u_@}dG?^$r zP)RY`x=-CjSRvwc)y+J9vo9ony?t`rH(V_RMH$<4DW-bj#dlGKM8r2JN%=gg_Ils3 zIu&sGd+m?@%GXk}i?f$(3mUH|*wWL@w)oQ}y-8`wxOTq%qvhD{LW9@8-k7f!8SRX0 zYg?G^hyYI|Xx*c1E5Ex6WL9fB-F4o=K$QzC4>DtzKTxqIj}Ju*WSGCq$>f>vP;B~ z{lvNO0Y=8b!4Z4ie@k5HKho=>{rm%OU!3m7q(pjzcBckiRhp^tuO+%zDmNElU7vkn zZ_K$oJW@+axJpW<+V2nj)16%xepC2&T%spHgO5#G?Y-W~=h2EWa`KnVqW+DzK74u^ zp|W`^S1*IXx5?}nC#Mf!&))PjjQVHE;i5yclS*|Iwr7 zs}$R|F-S@Z>6#78DKm;JPAgq*A;mbu8lSG@%BvKjDiI>nXUeO)0V2ur%9RAuECcts zjpc<&%oNi_))8MgO+IUk$<9602V3Sw)X{xqKh2 zIG1cro)5LR8*O~E*ZQ>Hx0Wyt&9PhRwBDdo<2QWvwY(44!Fr? z{BGXaf8$wcEeSg*ujM`pp+4ZY*nipfY=G9=gvoI2IgkVP%h#Qr4cN?lnQySKy6%*1 zJ8iHadXE5?-T$UUhZ~}011{X>;yuw9u5IwzcBKC2-hG@2N{9RvuDo2Dttt{XrE2o? z8>J+RTAHYiOO$OZxwWhA-$LJ;eHUJB<+grs?GW^*BwJf74COSbA57znAGERHX5Cz% zQ4wF%2*0{Q@PN3&f`29dE|P!rB~Mm~53;jZye#W16s;0B`1p+iqksdKwdW!o+fyc6 z0ZyNT$ttFQ`5RQtvfr=#n;vUT+1KGTbxeXkEZeE)X}Oi`zm`2u=@|18xKafVZId`% zZaQt?rMxR@cxh+xwsT)tV?9Z(TqH>^Wwp3?@lEUI==OEB?b{ny|0S;dOI%rb#Sq9P zBlX5~M|zW-t&4C$`jwpFI`LdCYml-*30#0SF-y7t+=F5vQNx&S3ED0+^Z;lG)IIR1 zXTjfr9dQ8@kgfL?h*UkxK)hj(m71DboUveoSId~#Nc!6Y4CG~(MmImkecQ>&MSfpL zC)ZIgjW?q3d1_1cnhslwhw|438~R~~bln6#dY=H!HBP?tk;s#!x*rt~xXQcL~^FdiP&3g# zsW9rhd}U8Hr*dPGxq7g2N=tQRkLO5aN<0V1cTi&=?krmYSLfqbi2(jyQ)k=}#6l3d zAtBVfadB9()j)a_N7Uv0rI<*q6Lo&2s~e!Y=36gPYNo9-~qm;a!nQg zvwD}mZf8<7OV;JO@ak@~V5fb9I5QxrcCwOGszvw*w;MKRWDE_dSj4`6dAQ@O?n!3h zdx0tv8$Z>1UHd8yGKyF-5SMf>`f1N6%h&Q@9QvZS$CkkP|I@KsuZYe(SLKAn|+~Pl>9@-eyUwxO{8-4_M7nQh5PKRv#ivO zQ5$lsxc7Bzp)+UHfy-6g-(Z&r{uQi1F2E+Yo5I1<>ddRPwFENKS7iB=-#1D-Vl=kY z8@5d?J8s)H74^(uy4x`2pWD%^v_Bs_Xj$Xf;tifP;dfS2<)I{SqnEcgP-i7rJYpEY zfih5#5w-8a*1EmByZcKq7ryj#KHL7w7yeD~Lw#`BTph`9atKN;U^PhU-*rNt*Gbgf z@s)WTYt^LoH#>z9GSlpUCv_I(4O)qw;CPNf4q9QqhP814iMP0XJx=yJM**Z z#%!n$9jXC?L2yGVVzZ?2nMuZdyZosi-g(q80N-1fb)p$mbaeYl3C^Wl_=4 z(9mUS$1T+&0O%_5q{o2<+RM^U1D-^#J%7^*=tu-Je)0ckuoT=eRc(R6AdYD!EzB+M zexOWnNn;3g@TVV2yky03)+MV?z{Hu<$L#(x-jdQ%a^KC0_3R^rq*1mGRD+aoElRS- zrhJ(dmP-_6?-;z_aQPPoUuse1Huk`nRO`8X9h3YwjPZ4#0)2yn_W|tRIzm?5Z69lr z!x=lwV1vywi-6zkKs`9 zi&NLOPn}C-bsc@p9lw)|jL)R@<=*6JBdILz(O;f|9Bj0-N)^kN7Tn?a$asP|0=xZf z$ZkI?>-5+_x{l}uqycw?!OyqXB9Nm84jdpTMo`U%K?KRD(aJn!8jAeF={0jZDJmHX zOyigXG^4r7L)NM~I&zS+%t0~XgkqJeK>6r=G}{lJro7MQjQh$Acb_VzIVm41V-OY4 z1Q>kEFZoch=zMk{28~k%1qFm?wEw6~NK8y^^BV>8&iu1wWo2<^Chiq>-O{03)8~yC zvBy+I#oX(C(4ZHS$Z+v;ccRmDw}8b@Ur02nSFcJcD??6${`Gxpqi0KvD6>fwm;eTB zgq-oYpeYEQ?{+@wTHJlhH7Yqa+w=6PQ%{lV&p$hkA7Exy4C7ED6fATh+PbK7iFaDx z5#)llfs1!-ts*g6fGTYJU>uMVpK9GxlBt*Lzwg2d2`eirQ8U3-Y_5_~f4%M|#H#$1 zPhEpfI!ksVnr-c?(Q5(G=$Xo=4eJFpLx-JJXEV(;4Mk&9EX0S*hD<)r*?HAfGKxy< zywR8#94J;g{#h1#nltZ3`?dKcDU%s;H>=Uty47XP_DSQa}3mQ9$pb*~9AF?4qL4xb4qkVgk$iUcGwtz^d!> zO#voh_mwk<2WKu!soRk^0!(pnwZT;u38KD!)}$ zhK7V(gt)1k5(cv1sMjlSW3+U1O;Eyu4vSw2pg$$n8vgR797qKW0AS&sMMYiNSX&g& zrHH7J2G2uipZM4y;QGhM6~JX-qP6V$Ovgq_+^dftpMxh;*U|YN#3D)%pP=bq;9b{wglv5u6mL_Qr9wcM~Fdt$)>cks8eR}-#>3sne z{b$?z`;BmB57X1Zj{nFB%&s$$QhUx{znIEwmd$a3mv<@Y@p)mFxnuqbjjzhaa@W8D zyGCi>VYCwu@swox&Z=*=BaN88LB<%K*PQy3{a8AH-bM1kd9%g`XKz);2ucitVH=*S zIh_KDDQ=nDg0Y*bX;wRo8&aA&R6k#Xtg0~wySj6&jd|8ROf77bgZp@o???+*(m7Dw zGwT%gyWSg8tBTHDHlppB3V2~MU;ntw6V+IBHFV{RO4L&L+an-b8z0eVCS))>)Iz~j$%yG`5n ze%bb=SZoZrFTPFqoYDX~yJg!4ZwM#gP^yX2j%rz-&t!m#aqW|39|~Pu{S?ZR%M;EW zw@pkw;8Gj(+Ci1#FRsJh8sBUc}m7k-R84%BH6QBnTAX7keTVIh9KF4 zzS^Uq_oln+fSn{YG-#o^37_w@*@2p3)cEQWfk&XsHbahtWOo^)BssF9Mj0phX@2!vEaw&UpSAL7-k3^ppw3U)Ge?dIl#y$55*N7*%Ybxo60Ky{Vba1u@n3w=;C|3ruK=iH`xzL%gF`1MW(xb< z{Z7`LCde7y(serymAKjj>3~1EcMcL^14@4o!d(Ozd)hgi+Qp1RN0R3y zWX`-L53_B5uch?3u{7w7roO%+uGcRhVE&t$UcL<*Toa&FZszKlcNYmm*=Og`%It+7 zW)R5llBOm)I>F=Do$on@V|w-Kh>Bt+wEzE+FqboHM@B|ub#xf~6PzX8x%@$Re!I>0 z3}u^86Znkx5CvZ8&Jcq(v`_&Qu>5=>2zo%oO1?os!_a$-raB7*?zTUNShHcwc^{_^ z6GqfX6gr6X#fv0tDMq)`(yzF<6qpJ+LAp2_sYtqOm)n!R;h~}Zbac}0?qX2YF3ZYp zO*$QWrZ0!;afIvZhR|MtXd3tW$xno;L&zQYRn+^R#a|lJHXr%x4lyz^La=U3l--AV zp^P_rtC!2p&mRU97ZMTSQ+8wKWOJf96Meu=Hd5Y*y&Y*gQ$i-b0U&prUTi4e-a-Z*nZFgjc3BvDZym^OVd zRzM5;@#@lJ2>vFxAs-Q;KLTd}8qkbnV6ACG;^5x=uU`dfwE~WGv?K2{VX28qo*mCB zox@y`ZCpdIB9;LHKL_pz6;@U0_fmdIf=5J~j++K2KOASJ?-$tt30-u@E~-KN_b3lf z0E)j=@uC(9Cd>j%NVAKJ$Hm2CbMLgy&6MvW`WgZH!Q#Trfe8RYHY&-HW5-B=u&0XV zl>y2qnFM+vEfbl8d%2&M_OiVEZpgD`Jw5S&^x+UOD}z`RP%m@~?2ZF2#6?{+CUkXB zb2@yP zAz0$??>)CX9@TRuyuEx?>bs84)`LLr#a#!loy-Kk@t@-K_5RN^bsvHlUrZ0y%E-N9 z-wm?~s+^>zrhrl+bQ)B)O`fM)m!(@`^Gs`MbaXtA+`1`$EcfMKe{ap3m+8uAuk*I* z?vl$ilgR+~`2yPf_m0`jgY3`rlaP@59}qYi<7+>|6Bn->i`f2Q-+#?>#2ZS^poF5d z9G%~{L&VRiW@_<3w?=>tW-hmVG^asU%oSNLgZGrCDbcT;PV5=afS z=Qa=v_1XxH;Ei*utE=v?M47TIG~MP?Gccg~f-y?>!|m$QX8r3ilf65tD;^6_SMP+7 zb=ANi2sR*;WI|yODc=&yE5lU}`;oJOK{f6vxgXb1Q&ZEBKXv}1t}bIKs5|;iT{1pNe6oIIyZQBjcsqt}wViD0yNxgSqp zM*rF-Ramu#@u8F!c}SdeQg6?^{ZaKv=Op}d3$EfggAwD-&@J8%Q#`_V2>Czm->G?2 z*Ex`BuUf|$1uYpewB8yuC&?FWZT=KA`myb3L@@NEobGN)qA-5IA&UlvU?G?}L9n z81Hpknz#gW3YtG*doysKl_tD7$R8nKM^qT1_adif;Ao;be7GJ;Kg49F)5Qx1AnyPX zoq?`Kn9}eKP)LL%LaOGI^BmpIm0cxUn{J;S#=fGbZqs>xV;jabSQ{}H>=T%qanS1n`CKn-$NuJjXKA5oGFWJ8#^pnCGdwn&t^wWY~`1g=0v{wF{dYA|LZGM3CjW-R{xQlw?`XHpCX zuWjXSJrQ7hbm`ps_XIJ%!D|HEKn?ITY0iN}15K}PU{H@30wqeg^HS*z^E<*+=ZEM02mc%Mwooz z+d&E(!88vzt3vjcYY$+tQj4#@Kl|CU`$08GN^XbylmIQbROq^5BlR^k1IUFw&^K%s zF8oIt4b?=nd^A^AF>}(?6pys`F2J-yeefUwi9kdRBVv-EeM7GSX=*DH8&|*^PMHLD zjbIdO<0azJD2bNpMeQ)%%|g%uaPr6#RuyvcSLiqdaP;*h2XekFCr1vK(5s@NP8uUm zR1Q<|c$v8#875yZLC229WUJ_$cC8%q)C;CPj>+as(ANp4CIImqpqn#aslV>e-ni-s zpfwB{1nwq`FaXEI$wEn1`BH%<{A3?%P={^k0 ziGbCa2E|c`Tcf;=>iYUhDB|W(DJow~a$GogwHEGc=zB_UL4O$@ONl2+>PM?CCXmIr zkE8Im!5-O*AeLzn2$VUBcSH|Rad-fivTM{&LCZfE!7IRZ1NFYarQxRpGDH!q(I_ls zG#rXY;02qRu_;*{KIFPQ^%MjJhK`elB{A==7tY~Dn}G;}O>A~OrGOpf#Wkxkq&*6R z`QZri=8MNnpC+5@T-RC`{-?^}pYR^g>vxtRVb|R!zCeBFcV^j*GmVIb23Kaf*G+Jk z-6RSNtQos0C@yEU((K>=u+1_VSxdN&iqJZcZ=isbqsd1xULb@CYKw3X#t1#bU5|79 zd*Z_CAPqCsE)1_J+K`Db7NFVN5~Ka6yVtBrR!uIfjUEMOqddMN5|bS!zkY%ocyh>! z_+VyHPheLf+7FnQWY4WlcY$KFJ2Hj8l^>73I2-~}v?l%Vo?47+HR`d0}Np z%3+U{KJGV8Y@`HoV-)Q?eGDY2gGfXB#ow8_K8B`GP% zfI~1({D@Hp_Yd`24ZncMC#X>{Be&tOB!c1*rJ*akLp7O;$1n}B&=3N@Zb``zuq@6X)V z#!{ZYco7;CqlgU2$CRd`5Kky%I3O=-0uc~4Q~0g}LHjggv4hx)0Lx4CdK5nb9bke! zd$(NxAqayHkyHe04Fco|6$=sPx4HJqKUE*6NJ>rh1u%_;YKJ5|Y*H6h0XzEk{1I{> zN1qew$u{ukA*QNfIV^)4xuD;lhcFDoCpkMux4z8P^TGSWP>mXery&ouWUqtp+0l#_ zncn5fjhfo~8{c*?E=QwWAU~4amZ!|3Dy>U5Dk;x*e!*GI%+KG#XC=_eVR6^@H_Enu zEiWe~_5yfZLBvIy)&&5@(4W-#g1HX7$6lh8;VR$R@uEEemJ^0e5N<{AZ`Qs%`xt*E zVDH2|QA~~^*iyNTUxJg4GFDj@j$^Z)5^*S&iKxJuL5vIxas=VLdv_n`9Af~nlgL@8 zZWkZ8%?LLv`af2d`cM{(0EdZ&1>0)?Y8XKj0j?8kCu8U;*fGkqTPJ=ILwHM$sR|U# z70^n$z+?oT2BiiJLX=!$dTnlLiM()M1Rr7;yg)y^lSEx6mN0O(E!b5eeh^DWDx$%c zuXgV8jJsK8Ik+HgDk|RuoV* z)Q4V1CBII$2+#f4V6xq~;&#TK^jj=b^RGV)|81NZ2~Ep+PkpDE?RlwLXj)*hdH$w= zuHqldm5meJyfJ%E1VI(dow5@Hl!l3=w65d}L8&tSL*nvo^w39J*O zoR-RJ%|XKmVwI>rXy{HT0(^YU{I47BPbqVP$4|kafSD1V+}g6oyV~-sSqX=@VDwYC zOF^ocBgF`4jqx2d{yWW;H|#&%hn&^HR1@<#7$^)c_tzHs{CVC1Fl5^eT_IFpD=S{C zcLB*XoFm)0)5Ro7Rz`*(oAoL$VANDuBeIo1Q;6awezqyh5^?R07-@k;2+9ozjf{%f z7oZReHQy`+bI{uZWp2H_7QCVF;WQ#uVV#@YU@s`b9bft(C?H!#XPn}jQMPjw54TCK z7U|DBXkp+o1~&gqSM~I;J}!IEWiJ04D%{i*om~b z5S4~bTfYpYjtD3J1au$bB^cBMqwDy`-7vYs<3jM^4NOefp2M-B<~k!}#ch+hvoc=8 zVbw7ShQVfi#TG;ssvL3r2?@@q-Wb?kB_)xCfO$VJYEjVd+}QRtgq)NzcXupYVf}H=@u6tT$BxO{#>NOity?27u142AX|n{Jbo+IYo6Hx>A6iY2o`@7W zd$x(E-Qtm+=@EPod;?ZUkh2w#m0QQLy9R4KHm`!IAEBJW=Qpg&BdJCU?lb*l`;IAR zDfJX(X-&=H`d9_f+G4hW^<)7Rg!+J=ewU`ODeFZ&(UBL7g(%HyTw$=jqQjSrG^V`X z{qTLqthoBF6+;LAJ5iOmTSUBrcxDJdpD3`OklBVadg4%$u*vKS;g z<^Y^DK^zlY0>((9q5#}qxW8tD?J5_KB)W6n0JKm@rLbW@Q2v-!I$g)#7A-U@V89~Q z^Dr^ibQai)XQ%0XvXqB4o1mr%lLdo_gIV~%5@zN|epA=&Jjk4Fji@pN|Ax^eu+HSD zhzJvCKXgPC>v{de^mK$3H8u5vCbP`uvQ3mPJE)A{s|bGM`e%omaBBu0Iv<35B1X$6 z6pUZ7HbpII({q1W4Se>aM~?vB@ET`sekHxIxpJ#ybL|eQzRNAoD?uac&OUnt}5%H~^7S~Un#8`k%_`SONbyAX- z+jQ|kfEf%HFNJK`A!?n4xXF3^xHn#k*y989=uNVQh)XPU8I!ItF?hXX_v< zDCi1Lh~6iB#H;OY802mp66GBs#~000;*$#?HA>$7>q z<2Nbk~M9(c5n>8m;WZ49nYfvA`isj8nzc=%zS`3{3K~f#)(LOmBF4yiMnZKx7I*5on@{W-kv1#}m^ym*gKy zbWcd8t~yE6{E5%Xo^$-Sx|(f2qD(AtzyaGL0G^B3a#T5_lnjHO+jPUFeH$Aa83K$L zNMcRg56CNB9j74e)a?GD5U#b^S6NvJ;pdw1zx@1sei?=E^<^`d0kVph+Iy_jv(JRW ziH|+Xi!A~woPP@hsyFCB_ZwlNiMy4a?%Ey`G=G=f99t#)CbcunQkuUknod4*eyj&} zs=DoJftTU+QHRf-EC)8HgRY15%^VNi>lfq4`~P394&Cej%YxV>{$JiU`_?WDyP_F) z=jY~Dz|u9i#;F+Bn#>zgWq)k59HA}gg5zAI?RaPao%xZ_y-$+O;n{A?GA!l3PqFor z?LL%s5BR^hJL1j9G;H<_>0>8Rx8d76v29aGI}T{mfgF6Eo9;vgHQ0iF7`R6_jpTod z4PjKb&AGKrtF6+G&aJ zb}#+OBhWw+64;{z%n5Ny8M21eVmuOoCq%(R70_)Kew>qF^9GaKSn-8!9N6Cz{V(A8l=AuKVnF*#)gKY zgklUJHi*02i{6e!y?tz?d7XB9f$IjaCw%nWxp34Z0zL^^b$-XZB@IRheolPj7mbSL zSFhcmHR9);jy_vI1QAK-)6od=(%8#eD#J&V!<`*LXo(2uEeE}B8%oJCq?&0njc>}( zK1~eKSTbY1zpx)L4}g=Jk+B*FR}ZF42!;ou1QECZ_WMDw39mCVYx(yLLRnr1FB-@y z5r>&)9^xLcPO2R#kj}LSG@)Yr1;PwSP^$ofsLWIZ(TV&QwjVxoZ$jtZR3`z(2_yzk zL@We}ZLQA}+Cmd694V;pyZ7xgC58wbJF!CupiJ!j63K;D|CH%mKL&JmET|*5L&L(L z#Qru9lL&?$1?UToH`(-RKZ+{BQ4)(xV-9n03&B3?g4c6_R=m185|3RCKy$(wMv#M8 zJ*vgFII+({An*B+1_>YQ>+Gw`kTZG@nZ2@le9>X8^gLD+cq3>w;uB^+$1rVP@?@!Y z!UiYdA0nU`mcwD)+b>DY%v=j>a|yQ&1`ZA&0+{k$mnP&v>;T2j3G{)PCAQ4500kzi z$|AQp_l~xJQby>dLVaHFROY|Z>FyP>VEx{8feT6>H0#}H3&s)GWuSoP|4q-pC`Sh5 zAIL0xpx7WdD{GoD+Dk*T!b||PFvgVQ2zE@hhp{LFQPj`RkCU@shHLmrn)+Eh+rfJ9%Ac%tl67T2Qzi~3AO_tiEtEQN?u=|Z+KZ} zf+q}oDBYMk78-@8ICzoOeKl*GnE0yrCsr$P&E7ZujX9)Ee&Zjs1X_mpI9NS%oj1ai zBe%<{3d{=o`^;b4U;>78O9JW3NHE%^-;Wcp zF>bdHVNpO}6KV?4?vcGfdR5Nc*i|MNMMCaJwXmt6)5a}D+EYS-`!?nP0fvU4%z%AY zv8FZFmcxl5bg?-?;&i&poZL= z{U}{c?3}@6To2Z;UTU8>5skrObL4mu1Hvj44i!ST!0}<0Jq;;15fdEo5COs>ft%_U zq^YO(BSzRBp!fCv?)8DsKI=54zd60N8BD0C5HccL4cwl}9(M5py-8?hzu#R~0D((F z2tdb=SJ3Fp5z30!(la?;+Fah3MoR3DPi&TXQzYwTPqziqr|Z0akNF-h4nFJdq82_G zpYn&0=n*;qAu6Y2$S)zGHto{d_{Ub}@34`gtb!p>c?;#qtzWeO)0EQ3^4oZOP{iBF56@4if?zP^J|QH?##r2bxNT6y0MteoOm8*nJN zS6q;y}q@{ zywnYbk?YD+>GLm~4-yN{bcwIHe|K(ja{rF02QEeQ8(io6i2c{F>dX52G1?9qne*2V zH78)i!dGx7i_)RW@72^q+0IHxH2Ni@d#zB2Snb80nDEoo<}rs{BXK;kfUrSmJHl0E zuUs1S%1HNy^>`}7jo!N~p?d=+c07wY*UjCx8QK0SQPAu`d!m$`IXmV5r!W({f&|@% zN5t3}pe*ANG1V??|JQy%`t7+8#1wYS>sNG<3P1yz-8_ixSFd^{<-+8SMF<&daZaz_ zd;W2IPTm{maJ{_4P-pf@tcQS7Ve=v$MFEj=Hwg+gHhZPu>PANebLxZ2_5oO<+jHx_ z7d6FUv6pasIxMg8pHx+k<#5p zwL=1OEZt2vJ{7(!6^s-utlWQXWZ{kLmaZNYqs!$!RYP3U^}((%GB-j;;WAnap0h{U!!=%;>c z9HZT|cB87`*eey~gJE5ANL@3@JAo@@3^@Wil7^XC|7d&BC9DpjS|*!+Va<3uwrCXz z;H4NP;76FLz>y(htD1N|(Mi5a_teP5U{tz3w-<|_XmBC$UP8R1@)^infCvMDxVpAB z^V1zMZ7*u{wua9w-Nfpk_^JQ4yxf`-`wa>jLD59gW3f9N5C>le2ClmZMhmZ4TU*Q2 z^om>6?B3keUjZu%)`#6%u)qA8$H<4L<@9cLX>BS)@&Vz80aBw-&{}Pr;uzNEF>n)P z69_cIk%ezVBLTM{2L=zGl$&_&jliAXfzV^|iEHs6^v9I^{Ff*i4YSxhcA3boA|WEh z*Ut~5S6}8L20z%dBrzAIZ|F7bgct}UU#z$DQ^zFp1@}MW=4u)mm$4y>6@tYmGSt*$ za|4wCR8DMg$}1`^qz54kQTlO`SfJF?yMl58^)VyczNm0X=;5}_z{#EwCyc0Nzk2;? zZ06oS52X}oEx<!MGcW(<`L{!FyOd!|9`vU2^GOBc{o=p8-h$r`&`K3m#H{M+j|m z1_O^rwm5{JehvDM==}%vQ!cX?IOx0=_P)rE5@lNpt+Ke1(?wUNqTV%KY8LGM;0F;r6{%)7#b| zm*-ez)H?TB516VpjTJ?gtsQb)`J16#-cibuXrCyupq#1wwyIc%cr@0!Y?IfQz5{<^ zw`Y`lV}nBJhNIc@j+mFq;y*G|HuE-TiCcJXF?f)RcTGFZ zzvuF}T?cE!kRaz!%BR!3c~>nzB#ha0PItrz>2Hrs=)I*n+f>LZQ%q&}_+LT4_kGiJ5SlF{u{7Ni)v-|Kw*q5QF4Ps|?iDMGx)Q|cy{F95n zqnf`Et7nzNKi`XcQiy87=b#U2k5`$f`eo^eFwo zU%xLC9)>C0D}NnHSDDC{e$k9(qE zxwT@LV$_&6no)2$_L;{4@awmqFFz@Wx}xy?M}301k$skV{!bk8YQt;w@SJ)QZ<3Vc zzGhNorS;i~148F01ImZ$|GZ7%yLatPV9$JM;caWje4Ci|hQ6O%c{+`Exhm4kg|2T; zQRo$-6Kl}UIy$3aa(Fa@vvJfTXwPh-x!1pqBZlJJWQq$XyH#gZXU~n!@Q==QO~sLg&=6qdkfy z@4T6Fsl$HtnK#c0O#kUrx=5!a`9i(!5`AIIMyXV}rBlH_N`Z&L1{DpX^&dAVMAn~* zEZ<3_l6V|P!YaPF{r=2y(|)s`G`$&BseAnA?ajjfc#$Lqk+5#0`2>+99)7GWt{ITp zwva7)Zi08Z>g$1&!x5jKC{SYRpRKO5s%-P09$$1$IO#(#_FFn!9nhG~{)%lTOD z+4!`ayack|pQNs_kNhu6_l~IhDr=q@?L2p2BQ2S6;Di+U+&Sv~6H>2&A6_&pP8s9; zE~^rfRi-X==C6j+TbY!Y^sfBiMA1c|qrAIzh5ax)Av+?+dlOMg;`GGYX?F}SrH?{+ z-+`34t(DT$TFK^WyP(f}Cvr8cI-H!NTz_Oz{kY3J!RvHeL&;Y?mwY*utzkZGS!3t= z)2ZQ@BR&4fEIanIm4q7<_UxT$8pzPjejai2Y$)R%r8c1Q`h zYcmbhJ+}}*Dt^yN+mloWBPzUIMBE-L=ML>! zW9ppNbT#CRNn%z(rxqOjDIv2rE#2;t&t}JUCS|1;o5#1Pa>^C2nD04p{KT<{V`2I+ zwN3qrgOT&81J``Wx5&S`mkYIYouU>x$I1IPYPfk_7U0d#$ll_mrSjpwt$c=ojKjy{JcqDZj<@Q6=!-t0Nu5QT_ zFZNuotLER6wL`_Hr1AVf{iuMX0|@LwYMnT^!p(a( z>ESx1B+X#*3w4|P2M)5_E5EjpYLqt?zvuGYE?E@eG7=%`t2NgYzs|C-d1GPMV+n>G zoeicIoWB|Or)Or%)w8gXaw>7kpOEjnT)o?=RN9sgp@qBaOYVE*tHh&Ei|x(qMLX;M z3LO3Ve_DI*u%6%d{~yubTcSNs3GGCC(bQ7Wq@}b=X4<8xM2d#?QbbcjWtX&+q#+GS zSt0bjUtXWj_xSz(`Tg~KAIIxB-fwTOdOjbI>pHLVI?wz4cJ5opm({&d$3oAY>ZR&m z%0dmN)e~2pdBsJ}Ot~A!k8Pq?Gg)9RmZFOGyEs}<`$xz1LZGGGO|50|i}$(ydOW)4 zI&%0ofK<(lY&ED>fxKPWF4N&i?MY9t+!wa?@j6}!m!6G_u&E{0|=uWe%S zzrWzp#58k8&1KIw+xX5r@nDx8n#Xny#ths63xDr8+U%@*Z;N%RXd8Tm;wP1Y#cBGe z_bu5xi~T=eD%{-pXVbUBlfizD>zt^+&U*^d!MO)S)_io zv^8^tHiu#S^NPUTQf0P)A;Y7MF0ETB^xoX)?&2us9nRF64)u}ovSg~s7;sV8#Cvpu zjBmbrI+eiRZQfT}9ez$a$cL7fJ<+IPAG6G4c%OH!@ss#Ij!T-K(8X3uH#FMr#+ zz>{FK$k+MK#=*GoS88sjslPqQ3W!}78gP2Ca#}~X zRPIFqTc#D2^4`dPA%OxmTRGMYrU~0iyCim97Tx^ew%^HZrF#tow+UQ&N+~P4Ywyit zQU$DrYh$-wW42R~nO|q}vCDm5!}G3~2T@SnJm-_;NbmI&3}kzCV8Nw<=J-_F-^#D| z-^|OEzPxy_AYjhno>_>e&tT-&`}T`|^2Hnfx*nrrSGuUqr1x#rHE=iHZuZI$ckuh= z)9X~H{oKdn&kafB&bU9cuI8c+&2G17tD11)l~j7NG%- zzv<@eBoCX0>Ebs7OFANpif zciFt>;!XK_zO&N`Ec;y-O0K*w`&#sM*o)F;mXFC}sCe}$vq+t*$Vo4aZBN%lamYk9 z=v6tc;)L8MG*aM9@4G4PQ*lN@_l+$apEmw3+57c=cF=02D{V<{h}Yn6zSbPYM>0oK z9G>v!3rE~+6Gre6E!{)6uZgd9Z)^BUWH0uYyvV3#+#+Y{R4U6n*MSFDB1bRps5`Gq zp}2!R+KXwhJL-4dtw}bkZ|ja<*|7OjWZ=EbgPpefq^_t<4ku@swGZS!{Q0x|jm#$w zjV}u(KPb6@nd8g4U}$L|pvk_t^{Ie(%NhrRt`K>4@)I(3;?KIp zgcpq5%G}28)LmoGy4$-NWMwGZWWGyerP#%9CwqQq)3ZOrZa$j|axFr{udl|hvmQEr zOX$&??n%EAw=O5$&~q|Rf11thFX7HM?rFE|IZ(L!g5kNjrrWEBe$Aa;GU+}itsPSy zF6hDHcGOLnL%6EhexF;u8&*4GIt3mALd)cE=U@sB1!q;^Z+|}A7_dt|l9>=YKYt&2 z+vgL-uh}UZ*B$O`yS~HW1J$i>Dz2yK{OdQVZ#pR#P%D%0?#hpocA{c*lIAw5>>IL< zwDQm>4&@7Dd?Wu(W0UKe?0)wSupTIj~-XyqKSse>k`Ob+hptg%b2)B+`eC6>QG>4{CzXDt-A ze^{HfX5YCMz9MH`!&CY1Yd-6r(L5IP{Go%k$@6H_FB^X~r|K83^e*Smv{;$sEn!Ji zx)zk$PSPkG6@GG~Vm8r5%e>0k)2fWKjrIYv%Vrnt^USG=Paermr+7Z0+`tnhQ{d)$ zuwHKd!^T~kKKccI2yHNL(kzVPNo+k#Q{ zbMIZ77^bH$h+qELJ>h*!faV*8EBAXl*|#j~o=d&hXztjc#dm%kn!=eEzIeE9Q88z&uD`i8v&4M;^_>(!bu#+;`-=~X{kE+fOZ+ReG(DJh z{czx|)H;KwZsjs9xOG^v)Y?|)TZn8^i7A=3@V8&o*!_cL$|hIK9TGB`;;2dL21;3IVTb$9W8xIl{9^ZAoWOBVD^a90v*Bb-FrJcVuIF#n-`@WPK zl`e+fp*dlcm!!~k(P6!0Ba7pTTDMr&ub1H(gy)!X&+F{KO5gedM>ZHB+C|z=8ilh# zzwO#np!GaU!@K0f!$ZZ14^8sz9$KUtnHW+g_XM<>PI%?sPXFV!KI`!tGnd_U@p`Tc zQ3k3Ow9cZIo7>J*h%-9|)&A+XU$p+%H#n7B@suX&Oo>hy6565jZZ86ZWqB7TGAU}^)5}$hezL<{w98BNbu8nS(x;9&+#8DQhcXM%)T%^H=zw5G?@w7 zukiYU>En?zsg*&_J@s}@zhB$DvbZ17bTUd$QZMJGMA+xgdwAAszPx*6(=VC&>$PJF zJR2UeOxRV;&lSHcuc4<+XywT3p8a)P%BK9vtj#8WTV@8@b6?ZF->Y#B;Z8skc8l|BTnzV)Cl&j=wT~NBlx-9vxOm|9#JA$mEWn%!Syqm)$kL1ZB_oGaENs zC!Ug`e$G@FGuQuOg=X2c>8MfNHKvAy()&(!>k+e=${4wndt(pzNMB2%^7VGRaJi>- zPk;eV@ACak+08SL;y%1T`%YAC>2XQkDPwQNXPFZFC!L4%7}N5r?n$Hx`-vLn?Yn>9 zM5ZiVwSlq6Hit>|oJ^>;4G*iWO!W08`aaK%b9Oyx$UN(|j~QB<7u|PHp3W z|CE|v&hNTgW}9tycB)j)OpA@w+&hwJxvKa#uTP(XbU#*?&#mg9;Rt_=I7-~-8z=(M zQ-$Dc{eN9b6oDtQf<_%+1S6Ua@Z*5HD{$|1M9yU{bZnFG^wmQ?{MQ0>K8wq|j-g{3 z>nXMFsnJvDahOg@{bn;(_V&U$8y3YW#rYiyEej)udAIM49CB-&^+l4e-Eb^y#;#Iw zNiF{IzGR(GhAOMB-{#gBoI3QXYER0EK~C0dc2Qjvo7lDpIGO7S_ZvnjzY&@`du43F zvfejVc~_f=Vfk)S+Z_eni#WrGnj760NOk3L;$3>&jxGiv1&i<4;R4Z_|A&Ei_(6!? zg0x3b7F|w%D924-G&huJ9yH-R8X7co>Hf9P&gTLPI2@|$7k3uGaeCiYYetPz&M)DZM4ai@x zla}C__3Gl0{&?}rmB0U6$)!wzg&b8}^gRnvh(%|b75WdzbRY*I2+h+=9b71N!on8; zt}<|#=v-ApQ4QsM7o^;K9&VSEBpLuBAtQgxut{5ApVn~t?Zbnn#yVl@IChK08+Zfe2JFM5e4%W%5pjxl=#daLMsLJO@Gl`D>_EsDw@?N%r< z)E|4Xw82r%P}}av0quq;pQ8KMtFv;&p;%c9v02HCG&enr&M$9`ckH%l9@rR-mZZIR zLx|R~LrWqMEu+&60}1{MAe8t-u;6h58H!f)Nl05~N1K!b=4$sZq6-JhC0t_)Xp5qo zjl%Aj@1HX^#mpCsMN$jv_iBZNh#FiI&CWcyd9u>P7z$HXDVdxcnvW+ECBg|^fGEPc zwYgOJ`}o)m(@O(*Ut6?S*qN$*%6?G85aV%>%e*kV?r&BIh|_LvTXS-9R_7E}BV$vt z3f!Pi50UKkSKx&#KKNgi8r5o9QmuBc$?ctOEYL6+N#@~Y)QR_CPG`{Z?BjkjoK79c zITq{sVfGZta@U?ydS@`AgWTMFE`IhiWla~6&^_wz27MtZBO?~#`!y(R;}H`h5sY1U z5JZ-Yb}2-n#^(J_^l2VkaCt%)$8nyBmC?VqdNuUWvwGIx$}B{-8()XpP_7pIk_J}gZB4cZl&i+)+{ zmS?bB(ar^b5dN0J-r4>;Yp@*AE?u6$9j5kxg077hw5%mK*|ik&5@5us zG;A;Ta?c8ds+6?X;dzRJyamb=D1>E!C|Y_Xl=uQ((f?#~(C?DAy+>t}HcItCbI@;+ zL&d#&&&BRp|Lb4U3*9mXo4vc|Jq(mT1X~Gw`#s}#YIjCZjPr*?F{?dJ%98ckJr1fu z>omG|jA(f3#trA9iB)8vv~9uUgl}u_#127*)hx;rg(d-zECc67O5OmY0!=Ii;t-l1 zXoW|D&k0?Ih^#D!xj8!9Q0x)#H5l{Mw6vcuzDlW$InLTPw)9cqzH;Knefdd^+Y=f8 zIJxzF9O0^dxyj6|X<7Mr03}COdO%;nogxM$;dD{F(H2j^rKNMv${47r`T1Mk{Km>C zIZbH{JzjHJfbPhLdNKbJqX(P;3bzC<9p3)()jiS8&8igB)zvp(7Lnv+q?#{Mta1tM z9d8-;t$uy4&x1$C-~s3y?XTU&{Q=Y*`d}GoxI!Zk?aHfO=)u$fC|c!lzFN5qv)=Qu z$;v{fRV!BI!ReU<+xg4AQIxA3w6u(cVQuTUSXcr|+!R{t4(=T8bi50*xWaIq)K*&q zG*~`=$`a-s`@2`N;mI%USW|#uD!zzZYHMInqFR8 z4A{C3>#S_wRQ+d~{p_C^euEu}W3f3)sM;%vNmU$@OyTL6>ihf6cx zo85*LFTCa4GBLQix!uh9+g%Ag$$!H$e(t|`Hl+T@+wfMlVUtv+V@n^D73x(UzOELo zS^w_`@Wr_CJh`Q#{9-;@wp4ZK(j#5=gn-hKl;rTfvlxCv@~G8svPP z_sgl*KA6&#Qh9g4A01gkO_A_j^HmA+zeUnySA(wfQD|uf^_j>kJ$n68n2Y-m>DNwQ zY%Q9^6Q;lVA|YkZ?hk*{wFlJV?j6;Wk|urK$0ym+n4bhN-77TsM0woWKXZz2zEH-F z=YQNDpDU$*%te3V)E#`yV=onW>&Lgv!k$ms_N&E;a4`>2kv@y8VU)I+I`zj2*Uqk~ z;^RMlQEy%OJR7L74*RuH(g?oke@~Os){w!x^2JGGUJbt4^L6cA6Y_!H-WsCnm->_A zSjgkJIUEyB_r6|dxVPd2g`Cvh&g$jwCYc`J@jPY!HGBG~L-G;~2RnV<2z{)|;FUOe zhKg#y<1@zIO3j@hdrr{@H)b8HRp)?%MbK^>z;-E*kPZ_2Tp7i~Ji!6CBu- z$8ISe`rK*wz4Cd>)Yq@@VdiT!BWDVxjh_MrTa zl_sv#r2lYjJok53oy@@2l#R+m&2pO!68e61|7(Z`M}#nhaqr66oK@l3{%IfY^uxMS z;;A*stL)_W#|*yMXf|xe@$_3_;Cg`{f$t5!SL}^>pK?ZMbpv_Xtd(qA*dC41e4O1Q zolw5t=+@VdD(ucz8YTCCX8PB-s##}l?mAd0Ft~336G47>4H$keQ;HGQaqqYOw^*#T zf)DVAb=FK(w=NyGyWIA&?$jeJ_T=Gz$Y0YBFJ{e$zk9YYBnD`jaNNIEhp5x*tvIDy zJ{(SLJ*FNsakTb}KLTxcmeDAm(>pr*x?yWlO|msi-}rw^P0S16JexELRou=J+v4c_-MY#bZs6HryU66fG(nvf**xZ*4ZCkp8KvK*r2_ zYoS&|!V_ES%{kxx)V&WK5cYiL_&QNc;pD9=mn{d>7;3$Fx-_+{GiQ~5`Y9czhi?Pm zfLus^z}8^l;);5H3?ZKx?Q~oMAU>3ZCJf{P!nB5)A+R9}$15BDU#M{i%9vXhJ^+YO zv*Ap@xAKFLh}Z~t86O^+B`(tcYZUl0XE5Vi2MN)VyEW(=5ZWKR4U|XIWs|?jE9B#AqIv)dsjyTnV@+D@fX-w~ zB)y!3(naxro-@Htxf2?O{V$|4IkilPXP)qu)WWtAZZ(i0E?LXJx$wovSQY5AhZ=%* z0IP5lA~a(7Lwg@8E6DV=Xn@!x%Fj=x98|&7jrlYOP^W^_^eeBC2|MK2Ywsx*m&E3Z zyJWEt?a1(bQD*gEnc#yup1O42tIXTCjH(xCeS8VSMf4}$SOdGnTwxU8ni3f)9No?x z)%e;;x3by%-A)&Mx)bM&`pL>hDzoeC?_lCKz-oc6`WWQX*f_i0`^3pu8faVK+9b*q z+!a5+a!T9@%mNw4;*_YOt*aY-Z-)km6ZV;m@kzhV`Y&WW%6WTx=<}IfTTgwNRczeK zvb4*nhz6P68lrH6ks$cUGDNxe&#bH?#78g#%#N-Qjbr!qGXf&|!YS6#?^(r5)Z@HN z+GXgD_NF-fmUfZz_shS?nZ7#N3h+;X?e z;xp;~ouMN8?XT>xd^?zOHt6oy%y-`V*J>_(eV{dZ`P+^EPL_9iGiEn7-IzZR9Hx3U z#D!@S7vF*9af5w0bms?m>;gT5th)VTkI%O=f1_5PKFVfg+QyRuySuT6Juzu3PrCxRsA#NyJWL+{=S0R8g+E%HjY zW$HnySd1&qefp!GR$ZJ$96UrB;%#R(vlwXI$GN#iO(TL)OYzIC@?r08GqLp4P~7B* zHyzeSsllOgD##)U0E(YKJF@?etU5JZ&P#BJ%rUheyPf=REJpL7%o<#*z}UNBSg1k0 z)UDjN29XZJNH`RleE-ryO$am-nb#$WJD0#e2^{2wM|v?cMjHVzq-nWY79+E|x*+~M zE@zW==f#I_|AV8KJ=6bO9LfBtvUvt%TwlI%<5oQ9U|C}BmKs8b>S%%p% zjQJ}yS&LA2us%aLAOU&zHB zH^MI&l-|o^1{o_C*R=U&j4wiHo*S(EB+CE;EDj&yZLD-#v*!#kU>)iANyxOM`QOQP zPgR}SE)%KG|8s_2CV7*m;ef!CI%)n8?4qaOMa`KrK%hN^5fNhY@`I&HL}W{xXD7|W zpgM)!6LTs?Jv21d5^BocA7d1iS$rd5;zSb&?d*sCwVQ!6Amn7|*Mbego=!R9-}w!f zIy85cvx{=oOzX+mFfukqNh#yqJ7-9I4PiLi&~I#E(Yd>Oj|OCYusRCv-TU{#_2vr@ zFB0*7FMQ<$=mbw^NUO4lfhZfixdb;z#(JTsK^O9u7A!BQkn`YAhxCoiG{H~vQ`7l{ zMM)&yX68o$Q#i7zB^&t@2pc$kh)9oxr8RZyL8%`_h2+cyIMW+I5G$42?4+UR;`C7+GNZ2|9>cxbjZI&rZC)SOE?8A}1Q&BrvzJ?aYSwOTxA` ziO7;+Nj}1ib%MRTHi(_fDcj}tQW!_ab5wc`f!ea62fI1)=@h0{B!T&e0_RUG+hCw| zh5($}(6a^g;nA#EQ<%>*dEP7ij0Jj1h2>C9d=!Sz8PR{0(_n!@$x$|4v3DP{$fDb zF5Q`2aBvXfBOVU0qWt@QFH&Hlg?0cukxP9Cjh1?J_yoeoGCV2>gqV=F5G=1ja|$7> zU0%!*l_A3#e&lZ(xj2BwDC;f-1+O(#-z6OHZ?;CQ~6dk2dI$=UI$ z@tRctG}{1+8}KHNySpn*Hrt(E+5q6HJ?tlBatBa$-k?=1LhtQ|FiJd&$QdzGp?D_) zE(lJuFY^ie2HqQj_abwIh$k4xD{P(ij*kA|<`=;C=;`Ydb`wGnsXgO)Jg4G2t(q=% zm;fPI)ccCAT9Cy>m~)tl1$!hxQo!!c4we*RGP63$V;*K2@CYOJNLb&A#v_0Z^kEd= zSzThU2k8TXRDcI~`lYdG5a)=05F@b=6o||p4s=yiO(E^oF-hf-JqXhwfdRlXC;#^J zZgSD_x<`mei%@F5L<0`?8YSGFOq_UH{wNP&50a69c;k(~KR+c3W{{&2;2VS^ck$b| z@}9Tuo>M8;?!tzpasBKsHzc&U1RRAqoxtC4e}em74~g=lr%&?$^^h&eLwTM27=p{W zdpu_7IL=4nD11(V=}!Wpq6M8Y1WZ6&d2pTwejLVWmxne4F&u$Q9hbJ<64q!n>_v|Q z6slkWkiAZ3c;FkKUio-WQ&aN=3@bnf{lI%8q=yZ&=}#~wlNjY8>~F+VC({W*+xdbj zAgI4YD(k-Iydy}gu(&*!@`d?>p5RG96KRL-@F(hqknXF+FYiALdk7J>KFd<(0;Lr- zSvbsM#U%0cbq^d6R#2$zlz{_aM(qO z+o}GFa!>_E-}D#2!x{V%oF;dw*aF!7vW*!@VCoHz^qdHuc(1 zmynv!3WO7DVF#dEVn`dd!`j)73syvdnbL0bY z2)l>Cy+4fkhk#fTcD7_Vvm^fg1de%DxohQ}{~MnxA&pI7{c=Gp-GDJzY(RxAIX?qF zj_@2Dai%#UVhbuN)>-e~Di98@SP?gdzy13i*w#YGuQ2V21+&X4s^0($*ntM!Ruq#< zzWwIFZ&4#Z-w`LaBWzP($;839O+b*ALtc376JSKKWE7a6vc_8_v>_kd;bRbQtT3=o zo%}<>UYpmwIOH{CGua_5>4Jozg?(|)8pk@!D;>D`cEH8Zj#w4Z@6Le`pA9S@2O0WE zW<hfd^rMnG6CD? zS8gY*#TQ6ms^BQ}fgvys!6*g>qgZfsEnnApphmZCH*$a_gy|T#_G2*$E)F|Z3yq_b z`r}9pbHR_8fE$wK?ddP^crm4c4A^S_9w)#L7`(|b0e%rPI4kTp`mbL*hX^8!StinkQuFIHS99~--7SH&_0@K5|U_@gIl?FO(nuNkKardFq8z&WI8mCT>czdUOIKBJHAHsLTE_clUX@c!(Yn<2QwU94_6VV4pL>vfBh>Qrh6@_Nz4%={YkO85U7L(|HaRFk(4(1js#)H1l zV2Z(cgFr=sAsM|y-Vv@%|1K{G-{g&&pS{(u=I&mC#3=%?m+RQ=Lj-Yyy?F@H0cSn` z_23B_fpBFCz!tCKaO41NtN3M~#pe09c=*;e`p606kgSuBb}D1n4WyAv$f-zpgu$;J z5V?|XBbcd^AA^J>ngmV^fF?d36YnH2Co(ed^w|mMm@HQLZ2O zjkYj5o|7YTIr2|`iO|-qdSpVU;Eo+e2=oqBR{z$g=e;);9SX?&q{xpD2(RVNDES+^ zUp{jMRw%Mt$t+APcxbtJ3E-K$ENX$7-a@955^&XFBuARd3MM2lJI3W~$s~uw?|w$e zJC}_1B3~%LrXc3vH3aYi>k<-K06>uc;UL`zCPYmHR!{q%1=Yc8QFWA*T@io`t7?j5T z$E^l#Zk(88z%>v~nCNj(k_UBAGC~X=QjVmt_*wa+eEQ?ZB0l>X>?`@;_gB!a{c#C@%t}H0F+;{rl4eyu%A%z=Bc*n<+DHaX7bdx5j(^8q(xaTMd8) zCj%G5^z5FRSODH*a2vvM#RSF#Fr0EwyPd$NWkDJHGJbD5_fAL6nxF(ruubA{4741a zyMg8Usy?6;rOlgU>Tx?cvp_1}3S#G>k0SF=pe|`YXdQyHpo2iiFnpn%L_pAI+VLiF z%@EQAcs&#fHUII1ZwQSWsAepzw$VtjhE^(hqW?m+vadsYlI*6>pTN ztZ-|KO%~FDXz)16T71AEio<)41JXX0*z-GOkav*laU4QEjlhWPb$rWMB;P)`zsBG^ zvi)~ZV>o1PV`F2dKgvbXC%?Rp!QaSn%ixxEPbJX+;7(Q&-jD*bl1rNyf?5?%FMoJL zo_)kT=? zaxn&ioI;A_Hx>ooH#Uy#Q@l7hnUXD0o(ut2!eur8W^c$q9(vf3GQ}r zwbg{64sPqmLq8tR`mwx4@Q16Kup<$Dr$+~`C;kpf zSY)&#J`J(@dNq8!>(0k&qbLcBYtV=fm3Cgw?rTaC5@b>#S>lBM2VdPrSn;7i=`YFq z?066w22>SzV17oc9jz1OazJ?g^WTH#julEuP5mV~zSbzgXkX+G?QzxYl>rnBSPuvZ zZjjvxn&%Z5$i85rhsBEZm$U#v)&6Hmg$5lrqZhF z!hhI1hl<*XSoeOP9-r%7lN@ChrNOvawj<*e3-@N)M`Dwfwsz<0y`WEOCh4AhEzK>} zPkqha2}cV=b6Xc>uVYkkDxQg^(rl$*6s5Ed73Y6kcT<-km9bCwsBnfG=hdl;iq0_) zMGiJPwxueI9kj}yfxd@&PBt<=Kbzoq z$Y)M{Mey>oY|s~G-L`Gp#M#@Lf;l*o=N1+UP`kR~JW1KpVsqBQf)h}lm}pAQXsW@J z(Ub#+a2wRp&rj*PvF}9Rn*+-YA>X!P%!0Q~X!D=%HcEl>+{-^vm7GOERX9z57UC_@ zn4G%0tLO;MqSc0vzOaNm!TZK4t{tg2Zgfwn=bM^1IpyhHPox^jYo-KInz7C{0g+QR z-?a6~6WWD^g^^!s`}fn$efU5!F2Y;>u>0tNkS5|0_6`W>KpP^b-`&BAQb z7dJgYjf~IC5K_HsjkT4H&4ULI!ZvN7e-E221t3IOJx*&Ve`#}YaXI1mSp51GF2t@b zMlUa~k+-%DfefT2iG$7i!+_*M`75hvYH}dW&(BNahU6-fv6@C#Wkp|QbrG5E1P(>* zKY!I|Bi6xlN{|u=V)oM9_8uN9Q5s%@m39wNF+gEB{F?j;9u=-NFZ%kzameC&-O|}f zxkftVt1D0tKIep3W4x!Hkn}`NFqvD0GEF}M3>HwKT3)~2L>aa=Ffj1km6)Q^QVo1t z^5G^s85V>01fM*q!fg3Dr(PfhevX!mqpULM83 zzyM%DEqF)qoMEQL;Wag~s9r&56oGs{4;J>UtSsCdC{QKa5TU-d&X%#*jCM<66tD}R ze6|z?MKit6y?2kxw~iMj9rX3iTbFmDY{$aJMuEQ^uN{_FwDb#Cz>Fvn zwibV$mXVj&5NB5xOy*Zs-gNiw-A9iewP4DRK(a1oKAx|rkRrhaiKMnlhsuxB+t_LS z{r&AhfFQu;9MfVHS=*-6OZ$E6qT}KoK(BZaE(QDZ7NrrY{Hj=vKThw(Gr?8e-qSOl z`k4R*5ngHYB173^oJP|+j@=bw1z5@UqikEo>1)^RJhb=9+&H%h}2Y^P? z(td5ekS9~V`bI{DWIpvBYssx?`ec+t`Jvm92wJnaHh#sRjU+TJ1 zk%Uxgcz9U1a_}GsB@vO4rWzU)hwq=h3K)=qZ(Sydbbx)_v?z_=E8ElGuLT4`Dty#D z@sVcRI1mJl!Ho{^_kV#4x<1zQ`-$?RBI(DGp`D%D*o1lTVGHtHDIhxmF~!)$MeO5f z(=}XMbW8h9j~x@0mvuORSci;J3kws!rntHJ2C`E_jGV~EGEf52SwvVkNjonGQ&+a_ z*debc1)8%4DWy+g>~BwtVmfd*rl1l91O}Rdl!ZUNgxVJJ51fFRJ$`DMW;QnaQI0S( zF;UahajS0t~W^E1*j=tBg_k*~Rk0DaeXMFD5z55d7ZgEV7jHc|W zdv;yr8kji6w{KrUb|j7t5PaO28uJn=1A~;fsJ=Yei2l)0#_ij;2Zw|ZqQ!Zvkio57 zYoLqU5URQ+LOm3KD?*nU`|=ZSN=`<`9<|Gvxw$sv5!j^B@SS_5qIyq@Ju9dVNy25R z!|r`rzH3HY+pyuuxGLYC!9gnYZxF?>H@<%VPR3*qD*TVr_f2#*uX*w66*bs+;%WM3 z78Y%YvM34Q9Yq+66ESYKMX8#m6)p*gdGXij?CrPV%1UopVXNlpDY-{QWhb&G=v0si zQi48*Pqr@cp$1wAsONfqZQ#ks$XG;`ORcbX9CdHR1}i9-5j^;rshRPqF(22f*0Rl^Mj3FQ4)~%Lsm zN{fVbZ)R>zJ`Iiv6k%kCPo}IswU?Tkn@dVdi+}=AK}ksvJxtb^^_MSSre&UwmjdSq6XNmBRo(zHYC@3onVW5Ndjg$3S+6#~oPBOQ0|1VSFP`JSFbscs(hAfGN}w!iYHIN6s1Rq^X*c}(^$Ric4u-*q>-b)1}pu(Aw>5B)letOK)~TFLy7u`zoo zE;M~Qfdz^Zi3Ij<)HhOLS+=acp<%0xOe$f~Ugi}VM;ToJZI)QftEr!6yf->}gv4ds z2d>?j>bSuY*YOosrd|M)iz_O;+9!S>FMEtzAK;PNW&2DJVGY2yg)I2usMlnrg5P_3 z1K_=hbm`km9vUQzVpyvXUGJJ5e{?Rtq$F0gqD? zbg9ki#bzk#a1n71ut_~kB7c>msnNX%)6Z{1xe-#WD-MZkxnFHezjlodUm2IPKuzDZ z^vC($;_3?o)kR$FGW_+wt?pKckOROG+F+hP=idv>^<=f-gxvj8Wbe7i=og4x%E}Ea z@nKUFH*l{ZX@(!A(74*;2pqts#k@-{8m0Z{`zOv!d<{cPeU@jV${p#zeTm0(?MeH4 zOS|YFNHfVr-%k&o( zR@QZ5Vq$q;TjxG~dWa;p%Il3%-i_}rSE6XP^FI?36Bb^N4x$XyP$v)6+8`RXJMT03!_bOy@f^(Mn|^*0TQOl--2_%#Lg}emoBSA zhsXnVb#qh0v5ie$Qc{9l9R@7-tJkk5u?O(6A7aNR;I@a1Y8+);LU^~e#SC-v4OqjG zk(AhPn`&Bx9?)}r|JA<7*Y@yX%p#^^Vq!vehxzbSNaB!iKqE!qpNNTTi_KzjfFL@J zp)p1nbJ&#Vip8TJpHoxAft;4iQWg?Gop){AvuDqX(a{8C zn9M9_+xkH7hinVYwj6wO{5lLCS-S=lzcEA|1VvRt!vwvGs-xToorIX*Cm+T9^u3P9 zjvYhb;TJ^fkkQA-M_OK9Cm=u;P_c1LXGL2`Lzs0O;gw{IxF{i&h&cCqk`GJK_4sk5 zzw3E_-hdzt(>nC+yoH+`KwnqT6$yKC#R&WvmYy& zAn-zPJKMmXO+=*-N(II{)pGJt7NuIyn&8N9om|4`C#t3+OnYxIZAqlU`@u79efEqV z!uj{_-}4KiEmdT;O)4Q-q3XHx>Q)QYD>?&X#jayFxER)sS$DCqU@e{xJ@^q90&rxA z<_ymliQXE#PH6F!=HHV`|H{bw8Zh#b-TofFuxJO4v`2}U< z)%}6wW{OatkL!TkpU?9IPZOfE@vOFhjC# zINBI(FJH2vj8Kca=*Y+j`JhOb9FST|@7_JRkWOZ_%Exo!6mV?n=YHQ@Wg$xc<<=`S zZQ(P}E>jeL@SCaZy!5jNh&RYhVzY!Cwy@(5u&XuNGPaW4{UC~i85{nXF5Vh;d1Uzi d5C8Ko-Kh36ok@AWp*8rAo|d6zg}VKP{{x?DtUCYz literal 37631 zcmc$`cQ}@R{5GBz6;c#gWh7F{$X>~+P%?^8Quf|kMTBG}$&5lqLN-ZuRzmj5CL^M( zJm>ZKevjk#`~Ugl`5d2)L*l-#>w3T6=j(i(=lQz*uc|0e?4{qkZQC}Ai;A+>wrwK` z!5=!Z-T02JPJ+v}ZDBPRWzVZS$NY?Sa#yeJ^ouV!T{0CRa4?L@mGj#(y(*bQ`vNFR zSOZu!)!!#2CLBxb+Ep@{E_FywmWt~2pQ{)4PL){+Zf zM&kn|OJ)2<%}3ESpPI%+Sww@ypR#Dr^eZFwZhC~mdW!a|VYiuf;C zZvj^B>+kNiB`Yrv*p>9Vug@0H(9*^){yU!HTRD7t?f2Aj^COiMv(E=Fs$3t{usNLT zx@;O29^PGKcjC~YLq3llsouPK+0jvOwkPjGQfo+5lz;u*#KOWCEt2a`zGvPHfBEuK zmR{NW8>h^>-jl?tCo}uBl zj~;GH9MtqdHS1**41zd+y%NFLqNcnwX>9ETZA z0eT7(6B8dlzofL2(SjChm_2FI{3idp2Zo(KaA3(4;s2^pPV+CYN1p?d<%Y zJYnbIc^WI`bWKg|LW$$7@jz)&=l2IYNb4FK+4=awR%Uy1-Tqi=7g)}oo`1?Drl_cR zOhDj+-s*lv;ZGIbq!(3Gk~Pvb)ipJ3C%>|YI{qZPUwub^@T13ot3`it#E&0$zJ2@l zI54ns*!n$Q=jA!Gnm7r!$*yd+(9qBU53hf#6SDI1--_&viXCQZ>O$Fm{rQuUkgzSi zBcR(nIWh6!K$)AGnp)*}Q}o4)7g0Z^=zO=qF>mM8}<iI zOGCpHuBBkWm0Kl+I;HKRk`lSycw>dJfa{-m#}b#H*|l|Fz9eep8e(VgdaT)RBj3H_ z`0?X?HnmJT_N{UQzE{#a?g&OliM#L_<{l~NZCal%Z<)y|SJBWol=X4#q-g9@3AdHA z?tiW4O6DasGj3EE1WU-5du|#Jew0YRo@F@v`B4m>!q0)SXgpp%gBtQIVUoM|?(v#^ zKee&BdGX4XiRtvL@%&y(Hg4{~lKGF(pFT-%-@d(Y;q$(t9|7FX3l*gJp%l5m!?Fqr z{0`IV%+5n3ac*-W!~>l#-)dGk>QOZj@73IJro6Exh+(SzEww?-6BY@HSgVh#yRn7k z<#%V5tbQKx-jf_H0;^4D&p>@JJS6F0$9bwqOoA1&!3Nb zr)&RE^PxJi6tYn(;=GVh_%o-$hf2o%PruWhA65P`WGwlX{U_yvnNMeErc=p0#-ma% zT^*19Y?$jW>9O{BW5b=rhiV@!4^5}PYqK$0E1AIE$BD~b#H^5s%%%9W$p zhD|SB=cN|w*nT`9Wv1%Xb&7Sy6+fbq=`t6znR*i$fQt@nk=oLE!X&2oEHW}MAYiY} z@FUuQGvyoC$XI+D#tv$xYh>Ii*CVGpE8X7S{y3}rpEmG713$cv#m9NBXrk)z0XCnu zDVj%*9wk~0eoRbANYFc?u5m~uMeRnWX7=6sgElxz`wDtbCo4s<5}R$_ktg!PsgSW$)gJZIv66DAHNkcL7zvg-EJOBd zwqP)T<$^DnhDJ4oP~S1htqnUoJ*Pe!zrT}7!Lpi~&*{$IzTZ{mR*?Gc-Qi%Ve}#oJ z?@DBqm4g&7U#1?!Zd2`)x3I`89D2B~3Mhe<8XX(+$4fqb`I7$EO0QKQ5NBUX8`sMG z;F*Ke)YXe)4S32rZnJrJaE@5n*e;OM3n(%QTTA1915d;`%k;TS#42=$#%RVoJ6y+H zr}ZUGBfYM^UVos}WprX9*RY8m5YTFx#~JW2k#pOCk%q$7b*tz%uWYtmj6I8~e1sn-xB zG(hHTd3XBf&;F9gGPgf``k!}Z>3Vs21q1{*|L{M-dFqsGR;QYt-qQ}#>RHFOYy*YQ zpFfx0vji-N#!`mY`;?bUIhK^^ZQ9w{Md5AEojW)1>P&ja7XV@rmaDASBv1QWTN_bH z&YwR&@MrpIWoYf&Ij>li>sE?Cao`Pck0==7QBn28Ly(i(Md{~_-|k%hcb{a3^F*vu zU32qz zC?g-kmA=p`b5%tJvbH|^>eZ_Z?YscX{$l;y z?$X{vhYx>Cl-u{It*%oFq(AiOLFwNgf!Jju^Yg(}55vL^;=j`M zpvR9B3~HYeFhg_bP;0r@maAisJezA-+{1_4v8l@vvpP(tIe_ZDQ^sq}x#uXL{ zQ+8fM)upAGc5W=0=@?8@mjdy2f!~;TL%5<1O*Q6}SIh7Yp0s zxhCB#lW#TH{OW?A^HP&gnZXRo=iQ2jyT};?$x*Kwqxiux^rybPiE*1Nq9fmpZRiZv zR7BL5-`_450e7P$+yt?JK*QbpnU!#8CVTR@hfLIsnqJDu$ZWrN@7~VcyYKKtffW(u z0NBTG*(Yo-%9JD@^x3jt#9Ek6!d2jw$MT_EqZSSkk*Ft6$ZMV)xuB!NcsY{iUVYec zz*G!Ckw&g!%(i1jAEal#{VvN+!RXo48XiHx=kcCv{=}c7o_`;JQ~Y+7=+v>J*e|tl zmOf}VPSr~xtL6}v3onGMn1dx&=&(m?EDP+wC)?g!rqy#9J0$;vu7X%lY_OrI>QQ@9 zlCLw%vT}02P_NalUHg3fmWN#DJKa4L6!+>vSo$0~b#*+JJAkadJ|Qk%s#oOw@F9Uy&WrUYidK5eRyUSfj!3!-%O@R3YE`^;?O?Fv8s~iJ66H1t z*Wbr*2LPjoKrcJ6q@Dt+E1+%fwKEl%Xt#ye%c7VabzdM!QV8adlpJs)*X8LPWWMQF z`JnpFD{Pgj+S(-mC?EEnt*tGv(qLhzBE`P{l8V%*z(8&YYNqAK)p6IS-8kKCxkguL zLtE@y|bjh`S(;CLHV>ZpPz_#55q3h%+!{%wdF$*U_-$LvJSXRFoBq9wx~!; zZv&iV=$1Uc;77@8H?Bk+o3@nwOrrJ)AQ;#yeqdAvg3(8?p8ERw>>M16-)~x}s;X81 zSINl9*#!iialb2kc$ufjC(o?YwpEVSX1?qX_J(nP@j0MKXs0E(E3v(|d3t*4*i;`H zs408OU|IM84`&Hgg`i3tSK^*Dj4iGlT$$@{Kp`Nbpg4{f{xj%x6s+W^*T!%x%Q=&8 z>|mu$1RPGpxfOy6ZKD%+J`2#^E?%kCmU5-mvLHM*w&@v{S|QFM$qN7vo5Isk)SZO1 zv@c?^-{0wq_2ik=zSpmO>hh1MnC}XI>;=cKO;t@IXjNIfu2a85pYuo%h{w(aB~52+ zD6mld>VQMwk6;}>^>=@~G<(N#?ATE1=8U~4v)fNzb3ul5%}mx~$L<4^Zl9%_1mD_0 zO1bkG7dkWB(Q=FAUVZ97YReeY9*LGr3a92q zzWEWmiRR^IpKwL@`{?MxB&hsH1@3g`+*68|jKz6X2=E*Ips*s%9@a*d(&kU~tG(R21fDzcn>!kzqLB7Bd zfDBHqv{s&x$wNuX=!N8)?F8w(J1Cr{htdqⅈ1axQX({8U=o7QfIIhILBsP}W zyP{;?z)Ak*lO(Oi0yg{_x z&Ik(T*SnerRcHzAo5|ujO}`_$>3ga~OnK$3<57O&=IdSN`L3!zKUPiI3r5W*XE>?# z7Id4}mc=PuFv!#1vYRM<`&7fgMsr!3ec7g@ziW17_koz=$JWtJzSVbr6+IS-RZ-Wd zHWyrPf0xL4#cx_#u=hx71 z`BhE3ispfM!>rQ9y)tA2&Lb2bxBj{1n|FV1yCUV$D9}D+lh~ z+7+92RgoCqGW~rC&dkaW5{IlsMeHZ9mKA6WUA5$Cmj8WGL*sh*uSoKbwV&s#Lu?j? zF78s*P)F}-^*xaG>)qN-XWzzYzHLGR3WmBX=T4ZFy#3O9BgRpJ3b=!_8c6jJJJ&V- z5G`%4-Gs{FQ#bB68IAw}-;|cdL~vhUM5}g?mbR8?Y&10wqtfmaf2e-->d>YqY8|SX zm0V3=;{7&%yIJk_#YO712d1`mZ@Y5dTulCDy12+Wm_Iux_*zil*{9}Mo1-cv1IJc$ zdDP`99G-~j$5w0;WfG1}<)M99T%sDZyTkCpp&u<4eU>_YZv6D#Bs9A^EEO~~S_A{O z(^GsNUU;0WxsQ@`*ZK7chH>+INwiOYw*1qj zM$_jgmKPE6Q@1?MXXrLL35l1U8YO93S|S#iQNeGAT#7-rRrvuLD(M!zGS2Su_{1M~ z?rd&Ke6~7!ADhoo!KUczOQkr2l-9&z@z$RKnlloboO@rgxhj61-7R-sL4R4ms#Oixc=9rE6v`u44U zr7r~_3MFH6K9@y+o+g^2ygIPeaKf2BctqAL@7g_qwGGP)WDmX@CM^#7+Vt`K>@OZ3 z%sFluO%ars&=#kyrJE*Q*hfZFb)e)L&8{H%%9eD^(2q`MCLHEfW}ctc%GKY&lM?F1ljNP8WBCfu{-qorV0%It1*y8L{|UYO3aRZdn;_Wj+ClRqg*U3Tqy zQn(Kr<>v9Q!KIy(NX z+{sEb-)dgDMDMz0L0Zn=iTL_6r$#@Y_f}L^zBgMFq^_x9b5<<6nMu@IFPPbVVWoGJ z_K=P7go^9(Pk*V~T&G40&Y4}k-&Z+yv%rMfF!0f3zx||sJE*U^Oj2#F|57kDHET7_ z`#n7n`?u?cr*=MhNoB=XmJ5%A14n{H?5NVdbg3o@r>LFyt#SgSaK69c+ad19!9n-_ zKBB#L^Jc@DXhHpg-nSX=#=`>7aC8kGEl6{%QX&%w_`Jp>)>UXg+BEW`FxAUTeQ15G zfh#lZ&ebfv4^|xkw}i}Z&%{aC&$s&z^cQD~aR)YTxbMAuX|nsxKKjh(w@`R_IDB7C z#0Sf#S6k+~c%E^P_*(h!4dY?X$X;a|6Rvw28V;nz19?e|BW13PhfhvdO}sxF)nv%% zD8|a&z;@fK|6Qo?w-zHQcLO_duwk@oFU^ac46J+hK2}K)Ggaz@G{oSES_||9m}+QX zzY**=`^NOD^ykV-qF37nVTEJQo;@dMxD)a%0XVRBOz$DRZ7qa~GU8^}b#-q|J6qNtn!DaMZTH{zJt@I?t}A#5B-N;CuK)MU zVEq1%o6pbhAYJ@1lVt~Hl_SI-zTfj-)PYLBrSYxJqe6qW`}Ph!3Ai)&a2GrKasBog zmw%goqD1UCuHc%$e`M$9TPT9XKW7#UHm@YIo+{t?d^}R;^Q&)se5Vhab5OTznfOS zs?#*?8XEGgpkLUmru8W>Q;_kaoMdG+=D)p-w4p)kcf%Qb(Jl8l&zaMfbV5&AQ^LjK z+{0#Sf=2$#_O@E|$i_>0yx3|IDiyI}p50CPIwvgv#O~?nT)%(7<734J3MbRkUi|yF zUMgrrX_I*qIAzk2b+mV7-e@FQ`2&-1h|z#&^gchzd#k<_FO)gf_S1dZ_xv3r!{rE&~OW|-0L&dB-1?6~k6o2dFvi)4w0Y9pY{ty06QfrT2 zUGQC4+gSBcDGc1~))HTuP8XMS;TzM^axc5P$9rw%-bhd0GsC-Q|Mi&J6zgy@h7Kw+ z{>92?>|uxV&$ zKrCd4ZmOBRDL?6JN)zf)&=_*FRD z-<9?GvfQM-d-rw~TQGoG|L|q7yp1-gF^=DlmxKgxx-#EeyD(fyoaB^vujDK7lAQDu zQ*J9)uj#3vHSE0QC4oL+V{InuNzvk^o)0FKZu4ce)s?;ns2M8zod$zcQbtfTIZg<5 zQXkLcJhirFCbPeV{!8N*RyO|d=b73r4O6y7e>a1roPV||n4pR1EwD0b_@23Q=T2*= zm3AE(*Hy3SH2Nw>6Ur`_i2eNcph3-dRV^+1HIi7+JpUT0&2^gBbDSS&>dH32vDAmQ z|C>RW%Ddve*HtPH*FXQslR2$PM|e$X{3x03)HcVe!-g@KP&t{FX55i>2%3cbR9{p^ zqY@<9?mRPE-t6o?`$~$K-Xv0jo=CKa1w*~Hg}$6)H7FSuEy?t%v-7egO<%?lPZE-! z{pIl}FZ!)h!Xfc3kf|SU4KvTEU6E=!eqFB~7iF`)o_l9dPdned{_AC);V->b6X|k+ zT_240pXcQreIBW%esdo$@8rz8vSRy_Y1_mrwF9U)J39X6Sq0xR=1l8<@V?u+H$yl* z?P{i`Pm}L^ZHWs}f(&UL(@ZCSQ>sGU@;hpr$0>T+Qe$X$&i0M-tqGGK5|+t=YVQ6f zd)DeR{+^RdzHRu=rm7Ohyr6<*3LQB!1AUN@^SqTjbNiP|!7B0!@n0up)vArp9Zq?3 z|8+_V_2I+vH*U~jF;dW>`uO<3>>!{I%^5EmJEbT-q5u*CGBj0LSQ%F&SJ^%NYQv(* zHI|?7t{0NB_E`qcR_bne$!bVkp!k$G!C|ZMM=fx?!{nTB%u|Ckj}P<|m3|ZklV4wv zv7kv90jXMkrbVWsasq+{A)gR35$RF)5JD86oHVv9nH8K*b4OhVZo>-Ui408m^vSjI zP+FR+0q!ik)+n*fB~trbl+u%;AA5_P=I3V1nEewujcKYGju{qom*#GqI=pWv%7Ny< zfd>s^YfCDNk6#@suN;Gs*%4O@~e*5Wfk1qb{_dB_BcNw!^;*gO*;;P?_GWSlF zN=ZcK-u?60PGRI<6s`StQlI)!w==^M%lJFxD?wmd#2OB(o$h$KG>p$ z{K@P~j-|?}PbOT)pxJZbk4f1dXczmPzd!j1WS;goOh;Gu_t%Jr=0|>tSo!lQBFkI} zUP7mbi)Y@AKnzYs?}l1;=~6&vtww?48eFBna1990iJjdC&eYn7c%oL#@PuYXAaq;ks6G{fy^@k4vkk6nn8Ru!gD;lRid|JB-FNm(@$q|0v zsw!D4kv#3w5S;FeH%76aI5A=`iXPkUFZ%kwm-MPLZ0jq(S zgoI;O^ee@SZ_}nvqv2Wcm2bC(Mu1@ixx3>up z3bkh(mIahb!QayzfvQRJzxwQ2LgV9Gnq$R?wnwYLGPd)IfbkIc;o?54@=ZaUCm1p{ zxd&fUZOv5*$7xynd2sIab7Pig+p^c_Nl$wZ)!MU4L_B%5n1Q>4!tzj`Wy^wIf6&0N z(Xf4@c1E0DXh(qQ((k8#10Q#0as{jSv2ctJ&N%G0(|ltWFXr?v<+7x`aZ*n=+A!RT z@{b+e*#@K#(f)NZE5crf z>ahXPhu8z%^s*M_Ik~yvHZyjNh-u&^Q`6E+52n~#sveLbJE(G18WQy+lb%FV$jpNc zhHKLQsyes-*q5O>vuD>q%bpMZ&}UpyUJ7D6qtqRB7>M&&(Q;k+S^tPu&$)4vj0HEU z9M(uB{=mmew+wcg6uX23Q>=<#!`P1>foBZACY-0R?1hxhPqo2h^!onjxa&@KmSLZd zPRV=fOhkN+hsJO^T+lxugM%!TnNPLd%WKO(-cD-a(~d2=FgmfL7TGsmz*>dkRGSx%eW$9fZr|sao|e{?bMJCn zE%QZo<@?AqTtR&>Ko;OxM8vRTNqtk(aW*z@>|a+mGHkAln*~pyIDZ;p9DvK;n{TmH z69i)^G$NuJY9BNi(AKcHI7(;3R}s&iK^hv~WE8(BF!QgavGFdt!de|MXgy1KR(xLn z+#P3ob~ziaVZ8^UL)0`h@b_w83Wn6w)Y}lz#aFrvpi`~9;BH5pAltGZ3~6xQVR61Y zw^mHzi1=laEc{|gvt$2|wsLqOHe=K0HiXX7D)^Y5)-kjAxlO)isauB@thfJw~pE*w#S zE3|dOmu^jzgP*+AZ4}Q71`TViY|Or-AC857o;LjE+Pi$bPIEeU?%W|vB!H|Tjy}9% zUl?GJy|_3z6Fz)+21x|jhjmxVKhTqZbr}S=7CV^9T)1E|P%1*)8H1oXp^XotpfNKy zt6heOAF$WvN5K0*V|-Ury^zm|J>d2akt*uG;29@7 zR)hUUizS&q@;GRioZdWCOBr9n-EMSk+gxlygck`8))>zb*4eCz`DA? zpg|dx)zFA@89(An$@HbrX2co(?<#T+tyA{De|Cp+sU^QRZe=C(vU`!bHSm9k;``>l zq6)+7`-%yb_oxQ@qZwv=R5i#fD0ymm)wB`f2z&lq9_B?jhcXHqVCQkGan)Tu7;(n1 z5UxmV3P^2j@W*?s9Kp&Enj?xh@RE2kWPA6r!hISVx{VElmIRLl_hD0{1B(sW7hpDE zK_#WqFxREiEGskf__=ctsNrWVdIUtB=G@h_W^%-L0BGAvUF_ge6plT=Nf3G)8yg}4 zPzsBMC>rR2+zhV%qc82ob3(Tg)TWuGEMPIw>$?1Sdxr5@^K{oxrx%tkZ4gF$w}+WDY}p`qa-&H>a+ zvORlPczKak(uM_g!Iyk^sKVR+XICi7qN~}1_5+6wRijKy!Bi&xaj8X0A*<6M`v&|V z0;y6{Ifxo0?;8?A zg|!{23A&Kp@eK>dQ}+AX!-o%@M?)2`9}?5j0uUn@hT=dpUSwoL&0_Pf%{t$m(k*_5 zT4{Ad`%8q|F-FcTMV@sYVqp?xx-`|n_R>i>!3)VcP z3!lUFF50dxj^QaKv>IR4hyZl9Azc&R)9H_T&PzwGd@z{RPQPB~#=&~8xbXT%8ba=x zkxH$zj!9|LdxWYSrg~ykPVhuFlrSsCo{?h}Q48J9Dq;reV)4G@I!o1{;Y@^Lv-<1( z|6fXPR7yqdO=zSdj;eb=lc53P4eA;iOn;n!jFpLUf&U!DGBq#j>$AWgk{GAy_e$bv z`hs32p!1idU^Gk)67i?s5joko<-z~v%^UaMtqQfVzq9l659fB16Ps&wvEj^CtAGCs zMlGlMZa<=kBEkmphSja~+kfKh*{>z?e{UHu;2a34z#Tv)PR#M=f~RHnji+2xIQy^| zh{uGM$0>G!tzn_lT?1ex%t#5lhx&xd-9K~v3LaUM1--gi84eU5yUkYus*K`2YOs}g zqnqHpx)?d^VVUk|7`ApckU&*9B4|#BUTIeyFrpf&?)Thv$V|U*sGzP9>=I06AO{x7 zy#0@2zK)Lh_|(kI%z~hXF~o8@soOv zjE=%JABP%ADDhua)HH_=+rm?~tJp=mfDFtc42vCS?^KZyeGNPkX)UcIV94am;xDi( z7jZJ}st;Ya2Fic$wL<6$%Ombs5(~!US08?233VVBEhIWu5PtFXpSc7YpkO0_g51nD zsf~pl1Onr(b@RgdRa`esJ=}7?JR)wv?qt{uYEcy7Da;h<*plX@sT- z0ud1jBho48($8b>z@>YqTashm%@^mnW`fi}3tU`yHAGoM<+Md4Cp08P8Y^GWXS)xP z63;SMXr+eDF&8~OCGma)+xgj(7YLb$2@VN-Q^JD1BC$-wln8gdiu%fXFlWMHMsk9P zUm;F+2e$x*M?BGD`>Aivw9iIAoZtJ{XY1ZZa6x|gBUL9`?)h#VLCZ@e{taO~m5*jp zTgo?AZUQ~T<%8&VeR{ZSA5LLkpAJzdMxKh%NqLIHxhlo6Cb~9qM&S_dtkQ#l)yVX~ zS476^OW5(tMA(R^{``iGLrAZ@74k{s+zU00$h2WE>p2haBJAL3tB>_)UZ29)LD)h% zr7at|#W=5jE_VzJP^XE~Y82<^jWI`@!gb+b-3{t!Zxf#<`S5P8b~}(A`XY#%Q77b7tQc z0Pnmgt~oh5&MVzU=wkGNA&5t%4p?8;` z7PKn;wHxskzFS_K=TOaoJp|ozoa?K{eS8As0*Xn`l>I(<)Z=$3V~^;*knOB2BJ5G2 zrxg-AV|2D9s5yM&`*7THSkh4V8_q=wkwQclTR52*h`cNr3sE1`QdA(FA7o-u#%Ap3 z=s=h#0wslLA20ADISJB^<{A&JX4u-g{&*zgp#so*A_sc>c(vGvu&AhuIAU%qKP#r} z`H&lcq|^L@*WiVi6Aw1$Kt@?@0LcNFtJki{%ny|9p`;|5Zme4Z@-<*%BqSvE)9wB^ zNG=Te3y-5T)8#ZYu*ihShyXIE4GI&%RKZdg-Wk1v9KppkjIe>hx7Qb6zka=d2bY7~ zopzq-nDXqqR^!qjyV$~UG#1aE$wC`L=no>ZWTm+v5gJB@1O56jgNnS?1N{1`)o*fxOdwWXfQ$-nc8`G{%x%O>@5gJNROI{DX9MLXOxy% z<_0NMG~B@M3rKDg=d`-IT2@w;SU1-m?F9d zl#15YR#Ys4(Luj#0@(|O1OnPMApNPh#MH~n%Xk0LW<+Wg(1anDdK5n|4#w+_{0T%6 z*XK&0Coqofh{7Eqll23w8o_yzaMh`40jSrFv3-rpvHfcAT~H!YZ7h1{Z$Vi-J4W=FJ8i;_iZC zgxqIjL-nTzJC5+)k!6d#YMacuOV(EV025PFl|OZ`+09JNhSB=)vaDDYBk#N0=f1w$ zfw_;3PMBqkWDD_^UJ5(@ykT|H!+%sg^np(p|3guQ53;Pkm@w>Nw9`R#_Mm^269D5c zjbCNOw>Ov3AxX^5-@SVm6*}3gUnQyas;+JmBDK->H|oc15h)IHeJjNt#(w}^cKn^Q zbjI+aY{WcBh=>%z-0N9H1eM6MVs~B<-m6Vk0TQHg@nSu%)U85mmO$Dw|8ABjyn6&_ zRJ?R)vHQyt(O8ulUB#C^ZQuMq+Kk8((M!M@0U)fb+ZQ(Ku4igj0~Lvs9%93!02897 z6JdV3AbCRUKqvdX>Rbq8Jw!n*ya#Zah<+lA0pMPRk%aLH4rs0fr$S|YihYc5_9J9z z0}{`={x*IhpLE?Cb0*h`C<&q*g|qp+PhY-y(_v~O8cSrV@C!A;N3Wog6Xg^!$!$7b zo686mJ>M_+_dWt0I6kDVf99INWaWW(L@toXhC9V0pz99#7647jC@c+;Q!D509wcsY z{^$tHUs^1_Uw{TPA?;-OzcubiUB@Hf zG7t@HaDT)L6J!{K?eXKs=(2f+lA|pXo#qF?{{W8AzE0hEe}4}($9tD0L-g~_F(P); z-QSD_eh!w$gW9MeS$O$O*?;MNBH@3oQ^y-)Jj9*g`4KY+STrVdLe9>@P;`dhmCPlg zpf9f+p`%koeS+IJjCZ^<_9em{;XML00aBsi;TMpAB+4TZvL#@*A@Yn-U!e_AWZu6& zYgsgQn4oWn89S)|{6x%iz?_~$Y7tnrF$kX>e3W6o#BVB4XhbRrTm>g0LdVs#x9;Lu zx&tKpytXz8E*iye^bM&@$Ob5}yFnsOFeV*?sG1Uc|L(ne2WV(y0rCG)M7*G8`XPkB zn+z{#X!IaEK=lwr?RG&gk^KeBz6a}wpn(HZ5e@)(`J}fK#uny&W@^F?!3CCHW&92i zkp{hGq+^fuUr^_m6&Q$4Fxm%PJ41hw>_H;u6Go9R-0)K{XXIfY#K#|%Awx2ZPQaMz ze-oaF&J*M`Sta%o;&Hg)_|8c5A4DNQ{M&tPDh0(XF)bAXeN_$@V-0I4U0?})Vh@0reE=zMN!Z`^*4XpmyCzdy^FGxMpw9z^jRA+o)>_ZklKlyBJLIqmy| zm}qI)40t@D^+6^>b4`?4Sb^x6z56YVP^0L`ecLQeZ7yuhO>bxMSay?qJ}dgPb0w;a zO?-A|m1&-?aJM0i^-t9ID>EE4=5v`-UJa42vo2rdth%>XX+ zJXi1G{Rr;_eT@OQTTrp(dGJ!ATV7?Ak|D!{K{qIcjRnKeqrn}fa#GG`TT_bT3K||& zn#-#`bFI}RI}d^?0?I~U8WA85NQAI}!Z*OE>d-oheh@i!Z%|`E%aHB`h-k#F!4?J? zkRy8lqw!rji;r|tD@qF*EJ8j(m=W~_DM)q*tT6I~*QlT( zGS`t#OQ3~S+45n~kVFt9f?5Lhjw0en^$^7rW@&v(ivrnjo>le@xE_dE+0Ev4e#^Wm z1lI?0nTTm@M9rsJMn%j0%05-{WEQKq7q-20KUUt^AVjjG}|rL0yRxdU+e;7@gkZz zh2aUmO=~vK*Go74(@5(e38Ec^PECkx5Ixapa2z|f4XAYWDixvwgaY+nKM#3)dfF7j zTW~Fjg0`Qz5dts~HAZAE=~lTXkvSg_Q;lpODi+btBXEtW0K)GSb(pR~&qXjUB4>U2 zbkKS4-9%4jWtoO6Zp*qQMRc(5KCYRfM;^1FqmlbXN!@W=lbn)LKB@I9{1P-O)o4fp z8^&09craojtEfoE5ng{&AxQoLz67-4fVkF9#ySn?1Ch`S5`k!<>&8gYXJnz}OifP` zeFYJt4pm@2Pgc<+G^ljYB7y;t6v@~MO##)#W zqLClKI~W=8cyH4EVeoDs{C>HQK^8R1Q2No=eZ>?Zhf0id<8Jlw&ui4T#y{t1XJQa& zWMV=A_TJ&ZT|m};ONIYtdc-AI%9sPIWh^au2n_)5hY^4X_$ z)HrCFD077Wc{e!g*tz7dp{|ZIMn*|lV=REMusii`V!i~DEWi`W#U(kpM^2A&37!FlKnOPA z8ABIauBxk}4edJ8AtA1IHcDxEQFe8GeMkGuX1j-;re+Ola;eaMRHK1&XQp9TY!`n> zSRlk0CtwcoV#Le+AP+I;8ZCG3{+X3^j-CS5#{grO*p{`?`?#S()iS$f46GU1G+pbg5ZvfFO`i)-pd_qF3&5}3{<#E_@|@n7%#l8@8U2Fyz- zY$AI>#n3>^Iz0b((|1@jzUmjT0|-2x|AUZwB?TLV-SH2QHbQpY|I8cJb^&7 z#MrZitq=2TZj{h#j~wym5n&4{de44vknR6B27Lv=K6fZ5|0BB!TJ%(*dHwqz=f&>$ z3sd6C$>!QS*&CT>DlH2-11VO8rhl-3E*~N2@~gCy*z=J73gd!@2Yus+Nd~BHzp{GG zur=T|p@syD9V}5ftHVS4XTa?YTAx~)|0Dt6f8v1WOn#fOfZpKcemBSuL;fe?0FPT1 zF2VOEvgVo0qS^drrgKi!-3l=zi>_3uF}< z*LCGkCW*a(`{00oYfnVPUYD<7HiZUT9Vm@av)mIoUn&;*k5VYcSLEmRI81?WQ zijeRlBzu$+Cs@tLAg|z+e%*Ufx$eN2^tY57nQE+&Rm4<0#k5!A1!sEBa%P?{2x zlBT|AMmv!Ke6x*Om_hG|_6Yh9gn*5K8V>4ohojz&5|4r^jseJ)>gS z`fHNHeqy>9BVNv{W0Bx?um>&Ar?hQasOQ1m2$ULuPIuMY&5QcjidE1`Lw(kTqV zIPyz~2YVr|S?yfAh1xDb*h5f%lA(?eV{ox5wJ0Q|z37F%;$o5F6@kx-Ilp5dudgsS zLx|xEL+8=!-oR5b%#C7}aE)m%3RhIwg~R@`U{8`uwA%hpORxFf#veGZp#ck+7&js& z-f%hZ3M!mR`UhS=r1aZ?s*8GAzV%PcdpE@$h$|4tAVS*+GeS|Mg2IL}`>5h}LUHk0 zYKa>PGm^rfoRFjT;xAx);A(_>PXwNdq01EcfOlA9-UM0xQoLu~$C5lx zr8I&t+1i=^8P!dOR;$b|qX(c?Ro}EKt0pQsCO*OCxWye%rFn`*4-#q=B3%R*g*K6K zBl{sr06a~?i-nYuh=3>2j)TqbPidPv)Q%7iF?$DvV@8>iEA%ft*Re2pIaM0Zf2&3q zunI(vK@8V(Yi2-6KXCNueACi1R46p~*lVNs=mve9qyI@AfGI(hvxdoX7Bd^59I%T= zaEeyOS<^0e&ch4D=C4J1QW0t~HHT6HCd3Kt9_`h3Yd8$N);IlNJ9y|(_r^5eA~ zRYdn+jg|InPrQrIkKiS^HKG3#dN=Y3IJ>k-t##1(717H>7(JifVcVuG)QUQSE{BMo z5aWadKlaeLew{eFsMmy*kD-2cSdc|_6Bq!DKMUdIUFqT_f`M@;zm&z3qJx=5G>OnK zw*8(TjE5k_>^h0L0t#f*L{DDumi^Wh<5*9_Kpmy@>xz4n(t&?5r+-_uXI{O5p0}^a zE=tHMPG~}lNx`uG^y$;pW412gTs5_|oedY4t;YV&%oIQ4M8s&oAhm6()Fl;DLuE&< zJABsYZ2N1*)Nd&SIUNLU{vYgEG6-PfysHI^n-RqyRye}nUi=;%QcrV_PtN~!tH?l} zDhNF=;!S@3bNH-`$C(!p~-}~}xq$i)pj(?-uPMB|fw*DL3Y@|q>zO0j6+2J*lSs+;V5%X;nM--i(BNN!d zS!>oG>#WujnI9}q_Mmb&q%4V_rhA9T zZR?C-_-6S08{W4!U!-%YVl2S4rL#+S`$Df(izIs&}*$I^W z+7FqWm%>H<9uEqp3CRW1Z%Z&!Yv1+bT(v7LK4t=czw1=2T-2-(JDdFeR)J$c#qEV6 zi;Hb+9>>CVzj^z8)c8xDw2GgDV)M${<(EXr<-bWjc)>(y>NTtud}>QrxXj+igkh|* z_y7I}qJpjyuSB)$tI559wYGfHYxsZ-W#uMbDQ-mku;&Ndz>*O}Sxq#?C7h~FHg&dh z;1L=7p3HM8+_q;~+J}mud(ck~vg{-TmHuLf9pc;rW&hS@h`2f?jfqo+55D*dbIlp6 zN+m;BrD$zla=d$lLB;THoynne-H1N%(Vr^!yzr7}8;J(=1-}s`fgwv1Ew!_bJD~Yj zB8f)~GZz6|Ur2dLf~-P8kHl$?gqpPgpZ=4^C&o&WyME*wB}pf#Ank$>&4olVMBih zPmOqMcu1UQ&S18*4IkU z+HLIlnTSeSs7%#&Sfr!|C$=ZH8sidcO!IzN3%d`56!%-=5#dufB=h#gML$E_g_s4E zl_ox}hKHx7rKKe$p9DVvD_F8z3lmYf-A{nc2??Ki4Fx#pcV(zVxRj5dJ;t?7%IwJM zu6O^n^#r$JXMY`fd0GsrB~-8185vK|@Z~@s1R~>~6OxmCajEdszQ9i;yi=k`L(l~G z$b~ZlnJqOV15@(@CFNhgUY#r7^4tb%`wE&OSSUf-q|g>nQQdit$&g_%UIl#5!?fTj zM0>2JKgK7DEFv4^P z37@nB#9M0|-?C_`y~Nx3Cx9(qi>j5^=EUz!w1E7kdxp^EfCUwyopqjmo3ild&jjkI zQSDPE0#9*6OHd9Mz{S2Iz(f>3*hKId;khtih#TS}+5Y`f;~!&HQm&}PQEk`Ih<;7V z>LX3o%5IS9uxz<^dfGF;+c#Na&Ztc!E3d?Py?~rY;>1(UribsvuDI8|=jwS>Gx~v= z>OS}aaq#A6(3c_HBC~C-aD)=s`Fz(C$cRxAqa>1NQg9&MZseqgY@B2e`g2h}^R&tI zkC?+7C*CY5U9-kVO05|<6uKC7oUgGrQ&Dm&hh5}Ca>Yz*j>-syNW(u z4@~CyV)8$qI<-n_t|DZWDPDJPLO^P`Fqog|KiFE_?_S>DwqB^RBKh=x0BwWfuwS&( z^`m!xi~P#@V?(aepmhV7^Otv;W`m-KBX_n_HecD5g3@DTV8_;nr2C&wiU}=WG*uVd z(jX8r<$%onlRGi#aCp1Mp+fZs-E)aO(}`cE6MDv9_l)D~*FDp${8{9)htp5IXo(z_ z+75kgPk&w;KmWJde0+=)H2a~U9{KFkJ5P0M)t#H*_$ID|izDu0l!kXwVDen8Wkm+1 zP@W^LVM(C2-$b{$lbhaA&-N~z_O6)rF7bG`TfMsNJ>tD&B%Y!a^4^D&R037ADpEV| z2pHRF$NKCPZJjwkR5JBu?_LeZLmfY*F_GJs-!xY>WNagnx>oEn^_#-#H+)$<#3D3FI}V@F z(8QHd7f=~ry(+MmUR)$bV6QRFE;*7+`HH~=wyM``Rd{3iOmSEwKsNj%z#nH0$ zK%U7{J4hkJo}S!qOUU@#&)$;gXRiT^0&_#w;t7FQ8^T+e>C#u(6x@rmhCAwm&tc^$Ea(^`0e_{e@gvcCiPBI z!xDy)%hh9=Hq8Ix+D?mS?cX{>HQ+mVE9?B3zN+A1mhfAC^`K#>8#NmC| z%lmNnz|v2vuXp&2f3?LHZ%HTJ?~#3Ak+#=T<139GRl!N)#8W53DhWoBPbOaUywCD{ zW+ndzH8*GHlpal?jgcd3Z*zo&)vrFa>C|kbq&-~HyKZh%cvh_M#!pLima|7b?EGu; zOK6hp?Bv3qwu8679vDhFezH!{_Sy4eQWEFo`-lDFq@|cD{C2U_rLxss@zYB=f4<@l zZ+Jw+ML$XtWxJT2l8oYOffmgwy$AQhZKLo#pFWh5F2!9lrI{_-cO%9!W2Lf%Qb;pp zUtpz2p~Aw1^;P9qyRLB?s_VTm?LE4wY0@bjx4)j8{6PO(n?f}6;raCQDIE!I_ouDf z#II6Oo3mH_o;Z88?m%#{@8A+s^^)*L`HIyB-Injelmn59&4SqY{|=|ztRB8*!|3T) ztifpcpmOZU-n1N7-v=l63;ipSyZ0hiPB_9m?Npra;G4A6L>@El)W=e{_C0v`us$KP zvrfT}&V-3tHud6_kc$eb_0kFPlu3Ht@p^%(6E?@znH)LRr}B)|Y1dcgk}dpHB&AfY zi8V_qX;Y_#j2PjT^?ve16kIoa&tFdOr&c|_DE!1iC75lst}|_$m-lzEMrw0``)w-5 z3895osWX$j$@r$p1n~bP*}{_e_D%5%awMJ(^Fob$l`4^+=E9VVMn`Sl@-SMGzWIKQ zFP*PG^~=!JWtN!F{WiM7o&|GJ zUeW0H(J-~x3n~tjS{+(1Vhuk((U*O}N+#r+)HXS-dmEy>jrLUsHMjoQB5CdoBg-c%2L5_Vpb zxkeYo7giM_`!ed~0VXQtXH!*?w;lHmW>~u7)6!(OOWOnm_3h=3bg~#|mkU*V>VLD4 zE1xD@H$vIbLD22;N|;9IBbThG(jIZF0xt<~)$Xc;v~&u8Cg<39p9rIgk#)Z+5`N8%MVQxSk$?Xf8BER%G4&MDH?7!c- zkV#!E?X69F$gSv>2VZs!yh_3Iv>dK^E6Qt3{(;Q$eEL^Sa%K8UGFP`BNG4-dIv|`L z)Be3ZEF|V@dxwZw==N`9#vk@-_j{SWjfhykG#Tys!=M5mvN5b4+okKcw{h29^?TOu zr;l}Obkp1n;L43qH9WoJ7_O^oNY=G_g_V~x^lyUmj~yfadmgX$dPD|X`)OH{mBuQv z8{-%x8i$@Sr~RMS-a8)a_Kp9yl37;B9!1N_$clubvPUw?sEm-Ul1OHvq=oEClp;ce z%#^HDNR*M0Y-Psxb>5%v_rKqtzx&bS(Oq4x>wUf7=Qz&ec)gxSoqJJw=Z-3MwnAmY zo;B_Z)+qx*2Tfwlmp5(>2^EqP3w|SA87{RzZ*1x&npIsLs*!D2y8h|sA6!hAF54=u zw5~2c6e+w!=hhB@lFHoGUKMLodkNuUu@2e2MPhe<|8i}a>rCXc&WYAB+0s|;&Zc;6(ouH10JCvV$cBIYBdzKiOwuL`629dBG~9aNN}NI|mBqPD z+b$T&34N;ZWlxh0k)gSkZp-jTl~;3hMO}!`#F;rfP1>VAqCWi_&Lny_gvz~eMUBC@8e8MVirAaCgw^qc9gZJ)&%cm*bcfH z1m5Rtsd1+bknhadpuVHZl5*3rpbE$5VqfjF+kUBrq_tm7Et^4 zxVJ@UPLp|P!_9Q5%BgTQ^p>fH z$0qJ8Z&-dWeqf>Ck=VviVY7R(@^a0%P^CgDM&ye#FO*CJBUQZx7GExMBr>+82}?@H zcD}K|>hrqY-ioGJNK86>j(^n0se>}N!uih2+j0`d`}A+64YfM%_9G}-0ZyG?S8})w&6pDh7W5KA=H~bk_IDr8cU@JAIKlP%^xGNh(v1cp6}|%o*%Ht4 z3yM4IZ`B^jGu^k`CSJi_S8zYug-(lxX20p+bfAIns?;VigXS3vQom*c2%No@YCSANA>2Xux(tiD#60W_ITr# z4^r1|wQ_`S*&w`CF03S2aplkI!q`gNwznzV{l+#xdmtaA2&aasBYAkdDHk)E8jG} zEI>t~`$0(i&}f}vZc0k*%U^jcW*o`k%=uYN)$SK!3;jOjrKBe@iT=nTrA9+TRc zvva3^T~zn2c3|2{p`K{gCG?nW?sA&!xeJEM!+D+Ur0AA?6g+M z;WIPsdeV^l?$n7owGE~MLRre|qZ>o4da|BiK}yKE`-q&4~En8c&?s zTzs}&-PfjQ#34Sivo&!;e!8vrQ0t)-uiqL23L@s}zow^Bg|228npj=Ye^PUD_o7&n zW>4O&4Cq>Jn|%%~t1h4Xr*zV{WS6oK1sxq_$mN=2rZ%xPn$9nSHe@Qf?5%N+wan|N zHfq=2G&!+J`wFtsmFQ&~Fv$IO2=cnN;j3(nZ5eO{@QieG+$ z=TPp$TUL!SzpiZw-||u9@j5QKu_OC!z5A~uvI}w>lsxOR4-Ea%dNN*g@M-0vgA6*F zA787;O*W@QMmwK59({U%H_uMe=hdCx_u^J8`05Q*7!?f-HCzfP5+jx~R~{ytC8x;K z+INTByK=?8%dV>Ue(jXry7kmFeKsO=46`-k#@7>dpF-HVq5P41iMFj@!n> zy&3zgDvi7!bDFy!*Y(IqnVZ?`D%GWLXGR-tdpp*WI=$ZTYuKMmO|65tP?2xk`j1;P z&Id@}_vW8_HGJz=O49Aawzfj)ap_rwsqxj!W$pg$&m2@zll;1@iHG*fxRv1AUDJ8H z6EOpk!=kJH_r_W-6#P5Ic|Z4kyDXbzXxFujk+cl9_g}6oP#azsR%AA~))PJv+?O}C z#2Hk~m}wQ(6Mi7)5!FlWR!=7DmDi5k#>N}B3o%C?-ZXf}%A)Ye&GDT<;!mn|gVzk7 zy*kH~Eb`ZLta)SFh>XP_W}nJU_GKQbnwu{1g#Fz+SEwI#YVw!r>cTl{mAh}_{p|S6 zJR>?S@}q1{t>5-oP0LwZVS-?e`F2U2O|mZ4IL+W>~&Nb9l24 zci{U!{*PnDqM7_k_!U3Jj|9q5_!a-Fbvsj-60yqhPdz88ynD|_Rk5o`s$ERlc&yL% zf^v4YgbepZ{M^5e6I1XgFC%QFY3dKZfRUh@$<>AvH>f^R@a5!99lpTY zIDaeer{Ow{3su_u>?M;SP8Y-?GCN#?AG;nEXA0`t1B8X`zUWdxARC-OcB7_UD)!=8cKFan-tEC(WsK zX#%k+Ytd&ljnW>`m0B~W?@nzEVvFG{7UpKl-_OQmKS!O8&2%X-Kx4hD$RYEh3%4MiY1)G zy3xJTe?=Eolqs~bbW^(g9F?+ccA8jPzK3zM{!_LI(PI%+H1GlYjX02#M44zq%ieiD z?HxH&Th2Y%_C%;~2Z#3TJVORu*p7pn5C+|{ID`XZyF!Kpm)xYm zAt#3H^z1FPVgg5%989ik_BG%+)_wTcw6^m1*Ci=_feyO7+}DF{Ox8b==V_wn{~nIy zZHnQ_VNK*(6F(@Ndt|uhv*%HcpQ-WT3LgD7a-MM@C zoy>iI7-nz>0v-uxmfC7YJ0k~*=cQz-zMsa`P+LLO5t5zdi?0meFo5@9{f7IUGH2+J zMTfo%1=@wzz1XFVj4tQoaK}`f@O%yvFGT5S?Tba*AK(JU;1Z{5jjVrw$q%ILfw)iP0hh zj9LKH#bAcQ+3*&1_482S!drFSQD2Qv9U-BI_7j=u{>e!L)bQQs)vqTr2-6wuKj+mN zzs<>zbwx8GLtuG+Tzu=+b-5FhlOH%ZLZ@nvl!Wn`J!}q1Jw>?ICU$2==3A~g zDG20N{)&q{MN%!N z=3nf;>ZdX)vnyetC_To$5;757GDP;PfdjPlKfR3L(m6TkIn?K}4-j2cFZGPi215b{ zD=%saAVol;G}Ak`$fIqPI9M`V?^C1Dzn9I}VAsSpC>@6PY>s*7EG`7~5HWF-O_VYM zkc6sqBhl8wMg>Q62CR}q|4b)50@n&8YjAcl!t-owZT(@SEz|kS@6PrmxE=p*emzi9 z2(FZ}Szm`44b}ro)^UfrdvO@q9z8kiCYm3pXd~sW;q!5N_?NQ4Mde#lT>neJt3NL; zX!45}@GowUfAxb#DZZ9kUz1=ek0i=Pp$3d8iEAW2We93euZN~c5z-&%#o$lJ%f4M& z9`AL(*mF%nH&CRXs^rJehQZ0_C)=+dTRHpJ+_+4B00&(9825YbFU_;kKJST%H_Ylt zYm<)=wdxKnqLkA+_pQa{;_Vm1azhy0Q;`tfU!C`bKe{*o2BxtJv|xuyBt zuD}1zm%C9EbODjSzDH7DSnQ!)z-=T_JT2jm@idZS&`lQ6brNj8+*D`EX{oOiYnbV@ z?fEu1oS|eJnT6fg&&2qbh?w%XtTU%}Zi8EN$If+488u0@QO7O&>yMB2mvt1~{Q7b; zxxG5Kjx)bWxynm;D(os=UMP8cLB9EahSPyw#&Dv0it? zFFR)U-bJ5c=9Gb0DqVij$g}+Kdws)PkKL@nZ$5&FS}yZWJ|7Q?IMa~of+JPLpTm<` zTXTa{x7%cNR;;i*;o`UL$hmld$v`AOF!acIF=xX;H&jSy`vqNpygqE{wRpvb-uZNY z)}o5VOtbzW?=wlIPB&%gQ2ltf`H0043Qc#{mdLU)+g#t7rVmX|j~AwXWw0{g((|Gf zipbk?vmm(SOZqjJu7qn6TV1X1Yu7)rFJ;nAvzb(666<2p(cf_XCoYSgCpX-@CsX%O z^vU5IYXymS!hw2}d&9T3&)k0;^g%!(j*pRi;IZ)D$3O2gTHg4&H&H@;IBzAh=fPTv z!S%j(wM9%Q@#wB<>Ig<^dEH^-IQ?MFEcex1#j_C~o{Av1ot2WEdS>|#v!lfpuM0sZ zr_>mAgvq`$RNvaiis$Fz>52=^>|>QGkuSe=ebSD-!b{ z-K!(Fls8eUd)B_q>0ywTmmE^ZY*Adf`kE0Ho)3ItPcF|`e_1_2JNjgHR7oVEc7t9) zZ`9zNHmP(gF__%A?0xWI>(DoDh1Gj?H~szEUh8r1J+KAZq`d5CaV5PQYUpn=Qyh9= zS#X2a@6h&%p|#WQr$2KoXXoZow^BTz&{?f%5Wssa9<{d$-|c1ZxLe_Fo}H)IdIiq5 z@eEGID?Pi7298}r=2gqfdK*vJr->$=-z@q|lZ&p4KUv)Sgd&ZN%j$IwE+310?Rx_q zRYI#CWH#Q=k_^b(Y4lF)PEcXQSS@?90DNp)WiKO}Gp`HjsxR zqO{etcwd`Fv|P*8$mKnp1*30w{dL=xF%~A_)FaDNo?4V0z5Rcq^d>F#kB`s%cfCti zy&M^IFo+g&c{()*!dfB(2vh5HjV zHzN-*xnMBx(2Y{#3&b4Ikqx4~e&%gMl#Rz%>x;|pIn6H>T~G9SCDNY|{QELWeh0*h zPSJ@@j#pRZK6G7Bi@#zOJ*ujB`R~8}>G+)@tB!Gw`XX@)G|*+8*XNM<8d2cwt7a9{ ze0n~S3KK`{WkBJP=ovwH?BG}0uBJYebAQAi#$ z<$p$bIeN!jYi+4%hIz}xZf6Wjir+ig)4vOjoijRp2d~*@F}A(8l^nQ%bR-K0{ptHY&_QZP?p~L z*_jzA)MxCrZ)MYUuw!a%cR08Eu6k$8<4~bH6~)nYvqeVtZF(?K_^OIexrYf%JV%YOve!HMH zAD#ZUQ}0x9_E;{TyGBxVh18fpJX>|1iptHG<+oy@WfxuQPqURS#kVfD6mF}?39uQT;~64R8XtzMhJ|Ul#PXDpN~%=z8b84IO)LfnQ1Ui zh3|r>9sv0>Y?P#D3lW2?``}<8e0E5e)C#hlIOK+18d@Yz_iS8#XEXdj;o!mR zah|osjGCEdhCMO<0vy`Hd-iY%)4*KyHn178a6~jQU;i#7B9;V(gfuQ9kVdF>31STf zUr6C2V`88rZrDjQYX~IKxu_17e5mfgB?=D>rI}m>``<~9O28B5uWeU9KK4K2yF6cK z)AhZ}{p!REfTh(g>e(bG_1`=5@~haBJ#yoJ9+4wbk+5NUd#h8mp6AoGRU!5A{OG~v zII_i@bKRHu^%*aldYgBzX@`!3CrlzxUP33d2XP>2lt2JE7!H_UCD1&)0!M%-jjm>R zz{J1?vK?`)!*)Or)NmcB3kwVD*)T_GeQcoH6v|s|zw&D2i`<5BNynP`|Dq@UrCP)p zRFuLMW1Ev>?)y)5qr)5#OwDx7ZQAY1n+2#rL-YfO*+wQAg&;POQ0q`QlG*7SAVk1{bK_B zL{1j+Lx-LE`I*MY0i{BrKY|L1U-S=@o8Eo5iIta%C^H7Hi7PAJi}UwC-4HXr{e6yo zTQqNHi6UcJ-RDo*%Lbx|O%P9LdJXH~^5a$m)U56dd=R1j6SyKONlQQ!!PAV8*lKZ(3DU?6bY5{#?_0y7-G?D5vrS ztI-pa)?b4+?($WWCTMBrlccfBd)S)DBwhN@|E69`>hui zQ_Gu1x~#l$M-~|^lf_x`wJmAN%zqX*Xg?E|8DLFj)~3v=iK==mDzi2AvDSC-d{vwO z>Fm){0OO*5@EYJ4sAT0YPO^UdtmgCbDpFfR76~SeQ|e>lOM!au$PSZRP23?gDDvMkgZ*mgp=$BNGIrF2LBWESoig_ ziYF?d;kwXr-sHyJyMVyC+$~>Ase8l-(H0O9Smc&o_ad7BrClqEdpH{!ntgUG z!U6+F=>znnK{uP_xe}=Q&;|o1-Atf_N~|jmH$H$|5mg~yUOJyoc+NE zB-1yt?!W&*b7mtsSAhnw@C~o!DDLq~Y8n3`1Go4zSn~2w;}EaGTDu^YpPZa5f%X&M zwiJc2^uwLY33=EVwrS=80ahkaynU+o% zmUm=YQoH?>lZia6mtH{EBzE%4=ko2?#?=I$sj?;O56`9;@ay^JUKuX-d$h>0dS;t= zS7!rDVvsHAV&L-m{qP1gC?=70Ai^_)@h?Wh)KQU<5Q%2Bzaw(A_D3--Zt#N>?4q9D zpI2_da7@5lo>;q{I2N!&CVf~B(Dvc|`$JmXIu`fg-!8hB#VKyj$|k`rdH~)EZdgtI zfBMlZ9g{^~MB)#!A%ndM9^MR&{;CzxusOz{P?B4xx_%B>ejccp(>cm|NSL!cW)^{I1 zAi?dP4z)6vpsAgzH!+fA(Kn44D#(c+`(2=YN1w+OzQQ!&*I^kZFGFew@9-X1PHec0 zoV%tH#z{{Zuy+Cmj$Hh&a~m>)Re}wzYY9jMtE&7*96*^VVlDRfGCoH z4@aj$8ZZrGT+m}7fchoDD1r1)gR$5Iv3fJ01Ran2M}3sbebr$?fCZ5_ok>#~Aa8Tp zeurfB`m+9m@)AMD4Bnog31=W5gb%*?K*2a7nB3eyUpFu_qpid&KzK7~orRE!w@KmL zX~o-j?^5T13kLU33vvMvB02(_flGnHJiroHg+L6+nCb_*@eBA_55?6>$#Vr@0IY%P z2$%YoGrOJx+6BWoz!${1jhU^swlaGlf6_zo9HhSq=r2HmORPf3^TU!BhDImwp%5Zo zui!;ZSc7U{^Dcqwi9l3Ie-v=g>>wDn_HL2~Hx7KEu5F$afQ_N06DH#aTnd@rkkZ4S zOo31kxCr#@0%x(P%B`%&om1*Kc@2^41MNX<*TlF0j|MRk5X1yPu{_`W_~C+bK)*6L zx>))6phXo$r#KiXh=*7WmvUgXG7z?HLf1f)`K|U4^n(Eb z9Pzz_{LdKBEC}Os+tq3~Cf@;6rjI9erJHj<7DS@hBm_oE;$H-{7M&iUe{LW=HOT6_ ze-y1X>QF9nK^{vilK_zo0^CT2t_D+>ZQdYB5DNm5)BDWL&BvQVbOre2CL5* zV$nytpdpNyhe&|J(UIOU#(VK1eAu$^gi@f--`oDWXc89^kOBeq;Qo?sSgf)0aQqcn8=qwxL@en1-8;n+TwCx8Zcw(kvBVtbh-sxV#(luW1bCw zXXS{y3AMERuaa}{QNptH8gg&+hWUtgW(0vj0oSUQudi=rm*n>CuokoYY%Kr6@aw^u{X(S zfieTP67YS+-9-D1MI{Y3-k6(Od9W4{&oA29puZ3;_G-eIA%fmS`Dmb0$gRdU()FWA z1-A$)U;=2uZzmlc(cbU_oGu4ppMxs{lpEA1B4~?k4kE55ZWK)Np8#!~1{8&`o?uj? zfR7b?0v-vwN1t7OW@n|4st2~u5R7{?V}tozg$#Z04RD(?q9yxDKLJ=}{@34tIF*Pu zhTsff2Sxi(c0s}KKZ-IlG6>BJ8hc5wbwoh4flF+*RdXZ3O8`Pa&WylWob~8lbJpLz z{{7~toE(7I0!|z?Hz)SO$uSUFBH^K9DC>~~jK!khbj&%Jhw5PN;H|Bwvu8zrLb|?p zXMABfope-4(jzOJh?JDU|5_r#`o)U8-ELU{FVKg&Cvp>vCpxeg&JZ2EzzAm!T{vvnLD|U zdpBowe9e;$Xp@NG3)lAHo{T0M*dDP42t;J-R&6+f8Ssx-o_3-0XPZ#b_19m{xVUKH z)QMPt0DCr7uFOO$!fd4tScUefQx7dbe@3M|f)FBkYl}X+kOq%*eM)Qa(gDdijYCN^ zhA;z~LSo^lrQWD2gfE8^WdD=r6*I@Vvfjt}KF`TvgAWW|n0*h$7L)gu~ z(K@S+!339If+l;lSmbKq4rQPq}*RmA3(p1%Bv_rn!A22%+`4R2gS6= zB==HX5`U60h%o#BhHXVJb3Ds_qP4fjV#RzKUji!hI$-Ix6C4<6z1HWUSPPGKEqSxE zWyo}RHpzEH{{H=&Hh07cSMYsV6Lx?)EF5*% z;_-Nlu5>-aH^n$%$I+Y%Y!5b2bi4`e>IC0N-o(eZMH*>;Nn5^jW zBbWdnYB4j#VSE17h3`?UjdMpW?z5EN@6NvQY&jZ0>aP7a93VmW@X09bJ?%we^gj#>-DK`e>yAJ*f}gNT^(#DTBlDxD#4tn!{GS!ubF?te=yzuCI)=9(X{1X47^V&^s-lhV1m0j zgZPoc(9BF5*a6_`2(@`-b$JqdFEC0LdA67R6+XN^Kl{4*vk6)B|0_g+Q{bZvJj|a5h=OFB@C05z7ZnkK1)7?ewShm|iux*6 zcvw-cv4oH#-p9jI$zDtc&?FOmze4t0ss)w+G!d*=udoQ<>rkSYhK-AKS?&V?q1e6W zp8Oe3@OYHAcJKf18i===0!4U~qYJ@SAsaEeQNtigz&)hy{GTd;xEp_oudnUu`g?nqAG#^QY2Mpqg0dstIUenV(KV1z z;IZn$zK1?v`_MjB!m`j7>m-K2qj%=>E6+X58Fb9eIf)M%R5PE+UjATgxP*|4u}rK> zu+zXAz6t3?upEARwdI)YL{O#wu81WB0ZcS(sR^)lvjgRV4ymLccJvDFH38(qb%hql zIO1U0_6Aid_2W8(_2lS)FjKAk!k=n{1$aA($xn5_mlXhxPXTi`(zocFDz8J)gFTky zkpaX-08ZJ8gLcL0(is>%F_{IB%IeK7MM)RIHY5Q-?gI)W#ig!EYN=!CH% zF>^{EH8rgT#EiK4$rVuG2kfvK4Gs;#EB+3r!$vGv82#AJ6`bzB#g_Y?;J^Xv1vm;F zPlI7J#-c*=23#xBFI^$2i8qMte?&rkrM+v||L;lLQDI@qaBN8l9=>3O34=`#gMdWR zm;=UA6Qn&2BHNiyJ1*VvFmJ9lHoJ|42C?=dASDfVNvsTK?;r`G&~ZBxc5*;>R@N%Z z1Fm1qxv)&J%KxVCS6cW{L&k?68mp;HpMKwc>$QZD(cv9ZX)g?4ZM$<$gGEbALvn}i zyb{O07HB#H6v0`xFZwNBFBZ_s{pLTiid|@w~V9M{wBk?C_iZgaRem zmaYKxfU~l)3rkB3oK{=dU{L1x^5sj3_wWXwcx2Go`&>YP=$0)sxUG;EUQS5ZOks;A z1tE0`yLa!`)unfJa}&OO$a8MQ=tHs!7l>AGu^cZ-O=65uQ>ZQcpsuo~mN4i!^pNe& zojU|Lhi`rjezrdFJb- zaN2y+-p&p*5P1b?pBwTmn5e0#s|-GF5otKNn>19Jo}OljuA7>kChcCY;62e=mhZa2 z-jMis_9J?F>;B!Z+;u!>{99CHP>6x9F2M}FE-%M@Bb{Ig+yv?I8bny=h<3K7v5^s9 zGo@@weg1k$Vyc80*DUuq}%|?_P3s%b?Vz92NbbT z*@JoP;pwRX^3Lz^aj@=~&`_ES-=`X#Zzzr)J*qKKitj!Qry=sYwgH~6m9iF!nFtnBPp zu;}&SP7sT49uR_DekuRdb-Ke9zAB!dd7jojio{*Cev0Zl!LkIv=JA7S*w{CH0*cUCqLOg<#na}cHHxZE? zyLLSQs&=N*etBu>BQ}01C)eADv`H%I6cSlK6VbZ+5zZqYU0$xxxZ!zASeF>KM!gp| zNNEL9O%L*m2koPe)6*|Q2$PK~`Q#$6ZWORI=gdGy$FfV(s4;LBaGiDx%u!_Iw6uJN zK5WLpmV=EO@?0_mbFwg%@ToE%gZfqp>i| zWjSJ_;72S~BgmC%X>Eyr2V7xnVq#)S*#z8}Utf7=3CUO?@AJO7`4Ns*vvq>_0kLe; zLrA?!9eDiYiKxH7e@=F`ut?vt@@U)mkrojVa3h3}1I7*ndMl`Ln~2B@Q@*CPmF2*J z17!IiIT#c^xUjU*P-uuXqb$a$i2!l&dFDwrrNVqsyC20S=~VS6!Qr9Jy= z{ocCz{#)|Jc|POWvkgdhA+Xwyp|?P<%gD&s@Y9QL?*$I@3}5LiVZoOG0O$&mw4k(I z|9+>sz8*dCxbchcZQrlYPcW;lBqb%;vftiun*m!LSpYCKSU5RpMM7d?n3<1{+v;kY7N|%4&2t<`v!rIiow+aI;HFN_z5r zl|l670bYfm2ShSJ7xnV-8B9I&(@QD)vy1Y@1!*@RgHPP+Jf1s#6dry70RgQ~#@^~c zVI0!e9|{5nEgXn6XMBx01gTTe@4jaKp_j$s9@vD)$j8|6aKzY#_9>B;?=Np+Scgs{ zF(gjolC)-dP;uhP=a~-DX}$E^v={gz9D}~F)4AYjGufS?CY!gPTB&fl^NBzJQxFMvUe9&}#_=4sK z@2|HQOF!^M0@;SM8lG<`ppJ@4N_MD88fKeH@7WV!nHzpYOcU43!LSbLa#jI>4H(oK z^@u!`0D!S`c8)?PhHtOWv*UfaQB=mHfcy}&Wq4YBz2iV6XDcXtBG#WN)Jd_`qt1~#j#c3~{1IJxN@ITCvN_9kTT z!T@xeUY19cC9I^hdAKDt!gNO+a04_^q^l_)F+FL-C#4BIMy}QdgRxt;tUs=Z@i-a6^#XfIuSyYk8Ls-9lJ%Z6U zZ{AS2yyWro^MiJobMDa&Ny+fcOi_&RxVv}P2LuElZ%fG*MF4;i1qHHeVWnhiyRT?; zW20>AZkbgiDK&Q7?nktYP4+S(K=e(D!W9rI(4Rklq@|_bAlr)16S8m(+fNxgK&vN51Lk;KJ63E5WLL5NbQyd_lE~bkINT+_@9$SM|q_Y*_S0P#z;a zgF$!A$j@ih3dP_=jB&VCDh`P%WIi?_pGlBBCun$avcN|GLQqi_P$Q|PQr6e z9QIbE1==aUcKR;91#1zTCt2_A-sMVG^bA=`I3h+6)JEsdl?Z8y1wHsPIW#zUBO+qG z`mH)ozT~|DcSv$z2%ekK$w zh=z`iyD6&YKc?qXQ&BnLXtgqic|aIM2>n8S$NfEM>94U3?TSE<*y|sIWlqSzzyN&- zj3a8@W1e@6z3c8yise(Pu3Vk!)BK85YFKFKRL!doYu$}|L;pNQ4bl$hO2p5Utb~j1 z^@?v|Vq*L_$KRuhu{GeF6NxnmOffhRX^W}yQPw+Lu{0`9o;6Ny{Ht@v zOiZpI^(-tW$AKCe+2FwOKPdX_MMdj`8HRpTVhB^b1*HJjx zDwkVN;!o&mW(XaKQN-TGwS>7jA1vaTh;XNVUQK?OpC3m6N!Sxt27Mikws9a<)xt2% z#P*{fqxb1Wz(gdg=r%dITdAKWnNVQ@l*1XB?m}d}H;mb>C6IJI=>@(7blfP;H_1Fn z1Bz&zxmih3u@w;5<9GBnsvJu4(zt6KwTi;!o6b&dLZsy5=T~`Y{ruId1oft7jQF9U zp=8do^mIy8yjIlIlFJo;LF~Z|2stFWDuFvAap5JUrPUoB#hT603zep(rfIl+z_XKL z!nJG4lMcQJKjq})rXG$YD}BL8nMPPja?DeI|4z(#*I>0|h|>v0JWhaJw|`bp*m%($ z&NbHrc16K?!5`IOGEFTkd@i`g4q$IlmUrHJINP-1#u%;TO~*0LUCFuG+4NeUgv&Tr zHensq)U5HFCI(hO3ydAABFHs1_fb#J33&#!=bk8&ZW9`18 zClxq!^j3WzUVp+nmGU9FxyCI+MMPC_iAkfp#KMYA6XN9u#@n$iBhU9^Xeb<<(odg1 zSM~JpL(+3@>IdZ|bnL=Pj)Dg{L^Zs7SA{lYwr9_7WM^kbAten96CP?y~OJ$!+)JF6cp?cccIX< z{^ah>Bu)kwuOA5Zyn+Hv6BG6iO-*eOYBO!#O+%6{Sl#X1+?cT;A@E{h1=KMbbzu$6 zO%$%Mh`hlIfNN)_0MoV#xehxgr${6aRFUmiSIkqh68Lm|wa+o^hWNFwv1=pl%gUk< zJ~A9(D(aVnxS+lAQmsiQag3 zvH^fy1Yr}s<%}XBNDYwYT}bl_Bb3JCPPQxbutGhPoDQ}gzGJ&E)mP#$y0kPK-VNLZwZXq9ZTZ(-+?2yAe5h|eRo+jQD zSRPA#2U%&dIiuCeRUCD>H*Y4P7P1650N@aUiXyqicqfb+CMKqRTKFfImx)1wQue|^ zHHBP;OgK+=0ZTB+5cp`rgvJAnUJdeQ~uCdt7sKGil~Y;LsM9mepUs z@?hCKc=|NDaPPvQU>$A<=8_P|w)o^4@cf{AVSH&BlVy-P6ZKI3Z^1OqC=lhO8E5CA z^Z?~T4T6WifB#B7isOF7-+9RAQDe^I$H7ri^jK)Ggoo3@hf;(64oCa2++2xBx>Ki4 zp%T0&&2)zmN>MmE^5ZOnD!h}sJ3*WY$LVoga<|jLSo8N)WP0_P&KgbJ0!?ALqqwt=d+597L*uI2+R$84yVdRgZ{oW>YQT!%BY+o#+uc*Z kQ^kVd%>Mtw9~TAf&Y15$$3XFq0{`i1>uWvRZyWM|02RcRpa1{> diff --git a/master/_images/sphx_glr_example_parallel_manual_spawning_python_thumb.png b/master/_images/sphx_glr_example_parallel_manual_spawning_python_thumb.png deleted file mode 100644 index 8a5fed589d17fe6ee62d6a9788519dba471fbd65..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 26794 zcmd3N^;cV6&~zU%f(#fBBGMqQ6{mHpumQ z^~%~w0VJvEnR)nlooKF`yb|H}xA|C<^cUE&K&!B{#ar*%RrUI{fOnuSCL$03!--#| zXbLuXBIIR=G00EgrNBb5!{Wg0L?-(}Cu?Haf+0F7%3dlH!I7q$mL$Yecj9<`jSzfT z^D5Zgt0)_Z#Ecth&8aB^q#^tt+jp*g;+l3Kuta%Af{32Sylxr^V1hg&jmnR}mkXfv zAbI2;{|#XPvE=`E0PeA)C<&;HFH;EcKm_ss4Tt~~BwnThPbCg5(+AS2SjXlQXBFG6FYU#Fiz_d=HGDi{5xv>!;RVHaotlES;Y{+4GrXjSnu(wiwX$)Rm{msq2XKT(PDE-xEgi z_(VivIE9l($F=w;5%X502cyd9S;o)?@*@IUt%-#RKi)is3GxWf#e9B1a0p}-K^GkH zE#RcLH-hEomo}wtS-`xST`geg^-vL1i@Xk;hL(*ihFVL8OfGro z7;=ZwLXX%~LDV&-I)%f^Zc@iBUPr)DOdL&SY8Fe4jRr0M^?OY#0}B$nzJ&L1In9Al zQOK9T4G@xxBY?1&=&}M<$uJ+xfTKBW>PRAN(VR;B>we1G_F=pv`)g>`Z^uYRx_jEF zLgunT}hWZL=J)o}-tSc-H43?kvu z2VGc#wT9ESOGB&rE@vy9Zz3|&#)3Ae*}ua?Sht~cbom|GLpPlTSm&X z8g90~9$!qLFeLh!xc`P0$(R$Ja&h&6EezoO__ACMkpyr*-p^zc6Sxuga|EOJ~>i$53|i zk3uPR?4WZH-H$~ya%J$=ipQkS-owRa4tw(P{%YPDc|taynH>AT=I|^o0}49wU~C{J zauK2=H85m@3Fzliq*hcd5LX*{uUE#$CpBIVU20AE#`cp-cs73fa2V=^W|F4HJO04v zh?+`+`1w}s-C)?|2Q&Bi)%tp}=My{T_L}AL?X!5%*(mp1+HX=ICa0VpGHL53#n?|w zrsVN!1h2aM0663#mGa+wr{K=E&1QL;2u+|ml4!Vcv|H~i8eectf>jNDUkq^angTdW z)#m!O%sOuC%7f^!Qht!qCw#tfe81zkyyL#c-mQq;u_=hU8Y&X0P3ZX%SuC=j%cBp_ zr)IOhDL^juo$ys}!om$%Q`tjo6J*I-hLpYq;KY(EwP$7&><+R6Cs-uf#l&-#?&}Uc z2}fsB6#K32O!O58@ksbMFteP}G2(2lnU(Xx0EQ{|6Fyl`z1ErflfT{pGkLUjTO->; z)k=c&e_nqG{-=f;xxac&YcIobydWM*>-WCPDRj}<`M?J$>U-1W=e@wPjOqn`WB6h3 zK~jXSxO+anw%MV<(bYq5#QL@?&$9}E9mOt!yYPhfLyOPk<($)-DALZ(Z<${Ys2e!I zEf@cqbht`&4b(^c=S@?tyU^-%7nsg>47yyUusdaMN|9?WoX_ry|GMNc@rE*&1ZWvhRi z_S3m-n`bk(@O+$m8Kp&CbTqx#!3Ro^Y+#WD0wD>iyApzndvKsR&ejCNHW0D$L?Y{& z-+!(ex(HR2t+z8ezJ13p%e#_pEzeK4BMasjYdnwJ?s{s>RYi;(GFI&ez1i>3C&Ca}f(#daZAeX;DyOc))i?10TL3cyU9coSu% z)362xbDc4*fSbB%;E}Qhj(t3Y;h0y44|>PJ{Wnh8tcJHxpgfb*cWZ`3JyR%I1eX@D zhJN6ES7k-g^nBRA6+Lz{hr;f=v9U%{mDsRr?D`_~Bl#>!q2hGpQrdVLN8GXyT@?Oz z+7-##Pu6db%j-<<)!r^-I*w+`UXXo=8fYr1;~kdxDdbuG7#=k3gnwVoy*Pse*8?CP{EM4h zidh=Lh5n)*Bd=X5LAxl_{94L7yp5$zMl^#3{EGwW`CdAsJZjClo-A{sUr5=r94uSOqPi$Bx2XqwJ0Xj>oqW`wvg3e07J z)B$YP_^e2>9eu-`H$Ilmv=_G3H|}OW)AT=Y3o&4{OAN>c@maT9IRH=16i5c13XIbq z?_;?AkC)0lxBghxk!|c14fTiYk`u>n>GBPA8g4GyLuofED1?CZ_ogTPNTn=*7Rz>` ztYLiEcuec^&_!PYFq(!2r=O|z#Ft@!biey30#@bucj&Ux#$iwD(4dukXbV1&1KhNt zqjE7f0?G2qOI$YC4rS^$^olhr+rM>-n6e_o=%}lSws$wIa?!a=?|&NpC0eU;zsWc{ zKWScWoG(_FP6kwvxFXl0Buq*6*?NA&t1N%CNhYQxAHE>%%=x@2fFKMkfr^ZzsGxgw zHOYm3bg4i(w(q;Sv}7U`6Pvh6Lm7Ptpx?d8)x>^1RQ1|vuG zD|M?Wx8nh#9<4K3^p^ z+tzr;24w)=wRU5Hn4~bhvixzHRwBbhqo*XVUm->z)SC1la7x*{$-z(_ak+M#+ZP-g zeJQP$k`X`41*d?oW^%4JZH z`2Ld2K6XjjT~MILbr{_xL>OfMd9;zSl*--#DwbWDM4Mp%J~N_%)nv|~hmH9@ z)4zT59opehPLJ^KJ6=VVO6Ho)jzT3gR98(NX*61GGVm56{>rj2M18)d^HhPG&iNrA zw3~jo&)!0v{GJE>iXI;ylLdla?z?dM+T(hzjWMg#Y7nngVIY8XR3%u9|L|1IzJP2% ztaEj&!l5_dWLvR#((N&`TQ%Z_aD4=0dIY1oPwr0rTMp@~krDj&qrOo>N7s>&+3e2# zj!pO%Q}P>}{K5VvO(@IX)|C%9o-~d!1M>GPa$u9}~ znp>y9i{nXjS1MjmdxDO!=)mKBA}-}mBp?edtY>D#G4~`p;ncc6ZCuu^9162{V`}LD z1V6Z{i6Rj#_U_ZbKJm)mqBY>vgDo5E5hb5`g#UiRW{W{;Yv3BoGE+jQunVS36Np2enN*G1C~E`p6Rz z{j*O=Hr16UEyfQtZjl0gr^mQuLw~P`!;^`G!)B$eL?HKwuJHg*Av%bEfp+&rI#S6h3Du-ZF@PZN*czynUs7CxrIzi<4CKW$DVUDZp4t@iHd(8;)$gN|7tcwXZ*}bVfvjelr52^Z_wbOI56$NP(NgU%iVHE zF4%~Q^N)t*gCUrPDQc6o=jm9zod2D$s=kAl9(4KKJVtQbESUEoxkjYn)gw9Hf$ zxkomp*C}$oszKqQn1bcxZ?n$jcvSPa-%+!QHfnAo#hP0@4Eu7#;_sn^YAFm}a5$kj zR>ve*17@Gze8vcL$w+E@`m5(=Qy*Q~>OI;1*l|C1v1PMWOw3eL9{)(8=9b%IM}6!U zMcHwGU&b-gd%E#WWQ1W&us{G=3v*Gczbd>nU~XA+RYmPvAK8xKIjItpke-|6DHLM? zV^m(Trt~H3n8Djvl-rxNw5%%KO97+CBR|c6-1xk!_MSCj{y-=Tl)@CO+~o2vmxWhz zY)tX$O0oEU#QKS|IP#9wssiTL8{ zJD#*5d^it313T$)w|h}CIq*lseFB}(#~)6PjENhpg?^8Xm3F>+oFgAQ0$j`746Z8! z4T=vRkY=AQ@V*?NvGxTdbw)Lbpeb#Hwn$jEkRl=kfxy_mFdnIZZ|v?Bk47e(MA6iu z=n4|Yw5OvgD)#Z`yIX8TL)kRf#j_X&X!Xre9^FbrGeT&ua~Ez z;L~rWd6P4b4BJHLCtjp5IQbK@Yn5nt(u(A%E*th>PWT9zmg#$i405 z1u)h5>|%j;2S6YL!d+3OTS>AcGo{_X_PRbtC^cZ~OZKy980j48DF6mKe0`ShOy)%)$Gpx&xYS;yMa=?0Luop+4>{HHg<+3oxDAZ>#%N{Z}PF z*y2V1MAwfF%&zQdI+R~N;zar?o(NK19$nQ&-1jXxMS(~iDLANz^Z7LflHO0Vw(S<{ z-&6fR1v zwYJ=7+&AQJkPZmGr9o>Y;3Dk51T1!Wny3eOhpSrVHP)r8j)n->0clR9O!IoX`MucX z^Zwiy9^o(E6WZ-Mwy{?YbRia8Hzm{^kdB^~ULyM{?&zV&+;rnvab{}4=iyZAU08O5 z@MV3_6vpe|{fU%r_^adQ-fn4Eqe6TqJ&VNr&47I)qv~~M_?mkg8<^CFz(S?YiNc&J zF8sSlt6VZ89ZVI=m8J2(?|e_Ih#V2_^euv=$5qy@pDZ&CU`?d!{!Xjfsm*EywtUo{ z7M`bz>Lm*;&#qzeUCS&pM&I|_VXXi>@ekIJ%6OP-srY6;NEm+rQ*Vm2SP=dpg`9v=8of0 zhOkW8VtL8ieYY31ECO7=oqO;@Z;1Kzm!dv@X`5}nJ?l8#I_`)#C(=D2%+*Mp=89va z5suRsE0+)2#jpPQZ^r2U4e8Tn0Artnx(_PB{~E_^f3atL)FN~J89#@h6>YEJ)SkOU zkVI-6t3OWeJfD)pik~F|nR+pV9ikPTcqm+4>0E|mxI>`U=jt6gulFW~I2NBxSomP5IND~h{YMxG>1blL@4eF^{6 zk#UK;tX9dPQL#jH$V)FC!y~DdwEKH`o^W&`SzLFoKY%L61$Od-y6mNtoA!97 zb$UD;2B^}_laB+luIKy^Uxf-;n)u=5i3a`beLsWhyI-)zg6gb&zCf*CjB)ffyJji% zQ#_YU?1e#Jdx!n7Hh(Ev_|i!PMx4H_`%&raZn?l8`iT!XKN5a0UHxpS!xGFhTNf+u zxpL3g?fDyTpaY9;=4WvgLgnhu2&s^lz|K2HyQC6^rpuT~EyYofcy)zpZBfmg;sx&O zRGn#3W%*3Vl+k#uA^Ks&Nc5APO_6`soi1jM35BHy;tl(LIhwN&a^a`% zJuR6vsJ;uQlY9qsuOj!Xa9BQ;(SH{l%NmW8PkWZ6_$5iF;!BonGJlTSxyBnademO^ z=BG6}B=bz`T7Vp#E}gK#fA=$pv=-a?p8toJvm3oLf8KYg@E~;oi^ZJM)2> z@1e%vtsSw=PX_(a0OjVZhHr*B{g*Z;W~=k%vO2VPhKypEAzx81pO<(tom_IjrLqcK z@zif`H$2E)oZV2FE-3#8Buc{2P?839y z#~{t0*VWy@2eH+)q@uti{*C6u-6YLDb<8RHk){z#wL@!tX{(Ia1#tU zO(0i6^t)Ueq*UJ0(u~F1x&}Xc`0a@7^&Z~y#d7ER`@Xo6>+bhoC<@-^DTsWJz$8O@ zE6q6A|0WUD9M91pzApN8$^s8ZUZ_$??^mFi= z)P@l=?Y7Lm!mt}6Km%zR(K8vzVwM*Cph$R+Xh-GcA2iO3omIER78s5{b=pAhf9(?R z=jTLCaD?TmqKr8OI!4VC|q!DCP=dfL9nazg#oyW^g{NeK5d*yo|ECkDoA zntQ_k_T^y$F%++7ZZFRcq6{D9EFXT)`{k$vq&&@tPha9Z|9HA1$islU8DzR5%*4N_ z8DoCrp?%1ld;gLWA)zb^F16gFV+?4T=W$cQrr1dXp6_NT3tcXsDig~m+Mf7k+r5{4 zaX`hIACv4>RGTPbo0)OUixoJ^mShV!I=(iQq{0#r8*6Kg8efTj75)X$kJM+F@I}UK zUT6J1kRe_tI*P!@&+7A20@t?a1+@I_mNWPu$Azzu(L~LJHNe5}vc>A0`ZhB2cvGWA zAP_fmED`+(u^vqY)Gl~k>@lkPE7s{N6Gk9+#3TqD@!RmIUBVFrL?mpY%{jeTz>Ul# z^|pRz2~Co5>*5Vwzu~?e8!^P_RU&lWU@N*MZCSemvk~1wkWh+dwBQK1rWMVqOV=%v zyWG(np@yt5?UDMjtFamAdo2)+Vqc~!LSR~pYD@3!kZumq_zz#BBQJsnet2!E?A{p`ONN@Od?Dfmf(G#Pe1^hkYDJ<6WdPOs0PO-=ay0Yv^)oC(`N1#}Xo#K?6jVUH7&Y zt>ZCkQuHIG`z{jqel&L+J&lkI(N??MwcMzEWwuRE z#tsWN%OvjLGsAyYLoMu0+RDt)d<{d{D_#C6oX)J(P(ujhKG$ds$ObrB+81&6HEUZK z6)Ny?G2BiOc@i>AX>0zY@kpJT=631_c&}0lHb_-=K+_#y@r3`Ov!QI~A~_f2I%EKS zJ7emxmhe7MD5eWcXU=kDb2?}pJ=Z2ixgDeUC)Cr0Dgk+Xip@@Z?fW>sIrSfsd3iKl zA^E2N1so#Rx-^RoLChMgcI*of<7Fc`lfSl9eUto$^I#>M(!@{8#<(NM6gWSTnNcQu z#F(n@U$X%u^XVuNW%;9#eG{+J3*S0eDbzOK*JU^!PFZiL;WG-ghu)JglFs-`?gx{0 zg^83973w0~@wfomO4tTCaGoAw5ySDvK+M&*B-%3F6upN6405V@Led1c)Ncz<5n^(< zPiF~QP0i%xt-8+Ans2bE6p^{j(LYwh4VMN%1BUMdM~=lxfRktQVj7Tbz4GRfJ5l**g7#AP{Ll zg26O4>0syPBWE01LOh{Vto8R|+hzwxjMgaa+4w4znI|@APC}4r- z_j-3kt^W!$v8L)O)(h**BQ`G7xTp5~*cIxL$Cbd!4BDqq1iG#K=~9AS9TqsXP_zV8f-mKeyL`)N8UjxE6ah@%CHBRjiYY zIAN$UE$g3x=1lf{!xt1ZRgVcz_({~_;ON4pN2KG(x>7`@%V6tAaX}iC*iEyNuh{Z< zP4>B7WT23ha(YzwOadZ+-><%ECjXix zzBw)Eg|m*luIPw7+s=KKGbMdlsp~TSU^^P?aC>~6uI9b%gV=r|dD=H2?R4lgxOouS z4y$=lE(0JSD=3f=cism*huq^ph>fl#eruAl&Qgel9&OAcjRk)uVWD_8t)s7{ATQEaE!nr^~>g=%(4pS8+Bu z5=G_(yS2XmS6Y<<>th8PL}|H=vh_+`rF++VgzfHwF?)POOi$iLaTu-X)KFZf9*u?T z?)}Bqv}%JriAp(#fdiklAyZx}iL7=i?Yhzm53*70oyBuUiOR%j>5$SfU;Qg4%7qnxL^X zxI~FR3wjB?`nEIEh!feQ?EB5fxl_Xbb9SubMyRuRRP*Q$EOTP&drs zY?gCRJmNK?Yq1V9fe#~p=K6_U2~;O55mu0P&seC38CLy+tv~Wp-x`q#x&>ZM7-Q3m zW4eD3)V})uA3+zGj}#kgL19Tb|B00v_HN*#OGe|6oD8pH=^tCuMly2~^7SO4!t)?g zy6@oxDL?L3C~3=371z7zURp$Z`m{P~37?4aXWtd&fX+CBi)^dH8Pk?Ah@fkZ()!`) z1X0mZu{ka}gkauYDfc*`#Qvobr##rtiB{U4PY809iCvoe)JrGm!V8g_?{9}sjEN0= zJ7$GABFPts7amvF?Wxg3FuLN{L~fQO2Ji_C{H?Zr zfx1Mn>%xiT^c%1j?7^kj&;Ai(5oLtxTKUAKq*cME;>S!-zWFU`$Q5Qp+Y6LFt-d-* zI|Yi&1D5sozyVt6Io*3Y(QbMUH6Zt&!WxBbM#)2%rL4sK&J$q7R-gKw`9Ij&^fvO1 zmLCl&t)>E;}-txS})rj3hexI>&3B9Lw&HJr;em;dp7)6hFSx)BpE zDm*>V;wiw)K?Qc**$GE$ELU6tzKjmkL)s zu`UM#;VDh!tL`#Wf4#+=lYGrdZfsUx$JbO|r4oTwXfXkrg4`=3V%Izv8Kj(cTDGhf z58eQ=^xq<-^r*F|u>!{;_Em2^J)jAy{&s94JOl#v*YHux@HFrJNuq_KMj{cd4B!GI zyQy%L+U#GslYhy*L&uRMJLVUA4D-9ylSREQjKgNu|8-2>jqtiW+McHya%Ket_zkuj zm3$1|$Ks(pmrP4EkMi}jCyvG+`NH5bpZ;|q0Y&){coHggK%;uf=ygA9Gjg@-z<06? z?Ix4=xt4ntSo@+9oy6cjU5elzD4ubWSy9ggSr6AII%4s~kygw*$EfUf zCY$#?+H2MPU7Dk3nKJ$X=vT#P&+45%*v>a)aJH8>pmXiNa08~ z#uSsyGl@a`R z?7#3vi8E>bKryMKl1od9W2}*q@jjedoHB;K~H? z;h{>mbHAOQ?yR})5R|r$vm|$Ig$ZnnL#t*8KK5}E+@@Kv8^(9yG?EfT5PU1;lin{4 zLSUjS%c8>N;~$k2tlzG=zm*BM6jW_WNrM*T)#Gz|3{UBi_BFO`gWIeuu7`n7qJ7!+ zoB49j8dB$kFYl%CkKkQAyfMq60G`QsWATY0(n^Qq0MqRiwat%l{@qJH_O!Wp|2ASV zp~0AbnKEINW-+Zod_NkA)8QUU3OqKkv6{WUv7umiWmN6w4y`-SB|;BV;-wz#^2nX) z8^1f-0CkHspK8Awr2)AoVa;dY`-(cwmj-#a^qWnY@txS1{hgb=G>2m7{0c%!)H zbs=y!>P=MRpDu#0WZhGe0hmuS$N;@)mS|*4E~72mu{YNq`RZI2l38VG; z&9cBZbIPwX$TSBPKN?k&W?cZIRHxaR)9Ch}tUXnw4yeb9w9Y0HH=?rzg6qU0_kXX& zikwQyBcGjclOqS5tHEx2(=0Eyz4ua<7wa614t|PXbnX@1^gG5j4}b>F?#wG?KKQUL z>D3%@JC#ak1x48sS1KpB=kC_yJ!7{-np@4coMInIt48ux_LJd7=zo%8N)@-)@Mqn? zCB{TDMLie03HEs~sahW1-369Q7k;$b8PLlKc|e60hl^hIV7!27_os@JOqQ{&^m@It zOU+BY&Kd1I<4B8XNEOGQ1fxpfLKZXxc`gJZVp(4YLUrlS#O3!F;mrX!*VfOSO6<2k839IE#ij3B6`Z33p3V1pDGW)z||*)hzf4| z#5U$te~Ik~F3J|qKe`0sb25<>Dt`sQv!b)&q;?!Q=CJ{$~>URp+ihe!Y>>%EQdotYO8c58TuoTLmkppGqebiz(tbA&68SL)Ym2PBh`wyUU1P7^o-V&xxQ%&I z1`AGU3bH%$YNuf^IXQ&0!Tdb$I7(3)vaau0-GLq!gUc*E{8a*|5H8aRMZy`Da}U;Q zk0R&2Y^ra(MQ4s*7$;THElm5vNno7%&0ev8lfW&rjt8_-k;O9IROA2H67|DhXL*}G z{w0f8xhpks8E$F1j1p#xIWiXZjBfJ5^IaMxafGqW`53v4sVk*MQwPMFnyS<{K}hw@ zd!wvxfN`sRTTVb-x;RGfyoA$6%2mq}{0gGHfQRm0M9P^IUVT{HFSh1`bO^0`(macn znI;iM@Bp<>s_2kCwF=JY z&PSrL)N>3YjsOL_gI3lipNJ2XrOul1Wkw+f?&ac$$3qPNi@V_?<6r^H*bU;p$q=>> z1HvZjJge#_N_vj=kpT^tx;Xz>wFlov3AYhs1rZwWA82QuRk~@988N#nN1&YOzQHa3 zdf&p06k#ycU~rClDyg|%s8er0F|}lCP@)Z{v-VzuK5T>5<=`+i$=M^zg~GidW{KUn8}&u^k7nksXyJs5{jRl`tHwI4aOs5*?ya1z}BK`rSbW4Osuwk zzP!7-44zPQ)BpsgLeCxhiNT!Za_>?f*CXJ;7qQ8#<^K=Qzj13VkbE1||LKI?N#Dgz zIi7fmv}!*%-MEm8-?F^f%-T%3{*>l+mq_<~HYo0Jb>M|QdT}F~I?YSYm@dv}bQ}pW zFz@r0I@tf#7ANC?Q{`j!@F@?F3h&0m;LY#5vfPc>xE`I4U`@X&vyP-}ERVw+47+d* z8XbB2sGh5Hd+{W*%UR)T5f#vG^F8`sWtR@~8)B#C?QQLfjP@T}EoZ+c4rjM1ZjGme zhKp}sp}+!o1JpBW<=)Fa2TtF_-3=QXVIC2VH8rTfxH&^ZfK)EC-4LZ7vc)gt$j;&B zE7W-upbGnrXAHR~IRB-K{$r25*hy70%I93yIb>rw9p~$V7vkmchY;zmv47Gi0=ZcH zG-@I9F(-ru^j;GAl76&@L6#uC9|fE$kv7K>zz5BI7}0z>OgtK##ulGp-w47^V_Q0# zHuCjpJ4->8o$~7oo7i0@Y29LCCw36}NAQbYir!Nzr3tMo>~3U^4m{^j8Rl_h?YAiE zyhGp#8%ummkQ_Q>=-qTpeH?NTNV6{LaTjc#b_*38J~BuhbgN0&^W0t-1FuH~#hhC1 zMn{OGvG&h*`xt>KB~YjZM>i)`Nsmwxb)F$$rXEa__@Kz+APMRe*11R#?(&0!_hWIB<((OfR`TY$wQ>BK1O&x$6u zr8b-zG`lss-&MNJ83H{XmrzrxLCXP3zx616s_fK!t~=CSlew@PbyMR61D!a| zsLmv7%{S${Gp_IQYMXWX0v;SV?H^Pci3At^G0=Y~46@dK00jSvyO&zMzs`y%Yr2nYu6#9Y z*YTghKFZCC2=D}K1OtgE7My;a;3 zsO4r0%Bicd7q4#W5 zm+Xvgm|hj6LwVVX7t5zeMTOVcpsaPSw)$>PxMkvdb`kyB?G;aGW z#kZjiTUtq)U|p}b)@9@V#PZn`{gD1Td0g|}}0wF!xU=e0hy zHyG}uiLnRu=sn7Bh;pjoG`}Fdv!-#0vnYegTi{ni^fepVyOqj1R+r>Tla9W>4-K)UAhR`x5(nWp0izSdW$kHF1DHoWrOr2;ljn~@&VXv z!;to}?n^_JyK~TjZwrA8#KSX8dc!BRrSBlPOK7p;OZB1NX&jQUu>3+zhyr%DF>>dQ*Vj_VXb;zX( zIo_JSRUrlqS!=a;rg_c(E}I>bRiUcdPKf);b;qbq#k^^jYshOCbOAWZUqIUnQ9fUKBEK$&)hXv1&qdgv{1eugEQ%@G{a2OG^*wXuG3b~$Zv(2H3pToh28)cr zYev{el;D$^5k5A9V}#~b=H}vTS^YGz0)O@*21Z`O0#~2 zm-{BE`O_B3P}xZhi&+@oFrY>(h+qjmQno+gN&jLJZ+iW2Lp5>J!M6k+iEQybApKr0+#up4UogAeoM;JMHEB#{VVG0Br(~t z;o<{@RWdi)*lYX)(Ellg;`^QWQ~uKqQPcgOc8HPgMHiIdN%#N6MK-MwOPxW=U$AsA z6hD+|C?>Sb{SdlDXTqSEA{YPm#r(u&eVOc1!~;E`A@Ii?TO5jMV6eX7U#3^=(KbJw z)X$50!WpsTP5Ivi;dG`1(Q1Mn-iO$?#VW{dUm|NOB$ja@QE>~Ph#-mNJ6c1`0#bL8 zb^;qmJmr$E@2Yme^?T-@OSlKhpe$oGY@`wSL5|#*;yAw8FZzoULOkIY8Pjn%67i)} z{l}6W>Jt9?%jS@lTQ|d>jTNm#PJF*w6sHB{j<*k-*5Fdj_2a$#24~eH=jC%yHg2!H z2%3x{t~SIdKK>vjhfqvt_1%^QjO=(dj%>Ar?0bGs(A!D$zPa)z8Xsv49exN|7Z+O6 zQRUPUKl+X}fXYb+dctaPfkRo?R%^7-e7>~5?UUu~$KcRYt<>l?;Xf7hVW&f)4q zKa7KyF0KN+?^GbTpU)om1euxNw5TZ^rg5oVeTlQIZ`^tJb~Uv$0s|b;q%9c&;>51e z`c$)xs>`*eJ`x%qvrd4^9+drc4!I@NZrA_@HNnBsw{F1nVkF8z@ec`yiSEx14LDqy z(CcM#uu}3QSi0JRtqHAV&yzQlJ+KM6c}f*i3M;DrmHQUjI^~nLX$wx^x;4UaN$FVt z&Pmm5(XnW;jlm;3k}hAJAQFW@KVom}CA#H78GhaYQ}k-~GuPz3;-Eyv;kR5brwy=B zfR_?_yPB`{N!wjgu_j5w7@JOz2OZGu;OL@xz{Q;*pimlR!y=pCB{#+t5AL z32+inpvA+yi-KRXMGWNP^XPZAp}vroYP!sQG4E;+EVla%vHfn| z#|EaX2j^1(GZJzEND26^KBVP~l=+=c^IXE0_g9ivk#n7S?_xastD0^LpRc#-hdV_0 z{hMS2L%wspFLfHM`AppRfmS04pWmTbkzSqy*eo0l65!CmA7^`)_Abq90Nw2}UpR@b zjs1LC*2a%m*M;*QVbo&1a^QSx7#|CBpliq@NG4%{O(l;%KbSXgE&km>;pUK}O#LY7 z=hKdHY$ZPGW{US;_!1p?0+d#mw!Ifo*>HlFQT4NYKK3Xx=%8w}&z^)%lHyL5sH{iV zQlF5F9w7Upp0rr!ed-P?%I&>cfx#jb4Y6>zdKeJ+1*oh}oS%=)jNbSgBl(?h{7G(h z3mkpT=d=<%WB8h)flTzOV9O;(hB8mL9kMwruOktKJSwJobi9HGFIkOasl_Se(vrzI z%21W_{aWwfkgZ?Y-lndle*~}utqX+WJJEhlYJk+i+X|(+ms~(05=ByP)FJUvJ{*@t zA0UuB_vEcydLk(s6&v~4(`h))Cc`&Un_zxPiYeT<0))7e6|JO%vqVKb!nHdzRPQar^O`$jL}9z zcyBLNT;7G_UWPng87D7{$!@~X$jtVVDcw-^!O--QX8KHDsde0RJpzB=Dl8CGTWVX; z@z}4;-=5e^MKO4ZMW5ZX8QNt)v*|Dr=8Jk=B(Ie^;aW$=do+aqxqxHb|3JavGWra5 zNAiX(4t5fh7us?>RPI#)^Zbo>R|As>Q{=BSGd7fKNt-!1Ld6HSL-vHePI$O@TM*k}5G zq^A`yH&o-#vlckF*uR?APTJx>E?Zt)SPk|+!z72N4GVeicTyS;X^jnzEuc?(yP3P> zlN08Op$ef~naLYyYId-keedgm&K9%#VT>(izue;kL43eqt%)>!v%o88*#7LwDY|8_^$tgu9%gq<`i_mHPkDUVII;Qtw_RB+^7)5mC zCO)~}!GYsE*TkmRB3s_G>oXw8BYs`AY5sg;!geCmo1pHIex)aefr2!DvA#Du%ja7g zDT(m(jrA81Ja0NuFR4?npk#SW=Tgxj>f>|w4$m(>3*rxA$Nt%CR|a@Y`UTlmzk=`{ zlJa_LK&$aMpOzv$X4@i{)S2$*P^*VjVyi`d>`~!zR2>ac!W2?GYJ3BA%brp-`1T-|#o!YMKf7{>+eEb0 z!+5L{^jYlE?$bB4;fJkXuVVT8R&evJ-b|1^3j?y}_DNB@Qmhb~hIpqim9aAH5+>c)Y#7rpKts zZ(aG`MU5}{u>`^kuxaA4s219GVYtPiXZkO2mN)&g2(3*85 zekL#c#|vwqsPkYpbh%Qbr(NbNcExY?J_YDh8Z^w7#{*G;43yA?l`OC2K^dy!{v6SH zps#MZGnK;JmJV?nmvaY@bw2t4~(UEcWEs7l%MB_4?CHKX#Q!hWaXl6K6-TZ5uZ=I^?gOjBz|5}r&69B4}z_Tzld}wGy z?b%1(T+-Xdvq{HW@~S}iyt|ILpxD5FIltHoy%AD(m<*-9OrjE#=`&No~h z&a5kP)IFE8-cJKe!KPQ3n0;~FRcZ(VX?#sEJ~^5!nlJ&J+T5a$c0~u#e_WY-)+gKH z{YZ+(zrN=FbSpBh_D&uHpO)o?oyPXOrEcIeidyH1wR_`PpE?ueekOtlSq zD?*Um=U0_Q!WP0HmHr;0IDH($;EznIm)1y;*Uw?!R{{+X&=}A!?<5WRid`iRdZFm& zs+(j3E{U~_ZlOKp%p!IEGLh?yA26aZ^Jr+5KW(&=>FBfk$ha?qWhR^MGpKL!pMKr$ z7H_L>>D%j8#_jS#U#seThtMgb!S$HNFps~D>K6`Rg~$(tc6ZusJL_?`wc1}j9}iJbfaut)2sEk--+ z=k|Oi_(_-E>o54eBAm;1UF`l>4h<9QdG{*Q0M!SAvrL_28w3V~MH0;eJIaZKp0v29 z&8L=>zYp8bg30W+;VutS>>Hof2%kjM&0lXT{-?6DY-;oS+IEp5#jUsnEAH+Nh2lYq z6{p2DxVr_~QrtbbyA>}E#e;i+;BI$*|C#3lJTLPmbIoM!wXeO`ah$Pjy|bz4_Md;~ z1pC@Ph0t7v#4(dWv8uN^bN0A5tHRbFqD*Fu_d=(_{>f6i@-qE|xqU7m}YZ4OB1(@)vk7l|OabbzUsXrP!g8cW9xZUgV;}&7FRAIGETMG4Qrc z@Rcqr_DE;dhCVJEZw@J!9ZD-9!<^q9?2uEH5}_nyZc=qL*#3$=-TZa@m4Q!GdR6EU zY4dEtdO*_8qNu$V?|#l`$KVS~E7m$SZ(prQt+X8QNkep)GiGJi&2G26{L^daEZycT z0URxTOx4*qHtXF&(amaJTQ(5U6R32nkJcNKyGF-aYJi~Z%rhUGfjt8)G*Wh_n4ye| zZ5=c1H%zCvqvVahp$pm$Mk{QSf!7M&wdCw*V-Q<*DX?w&RYHw_PTRtKRD@@Cq(zii zt?u$wxSHhJF;K4=a%UZOB&L8KibDYJ`ufhIDyMtYH6BaRStSfkIWkwNG4l&t(SxYJ zQLQF`xN_vv{wyCaZ3~tpf^SRmTuiH&-0V_x6!%xw6rX|$3ILYPtUHWr;FSzYX&~@n6+zWdPH@-*=_8Us~~T#}hK z@N*_gzQ2b^ zx|WPHq$4pL3fGtHr0?`l)0fV5ivu;yzAajO`U^J&U;4RYQ!5P{U%oY7%`9|Wu8HJR z(-Gzn&XqZwD{+HyJ~^i-OJi@j#631hjddE()`yHmt57~FEo>vS_;W7Y*7Lb0Gi9*k zn6ht=38plebV1|SSqhBbd_+mA=y(3l&F!asQT$W6(CKy$(Z6pXFhQ1N`5w<2w)15j z9odK{jC;(c*JjE&C%`l3cN!Le0fv>-!1OqU$tH*A(E5nr5y;}!?O8NyN;W%q`bp56 zU+>u<+@g=_-?kcDzZ^l_9i(>K7B!WJfCp&eEp4?|?8Okn+GS zT>@*2p4(bjyL&ZTzw2()&PmDGE;^QvR2&Le553=b5P>jB87lho$Vtn?l+lg~B_KxR z%i|BP(Tzs6D+sv*OVrpQ)s;aY6pdCX&P7H}O~-L`b=Z(tWHAO; z0SjPieNi@v_gnd&TD;`@&{MWwPoa7#qokn6N#O3+-VD&~dsROYw)rA29lkd|5CR?R z(!8zwUPV>1syn!rUoQL%UwMJqj8@iI;X5^}PCrMF*a9p@%>$|C_N5b0vDn?GY5L>x`NI|S=4kN8UhC-(u8?-#qWPk>GvY!hTsQ3>$elCyZ1wiFoM=6^zt53mj_xLUqaDdBI*2;&ndxKcbao6CnTY5RGuXUdiv!~|-l`MzV}lS+#5;zJ-IVr*U%&TC*u|K0^ zf}G~(aVqCOX;9?~8S=Gm%SmpysOc;p#n2FFL+_-qi6T)j0v^vhY97Ye|3{p8cC3X>-o}cd&TX9WRcHtwxh2 ze~ZRP9M;=crn5a~#rp#|M{`;hwOYO^_%dziUVV)v8hoIco9tODo1YCDXl76J4dkHs zJH|uIgFy6&y2vc=8okc|G~xbf@a2A>Qf0xX(+!2Zk80(AxF-L5UPvX<_+d%5TpcgA zqP!(O(--EWZ=7YKE7&jl`82e-2$#Mk=OIx_xb!V}a)k5)RX6E|4p?EoHZNl`{meSf zElFi(<2+}sSK$)C+7E*{(ZZzzZS(WOzBm*IT!+MBAvn<76h#vfH7~=|ALqjKjTES@TEU0!YgbU~Rgb@O-&BENqDu=QN24{s@~={eReNU6E4=aQBoJ zzI1Eo9rrzlHmvAQ_pT8W)21an2KAa{)?y|A9Zk|x!u5+hSi>x1juF3}FZ0^t#hMmC zTk?1Rl`0FN@ZeBs%}*q{pq``Yw4`h#`F;oqqW#>abcnmkW{@bmgRNqTdHaKWnv?Tp zi<)ShZ8BM%r9)_kR^mH7aE)~=mmKIomZ5(N1(F&ceUC9UU;u$?qz?Ai4JImr~!Cdmrn(% zu2>#`Z36A`a6A`pZ(gfeo5zzY_B*8_>1=Lqr=v;|31BZsE;nqdPa^0o;xzjW-b08E z47SBlhPGEj5|*c#eE35?#=v_aeN<$j4l4(6aT zV&CYNpDouTGUyjCi1~8B)6iSIvL3A4GX(q={PrkFOw>mrUyHOm+EBK(61DJlxa}Y= zvpU3;AD4pDx3XhMir#gllFyHPVBc%u< zIh0{{Q4)H6;%620zIBt{BW8Mru zG0#P>RK_T=)G^~KMfa>G_|GE;A7Ur_*1uo1drGF38p_<^QW3E@9}!zoGx1zVLFb-K zHy13$*N*>Fr3O2qj}Vp>9|2}$wy{d$r|=3x*aCzS9Hh&~kS6BdE*riDGG1ni$r0zd ze<-U=Y|AifYm)6-Eo)bqks@)j6Y`?jS8~tbvd~zfuO)y#p99oYEMYrOrVxuTKXkq% zdQ(gA)Yawm!!m77y7@&vM%W&6u2*-YH5aIZ)MSx_SwZiSXxb0S_J@S_V~BL@<_2(% zkVMalhm5@ruCOY%ErBRG&ASCDhgov5@S83%31k&=CA#qzFb$Y8gbK&gCJP?ur+n6j zScb?LO@*dr>ImjWXMO>#pm{~#CnB(8MdF)1=^*bI3CS#>z+%>Byr~@v=zrpf04!XI zpK=_lh{0lECh@VP*o-AD@r)(1tWldjgD#k zK}+*BMMMV%5!m_}!(R44G`0JHo9DMNDUT~4yOG|iC?^WL^W<wRcpCpbZ&tw1EYJ#W=mWT|tW?TCwVq%jHJ zZ5KS~_XlicZ_m(Ff<)Eoc0DP3&ouUna3KCA;!{(JC%^V#j@Ed2+jk$ox}cAWLT!99 zV{S6`Sf5E!pbkhSHnkJeY92(9pB&KAeQ|F$V7FrHKUySb>|r7t@3da`;o2QjYJ2-E zl0eP3xq|9^GmNV)WVzfw{1vw%PvvYEccJ>Gs@sPY-40sv7BDqlLtb5#lERvjv2ldvj|V@y1W4oI5q?6foBgkH zDYz9~77WRA3H2zcWY}o{$s6S{99wPto*QrJpn(T6L<$P;6w-mrj^)^~3HEc<$@Ar# zu1BGaCecg=ii9d_l>Il^PFOmd`>1Qb~ z3pRU>UF}qc89%|)49*uDH*dNz!cq)(u{KS#VmiE! z#z$qe#Kt&K+kHG1Um>#0Piq}wKO=`$y!#L z5HC`{Dt5pvJN{Q(&OJYw_BM@;#1qD%k!V==&6QG%_nQBu7E_mv2C|uqtcIY9)u)?u z5sMY0Mfw`Z@GsxhOV(Q6|9WU)zdO;8+(8lH8ZB*5YiQ-W8*FdZMDP=0dd^~WiJm*= zt~Pt=;N_Vj$9W{M!4vHQ`Or;(Pp*_=$=ODDBkM23%0^kMV@2tJ)=W7|KG%?Vh5QM~ zBj=eVy1zJvbxCgG*l|2zr?j|uzMwrE+R?2008;tk7UB*)p8qn#u z=9A~A=hKKPEt8%IZ3FM0FhuPIo5z8pGu~ccK>W+co^5~{Mp86<2`P0( zkvNV<88MPGlZyLr@fBNZEM3R{2{76PN$I^S*wI1vKvJB^%mra3@5vK!Vs5)Qz zKxPI(x%&x-3=2WCh;6hn0N5$<-9|5mWU`)a+#XO$g{YP!XE_8PCpi{~AdTh5f5M_O z<*Dk791XVh6f68NJVB?GLtFtlxQp?<{#8(I>vpkiIj+uXRt@t;heRS#P;ovb%XpWa zdJ30Pu{=JH(2$iHQWjNI824mVzTe)$?T-J1fKX*KY)`TS+`t;+iqol z;mIsxo+5kX)byt1*akU;m|zZjd(20OcPS>rCAaW{cUnf6CRwPR2=+ewrIo2y7W-VF zFS7;ROoKQKJNuVuOz-*04Uk0oNVFL3Gs&2L8Gh=7oE5ir@4{k%K!#b1l0~(2u0FP# zRfF1t6rL-;Vpogd0$)qGX)Z3?W*d+_errbl^3cWsSyyFJ2TWMw9<}NIV~* ziQ$ZD{ys+0Bst9nhuif+JFy#Wo^0?g5Y3&j?IsouNsM;Z`kKNO1HtFxceUu1Kd~|^xTRhcc#Vb;5k~SsfFAZZxddhLo0G} z3XQ~ZBoc-(SrF)~O4ph4UCZZ*ti_wXrY-J2jmOlhiis*74U^XGDF#o|;_$zr)y@`6 zw8?qBzn>RP5rBm6&UEAVOJscQxOX$9`!*+qW8l9X zl5jG0%>Q@h5l6c*)llUKpMT03e3@C%=U3Jh3r`HSr_QCkk)ozTX`djmh^}FCtR8ZG zR+$m09T<-8{%9MBmt0E=zEEQ%PkR|m(%sfdJkBxhXuIFF-ULoL!_6H$65z-;kZK!_ z1a9-*N96h_x>)h%1)TQ=r(d)K=^~jl86(6e6q79lPbq~DD9ExIoj{%4*L6b|9@16X zgV|}qEQj`+s8Tw1M}1<0ERG>reUIxh_04_#vknTAnY0br@_k|l!!<*`sA<3Lsk}U! z@UkCvjE;sa=?oLjDp?*_9iegDH>;F$iE8D6Z{!H^dd(}?mLaV<>&K5c>C$U%^qoD!jRaumQ)@)(XA$Dkz zT(^4T&z~#)WDnRDwi%qp4jcf1$$LhSF%#wxlY8}q2Bw6@OQdw8t9G^Y4RJ+9nT-Y6 z%O1u2;bw>3cGDkqMzqvv&h@`@i&zkP*uSDfu@mtLPZfv!NzXCNJ2|zh{CQRV-Lr3M z;Wdz@&=+h5z76>Bb5e|ZO-N`7ZT+cNYk$-(xkE(rpgMI)(I^#%)(-tkDB*fTcPXhp zWvU_bZ*%x?;7BvzwN;Zn+nzX3P)`);;cv~*ed&MKE?5$&W8?2sBO-h#U z`lPO986`baZ#KaN@%x(30G!*1gOlu~1wG&M#uUBg056Bpl^@=B7zSsPAADrwOX|h? z%==Mq`?o=+f0Y>lA=aeN0Z!%Q&y!LnBGVHP0*irT+o@UU`+OPh<7o+Ou`%iv#h|kW z>rLj=$8^D8fw7SK=;7J-+X&I~J{6!$SfdwNi{UOzQ2vT2(#g=~yxi>SjQ?|_q{{q5 z`(FbAoJULXX$^7Sl_^O-myl|I3$tfb>NGU(2xK?Z=KSN7f(@{Lx>MY=MO;G7F>K!z z-Dcl#iD@YGCE^3Y!`V6p4%P_b5{`a{7g`dB{IWl$iz2o|JuJUm%mzTSZ+2dV>L zQEWu8EL9JzW@1$jlXLDdjKH{?Wk)I-;(;o8Q~5Pi!XcEv5Ii zLotVmMB92J%aVoMyogWLL7dnwcfP$mi?8L{hk_~P7fPHD^@5_@hHP|J4WZt}On=i9 zQ%CstnpM(7#dutJlU61^2=elpvTXWQxmp2+<3lTr_E$E4ROWJGg9^c%@OMmNBHc<{ zU%|z;JF8#oEw%{2c-Eoc7O|@&k5f)`zriTO=`BbF2evcx?_>0iIKAimc}4GL zC#NJXniI{}M4=wMb|iedDvu{l?4W@C2L*l}13n4ks6cvT6Er}i ztbj9P%Qkq}1%O40*57v0tMK*wI{r_$dkv)k{N=2RD>8_LDw5s?hpI>D|x;Z$>2{`J`HFhlE-+GF!3m0x2SB_RP1;euJ+`AzN7xNlP#=50gBf~U_7@K{1mI2 z%l-*CsG7lZe?0Vc%nxxy7ubgq_LWae`ohJ+c_|(vIpgQvEO`-UXFKqDq-cE2M|)>m zzL*-%68p9`aaS7UeRc*GKG#jPo!trmsL6+%57dvN1a;4YFHWv`UX~7PJMQ~!&v`9c zGe<(GfF#s6E!3dzZ|fvA`9y;)nQSTiLg$wuS5BF4t$Uh#)CWugKj!wJ13Z+|pW#7e z^IqR_I?SjjS)ji8b#ONdmf}3o-ZU98-y1XE%b4fkvuLpn{y-rujITk4K-N1!D&I^F z2X}VEH>}(xtMXATDh5|O(Fs|QK{`!DR^1N#C|^e$_Z0Zdfx`AJE6KSJY7yNoHOZ#p z+*+C0Y`^QJwY_hiW#DU7{6@s;)ZvIdz*H~r&gZx~PI>-;B+u*Jh?*!*bw2wDO8D&< zis|h{r$JM8TD5)7v*=M{=h%6>m8Skx;#@my@P{oN zedyIcBCmG;^A9>O{?BgRP`{gm>^`q)nAc!Rc55tlI8Sw_CQ9AfAR%hYen|OCA`+(a zgl=SidR`qiAW#GpGdr~@r(DyH_FVyW_>VS+bq!R?fz%R7suiHW@xz{ z8CIvW51-`xL?0(B#qw+|BTTtYii*ml&&Ra*-%ZV$i@9Kl?{#I1i$fnj1<|;AOjut6 zg}a$irou3fbij@gEUR6u`zQr;Mlk=ATDe`mlpPbqRV{iLog(BP2|V{2AFmSLeT!x% z;Z{TE*7G zKtgA&5zq=-5h;Mal$0cS zR=;iPz&p#?@PR*1kXBO`ZKU*9etEeQ~p5yf^s1rwyc+V@2!>n4x#3^on?vQ1R;{;!(WHM2(v8>E>0~5u=l*uyjU@q z0%VeEVryW-eGNHWQ07XoAFmroP^W$4C<;n=9t*ihNb9PdNY7cj^j(A(`FcgoePUj9> zdPOl%N)P2ev>9A5M;(aUkGf68?n!gQC(&)6yz+2s6er7&7QHkT=k@ zAv#aC?b@|MG z^jL1#?NMpCTavL<2H;9ASBLzgA1s8Zeo+NTZ~!b4z#CdL$as|leV<&2rR+s9rnq%f zpiRyOAiutW1s4O*G_ZdG@}d0w_6%fHH1??TDDZjgPM!K2(Q9K{mezFk-yxGhT1sp` z5+&=+J{6R)wQnqC2r(nus{Sv0+nn~AgGglM%nf9-B#N2}e><&ezl8`obK*`0VG>(y zY~Yt=VPZb%07yc|V|lcEi7*>)|V$PmwLm zbN=#(XnC+0j572(e}1m50%Ul<`{n9eN1T9T826Ck_}2{I*~|#(O)p0^#{8It5^pFF zb&?q-ai=CnK|F1gD3hD_k3kJHU7j{SUn^007#_v0QO<9CFrq5_?qTZMRT<7-YHpJ) zT8+_pVKgI(^@+=(wal$=_oA4hN}w+#fJt(Z3=3aOpeXlQEDx_v`w1?9h+wX`m+ivb z+)ZTY>t}c9n-fNE`Jm+73>4iCCV59~xd%SAO!1LyGDEF>;QIW|_rDAl-l`WA1Vg57 z^xneX7r@l_5@Qrcs`J8^7UDb$-WeK4m+XtJ3&KZ7S6+^$NZ>!&X`PU!KTz#P_GAY} zUxpQ}?a#t%EUg?CV!M87FVE7`zVtM28Ws)SA`7AtOq~2ECaAz`qv_?F~C3qSUCUM{7shv@F07{vSkdl;zdrs${-|{2xkbS>yl! diff --git a/master/_images/sphx_glr_example_regression_001.png b/master/_images/sphx_glr_example_regression_001.png index 47c08c27b3830ca8c17c22318433b34af5537f70..8c4e82cad6051caf8e711e911e11e1fd947e2075 100644 GIT binary patch literal 54882 zcmc$GbyQVr*YBc18U^VRK>-QrZb1Q2L;)#j1f(S-rAtDjTTnr|LAsGfkx-;dMClU5 zJD2Bt_rBx1@$WrjoN@Nxz}{=E=XvJ*)!bpXZYmR>p*@2j2=R3lMNI_3^g|GgS$tgh ziO|T@BK$|pMM=lyj=hD8o3WEQqHgTsU~BJU`_P2h)!fPXp}m~|j}Q+(H?x(Ci-WT` zFYlxO`3pSuPL{kA#@mhXCIk*Dy3PnfYK;Diktg%!A%c7wx~?dv<({_w)lKJ)kAOz?uPMZHOFH%Vm?P7g`U}HY-UoK1DM@L6Vf)6Pg8X9Kj=ly+t|C*bu zu;d)_Jlte?vb&05X=$ldV#vVcd%|yaH91IG10OEkB-K_JX>j>QQEm4%++rXle@e!* zi|Ay#k5|-vllf-4c+eY-OjcG_`J-BW9_468sarZaq0TFV#^c2X6LroURNOibz9q{3 zeXBU?s0C3QQh5VcSK<3r)UaSvuC% zi=+^BcJ-7%MyV%Rci!C8skTktKIPIb&dSTfPZxizIeqZirX<_-$LC&T^WNd zt}ilNWuvW@CQ4po_f@_x;fj!9MOGGqgM-uig}aYcN{YeI(C`6u7g5P`^i!~BMM-pZ zb@OiL;3~5AaSwjhM{0fl_~Z!fQy=g(hCzINGs zsu6!u!b0SL5z;NZsk2>cS zljZ*8-Y=T@=c;VRyWly@E-zb*l%W@rYa;Pv_Y(Wfw9v>%qT1S8W(f(p;^Jbe`X+T8 zKUn(Kot2@Hw|BXgyq)UkVWGN2X1oGSyQ8v8OUZbRnzWK}y!O{=yu7_Jkfx@lTKBD& zy&jahZQ-VZ`S+_h-`*>_zw9F-BJ$7XWesg>lkZO!!23Q{goOkK20l36{{f2^q*RkO zsYT`B?k;LKRr~bt(0xfmMFl^YgyHRpJsuujM@Pq{Oy`5229jQfWX8tEh+k&p<``bUH0`jb}CCSF-b|GBGc{)G$#W|{8*Ml8A`IUex2PWcLe<4 z?yNpn=J$G=lu^T)^d5Id(gY+6Shjuqc-GF&F6pZInYOkzGFqrOs~=twrU*XtpKA{> z-CO&la{YQMtT+F|4{Xl_y#9XBvg>RMMkJjGNpf=X=I(CCV7kOeg{214DHL^O;5DYK z^jMJ|UaU$W9F=U?4hHqEov+nXUqpYIoSYjs^6l&hJ4;SQg#@?d&IXTyt@Sno#DdIx1$$C7nheg<6fMcoD@p3!aB(J4i0uLzK<)j z8RtP-BsLlX8a)rz3KdO=&mpvO>~Sn2BIkvyNBt@)Dyl*hdTBT~IFJ_Dakm?vJibrD z9vE|G{@31jYEcK~pHp>M@Eqa#P2r{R(Vrdk9e5J4kUdKFYj;lOZfR+m#r^3<>x4|y z!sd^f851}Kmo8nB9Y_%(r=ba}nSRpuS>a(2zt+j*RXUmDZ}9t^xYLU| zAjsy=`VAAPI(hesQsR|g(>*f0fG#qB+frX5dIr#6+TY*TsjwjSIa)fON_vW%LBhh; z#)=|Jntt_uZs&`LVvsQTwfk+15f@gGuHBIyElZU)<0JEK)@iiSQ)Lmld zuk?z1o)l?Joh}nWb>-?>1DyM|!>xrN25z)y=6v}0apa8#Q$K89B_*ZM(9jk*yTjFw z^lV56m@Dyy!$t2!HPl-&$Fa8?&f~qg_MK=F+R;P5`lW_9Ej@iCOAd=(%t>)& zLio|=KwM(lmXQ&1X=&-zndav0GMUpuEc>P-_NlL5=a!a&4yHXx!@|OPyO|{2kziv7 zIC+)!GmJNH-n9Don)vkhfsy_@7XlU*76(U1xr3iyV^dPzdQC%#9fs$~ZP-9PJw5H< z?A#tmaMs1u_41`lEy_&Zfhj^Z^4wH8kG@ogK6`do`n37aZ&E4G{lJhAybcq7e}DhY z?nn4A6%CDX_jTBW{EyePxOL01VPQL=$!0$n&WwvgYuEhtQeS9T z*i#iY`I#o~K9>i&wGJ%HLz&S9+9hq%(~JtiM6Dc|UjFc=3s8S+-8LAZt!8bfB_&a_ zv9U1=3sb?OD7d%?Qt=uV?mbq|kfd1|%IrS zbnsC_#u2KyzJ&#QN!gp%ui?+>MC=^syB)7zzfOVnbh`Y=}`R;P0@BY2v`)6T&eZ7`L zBO@=8LsBv=Rl<#@+mZe}J$?U``<0>N-}#mV6ai0Mh4&XVGBP4TRu&gKy#M?@pzka9 zH&WK_H|7z)5KDfj!Jw12u7LM42huaiPn>%`GG%f)IAk z?jRy;Gp2Sl1I-I=uXoIHP2BBgr1;}CWeo^z>(d9O7wK05LHq_KlPpD*zn0 z=Rntq}>YXw-_l_%{J&j&px1E6Y3R^EUI$HY__VPd+M!vs;Dk}x2 z8a>ZLM^grDLn~qz2`H4>K>XhKB?X4+#$s4|LFb$)?ci3EJ z&TIVbUBa{MYO-)J0XYXjks=T_guc4G2Sq7IDS}GW`Q43ROT(Lfw%qaHli_(lpH;)+z|Ra!wSztvT%-Sx?{MD4Q`L(&2dsnp}(S}CDJ zb?ezT;*gS(p1?tWpiA|PR>&X9AfSD;owf}Pk&-e=cch6qW7oSH8?$r)ZUSh%&>DcJ z1LcNYBcre^)UrL8nBQgfRwOk)rjgIl#rxH^VF0iJ!DZ=ISirWxd##Zf_48|ej&XZ% zPft(F`#6q~T1V5?E>$=ylHuXueD>3lg}N2EvRh2QZ{NOcHJtS{UfDt#Jt~nsB-0Ax zm+kUp&LEqN(5>;#^+z~>PJ$=I0G$<;l^4?8rsbecm6`WZ zt$(Q@m6MYr3sanE_LV8tuk(k)Yy!7&I3K|a_k=DHJRSfFgn*h9OAH%bs5++0O!2No zQa^>O&%T{=ZS~_DQXYeMfuE~vu#iP3F_b4j70iJ`WHnLB0&R?K!W|eJ{suf2tC^<8 ztB0w8CnHhktv;|~*IJ~`K(we=4v_&=_y~7t3NXR_ zX!{~`%B|lAGdcD%O;k)F#Yye@Rs<6_^c7fVKfJB!6o2{`@$2~bNK2m{ntJUFh#-E$ z!?)IFnwcK2jh1cqaED;Za+xT)I@nE(d~Rok^Ue7TYCkCoA_0CNNT$~|0n~weul<#j zlrfm|U%399dia9{ZH}cqJt|(Ct$00ygV(C8KS5KJ$?`n-ImVc9_Z9`p-sCwer>68H z86>C_LP(T=!HK)9`W+q~-k>|dIEPT6WCXMR@pmeKZ2=oi$0UFh=Guawt;qp`E0Pi{ zczN*w{8FHnD1G-F?Emf;m+!Wvo#HiYAAZG{_yKC30h zZpVpQ#|!A;1L`sg$MN`JL%H7dN1>Eps-l2j?gvxqE^7ukxU3|e3m34U(6qy4p%m7z z@d=BxbcVkS!zHAUjXHSbD5n6AC)4>3q69mgc7A?-xZGToUfc!vBZ*G4j}!@$G!Zl& zz;~}lC`u{IxI=P}ANKTf`=#pL#m0Uj$7a&+RJ6Egw&bg|x)7_Bn$k7E_@EC5XJ#@1 zue|-{CPSf4876Y8#?And1=P{X7r9+6Zm@#*!A?PoBeW>k2W=rtKA}*Omlh=4eg@Xp zOZfcW(-yQI#UC6T1ehn|YgV0Ws(L&v` z(7s2H45gmz;sZSLgEx|tk{YRZvzK(=ls$5{wdFSS{rwnzx3<21;hD&E%b(K&nWpA5 zu!`(A)YUsZHyT4Uq>r$#CKI8%8Fs?uLjeTG?;hO$Ro9JL%zQzkC7*mjrg}Ghem%0h z0cfOU4_Yz3PLEbpR8(33VQo!XW}>PD;zvv;JPSBM)L|C+Io%imP?r;{Q8keV0|ChL z6kVf7kKYYqAgrvpD3Y| zwgUK?15pMAldw{7o8G^6q z36?NMg>8)Sex1B(3sqM+eU#$N2ao<(g&MNa(Q(_p)-@^~{ZQWK6AE&2a>UQi51DH6 zrh~fI2~T2cb523fY8XM`I(4uds3b3j_V)L25m*f%l-l2gT+*=+DE-AJ8}A-}Hv!Qm ziO<--SIzA9ZE|7z>BuL0YZ%C{gNIesLOnS%}*y1VgE8AHrXM@J|53jqNEZTAu2gIU;r z0E6x}ozKX~=ouPPhR=f?&u=|?$>qmqN}wnmK#lM2YeV5AH*|8kisHZ^!t?&-x{jEq86%SUy?YkA<;$rz+B!OUk|6;B0li{0!6WWWedWQ81h0V3 z5{gPn+0gBK55nQ$m!6*NXb9R*(*tl0)Zy+T zl{xWakZ_gdrqc7YTB5yzp_c^pPA*y?9v+ePXx>w(MW#T4#Jd)PVUF=>ztI52QE@j{!w=VZrEy=^TdJb{P{PJC#wNpg@%XAgNQM= zy!?7E?TTKtBCH|5+fV(#pdc1#5!u<<{?A}@aMr(k$%>L^(EG3v^zQLU=w)Gj3nk0L zpJK`q65{XrE6(RR)9B3q4E2-cjd=EOYrYe$TWk~r=vDdqW9m0~(ZD}RV$SSi#Rh~j zGBTC6lN3-4@JJa0OG4BkL0fx!PCuLx6!~4^j{Hv7YxjRXQ-T~YR2qpsJUndYJK+`1Hcz8L`%TbjU6B83bV6UUs2rUPt z{7{$?AR+Zm)j#`qn>)4^x^EZUy8=%_a{;|mC}}$Nu2*0S2B9!)W4e*^qKTT2%@{ZO z_+W)P%FX*q0o}oNzq?Qd?E(e6*5k#`LPPNd?WU+ryCUTP%1lj7&91LULU+kBYW6`Z zLsv9YG>Cz70i@Dowhe(~n#l}ePS`-oT0jZ~=`%P0kJRMjYxQ#{1d$-RSL`#}-Ugls z>zAwfF!@!>e?wz`pl#BJHNCoe_L8HUVo8%6zTL9rhl%T9Xd#33;MDD^mi>#xwAeuJ zO_K5y9xE{-MNm~@e`6-PrA3x2y8pzblYSX0>phC8eo{Gg?<->j08{YG?xJ-C1THvW zmBJhUe^3jRFp=9H=s6l3TNz!BhcUDq))H*W>K5`ah>G&aj0 z#&_M%Ahi)%S$R?(cc28sql*%eBDVRm-b4>S=%@q0J2*t@R2(gW1}LK!pw)S>V>oWnz80nqQSPv%raOY$?N z5+a`a>-kQ{J3}(vaC_uX8HkYd^z z2@u)?YTW$%{7vX-?YEYB=0X-k&rwma3JFoN#)e*yT1GV0WU!xBA@{ybnj!8BUBqaelaXNpwkhheN(QPnCPIDH41aAjKY&)qdKP*Kx^Yo7 z1N0D)y>TP_#wMPuhs4E;O5cSD&zu3tC#xYnIXT}s65az?83u5*$S2Qox63Ok0va2o z2I#d}x%+MpXlQ-|9|qOLq1s_1yQ?Eua5fdIthG-2sV2;jiM-nvI=Z_RIOFHLnS46{ zJUFh6UIwa-4RuYM5%d!xD43wXp&}wwY=K`X|N0%oPom%{s2iP?clj`}r#v5ONItq3 zqNR^2r!7yhP#N3P)3fk?)fv#H-rOanGl^>sgQJuMMb+x-J0bLB!OC;#wddJ z)=_Hm#)S(VlAsho4cP3WvuB1bib7UEF8t2RYG+Pu)#?r(m2wx9OX}T+u86b@l^pVZ z`#;zgmlI=!z$$rLz8g6oLM9*C`5(ZmrCdwhPmAc`!-r^fw-`(dgXXmReVi0PX#4k) zX1gEREfCOc^G?UGgC07M-lYwpRM^yYi}l?^-VJPOOW}v-|ST zoi+fYc0mI|H=|b3eM&gBsFCroq=LAj4%vjRPt9+F{X8y?B~}HMJLx4{iP9z9P~*vA zzJtJP?~``V`}cB1_p63WjAY;wjgGwFn4J9jUXmp0$O>u{GgSn?)1pfJyQd(9+a)Kb zXkUqxDrTM45!?Qm@l-8^$TN%yG!DEAFTF>XX!^=Qgrt-{UKi+DauT$iAVXz?zpCT4 z-BP%q`i-WKzjWZ^9AKk0uH@Z$L*n!2w;M|c5HVaw=Y^X2mV?@Do_|QUANNApwzMay zuREy$-gpc?S5zeRcUV^R8AUP4kRa6JE|&nY5`pT?6&<;Gn`a-mtBS{2vQ?b0j@v8z z6mH7E)^x2D$KoD~(Y~J{x9T&yZ9{EfeG?;bw!qvujyo2EeoFV>%%Nu(7!OV3raS{v$Uc9jNX zTt6_KE?m5b17>I^lr6p|yH=k!v9# zR`m^p*WAMFCTRf2m?b6Y0Se-DJ5r0-(evonW>vJ|mKg}w;K4OrOd3zSqKHZ;HTmErou6AQ5; z#y6zqw1fq~PBMLdT?Q8ffc&SolrLYtyw&XE4G%L3%o*rS77L?!QtMJDEPd{n1IGx> zgy*mJ{M(*!B}&O%ZBGE0g76*)DkOruzL_2lOzw{Q*E9a;GT`&mT{FYm$o_t=W|RpB zaVOQa+2&?|5B>fo(?=eB7Kgbu9F!mqXDgtT8^@OtAIA^+Re!G#8>UYjY0GrZ>)zk{ z8K;}6UM-80V!eV?HvwaSwiOA;7-|+PH#gDN))vS>(N!VWu&=4M0KSkb<+iMN&tA+z z?(p!_7w+R7qW6NXAfYUNzpDlE2`?@QeJGfkNDF|tGM8_fqN1WYZVx)RQK=&4%7u#2jis4Z1A`ja2(lcSzF%IJZFKd`h60Z6cr6D{qpqUbCaPmV6GW)u#nC#;U6 zbwu0%;AFEBag@!amU{(xhM<6>es;9w_ zvpA_HC2OJ!&>r>UM)U972Av0*$O5Q==T68`lRLM8&~7;J?S4GEk)>%kZ}~_>E;RL1sl&SKpH@JmkS}mfXa<$6Nr83nj0b z*!&g6Oemt_?<^M)i#}dE7feLs4|aYV_-!Em3V{fU6`Za6K$Gh4afnQS(v|ON31v&i zBNLS5hLGZ%&z@AQiG5|ZlUGp>io5S6I1?zVa&RbxqhL#Y5tSGDZ=lAZuYl~uLo7tM z>nyxPz!WPIEbm?T_VLZ?RGk3TmHS{f^Fx^ezb?#Q<|V*fID$l7Wlp(2(=lZ4M9iFDqM-G6M*f^Uz3(xgLij6}7no5(W{i zAU=RFJj4qQ+95<#Kmp5JNe;|=i5?g3LRPk$6RL-liOZh!BO5E3zNpU;8ykxO28-9h zS2xtQtO`-;y?h^&J&=s>?WM4@H=liOpKfRJtERX>v@T`S3Uy4Cq(Gh%+(&?GsKaY! zW|jq|8Q?fj-yEQ-!eQ3L7-od>TNV?ZBnpBvM&iB3zQ^(rMeqCi+TmJJkq8r+_S#WLb@bEI(|e3G z`6}qf!VfnWgJZ8?VSzC<^_G=+n2?pc>Ln(p-8}Y%@&MQCK`}8gei&G|D6;@4 zjWz&~lkhz~f4yUGd#Q1bMUhXWm}5a@_lnA^quygS3gz8!e0c`}WB-(GeQBjw(f?=$ zcjg1hZNE7iuj{}`4FUmytgfzZb8D*=7&Gca5k@9yT|=KEw&OpwQFHlUVXqY$pgIX= zpXbpzrFq3|5v*Hjmu`#W!^1Y6{IJrNRE9dUAY6CAF2g{;51Od3B!zIxm8%w-Vz)uX z?l9x-n}dr?@1_@XA>=N2I2Mr^t|=Wv!4YWQy8=75M?F-@VoG|Ey(1;f`%%9RsE16I zc3)|sy$7qXwE?Adfc<>tG<0%=h#B4vlqRhNZ=u+Kl%~-Fqk-9-@4T69%tB7=`uF#E z&R1Bz5M?2{BYj?eh?Z8IDr%wh@%MXbnbHhEHS=^U*wKQu|Ks6NrVj1^+_G9ivM%$g z;~MAvqjOnoj%`<5_|oXyDsOCZ>=GrtqB*YP>$WXtG4%km0F`^f&T_njTnebFvVc-y z|Gh+&ZFdBq10jdCnPtQ4cgcPkj$aK z;8F))T?#Y*=aw*@8pf!&h~y;JO2A&|%iGZ&-M&1gd3*m3?M@xvxb4-MGPRUOeDGoM z@$p+`eE&QH2U~MfxzHcFf9QKfR@_Ebe;3A&1@dOKJ<+ayzsWU2 zxqsh6h$;a~)ZuVGMXG7CmH^}(5R>cWRyY)`Dgo$l<%co|_@^GR8YbGPVDlZx zPI}t_Bw#GBo?6$d5LU2kvGp#=%FZNordk*iPI#eDBEfWQe5BEgiW<0?iDb^;^9VHY zY2zgPS4`&&ln5Kr5G}rh)uh|ECpEi6wl9gWP(iNZyVRhsE779Zx03LC1-|O%@OG=U zYKCKmf=oyk3oH|!C?<`^pX?GOM16l2LZBU!LMXTE1i*EtSwNQ z71-l+f4w4m8T-;S_{mpErS3?&@yl^{&+A>v)XdoWDzY+>Wl;B-%c^IkEv>Uw0~F4L zqWh*h8`=)r$pY-fQ%?he*E{+Y+Z$!y9hvpIX~{<{X@b4!$LjVUiEhu5EGRL{ zbfwAo29bK~amFCW9iHqAwK~$L2tNu3XpjYs3Nt#5%=ksb#RuT9{FTcxnc#umt*bI`J&uwWpzljS&&m$?Rw1hO)1-%~2F)%sbsrU}7B zd2>)p${s}fi9dj>N$}^7ox)dBB8fCLq?h%Azez=J1WGv>07ge{SfGW-{%GVG(tH zE$V1-a=3N4R!}mFngy}3+ikS`Ap-+Q0()Ygd5{A;v*ZE_rMTsH%iklLaNGEVgbDz2LEA>Xd6bI-?8?)8bt8G#gNca= zjC};r)YR1Sm+4#x@2-UGjI5m8`$Rhni`TLx!7&ueKa=G8mGf+M^vTUOgD zp(YrdhdB`cuo1KdqOKAcWJQu!>ZmqBEx14A`Ii(hDXv0l5hVbCvy73g;WE^!;g z!!Qs~_S!*Gy;a5ed+u5#xSyWXZ6|>$(heG&dWzu4lV@;WoT@{Ye8B8;cI{_wJNweD z@Zy&e0tTyh!HUeYeaD-b3|KP+p0hF%xEMARTn3wOF3IhKo&Ud4m(bh)FX13Sk@YWc z04)QR*x~c=CP{2S8-npRW44>DbL!n_K?d8jtlVp6Q!3tOO%_dJZ9*m-i zkFVPwBN&kwi(&ro;yLFpEOp%cSb;fkpU%>8d;`88B!2O3yxR57RuM# z31BPq(Z|M(b#FG`ohIGqOx$HPH)Dy9*Ajl^AiI|B+mD(ptglnP{mK!UDq{Zs1pPtg}~j(c2Fp8Lcy{hN8?H2e8nS$ zD__y*ScpZ3b-2)~*sw7i&>u5MdXN~^Y4Q@2{y2Ci1n8d`u6P`O4KSJene}LwD&LOzlOZ#LzF!66J#>0jhnvydHrm; zLGr8TH$oq$gH4JW4{#1|zq&zbJ5h=;GBUEcxmmhDj9*5LqWYvjb1_LbU&4nQzwsw0 z?Pt>+&#;yvH}=ypXx9+hQVw+^@`u?8lKD}Fon7VJpm791351+#4#WXavIMp+&^>wX zC=~0A*y(F@#jfhb+}OE&;>+=IZdnG);Qr#vhcPub$SiFAx33ngMHy>I<0IYU5F*@eo#{2{GRu8IKxf%^*7uN!+@HC9KKA58k zB1qqZBtBgE@Qw{>99cmQx zNxYrDMp4fh)sZ9~VvzzGs`58?LpbCd0g zsz+Y0B(r{4>!Nx6cGuaS3QgmUHDZY}4$*sdqeNNRov*5{l)$y| zJ;WXAPH7=i8lwmAYVXZNC`81hlG*GgHf77Dj*U>?)=wFtsP{L?Z<%ru|-|HShFW!0D%PK!E#;?293Y( zb)7jdDeRTagsuWWacrSI5Re7UET~!rir&sHT_3IYny5QsUixx7rrGPvfPl+dxN4W= z7cq={&o|9)x3tytD1u`cC&Hps}pjrQJ-i&hZAfLS<#OGqqO1zOr zW-@4PdY0t_z=-)AW@S+sh!wYos;(tyV8qGr?TkvOcnStv2T`EDeC1_pMC2TAu>(5s;2eA-&zx+ba)Q zR&pjLn4EcH^;-=UOG_~OtIx6uLcRKX`)n!khO~o?zt4a0J(}tfh{s+CzxQ}j+ZR_a z@6pkxO`40Q;i@ZNr2;HTJI4y=Ftmh`opPC*#CGm#YZkwcJyeO=!qM*iprVFeX$DL($KB52(ncwF?rwwfM zem|b{%N2v=T|1fPZKyY)H28IaDwTJ*i6w-rqx+lPzOBv`WU^9^SG(PjTbw7zysbx+ zar-Kp=p1Z)yY6#Fq}Fl=`v@P+o@RS5QZPyTWB=UiWOV~57j^nmublY_r%!SuE0 zJ4OyK^G!pgZKIaW=S|ElMTM9;H>4Ik(}aU}^#*%;|0bCrcYz>)#{=O-OLup7F29wj zRSlJVufS(4xGn1XjR@+Y7v4`@i>Do|M>D#o)nzlbCTu-Ls^XPLg2+9$#c$5IVy%pe zZ;O-8EV#^781YI=GeS-URT>~qya^GK1?ck@#HWFm)D=`b$+IoJ(gYyF^?+4GcrXRS2&m`p8_Ayg)yqU6kI{R{$K7FXX z5*9#iyt53GFs8U?&YYRu*ogK%-k%!~nK`%kE(QN?N^s0}AoQdDP~lg4hTqJ`rUG>g zF|t(q43Wc)_uMz?EO!qp=LC**QhGWGrE{uVUfs1f%lM4$P0*+^NAzM&29EDXZ_!jK z4G$IndVUBIMSd`;Pj)|QAbx0UAB}z`COSMO5#ndFG0H=d$ZT>T%-3J&LM*Y;#c=ts zf?4`^plYJ?+!tTbADbqviP*%+cXwACkv(Cyb|E(T;UBo2sug&~E5+{wZC2(;o8RLN zh}(EWMi)idXg~#^BN`TfX@ZXRRwh~9<6NhgG|*$87n#dC71Gza-DKfqp`sTRZ5|uR zV*VTxi1lfqYRLaGej}Te$~E_~WQM#k&!+9_m@mZKQZ@sQ^dPi`fbRpe7|ms(meR-9 z&vc955Sagn>kXX~9jts&e1=m%;4DQLHcVDQ8heb9gvG+rh9(9C&n?@Pz^hf?6is*! zBZUizBD%(xbyaN~cIP)W4UgAOEW7cm*?P*HfHEvL5*2>?Tus&TeP_Ot5Y6tOd=1I+ z{d06_+!$B(Xh)d;N(^HLCdyMN6>v&br{mxoNIRkqY-I=7iAAWve(wut~NH2 z`R1-3s~xIK`}y&1Bo>&v$VV#awghS+AUvYBE@vwf@-Hl~(;sirdKgBeq7c4L>%{P= zdySMjJWf>fUh&oueC$Bz`YrDX?UG{C->mbn*s+3KWGEOg@8d%oEU-dcOSw!@N6dj# zk#3OK(0mFQpz{!g9EPxK@bB1{d-xfd1jvgj4Ne?@E|*ty650U>ibsn%ty1aSb8bqk zOOzlc?jov-sx}S6r`~;B0PT*hj-ae3@=FMu&!W~`{zI4E;b7Ax|7WV9KdB+`hsMmo z3x}CRXGrEOKw^u`M4a#Q0QY?l`#z+Rc?e&u>6vO1`(whTjrn_0RL(e(quS z=Ip9%B6BOgdy*L?yB6*D#$$U}77JfLu_(GI@S6Dj+L8bd(okWg{*?~=;AWG>o>-WF z2`MPxs($n(7{KKAlPhb1hZll2EMK~;P}?NPv35*>c>+ew6Moupd&?d1F@PFl-Icsz zV}aV4L9=E!*LXQ-&qiJr*9_I~b$v=!=l<=-jqK(eyqpghfxLGPs8R^Kd$+uXTvlnv zE7H#r-5(TkrK$p(vch6O9ynWUMn)7=1JvcYhUe?Y=Xv$W)#LI&%qu(jUOK=SxoLpV ziZ{LldX2a=c87P8;Ny>e)l~I&A0xfeR+<>(5LiyIe5&#|vKbmSI|$lNWk{<9Fkd#65q^;FI3f-Mc3 zye$D(CNJ*5xCpa^9`35fOT|7i-^M-U>GO--g?%F`G7Z%7+|DT!k^HO@p{Wg6j&W}8 z1_gpFUve%_m<&z8uQaUTuH6%M5E69w1KJrL`Co62%ACc~u)DC3xb!5`@;$t}Dsaaa zHeD`Fd6(8N`fSF34NmfYO5b(%fuQZTC7s&3iEjp{R|fR^(&X_>y$B{52U2ie3XS}! zzZ&^u_ARf2?;363)9ma+aAXj~dAYy!`9)QT2Qg11^=I!|vWl=IXd^m?5+!6WiE;dL zr><7-1XblF&g6ZbRfmw;ht=6nV9RK2&v>}rmoQ+^X3%_a zd$i!*S!YW%y55+Xr_cp$UB!ur^{a4xdhTB{neP~bJj2tP8WGox>1Pnh#Uv|s4!t;W z|CUDRE1;Ua7nN2BABPW~2P3{ZpZQj!wBB=tOY{2d%y^8wrbNVsl&zubsTlY}x)=t9e1YLal7+SAbuZgPaR#*2wv?;6tcs?`p)G|{kZ;i>!W%j>@uSgmPsoTFLkBV>RbSm_`#`ZwnEO{__ZDLg0PQGmT4W1o3bB%g~Fd&7BoRnPmTBb8*ayfAPs=5AC zptWB2GQNJ%Xt>jelUp(Lxvc`p!YlqmtVlw`Ad+i0ntCwQ1z4+3leC1JAJ5j3u_?P{3p+HPKQ5<^GkA$^o4;YI>JJ(`(8L5x@3 z=|EFQ^~3L0#_NvDxlPw)I-3Zb6yF7C8a(<^N&dt>{mK>RHP*%R)x)ZZ!BGPf<0f#i z!$UV9!YF+>i-k^eAj6HGZtI_`2q7}S**$6fOi|&*fz;bT>b7Of78t8kSlWls2%6f1 z&@7I9<6gqH4-D@^z|LB-JJa_x4D9*^i1dK=EeENIQphayXGqb(OL_1L`+w1fdVE{6 zGVcH9`l7dnopL$#@C}RNtNIdSFj9wqd?jK?%`fTHZ!SPRSIF$DsHp`)NGyTZC<>%J zIX2EzN4p3i3IdkTlU`h+`C2g0v%9NR=L@9=#&2m+8dG8=8>;)6EL%-=jx7VSB25dWAm+G!@oD!3V!=nBwLJdBuqc$mjC7i$2L+^Q zJHbQbhup=|0_dYCwpjWB`Ko8*_sdLh0Mu>2f#j=&yOJV4a8pBaIq~RkpG11tDP%{F zqdC|1pPE)lcMs1BK`80D1TOJ(VryYN3;;m8?Lc8(yw}8)4|Y z@d$iv0iXpmVvUANQ2n2cot@UZ=s&b?v$f4I8XS?GcCb(T`mt|JF+6&U9r@&}C%I1G zvK>~76)`3;fnn8?nYamAZlb5{^*T zB@*D&ePb9dXoC0TJF=GXh;!d|1v}Nsgx9P*c-V6wQ2*Vc=Rjh&i0t^rz{C!1gt;zi z6deMIVM*+}4GASQ#|}wy-1P3}?-iDcrkPo)uMH!m02IK>%+oGm+;HMrgGdPs0HKeu zqpORRnOSzjd46F5LsmCb5DXnSTVfe9zENwR3a}6~P6l=zI%SyWNd5(qzV~?d+CqM@ zd;5kli6>7G1ZvRn2}=-vQ%-0v7_xlbgq=h1Tj|QKp#Y17+-4(tYTV#=QH3F!NQf+$ zc7&3n0y**kL;*DUp>JRi-%U-?qQ~l?(vzFsJ9YE9mYx47M*qM-CtM&(mys5TXGcIh zSuOc04kS&`(LVRg?;z?bLY?zDJ+h4d>(VtCw9~hwe2AUQHG70MuUxfjc z3{A{Jiu3_kiRhOk0PIHj-?aIIJQC)z$H|VzF);5jy`X5KF?uZis{efHMeB^@9KKSq zGj|E^9>feyD4LLBVao1|4N5=;8NT-+9BeVblXHLoyZ-#1`SbMh-JA~;0*`{dsDcVb z^77MjQ)_FzUuHA7;PVGT^_AO4prD;c%>)xu)45fha*hI+aRI7vbyXkK^I$DbCCEe0 zt*pE`xt;a~cAlu?JoY=6Z~o|f6N>YieSU9(Q*~*`7(ztoJS6DUaQ@p%jobOahCri; zFWiFrh4VL9Dir5Khu_nldHqw!RF@>|z;O2SCk~Z{15EC|*8hr;DeS4vOn;ooVvZl0 zkQCQgdd!34T*(sGw*-k|a==-!X=#zrD`sKy!c>V`@~lRlt<58%-`r=a@U%v5YH|+T z0YO(U>T7-RyvZ($g3%e4rEq4|7VvGap;KK73U^P3E?m0QGuuJrefBvFT5*2FQH%p+ zViu-|L{>iszTklDi2~dHqEM>V6Vl{ip^Zv@OXCNo2PqFzwr=k~ptAa=IWqwngW%m! z*YqD>ke0!ArcVQ z)lYSQUe%y=D(ETkSDV*KTems>iPrY6JFRgTNBL)>CK6v)1{nivQt7wXuta{CvyfreI#Mu9ORwCe`b@?DV*@h;S&=H>S z?*+xW71zw0tJ#-HW}p4$=G@n{&X8NuwvVxY!@$84aDP1ZjA{%`3*_9+f~kuR29l6; zp*B<{HCKdO&Q!V+=ZcBhILkg}7|B3S$e((~X!4P@fifqz zTyKk(q84uO3lT5OGg0vu9Pdd<4mv3_E|75WU^SJ0A(Puu%Bu?uE?d%vueGSW(6_aH zh#PN4={a=Y|2*#4#s9={_swu)G#*mkxv>fsD%z8~U|5D2K{JYF@D)0SkMDl!zO3j$ zuO4`5#k6;Q_1PiEMB{hP7RSyori&anEzFXZl(eUZ@;553^|SO)Y{HE_mNo=} z!os6~KO$GQqL!E{lDSa2Gv31~RB*wsk?Jjhb5KQ&(R#PEMOH!5u zrz5ZBDgwLPXMb-Pb&TB6T;#hb*PNuPVD-}t|5A9sK@8TplfR268>^Bl@I{-4*Y`Kg zL);iG!O!InC(OUNV6qLM$9s=G1EdL0v% z{ci5tO6MC_xPE6~q2?X>l_%&338X?~PByX7vM$&4sQBd^t);>hQ3dWs>Sy1Ng;^x@ zUZ;_l%_7~PV}GFC6mGRCTcOf-1xTs;U149tQ_d~|f1 zj9kuFiQGi}wOK3eJKao;m>r{g>WVz#!To8^nQ!aHOm@hs>6NXFw_E3=)KFsuS0XJe z67{!ATjK2fIz^H!D%lP5$`cRgAWB8e_W%KGi34AF<$LM{nw9Ki^jC_aDK+y!q(V|Z zlgx&U4HLpY;SKv@*n~fWoF3+Gpcb-10#sJ zMl+i~0M2&TCs*?_noa=}oFf;23y(YIM#O&x&1k12&d(YhsC{${PH-NfTr4GH8T3d? zaHbTfW){da89EdGV5jTxN9zWf&s>T24=F)>UiBWjaOeB{pRP!B?hl3LjLQLg$unwha$-8e(!nRsGZUsr^h62!TfhI0 zPa-Oo%pGnOKKq|CTi*-fnRrBUlx)%7iJ44VN&4`+eFEu=d2oM8$~QT3=B7bMQfF#R zq7gpK9HHz8#z=#^3R3Ii^^}zQmUGL=*u=jNX9tkIVF_$7vHc-s5ZL4YsYch(^C;28 zM46_fY}=q*cu&l4>#K|!K`GIDFLOoLOS?8t%QC$KAjn9748vDGp)S9n;pgvE_g|iO zRx*w9bqk!}%)x58pd7U+U9DYW*ku?TbK|{!pIhs|2~5=1sD+(l=`C43-R8d6ei}P@ z27PQ}9TP1hqez7P@;4ae~lWQYfS1Ryf4fVA2x#VAXD1g zouQjgt&SU8Jya;!`RFE_3HE!RyS(0Qj)fV#8h!)rfyL=hvAV06a_lePr<3lRT06u| zP3dj;AB3G{SXJNm?GFtS0@5M~g3{fkl!%l_HU81yvv>+fLN{4i}NC-%m zgh)x*bQ)CC6;qK+csVMIvh)ET7+5y z^$nGv4H>eipF5vvjIFf^f1Mv1B=Siw>{d;aieQipoB>=!9)QKb zU>5}wur;HfBQ38BC)r31PM<2U2|*9R56eeXR1}do(@A+Cys_9e5NohCGjo8sz|5Yx z5hwk@lMb4b$GiKbBQ0(wsjZmF9!GoF?-VgnFEKd4q6HlU1U&E;fbkg_UxSCmzgJe- zJnU@aR*O!NJ6iqGMm0jk0=)?6w?S}*FCs3U2_EJJJ`_{)xSivn>e%F_h# zyhn6|D!4q%te3&10mn*N;QpXYpi1oE0fo*qCKIpX;Je_iQqjT>JX^@q)dlNoo#BpGZ<)kHgU&O8 zgaOr7gCi}#TpYoCTeCNAdo!gtqhzm6UKZAqyL5P@C@~QcmI-1lAOr$OL=N}@(2v?$ z9=O85B^}(u`}BQw#7FMdi=!{QtiIfa-v8$h-Q$A?aZ-*T<`|7He`7=`fEAV$OZLOl zbecke=o-~=T|!xR7r2UeEZT_?AvDV8ywm{-9%=uVFJCq;D} zlL-)6auiF;-1Kz(Zz1@bVsaGV-VlS@uhkKJP{$yyIFRPpjLby+_m1LcUTE;aK)e4#uuPDHDmbkAjCt&7A*xWZ{?ed)1Ig=&|?9BJNhQqt9(qHDRL&0#e zM=B-6staB~Ku@qYGvk)vao=@zy|lmfed22sFVWExlP36+x+P55!n0{qwe^all&Qt* zLe1;=K0{M!27kTo#^$4~(PL^-WQr8U2!tn{sYAy5eO~9(5Itubw-4CjcSIPbC{>Vh z1>OTQnDU`~kTxE;5uswFIM(;LKk+H4$(8Y@M6NP%o~~87fb1y?2u5y3qli%;4u0=( z=rmdHO%DxSInbB!!UzOfJm*~SWZtbJHmS2Y6XUkU`Mi&^uWs*@xQ_}R$Nwmv(;Kfx z?s;efqrg+~^h_N)Flk?n&-*S8{FJ-=(@bH5jg0u>66Fs1Y-ri8+^Nt)-%5Fp1I04& z`>P}|qgVcz?RKBLnhgH{N(@Znk>4&K9(FKH-8=lb@aPdsa<)C5nDs+y5)_eRuX$s> z=Otb9#F6Oh=WrQvNG#5$i9mSo+8=C5PMC zlUWfxbhf{~mY}V;IzKMwkD>hYtDNuEnl{TZY|~8mU^!&^B^I1%UHZa5#xu&yBHi7c zQeb`PQ+K6*^5H#LjVzV+a1ZKOKq74VbG`#H-=k)La)h`aUXhc&li%#-ydpz17eRJ( zHIJeCZOw%KKMyW32TJ+&Z5im}z;oaTIL*h){b*s7+&4i}_q+;|LAwdQ@O5m_j8c;i zs~s0Jw+JiB#Xi~ZAJ-EaKLtRhGJI4GCeX(+8hgvA-pNt z$6juBrMU+7+oq-_#88w8DtVdLk;KVYEOPF5P}+}K5DT%Bvrb2%?tByocl&W;bQDMT zSZO>)DL)%e-AmzqB3RX~dr5$M5rqP1NgK?4W`6vzf3dcc{d6(ToMCZrhP_&)>s^2* zqaUUZ9Jni?z-+eK);pb-h1V(0pYpPO+NsyaY}-<__lX&`ak_W4tRpeWG!Xm&VrYYk z`<{bC6nWS6wg5W&hO4PJHt;9(i-yIWyMp^qR49ju#2#wQfh3W#$?-MM$s4wW?r!B< zOr+qx1_ywiyGS$keRe-PT=`AC7CU2*!qt2g#{cNMNs6Xs4T# zA%GqVE;5u2=*I@+hT`-5X1mBxo804nkE0Ji2Zsu;*S(e)s#-i2=j-^w6Ur8DZelm1=pvw4MxlTO{NB-q-eQ9);wR~Ab}?UF8-Uh) zj)FE{*(+a$tPHl=q}eS=F=EDIapZNHVtVIhe{z(jSbqQYzE^qI?6* z2f+w~6YgJ#OIU-T>M?+4MB0dVBPhp8%6a9=#jG`Id6 zn?h=uTWtD+4~UG7Q-(S{?~UkPL3?hghbW$5(jEk`Vvvv{#SS7tff<9_o+AzY>kBf$ zm3S1WR8ePakPyqm_yEy@BP1B4+PHD!kAvzBm+Y3i4RSJ6% zlybezFK=gqzP1utI$4uonEtCAJP+TG#{GzG>wzb;)Arz&ZU^tUTc*uLg{g1+Zv4?o zDJ^E6_YUhELdQnp3T-k#6L1yB87t-I;9{h!#&3~p`m-W zUbric`~pIL7HHrbpM!IIp1~(B=y-1;q zO-K~g0m}Vr(*!c1p619fx_BPRUs7aMlMf+8gLIu$7EhV@osiId^i>I>G)(~Jt5F~Cn7_Ub%$nvJNcrKVL%%V0S@Z^s+X z+1G6hO92=@wkXsewXU+-LH~$;+vAh+D-UP>ZgiRa8fA80G z|2GP)YB9T?-TQTO+N8)lk1^Z+5>F}!0;FSP4Knu!Sz9^159JoT4!f?oK6|V(cH;4R zPco>*{WqQLpyOo0M3vQ0_cW#UgjX|D(4FSsrB~0cXAgR;PdUo3ZTfPb6fRI%+KPGt zjgNS1!SkRm(iglz@EG~~2!?=rSjH~t^3Xj{FQ9dm;+{XR@bDqml-n970$8B;{6&(Z zoM_fxiL}6DClH~Exzkqx^`v3?J2n6!!)H58^dqDFbfE?%#BVMNe?>sla zb*$O%v31dEpY}r9p+2cco(3j;=tH`5;B{P{u0&D!sN?5Rku;P9JJW?hF@wFC&2KRo zm^W)c??q!(bh~UP4^J_u1cWx=eiT%?cVA@_2cKm2wFy?<>gE#rKZ^3qc>m`QIdkDL z0BUFibi?7!!{kpMmi~uRH6axhB3U^(W-Ei)SJMpGV$o4>utr1R^Z$nd%JKC08LHtQ z4^%1BB)kq#BF}!|?CFyF&qP?(doh2*POC1l*u(#P94B5oXq_0?)v|V7c^Kz|Ye41N zJQIGWiSNl_S^NPqwi&_pM0@d4Zh`m3*9%<5=TR6$D?yYD|B-aLS?fhm2US5;)zY;* zKBacU@=0&>JKN{5u{Ya#Jbb7HVrtk!A}*t)BSZ53EX50mH4)xQ-a`)n2Lma{6~J_e z79PQ?{2T9X{y*{VS79aakz-Up1>9iQ{Pu&PrQmE51Ijo{x!YL(dn>|i^ zlGJfw`3zZiC~VJBJn1au?aQ>fV!31b{@LA;rTMHYN3&?L0T+DE?p6yWp$p1iwO`3z zmT2`KJ>=uZj|PLcVj23jtCmRd4M9*hfWHT%Br8GP?==pJ-tUUQZ-Gzp79qqaN~aU@mM_vwFI^<{ zVA)Dx&L4P?(5RG`GaRktgv+U#aYyO)%4rVf2$#a#!hj%l>cGM0{;HU#;4#-=b)IXs z+!D+6{3*{w&yg(ouF${3`|KnL;p&W+&jyeRckufZVn4FmzFYg#lENA-XwfU^!%5V4 z3bRzkufy^2#AYf`Z2?>3PNfm>@u1Uzz|Nqq5LkT;^ukuKK7;}trfGWGC})qkP#ng9^U5K#-Dbkqy=1&`t6w|r+5&-#m(J}nb}wx0zT;hV|{ zk~?HLdScy!ohlk9(r@@)1MuiP6wlxydr;#&kRcD`O`&B&kS=t-VnxsbFu)@rCQkq9 z3LTN}KuZGHGXjr6J^CLceWZ&IUNccR@DQPp+yI~kAdj!C30(>i(?G=U`%4>&Cdm>61b&z?Pl4NA_B*Sysf&`b#K3aDFt;Pt!$qj``? z{BJ-U#JP=-YoOL^1LXDnxMEu8|L&%Mt-jc=x+=|^7&OY6d+T${Q^xNE4={WHl-7yq z3|(FxkH@yRm?GKsL13kFDl;mzq5o*}bf7@;G4owXu^Roo5xPfgF?YjT+!eq1%wLkf zT4=Cr8c;K#xO6nu&mTLwyQFd{>>m;;;6DE$p=ufX<05MK4C4Xn;plH17s&9(I#qN| zq_K9Ht{@c9GHrP&?^6ljI_}czcK(sz0bmcbH8222`m;W>)Czwi3EqQkYeHTM zC?XKH2|zpHWoZThowA!`^KaO!Iv>~ZWJ!e7Er|T$%x(a8ernDfIJd#9QEuRZp~^Dk7oHI+z<8@DCJ)MT!mbgRrzzA^%dBUtK7 zo^Bdjj6pn1X_W-DCv`LIibFM$RU1(=R>-Mk%sV_U)`uq_*8yQI_b9VTs2+VR)|gT^}`W zO(V~E^RR{U*Hv%(IqmxCA5-|oOLNuJ>X(vZLviSZXGT0*hUZfTH?1H1_7jeqi;lss z5MB$oQoaA`?K#vdV`FcVwTiFn0v0AGdhauOWk%_l0*K9_t9hHr#-&+~5kZ=Q*H9Yz zR!E&op&|C*4fgH5#1iW8*7dt8?sezlL zQ@7&Srwk6>eQ^fL*=$heu3Gb}!53IuBrH8XcA}y+O!6}?hk_H&w zTU$I26+?&(?%A}FH2h9J-o2KMs>KORxBBjtl5&IWL+neuo^M3%bSDuiicn9=~rFAxg2%HF=G9nKL=0an;m=np z2d14jd|qT{q-6JV>E)}8<$DG@bJrP2-EAbIKBm^RNJd)E)xS$}JGz*hRFfH2b1Hr? zf6tcS%)h03h(pLaaJIadK9ewN<~&brL&Y1i#!9ZFm~dPMx%++`Xu|g6WKgqnYm`2Z z{@MD<=Q7BiX7?Y;T+NZy!7j=cI^0pbeNXO*Dg1LD?2<6CHmJEP898Ca)TGy^i~NA| zz~QG7xKB(6(EvC&IPX%+XrQq>r1#1=<*hqe#2egRLKWod7~qC+8GIx_Dyldxqfn6b z0!gGmVq6&ZygLMbo_z_9~N0=Rg1yvq`_>^N;D#37P`*bT)u?T6{)J-ZWmRdE?S z639?o08atI$!9n{;iHyE3gSCWrfJ)J?@_fc{7x>rV1^&As1N71)XhX9+3^JG>W(z? z1sdyt58wKNKBmVzBqqoxUYVK`9)ZRU(%H8RJOi!<0_cuYlp9jeu&pXpp2*BQpEmOv zutqIes7DB%lII?}YN`b5uq$o}n|TbyU=&Bt@xlcZ%L8+(8`ntcKI{&;;9Uw>uQ;JO zTK}o{WQ5|^Pa>;tDFj}et%&dn0Yv_b7UQ`~4uD06{uu7`TEP@CcQqho>9OnLQ2{!H znV>CqE0qEU3!r)Hd}2$k2wJ^ATt!ySdpdl8u^NA|;QGwNzjH9X*1C`nP1=#?jlM!r z)_Lw+3QP)Xl8Y~~x`pqvst-;@_HcDLX<-JgN~?4nlFxBWVNfxT`HyxV3O!c;>rnTB)`Y=SCFAyt=3Ty< zl8M8*D?Fjj#cH#ezWSzGAmWQPnh&7zP^ID5Zk<}8AR?n+vY1sv2b01fm?%~SrEb=p zT9O2EAAqePz;%qSQbd*y|Fh8C!rAKhi48*>OD6&VTWemu<_r9?I}XGNsYUkwf(({; z-=zJy?aS=!RIvw%xNnl5U5-WF(cytgAP5Ta&e;wC$lw38%(A}zqnvBOX6;?$wfo=I z+&N`c5~~OS0^irOq}`z_341y+K?0o^JniQ2X297zKym5A<1tDEL3tI&2c9M&R}3MB zaoqy{Kwhl$vf@hv&s0ftVTZv)9S}<95u6HOC59%7s-y@8oWJ>jQrHSG;daAsm{9d; zzR>ie=+TYsut4BWfZ0QfoI{3YAej3O)B^s)$uBHNW_VwIXNC~p^@0_Qh(;h!W&@2W z&iXbEp+>1GTGP23u)W}dG-PMe*m%i`_8UShA27PvO&)ao~UXCf5%+X4WpJ_lxP zln)@WOhH)w$cgmoK(k@t%Day7dVZN(hZci$H^$Et0zUtP(F^}bL=)=i{=d63EcYrO zG?h5bPo0L1mgvQM%RH3faN2y0o_yjreYnH_;^}@kd^DMKSpP7Fl02$tDo2^bXS(9y zq%za=Nu)yLvEM@@9EKmyFVP6vh2`a8fFhx+v5~&Z2@!#f7D-9Z)>5*iQOn2e7Z}*| z2{?>VI`fQfh7;f2P6WEJ3_33Z8=OW~)}zkd-$=jL9b@z0c(pN>Mz;IvEps7X$HxmU zHBJ)P9CP{fT_6b}6~pC@D&k#E8jnp`n7!zO17r334_@?nwIOLrDJRTMr5*#BYlaJs zXWyPQN33;V_n2)b5)OTlt*D9hR?WG)?XQa|wKf=|2i<~IsBg36Se$~*K zfdou^uIpXtb3d59Zf;(m(-ke9+q?K!@`pg56E&&NPWF!z&Xf?y3JIR7ZN1Sf_`D#@ zM%_Zzx`ZH+P~(^M-oKFpIm&UL3i;cRD}9z=h#g4G@b|;a<2BLDl?tf*5l5wnppA(Q ztB$)Kc}q!lVhonu(rTg81dI^iEGZv>*Px_f@+7v)!p(o@%s$OWsLrXQC@%?RX9Y2@){Mc#hJPaG?TpiQNs{#<%DmJ^ z$xrcxC%JK%q03rTlgc}~SNVg(pH(MHZLNsHsJ3aDL<3f7AAH*4k}!@s)qB?|axv#1 zQ<2hqf{0XxO$w|eLRbFkWO}NX-?K7Hc5CUk2->kUHyYjBRM%LuOV07@s_Oi*?46QN zpkj50$p*f?_sHkSk*~j1BvGTa>zyc5k|hZWmn=#K^n&fYqD_~!A`_RsNwg~K5?B-2 zsPWwT-fT+5nb~wOVztn#B;CHonozBQ&yaNth^w!!06$g}M#O&GjjAf^+!j9F4+$GT zG#tHF4bHY#%+J=&UbV!MFQ^H44zTZ~Z8t8txb5oU;!OXh!8m7xrm(`XijuhL+IzcM zG)k68qf|Mc6E#}B-WeR-bJrLh5#1uP1r@=YTla4wX{<_FD0$DtFt>B8a1Hc@=<-6+YQDfkLWj= zcIdAb4AT$qi@8KJWovEnh0x@4u1kEMHH&(ZM)B#rM%z3f=Ov`wguXt^-Jz!fSwUrck2o?UKE337 zqNif+Gq0z_oHuB~{{BGn?)vwkJ^5m<*9>!C1hB<*95m^-2@NNHjs6~g9MM$PCzC~Q zoV6er3+UXa@D(inZ^MsA$thTvWiIX zkMjvplyvR7VDC$pcH$ap4wR{Y{dDdR*x?>F7btSBOCO)V811x&`b!R%W;MHx@g z{)E#;C;?ixi+3aa)wXc%t0j?Nva9}-P4g(YyE#xZ9vnh$QGVITonqglkfp_0$PDaarT+29(9ZMZC+3NU=j!*=#H9B| zCtfkvpLq5-_4jK1u)q5^z2S4h4pME;+RkL_@|X^sEwb+?A9;evSI3${R#fP|PEJ<{ zTaS^}yOyt9Jb*amB7+Yhuk|T(Ij&>xT&P3dCkbXA$%KMF&d9Azv8#bGV$Xj3Qh8qb}yHH)*zT zyOuM_e>p5LSdBt|U$~8|H0Mz4m7!Crov*waTl@Fq)6Ax`MEJFo>J5Sr@e@}}U()oykTe6_OKx!ZeF+ni50`#b=~o?T{^QbBM~ZS~oDIi3wI zh~fF$G)ecskPC|$Uf*yFx8K1fgB$;fWJii)IRdDvay)IOJlt);_$dvZt z2ia5arDz0@(0dtvPTYT8pMLV@Nd0n{Qw*>Hd@quRN!aMV5RYWlWnAeHqRkZduVMq z?r{dort_TGnVwprav&By1rja^a(Uk<;d(JGRl~s6qlmGmdIPuL>hg((K&c8iHMBd9 z6N-t0++WF(I!iw6F8f~RC8F_H50sALD!)@aAz5fXP_A5XDyGLX{!-O=Kyyk#qp&%* zgB5{&fMkjgMJ4`(LtA-0D5CoAhy5u}EzEJ9Ck9QiT1ul^S}$(DrP7#wK`av>hjv+= zFN@gW8O#K}hDd&&vSj1y`|+GZ+^CYix1|NG2V0HIX(=T(#dpRe&CJxZUeqafb$GP2j32&Il{`pYrLSxaB>ML%dSMfh~7dlv7 z0~5!tQ!e@i?#t}ex3&_sTc(%uWZ=e+w}V-Q;gnKySI=5edBm0lApx6n9$pX})S zFy6O~$i8l((5sYDfJ2I8PY$F*XUu?vQW#pq*vthZi=y+xaeET9e(luF~B=~a=?`nU9j=F73aI~Vft7o9XqMnqzq0|rDK~D`7zosHM~QfU@y0$Nt>K-5S=c6I z+yBY=nM1BxoWbhJKinF&vZtgWS3r{a=E2ZvjddN_f@kMzCC(Kl=42C53Ki)B0POvg z(y&%-<+3j0(D`1vi^mWLl**C^9-(LXvki+`1(TVD6e(g1$E0;JLw%VpzEJhax}$p zUGGm9v6(3b9)TJ z3}0q8m}Tzi5h-LitVk>ZUIu%UoH;<#7*-&=q*F;3%Minw8L-3WAK);!Y!ZMjCJMjT zTmV~JhWy@_fX$z|W@+Yh7aG=TEcXR|veR@!H09Z;JL3F-wkR;qT7a0b-7CI{%A*=9 zml=HZ>|vo)Ezl_+TRq0G#CM0WHf&O)$vN(7DGvd3>K!pDop~aP48HQc$DHxjmX`NE2jG3J=O$$s@!jg};d#(&Hhh0VdZD7T#=7`%N=L>k zcNnKqt)^XUi4o_JVDA)`Rt%QADsyYW)LE$kIu19%ehp%4Lik}oqhBB)1@R|51ergF zfPoxq4mog0))=TA8ozzJgycaydGZm<1dAl*qom9D`>_Y@)$Td2W9yGT7q|;@7o7gy zu}|r;lHo*K6^mkgG*_lWg5na1lK(59(%KmPXz2B0T=0X<$ho)P3bVytjO!a$KeI$7 zw~vjVhhd4!2K~EbvikU?7yK_o%CYH+&na}q-Gd9j9Y6Zz{ z4eY(t@=l8tC)yyeXJA8L8<(Xfs8~F7hFx2dGmR-GH2>G;!a~|wqgDOPi6N+56!~oo z);%@I_P)rsBfowN@YhVisDiM5fBl%yS>pxU+wk3sg}P|NjwP)$3+E!1KN~G6=}pmaDtq^eg{D>ObNelY(zrV z--0JJiv2)~1j6cfyoQYFgN-p(%w_iiIg;P@4Q3x53Ds z>lb=jz2RHmd5+8N`fbbW`Y@74BJJSTLHiX=JYG4l`qrrOeMQocx0h~pVl;(@ty#aF z(Nq6w;Cc1V>;{W2w=F!)>KidPkZc$LU1DNlA`~=`#>pa9Aed!B@)!e5CxFST^DGiP zvM~4r%|pg+4Gc3u(UHj8+1)KLVSBliKdYZ_+N)w@Q0>aIA=K7++yl#RtK4QrPIPb@ zdQVT+ud_fmAbT8s7V_Y z`gTh`kdT|J2*1A1@6IpsJ%AV2bsC{WK!3jA4eiuSu=M8;r!)oHx{{kAp0P}%aWEBPES>P zvgfsU49#QZM(r*+c%+smoH;C_=-;R{^-2&}E~7sD`Z__S5S# z03fXKI3z{p*D!rULwTRmX8hNU)U+s%e5Wj;OF`h ztiG}lQE-c=|9V0Djd^waHZB_803AMl=SSb)Nsd2{z(7tm(Z|(<=cV#SDoO83X!>GY%Y_DIO1<SVNs6KEeQ}a1D$ppY)yxm-4hF*%0R?c#9m_UW6eeDCq;Dz70znjf)=I6;+9mK`P z8MxK3A3b5i`yBd{r`;G!@2y`;Ra{TOM+3~)BiFxB;*HLn%wnCY?6;PL@f;aT%WoRE zArTQRz%(^lJO%waqB%t}8bOU0 z2pL!zi0~Cm_|WS=2O!gh5)eHnNIc_1@|%O@{$y!DKpWyF+;jvH!GAItqepKZ3`vD) zA7`^`dh0`9@_}~x)L1$q?11J*WFAxSFxfAlJkM^kow%!0D+nJ%o)GQJ*_S}DUTxcX znsIc#!yVD+npR+Y#qwDh4*HP;ZvBYm1)l}O77&XoF{;WLq#B=FA$p8 z%tsE|+6z!6rF)831902^Vq_tOj-<+L5Y($Hl0k5np>%pqOHp$9WI=-}>t=5N@UE`* z)odja-iCoZk=rnfRmSi77eP7Ff1p)Q`FzY2UpTy_39^pAQ+?>J``#37Z{v{M|95e} z7tcT1($>5eUK-4@T0^CkQ+6vlXqGNxmuO$vX&K7Rz4PuzZ zxA!|eNpau060oK*Vj2~~k3qa-SW{o5%xi^0{G%@;f(pctoau8K8?ll%!-m@v^9)9f zo(ADWK2K12-qh%uFp^2FU1W%-Q*y0%XNkAv==U$IY%tJM6p~F`8AdlP5}6_55Q$jY zD<<#rv2mj}R>!pTIA^+M_IB!1sL$8GH0)vOerhL3+5QUgv>`p;#lx;ztPsj;JC-+^ zB$x&PvmjVrsYc1ovrEVY%z&E91{){HVov^R3mXaj4G-t z&87~FYkD`EEn$`DdtoWsY~p#YWj#Msr})TgKJPk0gfZC$kTGx;ayy zpvE>9`UKTmR5qU!`N35yTq8H|Su|$ukkuTUr#Pvln^CBw&CZ4TU;IIxY1xt0flKrw z7%k<}_C!e=n>#^^A&rdlrz@~cnflO}VaF5M%L^*ZOr05D4%+q@Ayw@uU^W2%WrU>P zNG!)E8+<2faKyG>P;{-$VH>QLuzEy4*FkCYYCn&gaEEhNrPcwKRuL%iQo7XxW$8~W z#ctnrph~t#kNBN>qlF`Big!msHH9(QemU_R<%)=9TnTJ5@b`lo@@Y-JRUU}GsZ68T zRGQZvx%__k-5XqvVgjwYuDr;1WMCZb@Zf*AM&x$8=Ogt^!QfcMG-*r##?Ksm_cGqZn6}j9jgRb~v`@n5({bA+lpznQ?wm*} z&23r7hvpJ{>X;^5@?<8W}P)(njxtLE-o~;F9TYpW9F+-o-7EOc&$cwQ zTX)zOsotUa@fQUIT$Bi~VaVDA_FIaCv*KkG{=!B9Bn)$!kGGY}oV`@a#DPFWki(rQ zR?-do{a@i#`_aBb&9SrRm`;PE&F)Dj1ud7PlHQd}i!c2N<$>Af=YX!ie zZQxcrAMJRkSi$Depq$3HDiHZjS(=fC(cqPa8&#!D?i|#sZ?$FUl-WDg_GxV`i=Jn! zW{XZ85B${>_JJdxQaGL6_jEYelU?g%HqCeGz>wSfIGIw=GxkitWGnAEyEb5Gii>L;Cfz2(i33TQ?{K>w z4-;fzxQ9edrOUM6Xs+Iu7?!FfEG4k-V9A$G`e?gzf|0@GUInp8f)+{`SfK&L2GEZg zxRu98D?{nhTkVc*w})TbHdg6&MPU%P;ksLt%A^FEU29+G#CTnMxuv}ILdc_oCzpTk ziv`@wW;^6O$S|noNwVRxq&A?e6&4xkI@>X zyX)>)so5GVev}WidqDhqUlx}^=8fuQId*w!qFrrE*uTU&`ty3MSe#JN&8#oA#yRiac}sLHiD!ABoWe%=KzhLwJ#=~vl<1FstX^Q6az~3R zPm#g;{YilA)4`l>Wyg;#XeqviVa&3o*dYUd8LEhjXp6H7ONgBUs>b*-0@l@ToK2s> z0-B$V*0RUJ2y32GOL8-1TQoGtT zI8jVz^m^1|?&7?HMjIlpM-i_Q=Vw3S#d&mx)gj}yi$g|<-T=fE7Zlfho)k@+(d8zR z>LvKKki4ZwG(sPIV`=KPl+w#_Qe}d%QR>NenVs~+RjUVj1zQyit`1r}mo<#?nCM`E z#DuILV`aVG*|Mzmc*b-O7o{C(L&XPi(BKYOdKZwOq$4WVoxQ_0^X}lY@Kts($YTOR zN^5r_zxo}PCXo$`d_snuK~6owq#yyN4&%D%0%L7Wmce!M~ykj@Q z)MF05w+@8(=kT3|Ul%_kSmbfkOsL;wHcgz3^O!4&1mJcPHha6vcAKmA!;T(tkt6;Wch|N5d@u!_aPIM0?+Vc=%IBqjNg3s_B%&S}AmtfQ zT81lD$9x4GAqFM)`&&DbfcJ1Fx75z9d$+tQ#fX&5P=xv$a4>}Fa zP@s2yaJhiq*2xg@EoWaugRsj{^`(I z>8KE4K;Eg*BMS`xd02qDXqCKVSjUE}s9M&;{2e@v+pJB*?~)$W+_piXpo0y+ACluc zBSHigIC(^RA@IO#E8(CMR;-`#zhB;9a){vMZ)#=_)5l2^(6eQ*K$(^ep+$0TjM_Dj zezN(#J?oi$n--skKn%xv+h)vKHSpAc*lCj;($hm=ykuO(?@(C%y2Vz_fE79#ntV}* zy~`GdT_1!ebXvZ)u!uj;KZ&u1h=abd+RcD`uPI;_S zd(^<2=h+bPKLq405Wd3X?I)X?;ioMLF-lJi-U6`#mc>Eh)Y@|!3R9o-x90~p(+q-2 zST1Ct_wPAK2Qzy^(k=~ztQdc=oYHp}4Rhd`r=28E-SoO^wb$~;4DYtqlW$peS1azi zH<+Li{5%{85nVorXTw0daPdTp;NEhK2i#7HX?`QiFL&nG@q(#Fm?i}eVVtnu?y?`RsGA%Myc{l@2HPA=txFenrR{>Z@HSsh*a^oj#hHjaVZH&#sOQw3KB zf|3IfH?(Mg7W$%8k)+v%>njXpteS&e;?LbRX&rr4QYaFY9d^yuV8f~`Z2Ee!RM^bc z>PgvNJ)A24tV;e=Rj;!lYfM}7>+l?TWAxsF@`N>AGq~QhTo^z?%=~k{sq??3EIxg{5Io$#MsXxQ*nPBq48xUK6?5TbdKWv zkgQa=Bp@uM^b;y>%{Ugpdu2la*v1!9(|?kv@dw`VeatrX=g9@ekbpkVDqXe-!@S?| zP;P|5TrnNc%OlzP_Da^{d;ZjJ9uIOh)HDeh(RMG#U<4&9XuM#+0t64j8-d6Qg(XqW z?b9`bn7-NzU278DY7eD*7i3w=x)WdeerO6)U(jN(yJ6B$n3gls6YZlqZC4a+SANP2 zkGU^;!@2f^L;(isaj{+s{hkN-j3#8`<^yBswBEP~aSh`5o`e6p*IDo9$>@mD^Y4iZ z$?iKM1kW}J?OSrGB0k=gKDH*O4zo(0a63_gTY?2%Fqi6riM;>e1*>^bJfKZWaIlh~ zc;Pmz_t3l?b$<=}wTSSB?xHINV}xFM=v7qP#Ao_0U)< zr)Vq!Nk&BV1NaXC8v=l@|Hx2w>I`ACKnPQ8FXi9y14Bh35C84nVwe7}g_#05`S=xn zcC|}`zr;rbj@pCQ!}UW)g$h_m-9OjvXu8IZ2i<3tS?7iw-9R4A6w8b~`3s?un8vXK zKpD-NojYmc{}@zpGES07^jj3oFW>7<72jQA>X6_y?KeeoVhNfMKmd|?vA%xb*|_6* zR($M8iW3=c|Lp2tjuDkqRk^8jx_d6`t?o+cyb#9>LVWZ$7EarbeU7Ve*89BZobo?M@0W4@g0*#np%@7+2sbt{_apxJqS|Pk zoU_!Zp&c&|T)c+*rG|6O+CqgF$HgK^#u$o+s%9-sc4vy`v)W0XfnEa-SWj$g7;Jly zZ*jyz*S`-IHjxQprz!M8aMou0GgX&sL?%zkzRzy-5yCd_Z>^T$x@cdUtvoUaj#86W%`I+_!8EYlu~y1Uxd?8)H`MSo`V)nn`5vz* zFYb%^*t+#4w^hi-d0_zGv;o%DDff-i;?sA|HwjR31QXq(G5Cv&WLD?8Lyq@jFK4Y%uCAj~aUqp~bjWpLkC!25l} z&VHzhLCJcrgA#3-3-~;$hS;dfYd_W6y{YYT9pI1u<%fyG~jH zvr?r5&(j84S#_!Jkb)$UFoaX%cviBaNZ8>?UaBfS5GZtCi5XEbNUAoIE`&NHqUeK^hRC+}l9 z93FXsNF+BfuC%Zka%$HT$6-n1)Wo?H_ER6{PUCpW4T3j$7`ic7-EXmdY4LreL9c^J z*0L>@`%&M|BT?V^&ghZ%-`KQ_-O5monHaIh;|9ZTN8b!-`ELVl;CSPAwh^?YX8^4+fWebJs75ptoIf^jaU*%)8XET5ydlO_2oYE&t#8zopMf=zP0RcUE z((#R?_IF%27q!M0g;A+yaHcFRhwZD`T#<__%jwOqV`J{fB85e`5wlD(kxwN~Nmy7})mIR&&Mk)Gb&?3rtj&92c}8fgnZc z*NqnM^SBJ;^l+>r4rT899Bv`ev2*iH7RlsfimQFn(loxdaEkk+@d#=7U!M~V#%-m| zmt-MSDQE#DmYyGe$i7?oMQgVAe9tou`%d58qFV=bA48AnAh!_|6(JpDdiiITNA>z{ zJvdwEQC`W5N`3mwq5(kTd8gj>iFHp!Gd1_SO#8i1Tf8sP-!!LwOj*(x>hG0Sdd8H# z)AT995UGs2@_}2&wzJ`hT|be7$0WVC)0{G$!3xJhXyB%8LHi~eL)I*icoXDaWGBt{ zYtIc9XeR08)F$R&;{9VBPvGCPyo%;5XB_O9=)bkDh07vV?84!(U%?t#w*QW~Jv>d6 z^dX2;5plzEGRa7}Vc`RMvxzsEmnW*uU2CEDH~$c>{(>?mo8>9;u`GXl-&Z!3?PYLT zqoC@(sX=zhs&Sc<`{#~tL0)2P2+mpdWx-Q|e5-40`+H;V2TitHVzl)e*q2S3C_c>A z+JRf%m~*us`f5-WMV3}n;?7!V_;J!Wh^NlRt=6n?%sr_~C zGDM*0;ONeW(V&zu8p?+UAGTr{9zDU!D(ZUt+E+TV{o-3XhsJAjSwD>t-7?WJ`qBQ6 zHUs(VO?s#3m5lc8lOh!%^0;oo=uh@q=sh*iMPzM%ZD(IUqC{N_N(pns!%eMSd?URs zblIA`S5!?->WaFQ_G`zJOY4R;kEHqJt>c{JTZJ`}AzGCk0>{+=TEks;fR0Q7oSgWO z6etLxVWD3VAwq~LU{c=#?@`Tm>qStI^3w?1PnWnVDR~L8VsY0WqyIH&+yj>}l#nH# z+4C#N#&SL4jd!R=#&2fxJL_qFcOi;@BR<2es@eM`TWqAUS~hSNkZ#L{7ZZkEgnPx* zxKld@?#TB7dGM7Z;ieE{&I9q~2-h6JGBPk`tjBKxNUj9T;s|dR z4Gj%BWg!+-WTT9Xj70eWqmNNklp4~{6d=nCv3Ucz=L#R+;2?LdjD|(pPcH6^EByO~ zuXk%yzb|fJF8#iQhJrA4{+m$`Bf`T8V7zI~m+@v>YwL1Ix!w{jVcuCBmz+>@#0c25K3m05J#=p6D%LK(TYN;CV zHTf;~zi$%QvLm6!vGoXtupx-1Mz(dxq6e-y;817g=8(ZNGW580>sAB3_pvXOWDHD9 zn2-}TYBKlj=`>Pg-+>WzSZ!QrQH6(+%7N9SP+d)XLHDFUHA>U6>`p_)vWgT;^8UpC zdU-nbf6Y<3h=8bkeSJ|r(ND$SSW;5=dQK9KjqwqdV}|)l30+fZYj}(U1hm1G%z6&h zv2_#s6!xq^k60$!5ymzebSG4sLj_~jd7UEbs_qium#_qp4u$&a>E69d3PEj13g&_* zOw*9@?BPz!*c*_32SLmsANZ3Xx=Naf6bcx83VLVx*5LKaD?CJhX35w-&&r4O&-JPL zQ>L_~-^6<`__-q%SGj5lyU8+jPJUzcEBtQWK4>Rn3;Kovg#DM35!`tgJbm` z;yNsGL5CEgT*YMW{3F))$(4>kn_nov2mR1XLc$n%O5m78LEwhMf)_H!F$aG^o^fqe z=iJ`j9zqVL%T$z>Mmu-z_PJ^+E30#Y>*vBCsEI`I^M#;2aCmR2_Ocm1qAM6|?RoK% zG0jnUMJzO8|I-E4Ie$mF-&NrsQil_1ody&-z_L;!ObTa#j< zBV@RVUo|%$yZOrFC+HSlKR6@1j+;nUFZ+KzgwUf;*9}`D2sIo}zTv#6cElD*q%}6e z$&@(Z3DtO-zAnR;V44@SeEW_yhtqod55xHi-cc(EcDHphh(O)Ed6N;|dBFTu%teZ$ zsB&zgE{O+H8oQ#Qh%a75l7?SH+5-SPa8R^jk8%AjBl*i2`*B?h(OnLG>QOoKJgy{T z4#K5k8&?Q)+YJ$Lf>bOE(`?X)aCFHu8LXcIZUX8C2}MmtK7kB8bPb zSdNuFb$#uwl$bou__zPn+*?Lf**@W;n?@QzL_$hL1*HV(4y8+_K~hq>OC*#=Dd`UB z?vPeWx+DapyPGrn{hf8z`S4%o^Kt0{7Tdj_=eg&exn}N}>$2;ceURkp8Z-16he@?6 zAU?43@j9Nxcrv0GyX3hx`+Y8S93Qasoc}CwOp_~x&JNCRAmjKq@scpl&iD1 z%gf3lVq!3X49@|M36V_I!q=yY4qLw`)iCd~u=J`imjFEhaz-WDb?FXL1Z{M5G)~Z+ z`@US9$ekAamQ^>-$V(@Nd{yGKQ~VCkC6SL_MA1K+=cnIYF|7*rxOiV=YNP7bxkUV?p9)sMM6b=W9_jg^S!uZPU2$JFR-jKvZVI($j5YD&K>Fjm#i z#S@V;Hf^h@Y&;933S>8|Pw=f9gXN$bLoSEbuLaZ=5Wh179p~(A@M?qzB;7TV3--0H zD~4tv*?`bF3$S0?Y&RY+0B1xtg%6^{YML9FO~XKZw%9Kqv9#J77@~Ng^UkE0=P4md zQ_eUdXWZv_9g)>#9`&k@pOsoQ*6sb1f;Yp~DK{?v-u^?vN&Nm!wU77_iTIkGcWI@U z3QuvdIth8q62r|?CuxmaEHvy>@+HOP6#+}MzR2qb; zH^WM=-b|i~bE}RlNrvHDDdxQ%{2L?oPYjcb&adL-<0puFk8hJ4U>6CXMaTMlwj*%* za_=4%YXGetL1EfSxx}qRR)e41Qz=^oZ<+$+9U8Uz#%$P)6I#Rx_xETQEdJsdOZ4Wb zhFY9kXH&o5iuI<;W$UOoVjq7;{xpvHw0yFvM`0+0L;yWF&pE^Q-E4uN^qr4Rs@E7P z?-dbmlO(@n74^YXc~y{MSitmD$-;s`?x^|OrxYhACp^um(VT=g&1Li1>d!Z)mqW5r`=m# z-JSEZ%G{iEeh~qKRLFLFddL!ue`|afcus`dl8MfW>awBo&MyWx;_d~kkHSq|4CY$1 zI>oR8te-sIQTygDI1~@evjwLIX3dCeNH6Qq%u))=zEV_@?Oik@?FW&1YV}OPvkdiL zV)1Ic@C??JhxNJ>#Rq*}<__m?&o)y`O%5_<($rkVVlF9vH&f{iKgny3p>oL*_8USq zM7yVJ+QNK6_ZC+ojN;~f`njIWNKUXWi9TZcU!-id&n-ZEqWBVh+>8Eh?mjpIN7AUr%Q0UioV~n8jG-5sa`c>EaabPT&na{m@D@1s6uei zt>`LC6RXyrB=O6Pg|8b-ZPfar_IRSuw=2Ge{fkB+lG&$=86gtzL_&o?87Gs2(YAvg*Q%)Hutjpu^*4P`NP`0v6PLD%|hV(hchjQcBR5E^@?8nh54s+SBqKwikC;PErUB z8YF#5yFQ@uHW9;!Dty5%&S^v6_pUXL_leL6N09dnX4*l_s+#*h(E?#-9jV8m@2!m- zAJN-&WgKk%v!P@w?B_b>nZZWKZc?mfc7+x104+phIat$SIfeYtS_yu;aeca3m~FRzRkk*!`!kAo-C(RPn=mX68uQ+0%I?gZ6v;xNJ!dR z7|)`Il{m6nf7&6d?|X9ge0O?Eu``bs2hlw(G`BD-gqGq1Tl7hDY;F4X>x{oATW&KS zh{T@vh@;Tj%D`>DSk^F&;>%|v)kq53jW^v<`Z32=a3C1M;)+i-OzDJK3ZpG@;ZAke z^b#ps_h=23&VT-KRC4=ufV`+R(>oQt;|p?+m&3(_UK73iiaLGxA%>J??hUm>+C9R5 ztAUcmw-+DW>1v56)rza>r^mK@c4g()KZWt^Wkk=mnGv=6O)>1+OE?!y`ge!ugNC*F8H=98 z6-Pb~@0yVVp_uI+H2s>tyrkh>t|Em;Wjq@XNz+U_gap*~o`sAHtXB{i=#-gf>DpU# zp&C8@SVmr{I&;XAE>uI%JXlg_TX(6Y z7O&Y}aH5s|OQDl@X`L%Q~o$p1!h==zA4?rj+Ee{ zy&IRLua!CRN8#qs&QAn-i0iFCTa7*+`UjpBUFSC(P;TkjW3aC_&#Rc+{mCng?ywo0 zyF$Ao5Lkvgr@VKx--6<)@dFq@9^PN;5!W6REOK?Y@^Dx`RZMzsA$edx1KI8l|TSVg3 z^GHH%O?cf=FYPH!7SnOsa;~k?b+S?EbrDAXh9>N-M^CPBj0fJV3=bbUJnTquZ6>Js zGlqr{or6&0x60@HWfwJ6XOg0%5s>(io^q|ati_ARxZ^pw6n8MKd$$ebnEMJ3 zqLZTFkfu&Yq!9=O(yh|}?MRxBj^V;FzM>{Ff0do}L=A0$n2#TYqxtA_ao&>#-Ej8_ zvTkVZ9OAR-)%a#YIZ8#z`Ha-vaeLzyuG2s5QVIuD!+D;f`)Vc4ZBi{6?`XZZIdV1$ z{ufkjmmIi{7!xH*$F4H+h^*e@WcLM=z6%UwJ_eCp9SZy9E zF`os~Z}D`-${C*c@p{DvOChltdZ*mtA|{8|$`y&ipGjpS{@rB|GBA|_>x|52rSq`8 zDVBWwtd)$qo&8X@B;i-9EjKH34SlSyaH^B}1d|DULp`C@FXE?R&L8H`SYQ0?9gF>4 zc3Mk$E639ALTF1@>4;J*B^x%sS=s}HrKI*lvW=g$D(1g#WSuI_JR3GxQ`P$%*szJK z6#a!R?{euA=GkX~%pPg-CgO)ZpCMoQ#`Wwm!3|V#lg`J9e6G}A?^LIbuPQmwO;$)I zna_Xejy@*SGkxoVhG-EKe8j#lqyMdsX&<+%&t1qTO1jzbn*3mc$+J;Ml^ye+ z-0M$1(sLqzzI*ddejDJXlQ7q~{l9Al#!3*|`#o1S-~YdmoL9@XHNV%tKF3{OfNwte?7KAR3Zp8zq>1Znz~1x|8Tx3caz{ z?iqQm!ot4UpT^t}_7klK5xw7QOhZ#UY#$%rco>pcU2*nlN!U5hSSR-a7jS_BDWZyg z$-AKZw;|+%coiO-Q3dR-^uPUu*O_rgcFFO>n zu1c`PDA@>&$;s6tYg9Drw|5l&?YpcNldR8Fu^f|ooHY}lbXpO6sXS@_Ux*xx=zim& zXeHz~{Lv_nkqu@*&RkGTr@jibsRifAslcFv!^3}UWzOVK3Vtr&K zEzbCCn0S9cj?Ly~4H*d)4AI$A%cE3tR9|d=h*5O3!NihR#wdI8FXK!1ku|R|9+vIx zF-9*!$X3}zw;k$!?HKcGGWkeo+9AC7r&T-%__yXjTLq?n5c zL|u0B6=*!*KD5LOQyxGa2Nx877wlRNz?JMW1e8TfWB!K21w(ztXUgi2+x#TA|In~D z;uYQ3w{P%|`$M(el%aIgRn5Kqg<<_oDZ!wWJoh_TomK}^tD?fc)THfyUDWK%mn#v4 zRT1UdbN5?>E%^OfJ;SW^zerAxWZpOQYpNlk+FnvYF<;-@=;dX;eXj-IY1+ovH)q9fyL*A^K9X|Y`(*WFpmFBU5v&w!c2iAv|&XUE&`?3-ka zDt_^_{>|R0rbNVyzi}HIwXl*R>l@uzAXcsVVPM4icIfM7aqZ{1Qi&O%Vu^`*JN^G~OFFxD?XE{&K&j<%ChIhKmd~l9&!Pr3EzDw;pP} z(;V)~_aze8WI&Yg7n+5aCMqlqn9fJa&i(XgY7VP!3K=i z!%@WyovUJoO3HxSALj13&l@KQdWTLnX!g%V`5B~{xK$->HP_Is8!MOpTCKc^_vn0t z^rAM;m#B6L2f(=oZaOXF3CZJ}{oV5#%C|%F9g`0V8mmU0?UX$`+_2Fx4J|%S6d%x~ zn|BQxBZ5i=t^|rc^9aPF?B11k<;($7<0Q9UF0;A*^uYG@fr2vw9UV%e+o9d+m4T?_ zeEV?=Gb-)defeU_a@Q}UvUtO#OYgP&4lLFF4Vh`Sk@o_>*N z$vbgzgBu(G88`r$!!44af>9nrbp9(8=qVx{FhWkR%s+~GtjdOje063=l8L@t<^T43%j1*e1MrwQqc~dolrdXoHDM`!KFLdad3fxWTI2_n|q=8_*AgG z>CA+GLUOE#3|NR4|DmM*bc%YBHJ>(o<3X`sTV%&nJ7Ma|`6#5`*mBDP%2F~%d#tS) zA8U6wqXYwa8}-EPqAK3}^(Zzqdmr1FXPRfh863>4GnHIYd(#pS*5h99REe=WXXcIzpHvq&vMWb;ANo1jr5wWzz( z{=YQpBdR^$cL?(37q!)^KDl|l9EPKdkI0?(wC%Sq_=8?AN+#|aeL28=^vP@9g#cpG z6TY&yNhc@>*Xd=3lhuL5qok3If3ja)0W7X=#%qgX>W--nsEnJOoph(wOS%(~h&`7@ zTEHtEolvC46pXiUBT_+~4bBlnfFx=onU&kvrL+R=vsVm?Hg9jR6s7d4IW7~WFU~V# zTKd;|W#p2*xhsC}gcQps9eiyGvM;F$UR;>Wxw3dZCQvoOYnj#QQdW88F86&8xtS}D z1~z6=nQMZAgoo#sC^0<;@dwYxx!h~BjOt|Yb2F1og${ogu~AAlEh-h<(i6`+I+QR{ zLp=IsHt+_v&?mq#Sx916q@1F3_+1FfAgzLwoq%zq&Ex@eLA&a{E_@BeUfsYBskH~MMaG-5y{j|jUgx1iGry1BHC@BkFW{JdlRg+{EBJk%YLgez?Z>3xd4GX! zD4Ss?9`rMb6~01DjFJ}kab0<8Db!igw{yvO(Ubswsj~yNr@To>YEnN zeo6jvud({gqYCa^9(%s&`#f*oj!70b))7?w5G!JSIN5`SJ2u~0pBHgj8L0H~ece6n zr(;pJs_437pQMC@?CSa7k7WJtBcUG!mx)WHySuvur1@+?2L;jMi-Ef{ruFVS@Kpb~ zgq^rPvy8Ce=4|MczROLIaJ=yy2oQ@k(>9@*o9$VLI@;E&@*5N|+{&jpy(lvPxGeS8o|T?j(qi;~Ra z?z*ULm#BVnpHHJR`46iNCa4)ug1i=Y4ukH!*w%3;#3b;Q6#JOSEXf#^9!owR_mx>u z7%#2jD#LpT@&aUOn78aMnFRxNAv>vIvdy4cN2Hd@JmdfFG+Pwzl#x-yW}W>%t;Ehy zN)!ZAQ5d*)&jmyb*f|aKnXjIz)y&+mf^5+~V^E~Zy8G%EJ zD1C)uxoDTath%2k3a2bPgnq3Jc*NNHBU(Q?i_OdAuCJM=p(pvc6t`NaP~L+b06zwy zs4ZmAWqfQ5*JWKeCJA!}lF_sIHnEH}Uvrc6()7|*Hfq{s6 z+^fFvhi-2_Xq&eQit|t7UxgHm$MMFKy*{E`zqdbnM?7_D#`6KsY@flJTF#G-LTcPK z2gQ~W?lP#E#rn$p?}JN~kRN>6CTywC+B@w+1ha}yngdTs?L+FHS6SfiA3BZUUKOHo zJljz^@x*-WLC46jI8S(+m}2R}tfyGg{RW-{GQy-JpVSxmk(Ym5V$WJzxH-o>)}n5> zky5KKmK5L=A7C-<`!(fqKWvY)L20p`rcPVvMw%6LxIB&+5x(%&t0a@T{Xtk%|3CC) zbseBRMnYG&pFUX>Ha3lNgvN0f)j;MMIjYRZdtvIQP`Gm_;0d~*UI1Z&><;^C0ajj% z$@ubK^@qkUeRJNGB-o%JAO=fJSs%|>2QPGY@`Z=VwD1h6ILX6it@>zK5a!LURr~)g zCO=(u=M)Vuz)()lkjL|>_r{WFid`L|k#ny+?LFQf6%D}MQ-1JAJoToX&A`Vi>`&f( zFDN$^O-*XM;Hso0Gy9~=Aj+lIF$~d&Zq3*7v019<9@F8H40V6K(aCs96zn5U_q#Qh&Kxg<#?=06RH_sr z{7W)P#L_cw@B1T0C4TIO0e2KztEu%)Lnw(0jEYWQ3 z(R5E43^^dN;7=8PKy6eRYBG~!**K-MZmh-jc(YJ4ZesX zuynq^T#?3UKk0)DexFf#&h^${NuDR+*>z>>p zEo!6=gmrzu+e9h%D+A8%;0RA7C-Ue5LqR*V`>FAr&-tuzayrh2?wU>EZ+Dv zj!tr*-~Ip-ui`nwbX?c0&(#~r2h-O0iobl;-k4l+ysM9TZi!c(EPm*>{|?;ev!ry;#)&Mp5`|wg@m(=&WJ?mo;==RPOq$G-A8+wNJH6ECd&a>nv0iHWN%NoF2$l*PKuY#$V) z!X;8i7dnvdD<+44nhOGtd7Q9q z)hrSq^>HFVGqc%C@aD~%Yt$DgKH=dFv&S`Go!Sq!kqPDgphV91lt}g-_3t<=y01$- zLRK9plA^{tq*rT(*1WF9OH;KbJ6;p`QnWt@3QH!qeT(=kACS=s(F?V z4Rvy>^*?zu&1OstPZQyN8Rulz%I`TPk3;fGah`t)2#nIB%hSt>7L^cj$x(rNAU4J~G>*v$Ip4j@4n1DEy;q^oHO7mN~-j|L5 z|AG9E7T~|<`H|zQP?&@i1|(PxR>9oNb$UYR!8G^?0;y)I3QP{ib_dgLZgAw%a{Ie3Lk85XK%k*bmu8kY|o#?MZ;ajY`W|b*yJApNG`x) z?HnC-!YuR7>2k_5mmO1NdX@~m4LINJtm1wDWjJ?OBedn&-e%v2;k#+{yJCGYZ}A(s zgGF^e)2+&xW;lF9*mi;Z-E8h?GFfrHr(jZy4+@?zle_AvJUcZog0|0tVO6}+)C_`#Z6q59 zG!a0f4*%!RpLZqg z=^dlO7H3jdY=ub$x1KeQQMQmKS3lO?Fv=mZIFji4&7*fwzmnPXQ$y{ zNcLlBs8tEx{Fz)H2pZu7OGA4kLx5kFT}NZXPA6$eH<_dl7=|r&4;ctgSG`-H*7)rUY?RG=I-m_Zu~z;7 z%{)6*tMkCbu&8#?Rl#nlLhvYi4;=r~(CH_Lry3?9Crp9z38M2LU7gLl@Vru0`lKU8&(e!a4xZ?7_rtSh!SS-9uoOcV6& z+ang8I#TF~7eb_ZUtb}mf6_BDC<`~kM#79xK6AKQ1c}Ph?Qi?E+}IY&#wq)fX0a`3 zReg06-Gsf6Tz!YrPWan()tkdfuinuV-d}8Y7Vz_)xRXN-&Wxhswhb=*Q5zgv0?JBM z$dhb}{Z!E7Z2$x=C!kS*fz)KroIvrpwkZJD;lsi}RD zq;fv6B^bwRe?KTV7zCOFp}EiyxOe1-q)ZvjLvVL+Nya}Ft=j|90QyxL*$z{d1b$b&Xf{EWd-(qiIeIiqW+3fp=~jT5-unE&$HlaNA0immZ=}9Kr72aGh0|E3*LI(!W;Z+)9v(;X*{z(R+Ytzd5Xb<8CvV=o z=^IL}lXKK8Ha#%#|GYK0>VJsOvBu~aAN^XBjLOMzx}?rh_|tW3R3<^Xx6HT7{pbkD&u=#Dhh;V8B&h#yl#cpS+pvr}ecTj?qkd)O*Sq>Rd z?s57u8`xXy*(eiN6aPt0G79#7#Vb-oU2aVc`GDXtmDASm8weyDI*^l@PkqYd9c9vI zFETyAWP9~Bl$AS$$TNj~(M@I+GOiyPF3HPE1KT{kxBJln5pGu*x!0 z83mtv&s4#~op0A_D)Cl59OsEy--ZGxZ6}S?t5;+|dlC$|0tEqHDi9=^Nxi&=%8Wlf zEeg>bGu6}k@7cnlW3XSbfeg7V@Ey6hxFChw4<|gjnn3oKX8R`IooS;J-k7IUn$H+2U$amGU7oi4;!CJFS!R4e|L6wMWNA( zvpR@$u3N$^dS7(im-6ec${e30AYCeazTP8%vs|xMz?Uhhd zQ~T0z8@g}MMO#8CpQWng#as62!S3aASn&b%LGDQkpK1KVNc$1#eq|b7Y0rE3hhLCC zm_4OHcC-2W`vaGi)#u~Phx)_<0}KKJ4H~o4U0s1*FA`IQ?845vdDj@0bHg*!ypTWC zW*0F3E_;OZfRIE=!IV4Pkl1rdDE;8l$M!&D_B)X$vCo`UHCg`qZ;2Vm_jpdR#su#H z$CE z?Yb*&ZEek2RkM3}u|GgA==QX=wH359kG5tkY!lf7K;N1gj2|#s>&~Ax+ua4pV0+L3 zVsqUyf|jWk074LHC1BE!#4D(CxgaH5F~xe{GL(vUXd!Xzw<199b{*##jA$8uSiwJo z(lnsCQrE$&;?<0lKM17pA_t+}x8p_Bpka=lq%a;ulQsB!H3Ry#rv#)yQK_MWx3D%G zp%0DdK&=v`SKVR12`v@%pNe>5Emqe#8O&AZ;qNzO=VX=L9a zWCqBhF1R8kW#u<~rXY96*yN^2WA- z>sS>!hE4k7{UN^JyMG_Kp+FpzwnDRTmCCeP&#mz;l)2cxefzevUfgT|1Ie&NxB$-& zmrkDJE6C8Gv~Ugx817Ov?)UR&8x}T(BWMK#sNgPJK`8-A+4UQANs#P{utl+ak{McD zX;2QR?p$7-Z=akjh7ZF0VeojuC9gr|i$<`c0=Pk^@LRWTu{%3EAN`Bfi`T8U`Gbnq z5_VT`O5(AlE@A@oD&*#HeOmy|P5?Q)g6A=8Z`IbTN zz?7=1bbY+|nZ|U&XGdZ7PRQwoCqTqfve?Yx(gFHzF@3T!Gub*bFTFgEXPiTpU1Pp{ zG2}CaMeK$B@bc9w?oF(>sAHb(PU4!^p^#6q;#B5Cx?P$j?8ryM=|w z$jGQel~BXLAYC%0!f*Mb6e8g}B*VmHWC5TUESD^B2XY-01hNMfT1Cl)JZe^dL(-WB z{4+dm2XF1Usx^#_jp-mON>>~)=fcFNFk1Tp#80hYx@eeqY)PCRCpHi&;PqUt2??q& zD}hwjggk4(|F*7(msiuOy4E^Vs1zDv=lB?lcJp{0WCB+J^g>BZemR7k9krvQgN%W) z(BF~f4)na^LuWlu>)%FF{Fjw+43}1oNyCam@z(EEz9d+$ptO_vaU`*zbW4Fo`3@MK zmH?|r&&f9NCdTh}xIVwfT2-k~^aV+k&b@y&YO}qMSBJ4aVB#a+9Wv|rfB!~99y3(e1Fd@86{s1$JAmHz2UlJ06A;noT)92*$vR?0furCDp>URK%kHgj-_((}fD<-|re83LTF)@MX z2u);qHD|Ki)DT21PoOYD1cYU7IzP8xKY#vl#1KpMa;wY2az3sO27pELK2GC0(!CE8>R{`~}L^?_i#EAel`?^?PFg z9%^3!G*<(0G{|j9!sj9>=Q16H}V8HR_4o0+dWEfs`sypWYeLj*79avevKixMemXuKGRMC%kP%PAC;hM>%2 zzl1k5G$f}7yRHQ!BPg_$|{5&)Ow$<7}ZHnxbF2G=j( zTtH5C0JLPgVT7q2B-#3b2~NY((vq{f&NezKsss+5OW_|oVgphI(;S5)1MjO-Cc}_Y z;0Fmp-y(^&X1oxJ@UuM4)c2Ou9NUICV;vN>0>5=6(V7sfeT0a zQcXprmF$UjH#o?jWo2a(Fg~x*>~;B{Cz6!(U%gvco1*LT2P6Acz6Mxn4~QRmMn^|~ z?YBKT&l+A;htzoD1EEki-0uY7WpyPbBCR?HGkcFr%;kb`u(Ap0#h!psBn?1K)79^2 zf`ft#z*DBcJ2!@t8(RMO%*evX=ntN&6j%+*8D(SG!WJjOg|E8FGnPNHcX>(-M0$>W z9qhZLf;xXYP&W?1O!!w&cea>o5~Kue(4OvYHfmN@R#O-Pqu<}(H-tC~!Zo%m{QUKI zw0@s>ovkuqwk%mdY8k>V{xA;C2}3ckusCbA`(e|mBcrt7-u^!Fp?p=zGXlXs%g&HH z1wiz0M@W9rc0>`bZR0x@jghFRXz$ESlB9%0iD|NHXSxT%u&_R5;}9QF<+^V&j12Wp z^qP9X`E)ciG^m5zw-#`E0h;HSWVA z&+t|Le@8qbV$aLJ3VHJJgu&qsxNM}dB2t$E(9Oy=Fr!#sEYe&@I9RKqTLFTNGU}T_ zh&`X?20aza*@in{Mo0xJBu1;LuSc>>a4)}l`4W!cGDK&`=jNJ4x1c6i%|L;2&+jQS zNXEm)mXMH`hhWtL2yGW8!_ab*syz4mo*`o-#4%I^$ZQ8OrFh%~F9$KK3nDd=8e~}T z&`od&rWjz8034i;ey#iduxfcswFRz0y}<>EdlB#fD=Tk3&Q^13JWe^_h#M2Jv%e2F z76*5T5FtV@(5}5185s!xQEaZsb9eN$o<_rf^PFcO)EQfPdT>E=zWi;DAW{?yjujv4 z!oo{|4G3Ld*dt&>0t-1S5ic~y5H8>gRj5IC>&Y?lpSbFSyhn6R>*#+=RUGP9`wtn;WCOjil6g(t_@izoH>L`R=q(~CP zLl<~(rI3gRZX%ignogG}qhey>b{251 z?;W#6j&SXuF?9>@(RZkg?m`BRymS{>+jS2`X!GcV+~q5TxzJE*{uuVoI9hBLcJ@dl zZnOC#HoQAOum4Iz!>n#8n6*hCVxzGyZJcg?L4grGv<<-C`XTIO6cj&aU6-kcccCaw zhKyINo#d3j;GMu}N&rq29x0{|%B&A@8~G4o^|V4NCY?L>mLvh)Wk~n_ec`C zyZg*xp?|n3e*3EGumj^%$kQ#|m zBIDw);bp)CGvwd_;OFDVk1ddxgIB;5CHj^Bnl(7j-dWOa9Dh{s$)5+d$BSu@X*m4*-qqE$#S8e0$7zEcyp<5bM zdcyU~a0Eo@ON*4fgX89EUTdoNBkPCRX$)OeEix0=PdaD zm0xLS$hSw*ZYT=uqW_+mK|w&R^tqy97qaRJFc{GSp_*!z^}z#dMn=Y8=9Sq#Q*~1M z5Sd|fZVe6i64{+2v*Kw6Rt3pkG@Wu`WO!D!5_>|m83SN+d zQRfssrdgY|W1}Dx^@NdXon)qWl(2^%y|DV3O5SGs#%vB90YeB%D7m^ARMPmBC{}=VQOkDr~ literal 54864 zcmc$`Wn5Ni)Gxddq+6sL6$$BB8-~&Q-g{rywbsAZj<|hOg$SP(A3+eJYpRNx2y(_BK`>@;vEetu zLzCa(U*axG+Aen-ELXc%aw`JPJ+3?E=X2J!1hC|E4$eHW)yWFS56lRc&CK@?XU*1B%vkHD z$bFvpMc%ST`wc|o@2i`GnB0o9vyvmiZ`)mYo(w#tFDgz^{w=dO1rO{KdYuqngh?i z@Wn@;42wtvJf-p-=Hc^{lvxU4#A7AKm@lsAhPwTnnEiZ9CPa%fq_I(EZhoHMebWeO zn)W-5zE|{Mwl`TY{K=D+Oogz`37g_s_&!`*Tm-S5{6OZs*ehpYap_fRYSI2Mdb#q2 z{X-L&gJvtkZ`}WUxj$6z^_W|?Qr+XQJ(5a8LnC1QTP>G^*Uq@*&<7_|bHshImqt-h z@p6z1vizlhDo;H*aCNje+vjkHwpi!hz0k5UfrSn39#(dC9A95wBkB&qfoJHQV9kgT zpFMllYA^#sk+p}re?kxW;I(V7SL1@WG>~5GWT>o+4Hq^0^Jmc`FIibcKtSMmrxwWx z#V*(SXN&eH=e6tHOCz$`(Z|Bye|)%0Mo(`WXEUyaxSyW*sHaOasKhdc6ciLF6-zlx zN%p=JR@<-D;#8XNh<1WM5Z-PQ854qDNX1upEPUqO6yFyYTRwk27ZMV(xxHOB_Q#GB zsdL|AO_THpBxaDf>=56xus0tov)N8%II}t1dYPA3#lRq~n|o%yGnR~+8W+JOBy6j8 zUef9>=pw&IpB)hyNuZ~v_i&PjGLi$i02dn0+}+c||9D-mP`{QEA*G>-xT0H`pgQYHJ{7G#l=zcn*?t+roMXhG$|?HySGTU%5h^#N>N1x6UoZX zcKWk&SJGo!(W4iZlZ7&pjFQq~Ye^AZ!ZXO5H*c0d2;mY(cV^)unncRj}Lsx)`+eHi-ZI%tTf`ECgsJ-%}toC z9Nn_=r2wud0JgCyYz$h_!D*>WP^ zO@B^QkVYs{3t5qNcXtmK+~>6&E0ObP3<|;|W|R!)xRb{WU&hGDNG)hV_<~!;)4Vbwo5-VIVl&Dk^l-TA?R?os3I9rF85t(>2rSJvTC0q*FU&Oz z4D4s)$h?-mf5*bX!LcC;f`^@ae7rjy9vRu1z;(Zgk8rUsB@DK3>yU=)N%XB=7NOb{ zjQ8gk78X?1)G&L>Mi}u+6{e=9U=ed@CkdG2KZ%UgX!P}28!N?>^88)0 zQ}X;WB6OzHN%hvPFt`s|;fH3WSc`<)((DzcJM@)|^W{8}9Ue!9eg2nFi#;2QQ-nbGJ1#jN?yDnS)7N zm^z*Ipo;MM9JoABNXRs94GoWt?NsBfH~X1st%Q+*XLU-+Pg(yM9<$ri>$yon*5o^D zHG zNb@`Kup#MVevdQwMC@M7GhKF;_`FsPa;&Nsyn$rN>@3VuQu_PTczAf)B}N$b-)eH} z`aXXyf2c=~Q>|x^eLMHk$;n9z@pCx#r5dkqrnZzAw>m;G5W9L6-KenGPxRMU^Jrwb zI6jn6S(htp8Qmom5Q%9Ey34Pc!tf-Jz^m_3eN&U{LaZVyMk`|mzC z@>nSw9QREq?5x7V=b<90K-rR%k{Wt*hn@baoBBfCidqw4t5MI3E7W3+%&_Qi=LGa( zjkLy8F+@_QBlFKU$Y-SPcnysMiV2NzfC)s4EKP$IgP)>cgT+mg?oJ$t@;y5V=KFx}uYJ3o&}LP8Q8 z7B)X>==Wv!HIx;TdF>Zac)12EZ0=7s`Y~O3@V;rh+;VF%#bLsH6X!N!b^a{X4(o9w z%hLtv+tvCn4oQC)67uVk<_}C(JC{CMxIS6uan5eyy_~Tzi-E_&`3sjW&22CAEPtyN zJ=pmf>9xE5LvmoQJ(Az7i&U@r(b?jVQ|T=%YIgJ~(1PeG!2w5vW^bKU+2J zd*@mTFDGXU>`2Gimb36_@)yXBXPN?pB}%yUK9K%e8tBYbOPpC=4xeoen{PZl<{c^0 z4U1>LHMjHgD{PT~Zd3Ae=bU~m-nek_qVecE{ju7|yl}<}|9HTzCbH~*)ePOvX`%ak z-O0f!dYLE3yM{>9@S8gt(As29_Au`k8??W@TcBle4`9kzdS@(C_N{bj_l^2p=ENR; zlQvwvI(IVITje{0>aAqaIhq_e{_)pyh1a<_IA-l9KQt#ie@^XfaF1tR(^6>BKAOyW z-)TnEQe;-UT0Q)A<`7)4c!Xls(ed8aJUwE6dUEW^M90Y3?{l)h)IFUdWZhDvUwd!= zDq??fwBJ2VKtLdlOhQ8wO55mU^84Oq!k?I)K47z!oSaOLtV0#2?{w08@PHP_|7)3f zJV`blQ=-2j7=LpFga6kT4@8VNycJbn(`C9G!lj=aUlFrTiR<%F1t# z479bwA5VGU6g{X2tf~@)t3cPPUeF)*kj6<>SQt*5Nom=iUv|Z>C8`Jbz9B2x@tf9S6C2^CoAbAmJU;kN28;dI+HLwY<}>C8eMUK1)EE z0hij<(}Rip{`r+kTwHvt&O@+2O)9e7a^Q??G{073-W=2G1G|ZiCKWhf^z`(OTXRY| zIXRd8U|}L$S4S|AOX^AfP>YR*^EFVU!OF(AwZD{3=W_!p{fphrS%tQ?HlrV(asiy3 zyQJO(XoeJE#m`Kt?7W+60lq$|91eEeYQ)n4tr!JceL&S(w_#A%|h3fWDU6FcE`{2D* zK)u&)mcw*|5j8fG_h!Jga;um0lJ2CB*C(5yQ(`eOF&!PO78~hM0zwOpjU@rdzxn09 zA$m&WDpsfveED5p*_Hi zLk&J&W)>E#{QP9FbDIl_8=lYzT4bPwVlmnBX-Y~YK*;R71@{7@69Kq*XlZH9)bCEU zz7)1Ww0wWuQdO0Wq`XonDexZ?#mXyMCu(Kn08e|BhAIP(jgWA&)3Q5jPYlfR-J= z5w?a@nDE?w!byH_HFSoz{x|vD+}vQXp-k%8QfTc@0BD*53a}b4yNEVtsIS>h^Bo8R zEB5Bj>nykdv___REYhGT@9!#+O?|6zSH_;=-Xca z99iO2nG>!9_Po2!b>)f@6eoFk`I(iKhr{~>JZnme{mGnoEHMqyGcrf#+?6_B3b|!X zkCmFnB_@VJlhs`~kgp2^oRVY#jgeZ$S8{uMd*=J&72|>G6hNsqJ_f?RoBpSMiZ+slS1!J@CSX59a2UmS%LQ+rq{t zAkZi_kn#o?x%~NcY(<#)`R7Fy4Y!p$U*Y>9U zond1P;PzQKCD^Te=+=TxHB@4(0Ql#v6&_$iU@pXf^q~1}0%p(5$-xQ;2pFq&Wxe2;H850u;vOHeSUg@y(OV=lt8bhmv9LWlo1xfR7IhFEfoBbV#8SI_t`*CqiKa(V9O6xJ6pm9T^b@} ze)EeuwDf@rdR=)veSPg2azTHu3;r;mS%vG@@z456+(xuj_yF^%+$YhKUdltBz-|}5 zz|M}+#jz>}rdO|CmDqoiSetHSYG`N}VSITb`=Sw-i4L*#68BK?dJj-$9z7DmL>)Z9jIc>Bm6Qy|?jLSy^XhX9JX@ zX=kDFDHa9P?E0SLJNtQg&dUr_-AadL9{;PQj~tRFT|68v`t*E)BKs8|wS zyq)Apcwurl5@|tjreYj+6(zT}KZ(o{si?zL8(_ArW*jD?ua$O)|A6!%Ar3Kp6Ocv6 z)sZVG!=YJDmGNUlN?cd(<-C5)<#+$}Dm}tX9eb@)~wP z5#|SyLoem2H7~}+$%)cS6pX`O7js>qK%sZ-V~6L7i3*qEjhp;2mM1E>(9R@i*>ChI z=b91quii;GAsVi8ZFui(Mv23S83GFmxEc;txYi~r2*@Ma;1qGa$Feo%?wM_xT9t?u zFWHc2(ZzXbC$9YsAi&mECli~92vB))@<2LKdn4EtD3OJe5e8^}CWOiWY2`yp%62I* z4+Mc?jD?N;us-yiGtv}ABl!IE8*CaBR6vKjmmE=;pWl>d=o?|t_YwoaCSi>F`L${u zB&N;ZzZJE$sSSMh&FN))>0!~jJ6(T#It$hQEF$@9U08$5C z=(*fC0Fa=eMCasOfc-DenJ`x|YH%k8Z8isnW^h<9#euA`*-BFCzGYIv9f@voubnkH zMaAHXFpESh?7@~#>t>@#`*+y;xRfSRZ6l*z=jY=B5kX5WJmLfy;4=yjA95l_z>rn1 zU6X_V-rD)1I|Dm#(y(HY$^0yxV@|sEaJ81^32t%tMH%;6b zJN4>gWmp`vLoV1TfkL3I5<@Qs$H?hu&&l20eWrG!p%q=R*;(VCnd8C_&Q$W1jwub! ztDh$&^~WZno#{`#ipoMUTj69>RAC=Jh@pi8u#7SgW>9cuzkknp=5D+!&SOxQ-@8a2 z!PywUHeRk$vXsyG>LNS4jeg}%xJ`0$^4lP3fCyH!WINp;HBsdd3wR3^ezvx@Kq@4+ z?S-x|dRI%!2-HXI>PHum44_0~<(4E+u&fv2z7Ru))K<-BxP;eK%NfsU2u zW$&FFZfpTfv66Ia3n$xK&W;^y^z-A^DZ^@RZboZg7(Adkl>VWg1}HAmu+bOQT~J&K z$_f?i7E0SX^o9YfkhF#pwf^}08UwkLr``-CicnNklqW#%fS~LL_PX_cy?Mho36y^P1 z`Jy&oy1u@Sijjk$!M1gDpwJ6FkAP?ZN6oIU$26Xv&;?-=wV+58n2|B6=FUfpV$t!k z1P_}-y_T(Y`{{V_+Zy(O_v!I2DkPuvJ7X#qGhZl$tNT1Xog_l>%p0u-rW_^j-&0sy zTf;pCfSjta)aZGU0cXeHelp&3_u8!KCP&5hcmmdIIoF~3@q_x4z-_9_+~ySy@>M*j zzkn-oR!5335to%=JhYu!S>*%5@~tr;cFu(E9$|GZcylCxa`i7Z8hblDtku@uJ_|<- z@z*K0Fb2iJ(ao)LyXzq@K2oH5!DO(|L+Y=>gj@Pj%4^4{B^dAW<;(ui0^uQsf=tpk z(fan!W#mG|gFlq^00(SUu3f{k=zkRfI~W5oaGyO3R3TdpqYUll%FE% zFb6xW6CgaOg;Rc~K2U0318KZ%YwE0|Hgm#%(#5O;Cc=zdxo&{8z z2hlnF^Xpq|Qc?`CgG1xv&%NL^5kU@d+3iwY9Y)qP=l!Dvt9VM4(y`f*fTv`i|iRkNy*J z=S3rstOCs_fP4lRQv;=GnVx1MR7kE3W{R1=ZD0@snp3zUYquj?@Gu@)w}C&Ppa6b{ z9!F?bAwfYw6=C-*$Mq2HR6U+f)B?%MVg*r~%VE0O`SrFgsy?CU;<6>iz$@{f@Nir# zEUe418~`lP=fd5?6ZeaU^YNO=hA_T`}7JM8yTr41SBYfU_jzZR-u!v}dnm{w=v+Spz ztZ^j(PJ0$HGc(J_@3VYH0cVKi$`zuRm>BJfhvzMNljI5*McOW%lK1!bqlFcERQP$W zd#I++J;JwwN~=f{zzqxpXoUOGUTHV~lWA8wp;S=^#vIKz+e;_Mhw_r=_Wdhq0@F7F(`X|Cuf(qAAO*o?kY0@>o}ix;7AlIB1vL(PS=ej*(_C$!u> zZ@CBVB|dw02EoODdvu8bPEx`B;<=CU?A@j@j8gce+J$<`BXI3XI-bf~3b-sC0RExa zjC%A2_>4A}Y2EN2CLSLjU!HE1K|2aOaza`mToergRY^$5AxM^U31gyPgl=gm7x65Hyp9dyl z(|hzLeldad=S`7{;0taWAfC1XINzLU#{BT%!wg!+pL5)?DlR7~htdJ}MlIzj^y%|w zAi9HjH|Xf4z2O(Xo8W*ut&Q<}AN+WInUhl~2(!fDR-F`xLAi zK8s%Jgqi?2()RoNFYjN8l6uE8t1W)rJ~deVC9%pi(#Z!6xXOx$MRsI8W$21a@6BL# zEj&WOp(^MHQ0)t)gtEf=&iaFFQZaG}wnZ@P$z>^(_)9l7fo9^1bAzZ7uHEa<92DESRKr z3?+;^mo5yGkVh2sn_ifDhl}^8d@$VB5I#}$)Fk}+CJq9k4E%_T&$CwXsVlq&dOr%l zQOB;f_G-iaA|0TT)Igc5@)*p(>;qKWG7N1$^qU?K5x(~HzvWa&pM2Hw%;0m1J07|g zN8FBulUehuZ_NZ~P?iE1n3;_Y6V)_8nc)W+ZeqjI68b?fsUX^HH0C8nlF;5|GW;P% z3#a5I_z38d&N25?$HLE7L@s5mfM6UR5z+i9SFPEJ{?g4?;UKcD6qd-@CieZrxDfnw z;zHI9QlJ8w?4(j=n!dth`;02Vf1pjE$G5A$KQu9s3MCSR3=+c=t*n))i0Rj z4@WY_ko%TrddFs~n-~K-nFpJy6P0=plz;;~d@1T+zYs@uM+1Q;*|vhNtV+63*CQtR zU(&MJF%8X*Hv3sq&Kj3W`PQfEBSGz*1B{3GgCb4`rz!7cO$8Quk)$TBQC%1(Y$Ke$ zcN(b>R6nUNcYl73I|>vtRFrN7Hjk16D1gS_YFsIfzOeq)3`+3~;!1H}R^r4+6Wz6c z{F_L5@V%6$<;LasF&ESV2TKdc3E>;9C(FxL0CSCiT#Yc&l2Kp5I42*TYO3>YpO!tx&bkR$!)H38X9D%UI*PRtE7Y!?)V>B!u7A} zViKnPqBWp?)RocMXxg=;Fz?v0BAzw=g9UlS8BCRFs18sf0>@29KEzxwM zsH6+K9nn}g9}(x+vq0WKQ9j5hC<(M7 ziPomR7y#-C19{~B7t?t!Jv)=@mz?a}etf!!q9Fl!Bnf$CnI06Y}ObjHWiGpVT+mnYi*}Ko{|G$6Rn+K4rD^lhNUfK#Xp4A zA&yWaJZKMHmCOU!S6hUm8XO1W<=B`uDpsI|IQSDz``hODC%CAPWm3#Kfn^M*48HKL zed0eS&P^BRDJ~m`zR+wsp{dNStwo_4!r{)(pyJ}?4d9{uFU8S}Q^jxo_bm<&{`x7!r)5kJOq1<2k^vF4iNrsV7p}aZg(%;AlbiJe_sS1-lsOW)NR1`$s3sDM0o#?|EVT@!3VtiBVx2&MuGusIw-mmr;!|TmuT6 z(gBr%R-g<5o|q#1c-zsqI6?W|V@c27xM&y1Qi^OU;|A;!26F11O_kqSXr%~m27j|R zRS?5!MOg2@YTR2jVkYS*H0%L((B|f56Rh(Vs7g((t*sLZY;OMO60=})RlAmT^rmwX zm%Tc?T|z-E#Y#x|CKm6!@v4OQLUr(%a^+YYbp>^zH*j=uKgaqS` zC>m-$Bjk~@GwPRu9GM&_V?zG7CUmdyX9kjqH~Fy>16by%zt!`eMKRv_|Dl+PRN2}&01F1+76*--fZDhR;J?(O zj~2{eT`#K~$_y!V2b=G_x;^`kZv2zgsoelo2H;XrgB?LocNP{SWM;;QD>iEQ5?VY7 zJId%mF=3NwBs3`{ke5GZCfBItFdg@jKl>kgvT~6l*jR)#0$5-T?OIZC6$qLhY@V4#-tCLdW7|^Uzb$=7yT+Kbr3tIoJ8$7>ljHT;YyiC`F z28KWn&H{BAU^@sOI5m$q>=R0#O~j%b!{OiJC~Tj2U9Hq-RVj*gbZAX3Ln`6=tXkad zxRZ8LtxLDHNX~F%wrE%WHW(77TpUkB7a!H&5LrN=Zfj$x;S(7XH+%&Zvu8uh#p%bq z^q2T?cJy(29=>cQ53NtQ&X09b3%4g}7r(Px!&?w<|6}cKZ^3INg*N)89>3d3)mMke z!RZN8z0d+2$Z>De82==E97JT6;KcV=$2of%UaJ1O9_PkR2j}_R(ZPXQE?-wv`dJX~ zf4b#Gk#hzc_j8PMNA|yNB+?StTH@ydru_{Kwd#DMgITf6^-Gy=-sXPi5IS?>xX= zTj5Q{dJWU@fphkvK*GVfF0QyRKqJQR8`3uwHq8}859>qysq3gpx z1ovjl@WdSRlbLUA=$c5O7sXXNYEKJ)lXOaAkkfScNz~cApKq#p`$VZvT4hRq_*m}* zZ`j_SUBDDcDA8n?-hER2#Ic+^5(p0(Gy}!i(aGAsnn5RHGh(Ea)Z`jrr*(SLyPp4U z)IeB8vu8|Rl*r2>Hu=p?&YlH1W8sroSKGn&8+H=@v%d`9bf3W%IzKD&p4b#}T%di2 zfK-QpD96x8@HQTiGp^hJZn#LR!?svbeQ^f;4ftXK+T5Yq+{%D=!MVz*YXsTh&g+{Y z>FG=$Gx7s8mh?T+UZ6+qH*nDKK{Q8+^hU!WkC{MnZaO{-Ek})Y{^;->m(L$OL&~)O zXgt48ra}}19?owTPQGKW<+o$o2D1LsUP@i8lbtaP3aA7E2pnR2rl3&lffod^zH9Ix z?*NGaW|=x#z8b11P`}Tdi95|-;THxuS!*l3>#pn^R`?8 zBN=p9@4eYDpi(G;1yz0U?OiUx*jJ?UW9{T6pmLxRII8-AqKpQ6W}1UA5Kys1A5=UH z0co3=lM^45>=v8i`cMGWEFh^OXp9QgVW9GZma^!2FKen zqpkyWKxjtR^W@Ym-}#nSc9r|c7<7JFpml3J+9sH&utCEbEntMhO0@u;yu8OIGO+l< zA7ciR4B;^`%GTB#usKQ{rlo^JLQqr*>=yixd*ae?+u+3`oTAhB{tXT0ffitHewV3c ze}Dgs6rKEA?b;M<{%F!v{xyz(c0HQ13KaKDd2L9c-Vx#ty0r=F2u{^iC#Wdn%81Y) zmA2#L92^{wnt~N#LOIzhF{hToQN2==vydCH9kC(JTF%Q%Lo`#xYpqG=@rHOuJ{5gY zClV>xIYTUGF0a~0I9{XO$^*ehzFZ7S__LER<>Uj84M!>w2*8D%3QW`voKuSEG?$=u_1{+GQeq9hQA+joXUlW{r) zONp;2kqJGEgsFB-#RHUkL4paVz~pJE(*-!KauaK}gNoVALT&9p{g*)%MzP21^xody zCGa#+Qc7_|R%;rMks$&3I!L>~<7oN#5icSlqWcgPPC*ty^PxuVa-ec@;N?wRJPrP%bx~}8Z3)uIOK6@X#kJ|L3%>-q3{bF z#0Xf{|3Cluf8h5Zk+nUz6+s%U$lCEvt)7}Z9Pj*l9Z!@74483Ll+!%nVOq1dJ=g%AuER&7f$(6_2*ykE9#78;vFMwsV1Pt zo~Zry)sx)78(tkw^eBI*J6x|t4=N-rN+DliuCF8iQ1HN00e80V>9M)|x{}~1ql686 zVp0n07{x#RiQ?#Pe0+Qm5Ggdc489Tyg+UU8dgqG$pU;eVqIc+7FXc0}@P$+`lm0*a z3C?3kY%IhKl*8Kx$@y5?m|yNBmXfl3eoaSTs~!@xOR#Aq9EJr% zb1?=dj+>ijJG+U}X0u*;xDxzJv!Doqc=W&1tnhXe$nb0bkzJekqfUR#NyV28=hYcU zP8#wEE?|XhSvQ`-hf~L4epeFjIysSwk5s$US68DjWWECD0r3Z+!UQ~m;oa0>o%dMk zxcvBRk7OSzsU10X7YXbYD05zE2lE+q;kUIjce3#A>d|JvH7RLolB2DlHH-uZ$a&D| zl_8~Y)-UH~HjONBtp85igR6*xRdcR1eY#OEl5P{(@A*uG+N@(B&@$|#E>K%QDXKSb-oraV-X5!l zpXo!$O_VD<;;aAF`xd%=F*{RB2Uxax->zM(5UMvh5uUU9d-^!3;*JEW!sVIc~!S zdVoR_#UFQ%l`5F7*{KNn2jljR9UJa|28lXo?>7cXfn5o5a0EDz7{_G`PU^Y_W#3Xb z8E=-f_eX-in01lYHY7{^6m%ka+92J}EjZrMUkNfK z9f+4rXxbK{%0W0JCVel3J%ePLN_w0GmzK zZfCfp{=r=gF)prAYSQY; z91t+a>L419CJ^Wuq7SLh)u87)6i(vb%g8oJxpnT?t48RKp~#B`Y1yevVF@NvtH-1b za-n&=n5-pM%(Z!cCcPVEH@}%KiS8-XFMay$u2B0ff4+*Tm}Td}bn~!v@qf^K2T&-c@W? z>084C&y#JX>ysXvhZ>#ubzmZ(835LEV`gS1(4j z%lbY2*+TsB-A}ko2fNIin?(Ke^+$g$6fL_KMhK2ioVXQQ`fxX%_us#Ivk5vVlkXl2 zC|9;SGXu}h%mj~}gG$Pe2^+!#)n@khhy#}{wA3#BeqDwCm9=PDIZLOkiY5+oh3Iqr zkzPp9_uQ?^VpS>*snSzl$-HS-_C941oyuyZulUtAiMq|06jTk(uG-qF`38d$15xf- z2u}v7nl;20)+E*6S`i7I7yDJ1I97dhKurZDaH8ZJ~FShCHj&3|y z$Lg)3*9NtMv<1!F$|=*euuW|{AMgI^ZMueHzs*;Q*}IbDS<%8K#1ojR;WS(0r%JsFcg}=D zTl#QlPY`rY`K{o6eusvhiZ4MjKJ&BXo$n6Zux=D57c!sIsht{1`DptV)K?Z5|9HGH z6$17y6$`7hLD5$}~!OScy7@$Uze?Rip*pYr?1Hwm6OnFG5$_-Oe zk39^+CQ1te37(%A8f@;;OkpkGze&E3y}=uh)j#$~#Jj`vVc%8fJ~K;mb7Me?dkcw% z2m7&*9!Ll|SlQzbpf(KrUQ{@J;?K$Ll+$;yq3hAfRA zE>97JB$6;gp(Ik#UZ2K%lVU{z3XC!jMV+AowK-4XZn zsXqt++tN7c>zBMSg`*>QqcEH9njgM29bjV_QHDiuTLupllrRQO>o?mX5pCy>Olsf!d{5xi2t|HlU&u%c6Bf)Q0NUz22Ko zvO}Be?}~=grxppM!RQL?V+yqCna-<9YM&2!Kc1<4UQya@je4TeE)wLK=5OB^Ame_e z;c)$GP#~0UUY?pwybA=pYq>MA!w;aOn5g`BtW{EYa`CR3xzx%@hHzS*6W)1xq~?i- zXz;Xu$c&k}Cjmb}#4RVMn1pPQhqmJ%CrgTC)|kN71Ba6dSXmoTds4`cL%ap`%#@?m z@_BjW8}8$lssK0)X8@d~4?_W|Ld6u|xsuVYWIO-p*X((9AY(<8>!T+>@bE2f=L^fp zP$6rVU)oCE9=h>MNd)rWN zuK_0~f{yvdq|w$V)!-yL;4&sEfXWOy^{X}fw;8=M*#`EXKEIm!OQbiuvM6kDAkrShVozR=lSU<;`9jSkSjoQ%ub7#X#i1z0WN3}g}1?_&u&(%C=#X4Gxjv-)t?na`*n zzD+Kh`-^5DxqM~C)|GmRDc(MiL`KwtrwxJuJ3#)q%&^!dpCw2`Cgh2?u5;Eu@ z!qGY2Y)zW@rsza`W8?hKLaOC+tU}OGN(E<&Fx}7k+v~j>IgH}UG&x!e6Au*d85I;3 z%kQT=Y`b?{zc(Z-(t76pm*imx5yDI;0h)Y4(9}E{iU-fjwn;piO);`&Wg{VwKt}%M z2e}PXZieM^CXja{uQhu}Md(FIzJe3ccGpXUud^knM>%6Hbi_I7fqZ)siGF5~fKTw6 zp-rTZ2~l#z=cl#FSrAso^Sjb4_w(eFO88Q<)X); z$b^qXd?U*u2(7SMeQTsD%SFz=Ohp$10gHzXxUI}@muCLZ44Ldey32E~8SyPKVd`N%s9ZLVPQ>f4n!O3B0~i`dgq<+WVBa0h96v16?{IYBYJtJ-9OilA%EGTEU1WK-~8i5=&tc2kYz) z#@O4g_UH`R;m$(dj4vY2`CF|cRdM~YA*KtUXuW;B!)A8lVd@F;K0$~3 z*pFB8*z4P@l(f%A3RvN+&^sZp91KPS8rOxKU~6-8S6c0@>0dS154D5%PeGjufexKQ zfZQ+CMu$S?HX2VuVM+;|S_B4|2@YSkX^rb@D1;^QCD&0&0VK_Y#%V|jq5(n3LZBHU z2)-GiNi~=6qCc)-Wc<8VpBe(`@;{8b9mAJ}Yz%H~IK9yPBUe;o7#V_#_pI--$q}OL z-1P9etc`jG{0}0lm&YX)BoCcS6PRx?IUm&vNj>IcMGa$g<_&^MLm6_IXlxD8WnKU4 zAIFA1g_V2lEe2DVIc_D&y~fUJP3$*cp`&T2e+Ff?ZgCE}|NiX~#VAD!UOY@CRV$^FkP%PwP?{P2y%3N?}V z$Sc2MP@m9U0D)yk7Z)_Sjt&upD;}k&jz1()l3$TXaX8DKa2*2y3y`yFW3u`jWHuGR z4&Vp3^zRheRp&)QuysjENi*t-AUOubsPoV2sIb9n5R^en=9Foxyxg6>%(~^K1VTc; zDff-97C!o}2X6(1G8VMOffBRGcq9(lO;VIIfvDbHcuP08C?q+vsJ3@}y=dl$MD=ve z)xcC}aUb`1cMgVTeRgPIz&q~c%O{|>&p@0VeWL&o{t0rOhqdkAxC_!%#*Nlp9{rjO z80+f(3ehGMvd@4Fngn?*bif0gUCxbxuCCiat}pw+4}1m9d5`ImYe(S?gWyvrG)T|4A|)eDJkVt1F}LY3_A}@9Bq(Kj=bj zq%8mNPsk6Lg5X*mzB=bd#a z4Rr7rol}B@UlcX}88plRMJo*QpV`I2@bCerFAP9P>IQ=}Kc>?Dxj)IW5mg0!FZ_o_ z>I|?bHQIGE3P?Dn{h=dvO*B5=<-TLbVm4?IliQ7gol@h=O+WC*-ga2MV}4!?7lqE4 z?EQG1K7-~BWKQW}dXvrDd(ZCvpyJoV#)FMT?jqK-l5sZ7y5=YD3$O&ySd2YF9@yNB%gkN-MG1OlBo#P#rId1*P21a#a&mJsAs<`UQq+AsU4LsA5}Oc1B6qB0Ln6a`yo;u~rDua^Z3e+ajO-kieurzNbi?;w*E zN0FHCT}A57!NZlpcx&r*5+jx%k<40I>Q8T@H>jh<@1?_B9y-$|=Do*{=ufHPal=!FZ~`~7>Uo>A-{ld^YC<_f--1H7zmpC0b_m+RptTEqwheNT6zhu z(m>OA@Zt&>c2ujjyu}*V)YpejIitoFS8?4L85tRL5E#6pHWm zXoc~i#4CfpxHym=3j=7MxS2{h?Q$Ya+8ZZs@uN3cqk!3L@RAD^u7bsn zw;KWFW?W@3Z)XZwaddgF(Q4F7xCU zRI7P#;?YW+=Ch;In;lp2bjK;h9J-|h=nqU+=5YiH#8WJ6w$?6X6{lw8> z_2&2yY##6}(ab314&luZp|D$x0Z7#a%CMBZb4{Hd-p#)4#c{rf{Yx#$wcLwi&N*0? z4JTP6><{85)SljC2FpMWwjNk0GYbnLjVA{LnVFd%d=5omGa4mcyqkXxx6~DUeQ=X< zPB1a7Rx6F(QR;)pw`p`YYHA+%Jbu{)JJnSlJ3)yrUc3bSY~8Q#(oy4J)zgp^-wcZO zl@9g%y-bG2n_$Z#O@1f8n7nt!EjdGWD)=AYC&`?O^**)3x;cg6G|U&h`@>G^W9jBh z85w&j*3jpzk%XJ#itcV-@h%7o-l-maR|65^`sqt}EFJtVOi2g5aZh{9R=D+#5;sl+ z+M{A5-n^&yT4kVR@r+>Tto-h?N4ZTLS8cHTLM53LAh_i4cP6E*41K2yXgDUYG3uBc z`rk3iH!y{a(Y;$x-YKk0HLRKOe;4(d<|zd{PmyMO>WIF*sxkCg_i%zG$d z6$za1d^}6dtGz==g*%{60{^nhxZE$xzV;q#cLpRc@MLfZj4~xmm+J2d74=AE`v|6ZdMp+ zCY}H$ycOXQsE;_J_LKhVms$a*ptSTJI znX>jQp2-Pn$XgEM%WXsvtFP7t1P2`$y~GulDW-V2@@sK~|AtjhjhvXppll z-0~Xkr5Ph&(0lp7>-LbR<}_my2yof(^egb5VQJE7kmHuJcl1(zG#7Z~TP2E5u;4iV zi1czT2HE?n+=3Pd1!<6Pe2m1mV|=kIFROUe-u_4!di}pcv&fO8;pdx~G^dK;Fsp!C zH+x6F1~8BTsa<-vjj6tZcbw^4_po>T^O~l{6mgHQ33gmeN)m{FYd2tJeyEJiuf#>B zndyEj`30h|B4X1<503>*yk(vv3_MYVu8sh=xQ#kyTT-!a3Ppbk?nCGFOqZ6l~sv^in-7jM4qfG^< zCj^34NxW*~dd;~ULZ`YP6}7e~6J`b;%(GPleZ%%=jZ?L(EY`F4tEYmu&QzRF*NI+y z_vR^;*@{$Ro&e7x=M^@rqJd)$wVn78LrtZtb_>pMqtP%Vl9`c#z&m=-9K@NNRFP6fP3>3u9xpTH2#)Qu4vZ{;+5r-GlB{@++0Y#r!7fIP{Z#t;J62l2`ZGU^qS%3;G0k@>CwDDcgq?Be&h)0eDo5<_lNX)@0(5F* zzx5k;s1tc56*V-fyM+&kaf8BMmm3AV<_~zzF`o6sa2Flsg8{G)zQ+>Oq0R7KjZ&EJ zuRk8^`}TUAViBJw#AJ1zEto{^jI15ZLqz}+PWc6g4Rf>4@k-+R;1sg)H1D97Hlu=D zt#4Xrs|u*hL_+hVbXP{lN`I0A*$UrbpnWLWLE3?>*?N3=<7pRc;r-5+e;r&OsmWLZu7vu z1m5`ZOix&tIEZF@e%i)+s2%Qjp&bHR9h7DxBei$CY_u$|8|pQL)D>veuZJkLqs8y! zSNds2P7W3rRI&gZif0BieO|8Ovz+>nn_LU*MLfN{Mpe(i`&|B=`wjVk#p3#Gu*b#I zCMENcjNZbt{8`uG-=h(j0zNgYjjE4l%+=*Aq*JBU>y=&eDtYGbbk$0`g6e%4|xP?aKnpxR=J(UclG+X@qqjlIui(Qd9xBTgDiLm2l z;cM@2`sp4RbfP{XI_070L>l0^v3f7j8kZj?gCDMZdtF_bW$t3KffdnT$n16cIvVRUFm-3)M)e3r%CP9V~^)P7xlSb8qesJVEmjt ztZ@$y4{8Qc3KU!-8Q{vGgJJOQ07Awp;RB&jk;S9kYvH-n3<#r`qyKIx%<&5D2m}vb zTQtb~H|=V{)jT(zDI@T>AJNtN)gU|W>RzIAnS5XF>xpQ)zb9 z2&J1q$%PkZ@t~vAo_`*Kf2?o$^RB*a>8IEY-IjipX%?V0^!rl0|6mJ?;TNEFQOX*UnT=6z!0u=yRz7y zN|3A`IyiXy!i5XW0s^1%e{rao2l>4GNpvMUexhj^d1}7@oA6>Vb?ZptkKcB_qr1&i znsHG{SqWlGGB{^1-u+0BM`5;D-Z+$Gv+Vh95kIG_tc=fXP5WrOhZpgOcg!$=u?tZS z{yn{yR?}YjQq5snrGNa=gEv`JxjsyUKWHYidHe8Oo|oH4+UTYI_nyw1n_%S~s67*M z-=$`(Rm80!EGm6m5O!`t1)HtT)n9IO=9eA@?nKQR%-c1A0lfvUw}4EF5#+wnHw_J` zHPj>(r0UvP_MA#b_>_G$XhLplX`w?AGZ20S2mgNc2F&SD&XH4s=U-a+b_R1$sMahx zt>)lx^q%jgu>LX0dc)V2hfGi9-zUu<>M4xmobmr(WSw_Bm;KxSKggDq?97zCLuHRt z$R-rBM+n(uhHPbJCbCC%G9t3~%-)ogz1QzJude(4-uM0c<9b}zAJ@ZYo#**Jj^p)u zJ&$(Z7>G52ZRaC6Iw4RC^Kc`8WLXSmg-fk4#ytsz7dtJTKy5%PiV&An;F$;23piJp zI5_bC&5r$R)%xbd|0=J?p+Z|}_ z8sOxOPDsE(Awd&J=@S7B<4uo3SLeu?7wNHSc!Eq6KQGkKvJkB*0V^1YAP~B50yht{ zd_*(U4}b6Hbf<%^?x^l{=uxqL3kY0`5-?}fSFqWUaNl7?oO@9HH^7V-GVl#BIeD2zX`vzdt;>CL3H5U?IxW{F>G9VA-Xf zKI#blrc&dRxesYE$J-Bs{}tM7G2K|tjaaE4OxUOqTl@(>gM>QFhY=SPc<`VJN2o`l z$7^MGQi_F2gTz9lPmZrPQ^V^6B`wA#cy+Wm5_}NpFt~}jd-ap|c|CDFL$evqWksr{ z1R`0bdnEr@6{u5ftQCJ=@`879i#=xNZ8(SkWFX}wyv@Y2u1;u2`5+~B0$yR1kMOiB28?4~CM6}Q8W)D=bW<}fv)n~}hfHTO zc2Q$Q!zbL#0U7kwDa(uRU-hPA>XCZrpeF_>W~Cc*|ol ztoJ2S@3(EUTN7m6l+zr!q@mt?FpndQHvQ#_{36GcTew_G_3F|o6f2asojDyG93Y!m z;*ie@Hq7PLJSWHb1sq z>823F)z!<}m%TJS8S>0C*~N*0y-~PH8MpMzaNQ|oMGTVf54F7MC_5eQLjBYkPdEQ+ zUjfI}k%-odI*)eY2hG!GMnPv0c(+0Am(sz8aLt>P14v}o$=RZ`C9}I=C%L*P4r3?Ocd(bSg9$JbOMWifXEd_A^Bj#j_*Wj#uCKa+nvuN;(P6H#Ya^= zE_x&#v8uK0EBbbTEj?g!&WUzrREk1f=m`9o`w6^H&=F4F!h%1{^hS(M`<14Ot-?P% zM1Cq$oYD&?5CqDA7&c;QM}T0^128^N2=1PxkzHJhWskqFZfDLGPybj5s%!d$`SKrIUscI?>TC#TAAC_E=-q*sk=K8OXPt|}lfTP6* zt&qP#Jo2E|AS^tDU&0H<2Qbj$+fzvwT;nJU9<|5bpOI8m)x1s%D%kIF>^W&Ql91Xs zHoJYpGGfhID#pw0eU$Iu)o@-os7rg0P ziBcQg7RW{t%^;_Ia#+Gc8A8Ah_>X*W=y5uDF~0ULs35cMS+kbDds)g1g~lK%N{g7b z;J1AS!FoXeXb6~fNg5iyQ-QmW9r?ulGiTse-kl}NIcX4!jtOMy(c2Yip?F2-7`;sP za+N+a@kbhq@$8R@oEGf&|JqSD_h=}KobIUvvzUlKXVG=tcf*eDt#JtBlyzPFPM!OJ zhp~x|pw3{&uV_r>ac}P(TskGtu7zTHOLtG|TC-_wewh7<F=ZiDHYVqdGYW z(1IflKv+n%iHSOyIX|TbPk(wrlp!1Pt{mA$IQU22aq|ZdH{p__vOauZ1ey($;h&s- zkwbM90t7{42s%nX_9G5m*nX0i7DvT;CxEGio+{!A;#%1DABrJr4i=KavAbgNjNd0$ zp)GJA&H^G7p*0b`%=QzeIXt-cKYS3eKOwvm@e@U)Y@ScHg5~pnIEP%i0WiKMA|#AU z`#@^7JTk6OGGrD`ybW`uFaViCuCE`GlwmZ&gfLB#fq!--qKIj(%VOny{q`Eyhq?-@@t)B5jTev@i9?eItWJcz19+@!%|CHUsN&if zoE98zyog%mq}iS%28`J&KSz(QTLMNMq@^mH(P2hmaN8*+3PNrP7v&@Fb%eAoz~rj} zL7c>4IWEo!H@A*5Vj-+}P9=0{WkrT5T9Q2$?5uhoBF*{9&!_bf=7GhN{P{7P{N7T^^b>CLM0lxT=)+g`^bG-$at>@Y?y~9G;xCAYlz%4 zPU^T-Yp-U+Nl}TmA(;5~HLTapc~bakN7i6mXgCp53)hh*4`F$ux`PlOVR(&1-+^KE z4tmN1`$Ln1WP?cge6B$@f1-4ATT8aMsPP~(RK+_gNwt&~XA3L(tnmoT(dmzz!}Ce^ zTtBk61gmPF{vQI_iq>*Y@&x!qDseRJ}~p)9eXkEzD*x62LDBd80Yt?Vx5oJwN?9qAhtMbv3uYsdE~wQfhgjgP(fq|k&c&a?!IaYX6rt?AcFC^hIMuIjlzeUI~#H-L4xPu+~XBLmoP+hCa(%m1{ z>gM-aMg#;$V4TYfjz8L)4j2B3ts^8~fUBSiM%e&;8o&T0Gm`PFbKmuY`6jnPeOPH} z$G9cr(BZjA0dt}6T>mZ1r-ME(qE)o*I#u}bxp?UvF)5|dk(mWe)16xrL%1*3tuqtu z+03LfCf+D+OYi7YI!Bg)v_))NwZLFiIcUqCR#dCze zZBYXXInFVI zIvB&kz7`S?d7aJs{aTeAPR!#VoTnAc2j;<6?x`>1Uq~IAE7x}%#&^-@(#T3gJwfolaJKtejlKb4+Xwx z3y}q0TVV>OB2EdBbJ7J;5EDS3Meu~|Rp(Gy0><#hk4J!GY=Ayw6SROP7>dJL)`Gx6 zN=+4(_>d4TX#U9D2Bua(1i^=*956aQTM1D9KIw>I6M1nWg2ZMZqJY4uA|hh;jn=#P zj5A+6AZIcW2}}>b^-anUMmH5^K+hNElXhxpC)v=&A`-$^{gydO9gI*;5yQ))QKYYOj*il5m2LG z5i}u4Y!T4irrlPqAhuMjlwZxSE+OpgTTZJNpc6$-2gF1I^IC8;prI0gbNu3Pi2`An zKmORvziD^ zfNBB$um6tJ>9ZIdR7M`}r(HidN{U2)dT1!bybSO4om?n+ZCa4F38(1oo$Lox099jZ zBjs(i2gUWK7O2la4@UU_G#dHP5R4wmbTl_Jdk;Wy1P7t-{*wh1v4i7dW;l_-X@!MC z>P3s;yvvZ$^v}s*1z;Nv;zNV{duH-wxcZrwyWS!cSQr`ps^jKDo1lw`Wd_UZJEzg1 z-ds{oUd3GuG+uV8N4ut~b>Bj6lG8mBn$LWr5$BI_eceaIDnZrwMy&iIL(HToAxuvf zP6_qTHbUqKd-qPeNc$}ET-u}qF0`AG@x90^_P*g6BED@yzrX+Gcw?Jq28DvSPGF?? z5l&H25tb-EpaoJuXO}AVp$cq-)Kny>g^y~SFSfV0LsnPt<^cw~z$>%{U^<}?Y9(@d zz?Ix#jA$l;wv&{=4ManM0E`7R40eUD@L-b$13{6&Xf3A(gj3*Xjiooz+c7VuPA$zww`Ey#VNF&Om>{u{OTQzB{g6^XlfG9^ifEHcPfuO5pcP;Dx8+2#1Wk->j( z$?f24)j7K0$-1iRelj6=aN6+sqg_m{{F{~`d-R>-dj(o|uUHdbfy1(5`r@JHH`y>?o6 zUzXgAvBT1F$w9m|56hPpAB&**b*qTm7Lmx!%_J_t%ezY~0pCesTnHiD+!K9((*w{8 zxvGp?!uVE`5i1JtVZfm2%^)K3(9Hw94gg>WaAY<={sAbrkkMn0yy@~Mx#N&d;zdEN z@+Ariicg<5j)||2Jc;;hJ>1(ad;p4q^#!}XsrlVMXaq4+ytiaDCbmc81k-OG$`XmS zGq+R<4U*@Sywp_ad#bwhYoXCB{q7>Rjoin-vCzSZ{;S|82C0Ap!#GRVu*;M=&lO)k zc{lx=pM=aW5>n~lYFttjFlw|Gej~CSFao7kzzFcaMctgqnG$1p;Egc?N7Nrnlf1kR zigJWH1QZ68Bm|xieE^W~7ogj~MgbO&%&6pHAB&ZdP6#1YtZ%@XbX#DmfQoY&|3P2r zQ=EvG*l&XN-jEOBOha-W{E8K$DaNutw*9VC2hrcSl`cKFy;5ek>Dl06G4qFWi|~cT z#*G_%<*em@Bnut(lo#g%-w8)b>Tg^qUOq7HRsDU;1~b_p=#>t#&cvdj&9h(<%eJ?i zRO1>iHw~hBJ*5RV9wE{9my|0UBy)chr!w8p?cM$U)st+AW`$7N3Q__?pqOiifpXnQnGu#w?Q zuuPz%bw+V+Pv3~y$!ixnACjA3S0#upem;75i`|c<9xWM%le(=aUFX|9!6@)IgbwYB z64=aSUz~9d@Eji`kq(aP(!G2LQAjNFVMHcI`9O*;cd{NJiD6f6lS?jzWq?fyu$dZo zQXDWun}uK}f}aN`2;ks+5rYxL&aR2k8_{&Bx+vNAH0WKQa}>KIuQnNNps}0I>AcW) zj451ho8gAeBlhr9}tgRQvvYmCws&eV!O4I#2x3seD zlr5Id6(}p(Rj2eY1Goiygl{LW+r#@K1MLOC*jqJsuS$bnRASOjy0bQ>9;`rYq$(G` z*SK`dh(p3a%xjMBGrf38gF7WqXkR|s;r!h)k4{*Ac1vC4aA#+Xm>F@80~TiS^4)2) z=j*tp)g4Efgmfe5`E#P z-t)QTJM>uEnYKR;^^QRn-G_0M72xraRS;_ldET#~-;yv}VP$r)FQ(Rb?Mw;9D)NQG z(m*M|S}t`s9QVHUDsI3)6 z3zP}oeLG;E>Aod7x4S@o57ig%sV1hfz1Bz1Wd7pV;qsDc2&F{q#N{!tMr`!HzahUx zh(es|YaJ;T=T3xoPFsxRpWF`4UTZ2#lkm|tDR9VrM0-Qg4n5)~UN}c-las2+4Pdyi z;Fewh_LVgtHnZ=vlS{8fm-za)Z#6KtjzqctM+6Hf zr%eOTqZnlnjNtHH*+F@|T#DYD^tRhOd;#o&`d89WDS!a}mWfm`-;k7M1ib|JkSk8f zEt%U9783$FPpz{G%W(3>6D{8t)1@%(u9Ep0$^DUm_!LA?Fm1*fP_r#dmUYFq6wHdx z;OL?hdP)fu-34uJZ6uV7C>M>OT->i)ymCZ2?PZq1>sGb;%gW?f8~`4g*D!rTF3iJ8 zg2zuO{q!Z&n!Gm3;V6YgO``c9bAO|Ljls0#-1#95OnI)3rfK>S!;}}S6i|KIkwuxk zYuN&tN1a0!cw{&7X@gwS#)w(2Cy>?R-2+QJQjGjXY9hIA0O~^Oy=B&MlWkYcRR~Q< z;)vqIc`A89p9ru)sNZxnfEECWeI%wX9npSGg^ChgqdWPszPOK{z$VDi?CXv@xPj*z zk*cXqL}R$?R$@UdYV6ZRKZbE#TZGH*_%vn{D4Dhr+URlQbqtZ|AKf$m{biNbi-yg- z8sI3QU#_&KX0WJS2wdgtZxRv{yMkyLpo|it5Cm)e!8|@E};$BDAqD zddUS}Y=5n(LPU8;rnDT&(dDPOPZG5>i7oO#Im)kNzRSIGoqXn2x{IRa1J%2tOIVT> zns3v6ot-}W**+G~fQ=&pEwIZ1+6D;kAih{IQ{O7K-by*-7i^l)$Ju@PidfAB=QXBc za1`)Yeyye8{os)<;0YzC9*?xdqm)aHE1tN<av!{YcPANRH_QmkN}Dqu;P^K|H9)z5?9D(rIBy5u7t0Di zDxZ&BZKk*;eRqoaE{BM8Ky%fnkCh7tCjA`_e=-(F?m^vh?cw_%TLM~7YCkk=oj=T6 zqj}@rS`NQ5+X0H@TDgv0Wv<^RGO;w^M)K_b`OR|7@!|N#b)qRgDP`~6vZAG6%zQ_9vu*ccn#lcs--Mu%Ht#71!ZMBhGI%d!;KqDtr-N4{U zAW7q36VcogRV-17#6vaSUHnUonYIIu=F^BdNdHByhE)<$`^tWAo_;@5k&J}u6gJZuBGFdkB| zWv1?XH=+cz4W1+(=9#R`L=&r30fDCE-e2g7e8%5Tl#^&z?==%N)9?~f0(Mksr{^NQ^=;EKt5@W@ml-~f|0b(03h#40FZ7CloO;#GUx`za{y}^P zTkizYNoiZj!~1c7yaRKcmFLEUB+$~y2O3jCVTy)=S&d$)Ei*^6e#^+7z3SaZ?u_}z%(rLQ+EwCqc_ zCTX9Ivf;f-byU^4Rc`h%tN1}mCBcGVw#8NVE;sl4O}*B*<1Iy$c2R+^Wn11qUpXwG%*e}NV?Z*oERDYn|6WfqI z7WQub?M>-#o-^dH>16q!|L&fr%!kbI!YP5`A9SarRtgGj<#a~_SL@67tfQ_TrCu4e+D0*|)qR#kVrb@?*PFz#a zw)Y(=K0%%p2TsvXPn+*uPtTMlB+Aa?xr_kDXe!Bd>UpSkzCm>A^|WE^OPnp$AeBFZ z9a;5#8&tPd1p2N83~`MF-?ShyyduMuk!OLwSMEjZ;Y3Z)8-d~0&1%KLrS6!!8`$&b z>Tqjb@u%H4DFUj|Zt>a|WpyeTv?z8jP(=qzrBO_ltlY(ID9MvzXhk;!aSoH|<1H^bs|+iD*m_m#tlR1CiTe8o#&fw%lB31h%RpgB0T7zz8gID3>&Bcp|1=!lz$Tk5SFe{(L4eC{#6=WjE#1uT=i5$CzMV1RaCNxsSBx-bT9GEL&3#ZQ_tVym%=A7-D^b%?Xl-md(7N9%mo_T z8+kw1i{>~#nQN+$Tges+ujtmzi`y+>35>hS6hN$yF5TyZbGc`!ECvsr;pnX$N}nU< z{pk%GqytR$U&XrQV9O(hHj{l^L&gE>AGpFY%?0!d*3ncHjZAmiuM6F1N|NKGoUN}{|J@2 z{wMEJf1}gxo$L4#>Xq`X3X|ub=SIGkqUnFWtgp{Jcd3uv%*yGsZs>N-cc%I&1HenZ zw!r;F$XC&7Yh&21bO=w|^@6wmWT< zYORN{wii{mqGnKPbMPlRTOm}lS3dfgT60d%BK!T*M|JPLo!`K#?`M0x*nXjh?^X6X zqW+>AkK0Jg7Tb7S`Q>(bOo{`pG-#lREwDZk@>e2Xt3{fjI$KBgb9RCkiI@dix7U9< z9k)6yo*w1%j2%TDXdHSz2CAay`%HQW7hGpbl}Y63Hr+>S~`2fvg*0?N=_tc`)-%zc}Zwn zefw26-txFLUYc$lsoY`)mX4?R0h^%@>N!QZn33vvAN8 zRT2>YJMq~Ughkl6cmu5^WN7*ty=Y4ht$YXBM&xxs5U=4K};%AfhJoN*3w0!A~>hjB7+7(J@r zAqG{gq4dc5obCSU54E}>q8Zc>+sEo2qn6zTt+$2WOPGGj!NBQH;pef(uxkw#tpxvu zZ9qn42V@u{8>|)`IT}RI?^Dw2n+sHOrREBVLsHm!t#RVl%~`4$#T0=jA!-sg=!zNV znxiC#Ar_ocW?x}i+4Cqscfd@i=z-bBCFuaf=BDErf@ZBHkfA2lXYZl=M~cxJx_)BvJ_+x6h}EJC%6xcd)Fh61#3VC}u+D5bWvR_&G%+-l z9?J}+37eK!nOj8_{0{Zay{8Zm^*Jcc2MQb~??;U<=@B#_El05`>XwQ#2Hn$@)GLyZ3Nti*{o*7K4UrRa#U7gR# z9?Y~#T_9)r7|cHX=q+ZKC3_F2qMm5IfOtqf(ot2zq8|l7&cu){og^&4Coe z^yvo#Zh`{t%Ul>ng$XUBf^1$P4R7qt~aK^A-*$h?hkO zXFRtrPP_l&0{A2VzldRhSM&Ml%sCpWIR#5stgqz8IDa44RE;ngpnAG&B^`b3z%2{3 z38S*->luSedf{LEjIiW+ab*H)!y(5)!ig)rPtG&@XG%2RCa?JKYZ*lgKMao9J=o!j zrywIU+*)jh3{Frm+O#JZ>2{Wqk6jcFEeAHULyqI|{!aIrB}Y`@L-(LpW8HzXNns{W z2S^z+|CCgV`FNjfVk22(uw%ow1Dkvdmd;9yTm7C;#-@RsnNN#=j$k*IBqwWv zFDxrd$4tW{3EA^{9zHv@l9GLVq_LU1>2e@CdpM~A4Gk8yynLa@5_J7ACTmlk{xGR* z!RiGoEowK%l5kMwQ`Z@!N~xf4L_Oz;H~7ycBljDZ=jOd@`KH!MLtN@!A@DO`Is6j; zI(}!f%9T_CKi5vU;V%xRwB^^kFD^WY-z;a}pYPxrGgVT#EKaV+Q(LT$5Nm}L(>Ele z(%fQo<_rq99l)(L4{Jh0SI>8l5DSb*k%2on;SmT8g2_8La4m~SNeC+PdVW^SBi~;5 zhV|11Gi1O~8u^>q7->uVjB)1&$r%jWQZE^o@D}(ymfs(I%8<+LlERKrM|{KS6;AHmJIT+PQhCmF_um-Gw(*#0+=~0(8>TiO1ZcF<@z(Hz zrh(7H;ElGD8)_-~%`nnSmD%oJ??SHxu}d<(dg{&^RAPK*xy@1Wz4NWKGo}&Em1j0% zmz8S`r1z{PB%N3B4^~oD;_^11uk2sp0>Uh3=R7O{Y4KRE!~UP{Y*Gkj#k8`QW#n_c z@%X3%&$cj0{B8@K*L;}Y#@^GOVx!&C!%f7P`Fqh!VfujMMf1!B);5lpTlxc6pAm5R zU~syV=JKxsd4}<-J8#;GBd_lxwRcN-%3#GwtBd6Z!U0pd>-o8=lca$l*x&rUd5uvy z;eJpXBf%?!)IkrrIIeF9hZ6oiV3^^V2|_#`?Cq5t7MHOZ>kl~%cyZGsWLsT9$)8O8J{GR%6wO_MoSUwHHwCNDsH3<8S;1`0&{&BgXhvBto92hS_yFmrZA zL3;GpVAni@<&8513)hwrvsqN+`s_CydZP{e55yjMBPD~CkIcF_ql=clgoI7F)2BfP zLI0q7`1|)XgXXy)b=$jz7O(o2&u+w>4BfolvGJ3pm-%>r@l#DTveOCD0#*E=P{+5) ziHDb)%L_31k$C*uFNA(m;^IZoABpx~XzKWyWLx8I*wl{mmumK-(>YwW{z z026a_X4af7@8qc_K-+X_FZ_Qik zDvp#}2&%5rmUZ$!W>*wrT-zD=?@v^(f#rg-h@Sh|mG<%IT zJg!3NS_k*!$B!RXZYE))VDAg8bn=DE7nTblE25Bl96*$Jm6X1DpC20_m`c#%(NX1A z!*~c~4_q3E!yNQ`L%5a@f;6?Dg<)Z~9Klr$Y^?fD(<3v7|Jc1BaU%wlPA`oN&-+Vi zTLeGw1^H?9a-Y-p%aVk#37zL-%M7!{Ju?o`^6OU{kR#ur_36A-jH_WPpN~D8Ysv*C zKBYGp{NiL@cEfB()6}nb8miuX%CKXO9dQ|_ml1o7RCRMAJNYU-`=lS_p$l`m3mrGT1nIr!7$f==CPQ4f2@%Ki$8x z;w0i)mOH%=7;X`|7afj5@l%BoQCyLM98%?VG$L*q`+<^A-RJTx&R7ge>ODjSYplKOhQV&KLP8yg-<9iEy>}c^(dFaZLBp33oDrp#K zEj>gL7=>stfndEG=tXdS#xS!ua>1!^;QQn6_LGm-?Y%bH#=~7NL8tg>ci-5v?q}_E zYpvRbILw%k>B{{${u~S&Z%h)QWv7NZ( zLUtBbIdW=&FQi5pov|X6aY;QOYufpNxk9y-T!Kz;RE4$BfH1*|S7D!-`|H~x|bU1-S~ZQ>|4$}7qJu}A?+XU?Q3dkJG~)jD&$||C`?8^DeLh)dDch0sPFQ# z^VjFd2%8|jI>%uT77w@8`x?2@UUu*(a}|oeApJD$rhwF8+%T{C;l*!Zk+qAA2UnFg zY{atP-KA5xU@Y;wI^g7eUPC)jMIh4`prL`~N#G;tLO7M!J~#I>`2ANri}9fB?--Pj za6~~HJ?iQu$2WJoO2B@uQ|?oM_H(RiQ-Uu`IPrcOSN5&AQwuF4Q`)jgY9}S+rAqep z$#&~tC(s~3SqPXkED3FP;@5H}F@B7{7XS_8t&;)y4Ar&z!WC45T?12W-7^@3_T})> zv&|G}wDXet7H)p8=vAR*nHyNMhauDUH6IUI zjYTV*wMc48aJuT!_eGbgf8PC)^77<_UnDEde{f%h(QmbYA?X;^d$~yZ{R*uG!E>p9 zz9bF!S*8OxyVJw}yuK1ke~{YSI`^lBOOcx-L;3Hh`S-m`Rsyz1!L>ABt7bf`vZMUD zT*Cli<4(W6I*LP52)t}XkF}}2n)_5#yE-z!n0L1xg6+Gt{-YbEY4+_-pGJDv>kOU+ zStxhEtN1LK&AN7|8Fs?-O|9~h=v4!;?yREv+HQpYCRT!J&SIDQVr;`%?u+l&_!QXN z`59{JukgSZ`MCcXp1LnXce}fObmkRI4=7cf+~E~Xi~MIAA$~jOu3(?W`GcA5fy(5< zyNP`d19Y0glEkN{uH}g;D|MzN=8|8Duoxu{?-YA>n185je$g?nn|iBQb%hmI8h|o? z>f4q5C!Ie?G|0awE~O<@k9Et(Y16GLiY(6_FF#T+gk1!(DFx$wM+=UP0-L=D(P8O8iGSttDq%HpusLe!soX$- zQPxL?^>Lb7^D{CBZ+-n;`~{SfZ-G0$@ME-;EQYbDx~PyP=P?QyV)gRUmbKI@hEbNB z>JgN|M3+sLvNoBNe4RMB)3f-KbiLS;-G77A#tkli*SRF(^xvO4$Snn)bgZSQuo#8u z^k|jGfVb6ho?>&cLM$rf2>q=3IsxGYv<-GDb-VAa8$UPWdVC&;-4%*qvbf}R8&fIs zl685Fy0`5SI=_;XrK+lc;fjHK>-$6{n~6H-ToFOWe|8YK_9qdeO?|jYz_wAq_0FCc z+oE==Z{dL3d`2`i_+z|*){Bq%+*G&G6VU886nCC#hnYoqGkcsHEjg0Fk05ES!f1j* z7S~2P7c<(J84I%Z#f7N}FboP|?Y`6Syd63!l1Hlcv}Tlh#)g3GDyj5SD&$*D!6i}t z$==P_wsvKv=%staLQS%l-9G=PE3`!CB-Zw$H+2^rdwJ$Jn%IQHsD;s#vR`g1uFlF& zJf)dIH4`(*n-9^KrQhMGy?+CPU#8{Vc_#)okx+i#i*&SOO0MvAAuPv}a9Ce>cL+CN zBdahppm{>m4wsSmjhk$sDEA{eI_JH3K~3<$oR1>oO`L?T3@w+J+xNpOKK z4ywwEQ%WLbq3I(sw7cET)zt=ir|)$l~2RH z88~2=q(?HxO`w^ue!z7n88uf{Jk!DyfpXnYi_OCEgSEhP@7jcG&euN`DdfG6vs;*7ayz-R`)T8dsUKp0U(UYOe3kmRggsEKhLBh+*8iE=;8NXBfNH-q3nY!34#N<1V0I zZBk%&SO#O;Vtb2Q5B6u)okU-yy@V!w_Tki6yY$+UsLOI{Pb(eRd^tH3nZo(X>$IM# zMi`FH9^XP-Z7_G~R|qEM#>*Nh8XRWHJnEuK8!L?pF$q{!mUjDM^Qp?bdSu{whb)xmUDwMJK41`Pa@h_Jq&z z>N$S%%kRD4KBmAT)ZcYIP06WeWNaP>zrQ=K>emmq7_CMv@tH0kSK@J>wEcSYsPU4Z z%?}*mUco|z&VPnJVPM`xsZ(v_shdc`76b?m&iNCG`+&t9*_^n9iyLfl>50QVVtF2K z{nqx$x7Kf@-J4XX&$ELNF3pVZXje?%mLa6I;M{-PdXki z{ylZ#_AgaM>~3cZR>zla;6s0^*w22|qu!TE<1(k#&ew3*a?=V_Uf6#w0zpfZA>b#F z`gCq-2@`c~{ZP%|*61}D>mtii_8Y(XI#Z0IT;aaO~}b2 zK`4dF^06*vT{R8ptP5fAAi{&;v=W@E~(VeC%gO=Pz`7RBeP54Sas@ex-B` z_}0+aL_y0jO8xOCH>|8W4!c+Tf1HMuAeK4!Wap7NldVe9!$8Ht@a7vJnu;rvyPipZiHhJbj0mjT7c&T zy;bFzEz#A-*G21M&%-k3cV{mdQk+y@q%sI^fvFKf9~0nsq$gz$u6e$f9Q`8u6tNRr zI+8l)9x46@|1wKQ%8iozz)L;t0|hu|_?$@nX~k;X|0a>PUb84*UYTfH?bQ7jsUj8G zFK8PPyU?=}SX(MW|NN9#X8N)J+S*g_w9Lcyi?86nAfT(^gTigDF^{sY^_A$VFIQgP zz3UG9n6d=lzdjXr-f3Ndj}_tVlY%2? zI|W@^MQ2B<9>Snn6p%OqJAAHNE572OXL6WkkB^oGO}Di>n0EHE7%gy#e~OJ>S6E@Z zO@nO9MHcAPR-Y{yr*AwSD5N_TfJoD=^RaJDIH{Z@K>RJG?hm=A?GeaP^b?*M$u(rkbgjP0mrr(`Ov2{*f z?zJCWCR2YOZ&DkW@ogY`g(0s@e(?Ky z>Y}0B?&fsGZo_R6Q>X3r78TIasr^l+1R_3L;(sR~TBM8(vr#Dhb}IqiE<60~Z~yhT z6>V-_AEJ}{wx)YjS>@wLu=M*Ip;1763DtD3HFuLy_^4hTgY#ziOt=XCmrz8AcA66pS&j=WjQ5HplDo3Z&ofMMHfs+raj;<;#J5!=gx-@+GK8%q=YvC{9` z(SFkOdoXh!kq_~CJZAelIr?5GRQAmF_KhZ)-h|lC*Chp_X!qL+za04klKK^*KJTxg z-7u&1!sc{$kDUA9OYl}x@Hx4*h39^P8gf~QrBgNNwhg@%RHv#j$@*=NIDDMbf|>dU z177-nh)PzJ{qnto{HZkTsQL=I#Bd}7f|{ipyGXx2iEuqEyu$d3_lG%tB8B&Td4gBX z!;346XHT^u@a7uh-mf?_^T4a6pG9QyM+AlLKHt#=nE@yCWQ?Q<*{td)4@Ky|v|#l- zzK+M>=Mn|8M7sF@liC3IwKi=<&TDuIZ@JiY8EEV;giW>O>jhs6mGj3CdKEB~F1!CG%rmzXALpm;(nBywoDHBP??&;M=r`oP-h z|JppBf0i8f!Ja&d1TFcGbY}~vab7Q;?$KtP5l$g7wD<-tPo||%~oX=TGo2*DWAFPgtdJyG8DWZzTBZ!iCJ-2 zO(KnBK+tNRMM0nc^8f5m%AiWTY^_Ag(VFt}qNeU!&2A(6f1McW-L6Cun*M7z87)o)H}RK#hX9(tzw0MC9i?hZ zE3(&ZV=JhZ;m!V8ySjHKW0pMr(pL6|(wM?@AqipV^~f-NnzO)smQ9L6kCigK^z){^ zfV=K~9iKSD9dT+=NvYnyd#4;%8WR2C$9-FG-ngd7c)j}Uj_P(fH?g;WdB3Hkx-6zJ z_dkE`YGRz|&ET+U!}WoAOwm0zs+TYMVE$A8i|`r_Y(Hw-_Ouc-lx+$9P0hJ=kN+&BX$w|qK45O*qrGUN zZ9VxL&cc(UI`deu*NOTHzsq@4wPQ2geEyk5*aS?MY4$1#T~!#H9zuQ|#=wCn-Fv|= zLj0OmP30q=T~bxabT4@SZLFHU9$_N@)_9dHX?r;SM+l_>blq}^>SPT+EZbWgXY}4` z=X9*Yyoy-xx5p68hOcU)!BW>_gu86%_2RRIJ6FZv;}&_<*I20W*fSJ-(7w2pZzaSq zqQTu&pU!Mk8O(^FF>Ud*}9laeho8Q&QD=_0{;v zB$!oH1TpRsWa&Sn%&9!d`>;$)NpfFq`tDY8cp4u@+Mll0>bhgp##nMMlGkvqizgAZ zLGTnKB7QQOQp^9;C8KDl5qX>8Jk}yqWNz*7Xog&-MR~?^4>`{ ztKH3;ky)c^muBkMng6z(TX>va$934)>wz7dRzwdfcs^psho^RtKVLiL|6e*jtX?BV z?h`(}Yn#p$$NX#|1Z(35$Oj-662>@yJQ6~x`U>NJSQ!+7Y+r>1svXBSBbtCxi$FZU zv7ZjbDbfZYkf$X+Sh(%_tFUSV!d9S!J%P;@536jiK)|zbBg~3k3G?+K_ZN1MkPhaq zVpR17MQw8S#-|wsnpsWBm3Gp8+-oA@y}QNZC;AW~FfVQ`d>bjCY2*DtqKb+R?*A@8 z(f8P*`qq?yOWyC5=iRJZTtdGmKgN!1@h8^kio82(Q$|(;252N}cE0bC0ZJ(FS;DPH zQ!ThcMD3&$3)kY(IWR!XTg3y6ZfHmdvakxlDM~$k+D$YITbCBVFx~_#SYlFAKO*r1 z6etGB4%FFI-NV8ce=&@$AV5O0#}`6APX;pYf%aUrGngAIXqvY5_=To>Vr-4X9PN>q z0b0Z3bs4w`E?4ZmIQn@VAplfYSAXZ;lRn8C`!Vo`%Js2QQ@{0mq7z1FeIOu<$ppv4 zA=}H#;yNhd*jk*DoHaTSweZ}zLgm+k_igW;cWf@4&(-`h5pl>d>doTn4SuUT`$+7c z4@3|OrY}LK1q@w31 z+epY3HTzd=)qoE(*^xPh>|IB4Lj=K)bU-C#rPjK;x$toymXJ z|GFgad$RZOo(+&hbf`{%6o~JAVoyrT(E`Px{lbBL%!;_$$i=5x_N2b0Gzd2_Z!pw# zkuoC0?`im`N;b~)(0*G9r}!YP*G9 zGc`43<;d437B*H~T%N&bs#Es4f#xFVS&vv4oYK;&M4UtFK*+|LXi`ruuK`Wen zve=dK8BF8fXEx+x$6q0|py0i^LlR@b9;>(G!(Zt_neZ#tUxQgE1=DA_{NJ_h<4qrF zz@D?vP;3+~m$Z<1iKEPq${^V(%}1>zbf$D;(95@|fULOrLW4ws*y_@WZ-HILCc`>o zBKr3oQkA}MRQjm|13k3OM0Ad5AKAxRL&kkcK6uy*XJ< zJAyt@WvOE{E$cjq)#s(MZa1)85tdFC-tc7cGE?Tk} zxg5FG3=4!NZtI~F5)fQK{j+#+4~7&R>-Yo&2uoJuPkg&cTYI}IT}FGY+cvDOkClK} z0EO#LMNs|w?sG?XLO6x{-p>;~XPZX($GuF83$>T$hEmj5o+fbqg>PiXKu)|r!P9&7 zd!PN4t+DkTue>{bfpyoJo``%EO?Ro}g^a}E`Q9H<(Y&oAjD!6LX8dnC-@Gg!4#s_g zn~#12*Yt+QJG{FEfl=scL+pK}?C-hIx%^-gp0XVA*adX<8uS)PCI+d>kHRdB zVsD=cR0B+|UD2#Yz@=1?)Iq$rNnOC@tp^Wb9_p zr0KETMOAyWnve27odHh6nVygngtN-tQ+!l@LP%NT#D+{>$Q-#HZ8L(Yj>~t zEdG2i>m^6R^%o~b7kk)8GrqQqdU2R93B`MrP3yk(zds*@J>5jC^8C?xZc)EO>L_na z%tK|8crtCq8FR|7S~FHEa#mjOZrl81?%7{1x-uP9udFoWt?O({WMZJ?m$c%ZFDE>L z{;BdiS#|C*@=UONiDn2Z5BUWIb|qlvATxw$#Kpyb0Gi?dHTRZLS#4kZ??ZPf-JwW_ zG*Tj<(kR`b(j_6CB8VWM0t!e_}5TO|Bd+?pRxHxv$AR zwO8sSlTw6IA0;1mc%79<(5X?;;8~s}l4F?!ORP+n3YB{688I{h4P8nFUihJ!p%JDO z_S1S0fYAJ`jY!gKf!-R+ofn8$=?P;HsuTn_5KUgFb~sV$12r#?;|8gy_FvLMj)X-8 zKZu5myVSg+cD_+8&UfO+UI#9D)w{;WQeRTS#eVqiRp*CFVB+>nv86 z8uc0!uvKk#eNgmW7XSYKK}6W+;9bZJ?bm*YAo6-nduM&31GjhtjhJCL(dD7ckA+=S z#U7>vf6dNyT>@2c_0j@D6tS7hIVV})YX*7>uOm$UBkBEZN zIC$W#(Hz~S%qPZx6D#}fy!e02`JZj4gk-PqG#8;sGbtOl07<<*S|*oF^|(0= z>e`mfHy64H#-k=25fvk9*d5i}N8jkL@ooIE9~ZY6hxd|7~1S!GGJtca*L6KM@p=70RY}>|0-Be96J^{Nj5{J z`CBylPU<|O(KCu!_6HBlrp)~rL2&=-V_4$OkPFvcU4BI|tvK`gUmq5|yj!nB^x5iA z0>#|oox7#SV)XC7BpxL2<%r|u&%G>>k{v8r$xsP?(w(^zzbv`=PaRD>KF6e%txAlM zE`4)UFN0EV+VEu1^HDde>rcnHzOeTuiMDj~Dm^bZRkD()#Bh5;?dk0@q1k)$ezF~= z8hydW6yqa)+_sO;tYW_ga2@~k%i4UgzUet+Ou+ytLyWdB9C(r()0&*SRsKO(b!62J z2IMHmoy3hpZ0!`+?XPd%a5+r6GwQ8P6t4{Ajht*tcpu+>Xlj!^UeR2Zg30x=is*Gl zZ(_j-bdXRC!XO8 za&rtb?YneV7bvKYM=KK zmQw}EJ9PFZ?maK)ZZ`e=-bPaSm}EneUDJ)h$**x(hZl2LB(;%+$zCYh_J2JmvTh)&)4eITpEO!+@(Fje$>h4lp{;P@fNpa&tYY&MPn{gCW9nT z9xK7s%8z$y>api^_@PfxWs4wxRqQ?SEJnY&IK4r0^}GkwwvqBt%QOieC#@K%tIKo+ zVdpE%A{P*}x|9-dM9p6$FS`Vu59Ks5lSv&LYn`qtExDuV{0lpGiKa$-tSx2CrnGXm zw%D}iPUIfja2eFR6zjf%OC^t;7M@==TvmZ-icgSb% zv`+_0+wOh!XXgpF@13W-D_w+>KEwsX$w&z{N2qE!-qq#rPMGtV-M9K%E!mUiXMYXF z`j?ld{6LrT_^&*wuyIU&C#X)Yn@8GMc7Z)CM<&{#u03h)TZ;Gk+mpu=<{}3hk*o@z zMVrIoMe>MVXEPgZe6yc#q2Q3JY31QHGD^6y=Cz!@MQPL!K_vHChY%)=KQdw3wZETe zoMNViUY(;AMAs1u{9^yhJlxf}HE^x#WbcFSPyD#@r&(#!nveS2X;zk8sRF5Uf^&0Q zy<~OGE7CaInpHM#I<|Go%3XfjBC-i>yS+AOVCG=)Z3fFKW`&bn6%Z3Se)++-KU3@(_X2xR)l*wIIhhxL&D+RR7S-p^D&_@=@haE5>VTJv~abj%exR5SQr|2g+eFsm?4pdvA5gH~!;fsF~^d z6LOn>`P7f>UdUGx_&u_VaK7_E%%{?gMSixoRp{;CHGF=rMdnhciy1Z%Sr)yCZU^BK zFzV!iO(Pq=B8t!APVY-0BfL95EI<+={s>HO`8w-6|C92IhuIH^_4H`Cxa`aYiHxbD zuzlZ+$lAYR%l_^>a%8~cTvisg(wq-hj!X3N&~VNy*o1u}Nr z9n~MpZ!lBo?q1dRBk_|oV)*ZNU3kgdG*KMsl{i82M4=sL7_+f^_hGda;A6g~B(7-3 z_4}j3k+pzkQ{dwKSf)Aq>ay!nWX{(95=Dbx{xhyuz^(m+np%%X3@OQ zrD-21N`qOQN&DkOMEEm;>(Zs#=(Qk%`JlKNOLMLir zPdQaYGpBpB$>h}5Uy`5fy)qbjo3(6au=q1N+RLx}e?=Q{eV0&%TwJ7+k=dQ)IOH=e zCvzf3lscoh6YnGU`U6Za_=GQyq(1ffV>KU2HYsPzI_mVf>}GOl%yZnn>t zOJ5r07QK7L`<{!&1dhR%jBg$>*k*ct-N%O7Q}=G$PN<7hO_Lt@Zz*FPLnxyJ{|&-_v&^D-aeVkz+4$W^0TR%YufTj5f=Bp&W|EBB`d9uIW5a$0eScDP8M0S=r{Mzq6JxI9>g0B*s0a@ z9Mq}3^&X`)b0nxwGAtpJ?r8auLX0{OU1h{$$%2#rw4C%_nV-w36HWNt z=~XQ6t1AsDDNapWG9&_zPvpF6XlKiu#%uT#XK8rLmpCk!pXpAYeeZngPha0@r)Mm9 z?EtT89G%_wHuY9LUFeiYU_0W>H8B62?+u3Ov6qP|js6P`SNix@mV+&A*^}#}XJ~Q| zg?@3y)BBs>ret1V$NW^M6D{s%t`NF4`v}$*`Q_0Z@-Wd?D!q-kGjkq&OdrUJtPy3b89Jd zw=(nBH2H=>%;*k-z$b#gXNxn6D{Dr$rthMf^%@nxh&^vidn|HX{?13##O*!eBi-ek z6IHF&o(y%4LF;m$QpcsxL!cRN+0|MBt6gTu*Y@IiiTT+#n|lpwgMlgS-k<+Y(C6zYq|il15B6rcgw%uhPbe663!1-g z7UVeL9~O7n+t$joy(=2?iAruzy9x`&z)51@u2A?ee^Monmfo;xa7QO4 zG0&=`yUX^n&2lG~$efj1R34qN@$Chc`ogtK< z8j(@mI#;j1{rLNNeuaFSMe6TZkQSz<7>eR?O z_&&wABbt$oEF&V5nCh}Hy2DSYYRFB%QcCtWH8g!yqEVN=V&hMuWT^a_RNfE=AH{@z z1uuNJtbzA}txzby(%HZH4WNBNHk0kf4IDl`zT=gw7(}$$MR$o5y(*N@Ap93)48f2w zY)>Q<%U1PO#TV^_Pj#_%_4-)RoV&`TeizaYUzt={UQwdZIn_Sl*+|L6Usn0Zi$Ws1 zP2&L+P#`egRjdYDXWK@~0od$4k* zV-tpWV;*?15s!t@k4aZ2`EeUgF%4590=H+Rk#d{s*RfCn{wMB!`~7!8cUb6F%<4Te zM{k*@GO3t@61F0W65>rx62Gmk?F72xf{mp9#2 zQe+e^d$Ais8B_gE9dj9Tkhv}I^ByNEcVKNGv)`*-{^W1f(V+PH2`d*jA^P=Bp6W0Q z!r_$Nl*S)+sMxt@R&{Noy+p9=8pC84E^bUzIB0iZJF+=+(%}SqWIflSNV|hR!x2#y ze^_DA5Os1WnbSK(mgJ*mWt@=E{_7pp(wh@y;k149Q3|&FT@3p1}tzW8vC3!oC4`CSWnM0ID z#eXS`8XRoNf07m03g@`oi71k1dMHW|OE|H;()WMg-#xgu%R3-r42(ab|3or%OH7HZ zttGzP-0OMJJ~H_7VB`L)I;AL7uMoXS>eQp7$C3+65QzDyUEeB6i-ZfyD+eeQS5R?D zICJQeA?8i-ddK}s9Piv2m#0U=IARxg_OW}eDIMEajDj5`@khuNX)J{+T-qpoCw}Pj z%H5>#uN-Pc0@Lnvc&QbEmjS@2U{F+4+}Yo62bALOMtQH{#&Ax-lTEJf(m3^@E6J2S zKX`%^(5KFv8xL56u>}}h-_jI5XF+owQk@_z;Swe|{4~?z;(O+u7ck>k)zpLk2&Ie_ z6ST%{ekR~@5S+)+zkK-;WLGKRK2#=85jT%56sx_sO0r)MUpO{b=&a&U5%P0-g0COu8nfAWNVVPU~# zz7-4A9D+r#^Xt}j^Y}Q8RB!21?=Qn~;@NcJvQyrjc{pj;k3RW>a}@yKpy`1#tO%%TATFovAp;9$!52c!tbC1YKRpQj$sXwTj%#9h3<+sIr#QQcl zoJUVO70cpWetDgpeF0d`N(KfrK>7-Tmb|&oxv2xry+3|-Su;(VayijoLWGKD@#(^39?b=-;1a2dhhbrN?HcHu@-L_nt8WL z2-I`(;U=J)<9T6nZ-w%gOEs0wZ>*2r_{2Gafg}|IG*K(&YQyzMKovkZOK?)z;!2M+ z+SUUVELOQEP^IJ0?xD|DHkT#!-`mDEl_XP(WI>rGuPC?KSuAWA+Ob^Ob^f38Ng z`Og<4)bc}BhKK9*6qTEO_jgghz7Pt`nC;XGS2f%Vw@%2scHoxf`|R&d=-vHCHL{|N zNts{2naEaZ&05fi+(TxjJ~>KK-zxd&W@jm|#1J|yw3FiE;x;Fm1-t}FO}tbshZ50T zM}D^1uWV=RC8BommYg4LY=_BGt;cp&X~;BMrZUdO=6DiU?;c;fLVVF78&aV1c6oTy znpe%#jL`CH()jx-!x8JVLw~zx^G*Kb`zz1!2NvNp0+ISHl)W$ z?`EL-T4*Qg#o!bI>9~T2#sd*Z5VV?G>Cb{;AoY+jDG?n+^@PPQ!2W|hTsWas@IU{r z^sayU_ce4CjHqF~V?$T-ZIK~6;hLsZieTwNv$U>s{Tdlj^?eZ){}4qg^C6t~LEfbL zO!v5$0*NyUoLRiIZlat0yTU-lSY{&7CV`}P`bVb+yi!@Xg_x-LrxYPV^J=^}O4zN; ztBDI4sQ3s!ERTE@a9KY6)50HX*>Ifcrbggvh!mZ+o*tXHI5pCw4LWff7h8?zA|8a|JFg;N+1-rh#?W97TcrYv#omzi%odUrm2 zC^4hxpeA|OGMh#sfUl#n&DyXuB25+M)#v{Z3N_cjdo0N6pv_tHJSuU@^{ zU3kTh2y&vKq|WyT$LhU>VD0y%Z#O=bz?rNz4k{i~xZClMd3=*-zi1-V=nQ;+pOx)88+1U_gE4rR5(H1;K?^7v@Eoh$NX zM)Qo`^2aE%wxfjO?7M<=Qt*>gL=(|X>)biTUkjZKms@L`ALi$CAq$2<(me<$vWRLh zbb~fwm5imp+sEvgaTL|~DZua#>L(V@8k_<|duina{y^nThTio6I#b4$)=v|&k?YmWZ)*3K%d8WZ3c}$E?QrtX!6cBFY zCduO5X~zI6+Bwlj+empshdPcpm4x_eGHgkg&o5 z9YSg5e?WnVdjrW9+K(5&Gv{^v9O9mJFNY#`?wWr26Cz4pL(FKUP=wb61|4JsorjJd z&vKPEvX?afpp(QoG`+Je6RgDfK&21OK!>+;bZO=8#*nvx z?lxKQ;14?6Ceu8zu zhXr)-j?^X|p*Z4|$*8Gq4!!T+#}jp$ia;2(FK?uxP!1Cnc%bBbPetX9w)VR${$Z}c zr3UDU_L>i)+5zYiI_hF4Ty_p#S9or&byky#gOCl&^$wkHjXFWa^Ajjlo9kDrzb#|+ zT6j24OIp3Ck^eI3)o5JBqwE{CDl!~BwyKL0_wQMyH&g9^DTkg>iMD8i-kp(C@sUCD zX+dRQNxPnz9Ak^lcVo}KP5AUXvh=9IdByEy6*P=ypspfaxzEGGSU^t_h_Bcvq^85J zaw3mc8Bk9B*(y{JEKaOR6ciL_85-K{cgLxxhzBF5zq0|SyuY7H$eiy#+?Z+jdOt)~ z&QHk3-W@H-3G-*YVmHG(dIPHi`iwQ<_B`E|o@)#nowChu^oxJh9 z5v=tC!?z@OnFdZq(NhkX^B=JCh4GPZjBPF2s3sngzddy3nV+SaACWjDJtgMUkDIF+ zNnK)p9($PC6O95QswK2UgVDr+7U@!l@tcGUlH>p`R&;XWL$s#<{CVuI3R=@o-Q0>& zpZ)m}uV3ZxVc0*3ty0&>2x)<^0HIkpr-sUtE^uZ0n*uMDK8|Yp3#}-Rjov6peZWa2 zjsE1oaL5*y^WS*uL>-|7Qy@-B8G)vsmk5d&MqJ6(Ooj07Mt$ecJG=8oSVsqR!uT~7 zr?g=q45vz^QG==SwwF27|LpTAo)ngiYtj=s`N^P*EODOYsJp>N1nZj$1+u`pm$RVJ zdFRoiYrx$p^*wUpAdkdOdxj`$$_6%GECa(GsXn=MbNe&`4}TmHR5tHqfR*;v(|5bu-9VjAIQ%;hC-pIT<&LXaGPKvz2OB5eILpw_!G&VKTp zzj2TMGqSwCx}vlJX#^~kqe!X6ZQNzd62U#viz!R+ksUnvlDABGZNK3rSoDn<+aHR0 zhS3PR`!n+Dpsg$DI6QCX!F8Mv2HBC=PW!i<=68V0urkwd3r^W#EkqX2?QhNKWP;l>QPU zI53tVxiIo=_}%ZIx8f|8j|inS#$+vT#7VYU?;F25T@Rryf6{5nM=jf5Pm-S9Z{|v$ zcDy$y#&K>( zPk+)pZ4%j{Leh4h%TbQ>kwo8~_tG}URJHM0<=VqhDvOC`!>)mdk0Mbeih2gvPo)2$ zo^hXRE{vw<72Rd;$VQGa6iK zW@jE-S(Xs8Gqa1{xGHyL~ygvX(FF7KZH z04heNs(SCJdY2k7$z_n;vRB10pg}248>_!;7gyxWnNwVt$ANP_WsPl=S*o*3Q>RLs zh?uYLd+;md#XI%ex+Rz_fl&dYtnjNhT=QhtEBO?MU%5(rP3z&qP=q1WL+j}K4w6`` zpk)rXs^aE z7BX~)hn*lnfM7$yO{!lP)%qqR=({cM?GD8)QtzK?Wfmx9r=odc(Nv+w=Q!D0_WrZe z3G?hZwRh}^Hc}CQ?x#-&c6*NI^ew46^!fSu0&YvHQb$v69K5_8AS@1br!$ryxr^ZOUNbaCS=j{icA@oNGAoG&h>P9Jd?c8mvA|nO{AH>z0@g zR#khVk)*hUFgnMZ_d|vNF+jrA)q(4%W;*Bk;6L4oci7)bocTCX2!A{j2(BRDFD9hu!=gJ1WQNTUQ7D=}b-R3Tiza;jk&G zd1-^re^5tmQZlXTd%5EkF(x}Fs7d(L1G(xrZ7vFgH3A3&`RoT4pv(&(@GjUejrQvt zvZc5sc2x?;-=b5sdEUm}F<+KH?pz<)cl4Y4oZM}@?sxO8FZmT=dn&9znC%lh%4lM( zaATxYRNGqBXcU$BIy11Q9S@Q^YZgsq4dmk zbs$@p;tZ|oVd|9~>RUt8YZ4nKmTEk{1Y(6f4Gy?Q%l2#UVBaDgnCOF-@heR>rlv+5 z*oC)&Ig5yMLneYbuHu*Ygzk^>)AW~`&zI*QBg(<~dBEBE+ZFpmn|u%Zq9V}&{UOZ{ za7xt{l@M~(yoTphcsP#C$qE~faSf?mC9O%F`)x~0Rxq|kCpQ(#C^&Yd?i?1Oze~`) z^Z6Z{aN(Wus56=?U+GgS7sCv{_2DwWPFnTpdO}DRN;7CnjP2GfI%J7noS&kh0M?1* zkmfgeiz5?o?N{n54~th-K<=;N38d0l>t>_o=FCCF9Ou`sUkHv8v~93{DQ`4!4C)92>=g>Adu}L41d-L+)>dXe%11~oke>4l4NN`2to_%|8x=*EOX}`mAx*)YY}l&N3m?9AVmMHs|c|2yZ1e zr6>X47*p>*6j}a^OV*gEw15*%ND<|38&NSZL<4JLy}J772)Fb+YDM~HmEABG+;Xkk z@|vvu>QMxGGi4vhLIK-yCGew^_k$)!U=@mc?Jy&}O@#CXB4`oO(T*(zjsaZp_)t9F z1rP7wdI};=;g$BImarEgMcGqRQvyEwHrhHmt4H_m-D`%wihcL)IVdU3BZJk=-?Wiu zTeoM6F$mvBv+D?Wh9D6rAa-hOxJ zp+-hd4z}$1{?#gn@eqi2tYD;hT~*Z7e+r=oC7SwtUy=3!HLLwe#zT01;3ex<+EF0( z02ban1aQsI@vgdTPKcoP8PTfJ$mF);5Xt{t@Jv81IzTC{`q;NU;!Xo((Fy}EFDR=) zs88sFY9}%T=hncgH%E;DWsku~w(0nk}a!R%#U7S`0f2e-J&ZCSmO z+6u6f)~GS~`h!z?8Nc_g^j%vs4eO=$&#nzFw^LhzJd@Q`c2!cToCfJ!KqO!XW#{DF z>})^(cLMeK?-f`rpg-WmABo6vw7CpCJSwf6o6%I$$gHA>m}F9VJ_z02d4G5qV<>f3P?b=K|F4RgdC7vPCT5P-&a0Vyf}(bLK*$PM~AdoO3?$`laP&YUmd{8 z)kt&t-0i3}K0f}fr$@wx9TL0|QBgy(ZwGTV+Pb?5AjLJXEd&fVfboK2Sm*rc)SCwn z9w5MLko%tlyny2E+ra@wzP{@J@lcqUm{1EBejnkK5|)ReoLo>q8uUy6sc^{V(V~UL zNt8SACW+0=%phxr^NNaJNl`Hj`M46C8s1Y?eXg7>4~UqCyOi%`*cg0bf(*)^%tLDT zrjJ?B$nFtY5!Qw|6ec6dAD{h|V9;4d4zCat9;8L%l9LIbK)5_C9m?%vlanWJQcbnG zA2}Z5$Q_kC89`imc77gRr2>4aozJ!(h4P6(F@sx4#b?|M)264Y@g87ecCU<rYr~z0}A|E;+5l)k|Mzl$#cbnOjdfwEE_(`NdJFf zAt^ceb8zS7+268ANEkFp!`p()iD;5ue<}jz5D@5F`S30wVF5Z#POPuM%LCXMWK~R? zdf}}!@6})Me>_|PJRb)Khn%J+X;Ap3gkYxtJPahjsG$7(j*U%Tzb8BlxDBpbOJkJb!k>wQ`rY3j0;iHX{O3;EG~U*8x@OG_8{44~iE0|D!a z3uuIsOQ+qVy#B}6+W815dCUQY%X8~i@<&OJNI=|2{yRDO0=5LK57NN14h8YIJU5V( zF8!<5ub+T=8?WDRPeEZ}lu5l;9P&S!x&26?1r@*Pqs!CTOKPjABE!l^c&%md4$A?# zSdMpx&{WHWxHUD8ncR#?gVgKn|i9$cgP%fE-Wq@ttBLdRW1Y1tP@ZU-{8ou z=Sz9{IEn08Gd3Z0GxD#%liy$Vg3S#y0DeFU&_G!kzx(_5{>%KlyuNL#_1;9KEDQgW zeGA0qt7vFg1C-GsARxd2awdp@|1~1?c3V`Wpjrth? zc*bbK97n9Zqo&J`SeTdswZ^~TW$7y^z37(!0i?2TxmrBd0B^OQPNYr-v`RknnfKaKF!|!33X}#|H7gf zZY6M%<1ekRcT@7{HxJoWhHmG0kNGIUBz*$hO)Dt1SLI7A-`R0FoUkt`d-LW>)}GYQ z-Uz|Yi~U^Lve;PCrHzfB5RvPvsz%8iTSd*Vbr#C9`NZ%D5uuDuq!*~I3U?PH{_~1H z6{Smnvh{!d5h%g@fBYrZ6LO-a%^*jTb?FVwa_?_FD{d=cgQI);t`EHEv+oe>AxJct z1;&HI8)!7++6wa5@1Tpn#^`c&@$^*k@)A$rHzST#8r+y|0Dk(}BGV;lWeHn|C>;4* zvsE!ev3&BU17-@0*z>hDJHMmpXYWPqDM4b9lHb&!%2`c~2-1ehzkU7v{E~i4{V!N! zX8EKDn=~NQ5cx|4u&5MG8wR!nm8UUT49H2y^(w$thC%^5nmaY{!rRN+y9My$uvs_r zH=Sk5T01)OF7>7%;4e6BKtp&Qs)^EKYG{DEv4Xb86~JIaE){XYK~WIG7=CJrr`J%; zpc+fxg^URb1s*f(1;{poABK*&Qeb!;_oZk3j~MEnZ4-yd2ZN#stx4{6XjxJ+Hcsic z26w2jv2m=r;bR$x>{;zI?>uf8(q}j*kV_dSCX&jT>xW@$TQhk8m!bF$R(|L?k362>LTu z{bL9mNr01bre1<|U4VGz7<}Wot*zH! z5EuVDmqEyAQ1ZeQaLj@-hm0-q07xMOG^|*Fe|ZeAG-7B-8#N&(A}UI`*cpAt$4AoC zZ&$H?x06n{gbfneI3$b;-rltrM6LX z%bR`^2S`dA0%S`tQZ=A>EOWXcY!JQ{)2<%2XGJw2f?`Igs=(m$xJ5R=gW9M6+YyUHXi z9Gvy0SAv}{NSJ;Bwz3WWnvE?K%^Zf5vSjagcaadq&BZkksH>yXVQgYDt|5E=sA3yZ zc!-IxiYkMgQn_h^4~?T)g-zUeEg{rpAd9`qX*&OsM@A;Kqoc!MDowDHQOc_sRSL9e zfllh~U%#H9#^94QR#A=<6)(Mk7sOEhY}@q7v4)(gDxvT4$7fN8<5iAy1o-$@&P<_h zOwkR6$HKb?X*QQ<&%zChuzU9q$WsEJN&f5%cm-MBfsn6|hvR$T{6zhFsG}1G#8X7K z8QvbaS0|2u;04$3rV7S7Y)42o65$-Es9&=~N0`*3q|WiU5p z#a95F(d#La9zSf_ORB0UA*BG92`VVC5B;TrYx@zJL!MXU!6I20)Q}AW?6{=o2JYvf zoi0X(x0uPFi zNroQwynD*ZNXQ18-2P-&G+j8@PKU8lG_VJly?e-AX{}AgDzFL?1Pt3%j-MlLW?5O; zldi8dHNtBFxGY5^U^HVX!6AGB=D7cqgjxXg)pIkXsY&*oa(0J*NJxkabl4Hni4vmH z`)yn<&b%Q)Z(g_nzZk1`50NH?aPeo=x)QU!z5PKNtT}?Gwe(==Dd{DmA|m>zDpnvk z8n5pHIAj(?G-H+aRK!d&QOl{m#E{lTX=-W)L8OS>H2A+*C|IcjYyZIZYwGG^$17)( zbaPvzc zTHKhdCb|6A8;GRj3Z%~%y?>LbCW{gUo(!gyI?u|SOFRR=6a`KST9+$gPGHIg{r&qC zkZ9)ftzqxQoEed*4W<aBFijnwUY-98Oli;cN%@3(0~PEJsE~J%?R-#&1szY@tE@YlM}yK2ijSLo@&s zdjZKU#H$WGot#xL;b-|2ZM%9u0*;)zOL5y%H=#k@VQuL1&(YCD*cB)#DLaw<7!nk% z)Ps}{!0QX=j8|Uz^QQwWes7NYM=pKLR%$EQ(7~p7{~zZ8*?l{x%vP%T%^Fj%u(5Bx zUL1oCK5DCp*7!hhtP1bOFsib@6_k~g6@}P1At@ zUe!xH@u$CW>7={_9&(VYe%Ag1F?ULlS<}p##})Yr_Sb^J2L1nS?7uSnzxZY860P9<**goq{T3AbcVAImp;+ELsC+z diff --git a/master/_images/sphx_glr_example_regression_thumb.png b/master/_images/sphx_glr_example_regression_thumb.png index a8b97b20c7d75128d2692c14d69ec0af21ea6c86..c01ee72450194f4b2855b15de149cbea0ffe4c5c 100644 GIT binary patch literal 53963 zcmZs@WmHw)7d4E6gmg)F|3EsVL%I=Akd%<_?v}1gNT+mzq=Ym`cXxMpz5D*3_rvqy zxnnRKT=3j;_Fj9fIp>;-P-R6a)VG9hVPIfTWu(PF!N9zV0blrt@ZcSL?JPGKm~n`V zxTumG@;^lmoZUdw-tTXX%SRX(}J;9C{w%w)^8sg!$s^ zwYVTs|EgE0I~ja>s`^HORSf4p_#hwz8A|6jq3us=yh*#@g<$x{t^PtA9|NzVSZO+k z7|-IeQRsKPJfkEbQQ$Q!lg*Do0$%BHVlL!-&=+0Mv4|t|rTBKqZx{MX!)bzr{;x4! z21kUPT<~)EG)a#DiHqwjRLRw7apx*7K0oUv<1pw#Y<;@c3dBI9ND^>kr;?0VjZ+e$ zz(7nhi*o{39M&|CfF0wEWNE$iueF%@q^&)e>GRxQZ9IU_W&kJrbcxOQrQGQ5d`mu^ zF9DNEveNa;AYUodJAY^z`spTYX=bo!r=94+F^P#izOP_mG@4!60ua#i)k{8K9?V1= z4a1%rM`cst@%DArmh}{Aw4dmzH&9$eLV{-_WW&FJC!$n)uHCW3(D2LZ=-3|w3ZJ3BV#KO`{W-C~-W1Y(F_ z6<#4CBX@4utEcpua{g$2IsS8EKg2bIK}I$rv+uPBz5E9w%^rQ$(~W51^Es2uZ&eye zoMz*V2O<%YR7dl*hQn#RmP<{zGLXVA6{M*=Hu+yFbPs2%0=9=zbIk~~>aE}CZ}dd| z%Fq9tLdV7y+a7=b%WAVMP~Ncqc71(a@n#FUH)@O{!Y=}C&-aYrcd3|}(G(_zLrAzf z{C?%-oo&V`y8kk1rKM<8|eeSGxHaNAC% z8YV!5J9Td^&B#FWEiN`0%qQFtfj}T)FN)IA9|mQ_rKBdR412LN>VN-^ zA0HoA)|S}W1mQD2{>i}55D6KXe`0%g_p!jPQCr|@Qq}Xc9U+347ebfe`Z{&UIe+N2 zc@}IDvo*az)^?`L}r7u-mPRGq+rhb69<%F_$Ol z+Y?C~DHfK3TWkuCHY+wiOjBu5vCde(rNg(?t2RPvY;5#=dAdO%JV1RU=DvTT=K>n&Uu3(JEyOzQNPB%~#<2 z53DuZN$b_7w>`qLmxbu(kX>)8vyXbB++;68FCmyz%IXP63-uRW*h;4hHf?qzf;Xd; z-#(T%ZWAUlX?6^!^Pjm22t40z(1&$2*lpadygc`kxGaiVS~5vUNc^^(g9MYh({rBW zE2QEJdkZ-KN&h~SV)t-V&jB{F&SpgsEX~b|k8n{@k+#>>6sOH{nxMz^Xsee8Sc2JR zHx97%o#wUnCoMPQ;B(nII2w=Y7C=BFNakY3^>>|b4cwg%u*4cC|NhN++oT^`E!}q;hf78}Vqzc*(Uq+r-Wo*f`57{!h2!Cs-^jEG*aOyB*$>=8N5#3Nk!BPd4wiOppo*WFTVd z*J!~3ey|AV&krXxrel=n7Z)EL%60y{Q<%UPbm!z*a>NeH8Ey0NVQ$>S>gebINd*f- z{$0b<^#TExIgZcc83MY{Ejjd}ss)M?5NcvH1SNqpIPlaP11xP_2UnB>?BG6lRy^at z60+<6g#l}g{*Fa=FbtOwpVJg0THqX!fq|jm&>Lh)IEMfJGw2Gz6gd40EAV*QX%cw> zv*Z`3JaB$?v=V3pM@>*yfy&1%$}ycI84fP)+Qpr; zygW4xO%Mn;aQs2^(s6UY`#BJV;SUxa3mg06)BV-Q1>>+B5X7<|Ho+o-TpkaQu( z?W>cHKXpZ%+C&V5?+J9LlkU$hA$3T43cXPZHKC)wYy4nsNXyFL0`#l=5Ll*sR zrr!;?_a?`^jv=0v!Hyv0xkd-NH*el(+jZk6$mdbX`7kz@STXRUO* z`2LPb{t>Eh+w0f%7eM`$E~Y z;@IIpfCBG+x$D<&lw-HildbPMQ?3K@E-E+yq@XZNmV7}6g$+DjEOjV|G%QTaS0d4* zg8xmGejrApRY(b3IoWA_IL-y}q;20%(+on5(|j@n{6wEU8G3NSa-cQxC$kQWw4!3q z&c)izLy=ya(8bP3K~@&|W!*%r#TQF%B4`-CJgmI9t_9&qD=E=&aV509Jf|-GahYha zGX#Y#%*P|u$#K{X#Jt;XcJS>{{R%$6GZQEkk}B~WR?{*R>AyZ%MgFWO0g(<3Q>XpO zSLFQssUWyYKOd+>Uwkj`tu+=3d;ivB09m=?h2J2;Vy4{q@%GH~tQ+seowNi|cHU6IlAdxUkc zmmBPVKk}PkN=#PvEeP0>Wkw099Zssi)s~xO!^H+WZO1W*2r}V}+uK`kuWcZlb}-o3 z*e>^{4&+m_a~%|80b&BbJ8(Ex<90n~LcnXknasTx|9>D@y7_uV+p_`4Fd(UWKOFJ! zxg2|fbegxTsR6}h1^8_%BNi1cJqcfQWx!q~bC?YK47>TZzUJKm={*nwKe9*pzI^CA ze=%H0zL_+{aef^OM0qwiP@Gotm%r1Lq;|9oR$9Fx2)V+7knzs{F;>_vSk!h+7_F!ORJ9KR^cjsybMzS%c4OPYuF&FpW3P`Dh+`ecUBKV*iOf!}}Ah*~VOq zT$OCO8#O+sa*stuSQ&^bSPVP9^hM8$p=NMbaIatWM3X7m+1W|EZ~oNt{s!;`s8qHa zkvt$Tw~@g^ZR&S&Cj#*n89BbFh zF)6prSgGClT1MJ9q};K-%e{%Y%5Sip!RR|+eK$)gS}Cch0yZ~|z%zx-Sqe?nYe?+~ z_Z~0(X#|(ltTK3G)AqzYqvNs!!uNMJ!Wbhx%T2YR)+@=}h@3wBNPwsRZAUiJ3C#HM zAxHOi{!3ugY_z9|qf??463UpbwQ$%<_yWbmXJ7-?&sSKa^c5_8OiGHZyE`Ai5p;rrB)MZD3rDm7 zB!dmeyuUh#%g7i8iA)*ijSNJi(cZXlA{qRgmi7l@d4qpCzsryNF;LowlRa-w`sm@4WrOa-^x4xF-}7Y&CIGqt?o_eO`-z^32`oJn&H5GZ4NzD% z!&zEKJ$wP+h5b3u4L)@w5DB{hEREa!UcpHJ^>7nx(O+|}@ha7~sy=gpD;1QSA)z%B z!gEAVIWw+pywwDaBzvXSu?yb-F7S|^$(L>*J<$f|lX~X?Ng(_GP zkQve8{y-u@MuR}G_9u&=;Ybf)Z6wb!IjG8$lWInqU{PtQM*!jsZr2w{GzOm%V@&X8 zX*fqB{Pv)t&2+h$cPN!-CtCRVuMs;NcuHOOJsQafd{B$lqxg@ZNCBh?Y#9hXyHUuo zfTQDcJBVi}9Zco6TF;FZS}!gs=bNBSXLEdC`f-%Ay%<;1atRXLZIJbG2WNjeQmE*{ zBITX?ZERs#oT&8+B=`5yyI(cesU zJy=i)IadSFg|cMgXies+b&yN)$p^5G_-Q9v4bK^p4pvkDBa~RHRA=sM~+M`99_Up{YL!R+>Y3ZOFvl=3YVOHn{F8ppoAJ2~2p- zA65rsdG3!33okD(;8`&l8BqgU1_O!jU0ZZPEd{IEtIw(oDD?Hwf{dIT6$Qnbe5%d{ z0h>WrGPkJIPU&|j#Q}Us=Z`b=oUxmZW&w&5nJxJtMuhzDU@}Ml@bGs~4jfOG(?Klg zx~{!p{&UClUm(La0GrWyzOM7BeuQ1Yo_ZOB{+t zx((I<_=o1#f(-XC5aX$O-giMDy;S_;eVNPZ2Kh}{*>}o(ip=u`0-KIbMMX98n}LsS z%D;0>AFPlks2Kvcs{sP%eN^r`YPge#2(Q~^hfOlveryf=#|u@cV7~q~ZJ#VsWgLo4O&wV84hOI&A|gUok(!T>FuWT})@$m{MO;E+ z&qrA*dvMM8AW^_mC_yrEBSh)L%_o78&(o!voqe%XVEwkiGi>FAGlK}7(g6Ea^|egk z>2jjfB!lviRQNyDuzsjrlA-#KP2^Rbl&XyYBqf0|Wy8YOg4v%WchJV?Vk|GVHkCz*tm)>78 zajxs3bodBA8G*-F`*06so0BpHabLZrdfKc+xh5eVWfm-$rGUjyDwA8RqHmjx;M3~thFc*fq2 zKe{sG>3Za;BQ5h}3KO@xxzW()gp!1f-sl2=8UQ({dFv%umg^9q|juW4QklETK`$!(~VS^=cI4G+>2WjJc)-amQ zY@B+@Ee(##;7v~MgTv1S;LGQO-A4ov&0lM&3R4Mn zsL~L8Y4UJ?G`J(S!6FPghR~Zkqf_3c;(34i?yRo3|mL5OKB-I|9)Cc8dB#F)N7ARp*=nt}cmz@jY6fZke zS1kGlpi!mcneM-V7EV)qsbEEh0w#}vhJ#rjEWt?OpFTC8fKb#?!ZP+Z0>o=>PwLHGsu~>HI&Z%d|4h;+|{%&sD_Z z@{u&GBp5UL<6qKZMXtp4!*wp2&1;PG9u=DQY^`WR9}Idr|k>a?#W8A&K%ZvG#Xg#f+@ zSgHfO7qXmG0lWcg-^)L@5Z|AWMzU(34yR2oF2a-L+Je!h6u;h$Zy>)z@hgx#FF<}d z7~bH_tpK9*a{$isBTA5PD~#{x-$rLbC(^VZ3`J)Ib%&Fc7BkF}QN;Z}P>F62YeoQ? z=mTdW?SGM*h874vzh}mVK|j=9wTc`Q5ad%W(UaO3SG^^imU!`nNBHp+R?z(tkbG8? zVPbGPMWH&k>QMaqyC0=I2ys{2`ozd>hYt^v=9o-q!43I(xjDPAl=PQhhLQkL?kr=A-^^JJo zNVE|oR-Tw(0H6UbVqpH~#L0xhkf0EA!5VPxWL&&| zeAV@}M3Z7qDY^2biyRdxz89=3EsX%WEEK@o0n&T{;@O~TQv0aP0TXl#(wx9~X5A~9 z0{@W9jQ)0`{DN+!;CjnO3K3h?xF;FrYNJRk6?bgIwAeVF`d;u0AL+yvces`VBUm~% z(5YencPPex-wGrd>OF^S;#pE(SIfH=P|RxSo>pvM>>T|vIu5?Q;Hc!>l~y}hV7&US zS8q)Mm>r+=-|0>N(6_-{1)$vokW|N``2>I;V-piUAI%gx*zcl=@04~NoW*78MYUrr;z53` z`aE#RVTuu}w2ECMs`8x}D%UD2A=eiAjtA*|E)^>-_^JiL&AE@HuAZ?X?`qR^GZn%+ zwnA2syQt#a4Phu6W2pXZF8)`lUyqDRfYiw0wAGB6F7HB!w)BX`SNxd=T}9x@Dv4{s-aISz$aO+r;;JVke@**Y@J`3ZaM2^~?)y14srxPkRO}qwCTzOO zhlSoTQ>PI(28k7wMJ8+>Ri1>($?Q=*9x)$5CAkD_^uAnXCqCQc+g_SFeVF`w<;UL6eKIK|8 zH0tA9Q+#7q8A7@1duhwLbYYXB@$_EJz}DBGQ}*bcK(c_`H{t+EBbI4_XDd*6;(Y%; z<@bl-yBA_x>iL$iA2sH(8{(K(fE}@exkW^k z)7j3k1Uq8jTUl4?MELZm51B=u`JAK_zW45+*BCFEhefK0>+nQHSNtK0+nW`ZN>BM1 zX-i&Q%nsmuB8#4)xHw$>qCGN@(4jcHRJ#$f+~VN?`dcukfQqt$iaTF#Gorw=6xgmz z#k`i*aq{KP?4Nrg(|mY7QiNpkD_A0j=fAWCLqGbYk*(&Zd9w|Tv~WO<^4n*UWKW72 zx;C#acV{iAMLi}kCG5kZgz5R!(=a{q%l6+y_ER84Gm|p4Q@Y`KNVU2NBL8{4-1SEi zG8vpqF%CJ8_%tO5p#IE9R=*rC`n9tz-Dm3Uc`2LrKh4zs9wu)o<#*05Eo{beALcZ3 z?aNgS>nefd&Gq50caUa_cQ~ihHQw!^fm+fAZ*Nq@l6K!m{`teW)5~ za`H9JqJV+{9-6Nh_WDX#rZgjrIH^*fb-swsS<6vkrD z`NI=XCxN!HwY4>S)Lt+C|7xKc0;(#X#QKT?uH;Kaj}f1jkH`*IKLcoQ!Fvj!Y9=bf z5{^}U#)^wddw9|7X!M4k!!D;%{uBZiKj{8*KDV{^Q=4I)U2#oP2U+jhA}i6H5oPrZ ziTG6u^5#ZK%9nw+wpQurV)}9?p;)BRzwpudm5fgK?aEVSvh;=hvyRm_eLZ3nxC+cY zju#uDk5Dr84`{Jasx|UkhOfYva7`o-1GJ-{A`p<-Tvz=NfPQTP!U>4G;h;}C+U(}Q zsbF|8T_!TB`M;JeR5fh|%(t(45C|#JD<{I(KQA&1oYN7RTT2OihG%~)V3YIp4Ce); zViIUNkZMc?DL>&Tkwt&~gkKzfYJ8GsH2sHq>F$oAn%Li;EF zzzqT+T;OKWLECLB0jjii^<<>1whkv3NPfVmUl?MnX!Zx)8=wh*?3xPI(m=bQ%4&f- zEG(=6s2`YOtX}ty&^iDW=(m$i{u|1re+#shOB*ku689MD&||@au^e@*ZVBdf><&a^ z{+2g-DFwuUyRg+UW0cAvemH0C$tPCP+RKEKb+COD#PoS4WkTh{8Z+x-Kf1Z?r=_pv!z93p7Dc>v%q7%zCowsOkDM#XE7%4}^ zd3t8AJ$}sjcfe6l*Pb@N-BAAE7@M5j54e$LgDnNvOuqUh=Y?c$nH?NepiNAfZvn(s zP+1uRdU-KDFF>jq&Jgr4oh(!_J=g~Vmp-rn04*#wCdQU_NN6WCtQref-Ko~DmI5vh zS-9Z#W=2^jPh&qlxXg@&IJ}is84}J=#CF!H+y1HINu@w#AiOVw6=!GOjogpAE!bp4 z7OTQzqYzD+JNTQ`B2 zq+s4q&@$t5E^S6AbvRyKZVYT5k;-usAphv5@@|XK8&xQd2659QcB3ghzIP{=m~!|= zDUIm+`d4A}IqmGA9J3GGK4Ok5Ye`YD{)8O2NNQgghHKlXWUyk7D#+dc7RnkLS$v3X zv8J;*fko7-ydB0!l@_ljigJsrZjWGSq#3?Kjztkgr&eR7sTVIVDsI9B%tP1Xhzt4! z5PAPSVr$<^YYI!Y$9hsOK||K43H_uVge|BRj2=E zhf5@a`}(sOIVWbAAlv~(MBnvp?y#ZNI5Mxm>$1UDZxMwx2gEY9DWOnm?6Iw{lugySc?Ow(zKGVLOPbO3ErCp2CnE#3I1pD{7y^({2iD>jsfOJ2? z6<5?`S=Jd^Oe1L3cymp=H7r?Yc%I8xH>~|nBl0e|SAeR*3f=N^p?Ja}O3 zp9m4NYYt53(x@;lm?6!GeW&w-W?ZNRgR}5w577Hf z=P!3d5%^vd{znxmZS)ux>bDKq3I1DO_GWj+t@OI^{#sw;6;JiXSdKO~ffo&aIVj6? ze;|JN0cVa-VlXcnYs`37WrS>MM=`KI0{j^!*PL9PQ6L7&ZL2o&)X1jC5kky_=AQ-REpZ&eEj;U^H_}Qkc z{b_2KFn3~5XbqU%aA=CrXlm$Ims(Ol`JldE4_3BR36A_SfZXr>0{`#J)2r7wTKGsj zEiy(U3mC7TZ>^B!-ko$CsiAGYW_7t%Ed7j)r|o#J78(8Xd`lIW8qQYnu(VT9?5xJp zdwHWs#b+K#UqOy%?VsDeK^!zjT)KV+VVnX1px2vB&gJB7=R_nP5 zh&MmW_?RK~l=`#|JzWt8ybXJV*_IN-TouXB)JB?ODxi<{{h`kD@p%IK3xgJS&>^}t z^-bJ@omH~SWEF3CK6$9VddsiALM)t$RNT^kGrT5aU-C9*w4Mf2`R}mnWVm~T?4SSOcH4Rygu|2%IoR1GM`K}1 z&ANTj4=Hxi?oD{U!sN}2^7VcD`rqeA@uM+Sw24vs55xlZw;COIPhF>#-KE9|(44h|9wB8P~7{*E7u!0wKLv2Ek6g}q$L&9q~Hk-IzTL7uUzMV>- z2AN6#UvGOKm)KZ=xL>H(Khfc;^x(8U{R zh_>-{VxH)ZzE^1Rn{+9d!O%$M_3@a<(OL_3Vb4@0kuVW4@|eo7*TW@vQ8=foi%l@K zoak}^Xh{&lFK(LMKCM#EU2LYhHkCt%9TkOw_XsFsQZ~Qy?zH0{uP_V$gA|GVDftyL z{wC8AT=C#ueWhcse@meV6u+S(Th4J*H1bNZ3i3zhw;q6Nf&wtagHWd9;9 zJe%)r`eOdQp)FT$X0^}+)-wHueUL%rBF3IG6-5hwlQ3!%p)49IFUB{#{EiE$U!OMT zz$vh{F{uR{*TZGsUx?H}VN+eN+^~@_3b)?GSKJ5X6tPhB<2s$bimbd~rg1)vlll-G zdRwALUfnxXXnY5tKDkyviZTd$hKy%;v*)Q_<|UYYeQ;OR|9B4J6(rcln4p*^3h1w*Z( z(L(q1P}h>Ap)&P&+9L6V`Ur`WHJ~MiXEV3e+=k@~VIj;j8Ff~Q=@Ze=xCU$)Q_vP= zS0dtx^8q|y&@QZ7heh1J_>PKI0P&kij1diI4rAAqDVy&Dob1P@A!QQKW z{nP=Pp3*PRPtg|Tut1;TC0i1k8`tx%lUrSG^8K|SELgUL>7+>J{w{IY4s&|j0790o z@L0Jc)3Bxvd9i^{{Cxq{oCzJwwe|&085s635Ro)vYDpA z_teak6je3dUEGn>T|2RF8WHP9i{yNR#H5>}klxX6`!SlIpIF{Ux?OCiS6;x_+Gt7N zh3Um8v=4IhBN~U(t1^gSv0(_oZ{42%Vvn>S2Y-ZBDPvmA{xOKpdbaNyYK?-PXtZ`5`#mq@@$2p=oQ;V zv?3@(6^Llf|Flu7P)ImUD=5?S#KGByu(CV_sxM0R8&;ZWD(^l<^=s8=5&^W2mj4|O z`D6$70tLlczII$`w-u*JttWz@6J51+C)p%pZQ0{Qa8GC}rKUk_<2>fQh?U;=Af;%_Z_gU3yk%!jKz?c0chES}^6HNnyhZz##2%^7eC zj*L9C!}c4uOk?yGuMWfpo0oIHg8islPh?kq7g?PrOhJGy`B6y%7w2JWXIVIN@#F^YF^ZQFk3 zhu% zKAD0e5E7zWuVx;yH87`m{lJ4o|4-`E-+C8hb4})cbOk8~et%8(0^V+|oy(jTN2g+v zf`O3;GcCJ6Pe6DS`wQvzFk5C1-F_cnQvfj#M~X&oJtO^~3`Q5HL?=;SL_LOL24#Q<&hk*5u!zCFl)%5uaOX<_)$zt0WgCi zuMwX3!8@2Cov2zf7L?e~O)p+T8otnw@)^U3GLONBZ^cuA^EaMS{f9S*AKq5w-B8~@ zjwPJTH3{36r}|l<(&bzz%R8k|sR{e7KjG(CP%t3Wr2LzCl)Mf+7+ow6v#K>i%naT| zJ}%?jdAz#-eh0X)99F{~6h4>oCVqn~YJS%dG|oMU5u$1P2zq<18?(8cw*<-CEK^r! zrk+}3(z?s#ri%{Fos?R8QPv`h-Eck6p8(2t?rGHJ+h|h z#$dt{Q2VLkYg9+}?rSC2L2#L-a3EpU?#-9JyHjWJAYzbA$%-6SD)4in^U;XA<{OBn zdzLU>t$brBr}6QUU*2)ab@PG&VVzj`DwkgGo}{&T3ExmPq~)C8@IAaQM*RExrcYs2 zrxqXHDNtA69QA$Y2j*9(i*_f|Cj;m>5a63jo}Hbgn*UxjLrTN`uJ$*E3{rUvN|j8o z@ltb#j0{4Stk8j4fjNEri8?N!BQulcW)2vchE_T zLIw*+PttCVXm&FK5=Jllg@XHxpm&To=g3OVq}35}=)~V=uWUP3lHJvXJ$FPKg_HJ~ z#4Uc%6InTSh`m~(qsED5tHfI<`{6=qXKiFfVyt3>>UHaC^LGNhVdwK!;z)}DvDe+2 z4fV_vHyc`rIL5Eki%CZVEVA4_6|mIK@d$FaFYlIMCFm;%5v4Aadbfcb!s? zKy*d33&WCrUE6&6;Y1$S^uN0}vaZZO1)tJGsK3BzqkZ6b^Y})y!G)Q&xl=vRr6C10 z0;nEEr6^(TmMV;|n2cC~qCEiRbHhpFh_C@vH+p>T`z|{>DC~79|={ZeXwK z!?6v0@&o4c;roWVK?w(5e|sMLN}=vXZ`xQv8~zexMW?8UW0B{Nn_CGrW?pD1w5Ia{ zv0rP^Uvhr(H@sbQ^BdnVdm zRKnm&!rY|CRVIv$#D$?mS*$FMIqXDku7} zG2+sfbi*sAT2S>1^Bqafrj|n4V%b*m2KF|PX&VMSTgrZ1XZB^ zTJsXlHa}Z(0Q%fG7W&1@yu=f{9sR!|H&{oe6!G>hws`3=`RIn9)s#Hdzp8{w;>WRg zI#2f8UHL!fCh*lOu2$#ksl?af8QK$>I~@lZ@t?n?D7~V=nQ_Nnc^1qjw-%3XPr@2m z9GU-FLsH9x4zPT7y{qbxMOL2`q?eT-p#4=+T|0S6hV7hEM z(0^moAiDXR+DHmcYR4b#aHC@FSstr-vIs)K6uw#uHkV;bU>A!rY&S9Txf3x(7_9N2 zf*6oL@8dlul&NEm9l@i-%EVVZ!Ga^&d=X=4O|qZ11nfua7k8|Lk=md$_6P>xn$LQO zpp!_0nZlW*g6^X=CQ4vX2~+HJzoY^>t^jPyZu>>L20DL zx%MRK(0tO|(*-}-w8Jm^z2##TH3CroLG4;$Sa^&1iY1C>Wo@nz$58t}%%yT+11eg~ zQx(uW2VE1qp_A_T*^n+RTD5=ce4Gu$^mEZ0ClzOSM*3#6$svkg5ICBBMb5m5!)e!9 zX2Wa0nRM{$sPcv|%XI1SlYX?+SzN#~43VWY|68c+C9T%Brar%W=K4Q(4`{FfizywL zZQxv6TO;QLQqx;P1PSsn+p-7Pqj9Mc37VN{1DLvZu!?uhd|Xid8u%H3#~GHKkujXt zVH*Ym53d)vU7!P2&?^C(tRe8OH3M^CS9kXrK!??!CjlIXNFvtO%;9(}k`QWkcJ^Tc zx*U3Tvn#{dW;S#M6s>=7wcLEe9eU~d+6FuQr?r%Q=t_?Q?rud$?CdvBKu*x>e>3uV!!5!=25*Dc z=UL-A^!yV}At)IUSDRj5WDLETCc_MNOP{Ykl{s90TQkACb& zUtg{w^u@Xp6!4gdVZEG^jZ&$S!glGN==E9x^Kv`Dmh)|?$;tD)pAHybHe*g?rD+$| z_WC7}iF3c|0C~Jn#jIJY&hp#%FPTNVUJ@9nHxqQs{GfwE<8mx(wjY#nXsEBh*UZts ze~(IXa`V8z%$#3Xh?qIzq7iiDlbq3VFi~bg===xi&ysinv(p|=)>u)vo-9_ZptWRF z7;S%J67|d{&~0ne>m)-Qt#-nyJs>8v#r^90XhTYSv4!0C^eDux*984mGGyc6!RvAO zBe4f!yNJ_Xb95|@*k1iHDl&j@x?8R{!+98p&P?KvSX9xfUXkVF&K|xQh2EBL6xB3^ zlHsqT?lNO}&UD%J{veJVPi0SPRld3)kO|>3E#- z)ws0#j|nbK&GIWvII=XcT-P40SuLHAmaV&&dD`qZwvSI-x0O-#dbYG{r7s%vYj=)YH=Qj#>zi!BnOoWQR}ty(0+ z`K2F8uLgLIpqzHeWyKgYtRg)2%}U>KJo^iV_*Q&E*4Daso@~7d*01^&G$`Zxz!=T` zAj+vk;D#-=p>c~VrpngCL%w$%UBz{zvvmtG;1SA{_4I#Ab9dwaS;UQig$Q>G=0qi98w(Z;HASmyrRv#2PgXAs&3o_ph@WMw;G?OW~FnwnG908I7uylZuiK z>Wb`}ixiQ;SdN{I4yJsYx+ofQZ{l*z_y-@6?i2OUUB@>-#QR%y=pvFe+Y!=oSoL51 zAIrU#*v^j8v@KDtuc#<&GPqG&7=pMIqs{tdGjCPXzxR5TVQA+?gYFRM>#{;;L)#wh zPkH+v>`|aCRYX6o7P?TLRw9T6SiyiYv&{c?_~%<#^v-ik72fCDKj+`sF3T?t0G2n_@VXQ;?JAGr$;LhSfp~G*%3$_h2amL z;?85u+LJWlK60JF_Gw4l@derE%)1oz53ya4p`z8t^)fPL&MTV9bIL)6_aUvjqUS8Yf#>Z6Z6GC36qET~m{AGgRI|gsw<(>Go%pdeTr)g8 z(4l;*qFz2+}*1uroGnfXAgdb*6L(A{E8+K2Gpv?#lIgA0?W6Th;h6g?b{ zKV%O3^ysCx<;76odb{1jrg#a3!q1T$;RB4UWv=O9*B5LuXQbWd=$>slZP>O^&>_jn}Qt)Oy)5p zKZ)9w`~EOuH?Z+KoI-{KvN2y(Mgzls=Yjf1_KPHHXUn1PwNo%L#cS!Q-uIoT`fhdc zn-z0Az8?C@^Lq^@!0RAyFmXm0hpC)05<0T z^nNfIhRBN*2L9R|^H<-mKI^-Ft03`ys7U*&-1oCCM$^q2NkvbiHQ&~NH$0rIBbMD4 z0oDFBS%|o61KX@0kE8pW8e2*{JhGXmabAz2Y1}?w50C~P2?j<+DlRVE)H3&*9Vc_z zo(9hSh&#~Qze8-pvxqy+e!4sV>NTf-X22<8ug}F@iy_xJOrL0r;qT874dkoZ0EYS! z@4R6z;oLw3#>1mBmM&mveO{LzEP5Z>x+-*7#{9udOM&(c1=@E#X^yS=KuF{za99d(SJ(4AdjnO~!32o$ z`KC>wR(-KI1y<~nGG1s%1U(W_uF8L(YfqqmN^-A(RbQJ^4(T>_O*;OTUupW4+fT zl2XwHu2IK%OQ01M7q@%1$`E88;MWI7w-BM(NvyEACr!9sRa^PpA~RMD9gn_AF0v`6 zIs#%{GVUuq<8Cdu;*um^s?3}fUGWS4SR4Y)!g!{a9Qg=4GYT2(_p6Pa(0(jQ1=m``Ov}6zD=`|VV z4&?9w6!A2#N9(M#z__zAG<}GI(=nv=1Iu}nQ!!I1Z*Z+ljh_-JA?J~ulOl!&N%iPE zXg00QH($oYYw-j52r1qu+il=uII4_4?lh4`?IfH59vE#gb|9@^nF^h4pfce*0xmrh zGM0khvjNnd#kdbu!O0;ZtPX25dz@B@u7d|oOc~;9(Mq|ATZSPr6yCD~plc=$!Nt*1 z+lmVD3xj*@fzrzB@wf1s@?U)pcDFsDo+tw86lbTJL3&CkiZe>Tm6%?!@f~o97+#ysfGkm$Y5DCN1ysjP$pMk zhKh%%GCNEk5sBq!RRlKPbABP1{*fN~=bjg3%n6Oiyb8Zihu^=2fCiUQ)el3NhwE*l zK|e*R74`D{|3}hUhE>^YVVLgj&P@u^pmaCVD2;R@jndtn(hbtxAzgw}M2g;wMr=Bk^fU#Ep3Etn#ty7S3We_(;Vf23a_6>uR}%5j z!*G7N!t?*G-u^vtHr-iI9^+zSy$+IO4EDR=WQ$S56!B`#R=ttIA^yB=)ZqS1aM48+ zuA>!E=r^ybcv9l7>b`=5rrH>A9zK4Flmv&0pL~V{A{|3hHK>-*Gph=YNdjMM%A%^> zS+>q)C`d_=tZE{Llp2;t*c@+iS<5vK}%bW5II)u;`b#AQE+)+1H>TI5dPurS0x0n`Ln)kuKQrV+7(3V%pCWV*`1S&h3gM*;*ejhy=JMVcfQ@2sRQ`linbkEM{6k>o!ifg_1S zK0ivJE2DTWi5-%h82`4bVFJW!t)LwH*2|i18p7m}$)b>i*FG}JB2)%@exws|z=$4> zFHi5^{fRBRvm80HEV%QtZvthy^x_3mE^_Y@=HL?JLTTCDS@?s{qm1PJ>%`wgG{J&FymFW z6aKW~{1cG8nj;?p4hp0qeLVAe>f|Le-=JIOlx3V-C8BfVxIs^4i|xmEqExqq+l4m* z?r5iq*H3C_2*HIq8=8dl@;HMF8bRv{xs15Jjs#NO-DuFhHRzRClB2AR%eH7&zF1Noa zyK$Ic>4^;}!znz*B*zenp8*{4;ucrg>0FBNe3x`fPO+jx-#kjGCw&cdsN?iIo~;hu zA`7_Zc+A-FCxWZ==3*z=q9S{Z2~=YX(){k*HrP8%HC7B$pn3p-qyKz3K@=#64V5lW z8M5a0{^p;>;AA6e6OIN%IEYNu4k*@^u5*%DbHq2;eipn%73B>eaiQqJ9sA9+mv1jk zb1^l%@HKMQy3isAL9=OGC`rrC+WAgXIE8gFa_mn*>2P$J^>CeJ>WNh-vgAKh&fy$x z1aKK0CJ+FXOzQkY6@YOdkG3<-8NSDfrtnJT~^iksECc#tuoKOg2XCQ0y@@>mpN~z%`B(L?{H1vHOINRt0|jf2=CSu%(>0Lfz1s0kUJ_tL_|7)I|yM;+OD>FO8v`oq=v3aK0rNW zD7}*adfnUCHv*Om#3nJVbpAZtfIeUG^*$wI)(tYW4D|J`cliG2vF_~oPCH>8t3N%J zwXj5rV6PvbkN^OZkt|wq-qJCBP&=N(hH#YQH%;DmIMz@@>xLUkXAE^h38eX zaN+@f)&$ew9%^nGO!?J*bk0+FtGx}5y@$ZxMnJt7$BM~v>hkTy*S4pX61`&8rT-`} zu_;K$QYG%HUmmAHC~HnCM@vurN;)b$nw^f^)?K&huK)-z;mpQ|0(izz!T?e+P6q`# zhC_{37}-&ppr1nl1C!@(bEUC)@)Vynq2Y8*s9ItSZ~R6wK%X}h-b@hVxQI@)R)%~Q zprbd=K+sWV)C2RP7qIWVnj_K1-5FmAa~{`-Gd;3n>(RU4HYTW}%S=N(3B7Fe)dWoI z<;#JCfZ)a910)xlzR&lRfVmxvR_;=f+xwgQEufq5#Qbi`yR=OD%QPGUnyr&Z^`!|w zFJyaeOn}iPis|)N*G5Xy31K>;I=iB3qG}NKkzu42skdJD z=X$(%I(c^i$Nud%WkbJT=>#>^f^(tj;|aa*RG;M<6cT$$G47h#0=8WahY11*>+yki z1$cUolPbR}yOv1L@3xwD^P%~Qy_Pk~JSS*8y=ziCT*H-ir+EHcHtr8}F^<3!0f2NF zpaIg>*6vw@=jTbEEw8)13q{W>%=h+G0DzWj7z=j^Hy3+O7EQoKzELQ zMfZI^Q7)rEYA|stl8IOF9G>k`+E|Lx=LQ?!qX@HcypdgL<$7Tg3PEXE1YWfTULAhB2OLE91-RJ6l9jYjn)#1VMkRq{d`T~ras1&ZP_ zaqvkL0CI zx3A&Lr_?-GXX{K78poqnjp9_qin0WrHHW#1Qk7vrqT;0_;(qEVup@pDcxKxq6;1!X zjY=;Vki%Qe?Q`kGpabrS7v}~*GUyf4KFR-GcROJ;?K|jvllmZSeL{oN?*r1F`6;^^ zOPqqlK?gFdW7Q2tai%Kdtw^l70$5qJYIZh1fDz_Jkfc>@Fb?WuYhJXa9{Llr& z`N4VU4kX}{EYK0Y_QDWSb~Fby53&6|te&sGysY(TVv&Xuv@~F#s~7IC-7lZys2f2@ zfB`ACuqn>)vs3EafMR4AX!QC;S)I-_lcjB!e;?}kQIXN%MG(A_2=MCNG_{hqD$(1q zemx=t8Rmk_E(&=446Id9rhM7Uv-~|25djU4t}f1;GDvRuR7yi+x#Yh`i-|za2C})1@|inp1ZU;D3a9f3>x7#sk@h=WJ2O z-R^WlUY#1=gAf&HC0JIEb(UyPDpG5=xzvfTMN3*#(gpD^9SI=80?wyFa2)}@m6sFP ztgC#M@5suc!0>`PnT|Kv_dU%KcY%06GX+k^+r#N~GOxf?2$p4wJ1axkDH0WtEau@S zd^1#fTCB97jHho3+GLAgA67Vj5CjW9lEi79E?iNHheb5ChWaq)S>=zOC;U>}9Dk;* zxC#buy_XnQ4R0zHlXNeePXN4t$)dg%s+5P7?z+rPhJ6o_KI(|kZp1c=x#F_Cc57-s z<10eLxxb~F`=OgxU;e{q0Z83)x0~_89>gq&9!ny@aX%TFP0hbC9&kvP`Toe+#5sF`65~F(W(xUAcw*Y+o?8$SKVHVTY^0XVJJjTH zw_X9vt(9C1;DY(--qqVcW3rUt9`p?`~!lagA(V`@M0Qm*F=0e+a6 z!wCY)|2v?Ty?am|TkW}Vj)i3DA^0SJ#fU>*rs zpPB#p0AWZXIB}PiB>*W(W%HVRrA}jvx8DS@l&UEULElG*>mGclJjAqOtF#IN78;bw z8n_Y0I5f^3g{~e@kWhU*rLLQ=1Qdq!B|ox=1N+BgOnPO=EdRORDLf%hk7>eUS0z;9 zi0J&uH*Q-O<1z$_*c@~lu6S<4QupScMRoSG!s$HGsFj~sv}olR;@Tdjl|?uXx)4iq z(tD#QyNf@EQZSg#*VcSM>qV3$`gg%G%`f$xu;TaJj672rL8Lz_ zo0YtXAylB)H$8HnOrTR*IFLt*duRL_s$_b^`KRz0BBgh~-J`D4doKJ#HuuCv_UM*Z zIX!w(KVuS$p1%)zctbbYkI1CZEj5)(f!ic|XwC;OX_-BZg0ZcGAj{Qa-i?puy!JnO zv`_l%`F=G>(R_5{vY9^`I=-HU2no;7(yrjhfh3Mvtt9f`IIM8TJueNDTFr#`G-KA| zYtXgn&0NVJy)4@a2IUdln<}$m1YDi(p+)wj`D`8CYVh?VE*ITZ=JozfdvuAd&2Zg@ zQb;w6(G525_j1I0hD<@g=tX>GdNj7ZHJ?*F*5uB(-WBcSM}7#JfN>YM9Y$<%>Oj}F zeUMk__(qU1!fOiT6E15A#bVWR?RB$}3V3rQO)5BbIAS zC%gV?S_i)~%Og&rDUOSe8Xfqyo#r>4O1f?%EOtOgcmdO+4bBvGt>=8%SJ2H@xz9dT z*6z{!xpu{#fzN9Ueax={ndy8fRP&!-C9MBgyZu}WF-5yR z{7!XdR@GPU`SyAj_FecYVp!Ou`i84D!R)Rma5b@YoWZ=(s`w4MYt%F}0pQ04tuswR zzdxBiK?jJlv8McWPq^X(?XDDSQJO?Jq$YN}P$Q=B0m+M?&_R7#jyTz203lX%CCN)6 z%umMmr=ivG|Mt$L;%W)82(5?qV~)?y6PnFicO^Isu6W+)KghrwmL?;XqJI=I909 z@xXEgjtTK`pK3z;Ku-Z2b7y8|CM^~h7lC#J`18t6C>>*{8=%&rcmRA=TiEoi4wlNV z+lX(?o0Ma)WMj2HVd^d?U|r%vhQDOyGgZV@4z#`4#0=lU#i1m3b*M*eMo{)VmhWX~ zPckCbtOKNYN$LL?b>$E3VsH2+=ugK~El)VnYMJ^C&OvW<7D=hd_Ln56=*6grHKik; zdT0W&q=wSu>>~^JRnTcDpR>^7DMn95Eiv+B0!g01)7zA7^Fm1I`@%j7a%#Bg61$HR z734sSfJGwU_WADNlC9;aPC;U;;*U@*&uO^xsux7t&+n`%uy#h^H0XHl*V|=Kfduuo zVBm-WO+*L;QUm0rB)k>;eZY%((TmCk)nkCnx8^|$PS+NrNlXu*6)&66544>>K~;Ac zG@W1U0idPd;IN(z4k4QJbeZ@_IguSBm}>ktCPBMHM2Yg7m8X>SImaI!crQn?XWYegAygKFc>&A#wHJ!u<-4K4!B$2 z?)=DUN0rOZe=VJ-8Hs8+-=tgQ7{MB$)7M@6LekeYe*`@njU0ivzc7MX&VJVAlFEvT z+b=2uP~v{Lnl}XfQ~(KuFc0al5WFZAUs|fH%`3g2z7E7nUcj6r`22AB5`B2F_5u;& zOHmah)_Y$hUMsE6z>G&l#b}NxL*7IK8J*32?&dZ=CZ7>u4U_=8ogA=F4YdYz&}0c%QOsins9((UG!OdoGCK6gz-7k_OMd;7Y@rNh>A(Xi(a&clXItp zRY?TGJBm~3(sImMhf&jiP3RV;QAu}x;FC-^BRoMLR1f+=GR9-7yF@+KLo@(R{trBS zmfdHb0T=X|ajAP$Sd+|^pM(rVKHr5lC-U?|aNT#fX1Y9aYEy-su4Su%gGHgt4jwd8 z!@|QiYKJKL4zIwKETnIvv<@*KpAmdXse_Dw{nzDiF1oi@9Oy$p%O0s1-T`=f{D8#= zC|h52cA&kQ$Dar~8k`^+8-xX9t0akkx^pTwSKCQ6a>d>BwBY=EJ8x0B!1V>gkIh1$ zjFv48KNwC;Mf6j59^E~9CC4W6byFOAg<*z-*1DRS8qEmn8I3{@qKF?0OwvL+brD4? z)l9nsdGDb}VP&Nr)0mueACpwPi6yj-Uz?*3o+sQ>Kxdw#xTR%`p8TGdqTFv2+wtz) z>ry77{IV(roHELv6GgW`aA!4%tq}OGMQi+fWV|sQytamIpj^+FluR-PsY~GkuL(Gf zSX`Se`+of^vXEgTH_&Gr^VsiUuuS*C-T25sr2&URUm3Q4(fA!Zf+#kj*z0$&^t#jR z9h)jRrUCaa$TU(w<@_8<=dpRgP+xSdF&;mF^Ugn?QP21BYI}P-*GeZiDp(TOHH~Y7 z3R$5Ze0=HR2fISJpG2b8uwLf*=X>+I={WK`o);9V@@IC4U0gh#zs(lSXo@oR zm+u?P$-Sp^4i`l7&kvLU>I;&>c0Gp;x*-d3p4Fg{q*&DXQYw&FOjJwAQgC}1iu6W^ z%HRE`Ib>X>*DmLLq$KCXBlHW@=wH8EA1c$|X+e`qlj1ne%rQyZ6L&cwmWRBdn5!5y zo*iYu>LF;`b1f|pz{z@s1207oM|#oE`2Ajfky{TB50^Ssl$CV=tFx)O`32befQ=7G zSJ4_D(SR#>@A4Pmn)CDX)80DMqm%L$78V9cM`Oray^08!wMKuu*IO7w0f6y_P>9;~ z4PP#D((oIA>JtpO)eQe2(oJ1>l}+P&L2FsX2}um-oF3rjEUe+|lM0^?p+Sa8r{bYw zflw{9JHUc$x`u3(`vBCQnM264J zD+bcyLK;85w;n;6uUa2(2%lzRCF~zcCjvZx3Sn;>0tLl1VIy}9?H%UvkKt)43GlxPQhfNh& z!I=9`?AuX?*P?EKt_S`lwL+;`FkA#@4euW*9nL7rBeVI5-zk=l2pk^fPhtj8+Y#$N zQYi~<456;~&1c}$|MJK}MWKJeX*v_=eI&)gv4lwqlQca%pXK~kW;7e2_#ljLBDI^k zUJdHi1jkDZ?+@Hc3!Hh?DusSAD5hbdSPu;hID!|>`?tJ6f(?qBS2aH~xUG6UPdnfL zsRujfn#WeOy2F`vlx>}{!`gG&)(@si_7buc9~@}PU*!hIMr)}aLCEdz2ilA&AtD3* z-mD-DwMBpaBfBwck*nE+mvn!vo?=`FLUAq#FomU3(m82Ft`rQUr`e^>Z1Q$8B0N~6 z$sj7>ACcdFMA9SSLjpu$B9idr(Hohbc5t~<16!!sD7`M;>m{0^jpk4(AZZ$f$$$5d zO)RPT#8tU8gW+B2(t>c<8?MqoivG#-`@)k`SNEasj6A=G{zg`)D)%w|!)MQc9$zWI zZQ}f#pc`8JR&CtgIOUeCQOo&sS{>v1bgyAU{So*|f#XP)F(yyF{sqq2$f2YeF-inw z3&z`H9$WGdxOOzHv&*E$ht5xI5i|u>ptCfv^0to4RXvt<=t=qCwT-BKQy`GOL0QhQ z2Sg&Shg<2A1y8RJ=G1r6@TnMAe#R=VnBPo1N}EyR|8XA@*;X}>`K4yCcdF(UN2;*= zIpx+buh$^o4<01Cg%1Zvplz3{|M=Qaixy~lBz*n ziF3lEZwpWHfv0_SqL-~mcqapTCB*6FVfu;LCR=U1MB|QRVQNXKpBG!GZwkp|6)U0z zq+LEbNOQ=lG~1i1Y%$;2la2ZIrZ%EWg}@Y1ysG5;oysy?dYdGhk`eOBpenHq(MCQV z57zO$u#!iK%^Ao*zO#?v=vq^?`vBwteWyNT_1{=eqr4OUR_T}jut-&!^R@j7j|!h$ zv-KY4WReM9bM`|g=K@r@*`bchakksa(Bb}!Y1x235dDUNvRke7Ec1(RZ*vRe(vm@B z&k2+$wT75n-@zy>eIEX}fu#KT(>((fd;eT-CeBO+^S@&{GUq46^HW?s0y0}Y7ZxV0 z#tNwUl+RRh9}e9iDhbgJ&p+Q7`g%p9UUZzPMt9CW5ozUwg1}}+ zS4H$u&L`G2p+iv^6E75NZRqr|XxqjYk_NzDGf?0wfdd$NNMQKcYd#QKz#K2Z$vYP3 zNToq@gUIDt!6a(acg@u<|JITM10H}T+8i9KUfyOhv!<734%GL7q^gmq@rq(HOka=t z(ZBc&XE#%*GVfaM$4KmT%Qn7wdC~w0&O9Il;?JNkGS!Zg4HM*-fJ6Av&6%-%FK7>B zSZ=MzihRA1bf6X~WFA}r`Ebn{bWmb>a9O%jG)y0kksba)ib-3Ii^jTS@+Ra}*pCc_ zwI6?m=RScHd!GxHInB%R;{Tj*1qE6OE|nIxv>2O&mvnA$;;X>`=W)thD@m93>|qK% zYErZoEidK59?6_D_T9?F^R~`3MTCFomXc~}3&@6t;75H?qk>rNiw_qVE!*BD+f0+q zB=iOj#EHXl_bwUwgCtGq(7}GDf<`3lTb0|rn|sw+qo;NtAYnkcFUzR-p;r9V5#Q0_ zbmYeM_|rl1uqhdKP+T3`2ea;OIHG0(os03`PEmwg1E;kWg;aN^;)mri5CRKuKh=Rq zuoI3l3TEy-#b`w&&royys`I70d=!}U5{3dnVb#5^9Pq43Uf!SW9G61I4dl$;C&Wb| z8nOhj`I-EBALLFF03=6iS6?nRCoFumn5^V}6}l%fGP}g55xvVwD#blm-EeyQc`N!n zit-r&n3i_{0R`c_SWrqcb^fpe`4&;gBvudtgQ<9l*}{w27fEv*)79 ziqU`U#sz%#K-xcXkoJ^0aEN~PxZQZPrXTdHR7G!lG3xTdHyAbY`I#b(#sT~zn#}>Rtl*7?B}1GFHjqBba>Dy| zgrD8Vy;_^})^2CizlBHcGmzj-2Oqt+bLVucoiW@9#eM+SbC**0D~~gxPj>{3L^Fkz zp5s;gtM%Z6p?V8^ozK*}4Q_b|8lE6*njU}ag08orNG@`@~=)opsKy*LpfQk@BOp~Q;pqBQ)Yqm6uxMXFo4huZlC z&TXXxh*K5XTp$M(E2Od)G(7Q|mZ1bKal}s}?@+_w#ALoo{6&TdXsEZ8D^Uk1#o2Am zEK(k$axLdslVn|w86!`>r90Z+Q+>tICmseD;7m*hIBn#&u@VSWFg_3P#7H@ZabKcy z;gSw2u;`K?Q5;N~!}XMsrAs{?9dIAXtHe3ehR0Yf)>g8Rl=@7Quwg)%HZ-NuM)MKt zDmngsfRW5sS<;fZ_%;Nx_Jpl)S)uso$OWh4yp#J5uETMAFZul)Z?~x`Lbvj2)bh@d zDevU-gY@4&>v8{~V=I{Fdln$59$#wU4!3-)MH~6NCIPgmKX!lTm^s#Fy!AcF^$Gld zCl#BwKO+dXEiz`deCLB2ooL1g7ZtiDVL%J+7vp(R5nS~U*(T}*D_*< z=UM^DAj?VREAjL2KI~k0q|Z>)Sm}OHX=)>m*pK>L6c&-*nV*5 zZyqD3u!G-MU)v(NFM_TKq*x-`J4O#%M4c0)LhmHy&U}mh9%; zNQy+t$|4n*?6v*Ks81B7YH3VZrd_c=Hvx~fkKI3 z@$Eq<5Ic~SK)upsGqf|pIF{z*fDlwUswz?Aqorv)*Tq1x81t>cKN&PJs+XQ7M-?xy zkEs3nBv+YddUdSr)QrP4)II3X=V~*V70JIO|i5a1xBjv)L$<-0v08 zftHheI&0gc6r)^i$E3kya8{R{2)YfaA5ox<>2Qzv=o;CBx^YFVOlBgHv}+{ zKi%`#DzzuN+?Nc`F+Ko(-ppY@qa3+W`W=l*X0Rg$m{_n-H$y0{h9^t&OxeoNxn5)2KSq0;`2 zy{q1K!~iT#P^MojlYDonCG-D z%rw0*4&g@Xk*uW{qJ>6StO$?44M03N_q>7Ni#CH581%Ag<_O6hy;AM1ws({2ee8I} zkq-D|jebihx!@yakwl(|zQZk|vsW~ikS#qk1tE+jcf~yKp`^Ypi^}!*C3jzmkrm8I zJq%k`1gurx?H=el@gHWf8{;c}Y_Aq{2bKy^fkL5Z|0b2mkRw@z&Ts&QrfxYJNF;vn zRew)yL+gw^DxiUtC)o)6DG^$W=}5qilFujZx6qgav}Ovo=^-PRbz z!Tvo^&q+!u^}XWa7yZ@np6S-yRw^H=h4)9^^`nT1%~Jd5xmJ06-h5-8`#J&~40EHk z%)u2cKMx6*mcRvsYCexvxWw&|?CE%IE(%35)&GVnwuQBA$L~MdtW}TN;f||^&>ah^ zW#5wC?6&3-0oGNrc1WfCWWJ?&qQrJU833tb31+?R>i~u?ANgWObwXYqr{uRDxD`9k zF>4(lAcA|k8H>%h@UuM=(kD7EYH;h*)Qvn-+_ZhY&NuCaiAln0@bk488g9N20Ci8klCx z(;rn?@TJgVk0G@|p_H~9x?Q#?{+lqS^^!KHm^0Uvz1WK>^v&IpI`s%8+ZF|_@=Usd zOlkD`8*npqYNIKNgL4gpGNYVv5T+zmFcxU~7r87CO_0&S&x{YXwv_Y*0b1v-wiVF? zm1XZKk5u*mTATo4jlIBI0B9^@HcAB1_RS4VLPGqjr(Ie0A;1AFROH!)7Nn<+^LjOkU5J$%5Jj2 zt(58Z57W%%V;&2e91Qju6|o)CY-l0edr}zoS-bZmgO~g>=F^!XiyBE$6~l#h&&7#* zs6p$2HhpND2qM@dHuc0-zb=q&K5%FSSp_Im!acuEpyP9$?u~yJZ$c<8LAD>{0fihy z@P_UZ9QEP;UODop?VcsnmJlVrsA}tGtJ`K(7efxsSp)b}7osSz&IW+Qe!>Ul!#*TGGLS z{k4zLx&aEp=-B+zy9q?T--~SxG@wT_$z0Z9239fjZIK!K7V6it6N&KsFWz+Ra}}@X z`?8`SW3r_X_$I8X9U8o|)Ab0?y#$l>*v-dVRJZr?5EWP>DU zt@s?_duGDB+)tGL2`~`#n#M}eUMUE{qJrYj!!QaD5#X@stG9Vu#{;9#c^QX>*qp^{ zyU>HVZbyR^7jHJnUN_2_#P81oxogfHQ7byv%xfh#?e-O_LU(?pB?<$fNsS<#B%p{bBeV7%**`g_n=GSy)xg!j!!1KC8c*1D zXD{F$8v|ZbAu6ySjwYprmXwY|EO25)ul$sL@6b+8jk;o8(APE|x0+vS%eB4lnvS)=DUJkC56Lw8=N#;o8Z)sN zb|O0A1XJ|(rDu361Y!noDA&eS%P2O96nIY;EOa7*5+Sw3&a^q-zx7iiCo8S*eafQq zHy@9EJVQw`RquKbfJmIN8bURW&i|@dv(87*p9q)b)=vLhoYE;Yb=y73?KnKv9JFYg zzkOo?*bIR>;s+ng$|R1@f0GNZj{^^ei?Y1&<=|g2^725`#vyCXLM`5Oh|M*Sa$=i4 zdl|uQ&@L%#r&j|IDICg;v7)u?3cfO8B3v2vh%F{_KH06PpD8;v@jF8nMVS)*N%CRs zC=d^OY4X*ZXfmeL!41>Hg6~VN*A8ZBT|dG7PD@gY%I{_E;)|OAp_jO7lWb10maGk# zBtDhK75iR%&U*?RR>3J={bLdcc)l3JH5n(No=;tYpkc?Q@} zZ~5QOq^`_ez_3KO1G_-riw$3h-N^sd7gVbfc4GQzu&fg#XbA$ZSp?GHj5Mzy6;nVS>qFg*p!%# zg`$W(qwUG;h_4C5TUV2ZgeRuF5Z#q~GqfYXIC8Mj70lI206q%f-q!di>!)AuyK}P+ z=kpPTpCL6?+c(+BS&{B_oWf#)!#AGISG~+|gq2#f-v4;e#zi)KpSR+N2AzK9zWyt_ z5Fp^pAny0Ji24^Sr6_+Pb+Ro+U*^i@?|EsPqH1MCYi;2=q1_-7MePIk(y&IjU>wZ2 zWbM&C5b>}19t`Ol#n%P{Bfw?wEX?`O{tTWAqEiZu9A`>M)+d(qfWOKkj(OC&G~Zl@ zN=%hKbMjYR1C0IsSmgd5>F2CHl91iBCe;wVTxxb*Ddu)2o4u)*yFE#BuBh?ew#?Eg zz;rVagceaZdbN72+5?{pk>~Olv*xgc+1`ck^9_=-`NLo&TW5ck`-;C_N9u(umuNyw zqadY;?W(V9&O3ZC!D6{PxHl&o2flLJGa(xW)xtYK#Qj>-BNS5ijZ2Xyf(@&p`aYA^dA=S;SiyxGxTGdNW9Fli(}(vu}6 z5R)Mf{_I2-Q@k&8>L6@tt8Vcfh(-ZnQxx(Qhve*Fqc_J!RVC4}kA`AiB`0xobczB8 z3g(D^au2;mI>7-pr~4X=u+KjVlH>}L+ns33L_NPA-2gn@)L~(FjV*lvkf|7|_XNbH z?_j$-E2try@0>^_^fWuXTB|^Zh;Sk*tj-N(A0dGtevyWO97+|Irl!ECD%i;bNzVVy za-&BM1T5N`_XNO0nVOo`fRS7F-H&cBg32Q|0T6!L0Hf2kUZ#nFzwt6W(_-$7E6O$! z^5Qso4i|Xe<4n}TRh=yl{}D*t1~4_!Fsdh*S&rpg zhmP>_Qg>X5LJEjAH9zlM@e#c}GPXxC93nq9wQg-ryqh)IR_sU}jh37s1BMOL=^^yzZRI0TnRX2Yboy zN_Q7lK)Z$g6#seW=ep9`{LKd23St?euPXg#!|1`x1;72*sZ$(Lg}1I74xay`M7 z0hp=g49$H{8<;et+B?;dRS-)2^1znHfduwj%&l_@C%$-&+FWX|XQoSXiOKsxXEuHeE`YDkrVC`g9HPZT?( z{^u4n&M$fpL2Z=;3>EG-<>$LNQj&|7Yq5fPi3sSV#8T4--{!HIC@bbklz`6=ael8E zgzzi;7x%@FV#_7PvktOi%QpUi*kV}HoU`O4$@I{I?2?zFE}b~m>mm2Ox|J?(zy z9m?1>Rgkor8qxf^lR+u%2Ed9P_1Fl~=Y#o7%yyDC1M5Fol1Xs-b+f}7UK3PA$LIw* zL4f2}J+-aD#t^aFP^gmMil6^Eg=FVtnlOUIB&2*cVwR*L#eSuQ!}I2(=v@{+i%tWQ zADAtMMfm=$T|Ef1M3M4gfMI)J^xN6}W62H7J1$Ug_n#sIy0)-=CsqJjV>6ES6QvTU zO&_n(Mzgnvk7qb>e2s26RY5$YJXOQ_ZDi&Gk3vFXB&R6Bs|!|x_h-@BJp=QYJ(9mI zC%Z{}hUVfOW5_O*KMf3$lEf@r1dRzdv+ZI{sM2BTRHHrD3F%xw2s+OBz|{~|YM6)! z-+mMvAcv#GW6=wKAu?{8rgA-3qg8bZqvTm_?+I{Zpi4@V`{E1vjqR9>tP`7>CFA5^ zN$*vClO#987_scZ%8HuQB6q=04^a{097R(7l}N#qHb+JfLrs4dWc!any1;2g+Yx-9 zf=RYSLHu{9KOA>tcsLh)T|iKr158s^q{jtDNidGi;3Xjj21uOEs4LgH9%@ne+-}G_ zgJFQiCV`p*1d%&6FfGq$;wl&Op#Uz#NpHt95r@U8@`VLcEEtv| z?rR^_G_)yw95h`sGr4|XA;gg-+lngs(d@R^Oi=C4&Put@@>Eon+kCiEC)DSlVHC?} zOi0{*)3;6brMSdo_VH=|YX~+P9AZl4&F8-#+sYlX+E(>TPKEX!CWN7foIGt0NB7M+ z;>0Tni<&432MzpJ@u~QiLS_Or-g!d#4jAAac3Dg1>3p0V-zF@|!$vv|9-XXyn2CC0 zY;vTbrJ=6BQ`9C;4cv(V)L!kk5@euGFYL%~)$A>LT+yA!r;%%(BVJ<*k^d&rQCs$b zW#(wDH%7VJ!f`|nFU8~6%p}{js>M!7`&ICi^%lkvvNB`&pDj#Zqt*2MPaB)rt2_@+ zA^swZ={O8*u7=BG>eu3sb(=5 z$cz|KMLxVok0}Z=aA68zkPqr%mREA|j9R4eu&+hGP5SZctf)?^>}Tr*i;NDvukS8! zo>=sgB!PC(aFfbZx{1aOUq45mI4N*+6Cm$f4l|A|e6-LVW?RFL;bDxRYWr)mi$72^ z9Un~}K=pAglf1BSV5&ST;{ubi_x%~H4#14}ghWl(IV!6fOG~rINyln*8fu1CS_=|{ z+ROi}ZIu-1WwuI;{OdDb$=IXSz?a#}`!L-G6%b~yhsE=o21fI4K>+Rhug}BPUVC8W zSis6nRqFD!x!RBmzKkHleDfNF1M4UF%PW8Izdk?uN71*1?jXiQ0PDN>&WldBH=;!( zw6l+j^Ykv^;H&bl+edD}Ia%JNAzVCO?mw{T7YZ<5H@hOlM2#fGXH7BWNWn&dsAki? z`?Ht!1gzGQ`82`e4UDw*BLy9`O>w2K-SbNc&{iqG5aUQ#?th58=V`EBw0C|pqt$LI zPO{(ou5t^)jh|$WiG?KVX2(inb>hu!{~;=0EccT@*HmSp-VGZI@^MYEyF@KN^6eF@ z2_=qKm*EMTrQC_A?S&GeVATRm*pcrOTi06uw&Y%mBh~Y(nYk|?+S|hZePJW#r=Ki$ z2YD?m%i8f}RnD1Z36flX+M0edY}-;eiD#+g_qy$C5W^?3E^>uWnytu0yg_wrx2zhd zN^{&WJZ7>|Z%dCna;pMvgTxdKnS4C+BjLYWj6NSZ6>NU*-O6rrYa>in}?Cbug{k)6r5(vq>iBr)EkhG^C!*)dr4N43N(-LXyA zY|_RdV0#b7xr`(-#t>0y)D(Y%F%yB8WED$mO0B>*S^Z?!);6Y!4~sAN-S4&^jq}~Xu$7_EF#pfbw=*6%UKzwB z^_fwm>ypv-tPa(TptDh_9upj(-!^5`Z8&8l);TBSF=mUfiH5jb$m{}+pxj*8@v zEx+ye2afsD(T&vK;wN*Num_{wAAN!Q982t4N&T}ok$cC+%X26!1j*_l4F$^GKh6Sr z7mv9!SEZd)4LGK|nez*CNe0yA-Ji+o9$)?P?YL0k!IQz8`%7^f$*X=fLP`Bw3ZDuK z4mNk7AN%tK{sKSd)^_A;h{c?Ohc{MYyzIs7^Y=N&Gic|6G8BfK%#o90v)dx{JjR76 zY5seHsb9@ew~U|AKWCOExqSI6OU*mi8{rds@%ZmrmJY{Xtn*3(>yy@2B2pwkQfa?P zpc50z>A6o+twalFV)NFACWeow_JWlG6HgsnFV*1S0{IObpe&C?%Y>g`8|w|FN~zG# zP7M6rPFcuW`=C{5H^Yd}?A)a zk!v&m*!&4^%BikpCx&J8LSf3NT4He~qX zjKDRu)Hj}4V!bUgpWFoS{q}z)hLgFGx0RDASicsT3s?d-uBmwZcUltm>m8C|B0-Q*-#Q!Xj_%P2@aWl$E{u@;_QBxsP-Pod~iS==9M*DY` zdMqCOPBPN|zW5_O{SeNye*-ljuZ){@&+c3_G{KI-zdIP8wxE-%Qq9)a`J@m;w~Ym7 z#LYcbWBz5q|0tHh0ewxV9NXGPsfeCWK4vRQa-ND>{@AHfqrl54&s}`1Timne+#Skz`f26cQ{w0k8Hy6CG znXpnumvkvfy!X&YxjW<{?YybIqiNZdzk(;TmnxM(5#+~OWSxV*+1A9j+K8#}^6z8& zh(Aim2c~owGKrzLsB|`#I)+2CpOJcvMQ&STVAdWQH9FiGo)RjNbm7kTR+Ls2-Dv}T zNan};!JDHg%3ks>xw{`yQTRx>-yhMXxa+r$U{;%Qmv#+ebyZx7>Bl2@{k|)-k3l#I z?5QF?x4#`yyG>E2_Ap26ps29RzAw5$4k#4LKL!m*Plx=`V7+5d3ov_nRk(hKeVyt5 zBcn45fBkg8d^(OMq_NSl5Y0D{`dj;?YhYT}o@)E=99cuCkIROS??d=umW~&EAS??l z_Vh*7`hh295>T#}PjXB8lqL@A&A`JSp2RO+o8WX@u3?>czFj?F9ZU7J;u#+zwlQ6T zTgrk6U3K@IJ4WY_n4GBi(ST0e&s>v8utJD@%AkMkO2br*ugRhEJHR1?1!98w3*2$} z9t@b*+M|mrU#YNAk=lHFI1{V*D)gy3N9s7UI}`;IUNW{Ledh2fxF+qN7Ci$&F|3tD z5EdGLD|zRAq5AnaBJf)b+)n0pt$XB$>XTw5mH!%%#Ar)O|MQc|tTa54AV+p4HxiS- zil-4(T)k)V#*TrBd2mp9xNKFa)`_D{B@XFGT8JE0L8ALa^(=LJOXrq(^PuZ!RX4Pl z2?-hoRv%O4LxyC()I7Bx4{7t+KzojJEA8K&ct7r_$??K7tiyfI#d#au2tZ z8I$klMG8K4^AoF&@9J}{xhwXGG+UN4?w>U-bZ8H+vkigrg_b-#COQrdx7V%tKUEKv zC`%WDyG>t3z^mW|;i#Qf8vaE%p){wSF%KtVa`e7&FqYPH|33Pof4iG}+Mf&-hP3

}xy|+Uu1vpkq4NwEbN=JX1jeZh;nmj)uN5FAEF}1en z3`0W@pO7TsJ~oh1Hlro*#D`Dux13TSTqolUAf3zr<#Cj!GB56rzoQyVi021^5#>U6OL@(=Aiw< zN{=3FZ<&5v8D>HoM$`f@UX*6$mX7!XX@YEnPJJGS!AUuZ(d|^1I_sxD@$bP5Xgu3PW^k_ z9B*_c+-EgB z)@`}M{zhBosjbD5F*>>{)OD1Re4@#gCk0M=rJ+S{yzH!3H|R7yzg!`Vh=i0ZY&Mox z&1Fn2dcq_mUj0J?nE%oxdXPNCUv)jkAy|eVt8Q^3CG7;iRz>8Yr|=BTIi0mPzE}?f z+Y4DZw~q!qtEl`V6te4Y!YrBFH&O#@=Xfy5cW~tj*c+RY{;%O8utzl_GS0ZG=p42d zSIJxmsk|x5_MQT(VikYS353+xDZo!430zeP={X;JSlb+?@!F9TNJpdOu;mZ!8#as> zHYFO(u07g92YsLGViUImoa1m0l7CGQ1+Lnr0bgh_YowzKd3cQoCN$+#oMaYfc1u0O z^L8s&-KGkQ76bt%+@7(YK?;}Ld3%EPN9;Nqc|(hfn$Hb$GUbXwO%o9he{estdd-u@ zreFAoFUOFSNZd0MUUaEHVPG*8taNE;XwWb;uDC9ZjNgV`?w3JBcCVAU> z2~uSxf7XZXgSafkeRhRR%B0VzQ~tZI?XaI##!iC9RiZJ_suER_2pugcPozxfH21L# z_J6Zv1gq9QM6anV9>{c}k-TZok)GQ5X>2o(m{+>s^pCdd8FOQeK-`GCE#C9JDtYSI zW%OC>Er!&M8U>&RJf6B|3hHzUX1W(YSt5jf@)_&9Qc|g=#?}+9OK#Ih-v6h+H zH-(vnhkJD)3jHV5Qtl6t80AxbYue3kY4Hw)o5vShdYKb{iAU~GP1-@xVlZlpF{2xnS0TosEeoaev zcQ?{4H8e=4grt-R(hbtxC`hMtcS{Srbc3`=gLK3H%&Qc7O0WU&d?VUbY;~`d*DH@`iOs&+p5VUy zqVclYuI+a&Z#fy=>EejX^d|143S+ z4WpnI$xv4f-)EMy8wPth5Y`k#cSr2rRLdDIGQtL(}ogoW))&ZWA*1s=9*&RfPB8ei1t-XvBUFAo&h?!K&Y`> z(qXoLj@0h^L1oT2YDy#i`&F7-Y)es_PN7w&dV~YEQ!It+XWUh%#keJ}d#64SCq4~n zT`zy7@iElJj|$`r!1!>w7Ugqw`4^qz)s*yWru>B^gu~IA#?v@KM;DjWpYz7}IC-yw zIJT0)x>*{==zp4;d_vbW9~0WwTk_`$YGk-You@I-^nl&J+8i_aD1x2*qWJcebI7kR zsUz_(l22QLG{irXoN!Bl!k}333upK3bE2e@pC@;*1bwa%3ikmHh=GijDwZeq6bR2|7%W2 zk?rq~e{x#4=M4=MbI8O6zf!G*AGY88oUHwD#kdm|U^aTB$W<~kxk1M`c$OU1Yv9Xx zW;C#;S1aAKT{q2?LsxEe>2iVpdD}t!*AU+)*&ovWAiU5jd<7#(3tx@ zw3u`$$THNe-?iwCA@8){CP_}^Z%?iAKO8XO2cA^XsMo$yHWz66FT3#l3!^5M>1}$+ zcX7lUEEk+~xyy*d2$7w0KNl;v1m~yjlKWd6-%yEMxj{U!M}z!VCTHb(;jj2tNu(cz zZ#2)=jQ1$jn7;}&OK8Y%qyRI?0A_*%IBC!?{R~-q%{Mrg34%=n18?{1?;(Oz1q)*VQjueYW^=`}9Jfqi z3$Yi4GYZ5P)KR?j`&I2DrP)_+){d1Y`9-V!+rD-M4+1Kg0ET_}r=7lq=8x}wHT^~P z7_(BZvk>HEouAsk%w-KqFJt`eK-H{99yW7#VLOywhBFsQpzBYXtz{TOM&_RYAWowI(_i}83*pRKZBXwP zKAQtA0ZFJGlh*8aUvA0m{i@Pax{6I(bL+voA!`-$n{N=2sylQJYpxHDkC>~g5!f3` zO>p}+*dA+s0K>WQf^c))$OBI6US!yR4~bl2^9^KSA+I&Sd+$CZM3XK)dA{24+jl8wTg*B-lz73FRwr^g&@LQ(KwkW>EB z*rUQlnz->)TjAfioa1P|I(8kYzjy9IX2WQ5XRnN=v$GW!^De?6a61Y`#*nW2^brx! z=cA%ROs@QdHhG+h-X1vEX`xS4CRUN=X*}M^F*ABiJ(kX6FHosIJi^?ClDWfrPhYna z;$T6akzXZ=ipYZa?s?8~IF|3&*$jJG2~UAO$XVIiPV8O(2?zDk{Q0f8B{SBQ^{1(= z`d?{$6gPvydn#8l?m*IOTG775WZ*B=h{1>gF<+sWEeqzzvlmrt`EKqaWP8E)Os`^p zHG;&QqvS!{0X50Fkxh0!P#*=i%od}rm@%w$w7_X@ZqtETN=b2dPS)t+0aix-#eMpy zJFK<7nHSU^FaOg1_ug;11%y$H$3O76@76)qM;?}+Hhb?Ws3lx&H1?7j4px)aFE(@Q zE|c#AXVHOTKk0z$Wk9fTTf&&1v_a;O$b)P}qluKH&}3oi+S&y1o*z|U93QLq*+_@&iIj8vzbkkUWIr|{vpq~3xxr5~4fLb8 z6I$Q!)_k}Dy9F-_H87YjRWnpdRuLnLwigo7-lTWdcdr>1E7XuSJylpXJqFTq$TT$u z1cf27hssOB%*olEGx6Vz|6ihl{FQ>~ z_6F0xW%f6a>F4Zx=2tieunGAd74m9(oM?{y))Ti@Vo6gKwBvcDQMsK_l@;1QzI6SSEBT27aial=dxhf#PIGOdNtQBrwkCXyYO6c}4}uVNpOtwchR<_8 zSfk?wveLovrjy9ULTET`Z}mD))0RJ&JF^21$t`yP3*zdpp`#i4J1wXzBiu2#0uIcZ z9(p_GbH=yszQH>DpIybiUWvU7j|9j^?FN~>%%mG~zZ?dom4;vF7Vp|6X zPeG;<$%L2Xg9&l1BDk}C54pK@-$74P}&ZWH08EyKtt1~nP*F2a-)p9S#%x_f)XxXm)qTagd#W1No!d`}%nA@?yCQd?8#ROi~TQ8 zd7&Uj#f@2roRHCIIhs>^^{rbYS@_II39o2kB8ku2V;*kdZ{$RnGD^eNIevrCfou}% z%pR(jTluoGGH4-?3mx8g0m`QGStJWeDbB~wzj@{To#z9pu<($B$)k;F%g2ApqHQ(& z#Uo+rI#N=x@F~oemaobv#P+mq#DxxVlq@eaaQjXf4(f`BPptmkWe)s)Dz+w>6U|@? zAE^0U5Hw_M`c>ufV>;@~lG6UPc+0l{eB5xj^d?SOeTqtRa*T3`0aJ7+Xl=^3c^mIGwkuS%XJ3!u1*C8E_aFWKCa=rhotY&TiO*4web1 zgp!E+3Q_s~>rsm`ZfX9fG)IltpoGQf1!IjQ_nzdrW zQ`*GX3%U(az@4%1+$*|iIXej_@i-BB7I#A`HWto4ly4Pozt&)EIm!QMN^>&(=J%*L zqy)}P1Dg<$!DhqY3?~-j!5lqsL@e*0`>206YFm4{sox#!^+ShL#~O8$JJY7kI#C}L zYNm2`AnxYRC4OzrvmGMC+slI33S;B`M`2OV)0g?l#XXCqW-ogdb*V;bt`c?8`VnW8 zGPO)k^q5+BU1|T-ei+iT-t4h_=S$9seeG zjuy3lhFVb4FqKQ>_||;qoj8^=>NC)UKYT~#Cl>ncxddVFAgfRDS@?^Lsru30Kv=$p zr-^}_vonHq{GqJtu2zYLbetr!DZ^RQYqdHQN#1J*sBo&>++^)nOTCePJCjt_d z?_TPGXy8Jdb%}A)gpIZ)4(E9fTlE zbeVEWJ(^N4MNMa!a`B^{Tq#HpZ)Wd+;s6wgGJ=NUpP}9{V47eLLf%4AtTK$)6((PY4_-lB0 z6R=Ps0Ycy}pz)(di-HINPQ=C9vAAkJcz|@8d7>VJj<@C8>;~n%k9fZ-p3b|}4b7xd zW|zE($yi;}4Xy1o;{co|+$Ux`ystb2I`@#3_hoWkP8gv~Sj9YIXpL%vP@74v@m76*yX#o zL8j~O+P5ii(X1LAgqA;}H*bPqO!ieD83L?J_$kV_Ny}#A7U2mpkJuTf=HdAnzmhqS z4Q6K%>}eMHMNu>E|08h0BH&;Q1$jNKyUk$YE*OP~J>kp}*zJ}7knoaUbU}UFdA}$X z`qSin1f&`^zZn`dQ+0x2&sOlWGTpF_VEE*o|JA_mbJ!tOLK1=>R#eI!ZG&0S>{r|! z0|nPhX1iJYe*ZX#)DRQx6gn2kbK_AXCT48W!=9feI!K|HlBY?TnTbiUQ{&UdqB<+B z7d*bO{>tnK8DE`VtnEaVok?iR={kNaWU!l^yJPv?1aEOA+OOxQ>~*9ra6}PmrD1S| zHWiE%re4bu>w4xFD+goDyh%t8K`f-#ISU&Z|ty*sCVssL>PLccpX0`pg z(Bbb4pRYJo>VPUptK;(j%b)LD4WQc^ZzTh{opg70*=S|DvKPoMQFVBQ}5{w5op?WqU0Xqj6*i}ZA>A?uVkisDDA;?4lS z`cR}^TwGlge#pXPEH%Qk8=;qi~N2XZv@ZPSqKBZFVSYS#0Wb+fLc8 zgO1PNzWiL;ew!&aZXfLOJuOoR6vAWA2%aV9isJ*BHQU~&?R^dS;eYIWZlRi|csQ~vE37?no2?bF{yp#s zH{#_{=UL+p1!b)xTyzBvVo0tGMfkB?q)H!<(ie2?B$94Ji9pwCt$3pGORq zA9Qi10@&>yzt4_6SeGAUCTuSN(gVUyS@j#b;G~H6#W+hYe9yfY2p>@=31T^#E|8fq*>C%H@rV&ZD7tY6 z6mFC&qB?_rq#2o;vuFA_5Sd$i`VzZX8$kcJ!bhs{3*TqQY_;u!37n`XF%RPL-)1sc z?SvE84ESQaBHGqdb?LT*?;ocID4gZx@$izHK-TqB3_}rKuN^EMGK5-#%M~7;K;A&G zFeT#eN~sLZGBe%Ei&(}d3yqMd1aF}%B1xQ}tqz`RW^O(M9(7R9DEYF$xtO6R`(L&# zfNOO20`@GO5tQBxQ^D1e`dQliHYx8OHZBQFbDPS-uyB;9;--{;q1w|HJxkFJcF8VB zpb1M}OdcS=i0T_FfZOIyw<|SyB&;oPWV(y$-rReGFW)?4V<3oS_7Hg+mV(@lVZAUD z*Bg_OmiDL%-D0&Lu775)5>1SMMXtQl>yn*paKg+UyTCaJ6r9s~^CBOjp%Oa%osmD0 zv{KsTjDi|J<%ctE`nP0#r>Wb0S7>y>vlB>WyWB?4-m!>EL%lK7_~#R?clL)WnYVA_wBk;c z+VQXl2o){YFA_yeiSwxI5lAl0Zb|RXbic}&CdZAMQE=egj{wL#ZzL-lq zJx!~Cev&W$)J>x0fkl`8UMhJ_-ChnhKn2HJ`bzD6LANuOoE8Q1gQEsXO1D3OP7WCD z)qKUnI6-gr*r)KsRJc#@*)c7&+Vsh6q7hhuV{|K=Fj9ZE*Q=g;9#TEOAQ}empYi|Z zamy?}GXCZiX!uGni;*P13Xyr|7&F$Tdun7u_I9@+`+eI7CQTz2#go~{WD$c>@Aq3@ zAATq0e?j&hUeW!cZ4ataq0|m^QF+qS!c6>lr>Yc*dT~CZ4y1w)iQm*WjFEbhe(ziR z#2RY3XcQzN&+CThy<qH%M%xbHshR$ukkL!-hAlWDpBI{R|5vZ)|||6KJ<_| zlGo24dzw8s{3eLyLZsjj*r6kVODo@dDt z?Uj~_Hu76V6S;Cspv1~MBwD9lkj~_tMepG*^eRJtfjNm0(CfA%OiZ1=O77N$so}(oo zO?r4V)x5=+np*Bljj$xvmpluVlP|zqV63ZPw0q`3`UdYBx^p8&s}IJ0WBt|q8!4~j zidq?bJLpAcjZ8%BygrYUz_-b*EsvfZYchjf!`1B%_u+2ehA$Kg4S_-TO{Pc(1&&jt z<6n?O-)|0x5Ol-{8wv%9{fR1Z18BM_PBoat>kik~i|o2+&o1c47+T5GJ;T;`M{rC1 z>0r|GcTnw!+jIf6V+TmzVqO;-y||bE>;OCNEOcKo4*RB!v-JLw8v$4Li*+A_RU+-} z0Z^@Z9_R495XiU56`a>Rd$!D^K$@;O^1DPLisEq9(!q!%%s|z|E&25dVfqwyst#ha zgfuN#KT}}Mo`DC4PxR%7f-h~-*tHXVIl&(ViMFbQ91~^Z%G6n*;Ivs)As25A?U}@L zwTl|oz)4|b4pceJsND78PTPh3jn2+ct3J@mM>7%2&!2kha+3GhDViv*wf6}fR&lW?qkOSqEg_GfdsY(^un8ZfMcr zOM@$o9UB($joO>kj}+yYIYK>LTB<7l_2f_ZXGxE1z`H-%-Uo=?!yXrd?|{^u8s z>zd7v{oo*`i~q!C2+on5L6G)~;D7y#MQMB&Ij1djKDxO8LjFc$tSBLY2%{$)+B0U;~4!u%{-GAlx|et zHjE{*F59giEkzfkdkkyheyF%;*f%(nYYIwY-Npavvc{cy_&rJPP9k-1^^)&?vd-NR zD>j@|zAzCiRw7mIbF^o~;%yPs;{{{AD@g_{&2<;p+{r|ioJYEj6r zlsE%cE5zsnQDIp0+8-&FK8Ssl8hn5eLMM9QG{XnuB@bHc4~@9SDJ4QNsQJMRdvNzL zdup84cwS^w1M@Y4vrdy$pd1nPgFgq?@BUa`oJFoab+P(~>;V#J%>dP6$!HZO=bxb^ zI8J#?q0}G^EQ8TO+_yly)>QU%e>&^?j9-#x6m$+afw7MiewVEL8i{#Rv!B9eQ0)qg z%U|n%PxA;B2Q$=8I;`G-e+*(7(u)`1AJi>=^LpXsneuhO5jU=dw3M0kgv+nATNVs9 z2|1+*kvrPUdsHQpR@6Kx$yz-8CcnAAA&@oLO-Yz2gq#RTqHplBgg08FUzrzU4OFi? zVv~{bsjBdSVz(25UpSjZl%q%d?EptdoomX+QN3lqhCl`l#9;-*175wHvH; z>IU`W2>t^2GYcw6v?9t9;lC}mv!4OMakqi(aEvPXx`tFy?CQI0HB?i`P(eBm({B`jxB&avtW( zugE^P!wZqSv(L+A`+DQHyF30hsqXr32gnTnJj`5`-~9Ef$ZT%+_PS~)DJ_=2llOT# zOD4)rGstksR;=;ejgl${_AM=%xK*b1Q=~a5Z)JV!Qj{rAu84d-lUaa?MX*C< zET(&d?G~1!R_ttdmB^j)Wb6VIJ^c{MuR-n)TjDvsAHDO(6*WXEHiDs$p|obrpPS*E zxPBoKz5Tku@YcXx3|W@UFk9-@QWI*PWZ$&yZInQgci#$f(Wm9D^t8unP;4oXoLJkZ zFP5nn?9LW;u{vKqRGU67RQ)eQFy3Lc4K}xZ#CG|a1ENv$Hxr^*)H80&xv_Z1t=MBe zyJurhfrL}RCMzJ|9QBOK!;;=v#{@a(N4!|FBny|1g{QCe=7uyQb4Y;FJ=d)B_R})zMNoRgL?bQ<&Xcg}Vk1Tam+PtwO6#wG@ z)sA-NCQ>0Pp@5z3W4`~Gy|1WV-eN{`6?*U>0oA624^NYOC)SETaL*=C_Z+z>6dTa- zh|1Y{i3^ys$>PPXnE(?oOivI${>z0D9O4Q$zW&0A+5CMt-oKnchE45zpY>vozM;KF z*}}EU*K5Y>c*Q05>lq6EPT2Tg?Ud!|S<^3JH#9YIrX{JTFccx0^uggxyXBk$T84)` z=6usb58N#Gs_3#C2KSEns;%e)Rwz27(FuPYW0xsY)5A!0&-nj+ti{(s5rF}9J+KK9 z7VEs}W~Co~9i6^`=?Im;t{6e%&%}kx`?5Cq#ro!a9uwiSD~a4-XT7b_6N;i}5(^8) zw6k|#0zHGgc@I!+xA97ZDU93npi0VOWMmAF184zG)ct4!Bpl2DAtxXf@-YG`r<=Ql zl%_kWE=#)H5fOXhGKU{3J{?8pAxvp=)zpmpvmAG+;r@#L}&0->G-%}!6fscR&R)*#$@?^_-f%>AKM5kQ1MtD>X zOk6?~Cv^z500%)qUeI*2W4`V70(H;Q6S}7Vi?`6z_2)@*P3&|Gl7C@GNx1lv=2+rC zINGV2j{Gx?HPx5>4zbS7zqth87|T zCXwj(J(E}o^U&rjpah(+SN$F;WILWE+U)JW-;C&6+xg1-KgkfT8d8VCn$QP_5K;l* zl7;PG!>SgBG`?a!ECd7?$Rzf25Z#f#9p!&t8v8{H(Le3mlm+!wO)GEULRFS z!BB`W00lWjkwo`V9{_KoOpQsJ{yU+6e`$?x*w49a4$!Y9s2Qhnp&xYnku7+f(zs>) z^52f2a^b{?rKEh?rt$)W^Jzj(v{(|4T<$)H&&2Q55>C50WdtR)Ap0#+W@wQNQInj0 zeK6&&iF55(=9k8AA3pQC>AdEPc9wi`ipK5FN8wYEVkN!0lCpF;jZY4@Ov)r(eto|1 z%>p5~lBezq{L44$U?lh*pTa%EQf-$=0i|I~cKB2>&W3{p8f|!!HM_#RZMJ2ZVTsqh zCLLrjAH6Yc0U|Ew%gxDA%S&+Gp8?HHLmAzKAMLDZAF|?a2?QU1DUfw~Q|Z4Yp1NSC zZHtF^EIhJiy#{7n5WFwx54&)V#o}{lWpiSW2t*lBL{ z)hmX;FM)M0ti1{S@_}l4PJ;VFnY!cR?Gj9}9WfXgcBSR-f_CJuFhDn+tO2o$F6Mrz z?vcjS-ZvXv-|p0OQmiG4Ru3KuDds^ z<3;K5=Ugcn89&82wpOBQPigHOdMTbx4 zP$ngml_^+7rinFOv%$cc{Ycitj~` zGom(le@zr#7Kff*Zez9WOK&QtbafSNZ+;TR6PMR~-ev_ejE>G?LuuI8oUvTLXEx7~ z^V%POlfahQt3n-F>!vC_L`F;(2#}uCi9!#<_n^@}3`AHZjHY`{Nr&CPyosOm`iTu0 z(a>Aaet$K=`%B$Im8_#31i7ZLfo?wv*quWm<*9$>oi^% zSy9i76*}1k4Akp+4dY`*I=Zli%e`RAUCtHIgr+o`rcK@|t?^da6EAr^W_v!6I84gV zPmD7Dm8^z>k`hEm=iu-V1u2-Gz9CSlJRe(P%cEt%4^bQ|43;^;{jZ9|{u_Y`&dnKH ziOEIcVB8nDtjB1OnfRe=xsf6=e0}fN<0vLMSJ91AQVOYM)1MNq+(%5hqNr##0Z6}3 zm7bYEVB))C{=-Lf*uWqPVmCy6(Rdr<6*I&DMFrfVqObOq>BCs_7q&46s_n^bJm!|7 zxOJkGrarSjqe1tKlVe)!ly*3OJyTp9Q^9~W+y>`rShuILf|*d}2!oVHB&n+aiUp+z z*SIr2G7?7DqdD3-$FTGQ#t|l(#h{zT-oN?s?y#>^TF(K^c?)`ha2nFD8Fp?Qb44&u z>;dMCgRY4EdRJEaNn5o4(|w*TDU`lAL(uUrz*}GO6-lN zL%_0i(e@E<+#XK1#9r-t$As4UrkTY(=^1TF>(nc4_jhXWG+aSQS`uvAVY8&mABKYS zEIbc-&sA^{+wF5xZ+P9`$!iw;&7J<;E)7Z1R4(d-7p=K_3qI| z;Yn%#K)5b(+mP&Bae$16PG}QZQQ>C0t;{uv^kqUh<`UGQnfz^WqxSEn$`~6=>}h*Q3QmpkE3~hi{T+XM@X!qUatOjEs%P;IZEPyxgB@-F;@-bHBLi z2R$hj`X+vz;e$w2QFW(jHM&4@MC5hzc$k}P!)P4SUYVpvy8%C;fO^eVaq5jrm&=-* zWTd3hui5L31dRWpJTs9v5CbjC{RN0V$R(_m2i-SDV@Dwnge2rLGfS4v2cuT95$>bt zeEt}ewKBrYTEbAg9at{Zw<3Ah-n>2f0&51lADaG-GX#z)Xi`c3%Vqc$Esoy=wbdVt z@S``61ns51FO(g3AJy$~`m^{G7iSzqa$`9qWo6;p987CNvbFF7hwyUS+E|VxgBoS` zs?I-;I4Q?QR(oF1EPXIHKR*<9piqE7;OOMz{;W85?|{9t1KfQ7>CH^Fi3B?#T4ZG8 z(Q141SNNq4FW&0zXOS?o8mlqViurlJ_NStiv()3C>EELH8%Nc$eeTY8e!I@7?6r*p zTJCY6E*9{0%*jdBd^?kmFRZDQK2K-hSvCMtKLsNEKTGelRoby$)>JA*&S3YD+wQv= zmzndl4`aswv9BxlC|-bkuqb!oD@0FpvX7&hdwv(;LJR(?HC@p8p~m{0zIs2E5>DNJmVD(K^hm-iXjg3Q4>yLom%9gTw*ZFe$x_c#RZ_h% zIel1o)@Lysa4DSC389VKhD%~Tl>shDBWIffHrX*XiGTFDk7xQ_FF}=eBwBlg ziFM0IT6h2aoAMcTLL}G!hgX`aRj>mC$AWJ^oBZyKJDX$4^QIy!*s24SKIp#(FNatl_? z+6KK&KL4WC`D#Rd&V2s2TOpxxbRR6!wgQW^)r= zev2fer;~zG7G`)bhhYq=r$=tT>dGK0ph z3!2}P&T{z1rgP>Dd|n8-)F_l8<*~;KnGT@HLMjl!`ZQN75k-e;<`jaeYOp1Nn^F?Y zB*z?OdMRwYH^&saoX)5@QxF;NLHXGTbn4sO6c>43Eab@+n|@s1t=ZxMK}L7n_VtR6 zzCJN#n#bN`U^Hh}np7~-8DO~BzVdFpnm3G$e%Q~@kG_EUN8~v8ujNKZryQ=JG|_Zl zz@B6ks3AGFfEP{i#R4S|F3*1(eNBc!+lmTmeQk$$ArysQw9?ml%0X`&6`P32r4}

Kt^$nNcb7NA}PAETg(sgK^j6 zLeQQg>PNedn+TV_{^$B?ci_KV=WV_thrqf$-#=bh)D;g7y=xtF+8q)k`!}I~6_xPi z*@qXp-sXC9RynQ>{(JcR7n5ec&N`lXMJZZ|@o$V_>HQuKy2&rwWzlPTyNv+}v1+*K z>4E?rKfyQd_9BUXm?q_;{r!Iypqpx~)8}H4%#peX{Z&!B>wYhw{&)Ii@eX9~D+DYj zUquD+p;zD}mMBtqZJu&o+~z$0f+~6d%`bWLt<6T|tFI1yHWfYJ=AuKCvl-O&BCT(D zxPtcJ?5BeRA+71s*kosaEPBY2codJ{&Tg#^rGQBMw5)BVpP)$dVq%JquBE*gf3)f=_7rc-97@j*`)%^H7-QdP; z@Rnyvy6REKzyR!yA*`WF_&{~WxkM{1Sp9l$9KmZTJF7Rbmk*x@`==LoQLEZ+CfM(+ zP$tA5*ad%o?lX(!fPc>_@eF?zy&hr;^KnqIaP5}xJC?7?lA+*+!MP)T^iR%A-_w@F z)p;BRZQNi{lBr8vr)LOg_f{l-(Jy!UbnKmc6)p?XAo)TTwMF6gQNMDr+PhITx+v8) z8Ea4x;P{YJP6z5Qe88lMWsYAD%n61`*fa8IGI7ho1nqOhFmgHkMAgnLr#Bw^gK;W? zY<=j=$GHe0p?=f53D6c-5{MT;DzsS=Yin*k-9)~C`NxJP1hRz~kGtx@US}tGv2biQ z&FhFuK`{#a?!eDLcr2fz!MT~ztSdO?yibG^RgKzjvlQl~qicV-!cpL>)Q!0_8rts) z+_0tM8{XGV`|}rcs%;(l{$uAHpo}b-={jy0yfO*Jg*7Td9wSxq!f>1mO*bdcg_K83 z>drkY>fwgWQ63PW@l`w`cUD<-&%L77F<0#-Q8vFen}`LjEpkkah(FT?8L`MO;Jv=l zfBab8zxIpc&7U8==HQQV?T<#LjbP`gyw=F%soyQb zYL)Y_E5ZTPR{f{`XKw zub9Ub&~tE-)SFi##jfN+NR?c^$<@q#EOanc9HI8V?59g710V=5<0X;+`6nwRF zr-7>nK-Z5nQFSVBAW1x@Ap!@wF~gxiGbH(!6ZN> zN8B%NSvX&{}a-ceEIi4E{${HP)wW-)6{Iu~mh{;pA+FLhkDR$nylohC8vLO83Lz)ObQXHjjh z2@!SXk;9vr=+zgyLTJMIK3nh3S~U;nDz{ z_7&uvV8K`)%G^v2wZ3r#DC6{_#9II#uNU_^g4B~c@re@*VOa@EKtbyO%AsU>dOB2| zo|%PZ6AH%wuMwbBr(m>`c{5dP^c+1TE4M_<#dTOSo(GOx5LME8`+w`Y4mO>8MG_7U z>>m9k>aE7|ttYZQ-(*Wu_Lg12OvZdCw5B%FLwOQ%jB(@{%2~ zoPN@t=iioxXDS38owGY%p{!S|ybXv<74ZAhMQFO^UqR{+t$RH{-{NSkGvny!s4t1{ z?i0#z6FhU7lFsJqgXp?py9G??b*A4XPkyXXE`R+?yM_p95ZXOX8F_i}GREA0ul) zO`nAgn43YR&-@>bhyFZnaY=k0IxW7GCm#>jMh;9#B6Da7Bzo@|xVN{reH~rOjC%2x z({weAs^ulS-7wWhAwBqb=v7qy=TVO4e?a9ZAu-X(Xk!0huKey#vYO{T@Ck=xS^3OR zOmwT2fq_QX~%4BZHJa)Oa}I*3SQX6%Yl0AM{o)KjI(lL5m%er zAyq?{UPm)f=mI4I+VI90VgH4MPcdf1Kx|B1Qxo#;9f`LKR~u;XJ2*H1l*bW2elUV| zP{R*lo}KSUMn?^gr-0fe_$A&JDRJSjsI84OXW~^zP!j0bPDx2o*U*?Mh|-ob@fCyCwU#$1+Dx$6v5g~)8F5m#t)cpLUp3SGlZ%Oz{F69ejDX{ z*)fP;M+Le>P)RJHlH3p2g<2oaM_GVPLuH?KFA}q|#w_B+!bW$trsSyxcARmjs3w4L zRz%$M9VMweSs&Le2pl|tq=_)l(E9$yi>F+-aw}1uGB4oe8Or+xK3-dA=WK|oxUdkR zeRUivAETtCl(F>A#AE_oS&oYs%6ad!B?HwGhX!OrQ~@z5N#K!%xr_^khoTXM!Iy0h z#%@n5bAI9#g|!+>ANcP(FYK?8k*&ON$}ONgv$5uL`r+pnFqt9m0(zj$>X$sXBAJ+( znSVMo^L`jf5m;YaZuj7XhJ~@Qu?j5E?r@Ncz-%^e*$6^w`IDrq-|5ZI*>y_`0}U_% zPP5k%h5ezHGd^9UeCGKkhL}5OvoG8QXkLKqwFywSYI(X|Q3NVu->tLFKyYA_J_z)} zod2tt-0)Vwaz&n)n@knAv2pTF$?lBSC2; zFQJ#L&lLuZN^umTy1=5F>)P53lvs8M^o(d0D&EnJj*jkx61`_;V`Yu|?$=f|3Zj#{ zh3;pauIuHGno2A=-UlpqU}Y4m7uXyD(cIl}^ZE$j+*4Ei&LeyOoxrkH12yX4~F28o8F5gyi3I7hLM(l@ApDMvegD`0X zZpqNG2)!|Lb{mzWlNJ>)}E*^q!o1Ls05E zI*g#YIp^T*iNFY*A8*gm&t26xOBK67&KOFyX73_elyd%X+MNp0Roxv&b)%Mwijf`rKQjJo4MaoND3i-9h@F)+ z2`q8-BT$>N)Y3|Z#=<+G132LLU-%B%e;gH7K(zqcXRrK?eKSt<#1teP_S#f|?4hEn zDxIbN|4==4YYacSJtdN1G{Hsy$ZqQ{{S`U_l47#e9glOkoJ4LqQ}} z3v?d^nstz+?Csfsdg$g54=*nXpA9w|A^S$tibFwue$fB#Xs^&^E6#LAZFfJm(-P$% zRK8uf3&SAWTd1Z2Yqe-EP*-2S|GSk}AR`uBGOvskj0aGI1i{{(4QR?;nVs+Nm!YMj z11jm#8u&nNO+iu7Y~yDj`}>YGkafwbtK+#oT9Tf~76W?h=wt#hS)v|IrCHc^9G!q~ z45|+U{3P`H@2gV*mP`KjP0q-O98drbfILm(M?Ih(1IAb!FK(znC;oYSz+be#BJ%B)9_++&m+(UtK>T4l#Oz;Kdq@<)g+iNPBIXFJdSG@ZT;-dck z{>jBf1!H3hcqDXcM#eB8@ZMy<1Oa~l=V<@t=Y))mhm3%iG4ME+8$S;D-K@U)2@W)m zuE%p_Z5@nLe$p_f-}v}VLV(1vkIK?`q0cs);|$SwA>OvEFonndW3g(M=SEAKAyW-9{O#rwzuu{A;=T! z&n{($_uQlOZD9ND&6N`Y3#Lppb|=9SzomwO%3z!LT@irBd$fS!pdM2pj7|>d$-UU( zLRgf=jYD4l?Ji^@9wR2ilPy{E-WjH0y1Dz)h690 zl(&LEPj9xJTW##^`wy=)-@Q|ml||Ii(Sb?^-QIe7-<*t{?~ImKR9K$;ZoLEmL*)}X zQZUq5{_O5vfK{O>qGw}6>*IntU!aB}t)vKU3&;x*u<6$LKY0Uu`D=XKLCf&s;=&7< zed|^f8}S>VSxcbz#!3#eR&R|}TU!e*9IaEXtD&LM13q{kK=q8}C3C$`pE$mM|86z} zI7o+s5YeEk^Ex#e2uNe&;q?Jc_93vvSU5Ns1O=PNK8=lz((&*lRaCHp{ma74oC_A} z{@xqdp&U?>1KSBIHM^-Jnflsz`Eh6*I5y~GgIX1M#ORc7(tvOm7_#XD+X0~AJWzHl zEG`DfXdS?bUT_rvM1~ygQd{9{86_lg7T)_{$ZG7(mg3}n{1CNQDx zw8aN-%3kaj=Kuw~+aZbP9uReY7ja{a%Af2G2vC)H0^=8E;FN?SyQ3rf*X>7j0*$p* zRdGPIH3G0LI)RPGUh3CEGbihYJ2h9;RC4L6Z{Go>&;}9v1k>@9||<$LB}8h zo(@eESQM3&w*eJHK}}5p0IW1`0>Em%P3MaQYa0g+;~uF(O;kRjAfxmt!491Z30peLTXJ=>6(CKeL3NY#WcSUM!Qy|oc zPR#WM_?L4al*;S!_ia`8vo|g-E;Qrhbx>NYUuTJuYUDiZ_*}410lyUg*>q2+GGR3! z!}=xQv|DGkw}B9n4rz3A!g?0R2q z$-iRvQe6n$5bLn_?JH261^)2X+?HaU?S&LS)Ca(kuX=3N`T4nt zac-mcmEH4Yu>?gD1_xBa6coE(YTkb|pC(Mh?Ee#z53CismZn_4fb5dz2HXfxvNX`~TbQ4(12+NY6Ae+2l~`EV+0oI==K+q^(Ft8SwgPC=ezAt;(Fm9$ zWqf#BTU(9kd*C8GJAios*D?T3iGUSFe(pPz{{SNbUK|w4A2%-WfRUP$t_KIJiR>}3 z4SP#83ZVN5Agw;TMonPqz@mhK*Ms6sKr#%iG=V3q2@oZ;Falt}Fci%8hN2A*51Z{x z=4tEbXc!ob03W2NqOt=d#6f)y;1yxOGAMl9Fq6h-iwjUSi00aL{DM=Gpo+F8(=EXMw0s8n*}=k1Ef!L z!JdYuK@;iZDf`|D-kJ0p1*T=HGeqnWco1eN&d~#q4<8u7T+s$7p8;6Q5<|)#1%{A#%=?iYy6&vp zPuIr4J%U5K2jJdM%Y48mNz2J0L9LBM)ZM;ZC@h~j)Bk=S%B$MEq5_U8rW{`$3Q_k$ ztzuQcSj^>dVnj+t*5`&Cl^^m_S;h*I;NZ}z@q2K`#lr*DOrVe3c+9l&CxFrg(cHP$ ztkD42umxD)%fp5E35l0X;6kbKyFrd2A9_V=>tql^jQN#}gmz9C!J}=1jf8#J5gwk05>%($tUqz;| zv9qJ);D`nO@eG`@bv9G9fL8U@^vujss|ypEfITwXdfTc4pGrYf(>LJk>YaC#y6z9y z#6eh8(_)5(f`S4SV*bAYlj9V_m%k8(z7A;~@WU1Rf-$B7)d){5ph}Y-m z=hJ}^2JBW@Tkr0L=h5 zEcXAmn>uys9bnUW%Cu=lwZBRj&e?qS0rkVS->*9jtR>xnHC{(Y$AdMS&t;`P2SyQa zijobuvc~DM39un3eC;W4Bo)+?yt+Dk^1OL|d3k!kyC5Wi*LbI-re0j=%>L`!+ta{; zVupFX9IzJ->dpa+vMn!TX3q(j5d<6>27>lhP2dC{5L_w)7Fr?r%7b)HX=>rMnwJKoA7!MmiNlQX1**?gjyo?rx;JMY`+A1_nb`MnV+^1~wM_Awot3pV;eUxxv6p70616 zs=KBgrn|V}X%L32eP77`z0WuHNhanb|*Q-Bh&tMz_jEqB=L!QKG~# zFC_H^%HGhi$?)NCPaiAf-ar<=tP7zSEY7B{CJB5FCw#ju@Cs9JQ4~uOqQRxuCh_*W z;-6yOAn3nFec)Dn|3a@cyk^)5=*7qE2$z!!E(g`Wh!WD^+RYos2>tKdve~2%a&V<5 zi1AYKLoY_jw%1f{Zf=ppT)|EUv)N3jl-{@0w9?UE7VFH-QiBW3J+EdyM3V8v#|ZsH z?pX6FNG=2SzR1j9C4y*Z+#S}A%~u(~(bLoa{=pmb?d6Bp_FFRE4`lQu92_T;az7w6)eZzmbg8f>~Pjc_#rATA)#lv$w37VL179KnDA?K4y?L(4%y## z=!+Phq^A(&ZidIJ;^N{$FY>Ey-^2Op0QQcD`1|9Qn1xzXqlP7BW@c(8CS;h1KL4H# zkty!(o*r0aOw59uoSenCQn}UpyEbiC1RwOg-hdmY<*g?Fx9#G1lIVzV!Vjl#nV#n; z1Q9{SYK2cO7@-qpdEz0MtRJg%wavqPGEa79V!E`l{Z};kI~fH9dIpA_z0diDMfZ8%rvU3=J)a!cI?Zn;rM;yEl`* zeN)lY)ZG3s!RH3fxU4L4a8SlSAYkm$-qG=CMqOR~blxcDY}Mn0(_)&5!fgxNif8G& zE`c%@hRkOb6&2AhU-GO)6tOWw;6i$!7M;%jY-uBTr{O=-GiyG^|}n;kD6inGgtB1 zL*3Nd&W}@^$d?=gUi1YkraZd;G1Fn zQKXrB#xvnhBzL^(m1s8CQWBO-JApg4{+KuTFEwq~J7L=&uRkGTQOJM!LU(p{MieCl zmVI{r_%>bf(D@y(sqt~;S4~?uz|bgSkTf*xnsg*2C1-4}-=!;(VIpN`XTu{PY}hy1 zz9kC`420m}1s0gQw&{M+l1ehBp`l@V`4Wzbl@(o5CDxd@axS8zBrqgo^X7h`(az{w z+)H-$fz31E|4~%PMJ4Y=MPU&G{J^1j5fv&#f{ zSVj9k3(c~RT@{~OPF)2A9!`5?;(POC6I^%GT^b*+m%<_=^BNmdX3IZu8FUAh*fm%! zbOXy1Q&xtsY1gg)T(UO$mB#;e&+dn+xxQn}a(L%q-d^l&kTEg3gGt$y6NiK*-J=mfrn zjD}{^8;bqL-p0|zWvN4!fYo^%k(@cQ2o2FXx8dbN4BA)!i4*Uo)nz1?)Si z@ZXb@4R`QwR0~jGh3Bkaxii0d#lXN2T$t&d3cSP~ge|)XNkZ!3*TRpNxc*e?#tX^G z$y~PUBCB3EpOe@=Nr{Sz&ZLm?Sczz8^hc8qNAa$P(#c+)tYt>9x2LSH>lY}dqr&?m zShpPU^hXl+*mOMh-=1wY{mqGh#!(2o-}$*c)E^iWQhRqZeWK?MB=IC$b=fQ1u1Q9I z@S1`^`f$Bu1C6CKr60IlPxUEW*J0xm5|kDmXD235ly!7|5600pfyFjGKi!X!Y{E9f z7K_>8tuJ*TbRi?th;6GxdF+P!a95O+)Y+_21ax(RGjs*sGT-XPm0F-djI4q;!HvW}jg3T^W71Yu ztV2UXz#~F z7dWPT+S|B%x#ZUd-S9uHSN_EugY2j1q*;+dn{I8o+zLG>Hy`*0Yinvw?>u#!7mP!5LYIyz&OebI zI&d)mJ&C?)Z53#CIT=;pUFnUdmz%G*Bn%1)(y{BqPmyN;Cl5B^P6czUH`$oDV=bmj zUmpZ}R^8SVN}mU8uq_`y65-?HOGrqJ=SZRfr%u-M=KH!>CmK(OC%FO6MmnBOvr^Yf z^+pT?WrmZEXCXpeS89b+Zi9{Ppv!}~6M6Q%zzHv^Z=npN*vSIF{jjWi^mNgE%Z;(b zJXT!0jfl|^-EWSghQ8#OPZem4o>B<9S9w3WuX^8q1(DZ$zKR;e5#2U-YUCG!?w3^D z+<3kqpnn+FVrFMI-JdQVtobc?vn&pRT+{8J2)E5BUbD$Ol#$doJzri=w7A&N$#z>e zOtpEqz{JPLgFPCok=NEH@p(8y0^6Wr^A6m!)1>xnkT&LY^xetnZ?3V}j10y1?@{HF zUm1^O2y%a2OneE_TIQ+=dHS;e0s?}33WpyE4jguWB!JaN(8+=mVhpm4e_wy4yXyQq zg;U_P6ON97;YI9^9}z3o0~YlZ^_je;wD?O;A~g#r7GAKbgB{Y5c0Iuut>?d9dR{M> zKD)9uEGd|qGlM8vsBa7q1xC`V&%e@LR>KO+q3P}Nc;%il=5DVr69*5kSL4IyE2UsQ zW-mrBq;uZivgMqN^+Hp_MYzB@ zKY8{8%3RXeX9zYnHc09>^6Vgq2utefQn;*n@m}nX?G7`-$8t5O5q7Icr!iCgs>UzYId$ulD==5zwBT`r$6g z2bl-9?X%5E00?36oHMB<*LWeJp#d-Y_N#Xo0vZ8?l2QpII;CMxuweR{+FG!y=yFM{ z8$pD+>$9J11gGRmxE$eB(eUwKOXY@6xEf|Vr52nmJB-C8Cl7%1WWL(Uhk}B#4Bi}A zC|UK|51V#b;K+@@5}x-aVJ&KrAN!`py@DUE;H^&YAE74(P>;H7 zjC`h0`rXAYE;e@8=|<0YAuoP^s@S-=uC|+1H2C-Dir-%cfh-BZ#q9xjMjAjHJ)g%n zHLP4#^Bhor^f+mgHZY*Rzd0!ccx&E@XJ;&P44lzWryrc#)7|cwtH9RQ)_8-BUPZ@~ zyF3FfLjsCc(%tQ5%mM(Y01iSSZkxx=c^4Apx^oLLza!Ibnu8+wsvUW{4-!R82%(;5 z+?=jQlx0N|G^CTXtaukBYwZ3-+~P2Ks`=IzajnlCUc|C>%+AO?Ef$ef&Bz^1g)9>v z$Q0iCa6Zg!v-%%^HO=%QXjvHr@UidlW=%;|6$ffKhYJaHb=<)iq?&K~+r92@k6TV$ z!Aql{q4gM6$EKtVmN%@v2Wzfu|HtyV#o2hXKWhHS`MBfRI~bGv7jW2~P;6S)z5L|A zbCs0f$g@GP6}VjwfVvKVAaDsoffHt50K&FftP8`Yl{&rK&AjL%)QkQ8T^78;oQ?yA zN$s8bnju&$xySV(6t|S=wx#l}x&|Cnv>bz|Qa4d{ z;#KRZ*sAA+Li^ngDM(QOc5YtH>6tz~+e}Z9YjW^4C^E?w51|=;T~accB?`x_VDzUqtWl?;gfqkI zTFc~jN|$A2TR*Umf;pIpi91q|Cj=fZr{psPzJIcA3K{?zL|AK8iRz&Qp?Y9~PO zR#j7T11n{I`O;{)(M}|bWdVw>K)?(O3j@Z83vd+x_wViPUxR8WG)D%6gKq+I>gsri z0kA4~;7g)-lK%ewAAedALqi$cr=NKMd_lnl*afIbI*bVp04TxvU4Gg7{^)SAK7!9- zhYI-x@XeX1km%91!NEcOt-&~}g_pOZZN*-C@Imv(vwuNZCObf*(o{I1qgP=q8vx%T~V)P?LtXENJh7wLg1}R$nLBg zNCUcjC(O!HclD7^*E$F!<9=8-hfU;4Pt_O?msCGf@OUaut{7Hlm9SVhwCq2}1Xcv) zU+8UxPe(gE90wsvqLJd8@;qmb}&WH1&78Wd= zoSdLazRHNBmCo3s2XS}?S~!B&t@gOF7J7bg0QG|>C~j%*+5{qk!{OR#xuBRT2>G2_E=xDm%rkc;2X3NT9AU zb5c0kkpTiv_}S*bRI`&M0h_jjw)Wz8UDdW6T_Om;fFL-9Qz1Wqa@`X^ZBW00q$&aM z90;fVAj5rK{iK}u&zgm0gykzP^;2L+|? z<%3ceWqW%Y3hSWZ13dVm6AtUIn@YVhJ32D_Yrag^KPZ~z+I`Se076I8PO7CXe|jYO zyCmK<&jdIm%<()~To~tA33HpHz9?*#igR;;K!>M!~`wFsxP&YTtk0I&^M% zLUO_*+t&SQGd!@XW;V$k{x{`WH*|O57YG`}Z!GYdnwsQ)@I;9QAf|&9_h~;0wpzO! zdX#0KTas?pd@`RN?>`uuoGjFafZ`nY$4KzNCT!=PsB-ED9u4pI^sc0s_CX zm+zp>#A#{`U^hA68ge|Cjq-y-qOfc2sjYQ#R3uC-P|-P*!oxc9rkCwhIqut4+b@SzSuuV) zCqLk#&zKaPj%@J`S+s;VCWPM@pv*`jPJdwR-v9O(|J|GbI>~WXncZ9bw+YwgKuqOz z8z|KH0f~@%RAtap5{9||cbX9#Dt+H*^PBr|bqsjejxwA~NO+$r`_r;TmV4Tkw=Hfo zzOWx+4jsgM2tKFM8&gp&DwWHxq{Q>I3rXO7kQSiom=C&cL7-&jYAdS^|98iqm+L?< zRWFUY;?CV^7SBNhpZX@oU|n)=#+m*qESwF^w&E6Lf{7|s67uH#Zd(+)3*aBL(^Y^6 zu{A7rgPP3kZ+1uuzf*~|fTI7uyZ6xh8P$^zyMKN6FJlQ=OB2*LJ^E!GCl*hWkFa(* z0WBD!A{QQ~$>g1h%C&z}_U&>S!#SmR-nO9$N|t@B_6I4OYWOv9<~)$t0g^OjySi!6 zmfmHRg24a56*G^;(XEU^^3Av7?Omth?m#UGXRsv7o#J3@s905=V!GeNeNA~FHoGY} z=w=65ef%``J4fk7$J!XFO>0+{Xn@($Pc}5dSJP1g!V+tKfB!xVRCAlj{XXSo{M;6?iqnlRV=&;cU1tgB>yI2)h@_VFU3uRD#;;qPSr@ORzG4#fZN zj_Z8Hx>Xyasiu1@3DG|)d2FnV+nW{KuKUf7AWelJO?I|xX#2&O8VLh3&JDpJkg$AA ztcx@L4pL(}V}`3g$js+}3c$s-+d7!yv)jMfCE+q{{{zNhawkf+Qs$5HJoOkBgE=FAoo`Dw=jkGTe5Eb-nM5g>Kj3R$QlH|6xi< z7gA)IuU|0FOum8_6-mNZulEl1Avrvwi+s#DH�(Jn301Bcx70(0kL~ z``Bnp{dMUlK<)qLa-cMpyDyapz?EfsEtDO4k`R%zQf^C%fIdTkYnVb5qc5-Hk_B7~ zl2u*`WyXM_(GMVrByhfQ;BUhe$HTieRw*{u~_wE-&|1#GuK@C#| z0%HQFQGXR6R-tqR6eJ7&+UL&t@4@~|D3?NvQ5AwDSxh9F2h8(sW{Vx#(eUe_d^G?S zT3%jWm44R??K(5Ng5=9gQJ0*9ztddu3_Zd;6sc=+d)+q+!gu`V9YhhlmOaecpC7w6 z&!F`l6e$=df9|jBcq$={nTl+O1Hgw+^>PXq@9`8JCKa^;gG-i77*}n%V^hZJ=6EHN zK<-p9Km6BJ5+`!~`5+tH~|ofO%pM2|tYJ3~xQZ^CoG^g>Teh3hQl*Xn2}h$9CA z+Yaf9IkI4d#MtP3b5lc`dzepC z8HLUnQ@zv0YI{o!?4Y;@MbtrmE=Bf=A0G+@wzfH{%<&(326m+rkAE;Q*kKL;DPiYwsKt$$+Cx zd%V6$I=xChU>bA*48jpVoo$~+xf09tj9yLVWYEdRQU|$1!0h~38!j_l38v;}Tsdvt z-x%-yjD8HzA0L0vm$eM4H?QRXp@u4SHMhe)g0bA=wFJUc_v#5|UTjJNC5Tqf4kQ&< z9W<%s^B!xxv*8d>fF?XVc(&gkzZ(VlRm}yK|G!Fl+Va8s+xHGDdY2Bk1X;1E7dZhK zq*CL#F8e4^`OU*aUN`PKqy#jf%I%IM87rkSM2~O$tB=>L@~PgPxp*s1u#f#&>cB9v zGNNI3TdyOoQuEuli@jOJcsn;H4aw5^5o|h_Nw<8(=0D_bdc&eax=WQ>4)4;6ZsfSg zIl%f|`1`|Hzkd!54E=D&hM%#Cm|F8|r+sw*bq*ey9ThR5+hwWqic(VY72TdbM!1Om zRlAolqd=0!y&($^yF?wbudi>o<%**~%Ljw6&h9Kz-*G-cg#Vza$G}bC*jpgZs0(<^ z0_qK4P0WE63X#{94+Ta$69aJ)r2R}SKGsMffPq=I`RpwkXfG+Y^_$`G`RH@e z(3B0<_^(w?mMD;s^E0NOew<|xFs`MY?HT@Y$|$& zxVnzdPTwIAVzZXS|9xyR52?Q~xF}>rT+Q&MJj#g5FSHUt6?o2dcD__jTr20F!xK!p z;}0yUW&WbQllzAld{6Azlm>fgcr|5J4${;Jcdz2(yUpgAaz>|>eiTSM%r)wMIcDxR zd=o#*gj0Lh>*IuhE!(@o7nGBk(W#dh#96_q@@kp(Km+hB3<@q zd_5zI^DSmVRqlD*P|7m|Nns&Bos=-npV0pi%v^!86HI<~xEe`SV)l(*zHD!oifrR; zc~w>H+0Apz_C>?l9vfl8)=~fq5%Q4-Y1ilAv`MFfX$;VpVhZnuas+^)M#jL{-uYp} zKu;e81;cMFXKhFMc5Ol54ek__%om_A94}U5v~E3= zz#WcGG@p2Z#8XA(qf9>;|<3tS9}&r$&cAFv%( zN<(+DNCem157=Hc|D^#idf?&iVsGjlq@NWb=%9a-H5UME*?1WxCDZL+->jA!<9>c! zItL{BYrv9&UT2TnZu-ElZ!fi)?CBr>UFCu#q~pGq52*Ck#kWutZZR{*?<8)gf&j|Y z^l0Q9-?2hf?R}wIw0BWvHAn*`Crl4dD!-C_oYbXT|FDQ&X-rSNhd=bP5k*B6SHpZ7 zwal7Pz#ObjrqvI(3Fc(U?~ge@KW{v4K5+dL#^?$-%{u_GL!+VuA1$Z(jHiEGQ2y7( zNgfVj9R~d&fBzRYAowGM^!OE+0}>q$0_r8g448e6;YAzDf|j(tW?%9#8X` zuUwMXe^Jlz{i_@GD%%Y)sYoKf8H;VOuLYkPtO1baFZ6Xc5aCu3kEeUp@nGNVeDn(t zesb>a{NU&LHf!yN%S{QOHQH4UDLO6 zZqyE+z<9kiDUKH;u3Q6DL4A#^>$}7B@v5vY z;W*fnE)x%PNHJh9Ubv%Yn?4=sYG~-XZR2OS?=uIZ6L+Jrw~Bn(S|F{*)(n#{-NAe3uNQF;CE>k@!Cvv_(A8bh01IXGyZtyZw3@F`TcPq;k?a-XeA3c*<*hnk#5(nWP)kXs~!1JM4*ShU$maB~}T}{4?gG#gX z+d*YVMotb5=$w~wKLO^+`1*K74m9IRqAPU0t~CBXmGLa%BfU#$)bOc#sl3qm71T>o zpSa(FvL4@05|x<^SxZ|{sO1^1ct&iULZSHkwssLYhx zFVS$0pJ3&B6dCIXFqR$?JSCw}nKue}8WY?B=a!0UkRXIWe#vN1Y&u zX09gYfZ%f~cUdtR|EfYoYZMXM8arol0PN`T2te zv&$B3Y5+2&BW04*=a|yx@A?4$LP0&)+w*=>8{5aLxy(KKy=hJ$S1G=c=~D4i%M8GB z$B+ns6_q>De3 zYp7@~W)`Ep>WSc2M6HD5yc(7ACsjXOf!2O7H}HzD#^}SVU%l0b5h8Wpn3YAxe>9Qr zF77$G*3WQC@zOOu(!)wFxtj@qFacCFOuWmsaN@z}2G@rRP}73q_t1rx210p0!rCO2v72t_-JJ!t$Zyvb$Y4ZWv^8B;pw&Hh2xQkKagjtzTS08EA{D3 zZVRjF%fwl{Kn&Ej=i<&pQcx+mZw-1csZIX+^=qj7=F?BB4G?xWK@**SN^X*G1W1E+ z%S2G4^64HiO&+Up3irk5wFi^f5L}mEKaO>zWH}R3)^~KUVs+^k7#@hB777OLqtIpZ zYd(fDcvRhxs^rFS{=`mV5VU=|d+D!&fRGof@4uKvl0QF*!<$0~sz?I^0*UIUBaY}^ zplRt%;WRRvF2Y88{wVLB&_5{ook(nRzreEs$eDl=$rQu#c{wVVTlqUAAat#=#(G4^ z{aR7b(CyRAXQ{3RtPO2mxGpo%tHj(p7D!}B+Hth88uEdcT2x7(zZunae?y$rhO2XB zKZHc`HtQ_K@W(8V27cJUAHQ74er=i_z+{1yBo0rmeKNTmat00Vs;HHSlV0(n(K^Phj9~ z(QfS4dp>arHj}AY_+}xYyK+05COYD$i%vRQ(9+* zA2OnO5BK3pL%G`6yA$PAn4hwqii8>q8euVuzi6jkP0Ry(|N0{LO{jz1PmXh8N`;}{ zyl02nL7QWHTkTxvP5Mgp&KYGLOy93qvJlS|=$O)?H5cv~%lLwskdZO`yC2RUD^4-PXu*%0)i29lFiEL&{a?}7p8YE-YSRcD5s{Mnfp z2ERph1ri5LAE9_H8Z@b|ZNG?_k6e1J;F!VE0Cr z4+x>SpGSYr?(2Qox6F>{X|JDLHdd=&^liX&LMS8;6;2GlP9~)7-m9s^$LK?_e`mRU zPW+uAzu=D*N^(tx4R<1WaSuUfkdQ<6?+V4p6V0#M`w%WrVMAn!TnRP=1XWPVQAitis{K2T(c&ODdC5(6xOuI z=85F|XQ3W@0_RpwgNIfI5zyJ!MK@AcO%v1m2EXFrQ^$sO^}I)(`(tt) zc1NMS5+Vl4G=DG^Nf_}H0SL!uCKWw+Ymrr}ytLZ>F`H8pd`lA`RB?j*jo4mvd27KE zYOt#1R^p|^p^a?eK#l(?DL_v$HjqWSnJTQP!tfWN7p6#Ge-jlV_YwqN zS>3Aq9$I7(_263mCR}{fwqpB7O*tP1l5g-Y9{W9S^^RaO--32Y?rSzwN98UvQfRG_e$O2|Gz2TW=xeG&*Ga+(&=Q5}5bZkZQr~7{VL6@wwU3zpSxWEkQ zn<_-2n#KNQr$GxAf;`He^f!Orz&-=yh|+68x%bkM6Bwt2#@V4ra^t9GCE1+Ylibf=pm;3C7CdFmf&?-IQ5|g$4m7bO{ zb9aZZcEHgW=xU=uM5CQ^V_ zSYF0>wq+?&U3Jgd>WLILp8bPg%0}F??@D8siO_F{?T0{bAZSe}a{pE3zLBCi;k;K7 zOIG$B+@d~qvXDe?J{DNLC~C9>$HI$}4k3JW#O~21@(D+)VlN|kBSUGgJ|%+>4o5aD z)afBr`m3!8uPMw}jL}v_UyVw0M1-1P&+O$mu6}ysDb4?kc}X5RYDbMAjWgR2jrO7# zwY?P`1d!m+JRgBHohl@SE2Bt@&<+kqeTROmQhd!n)sp#~Xg=c!PWA?gG zy|a~9Z@Pm>h~SArl+z{g9&cZi%t;=eHbmQqriSlSmcK6uXSYFOdRH{xiZ^pWv-58b zrs|Dw@~P;J>gyXe?u7_ynz+B&V@Ajkw1C+FxW#YZiJH)K^TC0n#y~+) zQK-jBOAMv=L)ZYNN2JFwMFdmEmPdX;j{C3D!UXl>6z&ePqL`eEN~mo5>cyJh=Pe%| zlCfhAWJI`ZFB{tZ8fm5X1mah3nQ!-n03w4C6+w>{b0Y97z?nAS;Ox;AD=W9pW- zitaD-P*jXJ=85ei`zmSrI`k(pnVfK+o->tg8eKTD6#m>lJ!M2;e>`WhZ6k!ZtfWT( z2?<6jHNRTG%Su4{I^BGW{^&e&#RX7Gp@vCuq=ZuZ697cbfL?q6UlT_Epg87HK=3RG z0a;0mKP^ADd-4H&572I$9j$(qIf?6RSLF3?WR%*I=c?)fcqwIzfv97sIyNd5oW|+78 z5kBsS4r2f82=!HeT@=r^0}JhH^FqmYSgkxaxE)3<(Lv6?5b7q1liAvi`EYebXsmL2 z)C16(R80`J&|e|3W*texDcvH9fo$843fZpzB9M1}b#X)BnX6v%DT;YuNWWT%F&Z*8 z6U$OBPwQwX$&l5TkF%h#SLu$Q#8h1*cRCE99vJ8bt#H7CWO$y-B4Uya0;WmF(vQc- zj^}>05$ERTH@{`fh@g~>N(14WQSBuH&l}{7$b2dk4!Us3&u58=yTiR3q> zgjOb8JdfXodG%~SOH&d8zvv{hUShd8J6?XCOxfAug5e)l;t8*y0+#!?5j~Xmp52}i ztLI03{&|Y52nRWVhSSGSqUzwMDWShY$_rS?ZXaHez4S&QB134sx9%tU?w_xcY|(^A z{kbydFh=P#8Bf!sffVJ~`v^rc7exw9C0SVN)|b<)#6PX$hZnnEU`O5CDrbB#k7bC= z_&dcdf5F7x?)WE9^$B{eM%XonW9cep23OP~V&bSw0Zr4~jTyu_adCl7RJx zCiy1oUbr!Rzr&&a9HLn&SZU6JBt#itbayFY$BrHQyLb7PpzA9;|M9^%-#wJkO<%wG z_x+8-JH-&fT+UOTHUP@C>%t4w?q#+n;fQGCMG_%w*?zS2^er_UiNOWfw|CXb_~E7k zA*N$VC266lWCWu5{?x2LS;S<8s?c2eao`=O&Qalt6bUO7YOA^TRlnka@*nW;Z;U&9 zd^_l{Isi<*gaLIkL*6|{Ue>11UrJVYW8^4mgUh+ZSDutJM^ufEk{>@^7n=Q3yB)^V zw_HtLk4~Or;l-j#-l}>|x3sg-@}u&zToDk^I*@6$VaRz?r@bWnbQ=J~6g09pwWec$ zmCAjIaw~W9VR8LE9IfB}D`}^1np{-&Pu9!C5m+nYBIQM$ZBE#tY@?;rs>K&4q97g@ zCcjn7$mNE4@Ns zN1)_TRH&-dT@hY=@3T25>nk;8=z04X3@AAmY~|sR8D9E-DN9l=GN($lR0^!Ee;ad) ztrpw88Fyn-Xw?<6<>g2Snog1XPU*K%FRaQDV>xy{;hg*smASDTN{2#aL9rnlo9gGQ zY`ihob}33IV7Wr5$vg})9YB?c2-U~KW_xk`RnG3@qvnielCiG)9z9fh4!UewjkX({ zQAm)%H4b>OAQcU6$`rN5S!7#?d=klxGDmpgs}%ViqtDEGLRWdm5g;i6gguR7;QTV% zfPf5>9cfKpQiY0ZpvSL9aK4^q%ioLa_Afy^rLO$PF;b2`?i|BmF`Z94*-7N9o;xvz+Ah#W^>;fE_; zDF$3n&xZTB@##CNa};vZHf|bAxAKf-%)I^JjmCt`fGs*@TX9G1(myE@wwxdli;kz@ zgELlfrP0DXQmNX!P7ab6hWKA<;UJ@{7(CC%4&Sj}+gpz;7_%%y!=T#Q+9oh2atkDS zZa^#pWaFDLd1w|cfYujM+-r3i|AIBUa}?HeT~Bh()_+PT=7CvwyGuBs{)XxsJA9r& ztH;xy&H)!gMKixUA|bN$S}bTc2nEO?BQ&eO7$?z?|9q!R_p)XpIt!0F^hNvQ(y7VU z&e;dDG6nanA>H>T?SX$-5HMJH*rXCxfS_LN2p5G0WWYe1XC8rfAADhc&hA2-M$l$r zI-^xHX+ZMg=+9HB{>q8y!Fmno*+^^G-s|vOWOW40U(xE}$R!myxQ*g(?8^Q{Pd1%U zrD9&lhGq>Ni&zgDAm$lfkSV{&cP<@QS7(QR^HoW?)cg03j#w4i6FOGbNYId;1l@65 z?HDTJFtP_^121dIa;83_xw_!9w=&bQj2!(u{nh86mX`=LhkDQ$l+zViezH$u40b?P zd>`Znf3Z>zkJZdQZ6V#@Rr_U80b&gOi1N{Q3+);7cYpZTG)NBvWH zF4cMnpA-fJM%?v9AR}3Q6!dvFm{ucW)CUuaOcY4|AB#tasWW3nJJ7(|(dMhXg{Rte zlq7>93(U(tCJjY3IMeW4Pruy$h0wzMU_z7eyPl}qaDM6%cGhI+%&nE%0%xdGbPryG zK;pgpPlxSs9@ex5w1y=m9Ydzi;k>k8FLTrhR8bFHaFg;hH8#<5vYR`pk$SXap0aS+ zsOPoQZpL06zl}tK|8>y6@`Mt!CJ?AoMJO&o69>9coGe$F3eOFeb9ngTj;|-?T9JJm zazd_2qK#&5Ztb1@VB!}fCQm;wn|TuR#!w7}=SO@OaC^%!1rzycq5|~?&Pv`#z6bx~(v7H#a z%OXJg4jrZNdAuS7R5$>;T>70bzkdA!I#nztHnwfR|A8S822=MtQ#>urTdywbWqf;$ z=)U%}*P0cBf8x8?l=gH|*9QEQq}Fw~2m`R4@#a&097ti~!Hd!|wxDawG+LN_qB<2g zp6B~M`*qW<=}UJ{x!E?mT5}n0JKQ^9CNy~m;}%#0u@!UcAFuJB&L@3G#;Nj_sw`B5 zO;MZPBKd6S0>i3)b0B^$-m%HP5Yk2AqjN_nEeS#1^JW{J5zcPb(b!&Wsr$JToftevQ5fh_!IW=X5n&oFS5<|DjMIIoSv5pylV(r76S^yti7u^+|{;mnA zxo<6d5QYBzr3LC6_uij5%uKNx6~Dd>IQd~Iy%ig*i5{&k`rt+dB&bGU9%R|uBTM3M zAPQ~@2nL{=um$pBZfh%)EdM1XCV^?BAIsmpWD8 zCBX9|ZXLq)h{&C-w!5V!l+4K=6?;6F%bazW6=%tltt}*^C7y&258Lc0R}p89>DRFK zScze>M%wfC^z36zra;Jfz8=}*qT-;d*?_e@QH6p-(R?HF1grYYEB5D2TF<5>%L=a( zZS~}rkXJ85{rLB{kxosXH4f(6TgkWDo!+djkV4pCHMEtP?;pLE0rT?nZ;vl`C|_*D z#==k3-R4ZJ7Tb-+$N?P#vrE8w!Z>HO8?cLMnQylH`@y#~(MHvwxP2 zMm07`92z!sZsbJZRdfPeW5FjLI_@6apaIK60GU(c!h{7b8D$~l{~i#>aQ2){S~ggm45(MiG22Tq8h zPeV1goU_@0O1!-$i=ZUftWH0&?D4k5YNN%~*`_Rmm>vH8)W3+@alAEyCwEwQHmYma zv__p*89;%%3fk$=K{ODxtF%jfcI=-jIv0&FXCevdXsdbK0_gJvGujR~`ra@cE-xuD z1yCsDewiJ{d%DFdX+dXZN-KJq*}LjYp)(klmyS;l7fPT@{&%L7@TBdABDJ8}=|B@q%t!+5 zF?2+yxG)1ctOQ<fI6q$NewwT7Z17?CN8Xm} z5Mv%?I6ohVb|arP0c53^3i&pbA45RC`ODu!<)w@2jh;j!I6qBRsxw^}LHQ!C#x0Q` zaT|1Fs8~Xrmu1dk-?d62YLtq;gLnj{nW%U2cp9Iy1NGHK5hhH!79Vb%VWGYVMu?!j zaAvgvThRIbaNqQYh2eSFu5tDmRYbWZBDCpvhJ}_IAqdy*?78He8#AYQ*tX(31+ul- zd|1}c0E>~k(;ch4(|hTOR%>`!5vOm;w@094GT8&!x@Br7#awXl>FFb2juAS%0|rdNG;gi#Mz=O}!g&h}7>Ohqf6-!i z{TiosK^_d<4Gs-uD`g64$SQ-GPjcw^*q$ShG&dwve$KiWdpo)*YBOpwjrxJ=T@xyX z0-}*8e{g6gn#jT=`{1(~UHCgHB;cqxpb`N(L?T;R%#$S`!o)W7rq%?*X zD=-}FE&o{G`Q~J1O4;EVyq95gpGON#f}~-xcRV&n3ATiDYSFo0S<8f2>d`j#7~k4A z7+H@qP+h3VnN?GTek5_~t9}R(!DfP0r~F9j0;pPW_M*MZ+~57#8P`Yd(1r-!-)5nF zBqjf(y#@M%CSXzm3_WH*6MNCb+DVkuP$VJKr&B(|ZH6+du3e%d6p6<+p?@3wJ)3kl z0Y7ZZZc(@)^nRyu3=pp?hc`l|Hlqyc4fo@_%zpbU0}VcMZ{Xq+K94G`*>oRhKqURj ztQe&U-#?_BaQv0pDk~gC5B+bBhzj}k(VNF+Ro=|(NE%-%H_l;{udx3H z=p;UGQwgUjrbnOuDpjil?k36o0}g+$*VnVDz?Z(9d}6NMU!Nlzh{Aq*V$W=rToMA- z91&zrPuZA#JR!oE1 zWerj6XvKWdWZiC?3rPInPTEJ_e(*vnky4%-?OnZA$(lvhS2Poy4AeVI-l7WXCF6o` zY;8>ggAV5#A(YVRObYK?1NnkfFZBiSzG!;b&sDz&Uy7<0&sW21TvJhqPFEQYzes!O zEyk@WWm?Pvt@X=pK!YyzgQaD-Ww`!pe;TA6l z`04>NqDH`^zXkW{!hs{0(&vr%#1}~cR=kGR<(>-iAR+}sI$4qU&I674X1dce>0RP5|A zC++vqVCaC{PFM7`A#&K=r(k{}F~ew**md?5J>oVOnN-RDMB_yUBEOlB!W#d2hnuz% z4W>4H3~jum{v9?GbJ5++3ae4^z99}!s~Y+m!y-kkSp24fPR(${LY{AdlBs9IHa0%q ze?+t4oP_@hOB52;e5m5TqzfudO(3oVnEB5s3pplzU^%t8ZL&4B?21@QJY2l*J0l<< zN%loGju2+tI6kT7+1H*K!&`xT8g{U&c*16;3$AitXFLxdh`x6%=Rrrr4iJ@?!c6d; zt6M}f0Ka&l&*BNM$(9}Tr2rws0x#REml&|G@xq|Bw4)MrQ!s5z=sprUaFQ#H1x6Cy zzyB5Ip!hf=W*mLLP%~}&8L_a>mp2h{^>v@=(?ok)*QP%`SjzfcuKV%m3I$w zN6}@#6d{oNf-VreXckcFfytzJ;Qj3t1=Gcq$TUfHqaP>v=WZwb;4s^79og>RzY;+v zmk1S(xk$W`iT|*9^Y2AaHVmH+C6uS5GWL{84Gx)WPRwxZmek}ajC!jg3yUn*1p&9pU$PP*RvfZwAb za5*k64`v~u2m|cToInkKH-h$$EBZY@H=sR+f%RYf?9W%-r;==HKAx1aVFT3EYDE<| zkt)R!dN=2BSEUjta=8^BF}Zep2CO)3N3M>{S9tvV;ppLQJTn^)wPfPL=Ghy6WF;Vz z&ldZDR16Rc7{tLAg~S?v2VDwL7uSPn{XI&Lp;6W@D<0pS!ZfCzJQ)%JIcKqVgz6^q zXoghSV1lI0uKFB=_0MTjbQ zSP=EW=n1qE0Q$EArA$STc1r56O`atePALDdv-i&aA?tQu3)L^m5VTRW(%O{S`-}X) z1`ar49dEI!wWGjL7d%~8r|H@DS{M`WUTvYIFPKU|$hiR7X?vySGDWzFJy1To(yOs{YK#)cx zq@=q+Bqfy&Q953_&a>y!nKJ{!7oB03|2}cwzw5efIABr^Q#5`Lv2jM(Oysk-A^38F zgJ~x34Le<05YN1E`S#!V9{fI*Ar_qfI#F0VHMlLQoY+zbu$P?6jxcu)waRl57k-z&}Ps?&L=3`Y}F zd&-phs6(vz$_9FN3tnKVm1EbcJ(PlnUsIC+u%)tas<>zO+;c7TYHrR)>;e&_<_2|? z?YdKqHhO-wP-*H*#xmR=kH#X(X%KS#1jexSc0AxUYhyqa!zrz9X~yj#<&`EJ+SK?Ar< zHcVJ{S5#3S=6uz6(K5u-qcw#``(h1hTL@vmmTuS5OIIP1 zUgr)=mgY04jg#MS45wlGbQ6&ub{z@w8t*|=%}Q|ICrDf`JWa%2zp-}bj3wXd)e{f4 z<*CrG1rboND*OBS*(sT=WwPt*+4SMM537C;Q3F0!PWtkCI3@UP7`40;Gr;s zy8oLcAfW)i$;M&1n+R-ud^v8hS4SD&4o%ZF488&~4hr3w>F{M28T_sk6I2j$1q41$6k%US-YKBzE6DL=r0dLcJD(AMuIOt<4XS zCRu?4Mijyy6D${+pYcvcZt5qfLk2wzhHf`9lyW9hx&`cIF;f}K=Wbr;Ka!XK`Yc`K zPonqJwndkUF_KaLAGZ}O@#}*GFjvUPaF@rk%Q)r4Z7!r^GmaY%(M|_|=pVkTCE^F7 z3@3qSQN0G~lWMQ>3@4pWDesa&CbbJc%-rp)uB z#9}YB#s49}0fP}Fsbel%;?7vi(YMc8Ajcv|DqbI%CO(*J^mJ|w@dsbJdj7$jwybx{}??A z3T8)r0cD>5;-y}E#f)8(R9?=@Ct7xdtR8fOFvhc%l>$l<6uh&$8H0}xO^fJ1HG zyE%p9igNgn!!T~pJuV1Jr76+KuNB@;sonuuRxUYwAwe9OHr%g5-;8$;3MX<2apR-m zJK&EWuVrLpMkXhB0i9Db^KItl$}-Vexo`0pgcS)M&t#&E@)R9Px9;-SC$5njs}827 z-wnVSNsKYC}t?e{DBe886QoGXED0$ntyPv$_Vg6Xv0NU8o8x0 z-wxIDyF?Hb-w|i1TyCtkQum@nF{8MkGDuD>zcq^qwOR#y)y-wTF{wR0R#wW+D`CmVi%^$1-5x<`L%V05*I|q+{riz`y)6~fhO}aJ4Un7Za zUO9C?++BGC&bJ}p)XFUQP{<7^GJ-x3mEMGc)bT)rKX=)68A@~ae{@QRPc*UtjNlk% zCW~RPdjQ{GJUsZoOB@&;J_mLXU?`IN2~Ni=n!Cvx7q=f?J&PXycm~b^sd;byt~76G zhC&((Z#vWcTbyqZx_l1zn* zAa)bEhRxz0s^Uk=aYA<$#INt@Sh_po%1{n`p_7%c_N|{%EZ?;g+$0`_;5$iDlJ)h; z1}Hpk_=qh56-CM~RI!Vs*mFODyJl?cOc>h17<<2y&{SivFAnRtF3f&S82j?tXlGvK zPlt5xLYf}SZQ!Mg4BrxrTo5rrm$PAHf}{G^Mu3DsH}9g-*u3YQ;O9h4)BDpqw=*mW zIr&#|cS#cra-;oOzcQx2%2pEFS5~WLc)FWY2Pn|!l#ob!i{mFVB2k)ExqLH=HLtar zlA!N<`8n@`D(PQ1F)|WPULL?mL5-5Tp zQ8;v@D7ce&(`^1D!(EzD_~pi{mL~)sfuBOa?gu#>Ki?jGqi*!1`j%wAW<}9Yk6m-R z*XQqhs0UPaE#CV9+v}Nm{N7gtM3a5{q8o`AbB`;}$sOJ?+4Eq$P@X7+98!(FxoJ@( z--=jYQ0ICc{umPWcw;hz9RT))Ib4mQqn9hLIuF>)ot1@ z@Hp3_HC_&yL#^)^V%*yDm!R=L)&9Bz6&-(hU4dfO$`@}{84hxPBW*McM~b#`1HyQF zxf6m0kL)x5S00rhCgy7=m8`%790Fw^&i5l%^bM#Z0C^0Yg-Kg6-2GPMNZCEUsNkt7 zFSH>o9g&Dhr}h~yA}Zur6nUxzq32A5eBqU+=A6CmMfB z>(+uyOyjMw@MBkQcS+=Rj747&4RTX1fFov~I-@0G_<=cUbnD(oZ>w0<%|q1Y_qmDoyz8pPSN-(bZG&NQj)Umde2Q46?Qgu2~L zlv_DHavEQ$l!c;W^?!AbAG89f&32lB|G{GKh-UF(ldCvg$O(hKsqePO>ek@l+e)A9 zb&anU^075RveL{Y=ejTSA7WV1u@lN%uqw zn1twYY^L(8|7s)(5aKVHF_JS5r|=*e9TKKj%M*Q~fnZstTqy*3f)KtA6+DyZ#| zfBl+oH*c-v_H-Ph*4LZXw)B%Mi=KRnsW>J-`9Qdh1YBG>wCv66$UgexaYMz(?pbxf{SPHY zJ>L0g(OhuDw6wGYj+~OOaSNicpcWAHpR(=Hf85t0k&Mb;aQgqvaDQlR5MblJpobvJ zZe3MgKX61L9R7MXbNMUM0!!hdZRE*^`H04uAf-SjOXK81wg7b%#$t?L*W9J(khY)N zf;)bUW#dta8PzKXe#?cmMS_}za4k{xc%qZT`v>Ufrehj9o_9%~KZRso0Sk-qUGtv_ zQq1{(#Y@f1*`VcS;Wl+dSH0jQ zIN^hvPEf88HuN#8F6-fCqfvKaqxZ>b`y|E}(hY1#K!Tq5;fz=ARA0Hf znaIZ%jm#r@!=Tmk_!-F$QJ%zLEt%WLV?M)(--%*_N7O;v*2|KWeqV5Q?$;i>gnPxN-jA_8wWy z?}%-{=B>k9TG<;Ix(gF)+bhC_a|$lbs>8}IG2ybl`?LKi7Fj7 zPmPFc>i$Gt7N}8ZWwUzB%R)HbR!J3p8Dy^_SW1yWt&v~;^TujJPCe?IX&oHx5T>f} z+jSH1Ja8)9Txq6~Mq%e79N+!QQYmr5H$VF;Nt))gjrhYoxCDvq9!AWzk4AW{5>1`z zZEniKV72p365u|#Tgf}GsYl8-k@br&m&)x(&ZZ>gVt)aCBLe-b_X4(eB1F~kE6Bo~yZ1-f}&eBHDWR|T44!F~yN6B5^MBcU8 z`QpBMYN2@7A02t;KqZ!k`>E#ia7pf8M>CA(@v@LyTbdap20%7M?xNMxH3!*9s{Olp zrYiV!6mU2sCK`OHsuW9-5j^0swr8%>GeyULD+-O@%P~&G#QJko&~c!VH4n@-RVEp#N=r^dDednj^2DD5v7!^N z07B-t+C7XHnWLeV0_500!qX3>f2s6sWwEya{7{~fvIEyT06Cx~U}k*&&BRi8&`D?UWPBx9@l zzP8L!m&K=%2wEieahmuQ>YDmMgFR6Z%gOwa!70=HkSQqEhc{lbgZ+&pe8R$ev6QP} zHGu<#cKt(BSFZUPq-oBaC~TD`s}&_IuM1VNl`L9Xrgubae~$Tf;SIf8pLq+Js;<+V z2?ywEe<^x6@`JO29(W;?7UK*#8xoO1FNcM9x*$- zD|i)g%+jf|Q5Q|l2#5sPXI{L|%iIfr3P?s4SzK^XH`!Qt-N$*Z{)C(Kxp~+r&GX%k zA2AqP6tBW$s(rsBVgsBHCs0QJ!`#gzeEB)Pf=l~k@g!pw_E}!Mcn=<7BWHSGzFToq z{3%GvWgrD0KXwidU|$Augh(j^55T=5z-6CtaR9jM|0Ee)fj#nP{3ASX1e&;RD`Kz9 z!jD3#kIP9)M*_t;eDhK8QGgBRW9w1+{f(tVP9m=}H|^+%@HwhOR16}W!+Mt0lI5OC zPA!#OM%2AmuA2E=Mp{Iod94N)Gf|CO-*Wjr0qR}HhkcH2Oo@&a8A$7pUO9P!ZWDeL zaS?`90e)67+mwy~W86SN8%_CtNpWxn|=!!{-uXyZ&PdPM7pXTrqkkvR`L$2`KPS*b6Xm%hVn+BawL} zy6}ogw>+7{lTs(TBf-{hYikSFyCDE)*?f)psSiU5Dz3@t>U(T5StKk3HO!C$PGrbLL$9(DwH*9V}bDvv#Tp5vo)WA9C><(Cgr9j z>Zq`13Pt)nqs-M}nW-P@Hho$0lC0U-?)12Qsp0ecDg5V>cY+dM9fWD}8WO;}22xLO zZ!aqJwxg1Ah-4V#KLRrw=`2Ef zQyNxYng&;?l?ErQ{sk0P{^`H+o6c*Mb5PEqZTtfS?e}Lt?cVaN8h`LEst@+(_fI`i z1N28;>G^RX=qz)MxvX_{It|yl{ubuo;Ba!?_iHxXFkx zHvDZ2|JvrSE|f_wk-ji>DP=5tA&PkNq)Fn~fM48(JW)X+BZg9jPi-hx1wc5~rv z&ulG~l}&#|zWBmq!Qc2{P^Py^c7y&mWnU{?ZQ4}QQXZvBb zueaLxEwIAcbNU()g#z*g9-p`+C{Ay=?;u z)pOe2>kZV_asoqc3)KF>)1+!P@sB2y4WII;Xk|TJ2J648Osp=z=pK9<|9-w6(AXrB zWe2*r3o>U>j~*o-AAFFcVtBbRl28ariRpgP4z;hMs|}5(k*>P%rGjch;IiIMKeLbK1uybGGVi(XA6~`i+Yq2eB66xN>~6oS%Vq-_T1ka0Hmj6 zyU{3*eWBZ-9#}ZEhH=D{rq-$z6>}Uhl@(8qG<6fgv?47lShPSXVl3ZmFP_c z#ps;>9n3|98nU>oy-ll-aq5TMUa7MPekD2T+-J)Zr|6|;gfXsmRuTxsGRn%5qOGXZ z6*Bzz>ChD}q>tll%-xEIAkBQ18GmxP7H7YUiBDgCC>mq_qDzl%N_zRQW;bQw6?2LS znwckw=k8i8yBJCM4dUxM)e770c7N_+^IUUXcVs2mm$gKbt8*xgU;bI7CE^0hGMirY zk6sIWOEHD;>$FGGEVR)Z4DMy^4QO72AfD+_F$cLGsf z`t$|+dokRrU*?OPjkftd=DLy3q7g55vl{Hx`MHg0I#U%K%40t&_^<@Ki`Flwcp(Q% z>FWOk%f+K!h_bw_Rm!2*8O}fQ(*leWaJ$N+jPZQzu@f2+84_mw_qYTg8Wd^3E$)=Z zW`Pz!AE1`;ll@jh_n&J8T}rV1*5&qB&?cEp6evk|DCas4s@0+^iXqq0rXWK)V|r)0 zlmmi$AA(gN82mr)as@Y?h-7A`MU%b|A=mpKoB18DjsuNK>&>5!38|?Hn#6Fd28et2 zt(5cLND02@6FHzBDH1Nv##5{nJc_dr)E0P9Qr-QvlmL~F0z6m5r9O0{DPopT)tdRI6e^KSU_t)x-_O&V5Z#Ry;g39+`rY{OLTmV= z8yr`-k$9i^6LJ(Fn!~uY+RBwa&5bcoAr8B8XI6AdDhQaCBTC6xRB{f1`jxqi+7pNH z;|^*f5yo705k$b9WJp>bFQ)s=S*jLNT7)Oc4${(2j|`J6@R7vvC{W(OIz7c@lE&D< z91!K*mI|kV0hIjzG#%8`aKZ2eTM$?601jrwIh*qxH>Ru34K@~e`bd#r&UuBygsvlb zKqZ5dE#WU$1EJP;OodcBd)nz!nKCk^fc1e8yk;yzUcN_uKVZ z6-RJ-^t6_(%FE9uAJH?go{xrFLjYyF&ifrnNlLb-s`bV2DWn=zxlxn@3JR#^iS9I z?kfBIa3Ne%lYvPINj{bYRQ#Ea_B0Pi2F(2;HuLj`0OG9$CEh?DCYasRNWlb|iPeJ? zheW)!F4gQn%4{#TMu|!xrGa1zysouR^4hw5i7sj{_?^Q zC(5DQFTNRWF?m@QR`+(C3J<}ek)ma@LfGdh(`46s|8FiE=wJe;pfqrknqpTYAFP_j zjO`5CV1|USzL8rELk|qZ)x!O5>%ehio?IAm+6+;cx?f*uNGw4ovr==4^?u-`z77z4 zoNnL;HJ2^RJ(4r()SKza76H+0kzrvf@Wcy*Rp!1D-r4G8-$$Wz^uc z-y4DlQo?Q{w&&*Pe7Xwlfs&Z#y9Win`!Bej8RD5Ke*RicgzVMQ0h{#(gGmi8g+p@MIR!*W+C1W#)37akNk~7?*b9vl9|Y3rMS)u=LK8TOWcCga3 zLTzE`f|kGOUXjC04UX2d@+@Ihm9JQWj?KxFBUo!)g89U&OHpP71wo}}voEsQ`}kS~ z1Fwd{Xu-wazK(h(*_ ze19bseqK;KEu$A{<|kU!pLWwOYkCp%5MW(?=Qb)Qk51>rtlXHyPWfXb_QQ43mF_KP z4AWSq1F&T!J76iYFQpMvs?27qTR1MK+)o~tS^cJiDKJ^?E=zmF_W}U!(!C3ro1TL4 zg9f!4N)LHn#KSV22Vn)VKEWj%R;oI>s=|U7c-FRRi4OQsC7gq@4zpM0>V}iIzITX- zN_*;e_~@pR`5Q#zS?{Ts5(v?&-!UtfFgFjl)kvxrcYMp;w8D$~?v#M8Eq-~(S-Esg zM~OFnEMAz|funT@EsCh1B__~KNW^87kV&(c{Spqe@mvF>Hk-E}#p>OBapmPnN(7S& zT-#%uF8hdAVC%U08e+#xC`$6$AfFqt-V}{5Yn3izmCl))J*kK@UW1DLy%)W#3^aNM z(%vVsR6hri4ipv0V;?yCpTX!vQNsgYM%l<=VoLmt7B^G)ckiEm?oEIl;n1_{&I}08 zO_K}cs9q^(vvYb>v4=fZFEC0HQ^y)<%Dg-CXV=QnU=%_QN6j-@bXa5ez;1h9oQ|{a z%}-exQNhFbv6}4XtVll8mu|y|C(!7eL$EAsyxj_50AlxiBFSGkVJaWTwFZTWP!~J!jRv-r6cZ^1|Lo7+Ad~eXKXB za(=aKRh&)e&Vd$Aae9M6-iR2Ha^^MJtAcr-6c>fjOpg2L(x(#6^i4CIx|FeE^I56o zi_l3|o$-R(Gl7v%XSS|oE^I=dTG9r#0BSWBY{6Jz*Dc4jI=}b_jABRP*PUrIfpq9+ z4#dFKAwBc-$1+j!_VjBnz1K7g_urXDL~uZExz^w!eVEkw99HyXH;<_H`5nd2=KANw z2ug(i7FiO)9zNz?HbY14o}Ha3$=x54%U_6LfM~_M!ivYSK^%hw0Z?VNH2o;vULe!V z9R%7aroD>KNDpw|4C|(e2;L~RgT}YbXC}s^1j{X084I0ew(o%|z}od!5`1e1hcxqf zQsv$7Was|Z2gnNACl>)aHJ}uF)58O_FDa#-{yIG|@h@ySb1)xe=#&k4;{Ga>l*L#H zVFl=75a6I96YQDw-3Ol{<21T{gFFzgp%U@O$W8Ha7sXBceZ4~!<;9w2EJDHwscijm zNB+p!MK9P&fJ605-EbzKH=Jyu@fBlEd4)6Mt{q(c^RvfuSO|W16tboC_1Pl>BPa$P zD1Urv&9hCq(i3wKvU_ODtL4KoZU0Oi93i$|aH?U-Li}*XMe>`J!ALfN{6*^2rv?2+ ztbYNby@x!~)od7lU+ESF?F8kO47>$rF^XKkb3Y?f; z#|^zlRZ*1vf^z236OQwi>>fgtO}U)}J^cr_+Gp!}!u5hKDB`bo88;N4Hx*1x!KSJf zVBCud#8miVIwpg2Ozj*`y2{?j?%ODg4T3@^7R~vuNTmfd08k>R+nX~>Zax_wa2%a- zFvcM#NbW#N^&PcP`}F9yLQ5e^(qF8s0aP6nLFwXLe`>+vSHpV!r1;pT&M0DOTdf7;UJ*K|2A~~ zlg~HWAcv1s-};I3Q~i%g`5bgvoCxHZb?%`75Y~|*{J`k|E}UOhw2!2gq3-gaQtGxC z$s0bx;;m20+7MI5<}!(AeYhG&{=L5CA+?>~{f6{vVh%DRJsDW=II?!}MQ~{>QvIl> zZWBG`J2jCi^4(1{k>vJhPn()h5%dR+yA^n+ml{Y>vSCR_!?`-o>Ez+B4e#*9Ah{|b zsBR6|2m?3tbw^lHQS{$moxLAS-?K63U@75{w-jgFNm4tXpF=4{XxP~pHM)-1*}~`; zXm}JLlG_n)qxup$53PZF#R~RX;agl(1!F;`t;1vugZjDmiT4kc037$vQl`EjJg&4a zqw!n%+SQYo+Jjz~5?vZWeh!+JxP5t4CucL!4FNpErObER~ zE$XWvttJ4y;*#37%1Pk=U;zsS|Dce9Z?@+B`OmD0kJK+#XQpr76&y?LMWp6sLU0;u zZM|t(izEGL2vdz(k9{n_e*(@m;-@plOx9v2U_~2PJ^a44SMw#T>O*(N=9pc>6tX6Q z{3QXAb?ISXr_;A);XUOu_hZL8ahS%hn1?y@I87`RH~3_?1Iqux=JFd3wLlyv3+-1W{Sf<}f+vZq7o{tx5K1M7--0 zG0vc-N0k4G+%%}zA}W)G5b~LE1o%}eU?zR>%>xA;CNT1fDMv7+Na?5cLGA-Ouy@J^ z5XNbU8`FUJnCZ}NJe9Wv& z-baLSD2xpsk!8r~Nh)X2gB76}^B`J!u(n%ZnUnXw(AIeaWYsI@qfrJ^N>3pRV3QKM ze7~Jc$cY+Im+bWkqD)7KwyIXE)Ry=SWzA9^AEnSc7DVt1Q#d!|C>-k)y-)$s9C3Om zdjfsrA8pU-d}-(|19d}rN9u%OgqzfamEc@j@NdSBrH_0pg2Uu<2>wF?f^z`yMkFt$ zqIH2j>Th}e2>X~ff5e6PAwnNpVdc+O&GIXXFmJ^f$~iLw45O_8_hwI5Zqhj7;ymuiD`QXg{{t_YQKpvk#&um;iPAMzK zPnK;-wxbCrNh{J$kPsU3A9^OHE#K!-YgoktOarr?D13Jph=16C00ui_6o8B{{vx+D zV$@M`7|-3uiW-ZTi5vh)G>ii;M~}n%xw2hH3V3e$1=g&aPTRj48d2^M`$H00<7%H*YxgOROyw4BFoWks^$ zzeuF6J4^K6&1A^=vKx6L5``g^qcM_AdL7gl<2dC-CA=ZD_ zxfd`{rKALQ&>WlI`9m=o-VQqRBR_1*I$ee#fc0+p6I&#@n)G{yF+b9NGFgbhBabE~ zOmTj2hmlehcDfJzDmPB?TQV#K9k|$Grk`ArakzPz`0}CeinO1m;jhjl3!@&dq~D7h z_c=n8Qct@#Kg;t^(#~FpRx-ve!3%`Prm|nB$T__E5po2R6eJX0I1luALZV>ahm(*@ zFjkNXx6pzw^k&Nuu zBg0_`5JuopWcha2sOVD9`#D+tm5IEjC2ADJS??HNiaX1XiWy(PgvV#_Bm7|QG8(%e zWw;??R7s@XKW%(OX*pt{#4*cx^*i>|<%DsGNZ}0gDS4wvi(@EhHNJ+!0>dc~TVX0- z5s*El0TB@cBt9!_g+gT{?-t?aPcVV20?IgggmjFTGZArqLZa@^6SDw1FeU>x&s!CaJ8}G)hW>6BbuW{lxa0xYr{uV?D<+d z&nE#FR3CoOS)9vCPAK@pgNtV2%>xJL(~lyMPj(SD?K1rwrtOYB0-VSuit@{;d zKr@1o0APX;6#|%71q6){3=B(9i29KulmwV*?-kz#n)C6SwM2f7?7viIpHKGDPl5dg zpOmH?^1c&sTt6}~vb5K~?)NOw=zif8lZFk=*kM0mOJN}9j@k1}1nFM8DPoBa`%>Ec z&ziqvB>Ur!ANK<*C)lmjTo8+5f`_%_(#YCbUU~edlMoRln{1iw`r>dqzjwb%c)sY> zqs8)KyTkUck#7tsj@Bkowa-zF+mq_@HtM$$D`OJJ&pqAVM|KCi0&g9x<2r0PSkHTX zE5qR>9c+E2on-Eq>G4us?N`kvn9AUviUjbBqWjL;#8kBhxCmNTx6Xj;{kR<|ubGLh z6p+`BX{$@d&N;ELvB7}Q;1pyl;0f60w%>`tyrGuOM9zu-&L+tVSK=(4!+5|H0rDbB z0BrTWX-&Pqs$n{g_=p_$hg^s^s(=B5QZ4?+Q4zh?>%tg4C!Fu7!J|)SZXCkns5n*J z6D&t>ulQs1^~Z?-^5GPQ0 zB)bC4zRVkBrErq{-A&%*Byz%pKj*rlw*)%N#$=nk;t{>HAg(0jPSKxe`(dO$ku8d= z63`5)(2>&{UvL0rzSz7lC6*7mJWvAl?Fv8Q-rnAp6*qVw7#?B-Lv3%)cHrY+UWVR! z95yc0J4_cbr3Mbbio(Ga@CBTPPln3z<GLmLs`)-7^*G>-A97EpH-IC<_hLb3V=CrU?6LtSwzNsLSvvOoYlkiT1dn5^jOzbo}ipPH=v_LB+YVU&eb8^ z>X|T4OxJFi=QNA2d9bPCu8s!q>!P3D;eE*lkY+AWwWAomh0lR;07-7M8qgt=n$8D9 zJSAw=8z1429}unr&ISxjiyrma+xN)Dk;4un4mW%`?pI@79fF%!2AtPQqn6)XXwr{8 z+>PZPcde&wT9uhFrP6ge4ELvX!sj&K?o|V)#7q1PWA=DPC5}6h`_YcXylp;QZ#ldP z$Bi;WImP*h4Mnj7X=h@~%jEok+nr|^SQwU&wdpk++V&*m9cmt9BX4YL;lud!eV4(nI*2PGU1Pg0-27^5~ncd2-_gpqo!Vw1X5 zwa_v%3jE?}STDXo=A6@@6OM#jje}-VMl-zC*g$%#SxHR^Eu8i15@iNZLHiNBg-XTYbU?{TDa}H(AUoY zwsZGt_yD&`3h46R-v!csvi}ggyX-&lWBEAuyh-|ib0wY;yX3E;sjtMl{FRhsS59`G zORG9I2;v45mQB~uTUvepI>?%Jl)Jd~c=fAD-4{lR$VgUX==k@FqPN&QSQ*)&8d80h zdEYVVPEY5{C;uqc2U@f5FOV?A6zCsw{qmRadQrn7N;ODJ=UP8UAE6~uG~O7LGO*h8 z%GY^UE}9hIB4Y1#s;|vGy8#ym>Dbjf5mwgmk9JJ-VB{oxjwgKF9FJ)m9DfCq5Yy(I zY=QnA9yoxHi2}2tPr(f3I?(h5!_K-`t-+jDEv=%$Y`=Dzz?e_i-6%4H#_SIZG$>b9 z3I;AMimNi;1Mz6*gT;BC=QDiZyM~C;R&cUVHp=TrbSP7{b4Noko>63T@|$(U9IQ=9 zt4x$__M=bjS6FkBFtE&>O0qZl4Kh-h?ph{dah6wMdd%S1U~x5R>9+tI=a)gtg%=OW zP1w|#@$`EKq&Xyme7qK)7jqa|h52APX zL(m8~44(fYSO{ch-=dXfPnOl6doLo&er5bTcxyd zaJ>2u#a+pH`jBR#w+(%y*I!HeVtT?WBR;RW58ZO!Wy&%XV?;;_m5{CYG${1oSt6Oy zbJVEX)XLX0U4~aQKshe&D5v@5<`%Wh?159uSZuLQwunvB9I9btP?=mZzWFNC*ul7+5RM`cH@h^iF@)sm0?M-o@&aVM_#y9iN}A~P;FDf*0RtIvmeKf zDa+tH2qIKmiPZQQmg|c#_Lh_obI+h^+Waca9A>L>HC?BDOYr6*bFvFv@lgt?UB9rj zsc*XMm64X+LBO8@_3|}7tj@2AEvd3~JGq8S{4?H5{(o@y8pf}#vIA0E!oZ#I@R8L*D)C9tEbHQ%Q9Ot zUrTPFj$s4ySBMBk5;k2`2o^m{T#TM%&=h|wi?cpSkr5X;Tgj+viAz9gXJg2A=0X<5gfMkJEPU7oTCQ( z2$4mQD1umDZS#Wt)$RghDC8h7dGB>XHbzDvLhr-=bZj=%K#`hok2{8*dWI^@f|_AU z210!pPc4Kl?^}95JRn8%=7}XICE~t@Ac4HfSbJbqa*p})i@z%xNRROvG)E5MDc?8a zUYI2{|t&CP%^pF zWX5aDQh_ovw7ijY*3YD`_)B_E{aFj|C7m^TN$prAA;unCqKur;NMcnldnJC;^PX#D!O|p-ER%Pi`rVw};Ob1# zc}IOP!NA1eWY-Pz-+2Zp#D8_IOc=iw6FiV&And>iS7USkgwsS$%Sn|m z)UnzV^6=7|bbUO#I$|;ThMa_khB?D0g}&gZUr@5m?-3AlpPrIf^J)0c@3hiTb*-AP zQ;*LL4J_4}dk%(;iG&M14wF6@uKnH=dk<8SXrHw{`coueP?`qY74vpR7K!LdLlqI{ zSxg3UPCT;ejqrslO!cj=(Esf}A*d`)o{;Xtx*x-cKA3qXi}t9xwodDX z6MuBBpS5s)XRmhs+m#bueY=drhQKVc4P-?0=KDyV2q2~DAi z-#*0**t01>GP2_PPtUjYV>mAv`w^?Sf9GcjoPwPdLt9D>k=tnKrvTHZ6;vUI9H|AI zTs11!GrT{IBkB2V*>uPQj0H9$1#W}!E$F7GI0T9UgfGuhR2ol0pPi=W3F+v~4~NB8 zR`g9&4<6j^g`T0|SpR$rIsbFezxyO~L`vpi*K9;M-wm}`!_|;>NHJW%v22dNCMe;l z`{trD^Wlw^ruoMA(Anx+VkV9FhJA9mq+-SKr8D%OJ6-D=);q^po^V>)2UbeNPuj z@So=Cv}^!bcZ#47SmmZRZ{KNFc?Rf*y>1ENy}W;HY0D$w40N|TQ|Tv8*Nzx3^ZYl5 z{Qk1nNqKC~lckM3Fo@@aVf=rpWQ;}^mv_@6i3&uPe2h@Z5Cf?UY{iDMlythMRQYvo zCas+5S|o>&TvE)xh!tz?Z}#MouT8q&q))~dmCsUq3DKU9{Kz^nz;=!M)D$}#b`@mZ zx;9ifp!^9+<5GP)@Qq8SExM@N?6t)e8bZb9r;@=Ma|X+)?D+Bc% z!MiIWj+I#MIu`goukyX*?^9T;|37;iZF;EK@yi*WP)zxr0*0l7Rb90nI)yo69Yz~p z2X&*g1*N}|q(U1fxoKMplu-6luArnn-uyJoN`&JxM~J*M;|b4$pjc;)^7oc_rOv-~ zME>B!U>Czq{~6-H;WLrap_)R;*m)OQazQz@-BP=lKo>&tc$k!KSzJg{krE@V@9B_- zKbR5mHcQoG?K1A*pF>H8P$iMT!RPHpsuP|tJX8;{dZ_11wb&mDB!tMZO&KK2NnZ1B zW$0IXiWKxIa;!A;bd(woWG2%0J$%V!R?htSkzST)P{zp8SK+2-UegvsMX$mr2L~HY z%uz6f3l@tjiTlmfFOuy&FDT-zlI;4?{b~ws_sJ4wv(`uGpfm5+;6Em0&oT5539a4ZT&3^V+WD1uzk9nZu_4&?zUjkCdxZvZG-|NGX;~v& z&WFos?%NUYt~1U4RGhvDDIv&%q-?RkZO$Gi97~EGCog9yd{AdRWNx3I(a zmJZIBW!I&Z>5=q$s1^R>Jw<<+Q#%?*0~7k)<)&Q%-iF6$5EG)A%ZEIjs!kB(WY2o0 z5%Mg_gC`PU;*)*4;H}!;d`P7IMlc&`ByrUB6ruu!dL8!_k5k1S6w9?Fc-@D427MAG$~5_<(_!J{#b04vGvLRrQEpymvH7}Cz<{+mb7NAt-tvDk!LK0Gp2Q3 z^a$kz3;KoNYjG3u?y%^u`#VChTJ*vw_Xn2{D*Menkx$@{X`v)Z&Q9`$-6^0B{iFS; z2f~UrCJuqA;Sxp+QiefTd^#E@*>Q<=ut?~w-MRKD&t1gkyBcXUS$bF;0Uaf#3pvgu z%@1Az#x{~K!QWpa^54i?VUCOrO`Y<5qTGMtPPi5BNGjW;4dU+ef)Yr}vsnK19l+}n z3-TsYoG|t9Ay=4S!a8v`kFiP{UTq_LJjD9);m)f+Ra+L-tT3H&QTpQ#mg@mp#@}QS zXl)V8CmcqxZ|fEJ)3DK}xG?RL|HWj5xphDAtcD(kh6S$?pYhP9YPR91C=5G9moqIf zOKCQ;{&ts%Ff&(a@p<-k+huP)OuofI-6a-jeXW&x?d=YHm8nX|FA^4X^75fhr92*j z1Qcx&WEeF3wvsGSv9v8s+jDyAtqLYEWzNB_WU1HC`LXf!o^kUAM-}bzvTB*fYM}W2+wqxf$nt4J4qB6Hzx<-3 zduTCRo^(1JbiMv?^-is(yRr7T28oCgX>_uKL`QGx%(#@^-(NG8JHwPz+ z4LYcW%J(11w40AO;X9mGXhcqpIrATX0*=f16{YT@V^u=dH<{GTtfD7D(QJuvSp`O1 z%;-({i!DUlpP%L2T?hHetu>U9_}dQjtd@yjMAr;KZaw{|QY345jl6Jmf9Cg{1lN}C zz6rbVX7fDS>iC+VbUyTYSaOMt^7LUSx{SVG;YatzUNCy zFl|O)alD+Esj2-5uMWMmCc^)RrmKLevJ19=fOL0vr$61D(%mWD-JvwnA=2I54U!_# z4FXcq-Te;lt;bq-EtGq|`^B7@IWv3qCY!J32G6K`ouiV-QC)otEUtd!eU)f8?sW8F};~e{;CJ8jj#f(Fs zu%7J&_Q(rKeoW^hONdF7qe5Wd!w&8YOnGDFB_7{3{}!*qTwzEGV0EwP>FszzJm4Ou zIjpv>b2%X9D|S{mt+IQ(bKjihQ@u8zQ><2F&^L>r;61M27ZT-;vyym-7!&|;Wy3Y+Wo zXs@Y`&ez1aS>KEWP3H)=L$%(Kp-)Ayi)doXIr z{`p#aMlT`Y+Nh3-lq7Qd=mUY}qY$3&LarGaQqa5uS>W?wcwu7%S6QM|$lvbkpn=qx zt=h!>S9m}-@ta?0puvkFVHpDyJ<5z;-7#OK3+-^5);r-aDwhmK(#}wtVM`h~3*J>{ z@2c^?5{KAG6ttU8#7GI?|9JR^{h6}xT19#rL)g5WXBC5I^n z2Y2a}rN2;p$6SMv9BkM&IMDP9u7$^<$~!Pc5b_R2A(k?&;}=np6}k=BRO-l-ac7_Z zdLvymUNKaXZ*<0Vs>ByPAIb1M(UJN)nq(lI2s=*3p1#O&?XzS50vUPrD4nkUt6Zh9 z6jlD#HLP<7vGh?DWG=O3lHbWQg!+U}?896`ug}l67!`deP%}GYdcw8-CN$?HL;ZY! zTU*%l!>BfMGB`%!S9E?hKXKy~6A^LPP?+i_M&zLnO|U_R)wGtu=hQ!mv(Y5d_hkVz zbDt079QZm(juir#exT6M^iX|-z`%L>QO6oPmHh{ns)3^36gX%Rx&r^|EAeYE3oEL z#15#H$SBD_hZ2@P9XX2)u1qF2$hQ5>qq(PmD8m(kn(l4cunn1$(r;;~-MIozpL8BG zKKiYxZ>d0|TpJ~$Kn+!Ev7N~C5L*zYlacnM3cLU`+F}Rfj!pMt6{bMLxSUTewNVmEy|!5pqWoaN>r-W&0bh1$r`jt_gl_z4)Z= zcaD^BfMMs|RlvQxO$6bm_fJLelJ{zvVm_cHMx|?FyABX)+t|!#M4`iD{2@N>5d95= zeb!o{rk{8G?$%%hngY}TPI9B5Tj=L8W;hzI=M^&%Gc~TBBKK29kGKXkx};>v)S0$8 zLLp?creGY=W`$1O?lt*g^~6-y&XmR+y2GMeX2um`4u7#n%W!nV%6D^Nw(tjcBXV_Q zt<%f8<|C)R8Z*=BKW|qJB!MwkH52OdX2T?$2MUU|pMEAlkAVB64MNjDUYU2Bd^fZ^ zPvIz1G8^e3OvPZ4nyi0=6M8=TP{)Dg-Kfp^YxIDg z;XGmemtw6Kt*#iKjhLFS@=i(I#(HN^E_HTQb3>`}r7T<2K2f@Cr(smXx;BQi!rc!Y zKAcxoGxPb0P{Ee>H~I}(RU@xlz`;QfWl6=eT`>qC7E>Tcnl>Z~+z3_f+Xr50>$-61 zBo(96X~%L<@GM`&d63zW>DLibEt(5L5s#4TiI&TGjroR*BB&7fQHh2AOh&wU9w3`iM;Uj(Nq-%+&L|vsVnG z<*6WVt}0i3tVGH_RBv5r`JXo(fdW4glxjplDq%~@iTKU4Yrdizm9xRHv8=shhDh4D zfo`p}xV3m3S1vUa+B-!cvE)nf+>X>y5Yw9bHte>gcC9cQgW%e1*xp z$&B9*>CIoQ(BeYZk1du<2;oEXQyf>SmM1tDZUu`|duTuJ$lsoyzdwYBEtrGUWMbT2 zCVWUpKDyhW1*;Pkl!D;Jw6~nD`A#i+6vb}YXA3`}mC>2Dp2FxJWR$6|#221Y3STj6 zLgCR>)*1ELJYt80zEgnRN56{*2=+9sz$pwyhq?{A1PfT`;F^iPtyTKZ;x>E7Y9F@N zt;KcubMm*jq!pIv*psegmSyzS6AU?y_ta=ZJ^tj*$Kko{iFGZcVuj|iU$&m&k=)A~ ze7qsQy#IuOLg>d`6C@*HYQHzt?WzZJxPbGY`J(f-J^k1yNr+#OQ+9BKAe z#0mX*SD*fygrVCsHn&bmAJu*QgxB|33XWcVo|mOq!`Ey{KB|J`mD|popEeU|=oL?#r4j{4-w}R z3n~xN8X;raL|MyapRB{M@<+M(>1VEwaH7(Z$o99sVAN6;aTdBi z?n=MksLJ>i+uATyL?(S?d=($P*t0I5wJ@=7xosvRI~9P6Q_&Z{;qA6}*Poz83nhu3 zDO`=XQ9B;|Ou`Y}*DG4Jw|wozc%Pp3S91Kf+so7FSA9J9lqq3oXbG_-GcgDp+E1z3 zSdMV$^)-}#&kKlDvkh`F&%$Mhd|Bx!1IOOKKD>AAyklyK`)Q&6sQT}?8M8Nd?rb^- zztuxa`C&>t1O+Pys#^guQXMzZdzV(>S2?JXiLD;gm=QxD_k1h24(y%V6`O4x_;T~U z^JhFMd42^^Borv@51X`xucGlgJ};Yc*)vJas6QZCDg46@G(B6noh-7T38Va8siIYD zWstVRh-19RS7xm^WH235NX3s59(sp)B(UJ$BvFn~SJ*68H%#gwz`Qy*h6$@`s2RR$ z!cJNH@nfu5gG?5-m=n+}aoNrC#DJ5yO}8A+l#Rw=_5y<8)-%P(K;_ADB$0ZreH<{G z_D$xA17&N^SiWMH5c9@=VFmqcOp%dveCE=cCjWKrX@gx?VyQ%}wgy)veWBm2gF5wc zh#WUnyZYWFHKAixoNta-tRAU%ti$fAOwIaOv84y+R=L9l(dj8q&5P)Aa;M~d1~&$n zKwrcPkrb_y#6+Yl(t|9mL6jua*Eo*#`9Q$%fPj7VAV<+uq;S+y*xWZ40AW&wjs{N` z7Hrz`caMj{W4ylT@$NQ*QK!2xUJ}vcazg8y^7I9i3#pM}xNObT<5V1-&9f~I^I9B- z8XF8Pb_VgAjy~Zfi6!yF-G%pSP)zC%5agKm(X%)dx{{!tz$u@~4>sKFr zql4~4=X$qd?|3oyn_3`X3p#N*ZmX+>t02{KT7FatR}+WVfs*V`VQ9;wQC8F_U0h^x zK0|Wy?0=p&x>2`U326t#fns_Xc2MHnB9N3w%{auh#Z3;TJrX9;FYlNZ`JfEk6VVNa zmv%jdmUx%>sfZGojC5tFOpWU#))8xHe@0RJ{_H8o)wOAC{2BZSc}Ko+kGH&BS!1W5 z{g;y5fzoNhv`ncv|EJe>v&{(@kJ zUtL2(MNdz@#<1&duOJSO!wL;BVg37z$U+7rvW1^EP~T`b-jo>Ex_r6uDFLf<$4NV4 zkpJTiI!d_Gpgb=PKmq9d*Q{b-7(G}H_1T~q-CT-ml97$L=*7BualCkO8o5VCpp`%c zOY8^4`q*;sP`WKVElq+k)(i{JH;jwg^2EJy^N{!mSd!8Zh*~_pPt}kT%lh(uW3c*N z!>ThIuqd5%Fcp$9QqE<{dYHK$N2^y|cOGI**o!Xhd5Z?&U17+!(Qxm@>*hj>;hLEY z#JxKZrhSkGg`Z7yv3z*{wxftb!_(oUfXs{N$Nz3UY}0^Th(_#-N_eT~r&_ol1!qjO@+T9s5+Zg@H76b(}0!uon@=2p4i9t$89*!%E)j zNleiImskEXBB0hXDS3dGWA@5}XL^P6xNWL;p7~Ry5w81JZi3>>OVe*Rc|i^l8%RiiZ<|4Dz+9z zJcsv4#K0;q$4Va3)l^N)$IX?Q4E>A-ODx`S#!z z4%_}m>WbiUgQPW=(L3N}8GbvC(^J%L8u%Q0M>2SG8oHqExxtOo2wxG0S?ROWX`9Dq zKa@1qWDGit!p$$TQc~&HF<0$*LyevNH+#z+)##9Ho#iAIwV%11(fabO!POVrFh|tp z-p)m{3%MKux{qN>zJ-nARs5hZ<``)xU#>5JRBc^fmZ~y|=xAuao43%;H%WO((d8s7 zG>;GNj#8mH&&`Bfurp@-g*84hl7|n8y!udQ*6*2Mv6rTc3_AE11=OivkTT(=RDL%e z)m<|Sjd%=Y_v>Ab{Tg;gQb=&m!_pAw5gYYk#V37ryd*l{p6I_kW-MILbP8^cL|`VZ zsH9}B|L*`oxNszq0xPQGAo8bA`F|_LN={KbM%ZtnCZQWtupQ*N5(G;ad!YSm+r_>+pX@1X#`$a6MQ)Mu0 zb*cvK!8Bx4o7fuLZ?zzlVz2jW${k+Dtt^R9Um~+#@uHR93Vy%P;07ydHPrG)2HwlE z6(;@8-=^Twcn&60bGpx-gVF=H9aK1CcBZD&eqd`rr7C#H`)j?8loCs<4x(Hvv$ELT z3r1DSvFyTEA&~;(B9pwZwpNeCc@Y-6qmr^#9#wPSEaRAoL+nma^xp&{8Tr(YpX6qd zhrEdooUWoWScn7eBtPn(iOZ%hYB_FjcneWdq7-8i#g&~+xdoD6E-h49ywdV0S^9So z8%+G!#Y)|N&+HL?{Nd1r;A?0U4-1e+%YVv>;U@A?(ZZYSci^DNMd@@u3KTlr;Bm8C zkAs~-VuaVPvg~u*LXxQKt)M-w6c*$Vi{Ui~w3n(&-bPhs2r*I0j{$pn2u(tGVlkoD zBvDck6!NH8_@dMp$gdjEQG>t!)mToNtYG|kSJOM^&y-gW1=`p{2@Bzq4W|@+59p`+ zd<^GO^j!Pm2%=W6TylmTk(tRvuG;Q0{a{1_GHOP)FW&a-4IklMV+`%b(~%>&`BN`$Ieh^H*jcdCl&OKW(+C*UOf#>WoCs49nmwgqW)OiqrCINuKC zhqz8%>x`q5)I+v^Gy=h7*cxsi>W)U~aJ>7A`?+gU=+hi4iZ8sT@KDnJFAeYKz5^8#il zu%d%GM6{U-4e!Xt$4k^6Zon+>Ed@%MJ9gKPfBB30&iqa>hq)0!-OLuRI+;D# zc)=_|0Ly&EJV1!O7fzR!oV$qfFBDq7*#!E_dwWN;gv}nKSmu)V);&I9tt7j-t*VoU zw&=)3)1M?T7Vh0ZRn*3=qWsDTbJDiLtbzld{fx!`+W@;KS6TljQ&X3NxAj5J!MMNB zBepM0i?-YYIrv>-6Tc-N@^zs-DEWsH}bS z^@4ftVBoMtC^(RPUwUZ*P|8U4;Ri{Qq$+*$B0+EI2Uh%+!~r>|xhiLk3@49NE@)7M z$jxt0ObLF1M$klC?2b4s>29*O+oMCwZU z4DCE3>>XnQABJk8EXgH8uvRs#dLv9815Zb+n1YOSj69XeT}_>Z+gHJf)Vavn^PZB6 zEqc6{gD(LnlA_wwd7D+UHIGpt=-lWG>(Z^}@>ez9d$C+iVHpNlkn{quZW}Pi=RJm~zokSlx z1(??I-A`)$-ud5<$>^cd3243_8AfhKfG#d-pG)Jf#?OW9n9kP%-E;0C@*{Z8$eXmzOm;qZnFFSraJFw9TNZvLZDuV z<SqRq%LPIq~sX4DTOJMaZc(=~VdZ zc=kzHJi5c^v_ta6vSf-Er{Lw?p;p!SlDtP#D*ssLU1cd~&#}=>6>F3iJKZc+|7`y- ztq*z8u@=Tzg$-fj$1r|kNqqT7dwM0&??w=yJ$qZMSw5JOapbS){NTG1Ax_}WBUl+Kur0NV%l z2WQ6K>^+lulXYuy;I8RcAES>B#@MucY(aRh8||@v?28Y@iT{Tk0qHAm(kh=a|i&b_8YRJO;)WFd9sYQmG`eek2y( zqaomR>jD%4xB4Ik9o}rTxyPd7u$fYUK`ZL2rlRyoX1HNy(4->e0ehsyXTk(F>;$(> zFgKyinx|^}MN%rmHD%!Xlg6NCyQ5b^NXYP+m%F+ohG@JQGv&y?cLBQReeF#~%1?n> zrgwh1pG}*R*tT^kI0r+t#v~RAlHL)@ed7qjlXtoiz%}7rL`N5=)o&slTiq14%lMv_ zmT8mj*$?;w2y(=xmplt>xVWr#Yx{-LBWf`d5Hh%uFRp*v1GhNB+I`E5M=XT_kM}bk z5To)Iv?6^;4G!%oI;bLK7wg{2 z!Jsbt?sGk8{7<1fIqXhi-{_V{l`JmaOsGdt!lm4d1wi$Q|Hyy5S)_o%TeB!h(OS z>RNI&O25RMcqF-bNA?1u7Ih&>VOzfA0JhF!||MtG< z>a#F@XC^A;a!mnii~%$&n7~ig_3Jg!!ei(C?wqm)q1XoKaUu|%M+HB zIV&8PJd=r$cb`(vGQVQsM@c*rz_vbo6|du~-MIlzHQ4DBc{)GAgsJg?m*-7K?~SKOw<{@aHOCgB zF0yXB4HKf+Gg0@1RaM!D4>)YM_;jNx44AZ}xuJR699Rg}V`gW~Zlecod!Q+`<3MsR zBlxue;M#LI;UP|cDV05)kyA8LTSej*>R-Iyd^Gf0#Ebfm_kbrZ1l0oxOQi=>LT@AB z{@#Lt;h;`i9m$~H#Stpy!O+^~1Mym~_jr6Uq4ikwOD2TB8CG^8+TqBS8oQyRB{x9RhWJrV zf)1p2m%9>ESycv-$>_0S-(TC(tVxXGK}W|xK|Lz_Y>=e-d((<1r5*fexA!fqP*!br$_+$nJ5PJ`PUQm47sbLVey z4!2mSzkY$*$CUPl3##gxF`~ zLMrV>nEunq8|fBe|4$U^@>heLpu^0-K$04k(G8W5{sEx+iD}5hret~!V2JL&z#Zv? zaux`}zpII`_oQwm9vIduyM$Fvwj%Wo7R^_IgT>41*E>y5OMCJIJ1(e2KtT@pDj8v5 zI=l|60%wY5*en7xf*9B2P7RqOf8SvS3udSsy?@LJudAO9pmvwz!=ctCa(-T>;Bz}x zT4)%mJ!(ps4P&gc3SS6PMJdZn(A6ps7@a^w((Slt)Ny1@;SfOjVw+(aI~9Ts>lGg17m)_gkG$fDx6!~aeH z;wNQpc^Av|E_Q?lJaEh}^kmY#aPyQ*9s?$G$f&zO65MjSP}c2qEekN|y5vsw+14;o zW3b1=&DRL^rX8#%N{;Q1k`Q2$D>3 zV)=9w&2!s(UVMG~WaR2!_2^?QBIyvis}Rrab@95oNAZ!bKjbSu+~l<#)n!V3FQSC1 zr8DF^4vhS@OCo7K1v&A=9gnbl#B_2gr2!IKGCz&OFYXtvcFn~mABO5Y(IjF-U0|; zakeKC(D_P#h*{5F+>#;kUQt=8@DU&(@xM|r419K{QOx`aIA5Ws`&JysCFLUL2(WYd zHqrRa`P=KTWE+ojO@bH=<8#%wre>69VFT;XyaXWQb4%AdilG%?BO2tz&_xZD-{q01 z$Gns@_3eM9*<8AONOZdqR1dg;-i+6fOq#C~HM;s7ln3|6huv~sXu#pnxKH=P_k^ZK zB*(rE{KZbVJa~!zwG2~xy5V|vdW;BCCvs*-A56}1{{dd?^pq=G!-1vakDnj8O-E0b zm752A1}@`58)tc@rLKZDluTwNR$#ukgRZbT7pZ{m%Jm##2nKARS2o?jj+J+AmN@1(yaGMNV<6tK#b($$F1Brn=*%19vXWtKQiNoJK+t7&(w_UicraqXKZ5~h2fNsv1=lKye( z_(oLb6_uPz-7I0n1%Ocr=_xqJK8ZW^n+DfhP?Mn;Rc4anGZo^{RVrUYl4qG8zdk@3 zB{(hDpmZowMsdczb=`&kPQUWJ3KN*H5B3jiW0@kzylZdy+}<>UHou3g3K2FD?zvN< z0KL8b`of(=t7Op|1ljp~vjRpV2V;v0c}B)%%`b;ADm9TKKP%kH=-=Yb&O4j`d19R{ zv^(R9qyq6C^2iB5xSn9m+*!1dr7BgjySiNalQFXkTfLH8fNo{#9)Y zb)r$TppUJ7z9U~yy`SojfJKjpg}lLOvoe^VzR&bUzk${loQPR6b(~AOn_(Gl*b_v9 zg^M6%%WfRa8R~I`Px#fP?thLY<*!hg`VAUj0BH9Vc=$9lglC}Sr@yw<9I zplO+Oy8QDj;n-<#1;y9l+dx<5&ZA)He88ePvFL_r(z73dhJpr+yE{2o;1laI%$HmS zIy~cGnSGC|=_)$!67=e2rQ<)}@()AOT2_1AH%J$)kj#{dFo)m6AQ2@itUP^*wailRI~3bI>ijsXnuNuaAzU`+sKu}J~H;ihBY zBcT}FINu>tb@#&orq9^+C8>lvjcShx*ZiHtA4-RRF-wH4mKRh&N9)I%bh?MfO(2ok zOqgma%W`yi*;Ian+y}Om3l16Y^_4^@@@-E!N<0gO!wjYpNuKN12v+pr7q1vR2D zzh>v{nscH>-IyXp(4lO{aFp{UF&JkBJaob^RI;GuE8RxEJX{;0mo2Ur_O$2sdafjC z>u!cSVNb^cXw5H$mTW1_8*&t^uN_b(4IA9t-jdfB)jo!dk9!s2x3h`6fOx< zxe#-!pkcOnwqSZEXf?t+>=wXdcLsJ)>KgZE!SH$>;j%ZDQ=|0+#K8dMYV)uANS3DzmoYX3M7!m8$FrO}Ry&_AMuD7TLbLsf%P4aTo6nV%ZnMC}*x^~& zM`2J&NOGGuPaIGGsG-5>DR76D6L1BIDs)GNNvk+u^StphZ+e;!iGGS;6&kr|RHJXI zo=7vLDr1z6{(9y^b^3Im(wn8*=tJr15`G0~Ml6-=y3%kj64&yCGy>zEs88cf5~JVG z4|EMpU;t8lwp<6!x^`zvb!bI?KXcN}orbOSKa53HE6F+uWx~VjFmWFvTV2^KSpJ+0E0zXRtng70XG~KB zkPYGiX;efUroTns3^%!Z?veA9BY>Tm)oIHpD116y>r#L=2Ym2v^v8H%KY*lK?K1IC znfTrl4ZHx_ZC+&Axgr}$$8@8Bn_)NOAZ_r#PruzWidmEhYFdD zQ2lJBUbhYch{6)uB(}(#JM3`C-G@%}J?N zSPVV{KtJv2!PfXPHFM z?EW*N?ly=a91$T)g$Az}LoKlC;id)#Arx>AU-ssqKREb? zA1nn@D%V2kRb*3Tu?LSw!yx`UmeBYyiJZwoXwXjV=bx~gXcaJo{u>=(&mCK&(XkC6 z7lmyM{W5w)VJYjzzb+y{!HmLdoeW-(YLcfHJB@p1oq0h4=vF}~Ll^(xR8=X78TS-U z>+=Nl`ITN^vf%$OLJgp&`9+in@HhsDpF;bUVtX)vZTq{; z!E;Eh<8RI)P8aT&jxzKQf4$PXJ@Wd~`-57E=KA^%G)mdOD|H&YHX~`%*i8CNpxl{C zrQ&A}jA$10;?~m@Z3-dc(#L&PBxm=}x35Wi_bxBss~;g&ckMAO2oL8=(2&2+K}Y=u z-_`vu_dk91$u4Xvl#cXl2U5M4E)0VM73avk?IwjE4%iV_&4otyL{havnjJPrZG5T5 zyuNbKv0k(Qbv9k@jsddmi_77%tXEj6Uc&3FpH?r@mHC}epe*fdgO;5{&0$v>p2WN=r zACPS@dAd8lI$h5Ze!ZW7hJtkHIOa-BOpJZ-qr{+Sb!6n?X(cvG2$A>5UCA1&;gXE(zxsi0BlOYp#$3zAy%_XW}P2f@(8k*xSEWz5x;3hXFH}R>;jcWMd(%` zM9OYOG7PDb_qguUEtzsHR-R3(QV&ds*wXBya^v2rmQ?Rr`TGy1@eRjHSC^#589Q!; zlY36OwBrOTb&;weuVp@6#`vs&_-L{Sp2bzIWJ0*e8)C`R>ld7%& z$xhko_)cub3AHET?&TZNZRfx(X`JO$4?LC~G^CiCED`5M+Gt#>z9ydsAC)y53%+H` z7B0uzZd0)VJ03`*odE?-E^|w1$9iHux4&~*MuNq=jO8%4QqtQuHP%RFDd>}`E-G7z z!FybbmlMJhm`VabOijPHVM0jW=HPrmEzu|KZ?MAR3M#;o3l@I;tM+HMRHwC4wB6{H z=*Kiv`EFO_qy!T>s`w^}w;&jmk8AqmOED)27mYlZ@)`XMjjt9T6!t~oHkWV7uj@<7 z((j2lbA%O)7~M3B3(RPH=C)e(pHUk?_g3v<8TpQjH6|)Gq#lgsyzHrhq4=^Ofwot?Ld!xr+MUPfHn z)pGLU=GNKq5oLAv$C3%0jSC8Zj936d{Wn>}oo`0dHAX!-UhJ|vjl!xen~Yd`ZaM2U zRJA-O7UgsL>V42D65ZK)ALm287n9WBG&LyHO@dh7ON7BH5 z4$|6NraG4x)C7GtG5n?*(t`xJ$VG`8Uo>Q};DFwX@j`v^COLJ~s_gXAZKm=$8^CSs zoJYs{CQCsNlEgI(Yh%E^Abd~j2dKM|Pu~oNz*PTtAWEr(i`ol!4}YSAf9y++6%s^1 z9nD8goWcebNkJu=lQS(NKV9PsZ>#w}xs}SU&A{6EnbAsCM>+u6CvBSBvA^T!zrLLg z_>(0WFr#T^y+ks&FA;`hJ}DBZ)GK(jAdM8+Wa0UP^RKEo&w(vF6zmO(xU(A`fqU{W z3rzyXbj>5-3Hidywl_OC-A|X%2El$gfM3LAnAo${Zt26z!$ME?B$J0pT^_Y1Wy}t; z@EMGA!Uv93acu=j?D{$ua(Y>h&GtCjmKi(>jZke>z31Tof{p2{sbgBkDK{5vHzj6} zpME&GgE+0fMURr|>or1O*!fDiQexHE`T%3cy9$4#8%!-2H=xpz2Sz3Ro+*Cx5lMx3a~XpP=G;a zSc`@%Y*zdvkz;4Uij000jt=#3HCF5&UYcYW<4W2TK9om?!rf;o{cHIP^)hv7HI}~M z_>Z}*O!4tl0OFp#Yov@#^1E4m&;O1qo_)iA)57F zTt>3;aowC}Zw}Wr z9eCdbt&h$(?_N`0a+8`scfLAPn}d6D;U7>3wRw5px}7Lb$H1`pmS9cGD>?mFKncbG zVjizD(go)ESijGE3o}D=U4LFTnK=0DxB}HUkV=KrULH9?rK%yb&j{|?Qrz3@T8zw& zp$kcRoXgiw;|joh?@zbAC^eLzd$b|T0F)LB;T-tNsVY70r-0Wul77=VG?ef_*uwxO zsH)q+f!kJyywVWlFHT#B=nU?J|5QDV0~-gu=^mVncYQK5a5s;*_?E?6z5|)6h&S$! zz`Jd=2s9`S4Zs9avYbpRF~i|z;CSPTprVJ|ACW?3GtQB7`Z}eekz&jyqp$ymzU_ro zQ-sfLFKEtY2heKKVj&PO;DMl@?|wKxtTDa4n^#x;Qxr?1DBp>;=}|8!DI+@Xu+D7R zs3d_IUz!a90Y`O7e z9A}DMS+oF# zDinh&O#TBHy9I9lxB_YzjuqD8e7fH+7AUs!RlD6Cr#2TuGP1MQYaf-dLiHTGQr_gW zD=RB41WOpTs<#W`gf@X(w9Py>pQK6}kndSA3KRrHGqyL)FZ)V?`JSh1Kq<9-X_+CU zckA3~!NBu;*|uiz}Zl^YVVfT!e)|(#zb&T;+1f#i6K(dGpOY&Y8|D5)n z20C4R-t{qgT(tPFdT!ho+kfgBQv~TVq^Fj9=6U5db}4qtKBmf8)HgbzYKNA0~`gmy|o^6iQpIcrY zm7h-`Cnq;am^lUTkLsG5*`|m2K+lJPkugIe4CF0x^70u+Q(^rk;1?xpXcaQF-1_=N zV>UR6ti+U*6fA6P6-~|gLUwIyYwM%VBn1E|q^736^XsOG(*n3c1B2D=I<jNyVYihD3l*$pVXL8m4c@E(rEOzlQ(9hb<5InFSd^c?X`X@Ce|oE?t4rW( zRFwRNPt@1! zYX8fi=|)S>GqdeN^$u90P=7lw$G5b4_}r<5KzE0==jj8`c7z0b!fmad2W&}6Nr8vG z0+8YAwm6IdlZYDL+DMQl`LT5#pPBhPnO;ps=5C`{ffl2m%?p5y?-qJq2H(;XAfKvJ zX9|NV{KV$}a78X8lr5V?lUL3F^vZa^K^KobNCKan0R#MbKQ50bD1ux7h$Tj(L}^Wp z<>o--)zMPY+wKZ{9*v%QLEjbGGRL3Gb$2|5R~>94{8&1U>XR&Jd$o-G2Z62wXw|;-PHs{E)2bQun!In z;#EHYrZ+D8Wh~o4C!l=m0yaDKE<1ABfiK<=VW_0z3f!w#q*Bk`cSj8qZ<2ulJvk=* zVeD>u$`0-OG(Oh{p)>p2fHaPllQZQFrLK^{m1j)=&ijl$dfW#b?e6av)VB{W0+49n z{iqQH9=j+C;^*e(TmYZc1$dwds&c%JYXaU= zlDH$1(KsXN=>+se$wvOyDVc00pOIj{TucPMG(3$Oy|}0zBZZ39mzK(a^8zk|?zH>S z0Ur)}dl1)%2{;Aj7Kc>^){dhOI);WUHDGbJ0l2k}wl>{x3?Z$pt*ugd6_5*@KD_=V zLq#zhN6Ok_zd{4}tQg+@j?1J?R#8z=l&m_Q&MChJ$`~Ke;C}9A`zi_n@jKc%MfxIe zE+4QEWa*25;qvc*LJ=is&FQvz9P8?+t5dOd-M}TjhrfF zexQc!z3zWIGRoSckAsap0&2!O0guNm^~J?fK%Z*R<@M$H0x-}efZHE=b?@f_wm2@J zj4;gi7CI;5GAQnwpw(oBq*S7onsIp!tJg)@{r+>Iv`z zSN{jxg5>06Wo2a%@W^YI?10>92r<7$raC|QvaSyh+a zrLd5y*=|XU4l5tXpHR`#CVl_zJ-r?n1jakww7yPSw@{>F2;Nw^@CCfsz)`l|>NFs< zn%Y-)~+3h^)n|92Zwt#{$!RxH*nqIi_J`j0TPm zT!J__K_?y}AbIs-`TCNfr;WV*@1F~(C_|kAhm``1284by-=6}1pmn-WpIB(M@Y?k9hc3gT%{*P*(4iQ;9gOU@0d1M04 zNSYTadg}CIPVe7rU)35gD47^HJzwkCMx7vG;8Zr2f;W*X#4Gibm6jXP5H} z!S1#B@3J;1>$h;VxoKKnQL)r)4~isi`NG0EplY4=RuKRZ3>^u!4S0%xX1VU+&&i2^i7phJCPhf^zMIP! z=fc^nnv(MyOR4!!G!TL$f!!>1djIFS>W&LCG&3+kRWh&!Vo*E?w|G746L0nKo`B~x zK6eJd3{j#)Diuotho~Mf>8#4t3i={pKU>5xb?Vs z6{YLU7rfa1`7Ixl;vmrD0zZ)U5IbLpyW-FQWR04!98t%Sc};rMvVb2F%GT&C5-{L@SWF{#pzR% zcT-t(xXii(GfKiS>!-W@sKNrKG1Xvt&`fbsx6Oq*PViFL@(I^WK~3uM`Et_AG&UpkX)OkJ>k z3!o(#5xp6T?{O0n0Y?NFu8GF~&*BVNV%C4-JYU{kOAVH0O}g}8wf|0IN5W$Z0+yMS zk}?QdAXY2Q%;2C;H!VFoZ$e^UP=$<7{|E6Y~%B%r)OWlhr%CX--uBfBuX z5auR^j8k%GpiDA=e*xJFVFM5-*?{c z+32p=P5>3pB~xU?t~TwW{V*DqM7y;j_xq-Ggf
(cAx*y)+v1MtWAe8G}yF+TKq zHUFSxF#A?|VV6F#P^wauz=wH7()xSY2^mJiDkolOfHXpr+@{lX>~FMPB6s2+z*99oYEy3Y8If1OZTAum+kfW&SA&l;V`!COs0!> z0raTjwyA9c1}VajD-^+r__xjZ`JDhy6!awAEMrDro`}0LMS8NbQjR-=(m?rL{r!pN z61sy?_vRqG1mjM=Q0OrWs|h*+sGt#=Ey)=YL6tuoPavk++AN~0&{T>1GU3BoW3kru z6cmDDvDiB^^O*>E5TFKy2T*=QkRuo>ceoudmJ zQz+IxJUbeM?4AeEts0cVy!7bbo-=MH*DP&+uEtxP1atpdur-ji7qnSnp$StwnzSDu zpISN?<{4YGCn}r&*$S7w2GPD2ExT+&AGzS0p4J>N?of`Q>_W$+8e#wYon^!jZTcRG z$dR`AKY$De`q^5O=Y2bLdI)PfUjxJBN=zfzU_VX37K|80;ldH^Z!LftJdbjOxM1-z zBy(3Kh0x=+z@xT!3;7lfdH1V=+Ymn$RnEq}Ec#A8U~z_J9e{TOU==ozR=YiY)>U@| z=~*#apNg7iO6P6{9=*ZPx+Q)96np9qIBxZrD}AIYpA3c6Xv)LET=~zF@KRf%UYtmn P{2Ux|*@+^jw8r=w*#FAQ diff --git a/master/_modules/autosklearn/estimators.html b/master/_modules/autosklearn/estimators.html index aeb99d5845..f2af275f42 100644 --- a/master/_modules/autosklearn/estimators.html +++ b/master/_modules/autosklearn/estimators.html @@ -4,7 +4,7 @@ - autosklearn.estimators — AutoSklearn 0.14.2 documentation + autosklearn.estimators — AutoSklearn 0.14.4 documentation @@ -54,7 +54,7 @@
auto-sklearn - 0.14.2 + 0.14.4

@@ -275,7 +278,7 @@

Create partial dependence (PDP) plots for more than one feature - part 3

- © Copyright 2014-2021, Machine Learning Professorship Freiburg.
+ © Copyright 2014-2022, Machine Learning Professorship Freiburg.
Created using
Sphinx 4.2.0.

diff --git a/master/examples/40_advanced/example_interpretable_models.html b/master/examples/40_advanced/example_interpretable_models.html index 56113c24dc..9b1cc90a41 100644 --- a/master/examples/40_advanced/example_interpretable_models.html +++ b/master/examples/40_advanced/example_interpretable_models.html @@ -3,9 +3,8 @@ - - - Interpretable models — AutoSklearn 0.14.2 documentation + + Interpretable models — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 -
+

Interpretable models

The following example shows how to inspect the models which auto-sklearn optimizes over and how to restrict them to an interpretable subset.

-
import autosklearn.classification
+
from pprint import pprint
+
+import autosklearn.classification
 import sklearn.datasets
 import sklearn.metrics
 
-
+

Show available classification models

We will first list all classifiers Auto-sklearn chooses from. A similar call is available for preprocessors (see below) and regression (not shown) @@ -166,8 +167,8 @@

Show available classification models +

+

Show available preprocessors

from autosklearn.pipeline.components.feature_preprocessing import FeaturePreprocessorChoice
 
@@ -196,16 +197,16 @@ 

Show available preprocessors +

+

Data Loading

X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)
 X_train, X_test, y_train, y_test = \
     sklearn.model_selection.train_test_split(X, y, random_state=1)
 
-
-
+
+

Build and fit a classifier

We will now only use a subset of the given classifiers and preprocessors. Furthermore, we will restrict the ensemble size to 1 to only use the @@ -230,7 +231,12 @@

Build and fit a classifierOut:

-
AutoSklearnClassifier(ensemble_size=1,
+
+

-
+ +

Get the Score of the final ensemble

predictions = automl.predict(X_test)
 print("Accuracy score:", sklearn.metrics.accuracy_score(y_test, predictions))
 

Out:

-
Accuracy score: 0.958041958041958
+
Accuracy score: 0.965034965034965
 
-

Total running time of the script: ( 1 minutes 55.571 seconds)

+

Total running time of the script: ( 1 minutes 54.044 seconds)

- + + @@ -303,7 +312,7 @@

Get the Score of the final ensembleSphinx 4.2.0.

diff --git a/master/examples/40_advanced/example_metrics.html b/master/examples/40_advanced/example_metrics.html index 72ff5f781c..bf7071332e 100644 --- a/master/examples/40_advanced/example_metrics.html +++ b/master/examples/40_advanced/example_metrics.html @@ -3,9 +3,8 @@ - - - Metrics — AutoSklearn 0.14.2 documentation + + Metrics — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 -
+

Metrics

Auto-sklearn supports various built-in metrics, which can be found in the metrics section in the API. However, it is also @@ -146,7 +145,7 @@ import autosklearn.metrics

-
+

Custom Metrics

def accuracy(solution, prediction):
     # custom function defining accuracy
@@ -170,16 +169,16 @@ 

Custom Metricsreturn np.mean(solution != prediction)

-
-
+ +

Data Loading

X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)
 X_train, X_test, y_train, y_test = \
     sklearn.model_selection.train_test_split(X, y, random_state=1)
 
-
- -
+ +

Second example: Use own accuracy metric

print("#"*80)
 print("Use self defined accuracy metric")
@@ -277,8 +277,8 @@ 

Second example: Use own accuracy metric +

+

Third example: Use own error metric

print("#"*80)
 print("Use self defined error metric")
@@ -307,22 +307,24 @@ 

Third example: Use own error metricOut:

################################################################################
 Use self defined error metric
-[WARNING] [2021-11-09 20:04:18,731:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:04:19,737:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:04:23,184:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:04:24,140:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:04:25,232:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:04:29,419:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:04:31,278:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:04:35,411:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:04:40,045:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:04:45,068:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:04:50,071:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:33:33,542:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:33:34,650:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:33:37,944:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:33:38,788:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:33:39,764:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:33:43,502:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:33:45,472:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:33:49,255:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:33:53,483:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:33:58,566:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:34:03,041:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:34:07,836:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:34:08,936:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
 Error score -0.063 using error
 
-

-
+ +

Fourth example: Use own accuracy metric with additional argument

print("#"*80)
 print("Use self defined accuracy with additional argument")
@@ -355,8 +357,8 @@ 

Fourth example: Use own accuracy metric with additional argument +

+

Fifth example: Use own accuracy metric with additional argument

print("#"*80)
 print("Use self defined error with additional argument")
@@ -386,24 +388,25 @@ 

Fifth example: Use own accuracy metric with additional argumentOut:

################################################################################
 Use self defined error with additional argument
-[WARNING] [2021-11-09 20:06:23,413:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:06:27,269:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:06:34,117:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:06:35,067:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:06:38,388:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:06:39,226:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:06:40,191:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:06:45,538:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:06:49,773:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:06:54,348:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:06:56,606:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:07:01,814:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:07:06,326:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
-[WARNING] [2021-11-09 20:07:07,428:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:35:15,090:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:35:18,533:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:35:24,273:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:35:25,186:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:35:28,418:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:35:29,368:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:35:30,457:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:35:35,650:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:35:39,374:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:35:43,590:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:35:45,754:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:35:50,626:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:35:54,807:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:35:55,786:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
+[WARNING] [2022-01-25 16:36:00,907:smac.runhistory.runhistory2epm.RunHistory2EPM4LogCost] Got cost of smaller/equal to 0. Replace by 0.000010 since we use log cost.
 Error score 0.615 using error_add
 
-

Total running time of the script: ( 5 minutes 19.475 seconds)

+

Total running time of the script: ( 4 minutes 39.637 seconds)

-
+ + @@ -438,7 +441,7 @@

Fifth example: Use own accuracy metric with additional argumentSphinx 4.2.0.

diff --git a/master/examples/40_advanced/example_pandas_train_test.html b/master/examples/40_advanced/example_pandas_train_test.html index 8eb13e8f68..e99ba12f3f 100644 --- a/master/examples/40_advanced/example_pandas_train_test.html +++ b/master/examples/40_advanced/example_pandas_train_test.html @@ -3,9 +3,8 @@ - - - Performance-over-time plot — AutoSklearn 0.14.2 documentation + + Performance-over-time plot — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 -
+

Performance-over-time plot

This example shows, how to use the performance_over_time_ attribute to plot the performance over train time. performance_over_time_ can contain multiple metrics within a pandas dataframe, namely:

@@ -166,7 +165,7 @@ import autosklearn.classification
-
+
-
+ +

Get the Score of the final ensemble

predictions = cls.predict(X_test)
 print("Accuracy score", sklearn.metrics.accuracy_score(y_test, predictions))
 

Out:

-
Accuracy score 0.8579710144927536
+
Accuracy score 0.8492753623188406
 
-
-
+ +

Plot the ensemble performance

The performance_over_time_ attribute returns a pandas dataframe, which can be directly used for plotting

@@ -261,7 +265,7 @@

Plot the ensemble performanceplt.show()

-Auto-sklearn accuracy over time

Total running time of the script: ( 2 minutes 1.039 seconds)

+Auto-sklearn accuracy over time

Total running time of the script: ( 1 minutes 55.852 seconds)

-
+ + @@ -296,7 +300,7 @@

Plot the ensemble performanceSphinx 4.2.0.

diff --git a/master/examples/40_advanced/example_resampling.html b/master/examples/40_advanced/example_resampling.html index ac8550f931..c3d5a76fc3 100644 --- a/master/examples/40_advanced/example_resampling.html +++ b/master/examples/40_advanced/example_resampling.html @@ -3,9 +3,8 @@ - - - Resampling Strategies — AutoSklearn 0.14.2 documentation + + Resampling Strategies — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 -
+

Resampling Strategies

In auto-sklearn it is possible to use different resampling strategies by specifying the arguments resampling_strategy and @@ -142,15 +141,15 @@ import autosklearn.classification

-
+

Data Loading

X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)
 X_train, X_test, y_train, y_test = \
     sklearn.model_selection.train_test_split(X, y, random_state=1)
 
-
-
+ +
-
+ +

Get the Score of the final ensemble

predictions = automl.predict(X_test)
 print("Accuracy score holdout: ", sklearn.metrics.accuracy_score(y_test, predictions))
 

Out:

-
Accuracy score holdout:  0.9440559440559441
+
Accuracy score holdout:  0.958041958041958
 
-
-
+ +
-
+ +

Perform a refit

During fit(), models are fit on individual cross-validation folds. To use all available data, we call refit() which trains all models in the @@ -225,11 +233,11 @@

Perform a refitOut:

After re-fit
-Accuracy score CV 0.958041958041958
+Accuracy score CV 0.965034965034965
 
-

-
+ +

scikit-learn splitter objects

It is also possible to use scikit-learn’s splitter classes to further customize the outputs. In case one needs to have 100% control over the @@ -238,8 +246,9 @@

scikit-learn splitter objects
resampling_strategy = sklearn.model_selection.PredefinedSplit(
-    test_fold=np.where(X_train[:, 0] < np.mean(X_train[:, 0]))[0]
+
 

Out:

-
AutoSklearnClassifier(per_run_time_limit=30,
-                      resampling_strategy=PredefinedSplit(test_fold=array([  3,   4, ..., 424, 425])),
-                      time_left_for_this_task=120,
-                      tmp_folder='/tmp/autosklearn_resampling_example_tmp')
+
/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:68: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
+  self.metafeatures = self.metafeatures.append(metafeatures)
+/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:72: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
+  self.algorithm_runs[metric].append(runs)
+auto-sklearn results:
+  Dataset name: breast_cancer
+  Metric: accuracy
+  Best validation score: 0.964789
+  Number of target algorithm runs: 31
+  Number of successful target algorithm runs: 31
+  Number of crashed target algorithm runs: 0
+  Number of target algorithms that exceeded the time limit: 0
+  Number of target algorithms that exceeded the memory limit: 0
 

For custom resampling strategies (i.e. resampling strategies that are not @@ -266,13 +286,13 @@

scikit-learn splitter objectsOut:

AutoSklearnClassifier(per_run_time_limit=30,
-                      resampling_strategy=PredefinedSplit(test_fold=array([  3,   4, ..., 424, 425])),
+                      resampling_strategy=PredefinedSplit(test_fold=array([0, 0, ..., 1, 1])),
                       time_left_for_this_task=120,
                       tmp_folder='/tmp/autosklearn_resampling_example_tmp')
 
-

-
+ +

Get the Score of the final ensemble (again)

Obviously, this score is pretty bad as we “destroyed” the dataset by splitting it on the first feature.

@@ -281,10 +301,10 @@

Get the Score of the final ensemble (again)Out:

-

-
+ + @@ -319,7 +339,7 @@

Get the Score of the final ensemble (again)Sphinx 4.2.0.

diff --git a/master/examples/40_advanced/example_single_configuration.html b/master/examples/40_advanced/example_single_configuration.html index 85e52edfdf..9ec78492a5 100644 --- a/master/examples/40_advanced/example_single_configuration.html +++ b/master/examples/40_advanced/example_single_configuration.html @@ -3,9 +3,8 @@ - - - Fit a single configuration — AutoSklearn 0.14.2 documentation + + Fit a single configuration — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 -
+

Fit a single configuration

Auto-sklearn searches for the best combination of machine learning algorithms and their hyper-parameter configuration for a given task, using Scikit-Learn Pipelines. @@ -144,7 +143,7 @@ import autosklearn.classification

-
+

Data Loading

X, y = sklearn.datasets.fetch_openml(data_id=3, return_X_y=True, as_frame=True)
 X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
@@ -152,8 +151,8 @@ 

Data Loading)

-
-
+ +

Define an estimator

cls = autosklearn.classification.AutoSklearnClassifier(
     time_left_for_this_task=120,
@@ -169,8 +168,8 @@ 

Define an estimator)

-
-
+ +

Fit an user provided configuration

# We will create a configuration that has a user defined
 # min_samples_split in the Random Forest. We recommend you to look into
@@ -209,64 +208,76 @@ 

Fit an user provided configurationOut:

-
{'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f937c5a9ca0>, 'balancing': Balancing(random_state=1, strategy='weighting'), 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f937b0d0e50>, 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f937b0d0a00>}
+
{'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78ffee460>, 'balancing': Balancing(random_state=1), 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78ab79cd0>, 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78aae48b0>}
 RunInfo(config=Configuration:
-  balancing:strategy, Value: 'weighting'
+  balancing:strategy, Value: 'none'
   classifier:__choice__, Value: 'random_forest'
-  classifier:random_forest:bootstrap, Value: 'False'
-  classifier:random_forest:criterion, Value: 'gini'
+  classifier:random_forest:bootstrap, Value: 'True'
+  classifier:random_forest:criterion, Value: 'entropy'
   classifier:random_forest:max_depth, Constant: 'None'
-  classifier:random_forest:max_features, Value: 0.40665293991189455
+  classifier:random_forest:max_features, Value: 0.7056146361355262
   classifier:random_forest:max_leaf_nodes, Constant: 'None'
   classifier:random_forest:min_impurity_decrease, Constant: 0.0
-  classifier:random_forest:min_samples_leaf, Value: 13
+  classifier:random_forest:min_samples_leaf, Value: 11
   classifier:random_forest:min_samples_split, Value: 11
   classifier:random_forest:min_weight_fraction_leaf, Constant: 0.0
   data_preprocessor:__choice__, Value: 'feature_type'
-  data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__, Value: 'no_encoding'
-  data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__, Value: 'minority_coalescer'
-  data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction, Value: 0.0012559712452161484
-  data_preprocessor:feature_type:numerical_transformer:imputation:strategy, Value: 'median'
-  data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__, Value: 'quantile_transformer'
-  data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles, Value: 204
-  data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution, Value: 'normal'
-  feature_preprocessor:__choice__, Value: 'polynomial'
-  feature_preprocessor:polynomial:degree, Value: 2
-  feature_preprocessor:polynomial:include_bias, Value: 'False'
-  feature_preprocessor:polynomial:interaction_only, Value: 'True'
+  data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__, Value: 'one_hot_encoding'
+  data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__, Value: 'no_coalescense'
+  data_preprocessor:feature_type:numerical_transformer:imputation:strategy, Value: 'mean'
+  data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__, Value: 'none'
+  feature_preprocessor:__choice__, Value: 'extra_trees_preproc_for_classification'
+  feature_preprocessor:extra_trees_preproc_for_classification:bootstrap, Value: 'False'
+  feature_preprocessor:extra_trees_preproc_for_classification:criterion, Value: 'gini'
+  feature_preprocessor:extra_trees_preproc_for_classification:max_depth, Constant: 'None'
+  feature_preprocessor:extra_trees_preproc_for_classification:max_features, Value: 0.41746352744644133
+  feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes, Constant: 'None'
+  feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease, Constant: 0.0
+  feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf, Value: 5
+  feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split, Value: 2
+  feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf, Constant: 0.0
+  feature_preprocessor:extra_trees_preproc_for_classification:n_estimators, Constant: 100
 , instance=None, instance_specific=None, seed=1, cutoff=60, capped=False, budget=0.0, source_id=0)
-RunValue(cost=0.012322274881516604, time=2.914306402206421, status=<StatusType.SUCCESS: 1>, starttime=1636487580.5942185, endtime=1636487583.5312755, additional_info={'duration': 2.8303675651550293, 'num_run': 2, 'train_loss': 0.012143858010275621, 'configuration_origin': None})
+RunValue(cost=0.03033175355450235, time=2.2301056385040283, status=<StatusType.SUCCESS: 1>, starttime=1643127754.4012537, endtime=1643127756.6555753, additional_info={'duration': 2.1325058937072754, 'num_run': 2, 'train_loss': 0.047641289117234975, 'configuration_origin': None})
 Passed Configuration: Configuration:
-  balancing:strategy, Value: 'weighting'
+  balancing:strategy, Value: 'none'
   classifier:__choice__, Value: 'random_forest'
-  classifier:random_forest:bootstrap, Value: 'False'
-  classifier:random_forest:criterion, Value: 'gini'
+  classifier:random_forest:bootstrap, Value: 'True'
+  classifier:random_forest:criterion, Value: 'entropy'
   classifier:random_forest:max_depth, Constant: 'None'
-  classifier:random_forest:max_features, Value: 0.40665293991189455
+  classifier:random_forest:max_features, Value: 0.7056146361355262
   classifier:random_forest:max_leaf_nodes, Constant: 'None'
   classifier:random_forest:min_impurity_decrease, Constant: 0.0
-  classifier:random_forest:min_samples_leaf, Value: 13
+  classifier:random_forest:min_samples_leaf, Value: 11
   classifier:random_forest:min_samples_split, Value: 11
   classifier:random_forest:min_weight_fraction_leaf, Constant: 0.0
   data_preprocessor:__choice__, Value: 'feature_type'
-  data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__, Value: 'no_encoding'
-  data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__, Value: 'minority_coalescer'
-  data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction, Value: 0.0012559712452161484
-  data_preprocessor:feature_type:numerical_transformer:imputation:strategy, Value: 'median'
-  data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__, Value: 'quantile_transformer'
-  data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles, Value: 204
-  data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution, Value: 'normal'
-  feature_preprocessor:__choice__, Value: 'polynomial'
-  feature_preprocessor:polynomial:degree, Value: 2
-  feature_preprocessor:polynomial:include_bias, Value: 'False'
-  feature_preprocessor:polynomial:interaction_only, Value: 'True'
+  data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__, Value: 'one_hot_encoding'
+  data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__, Value: 'no_coalescense'
+  data_preprocessor:feature_type:numerical_transformer:imputation:strategy, Value: 'mean'
+  data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__, Value: 'none'
+  feature_preprocessor:__choice__, Value: 'extra_trees_preproc_for_classification'
+  feature_preprocessor:extra_trees_preproc_for_classification:bootstrap, Value: 'False'
+  feature_preprocessor:extra_trees_preproc_for_classification:criterion, Value: 'gini'
+  feature_preprocessor:extra_trees_preproc_for_classification:max_depth, Constant: 'None'
+  feature_preprocessor:extra_trees_preproc_for_classification:max_features, Value: 0.41746352744644133
+  feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes, Constant: 'None'
+  feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease, Constant: 0.0
+  feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf, Value: 5
+  feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split, Value: 2
+  feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf, Constant: 0.0
+  feature_preprocessor:extra_trees_preproc_for_classification:n_estimators, Constant: 100
 
-Random Forest: RandomForestClassifier(bootstrap=False, max_features=14, min_samples_leaf=13,
+Random Forest: RandomForestClassifier(criterion='entropy', max_features=6, min_samples_leaf=11,
                        min_samples_split=11, n_estimators=512, n_jobs=1,
                        random_state=1, warm_start=True)
+/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:68: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
+  self.metafeatures = self.metafeatures.append(metafeatures)
+/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:72: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
+  self.algorithm_runs[metric].append(runs)
 
-

Total running time of the script: ( 2 minutes 24.877 seconds)

+

Total running time of the script: ( 2 minutes 5.409 seconds)

-
+ + @@ -301,7 +312,7 @@

Fit an user provided configurationSphinx 4.2.0.

diff --git a/master/examples/40_advanced/sg_execution_times.html b/master/examples/40_advanced/sg_execution_times.html index d13123a6d0..af1c0e7504 100644 --- a/master/examples/40_advanced/sg_execution_times.html +++ b/master/examples/40_advanced/sg_execution_times.html @@ -3,9 +3,8 @@ - - - Computation times — AutoSklearn 0.14.2 documentation + + Computation times — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4
-
+

Computation times

-

25:21.692 total execution time for examples_40_advanced files:

+

23:57.125 total execution time for examples_40_advanced files:

@@ -125,48 +124,48 @@ - + - + - + - + - + - + - + - + - + - +

Resampling Strategies (example_resampling.py)

06:22.500

06:27.008

0.0 MB

Metrics (example_metrics.py)

05:19.475

04:39.637

0.0 MB

Model Explanation (example_inspect_predictions.py)

04:02.065

04:06.567

0.0 MB

Fit a single configuration (example_single_configuration.py)

02:24.877

02:05.409

0.0 MB

Metrics (example_calc_multiple_metrics.py)

02:08.166

01:59.942

0.0 MB

Performance-over-time plot (example_pandas_train_test.py)

02:01.039

01:55.852

0.0 MB

Interpretable models (example_interpretable_models.py)

01:55.571

01:54.044

0.0 MB

Obtain run information (example_get_pipeline_components.py)

00:34.468

00:24.928

0.0 MB

Logging and debugging (example_debug_logging.py)

00:22.911

00:14.975

0.0 MB

Feature Types (example_feature_types.py)

00:10.620

00:08.763

0.0 MB

-
+
@@ -187,7 +186,7 @@

- © Copyright 2014-2021, Machine Learning Professorship Freiburg.
+ © Copyright 2014-2022, Machine Learning Professorship Freiburg.
Created using Sphinx 4.2.0.

diff --git a/master/examples/60_search/example_parallel_manual_spawning_cli.html b/master/examples/60_search/example_parallel_manual_spawning_cli.html index ed3e5df7b9..526cc958d3 100644 --- a/master/examples/60_search/example_parallel_manual_spawning_cli.html +++ b/master/examples/60_search/example_parallel_manual_spawning_cli.html @@ -3,9 +3,8 @@ - - - Parallel Usage: Spawning workers from the command line — AutoSklearn 0.14.2 documentation + + Parallel Usage: Spawning workers from the command line — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 -
+

Parallel Usage: Spawning workers from the command line

Auto-sklearn uses dask.distributed @@ -139,17 +138,19 @@

This example shows how to start the dask scheduler and spawn workers for Auto-sklearn manually from the command line. Use this example as a starting point to parallelize Auto-sklearn across multiple -machines. If you want to start everything manually from within Python -please see Parallel Usage: Spawning workers from within Python. -To run Auto-sklearn in parallel on a single machine check out the example +machines.

+

To run Auto-sklearn in parallel on a single machine check out the example Parallel Usage on a single machine.

+

If you want to start everything manually from within Python +please see :ref:sphx_glr_examples_60_search_example_parallel_manual_spawning_python.py.

+

NOTE: Above example is disabled due to issue https://github.com/dask/distributed/issues/5627

You can learn more about the dask command line interface from https://docs.dask.org/en/latest/setup/cli.html.

When manually passing a dask client to Auto-sklearn, all logic must be guarded by if __name__ == "__main__": statements! We use multiple such statements to properly render this example as a notebook and also allow execution via the command line.

-
+

Background

To run Auto-sklearn distributed on multiple machines we need to set up three components:

@@ -169,8 +170,8 @@

Backgroundsubprocess module as done here (for the sake of having a self-contained example).

-

-
+
+

Import statements

import multiprocessing
 import subprocess
@@ -188,8 +189,8 @@ 

Import statementsworker_processes = []

-
-
+ +

0. Setup client-scheduler communication

In this examples the dask scheduler is started without an explicit address and port. Instead, the scheduler takes a free port and stores @@ -199,8 +200,8 @@

0. Setup client-scheduler communication
scheduler_file_name = 'scheduler-file.json'
 

-
-
+ +

1. Start scheduler

Starting the scheduler is done with the following bash command:

dask-scheduler --scheduler-file scheduler-file.json --idle-timeout 10
@@ -230,8 +231,8 @@ 

1. Start schedulertime.sleep(1)

-
-
+ +

2. Start two workers

Starting the scheduler is done with the following bash command:

DASK_DISTRIBUTED__WORKER__DAEMON=False \
@@ -270,15 +271,15 @@ 

2. Start two workerstime.sleep(1)

-
-
+ +

3. Creating a client in Python

Finally we create a dask cluster which also connects to the scheduler via the information in the file created by the scheduler.

client = dask.distributed.Client(scheduler_file=scheduler_file_name)
 
-
+
-
-
+ + +

Wait until all workers are closed

This is only necessary if the workers are started from within this python script. In a real application one would start them directly from the command @@ -339,7 +344,7 @@

Wait until all workers are closedprocess.join()

-

Total running time of the script: ( 0 minutes 39.363 seconds)

+

Total running time of the script: ( 0 minutes 39.167 seconds)

- + + @@ -374,7 +379,7 @@

Wait until all workers are closedSphinx 4.2.0.

diff --git a/master/examples/60_search/example_parallel_manual_spawning_python.html b/master/examples/60_search/example_parallel_manual_spawning_python.html deleted file mode 100644 index f6ae93e719..0000000000 --- a/master/examples/60_search/example_parallel_manual_spawning_python.html +++ /dev/null @@ -1,326 +0,0 @@ - - - - - - - - Parallel Usage: Spawning workers from within Python — AutoSklearn 0.14.2 documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
- - -
-

Parallel Usage: Spawning workers from within Python

-

Auto-sklearn uses -dask.distributed -for parallel optimization.

-

This example shows how to start the dask scheduler and spawn -workers for Auto-sklearn manually within Python. Use this example -as a starting point to parallelize Auto-sklearn across multiple -machines. If you want to start everything manually from the command line -please see Parallel Usage: Spawning workers from the command line. -To run Auto-sklearn in parallel on a single machine check out the example -Parallel Usage on a single machine.

-

When manually passing a dask client to Auto-sklearn, all logic -must be guarded by if __name__ == "__main__": statements! We use -multiple such statements to properly render this example as a notebook -and also allow execution via the command line.

-
-

Background

-

To run Auto-sklearn distributed on multiple machines we need to set -up three components:

-
    -
  1. Auto-sklearn and a dask client. This will manage all workload, find new -configurations to evaluate and submit jobs via a dask client. As this -runs Bayesian optimization it should be executed on its own CPU.

  2. -
  3. The dask workers. They will do the actual work of running machine -learning algorithms and require their own CPU each.

  4. -
  5. The scheduler. It manages the communication between the dask client -and the different dask workers. As the client and all workers connect -to the scheduler it must be started first. This is a light-weight job -and does not require its own CPU.

  6. -
-

We will now start these three components in reverse order: scheduler, -workers and client. Also, in a real setup, the scheduler and the workers should -be started from the command line and not from within a Python file via -the subprocess module as done here (for the sake of having a self-contained -example).

-
import asyncio
-import multiprocessing
-import time
-
-import dask
-import dask.distributed
-import sklearn.datasets
-import sklearn.metrics
-
-from autosklearn.classification import AutoSklearnClassifier
-from autosklearn.constants import MULTICLASS_CLASSIFICATION
-
-tmp_folder = '/tmp/autosklearn_parallel_2_example_tmp'
-
-
-
-
-

Define function to start worker

-

Define the function to start a dask worker from python. This -is a bit cumbersome and should ideally be done from the command line. -We do it here only for illustrational purpose.

-
# Check the dask docs at
-# https://docs.dask.org/en/latest/setup/python-advanced.html for further
-# information.
-
-def start_python_worker(scheduler_address):
-    dask.config.set({'distributed.worker.daemon': False})
-
-    async def do_work():
-        async with dask.distributed.Nanny(
-            scheduler_ip=scheduler_address,
-            nthreads=1,
-            lifetime=35,  # automatically shut down the worker so this loop ends
-            memory_limit=0,  # Disable memory management as it is done by Auto-sklearn itself
-        ) as worker:
-            await worker.finished()
-
-    asyncio.get_event_loop().run_until_complete(do_work())
-
-
-
-
-

Start Auto-sklearn

-

We are now ready to start auto-sklearn and all dask related processes.

-

To use auto-sklearn in parallel we must guard the code with -if __name__ == '__main__'. We then start a dask cluster as a context, -which means that it is automatically stopped once all computation is done.

-
if __name__ == '__main__':
-    X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)
-    X_train, X_test, y_train, y_test = \
-        sklearn.model_selection.train_test_split(X, y, random_state=1)
-
-    # 1. Create a dask scheduler (LocalCluster)
-    with dask.distributed.LocalCluster(
-        n_workers=0, processes=True, threads_per_worker=1,
-    ) as cluster:
-
-        # 2. Start the workers
-        # now we start the two workers, one from within Python, the other
-        # via the command line.
-        worker_processes = []
-        for _ in range(2):
-            process_python_worker = multiprocessing.Process(
-                target=start_python_worker,
-                args=(cluster.scheduler_address, ),
-            )
-            process_python_worker.start()
-            worker_processes.append(process_python_worker)
-
-        # Wait a second for workers to become available
-        time.sleep(1)
-
-        # 3. Start the client
-        with dask.distributed.Client(address=cluster.scheduler_address) as client:
-            automl = AutoSklearnClassifier(
-                delete_tmp_folder_after_terminate=False,
-                time_left_for_this_task=30,
-                per_run_time_limit=10,
-                memory_limit=1024,
-                tmp_folder=tmp_folder,
-                seed=777,
-                # n_jobs is ignored internally as we pass a dask client.
-                n_jobs=1,
-                # Pass a dask client which connects to the previously constructed cluster.
-                dask_client=client,
-            )
-            automl.fit(X_train, y_train)
-
-            automl.fit_ensemble(
-                y_train,
-                task=MULTICLASS_CLASSIFICATION,
-                dataset_name='digits',
-                ensemble_size=20,
-                ensemble_nbest=50,
-            )
-
-        predictions = automl.predict(X_test)
-        print(automl.sprint_statistics())
-        print("Accuracy score", sklearn.metrics.accuracy_score(y_test, predictions))
-
-        # Wait until all workers are closed
-        for process in worker_processes:
-            process_python_worker.join()
-
-
-

Out:

-
[ERROR] [2021-11-09 20:12:34,562:asyncio] _GatheringFuture exception was never retrieved
-future: <_GatheringFuture finished exception=CancelledError()>
-asyncio.exceptions.CancelledError
-auto-sklearn results:
-  Dataset name: 5b2e548d-4199-11ec-8a32-1b4c952643c3
-  Metric: accuracy
-  Best validation score: 0.992908
-  Number of target algorithm runs: 14
-  Number of successful target algorithm runs: 12
-  Number of crashed target algorithm runs: 0
-  Number of target algorithms that exceeded the time limit: 2
-  Number of target algorithms that exceeded the memory limit: 0
-
-Accuracy score 0.965034965034965
-
-
-

Total running time of the script: ( 0 minutes 35.796 seconds)

- -

Gallery generated by Sphinx-Gallery

-
-
- - -
- -
-
-
-
-

- Back to top - -
- -

- -

-

- © Copyright 2014-2021, Machine Learning Professorship Freiburg.
- Created using Sphinx 4.2.0.
-

-
-
- - \ No newline at end of file diff --git a/master/examples/60_search/example_parallel_n_jobs.html b/master/examples/60_search/example_parallel_n_jobs.html index dda3ac5c4b..a75c4327c5 100644 --- a/master/examples/60_search/example_parallel_n_jobs.html +++ b/master/examples/60_search/example_parallel_n_jobs.html @@ -3,9 +3,8 @@ - - - Parallel Usage on a single machine — AutoSklearn 0.14.2 documentation + + Parallel Usage on a single machine — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 -
+

Parallel Usage on a single machine

Auto-sklearn uses dask.distributed <https://distributed.dask.org/en/latest/index.html>_ @@ -141,15 +140,15 @@ import autosklearn.classification

-
+

Data Loading

X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)
 X_train, X_test, y_train, y_test = \
     sklearn.model_selection.train_test_split(X, y, random_state=1)
 
-
-
+ +
-
+ + @@ -217,7 +220,7 @@

Build and fit a classifierSphinx 4.2.0.

diff --git a/master/examples/60_search/example_random_search.html b/master/examples/60_search/example_random_search.html index 12f2c49149..191949e60a 100644 --- a/master/examples/60_search/example_random_search.html +++ b/master/examples/60_search/example_random_search.html @@ -3,9 +3,8 @@ - - - Random Search — AutoSklearn 0.14.2 documentation + + Random Search — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 - - - + + @@ -695,7 +880,7 @@

Fit a classifier using Random SearchSphinx 4.2.0.

diff --git a/master/examples/60_search/example_sequential.html b/master/examples/60_search/example_sequential.html index 953ab49774..79b0662916 100644 --- a/master/examples/60_search/example_sequential.html +++ b/master/examples/60_search/example_sequential.html @@ -3,9 +3,8 @@ - - - Sequential Usage — AutoSklearn 0.14.2 documentation + + Sequential Usage — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 -
+

Sequential Usage

By default, auto-sklearn fits the machine learning models and build their ensembles in parallel. However, it is also possible to run the two processes sequentially. The example below shows how to first fit the models and build the ensembles afterwards.

-
- -
+ +

Get the Score of the final ensemble

predictions = automl.predict(X_test)
 print(automl.sprint_statistics())
@@ -370,16 +489,16 @@ 

Get the Score of the final ensembleTotal running time of the script: ( 2 minutes 4.152 seconds)

+

Total running time of the script: ( 2 minutes 1.878 seconds)

- + + @@ -414,7 +533,7 @@

Get the Score of the final ensembleSphinx 4.2.0.

diff --git a/master/examples/60_search/example_successive_halving.html b/master/examples/60_search/example_successive_halving.html index 1774733d32..6a4fb0a402 100644 --- a/master/examples/60_search/example_successive_halving.html +++ b/master/examples/60_search/example_successive_halving.html @@ -3,9 +3,8 @@ - - - Successive Halving — AutoSklearn 0.14.2 documentation + + Successive Halving — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 -
+

Successive Halving

This advanced example illustrates how to interact with the SMAC callback and get relevant information from the run, like @@ -138,14 +137,16 @@

This results in an adaptation of the BOHB algorithm. It uses Successive Halving instead of Hyperband, and could be abbreviated as BOSH. To get the BOHB algorithm, simply import Hyperband and use it as the intensification strategy.

-
import sklearn.model_selection
+
from pprint import pprint
+
+import sklearn.model_selection
 import sklearn.datasets
 import sklearn.metrics
 
 import autosklearn.classification
 
-
+

Define a callback that instantiates SuccessiveHalving

def get_smac_object_callback(budget_type):
     def get_smac_object(
@@ -197,16 +198,16 @@ 

Define a callback that instantiates SuccessiveHalvingreturn get_smac_object

-
-
+
+

Data Loading

X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)
 X_train, X_test, y_train, y_test = \
     sklearn.model_selection.train_test_split(X, y, random_state=1, shuffle=True)
 
-
-
+ +

Build and fit a classifier

automl = autosklearn.classification.AutoSklearnClassifier(
     time_left_for_this_task=40,
@@ -229,7 +230,7 @@ 

Build and fit a classifier) automl.fit(X_train, y_train, dataset_name='breast_cancer') -print(automl.show_models()) +pprint(automl.show_models(), indent=4) predictions = automl.predict(X_test) # Print statistics about the auto-sklearn run such as number of # iterations, number of models failed with a time out. @@ -238,176 +239,243 @@

Build and fit a classifierOut:

-
/opt/hostedtoolcache/Python/3.8.12/x64/lib/python3.8/site-packages/smac/intensification/parallel_scheduling.py:152: UserWarning: SuccessiveHalving is intended to be used with more than 1 worker but num_workers=1
+
/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:68: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
+  self.metafeatures = self.metafeatures.append(metafeatures)
+/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:72: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
+  self.algorithm_runs[metric].append(runs)
+/opt/hostedtoolcache/Python/3.8.12/x64/lib/python3.8/site-packages/smac/intensification/parallel_scheduling.py:152: UserWarning: SuccessiveHalving is intended to be used with more than 1 worker but num_workers=1
+  warnings.warn("{} is intended to be used "
+/opt/hostedtoolcache/Python/3.8.12/x64/lib/python3.8/site-packages/smac/intensification/parallel_scheduling.py:152: UserWarning: SuccessiveHalving is intended to be used with more than 1 worker but num_workers=1
   warnings.warn("{} is intended to be used "
-[(0.120000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:sgd:alpha': 9.410144741041167e-05, 'classifier:sgd:average': 'True', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'constant', 'classifier:sgd:loss': 'log', 'classifier:sgd:penalty': 'l1', 'classifier:sgd:tol': 0.05082904256838701, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'classifier:sgd:eta0': 0.0018055343233337954},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:sgd:alpha': 0.0002346515712987664, 'classifier:sgd:average': 'True', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'optimal', 'classifier:sgd:loss': 'log', 'classifier:sgd:penalty': 'l1', 'classifier:sgd:tol': 1.3716748930467322e-05, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize'},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.080000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'off', 'classifier:gradient_boosting:l2_regularization': 1.0945814167023392e-10, 'classifier:gradient_boosting:learning_rate': 0.11042628136263043, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 30, 'classifier:gradient_boosting:min_samples_leaf': 22, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.05141281638752715},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.926283631486858, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 7, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.16265262021972576},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.41808321658160696, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 4, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.011283688651384545},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.6128603428070196, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.08125391652261632, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8601586365248128, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.052862156055921525},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.41808321658160696, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 4, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.011283688651384545},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'off', 'classifier:gradient_boosting:l2_regularization': 1e-10, 'classifier:gradient_boosting:learning_rate': 0.16262682406125173, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 66, 'classifier:gradient_boosting:min_samples_leaf': 20, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.005428587241449129, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.75, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.23746960178084334},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'True', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.37705188916038523, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 2, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 521, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.09884140378258977, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 6, 'classifier:random_forest:min_samples_split': 13, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.022834561782884507},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'off', 'classifier:gradient_boosting:l2_regularization': 1.0945814167023392e-10, 'classifier:gradient_boosting:learning_rate': 0.11042628136263043, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 30, 'classifier:gradient_boosting:min_samples_leaf': 22, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.05141281638752715},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.7708651296941559, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 13, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 931, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'normal'},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.7323115919225983, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 15, 'classifier:random_forest:min_samples_split': 6, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.011901034843417571, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7818500358383581, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.20068746139723115},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.6779841015398226, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 14, 'classifier:random_forest:min_samples_split': 14, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.03961232028373377, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.9772109830437746, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.13300503334706695},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.41808321658160696, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 4, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.011283688651384545},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.41808321658160696, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 4, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.011283688651384545},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'train', 'classifier:gradient_boosting:l2_regularization': 3.609412172481434e-10, 'classifier:gradient_boosting:learning_rate': 0.05972079854295879, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 4, 'classifier:gradient_boosting:min_samples_leaf': 2, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'classifier:gradient_boosting:n_iter_no_change': 14},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'off', 'classifier:gradient_boosting:l2_regularization': 1.0945814167023392e-10, 'classifier:gradient_boosting:learning_rate': 0.11042628136263043, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 30, 'classifier:gradient_boosting:min_samples_leaf': 22, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.05141281638752715},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-]
+{   2: {   'balancing': Balancing(random_state=1),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc784bf1d00>,
+           'cost': 0.021276595744680882,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78febd310>,
+           'ensemble_weight': 0.02,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc784bf19d0>,
+           'model_id': 2,
+           'rank': 5,
+           'sklearn_classifier': RandomForestClassifier(max_features=5, n_estimators=64, n_jobs=1,
+                       random_state=1, warm_start=True)},
+    3: {   'balancing': Balancing(random_state=1),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78c43e580>,
+           'cost': 0.028368794326241176,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc786095a90>,
+           'ensemble_weight': 0.04,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78a9ea4f0>,
+           'model_id': 3,
+           'rank': 9,
+           'sklearn_classifier': RandomForestClassifier(criterion='entropy', max_features=23, min_samples_leaf=7,
+                       n_estimators=64, n_jobs=1, random_state=1,
+                       warm_start=True)},
+    4: {   'balancing': Balancing(random_state=1),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78c057850>,
+           'cost': 0.07801418439716312,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc7869195e0>,
+           'ensemble_weight': 0.08,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78c057550>,
+           'model_id': 4,
+           'rank': 21,
+           'sklearn_classifier': PassiveAggressiveClassifier(C=0.14268277711454813, max_iter=128, random_state=1,
+                            tol=0.0002600768160857831, warm_start=True)},
+    5: {   'balancing': Balancing(random_state=1),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc7871ffbe0>,
+           'cost': 0.028368794326241176,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78b915d00>,
+           'ensemble_weight': 0.04,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc7871ff9a0>,
+           'model_id': 5,
+           'rank': 10,
+           'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=False, l2_regularization=1e-10,
+                               learning_rate=0.16262682406125173, max_iter=64,
+                               max_leaf_nodes=66, n_iter_no_change=0,
+                               random_state=1, validation_fraction=None,
+                               warm_start=True)},
+    7: {   'balancing': Balancing(random_state=1),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc784d70430>,
+           'cost': 0.03546099290780147,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc7867e4640>,
+           'ensemble_weight': 0.04,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc784d702b0>,
+           'model_id': 7,
+           'rank': 13,
+           'sklearn_classifier': SGDClassifier(alpha=0.0002346515712987664, average=True, eta0=0.01, loss='log',
+              max_iter=128, penalty='l1', random_state=1,
+              tol=1.3716748930467322e-05, warm_start=True)},
+    8: {   'balancing': Balancing(random_state=1, strategy='weighting'),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78509fd30>,
+           'cost': 0.014184397163120588,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc790682160>,
+           'ensemble_weight': 0.06,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78509f910>,
+           'model_id': 8,
+           'rank': 1,
+           'sklearn_classifier': RandomForestClassifier(bootstrap=False, criterion='entropy', max_features=4,
+                       min_samples_split=4, n_estimators=64, n_jobs=1,
+                       random_state=1, warm_start=True)},
+    9: {   'balancing': Balancing(random_state=1),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc786abba00>,
+           'cost': 0.021276595744680882,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78a86deb0>,
+           'ensemble_weight': 0.04,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc786abb100>,
+           'model_id': 9,
+           'rank': 7,
+           'sklearn_classifier': ExtraTreesClassifier(criterion='entropy', max_features=8, min_samples_split=3,
+                     n_estimators=512, n_jobs=1, random_state=1,
+                     warm_start=True)},
+    10: {   'balancing': Balancing(random_state=1, strategy='weighting'),
+            'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78582e940>,
+            'cost': 0.028368794326241176,
+            'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78b656a90>,
+            'ensemble_weight': 0.04,
+            'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78582e3d0>,
+            'model_id': 10,
+            'rank': 11,
+            'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=True,
+                               l2_regularization=5.027708640006448e-08,
+                               learning_rate=0.09750328007832798, max_iter=64,
+                               max_leaf_nodes=1234, min_samples_leaf=25,
+                               n_iter_no_change=1, random_state=1,
+                               validation_fraction=0.08300813783286698,
+                               warm_start=True)},
+    11: {   'balancing': Balancing(random_state=1, strategy='weighting'),
+            'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78fc1c340>,
+            'cost': 0.014184397163120588,
+            'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc787888970>,
+            'ensemble_weight': 0.0,
+            'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78fc1c760>,
+            'model_id': 11,
+            'rank': 8,
+            'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=False,
+                               l2_regularization=1.0945814167023392e-10,
+                               learning_rate=0.11042628136263043, max_iter=64,
+                               max_leaf_nodes=30, min_samples_leaf=22,
+                               n_iter_no_change=0, random_state=1,
+                               validation_fraction=None, warm_start=True)},
+    12: {   'balancing': Balancing(random_state=1),
+            'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc7878b19d0>,
+            'cost': 0.04255319148936165,
+            'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78a7d53a0>,
+            'ensemble_weight': 0.1,
+            'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc7878b1850>,
+            'model_id': 12,
+            'rank': 16,
+            'sklearn_classifier': RandomForestClassifier(criterion='entropy', max_features=1, min_samples_leaf=6,
+                       min_samples_split=13, n_estimators=64, n_jobs=1,
+                       random_state=1, warm_start=True)},
+    13: {   'balancing': Balancing(random_state=1, strategy='weighting'),
+            'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc787a63dc0>,
+            'cost': 0.03546099290780147,
+            'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc785869040>,
+            'ensemble_weight': 0.02,
+            'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc787a63bb0>,
+            'model_id': 13,
+            'rank': 14,
+            'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=True,
+                               l2_regularization=2.506856350040198e-06,
+                               learning_rate=0.04634380160611007, max_iter=64,
+                               max_leaf_nodes=11, min_samples_leaf=41,
+                               n_iter_no_change=17, random_state=1,
+                               validation_fraction=None, warm_start=True)},
+    14: {   'balancing': Balancing(random_state=1),
+            'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc7871e5400>,
+            'cost': 0.03546099290780147,
+            'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78b418430>,
+            'ensemble_weight': 0.04,
+            'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc7871e5280>,
+            'model_id': 14,
+            'rank': 15,
+            'sklearn_classifier': ExtraTreesClassifier(bootstrap=True, max_features=3, min_samples_leaf=2,
+                     min_samples_split=3, n_estimators=64, n_jobs=1,
+                     random_state=1, warm_start=True)},
+    16: {   'balancing': Balancing(random_state=1, strategy='weighting'),
+            'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78a9cc160>,
+            'cost': 0.049645390070921946,
+            'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc7871ccb50>,
+            'ensemble_weight': 0.06,
+            'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc7869b8e80>,
+            'model_id': 16,
+            'rank': 18,
+            'sklearn_classifier': RandomForestClassifier(bootstrap=False, criterion='entropy', max_features=12,
+                       min_samples_leaf=15, min_samples_split=6,
+                       n_estimators=64, n_jobs=1, random_state=1,
+                       warm_start=True)},
+    17: {   'balancing': Balancing(random_state=1, strategy='weighting'),
+            'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78a370be0>,
+            'cost': 0.099290780141844,
+            'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78c0e9b50>,
+            'ensemble_weight': 0.06,
+            'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78a3702e0>,
+            'model_id': 17,
+            'rank': 22,
+            'sklearn_classifier': SGDClassifier(alpha=9.410144741041167e-05, average=True,
+              eta0=0.0018055343233337954, learning_rate='constant', loss='log',
+              max_iter=128, penalty='l1', random_state=1,
+              tol=0.05082904256838701, warm_start=True)},
+    18: {   'balancing': Balancing(random_state=1, strategy='weighting'),
+            'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc7845473a0>,
+            'cost': 0.05673758865248224,
+            'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc7864a4700>,
+            'ensemble_weight': 0.06,
+            'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc784547220>,
+            'model_id': 18,
+            'rank': 20,
+            'sklearn_classifier': RandomForestClassifier(criterion='entropy', max_features=10,
+                       min_samples_leaf=14, min_samples_split=14,
+                       n_estimators=64, n_jobs=1, random_state=1,
+                       warm_start=True)},
+    19: {   'balancing': Balancing(random_state=1),
+            'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc7848717c0>,
+            'cost': 0.028368794326241176,
+            'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78b498c70>,
+            'ensemble_weight': 0.04,
+            'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78af79730>,
+            'model_id': 19,
+            'rank': 12,
+            'sklearn_classifier': RandomForestClassifier(bootstrap=False, criterion='entropy', max_features=13,
+                       min_samples_leaf=13, n_estimators=64, n_jobs=1,
+                       random_state=1, warm_start=True)},
+    20: {   'balancing': Balancing(random_state=1),
+            'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc7868a13a0>,
+            'cost': 0.049645390070921946,
+            'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78758e4c0>,
+            'ensemble_weight': 0.02,
+            'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc7868a1220>,
+            'model_id': 20,
+            'rank': 19,
+            'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=False,
+                               l2_regularization=5.2497721880674565e-06,
+                               learning_rate=0.03162215674470446, max_iter=64,
+                               max_leaf_nodes=74, min_samples_leaf=1,
+                               n_iter_no_change=0, random_state=1,
+                               validation_fraction=None, warm_start=True)},
+    21: {   'balancing': Balancing(random_state=1),
+            'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc7864b81f0>,
+            'cost': 0.04255319148936165,
+            'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78bad4130>,
+            'ensemble_weight': 0.02,
+            'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc7864b8130>,
+            'model_id': 21,
+            'rank': 17,
+            'sklearn_classifier': PassiveAggressiveClassifier(C=0.05491437530740365, average=True,
+                            loss='squared_hinge', max_iter=128, random_state=1,
+                            tol=0.003640536588885903, warm_start=True)}}
 auto-sklearn results:
   Dataset name: breast_cancer
   Metric: accuracy
   Best validation score: 0.985816
-  Number of target algorithm runs: 24
-  Number of successful target algorithm runs: 24
+  Number of target algorithm runs: 26
+  Number of successful target algorithm runs: 26
   Number of crashed target algorithm runs: 0
   Number of target algorithms that exceeded the time limit: 0
   Number of target algorithms that exceeded the memory limit: 0
 
-Accuracy score 0.9440559440559441
+Accuracy score 0.951048951048951
 
-

-
+ +

We can also use cross-validation with successive halving

X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)
 X_train, X_test, y_train, y_test = \
@@ -431,7 +499,7 @@ 

We can also use cross-validation with successive halvingautoml.fit(X_train, y_train, dataset_name='breast_cancer') # Print the final ensemble constructed by auto-sklearn. -print(automl.show_models()) +pprint(automl.show_models(), indent=4) automl.refit(X_train, y_train) predictions = automl.predict(X_test) # Print statistics about the auto-sklearn run such as number of @@ -441,80 +509,362 @@

We can also use cross-validation with successive halvingOut:

-
/opt/hostedtoolcache/Python/3.8.12/x64/lib/python3.8/site-packages/smac/intensification/parallel_scheduling.py:152: UserWarning: SuccessiveHalving is intended to be used with more than 1 worker but num_workers=1
+
/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:68: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
+  self.metafeatures = self.metafeatures.append(metafeatures)
+/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:72: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
+  self.algorithm_runs[metric].append(runs)
+/opt/hostedtoolcache/Python/3.8.12/x64/lib/python3.8/site-packages/smac/intensification/parallel_scheduling.py:152: UserWarning: SuccessiveHalving is intended to be used with more than 1 worker but num_workers=1
   warnings.warn("{} is intended to be used "
-[(0.280000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:passive_aggressive:C': 0.14268277711454813, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.0002600768160857831, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0070580904199417415},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.180000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.6128603428070196, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.08125391652261632, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8601586365248128, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.052862156055921525},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.180000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.6128603428070196, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.08125391652261632, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8601586365248128, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.052862156055921525},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.160000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.6128603428070196, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 3, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.08125391652261632, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.8601586365248128, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.052862156055921525},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:sgd:alpha': 0.0002346515712987664, 'classifier:sgd:average': 'True', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'optimal', 'classifier:sgd:loss': 'log', 'classifier:sgd:penalty': 'l1', 'classifier:sgd:tol': 1.3716748930467322e-05, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize'},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.926283631486858, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 7, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.16265262021972576},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-]
+{   2: {   'cost': 0.046948356807511755,
+           'ensemble_weight': 0.14,
+           'estimators': [   {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78baa93d0>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc786564c10>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc7878b0160>,
+                                 'sklearn_classifier': RandomForestClassifier(max_features=5, n_estimators=64, n_jobs=1,
+                       random_state=1, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc787c7a3d0>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc786edd8b0>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc787c7a280>,
+                                 'sklearn_classifier': RandomForestClassifier(max_features=5, n_estimators=64, n_jobs=1,
+                       random_state=1, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78753bcd0>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78715d9d0>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78753bb20>,
+                                 'sklearn_classifier': RandomForestClassifier(max_features=5, n_estimators=64, n_jobs=1,
+                       random_state=1, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78beb7c40>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc785684b50>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78beb7b50>,
+                                 'sklearn_classifier': RandomForestClassifier(max_features=5, n_estimators=64, n_jobs=1,
+                       random_state=1, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc7872bce20>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78728de20>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc7872bcd30>,
+                                 'sklearn_classifier': RandomForestClassifier(max_features=5, n_estimators=64, n_jobs=1,
+                       random_state=1, warm_start=True)}],
+           'model_id': 2,
+           'rank': 8,
+           'voting_model': VotingClassifier(estimators=None, voting='soft')},
+    3: {   'cost': 0.05164319248826292,
+           'ensemble_weight': 0.04,
+           'estimators': [   {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc787c79550>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc7878b5580>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc786ed8610>,
+                                 'sklearn_classifier': RandomForestClassifier(criterion='entropy', max_features=23, min_samples_leaf=7,
+                       n_estimators=64, n_jobs=1, random_state=1,
+                       warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78c5a0e80>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78c0a7940>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78c5a0cd0>,
+                                 'sklearn_classifier': RandomForestClassifier(criterion='entropy', max_features=23, min_samples_leaf=7,
+                       n_estimators=64, n_jobs=1, random_state=1,
+                       warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc7876f1ac0>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc7876d8b80>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc7876f1be0>,
+                                 'sklearn_classifier': RandomForestClassifier(criterion='entropy', max_features=23, min_samples_leaf=7,
+                       n_estimators=64, n_jobs=1, random_state=1,
+                       warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc787711040>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc787742160>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc7877111c0>,
+                                 'sklearn_classifier': RandomForestClassifier(criterion='entropy', max_features=23, min_samples_leaf=7,
+                       n_estimators=64, n_jobs=1, random_state=1,
+                       warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78662fb20>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc786633bb0>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78662fc40>,
+                                 'sklearn_classifier': RandomForestClassifier(criterion='entropy', max_features=23, min_samples_leaf=7,
+                       n_estimators=64, n_jobs=1, random_state=1,
+                       warm_start=True)}],
+           'model_id': 3,
+           'rank': 10,
+           'voting_model': VotingClassifier(estimators=None, voting='soft')},
+    4: {   'cost': 0.08215962441314555,
+           'ensemble_weight': 0.2,
+           'estimators': [   {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc787157910>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc7877de790>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78714dfd0>,
+                                 'sklearn_classifier': PassiveAggressiveClassifier(C=0.14268277711454813, max_iter=128, random_state=1,
+                            tol=0.0002600768160857831, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc7876d02b0>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78c4f2e80>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc7876d0310>,
+                                 'sklearn_classifier': PassiveAggressiveClassifier(C=0.14268277711454813, max_iter=128, random_state=1,
+                            tol=0.0002600768160857831, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78c53cb80>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc787711670>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78c53c5e0>,
+                                 'sklearn_classifier': PassiveAggressiveClassifier(C=0.14268277711454813, max_iter=128, random_state=1,
+                            tol=0.0002600768160857831, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc7843c0100>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc7843a12e0>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc7843b7d60>,
+                                 'sklearn_classifier': PassiveAggressiveClassifier(C=0.14268277711454813, max_iter=128, random_state=1,
+                            tol=0.0002600768160857831, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc785b7e4c0>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc787ec5b20>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc785b7e400>,
+                                 'sklearn_classifier': PassiveAggressiveClassifier(C=0.14268277711454813, max_iter=128, random_state=1,
+                            tol=0.0002600768160857831, warm_start=True)}],
+           'model_id': 4,
+           'rank': 11,
+           'voting_model': VotingClassifier(estimators=None, voting='soft')},
+    5: {   'cost': 0.035211267605633804,
+           'ensemble_weight': 0.02,
+           'estimators': [   {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc7903592e0>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc787e052e0>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78ba37610>,
+                                 'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=False, l2_regularization=1e-10,
+                               learning_rate=0.16262682406125173, max_iter=64,
+                               max_leaf_nodes=66, n_iter_no_change=0,
+                               random_state=1, validation_fraction=None,
+                               warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc786184130>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78a956c40>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78fdee8b0>,
+                                 'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=False, l2_regularization=1e-10,
+                               learning_rate=0.16262682406125173, max_iter=64,
+                               max_leaf_nodes=66, n_iter_no_change=0,
+                               random_state=1, validation_fraction=None,
+                               warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78656e760>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc7878b0700>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78656e670>,
+                                 'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=False, l2_regularization=1e-10,
+                               learning_rate=0.16262682406125173, max_iter=64,
+                               max_leaf_nodes=66, n_iter_no_change=0,
+                               random_state=1, validation_fraction=None,
+                               warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc7850b5e50>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc785087190>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc7850b5d30>,
+                                 'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=False, l2_regularization=1e-10,
+                               learning_rate=0.16262682406125173, max_iter=64,
+                               max_leaf_nodes=66, n_iter_no_change=0,
+                               random_state=1, validation_fraction=None,
+                               warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78690f400>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc7875b5640>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78690ffd0>,
+                                 'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=False, l2_regularization=1e-10,
+                               learning_rate=0.16262682406125173, max_iter=64,
+                               max_leaf_nodes=66, n_iter_no_change=0,
+                               random_state=1, validation_fraction=None,
+                               warm_start=True)}],
+           'model_id': 5,
+           'rank': 5,
+           'voting_model': VotingClassifier(estimators=None, voting='soft')},
+    6: {   'cost': 0.04694835680751174,
+           'ensemble_weight': 0.02,
+           'estimators': [   {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc786fe3af0>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78c1023d0>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc786fe30a0>,
+                                 'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=True,
+                               l2_regularization=3.609412172481434e-10,
+                               learning_rate=0.05972079854295879, max_iter=64,
+                               max_leaf_nodes=4, min_samples_leaf=2,
+                               n_iter_no_change=14, random_state=1,
+                               validation_fraction=None, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc7876a55b0>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78753b430>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc7876a5520>,
+                                 'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=True,
+                               l2_regularization=3.609412172481434e-10,
+                               learning_rate=0.05972079854295879, max_iter=64,
+                               max_leaf_nodes=4, min_samples_leaf=2,
+                               n_iter_no_change=14, random_state=1,
+                               validation_fraction=None, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc785820a90>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78728db80>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc785820970>,
+                                 'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=True,
+                               l2_regularization=3.609412172481434e-10,
+                               learning_rate=0.05972079854295879, max_iter=64,
+                               max_leaf_nodes=4, min_samples_leaf=2,
+                               n_iter_no_change=14, random_state=1,
+                               validation_fraction=None, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78c5ab9a0>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78c099940>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78c5ab8b0>,
+                                 'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=True,
+                               l2_regularization=3.609412172481434e-10,
+                               learning_rate=0.05972079854295879, max_iter=64,
+                               max_leaf_nodes=4, min_samples_leaf=2,
+                               n_iter_no_change=14, random_state=1,
+                               validation_fraction=None, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc785eda430>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc784850e80>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc785eda250>,
+                                 'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=True,
+                               l2_regularization=3.609412172481434e-10,
+                               learning_rate=0.05972079854295879, max_iter=64,
+                               max_leaf_nodes=4, min_samples_leaf=2,
+                               n_iter_no_change=14, random_state=1,
+                               validation_fraction=None, warm_start=True)}],
+           'model_id': 6,
+           'rank': 9,
+           'voting_model': VotingClassifier(estimators=None, voting='soft')},
+    7: {   'cost': 0.035211267605633784,
+           'ensemble_weight': 0.16,
+           'estimators': [   {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc7868546d0>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78a593d90>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78c9447c0>,
+                                 'sklearn_classifier': SGDClassifier(alpha=0.0002346515712987664, average=True, eta0=0.01, loss='log',
+              max_iter=128, penalty='l1', random_state=1,
+              tol=1.3716748930467322e-05, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc786899d90>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc784bd3a00>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc786899b50>,
+                                 'sklearn_classifier': SGDClassifier(alpha=0.0002346515712987664, average=True, eta0=0.01, loss='log',
+              max_iter=128, penalty='l1', random_state=1,
+              tol=1.3716748930467322e-05, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc786fe3550>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc7875c2c40>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc786fe33d0>,
+                                 'sklearn_classifier': SGDClassifier(alpha=0.0002346515712987664, average=True, eta0=0.01, loss='log',
+              max_iter=128, penalty='l1', random_state=1,
+              tol=1.3716748930467322e-05, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc787a7a910>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc787a7e670>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc787a7a7f0>,
+                                 'sklearn_classifier': SGDClassifier(alpha=0.0002346515712987664, average=True, eta0=0.01, loss='log',
+              max_iter=128, penalty='l1', random_state=1,
+              tol=1.3716748930467322e-05, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc786b94460>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc786b860d0>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc786b94340>,
+                                 'sklearn_classifier': SGDClassifier(alpha=0.0002346515712987664, average=True, eta0=0.01, loss='log',
+              max_iter=128, penalty='l1', random_state=1,
+              tol=1.3716748930467322e-05, warm_start=True)}],
+           'model_id': 7,
+           'rank': 6,
+           'voting_model': VotingClassifier(estimators=None, voting='soft')},
+    8: {   'cost': 0.039906103286385,
+           'ensemble_weight': 0.08,
+           'estimators': [   {   'balancing': Balancing(random_state=1, strategy='weighting'),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78509fe80>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78b4c3280>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78ff43b20>,
+                                 'sklearn_classifier': RandomForestClassifier(bootstrap=False, criterion='entropy', max_features=4,
+                       min_samples_split=4, n_estimators=64, n_jobs=1,
+                       random_state=1, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1, strategy='weighting'),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc787a7a5b0>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78b73b580>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc787a7afa0>,
+                                 'sklearn_classifier': RandomForestClassifier(bootstrap=False, criterion='entropy', max_features=4,
+                       min_samples_split=4, n_estimators=64, n_jobs=1,
+                       random_state=1, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1, strategy='weighting'),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc786ed1c10>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78b7d9340>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc786ed1af0>,
+                                 'sklearn_classifier': RandomForestClassifier(bootstrap=False, criterion='entropy', max_features=4,
+                       min_samples_split=4, n_estimators=64, n_jobs=1,
+                       random_state=1, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1, strategy='weighting'),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78764e8b0>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc787ba92b0>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78764e7c0>,
+                                 'sklearn_classifier': RandomForestClassifier(bootstrap=False, criterion='entropy', max_features=4,
+                       min_samples_split=4, n_estimators=64, n_jobs=1,
+                       random_state=1, warm_start=True)},
+                             {   'balancing': Balancing(random_state=1, strategy='weighting'),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc784c08610>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78715dfd0>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc784c08520>,
+                                 'sklearn_classifier': RandomForestClassifier(bootstrap=False, criterion='entropy', max_features=4,
+                       min_samples_split=4, n_estimators=64, n_jobs=1,
+                       random_state=1, warm_start=True)}],
+           'model_id': 8,
+           'rank': 7,
+           'voting_model': VotingClassifier(estimators=None, voting='soft')},
+    9: {   'cost': 0.032863849765258205,
+           'ensemble_weight': 0.04,
+           'estimators': [   {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78ca86700>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc7873f3460>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78ca86b50>,
+                                 'sklearn_classifier': ExtraTreesClassifier(criterion='entropy', max_features=8, min_samples_split=3,
+                     n_estimators=512, n_jobs=1, random_state=1,
+                     warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78c93b3a0>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78c8b7970>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78c93bf10>,
+                                 'sklearn_classifier': ExtraTreesClassifier(criterion='entropy', max_features=8, min_samples_split=3,
+                     n_estimators=512, n_jobs=1, random_state=1,
+                     warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc787c50580>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78b7d9970>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc787c50460>,
+                                 'sklearn_classifier': ExtraTreesClassifier(criterion='entropy', max_features=8, min_samples_split=3,
+                     n_estimators=512, n_jobs=1, random_state=1,
+                     warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78b21c880>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78beb3ac0>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78b21c7c0>,
+                                 'sklearn_classifier': ExtraTreesClassifier(criterion='entropy', max_features=8, min_samples_split=3,
+                     n_estimators=512, n_jobs=1, random_state=1,
+                     warm_start=True)},
+                             {   'balancing': Balancing(random_state=1),
+                                 'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc787e609a0>,
+                                 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc785edabe0>,
+                                 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc787e608e0>,
+                                 'sklearn_classifier': ExtraTreesClassifier(criterion='entropy', max_features=8, min_samples_split=3,
+                     n_estimators=512, n_jobs=1, random_state=1,
+                     warm_start=True)}],
+           'model_id': 9,
+           'rank': 4,
+           'voting_model': VotingClassifier(estimators=None, voting='soft')}}
 auto-sklearn results:
   Dataset name: breast_cancer
   Metric: accuracy
   Best validation score: 0.971831
   Number of target algorithm runs: 11
-  Number of successful target algorithm runs: 10
+  Number of successful target algorithm runs: 11
   Number of crashed target algorithm runs: 0
-  Number of target algorithms that exceeded the time limit: 1
+  Number of target algorithms that exceeded the time limit: 0
   Number of target algorithms that exceeded the memory limit: 0
 
 Accuracy score 0.965034965034965
 
-

-
+ +

Use an iterative fit cross-validation with successive halving

X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)
 X_train, X_test, y_train, y_test = \
@@ -538,7 +888,7 @@ 

Use an iterative fit cross-validation with successive halvingautoml.fit(X_train, y_train, dataset_name='breast_cancer') # Print the final ensemble constructed by auto-sklearn. -print(automl.show_models()) +pprint(automl.show_models(), indent=4) automl.refit(X_train, y_train) predictions = automl.predict(X_test) # Print statistics about the auto-sklearn run such as number of @@ -548,65 +898,75 @@

Use an iterative fit cross-validation with successive halvingOut:

-
/opt/hostedtoolcache/Python/3.8.12/x64/lib/python3.8/site-packages/smac/intensification/parallel_scheduling.py:152: UserWarning: SuccessiveHalving is intended to be used with more than 1 worker but num_workers=1
+
/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:68: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
+  self.metafeatures = self.metafeatures.append(metafeatures)
+/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:72: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
+  self.algorithm_runs[metric].append(runs)
+/opt/hostedtoolcache/Python/3.8.12/x64/lib/python3.8/site-packages/smac/intensification/parallel_scheduling.py:152: UserWarning: SuccessiveHalving is intended to be used with more than 1 worker but num_workers=1
   warnings.warn("{} is intended to be used "
-[(0.240000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'sgd', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:sgd:alpha': 0.0002346515712987664, 'classifier:sgd:average': 'True', 'classifier:sgd:fit_intercept': 'True', 'classifier:sgd:learning_rate': 'optimal', 'classifier:sgd:loss': 'log', 'classifier:sgd:penalty': 'l1', 'classifier:sgd:tol': 1.3716748930467322e-05, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize'},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.180000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'False', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.41808321658160696, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 4, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.011283688651384545},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.160000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'passive_aggressive', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:passive_aggressive:C': 0.14268277711454813, 'classifier:passive_aggressive:average': 'False', 'classifier:passive_aggressive:fit_intercept': 'True', 'classifier:passive_aggressive:loss': 'hinge', 'classifier:passive_aggressive:tol': 0.0002600768160857831, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.0070580904199417415},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.140000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'train', 'classifier:gradient_boosting:l2_regularization': 3.609412172481434e-10, 'classifier:gradient_boosting:learning_rate': 0.05972079854295879, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 4, 'classifier:gradient_boosting:min_samples_leaf': 2, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'classifier:gradient_boosting:n_iter_no_change': 14},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.120000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.926283631486858, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 7, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.16265262021972576},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:gradient_boosting:early_stop': 'off', 'classifier:gradient_boosting:l2_regularization': 1e-10, 'classifier:gradient_boosting:learning_rate': 0.16262682406125173, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 66, 'classifier:gradient_boosting:min_samples_leaf': 20, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.005428587241449129, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.75, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.23746960178084334},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-]
+{   2: {   'balancing': Balancing(random_state=1),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78648be80>,
+           'cost': 0.046948356807511755,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78753bfa0>,
+           'ensemble_weight': 0.12,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78648b5b0>,
+           'model_id': 2,
+           'rank': 4,
+           'sklearn_classifier': None},
+    3: {   'balancing': Balancing(random_state=1),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc7871573a0>,
+           'cost': 0.05164319248826292,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc785814430>,
+           'ensemble_weight': 0.1,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc7871571c0>,
+           'model_id': 3,
+           'rank': 6,
+           'sklearn_classifier': None},
+    4: {   'balancing': Balancing(random_state=1),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc786ff0ca0>,
+           'cost': 0.11267605633802817,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc7875b5970>,
+           'ensemble_weight': 0.16,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc786ff0970>,
+           'model_id': 4,
+           'rank': 7,
+           'sklearn_classifier': None},
+    5: {   'balancing': Balancing(random_state=1),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc786912b20>,
+           'cost': 0.035211267605633804,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc787bb7550>,
+           'ensemble_weight': 0.06,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc786912460>,
+           'model_id': 5,
+           'rank': 2,
+           'sklearn_classifier': None},
+    6: {   'balancing': Balancing(random_state=1),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc785087220>,
+           'cost': 0.04694835680751174,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78715d850>,
+           'ensemble_weight': 0.14,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc785087df0>,
+           'model_id': 6,
+           'rank': 5,
+           'sklearn_classifier': None},
+    7: {   'balancing': Balancing(random_state=1),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc784c0adf0>,
+           'cost': 0.03286384976525822,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78715d9a0>,
+           'ensemble_weight': 0.24,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc787bb7430>,
+           'model_id': 7,
+           'rank': 1,
+           'sklearn_classifier': None},
+    8: {   'balancing': Balancing(random_state=1, strategy='weighting'),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78715d310>,
+           'cost': 0.039906103286385,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc784c0a520>,
+           'ensemble_weight': 0.18,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78715d3a0>,
+           'model_id': 8,
+           'rank': 3,
+           'sklearn_classifier': None}}
 auto-sklearn results:
   Dataset name: breast_cancer
   Metric: accuracy
@@ -620,8 +980,8 @@ 

Use an iterative fit cross-validation with successive halving +

+

Next, we see the use of subsampling as a budget in Auto-sklearn

X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)
 X_train, X_test, y_train, y_test = \
@@ -642,7 +1002,7 @@ 

Next, we see the use of subsampling as a budget in Auto-sklearnautoml.fit(X_train, y_train, dataset_name='breast_cancer') # Print the final ensemble constructed by auto-sklearn. -print(automl.show_models()) +pprint(automl.show_models(), indent=4) predictions = automl.predict(X_test) # Print statistics about the auto-sklearn run such as number of # iterations, number of models failed with a time out. @@ -651,104 +1011,51 @@

Next, we see the use of subsampling as a budget in Auto-sklearnOut:

-
/opt/hostedtoolcache/Python/3.8.12/x64/lib/python3.8/site-packages/smac/intensification/parallel_scheduling.py:152: UserWarning: SuccessiveHalving is intended to be used with more than 1 worker but num_workers=1
+
/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:68: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
+  self.metafeatures = self.metafeatures.append(metafeatures)
+/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:72: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
+  self.algorithm_runs[metric].append(runs)
+/opt/hostedtoolcache/Python/3.8.12/x64/lib/python3.8/site-packages/smac/intensification/parallel_scheduling.py:152: UserWarning: SuccessiveHalving is intended to be used with more than 1 worker but num_workers=1
   warnings.warn("{} is intended to be used "
-[(0.340000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'fast_ica', 'classifier:mlp:activation': 'relu', 'classifier:mlp:alpha': 0.0017940473175767063, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 2, 'classifier:mlp:learning_rate_init': 0.0004684917334431039, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 101, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:fast_ica:algorithm': 'parallel', 'feature_preprocessor:fast_ica:fun': 'exp', 'feature_preprocessor:fast_ica:whiten': 'False', 'classifier:mlp:validation_fraction': 0.1},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.260000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'mlp', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'feature_agglomeration', 'classifier:mlp:activation': 'tanh', 'classifier:mlp:alpha': 0.0001363185819149026, 'classifier:mlp:batch_size': 'auto', 'classifier:mlp:beta_1': 0.9, 'classifier:mlp:beta_2': 0.999, 'classifier:mlp:early_stopping': 'valid', 'classifier:mlp:epsilon': 1e-08, 'classifier:mlp:hidden_layer_depth': 3, 'classifier:mlp:learning_rate_init': 0.00018009776276177523, 'classifier:mlp:n_iter_no_change': 32, 'classifier:mlp:num_nodes_per_layer': 115, 'classifier:mlp:shuffle': 'True', 'classifier:mlp:solver': 'adam', 'classifier:mlp:tol': 0.0001, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:feature_agglomeration:affinity': 'euclidean', 'feature_preprocessor:feature_agglomeration:linkage': 'ward', 'feature_preprocessor:feature_agglomeration:n_clusters': 182, 'feature_preprocessor:feature_agglomeration:pooling_func': 'mean', 'classifier:mlp:validation_fraction': 0.1},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.120000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.49138075723513286, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 6, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:select_percentile_classification:percentile': 56.97947373958566, 'feature_preprocessor:select_percentile_classification:score_func': 'mutual_info', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.42693600390988135},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.060000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.43999367631975456, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 2, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'True', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.8134515743047006, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 9, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 20, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.040000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.9292309396985746, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 10, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9929881254946676, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 1, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 2, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.032719158639429445},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-]
+{   3: {   'balancing': Balancing(random_state=1),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78b503fd0>,
+           'cost': 0.021276595744680882,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc790367be0>,
+           'ensemble_weight': 0.4,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78a6db2b0>,
+           'model_id': 3,
+           'rank': 2,
+           'sklearn_classifier': MLPClassifier(activation='tanh', alpha=0.0001363185819149026, beta_1=0.999,
+              beta_2=0.9, early_stopping=True,
+              hidden_layer_sizes=(115, 115, 115),
+              learning_rate_init=0.00018009776276177523, max_iter=32,
+              n_iter_no_change=32, random_state=1, verbose=0, warm_start=True)},
+    7: {   'balancing': Balancing(random_state=1),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78ca21b20>,
+           'cost': 0.014184397163120588,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78c5ada90>,
+           'ensemble_weight': 0.04,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78a956520>,
+           'model_id': 7,
+           'rank': 3,
+           'sklearn_classifier': ExtraTreesClassifier(max_features=34, min_samples_leaf=3, min_samples_split=11,
+                     n_estimators=512, n_jobs=1, random_state=1,
+                     warm_start=True)}}
 auto-sklearn results:
   Dataset name: breast_cancer
   Metric: accuracy
-  Best validation score: 0.978723
-  Number of target algorithm runs: 14
-  Number of successful target algorithm runs: 14
+  Best validation score: 0.985816
+  Number of target algorithm runs: 17
+  Number of successful target algorithm runs: 17
   Number of crashed target algorithm runs: 0
   Number of target algorithms that exceeded the time limit: 0
   Number of target algorithms that exceeded the memory limit: 0
 
-Accuracy score 0.951048951048951
+Accuracy score 0.958041958041958
 
-

-
+ +

Out:

-
/opt/hostedtoolcache/Python/3.8.12/x64/lib/python3.8/site-packages/smac/intensification/parallel_scheduling.py:152: UserWarning: SuccessiveHalving is intended to be used with more than 1 worker but num_workers=1
+
/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:68: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
+  self.metafeatures = self.metafeatures.append(metafeatures)
+/home/runner/work/auto-sklearn/auto-sklearn/autosklearn/metalearning/metalearning/meta_base.py:72: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.
+  self.algorithm_runs[metric].append(runs)
+/opt/hostedtoolcache/Python/3.8.12/x64/lib/python3.8/site-packages/smac/intensification/parallel_scheduling.py:152: UserWarning: SuccessiveHalving is intended to be used with more than 1 worker but num_workers=1
   warnings.warn("{} is intended to be used "
-[(0.280000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_percentile_classification', 'classifier:gradient_boosting:early_stop': 'train', 'classifier:gradient_boosting:l2_regularization': 3.387912939529945e-10, 'classifier:gradient_boosting:learning_rate': 0.30755227194768237, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 60, 'classifier:gradient_boosting:min_samples_leaf': 39, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:select_percentile_classification:percentile': 93.39844669585806, 'feature_preprocessor:select_percentile_classification:score_func': 'f_classif', 'classifier:gradient_boosting:n_iter_no_change': 18, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.010000000000000004},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.140000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.120000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.100000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'no_preprocessing', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'gini', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'mean', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'standardize', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.01},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.080000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.5707983257382487, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 3, 'classifier:extra_trees:min_samples_split': 11, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'False', 'feature_preprocessor:polynomial:interaction_only': 'False'},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.060000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'gini', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.9292309396985746, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 1, 'classifier:extra_trees:min_samples_split': 10, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'normalize', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'entropy', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9929881254946676, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 1, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 2, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.032719158639429445},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.040000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'liblinear_svc_preprocessor', 'classifier:gradient_boosting:early_stop': 'train', 'classifier:gradient_boosting:l2_regularization': 0.005326508887463406, 'classifier:gradient_boosting:learning_rate': 0.060800813211425456, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 6, 'classifier:gradient_boosting:min_samples_leaf': 5, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'minmax', 'feature_preprocessor:liblinear_svc_preprocessor:C': 13.550960330919455, 'feature_preprocessor:liblinear_svc_preprocessor:dual': 'False', 'feature_preprocessor:liblinear_svc_preprocessor:fit_intercept': 'True', 'feature_preprocessor:liblinear_svc_preprocessor:intercept_scaling': 1, 'feature_preprocessor:liblinear_svc_preprocessor:loss': 'squared_hinge', 'feature_preprocessor:liblinear_svc_preprocessor:multi_class': 'ovr', 'feature_preprocessor:liblinear_svc_preprocessor:penalty': 'l1', 'feature_preprocessor:liblinear_svc_preprocessor:tol': 1.2958033930435781e-05, 'classifier:gradient_boosting:n_iter_no_change': 5},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'select_rates_classification', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.562561668029056, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 2, 'classifier:extra_trees:min_samples_split': 15, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'none', 'feature_preprocessor:select_rates_classification:alpha': 0.32106218519214325, 'feature_preprocessor:select_rates_classification:score_func': 'chi2', 'feature_preprocessor:select_rates_classification:mode': 'fwe'},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.020000, SimpleClassificationPipeline({'balancing:strategy': 'weighting', 'classifier:__choice__': 'extra_trees', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'polynomial', 'classifier:extra_trees:bootstrap': 'False', 'classifier:extra_trees:criterion': 'entropy', 'classifier:extra_trees:max_depth': 'None', 'classifier:extra_trees:max_features': 0.993803313878608, 'classifier:extra_trees:max_leaf_nodes': 'None', 'classifier:extra_trees:min_impurity_decrease': 0.0, 'classifier:extra_trees:min_samples_leaf': 2, 'classifier:extra_trees:min_samples_split': 20, 'classifier:extra_trees:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'robust_scaler', 'feature_preprocessor:polynomial:degree': 2, 'feature_preprocessor:polynomial:include_bias': 'True', 'feature_preprocessor:polynomial:interaction_only': 'True', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.41826215858914706, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max': 0.7305615609807856, 'data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min': 0.25595970768123566},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'gradient_boosting', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'extra_trees_preproc_for_classification', 'classifier:gradient_boosting:early_stop': 'valid', 'classifier:gradient_boosting:l2_regularization': 8.057778875694463e-05, 'classifier:gradient_boosting:learning_rate': 0.09179220974965213, 'classifier:gradient_boosting:loss': 'auto', 'classifier:gradient_boosting:max_bins': 255, 'classifier:gradient_boosting:max_depth': 'None', 'classifier:gradient_boosting:max_leaf_nodes': 200, 'classifier:gradient_boosting:min_samples_leaf': 20, 'classifier:gradient_boosting:scoring': 'loss', 'classifier:gradient_boosting:tol': 1e-07, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'one_hot_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'minority_coalescer', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'most_frequent', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:extra_trees_preproc_for_classification:bootstrap': 'False', 'feature_preprocessor:extra_trees_preproc_for_classification:criterion': 'gini', 'feature_preprocessor:extra_trees_preproc_for_classification:max_depth': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:max_features': 0.9984367650965825, 'feature_preprocessor:extra_trees_preproc_for_classification:max_leaf_nodes': 'None', 'feature_preprocessor:extra_trees_preproc_for_classification:min_impurity_decrease': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_leaf': 13, 'feature_preprocessor:extra_trees_preproc_for_classification:min_samples_split': 18, 'feature_preprocessor:extra_trees_preproc_for_classification:min_weight_fraction_leaf': 0.0, 'feature_preprocessor:extra_trees_preproc_for_classification:n_estimators': 100, 'classifier:gradient_boosting:n_iter_no_change': 18, 'classifier:gradient_boosting:validation_fraction': 0.14295295806077554, 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:minority_coalescer:minimum_fraction': 0.008542188583124829, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 1102, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-(0.020000, SimpleClassificationPipeline({'balancing:strategy': 'none', 'classifier:__choice__': 'random_forest', 'data_preprocessor:__choice__': 'feature_type', 'feature_preprocessor:__choice__': 'random_trees_embedding', 'classifier:random_forest:bootstrap': 'True', 'classifier:random_forest:criterion': 'entropy', 'classifier:random_forest:max_depth': 'None', 'classifier:random_forest:max_features': 0.5, 'classifier:random_forest:max_leaf_nodes': 'None', 'classifier:random_forest:min_impurity_decrease': 0.0, 'classifier:random_forest:min_samples_leaf': 1, 'classifier:random_forest:min_samples_split': 2, 'classifier:random_forest:min_weight_fraction_leaf': 0.0, 'data_preprocessor:feature_type:categorical_transformer:categorical_encoding:__choice__': 'no_encoding', 'data_preprocessor:feature_type:categorical_transformer:category_coalescence:__choice__': 'no_coalescense', 'data_preprocessor:feature_type:numerical_transformer:imputation:strategy': 'median', 'data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__': 'quantile_transformer', 'feature_preprocessor:random_trees_embedding:bootstrap': 'True', 'feature_preprocessor:random_trees_embedding:max_depth': 5, 'feature_preprocessor:random_trees_embedding:max_leaf_nodes': 'None', 'feature_preprocessor:random_trees_embedding:min_samples_leaf': 1, 'feature_preprocessor:random_trees_embedding:min_samples_split': 2, 'feature_preprocessor:random_trees_embedding:min_weight_fraction_leaf': 1.0, 'feature_preprocessor:random_trees_embedding:n_estimators': 10, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles': 937, 'data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution': 'uniform'},
-dataset_properties={
-  'task': 1,
-  'sparse': False,
-  'multilabel': False,
-  'multiclass': False,
-  'target_type': 'classification',
-  'signed': False})),
-]
+{   2: {   'balancing': Balancing(random_state=1),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78fc1f700>,
+           'cost': 0.021276595744680882,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78a6050d0>,
+           'ensemble_weight': 0.06,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78c944df0>,
+           'model_id': 2,
+           'rank': 5,
+           'sklearn_classifier': RandomForestClassifier(max_features=5, n_estimators=64, n_jobs=1,
+                       random_state=1, warm_start=True)},
+    4: {   'balancing': Balancing(random_state=1),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc784bf13a0>,
+           'cost': 0.014184397163120588,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc79068bb80>,
+           'ensemble_weight': 0.14,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc784bf10a0>,
+           'model_id': 4,
+           'rank': 4,
+           'sklearn_classifier': ExtraTreesClassifier(max_features=34, min_samples_leaf=3, min_samples_split=11,
+                     n_estimators=512, n_jobs=1, random_state=1,
+                     warm_start=True)},
+    6: {   'balancing': Balancing(random_state=1, strategy='weighting'),
+           'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc784871e50>,
+           'cost': 0.04255319148936165,
+           'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78580dac0>,
+           'ensemble_weight': 0.12,
+           'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78c0ad400>,
+           'model_id': 6,
+           'rank': 10,
+           'sklearn_classifier': ExtraTreesClassifier(max_features=9, min_samples_split=10, n_estimators=64,
+                     n_jobs=1, random_state=1, warm_start=True)},
+    11: {   'balancing': Balancing(random_state=1, strategy='weighting'),
+            'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc787e35400>,
+            'cost': 0.021276595744680882,
+            'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78af3f1c0>,
+            'ensemble_weight': 0.08,
+            'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc787e35280>,
+            'model_id': 11,
+            'rank': 7,
+            'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=True,
+                               l2_regularization=3.387912939529945e-10,
+                               learning_rate=0.30755227194768237, max_iter=128,
+                               max_leaf_nodes=60, min_samples_leaf=39,
+                               n_iter_no_change=18, random_state=1,
+                               validation_fraction=None, warm_start=True)},
+    13: {   'balancing': Balancing(random_state=1, strategy='weighting'),
+            'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc79039a790>,
+            'cost': 0.04255319148936165,
+            'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78a4bed00>,
+            'ensemble_weight': 0.02,
+            'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78f8a2b80>,
+            'model_id': 13,
+            'rank': 11,
+            'sklearn_classifier': RandomForestClassifier(criterion='entropy', max_features=3, n_estimators=64,
+                       n_jobs=1, random_state=1, warm_start=True)},
+    16: {   'balancing': Balancing(random_state=1),
+            'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78582ed30>,
+            'cost': 0.028368794326241176,
+            'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78a7e35b0>,
+            'ensemble_weight': 0.06,
+            'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78c482ca0>,
+            'model_id': 16,
+            'rank': 8,
+            'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=True,
+                               l2_regularization=8.057778875694463e-05,
+                               learning_rate=0.09179220974965213, max_iter=64,
+                               max_leaf_nodes=200, n_iter_no_change=18,
+                               random_state=1,
+                               validation_fraction=0.14295295806077554,
+                               warm_start=True)},
+    18: {   'balancing': Balancing(random_state=1),
+            'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc79039a070>,
+            'cost': 0.04255319148936165,
+            'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc78bc2d7c0>,
+            'ensemble_weight': 0.02,
+            'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc79039a820>,
+            'model_id': 18,
+            'rank': 12,
+            'sklearn_classifier': ExtraTreesClassifier(criterion='entropy', max_features=414, min_samples_leaf=2,
+                     min_samples_split=19, n_estimators=64, n_jobs=1,
+                     random_state=1, warm_start=True)},
+    19: {   'balancing': Balancing(random_state=1),
+            'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7fc78ba373a0>,
+            'cost': 0.028368794326241176,
+            'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7fc7850a8be0>,
+            'ensemble_weight': 0.02,
+            'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7fc78582efa0>,
+            'model_id': 19,
+            'rank': 9,
+            'sklearn_classifier': HistGradientBoostingClassifier(early_stopping=False, l2_regularization=1e-10,
+                               learning_rate=0.16262682406125173, max_iter=64,
+                               max_leaf_nodes=66, n_iter_no_change=0,
+                               random_state=1, validation_fraction=None,
+                               warm_start=True)}}
 auto-sklearn results:
   Dataset name: breast_cancer
   Metric: accuracy
   Best validation score: 0.985816
-  Number of target algorithm runs: 19
-  Number of successful target algorithm runs: 19
+  Number of target algorithm runs: 24
+  Number of successful target algorithm runs: 24
   Number of crashed target algorithm runs: 0
   Number of target algorithms that exceeded the time limit: 0
   Number of target algorithms that exceeded the memory limit: 0
@@ -897,7 +1205,7 @@ 

Mixed budget approach

-

Total running time of the script: ( 3 minutes 12.940 seconds)

+

Total running time of the script: ( 2 minutes 59.204 seconds)

- + + @@ -932,7 +1240,7 @@

Mixed budget approach

- © Copyright 2014-2021, Machine Learning Professorship Freiburg.
+ © Copyright 2014-2022, Machine Learning Professorship Freiburg.
Created using
Sphinx 4.2.0.

diff --git a/master/examples/60_search/sg_execution_times.html b/master/examples/60_search/sg_execution_times.html index 33b1d0ae10..cb18ebb0ba 100644 --- a/master/examples/60_search/sg_execution_times.html +++ b/master/examples/60_search/sg_execution_times.html @@ -3,9 +3,8 @@ - - - Computation times — AutoSklearn 0.14.2 documentation + + Computation times — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4
-
+

Computation times

-

10:48.731 total execution time for examples_60_search files:

+

09:31.567 total execution time for examples_60_search files:

--++ - + - - + + - - + + - + - - - - - +

Successive Halving (example_successive_halving.py)

03:12.940

02:59.204

0.0 MB

Parallel Usage on a single machine (example_parallel_n_jobs.py)

02:24.442

Sequential Usage (example_sequential.py)

02:01.878

0.0 MB

Sequential Usage (example_sequential.py)

02:04.152

Parallel Usage on a single machine (example_parallel_n_jobs.py)

01:57.601

0.0 MB

Random Search (example_random_search.py)

01:52.038

01:53.718

0.0 MB

Parallel Usage: Spawning workers from the command line (example_parallel_manual_spawning_cli.py)

00:39.363

0.0 MB

Parallel Usage: Spawning workers from within Python (example_parallel_manual_spawning_python.py)

00:35.796

00:39.167

0.0 MB

-
+
@@ -171,7 +166,7 @@

- © Copyright 2014-2021, Machine Learning Professorship Freiburg.
+ © Copyright 2014-2022, Machine Learning Professorship Freiburg.
Created using Sphinx 4.2.0.

diff --git a/master/examples/80_extending/example_extending_classification.html b/master/examples/80_extending/example_extending_classification.html index cad357c9a6..f92646dbb6 100644 --- a/master/examples/80_extending/example_extending_classification.html +++ b/master/examples/80_extending/example_extending_classification.html @@ -3,9 +3,8 @@ - - - Extending Auto-Sklearn with Classification Component — AutoSklearn 0.14.2 documentation + + Extending Auto-Sklearn with Classification Component — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 -
+

Extending Auto-Sklearn with Classification Component

The following example demonstrates how to create a new classification component for using in auto-sklearn.

-
from ConfigSpace.configuration_space import ConfigurationSpace
+
from pprint import pprint
+
+from ConfigSpace.configuration_space import ConfigurationSpace
 from ConfigSpace.hyperparameters import CategoricalHyperparameter, \
     UniformIntegerHyperparameter, UniformFloatHyperparameter
 
@@ -145,7 +146,7 @@
 from sklearn.model_selection import train_test_split
 
-
+

Create MLP classifier component for auto-sklearn

class MLPClassifier(AutoSklearnClassificationAlgorithm):
 
@@ -250,15 +251,15 @@ 

Create MLP classifier component for auto-sklearn +

+

Data Loading

X, y = load_breast_cancer(return_X_y=True)
 X_train, X_test, y_train, y_test = train_test_split(X, y)
 
-
-
+
+

Fit MLP classifier to the data

clf = autosklearn.classification.AutoSklearnClassifier(
     time_left_for_this_task=30,
@@ -282,36 +283,38 @@ 

Fit MLP classifier to the data +

+
- + + @@ -346,7 +349,7 @@

Print test accuracy and statisticsSphinx 4.2.0.

diff --git a/master/examples/80_extending/example_extending_data_preprocessor.html b/master/examples/80_extending/example_extending_data_preprocessor.html index b9d44c3ef9..a5556c6d6a 100644 --- a/master/examples/80_extending/example_extending_data_preprocessor.html +++ b/master/examples/80_extending/example_extending_data_preprocessor.html @@ -3,9 +3,8 @@ - - - Extending Auto-Sklearn with Data Preprocessor Component — AutoSklearn 0.14.2 documentation + + Extending Auto-Sklearn with Data Preprocessor Component — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 -
+

Extending Auto-Sklearn with Data Preprocessor Component

The following example demonstrates how to turn off data preprocessing step in auto-skearn.

-
import autosklearn.classification
+
from pprint import pprint
+
+import autosklearn.classification
 import autosklearn.pipeline.components.data_preprocessing
 import sklearn.metrics
 from ConfigSpace.configuration_space import ConfigurationSpace
@@ -138,7 +139,7 @@
 from sklearn.model_selection import train_test_split
 
-
+

Create NoPreprocessing component for auto-sklearn

class NoPreprocessing(AutoSklearnPreprocessingAlgorithm):
 
@@ -178,15 +179,15 @@ 

Create NoPreprocessing component for auto-sklearnautosklearn.pipeline.components.data_preprocessing.add_preprocessor(NoPreprocessing)

-
-
+
+

Create dataset

X, y = load_breast_cancer(return_X_y=True)
 X_train, X_test, y_train, y_test = train_test_split(X, y)
 
-
-
+ +
- - + + @@ -289,7 +296,7 @@

Print prediction score and statisticsSphinx 4.2.0.

diff --git a/master/examples/80_extending/example_extending_preprocessor.html b/master/examples/80_extending/example_extending_preprocessor.html index 3c0abdd074..a7867bdbaa 100644 --- a/master/examples/80_extending/example_extending_preprocessor.html +++ b/master/examples/80_extending/example_extending_preprocessor.html @@ -3,9 +3,8 @@ - - - Extending Auto-Sklearn with Preprocessor Component — AutoSklearn 0.14.2 documentation + + Extending Auto-Sklearn with Preprocessor Component — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 -
+

Extending Auto-Sklearn with Preprocessor Component

The following example demonstrates how to create a wrapper around the linear discriminant analysis (LDA) algorithm from sklearn and use it as a preprocessor in auto-sklearn.

-
from ConfigSpace.configuration_space import ConfigurationSpace
+
from pprint import pprint
+
+from ConfigSpace.configuration_space import ConfigurationSpace
 from ConfigSpace.hyperparameters import UniformFloatHyperparameter, CategoricalHyperparameter
 from ConfigSpace.conditions import InCondition
 
@@ -148,7 +149,7 @@
 from sklearn.model_selection import train_test_split
 
-
+

Create LDA component for auto-sklearn

class LDA(AutoSklearnPreprocessingAlgorithm):
 
@@ -217,15 +218,15 @@ 

Create LDA component for auto-sklearnautosklearn.pipeline.components.feature_preprocessing.add_preprocessor(LDA)

-
-
+
+

Create dataset

X, y = load_breast_cancer(return_X_y=True)
 X_train, X_test, y_train, y_test = train_test_split(X, y)
 
-
-
+ +

Configuration space

cs = LDA.get_hyperparameter_search_space()
 print(cs)
@@ -241,8 +242,8 @@ 

Configuration space +

+

Fit the model using LDA as preprocessor

clf = autosklearn.classification.AutoSklearnClassifier(
     time_left_for_this_task=30,
@@ -265,28 +266,29 @@ 

Fit the model using LDA as preprocessor +

+
- + + @@ -321,7 +323,7 @@

Print prediction score and statisticsSphinx 4.2.0.

diff --git a/master/examples/80_extending/example_extending_regression.html b/master/examples/80_extending/example_extending_regression.html index edf4f03938..93c6dde0cd 100644 --- a/master/examples/80_extending/example_extending_regression.html +++ b/master/examples/80_extending/example_extending_regression.html @@ -3,9 +3,8 @@ - - - Extending Auto-Sklearn with Regression Component — AutoSklearn 0.14.2 documentation + + Extending Auto-Sklearn with Regression Component — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 -
+

Extending Auto-Sklearn with Regression Component

The following example demonstrates how to create a new regression component for using in auto-sklearn.

-
from ConfigSpace.configuration_space import ConfigurationSpace
+
from pprint import pprint
+
+from ConfigSpace.configuration_space import ConfigurationSpace
 from ConfigSpace.hyperparameters import UniformFloatHyperparameter, \
     UniformIntegerHyperparameter, CategoricalHyperparameter
 from ConfigSpace.conditions import EqualsCondition
@@ -145,7 +146,7 @@
 from sklearn.model_selection import train_test_split
 
-
+

Implement kernel ridge regression component for auto-sklearn

class KernelRidgeRegression(AutoSklearnRegressionAlgorithm):
 
@@ -242,15 +243,15 @@ 

Implement kernel ridge regression component for auto-sklearn +

+

Generate data

X, y = load_diabetes(return_X_y=True)
 X_train, X_test, y_train, y_test = train_test_split(X, y)
 
-
-
+
+

Fit the model using KRR

reg = autosklearn.regression.AutoSklearnRegressor(
     time_left_for_this_task=30,
@@ -274,27 +275,27 @@ 

Fit the model using KRR

-
- - + + @@ -329,7 +330,7 @@

Print prediction score and statisticsSphinx 4.2.0.

diff --git a/master/examples/80_extending/example_restrict_number_of_hyperparameters.html b/master/examples/80_extending/example_restrict_number_of_hyperparameters.html index 0ed4b7d95b..bdc8c6f752 100644 --- a/master/examples/80_extending/example_restrict_number_of_hyperparameters.html +++ b/master/examples/80_extending/example_restrict_number_of_hyperparameters.html @@ -3,9 +3,8 @@ - - - Restricting the number of hyperparameters for an existing component — AutoSklearn 0.14.2 documentation + + Restricting the number of hyperparameters for an existing component — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 -
+

Restricting the number of hyperparameters for an existing component

The following example demonstrates how to replace an existing component with a new component, implementing the same classifier, @@ -143,7 +142,7 @@ from autosklearn.pipeline.constants import DENSE, UNSIGNED_DATA, PREDICTIONS, SPARSE

-
+

Subclass auto-sklearn’s random forest classifier

# This classifier only has one of the hyperparameter's of auto-sklearn's
 # default parametrization (``max_features``). Instead, it also
@@ -227,15 +226,15 @@ 

Subclass auto-sklearn’s random forest classifier

-
-
+ +

Data Loading

X, y = load_breast_cancer(return_X_y=True)
 X_train, X_test, y_train, y_test = train_test_split(X, y)
 
-
-
+ +

Fit Random forest classifier to the data

clf = autosklearn.classification.AutoSklearnClassifier(
     time_left_for_this_task=30,
@@ -260,8 +259,8 @@ 

Fit Random forest classifier to the data +

+
-
+ + @@ -686,7 +685,7 @@

Print the configuration spaceSphinx 4.2.0.

diff --git a/master/examples/80_extending/sg_execution_times.html b/master/examples/80_extending/sg_execution_times.html index 7d316028a3..e15f5fed30 100644 --- a/master/examples/80_extending/sg_execution_times.html +++ b/master/examples/80_extending/sg_execution_times.html @@ -3,9 +3,8 @@ - - - Computation times — AutoSklearn 0.14.2 documentation + + Computation times — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4
-
+

Computation times

-

01:20.118 total execution time for examples_80_extending files:

+

01:04.137 total execution time for examples_80_extending files:

@@ -124,29 +123,29 @@ - - + + - - + + - + - + - +

Extending Auto-Sklearn with Data Preprocessor Component (example_extending_data_preprocessor.py)

00:23.312

Extending Auto-Sklearn with Preprocessor Component (example_extending_preprocessor.py)

00:17.499

0.0 MB

Extending Auto-Sklearn with Preprocessor Component (example_extending_preprocessor.py)

00:18.761

Extending Auto-Sklearn with Data Preprocessor Component (example_extending_data_preprocessor.py)

00:15.803

0.0 MB

Extending Auto-Sklearn with Classification Component (example_extending_classification.py)

00:18.369

00:12.500

0.0 MB

Extending Auto-Sklearn with Regression Component (example_extending_regression.py)

00:11.876

00:11.558

0.0 MB

Restricting the number of hyperparameters for an existing component (example_restrict_number_of_hyperparameters.py)

00:07.799

00:06.778

0.0 MB

-
+
@@ -167,7 +166,7 @@

- © Copyright 2014-2021, Machine Learning Professorship Freiburg.
+ © Copyright 2014-2022, Machine Learning Professorship Freiburg.
Created using Sphinx 4.2.0.

diff --git a/master/examples/index.html b/master/examples/index.html index 3201930e9c..16f2b73e73 100644 --- a/master/examples/index.html +++ b/master/examples/index.html @@ -3,9 +3,8 @@ - - - Examples — AutoSklearn 0.14.2 documentation + + Examples — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4
-
+

Examples

Practical examples for using auto-sklearn.

-
-
+
+

Basic Examples

Examples for basic classification, regression, multi-output regression, and multi-label classification datasets.

-
-
-
-
-
-
+
+

Advanced Examples

Examples on customizing Auto-sklearn to ones use case by changing the metric to optimize, the train-validation split, giving feature types, using pandas dataframes as input and inspecting the results of the search procedure.

-
-
-
+
Metrics -
-

Metrics

-
-
+

Metrics

+
-
-
-
-
-
-
-
+
Metrics -
-

Metrics

-
-
+

Metrics

+
-
-
+
+

Search Examples

Examples of changing the search procedure of Auto-sklearn.

-
-
- -
-
-
-
-
+
+

Extension Examples

Examples of extending Auto-sklearn with custom components.

-
-
-
-
-

Gallery generated by Sphinx-Gallery

-
+ @@ -378,7 +321,7 @@

- © Copyright 2014-2021, Machine Learning Professorship Freiburg.
+ © Copyright 2014-2022, Machine Learning Professorship Freiburg.
Created using Sphinx 4.2.0.

diff --git a/master/extending.html b/master/extending.html index 05733abc9c..5e62801345 100644 --- a/master/extending.html +++ b/master/extending.html @@ -3,9 +3,8 @@ - - - Extending auto-sklearn — AutoSklearn 0.14.2 documentation + + Extending auto-sklearn — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4
-
+

Extending auto-sklearn

auto-sklearn can be easily extended with new classification, regression and feature preprocessing methods. In order to do so, a user has to implement a wrapper class and register it to auto-sklearn. This manual will walk you through the process.

-
+

Writing a component

Depending on the purpose, the component has to be a subclass of one of the following base classes:

@@ -165,7 +164,7 @@

Writing a componentautosklearn.pipeline.components.feature_preprocessing.add_preprocessor(preprocessor: Type[autosklearn.pipeline.components.base.AutoSklearnPreprocessingAlgorithm]) None[source]
-
+

get_hyperparameter_search_space()

Return an instance of ConfigSpace.configuration_space.ConfigurationSpace.

See also the abstract definitions: @@ -174,8 +173,8 @@

Writing a componentAutoSklearnPreprocessingAlgorithm.get_hyperparameter_search_space()

To find out about how to create a ConfigurationSpace-object, please look at the source code on github.com.

-

-
+

+

get_properties()

Return a dictionary which defines how the component can be used when constructing a machine learning pipeline. The following fields must be @@ -291,9 +290,9 @@

Writing a component +

+
+

Classification

In addition two get_properties() and get_hyperparameter_search_space() you have to implement @@ -301,8 +300,8 @@

ClassificationAutoSklearnClassificationAlgorithm.predict() . These are an implementation of the scikit-learn predictor API.

-

-
+
+

Regression

In addition two get_properties() and get_hyperparameter_search_space() you have to implement @@ -310,8 +309,8 @@

RegressionAutoSklearnRegressionAlgorithm.predict() . These are an implementation of the scikit-learn predictor API.

- -
+

+

Feature Preprocessing

In addition two get_properties() and get_hyperparameter_search_space() you have to implement @@ -319,8 +318,8 @@

Feature PreprocessingAutoSklearnPreprocessingAlgorithm.transform() . These are an implementation of the scikit-learn predictor API.

- - +

+ @@ -341,7 +340,7 @@

Feature Preprocessing

- © Copyright 2014-2021, Machine Learning Professorship Freiburg.
+ © Copyright 2014-2022, Machine Learning Professorship Freiburg.
Created using
Sphinx 4.2.0.

diff --git a/master/faq.html b/master/faq.html index 6b5364b39f..f31f701e2a 100644 --- a/master/faq.html +++ b/master/faq.html @@ -3,9 +3,8 @@ - - - FAQ — AutoSklearn 0.14.2 documentation + + FAQ — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 @@ -409,7 +556,7 @@

Auto-sklearn 2.0Sphinx 4.2.0.

diff --git a/master/genindex.html b/master/genindex.html index addca1eaa2..4ce23cd317 100644 --- a/master/genindex.html +++ b/master/genindex.html @@ -4,7 +4,7 @@ - Index — AutoSklearn 0.14.2 documentation + Index — AutoSklearn 0.14.4 documentation @@ -54,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 diff --git a/master/index.html b/master/index.html index d48e27f003..7467bc637e 100644 --- a/master/index.html +++ b/master/index.html @@ -3,9 +3,8 @@ - - - auto-sklearn — AutoSklearn 0.14.2 documentation + + auto-sklearn — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4
-
+

auto-sklearn

auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator:

@@ -135,7 +134,7 @@

auto-sklearnNIPS 2015 +NeurIPS 2015 .

NEW: Auto-sklearn 2.0

@@ -147,7 +146,11 @@

auto-sklearnarXiv.

-
+
+

NEW: Material from tutorials and presentations

+

We provide slides and notebooks from talks and tutorials here: auto-sklearn-talks

+
+

Example

import autosklearn.classification
 import sklearn.model_selection
@@ -165,8 +168,8 @@ 

Example +

+

Manual

-
-
+

+

License

auto-sklearn is licensed the same way as scikit-learn, namely the 3-clause BSD license.

-

-
+
+

Citing auto-sklearn

If you use auto-sklearn in a scientific publication, we would appreciate a reference to the following paper:

@@ -212,8 +215,8 @@

Citing auto-sklearn +

+

Contributing

We appreciate all contribution to auto-sklearn, from bug reports and documentation to new features. If you want to contribute to the code, you can @@ -226,8 +229,8 @@

Contributinggithub issue before starting to work.

- - + + @@ -248,7 +251,7 @@

ContributingSphinx 4.2.0.

diff --git a/master/installation.html b/master/installation.html index 16340d55cb..1f1605d378 100644 --- a/master/installation.html +++ b/master/installation.html @@ -3,9 +3,8 @@ - - - Installation — AutoSklearn 0.14.2 documentation + + Installation — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4
-
+

Installation

-
+

System requirements

auto-sklearn has the following system requirements:

-

For an explanation of missing Microsoft Windows and MAC OSX support please -check the Section Windows/OSX compatibility.

-
-
+

For an explanation of missing Microsoft Windows and macOS support please +check the Section Windows/macOS compatibility.

+
+

Installing auto-sklearn

You can install auto-sklearn with pip in the usual manner:

pip3 install auto-sklearn
@@ -159,16 +159,16 @@ 

Installing auto-sklearnAnaconda environment.

If the pip3 installation command fails, make sure you have the System requirements installed correctly.

-

-
+
+

Ubuntu installation

To provide Python 3, a C++11 building environment and the latest SWIG version on Ubuntu, run:

sudo apt-get install build-essential swig python3-dev
 
- -
+
+

Anaconda installation

You need to enable conda-forge to install auto-sklearn via anaconda. This section explains how to enable conda-forge so installation can be done with the command conda install auto-sklearn. @@ -181,7 +181,7 @@

Anaconda installation
conda install gxx_linux-64 gcc_linux-64 swig
 

-
+

Conda-forge

Installing auto-sklearn from the conda-forge channel can be achieved by adding conda-forge to your channels with:

conda config --add channels conda-forge
@@ -201,11 +201,31 @@ 

Conda-forgeauto sklearn feedstock.

for more information about Conda forge check conda-forge documentations.

-

- -
-

Windows/OSX compatibility

-
+ + +
+

Source Installation

+

You can install auto-sklearn directly form source by following the below:

+
git clone --recurse-submodules git@github.com:automl/auto-sklearn.git
+cd auto-sklearn
+
+# Install it in editable mode with all optional dependencies
+pip install -e ".[test,doc,examples]"
+
+
+

We use submodules so you will have to make sure the submodule is initialized if you +missed the –recurse-submodules option.

+
git clone git@github.com:automl/auto-sklearn.git
+cd auto-sklearn
+git submodule update --init --recursive
+
+pip install -e ".[test,doc,examples]"
+
+
+
+
+

Windows/macOS compatibility

+

Windows

auto-sklearn relies heavily on the Python module resource. resource is part of Python’s Unix Specific Services @@ -218,15 +238,15 @@

Windows -

Mac OSX

-

We currently do not know if auto-sklearn works on OSX. There are at least two -issues holding us back from actively supporting OSX:

+

+
+

macOS

+

We currently do not know if auto-sklearn works on macOS. There are at least two +issues holding us back from actively supporting macOS:

  • The resource module cannot enforce a memory limit on a Python process (see SMAC3/issues/115).

  • -
  • Not all dependencies we are using are set up to work on OSX.

  • +
  • Not all dependencies we are using are set up to work on macOS.

In case you’re having issues installing the pyrfr package, check out this installation suggestion on github.

@@ -235,9 +255,9 @@

Mac OSX +

+
+

Docker Image

A Docker image is also provided on dockerhub. To download from dockerhub, use:

@@ -258,8 +278,8 @@

Docker Imagemaster by development.

-

-
+ + @@ -280,7 +300,7 @@

Docker ImageSphinx 4.2.0.

diff --git a/master/manual.html b/master/manual.html index e09ed588ba..7cb83fdfbf 100644 --- a/master/manual.html +++ b/master/manual.html @@ -3,9 +3,8 @@ - - - Manual — AutoSklearn 0.14.2 documentation + + Manual — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 +
+

Other

+
+Supported input types

auto-sklearn can accept targets for the following tasks (more details on Sklearn algorithms):

+
    +
  • Binary Classification

  • +
  • Multiclass Classification

  • +
  • Multilabel Classification

  • +
  • Regression

  • +
  • Multioutput Regression

  • +
+

You can provide feature and target training pairs (X_train/y_train) to auto-sklearn to fit an +ensemble of pipelines as described in the next section. This X_train/y_train dataset must belong +to one of the supported formats: np.ndarray, pd.DataFrame, scipy.sparse.csr_matrix and python lists. +Optionally, you can measure the ability of this fitted model to generalize to unseen data by +providing an optional testing pair (X_test/Y_test). For further details, please refer to the +Example Performance-over-time plot. +Supported formats for these training and testing pairs are: np.ndarray, +pd.DataFrame, scipy.sparse.csr_matrix and python lists.

+

If your data contains categorical values (in the features or targets), autosklearn will automatically encode your +data using a sklearn.preprocessing.LabelEncoder +for unidimensional data and a sklearn.preprocessing.OrdinalEncoder +for multidimensional data.

+

Regarding the features, there are two methods to guide auto-sklearn to properly encode categorical columns:

+
    +
  • Providing a X_train/X_test numpy array with the optional flag feat_type. For further details, you +can check the Example Feature Types.

  • +
  • You can provide a pandas DataFrame, with properly formatted columns. If a column has numerical +dtype, auto-sklearn will not encode it and it will be passed directly to scikit-learn. If the +column has a categorical/boolean class, it will be encoded. If the column is of any other type +(Object or Timeseries), an error will be raised. For further details on how to properly encode +your data, you can check the Pandas Example +Working with categorical data). +If you are working with time series, it is recommended that you follow this approach +Working with time data.

  • +
+

Regarding the targets (y_train/y_test), if the task involves a classification problem, such features will be +automatically encoded. It is recommended to provide both y_train and y_test during fit, so that a common encoding +is created between these splits (if only y_train is provided during fit, the categorical encoder will not be able +to handle new classes that are exclusive to y_test). If the task is regression, no encoding happens on the +targets.

+
+Model persistence

auto-sklearn is mostly a wrapper around scikit-learn. Therefore, it is possible to follow the persistence Example from scikit-learn.

- -
-

Vanilla auto-sklearn

-

In order to obtain vanilla auto-sklearn as used in Efficient and Robust Automated Machine Learning +

+Vanilla auto-sklearn

In order to obtain vanilla auto-sklearn as used in Efficient and Robust Automated Machine Learning set ensemble_size=1 and initial_configurations_via_metalearning=0:

import autosklearn.classification
 automl = autosklearn.classification.AutoSklearnClassifier(
@@ -329,8 +342,8 @@ 

Vanilla auto-sklearnauto-sklearn use the regular SMAC algorithm for suggesting new hyperparameter configurations.

- - +

+ @@ -351,7 +364,7 @@

Vanilla auto-sklearn

- © Copyright 2014-2021, Machine Learning Professorship Freiburg.
+ © Copyright 2014-2022, Machine Learning Professorship Freiburg.
Created using
Sphinx 4.2.0.

diff --git a/master/notebooks/examples/20_basic/example_classification.ipynb b/master/notebooks/examples/20_basic/example_classification.ipynb index 7cc4b7cd39..934f27b5c7 100644 --- a/master/notebooks/examples/20_basic/example_classification.ipynb +++ b/master/notebooks/examples/20_basic/example_classification.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.classification" + "from pprint import pprint\n\nimport sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.classification" ] }, { @@ -98,7 +98,7 @@ }, "outputs": [], "source": [ - "print(automl.show_models())" + "pprint(automl.show_models(), indent=4)" ] }, { diff --git a/master/notebooks/examples/20_basic/example_multilabel_classification.ipynb b/master/notebooks/examples/20_basic/example_multilabel_classification.ipynb index 341f5b333e..bf999ddaad 100644 --- a/master/notebooks/examples/20_basic/example_multilabel_classification.ipynb +++ b/master/notebooks/examples/20_basic/example_multilabel_classification.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import numpy as np\n\nimport sklearn.datasets\nimport sklearn.metrics\nfrom sklearn.utils.multiclass import type_of_target\n\nimport autosklearn.classification" + "import numpy as np\nfrom pprint import pprint\n\nimport sklearn.datasets\nimport sklearn.metrics\nfrom sklearn.utils.multiclass import type_of_target\n\nimport autosklearn.classification" ] }, { @@ -44,7 +44,7 @@ }, "outputs": [], "source": [ - "# Using reuters multilabel dataset -- https://www.openml.org/d/40594\nX, y = sklearn.datasets.fetch_openml(data_id=40594, return_X_y=True, as_frame=False)\n\n# fetch openml downloads a numpy array with TRUE/FALSE strings. Re-map it to\n# integer dtype with ones and zeros\n# This is to comply with Scikit-learn requirement:\n# \"Positive classes are indicated with 1 and negative classes with 0 or -1.\"\n# More information on: https://scikit-learn.org/stable/modules/multiclass.html\ny[y == 'TRUE'] = 1\ny[y == 'FALSE'] = 0\ny = y.astype(np.int)\n\n# Using type of target is a good way to make sure your data\n# is properly formatted\nprint(f\"type_of_target={type_of_target(y)}\")\n\nX_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(\n X, y, random_state=1\n)" + "# Using reuters multilabel dataset -- https://www.openml.org/d/40594\nX, y = sklearn.datasets.fetch_openml(data_id=40594, return_X_y=True, as_frame=False)\n\n# fetch openml downloads a numpy array with TRUE/FALSE strings. Re-map it to\n# integer dtype with ones and zeros\n# This is to comply with Scikit-learn requirement:\n# \"Positive classes are indicated with 1 and negative classes with 0 or -1.\"\n# More information on: https://scikit-learn.org/stable/modules/multiclass.html\ny[y == 'TRUE'] = 1\ny[y == 'FALSE'] = 0\ny = y.astype(int)\n\n# Using type of target is a good way to make sure your data\n# is properly formatted\nprint(f\"type_of_target={type_of_target(y)}\")\n\nX_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(\n X, y, random_state=1\n)" ] }, { @@ -98,7 +98,7 @@ }, "outputs": [], "source": [ - "print(automl.show_models())" + "pprint(automl.show_models(), indent=4)" ] }, { diff --git a/master/notebooks/examples/20_basic/example_multioutput_regression.ipynb b/master/notebooks/examples/20_basic/example_multioutput_regression.ipynb index f3112d78a6..7998b22d6f 100644 --- a/master/notebooks/examples/20_basic/example_multioutput_regression.ipynb +++ b/master/notebooks/examples/20_basic/example_multioutput_regression.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import numpy as numpy\n\nfrom sklearn.datasets import make_regression\nfrom sklearn.metrics import r2_score\nfrom sklearn.model_selection import train_test_split\n\nfrom autosklearn.regression import AutoSklearnRegressor" + "import numpy as numpy\nfrom pprint import pprint\n\nfrom sklearn.datasets import make_regression\nfrom sklearn.metrics import r2_score\nfrom sklearn.model_selection import train_test_split\n\nfrom autosklearn.regression import AutoSklearnRegressor" ] }, { @@ -98,7 +98,7 @@ }, "outputs": [], "source": [ - "print(automl.show_models())" + "pprint(automl.show_models(), indent=4)" ] }, { diff --git a/master/notebooks/examples/20_basic/example_regression.ipynb b/master/notebooks/examples/20_basic/example_regression.ipynb index 3bfacf545e..acb7673ace 100644 --- a/master/notebooks/examples/20_basic/example_regression.ipynb +++ b/master/notebooks/examples/20_basic/example_regression.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.regression\nimport matplotlib.pyplot as plt" + "from pprint import pprint\n\nimport sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.regression\nimport matplotlib.pyplot as plt" ] }, { @@ -98,7 +98,7 @@ }, "outputs": [], "source": [ - "print(automl.show_models())" + "pprint(automl.show_models(), indent=4)" ] }, { diff --git a/master/notebooks/examples/40_advanced/example_get_pipeline_components.ipynb b/master/notebooks/examples/40_advanced/example_get_pipeline_components.ipynb index b26c9ab89c..33f2d673d0 100644 --- a/master/notebooks/examples/40_advanced/example_get_pipeline_components.ipynb +++ b/master/notebooks/examples/40_advanced/example_get_pipeline_components.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.classification" + "from pprint import pprint\n\nimport sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.classification" ] }, { @@ -87,7 +87,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Report the models found by Auto-Sklearn\n\nAuto-sklearn uses\n`Ensemble Selection `_\nto construct ensembles in a post-hoc fashion. The ensemble is a linear\nweighting of all models constructed during the hyperparameter optimization.\nThis prints the final ensemble. It is a list of tuples, each tuple being\nthe model weight in the ensemble and the model itself.\n\n" + "## Report the models found by Auto-Sklearn\n\nAuto-sklearn uses\n`Ensemble Selection `_\nto construct ensembles in a post-hoc fashion. The ensemble is a linear\nweighting of all models constructed during the hyperparameter optimization.\nThis prints the final ensemble. It is a dictionary where ``model_id`` of\neach model is a key, and value is a dictionary containing information\nof that model. A model's dict contains its ``'model_id'``, ``'rank'``,\n``'cost'``, ``'ensemble_weight'``, and the model itself. The model is\ngiven by the ``'data_preprocessor'``, ``'feature_preprocessor'``,\n``'regressor'/'classifier'`` and ``'sklearn_regressor'/'sklearn_classifier'``\nentries. But for the ``'cv'`` resampling strategy, the same for each cv\nmodel is stored in the ``'estimators'`` list in the dict, along with the\n``'voting_model'``.\n\n" ] }, { @@ -98,7 +98,7 @@ }, "outputs": [], "source": [ - "print(automl.show_models())" + "pprint(automl.show_models(), indent=4)" ] }, { diff --git a/master/notebooks/examples/40_advanced/example_interpretable_models.ipynb b/master/notebooks/examples/40_advanced/example_interpretable_models.ipynb index b4b7eb5b6c..04a8cc6aba 100644 --- a/master/notebooks/examples/40_advanced/example_interpretable_models.ipynb +++ b/master/notebooks/examples/40_advanced/example_interpretable_models.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import autosklearn.classification\nimport sklearn.datasets\nimport sklearn.metrics" + "from pprint import pprint\n\nimport autosklearn.classification\nimport sklearn.datasets\nimport sklearn.metrics" ] }, { @@ -116,7 +116,7 @@ }, "outputs": [], "source": [ - "print(automl.show_models())" + "pprint(automl.show_models(), indent=4)" ] }, { diff --git a/master/notebooks/examples/40_advanced/example_resampling.ipynb b/master/notebooks/examples/40_advanced/example_resampling.ipynb index dbe33aaa65..55c4cb4f14 100644 --- a/master/notebooks/examples/40_advanced/example_resampling.ipynb +++ b/master/notebooks/examples/40_advanced/example_resampling.ipynb @@ -141,7 +141,7 @@ }, "outputs": [], "source": [ - "resampling_strategy = sklearn.model_selection.PredefinedSplit(\n test_fold=np.where(X_train[:, 0] < np.mean(X_train[:, 0]))[0]\n)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=120,\n per_run_time_limit=30,\n tmp_folder='/tmp/autosklearn_resampling_example_tmp',\n disable_evaluator_output=False,\n resampling_strategy=resampling_strategy,\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')" + "selected_indices = (X_train[:, 0] < np.mean(X_train[:, 0])).astype(int)\nresampling_strategy = sklearn.model_selection.PredefinedSplit(\n test_fold=selected_indices\n)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=120,\n per_run_time_limit=30,\n tmp_folder='/tmp/autosklearn_resampling_example_tmp',\n disable_evaluator_output=False,\n resampling_strategy=resampling_strategy,\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\nprint(automl.sprint_statistics())" ] }, { diff --git a/master/notebooks/examples/60_search/example_parallel_manual_spawning_cli.ipynb b/master/notebooks/examples/60_search/example_parallel_manual_spawning_cli.ipynb index 0da3e8120c..0c7b01d234 100644 --- a/master/notebooks/examples/60_search/example_parallel_manual_spawning_cli.ipynb +++ b/master/notebooks/examples/60_search/example_parallel_manual_spawning_cli.ipynb @@ -15,7 +15,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n# Parallel Usage: Spawning workers from the command line\n\n*Auto-sklearn* uses\n`dask.distributed `_\nfor parallel optimization.\n\nThis example shows how to start the dask scheduler and spawn\nworkers for *Auto-sklearn* manually from the command line. Use this example\nas a starting point to parallelize *Auto-sklearn* across multiple\nmachines. If you want to start everything manually from within Python\nplease see `sphx_glr_examples_60_search_example_parallel_manual_spawning_python.py`.\nTo run *Auto-sklearn* in parallel on a single machine check out the example\n`sphx_glr_examples_60_search_example_parallel_n_jobs.py`.\n\nYou can learn more about the dask command line interface from\nhttps://docs.dask.org/en/latest/setup/cli.html.\n\nWhen manually passing a dask client to Auto-sklearn, all logic\nmust be guarded by ``if __name__ == \"__main__\":`` statements! We use\nmultiple such statements to properly render this example as a notebook\nand also allow execution via the command line.\n\n## Background\n\nTo run Auto-sklearn distributed on multiple machines we need to set\nup three components:\n\n1. **Auto-sklearn and a dask client**. This will manage all workload, find new\n configurations to evaluate and submit jobs via a dask client. As this\n runs Bayesian optimization it should be executed on its own CPU.\n2. **The dask workers**. They will do the actual work of running machine\n learning algorithms and require their own CPU each.\n3. **The scheduler**. It manages the communication between the dask client\n and the different dask workers. As the client and all workers connect\n to the scheduler it must be started first. This is a light-weight job\n and does not require its own CPU.\n\nWe will now start these three components in reverse order: scheduler,\nworkers and client. Also, in a real setup, the scheduler and the workers should\nbe started from the command line and not from within a Python file via\nthe ``subprocess`` module as done here (for the sake of having a self-contained\nexample).\n" + "\n# Parallel Usage: Spawning workers from the command line\n\n*Auto-sklearn* uses\n`dask.distributed `_\nfor parallel optimization.\n\nThis example shows how to start the dask scheduler and spawn\nworkers for *Auto-sklearn* manually from the command line. Use this example\nas a starting point to parallelize *Auto-sklearn* across multiple\nmachines.\n\nTo run *Auto-sklearn* in parallel on a single machine check out the example\n`sphx_glr_examples_60_search_example_parallel_n_jobs.py`.\n\nIf you want to start everything manually from within Python\nplease see ``:ref:sphx_glr_examples_60_search_example_parallel_manual_spawning_python.py``.\n\n**NOTE:** Above example is disabled due to issue https://github.com/dask/distributed/issues/5627\n\n\nYou can learn more about the dask command line interface from\nhttps://docs.dask.org/en/latest/setup/cli.html.\n\nWhen manually passing a dask client to Auto-sklearn, all logic\nmust be guarded by ``if __name__ == \"__main__\":`` statements! We use\nmultiple such statements to properly render this example as a notebook\nand also allow execution via the command line.\n\n## Background\n\nTo run Auto-sklearn distributed on multiple machines we need to set\nup three components:\n\n1. **Auto-sklearn and a dask client**. This will manage all workload, find new\n configurations to evaluate and submit jobs via a dask client. As this\n runs Bayesian optimization it should be executed on its own CPU.\n2. **The dask workers**. They will do the actual work of running machine\n learning algorithms and require their own CPU each.\n3. **The scheduler**. It manages the communication between the dask client\n and the different dask workers. As the client and all workers connect\n to the scheduler it must be started first. This is a light-weight job\n and does not require its own CPU.\n\nWe will now start these three components in reverse order: scheduler,\nworkers and client. Also, in a real setup, the scheduler and the workers should\nbe started from the command line and not from within a Python file via\nthe ``subprocess`` module as done here (for the sake of having a self-contained\nexample).\n" ] }, { diff --git a/master/notebooks/examples/60_search/example_parallel_manual_spawning_python.ipynb b/master/notebooks/examples/60_search/example_parallel_manual_spawning_python.ipynb deleted file mode 100644 index 7851c9efc7..0000000000 --- a/master/notebooks/examples/60_search/example_parallel_manual_spawning_python.ipynb +++ /dev/null @@ -1,90 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "%matplotlib inline" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n# Parallel Usage: Spawning workers from within Python\n\n*Auto-sklearn* uses\n`dask.distributed `_\nfor parallel optimization.\n\nThis example shows how to start the dask scheduler and spawn\nworkers for *Auto-sklearn* manually within Python. Use this example\nas a starting point to parallelize *Auto-sklearn* across multiple\nmachines. If you want to start everything manually from the command line\nplease see `sphx_glr_examples_60_search_example_parallel_manual_spawning_cli.py`.\nTo run *Auto-sklearn* in parallel on a single machine check out the example\n`sphx_glr_examples_60_search_example_parallel_n_jobs.py`.\n\nWhen manually passing a dask client to Auto-sklearn, all logic\nmust be guarded by ``if __name__ == \"__main__\":`` statements! We use\nmultiple such statements to properly render this example as a notebook\nand also allow execution via the command line.\n\n## Background\n\nTo run Auto-sklearn distributed on multiple machines we need to set\nup three components:\n\n1. **Auto-sklearn and a dask client**. This will manage all workload, find new\n configurations to evaluate and submit jobs via a dask client. As this\n runs Bayesian optimization it should be executed on its own CPU.\n2. **The dask workers**. They will do the actual work of running machine\n learning algorithms and require their own CPU each.\n3. **The scheduler**. It manages the communication between the dask client\n and the different dask workers. As the client and all workers connect\n to the scheduler it must be started first. This is a light-weight job\n and does not require its own CPU.\n\nWe will now start these three components in reverse order: scheduler,\nworkers and client. Also, in a real setup, the scheduler and the workers should\nbe started from the command line and not from within a Python file via\nthe ``subprocess`` module as done here (for the sake of having a self-contained\nexample).\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "import asyncio\nimport multiprocessing\nimport time\n\nimport dask\nimport dask.distributed\nimport sklearn.datasets\nimport sklearn.metrics\n\nfrom autosklearn.classification import AutoSklearnClassifier\nfrom autosklearn.constants import MULTICLASS_CLASSIFICATION\n\ntmp_folder = '/tmp/autosklearn_parallel_2_example_tmp'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define function to start worker\n\nDefine the function to start a dask worker from python. This\nis a bit cumbersome and should ideally be done from the command line.\nWe do it here only for illustrational purpose.\n\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "# Check the dask docs at\n# https://docs.dask.org/en/latest/setup/python-advanced.html for further\n# information.\n\ndef start_python_worker(scheduler_address):\n dask.config.set({'distributed.worker.daemon': False})\n\n async def do_work():\n async with dask.distributed.Nanny(\n scheduler_ip=scheduler_address,\n nthreads=1,\n lifetime=35, # automatically shut down the worker so this loop ends\n memory_limit=0, # Disable memory management as it is done by Auto-sklearn itself\n ) as worker:\n await worker.finished()\n\n asyncio.get_event_loop().run_until_complete(do_work())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Start Auto-sklearn\n\nWe are now ready to start *auto-sklearn* and all dask related processes.\n\nTo use auto-sklearn in parallel we must guard the code with\n``if __name__ == '__main__'``. We then start a dask cluster as a context,\nwhich means that it is automatically stopped once all computation is done.\n\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "if __name__ == '__main__':\n X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\n X_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1)\n\n # 1. Create a dask scheduler (LocalCluster)\n with dask.distributed.LocalCluster(\n n_workers=0, processes=True, threads_per_worker=1,\n ) as cluster:\n\n # 2. Start the workers\n # now we start the two workers, one from within Python, the other\n # via the command line.\n worker_processes = []\n for _ in range(2):\n process_python_worker = multiprocessing.Process(\n target=start_python_worker,\n args=(cluster.scheduler_address, ),\n )\n process_python_worker.start()\n worker_processes.append(process_python_worker)\n\n # Wait a second for workers to become available\n time.sleep(1)\n\n # 3. Start the client\n with dask.distributed.Client(address=cluster.scheduler_address) as client:\n automl = AutoSklearnClassifier(\n delete_tmp_folder_after_terminate=False,\n time_left_for_this_task=30,\n per_run_time_limit=10,\n memory_limit=1024,\n tmp_folder=tmp_folder,\n seed=777,\n # n_jobs is ignored internally as we pass a dask client.\n n_jobs=1,\n # Pass a dask client which connects to the previously constructed cluster.\n dask_client=client,\n )\n automl.fit(X_train, y_train)\n\n automl.fit_ensemble(\n y_train,\n task=MULTICLASS_CLASSIFICATION,\n dataset_name='digits',\n ensemble_size=20,\n ensemble_nbest=50,\n )\n\n predictions = automl.predict(X_test)\n print(automl.sprint_statistics())\n print(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))\n\n # Wait until all workers are closed\n for process in worker_processes:\n process_python_worker.join()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.12" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file diff --git a/master/notebooks/examples/60_search/example_random_search.ipynb b/master/notebooks/examples/60_search/example_random_search.ipynb index 753e1b54fa..1748e1bda2 100644 --- a/master/notebooks/examples/60_search/example_random_search.ipynb +++ b/master/notebooks/examples/60_search/example_random_search.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import sklearn.model_selection\nimport sklearn.datasets\nimport sklearn.metrics\n\nfrom smac.facade.roar_facade import ROAR\nfrom smac.scenario.scenario import Scenario\n\nimport autosklearn.classification" + "from pprint import pprint\n\nimport sklearn.model_selection\nimport sklearn.datasets\nimport sklearn.metrics\n\nfrom smac.facade.roar_facade import ROAR\nfrom smac.scenario.scenario import Scenario\n\nimport autosklearn.classification" ] }, { @@ -62,7 +62,7 @@ }, "outputs": [], "source": [ - "def get_roar_object_callback(\n scenario_dict,\n seed,\n ta,\n ta_kwargs,\n metalearning_configurations,\n n_jobs,\n dask_client,\n):\n \"\"\"Random online adaptive racing.\"\"\"\n\n if n_jobs > 1 or (dask_client and len(dask_client.nthreads()) > 1):\n raise ValueError(\"Please make sure to guard the code invoking Auto-sklearn by \"\n \"`if __name__ == '__main__'` and remove this exception.\")\n\n scenario = Scenario(scenario_dict)\n return ROAR(\n scenario=scenario,\n rng=seed,\n tae_runner=ta,\n tae_runner_kwargs=ta_kwargs,\n run_id=seed,\n dask_client=dask_client,\n n_jobs=n_jobs,\n )\n\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=60,\n per_run_time_limit=15,\n tmp_folder='/tmp/autosklearn_random_search_example_tmp',\n initial_configurations_via_metalearning=0,\n # The callback to get the SMAC object\n get_smac_object_callback=get_roar_object_callback,\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\nprint('#' * 80)\nprint('Results for ROAR.')\n# Print the final ensemble constructed by auto-sklearn via ROAR.\nprint(automl.show_models())\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" + "def get_roar_object_callback(\n scenario_dict,\n seed,\n ta,\n ta_kwargs,\n metalearning_configurations,\n n_jobs,\n dask_client,\n):\n \"\"\"Random online adaptive racing.\"\"\"\n\n if n_jobs > 1 or (dask_client and len(dask_client.nthreads()) > 1):\n raise ValueError(\"Please make sure to guard the code invoking Auto-sklearn by \"\n \"`if __name__ == '__main__'` and remove this exception.\")\n\n scenario = Scenario(scenario_dict)\n return ROAR(\n scenario=scenario,\n rng=seed,\n tae_runner=ta,\n tae_runner_kwargs=ta_kwargs,\n run_id=seed,\n dask_client=dask_client,\n n_jobs=n_jobs,\n )\n\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=60,\n per_run_time_limit=15,\n tmp_folder='/tmp/autosklearn_random_search_example_tmp',\n initial_configurations_via_metalearning=0,\n # The callback to get the SMAC object\n get_smac_object_callback=get_roar_object_callback,\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\nprint('#' * 80)\nprint('Results for ROAR.')\n# Print the final ensemble constructed by auto-sklearn via ROAR.\npprint(automl.show_models(), indent=4)\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" ] }, { @@ -80,7 +80,7 @@ }, "outputs": [], "source": [ - "def get_random_search_object_callback(\n scenario_dict,\n seed,\n ta,\n ta_kwargs,\n metalearning_configurations,\n n_jobs,\n dask_client\n):\n \"\"\" Random search \"\"\"\n\n if n_jobs > 1 or (dask_client and len(dask_client.nthreads()) > 1):\n raise ValueError(\"Please make sure to guard the code invoking Auto-sklearn by \"\n \"`if __name__ == '__main__'` and remove this exception.\")\n\n scenario_dict['minR'] = len(scenario_dict['instances'])\n scenario_dict['initial_incumbent'] = 'RANDOM'\n scenario = Scenario(scenario_dict)\n return ROAR(\n scenario=scenario,\n rng=seed,\n tae_runner=ta,\n tae_runner_kwargs=ta_kwargs,\n run_id=seed,\n dask_client=dask_client,\n n_jobs=n_jobs,\n )\n\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=60,\n per_run_time_limit=15,\n tmp_folder='/tmp/autosklearn_random_search_example_tmp',\n initial_configurations_via_metalearning=0,\n # Passing the callback to get the SMAC object\n get_smac_object_callback=get_random_search_object_callback,\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\nprint('#' * 80)\nprint('Results for random search.')\n\n# Print the final ensemble constructed by auto-sklearn via random search.\nprint(automl.show_models())\n\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\n\npredictions = automl.predict(X_test)\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" + "def get_random_search_object_callback(\n scenario_dict,\n seed,\n ta,\n ta_kwargs,\n metalearning_configurations,\n n_jobs,\n dask_client\n):\n \"\"\" Random search \"\"\"\n\n if n_jobs > 1 or (dask_client and len(dask_client.nthreads()) > 1):\n raise ValueError(\"Please make sure to guard the code invoking Auto-sklearn by \"\n \"`if __name__ == '__main__'` and remove this exception.\")\n\n scenario_dict['minR'] = len(scenario_dict['instances'])\n scenario_dict['initial_incumbent'] = 'RANDOM'\n scenario = Scenario(scenario_dict)\n return ROAR(\n scenario=scenario,\n rng=seed,\n tae_runner=ta,\n tae_runner_kwargs=ta_kwargs,\n run_id=seed,\n dask_client=dask_client,\n n_jobs=n_jobs,\n )\n\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=60,\n per_run_time_limit=15,\n tmp_folder='/tmp/autosklearn_random_search_example_tmp',\n initial_configurations_via_metalearning=0,\n # Passing the callback to get the SMAC object\n get_smac_object_callback=get_random_search_object_callback,\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\nprint('#' * 80)\nprint('Results for random search.')\n\n# Print the final ensemble constructed by auto-sklearn via random search.\npprint(automl.show_models(), indent=4)\n\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\n\npredictions = automl.predict(X_test)\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" ] } ], diff --git a/master/notebooks/examples/60_search/example_sequential.ipynb b/master/notebooks/examples/60_search/example_sequential.ipynb index 4b401c5b90..89111256c1 100644 --- a/master/notebooks/examples/60_search/example_sequential.ipynb +++ b/master/notebooks/examples/60_search/example_sequential.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import sklearn.model_selection\nimport sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.classification" + "from pprint import pprint\n\nimport sklearn.model_selection\nimport sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.classification" ] }, { @@ -80,7 +80,7 @@ }, "outputs": [], "source": [ - "print(automl.show_models())" + "pprint(automl.show_models(), indent=4)" ] }, { diff --git a/master/notebooks/examples/60_search/example_successive_halving.ipynb b/master/notebooks/examples/60_search/example_successive_halving.ipynb index f285520243..e62b893576 100644 --- a/master/notebooks/examples/60_search/example_successive_halving.ipynb +++ b/master/notebooks/examples/60_search/example_successive_halving.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import sklearn.model_selection\nimport sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.classification" + "from pprint import pprint\n\nimport sklearn.model_selection\nimport sklearn.datasets\nimport sklearn.metrics\n\nimport autosklearn.classification" ] }, { @@ -80,7 +80,7 @@ }, "outputs": [], "source": [ - "automl = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp',\n disable_evaluator_output=False,\n # 'holdout' with 'train_size'=0.67 is the default argument setting\n # for AutoSklearnClassifier. It is explicitly specified in this example\n # for demonstrational purpose.\n resampling_strategy='holdout',\n resampling_strategy_arguments={'train_size': 0.67},\n include={\n 'classifier': [\n 'extra_trees', 'gradient_boosting', 'random_forest',\n 'sgd', 'passive_aggressive'\n ],\n 'feature_preprocessor': ['no_preprocessing']\n },\n get_smac_object_callback=get_smac_object_callback('iterations'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\nprint(automl.show_models())\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" + "automl = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp',\n disable_evaluator_output=False,\n # 'holdout' with 'train_size'=0.67 is the default argument setting\n # for AutoSklearnClassifier. It is explicitly specified in this example\n # for demonstrational purpose.\n resampling_strategy='holdout',\n resampling_strategy_arguments={'train_size': 0.67},\n include={\n 'classifier': [\n 'extra_trees', 'gradient_boosting', 'random_forest',\n 'sgd', 'passive_aggressive'\n ],\n 'feature_preprocessor': ['no_preprocessing']\n },\n get_smac_object_callback=get_smac_object_callback('iterations'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\npprint(automl.show_models(), indent=4)\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" ] }, { @@ -98,7 +98,7 @@ }, "outputs": [], "source": [ - "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\nX_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1, shuffle=True)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp_01',\n disable_evaluator_output=False,\n resampling_strategy='cv',\n include={\n 'classifier': [\n 'extra_trees', 'gradient_boosting', 'random_forest', \n 'sgd', 'passive_aggressive'\n ],\n 'feature_preprocessor': ['no_preprocessing']\n },\n get_smac_object_callback=get_smac_object_callback('iterations'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\n# Print the final ensemble constructed by auto-sklearn.\nprint(automl.show_models())\nautoml.refit(X_train, y_train)\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" + "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\nX_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1, shuffle=True)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp_01',\n disable_evaluator_output=False,\n resampling_strategy='cv',\n include={\n 'classifier': [\n 'extra_trees', 'gradient_boosting', 'random_forest', \n 'sgd', 'passive_aggressive'\n ],\n 'feature_preprocessor': ['no_preprocessing']\n },\n get_smac_object_callback=get_smac_object_callback('iterations'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\n# Print the final ensemble constructed by auto-sklearn.\npprint(automl.show_models(), indent=4)\nautoml.refit(X_train, y_train)\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" ] }, { @@ -116,7 +116,7 @@ }, "outputs": [], "source": [ - "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\nX_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1, shuffle=True)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp_cv_02',\n disable_evaluator_output=False,\n resampling_strategy='cv-iterative-fit',\n include={\n 'classifier': [\n 'extra_trees', 'gradient_boosting', 'random_forest',\n 'sgd', 'passive_aggressive'\n ],\n 'feature_preprocessor': ['no_preprocessing']\n },\n get_smac_object_callback=get_smac_object_callback('iterations'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\n# Print the final ensemble constructed by auto-sklearn.\nprint(automl.show_models())\nautoml.refit(X_train, y_train)\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" + "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\nX_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1, shuffle=True)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp_cv_02',\n disable_evaluator_output=False,\n resampling_strategy='cv-iterative-fit',\n include={\n 'classifier': [\n 'extra_trees', 'gradient_boosting', 'random_forest',\n 'sgd', 'passive_aggressive'\n ],\n 'feature_preprocessor': ['no_preprocessing']\n },\n get_smac_object_callback=get_smac_object_callback('iterations'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\n# Print the final ensemble constructed by auto-sklearn.\npprint(automl.show_models(), indent=4)\nautoml.refit(X_train, y_train)\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" ] }, { @@ -134,7 +134,7 @@ }, "outputs": [], "source": [ - "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\nX_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1, shuffle=True)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp_03',\n disable_evaluator_output=False,\n # 'holdout' with 'train_size'=0.67 is the default argument setting\n # for AutoSklearnClassifier. It is explicitly specified in this example\n # for demonstrational purpose.\n resampling_strategy='holdout',\n resampling_strategy_arguments={'train_size': 0.67},\n get_smac_object_callback=get_smac_object_callback('subsample'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\n# Print the final ensemble constructed by auto-sklearn.\nprint(automl.show_models())\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" + "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\nX_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1, shuffle=True)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp_03',\n disable_evaluator_output=False,\n # 'holdout' with 'train_size'=0.67 is the default argument setting\n # for AutoSklearnClassifier. It is explicitly specified in this example\n # for demonstrational purpose.\n resampling_strategy='holdout',\n resampling_strategy_arguments={'train_size': 0.67},\n get_smac_object_callback=get_smac_object_callback('subsample'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\n# Print the final ensemble constructed by auto-sklearn.\npprint(automl.show_models(), indent=4)\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" ] }, { @@ -152,7 +152,7 @@ }, "outputs": [], "source": [ - "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\nX_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1, shuffle=True)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp_04',\n disable_evaluator_output=False,\n # 'holdout' with 'train_size'=0.67 is the default argument setting\n # for AutoSklearnClassifier. It is explicitly specified in this example\n # for demonstrational purpose.\n resampling_strategy='holdout',\n resampling_strategy_arguments={'train_size': 0.67},\n include={\n 'classifier': [\n 'extra_trees', 'gradient_boosting', 'random_forest', 'sgd'\n ]\n },\n get_smac_object_callback=get_smac_object_callback('mixed'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\n# Print the final ensemble constructed by auto-sklearn.\nprint(automl.show_models())\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" + "X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\nX_train, X_test, y_train, y_test = \\\n sklearn.model_selection.train_test_split(X, y, random_state=1, shuffle=True)\n\nautoml = autosklearn.classification.AutoSklearnClassifier(\n time_left_for_this_task=40,\n per_run_time_limit=10,\n tmp_folder='/tmp/autosklearn_sh_example_tmp_04',\n disable_evaluator_output=False,\n # 'holdout' with 'train_size'=0.67 is the default argument setting\n # for AutoSklearnClassifier. It is explicitly specified in this example\n # for demonstrational purpose.\n resampling_strategy='holdout',\n resampling_strategy_arguments={'train_size': 0.67},\n include={\n 'classifier': [\n 'extra_trees', 'gradient_boosting', 'random_forest', 'sgd'\n ]\n },\n get_smac_object_callback=get_smac_object_callback('mixed'),\n)\nautoml.fit(X_train, y_train, dataset_name='breast_cancer')\n\n# Print the final ensemble constructed by auto-sklearn.\npprint(automl.show_models(), indent=4)\npredictions = automl.predict(X_test)\n# Print statistics about the auto-sklearn run such as number of\n# iterations, number of models failed with a time out.\nprint(automl.sprint_statistics())\nprint(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))" ] } ], diff --git a/master/notebooks/examples/80_extending/example_extending_classification.ipynb b/master/notebooks/examples/80_extending/example_extending_classification.ipynb index 08d5d78bf2..2a97dc7eac 100644 --- a/master/notebooks/examples/80_extending/example_extending_classification.ipynb +++ b/master/notebooks/examples/80_extending/example_extending_classification.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "from ConfigSpace.configuration_space import ConfigurationSpace\nfrom ConfigSpace.hyperparameters import CategoricalHyperparameter, \\\n UniformIntegerHyperparameter, UniformFloatHyperparameter\n\nimport sklearn.metrics\nimport autosklearn.classification\nimport autosklearn.pipeline.components.classification\nfrom autosklearn.pipeline.components.base \\\n import AutoSklearnClassificationAlgorithm\nfrom autosklearn.pipeline.constants import DENSE, SIGNED_DATA, UNSIGNED_DATA, \\\n PREDICTIONS\n\nfrom sklearn.datasets import load_breast_cancer\nfrom sklearn.model_selection import train_test_split" + "from pprint import pprint\n\nfrom ConfigSpace.configuration_space import ConfigurationSpace\nfrom ConfigSpace.hyperparameters import CategoricalHyperparameter, \\\n UniformIntegerHyperparameter, UniformFloatHyperparameter\n\nimport sklearn.metrics\nimport autosklearn.classification\nimport autosklearn.pipeline.components.classification\nfrom autosklearn.pipeline.components.base \\\n import AutoSklearnClassificationAlgorithm\nfrom autosklearn.pipeline.constants import DENSE, SIGNED_DATA, UNSIGNED_DATA, \\\n PREDICTIONS\n\nfrom sklearn.datasets import load_breast_cancer\nfrom sklearn.model_selection import train_test_split" ] }, { @@ -98,7 +98,7 @@ }, "outputs": [], "source": [ - "y_pred = clf.predict(X_test)\nprint(\"accuracy: \", sklearn.metrics.accuracy_score(y_pred, y_test))\nprint(clf.show_models())" + "y_pred = clf.predict(X_test)\nprint(\"accuracy: \", sklearn.metrics.accuracy_score(y_pred, y_test))\npprint(clf.show_models(), indent=4)" ] } ], diff --git a/master/notebooks/examples/80_extending/example_extending_data_preprocessor.ipynb b/master/notebooks/examples/80_extending/example_extending_data_preprocessor.ipynb index 490787f633..bb3899d5a3 100644 --- a/master/notebooks/examples/80_extending/example_extending_data_preprocessor.ipynb +++ b/master/notebooks/examples/80_extending/example_extending_data_preprocessor.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "import autosklearn.classification\nimport autosklearn.pipeline.components.data_preprocessing\nimport sklearn.metrics\nfrom ConfigSpace.configuration_space import ConfigurationSpace\nfrom autosklearn.pipeline.components.base import AutoSklearnPreprocessingAlgorithm\nfrom autosklearn.pipeline.constants import SPARSE, DENSE, UNSIGNED_DATA, INPUT\nfrom sklearn.datasets import load_breast_cancer\nfrom sklearn.model_selection import train_test_split" + "from pprint import pprint\n\nimport autosklearn.classification\nimport autosklearn.pipeline.components.data_preprocessing\nimport sklearn.metrics\nfrom ConfigSpace.configuration_space import ConfigurationSpace\nfrom autosklearn.pipeline.components.base import AutoSklearnPreprocessingAlgorithm\nfrom autosklearn.pipeline.constants import SPARSE, DENSE, UNSIGNED_DATA, INPUT\nfrom sklearn.datasets import load_breast_cancer\nfrom sklearn.model_selection import train_test_split" ] }, { @@ -98,7 +98,7 @@ }, "outputs": [], "source": [ - "y_pred = clf.predict(X_test)\nprint(\"accuracy: \", sklearn.metrics.accuracy_score(y_pred, y_test))\nprint(clf.show_models())" + "y_pred = clf.predict(X_test)\nprint(\"accuracy: \", sklearn.metrics.accuracy_score(y_pred, y_test))\npprint(clf.show_models(), indent=4)" ] } ], diff --git a/master/notebooks/examples/80_extending/example_extending_preprocessor.ipynb b/master/notebooks/examples/80_extending/example_extending_preprocessor.ipynb index a44db2d221..fa090d2f9a 100644 --- a/master/notebooks/examples/80_extending/example_extending_preprocessor.ipynb +++ b/master/notebooks/examples/80_extending/example_extending_preprocessor.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "from ConfigSpace.configuration_space import ConfigurationSpace\nfrom ConfigSpace.hyperparameters import UniformFloatHyperparameter, CategoricalHyperparameter\nfrom ConfigSpace.conditions import InCondition\n\nimport sklearn.metrics\nimport autosklearn.classification\nimport autosklearn.pipeline.components.feature_preprocessing\nfrom autosklearn.pipeline.components.base \\\n import AutoSklearnPreprocessingAlgorithm\nfrom autosklearn.pipeline.constants import DENSE, SIGNED_DATA, \\\n UNSIGNED_DATA\nfrom autosklearn.util.common import check_none\n\nfrom sklearn.datasets import load_breast_cancer\nfrom sklearn.model_selection import train_test_split" + "from pprint import pprint\n\nfrom ConfigSpace.configuration_space import ConfigurationSpace\nfrom ConfigSpace.hyperparameters import UniformFloatHyperparameter, CategoricalHyperparameter\nfrom ConfigSpace.conditions import InCondition\n\nimport sklearn.metrics\nimport autosklearn.classification\nimport autosklearn.pipeline.components.feature_preprocessing\nfrom autosklearn.pipeline.components.base \\\n import AutoSklearnPreprocessingAlgorithm\nfrom autosklearn.pipeline.constants import DENSE, SIGNED_DATA, \\\n UNSIGNED_DATA\nfrom autosklearn.util.common import check_none\n\nfrom sklearn.datasets import load_breast_cancer\nfrom sklearn.model_selection import train_test_split" ] }, { @@ -116,7 +116,7 @@ }, "outputs": [], "source": [ - "y_pred = clf.predict(X_test)\nprint(\"accuracy: \", sklearn.metrics.accuracy_score(y_pred, y_test))\nprint(clf.show_models())" + "y_pred = clf.predict(X_test)\nprint(\"accuracy: \", sklearn.metrics.accuracy_score(y_pred, y_test))\npprint(clf.show_models(), indent=4)" ] } ], diff --git a/master/notebooks/examples/80_extending/example_extending_regression.ipynb b/master/notebooks/examples/80_extending/example_extending_regression.ipynb index 5783cf90e0..7e7efbf899 100644 --- a/master/notebooks/examples/80_extending/example_extending_regression.ipynb +++ b/master/notebooks/examples/80_extending/example_extending_regression.ipynb @@ -26,7 +26,7 @@ }, "outputs": [], "source": [ - "from ConfigSpace.configuration_space import ConfigurationSpace\nfrom ConfigSpace.hyperparameters import UniformFloatHyperparameter, \\\n UniformIntegerHyperparameter, CategoricalHyperparameter\nfrom ConfigSpace.conditions import EqualsCondition\n\nimport sklearn.metrics\nimport autosklearn.regression\nimport autosklearn.pipeline.components.regression\nfrom autosklearn.pipeline.components.base import AutoSklearnRegressionAlgorithm\nfrom autosklearn.pipeline.constants import SPARSE, DENSE, \\\n SIGNED_DATA, UNSIGNED_DATA, PREDICTIONS\n\nfrom sklearn.datasets import load_diabetes\nfrom sklearn.model_selection import train_test_split" + "from pprint import pprint\n\nfrom ConfigSpace.configuration_space import ConfigurationSpace\nfrom ConfigSpace.hyperparameters import UniformFloatHyperparameter, \\\n UniformIntegerHyperparameter, CategoricalHyperparameter\nfrom ConfigSpace.conditions import EqualsCondition\n\nimport sklearn.metrics\nimport autosklearn.regression\nimport autosklearn.pipeline.components.regression\nfrom autosklearn.pipeline.components.base import AutoSklearnRegressionAlgorithm\nfrom autosklearn.pipeline.constants import SPARSE, DENSE, \\\n SIGNED_DATA, UNSIGNED_DATA, PREDICTIONS\n\nfrom sklearn.datasets import load_diabetes\nfrom sklearn.model_selection import train_test_split" ] }, { @@ -98,7 +98,7 @@ }, "outputs": [], "source": [ - "y_pred = reg.predict(X_test)\nprint(\"r2 score: \", sklearn.metrics.r2_score(y_pred, y_test))\nprint(reg.show_models())" + "y_pred = reg.predict(X_test)\nprint(\"r2 score: \", sklearn.metrics.r2_score(y_pred, y_test))\npprint(reg.show_models(), indent=4)" ] } ], diff --git a/master/objects.inv b/master/objects.inv index d5a7ed44583e3cc6450e57e9f6be2062ff009d7a..5177b72da30112d48155973997a91048d2283547 100644 GIT binary patch delta 7268 zcmV-q9Gl~nKA|~~L;*CBMLd7qa@@9(zSmQ*%Bk9<>Oj$qG?L>xM|N^t$2!(p`MG3q zIM9g49CAW(B>8S%V_$EdWbsP^BtSMmjGT+a8WR2W*C5aU8h^>5DeEsePO9QG&6B#$ z?z1#$va&dROJ3daSJ&bVuA=?dH!NMWh?0GF`q1q1SKmeGByj{fz0ZFd3bw<|L%9io z7UQDEyLFBO!|t;^&a)yU>=rk1S{C=&_E52OalKE{&>D8-2IqDBlr<0W6VA2|O&wUn zKB7gR6C!RGWaP`wDNev}ybN+DbSuKE@8t-PnO^u6NfFnCM2ykepR>2w8 zrD=eJJG2jQP=`js0rY4^!nwI{fc9%MNQ#OiK26e;)aLXnl}dja@@#!*Fi7wbSIHKW zGK15MdU0ojb&@AViZ`)0hx>(xNW4qZs`L`fJO%4yx6g6yBg(xW-Z;zV_MV9DdJ>ZmpRcD6wYP{`{uF`_s`-ojgvzPmXjUB)3n^}%Yrm6 z)Ct$v)ZgbLfw%d#tVkzp2kKSNz-QgDc1Qth!se)R>PQ7p{Cz*}Q+rlQqt1xKuv*%iYL)~@#KW)U_hHPRim!a+uIM_%T|lR zNG5ng{;Msi*sC_-`jF)f%8E$zMJ+-y8Is91}j!HhH06Sw@X zjTj7`H5Y6=NIo;J?uqNNfwxJKlJtEm|Dk=zfOmfh&Bt1nY#tpn|n;*jLB zwBPUqILE9fa3b5ydQ9j&PeghPCvdXgbZz)%@p%X>8fD$J_# zCQ5&bO+?*(5-B}Cvw;vctmbbJK}7@=B}hU2*{Tpuddy|G5gqp{U_zUuNus<=Xn%4J z9g2e_&N~YFk^g{GA-$ETdB72Ge9L?G<31~rJZig$GZ+$hL=X{!N98^H!QfE~|Er*I zXQu$ShqbFFBS>emZmL5{V<+pc5pArIXsv(e7|8S)tU`)DwEl`TeYYMY;aTvQ;U@+z zIxP3)p$KX-RlrQ<3J_B;F!B!wjS;JMhrG!cLocsq73U7{hQ3BT1HjeTipl*Vt%cNJ zcc(Z`_LW3uncjDfL#e8+XQ?M#MC-&!=icRO2n2-3;rG(-48O;oG)J_KXSIJWb@p z3$|3G@azvw+#4*xnyG=T+D7r0>d49!ZP07)f}AedY-Ty=ym#O~+tj*S;N3b|NP9O; zLu#^J(xR0Sk5&d?DjOpW9&z|z?W%wM?FiMrPS|tg#&u}lPOVM0n1-KCDl}4{gH_<8 zHzpRt{x&ViFiXNWBbGdPnKs0=-RQR!pwbnxNjPpZFw^yiaQDY?jW6#GRX38C97#+8 zk!Q6paf-#rs#v!M1wd*?^l*Piucnyp-WK%@G6%7ePmmvx=>Hpb65J+Ob-;U?RO zAiLFd4%3TRc)25fpZA^EW00;lX$X<47IQ7{TfJH%*SLgEv%g8;w(kzIOCyI7e|d zczvKNqqkf6^&vG%lj1e$qkw;)rINkgPJV9fVp4_4=~ z=AejHBlc8`j-zX{G8ev{_1!?yv!3g8a#O*X$4llJ{pcN}M+ucn^qQ}G3~z5VDPB8% z;g6!<=pzT6VQR&Y&@pO-PTaGU8K`=eGM$e26?I?In~!*eIF$F74cmXN8F;=(d&brR zigl53x9AjHS1j_p)_htwba4-z%*YD5?zuNr;{e#JNT5kfSH8VUWtz&g5b!g}vx<$H z;91$M6fyaNIT<$^r=e;x?nxga6z!9$i59_Z5K7JSWLzntDv6eNE(DLC2g{ewgQZg* zEdBBzE9yN?Wh}q-62gDs&~<8&VWFD8`9hzVSCH?d6Quh1h&}oMB<5#!X>?$rjO6Ha zt{183A-$$tNqwm0B8;G)Nx&lp-^Ed)TeDg}8!Egnt7f!t2Qr6i8mn^A=SecNjP#6i z`C2*|`TA_9MOTfZyMFA;#6(o)xF6Gn^e+suBJ#ru+WY5yo)mw83Sz(!@i83jakZ1d ztZYXOrm{ZGnvJc9pkbt_LY*qvm|epNd05Ivom4y{UBeCD<6?s;=J)%}53Ey@6`Sla z+Z@PiG9=w(RFL)}pD7rp@_m-#A0ir7uYKA(d*<-5vS5cgc4*IgV;wi7a6<|=l+o0b znQRoV?Iz#8gPVW+;re~wKoCJxDyEzOR=&% zMo7hIhUc))PTX_MXCxOks$u8+BEb!#g_)r+1~Ex{Bf3?gihjV!XE&q1!AvwbQ|O+@ zD0xii^2!|d7b6G!vQ!aj6`}rSJFe&sz-GRY>elk37^f?^8__;)jO!$?`?Ri{d`k~? zQ|==7IXHi9){UcdJ104)6A@3x9%AZMQn=6Vn+K`x4Hdpm<2VaqvPo^AXLi6nL0R7qCE4UKU_TiJmmZ*OmL#RAPV3{XDe zimiY0VxxFRB4Ng8W|qeopbZW1Y{V^;J)83(t+3-V3)>eNlnrg$TT9=3lZ@Cb%oVWE zx2u-BGmARx05-^l%okAy z_xfH zrGlAJ(4kfp?W^)J+u+Ty%qi%&t3pzZ$*fT(X7hl%dB#O1H}s5)gZK0RSh#KLxjc*c z`WB_PS|xdo=~316Xfb;HU z1JLp|dvQuvG|_cUEpR{!DY8PDD7({@dGlUM-py0lmWa^I2{w}0OUYeP=*@rr{4`># zG1#UC@oA%s9?;)B1TAAy3yYbs0+ba`*{|ZvXVA z$X8aerF?kTE_x5clw%_W`$J!wH*fipv|!97)*zP{&^Va_F#<>?kd*{c{c`0l)sL9| z7xv`bF97Dl{T+h_&fUUWFD0b^i}4O>^U3KRc%Kr5`SjNsK^&7cd@dRe7b~cG9nVn9+7{3n!X5pLe}qd z4%Pd8Or6T0BJkz=Jkj`4dl1Ebg%H~YcuKjz{ueU|&)l_{R3_CiETOPA13ta|4Cfsz z&-Kg&=VFcjI*?8ZUEB++5S;+84R;*?tCcWiKD+!TxrEr(H%i*83inBR)nA2#|75{5 zx8PF+qm~3*>o{%NH&}n)IBL97@pyykYgqT2x14S@@{qFoY#wp^kmQfH2||dVa0l)4 z=%4(#oB9ylH4C@!JvIY6ACNv_^X+=Y=?*Lr8LgrV-cG)wnw}%b&rOAFznsa}L#@A*qLq!}FwWv2H zU5so=)c|RLxwKI>{*Uo=eaT<*OeGYfWd?LjrCAyNlE?K#Gu`D9xohU|BF)Q%k-1*a!u_3Dq=wFO>6KW8hOcpA#7Y-px69F!LOYKon1N!zN>4y(m&ntxi=yjxk`CBVnk)KsrXEgp z05a`YS&e_ZRrR`;z=2xnUFnM&d)7X)G17fX=xa^We9A?s-7*`zMHsiLrybBL{JXpb z@|}@4V=kA~cCFyf^tzTD8gsm?jZsB_zV|qVUxqjN$pcgoU1us*dr~63Ec0$|EjcA) zul$e#p&xbn``JbH|KiShMhZtaX|_;fo)XTG)7{K|8TJW*(|oZ-pow0M6n zIrrlQlC+dw#oxj&)Q2@Is9JOJU$wo$9U(I%2faI1TPt34XCnQ7|MS0g+Lnw0POwhM zOwO@R$b+X@Aw1k>TC-wK0 z0ov}FlrT?KCU-j8dI1`qNRN~lW%TC|+3@zi+jp%R`Ib~H z@xBe3%g%&w608($Xpu4lC}P@;BdyqV4_Ek(TbY0<7Ym~YWxiFTBzWKc$wck8(KpgM z9tp@TDdk%pA;_6TR@VoT(<6Vkm9^qLY3~-Y51stG_7XA*OzK6#&-Ab(>S=E1uaDvv z!zf8kRu)ZPczAkaD=AYVCFN%+ebYXZsE53%|3UAki|(^r zm?~}vx8hS7det3bA}q_=OT`7?$CA$HNx)C+EmNu9<1rknv|5x>$diBl)|I+DHl`q- zyX&^J0P?9kik$p;GU3pU>@0ORH_Jf|x@n53T9YI?X4dvj?TV?13?Qj+e-NxxxKC|L zXDBa`%Yuvx)`whNT)4sGm?KkRaC4Kw#q%v2df&@=dyTrPljR&$DSb9Z5Dk)JOn*^Gl^UP zr4Z7D-kP9vZCr{B)V6p^hnn=d`&-8&dG&=j&TN-V1M;+pr+vo-KhPgKq)R?%Y3+F| zeoR#?3;LjreK5o6I(Ot-)KeOGBJ%%Fce=D_KV0%cG((!m9fyCh=S=;zZt#xOg})A2 zWjd(ApofVdP2_F}qw6`W4@GluvWJW4_WVAC(e*qL2T?vv+8~qt$^SKC{K!8J?S_)) z>nzWjuRvVHM3FA~X9xS~PKQ0ovt8EDdEI%nT?(G`L~)M7Un%LOQ#5%{9ac+d?NO>S z=1!#m$c!%54%UCAXZ>KA-r}i+k}0e7hCvGPOKfnC(_!J$q}gO$m+(dxlz4{Dq>7^U zCxt}2mtT!LSpnLe`D*H01B8UH^a5f>Zab_Zp}AyDbR1PcW8YB~Jt28&=sWJeBKe}d zb?lI1(Tij`I9-5w7PomjlG2!Y3Wo`D{Ky`iV?|0uQtN-=OZiOBLh)a1(ykjuZ-96_ zJ6)XiG;08_)a2;#3@y-e*DvcJM)1#0&zuyTp|ha|0y3gv;izI^Qn8p&v2aweFsWFK zs8~8$u{2q+9JONUXvNZG#d5-mrK5_aNyTzh#kr%3bCZhmQ56@CDlSYaE=EfeaW$&qwWEsHCKazoRGd3jy>nC5J0Goj7mg|}Oe!uW zR4g1-EKDjEqbin;DwZY{%TX2Qjw;SgD$Yk$TsW$@FsT@+-HyK8ur7N?gE2yO_ z&C-?G(o3kNmzt%QW=pT2XjdBAl?`nHMO$cS#(V?%cGa;Pz4}j38-LPlq@7RG`Ky2G znZI(;6P+Ozi#)=uzMPoT_-;6fQSTp~<85BWoARlkdoEfw@$xKY>tE%Q{@Eh?uNJ~m z@JEXvH-#uhL@|FR$(lBYZq)oWd?)J-=NnIWbOxi~}p1@QEE%oIr^ zd8ez`eH?N+yWzBxZiPaHtxB1f1FcW}}Q36NVE9z@dgDV2k(0hNfW46-5 z*&+jipGgW3-=Xbilb0i#Db}+9O9}&@DJt%e?LdvfFoghV%|UYS&M3xb7Y$0yoD> zaeIo7Vd}*zezp{dB6!f(@2-DvAaA(z!il)`R2vT_`JO`+M*m9&GHw z+jbVV6aT^K$dh)cJ6z+*lQOLac^tSoV%h66)NKru#&u5|$Ac3l4v&!YwbF7Joxh>O zgAQlf8pOUEWlQNHzUDk12~#2aYs&M&@+F)A&@7j47Y+0 z(Apr02W%Vf=8Kdf6I{xVw_PpVL z0!=wm%+oE@`H}yrZ#I7i8gQhjr(3X79y{?HeE=l>g7Hq@Fz2UrlVn9y9f~L`=uy%( zkNu58o<5OIz6tF8^FB`sH*;Pf;OQ0T{GdMPCs9JnV8DncG|=hho{k*lbPsOc@-x+G zN>o15Gwet+747q~0a_G1*y#}C{M`PE?izX&=r#kps}~7(dPRRZ`9-qg9%Jq8glXVj zj%p3Oqodm3+1F{~N%ex`w93_725;oTFR)$ax961IDj0ZQtg2)~>Z0sB@Hr%v0W(L?N zPTyEJ#@W*!s*zYQAD5^`yiA9Pjcfcy@pS(%y4S^J&Ux^10ry#PcHf(Xob%(@L3!U; yyvNlT&bA*jX73lOcfNW6X!ExZ=!b~ohd4rcBE!Hf3g~d&3F|@a%Krn-enLMeJ3BD| delta 7901 zcmV<39wOnPIh8(;L;*69MLd7oa@@9-efL+e%Bh;9YM`iF7dv`6CCg5tI`)aiO5%Cz zVzZ$ZkJ)607hT@wH|F=|O9mSk5+DH*0MT+DTym4xYp)Fg8^FdbZt9}?n&G(2kCH5| zs`M^R;yNwzqf7GYmc6>-Z*UpypD$>-Xc5Kx^yt3cWv{=B(5u)H=;(hgtpRL@>-%C8 z0&Ru!3h&k#4h*|b_c%-Qkg!`^uaY9aOSer))2*s~oP^e}D>gW*R*z|Yzk0;!_P(wH zYuLwSybB3Res6HOF5+?%5OrVTO`6o<5m)=NSjPczOB}XZR7p{WELPPaK6-UuJo3UC z5_MmudA+J?lBlZF#1elSleD|IF3M`k0U`;-m7SH+&v;wnswymWmMm#cUkA`r_q4}l zy2E)LXGbx4x|F4sj^5rH&EDlZK|1<64vmBZ=)sDFb93PU?bl|I6eUS~6ekI(&B=c=NX0dIwr*-{CHR2L zc#BDy!AS~U+!?s&v4}<%Df-mILl_mc9j*C zyV70!6|ZRhqHXD2lPBQptweF0ui|x8WJK2rmnG{5xTyz>>aQjyKFJ$mlg=mNU$9$A z&!Q&Dr}N}}3toSR;9dU8rMn1D;wj5N>ET(QxqTJ#I~f$#Wt>-cMY#*7>2o{m44-Wp>_dMQY@Mpvg}N68h&P*6q71C1 z&H#R@alRp6%O3s?$8}R;sR)5MXz3TKd3vPC0)UrtOu`;{Dn4OTXeKc1qYD;5jxhxr zM7K!76ymJ-fepBK)W8PZWnegk=NuuJ0(7eRQ(z7Q_9-ZbVfrLg;BVkOB%cIy7>I8k z*vJ<@@veVkRc|h`c#Sg%mx`x9ruhax@yIC`L9NIoe-eG*PhJrn6lhZrzzu{-2FU|eMR~;Y2r{1X!@=ayn~-z4Y0@gZYcEQ@_0qz zf8qvDSKpzx@L|AkYyHB+#+hc>#Uu*Uj1f_4<~hIEdBRG-Ew zBgr@ktZ3ecY3oU_ehb!Taz| z%WUONDwlrk)`W4A0@PCwxK1!vER8W6ytX zhV_SOh^(^V+qOyOj0xI2P2|K2wp66>?3;Sk8^_o+Qv+GKjbbn5L60lipx55TA6>Fp z&vMXt@4(-g)Vf>X-8vaadpAu(YNB0I0*Mg|BnDtA8Y2ZBG5BB1s{QQ<)xJ*HbKu5x zXx~n*O{Q>zpG`6}lAwcC;Da|N2E%{;HZ938OTsrJhCFzgHpI2v=(iPCr7L8UaM)&G zrt1&k?hoS{U)~+cZX_!h5}%zR&njQyfJMp5ST`C4medaD;r@uc87P8kM4$4}adf3u=EB#rzH3N&)^n9krYkt}c!@lN zkKRFglu)sHu72KQ`}RhWVzuLE_9*%t9y#a?Q!9pq4pA#q;+~~UL)EjCsdV_SsQZ%M zeE1{8puE3q*mh0B^F`V-x=fERSzLANL9OeGL7vr`-_|v(yMf7!G>3mB$-Su>2f$uM zvYNzn<=d-Nx~WV90Y8&GtJtUso|Vl=5tA>Nk#VDT8mc1Wp5#74(LOHgXc5c?u2ery z#*`vZNwmCoA$a&aSiXE7ES>UT>6Zs-UhQ!rV)?C?;0|YvtD23CLz&O@@p%RDPB=l( z$42bYwIwk>vkR>Q3uS*KLx;IuB%_D)nqrZ2Q;9_wK|d3RM-;w`qeM4)wSG2~cwdzD zXyFcI4%0MN<)Y7%WM&!Z8Rzn~bTabw*-Q%-bfepT>`TXlSLRherfbu`(8%)04=rdP zp7vRsTT~DY4v&xFXphUC2xg@_Fc@Tgnl%$!9znxMQiVEIqA`EFvLobSDI0ZycuKm4 z8@$K)1_S2z`^^uuQh& z)UiW*)*I`%A&DE3xS_0@;I$$_(fFYt-0CzTAwIQMZLk=h!G zK@Zn_a_G$7^DKWPOb{?ZzyuK{NQ{|i=AMja?v1@c?pX<4+lY3Y;S2IXfpeo~%pHJ7 zv=0sCj*ka;qXr#m)};p3d^o`Tkh>iW5_j$^1bYgKWKd@>S>uwx*6|vmlFZ}VyXv7Z z^VQe#8{Uw(6A2SbF|s^FNJVRg=djOA+;hyQB^NfTVdj7QBEb!a^EsB4oi(tEV6mQxtZ(MF0I5^9fHB~Ei7$Tw-5v@pQ<(Y~=E9$hOR_o6y>pvV> z+h$E!)oRv22MQAxMZ8g8mv=@GB}ztgI{NuR%vKovG0Mo&$f7B~NdcgGXOw^*@52;< znJ&UM)h7NyJ=fVZ>&6H|83n~nwE8Kdc09%6ttG{CbFH&FI$&WE(Zj>`;eUt~}= zv~7QHEPeA$(qhvvSHMEwu3GMn6Y8)7*dP`%w}USk{$@=1xFsc~$MCtV9P32Hs{R(@ zmhi6eHl12V(Lr1!Wl>e=AV(4PTEq8nrY=|)Ai zW~4Y5;TdM|>V6{$Z=V0DlJqO-O7L(Qc~;k?Gf}Mnjgxu~R~Z)xT-4%@X&vVd^Xag9 zSlv!(>AQ8pe0d}7G_m*UUQKs8zW&q5&exOb$f|`-TP^*mgW$}=1@a9nFlY<06wA zdd9`A_w-n>aNE{%e!ODqTcqA<8D|-WQ>61I&fsLq$DDkaRg$IJoNJlp}ml)7EkpfWy zNF)%I1c83Bau@U?s{e&OIr9q^^WpxEK>=rO;Zi%J?MVGGCOwoUuhT4oyB$RS#3jrs z7Zna!r9c;=x)4d(enO%Pab163rr3DdDfze=-2{f>(o=v5qw>qLEMLO1=ffbO3_)$6b%iT?KTc+jopx@KfB#TTtZciLTV(o02&ny`w`69(`CG9+!E}@DHpE#k9$gob`GcqCT_c@2^{XV8j zWl#~=ZXcFtd}odo#eRk0yNp;$u^;DWJqgd;HJMbz|39$=!l(bhB?vwPYzY+=mxy5O2!Dkjn zEeW_ZdfK#aupD~Sc&XyC2G!TF?l)^W-D+f$(3`0q@ajI!9!%>AYy`PGXrD*FvgdB< zLv+^++`{+RH1z#kgn_W1tI&|*(^(PRzzD-s*w+QILelMrf>M9OWJD__7lc{t`NSF$ zT47Tf1TZ_TXsGqQ1=p^S`IWI<`ULg1*?=#N_j}TuJ2bu~dnqbnsHjE#q|@cdH^)!) ze@2h6PZ?8hM3+6@k#Dwc=g{Md(VCr}VOQGnh=>u2vN;6SbLuJEG5p0!VJjBuX<`byC>pK@L(_eBS95yq|RX}4$<{#D#q@|}@4 zV=kB0cBSCX^ty%|8gsm~jgdtxeeYokzX)%#gGzru5iCpRi^G9PFU!1}TSHEX*eg5J zgzHD0{(g3W{-51B&&VO>#=ApUcq}!9CpY8?bLO2!9%0q`^9f$ocF*s(CCcM^Nb#yg$#gP;50L{*!S{xnGY!e4>V2u2UGK==)9D)FqUMxQYgjBS225jRKoRg%S~0N=Eb=0!9nUM30uA%?I@Re-D>GanqBv z^t8K|E;n~Ch|(P~V|7!qW@gRoUmi17FQuE@?P_JHtkBiSuVop=VqN_Ma9w@-=jYEp z{I@uVc<`Ko{_qAX2Fb?szsL%F7^d)wo?3tM6_+`oR;HUR)|ay|tzqAwmH}c65M`h( zbHgU`dIo);>^h*k)L)zR63&vSg=0GERo?8@xLg%?tNUj%(17J8mrxE zPt%Dbm05C_0_&@$pDib9!4`QqJ=-ep@T#Se-hoyN>fjmqLMf6#5bl~EU9>d|94CKY zTg7ybMI1j{ker_#-MX2X10~x$=+@5YhEF$Rbmm)I&aXU&$Pa*lOE z-g=tVhKJisYnpHHlh$VXMvMg5vz~w0h1jUv3K?j3P_KmuYDF#uh)D~*;?O|_P2b_a zqv9rTd)PLm8H#)v+7EL9K1z7 zZV1(d@^u$0+T4Es!>CSJoux{P3u#zWK8fCALMW2Nb&4ws#a-g4FDt>CZ>&`SP1n*2 zn8z{|8>3CV00obyM^cP3`ZC0L)z;Tl=sJEE|0UNx@{^zNa`|8FyH<^OODYzBf1#Au z#nG`rKxttY=vY~52XaHOr5%6RvJbY@fhA>J-IE+(=Yd8Q-ol8MRph(4$!Z%_9E6`r ziewPPKrWqh4r!8VSVhgAZk*jcN1L?zs_S3t>47k6_H^DsMt;rfg zsRH4RK|d^Uiha40z z-2n(RRfA0hm%qHGe`xY7-KCnL zEWa=1AvG-4Jim6pWxR={)=MJA`DA}r*F1sF=^d^^~l;wD}Eb8q&i!_ELCP|+5;Jl zH|r`X)BUgm-l}gK1<6~`?COi(Sn8pqG&`VLjqDxU$pmR1?=k5gZwjmq{>8UtA8SpT zQ%sw7Q~jVY2w;EIpaX;91z}AZZw3>6>C|4@sO4PKv{piFbLR?3K`q<56l83F0+MPA&AuZ%a~SnEP5 z3`V{L4E4dpJ$l4ZQ!t3?DkbZSEd{w?{Nokzrd@EQ8OjS}($y%_bu;XG%8+uRE9u88 zCB9^o7w`EvkV|E00^K5`lz9J<{pC{Zgb$+-fBlL6dByJ{gV{LJkV2@IxUJsjXA;WA zuA+q&>92p=$Fx1>k6+RKdRaEupCLaNRiJw^6qD@e36i0&QS>6tW4Lr6j$8nR5K@FL zbx^7{CPf_B7EkGrlU{ZISMf+*!I3-ZE}jNtX%S2No(W#V4;9iSAC$D_Jmx>9DxU#; zP!F&5aH>u+1d594X-Wr4h9KD|lKi*Z|5h=o=c<3kJ5o~rYSL17e%ug`i6BMfb_k>D zY1U0%H%=vxiKyl8k0Fez=aE$L;&IXjk?afmtHt;cG7W-V=M?f?Us! zB>z>&SCX6JUP1CR!aeDHne2|fQxjfHEozo!H4Bj657!rS;C5t7w~s?wp2m#dj%bC5 z=q-PD!`OEM?1sH*wP~Y@3ix0ef{R*&pk8HN1KyAlL^7Nb$xE&hFsc$q80^Z`Bbs2y181?R{q(PZrW<5Vm zr?RIC@yiiJ+aVnW5jQN=>1Vlkp(>1f4LXT@^Vilw6!OPv+V2`iS4 zDwaAG%TX04jw()cDo#dKoI0vF)u}igRdMF1;!LOFY*fX$ql$B#it|wwZyZ&;(W!Vd zs^YDqinlryZ%0&|I99zAUDZ1ot$Kf_jw()dDo!UYU)H4|H^aIuAJN03C~xt|W~XB*${3D@Lc|_zO4ug$92yhQD;fUuy72%Fmfw{+wy@ z=WHy0&fN0nOp`xnWBGIDmOp2j{5c!TpL4hTIoIUR`B?tEal?P3!GAN3zi@xUUuf`0 z^8c+H|F;_cZ^!um*y#0r12c z@I(bXF#w)g1D>jYrv|_?Yruaq74Xaecy0}Nt^%GL0N+>xzEJ_+7y#c|1HM%O-)aF* ztPA#uTCh(H1^d(*@KgmnH3BZI0T(LZ!T`9m23)Fu+L~hR8&ua|@C??DLG=p;w_yEw z)vs&#xYplR{j{ehw1q9&LP1;T(U!JoO9f5)P0wsCJyR?_(_4CGYw3TPV(FRQ(lc92 z&lF3~^p>96T6(Tndak$hjV;<61?`OqZDEVHP|&pbX6ZR)x2g4+KiS&&lVT(5+O?r~ zI$?j%SibH&dif3nzJcTh=9&3&l5o3Gs{Q@bYMYg-P4Sq+j?xx;wLD(Y-96$-|Kzm& zvq8NO{LvuDh!MqzC`Nxmamx`ckCC#isDIcVQH-33@0zSmDNlbJ%oxt*bWmX|W6R>? zecp~{4FUXY;_LaO9rn%!c^NT>xC2?~w$QFl#96{Jk>)0bT3(r{>#k|lLrfWRdW`zp z`{3~J1PLU>k-W^>;B~WIWyN+2>(QLdQAK^spa_T~c+uzc?W=$Kd5;~xhAQeqUrhE> z1TXq@tzWvwaJAp6-4EqxhzZ2UB)S%nV|AOh{EXuZ6;|ER5{`!H0DO$%IMPWNz6MFl zzgKLjs;fmB1V598>(sq$@^WNzT-O|DwU6^nT&?OdPV*I<(CS8eDDGnbLqQaUoh0jH zO1JLB%?3%%hrEBZ+{K5r_M&ko{^qO79WBva(LQNYd!YKt>Pk?fWnP!0n(aG3Mr!xH z+a}21y4w>8Tu3YVb%h}eRc<~EVk<+OV=li6&&NFZ7Ck?6as&t-^wo>V9LQ^KFms}= zTzBR{T)IWcf%V|-B^S!l&QlM*!&@p`c$+RZapFI?>SBM=4*9r})#S0~MuR*~Pam=D z?J??3c@V~RPaKE86DAJN1NODjaI&z!p~F+FXWAOX%#ap_G|nan;CSerzhMpm0qsany2F65|vFJr8(RSV)B33-zdWC6WC>2&ptfuvp9D%=LO=s zUSZv9-N7SvMg>{ zT(sl;BGFy1pzhD~{%H1AJrH@qH0xfDY>jU!TfIX|CR+Iw=(yim?x7|66>})VAvWJbLI|t7- zw}_9KVckSb-^M(~*|T|&1A{&-gd70W9gtBwuJId9FZjgrjS$y^Ok|jKi(+;0#Dw)$?aKcH H;E~j(^Wt - - - Releases — AutoSklearn 0.14.2 documentation + + Releases — AutoSklearn 0.14.4 documentation @@ -55,7 +54,7 @@ auto-sklearn - 0.14.2 + 0.14.4 +

Version 0.12.4

-
+

Contributors v0.12.4

-
- -
+
+ +

Version 0.12.3

  • FIX #1061: Fixes a bug where the model could not be printed in a jupyter notebook.

  • @@ -469,16 +524,16 @@

    Version 0.12.3 +

    Contributors v0.12.3

    • Matthias Feurer

    • ROHIT AGARWAL

    • Francisco Rivera

    - - -
    +
    +

+

Version 0.12.2

  • ADD #1045: New example demonstrating how to log multiple metrics during a run of Auto-sklearn.

  • @@ -492,7 +547,7 @@

    Version 0.12.2__main__ == "__name__" again.

-
+

Contributors v0.12.2

-
- -
+
+ +

Version 0.12.1

  • ADD: A new heuristic which gives a warning and subsamples the data if it is too large for the @@ -514,16 +569,16 @@

    Version 0.12.1 +

    Contributors v0.12.1

    • Matthias Feurer

    • Katharina Eggensperger

    • Francisco Rivera

    - - -
    +
    +

+

Version 0.12.0

  • BREAKING: Auto-sklearn must now be guarded by __name__ == "__main__" due to the use of the @@ -538,16 +593,16 @@

    Version 0.12.0 +

    Contributors v0.12.0

    • Matthias Feurer

    • ROHIT AGARWAL

    • Francisco Rivera

    - - -
    +
    +

+

Version 0.11.1

  • FIX #989: Fixes a bug where y was not passed to all data preprocessors which made 3rd party @@ -555,14 +610,14 @@

    Version 0.11.1dask.distributed.

-
+

Contributors v0.11.1

  • Matthias Feurer

-
- -
+
+ +

Version 0.11.0

+

Version 0.10.0

+

Version 0.9.0

  • ADD #157,#889: Improve handling of pandas dataframes, including the possibility to use pandas’ @@ -650,7 +705,7 @@

    Version 0.9.0 +

    Contributors v0.9.0

    • Francisco Rivera

    • @@ -658,23 +713,23 @@

      Contributors v0.9.0 +

    +

+

Version 0.8

  • ADD #803: multi-output regression

  • ADD #893: new Auto-sklearn mode Auto-sklearn 2.0

-
+

Contributors v0.8.0

  • Chu-Cheng Fu

  • Matthias Feurer

-
- -
+
+ +

Version 0.7.1

  • ADD #764: support for automatic per_run_time_limit selection

  • @@ -694,16 +749,16 @@

    Version 0.7.1 +

    Contributors v0.7.1

    • Matthias Feurer

    • Xiaodong DENG

    • Francisco Rivera

    - - -
    +
    +

+

Version 0.7.0

  • ADD #785: user control to reduce the hard drive memory required to store ensembles

  • @@ -720,7 +775,7 @@

    Version 0.7.0 +

    Contributors v0.7.0

    • Andrew Nader

    • @@ -733,9 +788,9 @@

      Contributors v0.7.0 +

    +

+

Version 0.6.0

  • MAINT: move from scikit-learn 0.19.X to 0.21.X

  • @@ -743,16 +798,16 @@

    Version 0.6.0 +

    Contributors v0.6.0

    • Guilherme Miotto

    • Matthias Feurer

    • Jin Woo Ahn

    - - -
    +
    +

+

Version 0.5.2

  • FIX #669: Correctly handle arguments to the AutoMLRegressor

  • @@ -760,7 +815,7 @@

    Version 0.5.2 +

    Contributors v0.5.2

    • Jin Woo Ahn

    • @@ -768,9 +823,9 @@

      Contributors v0.5.2 +

    +

+

Version 0.5.1

  • ADD #650: Auto-sklearn will immediately stop if prediction using scikit-learn’s dummy predictor @@ -782,7 +837,7 @@

    Version 0.5.1 +

    Contributors v0.5.1

    • Jin Woo Ahn

    • @@ -790,9 +845,9 @@

      Contributors v0.5.1 +

    +

+

Version 0.5.0

  • ADD #593: Auto-sklearn supports the n_jobs argument for parallel @@ -802,7 +857,7 @@

    Version 0.5.0 +

    Contributors v0.5.0

    • Mohd Shahril

    • @@ -811,9 +866,9 @@

      Contributors v0.5.0 +

    +

+

Version 0.4.2

  • Fixes #538: Remove rounding errors when giving a training set fraction for @@ -830,7 +885,7 @@

    Version 0.4.2 +

    Contributors v0.4.2

    • Taneli Mielikäinen

    • @@ -840,9 +895,9 @@

      Contributors v0.4.2 +

    +

+

Version 0.4.1

+

Version 0.4.0

  • Fixes #409: fixes @@ -904,7 +959,7 @@

    Version 0.4.0#271: XGBoost is available again, even configuring the new dropout functionality.

  • -
  • New documentation section Inspecting the results.

  • +
  • New documentation section Inspecting the results.

  • Fixes #444: Auto-sklearn now only loads models for refit which are actually relevant for the ensemble.

  • @@ -914,7 +969,7 @@

    Version 0.4.0#317.

-
+

Contributors v0.4.0

  • Matthias Feurer

  • @@ -928,9 +983,9 @@

    Contributors v0.4.0 +

+
+

Version 0.3.0

-
+

Contributors v0.3.0

  • Matthias Feurer

  • Jesper van Engelen

-
- -
+
+ +

Version 0.2.1

  • Allows the usage of scikit-learn 0.18.2.

  • @@ -966,7 +1021,7 @@

    Version 0.2.1 +

    Contributors v0.2.1

    • Matthias Feurer

    • @@ -977,9 +1032,9 @@

      Contributors v0.2.1 +

    +

+

Version 0.2.0

-
+

Contributors v0.2.0

  • Matthias Feurer

  • @@ -1000,12 +1055,12 @@

    Contributors v0.2.0 +

+
+

Version 0.1.x

There are no release notes for auto-sklearn prior to version 0.2.0.

-
+

Contributors v0.1.x

  • Matthias Feurer

  • @@ -1025,9 +1080,9 @@

    Contributors v0.1.xSphinx 4.2.0.

diff --git a/master/search.html b/master/search.html index 5dce38d208..75ba2fb3ec 100644 --- a/master/search.html +++ b/master/search.html @@ -4,7 +4,7 @@ - Search — AutoSklearn 0.14.2 documentation + Search — AutoSklearn 0.14.4 documentation @@ -60,7 +60,7 @@ auto-sklearn - 0.14.2 + 0.14.4
diff --git a/master/searchindex.js b/master/searchindex.js index c25d5cf87a..75c7ecefca 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["api","examples/20_basic/example_classification","examples/20_basic/example_multilabel_classification","examples/20_basic/example_multioutput_regression","examples/20_basic/example_regression","examples/20_basic/sg_execution_times","examples/40_advanced/example_calc_multiple_metrics","examples/40_advanced/example_debug_logging","examples/40_advanced/example_feature_types","examples/40_advanced/example_get_pipeline_components","examples/40_advanced/example_inspect_predictions","examples/40_advanced/example_interpretable_models","examples/40_advanced/example_metrics","examples/40_advanced/example_pandas_train_test","examples/40_advanced/example_resampling","examples/40_advanced/example_single_configuration","examples/40_advanced/sg_execution_times","examples/60_search/example_parallel_manual_spawning_cli","examples/60_search/example_parallel_manual_spawning_python","examples/60_search/example_parallel_n_jobs","examples/60_search/example_random_search","examples/60_search/example_sequential","examples/60_search/example_successive_halving","examples/60_search/sg_execution_times","examples/80_extending/example_extending_classification","examples/80_extending/example_extending_data_preprocessor","examples/80_extending/example_extending_preprocessor","examples/80_extending/example_extending_regression","examples/80_extending/example_restrict_number_of_hyperparameters","examples/80_extending/sg_execution_times","examples/index","extending","faq","index","installation","manual","releases"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":4,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.viewcode":1,sphinx:56},filenames:["api.rst","examples/20_basic/example_classification.rst","examples/20_basic/example_multilabel_classification.rst","examples/20_basic/example_multioutput_regression.rst","examples/20_basic/example_regression.rst","examples/20_basic/sg_execution_times.rst","examples/40_advanced/example_calc_multiple_metrics.rst","examples/40_advanced/example_debug_logging.rst","examples/40_advanced/example_feature_types.rst","examples/40_advanced/example_get_pipeline_components.rst","examples/40_advanced/example_inspect_predictions.rst","examples/40_advanced/example_interpretable_models.rst","examples/40_advanced/example_metrics.rst","examples/40_advanced/example_pandas_train_test.rst","examples/40_advanced/example_resampling.rst","examples/40_advanced/example_single_configuration.rst","examples/40_advanced/sg_execution_times.rst","examples/60_search/example_parallel_manual_spawning_cli.rst","examples/60_search/example_parallel_manual_spawning_python.rst","examples/60_search/example_parallel_n_jobs.rst","examples/60_search/example_random_search.rst","examples/60_search/example_sequential.rst","examples/60_search/example_successive_halving.rst","examples/60_search/sg_execution_times.rst","examples/80_extending/example_extending_classification.rst","examples/80_extending/example_extending_data_preprocessor.rst","examples/80_extending/example_extending_preprocessor.rst","examples/80_extending/example_extending_regression.rst","examples/80_extending/example_restrict_number_of_hyperparameters.rst","examples/80_extending/sg_execution_times.rst","examples/index.rst","extending.rst","faq.rst","index.rst","installation.rst","manual.rst","releases.rst"],objects:{"autosklearn.classification":{AutoSklearnClassifier:[0,0,1,""]},"autosklearn.classification.AutoSklearnClassifier":{fit:[0,1,1,""],fit_ensemble:[0,1,1,""],fit_pipeline:[0,1,1,""],get_configuration_space:[0,1,1,""],get_models_with_weights:[0,1,1,""],get_params:[0,1,1,""],leaderboard:[0,1,1,""],predict:[0,1,1,""],predict_proba:[0,1,1,""],refit:[0,1,1,""],score:[0,1,1,""],set_params:[0,1,1,""],show_models:[0,1,1,""],sprint_statistics:[0,1,1,""]},"autosklearn.experimental.askl2":{AutoSklearn2Classifier:[0,0,1,""]},"autosklearn.experimental.askl2.AutoSklearn2Classifier":{fit:[0,1,1,""],fit_ensemble:[0,1,1,""],fit_pipeline:[0,1,1,""],get_configuration_space:[0,1,1,""],get_models_with_weights:[0,1,1,""],get_params:[0,1,1,""],leaderboard:[0,1,1,""],predict:[0,1,1,""],predict_proba:[0,1,1,""],refit:[0,1,1,""],score:[0,1,1,""],set_params:[0,1,1,""],show_models:[0,1,1,""],sprint_statistics:[0,1,1,""]},"autosklearn.metrics":{accuracy:[0,2,1,""],average_precision:[0,2,1,""],balanced_accuracy:[0,2,1,""],f1:[0,2,1,""],f1_macro:[0,2,1,""],f1_micro:[0,2,1,""],f1_samples:[0,2,1,""],f1_weighted:[0,2,1,""],log_loss:[0,2,1,""],make_scorer:[0,3,1,""],mean_absolute_error:[0,2,1,""],mean_squared_error:[0,2,1,""],median_absolute_error:[0,2,1,""],precision:[0,2,1,""],precision_macro:[0,2,1,""],precision_micro:[0,2,1,""],precision_samples:[0,2,1,""],precision_weighted:[0,2,1,""],r2:[0,2,1,""],recall:[0,2,1,""],recall_macro:[0,2,1,""],recall_micro:[0,2,1,""],recall_samples:[0,2,1,""],recall_weighted:[0,2,1,""],roc_auc:[0,2,1,""]},"autosklearn.pipeline.components.base":{AutoSklearnClassificationAlgorithm:[0,0,1,""],AutoSklearnPreprocessingAlgorithm:[0,0,1,""],AutoSklearnRegressionAlgorithm:[0,0,1,""]},"autosklearn.pipeline.components.base.AutoSklearnClassificationAlgorithm":{get_estimator:[0,1,1,""],predict:[0,1,1,""],predict_proba:[0,1,1,""]},"autosklearn.pipeline.components.base.AutoSklearnPreprocessingAlgorithm":{get_preprocessor:[0,1,1,""],transform:[0,1,1,""]},"autosklearn.pipeline.components.base.AutoSklearnRegressionAlgorithm":{get_estimator:[0,1,1,""],predict:[0,1,1,""]},"autosklearn.pipeline.components.classification":{add_classifier:[31,3,1,""]},"autosklearn.pipeline.components.feature_preprocessing":{add_preprocessor:[31,3,1,""]},"autosklearn.pipeline.components.regression":{add_regressor:[31,3,1,""]},"autosklearn.regression":{AutoSklearnRegressor:[0,0,1,""]},"autosklearn.regression.AutoSklearnRegressor":{fit:[0,1,1,""],fit_ensemble:[0,1,1,""],fit_pipeline:[0,1,1,""],get_configuration_space:[0,1,1,""],get_models_with_weights:[0,1,1,""],get_params:[0,1,1,""],leaderboard:[0,1,1,""],predict:[0,1,1,""],refit:[0,1,1,""],score:[0,1,1,""],set_params:[0,1,1,""],show_models:[0,1,1,""],sprint_statistics:[0,1,1,""]}},objnames:{"0":["py","class","Python class"],"1":["py","method","Python method"],"2":["py","attribute","Python attribute"],"3":["py","function","Python function"]},objtypes:{"0":"py:class","1":"py:method","2":"py:attribute","3":"py:function"},terms:{"0":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,34,35],"00":[5,16,23,29],"000":10,"000000":[2,6,11,26,27],"00001":27,"000010":12,"0001":[1,3,9,20,21,22,24,26,28],"00010083678209087315":[1,21],"00010495766342828794":25,"00010868227587711292":20,"0001363185819149026":[1,21,22],"0001384744065375479":20,"00014078218950356456":1,"00014375616988222174":9,"00015788887334393744":9,"0001745391328519669":4,"00017888891850981892":[1,21],"00018009776276177523":[1,21,22],"0002346515712987664":22,"0002600768160857831":[1,21,22],"00027271287919467994":21,"0002944604673080368":[1,21],"00031132126574883666":20,"0003336259810364362":11,"0003701926442639788":4,"000421568792103947":21,"0004684917334431039":[1,21,22],"0005485701552075972":20,"0006517033225329654":4,"0007301343236220855":4,"001":[3,10,28],"0010364937923091088":20,"0010413452644415357":4,"0011804284312897009":21,"0012559712452161484":15,"0014466154794086487":20,"0015130257264171173":9,"0015543757334360092":20,"0017940473175767063":[1,21,22],"0017964371726429177":20,"0018055343233337954":22,"0018475934154961247":20,"002431731981071206":4,"0024386428371511353":[1,21],"002766772136115771":9,"003":10,"004071801722749603":21,"004635634934629576":9,"005003173341372008":[1,21],"005069923784737444":9,"005326508887463406":[21,22],"005428587241449129":22,"005821344021856017":20,"006":10,"006197":1,"00684163":9,"006915066463246923":11,"007017543859649145":9,"0070580904199417415":[1,21,22],"0074025063474275335":20,"0076293":9,"008015420020402715":9,"008542188583124829":[1,21,22],"00894849":9,"009193751229756878":20,"01":[2,3,5,9,12,16,20,22,23,24,26,27,28,29],"010000000000000004":[1,9,21,22],"010000000000000014":11,"01006215":9,"0104432":9,"011283688651384545":22,"011333066835975528":9,"011901034843417571":22,"012143858010275621":15,"012150149892783745":4,"012199160249499144":11,"01223987":9,"012322274881516604":15,"012391313886912093":9,"012607824914758717":4,"013399889539803811":20,"014034416932373166":20,"014184":[1,6],"015996368052062886":1,"016444224834275295":4,"01667385805274091":20,"01684553":9,"017116661677715188":21,"018038793247120707":20,"01851537":9,"02":[1,4,5,9,16,23],"020000":[1,4,20,21,22],"020501":1,"0208475757765491":21,"021277":[1,6],"021944240404849075":4,"02258105767523384":25,"02260942170772907":[1,21],"022834561782884507":22,"023878029144121318":20,"025":10,"02641737e":9,"028368794326241176":9,"028369":[1,6],"02847755502162456":21,"03":[9,23],"030776":1,"03125":28,"03208923":9,"032719158639429445":[1,21,22],"0333981795670597e":9,"03409213e":9,"034330895903523305":[1,21],"03457277874230573":9,"03546099290780147":9,"035461":[1,6],"035543606049804645":20,"037":10,"03737258e":9,"038":[20,23],"039":[13,16],"03961232028373377":22,"04":[1,9,12,16,23,36],"040000":[1,9,20,21,22],"040063255316952e":20,"04074":33,"04210526315789476":9,"042553":[1,6],"045":12,"04561403508771933":9,"045974":1,"04865917":9,"049645":[1,6],"04986510953238":[1,21],"05":[1,3,4,9,16,20,21,22,25,27,28],"05082904256838701":22,"05141281638752715":22,"0517578125e":[3,28],"052862156055921525":22,"054648061621061846":24,"056":10,"05673758865248224":9,"056738":[1,6],"057778875694463e":[1,21,22],"05972079854295879":22,"06":[1,3,4,5,12,16,20,21],"060000":[1,4,20,21,22],"060800813211425456":[21,22],"06290764761689918":20,"063":12,"06315789473684208":9,"06332899":9,"06334655":9,"065":[10,16],"067":12,"06707365823758892":20,"068":12,"06835899987255477":20,"06846183238648647":24,"07":[1,4,9,12,20,21,22,28,29],"0706216214952021":[1,21],"07092198581560283":9,"070922":6,"071":12,"07213284":9,"07563955664363409":[1,21],"078014":[1,6],"07801418439716312":9,"07827509e":9,"0792482460648931":20,"08":[1,3,9,16,20,21,22,28],"080000":[1,20,21,22],"08087614244138486":9,"08125391652261632":22,"085106":[1,6],"09":[4,7,12,18,28],"09111888":9,"09122807017543855":9,"09179220974965213":[1,21,22],"0938587":9,"0945814167023392e":22,"09580337973953734":21,"09809101":9,"09809681787962342":21,"09814953":9,"09884140378258977":22,"0th":9,"0x7f9379a40f10":9,"0x7f937b0d0a00":15,"0x7f937b0d0e50":15,"0x7f937c5a9ca0":15,"1":[0,1,2,3,4,6,7,8,11,12,13,14,15,18,19,20,21,22,24,25,26,27,28,33,35],"10":[0,1,3,4,5,8,9,10,16,17,18,20,21,22,23,24,27,28,34],"100":[1,3,9,14,20,21,22,27,28],"1000":[3,28,36],"10000":[3,28],"100000":[3,20,21,22],"1001":36,"1004":36,"1007":36,"1008":36,"101":[1,21,22],"1012":36,"1014":36,"1017":36,"1024":[17,18,36],"1025":32,"1026":36,"1038":36,"103855734598575e":9,"10392737384710127":20,"1040":36,"1045":36,"1046":36,"1050":36,"1052":36,"1053":36,"1059":36,"1061":36,"1062":36,"1063829787234043":9,"1070":36,"1072":36,"1075":36,"1076":36,"1076975":9,"1079":36,"1085501":9,"11":[1,4,7,12,15,17,18,20,21,22,27,29,34],"1100":36,"1102":[1,21,22],"11042628136263043":22,"1108":36,"1109":36,"1112":36,"1114":36,"1115":36,"1117":[20,36],"111869":1,"1121":36,"1122":36,"1123":36,"1124":36,"1126":36,"1128":36,"1133":36,"1134":36,"11347517730496459":9,"1135":36,"1136":[4,36],"1142":36,"1143":36,"114391364050916":20,"1144":36,"1149":36,"115":[1,21,22,34],"1152":36,"1154":36,"1157":36,"1158":36,"1159":36,"1165":36,"1168":36,"1169":36,"117":12,"1170":36,"1173":36,"11737571e":9,"1178":36,"1179":36,"118":29,"1183":36,"1185":36,"1187":36,"1190":36,"1195":36,"1198":36,"11ec":[7,17,18,25],"12":[1,17,18,20,22,23],"120":[1,3,4,6,10,11,13,14,15,19,21,25],"1200":36,"120000":[1,9,20,22],"1201":36,"1204":36,"1209":36,"1210":36,"1214":36,"1229":36,"123":21,"1231":36,"1233":36,"1235":36,"1239":36,"1242":36,"1245":36,"1248":36,"12585871697357337":20,"1259":36,"126":10,"1261":36,"1263":36,"1269":36,"1270":36,"1271":36,"128":5,"1280839244790386":27,"1282":36,"1290":36,"13":[1,15,20,21,22],"13300503334706695":22,"13366756044911932":20,"13704890e":9,"1387664107898294":20,"14":[1,3,4,15,18,21,22],"140":[1,12,21,32,36],"140000":[4,9,22],"14069368736662313":9,"142":35,"14268277711454813":[1,21,22],"14295295806077554":[1,21,22],"1450":[1,21],"14555017892884228":24,"149":36,"15":[1,2,4,5,13,20,22,28],"15162626175424537":20,"152":[21,22,23],"1567":[1,21],"157":36,"157218":3,"15890408760884822":[1,21],"16":[0,1,20,21,24,28,36],"160000":[9,22],"16262682406125173":22,"16265262021972576":22,"1636487580":15,"1636487583":15,"1636488092":9,"1636488094":9,"1636488096":9,"1636488098":9,"1636488099":9,"1636488102":9,"1636488103":9,"1636488105":9,"1636488106":9,"1636488107":9,"1636488110":9,"163809":1,"1644":20,"166":[6,16],"16649281":9,"17":[1,6,20,21],"170213":6,"17122959":9,"17152095":9,"17184142431776436":[1,21],"1749860017522":[1,21],"17677801820619737":24,"18":[1,3,12,20,21,22,24,26,29,36],"180":9,"180000":[3,22,25],"18010277":9,"18012072":9,"182":[1,21,22],"184":12,"187":24,"1894":20,"19":[1,7,9,12,16,20,21,22,36],"191":12,"195":[4,5],"1b4c952643c3":[7,17,18,25],"1e":[1,3,4,9,20,21,22,27,28],"1e2":27,"1st":32,"1th":9,"2":[0,1,2,3,4,6,7,13,15,18,19,20,21,22,25,26,27,28],"20":[1,2,3,8,9,12,17,18,20,21,22,28,29,36],"200":[1,21,22,28],"2000":[3,28],"200000":3,"2004":[15,35],"2006":35,"20068746139723115":22,"2007":33,"200900":1,"2015":[32,33,36],"2020":33,"2021":[7,12,18],"2037591637980971e":4,"204":15,"2047":28,"207332":3,"20759805e":9,"20_basic":2,"21":[16,36],"2118001735899097e":4,"21521743568582094":4,"216":24,"216493":4,"2192999307296778":20,"22":[1,6,7,14,16,22,36],"226":12,"229":9,"23":[0,12,20,25,29,36],"232":12,"2329674":9,"23434217313954":[1,21],"2345103479872152":20,"23746960178084334":22,"238533890074848e":4,"23910875621465733":20,"24":[7,12,15,16,19,22,23,36],"240000":22,"241306":4,"24966112905354662":20,"24982831110057324":4,"25":[0,3,4,12,16,28],"2531207":9,"255":[1,4,20,21,22,28],"25545052141264185":1,"25595970768123566":[21,22],"26":[1,6],"260000":22,"2613be54":25,"263":21,"264":28,"2641013":9,"269":12,"27":[1,4,12],"271":36,"273":20,"2758095":9,"278":12,"279105226196228":20,"27951285357994865":20,"28":[7,33],"280":[10,36],"280000":[22,25],"282688":3,"2841884333778574e":21,"285":20,"285306370007781":20,"28817393948552533":20,"29":[1,6,12,21],"293":36,"2949722712387337":20,"295":36,"2958033930435781e":[21,22],"2962":33,"29662315421901003":20,"2970":33,"2nd":32,"2th":9,"3":[1,2,3,4,6,7,8,9,11,13,14,15,18,20,21,22,24,26,27,28,33,34],"30":[1,2,3,4,6,7,8,9,10,11,12,13,14,17,18,19,21,22,24,26,27,28,35,36],"300":4,"3072":[0,19],"30755227194768237":[1,21,22],"3094962987325228":21,"31":[12,20,28],"310":[3,5],"312":[25,29],"317":36,"318861":3,"32":[0,1,4,6,9,20,21,22,24,28,36],"320000":4,"32106218519214325":22,"32225143e":9,"325":36,"326":[12,36],"32768":28,"328":21,"328568999403367e":25,"32956881e":9,"33":[0,1,2,20],"338":21,"34":[1,6,9,12,16,18],"340000":[9,22],"3440590734654458e":20,"34481806774236556":20,"348":12,"35":[1,6,12,17,18,20,23],"351":36,"355":[1,21],"358":36,"358378124977852e":4,"36":20,"3600":0,"3621762718897781":4,"36245140e":9,"363":[17,23],"368":20,"369":[24,29],"369811497206404":9,"37":[1,6],"3716748930467322e":22,"3720251865973017":20,"375":36,"37641366e":9,"37705188916038523":22,"3793256905143867":[1,21],"38":[12,20],"38430977e":9,"38461538461538464":14,"3871420537981852":[1,21],"387912939529945e":[1,21,22],"388":12,"39":[1,12,17,21,22,23],"3959585042866587":4,"39749085e":9,"397684":7,"39844669585806":[1,21,22],"3f":[10,12],"3gb":[19,32,35],"3rd":[32,36],"3th":9,"4":[1,4,9,10,14,19,20,21,22,27,28,34],"40":[1,12,22],"400":[3,4,28],"4037113":9,"40594":2,"40665293991189455":15,"409":36,"40922":10,"4096":15,"40981":[8,13],"40_advanc":8,"41":21,"410":36,"410144741041167e":22,"410651487451908e":20,"411":12,"412":7,"413":12,"414":20,"41808321658160696":22,"41826215858914706":[21,22],"419":12,"4196":7,"4199":[17,18],"419a":25,"420000":24,"421745686388309e":20,"424":[14,36],"425":[14,36],"42693600390988135":[1,22],"428":12,"42961621e":9,"43":20,"431":34,"436679":4,"438":36,"43999367631975456":22,"442":[19,23],"4433d19e":17,"444":36,"44455023733729254":20,"44685232":9,"447294":2,"45":12,"454935":3,"455042":4,"45597150689539434":20,"459119":3,"4595393":9,"45954164":9,"46":4,"460000":4,"4622203211010016e":20,"462249":4,"4635442279519353":21,"468":[9,16],"475":[12,16],"4775492074518431":1,"4791448484072812":[1,21],"48":[19,23],"482":36,"48507733455436836":[1,21],"4882838781863879e":20,"4886183647550176":25,"49":[12,19],"491":36,"49138075723513286":[1,22],"49326086e":9,"49503611":9,"498":36,"4th":9,"5":[1,2,3,4,9,10,11,12,13,14,15,19,20,21,22,24,25,26,27,28],"50":[0,3,7,12,17,18,20,21,28,32],"500":[14,16,28,36],"5000":10,"5027651786804199":9,"503":25,"503079":1,"504988116581138e":4,"50650698230178e":4,"507400":4,"512":15,"5121":[1,21],"5137138356508442":1,"518673":4,"519158":1,"52":[7,20,23],"520111487139148e":20,"521":22,"526":9,"5286041327277":4,"530":20,"5312755":15,"532":36,"535":36,"5358099937438965":9,"537":36,"537016":9,"538":[12,36],"54":[12,21],"540000":25,"55":[3,5,11,16],"550960330919455":[21,22],"552706":2,"5550223982458062e":21,"5561389303694175":[1,21],"55773043e":9,"558":36,"56":[1,12,22],"562":18,"562561668029056":22,"5629768371582031":9,"56297684":9,"566":36,"5662900693317384":1,"569":36,"5707983257382487":[1,21,22],"571":[11,16],"57629717e":9,"58":[1,4,5,21],"580000":24,"5846457091661748e":9,"585":36,"58542976103":4,"58615414999356":20,"588":36,"5905006626969":9,"592":36,"593":36,"5942185":15,"5944780427522034":4,"5b2e548d":18,"5gb":32,"5th":9,"6":[1,4,9,14,20,21,22],"60":[1,2,12,15,20,21,22,36],"600":36,"604":2,"6041510105133057":9,"606":[12,20],"6066544055938721":9,"609412172481434e":22,"611":36,"6128603428070196":22,"614":36,"6140191555023193":9,"61401916":9,"615":12,"618":36,"62":3,"620":[8,16],"620000":3,"6228726042266908":20,"626":36,"6277363920171745":4,"628683":4,"636021":2,"639516":4,"64":[0,20,32,34],"6401973":9,"64437157661465":20,"645808":4,"646":36,"648":36,"650":[1,5,36],"6549544334411621":9,"655":36,"6587261797143242":20,"66":[0,22],"660":36,"661377361743419":[1,21],"6661824659281315":9,"667":36,"669":36,"67":[0,14,22],"670":36,"6702926158905029":9,"67029262":9,"673455":1,"676":36,"6779841015398226":22,"680":36,"6836522210129492":20,"688":36,"691132":1,"692":16,"69413781":9,"6941378116607666":9,"6a2":36,"6gb":35,"6th":9,"7":[1,3,4,6,9,20,22,25,28,34],"701":36,"7056696489196201":20,"70629898e":9,"7104048919054863":20,"715":36,"7171678618990129":21,"718799":1,"726182961545702":[1,21],"7305615609807856":[21,22],"731":[12,23],"732":36,"7323115919225983":22,"733":36,"737":12,"7385828495025635":9,"73858285":9,"739":36,"7393440007191528":[1,21],"74116751e":9,"74597367e":9,"7462342366289323e":4,"75":[3,22,28],"7530273530198002":20,"7563245":9,"75655689e":9,"7570b3":4,"761":[26,29],"764":36,"7664515192592053e":4,"76699224":9,"769":36,"7708651296941559":22,"771":36,"772":36,"773":12,"774":36,"777":[17,18],"7772788812704434":9,"778":36,"7797232":9,"781":36,"7818500358383581":22,"78251":4,"7845396961078424":1,"785":36,"7852218490061461":20,"786517":6,"7895711479212801":9,"79057296e":9,"791":36,"791639810538127":20,"794":36,"795":36,"795890":1,"796":[18,23],"7978382221839412":20,"799":[28,29],"7990398406982422":9,"7th":9,"8":[1,3,4,6,9,20,21,22,28],"80":[6,12,20,36],"803":36,"8047274080856589":9,"8057830372269097":4,"80724345e":9,"807816607300627":[1,21],"8134515743047006":22,"814":[12,36],"815":36,"8163307":9,"821530":1,"8219044":9,"822":36,"824072":1,"828":20,"829787":6,"8303675651550293":15,"8355012":9,"840":36,"8428972335335263e":4,"843":36,"843515731149308":20,"845182":6,"8465036896999549":24,"85086661900421e":20,"851598":9,"852":36,"853659":6,"854":36,"856":32,"8572731018066406":9,"8579710144927536":13,"860":34,"8601586365248128":22,"862":36,"86214879612422":20,"863":36,"864":36,"86528503e":9,"8683277328634489":3,"869":36,"8694334":9,"87":20,"870":36,"8704240322113037":9,"872":36,"87397441278958":21,"874":36,"876":[27,29,36],"877":[15,16],"8772654126094648":3,"8786127167630058":8,"879":36,"881":36,"881188":6,"882":36,"884615":6,"886":36,"88652482":9,"88675402e":9,"887640":6,"8888":34,"8888447284698486":9,"88884473":9,"889":36,"890000":6,"891":36,"8911872287672372":20,"893":36,"89361702":9,"893634d8":7,"894231":6,"897":36,"8a32":[7,17,18,25],"8b67af6":36,"9":[1,4,9,20,21,22,28,34],"90":[1,10,21],"900":36,"901":36,"902":36,"905":36,"907":36,"909":36,"911":[7,16,36],"91287172e":9,"914":36,"914306402206421":15,"914894":6,"916":36,"918":36,"919":36,"92198582":9,"921986":6,"923833":6,"924":36,"924589":6,"925":36,"926283631486858":22,"927":36,"927211764000264":20,"9290439925152777":9,"929078":6,"92907801":9,"9292309396985746":[1,21,22],"929412":6,"93":[1,21,22],"931":[22,36],"933":36,"9331254454871041":9,"933333":6,"9350605":9,"935069":6,"936":36,"936170":[6,25],"936690":6,"936842":6,"937":[12,22],"9370629370629371":[25,26],"940":[22,23,36],"940687":6,"941799":6,"943064":6,"943262":6,"94326241":9,"943820":6,"944":12,"9440559440559441":[1,6,14,20,22],"945055":6,"945652":6,"945787":7,"946":36,"94611519e":9,"947":36,"948":36,"948682":6,"949":36,"949611":1,"950303":6,"950355":6,"9503612101678187":20,"950961":1,"951":36,"951048951048951":[9,21,22,24],"952":4,"952558":1,"953":36,"954300":6,"954545":6,"9545562267303467":9,"95455623":9,"955056":6,"955556":6,"956":36,"956044":6,"9565048776795676":20,"956989":6,"957447":6,"958041958041958":[11,14],"9586161969293623":20,"959918":6,"960452":6,"961":36,"961326":6,"961538":6,"961749":6,"963915":6,"9639365673065186":9,"96393657":9,"964":7,"964539":6,"96453901":9,"965034965034965":[14,17,18,22],"965517":6,"965536":6,"965909":6,"966292":6,"966667":6,"967033":6,"967136":22,"968546":1,"9694955791292086":1,"969533":6,"970":36,"971348315581384":1,"971631":[6,9],"97163121":9,"971751":6,"971831":22,"972067":6,"973":[2,5,36],"975151":6,"975309":6,"9755563101648113":9,"9772109830437746":22,"977273":6,"977528":6,"977778":6,"978022":6,"978723":[6,22],"979149":6,"97947373958566":[1,22],"98":33,"98080571":9,"9826666666666667":10,"983051":6,"983240":6,"9836355993007913":[1,21],"984":36,"984767":6,"985816":[6,19,21,22],"988636":6,"9886363636363636":7,"988764":6,"989":36,"989374401993":[1,21],"989729761503726":21,"9899874843554443":7,"99":28,"990":36,"9911616161616161":7,"992":36,"992908":[17,18,20],"9929881254946676":[1,21,22],"993803313878608":[21,22],"9954285714285714":10,"9967857433838874":9,"9968675728600899":20,"997":36,"9984367650965825":[1,21,22],"999":[1,3,9,20,21,22,28],"9999":[3,9,28],"abstract":[0,31],"boolean":[0,35],"break":36,"case":[0,8,9,11,14,17,22,30,32,34,35,36],"class":[0,2,7,10,14,24,25,26,27,28,31,35,36],"concei\u00e7\u00e3o":36,"default":[0,3,7,14,17,21,22,24,26,27,28,35,36],"do":[0,2,7,8,17,18,21,31,32,34,35,36],"export":35,"final":[0,9,17,20,22,32,35,36],"float":[0,8,24,26,27,28,32,35],"function":[0,6,12,13,31,32,36],"gro\u00dfberg":36,"import":[0,1,2,3,4,6,7,8,9,11,12,13,14,15,18,19,20,21,22,24,25,26,27,28,32,33,35,36],"int":[0,2,24,27,28],"long":32,"mielik\u00e4inen":36,"new":[0,15,17,18,24,27,28,31,32,35,36],"public":33,"return":[0,6,12,13,15,20,22,24,25,26,27,28,31,35,36],"short":32,"true":[0,1,2,3,4,6,7,8,9,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,32,33,35],"try":[32,34,36],"while":[0,9,17,32,35],A:[0,4,9,10,11,13,20,33,34,35,36],As:[9,17,18,32,35],At:35,By:[0,7,21,32,35,36],For:[0,7,10,13,14,32,34,35],If:[0,2,8,13,17,18,32,33,34,35],In:[0,6,8,9,13,14,17,31,32,34,35],It:[0,9,14,17,18,22,33,34,35,36],NOT:32,No:36,Not:[0,2,7,8,24,25,26,27,28,34],Of:31,One:[0,4,14,32,35],The:[0,1,3,4,6,7,8,9,10,11,12,13,14,15,17,18,20,21,24,25,26,27,28,31,32,34,35,36],There:[10,13,32,34,36],These:[0,31,32,35],To:[0,2,8,9,10,14,15,17,18,19,22,25,31,32,33,34,36],Will:0,_329_:36,_:[7,15,17,18,19],__:0,__choice__:[1,2,3,4,6,9,11,15,20,21,22,24,25,26,27,28],__init__:[24,25,26,27,28],__main__:[17,18,19,20,22,32,33,36],__name__:[17,18,19,20,22,32,33,36],_gatheringfutur:18,_metric:12,_repeatedsplit:0,_test_scor:13,_valu:15,a10:13,a11:13,a12:13,a13:13,a14:13,a1:13,a2:13,a3:13,a4:13,a5:13,a6:13,a7:13,a8:13,a9:13,aaron:[33,36],abbrevi:[22,31],abil:35,abl:[32,35],about:[0,7,15,17,19,20,22,31,33,34,35,36],abov:[4,32,33,35],acceleration_i:10,acceleration_x:10,acceleration_z:10,acceleromet:10,accept:[0,12,32,35],access:[9,35,36],accidentali:36,accord:[10,14,35],accordingli:8,accu:12,accu_add:12,accuraci:[0,1,2,6,8,9,11,13,14,17,18,19,20,21,22,25,26,32,33,35,36],accuracy_scor:[1,2,6,8,9,11,12,13,14,17,18,20,21,22,24,25,26,33],accuracy_wk:12,achiev:[0,34],across:[17,18],action:36,activ:[1,9,20,21,22,24,28,34],actual:[17,18,36],ad:[0,34,36],adaboost:[6,9,11,20,28],adam:[1,9,20,21,22,24,28],adapt:[20,22],add:[24,25,26,27,28,31,32,34,36],add_classifi:[24,28,31],add_condit:[26,27],add_hyperparamet:[24,26,27,28],add_preprocessor:[25,26,31],add_regressor:[27,31],addit:[0,2,7,9,31,32,36],addition:[8,9,20,35],additional_info:[9,15],address:[17,18],adjust:32,adrian:36,advanc:[0,18,22,33,35],advantag:33,advic:32,advis:33,affect:[0,10],affin:[1,3,21,22,28],after:[0,4,14,21,31,35,36],afterward:21,again:[10,36],against:[4,36],agarw:36,aggress:20,ahn:36,al:[33,35],alencar:36,alexand:36,algorithm:[0,1,2,3,9,15,17,18,19,20,21,22,25,26,28,31,32,33,35,36],alia:[0,2,8],align:32,all:[0,9,11,14,15,18,21,30,33,34,35,36],alleavi:32,allevi:35,alloc:[0,19,32],allow:[0,10,17,18,31,32,34,35,36],along:0,alpha:[1,3,4,9,11,20,21,22,24,25,27,28],alpha_1:4,alpha_2:4,alreadi:[13,32,35],also:[0,6,7,9,10,12,13,14,15,17,18,20,21,28,31,32,33,34,35,36],altern:[20,34],alwai:[0,7,35,36],amount:35,an:[0,4,9,10,11,12,13,14,17,21,25,29,30,31,32,33,34,35,36],analysi:26,anatolii:36,andrew:36,ani:[0,2,7,8,15,35,36],anoth:[20,36],answer:32,api:[12,15,31,32,33],appear:32,append:[17,18],appli:[0,32],applic:[0,17],appreci:33,approach:35,appropri:[0,36],apt:34,ar:[0,2,7,8,9,10,13,14,15,18,20,24,25,26,27,28,31,33,34,35,36],arbitrarili:0,ard_regress:4,area:32,arff:36,arg:[0,17,18],argsort:10,argument:[0,8,13,14,22,32,35,36],around:[26,31,35],arrai:[0,2,8,9,13,14,31,35,36],articl:33,arxiv20a:33,arxiv:[33,36],as_fram:[2,7,8,13,15],ascend:0,asctim:7,askl2:[0,33],aspect:35,assert:[12,25,28],assum:32,astyp:[2,13],async:18,asyncio:18,attach:0,attribut:[0,9,13,36],attributeerror:36,australian:[8,13],author:33,auto:[0,6,7,8,10,12,13,14,15,19,20,29,30,36],autom:[33,35],automat:[0,8,13,18,20,33,35,36],automl:[1,2,3,4,7,9,10,11,13,14,15,17,18,19,20,21,22,33,35,36],automl_:[9,12],automlclassifi:36,automlregressor:36,autosklearn2classifi:[0,33,36],autosklearn:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,31,32,33,35,36],autosklearn_classification_example_tmp:1,autosklearn_inspect_predictions_example_tmp:10,autosklearn_interpretable_models_example_tmp:11,autosklearn_multioutput_regression_example_tmp:3,autosklearn_parallel_1_example_tmp:19,autosklearn_parallel_2_example_tmp:18,autosklearn_parallel_3_example_tmp:17,autosklearn_random_search_example_tmp:20,autosklearn_regression_example_tmp:4,autosklearn_resampling_example_tmp:14,autosklearn_sequential_example_tmp:21,autosklearn_sh_example_tmp:22,autosklearn_sh_example_tmp_01:22,autosklearn_sh_example_tmp_03:22,autosklearn_sh_example_tmp_04:22,autosklearn_sh_example_tmp_cv_02:22,autosklearn_tmp_:[0,32],autosklearnchoic:9,autosklearnclassifi:[0,1,2,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,28,32,33,35,36],autosklearnclassificationalgorithm:[0,24,28,31],autosklearnpreprocessingalgorithm:[0,25,26,31],autosklearnregressionalgorithm:[0,27,31],autosklearnregressor:[0,3,4,27,36],avail:[0,7,9,14,17,18,33,34,35,36],availbl:0,averag:[0,1,3,4,9,11,20,21,22,25,28],average_precis:[0,12],avoid:[0,21,32,33],await:18,axi:10,back:[0,34],backend:36,backward:36,bad:[14,36],bae:36,balanc:[0,1,2,9,11,15,20,21,22,24,25,26,28,32],balanced_accuraci:[0,6,12],balanced_accuracy_scor:36,balancing_strategi:0,base:[0,10,24,25,26,27,31,35],basecrossvalid:0,basepipelin:0,baseshufflesplit:0,bash:[17,34],basic:9,basto:36,batch_siz:[0,1,9,20,21,22,28],bayesian:[17,18,33,35,36],becaus:[0,9,32],becker:36,becom:[17,18],been:34,befor:[14,32,33,36],began:0,behavior:[2,8,32,36],behind:33,being:[0,4,9,32,36],believ:32,bellow:[2,7,8,24,25,26,27,28],belong:35,below:[4,7,11,13,14,20,21,28,32],ben:36,berba:36,bereng:36,bergman:36,berman:36,bernoulli_nb:[6,9,11,20,21,28],best:[0,2,4,11,15,17,18,19,20,21,22,25,32,35,36],beta_1:[1,9,20,21,22,28],beta_2:[1,9,20,21,22,28],better:[0,15,32,35,36],between:[0,4,10,17,18,35,36],bibtex:33,bin:34,binari:[0,34,35,36],binder:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28],bit:[18,32,36],bitsbuff:36,bla:36,blis_num_thread:32,block:32,blum:[33,36],bohb:22,booktitl:33,bool:[0,13,31,36],boost:36,bootstrap:[1,2,3,4,9,15,20,21,22,25,26,28],borovec:36,bosh:22,bot:36,both:[0,10,15,20,24,31,32,33,35],bound:[35,36],boxplot:10,bracket:36,branch:36,breast_canc:[1,9,11,14,19,20,21,22],broken:36,browser:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,34],bsd:33,budget:[0,9,15],budget_typ:22,bug:[33,36],build:[0,32,34,36],builder:[7,32,35,36],built:[6,12],builtin:[2,8],bump:36,bunch:8,c:[1,4,9,20,21,22,25,28,32,34],cach:36,calcul:[0,2,6,7,8,24,25,26,27,28,36],calculate_scor:36,call:[0,8,9,11,14,21,31,32,35,36],callabl:0,callback:[0,20,36],calsaverini:36,can:[0,2,4,7,8,9,10,11,12,13,14,15,17,20,21,31,33,34,35,36],cancellederror:18,cannot:[0,32,34,36],caoyi0905:36,cap:15,care:19,caruana:[15,35],categor:[0,3,8,13,24,26,27,28,35,36],categori:[8,13,36],categorical_encod:[1,2,3,4,9,11,15,20,21,22,24,26,27,28],categorical_transform:[1,2,3,4,9,11,15,20,21,22,24,26,27,28],categoricalhyperparamet:[24,26,27],category_coalesc:[1,2,3,4,9,11,15,20,21,22,24,26,27,28],cater:33,caus:36,certain:[32,35],certainti:0,cff:36,challeng:36,chanc:0,chang:[10,11,15,25,30,32,36],channel:34,channel_prior:34,characterist:0,check:[2,7,17,18,19,25,32,33,34,35,36],check_non:26,cheng:36,chi2:[1,20,21,22,28],choic:[3,9,11,15,24,26,27,28,32],choos:[11,35],chosen:[0,36],chu:36,chung:36,ci:36,circl:36,citat:36,cl:[6,7,8,12,13,15,33],clarifi:36,classif:[5,6,7,8,9,10,12,13,14,15,17,18,19,20,21,22,25,26,28,29,30,32,33,35,36],classifi:[0,15,25,26,31,35,36],classification_metr:12,classifierchoic:[11,15],claus:[3,28,33],clean:36,cleanup:36,clear:35,clf:[24,25,26,28],cli:17,cli_start_schedul:17,cli_start_work:17,click:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28],client:[0,7,18,32,35],clip:36,clonabl:36,clone:36,close:[18,36],cluster:[0,17,18,19,32,36],code:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,30,31,32,33,35,36],coef0:[3,9,20,27,28],coef0_condit:27,coeffici:0,col:6,collect:10,column:[0,8,13,35,36],com:[7,31],combin:[10,15,32],command:[13,15,18,19,23,30,32,34,35,36],common:[14,26,34,35],commun:18,compat:[9,15,17,36],competit:36,compil:[32,34],complet:[1,3,21,28,36],compli:[2,15],compliant:36,compon:[0,11,15,17,18,29,30,35,36],compos:35,comput:[18,19,32,36],concept:0,conda:[32,36],condit:[3,26,27,28,32],config:[0,15,18,34],config_id:[0,9],configspac:[0,15,24,25,26,27,28,31],configur:[0,7,9,16,17,18,24,25,27,30,31,33,35,36],configuration_origin:[9,15],configuration_spac:[0,15,24,25,26,27,28,31],configurationspac:[0,24,25,26,27,28,31],connect:[17,18],consid:[0,14,32,35],consist:[0,36],consol:7,constant:[0,3,9,15,17,18,22,24,25,26,27,28,31,36],constraint:[0,15],construct:[9,14,17,18,20,22,31,32,33,35],constructor:0,consum:35,consumpt:36,contact:33,contain:[0,9,13,17,18,28,33,35,36],context:[18,36],continu:0,contrast:0,contrib:32,contribut:36,control:[0,14,32,35,36],convert:[31,36],cookbook:7,copi:[14,32],core:[0,7,19,21,32,35,36],correct:[32,36],correctli:[0,32,34,36],correspond:[0,10,28],cosin:[1,3,20,21,25,28],cost:[0,1,2,3,4,9,12,15],could:[22,34,36],cours:31,cpu:[17,18,32],crash:[0,2,9,17,18,19,20,21,22,25,36],creat:[0,13,15,18,27,31,32,35,36],creation:0,criterion:[1,2,3,4,9,15,20,21,22,25,26,28],cross:[0,32,35,36],crossvalid:0,crucial:[20,35],cs:[15,22,24,26,27,28,33],csr_matrix:35,cube:[3,20,28],cumbersom:18,curc:32,current:[0,2,32,34,35],custom:[0,6,7,14,28,30,35,36],custom_error:6,customrandomforest:28,cutoff:15,cv:[0,14,22],cv_result:[0,6,36],cv_results_:[0,6,9,35],cython:36,d95f02:4,d:[2,7,8,13,35,36],daemon:18,dai:[32,35,36],dask:[0,7,17,18,19,32,35,36],dask_client:[0,17,18,20,22],dask_distributed__worker__daemon:17,data:[0,29,30,31,36],data_id:[2,7,8,10,13,15],data_preprocess:[15,25],data_preprocessor:[0,1,2,3,4,9,11,15,20,21,22,24,25,26,27,28],datafram:[0,6,8,13,30,35,36],datapreprocessorchoic:15,dataset:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,27,28,30,33,35,36],dataset_nam:[0,1,2,3,4,9,10,11,14,15,17,18,19,20,21,22],dataset_properti:[1,2,3,4,9,11,20,21,22,24,25,26,27,28],date:32,deadlock:[32,36],debug:[16,30,32],decid:[0,32,36],decis:[0,32],decision_tre:[3,9,11,20,28],decreas:[10,36],deem:11,deep:0,def:[6,12,17,18,20,22,24,25,26,27,28],default_config:22,default_data_contain:32,default_valu:[24,26,27,28],defin:[0,6,10,12,14,31,35],definit:[31,35],deflat:[3,20,28],degre:[1,3,4,9,11,15,20,21,22,27,28],degree_condit:27,delet:[0,7,32,36],delete_tmp_folder_after_termin:[0,7,15,17,18,21,32],demand:32,demonstr:[8,13,14,20,22,24,25,26,27,28,36],deng:36,dens:[24,25,26,27,28,31],densifi:11,depend:[0,31,32,34,36],depict:4,deploy:36,deprec:[2,8],deprecationwarn:[2,8],descend:0,describ:[0,9,10,31,33,35],deshpand:36,design:9,desired_boolean_column:13,desired_categorical_column:13,desired_numerical_column:13,despit:36,destroi:[14,32],detail:[0,2,8,13,32,34,35],determin:[0,35],determinist:36,dev:34,devdoc:[2,8],develop:[33,34,36],diabet:4,diagon:4,dict:[0,35],dictionari:[0,31,36],did:36,diego:36,differ:[14,17,18,28,32,35,36],digit:[17,18],diogo:36,dir:34,directli:[0,9,13,14,17,31,35,36],directori:[0,7,32,36],disabl:[0,17,18,35,36],disable_evaluator_output:[0,9,14,22],disable_existing_logg:7,disc:[0,35],discrimin:26,discriminant_analysi:26,discuss:32,disk:[7,15,36],displai:0,disregard:0,distanc:[3,9,28],distribut:[0,7,17,18,19,32,34,35,36],do_work:18,doc:[7,10,17,18,32,36],docker:36,dockerfil:36,dockerhub:[34,36],document:[0,7,15,33,34,35,36],doe:[0,10,17,18,25,36],domashnev:36,don:32,done:[8,17,18,19,32,34,35],down:[18,19],download:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,30,34,36],downsid:32,drawn:0,drive:[32,36],drop:[33,36],dropout:36,dtype:[2,8,9,13,35],dual:[1,9,20,21,22,28],due:[0,32,36],dummi:[4,36],dummyclassifi:36,dummyfutur:7,dummyregressor:36,duplic:33,durat:[0,1,2,3,4,9,15],dure:[0,9,14,32,35,36],e:[0,2,3,10,13,14,32,34,35,36],each:[0,8,9,10,17,18,19,31,32,35],early_stop:[1,4,9,20,21,22,28],easili:31,eddi:36,edg:36,edward:36,effici:[33,35],effort:32,eggensperg:[33,36],eigen:[26,28],either:[0,6,32,35],elasticnet:[4,28],element:0,elif:13,els:[0,8,13,22,26,28],emploi:35,empti:25,en:[17,18,19],enabl:[15,34,36],encod:[0,1,3,9,13,20,21,28,32,35,36],end:[0,9,11,18],end_tim:0,endtim:[9,15],enforc:[34,35,36],engelen:36,enough:0,enrico:36,ensembl:[0,7,9,15,20,22,28,33,36],ensemble_nbest:[0,17,18,35],ensemble_onli:0,ensemble_optimization_scor:[7,13],ensemble_s:[0,11,17,18,21,35],ensemble_test_scor:[7,13],ensemble_weight:[0,1,2,3,4],ensemblebuild:7,ensur:35,entri:[9,33],entropi:[1,20,21,22,28],enumer:9,environ:[32,34,35,36],epsilon:[1,4,9,20,21,22,28],epsilon_insensit:4,equal:[0,12,36],equalscondit:27,error:[0,6,18,35,36],error_add:12,error_r:[6,12],error_wk:12,especi:[32,35,36],essenti:34,estim:[0,4,7,13,24,27,28,32,33,35,36],et:[33,35],eta0:[4,9,11,22,28],eta:22,etc:9,euclidean:[1,3,21,22,28],evalu:[0,9,12,13,17,18,35,36],even:[7,15,32,36],everi:35,everyon:32,everyth:[17,18,32],everytim:32,exampl:[0,1,2,3,4,6,7,8,9,10,11,13,14,15,17,18,19,20,21,22,24,25,26,27,28,31,32,34,36],example_calc_multiple_metr:[6,16],example_classif:[1,5],example_debug_log:[7,16],example_extending_classif:[24,29],example_extending_data_preprocessor:[25,29],example_extending_preprocessor:[26,29],example_extending_regress:[27,29],example_feature_typ:[8,16],example_get_pipeline_compon:[9,16],example_inspect_predict:[10,16],example_interpretable_model:[11,16],example_metr:[12,16],example_multilabel_classif:[2,5],example_multioutput_regress:[3,5],example_pandas_train_test:[13,16],example_parallel_manual_spawning_cli:[17,23],example_parallel_manual_spawning_python:[18,23],example_parallel_n_job:[19,23],example_random_search:[20,23],example_regress:[4,5],example_resampl:[14,16],example_restrict_number_of_hyperparamet:[28,29],example_sequenti:[21,23],example_single_configur:[15,16],example_successive_halv:[22,23],examples_20_bas:5,examples_40_advanc:16,examples_60_search:23,examples_80_extend:29,examples_jupyt:30,examples_python:30,exce:32,exceed:[0,2,9,17,18,19,20,21,22,25],except:[0,18,20,22,36],exclud:[0,28,35],exclus:[31,35],execut:[0,5,16,17,18,23,29,32],exemplifi:[7,22,35],exercis:0,exhaust:35,exist:[29,30,31],exp:[1,3,20,21,22,28],expect:[0,32],experienc:33,experiment:[0,33,36],explain:[9,34,35],explained_variance_ratio_:9,explan:[16,30,34],explicit:17,explicitli:[14,22],ext:7,extend:[0,6,29,30,32,33,36],extra:0,extra_argu:12,extra_tre:[1,3,6,9,11,21,22,28],extra_trees_preproc_for_classif:[1,11,20,21,22,28],extra_trees_preproc_for_regress:[3,11],extratreesclassifi:36,f1:[0,6,12,32],f1_macro:[0,2,12],f1_micro:[0,12],f1_sampl:[0,12],f1_weight:[0,12],f:[2,10,12,17],f_classif:[1,21,22,28],f_regress:4,facad:[20,22],factor:36,factori:0,fail:[2,9,19,20,22,32,34,36],failur:[0,36],falkner:[33,36],fals:[0,1,2,3,4,6,7,9,11,12,13,14,15,17,18,20,21,22,24,25,26,27,28],familiar:0,faq:[33,36],fashion:9,fast_ica:[1,3,11,20,21,22,28],faster:36,favorit:32,fdr:28,feat_typ:[0,8,13,35],featur:[0,13,14,16,20,28,30,33,36],feature_agglomer:[1,3,11,21,22,28],feature_nam:10,feature_preprocess:[11,15,26,31],feature_preprocessor:[0,1,2,3,4,9,11,15,20,21,22,24,25,26,27,28,35],feature_typ:[1,2,3,4,9,11,15,20,21,22,24,26,27,28],featurepreprocessorchoic:[11,15],feedback:36,feedstock:34,felix:36,felixleungsc:36,fetch:2,fetch_openml:[2,7,8,10,13,15],feurer:[33,36],few:36,field:31,file:[0,5,7,16,17,18,23,29,34,35,36],filenam:[7,17,35],fill_valu:9,find:[0,9,17,18,31,32,36],fine:[0,32],finish:[0,9,18,21,32,35],first:[10,11,14,17,18,21,32,35],fit:[0,2,10,12,14,16,17,18,30,31,32,33,35,36],fit_ensembl:[0,17,18,21],fit_intercept:[1,4,9,11,20,21,22,25,28],fit_pipelin:[0,15],fit_prior:[9,20,21,28],fix:[32,36],flag:[2,7,8,24,25,26,27,28,35],flake8:36,flip:0,float64:[8,9,13],fold:[0,14],folder:0,follow:[0,1,3,4,6,7,8,9,10,11,12,14,15,17,24,25,26,27,28,31,32,33,34,35,36],forbidden:[3,28],forest:[15,35,36],fork:32,forkserv:[32,36],form:[0,15,31,35],format:[2,7,8,9,13,35,36],formatt:7,found:[0,10,12,13,15,25,32,35,36],fpr:[1,20,21,28],frac:0,fraction:[35,36],frame:0,francisco:36,francoi:36,frank:33,free:[17,33],friedman_ms:3,from:[0,2,3,6,7,8,9,10,11,13,15,19,20,22,23,24,25,26,27,28,30,33,34,35,36],from_dict:6,fu:36,full:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,31,32,35],fun:[1,3,20,21,22,28],further:[0,13,14,15,18,32,35],furthermor:[4,9,11,20],futur:[18,36],fwe:[4,20,22,28],g:[2,34],galleri:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,30,36],gamma:[1,3,9,20,21,27,28],gaussian_nb:[6,11,28],gaussian_process:3,gcc:34,gcc_linux:34,geffrier:36,gener:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,28,30,31,35,36],get:[0,9,15,20,22,33,34,35],get_compon:11,get_configuration_spac:[0,3,15,28],get_default_configur:22,get_estim:0,get_event_loop:18,get_hyperparameter_search_spac:[24,25,26,27,28],get_metric_result:6,get_models_with_weight:[0,9,25],get_param:0,get_preprocessor:0,get_properti:[24,25,26,27,28],get_random_search_object_callback:20,get_roar_object_callback:20,get_smac_object:22,get_smac_object_callback:[0,20,22],get_trials_callback:0,getting_start:15,geurt:28,gijsber:36,gini:[1,2,9,15,20,21,22,25,26,28],github:[7,15,31,32,33,34,36],give:[0,9,30,31,32,35,36],given:[0,10,11,15,17,32,36],glazachev:36,glob:7,gmean:36,go:32,goal:10,good:[0,2,4,13,32,35,36],got:12,gradient:36,gradient_boost:[1,4,6,9,11,20,21,22,28],gradientboostingclassifi:36,grain:[0,32],greater:0,greater_is_bett:[0,6,12],greil:36,grid:[13,35],grid_resolut:10,grow:32,guarante:32,guard:[17,18,19,20,22,32,36],gui:36,guid:[32,33,35,36],guidanc:[2,8],guidelin:[32,35,36],guilherm:36,gxx_linux:34,gyro_i:10,gyro_x:10,gyro_z:10,gyroscop:10,ha:[0,4,9,15,28,31,34,35,36],halv:[9,23,30,36],hand:[14,33],handl:[0,9,31,35,36],handler:7,handles_classif:[24,25,26,27,28,31],handles_multiclass:[24,25,26,27,28,31],handles_multilabel:[24,25,26,27,28,31],handles_multioutput:[24,25,26,27,28],handles_regress:[24,25,26,27,28,31],happen:[13,32,35,36],hard:[32,36],harder:35,harsh:0,hash:0,have:[0,9,10,14,15,17,18,31,32,34,35,36],header:[0,35],heavili:[32,34],hector:36,help:32,here:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,32,34,35],herilalaina:36,heurist:[28,36],hidden_layer_depth:[1,9,20,21,22,24,28],hidden_layer_s:24,high:0,higher:[0,4,10,32,36],highli:33,highlight:[7,8,13],hing:[1,20,21,22,25,28],histori:9,hnishi:36,hoc:9,hold:34,holdout:[0,22,32,35,36],home:[2,8],honor:[0,15],host:36,hostedtoolcach:22,hot:[0,32,35],hour:[33,35],how:[0,1,2,3,4,6,7,8,9,10,11,12,13,15,17,18,19,20,21,22,24,25,26,27,28,31,34,35,36],howev:[11,12,21,36],howto:7,html:[2,7,8,15,17,18,19],http:[2,7,8,13,15,17,18,19,36],hutter:33,hyper:15,hyperband:22,hyperparamet:[0,3,9,20,24,26,27,29,30,33,35,36],i:[0,3,9,10,13,14,24,32,35,36],id:[0,9,32],ideal:18,idempot:36,ident:24,identifi:[0,35],idl:17,ids_config:9,ignor:[9,17,18,36],illustr:[9,18,22],imag:36,immedi:36,impact:[10,36],implement:[0,2,7,8,10,24,25,26,28,31,32,35,36],impli:31,importances_mean:10,importances_std:10,improv:[15,32,33,36],imput:[1,2,3,4,9,11,15,20,21,22,24,26,27,28,32,35],includ:[0,9,11,15,22,24,25,26,27,32,33,35,36],include_bia:[1,3,4,11,15,21,22,28],incompat:[0,34,36],incondit:26,increas:[0,32,36],independ:32,index:[0,6,10,19,36],indic:[2,13,32],individu:[0,7,14,35],inf:4,infer:[8,35],influenc:0,info:[7,36],inform:[0,2,7,10,16,17,18,22,30,32,33,34,35,36],inherit:32,initi:[0,9,35,36],initial_budget:22,initial_configur:22,initial_configurations_via_metalearn:[0,2,7,8,20,24,25,26,27,28,35],initial_incumb:20,inproceed:33,input:[0,10,13,24,25,26,27,28,30,31,36],insensit:8,insert:0,insid:[9,14,31,32,36],inspect:[4,10,11,30,32,36],inspir:0,inspur:36,instal:[0,32,33,36],instanc:[0,9,15,20,31,36],instance_id:9,instance_specif:15,instead:[0,7,17,20,22,28,32,34,35,36],instruct:[34,36],int32:2,int64:2,integ:[0,2,32,35],intend:[20,22],intensif:[0,22],intensifi:22,intensifier_kwarg:22,interact:[9,10,22,34],interaction_onli:[1,3,4,11,15,21,22,28],intercept_sc:[1,9,20,21,22,28],interest:[7,9,32],interfac:[10,17],intermedi:7,intern:[7,9,17,18,25,36],interpret:[10,16,30,35],introduc:[0,20,36],invok:[20,22],involv:35,invscal:[4,11,28],io:15,ip:34,ipynb:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28],is_determinist:[24,25,26,27,28,31],is_valid_configur:15,isaac:36,issu:[25,33,34,35,36],item:[0,9,25],iter:[0,2,7,9,19,20,24,32,36],iterative_cv:36,its:[17,18,31,32,35],itself:[2,8,9,17,18,32,33],iver:36,j:36,jaidev:36,jeong:36,jesper:36,jha:36,jianswang:36,jin:36,jirka:36,jj:36,job:[0,7,17,18,19,36],joblib:32,joel:36,join:[12,17,18],joint:36,jongheon:36,jordal:36,jose:36,joseph:36,josh:36,jost:[33,36],journal:33,json:[7,17],judgement:32,julian:36,jupyt:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,30,34,36],just:0,k:[0,4,14],k_nearest_neighbor:[3,9,11,28],kaa:36,karl:36,katharina:[33,36],keep:[0,9,32,35],keep_vari:[1,3,9,20,28],kei:[0,6,9,25,35],kept:[0,35],kernel:[0,1,3,9,20,21,25,28],kernel_pca:[3,11,20,25,28],kernel_ridg:27,kernelridg:27,kernelridgeregress:27,kind:[10,13,35],kitchen_sink:[3,11,28],klein:[33,36],know:[32,33,34],known:32,kobylkin:36,kp:[7,15],kr:[7,15],kwarg:[0,25],l1:[20,21,22,28],l1_ratio:[4,9,28],l2:[1,9,11,20,21,28],l2_regular:[1,4,9,20,21,22,28],label:[0,4,5,10,13,30,36],labelencod:[0,35],lambda_1:4,lambda_2:4,laptop:32,larg:[35,36],larger:[32,36],largest:10,lastli:32,later:0,latest:[17,18,19,33,34,36],latter:0,launch:0,laurent:36,lbfg:24,lda:[9,11,20,25,28,36],lead:[32,36],leaderboard:[0,1,2,3,4,36],learn:[0,2,9,10,13,15,17,18,21,31,33,35,36],learning_r:[1,4,9,11,20,21,22,28],learning_rate_init:[1,9,20,21,22,28],least:[34,36],least_squar:4,left:0,leftov:36,legend:[4,13,35],len:[0,9,20,22,25],length:0,less:36,lesw:36,let:[9,32],leung:36,level:[7,32,36],levelnam:7,leverag:33,lg:33,liac:36,lib:22,liblinear_svc:[1,6,9,11,20,21,28],liblinear_svc_preprocessor:[11,20,21,22,28],librari:[0,32,35],libsvm_svc:[1,6,9,11,21,28],licens:36,lifetim:[17,18],light:[17,18],like:[0,11,22,31,32,35],limit:[0,2,9,15,17,18,19,20,21,22,25,34,36],lindauer:[33,36],line:[10,13,18,19,23,30,32,35],linear:[9,26,32,36],lineardiscriminantanalysi:26,link:[2,36],linkag:[1,3,21,22,28],linkcheck:36,linux:34,list:[0,8,9,11,13,32,34,35],liter:0,ll:10,load:[0,32,36],load_breast_canc:[1,6,9,11,12,14,17,18,19,20,21,22,24,25,26,28,36],load_diabet:[4,27],load_digit:[33,36],load_model:0,local:36,localclust:18,locat:[17,32],lockfil:36,log2:28,log:[0,3,11,12,16,22,27,28,30,36],log_loss:[0,12],logcosh:[3,28],logger:[0,7,36],logging_config:[0,7,36],logging_configur:7,logic:[17,18],logist:24,loglevel:36,logloss:36,longer:[32,36],look:[9,10,15,31,32,35],loop:18,loss:[0,1,4,9,11,20,21,22,25,28,32,36],losses_and_configur:9,lot:[32,36],love:32,low:0,lower:[4,24,26,27,32],lowest:9,lsqr:[26,28],lt:36,luca:36,luka:36,m:28,mabri:36,machin:[0,15,17,18,21,23,30,31,33,34,35,36],made:36,mae:[3,4],mai:[0,2],main:[32,36],maint:36,maintain:[9,32],make:[0,2,15,20,22,25,32,34,35,36],make_regress:3,make_scor:[0,6,12],manag:[17,18,19,35,36],manhattan:[1,3,21,28],mani:[0,32,35],manner:[32,34],manual:[13,17,18,20,28,31,36],manuel:[33,36],map:[0,2],mariu:[33,36],mark:36,mask:[0,9],masked_arrai:9,master:[15,34,36],matplotlib:[4,10,13],matric:31,matrix:0,matthia:[33,36],max:[3,28],max_bin:[1,4,9,20,21,22,28],max_budget:22,max_depth:[1,2,3,4,9,15,20,21,22,25,26,28],max_depth_factor:[3,9,20,28],max_featur:[1,2,3,4,9,15,20,21,22,25,26,28],max_it:[1,9,21,28],max_leaf_nod:[1,2,3,4,9,15,20,21,22,25,26,28],max_models_on_disc:[0,32,35],maxim:[9,35,36],maximilian:36,maximum:[0,28,35],mb:[0,5,16,23,29,32],md5:0,mean:[0,1,2,3,4,6,9,12,14,18,20,21,22,24,26,27,28,31,32,36],mean_absolute_error:[0,12],mean_fit_tim:9,mean_squared_error:[0,12,36],mean_squared_log_error:12,mean_test_scor:[6,9],measur:[13,35],mechan:[0,13,32,35],median:[1,3,11,15,20,21,22,28],median_absolute_error:[0,12],memori:[0,2,9,17,18,19,20,21,22,25,34,36],memory_limit:[0,15,17,18,19,36],mendoza:36,mention:32,merg:33,messag:[7,36],meta:[33,35,36],metadata:[0,35,36],metadata_directori:0,metafeatur:36,metalearn:0,metalearning_configur:[20,22],method:[0,8,15,31,32,35,36],metric:[1,2,3,4,7,8,9,11,13,14,15,16,17,18,19,20,21,22,24,25,26,27,30,32,33,35,36],metric_:6,metric_balanced_accuraci:6,metric_custom_error:6,metric_f1:6,metric_nam:12,metric_precis:6,metric_recal:6,mfeurer:34,michael:36,microsoft:34,might:0,min_chal:22,min_impurity_decreas:[1,2,3,4,9,15,20,21,22,25,26,28],min_samples_leaf:[1,2,3,4,9,15,20,21,22,25,26,28],min_samples_split:[1,2,3,4,9,15,20,21,22,25,26,28],min_weight_fraction_leaf:[1,2,3,4,9,15,20,21,22,25,26,28],minim:[9,36],minimum:[0,35,36],minimum_fract:[1,2,3,4,9,11,15,20,21,22,24,26,27,28],minmax:[1,3,4,9,20,21,22,28],minor:36,minority_coalesc:[1,2,3,4,9,11,15,20,21,22,24,26,27,28],minr:20,minut:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,35,36],miotto:36,miss:[32,34,35,36],mkdir:34,mkl_num_thread:[32,35],ml:36,mlp:[1,6,9,11,20,21,22,28],mlpclassifi:[24,36],mlpregressor:36,mode:[1,4,19,20,21,22,28,32,35,36],model:[0,6,12,13,14,15,16,19,20,21,22,30,31,36],model_1:0,model_id:[0,1,2,3,4],model_n:0,model_select:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,33,36],modern:35,modifi:[2,8],modified_hub:[9,28],modul:[2,10,15,17,18,34,36],mohd:36,morakakam:36,more:[0,2,7,8,9,13,17,21,22,32,33,34,35,36],moreov:6,most:[0,9,32,35],most_frequ:[1,3,4,9,20,21,22,28],mostli:[32,35],move:[32,36],mse:3,msg:7,much:[0,11,32],multi:[0,5,7,30,36],multi_class:[1,9,20,21,22,28],multiclass:[0,1,2,9,11,20,21,22,24,25,26,31,35,36],multiclass_classif:[17,18],multidimension:35,multilabel:[0,1,2,9,11,20,21,22,24,25,26,31,35,36],multinomial_nb:[11,28],multioutput:[0,3,4,27,35],multioutputregressor:0,multipl:[6,10,13,17,18,19,31,32,35,36],multiprocess:[7,17,18,35,36],multitud:33,must:[0,13,17,18,19,24,31,32,34,35,36],mutual:31,mutual_info:[1,20,22,28],mutual_info_classif:[20,21,24,25,28],mybind:36,mypi:36,n:[9,10,12,35],n_class:0,n_cluster:[1,3,21,22,28],n_compon:[3,20,25,28],n_estim:[1,3,9,15,20,21,22,28],n_featur:[0,3],n_inform:3,n_iter:4,n_iter_no_chang:[1,9,20,21,22,28],n_job:[0,15,17,18,19,20,22,35,36],n_jobs_:19,n_label:0,n_neighbor:[3,9,28],n_output:0,n_quantil:[1,3,4,9,15,20,21,22,28],n_repeat:10,n_sampl:[0,3],n_samples_fit:0,n_split:0,n_target:[0,3],n_worker:18,nader:36,name:[0,2,6,7,8,9,11,12,13,15,17,18,19,20,21,22,24,25,26,27,28,31,32,33,35,36],named_step:[9,15],nanni:18,natur:0,nb:34,ndarrai:[0,35],necessari:[0,14,17,32,35],need:[0,9,14,17,18,31,32,34,36],needs_proba:[0,6,12],needs_threshold:[0,6,12],neg:[0,2,31],neither:36,nest:0,neural:33,neural_network:24,neurip:36,neurips15a:33,never:18,nevertheless:[32,35],next:35,nicer:0,nildaimon:36,nip:33,no_coalescens:[1,3,4,9,20,21,22,28],no_encod:[1,3,4,9,15,20,21,22,28],no_preprocess:[1,2,3,4,11,20,21,22,24,25,27,28,35],non:36,none:[0,1,2,3,4,7,9,11,12,15,17,20,21,22,24,25,26,27,28,31,35,36],nopreprocess:28,nor:36,normal:[1,3,9,15,20,21,22,28,32,35],note:[0,2,8,10,11,17,32,35,36],notebook:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,30,32,34,36],noth:36,notimplementederror:[24,26,27,28],now:[4,10,11,17,18,32,36],np:[2,6,8,12,13,14,15,35],nthread:[17,18,20,22],nuanc:32,num_nodes_per_lay:[1,9,20,21,22,24,28],num_param:0,num_run:[9,15],num_work:22,number:[0,2,9,10,17,18,19,20,21,22,25,29,30,35,36],numer:[0,8,13,35],numerical_transform:[1,2,3,4,9,11,15,20,21,22,24,26,27,28],numpi:[0,2,3,6,8,12,13,14,15,32,35,36],nystroem_sampl:[3,11,20,28],object:[0,3,9,13,15,20,24,26,27,28,31,32,35,36],observ:28,obtain:[0,16,30,35,36],obviou:0,obvious:14,occur:34,off:[4,22,25,28,35],offici:[7,34],offlin:36,often:32,old:36,olehb007:36,oli:36,omp:36,omp_num_thread:[32,35],onc:[0,18,19,34,36],one:[7,9,14,15,17,18,19,21,28,31,32,33,35,36],one_hot_encod:[1,2,3,4,9,11,20,21,22,24,26,27,28],ones:[2,15,30,32],onli:[0,9,11,15,17,18,28,31,35,36],onlin:20,open:[32,33],openblas_num_thread:[32,35],openml:[2,7,8,10,13,32],openmp:32,oper:[34,36],opposit:36,opt:[22,34],optim:[0,6,9,11,17,18,19,20,22,28,30,32,33,35,36],optimizatino:20,optimum:[0,6,12],option:[0,7,32,34,35],optionalarrai:0,order:[0,13,17,18,31,35,36],ordereddict:9,ordin:13,ordinalencod:35,org:[2,7,8,13,15,17,18,19],origin:[32,36],osx:36,other:[0,9,18,32,34,35],otherwis:[0,22],ouput:36,our:[15,28,32,33],ourselv:27,out:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,31,33,34],outcom:0,output:[0,5,7,9,14,24,25,26,27,28,30,31,36],output_directori:32,output_distribut:[1,3,4,9,15,20,21,22,28],outsid:32,over:[0,6,8,9,11,14,16,30,32,35,36],overestim:4,overfit:[0,13,32],overhead:36,overview:0,ovr:[1,9,20,21,22,28],own:[17,18,32],p:[3,9,28,34],packag:[15,22,32,34,36],page:[33,36],pair:35,panda:[0,6,8,13,30,35,36],paper:[32,33,36],parallel:[0,1,3,20,21,22,23,28,30,36],parallel_schedul:22,param:[0,9],param_balanc:9,param_classifi:[6,9],param_data_preprocessor:9,param_feature_preprocessor:9,paramet:[0,15,25,36],parametr:28,part:[34,36],parti:[32,36],partial:0,particip:36,particular:[9,35],particularli:22,pass:[0,7,15,17,18,20,32,35,36],passive_aggress:[1,6,9,11,20,21,22,25,28],path:[0,7,36],pathlib:7,pca:[1,3,9,11,20,28,35],pd:[0,6,13,35],penalti:[1,4,9,11,20,21,22,28],pep8:36,pepe:36,per:[0,6,8,9,13,35],per_run_time_limit:[0,1,2,3,4,6,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,26,27,28,36],percentag:35,percentil:[1,20,21,22,28],perceptron:28,perfect:4,perform:[0,8,15,16,30,32,35,36],performance_over_time_:[0,13,35],perman:0,permutation_import:10,person:10,peter:36,phone:10,pick:33,picklabl:36,pid_:0,pieter:36,pip3:[34,36],pip:[34,36],pipe:17,pipelin:[0,7,9,11,15,24,25,26,27,28,31,32,35,36],pitfal:10,plai:36,platform:34,pleas:[0,17,18,20,22,31,32,33,34,35],plot:[0,8,16,30,35,36],plot_partial_depend:10,plt:[4,10,13,35],point:[0,4,17,18],poli:[3,9,20,28],polynomi:[1,3,4,11,15,21,22,27,28],pooling_func:[1,3,21,22,28],port:[17,34],posit:[2,31],possibl:[0,4,6,8,12,14,15,20,21,22,27,32,34,35,36],post:9,pot:13,potenti:[32,36],power:36,power_t:[4,9,11,28],power_transform:[3,9,20,28],pr:36,practic:[14,30,32],pradeep:36,pre:32,precis:[0,2,6,12,32,36],precision_macro:[0,12],precision_micro:[0,12],precision_sampl:[0,12],precision_weight:[0,12],precomput:0,predefin:14,predefinedsplit:14,predict:[0,1,2,3,6,8,10,11,12,13,14,17,18,20,21,22,24,28,31,32,33,35,36],predict_proba:[0,24,28,36],predictor:[31,36],preprocess:[0,36],preprocessor:[0,9,29,30,31,35,36],present:[0,36],preserv:7,pretti:[14,32],prevent:36,previou:21,previous:[0,17,18,36],princip:9,print:[6,7,8,9,10,13,14,15,17,18,19,20,22,33,35,36],prior:[0,35,36],prioriti:35,probabl:[0,10,36],problem:[0,2,6,9,12,32,34,35,36],proc:17,procedur:[30,35],procedurc:9,process:[0,17,18,21,31,33,34,36],process_cli_work:17,process_python_work:[17,18],processor:0,produc:[31,36],progress:35,properli:[2,8,13,17,18,35],properti:31,proport:0,provid:[0,2,7,8,13,17,24,25,26,27,28,32,34,35,36],prune:[0,35,36],publish:33,pull:34,purpos:[7,13,14,18,22,31],push:36,put:0,pwd:34,py:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,35,36],pyninsh:36,pypi:[32,36],pyplot:[4,10,13],pyrfr:[32,34,36],python3:[22,34,36],python:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,19,20,21,22,23,24,25,26,27,28,30,32,34,35,36],q_max:[1,3,4,9,20,21,22,24,28],q_min:[1,3,4,9,20,21,22,24,28],qda:[9,11,20,28,36],quantifi:4,quantile_transform:[1,3,4,9,15,20,21,22,28],queri:[9,31],question:36,r2:[0,3,4,12,27],r2_score:[0,3,4,27],r:[0,10,28],raamana:36,race:20,rafael:36,rais:[0,20,22,24,26,27,28,35,36],rakotoarison:36,ram:32,random:[9,15,23,30,31,32,35,36],random_forest:[1,2,3,4,6,9,11,15,20,21,22,25,26,28,35],random_numb:0,random_st:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,26,27,28,33],random_trees_embed:[3,11,20,22,28],randomforest:15,randomforestclassifi:[15,28,36],randomli:[10,15],rang:[3,4,13,17,18,24,26,27,28,35],rank:[0,1,2,3,4,36],rank_test_scor:[6,9],rather:32,ratio:9,rbf:[1,3,21,27,28],re:[2,14,32,34,36],reach:32,read:[0,32,33,34,36],readi:18,readm:36,real:[2,7,8,17,18,24,25,26,27,28],reason:[32,35],recal:[0,6,12],recall_macro:[0,12],recall_micro:[0,12],recall_sampl:[0,12],recall_weight:[0,12],recent:[33,34],recogn:[8,36],recommend:[2,7,8,15,24,25,26,27,28,34,35],reddi:36,redirect:0,reduc:[3,32,36],redund:32,refer:[0,13,33,35,36],refit:[0,22,32,36],reg:[27,32],reg_param:[9,20,28],regard:35,regist:[31,36],registri:36,regress:[5,11,12,29,30,32,35,36],regression_metr:12,regressor:[0,27,31,35,36],regular:[33,35],rel:[0,36],relat:[10,18,36],releas:[2,8,32],relev:[17,22,32,36],reli:34,relu:[1,20,21,22,24,28],remain:9,remov:[0,20,22,32,36],renam:36,render:[17,18,36],replac:[0,2,12,28,33,34,36],report:33,repositori:32,repres:0,represent:[0,31],reproduc:36,request:32,requir:[0,2,17,18,32,35,36],rerun:32,resampl:[0,16,30,36],resampling_strategi:[0,14,22],resampling_strategy_argu:[0,14,22,36],rescal:[1,2,3,4,9,11,15,20,21,22,24,26,27,28],research:33,residu:0,resort:0,resourc:[32,34,35],respect:32,respons:10,restrict:[9,11,27,29,30,32,36],restructur:36,result:[0,2,4,6,9,17,18,19,20,21,22,25,30,31,33,36],retain:36,retriev:[18,36],return_x_i:[1,2,4,6,7,9,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,33],returncod:17,reuter:2,revers:[17,18],review:2,rf:28,rh2epm:22,rivera:36,rng:[20,22],roar_facad:20,robust:[33,35,36],robust_scal:[1,3,4,9,20,21,22,24,28],roc_auc:[0,12,36],rohit:36,rong:36,root:[7,34],root_mean_squared_error:12,rotat:10,round:36,run:[0,1,3,4,6,7,8,10,11,12,13,14,15,16,17,18,19,20,21,22,24,25,26,27,28,30,32,33,34,35,36],run_id:[20,22],run_info:[0,15],run_kei:9,run_or_walk_inform:10,run_until_complet:18,run_valu:[0,9,15],runcount_limit:[2,7,8,24,25,26,27,28],runhistori:[0,9,12,22],runhistory2epm4logcost:[12,22],runhistory2epm:[12,22],runhistory_:9,runinfo:[0,15],runkei:9,runner:[2,8],runtim:[9,32],runvalu:[0,9,15],ryul:36,s:[0,7,9,10,12,14,17,22,32,34,35,36],safe:[2,8],safeguard:36,sake:[17,18],same:[0,9,28,31,32,33],samm:[20,28],sampl:[0,4,10,15,35],sample_configur:15,sample_weight:0,santo:36,sapronov:36,satyam:36,save:0,scalar:[0,8],scale:[3,27,28,36],scatter:4,scenario:[0,20,22],scenario_dict:[0,20,22],schedul:18,scheduler_address:18,scheduler_fil:17,scheduler_file_nam:17,scheduler_ip:18,scientif:[33,35],scikit:[0,2,9,10,13,15,31,33,35,36],scipi:[0,35,36],score:[0,9,10,12,17,18,19,20,22,28,32,33,35,36],score_func:[0,1,4,6,12,20,21,22,24,25,28],scorer:0,scoring_funct:[0,6],scratch:0,script:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,32,36],search:[0,15,23,32,34,35,36],searchspac:32,second:[0,1,2,3,4,6,7,8,9,10,11,13,14,15,17,18,19,20,21,22,24,25,26,27,28,32,35,36],section:[12,32,34,35,36],see:[0,10,11,17,18,31,32,34,36],seed:[0,9,12,15,17,18,19,20,22,31],seen:[0,35],select:[0,9,14,15,22,33,35,36],select_percentile_classif:[1,11,20,21,22,28],select_percentile_regress:11,select_rates_classif:[1,11,20,21,22,24,25,28],select_rates_regress:[4,11],selectpercentileregress:36,selectr:36,self:[0,6,12,17,18,24,25,26,27,28],sensibl:0,separ:36,sequenc:36,sequenti:[23,30,35],seri:[0,35],server:36,servic:34,session:34,set:[0,13,14,17,18,22,25,34,35,36],set_param:0,setattr:25,setup:[18,36],sever:[31,32,35,36],sgd:[4,6,9,11,22,24,28,36],shahril:36,shape:[0,28],share:[35,36],shell:[17,34],ship:34,shortnam:[24,25,26,27,28,31],should:[0,9,17,18,32,33,36],show:[1,2,3,4,6,7,9,10,12,13,14,15,17,18,19,20,21,35,36],show_model:[0,1,2,3,4,9,11,20,21,22,24,25,26,27,35],showcas:13,shown:[11,13,35],shrink:[1,9,21,28],shrinkag:[9,20,25,26,28,36],shrinkage_condit:26,shrinkage_factor:[9,20,28],shuffl:[0,1,9,20,21,22,28,36],shut:[18,19],shutdown:36,sigmoid:[3,20,28],sign:[0,1,2,3,4,9,11,20,21,22,24,25,26,27,31],signatur:[0,36],signed_data:[24,26,27,31],significantli:32,silenc:[2,8],silva:36,similar:11,simpl:[0,1,4,10,32,35],simpleclassificationpipelin:[1,2,9,11,20,21,22,24,25,26],simpleregressionpipelin:[3,4,27],simpli:22,simplifi:[9,32,36],sinc:[0,10,12],singl:[0,11,14,16,17,18,23,30,32,35,36],single_best_optimization_scor:13,single_best_test_scor:13,single_best_train_scor:13,singlethreadedcli:7,site:22,six:36,size:[0,11,35,36],skearn:25,sklean:32,sklearn:[0,6,7,8,10,12,13,14,15,19,20,29,30,36],skripniuk:36,sleep:[17,18],smac3:[7,34,36],smac4ac:22,smac:[0,7,9,12,13,20,22,35,36],smac_ac_facad:22,smac_scenario_arg:[0,2,7,8,24,25,26,27,28],small:32,smaller:12,smbo:[0,36],so:[0,9,10,17,18,31,32,34,35,36],soft:14,solut:[6,12,32,34],solv:[9,34],solver:[1,9,20,21,22,24,26,28],some:[0,10,25,32,35,36],sorber:36,sort:[0,9,36],sort_bi:0,sort_idx:10,sort_ord:0,sort_valu:0,sourc:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,30,31,32,35],source_id:15,space:[0,7,15,24,27,31,35,36],spars:[0,1,2,3,4,9,11,20,21,22,24,25,26,27,28,31,35,36],sparsiti:0,spawn:[19,23,30,32,35,36],specif:[8,32,34],specifi:[0,2,7,8,14,22,28,31,32,35],speed:[2,7,8,10,24,25,26,27,28,33,36],spend:33,sphinx:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,30,36],split:[0,14,30,35,36],splitter:36,spmatrix:0,springenberg:[33,36],sprint_statist:[0,2,9,17,18,19,20,21,22,25,32,35],sqrt:28,squar:0,squared_hing:[1,9,20,21,22,28],stabl:[2,15],stage:9,stage_nam:9,stale:36,standard:[1,2,3,4,9,11,20,21,22,24,26,27,28],start:[0,7,9,10,19,32,33,34,36],start_python_work:18,start_tim:0,startswith:6,starttim:[9,15],startup:36,state:36,statement:[18,36],staticmethod:[24,25,26,27,28],statist:[0,19,20,22,35],statu:[0,6,9,15],statustyp:[9,13,15],stderr:17,stdout:[7,17],stefan:[33,36],step:[0,25,32,35],still:[32,35],stock90975:36,stop:[0,9,18,32,35,36],store:[0,7,9,15,17,32,35,36],str:[0,13,28,31],strategi:[0,1,2,3,4,9,11,15,16,20,21,22,24,25,26,27,28,30,36],stream:7,streamhandl:7,streuhof:36,strict:34,string:[0,2,8,14,32,35],strong:36,structur:7,style:36,subclass:[0,31],submit:[17,18,36],subobject:0,subprocess:[17,18,32,36],subsampl:[10,36],subsect:31,subset:[0,11,32],success:[0,2,6,9,15,17,18,19,20,21,23,25,30,35,36],successive_halv:22,sudo:34,suffer:[13,32],suffici:35,suggest:[32,34,35],sum:0,support:[0,12,13,34,36],sure:[2,15,20,22,25,32,34,36],svd:[26,28],svm:3,swap:35,swig:[32,34],sy:7,symptom:32,synthet:3,system:[33,35,36],t:[10,12,32],ta:[0,20,22],ta_kwarg:[20,22],tabl:0,tae:[0,13],tae_runn:[20,22],tae_runner_kwarg:[20,22],tag:[0,8],take:[0,17,19,35],tane:36,tanh:[1,9,20,21,22,24,28],target:[0,2,8,9,10,13,17,18,19,20,21,22,25,35,36],target_typ:[1,2,3,4,9,11,20,21,22,24,25,26,27],task:[0,1,2,3,4,9,11,15,17,18,20,21,22,24,25,26,27,31,32,35],task_id:9,technic:32,techniqu:36,technolog:33,tell:31,templat:36,tempor:7,temporari:[32,36],temporarili:32,teresa:36,termin:[0,32],test:[0,4,10,13,15,32,35,36],test_fold:14,test_predict:4,test_siz:[10,13,15],testa:36,th:9,than:[0,4,21,22,32,36],thei:[17,18,32,35,36],them:[0,10,11,17,35,36],therebi:32,therefor:[0,32,34,35],thetal:3,thetau:3,thi:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,31,32,33,34,35,36],thick:10,thin:10,third:32,thread:[35,36],threadpoolctl:[35,36],threads_per_work:18,three:[17,18,32],threshold_lambda:4,through:[20,31],throughout:35,thu:[10,32],tie:36,tight:32,tight_layout:[4,10],time:[0,1,2,3,4,6,7,8,9,10,11,12,14,15,17,18,19,20,21,22,24,25,26,27,28,30,31,32,33,36],time_left_for_this_task:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28],timeout:[17,36],timeseri:35,timestamp:[7,13,35],timothi:36,titl:[13,33,35],tmp:[0,1,3,4,10,11,14,17,18,19,20,21,22,32,36],tmp_dir:0,tmp_directori:32,tmp_folder:[0,1,3,4,7,10,11,14,17,18,19,20,21,22],to_numer:13,to_numpi:8,to_str:6,tobia:36,togeth:[0,15,36],tol:[1,4,9,11,20,21,22,25,26,28],too:[9,32,36],toolkit:33,top:[0,9],top_k:0,total:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,32,35],track:[0,36],tracker:33,tradeoff:35,train:[0,1,4,9,10,13,14,15,20,21,22,28,30,32,35,36],train_loss:[0,9,15],train_predict:4,train_siz:[0,14,22],train_test_split:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,33],trajectori:[32,36],transform:[0,9,25,26,31,35,36],travi:36,tree:32,tri:0,truncatedsvd:11,tune:[28,33,35,36],tupl:[0,9,15,24,31,36],turn:[10,25,35,36],two:[2,7,8,10,18,21,24,25,26,27,28,31,32,34,35,36],txt:36,type:[0,1,2,3,4,9,13,16,22,24,26,27,28,30,31,35,36],type_of_target:2,typic:0,typo:36,u12:9,u13:9,u16:9,u18:9,u19:9,u20:9,u32:9,u3:9,u5:9,u9:9,u:0,ubuntu:36,un:36,under:[7,32,34],underestim:4,underli:[0,9],understand:10,unidimension:35,uniform:[1,3,4,9,20,21,22,28],uniform_averag:0,uniformfloat:[3,24,26,27,28],uniformfloathyperparamet:[24,26,27,28],uniforminteg:[3,24,27,28],uniformintegerhyperparamet:[24,27,28],union:0,unit:36,unix:34,unless:0,unlik:33,unlimit:36,unnecessari:36,unseen:[13,14,35],unsign:31,unsigned_data:[24,25,26,27,28,31],unsuccess:35,until:[18,35],up:[2,7,8,9,10,11,17,18,24,25,26,27,28,33,34,36],updat:[0,32,34,36],upgrad:36,upper:[0,24,26,27,35,36],us:[0,2,7,8,10,11,13,14,15,17,18,19,21,24,28,30,31,33,34,35,36],usag:[23,30,35,36],user:[0,8,11,13,31,32,33,35,36],userwarn:22,usual:[32,34],util:[0,2,26],v:[0,34],val:25,valentin:36,valid:[0,1,2,9,15,17,18,19,20,21,25,28,30,32,35,36],validation_fract:[1,9,20,21,22,28],valu:[0,3,4,9,10,15,28,31,35,36],valueerror:[20,22],valverd:36,van:36,variabl:[0,32,35,36],varianc:9,variou:[0,12],ve:33,vector:36,veri:[11,32],verifi:34,version:[0,7,32,34],via:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,32,33,34,35,36],vicent:36,view:0,virtual:34,visual:[4,36],vladimir:36,vladislav:36,vote:14,vs:[7,15],wa:[0,9,15,18,34,36],wai:[2,8,32,33],wait:18,walk:[10,31],want:[8,9,17,18,32,33],ward:[1,3,21,22,28],warm_start:15,warn:[2,8,12,22,36],we:[4,7,9,10,11,12,13,14,15,17,18,19,27,28,32,33,34,35],web:36,weight:[0,1,3,9,15,17,18,20,21,22,24,25,28],weight_1:0,weight_n:0,weird:36,well:[0,9,11,34,35,36],wen:36,were:[0,4,9,25,32,36],what:[0,9,10],wheel:[34,36],when:[0,2,8,10,13,17,18,25,31,32,35,36],where:[0,14,22,28,34,35,36],wherea:13,whether:[0,9,10,13,31,36],which:[0,7,9,10,11,12,13,14,17,18,21,22,28,31,33,35,36],whiten:[1,3,9,20,21,22,28],whole:[14,32],why:32,window:36,wish:2,within:[13,17,23,30,32,36],without:[17,32,35,36],woo:36,work:[0,2,7,8,13,15,17,18,31,32,33,34,35,36],worker:[0,19,22,23,30,32,35,36],worker_process:[17,18],workflow:36,workload:[17,18],workstat:32,wors:0,worst:36,worst_possible_result:0,would:[0,11,14,17,32,33,35,36],wrap:[0,32],wrapper:[9,26,31,35],written:[7,32],wrong:36,wrongli:36,wrt:[0,10],www:[2,7,8,13],x64:22,x:[0,1,2,3,4,6,7,8,9,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,33,35],x_test:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,33,35],x_train:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,33,35],xgboost:36,xiaodong:36,xlabel:4,xlim:4,xtick:10,y:[0,1,2,3,4,6,7,8,9,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,33,36],y_hat:33,y_optim:0,y_pred:[0,24,25,26,27],y_test:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,33,35,36],y_train:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,33,35],y_true:0,yaml:[0,36],yassin:36,yazanobeidi:36,year:33,yet:[0,20,32,35],yield:28,ylabel:4,ylim:4,you:[0,2,7,8,9,13,15,17,18,31,32,33,34,35],young:36,your:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,24,25,26,27,28,32,34,35],yourself:32,zero:[2,35],zeyi:36,zip:30,zorder:4},titles:["APIs","Classification","Multi-label Classification","Multi-output Regression","Regression","Computation times","Metrics","Logging and debugging","Feature Types","Obtain run information","Model Explanation","Interpretable models","Metrics","Performance-over-time plot","Resampling Strategies","Fit a single configuration","Computation times","Parallel Usage: Spawning workers from the command line","Parallel Usage: Spawning workers from within Python","Parallel Usage on a single machine","Random Search","Sequential Usage","Successive Halving","Computation times","Extending Auto-Sklearn with Classification Component","Extending Auto-Sklearn with Data Preprocessor Component","Extending Auto-Sklearn with Preprocessor Component","Extending Auto-Sklearn with Regression Component","Restricting the number of hyperparameters for an existing component","Computation times","Examples","Extending auto-sklearn","FAQ","auto-sklearn","Installation","Manual","Releases"],titleterms:{"0":[17,32,33,36],"1":[9,10,17,32,36],"10":36,"11":36,"12":36,"13":36,"14":36,"2":[9,10,17,32,33,36],"3":[10,17,36],"4":36,"5":36,"6":36,"7":36,"8":36,"9":36,"default":32,"final":[1,2,3,4,6,8,11,13,14,21],"function":18,"import":[10,17],"new":33,Will:32,about:[2,9],accuraci:[12,24],ad:32,addit:12,advanc:30,again:14,all:[17,32],also:22,an:[15,22,28],anaconda:34,api:0,approach:22,ar:[17,32],argument:12,auto:[1,2,3,4,9,11,17,18,21,22,24,25,26,27,28,31,32,33,34,35],avail:[11,12,32],background:[17,18],basic:30,best:9,budget:22,build:[1,2,3,4,6,7,8,9,10,11,13,19,21,22,35],built:0,callback:22,can:[22,32],cite:33,classif:[0,1,2,11,24,31],classifi:[1,2,6,7,8,9,11,13,19,20,21,22,24,28],client:17,close:17,command:17,commun:17,compat:34,compon:[9,24,25,26,27,28,31],comput:[5,10,16,23,29,35],conda:34,condit:10,config:7,configur:[3,15,26,28],construct:[1,2,3,4,11,21],contain:32,contribut:33,contributor:36,crash:32,creat:[7,10,17,24,25,26],cross:[14,22],custom:12,data:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,19,20,21,22,24,25,27,28,32,35],dataset:[25,26,32],debug:7,defin:[15,18,22],depend:10,detail:9,disabl:32,disk:32,docker:34,doe:32,dummi:32,eat:32,ensembl:[1,2,3,4,6,8,11,13,14,21,32,35],error:12,estim:15,evalu:32,exampl:[12,30,33,35],exclud:32,exist:28,expect:10,explan:10,extend:[24,25,26,27,31],extens:[0,30],extrem:32,faq:32,fault:32,featur:[8,10,31,32,35],fifth:12,file:32,first:12,fit:[1,3,4,6,7,8,9,11,13,15,19,20,21,22,24,25,26,27,28],forest:28,forg:34,found:[1,2,3,4,9],fourth:12,from:[17,18,32],gener:[27,32],get:[1,2,3,4,6,8,11,13,14,21],get_hyperparameter_search_spac:31,get_properti:31,halv:22,holdout:14,how:32,hungri:32,hyperparamet:28,ic:10,imag:34,implement:27,individu:10,inform:9,input:35,inspect:[9,35],instal:34,instanti:22,interfac:0,interpret:[11,32],issu:32,iter:22,kernel:27,krr:27,label:2,lda:26,learn:[14,32],licens:33,limit:[32,35],line:17,list:12,load:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,19,20,21,22,24,28],log:[7,32],mac:34,machin:[19,32],main:0,manual:[33,35],memori:[32,35],meta:32,metric:[0,6,12],mix:22,mlp:24,model:[1,2,3,4,9,10,11,25,26,27,32,35],modul:0,more:10,multi:[2,3],my:32,next:22,non:32,nopreprocess:25,number:[28,32],object:14,obtain:9,one:10,onli:32,osx:34,output:[3,32],over:13,oversubscript:32,own:12,parallel:[17,18,19,32,35],part:[9,10],partial:10,pd:10,pdp:10,perform:[13,14,25],permut:10,persist:35,plot:[4,10,13],predefin:12,predict:[4,9,25,26,27],preprocess:[25,31,32,35],preprocessor:[11,25,26],print:[1,2,3,4,11,12,21,24,25,26,27,28],process:[32,35],provid:15,python:[17,18],random:[20,28],refit:14,regress:[0,3,4,27,31],regressor:[3,4],releas:36,report:9,requir:34,resampl:[14,35],restrict:[28,35],result:35,ridg:27,roar:20,run:[2,9],s:28,schedul:17,scikit:[14,32],score:[1,2,3,4,6,8,11,13,14,21,25,26,27],search:[9,20,30],searchspac:35,second:12,see:22,segment:32,sequenti:[21,32],set:32,setup:17,show:11,singl:[15,19],sklearn:[1,2,3,4,9,11,17,18,21,22,24,25,26,27,28,31,32,33,34,35],space:[3,26,28,32],spawn:[17,18],splitter:14,start:[17,18],statement:17,statist:[2,9,24,25,26,27],strategi:[14,35],subclass:28,subsampl:22,success:22,successivehalv:22,support:35,system:34,test:24,than:10,third:12,time:[5,13,16,23,29,35],two:17,type:8,ubuntu:34,until:17,up:32,us:[9,12,20,22,26,27,32],usag:[17,18,19,21,32],user:15,v0:36,valid:[14,22],vanilla:35,version:36,view:[1,2,3,4],wait:17,we:22,where:32,which:32,window:34,within:18,without:25,worker:[17,18],write:31,x:36}}) \ No newline at end of file +Search.setIndex({docnames:["api","examples/20_basic/example_classification","examples/20_basic/example_multilabel_classification","examples/20_basic/example_multioutput_regression","examples/20_basic/example_regression","examples/20_basic/sg_execution_times","examples/40_advanced/example_calc_multiple_metrics","examples/40_advanced/example_debug_logging","examples/40_advanced/example_feature_types","examples/40_advanced/example_get_pipeline_components","examples/40_advanced/example_inspect_predictions","examples/40_advanced/example_interpretable_models","examples/40_advanced/example_metrics","examples/40_advanced/example_pandas_train_test","examples/40_advanced/example_resampling","examples/40_advanced/example_single_configuration","examples/40_advanced/sg_execution_times","examples/60_search/example_parallel_manual_spawning_cli","examples/60_search/example_parallel_n_jobs","examples/60_search/example_random_search","examples/60_search/example_sequential","examples/60_search/example_successive_halving","examples/60_search/sg_execution_times","examples/80_extending/example_extending_classification","examples/80_extending/example_extending_data_preprocessor","examples/80_extending/example_extending_preprocessor","examples/80_extending/example_extending_regression","examples/80_extending/example_restrict_number_of_hyperparameters","examples/80_extending/sg_execution_times","examples/index","extending","faq","index","installation","manual","releases"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":4,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.viewcode":1,sphinx:56},filenames:["api.rst","examples/20_basic/example_classification.rst","examples/20_basic/example_multilabel_classification.rst","examples/20_basic/example_multioutput_regression.rst","examples/20_basic/example_regression.rst","examples/20_basic/sg_execution_times.rst","examples/40_advanced/example_calc_multiple_metrics.rst","examples/40_advanced/example_debug_logging.rst","examples/40_advanced/example_feature_types.rst","examples/40_advanced/example_get_pipeline_components.rst","examples/40_advanced/example_inspect_predictions.rst","examples/40_advanced/example_interpretable_models.rst","examples/40_advanced/example_metrics.rst","examples/40_advanced/example_pandas_train_test.rst","examples/40_advanced/example_resampling.rst","examples/40_advanced/example_single_configuration.rst","examples/40_advanced/sg_execution_times.rst","examples/60_search/example_parallel_manual_spawning_cli.rst","examples/60_search/example_parallel_n_jobs.rst","examples/60_search/example_random_search.rst","examples/60_search/example_sequential.rst","examples/60_search/example_successive_halving.rst","examples/60_search/sg_execution_times.rst","examples/80_extending/example_extending_classification.rst","examples/80_extending/example_extending_data_preprocessor.rst","examples/80_extending/example_extending_preprocessor.rst","examples/80_extending/example_extending_regression.rst","examples/80_extending/example_restrict_number_of_hyperparameters.rst","examples/80_extending/sg_execution_times.rst","examples/index.rst","extending.rst","faq.rst","index.rst","installation.rst","manual.rst","releases.rst"],objects:{"autosklearn.classification":{AutoSklearnClassifier:[0,0,1,""]},"autosklearn.classification.AutoSklearnClassifier":{fit:[0,1,1,""],fit_ensemble:[0,1,1,""],fit_pipeline:[0,1,1,""],get_configuration_space:[0,1,1,""],get_models_with_weights:[0,1,1,""],get_params:[0,1,1,""],leaderboard:[0,1,1,""],predict:[0,1,1,""],predict_proba:[0,1,1,""],refit:[0,1,1,""],score:[0,1,1,""],set_params:[0,1,1,""],show_models:[0,1,1,""],sprint_statistics:[0,1,1,""]},"autosklearn.experimental.askl2":{AutoSklearn2Classifier:[0,0,1,""]},"autosklearn.experimental.askl2.AutoSklearn2Classifier":{fit:[0,1,1,""],fit_ensemble:[0,1,1,""],fit_pipeline:[0,1,1,""],get_configuration_space:[0,1,1,""],get_models_with_weights:[0,1,1,""],get_params:[0,1,1,""],leaderboard:[0,1,1,""],predict:[0,1,1,""],predict_proba:[0,1,1,""],refit:[0,1,1,""],score:[0,1,1,""],set_params:[0,1,1,""],show_models:[0,1,1,""],sprint_statistics:[0,1,1,""]},"autosklearn.metrics":{accuracy:[0,2,1,""],average_precision:[0,2,1,""],balanced_accuracy:[0,2,1,""],f1:[0,2,1,""],f1_macro:[0,2,1,""],f1_micro:[0,2,1,""],f1_samples:[0,2,1,""],f1_weighted:[0,2,1,""],log_loss:[0,2,1,""],make_scorer:[0,3,1,""],mean_absolute_error:[0,2,1,""],mean_squared_error:[0,2,1,""],median_absolute_error:[0,2,1,""],precision:[0,2,1,""],precision_macro:[0,2,1,""],precision_micro:[0,2,1,""],precision_samples:[0,2,1,""],precision_weighted:[0,2,1,""],r2:[0,2,1,""],recall:[0,2,1,""],recall_macro:[0,2,1,""],recall_micro:[0,2,1,""],recall_samples:[0,2,1,""],recall_weighted:[0,2,1,""],roc_auc:[0,2,1,""]},"autosklearn.pipeline.components.base":{AutoSklearnClassificationAlgorithm:[0,0,1,""],AutoSklearnPreprocessingAlgorithm:[0,0,1,""],AutoSklearnRegressionAlgorithm:[0,0,1,""]},"autosklearn.pipeline.components.base.AutoSklearnClassificationAlgorithm":{get_estimator:[0,1,1,""],predict:[0,1,1,""],predict_proba:[0,1,1,""]},"autosklearn.pipeline.components.base.AutoSklearnPreprocessingAlgorithm":{get_preprocessor:[0,1,1,""],transform:[0,1,1,""]},"autosklearn.pipeline.components.base.AutoSklearnRegressionAlgorithm":{get_estimator:[0,1,1,""],predict:[0,1,1,""]},"autosklearn.pipeline.components.classification":{add_classifier:[30,3,1,""]},"autosklearn.pipeline.components.feature_preprocessing":{add_preprocessor:[30,3,1,""]},"autosklearn.pipeline.components.regression":{add_regressor:[30,3,1,""]},"autosklearn.regression":{AutoSklearnRegressor:[0,0,1,""]},"autosklearn.regression.AutoSklearnRegressor":{fit:[0,1,1,""],fit_ensemble:[0,1,1,""],fit_pipeline:[0,1,1,""],get_configuration_space:[0,1,1,""],get_models_with_weights:[0,1,1,""],get_params:[0,1,1,""],leaderboard:[0,1,1,""],predict:[0,1,1,""],refit:[0,1,1,""],score:[0,1,1,""],set_params:[0,1,1,""],show_models:[0,1,1,""],sprint_statistics:[0,1,1,""]}},objnames:{"0":["py","class","Python class"],"1":["py","method","Python method"],"2":["py","attribute","Python attribute"],"3":["py","function","Python function"]},objtypes:{"0":"py:class","1":"py:method","2":"py:attribute","3":"py:function"},terms:{"0":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,31,33,34],"00":[5,12,16,22,28],"000000":6,"00001":26,"000010":12,"0001":[3,9,23,25,27],"00010495766342828794":24,"0001350687148423338":[1,20],"0001363185819149026":21,"0001384744065375479":19,"00014375616988222174":9,"00015788887334393714":9,"00018009776276177523":21,"00021148999718383549":[1,20],"0002346515712987664":21,"0002600768160857831":21,"0003474820560182061":9,"0003701926442639788":[0,4],"000421568792103947":1,"0004668987145850572":11,"0004684917334431039":[1,20],"0005012365297609799":4,"0005024616279807072":19,"0006046872822704108":9,"0006085470273398056":9,"0006517033225329654":[0,4],"0007452270241186694":[1,20],"000896391087588558":19,"001":[3,10,27],"0010303157708058924":1,"0011804284312897009":[1,20],"0012624032013298571":4,"0015130257264171173":9,"00172583":9,"0017940473175767063":[1,20],"0017964371726429177":19,"0018055343233337954":21,"0018475934154961215":19,"002":10,"002431731981071206":4,"002766772136115771":9,"003":10,"0030875":9,"003142456770095119":19,"003640536588885903":21,"00431052":9,"004635634934629583":9,"005069923784737444":9,"005326508887463406":1,"005821344021856017":19,"0059319":9,"006":10,"0067563":9,"00684163":9,"007":10,"007017543859649145":9,"007092198581560294":[11,19],"007608275318572964":19,"0076293":9,"008":[14,16],"008015420020402715":9,"00858029":9,"00894849":9,"00948519":9,"01":[3,5,7,9,12,16,19,21,22,26,27,28],"010000000000000004":9,"010000000000000014":11,"01006215":9,"010232681621243814":19,"0104432":9,"011333066835975528":9,"012150149892783745":4,"01223987":9,"012391313886912093":9,"01257378":9,"012607824914758717":4,"013399889539803811":19,"014034416932373166":19,"014184":[1,6],"014184397163120588":[1,20,21],"015340961719445064":[1,20],"01589975":9,"016444224834275295":4,"01667385805274091":19,"01684553":9,"018038793247120707":19,"01851537":9,"02":[1,5,9,16,19,21,22],"020000000000000004":20,"021276595744680882":[1,19,20,21,25],"021277":[1,6],"021944240404849075":4,"02258105767523384":24,"023":10,"02462169":9,"025360750168211e":4,"02641737e":9,"027708640006448e":21,"028368794326241176":[1,9,19,20,21],"028369":[1,6],"02847755502162456":1,"03":[9,12],"03033175355450235":15,"03125":27,"03162215674470446":21,"03208923":9,"032840833359764676":[1,20],"032863849765258205":21,"03286384976525822":21,"0333981795670635e":9,"03409213e":9,"03457277874230573":9,"035211267605633784":21,"035211267605633804":21,"03546099290780147":[1,9,19,20,21,24],"035461":[1,6],"035543606049804645":19,"036":10,"03737258e":9,"03986668":9,"039906103286385":21,"04":[1,4,9,16,19,21,28,35],"04000000000000001":20,"0400632553169558e":19,"04074":[31,32],"041":12,"04210526315789476":9,"042553":[1,6],"04255319148936165":[1,19,20,21],"043879389796003546":19,"044":[11,16],"04561403508771933":9,"04634380160611007":21,"04662763358613446":19,"04694835680751174":21,"046948356807511755":21,"047641289117234975":15,"04865917":9,"049645":[1,6],"049645390070921946":[1,19,20,21,23],"05":[1,3,4,9,11,16,19,21,24,26,27],"05082904256838701":21,"051":10,"05164319248826292":21,"0517578125e":[3,27],"054648061621061846":23,"05491437530740365":21,"05673758865248224":[1,9,19,20,21],"056738":[1,6],"057778875694463e":21,"0590467":9,"05972079854295879":21,"06":[1,3,4,5,9,16,19,20,21,28],"060000000000000005":20,"060800813211425456":1,"063":12,"06315789473684208":9,"06332899":9,"06334655":9,"06382978723404253":[1,19,20],"063830":[1,6],"06437417":9,"0647401999412075e":[1,20],"06666666666666665":9,"07":[4,9,12,19,27],"0703733":9,"07063243":9,"07092198581560283":[1,9,19,20],"070922":[1,6],"07213284":9,"078014":6,"07801418439716312":[9,19,21],"07827509e":9,"08":[1,3,4,9,12,16,19,21,27],"08000000000000002":20,"08087614244138486":9,"08215962441314555":21,"08291320147381159":[1,20],"08300813783286698":21,"085106":[1,6],"08510638297872342":[1,19],"09":[4,5,9,22,27],"090":12,"09111888":9,"09122807017543855":9,"09179220974965213":21,"09219858156028371":[1,19,20],"092199":1,"0945814167023392e":21,"09750328007832798":21,"09809101":9,"09809681787962342":[1,20],"09814953":9,"099290780141844":[19,21],"0995499108996053":19,"0th":9,"0x7fc78438b070":20,"0x7fc78438b220":20,"0x7fc7843a12e0":21,"0x7fc7843b7d60":21,"0x7fc7843c0100":21,"0x7fc784547220":21,"0x7fc7845473a0":21,"0x7fc784850e80":21,"0x7fc7848717c0":21,"0x7fc784871e50":21,"0x7fc784a023a0":19,"0x7fc784b361f0":19,"0x7fc784b36370":19,"0x7fc784b39ee0":19,"0x7fc784b3b400":20,"0x7fc784bbe130":19,"0x7fc784bd3a00":21,"0x7fc784bd90d0":19,"0x7fc784bf10a0":21,"0x7fc784bf13a0":21,"0x7fc784bf14f0":19,"0x7fc784bf19d0":21,"0x7fc784bf1d00":21,"0x7fc784c08520":21,"0x7fc784c08610":21,"0x7fc784c0a520":21,"0x7fc784c0adf0":21,"0x7fc784c102e0":20,"0x7fc784d702b0":21,"0x7fc784d70430":21,"0x7fc784e47160":20,"0x7fc784e47520":20,"0x7fc784ec5c40":19,"0x7fc784f51070":20,"0x7fc784f7f190":19,"0x7fc784f7fa00":19,"0x7fc785087190":21,"0x7fc785087220":21,"0x7fc785087df0":21,"0x7fc78509f550":19,"0x7fc78509f910":21,"0x7fc78509f9a0":19,"0x7fc78509fd30":21,"0x7fc78509fe80":21,"0x7fc7850a2760":20,"0x7fc7850a2c70":20,"0x7fc7850a8850":19,"0x7fc7850a8be0":21,"0x7fc7850b5d30":21,"0x7fc7850b5e50":21,"0x7fc785684b50":21,"0x7fc7857b5a30":20,"0x7fc7857f88e0":20,"0x7fc7857f8c40":20,"0x7fc78580d130":19,"0x7fc78580d250":19,"0x7fc78580dac0":21,"0x7fc785814430":21,"0x7fc785820970":21,"0x7fc785820a90":21,"0x7fc78582e1f0":19,"0x7fc78582e3d0":21,"0x7fc78582e940":21,"0x7fc78582ed30":21,"0x7fc78582ee20":19,"0x7fc78582efa0":21,"0x7fc785869040":21,"0x7fc785872910":20,"0x7fc785b6a0a0":19,"0x7fc785b6ac70":19,"0x7fc785b7d5e0":20,"0x7fc785b7d6a0":20,"0x7fc785b7e400":21,"0x7fc785b7e4c0":21,"0x7fc785b994f0":19,"0x7fc785b99af0":19,"0x7fc785c0eb50":19,"0x7fc785c0eb80":19,"0x7fc785e313d0":19,"0x7fc785e49970":19,"0x7fc785e4f4f0":20,"0x7fc785eda250":21,"0x7fc785eda430":21,"0x7fc785edabe0":21,"0x7fc785fb2160":20,"0x7fc7860954f0":19,"0x7fc786095a90":21,"0x7fc786095eb0":20,"0x7fc78612c280":20,"0x7fc78612c5b0":20,"0x7fc7861490d0":19,"0x7fc786149370":19,"0x7fc786149910":19,"0x7fc786184070":19,"0x7fc786184130":21,"0x7fc7861841f0":19,"0x7fc786184580":20,"0x7fc7863feee0":26,"0x7fc78648b5b0":21,"0x7fc78648be80":21,"0x7fc7864a4700":21,"0x7fc7864b8130":21,"0x7fc7864b81f0":21,"0x7fc786554580":19,"0x7fc786564c10":21,"0x7fc786567e80":19,"0x7fc78656e670":21,"0x7fc78656e760":21,"0x7fc78657f1c0":19,"0x7fc78657f370":19,"0x7fc786581c40":19,"0x7fc7865df100":19,"0x7fc786625e20":19,"0x7fc78662d580":19,"0x7fc78662deb0":19,"0x7fc78662fb20":21,"0x7fc78662fc40":21,"0x7fc786633bb0":21,"0x7fc78666a6d0":20,"0x7fc786687c10":9,"0x7fc786796cd0":19,"0x7fc78679fe50":19,"0x7fc7867d8340":24,"0x7fc7867e4640":21,"0x7fc786806670":19,"0x7fc786854070":19,"0x7fc786854430":23,"0x7fc7868546d0":21,"0x7fc786854e20":23,"0x7fc78687a1f0":19,"0x7fc786887dc0":19,"0x7fc786899b50":21,"0x7fc786899d90":21,"0x7fc7868a1220":21,"0x7fc7868a13a0":21,"0x7fc78690f400":21,"0x7fc78690ffd0":21,"0x7fc786912460":21,"0x7fc786912b20":21,"0x7fc786918190":20,"0x7fc786918580":20,"0x7fc7869195e0":21,"0x7fc78698af70":19,"0x7fc7869b8e80":21,"0x7fc786a909a0":20,"0x7fc786a9d310":20,"0x7fc786aaaf10":19,"0x7fc786abb100":21,"0x7fc786abb970":20,"0x7fc786abba00":21,"0x7fc786b361f0":9,"0x7fc786b36910":9,"0x7fc786b74100":20,"0x7fc786b860d0":21,"0x7fc786b94340":21,"0x7fc786b94460":21,"0x7fc786bb7a90":19,"0x7fc786bd1b50":19,"0x7fc786bff640":19,"0x7fc786c78730":20,"0x7fc786c845e0":19,"0x7fc786ed1af0":21,"0x7fc786ed1c10":21,"0x7fc786ed8610":21,"0x7fc786edd8b0":21,"0x7fc786fe30a0":21,"0x7fc786fe33d0":21,"0x7fc786fe3550":21,"0x7fc786fe3af0":21,"0x7fc786ff0970":21,"0x7fc786ff0ca0":21,"0x7fc787005400":20,"0x7fc7870056d0":20,"0x7fc78700b100":19,"0x7fc787011e50":19,"0x7fc7870329a0":20,"0x7fc78706ef70":19,"0x7fc78714dfd0":21,"0x7fc7871571c0":21,"0x7fc7871573a0":21,"0x7fc787157910":21,"0x7fc78715d310":21,"0x7fc78715d3a0":21,"0x7fc78715d850":21,"0x7fc78715d9a0":21,"0x7fc78715d9d0":21,"0x7fc78715dfd0":21,"0x7fc7871ccb50":21,"0x7fc7871e5280":21,"0x7fc7871e5400":21,"0x7fc7871ff3d0":19,"0x7fc7871ff9a0":21,"0x7fc7871ffbe0":21,"0x7fc787282b20":19,"0x7fc78728db80":21,"0x7fc78728de20":21,"0x7fc7872bcd30":21,"0x7fc7872bce20":21,"0x7fc787302940":19,"0x7fc78733d670":19,"0x7fc787368bb0":20,"0x7fc787374400":19,"0x7fc787374fd0":19,"0x7fc7873bf130":20,"0x7fc7873f3460":21,"0x7fc78753b430":21,"0x7fc78753bb20":21,"0x7fc78753bcd0":21,"0x7fc78753bfa0":21,"0x7fc78758e4c0":21,"0x7fc7875b5640":21,"0x7fc7875b5970":21,"0x7fc7875c2c40":21,"0x7fc78764e7c0":21,"0x7fc78764e8b0":21,"0x7fc7876620a0":19,"0x7fc7876a5520":21,"0x7fc7876a55b0":21,"0x7fc7876ba3d0":19,"0x7fc7876d02b0":21,"0x7fc7876d0310":21,"0x7fc7876d8b80":21,"0x7fc7876f1ac0":21,"0x7fc7876f1be0":21,"0x7fc78770aca0":19,"0x7fc78770b160":19,"0x7fc78770ba60":19,"0x7fc78770be20":19,"0x7fc787711040":21,"0x7fc7877111c0":21,"0x7fc787711670":21,"0x7fc787742160":21,"0x7fc787748250":19,"0x7fc787748400":19,"0x7fc78776fac0":19,"0x7fc787772ca0":19,"0x7fc787788bb0":19,"0x7fc787788ca0":19,"0x7fc787793460":19,"0x7fc7877938b0":19,"0x7fc78779a040":19,"0x7fc7877aefa0":19,"0x7fc7877cd460":19,"0x7fc7877cdaf0":19,"0x7fc7877de790":21,"0x7fc787842790":19,"0x7fc787888340":19,"0x7fc787888970":21,"0x7fc787888d00":19,"0x7fc7878b0160":21,"0x7fc7878b0700":21,"0x7fc7878b1850":21,"0x7fc7878b19d0":21,"0x7fc7878b5580":21,"0x7fc78790c850":20,"0x7fc7879e2c10":20,"0x7fc787a63bb0":21,"0x7fc787a63dc0":21,"0x7fc787a7a5b0":21,"0x7fc787a7a7f0":21,"0x7fc787a7a910":21,"0x7fc787a7afa0":21,"0x7fc787a7e670":21,"0x7fc787a8deb0":19,"0x7fc787a9e310":20,"0x7fc787aa5220":19,"0x7fc787ae89d0":19,"0x7fc787ba2040":19,"0x7fc787ba29a0":19,"0x7fc787ba92b0":21,"0x7fc787bb7430":21,"0x7fc787bb7550":21,"0x7fc787c50460":21,"0x7fc787c50580":21,"0x7fc787c79550":21,"0x7fc787c7a280":21,"0x7fc787c7a3d0":21,"0x7fc787e052e0":21,"0x7fc787e05310":19,"0x7fc787e05a30":19,"0x7fc787e1a9a0":20,"0x7fc787e35280":21,"0x7fc787e35400":21,"0x7fc787e35f70":19,"0x7fc787e47400":19,"0x7fc787e47580":19,"0x7fc787e52070":19,"0x7fc787e608e0":21,"0x7fc787e609a0":21,"0x7fc787e71580":20,"0x7fc787ec5b20":21,"0x7fc7880f9eb0":19,"0x7fc78a25e7c0":19,"0x7fc78a25eb20":19,"0x7fc78a3702e0":21,"0x7fc78a370be0":21,"0x7fc78a378070":20,"0x7fc78a38fc40":20,"0x7fc78a38fd30":20,"0x7fc78a4be100":19,"0x7fc78a4bed00":21,"0x7fc78a4c8340":19,"0x7fc78a593c70":9,"0x7fc78a593d90":21,"0x7fc78a593e50":20,"0x7fc78a5d3580":4,"0x7fc78a5d3d60":9,"0x7fc78a5eb790":9,"0x7fc78a5f4f70":20,"0x7fc78a6050d0":21,"0x7fc78a605820":19,"0x7fc78a6db2b0":21,"0x7fc78a791250":19,"0x7fc78a791d30":20,"0x7fc78a791d60":19,"0x7fc78a7d53a0":21,"0x7fc78a7d9bb0":20,"0x7fc78a7e35b0":[9,21],"0x7fc78a7f2c70":19,"0x7fc78a826520":9,"0x7fc78a826580":26,"0x7fc78a826a00":4,"0x7fc78a86d100":19,"0x7fc78a86d9a0":19,"0x7fc78a86deb0":21,"0x7fc78a892370":9,"0x7fc78a8d7610":2,"0x7fc78a8d7790":1,"0x7fc78a8d7a90":1,"0x7fc78a956520":21,"0x7fc78a956c40":21,"0x7fc78a9cc160":21,"0x7fc78a9ea4f0":21,"0x7fc78a9eab80":23,"0x7fc78aac0730":19,"0x7fc78aae48b0":15,"0x7fc78ab3f070":20,"0x7fc78ab3f340":1,"0x7fc78ab3f550":20,"0x7fc78ab3f670":9,"0x7fc78ab77d60":20,"0x7fc78ab79cd0":15,"0x7fc78aba4cd0":1,"0x7fc78acf7d00":1,"0x7fc78ad54a00":1,"0x7fc78ad91f70":1,"0x7fc78adc2d30":1,"0x7fc78adce8b0":1,"0x7fc78adfc730":1,"0x7fc78af3f1c0":21,"0x7fc78af3f910":25,"0x7fc78af79460":19,"0x7fc78af79550":19,"0x7fc78af79730":21,"0x7fc78af797f0":19,"0x7fc78af89d60":19,"0x7fc78af90700":19,"0x7fc78b21c7c0":21,"0x7fc78b21c880":21,"0x7fc78b2344c0":20,"0x7fc78b2451f0":20,"0x7fc78b257790":19,"0x7fc78b2743a0":19,"0x7fc78b289160":9,"0x7fc78b2896a0":23,"0x7fc78b3ce220":19,"0x7fc78b3d35e0":19,"0x7fc78b418430":21,"0x7fc78b44ee50":1,"0x7fc78b48c700":4,"0x7fc78b498ac0":19,"0x7fc78b498c70":21,"0x7fc78b4c3280":21,"0x7fc78b4f2310":20,"0x7fc78b503820":4,"0x7fc78b503880":4,"0x7fc78b503dc0":19,"0x7fc78b503fd0":21,"0x7fc78b5451f0":1,"0x7fc78b545430":1,"0x7fc78b58aa90":1,"0x7fc78b6561c0":19,"0x7fc78b656a90":21,"0x7fc78b6bc040":1,"0x7fc78b714ca0":1,"0x7fc78b73b580":21,"0x7fc78b753850":1,"0x7fc78b75a130":1,"0x7fc78b75a580":1,"0x7fc78b79d940":1,"0x7fc78b7d9340":21,"0x7fc78b7d9970":21,"0x7fc78b800b20":20,"0x7fc78b820eb0":1,"0x7fc78b836370":1,"0x7fc78b836a90":1,"0x7fc78b85f6d0":1,"0x7fc78b915d00":21,"0x7fc78b9260a0":19,"0x7fc78b926c40":19,"0x7fc78b929ac0":9,"0x7fc78b94c490":19,"0x7fc78b9c7250":1,"0x7fc78ba1bdc0":1,"0x7fc78ba1bee0":1,"0x7fc78ba251f0":1,"0x7fc78ba373a0":21,"0x7fc78ba37610":21,"0x7fc78ba3ddf0":1,"0x7fc78ba74a90":1,"0x7fc78baa93d0":21,"0x7fc78bad4130":21,"0x7fc78bae9040":20,"0x7fc78bc2d7c0":21,"0x7fc78bc70c10":20,"0x7fc78bc74550":1,"0x7fc78bcec7c0":20,"0x7fc78bcf7910":9,"0x7fc78bcf7dc0":9,"0x7fc78bd04670":1,"0x7fc78bd13160":19,"0x7fc78be25d90":1,"0x7fc78be43c70":20,"0x7fc78be46b20":1,"0x7fc78be46c10":1,"0x7fc78beb3ac0":21,"0x7fc78beb7b50":21,"0x7fc78beb7c40":21,"0x7fc78bff5f70":1,"0x7fc78c057550":21,"0x7fc78c057850":21,"0x7fc78c099940":21,"0x7fc78c0a7940":21,"0x7fc78c0ad400":21,"0x7fc78c0e9b50":21,"0x7fc78c1023d0":21,"0x7fc78c1f30a0":1,"0x7fc78c1f37f0":1,"0x7fc78c1f3c70":1,"0x7fc78c345ee0":1,"0x7fc78c384be0":20,"0x7fc78c384d90":25,"0x7fc78c3b75e0":1,"0x7fc78c3e6490":1,"0x7fc78c414be0":1,"0x7fc78c43e280":19,"0x7fc78c43e580":21,"0x7fc78c43e5b0":19,"0x7fc78c482100":20,"0x7fc78c482160":11,"0x7fc78c482280":4,"0x7fc78c482310":20,"0x7fc78c4826a0":4,"0x7fc78c482ca0":21,"0x7fc78c482eb0":11,"0x7fc78c4ed730":1,"0x7fc78c4f2e80":21,"0x7fc78c4f9700":24,"0x7fc78c53a5e0":20,"0x7fc78c53a9d0":20,"0x7fc78c53c5e0":21,"0x7fc78c53cb80":21,"0x7fc78c5839d0":19,"0x7fc78c59d910":24,"0x7fc78c5a0cd0":21,"0x7fc78c5a0e80":21,"0x7fc78c5a1e80":19,"0x7fc78c5ab8b0":21,"0x7fc78c5ab9a0":21,"0x7fc78c5ada90":21,"0x7fc78c5d4250":19,"0x7fc78c5d43d0":19,"0x7fc78c5fa5b0":1,"0x7fc78c667580":1,"0x7fc78c6cef10":1,"0x7fc78c70c0a0":1,"0x7fc78c752cd0":19,"0x7fc78c864820":1,"0x7fc78c883070":1,"0x7fc78c883580":1,"0x7fc78c8a0250":25,"0x7fc78c8b7970":21,"0x7fc78c8f8a60":19,"0x7fc78c8f8bb0":19,"0x7fc78c90c400":9,"0x7fc78c90c6d0":9,"0x7fc78c9171f0":19,"0x7fc78c917340":19,"0x7fc78c917c10":1,"0x7fc78c920430":3,"0x7fc78c920640":3,"0x7fc78c93b3a0":21,"0x7fc78c93bdc0":1,"0x7fc78c93bf10":[21,23],"0x7fc78c944160":20,"0x7fc78c9441c0":9,"0x7fc78c944760":1,"0x7fc78c9447c0":21,"0x7fc78c944ca0":20,"0x7fc78c944df0":21,"0x7fc78c94d1f0":19,"0x7fc78c94d400":4,"0x7fc78c94dc10":9,"0x7fc78c98fe20":24,"0x7fc78c9bf490":19,"0x7fc78c9bff70":19,"0x7fc78c9c7700":19,"0x7fc78ca210d0":3,"0x7fc78ca212e0":3,"0x7fc78ca21670":2,"0x7fc78ca21940":19,"0x7fc78ca21b20":21,"0x7fc78ca21f10":2,"0x7fc78ca46460":20,"0x7fc78ca86640":9,"0x7fc78ca86700":21,"0x7fc78ca86b50":21,"0x7fc78ca8e9a0":1,"0x7fc78ca98190":1,"0x7fc78ca98610":1,"0x7fc78cae7460":1,"0x7fc78cb34910":1,"0x7fc78cb3c880":1,"0x7fc78cb3ca30":1,"0x7fc78f69f220":20,"0x7fc78f69fd90":19,"0x7fc78f6db9a0":26,"0x7fc78f7b94c0":3,"0x7fc78f7b94f0":3,"0x7fc78f7b95e0":1,"0x7fc78f7b9640":3,"0x7fc78f7b9f10":3,"0x7fc78f80b160":4,"0x7fc78f80b610":4,"0x7fc78f80b910":11,"0x7fc78f83e280":19,"0x7fc78f83e5e0":19,"0x7fc78f84d070":24,"0x7fc78f84d1f0":19,"0x7fc78f84daf0":24,"0x7fc78f8a2b80":21,"0x7fc78f8d10a0":3,"0x7fc78f8d1970":9,"0x7fc78f913a00":4,"0x7fc78f913df0":4,"0x7fc78f92cc70":23,"0x7fc78f986610":19,"0x7fc78f986940":20,"0x7fc78fa69730":1,"0x7fc78fa69a30":1,"0x7fc78fa97670":19,"0x7fc78fa97970":19,"0x7fc78fa980a0":19,"0x7fc78fa984f0":19,"0x7fc78fa98670":19,"0x7fc78face370":19,"0x7fc78fad64f0":19,"0x7fc78fad68e0":19,"0x7fc78fad6d60":19,"0x7fc78fae4fd0":19,"0x7fc78faf4670":19,"0x7fc78faf4e50":19,"0x7fc78fb05610":20,"0x7fc78fb2b040":19,"0x7fc78fbb9b50":1,"0x7fc78fc1c340":21,"0x7fc78fc1c760":21,"0x7fc78fc1f100":20,"0x7fc78fc1f700":21,"0x7fc78fc1fc40":20,"0x7fc78fd0ac70":1,"0x7fc78fd0ae80":1,"0x7fc78fdee5e0":24,"0x7fc78fdee8b0":21,"0x7fc78fdeec10":24,"0x7fc78fe1ea00":1,"0x7fc78fe73970":1,"0x7fc78fe73d60":1,"0x7fc78febd310":21,"0x7fc78febd7c0":20,"0x7fc78feca6a0":1,"0x7fc78ff433d0":19,"0x7fc78ff43730":19,"0x7fc78ff43b20":21,"0x7fc78ff456d0":19,"0x7fc78ff934c0":20,"0x7fc78ffee460":15,"0x7fc7900401f0":1,"0x7fc790040550":1,"0x7fc790049a90":20,"0x7fc790129ac0":1,"0x7fc79015a340":[1,24],"0x7fc790169d30":9,"0x7fc79016ebe0":1,"0x7fc790171700":19,"0x7fc790179040":19,"0x7fc7901c2250":1,"0x7fc7901c53d0":9,"0x7fc7901c5820":9,"0x7fc7901c5dc0":20,"0x7fc7901eaf70":1,"0x7fc79023cd90":1,"0x7fc790279550":1,"0x7fc790288640":1,"0x7fc790288bb0":1,"0x7fc7902bd4f0":20,"0x7fc7902d58b0":1,"0x7fc7902d5a30":1,"0x7fc79032af10":9,"0x7fc7903465e0":9,"0x7fc7903592e0":21,"0x7fc790362c40":1,"0x7fc790366ac0":20,"0x7fc790366ee0":20,"0x7fc790367be0":[19,21],"0x7fc790382190":1,"0x7fc790382760":9,"0x7fc79039a070":21,"0x7fc79039a790":21,"0x7fc79039a820":21,"0x7fc7903bd040":1,"0x7fc7903bdbb0":9,"0x7fc7903bddf0":19,"0x7fc790682160":21,"0x7fc79068b160":19,"0x7fc79068b250":1,"0x7fc79068b340":19,"0x7fc79068b370":1,"0x7fc79068ba00":20,"0x7fc79068bb80":21,"0x7fc793f99a30":1,"0x7fc793fbc9d0":9,"1":[0,1,2,3,4,6,7,8,11,12,13,14,15,18,19,20,21,23,24,25,26,27,31,32,34],"10":[0,1,3,4,9,10,17,19,20,21,23,26,27,33],"100":[3,9,14,15,21,26,27],"1000":[3,27,35],"10000":[3,27],"100000":3,"10000000000000002":20,"1001":35,"1004":35,"1007":35,"1008":35,"101":[1,20],"1012":35,"1014":35,"1017":35,"1020641326904297":9,"1024":[9,17,35],"1025":31,"1026":35,"1038":35,"103855734598575e":9,"1040":35,"1045":35,"104580":4,"1046":35,"1050":35,"1052":35,"1053":35,"1059":35,"1061":35,"1062":35,"1063829787234043":[9,23],"1070":35,"1072":35,"1075":35,"1076":35,"1079":35,"1085501":9,"11":[1,15,19,20,21,26,28,33],"1100":35,"11042628136263043":21,"1108":35,"1109":35,"11103398852619628":26,"1112":35,"1114":35,"1115":35,"1117":35,"1121":35,"1122":35,"1123":35,"1124":35,"1126":35,"11267605633802817":21,"1128":35,"113":[1,20],"1133":35,"1134":35,"11347517730496459":[9,19,24],"1135":35,"1136":[4,35],"1142":35,"1143":35,"114391364050916":19,"1144":35,"1149":35,"115":[21,33],"1152":35,"1154":35,"1157":35,"1158":35,"1159":35,"1165":35,"1168":35,"1169":35,"1170":35,"1173":35,"11737571e":9,"1178":35,"1179":35,"1183":35,"1185":35,"1187":35,"1190":35,"1195":35,"1198":35,"11ec":[7,17,24],"12":[1,2,5,19,20,21,23,28],"120":[0,1,3,4,6,10,11,13,14,15,18,20,24],"1200":35,"1201":35,"1204":35,"120567":[1,6],"12056737588652477":1,"1209":35,"1210":35,"1214":35,"1229":35,"123":1,"1231":35,"1233":35,"1234":21,"1235":35,"1238":35,"1239":35,"1242":35,"1245":35,"1248":35,"125":16,"12585871697357337":19,"1259":35,"1260":35,"1261":35,"1263":35,"1269":35,"1270":35,"1271":35,"128":[1,9,19,20,21],"1282":35,"1290":35,"1297":35,"13":[1,17,19,20,21],"1306":35,"1309":35,"1311":35,"1318":35,"1321":35,"1322":35,"1325":35,"1325058937072754":15,"1326":35,"1329":35,"1332":35,"1335":35,"1339":35,"1340":35,"1346":35,"1348":35,"1349":35,"1356":35,"1361":35,"136510":3,"13651009800609504":3,"1366":35,"1367":35,"1368":35,"137":28,"1370":35,"13704890e":9,"14":[1,3,7,16,17,19,20,21],"140":[31,35],"14069368736662313":9,"142":[31,34],"142032801716559e":19,"14268277711454813":21,"14281372797350056":3,"142814":3,"14295295806077554":21,"144":10,"149":35,"149227":1,"15":[1,2,12,13,19,20,21,24,27,28],"152":21,"153994":1,"157":35,"16":[0,1,4,7,9,12,19,20,21,23,24,27,35],"16262682406125173":21,"1643127754":15,"1643127756":15,"1643128262":9,"1643128263":9,"1643128264":9,"1643128265":9,"1643128266":9,"1643128267":9,"1643128268":9,"1643128270":9,"1643128271":9,"1643128273":9,"1643128274":9,"1643128277":9,"1643128278":9,"1643128280":9,"1657884":9,"16649281":9,"167":[17,22],"17":[1,19,20,21,25,28],"17122959":9,"17152095":9,"175":[2,5],"177767":1,"1778380870819092":9,"17783809":9,"1799":9,"18":[1,4,7,9,12,19,20,21,35],"180":9,"18010277":9,"18012072":9,"186":12,"18669":4,"186914":1,"187":23,"1894":19,"189696963506304e":19,"19":[1,6,9,19,20,21,35],"1e":[3,9,21,26,27],"1e2":26,"1st":31,"1th":9,"2":[0,1,2,3,4,7,15,18,19,20,21,23,24,25,26,27,31],"20":[1,3,8,9,17,19,20,21,27,35],"200":[21,27],"2000":[3,27],"2004":[15,34],"2006":[31,34],"2007":[31,32],"2012":35,"2015":[31,32,35],"2020":[31,32],"2022":[7,12,19],"2037591637980971e":4,"204":[21,22],"2047":27,"20759805e":9,"21":[1,3,19,20,21,35],"2118001735899097e":4,"213965":7,"21521743568582094":4,"216":23,"218":[3,5],"2192999307296778":19,"22":[1,3,7,19,20,21,35],"224804":3,"22480405782181234":3,"229":9,"23":[0,1,7,16,19,20,21,35],"2301056385040283":15,"231":7,"232426":3,"2368037115065363e":4,"23910875621465733":19,"24":[1,9,12,16,19,20,21,35],"24822695035460995":19,"2494493":9,"2497721880674565e":21,"25":[0,1,3,4,6,7,12,19,20,21,27],"254898":9,"255":[12,27],"256":[1,19],"26":[1,3,9,19,20,21],"263":[1,20],"264":27,"264884":2,"2673461437225342":9,"27":[1,14,16,19,20],"271":35,"272":10,"273":12,"28":[1,6,12,19,20,31,32],"280":35,"2836225":9,"2841884333778574e":[1,20],"285306370007781":19,"29":[1,12,19,20],"293":35,"295":35,"2962":[31,32],"2970":[31,32],"2nd":31,"2th":9,"3":[0,1,2,3,4,6,7,8,9,13,15,19,20,21,23,24,25,26,27,32,33],"30":[1,2,3,4,6,7,8,9,10,11,12,13,14,17,18,19,20,21,23,25,26,27,31,34,35],"305902":1,"3072":[0,18],"30755227194768237":21,"309":19,"31":[1,6,14,19,20,22,27],"313003":1,"3137a7553b01":[7,17,24],"317":35,"32":[0,1,3,9,19,20,21,23,27,35],"3202262453017803e":19,"32225143e":9,"32361629219618826":19,"325":35,"326":35,"32768":27,"328":[1,20],"32824":9,"328568999403367e":24,"32956881e":9,"33":[0,6,12,19],"34":[1,4,12,19,20,21],"3440590734654458e":19,"35":[6,12,17,19],"351":35,"358":35,"358378124977852e":4,"36":[12,19,20],"3600":0,"36170212765957444":24,"36245140e":9,"3667099475860596":9,"36670995":9,"368":[12,19],"368794":6,"36879432624113473":20,"369811497206404":9,"37":[1,6,12,19],"3700860264543197e":11,"3716748930467322e":21,"374":12,"375":35,"37641366e":9,"38":[0,6,12,19],"382":[4,5],"38430977e":9,"387912939529945e":21,"388968":9,"389265":1,"39":[1,4,6,12,16,17,20,21,22],"394691":1,"39749085e":9,"39879073225079487":4,"3a1d2162":24,"3f":[10,12],"3gb":[18,31,34],"3rd":[31,35],"3th":9,"4":[1,2,3,4,9,10,11,12,18,19,20,21,23,24,25,26,27,33],"40":[6,21],"400":[3,4,27],"4012537":15,"40594":2,"409":[15,16,35],"40922":10,"4096":15,"40981":[8,13],"40_advanc":8,"41":[1,6,19,20,21],"410":35,"410144741041167e":21,"4126":[1,20],"414":[1,20,21],"416798":1,"41746352744644133":15,"418":12,"42":[1,3],"423290":1,"424":35,"425":35,"42961621e":9,"43":[1,12,20],"431":33,"43667876507897496":[0,4],"436679":4,"438":35,"44":[4,20,24],"440288":1,"444":35,"44685232":9,"447294":2,"4472941828699525":2,"448":[1,20],"4495397":9,"45":12,"4550418898836528":[0,4],"455042":4,"45597150689539434":19,"457":12,"4595393":9,"45954164":9,"4622203211010016e":19,"4635442279519353":[1,20],"472":12,"4748068089650166":4,"474807":4,"4777560234069824":9,"48":23,"482":35,"48226284980773926":9,"483":12,"4848618507385254":9,"49":[12,18],"491":35,"49326086e":9,"49503611":9,"498":35,"499":[25,28],"4th":9,"5":[1,3,6,9,10,13,14,15,18,19,20,21,23,24,25,26,27],"50":[0,3,7,12,17,20,27,31],"500":[23,27,28,35],"5000":10,"500000":6,"502":12,"504512":1,"506856350040198e":21,"512":[1,2,3,4,9,15,19,20,21,24,25],"5186726734789994":4,"518673":4,"52":[18,23],"5201114871391565e":19,"522":5,"526":9,"5286041327277":4,"53":[12,19,22],"532":35,"533":12,"535":35,"537":35,"538":35,"54":[1,11,12,16,20],"542":12,"5475628":9,"55":[12,13,16],"5501728057861328":9,"55017281":9,"552706":2,"5568986":9,"55773043e":9,"558":[26,28,35],"56":[3,5],"560245":1,"5615131855010986":9,"56151319":9,"5627":17,"564060":1,"566":[12,35],"567":[10,16,22],"569":35,"57":[16,18,22],"5744883902069":[1,20],"57629717e":9,"5765781":9,"5783995454757295e":9,"58":12,"5808424949645996":9,"5846457091661748e":9,"585":35,"5852375030517578":9,"5855373845454157":4,"5860536098480225":9,"58605361":9,"588":35,"59":[4,5,6,16,21,22],"590":12,"5905006626969":9,"592":35,"593":35,"5gb":31,"5th":9,"6":[0,1,4,9,10,14,15,19,20,21,24,27],"60":[2,12,15,19,21,35],"600":35,"601":[18,22],"604":2,"604374":1,"6064541566557635":9,"6066226959228516":9,"608678":4,"609412172481434e":21,"611":35,"614":35,"615":12,"617622":4,"618":35,"619489":4,"626":[12,35],"63":11,"631206":6,"637":[12,16],"64":[0,1,11,19,20,21,31,33],"64437157661465":19,"646":35,"6468265056610107":9,"648":35,"650":[12,35],"65199313632313":26,"652099":1,"655":35,"6555753":15,"6564128398895264":9,"65641284":9,"65820479":9,"6582047939300537":9,"6587261797143242":19,"66":[0,21],"660":35,"665899307194":4,"6661824659281315":9,"667":35,"669":35,"67":[0,14,21],"670":35,"676":35,"676522":3,"676605":9,"68":[1,4,6,9,10,11,12,13,14,15,17,18,20,21],"680":35,"6808576583862305":9,"68085766":9,"685210":1,"688":35,"689027":1,"6a2":35,"6gb":[31,34],"6th":9,"7":[1,3,4,9,19,20,21,24,27,33],"701":35,"7056146361355262":15,"70629898e":9,"715":35,"7154517":9,"715452":9,"716530":1,"718":[19,22],"72":[1,4,6,9,10,11,12,13,14,15,17,18,20,21],"7203934192657471":9,"72039342":9,"7244397014112777e":9,"732":35,"733":35,"738643048253599e":1,"739":35,"74":21,"74116751e":9,"741800":1,"74597367e":9,"7462342366289323e":4,"747":[1,5],"747741":1,"748310":1,"7493172":9,"74d6c3db":17,"75":[3,27],"754":12,"75655689e":9,"7570b3":4,"7576518":9,"763":[8,16],"764":[12,35],"76699224":9,"769":35,"771":35,"772":35,"773913":6,"774":35,"777":17,"7772788812704434":9,"778":[27,28,35],"781":35,"783555":1,"785":35,"786":12,"788":12,"7895711479212801":9,"79057296e":9,"791":35,"794":35,"795":35,"797078":1,"7dfa":7,"7dfd":17,"7dfe":24,"7th":9,"8":[1,3,4,8,9,19,20,21,27],"80":[6,12,19,35],"803":[24,28,35],"8047274080856589":9,"805679":1,"807":12,"80724345e":9,"807887":1,"814":35,"815":35,"816570529036241e":19,"822":35,"832":[1,20],"836":12,"840":35,"840576":3,"8428972335335263e":4,"843":35,"843515731149308":19,"8492753623188406":13,"852":[13,16,35],"854":35,"856":31,"860":33,"862":35,"863":35,"863830":1,"864":35,"86528503e":9,"868518":6,"868573":9,"869":35,"870":35,"872":35,"874":35,"875f":[7,17,24],"876":35,"878":[20,22],"8786127167630058":8,"879":35,"879433":6,"881":35,"881188":6,"882":35,"884615":6,"8858495026618883":3,"886":35,"88652482":9,"88675402e":9,"8888":33,"889":35,"890000":6,"891":35,"893":35,"89361702":9,"894231":6,"897":35,"897617":7,"8b67af6":35,"8th":9,"9":[1,9,11,19,20,21,27,33],"90":10,"900":35,"900000":6,"901":35,"902":35,"905":35,"905028":6,"907":[12,35],"909":35,"910112":6,"911":35,"91287172e":9,"914":35,"914894":6,"915":7,"916":35,"918":35,"919":35,"9195228400065838":3,"919836":6,"92198582":9,"921986":6,"923833":6,"924":35,"925":35,"925454":6,"927":35,"928":[9,16],"9290439925152777":9,"929078":6,"92907801":9,"931":35,"932584":6,"933":35,"9331254454871041":9,"933282":1,"934066":6,"934783":6,"935069":6,"936":[12,35],"936170":6,"936842":6,"937":12,"9370629370629371":24,"937446":6,"9375":9,"940":35,"940687":6,"941799":6,"942":[6,16],"943064":6,"943262":6,"94326241":9,"943820":6,"944":12,"9440559440559441":[19,21],"944444":6,"945055":6,"945652":6,"946":35,"94611519e":9,"947":35,"948":35,"948571":6,"948682":6,"949":35,"950276":6,"950303":6,"950355":6,"951":35,"951048951048951":21,"952679":6,"953":35,"954300":6,"954545":6,"955056":6,"955556":6,"956":35,"956044":6,"956989":6,"957447":6,"958":12,"958041958041958":[1,6,9,14,17,19,20,21,25],"959918":6,"960000":6,"960452":6,"961":35,"961326":6,"961538":6,"963915":6,"964539":[6,24],"96453901":9,"964789":14,"965034965034965":[11,14,21],"965116":6,"965517":6,"965536":6,"965909":6,"966292":6,"966667":6,"967033":6,"967136":21,"9689529284463153":3,"969533":6,"970":35,"971631":[6,9],"97163121":9,"971751":6,"971831":21,"972067":6,"973":35,"973582":1,"9749646614525684e":4,"975":[7,16],"975151":6,"9755563101648113":9,"976257":1,"976744":6,"977273":6,"977528":6,"977778":6,"978022":6,"978723":6,"98":32,"98080571":9,"983240":6,"984":[10,35],"984767":6,"985816":[6,18,20,21],"986013986013986":23,"9862375":9,"9886363636363636":7,"988764":6,"989":35,"9899874843554443":7,"99":27,"990":35,"9911616161616161":7,"992":35,"992908":[17,19],"9941379232526211":9,"9952888":9,"9957142857142857":10,"9967857433838874":9,"997":35,"999":[1,3,9,19,20,21,27],"9999":[3,9,27],"999999999999991e":11,"abstract":[0,30],"boolean":[0,31,34],"break":35,"case":[0,8,9,11,14,17,21,29,31,33,34,35],"class":[0,2,7,10,14,23,24,25,26,27,30,31,34,35],"concei\u00e7\u00e3o":35,"default":[0,3,7,14,17,20,21,23,25,26,27,31,34,35],"do":[0,7,8,17,20,30,31,33,34,35],"export":[31,34],"final":[0,9,17,19,21,31,34,35],"float":[0,8,23,25,26,27,31,34],"function":[0,6,12,13,30,31,35],"gro\u00dfberg":35,"import":[0,1,2,3,4,6,7,8,9,11,12,13,14,15,18,19,20,21,23,24,25,26,27,31,32,34,35],"int":[0,2,14,23,26,27],"long":31,"mielik\u00e4inen":35,"new":[0,15,17,23,26,27,30,31,34,35],"public":[31,32],"return":[0,6,12,13,15,19,21,23,24,25,26,27,30,31,34,35],"short":[31,34],"true":[0,1,2,3,4,6,7,8,9,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,31,32,34],"try":[31,33,35],"while":[0,9,17,31,34],A:[0,4,9,10,11,13,19,32,33,34,35],As:[9,17,31,34],At:[31,34],But:9,By:[0,7,20,31,34,35],For:[0,7,10,13,14,31,33,34],If:[0,8,13,17,31,32,33,34],In:[0,6,8,9,13,14,17,30,31,33,34],It:[0,9,14,17,21,31,32,33,34,35],NOT:31,No:35,Not:[0,2,7,8,23,24,25,26,27,33],Of:30,One:[0,4,14,31,34],Or:31,The:[0,1,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,30,33,35],There:[10,13,31,33,35],These:[0,30,31,34],To:[0,8,9,10,14,15,17,18,21,24,30,31,32,33,34,35],Will:0,_329_:35,_:[7,15,17,18],__:0,__choice__:[3,6,9,15,27],__init__:[23,24,25,26,27],__main__:[17,18,19,21,31,32,35],__name__:[17,18,19,21,31,32,35],_gatheringfutur:19,_metric:12,_repeatedsplit:0,_test_scor:13,_valu:15,a10:13,a11:13,a12:13,a13:13,a14:13,a1:13,a2:13,a3:13,a4:13,a5:13,a6:13,a7:13,a8:13,a9:13,aaron:[31,32,35],abbrevi:[21,30],abil:[31,34],abl:[31,34],about:[0,7,15,17,18,19,21,30,31,32,33,34,35],abov:[4,17,31,32,34],acceleration_i:10,acceleration_x:10,acceleration_z:10,acceleromet:10,accept:[0,12,31,34],access:[0,9,31,34,35],accidentali:35,accord:[10,14,31,34],accordingli:8,accu:12,accu_add:12,accuraci:[0,1,2,6,8,9,11,13,14,17,18,19,20,21,24,25,31,32,34,35],accuracy_scor:[1,2,6,8,9,11,12,13,14,17,19,20,21,23,24,25,32],accuracy_wk:12,achiev:[0,33],across:17,action:35,activ:[1,9,20,21,23,27,33,35],actual:[17,35],ad:[0,31,33,35],adaboost:[6,9,11,27],adaboostclassifi:19,adam:[9,23,27],adapt:[19,21,34],add:[23,24,25,26,27,30,31,33,35],add_classifi:[23,27,30],add_condit:[25,26],add_hyperparamet:[23,25,26,27],add_preprocessor:[24,25,30],add_regressor:[26,30],addit:[0,7,9,30,31,35],addition:[8,9,19,31,34],additional_info:[9,15],address:17,adjust:31,adrian:35,advanc:[0,21,31,32,34],advantag:32,advic:31,advis:32,affect:[0,10],affin:[3,27],after:[0,4,14,20,30,34,35],afterward:20,again:[10,35],against:[4,35],agarw:35,aggress:19,ahn:35,al:[31,32,34],alencar:35,alexand:35,algorithm:[0,2,3,9,14,15,17,18,19,20,21,24,25,27,30,31,32,34,35],algorithm_run:[1,4,6,9,10,11,12,13,14,15,17,18,20,21],alia:[0,8],align:31,all:[0,9,11,14,15,20,29,31,32,33,34,35],alleavi:31,allevi:[31,34],alloc:[0,18,31],allow:[0,10,17,30,31,33,34,35],along:[0,9],alpha:[0,1,3,4,9,11,19,20,21,23,26,27],alpha_1:[0,4],alpha_2:4,alreadi:[13,31],also:[0,6,7,9,10,12,13,14,15,17,19,20,27,30,31,32,33,34,35],altern:[19,33],alwai:[0,7,31,34,35],amount:[31,34],an:[0,4,9,10,11,12,13,14,17,20,24,28,29,30,31,32,33,34,35],analysi:25,anatolii:35,andrew:35,ani:[0,7,8,15,31,34,35],anoth:[19,35],answer:31,api:[12,15,30,31,32],appear:31,append:[1,4,6,9,10,11,12,13,14,15,17,18,20,21],appli:[0,31],applic:[0,17],appreci:[31,32],approach:[31,34],appropri:[0,35],apt:33,ar:[0,2,7,8,9,10,13,14,15,19,23,24,25,26,27,30,31,32,33,34,35],arbitrarili:0,ard_regress:4,ardregress:[0,4],area:31,arff:35,arg:[0,17],argsort:10,argument:[0,8,13,14,21,31,34,35],around:[25,30,31,34],arrai:[0,2,8,9,13,14,30,31,34,35],articl:[31,32],arxiv20a:[31,32],arxiv:[31,32,35],as_fram:[2,7,8,13,15],ascend:0,asctim:7,askl2:[0,32],aspect:34,assert:[12,24,27],assum:[31,34],astyp:[2,13,14],asyncio:19,attach:0,attribut:[0,9,13,35],attributeerror:35,australian:[8,13],author:[31,32],auto:[0,6,7,8,10,12,13,14,15,18,19,28,29,31,34,35],autom:[31,32,34],automat:[0,8,13,19,31,32,34,35],automl:[0,1,2,3,4,7,9,10,11,13,14,15,17,18,19,20,21,31,32,33,34,35],automl_:[9,12],automl_common:35,automlclassifi:35,automlregressor:35,autosklearn2classifi:[0,32,35],autosklearn:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,30,31,32,34,35],autosklearn_classification_example_tmp:1,autosklearn_inspect_predictions_example_tmp:10,autosklearn_interpretable_models_example_tmp:11,autosklearn_multioutput_regression_example_tmp:3,autosklearn_parallel_1_example_tmp:18,autosklearn_parallel_3_example_tmp:17,autosklearn_random_search_example_tmp:19,autosklearn_regression_example_tmp:4,autosklearn_resampling_example_tmp:14,autosklearn_sequential_example_tmp:20,autosklearn_sh_example_tmp:21,autosklearn_sh_example_tmp_01:21,autosklearn_sh_example_tmp_03:21,autosklearn_sh_example_tmp_04:21,autosklearn_sh_example_tmp_cv_02:21,autosklearn_tmp_:[0,31],autosklearnchoic:9,autosklearnclassifi:[0,1,2,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,27,31,32,34,35],autosklearnclassificationalgorithm:[0,23,27,30],autosklearnclasssifi:0,autosklearnpreprocessingalgorithm:[0,24,25,30],autosklearnregressionalgorithm:[0,26,30],autosklearnregressor:[0,3,4,26,35],avail:[0,7,9,14,17,31,32,33,34,35],averag:[0,1,3,9,19,21,27],average_precis:[0,12],avoid:[0,20,31,32],axi:10,back:[0,33],backend:35,backward:35,bad:[14,35],bae:35,balanc:[0,1,2,9,11,15,19,20,21,23,24,25,27,31],balanced_accuraci:[0,6,12],balanced_accuracy_scor:35,balancing_strategi:0,base:[0,10,23,24,25,26,30,34],base_estim:19,basecrossvalid:0,basepipelin:0,baseshufflesplit:0,bash:[17,33],basic:9,basto:35,batch_siz:[0,9,27],bayesian:[17,31,32,34,35],becaus:[0,9,31],becker:35,becom:17,been:33,befor:[14,31,32,35],began:0,behavior:[8,31,35],behind:32,being:[0,4,31,35],believ:31,bellow:[2,7,8,23,24,25,26,27],belong:[31,34],below:[4,7,11,13,14,19,20,27,31,33],ben:35,berba:35,bereng:35,bergman:35,berman:35,bernoulli_nb:[9,11,27],bernoullinb:19,best:[0,2,4,11,14,15,17,18,19,20,21,24,31,34,35],beta_1:[1,9,19,20,21,27],beta_2:[1,9,19,20,21,27],better:[0,15,31,34,35],between:[0,4,10,17,31,34,35],bibtex:32,bin:33,binari:[0,31,33,34,35],binder:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27],bit:[31,35],bitsbuff:35,bla:35,black:35,blis_num_thread:31,block:31,blum:[31,32,35],bohb:21,booktitl:[31,32],bool:[0,13,30,35],boost:35,bootstrap:[1,3,9,15,19,20,21,27],borovec:35,bosh:21,bot:35,both:[0,10,15,19,23,30,31,32,34],bound:[31,34,35],boxplot:10,bracket:35,branch:35,breast_canc:[1,9,11,14,18,19,20,21],broken:35,browser:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,33],bsd:32,budget:[0,9,15],budget_typ:21,bug:[32,35],build:[0,31,33,34,35],builder:[7,31,34,35],built:[6,12],builtin:8,bump:35,bunch:8,c:[1,4,9,19,20,21,24,27,31,33],cach:35,cache_s:9,calcul:[0,2,6,7,8,23,24,25,26,27,35],calculate_scor:35,call:[0,8,9,11,14,20,30,31,34,35],callabl:0,callback:[0,19,35],calsaverini:35,can:[0,2,4,7,8,9,10,11,12,13,14,15,17,19,20,30,31,32,33,34,35],cancellederror:19,cannot:[0,33,35],caoyi0905:35,cap:15,care:18,caruana:[15,31,34],categor:[0,3,8,13,23,25,26,27,31,34,35],categori:[8,13,35],categorical_encod:[3,9,15,27],categorical_transform:[3,9,15,27],categoricalhyperparamet:[23,25,26],category_coalesc:[3,9,15,27],cater:32,caus:35,cd:33,certain:31,certainti:0,cff:35,challeng:35,chanc:0,chang:[10,11,15,24,29,31,35],channel:33,channel_prior:33,characterist:0,check:[7,17,18,24,31,32,33,34,35],check_non:25,checker:35,cheng:35,chi2:27,choic:[3,9,11,15,23,25,26,27,31],choos:[11,31,34],chosen:[0,35],chu:35,chung:35,ci:35,circl:35,citat:[31,35],cl:[6,7,8,12,13,15,32],clarifi:35,class_weight:[1,9,20],classif:[5,6,7,8,9,10,12,13,14,15,17,18,19,20,21,24,25,27,28,29,31,32,34,35],classifi:[0,15,24,25,30,31,34,35],classification_metr:12,classifierchoic:[1,2,9,11,15,19,20,21,23,24,25],claus:[3,27,32],clean:35,cleanup:35,clear:[31,34],clf:[23,24,25,27],cli:17,cli_start_schedul:17,cli_start_work:17,click:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,34],client:[0,7,31,34],clip:35,clonabl:35,clone:[33,35],close:35,cluster:[0,17,18,31,35],code:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,29,30,31,32,34,35],coef0:[3,9,26,27],coef0_condit:26,coeffici:0,col:6,collect:10,column:[0,8,13,31,34,35],com:[7,17,30,33],combin:[10,15,31],command:[13,15,18,22,29,31,33,34,35],common:[14,25,31,33,34],compat:[9,15,17,35],competit:35,compil:[31,33],complet:[3,27,35],compli:[2,15],compliant:35,compon:[0,1,2,3,4,11,15,17,19,20,21,28,29,31,34,35],compos:[31,34],comput:[18,31,35],concat:[1,4,6,9,10,11,12,13,14,15,17,18,20,21],concept:0,conda:[31,35],condit:[3,25,26,27,31],config:[0,15,33],config_id:[0,9],configspac:[0,15,23,24,25,26,27,30],configur:[0,7,9,16,17,23,24,26,29,30,32,34,35],configuration_origin:[9,15],configuration_spac:[0,15,23,24,25,26,27,30],configurationspac:[0,23,24,25,26,27,30,35],connect:17,consid:[0,14,31,34],consist:[0,35],consol:7,constant:[0,3,9,15,17,19,21,23,24,25,26,27,30,35],constraint:[0,15],construct:[9,14,17,19,21,30,31,32,34],consum:[31,34],consumpt:35,contact:32,contain:[0,9,13,17,27,31,32,34,35],context:35,continu:0,contrast:0,contrib:31,contribut:[31,35],control:[0,14,31,34,35],convert:[30,35],cookbook:7,copi:[14,31],copy_x:4,core:[0,7,18,20,31,34,35],correct:[31,35],correctli:[0,31,33,35],correspond:[0,10,27],cosin:[3,27],cost:[0,1,2,3,4,9,11,12,15,19,20,21,23,24,25,26],could:[21,33,35],cours:30,cpu:[17,31],crash:[0,2,9,14,17,18,19,20,21,24,31,35],creat:[0,13,15,26,30,31,34,35],creation:0,criterion:[1,3,9,15,19,20,21,27],cross:[0,31,34,35],crossvalid:0,crucial:[19,34],cs:[15,21,23,25,26,27,31,32],csr_matrix:[31,34],cube:[3,27],curc:31,current:[0,31,33,34],custom:[0,6,7,14,27,29,31,34,35],custom_error:6,customrandomforest:27,cutoff:15,cv:[0,9,14,21],cv_result:[0,6,35],cv_results_:[0,6,9,31,34],cv_voting_ensembl:0,cython:35,d95f02:4,d:[2,7,8,13,31,34,35],dai:[31,34,35],dask:[0,7,17,18,31,34,35],dask_client:[0,17,19,21],dask_distributed__worker__daemon:17,data:[0,28,29,30,31,34,35],data_id:[2,7,8,10,13,15],data_preprocess:[0,1,2,3,4,9,11,15,19,20,21,23,24,25,26],data_preprocessor:[0,1,2,3,4,9,11,15,19,20,21,23,24,25,26,27],datafram:[0,6,8,13,29,31,34,35],datapreprocessorchoic:[1,2,3,4,9,11,15,19,20,21,23,24,25,26],dataset:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,26,27,29,31,32,34,35],dataset_nam:[0,1,2,3,4,9,10,11,14,15,17,18,19,20,21],dataset_properti:[23,24,25,26,27],date:31,deadlock:[31,35],debug:[16,29],decid:[0,31,35],decis:[0,31],decision_tre:[1,3,6,9,11,27],decisiontreeclassifi:[1,9,19,20],decreas:[10,35],deem:11,deep:0,def:[6,12,17,19,21,23,24,25,26,27],default_config:21,default_data_contain:31,default_valu:[23,25,26,27],defin:[0,6,10,12,14,30,31,34],definit:[30,31,34],deflat:[3,27],degre:[3,9,26,27,35],degree_condit:26,delet:[0,7,31,35],delete_tmp_folder_after_termin:[0,7,15,17,20,31],demand:31,demonstr:[8,13,14,19,21,23,24,25,26,27,35],deng:35,dens:[23,24,25,26,27,30],densifi:11,depend:[0,30,31,33,35],depict:4,deploy:35,deprec:[1,4,6,8,9,10,11,12,13,14,15,17,18,20,21],deprecationwarn:8,descend:0,describ:[0,9,10,30,31,32,34],deshpand:35,design:9,desired_boolean_column:13,desired_categorical_column:13,desired_numerical_column:13,despit:35,destroi:14,detail:[0,2,8,13,31,33,34],determin:[0,31,34],determinist:35,dev:33,devdoc:8,develop:[32,33,35],df:31,diabet:[0,4],diagon:4,dict:[0,9,31,34],dictionari:[0,9,30,35],did:35,diego:35,differ:[14,17,27,31,34,35],digit:17,dimens:35,diogo:35,dir:33,directli:[0,9,13,14,17,30,31,33,34,35],directori:[0,7,31,35],disabl:[0,17,31,34,35],disable_evaluator_output:[0,9,14,21],disable_existing_logg:7,disc:[0,31,34],discrimin:25,discriminant_analysi:25,discuss:31,disk:[7,15,31,35],displai:0,disregard:0,distanc:[3,9,27],distribut:[0,7,17,18,31,33,34,35],doc:[7,10,17,31,33,34,35],docker:35,dockerfil:35,dockerhub:[33,35],docstr:35,document:[0,7,15,31,32,33,34,35],doe:[0,10,17,24,31,35],domashnev:35,don:31,done:[8,17,18,31,33,34],doubl:35,down:18,download:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,29,33,35],downsid:31,drawn:0,drive:[31,35],drop:[32,35],dropout:35,dtype:[2,8,9,13,31,34],dual:[1,9,19,20,27],due:[0,17,31,35],dummi:[4,35],dummyclassifi:35,dummyfutur:7,dummyregressor:35,duplic:32,durat:[0,1,2,3,4,9,15],dure:[0,9,14,31,34,35],e:[0,3,10,13,14,31,33,34,35],each:[0,8,9,10,17,18,30,31,34],earli:35,early_stop:[1,9,19,20,21,27],easili:30,eat:31,eddi:35,edg:35,edit:33,effici:[31,32,34],effort:31,eggensperg:[31,32,35],eigen:[25,27],either:[0,6,31,34],elasticnet:[4,9,19,27],element:0,elif:13,els:[0,8,13,21,25,27],emploi:[31,34],empti:24,en:[17,18],enabl:[15,33,35],encod:[0,3,9,13,27,31,34,35],end:[0,9,11],end_tim:0,endtim:[9,15],enforc:[31,33,34,35],engelen:35,enough:0,enrico:35,ensembl:[0,7,9,15,19,21,27,32,35],ensemble_dict:0,ensemble_nbest:[0,17,31,34],ensemble_onli:[0,31],ensemble_optimization_scor:[7,13],ensemble_s:[0,11,17,20,31,34],ensemble_test_scor:[7,13],ensemble_weight:[0,1,2,3,4,9,11,19,20,21,23,24,25,26],ensemblebuild:7,ensur:[31,34],entri:[9,32],entropi:[1,15,19,20,21,27],enumer:9,environ:[31,33,34,35],epsilon:[4,9,11,27],epsilon_insensit:4,equal:[0,12,35],equalscondit:26,error:[0,6,19,31,34,35],error_add:12,error_r:[6,12],error_wk:12,especi:[31,34,35],essenti:33,estim:[0,4,7,9,13,21,23,26,27,31,32,34,35],et:[31,32,34],eta0:[4,9,11,19,21,27],eta:21,etc:9,euclidean:[3,27],evalu:[0,9,12,13,17,31,34,35],even:[7,15,31,35],everi:35,everyon:31,everyth:[17,31],everytim:31,exampl:[0,1,2,3,4,6,7,8,9,10,11,13,14,15,17,18,19,20,21,23,24,25,26,27,30,31,33,34,35],example_calc_multiple_metr:[6,16],example_classif:[1,5],example_debug_log:[7,16],example_extending_classif:[23,28],example_extending_data_preprocessor:[24,28],example_extending_preprocessor:[25,28],example_extending_regress:[26,28],example_feature_typ:[8,16],example_get_pipeline_compon:[9,16],example_inspect_predict:[10,16],example_interpretable_model:[11,16],example_metr:[12,16],example_multilabel_classif:[2,5],example_multioutput_regress:[3,5],example_pandas_train_test:[13,16],example_parallel_manual_spawning_cli:[17,22],example_parallel_n_job:[18,22],example_random_search:[19,22],example_regress:[4,5],example_resampl:[14,16],example_restrict_number_of_hyperparamet:[27,28],example_sequenti:[20,22],example_single_configur:[15,16],example_successive_halv:[21,22],examples_20_bas:5,examples_40_advanc:16,examples_60_search:22,examples_80_extend:28,examples_jupyt:29,examples_python:29,exce:31,exceed:[0,2,9,14,17,18,19,20,21,24],except:[0,19,21,35],exclud:[0,27,31,34,35],exclus:[30,31,34],execut:[0,5,16,17,22,28,31],exemplifi:[7,21,31,34],exercis:0,exhaust:[31,34],exist:[28,29,30],exp:[3,27],expand:34,expect:[0,31],experienc:32,experiment:[0,32,35],explain:[9,33],explained_variance_ratio_:9,explan:[16,29,33,34],explicit:17,explicitli:[14,21],ext:7,extend:[0,6,28,29,31,32,35],extra:0,extra_argu:12,extra_tre:[1,3,6,9,11,21,27],extra_trees_preproc_for_classif:[11,15,27],extra_trees_preproc_for_regress:[3,11],extratreesclassifi:[1,19,20,21,35],extratreesregressor:3,f1:[0,6,31],f1_macro:[0,2,12],f1_micro:[0,12],f1_sampl:[0,12],f1_weight:[0,12],f52bd18f:7,f:[2,10,12,17],f_classif:27,facad:[19,21],factor:35,factori:0,fail:[2,9,18,19,21,31,33,35],failur:[0,35],falkner:[31,32,35],fals:[0,1,2,3,4,6,7,9,12,13,14,15,17,19,20,21,23,25,26,27,31],familiar:0,faq:[32,35],fashion:9,fast_ica:[3,11,27],faster:35,favorit:31,fdr:27,feat_typ:[0,8,13,31,34],featur:[0,13,14,16,19,27,29,31,32,34,35],feature_agglomer:[3,11,27],feature_nam:10,feature_preprocess:[1,2,3,4,9,11,15,19,20,21,23,24,25,26,30],feature_preprocessor:[0,1,2,3,4,9,11,15,19,20,21,23,24,25,26,27,31,34],feature_typ:[3,9,15,27],featurepreprocessorchoic:[1,2,3,4,9,11,15,19,20,21,23,24,25,26],feedback:35,feedstock:33,felix:35,felixleungsc:35,fetch:2,fetch_openml:[2,7,8,10,13,15],feurer:[31,32,35],few:35,field:30,file:[0,5,7,16,17,22,28,33,34,35],filenam:[7,17,31,34],fill_valu:9,find:[0,9,17,30,31,34,35],fine:[0,31],finish:[0,9,19,20,31],first:[10,11,14,17,20,31,34,35],fit:[0,2,10,12,14,16,17,29,30,31,32,34,35],fit_ensembl:[0,17,20],fit_intercept:[9,27],fit_pipelin:[0,15],fit_prior:[9,19,27],fix:[31,35],flag:[2,7,8,23,24,25,26,27,31,34],flake8:35,flaki:35,flip:0,float64:[8,9,13],fold:[0,14],folder:0,follow:[0,1,3,4,6,7,8,9,10,11,12,14,15,17,23,24,25,26,27,30,31,32,33,34,35],forbidden:[3,27],forest:[15,31,34,35],fork:31,forkserv:[31,35],form:[0,15,30,31,33,34],format:[2,7,8,9,13,31,34,35],formatt:7,found:[0,10,12,13,15,24,31,34,35],fpr:27,frac:0,fraction:[31,34,35],frame:[0,1,4,6,9,10,11,12,13,14,15,17,18,20,21],francisco:35,francoi:35,frank:[31,32],free:[17,31,32],friedman_ms:3,from:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,18,19,20,21,22,23,24,25,26,27,29,31,33,34,35],from_dict:6,fu:35,full:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,30,31,34],fun:[3,27],further:[0,13,14,15,31,34],furthermor:[4,9,11,19],futur:[1,4,6,9,10,11,12,13,14,15,17,18,19,20,21,35],futurewarn:[1,4,6,9,10,11,12,13,14,15,17,18,20,21],fwe:27,g:[31,33,34],galleri:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,29,35],gamma:[3,9,26,27],gaussian_nb:[11,27],gaussian_process:3,gaussiannb:19,gave:35,gcc:33,gcc_linux:33,geffrier:35,gener:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,27,29,30,34,35],get:[0,9,15,19,21,31,32,33,34],get_compon:11,get_configuration_spac:[0,3,15,27],get_default_configur:21,get_estim:0,get_hyperparameter_search_spac:[23,24,25,26,27],get_metric_result:6,get_models_with_weight:[0,9,24],get_param:0,get_preprocessor:0,get_properti:[23,24,25,26,27],get_random_search_object_callback:19,get_roar_object_callback:19,get_smac_object:21,get_smac_object_callback:[0,19,21],get_trials_callback:0,getting_start:15,geurt:27,gijsber:35,gini:[9,15,27],git:33,github:[7,15,17,30,31,32,33,35],give:[0,9,29,30,31,34,35],given:[0,9,10,11,15,17,31,35],glazachev:35,glob:7,gmean:35,go:31,goal:10,good:[0,2,4,13,31,34,35],got:12,gradient:35,gradient_boost:[1,4,6,9,11,21,27],gradientboostingclassifi:35,grain:[0,31],great:31,greater:0,greater_is_bett:[0,6,12],greil:35,grid:[13,31,34],grid_resolut:10,grow:31,guarante:31,guard:[17,18,19,21,31,35],gui:35,guid:[31,32,34,35],guidanc:8,guidelin:[31,34,35],guilherm:35,gxx_linux:33,gyro_i:10,gyro_x:10,gyro_z:10,gyroscop:10,ha:[0,4,9,15,27,30,31,33,34,35],halv:[9,22,29,35],hand:[14,31,32],handl:[0,9,30,31,34,35],handler:7,handles_classif:[23,24,25,26,27,30],handles_multiclass:[23,24,25,26,27,30],handles_multilabel:[23,24,25,26,27,30],handles_multioutput:[23,24,25,26,27],handles_regress:[23,24,25,26,27,30],happen:[13,31,34,35],hard:[31,35],harder:[31,34],harsh:0,hash:0,have:[0,9,10,14,15,17,30,31,33,34,35],header:[0,31,34],heavili:[31,33],hector:35,help:31,here:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,31,32,33,34],herilalaina:35,heurist:[27,35],hidden_layer_depth:[9,23,27],hidden_layer_s:[1,9,19,20,21,23],high:0,higher:[0,4,10,31,35],highli:32,highlight:[7,8,13],hing:27,histgradientboostingclassifi:[1,19,20,21],histgradientboostingregressor:4,histori:[9,35],hnishi:35,hoc:[9,31,34],hold:33,holdout:[0,21,31,34,35],home:[1,4,6,8,9,10,11,12,13,14,15,17,18,20,21],honor:[0,15],host:35,hostedtoolcach:21,hot:[0,31,34],hotfix:35,hour:[32,34],how:[0,1,2,3,4,6,7,8,9,10,11,12,13,15,17,18,19,20,21,23,24,25,26,27,30,31,33,34,35],howev:[11,12,20,34,35],howto:7,html:[2,7,8,15,17,18],http:[2,7,8,13,15,17,18,35],hungri:31,hutter:[31,32],hyper:15,hyperband:21,hyperparamet:[0,3,9,19,23,25,26,28,29,31,32,34,35],i:[0,3,9,10,13,14,23,31,34,35],id:[0,9,31],idempot:35,ident:23,identifi:[0,31,34],idl:17,ids_config:9,ignor:[9,17,35],illustr:[9,21],imag:35,immedi:35,impact:[10,35],implement:[0,2,7,8,10,23,24,25,27,30,31,34,35],impli:30,importances_mean:10,importances_std:10,improv:[15,31,32,35],imput:[3,9,15,27,31,34],includ:[0,9,11,15,21,23,24,25,26,31,32,34,35],include_bia:[3,27],incompat:[0,33,35],incondit:25,incorrect:35,increas:[0,31,35],indent:[1,2,3,4,9,11,19,20,21,23,24,25,26],independ:31,index:[0,6,10,18,35],indic:[2,13,31],individu:[0,7,14,31,34],inf:4,infer:[8,31,34],influenc:0,info:[7,35],inform:[0,2,7,10,16,17,21,29,31,32,33,34,35],inherit:31,init:33,initi:[0,9,31,33,34,35],initial_budget:21,initial_configur:21,initial_configurations_via_metalearn:[0,2,7,8,19,23,24,25,26,27,31,34],initial_incumb:19,inproceed:[31,32],input:[0,10,13,23,24,25,26,27,29,30,35],insensit:8,insert:0,insid:[9,14,30,31,35],inspect:[4,10,11,29,31,35],inspir:0,inspur:35,instal:[0,31,32,35],instanc:[0,9,15,19,30,35],instance_id:9,instance_specif:15,instead:[0,1,4,6,7,9,10,11,12,13,14,15,17,18,19,20,21,27,31,33,35],instruct:[33,35],integ:[0,2,31,34],intend:[19,21],intensif:[0,21],intensifi:21,intensifier_kwarg:21,interact:[9,10,21,33],interaction_onli:[3,27],intercept_sc:[1,9,19,20,27],interest:[7,9,31],interfac:[10,17],interleav:34,intermedi:7,intern:[7,9,17,24,35],interpret:[10,16,29,31,34],introduc:[0,19,35],introduct:35,invok:[19,21],involv:[31,34],invscal:[9,11,27],io:15,ip:33,ipynb:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27],is_determinist:[23,24,25,26,27,30],is_valid_configur:15,isaac:35,isort:35,issu:[17,24,32,33,34,35],item:[0,9,24],iter:[0,2,7,9,18,19,23,31,35],iterative_cv:35,its:[0,9,17,30,31,34],itself:[8,9,17,31,32],iver:35,j:35,jaidev:35,jeong:35,jesper:35,jha:35,jianswang:35,jin:35,jirka:35,jj:35,job:[0,7,17,18,35],joblib:31,joel:35,join:[12,17],joint:35,jongheon:35,jordal:35,jose:35,joseph:35,josh:35,jost:[31,32,35],journal:32,json:[7,17],judgement:31,julian:35,jupyt:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,29,33,35],just:0,k:[0,4,14],k_nearest_neighbor:[3,9,11,27],kaa:35,karl:35,katharina:[31,32,35],keep:[0,9,31,34],keep_vari:[3,9,27],kei:[0,6,9,24,31,34],kept:[0,31,34],kernel:[0,3,9,27,35],kernel_pca:[3,11,27],kernel_ridg:26,kernelridg:26,kernelridgeregress:26,kind:[10,13,31,34],kitchen_sink:[3,11,27],klein:[31,32,35],kneighborsclassifi:[9,19],know:[31,32,33],known:31,kobylkin:35,kp:[7,15],kr:[7,15],kwarg:[0,24],l1:[21,27],l1_ratio:[4,9,19,27],l2:[9,27],l2_regular:[1,4,9,19,20,21,27],label:[0,4,5,10,13,29,35],labelencod:[0,31,34],lambda_1:4,lambda_2:4,laptop:31,larg:[34,35],larger:[31,35],largest:10,lastli:31,later:0,latest:[17,18,32,33,35],latter:0,launch:0,laurent:35,lbfg:23,lda:[1,6,9,11,27,35],lead:[31,35],leaderboard:[0,1,2,3,4,31,34,35],learn:[0,2,9,10,13,15,17,20,30,32,34,35],learning_r:[1,4,9,11,19,20,21,27],learning_rate_init:[1,9,19,20,21,27],least:[33,35],left:0,leftov:35,legend:[4,13,31,34],len:[0,9,19,21,24],length:0,less:35,lesw:35,let:[9,31],leung:35,level:[7,31,35],levelnam:7,leverag:32,lg:[31,32],liac:35,lib:21,liblinear_svc:[1,6,9,11,27],liblinear_svc_preprocessor:[11,27],librari:[0,31,34],libsvm_svc:[9,11,27],licens:35,lifetim:17,light:17,like:[0,11,21,30,31,34],limit:[0,2,9,14,15,17,18,19,20,21,24,31,33,35],lindauer:[31,32,35],line:[10,13,18,22,29,31,34],linear:[9,25,31,35],lineardiscriminantanalysi:[1,19,20,24,25],linearsvc:[1,9,19,20],link:35,linkag:[3,27],linkcheck:35,linux:33,list:[0,8,9,11,13,31,33,34],liter:0,ll:10,load:[0,31,35],load_breast_canc:[1,6,9,11,12,14,17,18,19,20,21,23,24,25,27,35],load_diabet:[0,4,26],load_digit:[32,35],load_model:0,local:35,locat:[17,31],lockfil:35,log2:27,log:[0,3,12,16,21,26,27,29,35],log_loss:[0,12],logcosh:[3,27],logger:[0,7,35],logging_config:[0,7,35],logging_configur:7,logic:17,logist:23,loglevel:35,logloss:35,longer:[31,35],look:[9,10,15,30,31,34],loss:[0,1,4,9,11,19,21,27,31,35],losses_and_configur:9,lot:[31,35],love:31,low:0,lower:[4,23,25,26,31],lowest:9,lsqr:[19,24,25,27],lt:35,luca:35,luka:35,m:27,mabri:35,machin:[0,15,17,20,22,29,30,31,32,33,34,35],maco:35,made:35,mae:3,mai:0,main:[31,35],maint:35,maintain:[9,31],make:[0,2,15,19,21,24,31,33,34,35],make_regress:3,make_scor:[0,6,12],manag:[17,18,34,35],manhattan:[3,27],mani:[0,31,34,35],manner:[31,33],manual:[13,17,27,30,31,35],manuel:[31,32,35],map:[0,2],mariu:[31,32,35],mark:35,mask:[0,9],masked_arrai:9,master:[15,33,35],matplotlib:[4,10,13],matric:30,matrix:0,matthia:[31,32,35],max:[3,27],max_bin:[9,27],max_budget:21,max_depth:[1,3,9,15,19,20,27],max_depth_factor:[3,9,27],max_featur:[1,2,3,9,15,19,20,21,24,25,27],max_it:[1,4,9,11,19,20,21,24,27],max_leaf_nod:[1,3,4,9,15,19,20,21,27],max_models_on_disc:[0,31,34],maxim:[9,31,34,35],maximilian:35,maximum:[0,27,31,34],mb:[0,5,16,22,28,31],md5:0,mean:[0,3,4,6,9,12,14,15,27,30,31,35],mean_absolute_error:[0,12],mean_fit_tim:9,mean_squared_error:[0,12,35],mean_squared_log_error:12,mean_test_scor:[6,9],measur:[13,31,34],mechan:[0,13,31,34],median:[3,27],median_absolute_error:[0,12],member:34,memori:[0,2,9,14,17,18,19,20,21,24,31,33,34,35],memory_limit:[0,15,17,18,35],mendoza:35,mention:31,merg:32,messag:[7,35],meta:[32,34,35],meta_bas:[1,4,6,9,10,11,12,13,14,15,17,18,20,21],metadata:[0,31,34,35],metadata_directori:0,metafeatur:[1,4,6,9,10,11,12,13,14,15,17,18,20,21,35],metalearn:[0,1,4,6,9,10,11,12,13,14,15,17,18,20,21],metalearning_configur:[19,21],method:[0,1,4,6,8,9,10,11,12,13,14,15,17,18,20,21,30,31,34,35],metric:[1,2,3,4,7,8,9,10,11,13,14,15,16,17,18,19,20,21,23,24,25,26,29,31,32,34,35],metric_:6,metric_balanced_accuraci:6,metric_custom_error:6,metric_f1:6,metric_nam:12,metric_precis:6,metric_recal:6,mfeurer:33,michael:35,microsoft:33,might:[0,34],min_chal:21,min_impurity_decreas:[3,9,15,27],min_samples_leaf:[1,3,4,9,15,19,20,21,27],min_samples_split:[1,3,9,15,19,20,21,27],min_weight_fraction_leaf:[3,9,15,27],minim:[9,35],minimum:[0,31,34,35],minimum_fract:[3,9,27],minmax:[3,9,27],minor:35,minority_coalesc:[3,9,27],minr:19,minut:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,31,34,35],miotto:35,miss:[31,33,34,35],mkdir:33,mkl_num_thread:[31,34],ml:35,mlp:[1,6,9,11,27],mlpclassifi:[1,9,19,20,21,23,35],mlpregressor:35,mode:[18,27,31,33,34,35],model:[0,6,12,13,14,15,16,18,19,20,21,29,30,31,35],model_1:0,model_id:[0,1,2,3,4,9,11,19,20,21,23,24,25,26],model_n:0,model_select:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,32,35],modern:[31,34],modifi:8,modified_hub:[9,11,27],modul:[2,10,15,17,33,35],mohd:35,morakakam:35,more:[0,2,7,8,9,13,17,20,21,31,32,33,34,35],moreov:6,most:[0,9,31,34],most_frequ:[3,9,27],mostli:[31,34],move:[31,35],mse:3,msg:7,much:[0,11,31],multi:[0,5,7,29,35],multi_class:[9,27],multiclass:[0,2,30,31,34,35],multiclass_classif:17,multidimension:[31,34],multilabel:[0,2,30,31,34,35],multinomial_nb:[11,27],multioutput:[0,3,31,34],multioutputregressor:0,multipl:[6,10,13,17,18,30,31,34,35],multiprocess:[7,17,31,34,35],multitud:32,must:[0,13,17,18,23,30,31,33,34,35],mutual:30,mutual_info:27,mutual_info_classif:27,mybind:35,mypi:35,n:[9,10,12,31,34],n_class:0,n_cluster:[3,27],n_compon:[3,27],n_estim:[1,2,3,9,15,19,20,21,24,25,27],n_featur:[0,3],n_inform:3,n_iter_no_chang:[1,4,9,19,20,21,27],n_job:[0,1,2,3,9,15,17,18,19,20,21,24,25,31,34,35],n_jobs_:18,n_label:0,n_neighbor:[3,9,19,27],n_output:0,n_quantil:[3,9,27],n_repeat:10,n_sampl:[0,3],n_samples_fit:0,n_split:0,n_target:[0,3],nader:35,name:[0,2,6,7,8,9,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,30,31,32,34,35],named_step:[9,15],natur:0,nb:33,ndarrai:[0,31,34],necessari:[0,14,17,31,34],need:[0,9,14,17,30,31,33,35],needs_proba:[0,6,12],needs_threshold:[0,6,12],neg:[0,2,30],neither:35,nest:0,neural:[31,32],neural_network:23,neurip:[32,35],neurips15a:[31,32],never:19,nevertheless:[31,34],newer:35,next:[31,34],nicer:0,nildaimon:35,nip:32,no_coalescens:[3,9,15,27],no_encod:[3,9,27],no_preprocess:[0,3,11,21,27,31,34],non:35,none:[0,1,3,4,7,9,12,15,17,19,20,21,23,24,25,26,27,30,31,34,35],nopreprocess:27,nor:35,normal:[3,9,27,31,34],note:[0,8,10,11,17,31,34,35],notebook:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,29,31,32,33,35],noth:35,notimplementederror:[23,25,26,27],now:[4,10,11,17,31,35],np:[2,6,8,12,13,14,15,31,34],nthread:[17,19,21],nuanc:31,num_nodes_per_lay:[9,23,27],num_param:0,num_run:[9,15],num_work:21,number:[0,2,9,10,14,17,18,19,20,21,24,28,29,31,34,35],numer:[0,8,13,31,34],numerical_transform:[3,9,15,27],numpi:[0,2,3,6,8,12,13,14,15,31,34,35],nystroem_sampl:[3,11,27],object:[0,1,2,3,4,9,11,13,15,19,20,21,23,24,25,26,27,30,31,34,35],observ:27,obtain:[0,16,29,31,34,35],obviou:0,obvious:14,occur:33,off:[24,27,31,34],offer:34,offici:[7,33],offlin:35,often:31,old:35,olehb007:35,oli:35,omp:35,omp_num_thread:[31,34],onc:[0,18,33,35],one:[0,7,9,14,15,17,18,20,27,30,31,32,34,35],one_hot_encod:[3,9,15,27],ones:[2,15,29,31],onli:[0,9,11,15,17,27,30,31,34,35],onlin:19,open:[31,32],openblas_num_thread:[31,34],openml:[2,7,8,10,13,31],openmp:31,oper:[33,35],opposit:35,opt:[21,33],optim:[0,6,9,11,17,18,19,27,29,31,32,34,35],optimizatino:19,optimum:[0,6,12],option:[0,7,31,33,34],optionalarrai:0,order:[0,13,17,30,31,34,35],ordereddict:9,ordin:13,ordinalencod:[31,34],org:[2,7,8,13,15,17,18],origin:[31,35],osx:35,other:[0,9,33],otherwis:[0,21],ouput:35,our:[15,27,31,32],ourselv:26,out:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,30,32,33,34],outcom:0,output:[0,5,7,9,14,23,24,25,26,27,29,30,35],output_directori:31,output_distribut:[3,9,27],outsid:31,over:[0,6,8,9,11,14,16,29,31,34,35],overestim:4,overfit:[0,13,31],overhead:35,overview:[0,34],ovr:[9,27],own:[17,31],p:[3,9,27,33],packag:[15,21,31,33,35],page:[31,32,35],pair:[31,34],panda:[0,1,4,6,8,9,10,11,12,13,14,15,17,18,20,21,29,31,34,35],paper:[31,32,35],parallel:[0,3,20,22,27,29,31,35],parallel_schedul:21,param:[0,9,35],param_balanc:9,param_classifi:[6,9],param_data_preprocessor:9,param_feature_preprocessor:9,paramet:[0,15,24,35],parametr:27,part:[33,35],partev:35,parti:[31,35],partial:0,particip:35,particular:[9,31,34],particularli:21,pass:[0,7,15,17,19,31,34,35],passive_aggress:[1,6,9,11,21,27],passiveaggressiveclassifi:[1,19,21,24],path:[0,7,35],pathlib:7,pca:[3,9,11,27,31,34],pd:[0,6,13,31,34],penalti:[4,9,19,21,27],pep8:35,pepe:35,per:[0,6,8,9,13,31,34],per_run_time_limit:[0,1,2,3,4,6,8,9,10,11,12,13,14,15,17,18,19,20,21,23,25,26,27,35],percentag:[31,34],percentil:27,perceptron:[19,27],perfect:4,perform:[0,8,15,16,29,31,34,35],performance_over_time_:[0,13,31,34],perman:0,permutation_import:10,persist:[31,34],person:10,peter:35,phone:10,pick:32,picklabl:35,pid_:0,pieter:35,pip3:[33,35],pip:[33,35],pipe:17,pipelin:[0,1,2,3,4,7,9,11,15,19,20,21,23,24,25,26,27,30,31,34,35],pitfal:10,plai:35,platform:33,pleas:[0,17,19,21,30,31,32,33,34],plot:[0,8,16,29,31,34,35],plot_partial_depend:10,plt:[4,10,13,31,34],point:[0,4,17],poli:[3,9,27,35],polynomi:[3,11,26,27],pooling_func:[3,27],port:[17,33],posit:[2,30],possibl:[0,4,6,8,12,14,15,19,20,21,26,31,33,34,35],post:[9,31,34],pot:13,potenti:[31,35],power:35,power_t:[4,9,27],power_transform:[3,9,27],pprint:[1,2,3,4,9,11,19,20,21,23,24,25,26],pr:35,practic:[14,29,31],pradeep:35,pre:31,precis:[0,6,31,35],precision_macro:[0,12],precision_micro:[0,12],precision_sampl:[0,12],precision_weight:[0,12],precomput:0,predefin:[14,35],predefinedsplit:14,predict:[0,1,2,3,6,8,10,11,12,13,14,17,19,20,21,23,27,30,31,32,34,35],predict_proba:[0,23,27,35],predictor:[30,35],preprocess:[0,31,34,35],preprocessor:[0,9,28,29,30,31,34,35],present:[0,31,34,35],preserv:7,pretti:[14,31],prevent:35,previou:20,previous:[0,17,35],princip:9,print:[0,6,7,8,9,10,13,14,15,17,18,19,21,31,32,34,35],prior:[0,31,34,35],prioriti:[31,34],probabl:[0,10,35],problem:[0,2,6,9,12,31,33,34,35],proc:17,procedur:[29,34],procedurc:9,process:[0,17,20,30,31,32,33,34,35],process_cli_work:17,process_python_work:17,processor:0,produc:[30,35],progress:34,properli:[2,8,13,17,31,34],properti:30,proport:0,provid:[0,2,7,8,13,17,23,24,25,26,27,31,32,33,34,35],prune:[0,31,34,35],publish:32,pull:33,purpos:[7,13,14,21,30],push:35,put:0,pwd:33,py:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,31,34,35],pyninsh:35,pypi:[31,35],pyplot:[4,10,13],pyrfr:[31,33,35],python3:[21,33,35],python:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,18,19,20,21,23,24,25,26,27,29,31,33,34,35],q_max:[3,9,27],q_min:[3,9,27],qda:[9,11,27,35],quadraticdiscriminantanalysi:19,quantifi:4,quantile_transform:[3,9,27],queri:[9,30],question:[31,35],r2:[0,3,4,12,26],r2_score:[0,3,4,26],r:[0,10,27],raamana:35,race:19,rafael:35,rais:[0,19,21,23,25,26,27,31,34,35],rakotoarison:35,ram:31,random:[9,15,22,29,30,31,34,35],random_forest:[0,1,2,3,6,9,11,15,21,27,31,34],random_numb:0,random_st:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,32],random_trees_embed:[3,11,27],randomforest:15,randomforestclassifi:[1,2,9,15,19,20,21,24,25,27,35],randomforestregressor:3,randomli:[10,15],rang:[3,4,13,17,23,25,26,27,31,34],rank:[0,1,2,3,4,9,11,19,20,21,23,24,25,26,35],rank_test_scor:[6,9],rather:31,ratio:9,rbf:[3,26,27],re:[2,14,31,33,35],reach:31,read:[0,31,32,33,35],readm:35,real:[2,7,8,17,23,24,25,26,27],reason:[31,34],recal:[0,6],recall_macro:[0,12],recall_micro:[0,12],recall_sampl:[0,12],recall_weight:[0,12],recent:[32,33],recogn:[8,35],recommend:[2,7,8,15,23,24,25,26,27,31,33,34],recurs:33,reddi:35,redirect:0,reduc:[3,31,35],redund:31,ref:17,refer:[0,13,31,32,34,35],refit:[0,21,31,35],reg:[26,31],reg_param:[9,19,27],regard:[31,34],regist:[30,35],registri:35,regress:[5,11,12,28,29,31,34,35],regression_metr:12,regressor:[0,9,26,30,31,34,35],regressorchoic:[3,4,26],regular:[31,32,34],regularli:31,rel:[0,35],relat:[10,35],releas:[8,31],relev:[17,21,31,35],reli:33,relu:[23,27],remain:9,remov:[0,1,4,6,9,10,11,12,13,14,15,17,18,19,20,21,31,35],renam:35,render:[17,35],replac:[0,12,27,32,33,35],report:32,repositori:31,repres:0,represent:30,reproduc:35,request:31,requir:[0,2,17,31,34,35],rerun:31,resampl:[0,9,16,29,34,35],resampling_strategi:[0,14,21],resampling_strategy_argu:[0,14,21,35],rescal:[3,9,15,27],research:32,residu:0,resolv:35,resort:0,resourc:33,respect:31,respons:10,restrict:[9,11,26,28,29,31,34,35],restructur:35,result:[0,2,4,6,9,14,17,18,19,20,21,24,29,30,32,35],retain:35,retriev:[19,35],return_x_i:[0,1,2,4,6,7,9,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,32],returncod:17,reuter:2,revers:17,rf:27,rh2epm:21,rivera:35,rng:[19,21],roar_facad:19,robust:[31,32,34,35],robust_scal:[3,9,27],roc_auc:[0,12,35],rohit:35,rong:35,root:[7,33],root_mean_squared_error:12,rotat:10,round:35,run:[0,1,3,4,6,7,8,10,11,12,13,14,15,16,17,18,19,20,21,23,24,25,26,27,29,31,32,33,34,35],run_id:[19,21],run_info:[0,15],run_kei:9,run_or_walk_inform:10,run_valu:[0,9,15],runcount_limit:[2,7,8,23,24,25,26,27],runhistori:[0,9,12,21],runhistory2epm4logcost:[12,21],runhistory2epm:[12,21],runhistory_:9,runinfo:[0,15],runkei:9,runner:[1,4,6,8,9,10,11,12,13,14,15,17,18,20,21],runtim:[9,31],runvalu:[0,9,15],ryul:35,s:[0,7,9,10,12,14,17,21,31,33,34,35],safe:8,safeguard:35,sake:17,same:[0,9,27,30,31,32],samm:[19,27],sampl:[0,4,10,15,31,34],sample_configur:15,sample_weight:0,santo:35,sapronov:35,satyam:35,save:[0,35],scalar:[0,8],scale:[3,26,27,35],scatter:4,scenario:[0,19,21],scenario_dict:[0,19,21],scheduler_fil:17,scheduler_file_nam:17,scientif:[31,32,34],scikit:[0,2,9,10,13,15,30,31,32,34,35],scipi:[0,31,34,35],score:[0,9,10,12,17,18,19,21,27,31,32,34,35],score_func:[0,6,12,27],scorer:0,scoring_funct:[0,6],scratch:0,script:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,31,35],search:[0,15,22,33,35],searchspac:34,second:[0,1,2,3,4,6,7,8,9,10,11,13,14,15,17,18,19,20,21,23,24,25,26,27,31,35],section:[12,31,33,34,35],see:[0,10,11,17,30,31,33,34,35],seed:[0,9,12,15,17,18,19,21,30],seen:[0,31,34],select:[0,9,14,15,21,31,32,35],select_percentile_classif:[11,27],select_percentile_regress:11,select_rates_classif:[11,27],select_rates_regress:11,selected_indic:14,selectpercentileregress:35,selectr:35,self:[0,1,4,6,9,10,11,12,13,14,15,17,18,20,21,23,24,25,26,27],sensibl:0,separ:35,sequenc:35,sequenti:[22,29,31,34],seri:[0,31,34],server:35,servic:33,session:33,set:[0,13,14,17,21,24,31,33,34,35],set_param:0,setattr:24,setup:35,sever:[30,31,34,35],sgd:[4,6,9,11,21,23,27,35],sgdclassifi:[9,11,19,21],sgdregressor:[0,4],shahril:35,shape:[0,27],share:[31,34,35],shell:[17,33],ship:33,shortnam:[23,24,25,26,27,30],should:[0,9,17,31,32,35],show:[1,2,3,4,6,7,9,10,12,13,14,15,17,18,19,20,31,34,35],show_model:[0,1,2,3,4,9,11,19,20,21,23,24,25,26,31,34,35],showcas:13,shown:[11,13,31,34],shrink:[9,27],shrinkag:[9,19,24,25,27,35],shrinkage_condit:25,shrinkage_factor:[9,27],shuffl:[0,9,21,27,35],shut:18,shutdown:35,sigmoid:[3,27],sign:[0,30],signatur:[0,35],signed_data:[23,25,26,30],significantli:31,silenc:8,silva:35,similar:11,simpl:[0,1,4,10,31,34],simpleclassificationpipelin:35,simpli:21,simplifi:[9,31,35],sinc:[0,10,12],singl:[0,11,14,16,17,22,29,31,34,35],single_best_optimization_scor:13,single_best_test_scor:13,single_best_train_scor:13,singlethreadedcli:7,site:21,six:35,size:[0,11,31,34,35],skearn:24,sklean:31,sklearn:[0,6,7,8,10,12,13,14,15,18,19,28,29,31,34,35],sklearn_classifi:[0,1,2,9,11,19,20,21,23,24,25],sklearn_regressor:[0,3,4,9,26],skripniuk:35,sleep:17,slide:32,smac3:[7,33,35],smac4ac:21,smac:[0,7,9,12,13,19,21,31,34,35],smac_ac_facad:21,smac_scenario_arg:[0,2,7,8,23,24,25,26,27],small:31,smaller:12,smbo:[0,35],so:[0,9,10,17,30,31,33,34,35],soft:[14,21],solut:[6,12,31,33],solv:[9,33],solver:[9,19,23,24,25,27],some:[0,10,24,31,34,35],sorber:35,sort:[0,9,35],sort_bi:0,sort_idx:10,sort_ord:0,sort_valu:0,sound:31,sourc:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,29,30,31,34],source_id:15,space:[0,7,15,23,26,30,35],spars:[0,24,26,27,30,31,34,35],sparsiti:0,spawn:[18,22,29,31,34,35],specif:[8,31,33],specifi:[0,7,8,14,21,27,30,31,34],speed:[2,7,8,10,23,24,25,26,27,32,35],spend:32,sphinx:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,29,35],sphinx_toolbox:35,sphx_glr_examples_60_search_example_parallel_manual_spawning_python:17,split:[0,14,29,31,34,35],splitter:35,spmatrix:0,springenberg:[31,32,35],sprint_statist:[0,2,9,14,17,18,19,20,21,24,31,34],sqrt:27,squar:0,squared_hing:[1,9,19,21,27],stabl:[2,15],stage:9,stage_nam:9,stale:35,standard:[3,9,27],start:[0,7,9,10,18,31,32,33,35],start_tim:0,startswith:6,starttim:[9,15],startup:35,state:35,statement:35,staticmethod:[23,24,25,26,27],statist:[0,18,19,21,34],statu:[0,6,9,15],statustyp:[9,13,15],stderr:17,stdout:[7,17],stefan:[31,32,35],step:[0,24,31,34],still:[31,34],stock90975:35,stop:[0,9,31,34,35],store:[0,7,9,15,17,31,34,35],str:[0,13,27,30,35],strategi:[0,1,3,9,15,16,19,20,21,23,24,27,29,34,35],stream:7,streamhandl:7,streuhof:35,strict:[33,35],string:[0,2,8,14,31,34],strong:35,structur:7,style:35,subclass:[0,30],submit:[17,35],submodul:[33,35],subobject:0,subprocess:[17,31,35],subsampl:[10,35],subsect:30,subset:[0,11,31],success:[0,2,6,9,14,15,17,18,19,20,22,24,29,31,34,35],successive_halv:21,sudo:33,suffer:[13,31],suffici:[31,34],suggest:[31,33,34],sum:0,support:[0,12,13,31,33,34,35],sure:[2,15,19,21,24,31,33,35],svc:9,svd:[25,27],svm:3,svr:35,swap:34,swig:[31,33],sy:7,symptom:31,synthet:3,system:[31,32,34,35],t:[10,12,31],ta:[0,19,21],ta_kwarg:[19,21],tabl:0,tae:[0,13],tae_runn:[19,21],tae_runner_kwarg:[19,21],tag:[0,8],take:[0,17,18,31,34],talk:[31,32,34],tane:35,tanh:[1,9,20,21,23,27],target:[0,2,8,9,10,13,14,17,18,19,20,21,24,31,34,35],task:[0,15,17,30,31,34],task_id:9,technic:31,techniqu:35,technolog:32,tell:30,templat:35,tempor:7,temporari:[31,35],temporarili:31,teresa:35,termin:[0,31],test:[0,4,10,13,15,31,33,34,35],test_fold:14,test_predict:4,test_siz:[10,13,15],testa:35,text:34,th:9,than:[0,4,20,21,31,35],thank:31,thei:[17,31,34,35],them:[0,10,11,17,31,34,35],therebi:31,therefor:[0,31,33,34],thetal:3,thetau:3,thi:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,30,31,32,33,34,35],thick:10,thin:10,third:31,thread:[31,34,35],threadpoolctl:[31,34,35],three:[17,31],threshold_lambda:4,through:[19,30],throughout:[31,34],thu:[10,31],tie:35,tight:31,tight_layout:[4,10],time:[0,1,2,3,4,6,7,8,9,10,11,12,14,15,17,18,19,20,21,23,24,25,26,27,29,30,31,32,34,35],time_left_for_this_task:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27],timeout:[17,35],timeseri:[31,34],timestamp:[7,13,31,34],timothi:35,titl:[13,31,32,34],tmp:[0,1,3,4,10,11,14,17,18,19,20,21,31,35],tmp_dir:0,tmp_folder:[0,1,3,4,7,10,11,14,17,18,19,20,21,31],to_numer:13,to_numpi:8,to_str:6,tobia:35,togeth:[0,15,35],tol:[1,4,9,11,19,20,21,24,25,27],too:[9,31,35],toolkit:32,top:[0,9],top_k:0,total:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,31,34],track:[0,35],tracker:[31,32],tradeoff:34,train:[0,4,9,10,13,14,15,20,27,29,31,34,35],train_loss:[0,9,15],train_predict:4,train_siz:[0,14,21],train_test_split:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,32],trajectori:[31,35],transform:[0,9,24,25,30,31,34,35],travi:35,tree:31,tri:0,trigger:35,truncatedsvd:11,tune:[27,31,32,34,35],tupl:[0,15,23,30,35],turn:[10,24,31,34,35],tutori:[31,34],two:[2,7,8,10,20,23,24,25,26,27,30,31,33,34,35],txt:35,type:[0,1,2,3,4,9,13,16,21,23,25,26,27,29,30,31,34,35],type_of_target:2,typic:0,typo:35,u12:9,u13:9,u16:9,u18:9,u19:9,u20:9,u32:9,u3:9,u5:9,u9:9,u:0,ubuntu:35,un:35,under:[7,31,33,34],underestim:4,underli:[0,9],understand:10,unidimension:[31,34],uniform:[3,9,27],uniform_averag:0,uniformfloat:[3,23,25,26,27],uniformfloathyperparamet:[23,25,26,27],uniforminteg:[3,23,26,27],uniformintegerhyperparamet:[23,26,27],union:0,unit:35,unix:33,unless:0,unlik:32,unlimit:35,unnecessari:35,unseen:[13,14,31,34],unsign:30,unsigned_data:[23,24,25,26,27,30],unsuccess:[31,34],until:[31,34],up:[2,7,8,9,10,11,17,23,24,25,26,27,31,32,33,35],updat:[0,31,33,35],upgrad:35,upper:[0,23,25,26,31,34,35],us:[0,1,2,4,6,7,8,10,11,13,14,15,17,18,20,23,27,29,30,31,32,33,34,35],usag:[0,22,29,31,34,35],user:[0,8,11,13,30,31,32,34,35],userfindingself:35,userwarn:21,usual:[31,33],util:[0,2,25],v:[0,33],val:24,valentin:35,valid:[0,2,9,15,17,18,19,20,24,27,29,31,34,35],validation_fract:[1,4,9,19,20,21,27],valu:[0,3,4,9,10,15,27,30,31,34,35],valueerror:[19,21],valverd:35,van:35,vanilla:[31,34],variabl:[0,31,34,35],varianc:9,variou:[0,12],ve:[31,32],vector:35,verbos:[1,9,19,20,21],veri:[11,31],verifi:33,version:[0,1,4,6,7,9,10,11,12,13,14,15,17,18,20,21,31,33],via:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,31,32,33,34,35],vicent:35,view:0,virtual:33,visual:[4,35],vladimir:35,vladislav:35,vote:[14,21],voting_model:[0,9,21],votingclassifi:21,vs:[7,15],wa:[0,9,15,19,33,35],wai:[2,8,31,32,34],walk:[10,30],want:[8,9,17,31,32],ward:[3,27],warm_start:[1,2,3,4,9,11,15,19,20,21,24,25],warn:[8,12,21,35],we:[4,7,9,10,11,12,13,14,15,17,18,26,27,31,32,33,34],web:35,weight:[0,1,3,9,17,19,20,21,23,24,27],weight_1:0,weight_n:0,weird:35,well:[0,9,11,31,33,34,35],wen:35,were:[0,4,9,24,31,35],what:[0,9,10],wheel:[33,35],when:[0,8,10,13,17,24,30,31,34,35],where:[0,9,21,27,31,33,35],wherea:13,whether:[0,9,10,13,30,35],which:[0,7,9,10,11,12,13,14,17,20,21,27,30,31,32,34,35],whiten:[3,9,27],whole:[14,31],why:31,window:35,within:[13,17,31,35],without:[17,31,34,35],woo:35,work:[0,1,4,6,7,8,9,10,11,12,13,14,15,17,18,20,21,30,31,32,33,34,35],worker:[0,18,21,22,29,31,34,35],worker_process:17,workflow:35,workload:17,workstat:31,wors:0,worst:35,worst_possible_result:0,would:[0,11,14,17,31,32,34,35],wrap:[0,31],wrapper:[9,25,30,31,34],written:[7,31],wrong:35,wrongli:35,wrt:[0,10],www:[2,7,8,13],x64:21,x:[0,1,2,3,4,6,7,8,9,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,31,32,34],x_test:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,31,32,34],x_train:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,31,32,34],xgboost:35,xiaodong:35,xlabel:4,xlim:4,xtick:10,y:[0,1,2,3,4,6,7,8,9,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,32,35],y_hat:32,y_optim:0,y_pred:[0,23,24,25,26],y_test:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,31,32,34,35],y_train:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,31,32,34],y_true:0,yaml:[0,35],yassin:35,yazanobeidi:35,year:[31,32],yet:[0,19,31,34],yield:27,ylabel:4,ylim:4,you:[0,7,8,9,13,15,17,30,31,32,33,34],young:35,your:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,23,24,25,26,27,31,33,34],yourself:31,zero:[2,31,34],zeyi:35,zip:29,zorder:4},titles:["APIs","Classification","Multi-label Classification","Multi-output Regression","Regression","Computation times","Metrics","Logging and debugging","Feature Types","Obtain run information","Model Explanation","Interpretable models","Metrics","Performance-over-time plot","Resampling Strategies","Fit a single configuration","Computation times","Parallel Usage: Spawning workers from the command line","Parallel Usage on a single machine","Random Search","Sequential Usage","Successive Halving","Computation times","Extending Auto-Sklearn with Classification Component","Extending Auto-Sklearn with Data Preprocessor Component","Extending Auto-Sklearn with Preprocessor Component","Extending Auto-Sklearn with Regression Component","Restricting the number of hyperparameters for an existing component","Computation times","Examples","Extending auto-sklearn","FAQ","auto-sklearn","Installation","Manual","Releases"],titleterms:{"0":[17,32,35],"1":[9,10,17,35],"10":35,"11":35,"12":35,"13":35,"14":35,"2":[9,10,17,32,35],"3":[10,17,35],"4":35,"5":35,"6":35,"7":35,"8":35,"9":35,"final":[1,2,3,4,6,8,11,13,14,20],"import":[10,17],"new":32,The:[31,34],about:[2,9],accuraci:[12,23],addit:12,advanc:29,again:14,all:17,also:21,an:[15,21,27],anaconda:33,api:0,approach:21,ar:17,argument:12,auto:[1,2,3,4,9,11,17,20,21,23,24,25,26,27,30,32,33],avail:[11,12],background:17,basic:29,best:9,budget:21,build:[1,2,3,4,6,7,8,9,10,11,13,18,20,21],built:0,callback:21,can:21,cite:32,classif:[0,1,2,11,23,30],classifi:[1,2,6,7,8,9,11,13,18,19,20,21,23,27],client:17,close:17,command:17,commun:17,compat:33,compon:[9,23,24,25,26,27,30],comput:[5,10,16,22,28,34],conda:33,condit:10,config:7,configur:[3,15,25,27,31],construct:[1,2,3,4,11,20],contribut:32,contributor:35,creat:[7,10,17,23,24,25],cross:[14,21],custom:12,data:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,18,19,20,21,23,24,26,27],dataset:[24,25],debug:[7,31],defin:[15,21],depend:10,detail:9,docker:33,ensembl:[1,2,3,4,6,8,11,13,14,20,31,34],error:12,estim:15,exampl:[12,29,32],exist:27,expect:10,explan:10,extend:[23,24,25,26,30],extens:[0,29],faq:31,featur:[8,10,30],fifth:12,file:31,first:12,fit:[1,3,4,6,7,8,9,11,13,15,18,19,20,21,23,24,25,26,27],forest:27,forg:33,found:[1,2,3,4,9],fourth:12,from:[17,32],gener:[26,31],get:[1,2,3,4,6,8,11,13,14,20],get_hyperparameter_search_spac:30,get_properti:30,halv:21,holdout:14,hyperparamet:27,ic:10,imag:33,implement:26,individu:10,inform:9,inspect:[9,34],instal:33,instanti:21,interfac:0,interpret:11,issu:31,iter:21,kernel:26,krr:26,label:2,lda:25,learn:[14,31],licens:32,limit:34,line:17,list:12,load:[1,2,3,4,6,7,8,9,10,11,12,13,14,15,18,19,20,21,23,27],log:[7,31],machin:18,maco:33,main:0,manag:31,manual:[32,34],materi:32,meta:31,metric:[0,6,12],mix:21,mlp:23,model:[1,2,3,4,9,10,11,24,25,26,34],modul:0,more:10,multi:[2,3],next:21,nopreprocess:24,number:27,object:14,obtain:9,one:10,other:[31,34],output:[3,31],over:13,own:12,parallel:[17,18,34],part:[9,10],partial:10,pd:10,pdp:10,perform:[13,14,24],permut:10,plot:[4,10,13],predefin:12,predict:[4,9,24,25,26],preprocess:[24,30],preprocessor:[11,24,25],present:32,print:[1,2,3,4,11,12,20,23,24,25,26,27],procedur:31,provid:15,python:17,random:[19,27],refit:14,regress:[0,3,4,26,30],regressor:[3,4],releas:35,report:9,requir:33,resampl:14,resourc:[31,34],restrict:27,result:[31,34],ridg:26,roar:19,run:[2,9],s:27,schedul:17,scikit:14,score:[1,2,3,4,6,8,11,13,14,20,24,25,26],search:[9,19,29,31,34],second:12,see:21,select:34,sequenti:20,setup:17,show:11,singl:[15,18],sklearn:[1,2,3,4,9,11,17,20,21,23,24,25,26,27,30,32,33],sourc:33,space:[3,25,27,31,34],spawn:17,splitter:14,start:17,statement:17,statist:[2,9,23,24,25,26],strategi:14,subclass:27,subsampl:21,success:21,successivehalv:21,system:33,test:23,than:10,third:12,time:[5,13,16,22,28],tutori:32,two:17,type:8,ubuntu:33,until:17,us:[9,12,19,21,25,26],usag:[17,18,20],user:15,v0:35,valid:[14,21],version:35,view:[1,2,3,4],wait:17,we:21,window:33,without:24,worker:17,write:30,x:35}}) \ No newline at end of file