diff --git a/smdebug/tensorflow/keras.py b/smdebug/tensorflow/keras.py index 2ba424a3f..9a02eb0bb 100644 --- a/smdebug/tensorflow/keras.py +++ b/smdebug/tensorflow/keras.py @@ -5,6 +5,7 @@ import tensorflow.compat.v1 as tf from tensorflow.python.distribute import values from tensorflow.python.framework.indexed_slices import IndexedSlices +from tensorflow.python.util import nest # First Party from smdebug.core.modes import ModeKeys @@ -497,6 +498,10 @@ def save_smdebug_logs(self, logs): else set() ) for t_name, t_value in tensors_to_save: + if isinstance(t_value, dict): + # flatten the inputs and labels + # since we cannot convert dicts into numpy + t_value = nest.flatten(t_value) self._save_tensor_to_file(t_name, t_value, collections_to_write) def _save_metrics(self, batch, logs, force_save=False): diff --git a/tests/tensorflow2/test_support_dicts.py b/tests/tensorflow2/test_support_dicts.py new file mode 100644 index 000000000..026b16797 --- /dev/null +++ b/tests/tensorflow2/test_support_dicts.py @@ -0,0 +1,42 @@ +# Third Party +import numpy as np +import tensorflow as tf + +# First Party +import smdebug.tensorflow as smd +from smdebug.core.collection import CollectionKeys +from smdebug.trials import create_trial + + +def get_data(): + images = np.zeros((64, 224)) + labels = np.zeros((64, 5)) + inputs = {"Image_input": images} + outputs = {"output-softmax": labels} + return inputs, outputs + + +def create_hook(trial_dir): + hook = smd.KerasHook(trial_dir, save_all=True) + return hook + + +def create_model(): + input_layer = tf.keras.layers.Input(name="Image_input", shape=(224), dtype="float32") + model = tf.keras.layers.Dense(5)(input_layer) + model = tf.keras.layers.Activation("softmax", name="output-softmax")(model) + model = tf.keras.models.Model(inputs=input_layer, outputs=[model]) + return model + + +def test_support_dicts(out_dir): + model = create_model() + optimizer = tf.keras.optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=None, decay=0.0) + model.compile(loss="categorical_crossentropy", optimizer=optimizer) + inputs, labels = get_data() + smdebug_hook = create_hook(out_dir) + model.fit(inputs, labels, batch_size=16, epochs=10, callbacks=[smdebug_hook]) + model.save(out_dir, save_format="tf") + trial = create_trial(out_dir) + assert trial.tensor_names(collection=CollectionKeys.INPUTS) == ["model_input"] + assert trial.tensor_names(collection=CollectionKeys.OUTPUTS) == ["labels", "predictions"]