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Fast Trajectory Optimization for Legged Robots
using Vertex-based ZMP Constraints
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Abstract—This paper combines the fast Zero-Moment-Point
(ZMP) approaches that work well in practice with the broader
range of capabilities of a Trajectory Optimization formulation, by
optimizing over body motion, footholds and Center of Pressure
simultaneously. We introduce a vertex-based representation of
the support-area constraint, which can treat arbitrarily oriented
point-, line-, and area-contacts uniformly. This generalization
allows us to create motions such as quadrupedal walking, trotting,
bounding, pacing, combinations and transitions between these,
limping, bipedal walking and push-recovery all with the same
approach. This formulation constitutes a minimal representation
of the physical laws (unilateral contact forces) and kinematic
restrictions (range of motion) in legged locomotion, which allows
us to generate diverse motions in less than a second. We
demonstrate the feasibility of the generated motions on a real
quadruped robot1.

Index Terms—Legged Robots, Motion and Path Planning,
Optimization and Optimal Control, Humanoid and Bipedal
Locomotion

I. INTRODUCTION

PLANNING and executing motions for legged systems is
a complex task. A central difficulty is that legs cannot

pull on the ground, e.g. the forces acting on the feet can
only push upwards. Since the motion of the body is mostly
generated by these constrained (=unilateral) contact forces,
this motion is also restricted. When leaning forward past the
tip of your tows, you will fall, since your feet cannot pull
down to generate a momentum that counteracts the gravity
acting on your Center of Mass (CoM). Finding motions that
respect these physical laws can be done by various approaches
described in the following.

A successful approach to tackle this problem is through full-
body Trajectory Optimization (TO), in which an optimal body-
and endeffector-motion plus the appropriate inputs are discov-
ered to achieve a high-level goal. This was demonstrated by
[1]–[8] resulting in an impressive range of motions for legged
systems. These TO approaches have shown great performance,
but are often time consuming to calculate and not straight-
forward to apply on a real robot. In [9] the authors generate
an wide range of quadruped gaits, transitions and jumps based
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on a parameterized controller and periodic motions. While the
resulting motions are similar to ours, the methods are very
different: While our approach is based on TO with physical
constraints, [9] optimizes controller parameters based mainly
on motion capture data.

Previous research has shown that to generate feasible mo-
tions to execute on legged systems, non-TO approaches also
work well, although the motions cannot cover the range of
the approaches above. One way is to model the robot as a
Linear Inverted Pendulum (LIP) and keep the Zero-Moment-
Point (ZMP) [10] inside the convex hull of the feet in stance.
This approach has been successfully applied to generate mo-
tions for biped and quadruped walking [11]–[16]. However,
these hierarchical approaches use predefined footholds, usually
provided by a higher-level planner beforehand that takes
terrain information (height, slope) into account. Although this
decoupling of foothold planning and body motion generation
reduces complexity, it is unnatural, as the main intention
of the footholds is to assist the body to achieve a desired
motion. By providing fixed foot-trajectories that the body
motion planner cannot modify, constraints such as stability or
kinematic reachability become purely the responsibility of the
lower-level body motion planner, artificially constraining the
solution. A somewhat reverse view of the above are Capture
Point (CP) [17] approaches, which have been successfully used
to generate dynamic trotting and push recovery motions for
quadruped robots [18], [19]. A desired body motion (usually
a reference CoM velocity) is given by a high-level planner or
heuristic, and a foothold/Center of Pressure (CoP) trajectory
must be found that generates it.

Because of the dependency between footholds and body
motion, approaches that optimize over both these quantities
simultaneously, while still using a simplified dynamics model,
have been developed [20]–[25]. This reduces heuristics while
increasing the range of achievable motions, but still keeps
computation time short compared to full body TO approaches.
These approaches are most closely related to the work pre-
sented in this paper.

The approaches [21]–[24] demonstrate impressive perfor-
mance on biped robots. One common difficulty in these
approaches however is the nonlinearity of the CoP constraint
with respect to the orientation of the feet. In [22], [23] the
orientation is either fixed or solved with a separate optimizer
beforehand. In [24] the nonlinearity of this constraint is
accepted and the resulting nonlinear optimization problem
solved. However, although the orientation of the individual
feet can be optimized over in these approaches, a combined
support-area with multiple feet in contact is often avoided, by
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not sampling the constraint during the multi-support phase. For
biped robots neglecting the constraint in the double-support
phase is not so critical, as these take up little time during
normal walking. For quadruped robots however, there are
almost always two or more feet in contact at a given time,
so the correct representation of the dynamic constraint in this
phase is essential.

We therefore extend the capabilities of the approaches
above by using a vertex-based representation of the CoP
constraint, instead of hyperplanes. In [26] this idea is briefly
touched, however the connection between the corners of the
foot geometry and the convexity variables is not made and
thereby the restriction of not sampling in the multi-support
phase remains. Through our proposed formulation, single- and
multi-stance support areas can be represented for arbitrary
foot geometry, including point-feet. Additionally, it allows to
represent arbitrarily oriented 1D-support lines, which wasn’t
possible with the above approaches. Although not essential
for biped walk on non-point feet, it is a core necessity for
dynamic quadruped motions (trot, pace, bound). This is a
reason why ZMP-based approaches have so far only been used
for quadrupedal walking, where 2D-support areas are present.

The approach presented in this paper combines the LIP-
based ZMP approaches that are fast and work well in practice
with the broader range of capabilities of a TO formulation.
A summary of the explicit contributions with respect to the
papers above are:
• We reformulate the traditional ZMP-based legged loco-

motion problem [11] into a standard TO formulation with
the CoP as input, clearly identifying state, dynamic model
and path- and boundary-constraints, which permits easier
comparison with existing methods in the TO domain.
Push recovery behavior also naturally emerges from this
formulation.

• We introduce a vertex-based representation of the CoP
constraint, instead of hyperplanes. which allows us to
treat arbitrarily oriented point-, line-, and area-contacts
uniformly. This enables us to generate motions that are
difficult for other ZMP-based approaches, such as bipedal
walk with double-support phases, point-feet locomotion,
various gaits as well as arbitrary combinations and tran-
sitions between these.

• Instead of the heuristic shrinking of support areas, we
introduce a cost term for uncertainties that improve the
robustness of the planned motions.

We demonstrate that the problem can be solved for multiple
steps in less than a second to generate walking, trotting,
bounding, pacing, combinations and transitions between these,
limping, biped walking and push-recovery motions for a
quadruped robot. Additionally, we verify the physically fea-
sibility of the optimized motions through demonstration of
walking and trotting on a real 80 kg hydraulic quadruped.

II. METHOD

A. Physical Model

We model the legged robot as a Linear Inverted Pendulum
(LIP), with its CoM c=(cx, cy) located at a constant height

Fig. 1. Modeling of a quadruped robot by a LIP with the right-front pRF and
left-hind pLH legs in contact. Through joint torques the robot can control
the center of pressure u and thereby the motion of the CoM c̈. However, u
can only lie inside the convex hull (green line) of the contact points.

h. The touchdown position of the pendulum with the ground
(also known as ZMP or CoP) is given by u=(ux, uy) as seen
in Fig. 1. The CoM acceleration c̈ is predefined by the physics
of a tipping pendulum[

ċ
c̈

]
= f(x,u) =

[
ċ

(c− u)gh−1

]
. (1)

The second-order dynamics are influenced by the CoM posi-
tion c, the CoP u and gravity g. This model can be used to
describe a legged robot, since the robot can control the torques
in the joints, thereby the contact forces and through these the
position of the CoP. Looking only at the x-direction (left image
in Fig. 1), if the robot decides to lift the hind leg, the model
describing the system dynamics is a pendulum in contact
with the ground at the front foot pRF , so u=pRF =(px, py).
Since this pendulum is nearly upright, the CoM will barely
accelerate in x; the robot is balancing on the front leg.
However, lifting the front leg can be modeled as placing the
pendulum at u = pLH , which is strongly leaning and thereby
must accelerate forward in x. By distributing the load between
the legs, the robot can generate motions corresponding to a
pendulum anchored anywhere between the contact points, e.g.
u ∈ P (see Fig. 1). Therefore, the CoP u is considered the
input to the system and an abstraction of the joint torques and
contact forces.

B. Trajectory Optimization Problem

We want to obtain the inputs u(t) that generate a motion
x(t) from an initial state x0 to a desired goal state xT
in time T for a robot described by the system dynamics
f(x,u), while respecting some constraints h(x,u) ≤ 0 and
optimizing a performance criteria J . This can be formulated
as a continuous-time TO problem

find x(t),u(t), for t ∈ [0, T ] (2a)
subject to x(0)− x0 = 0 (given initial state) (2b)

ẋ(t)− f(x(t),u(t)) = 0 (dynamic model) (2c)
h(x(t),u(t)) ≤ 0 (path constraints) (2d)
x(T )− xT = 0 (desired final state) (2e)
x(t),u(t) = arg min J(x,u). (2f)
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The dynamics are modeled as those of a LIP (1), whereas the
state and input for the legged system model are given by

x(t) =
[
c ċ p1, α1, . . . ,pnf , αnf

]T
(3)

u(t) = u, (4)

which includes the CoM position and velocity and the position
and orientation of the nf feet. The input u(t) to move the
system is the generated CoP, abstracting the usually used
contact forces or joint torques.

C. Specific Case: Capture Point

We briefly show that this general TO formulation, using
the LIP model, also encompasses Capture Point methods to
generate walking motions. Consider the problem of finding
the position to step with a point-foot robot to recover from
a push. With the initial position c0 and the initial velocity
ċ0 generated by the force of the push we have x0 =(c0, ċ0).
The robot should come to, and remain, at a stop at the end
of the motion, irrespective of where and when, so we have
ċT→∞=0. We parametrize the input by the constant parameter
u(t)=u0, as we only allow one step with a point-foot. We
allow the CoP to be placed anywhere, e.g. no path constraints
(2d) and do not have a preference as to how the robot achieves
this task, e.g. J(x,u)=0.

Such a simple TO problem can be solved analytically,
without resorting to a mathematical optimization solver (see
Appendix A). The point on the ground to generate and hold
the CoP in order to achieve a final steady-state maintaining
zero CoM velocity becomes

u(t) = u0 = c0 +
√
hg−1ċ0. (5)

This is the one-step Capture Point (CP), originally derived
by [17] and the solution of our general TO formulation (2)
for a very specific case (e.g one step/control input, zero final
velocity).

D. General Case: Legged Locomotion Formulation

Compared to the above example, our proposed formulation
adds the capabilities to represent motions of multiple steps,
time-varying CoP, physical restrictions as to where the CoP
can be generated and preferences which of the feasible motions
to choose. This TO formulation is explained on a high-level in
the following, corresponding to Fig. 2, whereas more specific
details of the implementation are postponed to the next section.

1) Unilateral Forces: We clearly differentiate between the
CoP u and the feet positions pf , which only coincide for
a point-foot robot with one leg in contact. Generally, the
footholds affect the input bounds of u. We use u to control the
body, but must at the same time choose appropriate footholds
to respect the unilateral forces constraint. Traditional ZMP
approaches fix the footholds pf in advance, as the combination
of both the CoP u and the footholds make this constraint
nonlinear. We accept this nonlinearity and the higher numerical
complexity associated with it. This gives us a much larger
range of inputs u, as we can “customize” our bounds P

Fig. 2. Overview of the TO problem: A point-foot quadruped robot
trotting forward in x-direction, first swinging right-front and left-hind legs
f ∈ {RF,LH}, then left-front and right-hind f ∈ {LF,RH}. The CoM
motion cx (black line) is generated by shifting the CoP ux(t) (red dots).
However, ux can only lie in the convex hull P (green area) of the legs in
contact at that time t. Additionally, the position of each leg pf must always
be inside its range of motion R (gray areas for front and hind legs) relative
to the CoM. The optimization problem consist of varying the position of the
footholds pfs ∈ R, to allow inputs ux ∈ P that drive the robot from an initial
position cx,0 to a desired goal position cx,T in time T .

by modifying the footholds according to the desired task.
Therefore, the first path constraint of our TO problem is given
by

h1(x(t),u(t)) ≤ 0 ⇔ u ∈ P(pf , αf , cf ), (6)

where P represents the convex hull of the feet in contact as
seen in Fig. 2 and cf ∈ {0, 1} ∈ Z is the indicator if foot f
is in contact.

We implement this convex hull constraint by weighing
the vertices/corners of each foot in contact. This extends
the capabilities of traditional representations by line seg-
ments/hyperplanes to also model point- and line-contacts of
arbitrary orientation. We use predefined contact sequences
and timings cf (t), to only optimize over real-valued decision
variables w ∈ R and not turn the problem into a mixed-integer
Nonlinear Programming Problem (NLP). Simply by adapting
this contact schedule cf (t), the optimizer generates various
gaits as well as combinations and transitions between these,
for which previously separate frameworks were necessary.

2) Kinematic Reachability: When modifying the footholds
to enclose the CoP, we must additionally ensure that these
stay inside the kinematic range R of the legs (Reachability).
This constraint that depends on both the CoM c and foothold
positions pf is formulated for every leg f as

h2(x(t)) ≤ 0 ⇔ pf ∈ R(c). (7)

Allowing the modification of both these quantities simultane-
ously characterizes the legged locomotion problem more accu-
rately and reduces heuristics used in hierarchical approaches.

3) Robust Motions: With the above constraints the motion
will comply to physics and the kinematics of the system.
This feasible motion is assuming a simplified model, a perfect
tracking controller and an accurate initial state. To make
solutions robust to real world discrepancies where these as-
sumptions are violated, it is best to avoid the borders of
feasible solutions, where the inequality constraints are tight
(h=0). This can be achieved by artificially shrinking the
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solutions space by a stability margin (e.g. h≤m). For legged
locomotion this is often done by shrinking the support area to
avoid solutions were the CoP is placed at the marginally-stable
border [13].

We do not restrict the solution space, but choose the more
conservative of the feasible motions through a performance
criteria Jλ. This soft constraint expresses “avoid boundaries
when possible, but permit if necessary”. The robot is allowed
to be at marginally stable states, but since there are many
uncertainties in our model and assumptions, it is safer to avoid
them. This cost does not require a hand-tuned stability margin
and the solution can still be at the boundaries when necessary.
However, especially for slow motions (e.g. walking) where
small inaccuracies can accumulate and cause the robot to fall,
this cost term is essential to generate robust motions for real
systems.

III. IMPLEMENTATION

There exist different methods to solve Optimal Control
problems (2), namely Dynamic Programming (Bellman Op-
timality Equation), indirect (Maximum Principle) and direct
methods [27]. In direct methods the continuous time TO
problem is represented by a finite number of decision variables
and constraints and solved by a nonlinear programming solver.
If the decision variables w fully describe the input u(t) and
state x(t) over time, the method is further classified as a
simultaneous direct method, with flavors Direct Transcription
and Multiple Shooting. In our approach we chose a Direct
Transcription formulation, e.g. optimizing state and controls
together. This has the advantage of not requiring an ODE
solver, constraints on the state can be directly formulated
and the sparse structure of the Jacobian often improves
convergence. The resulting discrete formulation to solve the
continuous problem in (2) is given by

find w = (wc,wp,wu)

subject to (2b), (given initial state)
(10), (12), (15), (19) (dyn./path constraints)
(2e), (desired final state)
w = arg min(21), (robustness cost)

where wc are the parameters describing the CoM motion, wp

the feet motion (swing and stance) and wu the position of the
CoP. This section describes in detail how we parametrize the
state (wc,wp) and input wu, formulate the constraints and
defined the cost (21).

A. Center-of-Mass Motion

This section explains how the continuous motion of the
CoM can be described by a finite number of variables to opti-
mize over, while ensuring compliance with the LIP dynamics.

1) CoM Parametrization: The CoM motion is described by
a spline, strung together by n quartic-polynomials as

x(t) =

[
c(t)
ċ(t)

]
=

4∑
i=1

[
(t−tk)
i

]
ak,i(t−tk)i−1 +

[
ak,0
0

]
(8)

wc =
[
a1,0, . . . ,a1,4, . . . ,an,0, . . . ,an,4

]
, (9)

with coefficients ak,i ∈ R2 and tk describing the global time
at the start of polynomial k.

We ensure continuity of the spline by imposing equal
position and velocity at each of the n−1 junctions between
polynomial k and k+1, so x[t−k+1] = x[t+k+1]. Using Tk =
tk+1−tk we enforce

4∑
i=1

[
Tk
i

]
ak,iT

i−1
k +

[
ak,0
0

]
=

[
ak+1,0

ak+1,1

]
. (10)

2) Dynamic Constraint: In order to ensure consistency
between the parametrized motion and the dynamics of the
system (1), the integration of our approximate solution c̈(t)
must resemble that of the actual system dynamics, so∫ tk+1

tk

c̈(t) dt ≈
∫ tk+1

tk

f2(x(t),u(t)) dt. (11)

Simpson’s rule states that if c̈(t) is chosen as a 2nd-order
polynomial (which is why c(t) is chosen as 4th-order) that
matches the system dynamics f2 at the beginning, the center
and at the end, then (11) is bounded by an error proportional
to (tk+1 − tk)4. Therefore we add the following constraints
for each polynomial

c̈[t] = f2(x[t],u[t]), ∀t ∈
{
tk,

tk+1−tk
2 , tk+1

}
(12)

(see Appendix B for a more detailed formulation). By keeping
the duration of each polynomial short (∼50 ms), the error of
Simpson’s integration stays small and the 4th-order polyno-
mial solution c(t) is close to an actual solution of the Ordinar
Differential Equation (ODE) in (1).

This formulation is similar to the ”collocation” constraint
[28]. Collocation implicitly enforces the constraints (12) at
the boundaries through a specific parametrization of the poly-
nomial, while the above formulation achieves this through
explicit constraints in the NLP. Reversely, collocation enforces
that ∂c(t)

∂t = ċ(t) through the explicit constraint, while our
formulation does this through parametrization in (8).

B. Feet Motion
1) Feet Parametrization: We impose a constant position

pfs ∈ R2 and orientation αfs ∈ R if leg f is in stance. We
use a cubic polynomial in the ground plane to move the feet
between two consecutive contacts[

pf (t)
αf (t)

]
=

3∑
i=0

[
afs,i
bfs,i

]
(t− ts)i, (13)

where (t− ts) is the elapsed time since the beginning of the
swing motion. The vertical swingleg motion does not affect the
NLP and is therefore not modeled. The coefficients as,i ∈ R2

and bs,i ∈ R are fully determined by the predefined swing
duration and the position and orientation of the enclosing con-
tacts

{
pfs , α

f
s

}
and

{
pfs+1, α

f
s+1

}
. Therefore the continuous

motion of all nf feet can be parametrized by the NLP decision
variables

wp =
[
w1
p, . . . ,w

nf
p

]
,

where wf
p =

[
pf1 , α

f
1 , . . . ,p

f
ns
, αfns

] (14)

are the parameters to fully describe the motion of a single leg
f taking ns steps.
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RoM Right Foot(R)

RoM Left Foot (L)

Fig. 3. Top down view of a biped for both feet in contact at pR,pL ∈ R
inside the range of motion R (gray), which moves with the CoM position.
For square feet with corners vv , rotated by α, the support area is shown by
P (light green area). This is the area to which the CoP u is constrained. If
the biped controls its CoP to lie on the tip of the right foot, the corresponding
corner carries all the load (λR1 = 1.0), while the other seven lambdas are
zero. In case of point-feet the support area is simply a straight line between
pR and pL.

2) Range-of-Motion Constraint: To ensure a feasible kine-
matic motion, we must enforce pf ∈ R(c), which is the gray
area in Fig. 3. We approximate the area reachable by each
foot through a rectangle [−rx,y, rx,y], representing the allowed
distance that a foot can move from its nominal position pfnom
(center of gray area). The foothold position for each foot f is
therefore constrained by

−rx,y < pf [t]− c[t]− pfnom < rx,y. (15)

Contrary to hierarchical approaches, this constraint allows the
optimizer to either move the body to respect kinematic limits
or place the feet at different positions. A constraint on the foot
orientation can be formulated equivalently.

C. Center of Pressure Motion

To represent the continuous CoP trajectory, we parame-
terize it through the load carried by each endeffector. This
parametrization is used to formulate a novel convexity con-
straint based on vertices instead of hyperplanes. Finally this
section introduces a cost that keeps the CoP from marginally
stable regions and improves robustness of the motion.

1) CoP Parametrization: The CoP u(t) is not parametrized
by polynomial coefficients or discrete points, but by the
relative load each corner of each foot is carrying. This load is
given by

λ(t) =
[
λ1(t), . . . ,λnf (t)

]T
,

where λf (t) =
[
λf1 (t), . . . , λfnv

(t)
]
∈ [0, 1]

nv .
(16)

nv represents the number of vertices/corners of foot f . For the
square foot in Fig. 3, four lambda values represent one foot
and distribute the load amongst the corners. These multipliers
represent the percentage of vertical force that each foot is
carrying, e.g. ||λf (t)||1 = 0.9 implies that leg f is carrying
90% of the weight of the robot at time t. Using these values,
the CoP is parameterized by

u(t) =

nf∑
f=1

nv∑
v=1

λfv (t)(pf (t) + R(αf (t))vv), (17)

where R(αf ) ∈ R2×2 represents the rotation matrix corre-
sponding to the optimized rotation αf of foot f (13). vv
represents the fixed position (depending on the foot geometry)
of corner v of the foot expressed in the foot frame. For a point-
foot robot with vv=0, (17) simplifies to u =

∑nf

f=1 λ
fpf .

We represent λ(t) for the duration of the motion by
piecewise-constant values λi = λ(ti) discretized every 20 ms,
resulting in nu nodes. Therefore the CoP u can be fully pa-
rameterized by wp and the additional NLP decision variables

wu =
[
λ1, . . . ,λnu

]
. (18)

2) Unilateral Forces Constraint: We represent the essential
input constraint (6), which ensures that only physically feasible
forces inside the convex hull of the contacts are generated, for
i = 1, . . . , nu as

‖λi‖1 = 1, (19a)

0 ≤ λfv [ti] ≤ cf [ti], (19b)

where cf ∈{0, 1}∈Z is the indicator if foot f is in contact.
The constraints (17) and (19a) allow u to be located any-
where inside the convex hull of the vertices of the current
foot positions, independent of whether they are in contact.
However, since only feet in contact can actually carry load,
(19b) enforces that a leg that is swinging (cf =0) must have
all the corners of its foot unloaded. These constraints together
ensure that the CoP lies inside the green area shown in Fig. 3.

3) Robust Walking Cost: To keep the CoP away from the
edges of the support-area we could constrain λfv of each leg
in stance to be greater than a threshold, causing these legs in
contact to never be unloaded. This conceptually corresponds
to previous approaches that heuristically shrink support areas
and thereby reduce the solution-space for all situations. We
propose a cost that has similar effect, but still permits the
solver to use the limits of the space if necessary.

The most robust state to be in, is when the weight of the
robot is equally distributed amongst all the corners in contact,
so

λf∗v (t) =
cf (t)

nv(t)
, (20)

where nv(t) = nv
∑nf

f=1 c
f (t) is the total number of vertices

in contact at time t, predefined by the contact sequence c(t).
This results in the CoP to be located in the center of the
support areas. The deviation of the input values from the
optimal values λ∗ over the entire discretized trajectory (18)
is then given by

Jλ(wu) =

nu∑
i=1

‖λi − λ∗i ‖
2
2 . (21)

For a support triangle (λf∗v = 1
3 ) this cost tries to keep the

CoP in the center and for a line (λf∗v = 1
2 ) in the middle.

For quadruped walking motions this formulation generates
a smooth transition of the CoP between diagonally opposite
swing-legs, while still staying away from the edges of support-
areas whenever possible.
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Fig. 4. The controller that generates the required torques to execute a planned
motion. Given the current state of the system x0 and a user defined goal state
xT , the optimizer generates a reference motion. We augment this reference
through a body feedback acceleration based on how much the body deviates
from the desired motion. Inverse dynamics is used to generate the torques to
achieve the reference base and joint accelerations.

IV. TRACKING THE MOTION

The motion optimization part of our approach is largely
robot independent. The only robot specific information needed
to run the framework are the robot height, the number of
feet, their geometry and their kinematic range. For execution
however, the optimized motion must be translated into joint
torques τ using a fully-body dynamics model. This section
discusses this generation summarized by Fig. 4.

A. Generating full-body reference accelerations

The 6–Degrees of Freedom (DoF) base pose is reconstructed
using zero desired orientation (in Euler angles x,y,z), the
optimized CoM motion c (assuming the geometric center of
the base coincides with the CoM), and the constant base height
h as

qb,ref (t) =
[
0 0 0 cx(t) cy(t) h

]T
.

In order to cope with uncertainties it is essential to incorporate
feedback into the control loop. We do this by adding an op-
erational space PD-controller on the base that creates desired
6D base accelerations according to

q̈b,ref = q̈b,ff +Kp(qb − qb,ref ) +Kd(q̇b − q̇b,ref ).

The derivate of the pose, the base twist q̇b ∈ R6 represents the
base angular and linear velocities and q̈b,ff is the optimized
CoM acceleration from the NLP. This controller modifies the
planned body motion if the current state deviation from the
reference state.

In order to obtain the desired joint accelerations that corre-
spond to the planned Cartesian motion of the feet we can use
the relationship p̈(t) = Jq̈+J̇q̇, where q̇, q̈ ∈ R6+n represent
the full body state (base + joints) and J =

[
Jb Jj

]
∈

R3nf×(6+n) the Jacobian that maps full-body velocities to lin-
ear foot velocities in world frame. Rearranging this equation,
and using the Moore–Penrose pseudoinverse J+

j , gives us the
reference joint acceleration

q̈j,ref = J+
j

(
p̈− J̇q̇− Jbq̈b,ref

)
. (22)

B. Inverse Dynamics

The inverse dynamics controller is responsible for generat-
ing required joint torques τ to track the reference acceleration
q̈ref , which is physically feasible based on the LIP model.

This is done based on the rigid body dynamics model of
the system, which depends on the joint torques, but also the
unknown contact forces. To eliminate the contact forces from
the equation, we project it into the space of joint torques by
P = I − J+

c Jc, where JTc is the contact Jacobian that maps
Cartesian contact forces to joint torques [29], [30]. This allows
us to solve for the required joint torques through

τ = (PST )+ P(Mq̈ref + C), (23)

where M is the joint space inertia matrix, C the effect of
Coriolis forces on the joint torques and S the selection matrix
which prohibits from actuating the floating base state directly.
We found it beneficial to also add a low-gain PD-controller on
the joint position and velocities. This can mitigate the effects
of dynamic modeling errors and force tracking imperfections.

V. RESULTS

We demonstrate the performance of this approach on the
hydraulically actuated quadruped robot HyQ [31]. The robot
weighs approximately 80 kg, moves at a height of about 0.6 m
and is torque controlled. Base estimation [32] is performed
on-board, fusing Inertial Measurement Unit (IMU) and joint
encoder values. Torque tracking is performed at 1000 Hz,
while the reference position, velocity and torque set-points are
provided at 250 Hz. The C++ dynamics model is generated by
[33].

A. Discussion of generated motions

This section analyses the different motions generated by
changing the sequence and timings of contacts c(t). There is
no high-level footstep planner; the footholds are chosen by
the optimizer to enable the body to reach a user defined goal
state xT . The results where obtained using C++ code inter-
faced with Interior Point Method (Ipopt [34]) or Sequential
Quadratic Programming (Snopt [35]) solvers on an Intel Core
i7/2.8 GHz Quadcore laptop. The Jacobians of the constraint
and the gradient of the cost function are provided to the
solver analytically, which is important for performance. We
initialize the decision variables w with the quadruped standing
in default stance for a given duration. The shown motions
correspond to the first columns (e.g. 16 steps) in Table I. The
reader is encouraged to view the video2, as it very intuitively
demonstrates the performance of this approach. Apart from the
basic gaits, the video shows the capability of the framework
to generate gradual transitions between them, bipedal walking,
limping and push-recovery.

1) Walk: Fig. 5(a) shows a walk of multiple steps, with
the two support areas highlighted for swinging RF→LH. The
effect of the cost term Jλ is clearly visible, as the CoP is
accumulated away from the support area borders by left-
right swaying of the body. Only when switching diagonally
opposite legs the CoP lies briefly at the marginally stable
border, but then immediately shifts to a more conservative
location. Without the cost term, the CoM motion is a straight
line between x0 and xT , causing the real system to fail.

2Video of generated motions: https://youtu.be/5WLeQMBuv30.
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(a) Quadruped Walk: swinging one leg at a time.

(b) Quadruped Trot: swinging diagonally opposite legs.

(c) Quadruped Pace: swinging left, then right legs.

(d) Quadruped Bound: swinging front, then hind legs.

Fig. 5. Top down view of the generated motions for a quadruped robot
moving from left to right, swinging the legs f left-hind (blue), left-front
(purple), right-hind (brown), right-front (green) in the sequence shown. The
initial stance is shown by the squares, the optimized steps by the circles. The
CoM motion pf (t) is shown by the solid line, where the color corresponds
to the swingleg(s) at that moment. If all legs are in contact during, the motion
and corresponding CoP is shown in gray. The support area for each phase is
shown by the transparent areas. The optimized CoP positions u(t) that drive
the system are shown in red and always lie inside the support area.

2) Trot: Fig. 5(b) shows a completely different pattern of
support areas and CoP distribution. During trotting only line-
contacts exist, so the possible places to generate the CoP is
extremely restricted compared to walking. Notice how the
CoP lies close to the CoM trajectory during the middle of
the motion, but deviates quite large back/forward during the
start/end of the motion (e.g. the robot pushing off from the
right-front (green) leg in the second to last step). This is
because the distance between the CoP and the CoM generates
the acceleration necessary for starting and stopping, whereas
in the middle the robot is moving with nearly constant velocity.

3) Pace/Bound/Biped Walk: Specifying legs on the same
side to be in contact, with a short four-leg transition period
between them produces the motion shown in Fig. 5(c). This
can also be viewed as biped walking with line-feet (e.g. skis),
with the constraint enforced also during the double-stance
phase. The first observation is the sideways swaying motion
of the CoM. This is necessary because the support areas do
not intersect (as in the trot) the CoM trajectory. Since the
CoP always lies inside these left and right support areas, they

TABLE I
SPECS OF THE NLP FOR 16- AND 4-STEP MOTIONS

(16 steps, 1m) | (4 steps, 0.2m)

Walk Trot Pace Bound

Horizon T [s] 6.4 | 1.6 2.4 | 0.6 3.2 | 0.8 3.2 | 0.8
Variables [-] 646 | 202 387 | 162 1868 | 728 1868 | 728
Constraints [-] 850 | 270 548 | 255 2331 | 939 2331 | 939
tk+1 − tk [s] 0.1 0.05 0.02 0.02
Cost term Jλ - - -

Time Ipopt [s] 0.25 | 0.06 0.02 | 0.01 0.21 | 0.12 0.17 | 0.04
Time Snopt [s] 0.35 | 0.04 0.04 | 0.01 0.54 | 0.18 0.42 | 0.29

will accelerate the body away from that side until the next
step, which then reverses the motion. We found that the LIP
model with fixed zero body orientation does not describe such
a motion very well, as the inherent rotation (rolling) of the
body is not taken into account. In order to also demonstrate
these motions on hardware, the LIP model must be extended
by the angular body motion. Specifying the front and hind
legs to alternate between contact generates a bound Fig. 5(d).
The lateral shifting motion of the pace is now transformed to a
forward backward motion of the CoM due to support areas. In
case of an omni directional robot a bounding gait can simply
be considered a side-ways pace.

VI. CONCLUSION

This paper presented a TO formulation using vertex-based
support-area constraints, which enables the generation of a
variety of motions for which previously separate methods
were necessary. In the future, more decision variables (e.g.
contact schedule, body orientation, foothold height for uneven
terrain), constraints (e.g. friction cone, obstacles) and more
sophisticated dynamic models can be incorporated into this
formulation. Additionally, we plan to utilize the speed of the
optimization for Model Predictive Control (MPC).

APPENDIX

A. Derivation of Capture Point

Consider the differential equation describing a LIP (linear,
constant coefficients, second order) in x-direction

c̈(t)− g

h
c(t) = − g

h
u (24)

The general solution to the homogeneous part of the equation
can be construct by the Ansatz c(t) = eαt which leads to
the characteristic equation α2eαt − g

he
αt = 0, resulting in

α = ±
√

g
h . Assuming constant input u0 leads to the partial

solution cp(t) = u0, and the space of solutions for the entire
ODE is given by

c(t) = β1e
αt + β2e

−αt + u0 (25)

where β1, β2 ∈ R are the free parameters describing the
motion. Imposing the initial position c(0) = β1+β2+u0

!
= c0

and velocity ċ(0) = αβ1 − αβ2
!
= ċ0 we obtain

β1,2 =
1

2
(c0 ±

ċ0
α
− u0). (26)
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As t → ∞ we require the velocity ċ(t) to remain at zero
(pendulum at rest). With α 6= 0 follows that limt→∞ e−αt = 0,
so we must only ensure

lim
t→∞

ċ(t) = αβ1 lim
t→∞

eαt
!
= 0 ⇔ β1 = 0 (27)

(26)⇒ u0 = c0 + α−1ċ0, (28)

which is known as the one-step Capture Point originally
derived in [17].

B. Dynamic Constraint

The system dynamics constraint (11) enforced through
c̈[t] = f2(x[t],u[t]), with the local polynomial time

¯
t=(t− tk), are formulated as

c̈[t] =

4∑
i=2

i(i− 1)ak,i
¯
ti−2 =

g

h
(c(t)− u(t))

⇔
4∑
i=2

ak,i
¯
ti−2

(
i(i− 1)− g

h¯
t2
)

=
g

h
(ak,0 + ak,1

¯
t− u(t)).
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