
CS 4820 : Algorithms
HW1– NP-Completeness

Bryce Evans (bae43)
September 12, 2013

1 Near Cliques

1.1 Solution

Prove: Clique Problem ≤p Near Clique Problem

The Clique of Size k Problem in NP-Complete reduces to the Near Clique of Size k
Problem. Both the near clique and full clique problems take inputs G = (V,E), and output
True if a subgraph g (defined separately in each problem) has the property g ⊆ G, and
False otherwise. Create the efficient reduction σ as follows:

σ Reduction: Given graph G = (V,E), add two nodes v1, v2 that connect to every
v ∈ V . Solving the near clique problem on this graph solves the clique problem as well.

If a clique of size k exists in G, then adding v1, v2 and connecting them to every other
vertex will form a near clique of size k + 2 because no edge connects v1 and v2. If one
or more edges are missing, then adding additional nodes that are not connected to each
other will cause at least 2 edges to now be missing among the nodes, and therefore the
near clique algorithm will return false.

CS 4820 HW1: NP-Completeness Bryce Evans - bae43

Example:

v1

v2

Graph G with clique k5 highlighted in red and v1, v2 connected to every vertex in G. A
near clique of size k + 2 forms between the red and green colored nodes.

Runtime of σ

Add nodes v1, v2: O(1)
Connect v1, v2 to v ∀v ∈ V : O(V)
Total Reduction Runtime: O(V)

τ Reduction: Construct a function τ that takes the output of σ and converts it to a
valid solution of the clique problem:

The construction of τ is trivial - the output of σ is equivalent to the clique problem. A
near clique of size k+ 2 will exist after adding v1, v2 if and only if a clique of size k existed
in G prior.

Runtime of τ

Output boolean is equivalent to solution to clique problem: O(1)
Total Reduction Runtime: O(1)

2

CS 4820 HW1: NP-Completeness Bryce Evans - bae43

1.2 Efficient Verifier:

Given a solution set S of k elements to the near clique problem, remove v1, v2 and cor-
responding edges. Take this graph and verify that each node has an edge to every other
node. If every node connects to all others, the algorithm should have returned True, and
if not, then False.

Runtime of Verifier

Remove v1, v2 O(1)
Verify all k nodes connect to others O(k2)
Total Runtime: O(k2)

F f

2 Submatrix Domination

2.1 Solution

Prove: Clique Problem ≤p Near Clique Problem

The Clique of Size k Problem in NP-Complete reduces to the Matrix Subdomination
Problem. The clique problem takes input G = (V,E), and output True if there exists a
clique of size k that exists in G and False otherwise. Create the efficient reduction σ as
follows:

σ Reduction: Given Graph G, find if it contains a clique of size k. Create adjacency
matrices Mk,MG for both the clique and G, such that each row and column (ri, ci) rep-
resents some node i ∈ G. If i is connected to j ∈ G, MG[i, j],MG[j, i] = 1. The main
diagonal has all values of 2.

Permute the columns so that the taken columns are consecutive. This is an isomor-
phism to the original graph as this essentially just a renaming of the nodes. Because the
graph is undirected, the matrix is symmetric and the rows are then consecutive like the
columns.

Because of the properties of this adjacency matrix, diagonals are the highest values in
the matrices because no other value can be > 1, meaning diagonals cannot be dominated by
anything but another value in the diagonal. This forces no node to be accidentally paired
up with another node by domination. For all diagonal values of Mk to be dominated in

3

CS 4820 HW1: NP-Completeness Bryce Evans - bae43

MG, the diagonals must align to each other, as no value inMG other than a diagonal is ≥ 2.

Because of the properties of adjacency matrices, if every value in the matrix is a 1
(excluding diagonal), then every node in that set is connected to all others in the set.
Therefore, the mapping of r(·), c(·) returns the set of nodes that form the clique. If MG

contains Mk, then G contains the clique and the algorithm returns True. It is guaranteed
that if such a submatrix is found that it is a clique because the matrix must be centered
on the diagonal, with each node the columns represent being connected to each other. If
the submatrix is found within MG then, the clique exists within G.

4

CS 4820 HW1: NP-Completeness Bryce Evans - bae43

Example: Find if graph G contains k3 (in red).

1

2

3

4
5

6

7

Graph G with clique k3 highlighted.

In this simple example, the nodes are numbered in way such that the clique is formed
by consecutively numbered nodes, causing the submatrix to be easily spotted in MG. Note
that this is not always the case, but the vertices may be renumbered to cause this.

Mk =

 2 1 1
1 2 1
1 1 2

 MG =



2 1 0 0 0 0 0
1 2 1 1 0 0 0
0 1 2 1 0 0 0
0 1 1 2 1 0 0
0 0 0 1 2 1 1
0 0 0 0 1 2 0
0 0 0 0 1 0 2



Runtime of σ

Compute Mk: O(k2)
Compute MG: O(V 2)
Total Reduction Runtime: O(V 2)

τ Reduction: Construct a function τ that takes the output of σ and converts it to a
valid solution of the clique problem:

5

CS 4820 HW1: NP-Completeness Bryce Evans - bae43

This is a decision problem with only a boolean output. True and False map to the
same values and the reduction is trivial.

Runtime of τ

Output boolean is equivalent to solution of vertex cover: O(1)
Total Reduction Runtime: O(1)

2.2 Efficient Verifier:

Given a solution set S to the submatrix domination problem, test all values of A into
r(·), c(·). If every value of r(·), c(·) matches, then the algorithm should have returned
True, and if not, then False.

Runtime of Verifier

Iterate through m1 rows and n1 columns of A: O(n1m1)
Total Runtime: O(n1m1)

F f

3 Party Invitations

3.1 Solution

Prove: Vertex Cover ≤p Party Invitation Problem

The Vertex Cover Problem in NP complete reduces to the party invitation problem. If
we can solve the party invitation problem, we could solve the vertex cover problem as well.
Create this efficient reduction σ as follows:

The party invitation takes inputs:

• a set of lists L = {l1, l2, l3, . . . , lk}

• a set of corresponding values M = {m1,m2,m3, . . . ,mk} of the minimum number of
elements that can be chosen from li ∈ L.

• n - the max number of elements that can be chosen from all lists

6

CS 4820 HW1: NP-Completeness Bryce Evans - bae43

The solution to the problem outputs a boolean True if there exists a set of elements
smaller than n in cardinality that satisfies all the constraints, and False otherwise.

Recall that vertex cover has given G = (V,E), and k, the max number of vertices that
can be chosen in the cover, with the constraint ∀e = (u, v) ∈ E, e is connected to some
o ∈ O. Vertex cover returns a boolean True if there exists some set of vertices S such that
|S| ≤ k and False otherwise.

σ Reduction: Consider n to be the number of edges, |E|. For all e ∈ E, at least
1 vertex must be taken, so M = {1, 1, 1, . . . , 1}. For all e = (u, v) ∈ E, construct a list
L′ = {{u1, v1}, {u2, v2}, {u3, v3}, . . . , {uk, vk}} Use L′ as the input set of lists for the party
invitation problem. This reduction maintains all of the constraints for Vertex Cover - each
edge e must have one valid vertex be chosen to cover it where a valid vertex is one that
has e as an endpoint.

Runtime of σ

Calculate number of edges: O(E)
Create List L′: O(E)
Find M : O(1)
Total Reduction Runtime: O(E)

τ Reduction: Construct a function τ that takes the output of σ and converts it to a
valid solution of the vertex cover problem:

The construction of τ is trivial - the output of σ is equivalent to if a vertex cover of size
k exists. Vertex Cover (V C) will return true if and only if the party invitation problem
(PI) returns true because each edge e ∈ G requires at least one vertex it is connected to to
be chosen. This is maintained in PI because each set has a minimum number of elements
needed to be picked to be 1, with valid elements being only vertices touching that edge.
Therefore, under the constraints of PI, each edge will have at least one vertex that it is
connected to be chosen.

Runtime of τ

Output boolean is equivalent to solution of vertex cover: O(1)
Total Reduction Runtime: O(1)

7

CS 4820 HW1: NP-Completeness Bryce Evans - bae43

3.2 Efficient Verifier:

Given a solution set S of n elements to PI, a polynomial verifier is as follows:

For each element e in list l ∈ L, check every element in S and see if it exists. If every
e exists in S, the algorithm should have returned True, and if not, then False.

Runtime of Verifier

Iterate through every e in list l ∈ L,
with m being the total number of these elements: m =

∑
l∈L

|l| O(m)

Iterate through every element of S O(n)
Total Runtime: O(nm)

F f

8

