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Paul Cadman <pcadman@gmail.com> 20 February 2019 at 22:48
To: The Little Typer Study Group London <the-little-typer-study-group-london@googlegroups.com>

In the session on Tuesday we discussed solutions to the exercises for chapters 8 and 9:
https://github.com/paulcadman/the-little-typer/blob/master/exercises/equality-Nat-crib.rkt
Some of Ayman's solutions are in this gist:
https://gist.github.com/aymanosman/02a84d369eb83b402d61001fe7320d98

We also discussed how proof work in Coq and Idris.

Thanks all for coming,

Paul
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Walter Schulze <awalterschulze@gmail.com> 25 February 2019 at 21:48
To: Paul Cadman <pcadman@gmail.com>
Cc: The Little Typer Study Group London <the-little-typer-study-group-london@googlegroups.com>

Since | was sick, | am still busy with Chapter 9, which | am finding quite tough.
I am having some trouble totally grasping replace, but | think | might finally be onto something.

I would like to think of replace like this:

(replace with-new
in-here
where-old)

where-old is some type, which contains the old expression | want to replace (.. old ..), this could be (same (add1 (add1
(+ n-1j))), in other words (= Nat (add1 (add1 (+ n-1j)) (add1 (add1 (+ n-1j))) where old is (add1 (+ n-1j))

in-here is a function that shows you where you want to replace old (lambda (here) (.. here .. )), this could be (= Nat
(add1 (add1 (+ n-1j)) (add1 here))

with-new is a proof that old is the same as new (= X old new), this could be (= Nat (add1 (+ n-1j)) (+ n-1 (add1 j))),
where old is (add1 (+ n-1j)) and new is (+ n-1 (add1 j))

which would make the resulting type

(= Nat (add1 (add1 (+ n-1j)) (add1 (+ n-1 (add1 j))))

So if | have a proof that old is the same as new
Then | can take any type containing old

Simply show replace, where old is

And get a type where old is replaced by new
What do you think?

mot, base and target seem to be confusing me at the moment.
[Quoted text hidden]
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To: The Little Typer Study Group London <the-little-typer-study-group-london@googlegroups.com>
That makes sense to me. Here's how | think of it (we'll all have our own way to understand it).
Let “target’ be a proof that ‘from™ is equal to "to™ - i.e any expression with type (= X from to).

Let "'mot’ be a family of propositions (-> X U) - i.e for any x: X we get a proposition (lambda x). (NB: This proposition
may or may not have proofs).

If ‘base’ is a proof of the proposition (lambda from) then using the proof “target” we can **replace** the “from’ in
(lambda from) with “to" to get a proof of (lambda to).

[Quoted text hidden]

[Quoted text hidden]

To view this discussion on the web, visit https://groups.google.com/d/msgid/the-little-typer-study-group-
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Ayman Osman <aymano.osman@gmail.com> 25 February 2019 at 23:39

To: Paul Cadman <pcadman@gmail.com>
Cc: The Little Typer Study Group London <the-little-typer-study-group-london@googlegroups.com>

It took me a while to understand what replace was doing so | think I'm in a good position to explain it. Here goes.

Consider this 'inference rule':

In prose: given a proof that "a’ equals "b* and a proof involving "a’, produce a proof involving "b".

Think of the *(... a/b ...)" as a template. We can write a template as a lambda.
Namely, “(lambda (a/b) (... a/b ...)".

A “replace’ expression is then:

(replace a=b
(lambda (a/b) (... a/b ...))
(...a..)

Which produces:

Example: defining trans

See https://docs.racket-lang.org/pie/index.html?q=trans#%28def._%28%28lib._pie%2Fmain..rkt%29. trans%29%29

#lang pie

(claim _trans
(Pi((XU)
(from X)
(middle X)
(to X))
(-> (= X from middle) (= X middle to)
(= X from t0))))

(define _trans
(lambda (X from middle to from=middle middle=to)
(replace middle=to
(lambda (middle/to) (= X from middle/to))
from=middle)))
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(= X middle to) (= X from middle)

(= X from to)
So you can see why our template is of the form “(lambda (a/b) (= X from a/b))".
Ayman
[Quoted text hidden]
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Walter Schulze <awalterschulze@gmail.com> 26 February 2019 at 15:58
To: Ayman Osman <aymano.osman@gmail.com>
Cc: Paul Cadman <pcadman@gmail.com>, The Little Typer Study Group London <the-little-typer-study-group-
london@googlegroups.com>

Thank you both of you.

That was very helpful.

| particularly like that you both think differently.

Let ‘mot’ be a family of propositions (-> X U)
wow, these are both very helpful ways of thinking about it.

Thank you
[Quoted text hidden]

https://mail.google.com/mail/u/0/?ik=f37b21daf8 & view=pt&search=all&permthid=thread-f%3A 1626029870994 110243 &simpl=msg-f%3A1626029870994110...  3/3


https://groups.google.com/d/msgid/the-little-typer-study-group-london/CALfQKLNeRc%2B_T3t1ZZUg4q%3D5MZv5jfUeF_Q_B_rrUfVyu6OSmQ%40mail.gmail.com?utm_medium=email&utm_source=footer

